

B. TECH. PROJECT REPORT
On

DRIVER DROWSINESS DETECTION

BY

Achanta Vishnu Vardhan

DISCIPLINE OF ELECTRICAL ENGINEERING

INDIAN INSTITUTE OF TECHNOLOGY INDORE

December 2018

DRIVER DROWSINESS

DETECTION

A PROJECT REPORT

Submitted in partial fulfilment of the

requirements for the award of the degree

of

BACHELOR OF TECHNOLOGY

in

ELECTRICAL ENGINEERING

Submitted by:

Achanta Vishnu Vardhan

Guided by:

Dr. Vivek Kanhangad,

Associate Professor,

Electrical Engineering,

Indian Institute of Technology Indore

INDIAN INSTITUTE OF TECHNOLOGY INDORE

December 2018

CANDIDATE’S DECLARATION

I hereby declare that the project entitled “Driver Drowsiness Detection” submitted in partial

fulfilment for the award of the degree of Bachelor of Technology in Electrical Engineering

completed under the supervision of Dr. Vivek Kanhangad, Associate Professor, Electrical

Engineering, IIT Indore is an authentic work.

Further, I declare that I have not submitted this work for the award of any other degree

elsewhere.

Achanta Vishnu Vardhan

1500002001

Discipline of Electrical Engineering

Indian Institute of Technology Indore

CERTIFICATE by BTP Guide

 It is certified that the above statement made by the student is correct to the best of my

knowledge and belief.

Dr. Vivek Kanhangad,

Associate Professor,

Discipline of Electrical Engineering,

Indian Institute of Technology Indore.

I

Preface

This report on “Driver Drowsiness Detection" is prepared under the guidance of

Dr. Vivek Kanhangad.

This report mainly focuses on face detection (HOG, sliding windows) and feature

extraction on the detected face to detect the status of eyes of the driver. Thus

giving us an idea whether or not the driver is in a drowsy state.

I have tried to the best of my abilities and knowledge to explain the content of

my project in a lucid manner.

Achanta Vishnu Vardhan

B.Tech. IV Year

Discipline of Electrical Engineering

IIT Indore

II

III

Acknowledgements

I have taken efforts in this project. However, it would not have been possible

without the kind support and help of Dr. Vivek Kanhangad and IIT Indore. I am

highly indebted to Dr. Vivek Kanhangad for his guidance and constant

supervision as well as for providing necessary information regarding the project

& also for his support in completing the project.

I would like to express my gratitude towards my parents for their kind co-

operation and encouragement which helped me in completion of this project. I

would like to express my special gratitude and thanks to Electrical engineering

department for giving me such attention and time.

Achanta Vishnu Vardhan

B.Tech. IV Year

Discipline of Electrical Engineering

IIT Indore

IV

V

Abstract

Driver fatigue is one of the major causes of accidents in the world. Detecting the

drowsiness of the driver is one of the surest ways of measuring driver fatigue. In

this project I aim to develop a prototype drowsiness detection system. This system

works by monitoring the eyes of the driver and sending an alert when he/she is

drowsy.

The system so designed is a non-intrusive real-time monitoring system. The

priority is on improving the safety of the driver without being obtrusive. In this

project the eye blink of the driver is detected. If the drivers eyes remain closed

for more than a certain period of time, the driver is said to be drowsy and an alert

is sent. The programming for this is done in OpenCV using the dlib library for

the detection of facial features.

VI

1

Table of Contents

Preface I

Acknowledgments III

Abstract V

Chapter 1: Introduction 5

 1.1 Background 5

 1.2 Literature Overview 6

 1.3 Motivation 7

Chapter 2: Face Detection 8

 2.1 Histogram of Oriented Gradients 8

 2.1.1 Gradient Computation 9

 2.1.2 Orientation and binning 9

 2.1.3 Descriptor Blocks 9

 2.1.4 Block Normalization 10

 2.1.5 Examples of HOG 11

 2.2 Image Pyramid 12

 2.3 Sliding Window 13

Chapter 3: Drowsiness Detection based on EAR 14

 3.1 Feature Extraction 14

 3.2 Shape Predictor 15

 3.3 Eye Aspect Ratio (EAR) 17

Chapter 4: Algorithm and Results 19

 4.1 Flowchart 20

 4.2 Results 21

Chapter 5: Conclusion 25

 5.1 Future Work 25

References 26

Appendix 28

 Appendix A: Facial Detection Code - Python 28

 Appendix B: Drowsiness Detection Code - Python 29

2

3

List of Figures

 Figure 2.1: Sample image and generated histogram of oriented gradients of the image.

