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ABSTRACT 

Industry 4.0 can be described as a transition towards a significant increase in making data-

driven decisions across the global value-chain. Big Data, Industrial Internet of Things, Cyber-

Physical Systems, Additive Manufacturing, Artificial Intelligence, etc. are some of the key 

enablers for Industry 4.0. The convergence of cyber-physical systems and product lifecycle 

management presents an unprecedented opportunity to revolutionize manufacturing practices 

within the framework of Industry 4.0. At the forefront of this technological wave is Additive 

Manufacturing (AM), rapidly establishing itself as a mainstream method in the manufacturing 

landscape. This attraction is fuelled by the potential to create novel designs, intricate features, 

lightweight structures, and the advantageous low material usage provided by AM. However, to 

fully harness the potential of AM, it is imperative to evolve monitoring methodologies 

commensurate with this paradigm shift.   

A machine is considered "smart" when it can perform the given tasks autonomously while 

make informed decisions and adapting to changing circumstances without constant human 

intervention. This work highlights the critical importance of combining Cyber-Physical Systems 

with Additive Manufacturing to optimize the process and improve product integrity. The proposed 

system employs a network of sophisticated sensors, particularly optical rotary encoders, and a 

comprehensive data collection system to continuously monitor key process parameters such as 

nozzle position, speed, and acceleration for a Fused-Deposition Modelling (FDM) process. By 

implementing real-time data analytics, the system can promptly detect and correct anomalies, 

which helps maintaining stringent quality control throughout the manufacturing process.  

The primary objectives include in-situ monitoring of the FDM printing process for 

geometric variations due to mechanical movements, developing a data acquisition system to 

integrate design and production data, and using open-source technologies for replicable 

implementation. Additionally, the work aims to standardize the developed system with ISO 23704.  

A data collection system using optical rotary encoders was developed to monitor the FDM 

process, ensuring comprehensive documentation and detailed analysis of the workflow. An 

analysis algorithm based on comparing the tool movement with the design enables real-time error 

calculation during the FDM process, allowing immediate detection and correction of 
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discrepancies, significantly improving product accuracy. The monitoring system, standardized 

according to ISO 23704, meets quality requirements, enhancing credibility and reliability. The 

system's replicability was tested across multiple FDM machines, demonstrating its reliability and 

versatility in different environments. It was also used for reverse engineering products developed 

through FDM, providing valuable insights for post-process analysis and product improvements.  

The novelty lies in its detailed error analysis methodology, utilizing baseline error patterns 

as reference standards by comparing real-time manufacturing data with CAD designs. This 

facilitates early detection as well as quantification of the degree of deviations, minimizing defects 

and reducing material waste. The system's reliability and effectiveness were validated on two 

different FDM machines with faults induced at various levels, ensuring robustness and replicability 

of the results. 

In conclusion, this study presents a new standardized approach for online monitoring of 

AM processes, ensuring high product quality and enhancing manufacturing efficiency. This 

research supports the broader goals of Industry 4.0, leading to smarter, more responsive, and 

efficient manufacturing practices.  

Future work will involve analysing more complex designs to assess the system's 

performance with intricate structures, evaluating various design parameters, identifying potential 

issues, and ensuring the system can handle these complexities without compromising performance 

or quality. Streamlining the data collection process to better integrate with FDM machine control 

will require optimizing data acquisition methods, ensuring real-time data transfer, and minimizing 

data loss. Developing a behaviour model Additive manufacturing workflow that complies with 

ISO 23704 standards will be crucial future development. Future efforts will also focus on creating 

a prediction model for surface roughness (Ra) to improve quality control, involving data collection 

and analysis of surface roughness and developing a model that can accurately predict Ra based on 

key influencing factors.  
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Chapter 1 Introduction 

Industry 4.0 and smart manufacturing are revolutionizing the process utilized 

for production, steering in an era of efficiency and innovation. At the core of 

this transformation lie several key technological pillars like big data, Artificial 

Intelligence (AI), Machine Learning (ML), Additive Manufacturing, Cyber-

Physical Systems [1] etc. Together, these components provide a manufacturing 

environment where machines are self-aware and have the ability to make 

decisions on their own, rather than only being just a tool. 

One of the central concepts of Industry 4.0 is the integration of advanced 

digital technologies into the manufacturing process. Big data plays a crucial 

role in this integration by providing manufacturers with access to vast amounts 

of information about their operations. By analysing this data, manufacturers 

can gain valuable insights into their processes, identify inefficiencies, and 

make data-driven decisions to optimize production. This ability to harness data 

for improved decision-making is fundamental to the concept of smart 

manufacturing. 

Artificial intelligence and machine learning are also critical enablers of 

Industry 4.0. These technologies allow machines to learn from experience, 

adapt to changing conditions, and make predictions based on patterns in data. 

In manufacturing, AI and ML algorithms can be used to optimise production 

schedules, predict equipment failures before they occur, and even automate 

quality control processes. By leveraging AI and ML, manufacturers can 

achieve higher efficiency, productivity, and quality in their operations. 

Cyber-physical systems (CPS) represent the convergence of the physical and 

digital worlds in manufacturing. It is a set of automatic systems for collecting, 

processing, and analysing data [2]. It has widespread applications such as 

robotics autonomous vehicles, process control systems, etc. CPS facilitates 

greater automation, efficiency, and responsiveness by enabling seamless 

communication between machines, equipment, and other devices. Integrating 
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physical and digital elements is essential for creating intelligent manufacturing 

environments. Such systems can be termed Cyber-physical Production 

Systems (CPPS) [3]. It comprises a network of connected components with the 

field devices, machines, and production modules. In this way traditional 

production can be replaced with decentralised self-organization. The 

implementation of CPS within the shop floor environment is crucial to the 

realisation of Industry 4.0. Manufacturers can create interconnected systems 

capable of real-time data exchange and autonomous decision-making by 

integrating sensors, actuators, and communication networks. This integration 

allows for greater visibility and control over production processes, enabling 

companies to optimise resource allocation, minimise downtime, and improve 

overall productivity. One of the key drivers behind the adoption of CPS in 

manufacturing is the advancement of information and communication 

technologies. With different technologies such as the Internet of Things (IoT), 

cloud computing, edge computing, etc., manufacturers now have access to 

unprecedented data and computational power. This enables them to develop 

sophisticated CPSs to analyse vast amounts of data, monitor the process, 

predict maintenance needs, and even self-optimize production processes. The 

adoption of CPS within the shop floor environment signifies a fundamental 

shift in how manufacturing companies operate. By embracing Industry 4.0 

principles, manufacturers can unlock new opportunities for innovation and 

competitiveness. From agile production systems to personalised products and 

services, the integration of interconnected intelligent components lays the 

foundation for a more efficient, adaptable, and resilient manufacturing 

ecosystem. 

1.1. Cyber-Physical PLM Environment  
This research proposes a novel concept: Cyber-physical Product Lifecycle 

Management (PLM) environment. A cyber-physical system supporting the 

enterprise life cycle from design and development to production, operation, 

and finally, end-of-life management can be imagined as a Cyber-physical PLM 

environment. Such systems are integrated into network throughout the entire 
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product life cycle. By seamless linking of the virtual representation of the 

product with the comprehensive PLM systems, organizations can unlock a lot 

of advantages that drive innovation and efficiency throughout the product’s 

lifecycle [4]. These systems incorporate sensors, controllers, and procedure-

oriented information systems into a single network that expands over the whole 

life of the product. We will discuss more on this in Chapter 3. One of the 

advantages with is Cyber-Physical PLM environment is real-time feedback 

loop. The Integrated data collection system will continuously gather data from 

sensors, IoT devices and other sources embedded with the system gathering 

continuous stream of information. This data is then fed back to the PLM 

system, providing designers, engineers, and other stakeholders with a deep 

understanding of how the product is being developed and is performing in the 

real-world conditions. With this the design iterations can be executed rapidly, 

decreasing the development cycle, and accelerating time-to-market. For this to 

establish we need what is called a “Smart Machine Tool”. 

1.2. Cyber-Physically controlled Smart Machine Tool 

Systems (CPSMT) 
The backbone of cyber-physically smart machine tools lies in their 

comprehensive sensor networks. These sensors can continuously monitor 

various aspects of the machine's operation which can be temperature, 

vibration, force, and positional data. For example, temperature sensors help in 

maintaining optimal operating conditions to prevent overheating within the 

machine, while vibration sensors detect irregularities that could indicate wear 

or potential failures. Actuators, on the other hand, execute precise movements 

and adjustments based on sensor feedback, ensuring that the machine operates 

within desired parameters. 

Connectivity is a key feature for a smart machine tool, enabling seamless 

communication within the manufacturing ecosystem. Utilizing industrial 

Internet of Things (IoT) protocols, these tools connect with other machines, 

control systems, and human operators. This connectivity facilitates 
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synchronized operations, remote monitoring, and integration with broader 

enterprise resource planning (ERP) and manufacturing execution systems 

(MES). 

The integration of advanced control systems is what truly differentiates smart 

machine tools from their conventional counterparts. These systems can employ 

sophisticated algorithms to optimize machine performance dynamically. 

Adaptive control, for example, allows the machine to adjust its operations in 

response to real-time feedback, enhancing precision and efficiency. Predictive 

maintenance algorithms analyze operational data to forecast maintenance 

needs, reducing downtime and extending the machine's lifecycle. 

However, the market offers different types of smart machine tools with their 

own concepts and terminologies, leading to confusion among stakeholders, 

including end-users. This highlights the need for standards and models to 

clarify smart machine tool systems. 

The ISO 23704 [5] series specifies general standards for smart machine tools 

that allow smart manufacturing on the shop floor using a cyber-physical system 

control method known as CPSMT. These requirements are crucial for ensuring 

compatibility with cyber-physical systems and effective integration into 

manufacturing environments, ultimately realizing Industry 4.0 principles. 

