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Abstract 

This work presents the design and implementation of a novel 10T SRAM cell aimed at 

enhancing the Static Noise Margin (SNM) compared to conventional 6T SRAM cells. 

The new 10T SRAM cell incorporates additional transistors to improve stability and 

reduce noise susceptibility, thereby ensuring more reliable data storage and retrieval. 

Leveraging this improved SNM, a compute-in-memory (CIM) architecture is developed, 

which is fully digital, utilizes bit-serial computing, and offers reconfigurability to 

accommodate various input and weight precisions from 1 to 16 bits. This 

reconfigurability enhances the architecture's versatility and efficiency in processing 

neural networks and other data-intensive tasks. The entire design, including the 10T 

SRAM cell and the bit-serial computation framework, is simulated using Cadence 

Virtuoso with TSMC 65nm technology. Detailed schematics are created, and test benches 

are configured to evaluate key parameters such as read/write delays, power consumption, 

and overall stability. Simulation results demonstrate significant improvements in SNM, 

reliability, and energy efficiency, making the architecture suitable for edge-computing 

applications. This novel 10T SRAM cell-based CIM architecture offers a robust, high-

performance, and energy-efficient computing solution, addressing the limitations of 

traditional 6T SRAM cells and analog CIM implementations. 
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 Chapter 1. Introduction and Related Work 

 1.1 Overview 

Edge AI refers to the deployment of artificial intelligence (AI) algorithms and models directly on edge 

devices, such as smartphones, IoT devices, and other embedded systems, rather than relying on 

centralized cloud-based computing. This approach allows data to be processed locally on the device 

where it is generated, providing several key benefits. 

 1.2 Hardware Accelerator for Edge AI 

Hardware accelerators for edge AI are specialized processing units designed to perform AI computations 

more efficiently than general-purpose processors, particularly in edge computing environments. These 

accelerators, such as GPUs, TPUs, FPGAs, and custom ASICs, are optimized to handle the intensive 

computational requirements of AI tasks, such as deep learning and neural network inference, directly on 

edge devices like smartphones, IoT devices, and embedded systems. By integrating these accelerators, 

edge devices can process data locally, reducing the latency associated with sending data to the cloud for 

processing. This local processing capability is crucial for applications requiring real -time decision-

making, such as autonomous vehicles, smart cameras, and industrial automation. 

Edge AI hardware accelerators are designed to be energy-efficient, making them suitable for battery-

powered devices where power consumption is a critical concern. They achieve this efficiency through 

specialized architectures that perform parallel processing and optimize data movement, significantly 

reducing the energy required per computation compared to traditional CPUs. Additionally, these 

accelerators often incorporate on-chip memory, further enhancing performance by minimizing the need 

for data transfer to and from external memory. The use of hardware accelerators in edge AI not only 

enhances performance and energy efficiency but also improves privacy and security by keeping sensitive 

data on the device. As AI applications continue to grow, the development and deployment of hardware 

accelerators will play a vital role in enabling advanced AI capabilities at the edge. 

 1.3 Neural Network 

 1.3.1 Introduction 

A neural network is a computational model inspired by the way biological neural networks in the human 

brain process information. These models are a cornerstone of artificial intelligence (AI) and are designed 

to recognize patterns, make decisions, and solve complex problems by learning from data. Neural 

networks consist of layers of interconnected nodes, or neurons, each performing simple calculations that 

contribute to the overall function of the network. 

The basic structure of a neural network includes an input layer, one or more hidden layers, and an output 

layer. Each neuron in a layer receives inputs from neurons in the previous layer, processes them using 

weighted connections, and passes the result through an activation function to produce an output. These 
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outputs then serve as inputs to the neurons in the next layer. The process continues until the final output 

layer produces the network's result 

 

 

Fig.  1 Neural Network[21] 

 1.3.1 Neuron 

A neuron, also known as a node or unit, is the fundamental building block of a neural network, modeled 

after the biological neurons found in the human brain. In an artificial neural network, a neuron performs 

several key functions. It begins by receiving multiple input signals, which can be raw data fed into the 

network or outputs from other neurons in the previous layer. Each input signal is associated with a 

weight, a numerical value representing the importance or strength of the input. These weights are 

initially set randomly and are adjusted during the training process. The neuron then computes a weighted 

sum of its inputs by multiplying each input by its corresponding weight and summing the results, often 

adding a bias term to the sum. This weighted sum is then passed through an activation function, which 

introduces non-linearity into the model, enabling the network to learn complex patterns and relationships 

in the data. Common activation functions include the sigmoid function, tanh function, and ReLU 

(Rectified Linear Unit). The result after applying the activation function is the output of the neuron, 

which can either be the final output of the neural network or serve as input to neurons in subsequent 

layers. Through this process of receiving inputs, weighting them, summing them, applying an activation 

function, and producing an output, neurons collectively transform input data into useful information, 

allowing the network to make predictions or decisions based on learned patterns. 
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Fig.  2. Neuron Architecture[21] 

 

 1.3.2 MAC 

In the context of neural networks, a multiply-and-accumulate (MAC) operation is a fundamental 

computational process. It involves multiplying pairs of input values and corresponding weights and then 

summing the results. This operation is crucial for neural network layers, particularly in convolutional 

and fully connected layers. During the forward pass of a neural network, each neuron receives multiple 

inputs, each of which is multiplied by a corresponding weight. The products of these multiplications are 

then accumulated to form a weighted sum. This sum is then passed through an activation function, which 

introduces non-linearity into the model, allowing it to learn and represent complex patterns in the data. 

The efficiency and speed of MAC operations significantly influence the overall performance of neural 

network training and inference, making them a critical aspect of hardware accelerators designed for deep 

learning tasks. 

 

Fig.  3 Processing Elements of Neuron[9] 
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 1.3.3 Activation Function 

An activation function in a neural network is a crucial component that determines whether a neuron 

should be activated or not, effectively deciding whether the neuron's output should be passed to the next 

layer in the network. It introduces non-linearity into the model, allowing neural networks to learn and 

model complex data patterns. Without activation functions, a neural network would simply perform 

linear transformations, limiting its capacity to capture intricate relationships in the data.  

There are several types of activation functions commonly used in neural networks, each with its unique 

characteristics and applications: 

• Sigmoid Function: This function maps the input values to a range between 0 and 1, making it 

useful for binary classification tasks. However, it can suffer from vanishing gradient problems, 

where gradients become too small for effective learning in deeper networks. 

• Tanh Function: Similar to the sigmoid function, the tanh function maps inputs to a range 

between -1 and 1. It is often preferred over the sigmoid function because its output is zero-

centered, which can lead to faster convergence during training. 

• ReLU (Rectified Linear Unit): ReLU is one of the most widely used activation functions in 

deep learning. It outputs the input directly if it is positive; otherwise, it returns zero. This 

simplicity helps in efficient computation and mitigates the vanishing gradient problem, although 

it can suffer from the "dying ReLU" problem, where neurons can sometimes become inactive 

permanently. 

• Leaky ReLU and Parametric ReLU: These are variants of the ReLU function designed to 

address the "dying ReLU" issue. They allow a small, non-zero gradient when the input is 

negative, ensuring that neurons do not die. 

• Softmax Function: Typically used in the output layer of a classification network, the softmax 

function converts the raw output scores into probabilities, which sum to one. This is particularly 

useful for multi-class classification problems 

.  

Fig.  4 Activation Functions[5] 
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 1.4 Motivation and Problem Statement 

 2.3.1 Von Neumann Bottleneck 

The Von Neumann architecture, proposed by John von Neumann in 1945, consists of a compute unit 

that executes user programs and a memory unit that stores both these programs and the necessary data. 

This architecture is foundational to most modern computer systems, including CPUs and GPUs. Over 

the years, improvements in technology have significantly enhanced compute performance, largely 

following Moore's Law, which predicts the doubling of transistors on a chip approximately every 18 

months. However, while compute performance has seen rapid advancement, memory development has 

primarily focused on increasing capacity rather than performance. This growing disparity between 

compute and memory performance, often referred to as the "memory wall," has become a significant 

bottleneck in modern systems. The von Neumann bottleneck arises from the inherent separation between 

the compute unit and memory, leading to limitations in memory bandwidth and issues with data 

movement. 

 2.3.2 Latest AI Accelerators With High-Bandwidth Memories 

The von Neumann bottleneck has been addressed by implementing a hierarchical memory structure. 

