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Abstract 

This study focuses on mapping urban floods in 2023 in the cities of Delhi, Chennai, Nagpur, and Greece, 

using Sentinel-1 Synthetic Aperture Radar (SAR) imagery and social media data for validation. The research 

applies rule-based classification, change detection, and supervised classification methods to identify flooded 

areas. By plotting histograms for pre-flood and post-flood images, a threshold of -30 dB is chosen to 

determine flooded pixels. Permanent water is distinguished using the Global Surface Water (GSW) dataset, 

with pixels having a seasonality band greater than 5 considered as permanent water. Noise reduction is 

accomplished through isolated pixel masking, eliminating single pixels in areas with fewer than eight 

connected neighbors. 

Historical and current flood maps from the Indian Space Research Organization (ISRO) provide the 

foundation for training data in supervised classification. Validation of the methods is achieved using crowd-

sourced data from social media platforms such as Twitter and Facebook, as well as news channels and 

OpenCity. The study concludes by plotting confusion matrices for each method against ground truth data, 

assessing the accuracy of the proposed flood mapping approaches. 

Keywords: urban floods, SAR imagery, rule-based classifier, change detection, supervised classification, 

social media validation, confusion matrix. 

  



4 

 

 

 

 

                INDIAN INSTITUTE OF TECHNOLOGY INDORE ................................................................ i 

CANDIDATE’S DECLARATION .................................................................................................................. i 

ACKNOWLEDGEMENTS ............................................................................................................................ ii 

Chapter 1 Introduction ............................................................................................................................. 1 

1.1 Natural Hazard .......................................................................................................................................... 1 

1.2 Natural disaster .......................................................................................................................................... 2 

1.3 Flood.......................................................................................................................................................... 3 

1.4 Motivation and Problem Statement ........................................................................................................... 5 

1.5 Research questions .................................................................................................................................... 6 

1.6 Structure of the thesis ................................................................................................................................ 7 

Chapter 2 Literature Review .................................................................................................................... 9 

2.1 Remote Sensing and Flood Inundation Mapping ...................................................................................... 9 

2.2 Microwave Remote Sensing for Flood Inundation Mapping .................................................................. 11 

2.3 Conventional Techniques ........................................................................................................................ 11 

2.4 Advanced Techniques ............................................................................................................................. 13 

Chapter 3 Study Area ............................................................................................................................. 15 

3.1 Location ................................................................................................................................................... 15 

TABLE OF CONTENTS 

LIST OF FIGURES 

LIST OF TABLES 

NOMENCLATURE 

ACRONYMS (if any) 

 



5 

 

 

 

3.2 Physiography and Geomorphology ......................................................................................................... 16 

3.3 Drainage Network and Sub-basin ............................................................................................................ 17 

3.4 Climate .................................................................................................................................................... 18 

3.5 Soil and vegetation .................................................................................................................................. 20 

3.6 Economic Aspect..................................................................................................................................... 21 

3.7 Demography ............................................................................................................................................ 24 

3.8 Road Networks ........................................................................................................................................ 24 

3.9 Canal Network......................................................................................................................................... 25 

Chapter 4 Material and Methods ........................................................................................................... 27 

4.1 Introduction to SENTINEL ..................................................................................................................... 27 

4.2 SENTINEL Data Products ...................................................................................................................... 30 

4.3 Pre-Processing of Sentinel data ............................................................................................................... 30 

4.4 Overall Methodology and Software used ................................................................................................ 32 

4.5 Extraction of flooded areas ..................................................................................................................... 33 

4.6 Mask used in algorithm ........................................................................................................................... 39 

4.7 Change Detection Technique .................................................................................................................. 42 

4.8 Random Forest ........................................................................................................................................ 42 

4.9 Methodology for Extracting Geotagged Social Media Flooded Pictures ............................................... 44 

Chapter 5 Results .................................................................................................................................... 49 

5.1 Delhi Results ........................................................................................................................................... 50 

5.2 Chennai Results ....................................................................................................................................... 54 

5.3 Nagpur Results ........................................................................................................................................ 58 



6 

 

 

 

5.4 Greece Results ......................................................................................................................................... 61 

Chapter 6 Conclusion .............................................................................................................................. 65 

6.1 Future Work ............................................................................................................................................ 65 

List of figures: 

Fig  1: Location of study ................................................................................................................................. 15 

Fig  2: Acquisition modes ............................................................................................................................... 29 

Fig  3: Sentinel-1 Ground Range Detected (GRD) preprocessing workflow. ............................................ 32 

Fig  4: Flowchart for methodology ................................................................................................................ 33 

Fig  5: Histogram Before/After (Delhi, Chennai, Nagpur, Greece) ............................................................ 35 

Fig  6: Reference Flood Map/Sample training data ..................................................................................... 36 

Fig  7: In-situ Floods images 2023-credits: Forbes ...................................................................................... 39 

Fig  8: Chennai Flood 2023-Twitter .............................................................................................................. 43 

Fig  9: Crowd-sourced data – Social media .................................................................................................. 44 

Fig  10: Filtered images of Delhi, before and after the flood ...................................................................... 50 

Fig  11: a) Rule based classification, and b) Change Detection .................................................................. 51 

Fig  12: a) Rule-based classification, and b) Change detection .................................................................. 51 

Fig  13: Random Forest .................................................................................................................................. 52 

Fig  14: Reference Flood map from NRSC for Delhi ................................................................................... 53 

Fig  15: Before Flood....................................................................................................................................... 54 

Fig  16: After Flood ......................................................................................................................................... 54 

Fig  17: Rule based classification ................................................................................................................... 54 

Fig  18: Change detection ............................................................................................................................... 55 



7 

 

 

 

Fig  19: Random Forest .................................................................................................................................. 56 

Fig  20: Comparison amongst methods for Chennai ................................................................................... 57 

Fig  21: Before Flood....................................................................................................................................... 58 

Fig  22: After Flood ......................................................................................................................................... 58 

Fig  23: Rule based classification ................................................................................................................... 59 

Fig  24: Change detection ............................................................................................................................... 59 

Fig  25: Random Forest .................................................................................................................................. 60 

Fig  26: Comparison amongst methods for Nagpur .................................................................................... 60 

Fig  27: Before Flood....................................................................................................................................... 61 

Fig  28: After Flood ......................................................................................................................................... 61 

Fig  29: Rule based classification ................................................................................................................... 61 

Fig  30: Change detection ............................................................................................................................... 62 

Fig  31: Random Forest .................................................................................................................................. 63 

Fig  32: Comparison amongst methods for Nagpur .................................................................................... 64 

 

 



8 

 

 

 

List of tables: 

Table 1: Sentinel Specifications ..................................................................................................................... 28 

Table 2: Sentinel antenna specifications ....................................................................................................... 29 

Table 3: Representation of key elements related to the Algorithm and Data used .................................. 34 



1 

 

 

 

Chapter 1         

      Introduction 

1.1 Natural Hazard 

Before humans exerted influence on Earth, the planet operated under a 

natural system where geophysical events like earthquakes, volcanic eruptions, 

landslides, and river plain dynamics unfolded over millions of years. This pristine 

state of nature drastically transformed with human presence, labeling the once-

natural phenomena as 'natural hazards.' Human interference has not only altered 

the natural system but has also given a new perspective and term to the 

geophysical events of the past. 

The term 'natural hazard' refers to occurrences of natural conditions or 

phenomena posing a threat or hazard within a specific space and time. Originally, 

these hazards were elements in the physical environment that had the potential 

to harm humans. Over time, with increased human influence, what were once 

natural hazards in the pre-modern era have evolved into 'man-induced natural 

disasters'. 

Natural disasters, encompassing various extreme weather-related events 

such as floods and cyclones, have surged in frequency and intensity globally in 

recent years. This shift is a consequence of increased human influence on the 

environment (Khan and Rahman, 2007). 

Natural hazards can cause immediate and long-term damage to both the 

physical and social environment where they occur. They are broadly categorized 

into geological events (earthquakes, volcanoes, landslides) and hydro-

meteorological events (floods, storms, droughts, tsunamis). Hazards arise from 

sudden changes in long-term behavior, influenced by minute alterations in initial 

conditions. Geomorphic hazards fall into categories. 

Events like hurricanes, earthquakes, storms, and disease outbreaks 
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highlight an increasing trend in economic and human losses. Lack of specific 

knowledge about these hazardous events is identified as a significant factor 

contributing to such losses (Ermolievaa and Sergienko, 2008). Assessing natural 

hazards involves understanding concepts like magnitude, frequency, and time. 

For instance, the consequences of a flood are evaluated using the concept of 

return period, indicating the flood's likely magnitude and frequency. Natural 

hazards occur in specific locations and during defined periods, and their 

development is not instantaneous. 

Time plays a crucial role in the occurrence and progression of these 

phenomena. For instance, flooding triggered by tropical storms takes time to 

develop as specific atmospheric conditions lead to storm formation over hours to 

days. Therefore, the intensity and duration of rainfall over time are vital factors 

in determining flooding characteristics. 

1.2 Natural disaster 

Various definitions of natural disasters offer a nuanced understanding of 

the term. In the 1960s, disasters were perceived as uncontrollable events posing 

severe danger, and disrupting essential societal functions. The concept portrayed 

a society damaged by a potent natural force, where a disaster is characterized as 

severe, sudden, and lethal—such as flooding resulting from a breach in 

embankment, as witnessed along the Indo-Nepal border in 2008. The interaction 

between an unstable earth and an unresting human element can lead to general 

disruption, loss of life, and property destruction for vulnerable human groups. 

In the present context, a disaster is recognized as a significant disruption to 

society's functioning, causing widespread human, material, or environmental loss 

beyond the affected society's capacity to cope using its own resources. This 

understanding considers not only the natural aspect but also the impact on social 

and economic systems. A natural disaster is framed as a rapid, instantaneous 

impact of the natural environment on the socio-economic system or a sudden 

imbalance between the forces released by the natural system and the 



3 

 

 

 

counteracting forces of society. The severity of this imbalance hinges on the 

relationship between the magnitude of the natural event and human tolerance. 

