
Compute In Memory Architecture Using SRAM

For Edge AI

M.Tech. Thesis

By

 SAGAR PATEL

DEPARTMENT OF ELECTRICAL ENGINEERING

INDIAN INSTITUTE OF TECHNOLOGY INDORE

JUNE 2024

Compute In Memory Architecture Using SRAM

For Edge AI

A THESIS

Submitted in partial fulfillment of the

requirements for the award of the degree

of

Master of Technology

by

SAGAR PATEL

DEPARTMENT OF ELECTRICAL ENGINEERING

INDIAN INSTITUTE OF TECHNOLOGY INDORE

JUNE 2024

INDIAN INSTITUTE OF TECHNOLOGY INDORE

CANDIDATE’S DECLARATION

 I hereby certify that the work which is being presented in the thesis entitled Compute In Memory

Architecture Using SRAM For Edge AI in the partial fulfillment of the requirements for the award of the

degree of MASTER OF TECHNOLOGY - VLSI DESIGN AND NANOELECTRONICS and submitted

in the DEPART-MENT OF ELECTRICAL ENGINEERING, Indian Institute of Technology

Indore, is an authentic record of my own work carried out during the time period from July 2022 to June 2024

under the supervision of Dr. Santosh Kumar Vishvakarma, Professor, Indian Institute of Technology Indore,

Indore, India.

 The matter presented in this thesis has not been submitted by me for the award of any other degree of

this or any other institute.

 Signature of the student with date

(Sagar Patel)

--

 This is to certify that the above statement made by the candidate is correct to the best of my/our

knowledge.

 Signature of the Supervisor of

M.Tech. thesis with Date

 (Prof. Santosh Kumar Vishvakarma)

--

 Sagar Patel has successfully given his/her M.Tech. Oral Examination held on 7th May

2024.

Signature(s) of Supervisor(s) of M.Tech. thesis Convener, DPGC

Date: Date:

Mobile User

ACKNOWLEDGEMENTS

 I am immensely grateful to my M.Tech. thesis supervisor and mentor, Prof. Santosh Kumar

Vishvakarma, for consistently encouraging and supporting me in both my research and

personal growth. His unwavering belief in my abilities and his invaluable guidance have served

as constant motivation, pushing me to exceed my own limits. I owe him a debt of gratitude for

granting me the freedom to explore my research interests and allowing my novel ideas to

flourish.

 I would also like to extend my sincere appreciation to all of my thesis evaluation committee.

Their impartial evaluations and thought-provoking questions have contributed significantly to

expanding my research perspective.

 My family and friends has played a major role in supporting my research work throughout

the course of my master’s . They have always boosted my confidence and always motivated

me to push my limits. I will always be grateful to them for all their guidance, love and

sacrifices. Their faith in me has brought me this far, and it will drive me further, as well, to

achieve greater things. I deeply appreciate the Nanoscale Devices, VLSI Circuit and System

(NSDCS) Lab research group, especially Mr. Narendra Dhakad, and Mr. Vikash Vishwakarma

for their continuous support and guidance. I am also grateful to my labmates Mrs. Neha

Maheshwari, Mr. Shashank Singh Rawat, Mr. Ankit Tenwar, Mr. Radheshyam Sharma, Ms.

Komal Gupta, Mr. Akash Sankhe Mr. Mukul Lokhande and Mr. Sonu Kumar whose

camaraderie and encouragement made my time at the institute truly memorable

 Sagar Patel

My Parents, My Brother, My Grandparents and the

Almighty God

 6

Abstract

This work presents the design and implementation of a novel 10T SRAM cell aimed at

enhancing the Static Noise Margin (SNM) compared to conventional 6T SRAM cells.

The new 10T SRAM cell incorporates additional transistors to improve stability and

reduce noise susceptibility, thereby ensuring more reliable data storage and retrieval.

Leveraging this improved SNM, a compute-in-memory (CIM) architecture is developed,

which is fully digital, utilizes bit-serial computing, and offers reconfigurability to

accommodate various input and weight precisions from 1 to 16 bits. This

reconfigurability enhances the architecture's versatility and efficiency in processing

neural networks and other data-intensive tasks. The entire design, including the 10T

SRAM cell and the bit-serial computation framework, is simulated using Cadence

Virtuoso with TSMC 65nm technology. Detailed schematics are created, and test benches

are configured to evaluate key parameters such as read/write delays, power consumption,

and overall stability. Simulation results demonstrate significant improvements in SNM,

reliability, and energy efficiency, making the architecture suitable for edge-computing

applications. This novel 10T SRAM cell-based CIM architecture offers a robust, high-

performance, and energy-efficient computing solution, addressing the limitations of

traditional 6T SRAM cells and analog CIM implementations.

 7

 TABLE OF CONTENTS

LIST OF FIGURES .. 9

LIST OF TABLES ... 11

LIST OF ABBREVATIONS.. 12

Chapter 1. Introduction and Related Work .. 13

1.1 Overview .. 13

1.2 Hardware Accelerator for Edge AI .. 13

1.3 Neural Network .. 13

1.3.1 Introduction .. 13

1.3.1 Neuron .. 14

1.3.2 MAC ... 15

1.3.3 Activation Function .. 16

1.4 Motivation and Problem Statement ... 17

2.3.1 Von Neumann Bottleneck .. 17

2.3.2 Latest AI Accelerators With High-Bandwidth Memories .. 17

1.5 Compute-In-Memory Architecture... 19

1.6 Challenges of CIM Architecture .. 20

Chapter 2. Theoretical Framework ... 21

2.1 Basic Memory Operation ... 21

2.2 SRAM Basics ... 22

2.2.1 Working of SRAM ... 22

2.3 CIM Fundamentals ... 25

2.3.1 Implementation of CIM macro ... 25

2.3.2 CIM Macro mapping for DNN... 26

2.3.3 CIM Macro mapping for CNN ... 28

2.4 CIM Design Challenges ... 30

Chapter 3. Proposed Architecture ... 34

3.1 Introduction .. 34

3.2 Weight-Stationary Systolic Architecture.. 34

3.3 Bit-Serial Computing and Reconfigurability ... 35

3.4 Proposed 10T SRAM cell... 36

 8

3.4.1 Circuit Description ... 36

3.4.2 Working Principle .. 37

3.4.3 Read Stability ... 38

3.4.4 XNOR Operation... 38

3.4.5 MAC(Multiply-and-accumulate) using 10T SRAM .. 39

3.5 Bitcell For Proposed Architecture .. 40

3.5.1 Basic Operation Using Bitcell ... 41

3.5.2 Reconfigurability .. 42

3.6 Top Level Of Proposed Architecture ... 44

3.6.1 Precharge Circuitry... 45

3.6.2 Address Decoder And Word Line Drivers ... 45

3.6.3 Column Multiplexer ... 47

3.6.4 Sense Amplifier .. 48

3.6.5 Write Driver And MAC Driver .. 49

Chapter 4. Simulation Result & Analysis ... 50

4.1 Introduction .. 50

4.2 Simulation Results Of Proposed 10T SRAM Cell ... 51

4.2.1 Static Noise Margin(SNM): ... 52

4.2.2 Delay .. 52

4.3 Simulation Result Of Bitcell For Proposed Architecture ... 54

4.4 Simulation Result Of Different Operation Of Proposed Architecture 55

4.4.1 Signals .. 55

4.4.2 Timing Considerations: .. 56

4.4.3 Read Operation:.. 56

4.4.4 Write Operation: ... 57

4.4.5 MAC Operation: ... 58

Chapter 5. Conclusion And Future Scope .. 61

5.1 Summary .. 61

5.2 Work Conclusion ... 61

5.3 Future Scope of Work ... 62

References .. 63

 9

LIST OF FIGURES

Fig. 1 Neural Network ... 14

Fig. 2. Neuron Architecture... 15

Fig. 3 Processing Elements of Neuron .. 15

Fig. 4 Activation Functions ... 16

Fig. 5 von Neumann Bottleneck and memory wali problem... 18

Fig. 6 Processing in Memory Achitecture ... 19

Fig. 7 SRAM cell Operation write .. 23

Fig. 8 SRAM cell Operation read... 23

Fig. 9 SRAM Architecture .. 24

Fig. 10 CIM macro using common memory cells ... 26

Fig. 11 Processing a fully connected layer using SRAM based macro multiplication 27

Fig. 12 Processing a fully connected layer using SRAM based macro dot-product 27

Fig. 13 Processing a fully connected layer using SRAM based macro vector matrix multiplication ... 27

Fig. 14 Processing a fully convolutional layer using SRAM based CIM macro multiplication 28

Fig. 15 Processing a fully convolutional layer using SRAM based CIM macro a dot product for 2D

filter .. 28

Fig. 16 Processing a fully convolutional layer using SRAM based CIM macro a dot product for 3D

filter .. 29

Fig. 17 Processing a fully convolutional layer using SRAM based CIM macro a vector matrix for 4D

filter .. 29

Fig. 18 Processing a fully convolutional layer using SRAM based CIM macro after 16 cycles of vector

matrix operation ... 29

Fig. 19 Challenges of analog CIM macro process variation ... 31

Fig. 20 Challenges of analog CIM macro non linearity ... 31

Fig. 21 Challenges of analog CIM macro ADC overhead ... 31

Fig. 22 Simplified block diagram of a typical digital DNN accelerator ... 32

Fig. 23 A column based dot-product circuit using digital CIM .. 33

Fig. 24 Weight-Stationary Systolic Architecture of the proposed digital CIM macro with 1-16 bit

reconfigurable MAC precision ... 35

Fig. 25 Digital ALU architecture. (a) Conventional bit-parallel, (b) bit-serial, and (c) reconfigurable bit-

precision ... 36

Fig. 26 Proposed 10T SRAM cell ... 36

Fig. 27 Read Operation for proposed 10T SRAM cell.. 37

Fig. 28 SNM of 10T SRAM cell ... 38

Fig. 29 Basic neuron architecture showinf MAC operation .. 39

Fig. 30 10T SRAM cell ... 39

Fig. 31 BitCell Using 10T SRAM cell .. 40

Fig. 32 Building a column MAC array using bitcells. In the example on the left, 10 bitcells are used for

building a dot-product with 4 bit weight/input. The example shown on the right describes bit-serial

multiplication of 4 bit two’s complement weight and 4 bit binary weighted signed number input. 41

 10

Fig. 33 CIM micro with 128X128 bitcells for N x product .. 42

Fig. 34 Reconfigured CIM macros with 128 × 128 bitcells. Each column MAC requires M Type-A cells

and 7 Type-B cells.. 43

Fig. 35 Postaccumulator combines individual partial-sums from each operation cycle to complete a

dot-product with multibit precision .. 43

Fig. 36 Proposed CIM architecture ... 44

Fig. 37 Precharge Circuitry ... 45

Fig. 38 Address Decoder .. 46

Fig. 39 Column Multiplexer .. 47

Fig. 40 Sense Amplifier.. 48

Fig. 41 Write Driver .. 49

Fig. 42 Proposed CIM Architecture .. 50

Fig. 43 Write Operation... 51

Fig. 44 Read Operation ... 51

Fig. 45 SNM of 10T SRAM cell ... 52

Fig. 46 Delay Analysis of 10T SRAM Cell .. 53

Fig. 47 BitCell output waveform... 54

Fig. 48 Ouput Waveform Write Operation ... Error! Bookmark not defined.

