
AI Algorithm for Predicting and
Optimizing Trajectory of UAV Swarm

MS(Research) Thesis

By

Amit Raj

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

INDIAN INSTITUTE OF TECHNOLOGY INDORE

June 2024

AI Algorithm for Predicting and
Optimizing Trajectory of UAV Swarm

A THESIS

submitted to the

INDIAN INSTITUTE OF TECHNOLOGY INDORE

in partial fulfillment of the requirements for

the award of the degree

of

MS(Research)

By

Amit Raj

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

INDIAN INSTITUTE OF TECHNOLOGY INDORE

June 2024

INDIAN INSTITUTE OF TECHNOLOGY INDORE

CANDIDATE’S DECLARATION

I hereby certify that the work which is being presented in the thesis entitled AI Al-

gorithm for Predicting and Optimizing Trajectory of UAV Swarm in the partial

fulfillment of the requirements for the award of the degree of MS (Research) and submit-

ted in the Department of Computer Science and Engineering, Indian Institute

of Technology Indore, is an authentic record of my own work carried out during the

time period from August 2022 to June 2024.

The matter presented in this thesis has not been submitted by me for the award of any

other degree of this or any other institute.

Signature of the Student with

Date

(Amit Raj)

This is to certify that the above statement made by the candidate is correct to the best of

my knowledge.

Signature of Thesis Supervisor with Date

(Prof. Kapil Ahuja)

Amit Raj has successfully given his MS(Research) Oral Examination held on

Signature of Chairperson, OEB Signature of External Examiner Signature of Thesis Supervisor

Date: Date: Date:

Signature of PSPC Member #1 Signature of PSPC Member #2 Signature of Convener, DPGC

Date: Date: Date:

Signature of Head of Discipline

Date:

Amit Raj

Amit Raj

Amit Raj

Amit Raj

Amit Raj

Amit Raj

ACKNOWLEDGEMENTS

I would like to take this opportunity to express my heartfelt gratitude to a number

of persons who in one or the other way contributed by making this time as learnable,

enjoyable, and bearable. First, I would like to thank my supervisor Prof. Kapil

Ahuja, a constant source of inspiration during my work. Without his constant

guidance and research directions, this research work could not be completed. His

continuous support and encouragement have motivated me to remain streamlined in

my research work.

I am thankful to Prof. Aruna Tiwari and Dr. Ayan Mondal, my PSPC

members for taking out some valuable time to evaluate my progress throughout the

course. Their good comments and suggestions helped me to improve my work at

various stages. I am also grateful to DPGC and HOD of Computer Science and

Engineering for their help and support.

My sincere acknowledgment and respect to Prof. Suhas Joshi , Director, In-

dian Institute of Technology Indore for providing me the opportunity to explore my

research capabilities at Indian Institute of Technology Indore.

I would like to express my heartfelt respect to my parents for the love, care, and

support they have provided to me throughout my life.

Finally, I am thankful to all who directly or indirectly contributed, helped, and

supported me.

Amit Raj

Abstract

This thesis explores the application of Artificial Intelligence (AI) techniques for

generating the trajectories of fleets of Unmanned Aerial Vehicles (UAVs). The two

main challenges addressed include accurately predicting the paths of UAVs and ef-

ficiently avoiding collisions between them, which we discuss in the two paragraphs

below, respectively.

In all the previous studies that predicted the path, a Feedforward Neural Network

(FFNN) with a single hidden layer and standard activation functions like Sigmoid,

Tanh, and ReLU was used. These activation functions resulted in high errors (Mean

Squared Error or MSE and Root MSE or RMSE) in the predicted path. In this work,

we apply a non-standard set of activation functions, including Swish and Elliott, and

also propose our new activation function, AdaptoSwelliGauss. AdaptoSwelliGauss

is a sophisticated fusion of Swish and Elliott activations, seamlessly integrated with

a scaled and shifted Gaussian component. This dynamic combination is specifically

designed to excel in capturing the complexities of UAV trajectory prediction. The

accuracy obtained with our new activation function is better by three to four orders

of magnitude as compared to the standard activation functions.

UAV detection can be achieved in many ways. One approach involves changing

the UAV trajectories, while another involves altering the starting time, a method

also known as batching. Both techniques have their drawbacks. When applying

a standard trajectory-changing technique to our set of UAVs, the algorithm ran

into an infinite loop. On the other hand, when we used batching, the batch size

was too large for our data. Therefore, in this thesis, we propose a novel integrated

collision detection and avoidance by path and start time changes (ICDAPS) algorithm

strategy that combines two complementary UAV collision avoidance techniques. This

approach results in a finite number of trajectory changes in the first technique and a

substantial reduction in batch size in the second.

i

Contents

List of Figures v

List of Tables vii

List of Abbreviations and Acronyms ix

1 Introduction 1

2 Literature Review 5

3 Methodology 9

3.1 Activation Functions . 10

3.2 Novel Activation Function . 12

3.3 Integrated Collision Detection and Avoidance by Path and Start Time

Changes (ICDAPS) . 15

3.3.1 Collision Detection . 16

3.3.2 Collision Avoidance . 17

3.3.3 Batching Mechanism . 19

4 Results 21

4.1 Relevant Loss Functions Values Using Different Activations 22

4.2 Results On ICDAPS . 24

4.2.1 Sensitivity Analysis of ICDAPS 26

5 Conclusion 29

Bibliography 35

iii

List of Figures

3.1 FFNN Architecture. 9

3.2 Behavior of AdaptoSwelliGauss . 14

3.3 Collision sphere around the UAV. 16

4.1 Dataset of 500 UAVs. 22

4.2 A: ICDAPS with small safe radius, B: ICDAPS with large safe radius. 26

4.3 Different datasets of UAVs . 27

v

List of Tables

2.1 Summary on AI for UAVs. 6

2.2 Collision avoidance for UAVs via path changes 7

2.3 Collision avoidance for UAV via start time changes (Batching) 8

4.1 Error Metrics for the X-coordinate. 23

4.2 Error Metrics for the Y-coordinate. 23

4.3 Error Metrics for the Z-coordinate. 23

4.4 Result before and after applying ICDAPS. 24

4.5 ICDAPS outcomes with different safe radius values. 25

4.6 ICDAPS analysis with different datasets 27

vii

List of Abbreviations and Acronyms

AI Artificial Intelligence

UAV Unmanned Aerial Vehicle

FFNN Feedforward Neural Network

ICDAPS Integrated Collision Detection and Avoidance by Path and Start time

changes

ReLU Rectified Linear Unit

CTGA Circular Arc Trajectory Geometric Method

WLOG Without Loss of Generality

MSE Mean Squared Error

Tanh Hyperbolic Tangent Function

ix

Chapter 1

Introduction

UAVs have become increasingly popular in recent years due to their versatility

and potential for a wide range of applications, from surveillance and monitoring to

