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ABSTRACT

Cancer is a broad term for the uncontrolled growth of cells. Chronic myeloid

leukemia (CML) is a common type of cancer that affects myeloid cells which form

blood in the body. In a CML patient, myeloid cells undergo a genetic mutation

called translocation in which, a segment of the chromosome 9 detaches itself from its

original sequence and attaches with a segment of chromosome 22 t form philadelphia

chromosome. It contains two genes fused together to form a composite mutated gene

called BCR-ABL gene. The BCR-ABL gene causes CML by producing tyrosine

kinase enzyme which triggers an abnormal growth in the number of white blood

cells and reduction in the number of red blood cells in the blood.

Two methods were proposed based on the inherent spectral characteristics of

the hyperspectral cube. The first method is the windowed Spectral angle mapping

(SAM) method. When SAM was implemented over a group of test pixels in reduced

bands, it is called windowed SAM method. In this method the classification was done

based on the spectral angle between the training and the test pixels. The second

method proposed was the 3- Dimensional Spectral Gradient Mapping (3-D SGM)

method. The 3-D SGM method was proposed to overcome limitations in windowed

SAM method by exploiting the inter-pixel and inter-band information content of

the hyperspectral cube after carrying out necessary reduction in dimensions. This

method not only exploits the spectral information but also uses the inter-pixel infor-

mation to classify CML neutrophils. The classification carried out using 3-D SGM

method was compared with windowed SAM method and analysed. The specificity

measure for the algorithms showed that 3-D SGM (97.7%) was superior to windowed

SAM (72.7%). It was also found to be superior to the Mahalanobis distance method

(89.1%) in ruling out the presence of disease. The accuracy shown by the 3-D SGM

(84.2%) was found to be fairly higher than the other methods. Also the high value of

positive likelihood ratio indicated that the 3-D SGM was superior in diagnosing the

presence of the disease (i.e., positive test for CML) versus windowed SAM method.

However 3-D SGM had a very low sensitivity (38.5%).



The use of statistical distances like Euclidean distance and Mahalanobis dis-

tance computed in hyperspectral space has also been explored for classification of

CML neutrophils. Both the methods have been compared to draw analysis of the

advantages and disadvantages. The method employing Euclidean distance for classi-

fication, was superior when it came to the sensitivity (81.8%) measure as compared

to all other methods. The Mahalanobis distance method was found to be better

as compared to the Euclidean distance method for specificity (89.1%) and accuracy

(82.5%) measures.

Two different methods based on the Probability distribution function (PDF) were

proposed to improve the sensitivity, specificity, and accuracy values while classifying

CML affected neutrophils from hyperspectral images. The first method is a combi-

nation of two methods based on PDF. It proposes a composite metric consisting of

two parameters, i.e. the Mahalanobis distance and the Frequency domain normal

PDF matching (FDNPM) parameter. This merged method exploits the benefits of

both the Mahalanobis distance method which is computed in the spatial domain and

the FDNPM method which uses the information content in the frequency domain.

The merged method using the composite metric reduces the likelihood of missing

diseased cases with a lower LR(-) value (0.4%) and improves the sensitivity (63.6%)

without compromising the high specificity and accuracy values in the Mahalanobis

distance method. In fact it further improves the specificity and accuracy values

to 93.5% and 87.7% respectively. The second method is the Kurtosis compensated

Euclidean distance (KCED) method which incorporates the effect of harmonics or

tailedness of the distribution in the classification procedure. KCED significantly in-

creases the specificity, accuracy and LR(+) values and reduces the LR(-) value, while

maintaining specificity values as obtained in the Euclidean distance method. The

KCED method demonstrates the highest sensitivity (81.8%), accuracy (91.2%) and

LR(-) value (0.2). In addition, KCED method has the second best specificity (93.5%)

and LR(+) value (12.6). Therefore, overall KCED was found to have demonstrated

superior classification capability as compared to all other methods.
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Chapter 1

Introduction

Cancer is a broad term for the uncontrolled growth of cells. CML is an uncommon

type of blood cancer that originates inside the bone marrow and affects the myel-

ogenous cells. It is a slow progressing disease mostly found in older adults, although

its occurrence among children is not rare.

Timely detection is of great importance in treating CML. The study of the blood

sample through naked human eye is not possible due to limited spectral and spatial

resolution capability of human vision. To overcome these challenges it is necessary

to capture the object with high spatial and spectral resolution. After obtaining the

images, it is important to process them correctly to extract useful information. One

such technique is hyperspectral imaging. Hyperspectral images can be considered

as multiple stacks of images of the same object captured by hyperspectral sensors

within a range of near contiguous wavelengths with an inter-band gap of 2 - 10 nm

[9].

1.1 CML

Over 62 years ago the presence of a particular chromosomal abnormality linked to

CML, was discovered [1,2]. In a CML patient, myeloid cells undergo a genetic mu-

tation called translocation in which, a segment of the chromosome 9 detaches itself
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from its original sequence and attaches with a segment of chromosome 22. It occurs

in the haemopoietic stem cell (abbreviated as HSC) compartment in the medulla of

the bone (bone marrow). This unique abnormality is a t(9;22) reciprocal chromoso-

mal translocation and it was subsequently named as the Philadelphia chromosome

[1-3]. It contains two genes fused together to form a composite mutated gene called

BCR-ABL1 gene. The BCR-ABL1 gene characterises the cell biology of CML af-

fected blood cells and is responsible for the cellular features of the leukaemia i.e.,

inhibition of apoptosis, enhanced cell growth, growth factor independence, impaired

genomic surveillance, altered cell adhesion and differentiation [4]. The BCR-ABL1

gene produces Tyrosine Kinase enzyme. Tyrosine Kinase enzyme reprograms the

White Blood Cells (WBC) causing myeloid hyperplasia which triggers an abnormal

growth in the number of WBCs and reduction in the number of Red Blood Cells

(RBC) in the blood. RBC are the carriers of oxygen to different parts of the body

where they are used to burn the calories and generate energy for various biological

and physiological functions. The reduction of RBC results in reduced availability

of oxygen to various parts of the body resulting in lack of energy. Therefore, the

prominent symptoms of CML are weakness and fatigue, fever, cachexia, excessive

sweating, bleeding and an enlarged spleen.

The diagnosis of about 85% of CML patients is generally when the disease is in

its chronic phase. Being asymptomatic, about half of these patients get diagnosed

when their blood samples are analyzed for an unrelated medical examination [5].

Thus CML can go unnoticed and undiagnosed for years. In the chronic phase, CML

is often presumed from the result of a complete blood count, where the white blood

cell (WBC) count is elevated. In order to confirm the diagnosis, the characteristic

Philadelphia chromosome is detected by routine cytogenetics and fluorescent in situ

hybridization as well as quantitative real-time PCR for the BCR-ABL1 fusion gene.

There are several studies that have shown case reports of patients who had prolonged

“preleukemic” phases before developing CML (to name a few: [6-8]). Even though

the presence of the Philadelphia chromosome was confirmed in these patients, they
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had normal to mildly elevated WBC counts. They were classified as “preclinical”,

“preleukemic” or “smoldering” CML patients.

It is not known what initiates the genetic mutation that sets off the development

of CML. It is neither inherited nor preventable. Once the disease progresses to an

advanced stage there is possibility of it assuming an aggressive phenotype. This

can lead to a condition similar to acute leukemia called Blast Crisis (BC) and can

become fatal. Without therapeutic intervention, within three to five years after the

chronic phase, the disease will progress into BC resembling an acute leukemia. Early

detection coupled with targeted treatment against this abnormal protein is a viable

way to treat this disease.

The diagnostic methods for CML include traditional methods of diagnosis like

Complete Blood Count (CBC) test, molecular testing using cytogenetics and biopsy

and bone marrow aspiration. The treatment for CML primarily involves administra-

tion of Tyrosine Kinase Inhibitors (TKI) to achieve deeper cytogenetic/ molecular

responses. Over a longer period of time this aids in achieving better outcomes and

mitigating the rate of progression of CML [9-10].

The visual microscopic assessment of peripheral blood smears are often time

consuming and limited (i.e., a fixed number of cells are examined per slide), and

is subjective in nature. Yet this method is more economical (especially in develop-

ing countries like India) versus the molecular-based techniques stated above. Many

studies have implemented the use of computer-aided methods to analyze RGB im-

ages of blood smears [11]. Shafique and Tehsin used online database images of acute

lymphoblastic leukemia (ALL) for their work [9,12,13]. They used 60% of their data

for training and 40% for testing [9]. They achieved an accuracy of 96.06% in clas-

sifying ALL using deep convolutional neural network. Mohapatra et al. analyzed

morphological and textural characteristics from RGB images of peripheral blood and

bone marrow using image processing. They developed a quantitative microscopic

method to differentiate lymphoblasts from healthy lymphocytes [14], and applied

machine vision and machine learning techniques to automate the detection of lym-
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phoblasts. Their investigation showed that they could achieve a 99% accuracy by

using the multi-classifier approach [14-15].

The presence of leukemia cells is characterized by an unusual increase in the

number of white blood cells. Neutrophils are the most abundant (60 – 70%) cell

type in blood circulation. It performs an important role in the innate immunity by

providing the first line of defense [16,17]. Therefore, in the present work classification

of CML affected neutrophils has been considered to diagnose CML patients from

their blood samples.

1.2 Hyperspectral Imaging

Study of the blood sample through naked human eye is not possible due to limited

spectral and spatial resolution of human vision. In addition to it the human vision

is over a limited range of wavelength bands. However, critical information for classi-

fication of a sample may actually be in wavelength bands beyond the human visible

spectra. To overcome these challenges it is necessary to capture the object over a

larger spectral range with high spatial and spectral resolution. After obtaining the

images, it is important to process them correctly to extract useful information. With

advances made in imaging technology, it is possible to sense objects at high spatial

as well as spectral resolutions and also wide spectral ranges. One such technique is

hyperspectral imaging. Hyperspectral images can be considered as multiple stacks

of images of the same object captured by hyperspectral sensors within a range of

near contiguous wavelengths with an inter-band gap of 2-10 nm [18-20]. The il-

lustrative hyperspectral image cube with stacks of images corresponding to various

wavelengths is shown in Fig. 1.1.

Historically, multispectral and hyperspectral image processing were extensively

researched in the field of remote sensing [19,21-32]. The use of hyperspectral images

for classifying cells and tissues in the field of biomedicine has gained popularity as it

combines imaging with spectroscopy [24]. Hyperspectral image are multidimensional
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images captured over multiple wavelength bands with very narrow band gaps. The

image slices captured at individual wavelength bands are independent of each other.

Therefore, a hyperspectral image pixel can be considered as a linear-scaled mixture

of orthogonal intensities captured at each wavelength band [19,21-22,33]. Biomedi-

cal applications of hyperspectral imaging include analysis of dried blood spots [34],

lymphoproliferative disorders [35], morphometric characterization of B-Chronic lym-

phocytic leukemia (CLL) [35], spatial features of colon biopsy [36], spectral-spatial

features to differentiate lymphoblasts from lymphocytes [37], and white blood cells

[38]. The images generated using this technology are large in size because of the

combined high spectral and spatial resolutions [32]. Thus, processing such huge

data requires some adaptation and/or merger of algorithms. Thus there is tremen-

dous potential for non-invasive diagnosis of diseases with the entry of hyperspectral

imaging into the field of medical applications [39].

One of the initial applications of hyperspectral sensors was in the field of remote

sensing and military target detection [21-23,26,32,37]. The motivation for using

hyperspectral imaging for such applications was the inherent low spatial resolution of

the images due to the huge distances between the object and the sensor. For example

a camera placed in a satellite orbiting in the geo-stationary orbit at an approximate

distance of 36000 km above the surface of the earth would produce very low spatial

resolution images [19,25,30,40]. It is possible to extract useful information from such

low spatial resolution images by increasing the spectral resolution [15,19,21]. This

was achieved by using multispectral cameras which captures the images in multiple

wavelength bands. Hyperspectral imaging goes a step forward by reducing the band

gap between the wavelengths to as less as 10 nm. Such low band gaps result in

the image being captured over near contigious bands of wavelengths. Hyperspectral

imaging has been extensively researched and used in remote sensing for land use

mapping, mapping underground mineral deposits, analysing crop cover and forest

cover. It finds special applications in the field of military target detection under

camouflaged conditions. Hyperspectral image processing techniques have also been
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Figure 1.1 A depictiction of the hyperspectral image cube showing the images associated
with various wavelength bands.
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used for anomaly detection and material analysis [41,42].

Of late hyperspectral imaging has made its foray in the field of bio-medical im-

age processing. Hyperspectral images of bio-medical samples can be captured by

mounting the hyperspectral sensor over a microscope. Unlike remotely sensed hyper-

spectral data, the hyperspectral images of biomedical samples are of high spectral

as well as spatial resolution. Such high spatial and spectral resolution hyperspec-

tral image cubes are information rich and form large data sets. Analysis of such

heavy and complex data sets to extract useful information requires robust algo-

rithms. Several studies have analyzed hyperspectral images of various blood cells

using machine learning approaches [43]. Hyperspectral imaging has been used to

analyze dried blood spots [34], lympho-proliferative disorders [35], morphometric

characterization of B-Chronic lymphocytic leukemia (CLL) [36], spatial features of

colon biopsy, spectral-spatial features to differentiate lymphoblasts from lympho-

cytes [37-38], and white blood cells, to name a few. The images generated using

this technology is large in size because of the combined high spectral and spatial

resolutions [32]. Thus, processing such huge data requires some adaptation and/or

merger of algorithms.

1.2.1 Hyperspectral Image Sensors

Hyperspectral image sensors are cameras that capture the light in various wave-

lengths to generate a spectrum of each object pixel. In the present study, the

hyperspectral cubes were captured using the SpectraView hyperspectral imaging

system. This imaging system consists of the spectra cube, Charge Coupled Device

(CCD) sensor and an interferometer. The spectra cube splits the incident beam

along two different paths, so as to induce an Optical Path Difference (OPD). At the

output of the spectra cube the incident beam is combined together with the OPD.

The OPD results in generation of image frames which are captured using the CCD

camera. The image frames are used to build interferograms corresponding to each
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image pixel. The spectrum of the image pixels are obtained by computing the fourier

transform of the interferogram [19,22]. The block diagram of the SpectraView hy-

perspectral imaging system consisting of a sagnac interferometer for obtaining the

spectra is shown in Fig. 1.2.