Fig. 49 Output Waveform Read Operation ... 58

Fig. 50 Detailed operation of column MACs with 4 bit weight and 2× columns (i.e. 5× bitcells per

column MAC). The input activation is 1 bit, and hence it takes 1× cycle to complete a full dot -product

between two pairs of 4 bit weights and 1 bit input activations .. 59

Fig. 51 Waveform Of MAC operation .. 60

 11

LIST OF TABLES

Table 1 Device characteristics of mainstream and emerging memory technologies 21

Table 2 Biasing for different memory mode operations .. 37

Table 3 XNOR Operation Equivalent to DOT- Product .. 39

Table 4 MAC Operation using 10T SRAM cell... 40

Table 5 Truth Table for 2 to 4 NAND decoder .. 46

Table 6 Binary reduction pattern for 4-to-1 tree column mux ... 47

Table 7 Read operation of Proposed Architecture ... 57

Table 8 Write Operation For Proposed Architecture ... 58

Table 9 Weight and Input Number Representation .. 59

Table 10 Mac Operation for proposed Architecture... 60

 12

LIST OF ABBREVATIONS

ADE - Analog Design Environment

CDF - Cadence Design Framework

CMOS - Complementary Metal-oxide-semiconductor

DRC - Design Rule Check

MAC - Multiply and accumulate

CIM - Processing in memory

CIM - Compute in memory

SNM - Static noise margine

LVS - Layout vs Schematic

MC - Monte Carlo

MOS - Metal-oxide-semiconductor field-effect transistor

NMOS - N-type Metal-oxide-semiconductor

PDK - Design Kit

PMOS - P-type Metal-oxide-semiconductor

Polo - Post Layout

Prelay - Pre Layout

PSRR - Power Supply Rejection Ratio

PVT - Process,Voltage,Temparature

SerDes- Serializer/Deserializer

SOC - System On Chip

XL - Layout Accelerator (layoutXL)

DL - Deep Learning

AI - Artificial Intelligence

DNN - Deep Neural Network

ANN - Artificial Neural Network

RNN - Recurrent Neural Network

CNN - Convolutional Neural Network

MAC - Multiply and Accumulate

MLP - Multi-Layer Perceptron

SF : Softmax Function

ReLU - Rectified Linear Unit

RTL - Register Transfer Level

 13

 Chapter 1. Introduction and Related Work

 1.1 Overview

Edge AI refers to the deployment of artificial intelligence (AI) algorithms and models directly on edge

devices, such as smartphones, IoT devices, and other embedded systems, rather than relying on

centralized cloud-based computing. This approach allows data to be processed locally on the device

where it is generated, providing several key benefits.

 1.2 Hardware Accelerator for Edge AI

Hardware accelerators for edge AI are specialized processing units designed to perform AI computations

more efficiently than general-purpose processors, particularly in edge computing environments. These

accelerators, such as GPUs, TPUs, FPGAs, and custom ASICs, are optimized to handle the intensive

computational requirements of AI tasks, such as deep learning and neural network inference, directly on

edge devices like smartphones, IoT devices, and embedded systems. By integrating these accelerators,

edge devices can process data locally, reducing the latency associated with sending data to the cloud for

processing. This local processing capability is crucial for applications requiring real -time decision-

making, such as autonomous vehicles, smart cameras, and industrial automation.

Edge AI hardware accelerators are designed to be energy-efficient, making them suitable for battery-

powered devices where power consumption is a critical concern. They achieve this efficiency through

specialized architectures that perform parallel processing and optimize data movement, significantly

reducing the energy required per computation compared to traditional CPUs. Additionally, these

accelerators often incorporate on-chip memory, further enhancing performance by minimizing the need

for data transfer to and from external memory. The use of hardware accelerators in edge AI not only

enhances performance and energy efficiency but also improves privacy and security by keeping sensitive

data on the device. As AI applications continue to grow, the development and deployment of hardware

accelerators will play a vital role in enabling advanced AI capabilities at the edge.

 1.3 Neural Network

 1.3.1 Introduction

A neural network is a computational model inspired by the way biological neural networks in the human

brain process information. These models are a cornerstone of artificial intelligence (AI) and are designed

to recognize patterns, make decisions, and solve complex problems by learning from data. Neural

networks consist of layers of interconnected nodes, or neurons, each performing simple calculations that

contribute to the overall function of the network.

The basic structure of a neural network includes an input layer, one or more hidden layers, and an output

layer. Each neuron in a layer receives inputs from neurons in the previous layer, processes them using

weighted connections, and passes the result through an activation function to produce an output. These

 14

outputs then serve as inputs to the neurons in the next layer. The process continues until the final output

layer produces the network's result

Fig. 1 Neural Network[21]

 1.3.1 Neuron

A neuron, also known as a node or unit, is the fundamental building block of a neural network, modeled

after the biological neurons found in the human brain. In an artificial neural network, a neuron performs

several key functions. It begins by receiving multiple input signals, which can be raw data fed into the

network or outputs from other neurons in the previous layer. Each input signal is associated with a

weight, a numerical value representing the importance or strength of the input. These weights are

initially set randomly and are adjusted during the training process. The neuron then computes a weighted

sum of its inputs by multiplying each input by its corresponding weight and summing the results, often

adding a bias term to the sum. This weighted sum is then passed through an activation function, which

introduces non-linearity into the model, enabling the network to learn complex patterns and relationships

in the data. Common activation functions include the sigmoid function, tanh function, and ReLU

(Rectified Linear Unit). The result after applying the activation function is the output of the neuron,

which can either be the final output of the neural network or serve as input to neurons in subsequent

layers. Through this process of receiving inputs, weighting them, summing them, applying an activation

function, and producing an output, neurons collectively transform input data into useful information,

allowing the network to make predictions or decisions based on learned patterns.

 15

Fig. 2. Neuron Architecture[21]

 1.3.2 MAC

In the context of neural networks, a multiply-and-accumulate (MAC) operation is a fundamental

computational process. It involves multiplying pairs of input values and corresponding weights and then

summing the results. This operation is crucial for neural network layers, particularly in convolutional

and fully connected layers. During the forward pass of a neural network, each neuron receives multiple

inputs, each of which is multiplied by a corresponding weight. The products of these multiplications are

then accumulated to form a weighted sum. This sum is then passed through an activation function, which

introduces non-linearity into the model, allowing it to learn and represent complex patterns in the data.

The efficiency and speed of MAC operations significantly influence the overall performance of neural

network training and inference, making them a critical aspect of hardware accelerators designed for deep

learning tasks.

Fig. 3 Processing Elements of Neuron[9]

 16

 1.3.3 Activation Function

An activation function in a neural network is a crucial component that determines whether a neuron

should be activated or not, effectively deciding whether the neuron's output should be passed to the next

layer in the network. It introduces non-linearity into the model, allowing neural networks to learn and

model complex data patterns. Without activation functions, a neural network would simply perform

linear transformations, limiting its capacity to capture intricate relationships in the data.

There are several types of activation functions commonly used in neural networks, each with its unique

characteristics and applications:

• Sigmoid Function: This function maps the input values to a range between 0 and 1, making it

useful for binary classification tasks. However, it can suffer from vanishing gradient problems,

where gradients become too small for effective learning in deeper networks.

• Tanh Function: Similar to the sigmoid function, the tanh function maps inputs to a range

between -1 and 1. It is often preferred over the sigmoid function because its output is zero-

centered, which can lead to faster convergence during training.

• ReLU (Rectified Linear Unit): ReLU is one of the most widely used activation functions in

deep learning. It outputs the input directly if it is positive; otherwise, it returns zero. This

simplicity helps in efficient computation and mitigates the vanishing gradient problem, although

it can suffer from the "dying ReLU" problem, where neurons can sometimes become inactive

permanently.

• Leaky ReLU and Parametric ReLU: These are variants of the ReLU function designed to

address the "dying ReLU" issue. They allow a small, non-zero gradient when the input is

negative, ensuring that neurons do not die.

• Softmax Function: Typically used in the output layer of a classification network, the softmax

function converts the raw output scores into probabilities, which sum to one. This is particularly

useful for multi-class classification problems

.

Fig. 4 Activation Functions[5]

 17

 1.4 Motivation and Problem Statement

 2.3.1 Von Neumann Bottleneck

The Von Neumann architecture, proposed by John von Neumann in 1945, consists of a compute unit

that executes user programs and a memory unit that stores both these programs and the necessary data.

This architecture is foundational to most modern computer systems, including CPUs and GPUs. Over

the years, improvements in technology have significantly enhanced compute performance, largely

following Moore's Law, which predicts the doubling of transistors on a chip approximately every 18

months. However, while compute performance has seen rapid advancement, memory development has

primarily focused on increasing capacity rather than performance. This growing disparity between

compute and memory performance, often referred to as the "memory wall," has become a significant

bottleneck in modern systems. The von Neumann bottleneck arises from the inherent separation between

the compute unit and memory, leading to limitations in memory bandwidth and issues with data

movement.

 2.3.2 Latest AI Accelerators With High-Bandwidth Memories

The von Neumann bottleneck has been addressed by implementing a hierarchical memory structure.

