

PREDICTIVE DIAGNOSTICS FOR

ELECTRIC AND IC ENGINE VEHICLES

M.Tech. Thesis

By

VIGNESH R

CENTER FOR ELECTRIC VEHICLE AND INTELLIGENT

TRANSPORT SYSTEMS

INDIAN INSTITUTE OF TECHNOLOGY INDORE
MAY 2024

PREDICTIVE DIAGNOSTICS FOR

ELECTRIC AND IC ENGINE

VEHICLES

A THESIS

Submitted in partial fulfillment of the

requirements for the award of the degree

of

Master of Technology

by

VIGNESH R

CENTER FOR ELECTRIC VEHICLE AND

INTELLIGENT TRANSPORT SYSTEMS

INDIAN INSTITUTE OF TECHNOLOGY

INDORE
MAY 2024

i

INDIAN INSTITUTE OF TECHNOLOGY

INDORE

CANDIDATE’S DECLARATION

I hereby certify that the work which is being presented in the thesis entitled

PREDICTIVE DIAGNOSTICS FOR ELECTRIC AND IC ENGINE VEHICLES in

the partial fulfillment of the requirements for the award of the degree of MASTER OF

TECHNOLOGY and submitted in the CENTER FOR ELECTRIC VEHICLE AND

INTELLIGENT TRANSPORT SYSTEMS, Indian Institute of Technology Indore, is

an authentic record of my own work carried out during the time period from July 2022 to

May 2024 under the supervision of Prof. I A Palani, Professor, Department of Mechanical

Engineering.

 The matter presented in this thesis has not been submitted by me for the award of

any other degree of this or any other institute.

 Signature of the student with date

(VIGNESH R)

--

 This is to certify that the above statement made by the candidate is correct to the

best of my knowledge.

 Signature of the Supervisor of

M.Tech. thesis (with date)

(Dr. I A PALANI)

--

 VIGNESH R has successfully given his M.Tech. Oral Examination held on 27th

May 2024.

Signature(s) of Supervisor(s) of M.Tech. thesis

Date: 29/05/2024

--

ii

ACKNOWLEDGEMENTS

I extend my sincere gratitude to Professor I A Palani, whose expertise, guidance, and

unwavering support have been the cornerstone of this endeavor. His mentorship not only

shaped the direction of this research but also instilled a deeper understanding of the

subject matter. I am indebted to him for his patience and dedication throughout this

journey.

I am also grateful to the Head of the Department, Dr. Amod Umarikar, for allowing me

to take up an industrial internship project. His encouragement and vision have provided

the framework within which this project could thrive.

I am thankful to Volvo Eicher Commercial Vehicles Limited team Mr. Kapil G

Krishnan, Mr. Deepak Dubel, Mr. Harshit Garg and Mr. Dinesh Vijayan for trusting

me with this opportunity and providing practical insights throughout the project duration.

A heartfelt thank you is extended to the esteemed Lab Managers Mr. Ashwin Wagh, Mr.

Krishnpal Tomar, Post-Doctoral Scholars Dr. Nandini Patra, Dr. Jayachandran S,

Dr. T. Geethapriyan, Dr. Anshu Sahu, and PhD students Mr. Kaushal Gangwar, Mr.

Arpit Kumar Singh, Ms. Diksha Jaurker whose invaluable contributions and

constructive feedback have significantly enriched the quality of this work.

To my batchmates Mr. Hrishikesh Meshram, Mr. Pavan Kumar Mangiri, Mr. Mohd

Washique Ahemad, Mr. Sayan Doloi, I express my appreciation for your collaboration,

camaraderie, and shared commitment to academic excellence.

I am also grateful to the junior B. Tech students Mr. Kailaash Pandiyan, Mr. Puneet

Gupta, who enthusiastically lent their support and assistance whenever needed. Their

eagerness to engage with the project and willingness to contribute reflect the spirit of

academic curiosity and collaboration that defines our institution.

Lastly, I extend my heartfelt thanks to my family and friends Mr. Shriram S, Mr.

Narasimmavinay N, Mr. Naveen L, Mr. Gopi Talluri, whose unwavering support,

encouragement, and companionship have been a source of strength and inspiration

throughout this journey.

iii

Dedicated to

My Beloved Family

iv

Abstract

This work explores integrating Machine Learning (ML) and logic-based models

for predictive diagnostics in Electric Vehicles (EVs) and Internal Combustion (IC) engine

vehicles, using data from Volvo Eicher Commercial Vehicles Limited (VECV). The

objective of this work is to develop a predictive analytics model to forecast potential

faults, optimize vehicle parameters, and enhance maintenance strategies. Key use cases

include cell imbalance monitoring, temperature monitoring of cells and motors, and

engine oil pressure warnings, aiming to improve fault detection systems' reliability.

Despite challenges like the availability of labeled data for rare events in limited numbers

and the computational demands of deep learning models for real-time applications, this

thesis establishes a foundation for future advancements in automotive predictive

analytics.

The methodology involves analyzing time-series data to monitor vehicles'

dynamic performance, using ML models like Vector Auto Regression (VAR),

Autoregressive Integrated Moving Average (ARIMA), Extreme Gradient Boosting

(XGBoost), Light Gradient Boosting Machine (LGBM), and Long Short-Term Memory

(LSTM) neural networks. These models capture temporal dependencies, while logic-

based models provide interpretable rules for decision-making. The findings indicate that

ML models excel in identifying complex patterns and nonlinear relationships, leading to

highly accurate predictions for battery health and engine performance. ML models

effectively predict battery cell imbalances and temperature variations, crucial for

maintaining optimal battery performance and longevity. Logic-based models offer clear,

interpretable rules essential for understanding vehicle behavior and regulatory

compliance.

The research's key contributions include a comparative analysis of ML and logic-

based models, highlighting their respective advantages and limitations. By combining

ML's predictive power with the interpretability of logic-based models, the study suggests

more robust predictive systems. Practical applications using real-world data show

improvements in fault prediction accuracy and reduced false alarms. A hybrid model,

advanced ML techniques, and enhance the real-time scalability of predictive models can

be a way forward to improve performance optimization, and overall reliability.

v

TABLE OF CONTENTS

 LIST OF FIGURES viii

 LIST OF TABLES x

 NOMENCLATURE xi

 ACRONYMS xii

 Chapter 1: Introduction 1

 1.1 Vehicle Data

1.2 Predictive Maintenance

1.3 Machine Learning Methods

1.4 Motivation of the Work

1.5 Organization of the Thesis

2

2

3

4

4

 Chapter 2: Literature Review and Problem Formulation 7

 2.1 Literature Review

2.2 Problem Formulation

7

13

 Chapter 3: Methodology 15

 3.1 Understanding the Dataset

3.2 Understanding the Use Cases

 3.2.1 Battery Cell Imbalance

 3.2.2 Battery Cell Temperature

 3.2.3 Motor Temperature

 3.2.4 Engine Oil Pressure

3.3 Methodology Flow Chart

 3.3.1 Preprocessing the Data

 3.3.2 Splitting the Data

 3.3.3 Data Analysis

 3.3.4 Machine Learning Model

 3.3.5 Evaluation

15

16

16

17

20

22

24

24

24

25

25

25

vi

 3.3.6 Model Deployment 25

 Chapter 4: Machine Learning Models 27

 4.1 Vector Auto Regression (VAR)

4.2 Autoregressive Integrated Moving Average (ARIMA)

4.3 Extreme Gradient Boosting (XGBoost)

4.4 Light Gradient Boosting Machine (LGBM)

4.5 Long Short-Term Memory (LSTM) Neural Networks

4.6 Correlation Analysis

4.7 Performance Metrics

 4.7.1 Mean Absolute Error (MAE)

 4.7.2 Root Mean Squared Error (RMSE)

 4.7.3 R-squared (𝑅2)

 4.7.4 Confusion Matrix

28

29

30

31

32

33

37

37

37

38

38

 Chapter 5: Logic Based Models 39

 5.1 Types of Logic-Based Models

 5.1.1 Decision Trees

 5.1.2 Expert Systems

 5.1.3 Rule-Based Systems

5.2 Application of Logic-Based Models

5.3 Advantages and Limitations

39

39

39

40

41

42

 Chapter 6: Results and Discussion 43

 6.1 Machine Learning Model Results

 6.1.1 Light Gradient Boosting Machine (LGBM) Model

 6.1.2 Long Short-Term Memory (LSTM) Model

 6.1.3 Multi Variate Multi Step Ahead LSTM Model

6.2 Logic Based Model Results

 6.2.1 Battery Cell Imbalance Use Case

 6.2.2 Battery Cell Temperature Use Case

43

43

45

46

50

50

51

vii

 6.2.3 Motor Temperature Use Case

 6.2.4 Engine Oil Pressure Use Case

6.3 Comparison of Machine Learning and Logic-Based Models

 6.3.1 Strengths and Weaknesses

 6.3.2 Cross-Validation and Model Validation

 6.3.3 Scalability and Computational Efficiency

 6.3.4 Interpretability and Explainability

52

53

56

57

58

59

59

 Chapter 7: Conclusions and Scope for Future Work 61

 7.1 Summary

7.2 Project Outcome

7.3 Key Contributions

7.4 Limitations and Challenges

7.5 Future Scope

7.6 Conclusion

61

61

61

62

62

63

 APPENDIX-A 65

 REFERENCES 83

viii

LIST OF FIGURES

Figure No Figure Description Page No

1 Parameters collected from vehicle 2

2 Vehicle Predictive Maintenance System 3

3 Range variation with respect to cell variation level 8

4 Framework of Multivariate Time Series Forecasting 9

5
Architecture of Collaborative Network based on

multi-attention
10

6
Architecture of Dynamic Factor Model (DFM) and

Machine Learning (DFML)
11

7
Analysis flowchart of Fuzzy Logic and Kalman

Filter model
12

8
Gaussian Process Regression model training

flowchart for prediction
13

9 Cell Imbalance in a Battery Pack and its causes 17

10 Cell Temperature in a Battery Pack and its causes 19

11 Octillion Battery Pack with Slave and Master BMS 20

12
EV Motor Temperature causes and Correlation Heat

Map Matrix
22

13 Low Oil Pressure in Engine and its causes 24

14 Methodology Flow Chart 26

15 Machine Learning Model Flow Chart 27

16
Long Short-Term Memory (LSTM) model

architecture and its system
33

17 Correlation Analysis Matrix Heatmap 34

18
Correlation Analysis Matrix Heatmap for Cell

Imbalance
35

ix

19
Correlation Analysis Matrix Heatmap for Cell

Temperature
36

20
Correlation Analysis Matrix Heatmap for Motor

Temperature
37

21 Flow chart for Logic Based Model 40

22
Pictorial representation of Logic Based Model

analysis methodology
41

23 LGBM model and its results across datasets 44

24 LSTM model and its results 46

25
Training and Validation loss of multivariate LSTM

model across epochs
48

26
Actual and predicted values of the cell voltage

based on hyper tuned model
49

27
Consolidated results of most faulty vehicles across

use cases for logic model
53

28
Production server codes for data splitting for oil

pressure use case
55

29
Production server codes for data analysis for oil

pressure use case
56

x

LIST OF TABLES

Table No Table Description Page No

1 Confusion Matrix 38

2 Hyper Parameter Tuning through Design of Experiments 49

3
Engine RPM range and its corresponding oil pressure

threshold
54

4
Comparison between Machine learning models and

Logic-based models
56

xi

NOMENCLATURE

𝑇𝑃 – True Positive

𝐹𝑃 – False Positive

𝑇𝑁 – True Negative

𝐹𝑁 – False Negative

xii

ACRONYMS

IC – Internal Combustion

EV – Electric Vehicle

OEM – Original Equipment Manufacturer

VECV – Volvo Eicher Commercial Vehicles

ML – Machine Learning

ECU – Electronics Control Unit

TCU – Telematics Control Unit

VAR – Vector Auto Regression

ARIMA – Autoregressive Integrated Moving Average

XGBoost – Extreme Gradient Boosting

LGBM – Light Gradient Boosting Machine

LSTM – Long Short-Term Memory

RNN – Recurrent Neural Network

MACN – Multi Attention Collaborative Network

DFM – Dynamic Factor Model

DFML – Dynamic Factor Machine Learning

SOH – State of Health

AI – Artificial Intelligence

IoT – Internet of Things

BMS – Battery Management Systems

SOC – State of Charge

SEI – Solid Electrolyte Interphase

PMSM – Permanent Magnet Synchronous Motors

RPM – Rotations Per Minute

EDA – Exploratory Data Analysis

xiii

RMSE – Root Mean Square Error

MAE – Mean Absolute Error

CSV – Comma Separated Values

MSE – Mean Square Error

DOE – Design of Experiments

1

Chapter 1

Introduction

Electric vehicles have garnered a lot of attention in recent times due to their

potential to reduce environmental impact and the dependency on traditional fuel sources.

However, alongside their benefits, these vehicles present unique challenges such as range

anxiety, charging infrastructure limitations, and frequent maintenance issues, particularly

in the case of Electric Vehicles (EVs) due to the adaptation of new technologies.

Traditional preventive maintenance strategies incur moderate to high costs, and

unexpected failures between maintenance schedules further aggravate concerns for

vehicle owners and fleet operators.

Predictive analytics offers a promising solution to mitigate these challenges by

providing real-time alerts and early warnings, thereby minimizing breakdown situations

and associated costs. For stakeholders such as customers, dealers, and Original

Equipment Manufacturers (OEMs), predictive analytics translates into tangible benefits

including cost savings from longer equipment life, increased revenue opportunities,

improved customer experience, and reduced product recalls. By harnessing predictive

analytics, it is possible to optimize vehicle parameters, predict component failures,

identify root causes for faults, and enhance the overall driving experience.

The objective of this work, conducted in collaboration with Volvo Eicher

Commercial Vehicles Limited (VECV), is to develop advanced predictive analytics

models using machine learning (ML) and logic-based approaches. The specific use cases

are cell imbalance monitoring, temperature monitoring of cell & motor, and engine oil

pressure warnings. The main objective of this study is mentioned below:

- Identify root causes for potential faults and failures in Electric and Internal

Combustion (IC) engine vehicles.

- Identify the right parameters and thresholds for accurate fault prediction.

- Address false alarms to improve the reliability of fault detection systems.

- Enhance fault prediction accuracy.

- Develop actionable plans based on failure modes and patterns.

2

1.1 Vehicle Data

 Vehicles generate a lot of data to analyze, measure, compare, and correct

themselves to function. These data help various Electronic Control Units (ECU) to decide

as programmed. A few selected parameters share data from the vehicle to the cloud using

a Telematics Control Unit (TCU). These parameters are used to visualize, analyze, and

identify the location of the vehicle in real-time.

 This data can also be used to plan vehicle maintenance as per the existing

conditions of the parts instead of scheduled maintenance. VECV obtains vehicle data of

various parameters every minute and stores it in its TCU. This unit has an in-built

capability to upload data to the cloud server. VECV’s uptime center accesses this data to

filter out vehicles under breakdown to provide maintenance services. The parameters

collected from the electric vehicle for the use cases are shown in Figure 1.