Processors now incorporate small but extremely fast on-chip SRAM caches to take advantage of 

temporal and spatial locality. Beyond the processor chip lies the main memory, which uses DRAM; it is 

faster and has a larger capacity than SRAM. Following the main memory, systems use solid-state drives 

(SSDs) for even greater storage capacity. However, as deep neural network (DNN) models grow in size 

to the terabyte range, machine learning workloads demand even higher bandwidth between the processor 

and main memory. Compounding this issue is the difficulty in further scaling process technology below 

the 10nm node, which signals the end of Moore’s Law. 

To tackle both the von Neumann bottleneck and the challenges of process scaling, companies are 

developing array-type architectures to accelerate data-intensive machine learning tasks. They are also 

adopting high-bandwidth memory (HBM), a 3D-stacked DRAM technology, to enhance bandwidth 

between computing and memory units. For instance, Google has created the TPU for more cost -effective 

and energy-efficient inference and training in data centers. Intel has introduced the NNP-T and Habana 

Labs' Gaudi processors for training workloads. Start-ups like Graphcore and Groq are also utilizing this 

architecture. Despite the improvements brought by AI accelerators with HBM technology, which can 

achieve bandwidths up to several terabytes per second, these solutions stil l adhere to the von Neumann 

architecture and face issues such as high power dissipation and limited capacity. 

 

 

 



                                                                              18  

 

 

Fig.  5 von Neumann Bottleneck and memory wali problem[8] 
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 1.5 Compute-In-Memory Architecture 

In a Compute-In-Memory (CIM) architecture, instead of transferring data from the memory unit to the 

compute unit, data remains in the memory while integrated logic performs computations directly in 

place. This represents a significant departure from traditional computer architectu re. Whereas 

conventional and near-memory architectures utilize the same memory hierarchy to efficiently manage 

external memory bandwidth, CIM combines computing and memory units to eliminate issues related 

to external data movement. This shift from a compute-centric to a memory-centric or hybrid 

architecture is gaining considerable attention as a solution to the von Neumann bottleneck, particularly 

for data-intensive applications such as AI and machine learning. Besides enhancing performance, CIM 

architecture also significantly reduces energy consumption by replacing costly external data transfers 

with more efficient on-chip data movements. 

 

Fig.  6 Processing in Memory Achitecture[7] 
 

 

 

 

 

 

 



                                                                              20  

 

 1.6 Challenges of CIM Architecture 

While CIM architecture holds promise, it faces several significant challenges due to the need to integrate 

logic units within the memory module. Three primary challenges in CIM design are accessibility to the 

manufacturing process, designing within physical constraints, and developing a compatible software 

stack for usability. 

Among various memory technologies, SRAM is unique in that it can be built using commercially 

available logic processes. This is why many CIM prototypes utilize SRAM—it can be fabricated with a 

logic process and easily customized in both the memory cell and peripheral circuits. Additionally, the 

larger cell size of SRAM minimizes area constraints for integrating logic. However, processes for 

DRAM and non-volatile memory (NVM) are less accessible. Memory manufacturers like Samsung, SK 

Hynix, and Micron have proprietary processes that are not available to external developers. Without 

access to these process design kits (PDKs), researchers struggle to even simulate basic circuits. Although 

there have been numerous CIM architecture proposals for DRAM, these designs are typically evaluated 

through performance simulations rather than physical designs. The significant differences between 

DRAM and logic processes, which focus on maximizing cell capacity and density, make it  difficult to 

confirm the feasibility of these CIM architectures solely through simulations. 

In CIM design, chip designers must carefully select which functions to integrate into the memory, as the 

silicon area is limited. Implementing a wide range of functions or overly generic logic is impractical due 

to these area constraints. Additionally, integrating logic reduces the available memory capacity. The 

logic design must also be physically aligned with the memory cell design to maximize internal 

bandwidth, presenting another layer of complexity in the design process. 

. The final challenge in CIM design lies within the software stack. For CIM to achieve widespread 

adoption as a new technology, it is crucial to address this aspect comprehensively. Unlike traditional 

memory devices, CIM is not merely a passive component; it can perform logic operations 

simultaneously with memory functions. This necessitates a fundamental shift in the software domain as 

well. To fully optimize CIM systems, the entire software stack must be re-evaluated, including 

programming languages, compilers, drivers, and runtime environments. Without such changes, CIM 

will struggle to surpass the performance and usability of existing von Neumann architectures . 
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 Chapter 2. Theoretical Framework 

 2.1 Basic Memory Operation 

Dynamic random-access memory (DRAM) and static random-access memory (SRAM) have been 

essential components in modern VLSI systems. Advances in semiconductor technology have led to 

increased memory density and enhanced computing power, driving progress in electronic systems. 

However, as semiconductor technology continues to scale down, DRAM and SRAM face several design 

challenges, including increased leakage currents and reduced sensing margins. Extensive research and 

development efforts have been made to address these issues and meet the market's demand for high-

performance, low-power memory solutions. 

In the realm of mobile computing devices, there is a significant demand for nonvolatile memory 

solutions that can retain key data even without a power supply. FLASH memory has seen substantial 

development due to the rapid growth of mobile electronics. However, FLASH is primarily used for 

storage rather than computing purposes. It is well-known that FLASH memory has a rewrite endurance 

of around 106 cycles, which is considerably lower than that of SRAM and DRAM. Additionally, FLASH 

lags behind DRAM and SRAM in terms of write speed and power consumption. Although various 

technologies have been developed to enhance the endurance and reduce the write power consumption 

of FLASH memory, no breakthrough has been achieved to make FLASH memory comparable to DRAM 

and SRAM in these aspects. 

Table 1 Device characteristics of mainstream and emerging memory technologies[3] 
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Recently, various resistive nonvolatile memory devices, such as magnetic RAM (MRAM), ferroelectric 

RAM (FeRAM), phase change RAM (PCRAM), and resistive RAM (ReRAM), have been introduced. 

Although these memory technologies operate based on different physical mechanisms, they all function 

by utilizing two distinct resistance values. Among these, ReRAM has attracted significant interest due 

to its simple structure and compatibility with CMOS technology. Additionally, ReRAM is more reliable, 

faster, and consumes less power than FLASH memory. While ReRAM's endurance is still lower than 

that of DRAM and SRAM, it is suitable for mobile applications that require non-volatility and moderate 

computing power. 

 2.2 SRAM Basics 

Static random-access memory (SRAM) is commonly used as an embedded memory solution in 

computing systems due to its high performance, robustness, and cost-effectiveness. SRAM is faster than 

DRAM because the cross-coupled inverters in SRAM cells produce quicker and larger voltage swings 

on the bitlines. Additionally, SRAM can simultaneously receive row and column addresses, unlike 

DRAM, which processes these addresses separately using the same address pins. As a result, SRAM 

exhibits lower latency compared to DRAM. The cross-coupled inverters in SRAM cells also 

automatically maintain stored data when the wordlines are turned off, eliminating the need for refresh 

and write-back operations. 

Another significant advantage of SRAM is its full compatibility with CMOS process technology, which 

facilitates easy integration with computing blocks. However, as CMOS technology continues to scale, 

SRAM faces several challenges, including reduced stability margins, increased leakage currents, and 

difficulties in supply voltage scaling. Various design techniques have been developed to address these 

issues and maintain SRAM's performance and reliability. 

 2.2.1 Working of SRAM 

The conventional 6T SRAM cell consists of six transistors: two cross-coupled inverters and two access 

transistors. During a write operation, data is first loaded onto the bitline pair, and then the wordline is 

activated. The data on the bitline pair is transferred to the SRAM cell nodes through the access 

transistors. For instance, if the bitline holds a "0" and the complementary bitline holds a "1," the node Q 

will be pulled low through the access transistor, and the complementary node QB will be pulled high. 

Consequently, the SRAM cell stores Q = "0." The write operation is primarily constrained by the 

difficulty of writing a "0" because NMOS access transistors can pass low voltage more effectively than 

high voltage. Therefore, the access transistors need to be stronger than the PMOS transistors to ensure 

that Q is lowered below the trip point of the inverters in the SRAM cell. 

