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Abstract 

This study explores the introduction of nanostructures, and the 

areas where they are playing an important role. We investigated  

the mechanical properties of boron nitride nanosheets while  

addressing challenges in analysis methods for predicting the 

accurate results of structural properties.  approaches were 

discussed, emphasizing how they operate, their benefits, 

limitations, and the necessity for a more effective and efficient 

solution. Introducing the novel MLIP method with the use of 

machine learning technique, we thoroughly discussed the step–

by–step creation process of MLIP using precise but limited data 

and the parameters that should be taken care for the construction 

of an effective potential. Furthermore, we addressed techniques 

for evaluating its performance and robustness in different 

environments. With the implementation of the newly formed MLIP 

in classical molecular dynamics simulation, we outlined how 

simulation software operates and functions and investigated the 

mechanical attributes of boron nitride nanosheets, exploring the 

fluctuations of sheet strength across a range of dimensions, 

temperatures, and added layers. We obtained a Young’s modulus 

of 993 GPa at 1K, whereas an average breaking stress and 

breaking strain are around 106 GPa and 0.16, respectively. Our 

outcome exhibits significant enhancements compared to prior 

studies, highlighting MLIP's effectiveness in advancing studies 

with greater accuracy and minimal effort. This study offers 

comprehensive analysis and theoretical exploration, delivering 

valuable insights into MLIP and the mechanical properties of 

boron nitride nanosheets, paving the way for future applications 

in materials science and engineering. 
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Chapter 1 : Introduction and Literature Review 

1.1 Introduction to nanostructures and their applications 

Nanomaterials are typically described as substances consisting of 

components wherein at least one dimension measures below 100 nm. 

This defining characteristic gives rise to novel physical and chemical 

properties inherent to the nanoscale. Compared to bulk materials, 

nanoscale observation reveals variations in the electrical, optical, 

chemical, thermal, and magnetic characteristics of the same material as 

shown in Figure 1. The two main reasons why nanomaterials exhibit 

unique properties compared to bulk materials are: 

1. High surface to volume ratio        2. Quantum confinement effects 

The considerable elevation in the ratio of surface atoms to interior atoms 

in nanomaterials enables them to engage more effectively with the 

environment than bulk materials. Despite this, it's worth noting that as 

size decreases, the surface-to-volume ratio increases, leading to a 

proportional effect on properties including transition temperature and 

solubility. Quantum size effects are intricately linked to the concept of 

"dimensionality" and confinement, which entails constraining the 

movement of electrons that would otherwise move randomly to discrete 

energy levels. As particles are reduced to the nanoscale, the confining 

dimensions cause energy levels to become discrete, consequently 

increasing the bandgap of the material. The increase in the bandgap 

between the energy levels leads to a spectrum-of-discreet energies 

reflecting various fluorescent colors [1]. 
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Figure 1: Examining atom arrangement in graphite lead at nanoscale 

Reducing particle size to the nanoscale alters properties like melting 

point, fluorescence, electrical conductivity, magnetic permeability, and 

chemical reactivity, which change with particle size. Yet, these 

properties are not exclusively size-dependent. 

Nanomaterials became an important materials in various fields due to 

their unique properties such as grain size on the order of 1–100 nm. 

Their contribution to environmental sustainability and medicine are 

incredible. Here are some of the major fields where nanomaterials play 

important roles. 

1 Energy conversion and storage applications – Nanomaterials not 

only provides an ideal platform to disclose the structure–property 

relationships, but also leads to dramatically enhanced 

performances in supercapacitors, rechargeable batteries, and 

catalysis. They provide numerous fascinating properties, such as 

abundant active surfaces and open ion diffusion channels, which 

enable fast transport and storage of lithium ions and beyond [2]. 

 

2 Medicine - In controlled drug delivery systems (DDS) offer a 

sophisticated approach where the drug is precisely transported to 

its intended site of action, thereby minimizing its impact on vital 
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tissues, and reducing undesirable side effects. Moreover, DDS 

serves to shield the drug from rapid degradation or clearance, 

while concurrently amplifying its concentration within target 

tissues. Consequently, this method facilitates the achievement of 

therapeutic outcomes with lower doses of the drug[3]. 

 

3 Surface coating - Coatings stand as the primary choice for 

shielding metals against corrosion. Despite this, the susceptibility 

of polymer coatings to the penetration of corrosive solutions at the 

metal/coating interface remains a notable concern. However, the 

integration of nanoparticles into coatings has emerged as a 

promising solution to enhance their chemical, mechanical, and 

optical properties. Nanocoating has proven to be a highly effective 

method for mitigating the impact of corrosive environments, 

owing to its array of advantages. These include enhanced surface 

hardness, superior adhesive qualities, long-term durability, as well 

as high-temperature corrosion resistance. Furthermore, 

nanocoating serves to improve tribological properties, among 

other benefits [4].  

 

 

4 Electronics - By enhancing optoelectronic performance, 

broadening integration possibilities, and reducing costs, 

nanomaterials have facilitated significant progress in the electronic 

field. A delicate equilibrium between conductivity and 

stretchability is achieved through high aspect ratio, coupled with 

electronic and optical properties. This balance is essential in 

designing e-skin materials, including strain sensors, solar cells, 

stretchable LEDs, biological monitoring devices, and transparent 

conductors, among other applications [5]. 

 

5 Lubricants - The combination of robust intra-layer atomic bonding 

and low interlayer shear strength makes nanomaterials highly 

promising for lubricating. The two layers in multilayer nanosheets 
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were bonded by Van der Walls which is weak in nature compared 

to covalent bond. This weak bonding result in relatively low shear 

strength, facilitating easy sliding between adjacent layers when 

subjected to shear force. 

 

6 Nanofiltration -  Nanofiltration, utilizing membrane pores sized 

between 0.5 to 2.0 nm and operating pressures situated between 

those of reverse osmosis and ultrafiltration, harnesses the strengths 

of both methods: high-solute rejection and low-energy 

consumption. As nanofiltration technologies rapidly evolve, the 

market for their applications is experiencing significant growth. 

1.2 Classification of nanomaterials 

Based on the dimensionality nanomaterials are classified into 4 

categories which are shown in Figure 2 [6]. 

 

Figure 2: Classification of nanomaterials on the basis of dimensional 

characteristics 

1.  Zero-dimensional nanomaterials (0-D): these materials have all 

three dimensions inside the nanoscale range. Nanoparticles, 

fullerenes, and quantum dots are a few examples. 

2. One-dimensional nanomaterials (1-D): materials falling under 

this category only have one dimension that is not part of the 
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nanoscale. Nanotubes, nanofibers, nanorods, nanowires, and 

nanohorns are a few examples. 

3. Two-dimensional (2-D) nanomaterials: this class of 

nanomaterials has two dimensions that extend beyond the 

nanoscale. Nanofilms, nanosheets, and nanolayers are a few 

examples. The first 2D substance to be found was graphene. 

4. Three-dimensional (3-D) or bulk nanomaterials: materials in 

this class are not limited to any one dimension of the nanoscale. 

Bulk powders, nanoparticle dispersions, arrays of nanowires and 

nanotubes, etc. are all included in this class.  

