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Abstract

In this thesis, structural decomposition of linear periodic continuous time system

is addressed. Decomposition of a state of a periodic system into controllable and

uncontrollable parts is achieved by a continuously differentiable and periodic coor-

dinate transformation with the same period of the system. Also, a counter-example

has been examined for the conjecture. Hence we get a condition for the existence of

such a coordinate transformation. This is a survey of the existing work done by I.

Jikuya and I. Hodaka [4]. The main highlight of this thesis is that we have

proved existence and uniqueness theorem of Linear Time Variant system

and extended these results for nth order.

———— ∗ ————
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Notations

Symbol Interpretation

LTV Linear Time Variant

LTI Linear Time Invariant

KCD Kalman Canonical Decomposition

x(t) ∈ Rn State vector

v(t) ∈ Rq Output vector

u(t) ∈ Rp Input (or Control) vector

P (t) ∈ Rn×n State matrix

Q(t) ∈ Rn×m Input matrix

R(t) ∈ Rq×n Output matrix

S(t) ∈ Rq×p Feedthrough matrix

ρ Rank
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Chapter 1

Introduction

In this chapter we have discussed the Linear Time Invariant (LTI) and Linear

Time Variant (LTV) systems which have been studied and developed by Rudolf

Emil Kalman, an Electrical Engineer who has combined both the discrete-time

and continuous-time case, the theory and design of linear systems with respect

to quadratic criteria. In particular, in the current chapter we have studied the ex-

istence and uniqueness of the LTV system and furthermore, the results have been

extended upto nth order.

The transition matrix basically depends on a fundamental matrix of the LTV

system. More precisely, we use the technique of transition matrix as per the methods

and properties given by Chui and Chen in [3] which help us to determine the complete

solution of an LTV system. We state reachability gramian matrix and controllability

gramian matrix, respectively which will be used later on in Chapter 4 to find the

reachability and controllability of an LTV system.

The controllability criteria for the LTV system as mentioned in [9, Theorem 3.3.1]

has been retraced in Chapter 3. Furthermore, an LTV system can be decompose

into two parts, namely, controllable part and uncontrollable part by the help of [10,

Theorem 7]. A conjecture has also been discussed for periodic LTV system and a

counterexample has also been given for that conjecture which stated in [4]. Finally,

we have discussed about certain necessary and sufficient condition which validates

the conjecture under consideration [4, Theorem 1].

1
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1.1 Linear Time invariant system

Let us consider the standard form of the linear state equation as follows:

x′(t) = Px(t) +Qu(t)

v(t) = Rx(t) + Su(t)

 , (1.1.1)

where x(t) ∈ Rn is a state vector, v(t) ∈ Rq is a output vector, u(t) ∈ Rp is a

input (or control) vector, P ∈ Rn×n is a state matrix, Q ∈ Rn×p is a input matrix,

R ∈ Rq×n is a output matrix, S ∈ Rq×p is a feedthrough matrix.

Definition 1.1.1. [3] (Controllability)

1. The system (1.1.1) is said to be controllable if the rank of C =
[
Q PQ . . . P n−1Q

]
is full rank.

2. The system (1.1.1) is said to be completely controllable if all states are con-

trollable.

Example 1.1.2. Determine the controllability for

x′ = Px+Qu, where P =

 −1 0

0 −2

 and Q =

 a

b

 .
Solution: To determine the controllability we need to check the rank of C =[
Q PQ

]
. First we find that

PQ =

 −1 0

0 −2

 a

b

 =

 −a
−2b

 .
Now

C =
[
Q PQ

]
=

 a −a
b −2b

 ,
and it follows that

det(C) = −ab,

ρ(C) = 2, if a 6= 0 and b 6= 0

ρ(C) < 2, if either a = 0 or b = 0.

The system is controllable if a 6= 0 and b 6= 0.

Definition 1.1.3. [3](Observability)
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1. The system (1.1.1) is said to be observable if the rank of O =
[
RT P TRT . . . (P T )n−1RT

]
is full rank.

2. If all the possible initial states of the system (1.1.1) are observed then the

system is said to be completely observable.

Example 1.1.4. Determine the observability for

x = Px+Qu, v = Rx, where P =

 −1 0

0 −2

 and R =
[
a b

]
.

Solution: To determine the observability we need to check the rank of O =[
RT P TRT

]
. Here we can see that

RT =

 a

b

 and P TRT =

 −1 0

0 −2

 a

b

 =

 −a
−2b

 .
Thus, we obtain that

O =
[
RT P TRT

]
=

 a −a
b −2b

 ,
which gives

det(O) = −ab,

ρ(O) = 2, if a 6= 0 and b 6= 0

ρ(C) < 2, if either a = 0 or b = 0.

The system is observable if a 6= 0 and b 6= 0.

Definition 1.1.5. [2](T - periodicity) A function f is periodic if the function values

repeat at regular interval of the independent variable, The regular interval is referred

to as the period. Function f is said to have T - periodicity if

f(t+ T ) = f(t)

for any value of t in the domain of f .

Definition 1.1.6. [3](Fundamental Matrix) A matrix valued function φ is said to

be a fundamental matrix of x′(t) = P (t)x(t) if φ′(t) = P (t)φ(t) and φ is non singular

matrix for all t ∈ R.
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Remark 1.1.7. [5](Kalman Decomposition) The Kalamn decomposition is just

the combination of the controllable/uncontrollable and the observable/unobservable

decomposition. Every state-space equation can be transformed into a canonical form

that splits the states into

• Controllable and observable states

• Controllable but unobservable states

• Uncontrollable but observable states

• Uncontrollable and unobservable states

1.2 Linear Time Variant (LTV) system

Let us consider the standard form of the linear state equation as given in [3]:

x′(t) = P (t)x(t) +Q(t)u(t)

v(t) = R(t)x(t) + S(t)u(t)

 , (1.2.1)

where x(t) ∈ Rn is a state vector, v(t) ∈ Rq is an output vector, u(t) ∈ Rp is an

input (or control) vector, P (t) ∈ Rn×n is a state matrix, Q(t) ∈ Rn×p is an input

matrix, R(t) ∈ Rq×n is an output matrix, S(t) ∈ Rq×p is a feedthrough matrix (If

the system model does not have a direct feedthrough, then S(t) is treated as zero

matrix).

Figure 1.1: LTI System



1.3. The existence and uniqueness theorem 5

Define, x′(t) : R→ Rn

where x′(t) =


x′1(t)

...

x′n(t)

 for t ∈ R, and x′(t) ∈ Rn

In this general formulation, all matrices are allowed to be time variant, however, in

the common linear time invariant case, matrices will be time invariant. The time

variable t can be continuous (e.g. t ∈ R). Depending on the assumptions taken, the

state-space model representation can assume the following forms given in the Table

1.1.

System type State-space model

Continuous time-invariant x′(t) = Px(t) +Qu(t)

v(t) = Rx(t) + Su(t)

Continuous time-variant x′(t) = P (t)x(t) +Q(t)u(t)

v(t) = R(t)x(t) + S(t)u(t)

Table 1.1

The advantage of linear time variant (LTV) system

• First advantage is that one can analyze the output of the system by decom-

posing the input.

• LTV system is an ideal system, which can also be satisfied with principle of

superposition.

1.3 The existence and uniqueness theorem

Consider the initial value problem(IVP)

y′ = f(x, y), y(x0) = y0. (1.3.1)

Theorem 1.3.1. [1](Existence theorem) Suppose that f(x, y) is continuous

function in some region

R = {(x, y) : |x− x0| ≤ a, |y − y0| ≤ b} (a, b > 0).
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Then the IVP (1.3.1) has atleast one solution y = y(x) defined in the interval

|x − x0| ≤ α where α = min
{
a, b

M

}
. and there exists M > 0 such that |f(x, y)| ≤

M,∀(x, y) ∈ R.

Figure 1.2: Rectangle R

Theorem 1.3.2. [1](Uniquness Theorem) Suppose that f and ∂f
∂y

are continuous

functions in R (defined in the existence theorem). Then the IVP (1.3.1) has atmost

one solution y = y(x) defined in the interval |x− x0| ≤ α where

α = min

{
a,

b

M

}
.

Combining with existence theorem, the IVP (1.3.1) has unique solution y = y(x)

defined in the interval |x − x0| ≤ α and there exists M > 0 such that |f(x, y)| ≤
M,∀(x, y) ∈ R.

