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Preface 

 

This report on “Automated screening of sleep apnea from ECG signals using 

digital Taylor-Fourier transform” is prepared under the guidance of Dr. Ram 

Bilas Pachori, Professor, Electrical Engineering, IIT Indore. 

Through our report we have developed a novel method for effective detection of 

obstructive sleep apnea (OSA) from single-lead electrocardiogram (ECG) signals 

using the digital Taylor-Fourier transform (DTFT). This method is computationally 

less intensive than its predecessors while maintaining high accuracy. Our 

methodology, when implemented in real-life situations, will save on time without 

compromising on accuracy, potentially saving many precious lives. 

We have tried to the best of our abilities and knowledge to explain the content in a 

lucid manner.  
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Abstract 

 

Obstructive sleep apnea (OSA) is one of the most prevalent respiratory disorders in 

humans, and often leads to cardiovascular complications in the long run. Hence, it 

is essential to develop techniques that effectively detect the condition, while keeping 

operating time and costs to a minimum. Methods using the single-lead 

electrocardiogram (ECG) signals have proven to be an economical and 

computationally feasible option. In this report, a new methodology based on the 

digital Taylor-Fourier transform (DTFT) has been developed for sleep apnea 

detection and classification from single-lead ECG signals. In this method, a DTFT 

matrix (similar to the twiddle factor matrix) has been used to extract features from 

the apnea and non-apnea ECG signals. The signals are decomposed into various 

oscillatory modes, represented by the coefficients obtained after the DTFT is 

applied. The DTFT enables us to evaluate multiple frames at a time in the process 

of obtaining these coefficients. The magnitude of the features is then evaluated from 

the spectral coefficients. The support vector machine (SVM) classifier, along with 

the radial basis function (RBF) kernel is used for the purpose of classification. The 

proposed approach yielded a maximum classification accuracy of 92.41% using the 

Physionet-Apnea ECG database. 
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Chapter 1 

Introduction 

1.1 Sleep apnea  

The sleep apnea is a very common respiratory disorder that occurs during sleep [1]. Obstructive 

sleep apnea (OSA) is a form of apnea where the upper airway becomes blocked repeatedly during 

sleep, reducing or completely stopping airflow [2]. If the brain does not send the signals needed to 

breathe, the condition is called central sleep apnea (CSA). There is a third category of sleep apnea 

named mixed sleep apnea (MSA). Specifically, an absence of airflow for at least 10 sec is classified 

as an obstructive apnea episode [3]. Although the OSA is a treatable condition, it often goes 

undetected, which can be inferred from the fact that around 85% of patients with clinically 

significant apnea have never been diagnosed [4]. Sleep apnea occurs in all age groups and both 

sexes, but is more common in men. The frequent interruptions of deep, restorative sleep due to 

OSA often lead to early morning headaches and excessive daytime sleepiness. Early detection and 

treatment of OSA is vital as it may lead to various cardiovascular complications such as an 

irregular heartbeat, heart attacks, and strokes [5]. 

 

1.2  Purpose of this work 

As discussed in the previous section, OSA is a very common disorder, and there are high chances 

it might go undetected in most adults. Late detection allows for the onset of various cardiovascular 

conditions, which could have otherwise been prevented if a more proactive approach was taken 

[5]. To this end, there are many techniques which allow for early detection of sleep apnea. For a 

very long time, the most common approach for this has been polysomnography (PSG) [3]. This 

technique requires many channels, which in turn means more electrodes and sensors attached to 

the patient’s body [6]. This means that, along with increased operational costs and time, the 

patient’s sleep is degraded as well. Also, there is scope for error as it is reliant on the observational 

skills of the physicians monitoring the patient, which is subjective.  

This lead research on sleep apnea detection to look towards single-lead electrocardiogram (ECG) 

signals [7]. Not only is this means of collecting data cheaper [8], it reduces discomfort on the 

patient due to less number of sensors, ensuring better sleep and hence more reliable data. Many 
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techniques for detection of OSA using the single-lead ECG signals are available in the literature. 

Methods [9], [10], [11] and [12] directly use the single-lead ECG signals, although [13] and [14] 

rely on the heart-rate variability (HRV) and ECG-derived respiration (EDR) signals that 

accompany the single-lead ECG signals.  