1.3 Boron nitride nanosheets and structural properties 

Boron nitride has emerged as a popular material after carbon and its 

allotropes. From nano electronics to the space industry, it has shown its 

potential in numerous areas. Structurally similar to carbon, BN forms a 

hexagonal lattice with alternating boron and nitrogen atoms, and can be 

found in forms such as nanosheets, nanoribbons, fullerenes, and 

nanotubes. As shown in Figure 3 [7]. 

 

Figure 3: Categorizing hBN based on the arrangement of atoms. 

Hexagonal boron nitride  (hBN) nanosheets are most popular at current 

period. Due to its similar structural arrangement to graphene, h-BN is 

also called white graphene. In contrast to the purely covalent C–C bonds 

found in graphene, the bonds present in hBN sheets exhibit unique 

properties, prompting numerous researchers to delve deeper into its 
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immense potential for diverse applications [2]. The bond length of B-N 

in sp2 hybridized hBN is 147 pm, with a 334 pm separation between 

consecutive hexagonal planes held together by van der Walls 

interactions. An h-BN sheet consists of dissimilar adjacent sides, with 

one following a zigzag pattern and the other following an armchair 

pattern, as shown in the Figure 4 below. 

 

Figure 4: hBN nanosheet highlighting armchair and zigzag orientation. 

1.4 Methods to synthesis hexagonal boron nitride 

Various approaches have been developed to produce mono- and multi-

layer hexagonal boron nitride (hBN) with a focus on achieving high 

yield and quality, along with significant lateral size. Notably, some 

popular techniques which have been extensively investigated are. 

1) Mechanical exfoliation 

2) Liquid exfoliation 

3) Chemical vapor deposition (CVD) 

Each synthesis method offers distinct advantages and disadvantages. 

Mechanical exfoliation presents a feasible approach for producing 

crystalline hBN structures, provided it is executed properly. However, 
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the resulting hBN layers are often randomly distributed with limited 

flake size and low yield. In contrast, liquid exfoliation proves to be an 

economical method for generating a significant amount of hBN 

nanosheets Nevertheless, the inconsistent layer quantity, small flake 

sizes, and potential risk of surface contamination from the chemicals 

involved may present challenges for large-scale practical production.  

 

In contrast, chemical vapor deposition (CVD) and vapor phase epitaxy 

processes offer advantage of managing the layer count while facilitating 

the extensive fabrication of atomically thin hBN nanosheets as shown in 

Figure 5. Despite this, the demanding synthesis conditions, including 

high reaction temperatures and exposure to different gas atmospheres, 

often give rise to defects within the crystal structure. As a consequence, 

significant variations occur in the material properties of 2D-hBN, 

ultimately affecting device performance [8]. 

 

Figure 5: Diagrammatic representation of the CVD setup utilized for h-BN 

synthesis 

1.5 Structural properties of hBN 

hBN has extraordinary bulk properties, including high mechanical 

rigidity, high thermal and chemical stability, a low dielectric constant 
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(electrical insulation), and a very low coefficient of friction offered 

abundant opportunities to investigate various diverse applications. hBN 

demonstrates considerable promise across various industries, scientific 

disciplines, and technological fields, particularly in nano-electronics, 

optoelectronics, field emission, and lubrication under extreme 

temperature conditions. [9]. 

 

BN nanomaterials possess distinct advantages over their carbon 

counterparts, primarily due to their electrical insulating properties and 

superior stability at high temperatures and in diverse chemical 

environments. Despite being electrically insulating, hBN can be 

effectively tuned to exhibit varying properties and functionalities 

through several strategies, including doping, substitution, 

functionalization, and hybridization. 

 

Moreover, the sleek surface of h-BN positions it as an exceptional 

contender for tribological applications. With a substantial band gap 

reaching 5.9 eV and seamless lattice parameter alignment with 

graphene, h-BN solidifies its status as an optimal choice for serving as 

an epitaxial substrate and gate layer in graphene-based devices [10]. 

Table 1: Structural properties of hexagonal boron nitride 

Property Value 

Appearance 
White powder, photostable, odorless 

(hexagonal, cosmetic grade) 

Bond length 1.466 Å  

Molar mass 24.82 g mol⁻¹ 

Density ~2.1 g/cm³ 

Structure Crystal; hexagonal 

Melting point 2.973°C; sublimes 

Surface area 0.82–30 m²/g (varies by grade) 

Refractive index (nD) 1.74 
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Stability Chemical inert and stable 

Hardness 1–2 on the Mohs scale 

Specific heat capacity 

(C) 
19.7 J/(K·mol) 

Std enthalpy of 

formation (ΔfHo₂₉₈) 
−254.4 kJ/mol 

Gibbs free energy (ΔfG°) −22 kJ/mol 

Coefficient of friction <0.3 

 

1.6 Literature review and research gap 

Several studies have been conducted on BNS due to their exceptional 

bulk properties, including a high Young’s modulus of 800–850 GPa 

[11], a thermal conductivity of 300–2000 W/m–K [12], an insulating 

property with a 5–6 eV band gap [13] and a low coefficient of friction 

[14]. These features offer multiple opportunities for exploring various 

applications such as manufacturing sensors and actuators [15, 16], 

increasing thermal conductivity [17], improving their thermal energy 

storage performance , efficient thermal management for transformers 

[18], increasing durability of fuel cells [19]. However, accuracy is 

essential to guarantee performance, safety, and dependability in crucial 

fields like space industries like radiation shielding [20], and medical 

applications, including medication administration. Deviations, no matter 

how little, might have fatal effects. Therefore, it is crucial to accurately 

assess the structural qualities. 

Many authors have investigated the mechanical characteristics of hBN 

using various methods. Like, author Han et al. performed the uniaxial 

tension using, molecular dynamics  (MD) simulation and obtained the 

Young’s modulus of 881 GPa [21]. Whereas Zhao and Xue obtained 

Young’s modulus of 716.3 GPa [22]. Li et al. performed the MD 

simulation and observed the Young’s modulus of the pristine hBN sheet 

as 666 GPa and 642 GPa in zig zag and armchair direction respectively 

[23]. Similarly, numerous research has been carried out utilizing first 
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principle method like author Ohba et al. performed first–principles 

calculation based on density functional theory and obtained Young’s 

modulus of 951.5 GPa [24] .  

As we examine the above outcomes, we can see that there is so much 

dispersion in the results obtained by each method for the same material. 

The disparity in property predictions makes it more challenging to use 

BN structures across various industries. Thus, it is essential to undertake 

a thorough examination of structural properties before their utilization. 
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Chapter 2 : Current techniques to study the 

nanostructures  

2.1 Different techniques currently available 

Currently, there are numerous techniques for studying materials at 

various scales, ranging from the continuum scale to the electronic scale. 

Each method has its own advantages and limitations, making the 

selection of the appropriate scale a challenging task that requires 

balancing computational cost and accuracy, as depicted in the Figure 6. 

At the continuum scale, properties are assumed to be continuous, which 

simplifies computations but often results in less accurate outcomes. 

Conversely, studying materials at the electronic scale yields highly 

accurate results, but this precision comes at the cost of significant time 

and financial investment. 