Remark 1.3.3. [1] Condition (b) can be replaced by a weaker condition which is

known as Lipschitz condition. Thus, instead of continuity of ∂f
∂y

, we require

|f(x, y1)− f(x, y2)| ≤ L|y1 − y2|, ∀ (x, y) ∈ R.

If ∂f
∂y

exists and is bounded, then it necessarily saitisfies Lipschitz condition. On the

other hand, a function f(x, y) may be Lipschitz continuous but ∂f
∂y

may not exists.

Example 1.3.4. 1 Test the existence and uniqueness of the solution of the IVP

y′ = y1/2, y(1) = 0. In the suitable rectangle R. If solution is not unique, then find

all solutions.

1http://home.iitk.ac.in/ sghorai/TEACHING/MTH203/ode5.pdf
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Here f(x, y) = y1/2, x0 = 1, and y0 = 0. Now f(x, y) is continuous and bounded

in R. Hence atleast one solution exists in some rectangle containing (1, 0). Let us

now test the Lipschitz condition. We have

|f(x, y1)− f(x, y2)| = |y1/22 − y1/21 | =

∣∣∣∣∣(y1/22 + y
1/2
1 )(y

1/2
2 − y1/21 )

(y
1/2
2 − y1/21 )

∣∣∣∣∣ =

∣∣∣∣∣ y2 − y1
y
1/2
2 − y1/21

∣∣∣∣∣ ,
or

|f(x, y1)− f(x, y2)|
|y2 − y1|

=
1

y
1/2
2 − y1/21

,

This equation can be made as large as large as possible by choosing y1 and y2

sufficiently small, that is, a finite value for the Lipschitz constant L cannot be

determined.

We have

y
1/2
1 + y

1/2
2 < 2y1/2, if y = max{y1, y2},

and ∣∣∣∣∣ 1

y
1/2
1 + y

1/2
2

∣∣∣∣∣ > 1

2y1/2
> L, if y1/2 <

1

2L
.

In the neighborhood of y = 0, this criterion is satisfied for every L > 0.

Therefore, the IVP does not pass a unique solution. Infact, there are two solu-

tions of the IVP which are

y =
(x− 1)2

4
and y2 = 0.

It can be easily verified for y 6= 0. From the differential equation dy
y1/2

= dx, on

integrating, we have

2y1/2 = x+ c or y =
(x+ c)2

4
.

The condition y(1) = 0 is satisfied both above equation[
(c+ 1)2

4

]
= 0 or c = −1.

Hence, the solution are y = 0 and y = (x−1)2
4

.

Example 1.3.5. 1 Let f : R → R be function defined by f(x, y) = x2|y|, |x| ≤ 1,

|y| ≤ 1. Then f is Lipschitz continous in y but ∂f
∂y

does not exist at (x, 0).

Example 1.3.6. 1 Consider the IVP

y′(x) =
ey(x)

2−1

1− x2y(x)2
, y(−2) = 1. (1.3.2)
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We want to find an interval on which a solution surely exists. Let us define

F (x, y) =
ey(x)

2−1

1− x2y(x)2
.

Thus we need to pick a rectangle R which is centered at (−2, 1). In this rectangle

we need to have good control on F and ∂f
∂y

and so we certainly have to choose R so

small that it contains no points at which the denominator 1 − x2y2 vanishes. The

exact choice of the rectangle is up to you but the properties of F and ∂f
∂y

, as required

in the theorem, must be satisfied. Lets pick a, b small in the definition of R, say,

lets choose a = 1
2

and b = 1
4

so that we work in the rectangle

R =

{
(x, y) :

−5

2
≤ x ≤ −3

2
,
3

4
≤ y ≤ 5

4

}
.

Notice that for (x, y) in R we have

x2 ≥ 9

4
, y2 ≥ 9

16
,

and

x2y2 ≥ 81

64
,

so

|1− x2y2| ≥ 81

64
− 1.

Then |(1− x2y2)−1| ≥ 4 and ey
2−1 ≤ e

25
16
−1 = e

9
16 < 3, which implies

|F (x, y)| = | ey
2−1

1− x2y2
| ≤ 3.4 = 12, for (x, y) in R.

Thus an appropriate choice for M in (a) is M = 12.

To verify (b), we compute

∂F

∂y
(x, y) =

2yey
2−1

1− x2y2
+

ey
2−1

(1− x2y2)2
2yx2.

Observe that |2y| ≤ 5
2

and |2yx2| ≤ (5
2
)3 in R and using the above bounds, we

can estimate for all (x, y) in R∣∣∣∣∂F∂y (x, y)

∣∣∣∣ ≤
∣∣∣∣∣ 2yey

2−1

1− x2y2

∣∣∣∣∣+

∣∣∣∣∣ ey
2−1

(1− x2y2)2
2yx2

∣∣∣∣∣
≤ 5

2
.12 + 3.4.(

5

2
)3 = 780.

Thus we see that condition is also satisfied, with K = 780.
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Theorem 1.3.7. [10] A sequence of function {fn}, n = 1, 2, 3 . . . converges uni-

formly on E ⊆ R to a function f if for every ε > 0 there is an integer N such that

n ≤ N implies

|fn(x)− F (x)| ≤ ε

for all x ∈ E.

Theorem 1.3.8. [1] Let {zn(t)} be a sequence converges uniformly to z(t) in [a, b],

and let f(t, z(t)) be a continuous function in the domain D such that for all n and

t ∈ [a, b] the point (t, zn(t)) ∈ D. Then

lim
n→∞

∫ b

a

f(s, zn(s))ds =

∫ b

a

lim
n→∞

f(s, zn(s))ds =

∫ b

a

f(s, z(s))ds.

Theorem 1.3.9. [1](Weierstrass’ M- Test) Let {zn(t)} be a sequence of func-

tions with |zn(t)| ≤ Nn for all t ∈ [a, b] with
∞∑
n=0

Nn <∞. Then
∞∑
n=0

zn(t) converges

uniformly in [a, b] to a unique function z(t).

1.4 Existence and uniqueness of the solution of

LTV system

Consider LTV system be given by

x′(t) = P (t)x(t) +Q(t)u(t) = f(t, x(t)), x(t0) = x0, (1.4.1)

where P (t) and Q(t) are continuous on some interval [a, b] containing t0. It is evident

that any solution of LTV system is also a solution of integral equation

x(t) = x0 +

∫ t

t0

[P (s)x(s) +Q(s)u(s)]ds, (1.4.2)

and vice versa. Now, we shall solve the integral equation (1.4.2) by using the method

of successive approximation. For this, let x0(t) be any continuous function which

we assume to be the initial approximation of the unknown solution of (1.4.2), then

we define x1(t) as

x1(t) = x0 +

∫ t

t0

[P (s)x0(s) +Q(s)u(s)]ds.
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We take this x1(t) as our next approximation and substitute this for x(t) on right

side of equation (1.4.2) and call it x2(t) as

x2(t) = x0 +

∫ t

t0

[P (s)x1(s) +Q(s)u(s)]ds,

...

xn+1(t) = x0 +

∫ t

t0

[P (s)xn(s) +Q(s)u(s)]ds. (1.4.3)

Next we prove that {xn(t)} is a sequence converges uniformly to a continuous

function x(t) in some interval I containing t0.

Since P (t)x(t) + Q(t)u(t) is continuous in closed rectangle s : |t − t0| ≤ a,

‖x(t)−x(t0)‖ ≤ b and hence there exist a M > 0 such that ‖P (t)x0(t)+Q(t)u(t)‖ ≤
M for all (t, x) ∈ s. Thus, the initial guess x0(t) is continuous everywhere as

x0(t) = x0.

First we show the successive approximations {xn(t)} are continuous function and

converge to unique solution x(t) in Jh : |t−t0| ≤ h = min{a, b
M
} for all x ∈ Jh. Since

x0(t) is continuous for all x : |t− t0| ≤ a, the function F0(x) = P (t)x0(t) +Q(t)u(t)

is continuous in Jh, and hence x1(t) is continuous in Jh. Also,

‖x1(t)− x0‖ ≤
∥∥∥∥∫ t

t0

[P (s)x0(s) +Q(s)u(s)]ds

∥∥∥∥ ≤Mh ≤ b.