Figure 1 Parameters collected from vehicle

1.2 Predictive Maintenance

 Predictive Maintenance helps to maintain the vehicle with lower downtime, and it

is more critical to commercial vehicles as the vehicle availability is related to the total

cost of ownership. The data generated by the vehicle is shared with the uptime center and

based on the severity of the issue the maintenance activity takes place. Based on the

3

location of the vehicle and the probability of part failure, the service centers keep the

parts readily available to reduce the maintenance time.

 The historical data and the current vehicle data help to predict the future

occurrences of the faults and the remaining useful life of parts by using machine learning.

This helps in planning maintenance appointments, which is convenient and cost-effective.

The flow of a vehicle predictive maintenance system is shown in Figure 2.

Figure 2 Vehicle Predictive Maintenance System

1.3 Machine Learning Methods

 The dataset handled in this study is a time-series dataset which consists of

sequential data collected every minute when the vehicle is being operated. A diverse array

of machine learning methods tailored for time series datasets are experimented with to

address the multifaceted challenges inherent in the use cases.

Vector Auto Regression (VAR) models offer a powerful framework for capturing

the dynamic interdependencies among multiple time series variables, enabling accurate

forecasting of future states based on past observations. Autoregressive Integrated Moving

Average (ARIMA) models excel in capturing the temporal dynamics and seasonal

patterns inherent in time series dataset, is suited for predicting tasks where stationary and

differenced data are prevalent.

4

Extreme Gradient Boosting (XGBoost) and Light Gradient Boosting Machine

(LGBM) algorithms leverage the power of ensemble learning to combine the predictive

capabilities of multiple weak learners, resulting in robust and accurate predictions for

complex time series data. Additionally, Long Short-Term Memory (LSTM) neural

networks, is a recurrent neural network (RNN) model, excel in capturing long-term

dependencies and sequential pattern in time series dataset, is suited for modeling complex

temporal relationships in electric and IC engine vehicle datasets. This project aims to

develop sophisticated predictive analytics models capable of accurately forecasting future

states, diagnosing faults, and optimizing vehicle performance in real-time by choosing the

best-performing model for these use cases.

1.4 Motivation of the Work

 The motivation behind this project stems from the increase in significance of

predictive analytics in the automotive industry, particularly in addressing the evolving

challenges posed by electric and IC engine vehicles. With the growing adoption of EVs,

the need for proactive maintenance strategies to mitigate vehicle-related issues has

become paramount.

VECV electric buses observed a few battery and motor-related issues in their first

batch of vehicles which impacted the vehicle performance. A predictive analytics model

was needed to revolutionize maintenance practices by providing real-time alerts, early

warnings, and proactive communication to stakeholders, thereby enhancing vehicle

performance, prolonging equipment life, and ultimately improving customer satisfaction.

Through the development of advanced machine learning and logic-based models,

the project endeavors to predict and diagnose faults accurately, identify root causes, and

formulate actionable strategies for maintenance and repair, thereby guiding in a new era

of efficiency and reliability in the automotive sector.

1.5 Organization of the Thesis

Literature Review and Problem Formulation:

This chapter delves into a comprehensive review of relevant literature, journals,

and research articles pertinent to predictive analytics of vehicles using several machine

learning methods. It also discusses the types of datasets used and delineates the

5

preprocessing steps undertaken for different ML models. The development of ML model

for unique use cases by combining various tools and methods was also discussed.

Machine Learning Models:

This chapter provides exploration of the ML models experimented with in this

project, including Vector Auto Regression (VAR), Autoregressive Integrated Moving

Average (ARIMA), Extreme Gradient Boosting (XGBoost), Light Gradient Boosting

Machine (LGBM), and Long Short-Term Memory (LSTM) Neural Networks. It discusses

the principles behind each model, their applications in predictive analytics, and their

respective strengths and weaknesses.

Logic-Based Models:

In this section, the logic-based models employed in the project are elucidated. It

discusses the rationale behind logic-based modeling, the types of logic models utilized,

and their applications in predictive analytics. Furthermore, it explores how logic-based

models complement machine-learning approaches and contribute to the overall predictive

analytics framework for electric and IC engine vehicles.

Results and Discussions:

The results and discussions section presents a comprehensive overview of the

findings obtained from the developed models. It compares the performance of ML and

logic-based models, discusses their strengths and weaknesses, and explores insights

gleaned from logic models for optimizing machine learning models. Furthermore, it

examines cross-validation and model validation techniques, scalability considerations,

and interpretability aspects.

Conclusions and Scope for Future Work:

This concluding chapter summarizes the key findings of the research and

evaluates the extent to which the project objectives were met. It discusses the

contributions made by the project to the field of predictive analytics for electric and IC

engine vehicles, acknowledges any limitations encountered, and outlines potential

avenues for future research and improvement. Additionally, it offers concluding remarks

on the significance of the research and its implications for the automotive industry.

6

Appendix (Codes):

The appendix contains code snippets, algorithms, and additional data analyses to

support the findings presented in the thesis.

References:

The references section provides a comprehensive list of the sources cited in this

thesis, with appropriate guidelines.

7

Chapter 2

Literature Review and Problem Formulation

2.1 Literature Review

 The application of predictive analytics techniques in the domain of time series

forecasting has garnered significant attention because of its applications in many fields

such as weather forecasting, electrical power load forecasting, health monitoring, and

intrusion detection [1]. Time series forecasting, as a fundamental aspect of predictive

analytics, plays a critical role in understanding temporal data behavior and predicting

future values, facilitating informed decision-making in diverse domains. The inherent

sequential nature of time series dataset, where observations are captured over regular

intervals of time, presents unique challenges and opportunities for predictive modeling.

These challenges include capturing complex temporal patterns, handling missing data,

and addressing non-stationarity and seasonality in the data.

Figure 3 shows the simulation results of Jun Chen et al [1] using the box plot of

variation in vehicle range due to variation in cell capacity level obtained by modelling an

equivalent circuit.

8

Figure 3 Range variation with respect to cell variation level

Notably, attention-based encoder-decoder frameworks have emerged as effective

solutions for multivariate time series forecasting problems. Du et al. (2020) proposed a

novel encoder-decoder model based on bi-directional LSTM networks (Bi-LSTM) with a

temporal attention mechanism, demonstrating superior forecasting performance compared

to baseline methods across multiple datasets [2]. This attention mechanism enables it to

target applicable temporal information while generating forecasts, thereby capturing long-

term dependencies and hidden correlation features in multivariate time series dataset. By

leveraging the temporal attention mechanism, the model can adaptively learn and

incorporate important temporal patterns, leading to more accurate and reliable forecasts.

9

Figure 4 Framework of Multivariate Time Series Forecasting

Figure 4 shows a new model framework with attention towards temporal encoder

and decoder developed by Shengdong Du et al [2] based on two-dimensional LSTM

model which yielded better results to the multivariate time series data.

Furthermore, advancements in recurrent neural networks (RNNs) have addressed

key limitations in current models for multivariate time series multi-step forecasting [3].

He et al. (2023) introduced Multi-Attention Collaborative Network (MACN) with a

triangle-structure, incorporating an encoder-decoder framework with attention-based and

a secondary hierarchical network to improve forecasting accuracy by capturing relevant

variables and temporal dependencies [4]. This innovative approach enhances the

interpretability and scalability of forecasting models for multivariate time series data,

offering a robust solution for complex forecasting tasks. By integrating attention

mechanisms at multiple levels of the model architecture, MACN can effectively capture

short-term and long-term temporal dependencies together, with more accurate and

reliable forecasts.

10

Figure 5 Architecture of Collaborative Network based on multi-attention

Figure 5 shows a framework model proposed by Xiaoyu He et al [4] based on

multi-attention model collaborating with attention-based variables distillation network

and LSTM model. Encoding and decoding of the network was done by a knowledge

enhanced long short-term memory model and the results of the model outperformed

existing state of the art models.

Despite the promise of deep learning models in multivariate forecasting tasks,

they often face challenges in scalability, interpretability, and computational efficiency. To

address these limitations, De Stefani and Bontempi (2021) proposed an approach with an

extension to the Dynamic Factor Model (DFM), combining linear factor and non-linear

factor evaluating techniques for large-scale multivariate forecasting tasks [5]. By

leveraging the strengths of both linear factor and non-linear factor evaluating techniques,

this approach enhances the interpretability and computational efficiency of multivariate

time series forecasting models, making them suitable for real-world applications.

Additionally, the DFM approach provides insights into the underlying factors driving the

observed temporal patterns, enabling better understanding and interpretation of the

forecasting results.

11

Figure 6 Architecture of Dynamic Factor Model (DFM) and Machine Learning (DFML)

Figure 6 shows an extension model proposed by Jacopo De Stefani et al [5] based

on Dynamic Factor Model framework to improve forecasting accuracy of the model. The

experimental results also show an increase in computational efficiency and forecasting

accuracy.

In the context of electric vehicle (EV) battery health prediction, machine learning-

based approaches have gained traction for developing sturdy state-of-health (SOH)

prediction models. Akbar et al. (2022) utilized a data-driven modeling strategy,

incorporating Big Data, Artificial Intelligence (AI), and the Internet of Things (IoT) to

develop an accurate and dependable SOH prediction model, demonstrating high accuracy

in real-world scenarios [6]. Additionally, Li et al. (2020) proposed a method for battery

life estimation based on cloud data, utilizing charging data to forecast battery cell

capacity and its impedance, with errors of less than 4% [7]. These advancements in

machine learning-based approaches enable proactive maintenance and optimization of

battery performance, enhancing the reliability and efficiency of EVs.

Figure 7 shows the proposed model by Kai Li et al [7] based on optimizing the

estimated results by Kalman filter and usage of Fuzzy logic to control the noise observed

to increase the accuracy of the model. The simulation results of the cloud data shows that

the estimated battery life has less than 4% error based on this new approach.

12

Figure 7 Analysis flowchart of Fuzzy Logic and Kalman Filter model

Moreover, ML techniques were used to monitor and predict the performance of

internal combustion engines. Kulkarni et al. (2021) developed an ML model for detecting

and live monitoring of engine oil aeration with a single high-speed oil pressure sensor,

achieving high prediction accuracy [8]. By leveraging machine learning algorithms, such

as Gaussian process regression, this approach enables live monitoring and detection of

engine oil aeration, facilitating timely maintenance and optimization of engine

13

performance. These machine learning-based solutions contribute to improving the

reliability, efficiency, and longevity of internal combustion engines, ultimately leading to

cost savings and enhanced operational performance.

Figure 8 Gaussian Process Regression model training flowchart for prediction

Figure 8 shows the proposed model by Vainatey Kulkarni et al [8] based on a

five-level discrete wavelet transform (DWT) and gaussian process regression (GPR)

machine learning model. The predicted results show that uncertainty of the oil aeration

values is under ± 0.02.

2.2 Problem Formulation

The results reported in the literatures underscore the importance of predictive

analytics in addressing various challenges related to time series forecasting, battery health

prediction, and engine performance monitoring in the context of electric and IC engine

vehicles. Building upon these advancements, the present project aims to develop

predictive analytics models to address specific use cases identified in collaboration with

VECV.

By leveraging machine learning and logic-based approaches, the project seeks to

enhance the reliability, efficiency, and performance of electric and IC engine vehicles,

contributing to the advancement of predictive maintenance strategies in the automotive

industry.

14

15

Chapter 3

Methodology

3.1 Understanding the Dataset

Time-series dataset represents a collection of parameters observed over a

consistent time interval, typically in chronological order. In the context of this project,

time-series data encompasses various parameters relevant to Electric and IC engine

vehicles, such as battery voltage, temperature readings, motor performance metrics,

vehicle performance parameters, and engine diagnostics. These observations are gathered

at regular intervals, providing insights into the vehicle's operational state and performance

over time. Unlike static datasets commonly encountered in traditional machine learning

tasks, time-series data introduces unique challenges and opportunities due to its temporal

nature.

Time-series data necessitates specialized handling and analysis techniques to

extract meaningful insights and patterns. Trend analysis, for example, involves

identifying long-term patterns or tendencies in the data, such as overall growth or decline

over time. Seasonality decomposition aims to separate the data into seasonal components,

allowing for the isolation and analysis of recurring patterns or cycles within the dataset.

Autocorrelation analysis examines the correlation between observations at different time

lags, helping to identify temporal dependencies and predictability in the data.

One of the key distinctions between time-series data and traditional tabular

datasets lies in the sequential dependencies and temporal trends inherent in the former.

Static dataset observations are independent of each other, and time-series dataset exhibits

sequential relationships, where the value of a given observation may depend on its past

values. This temporal structure necessitates the adoption of specialized modeling

approaches tailored to capture and exploit these sequential dependencies effectively. In

summary, understanding time-series data involves recognizing its temporal nature,

identifying patterns and trends through specialized analysis techniques, and

acknowledging the sequential dependencies inherent in the data. By leveraging

appropriate modeling approaches and analysis tools, researchers and practitioners can

extract valuable insights and make informed decisions in various domains, including

vehicle performance monitoring and predictive maintenance.

16

3.2 Understanding the Use Cases

3.2.1 Battery Cell Imbalance

 Cell balancing of a battery is a fundamental aspect of Battery Management

Systems (BMS), particularly in EVs, where multiple cells are interconnected to make a

battery pack. The primary objective of cell balancing is to establish that all the cells in the

battery pack have similar voltage levels, thereby optimizing overall performance,

capacity, and lifespan. Imbalances in cell voltage can lead to various detrimental effects,

including reduced energy capacity, accelerated degradation, and safety risks.

Several factors contribute to cell voltage imbalances within a battery pack. Cell

aging is a significant factor, where variations in cell chemistry and internal resistance

occur over time, resulting in discrepancies in voltage levels among cells. Additionally,

differences in manufacturing tolerances, temperature gradients within the battery pack,

and variations in charging and discharging rates can also contribute to cell imbalances.

The effects of cell voltage imbalances on battery performance and longevity are

profound. During the charging process, overcharged cells may lead to capacity loss,

overheating, and safety hazards such as thermal runaway, while undercharged cells may

experience reduced energy capacity and premature aging during discharge. To mitigate

these imbalances, various balancing techniques are employed. Passive balancing methods

involve dissipating excess energy from overcharged cells using shunt resistors or bypass

diodes, thereby equalizing cell voltages. In contrast, active balancing methods redistribute

charge between cells through external circuitry or balancing circuits, using techniques

such as charge transfer, energy transfer, or voltage conversion.

The process of cell balancing occurs iteratively during the charging process,

where balancing systems monitor individual cell voltages and activate mechanisms to

equalize cell voltages. This iterative process continues until all cells are within the desired

voltage range, ensuring optimal performance and longevity of the battery pack.

Understanding balance and balancing in battery systems is crucial for maximizing

performance and longevity. Tom Wicker highlights the significance of considering

differences in charging/discharging due to variations in cell internal resistance,

emphasizing the need for larger balancing currents to address such imbalances [9].

Balancing primarily focuses on equalizing State of Charge (SOC) levels among cells and

17

compensating for cell-to-cell variations in leakage but may be hindered by variations in

cell resistance.