 

Figure 6: Comparing time and length scales across simulation methods: 

balancing accuracy and computational efficiency 

For investigating nanostructures and determining their properties, two 

most  popular techniques that were preferred by researchers are ab initio 

molecular dynamics (AIMD) simulations based on density functional 

theory (DFT) [25] and the classical molecular dynamics (CMD) 

simulations which use predefined empirical interatomic potentials (EIP) 
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for the simulations. DFT based AIMD simulation known for its accurate 

force and energy prediction, whereas CMD prioritizes flexibility and 

efficiency [26]. 

2.2 Comparison of AIMD and DFT methods 

AIMD simulations based on DFT perform quantum mechanics 

calculations, which offer an elaborate understanding of materials 

electronic structures, facilitating the assessment of energy interactions 

among atoms within the defined configuration. As a result, DFT based 

simulations yield precise outcomes, positioning them as a popular 

approach for studying nanomaterial properties such as optical, 

optoelectronics, catalytic, magnetic attributes, electronic, chemical, and 

mechanical properties with superior accuracy [27–29]. Despite its 

sufficient accuracy, the DFT method encounters various challenges. 

These include a maximum number of atoms, typically limited to a few 

hundred, simulation duration within a few femtoseconds, high 

computational costs, and extended computational times of several hours 

[30]. All these limitations collectively render the DFT an inappropriate 

method for studying massive structures and accurately evaluating their 

structural attributes [31]. 

2.3 Empirical potential used for CMD simulations 

Conversely, CMD serves as a cost effective method to study the 

structural properties at nanoscales. It is coupled with various predefined 

EIPs like Tersoff [32], ReaxFF [33], AIREBO [34] , REBO [35], and 

others, which are mathematical expressions designed to predict the 

energy and forces acting on atoms within any specified atomic 

arrangement [36]. These EIPs make CMD simulations highly effective, 

computationally fast, widely embraced, and an indispensable 

component for extensive atomistic simulations. 

Among the above empirical potential Tersof  and tersoff like potetntials 

became most successful for determining the boron and nitrogen 

interactions in nanostructures. 
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In the Tersoff interatomic potential, uses the following expression to 

compute the energy E, between atoms or i and j. 

𝐸 = ∑ 𝐸𝑖

 

𝑖

=
1

2
 ∑ 𝑉𝑖𝑗

 

𝑖≠𝑗

 

Where  

𝑉𝑖𝑗 = 𝑓𝐶(𝑟𝑖𝑗)[𝑓𝑅(𝑟𝑖𝑗) + 𝑏𝑖𝑗𝑓𝐴(𝑟𝑖𝑗)] 

Here 𝑓𝑅  (r)  and 𝑓𝐴 (r) are the repulsive and attractive pair potentials, 

respectively. The cutoff function 𝑓𝐶  (r) is defined to restrict the 

potential's range, thereby conserving computational resources in MDS. 

Typically,  the cutoff distance R is selected to encompass only the first-

neighbor shell. In addition, 𝑏𝑖𝑗  is the bond order function that 

determines the strength of the attractive term. 

However, the EIP based CMD simulations does not account for electric, 

magnetic, or optical properties, resulting in significantly reduced 

accuracy [36, 37]. Additionally, all empirical potentials have few 

adjustable parameters, which make them parametric in nature, limiting 

their accuracy and enhancement. Furthermore, EIP’s accuracy is still 

dependent on the reliability of the foundational QM model to which they 

are calibrated, resulting in inaccurate outcomes when applied beyond 

their original training, showing low degree of robustness [37]. 

2.4 Motivation for MLIP construction 

The constraints associated with the above mentioned methods inspired 

researchers to bridge the significant gap between accurate but resource 

intensive DFT based AIMD simulations and effective yet inconsistent 

EIP based CMD simulations. And it's understood that classical atomic-

scale material modeling computations like CMD rely on having the right 

potential. To address this challenge, Behler and Parrinello [38] 

introduced machine learned interatomic potential (MLIP) for the first 

time in 2007, a novel technique that not only offers more precise 

predictions but also operates with increased efficiency and reliability. 
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Similar to EIPs, MLIPs are designed to anticipate the potential energy 

surface relative to atomic positions, which subsequently simplifies force 

and stress calculations in CMD simulations [36]. Nevertheless, they are 

formulated using machine–learning approaches on DFT outcomes, 

resulting in a notable enhancement in simulation accuracy. MLIPs are 

not constrained by material specificity and employ a non–parametric 

functional form, facilitating iterative enhancements in accuracy at the 

cost of computational efficiency. MLIPs function as a bridge, linking 

the two described widely used methods, blending the accuracy of DFT 

with the flexibility of EIP–based CMD simulations. MLIPs comes with 

various benefits, including significantly faster computation, 

outperforming DFT simulations by several orders of magnitude, and 

achieving accuracy close to that of DFT, all while maintaining a lower 

computational cost. Additionally, their flexible nature allows for 

increased accuracy through training with new configurations where the 

cost scales as O(N)in the number of atoms in the system – as compared 

to O(N3)scaling or higher for conventional DFT methods. Today, 

MLIPs have become essential for nanostructure studies, outpacing DFT 

in utilization.  

The intensified interest in this field can be attributed to the swift 

accumulation of data from AIMD simulations, encompassing systems 

containing up to several hundred atoms. This wealth of QM data has 

brought to light the limitations in accuracy of numerous empirical 

potentials. The emergence of MLIP have interrupted the decades-long 

trend of exponential increase of the computational costs associated with 

enhancing the accuracy of interatomic potentials. A comparison study 

of how the MLIP with empirical potentials, year published and variation 

of cost of computation per atom is shown in the  Figure 7 
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Figure 7:  Evaluation of the cost-effectiveness per atom timestep across 

diverse empirical potentials highlighted in (red) and MLIPs in (blue) with 

respect to the year of publication. 

 

The figure shows that while the computational cost increases with the 

implementation of new machine learning potentials, the superior 

accuracy they provide makes this trade-off worthwhile. 

2.5 Different forms of MLIP and their comparison 

In the past decade, there has been a rapid exploration of various 

strategies, all grouped under the umbrella term MLIPs. They can be 

further classified into several classes based on the descriptor and training 

method  utilized for the training the potential. Certain classes of MLIP, 

including moment tensor potential (MTP) [37], spectral neighbor 

analysis potential (SNAP) [39], gaussian approximation potential 

(GAP) [40], and artificial neural network (ANN) potentials developed 

by the atomic energy network (AENET) [41] are among the most widely 

used. Each classification has its own set of opportunities and challenges 

that which are discussed below.  
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1 Neural Network Potential (NNP) – The groundbreaking 

MLIAPs gained momentum with Behler and Parrinello's 

pioneering work on the silicon model. This model employs two-

body and three-body rotationally invariant descriptors, commonly-

referred to as symmetry functions, which provide inputs to a neural 

network, which is both differentiable and non-linear in nature 

Through this methodology, the model accurately forecasts the 

energy associated with every atom 

2 Gaussian Approximation potentials (GAP) – Gaussian process 

regression is harnessed to predict energy and force pertaining to 

individual atoms at the local level by utilizing a sparsified training 

dataset. How closely prediction points align with training points is 

evaluated employing the similarity metric within the descriptor-

space. Originally, GAP descriptors were formulated using the 

SO(4) bispectrum components, but contemporary GAP-potentials 

preferentially employ the spectrum of power originating from 

basis functions in SO(3) in conjunction with radial-basis. These 

potentials are now integrated into QUIP/libatoms. 