delivery and transportation. However, the safe and efficient operation of UAVs in

complex environments remains a significant challenge, particularly when multiple

UAVs are involved. A key issue is the need to optimize the trajectories of the UAVs

to achieve various objectives, such as minimizing travel time, avoiding collisions, and

maximizing coverage (1). Traditional methods for trajectory planning and control are

often limited in their ability to handle the complexity and uncertainty of real-world

scenarios and may not be scalable to large fleets of UAVs.

Prior research, exemplified by (2), (3), (4), (5), (6) and (7) has demonstrated

the efficacy of leveraging non-linear optimization techniques. When quick trajectory

changes are required, the optimization routine is too slow and not adaptive. AI

techniques, particularly those based on machine learning and neural networks, have

shown great promise in addressing these challenges. There are two kinds of popular

AI techniques; and some prominent work in this area include (6), which has used

Feedforward Neural Network (FFNN) with a single hidden layer, and (8), which has

used deep networks.

Since deep learning methods don’t provide the level of accuracy (discussed later

in the thesis), we focus on simple FFNN with a single hidden layer. Most previous

works in this domain have utilized standard activation functions such as Sigmoid,

Hyperbolic Tangent (Tanh), and Rectified Linear Unit (ReLU), which don’t predict

paths with much accuracy (6), (7), (9), (10), (11). So we focus on improving this

1

aspect. Our contributions in this area are as below.

• We systematically apply both standard activation functions and application-

oriented activation functions to the FFNN. The application-oriented activation

functions used include Swish and Elliot, known for their resilience to noisy data,

which is common in UAV path prediction.

• Additionally, we combine these activation functions with a Gaussian function

to propose our new AdaptoSwelliGauss, which better captures the application’s

behavior.

• We compare our best application-oriented activation function, AdaptoSwelli-

Gauss, with the best standard activation function, ReLU, and observe three to

four orders magnitude reduction in error.

In the UAV context, detection of collisions between UAVs and their avoidance is of

the utmost importance. Hence, we look at this aspect.

Collision detection between UAVs is most commonly done by building a small

radius sphere around each UAVs and detecting whether those sphere intersect or

not, we follow this approach. There are two ways to avoid collisions, one technique

is by changing their trajectories. We follow the approach of (1), where a small

perturbation is added to the one of the X,Y and Z component. This algorithm has

a drawback. Any alteration in the trajectory of one UAV may inadvertently create

collision candidates with other UAVs, leading to a challenging situation. Additionally,

frequent manipulations in a UAV’s trajectory can result in a convoluted flight path,

compromising the overall efficiency of the UAV swarm.

Another complementary technique to avoid UAV collisions is to change their start-

ing times. (12) and (13) propose such a popular approach. They employ a batching

mechanism, creating groups of UAVs with non-colliding trajectories to facilitate safe

flight. However, the creation of multiple batches introduces a time-consuming pro-

cess, which delays the overall launch of the UAV swarm.

In this thesis, we introduce an advanced collision detection and avoidance algo-

rithm, referred to as the integrated collision detection and avoidance by path and

start time changes (ICDAPS) algorithm . Our contributions are as below.

2

• Here, we first improve the collision avoidance from (1) by introducing tracking

array to avoid infinite alteration.

• Second, we integrate this avoidance algorithm with the batching mechanism,

leading to our improved algorithm.

• This leads to a finite number of path adjustments and a reduction by half in

the number of batches in which the number of UAVs are dispatched.

The remainder of the thesis is organized as follows: Chapter 2 reviews the lit-

erature, Chapter 3 describes our proposed algorithms and methodology, Chapter 4

presents the results, and Chapter 5 concludes the thesis and suggests directions for

future work.

3

Chapter 2

Literature Review

In this chapter, we analyze the previous works on applying AI algorithms in

optimizing UAV trajectories, and their collision detection and avoidance.

Firstly, we highlight the earlier studies on AI for UAVs, as summarized in Ta-

ble 2.1. As evident, these papers address different kinds of problems. Papers (7), (11)

and (6) are closest to our problem. The activation functions used by them are stan-

dard. It is important to note that the data used to train and test the neural network

is different for each technique. When we apply standard activation functions to our

data, we observe a high errors. However, when we use more sophisticated activation

functions, including our new activation function, the error decreases by three to four

orders of magnitude compared to the standard activation functions.

Second, we review the literature on collision detection and avoidance when there

is a change in the path of the trajectory. These are summarized in Table 2.2. For

detection, most of the techniques build a sphere around the UAV under consideration

and obs erve which UAVs are coming close to it at a particular point in time. For

example, we use the techniques of (14) as described in Table 2.2. For avoidance,

most works change trajectory by either changing by velocity or adding force to it.

We follow change in trajectory by (1).

5

Table 2.1: Summary on AI for UAVs.