Figure 9 Cell Imbalance in a Battery Pack and its causes

 Figure 9 shows various types of imbalances in a battery pack in real-world

conditions and the possible reasons leading to imbalances such as SOC, leakage current,

internal resistance (impedance), and cell capacity. An ideal battery will have full capacity

for an infinite period if left unused, but current leakage happens due to impedance. The

leakage is not uniform and varies from cell to cell. A battery can be balanced at 50% SoC

or 100% SoC based on the program in the BMS. The common standard in the automotive

industry is balancing at 100% SoC.

3.2.2 Battery Cell Temperature

 Battery cell temperature management is a vital aspect of lithium-ion battery

systems, especially in automotive applications, where it directly impacts performance,

safety, and longevity. Several influential parameters contribute to cell temperature

variations, with environmental conditions being one of the primary factors.

Environmental factors such as ambient temperature, humidity levels, and altitude can

significantly influence cell temperature. In extreme temperatures, whether hot or cold, the

performance and life of the battery can be compromised. Cold temperatures increase

internal resistance and reduce battery capacity, leading to decreased energy output,

particularly during cold starts in electric vehicles (EVs). Conversely, high temperatures

18

accelerate chemical reactions within the cells, resulting in accelerated degradation

mechanisms such as electrode corrosion, electrolyte decomposition, and formation of

Solid-Electrolyte Interphase (SEI) layers. This degradation leads to capacity fade, reduced

energy efficiency, and ultimately diminishing the reliability of the battery pack.

Moreover, high temperatures can trigger thermal runaway events, causing safety

hazards such as cell venting, fire, or explosion. Conversely, low temperatures increase

internal resistance and reduce ion mobility, limiting charge and discharge rates, which

affects power output, energy capacity, and regenerative braking performance, particularly

in cold climates. In addition to environmental conditions, high discharge currents

common in EVs during acceleration or heavy loads can generate significant heat within

the battery cells. The rapid flow of current increases internal resistance and heat

dissipation, elevating cell temperatures. Similarly, overcharge or over-discharge events,

often caused by charging or discharging beyond recommended levels, result in excessive

heat generation, posing safety risks and accelerating battery aging.

To mitigate the adverse effects of temperature extremes on battery performance

and lifecycle, battery thermal management systems are employed. These systems utilize

heating and cooling mechanisms controlled by the BMS to maintain cells within an

optimal temperature range, typically between -20°C to +60°C for lithium-ion cells.

Heating mechanisms ensure cells remain above the minimum operating temperature,

preventing performance degradation and enhancing energy efficiency, particularly in cold

climates. Cooling mechanisms prevent cells from exceeding their maximum operating

temperature, mitigating safety risks, and extending battery life.

Effective thermal management strategies tailored to specific environmental

conditions are crucial for the battery pack. By maintaining cells within the recommended

temperature range, automotive battery systems can operate efficiently, ensuring reliable

performance, enhanced safety, and prolonged lifespan, ultimately contributing to the

overall sustainability and viability of electric vehicles.

19

Figure 10 Cell Temperature in a Battery Pack and its causes

 Figure 10 shows the possible reasons leading to cell temperatures such as

overcharge, over-discharge, high discharge current, and thermal management system. The

optimum temperature operating range for the maximum life cycle of the battery is

between 15℃ to 45℃. The reduction in capacity retention against the number of cycles is

shown in the graph for different cell temperatures with high temperatures affecting the

capacity at a higher rate.

Figure 11 shows the data transfer from the battery to the Vehicle Control Unit

(VCU). The octillion battery pack has 208 cells (8 columns) connected in series and the

cells have individual voltage and temperature measurement sensors. The individual

column data are shared with its slave Battery Management System (BMS) and all slave

BMS data are consolidated in Master BMS. The necessary actions are taken based on the

condition of the individual cell’s voltage and temperature. Maximum and Minimum

temperature and voltage values are shared with the Telematics Control Unit (TCU) to

upload on the server. The data of both cell voltage and temperature are shared through the

BMS.

C
y
cl

e
L

if
e

(N
u
m

b
er

 o
f

C
y
cl

es
)

Temperature (℃)

20

Figure 11 Octillion Battery Pack with Slave and Master BMS

3.2.3 Motor Temperature

 Electric vehicle traction motors, particularly Permanent Magnet Synchronous

Motors (PMSM), are critical components that require careful temperature management to

ensure optimal performance and reliability. The temperature of the PMSM motor is

influenced by various factors, including motor overload, inconsistent power delivery,

frequent start-stop operations, charging current during regenerative braking, and the

effectiveness of the thermal management system.

Motor overload, occurring when the motor is subjected to excessive torque

demands or prolonged high-speed operation, results in increased heat generation within

the motor. This can lead to temperature spikes, causing thermal stress on motor

components and potentially leading to overheating-related failures. Inconsistent power

delivery, often caused by voltage fluctuations or irregularities in the powertrain system,

can also impact motor temperature. Rapid changes in power demand or voltage levels can

lead to thermal cycling of the motor, resulting in temperature variations and potential

performance degradation.

Frequent start-stop operations, commonly encountered in urban driving

conditions, can contribute to motor temperature fluctuations. Each start-stop cycle

subjects the motor to thermal stress, as it rapidly transitions between stationary and

operational states. Over time, this can lead to cumulative heat buildup and increased risk

of overheating-related issues. During regenerative braking, the motor operates in

21

generator mode, converting kinetic energy into electrical energy to recharge the battery.

The charging current flowing back into the battery generates heat within the motor

windings, contributing to temperature elevation. Without proper thermal management,

excessive heat buildup can occur, leading to thermal runaway and potential motor

damage.

Motor temperature varies with the current flowing through the motor windings

and the voltage applied across them. Higher currents result in increased Joule heating

within the motor windings, raising the temperature. Similarly, higher voltages can lead to

increased heat dissipation, particularly during rapid acceleration or high-speed operation.

High motor temperatures can have detrimental effects on performance and

reliability. Excessive heat can degrade insulation materials, leading to insulation

breakdown and short circuits. It can also cause demagnetization of the permanent

magnets, reducing motor efficiency and torque output. Additionally, high temperatures

can accelerate bearing wear and lubricant degradation, leading to premature failure and

increased maintenance requirements. Conversely, low motor temperatures can also

impact performance negatively. Cold temperatures can increase motor winding resistance,

reducing efficiency and power output. It can also increase friction and wear on

mechanical components, such as bearings and gears, leading to decreased reliability and

increased energy consumption.

To manage motor temperatures effectively, EVs employ various thermal

management strategies. Active cooling systems, such as liquid cooling or air cooling, are

commonly used to dissipate heat generated during motor operation. These systems

circulate coolant or air through channels or passages within the motor housing, removing

heat and maintaining optimal operating temperatures. The optimum temperature range for

PMSM motors typically falls between 40 to 80°C. Operating within this temperature

range ensures efficient motor performance, longevity, and reliability. Deviations from this

range can result in decreased efficiency, increased wear, and potential motor failures.

 Figure 12 shows the possible reasons leading to high motor temperatures such as

motor overload, poor power, and thermal management system. A correlation heatmap

matrix shows the significance of individual parameters in motor temperature.

22

Figure 12 EV Motor Temperature causes and Correlation Heat Map Matrix

3.2.4 Engine Oil Pressure

 Low engine oil pressure is a critical issue that can lead to severe damage and

malfunctions within an internal combustion engine. Several influential parameters

contribute to low engine oil pressure, including engine RPM, engine oil viscosity, a

plugged or clogged oil filter, low oil level, apparent low pressure caused by worn

bearings or oil passages, and pump wear.

Engine RPM plays a significant role in determining oil pressure, as higher RPMs

result in increased oil demand to lubricate and cool engine components. At low RPMs, oil

pressure tends to decrease due to reduced oil flow rate through the engine's oil passages.

This can be particularly evident during idling or low-speed operation, where insufficient

oil circulation can lead to low-pressure conditions.

23

Engine oil viscosity, or the thickness of the oil, also influences oil pressure.

Higher viscosity oils provide better lubrication at high temperatures and pressures,

resulting in higher oil pressure. Conversely, lower-viscosity oils may experience reduced

oil pressure, especially in high-temperature operating conditions, where the oil thins out

and flows more easily. A plugged or clogged oil filter can restrict oil flow, causing a drop

in oil pressure. Over time, debris, contaminants, and sludge can accumulate in the oil

filter, impeding oil circulation and reducing pressure. Regular oil and filter changes are

essential to prevent filter blockages and maintain optimal oil flow and pressure.

Low oil level is another common cause of low engine oil pressure. Insufficient oil

volume in the crankcase reduces the amount of oil available for lubrication, leading to

decreased oil pressure. Monitoring oil levels regularly and topping up as needed is crucial

for preventing low oil pressure conditions. Apparent low pressure, often caused by worn

engine bearings, oil pump wear, or blocked oil passages, can give the impression of low

oil pressure even when oil levels and viscosity are adequate. Worn bearings create larger

gaps between moving parts, allowing oil to flow more freely and reducing pressure.

Similarly, pump wear can result in a decreased oil flow rate, leading to lower pressure

readings.

Low engine oil pressure can have detrimental effects on vehicle performance and

engine life. Inadequate lubrication can cause increased friction and wear on engine

components, leading to premature engine failure and reduced longevity. Severe cases of

low oil pressure can result in engine overheating, seizure, or catastrophic failure,

necessitating costly repairs or replacements.

To manage low engine oil pressure effectively, regular maintenance and

inspections are essential. This includes checking oil levels and quality, replacing oil filters

at recommended intervals, and monitoring oil pressure using a gauge or warning light.

Addressing any issues promptly, such as leaks, worn bearings, or pump wear, can help

prevent low oil pressure conditions and ensure optimal engine performance and longevity.

Figure 13 shows the possible reasons leading to low oil pressure in the engine

such as oil viscosity, engine RPM, plugged filter, low oil level, pump wear, and apparent

low pressure.

24

Figure 13 Low Oil Pressure in Engine and its causes

3.3 Methodology Flow Chart

3.3.1 Preprocessing the Data

Techniques such as interpolation or forward/backward filling are used to remove

missing values, ensuring continuity in the time-series dataset. Statistical methods or

machine learning algorithms are employed to detect outliers, which may indicate sensor

malfunctions or abnormal vehicle behavior. Exploratory Data Analysis (EDA)

techniques, including time-series decomposition and trend visualization, are used to

understand the data distribution and identify patterns. Relevant features such as rolling

averages, lagged variables, and seasonality indicators are engineered to capture important

information for predictive modeling. Data transformation techniques such as logarithmic

scaling or differencing are applied to stabilize variance and make the data more amenable

to modeling.

3.3.2 Splitting the Data

Data is traditionally divided into three categories for training, validation, and

testing using a predetermined ratio (e.g., 70% training, 15% validation, 15% test) to

ensure model generalization and prevent overfitting. Cross-validation is performed using

K-fold to predict the performance of the model across various subsets of the data,

providing insights into its robustness and stability.

25

3.3.3 Data Analysis

Exploratory data analysis techniques such as correlation analysis and feature

importance ranking are used to identify relevant variables and assess their impact on

model performance. Statistical models like ARIMA and VAR are used for time-series

forecasting, while ML models like XGBoost and LSTM are employed for complex

pattern recognition and prediction tasks.

3.3.4 Machine Learning Model

Various statistical models and machine learning algorithms, including VAR,

ARIMA, XGBoost, LGBM, and LSTM neural networks, are explored and implemented

to address the specific use cases. A model will be selected based on its suitability for the

specific use case and dataset characteristics. Model hyperparameters are tuned using grid

search or random search to optimize performance.

3.3.5 Evaluation

The metrics Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), and

R squared (𝑅2) are used to assess model accuracy and predictive performance.

Performance analysis based on these metrics helps identify areas for improvement, such

as feature selection, hyperparameter tuning, or data augmentation.

3.3.6 Model Deployment

Trained models are deployed in production environments to make real-time

predictions on new data, enabling proactive maintenance and decision-making. Inference

mechanisms interpret model predictions and provide actionable insights to stakeholders,

facilitating informed decision-making and operational optimization.

Figure 14 shows the methodology adopted and the subsystems involved. This

comprehensive methodology outlines the entire process of leveraging predictive analytics

for electric and IC engine vehicles. Each step is tailored to address the unique challenges

and requirements, ensuring robust and scalable solutions for vehicle monitoring and

maintenance.

26

F
ig

u
re

 1
4
 M

et
h
o
d
o
lo

g
y
 F

lo
w

 C
h
ar

t

27

Chapter 4

Machine Learning Models

Machine learning is a field of artificial intelligence that enables computers to learn

from data and make predictions without explicit programming. In automotive predictive

diagnostics, ML analyzes data from vehicle sensors to predict faults, detect anomalies,

optimize maintenance schedules, and enhance diagnostic accuracy. By identifying

patterns in metrics, ML models can forecast issues before they occur, allowing for timely

maintenance and reducing breakdowns. This approach improves vehicle reliability,

extends lifespan, and provides personalized insights based on driving habits, ultimately

optimizing vehicle performance and maintenance efficiency. ML models experimented in

this study are explained in detail with their underlying principles, suitability for time-

series data, potential advantages, and limitations in this section. The flowchart adapted for

it is shown in Figure 15. The dataset is preprocessed, features are selected appropriately

based on the use case, correlation analysis is done to verify the significance of the

features, and then the dataset is normalized. The normalized data is divided into three

subsets for training, validation, and testing. The trained model is saved, and its

performance is evaluated based on evaluation metrics.

Figure 15 Machine Learning Model Flow Chart

28

4.1 Vector Auto Regression (VAR)

VAR is a multivariate time-series forecasting model that extends autoregression

(AR) to multiple variables. It captures linear dependencies between multiple variables by

modeling individual variable as a function of its previous values and the previous values

of other variables in the system. VAR is suited for capturing dynamic relationships and

feedback mechanisms present in multivariate time-series data. It can handle

interdependencies between variables and capture their joint evolution over time.

Strengths of VAR is its capability to record dynamic relationships and feedback

mechanisms within the data. Examining the effect of changes in one variable with the

behavior of another variable over time furnishes useful insights into the underlying

dynamics of the system. This makes it an influential tool for predicting multiple variables

simultaneously, as it can report the interactions between them and their joint evolution

over time. However, despite its versatility, VAR has certain limitations that must be

considered when adapting it to real-world datasets. VAR assumes that the relationships

between variables are linear. While this simplifying assumption allows for

straightforward interpretation and estimation, it may not accurately capture nonlinear

dependencies or complex patterns present in the data. In cases where the relationships

between variables are highly nonlinear, VAR may produce suboptimal forecasts.

VAR performs best when applied to a static time-series dataset with a constant

statistical property. In real-world datasets, achieving stationarity can be challenging,

particularly when dealing with multivariate, multi-output data with class imbalance.

Variations in data quality, missing values, or active trends can impact performance and

lead to inaccurate forecasts. As the number of variables in the system increases, the model

may become computationally intensive and prone to overfitting. In such scenarios, careful

feature selection and regularization techniques are necessary to mitigate the curse of

dimensionality and prevent model overfitting.

In datasets with class imbalance, where certain classes or categories are

underrepresented, VAR may struggle to accurately capture the dynamics of minority

classes. This results in biased forecasts and poor forecasting accuracy, particularly if the

imbalance is severe. Specialized techniques, such as resampling methods or class-

weighted loss functions, may be required to address class imbalance and improve the

29

robustness of the model. While VAR provides valuable insights into the relationships

between variables, understanding the results of a multivariate analysis can be demanding,

specifically in complex systems with numerous interdependencies.