 Figure 2.2: Sample image and generated histogram of oriented gradients of the image.

 Figure 2.3: Visual Interpretation of an Image Pyramid

 Figure 2.4: Sliding Window

 Figure 3.1: Facial Landmarks Predictor Shape

 Figure 3.2: Eye Vector Positions

 Figure 3.3: EAR values for different eye positions

 Figure 4.1: A simple flowchart of the algorithm implemented.

 Figure 4.2: Status when the eyes are open and under over illumination

 Figure 4.3: Status when the eyes are closed and under over illumination

 Figure 4.4: Status when the eyes are closed and under normal illumination

 Figure 4.5: Status when the eyes are open and under normal illumination

 Figure 4.6: Status when the eyes are open and under low illumination

 Figure 4.7: Status when the eyes are closed and under low illumination

4

5

Chapter 1

INTRODUCTION

1.1 Background:

The development of technology allows introducing more advanced solutions in

everyday life. This makes work less exhausting for employees, and also increases the work

safety. Vision-based systems are becoming more popular and are more widely used in different

applications. These systems can be used in industry (e.g. sorting systems), transportation (e.g.

traffic monitoring), airport security (e.g. suspect detection systems), and in the end-user

complex products such as cars (car parking camera). Such complex systems could also be used

to detect vehicle operator fatigue using vision-based solutions. Fatigue is such a psychophysical

condition of a man, which does not allow for a full concentration. It influences the human

response time, because the tired person reacts much slower, compared to the rested one.

Appearance of the first signs of a fatigue can become very dangerous, especially for such

professions like drivers. Nowadays, more and more professions require long-term

concentration. People, who work for transportation business (car and truck drivers, steersmen,

airplane pilots), must keep a close eye on the road, so they can react to sudden events (e.g. road

accidents, animals on the road, etc.) immediately. Long hours of driving causes the driver

fatigue and, consequently, reduces her/him response time.

Driver drowsiness detection is a car safety technology which helps prevent accidents

caused by the driver getting drowsy. Various studies have suggested that around 20% of all

road accidents are fatigue-related, up to 50% on certain roads. During long journeys, it’s

possible that the driver may lose attention because of drowsiness, which may be a potential

reason for fatal accidents. With technologies like Driver Drowsiness Detection getting it is

possible to detect driver’s driving behaviour that may prove fatal to the vehicle as well as the

people boarding it.

Having such sleep detection system in cars embedded in vehicles could protect precious

lives and property worth billion dollars. The outcome would be positive – it would be suitable

for fleet owners as well as individual vehicle users. In either case, the objective is identical by

sleep detection while driving.

6

This system is based on driver visual analysis using image processing techniques.

Computer vision can be a natural and non-intrusive technique for monitoring driver’s

sleepiness from the images taken by some cameras placed in front of the user. These approaches

are effective because of the occurrence of sleepiness is reflected through the driver’s face

appearance and eyes activity.

The driver drowsiness detection system uses Image Processing to analyse the driver’s

eye blink pattern by sitting on the vehicle’s dashboard. If the eye lid movements are abnormal

than usual then the detection system triggers the alarm thus alerting the driver about the

condition.

1.2 Literature Overview

 A driver who falls asleep at the wheel loses control of the vehicle, an action which often

results in a crash with either another vehicle or stationary objects. In order to prevent these

devastating accidents, the state of drowsiness of the driver should be monitored. The following

measures have been used widely for monitoring drowsiness:

(1) Vehicle-based measures— A number of metrics, including deviations from lane position,

movement of the steering wheel, pressure on the acceleration pedal, etc., are constantly

monitored and any change in these that crosses a specified threshold indicates a significantly

increased probability that the driver is drowsy.

(2) Behavioural measures — The behaviour of the driver, including yawning, head pose, etc.,

is monitored through a camera and the driver is alerted if any of these drowsiness symptoms

are detected.

(3) Physiological measures — The correlation between physiological signals

(electrocardiogram (ECG), electromyogram (EMG), electrooculogram (EoG) and

electroencephalogram (EEG)) and driver drowsiness has been studied by many researchers.

Other than these three, researchers have also used subjective measures where drivers

are asked to rate their level of drowsiness either verbally or through a questionnaire. The

intensity of drowsiness is determined based on the rating [13]. Such tasks could be complicated

take a lot of effort and data collection.