Studies Focus AI Architec-
ture

Activation
Function

Order
of MSE
(any
unit
of dis-
tance)

(7) Trajectory Modelling FFNN Tanh Best of
X,Y and
Z: 10−3

(11) Predict UAV’s Position Recurrent
Neural Net-
work

Tanh Best of
X,Y and
Z: 10−3

(6) Trajectory Generation FFNN Tanh X: 10−2

Y: 10−2

Z: 10−2

(10) Flight Time Prediction FFNN Tanh Flight
time:
10−4

(9) Wind-induced Trajectory
Deviation

Deep Neu-
ral Network
(DNN12)

ReLU X: 10−6

Y: 10−6

Z: 10−6

(15) UAV Control FFNN Sigmoid X: 10−2

Y: 10−2

Z: 10−2

6

Table 2.2: Collision avoidance for UAVs via path changes

Studies Detection Technique Avoidance Technique

(16) They measure the distance be-
tween quadcopters and assess
their velocities to identify poten-
tial collisions

Uses repulsive force field around
each quadcopter to adjust their
trajectories and prevent collision

(17) They use current position and ve-
locities between UAVs to identify
potential collisions

Adjusts UAV trajectories to
maintain safe distances

(18) They use sphere around UAVs
and Euclidean distance between
them to identify collision

Uses coordinated trajectory ad-
justments among UAVs to ensure
they change their flight paths

(14) They use UAVs current position
and velocities to identify possible
collisions in real-time

Adjusts UAV velocities in real-
time to maintain safe distance

(1) They calculate future distance
between them by using positions
and velocities.

Adjusts UAV trajectories in real-
time to maintain safe distances

7

Table 2.3: Collision avoidance for UAV via start time changes (Batching)

Studies Detection Technique Avoidance Technique

(12) Line-based trajectory collision
analysis

Changing take-off time by creat-
ing Batches

(12) Position and line based collision
detection analysis

Changing take-off time by creat-
ing Batches

Third we review literature on collision detection and avoidance based on start

time change (batching). These are summarized in Table 2.3. Both papers here are

from the same author. We use the detection technique discussed above and combine

this avoidance technique of start time change with above avoidance technique.

and apply similar techniques. We adopt this with the collision avoidance approach

discussed above.

8

Chapter 3

Methodology

One of the basic architectures is the FFNN, which works well for us. However,

there are many advanced neural networks available that, in the very basic form, do

not perform well. This aspect is discussed in Appendix A.

Our research employs a FFNN architecture, as illustrated in Figure 3.1, compris-

ing an input layer, a hidden layer, and an output layer. The input layer of the FFNN

is structured to incorporate the initial, intermediate, and final states of the UAV

across all three spatial coordinates: X, Y, and Z. These states collectively form a

multidimensional input vector that encapsulates the complete trajectory information

of the UAV.

1

2

201

200

1

2

15

M

F

Input Layer
Hidden Layer

Output Layer

Output

I
Initial

state

Middle

State

Final

State

Weights, Bais

Figure 3.1: FFNN Architecture.

The hidden layer plays a pivotal role in capturing and representing complex pat-

terns within the input data. Comprising 15 neurons, this layer employs various

9

activation functions to nonlinearly transform the input, facilitating the extraction

of relevant features and patterns essential for accurate prediction. This is the layer

where we experiment with different types of activation functions and propose a new

activation function as well, which is discussed below.

Responsible for producing the final predictions, the output layer is meticulously

designed with 201 output neurons which comprise of linear polynomials. The de-

liberate choice of linear activation functions in this layer aligns with the nature of

regression tasks, where the objective is to predict continuous numerical values. We

don’t change these activation functions in this layer.

To effectively train our neural network architecture, we employ the Levenberg-

Marquardt (LM) backpropagation algorithm from (19). This optimization technique

blends the advantages of both gradient descent and the Gauss-Newton method and

updates old network’s weights wold to new weights wnew by solving:

wnew = wold − (JTJ + λI)−1JT e (3.1)

where J is the Jacobian matrix of the network’s error function, e represents the

error vector, λ is the damping parameter that controls the transition between the

gradient descent and Gauss-Newton approaches, and I is the identity matrix. When

λ is large, the update rule resembles gradient descent, while for smaller values of λ,

it approaches the Gauss-Newton method.

The combination of a diverse set of activation functions in the hidden layer and

the linear output layer forms a comprehensive framework for our research, allowing

us to address the specific complexities and intricacies of our dataset. The rest of this

chapter has three parts. In chapter 3.1, we describe an array of activation functions,

including the newest ones. In chapter 3.2, we describe our novel AdaptoSwelliGauss

activation function, in chapter 3.3, we discuss our ICDAPS technique.

3.1 Activation Functions

In a neural network, an activation function plays a crucial role by applying a

mathematical operation to the weighted sum of inputs. This introduces non-linearity,

10

which is essential for the network to comprehend intricate patterns and connections

within the data. Essentially, the activation function decides whether a neuron should

fire or remain inactive, thereby impacting the flow of information throughout the

network. In this sub-chapter, we delve into the various standard activation functions

commonly employed in neural networks.

Here, x represents the input to each activation function.

1. Sigmoid: The Sigmoid function maps input values into a probability range

between 0 and 1, which is ideal for binary classification outputs (20). The formula

for this is

f(x) =
1

1 + e−x
. (3.2)

Its major drawback is the vanishing gradient problem.

2. Tanh: Tanh extends the Sigmoid activation function shape, mapping inputs

to a range between -1 and 1, which is zero-centered. It typically results in faster

convergence than Sigmoid (21). The formula for this is

f(x) =
ex − e−x

ex + e−x
. (3.3)

Like Sigmoid, it suffers from vanishing gradients, affecting its utility in deep networks.

3. ReLU: ReLU addresses some of the critical issues of earlier activation functions

as it is computationally cheaper and prevents vanishing gradient issues (22). It is

given by

f(x) = max(0, x). (3.4)

Nonetheless, ReLU is susceptible to the “dying ReLU” problem.

4. Leaky ReLU: Leaky ReLU modifies ReLU to allow a small slope for negative

input values. This modification ensures that all neurons have the opportunity to

update during training, thereby avoiding the dying ReLU problem (23). It is given

by

f(x) = max(αx, x). (3.5)

where α is a small coefficient. This function requires careful tuning of α, adding

complexity to the network’s training process.

