
i

HIGH PERFORMANCE COMPUTING USING

FPGA
MTech Thesis

By

Dharmendra Kartikey

DEPARTMENT OF ELECTRICAL ENGINEERING

INDIAN INSTITUTE OF TECHNOLOGY INDORE
May 2024

ii

High Performance

Computing using FPGA

A THESIS

Submitted in partial fulfilment of the

requirements for the award of the degree

of

Master of Technology

by

Dharmendra Kartikey

DEPARTMENT OF ELECTRICAL ENGINEERING

INDIAN INSTITUTE OF TECHNOLOGY INDORE
May 2024

iii

INDIAN INSTITUTE OF TECHNOLOGY

INDORE

CANDIDATE’S DECLARATION

I hereby certify that the work which is being presented in this thesis titled High Performance

computing using FPGA in the partial fulfilment of requirement for award of the degree of MASTER OF

TECHNOLOGY and submitted in the DEPARTMENT OF ELECTRICAL ENGINEERING, Indian

Institute of Technology Indore , is an authentic record of my own work carried out during the time period

from June 2023 to May 2024 under the supervision of Prof .Srivathsan Vasudevan, Department of

Electrical engineering and Prof. Satya S Balusu ,Department of Chemistry of Indian institute of

Technology Indore .

The matter presented in this thesis has not been submitted by me for the award of any other degree of

this or any other institute.

Signature of the student with date

(DHARMENDRA KARTIKEY)

--

This is to certify that the above statement made by the candidate is correct to the best of my/our knowledge

Signature of M.Tech supervisor with Date Signature of M.Tech supervisor with Date

 (Prof Srivathsan Vasudevan) (Prof Satya S Bulusu)

Dharmendra Kartikey has successfully given his M.Tech Oral Examination held on 7th May 2024.

Signature of M.Tech supervisor

Date

 (Prof Srivathsan Vasudevan)

Signature of M.Tech supervisor

Date

(Prof Satya S Bulusu)

Convener,DPGC

Date

ACKNOWLEDGEMENTS

I would like to extend my deepest gratitude to Prof. Dr. Srivathsan

Vasudevan and Prof. Dr. Satya S Bulusu, my thesis supervisors. Their

unwavering support from the very beginning has been invaluable, and I

am immensely grateful for the time they dedicated to guiding and

motivating me, especially when faced with numerous options or during

challenging times. I am thankful for the opportunities they provided,

which have significantly shaped my MTech journey.

I would also like to express my appreciation to all the members and

seniors of my lab for their technical guidance and support throughout my

MTech thesis project. Additionally, I sincerely acknowledge the support

of IIT Indore for providing the necessary lab equipment and facilities.

I am also grateful to DRDO for sponsoring my MTech program. Lastly,

my heartfelt thanks go to my family, whose tremendous support and

encouragement have been crucial in helping me stay positive and

overcome various obstacles. To them, I will always be deeply grateful.

(DHARMENDRA KARTIKEY)

v

Dedicated to

My family

vi

ABSTRACT

Molecular dynamics (MD) simulations involve calculating the

forces Between atoms and the total energy of chemical system; however,

these computations typically rely on high-end, sequential, and power-

intensive servers. This poses a limitation when attempting to simulate

large-scale systems that are relevant to real-world experiments. To

address this challenge, An Artificial Neural Network (ANN) method to

compute interatomic forces and energy in a system consisting of 147 Au

atoms was created and it was implemented on a FPGA system.

Existing approach involves a combination of parallel computation

on a Field Programmable Gate Array (FPGA) and simple computations

performed on a Host PC. Effective communication between the Host PC and

the FPGA is crucial for the success of this hardware- software co-design.

This Thesis is an exploratory thesis which tries to explore new

methods of time performance improvements over existing approach. It

investigates interrupt-based transmission and CDMA based data transfer

method to improve time performance of existing design. Detailed

comparative test cases have been devised to come to a quantitative

conclusion.

At the end it proposes a Lab-on-a-chip architecture for Molecular

dynamics cycle for enhancing time performance by eliminating inter-device

communication like UART/Ethernet and making design more compact. It

also covers basic design challenges in the Lab-on-a-chip architecture and

provides solutions and test cases for validation of those solutions.

vii

1

Contents
LIST OF FIGURES ... 3

LIST OF TABLES .. 4

CHAPTER 1 ... 5

Introduction .. 5

1.1 Background .. 5

1.2 Motivation... 7

1.3 Objective of This project ... 7

1.4 Organization of the Thesis .. 8

CHAPTER 2 ... 9

UART Polling Vs Interrupt method ... 9

2.1 Literature survey ... 9

2.1.1 FPGA .. 9

2.1.1.1 Internal Architecture of an FPGA ... 9

2.1.1.2 Configurable Logic Block (CLB) ... 10

2.1.1.3 Programmable Interconnects .. 11

2.1.1.4 Programmable IOB ... 11

2.1.2 Microblaze IP ... 12

2.1.3 UARTlite IP .. 13

2.2 UART transmission and reception process 15

2.2.1 Polling based Transmission process.. 15

2.2.2 Polling based Reception process ... 15

2.2.3 Polling based Tx and Rx using high level function 16

2.2.4 Interrupt based Transmission process 17

2.2.5 Interrupt based Reception process ... 18

2.3 The comparison test case: UART Polling Vs Interrupt 19

2.3.1 Test objective .. 19

2.3.2 Test specification .. 19

2.3.3 Test design ... 19

2.3.4 Test Results ... 24

2.3.5 Conclusion .. 24

CHAPTER 3 ... 25

2

Microblaze and DMA data transfer ... 25

3.1 Literature survey .. 25

3.1.1 Dynamic Memory Access (DMA) ... 25

3.1.2 Ethernetlite IP .. 32

3.2 The comparison test case ... 39

3.2.1 Test objective .. 39

3.2.2 Test specification .. 39

3.2.3 Test design ... 39

3.2.4 Challenges ... 40

3.2.5 Test results .. 42

3.2.6 Conclusions ... 42

CHAPTER 4 ... 43

ZynqMPSOC based design ... 43

4.1 Literature survey .. 43

4.1.1 ZynqMPSOC architecture .. 43

4.1.2 GENESYS -ZU board .. 50

4.1.3 PetaLinux .. 52

4.2 Transforming existing design to Lab-on a chip 57

4.2.1 Existing design - Distributed architecture 57

4.2.2 Proposed Design: Lab-on-a-chip .. 58

4.2.3 The architecture of Lab-on-chip ... 59

4.2.4 Challenges ... 59

CHAPTER 5 ... 71

Conclusion and Future work .. 71

5.1 Conclusion .. 71

5.2 Future works .. 71

BIBLIOGRAPHY .. 72

3

LIST OF FIGURES
Figure 1. 1 Molecular Dynamics cycle implementation in FPGA 6

Figure 1. 2 Inter atomic potential/ MD calculations implementation in FPGA 6

Figure 2. 1 Internal Architecture of FPGA .. 10

Figure 2. 2 Configurable Logic Block .. 11

Figure 2. 3 Microblaze Internal Architecture ... 12

Figure 2. 4 AXI UARTLite Internal Architecture .. 13

Figure 2. 5 Polling based Transmission and reception process 15

Figure 2. 6 UART polling based TX and RX using high level functions 16

Figure 2. 7 UART interrupt based generic design .. 17

Figure 2. 8 UART interrupt based Transmission process 17

Figure 2. 9 UART interrupt-based Reception process .. 18

Figure 2. 10 Block design for test design 1 (polling-based Transmission) 19

Figure 2. 11 C language code for test design 1 (polling-based Transmission) 21

Figure 2. 12 Block design for test design 2 (interrupt-based Transmission) 21

Figure 2. 13 C language code for test design 2 (interrupt-based Transmission) .. 23