In [15], a new method to analyze signals using dynamic phasors was introduced, which then led 

to the formulation of the digital Taylor-Fourier transform (DTFT) [16]. When applied on a signal, 

it generates coefficients that give information about the frequency spectrum at multiples of a 

fundamental frequency. It gives more information than the standard discrete Fourier Transform 

(DFT) as it works on the dynamic phasor assumption, and hence contains more coefficients. 

Coming to the problem at hand, as the annotations are given for every minute, the ECG signal is 

split into non-overlapping frames. Compared to the previous methods discussed earlier, the DTFT 

is computationally feasible [17] as it can be applied to multiple frames at a time. In our proposed 

method, we explore DTFT for the application of sleep apnea detection using ECG signals. 

  

1.3 Proposed method 

In this work, initially the ECG signals (which are of 3 types, A, B and C based on the duration of 

apnea) are segmented into one-minute frames as the apnea annotations are given for one-minute 

durations. The classification of each segment as apnea or non-apnea are performed using features 

extracted from the operation of the DTFT. The DTFT is implemented as a matrix, which is unable 

to cover the entire minute duration on its own due to size constraints. Hence, each one minute 

signal is further divided into sub-frames and coefficients are obtained from each sub-frame. For 

classification, the magnitude of these coefficients is taken as the features. To get common features 

for the one minute duration, the sub-frame features are averaged throughout each minute. These 

features correspond to different oscillating frequencies present in the signal. A feature matrix is 

generated for with features for each minute acting as feature vectors. It is given as the input to the 

classifier, which classifies them as apnea or non-apnea. The block diagram of the proposed method 

is illustrated in Fig. 1.1.    
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Fig. 1.1: Block diagram of the proposed method 
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Chapter 2 

ECG database 

The ECG database used in this work is a publicly available apnea ECG database [18] obtained 

from https://physionet.org/physiobank/database/apnea-ecg/. The data consists of 70 records of 

ECG signals, which are divided into 35 training and 35 testing sets. All the recordings in the 

database vary from 7 - 10 hours each. Each recording includes a continuous digitized ECG signal, 

a set of apnea annotations for every minute derived by human experts on the basis of 

simultaneously recorded respiration and related signals. All the recordings are 16 bits per sample, 

least significant byte first in each pair, 100 samples per second, nominally 200 analog/digital (A/D) 

units per millivolt. 

 

2.1 Data acquisition 

Each of the 35 ECG recordings is divided into one-minute signals. The annotations to these one-

minute signals are made accordingly. These one-minute signals consists of 6000 samples each 

(number of samples = sampling rate (samples/sec.)×time (sec.) i.e. 100×60 = 6000 samples). After 

dividing them so, we got 6514 apnea and 10531 non-apnea one-minute signals. The further 

processes in our work are based on these signals. These signals have been adjusted according to 

their gain as mentioned in the database. They have a nominal gain of 200 A/D units per millivolt. 

Fig 2.1 and 2.2 represent one-minute duration ECG signals for a subject who does not have apnea 

and a patient who has apnea, respectively. 

 

Fig 2.1: Non-apnea ECG signal recorded from a subject  

https://physionet.org/physiobank/database/apnea-ecg/
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Fig 2.2: Apnea ECG signal recorded from a patient  
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Chapter 3 

Digital Taylor-Fourier transform 

The DTFT [16] is an extension of the discrete Fourier Transform (DFT), where the phasor has 

been assumed to be dynamic and its amplitude represented by a time-varying Taylor series. It is 

primarily dependent on two parameters: the fundamental frequency (𝑓0) and the order of the 

dynamic phasor amplitude (𝐾). 

 

3.1 Chronology 

The problem of signal decomposition has been integral to signal processing since time 

immemorial, with various methods being proposed and several improvements made over time. 

Closely related to this is the problem of harmonic estimation. Existing harmonic techniques have 

been helpful to solve a lot of problems that arise from several areas, some of which have been 

given in [19], [20] and [21]. The familiar techniques of DFT and the computationally-superior fast 

Fourier transform (FFT) have been very effective in static harmonic estimation. However, it is 

well known that, in practice, signals do not accomplish this ideal property. Using methods suited 

for static estimation, such as the DFT, to estimate the Fourier coefficients of these signals would 

then result in the following anomalies: 1) spectral leakage and 2) harmonic interference [22]. To 

account for these discrepancies, a new signal model, based on the concept of dynamic phasors is 

presented in [15]. In [16], this signal model is realized via the Taylor – Fourier transform (TFT).  

 

3.2 Methodology 

Since its conception in [23], the phasor has essentially been considered as a steady-state concept. 