11

5. Swish: Swish is a self-gated activation function that blends input and Sigmoid

output. It is smooth, non-monotonic, and also deals with the vanishing Gradient

problem (24). It is given by

f(x) = x · σ(βx), (3.6)

where σ is the Sigmoid function and β is a trainable parameter. Like Leaky ReLU,

Swish also requires careful tuning of β, which is computationally expensive (25).

6. Maxout: Maxout is a piecewise linear activation function. It selects the

maximum value among the outputs of k linear functions, which allows it to capture

more complex decision boundaries (26). It is given by

f(x) = max(w1 · x+ b1, w2 · x+ b2, . . .). (3.7)

where wi and bi are the weights and biases associated with each of the k linear

functions, respectively. To leverage multiple linear transformations, Maxout adds

additional parameters, which lead to increased model complexity.

7. Elliot: Elliot is designed to provide a simpler and computationally efficient

alternative to the Tanh activation function with the same property (27) and differ-

entiable everywhere. It is given by

f(x) =
x

1 + |x|
. (3.8)

3.2 Novel Activation Function

The UAV data contains a lot of noise due to the inherent jerky nature of the

automatic control of UAVs (28). Path of UAVs are also non-linear (29). The activa-

tion function which behaves well under both these condition (noisy data as well as

non-linearity) is the Swish (30). However, sensitivity of the Swish activation function

for large value of input is high, hence we combined it with Elliot (31), which is also

considered good for noisy data. Since Elliot does not have non-linear component, we

multiply it with scaled and shifted Gaussian (32). Hence our new activation function

has the following formula.

12

AdaptoSwelliGauss(x) =

Swish(x), if x ≤ α

Elliott(x)× Scaled Shifted Gaussian(x), otherwise

(3.9)

In this formulation,

• x represents the input to the activation function,

• Swish(x) is the output when the Swish activation is applied to input x,

• Elliott(x) is the output when the Elliott activation is applied to input x,

• Scaled Shifted Gaussian(x) is the output of the function

Scale · e−
(x−Shift)2

2

• α and β (of Swish) are the hyperparameter adjusted based on experimentation

and learning.

The plot of this activation function based on α, which is dependent on the input to

the activation function, is given in Figure 3.2.

13

(a) Behave like Swish(x) when x ≤ α

(b) Elliot(x) × Scaled Shifted Gaussian(x) when x > α

Figure 3.2: Behavior of AdaptoSwelliGauss

Some properties that we can read from the figure are that the function is bounded

below, it is non-monotonic, and it is also not differentiable everywhere because of

Elliot.

14

3.3 Integrated Collision Detection and Avoidance

by Path and Start Time Changes (ICDAPS)

As discussed in the introduction and literature review, this section presents our

system designed for efficient detection and avoidance of collisions among UAVs. The

detection process is straightforward, but there are two methods for collision avoid-

ance: one by altering the UAV’s path and the other by adjusting its start time. The

novelty of our approach lies in integrating these two strategies. We define the system

as efficient when it minimizes the need for infinite path changes to altering the UAV’s

path and reduces the batch size of UAVs dispatched using start time adjustments.

Each component has been designed to function synergistically, enhancing the overall

efficacy of the UAV management system.

1. Collision Detection: A geometric approach, as described in the works of

(14), is employed for collision detection. We use the preliminary technique of

shallow detection there. More detailed techniques can also be integrated, which

will not change the overall execution of our algorithm.

2. Collision Avoidance by path changes: As mentioned in the literature

review section Table-2, there are multiple paper who have done trajectory ad-

justment (16), (17), (18), (14) and (1). They have achieved this by changing

the velocity or by adding extra forces on UAVs to update path, etc. In our

context, we have been provided the location of the UAV at every time instance

(for example, every 1 sec, 0.1 sec, or 0.2 sec), and the velocity and acceleration

are automatically adjusted based on the data. Hence we don’t need to change

the velocity of UAV or any other properties. If we change the position of the

UAV at that colliding time instant, then we can achieve our goal.

To facilitate integration with the subsequent component, a novel tracking

array is introduced, which monitors the number of trajectory manipulations

for each UAV. We also introduce a batching list, which stores the UAVs for

whom this collision avoidance strategy fails.

3. Collision Avoidance by start time change (Batching): The batching

15

technique, as outlined in (12), is adopted here. We synchronize this with the

above collision avoidance component.

Next, we discuss the above three components in detail.

3.3.1 Collision Detection

As practically common, we assume that all UAVs take off and fly simultaneously,

following predefined trajectories between their respective pickup and delivery points.

In our collision detection methodology, we employ a three-dimensional virtual sphere

around each UAV referred to as the “collision sphere” at every time instance. This

sphere is defined by a parameter “R” that denotes its radius (See Figure 3.3). On a

broader level, a collision is defined as when any UAV collision sphere intersects with

the collision sphere of another UAV at that particular time instance. As mentioned

earlier in the thesis, this strategy closely follows one of the approaches given in (14).

Next, we make this statement precise.

R

Figure 3.3: Collision sphere around the UAV.

Let us be given a list of UAVs and their respective trajectories in terms of X, Y,

and Z coordinates, also called waypoints at different time instances. The granularity

of the time instance can be adapted based on user need, for this we use at every

1 second, which is common(17). Without loss of generality for a UAV pair, the

standard algorithm calculates the Euclidean distance between their position at each

waypoint along their paths and checks if this distance falls below a user-defined

distance threshold (again, waypoints correspond to every time instant).

The position vector of the ith UAV at waypoint w is given by pi(w). The Euclidean

16

distance between the ith and jth UAVs at this waypoint is

dij(w) = ∥pi(w)− pj(w)∥ (3.10)

A collision is detected, if the distance condition is satisfied, i.e., if dij(w) < 2R+δ

where δ is the user-defined distance for collision detection.

If a collision is detected, then instead of the standard procedure of building a list

of colliding pairs of UAVs, we apply the collision avoidance strategy discussed below.