 

3 Spectral Neighbor Analysis Potentials- (SNAP) - It utilize 

SO(4) bispectrum-components to represent local-atomic-density, 

providing input to a linear model for the anticipation of local 

atomic energy. This approach has been expanded to include 

quadratic and neural-network-energy-models, as well as 

descriptors-labeled with chemical-information. All necessary code 

to execute SNAP interatomic potentials is integrated into 

LAMMPS-ML-SNAP software-package, which contains a 

command called pair-snap, potential covering various materials, 

and algorithm for generating indispensable training data 

4 Moment Tensor Potential (MTP) -It is similar to SNAP where  

scalars which are rotationally invariant are used to energy specific 

to atoms at a localized level. Consequently, individuals can choose 

based on material and the area of application and proceed with the 

development of potential. Recently, a comparison study on the 
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development of different potentials was conducted by Vijay et. al. 

[36] using different regression methods including atomic-energy-

network (AENET), gaussian-approximation potential (GAP), 

spectral neighbor analysis potential (SNAP) and its quadratic-

extension (qSNAP), and moment-tensor-potential (MTP). Upon 

analysis, it was shown that AENET exhibited the highest potential 

for accurately forecasting total energies, and MTP demonstrated 

superior performance in predicting atomic forces. 

2.6 Applications and Popularity of Machine Learning 

Interatomic Potentials (MLIPs) 

Several studies have been conducted using MLIP including 

determination of thermal conductivity of MoS2 alloys [42], study of 

crack propagation in crystalline silicon [43], Li–based disordered 

rocksalts [44] , determining thermal conductivity in 

graphene/borophene heterostructures [45], study of graphene phonon 

dispersion, in–plane thermal expansion [46], validation of mechanical 

properties of carbon through GAP model [47], determining elastic 

properties of diamond–type silicon with GAP model [40], prediction of 

the grain boundary energy in FCC elemental metals [48], extensive 

study of the mechanical failure and thermal transport properties 

exhibited by different BC2N monolayers [49], determining thermal 

conductivity of 2D and 3D structures [50] and many more. 

Correspondingly numerous studies are in progress to maximize their 

efficiency by applying different machine learning algorithms and 

calibrating different parameters [51, 52]. 

The current work demonstrates the construction of a unique interatomic 

potential using the ML algorithm. Initially, we explore the formulation 

of the potential utilizing data that was generated via AIMD method, 

subsequently, validate the potential through various methods. 

Afterward, we employ the crafted new potential, determine the 

mechanical properties of BN sheets subjected to uniaxial strain via CMD 

simulation across various environmental conditions, and compare the 
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obtained results with previous studies performed via alternative 

methods, meanwhile evaluating the robustness of the potential. 
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Chapter 3 : Methodology of MLIP construction 

3.1 Data generation for training  

The first step in MLIP construction is to generate the training dataset. 

But prior to it, we need to be specific regarding the material and 

application area for the intended use of the MLIP, like hBN sheets in our 

case. One of the most common methods for generating this dataset is to 

perform AIMD simulations. To develop a powerful potential with high 

transferability, we carried out AIMD simulation by utilizing vienna ab 

initio simulation package (VASP) [53] software package with a unit cell 

of hBN nanosheet consisting of 64 atoms as shown in Figure 8. 

 

Figure 8. Flowchart representing the overview of MLIP generation and its 

application in determining structural properties. 

We employed Perdew-Burke-Ernzerhof (PBE) functionalization of the 

generalized gradient approximation (GGA) [54], with projector 

augmented wave (PAW) [55] potentials. The simulations were 

performed, without preserving any symmetry, for all the structures till 

total energies and total forces converged within 0.01 meV and 30 

meV/Å, respectively. We performed a self-consistent field calculation 

for the full structure relaxation. AIMD simulations were performed with 
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Γ-centered k-point meshes with the plane wave kinetic energy cutoff set 

to 520 eV. 

For better performance, it is crucial to highlight diversity while data 

generation, accurately capturing configurations most relevant to the 

targeted applications. While considering the constraints of AIMD, we 

performed several simulations with a runtime of 2 picoseconds, at 

various temperatures ranging between 0–2500 K and applied uniaxial 

strain in both planar directions to generate a high–quality dataset for 

training and validation. Each simulation produces a multiple–

configuration (CFG) file as output, primarily consisting of the force, 

stress, and coordinates of each atom, as well as the total energy of the 

system at each timestep as shown in Fig. 2. For optimal training 

potential, a standard reference database usually comprises anywhere 

from 103 to 104 configurations [36]. In our case, we obtained 68,235 

configurations, encompassing simulations spanning different 

temperatures and strains along multiple directions. 

3.2 Sorting and subsampling of the training data 

Each result is examined through a screening process to identify flaws 

that could hinder efficient training, and any faults observed during the 

simulation are excluded from the original dataset. Before training MLIP, 

the dataset needs to be subsampled into a more manageable dataset for 

computational efficiency by selecting the configurations at specific 

intervals. We took the subsample at every 25th interval from the original 

dataset, which allowed us to minimize 96% from 68,235 to 2,728 

configurations as shown in the Figure 9 
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Figure 9: Subsampling the large dataset into training and testing sets 

 

The training of interatomic potentials frequently encounters the 

challenge of overfitting, where the model replicates reference data 

excessively, thereby diminishing predictive accuracy. To address this 

issue, a small validation dataset is typically created from the original 

dataset to evaluate the model's performance independently [36]. 

Therefore, the final data set consisting of 2728 configurations is then 

further split into two sets: training data and validation data, with the 

distribution of one consisting of 70% and the other 30% of the original 

data, respectively as shown in Figure 10. Training data is primarily 

utilized to train the model, while validation data is utilized to evaluate 

the extent to which our model accurately predicts the outcome when 

exposed to unseen data. 
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Figure 10: Flowchart depicting the steps involved in training MLIP, 

highlighting key stages such as data generation, sub-sampling, and 

validation procedures 

The main objective of MLIP is to enhance precision and minimize the 

computational time and expenses associated with intricate CMD 

simulations. Factors like quality of the data set, descriptors, regression 

model, hyperparameters and number of iterations used for training all 

play vital roles in determining the accuracy and robustness of newly 

developed MLIP, but descriptors and regression model are the most 

crucial determinants. Descriptors define the configuration's features; it 

helps in transforming the local environments of the atoms obtained from 

the simulations into a mathematical representation. For effective MLIP 

training, a descriptor must meet specific criteria, including consistent 

under coordinate system shifts, rotations, and atomic index 

permutations, while also exhibiting continuity [56]. On the other hand, 

regression models employ machine learning algorithms for the given 

descriptor to identify coefficients for the function that can map the 

linking energy of atoms. Among the various regression methods 

discussed earlier, we employed MTP linear regression due to its notable 

balance between accuracy and computational efficiency, surpassing 

alternative regression classes [57]. The potential developed through 

MTP regressor evaluates the energy of an atomic arrangement as the 
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combined effect of individual atom contributions within the sphere of a 

finite cutoff distance. 

