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Abstract
Sparse Pinball Twin Support Vector Machine and its Large Scale Variant

The original twin support vector machine (TWSVM) formulation works by solving two
smaller quadratic programming problems as compared to the traditional hinge-loss SVM (C-
SVM) which solves a single large quadratic programming problem - this makes the TWSVM
training and testing process faster than the C-SVM. However, these TWSVM problems are based
on the hinge-loss function and, hence, are sensitive to feature noise and unstable for resampling.
The pinball-loss function, on the other hand, works by minimizing quantile distances which
grants noise insensitivity but this comes at the cost of losing sparsity by penalizing correctly clas-
sified points as well. To overcome the limitations of TWSVM, we propose a novel sparse pinball
twin support vector machine (SPTWSVM) based on the ε-insensitive zone pinball loss function
to rid the original TWSVM of its noise insensitivity and ensure that the resulting TWSVM prob-
lems retain sparsity which makes computations relating to predictions just as fast as the original
TWSVM. We further investigate the properties of our model including sparsity, noise insensitiv-
ity, and scatter minimization. Exhaustive testing on several benchmark datasets demonstrates
that our SPTWSVM is noise insensitive, retains sparsity and, in most cases, outperforms the
results obtained by the original TWSVM.

In a quest for further improvement, we extend our first work by making our model feasi-
ble for large scale datasets. This is achieved by tweaking our SPTWSVM model, that is adding
an extra equality constraint in the primal problem, to avoid calculating large inverse matrices
in the Wolfe dual problems. Also, in the same model we add a regularization term to the ob-
jective function of SPTWSVM which incorporates the structural risk minimization principle in
the second work. Henceforth, the resulting second model, named improved sparse pinball twin
support vector machine (ISPTWSVM), retains all attractive properties of the first model while
being a viable option for huge real world datasets.
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Chapter 1

Introduction

1.1 Background

Support Vector Machines (SVMs), a supervised machine learning model was originally pro-
posed by Vapnik [1], [2] for binary classification. Since then SVMs have been extended to solve
multi-classification problems [3], [4], [5], [6], [7] as well. The effectiveness of SVMs have led
them to be widely applied to a large spectrum of research areas such as face recognition [8],
bio medicine [9], text recognition [10], brain computer interface [11], [12] and cancer recognition
[13]. The basic idea of SVM problem is to find an optimal separating hyperplane between two
classes which maximizes the distance from the convex hull of each class. Furthermore, SVMs
implement the structural risk minimization (SRM) principle that minimizes the upper bound
of generalization error. Solving the SVM primal problem involves minimization of a convex
quadratic function subject to linear inequality constraints where the main challenge is the high
computational complexity of training, i.e. O(m3), where m is the total number of the training
samples.

In contrast to the aforementioned idea of generating two parallel supporting hyperplanes in
SVMs, Mangasarian and Wild [14] introduced a generalized eigen-value proximal SVM (GEPSVM)
which generates two non-parallel hyperplanes for binary classification problems. Subsequently,
Jayadeva et al. [15] proposed a twin support vector machine (TWSVM) which generates two
non-parallel hyperplanes by solving two smaller-sized QPPs such that each hyperplane is as
close as possible to one class and as far as possible from the other. The main idea behind solving
two small QPPs rather than a single large QPP is to speed up the learning approximately by
four times as compared to the classical SVM (C-SVM). Henceforth, TWSVM is very effective in
dealing with datasets containing a large number of samples, where it is simply ineffective to
apply the standard SVM.

Despite the speedup it offers, the TWSVM is based on hinge loss and is sensitive to noise
and unstable for re-sampling. To overcome this limitation of the hinge loss, Huang et al. [16]
proposed an interesting approach in which they introduce the pinball loss (Lτ(u)) to C-SVM for
the first time. Pinball loss is based on the idea of maximizing the quantile distance between
two classes instead of maximizing the distance between the closest samples of the two classes.
This property, in essence, introduces noise insensitivity as well as resampling stability into the
C-SVM. However, introducing pinball loss to the C-SVM leads to the solution losing its sparsity.
In order to maintain the sparsity in the Pin-SVM, Huang et al. [16] introduced an ε-insensitive
zone into the pinball loss (Lε

τ(u)). This sparse pinball loss model is noise insensitive as well
as sparse in the solution obtained. However, Sparse Pin SVM, as compared to the TWSVM,
still needs to solve a single large QPP, i.e. it entails a higher time complexity. Recently, several
modifications have been done to the TWSVM in an attempt to enhance its time complexity and
performance [17], [18], [19], [20], [21, 22, 23, 24, 25], [26], [27] and extend the TWSVM from
binary class to multi-class classification [28], [29], [30] but none of these approaches address
the issues of insensitivity to noise around the decision boundary and ensuring sparsity of the
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solution. Hence, there is a need to introduce noise insensitivity and sparsity into the TWSVM
formulation.

Inspired and motivated by the studies of twin support vector machine (TWSVM) [15] and
Sparse Pinball SVM [16], we propose a novel Sparse Pinball Twin Support Vector Machine
(SPTWSVM) which has numerous advantages. First, SPTWSVM is insensitive to noise while
retaining the sparsity of solution as compared to TWSVM. Second, our SPTWSVM is faster
than the Pin-SVM since it solves two smaller QPPs and, thus, SPTWSVM performs predictions
in remarkably less computational time. Third, numerical experiments show that SPTWSVM
outperforms the classification accuracy of the TWSVM and Sparse Pin SVM in most cases.
Fourth, unlike in the other relevant existing work, [31], Xu et al. introduce the pinball loss into
TPMSVM which does not have the generalized TWSVM formulation. On the other hand, the
novel SPTWSVM model retains the original TWSVM form and can easily accommodate other
models built upon TWSVM.

However, TWSVMs do not minimize the structural risk in its formulation, minimizing the
empirical risk instead. Additionally, TWSVMs have to calculate inverse matrices in the dual
problem with extra assumptions. These drawbacks were addressed by Shao et al. [32] where
they proposed the twin bounded support vector machines (TBSVM). Despite these improve-
ments, TBSVM has to compute inverse matrices in the dual problems, which is in practice in-
tractable for a large dataset. Furthermore, in TWSVMs and TBSVMs, the non-linear case with
the linear kernel is not equivalent to the linear case. In other words, TWSVMs and TBSVMs
cannot replicate the exact behaviour of the linear case when using a non-linear kernel. As a re-
sult, they can only solve an approximate formulation whereas in standard SVMs, one problem
is solved for both the cases using different kernels. These limitations of TWSVM and TBSVM
render them inferior to the traditional SVM problem and prevent them from being applied in
real applications. We attempt to introduce further changes in the primal problems’ objective
functions of the TBSVM which make it suitable for large scale datasets. We label our improved
sparse pinball twin support vector machine for large scale datasets as ISPTWSVM.

The rest of the project report is organized as follows: the relevant background information
concerning TWSVM, Sparse Pinball SVM and TBSVM is in Chapter 2. In Chapter 3, we ex-
plain the objectives of the project. In Chapter 4, we introduce and explain the formulations of
SPTWSVM and ISPTWSVM for both the linear and non-linear cases. In Chapter 5, we discuss
some properties and relevant results of our proposed SPTWSVM. In Chapter 6, we present sig-
nificant experimental results obtained when SPTWSVM and ISPTWSVM are applied on bench-
mark and synthetic datasets, which clearly demonstrate the feasibility and effectiveness of our
two novel models. In Chapter 7, we complete the project report with concluding remarks.
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Chapter 2

Literature Survey

The following chapter discusses literature pertaining to previously known methods of incor-
porating noise-insensitivity into the conventional SVM formulation, the twin support vector
machine formulation, and the improved twin support vector machine for large scale datasets. It
describes in detail how the pinball loss function can impart noise insensitivity to SVM models
and how it can be altered to retain sparsity which is otherwise lost with the original pinball loss.
The readers are referred to [16, 15] for more details.

2.1 Sparse Pinball Support Vector Machine

Huang et al. [16] introduced the pinball loss SVM (pin-SVM) formulation which brought noise
insensitivity to the SVM classifier. Consider a binary dataset z = {xi, yi}m

i=1 where xi ∈ Rn and
yi ∈ {−1, 1}. Then, the pin-SVM problem is as follows:

min
w,b

1
2

wTw + C
m

∑
i=1

Lτ(1− yi(wTxi + b)).

Here, w ∈ Rn and b ∈ R are the weight vector and bias, respectively, which define the hyper-
plane H : wTx + b = 0, C is a constant and Lτ is the pinball loss function. The decision function
of the above formulation is based on the sign of wTx + b: x is assigned to class +1 if the value
is positive otherwise it is assigned to class -1. This formulation, unlike the hinge loss SVM, en-
ables the classifier not to be influenced by feature noise near the decision boundary. The way
this model works is by penalizing correctly classified samples as well, which is evident when
we take a look at the pinball loss function:

Lτ(u) =
{

u, u ≥ 0,
−τu, u < 0.

The above pinball loss function can be regarded as a generalized `1 loss. When u < 0 we get an
error value not equal to zero. Thus, we get weight vector w as a linear combination of vectors
that lie not just near the decision boundary but away from the boundary as well. As a result,
pin-SVM approximates a model which maximizes the quantile distance between two classes.

However, noise insensitivity gained from pinball loss leads to losing sparsity of solution.
This is because the pinball loss function’s sub-gradient is non-zero almost everywhere. To reme-
diate this shortcoming, the authors in [16] suggest using an ε-insensitive pinball loss function:

Lε
τ(u) =


u− ε, u > ε,
0, − ε

τ ≤ u ≤ ε,
−τ(u + ε

τ ), u < − ε
τ .

(1)
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The sub-gradient of the above loss function turns out to be zero in the range [ ε
τ , ε] providing

sparsity to the model. This way both insensitivity to noise and sparsity can be achieved.

2.2 Twin Support Vector Machine (TWSVM)

Jayadeva et al. [15] proposed the twin support vector machine which formulates two smaller
sized quadratic programming problems (QPPs), obtaining two non-parallel hyperplanes cor-
responding to each of the two classes. Let m1 and m2 be the number of samples corresponding
to classes +1 and -1, respectively. Further, let Am1×n and Bm2×n be the matrices containing the fea-
ture vectors of the samples of class +1 and -1, respectively.
The aim here is to then derive the following two non-parallel hyperplanes:

H1 : xTw(1) + b(1) = 0, and

H2 : xTw(2) + b(2) = 0.

Here, w(1) ∈ Rn and b(1) ∈ R are the weight vector and bias, respectively, of the first hyperplane
H1. Similarly, w(2) ∈ Rn and b(2) ∈ R are the weight vector and bias, respectively, of the second
hyperplane H2. These planes are arrived at by two QPPs which are similar in formulation to a
typical SVM problem.

The QPPs of TWSVM minimize the sum of squares of the distances of the samples of a class
(say +1) to its corresponding hyperplane and ensuring that the samples of the other class (say
-1) are at least 1 distance away from the hyperplane. A similar QPP is constructed for the other
hyperplane. Hence, the two problems are of the form:

min
w(1),b(1),ξ

1
2
(Aw(1) + e1b(1))T(Aw(1) + e1b(1)) + c1eT

2 ξ (2a)

subject to − (Bw(1) + e2b(1)) + ξ ≥ e2, ξ ≥ 0.

and

min
w(2),b(2),ξ

1
2
(Bw(2) + e2b(2))T(Bw(2) + e2b(2)) + c2eT

1 ξ (2b)

subject to (Aw(2) + e1b(2)) + ξ ≥ e1, ξ ≥ 0.

Here c1, c2 > 0 are parameters and e1 and e2 are vectors of ones of appropriate dimensions. ξ
is an error variable that is used to bound the error term (hinge loss in this case). Once the weight
vectors and the biases of H1 and H2 have been calculated, one can predict the class l, (l = 1, 2)
of a new sample x ∈ Rn using the following decision function:

l = arg min
i=1,2
|xTw(i) + b(i)|.

Here, |.| is the perpendicular distance of the sample x from a given hyperplane.

