

B. TECH. PROJECT REPORT
On

Condition Based Monitoring

System

BY

Ayush Soni

DISCIPLINE OF ELECTRICAL ENGINEERING

INDIAN INSTITUTE OF TECHNOLOGY INDORE

Nov 2018

Condition Based Monitoring

System

A PROJECT REPORT

Submitted in partial fulfillment of the

requirements for the award of the degrees

of

BACHELOR OF TECHNOLOGY

in

Electrical ENGINEERING

Submitted by:

Ayush Soni

Guided by:

Dr. Santosh Kumar Vishwakarma

Associate Professor

Discipline of Electrical Engineering

INDIAN INSTITUTE OF TECHNOLOGY INDORE

Nov 2018

CANDIDATE’S DECLARATION

We hereby declare that the project entitled Condition Based Monitoring System

submitted in partial fulfillment for the award of the degree of Bachelor of Technology in

Ayush Soni completed under the supervision of Dr. Santosh Kumar Vishwakarma,

Associate Professor, Discipline of Electrical Engineering, IIT Indore is an authentic

work.

 Further, I declare that I have not submitted this work for the award of any other

degree elsewhere.

Signature and name of the student(s) with date

CERTIFICATE by BTP Guide(s)

 It is certified that the above statement made by the students is correct to the best

of my/our knowledge.

Signature of BTP Guide(s) with dates and their designation

III

Table of Contents

Preface V

Acknowledgements VI

Abstract VII

List of Figures VIII

Chapter 1 - Introduction 1

1.1 Problem Statement . 2

1.2 Motivation . 2

Chapter 2 - Background 3

2.1 Fault prevention .3

2.2 Fault detection .4

2.3 Sound based fault detection . 5

Chapter 3 - Hardware Specification 6

 3.1 VAR-SOM-MX6 board Specification .6

3.2 Audio Codec specification .10

Chapter 4 - Protocols and Frameworks 13

4.1 Electronic Communication Protocol .13

 4.1.1 Universal Asynchronous Communication Transfer Protocol . 14

 4.1.2 Inter-IC Communication Protocol .16

 4.1.3 Inter-IC Sound Protocol . 18

 4.2 Socket Protocol . 19

 4.2.1 User Datagram Protocol .20

 4.2.2 Transmission Control Protocol .20

 4.2.3 Internet Control Message Protocol .23

 4.3 Network Time Protocol .23

 4.4 ALSA Framework .24

Chapter 5 – Contribution 26

 5.1 Audio Capture Module . 26

5.2 Provisioning Module . 28

 5.3 Power-On Self Utility Test Module . 29

5.4 Debug Module .30

Chapter 6 - Conclusion 31

6.1 Future possibilities . 31

References 32

IV

Preface

This report on “Condition Based Monitoring System” is prepared under the guidance of Dr.

Santosh Kumar Vishwakarma, Associate Professor, Discipline of Electrical Engineering,

IIT Indore.

In this internship report I will describe my experiences during my internship period. The

internship report contains an overview of the internship company and the activities, tasks and

projects that I have worked on during my internship. Writing this report, I also will describe

and reflect my learning objects and personal goals that I have set during my internship period.

I have tried to discover the relationship between theoretical and practical type of knowledge

and to bridge the gap between theoretical assumptions and practical necessities. With these

objectives, I have made all possible efforts and the necessary investigations to submit this

paper in an enlightened form in a very short time. I have tried my level best to eliminate errors

from the paper. As I had to complete my internship within a short period of time so the study

admits its limitations.

The report first shall give an overview of the tasks completed during the period of

internship with technical details. Then the results obtained shall be discussed and analyzed.

The report shall also elaborate on the future works which can be persuaded as an advancement

of the current work. I have tried my best to keep report simple yet technically correct. I hope

I succeed in my attempt.

I have gained new knowledge and skills. I achieved several of my learning goals. I got

insight into professional practice. I learned the different facets of working within a company.

V

Acknowledgement

This report has been prepared for the internship that has been done at Analog Device India

Private Ltd. in order to study the practical aspect of the course and implementation of the

theory in the real field with the purpose of fulfilling the requirements of the course of Electrical

Engineering.

The aim of this internship is to be familiar to the practical aspect and uses of theoretical

knowledge and clarifying the career goals, so I have successfully completed the internship and

compiled this report as the summary and the conclusion that have drawn from the internship

experience.

I would like to express my sincere gratitude to my internship coordinator and mentor

Dr. Santosh Kumar Vishwakarma who have given their valuable time and given me a chance

to learn something. And I would like to thank him for supporting me during the completion

and documentation of this internship

I would like to thank Mr. Pravin Kumar Angolkar for providing this opportunity to work

in Analog Devices India Pvt. Ltd. who helped me to clutch the rear opportunities to learn the

real-world situation. I am also grateful to all member of Analog Garage Team for providing

several documents, papers, data, figures and services as well as sharing their experience with

me and teaching me different techniques to build my knowledge. Thus, the time in Analog

Devices very audacious and supportive to my career through which I have gained valuable

work experience that will help definitely makes a favorable impression on me as a prospective

future employer.

Ayush Soni

B.Tech. IV Year

Discipline of Electrical Engineering

IIT Indore

VI

Abstract

In industrial manufacturing rigorous testing is used to ensure that the delivered products meet

their specifications. Mechanical maladjustment or faults often show their presence through

abnormal acoustic sound signals. This is the same case in machine assembly – the application

domain addressed in this paper. Manual diagnosis based on sound requires extensive

experience, and usually such experience is acquired at the cost of reduced production

efficiency or degraded product quality due to mistakes in judgments. The acquired experience

is also difficult to preserve and transfer and it often gets lost if the corresponding personnel

leave the task of testing. We propose herein a Case-Based Reasoning approach to collect,

preserve and reuse the available experience for machine diagnosis. This solution enables fast

experience transfer and more reliable and informed testing. Sounds from normal and faulty

machines are recorded and stored in a case library together with their diagnosis results. Given

an unclassified sound signal, the relevant cases are retrieved from the case library as a

reference for deciding the fault class of the new case. Adding new classified sound profiles to

the case library improves the system’s performance. So far, the developed system has been

applied to the testing environment for industrial machines. The preliminary results

demonstrate that our system is valuable in this application scenario in that it can preserve and

transfer the related experience among technicians and shortens the overall testing time.

VII

List of Figures

 Figure 1.1 Architectural Model of Project

 Figure 3.1 System Block Diagram of i.MX6 board

 Figure 3.2 Block Diagram of i.MX6

 Figure 3.3 Alternate Audio Bus Multiplexing Function

 Figure 3.4 Codec’s Connection to Multiple Audio Devices

 Figure 4.1 Inter System Protocol

 Figure 4.2 Intra System Protocol

 Figure 4.3 Connection between two UART devices

 Figure 4.4 Data Packet Format of UART

 Figure 4.5 UART communication between two devices

 Figure 4.6 Connection between two I2C devices

 Figure 4.7 Data Packet Format of I2c

 Figure 4.8 Different Modes of I2S

 Figure 4.9 UDP Data Packet Format

 Figure 4.10 TCP Data Packet Format

 Figure 4.11 Different Layers of TCP Model

 Figure 4.12 ICMP Data Packet Format

 Figure 4.13 NTP Data Packet Structure

 Figure 5.1 Audio Capture Architectural Model

 Figure 5.2 Signal Path of Codec

 Figure 5.3 Provisioning App Interface

 Figure 5.4 Provisioning App parameter

VIII

1 | Page

Chapter 1

Introduction

Often with mechanical machines, the operating sound can indicate the condition, the correctness of settings,

or the need for maintenance. For example, many drivers can tell, even without training, that there is

something wrong with a car by the operating sound. Industrial drilling machines produce characteristic

sounds if there is a misalignment. Trained listeners can even identify the specific nature of the problem by

sound alone. Although such skills are relatively simple for humans, the implementation of an equivalent

artificial system is not straightforward.