7

1.3 Motivation

 Life is precious and no number of words suffice to evaluate it. It’s, therefore,

imperative to protect it from fatal consequences while driving a vehicle. Driving a vehicle

involves coordination of the locomotor system along with the healthy function of the brain.

When the driver feels drowsy, it may unsettle the balance and may lead to erratic driving

causing potential accidents. While driving, you may feel drowsy when you’re under driving

fatigue because of continuous driving for several hours. It’s here that the driver drowsiness

detection plays a significant role in preventing accidents that could otherwise cause massive

loss of life and property.

Unlike traditional image processing methods for computing blinks which typically

involve some combination of:

1.) Eye localization.

2.) Thresholding to find the whites of the eyes.

3.) Determining if the “white” region of the eyes disappears for a period of time

(indicating a blink).

The eye aspect ratio is instead a much more elegant solution that involves a very simple

calculation based on the ratio of distances between facial landmarks of the eyes[1]. This method

for eye blink detection is fast, efficient, and easy to implement. Also we wouldn’t be needing

to collect any additional data, like in case of steering wheel pattern systems where the data

collection could is challenging and dangerous if necessary precautions are not taken.

8

Chapter 2

Face Detection

In this chapter we shall discuss briefly the underlying techniques of face detection. The method

could be divided in 3 sub-divisions. They histogram of oriented gradients, construction of an

image pyramid and a sliding window mechanism.

2.1 Histogram of Oriented Gradients

The histogram of oriented gradients (HOG) is a feature descriptor used in computer vision and

image processing for the purpose of object detection. The technique counts occurrences of

gradient orientation in localized portions of an image. This method is similar to that of edge

orientation histograms, scale-invariant feature transform descriptors, and shape contexts, but

differs in that it is computed on a dense grid of uniformly spaced cells and uses overlapping

local contrast normalization for improved accuracy.

 The essential thought behind the histogram of oriented gradients descriptor is that local

object appearance and shape within an image can be described by the distribution of intensity

gradients or edge directions. The image is divided into small connected regions called cells,

and for the pixels within each cell, a histogram of gradient directions is compiled. The

descriptor is the concatenation of these histograms. For improved accuracy, the local

histograms can be contrast-normalized by calculating a measure of the intensity across a larger

region of the image, called a block, and then using this value to normalize all cells within the

block. This normalization results in better invariance to changes in illumination and shadowing.

The HOG descriptor has a few key advantages over other descriptors. Since it operates

on local cells, it is invariant to geometric and photometric transformations, except for object

orientation. Such changes would only appear in larger spatial regions. Moreover, as Dalal and

Triggs discovered, coarse spatial sampling, fine orientation sampling, and strong local

photometric normalization permits the individual body movement of pedestrians to be ignored

so long as they maintain a roughly upright position. The HOG descriptor is thus particularly

suited for human detection in images.

Let’s now look into different stages of HOG.

9

2.1.1 Gradient Computation

 The first step of calculation in many feature detectors in image pre-processing is to

ensure normalized color and gamma values. As Dalal and Triggs point out, however, this step

can be omitted in HOG descriptor computation, as the ensuing descriptor normalization

essentially achieves the same result. Image pre-processing thus provides little impact on

performance. Instead, the first step of calculation is the computation of the gradient values. The

most common method is to apply the 1-D centered, point discrete derivative mask in one or

both of the horizontal and vertical directions. Specifically, this method requires filtering the

color or intensity data of the image with the following filter kernels:

 [-1, 0, 1] and [-1, 0, 1]T

Dalal and Triggs tested other, more complex masks, such as the 3x3 Sobel mask or diagonal

masks, but these masks generally performed more poorly in detecting humans in images. They

also experimented with Gaussian smoothing before applying the derivative mask, but similarly

found that omission of any smoothing performed better in practice.

2.1.2 Orientation binning

The second step of calculation is creating the cell histograms. Each pixel within the cell

casts a weighted vote for an orientation-based histogram channel based on the values found in

the gradient computation. The cells themselves can either be rectangular or radial in shape, and

the histogram channels are evenly spread over 0 to 180 degrees or 0 to 360 degrees, depending

on whether the gradient is “unsigned” or “signed”. Dalal and Triggs found that unsigned

gradients used in conjunction with 9 histogram channels performed best in their human

detection experiments. As for the vote weight, pixel contribution can either be the gradient

magnitude itself, or some function of the magnitude. In tests, the gradient magnitude itself

generally produces the best results. Other options for the vote weight could include the square

root or square of the gradient magnitude, or some clipped version of the magnitude.