2.3 Twin Bounded Support Vector Machines (TBSVM)

In an attempt to improve the TWSVM model, Shao et al. [32] proposed the twin bounded sup-
port vector machines (TBSVM) where they introduced the structural risk minimization principle
in the TWSVM problem and eliminated the need to well condition the matrix (to calculate its in-
verse) involved in the dual of TWSVM. This is achieved by introducing a regularization term in
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the objective function of TWSVM which minimize the structural risk with the idea of maximiz-
ing the margin. An added benefit of introducing the regularization term is that it eliminates the
need to derive the dual of the problem without any extra assumptions unlike TWSVM. Thus,
TBSVM stands as a significant improvement over TWSVM. The TBSVM primal problems are as
follows:

min
w(1),b(1),ξ

1
2

c3(||w(1)||2 + b(1)2) +
1
2
(Aw(1) + e1b(1))T(Aw(1) + e1b(1)) + c1eT

2 ξ (3a)

subject to − (Bw(1) + e2b(1)) + ξ ≥ e2, ξ ≥ 0.

and

min
w(2),b(2),ξ

1
2

c4(||w(2)||2 + b(2)2) +
1
2
(Bw(2) + e2b(2))T(Bw(2) + e2b(2)) + c2eT

1 ξ (3b)

subject to (Aw(2) + e1b(2)) + ξ ≥ e1, ξ ≥ 0.

Here, A, B, w(1), w(2), b(1), b(2), e1, e2 and ξ are the same as in TWSVM, and c1, c2, c3, c4 are pos-
itive parameters. The introduction of term 1

2 c3(||w(1)||2 + b(1)2) in (3a) introduces the structural
risk minimization principle since the term corresponds to the distance between the proximal
hyperplane, w(1)Tx + b(1) = 0, and the bounding hyperplane, w(1)Tx + b(1) = −1. A similar
analysis holds for (3b).

For the sake of conciseness, we only consider the dual problem of (3a). Writing its La-
grangian,

L =
1
2

c3(||w(1)||2 + b(1)2) +
1
2
(Aw(1) + e1b(1))T(Aw(1) + e1b(1)) + c1eT

2 ξ

−αT(−(Bw(1) + e2b(1)) + ξ − e2)− βTξ + µT(Aw(1) + e1b(1) − η1),

where α ∈ Rm2 , β ∈ Rm2 , µ ∈ Rm1 are Lagrangian multipliers corresponding to the different
constraints. After applying the necessary and sufficient K.K.T. conditions, we obtain the Wolfe
dual of the first TBSVM problem:

min
α

1
2

αTG(HT H + c3 I)−1GTα− eT
2 α

subject to 0 ≤ α ≤ c1e2,

where

H =
[
A e1

]
, G =

[
B e2

]
,

I is the identity matrix of size m1 × m1. As is evident, (HT H + c3 I)−1 is naturally nonsingular
and, hence, invertible without making any extra assumptions unlike TWSVM’s dual problems.
However, despite the differences in formulation, the decision function of TBSVM is similar to
that of TWSVM.





7

Chapter 3

Objectives

There have been few attempts to introduce noise sensitivity near the decision boundary in twin
support vector machines. Huang et al. [16] describe an approach where they take the pinball
loss, usually applied in regression but not to classification, and use it instead of the hinge loss in
the traditional SVM, labelling it Pin-SVM. This method approximates the problem of maximiz-
ing the quantile distances between the two classes; quantile distances do not depend strongly
on a few noisy samples around the decision boundary and, hence, the model is successfully
able to resist the effect of noisy samples on classification accuracy. Though the Pin-SVM is noise
insensitive, it still suffers from a high time complexity and, as such, is only useful for small to
medium sized datasets. This project combines the properties of Pin-SVM and puts them in a
twin support vector machine formulation by proposing a novel Sparse Pinball Twin Support
Vector Machine (SPTWSVM). In order to further improve our model’s capabilities, we then put
forth a novel Improved Sparse Pinball Twin Support Vector Machine (ISPTWSVM) which works
for large scale datasets by not having to calculate inverse of matrices that may be too large or
singular.
Major contributions of the two-pronged project are summarized below:

• SPTWSVM

– SPTWSVM is insensitive to outliers, retains the sparsity of solution and is stable for
re-sampling as compared to TWSVM.

– Since SPTWSVM solves two smaller QPPs rather than solving a single large QPP in
case of Sparse Pin SVM, its time complexity is approximately four times faster and,
thus performs predictions in remarkably less computational time.

– Numerical results obtained when the SPTWSVM is applied on benchmark and ar-
tificial datasets demonstrate that the classification accuracy of the proposed model
i.e. SPTWSVM outperforms the classification accuracy of the TWSVM and Sparse Pin
SVM in most cases.

– In [31], Xu et al. introduced the pinball loss into TPMSVM which is an extension
of TWSVM. On the other hand, in this paper we introduce noise insensitivity and
sparsity into the original TWSVM. Therefore, SPTWSVM can be easily extended to
models which are built upon TWSVM.

• ISPTWSVM

– ISPTWSVM, obtained by introducing changes in the primal form of TBSVM, is feasi-
ble for application on real world large scale datasets.

– ISPTWSVM minimizes the structural risk in its formulation unlike SPTWSVM, which
minimizes empirical risk instead. This embodies the marrow of statistical learning
theory, and, consequently, classification accuracy on datasets can be improved due to
this change.
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– ISPTWSVM becomes insensitive to outliers and retains sparsity, achieved by the in-
troduction of sparse pinball loss to the changed TBSVM problem.



9

Chapter 4

Design Proposal

Here we describe the formulations of our works in detail. Both SPTWSVM and ISPTWSVM have
been described for the linear and non-linear cases. Steps have been properly highlighted with
significance of specific terms explained in context.

4.1 Proposed Sparse Pinball Twin Support Vector Machines (SPTWSVM)

We combine the noise insensitivity and sparsity of Sparse Pin SVM and the speedup of TWSVM
into our SPTWSVM formulation which is based on the ε-insensitive pinball loss function (1).
The pinball loss function (and the ε-insensitive pinball loss by extension) can be considered to
minimize the margin between the lower τ

τ+1 quantiles of the data samples. This property leads
to the SVM model using pinball loss or its ε-insensitive variant being robust to feature noise in
the data samples.

4.1.1 Linear Case

Following the method of formulating the first TWSVM problem (2a), we incorporate the sparse
pinball loss function in the objective function to get the problem,

min
w(1),b(1)

1
2
(Aw(1) + e1b(1))T(Aw(1) + e1b(1)) + c1eT

2 Lε
τ(e2 + (Bw(1) + e2b(1))) (4)

and

min
w(2),b(2)

1
2
(Bw(2) + e2b(2))T(Bw(2) + e2b(2)) + c2eT

1 Lε
τ(e1 − (Aw(2) + e1b(2))). (5)

Here c1, c2 > 0 and e1, e2 are vectors of dimensions m1 and m2 respectively. For further clarity,
Lε

τ:Rx → Rx is the multi-variate version of (1), where x is the dimension of input vector u. In
both the problems (4) and (5), the first term of the objective function corresponds to minimizing
the sum of the squared distances of the samples of the concerned class from the hyperplane of
that class. Meanwhile, the second term seeks to minimize the sum of errors that arise according
to whether the samples of the other class are at least 1 unit distance away from the hyperplane
or not. Problems (4) and (5) are converted into the equivalent familiar formulations of (2a) and
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(2b) with the introduction of a slack vector ξ as follows:

min
w(1),b(1),ξ

1
2
(Aw(1) + e1b(1))T(Aw(1) + e1b(1)) + c1eT

2 ξ (6)

subject to −(Bw(1) + e2b(1)) + ξ + e2ε ≥ e2,

−(Bw(1) + e2b(1)) ≤ e2 +
ξ

τ
+ e2

ε

τ
,

and ξ ≥ 0.

The above problem is the primal of the Sparse Pinball Twin Support Vector Machine for the
first class (SPTWSVM1). In a similar fashion, we get SPTWSVM2,

min
w(2),b(2),ξ

1
2
(Bw(2) + e2b(2))T(Bw(2) + e2b(2)) + c2eT

1 ξ (7)

subject to (Aw(2) + e1b(2)) + ξ + e1ε ≥ e1,

(Aw(2) + e1b(2)) ≤ e1 +
ξ

τ
+ e1

ε

τ
,

and ξ ≥ 0.

Here, ξ is used to provide an upper bound to the loss term. The error function we use here is the
ε-insensitive zone pinball loss (1) which has a positive value on either side of the origin, thus,
explaining the constraints of both (6) and (7).

We notice that both (6) and (7) are QPPs of the same form as the original TWSVM problems,
the only difference being the extra constraint due to the different loss functions we use. For
each of the two problems, we can see that the objective function depends on the samples of the
corresponding class whereas the constraints depend on the samples of the other class.

To solve problems (6) and (7), we convert them to the dual form. We consider (6) for this
purpose and introduce its Lagrangian function:

L(w(1), b(1), ε, α, β, γ) =
1
2
(Aw(1) + e1b(1))T(Aw(1) + e1b(1)) + c1eT

2 ξ (8)

− αT(−(Bw(1) + e2b(1)) + ξ + e2(ε− 1))− βT(ξ)

− γT((Bw(1) + e2b(1)) + e2(1 +
ε

τ
) +

ξ

τ
),

where α ≥ 0, β ≥ 0 and γ ≥ 0 are the Lagrangian multipliers. Applying the Karush-Kuhn-
Tucker (KKT) optimality conditions, we get:

∂L
∂w(1)

= AT(Aw(1) + e1b(1)) + BTα− BTγ = 0, (9)

∂L
∂b(1)

= eT
1 (Aw(1) + e1b(1)) + eT

2 α− eT
2 γ = 0, (10)

∂L
∂ξ

= c1e2 − α− β− γ

τ
= 0, (11)

αT(−(Bw(1) + e2b(1)) + ξ + e2(ε− 1)) = 0, (12)

βTξ = 0, (13)

γT((Bw(1) + e2b(1)) + e2(1 +
ε

τ
) +

ξ

τ
) = 0. (14)
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We combine constraints (9) and (10) to get,[
AT

eT
1

] [
A e1

] [w(1)

b(1)

]
+

[
BT

eT
2

]
(α− γ) = 0 (15)

and make the following substitutions:

α− γ = λ, (16)

H =
[
A e1

]
, (17)

G =
[
B e2

]
, (18)

and u =

[
w(1)

b(1)

]
. (19)

Using the above substitutions, equation (15) may be rewritten as

HT Hu + GTλ = 0, i.e, u = −(HT H)−1GTλ. (20)

HT H is always positive semi-definite, however, there lies the possibility that it may not be well
conditioned in some situations. To remediate this issue, we usually add a small regularization
term δI, δ > 0 to (20), which is consistent with the method in Ridge Regression approaches such
as [33]. This approach leads to the modified equation:

u = −(HT H + δI)−1GTλ. (21)

We, however, continue to use (20) elsewhere in the paper with the understanding that, if need
be, (21) may be used.

Using the KKT conditions (9)-(11) and (16)-(19), our Lagrangian is modified to yield the dual
problem of (6):

max
λ,α

−1
2

λTG(HT H)−1GTλ + λTe2(
ε

τ
+ 1)− αTe2(ε +

ε

τ
) (22)

subject to c1e2 − α− β− γ

τ
= 0,

α ≥ 0, β ≥ 0, γ ≥ 0.

Since β ≥ 0, the first condition can equivalently be stated as α+ γ
τ ≤ c1e2. Also, using γ = α− λ,

(22) can be rewritten as:

min
λ,α

1
2

λTG(HT H)−1GTλ− λTe2(
ε

τ
+ 1) + αTe2(ε +

ε

τ
) (23)

subject to α(1 +
1
τ
)− λ

τ
≤ c1e2,

α ≥ 0, α− λ ≥ 0.