3.3 Fundamental behind the fitting the energy curve 

In evaluation process, the MTP regressor helps in determining the 

coefficients 𝜃, while addressing the optimization problem given by:  

∑ [𝑊𝑒(𝐸𝑀𝑇𝑃(𝑐𝑓𝑔𝑘; 𝜃) − 𝐸𝐴𝐼𝑀𝐷(𝑐𝑓𝑔𝑘))2 +𝐾
𝑘=1

 𝑊𝑓 ∑ |𝑓𝑖
𝑀𝑇𝑃(𝑐𝑓𝑔𝑘; 𝜃) − 𝑓𝑖

𝐴𝐼𝑀𝐷(𝑐𝑓𝑔𝑘)|
2

+
𝑁𝑘
𝑖=1

𝑊𝑠|𝜎𝑀𝑇𝑃(𝑐𝑓𝑔𝑘; 𝜃) − 𝜎𝐴𝐼𝑀𝐷(𝑐𝑓𝑔𝑘)|2 ] → min
𝜃

,                     

(1) 

where 𝐸𝑀𝑇𝑃 , 𝑓𝑖
𝑀𝑇𝑃 and 𝜎𝑀𝑇𝑃  are the energy, forces and stress tensor 

respectively, obtained from the  MTP method, on the other hand  𝐸𝐴𝐼𝑀𝐷, 

𝑓𝑖
𝐴𝐼𝑀𝐷 and 𝜎𝐴𝐼𝑀𝐷 are the energy , forces, and stress tensor respectively 

obtained from the AIMD method. Similarly, (𝑐𝑓𝑔𝑘)  signifies the 

configuration pertaining to the kth instance, and 𝜃  represents the 

coefficients of a linear model. The variable 𝑁𝑘 represents atoms in kth-

configuration, with 𝑊𝑒 , 𝑊𝑓 , and 𝑊𝑠  serving as non–negative weights 

that quantify the relevance of energies,-forces, -and-stresses. These 

weights must be calibrated based on the material's chemical structure to 

achieve an effective potential. The linear model with improved 

coefficients facilitates the creation of a finely tuned potential energy 

surface, effectively connecting the reference energies provided in the 

training dataset [36]. Despite the scenario, achieving optimal hyper-

parameters requires repeating the training process multiple times. In our 

instance, we performed over 1500 cycles to achieve an effective 

coefficient. After obtaining the enhanced coefficients of the newly 

developed linearly modeled potential, it is anticipated to deliver accurate 

predictions of energy and force for untrained configurations. 
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3.4 Validation of the newly generated potential 

Once the potential is established, the subsequent task is to validate it 

through diverse validation methods. One effective way to validate the 

new MLIP is to conduct error checks on the newly created potentials 

using the same structure used in the training phase and examine the 

differences between the results predicted by new potential and the actual 

results obtained from the AIMD simulations. To visualize and evaluate 

the discrepancy between predicted and actual results, several metrics are 

used, including the coefficient of determination (R²), mean absolute 

error (MAE) and root mean square error (RMSE) [26]. The equations 

(2), (3), and (4) depict the formulas for calculating RMSE values for 

energy, force, and stress, respectively. 

𝑅𝑀𝑆𝐸 (𝐸)² =
1

𝐾
∑ (

𝐸𝑀𝑇𝑃(𝑐𝑓𝑔𝑘;𝜃)

𝑁(𝑘) −
𝐸𝐴𝐼𝑀𝐷(𝑐𝑓𝑔𝑘)

𝑁(𝑘) )
2

𝐾

𝑘=1

                          

(2) 

𝑅𝑀𝑆𝐸 (𝑓)2 =
1

𝐾
∑

1

3𝑁(𝑘)
𝐾
𝑘=1  ∑ |𝑓𝑖

𝑀𝑇𝑃(𝑐𝑓𝑔𝑘; 𝜃) − 𝑓𝑖
𝐴𝐼𝑀𝐷(𝑐𝑓𝑔𝑘))|

𝑁𝑘
𝑖=1  2    

(3) 

𝑅𝑀𝑆𝐸 (𝜎)2 =
1

𝐾
∑

1

9

𝐾
𝑘=1  |𝜎𝑀𝑇𝑃(𝑐𝑓𝑔𝑘; 𝜃) − 𝜎𝐴𝐼𝑀𝐷(𝑐𝑓𝑔𝑘)|2                    

(4) 

Nonetheless, the new potential must exhibit robustness to be deemed 

effective. To further validate the robustness of the new MLIP. We 

conduct an error check on a validation dataset comprising configurations 

not included in the training process. This evaluation helps verify 

whether the model is overfitting or performing acceptably. Evaluation 

of the MAE and RMSE values of both training and validation data 

enables determination of the MLIPs performance and need for 

additional training. 
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Chapter 4 : Determination of mechanical 

properties of BN sheets using new MLIP in 

LAMMPS 

After confirming satisfactory performance, the new MLIP can be 

utilized as a potential file for CMD simulations, leading to enhanced 

accuracy in results for large scale simulations. In order to obtain precise 

mechanical property for large hBN structures at different environmental 

conditions, we used the newly developed MLIP and performed multiple 

simulations on large–scale-atomic/molecular-massively-parallel 

simulator (LAMMPS) software-package [58]. 

4.1 Data file generation for CMD simulations 

Moreover, to analyze the effect of size on mechanical properties, 

multiple nanosheets were constructed via VMD (visual molecular 

dynamics software (VMD) package. Multiple sheets having dimensions: 

30×30, 50×50, 80×80, 100×100, and 150×150 Å2, all with a uniform 

thickness of 3.3 Å were modeled. The number of atoms in the sheets 

were 336, 960, 2432, 3840, and 8400 respectively. A hBN sheet of 

50×50 Å2 is shown in Figure 11 depicting the loading direction. 

 

Figure 11: Graphic depiction of a 50×50 Å2 hBN sheet, highlighting the 

orientation of loading and the interlayer spacing between adjacent bilayer 

sheet. 
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4.2 How LAMMPS Work: Step-by-Step process 

The LAMMPS program mainly need 3 necessary files: the data file 

(mainly consisting of geometry of atoms and box dimensions), potential 

file (calculates interatomic  energy) the input file (contains the code for 

running the simulation) and the output file (contains trajectory of atoms 

and required data at each timesteps such as pressure, temperature etc.). 

The data file can be created independently, as demonstrated in the 

previous section (4.1) and based on the different atoms and molecules 

one can directly download the potential file from the interatomic 

potentials-repository site [https://www.ctcms.nist.gov/potentials/]. 

The input file is like a script written in C++ language, where all the 

important steps of the simulation need to be mentioned. By following 

this script, LAMMPS can get detailed results from the simulation. It's 

crucial for the code within the input file to adhere to a structured 

sequence, which is primarily segmented into four key stages: initiation, 

atom-definition, setting, and execution. Each of these steps must be 

meticulously followed in their designated order to ensure the seamless 

execution of the simulation, as illustrated in Figure 12. 

