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Abstract 

This work explores integrating Machine Learning (ML) and logic-based models 

for predictive diagnostics in Electric Vehicles (EVs) and Internal Combustion (IC) engine 

vehicles, using data from Volvo Eicher Commercial Vehicles Limited (VECV). The 

objective of this work is to develop a predictive analytics model to forecast potential 

faults, optimize vehicle parameters, and enhance maintenance strategies. Key use cases 

include cell imbalance monitoring, temperature monitoring of cells and motors, and 

engine oil pressure warnings, aiming to improve fault detection systems' reliability. 

Despite challenges like the availability of labeled data for rare events in limited numbers 

and the computational demands of deep learning models for real-time applications, this 

thesis establishes a foundation for future advancements in automotive predictive 

analytics. 

The methodology involves analyzing time-series data to monitor vehicles' 

dynamic performance, using ML models like Vector Auto Regression (VAR), 

Autoregressive Integrated Moving Average (ARIMA), Extreme Gradient Boosting 

(XGBoost), Light Gradient Boosting Machine (LGBM), and Long Short-Term Memory 

(LSTM) neural networks. These models capture temporal dependencies, while logic-

based models provide interpretable rules for decision-making. The findings indicate that 

ML models excel in identifying complex patterns and nonlinear relationships, leading to 

highly accurate predictions for battery health and engine performance. ML models 

effectively predict battery cell imbalances and temperature variations, crucial for 

maintaining optimal battery performance and longevity. Logic-based models offer clear, 

interpretable rules essential for understanding vehicle behavior and regulatory 

compliance. 

The research's key contributions include a comparative analysis of ML and logic-

based models, highlighting their respective advantages and limitations. By combining 

ML's predictive power with the interpretability of logic-based models, the study suggests 

more robust predictive systems. Practical applications using real-world data show 

improvements in fault prediction accuracy and reduced false alarms. A hybrid model, 

advanced ML techniques, and enhance the real-time scalability of predictive models can 

be a way forward to improve performance optimization, and overall reliability.  
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Chapter 1  

Introduction 

Electric vehicles have garnered a lot of attention in recent times due to their 

potential to reduce environmental impact and the dependency on traditional fuel sources. 

However, alongside their benefits, these vehicles present unique challenges such as range 

anxiety, charging infrastructure limitations, and frequent maintenance issues, particularly 

in the case of Electric Vehicles (EVs) due to the adaptation of new technologies. 

Traditional preventive maintenance strategies incur moderate to high costs, and 

unexpected failures between maintenance schedules further aggravate concerns for 

vehicle owners and fleet operators. 

Predictive analytics offers a promising solution to mitigate these challenges by 

providing real-time alerts and early warnings, thereby minimizing breakdown situations 

and associated costs. For stakeholders such as customers, dealers, and Original 

Equipment Manufacturers (OEMs), predictive analytics translates into tangible benefits 

including cost savings from longer equipment life, increased revenue opportunities, 

improved customer experience, and reduced product recalls. By harnessing predictive 

analytics, it is possible to optimize vehicle parameters, predict component failures, 

identify root causes for faults, and enhance the overall driving experience. 

The objective of this work, conducted in collaboration with Volvo Eicher 

Commercial Vehicles Limited (VECV), is to develop advanced predictive analytics 

models using machine learning (ML) and logic-based approaches. The specific use cases 

are cell imbalance monitoring, temperature monitoring of cell & motor, and engine oil 

pressure warnings. The main objective of this study is mentioned below: 

- Identify root causes for potential faults and failures in Electric and Internal 

Combustion (IC) engine vehicles. 

- Identify the right parameters and thresholds for accurate fault prediction. 

- Address false alarms to improve the reliability of fault detection systems. 

- Enhance fault prediction accuracy. 

- Develop actionable plans based on failure modes and patterns. 
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1.1 Vehicle Data 

 Vehicles generate a lot of data to analyze, measure, compare, and correct 

themselves to function. These data help various Electronic Control Units (ECU) to decide 

as programmed. A few selected parameters share data from the vehicle to the cloud using 

a Telematics Control Unit (TCU). These parameters are used to visualize, analyze, and 

identify the location of the vehicle in real-time. 

 This data can also be used to plan vehicle maintenance as per the existing 

conditions of the parts instead of scheduled maintenance. VECV obtains vehicle data of 

various parameters every minute and stores it in its TCU. This unit has an in-built 

capability to upload data to the cloud server. VECV’s uptime center accesses this data to 

filter out vehicles under breakdown to provide maintenance services. The parameters 

collected from the electric vehicle for the use cases are shown in Figure 1.  

 

Figure 1 Parameters collected from vehicle 

1.2 Predictive Maintenance 

 Predictive Maintenance helps to maintain the vehicle with lower downtime, and it 

is more critical to commercial vehicles as the vehicle availability is related to the total 

cost of ownership. The data generated by the vehicle is shared with the uptime center and 

based on the severity of the issue the maintenance activity takes place. Based on the 
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location of the vehicle and the probability of part failure, the service centers keep the 

parts readily available to reduce the maintenance time. 

 The historical data and the current vehicle data help to predict the future 

occurrences of the faults and the remaining useful life of parts by using machine learning. 

This helps in planning maintenance appointments, which is convenient and cost-effective. 

The flow of a vehicle predictive maintenance system is shown in Figure 2. 

 

Figure 2 Vehicle Predictive Maintenance System 

1.3 Machine Learning Methods 

 The dataset handled in this study is a time-series dataset which consists of 

sequential data collected every minute when the vehicle is being operated. A diverse array 

of machine learning methods tailored for time series datasets are experimented with to 

address the multifaceted challenges inherent in the use cases.  

Vector Auto Regression (VAR) models offer a powerful framework for capturing 

the dynamic interdependencies among multiple time series variables, enabling accurate 

forecasting of future states based on past observations. Autoregressive Integrated Moving 

Average (ARIMA) models excel in capturing the temporal dynamics and seasonal 

patterns inherent in time series dataset, is suited for predicting tasks where stationary and 

differenced data are prevalent.  
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Extreme Gradient Boosting (XGBoost) and Light Gradient Boosting Machine 

(LGBM) algorithms leverage the power of ensemble learning to combine the predictive 

capabilities of multiple weak learners, resulting in robust and accurate predictions for 

complex time series data. Additionally, Long Short-Term Memory (LSTM) neural 

networks, is a recurrent neural network (RNN) model, excel in capturing long-term 

dependencies and sequential pattern in time series dataset, is suited for modeling complex 

temporal relationships in electric and IC engine vehicle datasets. This project aims to 

develop sophisticated predictive analytics models capable of accurately forecasting future 

states, diagnosing faults, and optimizing vehicle performance in real-time by choosing the 

best-performing model for these use cases. 

1.4 Motivation of the Work 

 The motivation behind this project stems from the increase in significance of 

predictive analytics in the automotive industry, particularly in addressing the evolving 

challenges posed by electric and IC engine vehicles. With the growing adoption of EVs, 

the need for proactive maintenance strategies to mitigate vehicle-related issues has 

become paramount.  

VECV electric buses observed a few battery and motor-related issues in their first 

batch of vehicles which impacted the vehicle performance. A predictive analytics model 

was needed to revolutionize maintenance practices by providing real-time alerts, early 

warnings, and proactive communication to stakeholders, thereby enhancing vehicle 

performance, prolonging equipment life, and ultimately improving customer satisfaction.  

Through the development of advanced machine learning and logic-based models, 

the project endeavors to predict and diagnose faults accurately, identify root causes, and 

formulate actionable strategies for maintenance and repair, thereby guiding in a new era 

of efficiency and reliability in the automotive sector. 

1.5 Organization of the Thesis 

Literature Review and Problem Formulation: 

This chapter delves into a comprehensive review of relevant literature, journals, 

and research articles pertinent to predictive analytics of vehicles using several machine 

learning methods. It also discusses the types of datasets used and delineates the 



5 
 

preprocessing steps undertaken for different ML models. The development of ML model 

for unique use cases by combining various tools and methods was also discussed. 

Machine Learning Models: 

This chapter provides exploration of the ML models experimented with in this 

project, including Vector Auto Regression (VAR), Autoregressive Integrated Moving 

Average (ARIMA), Extreme Gradient Boosting (XGBoost), Light Gradient Boosting 

Machine (LGBM), and Long Short-Term Memory (LSTM) Neural Networks. It discusses 

the principles behind each model, their applications in predictive analytics, and their 

respective strengths and weaknesses. 

Logic-Based Models: 

In this section, the logic-based models employed in the project are elucidated. It 

discusses the rationale behind logic-based modeling, the types of logic models utilized, 

and their applications in predictive analytics. Furthermore, it explores how logic-based 

models complement machine-learning approaches and contribute to the overall predictive 

analytics framework for electric and IC engine vehicles. 

Results and Discussions: 

The results and discussions section presents a comprehensive overview of the 

findings obtained from the developed models. It compares the performance of ML and 

logic-based models, discusses their strengths and weaknesses, and explores insights 

gleaned from logic models for optimizing machine learning models. Furthermore, it 

examines cross-validation and model validation techniques, scalability considerations, 

and interpretability aspects. 

Conclusions and Scope for Future Work: 

This concluding chapter summarizes the key findings of the research and 

evaluates the extent to which the project objectives were met. It discusses the 

contributions made by the project to the field of predictive analytics for electric and IC 

engine vehicles, acknowledges any limitations encountered, and outlines potential 

avenues for future research and improvement. Additionally, it offers concluding remarks 

on the significance of the research and its implications for the automotive industry. 
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Appendix (Codes): 

The appendix contains code snippets, algorithms, and additional data analyses to 

support the findings presented in the thesis. 

References: 

The references section provides a comprehensive list of the sources cited in this 

thesis, with appropriate guidelines. 
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Chapter 2  

Literature Review and Problem Formulation 

2.1 Literature Review 

 The application of predictive analytics techniques in the domain of time series 

forecasting has garnered significant attention because of its applications in many fields 

such as weather forecasting, electrical power load forecasting, health monitoring, and 

intrusion detection [1]. Time series forecasting, as a fundamental aspect of predictive 

analytics, plays a critical role in understanding temporal data behavior and predicting 

future values, facilitating informed decision-making in diverse domains. The inherent 

sequential nature of time series dataset, where observations are captured over regular 

intervals of time, presents unique challenges and opportunities for predictive modeling. 

These challenges include capturing complex temporal patterns, handling missing data, 

and addressing non-stationarity and seasonality in the data.  

Figure 3 shows the simulation results of Jun Chen et al [1] using the box plot of 

variation in vehicle range due to variation in cell capacity level obtained by modelling an 

equivalent circuit. 
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Figure 3 Range variation with respect to cell variation level 

Notably, attention-based encoder-decoder frameworks have emerged as effective 

solutions for multivariate time series forecasting problems. Du et al. (2020) proposed a 

novel encoder-decoder model based on bi-directional LSTM networks (Bi-LSTM) with a 

temporal attention mechanism, demonstrating superior forecasting performance compared 

to baseline methods across multiple datasets [2]. This attention mechanism enables it to 

target applicable temporal information while generating forecasts, thereby capturing long-

term dependencies and hidden correlation features in multivariate time series dataset. By 

leveraging the temporal attention mechanism, the model can adaptively learn and 

incorporate important temporal patterns, leading to more accurate and reliable forecasts. 
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Figure 4 Framework of Multivariate Time Series Forecasting 

Figure 4 shows a new model framework with attention towards temporal encoder 

and decoder developed by Shengdong Du et al [2] based on two-dimensional LSTM 

model which yielded better results to the multivariate time series data. 

Furthermore, advancements in recurrent neural networks (RNNs) have addressed 

key limitations in current models for multivariate time series multi-step forecasting [3]. 

He et al. (2023) introduced Multi-Attention Collaborative Network (MACN) with a 

triangle-structure, incorporating an encoder-decoder framework with attention-based and 

a secondary hierarchical network to improve forecasting accuracy by capturing relevant 

variables and temporal dependencies [4]. This innovative approach enhances the 

interpretability and scalability of forecasting models for multivariate time series data, 

offering a robust solution for complex forecasting tasks. By integrating attention 

mechanisms at multiple levels of the model architecture, MACN can effectively capture 

short-term and long-term temporal dependencies together, with more accurate and 

reliable forecasts. 
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Figure 5 Architecture of Collaborative Network based on multi-attention 

Figure 5 shows a framework model proposed by Xiaoyu He et al [4] based on 

multi-attention model collaborating with attention-based variables distillation network 

and LSTM model.  Encoding and decoding of the network was done by a knowledge 

enhanced long short-term memory model and the results of the model outperformed 

existing state of the art models. 

Despite the promise of deep learning models in multivariate forecasting tasks, 

they often face challenges in scalability, interpretability, and computational efficiency. To 

address these limitations, De Stefani and Bontempi (2021) proposed an approach with an 

extension to the Dynamic Factor Model (DFM), combining linear factor and non-linear 

factor evaluating techniques for large-scale multivariate forecasting tasks [5]. By 

leveraging the strengths of both linear factor and non-linear factor evaluating techniques, 

this approach enhances the interpretability and computational efficiency of multivariate 

time series forecasting models, making them suitable for real-world applications. 

Additionally, the DFM approach provides insights into the underlying factors driving the 

observed temporal patterns, enabling better understanding and interpretation of the 

forecasting results. 
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Figure 6 Architecture of Dynamic Factor Model (DFM) and Machine Learning (DFML) 

Figure 6 shows an extension model proposed by Jacopo De Stefani et al [5] based 

on Dynamic Factor Model framework to improve forecasting accuracy of the model.  The 

experimental results also show an increase in computational efficiency and forecasting 

accuracy. 