2.1.3 Descriptor Blocks

 To account for changes in illumination and contrast, the gradient strengths must be

locally normalized, which requires grouping the cells together into larger, spatially connected

blocks. The HOG descriptor is then the concatenated vector of the components of the

normalized cell histograms from all of the block regions. These blocks typically overlap,

meaning that each cell contributes more than once to the final descriptor. Two main block

geometries exist: rectangular R-HOG blocks and circular C-HOG blocks. R-HOG blocks are

generally square grids, represented by three parameters: the number of cells per block, the

number of pixels per cell, and the number of channels per cell histogram. In the Dalal and

Triggs human detection experiment, the optimal parameters were found to be four 8x8 pixels

cells per block (16x16 pixels per block) with 9 histogram channels. Moreover, they found that

some minor improvement in performance could be gained by applying a Gaussian spatial

window within each block before tabulating histogram votes in order to weight pixels around

10

the edge of the blocks less. The R-HOG blocks appear quite similar to the scale-invariant

feature transform (SIFT) descriptors; however, despite their similar formation, R-HOG blocks

are computed in dense grids at some single scale without orientation alignment, whereas SIFT

descriptors are usually computed at sparse, scale-invariant key image points and are rotated to

align orientation. In addition, the R-HOG blocks are used in conjunction to encode spatial form

information, while SIFT descriptors are used singly.

Circular HOG blocks (C-HOG) can be found in two variants: those with a single, central cell

and those with an angularly divided central cell. In addition, these C-HOG blocks can be

described with four parameters: the number of angular and radial bins, the radius of the center

bin, and the expansion factor for the radius of additional radial bins. Dalal and Triggs found

that the two main variants provided equal performance, and that two radial bins with four

angular bins, a center radius of 4 pixels, and an expansion factor of 2 provided the best

performance in their experimentation(to achieve a good performance, at last use this

configure). Also, Gaussian weighting provided no benefit when used in conjunction with the

C-HOG blocks. C-HOG blocks appear similar to shape context descriptors, but differ strongly

in that C-HOG blocks contain cells with several orientation channels, while shape contexts

only make use of a single edge presence count in their formulation.

2.1.4 Block Normalization

Dalal and Triggs explored four different methods for block normalization. Let “v” be the non-

normalized vector containing all histograms in a given block, ||v||k be its k-norm for k = 1, 2

and e be some small constant (the exact value, hopefully, is unimportant). Then the

normalization factor can be one of the following:

L2 – norm: 𝒇 =
𝒗

√∥𝒗∥𝟐
𝟐 +𝒆𝟐

 (2.1)

L2-hys: L2-norm followed by clipping (limiting the maximum values of v to 0.2) and

renormalizing, as in

L1 – norm: 𝒇 =
𝒗

∥𝒗∥𝟏+𝒆
 (2.2)

L1 – sqrt: 𝒇 = √
𝒗

∥𝒗∥𝟏+𝒆
 (2.3)

In addition, the scheme L2-hys can be computed by first taking the L2-norm, clipping the

result, and then renormalizing. In their experiments, Dalal and Triggs found the L2-hys, L2-

norm, and L1-sqrt schemes provide similar performance, while the L1-norm provides slightly

less reliable performance; however, all four methods showed very significant improvement

over the non-normalized data.

11

2.1.5 Examples of HOG:

Figure 2.1: Sample image and generated histogram of oriented gradients of the image [26].

Figure 2.2: Sample image and generated histogram of oriented gradients of the image [25].

12

2.2 Image Pyramid

Figure 3: An example of an image pyramid. At each layer of the pyramid the image is

downsized and (optionally) smoothed [22].

 An “image pyramid” is a multi-scale representation of an image.

Utilizing an image pyramid allows us to find objects in images at different scales of an

image. And when combined with a sliding window we can find objects in images in various

locations. At the bottom of the pyramid we have the original image at its original size (in terms

of width and height). And at each subsequent layer, the image is resized (subsampled) and

optionally smoothed (usually via Gaussian blurring). The image is progressively subsampled

until some stopping criterion is met, which is normally a minimum size has been reached and

no further subsampling needs to take place.