Figure 3. 1 AXI CDMA Architecture .. 29

Figure 3. 2 CDMA simple DMA Transfer sequence .. 30

Figure 3. 3 AXI EthernetLite IP Block Diagram ... 34

Figure 3. 4 Ethernet Frame Format .. 38

Figure 3. 5 Ethernet Transmission sequence ... 38

Figure 3. 6 Generic block design for Test case ... 39

Figure 3. 7 Generic Block design of test case1 (micro blaze data transfer) 40

Figure 3. 8 Generic Block design of test case2 (CDMA data transfer) 40

Figure 4. 1 ZynqMPSOC architecture ... 43

Figure 4. 2 Picture of Genesys ZU-5EV board .. 50

Figure 4. 3 Hardware resource of Genesys ZU-Board .. 51

Figure 4. 4 Distributed Design of MD cycle .. 57

Figure 4. 4 Distributed Design of MD cycle .. 57

Figure 4. 5 IAP/MD calculations implemented inside FPGA 58

Figure 4. 6 Lab-on-a-chip architecture ... 58

Figure 4. 7 Shared memory .. 60

Figure 4. 8 Core sequencing ... 61

Figure 4. 9 Test result for shared memory test case .. 62

Figure 4. 10 Cross-compilation basics .. 64

Figure 4. 11 Verlet algorithm with loopback program ... 64

Figure 4. 11 Verlet algorithm with loopback program ... 64

Figure 4. 12 Test Results -Verlet in petalinux ... 66

Figure 4. 13 Running RPU application in APU .. 67

4

Figure 4. 14 Test application for RPU ... 69

Figure 4. 15 workflow for running RPU application in APU 69

Figure 4. 16 Test Result for running RPU application in APU 70

LIST OF TABLES

Table 1: Test Results for Interrupt Vs Polling .. 24

Table 2: Non aligned and aligned Memory representation 41

Table 3: Memory content after simple DMA Transfer Operation 41

Table 4: Test Results for Microblaze Vs CDMA Data Transfer Test Case 42

Table 5:Test Results for Verlet algorithm implementation in PC and Petalinux ... 66

Table 6:Test Result analysis data .. 66

5

CHAPTER 1

Introduction

1.1 Background
High Performance Computing (HPC) refers to the ability of a computer

system to process data at a significantly faster speed. Typically, HPC

systems are built by connecting multiple computer architectures, such as

CPUs and GPUs, in a cluster. This allows multiple software programs to be

run simultaneously on the cluster, resulting in faster processing times. HPC

servers utilize various types of processors, including conventional CPUs

and graphics processing units (GPUs). These components work together to

improve computing power and speed, which are crucial for many HPC

applications. GPUs, in particular, excel at processing large amounts of data

in parallel, making them well-suited for high-performance computing tasks.

The HPC server is bulky, power hungry and needs maintenance regularly.

Hence there was a requirement find out the alternate to this to implement

the Molecular dynamics cycles.

Field Programmable Gate Arrays (FPGAs) proved to be best alternate for

this requirement. The FPGA supports high lever of parallelism which is

ideal property for making hardware accelerators. They offer flexibility and

have proven effective in enhancing computing power for certain

applications.

The Molecular dynamics Cycle has been successfully implemented in our

lab using FPGA and host PC by implementing Molecular dynamics

calculation or inter atomic potential calculation on FPGA and verlet

algorithm on Host PC and UART or ethernet as inter device communication.

This design has time performance improvements over HPC server. It is

compact, power saving and easy to maintenance.

6

MD calculations

Figure 1. 1 Molecular Dynamics cycle implementation in FPGA

Figure 1. 2 Inter atomic potential/ MD calculations implementation in FPGA

7

Figure 2 shows IAP/MD calculations implemented inside FPGA.This block

takes values of x,y,z coordinated from PC using UART/Ethernet

.Microblaze sends the data to DDR then starts the Custom IP.This custom

IP is already designed and validated IP .It takes coordinates from DDR and

then saves back forces and energy values to some other memory location of

DDR .Microblaze then send these data back to PC using same protocol

.Verlet algorithm implemented in PC then takes force values and pro esses

it and gives back coordinates values

1.2 Motivation
The primary focus of this project is to find out methods to improve time

performance of existing design shown in figure 1 & figure 2. The existing

design is distributed design where two functional module namely MD

calculations and Verlet algorithm, are implemented in two different

platforms . The basic motivation is to implement the two functional module

into same platform so that the design can be more compact and the inter

device communication can be avoided so as to save time consumed by inter

device communication and hence making faster system.

1.3 Objective of This project
The objective of this project is to explore the methods or mechanism to

provide time performance improvements over the existing design .It

investigates following methods for achieving same objective

• UART interrupt based trans reception

• DMA data transfer between UART/Ethernet to DDR

• ZynqMPSOC based Lab -on-a-chip design

Making test design to compare these methods w.r.t existing design and result

comparison and analysis are some of the objective

8

1.4 Organization of the Thesis
Chapter 1: Introduction, motivation and objectives

Chapter 2 UART polling and Interrupt based transmission and reception ,A

comparative study and conclusions

Chapter 3 Microblaze and CDMA based data transfer between ethernet IP

and BRAM ,A comparative study and conclusions

Chapter 4 Design based on ZynqMPSOC ,the embedded linux i.e petalinux

,its associated and framework for Lab-on-a chip

Chapter 5 Conclusion and Future Work

9

CHAPTER 2

UART Polling Vs Interrupt method

2.1 Literature survey

2.1.1 FPGA

FPGA is an integrated circuit that can be programmed after it has been

manufactured. A FPGA is made up of a matrix of Configurable Logic

Blocks (CLBs) which are interconnected through programmable

interconnects. An FPGA consists of memory cells, control logic blocks, and

interconnects. The word "field" in the name refers to the user's capacity to

program the gate array at the field. The term "array" refers to a set of logic

gates that can be programmed by end users in columns and rows.

During the time of FPGA configuration, the internal components are

connected to each other via the interconnects in such a way that creates the

hardware implementations for software applications FPGA devices deliver

the high performance, low power, short time to market, reliability, high end

productivity and flexibility in re-programmability in the hardware, because

of their parallel nature. The flexibility provided by FPGA enhances

performance by lowering system time complexity and allowing complicated

logic to be implemented in real time. Our application requirements will

determine which FPGA family is most suited for the job

2.1.1.1 Internal Architecture of an FPGA

Architecture of FPGA consists of three basic components;

1. Configurable Logic Blocks (CLBs) or Adaptive Logical Modules

(ALM) which implement the logic functions. CLBs perform user- specified

logical functionalities. Programmable interconnects, which provide the

interconnection between CLBs or ALMs. Interconnect resources carry

signals among blocks.

2. Programmable I/O blocks which creates an interface between

internal array of logic blocks (CLBs) and devices external package pins.

10

2.1.1.2 Configurable Logic Block (CLB)

CLBs are the functional elements that allow the user to develop logic using

the basic building blocks. Lookup Tables (LUTs) and DSP blocks (for

multiplication and subtraction) are used to create arbitrary logic functions.

Flip-Flops (FF) for clocked storage elements are also included. CLB also

has signal routing elements that allow signals to be routed from one block

to another. They give physical support for a design that has been

implemented and downloaded. CLBs have inputs on both sides, making

them versatile in terms of logic mapping and division. The design given

below shows the implementation of a 4 input CLB using 2 3 input LUTs, a

full adder, a D-flipflop and 2 multiplexers.

Figure 2. 1 Internal Architecture of FPGA

11

Figure 2. 2 Configurable Logic Block

2.1.1.3 Programmable Interconnects

The device's programmable interconnect is a massive programmable switch

matrix that allows signals from all portions of the device to reach all other

parts of the device. The programmable interconnects are implemented using

3 technologies-

• SRAM

• Flash Memory

• Antifuse

2.1.1.4 Programmable IOB

A programmable I/O block is used to bring signals from the outside world

onto the device and transfer them back. With tri-state and open collector

output control, it comprises of an input buffer and an output buffer. On

output terminals, there are usually pull-up resistors and sometimes pull-

down resistors. In addition, many outputs have an FF that may be used to

provide a registered output to external boards or instruments. So naturally

these outputs only change when a clock edge enables them to transit.

12

2.1.2 Microblaze IP

Microblaze is a Xilinx soft core IP that implements a microprocessor

entirely within the FPGA's general-purpose memory and logic fabric. The

MicroBlaze has an excellent connection architecture that allows it to serve

a wide range of embedded applications. The AXI connection, MicroBlaze’s

primary I/O bus, is a system-memory mapped transaction bus with master–

slave functionality. The Core Connect PLB bus was used in previous

MicroBlaze versions. AXI is directly interfaced by the majority of FPGA

vendor-supplied and third-party IP (or through an AXI interconnect).

MicroBlaze employed a dedicated LMB bus, which provides fast on-chip

storage, to access local memory (FPGA RAM). AXI4-Stream connections

are used to facilitate user-defined coprocessors. By outsourcing sections or

the entire calculation to a user- designed hardware module, the

coprocessor(s) interface can speed up computationally complex

computations.