In the context of electric vehicle (EV) battery health prediction, machine learning-

based approaches have gained traction for developing sturdy state-of-health (SOH) 

prediction models. Akbar et al. (2022) utilized a data-driven modeling strategy, 

incorporating Big Data, Artificial Intelligence (AI), and the Internet of Things (IoT) to 

develop an accurate and dependable SOH prediction model, demonstrating high accuracy 

in real-world scenarios [6]. Additionally, Li et al. (2020) proposed a method for battery 

life estimation based on cloud data, utilizing charging data to forecast battery cell 

capacity and its impedance, with errors of less than 4% [7]. These advancements in 

machine learning-based approaches enable proactive maintenance and optimization of 

battery performance, enhancing the reliability and efficiency of EVs. 

Figure 7 shows the proposed model by Kai Li et al [7] based on optimizing the 

estimated results by Kalman filter and usage of Fuzzy logic to control the noise observed 

to increase the accuracy of the model. The simulation results of the cloud data shows that 

the estimated battery life has less than 4% error based on this new approach. 
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Figure 7 Analysis flowchart of Fuzzy Logic and Kalman Filter model 

Moreover, ML techniques were used to monitor and predict the performance of 

internal combustion engines. Kulkarni et al. (2021) developed an ML model for detecting 

and live monitoring of engine oil aeration with a single high-speed oil pressure sensor, 

achieving high prediction accuracy [8]. By leveraging machine learning algorithms, such 

as Gaussian process regression, this approach enables live monitoring and detection of 

engine oil aeration, facilitating timely maintenance and optimization of engine 
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performance. These machine learning-based solutions contribute to improving the 

reliability, efficiency, and longevity of internal combustion engines, ultimately leading to 

cost savings and enhanced operational performance. 

 

Figure 8 Gaussian Process Regression model training flowchart for prediction 

Figure 8 shows the proposed model by Vainatey Kulkarni et al [8] based on a 

five-level discrete wavelet transform (DWT) and gaussian process regression (GPR) 

machine learning model. The predicted results show that uncertainty of the oil aeration 

values is under ± 0.02. 

2.2 Problem Formulation 

The results reported in the literatures underscore the importance of predictive 

analytics in addressing various challenges related to time series forecasting, battery health 

prediction, and engine performance monitoring in the context of electric and IC engine 

vehicles. Building upon these advancements, the present project aims to develop 

predictive analytics models to address specific use cases identified in collaboration with 

VECV.  

By leveraging machine learning and logic-based approaches, the project seeks to 

enhance the reliability, efficiency, and performance of electric and IC engine vehicles, 

contributing to the advancement of predictive maintenance strategies in the automotive 

industry. 
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Chapter 3  

Methodology 

3.1 Understanding the Dataset 

Time-series dataset represents a collection of parameters observed over a 

consistent time interval, typically in chronological order. In the context of this project, 

time-series data encompasses various parameters relevant to Electric and IC engine 

vehicles, such as battery voltage, temperature readings, motor performance metrics, 

vehicle performance parameters, and engine diagnostics. These observations are gathered 

at regular intervals, providing insights into the vehicle's operational state and performance 

over time. Unlike static datasets commonly encountered in traditional machine learning 

tasks, time-series data introduces unique challenges and opportunities due to its temporal 

nature. 

Time-series data necessitates specialized handling and analysis techniques to 

extract meaningful insights and patterns. Trend analysis, for example, involves 

identifying long-term patterns or tendencies in the data, such as overall growth or decline 

over time. Seasonality decomposition aims to separate the data into seasonal components, 

allowing for the isolation and analysis of recurring patterns or cycles within the dataset. 

Autocorrelation analysis examines the correlation between observations at different time 

lags, helping to identify temporal dependencies and predictability in the data. 

One of the key distinctions between time-series data and traditional tabular 

datasets lies in the sequential dependencies and temporal trends inherent in the former. 

Static dataset observations are independent of each other, and time-series dataset exhibits 

sequential relationships, where the value of a given observation may depend on its past 

values. This temporal structure necessitates the adoption of specialized modeling 

approaches tailored to capture and exploit these sequential dependencies effectively. In 

summary, understanding time-series data involves recognizing its temporal nature, 

identifying patterns and trends through specialized analysis techniques, and 

acknowledging the sequential dependencies inherent in the data. By leveraging 

appropriate modeling approaches and analysis tools, researchers and practitioners can 

extract valuable insights and make informed decisions in various domains, including 

vehicle performance monitoring and predictive maintenance. 
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3.2 Understanding the Use Cases 

3.2.1 Battery Cell Imbalance 

 Cell balancing of a battery is a fundamental aspect of Battery Management 

Systems (BMS), particularly in EVs, where multiple cells are interconnected to make a 

battery pack. The primary objective of cell balancing is to establish that all the cells in the 

battery pack have similar voltage levels, thereby optimizing overall performance, 

capacity, and lifespan. Imbalances in cell voltage can lead to various detrimental effects, 

including reduced energy capacity, accelerated degradation, and safety risks. 

Several factors contribute to cell voltage imbalances within a battery pack. Cell 

aging is a significant factor, where variations in cell chemistry and internal resistance 

occur over time, resulting in discrepancies in voltage levels among cells. Additionally, 

differences in manufacturing tolerances, temperature gradients within the battery pack, 

and variations in charging and discharging rates can also contribute to cell imbalances. 

The effects of cell voltage imbalances on battery performance and longevity are 

profound. During the charging process, overcharged cells may lead to capacity loss, 

overheating, and safety hazards such as thermal runaway, while undercharged cells may 

experience reduced energy capacity and premature aging during discharge. To mitigate 

these imbalances, various balancing techniques are employed. Passive balancing methods 

involve dissipating excess energy from overcharged cells using shunt resistors or bypass 

diodes, thereby equalizing cell voltages. In contrast, active balancing methods redistribute 

charge between cells through external circuitry or balancing circuits, using techniques 

such as charge transfer, energy transfer, or voltage conversion.  

The process of cell balancing occurs iteratively during the charging process, 

where balancing systems monitor individual cell voltages and activate mechanisms to 

equalize cell voltages. This iterative process continues until all cells are within the desired 

voltage range, ensuring optimal performance and longevity of the battery pack. 

Understanding balance and balancing in battery systems is crucial for maximizing 

performance and longevity. Tom Wicker highlights the significance of considering 

differences in charging/discharging due to variations in cell internal resistance, 

emphasizing the need for larger balancing currents to address such imbalances [9]. 

Balancing primarily focuses on equalizing State of Charge (SOC) levels among cells and 
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compensating for cell-to-cell variations in leakage but may be hindered by variations in 

cell resistance.  

 

 

Figure 9 Cell Imbalance in a Battery Pack and its causes 

 Figure 9 shows various types of imbalances in a battery pack in real-world 

conditions and the possible reasons leading to imbalances such as SOC, leakage current, 

internal resistance (impedance), and cell capacity. An ideal battery will have full capacity 

for an infinite period if left unused, but current leakage happens due to impedance. The 

leakage is not uniform and varies from cell to cell. A battery can be balanced at 50% SoC 

or 100% SoC based on the program in the BMS. The common standard in the automotive 

industry is balancing at 100% SoC. 

3.2.2 Battery Cell Temperature 

 Battery cell temperature management is a vital aspect of lithium-ion battery 

systems, especially in automotive applications, where it directly impacts performance, 

safety, and longevity. Several influential parameters contribute to cell temperature 

variations, with environmental conditions being one of the primary factors. 

Environmental factors such as ambient temperature, humidity levels, and altitude can 

significantly influence cell temperature. In extreme temperatures, whether hot or cold, the 

performance and life of the battery can be compromised. Cold temperatures increase 

internal resistance and reduce battery capacity, leading to decreased energy output, 

particularly during cold starts in electric vehicles (EVs). Conversely, high temperatures 
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accelerate chemical reactions within the cells, resulting in accelerated degradation 

mechanisms such as electrode corrosion, electrolyte decomposition, and formation of 

Solid-Electrolyte Interphase (SEI) layers. This degradation leads to capacity fade, reduced 

energy efficiency, and ultimately diminishing the reliability of the battery pack. 

Moreover, high temperatures can trigger thermal runaway events, causing safety 

hazards such as cell venting, fire, or explosion. Conversely, low temperatures increase 

internal resistance and reduce ion mobility, limiting charge and discharge rates, which 

affects power output, energy capacity, and regenerative braking performance, particularly 

in cold climates. In addition to environmental conditions, high discharge currents 

common in EVs during acceleration or heavy loads can generate significant heat within 

the battery cells. The rapid flow of current increases internal resistance and heat 

dissipation, elevating cell temperatures. Similarly, overcharge or over-discharge events, 

often caused by charging or discharging beyond recommended levels, result in excessive 

heat generation, posing safety risks and accelerating battery aging. 

To mitigate the adverse effects of temperature extremes on battery performance 

and lifecycle, battery thermal management systems are employed. These systems utilize 

heating and cooling mechanisms controlled by the BMS to maintain cells within an 

optimal temperature range, typically between -20°C to +60°C for lithium-ion cells. 

Heating mechanisms ensure cells remain above the minimum operating temperature, 

preventing performance degradation and enhancing energy efficiency, particularly in cold 

climates. Cooling mechanisms prevent cells from exceeding their maximum operating 

temperature, mitigating safety risks, and extending battery life. 

Effective thermal management strategies tailored to specific environmental 

conditions are crucial for the battery pack. By maintaining cells within the recommended 

temperature range, automotive battery systems can operate efficiently, ensuring reliable 

performance, enhanced safety, and prolonged lifespan, ultimately contributing to the 

overall sustainability and viability of electric vehicles. 
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Figure 10 Cell Temperature in a Battery Pack and its causes 

 Figure 10 shows the possible reasons leading to cell temperatures such as 

overcharge, over-discharge, high discharge current, and thermal management system. The 

optimum temperature operating range for the maximum life cycle of the battery is 

between 15℃ to 45℃. The reduction in capacity retention against the number of cycles is 

shown in the graph for different cell temperatures with high temperatures affecting the 

capacity at a higher rate. 

Figure 11 shows the data transfer from the battery to the Vehicle Control Unit 

(VCU). The octillion battery pack has 208 cells (8 columns) connected in series and the 

cells have individual voltage and temperature measurement sensors. The individual 

column data are shared with its slave Battery Management System (BMS) and all slave 

BMS data are consolidated in Master BMS. The necessary actions are taken based on the 

condition of the individual cell’s voltage and temperature. Maximum and Minimum 

temperature and voltage values are shared with the Telematics Control Unit (TCU) to 

upload on the server. The data of both cell voltage and temperature are shared through the 

BMS. 
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Figure 11 Octillion Battery Pack with Slave and Master BMS 

3.2.3 Motor Temperature 

 Electric vehicle traction motors, particularly Permanent Magnet Synchronous 

Motors (PMSM), are critical components that require careful temperature management to 

ensure optimal performance and reliability. The temperature of the PMSM motor is 

influenced by various factors, including motor overload, inconsistent power delivery, 

frequent start-stop operations, charging current during regenerative braking, and the 

effectiveness of the thermal management system. 

Motor overload, occurring when the motor is subjected to excessive torque 

demands or prolonged high-speed operation, results in increased heat generation within 

the motor. This can lead to temperature spikes, causing thermal stress on motor 

components and potentially leading to overheating-related failures. Inconsistent power 

delivery, often caused by voltage fluctuations or irregularities in the powertrain system, 

can also impact motor temperature. Rapid changes in power demand or voltage levels can 

lead to thermal cycling of the motor, resulting in temperature variations and potential 

performance degradation. 

Frequent start-stop operations, commonly encountered in urban driving 

conditions, can contribute to motor temperature fluctuations. Each start-stop cycle 

subjects the motor to thermal stress, as it rapidly transitions between stationary and 

operational states. Over time, this can lead to cumulative heat buildup and increased risk 

of overheating-related issues. During regenerative braking, the motor operates in 
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generator mode, converting kinetic energy into electrical energy to recharge the battery. 

The charging current flowing back into the battery generates heat within the motor 

windings, contributing to temperature elevation. Without proper thermal management, 

excessive heat buildup can occur, leading to thermal runaway and potential motor 

damage. 

Motor temperature varies with the current flowing through the motor windings 

and the voltage applied across them. Higher currents result in increased Joule heating 

within the motor windings, raising the temperature. Similarly, higher voltages can lead to 

increased heat dissipation, particularly during rapid acceleration or high-speed operation. 

High motor temperatures can have detrimental effects on performance and 

reliability. Excessive heat can degrade insulation materials, leading to insulation 

breakdown and short circuits. It can also cause demagnetization of the permanent 

magnets, reducing motor efficiency and torque output. Additionally, high temperatures 

can accelerate bearing wear and lubricant degradation, leading to premature failure and 

increased maintenance requirements. Conversely, low motor temperatures can also 

impact performance negatively. Cold temperatures can increase motor winding resistance, 

reducing efficiency and power output. It can also increase friction and wear on 

mechanical components, such as bearings and gears, leading to decreased reliability and 

increased energy consumption. 

To manage motor temperatures effectively, EVs employ various thermal 

management strategies. Active cooling systems, such as liquid cooling or air cooling, are 

commonly used to dissipate heat generated during motor operation. These systems 

circulate coolant or air through channels or passages within the motor housing, removing 

heat and maintaining optimal operating temperatures. The optimum temperature range for 

PMSM motors typically falls between 40 to 80°C. Operating within this temperature 

range ensures efficient motor performance, longevity, and reliability. Deviations from this 

range can result in decreased efficiency, increased wear, and potential motor failures. 

 Figure 12 shows the possible reasons leading to high motor temperatures such as 

motor overload, poor power, and thermal management system. A correlation heatmap 

matrix shows the significance of individual parameters in motor temperature. 
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Figure 12 EV Motor Temperature causes and Correlation Heat Map Matrix 

3.2.4 Engine Oil Pressure 

 Low engine oil pressure is a critical issue that can lead to severe damage and 

malfunctions within an internal combustion engine. Several influential parameters 

contribute to low engine oil pressure, including engine RPM, engine oil viscosity, a 

plugged or clogged oil filter, low oil level, apparent low pressure caused by worn 

bearings or oil passages, and pump wear. 