One of the new research interests is sound based fault detection, where they are looking for methods

to detect and identify faults in mechanical systems by utilizing only operating sound. The practical goal of

this thesis is to implement a system able to detect abnormalities in a sound signal for detecting faults.

This project is a sensing platform capable of running an algorithm on networked edge nodes and sending the

signatures to a central server for analysis and classification. The edge nodes can take multiple streams of

data including acoustic and vibration information and send it over the cloud. It is an audio monitoring

system implemented on an audio recognition technique. This system provides the untended manufacturing

system with the function of overall monitoring capability. It identifies various operational sounds emitted by

the machine, and check if they are proper ones which are expected from the control information prior to the

Figure 1.1

Architectural Model of Project

2 | Page

operation. In this project stream of audio data from various sources i.e. audio codec, USB mic, A2B are

captured, analyzed and sent to the cloud to detect defect on any machine.

1.2 Problem Statement

The company has devised a machine learning algorithm Condition Based Sound Monitoring System that we

had to implement. The goal is to have a system implemented in a concrete device that could warn about

impeding faults and later identify specific faults.

1.3 Motivation for work

According to the U.S. Department of Energy, the industrial motor use accounts for 25 percentage of all

electricity usage nationwide. Despite the vital roles they play, motors can fail for n number of reasons,

leading to a loss in productivity and profitability.

 Through the use of AI, sounds can be analyzed to detect machine failure. In other words: Making

sound visible even when it can’t be heard. With the aid of non-invasive sensors, machine learning

algorithms, and predictive maintenance solutions, failing components can be recognized at an early stage

before they become a major issue. As sound gets turned into a value, the advancements in hardware and

software show that significant progress is being made in the area of audio-based predictive analysis.

 Any mechanical machine needs to be maintained intermittently to prevent faults and to ensure that it is

operating with normal parameters. Inspite of maintenance, machines can break down for many reasons.

When faults begin to appear, a motor’s electrical efficiency decreases, hence requiring more energy to

compensate for the extra stress that the developing fault is contributing. This creates additional energy

consumption and higher electricity bills. This project helps in minimizing energy consumption as well as

protecting machines from further damage. Breakdowns and incorrect settings incur costs in several ways -

the cost of the physical replacement of the part, the human effort to repair the machine and the lost

production time that a machine is not operating. In some cases, the costs can be very high.

The probability of a fault can be lowered with maintenance. In many cases, the maintenance interval

is determined statistically and safety margin is used. Avoiding breakages by using high safety margin, leads

to unnecessary often done maintenance. If impeding faults could be detected automatically, lower safety

margins could be used and downtime of the system can be decreased. Thus, a system that could

automatically detect impending faults or wrong settings in a machine before it breaks down, could bring

resource savings.

A microphone is a relatively a cheap sensor compared to other kinds of specialized sensors, so it is

cost effective and thus it could be applied in many use scenarios. Additionally, hearing is a remote sense

thus a microphone can be positioned more freely, unlike many other sensors, like vibration sensors, that

require direct access to the machine in question. In addition, there are different hardware platforms that

provides high computational capabilities for highly concurrent processing, which are mass producible. Thus

such kind of system could be widely applicable and could have many practical industrial and commercial

applications.

3 | Page

Chapter 2

Background

Any mechanical system, like a combustion engine, a piping for transporting gaseous or liquid substances or

a drill, can incur faults during operation. Faults do not necessarily prevent the system from working at least

partially, but if left unchecked can cause the system to breakdown. Faults can occur for many different

reasons, like wear down of a part or any defect in a part. Mechanical machines are designed to operate inside

tolerance values and in specific conditions. Operating a machine with incorrect settings can lead to a fault

causing system breakdown.

System breakdowns are undesired. They can cause danger to living organisms and environment and

also incur costs in many ways. For example, a fault in an airplane could potentially cause large number of

human casualties. Fixing a machine that has already broken and potentially have caused additional damage

due the breakdown requires materials and manpower. In addition, often a system working non-optimally

consumes more resources, produces less output and furthers wear down of a machine. For example, a

combustion engine operating with incorrect settings consumes more fuel than a correctly set one in order to

produce the same output. Additionally, downtime of the system or machine can incur huge costs, especially

when the machine is a critical part of a larger system. For example, a pump on an oil rig. Even though it

itself is a very expensive machine costing tens of thousands of dollars while it is not working, the whole oil

drilling operation comes to a standstill, which incurs losses in the scope of hundreds of millions dollars per

day.

There are two kinds of faults-

● Sudden Faults that cause immediate system breakdown, caused by breaking of a critical part of the

machine, like a crankshaft in a car.

● Gradual Faults which allow the system to operate at least partially while causing incremental

damage to the system before incurring complete breakdown. Incorrectly set system can be

considered as one of the fault categories, which allows the system to operate, but affects the

efficiency of the system or the amount of wear that system experiences during operation. Incorrect

settings do not necessarily lead to system breakdown but can be costly.

There are three approaches to address the problem:

● Preventing Fault

● Detecting Faults

● Designing Fault tolerant systems.

Each approach has drawbacks, but these methods can be applied together. For example, utilizing all

three approaches in an airplane operation has led to relatively few accidents that happen due to faulty

equipment which further results in human casualties. Airplanes are maintained with conservative safety

margins: they have redundant systems to allow the plane to operate even if a fault happens and fault

detection systems are utilized to warn the operators about impeding faults.

2.1 Fault prevention

Electro-mechanical systems are maintained periodically to prevent faults and to insure correctness of the

settings. The required maintenance period is determined statistically so that the machine is expected to

function properly between maintenance periods. Safety margins and cost-of-breakdown analysis is utilized

to take into account the consequences of a breakdown.

4 | Page

The system maintenance requires resources and operational downtime thus incurring costs. There are

many situations where the machine will have to be taken apart in order to inspect its condition. Dismantling

a machine for inspection can be time consuming. In addition, in some cases dismantling a machine is

impractical, like in case of large industrial heat exchangers. In addition are structural defects that are not

apparent to outward inspection. In order to detect structural defects, stress tests can be utilized to verify

structural integrity of the part. Additionally, there are non-invasive methods to inspect the structure of a part.

The common methods include X-ray and ultrasound imaging techniques.

Additionally, machines can incur faults in spite of being maintained. For example, human error,

faulty parts and unexpected conditions. Thus, fault detection schemes could be utilized together with fault

prevention to achieve safer and more cost-effective solution.

2.2 Fault Detection

In literature, many various methods are used in non-intrusive fault detection. Some methods are problem

specific and act like monitors. For example, dedicated gas detection sensors, which are used in detecting

leaks in gas pipes. Fault detection methods are designed either to detect deteriorating operating condition or

identifying specific faults during operation time. These methods utilize different signals that an operating

machine produces. Some methods rely on specific knowledge about the problem domain.

There are two approaches for detecting faults. One approach utilizes known fault signals and

identifies specific faults. The second approach utilizes signals of normal operation in order to find

differences that could indicate abnormal operating state.

Methods utilizing known fault signals have a set of pre-gathered samples of signals that represent

different fault conditions and the normal condition. The methods utilize a classifier that classifies operating

time signals based on the pre-learned set. These methods have advantage over general methods in detecting

specific faults, especially if the fault is presented itself consistently in distinct patterns. Additionally, in

many cases they are tolerant for external noise, which is due to the approach of finding specific patterns

occurring in a signal. Disadvantages are that these methods cannot detect previously unknown faults and

they require samples of specific fault conditions. Usually gathering a comprehensive set of fault signals is

difficult due irregular nature of fault occurrence. For example, we can think of gathering signals from a high

voltage machine where the normal operational time is very long compared to fault occurrences. Moreover,

some faults do not produce consistent signals that could be classified properly.