Up to now, this assumption is the basis for most of the algorithms for phasor estimation. Existing 

estimation methods assume that the analyzed signal is periodic, which implies constant 

fundamental frequency and Fourier coefficients (amplitude and phase) over the entire observation 

window. This adds to the static phasor assumption. Taking this assumption, the DFT is used to get 

the spectral coefficients, which are constants. 
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The static phasor model for a sinusoidal signal 𝑠(𝑡) with fundamental frequency 𝑓0, amplitude 𝑎0  

and initial phase 
0
 is given as: 

𝑠(𝑡) = 𝑎0 cos(2𝜋𝑓0𝑡 + 
0
) ,    −

𝑇

2
≤ 𝑡 ≤

𝑇

2
, 

(3.1) 

 

where 𝑇 is the time period of the signal. 

 

In a signal with multiple harmonics to be estimated, the static model is given as: 

𝑥𝑝(𝑡) =  ∑ 𝑑ℎ

𝐻

ℎ=−𝐻

𝑒𝑗2𝜋ℎ𝑓0𝑡 
       

(3.2) 

 

Where 𝐻 is the number of harmonics present in the signal, 𝑓0 is the fundamental frequency, and 

𝑑ℎ  is the amplitude of each harmonic. 

 

The constant coefficients fail to capture the oscillatory nature of the real-life signals at each 

harmonic. Also, they are unable to convey frequency information in the vicinity of the harmonics. 

To rectify this, a new approach was presented in [15]. This work relaxes the static phasor 

assumption to a dynamic one, i.e., the dynamic phasor 𝑝(𝑡), which is one complex time function 

with movement freedom. The dynamic phasor model is given as: 

 

𝑠(𝑡) =  
𝟏

𝟐
(𝑝(𝑡)𝑒𝑗2𝜋𝑓0𝑡 + 𝑝̅(𝑡)𝑒−𝑗2𝜋𝑓0𝑡)        

  = 𝑅𝑒{𝑝(𝑡)𝑒𝑗2𝜋𝑓0𝑡} ,     −
𝑇

2
≤ 𝑡 ≤

𝑇

2
, 

 

 

(3.3) 

 

where 𝑝(𝑡) = 𝑎(𝑡)𝑒𝑗(𝑡). The 𝑎(𝑡) and (𝑡) are the time-varying amplitude and phase 

components of the phasor respectively. 

 

It can also be written as follows: 

𝑥(𝑡) =  ∑ 𝑑ℎ(𝑡)

𝐻

ℎ=−𝐻

𝑒𝑗2𝜋ℎ𝑓0𝑡     
 

(3.4) 

 

  

 



 

8 
 

The phasor 𝑝(𝑡) in (3.3) is then approximated by a 𝑘th-order Taylor polynomial, as shown below: 

          𝑝(𝑡) = 𝑝(0) + 𝑝′(0)𝑡 + 𝑝′′(0)
𝑡2

2!
+⋯+ 𝑝𝑘(0)

𝑡𝑘

𝑘!
      

                                         𝑓𝑜𝑟  −
𝑇

2
≤ 𝑡 ≤

𝑇

2
  

 

(3.5) 

 

Comparing (3.4) and (3.5), we can see that for 𝑁 signal points, the number of unknown coefficients 

will be (2𝐻 + 1)(𝐾 + 1). For these number of signal points, the maximum number of equations 

to solve would be 𝑁(𝐾 + 1). 

 

Similar to the traditional Fourier matrix with twiddle factors 𝑤𝑁
𝑘𝑛, we can have  

𝑾𝑁 =

(

 
 
  
1
1
1
       

1
𝑤𝑛
𝑤𝑛
2
          

1
𝑤𝑛
2

𝑤𝑛
4
            

…
…
…

1

𝑤𝑁
(𝑁−1)

𝑤𝑁
2(𝑁−1)

⋮          ⋮               ⋮           ⋱ ⋮

1 𝑤𝑁
(𝑁−1)

𝑤𝑁
2(𝑁−1) ⋯ 𝑤𝑛

(𝑁−1)2

)

 
 
 
     

 

 

(3.6) 

 

which is of dimension 𝑁 × 𝑁 for 𝑁 signal points, we now need a 𝑁(𝐾 + 1) × 𝑁(𝐾 + 1) matrix, 

which is named the Taylor-Fourier matrix, which is given in [24] as  

 