Engine RPM plays a significant role in determining oil pressure, as higher RPMs 

result in increased oil demand to lubricate and cool engine components. At low RPMs, oil 

pressure tends to decrease due to reduced oil flow rate through the engine's oil passages. 

This can be particularly evident during idling or low-speed operation, where insufficient 

oil circulation can lead to low-pressure conditions. 
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Engine oil viscosity, or the thickness of the oil, also influences oil pressure. 

Higher viscosity oils provide better lubrication at high temperatures and pressures, 

resulting in higher oil pressure. Conversely, lower-viscosity oils may experience reduced 

oil pressure, especially in high-temperature operating conditions, where the oil thins out 

and flows more easily. A plugged or clogged oil filter can restrict oil flow, causing a drop 

in oil pressure. Over time, debris, contaminants, and sludge can accumulate in the oil 

filter, impeding oil circulation and reducing pressure. Regular oil and filter changes are 

essential to prevent filter blockages and maintain optimal oil flow and pressure. 

Low oil level is another common cause of low engine oil pressure. Insufficient oil 

volume in the crankcase reduces the amount of oil available for lubrication, leading to 

decreased oil pressure. Monitoring oil levels regularly and topping up as needed is crucial 

for preventing low oil pressure conditions. Apparent low pressure, often caused by worn 

engine bearings, oil pump wear, or blocked oil passages, can give the impression of low 

oil pressure even when oil levels and viscosity are adequate. Worn bearings create larger 

gaps between moving parts, allowing oil to flow more freely and reducing pressure. 

Similarly, pump wear can result in a decreased oil flow rate, leading to lower pressure 

readings. 

Low engine oil pressure can have detrimental effects on vehicle performance and 

engine life. Inadequate lubrication can cause increased friction and wear on engine 

components, leading to premature engine failure and reduced longevity. Severe cases of 

low oil pressure can result in engine overheating, seizure, or catastrophic failure, 

necessitating costly repairs or replacements. 

To manage low engine oil pressure effectively, regular maintenance and 

inspections are essential. This includes checking oil levels and quality, replacing oil filters 

at recommended intervals, and monitoring oil pressure using a gauge or warning light. 

Addressing any issues promptly, such as leaks, worn bearings, or pump wear, can help 

prevent low oil pressure conditions and ensure optimal engine performance and longevity. 

Figure 13 shows the possible reasons leading to low oil pressure in the engine 

such as oil viscosity, engine RPM, plugged filter, low oil level, pump wear, and apparent 

low pressure. 
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Figure 13 Low Oil Pressure in Engine and its causes  

3.3 Methodology Flow Chart 

3.3.1 Preprocessing the Data 

Techniques such as interpolation or forward/backward filling are used to remove 

missing values, ensuring continuity in the time-series dataset. Statistical methods or 

machine learning algorithms are employed to detect outliers, which may indicate sensor 

malfunctions or abnormal vehicle behavior. Exploratory Data Analysis (EDA) 

techniques, including time-series decomposition and trend visualization, are used to 

understand the data distribution and identify patterns. Relevant features such as rolling 

averages, lagged variables, and seasonality indicators are engineered to capture important 

information for predictive modeling. Data transformation techniques such as logarithmic 

scaling or differencing are applied to stabilize variance and make the data more amenable 

to modeling. 

3.3.2 Splitting the Data 

Data is traditionally divided into three categories for training, validation, and 

testing using a predetermined ratio (e.g., 70% training, 15% validation, 15% test) to 

ensure model generalization and prevent overfitting. Cross-validation is performed using 

K-fold to predict the performance of the model across various subsets of the data, 

providing insights into its robustness and stability. 
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3.3.3 Data Analysis 

Exploratory data analysis techniques such as correlation analysis and feature 

importance ranking are used to identify relevant variables and assess their impact on 

model performance. Statistical models like ARIMA and VAR are used for time-series 

forecasting, while ML models like XGBoost and LSTM are employed for complex 

pattern recognition and prediction tasks. 

3.3.4 Machine Learning Model 

Various statistical models and machine learning algorithms, including VAR, 

ARIMA, XGBoost, LGBM, and LSTM neural networks, are explored and implemented 

to address the specific use cases. A model will be selected based on its suitability for the 

specific use case and dataset characteristics. Model hyperparameters are tuned using grid 

search or random search to optimize performance. 

3.3.5 Evaluation 

The metrics Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), and 

R squared ( 𝑅2 ) are used to assess model accuracy and predictive performance. 

Performance analysis based on these metrics helps identify areas for improvement, such 

as feature selection, hyperparameter tuning, or data augmentation. 

3.3.6 Model Deployment 

Trained models are deployed in production environments to make real-time 

predictions on new data, enabling proactive maintenance and decision-making. Inference 

mechanisms interpret model predictions and provide actionable insights to stakeholders, 

facilitating informed decision-making and operational optimization. 

Figure 14 shows the methodology adopted and the subsystems involved. This 

comprehensive methodology outlines the entire process of leveraging predictive analytics 

for electric and IC engine vehicles. Each step is tailored to address the unique challenges 

and requirements, ensuring robust and scalable solutions for vehicle monitoring and 

maintenance. 
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Chapter 4  

Machine Learning Models 

Machine learning is a field of artificial intelligence that enables computers to learn 

from data and make predictions without explicit programming. In automotive predictive 

diagnostics, ML analyzes data from vehicle sensors to predict faults, detect anomalies, 

optimize maintenance schedules, and enhance diagnostic accuracy. By identifying 

patterns in metrics, ML models can forecast issues before they occur, allowing for timely 

maintenance and reducing breakdowns. This approach improves vehicle reliability, 

extends lifespan, and provides personalized insights based on driving habits, ultimately 

optimizing vehicle performance and maintenance efficiency. ML models experimented in 

this study are explained in detail with their underlying principles, suitability for time-

series data, potential advantages, and limitations in this section. The flowchart adapted for 

it is shown in Figure 15. The dataset is preprocessed, features are selected appropriately 

based on the use case, correlation analysis is done to verify the significance of the 

features, and then the dataset is normalized. The normalized data is divided into three 

subsets for training, validation, and testing. The trained model is saved, and its 

performance is evaluated based on evaluation metrics. 

 

Figure 15 Machine Learning Model Flow Chart 
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4.1 Vector Auto Regression (VAR) 

VAR is a multivariate time-series forecasting model that extends autoregression 

(AR) to multiple variables. It captures linear dependencies between multiple variables by 

modeling individual variable as a function of its previous values and the previous values 

of other variables in the system. VAR is suited for capturing dynamic relationships and 

feedback mechanisms present in multivariate time-series data. It can handle 

interdependencies between variables and capture their joint evolution over time. 

Strengths of VAR is its capability to record dynamic relationships and feedback 

mechanisms within the data. Examining the effect of changes in one variable with the 

behavior of another variable over time furnishes useful insights into the underlying 

dynamics of the system. This makes it an influential tool for predicting multiple variables 

simultaneously, as it can report the interactions between them and their joint evolution 

over time. However, despite its versatility, VAR has certain limitations that must be 

considered when adapting it to real-world datasets. VAR assumes that the relationships 

between variables are linear. While this simplifying assumption allows for 

straightforward interpretation and estimation, it may not accurately capture nonlinear 

dependencies or complex patterns present in the data. In cases where the relationships 

between variables are highly nonlinear, VAR may produce suboptimal forecasts. 

VAR performs best when applied to a static time-series dataset with a constant 

statistical property. In real-world datasets, achieving stationarity can be challenging, 

particularly when dealing with multivariate, multi-output data with class imbalance. 

Variations in data quality, missing values, or active trends can impact performance and 

lead to inaccurate forecasts. As the number of variables in the system increases, the model 

may become computationally intensive and prone to overfitting. In such scenarios, careful 

feature selection and regularization techniques are necessary to mitigate the curse of 

dimensionality and prevent model overfitting. 

In datasets with class imbalance, where certain classes or categories are 

underrepresented, VAR may struggle to accurately capture the dynamics of minority 

classes. This results in biased forecasts and poor forecasting accuracy, particularly if the 

imbalance is severe. Specialized techniques, such as resampling methods or class-

weighted loss functions, may be required to address class imbalance and improve the 
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robustness of the model. While VAR provides valuable insights into the relationships 

between variables, understanding the results of a multivariate analysis can be demanding, 

specifically in complex systems with numerous interdependencies. 

4.2 Autoregressive Integrated Moving Average (ARIMA) 

ARIMA is a widely used time-series forecasting model that blends autoregression 

(AR) and moving average (MA) components with changes to handle static data. ARIMA 

models can record both the linear dependencies within a time-series dataset and its 

elemental trend and seasonality patterns present in the dataset. 

ARIMA models are characterized by three main components: Autoregression 

(AR), Integrated (I), and Moving Average (MA). AR component models the relationship 

between an observation and its former values. It captures the linear dependence between 

the current value of the time series data and its previous values. The integrated 

component involves differentiating the time series data to achieve stationarity. By taking 

differences between consecutive observations, ARIMA removes trends and other non-

stationary patterns, making the time series static. The MA component models the 

relationship between a recorded value and the error residue term derived from a MA 

model applied to previous observations. It captures the linear dependence between the 

current value and past forecast errors. 

The ARIMA model is inherently a univariate model and does not directly handle 

multiple input variables or outputs. While extensions like vector ARIMA (VARIMA) 

exist for multivariate time series, they may not effectively capture the complex 

interactions and dependencies present in multi-output data with class imbalance. It 

assumes linear relationships between variables and may struggle to model nonlinear 

dependencies or complex patterns in the data. 

This model performs best when applied to stationary time series data. Achieving 

stationarity can be challenging in multivariate datasets with class imbalance, where 

variations in data quality, missing values, or non-stationary trends are common. It might 

give inaccurate predictions if the base data is not stationary. As the number of variables 

increases, ARIMA models may become computationally intensive and prone to 

overfitting. Feature selection and regularization techniques are necessary to mitigate 

overfitting and ensure model robustness. It also struggles to accurately capture the 
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dynamics of minority classes in datasets with class imbalance. This can lead to biased 

forecasts and poor predictive performance, particularly if the imbalance is severe.  

4.3 Extreme Gradient Boosting (XGBoost): 

XGBoost is a powerful ensemble learning algorithm with effectiveness in 

supervised learning tasks. It develops a series of decision trees sequentially, with each 

tree learning from the errors of its predecessors, thereby improving the long-term 

predictive performance of the model. It can be applied by framing the problem as a 

supervised learning task, where historical observations are used to predict future values. It 

excels at capturing complex nonlinear relationships and patterns in the data, making it 

suitable for modeling the dynamic behavior of time series data. 

High performance, scalability, and efficiency are advantages of this model. It can 

handle large datasets with high dimensionality, making it suitable for tasks involving 

many features and observations. Additionally, it is less prone to overfitting compared to 

traditional decision trees, thanks to its regularization techniques and ensemble approach. 

XGBoost requires careful tuning of hyperparameters to optimize its performance. 

Choosing the correct mix of hyperparameters, such as learning rate, tree depth, and 

regularization parameters, can be challenging and may require extensive experimentation. 

In multivariate, multi-output time series datasets, the number of hyperparameters to tune 

increases, making the tuning process more complex. While it provides high predictive 

accuracy, its models can be less understandable compared to simpler models like ARIMA 

or VAR. The ensemble nature of XGBoost and the complex interactions between decision 

trees make it demanding to interpret the underlying relationships between input variables 

and output targets.  

This model may struggle to predict minority classes in datasets with class 

imbalance accurately. The algorithm tends to focus more on optimizing overall accuracy, 

which can lead to biased predictions for minority classes. Techniques such as class 

weighting or resampling may be required to address class imbalance and improve model 

performance. It may still face scalability issues with extremely large datasets or complex 

models.  
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4.4 Light Gradient Boosting Machine (LGBM) 

LGBM is a powerful ML algorithm used for supervised learning, particularly in 

the field of gradient boosting. It operates similarly to XGBoost but is optimized for 

efficiency and speed, suited for large-scale datasets and real-time applications. It 

constructs decision trees in a leaf-wise manner rather than level-wise, optimizing for the 

maximum reduction in loss at each step. This approach allows it to build trees more 

efficiently and achieve better performance with fewer splits, resulting in faster training 

times and lower memory usage. 

One of the key advantages of LGBM is its scalability and efficiency. It can handle 

large datasets with millions of observations and thousands of features, making it suitable 

for tasks requiring high-dimensional data. Additionally, it is highly parallelizable and can 

take advantage of multi-core processors to accelerate training. It is also capable of 

handling categorical features and missing values effectively, eliminating the need for 

extensive data preprocessing. It automatically handles categorical features by encoding 

them into numerical values during training, and it can handle missing values by 

partitioning data based on missingness and treating them as separate categories. 

When applied to time-series forecasting tasks, it offers similar advantages to 

XGBoost. It can record complex patterns and nonlinear relationships present in the 

dataset, is apt for modeling the dynamic behavior of time series data. However, it has 

limitations while dealing with multivariate, multi-output time series data with class 

imbalance. Like other ensemble methods, this model can be less interpretable compared 

to simpler models such as linear regression. The complex interactions between decision 

trees and the ensemble nature of the model make it challenging to interpret the underlying 

relationships between input variables and output targets. 