Assuming that the assertion is true for xn−1(t), then it is sufficient to prove that

it is also true for xn(t). For this, since xn−1(t) is continuous in Jh, it follows that

Fn−1(x) = P (t)xn−1(t) +Q(t)u(t) is also continuous in Jh, that is,

‖xn(t)− x0‖ ≤
∥∥∥∥∫ t

t0

[P (s)xn−1(s) +Q(s)u(s)]ds

∥∥∥∥ ≤Mh ≤ b.

Next we show that the sequence {xn(t)} converges uniformly in Jh. Since x1(t) and

x0(t) are continuous in Jh, there exists a constant N > 0, such that ‖x1(t)−x0(t)‖ ≤
N . We need to show that for all x ∈ Jh the following inequality hold:

‖xn(t)− xn−1(t)‖ ≤
N(L0|t− t0|)(n−1)

(n− 1)!
, n = 1, 2, . . . ,

where ‖P (t)‖ ≤ L0.

For n = 1, the inequality is obvious. Furthermore, if it is true for n = K, then

(1.4.3) yields

‖xk+1(t)− xk(t)‖ ≤
∥∥∥∥∫ t

t0

[P (s)xk(s) +Q(s)u(s)− P (s)xk−1(s)−Q(s)u(s)]ds

∥∥∥∥
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≤ L0

∥∥∥∥∫ t

t0

‖xk(s)− xk−1(s)‖ds
∥∥∥∥

≤ L0

∥∥∥∥∫ t

t0

N(L0|t− t0|)(k−1)

(k − 1)!

∥∥∥∥ = N
(L0|t− t0|)k

k!
.

Thus the inequality is true for all n.

Next, since

N

∞∑
n=1

(L0|t− t0|)(n−1)

(n− 1)!
≤ N

∞∑
n=0

(L0h)m

m!
= NeL0h <∞,

from Theorem 1.3.9 it follows that the series x0(t) +
∞∑
n=1

(xn(t)− xn−1(t)) converges

absolutely and uniformly in the interval Jh and hence its partial sum x1(t), x1(t), . . .

converge to a continuous function in this interval, i.e., x(t) = limn→∞ xn(t).

Then using Theorem 1.3.8 we may pass to the limit in both side of (1.4.3), to

obtain

x(t) = lim
n→∞

xn+1(t) = x0 + lim
n→∞

∫ t

t0

[P (s)xn(s) +Q(s)u(s)]ds

= x0 +

∫ t

t0

[P (s)x(s) +Q(s)u(s)]ds,

so that x(t) is desired solution.

Now we show the uniqueness: Let x(t) and y(t) be two solutions. Then

x(t) = x0 +

∫ t

t0

[P (s)x(s) +Q(s)u(s)]ds,

and

y(t) = x0 +

∫ t

t0

[P (s)y(s) +Q(s)u(s)]ds.

Since

‖x(t)− y(t)‖ ≤
∫ t

t0

‖P (s)‖‖x(s)− y(s)‖ds,

≤ L0

∫ t

t0

‖x(s)− y(s)‖ds,

≤ L0M

∫ t

t0

ds = L0M |t− t0|.

Since we can choose t arbitrary therefore we can take |t − t0| as small as possible.

Thus,
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‖x(t)− y(t)‖ ≤ ε, for all ε > 0,

⇒ ‖x(t)− y(t)‖ = 0,

⇒ x(t) = y(t).

Thus, x(t) = y(t), and hence it is unique.

1.5 Existence and uniqueness of the solution of

second order LTV system

Let us consider the second order LTV system given by the equation

x′′(t) = P1(t)x
′(t) + P2(t)x(t) +Q1(t)u1(t),

where u1(t) ∈ Rp is an input (or control) vector, P1(t), P2(t) ∈ Rn×n are state

matrices, Q1(t) ∈ Rn×p is an input matrix.

On re-writing the above equation, we obtain I O

O I

 x′′(t)

x′(t)

 =

 P1(t) P2(t)

I O

 x′(t)

x(t)

+

 Q1(t) O

O O

 u1(t)

O

 .
(1.5.1)

Now, if we assume y(t) =

 x′(t)

x(t)

, then equation (1.5.1) is reduced to the following

first order LTV system

y′(t) = P (t)y(t) +Q(t)u(t),

where, P (t) =

 P1(t) P2(t)

I O

, Q(t) =

 Q1(t) O

O O

 and u(t) =

 u1(t)

O

.

The existence and uniqueness of solution of second order LTV system will be

deduced by the same procedure which we used to prove the existence and uniqueness

of first order LTV system.

1.6 Existence and uniqueness of the solution of

third order LTV system

Let us consider the third order LTV system given by the equation

x′′′(t) = P1(t)x
′′(t) + P2(t)x

′(t) + P3(t)x(t) +Q1(t)u1(t),
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where u1(t) ∈ Rp is an input (or control) vector, P1(t), P2(t), P3(t) ∈ Rn×n are state

matrices, Q1(t) ∈ Rn×p is an input matrix.

On re-writing the above equation, we obtain
I O O

O I O

O O I



x′′′(t)

x′′(t)

x′(t)

 =


P1(t) P2(t) P3(t)

I O O

O I O



x′′(t)

x′(t)

x(t)

+


Q1(t) O O

O O O

O O O



u1(t)

O

O

 .
(1.6.1)

Now, if we assume y(t) =


x′′(t)

x′(t)

x(t)

 , then equation (1.6.1) is reduced to the

following first order LTV system

y′(t) = P (t)y(t) +Q(t)u(t),

where P (t) =


P1(t) P2(t) P3(t)

I O O

O I O

, Q(t) =


Q1(t) O O

O O O

O O O

 and u(t) =


u1(t)

O

O

.

The existence and uniqueness of solution of third order LTV system will be

deduced by the same procedure which we used to prove the existence and uniqueness

of first order LTV system.

1.7 Existence and uniqueness of the solution of

nth order LTV system

Let us consider the nth order LTV system given by the equation

x(n)(t) =
n∑
i=1

Pi(t)x
(n−i)(t) +Q1(t)u1(t),

where u1(t) ∈ Rp is an input (or control) vector, Pi(t) ∈ Rn×n are state matrix for

all i = 1, . . . , n, Q1(t) ∈ Rn×p is an input matrix.

On re-writing the above equation, we obtain
I . . . O
...

. . .
...

O . . . I




x(n)(t)
...

x′(t)

 =


P1(t) . . . Pn(t)

I
. . .

...

O I O




x(n−1)(t)
...

x(t)

+


Q1(t) . . . O
...

. . .
...

O . . . O




u1(t)
...

O

 .

(1.7.1)
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Now, if we assume y(t) =


x(n−1)(t)

...

x(t)

 , then equation (1.7.1) is reduced to first

order LTV system

y′(t) = P (t)y(t) +Q(t)u(t),

where P (t) =


P1(t) . . . Pn(t)

I
. . .

...

O I O

, Q(t) =


Q1(t) . . . O

...
. . .

...

O . . . O

 and u(t) =


u1(t)

...

O

.

The existence and uniqueness of solution of nth order LTV system will be deduced

by the same procedure which we used to proof the existence and uniqueness of first

order LTV system.

1.8 Complete solution of LTV systems by using

fundamental matrix

Let us consider LTV in state space given by

x′(t) = P (t)x(t) +Q(t)u(t)

v(t) = R(t)x(t) + S(t)u(t)

 . (1.8.1)

Let J(t) ∈ Rn×n be nonsingular for all t and define

x(t) = J(t)z(t).

Now substituting in Equation (1.8.1), we get the following:

x′(t) = J ′(t)z(t) + J(t)z′(t) = P (t)J(t)z(t) +Q(t)u(t),

where

J(t)z′(t) = [P (t)J(t)− J ′(t)] z(t) +Q(t)u(t).

Equivalent LTV system is

z′(t) = J(t)−1 [P (t)J(t)− J ′(t)]x(t) + J(t)−1Q(t)u(t),

and

y(t) = R(t)J(t)z(t) + S(t)u(t).
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Now we define a fundamental matrix J(t) as

J ′(t) = P (t)J(t), det(J(t)) 6= 0,

where P (t) ∈ Rn×n.