1.3. ISO 23704 
ISO 23704 provides general requirements for CPSMT’s. It plays a pivotal role 

in guiding the development of such environments, emphasizing the need for 

seamless integration between digital and physical aspects of the machine. By 

following ISO 23704 standard, manufacturers can establish a robust 

foundation for managing data, processes, and resources in a unified manner, 

enabling better collaboration and informed decision-making. 
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Figure 1 is the reference architecture provided by ISO 23704 for a CPSMT. A 

CPSMT should be capable enough to autonomously deal with machine tool 

abnormalities which can be done using big data, AI, Digital Twin with the help 

of Monitoring, Analysing, Planning and executing for the different conditions 

occure in a Machine tool. It should co-ordinate autonomously with various 

devices in the shop floor. It should have capability to collaborates 

autonomously with the shop floor control system (SFCS) in order to contibute 

to enhancing shop floor level operations KPI’s e.g. production time, production 

quality, production cost etc. 

As we can see in the reference architecture a CPSMT is divided into two parts 

 CPSMT Primary system, and  

Figure 1 Reference Architecture ISO 23704 
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 CPSMT Associated system 

1.3.1. CPSMT Primary System 

CPSMT is further broken into two components. 

 Cyber Physically Controlled Machine tool (CPCM) 

 Cyber Support System for a Machine Tool (CSSM) 

1.3.1.1. CPCM 

It is a machine tool that is operated using a Cyber-Physical control scheme, 

which adds more complex control functions to traditional machine control. It 

should create instructions for control to a machine based on data received from 

the machine's controller regarding the present progress of the machine or any 

parameter for which the controller may offer information about. There should 

be connection between CPCM and SFDS for better machine to machine 

collaboration.  

1.3.1.2. CSSM 

cyber-system that supports a physical system to enhance the performance of a 

physical system with monitoring, analysis, planning, and execution based on 

big data analytics / artificial intelligence, and digital twin. Cyber-supporting 

system for cyber-physically controlled machine tools (CPCMs) that provides 

decisions from the viewpoint of abnormality resolution and provides CPCM 

abnormality data to a shop floor control system and external systems including 

humans, life cycle aspects, and hierarchy level. 

These are the two main aspects of any CPCM primary system that is described 

with the ISO 23704. Beyond this the machine should also have CPSMT 

associated system that is also further categorized in different sections as  

 Shop Floor Device System (SFDS) 

 Shop Floor Control System (SFCS) 

 Unified Interface System (UIS) 
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1.3.2. CPCM Associated System 

1.3.2.1. SFDS 

A manufacturing facility that has set of devices for different operations on the 

shop floor. These include production machines that make the finished products, 

maintenance equipment that keep the production machines running, inventory 

system that tracks material and products and quality control etc. 

1.3.2.2. SFCS 

A cyber-system for a shop floor in order to increase and maintain the 

collaboration between different devices in a shop floor in order to track, 

schedule and can report on the progress of shop floor operations. 

1.3.2.3. UIS 

The primary system consists of a Cyber-Physically Controlled Machine tool 

(CPCM) and a Cyber-Support System for machine tools (CSSM).  

ISO 23704 series further provides details about the CPSMT approach for 

different types of manufacturing processes such as Subtractive Manufacturing, 

Additive manufacturing into its further parts 2 and part 3. For this research the 

further discussion will be on the development of Cyber-Physically Smart 

Machine Tool system for Additive Manufacturing. 

1.4. Additive Manufacturing  
Additive manufacturing, commonly known as 3D printing, is another 

important component of Industry 4.0. Unlike traditional subtractive 

manufacturing processes, which involve cutting away material from a solid 

block, additive manufacturing builds objects layer by layer using digital design 

data. 

The concept of 3D printing has its origins in early science fiction, notably in a 

1945 short story by Murray Leinster using the pen name William Fitzgerald 

Jenkins. This story introduced the idea of a machine creating objects from 

magnetronic plastics, laying the foundation for what would become additive 

manufacturing. In the early 1970s, Johannes F. Gottwald filed a patent for a 
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process involving liquid metal, [7] hinting at the potential for creating objects 

layer by layer, which is a key aspect of modern 3D printing. 

Dr. Hideo Kodama's work in 1980 expanded upon Gottwald's idea [8]. He 

suggested using thermosetting polymers and ultraviolet (UV) light to cure 

photopolymers, a precursor to today's stereolithography (SLA) technology. 

While Kodama's patent application in Japan didn't gain international traction, 

it marked a significant step forward in 3D printing development. Charles Hull's 

subsequent patent filing in 1986 for SLA technology led to the commercial 

release of the first 3D printer, the SLA-1, through his company, 3D Systems 

Corporation [9]. 

In the late 1990s and early 2000s, 3D printing began showing promise across 

various industries. But Adrian Bowyer's RepRap Project from 2005 was the 

initiative that really increased accessibility to 3D printing. [9]. To make the 

technology more accessible and inexpensive, the RepRap project set out to 

create a self-replicating device that could make the majority of its own parts. 

This effort culminated in the RepRap 1.0 Darwin machine, which could 

manufacture several of its essential components, democratizing 3D printing for 

enthusiasts, researchers, and small businesses. 

The expiration of key patents, starting with Fused Deposition Modelling 

(FDM) in 2009, and followed by Selective Laser Sintering (SLS) and SLA in 

the 2010s, spurred significant growth and innovation in the additive 

manufacturing industry. With the removal of licensing fees, the barriers to 

developing and producing 3D printers decreased, leading to increased market 

competition and technological advancements. This trend drove the industry 

forward, fostering a dynamic ecosystem of companies striving to advance 3D 

printing technology. 

In 2013, 3D Hubs was founded by Bram de Zwart, Brian Garret, and Filemon 

Schöffer. Initially, it served as an online platform connecting individuals 

needing 3D printing services with local printer owners [10]. Over time, 3D 

Hubs evolved to meet the changing needs of the market, particularly as 
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professional engineers began using the platform for product development. The 

company rebranded as Hubs and shifted its focus to connecting mechanical 

engineers with a network of manufacturing partners, offering a broader range 

of manufacturing capabilities to its users.  

According to ASTM F2792-12 [11], AM can be categorized as: 

 Vat Photopolymerization: Vat photopolymerization involves a vat of 

liquid photopolymer resin that is selectively cured by a light source, 

typically a laser or UV light. This process includes technologies like 

Stereolithography (SLA) and Digital Light Processing (DLP). The light 

source traces the design in the liquid resin, solidifying the material layer 

by layer to form the final object. It is known for producing high-resolution 

and highly detailed parts, often used in applications requiring precision 

and smooth surface finishes. 

 Material Jetting: Material jetting is similar to traditional inkjet printing 

but deposits droplets of build material instead of ink. The material, which 

can be a photopolymer or wax, is jetted onto the build platform where it is 

then cured by UV light. This process can create highly detailed and 

accurate parts with multiple materials and colours in a single build, 

making it suitable for prototyping and the production of complex 

geometries. 

 Binder Jetting: Binder jetting involves the deposition of a liquid binding 

agent onto a powder bed, where it selectively binds powder particles 

together. This process can use a variety of materials including metals, 

sand, and ceramics. After printing, the parts typically undergo post-

processing steps such as curing or sintering. Binder jetting is valued for its 

ability to produce large parts and for applications where full-colour 

printing is required, as well as for its potential cost-effectiveness in 

creating metal parts without the need for supports. 

 Material Extrusion: Material extrusion, commonly known through 

technologies like Fused Deposition Modelling (FDM) or Fused Filament 
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Fabrication (FFF), involves the extrusion of thermoplastic material 

through a heated nozzle. The material is deposited layer by layer to build 

the part. This method is widely accessible and versatile, making it popular 

for rapid prototyping, hobbyist projects, and educational purposes. It is 

characterized by its simplicity, affordability, and the ability to use a variety 

of thermoplastic materials. 

 Powder Bed Fusion: Powder bed fusion (PBF) encompasses a group of 

AM processes that use a laser or electron beam to selectively fuse powder 

particles in a powder bed. Technologies under PBF include Selective Laser 

Sintering (SLS), Direct Metal Laser Sintering (DMLS), and Electron 

Beam Melting (EBM). These processes are capable of producing highly 

complex and durable parts, often used in aerospace, automotive, and 

medical industries for end-use components. PBF is noted for its high 

precision and the mechanical strength of the parts produced. 

 Sheet Lamination: Sheet lamination involves the bonding of sheets of 

material, which are then cut to shape to form the final object. Technologies 

such as Laminated Object Manufacturing (LOM) and Ultrasonic Additive 

Manufacturing (UAM) fall under this category. LOM uses adhesive-

coated paper, plastic, or metal sheets that are laminated together, while 

UAM uses ultrasonic welding to join metal sheets. This method can 

produce large parts quickly and is relatively inexpensive, but the 

mechanical properties and resolution are generally lower compared to 

other AM processes. 

 Directed Energy Deposition: Directed energy deposition (DED) utilizes 

focused thermal energy sources such as lasers, electron beams, or plasma 

arcs to melt materials as they are deposited. The material, which can be in 

powder or wire form, is deposited layer by layer to build the part. 

Technologies like Laser Engineering Net Shape (LENS) and Electron 

Beam Additive Manufacturing (EBAM) are examples of DED. This 

process is used primarily for repairing or adding material to existing 



11 
 

components and for creating large, complex metal parts with high 

structural integrity, often used in aerospace and defence industries. 

These are the basic categorization of the AM process. Each of these additive 

manufacturing processes offers unique advantages and is suitable for different 

applications, contributing to the versatility and rapid growth of the AM 

industry. 

This additive approach offers numerous advantages, including greater design 

flexibility, reduced material waste, and the ability to create complex 

geometries that are impossible to achieve with traditional manufacturing 

methods. As additive manufacturing technologies continue to advance, they 

They’re set to revolutionize industries ranging from aerospace and automotive 

to healthcare and consumer goods. This is the reason why the manufacturing 

sector is started to understand the potential of the AM and is being investing in 

it.