LGBM requires careful tuning of hyperparameters to achieve optimal 

performance. Selecting the correct set of hyperparameters can be demanding and may 

need extensive experimentation. It may struggle to predict minority classes in datasets 

with class imbalance accurately. The algorithm tends to focus more on optimizing overall 

accuracy, which can lead to biased predictions for minority classes. Specialized 

techniques such as class weighting or resampling may be required to address class 

imbalance and improve model performance. 
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4.5 Long Short-Term Memory (LSTM) Neural Networks 

 LSTM Neural Network is based on recurrent neural network (RNN) type 

architecture explicitly designed to address the difficulties of securing long-term 

dependencies in sequential data. Dissimilar to traditional RNNs, which struggle to 

preserve data over long sequences due to the fading gradient problem, LSTM networks 

incorporate gating mechanisms and memory cells to carefully preserve and update the 

data over time. In time-series forecasting tasks, LSTM networks offer several advantages, 

specifically when dealing with multivariate, multi-output time series class imbalanced 

datasets. 

 LSTM networks are suited for modeling time-series dataset with long-term 

dependencies. They can effectively capture patterns and relationships that span across 

multiple time steps, allowing them to record both short term fluctuations and long-term 

trends in the dataset. This makes it effective for predicting tasks where understanding the 

historical context is crucial for making accurate predictions. This network can also easily 

accommodate multivariate time-series data, where multiple variables are observed 

simultaneously over time. By processing multiple input features concurrently, LSTM 

networks can record complicated dependencies and interactions between different 

variables with more accurate forecasts. 

This model is capable of processing sequences of variable lengths, making them 

versatile for handling time-series data with irregular sampling intervals or missing 

observations. This flexibility allows it to adapt to the temporal dynamics of the data and 

effectively model sequences of different lengths. It also excels at capturing sequential 

patterns and temporal dynamics in the data. By learning from past observations and 

updating their internal state over time, it can capture subtle changes and nonlinear 

relationships in the dataset, enabling them to make skillful forecasts even in the presence 

of complex temporal patterns. 

In multivariate, multi-output time series datasets with class imbalance, LSTM 

networks can adapt their learning process to focus more on minority classes by adjusting 

the loss function or incorporating class weighting techniques. This allows it to effectively 

handle imbalanced datasets and make accurate predictions for all classes. Despite these 

advantages, LSTM networks also have limitations, such as their susceptibility to 
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overfitting and the need for larger amounts of training data and longer training times 

compared to traditional statistical models. However, with careful regularization 

techniques, hyperparameter tuning, and appropriate preprocessing of the data, LSTM 

networks can overcome these limitations and deliver accurate forecasts in multivariate, 

multi-output time series class imbalanced datasets. 

 

Figure 16 Long Short-Term Memory (LSTM) model architecture and its system 

 Figure 16 shows the architecture of an LSTM model and its nonlinearities, types 

of vector operations involved, inputs considered, and the outputs generated. The model 

updates every node in each layer by following this architecture to predict the final 

parameters. 

4.6 Correlation Analysis 

Correlation analysis determines the strength and direction of the linear 

relationship between variables in the dataset. It helps to analyze potential dependencies 

and patterns in the dataset. A positive correlation signifies a direct relationship between 

variables, a negative correlation signifies an inverse relationship, and a zero correlation 

indicates no linear relationship. 
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Figure 17 Correlation Analysis Matrix Heatmap 

 Figure 17 shows the correlation analysis of all parameters significant for three 

electric vehicle use cases in a heatmap. A positive correlation is observed between cell 

voltages and battery potential power input, cell temperatures and battery power input, 

accelerator pedal position and motor current, coolant temperature and motor voltage. This 

implies the significance of these parameters in individual use cases. Similarly, a negative 

correlation is observed between motor voltage and demand charge current, coolant 

temperature and demand charge current which indicates a negative effect on parameters. 
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The individual heatmap correlation helps to focus only on certain influential 

parameters and their effect on the use case. This activity helps to reduce the computation 

time while the machine learning model is training. The negative effect of leaving out 

other parameters is assumed to be insignificant. 

An individual use-case-based correlation matrix was prepared. The heatmap of 

cell imbalance parameters is shown in Figure 18 which indicates that the individual cell 

voltages, cell temperatures, and fuel level (State of Charge – SoC) are the significant 

parameters. Cell temperature and battery potential has higher influence on the cell 

voltages as per the values in the heat map matrix. 

 

Figure 18 Correlation Analysis Matrix Heatmap for Cell Imbalance 
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Figure 19 Correlation Analysis Matrix Heatmap for Cell Temperature 

Significant parameters for the cell temperature use case are battery power, cell 

temperatures, and cell voltages as shown in Figure 19. Battery input power and voltage 

have higher positive correlation values whereas SOC and coolant pressure have lower 

values. This indicates that SOC and coolant pressure has very minimal effects on cell 

temperature 

Influential parameters for the PMSM Traction Motor temperature use case is 

charging current, motor voltage, vehicle speed, coolant temperature as shown in Figure 

20. Motor voltage and charging current are having higher influence on the motor 

temperature as per the positive correlation values in the heat map matrix whereas vehicle 

speed has the least influence. 
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Figure 20 Correlation Analysis Matrix Heatmap for Motor Temperature 

4.7 Performance Metrics 

4.7.1 Mean Absolute Error (MAE) 

MAE quantifies the mean absolute deviation between the real-time values and 

predicted values. It presents a forthright evaluation of prediction precision, with lower 

MAE values indicating higher accuracy in forecasting. It is calculated for each data point 

and is appropriate for calculating the overall accuracy of model prediction, providing 

insights into the magnitude of errors. MAE helps assess the capability of models to make 

predictions more accurate across the entire dataset, regardless of the direction of errors. 

4.7.2 Root Mean Squared Error (RMSE) 

RMSE quantifies the root of mean squared difference between forecasted and 

real-time values. It castigates larger errors more than MAE; this makes it responsive to 

deviations. RMSE is suitable for evaluating the magnitude of errors and assessing the 

overall performance of predictive models. RMSE gives perception into the variability of 

errors and supports identifying the presence of outliers or extreme predictions. 
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4.7.3 R-squared (𝑹𝟐) 

𝑅2 quantifies the proportion of variance in the dependent target (variables) that is 

analyzed by the independent features (variables). It illustrates the integrity of the fit in the 

model with data. 𝑅2 is used to evaluate the predictive power of the model and assess its 

capability to apprehend the variability in the target variable. It ranges from 0 to 1, with 

value close to one citing a better fit. It helps quantify the proportion of variability in the 

target variable that can be attributed to the model's predictors. 

4.7.4 Confusion Matrix 

A confusion matrix is a table that compiles the performance of a classifier model 

by correlating predicted and actual values. It is beneficial for evaluating models with 

discrete outcomes. True positive (TP), true negative (TN), false positive (FP), and false 

negative (FN) are the components of the confusion matrix. Precision, accuracy, recall 

(sensitivity), and F1 score are the metrics of the model. The formula to calculate these 

metrics are shown in equations (i), (ii), (iii) and (iv) respectively. The confusion matrix 

gives insights into the model's capability to correctly distinguish instances into different 

classes and identify errors (false positives and false negatives). 

Table 1 Confusion Matrix 

 Predicted Positive Predicted Negative 

Actual Positive True Positive (TP) False Negative (FN) 

Actual Negative False Positive (FP) True Negative (TN) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃+𝐹𝑃
      (i) 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
     (ii) 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
           (iii) 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 =  
2×𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
       (iv) 

By employing these evaluation techniques, the performance and reliability of the 

predictive analytics models can be assessed. These metrics and analyses give critical 

understanding of the strengths and limitations of the models, guiding further refinement 

and optimization to enhance predictive accuracy and effectiveness.  
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Chapter 5  

Logic Based Models 

Logic-based models, also known as rule-based systems or expert systems, operate 

on a set of predefined rules or logical statements to make decisions or predictions. Rules, 

conditions, actions, and inference engines are the components of a logic model. Unlike 

machine learning models that rely on data-driven approaches, logic-based models utilize 

predefined rules and logical reasoning to make predictions and draw conclusions from the 

data. These models are often used in scenarios where the underlying mechanisms are well 

understood or where interpretability and explainability are crucial. 

The model evaluates input data against a set of rules or conditions and generates 

output based on the logical implications of those rules. Logic-based models are suitable 

for scenarios where the decision-making process can be formalized into explicit rules or 

where domain knowledge and expertise play a significant role in decision-making. 

5.1 Types of Logic-Based Models 

5.1.1 Decision Trees  

Decision trees are hierarchical structures composed of nodes that represent 

decision points and branches that represent possible outcomes based on different 

conditions. Each node corresponds to a feature or attribute, and each branch represents a 

decision or rule based on the value of that feature. Decision trees are easy to interpret and 

visualize, making them valuable for understanding the decision-making process. 

5.1.2 Expert Systems 

Expert systems integrate knowledge from human experts into a computerized 

system to make decisions or provide advice in a specific domain. They mimic the 

problem-solving behavior of human experts by encoding their knowledge into a set of 

rules or logical statements. Expert systems are valuable for tasks that require expertise or 

domain-specific knowledge, such as fault diagnosis and troubleshooting. 
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5.1.3 Rule-Based Systems  

Rule-based systems consist of a set of rules that encode domain-specific 

knowledge or expertise. Each rule comprises conditions and corresponding actions, 

specifying the actions to be taken when certain conditions are met. Rule-based systems 

can be transparent and interpretable, allowing users to understand the reasoning behind 

the model's decisions. 

Figure 21 shows a flow chart of the process followed for logic-based model. The 

recorded parameters from the vehicles shared to the cloud from the TCU are available in 

the Volvo Eicher Uptime Centre’s server. The parameters required for analyzing the 

different use cases of electric vehicles over a period are selected and downloaded. 

Eicher’s electric buses typically run between six hours to ten hours a day. The data 

recorded will be for every minute once during its operation. If the bus operates for three 

hours, then 180 entries of values of all parameters will be recorded. 

The recorded data is shared as a Comma-Separated Values (CSV) file and it 

consists of many parameters including vehicle ID details, location, minimum & 

maximum cell voltage, minimum & maximum cell temperature, battery pack voltage, 

battery power input, charging current, demand charge current, charging time, motor 

current, motor voltage, motor estimated torque, charging status, battery potential power 

input, regeneration power, auxiliary power consumption, and date &time details. 

 

Figure 21 Flow chart for Logic Based Model 



41 
 

 Based on the number of electric buses that needs to be analyzed, all CSV files will 

be placed in a common directory. First python code will run to preprocess the data, drop 

any null entries, sort the data sequentially, apply the use case thresholds and conditions, 

record the output, and create an excel (XLSX) file to store the results. This excel file 

distinguishes the electric buses with and without issues. 

 The electric bus datasets with issues will be placed in another directory for 

analyzing the consecutive faults if any present in the vehicle. Second python selects the 

datasets one by one, preprocess the data, drop any null entries, set consecutive fault count 

limit, record the output, and create an excel (XLSX) file to store the results. The results 

are analyzed and recommended actions are to be considered. 

 The flow of fifty-three octillion battery-operated electric bus with two months of 

data analyzed using two python codes for filtering out the faulty vehicles and finding the 

consecutive faults present in it are shown in Figure 22. 

 

Figure 22 Pictorial representation of Logic Based Model analysis methodology 

5.3 Application of Logic-Based Models 

Logic-based models can be used for diagnosing faults and identifying potential 

issues in electric and IC engine vehicles based on predefined rules and diagnostic criteria. 

These models can also help to identify the underlying causes of problems or failures by 

analyzing the relationships between different variables and components in the vehicle 

system. These models can provide recommendations for maintenance and repair actions 

based on diagnostic results and historical data, helping optimize maintenance schedules 

and resource allocation. 
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5.4 Advantages and Limitations 

Advantages 

✓ Interpretable and transparent decision-making process. 

✓ Utilizes domain knowledge and expertise effectively. 

✓ Can handle complex decision logic and uncertainty. 

Limitations 

✓ Reliance on explicit rules may lead to oversimplification or omission of important 

factors. 

✓ Difficulty in capturing implicit knowledge that is not explicitly represented in 

rules. 

✓ Limited ability to adapt to changing conditions or unforeseen scenarios without 

manual intervention. 

By exploring logic-based models in the context of predictive analytics, its 

strengths in interpretability and domain knowledge integration to complement the 

predictive capabilities of machine learning models can be leveraged. These models offer 

valuable insights and decision support for various tasks ranging from fault diagnosis to 

maintenance planning in automotive systems. 
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Chapter 6  

Results and Discussion 

 The machine learning model experiments conducted for this research project 

focused on battery cell imbalance use case and the final acceptable results are extended to 

the remaining use cases as the type of dataset under study is similar. The logic-based 

models are developed for all the use cases and the results are compared with ML models. 

This chapter will discuss the results of two machine learning models LGBM and LSTM 

for cell imbalance use case, the comparison between the performances of machine 

learning model and logic-based model. 

6.1 Machine Learning Model Results 

6.1.1 Light Gradient Boosting Machine (LGBM) Model 

LGBM model is developed in python to make predictions of test dataset based on 

the learnings from trained dataset. The code uses pandas and lightbgm libraries along 

with sci-kit learn libraries for metrics and model selection. A vehicle with 6 months of 

data in form of CSV file is considered with the help of pandas library, sorted by the IST 

time of data recording, preprocessing the dataset by dropping unnecessary columns and 

handling missing values. 

The model splits the data into features and targets with target being cell imbalance 

column while remaining influential columns being features. This cell imbalance column 

is populated based on the conditions and threshold defined by the battery supplier. Cell 

imbalance value is one (1) if any of the following conditions hold true else it is zero (0):  

✓ Maximum cell voltage crossed 3.65V 

✓ Minimum cell voltage went below 2.9V 

✓ The voltage difference between maximum and minimum cell is more than 0.5V. 

 The model then sets the LGBM parameters with binary objective and binary log 

loss metric. The code ensures that column wise parameters are evaluated while training 

the model. The maximum number of boosting rounds for the training process is set to 

hundred (100) and the maximum number of rounds to wait for if there's no improvement 

in the evaluation metric on the validation set before stopping the training is set to ten (10). 
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The code iterates over a hundred training sessions lgb.train() function is called to train the 

model for one boosting round and results from the previous model (bst) from the last 

boosting round is used for incremental learning. 