Similarly, we can get the dual problem of (7) as follows:

min
µ,ω

1
2

µTP(QTQ)−1PTµ− µTe1(
ε

τ
+ 1) + ωTe1(ε +

ε

τ
) (24)

subject to ω(1 +
1
τ
)− µ

τ
≤ c2e1,

ω ≥ 0, ω− µ ≥ 0.
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Here, P =
[
A e1

]
, Q =

[
B e2

]
, and µ ≥ 0, ω ≥ 0 are Lagrangian multipliers. The vector

v =

[
w(2)

b(2)

]
can be calculated, in a similar fashion, by the equation:

v = (QTQ)−1PTµ or the well conditioned v = (QTQ + δI)−1PTµ. (25)

One can obtain the solutions of problems (23) and (24) and, subsequently, get the vectors u and
v using which the two non-parallel hyperplanes can be defined:

xTw(1) + b(1) = 0 and xTw(2) + b(2) = 0. (26)

Finally, the decision function to make a prediction for a new sample x ∈ Rn works by assigning
the sample to class l, (l = 1, 2) as follows:

l = arg min
i=1,2
|xTw(i) + b(i)|. (27)

Here, |.| is the perpendicular distance of data sample x from a given hyperplane.

4.1.2 Non-Linear Case

By employing the kernel trick, we extend our novel SPTWSVM to the non-linear case. Similar
to Jayadeva et al. [15], we consider the non-linear surfaces:

K(xT, CT)z(1) + b(1) = 0, (28)

and K(xT, CT)z(2) + b(2) = 0,

where C =

[
Am1×n
Bm2×n

]
.

Here, K is the kernel function which can be chosen according to the specific task at hand and
z(1), z(2) ∈ R(m1+m2). For instance, if we choose the linear kernel then K(xT, CT) = xTCT and
define CTz(1) = w(1) and CTz(2) = w(2), then we get the linear planes in (26).

In a fashion similar to (6) and (7), we formulate the corresponding problems for the non-
linear case:

min
z(1),b(1),ξ

1
2
||K(A, CT)z(1) + e1b(1))||2 + c1eT

2 ξ (29)

subject to −(K(B, CT)z(1) + e2b(1)) + ξ + e2ε ≥ e2,

−(K(B, CT)z(1) + e2b(1)) ≤ e2 +
ξ

τ
+ e2

ε

τ
,

and ξ ≥ 0.

The above problem is the primal of the non-linear SPTWSVM1. Similarly, we get the primal of
the non-linear SPTWSVM2,

min
z(2),b(2),ξ

1
2
||K(B, CT)z(2) + e2b(2))||2 + c2eT

1 ξ (30)

subject to (K(A, CT)z(2) + e1b(2)) + ξ + e1ε ≥ e1,

(K(A, CT)z(2) + e1b(2)) ≤ e1 +
ξ

τ
+ e1

ε

τ
,

and ξ ≥ 0.
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Here, c1 > 0, c2 > 0, and e1, e2 are vectors of ones of appropriate dimensions. We now consider
problem (29) and derive its dual problem:

min
λ,α

1
2

λTR(STS)−1RTλ− λTe2(
ε

τ
+ 1) + αTe2(ε +

ε

τ
) (31)

subject to α(1 +
1
τ
)− λ

τ
≤ c1e2,

α ≥ 0, α− λ ≥ 0.

Here, S =
[
K(A, CT) e1

]
and R =

[
K(B, CT) e2

]
. The augmented vector u =

[
z(1)

b(1)

]
can be

calculated as done in (20) by the relation:

u = −(STS)RTλ. (32)

We note that we apply well-conditioning, when required, in the same manner as in (21). Simi-
larly, the dual problem for (30) is:

min
µ,ω

1
2

µT L(NT N)−1LTµ− µTe1(
ε

τ
+ 1) + ωTe1(ε +

ε

τ
) (33)

subject to ω(1 +
1
τ
)− µ

τ
≤ c2e1,

ω ≥ 0, ω− µ ≥ 0.

Here, L =
[
K(A, CT) e1

]
and N =

[
K(B, CT) e2

]
. Further, the augmented vector v =

[
z(2)

b(2)

]
is

calculated by the relation:

v = (NT N)LTλ. (34)

Once we obtain the required parameters from problems (31) and (33), we use the decision
function to predict the class of a new sample x ∈ Rn by assigning it to class l, (l = 1 , 2) in a
manner similar to the linear case.

4.2 Proposed Improved SPTWSVM for Large Scale Problems (ISPTWSVM)

In order to make our model’s formulation suitable for large scale datasets, we introduce changes
in the objective function of SPTWSVM which allow the dual problems of ISPTWSVM to bypass
the calculation of large inverse matrices unlike the dual SPTWSVM problems. These changes
are the introduction of a regularization term (as in TBSVM) and the addition of an equality
constraint. Furthermore, since sparse pinball loss is already present in the primal problem of
SPTWSVM, ISPTWSVM is noise insensitive and retains sparsity of the solution. ISPTWSVM also
allows for the kernel trick to be incorporated directly into the dual problem instead of dealing
with kernel generated surfaces, which is the case in SPTWSVM. Lastly, ISPTWSVM possesses the
structural risk minimization principle unlike SPTWSVM, which gives ISPTWSVM the possibility
of obtaining better classification accuracies on datasets. Thus, ISPTWSVM stands as a significant
improvement over SPTWSVM and TBSVM.

4.2.1 Linear ISPTWSVM

Following the method of formulating the first TBSVM (3a) and SPTWSVM problem (4), we in-
corporate the sparse pinball loss function in the objective function to get the problems,
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min
w(1),b(1),η1,ξ

1
2

c3(||w(1)||2 + b(1)2) +
1
2

ηT
1 η1 + c1eT

2 ξ (35)

subject to Aw(1) + e1b(1) = η1,

− (Bw(1) + e2b(1)) + ξ + e2ε ≥ e2,

− (Bw(1) + e2b(1)) ≤ e2 +
ξ

τ
+ e2

ε

τ
,

and ξ ≥ 0,

and

min
w(2),b(2),η2,ξ

1
2

c4(||w(2)||2 + b(2)2) +
1
2

ηT
2 η2 + c2eT

1 ξ (36)

subject to Bw(2) + e2b(2) = η2,

(Aw(2) + e1b(2)) + ξ + e1ε ≥ e1,

(Aw(2) + e1b(2)) ≤ e1 +
ξ

τ
+ e1

ε

τ
,

and ξ ≥ 0.

Here c1, c2, c3, c4 > 0, η1 ∈ Rm1 , η2 ∈ Rm2 , ξ is a slack vector which places an upper bound
on the error terms, and e1 and e2 are vectors of ones with m1 and m2 elements respectively. Just
like SPTWSVM, the third terms in both problems seek to minimize the sum of errors that arise
according to whether the samples of the other class are at least 1 unit distance away from the
hyperplane or not. The error function we use here is the ε-insensitive zone pinball loss (1) which
has a positive value on either side of the origin, thus, explaining the constraints of both (35) and
(36).

We notice that both (35) and (36) are QPPs of the same form as the original SPTWSVM prob-
lems, the only difference being the introduction of the regularization terms 1

2 c3(||w(1)||2 + b(1)2)
and 1

2 c4(||w(2)||2 + b(2)2) and the addition of one extra equality constraint in both primal prob-
lems. The addition of the regularization terms also introduces structural risk minimization since
they correspond to the distance between the proximal hyperplane, w(1)Tx + b(1) = 0, and the
bounding hyperplane, w(1)Tx + b(1) = −1 (both planes correspond to the first problem). For
each of the two problems, we can see that the objective function depends on samples of both
classes; on one hand we wish to minimize the distances of the samples of a given class from the
problem’s corresponding hyperplane, while on the other hand we wish to minimize the error
term associated with the samples of the other class.

To solve problems (35) and (36), we convert them to the dual form. We consider (35) for this
purpose and introduce its Lagrangian function:

L(w(1), b(1), η1, ξ, ε, α, β, γ, µ) =
1
2

c3(||w(1)||2 + b(1)2) +
1
2

ηT
1 η1 + c1eT

2 ξ (37)

− αT(−(Bw(1) + e2b(1)) + ξ + e2(ε− 1))− βT(ξ)

− γT((Bw(1) + e2b(1)) + e2(1 +
ε

τ
) +

ξ

τ
)

+ µT(Aw(1) + e1b(1) − η1),
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where α ≥ 0, β ≥ 0, γ ≥ 0 and µ ∈ Rm1 are the Lagrangian multipliers. Applying the Karush-
Kuhn-Tucker (KKT) optimality conditions, we get:

∂L
∂w(1)

= c3w(1) + BTα− BTγ + ATµ = 0, (38)

∂L
∂b(1)

= c3b(1) + eT
2 α− eT

2 γ + eT
1 µ = 0, (39)

∂L
∂ξ

= c1e2 − α− β− γ

τ
= 0, (40)

∂L
∂η1

= η1 − µ = 0, (41)

αT(−(Bw(1) + e2b(1)) + ξ + e2(ε− 1)) = 0, (42)

βTξ = 0, (43)

γT((Bw(1) + e2b(1)) + e2(1 +
ε

τ
) +

ξ

τ
) = 0, (44)

µT(Aw(1) + e1b(1) − η1) = 0. (45)

Using the KKT conditions (38)-(41) and (42)-(45) and substituting α - γ = λ, our Lagrangian
is modified to yield the dual problem of (35):

max
λ,α,µ

−1
2
[µTλT]Q̃

[
µ
λ

]
+ c3λTe2(

ε

τ
+ 1)− c3αTe2(ε +

ε

τ
) (46)

subject to c1e2 − α− β− γ

τ
= 0,

α ≥ 0, β ≥ 0, γ ≥ 0,

where Q̃ =

[
AT A + c3 I ABT

BAT BBT

]
+ E.

Here, E is a matrix of all ones of size (m1 + m2)× (m1 + m2). Since β ≥ 0, the first condition can
equivalently be stated as α + γ

τ ≤ c1e2. Also, using γ = α− λ, (46) can be rewritten as:

min
µ,λ,α

1
2
[µTλT]Q̃

[
µ
λ

]
− c3λTe2(

ε

τ
+ 1) + c3αTe2(ε +

ε

τ
) (47)

subject to α(1 +
1
τ
)− λ

τ
≤ c1e2,

α ≥ 0, α− λ ≥ 0,

where Q̃ =

[
AT A + c3 I ABT

BAT BBT

]
+ E.

Similarly, we can get the dual problem of (36) as follows:

min
θ,φ,ω

1
2
[θTφT]Q̃

[
θ
φ

]
− c4φTe1(

ε

τ
+ 1) + c4ωTe1(ε +

ε

τ
) (48)

subject to ω(1 +
1
τ
)− φ

τ
≤ c2e1,

ω ≥ 0, ω− φ ≥ 0,

where Q̃ =

[
BTB + c4 I −BAT

−ABT AAT

]
+ E.
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One can obtain the solutions of problems (47) and (48) and, subsequently, get the vectors[
µ λ α

]
and

[
θ φ ω

]
using which the two non-parallel hyperplanes can be defined:

xTw(1) + b(1) = 0 and xTw(2) + b(2) = 0. (49)

Finally, the decision function to make a prediction for a new sample x ∈ Rn is similar to the
SPTWSVM problem.

4.2.2 Non-Linear ISPTWSVM

Unlike the SPTWSVM non-linear case, we need not consider kernel generated surfaces for ISPTWSVM
and can directly introduce the kernel function in the linear case of ISPTWSVM. Hence, we intro-
duce the kernel function K(x, y) = φ(x)Tφ(y) into the linear case, where we have the transfor-
mation x = φ(x), x ∈ H (Hilbert space). In a similar fashion to (35) and (36), we now consider
the following primal problems in the Hilbert space H:

min
w(1),b(1),η1,ξ

1
2

c3(||w(1)||2 + b(1)2) +
1
2

ηT
1 η1 + c1eT

2 ξ (50)

subject to φ(A)w(1) + e1b(1) = η1,

− (φ(B)w(1) + e2b(1)) + ξ + e2ε ≥ e2,

− (φ(B)w(1) + e2b(1)) ≤ e2 +
ξ

τ
+ e2

ε

τ
,

and ξ ≥ 0,

and

min
w(2),b(2),η2,ξ

1
2

c4(||w(2)||2 + b(2)2) +
1
2

ηT
2 η2 + c2eT

1 ξ (51)

subject to φ(B)w(2) + e2b(2) = η2,

(φ(A)w(2) + e1b(2)) + ξ + e1ε ≥ e1,

(φ(A)w(2) + e1b(2)) ≤ e1 +
ξ

τ
+ e1

ε

τ
,

and ξ ≥ 0.