Finally, this procedure is repeated for all pairs.

3.3.2 Collision Avoidance

The primary objective here is to dynamically adjust the trajectory of two UAVs

on a collision course. Without loss of generality, we assume UAV1 and UAV2 are two

UAVs that would collide. Without loss of generality again, we change the trajectory

of UAV1.

Assuming that two UAVs are colliding at waypoint wc, which is a three-

dimensional array. We have the option of changing UAV1 in and of the X,Y, and Z

directions. Without loss of generality we change location of UAV1 in X direction.

i.e. We change wc (X) to wc (X to 2R+safe distance). Here R is the collision

sphere, discussed in the detection section and safe distance is the extra distance

between the “collision sphere” of two UAVs. This approach moves the UAV1 to a

different location, there might be a jerk by the sudden change in the location of

UAV1, to make this process smoother we start changing the location of UAV1, from

K waypoint before and K waypoint after collision waypoint wc (Which is equivalent

to saying K time instances before the colliding time instance and K time after the

colliding time instance). This process is mathematically demonstrated below.

17

wc−k

...

wc−1

wc

wc+1

...

wc+K

+

(
2R+safe distance

K

)
× 1

...

(
2R+safe distance

K

)
× k − 1

2R+ safe distance

(
2R+safe distance

K

)
× k − 1

...

(
2R+safe distance

K

)
× 1

=

wc−k +
(

2R+safe distance
K

)
× 1

...

wc−1 +
(

2R+safe distance
K

)
× k − 1

wc + 2R+ safe distance

wc+1 +
(

2R+safe distance
K

)
× k − 1

...

wc+K +
(

2R+safe distance
K

)
× 1

We now introduce our contribution involving integration with a batching mecha-

nism. The trajectory adjustments are recorded in a tracking array for each UAV,

ensuring that adjustments do not exceed a predefined limit, preventing infinite ad-

justment loops (as seen in standard approaches). If this limit is reached for a UAV,

the trajectory of the other UAV in the colliding pair is examined. Should the adjust-

ment for the second UAV also exceed the limit, both UAVs are moved to a batching

list as separate entries.

As shown above, we discuss the collision detection and avoidance between different

UAVs when simulating a fleet of UAVs. However, a more practical scenario involves

obstacles appearing in the path of UAVs, whether they are static or dynamic. In

this case, the VFH+ (Vector Field Histogram Plus) algorithm is more industry-

standard and uses LiDAR sensors. For the sake of the reader’s understanding, we

have mentioned this in Appendix B.

18

3.3.3 Batching Mechanism

The batch generation algorithm is responsible for organizing UAVs into batches

to facilitate coordinated flight. Its goal is to form collision-free batches that can be

managed as a single unit. In the standard approach, the list of colliding pairs of

UAVs is used as a input here.

Next, we describe our approach, which integrates with the above collision avoid-

ance strategy. Here, the input to the batching algorithm is the batching list. The

UAVs that are not on the batching list are free from any collision and outputted

as one batch.

Next, the 1st UAV from the batching list is picked for the next batch. This 1st

UAV is checked for a collision with all the subsequent UAVs in the list (2nd UAV

onwards).

WLOG, let the ith UAV does not collide with the 1st UAV, then 1st and ith UAVs

are added to this next batch, and both are further checked for collision from (i+1)th

UAV in the batching list. WLOG let jth UAV does not collide with both the 1st

and ith UAV. Then, jth UAV is also added to the next batch. Further, all three are

checked for collision from (j + 1)th UAV in the batching list.

This process is recursively done to determine this final next batch as well as all

subsequent batches.

19

Chapter 4

Results

Each UAV’s output trajectory is generated with a total of 201 waypoints, provid-

ing a rich and detailed dataset conducive to robust algorithm development. This data

is generated using a UAV simulator implemented with the UAV toolbox of Simulink

in MATLAB. The simulation is run on a PC equipped with an Intel Core i7 12th

generation processor, a 64-bit operating system, and 8GB of RAM.

For the input data, the configuration of initial and destination coordinates for

each UAV is taken from (6), which provides guidance on setting realistic ranges. The

X and Y coordinates for the initial position range from [10-50], with a fixed initial

Z-coordinate at 0. Destination coordinates are constrained within X, Y [200-300]

with the Z-coordinate again fixed at zero. There is a third point, which is the middle

point for X and Y coordinates, is taken as the average of the initial and destination

coordinates, while the Z middle point is between [30-40].

The 500 UAV dataset is partitioned into three distinct segments: 70% is al-

located for training, 15% for validation, and the remaining 15% for testing. The

computational process iterates over 1000 epochs to optimize outcomes. A pictorial

representation of the paths of all the UAVs is shown in Figure 4.1.

The choice of a loss function is crucial for training neural networks, as it measures

the difference between predicted and actual values. For regression tasks, including

UAV trajectory prediction, Mean Squared Error (MSE) is widely used in the litera-

ture (33), (7), (10) and more. Given its effectiveness in minimizing prediction errors

by averaging the squared differences, we also adopt MSE in this work. While other

loss functions exist, MSE remains the standard for its simplicity and reliability in

21

Figure 4.1: Dataset of 500 UAVs.

regression problems.

The rest of this Section has two parts. In Section 4.1, we present appropriate loss

function values on the standard activation functions and our novel AdaptoSwelli-

Gauss activation function (from Sections 3.1 and 3.2). In Section 4.2, we give exper-

imental results using ICDAPS techniques (from Section 3.3)

4.1 Relevant Loss Functions Values Using Differ-

ent Activations

For these experiments, as mentioned earlier, the value of hyperparameter α is

taken as the median of the input to the activation function. This ensures that Swish

and Elliot times Gaussian are used an equal number of times. The value of other

hyperparameter β, scale, and shift are taken as 0.14, 0.5 and 0.25, respectively.

The errors we report for the X, Y, and Z coordinates below are computed as

follows: We calculate the average error across 201 waypoints, derived from 15% of a

dataset containing 500 UAVs (i.e., test data consisting of 75 UAVs). The results for

the optimal epoch are listed below.