1.3 Blood Samples and Consumables

1.3.1 Leishman Stain

In the present study, a CML and a healthy blood smear sample were stained with

Leishman stain (Merck, Germany). Leishman stain is based on methanolic mixture

comprising of a basic dye, i e., methylene blue and an acidic dye, i e., eosin. Proper

staining fomed an important part of the entire procedure of preparation of blood

smear slides. The slides which were prepared had non-overlapping cells and were

stained with optimised amount of the Leishman stain, such that overstaining as well

as understaining was avoided.

Methylene Blue

Methylene blue is also called Methylthioninium chloride. It has widespread uses

which include use as a drug for medication and a dye for staining tissues and patho-

logical blood samples. The ability of methylene blue to convert ferric iron present

in haemoglobin into ferrous iron by a process of reduction has been exploited to

treat methemoglobinemia. Methylene blue is a green powder which yields a blue

solution in water and is prepared as a formal derivative of phenothiazine. The

exact preparation procedure for methylene blue comprises of oxidation of dimethyl-

4-phenylenediamine in presence of sodium thiosulphate as given at Fig. 1.3.
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Figure 1.2 A block diagram of SpectraView hyperspectral imaging system showing its
various components and modules.
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Figure 1.3 Synthesis of methylene blue using dimethyl-4-phenylenediamine and sodium
thiosulphate.

Eosin

Eosin is a fluoerescent acidic compound which bind to basic or alkaline compounds

in order to form salts. The salts are generally dark red or pink. This is due to the

action of bromine on eosin. The resultant salt has a property of staining proteins in

the cytoplasm. There are two types of eosins, namely, Eosin B and Eosin Y. Eosin

B is a di-bromo di-nitro derivative of fluorescein, where as Eosin Y is a tetrabromo

derivative of fluorescein. The chemical structure of Eosin Y and Eosin B is given at

Fig. 1.4. For the purpose of histological staining Eosin Y is the most commmonly

used.

In Leishman stain, methylene blue binds to the acidic region of a cell and eosin

binds to the basic region of the cell. Regions of interest (ROI) on the slides where

cells did not overlap each other were used for capturing hyperspectral image cubes.

The images were mostly captured in the middle region of the blood smear where

density of cells were sufficient without overlap. The samples were part of a bigger

project, that has been approved by the Christian Medical College Research and

Ethics Committee. The samples were coded to protect the identity of the CML

patient and the healthy volunteer.
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Figure 1.4 Representation of the chemical structure of Eosin Y (a) and Eosin B (b).

1.3.2 SpectraView Hyperspectral Imaging System

The hyperspectral image cubes were captured from the blood samples (by NDSK

1) at Betty Cowan Research and Innovation Centre using the SpectraView Hyper-

spectral Imaging System (Applied Spectral Imaging, Israel) [44-45]. the working of

SpectraView Hyperspectral Imaging System is based on the principle of interferom-

etry and Fourier transform. Specifically, it uses the Sagnac interferometer. Sagnac

interferometer is a ring interferometer which splits the light into two different parts

and makes them travel in two oppposite directions along a ring. The light beams are

made to reach a common detector co-located with the source. The path travelled

by the light beams would be the same if the ring through which the light is made

to travel is static. However, if the ring is made to rotate, then the paths travelled

by both the beams would be different as shown in Fig. 1.5. This is because the

relative velocity of the light beam increases when the beam is travelling opposite

to the direction of rotation and decreases when the light is travelling along the di-

rection of rotation of the ring. This results in phase difference when the beams of

1Neeta Devi Sinnappah-Kang
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Figure 1.5 A block diagram showing the working of sagnac interferometer showing the
segregation of spetrum in terms of wavelength based on phase difference induced by path
difference.

light reach the detector. The phase difference of different wavelengths of light is

different. These light beams are made to merge togather and undergo interference.

The interfering beams form interfering patterns called fringes. The gap between

the interfering fringes is decided by the angular velocity of rotation of the interfer-

ometer apparatus. The interfering patterns give the various wavelengths of light in

spatial domain. The constituent wavelengths of light can be distinguished by carry-

ing out a fourier transform of the interference patterns. The schematic diagram of

the SpectraView Hyperspectral Imaging System is given in Fig. 1.5.

The Region of Interest (RoI) was identified on the blood sample slides, so as

to ensure capture of maximum density of non-overlapping blood cells. The hyper-

spectral image cubes of these RoI were generated using the SpectraView imaging

system. The hyperspectral image cubes were coded to ensure confidentiality with

respect to the identity of the persons from whom the blood samples were collected.

Thirteen hyperspectral image cubes were captured from the blood samples. These

image cubes were spatially split to obtain 57 hyperspectral image sub-cubes. The

healthy volunteers contributed to 32 image sub-cubes and the CML affected pa-

tients contributed to a total of 25 image sub-cubes. The hyperspectral cubes were
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obtained across 61 wavelength bands for all images (400.16-1018.39 nm) except one

which was captured over 49 wavelength bands (402.34-804.71 nm). After reduction

in dimensions, the data from the visible range of wavelengths was found to have the

maximum amount of information [44-45]. Therefore,the final outcome of the results

were not affected by these differences in the wavelength bands [21,24,45].

1.4 Hyperspectral Image Processing

Hyperspectral image cubes are in the form of huge data sets which can be interpreted

as image planes in multiple dimensions corresponding to each wavelength. Since

the hyperspectral data sets are huge they require special techniques for processing.

First the raw image cube needs to be normalised, the minimum noise level needs

to be identified and removed. Since the hyperspectral image cube is a huge data

set, it needs to be subjected to dimension reduction before applying classification

algorithms.

1.4.1 Image Pre-processing

The intensity values in the hyperspectral cube were obtained based on the raw

spectra captured. Since the distance and angle of the electromagnetic radiation from

the object to the sensor was different for different pixels, the normalization of the

image cube was carried out with respect to the cube maxima and then standardised

to an 8 bit radiometric resolution. The maximum intensity of the pixel in any

band, obtained by this method was 255. A CCD camera has some amount of dark

current which manifests as a minimum intensity value in the image cube [21,24].

To ensure zero minima the image cube was further normalised by subjecting it to

dark area subtraction. The intensity of the pixels after normalisation and dark area

subtraction is given by equation (1.1).
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Ind =

(
I − Imin

(Imax)

)
× 255 (1.1)

where,

Ind - Normalised pixel intensity obtained after dark area subtraction.

I - Original pixel intensity in a given wavelength.

Imax - Maximum pixel intensity in the entire image cube.

Imin - Minimum pixel intensity in the entire image cube.

The resultant hyperspectral image cube consisted of multiple stacks of pre-

processed images corresponding to each hyperspectral wavelength. The three band

image in respect of the third hyperspectral image sub-cube of the first hyperspectral

image cube obtained by combining the images from the wavelengths corresponding

to the red , green and blue wavelengths is shown in Fig. 1.6. with the neutrophils

marked as N .

1.4.2 Change in Data Structure and Dimension Reduction

using Principal Component Transform

Reduction in Dimensions

Hyperspectral images are heavy datasets consisting of image slices in multiple wave-

lengths. Processing such heavy datasets is processor intensive and hence time con-

suming. In order to efficiently process such heavy datasets, it is essential that the

dimensions be reduced without effectively compromising the information content.

many types of data reduction techniques exist like minimum noise fraction trans-

form, independent component analysis etc. In the present work, Principal Compo-

nent Analysis (PCA) has been used to achieve effective dimension reduction. PCA

is beased on Principal Component Transform (PCT).
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Figure 1.6 An RGB image of a region of interest of the first CML blood sample slide
with four neutrophils labeled as ’N’ (Magnification: 400x).
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Principal Component Transform (PCT)

The format in which the data set was obtained by the sensor was in the form of a

‘.raw’ extension file. For ease of applying the proposed methods the pre-processed

data set was further processed using MATLAB to generate a format with number

of rows as first dimension, number of columns as second dimension and number of

bands as third dimension. Processing such high spectral and spatial resolution data

sets was processor intensive. Therefore it was necessary to decompose the hyper-

spectral dataset in a manner that the high information containing wavelengths can

be segregated from the low information containing wavelengths. Various methods

for decomposing the hyperspectral dataset were explored [46]. 7 high information

containing bands out of 61 or 49 bands, as applicable were identified for each image

using principal component analysis (PCA) [21,24-28,45] after carrying out Princi-

pal Component Transform (PCT). PCA is a statistical procedure which generates

a set of uncorrelated orthogonal variables called the principal components. In the

present work, the available data set was transformed to a linear scaled mixture of the

principal components [19]. The principal components are essentially eigenvectors of

the covariance matrix of the data set. Since the covariance matrix is symmetric,

the principal components are orthogonal to each other. The principal component

transformation resulted in the rotation of the vector axis system in the direction of

the eigenvectors. This resulted in a high projection value of the data in the new

vector coordinate system. The principal component corresponding to the highest

eigenvalue is the first principal component and was found to display the highest

variance and highest information content [19,44-46]. The flow chart demonstrating

the use of PCT to achieve reduction in dimensions is given in Fig. 1.7.

In the present study, the x× y× 61 cube data set was translated into an N × 61

data set spread across 61 dimensions, where N is the total number of vector pixels

in the image and equals to x × y. The translated linear hyperspectral image in all

its 61 dimensions was depicted as the variable X61×N . The N×N covariance matrix

was built up from the data set given at equation (1.2).
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Figure 1.7 A flow chart showing the steps involved in carrying out PCT.
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X61×N =



x11 x12 . . x1N

x21 x22 . . x2N

.

.

x611 x612 . . x61N


(1.2)

where,

xi,j- The intensity value of the jth pixel in the ith band.

N - The total number of pixels in the hyper spectral image and ranges from one to

x× y.

An N × N covariance matrix was built up from the data set given at equation

(1.2) and was denoted as ΣX , as given in equation (1.3).

ΣX =



σ11 σ12 . . σ1N

σ21 σ22 . . σ2N

.

.

σN1 σN2 . . σNN


(1.3)

thus,

σ(i, j) = E(ΣN
i=1Σ

N
j=1(xi − x̄i)(xj − x̄j)

T )

where,

σ(i, j)- The covariance value computed between vector pixels xi and xj, for all i and

j.

xi- The ith pixel out of the total N pixels of the hyperspectral image.

xj- The jth pixel out of the total N pixels of the hyperspectral image.

Next an N ×N eigenvalue matrix of the covariance matrix, denoted by λ , was

derived for the eigenvector matrix, A. The eigenvalue matrix, λ was a diagonal

matrix, with the diagonal formed by the eigenvalues of the covariance matrix ΣX
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[37,38]. Eigenvector matrix obtained was an orthonormal matrix composed of the 61

dimensional or 49 dimensional eigenvectors (as applicable) of the covariance matrix

ΣX and was denoted as:

A61×N =



a11 a12 . . a1N

a21 a22 . . a2N

. . . . .

. . . . .

a611 a612 . . a61N


(1.4)

where,

ai,j- The jth eigen vector in the ith band.

The eigenvector matrix can be written with column depicting bands as follows:

AT
N×61 =



a11 a21 . . a611

a12 a22 . . a612

. . . . .

. . . . .

a1N a2N . . a61N


(1.5)

The diagonal spread of the data set is given by the covariance matrix. The eigen-

vectors of the covariance transformation matrix represent the unit vectors along the

direction of the spread. The eigenvalues define the magnitude by which the eigen-

vectors need to be scaled. When the eigenvector matrix is rearranged in decreasing

order of the corresponding eigenvalues, it forms the PCT matrix. A vector can be

decomposed into its constituent vectors by applying PCT. The decomposed con-

stituents are in decreasing order of their variances/ information content. Therefore,

the PCT of any vector would give a linear scaled combination of the constituent

principal components. The scaling of the principal components is done by their

respective eigenvalues [22]. The same is given at equation (1.6).

AT (X) = λX (1.6)
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PCT was used to translate the original data set to a sum of principal components

which can be depicted as linear weighted sum of the original data set. The weights

were the eigenvalues of the covariance matrix of the original data set. The eigenval-

ues being in decreasing order, the variances of the principal components were also in

decreasing order. Since the variance is an indicator of the information content of the

principal component, the information content of the data set can also be assumed

to be in decreasing order of their principal components [21,28,44-45]. Therefore,

the first image had maximum information content, where the inter pixel variance

was maximum. This reduced for the higher PCT wavelength bands. The graphical

representation of the variance or information content of the images corresponding

to 61 × PCT bands is graphically represented in Fig. 1.8.

If the PCT of any vector, X is Z, i.e., Z = AX, then the PCT in the first m

bands can be obtained by taking the first m bands or rows of the eigenvalue matrix

λ, i.e., λm. The resultant PCT of the vector, X, is given by Zm and is defined as:

Zm = Am(X) = λm(X) (1.7)

To minimize the computational effort and time while retaining maximum in-

formation, the first seven eigenvalues were selected, which corresponded to bands

having high information content (Fig 1.4). By substituting m = 7 in equation (1.7),

equation (1.8) to obtain the PCT of the vector X was obtained.

Z7 = A7X (1.8)

By taking the inverse of Z7, the vector X7 can be obtained from the vector X. X7

contains information from the first seven high information containing bands of X.

Therefore, the transformed hyperspectral image cube in the first seven dimensions,

X7 is defined as given by equation (1.9).

X7 = A−1
7 (Z7) (1.9)
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Figure 1.8 The graphical depiction of reduction in variance values of the hyperspectral
image cube (the RGB image is shown in Fig. 1.2.) corresponding to higher PCT bands.
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Figure 1.9 Spectral signature of first hyperspectral cube in the first seven bands after
applying PCT.

The pixel values in the first seven bands having maximum information for all

the 318516 pixels of the first hyperspectral cube, ’cmlcube1’, was plotted as a 3-D

mesh (Fig. 1.9).