While the number of lives lost has decreased in the past two decades, the 

total number of people affected has surged. Over the last decade, the total number 

of people impacted by natural disasters has tripled to 2 billion. Noy (2008) 

emphasizes that countries with higher literacy rates, robust institutions, greater 

per capita income, openness to trade, and higher government spending can better 

withstand the initial shock of a disaster. Developing countries, grappling with 

poverty and population pressure, face heightened vulnerability as people settle in 

flood-prone or landslide-susceptible areas. 

Lack of widespread education and awareness, coupled with poor economic, 

social, political, and cultural conditions, contributes to the vulnerability of these 

areas and their populations to natural disasters. Recent attention has been directed 

toward the prevention, reduction, and mitigation of natural disasters, marked by 

the creation of the Scientific and Technical Committee of the International 

Decade for Natural Disaster Reduction (IDNDR). Efforts within this 

international framework are global, acknowledging that changes at the micro-

level can accumulate and impact the world on a larger scale (e.g., global 

warming), while global phenomena can influence local levels. The 

interdependence of nations, institutions, and technologies continues to grow as 

efforts intensify to comprehend not only natural phenomena but also the role of 

anthropogenic activities in causing and modifying them. Although preventing 

natural phenomena is beyond human capability, scientists gain a better 

understanding of the factors behind disasters, providing valuable knowledge to 

disaster management agencies, enhancing preparedness for extreme events 

(Zadeh and Bear, 2007). 

1.3 Flood 

River valleys and floodplains have served as the cradle of civilizations 

since ancient times and remain some of the most densely populated regions 
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globally. The high population density near rivers makes floods the most prevalent 

natural disaster, affecting more people worldwide than all other natural or 

technological disasters combined and inflicting significant human hardship and 

economic losses (Huang et al., 2008). Flooding typically results from heavy or 

continuous rainfall surpassing the soil's absorptive capacity and the flow capacity 

of river channels and streams. The natural variability in river flow makes 

flooding a recurring event. In many parts of the world where populations are 

concentrated along river valleys, floods pose a greater threat than any other 

natural hazard. 

While floodplains are valuable resources in agricultural economies, human 

activities on these floodplains have elevated the potential for floods to cause 

damage and disrupt lives, a risk likely to increase with further encroachment 

(Sultana et al., 2008). 

Defining when high flows become floods depends on perspective. 

Physically, floods involve high water flow that overtops natural or artificial 

embankments. Ecologically, floods constitute overbank flows providing water 

and nutrients to floodplains. Geomorphologically, high flows become floods 

when they alter the erosive, transport, and depositional capacity of a river, 

changing the morphology of the river channel and surrounding floodplain. From 

a human perspective, a river is in floods when its waters invade human 

settlements and agriculture, resulting in fatalities and damage to livelihoods 

(Ologunorisa and Adeyemo, 2005). 

Flood events can result from various natural and human-induced factors, 

causing known damages to life, property, and economic activity disruption. 

Given that floodplains are hubs of human activities, the potential for damage is 

exacerbated. Minimizing flood damage necessitates comprehensive measures 

related to prediction, prevention, warning, monitoring, and relief along a 

floodplain. Undertaking these measures requires an in-depth analysis of factors 

causing (natural) and modifying (anthropogenic) floodwater spread. Effective 

flood management requires interaction between different government and private 
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agencies and the affected population to utilize scientific knowledge for damage 

reduction. However, flood management interventions may have complex and 

sometimes unforeseen impacts on both the natural and human environment, 

making studies and research on floods challenging and intriguing. 

 India stands as one of the most severely flood-affected countries globally, 

ranking second only to Bangladesh in terms of flood-related damages. 

Approximately 75% of India's annual rainfall occurs during the four-month 

monsoon period (June-September), leading to substantial water discharge in 

rivers. The flood  

risk is exacerbated by issues such as sediment deposition, drainage congestion, 

and the synchronization of river floods with sea tides in coastal plains. The 

increased use of fossil fuels, extensive deforestation, and the rapid expansion of 

rice cultivation using nitrogen-based chemical fertilizers in India, Nepal, and 

Bangladesh contribute to greenhouse warming, resulting in a heightened 

frequency of flood events in the region (Ali, 2007). 

The flood-vulnerable area encompasses around 0.4 million km², with an 

average annual flood-affected area of about 0.08 million km². The cropped area 

affected annually ranges from 3.5 million hectares during normal floods to 10 

million hectares during severe floods. Flood control measures primarily involve 

the construction of new embankments, drainage channels, and afforestation 

aimed at preventing the loss of life and property caused by floods. 

1.4 Motivation and Problem Statement 

In the past few decades, as existing urban centers have expanded and there 

has been a proliferation of new second and third tier cities in India, the 

phenomenon of urban floods has become increasingly common 

(Anjaria,2006;Gupta and Nair,2011;Ramachandraiah,2011). Flooding in an 

urbanized catchment with a dense built environment, higher population density 

and greater density of economic assets and infrastructure, equates to 
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exponentially more loss per unit area as compared to rural landscapes. As a result, 

studying the production and impacts of urban inundation has been crucial to 

planners and city governments. For a large part of the post-independence era the 

government of India has treated floods as riverine or coastal phenomena and 

addressed them at the scale of a river basin (Mohapatra and Singh,2003). The 

National Disaster Management Authority of India in its first disaster 

management manual of 2008 classified floods as a natural hydrological disaster 

or event. Although the manual focused largely on basin scale management it did 

recognize urban flooding as a special category of disaster for which separate 

guidelines would be prepared in the future. The subject of urban flooding has 

been recognized by the NDMA as one meriting exclusive attention and separate 

guidelines for its management because of the fact that the 2008 manual was 

preceded by some extreme urban flood event such as the Mumbai floods of 2005 

that saw an exponentially larger loss of life, assets and urban infrastructure per 

unit area than before. In 2010 the NDMA came out with a separate manual for 

urban flooding that tackled the various aspects of its production, management, 

response, recovery and mitigation. This classification carried through even in the 

most recent NDMA Manual 2016 that states : “The problem of urban flooding is 

a result of both natural factors and land-use changes brought about by urban 

development. Urban flooding is significantly different from rural flooding as 

urbanization leads to developed catchments which increases the flood peaks from 

1.8 to 8 times and flood volumes by up to 6 times. Consequently, flooding occurs 

very quickly due to faster flow times, sometimes in a matter of minutes.”(NDMA 

Guidelines Management of Urban Flooding, 2016). Thus it is safe to establish 

that urban floods need to be understood from a unique lens that takes into account 

the ecological and urban processes to assess the extent of damage and suggest 

strategies for mitigation. 

1.5 Research questions 

1. What method is better suited for identifying inundated areas in SENTINEL 

data? 
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2. What are the most effective methods for validating flood mapping results 

using social media data in these urban areas? 

3. What improvements can be made in flood mapping by integrating historical 

flood maps, ground truth data, and crowd-sourced data? 

4. What supplementary data contributes to enhancing the precision of the 

extraction process and facilitating the interpretation of outcomes? 

1.6 Structure of the thesis 

The present research is organized into six chapters, each focusing on 

specific aspects of the study. Chapter one serves as an introduction, presenting 

the concepts of natural hazards, natural disasters, and the specific focus on floods. 

It highlights the significance of studying floods in the delta region of Nagpur, 

Chennai, Delhi, and Greece, emphasizing the need for the research. The main 

objectives and specific research questions are outlined. 

Chapter two provides an overview of the geographical aspects (physical, 

human, and economic) of the study area. Understanding these aspects is crucial 

for result analysis and for justifying the research from academic, social, and 

economic perspectives. 

In the third chapter, a literature review is conducted to establish the 

originality of the proposed work, contextualize it, and compare different 

methodological approaches. 

Chapter four details the characteristics of the datasets used in the study. It 

also provides a comprehensive description of the methodology applied, 

presenting results obtained through visual and digital techniques for extracting 

flood- inundated areas. 

The analysis is covered in chapter five, where the results of various 

techniques are compared, and the accuracy of these techniques is assessed based 

on ancillary information and field observations. 

The concluding chapter, chapter six, summarizes major findings and offers 

suggestions and recommendations for accurately and efficiently mapping and 
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monitoring flood extents using remote sensing and GIS. It concludes by 

proposing further studies to address not only flood-related challenges but also to 

enhance the overall understanding of floods in Delhi. 

The research is designed to address the complexities posed by geomorphic 

variability and human habitation in mapping flood events using a remote sensing 

approach. Local-scale flood flow paths, influenced by anthropogenic activities, 

are explored, necessitating high-resolution satellite data for accurate recording. 

Field verification becomes crucial to fill gaps in understanding factors 

controlling the extent of floodwater spread over time. 

While flood extent can be mapped using various visual and digital 

techniques, accuracy depends on ancillary information and a profound 

understanding of the inundated surface. Validation of results from different 

techniques can be achieved by applying the same methods to an image of a flood 

event in the same area but from a different date, preferably a different year, to 

better comprehend similarities and differences in results. 
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Chapter 2        

      Literature Review 

2.1 Remote Sensing and Flood Inundation Mapping 

Accurate information regarding the extent of water bodies is crucial for 

effective flood prediction, monitoring, and relief efforts (Smith, 1997). 

Traditional ground-based survey methods can be challenging during floods due 

to inaccessibility and safety concerns. The synoptic and repetitive capabilities of 

satellite- based remote sensing have become a powerful tool for near real-time 

flood inundation mapping, aiding in relief, damage assessment, and flood 

management. Remote sensing techniques offer promise in determining flood 

extent, duration, depth, and associated hazards. 

Satellite remote sensing provides valuable insights into flood magnitude by 

correlating the extent of flooding with the severity of the flood. It also enables 

the extraction of flood duration and inundation patterns using multiple satellite 

data over the same area. Beyond immediate flood response, remote sensing 

contributes to flood plain land use mapping, supports flood forecasting and 

warning systems, maps river channel migration, and identifies chronic flood-

prone areas. In the long term, remote sensing proves to be a cost-effective and 

efficient technique for comprehensive studies covering large areas. 