𝑥̂𝐶𝑁 = 𝑩𝐶𝑁𝝃̂𝐶𝑁 = (𝑰𝐶𝑁(

𝑾𝑁

𝑾𝑁

⋮
𝑾𝑁

) 𝑻𝐶𝑁 (

𝑾𝑁

𝑾𝑁

⋮
𝑾𝑁

) ⋯
1

𝑘!
𝑻𝐶𝑁
𝐾 (

𝑾𝑁

𝑾𝑁

⋮
𝑾𝑁

))

(

 
 

𝝃̂𝑁

𝝃̂̇𝑁
⋮

𝝃𝑁
𝑲̂
)

 
 
   

 

 

  (3.7) 

 

    

This matrix has 𝐶 =  𝐾 + 1 vertical matrices, each one formed by 𝐶 Fourier matrices WN, one 

below the other, with harmonic vectors of length 𝐿 =  𝐶 × 𝑁, which will modulate the Taylor 

terms in the 𝐶 diagonal matrices 
1

𝑘!
𝑇𝐶𝑁
𝑘 , 𝑘 =  0 , . . . , 𝐾. The diagonal matrix 𝑇𝐶𝑁, has in its diagonal 

the following sequence 𝒍 =
[−𝐿ℎ −𝐿ℎ+1 ... 𝐿ℎ] 

𝑁𝑓0 
 ; where 𝐿ℎ = (𝐿 −  1)/2. Note that for odd lengths, 

the vector 𝒍 contains integers, and for even ones, halves. The vector 𝝃̂𝐶𝑁  contains up to the Kth 

harmonic phasor derivative. 

 

 

Then, the DTFT is given by the least-square solution: 
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𝝃̂𝐶𝑁 = (𝑩𝐶𝑁
𝐻 𝑩𝐶𝑁)

−𝟏 𝑩𝐶𝑁
𝐻  𝑥𝐶𝑁 (3.8) 

Where (𝑩𝐶𝑁
𝐻 𝑩𝐶𝑁)

−𝟏𝑩𝐶𝑁
𝐻  is called the pseudoinverse matrix of 𝑩𝐶𝑁 and denoted as 𝑩† . 

 

3.3 Spectral coefficients 

In (3.8), the coefficients 𝝃̂𝐶𝑁 are shown to have been obtained by applying 𝑩†  on the input signal 

𝑥𝐶𝑁. In order to generate coefficients which relate to multiples of our fundamental frequency, we 

define 𝑁 as the samples per fundamental cycle (𝑇 =  1/𝑓0). Then, each row of the matrix 𝑾𝑁 will 

correspond to frequencies that are multiples of the fundamental frequency, and will cover 

frequencies upto f = 𝑓𝑠, where 𝑓𝑠 is the sampling frequency. Drawing parallels with the DFT, we 

see that for 𝐾 = 0 (𝐶 = 𝐾+1 = 1), the pseudoinverse matrix 𝑩† gives the DFT. This is justified as 

for 𝐾 = 0, as we are working under the static phasor assumption. Hence, it can be said that the 

DTFT is an extension of the DFT. Further, it is given in [16] that  

𝝃̂(𝑘,ℎ) ≃  
𝑇𝑠
𝑘

𝑘!
 (
𝑑𝑘𝑑ℎ(𝑡)
𝑑𝑡𝑘

|𝑡 = 0) 

 

(3.9) 

which shows that the DTFT coefficients are related to the dynamic phasor coefficients and 

separated only by a constant factor of 
𝑇𝑠
𝑘

𝑘!
 (where 𝑇𝑠 = sampling period, 𝑘 = Taylor polynomial 

order). In our analysis of coefficients, we consider only half of the coefficients in each cycle of 𝑁 

coefficients as they cover frequencies upto half of the sampling frequency, 
𝑓𝑠

2
, which is the 

maximum possible frequency present in the signal according to the Nyquist theorem.   

 

3.4 DTFT filters  

According to [16], each row of the DTFT matrix corresponds to the time-reversed impulse 

responses of the DTFT filters. As discussed above, each row has filters centered at multiples of 

the fundamental frequency. Increasing the order 𝐾 leads to change in shape of the filters, 

specifically flatter pass-bands and lower sidelobes. Decreasing the fundamental frequency allows 

us to capture more spectral information, and hence require low-bandwidth filters. These changes 

are illustrated in the next chapter. The filter bank can then be used for obtaining sub-band signals 
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by convolution of desired filter with the signal. For illustrative purposes, the DTFT filters are 

plotted in the Fig. 3.1 for 𝑓0 = 5 Hz and 𝐾 = 5. 