During a read operation, the wordline is activated after precharging the bitline pairs. One of the 

differential bitlines will decrease depending on the data stored in the SRAM cell. For example, if Q is 

"0," the bitline will decrease while the complementary bitline remains at the supply voltage (VDD). A 

sense amplifier then amplifies the differential voltage between the bitlines to generate the output signal. 
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Fig.  7 SRAM cell Operation write[15] 

 

Fig.  8  SRAM cell Operation read[15] 

 

 

Below figure illustrate a typical SRAM architecture, which includes an array of cells, row decoding, 

column multiplexing, sense amplifiers, write drivers, and a controller. During a read operation, the 

accessed cell generates a differential voltage across a bitline pair. This differential voltage is routed to a 

sense amplifier through a column multiplexer. Unlike DRAM, SRAM uses sense amplifiers that are 

shared among multiple columns, so only one column is connected to a sense amplifier at a time for signal  

amplification. There is no need for a write-back operation in the unselected columns since SRAM cells 

can regenerate stored data via the cross-coupled inverters. 

During a write operation, write drivers send data to the selected bitlines through the column multiplexer. 

However, the access transistors in the unselected columns remain active, which can lead to unintended 

write operations. To prevent this, the bitlines of the unselected columns are precharged to the supply 

voltage (VDD), ensuring that SRAM cells in the selected row but unselected columns undergo a read 

operation instead. This approach helps maintain the integrity of the data stored in the unselected 

columns. 
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Fig.  9 SRAM Array[22] 
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 2.3 CIM Fundamentals 

Processing-in-memory (CIM) has recently emerged as a promising alternative computer architecture for 

energy-efficient processing, particularly for massively parallel arithmetic operations required in artificial 

intelligence and machine learning applications. This architecture is especially well-suited for battery-

operated edge computing devices. One of the critical operations in CIM is the multiply-and-accumulate 

(MAC), which is essential for processing artificial neural networks like convolutional neural networks 

(CNNs). CNNs often require billions of MAC operations to process a single image classification, 

highlighting the importance of efficient MAC operation units in hardware accelerators based on CIM 

architecture. 

Several emerging memory devices, such as resistive random-access memory (ReRAM), magneto 

resistive RAM (MRAM), and phase-change RAM (PCRAM), are considered for CIM implementation. 

These devices are compact and can provide high storage capacity along with massively parallel MAC 

operations. However, despite their potential, these emerging memories are not yet mature and are 

relatively costly. As a result, traditional static RAM (SRAM) is still the most commonly used memory 

technology in CIM implementations. Despite having a larger bitcell size compared to emerging 

memories, SRAM offers advantages such as scalability, compatibility with logic design, cost -

effectiveness, and reliability, making it a preferred choice for CIM implementations. 

 2.3.1 Implementation Of CIM Macro 

The CIM macro can be implemented by utilizing a classical two-dimensional array composed of 

different types of memory cells (such as SRAM, DRAM, or ReRAM), as depicted below figure For 

instance, the operation of a standard SRAM in the context of MAC (multiply and accumulate) is 

described here in detail. In this setup, a standard six-transistor (6T) SRAM cell serves as a binary CIM 

unit for executing MAC operations. Each macro row receives a binary input (either 0 or +1), which 

serves as the multiplicand for all SRAM cells in the same row. The binary weight (either -1 or +1) is 

stored in an SRAM cell and is multiplied by the input applied to its wordline (WL). Accumulation is 

carried out column by column, with the accumulated result being a voltage difference between a bitline 

(BL) and its complement (BLb). 

In this configuration, a '0' input results in a WL high voltage, creating a discharging path from BL (or 

BLb) to the ground via an SRAM internal node Q (or Qb). Prior to the MAC operation, all bitlines (BLs 

and BLbs) are precharged to a high voltage. Ideally, inputs are applied and outputs are generated in 

parallel, enabling massively parallel binary SRAM CIM operations that maximize throughput and 

minimize latency. However, the actual performance of the designed CIM macro is heavily influenced 

by the essential data conversions for input (digital-to-analog) and output (analog-to-digital). These 

conversions ultimately determine the overall performance of the implemented CIM macro. 
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Fig.  10 CIM macro using common memory cells[6] 
 

 2.3.2 CIM Macro Mapping For DNN 

The CIM macro depicted in Figure 13 can be utilized to map and process the fundamental arithmetic 

operations of a fully connected layer within deep neural networks (DNNs). Figure 11 illustrates a pair 

of binary inputs and weights mapped to an SRAM cell and an input pair, respectively. Binary 

multiplication is executed within the SRAM cell, resulting in a unit analog accumulation represented as 

a voltage difference across the vertical bitlines (BL and BLb). 

A collection of input and weight pairs constitutes a dot-product, as depicted in the left side of Figure 12. 

This dot-product is then mapped to a column of the CIM macro, as shown on the right side of Figure 12. 

The unit voltage differences originating from SRAM cells accumulate within the column, which shares 

a pair of BL and BLb. Finally, a vector-matrix multiplication (i.e., the fully connected layer itself) is 

mapped to the entire CIM macro. In this configuration, all multiplications and accumulations are 

executed in parallel, enabling extensive parallelism, as illustrated in Figure 13. 
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Fig.  11 Processing a fully connected layer using SRAM based macro multiplication[11] 

 

Fig.  12 Processing a fully connected layer using SRAM based macro dot-product[11] 

 

 

Fig.  13 Processing a fully connected layer using SRAM based macro vector matrix multiplication[11] 
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 2.3.3 CIM Macro Mapping For CNN 

The CIM macro can be utilized to assign a convolutional layer by unrolling and mapping high-

dimensional filter weights and input feature maps into the macro. Figure 14 illustrates the mapping of 

an input and weight pair from a convolutional layer configuration into the macro. The two-dimensional 

(2D) filter weights are unrolled and mapped into a column of four bitcells, as shown in Figure 15. For 

three-dimensional (3D) filter weights and input feature maps, which consist of multiple channels of 2D 

filters and input feature maps, the entire column of the CIM macro is utilized for mapping, as depicted 

in Figure 16. If the number of filter and input feature map element pairs exceeds the number of bitcells 

in a single macro column, the 3D filter and input feature map can be mapped to multiple macro columns. 

Expanding on the convolutional layer processing, Figure 17 introduces another dimension (output 

channels or the channels of 3D filters) that can be processed in parallel using multiple columns in the 

CIM macro. Each column output corresponds to a pixel of each 2D output feature map. To generate the 

complete 3D output feature map, the same CIM macro is reused while sliding the window of the input 

feature map to process and complete the 3D output feature map, as illustrated in Figure 18 

 

 

Fig.  14 Processing a fully convolutional layer using SRAM based  CIM macro multiplication[11] 

 

 

Fig.  15  Processing a fully convolutional layer using SRAM based  CIM macro a dot product for 2D 

filter[11] 
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Fig.  16 Processing a fully convolutional layer using SRAM based  CIM macro a dot product for 3D 

filter[11] 

 

 

Fig.  17 Processing a fully convolutional layer using SRAM based  CIM macro a vector matrix for 4D 

filter[11] 

 

 

Fig.  18 Processing a fully convolutional layer using SRAM based  CIM macro after 16 cycles of 

vector matrix operation[11] 
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 2.4 CIM Design Challenges 

While analog CIM macros offer exceptional efficiency, they also face significant design challenges. The 

most notable issues include computation nonlinearity caused by process, temperature, and voltage (PVT) 

variations, as well as the overhead associated with DAC/ADC conversions. 

Figure 19 illustrates the input offset error in analog circuits within the CIM macro, such as bitcells, sense 

amplifiers (SA), and ADCs, which is induced by process variations. The left side of Figure 19 shows 

the error distribution of the output ADC code for identical MAC operations. Despite the regular structure 

of memory bitcells in the CIM array, differences in MAC results arise due to process variations during 

the fabrication of these cells. The right side of Figure 19 depicts the variation in both a single bitcell and 

an entire column. The top right section shows the distribution of discharge current when a bitcell 

processes a multiplication operation using current discharge, while the bottom right section displays the 

bitline (BL) voltage allocation after completing the dot-product operation in a column-based neuron. 

Process variation leads to fluctuations in the bitline voltage representing the dot -product result, 

increasing the likelihood of producing incorrect output ADC codes. In the context of neural networks, 

this incorrect output code becomes the new input activation for the next layer and is used to calculate 

subsequent dot-products. Consequently, errors in one layer's output can propagate through multiple 

computations, ultimately leading to classification errors and reducing the accuracy of the application.  