13

2.3 Sliding Window

 Sliding windows play an integral role in object classification, as they allow us to

localize exactly “where” in an image an object resides. Utilizing both a sliding window and an

image pyramid we are able to detect objects in images at various scales and locations. In the

context of computer vision (and as the name suggests), a sliding window is a rectangular region

of fixed width and height that “slides” across an image, such as in the following figures:

Figure 4 : Showing different positions of the sliding window [24].

For each of these windows, we would normally take the window region and apply an

image classifier to determine if the window has an object that interests us — in this case, a

face. Combined with image pyramids we can create image classifiers that can recognize objects

at varying scales and locations in the image. These techniques, while simple, play an absolutely

critical role in object detection and image classification.

14

Chapter 3

Drowsiness Detection based on EAR

In this chapter we shall see how an in depth analysis of the facial landmarks can help us

determine the state of the driver. The state of driver can be interpreted based the eyes of the

driver. If the driver’s eyes are closed for a minimum amount of amount, we can say the driver

is drowsy. To exploit this idea we can use the feature extraction and shape predictor methods.

Once we get the data on eyes of the driver we can proceed to calculate the extent to which the

eyes are open or closed. This extent is based on EAR (eye aspect ratio) which discussed in the

later stages of this chapter.

3.1 Feature Extraction

In machine learning, pattern recognition and in image processing, feature extraction starts from

an initial set of measured data and builds derived values (features) intended to be informative

and non-redundant, facilitating the subsequent learning and generalization steps. Feature

extraction is a dimensionality reduction process, where an initial set of raw variables is reduced

to more manageable groups (features) for processing, while still accurately and completely

describing the original data set.

When the input data to an algorithm is too large to be processed and it is suspected to

be redundant (e.g. the same measurement in both feet and meters, or the repetitiveness of

images presented as pixels), then it can be transformed into a reduced set of features (also

named a feature vector). Determining a subset of the initial features is called feature selection.

The selected features are expected to contain the relevant information from the input data, so

that the desired task can be performed by using this reduced representation instead of the

complete initial data.

15

3.2 Shape Predictor

Detecting facial landmarks is a subset of the shape prediction problem. Given an input

image (and normally an ROI that specifies the object of interest), a shape predictor attempts to

localize key points of interest along the shape. In the context of facial landmarks, our goal is

detect important facial structures on the face using shape prediction methods.

Detecting facial landmarks is therefore a two-step process:

Step 1: Localize the face in the image.

Step 2: Detect the key facial structures on the face ROI.

The programs first loads the image and then detects the face of the driver using the

dlib.frontal_face_detector() function provided by the dlib library. Then we proceed to predict

the locations of facial landmarks by using the predictor() function a model which needs the

location of the predictor being used as its input. Once the processing is done we get set of

variables containing the data points (vector locations of the facial landmarks) for each of the

recognized face.

 From here we can make use of necessary data points to calculate the EAR of both the

eyes (discussed in the next chapter).

The model is given below:

16

Figure 3.1: Facial Landmarks Predictor Model [22]

17

3.3 Eye Aspect Ratio

 In this approach we only use two sets of facial structures “the eyes”. Each eye is

represented by 6 (x, y)-coordinates (as seen in the shape predictor), starting at the left-corner

of the eye (as if you were looking at the person), and then working clockwise around the

remainder of the region:

Figure 3.2: Sample positioning vectors determining the positions of the eyes[1].

Based on this image, we should take away one key point, “There is a relation between the width

and the height of these coordinates”.

Based on the work by Soukupová and Čech in their 2016 paper, Real-Time Eye Blink Detection

using Facial Landmarks, we can then derive an equation that reflects this relation called the

eye aspect ratio (EAR):

EAR =
∥𝒑𝟐− 𝒑𝟔∥ + ∥𝒑𝟑− 𝒑𝟓∥

𝟐∥𝒑𝟏− 𝒑𝟒∥
 (4.1)

Where p1… p6 are 2D facial landmark locations as depicted in the above figure. The numerator

of this equation computes the distance between the vertical eye landmarks while the

denominator computes the distance between horizontal eye landmarks, weighting the

denominator appropriately since there is only one set of horizontal points but two sets of

vertical points.

18

The eye aspect ratio is approximately constant while the eye is open, but will rapidly

fall to zero when a blink is taking place. Using this simple equation, we can avoid image

processing techniques and simply rely on the ratio of eye landmark distances to determine if a

person is blinking.