Processors now incorporate small but extremely fast on-chip SRAM caches to take advantage of

temporal and spatial locality. Beyond the processor chip lies the main memory, which uses DRAM; it is

faster and has a larger capacity than SRAM. Following the main memory, systems use solid-state drives

(SSDs) for even greater storage capacity. However, as deep neural network (DNN) models grow in size

to the terabyte range, machine learning workloads demand even higher bandwidth between the processor

and main memory. Compounding this issue is the difficulty in further scaling process technology below

the 10nm node, which signals the end of Moore’s Law.

To tackle both the von Neumann bottleneck and the challenges of process scaling, companies are

developing array-type architectures to accelerate data-intensive machine learning tasks. They are also

adopting high-bandwidth memory (HBM), a 3D-stacked DRAM technology, to enhance bandwidth

between computing and memory units. For instance, Google has created the TPU for more cost -effective

and energy-efficient inference and training in data centers. Intel has introduced the NNP-T and Habana

Labs' Gaudi processors for training workloads. Start-ups like Graphcore and Groq are also utilizing this

architecture. Despite the improvements brought by AI accelerators with HBM technology, which can

achieve bandwidths up to several terabytes per second, these solutions stil l adhere to the von Neumann

architecture and face issues such as high power dissipation and limited capacity.

 18

Fig. 5 von Neumann Bottleneck and memory wali problem[8]

 19

 1.5 Compute-In-Memory Architecture

In a Compute-In-Memory (CIM) architecture, instead of transferring data from the memory unit to the

compute unit, data remains in the memory while integrated logic performs computations directly in

place. This represents a significant departure from traditional computer architectu re. Whereas

conventional and near-memory architectures utilize the same memory hierarchy to efficiently manage

external memory bandwidth, CIM combines computing and memory units to eliminate issues related

to external data movement. This shift from a compute-centric to a memory-centric or hybrid

architecture is gaining considerable attention as a solution to the von Neumann bottleneck, particularly

for data-intensive applications such as AI and machine learning. Besides enhancing performance, CIM

architecture also significantly reduces energy consumption by replacing costly external data transfers

with more efficient on-chip data movements.

Fig. 6 Processing in Memory Achitecture[7]

 20

 1.6 Challenges of CIM Architecture

While CIM architecture holds promise, it faces several significant challenges due to the need to integrate

logic units within the memory module. Three primary challenges in CIM design are accessibility to the

manufacturing process, designing within physical constraints, and developing a compatible software

stack for usability.

Among various memory technologies, SRAM is unique in that it can be built using commercially

available logic processes. This is why many CIM prototypes utilize SRAM—it can be fabricated with a

logic process and easily customized in both the memory cell and peripheral circuits. Additionally, the

larger cell size of SRAM minimizes area constraints for integrating logic. However, processes for

DRAM and non-volatile memory (NVM) are less accessible. Memory manufacturers like Samsung, SK

Hynix, and Micron have proprietary processes that are not available to external developers. Without

access to these process design kits (PDKs), researchers struggle to even simulate basic circuits. Although

there have been numerous CIM architecture proposals for DRAM, these designs are typically evaluated

through performance simulations rather than physical designs. The significant differences between

DRAM and logic processes, which focus on maximizing cell capacity and density, make it difficult to

confirm the feasibility of these CIM architectures solely through simulations.

In CIM design, chip designers must carefully select which functions to integrate into the memory, as the

silicon area is limited. Implementing a wide range of functions or overly generic logic is impractical due

to these area constraints. Additionally, integrating logic reduces the available memory capacity. The

logic design must also be physically aligned with the memory cell design to maximize internal

bandwidth, presenting another layer of complexity in the design process.

. The final challenge in CIM design lies within the software stack. For CIM to achieve widespread

adoption as a new technology, it is crucial to address this aspect comprehensively. Unlike traditional

memory devices, CIM is not merely a passive component; it can perform logic operations

simultaneously with memory functions. This necessitates a fundamental shift in the software domain as

well. To fully optimize CIM systems, the entire software stack must be re-evaluated, including

programming languages, compilers, drivers, and runtime environments. Without such changes, CIM

will struggle to surpass the performance and usability of existing von Neumann architectures .

 21

 Chapter 2. Theoretical Framework

 2.1 Basic Memory Operation

Dynamic random-access memory (DRAM) and static random-access memory (SRAM) have been

essential components in modern VLSI systems. Advances in semiconductor technology have led to

increased memory density and enhanced computing power, driving progress in electronic systems.

However, as semiconductor technology continues to scale down, DRAM and SRAM face several design

challenges, including increased leakage currents and reduced sensing margins. Extensive research and

development efforts have been made to address these issues and meet the market's demand for high-

performance, low-power memory solutions.

In the realm of mobile computing devices, there is a significant demand for nonvolatile memory

solutions that can retain key data even without a power supply. FLASH memory has seen substantial

development due to the rapid growth of mobile electronics. However, FLASH is primarily used for

storage rather than computing purposes. It is well-known that FLASH memory has a rewrite endurance

of around 106 cycles, which is considerably lower than that of SRAM and DRAM. Additionally, FLASH

lags behind DRAM and SRAM in terms of write speed and power consumption. Although various

technologies have been developed to enhance the endurance and reduce the write power consumption

of FLASH memory, no breakthrough has been achieved to make FLASH memory comparable to DRAM

and SRAM in these aspects.

Table 1 Device characteristics of mainstream and emerging memory technologies[3]

 22

Recently, various resistive nonvolatile memory devices, such as magnetic RAM (MRAM), ferroelectric

RAM (FeRAM), phase change RAM (PCRAM), and resistive RAM (ReRAM), have been introduced.

Although these memory technologies operate based on different physical mechanisms, they all function

by utilizing two distinct resistance values. Among these, ReRAM has attracted significant interest due

to its simple structure and compatibility with CMOS technology. Additionally, ReRAM is more reliable,

faster, and consumes less power than FLASH memory. While ReRAM's endurance is still lower than

that of DRAM and SRAM, it is suitable for mobile applications that require non-volatility and moderate

computing power.

 2.2 SRAM Basics

Static random-access memory (SRAM) is commonly used as an embedded memory solution in

computing systems due to its high performance, robustness, and cost-effectiveness. SRAM is faster than

DRAM because the cross-coupled inverters in SRAM cells produce quicker and larger voltage swings

on the bitlines. Additionally, SRAM can simultaneously receive row and column addresses, unlike

DRAM, which processes these addresses separately using the same address pins. As a result, SRAM

exhibits lower latency compared to DRAM. The cross-coupled inverters in SRAM cells also

automatically maintain stored data when the wordlines are turned off, eliminating the need for refresh

and write-back operations.

Another significant advantage of SRAM is its full compatibility with CMOS process technology, which

facilitates easy integration with computing blocks. However, as CMOS technology continues to scale,

SRAM faces several challenges, including reduced stability margins, increased leakage currents, and

difficulties in supply voltage scaling. Various design techniques have been developed to address these

issues and maintain SRAM's performance and reliability.

 2.2.1 Working of SRAM

The conventional 6T SRAM cell consists of six transistors: two cross-coupled inverters and two access

transistors. During a write operation, data is first loaded onto the bitline pair, and then the wordline is

activated. The data on the bitline pair is transferred to the SRAM cell nodes through the access

transistors. For instance, if the bitline holds a "0" and the complementary bitline holds a "1," the node Q

will be pulled low through the access transistor, and the complementary node QB will be pulled high.

Consequently, the SRAM cell stores Q = "0." The write operation is primarily constrained by the

difficulty of writing a "0" because NMOS access transistors can pass low voltage more effectively than

high voltage. Therefore, the access transistors need to be stronger than the PMOS transistors to ensure

that Q is lowered below the trip point of the inverters in the SRAM cell.

During a read operation, the wordline is activated after precharging the bitline pairs. One of the

differential bitlines will decrease depending on the data stored in the SRAM cell. For example, if Q is

"0," the bitline will decrease while the complementary bitline remains at the supply voltage (VDD). A

sense amplifier then amplifies the differential voltage between the bitlines to generate the output signal.

 23

Fig. 7 SRAM cell Operation write[15]

Fig. 8 SRAM cell Operation read[15]

Below figure illustrate a typical SRAM architecture, which includes an array of cells, row decoding,

column multiplexing, sense amplifiers, write drivers, and a controller. During a read operation, the

accessed cell generates a differential voltage across a bitline pair. This differential voltage is routed to a

sense amplifier through a column multiplexer. Unlike DRAM, SRAM uses sense amplifiers that are

shared among multiple columns, so only one column is connected to a sense amplifier at a time for signal

amplification. There is no need for a write-back operation in the unselected columns since SRAM cells

can regenerate stored data via the cross-coupled inverters.

During a write operation, write drivers send data to the selected bitlines through the column multiplexer.

However, the access transistors in the unselected columns remain active, which can lead to unintended

write operations. To prevent this, the bitlines of the unselected columns are precharged to the supply

voltage (VDD), ensuring that SRAM cells in the selected row but unselected columns undergo a read

operation instead. This approach helps maintain the integrity of the data stored in the unselected

columns.

 24

Fig. 9 SRAM Array[22]

 25

 2.3 CIM Fundamentals

Processing-in-memory (CIM) has recently emerged as a promising alternative computer architecture for

energy-efficient processing, particularly for massively parallel arithmetic operations required in artificial

intelligence and machine learning applications. This architecture is especially well-suited for battery-

operated edge computing devices. One of the critical operations in CIM is the multiply-and-accumulate

(MAC), which is essential for processing artificial neural networks like convolutional neural networks

(CNNs). CNNs often require billions of MAC operations to process a single image classification,

highlighting the importance of efficient MAC operation units in hardware accelerators based on CIM

architecture.

Several emerging memory devices, such as resistive random-access memory (ReRAM), magneto

resistive RAM (MRAM), and phase-change RAM (PCRAM), are considered for CIM implementation.

These devices are compact and can provide high storage capacity along with massively parallel MAC

operations. However, despite their potential, these emerging memories are not yet mature and are

relatively costly. As a result, traditional static RAM (SRAM) is still the most commonly used memory

technology in CIM implementations. Despite having a larger bitcell size compared to emerging

memories, SRAM offers advantages such as scalability, compatibility with logic design, cost -

effectiveness, and reliability, making it a preferred choice for CIM implementations.