Computation nonlinearity occurs when multiple rows are activated in parallel to enhance computational 

efficiency, as depicted in Figure 20. When more "1"s are added in the column, the bitline voltage 

representing dot-product results decreases, leading to a dynamic range limit. If the bitline voltage drops 

too low, the accumulation linearity is substantially degraded, as indicated by the red dotted line on the 

right side of Figure 20. 

The overhead associated with digital-to-analog and analog-to-digital converters (DAC/ADC) for data 

transmission is a major concern for CIM macros. As illustrated in Figure 21, DAC/ADC circuits 

consume a substantial amount of area and energy, and they also increase the latency of the neural 

network accelerator. Furthermore, typical ADCs have fixed bit precision, which limits the system's 

reconfigurability. 
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Fig.  19 Challenges of analog CIM macro process variation[3] 

 

 

Fig.  20  Challenges of analog CIM macro non linearity[3] 

 

Fig.  21  Challenges of analog CIM macro ADC overhead[3] 
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Digital CIM macros face their own set of critical issues, namely low area efficiency and high power 

consumption. Figure 2.20a illustrates a modern neural network accelerator that includes a complete array 

of digital processing elements (PEs) designed to handle massive MAC operations synchronously. By 

utilizing a hierarchical memory system and data reuse strategies, this design enhances computational 

efficiency and reduces energy consumption, as memory access energy typically exceeds the energy used 

in MAC operations. 

Figure 22 shows a CIM column equipped with a parallel adder tree that performs massively parallel 

accumulation operations without needing additional registers to store input activations and partial sums. 

This setup improves energy efficiency through bit-serial multiplication, albeit at the cost of increased 

operation latency. The digital approach avoids the compute nonlinearity and poor scaling associated 

with analog circuits. However, fully digital PEs require more arithmetic circuits, leading to larger area 

occupancy and higher static and dynamic energy consumption compared to the bitcells in analog CIM. 

 

 

Fig.  22 Simplified block diagram of a typical digital DNN accelerator[5] 
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Fig.  23 A column based dot-product circuit using digital CIM[5] 
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 Chapter 3. Proposed Architecture 

 3.1 Introduction 

Previous digital hardware accelerators tend to use a significant portion of their total energy accessing 

OFF-chip memory, despite efforts to minimize data movement. Nonetheless, digital accelerators offer 

several advantages over their analog counterparts. One key benefit is their robustness; digital designs 

are less sensitive to process variations and various noise sources due to their core computation 

mechanism, which includes an abstraction layer over the analog signal values. Another significant 

advantage is that digital accelerators eliminate the need for data conversions, leading to reductions in 

both energy and area consumption. This not only improves energy and area efficiency but also simplifies 

computation and alleviates performance bottlenecks caused by time-multiplexed operations. In this 

section, we will explore how we leverage the aforementioned benefits of digital accelerators to minimize 

memory access. 

 3.2 Weight-Stationary Systolic Architecture 

A systolic array of processing elements (PEs) is an efficient data processing architecture known for 

achieving high throughput due to its parallel computations and natural input-output data flow. In this 

setup, both inputs and partial sums move through a 2-D array while pipelined parallel multiply-

accumulate (MAC) operations are carried out by the distributed digital PEs. Similarly, a 2-D PE array 

is used in the analog compute-in-memory (CIM) macro. However, unlike the digital version, all 

operations in the analog CIM macro occur in parallel without pipelining because of its smaller size and 

faster computation speed. The analog macro performs parallel MAC operations and also stores weights 

within its memory array (i.e., it is weight-stationary). 

The proposed digital CIM macro utilizes a weight-stationary systolic architecture, as depicted in Fig. 

24. This design merges the high throughput of the systolic array with the low latency and high energy 

efficiency of the CIM macro. Additionally, the CIM macro can handle input and weight precisions 

ranging from 1 to 16 bits. The proposed architecture is a digital bitcell array that adopts the bit-parallel 

systolic PE array's operation directionality. It functions as a precision reconfigurable bit -serial digital 

CIM macro, offering significant area savings compared to the traditional systolic PE array.  
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Fig.  24  Weight-Stationary Systolic Architecture of the proposed digital CIM macro with 1-16 bit 

reconfigurable MAC precision[22] 

 3.3 Bit-Serial Computing and Reconfigurability 

Figure 25 illustrates a conventional bit-parallel ALU, which includes two 4-bit multipliers and an 8-bit 

adder. In this setup, pairs of 4-bit inputs are multiplied, and the resulting 8-bit outputs are subsequently 

added. It's important to note that the power and area requirements of bit-parallel digital multipliers 

increase quadratically with input precision. To address this issue and reduce the MAC area, Stripes [19] 

introduces bit-serial computing, which significantly saves area by serializing one of the multibit inputs 

and replacing the large multiplier circuit with more compact bitwise ALUs, as shown in Figure 6(b). 

The area savings of the bit-serial ALU circuit increase with precision since the complexity of bit-serial 

computation grows linearly with bit precision. However, bit-serial computing requires an additional 

circuit to accumulate partial sums from each operation cycle. Inputs are serialized from the least 

significant bit (LSB) to the most significant bit (MSB), with each bit generating a partial  sum. Another 

limitation of conventional bit-parallel ALUs is their lack of reconfigurability. 25 shows BitFusion [20], 

which consists of reconfigurable ALU units that can handle fine-grained bit precision. These low-

precision ALU units can be grouped to function as a higher-precision ALU. 

In addition to minimizing OFF-chip memory access and preserving the benefits of digital architecture, 

the proposed digital CIM macro also reduces area consumption by adopting the bit -serial ALU 

computing paradigm. Furthermore, it incorporates a BitFusion-like regular two-dimensional digital 

bitcell structure, which can be reconfigured from 1 to 16 bits to meet various performance and energy 

requirements. 
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Fig.  25  Digital ALU architecture. (a) Conventional bit-parallel, (b) bit-serial, and (c) 

reconfigurable bit-precision[18] 

 3.4 Proposed 10T SRAM cell 

 3.4.1 Circuit Description 

The proposed 10T current-based SRAM bitcell features a design that includes a sub-circuit of transistors 

M1-M2-M3-M4, resembling a conventional 6T SRAM design. This configuration forms a bi-stable 

transistor structure composed of two CMOS inverters connected in a back-to-back fashion, creating a 

feedback loop that maintains a particular logical state (0 or 1) as Q (true value) or QB (complementary 

value). For write access, the cell uses two access transistors, M5 and M6, driven by the writing wordline 

signal (WWL) and connected to the write bitlines (BL and BLB) on either side. 

Additionally, transistors M7-M8-M9-M10 form the read circuitry for the design. Their gate terminals 

are connected to the cell’s storage nodes, Q and QB, and controlled by two read wordline signals (BL 

and BL_BAR), which are connected to the read bitlines (RBL and RBLB). This configuration enables 

independent read and write operations due to the separate write and read access ports, enhancing the 

read stability compared to conventional 6T cell

 

Fig.  26 Proposed 10T SRAM cell 
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 3.4.2 Working Principle 

Table 2 enlists the control signals for the proposed 10T cell during different operating conditions. As 

can be seen, the write operation is similar to the conventional 6T cell. Here, based upon the type of input 

applied to BL and BLB, data is written inside the cell, using write access transistors, driven by WWL. 

Hold operation is equivalent to not selecting the cell. It works on the logic to detect no voltage difference 

on any output bitline. Therefore, to make the cell hold a particular logic state, both of its read bitlines, 

RBL and RBLB are precharged to logic high and the read wordlines are also made to stay at a logic high 

state, resulting in no voltage change on read bitlines. Also, signal WL is deactivated in order to 

disconnect write bitlines from storage node, inferring a hold operation. 

To understand the read operation, we first need to examine the role of the read wordline signals, BL and 

BL_BAR, in reading the desired output on the read bitlines, RBL and RBLB. The biasing conditions 

detailed in Table 1 clarify the operational concept for reading data from the proposed cell, presenting 

two scenarios: one for reading Q on bitline RBL and another for reading QB on bitline RBLB. 

Initially, both read bitlines are precharged to a logic high level. The output to be read on RBL and RBLB 

is then determined by the inputs applied to RWL0 and RWL1. Figure 27 illustrates four cases that help 

to understand the read-data operation, each corresponding to different input biasing conditions on the 

wordlines, BL and BLB. 