The images of the first unsplit hyperspectral image cube, ’cmlcube1’ in the first

7 PCT wavelength bands is illustrated in Fig. 1.10. It is observed that the data

set corresponding to lower PCT wavelength bands have greater information content

than the data set corresponding to the higher PCT wavelength bands when arranged

in decreasing order of their eigenvalues.
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Figure 1.10 The images in the first six wavelength bands of the hyperspectral image
cube in descending order given from (a) to (f).
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1.4.3 Training Pixels

Since the classification methods explored as part of the thesis were supervised clas-

sification methods, it was essential to earmark training pixels. These training pixels

were used to train the classification algorithms for classifying the unknown test sam-

ples. A robust classification algorithm can achieve better results with lesser number

of training pixels as compared to a non-robust algorithm. In order to demonstrate

the strength of the classification algorithms being proposed as part of this thesis,

minimum quantity of training pixels were used to train the classification algorithms.

We had 13 sample cubes. For implementing classification on 13 cubes, 57 fold

cross validation technique was adopted to split each of the 12 cubes to 4 equal folds

and one of the cubes to 9 equal folds. Each fold had a different size. For the purpose

of training, three sub-image cubes out of the total 57 sub-image cubes were identified

after applying PCT. Four sets of pixels depicting the neutrophils were identified from

the nucleus and the cytoplasm regions of these three image sub cubes. A subset of

10 × 11 pixels each for the nucleus and the cytoplasm of the four sets of training

pixels was selected for the purpose of training. The spectra of the cytoplasm and

the nucleus of the CML neutrophils are graphically plotted in Fig. 1.11a and 1.11b.

Wang et. al. [47] had used the 3D ResNeXt algorithm comprising of a convo-

lutional layer and three consecutive residual blocks along with 3-D attention model

of a python-based deep convolution neural network package (called deep hyper) to

classify white blood cells. However, they used 70% (n = 151) of samples for training

and 15% (n = 32) of samples for testing as compared to the present study where

we used 3.5% (n = 2) of samples for training and 96.5% (n = 55) of samples for

testing in all our algorithms. This underlines the inherent strength of classification

methods proposed as part of this thesis.
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Figure 1.11 Spectral signature of (a) the cytoplasm and (b) the nucleus part of CML
neutrophils in the seven maximum information bands after applying PCT.
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1.4.4 Classification Techniques

The classification techniques explored in the research work are supervised algorithms

and are based on the features extracted from the training pixels.

The first two methods are based purely on statistical distances in multidimen-

sional space i.e., the Euclidean distance method and the Mahalanobis distance

method [21,27,48]. The Euclidean distance method computes the shortest distance

between the test and the training samples in multidimensional space. Mahalanobis

distance method compensates the variance of the target data distribution while com-

puting the shortest distance between the test and the training samples [37,44]. While

the Euclidean distance was superior when it came to the sensitivity (81.8%) measure

of CML detection, the Mahalanobis distance was better for specificity (89.1%) and

accuracy (82.5%) measures.

To improve upon the specificity and accuracy values, the third and the fourth

methods were proposed based on calculation of the spectral angle in multidimen-

sional space i.e., the Spectral Angle Mapping (SAM) method and computation of

the spectral-spatial gradient value of the hyperspectral cube along all the three spa-

tial dimensions i.e., the 3-D Spectral Gradient Mapping (3-D SGM) method. SAM

is an existing classification method widely used in remote sensing [28]. 3-D SGM is

a novel algorithm which improved the specificity and the accuracy values to 97.7%

and 84.2% respectively. However, it produced very low sensitivity of 38.5% [45].

To improve the sensitivity values without compromising the specificity and accu-

racy values, the fifth and sixth methods were proposed. These methods were based

on the Probability Distribution Function (PDF) of the samples. The fifth method

is a merged method using the Frequency Domain Normal PDF Matching (FDNPM)

metric along with Mahalanobis Distance Method to improve the sensitivity without

compromising the specificity and accuracy values. FDNPM is based on computing

the difference in the frequency domain of the probability distributions of the test and

the training samples after modelling them based on normal PDF. It improved the
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sensitivity to 63.6%. To further improve the sensitivity without degrading specificity

and accuracy, the sixth method i.e., the Kurtosis Compensated Euclidean Distance

(KCED) method was proposed to use the kurtosis to measure the spread of the

probability distribution of the training sample along a given dimension or band. It

then computes a distance metric by compensating the euclidean distance of the test

sample from the distribution of the training sample. Out of these two methods,

KCED was found to be overall better at classification of CML neutrophils from hy-

perspectral data sets and has sensitivity, specificity and accuracy values of 81.8%,

93.5% and 91.2% respectively.

1.4.5 Evaluation Parameters

To have a standardised and unbiased evaluation, certain established measurement

parameters were adopted like sensitivity, specificity, accuracy and likelihood ratios

[47-50]. The effectiveness of the proposed methods have been compared and evalu-

ated by using these measurement parameters. A classification procedure for a test

can be characterized by three parameters, i.e., sensitivity, specificity and accuracy.

In the present study, the sensitivity of the classification procedure examines its abil-

ity to detect CML neutrophils and the specificity of the classification procedure

tests its ability to detect healthy neutrophils. The accuracy of the classification pro-

cedure examines its ability to differentiate CML from healthy neutrophils [47-51].

The sensitivity, specificity and the accuracy of an algorithm is determined by the

true positive (TP), true negative (TN), false positive (FP) and false negative (FN)

classification values [47-48]. The positive likelihood ratio [LR(+)] depicts the ratio

of the probability of a person having CML and testing positive, to the probability of

a person not having CML and testing positive. The negative likelihood ratio [LR(-)]

is the ratio of persons having the disease and testing negative to the persons not

having the disease and testing negative [49-52].
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1.5 Motivation

Leukemia is a type of blood cancer that starts in the bone marrow. It causes faster

cell division resulting in an abnormal increase in white blood cells (WBCs) and a

decrease in the number of red blood cells. Chronic myeloid leukemia (CML) is a

specific type of leukemia in which the abnormal blood cells are mature. It is one of

the most common blood cancers and takes a longer time to develop. It affects adults

more than children and the risk of developing CML increases after the age of 65.

The presence of leukemia cells is characterized by an unusual increase in the number

of white blood cells [21]. Neutrophils are the most abundant (60 – 70%) cell type in

blood circulation. It performs an important role in the innate immunity by providing

the first line of defense. The symptoms associated with CML include anaemia

(weakness, breathlessness and fatigue), leukopenia (shortage of normal white blood

cells resulting in frequent infections), neutropenia (shortage of neutrophils resulting

in reduced ability to fight bacterial infections), thrombocytopenia (shortage of blood

platelets resulting in eas bleeding and bruising that manifests in frequent nose bleeds

and gum bleeds) and thrombocytosis (excessive abnormal platelets which suppresses

the normal platelets and result in frequent bleeding). CML is difficult to diagnose

in the initial stages. Once it shows symptoms and gets detected, it is difficult to

cure as compared to acute leukemia.

Diagnostic tests for CML include complete blood cell count (CBC) obtained from

blood samples, bone marrow aspiration followed by biopsy, genetic tests to detect

philadelphia chromosome or BCR-ABL gene, cytogenetics or cell karyotyping, Flu-

orescent in situ hybridization (FISH) to identify BCR-ABL gene in chromosomes,

polymerase chain reaction test on the blood samples or bone marrow samples and

imaging tests like computer tomography (CT) scans or ultrasound imaging of lymph

nodes. However, all these diagnostic tests are either time consuming or display low

values of sensitivity, specificity and accuracy. Therefore, there was need to devise

an automated faster technique with a high degree of sensitivity, specificity and ac-
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curacy. The routine diagnosis for leukemia is based on the visual assessment of a

stained blood smear sample using a light microscope. Advances in medical imaging

technologies have revolutionized health care delivery globally by making diagnostics

more efficient through automation, and goes beyond the limitations of the human

eye. One such technology is the hyperspectral imaging system. Hyperspectral imag-

ing was first used in the field of remote sensing in which the hyperspectral sensor was

placed on an aerial platform [24-25,42]. The high spectral resolution of the images

compensated for the low spatial resolution of the large target areas during analysis.

There is tremendous potential for non-invasive diagnosis of diseases with the use

of hyperspectral imaging into the field of medical applications [41]. While the human

eye is limited to sensing electromagnetic radiations with wavelengths in the visible

range (400–700 nm), hyperspectral sensors provide images of biological samples over

multiple near contiguous wavelength bands [21,20,53]. The high spectral and spatial

resolutions of hyperspectral images generate a large multi-layered stack where each

spectral frequency represents an image layer. The data needs to be processed to

extract useful information [17,42]. Current hyperspectral systems capture images

with a band gap as low as 10 nm. The specific spectral signatures can be exploited

to identify target pixels in sample classification problems [24-25].

1.6 Objectives

The objectives of this dissertation are as follows:

� To demonstrate the use of hyperspectral images for classifying CML.

� Explore the use Principal Component Transform (PCT) to achieve reduction in

dimensions of the hyperspectral image cube without compromising information

content and improve computational efficiency.

� To develop a CML detection method which provides high sensitivity, specificity

and accuracy values along with high positive likelihood ratio and low negative
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likelihood ratio.

� To achieve better classification results by using minimum tarining pixels.

� To explore use of multi-classifier algorithms to achieve better results.

� To develop high efficiency classification algorithms using less computation re-

sources and time.

In order to achieve the objectives as given above, the dissertation aims to develop

the following classification methods and techniques:

� Development of a CML detection method based on multi-variate Euclidean

and Mahalanobis distances applied in hyperspectral space and evaluate it.

� Development of a diagnostic method for CML using SAM and 3-D SGM in

hyperspectral space and evaluate it

� Development of a multi-classifier by suitably merging frequency domain normal

PDF matching metric (FDNPM) with Mahalanobis distance and use it for

classifying CML cases from blood samples and evaluate it.

� Development of Kurtosis Compensated Euclidean Distance (KCED) and pro-

pose its use for classifying CML affected blood samples and evaluate it.

1.7 Contributions

The contributions to this thesis are summarized as follows:

� The use of statistical distances like Euclidean distance and Mahalanobis dis-

tance computed in hyperspectral space has been developed and compared to

draw analysis of the advantages and disadvantages. While the Euclidean dis-

tance was superior when it came to the sensitivity (81.8%) measure, the Ma-

halanobis distance was better for specificity (89.1%) and accuracy (82.5%)

measures for detection of CML neutrophils.
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� To further improve the measurement parameters, two methods were proposed

based on the spectral characteristics inherent to the hyperspectral cube. The

first method is the windowed SAM method and the second method is the 3-D

SGM method.

In the present study, SAM was implemented over a group of test pixels in

reduced bands. This variation of implementation of SAM has been named the

Windowed SAM method.

The 3-D SGM method has been proposed to overcome limitations in win-

dowed SAM method by exploiting the inter-pixel and inter-band information

content of the hyperspectral cube after carrying out necessary reduction in

dimensions. This method not only exploits the spectral information but also

uses the inter pixel information to classify ML neutrophils.

The classification carried out using this method was compared with windowed

SAM method and analysed. The specificity measure for the algorithms showed

that 3-D SGM (97.7%) was superior to Windowed SAM (72.7%). It was also

found to be superior to the Mahalanobis distance method (89.1%) in ruling

out the presence of disease. The accuracy shown by the 3-D SGM (84.2%)was

fairly higher than that of Mahalanobis distance method (82.5%) which showed

better ability to distinguish CML neutrophils from healthy neutrophils. Also

the high value of positive likelihood ratio indicated that the 3-D SGM was

superior in diagnosing the presence of the disease (i.e., positive test for CML)

versus Windowed SAM method. However 3-D SGM had a very low sensitivity

(38.5%).

� Two different methods based on the Probability Distribution Function (PDF)

were proposed to improve the sensitivity, specificity and accuracy values in

classifying CML affected neutrophils from hyperspectral images.

The first method is a combination of two methods based on PDF. It pro-

poses a composite metric consisting of two parameters, i.e. the Mahalanobis
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distance and the Frequency Domain Normal PDF Matching (FDNPM) pa-

rameter. This merged method exploits the benefits of both the Mahalanobis

distance method which is computed in the spatial domain and the FDNPM

method which eapitalises on the information content in the frequency domain

The second method is the Kurtosis Compensated Euclidean Distance (KCED)

method. The merged method using the composite metric reduces the likeli-

hood of missing diseased cases with a lower LR(-) value and improves the sen-

sitivity without compromising the high specificity and accuracy values in the

Mahalanobis distance method. KCED significantly increases the specificity,

accuracy and LR (+) values and reduces the LR(-) value, while maintaining

specificity values as obtained in the euclidean distance method. Therefore,

overall KCED was found to be superior to the merged method.

1.8 Organization of the Thesis

The remaining portion of this thesis is organized in the following way:

� In chapter 2, the use of SAM has been demonstrated on the hyperspectral

image cubes. The lacunae in the method was identified. Accordingly, the 3-D

SGM method was proposed to exploit spectral as well as spatial information

contained in the hyperspectral cubes for classification.

� In chapter 3, the use of statistical distances in hyperspectral space has been ex-

plored for classification. In this chapter multi-dimensional Euclidean distance

and Mahalanobis distance has been used to measure the similarity between

training and test pixels of hyperspectral images to classify CML affected neu-

trophils.

� In chapter 4, a multiclassifier approach towards classification of CML neu-

trophils from hyperspectral images has been attempted. In this chapter, fre-

quency domain normal PDF matching has been used along with Mahalanobis
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distance to achieve classification of CML affected neutrophils. The results ob-

tained have been compared and discussed with the other results. To achieve

frequency domain analysis, fourier transform of the PDF was undertaken be-

fore attempting to match it to the normal PDF of the training samples.

� In chapter 5, the use of kurtosis compensated distance parameter derived from

the multi-dimensional probability distribution has been proposed for evaluat-

ing the similarity of the training and the test pixels of hyperspectral cube to

classify CML affected neutrophils. The results obtained were measured using

metrics like sensitivity, specificity, accuracy and likelihood ratios. The results

were compared with results obtained using other methods and discussed in

detail.