 2.3.1 Implementation Of CIM Macro

The CIM macro can be implemented by utilizing a classical two-dimensional array composed of

different types of memory cells (such as SRAM, DRAM, or ReRAM), as depicted below figure For

instance, the operation of a standard SRAM in the context of MAC (multiply and accumulate) is

described here in detail. In this setup, a standard six-transistor (6T) SRAM cell serves as a binary CIM

unit for executing MAC operations. Each macro row receives a binary input (either 0 or +1), which

serves as the multiplicand for all SRAM cells in the same row. The binary weight (either -1 or +1) is

stored in an SRAM cell and is multiplied by the input applied to its wordline (WL). Accumulation is

carried out column by column, with the accumulated result being a voltage difference between a bitline

(BL) and its complement (BLb).

In this configuration, a '0' input results in a WL high voltage, creating a discharging path from BL (or

BLb) to the ground via an SRAM internal node Q (or Qb). Prior to the MAC operation, all bitlines (BLs

and BLbs) are precharged to a high voltage. Ideally, inputs are applied and outputs are generated in

parallel, enabling massively parallel binary SRAM CIM operations that maximize throughput and

minimize latency. However, the actual performance of the designed CIM macro is heavily influenced

by the essential data conversions for input (digital-to-analog) and output (analog-to-digital). These

conversions ultimately determine the overall performance of the implemented CIM macro.

 26

Fig. 10 CIM macro using common memory cells[6]

 2.3.2 CIM Macro Mapping For DNN

The CIM macro depicted in Figure 13 can be utilized to map and process the fundamental arithmetic

operations of a fully connected layer within deep neural networks (DNNs). Figure 11 illustrates a pair

of binary inputs and weights mapped to an SRAM cell and an input pair, respectively. Binary

multiplication is executed within the SRAM cell, resulting in a unit analog accumulation represented as

a voltage difference across the vertical bitlines (BL and BLb).

A collection of input and weight pairs constitutes a dot-product, as depicted in the left side of Figure 12.

This dot-product is then mapped to a column of the CIM macro, as shown on the right side of Figure 12.

The unit voltage differences originating from SRAM cells accumulate within the column, which shares

a pair of BL and BLb. Finally, a vector-matrix multiplication (i.e., the fully connected layer itself) is

mapped to the entire CIM macro. In this configuration, all multiplications and accumulations are

executed in parallel, enabling extensive parallelism, as illustrated in Figure 13.

 27

Fig. 11 Processing a fully connected layer using SRAM based macro multiplication[11]

Fig. 12 Processing a fully connected layer using SRAM based macro dot-product[11]

Fig. 13 Processing a fully connected layer using SRAM based macro vector matrix multiplication[11]

 28

 2.3.3 CIM Macro Mapping For CNN

The CIM macro can be utilized to assign a convolutional layer by unrolling and mapping high-

dimensional filter weights and input feature maps into the macro. Figure 14 illustrates the mapping of

an input and weight pair from a convolutional layer configuration into the macro. The two-dimensional

(2D) filter weights are unrolled and mapped into a column of four bitcells, as shown in Figure 15. For

three-dimensional (3D) filter weights and input feature maps, which consist of multiple channels of 2D

filters and input feature maps, the entire column of the CIM macro is utilized for mapping, as depicted

in Figure 16. If the number of filter and input feature map element pairs exceeds the number of bitcells

in a single macro column, the 3D filter and input feature map can be mapped to multiple macro columns.

Expanding on the convolutional layer processing, Figure 17 introduces another dimension (output

channels or the channels of 3D filters) that can be processed in parallel using multiple columns in the

CIM macro. Each column output corresponds to a pixel of each 2D output feature map. To generate the

complete 3D output feature map, the same CIM macro is reused while sliding the window of the input

feature map to process and complete the 3D output feature map, as illustrated in Figure 18

Fig. 14 Processing a fully convolutional layer using SRAM based CIM macro multiplication[11]

Fig. 15 Processing a fully convolutional layer using SRAM based CIM macro a dot product for 2D

filter[11]

 29

Fig. 16 Processing a fully convolutional layer using SRAM based CIM macro a dot product for 3D

filter[11]

Fig. 17 Processing a fully convolutional layer using SRAM based CIM macro a vector matrix for 4D

filter[11]

Fig. 18 Processing a fully convolutional layer using SRAM based CIM macro after 16 cycles of

vector matrix operation[11]

 30

 2.4 CIM Design Challenges

While analog CIM macros offer exceptional efficiency, they also face significant design challenges. The

most notable issues include computation nonlinearity caused by process, temperature, and voltage (PVT)

variations, as well as the overhead associated with DAC/ADC conversions.

Figure 19 illustrates the input offset error in analog circuits within the CIM macro, such as bitcells, sense

amplifiers (SA), and ADCs, which is induced by process variations. The left side of Figure 19 shows

the error distribution of the output ADC code for identical MAC operations. Despite the regular structure

of memory bitcells in the CIM array, differences in MAC results arise due to process variations during

the fabrication of these cells. The right side of Figure 19 depicts the variation in both a single bitcell and

an entire column. The top right section shows the distribution of discharge current when a bitcell

processes a multiplication operation using current discharge, while the bottom right section displays the

bitline (BL) voltage allocation after completing the dot-product operation in a column-based neuron.

Process variation leads to fluctuations in the bitline voltage representing the dot -product result,

increasing the likelihood of producing incorrect output ADC codes. In the context of neural networks,

this incorrect output code becomes the new input activation for the next layer and is used to calculate

subsequent dot-products. Consequently, errors in one layer's output can propagate through multiple

computations, ultimately leading to classification errors and reducing the accuracy of the application.

Computation nonlinearity occurs when multiple rows are activated in parallel to enhance computational

efficiency, as depicted in Figure 20. When more "1"s are added in the column, the bitline voltage

representing dot-product results decreases, leading to a dynamic range limit. If the bitline voltage drops

too low, the accumulation linearity is substantially degraded, as indicated by the red dotted line on the

right side of Figure 20.

The overhead associated with digital-to-analog and analog-to-digital converters (DAC/ADC) for data

transmission is a major concern for CIM macros. As illustrated in Figure 21, DAC/ADC circuits

consume a substantial amount of area and energy, and they also increase the latency of the neural

network accelerator. Furthermore, typical ADCs have fixed bit precision, which limits the system's

reconfigurability.

 31

Fig. 19 Challenges of analog CIM macro process variation[3]

Fig. 20 Challenges of analog CIM macro non linearity[3]

Fig. 21 Challenges of analog CIM macro ADC overhead[3]

 32

Digital CIM macros face their own set of critical issues, namely low area efficiency and high power

consumption. Figure 2.20a illustrates a modern neural network accelerator that includes a complete array

of digital processing elements (PEs) designed to handle massive MAC operations synchronously. By

utilizing a hierarchical memory system and data reuse strategies, this design enhances computational

efficiency and reduces energy consumption, as memory access energy typically exceeds the energy used

in MAC operations.

Figure 22 shows a CIM column equipped with a parallel adder tree that performs massively parallel

accumulation operations without needing additional registers to store input activations and partial sums.

This setup improves energy efficiency through bit-serial multiplication, albeit at the cost of increased

operation latency. The digital approach avoids the compute nonlinearity and poor scaling associated

with analog circuits. However, fully digital PEs require more arithmetic circuits, leading to larger area

occupancy and higher static and dynamic energy consumption compared to the bitcells in analog CIM.

Fig. 22 Simplified block diagram of a typical digital DNN accelerator[5]

 33

Fig. 23 A column based dot-product circuit using digital CIM[5]

 34

 Chapter 3. Proposed Architecture

 3.1 Introduction

Previous digital hardware accelerators tend to use a significant portion of their total energy accessing

OFF-chip memory, despite efforts to minimize data movement. Nonetheless, digital accelerators offer

several advantages over their analog counterparts. One key benefit is their robustness; digital designs

are less sensitive to process variations and various noise sources due to their core computation

mechanism, which includes an abstraction layer over the analog signal values. Another significant

advantage is that digital accelerators eliminate the need for data conversions, leading to reductions in

both energy and area consumption. This not only improves energy and area efficiency but also simplifies

computation and alleviates performance bottlenecks caused by time-multiplexed operations. In this

section, we will explore how we leverage the aforementioned benefits of digital accelerators to minimize

memory access.

 3.2 Weight-Stationary Systolic Architecture

A systolic array of processing elements (PEs) is an efficient data processing architecture known for

achieving high throughput due to its parallel computations and natural input-output data flow. In this

setup, both inputs and partial sums move through a 2-D array while pipelined parallel multiply-

accumulate (MAC) operations are carried out by the distributed digital PEs. Similarly, a 2-D PE array

is used in the analog compute-in-memory (CIM) macro. However, unlike the digital version, all

operations in the analog CIM macro occur in parallel without pipelining because of its smaller size and

faster computation speed. The analog macro performs parallel MAC operations and also stores weights

within its memory array (i.e., it is weight-stationary).

The proposed digital CIM macro utilizes a weight-stationary systolic architecture, as depicted in Fig.

24. This design merges the high throughput of the systolic array with the low latency and high energy

efficiency of the CIM macro. Additionally, the CIM macro can handle input and weight precisions

ranging from 1 to 16 bits. The proposed architecture is a digital bitcell array that adopts the bit-parallel

systolic PE array's operation directionality. It functions as a precision reconfigurable bit -serial digital

CIM macro, offering significant area savings compared to the traditional systolic PE array.

 35

Fig. 24 Weight-Stationary Systolic Architecture of the proposed digital CIM macro with 1-16 bit

reconfigurable MAC precision[22]

 3.3 Bit-Serial Computing and Reconfigurability

Figure 25 illustrates a conventional bit-parallel ALU, which includes two 4-bit multipliers and an 8-bit

adder. In this setup, pairs of 4-bit inputs are multiplied, and the resulting 8-bit outputs are subsequently

added. It's important to note that the power and area requirements of bit-parallel digital multipliers

increase quadratically with input precision. To address this issue and reduce the MAC area, Stripes [19]

introduces bit-serial computing, which significantly saves area by serializing one of the multibit inputs

and replacing the large multiplier circuit with more compact bitwise ALUs, as shown in Figure 6(b).