The methods that utilize the second approach, concentrate on finding differences in the signal that is

not present in normal conditions. They classify signals based on distance between normal operating sound

and the target signal. As advantage, these methods are more general, thus it is easier to adapt them to

different use scenarios without having to gather information beforehand. Additionally, they can detect

previously unknown faults. Moreover, they are more adept to detect fuzzy occurrences, like squeaking

sounds. On the other hand, they have limitations and disadvantages. Firstly, they cannot ignore the operating

context. Many machines produce different signals during different states of operation like signals during

acceleration are different than operating at constant speed. Secondly, they are more susceptible to external

noise signals.

Operating state and condition of a machine can be deduced from many different kind of signals.

With the electrical machines, current can be used as a measure to detect physical faults also. In their study,

Gong measured current signals to detect faults in Direct-Drive wind turbines. The motor current signature

was also used in the study conducted by Khairnar, where they use motor current signature as measure to

detect stator faults in three phase induction motors. They use artificial neural network (ANN) to classify the

condition of the motor to operate normally, operating under a load, and experiencing fault. Utilizing the

operating current as a measure, has drawbacks. It requires direct access to the internal systems of the

machine and it is only limited to electrical machines that have windings, like electrical motors and power

generators. Vibration is also commonly used in fault detection, as many machines produce vibration signals

5 | Page

during operation. Vibration can be detected by sensors placed on the machine. Vibration signals are

significantly similar to sound signals. In the study conducted by Ngolah, they used vibration signal for

detecting faults in rotating motors, like a bench grinder. They collected the signals from five piezoelectric

transducers that were placed on the machine. An ANN was used to recognize different faults. Alameh

utilized vibration to detect faults in permanent magnet synchronous motors. They gathered multiple features

both time and frequency domain, like Root Mean-square (RMS) of the signal and mean frequency.

2.3 Sound Based Fault Detection

In addition to sight, the sense of sound is other remote sense that carries information about remote events.

Unlike sight, hearing is not limited by field of vision. Mechanical systems commonly produce sound while

operating. The operating sounds carry information about the state of the system. Thus, sound signals can be

potentially utilized in fault detection. Recently there has been growing interest to use sound-based fault

detection methods. Systems that are based on the sound have advantages over other methods. Firstly, they

do not require direct contact to the machine, like current or vibration-based methods. Secondly, they are can

detect faults that do not present as vibration, like leaking pipes. In addition, microphones are relatively

cheap sensors, thus they can be applied cost effectively. Moreover, fiber optic microphones can be utilized

in environments with high electromagnetic interference. Sound based methods have a major drawback, they

are susceptible to background noise. There are methods that can alleviate the effect of background noise,

like noise dampening enclosures.

6 | Page

Chapter 3

Hardware Specification

This section contains specification of various hardware component that had been used in this project.

3.1 Board specification

The VAR-MX6CustomBoard is a single board-computer, utilizing all the VAR-SOM-MX6 System-on-

Module features. For development and production, the VAR-MX6CustomBoard serves both as a complete

development kit and as an end-product, assembled according to your specifications at an optimized price

point.

Figure 3.1

System Block Diagram of board

7 | Page

The i.MX6 Dual and i.MX6 Quad processors represent Freescale Semiconductor’s latest achievement in

integrated multimedia applications processors, optimized for lowest power consumption. The processors

feature Freescale’s advanced implementation of the quad ARM™ Cortex-A9 core, which operates at speeds

of up to 1.2 GHz. They include 2D and 3D graphics processors, 3D 1080p video processing and integrated

power management. Each processor provides a 64-bit DDR3/LV-DDR3-1066 memory interface and a

number of other interfaces such as WLAN, Bluetooth™, GPS, hard drive, displays, and camera sensors.

3.1.1. Feature Summary

● Freescale i.MX6 series SoC (Single/Dual /Quad ARM® Cortex™-A9 Core, 1.2 GHz)

● Up to 16Gb DDR3 RAM

● 8Gb NAND Flash for storage memory/boot

● 2 x LVDS display interface

● HDMI V1.4 interface

● 1 x MIPI DSI

● Touch panel interface

● Parallel & serial camera interface

● On-board 10/100/1000 Mbps Ethernet PHY

● WLAN (802.11 b/g/n) / BT

● 1 x USB 2.0 host, 1 x OTG

● 2 x SD/MMC

● Serial interfaces (SPI , I2C, UART, I2S,)

● CAN Bus

● Stereo line-In / headphones out

● Digital microphone

Figure 3.2

Block Diagram of i.MX6

8 | Page

3.1.2. CPU Platform

The i.MX6 Dual / Quad Application Processor (AP) is based on the ARM Cortex-A9 MPCore™ Platform,

which has the following features:

● ARM Cortex A9 MPCore™ Dual or Quad core CPU configurations (with TrustZone)

● Symmetric CPU configuration where each CPU includes:

○ 32 Kbyte L1 Instruction Cache

○ 32 Kbyte L1 Data Cache

○ Private Timer and Watchdog

○ Cortex-A9 NEON MPE (Media Processing Engine) Co-processor.

● The ARM Cortex A9 MPCore™ complex includes:

○ General Interrupt Controller (GIC) with 128 interrupt support

○ Global Timer

○ Snoop Control Unit (SCU)

○ 1 Megabyte unified L2 cache shared by all CPU cores (Dual or Quad)

○ Two Master AXI (64-bit) bus interfaces output of L2 cache

● NEON MPE coprocessor

○ SIMD Media Processing Architecture

○ NEON register file with 32x64-bit general-purpose registers

○ NEON Integer execute pipeline (ALU, Shift, MAC)

○ NEON dual, single-precision floating point execute pipeline (FADD, FMUL)

○ NEON load/store and permute pipeline External

○ Supports single and double-precision add, subtract, multiply, divide, multiply and

accumulate, and square root operations as described in the ARM VFPv3 architecture.

● Provides conversions between 16-bit, 32-bit and 64-bit floating-point formats and ARM integer word

formats.

3.1.3. Memory Interfaces

The memory system consists of the following components:

● Level 1 Cache—32KB Instruction, 32 KB Data cache per core

● Level 2 Cache—Unified instruction and data (1 MByte)

● On-Chip Memory:

○ Boot ROM, including HAB (96 KB)

○ Internal multimedia / shared, fast access RAM (OCRAM, 256 KB)

○ Secure/non-secure RAM (16 KB)

● External memory interfaces:

○ 16-bit, 32-bit, and 64-bit DDR3-1066, LV-DDR3-1066, and 1/2 LPDDR2-1066 channels,

supporting DDR interleaving mode, for 2x32 LPDDR2-1066

○ 8-bit NAND-Flash, including support for Raw MLC/SLC, 2 KB, 4 KB, and 8 KB page size,

○ BA-NAND, PBA-NAND, LBA-NAND, OneNAND™ and others. BCH ECC up to 32 bit.

● 16-bit NOR Flash. All WEIMv2 pins are muxed on other interfaces.

● 16-bit PSRAM, Cellular RAM

3.1.4. Audio Back End

The AUDMUX provides flexible, programmable routing of the serial interfaces (SSI1 or SSI2) to and from

off-chip devices. The AUDMUX routes audio data (and even splices together multiple time-multiplexed

audio streams) but does not decode or process audio data itself. The AUDMUX is controlled by the ARM

but can route data even when the ARM is in a low power mode.

The ESAI (Enhanced Serial Audio Interface) provides a full-duplex serial port for serial

communication with a variety of serial devices, including industry-standard codecs, SPDIF transceivers, and

9 | Page

other processors. The ESAI consists of independent transmitter and receiver sections, each section with its

own clock generator. The ESAI is connected to the IOMUX and to the ESAI_BIFIFO module.

The ESAI_BIFIFO (ESAI Bus Interface and FIFO) is the interface between the ESAI module and

the shared peripheral bus. It contains the FIFOs used to buffer data to and from the ESAI, as well as

providing the data word alignment and padding necessary to match the 24-bit data bus of the ESAI to the

32-bit data bus of the shared peripheral bus.