 

According to Forbes [13], the AM sector reached $10.6 billion in revenue in 

2021 and is expected to grow over $50 billion by 2030. So, the demand for 

Additive manufacturing will be growing on a large scale. The dynamic and 

layer-by-layer nature of additive manufacturing processes requires continuous 

Figure 2 Trend in AM market share 
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monitoring to detect deviations and errors before time. Accessing the 

information about the product during the manufacturing phase might not be 

possible for all the conventionally available AM Machines. This is important 

in avoiding material loss and ensuring the production of high-quality 

components. Through the implementation of real-time monitoring systems, 

manufacturers gain the ability to track key process parameters, such as 

temperature, layer adhesion, product quality etc. to identify irregularities that 

may compromise the integrity of the final product. The application of in-situ 

error detection mechanisms further enhances the reliability of additive 

manufacturing processes. It involves monitoring and analysing data directly 

within the manufacturing environment, allowing for immediate response to 

potential errors. Advanced sensors and data analytics tools can be employed to 

detect anomalies, variations, or defects as they occur, preventing the 

production of faulty components. This proactive approach not only minimizes 

material wastage but also contributes to the overall cost-effectiveness and 

sustainability of additive manufacturing operations and provides valuable 

insights for continuous process improvement. Real-time process monitoring is 

important in the field of Additive Manufacturing. For that the AM system 

should be developed so that it can detect the anomalies and be “Smart”. 

 

1.5. ISO 23704 for Additive Manufacturing 
ISO 23704 [6] provides a reference architecture for a smart AM machine in its 

documentation as shown in Figure 3. Here all the blocks from the Figure 1 

are broadly explained regarding the CPSMT for an AM system. The CPCM is 

divided into AMU and CPS for the Additive Manufacturing machine unit 

(AMU). 
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1.5.1. AMU 

The AMU is the physical system under consideration for monitoring and for 

which decisions are made regarding potential anomalies in order to improve 

the system's performance. According to ISO 23704 the AMU is characterized 

by three components 

 AM Process Perspective 

 AM Component Perspective 

 AM Function Perspective 

Figure 3 Reference Architecture of ISO-23704 for Additive Manufacturing 
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The process could be any of the 7 additive manufacturing methods that the 

ASTM F2792 has specified. The AMU will have different component 

depending upon its type such as Motor Drive, Hydraulic system, Pneumatic / 

Vacuum system, electrical system etc. and each of these components will have 

their specified function like AM machine operation, Workpiece handling, 

Cooling/ Heating etc. in an AM system which is why there are these blocks 

being shown in the reference architecture. 

1.5.2. CPS  

The CPS unit for CPSMT plays an important role in controlling and 

coordinating the AMU with the CSSM, SFDS, and SFCS. The CPS for AM 

should help the machine in autonomously dealing with abnormalities with the 

help of sensors, PLC’s and CSSM for resolution of soft-real time 

abnormalities. According to ISO 23704 Soft-Real time means “Time-based 

operational characteristic in which processing of data by a computer in 

connection with another process outside the computer is degraded if results are 

not produced according to specified timing requirements”.  

To help the AMU with this the CPS should have.  

 An inner-loop element 

 An intra-loop element and  

 An inter-loop element 

The inner-loop element is the part of CPS which helps the machine to detect 

and solve the abnormalities for the machine tool in Hard-real time. According 

to ISO 23704 the definition of Hard-real time is “Time based operational 

characteristic in which processing of data by a computer in connection with 

another process outside the computer is incorrect if results are not produced 

according to specified timing requirements”. For example, in a FDM machine 

the parameters that might severely affect the AM process can be layer height, 

print speed, bed temperature, nozzle head temperature etc. so these parameters 
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should be monitored by the inner-loop element in real time in order to detect 

for any abnormal behaviour that might occur in the AM workflow. 

The intra-loop element is the part of the CPS which helps the machine to 

generate the control instructions base on the data from the system in Soft-real 

time. The intra-loop element should receive command data form the CSSM 

regarding to confirm with the technical requirement in order to determine and 

analyse the status of the AM process. 

The inner-loop element is the part of the CPS that helps the machine tool to 

collaborate with the different devices in the SFDS in order to have the 

machine-to-machine communication. Such as resource allocation or 

rescheduling of the shop floor devices, special requests from the 

manufacturing management, monitoring shop floor performance etc. 

1.5.3. CSSM for AM  

This is one of the important elements in a SAMS as all the analysis is supposed 

to be carried out in this section of the CPSMT the further division of CSSM 

can be seen in the Figure 3 and is explained below 

 Data processing Element (DPU) 

 Digital Thread Unit (DTU) 

 MAPE Unit (MAPE) and  

 External Interface Unit  

1.5.3.1. DPU 

It is a set of functions to process the collected data which can be used for the 

further analysis as ISO 23704 states it should have  

 CPCM interface 

 UIS interface 

 Data Fusion element 

 Data Storage element and  

 Data transformer for external entities element 
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The interface elements help the DPU with interfacing with CPCM and UIS in 

order to send and receive information with them. The CPCM will send or 

receive the information form the AMU controller or the Data collecting sensors 

that are being mounted on the AMU. The UIS will receive the data regarding 

the AM workflow from the DPU. Data Fusion element should help the SAMS 

in integrating the different data streams that are being sending the data to the 

CSSM for the analysis purpose so that the relevant information can be gathered 

about the process from it. Stages of the data preparation could be first to clean 

the data to remove the unnecessary noise then to format the data according to 

the requirement for analysis and then to transmit the data to the data storage 

unit. The data storage unit then stores the data which is used for analysis. It 

also should store the outputs from the analysis in order to share them whenever 

asked by any of the part in the system. This exchange of data should be done 

via a Data transformer for external entities element according to the format that 

the data is being asked for. 

1.5.3.2. DTU 

This unit should organize the data of AM workflow based on the data. This is 

one of the most important entities in the CSSM as it generates value-added key 

insights for the AM workflow consists of Product design, build-preparation, 

process control, post-processing, quality control. The DTU should consists of  

 An AM workflow data model 

 AM workflow data management 

 AM behaviour model and  

 Behaviour model engine 

The AM workflow data model will describe the AM workflow. The data related 

to the product should be properly managed and organized. It could be the type 

of the workpiece design 3D model data either a STL, 3mf, AMF file etc, then 

it should store the information regarding the feedstock or supports that might 

be needed for the AM process. The information regarding preparation of the 
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Build process and setting of the parameters, Workpiece orientation, Support 

distribution etc should be well managed. 

The work of AM workflow data management is to manage the data transmitted 

from the data fusion element and providing the in-process data to the required 

entities for the extraction of value-added information form the MAPE unit. 

MAPE stands for Monitoring, Analysing, Planning, Executing. It does all of 

these activities based on the data for the enhancement of the KPI that are 

defined in the DTU. The output of the MAPE can be utilised for updating the 

AM workflow. 

1.5.3.3. External Interface Unit 

The task of this unit is to transmit the all the data generated by the DPU to 

SFCS and UIS in order to do the collaboration between the shop floor devices. 

Also to exchange the data with the humans which then can take several 

decisions for the AM process. 

In this way the CPSMT for an AM machine can be developed. 

AM has seen widespread adoption in the production of consumer goods due to 

its benefits in customization, speed, and material efficiency. Its ability to create 

complex designs without traditional Molds or tooling makes it ideal for 

manufacturing. This case study examines how AM has been integrated into 

production processes within the consumer goods sector, highlighting its impact 

on design innovation, manufacturing efficiency, and market responsiveness. 

Various examples demonstrate the successful implementation of AM, 

emphasizing its transformative effect on the industry. 

1.6. Industry Examples 
 Prusa, one of the leading manufacturers in the 3D printing industry, 

utilizes their own 3D printers to produce parts for their diverse range of 

products. Their 3D printing facility is equipped with more than 600 3D 

printers operating around the clock, 24 hours a day, seven days a week, 

throughout the entire year. The Prusa MK3S+ model requires 
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approximately 22 hours to print all the necessary components for each 

printer. In contrast, the newer Original Prusa MK4 model significantly 

reduces this time, completing the same task in just 11 hours. Each month, 

Prusa's operations consume approximately 7200 kilograms of filament, 

reflecting the substantial scale of their production. The total printing time 

accumulated by the company's print farm is about 500,000 hours each 

month [14]. This extensive operational capacity underscores Prusa's 

ability to maintain efficient and large-scale production. Given the high 

volume of printing, incorporating an effective print monitoring system 

would be crucial for Prusa. Monitoring systems are essential to minimize 

material loss and ensure consistent quality across such a large number of 

printers. By detecting and addressing issues in real-time, these systems 

would help prevent failed prints and reduce waste, enhancing overall 

efficiency. 

 A3D is a manufacturing company specializing in on-demand 3D printing 

services, utilizing a diverse range of AM processes to meet varied 

customer needs. These processes include Fused Filament Fabrication 

(FFF), Selective Laser Sintering (SLS), Stereolithography (SLA) printing, 

and Jet Fusion, each offering unique advantages for different applications. 

[15] FFF is widely used for its cost-effectiveness and versatility, ideal for 

producing prototypes and functional parts. SLS is known for its ability to 

create durable, high-strength components without the need for support 

structures, making it suitable for complex geometries. SLA provides 

exceptional detail and smooth surface finishes, perfect for highly precise 

and intricate designs. Jet Fusion, meanwhile, excels in producing high-

quality, functional parts at a rapid pace, suitable for both prototyping and 

end-use production. Given the variety of AM processes employed, 

incorporating a comprehensive quality monitoring system would be 

highly beneficial for A3D. Such a system would enable real-time tracking 

and control of the manufacturing process, ensuring consistency and 

reliability across different technologies. Quality monitoring can help 
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identify and address issues promptly, reducing material waste and 

enhancing overall efficiency. For A3D, implementing advanced 

monitoring solutions would not only improve product quality but also 

optimize operational workflows, reinforcing their commitment to 

delivering high-standard, on-demand 3D printing services. 

Some of the consumer goods are also being manufactured using AM processes. 