The area savings of the bit-serial ALU circuit increase with precision since the complexity of bit-serial

computation grows linearly with bit precision. However, bit-serial computing requires an additional

circuit to accumulate partial sums from each operation cycle. Inputs are serialized from the least

significant bit (LSB) to the most significant bit (MSB), with each bit generating a partial sum. Another

limitation of conventional bit-parallel ALUs is their lack of reconfigurability. 25 shows BitFusion [20],

which consists of reconfigurable ALU units that can handle fine-grained bit precision. These low-

precision ALU units can be grouped to function as a higher-precision ALU.

In addition to minimizing OFF-chip memory access and preserving the benefits of digital architecture,

the proposed digital CIM macro also reduces area consumption by adopting the bit -serial ALU

computing paradigm. Furthermore, it incorporates a BitFusion-like regular two-dimensional digital

bitcell structure, which can be reconfigured from 1 to 16 bits to meet various performance and energy

requirements.

 36

Fig. 25 Digital ALU architecture. (a) Conventional bit-parallel, (b) bit-serial, and (c)

reconfigurable bit-precision[18]

 3.4 Proposed 10T SRAM cell

 3.4.1 Circuit Description

The proposed 10T current-based SRAM bitcell features a design that includes a sub-circuit of transistors

M1-M2-M3-M4, resembling a conventional 6T SRAM design. This configuration forms a bi-stable

transistor structure composed of two CMOS inverters connected in a back-to-back fashion, creating a

feedback loop that maintains a particular logical state (0 or 1) as Q (true value) or QB (complementary

value). For write access, the cell uses two access transistors, M5 and M6, driven by the writing wordline

signal (WWL) and connected to the write bitlines (BL and BLB) on either side.

Additionally, transistors M7-M8-M9-M10 form the read circuitry for the design. Their gate terminals

are connected to the cell’s storage nodes, Q and QB, and controlled by two read wordline signals (BL

and BL_BAR), which are connected to the read bitlines (RBL and RBLB). This configuration enables

independent read and write operations due to the separate write and read access ports, enhancing the

read stability compared to conventional 6T cell

Fig. 26 Proposed 10T SRAM cell

 37

 3.4.2 Working Principle

Table 2 enlists the control signals for the proposed 10T cell during different operating conditions. As

can be seen, the write operation is similar to the conventional 6T cell. Here, based upon the type of input

applied to BL and BLB, data is written inside the cell, using write access transistors, driven by WWL.

Hold operation is equivalent to not selecting the cell. It works on the logic to detect no voltage difference

on any output bitline. Therefore, to make the cell hold a particular logic state, both of its read bitlines,

RBL and RBLB are precharged to logic high and the read wordlines are also made to stay at a logic high

state, resulting in no voltage change on read bitlines. Also, signal WL is deactivated in order to

disconnect write bitlines from storage node, inferring a hold operation.

To understand the read operation, we first need to examine the role of the read wordline signals, BL and

BL_BAR, in reading the desired output on the read bitlines, RBL and RBLB. The biasing conditions

detailed in Table 1 clarify the operational concept for reading data from the proposed cell, presenting

two scenarios: one for reading Q on bitline RBL and another for reading QB on bitline RBLB.

Initially, both read bitlines are precharged to a logic high level. The output to be read on RBL and RBLB

is then determined by the inputs applied to RWL0 and RWL1. Figure 27 illustrates four cases that help

to understand the read-data operation, each corresponding to different input biasing conditions on the

wordlines, BL and BLB.

Table 2 Biasing for different memory mode operations[23]

Fig. 27 Read Operation for proposed 10T SRAM cell

 38

 3.4.3 Read Stability

The implementation of 6T SRAM cells offers the advantage of low static power dissipation. However,

a significant issue with 6T SRAM cells is potential instability during read operations, where a stored 0

can be inadvertently overwritten by a 1. This occurs due to a positive feedback mechanism, where the

voltage at node Q exceeds the threshold voltage of PMOS M1, causing node QB to drop to 0 and

subsequently pulling node Q up to 1. To address this issue, the proposed design uses separate read/write

wordlines to isolate the data retention element from the data output element, preventing data storage

disruption during read operations.

Maintaining data retention in SRAM cells during standby mode and read access is a critical functional

constraint, especially in advanced technology nodes. With technological scaling, the stability of the cell

decreases as the supply voltage is reduced, leading to increased leakage currents and variability. The

stability is typically defined by the Static Noise Margin (SNM), which is the maximum value of DC

noise voltage that the SRAM cell can tolerate without altering the stored bit. Figure 4 illustrates the

SNM comparison between the proposed 10T cell and a conventional 6T SRAM cell. The read SNM of

the proposed 10T cell is 395mV at VDD = 1V, whereas the conventional 6T SRAM cell exhibits a read

SNM of 155mV at VDD = 1V. The RSNM of the decoupled 10T cell is 2.54 times that of the

conventional 6T cell

Fig. 28 SNM of 10T SRAM cell
 3.4.4 XNOR Operation

When binary values are used for computation purposes, the dot product oper- ation between weights and

activation functions can be reduced to bit-wise operations; binary values being -1 or +1. These are

encoded with logic '1' for +1, and logic '0' for -1. Table 9 illustrates how multiplication on binary values

can be interpreted as performing an XNOR operation on binary encoded logic values.

 39

Fig. 29 Basic neuron architecture showinf MAC operation[23]

Table 3 XNOR Operation Equivalent to DOT- Product[23]

 3.4.5 MAC(Multiply-and-accumulate) using 10T SRAM

In today's world, neural networks are important tools for achieving cutting edge results in a wide range

of autonomous applications. DNNs have traditionally been used for this purpose, as they use 32-bit

floating-point integers. Convolution in neural networks is based on the multiply-accumulate principle,

which entails computing the dot product of two matrices, one holding weight and another storing input,

which is a relatively common operation. The major issue arises when it comes to managing 32-bit

numbers, which involve computations to be performed, requiring high storage and thus, are expensive.

Because of this it becomes difficult for today's edge applications to handle sucha scenario. BNNs were

proposed to tackle this problem by limiting weights and input activations (IAs) to +1 and 1. This reduced

storage and computation need to a major extent. As a result, the simple XNOR-pop count operation

replaces the dot-product operation in BNNs.

Fig. 30 10T SRAM cell

 40

Table 4 MAC Operation using 10T SRAM cell

BL(Input) Q(Weight) XNOR(RBL)

0(-1) 0(-1) 1

0(-1) 1 0(-1)

1 0(-1) 0(-1)

1 1 1

 3.5 Bitcell For Proposed Architecture

Fig. 31 shows a block diagram of the proposed digital bitcell. A bitcell is composed of three major

building blocks: a full custom designed proposed 10T SRAM cell for a bitwise multiplication, and a

full-adder for accumulating partial sum. Two 2:1 multiplexers (MUXs)are added for the selection of

internal signals in different configurations. MUXs are used to configure the operating mode of the bitcell

in column MACs and to determine the LSB bitcell which is located at the top of each column MAC.

Fig. 8 describes an operation example of two columns with five bitcells per each to form a cascaded two

4 bit bit-serial MAC units. Each bitcell is configured to one of the two different functional models (i.e.,

Type-A and Type-B) based on its location within the column bitcell array. Type-A bitcell enables all

three building blocks in a bitcell, while Type-B only enables full-adder for accumulate-only operation.

The bit-precision of weights is configured by the number of Type-A bitcells in a column (e.g., 4 bit in

Fig. 8), while type-B bitcells are added to extend the output precision which also depends on the number

of columns. For example, the number of Type-B bitcells are 7 for each column MAC in the 128-column

array and the output precision at 1 bit, 4 bit and 16 bit weights are 8 bit, 11 bit, and 23 bit, respectively.

Each cycle of bit-serial MAC operation, a serialized input on the shared bitline is multiplied to a 4 bit

weight stored in SRAM cells in a 4 bit column MAC. Bitwise multiplication results are then accumulated

at the following ripple carry adder that is formed by vertically connected full-adders from each bitcells.

The bit-serial MAC computations are performed through all the column MACs in the same row. Once

a partial sum output value on the far right of the column is settled, then it is further post-processed for

merging partial sum results from each cycle of bit-serial operation.

Fig. 31 BitCell Using 10T SRAM cell

 41

 3.5.1 Basic Operation Using Bitcell

Fig. 32 describes an operation example of two columns with five bitcells per each to form a cascaded

two 4 bit bit-serial MAC units. Each bitcell is configured to one of the two different functional models

(i.e., Type-A and Type-B) based on its location within the column bitcell array. Type-A bitcell enables

all three building blocks in a bitcell, while Type-B only enables full-adder for accumulate-only

operation. The bit-precision of weights is configured by the number of Type-A bitcells in a column (e.g.,

4 bit in Fig. 32), while type-B bitcells are added to extend the output precision which also depends on

the number of columns. For example, the number of Type-B bitcells are 7 for each column MAC in the

128-column array and the output precision at 1 bit, 4 bit and 16 bit weights are 8 bit, 11 bit, and 23 bit,

respectively. Each cycle of bit-serial MAC operation, a serialized input on the shared bitline is multiplied

to a 4 bit weight stored in SRAM cells in a 4 bit column MAC. Bitwise multiplication result s are then

accumulated at the following ripple carry adder that is formed by vertically connected full -adders from

each bitcells. The bit-serial MAC computations are performed through all the column MACs in the same

row. Once a partial sum output value on the far right of the column is settled, then it is further post-

processed for merging partial sum results from each cycle of bit-serial operation.

Fig. 32 Building a column MAC array using bitcells. In the example on the left, 10 bitcells are used

for building a dot-product with 4 bit weight/input. The example shown on the right describes bit-serial

multiplication of 4 bit two’s complement weight and 4 bit binary weighted signed number input[22]

 42

 3.5.2 Reconfigurability

Fig. 33 shows a complete CIM macro comprising of 128 ×128 digital bitcells and a post-accumulator.