Here, all constants and notations have the same meaning from the linear case. We derive the
dual problem of (50) and (51):

min
µ,λ,α

1
2
[µTλT]Q̃

[
µ
λ

]
− c3λTe2(

ε

τ
+ 1) + c3αTe2(ε +

ε

τ
) (52)

subject to α(1 +
1
τ
)− λ

τ
≤ c1e2,

α ≥ 0, α− λ ≥ 0,

where Q̃ =

[
K(AT, AT) + c3 I K(AT, BT)

K(BT, AT) K(BT, BT)

]
+ E,
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and

min
θ,φ,ω

1
2
[θTφT]Q̃

[
θ
φ

]
− c4φTe1(

ε

τ
+ 1) + c4ωTe1(ε +

ε

τ
) (53)

subject to ω(1 +
1
τ
)− φ

τ
≤ c2e1,

ω ≥ 0, ω− φ ≥ 0,

where Q̃ =

[
K(BT, BT) + c4 I −K(BT, AT)
−K(AT, BT) K(AT, AT)

]
+ E.

All variables, constants and notations are similar to those from the linear case. Once we obtain
the required parameters from problems (52) and (53), we use the decision function to predict the
class of a new sample x ∈ Rn by assigning it to class l, (l = 1 , 2) in a manner similar to the
linear case.

4.3 Performance Evaluation Metrics

All experiments in this project deal with demonstrating noise insensitivity and resampling sta-
bility in both UCI and synthetic datasets, sparsity in UCI datasets, and general classification
accuracy in UCI datasets.
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Chapter 5

Novel SPTWSVM: Properties and its
Analytical Arguments

In this section, we discuss some properties and results based on our SPTWSVM .

5.1 Noise Insensitivity

Here we explain, from an analytical perspective, how incorporating the ε-insensitive pinball
function leads to noise insensitivity. For the sake of brevity, we consider SPTWSVM1 (23) for the
linear case (the same analysis applies to SPTWSVM1 for the non-linear case and SPTWSVM2
for both the linear and non-linear cases). Consider the generalized sign function, sgnε

τ(x), corre-
sponding to (1):

sgnε
τ(x) =


1, x > ε,
[0, 1], x = ε,
0, − ε

τ < x < ε,
[−τ, 0], x = −ε

τ ,
−τ, x < − ε

τ .

(54)

sgnε
τ(x) is the subgradient of the ε-insensitive pinball loss function and, hence, the optimality

condition for (4) can be written as:

0 ∈ AT(Aw(1) + e1b(1)) + c1

m2

∑
i=1

sgnε
τ(1 + (w(1)Tx−i + b(1)))x−i , (55)

where 0 is the vector which has all its components equal to zero and x−i ∈ B.
For a given w(1), b(1), we partition the index set into five sets:

Sw(1),b(1)
0 = {i : 1 + (w(1)Tx−i + b(1)) > ε},

Sw(1),b(1)
1 = {i : 1 + (w(1)Tx−i + b(1)) = ε},

Sw(1),b(1)
2 = {i :

−ε

τ
< 1 + (w(1)Tx−i + b(1)) < ε},

Sw(1),b(1)
3 = {i : 1 + (w(1)Tx−i + b(1)) =

−ε

τ
},

Sw(1),b(1)
4 = {i : 1 + (w(1)Tx−i + b(1)) <

−ε

τ
}.

Here, i ∈ {1, 2, ..., m2}. The data samples in Sw(1),b(1)
2 do not contribute to w(1) since the sub-

gradient at these data samples is zero, as is evident from (53). Thus, Sw(1),b(1)
2 directly affects

sparsity of the model. Set Sw(1),b(1)
2 is dependent on the value of ε. As ε approaches 0 sparsity is
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lost whereas if ε → ∞, more samples lie in Sw(1),b(1)
2 and, as a result, we gain sparsity. With the

above notations and the existence of ψi ∈ [0, 1] and θi ∈ [−τ, 0] equation (54) can be rewritten
as:

1
c1

AT(Aw(1) + e1b(1)) + ∑
i∈Sw(1) ,b(1)

0

x−i + ∑
i∈Sw(1) ,b(1)

1

ψix−i (56)

+ ∑
i∈Sw(1) ,b(1)

3

θix−i − τ ∑
i∈Sw(1) ,b(1)

4

x−i = 0.

The above condition shows that when the value of ε is fixed, τ controls the number of sam-
ples in the sets Sw(1),b(1)

0 , Sw(1),b(1)
1 , Sw(1),b(1)

2 , Sw(1),b(1)
3 , and Sw(1),b(1)

4 . However, since the number of

data samples in Sw(1),b(1)
1 and Sw(1),b(1)

3 are much fewer than in the other sets, we are primarily

concerned with sets Sw(1),b(1)
0 , Sw(1),b(1)

2 and Sw(1),b(1)
4 . When τ is small, the number of samples in

Sw(1),b(1)
4 is quite large while the other sets have fewer data samples, thus making the result sensi-

tive to feature noise in the samples. On the contrary, having a larger τ value imparts many data
samples to all the five sets and the result is less sensitive to zero mean feature noise.

Proposition 1. If the optimization problem (23) or (31) has a solution then the following inequalities
must hold:

AT(Aw(1) + e1b(1))
c1m2

≤ 1 and
p0

m2
≤ 1−

1− AT(Aw(1)+e1b(1))
c1m2

1 + τ
,

where p0 denotes the number of samples in Sw(1),b(1)
0 .

Proof. Consider an arbitrary sample x−i0 ∈ Sw(1),b(1)
0 , (1 ≤ i0 ≤ m2). From the KKT conditions (13)

and (14), βi0 = γi0 = 0. From the KKT condition (11), we then obtain αi0 = c1 and, subsequently,
λi0 = αi0 − γi0 = c1. Also, from the KKT condition (10), we have

∑
i∈Sw(1) ,b(1)

0

λi + ∑
i/∈Sw(1) ,b(1)

0

λi = eT
1 (Aw(1) + e1b(1)) =⇒ p0c1 + ∑

i/∈Sw(1) ,b(1)
0

λi = eT
1 (Aw(1) + e1b(1)).

Now, since αi ≥ 0 and γi ≥ 0, we have −τc1 ≤ λi ≤ c1. Therefore,

eT
1 (Aw(1) + e1b(1))

c1
− (m2 − p0) ≤ p0 ≤

eT
1 (Aw(1) + e1b(1))

c1
+ τ(m2 − p0),

which gives us eT
1 (Aw(1)+e1b(1))

c1m2
≤ 1 and p0(1 + τ) ≤ eT

1 (Aw(1)+e1b(1))+τc1m2
c1

. The second condition
gives us

p0

m2
≤

eT
1 (Aw(1)+e1b(1))

m2
+ τc1

c1(1 + τ)
= 1−

c1 −
eT

1 (Aw(1)+e1b(1))
m2

c1(1 + τ)
= 1−

1− eT
1 (Aw(1)+e1b(1))

c1m2

(1 + τ)

hence proving our proposition.

As is evident, the above proposition places an upper bound on the number of samples in
Sw(1),b(1)

0 ; when τ becomes small, p0 gets smaller and the result becomes more sensitive to feature

noise since a lot fewer data samples are distributed in sets other than Sw(1),b(1)
4 . As a result, feature

noise around the decision boundary significantly affects classification results. A similar analysis
holds for SPTWSVM2 problems (24) and (33).
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5.2 Scatter Minimization

One can interpret the mechanism of our SPTWSVM model through scatter minimization as well.
Let data samples in subset Yw(1),b(1)

1 ⊂ A determine the hyperplane xTw(1)+ b(1) = 0 and samples

in subset Yw(1),b(1)
2 ⊂ Sw(1),b(1)

2 and subset Yw(2),b(2)
2 ⊂ Sw(2),b(2)

2 determine the two hyperplanes
H′ : {w(1)Tx−i + b(1) + 1 = 0} and H′′ : {w(2)Tx+j + b(2) − 1 = 0}, respectively, where x−i ∈ B

and x+j ∈ A. We use the sum of distances from each sample x−i to a given sample x−i2 ∈ Yw(1),b(1)
2

to determine the scatter. Then we let scatter of sample x−i ∈ B around data sample x−i2 be defined
by:

m2

∑
i=1
|w(1)T(x−i2 − x−i )|.

Since w(1)Tx−i2 + b(1) + 1 = 0, we have

m2

∑
i=1
|w(1)T(x−i2 − x−i )| =

m2

∑
i=1
| − 1− (w(1)Tx−i + b(1))| =

m2

∑
i=1
|1 + (w(1)Tx−i + b(1))|.

Similarly, we consider the scatter of each sample x+j ∈ A from a given data sample x+j1 ∈

Yw(1),b(1)
1 as follows:

m1

∑
j=1
|w(1)T(x+j1 − x+j )| =

m1

∑
j=1
| − (w(1)Tx+j + b(1))|,

since w(1)Tx+j1 + b(1) = 0. As the scatter turns out to be a positive value, we can consider the

scatter as the sum of squares, i.e., ∑m1
j=1(−(w(1)Tx+j + b(1)))2.

Now consider the following formulation,

min
w(1),b(1)

1
2

m1

∑
j=1

(−(w(1)Tx+j + b(1)))2 + c11

m2

∑
i=1
|1 + (w(1)Tx−i + b(1))|. (57)

Here, c11 > 0 is a constant. The first term can be interpreted to minimize the scatter of x+j ∈
A around the hyperplane xTw(1) + b(1) = 0. Meanwhile, the second term seeks to minimize
the scatter of x−i ∈ B around the hyperplane H′ , which minimizes the error values that arise
according to how close the samples of B are to H′ . In problem (4), the first term of (57) is stated
in its mathematically equivalent form whereas the second term of (57) is extended to Lε

τ by
introducing the following misclassification terms:

c12Lhinge(1 + (w(1)Tx−i + b(1))− ε) = max(0, 1 + (w(1)Tx−i + b(1))− ε),

c13Lhinge(1 + (w(1)Tx−i + b(1))) = max(0, 1 + (w(1)Tx−i + b(1))),

c14Lhinge(−1− (w(1)Tx−i + b(1))) = max(0,−1− (w(1)Tx−i + b(1))),

c15Lhinge(−1− (w(1)Tx−i + b(1))− ε

τ
) = max(0,−1− (w(1)Tx−i + b(1))− ε

τ
).
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Here c12, c13, c14, c15 > 0 are constants and we obtain problem (4) with the conditions: c11 + c12 +
c13 = c1, c11 + c13 = 0, c11 + c14 = 0, and c11 + c14 + c15 = τc1. From the last condition, τ = c15

c1
which suggests the reasonable range of τ ≥ 0. A similar analysis holds for problem (5).

In conclusion, SPTWSVM minimization considers both within-class scatter of one class and
misclassification error of the other (which is also a case of scatter minimization around H′) to-
gether. The SPTWSVM problem (4) is then considered a trade-off between small scatter and
small misclassification.
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Chapter 6

Experiments

6.1 Datasets

In this section, the performance of the algorithm is tested on several benchmark UCI datasets.
These datasets were originally proposed for binary classification problems. Apart from this,
synthetic datasets are also used for calculating the performance of the SPTWSVM.

6.2 Experimental Setup:

We apply our SPTWSVM model to an artificial dataset and 10 benchmark UCI datasets to exhibit
the accuracy, noise insensitivity and sparsity of our model. All of the experiments have been
performed on MATLAB R2017a on a Windows 10 machine with an Intel i5 Processor (3.4 GHz)
with 16 GB RAM.