Here are some of the examples,  

 Zellerfeld, a company that manufactures custom 3D-printed shoes. These 

shoes are made from thermoplastic polyurethane and are tailored to each 

customer's specifications. The company employs over 200 custom-made 

3D printers in their production process, allowing for precise customization 

according to individual orders.[16] 

 Stubby Nozzle Co. makes custom nozzles for different nozzle heads for 

different leaf blowers using Additive manufacturing processes. [17]  

 The Wilson Airless Prototype basketball is made with a 3D-printed 

polymer lattice structure designed to mimic the performance of a 

traditional basketball. The ball features eight panel-like lobes and a 

familiar seam structure, with hexagonal holes across the surface that allow 

air to pass through freely, reducing its weight.[18] 

And there are many more examples where the AM processes are being 

incorporated for large production of consumer goods. As the demand for AM 

production increases, the need for monitoring the production process will also 

increase as the processes are still very costly and the loss of time and material 

can affect further the cost of final print. 

1.7. Organization of the Thesis 
This thesis is consisting of six chapters. Current chapter provides an 

introduction and background to the research topic, highlighting its importance, 

defining key concepts, and outlining the scope of the study. This chapter will 

also give a brief overview of the subsequent chapters.  
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The second chapter will focus on conducting a comprehensive literature 

review, critically analysing and synthesizing existing research related to the 

topic, identifying gaps in current knowledge, stating the research problem and 

objectives and discussing relevant theories and frameworks.  

The third chapter will explore into the methodology employed in the research, 

describing the research design, data collection methods and data analysis 

procedures.  

The fourth chapter will provide a detailed explanation of the development 

process undertaken, including the steps involved in designing, implementing 

and creating the research output, highlighting innovative aspects of the 

process.  

In the fifth chapter, the results and findings obtained from the research will be 

presented, utilizing appropriate data visualization techniques, analysing and 

interpreting the results in relation to the research objectives, and comparing 

them with previous studies or literature.  

Finally, the sixth chapter will summarize the main conclusions and 

contributions of the research, discuss its potential areas for future research, 

provide recommendations for further investigation, and reflect on the overall 

research experience and lessons learned.  
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Chapter 2 Problem Formulation 

In this chapter, we will examine the integration of CPS in additive 

manufacturing. The focus will be on reviewing current progress in real-time 

monitoring, data analytics, and automation within AM processes. This 

literature review aims to provide a comprehensive overview of the current state 

of CPS in AM and its implications for manufacturing practices. 

2.1. Literature Review 
We will now go through the literature that is currently available for additive 

manufacturing process monitoring. Keywords such as Fused Deposition 

Modelling (FDM), Fused Filament Fabrication (FFF), Additive Manufacturing 

(AM), Fault Detection, Digital Twin (DT), Cyber-Physical Systems (CPS), 

Product Lifecycle Management (PLM) were used for the search of the 

literature. 

[19] introduces an approach to enhance 3D printing processes through a 

collaborative cloud-edge architecture, leveraging the concept of digital twins. 

Researchers have created a digital twin information model for 3D printers and 

discussed essential technologies for real-time monitoring and collaborative 

control at the cloud-edge interface. Through a case study, the paper 

demonstrates the development of an edge platform utilizing Three.js for digital 

twin modeling, along with cloud-based 3D printing services for collaborative 

purposes.  

[20] This study presents the development of a digital twin ecosystem (DTE) 

for testing, monitoring, and managing an AM FDM machine in a virtual 

environment. The DTE replicates the machine's operation and performance for 

in-process analysis and optimization. It consists of two main components: the 

data acquisition-processing-distribution component (APDC) and the virtual-

representation component (VRC). The DTE's capabilities were verified and 

validated using sensor data, assessing various machine parameters such as 

extruder position, temperature, and speed. 
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[21][20] This research introduces a framework for monitoring and optimizing 

FDM parameters using Digital Twin and Cloud technologies. The framework, 

implemented as a mobile app, allows engineers to conduct offline and online 

simulations. It includes AR-based immersive interfaces for remote machine 

operation and monitoring. After each process, engineers manually assess the 

quality of components, storing results in a Cloud database for future reference. 

Users can review historical assessments to optimize parameters and receive 

recommendations based on past results. 

[22] This study introduces Deep Learning technique for monitoring 

abnormalities in FDM 3D printers. They have developed a system which 

monitors an FDM machine for its surrounding temperature, humidity and print 

bed temperature for any faults that might arise due to fluctuations of these 

parameters. They have proposed a Lightweight convolution neural network to 

detect faults from the sensors that are attached to the machine. 

[23] This paper presents an improved fault diagnosis approach for FDM 

processes using Acoustic Emission (AE) sensors. The AE during production is 

dependent on many of the machine parameters such as Print Speed, Feed Rate, 

Print Acceleration etc. AE hits from different extruder states are obtained, and 

time-and-frequency-domain features are extracted for real-time FDM machine 

monitoring, particularly for extruder health. 

[24]  This study introduces a multi-camera sensing system and method to 

detect catastrophic failures during 3D printing process. It compares real-time 

images of the print bed with images generated from the design file. However, 

this technique has an important limitation about part concavity; any part 

geometry that is hidden from the camera view cannot be monitored with this 

technique, which might result in undetected deformations of the part.  

[25] This paper outlines an architecture utilizing IoT technologies to acquire, 

transmit, and store sensor data for a digital twin in manufacturing processes. A 

deep learning-based CNN classifier detects patterns leading to defective 
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products, particularly identifying vibration patterns using integrated LSM330 

accelerometer and gyroscope during the printing process. 

[26] This work proposes a method for in-process monitoring of part geometry 

in fused filament fabrication (FFF). The method addresses key challenges in 

current optical imaging techniques, such as balancing resolution and coverage 

needs, handling complex and challenging optical conditions in the production 

process, and accurately assessing part quality during fabrication using 

reference geometry from CAD models, which often poorly represent the actual 

FFF process characteristics. The researchers used a microscope which 

traversed through the edges of every printed layer in order to monitor the print 

quality. 

This leads us to the conclusion that the characteristics of an AM process, such 

as nozzle head position, nozzle temperature, bed temperature, print speeds, and 

acceleration, are some of the most important variables that might affect the 

final product's quality. 

2.2. Research Gap 
a. Integrating with existing Product Lifecycle Management (PLM) 

systems and other manufacturing software tools is complicated. This 

complexity arises from differences in data formats, communication 

methods, and software designs. Making these systems work together 

requires advanced data conversion and alignment processes. 

Additionally, various software tools in the manufacturing environment 

use different communication methods, needing middleware to translate 

and transfer data effectively. As a result, seamless integration with 

commonly used software and data sources is often missing. 

b. The research literature mentioned above, which focuses on the 

development of Cyber-Physical Systems for FDM machines, does not 

primarily concentrate on the quality monitoring of the actual printed 

components. As a result, there is a noticeable gap in addressing the 

critical issue of ensuring and maintaining the quality of the printed 
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parts during and after the manufacturing process. This lack of focus on 

quality monitoring can lead to inconsistencies and defects in the final 

products, underscoring the need for more research in this area. 

c. Specifically, in the case of FDM additive manufacturing, an object 

printed at one position might not be the same as one printed at another 

position due to the inherent nature of the process. Variations in 

temperature, material flow, and machine calibration can lead to 

differences in the final product. Additionally, since parts are built up 

layer by layer, it becomes challenging to validate the internal 

geometries of an item once printing is complete. This makes it difficult 

to ensure that the internal structures are accurate and free from defects, 

which is crucial for the overall quality and performance of the printed 

component. 

d. Conventionally available FDM printers lack the capability to provide 

real-time access to information about the product during the 

manufacturing phase. As a result, operators have limited visibility into 

the ongoing manufacturing process and are unable to monitor the 

quality and progress of the print in real time. This lack of accessibility 

to critical manufacturing data hinders the ability to detect and address 

issues as they arise, leading to potential defects or inconsistencies in 

the final product. 

2.3. Research Objectives 
a. Developing a tailored Data Collection System for FDM printers, 

incorporating a robust mechanism for data acquisition and analysis. 

This system will efficiently gather and process printer performance 

metrics, enhancing overall operational insight and optimizing printing 

processes. 

b. Implementing in-situ monitoring for FDM printing, enabling precise 

tracking of geometric variations resulting from mechanical 

movements. This approach ensures real-time detection and analysis of 
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printing anomalies, facilitating proactive adjustments to optimize print 

quality and process efficiency. 

c. Using open-source technologies so that the implementation can be 

replicable. 

d. Standardization of the developed platform with ISO 23704 ensuring 

accessibility, efficient performance, and replicability. 

 

  



26 
 

Chapter 3 Proposed Methodology 

3.1. Product Lifecycle Management 
PLM concept revolves around five phases as - Ideation, Definition, 

Realization, Use / Service and Disposal / Recycle / Retirement. The product 

goes through several stages in each of these five phases [27]. In the initial 

stages, the product is simply an idea, a concept that has not been developed 

yet. As it progresses into the definition phase, these ideas are converted into a 

detailed description, outlining what the product will be and how it will 

function. By the end of the realization phase, the product exists in its final 

form, such as a car, ready to be used by customers. During the use/service 

phase, the customer has the product and is actively using it. This phase involves 

the product performing its intended functions and may include support and 

maintenance services to ensure it operates correctly. During this time, the 

product serves its purpose, and the customer relies on it for its designed utility, 

interacting with it. Eventually, the product reaches a stage where it is no longer 

useful or functional. In this final phase, the product is retired by the company 

and disposed of by the customer. Disposal can involve various methods, 

including recycling by the customer, the company, or a third party. This phase 

ensures that the product is responsibly managed at the end of its life cycle, 

reducing waste and potentially reclaiming materials for future use. 

PLM brings together many separate processes, areas of expertise, functions, 

and applications that were previously independent. Despite focusing on the 

same product, each of these had their own terminology, rules, culture, and 

language. It integrates them all into a single system. Organizations can use 

Figure 4 Product Lifecycle Management workflow. 
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PLM to manage products consistently and in a unified way throughout their 

entire lifecycle. This approach ensures that all aspects of the product are 

addressed together, rather than separately. It creates a seamless and continuous 

process for product management. 