The bitcell array can be readily reconfigured to operate as parallel dot products. Each row of the

reconfigured column MACs per forms a dot-product computation with variable bit-precisions. We

assign the number of Type-A bitcells to represent the weight precision while the number of Type-B

bitcells is determined based on the dynamic range of partial-sum, which depends on the number of

columns. For instance, we can assign 1 Type-A and 7 Type-B bitcells as a single column MAC when

reconfiguring the CIM macro into sixteen 1 bit dot-products, as shown in Fig. 34, left. The macro can

be reconfigured to eight 9 bit dot-products by changing the number of Type-A bitcells per column MAC

from 1 to 9, as shown in Fig. 34, right. Note that the number of bit-serial operation cycles programs the

input precision, and hence 9 bit dot-products require 9× more operation cycles than that of 1 bit dot-

products

A 16 bit partial-sum (i.e., Pi [15:0]) is generated from each cycle (i = 0 to 8) of the dot-product operation

between 128×9 bit weights and inputs. Each cycle, the binary-weighted inputs are serialized and used

for computing dot-product partial-sums. Hence, the partial-sums are left shifted and accumulated at the

following post accumulator, as shown in Fig.35.

Fig. 33 CIM micro with 128X128 bitcells for N x product [22]

 43

Fig. 34 Reconfigured CIM macros with 128 × 128 bitcells. Each column MAC requires M Type-A

cells and 7 Type-B cells[22]

Fig. 35 Postaccumulator combines individual partial-sums from each operation cycle to complete a

dot-product with multibit precision[22]

 44

 3.6 Top Level Of Proposed Architecture

CIM architectures generally comprise an array of memory cells surrounded by essential peripheral

circuits and control logic. Figure 2 illustrates the memory array as the central focus, with other main

blocks including the address decoder, word line drivers, column multiplexer, precharge circuitry, write

drivers, sense amplifier, and control logic. The subsequent sections detail the operation of each

individual block within the SRAM, followed by a high-level explanation of how these diverse blocks

interact to facilitate the functioning of a memory device.

Fig. 36 Proposed CIM architecture

 45

 3.6.1 Precharge Circuitry

The precharge circuit is an integral component used in both read and write operations within the SRAM

architecture. It plays a crucial role during the initial phase of the clock cycle. Illustrated in Figure 37,

this circuit is relatively straightforward, comprising three PMOS transistors.

Upon receiving the input signal from the cell, known as PCLK, all three transistors are activated. Two

of these transistors, M1 and M2, are responsible for charging the bit lines, BL and BL_bar, respectively,

to the supply voltage (Vdd). The third transistor, M3, aids in equalizing the voltages observed on the bit

lines.

The primary purpose of equalizing the bit line voltages during the pre-charge phase is to prepare them

for subsequent operations. By ensuring that both bit lines have equal voltages, any voltage discrepancies

that occur during subsequent phases become more pronounced. This facilitates quicker detection of

voltage differences by the sense amplifier, which is essential for accurate data retrieval

Fig. 37 Precharge Circuitry[8]

 3.6.2 Address Decoder And Word Line Drivers

The address decoder in CIM architectures plays a crucial role in selecting the appropriate word line

based on the row address bits received from the address bus. With an n-bit input, the address decoder

can control 2^n word lines. Figure 38 demonstrates a 2-to-4 dynamic NAND decoder, functioning as

follows: During the initial clock phase, while the clock signal is low, PMOS transistors enabled by the

PCLK signal precharge all internal word lines to Vdd. In the subsequent clock phase, the PMOS

 46

transistors are disabled. Depending on the input address, a specific internal word line is pulled down to

ground. Output inverters ensure that only one word line is asserted during the second clock phase,

optimizing data access within the CIM architecture.

Fig. 38 Address Decoder[8]

Table 5 Truth Table for 2 to 4 NAND decoder[8]

The truth table for the 2-to-4 decoder is depicted by Table 5. From the table it can be seen that the inputs

are connected to the address bits in a binary reduction pattern. This pattern can be exploited to easily

scale the dynamic decoder up to handle an array with more rows. Word line drivers are inserted, as

bffers, in-between the word line output of the address decoder and the input of the Bit- cell. The word

line drivers ensure that as the size of the memory array increases, and the word line capacitance

increases, the signal is still able to turn on the access transistors in all Bit- cells

 47

 3.6.3 Column Multiplexer

The column multiplexer takes in n-bits from the address bus and can select 2n bit line pairs associated

with one word in the memory array. The schematic for a 4-to-1 tree multiplexer is shown in Figure 6.

This type of tree multiplexer is bi-directional and is used for both the read and write operations; it

connects the bit lines of the memory array to both the sense amplifer and the write driver.

Fig. 39 Column Multiplexer[10]

As seen in Figure 39, the column mux is built of NMOS transistors in a tree-like structure. The depth of

the decoder is determined based on the number of words per row in the memory array. The most basic

column mux has a depth one which means that there are two words per row. If there is only one word

per row in the array, then no column mux is needed.As The number of words per row in the memory

array increases, the depth of the column mux grows. The depth of the column mux is equal to the number

of bits in the column address bus.

Table 6 Binary reduction pattern for 4-to-1 tree column mux[10]

 48

Figure 39 illustrates a column mux with a depth of two. This means that there are four words per row in

the memory array and two select bits from the address bus are needed to choose the bit line pairs for one

of the four words. A binary reduction pattern, shown in Table 6, is used to select the appropriate bit

lines. In level one, A0, and its complement A0_bar, select either the even numbered words or the odd

numbered words in the row. In level two, the most significant bit A1, and its complement A1_bar, then

select one of the words passed down from the previous level. Relative to other column mux designs,

such as pass transistor based decoders with NOR pre-decoders, the tree mux uses significantly less

devices. However, this type of design can provide poor performance if a large decoder with many levels

is needed. The delay of of a tree mux quadratically increases with each level. Due to this fact, other types

of column decoders should be considered for larger memory arrays

 3.6.4 Sense Amplifier

The sense amplifier is used to sense the difference between the bit lines (BL and BL_bar) while a read

operation is performed. A sense amplifier is necessary to recover the signals from the bit lines because

they do not experience full voltage swing. As the size of the memory array grows, the capacitive load of

the bit lines increase and the voltage swing is limited by the small memory cells dr iving this large load.

A differential sense amplifier is used to sense the small voltage difference between the bit lines and

accelerates the read operation.

The schematic for the sense amp is shown in Figure 40. The sense amplifier is enabled by the SCLK

signal, which initiates the read operation. Before the sense amplifier is enabled, the bit lines are

precharged to Vdd by the precharge unit. When the sense amp is enabled, one of the bit lines experiences

a voltage drop based on the value stored in the memory cell.

Fig. 40 Sense Amplifier[8]

 49

If a zero is stored, the BL voltage drops. If a one is stored, the BL_bar voltage drops. The voltage

difference between BL and BL_bar is sensed and the output signal is then taken to a true logic level and

latched to the data bus

 3.6.5 Write Driver And MAC Driver

The write driver is responsible for driving the input signal into the memory cell during a write operation.

As depicted in Figure 41, the write driver comprises two tristate buffers: one inverting and the other

non-inverting. It receives a data bit from the data bus and outputs this value to the bit line, while

simultaneously outputting its complement to the bit line bar. Both tristate buffers are controlled by the

EN signal. Ensuring that the bit lines always carry complementary values is crucial for correctly storing

data in the Bitcell. Additionally, the drivers must be properly sized to accommodate the increasing bit

line capacitance as the memory array expands.

Fig. 41 Write Driver[8]

 50

 Chapter 4. Simulation Result & Analysis

4.1 Introduction

To design and analyze a proposed Processing-In-Memory (CIM) architecture using Cadence Virtuoso

with TSMC 65nm technology, begin by setting up the Cadence Virtuoso environment. Ensure that

Cadence Virtuoso is installed correctly and import the TSMC 65nm Process Design Kit (PDK) into

Virtuoso. Create a new library for your CIM design and attach it to the TSMC 65nm technology file. In

the schematic editor, design the CIM architecture by placing necessary components such as transistors,

resistors, and capacitors, and ensure proper connectivity, including power (VDD) and ground (GND)

connections. If needed, create a symbol for your design for hierarchical design purposes.

Next, set up the simulation by creating a test bench to simulate the CIM architecture. Define input

sources for data and control signals, and set appropriate load conditions to mimic the actual operating

environment. Use the Analog Design Environment (ADE) in Virtuoso to configure the simulation,

selecting the appropriate simulator (e.g., Spectre), specifying the correct TSMC 65nm model files, and

setting up the type of analysis (DC, AC, transient, parametric) along with simulation parameters such as

run time, accuracy, and temperature.

Fig. 42 Proposed CIM Architecture

 51

4.2 Simulation Results Of Proposed 10T SRAM Cell

To perform read and write operations in a 10T SRAM cell, precise input stimuli must be applied. For a

write operation, create a pulse signal for the word line (WL) to enable writing; the WL should go high,

allowing data to be written into the cell. Apply the data bit to the bit line (BL) and its complement to the

bit line bar (BLB), ensuring that the WL pulse is synchronized with the data inputs and remains high

long enough to complete the write cycle. For a read operation, first precharge the bit lines (BL and BLB)

to a specific voltage level, typically VDD/2, before initiating the read. Then, generate a pulse signal for

the WL to go high, enabling the stored data to transfer to the bit lines. The duration of the WL pulse

should be adequate for the cell to transfer the data. Monitor the bit line voltages: the bit line with a lower

voltage indicates a stored '0', while the higher voltage indicates a stored '1'. This controlled application

and monitoring ensure accurate write and read operations in the 10T SRAM cell.

Fig. 43 Write Operation

Fig. 44 Read Operation

 52

4.2.1 Static Noise Margin(SNM):

Static Noise Margin (SNM) is a critical parameter in the operation of SRAM (Static Random-Access

Memory) cells, reflecting their robustness against noise and disturbances. SNM is defined as the

maximum noise voltage that a memory cell can tolerate before it becomes unstable and erroneously flips

its stored state. It is typically measured using the "butterfly curve" method, which involves plotting the

voltage transfer characteristics (VTC) of the cell's cross-coupled inverters. The largest square that fits

within the lobes of this curve represents the SNM, with the side length of the square being the SNM

value. SNM is evaluated in different operational modes: read SNM, write SNM, and hold SNM. During

read operations, the read SNM is usually lower because the access transistors are activated, connecting

the cell to the bit lines and potentially disturbing the stored data. Write SNM is concerned with the ability

to overwrite existing data, ensuring reliable writes even in noisy conditions. Hold SNM, measured when

the cell is idle, ensures data retention stability. Factors affecting SNM include transistor mismatches due

to manufacturing variations, supply voltage levels, temperature, and cell design, particularly the sizing

of the transistors. High SNM values indicate more reliable memory cells, contributing to better

manufacturing yield and overall performance. Balancing SNM with other performance metrics like

access speed and power consumption is crucial for optimal memory design.