6.2.1 SPTWSVM

To solve our SPTWSVM model with lower computational complexity, we make c1 = c2 = c,
τ1 = τ2 = τ, and ε1 = ε2 = ε. In all our experiments, c is chosen from the set {10i : i =
−5, −4, −3, ...,+3, +4, +5}, τ is chosen from the set {0.01, 0.1, 0.2, 0.5, 1} and ε is cho-
sen from the set {0, 0.05, 0.1, 0.2, 0.3, 0.5}.

6.2.2 ISPTWSVM

To solve our ISPTWSVM model with lower computational complexity, we make c1 = c2 = c and
c3 = c4 = c′, τ1 = τ2 = τ, and ε1 = ε2 = ε. In all our experiments, c and c′ are chosen from the set
{10i : i = −5, −4, −3, ...,+3, +4, +5}, τ and ε are chosen similar to SPTWSVM.

6.3 Synthetic Dataset:

The purpose of our SPTWSVM is to be able to deal with noise around the decision boundary
while retaining sparsity. To illustrate the noise insensitivity performance consider Fig. 6.1, where
we take a two dimensional synthetic dataset with equal number of samples from two Gaussian
distributions: xi, i ∈ {i : yi = 1} ∼ N (µ1, ∑1) and xi, i ∈ {i : yi = −1} ∼ N (µ2, ∑2) where

µ1 = [0.5,−3]T, µ2 = [−0.5, 3]T and ∑1 = ∑2 =

[
0.2 0
0 3

]
. The Bayes classifier for the given

Gaussian distribution is fc(x) = 2.5x(1)− x(2), that is, the ideal result is a separating hyperplane
with slope equal to 2.5 and y-intercept equal to 0. We now add noise to the dataset, with each
noise sample drawn from the Gaussian distribution N (µn, ∑n) where µn = [0, 0]T and ∑n =[

1 −0.8
−0.8 1

]
. Each noise sample is assigned the label +1 or -1 with equal probability. Also, the
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number of noisy data samples is determined by r, the ratio of noisy samples to total samples in
the original distribution (100 each of class +1 and -1).

The noise samples affect the labels around the decision boundary; however, the Bayes clas-
sifier for such a noise filled distribution still remains the same. In Fig. 6.1, we can see that as we
increase the amount of noise (from r = 0 to r = 0.2), the hyperplanes of C-SVM and TWSVM
start deviating from the ideal slope of 2.5 whereas the deviation in the slopes of hyperplanes
(with fixed values of τ = 0.5 and ε = 0.05) is significantly lesser in our SPTWSVM. This implies
the sensitivity of the TWSVM and C-SVM models to noise around the boundary.
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Figure 6.1: The above four figures demonstrate the noise insensitive properties
possessed by our SPTWSVM as compared to C-SVM and TWSVM when we have
varying number of noise samples, from r = 0 (noise free) to r = 0.2. Here, r is the
ratio of total number of noisy samples to the total number of samples originally
in the dataset (including both classes). The legend in each figure matches a given
model to its corresponding hyperplane and gives the slopes of the separating hy-
perplanes in the brackets.

6.4 UCI Datasets

After noticing the noise insensitive performance of the SPTWSVM model on synthetic data, we
consider ten real world datasets, downloaded from the UCI Repository of Machine Learning
Dataset [34]. Wherever an explicit train-test split has not been provided, we have randomly
partitioned the dataset into two equal train and test datasets.



6.4. UCI Datasets 25

Table 6.1 summarizes the results for a linear kernel, K(xT, CT) = xTCT, on six different UCI
datasets. Here, we compare the accuracy of our novel SPTWSVM model with that of the Sparse
Pin SVM, proposed by Huang et al. [16] and the TWSVM proposed by Jayadeva et al. [15].
The optimal value of c for TWSVM and for each (ε, τ) combination for Sparse Pin SVM and
SPTWSVM is computed using ten-fold cross-validation. For each dataset, we apply Sparse Pin
SVM, TWSVM and SPTWSVM to perform classification for different (ε, τ) combinations, and
subsequently the model with the best classification accuracy is highlighted in bold. In the ta-
ble, the total number of samples and the number of features have been highlighted below each
dataset. From the results tabulated in Table 6.1, one can observe that classification performance
of SPTWSVM is better than that of Sparse Pin SVM and TWSVM in most of the datasets. How-
ever, in Heart-C the classification accuracies of Sparse Pin SVM and TWSVM are better than
that of SPTWSVM. This might be attributed to a different distribution of samples in the Heart-C
dataset.

Table 6.1: Accuracy obtained on UCI datasets with a linear kernel for SPTWSVM

Datasets ε Sparse Pin SVM TWSVM SPTWSVM
τ τ

0.01 0.1 0.2 0.5 1 0.01 0.1 0.2 0.5 1
Heart-Statlog 0 85.93 87.41 85.18 82.96 77.04 87.41 87.41 87.41 87.41 87.41 87.41
(270 × 13) 0.05 85.93 87.41 85.93 82.96 76.3 87.41 87.41 87.41 87.41 87.41 87.41

0.1 85.2 88.15 85.19 83.7 77.04 87.41 87.41 87.41 87.41 88.15 87.41
0.2 85.18 87.41 87.41 83.7 82.96 87.41 87.41 87.41 87.41 87.41 87.41
0.3 85.18 88.15 88.15 85.18 83.7 87.41 87.41 87.41 87.41 87.41 87.41
0.5 87.41 87.41 88.15 88.15 88.15 87.41 87.41 87.41 87.41 87.41 87.41

Australian 0 84.68 85.26 85.55 85.26 85.55 86.71 86.71 86.42 86.13 85.84 85.84
(690 × 14) 0.05 84.1 85.26 85.26 85.26 85.55 86.71 86.71 86.42 86.42 86.13 85.84

0.1 84.1 85.26 85.26 85.26 85.26 86.71 86.71 86.42 86.42 86.13 85.84
0.2 84.4 85.55 85.26 85.26 85.26 86.71 86.42 86.42 86.13 85.84 85.84
0.3 84.97 85.55 85.26 85.26 85.55 86.71 85.84 85.84 85.84 85.84 85.84
0.5 84.68 85.84 85.55 85.54 85.55 86.71 86.13 86.13 86.13 86.13 86.13

Heart-C 0 82.24 81.58 78.29 71.05 71.71 82.24 81.58 80.26 80.92 80.26 80.26
(303 × 13) 0.05 82.24 80.92 79.61 71.05 71.05 82.24 81.58 80.92 80.92 80.26 80.26

0.1 82.24 80.92 78.29 71.05 71.05 82.24 81.58 81.58 81.58 80.26 80.26
0.2 81.58 81.58 78.95 71.05 71.05 82.24 81.58 81.58 81.58 81.58 80.26
0.3 81.58 81.58 79.61 73.03 73.03 82.24 80.92 80.92 80.92 80.92 81.58
0.5 82.24 81.58 81.58 79.61 79.61 82.24 80.26 80.26 80.26 80.26 80.26

SPECT 0 73.8 74.33 75.4 72.73 72.73 78.61 78.61 79.14 80.21 81.28 80.75
(267 × 22) 0.05 74.33 74.33 74.33 72.73 72.73 78.61 78.61 91.98 79.14 82.89 80.75

0.1 74.33 73.26 74.33 72.73 72.73 78.61 78.61 78.61 79.14 82.35 80.75
0.2 74.33 74.33 74.87 72.73 72.73 78.61 78.61 78.61 78.61 82.88 80.75
0.3 74.33 73.8 74.87 73.26 72.73 78.61 79.14 79.14 79.14 79.14 81.82
0.5 73.8 73.8 74.87 75.4 74.87 78.61 78.61 78.61 78.61 78.61 78.61

Monks3 0 81.71 81.71 81.02 81.25 81.94 84.03 83.57 82.64 80.56 82.18 79.17
(432 × 6) 0.05 81.94 81.71 81.02 80.79 80.79 84.03 84.49 83.33 82.64 81.25 81.25

0.1 81.71 81.71 81.94 80.79 81.02 84.03 84.72 84.72 84.26 81.48 81.94
0.2 80.56 81.71 81.02 81.25 81.25 84.03 84.49 84.49 84.49 84.72 84.49
0.3 81.25 81.71 81.94 81.94 81.94 84.03 83.79 83.79 83.79 83.79 84.03
0.5 81.48 80.79 81.71 81.94 82.64 84.03 88.66 88.66 88.66 88.66 88.66

Breast 0 70.69 70.69 72.41 72.41 68.97 68.97 72.41 68.97 70.69 72.41 72.41
(116 × 10) 0.05 70.69 70.69 72.41 70.69 70.69 68.97 70.69 70.69 70.69 72.41 72.41

0.1 70.69 70.69 72.41 70.69 70.69 68.97 70.69 72.41 70.69 70.69 70.69
0.2 70.69 70.69 72.41 72.41 70.69 68.97 70.69 70.69 70.69 72.41 72.41
0.3 70.69 70.69 72.41 72.41 70.69 68.97 70.69 70.69 70.69 72.41 72.41
0.5 70.69 70.69 70.69 72.41 72.41 68.97 70.69 72.41 70.69 72.41 72.41
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Table 6.2: Accuracy obtained on UCI datasets with a non-linear kernel for
SPTWSVM

Datasets ε Sparse Pin SVM TWSVM SPTWSVM
τ τ

0.01 0.1 0.2 0.5 1 0.01 0.1 0.2 0.5 1
Heart-Statlog 0 83.70 84.44 82.22 82.96 80.74 84.44 84.44 84.44 85.18 84.44 84.44
(270 × 13) 0.05 82.22 84.44 82.96 82.96 80.00 84.44 84.44 84.44 84.44 84.44 84.44

0.1 81.48 84.44 82.96 82.96 81.48 84.44 84.44 84.44 84.44 83.70 83.70
0.2 82.22 85.18 82.96 82.96 83.70 84.44 84.44 84.44 84.44 84.44 84.44
0.3 82.22 84.44 82.96 82.22 84.44 84.44 85.18 85.18 85.18 85.18 84.44
0.5 83.70 84.44 85.18 83.70 83.70 84.44 84.44 84.44 84.44 84.44 84.44

Sonar 0 60.95 56.19 60.00 56.19 56.19 62.86 70.48 70.48 70.48 68.57 68.57
(208 × 60) 0.05 63.81 56.19 56.19 60.95 60.00 62.86 62.86 61.90 61.90 61.90 61.90

0.1 62.86 60.95 65.71 63.81 61.90 62.86 61.90 61.90 61.90 61.90 61.90
0.2 55.24 63.81 63.81 62.86 63.81 62.86 61.90 61.90 61.90 61.90 61.90
0.3 63.81 62.86 64.76 62.86 63.81 62.86 61.90 61.90 61.90 61.90 61.90
0.5 55.24 63.81 65.71 55.24 64.76 62.86 61.90 61.90 61.90 61.90 61.90

Monks3 0 96.07 96.99 97.22 97.22 97.45 96.07 96.07 96.76 97.68 96.99 97.22
(432 × 6) 0.05 96.30 96.99 96.76 97.22 97.45 96.07 96.53 96.53 96.76 96.99 97.22

0.1 96.30 96.99 96.76 97.22 97.45 96.07 96.53 96.53 96.53 97.22 97.45
0.2 95.83 96.99 96.99 97.22 97.45 96.07 96.76 96.76 96.76 96.76 96.76
0.3 95.60 96.76 96.99 97.22 97.45 96.07 96.53 96.53 96.53 96.53 96.53
0.5 95.60 97.22 97.22 97.22 97.22 96.07 96.07 96.07 96.07 96.07 96.07

Liver Disorder 0 75.72 75.14 73.99 74.57 75.14 74.57 75.14 74.57 75.72 73.41 72.83
(345 × 6) 0.05 75.72 75.14 73.99 74.57 74.57 74.57 74.57 75.14 74.57 74.57 73.41

0.1 75.72 75.14 75.14 75.14 74.57 74.57 75.72 75.14 75.14 74.57 73.41
0.2 75.72 75.14 76.30 73.41 75.72 74.57 75.72 75.72 75.72 75.14 75.72
0.3 75.72 75.72 75.14 75.14 74.57 74.57 75.72 75.72 75.72 75.14 75.14
0.5 75.14 75.14 75.14 75.14 75.14 74.57 75.14 75.14 75.14 75.14 75.14