4.2 Autoregressive Integrated Moving Average (ARIMA)

ARIMA is a widely used time-series forecasting model that blends autoregression

(AR) and moving average (MA) components with changes to handle static data. ARIMA

models can record both the linear dependencies within a time-series dataset and its

elemental trend and seasonality patterns present in the dataset.

ARIMA models are characterized by three main components: Autoregression

(AR), Integrated (I), and Moving Average (MA). AR component models the relationship

between an observation and its former values. It captures the linear dependence between

the current value of the time series data and its previous values. The integrated

component involves differentiating the time series data to achieve stationarity. By taking

differences between consecutive observations, ARIMA removes trends and other non-

stationary patterns, making the time series static. The MA component models the

relationship between a recorded value and the error residue term derived from a MA

model applied to previous observations. It captures the linear dependence between the

current value and past forecast errors.

The ARIMA model is inherently a univariate model and does not directly handle

multiple input variables or outputs. While extensions like vector ARIMA (VARIMA)

exist for multivariate time series, they may not effectively capture the complex

interactions and dependencies present in multi-output data with class imbalance. It

assumes linear relationships between variables and may struggle to model nonlinear

dependencies or complex patterns in the data.

This model performs best when applied to stationary time series data. Achieving

stationarity can be challenging in multivariate datasets with class imbalance, where

variations in data quality, missing values, or non-stationary trends are common. It might

give inaccurate predictions if the base data is not stationary. As the number of variables

increases, ARIMA models may become computationally intensive and prone to

overfitting. Feature selection and regularization techniques are necessary to mitigate

overfitting and ensure model robustness. It also struggles to accurately capture the

30

dynamics of minority classes in datasets with class imbalance. This can lead to biased

forecasts and poor predictive performance, particularly if the imbalance is severe.

4.3 Extreme Gradient Boosting (XGBoost):

XGBoost is a powerful ensemble learning algorithm with effectiveness in

supervised learning tasks. It develops a series of decision trees sequentially, with each

tree learning from the errors of its predecessors, thereby improving the long-term

predictive performance of the model. It can be applied by framing the problem as a

supervised learning task, where historical observations are used to predict future values. It

excels at capturing complex nonlinear relationships and patterns in the data, making it

suitable for modeling the dynamic behavior of time series data.

High performance, scalability, and efficiency are advantages of this model. It can

handle large datasets with high dimensionality, making it suitable for tasks involving

many features and observations. Additionally, it is less prone to overfitting compared to

traditional decision trees, thanks to its regularization techniques and ensemble approach.

XGBoost requires careful tuning of hyperparameters to optimize its performance.

Choosing the correct mix of hyperparameters, such as learning rate, tree depth, and

regularization parameters, can be challenging and may require extensive experimentation.

In multivariate, multi-output time series datasets, the number of hyperparameters to tune

increases, making the tuning process more complex. While it provides high predictive

accuracy, its models can be less understandable compared to simpler models like ARIMA

or VAR. The ensemble nature of XGBoost and the complex interactions between decision

trees make it demanding to interpret the underlying relationships between input variables

and output targets.

This model may struggle to predict minority classes in datasets with class

imbalance accurately. The algorithm tends to focus more on optimizing overall accuracy,

which can lead to biased predictions for minority classes. Techniques such as class

weighting or resampling may be required to address class imbalance and improve model

performance. It may still face scalability issues with extremely large datasets or complex

models.

31

4.4 Light Gradient Boosting Machine (LGBM)

LGBM is a powerful ML algorithm used for supervised learning, particularly in

the field of gradient boosting. It operates similarly to XGBoost but is optimized for

efficiency and speed, suited for large-scale datasets and real-time applications. It

constructs decision trees in a leaf-wise manner rather than level-wise, optimizing for the

maximum reduction in loss at each step. This approach allows it to build trees more

efficiently and achieve better performance with fewer splits, resulting in faster training

times and lower memory usage.

One of the key advantages of LGBM is its scalability and efficiency. It can handle

large datasets with millions of observations and thousands of features, making it suitable

for tasks requiring high-dimensional data. Additionally, it is highly parallelizable and can

take advantage of multi-core processors to accelerate training. It is also capable of

handling categorical features and missing values effectively, eliminating the need for

extensive data preprocessing. It automatically handles categorical features by encoding

them into numerical values during training, and it can handle missing values by

partitioning data based on missingness and treating them as separate categories.

When applied to time-series forecasting tasks, it offers similar advantages to

XGBoost. It can record complex patterns and nonlinear relationships present in the

dataset, is apt for modeling the dynamic behavior of time series data. However, it has

limitations while dealing with multivariate, multi-output time series data with class

imbalance. Like other ensemble methods, this model can be less interpretable compared

to simpler models such as linear regression. The complex interactions between decision

trees and the ensemble nature of the model make it challenging to interpret the underlying

relationships between input variables and output targets.

LGBM requires careful tuning of hyperparameters to achieve optimal

performance. Selecting the correct set of hyperparameters can be demanding and may

need extensive experimentation. It may struggle to predict minority classes in datasets

with class imbalance accurately. The algorithm tends to focus more on optimizing overall

accuracy, which can lead to biased predictions for minority classes. Specialized

techniques such as class weighting or resampling may be required to address class

imbalance and improve model performance.

32

4.5 Long Short-Term Memory (LSTM) Neural Networks

 LSTM Neural Network is based on recurrent neural network (RNN) type

architecture explicitly designed to address the difficulties of securing long-term

dependencies in sequential data. Dissimilar to traditional RNNs, which struggle to

preserve data over long sequences due to the fading gradient problem, LSTM networks

incorporate gating mechanisms and memory cells to carefully preserve and update the

data over time. In time-series forecasting tasks, LSTM networks offer several advantages,

specifically when dealing with multivariate, multi-output time series class imbalanced

datasets.

 LSTM networks are suited for modeling time-series dataset with long-term

dependencies. They can effectively capture patterns and relationships that span across

multiple time steps, allowing them to record both short term fluctuations and long-term

trends in the dataset. This makes it effective for predicting tasks where understanding the

historical context is crucial for making accurate predictions. This network can also easily

accommodate multivariate time-series data, where multiple variables are observed

simultaneously over time. By processing multiple input features concurrently, LSTM

networks can record complicated dependencies and interactions between different

variables with more accurate forecasts.

This model is capable of processing sequences of variable lengths, making them

versatile for handling time-series data with irregular sampling intervals or missing

observations. This flexibility allows it to adapt to the temporal dynamics of the data and

effectively model sequences of different lengths. It also excels at capturing sequential

patterns and temporal dynamics in the data. By learning from past observations and

updating their internal state over time, it can capture subtle changes and nonlinear

relationships in the dataset, enabling them to make skillful forecasts even in the presence

of complex temporal patterns.

In multivariate, multi-output time series datasets with class imbalance, LSTM

networks can adapt their learning process to focus more on minority classes by adjusting

the loss function or incorporating class weighting techniques. This allows it to effectively

handle imbalanced datasets and make accurate predictions for all classes. Despite these

advantages, LSTM networks also have limitations, such as their susceptibility to

33

overfitting and the need for larger amounts of training data and longer training times

compared to traditional statistical models. However, with careful regularization

techniques, hyperparameter tuning, and appropriate preprocessing of the data, LSTM

networks can overcome these limitations and deliver accurate forecasts in multivariate,

multi-output time series class imbalanced datasets.

Figure 16 Long Short-Term Memory (LSTM) model architecture and its system

 Figure 16 shows the architecture of an LSTM model and its nonlinearities, types

of vector operations involved, inputs considered, and the outputs generated. The model

updates every node in each layer by following this architecture to predict the final

parameters.

4.6 Correlation Analysis

Correlation analysis determines the strength and direction of the linear

relationship between variables in the dataset. It helps to analyze potential dependencies

and patterns in the dataset. A positive correlation signifies a direct relationship between

variables, a negative correlation signifies an inverse relationship, and a zero correlation

indicates no linear relationship.

34

Figure 17 Correlation Analysis Matrix Heatmap

 Figure 17 shows the correlation analysis of all parameters significant for three

electric vehicle use cases in a heatmap. A positive correlation is observed between cell

voltages and battery potential power input, cell temperatures and battery power input,

accelerator pedal position and motor current, coolant temperature and motor voltage. This

implies the significance of these parameters in individual use cases. Similarly, a negative

correlation is observed between motor voltage and demand charge current, coolant

temperature and demand charge current which indicates a negative effect on parameters.

35

The individual heatmap correlation helps to focus only on certain influential

parameters and their effect on the use case. This activity helps to reduce the computation

time while the machine learning model is training. The negative effect of leaving out

other parameters is assumed to be insignificant.

An individual use-case-based correlation matrix was prepared. The heatmap of

cell imbalance parameters is shown in Figure 18 which indicates that the individual cell

voltages, cell temperatures, and fuel level (State of Charge – SoC) are the significant

parameters. Cell temperature and battery potential has higher influence on the cell

voltages as per the values in the heat map matrix.

Figure 18 Correlation Analysis Matrix Heatmap for Cell Imbalance

36

Figure 19 Correlation Analysis Matrix Heatmap for Cell Temperature

Significant parameters for the cell temperature use case are battery power, cell

temperatures, and cell voltages as shown in Figure 19. Battery input power and voltage

have higher positive correlation values whereas SOC and coolant pressure have lower

values. This indicates that SOC and coolant pressure has very minimal effects on cell

temperature

Influential parameters for the PMSM Traction Motor temperature use case is

charging current, motor voltage, vehicle speed, coolant temperature as shown in Figure

20. Motor voltage and charging current are having higher influence on the motor

temperature as per the positive correlation values in the heat map matrix whereas vehicle

speed has the least influence.

37

Figure 20 Correlation Analysis Matrix Heatmap for Motor Temperature

4.7 Performance Metrics

4.7.1 Mean Absolute Error (MAE)

MAE quantifies the mean absolute deviation between the real-time values and

predicted values. It presents a forthright evaluation of prediction precision, with lower

MAE values indicating higher accuracy in forecasting. It is calculated for each data point

and is appropriate for calculating the overall accuracy of model prediction, providing

insights into the magnitude of errors. MAE helps assess the capability of models to make

predictions more accurate across the entire dataset, regardless of the direction of errors.

4.7.2 Root Mean Squared Error (RMSE)

RMSE quantifies the root of mean squared difference between forecasted and

real-time values. It castigates larger errors more than MAE; this makes it responsive to

deviations. RMSE is suitable for evaluating the magnitude of errors and assessing the

overall performance of predictive models. RMSE gives perception into the variability of

errors and supports identifying the presence of outliers or extreme predictions.

38

4.7.3 R-squared (𝑹𝟐)

𝑅2 quantifies the proportion of variance in the dependent target (variables) that is

analyzed by the independent features (variables). It illustrates the integrity of the fit in the

model with data. 𝑅2 is used to evaluate the predictive power of the model and assess its

capability to apprehend the variability in the target variable. It ranges from 0 to 1, with

value close to one citing a better fit. It helps quantify the proportion of variability in the

target variable that can be attributed to the model's predictors.

4.7.4 Confusion Matrix

A confusion matrix is a table that compiles the performance of a classifier model

by correlating predicted and actual values. It is beneficial for evaluating models with

discrete outcomes. True positive (TP), true negative (TN), false positive (FP), and false

negative (FN) are the components of the confusion matrix. Precision, accuracy, recall

(sensitivity), and F1 score are the metrics of the model. The formula to calculate these

metrics are shown in equations (i), (ii), (iii) and (iv) respectively. The confusion matrix

gives insights into the model's capability to correctly distinguish instances into different

classes and identify errors (false positives and false negatives).

Table 1 Confusion Matrix

 Predicted Positive Predicted Negative

Actual Positive True Positive (TP) False Negative (FN)

Actual Negative False Positive (FP) True Negative (TN)

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
 (i)

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
 (ii)

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (iii)

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 =
2×𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
 (iv)

By employing these evaluation techniques, the performance and reliability of the

predictive analytics models can be assessed. These metrics and analyses give critical

understanding of the strengths and limitations of the models, guiding further refinement

and optimization to enhance predictive accuracy and effectiveness.

39

Chapter 5

Logic Based Models

Logic-based models, also known as rule-based systems or expert systems, operate

on a set of predefined rules or logical statements to make decisions or predictions. Rules,

conditions, actions, and inference engines are the components of a logic model. Unlike

machine learning models that rely on data-driven approaches, logic-based models utilize

predefined rules and logical reasoning to make predictions and draw conclusions from the

data. These models are often used in scenarios where the underlying mechanisms are well

understood or where interpretability and explainability are crucial.

The model evaluates input data against a set of rules or conditions and generates

output based on the logical implications of those rules. Logic-based models are suitable

for scenarios where the decision-making process can be formalized into explicit rules or

where domain knowledge and expertise play a significant role in decision-making.

5.1 Types of Logic-Based Models

5.1.1 Decision Trees

Decision trees are hierarchical structures composed of nodes that represent

decision points and branches that represent possible outcomes based on different

conditions. Each node corresponds to a feature or attribute, and each branch represents a

decision or rule based on the value of that feature. Decision trees are easy to interpret and

visualize, making them valuable for understanding the decision-making process.

5.1.2 Expert Systems

Expert systems integrate knowledge from human experts into a computerized

system to make decisions or provide advice in a specific domain. They mimic the

problem-solving behavior of human experts by encoding their knowledge into a set of

rules or logical statements. Expert systems are valuable for tasks that require expertise or

domain-specific knowledge, such as fault diagnosis and troubleshooting.

40

5.1.3 Rule-Based Systems

Rule-based systems consist of a set of rules that encode domain-specific

knowledge or expertise. Each rule comprises conditions and corresponding actions,

specifying the actions to be taken when certain conditions are met. Rule-based systems

can be transparent and interpretable, allowing users to understand the reasoning behind

the model's decisions.

Figure 21 shows a flow chart of the process followed for logic-based model. The

recorded parameters from the vehicles shared to the cloud from the TCU are available in

the Volvo Eicher Uptime Centre’s server. The parameters required for analyzing the

different use cases of electric vehicles over a period are selected and downloaded.

Eicher’s electric buses typically run between six hours to ten hours a day. The data

recorded will be for every minute once during its operation. If the bus operates for three

hours, then 180 entries of values of all parameters will be recorded.

The recorded data is shared as a Comma-Separated Values (CSV) file and it

consists of many parameters including vehicle ID details, location, minimum &

maximum cell voltage, minimum & maximum cell temperature, battery pack voltage,

battery power input, charging current, demand charge current, charging time, motor

current, motor voltage, motor estimated torque, charging status, battery potential power

input, regeneration power, auxiliary power consumption, and date &time details.

Figure 21 Flow chart for Logic Based Model

41

 Based on the number of electric buses that needs to be analyzed, all CSV files will

be placed in a common directory. First python code will run to preprocess the data, drop

any null entries, sort the data sequentially, apply the use case thresholds and conditions,

record the output, and create an excel (XLSX) file to store the results. This excel file

distinguishes the electric buses with and without issues.