In the early stages of satellite remote sensing, Landsat Multi-Spectral 

Scanner (MSS) data with 80m resolution, specifically MSS band 7 (0.8–1.1 μm), 

were utilized for delineating water or moist soil due to the strong absorption of 

water in the near-infrared spectrum (Smith, 1997). Landsat Thematic Mapper 

(TM) images with 30m resolution since the 1980s became a major data source 

for monitoring floods and delineating inundation boundaries. SPOT multi-

spectral imageries were also employed in flood delineation, leveraging the low 

reflectance of water in the near-infrared spectrum, particularly in regions like 

Bangladesh (Oberstadler et al., 1997; Sado and Islam, 1997). 
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Coarse-resolution imagery, such as Advanced Very High-Resolution 

Radiometer (AVHRR) data, proves valuable for floods with extensive coverage 

(Islam and Sado, 2000). In cases of large flood-affected areas, the use of very 

high-resolution data may not be practical due to the need for numerous scenes to 

cover the entire area. NOAA (National Oceanographic Atmospheric 

Administrative) data, particularly NOAA- AVHRR, is advantageous in such 

studies due to its high frequency of global coverage, wide swath, high 

repeatability, and cost-effectiveness, enabling near real-time flood monitoring 

(Jain et al., 2006). 

To enhance water detection using the near-infrared band, the Normalized 

Difference Vegetation Index (NDVI) is employed to monitor rivers in AVHRR 

images. Water exhibits a distinctive spectral signature in the near-infrared region, 

differing significantly from other surface features. Wang et al. (2002) note that 

NDVI values for inundated surfaces remain negative, while non-inundated 

surfaces typically have values greater than 0. However, the choice of threshold 

is critical, considering variations in natural river flooding conditions across 

different locations. Factors like atmospheric conditions, cloud cover, and satellite 

viewing angles also impact NDVI values and should be considered before 

calculation (Sanyal and Lu, 2003). 

Over the past decade, Indian Remote Sensing (IRS) satellites, including the 

IRS series with sensors like LISS-I, LISS-II, and PAN, have provided flood 

information for various regions in the country. The IRS satellites offer optical 

information at spatial resolutions ranging from 72m to 5.8m and repetitive 

coverage intervals from 5 to 24 days. WiFS sensor data from IRS satellites plays 

a crucial role in flood monitoring due to its broad swath, high repeatability, and 

frequent coverage during critical flood periods. Additionally, NRSA receives 

data from meteorological satellites such as NOAA (AVHRR). While optical 

remote sensing faces challenges in mapping and monitoring flooded terrain due 

to dense vegetation and cloud cover, microwave data provides a solution by 

penetrating clouds (Rashid and Pramanik, 1993; Melack et al., 1994). 
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2.2 Microwave Remote Sensing for Flood Inundation 

Mapping 

Radar imagery, specifically Synthetic Aperture Radar (SAR), possesses the 

capability to penetrate the atmosphere under various weather conditions. 

Microwave energy used in SAR can penetrate through elements like haze, light 

rain, snow, clouds, and smoke. Unlike optical sensors, microwave reflections or 

emissions in SAR do not correlate directly with visible or thermal spectra, 

offering independent environmental information about landscape features. SAR 

operates actively, eliminating dependence on natural illumination, and its 

microwave frequencies can penetrate cloud cover, providing a unique all- 

weather, day/night capability, particularly advantageous in flood management 

applications (Matgen et al., 2007). 

In comparison to optical sensors like SPOT and LANDSAT, SAR imagery 

from sensors such as SENTINEL, RADARSAT, ERS, and JERS captures energy 

transmitted at microwave frequencies, undetectable by the human eye. 

RADARSAT, operating at a single microwave frequency, produces black and 

white images. As an active sensor, SAR transmits microwave energy pulses 

directly towards the Earth's surface, measuring the energy that returns after 

interacting with the surface. Unlike optical sensors, RADARSAT's microwave 

energy can penetrate through clouds, rain, dust, or haze, allowing data collection 

under various atmospheric conditions. SAR, and SENTINEL in particular, are 

effective in detecting open surface water, making them valuable for flood 

monitoring applications worldwide (Brisco et al., 2008). 

2.3 Conventional Techniques 

Satellite data analysis for flood mapping typically employs visual 

interpretation or digital image processing techniques. Visual interpretation relies 

on the fact that water surfaces, being smoother than dry land, exhibit low 

backscatter, providing reasonably accurate assessments of water spread. 

However, this manual method is time-consuming, prompting the use of digital 
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techniques for faster flood extent mapping, crucial in relief and rescue operations. 

Digital analysis involves various automatic information extraction 

algorithms. Thresholding, a common technique, sets a radar backscatter 

threshold value in decibels to classify pixels as 'flooded' or 'non-flooded.' The 

choice of an appropriate threshold often involves trial and error or, in this case 

study, benefits from control points measured at the inundation boundary. 

Contrast depends on polarization, SAR system incidence angle, and ground 

conditions. 

Change detection is a powerful tool for flood area detection in SAR 

imagery, utilizing coherence and amplitude approaches. Amplitude change 

detection identifies flooded areas where radar backscatter significantly declines 

post-flood. Coherence change detection identifies flooded areas with low 

coherence or correlation between radar backscatters before and after a flood. 

Multi-date SAR scenes can be combined to create a color composite for enhanced 

visualization. 

SAR data, particularly at L-band, has proven effective in mapping 

inundation in forested wetlands. Studies in various regions, including the 

Brazilian Amazon and the Rhine valley, showcase SAR's ability to discriminate 

flood stages. L-band radar, in particular, provides superior flooding distinction 

in forested areas compared to C-band radar. SAR data has been extensively 

used in modeling flood inundation, combining GIS with radar and optical remote 

sensing. 

Overall, SAR imagery, with its all-weather capability and penetration 

through various atmospheric conditions, offers significant advantages, especially 

in flood management applications. It has been successfully applied in diverse 

geographic settings, demonstrating its effectiveness in mapping and monitoring 

flooded areas. 
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2.4 Advanced Techniques 

The nature of the Earth's surface, particularly the vegetation, significantly 

influences the delineation of water using Synthetic Aperture Radar (SAR) 

images. In areas with rice cultivation, bogs, and marshes, distinguishing water 

from short vegetation can be challenging due to the impact of protruding 

vegetation on backscatter values. Researchers have explored the use of 

polarimetric radar and the integration of radar with optical remote sensing data 

for discriminating short emergent vegetation and mapping forested wetlands. 

Object-oriented image segmentation and active contour models have been 

employed for flood extent mapping, leveraging both spectral and spatial 

information. 

Studies emphasize the importance of multiple reflections between water 

surfaces and upright vegetation, enhancing backscattering in flooded vegetation. 

Mathematical models have been developed to understand these interactions and 

assess the influence of radar look angle, wavelength, and polarization on 

backscatter. Additionally, phase information in SAR imagery has been explored 

for flood mapping, where low backscatter and low interferometric phase 

correlation indicate water regions. 

Fuzzy set classification logic has been introduced to address the challenges 

of representing natural object boundaries in satellite images. This logic considers 

the heterogeneous and imperfect nature of the real world, assigning each pixel 

multiple membership values associated with the degree of correlation with 

different classes. Subpixel mapping technology, utilizing spatial correlation 

principles, aims to increase the spatial resolution of fuzzy classification results. 

Despite these advancements, challenges persist in accurately extracting 

flood-affected areas from SAR imagery. Issues include the relationship between 

radar wavelength and terrain roughness, especially in windy conditions creating 

ripples on water surfaces. Forest cover poses difficulties in identifying inundated 
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areas, and the high backscatter from buildings within settlements can overlay 

floodwater backscatter. The orientation of rough surfaces and the directional 

nature of radar signals also contribute to varied tonal signatures, making it 

challenging to establish universal threshold values for flood detection. Regional 

knowledge and extensive field surveys remain crucial in setting effective 

threshold values for SAR image interpretation. 
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Chapter 3       

      Study Area 

3.1 Location 

Delhi, the capital city of India, is located in the northern part of the country. 

It is situated on the west bank of the Yamuna River and is surrounded by the 

states of Haryana and Uttar Pradesh. The geographical coordinates of Delhi are 

approximately between 28.6139°N latitude and 77.2090°E longitude. The city is 

known for its rich history, diverse culture, and strategic importance, serving as a 

political, cultural, and commercial hub in India. The National Capital Territory 

(NCT) of Delhi includes Old Delhi and New Delhi, with New Delhi serving as 

the seat of all three branches of the Government of India. 

 

 

 

 

 

 

 

 

 

 

 

 Fig  1: Location of study 
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3.2 Physiography and Geomorphology 

Here is an overview of the physiography and geomorphology of the four 

study areas, with a focus on their relevance to flood inundation: 

Delhi, India: 

Physiography: Delhi is located in the northern part of India, situated on the Indo-

Gangetic Plain. The city is bordered by the Aravalli Range to the west and the 

Yamuna River to the east. The terrain is generally flat with some undulating 

features. 

Geomorphology: The Yamuna River plays a significant role in the 

geomorphology of the region, flowing through the eastern part of the city. 

Floodplain areas along the Yamuna are particularly prone to inundation during 

heavy rains or when the river overflows. Additionally, human development has 

led to the loss of natural drainage, exacerbating the risk of flooding. 

Chennai, India: 

Physiography: Chennai is situated on the southeastern coast of India, bordering 

the Bay of Bengal. The city lies on a coastal plain and is surrounded by rivers 

such as the Adyar and Cooum, as well as numerous lakes and marshlands. 

Geomorphology: The coastal location and the presence of multiple water bodies 

make Chennai particularly vulnerable to flooding, especially during the monsoon 

season. Low-lying areas and the encroachment of wetlands for urban 

development increase the risk of flood inundation. 

Nagpur, India: 

Physiography: Nagpur is located in the central part of India, in the state of 

Maharashtra. The city is situated in the Deccan Plateau region, with a topography 

that includes low hills and plains. 

Geomorphology: Nagpur's landscape includes rivers such as the Nag and Pili 
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rivers, as well as numerous lakes. The combination of natural water bodies and 

urban development can lead to localized flooding during heavy rains. Poor 

drainage and changes in land use can exacerbate the risk of flooding.  

Greece: 

Physiography: Greece is a country with varied topography, including 

mountains, valleys, and coastal plains. The study area may encompass regions 

such as the Athens metropolitan area or other coastal cities, which are prone to 

different types of flooding. 