Planning Relax 0 72.53 71.43 72.53 72.53 73.63 72.53 72.53 72.53 72.53 72.53 72.53
(182 × 12) 0.05 72.53 72.53 72.53 72.53 72.53 72.53 71.43 71.43 72.53 71.43 71.43

0.1 72.53 72.53 72.53 72.53 72.53 72.53 71.43 71.43 71.43 71.43 71.43
0.2 72.53 74.72 72.53 71.43 71.43 72.53 71.43 71.43 71.43 71.43 71.43
0.3 71.43 72.53 72.53 72.53 72.53 72.53 72.53 72.53 72.53 72.53 72.53
0.5 73.63 71.43 74.72 71.43 71.43 72.53 71.43 71.43 71.43 71.43 71.43

Fertility 0 88.00 88.00 88.00 88.00 88.00 90.00 90.00 90.00 90.00 90.00 90.00
(100 × 9) 0.05 88.00 88.00 88.00 88.00 88.00 90.00 90.00 90.00 90.00 90.00 90.00

0.1 88.00 88.00 88.00 88.00 88.00 90.00 90.00 90.00 90.00 90.00 90.00
0.2 88.00 88.00 88.00 88.00 88.00 90.00 90.00 90.00 90.00 90.00 90.00
0.3 88.00 88.00 88.00 88.00 88.00 90.00 90.00 90.00 90.00 90.00 90.00
0.5 88.00 88.00 88.00 88.00 88.00 90.00 88.00 88.00 88.00 88.00 88.00
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Figure 6.2: 3D surface plots of accuracy of SPTWSVM in relation to ε and τ.
Subfigures (a) and (b) correspond to the linear case whereas subfigures (c) and (d)
correspond to the non-linear case.

A similar analysis has been done for the non-linear case with an RBF kernel,

K(x(i), x(j)) = exp
(
−γ||x(i) − x(j)||2

)
, γ > 0,

and the corresponding results are reported in Table 6.2. Here, we choose the optimal values of
γ ∈ {10i : i = −7, −6, −5, ...,+1, +2, +3} and c according to ten-fold cross validation as
earlier. Similar to the earlier table, we highlight the best result in view of accuracy in bold. From
Table 6.1 and Table 6.2 we learn that the novel SPTWSVM yields the best predicition accuracy for
eight datasets. Hence, in general, the accuracy obtained by SPTWSVM matches and outperforms
those of other models.

Now, we corrupt the features of six benchmark UCI datasets with zero-mean Gaussian noise.
Both the training and testing datasets are perturbed by the same noise. For each feature, the ratio
of variance of noise to that of feature is denoted by r. We use an RBF kernel and use Sparse Pin
SVM, TWSVM and SPTWSVM to perform classification on the corrupted datasets for different
levels of noise. For each combination of r and τ, the experiments are repeated five times and
the average and standard deviation of the accuracies obtained have been reported in Table 6.3.
Here, ε is kept constant, equal to 0.05, for the sake of easier data representation. As earlier, for
each dataset and different r value, the model with the best average classification accuracy is
highlighted in bold. One can observe from Table 6.3 that our SPTWSVM achieves better results,
that is, the average accuracy of SPTWSVM is the highest or at par with the other compared
models for fifteen out of eighteen cases. In addition, the standard deviation is small which
indicates that SPTWSVM is noise insensitive, which supports our theoretical analysis.

In Table 6.4 and Table 6.5, the sparsity of our proposed SPTWSVM is analyzed as compared
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Table 6.4: Sparsity on
UCI datasets with linear
kernel for SPTWSVM

Datasets ε TWSVM SPTWSVM
τ = 0 τ = 0.5

Heart-Statlog 0 60 75 60 75
(270 × 13) 0.05 49 57

0.1 37 36
0.2 29 26
0.3 24 20
0.5 16 19

Australian 0 148 113 191 153
(690 × 14) 0.05 145 148

0.1 138 134
0.2 130 122
0.3 123 119
0.5 100 100

Heart-C 0 27 26 82 69
(303 × 13) 0.05 59 54

0.1 41 39
0.2 24 26
0.3 23 20
0.5 18 16

SPECT 0 40 30 40 40
(267 × 22) 0.05 22 24

0.1 18 24
0.2 17 25
0.3 14 22
0.5 16 17

Monk3 0 30 26 62 60
(432 × 6) 0.05 54 49

0.1 42 42
0.2 34 25
0.3 24 23
0.5 22 20

Breast 0 23 26 32 26
(116 ×10) 0.05 29 26

0.1 28 26
0.2 26 26
0.3 23 26
0.5 21 25

Table 6.5: Sparsity
on UCI datasets with
non-linear kernel for
SPTWSVM

Datasets ε TWSVM SPTWSVM
τ=0 τ=0.5

Heart-Statlog 0 60 74 60 75
(270 × 13) 0.05 48 51

0.1 40 34
0.2 27 27
0.3 21 22
0.5 20 20

Sonar 0 29 42 55 48
(208 × 60) 0.05 5 10

0.1 5 10
0.2 5 10
0.3 7 10
0.5 5 13

Monk3 0 62 60 62 60
(432 × 6) 0.05 13 11

0.1 11 9
0.2 8 8
0.3 9 8
0.5 7 23

Liver Disorder 0 59 52 100 72
(345 × 6) 0.05 79 61

0.1 67 55
0.2 55 48
0.3 49 45
0.5 42 40

Planning Relax 0 26 65 26 65
(182 × 12) 0.05 26 63

0.1 26 60
0.2 26 54
0.3 26 49
0.5 26 47

Fertility 0 6 41 6 44
(100 × 9) 0.05 6 42

0.1 6 41
0.2 6 41
0.3 6 40
0.5 6 38
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to the original TWSVM for the linear and non-linear cases, respectively. In both tables, the two
columns under each model show the number of non-zero dual variables corresponding to each
of the two separating hyperplanes. Here, we have kept c and γ (for RBF kernel) constant for all
ε values which resists the effect of change in hyperparameters. Noticing the results, in general,
as ε increases we can observe that the sparsity of our solution increases, which is expected since
the sub-gradients of a lot of the error terms in our dual formulation become zero. From both the
tables it is evident that our novel SPTWSVM is more sparse as compared to the original TWSVM
while simultaneously maintaining noise-insensitive properties. This sparsity of solution makes
the the prediction process faster than the TWSVM which is of immense value, especially in
datasets with large samples.

We also plot the effect of hyperparameter selection on accuracies obtained for four different
datasets in Fig. 6.2. The figure shows the 3D surface plots of accuracy in relation to ε and
τ. In Fig. 6.2(a), a spike can be seen which shows a drastic increase in accuracy from 78% to
approximately 91% with a slight variation in the value of ε and τ. This drastic change in the
value of accuracy, demonstrates the sensitivity of the model with respect to parameter selection.
In a similar fashion, we can visualize the sensitivity of model performance based on optimal
parameters in subfigures (b), (c) and (d). Therefore, parameter selection becomes an important
issue while calculating the performance of our SPTWSVM model.

Table 6.6 summarizes the results for a linear kernel, K(x, y) = φ(x)Tφ(y), on six different
UCI datasets. Here, we compare the accuracy of our second ISPTWSVM model with that of the
Sparse Pin SVM and the TWSVM. The optimal value of c and c′ for each (ε, τ) combination
for ISPTWSVM is computed using ten-fold cross-validation and same is the case with Sparse
Pin SVM and TWSVM. For each dataset, we apply Sparse Pin SVM, TWSVM and ISPTWSVM
to perform classification for different (ε, τ) combinations, and subsequently the model with
the best classification accuracy is highlighted in bold. The table’s representation style is similar
to that of Table 6.1. From the results tabulated in Table 6.6, we see that classification perfor-
mance of ISPTWSVM is better than that of Sparse Pin SVM and TWSVM in most of the datasets
which is expected since ISPTWSVM retains all previous enhancements of SPTWSVM. Similar
analysis is done for the non-linear case using RBF Kernel and corresponding results are tabu-
lated in Table 6.7, with the maximum accuracy being highlighted in bold. The results show that
ISPTWSVM possesses all the positive aspects of SPTWSVM while being feasible for large scale
datasets.

To highlight optimal parameters for the performed experiments, we provide the optimal
values of c and γ for Table 6.1 and Table 6.2, corresponding to the SPTWSVM model, in Table 6.8,
Table 6.9 and Table 6.10. Similarly, the optimal values of c, c′ and γ for Table 6.6 and Table 6.7,
corresponding to the ISPTWSVM model, are presented in Table 6.11, Table 6.12 and Table 6.13.



6.4. UCI Datasets 31

Table 6.6: ISPTWSVM performance on UCI datasets for linear case

Datasets ε Sparse Pin SVM TWSVM ISPTWSVM
τ τ

0.01 0.1 0.2 0.5 1 0.01 0.1 0.2 0.5 1
Sonar 0.00 54.29 54.29 54.29 54.29 54.29 54.29 60.95 60.00 57.14 59.05 59.05
(208 x 60) 0.05 54.29 54.29 54.29 54.29 54.29 54.29 61.90 61.90 60.95 59.05 58.10

0.10 54.29 54.29 54.29 54.29 54.29 54.29 63.81 60.95 60.95 59.05 58.10
0.20 54.29 54.29 54.29 54.29 54.29 54.29 62.86 60.00 60.00 59.05 59.05
0.30 54.29 54.29 54.29 54.29 54.29 54.29 60.95 60.00 60.00 60.95 59.05
0.50 54.29 54.29 54.29 54.29 54.29 54.29 60.00 61.90 60.00 60.00 60.00

Fertility 0.00 88.00 88.00 88.00 88.00 88.00 88.00 92.00 88.00 88.00 88.00 90.00
(100 x 9) 0.05 88.00 88.00 88.00 88.00 88.00 88.00 90.00 88.00 90.00 88.00 92.00

0.10 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 90.00
0.20 88.00 88.00 88.00 88.00 88.00 88.00 90.00 90.00 90.00 90.00 90.00
0.30 88.00 88.00 88.00 88.00 88.00 88.00 90.00 90.00 90.00 90.00 90.00
0.50 88.00 88.00 88.00 88.00 88.00 88.00 90.00 90.00 90.00 88.00 90.00

SPECT 0.00 73.80 74.33 75.40 72.73 72.73 78.61 91.44 93.58 90.91 93.05 86.10
(267 x 22) 0.05 74.33 74.33 74.33 72.73 72.73 78.61 90.91 93.58 90.91 93.05 86.10

0.10 74.33 73.26 74.33 72.73 72.73 78.61 90.91 94.12 90.91 93.05 86.10
0.20 74.33 74.33 74.87 72.73 72.73 78.61 89.84 93.58 90.91 93.05 86.10
0.30 74.33 73.80 74.87 73.26 72.73 78.61 91.98 93.05 90.91 93.05 86.63
0.50 73.80 73.80 74.87 75.40 74.87 78.61 90.37 93.58 90.91 92.51 86.63

Monks2 0.00 67.13 67.13 67.13 67.13 67.13 66.43 71.76 67.13 67.36 67.13 67.36
(432 x 6) 0.05 67.13 67.13 67.13 67.13 67.13 66.43 67.13 67.13 67.36 67.59 67.36

0.10 67.13 67.13 67.13 67.13 67.13 66.43 68.06 67.13 67.36 67.13 67.13
0.20 67.13 67.13 67.13 67.13 67.13 66.43 68.29 67.13 67.36 67.13 67.13
0.30 67.13 67.13 67.13 67.13 67.13 66.43 67.13 67.13 67.36 67.13 67.13
0.50 67.13 67.13 67.13 67.13 67.13 66.43 67.13 67.36 67.13 67.13 67.13

Haberman 0.00 75.97 73.38 73.38 73.38 73.38 69.48 75.97 73.38 73.38 73.38 73.38
(306 x 3) 0.05 75.97 75.32 73.38 73.38 73.38 69.48 76.62 73.38 75.32 73.38 73.38