After each boosting round, the code checks if the current round minus the best 

iteration so far is greater than or equal to the stopping criteria and if it is, it breaks out of 

the loop, stopping the training early. After training, the trained model (bst) is used to 

make predictions on the test dataset and bst.predict() function returns the predicted 

probabilities for each sample in the test dataset. Finally, it converts the predicted 

probabilities into binary predictions by thresholding at 0.5. Values greater than 0.5 are 

considered as Class 1, and values less than or equal to 0.5 are considered as Class 0. 

The model was run across different input datasets to visualize the variation in 

performance. The trials conducted yielded different sets of results as shown in Figure 23. 

The accuracy of the model is high, but the precision, recall, and F1-Score results dropped 

when the input dataset was changed. This variation observed is due to the very severe 

class imbalance of the data in the ratio of 1:400, whereas the nominal ratio is of 1:10. 

 

Figure 23 LGBM model and its results across datasets 
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6.1.2 Long-Short Term Memory (LSTM) Model 

An LSTM model is developed in Python to make predictions on a test dataset 

based on learnings from a trained dataset. The code utilizes Pandas and Keras libraries 

along with scikit-learn libraries for metrics and model selection. A vehicle with 6 months 

of data in the form of a CSV file is considered with the help of the pandas library, sorted 

by the IST time of data recording, preprocessing the dataset by dropping unnecessary 

columns and handling missing values. 

Like LGBM model, LSTM also splits the data into features and targets in the 

same manner. Cell imbalance column is populated like LGBM model. The data is split 

into training and testing sets, with 80% used for training and 20% for testing. The 

MinMaxScaler is initialized for normalization, and the features are normalized. The data 

is then converted into sliding windows of a specified size for input into the LSTM model.  

The model calculates class weights to account for data imbalance and builds and 

compiles the LSTM model with binary cross-entropy loss and accuracy metrics. The 

model trains with the class weights for ten (10) epochs and a batch size of thirty-two (32). 

After training, the trained model is used to make predictions on the test dataset. The 

model.predict() function returns the predicted probabilities for each sample in the test 

dataset. These probabilities are converted into binary predictions using a threshold of 0.7 

to classify the classes as zero (0) and one (1). 

The model's performance is evaluated using accuracy, precision, recall, F1-score, 

and a confusion matrix. The accuracy of the model is high, but the precision, recall, and 

F1-score results vary depending on the input dataset as shown in Figure 24. This variation 

is observed due to the severe class imbalance, and the DTC errors occur as an anomaly 

leading to poor prediction. 
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Figure 24 LSTM model and its results 

6.1.3 Multi Variate Multi Step Ahead LSTM Model 

 An LSTM model is developed in Python to make multi-step ahead predictions on 

a test dataset based on learnings from a trained dataset. The code utilizes pandas and 

TensorFlow libraries along with scikit-learn libraries for metrics and model selection. 

Initially, the input data is strategically reduced to address class imbalance. This is 

achieved by selecting key indices where "Cell Imbalance" is present and ensuring a 

balanced representation of the data (1:25). Specifically, the reduction process involves 

identifying instances where the "Cell Imbalance" column equals one (1) and then 

selecting surrounding data points to provide context. This method ensures that both 

balanced and imbalanced data points are adequately represented, improving the model's 

performance. 

The model splits the data into features and targets in the same manner. Cell 

imbalance column is populated like LGBM model. The input data is normalized using the 

MinMaxScaler, and the features are transformed into sequences of data for input into the 

LSTM model. The model defines the number of time steps and features to create 

sequences of data for training. The data is split into training and testing sets, with 80% 

used for training and 20% for testing. 
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The model builds and compiles the LSTM network with an Adagrad optimizer 

and Mean Squared Error (MSE) loss function. The LSTM model consists of 50 units, 

followed by a dropout layer to prevent overfitting, and a dense layer for output. The 

model trains for one hundred (100) epochs with a batch size of ninety-six (96), and the 

training process includes validation to monitor performance on the test set. After training, 

the trained model is used to make predictions on the test dataset. The model.predict() 

function returns the predicted values for each sample in the test dataset. 

The model's performance is evaluated using RMSE and MAE for each time step 

from 1 to 10. The evaluation results demonstrate model's capability to predict multi-step 

ahead values effectively. RMSE and MAE scores for the tenth time step indicate that the 

model can predict the maximum cell voltage with a high degree of accuracy. The training 

and validation loss over epochs are plotted to visualize the model's learning process.  

Overall, the LSTM model's ability to predict values better is attributed to its 

multivariate approach, considering multiple influential features, and its multi-step ahead 

forecasting capability. The reduction in data imbalance before training further enhances 

the model's performance, ensuring a more balanced and representative dataset for 

training. 

The results in Figure 25 show that the model has a stable training process with 

minimal overfitting, as indicated by the close alignment of training and validation loss 

curves. The model was run across different input datasets to visualize the variation in 

performance. The trials conducted yielded consistent results, demonstrating the model's 

robustness in handling multivariate time series data. The high accuracy of the model, 

coupled with low RMSE and MAE scores, highlights its effectiveness in making reliable 

multi-step predictions. 
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Figure 25 Training and Validation loss of multivariate LSTM model across epochs 

 To improve the model performance, Design of Experiments (DoE) was conducted 

on window size, LSTM units, and batch size for the input data. Window size varied 

between 40, and 50; LSTM units between 50, 100, and 150; batch size between 32, 64, 

and 128 in the experiments. The results of the DoE show cases that errors, losses are low 

and validation accuracy is high for combinations of higher unit size with higher batch 

size. Table 2 shows the set of results and its corresponding input parameters along with 

individual computation time. 
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Table 2 Hyper Parameter Tuning through Design of Experiments 

 

 Based on the hyper parameter tuning, the multi variate multi step ahead model is 

run again to predict the values and it showcases minimal deviation from the actual value. 

The trend of the cell voltage over time and sample index is shown in Figure 26 and minor 

variations are predicted with a close range whereas abnormalities are forecasted with 

slightly higher deviations. These show the improvement in the model performance after 

the hyper parameter tuning. 

 

Figure 26 Actual and predicted values of the cell voltage based on hyper tuned model 
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6.2 Logic Based Model Results 

6.2.1 Battery Cell Imbalance Use Case 

A logic-based model is developed in Python to analyze a dataset and calculate 

various metrics based on predefined thresholds. The code utilizes pandas for data 

manipulation and os for file operations. This model processes multiple CSV files to 

extract and compute metrics related to cell voltage in a vehicle's battery pack. Initially, 

the model loads each CSV file from the current directory, filtering the data to remove 

entries where both maximum and minimum cell voltages are zero. It then sorts the data by 

time to ensure chronological order. 

The model defines thresholds for maximum and minimum cell voltages and 

computes additional metrics such as the difference between the maximum and minimum 

cell voltages (Cell_V_Diff). If this difference exceeds a specified threshold, it counts the 

occurrence. The metrics calculated include Total number of entries, Maximum cell 

voltage across all entries, Minimum cell voltage across all entries, Frequency of entries 

where Cell_V_Diff exceeds the threshold. 

For each CSV file, the model calculates the following metrics and stores them in a 

summary Data Frame. Those metrics are Frequency of 'Max_Cell_V' crossing the 

threshold (3.65V), Frequency of 'Min_Cell_V' crossing the threshold (2.9V), Frequency 

of 'Cell_V_Diff' crossing the threshold (0.5V), Total Entries in the Vehicle, Max_Cell_V 

out of All Entries, and Min_Cell_V out of All Entries. 

After processing all files, the model consolidates the results into a single Excel file 

with a summary sheet. Each column in the summary sheet is auto-sized based on the 

content for better readability. The logic-based approach ensures that all significant 

metrics related to battery cell voltage are computed efficiently, providing insights into the 

frequency and extent of voltage variations. By aggregating the data across multiple files, 

the model offers a comprehensive view of the vehicle's battery performance over time. 

Overall, this model is effective in identifying critical events related to cell voltage 

thresholds and providing a detailed summary of battery health indicators across multiple 

datasets. The strategic calculation of additional metrics enhances the understanding of 

voltage behavior, contributing to better battery management and maintenance. 
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The model's output demonstrates the frequency and extent of cell voltage 

variations, highlighting key metrics such as the frequency of threshold crossings and 

overall voltage extremes. This information is crucial for monitoring battery performance 

and identifying potential issues related to cell imbalance and voltage fluctuations.  

6.2.2 Battery Cell Temperature Use Case 

 A model similar to cell imbalance use case is developed for cell temperature, the 

change being the conditions and threshold. This model defines thresholds for maximum 

and minimum cell temperatures and calculates additional metrics. These include Total 

number of entries, Maximum cell temperature across all entries, Minimum cell 

temperature across all entries. 

For each CSV file, the model calculates the following metrics and stores them in a 

summary Data Frame. Those metrics are Frequency of 'Max_Cell_Temp' crossing the 

threshold (55°C), Frequency of 'Min_Cell_Temp' crossing the threshold (15°C), Total 

Entries in the Vehicle, Max_Cell_Temp out of All Entries, Min_Cell_Temp out of All 

Entries. The model calculates these metrics using a helper function that processes the 

filtered data. For each file, it creates a result dictionary that is then converted to a Data 

Frame. All individual results are concatenated into a single Data Frame that aggregates 

the results across all files. Finally, the combined results are written to an Excel file with a 

summary sheet. Each column in the summary sheet is auto-sized based on the content for 

better readability. 

This logic-based approach ensures comprehensive analysis of cell temperature 

metrics, providing valuable insights into temperature behavior within the battery pack. By 

processing multiple files, the model offers a detailed overview of the temperature 

variations, which is crucial for monitoring battery health and performance. Overall, this 

model effectively identifies critical temperature events, enhancing the understanding of 

cell temperature dynamics. The consistent calculation of additional metrics across 

multiple datasets provides a robust framework for temperature monitoring and analysis. 

The model's output demonstrates the frequency and extent of temperature 

variations, highlighting key metrics such as the frequency of threshold crossings and 

overall temperature extremes. This information is vital for assessing battery performance 

and identifying potential issues related to cell temperature fluctuations. 
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6.2.3 Motor Temperature Use Case 

 A model similar to cell temperature use case is developed for motor temperature, 

the change being the conditions and threshold. This model defines thresholds for 

maximum and minimum motor temperatures and calculates additional metrics. These 

include Total number of entries, Maximum motor temperature across all entries, 

Minimum motor temperature across all entries.  

For each CSV file, the model calculates the following metrics and stores them in a 

summary Data Frame. Those metrics are Frequency of 'Max_Motor_Temp' crossing the 

threshold (65°C), Frequency of 'Min_Motor_Temp' crossing the threshold (4°C), Total 

Entries in the Vehicle, Max_Motor_Temp out of All Entries, Min_Motor_Temp out of All 

Entries. The model calculates these metrics using a helper function that processes the 

filtered data. For each file, it creates a result dictionary that is then converted to a Data 

Frame. All individual results are concatenated into a single Data Frame that aggregates 

the results across all files. Finally, the combined results are written to an Excel file with a 

summary sheet. Each column in the summary sheet is auto-sized based on the content for 

better readability. 

This logic-based approach ensures comprehensive analysis of engine coolant 

temperature metrics, providing valuable insights into temperature behavior within the 

vehicle's system. By processing multiple files, the model offers a detailed overview of the 

temperature variations, which is crucial for monitoring engine performance and 

identifying potential issues. 

Overall, this model effectively identifies critical temperature events, enhancing 

the understanding of engine coolant temperature dynamics. The consistent calculation of 

additional metrics across multiple datasets provides a robust framework for temperature 

monitoring and analysis. The model's output demonstrates the frequency and extent of 

temperature variations, highlighting key metrics such as the frequency of threshold 

crossings and overall temperature extremes. This information is vital for assessing engine 

performance and identifying potential issues related to engine coolant temperature 

fluctuations. 
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Figure 27 shows the consolidated selective results obtained from the vehicles 

across three different use cases of electric vehicles. The results show the issues pertaining 

to battery cell imbalance are very high compared to remaining use cases. This is due to 

the possibility of high impedance during battery cell assembly that results in increased 

resistance on the cell which leads to imbalance between cells. 

 

Figure 27 Consolidated results of most faulty vehicles across use cases for logic model 

 The passive balancing present in the BMS is not able to fix the imbalance signifies 

that there are issues with charging that individual faulty cell. This issue was highlighted 

to the battery supplier through the manufacturer, the root cause analysis also suggests that 

the issue is with an individual cell present in a module with high impedance. To rectify 

the issue impedance matching needs to be performed or the faulty cell must be replaced. 

 Remaining use cases did not pose severe threats like cell imbalance use case, as 

only very minor issues are reported occasionally. The model is also capable of triggering 

in case of major continuous faults. 

6.2.4 Engine Oil Pressure Use Case 

A logic-based model is developed in Python to analyze a dataset for low oil 

pressure conditions based on predefined thresholds. The model comprises two main 

scripts: one for splitting the dataset into smaller, more manageable files and another for 

analyzing these files to identify critical low oil pressure events.  
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This model leverages pandas for data manipulation, os for file operations, and 

Json for configuration management. The first script is responsible for splitting a large 

CSV file into multiple smaller files based on the 'Chassis' column. The script begins by 

loading configuration settings from a JSON file, which specify the input directory, output 

directory, and the name of the input CSV file. It checks if the output directory exists and 

creates it if necessary, ensuring there is a dedicated space for the separated files. 

The script reads the input CSV file into a pandas Data Frame, identifies unique 

chassis values, and filters the Data Frame to include only rows associated with each 

chassis. For each unique chassis value, the script creates a new CSV file containing data 

specific to that chassis and saves it in the output directory. This organized separation of 

data facilitates targeted analysis and improves the manageability of large datasets. 