Table 2 Biasing for different memory mode operations[23] 

 

 

Fig.  27 Read Operation for proposed 10T SRAM cell 
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 3.4.3 Read Stability 

The implementation of 6T SRAM cells offers the advantage of low static power dissipation. However, 

a significant issue with 6T SRAM cells is potential instability during read operations, where a stored 0 

can be inadvertently overwritten by a 1. This occurs due to a positive feedback mechanism, where the 

voltage at node Q exceeds the threshold voltage of PMOS M1, causing node QB to drop to 0 and 

subsequently pulling node Q up to 1. To address this issue, the proposed design uses separate read/write 

wordlines to isolate the data retention element from the data output element, preventing data storage 

disruption during read operations. 

Maintaining data retention in SRAM cells during standby mode and read access is a critical functional 

constraint, especially in advanced technology nodes. With technological scaling, the stability of the cell 

decreases as the supply voltage is reduced, leading to increased leakage currents and variability. The 

stability is typically defined by the Static Noise Margin (SNM), which is the maximum value of DC 

noise voltage that the SRAM cell can tolerate without altering the stored bit. Figure 4 illustrates the 

SNM comparison between the proposed 10T cell and a conventional 6T SRAM cell. The read SNM of 

the proposed 10T cell is 395mV at VDD = 1V, whereas the conventional 6T SRAM cell exhibits a read 

SNM of 155mV at VDD = 1V. The RSNM of the decoupled 10T cell is 2.54 times that of the 

conventional 6T cell 

 

Fig.  28 SNM of 10T SRAM cell 
 3.4.4 XNOR  Operation 

When binary values are used for computation purposes, the dot product oper- ation between weights and 

activation functions can be reduced to bit-wise operations; binary values being -1 or +1. These are 

encoded with logic '1' for +1, and logic '0' for -1. Table 9 illustrates how multiplication on binary values 

can be interpreted as performing an XNOR operation on binary encoded logic values. 
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Fig.  29 Basic neuron architecture showinf MAC operation[23] 

 
Table 3 XNOR Operation Equivalent to DOT- Product[23] 

 

 3.4.5 MAC(Multiply-and-accumulate) using 10T SRAM                                                                   

In today's world, neural networks are important tools for achieving cutting edge results in a wide range 

of autonomous applications. DNNs have traditionally been used for this purpose, as they use 32-bit 

floating-point integers. Convolution in neural networks is based on the multiply-accumulate principle, 

which entails computing the dot product of two matrices, one holding weight and another storing input, 

which is a relatively common operation. The major issue arises when it comes to managing 32-bit 

numbers, which involve computations to be performed, requiring high storage and thus, are expensive. 

Because of this it becomes difficult for today's edge applications to handle sucha scenario. BNNs were 

proposed to tackle this problem by limiting weights and input activations (IAs) to +1 and 1. This reduced 

storage and computation need to a major extent. As a result, the simple XNOR-pop count operation 

replaces the dot-product operation in BNNs. 

 

Fig.  30 10T SRAM cell 
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Table 4 MAC Operation using 10T SRAM cell 

 

BL(Input) Q(Weight) XNOR(RBL) 

0(-1) 0(-1) 1 

0(-1) 1 0(-1) 

1 0(-1) 0(-1) 

1 1 1 

 

 3.5 Bitcell For Proposed Architecture 

Fig. 31 shows a block diagram of the proposed digital bitcell. A bitcell is composed of three major 

building blocks: a full custom designed proposed 10T SRAM cell for a bitwise multiplication, and a 

full-adder for accumulating partial sum. Two 2:1 multiplexers (MUXs)are added for the selection of 

internal signals in different configurations. MUXs are used to configure the operating mode of the bitcell 

in column MACs and to determine the LSB bitcell which is located at the top of each column MAC. 

Fig. 8 describes an operation example of two columns with five bitcells per each to form a cascaded two 

4 bit bit-serial MAC units. Each bitcell is configured to one of the two different functional models (i.e., 

Type-A and Type-B) based on its location within the column bitcell array. Type-A bitcell enables all 

three building blocks in a bitcell, while Type-B only enables full-adder for accumulate-only operation. 

The bit-precision of weights is configured by the number of Type-A bitcells in a column (e.g., 4 bit in 

Fig. 8), while type-B bitcells are added to extend the output precision which also depends on the number 

of columns. For example, the number of Type-B bitcells are 7 for each column MAC in the 128-column 

array and the output precision at 1 bit, 4 bit and 16 bit weights are 8 bit, 11 bit, and 23 bit, respectively. 

Each cycle of bit-serial MAC operation, a serialized input on the shared bitline is multiplied to a 4 bit 

weight stored in SRAM cells in a 4 bit column MAC. Bitwise multiplication results are then accumulated 

at the following ripple carry adder that is formed by vertically connected full-adders from each bitcells. 

The bit-serial MAC computations are performed through all the column MACs in the same row. Once 

a partial sum output value on the far right of the column is settled, then it is further post-processed for 

merging partial sum results from each cycle of bit-serial operation. 

 

Fig.  31 BitCell Using 10T SRAM cell
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 3.5.1 Basic Operation Using Bitcell 

Fig. 32 describes an operation example of two columns with five bitcells per each to form a cascaded 

two 4 bit bit-serial MAC units. Each bitcell is configured to one of the two different functional models 

(i.e., Type-A and Type-B) based on its location within the column bitcell array. Type-A bitcell enables 

all three building blocks in a bitcell, while Type-B only enables full-adder for accumulate-only 

operation. The bit-precision of weights is configured by the number of Type-A bitcells in a column (e.g., 

4 bit in Fig. 32), while type-B bitcells are added to extend the output precision which also depends on 

the number of columns. For example, the number of Type-B bitcells are 7 for each column MAC in the 

128-column array and the output precision at 1 bit, 4 bit and 16 bit weights are 8 bit, 11 bit, and 23 bit, 

respectively. Each cycle of bit-serial MAC operation, a serialized input on the shared bitline is multiplied 

to a 4 bit weight stored in SRAM cells in a 4 bit column MAC. Bitwise multiplication result s are then 

accumulated at the following ripple carry adder that is formed by vertically connected full -adders from 

each bitcells. The bit-serial MAC computations are performed through all the column MACs in the same 

row. Once a partial sum output value on the far right of the column is settled, then it is further post-

processed for merging partial sum results from each cycle of bit-serial operation. 

 

 

Fig.  32 Building a column MAC array using bitcells. In the example on the left, 10 bitcells are used 

for building a dot-product with 4 bit weight/input. The example shown on the right describes bit-serial 

multiplication of 4 bit two’s complement weight and 4 bit binary weighted signed number input[22] 
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 3.5.2 Reconfigurability 

Fig. 33 shows a complete CIM macro comprising of 128 ×128 digital bitcells and a post-accumulator. 

The bitcell array can be readily reconfigured to operate as parallel dot products. Each row of the 

reconfigured column MACs per forms a dot-product computation with variable bit-precisions. We 

assign the number of Type-A bitcells to represent the weight precision while the number of Type-B 

bitcells is determined based on the dynamic range of partial-sum, which depends on the number of 

columns. For instance, we can assign 1 Type-A and 7 Type-B bitcells as a single column MAC when 

reconfiguring the CIM macro into sixteen 1 bit dot-products, as shown in Fig. 34, left. The macro can 

be reconfigured to eight 9 bit dot-products by changing the number of Type-A bitcells per column MAC 

from 1 to 9, as shown in Fig. 34, right. Note that the number of bit-serial operation cycles programs the 

input precision, and hence 9 bit dot-products require 9× more operation cycles than that of 1 bit dot-

products 

A 16 bit partial-sum (i.e., Pi [15:0]) is generated from each cycle (i = 0 to 8) of the dot-product operation 

between 128×9 bit weights and inputs. Each cycle, the binary-weighted inputs are serialized and used 

for computing dot-product partial-sums. Hence, the partial-sums are left shifted and accumulated at the 

following post accumulator, as shown in Fig.35. 