The SPDIF (Sony/Philips Digital Interface) audio module is a stereo transceiver that allows the

processor to receive and transmit digital audio over it. The SPDIF receiver section includes a frequency

measurement block that allows the precise measurement of incoming sampling frequency. A recovered

clock is provided by the SPDIF receiver section and may be used to drive both internal and external

components in the system. The SPDIF is connected to the shared peripheral bus.

The ASRC (Asynchronous Sample Rate Converter) converts the sampling rate of a signal associated

to an input clock into a signal associated to a different output clock. The ASRC supports concurrent sample

rate conversions of up to 10 channels of over 120 dB THD+N. The sample rate conversion of each channel

is associated to a pair of incoming and outgoing sampling rates. The ASRC supports up to three sampling

rate pairs. The ASRC is connected to the shared peripheral bus.

3.1.5. 10/100/1000 Ethernet Controller

The MAC-NET core, in conjunction with a 10/100/1000 MAC, implements layer 3 network acceleration

functions. These functions are designed to accelerate the processing of various common networking

protocols, such as IP, TCP, UDP and ICMP, providing wire speed services to client applications. The MAC

operation is fully programmable and can be used in NIC (Network Interface Card), bridging, or switching

applications. The core implements the remote network monitoring (RMON) counters according to IETF

RFC 2819. The core also implements a hardware acceleration block to optimize the performance of network

controllers providing IP and TCP, UDP, ICMP protocol services. The acceleration block performs critical

functions in hardware, which are typically implemented with large software overhead. The core implements

programmable embedded FIFOs that can provide buffering on the receive path for loss-less flow control.

Advanced power management features are available with magic packet detection and programmable power-

down modes.

3.1.5. Memory

3.1.5.1. RAM

The VAR-SOM-MX6 is available with up to 16Gb of DDR3 memory.

3.1.5.2. Non-volatile Storage Memory

The VAR-SOM-MX6 is available with up to 8Gb of SLC NAND FLASH memory. The NAND flash is used

for Flash Disk purposes, O.S. run-time-image and the Boot-loader (Boot from NAND). First block (block

address 00h) of the memory device is guaranteed to be valid without ECC (up to 1,000 PROGRAM/ERASE

cycles)

3.1.6. 10/100/1000 Ethernet PHY

The VAR-SOM-MX6 features the Micrel KSZ9031 gigabit Ethernet PHY. The KSZ9031RN is a completely

integrated triple speed (10Base-T/100Base-TX/1000Base-T) Ethernet Physical Layer Transceiver for

transmission and reception of data over standard CAT-5 unshielded twisted pair (UTP) cable. The

KSZ9031RN provides the Reduced Gigabit Media Independent Interface (RGMII) for direct connection to

RGMII MACs in Gigabit Ethernet processors and switches for data transfer at 10/100/1000 Mbps speed.

3.1.7. TLV320AIC3106 Audio

The Texas Instrument’s TLV320AIC3106 is a low-power, highly integrated stereo audio codec with stereo

headphone amplifier, as well as multiple inputs and outputs programmable in single-ended or fully

differential configurations. Extensive register-based power control is included, enabling stereo 48-kHz DAC

playback as low as 15 mW. The VAR-SOM-MX6 exposes the following interface of the TLV320AIC3106:

10 | Page

● Headphone

● Line-in

● Digital microphone

3.1.8. Wi-Fi + BT

Wi-Fi & Bluetooth connectivity is supported by an on-board module TiWi – BLE. The TiWi-BLE module is

a high performance 2.4 GHz IEEE 802.11 b/g/n Bluetooth 4.0 radio in a cost effective, pre-certified

footprint. The module realizes the necessary PHY/MAC layers to support WLAN applications in

conjunction with a host processor over a SDIO interface. The module also provides a Bluetooth platform

through the HCI transport layer. Both WLAN and Bluetooth share the same antenna port.

3.2 Audio Codec Specification

The TLV320AIC3106 is a low-power stereo audio codec with stereo headphone amplifier, as well as

multiple inputs and outputs programmable in single-ended or fully differential configurations. Extensive

register-based power control is included, enabling stereo 48-kHz DAC playback as low as 15 mW from a

3.3-V analog supply, making it ideal for portable battery-powered audio and telephony applications.

 The record path of the TLV320AIC3106 contains integrated microphone bias, digitally controlled

stereo microphone preamplifier, and automatic gain control (AGC), with mix/mux capability among the

multiple analog inputs. Programmable filters are available during record which can remove audible noise

that can occur during optical zooming in digital cameras.

The playback path includes mix/mux capability from the stereo DAC and selected inputs, through

programmable volume controls, to the various outputs.

The TLV320AIC3106 contains four high-power output drivers as well as three fully differential

output drivers. The high-power output drivers are capable of driving a variety of load configurations,

including up to four channels of single-ended 16-Ω headphones using ac-coupling capacitors, or stereo 16-Ω

headphones in a capacitorless output configuration.

The stereo audio DAC supports sampling rates from 8 kHz to 96kHz and includes programmable

digital filtering in the DAC path for 3D, bass, treble, midrange effects, speaker equalization, and de-

emphasis for 32kHz, 44.1kHz, and 48kHz rates. The stereo audio ADC supports sampling rates from 8 kHz

to 96kHz and is preceded by programmable gain amplifiers or AGC that can provide up to 59.5-dB analog

gain for low-level microphone inputs. The TLV320AIC3106 provides an extremely high range of

programmability for both attack (8ms - 1,408ms) and for decay (0.05 s–22.4 s). This extended AGC range

allows the AGC to be tuned for many types of applications.

For battery saving applications where neither analog nor digital signal processing are required, the

device can be put in a special analog signal passthrough mode. This mode significantly reduces power

consumption, as most of the device is powered down during this pass-through operation.

The serial control bus supports SPI or I2C protocols, while the serial audio data bus is programmable

for I2S, left/right-justified, DSP, or TDM modes. A highly programmable PLL is included for flexible clock

generation and support for all standard audio rates from a wide range of available MCLKs, varying from 512

kHz to 50 MHz, with special attention paid to the most popular cases of 12-MHz, 13-MHz, 16-MHz, 19.2-

MHz, and 19.68-MHz system clocks.

The TLV320AIC3106 consists of the following blocks:

● Stereo audio multi-bit delta-sigma DAC (8 kHz–96 kHz)

● Stereo audio multi-bit delta-sigma ADC (8 kHz–96 kHz)

● Programmable digital audio effects processing (3-D, bass, treble, mid-range, EQ, notch filter, de-

emphasis)

● Six audio inputs

● Four high-power audio output drivers (headphone drive capability)

● Three fully differential line output drivers

11 | Page

● Fully programmable PLL

Headphone/headset jack detection with interrupt Communication to the TLV320AIC3106 for control is pin-

selectable (using the SELECT pin) as either SPI or I2C. The SPI interface requires that the Slave Select

signal (MFP0) be driven low to communicate with the TLV320AIC3106. Data is then shifted into or out of

the TLV320AIC3106 under control of the host microprocessor, which also provides the serial data clock.

The I2C interface supports both standard and fast communication modes, and also enables cascading of up

to four multiple codecs on the same I2C bus through the use of two pins for addressing (MFP0, MFP1).

Digital Audio Data Serial Interface

Audio data is transferred between the host processor and the TLV320AIC3106 via the digital audio data

serial interface, or audio bus. The audio bus on this device is very flexible, including left or right justified

data options, support for I2S or PCM protocols, programmable data length options, a TDM mode for

multichannel operation, very flexible master/slave configurability for each bus clock line, and the ability to

communicate with multiple devices within a system directly. The data serial interface uses two sets of pins

for communication between external devices, with the particular pin used controlled through register

programming. This configuration is shown in Figure below.