The best performance on the standard activation function is Relu, which gives

the order of 10−10, 10−8, and 10−9 for X,Y, and Z, respectively. While we look at

22

Table 4.1: Error Metrics for the X-coordinate.

No. Category Activation Function MSE

1-3 Standard

Sigmoid 9.200× 10−5

Tanh 1.406× 10−7

ReLU 1.733× 10−10

4-6 Application-Oriented

Swish 1.638× 10−9

Elliot 3.605× 10−11

AdaptoSwelliGauss 3.059× 10−14

Table 4.2: Error Metrics for the Y-coordinate.

No. Category Activation Function MSE

1-3 Standard

Sigmoid 1.822× 10−8

Tanh 8.664× 10−7

ReLU 1.793× 10−8

4-6 Application-Oriented

Swish 6.805× 10−10

Elliot 3.780× 10−9

AdaptoSwelliGauss 5.127× 10−11

Table 4.3: Error Metrics for the Z-coordinate.

No. Category Activation Function MSE

1-3 Standard

Sigmoid 4.588× 10−11

Tanh 8.031× 10−7

ReLU 5.851× 10−9

4-6 Application-Oriented

Swish 2.182× 10−13

Elliot 4.851× 10−8

AdaptoSwelliGauss 1.739× 10−13

23

our purposed activation function, it gives an error of the order of 10−14, 10−11, and

10−13 in X, Y, and Z, respectively. Thus we see a reduction of 10−3 to 10−4 order of

magnitude in error.

AdaptoSwelliGauss consistently demonstrates substantially superior performance

compared to all of these, highlighting its robustness and effectiveness in enhancing the

accuracy and predictive capabilities of the neural network across different dimensions.

4.2 Results On ICDAPS

When we apply collision detection as described in Section 3.3.1 we detect 262

collisions. Here, the value of “R” is taken as 0.5. Next, we apply the original (or

standard) collision avoidance as initially described in Section 3.3.2 (i.e., one where

infinite trajectory manipulation is allowed), and the algorithm gets stuck in a loop.

Thus, further, we apply our modified collision avoidance algorithm (as given at

the end of Section 3.3.2) along with batching (from Section 3.3.3). This integration

leads to substantial improvement in both components.

First, the application of the modified collision avoidance (i.e., up to ten trajectory

manipulations allowed) leads to convergence of the algorithm, eventually resulting in

only 41 possible collisions. Batching brings these collisions down to zero. Here, the

safe radius taken is 0.5.

Second, results for batching integrated with the modified collision avoidance are

given in Table 4.4. As evident from this table, the number of batches required is

reduced from 7 to 5, while the maximum number of UAVs per batch increased from

38 to 315.

Table 4.4: Result before and after applying ICDAPS.

Metric Before Collision Avoid-
ance

After Collision
Avoidance

Number of Batches 7 5

Maximum number of
UAVs per Batch

38 315

Next, we show the importance of carefully calibrating the safe radius in our IC-

24

DAPS algorithm. As shown in Table 4.5, increasing the safe radius initially results

in a decrease in the number of colliding UAVs, decrease in number of batches, and

increase in the maximum number of UAVs per batch, achieving optimal results at

a safe radius of 2.3. At this radius, the number of colliding UAVs is reduced to 33,

the number of batches is minimized to 4, and the maximum number of UAVs per

batch increases to 396. However, beyond this optimal point, further increases in the

safe radius lead to a reverse trend, where both the number of colliding UAVs and

the number of batches begin to increase again, while the maximum number of UAVs

per batch decreases. These results are subject to the characteristics and dynamics

of the specific dataset under consideration, and different datasets may yield different

optimal safe radius values. However, there is a scientific reason for this observed

trend.

Table 4.5: ICDAPS outcomes with different safe radius values.

Safe
Radius

Number
of Colli-
sion After
Avoidance

Number of
Batches

Max Num-
ber of
UAVs per
Batch

0.5 47 5 315

0.7 46 6 321

1.9 39 7 326

2.1 35 4 378

2.3 33 4 396

2.5 42 6 335

2.7 61 8 305

2.9 65 10 278

This is because of unintended consequences of over-adjusting UAV trajectories

at larger safe radius (see Figure 4.2). As in the given figure, when the trajectory of

UAV1 is significantly altered to avoid UAV2, it may inadvertently collide with UAV3,

which was previously not on a collision course with UAV1. This has a cascading effect

on all the UAVs.

25

Figure 4.2: A: ICDAPS with small safe radius, B: ICDAPS with large safe radius.

4.2.1 Sensitivity Analysis of ICDAPS

To demonstrate the robustness and adaptability of the proposed ICDAPS algo-

rithm, we evaluate its performance on datasets of varying UAV fleet sizes. In addition

to the 500 UAVs considered in the main experiments (Figure 4.1), we also apply the

ICDAPS approach to smaller and larger fleets comprising 250 and 750 UAVs, respec-

tively, as depicted in Figure 4.3. The results, presented in Table 4.6, indicate that the

proposed method maintains consistent performance across different scenarios, high-

lighting its scalability and effectiveness for UAV collision detection and avoidance in

diverse operational contexts.

26

(a) 250 UAVs dataset (b) 750 UAVs dataset

Figure 4.3: Different datasets of UAVs

Table 4.6: ICDAPS analysis with different datasets

Number of
UAVs

Number
of Colli-
sions

Batch
size

Maximum
number of
UAVs per
batch

Before IC-
DAPS 250

195 7 56

After IC-
DAPS

32 4 180

Before IC-
DAPS 750

695 31 55

After IC-
DAPS

274 14 426

27

Chapter 5

Conclusion

In this thesis, we focus on the development of an intelligent framework for pre-

dicting and optimizing the trajectory of a fleet of UAVs. Traditional methods have

limitations in accurately predicting paths as well as efficiently avoiding collisions for

large fleets of UAVs. We address these challenges here in two paragraphs below.