0.10 76.62 75.97 73.38 73.38 73.38 69.48 73.38 73.38 73.38 73.38 73.38
0.20 75.97 75.97 75.97 75.32 74.03 69.48 74.03 73.38 74.68 75.32 75.32
0.30 75.97 75.97 75.97 75.97 75.97 69.48 73.38 73.38 74.68 73.38 75.97
0.50 73.38 73.38 73.38 73.38 73.38 69.48 74.68 73.38 75.97 74.03 73.38

Planning Relax 0.00 71.43 71.43 71.43 71.43 71.43 68.13 71.43 71.43 69.23 64.83 68.13
(182 x 12) 0.05 71.43 71.43 71.43 71.43 71.43 69.48 71.43 72.53 69.23 64.83 68.13

0.10 71.43 71.43 71.43 71.43 71.43 69.48 71.43 71.43 69.23 64.83 68.13
0.20 71.43 71.43 71.43 71.43 71.43 69.48 71.43 71.43 67.03 64.83 68.13
0.30 71.43 71.43 71.43 71.43 71.43 69.48 74.72 71.43 67.03 64.83 68.13
0.50 71.43 71.43 71.43 71.43 71.43 69.48 72.53 71.43 67.03 64.83 68.13



32 Chapter 6. Experiments

Table 6.7: ISPTWSVM performance on UCI datasets for non-linear case

Datasets ε Sparse Pin SVM TWSVM ISPTWSVM
τ τ

0.01 0.1 0.2 0.5 1 0.01 0.1 0.2 0.5 1
Heart-Statlog 0.00 83.70 84.44 82.22 82.96 80.74 84.44 84.56 84.56 84.56 84.56 84.56
(270 x 13) 0.05 82.22 84.44 82.96 82.96 80.00 84.44 82.56 82.56 84.56 84.56 84.56

0.10 81.48 84.44 82.96 82.96 81.48 84.44 84.56 84.56 84.56 84.56 84.56
0.20 82.22 85.18 82.96 82.96 83.70 84.44 82.56 84.56 84.56 84.56 84.56
0.30 82.22 84.44 82.96 82.22 84.44 84.44 84.56 82.56 84.56 84.56 84.56
0.50 83.70 84.44 85.18 83.70 83.70 84.44 82.56 84.56 84.56 84.56 84.56

Heart-C 0.00 79.61 80.26 77.63 78.95 77.63 82.89 81.95 81.95 81.95 81.95 81.95
(303x13) 0.05 80.92 80.92 78.29 78.95 78.95 82.89 81.95 81.95 81.95 81.95 81.95

0.10 80.92 80.26 78.29 78.29 78.95 82.89 81.95 81.95 81.95 81.95 81.95
0.20 80.26 79.61 78.95 77.63 78.95 82.89 81.95 81.95 81.95 81.95 81.95
0.30 80.26 79.61 78.95 78.29 80.26 82.89 81.95 81.95 81.95 81.95 81.95
0.50 82.24 80.26 80.26 80.26 80.26 82.89 81.95 81.95 81.95 81.95 81.95

SPECT 0.00 91.98 91.98 91.98 91.98 91.98 91.44 92.40 91.98 91.98 91.98 91.98
(267 x 22) 0.05 91.98 91.98 91.98 91.98 91.98 91.44 91.98 91.98 91.98 91.98 91.98

0.10 91.98 91.98 91.98 91.98 91.98 91.44 91.98 91.98 91.98 91.98 91.98
0.20 91.98 91.98 91.98 91.98 91.98 91.44 91.98 91.98 91.98 91.98 91.98
0.30 91.98 91.98 91.98 91.98 91.98 91.44 91.98 91.98 91.98 91.98 91.98
0.50 91.98 91.98 91.98 91.98 91.98 91.44 91.98 91.98 91.98 91.98 91.98

Haberman 0.00 76.62 77.27 77.92 77.27 77.27 77.92 77.92 73.38 73.38 77.92 73.38
(306 x 3) 0.05 77.27 76.62 76.62 76.62 76.62 77.92 77.92 73.38 73.38 77.92 73.38

0.10 76.62 77.27 75.97 76.62 77.27 77.92 73.38 75.38 73.38 73.38 73.38
0.20 75.97 76.62 76.62 76.62 75.97 77.92 73.38 73.38 75.38 73.38 73.38
0.30 77.27 77.27 77.27 77.27 77.27 77.92 73.38 77.92 73.38 77.92 73.38
0.50 76.62 76.62 76.62 76.62 76.62 77.92 77.92 73.38 73.38 73.38 75.38

Planning Relax 0.00 72.53 71.43 72.53 72.53 73.63 72.53 71.43 72.61 72.61 71.43 71.43
(182 x 12) 0.05 72.53 72.53 72.53 72.53 72.53 72.53 71.43 71.43 72.61 71.43 72.61

0.10 72.53 72.53 72.53 72.53 72.53 72.53 71.43 71.43 71.43 71.43 71.43
0.20 72.53 74.72 72.53 71.43 71.43 72.53 71.43 71.43 72.61 71.43 71.43
0.30 71.43 72.53 72.53 72.53 72.53 72.53 71.43 71.43 72.61 71.43 71.43
0.50 73.63 71.43 74.72 71.43 71.43 72.53 71.43 71.43 72.61 71.43 71.43

Fertility 0.00 88.00 88.00 88.00 88.00 88.00 90.00 88.00 90.00 90.00 88.00 90.00
(100 x 9) 0.05 88.00 88.00 88.00 88.00 88.00 90.00 90.00 90.00 90.00 88.00 88.00

0.10 88.00 88.00 88.00 88.00 88.00 90.00 88.00 90.00 90.00 88.00 88.00
0.20 88.00 88.00 88.00 88.00 88.00 90.00 88.00 90.00 90.00 88.00 90.00
0.30 88.00 88.00 88.00 88.00 88.00 90.00 88.00 90.00 90.00 88.00 88.00
0.50 88.00 88.00 88.00 88.00 88.00 90.00 88.00 90.00 90.00 88.00 88.00
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Table 6.8: Optimal c values for linear kernel for SPTWSVM

Datasets ε Sparse Pin SVM TWSVM SPTWSVM
τ τ

0.01 0.1 0.2 0.5 1 0.01 0.1 0.2 0.5 1
Heart-Statlog 0 1 1 103 10−1 10−2 10−5 10−5 10−5 10−5 10−5 10−5

(270 × 13) 0.05 1 1 101 101 10−2 10−5 10−5 10−5 10−5 10−5 10−5

0.1 10−1 104 101 1 10−2 10−5 10−5 10−5 10−5 1 10−5

0.20 10−1 102 105 10−1 103 10−5 10−5 10−5 10−5 10−5 10−5

0.30 10−1 10−1 1 101 10−1 10−5 10−5 10−5 10−5 10−5 10−5

0.50 10−1 10−1 10−1 10−1 1 10−5 10−5 10−5 10−5 10−5 10−5

Australian 0 104 10−1 103 10−1 10−2 10−1 10−1 10−1 10−1 10−1 10−2

(690 × 14) 0.05 101 10−1 10−1 10−1 10−2 10−1 10−1 10−1 10−1 10−1 10−1

0.10 103 10−1 10−1 10−1 10−1 10−1 10−1 10−1 10−1 10−1 10−2

0.20 105 10−1 10−1 10−1 10−2 10−1 10−1 10−1 10−1 10−1 10−2

0.30 105 10−1 10−1 10−1 105 10−1 10−1 10−1 10−1 10−1 10−2

0.50 105 10−1 10−1 10−1 10−1 10−1 1 1 1 1 1
Heart-C 0 1 103 1 10−3 10−3 1 1 10−5 1 10−5 10−5

(303 × 13) 0.05 1 1 103 10−4 10−4 1 1 1 1 10−5 10−5

0.10 1 1 1 10−3 10−4 1 1 1 1 10−5 10−5

0.20 10−1 101 10−1 10−4 10−4 1 1 1 1 1 10−5

0.30 10−1 1 1 1 10−3 1 1 1 1 1 1
0.50 10−1 10−1 103 105 101 1 10−5 10−5 10−5 10−5 10−5

SPECT 0 10−1 102 10−1 10−5 10−5 10−5 10−5 10−3 10−3 10−4 10−5

(267 × 22) 0.05 10−1 10−1 10−1 10−5 10−5 10−5 10−5 103 10−4 10−4 10−5

0.1 10−1 10−1 10−1 10−5 10−5 10−5 10−5 10−5 10−4 10−4 10−5

0.2 10−1 10−1 10−1 10−5 10−5 10−5 10−5 10−5 10−4 10−4 10−5

0.3 10−1 10−1 10−1 10−1 10−5 10−5 10−2 10−2 10−2 10−2 10−5

0.50 10−2 10−2 10−1 10−1 10−1 10−5 10−5 10−5 10−5 10−5 10−5

Monk3 0 10−1 101 1 104 10−1 1 1 1 1 1 10−5

(432 × 6) 0.05 10−1 1 1 101 10−1 1 1 1 1 1 1
0.1 10−1 101 105 10−1 10−1 1 1 1 1 1 1
0.2 10−2 10−1 101 101 1 1 1 1 1 1 1
0.3 1 10−1 10−1 105 104 1 1 1 1 10−4 1
0.5 10−1 1 1 10−1 10−1 1 1 1 1 1 1

Breast 0 10−3 10−3 1 10−3 10−3 10−1 101 10−1 1 1 10−1

(116 × 10) 0.05 10−3 10−3 10−1 10−3 10−5 10−1 101 101 102 1 1
0.1 10−3 10−3 1 10−3 10−3 10−1 10−1 101 10−1 10−1 10−1

0.2 10−3 10−3 102 10−3 1 10−1 10−1 10−1 10−1 10−1 10−1

0.3 10−3 10−3 10−2 102 1 10−1 10−1 10−1 10−1 10−1 10−1

0.5 10−3 10−3 10−2 10−1 10−3 10−1 10−1 10−1 10−1 10−1 101
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Table 6.9: Optimal c values for non-linear kernel for SPTWSVM

Datasets ε Sparse Pin SVM TWSVM SPTWSVM
τ τ

0.01 0.1 0.2 0.5 1 0.01 0.1 0.2 0.5 1
Heart-Statlog 0 104 105 103 105 104 10−2 1 1 1 1 1
(270 × 13) 0.05 105 105 105 105 104 10−2 10−2 10−2 1 1 10−1

0.1 104 105 105 105 105 10−2 10−2 10−2 10−2 10−2 10−2

0.20 104 105 103 104 105 10−2 10−2 10−2 10−2 10−2 10−1

0.30 104 105 104 104 104 10−2 1 1 1 1 1
0.50 105 104 104 104 104 10−2 1 1 1 1 1

Sonar 0 103 1 10 1 1 10−3 103 102 102 102 102

(208 × 60) 0.05 101 1 1 102 104 10−3 10−3 10−5 10−5 10−5 10−5

0.10 104 104 101 103 102 10−3 10−5 10−5 10−5 10−5 10−5

0.20 10−2 103 103 101 102 10−3 10−5 10−5 10−5 10−5 10−5

0.30 104 103 104 104 102 10−3 10−5 10−5 10−5 10−5 10−5

0.50 10−2 103 103 10−2 104 10−3 10−5 10−5 10−5 10−5 10−5

Monk3 0 101 101 104 101 101 10−5 10−5 1 101 1 1
(432 × 6) 0.05 101 101 101 102 101 10−5 10−2 10−2 1 1 1

0.10 101 101 101 102 101 10−5 10−2 10−2 10−2 1 1
0.20 101 101 101 101 101 10−5 10−2 10−2 10−2 10−2 10−2

0.30 101 101 101 101 101 10−5 10−2 10−2 10−2 10−2 10−2

0.50 1 104 102 102 102 10−5 10−5 10−5 10−5 10−5 10−5

Liver Disorder 0 1 1 1 102 104 1 1 1 1 1 10−1

(345 × 6) 0.05 1 1 1 1 102 1 1 1 1 1 1
0.1 1 1 1 1 104 1 1 1 1 1 1
0.2 1 1 102 105 104 1 1 1 1 1 1
0.3 1 1 1 1 104 1 1 1 1 1 1
0.50 1 1 1 1 1 1 1 1 1 1 1