Geomorphology: Coastal areas in Greece, such as Athens and other cities, are 

at risk of flooding due to the proximity to the sea and the potential for storm 

surges during severe weather. Rivers flowing through these areas can also 

contribute to flood risk, particularly in low-lying and densely populated areas. 

In all four study areas, urban development and changes in land use have 

altered natural drainage patterns, increasing the potential for flood inundation. 

Understanding the physiography and geomorphology of these regions is crucial 

for accurate flood mapping and mitigation strategies. 

3.3 Drainage Network and Sub-basin 

The drainage network and sub-basins in Delhi play a crucial role in 

managing water flow and addressing issues related to flooding. 

3.3.1 Drainage Network: 

Delhi's drainage system consists of a network of natural and artificial 

drains, canals, and rivers that facilitate the efficient disposal of rainwater and 

wastewater. The primary drainage features include: 

Yamuna River: The Yamuna, a major river, flows along the western border of 

Delhi. It serves as a natural drainage outlet for the 
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Natural Drains: Delhi has several natural drains, such as the Najafgarh Drain, 

Supplementary Drain, Barapullah Drain, and others, which help in channeling 

rainwater away from urban 

Artificial Drains: To cope with urbanization and increased impervious surfaces, 

Delhi has an extensive network of artificial drains and stormwater channels 

designed to prevent 

3.3.2 Sub-Basins:  

Delhi is divided into several sub-basins, each contributing to the overall 

drainage patterns. Some of the notable sub-basins include: 

Yamuna Sub-Basin: Encompassing the areas along the Yamuna River, this sub-

basin is critical for managing the water flow along the river. 

Najafgarh Basin: The Najafgarh Drain, a significant natural drain, is part of this 

basin. It plays a vital role in draining excess water from the southwestern parts 

of Delhi. 

Sahibi Basin: This basin includes areas that contribute to the Sahibi River, 

impacting the overall drainage dynamics in the region. 

Understanding the drainage network and sub-basins is essential for 

effective urban planning, flood management, and infrastructure development in 

Delhi. It allows authorities to identify vulnerable areas, implement drainage 

improvements, and mitigate the impact of heavy rainfall events. 

3.4 Climate 

Delhi, India: 

Situated in northern India, Delhi experiences extreme weather variations. The 

summer months, spanning from March to June, bring scorching heat, with 

temperatures often surpassing 40°C. Monsoons arrive in July, offering relief but 

are often accompanied by irregular and insufficient rainfall, exacerbating water 
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scarcity issues. Winters, lasting from November to February, are relatively cool, 

with occasional temperatures dropping below 5°C. During this period, the city 

grapples with fog, a phenomenon worsened by air pollution stemming from rapid 

urbanization, vehicular emissions, and industrial activities. Addressing these 

environmental challenges demands sustainable solutions and proactive measures, 

considering Delhi's dynamic and expanding urban landscape. 

Chennai, India: 

Chennai, located in southern India, experiences a tropical climate characterized 

by high temperatures and distinct wet and dry seasons. The summer months, from 

March to June, bring intense heat, with temperatures soaring above 40°C. 

Monsoons typically arrive in July, providing relief but often resulting in erratic 

and insufficient rainfall, leading to water scarcity concerns. Winters are milder, 

with temperatures ranging from 20°C to 25°C. Chennai also faces environmental 

challenges, including water pollution and urban sprawl, necessitating sustainable 

approaches to address these issues amidst the city's rapid growth. 

Nagpur, India: 

Nagpur, situated in central India, experiences a subtropical climate with 

significant temperature variations throughout the year. Summers, spanning from 

March to June, are hot and dry, with temperatures exceeding 40°C. Monsoons 

arrive in July, bringing relief but also contributing to waterlogging issues due to 

heavy rainfall. Winters, lasting from November to February, are cooler, with 

temperatures occasionally dropping below 5°C. Nagpur faces environmental 

challenges such as air and water pollution, exacerbated by rapid industrialization 

and urbanization. Addressing these concerns requires integrated strategies 

focusing on sustainable development and environmental conservation. 

Greece: 

Greece, located in southeastern Europe, exhibits diverse climatic conditions 

influenced by its geographical features. Summers, from June to August, are hot 
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and dry, with temperatures frequently exceeding 30°C. Winters, lasting from 

December to February, are milder, with temperatures ranging from 5°C to 15°C. 

Greece experiences distinct wet and dry seasons, with rainfall concentrated 

mainly in the winter months. The country faces environmental challenges such 

as deforestation, soil erosion, and water pollution, compounded by factors like 

agricultural practices and tourism. Sustainable management of natural resources 

and conservation efforts are essential to address these environmental concerns 

and ensure the preservation of Greece's unique ecosystems. 

3.5 Soil and vegetation 

Delhi, India: 

Delhi's soil composition and vegetation are influenced by its location and rapid 

urbanization. The region predominantly features alluvial soil, fertile sediment 

deposited by the Yamuna River, supporting agricultural activities. However, 

extensive urban development has significantly reduced arable land in the area. 

The vegetation in Delhi comprises a blend of native and introduced species. Parks 

and green spaces boast a variety of trees, including neem, peepal, banyan, and 

mango. Despite this diversity, urbanization and pollution pose significant stress 

on the city's greenery. Efforts to promote afforestation and preserve green belts 

are crucial for maintaining ecological balance and enhancing the overall 

environmental quality of Delhi. 

Chennai, India: 

Chennai's soil composition and vegetation are shaped by its coastal location and 

urban expansion. The region's soil is primarily sandy, influenced by its proximity 

to the Bay of Bengal. This type of soil limits agricultural opportunities but 

supports coastal vegetation like palm trees and casuarinas. Chennai's vegetation 

includes a mix of native and introduced species, with parks and green spaces 

showcasing trees such as coconut palms, banyans, and tamarind. However, 

urbanization and industrialization have led to the depletion of green cover and 

encroachment on natural habitats, emphasizing the need for conservation efforts 
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to protect Chennai's biodiversity and ecological balance. 

Nagpur, India: 

Nagpur's soil composition and vegetation are influenced by its central location 

and agricultural heritage. The region predominantly features black cotton soil, 

known for its high fertility but susceptibility to waterlogging and erosion. This 

soil type supports crops like cotton, soybeans, and pulses. Nagpur's vegetation 

includes a mix of forested areas, grasslands, and urban greenery. Native species 

such as teak, sal, and bamboo are prevalent, along with fruit-bearing trees like 

mango and guava. However, urbanization and deforestation pose challenges to 

the region's green cover and ecological health, underscoring the importance of 

sustainable land management practices and conservation efforts. 

Greece: 

Greece's soil composition and vegetation vary across its diverse landscape, 

influenced by its Mediterranean climate and geological features. The country's 

soil types range from rocky and infertile in mountainous regions to fertile and 

clayey in valleys and plains. These soils support a variety of vegetation, including 

olive trees, citrus fruits, vineyards, and aromatic herbs like thyme and oregano. 

Forests of pine, cypress, and oak are also prominent in certain regions. However, 

factors such as deforestation, wildfires, and land degradation pose threats to 

Greece's soil quality and biodiversity. Sustainable land management practices 

and conservation initiatives are essential to safeguard Greece's unique 

ecosystems and agricultural heritage. 

3.6 Economic Aspect 

Delhi, India: 

Delhi, the bustling capital of India, stands as a formidable economic 

powerhouse with a multifaceted economy. The service sector reigns supreme, 

encompassing industries such as information technology, telecommunications, 

and financial services, contributing significantly to the city's economic vitality. 
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Moreover, Delhi's stature as the political center of India amplifies its economic 

importance, attracting government institutions and administrative offices. The 

city's industrial zones are bustling hubs fostering diverse manufacturing 

activities, further diversifying its economic base. Vibrant markets and a thriving 

tourism sector add vibrancy to Delhi's economic landscape, catering to both 

domestic and international visitors. Educational institutions play a crucial role in 

nurturing a skilled workforce, complemented by ongoing infrastructure 

initiatives aimed at enhancing connectivity and efficiency. The real estate and 

construction sectors are integral components, meeting the demands of a 

burgeoning population and fueling urban development. This economic 

dynamism positions Delhi as a hub for opportunities and growth, essential for 

strategic planning and development initiatives aimed at sustaining its economic 

momentum. 

Chennai, India: 

Chennai, a bustling metropolis in southern India, boasts a diverse and 

dynamic economy driven by various sectors. The service industry, comprising 

information technology, telecommunications, and financial services, forms the 

backbone of Chennai's economy, leveraging its skilled workforce and 

technological infrastructure. Additionally, Chennai's status as a prominent 

manufacturing hub contributes significantly to its economic prowess, with 

industries such as automobile manufacturing, electronics, and textiles thriving in 

the region. The city's bustling markets and burgeoning tourism sector further add 

to its economic vibrancy, attracting visitors and fostering commercial activities. 

Educational institutions play a vital role in supplying a skilled workforce, while 

ongoing infrastructure projects enhance connectivity and support economic 

growth. The real estate and construction sectors cater to the city's growing 

population, fueling urban development and infrastructure expansion. Chennai's 

diverse economic landscape positions it as a hub for innovation, 

entrepreneurship, and economic growth in India. 

 



23 

 

 

 

Nagpur, India: 

Nagpur, located in central India, boasts a diverse and thriving economy 

supported by various sectors. The city's industrial zones are key contributors, 

hosting various manufacturing activities including textiles, metals, and 

engineering goods. Additionally, Nagpur's strategic location and well-developed 

infrastructure make it a significant logistics and transportation hub, facilitating 

regional trade and commerce. The service sector, encompassing information 

technology, telecommunications, and financial services, also plays a vital role in 

driving Nagpur's economic growth, leveraging its skilled workforce and 

technological capabilities. The city's vibrant markets and emerging tourism 

sector further contribute to its economic vibrancy, attracting visitors and 

stimulating commercial activities. Educational institutions in Nagpur provide a 

skilled workforce, while ongoing infrastructure projects support economic 

development and urban expansion. The real estate and construction sectors are 

integral components, meeting the needs of a growing population and fueling 

urbanization. Nagpur's diverse economic landscape positions it as a center for 

opportunities and growth in central India, essential for its continued prosperity 

and development. 