In cases where MFP3 is needed for a secondary device digital input, the TLV320AIC3106 must be

used in I2C mode (when in SPI mode, MFP3 is used as the SPI bus MOSI pin and thus cannot be used here

as an alternate digital input source). This mux capability allows the TLV320AIC3106 to communicate with

two separate devices with independent I2S/PCM buses. An example of such an application is a cell phone

containing a Bluetooth transceiver with PCM/I2S interface. The applications processor can be connected to

the WCLK, BCLK, DIN, DOUT pins on the TLV320AIC3106, while a Bluetooth device with PCM

interface can be connected to the GPIO1, GPIO2, MFP3, and DOUT pins on the TLV320AIC3106. By

programming the registers via I2C control, the applications processor can determine which device is

communicating with the TLV320AIC3106. This is attractive in cases where the TLV320AIC3106 can be

configured to communicate data with the Bluetooth device, then the applications processor can be put into a

low power sleep mode, while voice/audio transmission still occurs between the Bluetooth device and the

TLV320AIC3106.

Figure 3.3

Alternate Audio Bus Multiplexing Function

12 | Page

The audio bus of the TLV320AIC3106 can be configured for left or right justified, I2S, DSP, or

TDM modes of operation, where communication with standard telephony PCM interfaces is supported

within the TDM mode. These modes are all MSB-first, with data width programmable as 16, 20, 24, or 32

bits. In addition, the word clock (WCLK or GPIO1) and bit clock (BCLK or GPIO2) can be independently

configured in either Master or Slave mode, for flexible connectivity to a wide variety of processors

The word clock (WCLK or GPIO1) is used to define the beginning of a frame, and may be

programmed as either a pulse or a square-wave signal. The frequency of this clock corresponds to the

maximum of the selected ADC and DAC sampling frequencies.

The bit clock (BCLK or GPIO2) is used to clock in and out the digital audio data across the serial

bus. When in Master mode, this signal can be programmed in two further modes: continuous transfer mode,

and 256-clock mode. In continuous transfer mode, only the minimal number of bit clocks needed to transfer

the audio data are generated, so in general the number of bit clocks per frame will be two times the data

width. For example, if data width is chosen as 16 bits, then 32-bit clocks will be generated per frame. If the

bit clock signal in master mode will be used by a PLL in another device, it is recommended that the 16-bit or

32-bit data width selections be used. These cases result in a low jitter bit clock signal being generated,

having frequencies of 32 × fs or 64 × fs. In the cases of 20-bit and 24-bit data width in master mode, the bit

clocks generated in each frame will not all be of equal period, due to the device not having a clean 40 × fs or

48 × fs clock signal readily available. The average frequency of the bit clock signal is still accurate in these

cases (being 40 × fs or 48 × fs), but the resulting clock signal has higher jitter than in the 16-bit and 32-bit

cases.

In 256-clock mode, a constant 256-bit clocks per frame are generated, independent of the data width

chosen. The TLV320AIC3106 further includes programmability to 3-state the DOUT line during all bit

clocks when valid data is not being sent. By combining this capability with the ability to program at what bit

clock in a frame the audio data will begin, time-division multiplexing (TDM) can be accomplished, resulting

in multiple codecs able to use a single audio serial data bus.

Figure 3.4

Codec’s Connection to Multiple Audio Devices

13 | Page

Chapter 4

Protocols

A protocol is a set of rules and guidelines for communicating data. Rules are defined for each step and

process during communication between two or more networks or devices, they have to follow these rules to

successfully transmit data.

Protocols specify the standards for communication and provide detailed information on processes

involved in data transmission. Such processes include:

● Type of task
● Process nature

● Data flow rate
● Data type

● Device management

4.1 Electronic Communication Protocols

Electronic Communication protocols are formal descriptions of digital message formats and rules. They are

required to exchange messages in or between computing systems and are required in telecommunications.

Communications protocols cover authentication, error detection and correction, and signaling. They

can also describe the syntax, semantics, and synchronization of analog and digital communications.

Communications protocols are implemented in hardware and software. There are thousands of

communications protocols that are used everywhere in analog and digital communications.

Communications devices have to agree on many physical aspects of the data to be exchanged before

successful transmission can take place. Rules defining transmissions are called protocols.

Types of Electronic Communication Protocols:

There are two types of communication product which are classified below:

1. Inter System Protocol

2. Intra System Protocol

1. Inter System Protocol: The inter system protocol used to communicate the two different devices. Like

communication between to microcontroller kit. The communication is done through a inter bus system.

CPU
Micro-controller

Kit

Figure 4.1

Inter System Protocol

14 | Page

Different Categories of Inter System Protocols:

● UART Protocol
● USART Protocol
● USB Protocol

2. Intra System Protocol: The Intra system protocol is used to communicate the two devices within the

circuit board. While using this intra system protocols, without going to intra system protocols we will

expand the peripherals of the microcontroller. The circuit complexity and power consumption will be

increase by using intra system protocols. Using intra system protocols circuit complexity and power

consumption, cost is decrease and it is very secure to accessing the data.

Different categories of Inter system protocol

● I2C Protocol
● SPI Protocol

● CAN Protocol

4.1.1 Universal Asynchronous Communication Transfer Protocol

A universal asynchronous receiver-transmitter (UART) is a computer hardware device for asynchronous

serial communication in which the data format and transmission speeds are configurable. The electric

signaling levels and methods are handled by a driver circuit external to the UART. A UART is usually an

individual (or part of an) integrated circuit (IC) used for serial communication over a computer or peripheral

device serial port. In UART communication, two UARTs communicate directly with each other. The

transmitting UART converts parallel data from a controlling device like a CPU into serial form, transmits it

in serial to the receiving UART, which then converts the serial data back into parallel data for the receiving

device. Data flows from the TX pin of the transmitting UART to the RX pin of the receiving UART:

Micro-controller

Kit
Peripheral

Figure 4.2

Intra System Protocol

Figure 4.3

Connection between two UART devices

15 | Page

UARTs transmit data asynchronously, which means there is no clock signal to synchronize the output of bits

from the transmitting UART to the sampling of bits by the receiving UART. Instead of a clock signal, the

transmitting UART add start and stop bits to the data packet being transferred. These bits define the

beginning and end of the data packet so the receiving UART knows when to start reading the bits. When the

receiving UART detects a start bit, it starts to read the incoming bits at a specific frequency known as the

baud rate. Baud rate is a measure of the speed of data transfer, expressed in bits per second (bps). Both

UARTs must operate at about the same baud rate. The baud rate between the transmitting and receiving

UARTs can only differ by about 10% before the timing of bits gets too far off.

START BIT

The UART data transmission line is normally held at a high voltage level when it’s not transmitting data. To

start the transfer of data, the transmitting UART pulls the transmission line from high to low for one clock

cycle. When the receiving UART detects the high to low voltage transition, it begins reading the bits in the

data frame at the frequency of the baud rate.

DATA FRAME

The data frame contains the actual data being transferred. It can be 5 bits up to 8 bits long if a parity bit is

used. If no parity bit is used, the data frame can be 9 bits long. In most cases, the data is sent with the least

significant bit first.

PARITY

Parity describes the evenness or oddness of a number. The parity bit is a way for the receiving UART to tell

if any data has changed during transmission. Bits can be changed by electromagnetic radiation, mismatched

baud rates, or long-distance data transfers. After the receiving UART reads the data frame, it counts the

number of bits with a value of 1 and checks if the total is an even or odd number. If the parity bit is a 0 (even

parity), the 1 bit in the data frame should total to an even number. If the parity bit is a 1 (odd parity), the 1

bit in the data frame should total to an odd number. When the parity bit matches the data, the UART knows

that the transmission was free of errors. But if the parity bit is a 0, and the total is odd; or the parity bit is a 1,

and the total is even, the UART knows that bits in the data frame have changed.

STOP BITS

To signal the end of the data packet, the sending UART drives the data transmission line from a low voltage

to a high voltage for at least two-bit durations.