Figure 2. 3 Microblaze Internal Architecture

13

Features

• 32 32-bit general Purpose registers

• 32-bit instruction word in three operands and two addressing

modes (Immediate and Indexed)

• Use 32-bit address bus

• It uses single issue pipeline. (3 stage/5 stage/ 8 stage)

2.1.3 UARTlite IP

The AXI Universal Asynchronous Receiver Transmitter (UART)

Lite core serves as the I/O device of the system. This IP uses

UART communication protocol for off-chip communication.

UART signals are interfaced to the AXI interface of the Advanced

Microcontroller Bus Architecture (AMBA), and a transmit data

FIFO and receive data FIFO is present between them to synchronize

between the high-speed on-chip communication and low speed off-

chip communication. The AXI4-Lite protocol is being used to

interface with the control register of the IP’

AXI Interface: This is used to implement the AXI4-Lite slave

interface, which allows access to registers and data transfer

Figure 2. 4 AXI UARTLite Internal Architecture

14

between modules.

• UART Lite Registers: Memory mapped registers are

included in this module. It consists of a control register, a status

register, and a pair of 16-character transmit/receive FIFOs.

 UART Control: This block consists of

1. Receiver Control: This block samples received data and writes it

to the Receive Data FIFO based on the generated baud rate.

2. Transmitter Control: This block reads data from Transmit Data

FIFO and sends it out on the UART transmitter interface.

3. Baud Rate Generator: This block generates various baud rates as

per the User requirement.

4. Interrupt Control: The AXI UART Lite core provides interrupt

enable/disable control. If interrupts are enabled, a rising-edge sensitive

interrupt is generated when the receive FIFO becomes non-empty or when

the transmit FIFO becomes empty.

15

2.2 UART transmission and reception process

2.2.1 Polling based Transmission process

Figure shows polling based transmission process .The register in UARlite

IP provides TX empty flag .The data is written over UARTlite FIFO as long

is TX empty flag is set .Once TX empty flag is reset .The micro blaze stops

for writing and keep polling for this flag.As soon as it becomes set it again

starts writing over FIFO. Since micro blaze is always busy checking the

status of this TX empty flag ,it is called polling based Transmission process.

2.2.2 Polling based Reception process

Figure shows polling based reception process.The Microblaze

keeps pooling for RX valid data flag .This data flag sets when

atleast one data is available in RX FIFO.as soon as This data flag

is set .The microblaze reads from the RX FIFO .as microblaze is

busy polling for RX Valid data flag .Its caleed polling based

reception.

Figure 2. 5 Polling based Transmission and reception process

16

2.2.3 Polling based Tx and Rx using high level function

The high-level functions provided by Device IP BSP for sending and

receiving are XUartLite_Send and XUartLite_Recv. These functions take

pointer to data structure XUartLite and sending data memory and number

of bytes to be sent, as arguments. XUartLite structure has one of the element

structure XUartLite_Buffer which has 3 elements

*NextBytePtr,RequestedBytes and RemainingBytes,when this function are

called first mapping process happens then internally

XUartLite_SendBuffer/ XUartLite_RecvBuffer is called which works as

figure .

Figure 2. 6 UART polling based TX and RX using high level functions

17

2.2.4 Interrupt based Transmission process

Figure shows generic block design with UART and microblaze with

interrupt controller. Interrupt is generated when “The RX FIFO becomes

non empty or the TX FIFO becomes empty”. Whenever interrupt is

generated the interrupt controller passes this interrupt to microblaze which

call Interrupt Service Routine (ISR). Figure shows the flow when the

XUartLite_Send function is called. First the FIFO becomes full by writing

16 bytes of data, the transmission process starts once transmission of 16

byte is over and TX FIFO becomes empty,hence interrupt is generated .This

interrupt calls ISR (SendDataHandler) which again write another 16 bytes

of data in FIFO,and this process continues. The ISR takes record of the sent

count ,as soos as this becomes equal to desired data to be sent, the program

stops.

Figure 2. 7 UART interrupt based generic design

Figure 2. 8 UART interrupt based Transmission process

18

2.2.5 Interrupt based Reception process

Similar to transmission process, reception process also works, but the

condition for interrupt generation is different here. Figure shows the

reception process. Every time a byte is received, the RX FIFO becomes

non empty and hence interrupt is generated. As interrupt is generated ,ISR

(RecvDataHandler) is called then this FIFO data is read by

microblaze.when Next byte is received again interrupt is generated and

same process continues. The ISR takes record of the received count, as soon

as this becomes equal to desired data to be received, the program stops.

Figure 2. 9 UART interrupt-based Reception process

19

2.3 The comparison test case: UART Polling Vs

Interrupt

2.3.1 Test objective

To measure the time duration of sending 1768 bytes of data from UART

based polling and interrupt-based method and comparison of time

performance.

2.3.2 Test specification

Test Board: Genesys 2

Vivado 2017.4

SDK 2017.4

UART baud rate =9600 bps

2.3.3 Test design

There were 2 test design made. Test design 1 was used for polling-based

transmission method whereas test design 2 was used for interrupt-based

transmission method. the AXI timer IP was used for time measurement.

Figure 2. 10 Block design for test design 1 (polling-based Transmission)

20

21

Figure 2. 11 C language code for test design 1 (polling-based Transmission)

Figure 2. 12 Block design for test design 2 (interrupt-based Transmission)

22

23

Figure 2. 13 C language code for test design 2 (interrupt-based Transmission)

24

2.3.4 Test Results

Table 1: Test Results for Interrupt Vs Polling

Time Estimated Polling interrupt

Transmission

time for 50

bytes

0.05208333 0.05207787 0.05206633

2.3.5 Conclusion

It can be seen from results that the time for sending 50 bytes for polling and

interrupt based method is same, however interrupt based method provide

facility for doing additional activity during the sending time.

25

CHAPTER 3

Microblaze and DMA data transfer

3.1 Literature survey

3.1.1 Dynamic Memory Access (DMA)

Generic DMA, often referred to simply as DMA, is a fundamental

component in computer architecture that enables efficient data transfers

between peripheral devices and memory without involving the CPU. It is

an essential feature in modern computing systems, providing improved

performance by offloading data movement tasks from the CPU.

Key Features:

1. Data Transfer Efficiency: DMA controllers enhance system

efficiency by allowing data to be transferred directly between peripherals

and memory, bypassing the CPU. This reduces CPU overhead and improves

overall system performance.

2. synchronous Operation: DMA operates asynchronously with the

CPU, enabling concurrent data transfers while the CPU executes other

tasks. This asynchronous operation enhances system throughput and

responsiveness.

3. Block Transfer Support: DMA controllers support block data

transfers, allowing large chunks of data to be moved efficiently between

memory and peripherals. This is particularly beneficial for applications

26

requiring high-bandwidth data movement, such as multimedia processing

and networking.

4. Programmable Configuration: DMA controllers often feature

programmable configuration options, including transfer size, transfer

direction, and addressing modes. This flexibility allows developers to tailor

DMA operations to specific application requirements.

5. Interrupt Handling: DMA controllers typically support interrupt

mechanisms to notify the CPU upon completion of data transfers or when

specific events occur. This enables efficient handling of data transfer events

and synchronization with CPU tasks.

Applications:

1. Storage Devices: DMA is commonly used in storage devices such

as hard disk drives (HDDs), solid-state drives (SSDs), and optical drives to

facilitate fast data transfers between storage media and system memory.

2. Networking: In networking applications, DMA accelerates data

movement between network interfaces and system memory, enabling high-

speed data transmission and processing in networking devices.

3. Graphics Processing: DMA plays a crucial role in graphics

processing units (GPUs) and graphics cards, facilitating rapid transfer of

image and video data between the GPU memory and system memory for

rendering and display.

4. Multimedia Processing: DMA is essential for multimedia

applications such as audio and video processing, enabling efficient transfer

of multimedia data between peripherals and memory for playback,

recording, and editing.

5. Embedded Systems: In embedded systems and microcontroller-

based designs, DMA is used to optimize data transfer between peripherals

and memory, conserving CPU resources and reducing power consumption.

27

Generic DMA is a vital component in modern computing systems, enabling

efficient and high-speed data transfers between peripherals and memory. Its

asynchronous operation, block transfer support, and programmable

configuration options make it indispensable for a wide range of

applications, including storage devices, networking, graphics processing,

multimedia processing, and embedded systems. By offloading data

movement tasks from the CPU, DMA enhances system performance,

throughput, and responsiveness, contributing to overall system efficiency

and functionality.