Greece: 

Greece, a country with a rich cultural heritage and strategic geographical 

location, boasts a diverse and resilient economy. The service sector, including 

tourism, shipping, and financial services, serves as a cornerstone of Greece's 

economy, capitalizing on its natural beauty, historical sites, and maritime 

resources. Additionally, Greece's manufacturing sector, encompassing industries 

such as food processing, pharmaceuticals, and machinery, contributes 

significantly to its economic output, leveraging its skilled workforce and 

competitive advantages. Agriculture, although less prominent, remains an 

essential component of Greece's economy, with products like olives, grapes, and 

dairy products being major exports. The real estate and construction sectors play 

a crucial role in meeting the housing and infrastructure needs of both residents 
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and tourists, supporting economic growth and development. Educational 

institutions and ongoing infrastructure projects further contribute to Greece's 

economic resilience, fostering innovation, entrepreneurship, and skills 

development. Despite challenges, Greece's diverse economic landscape positions 

it as a dynamic and attractive destination for investment and business 

opportunities, vital for its sustainable growth and prosperity. 

3.7 Demography 

Delhi, India's bustling capital, is a melting pot of diverse demographics, 

reflecting the country's rich cultural tapestry. With a population surpassing 30 

million, the city stands as one of the most populous globally. Its demographic 

makeup is characterized by a mix of various ethnicity, religions, and languages. 

The city's demographic landscape is dynamic, shaped by a steady influx of 

people from different parts of India seeking economic opportunities, education, 

and a vibrant urban lifestyle. This migration contributes to the city's 

cosmopolitan identity, fostering a unique blend of traditions and modernity. 

Delhi's demographic diversity is evident in its neighbourhoods, each with 

its distinct cultural nuances. From historic Old Delhi to the modernity of New 

Delhi, the city accommodates a spectrum of communities coexisting in a 

dynamic urban setting. 

Education and employment opportunities further attract a young 

demographic, making Delhi a hub for students and professionals alike. The 

demographic tapestry, constantly evolving, adds to the city's energy and vitality, 

encapsulating the essence of India's demographic mosaic. 

 

3.8 Road Networks 

Delhi's extensive road network is a lifeline for the city's dynamic activities, 

connecting neighborhoods with local roads and enabling seamless travel through 
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arterial routes. The iconic Ring Road, both inner and outer, serves as a critical 

link, encircling the heart of Delhi. National Highways like NH1, NH2, and NH8 

radiate from the city, connecting it to far-reaching destinations. 

Expressways like the Yamuna Expressway, cutting travel time to Agra, and 

the Delhi-Gurgaon Expressway, a vital link to Gurugram, contribute to the 

efficiency of the network. The DND Flyway acts as a swift connection between 

Delhi and Noida. 

These roadways are not just conduits for commuting; they shape the 

economic landscape, fostering trade and commerce, while also knitting together 

the social fabric of the city. Delhi's roads are more than mere thoroughfares; they 

are the veins and arteries of a pulsating metropolis, facilitating its continuous 

growth and vibrancy. 

3.9 Canal Network 

The river Yamuna passes through the eastern parts of Delhi, and water 

flowing in the Delhi segment of the river is obtained by the city government for 

treatment and distribution to citizens. The volume of water available in the river 

varies during the year. During the two to three months of the rainy season (July 

to September), the water level is high. 

The upper Ganga canal, originating from the Ganga River at Haridwar in 

Uttarakhand, passes through Uttar Pradesh (UP) and serves both irrigation and 

drinking water purposes. It comes closest to Delhi at Muradnagar in UP, where 

infrastructure connects the canal water to Delhi. 

Two key canals from Haryana, the Western Yamuna Canal (WYC) and 

Munak Canal, provide crucial water sources to the north of Delhi. Originating 

from the Yamuna River, they play a vital role in Delhi's water supply. However, 

challenges like inadequate water supply and pollution, including disruptions in 

2016 due to local protests damaging canal infrastructure, have been noted. 



26 

 

 

 

The third external source for Delhi's water is the Bhakra storage in 

Himachal Pradesh, receiving waters from the Ravi and Beas rivers. A link canal 

connects Bhakra Canal to the Western Yamuna Canal (WYC). After reaching 

Haryana, the water is conveyed to Delhi through the WYC and Munak Canal. 

River Yamuna flows through Delhi for a stretch of 22 kms from Wazirabad 

to Okhla barrage and its spread various from 1.5 km to 3 km. Total River bed/ 

flood prone area is around 97 sq.km, which is about 7% of the total area of Delhi. 

The river extends beyond its channel into the city. 
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Chapter 4          

 Material and Methods 

To conduct any research, diverse data types are essential, sourced from various channels and serving 

distinct purposes. This chapter provides a concise overview of the input data, specifically the SENTINEL 

images utilized for extracting flooded areas. It also outlines key characteristics of SENTINEL, including its 

orbit, system specifications, SAR antenna details, and the available beam modes. The chapter delves into the 

backscatter coefficient values of SAR images and their generation. Understanding and considering these pre- 

processing steps is vital during data processing, result analysis, and drawing conclusions. Finally, the chapter 

outlines a brief methodology illustrating how the input data is employed in various techniques to generate 

flood inundation maps. 

4.1 Introduction to SENTINEL 

The SENTINEL-1 mission is the European Radar Observatory for the Copernicus joint initiative of the 

European Commission (EC) and the European Space Agency (ESA). Copernicus is a European initiative for 

the implementation of information services dealing with environment and security. It is based on observation 

data received from Earth Observation satellites and ground-based information. 

The SENTINEL-1 mission includes C-band imaging operating in four exclusive imaging modes with 

different resolution (down to 5 m) and coverage (up to 400 km). It provides dual polarisation capability, very 

short revisit times and rapid product delivery. For each observation, precise measurements of spacecraft 

position and attitude are available. 

Synthetic Aperture Radar (SAR) has the advantage of operating at wavelengths not impeded by cloud 

cover or a lack of illumination and can acquire data over a site during day or night time under all weather 

conditions. SENTINEL-1, with its C-SAR instrument, can offer reliable, repeated wide area monitoring. 

4.1.1 The SENTINEL orbit 

SENTINEL-1 is in a near-polar, sun-synchronous orbit with a 12 day repeat cycle and 175 orbits per 
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cycle for a single satellite. Both SENTINEL-1A and SENTINEL-1B share the same orbit plane with a 180° 

orbital phasing difference. With both satellites operating, the repeat cycle is six days. 

In particular for interferometry, SENTINEL-1 requires stringent orbit control. Satellite positioning 

along the orbit must be accurate, with pointing and timing/synchronisation between interferometric pairs. 

Orbit positioning control for SENTINEL-1 is defined using an orbital Earth fixed "tube", 50 m (RMS) wide 

in radius, around a nominal operational path. The satellite is kept inside this "tube" for most of its operational 

lifetime.  

4.1.2 SENTINEL System Specifications 

Parameter Value 

Frequency Range C-band (Approximately 4 to 8 GHz) 

Wavelength 3.75 cm to 7.5 cm 

RF Bandwidth Variable (Depends on Operational Mode) 

Antenna Size Specific to SAR Mode and Design 

Table 1: Sentinel Specifications 

 

 

4.1.3 SAR Antenna 

Specification Details 

Antenna Type Phased-Array 

Frequency C-band 

Wavelength ~3.5 cm 

RF Bandwidth Broadband 
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Antenna Size Electronically Steerable 

Polarization Modes Dual-Polarization (HH, VV), 

Interferometric 

SAR Modes Stripmap, Interferometric Wide 

Swath, Extra Wide Swath, Wave 

Coverage and Resolution Variable, depending on SAR mode 

Repeat cycle Short revisit times as part of a 

satellite constellation 

Table 2: Sentinel antenna specifications 

4.1.4 SENTINEL Beam Modes 

SENTINEL-1 operates in four exclusives acquisition modes: 

1. Stripmap (SM) 

2. Interferometric Wide swath (IW) 

3. Extra-Wide swath (EW) 

4. Wave mode (WV) 

 

Fig  2: Acquisition modes 
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4.2 SENTINEL Data Products  

Each mode can potentially produce products at SAR Level-0, Level-1 SLC, Level-1 GRD, and Level-

2 OCN. 

Data products are available in single polarisation (VV or HH) for Wave mode and dual polarisation 

(VV+VH or HH+HV) or single polarisation (HH or VV) for SM, IW, and EW modes. 

The SAR Level-0 products consist of the sequence of Flexible Dynamic Block Adaptive Quantization 

(FDBAQ) compressed unfocused SAR raw data. For the data to be usable, it will need to be decompressed 

and processed using a SAR processor. 

Level-1 data consists of Single Look Complex (SLC) and Ground Range Detected (GRD) products. 

SLC products provide geo-referenced SAR data in slant-range geometry, preserving phase information. GRD 

products, on the other hand, have detected, multi-looked, and ground-range projected data, with loss of phase 

information. GRD comes in Full Resolution (FR), High Resolution (HR), and Medium Resolution (MR), 

depending on the amount of multi-looking performed. These products cater to different spatial resolutions 

and speckle reduction needs. 

Level-2 Ocean (OCN) products consist of Ocean Swell spectra (OSW), Ocean Wind Fields (OWI), and 

Surface Radial Velocities (RVL). OSW provides a two-dimensional ocean surface swell spectrum with wind 

speed and direction estimates. It's generated from Stripmap and Wave modes. OWI offers a ground range 

gridded estimate of surface wind speed and direction at 10 m, derived from Level-1 GRD images of SM, IW, 

or EW modes. RVL represents the difference between the measured Level-2 Doppler grid and the Level-1 

calculated geometrical Doppler, providing valuable oceanographic information. 

4.3 Pre-Processing of Sentinel data 

A standardized preprocessing workflow for Copernicus Sentinel-1 GRD data is outlined, tailored for the 

Sentinel application platform (SNAP). The workflow, available in XML format on GitHub, consists of seven 

steps: 

1. Apply Orbit File: Corrects inaccurate orbit state vectors in product metadata by applying precise 

orbits from SNAP. 