 The electric bus datasets with issues will be placed in another directory for

analyzing the consecutive faults if any present in the vehicle. Second python selects the

datasets one by one, preprocess the data, drop any null entries, set consecutive fault count

limit, record the output, and create an excel (XLSX) file to store the results. The results

are analyzed and recommended actions are to be considered.

 The flow of fifty-three octillion battery-operated electric bus with two months of

data analyzed using two python codes for filtering out the faulty vehicles and finding the

consecutive faults present in it are shown in Figure 22.

Figure 22 Pictorial representation of Logic Based Model analysis methodology

5.3 Application of Logic-Based Models

Logic-based models can be used for diagnosing faults and identifying potential

issues in electric and IC engine vehicles based on predefined rules and diagnostic criteria.

These models can also help to identify the underlying causes of problems or failures by

analyzing the relationships between different variables and components in the vehicle

system. These models can provide recommendations for maintenance and repair actions

based on diagnostic results and historical data, helping optimize maintenance schedules

and resource allocation.

42

5.4 Advantages and Limitations

Advantages

✓ Interpretable and transparent decision-making process.

✓ Utilizes domain knowledge and expertise effectively.

✓ Can handle complex decision logic and uncertainty.

Limitations

✓ Reliance on explicit rules may lead to oversimplification or omission of important

factors.

✓ Difficulty in capturing implicit knowledge that is not explicitly represented in

rules.

✓ Limited ability to adapt to changing conditions or unforeseen scenarios without

manual intervention.

By exploring logic-based models in the context of predictive analytics, its

strengths in interpretability and domain knowledge integration to complement the

predictive capabilities of machine learning models can be leveraged. These models offer

valuable insights and decision support for various tasks ranging from fault diagnosis to

maintenance planning in automotive systems.

43

Chapter 6

Results and Discussion

 The machine learning model experiments conducted for this research project

focused on battery cell imbalance use case and the final acceptable results are extended to

the remaining use cases as the type of dataset under study is similar. The logic-based

models are developed for all the use cases and the results are compared with ML models.

This chapter will discuss the results of two machine learning models LGBM and LSTM

for cell imbalance use case, the comparison between the performances of machine

learning model and logic-based model.

6.1 Machine Learning Model Results

6.1.1 Light Gradient Boosting Machine (LGBM) Model

LGBM model is developed in python to make predictions of test dataset based on

the learnings from trained dataset. The code uses pandas and lightbgm libraries along

with sci-kit learn libraries for metrics and model selection. A vehicle with 6 months of

data in form of CSV file is considered with the help of pandas library, sorted by the IST

time of data recording, preprocessing the dataset by dropping unnecessary columns and

handling missing values.

The model splits the data into features and targets with target being cell imbalance

column while remaining influential columns being features. This cell imbalance column

is populated based on the conditions and threshold defined by the battery supplier. Cell

imbalance value is one (1) if any of the following conditions hold true else it is zero (0):

✓ Maximum cell voltage crossed 3.65V

✓ Minimum cell voltage went below 2.9V

✓ The voltage difference between maximum and minimum cell is more than 0.5V.

 The model then sets the LGBM parameters with binary objective and binary log

loss metric. The code ensures that column wise parameters are evaluated while training

the model. The maximum number of boosting rounds for the training process is set to

hundred (100) and the maximum number of rounds to wait for if there's no improvement

in the evaluation metric on the validation set before stopping the training is set to ten (10).

44

The code iterates over a hundred training sessions lgb.train() function is called to train the

model for one boosting round and results from the previous model (bst) from the last

boosting round is used for incremental learning.

After each boosting round, the code checks if the current round minus the best

iteration so far is greater than or equal to the stopping criteria and if it is, it breaks out of

the loop, stopping the training early. After training, the trained model (bst) is used to

make predictions on the test dataset and bst.predict() function returns the predicted

probabilities for each sample in the test dataset. Finally, it converts the predicted

probabilities into binary predictions by thresholding at 0.5. Values greater than 0.5 are

considered as Class 1, and values less than or equal to 0.5 are considered as Class 0.

The model was run across different input datasets to visualize the variation in

performance. The trials conducted yielded different sets of results as shown in Figure 23.

The accuracy of the model is high, but the precision, recall, and F1-Score results dropped

when the input dataset was changed. This variation observed is due to the very severe

class imbalance of the data in the ratio of 1:400, whereas the nominal ratio is of 1:10.

Figure 23 LGBM model and its results across datasets

45

6.1.2 Long-Short Term Memory (LSTM) Model

An LSTM model is developed in Python to make predictions on a test dataset

based on learnings from a trained dataset. The code utilizes Pandas and Keras libraries

along with scikit-learn libraries for metrics and model selection. A vehicle with 6 months

of data in the form of a CSV file is considered with the help of the pandas library, sorted

by the IST time of data recording, preprocessing the dataset by dropping unnecessary

columns and handling missing values.

Like LGBM model, LSTM also splits the data into features and targets in the

same manner. Cell imbalance column is populated like LGBM model. The data is split

into training and testing sets, with 80% used for training and 20% for testing. The

MinMaxScaler is initialized for normalization, and the features are normalized. The data

is then converted into sliding windows of a specified size for input into the LSTM model.

The model calculates class weights to account for data imbalance and builds and

compiles the LSTM model with binary cross-entropy loss and accuracy metrics. The

model trains with the class weights for ten (10) epochs and a batch size of thirty-two (32).

After training, the trained model is used to make predictions on the test dataset. The

model.predict() function returns the predicted probabilities for each sample in the test

dataset. These probabilities are converted into binary predictions using a threshold of 0.7

to classify the classes as zero (0) and one (1).

The model's performance is evaluated using accuracy, precision, recall, F1-score,

and a confusion matrix. The accuracy of the model is high, but the precision, recall, and

F1-score results vary depending on the input dataset as shown in Figure 24. This variation

is observed due to the severe class imbalance, and the DTC errors occur as an anomaly

leading to poor prediction.

46

Figure 24 LSTM model and its results

6.1.3 Multi Variate Multi Step Ahead LSTM Model

 An LSTM model is developed in Python to make multi-step ahead predictions on

a test dataset based on learnings from a trained dataset. The code utilizes pandas and

TensorFlow libraries along with scikit-learn libraries for metrics and model selection.

Initially, the input data is strategically reduced to address class imbalance. This is

achieved by selecting key indices where "Cell Imbalance" is present and ensuring a

balanced representation of the data (1:25). Specifically, the reduction process involves

identifying instances where the "Cell Imbalance" column equals one (1) and then

selecting surrounding data points to provide context. This method ensures that both

balanced and imbalanced data points are adequately represented, improving the model's

performance.

The model splits the data into features and targets in the same manner. Cell

imbalance column is populated like LGBM model. The input data is normalized using the

MinMaxScaler, and the features are transformed into sequences of data for input into the

LSTM model. The model defines the number of time steps and features to create

sequences of data for training. The data is split into training and testing sets, with 80%

used for training and 20% for testing.

47

The model builds and compiles the LSTM network with an Adagrad optimizer

and Mean Squared Error (MSE) loss function. The LSTM model consists of 50 units,

followed by a dropout layer to prevent overfitting, and a dense layer for output. The

model trains for one hundred (100) epochs with a batch size of ninety-six (96), and the

training process includes validation to monitor performance on the test set. After training,

the trained model is used to make predictions on the test dataset. The model.predict()

function returns the predicted values for each sample in the test dataset.

The model's performance is evaluated using RMSE and MAE for each time step

from 1 to 10. The evaluation results demonstrate model's capability to predict multi-step

ahead values effectively. RMSE and MAE scores for the tenth time step indicate that the

model can predict the maximum cell voltage with a high degree of accuracy. The training

and validation loss over epochs are plotted to visualize the model's learning process.

Overall, the LSTM model's ability to predict values better is attributed to its

multivariate approach, considering multiple influential features, and its multi-step ahead

forecasting capability. The reduction in data imbalance before training further enhances

the model's performance, ensuring a more balanced and representative dataset for

training.

The results in Figure 25 show that the model has a stable training process with

minimal overfitting, as indicated by the close alignment of training and validation loss

curves. The model was run across different input datasets to visualize the variation in

performance. The trials conducted yielded consistent results, demonstrating the model's

robustness in handling multivariate time series data. The high accuracy of the model,

coupled with low RMSE and MAE scores, highlights its effectiveness in making reliable

multi-step predictions.

48

Figure 25 Training and Validation loss of multivariate LSTM model across epochs

 To improve the model performance, Design of Experiments (DoE) was conducted

on window size, LSTM units, and batch size for the input data. Window size varied

between 40, and 50; LSTM units between 50, 100, and 150; batch size between 32, 64,

and 128 in the experiments. The results of the DoE show cases that errors, losses are low

and validation accuracy is high for combinations of higher unit size with higher batch

size. Table 2 shows the set of results and its corresponding input parameters along with

individual computation time.

49

Table 2 Hyper Parameter Tuning through Design of Experiments

 Based on the hyper parameter tuning, the multi variate multi step ahead model is

run again to predict the values and it showcases minimal deviation from the actual value.

The trend of the cell voltage over time and sample index is shown in Figure 26 and minor

variations are predicted with a close range whereas abnormalities are forecasted with

slightly higher deviations. These show the improvement in the model performance after

the hyper parameter tuning.

Figure 26 Actual and predicted values of the cell voltage based on hyper tuned model

50

6.2 Logic Based Model Results

6.2.1 Battery Cell Imbalance Use Case

A logic-based model is developed in Python to analyze a dataset and calculate

various metrics based on predefined thresholds. The code utilizes pandas for data

manipulation and os for file operations. This model processes multiple CSV files to

extract and compute metrics related to cell voltage in a vehicle's battery pack. Initially,

the model loads each CSV file from the current directory, filtering the data to remove

entries where both maximum and minimum cell voltages are zero. It then sorts the data by

time to ensure chronological order.

The model defines thresholds for maximum and minimum cell voltages and

computes additional metrics such as the difference between the maximum and minimum

cell voltages (Cell_V_Diff). If this difference exceeds a specified threshold, it counts the

occurrence. The metrics calculated include Total number of entries, Maximum cell

voltage across all entries, Minimum cell voltage across all entries, Frequency of entries

where Cell_V_Diff exceeds the threshold.

For each CSV file, the model calculates the following metrics and stores them in a

summary Data Frame. Those metrics are Frequency of 'Max_Cell_V' crossing the

threshold (3.65V), Frequency of 'Min_Cell_V' crossing the threshold (2.9V), Frequency

of 'Cell_V_Diff' crossing the threshold (0.5V), Total Entries in the Vehicle, Max_Cell_V

out of All Entries, and Min_Cell_V out of All Entries.

After processing all files, the model consolidates the results into a single Excel file

with a summary sheet. Each column in the summary sheet is auto-sized based on the

content for better readability. The logic-based approach ensures that all significant

metrics related to battery cell voltage are computed efficiently, providing insights into the

frequency and extent of voltage variations. By aggregating the data across multiple files,

the model offers a comprehensive view of the vehicle's battery performance over time.

Overall, this model is effective in identifying critical events related to cell voltage

thresholds and providing a detailed summary of battery health indicators across multiple

datasets. The strategic calculation of additional metrics enhances the understanding of

voltage behavior, contributing to better battery management and maintenance.

51

The model's output demonstrates the frequency and extent of cell voltage

variations, highlighting key metrics such as the frequency of threshold crossings and

overall voltage extremes. This information is crucial for monitoring battery performance

and identifying potential issues related to cell imbalance and voltage fluctuations.

6.2.2 Battery Cell Temperature Use Case

 A model similar to cell imbalance use case is developed for cell temperature, the

change being the conditions and threshold. This model defines thresholds for maximum

and minimum cell temperatures and calculates additional metrics. These include Total

number of entries, Maximum cell temperature across all entries, Minimum cell

temperature across all entries.

For each CSV file, the model calculates the following metrics and stores them in a

summary Data Frame. Those metrics are Frequency of 'Max_Cell_Temp' crossing the

threshold (55°C), Frequency of 'Min_Cell_Temp' crossing the threshold (15°C), Total

Entries in the Vehicle, Max_Cell_Temp out of All Entries, Min_Cell_Temp out of All

Entries. The model calculates these metrics using a helper function that processes the

filtered data. For each file, it creates a result dictionary that is then converted to a Data

Frame. All individual results are concatenated into a single Data Frame that aggregates

the results across all files. Finally, the combined results are written to an Excel file with a

summary sheet. Each column in the summary sheet is auto-sized based on the content for

better readability.

This logic-based approach ensures comprehensive analysis of cell temperature

metrics, providing valuable insights into temperature behavior within the battery pack. By

processing multiple files, the model offers a detailed overview of the temperature

variations, which is crucial for monitoring battery health and performance. Overall, this

model effectively identifies critical temperature events, enhancing the understanding of

cell temperature dynamics. The consistent calculation of additional metrics across

multiple datasets provides a robust framework for temperature monitoring and analysis.

The model's output demonstrates the frequency and extent of temperature

variations, highlighting key metrics such as the frequency of threshold crossings and

overall temperature extremes. This information is vital for assessing battery performance

and identifying potential issues related to cell temperature fluctuations.

52

6.2.3 Motor Temperature Use Case

 A model similar to cell temperature use case is developed for motor temperature,

the change being the conditions and threshold. This model defines thresholds for

maximum and minimum motor temperatures and calculates additional metrics. These

include Total number of entries, Maximum motor temperature across all entries,

Minimum motor temperature across all entries.

For each CSV file, the model calculates the following metrics and stores them in a

summary Data Frame. Those metrics are Frequency of 'Max_Motor_Temp' crossing the

threshold (65°C), Frequency of 'Min_Motor_Temp' crossing the threshold (4°C), Total

Entries in the Vehicle, Max_Motor_Temp out of All Entries, Min_Motor_Temp out of All

Entries. The model calculates these metrics using a helper function that processes the

filtered data. For each file, it creates a result dictionary that is then converted to a Data

Frame. All individual results are concatenated into a single Data Frame that aggregates

the results across all files. Finally, the combined results are written to an Excel file with a

summary sheet. Each column in the summary sheet is auto-sized based on the content for

better readability.

This logic-based approach ensures comprehensive analysis of engine coolant

temperature metrics, providing valuable insights into temperature behavior within the

vehicle's system. By processing multiple files, the model offers a detailed overview of the

temperature variations, which is crucial for monitoring engine performance and

identifying potential issues.

Overall, this model effectively identifies critical temperature events, enhancing

the understanding of engine coolant temperature dynamics. The consistent calculation of

additional metrics across multiple datasets provides a robust framework for temperature

monitoring and analysis. The model's output demonstrates the frequency and extent of

temperature variations, highlighting key metrics such as the frequency of threshold

crossings and overall temperature extremes. This information is vital for assessing engine

performance and identifying potential issues related to engine coolant temperature

fluctuations.

53

Figure 27 shows the consolidated selective results obtained from the vehicles

across three different use cases of electric vehicles. The results show the issues pertaining

to battery cell imbalance are very high compared to remaining use cases. This is due to

the possibility of high impedance during battery cell assembly that results in increased

resistance on the cell which leads to imbalance between cells.