� Finally, the whole work is concluded in chapter 7, The scope for further re-

search work in future has also been discussed in this chapter.
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Chapter 2

Spectral Angle Mapping (SAM)

and 3-D Spectral Gradient

Mapping Method (3-D SGM)

2.1 Introduction

Spectral angle mapping is a tested algorithm which has been used extensively in

classification of linearly mixed datasets [53]. It has been used for classifying low

spatial resolution remotely sensed images [16]. However, for high spatial resolution

images, SAM needs to be implemented in a windowed manner to obtain optimised

results. In this chapter, the use of spectral angle mapping has been carried out by

computing the spectral angle between the test and the training pixels by consider-

ing the pixel intensities in each wavelength band as a spectral dimension to classify

CML neutrophils from healthy neutrophils for diagnosis of CML blood samples. The

implementation of SAM has been done by taking windows of 2× 2 pixels, i.e. Win-

dowed SAM method. The shortcomings in the use of windowed SAM method for

classifying hyperspectral images has been discussed. To overcome the shortcomings

the use of 3D-SGM has been proposed and compared with Windowed SAM method.

This new algorithm enables extraction of additional inter-band information of the
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inter-pixel differences and the inter-pixel information of the inter-band differences,

which helps in better classification of high spatial and high spectral resolution hy-

perspectral images.

2.2 Spectral Angle Mapping (SAM)

SAM is a supervised classification method in which the decision is made based on

learning from training data [21,24]. Based on linear mixture modeling [22,33], every

pixel of the hyperspectral cube can be considered to be a multidimensional vector. In

this kind of modeling, the intensity value of each pixel can be considered to be a linear

sum of the scaled intensities of the individual end members. The end members are

vectors of unit magnitude along the different dimensions being considered [20,22].

Here the end members are unit vectors in the various wavelength bands. Since

reflectance along each wavelength is independent of the reflectance along the other

wavelengths, they can be considered orthogonal. The spectral angle α between any

pixel at the coordinates (i, j) in the data set and the training pixels is computed

based on the formula given at equation (2.1) [21].

α(i, j) = cos−1

[ ∑nb
k=1 xkyk∑nb

k=1 x
2
k

∑nb
k=1 y

2
k

]
(2.1)

where,

nb- Total number of bands (Here we have considered a reduced number of seven

bands).

xk- Spectrum of the pixel under consideration over the reduced number of bands.

yk- Spectrum of the training pixels over the reduced number of bands.
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2.2.1 Implementation of SAM: Windowed SAM

SAM was implemented in this study as Windowed SAM using a window cube of

size of 2× 2× 7 intensity values corresponding to four pixels over seven wavelength

bands. In the Windowed SAM method, the four 2 × 2 training pixel groups were

averaged to form a square having averaged spectrum of the 2×2 training pixels over

the seven reduced wavelength bands. This 2 × 2 × 7 window cube of training pixels

was moved from one corner of the padded hyperspectral cube so as to cover the

entire image. At each position of this window, the pixel-wise spectral angles were

computed between all the four test pixels from their corresponding four training

pixels over the reduced wavelength bands. The sum of these angles was calculated

to obtain the cumulative spectral angle as given at equation (2.2). A particular pixel

was detected as a CML neutrophil if the cumulative spectral angle in respect to the

pixel, β was found to be less than the threshold angle θ, as given in equation (2.3):

β(i, j) = α(i, j) + α(i, j + 1) + α(i + 1, j) + α(i + 1, j + 1) (2.2)

Detection =⇒ β < θ (2.3)

A schematic flow chart showing the sequence of steps required to be executed for

implementing Windowed SAM algorithm on hyperspectral dataset for the purpose

of classsification is given at Fig. 2.1.

2.2.2 Shortcomings in SAM

SAM is a powerful detection algorithm that exploits the information content of the

spectral bands of a particular pixel, which can be used for classification. It has

been widely used in the low resolution remotely sensed hyperspectral images of the

earth surface [21,45]. However for high resolution biomedical hyperspectral images
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Figure 2.1 Flowchart showing the implementation of Windowed SAM method for classi-
fication of hyperspectral image.
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like blood samples where the similarity between the different types of blood cells is

high, the spectral information is not sufficient for correct detection. Therefore in

order to further extract information out of the hyperspectral cube, it is necessary to

extract inter-band information of the inter-pixel differences and to extract inter-pixel

information of the inter-band differences. This has been achieved by 3-D Spectral

Gradient Mapping (3-D SGM).

2.3 3-Dimensional Spectral Gradient Mapping (3-

D SGM)

To yield optimum information out of the hyperspectral cube, we exploited the 3-D

gradient information to form a new vector cube of 3-D gradient vectors. In this

method, a 3-D hyperspectral gradient vector was built up from the hyperspectral

cube. The construct of the hyperspectral gradient vector cube consists of stacked

planes in the three orthogonal directions. A 3-D gradient vector was computed for

each point of intersection of the stacked planes. Thus, every point in the hyper-

spectral gradient cube was a part of three orthogonal gradient planes and hence has

three mutually independent orthogonal gradient values. Therefore, each point of the

hyperspectral gradient cube was denoted by a 3-D vector.

2.3.1 Gradient Planes

The gradient of the planes along each direction was computed. So for a x × y × 7

hyperspectral cube along reduced dimensions, there were 7 gradient planes of size

x × y denoted as Gz, x gradient planes of size y × 7 denoted as Gx and y gradient

planes of size 7 × x denoted as Gy as listed in equations (2.4), (2.5) and (2.6)
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Figure 2.2 Gradient planes perpendicular to the X, Y and Z axis giving each pixel as a
gradient vector with three components corresponding to the three planes.

respectively. Here the maximum value of Z was 7.

Gx = ∇(Y − Z hyperspectral plane) (2.4)

Gy = ∇(Z −X hyperspectral plane) (2.5)

Gz = ∇(X − Y hyperspectral plane) (2.6)

A pictorial representation of the three gradient planes formed out of the hyper-

spectral cube is shown in Fig. 2.2.
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2.3.2 3-D Spectral Gradient Cube and 4-D Pixel Value of

the Spectral Gradient Cube

The new spectral gradient cube formed is of the same size as the hyperspectral

image cube of reduced dimensions. Each pixel location of this cube corresponds to

a 3-D vector, with each dimension corresponding to the gradient value along the

three planes, viz, Gx, Gy and Gz. So, effectively each pixel was represented by a

4-D vector, where the first three dimensions specify the location of the pixel in the

spectral gradient cube and the fourth dimension specifies the value of the pixel along

the 3 gradient planes, and can be called a vector dimension. Therefore, the vector

denoting the pixel located at (x, y, z) in the hyperspectral cube, with the fourth

dimension specifying its value along the gradient planes Gx, Gy, Gz, was denoted

by g. The values of the vector g along the three gradient planes, i.e. the Y − Z,

Z −X and X − Y planes are given by equations (2.7), (2.8) and (2.9) respectively.

g(x, y, z, 1) = Gx(x, y, z) (2.7)

g(x, y, z, 2) = Gy(x, y, z) (2.8)

g(x, y, z, 3) = Gz(x, y, z) (2.9)

2.3.3 Spectral Gradient Cube of Training Pixels

For classification of the hyperspectral image using 3-D SGM, it was necessary to

compute the 3-D spectral gradient cube out of the training pixels with each cell of

the cube depicting a 3-D gradient vector. A 57 fold cross validation technique as

described at paragraph 1.4.3 was implemented to test the classification algorithm.

Four thousand three hundred training pixels were identified from the first six CML

sample cube folds belonging to four different neutrophils. These groups of training
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pixels were averaged out to groups of four vector cubes of size 10×10×7, in the first

seven bands having high information content. After having formed the four spectral

gradient cubes with each coordinate depicting a cell containing a 3-D gradient vector,

they were averaged vector-wise, to form a 10 × 10 × 7 composite spectral gradient

cube of training cells with a 3-D vector in each cell.

2.3.4 Implementation of 3-D SGM

In this method, the composite spectral gradient cube formed out of the training

pixels was moved from one corner to another of the padded composite spectral gra-

dient cube. At each location, the difference in spectral gradient was calculated and

a spectral gradient difference cube was computed with each cell of the cube contain-

ing the difference of the 3-D spectral gradient vectors of the test and the training

hyperspectral cubes (Fig 2.1). At each position of this window, the coordinate-wise

3-D spectral gradient vector value was averaged over the three dimensions to ob-

tain a composite spectral difference cube. The cube for the pixels representing the

cytoplasm and nucleus was computed and plotted as an image, each respectively.

These two images clearly gave the shape of the CML neutrophils with high radiance

values. Further, based on a defined threshold of 0.9 times the maximum 3-D spectral

gradient difference vector in each dimension, the detected pixels were shaded white

and plotted. By comparing the above three images, any pixel having high radiance

values in all the three images was detected as positive for CML neutrophil.

A schematic flow chart showing the sequence of steps required to be executed for

implementing Windowed SAM algorithm on hyperspectral dataset for the purpose

of classsification is given at Fig. 2.3.

The RGB image of the fourth hyperspectral sub-cube of the third hyperspectral

cube obtained after taking only the wavelengths corresponding to red, green and

blue colors, is illustrated in Fig 2.4a. After applying 3-D SGM on the ibid cube,

the complement of the composite spectral gradient difference cube, with the pixels
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Figure 2.3 Flowchart showing the implementation of 3-D SGM method for classification
of hyperspectral image.
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that are supposed to represent the cytoplasm shown with high radiance values is

depicted in Fig 2.4b. The composite spectral gradient difference cube, with the

pixels that are supposed to represent the nucleus shown with high radiance values

is depicted in Fig 2.4c. The binary image formed after combining both the images

and thresholding is depicted at Fig 2.4d. The detected pixels are shown in white.

The results showed that the algorithm was able to detect CML neutrophils.

2.4 Results

Sensitivity, specificity, accuracy and likelihood ratios (LRs) were used maintaining

uniform parameters to measure performance of SAM and 3-D SGM. While sensitivity

is the ability of a test to identify a disease condition correctly, specificity is the test’s

ability to exclude a disease condition correctly. The accuracy of the classification

procedures examines its ability to differentiate CML from healthy neutrophils. The

LRs indicates how many times more (or less) likely a test result (either positive or

negative) is to be found in a diseased compared with non-diseased person.

2.4.1 Sensitivity, Specificity and Accuracy

The sensitivity, specificity and accuracy measures were computed from, the true

positive (TP), true negative (TN), false positive (FP) and false negative (FN) clas-

sification values as tabulated (Table 2.1). Sensitivity brings out the percentage of

correct positive diagnosis cases out of the total positive samples. With a higher

sensitivity value, Windowed SAM was better at ruling in a diseased case when com-

pared to 3-D SGM. Specificity brings out the percentage of correctly ruling out the

presence of disease out of the total non-diseased samples [47,51]. With a higher

specificity value, 3-D SGM was found to better at ruling out the presence of the

disease compared to Windowed SAM. As the sensitivity and specificity measures
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Figure 2.4 Detection of CML neutrophil in the sample cmlcube3s 2 2. (a) The RGB de-
piction of the CML cube; (b) the composite spectral gradient difference cube of cytoplasm
and (c) nucleus; (d) the binary image showing the detected pixels for neutrophils.
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Table 2.1 Sensitivity, specificity and accuracy of Windowed SAM versus 3-D SGM algo-
rithms.

Classification

Algorithm TPa TNb FPc FNd Sensitivitye

(%)
Specificityf

(%)
Accuracyg

(%)

Windowed
SAM 8 32 12 5 61.5 72.7 70.2

3-D SGM 5 43 1 8 38.5 97.7 84.2

a TP represents True Positive
b TN represents True Negative
c FP represents False Positive
d FN represents False Negative
e Sensitivity is given by TP/(TP+FN)
f Specificity is given by TN/(TN+FP)
g Accuracy is given by (TP+TN)/(TP+TN+FP+FN)]

are inversely proportional, this outcome between and within these algorithms were

as expected. The sensitivity measure between both algorithms showed that Win-

dowed SAM was better in ruling in a disease state because there was a 38.5% chance

of missing the diagnosis versus 3-D SGM which has a 61.5% chance of missing the

diagnosis. The specificity measure for the algorithms showed that 3D-SGM was

superior to Windowed SAM in ruling out the disease condition because with the

former algorithm, there was only be 2.3% chance of missing the diagnosis versus

27.3% with the later.

2.4.2 Likelihood Ratios

Likelihood ratios were also used as parameters for evaluation the classification meth-

ods [48-49]. The positive likelihood ratio [LR(+)] indicated that the 3-D SGM

method has a greater diagnostic weight in arguing towards the presence of the dis-

ease (i.e., positive test for CML) as compared to Euclidean distance, Mahalanobis

distance and Windowed SAM methods. On the contrary, the lower negative like-

lihood ratio [LR(-)] of Windowed SAM method made it better at ruling out the

presence of disease (i.e., negative test for CML) versus 3-D SGM (Table 2.2). How-
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Table 2.2 Likelihood ratios of Windowed SAM and 3-D SGM algorithms.

Algorithm LR(+)a LR(-)b

Windowed SAM 2.26 0.53

3-D SGM 16.70 0.63

a LR(+) is the Positive Likelihood Ratio and is calculated as
Sensitivity/(1-Specificity)

b LR(-) is the Negative Likelihood Ratio and is calculated as (1-
Sensitivity)/Specificity

ever, the Euclidean distance and the Mahalanobis distance methods were better at

ruling out the presence of disease with much lower negative likelihood ratios [LR(-)]

at 0.26 and 0.51 respectively.

2.5 Discussion

SAM is a powerful detection algorithm that exploits the information content of the

spectral bands of a particular pixel, which can be used for classification. This tech-

nique had been first implemented for classification of low resolution remotely sensed

images in which the similarities between neighbouring pixels is high [59]. However,

for high resolution biomedical hyperspectral images, where the similarities between

neighboring pixels are high, the spectral information is not sufficient for correct

detection. It is necessary to exploit the inter-band and inter-pixel information by

extracting the 3-D spectral gradient vector of data set in the hyperspectral cube.

Therefore, this novel method of classification has been called 3-D spectral gradient

mapping.

The specificity and sensitivity measures are inversely proportional. In this study,

the specificity and accuracy values of 3-D SGM method were higher than those of

the Windowed SAM method. It was also found to be higher than the Euclidean and

Mahalanobis distance methods, which have been discussed in chapter 3. However,

the sensitivity value was found to be lower for 3-D SGM method versus all the
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other three methods, i.e. Windowed SAM (discussed in present chapter and the

Mahalanobis and the Euclidean distance methods discussed in Chapter 3). The

detailed sensitivity, specificity and accuracy values have been tabulated in Table 2.1

(for Windowed SAM and the 3-D SGM methods) and Table 3.1 (for the Euclidean

and Mahalanobis distance methods). The 3-D SGM method exploits the spectral

as well as the gradient information of the cube, which brings out the information

content in the differences between hyperspectral gradient cube points or elements.