By uniting all product-related issues under one system, it allows for a more 

coherent and coordinated approach. With this, all product data, processes, and 

stakeholders are integrated into a centralized system. This enables better 

collaboration, data sharing, and a more holistic view of the product throughout 

its entire lifecycle, from concept to retirement. 

The approach of integrating PLM can be utilized for a wide variety of products 

and processes. This versatility makes it a valuable tool in various industries 

and applications. In this research, we are focusing on the application of the 

PLM approach within the context of the AM process. 

When Additive Manufacturing is deployed in a production environment, it will 

present unique challenges and opportunities. The integration of PLM with AM 

can significantly enhance the efficiency and effectiveness of the manufacturing 

process. PLM provides a structured framework that manages the entire 

lifecycle of a product, from the initial design through to its eventual disposal. 

This structured approach can be particularly beneficial for AM due to its 

intricate nature and the precision required in its processes. 

We developed a Data Collection System for the AM process. This system can 

collect and analyze data continuously throughout the manufacturing process. 

This real-time monitoring is crucial for identifying and addressing issues as 

they arise, ensuring that the production process remains consistent and meets 

quality standards. 

For instance, during the AM process, various parameters such as Nozzle tool 

head position, speed, acceleration, layer thickness, and material usage are 

critical to the quality of the final product. The data collection systems can track 

these parameters, comparing real-time data against predefined standards and 
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baseline error patterns. Any deviations from these standards can be quickly 

identified and rectified, minimizing defects and improving overall product 

quality. 

We facilitated a comprehensive error analysis and quality control process for 

Additive Manufacturing. By establishing a baseline error pattern from the 

standard component, we can analyze the potential issues when they occur. This 

capability allows for proactive measures to be taken, reducing the likelihood 

of errors during the manufacturing process and the loss of material can also be 

avoided. 

In the context of Additive Manufacturing, error analysis might involve 

examining the consistency of layer deposition, the adherence of materials, and 

the structural integrity of the printed components. The collected data can help 

us analyze, providing insights that help optimize the AM process. This level of 

detailed analysis is essential for maintaining the high precision required in AM. 

Beyond monitoring and error analysis, PLM plays a vital role in managing the 

entire lifecycle of products created through Additive Manufacturing. This 

includes the initial design phase, where digital models are created and 

optimized for printing, as well as the production phase, where these models are 

brought to life. 

Throughout the lifecycle, PLM systems ensure that all aspects of the product 

development and manufacturing processes are integrated and aligned. This 

integration leads to continuous improvement, as data from each stage of the 

lifecycle can be used to refine and enhance subsequent stages. For example, 

insights gained from the operation and performance of a printed product can 

inform future design iterations, leading to better and more efficient 

manufacturing processes. 

The integration of PLM with Additive Manufacturing will offer a 

comprehensive approach that enhances the efficiency, quality, and 

effectiveness of the AM process. By leveraging PLM systems for real-time 
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monitoring, error analysis, and lifecycle management, manufacturers can 

optimize their AM operations, resulting in superior products and more efficient 

production workflows. This research highlights the potential of PLM to 

transform Additive Manufacturing into a more dependable and productive 

technology, reinforcing its value across various applications and industries. 

3.2. Cyber-Physical PLM Environment 
demonstrates novel approach of this research as the integration of PLM with 

the AM manufacturing process. It covers the entire lifecycle of a product, from 

the initial concept stage to its final disposal. It highlights how PLM unifies 

various stages and incorporates error analysis and quality monitoring during 

production. The focus of this research will be more on the manufacturing 

aspect of the PLM process for the AM. 

The Process of AM is divided into several distinct stages: Concept, Design, 

Manufacturing Process Setup, Production, Operation, and Disposal. These 

stages represent the product lifecycle, with arrows indicating the flow of 

information and processes between each stage. 

The lifecycle begins with the Concept phase, where the idea for the product is 

first conceived. This stage involves high-level planning and defining the 

Figure 5 Proposed Methodology 
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product's purpose, requirements, and overall goals. It is a critical phase where 

initial decisions shape the direction of the product development process. 

Following the Concept phase is the Design phase. During this stage, the 

product idea is translated into detailed designs. The tools and processes 

involved in this phase include Computer-Aided Design (CAD), which is used 

to build three-dimensional models and technical illustrations. CAD helps in 

visualizing the product and creating accurate specifications that will guide the 

manufacturing process. The output from the CAD designs is often translated 

into Gcode, a language used to control automated machine tools and machinery 

during production. This will be our reference design, serving as a benchmark 

of the desired product for the manufacturing process to produce. This ensures 

that the designs are consistent and meet the necessary standards. The transition 

from the Concept phase to the Design phase is marked by a red arrow, 

indicating the involvement of PLM. This ensures that the conceptual ideas are 

accurately translated into detailed design specifications, maintaining 

consistency and coherence. 

The next stage is the Manufacturing Process Setup, where preparations for the 

actual production take place. This phase involves setting up the necessary 

processes and components required for manufacturing our reference design. 

One key aspect of this phase is the establishment of standard components. This 

will be a predefined, standardized part that will be used in the production 

process to ensure uniformity and quality. Another critical activity during the 

Manufacturing Process Setup is Baseline Error Analysis. This step involves 

identifying potential errors before production begins. As for any production 

process even if it is perfect there will be some inherent errors that might be 

there in the process which will be reflected in the final product. By analyzing 

the data from the data collection system, a baseline error pattern is established. 

This pattern serves as a reference for comparing actual errors during 

production, helping in predicting and mitigating potential issues. 



31 
 

The activities before production, such as CAD, Gcode generation, reference 

design, standard component setup, and baseline error analysis, are represented 

by yellow dashed arrows. These arrows indicate the preparatory steps taken to 

ensure that the production process is smooth and efficient, minimizing the 

likelihood of errors. 

The Production phase is where the actual manufacturing of the product occurs. 

This stage is crucial as it transforms the designs and preparations into a 

physical product. During production, continuous monitoring and adjustment 

are necessary to guarantee the output's quality. A Data Collection System is 

employed to gather real-time data from the production process. This system 

monitors various parameters and collects information during manufacturing. 

Here we are monitoring the nozzle tool head position during the manufacturing 

process of the FDM machine. Further details on this will be explored in the 

next chapter. 

Actual errors that occur during production are identified and recorded. These 

errors are then compared against the baseline error patterns established during 

the Manufacturing Process Setup. This comparison helps in identifying 

deviations and understanding the root causes of any discrepancies. The green 

dashed arrows in the diagram represent these activities, highlighting the 

continuous monitoring and quality control measures taken during production. 

Real-time Quality Monitoring is a critical component of this phase. It involves 

continuous observation and assessment of the production quality. This process 

ensures that any issues are detected promptly and addressed immediately, 

maintaining high standards of quality throughout the manufacturing process. 

A machining process inherently includes some types of errors no process is 

perfectly flawless. To reduce these errors, we need to optimize the process 

parameters. According to our proposed methodology from Figure 5, the first 

step in this analysis is optimizing these parameters to create a baseline error 

plot. 
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The optimization process will vary based on several factors, including the type 

of product, the acceptable tolerance levels, the print time, material 

requirements etc.  The manufacturer must conduct a thorough analysis of these 

factors to determine the optimal process parameters for the specific product. 

This involves evaluating different settings and conditions to find the best 

combination that minimizes errors while meeting production goals.  

Once the optimal parameters are identified, the product is manufactured using 

these settings. The error plot generated during this phase represents the 

baseline error pattern. This pattern is crucial as it acts as a benchmark for the 

machining process. For prismatic structures, the baseline error pattern is 

expected to be a straight line, indicating uniformity and consistency in the 

structure along the extrusion direction. This straight line suggests that the 

cross-sectional shape and size remain constant, leading to predictable and 

Figure 6 Baseline Error Pattern 
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linear errors along the Z-axis. In contrast, for non-prismatic structures, the 

shape of the baseline error pattern varies according to the type of cross-section 

that changes along the Z direction. Since the cross-sectional dimensions or 

geometry differ at various points along the height, the errors introduced during 

manufacturing or analysis will also vary. These variations depend on the 

specific changes in the cross-section, resulting in a more complex error pattern 

that reflects the changing structure. Further details can be found in Chapter 5. 

By comparing the error patterns of newly produced parts to this baseline, 

manufacturers can assess the quality and consistency of the production 

process. The baseline error pattern thus serves as a standard for ensuring that 

the produced parts meet the desired quality and performance criteria. This 

systematic approach helps in maintaining high standards in manufacturing, 

allowing for continuous monitoring and improvement of the machining 

process. It ensures that any deviations from the baseline can be quickly 

identified and addressed, leading to higher quality products and more efficient 

production processes. Once the baseline error plot is developed. The next phase 

is to do the comparative analysis of the new manufactured product with the 

standard product which was manufactured with the standard settings. 

For comparison of the currently manufacturing product with the reference 

product for in-layer analysis is the next stage in the monitoring process. We get 

the reference information about the product from the designing stage is termed 

as reference design here. For an FDM AM process, the Gcode file provides the 

information about the reference design which has the information about the 

final product to be made. By parsing the gcode, we get the information about 

the manufacturing process, process parameters and mainly the nozzle tool head 

position during the manufacturing process which is the main focus of this 

study. By comparing the actual tool head position that we get from the DCS 

with the reference position which we get from the reference data, the deviation 

or the error in the tool head position can be calculated.  By doing this analysis 

Layer-by-Layer, we can monitor the progress of the AM process and also keep 
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monitor the quality of the process. The process flow of calculating the error 

within the layer is explained with. 

To do the actual error calculation, let’s say for layer number 1, first we get the 

reference data from the gcode about the motion of the tool head throughout the 

layer 1. Then once the layer 1 is deposited by the FDM machine the DCS will 

provide the actual tool movement during the deposition process for that layer. 