AXI CDMA IP: Optimizing Memory-Mapped Data Transfers in

FPGA-Based Systems

Introduction:

Efficient data movement lies at the heart of optimized performance in

FPGA-based systems. The Advanced eXtensible Interface (AXI) Central

Direct Memory Access (CDMA) Intellectual Property (IP) emerges as a

cornerstone solution, meticulously designed to expedite transfers between

memory-mapped sources and destinations within the FPGA architecture. Its

focused functionality and tailored approach to memory-to-memory

operations make it an indispensable asset in FPGA development,

empowering engineers to optimize system efficiency and data handling

capabilities.

Key Features:

1. Memory-to-Memory Transfers:

• Unlike traditional DMA controllers, the AXI CDMA IP specializes

in facilitating data transfers between memory-mapped sources and

destinations within the FPGA architecture.

28

• This targeted approach streamlines data movement between distinct

memory regions, minimizing latency and optimizing system-level data

management.

2. Efficient Scatter-Gather Support:

• The AXI CDMA IP boasts robust scatter-gather capabilities,

enabling non-contiguous data transfers between memory-mapped regions.

• This feature enhances flexibility and efficiency, particularly in

applications with complex data transfer patterns or fragmented data

structures.

3. Configurable Transfer Modes:

• Flexibility lies at the core of the AXI CDMA IP, offering

configurable transfer modes tailored to diverse application demands.

• Burst transfers and streaming transfers empower developers to fine-

tune data movement parameters, maximizing throughput and minimizing

latency.

Applications:

1. Memory Management Optimization:

• Within FPGA-based systems, the AXI CDMA IP plays a pivotal role

in memory management tasks, including data copying, memory

initialization, and synchronization.

• It enables efficient utilization of memory resources, simplifying data

handling complexities across multifaceted applications.

2. Data Processing Pipelines:

• Unveiling its prowess in data processing pipelines, the AXI CDMA

IP fosters seamless data flow between disparate processing stages and

memory buffers.

29

• This seamless integration minimizes latency, facilitating real-time

processing capabilities in domains such as digital signal processing (DSP)

and image processing.

3. High-Performance Computing (HPC):

• Anchoring high-performance computing endeavors, the AXI

CDMA IP propels data movement efficiency to unprecedented heights.

• It accelerates data transfers between memory regions, processing

units, and external storage devices, underpinning peak system performance

and scalability.

In summary, the AXI CDMA IP emerges as a pivotal solution for optimizing

memory-mapped data transfers within FPGA architectures. Its specialized

functionality, robust scatter-gather support, and configurable transfer modes

empower engineers to streamline data movement processes, enhancing

system efficiency and responsiveness across a diverse range of applications.

Figure 3. 1 AXI CDMA Architecture

30

Figure 3. 2 CDMA simple DMA Transfer sequence

AXI DMA IP: Streamlining Data Transfers in FPGA-Based Systems

Introduction:

In the realm of FPGA-based systems, efficient data movement is pivotal for

optimizing overall performance. The Advanced eXtensible Interface (AXI)

Direct Memory Access (DMA) Intellectual Property (IP) stands as a

cornerstone solution, meticulously engineered to orchestrate seamless

transfers between streaming sources or destinations and memory-mapped

locations. Its versatile functionality and optimized design make it an

indispensable asset in FPGA development, empowering engineers to

enhance system throughput and responsiveness.

Key Features:

1. Stream-to-Memory Transfers:

• The AXI DMA IP excels in facilitating data transfers between

streaming sources, such as peripherals or processing units, and memory-

mapped destinations within the FPGA architecture.

31

• This capability streamlines the flow of data from streaming sources

to designated memory regions, minimizing CPU intervention and

optimizing system efficiency.

2. Efficient Data Movement:

• By offloading data transfer tasks from the CPU, the AXI DMA IP

reduces processing overhead, enabling the CPU to focus on critical

computational tasks.

• Its optimized data transfer mechanisms ensure high-bandwidth, low-

latency communication, ideal for applications requiring rapid and

continuous data streaming.

3. Configurable Transfer Modes:

The AXI DMA IP offers a range of configurable transfer modes, including

burst and streaming modes, allowing developers to tailor data transfer

parameters to specific application requirements.

This flexibility empowers engineers to optimize data throughput and

latency, achieving optimal performance across diverse use cases.

Applications:

1. High-Performance Computing (HPC):

• In HPC applications, the AXI DMA IP accelerates data movement

between processing units and memory, facilitating efficient parallel

computation and maximizing system throughput.

2. Multimedia Processing:

• In multimedia processing tasks such as video rendering or audio

processing, the AXI DMA IP enables seamless data streaming between

memory and processing units, ensuring smooth and uninterrupted playback.

3. Networking:

32

• Within networking applications, the AXI DMA IP supports fast and

reliable data transfers between network interfaces and memory, enabling

efficient packet processing and network communication.

 In conclusion, the AXI DMA IP serves as a foundational component

in FPGA-based systems, streamlining data transfers between streaming

sources and memory-mapped destinations. Its versatile functionality,

efficient data movement mechanisms, and configurable transfer modes

make it an invaluable asset across a diverse range of applications, from

high-performance computing to multimedia processing and networking.

3.1.2 Ethernetlite IP

AXI4 Interface Module This module provides the interface to the AXI4 and

implements AXI4 protocol logic. The AXI4 interface module is a

bidirectional interface between the AXI Ethernet Lite MAC core and the

AXI4/AXI4-Lite interface standard.

TX Buffer The TX Buffer module consists of 2K byte dual port memory to

hold transmit data for one complete frame and the transmit interface control

registers. It also includes optional 2K byte dual port memory for the pong

buffer based on the parameter C_TX_PING_PONG.

AXI4 Interface Module:

This module provides the interface to the AXI4 and implements AXI4

protocol logic. The AXI4 interface module is a bidirectional interface

between the AXI Ethernet Lite MAC core and the AXI4/AXI4-Lite

interface standard

TX Buffer

The TX Buffer module consists of 2K byte dual port memory to hold

transmit data for one complete frame and the transmit interface control

33

registers. It also includes optional 2K byte dual port memory for the pong

buffer based on the parameter C_TX_PING_PONG

RX Buffer

The RX Buffer module consists of 2K dual port memory to hold receive

data for one complete frame and the receive interface control register. It also

includes optional 2K dual port memory for the pong buffer based on the

parameter C_RX_PING_PONG

Transmit

This module consists of transmit logic, Cyclic Redundancy Check (CRC)

generator module, transmit data mux, TX First In First Out (FIFO) and the

transmit interface module. The CRC generator module calculates the CRC

for the frame to be transmitted. The transmit control mux arranges this

frame and sends the preamble, Start of Frame Delimiter (SFD), frame data,

padding and CRC to the transmit FIFO in the required order. When the

frame is transmitted to the PHY, this module generates a transmit interrupt

and updates the transmit control register

Receive

This module consists of the RX interface, loopback control mux, RX FIFO,

CRC checker and Receive Control module.

34

Receive data signals from the PHY are passed through the loopback control

mux and stored in the RX FIFO. If

loopback is enabled, data on the TX lines is passed to the RX FIFO. The

CRC checker module calculates the CRC of

the received frame and if the correct CRC is found, receive control logic

generates the frame receive interrupt.

Figure 3. 3 AXI EthernetLite IP Block Diagram

Ethernet protocol:

35

Ethernet data is encapsulated. The fields and bits in the frame are

transmitted from left to right (from the least significant bit to the most

significant bit), unless specified otherwise.

Preamble

The preamble field is used for synchronization and must contain seven bytes

with the pattern 10101010. If a collision is detected during the transmission

of the preamble or start of frame delimiter fields, the transmission of both

fields is completed.

For transmission, this field is always automatically inserted by the AXI

Ethernet Lite MAC core and should never appear in the packet data

provided to the AXI Ethernet Lite MAC core. For reception, this field is

always stripped from the packet data. The AXI Ethernet Lite MAC design

does not support the Ethernet 8-byte preamble frame type.

Start Frame Delimiter

The start frame delimiter field marks the start of the frame and must contain

the pattern 10101011. If a collision is detected during the transmission of

the preamble or start of frame delimiter fields, the transmission of both

fields is completed.

The receive data valid signal from the PHY (PHY_dv) can go active during

the preamble but is active prior to the start frame delimiter field. For

transmission, this field is always automatically inserted by the AXI Ethernet

Lite MAC core and should never appear in the packet data provided to the

AXI Ethernet Lite MAC core. For reception, this field is always stripped

from the packet data.

Destination Address

36

The destination address field is 6 bytes in length. The least significant bit of

the destination address is used to determine if the address is an

individual/unicast (0) or group/multicast (1) address. Multicast addresses

are used to group logically related stations.