The potency of 3-D SGM method compared to the Windowed SAM lies in the fact

that the window used for test and training pixels used in 3-D SGM is 10 × 10 × 7

whereas the window used for Windowed SAM is 2 × 2 × 7. This indicates that 3-D

SGM is able to give better classification results at lower granularity than Windowed

SAM method. Lower granularity translates to lesser number of shifts of the window

across the hyperspectral cube and hence faster algorithm. However due to more

number of computations in each cycle, the benefits of lower granularity is offset

in 3-D SGM. The 3-D SGM method exploits the spectral as well as the gradient

information of the cube, which brings out the information content in the differences

between hyperspectral gradient cube points or elements.

The 97.7% specificity measure for 3-D SGM followed by its superior LR(+)

value showed its possible potential as a screening test especially for family members

of patients, and also for use with remission cases as a positive diagnostic result

rules in CML. In cases of remission, as the patient’s neutrophil population becomes

’genetically’ healthy, the cells would bind the Leishman dye as would a neutrophil

from a healthy person. In other words, the spectral signature would be that which

resembles a disease-free (i.e., healthy) person.
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Chapter 3

Statistical Distances

3.1 Introduction

The classification algorithms discussed in the previous chapter were based on spec-

tral angle and difference of the spectral gradient vectors of the hyperspectral im-

ages. It is possible to compute the distance between two points in hyperspectral

space based on the concept of distance calculation in multidimensional space. In

this chapter, two types of distances between the test pixel and the set of training

pixels was computed and used for classification. The first type of distance was the

Euclidean distance which assumed that the set of training pixels were uniformly

distributed in all the hyperspectral dimensions and hence could be represented by

a single training pixel. The second type of distance was the Mahalanobis distance

which accounted for non-uniformity of the distance along different dimensions based

on the actual nature of distribution of the training pixels.

3.1.1 Classification using Euclidean Distance

Euclidean distance is the shortest distance between two points or vectors in a single

or multidimensional space. Modified Euclidean distance has been used with face

recognition algorithms on gray scale images by Wang et al. [60]. However, for a
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hyperspectral image with high spectral information content, the Euclidean distance

needs to be computed over multiple spectral dimensions to generate the classification

metric.

The averaged single training pixel obtained from four sets of 10 × 11 × 7 train-

ing pixels was computed as given at equation (3.1). To classify any test pixel,

test(i, j), the Euclidean distance, dtesti,j of that pixel from the averaged single

training pixel over the seven reduced bands was computed as per formula given at

equation (3.2)[45].

TP10×11×7 =

[
TP110×11×7+TP210×11×7

+TP310×11×7+TP410×11×7

4

]
(3.1)

dteste(i,j) =

[
nb∑
k=1

(test(i, j) − TP10×11×7)
2

]1/2
(3.2)

where,

dteste(i,j) - The multi-dimensional Euclidean distance between the test pixel with

coordinates (i,j) and the average of the set of training pixels given by TP10×11×7.

nb - Total number of bands/ dimensions (after applying PCT, the number of bands

were reduced to seven).

The Euclidean distance of the test pixel was computed from the averaged single

training pixel over the seven high information containing bands. The maximum

inter-pixel euclidean distance represents the maximum variance between the pixels

representing neutrophils from patients suffering from CML in terms of Euclidean

distance. The maximum inter-pixel euclidean distance for each of the four sets of

10 × 11 × 7 training pixels is given by equation (3.3).

demax =

∑4
i=1 demaxi

4
(3.3)

where,

demax - The average of the maximum inter-pixel distance of the four sets of 10× 11

training pixels.
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demaxi - The maximum inter-pixel distance of the ith group or set of 10×11 training

pixels.

The The test pixel (test(i, j)) was classified as a positive CML case if its Eu-

clidean distance, (dteste(i,j)) from the single training pixel at the coordinates (i, j)

was found to be less than the largest inter-pixel distance, (demax) of the training

pixel set for either the nucleus or cytoplasm of the neutrophil. After highlighting

all such cases of positive detection, a decision on classification was taken based on

a visual appreciation of the highlighted pixels.

A schematic flow chart showing the sequence of steps required to be executed

for implementing Euclidean distance method based classification algorithm on hy-

perspectral dataset for the purpose of classsification is given at Fig. 3.1.

3.1.2 Limitations of Euclidean Distance for Classification

Since Euclidean distance is calculated between two points, it is necessary to de-

note the given distribution of training pixels by a single point. For a balanced or

symmetric uncorrelated distribution, considering the centroid as the single point

representing the distribution, the threshold can be considered to be the maximum

Euclidean distance between the centroid and any pixel of the distribution as shown

in Fig. 3.2. However practical distributions may not be a balanced or symmetric

distribution. In such cases, the classification of a pixel would depend on the vari-

ance of the distribution along each dimension. In Fig. 3.3. even though Ta and Tb

are at equal Euclidean distance from the centroid of the hyperspectral distribution,

Tb is not a part of the distribution in n-D space. Here Euclidean distance fails to

accurately classify the test pixels.
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Figure 3.1 Flowchart showing the implementation of Euclidean distance based method
for classification of hyperspectral image.
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Figure 3.2 The Euclidean distance of a sample pixel from the centroid of the given
balanced or symmetric distribution in an n-D space.
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Figure 3.3 The Euclidean distance of a sample pixel from the centroid of the given
unbalanced or non-symmetric distribution in a n-D space.
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3.1.3 Classification using Mahalanobis Distance

In such cases the Euclidean distance from the centroid along each dimension needs to

be scaled by a factor to compensate for the variance along that dimension. Such type

of variance compensated distance is called the Mahalanobis distance. Mahalanobis

distance provides a scalar measure of the location of a multi-dimensional vector in

a multi-variate parameter space. The advantages of using Mahalonobis distance for

correlated data sets has already been demonstrated by Srivastava and Rao [61].

Mahalanobis distance was used for target detection from remotely sensed hyper-

spectral images by Meidunas [29] and to classify remotely sensed images by extract-

ing information content in statistics of target and the background by Imani [30].

The utilisation of Mahalanobis distance to achieve classification of neutrophils from

a hyperspectral medical image has been explored in the next paragraph.

3.1.4 Implementation of Mahalanobis Distance Method for

Classification

If the mean of the distribution of the CML-affected cytoplasm and nucleus is µc

and µn respectively, and the covariance matrix of the CML-affected cytoplasm and

the nucleus is Σc and Σn respectively, then the Mahalanobis distance of the test

pixel, test(i, j) from the distributions of the CML-affected cytoplasm and nucleus

was computed to be dmc and dmn as given in equations (3.4) and (3.5)[29,30].

dmc =
√

(test(i, j) − µc)TΣ−1(test(i, j) − µc) (3.4)

dmn =
√

(test(i, j) − µn)TΣ−1(test(i, j) − µn) (3.5)

A predefined threshold value, mf was multiplied with minimum value of Maha-

lanobis distance and cases of positive detection were highlighted based on equation
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Figure 3.4 Flowchart showing the implementation of Mahalanobis distance based method
for classification of hyperspectral image.

(3.6). Decision on classification was taken based on a visual appreciation of the

highlighted pixels.

[
dmc < mf ×min(dmc)

]
OR
[
dmn < mf×

min(dmn)
]

=⇒ Positive Detection

(3.6)

A schematic flow chart showing the sequence of steps required to be executed

for implementing Mahalanobis distance method based classification algorithm on

hyperspectral dataset for the purpose of classsification is given at Fig. 3.4.
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3.2 Results

The measures of sensitivity, specificity, accuracy and likelihood ratios were applied

on the results compiled after application of the Euclidean and Mahalanobis distance

methods on the 57 hyperspectral cube samples (obtained by 57 fold cross valida-

tion technique as given in section 1.4.3). Uniform classification parameters like the

threshold multiplication factors and the size of the test samples were maintained

during the classification procedure. All the cubes were reduced to seven high in-

formation bands by applying PCA. The results obtained by applying the Euclidean

and the Mahalanobis distance methods on two sample hyperspectral sub-cubes is

shown at Fig. 3.3. Fig. 3.5a, 3.5c and 3.5e shows the RGB image, the detection

using Euclidean distance method and detection using Mahalanobis distance method

in respect of the third hyperspectral sub-cube of the first hyperspectral cube sam-

ple. Fig. 3.5b, 3.5d and 3.5f shows the RGB image, the detection using Euclidean

distance method and detection using Mahalanobis distance method in respect of the

third hyperspectral sub-cube of the second hyperspectral cube sample.

The number of TP, TN, FP, FN cases found and the sensitivity, specificity and

accuracy values derived from them after carrying out classification of the hyperspec-

tral cubes using Euclidean and Mahalanobis distance methods have been tabulated

(Table 3.1). A high LR (+) value indicates a significantly high diagnostic weight

in arguing towards the presence of the disease (i.e., positive test for CML), with

respect to Mahalanobis distance method as compared to the Euclidean distance

method. On the contrary, a very low negative likelihood ratio [LR(-)] makes the Eu-

clidean distance procedure better at ruling out the presence of disease (i.e., negative

test for CML) as compared to Mahalanobis distance method (Table 3.2).
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Figure 3.5 Detection of CML neutrophil in two samples. (a) The RGB depiction of
the third hyperspectral sub-cube of the first hyperspectral cube sample; (b) The RGB
depiction of the third hyperspectral sub-cube of the second hyperspectral cube sample;
(c) The detection of CML neutrophils in the third hyperspectral sub-cube of the first
hyperspectral cube sample using Euclidean distance method; (d) The detection of CML
neutrophils in the third hyperspectral sub-cube of the second hyperspectral cube sample
using Euclidean distance method; (e) The detection of CML neutrophils in the third
hyperspectral sub-cube of the first hyperspectral cube sample using Mahalanobis distance
method; (f) The detection of CML neutrophils in the third hyperspectral sub-cube of the
second hyperspectral cube sample.
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Table 3.1 The classification of hyperspectral data of the CML blood sample using Eu-
clidean and Mahalanobis distances.

Classification

Distance TPa TNb FPc FNd Sensitivitye Specificityf Accuracyg

Method (%) (%) (%)

Euclidean 9 32 14 2 81.81 69.56 71.93

Mahalanobis 6 41 5 5 54.54 89.13 82.45

a TP: True Positive
b TN: True Negative
c FP: False Positive
d FN: False Negative
e Sensitivity = TP/(TP+FN)
f Specificity = TN/(TN+FP)
g Accuracy = (TP+TN)/(TP+TN+FP+FN)

Table 3.2 Likelihood ratios of classification using Euclidean and Mahalanobis distance
methods.

Distance LR(+)a LR(-)b

Method

Euclidean 2.68 0.26

Mahalanobis 5.02 0.51

a LR(+): Positive Likelihood Ratio
= Sensitivity/(1-Specificity)

b LR(-): Negative Likelihood Ratio
= (1-Sensitivity)/Specificity

60



3.3 Discussion

Euclidean and Mahalanobis distances have been extensively used in clustering,

pattern recognition and classification problems [29-30]. They have been used for

biomedical applications like medical image analysis to process gray scale, RGB and

multispectral images. However, their application for analysis and classification of

hyperspectral images is mostly restricted to remote sensing applications like land use

classification, mineralogy and target detection [30-32]. Remotely sensed hyperspec-

tral images have low spatial resolution and can be used to classify larger objects like

plantation or crop coverage, mineral deposits and military target areas [19,23,30-32].

Biomedical hyperspectral images are obtained by mounting the hyperspectral sensor

on a microscope. This generates hyperspectral image cubes having high spectral as

well as high spatial resolution. Such image cubes are in the form of huge data sets.

Also the objects being classified are cells and tissues at the micron level, whereas,

much larger objects are classified in remotely sensed hyperspectral images. There-

fore the processing of the hyperspectral image cubes of biological tissues and cells

require robust algorithms and are time consuming. The use of statistical distances

for classifying high spatial and spectral resolution hyperspectral biomedical images

has been introduced in this thesis.

Statistical distances exploit the morphology of the image cube to derive classifi-

cation metrics. The use of spectral nuclear morphometry to classify lymphocytes in

lymphoproliferative disorders (i.e., chronic lymphatic leukemia, infectious mononu-

cleosis and non-Hodgkin’s lymphoma) was studied by Greenspan et al. [35]. Their

work focused only on the nuclear region of the cells and showed that computa-

tional analysis of spectral data brought out the spectral and morphological patterns

associated with each lymphoproliferative disorder. Malik et al. studied chronic

lymphocytic leukemia (B-CLL) and normal small lymphocytes by analyzing their

morphological patterns [36]. These two studies focused only on the nucleus of lym-

phocytes whereas the present study analyzed spectral data from both the nucleus
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and cytoplasm of neutrophils. Though analyzing the nucleus and cytoplasm may

have added some ‘noise’ to the data, the distance methods have shown sufficient

promise to consider the gathering of hyperspectral image data from a larger pool of

samples.

3.3.1 Comparison with Windowed SAM and 3-D SGM

Methods

The higher sensitivity values of the classification methods based on statistical dis-

tances indicates better ability to detect positive CML cases as compared to the the

Windowed SAM and the 3-D SGM methods. Also, the low negative likelihood ra-

tios of both the statistical distance methods, makes them ideal for ruling out the

presence of CML in a sample, as compared to the Windowed SAM and the 3-D

SGM methods. But, with lower specificity and accuracy values, the Euclidean Dis-

tance method is less robust in detecting healthy samples and segregating the CML

affected samples from the healthy samples as compared to the Windowed SAM and

the 3-D SGM methods. However, Mahalanobis distance method is better than the

Windowed SAM method in detecting healthy samples and segregating healthy from

diseased samples due to its higher specificity and accuracy values.