Figure 27 Consolidated results of most faulty vehicles across use cases for logic model

 The passive balancing present in the BMS is not able to fix the imbalance signifies

that there are issues with charging that individual faulty cell. This issue was highlighted

to the battery supplier through the manufacturer, the root cause analysis also suggests that

the issue is with an individual cell present in a module with high impedance. To rectify

the issue impedance matching needs to be performed or the faulty cell must be replaced.

 Remaining use cases did not pose severe threats like cell imbalance use case, as

only very minor issues are reported occasionally. The model is also capable of triggering

in case of major continuous faults.

6.2.4 Engine Oil Pressure Use Case

A logic-based model is developed in Python to analyze a dataset for low oil

pressure conditions based on predefined thresholds. The model comprises two main

scripts: one for splitting the dataset into smaller, more manageable files and another for

analyzing these files to identify critical low oil pressure events.

54

This model leverages pandas for data manipulation, os for file operations, and

Json for configuration management. The first script is responsible for splitting a large

CSV file into multiple smaller files based on the 'Chassis' column. The script begins by

loading configuration settings from a JSON file, which specify the input directory, output

directory, and the name of the input CSV file. It checks if the output directory exists and

creates it if necessary, ensuring there is a dedicated space for the separated files.

The script reads the input CSV file into a pandas Data Frame, identifies unique

chassis values, and filters the Data Frame to include only rows associated with each

chassis. For each unique chassis value, the script creates a new CSV file containing data

specific to that chassis and saves it in the output directory. This organized separation of

data facilitates targeted analysis and improves the manageability of large datasets.

The second script analyzes the separated CSV files to identify instances where the

engine oil pressure falls below specified thresholds under certain conditions. The script

loads analysis parameters from a JSON file, which include the required columns, engine

speed intervals, oil pressure thresholds, and output settings. Similar to the splitting script,

this script ensures the existence of an output directory for storing the analysis results.

The script iterates through each CSV file generated by the splitting process. It

reads each file, filters out rows where critical columns have zero values, and processes the

data based on the specified conditions. For each engine speed interval defined in the

configuration, the script identifies rows where the engine oil pressure is below the

threshold, the vehicle speed is above a certain value, and the accelerator pedal position

exceeds a defined threshold. These rows are compiled into a Data Frame. The engine

speed intervals and corresponding low oil pressure thresholds are as follows:

Table 3 Engine RPM range and its corresponding oil pressure threshold

Engine RPM Range Oil Pressure Threshold (kPa)

800 – 1250 125

1250 – 1500 150

1500 – 2000 200

2000 – 2500 225

2500 – 4000 250

55

The filtered rows meeting the conditions are compiled into a Data Frame, sorted

by their row entry index, and saved to an Excel file. This file contains a sheet with all

entries that meet the criteria. The script identifies sequences of consecutive rows where

the low oil pressure condition persists. If the number of consecutive rows exceeds a

specified threshold, these are compiled into a separate sheet within the same Excel file.

The model provides comprehensive insights into engine performance by

highlighting key metrics, such as the frequency of low oil pressure occurrences and

consecutive low-pressure events. This information is crucial for monitoring engine health,

identifying potential issues, and ensuring timely maintenance. By structuring the analysis

results in a well-organized Excel format, the model facilitates easy review and further

analysis, contributing to better decision-making and engine management. Overall, this

model offers a robust approach to understanding and mitigating risks associated with low

oil pressure in vehicle engines, thereby enhancing reliability and performance.

Figure 28 shows the python codes for data splitting along with the JSON files.

Python file uses JSON file to set the output directory and file name. Figure 29 shows the

python codes for data analysis and the thresholds set in the JSON files; the code provides

warning based on the consecutive count of set thresholds.

Figure 28 Production server codes for data splitting for oil pressure use case

56

Figure 29 Production server codes for data analysis for oil pressure use case

6.3 Comparison of Machine Learning and Logic-Based Models

The comparison between performances and applicability of machine learning and

logic-based models under various aspects are shown in Table 4. This comparison helps to

analyze the advantages and limitations of both ML and Logic model-based approaches

chosen for the use cases.

Table 4 Comparison between Machine learning models and Logic-based models

Aspect Machine Learning Model Logic-Based Model

Approach
Uses algorithms to learn from data

and make predictions.

Uses predefined rules and

thresholds to analyze data.

Flexibility
Highly flexible; can adapt to new

data patterns without programming.

Less flexible; requires manual

updates to rules and thresholds.

Complexity
More complex; requires

understanding of algorithms.

Simpler; based on straightforward

conditional logic.

Data

Requirement

Requires a large amount of

historical data for training.

Can operate with relatively smaller

datasets.

Accuracy
Higher accuracy with sufficient and

high-quality training data.

Accuracy depends on

appropriateness of predefined rules.

Scalability
Scalable to large datasets with

advanced algorithms and hardware.

May struggle with scalability for

very large datasets.

57

Maintenance
Requires regular retraining with

new data to maintain accuracy.

Requires manual updates to logic as

new rules are identified.

Transparency
Can be a "black box"; difficult to

interpret how decisions are made.

Transparent; decision-making

process is clear and understandable.

Deployment
More challenging; needs

specialized skills for deployment.

Easier to deploy; straightforward

implementation.

Use Case
Suitable for complex, dynamic

environments

Suitable for well-defined, stable

environments

Computational

Resources

Requires significant computational

power, especially for training.

Generally, requires fewer

computational resources.

Initial Setup

Time-consuming; involves data

preprocessing, model selection, and

training.

Quick; primarily involves defining

rules and thresholds.

Handling New

Scenarios

Can generalize and adapt to new,

unseen scenarios.
Limited to predefined scenarios.

6.3.1 Strengths and Weaknesses

ML models have the capability to learn from large amounts of dataset and identify

intricate patterns that may not be immediately visible through traditional analysis. This

capability is particularly advantageous for electric vehicles, where battery health and

performance can be influenced by numerous interdependent factors such as temperature,

charge cycles, and usage patterns. ML models can analyze these variables collectively,

providing more accurate and robust predictions. Additionally, ML models are adaptable

and can continuously improve their performance as more data becomes available. By

retraining with updated data, ML models can maintain high levels of accuracy and

relevance.

However, the complexity of ML models also presents certain weaknesses. These

models often operate as "black boxes," meaning their decision-making processes are not

easily interpretable. This lack of transparency can be a significant drawback, especially in

safety-critical applications like vehicle performance monitoring, where understanding the

reasoning behind a prediction is essential. Moreover, ML models require substantial

amounts of high-quality data for training, and the process of model selection, training,

and validation can be resource intensive and time-consuming. Regular maintenance and

retraining are also necessary to ensure the models remain effective over time.

58

Logic based models are highly reliable for well-defined, stable environments

where the relationships between variables are straightforward. The simplicity of logic-

based models is a significant strength. They are relatively easy to implement and do not

require large datasets or extensive computational resources. Their decisions are easily

interpretable, which is crucial for debugging and ensuring compliance with safety

standards. This transparency is particularly beneficial in automotive applications, where

regulatory requirements often necessitate clear and auditable decision-making processes.

However, logic-based models have their limitations. They are less flexible and

adaptable than ML models, as they rely on predefined rules that may not account for all

possible scenarios or changes in the operating environment. In complex and dynamic

systems like electric vehicles, where performance can be influenced by numerous

interacting factors, logic-based models may struggle to capture the full extent of these

interactions. They are also less effective at handling nonlinear relationships, which can

limit their accuracy and predictive power in certain applications.

6.3.2 Cross-Validation and Model Validation

Cross-validation and model validation are critical processes in ensuring the

reliability and generalizability of machine learning models. Cross validation divides the

dataset into many subsets and trains it on several combinations of these subsets, while

validating the remaining data. This technique helps in assessing the model's performance

across various segments of the data, providing a more comprehensive evaluation than a

single train-test split. Validation of the model further includes comparing the prediction

of the model against actual outcomes on a separate validation dataset to ensure it

performs well on unseen data. These practices are essential to prevent overfitting, where a

model might perform well on training data but poorly on new data. Cross-validation and

model validation are foundational to developing robust ML models that generalize well

across different scenarios and datasets.

Logic-based models give analytics to real time data and will not forecast the

future values, but the trend of the data can be validated based on the vehicle service

history. The variations in the results can be addressed by appropriately modifying the

conditions and thresholds applied for that particular use case.

59

6.3.3 Scalability and Computational Efficiency

Scalability and computational efficiency are crucial considerations when

deploying machine learning models, especially in contexts that involve large volumes of

data or require real-time processing, such as in automotive applications. ML models,

particularly those based on deep learning, can be computationally intensive, requiring

significant resources for training and inference. Ensuring that these models are scalable

involves optimizing algorithms and using techniques like distributed computing or cloud-

based solutions to handle large datasets effectively.

In contrast, logic-based models, with their predefined rules, are typically less

demanding in terms of computational resources. They can be implemented more

efficiently, making them suitable for applications where quick, real-time decisions are

needed without the overhead of complex computations. Balancing scalability and

computational efficiency are key to ensuring that ML models can be effectively integrated

into practical, real-world systems.

6.3.4 Interpretability and Explainability

Interpretability and explainability are critical aspects of model deployment,

particularly in fields where understanding the decision-making process is essential for

trust and accountability. Logic-based models inherently offer high levels of

interpretability and explainability due to their use of straightforward, human-readable

rules and thresholds. These models make it easy to trace how decisions are made, which

is crucial for debugging, regulatory compliance, and gaining user trust.

On the other hand, while ML models, especially complex ones like deep neural

networks, can achieve high predictive accuracy, they often operate as "black boxes" with

decisions that are difficult to interpret. Striking a balance between leveraging the

predictive power of ML models and ensuring their decisions are interpretable and

explainable is essential for their successful application in critical domains.

60

61

Chapter 7

Conclusions and Scope for Future Work

7.1 Summary

This study has explored the application of predictive analytics using both machine

learning models and logic-based models for electric and internal combustion engine

vehicles. By leveraging real-world data from Volvo Eicher Commercial Vehicles

Limited, the study investigated four critical use cases: cell imbalance monitoring,

temperature monitoring of cell and motor, and engine oil pressure warnings. The findings

demonstrate that ML models excel at identifying complex patterns and nonlinear

relationships within the data, leading to highly accurate predictions for vehicle metrics

such as battery health and engine performance. On the other hand, logic-based models

provided clear and interpretable rules for decision-making, which are crucial for

understanding the underlying mechanisms of vehicle behavior. The comparison between

both approaches has shown that they complement each other, with ML models enhancing

predictive accuracy and logic-based models offering transparency and interpretability.

7.2 Project Outcome

The project aimed to develop advanced predictive analytics models to address

specific use cases in electric and IC engine vehicles, which was successfully achieved.

Through a detailed examination, the research provided a comprehensive understanding of

various methodologies of ML models like VAR, XGBoost, LGBM, LSTM and logic-

based models such as decision trees and expert systems. The project successfully met its

objectives by demonstrating how these models can be applied to predict faults, optimize

vehicle parameters, and enhance maintenance strategies, thus fulfilling project scope.

7.3 Key Contributions

The key contributions in the field of predictive analytics for automotive

applications made through this work is listed below:

Enhanced Predictive Models: The study shows the potential of combining ML's

predictive power with the interpretability of logic-based models, paving the way for more

robust predictive systems.

62

Practical Applications: By applying these models to real-world data from VECV,

the research demonstrates practical applications and benefits, such as improved fault

prediction accuracy and reduced false alarms.

Methodological Insights: The project provides insights into cross-validation,

model validation techniques, scalability, and computational efficiency, which are crucial

for deploying predictive models in real-world automotive systems.

Comparative Analysis: It offers a comparative analysis of ML and logic-based

models, highlighting their respective advantages and limitations.

7.4 Limitations and Challenges

Despite its successes, the project faced several limitations and challenges. The

availability of labeled data, particularly for rare or critical events, was limited, posing a

challenge for training ML models. The complexity and computational overhead of deep

learning models made them less suitable for real-time applications. Additionally,

capturing all relevant domain knowledge in logic-based models was challenging, which

sometimes led to oversimplified decision-making rules. Ensuring model interpretability

and explainability, especially for complex ML models, also presented a significant

challenge.

7.5 Future Scope

Logic-based models provide a foundation of domain knowledge that can

significantly enhance the optimization of machine learning models. By leveraging the

clear and well-defined rules of logic-based models, ML practitioners gain critical insights

on underlying patterns and relationships in the data. This knowledge can be used to

inform feature selection, engineering, and the construction of more robust and accurate

ML models. Predefined thresholds for engine oil pressure or battery temperature derived

from logic-based models can be incorporated into ML models as important features or

constraints, ensuring that the ML models adhere to critical safety and operational

guidelines. Simplicity and transparency of logic-based models make it easier to identify

and understand key variables and their interactions, which can then be explored more

deeply using the advanced capabilities of ML algorithms. To further enhance the

63

predictive capabilities and address the identified challenges, future research should

explore the following directions:

Hybrid Models: Developing hybrid models that integrate the strengths of ML

algorithms with the interpretability of logic-based models, using techniques like rule

extraction or model distillation.

Advanced ML Techniques: Investigating advanced ML algorithms such as

reinforcement learning and self-supervised learning for more sophisticated predictive

analytics, particularly in autonomous vehicles and adaptive control systems.

Data Augmentation: Collecting and annotating larger and more diverse datasets,

including rare events, to improve the robustness and generalization of ML models.

Real-Time Scalability: Developing scalable and efficient algorithms for real-time

monitoring and optimization of vehicle performance, considering computational

constraints and resource limitations in automotive systems.

7.6 Conclusion

Machine learning models excel in handling complex patterns and nonlinear

relationships within data, making them highly effective for predictive analytics. Logic-

based models are built on predefined rules and thresholds, offering clear interpretability

and transparency. This thesis has provided significant insights in the use of machine

learning and logic-based models for predictive diagnostics in electric and IC engine

vehicles. The following results were yielded from the developed ML and Logic models.

✓ A unique case based multi-step ahead multivariate LSTM model was developed

✓ Hyper parameter tuning of ML model through DOE improved the validation

accuracy to 94.4%

✓ Logic based models were developed to identify faulty vehicles and the severity of

the issues

✓ Results from the logic model indicating issues in the existing vehicle were

highlighted and root cause analysis was shared to take corrective action

✓ Developed logic models were deployed in VECV’s uptime center for real time

vehicle monitoring

64

The study highlights the superior predictive accuracy of ML models and the

essential interpretability of logic-based models. By integrating these approaches, future

research can further advance automotive diagnostics, leading to more reliable, efficient,

and intelligent vehicles. This research lays a strong foundation for ongoing advancements

in predictive analytics, ultimately contributing to the development of smarter and more

sustainable transportation systems.

.