To make this more clear, consider the following figure from Soukupová and Čech [1]:

Figure 3.3: Top-left: A visualization of eye landmarks when then the eye is open — the eye

aspect ratio here would be large(r) and relatively constant over time. However, once the person

blinks (top-right) the eye aspect ratio decreases dramatically, approaching zero. Bottom:

Plotting the eye aspect ratio over time. The dip in the eye aspect ratio indicates a blink (Figure

1 of Soukupová and Čech)[1].

 Thus the EAR is calculated and when the EAR is continuously low for over 2 secs we

can eliminate the possibility that the driver is blinking and be sure that he is either sleeping or

about doze off. Then we can send an alert in form of a sound signal to warn the driver.

The EAR for both the eyes is calculated and averaged, when the average value goes

below 0.2, the eyes are in closed state.

19

Chapter 4

Algorithm and Results

Let’s now discuss flow of the algorithm. The code reads the provided input file (or the webcam

feed (or) the feed of the camera placed directly opposite to the driver). Then we proceed to

analyse the feed frame by frame. Each frame is passed through the get_frontal_face_detector()

function. The function returns a set of bounding points for each detected face in the frame. We

then consider the face with maximum area as the driver would be the one closet to the camera.

This function uses face detection techniques discussed in chapter 2.

 Once we have identified the face of the driver, we can start by calculating the position

vectors for different parts of the face. The shape predictor we use in this program is based on a

68 point landmark prediction of the face as discussed in chapter 3. The predictor returns the 68

landmarks of the detected. We can now proceed to calculate the EAR of both the eyes.

 Once the EAR is calculated and averaged for both the eyes, we compare it with a fixed

value of 0.2. If the calculated value is less than 0.2 we start a counter to count the number of

successive frames for which the value is less than 0.2. Once the counter reaches the count of 8

or above we can be definitive that the driver is drowsy and not blinking. At this point we can

send an alert to the driver to help him get his attention back. This process is repeated over and

over. The process has also been laid out briefly in form of a flow chart in Figure 5.1.

20

4.1 Flowchart

Read the video frame by

frame from the input.

Get position vectors for

both eyes using shape

predictor.

Calculate EAR for both

eyes and average it.

Face

detected

using dlib

If EAR

less

than 0.2

Increase the counter by 1

If counter

greater

than 8

The driver is drowsy.

Send an alert

Yes

Yes

Yes

No

No

No

Figure 4.1: A simple flow chart of the algorithm implemented.

21

4.2 Results

Figure 4.2: Status when the eyes are open and under over illumination.

Figure 4.3: Status when the eyes are closed and under over illumination

22

Figure 4.4: Status when the eyes are closed and under normal illumination

23

Figure 4.5: Status when the eyes are open and under normal illumination

24

Figure 4.6: Status when the eyes are open and under low illumination

Figure 4.7: Status when the eyes are closed and under low illumination

25

Chapter 5

Conclusion

This drowsiness detector hinged on two important computer vision techniques:

 Facial landmark detection

 Eye aspect ratio

Facial landmark prediction is the process of localizing key facial structures on a face, including

the eyes, eyebrows, nose, mouth, and jawline.

Specifically, in the context of drowsiness detection, we only needed the eye regions. Once we

have our eye regions, we can apply the eye aspect ratio to determine if the eyes are closed. If

the eyes have been closed for a sufficiently long enough period of time, we can assume the user

is at risk of falling asleep and sending an alert to grab their attention.

 The system was tested for different people in different ambient lighting conditions

(daytime and night-time). The face is kept at an optimum distance, then the system is able to

detect drowsiness. The result is good and can be implemented in real-time systems as well.

5.1 Future Work

 In the real time driver drowsiness detection system is required to slow down a vehicle

automatically when drowsiness level crosses a certain limit. Instead of threshold drowsiness

level it is suggested to design a continuous scale driver drowsiness detection system. It

monitors the level of drowsiness continuously and when this level exceeds a certain value a

signal is generated which controls the hydraulic braking system of the vehicle.

 In addition to this, we can simultaneously monitor the head pose of the driver and use

the data along with drowsiness detection for a more accurate monitoring of the driver.

26

References

1.) Soukupová, Tereza and Jan Cech. “Real-Time Eye Blink Detection using Facial

Landmarks.” (2016).

2.) A. Asthana, S. Zafeoriou, S. Cheng, and M. Pantic. “Incremental face alignment in the

wild”. In Conference on Computer Vision and Pattern Recognition, 2014.