Figure 4.4

Data Packet Format of UART

16 | Page

Theory of Operation

1. The transmitting UART receives data in parallel from the data bus.

2. The transmitting UART adds the start bit, parity bit, and the stop bit(s) to the data frame.

3. The entire packet is sent serially from the transmitting UART to the receiving UART. The receiving

UART samples the data line at the pre-configured baud rate.

4. The receiving UART discards the start bit, parity bit, and stop bit from the data frame.

5. The receiving UART convert the serial data back into parallel and transfer it to the data bus on the

receiving end.

4.1.2 Inter-IC Communication Protocol

Inter-Integrated Circuit (I²C) is a synchronous, multi-master, multi-slave, packet switched, single-ended,

serial computer bus. It is widely used for attaching lower-speed peripheral ICs to processors

and microcontrollers in short-distance, intra-board communication.I2C only uses two wires to transmit data

between devices:

SDA (Serial Data) – The line for the master and slave to send and receive data.

SCL (Serial Clock) – The line that carries the clock signal.

Figure 4.5

UART communication between two devices

Figure 4.6

Connection between two I2C devices

17 | Page

With I2C, data is transferred in messages. Messages are broken up into frames of data. Each message has an

address frame that contains the binary address of the slave, and one or more data frames that contain the data

being transmitted. The message also includes start and stop conditions, read/write bits, and ACK/NACK bits

between each data frame:

Start Condition:

The SDA line switches from a high voltage level to a low voltage level before the SCL line switches from

high to low.

Stop Condition:

The SDA line switches from a high voltage level to a low voltage level before the SCL line switches from

high to low.

Address Frame:

A 7 or 10 bit sequence unique to each slave that identifies the slave when the master wants to talk to it.

Read/Write Byte:

A single bit specifying whether the master is sending data to the slave (low voltage level) or requesting data

from it (high voltage level).

Acknowledgement Bit:

Each frame in a message is followed by an acknowledge/no-acknowledge bit. If an address frame or data

frame was successfully received, an ACK bit is returned to the sender from the receiving device.

Theory of Operation

1. The master sends the start condition to every connected slave by switching the SDA line from a high

voltage level to a low voltage level before switching the SCL line from high to low.

2. The master sends each slave the 7- or 10-bit address of the slave it wants to communicate with, along

with the read/write bit.

3. Each slave compares the address sent from the master to its own address. If the address matches, the

slave returns an ACK bit by pulling the SDA line low for one bit. If the address from the master does

not match the slave’s own address, the slave leaves the SDA line high.

4. The master sends or receives the data frame.

5. After each data frame has been transferred, the receiving device returns another ACK bit to the

sender to acknowledge successful receipt of the frame.

6. To stop the data transmission, the master sends a stop condition to the slave by switching SCL high

before switching SDA high.

Figure 4.7

Data Packet Format of I2C

18 | Page

4.1.3 Inter-IC Sound Protocol

I²S (Inter-IC Sound) is an electrical serial bus interface standard used for connecting digital audio devices

together. It is used to communicate PCM audio data between integrated circuits in an electronic device. 2S is

a simple data interface, without any form of address or device selection. On an I2S bus, there is only one bus

master and one transmitter. The master may be a transmitter, a receiver, or a controller for data transfers

between other devices acting as transmitter and receiver. In high-quality audio applications involving a

codec, the codec is typically the master so that it has precise control over the I2S bus clock. The I2S bus

carries two channels, left and right, which are typically used to carry stereo audio data streams. The data

alternates between left and right channels, as controlled by a word select signal driven by the bus master.

I²S (Inter-IC Sound) bus has 3 lines:

● Continuous Serial Clock (SCK)
● Word Select (WS) or Left-Right Select Clock (LRCLK)
● Serial Data (SD)

Master generates SCK and WS in this communication protocol.

Serial Data (SD)

Serial data is transmitted in two’s complement with the MSB first. The MSB is transmitted first because the

transmitter and receiver may have different word lengths. It isn’t necessary for the transmitter to know how

many bits the receiver can handle, nor does the receiver need to know how many bits are being transmitted.

When the system word length is greater than the transmitter word length, the word is truncated (least

significant data bits are set to ‘0’) for data transmission. If the receiver is sent more bits than its word length,

the bits after the LSB are ignored. On the other hand, if the receiver is sent fewer bits than its word length,

the missing bits are set to zero internally. And so, the MSB has a fixed position, whereas the position of the

LSB depends on the word length. The transmitter always sends the MSB of the next word one clock period

after the WS changes. Serial data sent by the transmitter may be synchronized with either the trailing

Figure 4.8

Different Modes of I2S

19 | Page

(HIGH-to-LOW) or the leading (LOW-to-HIGH) edge of the clock signal. However, the serial data must be

latched into the receiver on the leading edge of the serial clock signal, and so there are some restrictions

when transmitting data that is synchronized with the leading edge

Word Select (WS)

The word select line indicates the channel being transmitted:

 WS = 0 - channel 1 (Left channel)

 WS = 1 - channel 2 (Right channel)

WS may change either on a trailing or leading edge of the serial clock, but it doesn’t need to be symmetrical.

In the slave, this signal is latched on the leading edge of the clock signal. The WS line changes one clock

period before the MSB is transmitted. This allows the slave transmitter to derive synchronous timing of the

serial data that will be set up for transmission. Furthermore, it enables the receiver to store the previous word

and clear the input for the next word.

4.2 Sockets Protocols

Socket - A socket is a software object that acts as an end point establishing a bidirectional network

communication link between a server-side and a client-side program. In UNIX, a socket can also be referred

to as an endpoint for Inter-process communication (IPC) within the operating system (OS). One socket

(node) listens on a particular port at an IP, while other socket reaches out to the other to form a connection.

Server forms the listener socket while client reaches out to the server.

Socket Types

There are four types of sockets available to the users. The first two are most commonly used and the last

two are rarely used.

Processes are presumed to communicate only between sockets of the same type but there is no restriction

that prevents communication between sockets of different types.

● Stream Sockets

● Datagram Sockets

● Raw Sockets

● Sequenced Packet Sockets

Socket protocols

A protocol is a standard set of rules for transferring data, such as UDP/IP and TCP/IP. An application

program can specify a protocol only if more than one protocol is supported for this particular socket type in

this domain.

Each socket can have a specific protocol associated with it. This protocol is used within the domain to

provide the semantics required by the socket type. Not all socket types are supported by each domain;

support depends on the existence and implementation of a suitable protocol within the domain.

Major Protocols in the suite of Internet Network Protocols include:

● Transmission Control Protocol/Internet Protocol

● User Datagram Protocol
● Reliable Datagram Socket Protocol

● Internet Control Message Protocol

20 | Page

4.2.1 User Datagram Protocol

UDP uses a simple connectionless communication model with a minimum of protocol mechanism. UDP

provides checksums for data integrity, and port numbers for addressing different functions at the source and

destination of the datagram. It has no handshaking dialogues, and thus exposes the user's program to

any unreliability of the underlying network; there is no guarantee of delivery, ordering, or duplicate

protection.

Features

● UDP is used when acknowledgement of data does not hold any significance.

● UDP is good protocol for data flowing in one direction.

● UDP is simple and suitable for query-based communications.

● UDP is not connection oriented.

● UDP does not provide congestion control mechanism.

● UDP does not guarantee ordered delivery of data.

● UDP is stateless.

● UDP is suitable protocol for streaming applications such as VoIP, multimedia streaming.

UDP Header

UDP header is as simple as its function.

Source Port Destination Port

Length Checksum

UDP header contains four main parameters:

● Source Port - This 16 bits information is used to identify the source port of the packet.

● Destination Port - This 16 bits information, is used identify application level service on destination

machine.

● Length - Length field specifies the entire length of UDP packet (including header). It is 16-bits

field and minimum value is 8-byte, i.e. the size of UDP header itself.