If J(t) is a fundamental matrix then

z(t) = z(t0) +

∫ t

t0

J(τ)−1Q(τ)u(τ)dτ,

and

x(t) = J(t)z(t0) +

∫ t

t0

J(t)J(τ)−1Q(τ)u(τ)dτ,

= J(t)J(t0)
−1x(t0) +

∫ t

t0

J(t)J(τ)−1Q(τ)u(τ)dτ,

= ψ(t, t0)x(t0) +

∫ t

t0

ψ(t, τ)Q(τ)u(τ)dτ, (1.8.2)

where ψ(t, τ) is called the state transition matrix and is defined as

ψ(t, τ) = J(t)J−1(τ). (1.8.3)

Complete solution of LTV

y(t) = R(t)x(t) + S(t)u(t)

= R(t)ψ(t, t0)x(t0) +

∫ t

t0

R(t)ψ(t, τ)Q(τ)u(τ)dτ + S(t)u(t).

Remark 1.8.1. [3] Properties of state transition matrix:

Property 1:

ψ(τ, τ) = I. (1.8.4)

Proof. ψ(τ, τ) = J(τ)J(τ)−1 = I.

Property 2:

ψ−1(τ, τ) = φ(τ, τ). (1.8.5)

Proof. ψ−1(τ1, τ2) = [J(τ1)J
−1(τ2)]

−1 = J(τ2)J
−1(τ1) = ψ(τ2, τ1).

Property 3:

ψ(τ1, τ2) = ψ(τ1, τ0)ψ(τ0, τ2). (1.8.6)

Proof. ψ(τ1, τ2) = J(τ1)J
−1(τ0)J(τ0)J

−1(τ2) = ψ(τ1, τ0)ψ(τ0, τ2).
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Property 4:
d

dτ1
ψ(τ1, τ2) = Pψ(τ1, τ2). (1.8.7)

Proof. d
dτ1
ψ(τ1, τ2) = d

dτ1
J(τ1)J(τ2)

−1 = J̇(τ1)J(τ2)
−1 = P (τ1)J(τ1)J(τ2)

−1 = P (τ1)ψ(τ1, τ2).

Theorem 1.8.2. [9, Theorem 3.3.1] The solution of

x′(t) = P (t)x(t) +Q(t)u(t), (1.8.8)

subject to the initial condition x(t0) = x0, is

x(f) = ψ(t1, t0)

[
x0 +

∫ t1

t0

ψ(t1, τ)Q(τ)u(τ)dτ

]
, (1.8.9)

where ψ is defined in (1.8.3).

Proof. The proof follows from the Equation (1.8.2).

Example 1.8.3. 2 LTV system x′(t) = P (t)x(t); where

P (t) =

 0 0

t 0

 ,
is equivalent to the following x′1 = 0 and x′2 = tx1, then integrating both side, we

obtain x1 = x1(t0),

x2 = x2(t0) + 1
2
(t2 − t20)x1(t0).

Fundamental matrix for t0 = 0 is given by

P (t) =

 P11(t) P12(t)

P21(t) P22(t)

 ,
P ′(t) = A(t)P (t) =

 0 0

t 0

 P11(t) P12(t)

P21(t) P22(t)

 ,
and  P ′11(t) P ′12(t)

P ′21(t) P ′22(t)

 =

 0 0

tP11(t) tP12(t)

 .
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Since

P ′11(t) = 0⇒ P11(t) = Constant = C1,

P ′12(t) = 0⇒ P12(t) = Constant = C2,

P ′21(t) = tP11(t)⇒ P21(t) = C1
t2

2
+ C3,

P ′22(t) = tP12(t)⇒ P22(t) = C2
t2

2
+ C4,

we obtain

P (t) =

 C1 C2

C1
t2

2
+ C3 C2

t2

2
+ C4

 .
Now by setting, C2 = C3 = 0, and C1 = C4 = 1, we get

P (t) =

 1 0

t2

2
1

 .
State transition matrix is

ψ(t, t0) = P (t)P (t0)
−1

=

 1 0

t2

2
1

 1 0
t20
2

1

−1

=

 1 0

t2

2
1

 1 0

− t20
2

1


=

 1 0

− (t2−t20)
2

1

 .
Remark 1.8.4. P(t) is not unique.

A counter example:

Let us choose

P (t) =

 1 0

1 t2

2

 .
Then state transition matrix is given by,

ψ(t, t0) =

 1 0

1 t2

2

 t20
2

1

1 0

−1 =

 1 0

− (t2−t20)
2

1

 .
Observe that choosing another P (t) does not affect state transition matrix.

2http://control.ucsd.edu/mauricio/courses/mae280a/lecture8.pdf
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Remark 1.8.5. Next we show that state transition matrix is unique. Let us choose

P (t) =

 C1 C2

C1
t2

2
+ C3 C2

t2

2
+ C4

 ,
for which,

det(P (t)) = C1C2
t2

2
+ C1C4 − C1C2

t2

2
− C2C3 = C1C4 − C2C3,

and

P−1(t0) =
1

C1C4 − C2C3

 C2
t20
2

+ C4 −C2

−C1
t20
2
− C3 C1

 .
Thus, we obtain that

P (t)P−1(t0) =
1

C1C4 − C2C3

 C1 C2

C1
t2

2
+ C3 C2

t2

2
+ C4

 C2
t20
2

+ C4 −C2

−C1
t20
2
− C3 C1


=

1

C1C4 − C2C3

 C1C2
t2

2
+ C1C4 − C1C2

t2

2
− C2C3 −C1C2 + C1C2

C1C4
t2

2
+ C2C3

t20
2
− C2C3

t2

2
− C1C4

t20
2
−C2C3 + C1C4


=

1

C1C4 − C2C3

 C1C4 − C2C3 0

C1C4
(t2−t20)

2
− C2C3

(t2−t20)
2
− −C2C3 + C1C4


=

1

C1C4 − C2C3

 C1C4 − C2C3 0
(t2−t20)

2
(C1C4 − C2C3) −C2C3 + C1C4


=

 1 0
(t2−t20)

2
1

 .
Hence it is unique.

1.9 Controllability of linear systems

Consider a continuous LTV system

x′(t) = P (t)x(t) +Q(t)u(t),

x(t) = ψ(t, t0)x(t0) +

∫ t

t0

ψ(t, τ)Q(τ)u(τ)dτ.

The reachability map on [t0, t] is defined to be

Lr,[t0,t](u(.)) =

∫ t

t0

ψ(t, τ)Q(τ)u(τ)dτ.
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Thus, it is controllable on [t0, t] if and only if Lr,[t0,t](u(.)) is onto.

Lr,[t0,t](u(.)) determines the set of states that can be reached from the origin at

τ = t. The study of the range space of the linear map

Lr,[t0,t] : {u(.)} −→ Rn,

is principal to the study of controllability.

1.9.1 Reachability Gramian

The matrixWr = LrL
T
r ∈ R is called the Reachability Gramian for the interval that

Lr is defined. For LTV system

x′(t) = P (t)x(t) +Q(t)u(t),

the Reachability Gramian on the time interval [t0, t] is defined to be:

Wr,[t0,t] =

∫ t

t0

ψ(t, τ)Q(τ)Q(τ)Tψ(t, τ)Tdτ.

1.9.2 Controllability Gramian

Controllability map: Lc,[t0,t]

The controllability (to zero) map on [t0, t] is the map between u(.) to the initial

state x0, such that x(t1) = 0,

Lc,[t0,t](u(.)) = −
∫ t

t0

ψ(t0, τ)Q(τ)u(τ)dτ.

The controllability-to-zero grammian on the time interval [t0, t] is defined to be:

Wc,[t0,t] = LrL
∗
r =

∫ t

t0

ψ(t0, τ)Q(τ)Q(τ)Tψ(t0, τ)Tdτ,

where L∗r = −LAr .

———— ∗ ————



Chapter 2

State-Space Explanation

Although the history of linear system theory can be traced back to the last century,

the so-called state-space approach was not available till the early 1960s. An impor-

tant feature of this approach over the traditional frequency domain considerations is

that both time-varying and time-invariant linear or nonlinear systems can be treated

systematically. The purpose of this chapter is to make a survey on existing work of

state-space concept [3].

2.1 Introduction

A typical model that applied mathematicians and system engineers consider as a

machine with an “input-output” relation given with the two terminals (Fig. 2.1) [3].

Figure 2.1: Input-output relation

This machine is also called a system which may represent certain biological,

economical, or physical systems, or a mathematical description in terms of an al-

gorithm, a system of integral or differential equations, etc. In many applications, a

system is described by the totality of input-output relations (u, v) where u and v are

20
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functions or, when discretized, sequences, and may be either scalar or vector-valued.