 

 

 

Fig.  33 CIM micro with 128X128 bitcells for N x product [22]
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Fig.  34 Reconfigured CIM macros with 128 × 128 bitcells. Each column MAC requires M Type-A 

cells and 7 Type-B cells[22] 

 

 

Fig.  35 Postaccumulator combines individual partial-sums from each  operation cycle to complete a 

dot-product with multibit precision[22] 
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 3.6 Top Level Of Proposed Architecture 

CIM architectures generally comprise an array of memory cells surrounded by essential peripheral 

circuits and control logic. Figure 2 illustrates the memory array as the central focus, with other main 

blocks including the address decoder, word line drivers, column multiplexer, precharge circuitry, write 

drivers, sense amplifier, and control logic. The subsequent sections detail the operation of each 

individual block within the SRAM, followed by a high-level explanation of how these diverse blocks 

interact to facilitate the functioning of a memory device. 

 

Fig.  36 Proposed CIM architecture
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 3.6.1 Precharge Circuitry 

The precharge circuit is an integral component used in both read and write operations within the SRAM 

architecture. It plays a crucial role during the initial phase of the clock cycle. Illustrated in Figure 37, 

this circuit is relatively straightforward, comprising three PMOS transistors. 

Upon receiving the input signal from the cell, known as PCLK, all three transistors are activated. Two 

of these transistors, M1 and M2, are responsible for charging the bit lines, BL and BL_bar, respectively, 

to the supply voltage (Vdd). The third transistor, M3, aids in equalizing the voltages observed on the bit 

lines. 

The primary purpose of equalizing the bit line voltages during the pre-charge phase is to prepare them 

for subsequent operations. By ensuring that both bit lines have equal voltages, any voltage discrepancies 

that occur during subsequent phases become more pronounced. This facilitates quicker detection of 

voltage differences by the sense amplifier, which is essential for accurate data retrieval  

 

Fig.  37 Precharge Circuitry[8] 

 

 3.6.2 Address Decoder And Word Line Drivers 

The address decoder in CIM architectures plays a crucial role in selecting the appropriate word line 

based on the row address bits received from the address bus. With an n-bit input, the address decoder 

can control 2^n word lines. Figure 38 demonstrates a 2-to-4 dynamic NAND decoder, functioning as 

follows: During the initial clock phase, while the clock signal is low, PMOS transistors enabled by the 

PCLK signal precharge all internal word lines to Vdd. In the subsequent clock phase, the PMOS 
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transistors are disabled. Depending on the input address, a specific internal word line is pulled down to 

ground. Output inverters ensure that only one word line is asserted during the second clock phase, 

optimizing data access within the CIM architecture. 

 

Fig.  38  Address Decoder[8] 

 

 

Table 5 Truth Table for 2 to 4 NAND decoder[8] 

 

The truth table for the 2-to-4 decoder is depicted by Table 5. From the table it can be seen that the inputs 

are connected to the address bits in a binary reduction pattern. This pattern can be exploited to easily 

scale the dynamic decoder up to handle an array with more rows. Word line drivers are inserted, as 

bffers, in-between the word line output of the address decoder and the input of the Bit- cell. The word 

line drivers ensure that as the size of the memory array increases, and the word line capacitance 

increases, the signal is still able to turn on the access transistors in all Bit- cells 



                                                                              47  

 

 3.6.3 Column Multiplexer 

The column multiplexer takes in n-bits from the address bus and can select 2n bit line pairs associated 

with one word in the memory array. The schematic for a 4-to-1 tree multiplexer is shown in Figure 6. 

This type of tree multiplexer is bi-directional and is used for both the read and write operations; it 

connects the bit lines of the memory array to both the sense amplifer and the write driver. 

 

Fig.  39 Column Multiplexer[10] 

As seen in Figure 39, the column mux is built of NMOS transistors in a tree-like structure. The depth of 

the decoder is determined based on the number of words per row in the memory array. The most basic 

column mux has a depth one which means that there are two words per row. If there is only one word 

per row in the array, then no column mux is needed.As The number of words per row in the memory 

array increases, the depth of the column mux grows. The depth of the column mux is equal to the number 

of bits in the column address bus. 

Table 6 Binary reduction pattern for 4-to-1 tree column mux[10] 
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Figure 39 illustrates a column mux with a depth of two. This means that there are four words per row in 

the memory array and two select bits from the address bus are needed to choose the bit line pairs for one 

of the four words. A binary reduction pattern, shown in Table 6, is used to select the appropriate bit 

lines. In level one, A0, and its complement A0_bar, select either the even numbered words or the odd 

numbered words in the row. In level two, the most significant bit A1, and its complement A1_bar, then 

select one of the words passed down from the previous level. Relative to other column mux designs, 

such as pass transistor based decoders with NOR pre-decoders, the tree mux uses significantly less 

devices. However, this type of design can provide poor performance if a large decoder with many levels 

is needed. The delay of of a tree mux quadratically increases with each level. Due to this fact, other types 

of column decoders should be considered for larger memory arrays 

 3.6.4 Sense Amplifier 

The sense amplifier is used to sense the difference between the bit lines (BL and BL_bar) while a read 

operation is performed. A sense amplifier is necessary to recover the signals from the bit lines because 

they do not experience full voltage swing. As the size of the memory array grows, the capacitive load of 

the bit lines increase and the voltage swing is limited by the small memory cells dr iving this large load. 

A differential sense amplifier is used to sense the small voltage difference between the bit lines and 

accelerates the read operation. 

The schematic for the sense amp is shown in Figure 40. The sense amplifier is enabled by the SCLK 

signal, which initiates the read operation. Before the sense amplifier is enabled, the bit lines are 

precharged to Vdd by the precharge unit. When the sense amp is enabled, one of the bit lines experiences 

a voltage drop based on the value stored in the memory cell. 

 

Fig.  40  Sense Amplifier[8] 
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If a zero is stored, the BL voltage drops. If a one is stored, the BL_bar voltage drops. The voltage 

difference between BL and BL_bar is sensed and the output signal is then taken to a true logic level and 

latched to the data bus 

 3.6.5 Write Driver And MAC Driver 

The write driver is responsible for driving the input signal into the memory cell during a write operation. 

As depicted in Figure 41, the write driver comprises two tristate buffers: one inverting and the other 

non-inverting. It receives a data bit from the data bus and outputs this value to the bit line, while 

simultaneously outputting its complement to the bit line bar. Both tristate buffers are controlled by the 

EN signal. Ensuring that the bit lines always carry complementary values is crucial for correctly storing 

data in the Bitcell. Additionally, the drivers must be properly sized to accommodate the increasing bit 

line capacitance as the memory array expands. 

 

Fig.  41 Write Driver[8] 
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 Chapter 4. Simulation Result & Analysis 

4.1 Introduction 

To design and analyze a proposed Processing-In-Memory (CIM) architecture using Cadence Virtuoso 

with TSMC 65nm technology, begin by setting up the Cadence Virtuoso environment. Ensure that 

Cadence Virtuoso is installed correctly and import the TSMC 65nm Process Design Kit (PDK) into 

Virtuoso. Create a new library for your CIM design and attach it to the TSMC 65nm technology file. In 

the schematic editor, design the CIM architecture by placing necessary components such as transistors, 

resistors, and capacitors, and ensure proper connectivity, including power (VDD) and ground (GND) 

connections. If needed, create a symbol for your design for hierarchical design purposes. 

Next, set up the simulation by creating a test bench to simulate the CIM architecture. Define input 

sources for data and control signals, and set appropriate load conditions to mimic the actual operating 

environment. Use the Analog Design Environment (ADE) in Virtuoso to configure the simulation, 

selecting the appropriate simulator (e.g., Spectre), specifying the correct TSMC 65nm model files, and 

setting up the type of analysis (DC, AC, transient, parametric) along with simulation parameters such as 

run time, accuracy, and temperature. 

 

Fig.  42 Proposed CIM Architecture 
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4.2 Simulation Results Of Proposed 10T SRAM Cell 

To perform read and write operations in a 10T SRAM cell, precise input stimuli must be applied. For a 

write operation, create a pulse signal for the word line (WL) to enable writing; the WL should go high, 

allowing data to be written into the cell. Apply the data bit to the bit line (BL) and its complement to the 

bit line bar (BLB), ensuring that the WL pulse is synchronized with the data inputs and remains high 

long enough to complete the write cycle. For a read operation, first precharge the bit lines (BL and BLB) 

to a specific voltage level, typically VDD/2, before initiating the read. Then, generate a pulse signal for 

the WL to go high, enabling the stored data to transfer to the bit lines. The duration of the WL pulse 

should be adequate for the cell to transfer the data. Monitor the bit line voltages: the bit line with a lower 

voltage indicates a stored '0', while the higher voltage indicates a stored '1'. This controlled application 

and monitoring ensure accurate write and read operations in the 10T SRAM cell. 