The broadcast address (destination address field is all 1’s) is a multicast

address that addresses all stations on the LAN. The AXI Ethernet Lite MAC

supports transmission and reception of unicast and broadcast packets. The

AXI Ethernet Lite MAC core does not support multicast packets. This field

is always provided in the packet data for transmissions and is always

retained in the receive packet data.

Source Address

The source address field is 6 bytes in length. This field is always provided

in the packet data for transmissions and is always retained in the receive

packet data.

Type/Length

The type/length field is 2 bytes in length. When used as a length field, the

value in this field represents the number of bytes in the subsequent data

field. This value does not include any bytes that might have been inserted

in the padding field following the data field. The value of this field

determines if it should be interpreted as a length as defined by the IEEE

802.3 standard or a type field as defined by the Ethernet protocol.

The maximum length of a data field is 1,500 bytes. Therefore, a value in

this field that exceeds 1,500 (0x05DC) indicates that a frame type rather

than a length value is provided in this field. The IEEE 802.3 standard uses

the value 1536 (0x0600) or greater to signal a type field. The AXI Ethernet

Lite MAC does not perform any processing of the type/length field. This

field is transmitted with the least significant bit first but with the high order

byte first. This field is always provided in the packet data for transmissions

and is always retained in the receive packet data.

37

Data

The data field can vary from 0 to 1,500 bytes in length. This field is always

provided in the packet data for transmissions and is always retained in the

receive packet data.

Pad

The pad field can vary from 0 to 46 bytes in length. This field is used to

ensure that the frame length is at least 64 bytes in length (the preamble and

SFD fields are not considered part of the frame for this calculation) which

is required for successful Carrier Sense Multiple Access with Collision

Detection (CSMA/CD) operation. The values in this field are used in the

frame check sequence calculation but are not included in the length field

value if it is used. The length of this field and the data field combined must

be at least 46 bytes.

If the data field contains 0 bytes, the pad field is 46 bytes. If the data field

is 46 bytes or more, the pad field has 0 bytes. For transmission, this field is

inserted automatically by the AXI Ethernet Lite MAC if required to meet

the minimum length requirement. If present in the receive packet, this field

is always retained in the receive packet data.

FCS

The Frame Check Sequence (FCS) field is 4 bytes in length. The value of

the FCS field is calculated over the source address, destination address,

length/type, data, and pad fields using a 32-bit CRC defined

G(x) = x32 + x26 + x23 + x22 + x16 + x12 + x11 + x10 + x8 + x7 + x5 +

x4 + x2 + x1 + x0

38

The CRC bits are placed in the FCS field with the x31 term in the left most

bit of the first byte and the x0 term is the right most bit of the last byte (that

is, the bits of the CRC are transmitted in the order x31, x30,..., x1, x0).

The AXI Ethernet Lite MAC implementation of the CRC algorithm

calculates the CRC value a nibble at a time to coincide with the data size

exchanged with the external PHY interface for each transmit and receive

clock period. For transmission, this field is always inserted automatically

by the AXI Ethernet Lite MAC core and is always retained in the receive

packet data.

Figure 3. 4 Ethernet Frame Format

Figure 3. 5 Ethernet Transmission sequence

39

3.2 The comparison test case

3.2.1 Test objective

Comparison of time taken between CDMA and Microblaze based data

Transfer.

3.2.2 Test specification

 Test Board : KC705

 VIVADO 2017.4

 SDK 2017.4

 Payload size: 1002 Bytes

 CDMA Transfer: BRAM→CDMA→ETHERNET

 Microblaze Transfer: BRAM→MICROBLAZE→ETHERNET

Figure 3. 6 Generic block design for Test case

3.2.3 Test design

In test design 1 ,microblaze was used as data transfer mechanism ,where in

test design 2 DMA was used as data transfer mechanism ,though microblaze

was also present but for control only.

40

Figure 3. 7 Generic Block design of test case1 (micro blaze data transfer)

Figure 3. 8 Generic Block design of test case2 (CDMA data transfer)

3.2.4 Challenges

Data Alignment issues: Ethernet has Tx and Rx which is 32 bit 2K aligned

memory (expandable upto 4K). This alignment causes issues while storage

of 8 bit data in 32bit memory location. figure shows how 4 nos of 8 bit data

(data = 0x89h ,0xCBh, 0x45h,0x60h) is expected to be saved in memory

and how it is actually being saved to memory.

41

Table 2: Non aligned and aligned Memory representation

Solution: To overcome this issue, in place of saving actual data in BRAM

.the aligned data array was made in microblaze and then it was saved in

BRAM.

Failure of DMA simple transfer for complete payload: Once the Aligned

data is available simple transfer function was used for sending complete set

of data however it was seen that ,for set of 8 location initial 4 location data

was correct ,however next 4 locations were filled by 0 .And this happened

for each 8 set of location .The problem can be clearly visualized by figure.

Table 3: Memory content after simple DMA Transfer Operation

Solution : For resolving this issue ,4 set of memory locations were

transferred in one simple transfer function inspite of sending complete data

,which transferred the data correctly .

42

3.2.5 Test results

Table 4: Test Results for Microblaze Vs CDMA Data Transfer Test Case

3.2.6 Conclusions

The CDMA based Data transfer method is faster than Microblaze method

.However Performance of CDMA is limited by no. of bytes in one operation.

43

CHAPTER 4

ZynqMPSOC based design

4.1 Literature survey

4.1.1 ZynqMPSOC architecture

Figure 4. 1 ZynqMPSOC architecture

Processing Units

In the MPSoC, there are two main blocks with different specialized

processing units:

Processing System (PS):

APU: Quad or Dual core Cortex-A53 application processing unit. ARM v8

64-bit architecture. It supports:

Asymmetric Multi Processing (AMP): each core running different

applications (limited support due to shared HW infrastructure).

Symmetric Multi-Processing (SMP): all of the cores running the same

software (e.g. Linux operating system).

44

RPU: Dual core Cortex-R5 real-time processing unit. ARM v7 32-bit

architecture.

Split Mode: each core running different applications as totally independent

CPUs.

Lockstep Mode: both cores running the same application for higher

security.

PMU: Platform management unit based on triple module redundant

Microblaze processor.

CSU: Configuration Security Unit based on triple module redundant

Microblaze processor.

GPU: MALI-400 graphic processing unit (available in EG and EV MPSoC

families).

Programmable Logic (PL):

VCU: Video control unit with hardware codecs and compression (available

in EV MPSoC family).

RF: Radio frequency unit with up to 16 channels RF-ADCs and RF-DACs

(available in RFSoC family).

Power Management

The power management in the MPSoC is handled by the Platform

Management Unit (PMU).

45

Power Domains

There are four different power domains in the MPSoC devices:

Low Power Domain (LPD): RPU, PMU, CSU, LPD_DMA, and LPD

peripherals

Full Power Domain (FPD): APU, FPD_DMA, and FPD peripherals

PL Power Domain (PLPD): Programmable logic

Battery Power Domain (BPD): Real Time clock and Battery-backed RAM

(BBRAM) for secure configuration key.

Each power domain can be individually isolated. The platform management

unit (PMU) on the LPD facilitates the isolation of each of the power

domains. Additionally, the isolation can be turned on automatically when

one of the power supplies of the corresponding power domain is

accidentally powered down. Since each power domain can be individually

isolated, functional isolation (an important aspect of safety and security

applications) is possible. As an application example that we will see later,

because the PS and PL resides in two different power domains, the

Processing System can be used as a full-featured SoC without powering up

the Programmable Logic.

46

Power Modes

The MPSoC supports three different operational power modes:

Battery Powered Mode: maintain critical information over the time when

MPSoC is powered-off.

Low Power Mode: only the devices in the LPD are powered up.

Full Power Mode: all the power domains are activated, including

Programmable Logic.

I/O Peripherals

The Zynq UltraScale+ MPSoC features a vast amount of I/O peripherals

placed in the different power domains:

Low Power Domain (LPD):

• General Purpose I/O (GPIO)

• Quad SPI Flash Memory (QSPI)

• NAND ONFI 3.1 Controller.

• 4x Gigabit Ethernet MAC

• 2x USB3

• 2x Secure Digital IO (SDIO) for SD / eMMC.

• 2x Serial Peripheral Interface (SPI).

• 2x CAN

• 2x I2C

47

• 2x UART

• System Monitor

Full Power Domain (FPD):

• PCIe Gen2 x1/x2/x4

• 2x Serial Advanced Technology Attachment (SATA)

• 2x Display Port 1.2 (DP)

Programmable Logic Power Domain (PLPD):

• PCIe Gen3 x16, Gen4 x8.