● Checksum - This field stores the checksum value generated by the sender before sending. IPv4 has

this field as optional so when checksum field does not contain any value it is made 0 and all its bits

are set to zero.

4.2.2 Transmission Control Protocol

The Internet protocol or Transmission Control Protocol is the conceptual model and set of communication

protocols used on the Internet and similar computer networks.

The Internet protocol suite provides end-to-end data communication specifying how data should be

packetized, addressed, transmitted, routed, and received. TCP ensures reliability by sequencing bytes with a

forwarding acknowledgement number that indicates to the destination the next byte the source expect to

0 15 16 31

Figure 4.9

UDP Data Packet Format

21 | Page

receive. TCP offers Stream Data Transfer, Reliability, Efficient Flow Control, Full-duplex operation and

Multiplexing.

 This functionality is organized into four abstraction layers, which classify all related protocols

according to the scope of networking involved. From lowest to highest, the layers are the link layer,

containing communication methods for data that remains within a single network segment ; the internet

layer, providing internetworking between independent networks; the transport layer, handling host-to-host

communication; and the application layer, providing process-to-process data exchange for applications.

TCP Services

TCP offers following services to the processes at the application layer:

● Stream Delivery Service

● Sending and Receiving Buffers

● Bytes and Segments

● Full Duplex Service

● Connection Oriented Service

● Reliable Service

STREAM DELIVER SERVICE

TCP protocol is stream oriented because it allows the sending process to send data as stream of bytes and

the receiving process to obtain data as stream of bytes.

SENDING AND RECEIVING BUFFERS

It may not be possible for sending and receiving process to produce and obtain data at same speed,

therefore, TCP needs buffers for storage at sending and receiving ends.

BYTES AND SEGMENTS

The Transmission Control Protocol (TCP), at transport layer groups the bytes into a packet. This packet is

called segment. Before transmission of these packets, these segments are encapsulated into an IP datagram.

FULL DUPLEX SERVICE

Transmitting the data in duplex mode means flow of data in both the directions at the same time.

Figure 4.10

TCP Data Packet Format

22 | Page

CONNECTION ORIENTED SERVICE

TCP offers connection-oriented service in the following manner:

1. TCP of process-1 informs TCP of process-2 and gets its approval.

2. TCP of process-1 and TCP of process-2 and exchange data in both the two directions.

1. After completing the data exchange, when buffers on both sides are empty, the two TCP’s

destroy their buffers.

RELIABLE SERVICE

For sake of reliability, TCP uses acknowledgement mechanism.

TCP model contains four layers, which are:

1. Process/Application Layer

2. Host-to-Host/Transport Layer

3. Internet Layer

4. Network Access/Link Layer

TCP/IP Model

Application Layer

Transport Layer

Internet Layer

Link Layer

Application layer

The application layer is the scope within which applications create user data and communicate this

data to other applications on another or the same host. The applications, or processes, make use of

the services provided by the underlying, lower layers, especially the Transport Layer which provides

reliable or unreliable pipes to other processes. The communications partners are characterized by the

application architecture, such as the client-server model and peer-to-peer networking. This is the

layer in which all higher-level protocols, such as SMTP, FTP, SSH, HTTP, operate. Processes are

addressed via ports which essentially represent services.

Transport layer

The transport layer performs host-to-host communications on either the same or different hosts and

on either the local network or remote networks separated by routers. It provides a channel for the

communication needs of applications.

Figure 4.11

Different Layers of TCP Model

23 | Page

Internet layer

The internet layer exchanges datagrams across network boundaries. It provides a uniform networking

interface that hides the actual topology (layout) of the underlying network connections. It is therefore

also referred to as the layer that establishes internetworking. Indeed, it defines and establishes the

Internet. This layer defines the addressing and routing structures used for the TCP/IP protocol suite.

Link layer

The link layer defines the networking methods within the scope of the local network link on which

hosts communicate without intervening routers. This layer includes the protocols used to describe the

local network topology and the interfaces needed to effect transmission of Internet layer datagrams to

next-neighbor hosts.

4.2.3 Internet Control Message Protocol

ICMP (Internet Control Message Protocol) is an error-reporting protocol network device like routers use to

generate error messages to the source IP address when network problems prevent delivery of IP packets.

ICMP creates and sends messages to the source IP address indicating that a gateway to the Internet that a

router, service or host cannot be reached for packet delivery. Any IP network device has the capability to

send, receive or process ICMP messages. It is used by network administrators to troubleshoot Internet

connections in diagnostic utilities including ping and traceroute. One of the main protocols of the Internet

Protocol suite, ICMP is used by routers, intermediary devices or hosts to communicate error information or

updates to other routers, intermediary devices or hosts. The widely used IPv4 (Internet Protocol version 4)

and the newer IPv6 use similar versions of the ICMP protocol (ICMPv4 and ICMPv6, respectively).

4.3 Network Time Protocol

The Network Time Protocol (NTP) is a networking protocol for clock synchronization between computer

systems over packet-switched, variable-latency data networks. NTP is intended to synchronize all

participating computers to within a few milliseconds of Coordinated Universal Time (UTC).[1]:3 It uses

the intersection algorithm, a modified version of Marzullo's algorithm, to select accurate time servers and is

designed to mitigate the effects of variable network latency. NTP can usually maintain time to within tens of

milliseconds over the public Internet, and can achieve better than one millisecond accuracy in local area

networks under ideal conditions. The protocol is usually described in terms of a client-server model, but can

as easily be used in peer-to-peer relationships where both peers consider the other to be a potential time

source. Implementations send and receive timestamps using the User Datagram Protocol (UDP) on port

number 123. They can also use broadcasting or multicasting, where clients passively listen to time updates

after an initial round-trip calibrating exchange. NTP uses a systematic, hierarchical level of clock sources for

its reference. Each level is called a stratum and has a layer number that usually begins with zero. The

stratum level serves as an indicator of the distance from the reference clock in order to avoid cyclic

dependency in the hierarchy. However, the stratum does not represent the quality or reliability of time.

Figure 4.12

ICMP Data Packet Format

24 | Page

4.4 ALSA Framework

ALSA stands for the Advanced Linux Sound Architecture Framework. It consists of a set of kernel drivers,

an application programming interface (API) library and utility programs for supporting sound card devices

under Linux.

ALSA Kernel Space Features:

● Efficiently and fully supports from consumer sound cards to professional multichannel audio

interfaces, bringing features not supported by OSS, such as hardware-based MIDI synthesis,

software mixing of multiple channels and full duplex operation.

● Supports SMP (multiprocessor) systems. Thread-Safe device drivers and user space library.

● Consistent and generic control API for managing hardware controls.

The ALSA API can be broken down into the major interfaces it supports:

● Control interface: a general-purpose facility for managing registers of sound cards and querying the

available devices.

● PCM interface: the interface for managing digital audio capture and playback. The rest of this article

focuses on this interface, as it is the one most commonly used for digital audio applications.

● Raw MIDI interface: supports MIDI (Musical Instrument Digital Interface), a standard for electronic

musical instruments. This API provides access to a MIDI bus on a sound card. The raw interface

works directly with the MIDI events, and the programmer is responsible for managing the protocol

and timing.

Figure 4.13

NTP Data Packet Structure

25 | Page

● Timer interface: provides access to timing hardware on sound cards used for synchronizing sound

events.

● Sequencer interface: a higher-level interface for MIDI programming and sound synthesis than the

raw MIDI interface. It handles much of the MIDI protocol and timing.

● Mixer interface: controls the devices on sound cards that route signals and control volume levels. It

is built on top of the control interface.

26 | Page

Chapter 5

Contribution

In this project, which is a Condition based monitoring platform, I made different modules for capturing

acoustic audio data, provisioning of i.MX6 board to configure and capture signal path of audio codec, a self-

test module and a bug logger module.