 

Fig. 3.1: Zero order DTFT filter bank 
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Chapter 4 

Feature extraction 

Features are one or more set of values that describe characteristic properties of the signals in 

machine learning (ML) problems. ML problems are categorized into many types. In this work, the 

ML problem we deal with is a classification problem and falls under supervised learning. A 

Supervised learning is a process of learning where the input and output are provided explicitly. 

Classification, as the name suggests, is a process of classifying things into their respective classes 

using the data provided (explained in chapter 5). 

In this chapter, we focus on how we have extracted the features and the reason for selecting those 

features. 

 

Fig. 4.1 - Feature extraction 

4.1 DTFT feature extraction 

DTFT is an intuitive way of looking at the ECG signals. DTFT approach attempts to approximate 

the time dependent frequency components. As mentioned in chapter 3, it assumes that the Fourier 

coefficients are not just constants but they are polynomials in time ‘t’. This gives us more insights 

about the signals.  

Depending on how well the DTFT filter banks can spread over and the amount of overlap between 

filters, we have decided an optimal filter which covers maximum of the frequency band without 

compromising on the amount of overlap. Fig. 4.2 shows the effect of 𝑓0 and 𝐶 = (𝐾+1, where 𝐾 is 

order of Taylor polynomial) on the filter responses. 
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For feature extraction, the one-minute signals are divided into sub-frames 𝒔𝒎 (where m = 1 to 
6000

𝑁
) 

as shown in Fig. 4.1 of suitable length depending on the size of 𝑩†. These sub-frames are 

multiplied with 𝑩† to get DTFT Coefficients. Choosing a fundamental frequency of 𝑓0 Hz, 𝑁 = 
𝑓𝑠

𝑓1
, 

care is taken that 𝑁 will be an integer, divides 6000, and fs evenly and the order of Taylor 

polynomial is taken as 𝐾 =  2. Then 𝑩† has 𝑁(𝐾 + 1) ×  𝑁(𝐾 + 1) size. The frames of length 

6000 samples are divided into 
6000

𝑁(𝐾+1)
 sub-frames of 𝑁 samples each. These sub-frames are 

multiplied individually with 𝑩† to get 𝑁(𝐾 + 1) × 1 coefficient vector (𝝃̂) as in equation 4.1.1. 

The first 𝑁 coefficients correspond to the zeroth order of Taylor approximating polynomial, the 

second to the first and the third to the second order. These coefficients give us information about 

the frequencies from 0 – 100 Hz with 𝑓0 Hz separation.  

From (3.8), we have 

𝝃̂𝒎  =  𝑩
†. 𝒔𝒎, 

 

(4.1) 

where   𝑚 = 1 to 
6000

𝑁(𝐾+1)
,  𝒔𝒎 is a sub-frame, 𝝃̂𝒎 is a vector and (4.1) can also be written as,  

𝝃̂𝒎  =  [𝝃𝒎,𝟏, 𝝃𝒎,𝟐, 𝝃𝒎,𝟑, … , 𝝃𝒎,𝑵(𝑲+𝟏)] (4.2) 

 

 

Fig. 4.2: Effect of changing ‘𝐶’ and ‘𝑓0’ on DTFT Filter at 20 Hz frequency. 
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We have considered those coefficients that give the spectral information present in the 0-50 Hz 

frequency band, which means we have considered first  
𝑁

2
+ 1 coefficients from every order 

starting from zeroth order to till 𝐾th order. Since the coefficients are complex, magnitude of 

individual coefficients is taken which leads us to a set 𝑨𝒎 corresponding to 𝑚𝑡ℎ sub-frame. 

Likewise, we can obtain features for all the 
6000

𝑁(𝐾+1)
 sub-frames. Then, an average of coefficients is 

taken as shown in (4.5) to form 𝑭 as shown in (4.6). Now, features resulted from coefficients 

corresponding to those 0-50 Hz band as mentioned above are chosen. This gives (K + 1)(
𝑁

2
+ 1) 

features for a one-minute signal. All these features for one-minute signals put together gives us a 

dataset. 