 

Figure 12: Sequence of Actions in Creating a LAMMPS Input File 

Initiation – Units – LAMMPS allow user to users to utilize various unit 

styles including lj, real, metal, si, cgs, electron, micro and nano. Each 

https://www.ctcms.nist.gov/potentials/
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style defines different units to mass, length, time, energy, pressure, etc. 

In our case we employed metal units. 

Initiation – Timestep – In any MD simulations, the timestep plays a key 

role in result frequency and affects accuracy, simulation time, and 

trajectory visualization. Selecting the appropriate timestep is difficult 

due to its trade-offs with accuracy, cost, and simulation time as shown 

in the Figure 13. Within our study, we implemented a timestep of 0.0005 

femtoseconds. Which implies that at every 0.0005 femtoseconds the 

system gets updated and produce the required output. 

 

Figure 13: Demonstrating the reciprocal correlation between timestep and 

metrics such as accuracy, cost, and computation time. 

 

Initiation – Boundary conditions - There are multiple styles to define 

boundary conditions. User can employ periodic, or non-periodic 

including fixed or shrink-wrapped boundary conditions in all direction. 

When fixed conditions is specified, atoms departing from the unit cell 

boundary are eliminated. While in shrink-wrapped conditions, boundary 

adjusts to enclose all atoms continuously. Periodic-boundary condition 

(PBC) are selected to approximate a large or infinite system by using a 

small part of the structure called a unit-cell. In PBS the atoms can’t 

escape the simulation box, if an atom move out of the simulation box 
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the same atom enters the simulation box but through opposite side as 

shown in the Figure 14. In our case we opted periodic boundary 

conditions in all directions to approximate that the sheet is to large. 

 

Figure 14: Schematic representation of the idea of periodic boundary 

conditions. 

Atom definition – In this step, you have the option to either directly 

import a data file or manually create the structure by defining atom 

types, interatomic distances, arrangements, etc. In this step we also  need 

to define the potential style and import the potential file to study the 

dynamic interactions of atoms.   

Setting -  In this step we write all the required setting and to the 

simulation box and atoms using energy minimization, ensembles (NVE, 

NVT and NPT), and some fixes. Each fix must be assigned a new ID to 

avoid simulation errors. To balance energy and force in a system  we 

need to apply energy minimization technique, for BN nanosheet we 

employed conjugate gradient method, with energy and force tolerance 

values maintained at 10-10 eV and 10-12 eV/Å, respectively [59]. 

Similarly, to control the environment inside a unit cell LAMMPS 

provide different types of ensembles, some of the popular ensembles are 

NVE, NVT and NPT. A short details of this ensembles is given below 

[60]. 
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NVT: This ensemble is used to keep the number of atoms, volume, and 

temperature constant in unit cell. Typically used when temperature and 

volume both need to be kept constant 

NPT: It keeps number of atoms, pressure , and temperature constant,  

mainly used when pressure and temperature need to be kept constant.  

NVE: It is used when the number of particle, volume and energy need to 

be kept constant. 

In the case of hBN nanosheets we employed NPT ensemble by Nose–

Hoover thermostat and barostat to equilibrate system at specified 

temperature and pressure [61]. A uniaxial tensile strain in the armchair 

direction at a steady strain rate of 1 × 109 s-1  [62]is applied to study the 

mechanical properties. Additionally, users need to define the format of 

the output, specifying the required data and the location for storing the 

results. 

Run – In the last segment of the MD simulation, we define the number 

of iterations to be conducted. This is done by considering the timestep 

and the amount of parametric variation necessary. 

4.3 Working principle of CMD simulations (LAMMPS) 

The main goal of performing  simulation is to capture the trajectory or 

position (rij) of each atom within a system over time. This iterative 

process begins by calculating the total interatomic energy (U) based on 

atom pair distances, encompassing various interactions such as 

Coulombic, van der Waals, and electronic repulsion. To integrate the 

contributions of each interaction we use potential such as Tersoff, 

ARIBO, MLIP etc. This potentials are a mathematical expression which 

provides the total energy of each atom based on interatomic distance. 

Subsequently, utilizing Newtonian mechanics, the differentiation of 

energy (U) with respect to interatomic distance (r) facilitates the 

computation of forces between atoms.  

F(i,j) = - 
𝜕𝑈

𝜕𝑟
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This leads to determining acceleration and velocity for each atom. The 

velocity verlet algorithm was chosen for numerical integration, despite 

the Even though the algorithm's accuracy diminishes with larger time 

steps, considering smaller timesteps demonstrates excellent accuracy. 

The algorithm has shown itself to be quick, straightforward, stable, time-

reversible, and memory efficient. 

a(i) = 
𝐹

𝑚
 

v(i) (t+dt) = v(t) + 
𝑑𝑉(𝑖)

𝑑𝑡
 dt + …. 

r(i) (t+dt) = r(t) + 
𝑑𝑟(𝑖)

𝑑𝑡
 dt + …. 

 

 

This cyclic progression, carried out at every timestep, effectively 

captures the trajectory, as depicted in Figure 15 

 

Figure 15: The working principle and the math behind molecular dynamics 

simulation 

 

The energy between a pair of atoms depends upon various interatomic 

interactions, including Coulombic, van der Waals, and electronic 
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repulsion forces between atoms. Calculating the total energy involves 

summing up these interactions. Next, the energy is differentiated with 

respect to the interatomic distance to derive the force acting on each 

atom. This force is then further differentiated with respect to the mass 

of each atom to determine the acceleration. By integrating the 

acceleration over a defined timestep, the velocity of each atom is 

updated. Finally, multiplying this velocity by the timestep yields the new 

position of each atom in the system, allowing for the dynamic simulation 

of molecular behavior. 
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Chapter 5 : Result and discussion through new 

MLIP 

5.1 Validation of newly developed MLIP through error 

metrics 

The precision and efficacy of our newly developed MLIP have been 

quantitatively assessed by comparing its predictions with those from 

DFT based AIMD simulations. The performance of MLIP, especially in 

predicting the energy of atomic configurations, is pivotal as it serves as 

the basis for estimating other mechanical properties through CMD 

simulations. 

Our MLIP demonstrated outstanding predictive capabilities, as 

illustrated in Figure 16. Upon rigorous examination of the energy 

predictions, based on the training and validation datasets, our model 

yielded an R-squared value of 0.99. This value signifies a near-perfect 

linear correlation between the energies estimated by MLIP and those 

obtained from AIMD simulations, thus confirming a 99% accuracy rate 

in energy prediction. The mean absolute error (MAE) and root mean 

square error (RMSE) serve as critical indicators of the potential's 

predictive accuracy. For the training set, the MAE was found to be 2.03 

× 10-3 eV/atom, and the RMSE was 4.77 × 10-3 eV/atom. These low 

error margins suggest a high degree of precision in the potential’s 

training phase. Comparatively, the validation set results, which are 

essential in establishing the model's generalizability, also reported 

minimal error with an MAE of 1.6 × 10-3 eV/atom and an RMSE of 1.35 

× 10-3 eV/atom. The reduction in error rates from training to validation 

datasets is indicative of the robustness of the MLIP, ensuring its 

reliability when extrapolated to new, unseen data sets. 
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Figure 16: Comparing the energies derived from MLIP and ab initio 

simulation (a) training data and (b) validation data, with data points 

represented in blue and the identity line in black. 