First introduce some terms which we use frequently. The state of a system

explains its past, present, and future situations. This is done by introducing a mini-

mum number of variables which are called state variables that represent the present

situation, using the past information, namely the initial state, and describe the fu-

ture behavior of the system completely. The column vector of the state variables,

in a given order, is called a state vector.

As an example, consider a system given by the differential equation

v′′ + v = u.

In this situation, the totality of all input-output relations that determines the system

is the set

S = {(u, v) : v′′ + v = u} ,

and it is clear that the same input u gives rise to infinitely many outputs v. For

example, (1, sin t+ 1), (1, cos t+ 1), and even (1, a cos t+ b sin t+ 1) for all arbitrary

constants a and b, belong to S.

Let us return to the another example of the system described by the differential

equation v′′ + v = u with a specified initial state. Let x =

 x1

x2

 be a state

vector, where x1 and x2 are state variables satisfying the initial states x1(a) = b and

x2(a) = c. We can give a “state-space” description of this system by using a system

of two equations:

x′ =

 0 1

−1 0

x+

 0

1

u
v =

[
1 0

]
x

 , (2.1.1)

where ẋ denotes the derivative of the state vector x. Here, the first Equation

(2.1.1) gives the input-state relation while the second equation describes the state-

output relation.

The so-called state-space Equations (2.1.1) could be obtained by setting the state

variables x1 and x2 to be v and v′, respectively

x′ =

 0 1

−1 0

 v

v′

+

 0

1

u,
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and

v =
[

1 0
]
x.

Then by substituting the value of x′ in the previous equation v′

v′′

 =

 v′

−v

+

 0

u


=

 v′

−v + u

 ,
which gives

v′′ = −v + u,

that is,

v′′ + v = u.

However, without the knowledge of such substitutions, it may not be immediately

cleared that the input-output relation follows from the state-space Equation (2.1.1).

To demonstrate this, we rewrite Equation (2.1.1) as

x′ = Px+Qu,

and

v = Rx,

where P is a 2× 2 matrix, Q is a 2× 1 matrix, and R is a 1× 2 matrix. Let p(P )

be the characteristic polynomial of P . In this example, p(λ) = λ2 + 1, so that by

Cayley-Hamilton Theorem, we have

p(P ) = P 2 + I = O.

Hence, differentiating the second Equation in (2.1.1) twice (the number of times of

differentiation will equal the degree of the characteristic polynomial of the square

matrix A), and utilizing the first Equation (2.1.1) repeatedly, we have

Rx = v,

RPx = v′ −RQu

RP 2x = v′′ −RQu′ −RPQu.
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Therefore, the identity p(P ) = P 2 + I = 0 can be used to eliminate x, yielding:

⇒ (v′′ −RQu′ − u) +RPQv = RP 2x+Rx = R(P 2 + I)x = O,

or

v′′ + v = R(Qu′ + PQu)

=
[

1 0
] 0

1

u′ +
 1

0

u
 ,

=
[

1 0
] 0

u′

+

 u

0

 ,
=

[
1 0

] u

u′

 ,
= u.

More generally, if the characteristic polynomial of 3× 3 matrix A is

p(λ) = λ3 + a1λ
2 + a2λ+ a3,

then

x′ = Px+Qu,

and

v = Rx.

Now consider

Rx′ = v′.

By substituting the value of x′ in the above expression, we obtain

R(Px+Qu) = v′

⇒ RPx = v′ −RQu,

⇒ RPx′ = v′′ −RQu′,

⇒ RP (Px+Qu) = v′′ −RQu′,

⇒ RP 2x = v′′ − (RQu′ +RPQu),

⇒ RP 2(Px+Qu) = v′′′ − (RQu′′ +RPQu′),

⇒ RP 3x = v′′′ − (RQu′′ +RPQu′ +RP 2Qu).
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Now we get

p(P ) = P 3 + a1P
2 + a2P + a3 = 0,

v′′′ − (RQu′′ +RPQu′ +RP 2Qu) = RP 3x,

⇒ v′′′ − (RQu′′ +RPQu′ +RP 2Qu) + a1v
′′ − a1(RQu′ +RPQu) + a2v

′ − a2RQu

+ a3v = R(P 3 + a1P
2 + a2P + a3I)x,

⇒ v′′′ + a1v
′′ + a2v

′ + a3v = RQu′′ +R(P + a1)Qu
′ +R(P 3 + a1P + a2)Qu.

If matrix A is 4× 4, then

p(λ) = λ4 + a1λ
3 + a2λ

2 + a3λ+ a4,

RP 3x = v′′′ − (RQu′′ +RPQu′ +RP 2Qu),

⇒ RP 3x′ = v′′′′ − (RQu′′′ +RPQu′′ +RP 2Qu′),

⇒ RP 3(Px+Qu) = v′′′′ − (RQu′′′ +RPQu′′ +RP 2Qu′),

⇒ RP 3Px+RP 3Qu = v′′′′ − (RQu′′′ +RPQu′′ +RP 2Qu′),

⇒ CA4x = v′′′′ − (CBu′′′ + CABu′′ + CA2Bu′ + CA3Bu),

p(A) = A4 + a1A
3 + a2A

2 + a3A+ a4 = 0,

⇒ CA4x+ a1CA
3x+ a2CA

2x+ a3CAx+ a4Cx,

= v′′′′ − (CBu′′′ + CABu′′ + CA2Bu′ + CA3Bu) + a1v
′′′ − a1(CBu′′ + CABu′

+ CA2Bu) + a2v
′′ − a2(CBu′ + CABu) + a3v

′ − a3CBu′ + a4v = 0,

⇒ v′′′′ + a1v
′′′ + a2v

′′ + a3v
′ + a4v = CBu′′′ + C(A− a1)Bu′′ + C(A2 + a1A+ a2)Bu

′

+ C(A3 + a1A
2 + a2A+ a3)Bu.

2.2 An example of input-output relations

In the previous section we have discussed the input-output relation of 3rd order

system. In this section we will discuss on the higher order input-output relation as

given.

More generally, if the characteristic polynomial of an n×n matrix A in an input-state

equation such as (2.1.1) is

p(λ) = λn + a1λ
n−1 + · · ·+ an,
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then we proceed as discussed in the previous section we write

Cx = v

⇒ CAx = v′ − CBu,

⇒ CA2x = v′′ − CBu′ − CABu,

...

⇒ CAnx = v(n) − CBu(n−1) − CABu(n−1) − · · · − CA(n−1)Bu,

so that, by setting a0 = 1, we have:

vn + a1v
n−1 + a2v

n−2 + · · ·+ anv = CBu(n−1) + C(A+ a1)Bu
(n−2) + C(A2 + a1A+

a2)Bu
(n−3) +C(A3 + a1A

2 + a2A+ a3)Bu
(n−4) + · · ·+C(An−1 + a1A

n−2 + a2A
n−32 +

· · ·+ an−1)Bu,

n∑
k=0

ak

(
v(n−k) − C

n−k−1∑
j=0

AjBu(n−k−j−l)

)
= Cp(A)x = 0.

That is, the input-output relation can be given by

n∑
j=0

ajv
(n−j) = C

n∑
k=0

ak

n−k−1∑
j=0

AjBu(n−k−j−l), (2.2.1)

with a0 = 1.

A slightly more general form of (2.2.1) is given by Lv = Mu, where

L =
n∑
j=0

aj
dn−j

dtn−j
, a0 = 1,

M =
m∑
k=0

bk
dn−k

dtn−k
, m ≤ n. (2.2.2)

We also remark in passing that even if it has such a description A, B and C are not

unique.

We construct an example,

ẋ =

 0 −1

1 0

 v

v′

+

 1

0

u,
v =

[
0 1

]
x,

v′′ + v = C(Bu′ + ABu),



2.3. An example of state-space explanation 26

=
[

0 1
] 1

0

u′ +
 0 −1

1 0

 1

0

u
 ,

=
[

1 0
] u′

0

+

 0

u

 ,
=

[
1 0

] u′

u

 ,
= u.

Thus, A, B and C are not unique.

2.3 An example of state-space explanation

A more general state-space explanation of a system with input-output pairs (u, v)

is given by

x′ = Px+Qu

v = Rx+ Su

 , (2.3.1)

where P , Q, R, S are matrices with appropriate dimensions.