• 100G Ethernet.

• 150G Interlaken v1.2.

• GTH and GTY Transceivers.

The peripherals' I/O interfaces can be router to the Multiplexed I/O (MIO)

and the Extended Multiplexed I/O (EMIO).

• There are up to 78 MIO ports divided in three banks available from

the processing system and the MIO itself resides in the Low Power Domain.

48

• As the number of MIO ports is limited, many of the available

peripherals can be routed to the programmable logic through the Extended

MIO (EMIO).

AMBA AXI4

The Zynq UltraScale+ MPSoC provides AMBA AXI4 capabilities for high

performance data communications.

Interconnect

There are three main AMBA interconnect blocks:

Full Power Domain (FPD):

• AXI Cache-Coherent Interconnect (CCI) Central/Core Switch

• Low-Power Domain (LPD):

LPD Switch

The system provides the following AMBA AXI4 compliant interfaces for

PS-PL communications:

Master Interfaces

The PS acts as master and the PL as slave.

• 3x HPM: PS General Purpose Master interfaces (32, 64, and 128 bits

width, default 128)

49

• 2x HPM FPD: From full power domain

• 1x HPM LPD: From low power domain (low latency from

peripherals and RPU)

Slave Interfaces

The PS acts as slave and the PL as master-

7x PL General Purpose Master interfaces (32, 64, and 128 bits width, default

128):

• 2x S-AXI HPC FPD: access to full power domain

4x S-AXI HP FPD: access to full power domain and DDR controller

1x AXI LPD: access to low power domain

• 1x S-AXI ACE: PL Master AXI Coherency Extension (ACE)

interface for coherent I/O to A53 L1 and L2 cache (128 bits width)

• 1x S-AXI ACP-FPD: PL Master ACP interface for L2 cache

allocation from PL masters, limited to 64-byte cache line transfers (128 bits

width).

50

4.1.2 GENESYS -ZU board

The Digilent Genesys ZU is a stand-alone Zynq UltraScale+ MPSoC

prototyping and development board. It is an advanced computing platform

with powerful multimedia and network connectivity interfaces. The

excellent mix of on-board peripherals, upgrade-friendly DDR4, Mini PCIe

and microSD slots, multi-camera and high-speed expansion connectors are

bound to support a wide number of use-cases. Furthermore, the Genesys ZU

is available in two variants with different MPSoC options and additional

features for even more flexibility. Differences are highlighted* throughout

this document.

The Xilinx Zynq UltraScale+ MPSoC at the heart of the Genesys ZU is a

big leap from the Zynq-7000 series. Faster and more processor cores,

upgraded memory interface, integrated gigabit transceivers bring support

for DDR4, USB Type-C 3.1, PCIe, SATA, DisplayPort, SFP+* and HDMI*.

The Genesys ZU is primarily targeted towards Linux-based applications

that allows easy access to Wi-Fi, cellular radio (WWAN), SSD, USB

SuperSpeed and 4K video. The bundled microSD card includes an out-of-

box demo that boots a Linux image built in Petalinux and includes some

test scripts for some of the peripherals.

Figure 4. 2 Picture of Genesys ZU-5EV board

51

Figure 4. 3 Hardware resource of Genesys ZU-Board

52

4.1.3 PetaLinux

Introduction

Petalinux, an open-source embedded Linux development solution, has

gained significant traction in the realm of embedded systems. Developed by

Xilinx, Petalinux offers a comprehensive toolchain tailored specifically for

Xilinx's FPGA and SoC platforms. Its primary objective is to simplify the

process of creating, customizing, and deploying Linux-based systems on

Xilinx devices, thereby accelerating embedded system development.

Comparison with Linux

While Petalinux shares similarities with traditional Linux distributions, it

offers several distinct advantages tailored to embedded system

development:

Customization and Optimization: Petalinux streamlines the configuration

process, allowing developers to customize Linux distributions specifically

for their target embedded platforms. This level of customization ensures that

the final system is optimized for performance, resource utilization, and

power efficiency.

Integration with Xilinx Tools: Petalinux seamlessly integrates with Xilinx's

suite of development tools, including Vivado Design Suite and SDK

(Software Development Kit). This tight integration simplifies the

development workflow, enabling seamless transition from hardware design

to embedded software development.

Hardware Abstraction: Petalinux abstracts the underlying hardware

complexity, allowing developers to focus on application-level development

without worrying about low-level hardware intricacies. This abstraction

layer enhances portability and facilitates code reuse across different Xilinx

platforms.

53

Streamlined Development Process: Petalinux provides a unified

development environment equipped with essential tools, libraries, and

utilities required for embedded system development. This streamlined

workflow reduces development time and effort, enabling faster time-to-

market for embedded products.

Comprehensive Documentation and Support: Xilinx offers extensive

documentation, tutorials, and community forums dedicated to Petalinux

development. This wealth of resources empowers developers to

troubleshoot issues, explore advanced features, and collaborate with peers

within the embedded systems community.

In summary, while Petalinux shares the foundational principles of Linux, its

specialized toolchain, integration with Xilinx hardware, and focus on

embedded system requirements distinguish it as a preferred choice for

FPGA and SoC-based development projects.

Applications

Petalinux Applications in Embedded Systems

Petalinux finds wide-ranging applications across various embedded system

domains, including but not limited to:

Industrial Automation: Petalinux is utilized in industrial automation

systems for tasks such as process control, monitoring, and data acquisition.

Its real-time capabilities, coupled with support for industrial

communication protocols, make it well-suited for demanding industrial

applications.

54

Internet of Things (IoT): Petalinux powers IoT devices by providing a

flexible and customizable platform for developing edge computing

solutions. Its support for wireless connectivity standards, security features,

and low-power optimization makes it ideal for IoT device development.

Automotive Electronics: Petalinux is employed in automotive electronics

for applications ranging from infotainment systems to advanced driver-

assistance systems (ADAS). Its ability to interface with automotive

peripherals and sensors, coupled with its reliability and performance, makes

it a preferred choice in the automotive industry.

Telecommunications: Petalinux is used in telecommunications equipment

for tasks such as network routing, packet processing, and protocol

implementation. Its scalability, high-performance networking stack, and

support for virtualization enable the development of robust and scalable

telecom solutions.

Medical Devices: Petalinux is deployed in medical devices for applications

such as patient monitoring, diagnostic imaging, and medical instrument

control. Its reliability, real-time capabilities, and compliance with medical

standards make it well-suited for mission-critical medical applications.

These examples highlight the versatility and applicability of Petalinux

across diverse embedded system domains, showcasing its effectiveness in

addressing the unique requirements of each application.

55

Basic Petalinux Commands

petalinux-create: Command to create a new Petalinux project.

petalinux-create --type project --template <template_name> --name

<project_name>

petalinux-config: Command to configure the Petalinux project.

petalinux-config -c <configuration_name>

petalinux-build: Command to build the Petalinux project.

petalinux-build

petalinux-package: Command to package the built images for deployment.

petalinux-package --boot --force --fsbl <fsbl_file> --fpga

<fpga_bitstream_file> --u-boot

petalinux-boot: Command to boot the Petalinux image on the target device.

petalinux-boot --jtag --prebuilt 3 --fpga --bitstream <fpga_bitstream_file> -

-kernel --image <image_file> --dtb <device_tree_file>

Facilities Provided by Petalinux for Embedded System Design

Petalinux facilitates embedded system design through the following

features:

1. Hardware Abstraction Layer (HAL): Petalinux abstracts hardware

complexity, enabling developers to focus on application development

without worrying about low-level hardware details.

2. Customization and Configuration: Petalinux provides tools to

customize and configure Linux distributions tailored to specific embedded

platforms, ensuring optimized performance and resource utilization.

56

3. Integration with Xilinx Tools: Petalinux seamlessly integrates with

Xilinx's development tools, such as Vivado Design Suite and SDK,

streamlining the development workflow from hardware design to software

development.

4. Real-time Capabilities: Petalinux offers real-time features and

optimizations, making it suitable for applications requiring deterministic

response times, such as industrial automation and automotive electronics.

5. Security Enhancements: Petalinux incorporates security features

and best practices to safeguard embedded systems against potential threats,

ensuring data integrity and system reliability.

6. Community Support and Resources: Xilinx provides extensive

documentation, tutorials, and community forums dedicated to Petalinux

development, empowering developers with resources to troubleshoot issues

and explore advanced features.

7. Power Management: Petalinux incorporates power management

features to optimize energy consumption, prolong battery life, and enhance

the efficiency of embedded devices.