𝑨𝒎  =  [𝒂𝒎,𝟏, 𝒂𝒎,𝟐, 𝒂𝒎,𝟑, … . , 𝒂𝒎,𝑵(𝑲+𝟏)],  (4.3) 

Where 𝒎 = 1 to 
6000

𝑁(𝐾+1)
,  

𝒂𝒎,𝒋  = |𝝃𝒎,𝒋|, (4.4) 

Where 𝒋 = 1 to 𝑁(𝐾 + 1),  

𝒇𝒋  =   
𝟏

(
𝟔𝟎𝟎𝟎

𝑵
)
 ∑ 𝒂𝒎𝒋

𝟔𝟎𝟎𝟎

𝑵×(𝑲+𝟏)

𝒊=𝟏
 , 

 

(4.5) 

Where 𝒋 = 1 to 𝑁(𝐾 + 1), 

𝑭 =  [𝒇𝟏, 𝒇𝟐, … , 𝒇𝒑], (4.6) 

Where 𝒑 = 𝑁(𝐾 + 1).  

 

4.2 Logarithmic transformation 

Before using these coefficients as features for classification, studying the distribution of the 

coefficients is very important. We have used histograms to study the distribution of these 

coefficients. 

The logarithm (ln) transformation has been used on the features, and its use is found to have 

increased the classification accuracy. The histograms plotted below in Fig 4.3 show the effect of 

this transformation. 
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Fig. 4.3: Effect of logarithmic transformation on a feature. (a) Data distribution before applying 

logarithmic transforamtion. (b) Data distribution after applying logarithmic transformation. 

 

 

(a)  

(b) 
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Chapter 5 

Classification 

Classification is the process of deciding to which class an observation belongs to given that we 

have prior knowledge of different observations and their groups/classes they belong to.  

An algorithm which performs the task of classification is called a classifier. A classifier has to be 

trained with the observations given beforehand to let it make a decision criteria for the 

groups/classes.  

5.1 Support vector machine classifier 

The support vector machine, abbreviated and popularly known in ML domain as SVM, was 

invented by Corinna Cortes and Vladimir N.Vapnik [25]. The SVM is a supervised learning 

algorithm that analyzes the training data to decide so called hyperplane which identifies the groups.  

We have used Matlab as a tool for applying ML algorithms and training them. We have opted for 

the SVM with a radial basis function (RBF) as a kernel. In ML, kernel methods are a class of 

algorithms for pattern analysis. The general task of pattern analysis is to find and study general 

types of relations (for example clusters, rankings, principal components, correlations, 

classifications) in datasets. In its simplest form, the kernel trick means transforming data into 

another dimension that has a clear dividing margin between classes of data. 

The classes or groups are apnea and non-apnea, that is we have a binary situation: yes or no 

classification of such data is called binary classification. SVMs are inherently binary classifiers. 

However, methods have been developed to use it for multiclass classification (when the number 

of classes are more than 2). 

5.2 k-fold cross-validation 

In k-fold cross-validation technique, the dataset is divided into k parts randomly, the model is 

trained on k-1 parts and tested on kth partition [26]. This is done k-1 times using all the k parts 

individually, where each of those k parts becomes a test set in every iteration. The accuracy is 
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taken for all the k-1 validations and averaged to get k-fold cross-validation accuracy of the model. 

k-fold cross-validation protects the model against biasing to some extent. 

5.3 Accuracy 

Accuracy of a model is a very important measure to determine its quality and performance. In 

general, it is defined as [27] 

Accuracy = 
Number of correct predictions

Total number of predictions
 × 100 

 

(5.1) 

For a binary classification, we define apnea as the positive class and non-apnea as the negative 

class. 

Let us define the following terms, 

True positive (TP): The observations which belong to a positive class and are predicted as 

belonging to positive class are called TP cases. 

True negative (TN): The observations which belong to a negative class and are predicted as 

belonging to negative class are called TN cases. 

False positive (FP): The observations which belong to a positive class and are predicted as 

belonging to negative class are called FP cases. 

False negative (FN): The observations which belong to a negative class and are predicted as 

belonging to positive class are called FN cases. 

A 2×2 matrix is also developed with these values, called the confusion matrix. Fig. 5.1 shows how 

a confusion matrix looks like. 

 

Accuracy for binary classes can also be defined as: 

Accuracy = 
TP+TN

TP+FP+TN+FN
× 100 

 

(5.2) 

Sensitivity: It is a measure of the proportion of actual positives that are correctly identified as such. 
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Sensitivity = 
TP

TP+FN
 × 100  (5.3) 

 

 

 

Apnea TP FP 

Non-

apnea FN TN 

 Apnea Non-apnea 

 

 

Fig. 5.1: General confusion matrix 

 

Specificity: It is a measure of the proportion of actual negatives that are correctly identified as 

such. 