By eliminating the state vector x and its derivative with the help of the Cayley-

Hamilton Theorem, it is not difficult to see that the input-output pair (u, v) given

in (2.3.1) satisfies the relation Lv = Mu given in (2.2.2) with appropriate choices of

constants aj and bk.

To see the converse, that is, to show that the input-output relations in (2.2.2)

have a state-space description as given in (2.3.1), we follow the standard technique

of transforming an nth order linear differential equation to a first order vector dif-

ferential equation as was done in the simple example discussed earlier by choosing

the matrix A to be

P =


0 1 0

0 0 1

−a3 −a2 −a1

 ,
R =

[
1 0 0 · · · 0

]
.

Hence, by setting

Q =
[
β1 β2 β3

]T
,
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and

S =
[
β0

]
,

we see that the variables of the vector x =
[
x1 · · · xn

]T
in (2.3.1) satisfy the

equations: 
x′1

x′2

x′3

 =


0 1 0

0 0 1

−a3 −a2 −a1



x1

x2

x3

+


β1

β2

β3

u,

v =
[

1 0 0
]

x1

x2

x3

+
[
β0

]
u

x′1 = x2 + β1u

x′2 = x3 + β2u

x′3 + a3x1 + a2x2 + a1x3 = β1u

v = x1 + β0u

x1 = v − β0u

x2 = x′1 − β1u = v′ − β0u′ − β1u

x3 = x′2 − β2u = v′′ − β0u′′ − β1u′ − β2u

and must be satisfy the constraint

x′3 + a3x1 + a2x2 + a1x3 = β3u,

v′′′ − β0u′′′ − β1u′′ − β2u′ + a3v − a3β0u + a2v
′ − a2β0u′ − a2β1u + a1v

′′ − a1β0u′′ −
a1β1u

′ − a1β2u = β3u, and

v′′′ + a1v
′′ + a2v

′ + a3v = (a1β3 + a1β2 + a2β1 + a3β0)u + (a1β2 + a1β1 + a2β0)u
′ +

(a0β1 + a1β0)u
′′ + a0β0u

′′′.

More generalize,

P =


0 1 0 · · · 0

0 0 1 · · · ...
...

...
. . .

...

−an · · · −a2 −a1

 .
Of course there are other choices of A. But with this“so-called” standard choice, it
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is clear that the matrix C must be given by

R =
[

1 0 0 · · · 0
]
.

Hence, by setting

Q =
[
β1 · · · βn

]T
,

and

S =
[
β0

]
,

we see that the variables of the vector x =
[
x1 · · · xn

]T
in (2.3.1) satisfy the

equations:

x′1 = x2 + β1u

x′2 = x3 + β2u

...

x′n−1 = xn + βn−1u

x′n + a1xn + .....+ anx1 = βnu

v = x1 + β0u

That is, the state variables are defined by

xl = v − β0u,

x2 = x′1 − β1u = v′ − (β0u
′ + β1u),

x3 = x′2 − β2u = v′′ − (β0u
′′ + β1u

′ + β2u),

...

xn = x′n−1 − βn−1u = v(n−1) − (β0u
(n−1) + ....+ βn−1u),

and must satisfy the constraint:

x′n + a1xn + ....+ anx1 = βnu,

or equivalently,

n∑
j=0

ajv
(n−j) =

(
n∑
i=0

aiβn−i

)
u +

(
n−1∑
i=0

aiβn−i−1

)
u′ + ... + (a1β0 + a0β1) + a0β0u

(n).
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Hence, the constants β0, ..., βn are uniquely determined by the linear matrix equation
a0 a1 · · · an

0
. . . . . .

...
...

. . . . . . a1

0 · · · 0 −a0




β0

βn−1
...

β0

 =


bm

bm−1
...

bm−n

 ,

where ao = 1 and bj = 0 for j < 0. We remark that the highest derivative of u in

(1.6) is n, and hence the order m of the differential operator M in (2.3.1) is not

allowed to exceed n.

———— ∗ ————



Chapter 3

Controllability

Let us consider the state equation of the form x′(t) = A(t)x(t) + B(t)u(t). In

this chapter, we shall only deal with the above type state equation and discuss the

“Controllability” for these equations. Here, Controllability refer to that u which

allows us to obtain a desire state x. The “Controllability” has been studied in two

ways, that is, ‘Controllability to the origin’ and ‘Controllability from the origin’, and

furthermore, some conditions have been found for the Controllability by introducing

the Controllability Grammian matrix Wc(t). At the end of this chapter, we find a

sufficient condition for Controllability and drive the control u(t) for a state x.

3.1 Definitions of Controllability

Controllability is a major issue that one should control for a state equation system.

A linear controllable system may be defined as a system which can be steered to

any desired state from the zero initial state. In this section, we find some suitable

control function to transfer a linear system from an arbitrary given state to any

desired state.

Definition 3.1.1. [9] The LTV system is ruled by

x′(t) = P (t)x(t) +Q(t)u(t)

v(t) = R(t)x(t) + S(t)u(t)

 , (3.1.1)

is called as completely controllable if at any time t0, any initial state x(t0) = x0, and

any final state xf there exists a final time t1 ≥ t0, and a continuous control signal

30
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u(t), t0 ≤ t ≤ t1 such that the corresponding solution of

x′(t) = P (t)x(t) +Q(t)u(t),

at some time tf is “the zero solution” x(tf ) = xf .

From the expression Equation (1.8.2) for the solution of Equation (4.1.1) we have

x(f) = ψ(t1, t0)

[
x0 +

∫ t1

t0

ψ(t1, τ)Q(τ)u(τ)dτ

]
.

Using the Property 2 Equation (1.8.2) of the state transition matrix and rearranging,

we obtain

0 = ψ(t1, t0){[x0 + ψ(t0, t1)x(f)] +

∫ t1

t0

ψ(t1, τ)Q(τ)u(τ)dτ}.

Both the equation and nonsingularity of ψ implies that if u(t) transfer x0 to xf then

[x0 + ψ(t0, t1)x(f)] is also transferred to the origin in the same time interval. As x0

to xf are choose to be arbitrary, hence in the definition the given final state can be

chosen to be the null vector.

3.2 Criteria for Controllability

Theorem 3.2.1. [9, Theorem 3.3.1] The LTV system

x′(t) = P (t)x(t) +Q(t)u(t)

is called completely controllable if and only if (controllability Grammian matrix)

Wc(t0, t1) =

∫ t1

t0

ψ(t0, τ)Q(τ)Q(τ)Tψ(t0, τ)Tdτ , (3.2.1)

where ψ is defined in Equation (1.3.2), is positive definite for any t > 0.

Here, the control

u(t) = −QT (t)ψT (t0, t)W−1c (t0, t1)[x0 + ψ(t0, t1)x(f)], (3.2.2)

defined on t0 ≤ t ≤ t1, transfers x(t0) = x0, to x(tf ) = xf

Proof. Assuming det(Wc 6= 0), the control, (3.2.2), exists. By the Definition 3.1.1

we shall show that

x(tf ) = xf .
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Putting

u(t) = −QT (t)ψT (t0, t)W−1c (t0, t1)[x0 + ψ(t0, t1)x(f)]

in equation (1.9) for x(t1), we get

x(f) = ψ(t1, t0)

[
x0 +

∫ t1

t0

ψ(t1, τ)Q(τ)u(τ)dτ

]
,

Then,

x(f) = ψ(t1, t0)[x0+

∫ t1
t0
ψ(t1, τ)Q(τ){−QT (t)ψT (t0, t)W−1c (t0, t1)[x0 + ψ(t0, t1)x(f)]}dτ ],

x(f) = ψ(t1, t0)[x0−

∫ t1
t0
ψ(t1, τ)Q(τ)QT (t)ψT (t0, t)W−1c (t0, t1)[x0 + ψ(t0, t1)xf ]dτ ],

ψ(t1, t0)[x0 −
∫ t1
t0
ψ(t1, τ)Q(τ)QT (t)ψT (t0, t)W−1c (t0, t1)x0dτ,

−
∫ t1
t0
ψ(t0, τ)Q(τ)QT (τ)ψT (t0, t)W−1c (t0, t1)ψ(t0, t1)xfdτ ]

ψ(t1, t0)[x0 −
∫ t1
t0
ψ(t1, τ)Q(τ)QT (t)ψT (t0, t)dτW−1c (t0, t1)x0,

−
∫ t1
t0
ψ(t0, τ)Q(τ)QT (τ)ψT (t0, t)dτW−1c (t0, t1)ψ(t0, t1)xf ]

From (3.2.1)

ψ(t1, t0)[x0 −
︷ ︸︸ ︷
Wc(t0, t1)W

−1
c (t0, t1)x0 −

︷ ︸︸ ︷
Wc(t0, t1)W

−1
c (t0, t1)ψ(t0, t1)xf ].