The performance of our MLIP is further validated when compared with 

the findings from previous research, particularly the study by author 

Novikov in 2020 [57]. Our training data achieved lower error outcomes 

compared to those reported in the earlier study, particularly 

demonstrating a lower energy error as illustrated in Table 2. The force 

and stress errors for the training phase were higher compared to 

Novikov's results. However, this is counterbalanced by the validation 

errors where our model demonstrated superior performance with 

significantly lower energy and stress errors of 1.35 meV/atom and 2.32 

GPa, respectively, compared to the earlier study's validation results of 

5.10 ± 1.12 meV/atom and 0.46 ± 0.09 GPa, respectively. 

Table 2: A comparative assessment of training and validation errors, 

focusing on energy, force, and stress, compared to results from previous 

studies. 
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5.2 Validation of MLIP through energy prediction 

Figure 17 provides a visual comparison of energy predictions between 

the newly developed MLIP and AIMD simulations over time, 

effectively illustrating the dynamical evolution of the system's energy 

per atom during CMD simulations conducted under the NVT ensemble 

(constant number of particles, volume, and temperature). Initially, we 

observe that the CMD energy quickly converges to a range of fluctuation 

that closely tracks the AIMD energy. Despite the rapid initial changes, 

which could be attributed to the system equilibrating under the NVT 

conditions, both energies soon settle into a consistent pattern of 

fluctuation, suggesting that the CMD simulations are capturing the 

thermal motions and interactions within the structure with high fidelity. 

The overlay of the CMD and AIMD lines throughout the simulation time 

suggests that the MLIP is accurately predicting the same energetic trends 

as the AIMD simulations. 

 
Energy error 

meV/atom 

Force error 

meV/ Å 

Stress error 

GPa 

Training 4.77 222 6.61 

Training [57] 5.54 ± 2.10 175 ± 4 0.46 ± 0.04 

Validation 1.35 139 2.32 

Validation [57] 5.10 ± 1.12 180 ± 6 0.46 ± 0.09 
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Figure 17: Fluctuation in energy prediction obtained through CMD and 

AIMD simulations. 

The slight deviations between the CMD and AIMD energies that do 

appear are minimal, emphasizing the precision of the MLIP in 

replicating DFT-level accuracy. The amplitude of the energy variations 

in both lines is quite similar, indicating that the MLIP has effectively 

learned the potential energy surface as calculated by DFT to a degree 

that allows for near-equivalent predictions of system energy over time. 

Importantly, the ability of the MLIP to closely follow the AIMD results 

across all time steps both in the equilibration phase and during the 

established fluctuations supports the MLIP's robustness and 

transferability to different conditions, which are essential characteristics 

for reliable predictions in varied simulation scenarios. 

5.3 Mechanical properties of monolayer BN sheet under 

uniaxial tension through new MLIP 

5.3.1 Impact of sheet size on mechanical property variation 

Upon achieving satisfactory validation results for the newly developed 

potential, we employed it to investigate the correlation between sheets 

dimension/temperature and mechanical properties under uniaxial strain 

as shown in Figure 18. 
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Figure 18: Stress response in monolayer hBN sheet under uniaxial tensile 

loading with varying sheet size at 300 K 

We observe that mechanical properties of the hBN sheets remain 

consistent across different dimensions as shown in Figure 18: Stress 

response in monolayer hBN sheet under uniaxial tensile loading with 

varying sheet size at 300 K. Sheets of varying dimensions exhibited a 

consistent trend, with the breaking stress of the majority of hBN sheets 

remaining close to 106 GPa. A similar pattern was observed for the 

breaking strain, which was around 16%, suggesting that the mechanical 

robustness of hBN is largely size-independent within the tested 

parameters.  

Moreover,  employing the linear fit method to the data collected at 1 K, 

we determined a Young’s modulus of 994 GPa, which closely matches 

the results obtained through first–principle techniques in previous 

investigations [24]. Table 3 provides a detailed summary of structural 

performance with varying sheet size from 30 × 30 Å2 to 150 × 150 Å2. 

The Young's modulus is relatively consistent across all sizes, indicating 

material uniformity. Breaking stress and breaking strain also shows 

minimal variation. The findings indicate that the mechanical 

characteristics are not influenced by sheet sizes. 
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Table 3: Mechanical properties of hexagonal boron nitride (h-BN) sheets of 

varying sizes at 1 K 

 

5.3.2 Impact of temperature on mechanical property variation 

Following the confirmation of uniform mechanical properties across 

size variations, we proceeded to investigate temperature effects through 

additional simulations, with a constant sheet size chosen as 100×100 Å2. 

We reported that with an increase in temperature both breaking stress as 

well as breaking strain reduces, as shown in Figure 19 

Sheet size 

(Å2) 

Young’s modulus 

(GPa) 

Breaking stress 

(GPa) 

Breaking strain 

 

30×30 995.5 110.237 0.1828 

50×50 994.6 110.466 0.1796 

80×80 994.8 110.391 0.179 

100×100 992 110.495 0.1995 

120×120 994.5 110.466 0.1796 

150×150 994.6 110.548 0.1792 
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Figure 19: Stress response in monolayer hBN sheet under uniaxial tensile 

loading with varying temperature. 

With the increase in temperature from 1 K to 1500 K the breaking stress 

reduced from 110 GPa to 85.8 GPa whereas breaking strain reduced 

from 18% to 12.4% respectively. This negative correlation between 

temperature and mechanical strength is the result of the increase in 

kinetic energy of atoms with the increasing temperature. At lower 

temperatures, the reduced atomic vibrations correlate with a higher 

resistance to deformation, as evidenced by the higher breaking stress and 

strain. This requires more stress for displacement, strengthening the 

nanosheets. Conversely, at higher temperatures, increased atomic 

vibration allows large movement among atoms even with lower applied 

stress, resulting in weaker nanosheets. The temperature-induced 

softening of the hBN sheets can be attributed to the enhanced kinetic 

energy of the atoms, which lowers the energy barrier for bond 

rearrangement and leads to premature structural failure. 
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5.4 Variation of potential energy under uniaxial strain in 

monolayer hBN nanosheet 

In addition, Figure 20 illustrates the variation in potential energy per 

atom in h-BN sheets of different sizes under uniaxial strain. Applying 

strain to a sheet results in an increase in the potential energy stored 

within the atoms of the sheet. As atoms are separated from their stable 

positions, the bond energy rises, resulting in gradual increase in the 

potential energy. As the potential energy reaches a peak, further strain 

on the sheet leads to crack initiation. The sudden growth of the crack 

leads to a rapid drop in potential energy as the atomic bond breaks. This 

is depicted by the sharp decline in potential energy, indicating that the 

sheet has fractured, and the atoms are rapidly returning to a lower energy 

state. The sudden failure of the sheet also indicates that the h-BN sheet 

shows brittle failure behavior [20] . 

 

Figure 20:Variation of the potential energy of different sheet sizes under 

uniaxial strain. 
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5.5 Dynamic response of a monolayer hBN 

 

Figure 21: Stress distribution in monolayer hBN  nanosheet experiencing  

uniaxial strain in the armchair direction. 