3.) L. M. Bergasa, J. Nuevo, M. A. Sotelo, and M. Vazquez. “Real-time system for

monitoring driver vigilance”. In IEEE Intelligent Vehicles Symposium, 2004.

 4.) M. Chau and M. Betke. “Real time eye tracking and blink detection with USB

cameras”. Technical Report 2005-12, Boston University Computer Science, May 2005.

5.) T. Danisman, I. Bilasco, C. Djeraba, and N. Ihaddadene. “Drowsy driver detection system

using eye blink patterns”. In Machine and Web Intelligence (ICMWI), Oct 2010.

6.) H. Dinh, E. Jovanov, and R. Adhami. “Eye blink detection using intensity vertical

projection”. In International Multi-Conference on Engineering and Technological Innovation,

IMETI 2012.

7.) M. Divjak and H. Bischof. “Eye blink based fatigue detection for prevention of

computer vision syndrome”. In IAPR Conference on Machine Vision Applications, 2009.

8.) T. Drutarovsky and A. Fogelton. “Eye blink detection using variance of motion vectors”.

In Computer Vision - ECCV Workshops. 2014.

9.) W. H. Lee, E. C. Lee, and K. E. Park. “Blink detection robust to various facial poses”.

Journal of Neuroscience Methods, Nov. 2010.

10.) Medicton group. “The system I4Control”. http://www.i4tracking.cz/.

11.) G. Pan, L. Sun, Z. Wu, and S. Lao. “Eyeblink-based anti-spoofing in face recognition

from a generic webcamera”. In ICCV, 2007.

12.) S. Ren, X. Cao, Y. Wei, and J. Sun. “Face alignment at 3000 fps via regressing local

binary features”. In Proc. CVPR, 2014.

13.) A. Sahayadhas, K. Sundaraj, and M. Murugappan. “Detecting driver drowsiness based

on sensors: A review”. MDPI open access: sensors, 2012.

14.) F. M. Sukno, S.-K. Pavani, C. Butakoff, and A. F. Frangi. “Automatic assessment of eye

blinking patterns through statistical shape models”. In ICVS, 2009.

15.) D. Torricelli, M. Goffredo, S. Conforto, and M. Schmid. “An adaptive blink detector to

initialize and update a view-basedremote eye gaze tracking system in a natural scenario”.

Pattern Recogn. Lett., 30(12):1144–1150, Sept. 2009.

16.) X. Xiong and F. De la Torre. “Supervised descent methods and its applications to face

alignment”. In Proc. CVPR, 2013.

27

17.) Z. Yan, L. Hu, H. Chen, and F. Lu. “Computer vision syndrome: A widely spreading

but largely unknown epidemic among computer users”. Computers in Human Behaviour,

(24):2026–2042, 2008.

18.) F. Yang, X. Yu, J. Huang, P. Yang, and D. Metaxas. “Robust eyelid tracking for fatigue

detection”. In ICIP, 2012.

19.) S. Zafeiriou, G. Tzimiropoulos, and M. Pantic. “The 300 videos in the wild (300-VW)

facial landmark tracking in-the-wild challenge”. In ICCV Workshop, 2015.

http://ibug.doc.ic.ac.uk/resources/300-VW/

20.) J. Cech, V. Franc, and J. Matas. “A 3D approach to facial landmarks: Detection,

refinement, and tracking”. In Proc. International Conference on Pattern Recognition, 2014.

21.) www.wikipedia.org

22.) www.dlib.net

23.) http://iipimage.sourceforge.net/documentation/images/

24.) https://www.pyimagesearch.com/2015/03/23/sliding-windows-for-object-detection-with-

python-and-opencv/

25.) https://www.flickr.com/photos/unavoidablegrain/8123343395

26.) https://www.learnopencv.com/histogram-of-oriented-gradients/

http://www.wikipedia.org/
http://www.dlib.net/
http://iipimage.sourceforge.net/documentation/images/
https://www.pyimagesearch.com/2015/03/23/sliding-windows-for-object-detection-with-python-and-opencv/
https://www.pyimagesearch.com/2015/03/23/sliding-windows-for-object-detection-with-python-and-opencv/
https://www.flickr.com/photos/unavoidablegrain/8123343395