65

APPENDIX-A

Machine Learning Codes:

Light Gradient Boosting Machine Code:

import pandas as pd

import lightgbm as lgb

from sklearn.metrics import accuracy_score, precision_score, recall_score,

f1_score, confusion_matrix

from sklearn.model_selection import train_test_split

from sklearn.metrics import log_loss as sklearn_log_loss # Rename the

log_loss function

Load the CSV file

data = pd.read_csv('359207066918390_populated_DTC.csv')

Convert "IST_DateTime" to datetime

data['IST_DateTime'] = pd.to_datetime(data['IST_DateTime'], format='%d-%m-

%Y %H:%M')

Sort the data by datetime

data.sort_values(by='IST_DateTime', inplace=True)

Drop unnecessary columns

data.drop(columns=['LB Battery Voltage', 'Live'], inplace=True)

Handle missing values

data.fillna(data.mean(), inplace=True)

Create additional datetime features

data['Year'] = data['IST_DateTime'].dt.year

data['Month'] = data['IST_DateTime'].dt.month

data['Day'] = data['IST_DateTime'].dt.day

data['Hour'] = data['IST_DateTime'].dt.hour

data['DayOfWeek'] = data['IST_DateTime'].dt.dayofweek

Drop the original timestamp column

data.drop(columns=['IST_DateTime'], inplace=True)

Split data into features (X) and target (y)

X = data.drop(columns=['Cell Imbalance'])

y = data['Cell Imbalance']

Split data into training and testing sets

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2,

random_state=42)

66

Display the shapes of the train and test sets

print("X_train shape:", X_train.shape)

print("X_test shape:", X_test.shape)

Set the LGBM parameters

params = {

 'objective': 'binary',

 'metric': 'binary_logloss'

}

Create LGBM datasets with force_col_wise parameter

lgb_train = lgb.Dataset(X_train, y_train, free_raw_data=False,

params={'force_col_wise': True})

lgb_test = lgb.Dataset(X_test, y_test, reference=lgb_train,

free_raw_data=False, params={'force_col_wise': True})

Train the LGBM model

num_round = 100

early_stopping_rounds = 10 # Define the early stopping rounds

bst = None

for round in range(num_round):

 bst = lgb.train(params, lgb_train, 1, valid_sets=[lgb_test],

init_model=bst)

 if round - bst.best_iteration >= early_stopping_rounds:

 break # Stop if early stopping conditions are met

Make predictions

y_pred_prob = bst.predict(X_test)

y_pred = (y_pred_prob > 0.5).astype(int)

Calculate evaluation metrics

accuracy = accuracy_score(y_test, y_pred)

precision = precision_score(y_test, y_pred)

recall = recall_score(y_test, y_pred)

f1 = f1_score(y_test, y_pred)

conf_matrix = confusion_matrix(y_test, y_pred)

Print evaluation metrics and confusion matrix

print("Accuracy:", accuracy)

print("Precision:", precision)

print("Recall:", recall)

print("F1-Score:", f1)

print("Confusion Matrix:\n", conf_matrix)

67

Long Short-Term Memory Model Code:

from sklearn.model_selection import train_test_split

from sklearn.preprocessing import MinMaxScaler

from sklearn.utils.class_weight import compute_class_weight

from keras.models import Sequential

from keras.layers import LSTM, Dense

import numpy as np

Define the window size (number of time steps before prediction)

window_size = 10

Split the dataset into features (X) and target (y)

X = vehicle_data.drop("Cell Imbalance", axis=1)

y = vehicle_data["Cell Imbalance"]

Split the data into training and testing sets (80% training, 20% testing)

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2,

shuffle=False)

Initialize MinMaxScaler for normalization

scaler = MinMaxScaler()

Normalize the features

X_train_scaled = scaler.fit_transform(X_train)

X_test_scaled = scaler.transform(X_test)

Convert the data into sliding windows

def create_sliding_windows(data, window_size):

 windows = []

 for i in range(len(data) - window_size + 1):

 window = data[i : i + window_size]

 windows.append(window)

 return np.array(windows)

X_train_windows = create_sliding_windows(X_train_scaled, window_size)

y_train_windows = y_train[window_size - 1:]

X_test_windows = create_sliding_windows(X_test_scaled, window_size)

y_test_windows = y_test[window_size - 1:]

print("X_train_windows shape:", X_train_windows.shape)

print("y_train_windows shape:", y_train_windows.shape)

print("X_test_windows shape:", X_test_windows.shape)

print("y_test_windows shape:", y_test_windows.shape)

Calculate class weights to account for imbalance

68

class_weights = compute_class_weight("balanced",

classes=np.unique(y_train_windows), y=y_train_windows)

class_weight_dict = {0: class_weights[0], 1: class_weights[1]}

Build and compile the LSTM model

model = Sequential()

model.add(LSTM(units=50, activation='relu',

input_shape=(X_train_windows.shape[1], X_train_windows.shape[2])))

model.add(Dense(units=1, activation='sigmoid')) # Sigmoid for binary

classification

model.compile(optimizer='adam', loss='binary_crossentropy',

metrics=['accuracy'])

Train the model with class weights

model.fit(X_train_windows, y_train_windows, epochs=10, batch_size=32,

class_weight=class_weight_dict)

69

Multi Variate Multi Step Ahead Long Short-Term Memory Model Code:

import numpy as np

import pandas as pd

import tensorflow as tf

from sklearn.model_selection import train_test_split

from sklearn.preprocessing import MinMaxScaler

from sklearn.metrics import mean_squared_error, mean_absolute_error

import matplotlib.pyplot as plt

Load the dataset

data = pd.read_csv('359218066295457_red.csv')

Define the input and output columns

input_cols = ['Min_Cell_V',

'Cell_V_Diff', 'Max_Cell_Temp', 'Min_Cell_Temp', 'Cell_Temp_Diff',

 'Batt_Pack_Voltage', 'Batt_Power_In', 'Charging_Current',

'Demand_Charge_Current', 'Charging_Time', 'MotorCurrent',

'MotorVoltage', 'MotorEstimatedTorque', 'BatteryPotential_PowerInput1',

'Regeneration

Power', 'ReserveModSOC', 'HVAuxilaryPowerConsumption', 'LB Battery

Voltage', 'FuelLevel', 'EngineSpeed', 'EngineOperatingHours',

'VehicleSpeed',

'EngineOilPressure', 'EngineCoolantTemp', 'AccPedalPosition'] #

Replace with your input column names

output_col = 'Max_Cell_V'

Extract input and output data

X = data[input_cols].values

y = data[output_col].values

Normalize the input data

scaler = MinMaxScaler()

X_scaled = scaler.fit_transform(X)

Define the number of time steps and features

n_steps = 60 # You can adjust this value

n_features = len(input_cols)

Create sequences of data for training

X_seq, y_seq = [], []

for i in range(len(data) - n_steps + 1):

 X_seq.append(X_scaled[i:i+n_steps])

 y_seq.append(y[i+n_steps-1])

X_seq = np.array(X_seq)

y_seq = np.array(y_seq)

70

Split the dataset into training and testing sets

X_train, X_test, y_train, y_test = train_test_split(X_seq, y_seq,

test_size=0.2, random_state=42)

Build the LSTM model

model = tf.keras.Sequential([

 tf.keras.layers.LSTM(200, activation='relu', input_shape=(n_steps,

n_features)),

 tf.keras.layers.Dropout(0.2),

 tf.keras.layers.Dense(1)

])

model.compile(optimizer='Adagrad', loss='mse')

Train the model

epochs = 500

batch_size = 512

history = model.fit(X_train, y_train, epochs=epochs, batch_size=batch_size,

verbose=2, validation_data=(X_test, y_test))

Make predictions for the testing set

y_pred = model.predict(X_test)

Calculate RMSE and MAE for each time step from 1 to 10

rmse_scores = []

mae_scores = []

for step in range(1, 11):

 y_true_step = y_test

 y_pred_step = y_pred

 rmse = np.sqrt(mean_squared_error(y_true_step, y_pred_step))

 mae = mean_absolute_error(y_true_step, y_pred_step)

 rmse_scores.append(rmse)

 mae_scores.append(mae)

Print RMSE and MAE scores

for step, rmse, mae in zip(range(1, 11), rmse_scores, mae_scores):

 print(f"Time Step {step}: RMSE = {rmse}, MAE = {mae}")

Plot training and validation loss over epochs

plt.plot(history.history['loss'], label='Training Loss')

plt.plot(history.history['val_loss'], label='Validation Loss')

plt.xlabel('Epochs')

plt.ylabel('Loss')

plt.legend()

plt.show()

71

Plot the difference between predicted and actual Max_Cell_V for the first

5 units

plt.figure(figsize=(12, 6))

for step in range(1, 2): # Limit to the first 5 time steps

 plt.subplot(2, 5, step)

 plt.plot(y_test[:10], label='Actual', color='blue')

 plt.plot(y_pred[:10], label='Predicted', color='orange')

 plt.title(f"Time Step {step}")

 plt.xlabel('Sample Index')

 plt.ylabel('Max_Cell_V')

 plt.legend()

plt.tight_layout()

plt.show()

72

Random Forest Classifier with Correlation Analysis Code:

import pandas as pd

import numpy as np

from sklearn.model_selection import train_test_split

from sklearn.ensemble import RandomForestClassifier

from sklearn.metrics import accuracy_score

from sklearn.preprocessing import StandardScaler

from sklearn.pipeline import make_pipeline

from sklearn.impute import SimpleImputer

import glob

Step 1: Read CSV files, clean data, and perform correlation analysis

def clean_and_analyze(csv_file):

 # Read CSV

 df = pd.read_csv(csv_file)

 df = df.replace(0, np.nan) # Replace 0 values with NaN

 df = df.dropna(subset=["Max_Cell_V", "Min_Cell_V", "Max_Cell_Temp",

"Min_Cell_Temp", "EngineCoolantTemp"])

 # Correlation analysis

 max_cell_v_min_cell_v_corr = df[["Max_Cell_V",

"Min_Cell_V"]].corr().iloc[0, 1]

 max_cell_temp_min_cell_temp_corr = df[["Max_Cell_Temp",

"Min_Cell_Temp"]].corr().iloc[0, 1]

 engine_coolant_temp_corr =

df[["EngineCoolantTemp"]].corrwith(df["EngineCoolantTemp"]).values[0]

 return max_cell_v_min_cell_v_corr, max_cell_temp_min_cell_temp_corr,

engine_coolant_temp_corr

Step 2: Define functions to identify faults and calculate fault ratios

def identify_faults(df):

 df["Cell_Imbalance_Fault"] = (

 (df["Max_Cell_V"] > 3.65) | (df["Min_Cell_V"] < 2.9) |

((df["Max_Cell_V"] - df["Min_Cell_V"]) > 0.5)

).astype(int)

 df["Cell_Temperature_Fault"] = (

 (df["Max_Cell_Temp"] > 55) | (df["Min_Cell_Temp"] < 15) |

((df["Max_Cell_Temp"] - df["Min_Cell_Temp"]) > 20)

).astype(int)

 df["Motor_Temperature_Fault"] = (

 (df["EngineCoolantTemp"] > 65) | (df["EngineCoolantTemp"] < 5)

).astype(int)

 return df

def calculate_fault_ratios(df):

 df["Cell_Imbalance_Fault_Ratio"] = df["Cell_Imbalance_Fault"].cumsum()

/ (df["Cell_Imbalance_Fault"].cumsum() +

df["Cell_Imbalance_Fault"].eq(0).cumsum())

73

 df["Cell_Temperature_Fault_Ratio"] =

df["Cell_Temperature_Fault"].cumsum() /

(df["Cell_Temperature_Fault"].cumsum() +

df["Cell_Temperature_Fault"].eq(0).cumsum())

 df["Motor_Temperature_Fault_Ratio"] =

df["Motor_Temperature_Fault"].cumsum() /

(df["Motor_Temperature_Fault"].cumsum() +

df["Motor_Temperature_Fault"].eq(0).cumsum())

 return df

Step 3: Machine Learning Model

def train_ml_model(df):

 # Select relevant columns for training

 numeric_columns = ["Max_Cell_V", "Min_Cell_V", "Max_Cell_Temp",

"Min_Cell_Temp", "EngineCoolantTemp", "Batt_Pack_Voltage", "Batt_Power_In",

"Charging_Current", "MotorCurrent", "MotorVoltage", "MotorEstimatedTorque",

"BatteryPotential_PowerInput1", "Regeneration Power", "TotalDistance",

"FuelLevel", "EngineSpeed", "VehicleSpeed", "EngineOilPressure",

"AccPedalPosition"]

 features = df[numeric_columns]

 target_cell_imbalance = df["Cell_Imbalance_Fault"]

 target_cell_temperature = df["Cell_Temperature_Fault"]

 target_motor_temperature = df["Motor_Temperature_Fault"]

 # Split data into training and testing sets (use the same split for all

three models)

 features_train, features_test, y_train_cell_imbalance,

y_test_cell_imbalance = train_test_split(features, target_cell_imbalance,

test_size=0.2, random_state=42)

 _, _, y_train_cell_temperature, y_test_cell_temperature =

train_test_split(features, target_cell_temperature, test_size=0.2,

random_state=42)

 _, _, y_train_motor_temperature, y_test_motor_temperature =

train_test_split(features, target_motor_temperature, test_size=0.2,

random_state=42)

 # Build and train models

 model_cell_imbalance = make_pipeline(StandardScaler(),

RandomForestClassifier(n_jobs=-1))

 model_cell_imbalance.fit(features_train, y_train_cell_imbalance)

 model_cell_temperature = make_pipeline(StandardScaler(),

RandomForestClassifier(n_jobs=-1))

 model_cell_temperature.fit(features_train, y_train_cell_temperature)

 model_motor_temperature = make_pipeline(StandardScaler(),

RandomForestClassifier(n_jobs=-1))

 model_motor_temperature.fit(features_train, y_train_motor_temperature)

 # Make predictions

 predictions_cell_imbalance =

model_cell_imbalance.predict_proba(features_test)[:, 1] if

74

model_cell_imbalance.classes_.shape[0] > 1 else

model_cell_imbalance.predict_proba(features_test)

 predictions_cell_temperature =

model_cell_temperature.predict_proba(features_test)[:, 1] if

model_cell_temperature.classes_.shape[0] > 1 else

model_cell_temperature.predict_proba(features_test)

 predictions_motor_temperature =

model_motor_temperature.predict_proba(features_test)[:, 1] if

model_motor_temperature.classes_.shape[0] > 1 else

model_motor_temperature.predict_proba(features_test)

 # Calculate accuracy

 accuracy_cell_imbalance = accuracy_score(y_test_cell_imbalance,

model_cell_imbalance.predict(features_test))

 accuracy_cell_temperature = accuracy_score(y_test_cell_temperature,

model_cell_temperature.predict(features_test))

 accuracy_motor_temperature = accuracy_score(y_test_motor_temperature,

model_motor_temperature.predict(features_test))

 return predictions_cell_imbalance, predictions_cell_temperature,

predictions_motor_temperature, accuracy_cell_imbalance,

accuracy_cell_temperature, accuracy_motor_temperature

Step 5: Create Excel and CSV files

def create_output_files(csv_file, prob_cell_imbalance,

prob_cell_temperature, prob_motor_temperature):

 try:

 result_df = pd.read_excel("output_results.xlsx")

 except FileNotFoundError:

 result_df = pd.DataFrame(columns=["File Name", "Probability of

Vehicle failure due to Cell Imbalance", "Probability of Vehicle failure due

to Cell Temperature", "Probability of Vehicle failure due to Motor

Temperature"])

 new_row = {

 "File Name": csv_file,

 "Probability of Vehicle failure due to Cell Imbalance":

prob_cell_imbalance,

 "Probability of Vehicle failure due to Cell Temperature":

prob_cell_temperature,

 "Probability of Vehicle failure due to Motor Temperature":

prob_motor_temperature

 }

 result_df = pd.concat([result_df, pd.DataFrame([new_row])],

ignore_index=True)

 result_df.to_excel("output_results.xlsx", index=False)