Now we have two point clouds associated with the reference data and actual 

measured data. The desktop FDM machines set their home before every print 

but the homing of each of the axis might induce some error due to incorrect 

homing so for our calculation the matching of the two point clouds of reference 

data and measured data is necessary. Here we are using an Iterative Closest 

Points (ICP) approach for aligning the two-point clouds. Iterative Closest 

Points is a widely utilized algorithm in the field of computer vision and 3D 

shape analysis, primarily for aligning two-point clouds. The process involves 

iteratively refining the transformation comprising rotation, translation, and 

scaling that minimizes the distance between corresponding points in the source 

and target point clouds. Initially, the algorithm selects the closest points in the 

target cloud for each point in the source cloud. Subsequently, it computes the 

optimal transformation to align these point pairs and updates the point 

correspondences based on the transformed source cloud. This iterative process 

continues until convergence, typically when the change in alignment error falls 

below a predefined threshold. ICP is crucial for applications such as 3D 

modelling, object recognition, and medical imaging, where precise alignment 

of point clouds is essential for accurate analysis and interpretation of data. 

Despite its robustness, ICP can be sensitive to initial alignment, noise, and 

outliers, necessitating the use of enhancements like point cloud preprocessing 

in order to improve performance and accuracy. Here we are doing an ICP 

process for aligning the measured data with reference data in order to find the 

closest points. ICP aligns the points clouds by translating and rotating the target 

point cloud with source point cloud such that the change in the total distance 

between the corresponding points is below a predefined threshold. 
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To increase the analysis speed, the two point clouds which are of reference data 

and measured data are matched with each other with their corresponding 

centroids. First the centroids for both the point clouds are calculated and then 

the measured data point cloud is translated to the reference data point cloud. 

After this step the ICP is used in order to align the two point clouds.   

Once the two point clouds are aligned with each other than the further analysis 

of finding the closest points starts. A python script is used for this in which a 

function called `find_closest_points` is designed to determine the nearest 

corresponding points in a dataset of measured data for each point in a reference 

dataset and to quantify the alignment between these two datasets. It begins by 

constructing a KD tree from the measured data, which is a data structure 

optimized for efficient nearest-neighbour searches in multi-dimensional space. 

This tree is then queried for each point in the reference data to find the closest 

point in the measured data, resulting in an array of indices that indicate these 

nearest neighbours. Using these indices, the function extracts the closest points 

from the measured data corresponding to each reference point.  

The Euclidean distances between each pair of reference and closest measured 

points are then calculated, which represent the errors between the each of the 

points in the two datasets. The function proceeds to compute the average of 

these distances to provide a measure of the typical error, and the standard 

deviation to indicate the variability of these errors. Finally, the function returns 

Figure 7 In-Layer Analysis 
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the array of closest points from the measured data, allowing further analysis 

between the reference and measured data.  

In this way, the error in the movement of the nozzle tool head is calculated for 

a single layer, and this process continues for each layer during the production 

process. This approach helps us identify the error pattern and compare the 

developing component with the standard component. By analysing the errors 

layer by layer, we can gain a detailed understanding of how the production 

process affects the final accuracy of the part.  

Error layer = 
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Once the average error is calculated, the error values are normalized to ensure 

consistency in our analysis. Normalizing the data means putting all the error 

measurements on the same scale, which is crucial for accurately comparing 

errors across different layers during the production process. By standardizing 

the error values, we can effectively identify any patterns or trends in error 

accumulation as each layer of the component is manufactured. This systematic 

approach allows us to identify minor details in error distribution and helps us 

pinpoint specific stages where errors may be More prominent. Additionally, 

normalizing the error data enables us to make a direct comparison between the 

developing part and the standard one, providing valuable insights into the 

discrepancies that arise during production. Analysing errors layer by layer not 

only offers a comprehensive understanding of how the production process 

impacts the final accuracy of the part but also allows us to track the evolution 

of errors throughout the manufacturing process. Additionally, utilizing 

normalized data makes it simpler to comprehend and discuss our results, 

assisting in conveying insights to stakeholders and decision-makers. This 

careful approach to analysing errors and standardizing data can also guide 

practical improvements in manufacturing methods, leading to better quality 

and accuracy in the end products. 

The use cases of the developed Data Collection System are as below: 

1. Error Monitoring for the Process 

One of the primary advantages of this data collection system is its ability to 

monitor errors throughout the manufacturing process. By continuously 

collecting data, the system can detect anomalies or deviations from the 

standard operational parameters. This real-time error monitoring allows for 

immediate corrective actions, reducing the likelihood of defective products and 

minimizing downtime and material loss. Early detection of errors can also 

prevent more significant issues from developing, saving both time and 

resources. 

2. Localization of Errors 
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In addition to identifying errors, the system excels at pinpointing the exact 

location where an error has occurred. This localization capability is crucial for 

efficient troubleshooting. When an error is detected, the system can provide 

detailed information about the specific stage or component of the 

manufacturing process that is affected. This targeted approach helps users 

quickly address the issue without needing to inspect the entire process, leading 

to faster resolution times and less disruption to production. 

3. Speed and Acceleration Analysis 

The data collection system also enables comprehensive analysis of speed and 

acceleration within the manufacturing process. By monitoring these 

parameters, manufacturers can gain insights into the dynamic aspects of their 

operations. This analysis is important for several reasons: 

 Product Development: Understanding the speed and acceleration 

patterns helps in developing products that can withstand the operational 

stresses of the manufacturing process. It ensures that new products are 

designed with the right specifications to meet performance standards. 

 Determining Optimal Parameters: Analysing speed and acceleration 

data allows for the identification of optimal operating conditions. This 

information can be used to adjust the process parameters to achieve the 

best possible performance, leading to improved product quality and 

consistency. 

 Process Design and Optimization: With detailed data on how different 

speeds and accelerations affect the manufacturing process, engineers 

can design more efficient and effective processes. This can involve 

tweaking existing processes or developing entirely new ones that 

optimize productivity and minimize waste. 

After the production phase, the product enters the operation phase. This phase 

involves the actual use of the product by end consumer or its integration into 

larger systems. The operation phase is crucial for gathering feedback and 

understanding the performance of the product in real-world conditions. 
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The final stage in the product lifecycle is Disposal. This phase involves the 

responsible retirement and disposal of the product once it has reached the end 

of its useful life. The Disposal phase ensures that Products are disposed of in 

an environmentally friendly way, following regulatory standards and 

minimizing environmental impact. 

PLM plays a key role throughout the entire process, integrating all stages from 

concept to disposal. By unifying these stages, PLM ensures a cohesive and 

consistent approach to product development and management. One of the key 

benefits of PLM is its role in error monitoring. By involving baseline error 

analysis and real-time quality monitoring, PLM helps identify and rectify 

errors promptly, ensuring the production process remains efficient and of high 

quality. 

Moreover, PLM facilitates the seamless flow of data across different stages. 

Information collected during each phase is utilized effectively to improve the 

overall product lifecycle. This continuous data flow ensures that every stage of 

the product lifecycle is informed by insights from previous stages, leading to 

better decision-making and improved product quality.  
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Chapter 4 Cyber-Physical Production 
Environment Development  

In this chapter, we will outline the development process of the Smart Additive 

Manufacturing System (SAMS). To create a proof-of-concept, we chose the 

material extrusion additive manufacturing process due to its versatility and 

widespread adoption. Our initial step involved selecting an AMU and 

identifying the specific parameters necessary for monitoring this unit. 

Through an extensive literature review, we determined that several factors, 

including the position, speed, and acceleration of the nozzle tool head, 

significantly influence the quality of products produced using additive 

manufacturing methods. Considering the significance of these parameters, we 

decided to focus our efforts on monitoring the nozzle tool head position. This 

parameter is crucial as it directly impacts the precision and accuracy of the 

manufacturing process, thus affecting the final product's quality. By accurately 

tracking and analysing the nozzle tool head position, we aim to ensure the 

consistency and quality of items produced through additive manufacturing 

techniques. 

Our initial work involved the MCube 3D Guider 200, which features lead 

screw-driven axes for the nozzle head movement. To select an appropriate 

sensor for measuring the nozzle head position, we selected a list of potential 

sensors, including the Ultrasonic Sensor, Infrared Sensor, and Rotary Encoder. 

Table 1 Sensors Selected for Experiment 

Sensor Measurement Type  Model 

Ultrasonic Sensor Time-of-Flight HC-SR04 

Infra-red Sensor Time-of-Flight Sharp 2Y0-A21 

Optical Encoder Rotary Position Orange 600ppr Rotary 
Optical Encoder 
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To evaluate the accuracy of these sensors for position measurement, we created 

a test setup for each sensor to monitor the X and Y axis of the tool head. The 

IR Sensor 

Optical 

Rotary 

Encoder 

Ultrasonic 

Sensor 

Figure 8 Implementation of different Sensors 
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test was to move the tool in a square shape with sides of 60mm and the results 

were as below  

As can be seen in the plots, the infra-red sensor had the worst traceability 

among the three sensors tested. Its output was with very high noise levels and 

inconsistent data, making it unreliable for precise measurements. The 

Ultrasonic sensor performed moderately, but it still showed some variability 

and occasional drift in the data. In contrast, the optical encoder demonstrated 

the best traceability, consistently providing accurate and reliable data with 

minimal noise and high repeatability. Given its superior performance in terms 

of accuracy and reliability, we decided to use the optical encoder for our 
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implementation. Its ability to maintain consistent data quality makes it the most 

suitable choice for our project's requirements. 

The following step was to mount the sensors on the machine. Encoders were 

mounted on each of the axis of the machine as can be seen in figure. 

To evaluate the system's efficacy in error detection, deliberate deviations were 

introduced during material deposition. This methodical approach enabled a 

comprehensive assessment of the system's capability to identify anomalies. 

The ensuing section delineates the findings from these deliberate error tests, 

elucidating the system's proficiency in discerning and flagging intentional 

deviations from the normative printing process. 