5.1 Audio Capture Module

In this module, my work was to capture the audio data from Line-In and Digital Mic which are on the Audio

Codec (TLV320aic3106) and via Inter IC sound (i2s) protocol this data from Audio codec is captured in

Var-Som-MX6 board for further process.

In this audio data capturing process, through Inter IC communication (i2c) bus, I have to configure audio

codec such that data can be captured through both onboard digital as well as line-in mic. For this I had to

program ADC, PGA and GPIO of audio codec to get the audio data to the TLV320aic3106 audio codec that

captured digital data, then transferred it to Var-Som-MX6 device and by using Advanced Linux Sound

Architecture(a kernel level framework for sound card device driver),that data is abstracted.

Figure 5.1

Audio Capture Architectural Model

27 | Page

Line-In and digital microphone are stereo devices and USB microphone is a mono device. To get the data of

both the devices, so that the data didn't get corrupt, I had to design a module which could dynamically

configure and capture channel such that both stereo as well as mono audio data could be captured. Stereo

data is configured in codec as Interleaved i.e. the data of left and right channel are mixed together in audio

codec as one contiguous block of data and sent over to i2s bus.

 This module has feature of dynamically controlling PGA i.e. Programmable Gain Amplifier and

Sampling rate of audio samples. Programmable Gain Amplifier has range of 0 to 59.5db at step of 0.5db. We

can configure gain of data using PGA for only Line-In because digital microphone bypasses PGA and ADC

both. The TLV320AIC3106 supports the following standard audio sampling rates: 8 kHz, 11.025 kHz, 12

kHz, 16 kHz, 22.05 kHz, 24 kHz, 32 kHz, 44.1 kHz, 48 kHz, 88.2 kHz, and 96kHz. This module configures

codec to obtain audio samples at all the sampling rate which are standard to the audio codec.

 This module also takes care of problem of mixing audio samples from line-in and digital

microphone. When the data is captured from digital microphone, the module muted PGA gain, so data

coming from line-in mic gets muted by setting bit 8 to 1 of Left and Right ADC PGA Gain Control Register

and thus dies not get mixed with digital microphone data. When data was collected from the line-in mic bit 0

Figure 5.2

Signal Path of Codec

28 | Page

and 1 Audio Serial Data Interface Control Register A, which is register 08 of Audio Codec are set to 00 bits

to disable digital microphone support to avoid data capturing from digital microphone.

5.2 Provisioning Module

In telecommunication, provisioning involves the process of preparing and equipping a network to allow it to

provide new services to its users. Provisioning equates to "initiation" and includes altering the state of an

existing priority service or capability.

This module consists of 2 module -

● Host module

● Board module

Host module -

 This module is menu driven module based on graphical user interface, which provisions selected

menu parameter based on the value entered by the user of parameter like input device, SSID, password,

sampling rate, etc. When the user saves the parameter by clicking save option in the menu all the changes

are saved into JavaScript Object Notation (JSON) file and that json file then transferred to the board in

Format given below over UART.

File Transfer Format:

0 15 16 47 48 47+4*File size 48+4*File size

Header File size File Footer

 62+4*File size

Figure 5.3

Provisioning App Interface

29 | Page

Board module -

This module waits at the UART 3 port to receive the header, that is of 2 bytes. When the received

header matches with the programmed header, the module reads next 4 bytes that have information of the

number of bytes stored in the file. Then based on the file size Var-Som-Mx6 board reads bytes based on the

file size. At this module, one receives footer to check whether all the data sent by the host over UART are

error free.

5.3 Power on Self Utility Test Module

This module verifies the functionality of peripheral devices and check the internet connectivity status of the

i.MX6 board on powering on the board. This module checks the working of following devices:

● Line-IN mic

● Digital Mic

● USB Mic

● Wi-Fi

● Ethernet

 This module has the functionality of capturing and recording acoustic sound from USB, line-in and

digital microphones. This module checks whether the microphone is connected and also checks the

availability of handle to capture the sound, this module checks all the functionality of all the configuration

available in provisioning module i.e. whether codec the codec is able to capture sound data at the given

sampling rate, PGA gain, etc.

Captured audio samples were recorded in Waveform Audio File Format which is .wav format.

It is also designed such that it will record sound, both of stereo and mono audio data i.e. for different number

of channels.

 Internet Connectivity of ethernet and Wi-Fi are verified using ICMP. The module checks whether the

ethernet cable is connected to i.MX6 board and board is able to ping over to certain IP address or not. This

module creates of RAW SOCKET and pack a packet as per standardized packet structure of ICMP and

receives the packet from that IP address and unpack to obtain information like time to receive the packet,

size of packet, etc. This module waits for 2s to receive the packet to create a non-blocking socket so that

other functionality does not get blocked. If the packet is not received in time, this module logs an error.

Figure 5.4

Provisioning App parameter

30 | Page

In all the hardware devices ethernet is prioritized over Wi-Fi i.e. when both ethernet and Wi-Fi are

connected, sending and receiving data over the internet takes place over the ethernet. So, to check Wi-Fi

connectivity one has to pull out ethernet cable. This module also solves this problem by pprogrammably

disabling ethernet, checking the Wi-Fi connectivity and then enabling the ethernet.

5.4 Debug Module

This module logs messages of different log level and had the functionality of storing logs into file. The

module prints the operation log messages on the console terminal or in log file or both.

The logger options available in this module were:

1. Log message output: print_on_console or log_file or both

2. Logging level: NONE

INFO

WARN

ERROR

DEBUG

Log message format:

<Timestamp>: <Log Label>: message: [_FUNC_NAME_]: [_LINE_NUMBER_]

1. Timestamp: Time at which log has been generated.

Timestamp format: yyyymmdd-hhmmss

2. Log labels

INFO

WARN

ERROR

DEBUG

3. Message: The user entered messages with relevant argument

4 _FUNC_NAME_: Function which send the log message

5. _LINE_NUMBER_: At which line of code log has been generated. Such that it becomes easy to

 cleanup the error occurred.

The log file name format:

 sentio_log_yyyymmdd.log

This module records daily log file i.e. log of different day are stored in different log files.

31 | Page

Chapter 6

Conclusion

In this project we are specifically intended to implement acoustic sound monitoring system on a embedded

device. The proposed fault detection method is based on several low-level features extracted from sound.

The future work includes improving the method, completing the implementation of the distinct fault

detection module, and implementing the system in embedded device.

6.1 Future Works

The future prospect of this module lies in improving the method, completing the implementation of the

distinct fault detection module and implementing the system using accelerometer sensor along with adding

temperature sensor to detect the temperature of the machine.

Also, an algorithm can also write to pinpoint the type of the fault that has occurred in the machine-

may be because of the worn-out parts or the excessive usage or human error and also to itself suggest how

this fault can be eradicated.

32 | Page

References

[1] Texas Instruments – TLV320AIC3106 Low-Power Stereo Audio CODEC for Portable Audio/Telephony

Datasheet (Rev. F)

[2] Variscite – VAR-SOM-SOLO/DUAL_v1.X_Datasheet

[3] Variscite – var-solocustomboard_sch_v1

[4] A Sound Monitoring System for Fault Detection of Machine and Machining States

[5] Gong, X., and Qiao, W. Current-based mechanical fault detection for direct-drive wind turbines via

synchronous sampling and impulse detection. Industrial Electronics, IEEE Transactions on 62, 3 (March

2015), 1693–1702.

[6] ALSA Framework Documentation

[7] Ncurses Documentation

http://www.ti.com/lit/ds/symlink/tlv320aic3106.pdf
http://www.ti.com/lit/ds/symlink/tlv320aic3106.pdf
https://www.variscite.com/wp-content/uploads/2017/12/VAR-SOM-SOLO_DUAL_Datasheet.pdf
https://www.variscite.com/wp-content/uploads/2017/12/VAR-SOLOCustomBoard-Schematics.pdf
https://www.sciencedirect.com/science/article/pii/S0007850607618903
https://www.alsa-project.org/main/index.php/Main_Page
about:blank