Planning Relax 0 1 10−5 1 1 105 1 1 1 1 1 1
(182 × 12) 0.05 1 1 1 1 1 1 10−5 10−5 10−5 10−5 10−5

0.1 1 1 1 1 1 1 10−5 10−5 10−5 10−5 10−5

0.2 1 105 1 10−5 10−5 1 10−5 10−5 10−5 10−5 10−5

0.3 10−5 1 103 1 1 1 1 1 1 1 1
0.5 105 1 105 10−5 10−5 1 10−5 10−5 10−5 10−5 10−5

Fertility 0 10−5 10−5 10−5 10−5 105 10−2 10−2 101 101 102 101

(100 × 9) 0.05 10−5 10−5 10−5 10−5 10−5 10−2 10−2 10−2 10−2 102 101

0.1 10−5 10−5 10−5 10−5 10−5 10−2 101 10−2 10−2 10−2 10−2

0.2 10−5 10−5 10−5 10−5 10−5 10−2 10−2 10−2 10−2 10−2 10−2

0.3 10−5 10−5 10−5 10−5 10−5 10−2 10−2 10−2 10−2 101 10−2

0.5 10−5 10−5 10−5 10−5 10−5 10−2 10−5 10−5 10−5 10−5 10−5
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Table 6.10: Optimal γ values for non-linear kernel for SPTWSVM

Datasets ε Sparse Pin SVM TWSVM SPTWSVM
τ τ

0.01 0.1 0.2 0.5 1 0.01 0.1 0.2 0.5 1
Heart-Statlog 0 10−6 10−6 10−5 10−6 10−5 10−5 10−6 10−6 10−6 10−6 10−6

(270 × 13) 0.05 10−6 10−6 10−6 10−6 10−5 10−5 10−5 10−5 10−6 10−6 10−5

0.1 10−6 10−6 10−6 10−6 10−6 10−5 10−5 10−5 10−5 10−5 10−5

0.20 10−6 10−6 10−5 10−6 10−6 10−5 10−5 10−5 10−5 10−5 10−5

0.30 10−6 10−6 10−6 10−6 10−6 10−5 10−6 10−6 10−6 10−6 10−6

0.50 10−7 10−6 10−6 10−6 10−6 10−5 10−6 10−6 10−6 10−6 10−6

Sonar 0 10−6 1 10−4 1 1 10−3 10−7 10−7 10−6 10−6 10−6

(208 × 60) 0.05 10−4 1 1 10−5 10−7 10−3 10−3 10−4 10−4 10−4 10−4

0.10 10−7 10−7 10−4 10−6 10−5 10−3 10−4 10−4 10−4 10−4 10−4

0.20 10−1 10−6 10−6 10−4 10−5 10−3 10−4 10−4 10−4 10−4 10−4

0.30 10−7 10−6 10−7 10−7 10−5 10−3 10−4 10−4 10−4 10−4 10−4

0.50 10−1 10−6 10−6 10−1 10−7 10−3 10−4 10−4 10−4 10−4 10−4

Monk 3 0 10−1 10−1 10−3 10−1 10−1 10−3 10−3 10−3 10−4 10−2 10−2

(432 × 6) 0.05 10−1 10−1 10−2 10−2 10−1 10−3 10−3 10−3 10−3 10−3 10−3

0.10 10−1 10−1 10−1 10−2 10−1 10−3 10−3 10−3 10−3 10−3 10−3

0.20 10−1 10−1 10−1 10−1 10−1 10−3 10−3 10−3 10−3 10−3 10−3

0.30 10−1 10−1 10−1 10−1 10−1 10−3 10−3 10−3 10−3 10−3 10−3

0.50 10−1 10−3 10−2 10−2 10−2 10−3 10−3 10−3 10−3 10−3 10−3

Liver Disorder 0 10−4 10−4 10−4 10−5 10−6 10−6 10−6 10−6 10−6 10−6 10−5

(345 × 6) 0.05 10−4 10−4 10−4 10−4 10−5 10−6 10−6 10−6 10−6 10−6 10−5

0.1 10−4 10−4 10−4 10−4 10−6 10−6 10−6 10−6 10−6 10−6 10−6

0.2 10−4 10−4 10−5 10−7 10−6 10−6 10−6 10−6 10−6 10−6 10−6

0.3 10−4 10−4 10−4 10−4 10−6 10−6 10−6 10−6 10−6 10−6 10−6

0.5 10−4 10−4 10−4 10−4 10−6 10−6 10−6 10−6 10−6 10−6 10−6

Planning Relax 0 10−1 10−7 10−1 1 10−3 10−4 10−4 1 10−4 10−4 10−4

(182 × 12) 0.05 1 1 1 1 1 10−4 10−7 10−7 10−1 10−7 10−7

0.1 1 1 1 1 1 10−4 10−7 10−7 10−7 10−7 10−7

0.2 1 10−3 101 10−7 10−7 10−4 10−7 10−7 10−7 10−7 10−7

0.3 10−7 1 10−2 1 1 10−4 10−5 10−5 10−5 10−5 10−5

0.5 10−3 10−7 10−3 10−7 10−7 10−4 10−7 10−7 10−7 10−7 10−7

Fertility 0 10−7 10−7 10−7 10−7 10−7 10−4 10−4 10−6 10−6 10−6 10−6

(100 × 9) 0.05 10−7 10−7 10−7 10−7 10−7 10−4 10−4 10−4 10−4 10−7 10−7

0.1 10−7 10−7 10−7 10−7 10−7 10−4 10−4 10−4 10−4 10−4 10−4

0.2 10−7 10−7 10−7 10−7 10−7 10−4 10−4 10−4 10−4 10−4 10−4

0.3 10−7 10−7 10−7 10−7 10−7 10−4 10−4 10−4 10−4 10−4 10−4

0.5 10−7 10−7 10−7 10−7 10−7 10−7 10−7 10−7 10−7 10−7 10−7
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Table 6.13: Optimal γ values for non-linear kernel of ISPTWSVM

Datasets ε Sparse Pin SVM TWSVM SPTWSVM
τ τ

0.01 0.1 0.2 0.5 1 0.01 0.1 0.2 0.5 1
Heart-Statlog 0.00 10−6 10−6 10−5 10−6 10−5 10−5 10−6 10−6 10−6 10−6 10−6

(270 x 13) 0.05 10−6 10−6 10−6 10−6 10−5 10−7 10−7 10−6 10−6 10−6

0.10 10−6 10−6 10−6 10−6 10−6 10−3 10−4 10−4 10−4 10−4

0.20 10−6 10−6 10−5 10−6 10−6 10−4 10−4 10−4 10−4 10−4

0.30 10−6 10−6 10−6 10−6 10−6 10−6 10−6 10−6 10−6 10−6

0.50 10−7 10−6 10−6 10−6 10−6 10−6 10−6 10−6 10−6 10−6

Heart-C 0.00 10−5 10−6 10−4 10−4 10−5 10−5 10−5 10−5 10−5 10−5 10−5

(303x13) 0.05 10−6 10−6 10−5 10−4 10−5 10−5 10−5 10−5 10−5 10−5

0.10 10−6 10−6 10−6 10−5 10−7 10−5 10−5 10−5 10−5 10−5

0.20 10−6 10−4 10−4 10−4 10−7 10−5 10−5 10−5 10−5 10−5

0.30 10−4 10−4 10−4 10−5 10−6 10−5 10−5 10−5 10−5 10−5

0.50 10−5 10−5 10−5 10−7 10−6 10−5 10−5 10−5 10−5 10−5

SPECT 0.00 101 101 101 101 101 102 10−7 10−7 10−7 10−7 10−7

(267 x 22) 0.05 101 101 101 101 101 10−7 10−7 10−7 10−7 10−7

0.10 101 101 101 101 101 102 10−7 10−7 10−7 10−7

0.20 101 101 101 101 101 102 10−7 102 102 102

0.30 101 101 101 101 101 102 10−7 102 102 102

0.50 101 101 101 101 101 102 101 101 102 102

Haberman 0.00 10−4 10−3 10−3 10−4 10−3 10−4 10−4 10−3 10−4 10−3 10−4

(306 X 3) 0.05 10−4 10−3 10−4 10−3 10−3 10−4 10−4 10−3 10−3 10−4

0.10 10−3 10−4 10−3 10−3 10−4 10−4 10−4 10−3 10−3 10−4

0.20 10−3 10−4 10−3 10−3 10−3 10−4 10−2 10−2 10−2 10−4

0.30 10−2 10−2 10−2 10−2 10−2 10−4 10−4 10−4 10−4 10−4

0.50 10−2 10−2 10−2 10−2 10−2 10−4 10−4 10−4 10−4 10−4

Planning Relax 0.00 100 10−7 100 100 10−3 10−4 10−4 10−4 10−4 10−4 10−4

(182 x 12) 0.05 100 100 100 100 100 10−5 10−5 10−1 10−7 10−7

0.10 100 100 100 100 100 10−5 10−5 10−7 10−7 10−7

0.20 100 10−3 100 10−7 10−7 10−5 10−5 10−7 10−7 10−7

0.30 10−7 100 10−2 100 100 10−5 10−5 10−5 10−5 10−5

0.50 10−3 10−7 10−3 10−7 10−7 10−7 10−7 10−7 10−7 10−7

Fertility 0.00 10−7 10−7 10−7 10−7 10−7 10−4 10−4 10−6 10−6 10−6 10−6

(100 x 9) 0.05 10−7 10−7 10−7 10−7 10−7 10−4 10−4 10−7 10−7 10−7

0.10 10−7 10−7 10−7 10−7 10−7 10−4 10−4 10−7 10−7 10−7

0.20 10−7 10−7 10−7 10−7 10−7 10−4 10−4 10−4 10−4 10−4

0.30 10−7 10−7 10−7 10−7 10−7 10−4 10−7 10−7 10−7 10−4

0.50 10−7 10−7 10−7 10−7 10−7 10−7 10−7 10−7 10−7 10−7
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Chapter 7

Conclusion and Future Work

A novel model called SPTWSVM is proposed in this project report. Compared to the original
TWSVM, our proposed SPTWSVM is noise insensitive and sparse at the same time. The validity
of our proposed SPTWSVM is demonstrated by numerical experiments performed on several
UCI benchmark and synthetic datasets for both linear and non-linear cases. Numerical experi-
ments clearly show that the classification accuracy of our SPTWSVM outperforms the accuracy
of Sparse Pin SVM and TWSVM in most of the cases, while simultaneously maintaining sparsity
and insensitivity to noise, especially, around the decision boundary. Further experiments for
our second model ISPTWSVM on several UCI benchmark datasets highlight that ISPTWSVM
is an efficient method for solving large scale problems with classification accuracy better or at
par with the existing models. Hence, our models are excellent solvers for all varieties of binary
classification problems and hold the following attractive properties:

• SPTWSVM
Our novel SPTWSVM is insensitive to feature noise, sparse in the number of support
vectors and stable for re-sampling as compared to TWSVM. It is also approximately
four times faster than its Sparse Pin SVM counterpart. SPTWSVM can also be easily
extended to other formulations built on top of TWSVM.

• ISPTWSVM
Our novel ISPTWSVM introduces the principle of structural risk minimization in our
SPTWSVM model, which can improve classification performance. ISPTWSVM is fea-
sible for large scale datasets, since we bypass the calculation of inverse matrices in the
dual problem which entail large time complexities (O(m3), where the matrix is of size
m×m). The model is also noise insensitive, sparse, stable for resampling and fast to
train just like the SPTWSVM model.

Several parameters need to be regularized in both our SPTWSVM and ISPTWSVM models,
and, hence, the design of proper parameter selection is our future work. Furthermore, devel-
oping more efficient training algorithms such as sequential minimal optimization (SMO) and
successive over relaxation (SOR) for our models is a promising avenue of research.
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