We know that:

Wc(t0, t1)W−1c (t0, t1) = 1

Thus,

x(t1) = ψ(t1, t0)[x0 − Ix0 − Iψ(t0, t1)xf ] = ψ(t1, t0)ψ(t0, t1)xf ].

From Equation (1.8.4), we get

ψ(t1, t0)ψ(t0, t1) = I,

which gives x(tf ) = xf . Hence proved.

———— ∗ ————



Chapter 4

Kalman Canonical Decomposition

(KCD)

4.1 Introduction

For linear periodic system the Kalman canonical decomposition has been reconsid-

ered here. The decomposition of a state into controllable and uncontrollable parts

has been discussed in this chapter.

Take a LTV system

x′(t) = P (t)x(t) +Q(t)u(t), (4.1.1)

x(t) ∈ Rn is a state vector, u(t) ∈ Rm is a input vector, P (t) ∈ Rn×n is a state

matrix, Q(t) ∈ Rn×m is a input matrix, P (t), Q(t) are supposed to be continuous,

u(t) is supposed to be piecewise continuous.

Definition 4.1.1. [4] The controllable Gramian is defined by

W(t, s) :=

∫ s

t

ψ(t, τ)Q(τ)Q(τ)Tψ(t, τ)Tdτ, (4.1.2)

Where, ψ(t, τ) is defined in 1.8.3.

Next we shall state [10, Theorem 7] that helps to decomposed the LTV system

into controllable and uncontrollable part.

Theorem 4.1.2. [10, Theorem 7] Consider the system Equation (4.1.1) with con-

trollability matrix C(t, t + µ(t)) and suppose rank C(t, t + µ(t)) = rc < n for all t.

33
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Figure 4.1: Controllable system

Then there exists a diffeomorphic coordinate transformation of the state of (4.1.1)

with respect to which (4.1.1) takes on the form

x′1(t) = F11(t)x1(t) + F12(t)x2(t) +G1(t)u(t),

x′2(t) = F22(t)x2(t),

y(t) = H1(t)x1(t) +H2(t)x2(t),

valid for all time, where x1(t) is an rc- vector.

4.2 Conjecture of KCD over periodic system

Let ζ = B(t)x, be a coordinate transformation, where B(t) ∈ Rn×n is continuous

differentiable and invertible for all t ∈ R. Then system (4.1.1) is transformed to

ζ ′ = F (t)ζ +G(t)u, (4.2.1)

where

F (t) := (B′(t) +B(t)P (t))B(t)−1, (4.2.2)

and

G(t) := B(t)Q(t). (4.2.3)

Let P (t) and Q(t) be T -periodic. Then by Theorem 4.1.2, it gives possibility

to construct B(t) so that the system (4.2.1) can be decomposed to controllable and

uncontrollable part, i.e., there exists a non negative integer nc ≤ n, such that

F (t) =

F11(t) F12(t)

0 F22(t)

 , G(t) =

 G1(t)

0

 ,
where F11(t) ∈ Rne×ne , F12(t) ∈ Rne×(n−ne), F22(t) ∈ R(n−ne)×(n−ne), G(t) ∈ Rnc×m.
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• F11, G1 is controllable.

Conjecture 1. [4] Suppose that P (t) ∈ Rn×n and Q(t) ∈ Rn×m are continu-

ous T -periodic. Then there exist a continuously differentiable and T -periodic

matrix B(t) ∈ Rn×n which is invertible for all t ∈ R. F (t) defined by Equa-

tion (4.2.2) and G(t) defined by Equation (4.2.3) satisfy the following block

structure

F (t) =

F11(t) F12(t)

0 F22(t)

 , (4.2.4)

and

G(t) =

 G1(t)

0

 . (4.2.5)

• (F11, G1) is controllable.

4.3 A counter example

Next we study a counter example for Conjecture 1 given in [4]. Let Â ∈ R2×2 be a

constant matrix and B̂(t) ∈ R2×1 be continuous T -periodic matrix given by

P̂ =

 0
π

T
−π
T

0

 , (4.3.1)

and

Q̂(t) =

 sin

(
πt

T

)(
cos

(
πt

T

)
+ sin

(
πt

T

))
sin

(
πt

T

)(
cos

(
πt

T

)
− sin

(
πt

T

))
 . (4.3.2)

Then the controllability Gramain over [t, t+ 2T ] is given by

Ŵ(t, t+ nT ) :=

∫ t+2T

t

eP̂ (τ−t)Q̂(τ)Q̂T (τ)eP̂
T (τ−t)dτ.

First we find,

eP̂ (τ−t) = exp

 0
π

T
−π
T

0


=

 cos
(
π
T

)
sin
(
π
T

)
− sin

(
π
T

)
cos
(
π
T

)
 ,
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and

Q̂(t)Q̂T (t) =

 sin
(
πt
T

) (
cos
(
πt
T

)
+ sin

(
πt
T

))
sin
(
πt
T

) (
cos
(
πt
T

)
− sin

(
πt
T

))


×
[
sin
(
πt
T

) (
cos
(
πt
T

)
+ sin

(
πt
T

))
sin
(
πt
T

) (
cos
(
πt
T

)
− sin

(
πt
T

))]
=

 sin2
(
πt
T

) (
cos
(
πt
T

)
+ sin

(
πt
T

))2
sin2

(
πt
T

) (
cos2

(
πt
T

)
− sin2

(
πt
T

))
sin2

(
πt
T

) (
cos2

(
πt
T

)
− sin2

(
πt
T

))
sin2

(
πt
T

) (
cos
(
πt
T

)
− sin

(
πt
T

))2


=

sin2
(
πt
T

) (
1 + 2 sin

(
2πt
T

))
sin2

(
πt
T

)
cos
(
2πt
T

)
sin2

(
πt
T

)
cos
(
2πt
T

)
sin2

(
πt
T

) (
1 + 2 sin

(
2πt
T

))


and

Ŵ(t, t+ nT ) :=

T (1 + 2 sin
(
2πt
T

))
T cos

(
2πt
T

)
T cos

(
2πt
T

)
T
(
1 + 2 sin

(
2πt
T

))
 ,

so that

rankŴ(t, t+ 2T ) = 1.

for all t ∈ R, and therefore (P̂ , Q̂) is uncontrollable.

Suppose that, followed by Conjecture 1, matrix B(t) ∈ R2×2 such that P̂ and

Q̂(t) are transformed to F (t) and G(t) of the form Equation (4.2.4) and Equation

(4.2.5). By the T -periodicity of B(t), the monodromy matrices in x-coordinate in ζ-

coordinate are similar, and the characteristic multipliers are invariant with respect

to a coordinate transformations ζ = B(t)x. Here eP̂ T = −I, the characteristic

multipliers in x-coordinate are −1 with multiplicity 2, therefore they are also −1 (<

0) with multiplicity 2 in ζ-coordinate. On the contrary, it follows from Equation

(4.2.4) that the characteristic multipliers in ζ-coordinate are given by

exp

(∫ T

0

F11(τ)dτ

)
and exp

(∫ T

0

F22(τ)dτ

)
(> 0).

Therefore we have a contradiction, which proves that a pair P̂ and Q̂(t) is a coun-

terexample to the conjecture.

4.4 KCD over periodic system

It can be seen that Conjecture 1 is not always satisfied for all linear periodic systems

as it has already been discussed earlier.
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Theorem 4.4.1. [4, Theorem 1] Consider the system given in Equation (4.1.1),

where P (t) ∈ Rn×n and Q(t) ∈ Rn×m are supposed to be continuous T -periodic.