 

Fig.  43 Write Operation 

 

 

Fig.  44 Read Operation 
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4.2.1 Static Noise Margin(SNM): 

Static Noise Margin (SNM) is a critical parameter in the operation of SRAM (Static Random-Access 

Memory) cells, reflecting their robustness against noise and disturbances. SNM is defined as the 

maximum noise voltage that a memory cell can tolerate before it becomes unstable and erroneously flips 

its stored state. It is typically measured using the "butterfly curve" method, which involves plotting the 

voltage transfer characteristics (VTC) of the cell's cross-coupled inverters. The largest square that fits 

within the lobes of this curve represents the SNM, with the side length of the square being the SNM 

value. SNM is evaluated in different operational modes: read SNM, write SNM, and hold SNM. During 

read operations, the read SNM is usually lower because the access transistors are activated, connecting 

the cell to the bit lines and potentially disturbing the stored data. Write SNM is concerned with the ability 

to overwrite existing data, ensuring reliable writes even in noisy conditions. Hold SNM, measured when 

the cell is idle, ensures data retention stability. Factors affecting SNM include transistor mismatches due 

to manufacturing variations, supply voltage levels, temperature, and cell design, particularly the sizing 

of the transistors. High SNM values indicate more reliable memory cells, contributing to better 

manufacturing yield and overall performance. Balancing SNM with other performance metrics like 

access speed and power consumption is crucial for optimal memory design.  

 

Fig.  45 SNM of 10T SRAM cell 

4.2.2 Delay 

Read and write delays are critical performance metrics for memory cells, including SRAM, as they 

determine the speed at which data can be accessed and stored. The read delay is the time it takes for a 

memory cell to transfer the stored data to the output after the read command is issued. This involves the 

activation of the word line (WL) and the subsequent propagation of the signal through the bit lines (BL 

and BLB) until the data is sensed by the read circuitry. Write delay, on the other hand, is the time required 

to write new data into the memory cell after the write command is activated. This process involves 

driving the bit lines with the data and its complement, enabling the word line, and ensuring that the data 

is successfully latched into the cell. To calculate these delays in Cadence Virtuoso, set up a transient 

analysis in the Analog Design Environment (ADE). For read delay, precharge the bit lines to a specific 
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voltage level, pulse the word line, and measure the time taken for the bit line voltage to reach a defined 

threshold that indicates a successful read. For write delay, apply the data signals to the bit lines, pulse 

the word line, and measure the time required for the cell to store the new data. By analyzing the 

waveforms generated during these simulations, you can accurately determine the read and write delays, 

which are crucial for optimizing memory performance. 

 

Fig.  46 Delay Analysis of 10T SRAM Cell
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4.3 Simulation Result Of Bitcell For Proposed Architecture 

To simulate the bitcell for a column Multiply-Accumulate (MAC) operation using Cadence Virtuoso, 

several steps need to be followed. First, the schematic for the bitcell must be designed, incorporating the 

custom-designed 10T SRAM cell for bitwise multiplication and a full-adder for accumulating partial 

sums. Additionally, two 2:1 multiplexers (MUXs) are included to select internal signals in different 

configurations, crucial for configuring the bitcell's operating mode within column MACs and 

determining the Least Significant Bit (LSB) bitcell placement at the top of each column MAC. Once the 

schematic is complete, a test bench schematic is created to instantiate the bitcell for simulation. Input 

stimuli are defined to test the MAC operation, including input data patterns for bitwise multiplication 

and full-adder operation. The MUXs are configured to select appropriate signals for the desired 

operation mode. In the Analog Design Environment (ADE), simulation parameters are set, including the 

simulator selection (e.g., Spectre) and simulation type (e.g., transient). The simulation is then executed, 

and waveforms and signals are monitored to verify the correct functionality of the bitcell during MAC 

operation. Any observed issues are debugged, and circuit parameters are optimized if necessary. Finally, 

the simulation setup, results, and observations are documented in a comprehensive report, ensuring that 

the bitcell meets the requirements for efficient MAC operation in the intended application.   

 

 

Fig.  47 BitCell output waveform
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4.4 Simulation Result Of Different Operation Of Proposed 

Architecture 

To simulate a Processing-In-Memory (CIM) computation architecture capable of executing read, write, 

and Multiply-Accumulate (MAC) operations using Cadence Virtuoso, a systematic approach is 

essential. Firstly, the architecture of the CIM system needs to be designed, encompassing the memory 

array, processing units, and interconnects, ensuring efficient support for both read and write operations. 

Following this, schematics are created for each component using the Cadence Virtuoso schematic editor, 

ensuring proper connectivity and functionality. A test bench schematic is then developed to instantiate 

the CIM architecture for simulation, incorporating input stimulus generators and defining the timing and 

sequencing of operations. In the Analog Design Environment (ADE), the simulation is configured with 

appropriate parameters, and simulations for read, write, and MAC operations are conducted. During read 

simulations, input patterns are defined to observe correct data retrieval, while write simulations validate 

data storage accuracy. MAC operation simulations involve configuring input data patterns and control 

signals to compute MAC operations in the processing units, with subsequent analysis to validate 

correctness and efficiency. Performance metrics such as latency, throughput, and energy efficiency are 

measured and analyzed. Any encountered issues are debugged, and optimizations are made to enhance 

overall efficiency. Finally, comprehensive documentation of the simulation setup, results, and 

observations is prepared, providing insights into the CIM architecture's performance and functionality, 

aiding in informed decision-making before hardware implementation. 

4.4.1 Signals 

In order to explain the read and write operations of a CIM Architecture, it is necessary to summarize the 

internal and external signals as well as the important timing considerations 

The typical top-level signals for a CIM Architecture are: 

▪ DATA                 - the bi-directional data bus 
▪ WL     -                - the address bus 
▪ Carry_select      - for mux1 of bitcell 
▪ Weight_enable – for mux2 of bitcell 

▪ P0,P1,P2,P3       -  Output of MAC operation 
▪ Write_enable    -  column mux for write operation 

▪ Read_enabel      -  column mux for read operation 
▪ MAC_enable       - column mux for MAC operation 
▪ PCLK                       -  to activate precharge circuit 

▪ SCLK                        - to activate sense amplifier circuit 
▪ WD_EN                   - enables the write driver during a write operation
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4.4.2 Timing Considerations: 

In a Processing-In-Memory (CIM) architecture, timing considerations for SRAM cells play a crucial 

role in ensuring the reliability and efficiency of memory operations. Key timing parameters include the 

setup and hold times for input signals, memory read and write delays, and the minimum clock period. 

Setup and hold times define the duration for which an input signal must remain stable before and after 

the clock edge that triggers the memory operation, respectively. These parameters are essential for 

proper data capture and stability during read and write operations. The write delay indicates the time 

taken from the clock edge of a write operation until valid data is driven into a memory cell. Similarly, 

the read delay refers to the time elapsed from the clock edge until valid data appears as an output of the 

sense amplifier. These delays are critical for ensuring accurate data retrieval and propagation within the 

memory array. In a CIM architecture, optimizing these timing parameters is crucial to achieving high-

speed and reliable memory operations, ultimately enhancing the overall performance of the system. 

4.4.3 Read Operation: 

In an proposed architecture, the read operation is a critical process for retrieving stored data from 

memory cells. It initiates with the activation of the word line corresponding to the targeted memory cell 

or row. This activation grants access to the selected memory cells within the designated row. 