Figure 21 illustrates the dynamic response of a monolayer hBN sheet as 

it is subjected to incremental uniaxial tensile strain, revealing the 

evolution of internal stress concentrations leading to fracture. The color 

gradient transitions from blue (low stress) to red (high stress) vividly 

illustrate the stress heterogeneity across the sheet, providing insight into 

the failure mechanism. Initially, in Figure 21 (a), the pristine lattice 

displays a uniform stress profile indicative of an equilibrated state with 

no loading condition. With the application of tensile strain, Figure 21 

(b) illustrates the emergence of localized stress at atomic sites, signaling 

the initiation of the crack as the strain reaches 15.9%. These high-stress 

regions, depicted in red colors, highlight zones where atomic bonds are 

nearing their tensile limits. Figure 21 (c) showcases the rapid 

propagation of the crack as the strain approaches 16.1%, evident by the 

expansion of high-stress regions. The crack’s propagation path appears 

to follow crystallographic directions, indicating the influence of lattice 

orientation on fracture behavior. The final phase of rupture is 

demonstrated in Figure 21 (d) at a strain of 16.3%, where the material 
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exhibits a clean separation, confirming the brittle failure of hBN under 

the given conditions. This brittle fracture behavior is characteristic of 

hBN and underlines the material's high strength and low ductility under 

the tested conditions. 

5.6 Mechanical response of  bi-layer hBN through new 

MLIP 

Upon witnessing the exceptional performance of the newly developed 

potential at elevated temperatures, we aimed to assess its effectiveness 

by subjecting it to an additional layer on the sheet. We developed a 

bilayer nanosheet mimicking the monolayer in AA’ stacking manner 

with an interlayer distance of 3.4 Å and performed mechanical strain 

analysis under the same boundary conditions as shown in the Figure 22. 

 

Figure 22: Multilayer BN sheet with AA' stacking 

This additional analysis aimed to evaluate the versatility and reliability 

of the potential when applied to layered structures. Our findings 

demonstrate that the new potential performs exceptionally well, even in 

the context of bilayer. 
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5.6.1 Impact of sheet size on mechanical property variation 

 

Figure 23: Stress response in bilayer hBN sheet under uniaxial tensile 

loading with varying sheet size, 

Figure 23 shows the mechanical properties of hBN under uniaxial 

tension. On observing the graph, we can see that the same trend as 

followed in monolayer, i.e. the sheet strength remains independent of 

dimensions. With breaking stress and breaking strain at a 107.269 GPa 

and 15.9% respectively, thereby reinforcing the dimensional 

independence of the sheet's mechanical properties and mirroring the 

monolayer's behavior. This finding suggests a negligible influence of 

interlayer interactions on the intrinsic tensile properties of hBN, aligning 

with previous research conducted by Falin et al. in 2017 [63].  

5.6.2 Impact of temperature on mechanical property variation 

Correspondingly, increase in temperature result in a gradual weakening 

of strength as depicted in Figure 24, demonstrating a trend similar to that 

seen in monolayer configurations. The consistent trend across 

monolayer and bilayer systems indicates that the newly developed 

potential captures the essential physics governing the mechanical 
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response of hBN, thereby proving its efficacy for simulations that span 

a wide range of structural configurations and thermal environments. 

 

Figure 24: Stress response in bilayer hBN sheet under uniaxial tensile 

loading with varying temperature. 

5.7 Dynamic response of  bi-layer hBN  

Figure 25 portrays the stress response and fracture progression of a 

bilayer hBN sheet under uniaxial tensile strain. Initially, Fig. 25 (a) 

presents the bilayer sheet in an unstressed state, serving as a baseline for 

subsequent comparison. As the strain reaches 15.7%, the onset of stress 

concentration primarily in the top layer, visualized through the color 

gradient with red indicating areas of highest stress as shown in Fig. 

25(b). This gradient reflects the non-uniform distribution of tensile 

forces within the sheet. With further increases in strain to 15.84%, 

critical stress levels lead to the initiation of microcracks in the top layer 

as seen in Fig. 25(c), marking the beginning of the material's failure 

process. Upon reaching 15.87% strain, these microcracks coalesce into 

larger fractures, leading to the separation of the top layer, as shown in 

Fig. 25(d). This phase highlights the brittle fracture mechanism, 
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characterized by the rapid propagation of cracks without significant 

plastic deformation. 

 

Figure 25. Stress distribution in bilayer hBN nanosheet experiencing  

uniaxial strain in the armchair direction. 

Once the top layer fractures, the load redistribution to the bottom layer 

results in renewed stress accumulation. This is evident in Fig. 25(e), 

where the bottom layer begins to exhibit similar stress patterns to those 

initially observed in the top layer. The fracture process culminates in 

Fig. 25(f) with the complete separation of the bottom layer at a strain of 

15.9%, mirroring the failure mode of the top layer. Throughout this 

process, the stress distribution visualized in the bilayer hBN sheet 

provides valuable insights into the layer-by-layer failure mechanism. 

This detailed depiction confirms that while individual layers may fail 

sequentially, the overall material retains its brittle fracture 

characteristics irrespective of mono or bilayer configurations. 



 

45 

 

Chapter 6 : Conclusion and Future Scope 

6.1 Conclusion to the current work 

This study extensively examine various methods for investigating the 

structural properties of nanostructures, particularly emphasizing the 

DFT based AIMD, and EIP based CMD, while also discussing their 

respective strengths and limitations. To bridge the gap between these 

approaches, a novel method is introduced known as MLIP, a potential 

that is developed on small set of accurate outcomes using machine 

learning. We constructed MLIP for investigating the mechanical 

properties of hBN nanosheets, examining how these properties vary with 

temperature, size configurations, and layer additions. Our discussions 

also comprehensively covers the entire procedure for constructing 

MLIP, elaborating on every step from dataset creation, subsampling, 

training, to its validation. For MLIP development, we acquired accurate 

dataset by executing numerous AIMD simulations on a compact unit 

cell of hBN. To validate the newly developed potential we evaluated its 

predictive performance through various validation approaches. The 

outcomes of the validation process highlighted that the predictions of 

energy and atomic forces closely resemble DFT accuracy, indicating the 

MLIPs reliability.  

Subsequently, we employed the new MLIP as an interatomic potential 

in our CMD simulations to study the structural properties of large-sized 

hBN sheets. The result from the CMD simulations on hBN nanosheets 

with varying dimensions, temperature, and layer addition shows 

consistency with the previous studies for properties such as Young’s 

modulus, breaking stress, and breaking strain. This study highlights that 

the mechanical strength of hBN sheet is independent of sheet 

dimensions and the addition of layers. However, it reduces gradually 

with increasing temperature, emphasizing the robustness of MLIP 

across different environmental conditions. The MLIPs also offers 

opportunities to investigate the properties of complex nanomaterials 

containing defects, thereby broadening their scope for application. 



 

46 

 

6.2 Future Scope 

Our study sets the pathway for the development of new flexible 

interatomic potentials for emerging nano structures, facilitating the 

examination of structural properties in diverse environments with 

enhanced precision, while also reducing computational time and costs. 

Furthermore, training the current potential with polarization data 

performed on AIMD will enhance its ability to accurately predict the 

piezoelectric and flexoelectric effects in hBN nanosheets. 
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