2. Thermal Noise Removal: Reduces additive thermal noise in Sentinel-1 image intensity, enhancing 
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data quality. 

3. Border Noise Removal: Corrects radiometric artifacts caused by azimuth and range compression at 

image borders. 

4. Calibration: Converts digital pixel values to radiometrically calibrated SAR backscatter using a 

calibration vectors. 

5. Speckle Filtering: Applies speckle filtering, reducing granular noise to enhance image quality. 

6. Range Doppler Terrain Correction: Compensates for geometric distortions due to side-looking 

geometry, using a digital elevation model for correlation. 

7. Conversion to dB: Logarithmically transforms the unitless backscatter coefficient to dB for the final 

product. 
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4.4 Overall Methodology 

and Software used 

The study employs a remote sensing methodology, specifically utilizing four classification techniques on 

gSENTINEL 1 GRD data to delineate flood extent. While visual interpretation offers accuracy, it is labor- 

intensive and time-consuming. On the other hand, the threshold technique, widely utilized for its speed, relies 

solely on backscatter coefficient values, which can be influenced by factors such as tree canopy, agricultural 

fields, and human-made structures, potentially affecting the precision of flood map generation. 

The methodology for mapping and analyzing flood inundation in Delhi using Sentinel-1 SAR data involves 

a systematic process. Initially, Sentinel-1 GRD data is collected, filtering based on specific parameters such 

as mode, polarization, orbit, and resolution. The data undergoes preprocessing, including temporal and 

speckle filtering using the Refined Lee filter. Flood detection is performed by calculating the ratio between 

filtered SAR images before and after flood events. A threshold is then applied to identify flooded areas, and 

masks for permanent water and slope are utilized to refine the flood extent. Connectivity analysis removes 

disconnected areas, and the processed layers, including the initial flood extent and relevant masks, are 

visualized. Area calculations are conducted, determining the total district area and the area of identified 

flooded zones. The results, along with quality assurance and acknowledgment of limitations, are exported to 

Google Drive in CSV format. The methodology concludes with a summary of steps, key findings, and 

suggestions for future work. 

There are various image processing software for processing and analysis of remotely sensed datasets. In the 

present work, Google Earth Engine has been used for on-screen digitization resulting in the generation of 

the flood inundated areas. The results were then visualized in the Qgis. The python was also used to get some 

statistics of the data. 

Fig  3: Sentinel-1 Ground Range Detected (GRD) preprocessing 

workflow. 
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Fig  4: Flowchart for methodology 

 

4.5 Extraction of flooded areas 

4.5.1 Data used for monitoring Delhi floods 

In July 2023, heavy rainfall triggered severe flooding across Northern India, including the national 

capital of Delhi. The unprecedented monsoon rains, exceeding normal rainfall by over 150%, caused the 

Yamuna River, which flows through Delhi, to breach its danger mark by over 4 meters. The floods caused 

widespread damage to property and infrastructure, and displaced thousands of people.The river breached its 

danger mark on July 13, and the floods reached their peak on July 14. The water levels started to recede on 

July 15, and the floods were largely subsided by July 17. 

The Delhi floods of 2023 occurred in two distinct phases:  

Phase 1: July 9-16, 2023 

The initial flooding event began on July 9, 2023, as heavy rainfall over 153 millimeters (6.0 inches) in 

a single day caused the Yamuna River to cross its danger mark. This led to extensive flooding in low-lying 
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areas, particularly near the riverbanks. The floods continued for several days, with the Yamuna River 

reaching its highest level in over 45 years on July 13, 2023. 

Phase 2: August 12-13, 2023 

Parameter  Value/Description 

Location  Delhi 

Date Range (Before)  June 15, 2023 to June 30, 2023 

Date Range (After)  July 1, 2023 to July 30, 2023 

Flood Dates  June 18, 2023; June 30, 2023; July 12, 

2023; July 24, 2023 

SAR Data Source  Copernicus Sentinel-1 

SAR Instrument Mode  Interferometric Wide (IW) 

Polarization  Vertical Transmit, Vertical Receive 

(VH) 

Orbit Properties  Descending 

Resolution  10 meters 

Speckle Filtering  Refined Lee Speckle Filter 

Threshold  1.25 (for flood detection) 

Additional Filters  Permanent/Semi-permanent water, 

slope, and connected pixels 

Result Output  Flooded areas in hectares 

Table 3: Representation of key elements related to the Algorithm and Data used 
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Fig  5: Histogram Before/After (Delhi, Chennai, Nagpur, Greece) 
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Fig  6: Reference Flood Map/Sample training data 
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4.5.2 Flooded Area 

The flooded area in the provided code is computed through a multi-step process involving Synthetic 

Aperture Radar (SAR) image analysis. Initially, the script calculates the ratio between pre-flood and post- 

flood SAR images, identifying areas of significant change. A threshold is then applied to this ratio image to 

establish an initial flooded area mask. Subsequent steps refine this mask by excluding permanent water 

bodies and areas with steep slopes. Isolated pixels are removed to enhance the continuity of flooded regions. 

The final calculation involves measuring the flooded area within a specified district using pixel-wise area 

computations. The results, including the total district area and the flooded area in hectares, are exported to a 

CSV file for further analysis. This comprehensive approach provides a quantitative assessment of the extent 

of flooding in the designated region. 

In the provided algorithm, the threshold value is set to 1.25. This threshold is applied to the ratio image 

derived from the division of post-flood and pre-flood Synthetic Aperture Radar (SAR) images. The choice 

of this threshold is a crucial step in flood detection. It essentially determines the sensitivity of the algorithm 

in identifying flooded areas. A higher threshold results in a more conservative flood extent, highlighting only 

the most significant changes. On the other hand, a lower threshold may include more subtle changes but 

could lead to the inclusion of false positives. The specific value of 1.25 is likely determined through 

experimentation and validation to strike a balance between sensitivity and accuracy based on the 

characteristics of the SAR data and the study area. Adjusting this threshold might be necessary depending on 

the specific conditions of the study region and the desired trade-off between false positives and false 

negatives. 

4.5.3 Rule Based Classification 

Calculation of Backscatter Difference: 

The backscatter difference (`difference`) is computed by dividing the post-flood backscatter 

(`afterFiltered`) by the pre-flood backscatter (`beforeFiltered`): 

Thresholding for Flood Detection: The thresholding step involves comparing the backscatter difference 

(`difference`) with a predefined threshold value (`diffThreshold`). Pixels with a backscatter ratio above this 

threshold are considered indicative of flooded regions. This is represented by the following equation: 

𝒇𝒍𝒐𝒐𝒅𝒆𝒅 = 𝒅𝒊𝒇𝒇𝒆𝒓𝒆𝒏𝒄𝒆 > 𝒅𝒊𝒇𝒇𝑻𝒉𝒓𝒆𝒔𝒉𝒐𝒍𝒅𝑷𝒆𝒓𝒎𝒂𝒏𝒆𝒏𝒕/𝑺𝒆𝒎𝒊 − 𝒑𝒆𝒓𝒎𝒂𝒏𝒆𝒏𝒕 
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Water Masking: A mask (`permanentWater`) is applied to exclude areas with permanent or semi-permanent 

water. The Global Surface Water (GSW) dataset is used, where areas with a seasonality value greater than or 

equal to 5 are considered permanent water. The masking equation is: 

𝒇𝒍𝒐𝒐𝒅𝒆𝒅 = 𝒇𝒍𝒐𝒐𝒅𝒆𝒅 ∗ (𝟏 − 𝒑𝒆𝒓𝒎𝒂𝒏𝒆𝒏𝒕𝑾𝒂𝒕𝒆𝒓) 

Masking Based on Slope:   Areas with a slope greater than a specified threshold (`slopeThreshold`) are masked 

out. The masking equation is: 

𝒇𝒍𝒐𝒐𝒅𝒆𝒅 = 𝒇𝒍𝒐𝒐𝒅𝒆𝒅 ∗ (𝒔𝒍𝒐𝒑𝒆 < 𝒔𝒍𝒐𝒑𝒆𝑻𝒉𝒓𝒆𝒔𝒉𝒐𝒍𝒅) 

Isolated Pixel Removal: To remove isolated pixels, the connected pixel count (`connections`) is computed, and 

flooded pixels with connections below a specified threshold (`connectedPixelThreshold`) are excluded. The 

masking equation is: 

𝒇𝒍𝒐𝒐𝒅𝒆𝒅 = 𝒇𝒍𝒐𝒐𝒅𝒆𝒅 ∗ (𝒄𝒐𝒏𝒏𝒆𝒄𝒕𝒊𝒐𝒏 > 𝒄𝒐𝒏𝒏𝒆𝒄𝒕𝒆𝒅𝑷𝒊𝒙𝒆𝒍𝑻𝒉𝒓𝒆𝒔𝒉𝒐𝒍𝒅) 

These equations collectively describe the process of flood detection, where the backscatter difference is 

thresholded, and subsequent masks are applied to refine the results. 

 

 

 

 



39 

 

 

 

Fig  7: In-situ Floods images 2023-credits: Forbes 

4.5.4 Change Detection Technique 

The algorithm follows a comprehensive change detection process to identify and map flooded areas 

based on backscatter values derived from synthetic aperture radar (SAR) data. Initially, the backscatter values 

for pre- flood and post-flood periods are computed, and these values are typically presented in decibels (dB) 

to enhance the visibility of subtle variations in the dynamic range. 

The change detection process involves defining a threshold value, denoted as diffThreshold (set to 1.25 

in the provided code), which serves as a critical indicator of significant changes in backscatter values. Pixels 

with change values above this threshold are considered as initial estimates of potentially flooded areas. This 

thresholding step is crucial for identifying regions undergoing substantial changes indicative of flooding. 

To refine the flood detection and minimize false positives, the algorithm incorporates additional 

masking steps. Permanent or semi-permanent water areas are masked out by applying a mask based on a 

water seasonality index, such as gsw. select('seasonality').gte(5). This step aims to distinguish between actual 

flooding events and consistently water-covered regions. 

Moreover, the algorithm considers the topography of the area by masking out regions with more than 

5 percent slope. The slope information is derived from the HydroSHEDS Digital Elevation Model (DEM), 

allowing the algorithm to exclude areas where flooding is less likely based on terrain characteristics. 