3.3.2 Comparison between Euclidean and Mahalanobis Dis-

tance Methods

In this study, the accuracy and specificity of Mahalanobis distance method was found

to be higher than that of the Euclidean distance method. This indicates a greater

ability to detect healthy neutrophils and clearly classify neutrophils of CML patients

from that of healthy patients. This is because Mahalanobis distance method is based

on classifying the test pixel based on its spectral similarity to a distribution rather

62



than to a single pixel. It is best suited for probabilistic classification where the

probability distribution has different variances along different dimensions. It is also

ideal for initial diagnostics to distinguish healthy patients from those suffering from

CML. The sensitivity of Euclidean distance method is greater than Mahalanobis

distance method, and makes it best suited for confirmatory diagnostics to detect

positive cases.
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Chapter 4

Classification of CML Neutrophils

using Frequency Domain Normal

Probability Distribution Function

Merged with Mahalanobis

Distance Method

4.1 Introduction

The classification algorithms explored in the above chapters were in the spatial

domain. Of all classification algorithms in spatial domain that were discussed in

the previous chapters, the Mahalanobis distance method was found to have a very

low computation time. It was found to have a very low specificity (89.13%) and

accuracy (82.4%). However it had a very low sensitivity measure of 54.54%. To

improve the sensitivity measure, it was necessary to exploit the information content

in the frequency domain. Therefore, the Frequency Domain Normal Probability

Distribution Method (FDNPM) metric was proposed for classification. However,

FDNPM needed to be combined with Mahalanobis distance method for classification
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to leverage the higher specificity and accuracy values. Therefore, a merged method

using the FDNPM metric and Mahalanobis distance was proposed for classification

of CML neutrophils.

4.2 Use of Mahalanobis Distance Method in Clas-

sifying Multi-dimensional Images and its Lim-

itations

The classification of CML neutrophils using Mahalanobis distance on hyperspectral

data sets has already been explored in the spatial domain by Panda et. al. [45].

However, the method suffered from low sensitivity values which indicated reduced

capability for segregating CML positive cases. Mahalanobis distance is an effective

measure of how close a sample is to the Probability Density Function (PDF) of the

CML affected neutrophils. However it was used in the spatial domain and did not

exploit the information content in the frequency domain. Also the Mahalanobis

distance method calculates the distance of a single pixel from a given PDF [29-

30]. The CML affected neutrophils are actually a set of pixels. Therefore it was

necessary to compute the combined similarity of a set of pixels with the PDF of the

CML affected neutrophils.

4.3 Probability distribution function (PDF)

PDF is a mathematical function that gives the probability of occurrence of any event.

In the present study the probability distribution function of the Fourier transform

of the sample pixels gives the probability that a given frequency domain response

obtained from the Fourier transform of the test sample would have the intensity as

defined by the argument of the PDF. Since the groups of pixels being considered
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were in each others neighbourhood, their spectral characteristics were found to be

similar. Therefore, their probability distribution was found to be normal or near

normal centred around a mean spectral intensity with varying standard deviations.

Hence, the sample groups of pixels being considered were modeled into a normal

distribution with various means and standard deviations as applicable.

4.4 FDNPM

The first step of the FDNPM method was to match the probability distribution of

the training and the test pixels in the frequency, along each of the reduced dimen-

sions. To do the same, the Fourier transform of the training and the test samples was

carried out before computing the normalised PDF. Fourier transform of the hyper-

spectral cube yields the original information content re-framed as sum of weighted

frequency responses, i.e., the rates of change of spatial data. The implementation

in frequency domain helped in exploiting the information content in the various

rates of change of spatial intensity values of the hyperspectral image cube. This

significantly improved the sensitivity values.

A schematic flow chart showing the sequence of steps required to be executed for

implementing FDNPM method on hyperspectral dataset for the purpose of classsi-

fication is given at Fig. 4.1.

4.5 Merged Method

The Mahalanobis distance is the most time efficient algorithm for classifying hyper-

spectral images. However, when used for classification, it had a very low sensitivity.

Therefore, to improve the sensitivity values, the present study explores detection

using an algorithm to bring out spectral similarity measure of a pixel to the spectral

domain PDF of the CML neutrophils, merged with the spatial domain Mahalanobis

67



Figure 4.1 Flowchart showing the implementation of FDNPM method for classification
of hyperspectral image.
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distance method. FDNPM was found to be an ideal method to bring out spectral

similarity measure in frequency domain. Therefore, to improve the efficacy of the

Mahalanobis distance method and to exploit the information content in frequency

domain, the use of PDF matching of the Fourier transform of test and the training

hyperspectral samples along with the Mahalanobis distance in spatial domain has

been proposed in this chapter. A combination of FDNPM and Mahalanobis distance

method called the merged method, has been proposed in this chapter.

4.6 Implementation of Merged Method

4.6.1 PDF of training pixels

Four sets of training pixels were identified for the neutrophil and the cytoplasm.

Their Fourier transform was computed. The mean and standard deviations of

Fourier transform of these sets of training pixels were computed in each band and

used to generate the band wise normal PDF for both cytoplasm and neutrophil over

2047 intensity values as shown at equation (4.1), (4.2) and (4.3).

A schematic flow chart showing the sequence of steps required to be executed for

implementing Merged method based on FDNPM and Mahalanobis distance methods

for classification of hyperspectral dataset for the purpose of classsification is given

at Fig. 4.2.

MTtrainingi,j = mean(FT (training pixel seti,j)) (4.1)

STtrainingi,j = standard deviation(FT (training pixel seti,j)) (4.2)
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Figure 4.2 Flowchart showing the implementation of Merged method comprising of the
Mahalanobis distance method and the FDNPM method for classification of hyperspectral
image.
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NDtrainingi,j = normal PDF (MTtraining, ST training,−1023 to 1023) (4.3)

where,

MTtrainingi,j: The mean of the set of set of 10 × 11 training pixels starting from

the pixel (i, j) in reduced bands.

FT (x): The fourier transform of the pixels given by the variable, x.

mean(θ): The mean of the set of values given by θ.

standarddeviation(θ): The standard deviation of the set of values given by θ.

STtrainingi,j: The standard deviation of the set of 10 × 11 training pixels starting

from the pixel (i, j) in reduced bands.

NDtrainingi,j: The normal PDF of the Fourier transform of the set of 10 × 11

set of training pixels starting from the pixel, (i, j) in reduced bands over 2047 inten-

sity values from -1023 to 1023 having mean given by MTtrainingi,j and standard

deviation given by STtrainingi,j.

4.6.2 PDF of Test Pixels

A window of 10 × 11 pixels were earmarked for each pixel at the location (i, j) of

the test hyperspectral image in reduced dimensions keeping the pixel at (i, j) at top

left corner of the window. The Fourier transform of the window of test pixels was

computed. The mean and standard deviations of these window of test pixels sets
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were computed in each band and used to generate the band wise normal PDF over

2047 intensity values as shown in equation (4.4), (4.5) and (4.6).

MTtesti,j = mean(FT (test pixel set(i, j))) (4.4)

STtesti,j = standard deviation(FT (test pixel set(i, j))) (4.5)

NDtesti,j = normal PDF (MTtest, ST test,−1023 to 1023) (4.6)

where,

MTtesti,j: The mean of the set of set of 10 × 11 test pixels starting from the pixel

(i, j) in reduced bands.

STtesti,j: The standard deviation of the set of 10 × 11 test pixels starting from

the pixel (i, j) in reduced bands.

NDtesti,j: The normal PDF of the Fourier transform of the set of 10 × 11 set

of test pixels starting from the pixel, (i, j) in reduced bands over 2047 intensity

values from -1023 to 1023 having mean given by MTtesti,j and standard deviation

given by STtesti,j.

normalPDF (α, β, γ): The normal PDF having mean, standard deviation and range

of pixel intensity values given byα,β, and γ respectively.
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4.6.3 Matching frequency domain PDF of the training and

test pixels

The PDF obtained from the frequency domain response of the window of training

pixels was compared with the PDF of the frequency domain response of the sets

of test pixels by taking the root mean square (RMS) difference. A threshold of

the RMS difference was earmarked. If the RMS difference corresponding to any

test pixel as given in equation (4.7), was found to be less than the threshold RMS

difference, it was marked to be a positive detection for CML neutrophil.

RD(i, j) = RMS

[
(NDtesti,j) − (NDtrainingi,j)

]
(4.7)

where,

RD(i, j): The RMS difference of the PDF of the Fourier transform of the set of

test and the window of training hyperspectral pixels across the seven PCT bands

corresponding to the pixel at (i, j) position.

4.6.4 Merging of Mahalanobis and frequency domain PDF

matching methods

In order to leverage the advantages of both the techniques, they were merged in a

manner such that Mahalanobis distance method was given a weightage of 1.3 and

normal FDNPM method was given a weightage of 1 as given in equation (4.8).

mergedmethod = (mahal × normpdf) + (1.3 ×mahal) + normpdf (4.8)

where,

mergedmethod: The results obtained using merged method comprising of Maha-

lanobis distance and FDNPM methods
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mahal: The results obtained by using Mahalanobis distance method

normpdf : The results obtained by using FDNPM method.

The first term in the right hand side of equation (4.8) ensures that pixels of zero

intensity in any of the results remain same in the final result while the balance of

the intensity values are appropriately scaled. The second and the third terms in

equation (4.8) give a weightage of 1.3 to the Mahalanobis distance method and a

weightage of 1 to the FDNPM method. The RGB image of the third hyperspectral

sub cube of the first hyperspectral cube is shown at Fig. 4.3a. The detection results

using the merged method is depicted in Fig. 4.3b respectively. For the merged

method, a threshold value of 1.26 for the FDNPM and 1.20 for the Mahalanobis

distance methods were fixed.

Figure 4.3 The depiction of (a) RGB image of the third hyperspectral sub-cube obtained
from the first hyperspectral cube and (b) the merged method (using Mahalanobis distance
and FDNPM methods).
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Table 4.1 Sensitivity, specificity and accuracy of the KCED and the merged (Mahalanobis
distance + FDNPM) methods on healthy versus CML neutrophils.

Classification parameters

Method TPa FPb TNc FNd Sensitivitye

(%)
Specificityf

(%)
Accuracyg

(%)
Mahalanobis 6 14 32 2 63.6 93.5 87.7
Distance

Mahalanobis 7 3 43 4 63.6 93.5 87.7
+FDNPM*

a TP: True positive
b FP: False positive
c TN: True negative
d FN: False negative
e Sensitivity = TP/(FN+TP)
f Specificity = TN/(FP+TN)
g Accuracy = (TN+TP)/(TP+FP+TN+FN)
* FDNPM: Frequency Domain Normal PDF (Probability Distribution Function) Matching.

4.7 Results

4.7.1 Sensitivity, specificity and accuracy

The merged method significantly improved the sensitivity of Mahalanobis distance

method from 54.5% to 63.6% without any significant reduction in the specificity

(93.5%) and accuracy values (87.7%). Therefore the merged method significantly

improved the probability of positive diagnosis of the sample as given in Table 4.1.

4.7.2 Likelihood ratios

The merged method had a lower negative likelihood ratio LR(-) as compared to

Mahalanobis distance method resulting in an improved ability to defend a negative

test for CML (i.e., rule out the presence of the disease). However, it displayed a lower

positive likelihood ratio LR(+) indicating a lower diagnostic weight in defending a

positive test for CML (Table 4.2).
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Table 4.2 Comparison of likelihood ratios of the Mahalanobis distance method and the
merged (Mahalanobis distance + FDNPM) methods.

Method LR(+)a LR(-)b

Mahalanobis distance method 5.02 0.51

Mahalanobis + FDNPM* 9.8 0.4

a LR(+): Positive Likelihood Ratio = Sensitivity/(1-Specificity)
b LR(-): Negative Likelihood Ratio = (1-Sensitivity)/Specificity
* FDNPM: Frequency Domain Normal PDF (Probability Distribu-
tion Function) Matching.

4.8 Discussion

We had previously explored the use of single-classifier approaches (the Euclidean

and Mahalanobis distances) to correctly identify and group CML from healthy neu-

trophils [45]. The Mahalanobis distance method had higher specificity (89%) and

accuracy (82.5%) performance values compared to the results for the Euclidean

distance algorithm of 69.6% and 71.9%, respectively. As far as sensitivity was con-

cerned, the Euclidean distance had a 18.2% chance of missing a positive diagnosis

versus 45.5% for the Mahalanobis distance. On the whole, neither method was

stronger for all three performance parameters. Subsequently, a novel method (3-D

Spectral Gradient Mapping) was introduced in chapter 3 [45], increased the speci-

ficity (97.7%) and accuracy (84.2%) of classification but dramatically dropped when

it came to its sensitivity. In the current work, a few corrective measures were intro-

duced and has shown to produce stronger classification percentages by decreasing

false positive and negative values. Since the same hyperspectral data sets were used,

a direct comparison could be made across the different algorithms.

In the current study, both the Mahalanobis distance and the FDNPM methods

use PDF for deriving the classification metrics. The Mahalanobis distance method

computes the similarity index by calculating the Mahalanobis distance of a test pixel

from the PDF of the training pixel to classify it. However, the whole neutrophil cell

per se is represented by a set of pixels. To classify them correctly, it is necessary to

76



compute its similarity with the set of training pixels. The FDNPM method computes

the similarity by considering the entire set of test pixels for the nucleus and the

cytoplasm of the neutrophils. Further, the Fourier transform of the hyperspectral

cube represents the information content as sum of scaled frequency responses. The

frequencies give the rate of change of information over the space, i.e., along X (the

rows), Y (the columns) and Z (the wavelength bands) axes. Therefore, by matching

the PDF in the frequency domain, the spatial rate of change of the information

content of the hyperspectral cube was compared. The Mahalanobis distance has

been merged with the FDNPM method to improve on the sensitivity value without

compromising the former’s high specificity and accuracy values. In fact, the merged

method was found to have increased the specificity (by 4.4%) and accuracy (by

5.2%) values as well. The merged method has much higher LR(+) values (9.80) than

solely using the Mahalanobis distance approach (5.02). With a lower LR(-) value

(0.40), FDNPM method improvises the Mahalanobis distance method by reducing

the likelihood of missing diseased cases (compared to only using the Mahalanobis

distance; LR(-) = 0.51; [48]).
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Chapter 5

Classification of CML Neutrophils

using Kurtosis Compensated

Euclidean Distance

5.1 Introduction

Use of euclidean distance over multiple dimensions as the measurement metric for

classification of hyperspectral cubes for CML detection has been discussed in chap-

ter 2. In such cases the Euclidean distance of the test pixel is measured from the

mean of the training pixel sets and compared with a constant threshold distance.