Specificity = 
TN

TN+FP
 × 100 (5.4) 

 

 

Predicted 

True 
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Chapter 6 

Results and discussions 

The Physionet apnea-ECG database gave 17045 observations, out of which 6514 are apnea and 

10531 are non-apnea observations. Out of these few were found to be insignificant because the 

signals were zero for the entire one-minute duration. Removing them, we ended up with 17028 

observations consisting of 6513 apnea events and 10515 non-apnea events. As shown in Fig. 4.2 

we have checked for the effect of 𝑓0 and 𝐶 on the filter bank response. From studying them, we 

have selected the values 𝐶 = (𝐾+1) = 3 and 𝑓0 = 1 Hz. Depending on these values, 𝑩† becomes 

300×300 size.  The one-minute signals are divided into 20 sub-frames of 300 samples each. These 

sub-frames are then multiplied with 𝑩† as in (4.1). We have considered first 51 coefficients of all 

the 3 orders (zeroth, first, and second). These coefficients give us spectral information about 

frequencies 0-50 Hz with a separation of 1 Hz. As the signal is sampled at 100 Hz, from Nyquist 

theorem, the signal’s frequencies beyond 50 Hz cannot be reproduced. Which means, the filters 

with central frequencies beyond 50 Hz does not give any prominent details. Taking 51 coefficients 

of all 3 orders will give us 153 coefficients in total. Each coefficient from every sub-frame is taken 

and averaged to get single value, thus we have 153 values for a one-minute signal. These values 

are log transformed and used as features for training. The use of logarithm as discussed in section 

4.2 increased accuracy by about 0.5%. The confusion matrix corresponding to the model is shown 

in Fig. 6.1. 

 

Fig. 6.1: Confusion matrix of results obtained (Class 1: apnea and Class 2: non-apnea) 
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The model is also 10-fold cross-validated as mentioned in chapter 5. The obtained accuracy is 

92.41%, sensitivity is 90.11%, and specificity is 93.83%. Table 6.1 illustrates a comparison of the 

performance parameters obtained in previous works against our work. 

Table 6.1: Performance comparison of different previous works. 

 

The approach discussed in this work produces satisfying results with 92.41% accuracy, which is 

better than that of the previous works mentioned in Table 6.1. 

 

 

 

 

 

 

Ref. 

No. 

Author(s) Accuracy(%) Specificity(%) Sensitivity(%) 

[14] Tripathy 2018 76.37 74.64 78.02 

[28]    Chen et al, 2015b 82.07 80.24 83.23 

[9] Hassan 2015a 83.77 82.79 85.2 

[2] Varon et al. 2015 84.74 84.69 84.71 

[3] Nguyen et al. 2014 85.26 83.47 86.37 

[29]  Hassan and Haque 2016 85.97 86.83 84.14 

[30] Song et al. 2016 86.2 88.4 82.6 

[31] Hassan 2016 87.33 90.72 81.99 

[8] Hassan and Haque 2017 88.88 91.49 87.58 

[32] Janbakshi et al. 2018 90.9 91.8 89.6 

 - Proposed Work 92.41 93.83 90.11 
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Chapter 7 

Conclusions and future scope 

In our work, we make use of the digital Taylor-Fourier transform, which allows us to look at an 

ECG signal in a different perspective. The coefficients obtained contain more information about 

the signal than the standard time-domain analysis and are a very good measure to predict apnea 

and non-apnea. The high 10-fold cross-validation accuracy suggests that the model trained using 

these features can predict outcomes consistently with high reliability. In the biomedical domain, 

these numbers are quite significant and play a crucial role in deciding further treatment process. 

Also, the computational efficiency achieved due to the multi-frames processing nature of the 

transform shows that our method can save time, which is an important factor when it comes to 

biomedical applications. 

Future work may include tasks like creating a user-friendly graphical user interface (GUI) of the 

entire process mentioned in the report which can help doctors in real-time analysis. New and better 

features which can improve the accuracy of the model can be developed. Proper emphasis should 

also be placed on the machine learning algorithms to get a good classifier which could produce 

better results. The suggested method in this work can be studied in the future for analysis and 

classification of other biomedical signals. 
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