Let n̂e= rank W(t, t + nT ) where W is defined by Equation (4.1.2). There exist a

T -periodic matrix B(t) ∈ Rn×n which is continuously differentiable and invertible

for all t ∈ R such that

• F (t) defined by Equation (4.2.2) has a block structure of the form Equation

(4.2.4)

• G(t) is defined in Equation (4.2.3) has a block structure of the form Equation

(4.2.5)

• (F11, G1) is controllable

if and only if there exists a T -periodic matrix Q(t) ∈ Rn×n which is continuously

differentiable and orthogonal for all t ∈ R and a T -periodic matrix E(t) ∈ Rñe×ñe

which is continuously differentiable and positive definite symmetric for all t ∈ R

such that the controllability Gramian is factored by

W(t, t+ nT ) = Q(t)′

E(t) 0

0 0(t)

Q(t). (4.4.3)

Moreover, if there exists such B(t), nc which is a size of F11(t) is given by ne = n̂e.

Proof. Let M be the controllability Gramian for (F,G)-pair, then we have

M(t, t+ nT ) = B(t)W(t, t+ nT )B(t)′.

Let M̂ be the controllability Gramian for (F11, G1)-pair. As F11(t) and G1(t) are T -

periodic, M̂(t, t+nT ) is also T -periodic. By controllability of (F11, G1), M̂(t, t+nT )

is positive definite symmetric for all t ∈ R. Observe that M and M̂ satisfy the

equation

M(t, t+ nT ) =

M̂(t, t+ nT ) 0

0 0(t)

 .
Thus W(t, t+ nT ) is factored by

W(t, t+ nT ) = B(t)−1

M̂(t, t+ nT ) 0

0 0(t)

 (B(t)′)−1.
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As B(t) is invertible for all t ∈ R, Gram-Schmidts process can be applied to

column vectors of B(t)−1 pointwise. There exist a T -periodic matrix K(t) which

is continuously differentiable and orthogonal for all t ∈ R and an upper triangular

T -periodic matrix L(t) whose diagonal entries are positive for all t ∈ R such that

B(t)−1 = K(t)′L(t).

Decompose L(t) followed by the block structure of M(t, t+nT ) and denote an upper

left part of L(t) by L11(t), and define

E(t) := L11(t)M̂(t, t+ nT )L11(t)
′,

then E(t) is T -periodic and positive definite symmetric for all t ∈ R. Hence the

necessity part.

For sufficiency part, factor K(t) followed by the factorization Equation (4.4.3)

K(t) =

K1(t)

K2(t)

 .
Set B(t) = K(t) and consider ζ = K(t)x. It follows from Equation (4.4.3) that

the controllability Gramian over [t, t+nT ] in ζ-coordinate is K(t)W(t, t+nT )K(t)′.

With respect to the state transition map

Im

E(s) 0

0 0

 = ⊕(s, t)Im

E(s) 0

0 0

 ,
where ⊕ denotes the state transition matrix in the ζ-coordinate

⊕(s, t) := K(s)φ(s, t)K(t)−1,

the controllability subspace is invariant. Since E(t) is positive definite symmetric

for all t ∈ R, a lower left part of ⊕ is identically 0

⊕(s, t) =

⊕11(s, t) ⊕12(s, t)

0 ⊕22(s, t)

 .
By the definition, ⊕(s, t) is continuously differentiable and invertible for all s, t ∈

R which satisfies

⊕(s+ kT, t+ kT ) = ⊕(s, t), (4.4.4)
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for all s, t ∈ R and k ∈ N. Define F (t) by

F (s) :=
∂ ⊕ (s, t)

∂s
⊕ (s, t)−1, (4.4.5)

then F (t) has a block structure of the form Equation (4.2.4), and the size of F11(t)

and E(t) is equivalent. Note that the right hand side of Equation (4.4.5) is inde-

pendent of t, therefore F (t) is well-defined. It follows from

F (s, T ) =
∂ ⊕ (s+ T, t+ T )

∂s
⊕ (s+ T, t+ T )−1

=
∂ ⊕ (s, t)

∂s
⊕ (s, t)−1

= F (s)

that F (t) is continuous T -periodic, where we have used the equation ⊕(s, t) =

⊕(s, t+ T )⊕ (t+ T, t) in the second identity and have used Equation (4.4.4) in the

third identity. Denote the B-matrix in the ζ-coordinate by G(t) := K(t)Q(t), G(t)

is continuous T -periodic. It can be shown that G(t) has a block structure of the

form Equation (4.2.5). Indeed, multiplying Equation (4.4.3) by K(t) from the left

and K(t)′ from the right, it follows that

K2(t)W(t, t+ nT )K2(t)
′

=

∫ t+nT

t

⊕22(t, τ)K2(τ)Q(τ)Q(τ)′K2(τ)′ ⊕ (t, τ)′dτ

= 0.

Since the integrand is positive semidefinite symmetric and continuous, it is equiva-

lent to 0 for all τ ∈ [t, t+ nT ]. Moreover, since ⊕22(s, t) is invertible for all s, t ∈ R

and K(t) and Q(t) is T -periodic, it follows that

K2(t)Q(t) = 0,

for all t ∈ R. Multiplying Equation (4.4.3) by K(t) form the left and K(t)′ from the

right, it follows that

K1(t)W(t, t+ nT )K1(t)
′

=

∫ t+nT

t

⊕11(t, τ)G1(τ)G1(τ)′ ⊕11 (t, τ)′G1(t)
′dτ

= E(t).

therefore (F11, G1) is controllable.
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Example 4.4.2. [4] Let there exists a T -periodic coordinate transformation B(t)

which transforms (P̂ , Q̂)-pair into the block structure of the forms Equation (4.2.4)

and Equation (4.2.5). Since the eigenvalues of Ŵ(t, t+ 2T ) are given by 0 and 2T ,

followed by Theorem 4.4.1, there exist a continuously differentiable, orthogonal and

T -periodic matrix K(t) ∈ R2×2 such that

Ŵ(t, t+ nT ) = K(t)′

2T 0

0 0

K(t), (4.4.6)

which corresponds to Equation (4.4.3). We note that first column vector of K(t)′,

which is denoted by w(t), is a eigenvector of W(t, t+ 2T ) for the eigenvalue 2T . On

the other hand,

v(t) =

v1(t)
v2(t)

 =

1 + sin(2πt
T

)

cos(2πt
T

)


is also a eigenvector of W(t, t + 2T ) for the eigenvalue 2T . Since v1(t) and v2(t)

has a common zero at t = 3T
4

, there exists a function g(t) ∈ R which has a singular

point at t = 3T
4

and satisfies

w(t) = v(t)g(t).

Then h(t) satisfies the following on [0, T ].

(1) h(t) is continuously differentiable except for t = 3T
4

and T -periodic, therefore

it follows that

h(0) = h(T ) > 0,

or

h(0) = h(T ) < 0.

(2) h(t) has a 1st order pole at t = 3T
4

, therefore it follows that

lim
t→ 3T

4
−
h(t) = −∞, and lim

t→ 3T
4
+
h(t) = +∞

or

lim
t→ 3T

4
−
h(t) = +∞, and lim

t→ 3T
4
+
h(t) = −∞.

We note that v1(t) has a 2nd order zero at t = 3T
4

and v2(t) has a 1st order zero

at t = 3T
4

. Therefore h(t) has a 1st order pole at t = 3T
4

.

Those properties are not simultaneously satisfied for each cases. Hence there

is no T -periodic coordinate transformation B(t) which transforms (P̂ , Q̂)-pair into
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the block triangular structure of Equation (4.2.4) and Equation (4.2.5), as shown in

Theorem 4.4.1.

———— ∗ ————



Chapter 5

Conclusion and Future Plan

In this study, we have reviewed the work of [2]. The Kalman canonical decomposition

for the linear periodic system is well-studied in the literature. In this thesis, we

studied the existence and uniqueness of the first order LTV system and furthermore,

we have generalized our results for the higher order. Also, we reconsider the problem

of transforming a linear periodic system into a Kalman canonical decomposition, and

studied the problem through a continuously differentiable coordinate transformation.

It is a well-known conjecture in this direction that it is always possible to construct

such a transformation with the same period of the system. Our focus in this direction

is the existing conjecture, and nevertheless, it can be seen from a counterexample to

it. Furthermore, a necessary and sufficient condition can be found in the literature

for the existence of such a transformation.

Future plan

My future direction is to study the controllability and uncontrollability of the system.

To be more precise, My aim to study how much perturbation is required to change

a controllable system to uncontrollable and vice-versa.

———— ∗ ————
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