Main Loop through CSV files

csv_files = glob.glob("*.csv")

for csv_file in csv_files:

75

 # Step 1

 max_cell_v_min_cell_v_corr, max_cell_temp_min_cell_temp_corr,

engine_coolant_temp_corr = clean_and_analyze(csv_file)

 # Step 2

 df = pd.read_csv(csv_file)

 df = identify_faults(df)

 df = calculate_fault_ratios(df)

 # Step 3

 predictions_cell_imbalance, predictions_cell_temperature,

predictions_motor_temperature, \

 accuracy_cell_imbalance, accuracy_cell_temperature,

accuracy_motor_temperature = train_ml_model(df)

 # Step 4

 output_df = df[["Unnamed: 0", "Max_Cell_V", "Min_Cell_V",

Max_Cell_Temp", "Min_Cell_Temp", "Batt_Pack_Voltage", "Batt_Power_In",

"Charging_Current", "MotorCurrent", "MotorVoltage", "MotorEstimatedTorque",

"BatteryPotential_PowerInput1", "Regeneration Power", "IST_DateTime",

"TotalDistance", "FuelLevel", "EngineSpeed", "VehicleSpeed",

"EngineOilPressure", "AccPedalPosition", "Cell_Imbalance_Fault",

"Cell_Temperature_Fault", "Motor_Temperature_Fault",

"Cell_Imbalance_Fault_Ratio", "Cell_Temperature_Fault_Ratio",

"Motor_Temperature_Fault_Ratio"]]

 output_csv_file = csv_file.replace(".csv", "_output.csv")

 output_df.to_csv(output_csv_file, index=False)

 # Step 5

 create_output_files(csv_file, df["Cell_Imbalance_Fault_Ratio"].iloc[-

1], df["Cell_Temperature_Fault_Ratio"].iloc[-1],

df["Motor_Temperature_Fault_Ratio"].iloc[-1])

76

Logic Model Codes:

Cell Imbalance Use Case Code:

import pandas as pd

import os

Function to calculate additional metrics

def calculate_additional_metrics(df):

 df = df.copy() # Create a copy to avoid SettingWithCopyWarning

 total_entries = len(df)

 max_cell_v_all_entries = df['Max_Cell_V'].max()

 min_cell_v_all_entries = df['Min_Cell_V'].min()

 # Use loc to avoid SettingWithCopyWarning

 df.loc[:, 'Cell_V_Diff'] = df['Max_Cell_V'] - df['Min_Cell_V']

 cell_v_diff_threshold = 0.5

 cell_v_diff_crosses = len(df[df['Cell_V_Diff'] >

cell_v_diff_threshold])

 return total_entries, max_cell_v_all_entries, min_cell_v_all_entries,

cell_v_diff_crosses

max_cell_v_threshold = 3.65

min_cell_v_threshold = 2.9

csv_files = [f for f in os.listdir() if f.endswith('.csv')]

excel_writer = pd.ExcelWriter('results.xlsx', engine='xlsxwriter')

Create an empty DataFrame to store results

all_results_df = pd.DataFrame()

for csv_file in csv_files:

 df = pd.read_csv(csv_file)

 df = df.sort_values(by='IST_DateTime')

 # Filter based on conditions

 df_filtered = df[(df['Max_Cell_V'] != 0) | (df['Min_Cell_V'] != 0)]

 # Calculate additional metrics

 total_entries, max_cell_v_all_entries, min_cell_v_all_entries,

cell_v_diff_crosses = calculate_additional_metrics(df_filtered)

 result = {

 "File Name": csv_file[:18], # Truncate to 18 characters

 "Frequency of 'Max_Cell_V' crossing threshold":

len(df_filtered[df_filtered['Max_Cell_V'] > max_cell_v_threshold]),

 "Frequency of 'Min_Cell_V' crossing threshold":

len(df_filtered[df_filtered['Min_Cell_V'] < min_cell_v_threshold]),

 "Frequency of 'Cell_V_Diff' crossing threshold":

cell_v_diff_crosses,

 "Total Entries in the Vehicle": total_entries,

 "Max_Cell_V out of All Entries": max_cell_v_all_entries,

 "Min_Cell_V out of All Entries": min_cell_v_all_entries

 }

 result_df = pd.DataFrame([result])

77

 # Concatenate results to the main DataFrame

 all_results_df = pd.concat([all_results_df, result_df],

ignore_index=True)

Write the combined results to a single sheet

all_results_df.to_excel(excel_writer, sheet_name='CombinedResults',

index=False)

workbook = excel_writer.book

worksheet = excel_writer.sheets['CombinedResults']

for i, col in enumerate(all_results_df.columns):

 max_len = max(all_results_df[col].astype(str).apply(len).max(),

len(col) + 2)

 worksheet.set_column(i, i, max_len)

excel_writer.close()

78

Cell Temperature Use Case Code:

import pandas as pd

import os

Function to calculate additional metrics

def calculate_additional_metrics(df, max_temp_threshold,

min_temp_threshold):

 df = df.copy() # Create a copy to avoid SettingWithCopyWarning

 total_entries = len(df)

 max_cell_temp_all_entries = df['Max_Cell_Temp'].max()

 min_cell_temp_all_entries = df['Min_Cell_Temp'].min()

 return total_entries, max_cell_temp_all_entries,

min_cell_temp_all_entries

max_temp_threshold = 55

min_temp_threshold = 15

csv_files = [f for f in os.listdir() if f.endswith('.csv')]

excel_writer = pd.ExcelWriter('results.xlsx', engine='xlsxwriter')

Create an empty DataFrame to store results

all_results_df = pd.DataFrame()

for csv_file in csv_files:

 df = pd.read_csv(csv_file)

 df = df.sort_values(by='IST_DateTime')

 # Filter based on conditions

 df_filtered = df[(df['Max_Cell_Temp'] != 0) | (df['Min_Cell_Temp'] !=

0)]

 # Calculate additional metrics

 total_entries, max_cell_temp_all_entries, min_cell_temp_all_entries =

calculate_additional_metrics(df_filtered, max_temp_threshold,

min_temp_threshold)

 result = {

 "File Name": csv_file[:18], # Truncate to 18 characters

 "Frequency of 'Max_Cell_Temp' crossing threshold":

len(df_filtered[df_filtered['Max_Cell_Temp'] > max_temp_threshold]),

 "Frequency of 'Min_Cell_Temp' crossing threshold":

len(df_filtered[df_filtered['Min_Cell_Temp'] < min_temp_threshold]),

 "Total Entries in the Vehicle": total_entries,

 "Max_Cell_Temp out of All Entries": max_cell_temp_all_entries,

 "Min_Cell_Temp out of All Entries": min_cell_temp_all_entries

 }

 result_df = pd.DataFrame([result])

 # Concatenate results to the main DataFrame

 all_results_df = pd.concat([all_results_df, result_df],

ignore_index=True)

Write the combined results to a single sheet

all_results_df.to_excel(excel_writer, sheet_name='CombinedResults',

index=False)

workbook = excel_writer.book

79

worksheet = excel_writer.sheets['CombinedResults']

for i, col in enumerate(all_results_df.columns):

 max_len = max(all_results_df[col].astype(str).apply(len).max(),

len(col) + 2)

 worksheet.set_column(i, i, max_len)

excel_writer.close()

80

Motor Temperature Use Case Code:

import pandas as pd

import os

Function to calculate additional metrics

def calculate_additional_metrics(df, max_temp_threshold,

min_temp_threshold):

 df = df.copy() # Create a copy to avoid SettingWithCopyWarning

 total_entries = len(df)

 max_motor_temp_all_entries = df['EngineCoolantTemp'].max()

 min_motor_temp_all_entries = df['EngineCoolantTemp'].min()

 return total_entries, max_motor_temp_all_entries,

min_motor_temp_all_entries

max_temp_threshold = 65

min_temp_threshold = 4

csv_files = [f for f in os.listdir() if f.endswith('.csv')]

excel_writer = pd.ExcelWriter('results.xlsx', engine='xlsxwriter')

Create an empty DataFrame to store results

all_results_df = pd.DataFrame()

for csv_file in csv_files:

 df = pd.read_csv(csv_file)

 df = df.sort_values(by='IST_DateTime')

 # Filter based on conditions

 df_filtered = df[(df['Max_Cell_Temp'] != 0) | (df['Min_Cell_Temp'] !=

0) | (df['EngineCoolantTemp'] != 0)]

 # Calculate additional metrics

 total_entries, max_motor_temp_all_entries, min_motor_temp_all_entries =

calculate_additional_metrics(df_filtered, max_temp_threshold,

min_temp_threshold)

 result = {

 "File Name": csv_file[:18], # Truncate to 18 characters

 "Frequency of 'Max_Motor_Temp' crossing threshold":

len(df_filtered[df_filtered['EngineCoolantTemp'] > max_temp_threshold]),

 "Frequency of 'Min_Motor_Temp' crossing threshold":

len(df_filtered[df_filtered['EngineCoolantTemp'] < min_temp_threshold]),

 "Total Entries in the Vehicle": total_entries,

 "Max_Motor_Temp out of All Entries": max_motor_temp_all_entries,

 "Min_Motor_Temp out of All Entries": min_motor_temp_all_entries

 }

 result_df = pd.DataFrame([result])

 # Concatenate results to the main DataFrame

 all_results_df = pd.concat([all_results_df, result_df],

ignore_index=True)

Write the combined results to a single sheet

all_results_df.to_excel(excel_writer, sheet_name='CombinedResults',

index=False)

workbook = excel_writer.book

81

worksheet = excel_writer.sheets['CombinedResults']

for i, col in enumerate(all_results_df.columns):

 max_len = max(all_results_df[col].astype(str).apply(len).max(),

len(col) + 2)

 worksheet.set_column(i, i, max_len)

excel_writer.close()

82

83

REFERENCES

1. Chen, J., Zhou, Z., Zhou, Z., Wang, X., & Liaw, B. (2022). Impact of battery cell

imbalance on electric vehicle range. Green Energy and Intelligent Transportation,

1(3), 100025. (DOI: 10.1016/j.geits.2022.100025)

2. Du, S., Li, T., Yang, Y., & Horng, S.-J. (2020). Multivariate time series

forecasting via the attention-based encoder-decoder framework. Neurocomputing,

388, 269-279. (DOI: 10.1016/j.neucom.2019.12.118)

3. Thomas, J. K., Crasta, H. R., Kausthubha, K., Gowda, C., & Rao, A. (2021).

Battery monitoring system using machine learning. Journal of Energy Storage, 40,

102741. (DOI: 10.1016/j.est.2021.102741)

4. He, X., Shi, S., Geng, X., Yu, J., & Xu, L. (2023). Multi-step forecasting of

multivariate time series using multi-attention collaborative network. Expert

Systems with Applications, 211, 118516. (DOI: 10.1016/j.eswa.2022.118516)

5. De Stefani, J., & Bontempi, G. (2021). Factor-Based Framework for Multivariate

and Multi-step-ahead Forecasting of Large-Scale Time Series. Frontiers in Big

Data, 4, 690267. (DOI: 10.3389/fdata.2021.690267)

6. Akbar, K., Zou, Y., Awais, Q., Baig, M. J. A., & Jamil, M. (2022). A Machine

Learning-Based Robust State of Health (SOH) Prediction Model for Electric

Vehicle Batteries. Electronics, 11(8), 1216. (DOI: 10.3390/electronics11081216)

7. Li, K., Zhou, P., Lu, Y., Han, X., & Zheng, Y. (2020). Battery life estimation

based on cloud data for electric vehicles. Journal of Power Sources, 468, 228192.

(DOI: 10.1016/j.jpowsour.2020.228192)

8. Kulkarni, V., Han, X., & Tjong, J. (2021). Intelligent Detection and Real-time

Monitoring of Engine Oil Aeration Using a Machine Learning Model. Applied

Artificial Intelligence, 35(15), 1869-1886. (DOI:

10.1080/08839514.2021.1995230)

9. Andrea, D. (2010). Battery Management Systems for Large Lithium-Ion Battery

Packs. ARTECH HOUSE. pp. 22-30 (ISBN-13: 978-1-60807-104-3).

10. Pang, K. (2022). Multi-step multivariate time series forecasting using LSTM.

Retrieved from https://pangkh98.medium.com/multi-step-multivariate-time-series-

forecasting-using-lstm-92c6d22cd9c2

11. ML Review. (n.d.). Understanding LSTM and its diagrams. Retrieved from

https://blog.mlreview.com/understanding-lstm-and-its-diagrams-37e2f46f1714

https://blog.mlreview.com/understanding-lstm-and-its-diagrams-37e2f46f1714

84

12. Bond, W & Dozier, Haley & Arnold, Thomas & Lam, Michael-Angelo & Dong,

Quyen & Shukla, Indu & Hansen, et. al (2020). A Hybrid Learning Approach to

Prognostics and Health Management Applied to Military Ground Vehicles Using

Time-Series and Maintenance Event Data. Annual Conference of the PHM

Society. (DOI: 10.10.36001/phmconf.2020.v12i1.1146)

13. Jingyuan Z, Heping L, Junbin W, Andrew F. B, Yubo L. (2022). Data-driven

prediction of battery failure for electric vehicles, iScience, 25(4), 104172. (DOI:

10.1016/j.isci.2022.104172)

14. Malaguti, R., Lourenço, N., & Silva, C. (2022). A supervised machine learning

model for determining lubricant oil operating conditions. Expert Systems, 40(5).

(DOI: 10.1111/exsy.13116)

15. Jun C, Zhaodong Z, Ziwei Z, Xia W, Boryann L. (2022).Impact of battery cell

imbalance on electric vehicle range, Green Energy and Intelligent Transportation,

1(3), 100025. (DOI: 10.1016/j.geits.2022.100025)

16. Gabriele P, Anirudh A, Simona O. (2022). Lithium-ion battery aging dataset

based on electric vehicle real-driving profiles, Data in Brief, 41(1), 107995. (DOI:

10.1016/j.dib.2022.107995)

17. S. Vasavi, K. Aswarth, T. Sai Durga Pavan, A. Anu Gokhale. (2021). Predictive

analytics as a service for vehicle health monitoring using edge computing and

AK-NN algorithm, Materials Today: Proceedings, 46 (17), 8645-8654, (DOI:

10.1016/j.matpr.2021.03.658)

18. Arena F, Collotta M, Luca L, Ruggieri M, Termine FG. (2022) Predictive

Maintenance in the Automotive Sector: A Literature Review. Mathematical and

Computational Applications. 27(1). (DOI: 10.3390/mca27010002)

19. D. N. Demyanov, L. A. Simonova and A. A. Kapitonov. (2020). The Work

Algorithm of the Truck Intelligent Predictive Diagnostics System. International

Russian Automation Conference (RusAutoCon), 621-625. (DOI:

10.1109/RusAutoCon49822.2020.9208065)