28

Appendix

Appendix – A: Face detection code

import sys

import dlib

detector = dlib.get_frontal_face_detector()

win = dlib.image_window()

for f in sys.argv[1:]:

 print("Processing file: {}".format(f))

 img = dlib.load_rgb_image(f)

 dets = detector(img, 1)

 print("Number of faces detected: {}".format(len(dets)))

 for i, d in enumerate(dets):

 print("Detection {}: Left: {} Top: {} Right: {} Bottom: {}".format(

 i, d.left(), d.top(), d.right(), d.bottom()))

 win.clear_overlay()

 win.set_image(img)

 win.add_overlay(dets)

 dlib.hit_enter_to_continue()

29

Appendix – B: Python code for the program

To run this file make sure you installed

1.) OpenCV Version 3 or above

2.) dlib and it's dependencies

3.) Python 3

4.) Numpy

5.) Scipy

Execute the file by the following command

python3 driver_drowsiness_detection.py input.mp4

Where input.mp4 is the input file to the program.

The output file gets stored in the same folder

as the driver_drowsiness_detection.py file as output.mp4

import sys

import dlib

import cv2

import numpy as np

from scipy.spatial import distance

#Function to calculate the EYE ASPECT RATIO of both eyes.

def EAR(vec):

 a = distance.euclidean(vec[1], vec[5])

 b = distance.euclidean(vec[2], vec[4])

 c = distance.euclidean(vec[0], vec[3])

 ear = (a + b) / (2.0 * c)

 return ear

#Making sure there is an input file

if len(sys.argv) != 2:

30

 exit()

detect = dlib.get_frontal_face_detector()

#Download the landmark detector from

http://dlib.net/files/shape_predictor_68_face_landmarks.dat.bz2

Extract it and save it as "face_landmarks_68.dat" , in the

same folder as the driver_drowsiness_detection.py file

predict = dlib.shape_predictor("face_landmarks_68.dat")

win = dlib.image_window()

cap = cv2.VideoCapture(sys.argv[1])

Check if camera opened successfully

if (cap.isOpened() == False):

 print("Unable to read camera feed")

 exit()

frame_width = int(cap.get(3))

frame_height = int(cap.get(4))

out = cv2.VideoWriter('output.mp4',cv2.VideoWriter_fourcc('H','2','6','4'), 5,

(frame_width,frame_height))

font = cv2.FONT_HERSHEY_SIMPLEX

count = 0

while(True):

#Decreasing the frame rate from 30FPS to 5FPS for better performance

 ret, img = cap.read()

 ret, img = cap.read()

 ret, img = cap.read()

 ret, img = cap.read()

 ret, img = cap.read()

 ret, img = cap.read()

31

Checking whether the frame is captured properly or not

 if ret == True:

 img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)

 win.clear_overlay()

 win.set_image(img)

 #Detecting the face in the rame if any

 dets = detect(img, 1)

 vec = np.empty([68, 2], dtype = int)

 status="Not Sleeping"

 for k, d in enumerate(dets):

 print("Detection {}: Left: {} Top: {} Right: {} Bottom: {}".format(

 k, d.left(), d.top(), d.right(), d.bottom()))

 # Get the landmarks/parts for the face in box d

 shape = predict(img, d)

 for b in range(68):

 vec[b][0] = shape.part(b).x

 vec[b][1] = shape.part(b).y

 # Calculating EAR by above defined function

 right_ear=EAR(vec[42:48])

 left_ear=EAR(vec[36:42])

 img = cv2.cvtColor(img, cv2.COLOR_RGB2BGR)

 # Keeping a track of total amount of time

 # for which the eyes are closed.

 # If it is more than 2 secs, we can be sure

 # the driver is dosing off

32

 if (right_ear+left_ear)/2 <0.2:

 if(count < 20):

 count =count +1

 if (count > 8):

 status= "Sleeping"

cv2.rectangle(img,(d.left(),d.top()),(d.right(),d.bottom()),(0,0,255),3)

 else:

cv2.rectangle(img,(d.left(),d.top()),(d.right(),d.bottom()),(0,255,0),3)

 else:

 if(count > 1):

 count = count -1

 cv2.rectangle(img,(d.left(),d.top()),(d.right(),d.bottom()),(0,255,0),3)

 cv2.putText(img, status, (20,(frame_height-20)), font,

4,(0,255,255),6,cv2.LINE_AA)

 # Writing the file to disk.

 out.write(img)

 #cv2.imshow(status, img)

 win.add_overlay(dets)

 win.set_title(status)

 if cv2.waitKey(1) & 0xFF == ord('q'):

 break

 else:

 break

Destroying the created windows.

cap.release()

out.release()

cv2.destroyAllWindows()