Subsequently, the bit lines, BL and BLB, are precharged to a predefined voltage level, typically VDD/2, 

to establish a stable reference voltage. Following precharging, the bit lines are connected to the memory 

cell via access transistors, facilitating the transfer of stored data onto the bit lines. The sensed data is 

then amplified by sense amplifiers, detecting any voltage disparity between BL and BLB. Based on this 

voltage difference, the stored data in the memory cell is determined; a higher voltage on BL compared 

to BLB signifies a logical '1', while the opposite indicates a '0'. The sensed data is finally outputted from 

the sense amplifiers for further processing or utilization by the system. Once the read operat ion 

concludes, the word line is deactivated, safeguarding the integrity of the stored data within the memory 

cell. Overall, the read operation in an proposed architecture ensures efficient and accurate retrieval of 

data from the memory array, essential for the system's overall functionality 

 
Fig.  48 Ouput Waveform Write Operation 
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Table 7 Read operation of Proposed Architecture 

Signal State of input 

Write_enable Low 

Read_enable High 

MAC_enable Low 

Input_weight Low 

Input_MAC Low 

Word line High 

Bit line High 

 

4.4.4 Write Operation: 

In an SRAM-based architecture, the write operation is a crucial process for storing new data into the 

memory cells. The write operation typically begins with the activation of the word line (WL) 

corresponding to the desired memory cell or row. This activation enables access to the selected memory 

cells within that row. Simultaneously, the bit lines (BL and BLB) associated with the targeted column 

are driven with the data bit and its complement. The activated word line allows the transistors in the 

access path of the selected memory cell to become conductive, connecting the memory cell to the bit 

lines. The stored data in the memory cell is determined by the voltage levels of the bit lines; if BL is at 

a higher voltage level compared to BLB, the memory cell stores a logical '1', and vice versa for a '0'. 

Once the write operation is completed for the selected cell, the word line is deactivated, isolating the 

memory cell from the bit lines to maintain the integrity of the stored data. Overall, the write operation 

in an SRAM-based architecture ensures efficient and accurate storage of data in the memory cells, 

essential for the system's overall functionality. 
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Table 8 Write Operation For Proposed Architecture 

 

Signal State of input 

Write_enable High 

Read_enable Low 

MAC_enable Low 

Input_weight High 

Input_MAC Low 

Word line High 

Bit line High 

 

 

Fig.  49 Output Waveform Read Operation 

4.4.5 MAC Operation: 

Table 9 shows the number representation scheme for input output, weight, and the first carry-in (C0) of 

the MAC unit. The weight is stored as a two’s complement signed number while the input is encoded to 

a binary-weighted signed . number, which realizes the bit-serial input as the serialized binary value of 

+1/−1. Compared to the traditional binary weighted two’s complement number, the proposed encoding 

scheme provides simpler operation by not having to spend more compute cycles for  the sign bit and 

encoding stages to express the signed number. For instance, the encoded 4 bit serial input “0110” 
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represents a decimal number −3 since “−3 =−23 +22 +21 −20,” where 0 represents −1and 1 represents +1. 

Each cycle of MAC operation can be broken into three steps 

Table 9 Weight and Input Number Representation[22] 

 

Figure 50 illustrates a detailed example of a four-step Processing-In-Memory (CIM) dot-product 

operation, utilizing two 4-bit column Multiply-Accumulate (MAC) units. Each MAC unit comprises 

four Type-A bitcells and one Type-B bitcell. The operation involves computing the dot product of two 

sets of 4-bit weights (W0 = -3, W1 = 6) and binary inputs (X0 = -1, X1 = +1). Initially, the weights and 

inputs are prepared for bitwise multiplications (Fig. 50). Note that the Type-B bitcell extends the sign 

from the above Type-A bitcell (MSB of the weight). In the first step, the two's complement multiply 

operations require the addition of the first carry (input bar) to produce correct results (Fig. 12b). When 

the input is 0 (-1), the sign-extended two's complement weight is inverted using XNOR-gate-based 

bitwise multipliers and then added to the first carry-in, which is 1 (X0 = 1). Conversely, the 5-bit weight 

is buffered while the first carry-in is 0 when the input is 1 (+1). The bitwise multiplication results are 

then accumulated in a ripple carry adder in the first column MAC (Fig. 12c). Finally, the 5-bit partial-

sum result is combined with the bitwise multiplication results from the second column MAC on the right 

(Fig. 12d), completing the dot-product operation. 

 

 

Fig.  50 Detailed operation of column MACs with 4 bit weight and 2× columns (i.e. 5× bitcells per 

column MAC). The input activation is 1 bit, and hence it takes 1× cycle to complete a full dot -product 

between two pairs of 4 bit weights and 1 bit input activations[22] 



                                                                              60  

Table 10 Mac Operation for proposed Architecture 

Signal State of input 

Write_enable High 

Read_enable Low 

MAC_enable Low 

Input_weight High 

Input_MAC Low 

Word line High 

Bit line High 

 

 

Fig.  51 Waveform Of MAC operation
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 Chapter 5. Conclusion And Future Scope 

5.1 Summary 

The design of a novel 10T SRAM cell aims to enhance the Static Noise Margin (SNM) compared to the 

conventional 6T SRAM cell. This new 10T SRAM cell incorporates additional transistors to improve 

stability and reduce susceptibility to noise, thereby ensuring more reliable data storage and retrieval. By 

leveraging the improved SNM, the 10T SRAM cell provides a robust foundation for developing a 

compute-in-memory (CIM) architecture. 

The proposed CIM architecture is fully digital, utilizing bit-serial computing and offering 

reconfigurability to accommodate various input and weight precisions from 1 to 16 bits. This 

reconfigurability allows the architecture to adapt to different computational requirements, enhancing its 

versatility and efficiency in processing neural networks and other data-intensive tasks. 

To implement and verify the performance of this CIM architecture, the entire design, including the novel 

10T SRAM cell and the bit-serial computation framework, is simulated using Cadence Virtuoso with 

TSMC 65nm technology. The simulation process involves creating detailed schematics of the 10T 

SRAM cell, integrating it into the CIM macro, and configuring test benches to evaluate the functionality 

and performance of the system. Key parameters such as read/write delays, power consumption, and 

overall stability are analyzed to ensure the design meets the desired specifications.  

5.2 Work Conclusion 

Conventional digital accelerators have become unsuitable for machine learning tasks in edge-computing 

due to excessive energy consumption from off-chip memory access and data movement. This issue has 

driven the development of compute-in-memory (CIM) architectures, which integrate compact memory 

macros with embedded analog computing circuits in each bitcell. However, analog architectures face 

significant challenges, including process variation, data conversion overhead, noise susceptibility, and 

scalability issues, which are less prevalent in digital systems. While digital architectures have evolved 

to minimize off-chip memory access and data movement, a digital adaptation of CIM has been lacking. 

The article introduces a novel digital CIM macro architecture designed to address the specific concerns 

of digital accelerators and resolve the critical issues faced by SRAM-based analog CIM macros. This 

CIM architecture features a fully reconfigurable digital CIM bitcell and a bit-serial CIM macro, 

consisting of a two-dimensional digital bitcell array and a post-accumulator. This innovative architecture 

allows both input and weight bit-precision to be programmed from 1 to 16 bits. Although bit-serial 

computation offers area efficiency, it comes with trade-offs in latency and throughput. The CIM 

architecture aims to provide a balanced solution that leverages the strengths of digital systems while 

overcoming the limitations of analog CIM implementations. 
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5.3 Future Scope of Work 

The future scope of the novel 10T SRAM cell-based compute-in-memory (CIM) architecture is vast and 

promising. One potential direction involves further optimizing the 10T SRAM cell design to increase 

memory density, thereby enhancing its suitability for applications requiring extensive data storage and 

processing. Additionally, as semiconductor technology progresses, adapting the design to smaller 

process nodes, such as 45nm or 28nm, could significantly improve speed, power consumption, and 

overall performance. Another intriguing avenue is integrating the 10T SRAM-based CIM architecture 

with emerging memory technologies like resistive RAM (RRAM) or magnetoresistive RAM (MRAM), 

creating a hybrid system that leverages the strengths of various memory types for enhanced capabilities. 

Future research could also focus on architectural enhancements, such as incorporating error correction 

codes (ECC) to boost data reliability and fault tolerance, and optimizing interconnects to reduce latency 

and improve throughput. Developing software and algorithms specifically optimized for the bit-serial 

CIM architecture could unlock new levels of performance, particularly in machine learning and neural 

network applications. Moreover, extending testing to real-world applications, such as edge computing 

devices, IoT systems, and autonomous vehicles, would provide valuable insights and demonstrate the 

architecture's practical viability. 

Exploring the integration of energy-harvesting techniques to power the 10T SRAM-based CIM 

architecture could pave the way for low-power, self-sustaining applications in remote or inaccessible 

locations. Lastly, incorporating robust security features to protect data integrity and prevent 

unauthorized access is crucial for many applications, warranting further research into developing 

tailored security protocols. By pursuing these research directions, the novel 10T SRAM-based CIM 

architecture can continue to evolve, addressing new challenges and expanding its applicability across a 

broader range of high-performance and energy-efficient computing scenarios. 
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