8. Peripheral Support: Petalinux provides comprehensive support for

interfacing with a wide range of peripherals and external devices, enabling

seamless integration of hardware components into embedded systems.

9. Cross-Compilation Support: Petalinux supports cross-compilation,

allowing developers to build and deploy software for target platforms with

different architectures, enhancing portability and flexibility.

10. Debugging and Profiling Tools: Petalinux offers debugging and

profiling tools to identify and resolve software issues, optimize

performance, and fine-tune embedded applications for optimal efficiency.

11. Update and Maintenance Mechanisms: Petalinux includes

mechanisms for software updates and maintenance, ensuring that embedded

57

MD calculations

Figure 4. 4 Distributed Design of MD cycle

Figure 4. 5 Distributed Design of MD cycle

systems remain up-to-date with the latest features, patches, and security

fixes.

12. Scalability and Flexibility: Petalinux is highly scalable and flexible,

accommodating a wide range of embedded system requirements, from

resource-constrained IoT devices to high-performance industrial control

systems.

4.2 Transforming existing design to Lab-on a chip

4.2.1 Existing design - Distributed architecture

Figure shows existing design of Molecular dynamics cycle. It has two

functional module namely MD calculations and Verlet algorithm

,implemented of two different platforms namely FPGA and PC respectively

.These two functional module communicate with each other via some

communication protocol i.e UART /ethernet .The MD calculation

functional module takes x,y,z coordinates from Verlet algorithm via these

communication protocol and Calculates the Forces value using Custom IP

implemented in FPGA .On receiving forces values the verlet algorithm

processes it and generates new set of x,y,z coordinates and this cycle

continues .

 This distributed design uses communication protocol which takes

significant amount of time .

58

Figure 4. 6 IAP/MD calculations implemented inside FPGA

4.2.2 Proposed Design: Lab-on-a-chip

The Lab -on-a-chip brings the two functional module to single platform

hence making the system more compact.This rules out the usage of

communication protocol hence saving crucial time incurred by the protocol

and hence system becomes faster .

Figure 4. 7 Lab-on-a-chip architecture

4

Micro blaze

IP
UART/

ETHERNET

Custom IP
DDR

interface

PC

FPGA

MD calculations

 n

 n

PC

 l al o MD alculations

Genesys ZU board

59

4.2.3 The architecture of Lab-on-chip

The ZynqMPSOC facilitates two kind of multiprocessor design namely

Symmetric Multiprocessing (SMP) and Asymmetric Multiprocessing

(AMP) .The present lab-on-a chip design used AMP which provides facility

to implement applications on different processors .

 The Verlet algorithm is set of files written in Fortran .It need to be

run on OS with appropriate compiler .Hence it is implemented on Petalinux

OS running on Application Processing Unit (APU).

 MD calculations which is a bare metal application need to be

directly implemented over hardware and hence its implemented on

Realtime Processing Unit (RPU).The two modules communicate with each

other via interprocess-communication mechanism “Shared memory” .

4.2.4 Challenges

The lab-on-a-chip design has been classified into 3 major design challenges

1. Communication between Verlet algorithm and MD application

2. Implementation of Verlet algorithm on PetaLinux

3. Running of MD calculation from PetaLinux

The challenges and solutions to overcome the challenges has been discussed

below.

1. Communication between Verlet algorithm and MD application

Introduction: In earlier design, The communication was done by inter

device communication protocols like UART or ethernet .No since both the

functional modules are implemented on same platform,this protocols are no

more required and it will be replaced by simpler inter-process protocol like

shared memory .

 Shared memory protocols may be used when two process are

running on same platforms .In the present design ,it will be used as

communication medium for communication between two application

60

running on different cores of same hardware platform .The following test

case demonstrates that how the shared memory can be viable option for

communication between two application running on two different cores of

same processor.

Test Case: Shared Memory as Inter process communication protocol

Test Objective: To demonstrate the functionality of 2 application running

on two different cores of same platform and communicating via shared

memory.

Test specification:

 Test board : Zybo (zynq-7000 series)

 Software tools : Vitis 2023.2

 Vivado 2023.2

Figure 4. 8 Shared memory

Test Case description:

Zybo board : The ZYBO (ZYnq BOard) is a feature-rich, ready-to-use,

entry-level embedded software and digital circuit development platform

built around the smallest member of the Xilinx Zynq-7000 family, the Z-

7010. The Z-7010 is based on the Xilinx All Programmable System-on-

Chip (AP SoC) architecture, which tightly integrates a dual-core ARM

Cortex-A9 processor with Xilinx 7-series Field Programmable Gate Array

(FPGA) logic. When coupled with the rich set of multimedia and

connectivity peripherals available on the ZYBO, the Zynq Z-7010 can host

a whole system design. The on-board memories, video and audio I/O, dual-

 ORE_

61

role USB, Ethernet, and SD slot will have your design up-and-ready with

no additional hardware needed. Additionally, six Pmod ports are available

to put any design on an easy growth path.

Source code design: A particular region of memory is designated as shared

region which can be parallelly accessed by application running on both the

cores. This memory region can be designated by editing in Linkerscript file

in vitis .One of the memory location is designated as CORE_FLAG. Core

0 initializes this flag as 0 ,both application starts polling for this flag .If this

CORE_FLAG=0 ,CORE0 application will perform some action and

CORE1 will wait .After performing action ,CORE0 will update the flag to

CORE_FLAG=1 .CORE 1 will start performing action and CORE0 will

wait and this cycle will go on . One particular memory location (Other than

CORE_FLAG) is chosen and initialized by 0 by CORE0 . Content of this

memory location is updated one by one by each core .

Figure 4. 9 Core sequencing

CORE0 application :

Initialize CORE_FLAG=0

while(1)

{ while(CORE_FLAG==0)

 {

• Read the content

• Print it

• Add 4 to it

• Write to same location

• CORE_FLAG==1

 }

}

62

CORE1 application :

while(1)

{ while(CORE_FLAG==1)

 {

▪ Read the content

▪ Print it

▪ Add 1 to it

▪ Write to same location

▪ CORE_FLAG==0

}

}

Test Result

Figure 4. 10 Test result for shared memory test case

63

Test Result Analysis

The CORE0 initializes the memory content by writing 0 and

CORE_FLAG=0. The both core starts polling for CORE_FLAG using

while loop. As CORE_FLAG=0 ,CORE0 gets chance to perform action .It

reads the memory content and print it then it add 4 to it and write back to

same location and update CORE_FLAG=1.Now CORE1 gets the chance to

perform action .It reads the memory location and prints it which is correctly

printed as 4 .CORE1 adds 1 to it and update CORE_FLAG=0 .Now CORE0

turn comes and it print updated value 5 .This cycle continues .The Result

are as expected.

2 Implementation of Verlet algorithm on PetaLinux

Introduction: Verlet algorithm is an algorithm which is responsible for

generation of x,y,z coordinates from Force values .This is a set of files .The

algorithm is mainly written in Fortran language which need Fortran

compiler to compile .The compiler for fortran is “gfortran” .In Distributed

architecture of MD cycle ,the verlet algorithm runs on Linux based PC.

 The Petalinux is small scale linux which does not have

“gfortran” compiler.It is also not possible to install it via package manager

.as package manager itself is not available .So the option for having

“gfortran” is rules out due to limited resource available in petalinux .

 There comes the role of cross compiler . Cross-compilation

is the process of compiling software on one platform to run on another

platform. Cross-compiling can save time and resources by allowing you to

compile code on a more powerful machine, which can be faster than

compiling on the host device itself. It also allows one to compile code for

platforms that may not have the necessary tools or resources to compile the

code themselves. To perform cross-compilation a cross-compiler is needed,

64

which will generate executable code for the platform other than that in

which the compiler is currently running.

Figure 4. 11 Cross-compilation basics

The cross compiler used here is “aarch64-linux-gnu-gfortran” which

generate executable which is compatible with ARM aarch64 series of

devices .Following test case is devised to demonstrate that verlet algorithm

can be implemented on Petalinux with the help of cross compiler “aarch64-

linux-gnu-gfortran”.It also covers the time performance comparison

between verlet implemented on PC and petalinux .

Test case : Implementation of Verlet algorithm in Petalinux.

Test objective : To implement verlet algorithm in petalinux and comparison

of time performance between Petalinux and PC.

Test specification: The fortran code which implement verlet algorithm

internally calls C based code which communicates with FPGA for data

communication in present design .To eliminate FPGA from loop .This C

based code is replaced with another C based loopback code which simply

loops backthe data .The objective of this is to take out FPGA board from

loop.The objective is not to functionally replace the FPGA board but to

measure the time performance of the loop without dwelling much in

Accuracy of the data .