Fig. 45 SNM of 10T SRAM cell

4.2.2 Delay

Read and write delays are critical performance metrics for memory cells, including SRAM, as they

determine the speed at which data can be accessed and stored. The read delay is the time it takes for a

memory cell to transfer the stored data to the output after the read command is issued. This involves the

activation of the word line (WL) and the subsequent propagation of the signal through the bit lines (BL

and BLB) until the data is sensed by the read circuitry. Write delay, on the other hand, is the time required

to write new data into the memory cell after the write command is activated. This process involves

driving the bit lines with the data and its complement, enabling the word line, and ensuring that the data

is successfully latched into the cell. To calculate these delays in Cadence Virtuoso, set up a transient

analysis in the Analog Design Environment (ADE). For read delay, precharge the bit lines to a specific

 53

voltage level, pulse the word line, and measure the time taken for the bit line voltage to reach a defined

threshold that indicates a successful read. For write delay, apply the data signals to the bit lines, pulse

the word line, and measure the time required for the cell to store the new data. By analyzing the

waveforms generated during these simulations, you can accurately determine the read and write delays,

which are crucial for optimizing memory performance.

Fig. 46 Delay Analysis of 10T SRAM Cell

 54

4.3 Simulation Result Of Bitcell For Proposed Architecture

To simulate the bitcell for a column Multiply-Accumulate (MAC) operation using Cadence Virtuoso,

several steps need to be followed. First, the schematic for the bitcell must be designed, incorporating the

custom-designed 10T SRAM cell for bitwise multiplication and a full-adder for accumulating partial

sums. Additionally, two 2:1 multiplexers (MUXs) are included to select internal signals in different

configurations, crucial for configuring the bitcell's operating mode within column MACs and

determining the Least Significant Bit (LSB) bitcell placement at the top of each column MAC. Once the

schematic is complete, a test bench schematic is created to instantiate the bitcell for simulation. Input

stimuli are defined to test the MAC operation, including input data patterns for bitwise multiplication

and full-adder operation. The MUXs are configured to select appropriate signals for the desired

operation mode. In the Analog Design Environment (ADE), simulation parameters are set, including the

simulator selection (e.g., Spectre) and simulation type (e.g., transient). The simulation is then executed,

and waveforms and signals are monitored to verify the correct functionality of the bitcell during MAC

operation. Any observed issues are debugged, and circuit parameters are optimized if necessary. Finally,

the simulation setup, results, and observations are documented in a comprehensive report, ensuring that

the bitcell meets the requirements for efficient MAC operation in the intended application.

Fig. 47 BitCell output waveform

 55

4.4 Simulation Result Of Different Operation Of Proposed

Architecture

To simulate a Processing-In-Memory (CIM) computation architecture capable of executing read, write,

and Multiply-Accumulate (MAC) operations using Cadence Virtuoso, a systematic approach is

essential. Firstly, the architecture of the CIM system needs to be designed, encompassing the memory

array, processing units, and interconnects, ensuring efficient support for both read and write operations.

Following this, schematics are created for each component using the Cadence Virtuoso schematic editor,

ensuring proper connectivity and functionality. A test bench schematic is then developed to instantiate

the CIM architecture for simulation, incorporating input stimulus generators and defining the timing and

sequencing of operations. In the Analog Design Environment (ADE), the simulation is configured with

appropriate parameters, and simulations for read, write, and MAC operations are conducted. During read

simulations, input patterns are defined to observe correct data retrieval, while write simulations validate

data storage accuracy. MAC operation simulations involve configuring input data patterns and control

signals to compute MAC operations in the processing units, with subsequent analysis to validate

correctness and efficiency. Performance metrics such as latency, throughput, and energy efficiency are

measured and analyzed. Any encountered issues are debugged, and optimizations are made to enhance

overall efficiency. Finally, comprehensive documentation of the simulation setup, results, and

observations is prepared, providing insights into the CIM architecture's performance and functionality,

aiding in informed decision-making before hardware implementation.

4.4.1 Signals

In order to explain the read and write operations of a CIM Architecture, it is necessary to summarize the

internal and external signals as well as the important timing considerations

The typical top-level signals for a CIM Architecture are:

▪ DATA - the bi-directional data bus
▪ WL - - the address bus
▪ Carry_select - for mux1 of bitcell
▪ Weight_enable – for mux2 of bitcell

▪ P0,P1,P2,P3 - Output of MAC operation
▪ Write_enable - column mux for write operation

▪ Read_enabel - column mux for read operation
▪ MAC_enable - column mux for MAC operation
▪ PCLK - to activate precharge circuit

▪ SCLK - to activate sense amplifier circuit
▪ WD_EN - enables the write driver during a write operation

 56

4.4.2 Timing Considerations:

In a Processing-In-Memory (CIM) architecture, timing considerations for SRAM cells play a crucial

role in ensuring the reliability and efficiency of memory operations. Key timing parameters include the

setup and hold times for input signals, memory read and write delays, and the minimum clock period.

Setup and hold times define the duration for which an input signal must remain stable before and after

the clock edge that triggers the memory operation, respectively. These parameters are essential for

proper data capture and stability during read and write operations. The write delay indicates the time

taken from the clock edge of a write operation until valid data is driven into a memory cell. Similarly,

the read delay refers to the time elapsed from the clock edge until valid data appears as an output of the

sense amplifier. These delays are critical for ensuring accurate data retrieval and propagation within the

memory array. In a CIM architecture, optimizing these timing parameters is crucial to achieving high-

speed and reliable memory operations, ultimately enhancing the overall performance of the system.

4.4.3 Read Operation:

In an proposed architecture, the read operation is a critical process for retrieving stored data from

memory cells. It initiates with the activation of the word line corresponding to the targeted memory cell

or row. This activation grants access to the selected memory cells within the designated row.

Subsequently, the bit lines, BL and BLB, are precharged to a predefined voltage level, typically VDD/2,

to establish a stable reference voltage. Following precharging, the bit lines are connected to the memory

cell via access transistors, facilitating the transfer of stored data onto the bit lines. The sensed data is

then amplified by sense amplifiers, detecting any voltage disparity between BL and BLB. Based on this

voltage difference, the stored data in the memory cell is determined; a higher voltage on BL compared

to BLB signifies a logical '1', while the opposite indicates a '0'. The sensed data is finally outputted from

the sense amplifiers for further processing or utilization by the system. Once the read operat ion

concludes, the word line is deactivated, safeguarding the integrity of the stored data within the memory

cell. Overall, the read operation in an proposed architecture ensures efficient and accurate retrieval of

data from the memory array, essential for the system's overall functionality

Fig. 48 Ouput Waveform Write Operation

 57

Table 7 Read operation of Proposed Architecture

Signal State of input

Write_enable Low

Read_enable High

MAC_enable Low

Input_weight Low

Input_MAC Low

Word line High

Bit line High

4.4.4 Write Operation:

In an SRAM-based architecture, the write operation is a crucial process for storing new data into the

memory cells. The write operation typically begins with the activation of the word line (WL)

corresponding to the desired memory cell or row. This activation enables access to the selected memory

cells within that row. Simultaneously, the bit lines (BL and BLB) associated with the targeted column

are driven with the data bit and its complement. The activated word line allows the transistors in the

access path of the selected memory cell to become conductive, connecting the memory cell to the bit

lines. The stored data in the memory cell is determined by the voltage levels of the bit lines; if BL is at

a higher voltage level compared to BLB, the memory cell stores a logical '1', and vice versa for a '0'.

Once the write operation is completed for the selected cell, the word line is deactivated, isolating the

memory cell from the bit lines to maintain the integrity of the stored data. Overall, the write operation

in an SRAM-based architecture ensures efficient and accurate storage of data in the memory cells,

essential for the system's overall functionality.

 58

Table 8 Write Operation For Proposed Architecture

Signal State of input

Write_enable High

Read_enable Low

MAC_enable Low

Input_weight High

Input_MAC Low

Word line High

Bit line High

Fig. 49 Output Waveform Read Operation

4.4.5 MAC Operation:

Table 9 shows the number representation scheme for input output, weight, and the first carry-in (C0) of

the MAC unit. The weight is stored as a two’s complement signed number while the input is encoded to

a binary-weighted signed . number, which realizes the bit-serial input as the serialized binary value of

+1/−1. Compared to the traditional binary weighted two’s complement number, the proposed encoding

scheme provides simpler operation by not having to spend more compute cycles for the sign bit and

encoding stages to express the signed number. For instance, the encoded 4 bit serial input “0110”

 59

represents a decimal number −3 since “−3 =−23 +22 +21 −20,” where 0 represents −1and 1 represents +1.

Each cycle of MAC operation can be broken into three steps

Table 9 Weight and Input Number Representation[22]

Figure 50 illustrates a detailed example of a four-step Processing-In-Memory (CIM) dot-product

operation, utilizing two 4-bit column Multiply-Accumulate (MAC) units. Each MAC unit comprises

four Type-A bitcells and one Type-B bitcell. The operation involves computing the dot product of two

sets of 4-bit weights (W0 = -3, W1 = 6) and binary inputs (X0 = -1, X1 = +1). Initially, the weights and

inputs are prepared for bitwise multiplications (Fig. 50). Note that the Type-B bitcell extends the sign

from the above Type-A bitcell (MSB of the weight). In the first step, the two's complement multiply

operations require the addition of the first carry (input bar) to produce correct results (Fig. 12b). When

the input is 0 (-1), the sign-extended two's complement weight is inverted using XNOR-gate-based

bitwise multipliers and then added to the first carry-in, which is 1 (X0 = 1). Conversely, the 5-bit weight

is buffered while the first carry-in is 0 when the input is 1 (+1). The bitwise multiplication results are

then accumulated in a ripple carry adder in the first column MAC (Fig. 12c). Finally, the 5-bit partial-

sum result is combined with the bitwise multiplication results from the second column MAC on the right

(Fig. 12d), completing the dot-product operation.