However, distributions of the training pixel sets around its mean is not always con-

stant. Therefore, mean of a distribution is not a single point identification for the

entire distribution. Thus, the use of euclidean distance computed from the mean

of the distribution for classification would not give the correct results. The shape

of the distribution should decide the value the threshold distance. In other words

keeping the threshold distance constant, the measured distance needs to be suitably

scaled based on the shape of the PDF and compared with the constant threshold

distance for classification.
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5.1.1 Classification using KCED

KCED is a metric derived from the probability distribution which calculates the

Euclidean distance of any sample from a given probability distribution by com-

pensating for the spread of the distribution along any given direction. A similar

measure of classification is Diffusion Kurtosis Imaging and Diffusion Tensor Imag-

ing. These classification methods were used to categorize biological tissues based on

non-Gaussian diffusion of water in biological systems [54-56].

Euclidean distance

Euclidean distance gives the shortest distance between two points in multi-dimensional

space. The Euclidean distance, edtest,trg between the test pixel, test(i, j) and a train-

ing pixel, trg(i, j) in n−D space is given by equations (5.1) and (5.2) [45].

edtest,trg(i, j) =

√√√√ n∑
k=1

(test(i, j, k) − trg(i, j, k))2) (5.1)

where,

edtest,trg(i, j): Euclidean distance between the test pixel and the training pixel.

test(i, j, k): The intensity value of the test pixel at the coordinates (i, j) in the kth

wavelength band.

trg(i, j, k): The intensity value of the training pixel at the coordinates (i, j) in the

kth wavelength band.

=⇒ edtest,trg(i, j) =
√

(test(i, j) − trg(i, j))T (test(i, j) − trg(i, j)) (5.2)

where,

test(i, j): The intensity value of the test pixel at coordinates (i, j) in all the wave-

length bands.

trg(i, j): The intensity value of the training pixel at coordinates (i, j) in all the
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wavelength bands.

For calculating the Euclidean distance between test pixel, test(i, j) and a set

of training pixels, the distance was calculated between test(i, j) and a single pixel

representing the set of training pixels based on equation (5.2) across all wavelength

bands. This single pixel can be safely assumed to be the mean, µtrg of the probability

distribution formed by the set of training pixels. Thus the Euclidean distance of the

test pixel, test(i, j) from the probability distribution of training pixels having mean

µtrg is given by equation (5.3).

epdftest,trg(i, j) =
√

(test(i, j) − µtrg)T (test(i, j) − µtrg) (5.3)

where,

µtrg: Mean of the set of training pixels.

epdftest,trg: Euclidean distance of the test pixel, test(i, j), from the mean of the PDF

of the training pixels, µtrg, across all wavelength bands.

Kurtosis

Kurtosis of a probability distribution is a measure of the heaviness of the tail of the

probability distribution [54-56]. The Kurtosis of a probability distribution, X is the

scaled fourth central moment and is given by equation (5.4).

K(X) = E
[(X − µ

σ

)4]
(5.4)

where,

µ: The mean of the probability distribution X.

σ: The variance of the probability distribution X.
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For a PDF with zero mean the Kurtosis can be defined as given in equation (5.5).

K(X) =
µ4

σ4
(5.5)

KCED

The Kurtosis of a normal distribution where the tail of the distribution is equally

or symmetrically distributed along all the dimensions is 3. Any reduction in tail

of a distribution as compared to the normal distribution is reflected by a Kurtosis

value less than 3. Such a distribution is classified as a platykurtic distribution. Any

increase or heaviness in tail of a distribution as compared to the normal distribution

is reflected by a Kurtosis value greater than 3. Such a distribution is classified as

a leptokurtic distribution. Therefore, the actual distance of a sample point from

a distribution can be obtained by dividing the Euclidean distance measure by the

deviation in Kurtosis value from 3 along each dimension. Such a deviation is called

excess Kurtosis. However, in the present study a variation of excess Kurtosis is

obtained by dividing the Kurtosis value along each dimension by 3. Thus the Eu-

clidean distance gets eclipsed when the tail is heavy and magnified when the tail is

reduced as compared to a normal distribution. Therefore, the KCED, kepdftest,trg of

a point from the probability distribution of the training pixels in multi-dimensional

space is given by equation (5.6).

kepdftest,trg =

[
M∑
k=1

(
(test(i, j, k) − trg(i, j, k))2

Kk(X)

)]1/2
(5.6)

where,

Kk(X): The excess Kurtosis of the PDF of set of hyperspectral pixels in kth dimen-

sion or band.

M : Total number of dimensions or bands.

An excess Kurtosis matrix which has as many columns as the number of hyper-

spectral image pixels and each column of the matrix consisting of inverse of excess

Kurtosis in each dimension as given at equation (5.7) was defined.
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K(X)inv =



3/K1 3/K1 . . .Ntimes . . 3/K1

3/K2 3/K2 . . .Ntimes . . 3/K2

.

.

3/KM 3/KM . . .Ntimes . . 3/KM


(5.7)

where,

N : Number of hyperspectral image pixels.

Therefore, KCED of a point from the probability distribution of the training

pixels in multi-dimensional space can also be shown as given by equation (5.8).

kepdftest,trg(i, j) =
√

(test(i, j) − µtrg)T (K(X)inv)(test(i, j) − µtrg) (5.8)

In the present study, the KCED was calculated for all the pixels of the sam-

ple hyperspectral image from the probability distribution of training pixels for the

cytoplasm and the nucleus. The pixels, spectrally similar to the training pixels,

were found to have smaller distances as compared to the spectrally dissimilar pixels.

The composite distance image was computed by adding the distance images for the

cytoplasm and the nucleus in the first three PCT bands. The sum of the compos-

ite distance images in all the three PCT bands was calculated and plotted as the

resultant distance image. Classification of a blood sample was made after visually

appreciating the resultant distance image.
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5.1.2 Scaling of Euclidean distance using Kurtosis

Based on the PDF analysis of random hyperspectral image samples, we found that

the data had either normal or near normal distributions. The threshold for classifica-

tion using Euclidean distance for normal distributions varied based on the standard

deviation of the PDF. A higher Kurtosis along a given dimension indicated a heavy-

tailed PDF along that dimension and vice versa. This meant that a higher threshold

value for detection was required using the Euclidean distance along that dimension.

The use of the same Euclidean distance with different Kurtosis would result in an

error in classification (Fig. 5.1). Therefore, by scaling down the Euclidean distance

for heavy-tailed distribution and scaling it up along a given dimension for a light

tailed distribution, refined the classification procedure. Since Kurtosis represented

the nature of tail of a normal PDF, compensation of the Euclidean distance using

Kurtosis along each dimension aided in correcting the error.

The Euclidean distance gave the correct proximity measure of the test pixel

from the probability distribution of the training pixel set, only if the mean of the

distribution represents the actual centre of mass of the training pixel set. This

was the case when the distribution was equally or symmetrically distributed along

all dimensions about its mean. If not, the mean did not reflect the actual centre of

distribution mass. In such cases also, it was necessary to compensate for the distance

along each dimension by the excess distribution of pixels along that dimension.

A schematic flow chart showing the sequence of steps required to be executed

for implementing KCED method on hyperspectral dataset for the purpose of class-

sification is given at Fig. 5.2.

The PDF of one set of training pixels for the cytoplasm and nucleus of CML

neutrophils over the seven PCT bands are shown in Figs. 5.3a to g.
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Figure 5.1 The sample x is part of the heavy-tailed PDF in (a) but not a part of the light-
tailed PDF in (b). The use of same Euclidean distance for PDF with different Kurtosis
may result in incorrect classification results [d = distance of x from centre of the normal
PDF]
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Figure 5.2 Flowchart showing the implementation of KCED method for classification of
hyperspectral image by applying kurtosis compensation on Euclidean distance.
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(a) (b) (c)

(d) (e) (f)

(g)

Figure 5.3 The PDF across seven PCT bands [(a) to (g)] of one set (as a representation)
of training pixels for cytoplasm (dotted line) and nucleus (solid line) of CML neutrophils.
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Figure 5.4 The depiction of (a) RGB image of the third hyperspectral sub-cube obtained
from the first hyperspectral cube, (b) the merged method (using Mahalanobis distance
and FDNPM methods) and (c) the detection of CML neutrophils using KCED.

5.1.3 Uniformity of parameters

Uniform parameters, like the threshold multiplication factors, reduction of dimension

to seven bands by applying PCA and standardization of size of test samples to

10× 11× 7, was ensured while applying the classification algorithms. The detection

results obtained by using the merged method and KCED metric for classifying the

third hyperspectral sub cube of the first hyperspectral cube were compared. The

RGB image of the third hyperspectral sub cube of the first hyperspectral cube is

shown at Fig. 5.4 (a). The detection results using the merged method and KCED

are depicted in Fig. 5.4 (b) and (c) respectively. For the merged method, a threshold

value of 1.26 for the FDNPM and 1.20 for the Mahalanobis distance methods were

fixed.

5.1.4 Sensitivity, specificity and accuracy

It shared the second highest sensitivity value with euclidean distance method at

81.8% and the highest accuracy value of 91.2%. KCED was found to have the
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Table 5.1 Sensitivity, specificity and accuracy of the KCED method on healthy versus
CML neutrophils.

Classification parameters

Method TPa FPb TNc FNd Sensitivitye

(%)
Specificityf

(%)
Accuracyg

(%)

KCED* 9 3 43 2 81.8 93.5 91.2

a TP: True positive
b FP: False positive
c TN: True negative
d FN: False negative
e Sensitivity = TP/(FN+TP)
f Specificity = TN/(FP+TN)
g Accuracy = (TN+TP)/(TP+FP+TN+FN)
* KCED: Kurtosis Compensated Euclidean Distance.

second highest LR (+) value (12.6) and the lowest LR (-) value at 0.2. Although,

3-D SGM had the lowest sensitivity value at 97.7% and highest LR (+) value at

16.7%, it had the lowest sensitivity at just 38.5% and a low accuracy value of just

84.2%. On the whole, the KCED method out performed all other methods in terms

of sensitivity , specificity and accuracy.

5.1.5 Likelihood ratios

The KCED method had a higher LR(+) versus the merged method. This indicated

that the former method had a greater diagnostic weight in defending a positive test

for CML (i.e., presence of the disease). In addition, the lower LR(-) value for the

KCED method demonstrated its ability to defend a negative test for CML (i.e., rule

out the presence of the disease) (Table 5.2). The likelihood ratios have shown that

the KCED method is superior as compared to the other methods discussed in the

thesis.
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Table 5.2 Likelihood ratios of the KCED method.

Method LR(+)a LR(-)b

KCED* 12.6 0.2

a LR(+): Positive Likelihood Ratio = Sensitivity/(1-Specificity)
b LR(-): Negative Likelihood Ratio = (1-Sensitivity)/Specificity
* KCED: Kurtosis Compensated Euclidean Distance.

5.2 Discussion

In chapter 2, it was found that the Euclidean method suffered from low specificity,

accuracy and LR(-) values [44]. This was because the algorithm computed the

shortest distance in a multi-dimensional space. For non-symmetric distributions, the

Euclidean distance failed to give a measure of the sample similarity from the PDF.

Therefore to account for the non-symmetric nature of the PDF, KCED method was

introduced in this chapter. KCED significantly increases the specificity, accuracy

and LR(+) values, and reduces the LR(-) value, while maintaining sensitivity value

at 81.8%. KCED was found to demonstrate the best performance values amongst

all methods discussed so far, for the classification of CML versus healthy neutrophils

from blood smear samples.
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Chapter 6

Discussion

As technology combines spectroscopy with imaging, hyperspectral image process-

ing has emerged as a niche which has found application in many fields like remote

sensing, mineralogy, mapping vegetation cover and crop usage pattern etc. The

exploitation of hyperspectral imaging started in the field of remote sensing where

it was used to classify low spatial resolution hyperspectra; images captured from

an aerial platform. This necessitated development of special algorithms to analyse

the remotely sensed hyperspectral data sets [57-59]. However, use of high spatial

and spectral resolution hyperspectral images of biological samples required different

set of algorithms for classification. Unlike remotely sensed hyperspectral images,

biomedical hyperspectral images are of high spatial and spectral resolutions. The

resultant large data sets require special algorithms for processing and classifica-

tion [44-45]. Many studies have ventured into the use of hyperspectral imaging on

human blood cells. Greenspan et al. studied the use of spectral nuclear morphom-

etry to group lymphocytes in lymphoproliferative disorders (i.e., chronic lymphatic

leukemia, infectious mononucleosis and non-Hodgkin’s lymphoma) [35]. However

their work focused only on spectral data generated from the nuclear region of the

cells. Another group studied spectral morphometric patterns in the nuclear region

of chronic lymphocytic leukemia (B-CLL) cells and normal small lymphocytes [36].

Both these groups showed that when spectral data was combined with computa-
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tional analyses, the patterns revealed a distinct correlation with the diseased versus

the healthy cells. The research work focuses on extracting spectral and spatial infor-

mation from the nuclear and cytoplasmic areas of the healthy and CML neutrophils.

From case reports, it is evident [1-3,6-8] that the detection of the presence of the

Philadelphia chromosome alone is insufficient to mount symptoms in “preleukemic”

patients, especially with those who have normal to mildly elevated WBCs. Hy-

perspectral images of cells capture the in toto information within each cell. Every

hematological stain or dye has the potential to generate its own hyperspectral li-

brary of information, linked to the disease that is being diagnosed. In other words,

hyperspectral imaging “fingerprints” the cells based on the data generated from the

binding of the dye to the molecules within the healthy versus diseased cells. That

is what we have shown with our studies on neutrophils.

In the present study various supervised methods for classification were explored

and tested on the same set of samples, using uniform pre-processing methods. First

two methods focused on classification using the spectral information content in hy-

perspectral image[44]. The next two methods were based on statistical distances

[45]. They used the multidimensional Euclidean and the Mahalanobis distance to

classify CML neutrophils. To improve the sensitivity of the Mahalanobis distance

based classification method, it was merged with a novel method computed in the

frequency domain. The last method focused on modifying the Euclidean distance

method to take into account non-symmetric distributions. The detailed comparison

of the all the methods based on their sensitivity, specificity and accuracy is given

in Table. 6.1. The consolidated comparison of different methods based on their

likelihood ratios is given in Table 6.2.