To improve the accuracy of the results, isolated pixels are removed through a connected pixel count 

approach. Pixels that are not part of a connected region with a sufficient number of neighboring pixels 

(controlled by the connectedPixelThreshold) are filtered out. This step helps to eliminate noise and isolated 

artifacts in the flooded area identification. 

 

4.6 Mask used in algorithm 

4.6.1 Permanent Water Mask: 

Purpose: 
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The permanent water mask serves the purpose of excluding regions with constant water presence, such 

as rivers, lakes, and reservoirs, from the flood detection process. These areas are less likely to be affected by 

short-term flood events. 

Method:  

The Global Surface Water (GSW) dataset is employed to create a permanent water mask. The GSW 

dataset provides information about the seasonality of surface water over an extended period. Pixels identified 

as having a consistent presence of water throughout the year are considered permanent water. 

Implementation: 

The algorithm uses the GSW dataset to mask out pixels identified as permanent water. This ensures 

that areas with known water bodies are not misclassified as flooded during the detection process. 

4.6.2 Slope Mask: 

Purpose: 

The slope mask is applied to account for the topographic characteristics of the terrain. Areas with steep 

slopes are less likely to experience flooding, and thus, the slope mask helps in excluding such regions. 

Method: 

The HydroSHEDS Digital Elevation Model (DEM) is utilized to calculate the slope of the terrain. Slope 

is a measure of the steepness of the landscape, and areas with slopes exceeding a specified threshold are 

considered less susceptible to flooding. 

Implementation:  

Pixels with slopes greater than the defined threshold are masked out. This ensures that areas with 

significant inclines, where flooding is less probable, are excluded from the flood detection process. 
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4.6.3 Isolated Pixels Removal: 

Purpose:  

Isolated pixel removal aims to improve the coherency of identified flooded zones. It eliminates isolated 

or disconnected pixels that may result from noise or errors in the detection process. 

Method:  

Connected pixel count analysis is applied to identify clusters of pixels. Pixels with fewer connected 

neighbors than a specified threshold are considered isolated and are subsequently removed from the flooded 

area classification. 

Implementation: 

The algorithm removes isolated pixels based on the connected pixel count, which enhances the overall 

quality of the flood extent by ensuring that identified flooded areas are spatially coherent. 

These masking techniques collectively enhance the accuracy of flood detection by excluding areas with 

known water bodies, considering topographic characteristics, and improving the overall coherence of the 

identified flooded zones. They contribute to creating a reliable and realistic representation of flood-affected 

areas in the Delhi district, providing valuable insights for further analysis and decision-making. 

 

 

Why Mask Permanent/Semi-permanent Water? 

The Global Surface Water dataset is a product developed by the European Commission's Joint Research 

Centre (JRC) in collaboration with Google. It provides information about the extent and dynamics of surface 

water bodies globally. The dataset is derived from multi-temporal satellite observations, primarily using the 

Sentinel-1 and Landsat missions. 

Purpose of Using GSW in Flood Detection 

The GSW dataset is leveraged in the algorithm to identify and mask out areas that are consistently 
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covered by water, regardless of the flood event. These areas are considered as permanent or semi-permanent 

water bodies. The rationale behind this step is to exclude regions that are naturally water-covered and not 

part of the flooded area during the specific flood event being analyzed. 

4.7 Change Detection Technique 

The algorithm follows a comprehensive change detection process to identify and map flooded areas 

based on backscatter values derived from synthetic aperture radar (SAR) data. Initially, the backscatter values 

for pre- flood and post-flood periods are computed, and these values are typically presented in decibels (dB) 

to enhance the visibility of subtle variations in the dynamic range. 

The change detection process involves defining a threshold value, denoted as diffThreshold (set to 1.25 

in the provided code), which serves as a critical indicator of significant changes in backscatter values. Pixels 

with change values above this threshold are considered as initial estimates of potentially flooded areas. This 

thresholding step is crucial for identifying regions undergoing substantial changes indicative of flooding. 

To refine the flood detection and minimize false positives, the algorithm incorporates additional 

masking steps. Permanent or semi-permanent water areas are masked out by applying a mask based on a 

water seasonality index, such as gsw.select('seasonality').gte(5). This step aims to distinguish between actual 

flooding events and consistently water-covered regions. 

Moreover, the algorithm considers the topography of the area by masking out regions with more than 

5 percent slope. The slope information is derived from the HydroSHEDS Digital Elevation Model (DEM), 

allowing the algorithm to exclude areas where flooding is less likely based on terrain characteristics. 

To improve the accuracy of the results, isolated pixels are removed through a connected pixel count 

approach. Pixels that are not part of a connected region with a sufficient number of neighboring pixels 

(controlled by the connectedPixelThreshold) are filtered out. This step helps to eliminate noise and isolated 

artifacts in the flooded area identification. 

4.8 Random Forest 

Random Forest Classifier (RFC), an ensemble classifier, produces multiple decision trees using a subset 

of training samples and variables selected randomly. In the field of remote sensing, RFC provides an unbiased 

estimation of generalization error, can deal with a large number of variables, identifies missing data and the 
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outliers existing in the training samples, measures the correlation between data sets based on proximity , 

optimizes feature space by using the variable importance function , is relatively robust to outliers and noise. 

RF classifier has been used in many previous studies for land cover mapping, initially evaluating the 

performance of the RF classifier for classifying land cover in Spain, and their study achieved a higher overall 

accuracy (91%) compared to the single decision tree. In another study, Hayes et al. (2014) was able to prepare 

a high-resolution (1 m) land cover map in Wyoming using RF classifier and obtained an overall accuracy of 

81%. To select the best classification model for land cover mapping in a complex farming area, an overall 

accuracy of 89% using RF classification. In some recent studies, the RF classification method has been 

undertaken for also generating flood inundation maps A study for urban flood mapping in China based on 

Unmanned Aerial Vehicle imagery and used an RF classifier for generating flood inundation maps. Results 

showed that the RF classifier outperformed (overall accuracy 87.3%) maximum likelihood classification and 

artificial neural network algorithms. In a recent study, they developed a framework for generating flood 

inundation maps based on SAR microwave remote sensing data and obtained an overall accuracy of 88.9% 

using an RF classifier. [1] 

 

Fig  8: Chennai Flood 2023-Twitter 
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Fig  9: Crowd-sourced data – Social media 

4.9 Methodology for Extracting Geotagged Social Media Flooded Pictures 

The integration of social media data with traditional remote sensing techniques offers a powerful 

approach to enhancing flood mapping and monitoring efforts. Geotagged images from social media can 

provide real-time, ground-level observations that complement satellite-based data. This section details the 

methodology for extracting and utilizing geotagged social media images for flood mapping. 

The first step in the process is selecting appropriate social media platforms that provide geotagged 

images. Popular platforms like Twitter, Instagram, and Flickr are often used because they allow users to share 

images with location metadata. Access to these platforms typically requires registering for developer access 

to obtain API keys. These keys are used to authenticate requests made to the platform's API, enabling 
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extracting relevant data. 

4.9.1 Data Extraction 

Once API access is secured, the next step involves defining search parameters. This includes selecting 

relevant keywords such as "flood," "inundation," "water level," and specific location names. It is also 

important to specify the geographic boundaries of interest using latitude and longitude coordinates and the 

time frame around the flood event. These parameters help filter the data to ensure relevance to the flood event 

being studied. Querying the API involves sending HTTP requests with these parameters and receiving 

responses, typically in JSON or XML format, which contain the details of the geotagged images. 

4.9.2 Data Processing 

After retrieving the data, it is necessary to parse the API responses to extract relevant information such 

as image URLs, geotags (latitude and longitude), timestamps, and any available user metadata. The data then 

undergoes filtering and cleaning to ensure quality and relevance. This step involves removing duplicate 

entries, filtering out low-quality images, and verifying the accuracy of geotags to eliminate erroneous data. 

Ensuring that the images are indeed flood-related can be done by checking associated text or tags.  

4.9.3 Data Annotation 

The cleaned and filtered data is then imported into Geographic Information System (GIS) software 

such as QGIS. This involves plotting the geotagged locations of the images on a map and overlaying these 

points on relevant geographic layers, including roads, rivers, and flood zones. Manual annotation of the 

images is carried out to confirm the presence of flooding. Each image is reviewed, and annotations such as 

"flood" or "no flood" are added based on visual inspection. Additional details like water depth, affected 

infrastructure, and the severity of the flooding can also be annotated if available. 

4.9.4 Data Integration 

To create a comprehensive dataset, a shapefile containing the geotagged and annotated images is 

created. This shapefile includes attributes such as image URL, coordinates, timestamp, and annotations, 

ensuring compatibility with other geospatial data formats used in the analysis. The social media data is then 

integrated with SAR data to enhance flood mapping efforts. This integration involves overlaying geotagged 
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images on SAR-based flood maps, allowing for validation and refinement of the flood classification. Ground-

level observations from social media images help to improve the accuracy of the flood maps generated from 

SAR data. 

4.9.5 Visualization and Analysis 

Visualization of the geotagged and annotated images within the GIS software provides a clear 

representation of the flood extent. Maps are created to show the locations of flood-affected areas along with 

corresponding social media images. Different symbols or colors can be used to indicate the severity and type 

of flooding. This visual representation aids in analyzing spatial patterns of the flood event, identifying 

hotspots, and areas with high flood impact. Comparing the extent and severity of flooding observed from 

SAR data and social media images provides valuable insights for disaster management and response. 

4.9.6 Data Collection and Preparation 

The foundation of this flood mapping methodology is the collection of historical and current flood 

maps from reputable sources such as the National Remote Sensing Centre (NRSC) and the Indian Space 

Research Organisation (ISRO) in India, OpenStreetMap, and the Copernicus Emergency Management 

Service (CEMS). These maps provide critical base layers that inform the flood extent and are essential for 

accurate annotation and analysis. 

4.9.7 Historical and Current Flood Maps 

Flood maps from NRSC/ISRO provide detailed information on flood extents based on satellite imagery 

and other remote sensing data. OpenStreetMap offers user-generated geographical data that can include flood 

extents and related features. CEMS provides rapid mapping products for flood monitoring in Europe and 

globally. These sources are integrated into a Geographic Information System (GIS) environment, typically 

QGIS, to serve as base layers for further analysis. 