 OO B K

p o a

Figure 4. 12 Verlet algorithm with loopback program

Figure 4. 13 Verlet algorithm with loopback program

65

Test Procedure

1. Updation of Make file : The set of Verlet files include makefile

which need to be appropriately updated to include the details of cross

compiler .The existing compiler details need to be commented and

following cross compiler need to be added in the Makefile.

F77 =/usr/bin/aarch64-linux-gnu-gfortran

LIBS=

F77FLAGS = -C

OPTFLAGS =-O

LIBFLAGS = -crusv

LINKFLAGS = -static-libgfortran

2. Cross compiling loopback code : The C based loopback code also

need to be cross compiled using “aarch64-linux-gnu-gcc” to generate its

executable which is compatible with ARM processor .

3. Run Make command .This generates executable ./dynamic.x

4. Transfer of complete files to petalinux using SSH: The complete set

of files to be transferred to one working directory of petalinux using SSH

5. Running executable dynamic.x in petalinux will start verlet

algorithm.It is run here for 500 cycles.

66

Test Results

Table 5:Test Results for Verlet algorithm implementation in PC and Petalinux

500cycles Verlet

PC 5.32s

Petalinux 7.05s

Figure 4. 14 Test Results -Verlet in petalinux

Resul Analysis : (All time measurements are in seconds)

Table 6:Test Result analysis data

500cycles

Verlet Communication

(UART

115200bps)

Custom

IP(FPGA)

Total

PC 5.32 153.29 0.8x500=400

558.61

Petalinux 7.05 ~0 0.8x500=400

407.05

67

The total time in a complete MD cycle can be devided into 3 major divisions

time taken by verlet ,time taken by Communication and time taken by

CUSTOM IP running in FPGA .The total time is summation of all these 3

time. This Verlet algorithm running in petalinux takes 1.73 second more

time than PC. However in complete cycle implementation, It can be seen

that verlet contributes very less in total time duration. The Total time in

petalinux implementation will be lesser than PC due to absence of inter

device communication protocol which will save around 153.29s.

3 Running MD calculation from PetaLinux

Introduction : MD calculation is Bare metal application .This is directly

implemented on hardware without interface of any OS .Generally Petalinux

cannot not implement bare metal application .Hence it was decided to

implement it on Real time processing unit (RPU).Once it is implemented on

RPU .it was major challenge to run it from Petalinux .This solution was

provide by OpenAMP .

Figure 4. 15 Running RPU application in APU

OpenAMP : OpenAMP (Open Asymmetric Multi-Processing) on Zynq

UltraScale+ MPSoC is a framework that facilitates the development of

software applications across heterogeneous processing environments. The

Zynq MPSoC integrates ARM Cortex-A53 processors with ARM Cortex-

R5 real-time processors and FPGA fabric, making it ideal for applications

requiring high performance and real-time capabilities. OpenAMP enables

68

seamless communication and resource sharing between these

heterogeneous cores, enhancing parallel processing and improving overall

system efficiency. By leveraging OpenAMP, developers can optimize

workload distribution, reduce development complexity, and improve

scalability

OpenAMP on Zynq UltraScale+ MPSoC consists of several key

components that work together to enable efficient asymmetric

multiprocessing. These components include the RemoteProc framework,

which manages the lifecycle of remote processors, including booting,

loading firmware, and handling crashes. The RPMsg (Remote Processor

Messaging) protocol facilitates inter-processor communication, providing a

standardized method for message passing between the heterogeneous cores.

Additionally, the VirtIO framework allows for virtualization of I/O devices,

enabling shared access to peripherals and resources. Together, these

components enable developers to efficiently utilize the diverse processing

capabilities of the Zynq MPSoC, ensuring robust, scalable, and high-

performance embedded applications.

 OpenAMP on Zynq UltraScale+ MPSoC functions by enabling

seamless communication and resource management between its

heterogeneous processors. The RemoteProc framework initializes and

manages the ARM Cortex-R5 and FPGA-based soft cores, while RPMsg

provides a standardized messaging protocol for inter-processor

communication. VirtIO facilitates the sharing of I/O devices and resources

across these cores. This coordination allows tasks to be distributed

efficiently, leveraging the real-time capabilities of the Cortex-R5 processors

alongside the high-performance Cortex-A53 processors, resulting in

optimized system performance and resource utilization in embedded

applications

Test Case & objective : To implement a test application in RPU and run it

from Petalinux.

69

Test specification :

 software tools : Vitis 2023.2

 Vivado 2023.2

 Petalinux 2023.2

 Test plaform: Genesys ZU -5EV (ZynMPSOC ultrascale)

Test application code :

Figure 4. 16 Test application for RPU

Test Procedure: Figure shows the complete flow and process of the design.

Figure 4. 17 workflow for running RPU application in APU

1 Vivado block design is created. bitstream is generated and exported

2. Vitis platform is created using the exported .xsa file .a new domain

of Cortex r5_0 is added in the project .The platform is bult.

70

3. An application with test code is created .Linker script is updated

accordingly .The application is build .This generates executable .elf file

.This file wiil be taken into petalinux.

4. A petalinux project is created with ZynMPSOC template .The .xsa

file is imported to petalinux via petalinux-config command.

5. Petalinux application is created using .elf file from vitis

6. OpenAMP package is selected in to kernel and rootfs.

7. Petalinux build and SD ard boot is initiated

8. Application is run in Petalinux Terminal.

Test Result

Figure 4. 18 Test Result for running RPU application in APU

 Result Analysis

 “Hello from RPU0 “ is printed but it is intermixed with PID number

.which is being debugged.

71

CHAPTER 5

Conclusion and Future work

5.1 Conclusion

The thesis work is primarily exploratory in nature which investigates some

methods like interrupt-based transmission and DMA based data transfer

method to expedite the Molecular Dynamics Calculations and hence

making all over Molecular Dynamics Cycle faster. The methods have been

validated with test cases and results.

 The objective of the Thesis revolves around transforming the Distributed

architecture of implementation of molecule dynamics cycle to Lab-On-chip

architecture which focusses on implementing two functional modules

namely MD calculations and Verlet algorithm which were earlier

implemented on two different platforms, to single platform. The Thesis has

conclusively proposed an architecture for Lab-On-chip for implementation

the same design. The architecture will be basis for implementing this

distributed architecture into ZYNQMPSOC based FPGA.

5.2 Future works

5.2.1 Implementation of DMA based Data transfer in Molecular

Dynamics Cycle which bypasses Microblaze hence improving efficiency

and time performance.

5.2.2 Implementation of Molecular Dynamics Cycle in Lab-on-a-chip

architecture using Asymmetric -Multi Processing (AMP) (Using RPU and

APU both)

72

5.2.3 Implementation of Molecular Dynamics in Lab-on-a-chip

architecture using Symmetric Multi-Processing (SMP). (Using APU only.)

BIBLIOGRAPHY

1. Satya S Bulusu, Srivathsan Vasudevan, “FPGA Accelerator for

Machine Learning Interatomic Potential-Based Molecular

Dynamics of Gold Nanoparticles”, in IEEE Access, Volume 10, pp

40338-40347, April 2022.

2. AXI UART Lite v2.0 Product Guide (PG142)

3. Basys-3 Reference Manual

https://digilent.com/reference/programmable-logic/basys-

3/reference-manual

4. https://github.com/Xilinx/embeddedsw/tree/master/XilinxProcesso

rIPLib/drivers/uartlite

5. AXI Ethernet Lite MAC v3.0 Product Guide (PG135)

6. AXI Central Direct Memory Access v4.1 Product Guide (PG034)

7. Microblaze Processor Reference Guide UG984

8. PetaLinuxTools Documentation: Reference Guide (UG1144)

9. Xilinx Zynq UltraScale+ MPSoC Technical Reference Manual

10. Zynq UltraScale+ MPSoC Data Sheet: Overview (DS891)

11. Zynq UltraScale+ MPSoC Data Sheet: DC and AC Switching

Characteristics (DS925)

12. Zynq UltraScale+ MPSoC: Embedded Design Tutorial (UG1209)

13. Performance Tuning and Optimization on Zynq UltraScale+

MPSoC (XAPP1265)

14. Zynq UltraScale+ MPSoC Software Developer Guide (UG1137)

15. Libmetal and OpenAMP User Guide UG1186 (v2023.2) November

7, 2023

https://digilent.com/reference/programmable-logic/basys-3/reference-manual
https://digilent.com/reference/programmable-logic/basys-3/reference-manual