The second script analyzes the separated CSV files to identify instances where the 

engine oil pressure falls below specified thresholds under certain conditions. The script 

loads analysis parameters from a JSON file, which include the required columns, engine 

speed intervals, oil pressure thresholds, and output settings. Similar to the splitting script, 

this script ensures the existence of an output directory for storing the analysis results.  

The script iterates through each CSV file generated by the splitting process. It 

reads each file, filters out rows where critical columns have zero values, and processes the 

data based on the specified conditions. For each engine speed interval defined in the 

configuration, the script identifies rows where the engine oil pressure is below the 

threshold, the vehicle speed is above a certain value, and the accelerator pedal position 

exceeds a defined threshold. These rows are compiled into a Data Frame. The engine 

speed intervals and corresponding low oil pressure thresholds are as follows: 

Table 3 Engine RPM range and its corresponding oil pressure threshold 

Engine RPM Range Oil Pressure Threshold (kPa) 

800 – 1250 125 

1250 – 1500 150 

1500 – 2000 200 

2000 – 2500 225 

2500 – 4000 250 
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The filtered rows meeting the conditions are compiled into a Data Frame, sorted 

by their row entry index, and saved to an Excel file. This file contains a sheet with all 

entries that meet the criteria. The script identifies sequences of consecutive rows where 

the low oil pressure condition persists. If the number of consecutive rows exceeds a 

specified threshold, these are compiled into a separate sheet within the same Excel file. 

The model provides comprehensive insights into engine performance by 

highlighting key metrics, such as the frequency of low oil pressure occurrences and 

consecutive low-pressure events. This information is crucial for monitoring engine health, 

identifying potential issues, and ensuring timely maintenance. By structuring the analysis 

results in a well-organized Excel format, the model facilitates easy review and further 

analysis, contributing to better decision-making and engine management. Overall, this 

model offers a robust approach to understanding and mitigating risks associated with low 

oil pressure in vehicle engines, thereby enhancing reliability and performance. 

Figure 28 shows the python codes for data splitting along with the JSON files. 

Python file uses JSON file to set the output directory and file name. Figure 29 shows the 

python codes for data analysis and the thresholds set in the JSON files; the code provides 

warning based on the consecutive count of set thresholds. 

 

Figure 28 Production server codes for data splitting for oil pressure use case 
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Figure 29 Production server codes for data analysis for oil pressure use case 

6.3 Comparison of Machine Learning and Logic-Based Models 

The comparison between performances and applicability of machine learning and 

logic-based models under various aspects are shown in Table 4. This comparison helps to 

analyze the advantages and limitations of both ML and Logic model-based approaches 

chosen for the use cases. 

Table 4 Comparison between Machine learning models and Logic-based models 

Aspect Machine Learning Model Logic-Based Model 

Approach 
Uses algorithms to learn from data 

and make predictions. 

Uses predefined rules and 

thresholds to analyze data. 

Flexibility 
Highly flexible; can adapt to new 

data patterns without programming. 

Less flexible; requires manual 

updates to rules and thresholds. 

Complexity 
More complex; requires 

understanding of algorithms. 

Simpler; based on straightforward 

conditional logic. 

Data 

Requirement 

Requires a large amount of 

historical data for training. 

Can operate with relatively smaller 

datasets. 

Accuracy 
Higher accuracy with sufficient and 

high-quality training data. 

Accuracy depends on 

appropriateness of predefined rules. 

Scalability 
Scalable to large datasets with 

advanced algorithms and hardware. 

May struggle with scalability for 

very large datasets. 
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Maintenance 
Requires regular retraining with 

new data to maintain accuracy. 

Requires manual updates to logic as 

new rules are identified. 

Transparency 
Can be a "black box"; difficult to 

interpret how decisions are made. 

Transparent; decision-making 

process is clear and understandable. 

Deployment 
More challenging; needs 

specialized skills for deployment. 

Easier to deploy; straightforward 

implementation. 

Use Case 
Suitable for complex, dynamic 

environments  

Suitable for well-defined, stable 

environments  

Computational 

Resources 

Requires significant computational 

power, especially for training. 

Generally, requires fewer 

computational resources. 

Initial Setup 

Time-consuming; involves data 

preprocessing, model selection, and 

training. 

Quick; primarily involves defining 

rules and thresholds. 

Handling New 

Scenarios 

Can generalize and adapt to new, 

unseen scenarios. 
Limited to predefined scenarios. 

  

6.3.1 Strengths and Weaknesses 

ML models have the capability to learn from large amounts of dataset and identify 

intricate patterns that may not be immediately visible through traditional analysis. This 

capability is particularly advantageous for electric vehicles, where battery health and 

performance can be influenced by numerous interdependent factors such as temperature, 

charge cycles, and usage patterns. ML models can analyze these variables collectively, 

providing more accurate and robust predictions. Additionally, ML models are adaptable 

and can continuously improve their performance as more data becomes available. By 

retraining with updated data, ML models can maintain high levels of accuracy and 

relevance. 

However, the complexity of ML models also presents certain weaknesses. These 

models often operate as "black boxes," meaning their decision-making processes are not 

easily interpretable. This lack of transparency can be a significant drawback, especially in 

safety-critical applications like vehicle performance monitoring, where understanding the 

reasoning behind a prediction is essential. Moreover, ML models require substantial 

amounts of high-quality data for training, and the process of model selection, training, 

and validation can be resource intensive and time-consuming. Regular maintenance and 

retraining are also necessary to ensure the models remain effective over time. 
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Logic based models are highly reliable for well-defined, stable environments 

where the relationships between variables are straightforward. The simplicity of logic-

based models is a significant strength. They are relatively easy to implement and do not 

require large datasets or extensive computational resources. Their decisions are easily 

interpretable, which is crucial for debugging and ensuring compliance with safety 

standards. This transparency is particularly beneficial in automotive applications, where 

regulatory requirements often necessitate clear and auditable decision-making processes. 

However, logic-based models have their limitations. They are less flexible and 

adaptable than ML models, as they rely on predefined rules that may not account for all 

possible scenarios or changes in the operating environment. In complex and dynamic 

systems like electric vehicles, where performance can be influenced by numerous 

interacting factors, logic-based models may struggle to capture the full extent of these 

interactions. They are also less effective at handling nonlinear relationships, which can 

limit their accuracy and predictive power in certain applications. 

6.3.2 Cross-Validation and Model Validation 

Cross-validation and model validation are critical processes in ensuring the 

reliability and generalizability of machine learning models. Cross validation divides the 

dataset into many subsets and trains it on several combinations of these subsets, while 

validating the remaining data. This technique helps in assessing the model's performance 

across various segments of the data, providing a more comprehensive evaluation than a 

single train-test split. Validation of the model further includes comparing the prediction 

of the model against actual outcomes on a separate validation dataset to ensure it 

performs well on unseen data. These practices are essential to prevent overfitting, where a 

model might perform well on training data but poorly on new data. Cross-validation and 

model validation are foundational to developing robust ML models that generalize well 

across different scenarios and datasets. 

Logic-based models give analytics to real time data and will not forecast the 

future values, but the trend of the data can be validated based on the vehicle service 

history. The variations in the results can be addressed by appropriately modifying the 

conditions and thresholds applied for that particular use case. 
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6.3.3 Scalability and Computational Efficiency 

Scalability and computational efficiency are crucial considerations when 

deploying machine learning models, especially in contexts that involve large volumes of 

data or require real-time processing, such as in automotive applications. ML models, 

particularly those based on deep learning, can be computationally intensive, requiring 

significant resources for training and inference. Ensuring that these models are scalable 

involves optimizing algorithms and using techniques like distributed computing or cloud-

based solutions to handle large datasets effectively.  

In contrast, logic-based models, with their predefined rules, are typically less 

demanding in terms of computational resources. They can be implemented more 

efficiently, making them suitable for applications where quick, real-time decisions are 

needed without the overhead of complex computations. Balancing scalability and 

computational efficiency are key to ensuring that ML models can be effectively integrated 

into practical, real-world systems. 

6.3.4 Interpretability and Explainability 

Interpretability and explainability are critical aspects of model deployment, 

particularly in fields where understanding the decision-making process is essential for 

trust and accountability. Logic-based models inherently offer high levels of 

interpretability and explainability due to their use of straightforward, human-readable 

rules and thresholds. These models make it easy to trace how decisions are made, which 

is crucial for debugging, regulatory compliance, and gaining user trust.  

On the other hand, while ML models, especially complex ones like deep neural 

networks, can achieve high predictive accuracy, they often operate as "black boxes" with 

decisions that are difficult to interpret. Striking a balance between leveraging the 

predictive power of ML models and ensuring their decisions are interpretable and 

explainable is essential for their successful application in critical domains. 
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Chapter 7  

Conclusions and Scope for Future Work 

7.1 Summary  

This study has explored the application of predictive analytics using both machine 

learning models and logic-based models for electric and internal combustion engine 

vehicles. By leveraging real-world data from Volvo Eicher Commercial Vehicles 

Limited, the study investigated four critical use cases: cell imbalance monitoring, 

temperature monitoring of cell and motor, and engine oil pressure warnings. The findings 

demonstrate that ML models excel at identifying complex patterns and nonlinear 

relationships within the data, leading to highly accurate predictions for vehicle metrics 

such as battery health and engine performance. On the other hand, logic-based models 

provided clear and interpretable rules for decision-making, which are crucial for 

understanding the underlying mechanisms of vehicle behavior. The comparison between 

both approaches has shown that they complement each other, with ML models enhancing 

predictive accuracy and logic-based models offering transparency and interpretability. 

7.2 Project Outcome  

The project aimed to develop advanced predictive analytics models to address 

specific use cases in electric and IC engine vehicles, which was successfully achieved. 

Through a detailed examination, the research provided a comprehensive understanding of 

various methodologies of ML models like VAR, XGBoost, LGBM, LSTM and logic-

based models such as decision trees and expert systems. The project successfully met its 

objectives by demonstrating how these models can be applied to predict faults, optimize 

vehicle parameters, and enhance maintenance strategies, thus fulfilling project scope. 

7.3 Key Contributions 

The key contributions in the field of predictive analytics for automotive 

applications made through this work is listed below:  

Enhanced Predictive Models: The study shows the potential of combining ML's 

predictive power with the interpretability of logic-based models, paving the way for more 

robust predictive systems. 
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Practical Applications: By applying these models to real-world data from VECV, 

the research demonstrates practical applications and benefits, such as improved fault 

prediction accuracy and reduced false alarms. 

Methodological Insights: The project provides insights into cross-validation, 

model validation techniques, scalability, and computational efficiency, which are crucial 

for deploying predictive models in real-world automotive systems. 

Comparative Analysis: It offers a comparative analysis of ML and logic-based 

models, highlighting their respective advantages and limitations. 

7.4 Limitations and Challenges 

Despite its successes, the project faced several limitations and challenges. The 

availability of labeled data, particularly for rare or critical events, was limited, posing a 

challenge for training ML models. The complexity and computational overhead of deep 

learning models made them less suitable for real-time applications. Additionally, 

capturing all relevant domain knowledge in logic-based models was challenging, which 

sometimes led to oversimplified decision-making rules. Ensuring model interpretability 

and explainability, especially for complex ML models, also presented a significant 

challenge. 

7.5 Future Scope 

Logic-based models provide a foundation of domain knowledge that can 

significantly enhance the optimization of machine learning models. By leveraging the 

clear and well-defined rules of logic-based models, ML practitioners gain critical insights 

on underlying patterns and relationships in the data. This knowledge can be used to 

inform feature selection, engineering, and the construction of more robust and accurate 

ML models. Predefined thresholds for engine oil pressure or battery temperature derived 

from logic-based models can be incorporated into ML models as important features or 

constraints, ensuring that the ML models adhere to critical safety and operational 

guidelines. Simplicity and transparency of logic-based models make it easier to identify 

and understand key variables and their interactions, which can then be explored more 

deeply using the advanced capabilities of ML algorithms. To further enhance the 
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predictive capabilities and address the identified challenges, future research should 

explore the following directions: 

Hybrid Models: Developing hybrid models that integrate the strengths of ML 

algorithms with the interpretability of logic-based models, using techniques like rule 

extraction or model distillation. 

Advanced ML Techniques: Investigating advanced ML algorithms such as 

reinforcement learning and self-supervised learning for more sophisticated predictive 

analytics, particularly in autonomous vehicles and adaptive control systems. 

Data Augmentation: Collecting and annotating larger and more diverse datasets, 

including rare events, to improve the robustness and generalization of ML models. 

Real-Time Scalability: Developing scalable and efficient algorithms for real-time 

monitoring and optimization of vehicle performance, considering computational 

constraints and resource limitations in automotive systems. 

7.6 Conclusion 

Machine learning models excel in handling complex patterns and nonlinear 

relationships within data, making them highly effective for predictive analytics. Logic-

based models are built on predefined rules and thresholds, offering clear interpretability 

and transparency. This thesis has provided significant insights in the use of machine 

learning and logic-based models for predictive diagnostics in electric and IC engine 

vehicles. The following results were yielded from the developed ML and Logic models. 

✓ A unique case based multi-step ahead multivariate LSTM model was developed 

✓ Hyper parameter tuning of ML model through DOE improved the validation 

accuracy to 94.4% 

✓ Logic based models were developed to identify faulty vehicles and the severity of 

the issues 

✓ Results from the logic model indicating issues in the existing vehicle were 

highlighted and root cause analysis was shared to take corrective action 

✓ Developed logic models were deployed in VECV’s uptime center for real time 

vehicle monitoring 
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The study highlights the superior predictive accuracy of ML models and the 

essential interpretability of logic-based models. By integrating these approaches, future 

research can further advance automotive diagnostics, leading to more reliable, efficient, 

and intelligent vehicles. This research lays a strong foundation for ongoing advancements 

in predictive analytics, ultimately contributing to the development of smarter and more 

sustainable transportation systems. 