4.9.8 Data Annotation 

In the GIS environment, digital polygons are created to annotate the flood extent areas. This involves 

manually drawing polygons over the base maps to delineate areas affected by flooding. Each polygon is 

assigned an identifier: polygons representing flooded areas are given an ID of 1, while non-flooded areas are 
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assigned an ID of 0. This binary classification facilitates the supervised learning process. Once the annotation 

is complete, the data is exported as a shapefile, which includes the spatial information and the classification 

labels. 

4.9.9 Supervised Classification with Random Forest 

The supervised classification algorithm used in this methodology is the Random Forest classifier, a 

robust and versatile machine learning algorithm known for its accuracy and efficiency in handling large 

datasets with numerous features.  

4.9.10 Feature Extraction 

Before classification, relevant features are extracted from the SAR data and the annotated shapefiles. 

These features may include backscatter intensity values from pre- and post-flood SAR images, texture 

measures, and other derived indices that can help differentiate between flooded and non-flooded areas. 

4.9.11 Training the Classifier 

The Random Forest algorithm is trained using the annotated shapefile data. The training process 

involves feeding the algorithm with the features extracted from the SAR data along with the corresponding 

flood labels (1 for flood, 0 for no flood). The Random Forest classifier constructs multiple decision trees 

during training, with each tree voting on the classification outcome. The final classification is determined by 

aggregating the votes from all the trees.  

4.9.12 Classification and Mapping 

Once trained, the Random Forest classifier is applied to the entire study area to produce a flood map. 

The classifier analyzes the SAR data for the entire area and assigns a flood label to each pixel based on the 

learned patterns. This results in a detailed flood map highlighting the extent of flooding across the urban 

landscape. 

4.9.13 Validation with Ground Truth Data 

The accuracy of the flood map generated by the Random Forest classifier is validated using ground 
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truth data collected from social media. Geotagged images and reports from platforms like Twitter, Instagram, 

and Flickr are used as ground truth points. These images provide real-time, on-the-ground verification of 

flood conditions, which are crucial for validating the classification results.  

4.9.14 Integration and Analysis 

The ground truth data is integrated into the GIS environment, overlaying the geotagged social media 

images on the flood map. This allows for a visual and statistical comparison between the predicted flood 

extents and the actual flood observations. Areas of agreement between the flood map and the ground truth 

data indicate accurate classifications, while discrepancies highlight potential areas for further investigation 

and refinement of the model. 
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Chapter 5            

   Results 

In the post-processing phase of flood detection using Google Earth Engine and subsequent analysis in 

QGIS, several key steps were undertaken to enhance the visual representation and interpretation of the results. 

The flood detection outcomes, initially identified through a thresholding process in Google Earth Engine, 

were exported as a CSV file and seamlessly integrated into QGIS for advanced geospatial analysis and 

mapping. 

Upon importing the flood information into QGIS, the flooded areas were symbolized to facilitate a 

clear visual understanding. The use of a distinct color scheme, such as assigning a vivid red hue to the flooded 

regions, allowed for an immediate and intuitive identification of the impacted areas. This symbology not only 

provided clarity but also served as a foundational element for subsequent analyses. 

To complement the flood detection results, additional contextual layers, including satellite imagery and 

administrative boundaries, were overlaid. This comprehensive approach facilitated a nuanced understanding 

of the spatial distribution of flood-affected zones within the broader geographic context. The iterative 

adjustment of layer styles, transparency settings, and label placements in QGIS contributed to the refinement 

of map visualizations, ensuring they effectively communicated the severity and extent of flooding. 

A notable enhancement in the visual interpretation was achieved by incorporating the Global Surface 

Water dataset (gsw) to mask out areas with permanent or semi-permanent water bodies. This additional step, 

represented by a distinct blue color, aided in differentiating between flood-affected areas and pre-existing 

water bodies, thereby reducing the likelihood of misinterpretation. 

Moreover, the use of a color palette, where permanent water bodies were assigned the color blue, 

facilitated a clearer distinction between natural water features and flood-induced water. This deliberate color 

choice contributed to a more nuanced and accurate visual representation, crucial for decision-making 

processes and the communication of results to diverse stakeholders. 

In summary, the integration of Google Earth Engine flood detection results into QGIS, coupled with 

thoughtful symbology choices and the incorporation of contextual layers, significantly advanced the visual 

analysis of flood-affected areas. The utilization of a distinct blue color for permanent water bodies further 
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improved the interpretability of the results, enhancing the overall effectiveness of the mapping and analysis 

process. 

5.1 Delhi Results 

 
 

Fig  10: Filtered images of Delhi, before and after the flood 
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Fig  12: a) Rule-based classification, and b) Change detection 
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Fig  11: a) Rule based classification, and b) Change Detection 
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 precision    recall f1-score   support 

    No Flood       0.78      0.37      0.50       102 

       Flood       0.33      0.74      0.46        43 

    accuracy                           0.48       145 

   macro avg       0.55      0.56      0.48       145 

weighted avg       0.64      0.48      0.49       145 
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Fig  13: Random Forest 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

precision    recall f1-score   support                       

           0       0.22      0.04      0.07       130 

           1       0.81      0.97      0.88       546 

    accuracy                           0.79       676 

   macro avg       0.51      0.50      0.47       676 

weighted avg       0.69      0.79      0.72       676 
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Fig  14: Reference Flood map from NRSC for 

Delhi 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Classification Report: 

              precision    recall f1-score   support 

 

    No Flood       0.26      0.33      0.29       130 

       Flood       0.83      0.78      0.80       546 

 

    accuracy                           0.69       67 

   macro avg       0.55      0.56      0.55       676 

weighted avg       0.72      0.69      0.71       676 
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Fig  16: After Flood 

5.2 Chennai Results 

 

 

 

Fig  17: Rule based classification 

 

 

 

Fig  15: Before Flood 
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Fig  18: Change detection 

 

 

precision    recall   f1-score   support 

           0       0.55      0.26      0.36        99 

           1       0.74      0.91      0.81       225 

    accuracy                           0.71       324 

   macro avg       0.64      0.58      0.58       324 

weighted avg       0.68      0.71      0.67       324 
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Fig  19: Random Forest 

 

 

precision    recall   f1-score   support 

0       0.30      0.22      0.26        99 

1       0.69      0.77      0.73       225 

accuracy                           0.60       324 

macro avg       0.50      0.50      0.49       324 

weighted avg       0.57      0.60      0.59       324 
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Fig  20: Comparison amongst methods for Chennai 

 

Classification Report: 

              precision    recall  f1-score   support 

           0       0.00      0.00      0.00        99 

           1       0.69      1.00      0.82       225 

    accuracy                           0.69       324 

   macro avg       0.35      0.50      0.41       324 

weighted avg       0.48      0.69      0.57       324 
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Fig  22: After Flood 

 

 

 

 

 

5.3 Nagpur Results 

 
 

 

  

Fig  21: Before Flood 
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Fig  23: Rule based classification 

 

 

 

 

 

 

 

Fig  24: Change detection 
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Fig  25: Random Forest 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig  26: Comparison amongst methods for Nagpur 



61 

 

 

 

Fig  28: After Flood 

 

5.4 Greece Results 

 
 

 
 

Fig  29: Rule based classification 

 

 

 

 

Fig  27: Before Flood 
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Fig  30: Change detection 
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Fig  31: Random Forest 
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Fig  32: Comparison amongst methods for Nagpur 
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Chapter 6            

   Conclusion 

In the flood-affected regions of North Delhi, including areas like Signature Bridge,Old Delhi,Gandhi 

Vihar Wazirabad, Majnu Ka Tila, and Kashmere Gate, the Synthetic Aperture Radar (SAR) images captured 

during the flood event revealed a distinct pattern. The RGB composite of the images highlighted the presence 

of flooded areas, particularly noticeable in the eastern part of Delhi, encompassing regions like Geeta Colony, 

Shastri Park, and Mandawali. The most affected zones, including Khajuri Khas, Gokulpuri, and Sonia Vihar 

in Northeast Delhi, were also discernible. 

What stands out in both the RGB and SAR images is the representation of flooded pixels in black. This 

characteristic black color is a result of the backscatter behavior in SAR data. SAR sensors emit microwave 

signals that interact with the Earth's surface, and the backscattered signals are recorded. In the case of flood 

mapping, water surfaces typically exhibit low radar backscatter, leading to darker tones in SAR imagery. 

The dark pixels observed in both RGB and SAR images signify areas that experienced inundation during 

the flood event. The diminished radar backscatter from flooded regions contrasts with the higher backscatter 

from non-flooded surfaces like built-up areas or vegetation. This stark contrast in backscatter response serves 

as a visual cue, allowing for the identification and delineation of flooded areas in the imagery. Therefore, the 

black pixels in the images play a crucial role in visually indicating the extent of the flooded regions, aligning 

with the characteristic backscatter response of water surfaces in SAR imagery. 

• More ground truth data will increase the accuracy of the model. 

• For Urban Floods Random Forest performed better followed by Thresholding and Change detection. 

In urban areas due to various complex urban backscatter patterns, including double bounce, shadow, and 

layover, which cause misclassification and increase false alarms 

6.1 Future Work 

In the future, a robust validation is planned to assess the accuracy and reliability of the flood mapping 

algorithm. This endeavor will involve a meticulous field validation process, during flood events in the current 

study area. By physically visiting the location, ground truth data, such as water levels and flood extent, will 

be gathered to validate the satellite-derived flood maps. This validation process will be complemented by a 
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detailed comparative analysis, incorporating quantitative metrics like accuracy, precision, recall, and F1 

score. 

A key focus is directed towards applying the developed flood mapping algorithm to a different Area of 

Interest (AOI). This strategic expansion aims to assess the algorithm's versatility and performance across 

diverse geographical settings, encompassing varying topography, hydrological conditions, and land use 

patterns. By deploying the algorithm in a distinct AOI, it becomes possible to evaluate its generalizability 

and uncover any region-specific nuances that may influence its effectiveness.Separate Paddy fields with the 

flooded pixels. 
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