In each of the diagram we can clearly see that the errors in the deposition 

process are being detected by the Data Collection System in real time from the 

FDM machine 

a b 

c 
Figure 9 Implementation of Optical Encoder on FDM machine 
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For the next analysis DCS was tested with the actual part and its detection. For 

that we made a CAD model of a Spanner as a test case. The layer height for 

this process was set at 0.2mm and the thickness of the part was 1mm for testing. 

The 5 layers and their collected data can be seen in the figures. The orange 

images are the sliced sections at each of the layer number and the actual motion 

of the nozzle head that is being read by the DCS in the image below that. So, 

Layer 2 

Layer 1 

Figure 10 Spanner CAD design 
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it can be concluded that the approach for the monitoring of the nozzle head 

during the production process is working fine. 

Layer 4 

Layer 5 

Layer 3 
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To check the replicability, we decided to do the same setup on another FDM 

machine as well. The machine used for this setup is Creality’s Ender 3 Neo. It 

is a 3D printer known for its affordability and reliability. It's popular among 

hobbyists and enthusiasts for its ease of use and versatility. With a sturdy frame 

and user-friendly interface, the Ender 3 Neo allows users to create high-quality 

prints with precision. Its open-source nature also enables users to customize 

and upgrade the printer according to user’s needs. The X and Y axis of the 

machine are belt driven and the Z axis is driven by lead screw.  So accordingly, 

sensors were mounted on the machine in order to monitor the axes. 

These 3 optical rotary encoders are connected to an individual Arduino which 

powers each of the sensor and collects the data from them and sends to a main 

Arduino board. The communication protocol used for the development of this 

Figure 11 Implementation of Optical Encoder on FDM machine 
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DCS is IIC or I2C (Inter Integrated Circuits). The I2C is a widely used 

communication protocol designed for short-distance communication within 

electronic circuits. Developed by Philips in the 1980s, I2C enables efficient 

communication between microcontrollers and peripheral devices such as 

sensors, displays, and memory modules. The protocol uses a simple, two-wire 

interface consisting of a Serial Data Line (SDA) and a Serial Clock Line 

(SCL). These lines are used for bidirectional data transfer, where multiple 

devices can be connected to the same bus, each with a unique address. The 

master device initiates communication by generating a clock signal and 

sending address information, while the slave devices respond according to 

their assigned addresses. One of the key advantages of the I2C protocol is its 

simplicity and flexibility, which make it ideal for embedded systems and 

applications where pin count and wiring complexity need to be minimized. I2C 

supports multiple masters and slaves on the same bus, facilitating complex 

communication patterns in a straightforward manner. The protocol's standard 

speed modes range from 100 kHz (Standard-mode) to 3.4 MHz (High-speed 

mode), catering to various performance requirements. Despite its relatively 

low data rates compared to other protocols, I2C's ease of implementation and 

low resource requirements make it a popular choice for inter-device 

communication in consumer electronics, industrial automation, and various 

Figure 12 Communication in DCS 
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other fields. Here, the slave sensors are the optical rotary encoders connected 

to each axis of the FDM machine and they are sending the data to the main 

master which is combining the data from all the 3 slaves and giving the data in 

real time. 

A user-friendly HMI for the Data Collection system was developed with 

Tkinter in python for easy usage and collecting of the data during the 

manufacturing process. The HMI has two primary functionalities. The first 

functionality is to create a folder where the data related to the product will be 

stored throughout the manufacturing process. This ensures that all relevant 

information is organized and easily accessible for analysis and record-keeping. 

The second functionality involves establishing a connection with the Data 

Collection system (DCS) via a USB serial connection. This connection enables 

seamless communication between the manufacturing equipment and the 

control system, facilitating efficient data exchange and system monitoring. 

Figure 13 User Interface for Data Collection System 
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Additionally, the output window of the system provides real-time feedback on 

the position of the nozzle head. This feature is crucial for monitoring and 

ensuring the precision of the manufacturing process, as it allows operators to 

observe and adjust the nozzle head's position as needed during production.  

In this way the algorithm for the analysis is standardized with the ISO standard. 

In this way the developed data collection system and the analysis algorithm 

can be used to analyse the FDM process. Finally, the developed system is 

standardized as ISO23704, and the architecture developed for this is system 

can be seen as Figure 14 

  

Figure 14 Architecture of developed system 
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Chapter 5 Experiments, Results & Discussion 

In this chapter, we will see the results and findings obtained from this research. 

This will involve utilizing appropriate data visualization techniques to analyse 

and interpret the results in relation to the research objectives.  

Table 2 Machine Parameters 

The process parameters for the FDM machine are stated in the table above. 

The machine was tested for variations in machine parameters by adjusting the 

Feed Factor. The Feed Factor changes all the machine parameters 

proportionally. For example, when the Feed Factor was set to 100%, the 

machine parameters were as shown in the table above. When the Feed Factor 

was reduced to 75%, all parameters adjusted to 75% of their original values, 

and similarly for 50%. This experiment was conducted with three different 

Feed Factors. Additionally, to account for all variability, the layer size was 

varied in three steps: 0.1mm, 0.2mm, and 0.3mm for the same part design.  

Also, as the FDM machine has a belt driven system for X and Y axis, there can 

be a chance of the belt tension getting loose with time which will eventually 

degrade the quality of the product. So, the variation in the belt tension was also 

Feed Rate (mm/sec) 

X 500 

Y 500 

Z 5 

Acceleration (mm/sec2) 

X 500 

Y 500 

Z 500 

Print Settings (mm/sec2) 

Print Acceleration 500 

Retraction Acceleration 500 

Travel Acceleration 1000 
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taken into consideration for this study. Tension 1 being highest, 2 moderate and 

3 being the lowest belt tension. This allowed us to see how changes in Feed 

Factor, layer size and Belt tension affect the machine's performance and 

accuracy in the product. For testing the data collection system, a Square Shell 

was used as a standard design for all types of tests. The analysis involves two 

main steps. First, we develop a baseline error plot. Second, we calculate the 

error from the process in real time. In this study, we examined three different 

combinations of the Square Shell. These combinations used layer heights of 

0.1mm, 0.2mm, and 0.3mm. Each Square Shell was sliced with these different 

layer heights for the purpose of slicing and developing the part. This approach 

helps us understand how different layer heights affect the accuracy and errors 

in the data collection process. 

Figure 15 Square Shell a) 0.1mm b)0.2mm 3)0.3mm 
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Figure 16 is the baseline error plot for the Square Shell with 0.1mm layer 

height at 50% feed rate and at the highest tension. Here we can see that the 

average error is in the same region and the pattern line is more or less straight 

line due to prismatic nature of the Component. The black dashed lines above 

and below the baseline error plot are the standard deviations of the average 

error for each of the layer. This will act as a reference pattern for the parts that 

will be newly produced with the same machining parameters. For the first layer 

the error value is being the highest as for better adhesion the first layer was 

kept very close to the nozzle head. Note that the error values are increasing as 

the feed factor is increasing, signifying the increase in the dimensional error as 

the speed is increasing.  

Similarly, the baseline error plots can be observed for the layer height of 

0.2mm and 0.3mm for the Square Shell with different feed factor levels from 

Figure 17 to Figure 24 

Figure 16 Baseline Error Pattern of Square Shell 0.1mm at 50% Feed Factor 
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Figure 17 Baseline Error Pattern of Square Shell 0.1mm layer height at 75% Feed Factor 

Figure 18 Baseline Error Pattern of Square Shell 0.1 mm layer height at 100% Feed Factor 
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Figure 19 Baseline Error Pattern of Square Shell 0.2mm layer height at 50% Feed Factor 

Figure 20 Baseline Error Pattern of Square Shell 0.2mm layer height at 75% Feed Factor 
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Figure 21 Baseline Error Pattern of Square Shell 0.2mm layer height at 100% Feed Factor 

Figure 22 Baseline Error Pattern of Square Shell 0.3mm layer height at 50% Feed Factor 
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Figure 23 Baseline Error Pattern of Square Shell 0.3mm layer height at 75% Feed Factor 

Figure 24 Baseline Error Pattern of Square Shell 0.3mm layer height at 100% Feed Factor 
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It is evident that the variation in these different factors has influenced the value 

of the average error. However, the overall pattern remains nearly the same as 

a straight line, primarily due to the shape of the component. By using this 

baseline error plot as a standard, we can monitor the manufacturing process 

quality in real time. This approach allows us to detect deviations from the 

expected error pattern early, so we can intervene quickly to maintain product 

quality and consistency. For example, if we notice that the error value starts to 

deviate from the baseline plot, we can immediately check the factors that might 

be causing this deviation and make necessary adjustments to bring the process 

back on track. Thus, the baseline error plot is a crucial tool for ensuring that 

the manufacturing process stays within acceptable quality limits. It helps us 

identify and correct issues before they become significant problems, ensuring 

that each component produced meets the required quality standards. This 

supports the production of reliable and high-quality components, which is 

essential for maintaining customer satisfaction and trust in our manufacturing 

processes.  

To evaluate the error detection capability of the developed data collection 

system, we conducted a simulation by intentionally inducing errors during the 

manufacturing process of a Square Shell test subject. The test subject was 

manufactured with a specified layer height of 0.2mm. To create controlled 

errors, we manipulated the belt tension of the X-axis of the machine across 

three distinct stages. Additionally, we varied the feed factors in three 

corresponding stages. This approach allowed us to observe and analyse how 

effectively the system could detect errors introduced by these modifications. 

The test parameters for this experiment are as Table 3, 

Table 3 Testing Parameters for 0.2mm Square Shell 

Feed Factor (%) 50, 75, 100 
Belt Tension Level 1, 2, 3 
Layer Height (mm) 0.2 
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Figure 25 Variation in process error due to belt tension variation at 50% Feed Factor 

Figure 26 Error Pattern comparison for different tension level at 50% Feed Factor 
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Figure 25 and Figure 26 are the results for this different experiment. When the 

product is manufactured with the required design tension the error during the 

manufacturing process lies within the acceptable range, also the dimension of 

the final product is also in the acceptable range as can be seen in the red error 

pattern in the Figure 26..  