Fig. 50 Detailed operation of column MACs with 4 bit weight and 2× columns (i.e. 5× bitcells per

column MAC). The input activation is 1 bit, and hence it takes 1× cycle to complete a full dot -product

between two pairs of 4 bit weights and 1 bit input activations[22]

 60

Table 10 Mac Operation for proposed Architecture

Signal State of input

Write_enable High

Read_enable Low

MAC_enable Low

Input_weight High

Input_MAC Low

Word line High

Bit line High

Fig. 51 Waveform Of MAC operation

61

 Chapter 5. Conclusion And Future Scope

5.1 Summary

The design of a novel 10T SRAM cell aims to enhance the Static Noise Margin (SNM) compared to the

conventional 6T SRAM cell. This new 10T SRAM cell incorporates additional transistors to improve

stability and reduce susceptibility to noise, thereby ensuring more reliable data storage and retrieval. By

leveraging the improved SNM, the 10T SRAM cell provides a robust foundation for developing a

compute-in-memory (CIM) architecture.

The proposed CIM architecture is fully digital, utilizing bit-serial computing and offering

reconfigurability to accommodate various input and weight precisions from 1 to 16 bits. This

reconfigurability allows the architecture to adapt to different computational requirements, enhancing its

versatility and efficiency in processing neural networks and other data-intensive tasks.

To implement and verify the performance of this CIM architecture, the entire design, including the novel

10T SRAM cell and the bit-serial computation framework, is simulated using Cadence Virtuoso with

TSMC 65nm technology. The simulation process involves creating detailed schematics of the 10T

SRAM cell, integrating it into the CIM macro, and configuring test benches to evaluate the functionality

and performance of the system. Key parameters such as read/write delays, power consumption, and

overall stability are analyzed to ensure the design meets the desired specifications.

5.2 Work Conclusion

Conventional digital accelerators have become unsuitable for machine learning tasks in edge-computing

due to excessive energy consumption from off-chip memory access and data movement. This issue has

driven the development of compute-in-memory (CIM) architectures, which integrate compact memory

macros with embedded analog computing circuits in each bitcell. However, analog architectures face

significant challenges, including process variation, data conversion overhead, noise susceptibility, and

scalability issues, which are less prevalent in digital systems. While digital architectures have evolved

to minimize off-chip memory access and data movement, a digital adaptation of CIM has been lacking.

The article introduces a novel digital CIM macro architecture designed to address the specific concerns

of digital accelerators and resolve the critical issues faced by SRAM-based analog CIM macros. This

CIM architecture features a fully reconfigurable digital CIM bitcell and a bit-serial CIM macro,

consisting of a two-dimensional digital bitcell array and a post-accumulator. This innovative architecture

allows both input and weight bit-precision to be programmed from 1 to 16 bits. Although bit-serial

computation offers area efficiency, it comes with trade-offs in latency and throughput. The CIM

architecture aims to provide a balanced solution that leverages the strengths of digital systems while

overcoming the limitations of analog CIM implementations.

62

5.3 Future Scope of Work

The future scope of the novel 10T SRAM cell-based compute-in-memory (CIM) architecture is vast and

promising. One potential direction involves further optimizing the 10T SRAM cell design to increase

memory density, thereby enhancing its suitability for applications requiring extensive data storage and

processing. Additionally, as semiconductor technology progresses, adapting the design to smaller

process nodes, such as 45nm or 28nm, could significantly improve speed, power consumption, and

overall performance. Another intriguing avenue is integrating the 10T SRAM-based CIM architecture

with emerging memory technologies like resistive RAM (RRAM) or magnetoresistive RAM (MRAM),

creating a hybrid system that leverages the strengths of various memory types for enhanced capabilities.

Future research could also focus on architectural enhancements, such as incorporating error correction

codes (ECC) to boost data reliability and fault tolerance, and optimizing interconnects to reduce latency

and improve throughput. Developing software and algorithms specifically optimized for the bit-serial

CIM architecture could unlock new levels of performance, particularly in machine learning and neural

network applications. Moreover, extending testing to real-world applications, such as edge computing

devices, IoT systems, and autonomous vehicles, would provide valuable insights and demonstrate the

architecture's practical viability.

Exploring the integration of energy-harvesting techniques to power the 10T SRAM-based CIM

architecture could pave the way for low-power, self-sustaining applications in remote or inaccessible

locations. Lastly, incorporating robust security features to protect data integrity and prevent

unauthorized access is crucial for many applications, warranting further research into developing

tailored security protocols. By pursuing these research directions, the novel 10T SRAM-based CIM

architecture can continue to evolve, addressing new challenges and expanding its applicability across a

broader range of high-performance and energy-efficient computing scenarios.

63

References

[1] M. Courbariaux, I. Hubara, D. Soudry, R. El-Yaniv, and Y. Bengio, “Binarized neural

networks: Training deep neural networks with weights and activations constrained to +1 or −1,” 2016.

[2] M. Courbariaux, Y. Bengio, and J.-P. David, “BinaryConnect: Training deep neural networks

with binary weights during propagations,” 2015.

[3] I. Hubara, M. Courbariaux, and D. Soudry, “Quantized neural networks: Training neural

networks with low precision weights and activations,” J. Mach. Learn. Res., vol. 18, pp. 1–30, Jan.

2018.

[4] J. Wang et al., “A 28-nm compute SRAM with bit-serial logic/arithmetic operations for

programmable in-memory vector computing,” IEEE J. Solid-State Circuits, vol. 55, no. 1, pp. 76–86,

Jan. 2020.

[5] G.K.Chen,R.Kumar, H.E. Sumbul, P.C. Knag, and R. K. Krishnamurthy, “A 4096-neuron 1M-

synapse 3.8-pJ/SOP spiking neural network with on-chip STDP learning and sparse weights in 10-nm

FinFET CMOS,” IEEE J. Solid-State Circuits, vol. 54, no. 4, pp. 992–1002, Apr. 2019.

[6] J. Park, J. Lee, and D. Jeon, “7.6 A 65 nm 236.5 nJ/classification neuromorphic processor with

7.5% energy overhead on-chip learning using direct spike-only feedback,” in IEEE Int. Solid-State

Circuits Conf. (ISSCC) Dig. Tech. Papers, pp. 140–142, Feb. 2019.

[7] Y. Chen et al., “DaDianNao: A machine-learning supercomputer,” in Proc. 47th Annu.

IEEE/ACM Int. Symp. Microarchitecture, pp. 609–622, Dec. 2014,.

[8] S. Han et al., “EIE: Efficient inference engine on compressed deep neural network,” in Proc.

ACM/IEEE 43rd Annu. Int. Symp. Comput. Archit. (ISCA), pp. 243–254 Jun. 2016.

[9] P. Judd, J. Albericio, T. Hetherington, T. M. Aamodt, and A. Moshovos, “Stripes: Bit-serial

deep neural network computing,” in Proc. 49th Annu. IEEE/ACM Int. Symp. Microarchitecture

(MICRO), pp. 1–12, Oct. 2016.

[10] H. Sharma et al., “Bit fusion: Bit-level dynamically composable architecture for accelerating

deep neural network,” in Proc. ACM/IEEE 45th Annu. Int. Symp. Comput. Archit. (ISCA), pp. 764–

775, Jun. 2018,.

64

[11] M. Horowitz, “1.1 computing’s energy problem (and what we can do about it),” in IEEE Int.

Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, pp. 10–14, Feb. 2014,.

[12] B. Moons and M. Verhelst, “An energy-efficient precision-scalable ConvNet processor in 40-

nm CMOS,” IEEE J. Solid-State Circuits, vol. 52, no. 4, pp. 903–914, Apr. 2017.

[13] R. Krishnamoorthi, “Quantizing deep convolutional networks for efficient inference: A

whitepaper,” 2018.

[14] A. Polino, R. Pascanu, and D. Alistarh, “Model compression via distillation and quantization,”

in Proc. Int. Conf. Learn. Represent. (ICLR), Apr. 2018.

[15] A. Zhou, A. Yao, Y. Guo, L. Xu, and Y. Chen, “Incremental network quantization: Towards

lossless CNNs with low-precision weights,” in Proc. Int. Conf. Learn. Represent. (ICLR), Apr. 2017.

[16] S. Yin et al., “A high energy efficient reconfigurable hybrid neural network processor for deep

learning applications,” IEEE J. Solid-State Circuits, vol. 53, no. 4, pp. 968–982, Apr. 2018.

[17] Z. Du et al., “ShiDianNao: Shifting vision processing closer to the sensor,” in Proc.

ACM/IEEE 42nd Annu. Int. Symp. Comput. Archit. (ISCA), Jun. 2015, pp. 92–104.

[18] C. Eckert et al., “Neural cache: Bit-serial in-cache acceleration of deep neural networks,” in

Proc. ACM/IEEE 45th Annu. Int. Symp. Comput. Archit. (ISCA), pp. 383–396, Jun. 2018.

[19] B. Reagen et al., “Minerva: Enabling low-power, highly-accurate deep neural network

accelerators,” in Proc. ACM/IEEE 43rd Annu. Int. Symp. Comput. Archit. (ISCA), pp. 267–278, Jun.

2016.

[20] D. Shin, J. Lee, J. Lee, and H.-J. Yoo, “14.2 DNPU: An 8.1 TOPS/W reconfigurable CNN-

RNN processor for general-purpose deep neural networks,” in IEEE Int. Solid-State Circuits Conf.

(ISSCC) Dig. Tech. Papers, pp. 240–242, Feb. 2017.

[21] Gopal Raut, Saurabh Karkun, and Santosh Kumar Vishvakarma, “An Empirical Approach to

Enhance Performance for Scalable CORDIC-Based Deep Neural Networks”, ACM Trans.

Reconfigurable Technol. Syst. 2023.

[22] Kim, H., Yoo, T., Kim, T.T.H. and Kim, B., 2021. Colonnade: A reconfigurable SRAM-

based digital bit-serial compute-in-memory macro for processing neural networks. IEEE Journal of

Solid-State Circuits, 56(7), pp.2221-2233, July 2021.

[23] Dhakad, N.S., Chittora, E., Sharma, V. and Vishvakarma, S.K., 2023. R-inmac: 10T SRAM

based reconfigurable and efficient in-memory advance computation for edge devices. Analog

Integrated Circuits and Signal Processing, 116(3), pp.161-184. 2021.

65

66