In chapter 2 the novel 3-D Spectral Gradient Mapping (3-D SGM) method was

introduced [44]. The specificity (97.7%) and accuracy (84.2%) of classification was

very high using this method. 3-D SGM exploits the inter-pixel and inter- band

similarity between the training and the test pixels. However, the sensitivity values

were found to be dramatically low. To improve the sensitivity measure of the clas-
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Table 6.1 Comparison of Sensitivity, Specificity and Accuracy Values.

Classification parameters

Method Sensitivitya Specificityb Accuracyc

Windowed SAM*a 61.5 72.7 70.2

3-DSGM*b 38.5 97.7 84.2

Euclidean Distance 81.81 69.56 71.93

Mahalanobis Distance 54.54 89.13 82.45

Merged (Mahalanobis Distance 63.6 93.5 87.7
and FDNPM*c)

KCED*d 81.8 93.5 91.2

a LR(+): Positive Likelihood Ratio = Sensitivity/(1-Specificity)
b LR(-): Negative Likelihood Ratio = (1-Sensitivity)/Specificity
*a Windowed SAM: Windowed Spectral Angle Mapping.
*b 3-D SGM: 3-Dimensional Spectral Gradient Mapping.
*c FDNPM: Frequency Domain Normal PDF Matching.
*d KCED: Kurtosis Compensated Euclidean Distance.

Table 6.2 Comparison of Likelihood ratios.

Method LR(+)a LR(-)b

Windowed SAM*a 2.26 0.53

3-DSGM*b 16.70 0.63

Euclidean Distance 2.68 0.26

Mahalanobis Distance 5.02 0.51

Merged(Mahalanobis Distance 9.80 0.40
and FDNPM*c)

KCED*d 12.60 0.20

a LR(+): Positive Likelihood Ratio = Sensitivity/(1-Specificity)
b LR(-): Negative Likelihood Ratio = (1-Sensitivity)/Specificity
*a Windowed SAM: Windowed Spectral Angle Mapping.
*b 3-D SGM: 3-Dimensional Spectral Gradient Mapping.
*c FDNPM: Frequency Domain Normal PDF Matching.
*d KCED: Kurtosis Compensated Euclidean Distance.
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sification without significantly affecting the specificity and the accuracy values, the

Euclidean and Mahalanobis distances were used to identify and group CML from

healthy neutrophils [44] in chapter 3. The Mahalanobis distance method had higher

specificity (89%) and accuracy (82.5%) performance values as compared to the re-

sults from the Euclidean distance algorithm which had specificity value of 69.6%

and accuracy value of 71.9%, respectively. As far as sensitivity was concerned, the

Euclidean distance method had a 18.2% chance of missing a positive diagnosis ver-

sus 45.5% for the Mahalanobis distance approach. On the whole, neither method

was stronger for all three performance parameters.

To improve the results, in chapter 4, a combined approach using Mahalanobis

distance method merged with a novel classification method, FDNPM was explored.

FDNPM compares the test pixel to the PDF of the training pixel set in the frequency

domain. Both the Mahalanobis distance and the FDNPM methods used PDF for

deriving the classification metrics. The Mahalanobis distance method computes

the similarity index by calculating the Mahalanobis distance of a test pixel from

the PDF of the training pixel to classify it. However, the whole neutrophil cell

per se is represented by a set of pixels. To classify them correctly, it is necessary

to compute its similarity with the set of training pixels. The FDNPM method

computes the similarity by considering the entire set of test pixels of the nucleus and

cytoplasm of the neutrophils. Further, the Fourier transform of the hyperspectral

cube represents the information content as sum of scaled frequency responses. The

frequencies gave the rate of change of information over the space, i.e., along X (the

rows), Y (the columns) and Z (the wavelength bands) axes. Therefore, by matching

the PDF in the frequency domain, the spatial rate of information content change of

the hyperspectral cube was compared. The Mahalanobis distance was merged with

the FDNPM method to improve on the sensitivity value without compromising the

former’s high specificity and accuracy values. In fact, the merged method was found

to have increased the specificity (by 4.4%) and accuracy (by 5.2%) values as well.

The merged method has much higher LR(+) values (9.80) than solely using the

95



Mahalanobis distance approach (5.02). With a lower LR(-) value (0.40), FDNPM

method improvises the Mahalanobis distance method by reducing the likelihood of

missing diseased cases compared to only using the Mahalanobis distance; LR(-) =

0.51; [45,48,62].

As discussed in chapter 3, the Euclidean method suffered from low specificity,

accuracy and LR(-) values [45]. This was because the algorithm computed the

shortest distance in a multi-dimensional space. For non-symmetric distributions, the

Euclidean distance fails to give a measure of the sample similarity from the PDF.

Therefore to account for the non-symmetric nature of the PDF, KCED method

was introduced in chapter 5. KCED significantly increases the specificity, accuracy

and LR (+) values and reduces the LR(-) value, while maintaining sensitivity value

at 81.8%. Therefore, KCED was found to have produced the best results when

compared with all other methods discussed in this thesis, for classification of CML

versus healthy neutrophils from blood smear samples [45,62].

The research work focused on whether we could use hyperspectral imaging to

distinguish intra-cell differences of healthy versus diseased states. The inclusion

criteria for healthy blood donors in the present research work were very stringent

[44,45,62]. Wang et al. used machine learning approaches successfully to differen-

tiate WBCs (i.e., inter-cell comparison). But they had to use 70% of their samples

for training [50]. The present thesis is about research which focuses on intra-cell

differences and uses less than 4% of the samples for training.

The six methods described in the thesis for classifying CML neutrophils from the

hyperspectral images of their blood samples have been adequately analysed in terms

of their ability to correctly classify the blood sample as diseased or non-diseased.

However, the actual use of the methods depends on how efficiently they can be

implemented. This needs the algorithms which form part of these classification

methods to be computationally viable in terms of use of the processor and time

taken to execute. This can be gauged based on the computational complexity of

the classification methods/ algorithms. The six methods described in the thesis
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have been evaluated and listed below in increasing order of their computational

complexity.

� Windowed Spectral Angle Mapping (WSAM) method

� Euclidean distance method

� Mahalanobis distance method

� Kurtosis Compensated Euclidean Distance (KCED) method

� 3- Dimensional Spectral Gradient Mapping (3-D SGM) method

� Merged Method comprising of Mahalanobis distance method and Frequency

Domain Normal Probability Matching (FDNPM) method

Overall collective analysis of the six methods based on their effectiveness for

blood cell classification and efficiency in terms of computational complexity, tells

us that the Kurtosis Compensated Euclidean Distance (KCED) method is the best

method which provides highest sensitvity, accuracy and lowest negative likelihood

ratio. Also, unlike other methods, KCED achieves a remarkable trade off between

sensitivity and specificity, as well as between positive and negative likelihood ratios,

by providing the second highest specificity and positive likelihood ratio values. In

terms of computational complexity, it is better than 3-D SGM and Merged methods,

while being marginally more complex than the Mahalanobis distance method for

classification of CML neutrophils from hyperspectral images.
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Chapter 7

Conclusion

The routine diagnosis for leukemia is based on the visual assessment of a stained

blood smear sample using a light microscope. Leukemia can be broadly classified

as Acute Lymphoblastic Leukemia (ALL) and Chronic myeloid leukemia (CML).

In this thesis, we have explored the various methods for classifying CMl based on

the hyperspectral image cubes of blood samples. CML is a type of cancer that

originates in the bone marrow, where blood cells are created. It is one of the most

common blood cancers and takes a longer time to develop. It affects adults more

than children and the risk of developing CML increases after the age of 65. The

presence of leukemia cells is characterized by an unusual increase in the number of

white blood cells [9]. Neutrophils are the most abundant (60 - 70%) cell type in

blood circulation and perform an important role in the ensuring innate immunity

in human body by providing the first line of defense [16-17]. Therefore, the study

has appropriately focused on the aspect of detecting CML based on the affected

neutrophils.

Advances in medical imaging technologies have revolutionized health care de-

livery globally by making diagnostics more efficient through automation. These

advances have helped the diagnosis go beyond limited detection capabilities of the

human eye. One such technique is the use of hyperspectral images. As discussed

above, hyperspectral images hold immense potential to revolutionize the way health
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care is delivered world wide. The huge amount of information content in hyper-

spectral image cubes needs to be effectively exploited in order to achieve accurate

diagnosis. The present research work utilizes this capability of the hyperspectral

images to ensure accurate diagnosis of CML affected neutrophils from the blood

samples.

Hyperspectral image processing is a widely used imaging technique in the field

of remote sensing, where it is used to classify objects from low spatial resolution

but high spectral resolution images. But with advent of better imaging technology,

it has become possible to capture high spatial as well as high spectral resolution

images. This has opened the scope of using hyperspectral images for diagnostic

applications in the field of medical imaging. However, due to the high resolution,

these image cubes generate large datasets and require efficient algorithms to extract

useful information out of these huge datasets. The existing hyperspectral image

processing techniques, which was applied on remotely sensed low-resolution datasets,

cannot be applied on high resolution biomedical images like blood smears. Therefore,

the research work described in the thesis has explored six innovative methods which

can be employed to use hyperspectral data sets to diagnose CML from blood samples.

7.1 Other Medical Applications of Hyperspectral

Image Processing

Hyperspectral images have immense potential in the field of medical applications.

Specifically, being a high resolution imaging technique, its application is mostly in

the field of medical diagnostics. This includes analysis of hyperspectral image cubes

of various types of biomedical tissues and samples. The present thesis explores

innovative methods for analysing blood samples to classify CML neutrophils.
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7.1.1 Hyperspectral Imaging for Analysing Biomedical Tis-

sues

Hyperspectral imaging can be applied to any biological tissue to examine it at the

molecular level and extract unique information about the state of the tissue based

on the tissue and wavelength interaction. Some potential bio-medical applications

of hyperspectral imaging are listed below.

� Diagnosis of melanoma from hyperspectral images of the skin.

� Alzheimer’s Disease by detecting Amyloid beta from the hyperspectral image

of the retina.

� In-vivo colon detection based on hyperspectral endoscopy of the colon.

� Determination of brain tumour margins based on hyperspectral image of the

tumour.

� Diagnosis of blood abnormalities based on hyperspectral image of blood sam-

ples.

7.1.2 Hyperspectral Imaging of Blood Samples

If the standard operating protocol is maintained across different blood-based can-

cers, i.e., blood smear preparations and staining protocol, there should be sufficient

differences that can be picked up using hyperspectral imaging to clearly differenti-

ate the different cancers. This sensitive technology picks up signals at the molecular

level using the visible as well as near infra red range of the spectrum. Each dif-

ferent blood-based cancer has its own molecular signature which is currently used

at the clinical level. These blood cancers may share some common hyperspectral

image signals, even with healthy blood cells. The main objective is to look for those
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wavelengths that differentiate them, just like the differences seen between CML and

healthy neutrophils. As for treatment efficacy, some clinical data pertaining to the

patient can be merged into the analysis. It will not be only the treatment per se.

Once a retrospective library or data is compiled, there is potential to be able to

predict treatment efficacy in prospective patients once the patient data is added.

7.2 Challenges in Use of Hyperspectral Images

for Medical Diagnosis

While the use of hyperspectral images to diagnose diseased leukemia cells like neu-

trophils is an innovative and path breaking approach towards low cost diagnostics,

it poses some inherent challenges as well. The first challenge encountered in use

of hyperspectral imaging for medical diagnosis is the inability of the hyperspectral

imager to capture 3-D image of the sample. This means that, while the surface of

the tissue can be captured and analysed with great detail in various spectral bands,

the inner cells of the tissue cannot be captured without cutting through the surface.

Therefore, hyperspectral imaging for non invasive diagnosis of 3-D biomedical sam-

ples is limited. However, in this thesis the hyperspectral images were captured in

the visible and near infra red bands. The penetration power of the the wavelengths

in the near infra red bands is more than the visible band. Therefore, the informa-

tion content from the tissue present under the surface could be obtained from the

wavelengths in the near infra red bands. Thus the first challenge could be partially

offset by capturing the hyperspectral image in the near infra red band. The second

challenge is the high cost of the hyperspectral imaging equipment. Hyperspectral

sensors which are used in the imager and the associated optics are expensive. Sec-

ondly, being a niche technology, especially in the field of medical health care, the

availability of trained manpower to undertake precise operation of the imaging sys-

tem is limited. Also the procedure for capturing hyperspectral images requires a
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fair knowledge of spectroscopy. Finally, hyperspectral image cubes are humongous

datasets with very high information content. Effective and efficient algorithms need

to be developed specific to the intended application in order to exploit the hyper-

spectral datasets. The present study as described in the thesis, has proposed six

such innovative methods for classifying CML affected neutrophils from hyperspectral

images of their blood samples and compared them based on their ability to correctly

classify the blood cells and also in terms of their computational complexity.

7.3 Future Scope of Work

The existing work concentrates on CML diagnosis by identifying the affected neu-

trophils using hyperspectral images. Use of hyperspectral images to detect other

affected blood cells like leukocytes has the potential to improve the diagnostic effi-

cacy of the methods described.

For computational efficiency, PCA has been used for dimension reduction to

exclude the redundant wavelengths. Other methods of dimension reduction like

minimum noise fraction analysis, independent component analysis etc, may also be

explored.

Hyperspectral imaging offers high spectral resolution. However, the spatial infor-

mation is limited to two dimensions by virtue of the limitation of the hyperspectral

sensors used in clinics to capture 3-D information. Significant advances in the field

of optical systems and spectroscopy are being made to devise an implementable

technology that can provide 3-D quantitative depth information of biomedical tis-

sues. This would greatly enhance the diagnostic capabilities of the hyperspectral

imaging systems in medical applications. Till this technology matures completely,

hyperspectral imaging can be used in combination with classical 3-D imaging tech-

niques like CT and MRI scans for better analysis of bio-medical tissue samples in

order to improve diagnostic capabilities.

The present study proposes novel supervised algorithms based on available sam-
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ples to classify the blood samples from their hyperspectral images. Advanced ma-

chine learning and deep learning based unsupervised algorithms can also be im-

plemented over hyperspectral image cubes to automate classification. The more

the number of layers in the learning algorithms, the better is the classification.

However, it would also increase the compute requirement due to increase in com-

putational complexity of the method for achieving similar results. Therefore, the

use of advanced machine learning and deep learning algorithms may be explored for

classification based on the application desired.
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