. 
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APPENDIX-A 

Machine Learning Codes: 

Light Gradient Boosting Machine Code: 

import pandas as pd 

import lightgbm as lgb 

from sklearn.metrics import accuracy_score, precision_score, recall_score, 

f1_score, confusion_matrix 

from sklearn.model_selection import train_test_split 

from sklearn.metrics import log_loss as sklearn_log_loss  # Rename the 

log_loss function 

 

# Load the CSV file 

data = pd.read_csv('359207066918390_populated_DTC.csv') 

 

# Convert "IST_DateTime" to datetime 

data['IST_DateTime'] = pd.to_datetime(data['IST_DateTime'], format='%d-%m-

%Y %H:%M') 

 

# Sort the data by datetime 

data.sort_values(by='IST_DateTime', inplace=True) 

 

# Drop unnecessary columns 

data.drop(columns=['LB Battery Voltage', 'Live'], inplace=True) 

 

# Handle missing values 

data.fillna(data.mean(), inplace=True) 

 

# Create additional datetime features 

data['Year'] = data['IST_DateTime'].dt.year 

data['Month'] = data['IST_DateTime'].dt.month 

data['Day'] = data['IST_DateTime'].dt.day 

data['Hour'] = data['IST_DateTime'].dt.hour 

data['DayOfWeek'] = data['IST_DateTime'].dt.dayofweek 

 

# Drop the original timestamp column 

data.drop(columns=['IST_DateTime'], inplace=True) 

 

# Split data into features (X) and target (y) 

X = data.drop(columns=['Cell Imbalance']) 

y = data['Cell Imbalance'] 

 

# Split data into training and testing sets 

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, 

random_state=42) 
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# Display the shapes of the train and test sets 

print("X_train shape:", X_train.shape) 

print("X_test shape:", X_test.shape) 

 

# Set the LGBM parameters 

params = { 

    'objective': 'binary', 

    'metric': 'binary_logloss' 

} 

 

# Create LGBM datasets with force_col_wise parameter 

lgb_train = lgb.Dataset(X_train, y_train, free_raw_data=False, 

params={'force_col_wise': True}) 

lgb_test = lgb.Dataset(X_test, y_test, reference=lgb_train, 

free_raw_data=False, params={'force_col_wise': True}) 

 

# Train the LGBM model 

num_round = 100 

early_stopping_rounds = 10  # Define the early stopping rounds 

bst = None 

for round in range(num_round): 

    bst = lgb.train(params, lgb_train, 1, valid_sets=[lgb_test], 

init_model=bst) 

    if round - bst.best_iteration >= early_stopping_rounds: 

        break  # Stop if early stopping conditions are met 

 

# Make predictions 

y_pred_prob = bst.predict(X_test) 

y_pred = (y_pred_prob > 0.5).astype(int) 

 

# Calculate evaluation metrics 

accuracy = accuracy_score(y_test, y_pred) 

precision = precision_score(y_test, y_pred) 

recall = recall_score(y_test, y_pred) 

f1 = f1_score(y_test, y_pred) 

conf_matrix = confusion_matrix(y_test, y_pred) 

 

# Print evaluation metrics and confusion matrix 

print("Accuracy:", accuracy) 

print("Precision:", precision) 

print("Recall:", recall) 

print("F1-Score:", f1) 

print("Confusion Matrix:\n", conf_matrix) 
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Long Short-Term Memory Model Code: 

from sklearn.model_selection import train_test_split 

from sklearn.preprocessing import MinMaxScaler 

from sklearn.utils.class_weight import compute_class_weight 

from keras.models import Sequential 

from keras.layers import LSTM, Dense 

import numpy as np 

 

# Define the window size (number of time steps before prediction) 

window_size = 10 

 

# Split the dataset into features (X) and target (y) 

X = vehicle_data.drop("Cell Imbalance", axis=1) 

y = vehicle_data["Cell Imbalance"] 

 

# Split the data into training and testing sets (80% training, 20% testing) 

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, 

shuffle=False) 

 

# Initialize MinMaxScaler for normalization 

scaler = MinMaxScaler() 

 

# Normalize the features 

X_train_scaled = scaler.fit_transform(X_train) 

X_test_scaled = scaler.transform(X_test) 

 

# Convert the data into sliding windows 

def create_sliding_windows(data, window_size): 

    windows = [] 

    for i in range(len(data) - window_size + 1): 

        window = data[i : i + window_size] 

        windows.append(window) 

    return np.array(windows) 

 

X_train_windows = create_sliding_windows(X_train_scaled, window_size) 

y_train_windows = y_train[window_size - 1:] 

 

X_test_windows = create_sliding_windows(X_test_scaled, window_size) 

y_test_windows = y_test[window_size - 1:] 

 

print("X_train_windows shape:", X_train_windows.shape) 

print("y_train_windows shape:", y_train_windows.shape) 

print("X_test_windows shape:", X_test_windows.shape) 

print("y_test_windows shape:", y_test_windows.shape) 

 

# Calculate class weights to account for imbalance 
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class_weights = compute_class_weight("balanced", 

classes=np.unique(y_train_windows), y=y_train_windows) 

class_weight_dict = {0: class_weights[0], 1: class_weights[1]} 

 

# Build and compile the LSTM model 

model = Sequential() 

model.add(LSTM(units=50, activation='relu', 

input_shape=(X_train_windows.shape[1], X_train_windows.shape[2]))) 

model.add(Dense(units=1, activation='sigmoid'))  # Sigmoid for binary 

classification 

model.compile(optimizer='adam', loss='binary_crossentropy', 

metrics=['accuracy']) 

 

# Train the model with class weights 

model.fit(X_train_windows, y_train_windows, epochs=10, batch_size=32, 

class_weight=class_weight_dict) 
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Multi Variate Multi Step Ahead Long Short-Term Memory Model Code: 

import numpy as np 

import pandas as pd 

import tensorflow as tf 

from sklearn.model_selection import train_test_split 

from sklearn.preprocessing import MinMaxScaler 

from sklearn.metrics import mean_squared_error, mean_absolute_error 

import matplotlib.pyplot as plt 

 

# Load the dataset 

data = pd.read_csv('359218066295457_red.csv') 

 

# Define the input and output columns 

input_cols = ['Min_Cell_V', 

'Cell_V_Diff',  'Max_Cell_Temp',    'Min_Cell_Temp',    'Cell_Temp_Diff',  

 'Batt_Pack_Voltage',    'Batt_Power_In',    'Charging_Current', 

'Demand_Charge_Current',    'Charging_Time',    'MotorCurrent', 

'MotorVoltage', 'MotorEstimatedTorque', 'BatteryPotential_PowerInput1', 

'Regeneration 

Power',   'ReserveModSOC',    'HVAuxilaryPowerConsumption',   'LB Battery 

Voltage',   'FuelLevel',    'EngineSpeed',  'EngineOperatingHours', 

'VehicleSpeed', 

'EngineOilPressure',    'EngineCoolantTemp',    'AccPedalPosition']  # 

Replace with your input column names 

output_col = 'Max_Cell_V' 

 

# Extract input and output data 

X = data[input_cols].values 

y = data[output_col].values 

 

# Normalize the input data 

scaler = MinMaxScaler() 

X_scaled = scaler.fit_transform(X) 

 

# Define the number of time steps and features 

n_steps = 60  # You can adjust this value 

n_features = len(input_cols) 

 

# Create sequences of data for training 

X_seq, y_seq = [], [] 

for i in range(len(data) - n_steps + 1): 

    X_seq.append(X_scaled[i:i+n_steps]) 

    y_seq.append(y[i+n_steps-1]) 

 

X_seq = np.array(X_seq) 

y_seq = np.array(y_seq) 
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# Split the dataset into training and testing sets 

X_train, X_test, y_train, y_test = train_test_split(X_seq, y_seq, 

test_size=0.2, random_state=42) 

 

# Build the LSTM model 

model = tf.keras.Sequential([ 

    tf.keras.layers.LSTM(200, activation='relu', input_shape=(n_steps, 

n_features)), 

    tf.keras.layers.Dropout(0.2), 

    tf.keras.layers.Dense(1) 

]) 

 

model.compile(optimizer='Adagrad', loss='mse') 

 

# Train the model 

epochs = 500 

batch_size = 512 

history = model.fit(X_train, y_train, epochs=epochs, batch_size=batch_size, 

verbose=2, validation_data=(X_test, y_test)) 

 

# Make predictions for the testing set 

y_pred = model.predict(X_test) 

 

# Calculate RMSE and MAE for each time step from 1 to 10 

rmse_scores = [] 

mae_scores = [] 

for step in range(1, 11): 

    y_true_step = y_test 

    y_pred_step = y_pred 

 

    rmse = np.sqrt(mean_squared_error(y_true_step, y_pred_step)) 

    mae = mean_absolute_error(y_true_step, y_pred_step) 

 

    rmse_scores.append(rmse) 

    mae_scores.append(mae) 

 

# Print RMSE and MAE scores 

for step, rmse, mae in zip(range(1, 11), rmse_scores, mae_scores): 

    print(f"Time Step {step}: RMSE = {rmse}, MAE = {mae}") 

 

# Plot training and validation loss over epochs 

plt.plot(history.history['loss'], label='Training Loss') 

plt.plot(history.history['val_loss'], label='Validation Loss') 

plt.xlabel('Epochs') 

plt.ylabel('Loss') 

plt.legend() 

plt.show() 
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# Plot the difference between predicted and actual Max_Cell_V for the first 

5 units 

plt.figure(figsize=(12, 6)) 

for step in range(1, 2):  # Limit to the first 5 time steps 

    plt.subplot(2, 5, step) 

    plt.plot(y_test[:10], label='Actual', color='blue') 

    plt.plot(y_pred[:10], label='Predicted', color='orange') 

    plt.title(f"Time Step {step}") 

    plt.xlabel('Sample Index') 

    plt.ylabel('Max_Cell_V') 

    plt.legend() 

 

plt.tight_layout() 

plt.show() 
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Random Forest Classifier with Correlation Analysis Code: 

import pandas as pd 

import numpy as np 

from sklearn.model_selection import train_test_split 

from sklearn.ensemble import RandomForestClassifier 

from sklearn.metrics import accuracy_score 

from sklearn.preprocessing import StandardScaler 

from sklearn.pipeline import make_pipeline 

from sklearn.impute import SimpleImputer 

import glob 

 

# Step 1: Read CSV files, clean data, and perform correlation analysis 

def clean_and_analyze(csv_file): 

    # Read CSV 

    df = pd.read_csv(csv_file) 

    df = df.replace(0, np.nan)  # Replace 0 values with NaN 

    df = df.dropna(subset=["Max_Cell_V", "Min_Cell_V", "Max_Cell_Temp", 

"Min_Cell_Temp", "EngineCoolantTemp"]) 

    # Correlation analysis 

    max_cell_v_min_cell_v_corr = df[["Max_Cell_V", 

"Min_Cell_V"]].corr().iloc[0, 1] 

    max_cell_temp_min_cell_temp_corr = df[["Max_Cell_Temp", 

"Min_Cell_Temp"]].corr().iloc[0, 1] 

    engine_coolant_temp_corr = 

df[["EngineCoolantTemp"]].corrwith(df["EngineCoolantTemp"]).values[0] 

    return max_cell_v_min_cell_v_corr, max_cell_temp_min_cell_temp_corr, 

engine_coolant_temp_corr 

 

# Step 2: Define functions to identify faults and calculate fault ratios 

def identify_faults(df): 

    df["Cell_Imbalance_Fault"] = ( 

        (df["Max_Cell_V"] > 3.65) | (df["Min_Cell_V"] < 2.9) | 

((df["Max_Cell_V"] - df["Min_Cell_V"]) > 0.5) 

    ).astype(int) 

    df["Cell_Temperature_Fault"] = ( 

        (df["Max_Cell_Temp"] > 55) | (df["Min_Cell_Temp"] < 15) | 

((df["Max_Cell_Temp"] - df["Min_Cell_Temp"]) > 20) 

    ).astype(int) 

    df["Motor_Temperature_Fault"] = ( 

        (df["EngineCoolantTemp"] > 65) | (df["EngineCoolantTemp"] < 5) 

    ).astype(int) 

    return df 

def calculate_fault_ratios(df): 

    df["Cell_Imbalance_Fault_Ratio"] = df["Cell_Imbalance_Fault"].cumsum() 

/ (df["Cell_Imbalance_Fault"].cumsum() + 

df["Cell_Imbalance_Fault"].eq(0).cumsum()) 
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    df["Cell_Temperature_Fault_Ratio"] = 

df["Cell_Temperature_Fault"].cumsum() / 

(df["Cell_Temperature_Fault"].cumsum() + 

df["Cell_Temperature_Fault"].eq(0).cumsum()) 

    df["Motor_Temperature_Fault_Ratio"] = 

df["Motor_Temperature_Fault"].cumsum() / 

(df["Motor_Temperature_Fault"].cumsum() + 

df["Motor_Temperature_Fault"].eq(0).cumsum()) 

    return df 

 

# Step 3: Machine Learning Model 

def train_ml_model(df): 

    # Select relevant columns for training 

    numeric_columns = ["Max_Cell_V", "Min_Cell_V", "Max_Cell_Temp", 

"Min_Cell_Temp", "EngineCoolantTemp", "Batt_Pack_Voltage", "Batt_Power_In", 

"Charging_Current", "MotorCurrent", "MotorVoltage", "MotorEstimatedTorque", 

"BatteryPotential_PowerInput1", "Regeneration Power", "TotalDistance", 

"FuelLevel", "EngineSpeed", "VehicleSpeed", "EngineOilPressure", 

"AccPedalPosition"] 

    features = df[numeric_columns] 

    target_cell_imbalance = df["Cell_Imbalance_Fault"] 

    target_cell_temperature = df["Cell_Temperature_Fault"] 

    target_motor_temperature = df["Motor_Temperature_Fault"] 