In the past, people have used FFNN with a single hidden layer with a standard

activation function, which gave a high error. We use the application-oriented activa-

tion function and also propose a new activation function, AdaptoSwelliGauss, which

reduces the error with three to four order.

We improve existing methods for collision detection and avoidance. Detection is

straightforward while avoidance is challenging. We can avoid collision between UAVs

by either changing their trajectories or sending them in batches. Each of these has

its drawbacks. First has the drawback of throwing the result in an infinite loop, and

second has the drawback of a large number of batch sizes. We uniquely combine

those techniques, leading to finite trajectory changes in the first approach and about

half of the reduction in the number of batches in which UAVs are dispatched.

Future work involves improving the underlying mathematical optimization (34);

exploring Convolutional Neural Networks (CNNs) for enhanced trajectory accuracy

(35); preliminary investigations of Deep Neural Networks (1D Convolutional Neu-

ral Networks (1D CNN) have been presented in Appendix A. However, automating

model selection and hyperparameter tuning will be a key focus in future work (36);

using approximate computing in neural networks (37; 38); leveraging multi-agent

reinforcement learning for collaborative decision-making (39); exploiting implicit re-

29

lation between different drone trajectories (40).

30

Bibliography

[1] J. Tang, L. Fan, and S. Lao, “Collision avoidance for multi-uav based on ge-

ometric optimization model in 3d airspace,” Arabian Journal for Science and

Engineering, vol. 39, pp. 8409–8416, 2014.

[2] M. Reda, A. Onsy, A. Y. Haikal, and A. Ghanbari, “Path planning algorithms

in the autonomous driving system: A comprehensive review,” Robotics and Au-

tonomous Systems, vol. 174, p. 104630, 2024.

[3] X. Xu, C. Xie, Z. Luo, C. Zhang, and T. Zhang, “A multi-objective evolutionary

algorithm based on dimension exploration and discrepancy evolution for UAV

path planning problem,” Information Sciences, vol. 657, p. 119977, 2024.

[4] A. F. Hasan, A. J. Humaidi, A. S. M. Al-Obaidi, A. T. Azar, I. K. Ibraheem,

A. Q. Al-Dujaili, A. K. Al-Mhdawi, and F. A. Abdulmajeed, Fractional Order

Extended State Observer Enhances the Performance of Controlled Tri-copter

UAV Based on Active Disturbance Rejection Control. Cham: Springer Inter-

national Publishing, 2023, pp. 439–487.

[5] H. Qiu and H. Duan, “A multi-objective pigeon-inspired optimization approach

to UAV distributed flocking among obstacles,” Information Sciences, vol. 509,

pp. 515–529, 2020.

[6] R. Lai, “A machine learning approach to trajectory planning for UAV,” Master’s

thesis, 2020.

[7] M. Xue, “UAV trajectory modeling using neural networks,” in 17th AIAA Avia-

tion Technology, Integration, and Operations Conference. ARC, 2017, p. 3072.

31

[8] H. Al-Khazraji, A. R. Nasser, A. M. Hasan, A. K. Al Mhdawi, H. Al-Raweshidy,

and A. J. Humaidi, “Aircraft engines remaining useful life prediction based on

a hybrid model of autoencoder and deep belief network,” IEEE Access, vol. 10,

pp. 82 156–82 163, 2022.

[9] S. Jeong, K. You, and D. Seok, “Hazardous flight region prediction for a small

UAV operated in an urban area using a deep neural network,” Aerospace Science

and Technology, vol. 118, p. 107060, 2021.

[10] S. Sarkar, M. W. Totaro, and A. Kumar, “An intelligent framework for prediction

of a UAV’s flight time,” in 2020 16th International Conference on Distributed

Computing in Sensor Systems (DCOSS). IEEE, 2020, pp. 328–332.

[11] K. Xiao, J. Zhao, Y. He, and S. Yu, “Trajectory prediction of UAV in smart

city using recurrent neural networks,” in ICC 2019-2019 IEEE International

Conference on Communications. IEEE, 2019, pp. 1–6.

[12] C. Sastre, J. Wubben, C. T. Calafate, J. C. Cano, and P. Manzoni, “Collision-free

swarm take-off based on trajectory analysis and UAV grouping,” in 2022 IEEE

23rd International Symposium on a World of Wireless, Mobile and Multimedia

Networks (WoWMoM). IEEE, 2022, pp. 477–482.

[13] C. Sastre, J. Wubben, C. T. Calafate, J.-C. Cano, and P. Manzoni, “Safe and

efficient take-off of VTOL UAV swarms,” Electronics, vol. 11, no. 7, p. 1128,

2022.

[14] F. Ho, R. Geraldes, A. Gonçalves, M. Cavazza, and H. Prendinger, “Improved

conflict detection and resolution for service UAVs in shared airspace,” IEEE

Transactions on Vehicular Technology, vol. 68, no. 2, pp. 1231–1242, 2019.

[15] B. Jiang, B. Li, W. Zhou, L.-Y. Lo, C.-K. Chen, and C.-Y. Wen, “Neural network

based model predictive control for a quadrotor UAV,” Aerospace, vol. 9, no. 8,

p. 460, 2022.

[16] J.-W. Park, H.-D. Oh, and M.-J. Tahk, “UAV collision avoidance based on

geometric approach,” in 2008 SICE Annual Conference, 2008, pp. 2122–2126.

32

[17] G. Elmkaiel and V. V. Serebrenny, “Collision avoidance algorithm for a quad-

copters swarm,” AIP Conference Proceedings, vol. 2171, no. 1, p. 190006, 11

2019.

[18] Y. Wan, J. Tang, and S. Lao, “Distributed conflict-detection and resolution

algorithm for UAV swarms based on consensus algorithm and strategy coordi-

nation,” IEEE Access, vol. 7, pp. 100 552–100 566, 2019.

[19] M. Hagan and M. Menhaj, “Training feedforward networks with the marquardt

algorithm,” IEEE Transactions on Neural Networks, vol. 5, no. 6, pp. 989–993,

1994.