But when the belt tension is reduced, the tool head's movement becomes 

inaccurate because the lower tension prevents the belt from gripping the pulley 

properly. This improper motion results in the final component being smaller 

than intended, introducing errors into the finished product. The data collected 

by the DCS clearly reflects this increase in error as the green error pattern in 

figure. As the belt tension decreases, the grip on the pulley weakens, leading 

to a reduction in the component's dimensions. This generation of error is 

captured by the DCS and is evident in the collected data, demonstrating how 

changes in belt tension directly impact the precision of the manufacturing 

process.  

As the belt tension is lowered further, severe faults are induced in the process, 

and the dimensions are further reduced by a significant level. This reduction 

introduces more severe errors. The severity of these faults and the 

corresponding decrease in component size can be clearly seen in the DCS data 

plots. The impact of reduced belt tension is significant and becomes 

progressively more pronounced as the tension decreases. Furthermore, this 

trend is consistent across different feed factor levels. Regardless of the feed 

rate, the reduction in belt tension consistently leads to improper pulley grip, 

resulting in smaller component dimensions and increased error rates. 
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Figure 27 Variation in process error due to belt tension variation at 75% Feed Factor 

Figure 28 Error Pattern comparison for different tension level at 75% Feed Factor 
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Figure 29 Variation in process error due to belt tension variation at 100% Feed Factor 

Figure 30 Error Pattern comparison for different tension level at 100% Feed Factor 
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After carefully reviewing the plots from our data collection system, it's clear 

that changes in belt tension lead to detectable variations in error across 

different manufacturing speeds. Our analysis shows that our system reliably 

identifies and tracks these variations, demonstrating its effectiveness in 

maintaining accuracy and consistency in various operational scenarios.  

To expand the scope of our evaluation of the Data Collection System, we opted 

to manufacture additional components featuring varied and intricate shapes. 

Our first selection was a Spur Gear. Throughout this experimental phase, we 

maintained a consistent layer height of 0.2mm to ensure uniformity. Below, the 

CAD design of the gear is presented, providing a visual representation of its 

structure. 

The Spur gear was also printed with different Feed Factors from 50% to 100% 

in order to consider the variability that might arise in product due to speed 

variation and the results are as below  

Figure 31 CAD design for Spur Gear 
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So, it is clearly visible from Figure 32 that the nature of the Baseline error 

pattern is straight line nature. It depends on the structure of the component 

being manufactured. Here the gear is of prismatic nature so the baseline error 

pattern for each feed factor is a straight line. As the Feed Factor is increased, 

the printing speed increases also acceleration is increased, which eventually 

decreasing the accuracy of the movement of the nozzle tool head. Thus, the 

error can be seen increasing with the increasing Feed Factor in Figure 32 plot. 

In this way the analysis of the spur gear at different speeds was done. 

The next part of our consideration of the analysis is a Propeller.  The design as 

follows. Propeller was also manufactured with different feed factors in order 

to consider for any variability that arise in the component due to change in the 

speed and accelerations 

 

Figure 32 Baseline Error plot for Spur Gear at different Feed Factor 
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Figure 33 CAD design for Propeller 

Figure 34 Error Pattern for Propeller at different Feed Factors 
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As the shape of the component is not prismatic, the baseline error plot will also 

have structure other than the straight line which will be dependent on the 

number of points in each layer of the reference data. As more points the error 

will be distributed over more points. With the developed DCS we can also 

reverse engineer the final product that has been manufactured as can be seen 

in the Figure 35 

This is the point cloud of the tool head position throughout the manufacturing 

process which can be used to re-engineer the actual product and do post process 

analysis of the same. 

The next component taken in consideration is a turbine. The CAD design of 

the Turbine is as can be seen below.  

Figure 35 Reverse-Engineered Component: Propeller 
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Figure 36 CAD Design for Turbine 

Figure 37 Baseline Error Pattern for Turbine at different Feed Factors  
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The baseline error plot developed for a Turbine structure is Figure 37 

here we can see that even by varying the Feed factor, structure of the baseline 

error plot remains same but the magnitude of the average error slightly 

increases as the error are increaser with increasing the Feed Factor.  

The post-process analysis of the turbine to reverse engineer the developed 

Turbine structure with the help of data collected from DCS can be seen in the 

plot below. Here we can do the analysis once the process is complete as well. 

In this way the development and validation of the Data collection system is 

done with different experiments by varying different process parameters such 

as layer height, Feed Factors for different shape, size and structure of the 

components as discussed in this chapter.  

 

  

Figure 38 Reverse-Engineered Component: Turbine 
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Chapter 6 Conclusion & Future Scope   

This research work has successfully advanced the development of a Cyber-

Physical Production environment for Additive Manufacturing system 

standardized with ISO 23704. It helps to integrate with the PLM lifecycle of 

the Additive manufacturing products providing a robust framework for 

integrating Additive Manufacturing systems into large-scale production lines 

for customized manufacturing.  

The key innovation from this research lies in the manufacturing section of the 

Additive manufacturing lifecycle for the system's capability for real-time 

monitoring and decision-making. This advancement is a critical component for 

realizing the full potential of AM in Industry 4.0 applications, where the 

integration of digital and physical systems is important. Real-time monitoring 

allows for continuous observation of the manufacturing process. This data is 

then analysed on-the-fly to take informed decision-making processes that can 

adjust the AM operations in real-time, ensuring optimal performance and 

quality. The current implementation focuses on desktop Fused Deposition 

Modelling machines, but it can also be implemented to different other AM 

processes as well. 

Additionally, the development of a Data Collection System has been a 

noteworthy achievement. This DCS is not only integral to the real-time 

monitoring and decision-making capabilities of the Smart Additive 

Manufacturing system but also plays crucial part in post process analysis of 

the manufactured components. The post-process analysis facilitated by the 

DCS allows manufacturers to scrutinize the completed components in detail, 

identifying any deviations from the desired specifications and understanding 

the root causes of these variations. This thorough analysis is essential for 

process optimization, as it provides a clear picture of how different parameters 

and machine settings affect the final product. By examining the data collected 

during the manufacturing process, manufacturers can fine-tune the parameters 
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to achieve optimal results, ensuring that each component meets the required 

quality standards. 

Furthermore, the research highlights the importance of standardization, as ISO 

23704 provides a structured approach that ensures compatibility and 

interoperability across different AM systems. The replicability of the system 

was validated by implementing the system on different FDM machines. This 

standardization is vital for widespread adoption and integration of Smart 

Additive Manufacturing system in various industrial sectors. By adhering to 

established standards, the SAMS can be easily integrated into existing 

manufacturing infrastructures, facilitating a smoother transition from 

traditional manufacturing methods to advanced AM technologies. 

The future scope of this research is extensive and multifaceted. Several key 

areas warrant further exploration and development: 

 Expansion to Metal Additive Manufacturing: While the current system is 

designed for desktop FDM machines, there is significant potential for 

adapting the technology to metal additive manufacturing processes, such as 

Wire-Arc Additive Manufacturing (WAAM). Given the similarities in the 

manufacturing processes, extending the Smart AM system to WAAM could 

greatly enhance its applicability and utility in the production of metal 

components. This would involve developing specialized algorithms and 

control mechanisms tailored to the unique requirements of metal AM, 

ensuring optimal performance and quality in metal part production. 

 Scalability and Integration: Further work is needed to scale the system for 

use in larger and more complex production environments. This includes 

enhancing the DCS to handle a broader range of AM technologies and 

integrating it with existing industrial automation systems to ensure seamless 

operation across various manufacturing platforms. Developing modular and 

scalable solutions will enable the Smart AM system to be customized for 

different production scales, from small batch productions to large-scale 

manufacturing facilities. 
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 Advanced Monitoring and Analytics: Developing more sophisticated 

monitoring and analytics capabilities will be essential for advancing the 

Smart AM system. This includes leveraging advanced sensor technologies 

and machine learning algorithms to improve real-time decision-making and 

predictive maintenance capabilities. By incorporating advanced data 

analytics, the Smart AM system can provide deeper insights into the 

manufacturing process, enabling proactive identification and resolution of 

potential issues before they impact production quality or efficiency. 

 Developing a Behaviour Model Compliant with ISO 23704: Creating a 

behaviour model of the AM workflow that complies with ISO 23704 

standards is a crucial step forward. This will involve developing a detailed 

model of all the stages of AM process to generate value added data about 

abnormalities in the AM process and rigorously testing it. Compliance with 

these standards will ensure that the system maintains high levels of 

reliability, safety, and interoperability with other standardized systems. 

 Future work will also include creating a prediction model for surface 

roughness (Ra) to improve quality control. This will involve collecting and 

analysing data on surface roughness, identifying key influencing factors, 

and developing a model that can accurately predict Ra based on these 

factors. By accurately predicting surface roughness, manufacturers can 

better control the quality of their products, reducing the likelihood of defects 

and enhancing the overall performance of the AM process. This predictive 

capability will be particularly valuable in applications requiring high 

precision and stringent quality standards, such as in aerospace, automotive, 

and medical device manufacturing. 

 User Interface and Usability: Enhancing the user interface and usability of 

the system will be crucial for broader adoption. This involves developing 

intuitive interfaces and user-friendly tools that facilitate easy operation and 

integration into existing workflows. 

 Cross-Industry Applications: Exploring the potential applications of the CP-

PLM for AM across different industries can open up new opportunities for 
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innovation and growth. There is potential for the Smart AM system to be 

applied in areas such as construction, healthcare, and consumer goods. 

Customizing the Smart AM systems to meet the specific needs and 

challenges of these industries can further drive its adoption and impact. 

By addressing these future directions, the Smart Additive Manufacturing 

system can continue to evolve, driving innovation and efficiency in the 

manufacturing industry and solidifying its role in the era of Industry 4.0. The 

ongoing development and refinement of the SAMS will ensure that it remains 

a cutting-edge solution, capable of meeting the diverse and ever-changing 

demands of modern manufacturing.  
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