    # Split data into training and testing sets (use the same split for all 

three models) 

    features_train, features_test, y_train_cell_imbalance, 

y_test_cell_imbalance = train_test_split(features, target_cell_imbalance, 

test_size=0.2, random_state=42) 

    _, _, y_train_cell_temperature, y_test_cell_temperature = 

train_test_split(features, target_cell_temperature, test_size=0.2, 

random_state=42) 

    _, _, y_train_motor_temperature, y_test_motor_temperature = 

train_test_split(features, target_motor_temperature, test_size=0.2, 

random_state=42) 

    # Build and train models 

    model_cell_imbalance = make_pipeline(StandardScaler(), 

RandomForestClassifier(n_jobs=-1)) 

    model_cell_imbalance.fit(features_train, y_train_cell_imbalance) 

    model_cell_temperature = make_pipeline(StandardScaler(), 

RandomForestClassifier(n_jobs=-1)) 

    model_cell_temperature.fit(features_train, y_train_cell_temperature) 

    model_motor_temperature = make_pipeline(StandardScaler(), 

RandomForestClassifier(n_jobs=-1)) 

    model_motor_temperature.fit(features_train, y_train_motor_temperature) 

 

    # Make predictions 

    predictions_cell_imbalance = 

model_cell_imbalance.predict_proba(features_test)[:, 1] if 
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model_cell_imbalance.classes_.shape[0] > 1 else 

model_cell_imbalance.predict_proba(features_test) 

    predictions_cell_temperature = 

model_cell_temperature.predict_proba(features_test)[:, 1] if 

model_cell_temperature.classes_.shape[0] > 1 else 

model_cell_temperature.predict_proba(features_test) 

    predictions_motor_temperature = 

model_motor_temperature.predict_proba(features_test)[:, 1] if 

model_motor_temperature.classes_.shape[0] > 1 else 

model_motor_temperature.predict_proba(features_test) 

    # Calculate accuracy 

    accuracy_cell_imbalance = accuracy_score(y_test_cell_imbalance, 

model_cell_imbalance.predict(features_test)) 

    accuracy_cell_temperature = accuracy_score(y_test_cell_temperature, 

model_cell_temperature.predict(features_test)) 

    accuracy_motor_temperature = accuracy_score(y_test_motor_temperature, 

model_motor_temperature.predict(features_test)) 

    return predictions_cell_imbalance, predictions_cell_temperature, 

predictions_motor_temperature, accuracy_cell_imbalance, 

accuracy_cell_temperature, accuracy_motor_temperature 

 

# Step 5: Create Excel and CSV files 

def create_output_files(csv_file, prob_cell_imbalance, 

prob_cell_temperature, prob_motor_temperature): 

    try: 

        result_df = pd.read_excel("output_results.xlsx") 

    except FileNotFoundError: 

        result_df = pd.DataFrame(columns=["File Name", "Probability of 

Vehicle failure due to Cell Imbalance", "Probability of Vehicle failure due 

to Cell Temperature", "Probability of Vehicle failure due to Motor 

Temperature"]) 

    new_row = { 

        "File Name": csv_file, 

        "Probability of Vehicle failure due to Cell Imbalance": 

prob_cell_imbalance, 

        "Probability of Vehicle failure due to Cell Temperature": 

prob_cell_temperature, 

        "Probability of Vehicle failure due to Motor Temperature": 

prob_motor_temperature 

    } 

    result_df = pd.concat([result_df, pd.DataFrame([new_row])], 

ignore_index=True) 

    result_df.to_excel("output_results.xlsx", index=False) 

 

 

# Main Loop through CSV files 

csv_files = glob.glob("*.csv") 

for csv_file in csv_files: 
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    # Step 1 

    max_cell_v_min_cell_v_corr, max_cell_temp_min_cell_temp_corr, 

engine_coolant_temp_corr = clean_and_analyze(csv_file) 

    # Step 2 

    df = pd.read_csv(csv_file) 

    df = identify_faults(df) 

    df = calculate_fault_ratios(df) 

    # Step 3 

    predictions_cell_imbalance, predictions_cell_temperature, 

predictions_motor_temperature, \ 

    accuracy_cell_imbalance, accuracy_cell_temperature, 

accuracy_motor_temperature = train_ml_model(df) 

    # Step 4 

    output_df = df[["Unnamed: 0", "Max_Cell_V", "Min_Cell_V", 

Max_Cell_Temp", "Min_Cell_Temp", "Batt_Pack_Voltage", "Batt_Power_In", 

"Charging_Current", "MotorCurrent", "MotorVoltage", "MotorEstimatedTorque", 

"BatteryPotential_PowerInput1", "Regeneration Power", "IST_DateTime", 

"TotalDistance", "FuelLevel", "EngineSpeed", "VehicleSpeed", 

"EngineOilPressure", "AccPedalPosition", "Cell_Imbalance_Fault", 

"Cell_Temperature_Fault", "Motor_Temperature_Fault", 

"Cell_Imbalance_Fault_Ratio", "Cell_Temperature_Fault_Ratio", 

"Motor_Temperature_Fault_Ratio"]] 

    output_csv_file = csv_file.replace(".csv", "_output.csv") 

    output_df.to_csv(output_csv_file, index=False) 

    # Step 5 

    create_output_files(csv_file, df["Cell_Imbalance_Fault_Ratio"].iloc[-

1], df["Cell_Temperature_Fault_Ratio"].iloc[-1], 

df["Motor_Temperature_Fault_Ratio"].iloc[-1]) 
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Logic Model Codes: 

Cell Imbalance Use Case Code: 

import pandas as pd 

import os 

 

# Function to calculate additional metrics 

def calculate_additional_metrics(df): 

    df = df.copy()  # Create a copy to avoid SettingWithCopyWarning 

    total_entries = len(df) 

    max_cell_v_all_entries = df['Max_Cell_V'].max() 

    min_cell_v_all_entries = df['Min_Cell_V'].min() 

    # Use loc to avoid SettingWithCopyWarning 

    df.loc[:, 'Cell_V_Diff'] = df['Max_Cell_V'] - df['Min_Cell_V'] 

    cell_v_diff_threshold = 0.5 

    cell_v_diff_crosses = len(df[df['Cell_V_Diff'] > 

cell_v_diff_threshold]) 

    return total_entries, max_cell_v_all_entries, min_cell_v_all_entries, 

cell_v_diff_crosses 

max_cell_v_threshold = 3.65 

min_cell_v_threshold = 2.9 

csv_files = [f for f in os.listdir() if f.endswith('.csv')] 

excel_writer = pd.ExcelWriter('results.xlsx', engine='xlsxwriter') 

# Create an empty DataFrame to store results 

all_results_df = pd.DataFrame() 

for csv_file in csv_files: 

    df = pd.read_csv(csv_file) 

    df = df.sort_values(by='IST_DateTime') 

    # Filter based on conditions 

    df_filtered = df[(df['Max_Cell_V'] != 0) | (df['Min_Cell_V'] != 0)] 

    # Calculate additional metrics 

    total_entries, max_cell_v_all_entries, min_cell_v_all_entries, 

cell_v_diff_crosses = calculate_additional_metrics(df_filtered) 

    result = { 

        "File Name": csv_file[:18],  # Truncate to 18 characters 

        "Frequency of 'Max_Cell_V' crossing threshold": 

len(df_filtered[df_filtered['Max_Cell_V'] > max_cell_v_threshold]), 

        "Frequency of 'Min_Cell_V' crossing threshold": 

len(df_filtered[df_filtered['Min_Cell_V'] < min_cell_v_threshold]), 

        "Frequency of 'Cell_V_Diff' crossing threshold": 

cell_v_diff_crosses, 

        "Total Entries in the Vehicle": total_entries, 

        "Max_Cell_V out of All Entries": max_cell_v_all_entries, 

        "Min_Cell_V out of All Entries": min_cell_v_all_entries 

    } 

    result_df = pd.DataFrame([result]) 
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    # Concatenate results to the main DataFrame 

    all_results_df = pd.concat([all_results_df, result_df], 

ignore_index=True) 

# Write the combined results to a single sheet 

all_results_df.to_excel(excel_writer, sheet_name='CombinedResults', 

index=False) 

workbook = excel_writer.book 

worksheet = excel_writer.sheets['CombinedResults'] 

for i, col in enumerate(all_results_df.columns): 

    max_len = max(all_results_df[col].astype(str).apply(len).max(), 

len(col) + 2) 

    worksheet.set_column(i, i, max_len) 

excel_writer.close() 
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Cell Temperature Use Case Code: 

import pandas as pd 

import os 

 

# Function to calculate additional metrics 

def calculate_additional_metrics(df, max_temp_threshold, 

min_temp_threshold): 

    df = df.copy()  # Create a copy to avoid SettingWithCopyWarning 

    total_entries = len(df) 

    max_cell_temp_all_entries = df['Max_Cell_Temp'].max() 

    min_cell_temp_all_entries = df['Min_Cell_Temp'].min() 

    return total_entries, max_cell_temp_all_entries, 

min_cell_temp_all_entries  

max_temp_threshold = 55 

min_temp_threshold = 15 

csv_files = [f for f in os.listdir() if f.endswith('.csv')] 

excel_writer = pd.ExcelWriter('results.xlsx', engine='xlsxwriter') 

# Create an empty DataFrame to store results 

all_results_df = pd.DataFrame() 

for csv_file in csv_files: 

    df = pd.read_csv(csv_file) 

    df = df.sort_values(by='IST_DateTime') 

    # Filter based on conditions 

    df_filtered = df[(df['Max_Cell_Temp'] != 0) | (df['Min_Cell_Temp'] != 

0)] 

    # Calculate additional metrics 

    total_entries, max_cell_temp_all_entries, min_cell_temp_all_entries = 

calculate_additional_metrics(df_filtered, max_temp_threshold, 

min_temp_threshold) 

    result = { 

        "File Name": csv_file[:18],  # Truncate to 18 characters 

        "Frequency of 'Max_Cell_Temp' crossing threshold": 

len(df_filtered[df_filtered['Max_Cell_Temp'] > max_temp_threshold]), 

        "Frequency of 'Min_Cell_Temp' crossing threshold": 

len(df_filtered[df_filtered['Min_Cell_Temp'] < min_temp_threshold]), 

        "Total Entries in the Vehicle": total_entries, 

        "Max_Cell_Temp out of All Entries": max_cell_temp_all_entries, 

        "Min_Cell_Temp out of All Entries": min_cell_temp_all_entries 

    } 

    result_df = pd.DataFrame([result]) 

    # Concatenate results to the main DataFrame 

    all_results_df = pd.concat([all_results_df, result_df], 

ignore_index=True) 

# Write the combined results to a single sheet 

all_results_df.to_excel(excel_writer, sheet_name='CombinedResults', 

index=False) 

workbook = excel_writer.book 
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worksheet = excel_writer.sheets['CombinedResults'] 

for i, col in enumerate(all_results_df.columns): 

    max_len = max(all_results_df[col].astype(str).apply(len).max(), 

len(col) + 2) 

    worksheet.set_column(i, i, max_len) 

excel_writer.close() 
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Motor Temperature Use Case Code: 

import pandas as pd 

import os 

 

# Function to calculate additional metrics 

def calculate_additional_metrics(df, max_temp_threshold, 

min_temp_threshold): 

    df = df.copy()  # Create a copy to avoid SettingWithCopyWarning 

    total_entries = len(df) 

    max_motor_temp_all_entries = df['EngineCoolantTemp'].max() 

    min_motor_temp_all_entries = df['EngineCoolantTemp'].min() 

    return total_entries, max_motor_temp_all_entries, 

min_motor_temp_all_entries  

max_temp_threshold = 65 

min_temp_threshold = 4 

csv_files = [f for f in os.listdir() if f.endswith('.csv')] 

excel_writer = pd.ExcelWriter('results.xlsx', engine='xlsxwriter') 

# Create an empty DataFrame to store results 

all_results_df = pd.DataFrame() 

for csv_file in csv_files: 

    df = pd.read_csv(csv_file) 

    df = df.sort_values(by='IST_DateTime') 

    # Filter based on conditions 

    df_filtered = df[(df['Max_Cell_Temp'] != 0) | (df['Min_Cell_Temp'] != 

0) | (df['EngineCoolantTemp'] != 0)] 

    # Calculate additional metrics 

    total_entries, max_motor_temp_all_entries, min_motor_temp_all_entries = 

calculate_additional_metrics(df_filtered, max_temp_threshold, 

min_temp_threshold) 

    result = { 

        "File Name": csv_file[:18],  # Truncate to 18 characters 

        "Frequency of 'Max_Motor_Temp' crossing threshold": 

len(df_filtered[df_filtered['EngineCoolantTemp'] > max_temp_threshold]), 

        "Frequency of 'Min_Motor_Temp' crossing threshold": 

len(df_filtered[df_filtered['EngineCoolantTemp'] < min_temp_threshold]), 

        "Total Entries in the Vehicle": total_entries, 

        "Max_Motor_Temp out of All Entries": max_motor_temp_all_entries, 

        "Min_Motor_Temp out of All Entries": min_motor_temp_all_entries 

    } 

    result_df = pd.DataFrame([result]) 

    # Concatenate results to the main DataFrame 

    all_results_df = pd.concat([all_results_df, result_df], 

ignore_index=True) 

# Write the combined results to a single sheet 

all_results_df.to_excel(excel_writer, sheet_name='CombinedResults', 

index=False) 

workbook = excel_writer.book 
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worksheet = excel_writer.sheets['CombinedResults'] 

for i, col in enumerate(all_results_df.columns): 

    max_len = max(all_results_df[col].astype(str).apply(len).max(), 

len(col) + 2) 

    worksheet.set_column(i, i, max_len) 

excel_writer.close() 
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