[20] B. Ding, H. Qian, and J. Zhou, “Activation functions and their characteristics

in deep neural networks,” in 2018 Chinese Control And Decision Conference

(CCDC), 2018, pp. 1836–1841.

[21] G. Orr and K. Müller, Neural Networks: Tricks of the Trade, ser. Lecture Notes

in Computer Science. Springer Berlin Heidelberg, 2003.

[22] A. Apicella, F. Donnarumma, F. Isgrò, and R. Prevete, “A survey on modern

trainable activation functions,” Neural Networks, vol. 138, pp. 14–32, 2021.

[23] O. Yenigün, “Choosing the right activation function in deep learning: A

practical overview and comparison,” Medium, 2023. [Online]. Available:

https://tinyurl.com/53ub978e

[24] P. Ramachandran, B. Zoph, and Q. V. Le, “Searching for activation functions,”

arXiv:1710.05941, 2017.

[25] A. B. Dash, “Top 10 activation function’s advantages and disadvan-

tages,” Linkedin, 2021. [Online]. Available: https://www.linkedin.com/pulse/

top-10-activation-functions-advantages-disadvantages-dash/

[26] I. J. Goodfellow, D. Warde-Farley, M. Mirza, A. Courville, and Y. Bengio, “Max-

out networks,” 2013.

33

https://tinyurl.com/53ub978e
https://www.linkedin.com/pulse/top-10-activation-functions-advantages-disadvantages-dash/
https://www.linkedin.com/pulse/top-10-activation-functions-advantages-disadvantages-dash/

[27] C. Dennis, A. Engelbrecht, and B. Ombuki-Berman, “An analysis of activation

function saturation in particle swarm optimization trained neural networks,”

Neural Processing Letters, vol. 52, 10 2020.

[28] Z. Shi, J. Zhang, G. Shi, L. Ji, D. Wang, and Y. Wu, “Design of a UAV trajectory

prediction system based on multi-flight modes,” Drones, vol. 8, no. 6, 2024.

[29] S. K. Singh, A. Sinha, and S. R. Kumar, “Nonlinear control design for an un-

manned aerial vehicle for path following,” IFAC-PapersOnLine, vol. 55, no. 1,

pp. 592–597, 2022, 7th International Conference on Advances in Control and

Optimization of Dynamical Systems ACODS 2022.

[30] A. Nikhade, “Swish activation function,” Medium, 2023. [Online]. Available:

https://amitnikhade.medium.com/swish-activation-function-d106fe13930e

[31] J. L. Salmeron and A. Ruiz-Celma, “Elliot and symmetric elliot extreme learning

machines for gaussian noisy industrial thermal modelling,” Energies, vol. 12,

no. 1, 2019.

[32] A. S., “Gaussian activation function,” codecademy, 2024. [Online].

Available: https://www.codecademy.com/resources/docs/ai/neural-networks/

gaussian-activation-function#

[33] B. Jiang, B. Li, W. Zhou, L.-Y. Lo, C.-K. Chen, and C.-Y. Wen, “Neural network

based model predictive control for a quadrotor uav,” Aerospace, vol. 9, no. 8,

2022.

[34] K. Ahuja, L. T. Watson, and S. C. Billups, “Probability-one homotopy maps

for mixed complementarity problems,” Computational Optimization and Appli-

cations, vol. 41, pp. 363 – 375, 2008.

[35] Z. Li, F. Liu, W. Yang, S. Peng, and J. Zhou, “A survey of convolutional neural

networks: analysis, applications, and prospects,” IEEE transactions on neural

networks and learning systems, vol. 33, no. 12, pp. 6999–7019, 2021.

34

https://amitnikhade.medium.com/swish-activation-function-d106fe13930e
https://www.codecademy.com/resources/docs/ai/neural-networks/gaussian-activation-function#
https://www.codecademy.com/resources/docs/ai/neural-networks/gaussian-activation-function#

[36] R. H. Hadi, H. N. Hady, A. M. Hasan, A. Al-Jodah, and A. J. Humaidi, “Im-

proved fault classification for predictive maintenance in industrial iot based on

automl: A case study of ball-bearing faults,” Processes, vol. 11, no. 5, 2023.

[37] S. Gupta, S. Ullah, K. Ahuja, A. Tiwari, and A. Kumar, “ALigN: A highly accu-

rate adaptive layerwise Log 2 Lead quantization of pretrained neural networks,”

IEEE Access, vol. 8, p. 118899, 2020.

[38] S. Ullah, S. Gupta, K. Ahuja, A. Tiwari, and A. Kumar, “L2L: A highly accu-

rate Log 2 Lead quantization of pretrained neural networks,” in 2020 Design,

Automation & Test in Europe Conference & Exhibition (DATE). IEEE, 2020,

pp. 979–982.

[39] L. Canese, G. C. Cardarilli, L. Di Nunzio, R. Fazzolari, D. Giardino, M. Re,

and S. Spanò, “Multi-agent reinforcement learning: A review of challenges and

applications,” Applied Sciences, vol. 11, no. 11, p. 4948, 2021.

[40] S. Kim, U. Murthy, K. Ahuja, S. Vasile, and E. A. Fox, “Effectiveness of implicit

rating data on characterizing users in complex information systems,” in Research

and Advanced Technology for Digital Libraries (ECDL 2005), Lecture Notes in

Computer Science, A. Rauber, S. Christodoulakis, and A. M. e. Tjoa, Eds.

Springer, 2005, vol. 3652, pp. 186 – 194.

35

	 List of Figures
	 List of Tables
	 List of Abbreviations and Acronyms
	Introduction
	Literature Review
	Methodology
	Activation Functions
	Novel Activation Function
	Integrated Collision Detection and Avoidance by Path and Start Time Changes (ICDAPS)
	Collision Detection
	Collision Avoidance
	Batching Mechanism

	Results
	Relevant Loss Functions Values Using Different Activations
	Results On ICDAPS
	Sensitivity Analysis of ICDAPS

	Conclusion
	 Bibliography

