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ABSTRACT

The human brain is a highly complex organ that contains 100 billion neurons interacting

with each other to perform day-to-day tasks. Electroencephalogram (EEG) is the recording

of electrical activity of the brain results from the summations of excitatory and inhibitory

postsynaptic potentials of relatively large groups of synchronously firing neurons. The pro-

cessing of EEG signals has become a cornerstone in neurophysiological research and clin-

ical diagnostics, providing insights into brain function and aiding in the development of

brain-computer interface (BCI). EEG provides high temporal resolution with limited spa-

tial resolution. A higher number of electrodes are used to record multichannel dense EEG

signals for improved spatial resolution. This thesis extends the univariate adaptive signal

decomposition technique, iterative filtering, to multivariate iterative filtering (MIF) for ana-

lyzing multichannel signals. Based on MIF, this thesis presents novel methodologies for the

analysis of EEG signals, addressing critical challenges such as feature extraction, classifi-

cation for neurological disease diagnosis, and BCI applications.

The thesis proposed automated neurological disease diagnosis frameworks using MIF

algorithms and machine learning frameworks. It introduced multichannel EEG rhythm sep-

aration techniques using the MIF algorithm, significantly advancing the development of

schizophrenia detection. Additionally, it develops a diagnostic feature based on the area

under the Euclidean distance curve obtained from phase-space representation (PSR), which

has been successfully used to classify Parkinson’s disease EEG signals. The decision level

and feature level fusion strategies have been proposed to improve the sensitivity in Parkin-

son’s disease identification.

The thesis has contributed to developing BCI frameworks based on the detection of mo-

tor imagery (MI) movement, steady-state visual evoked potential (SSVEP) frequency, and

drowsiness from multichannel EEG. The mode-alignment oscillatory modes obtained from

MIF enabled extracting features based on common spatial patterns from multichannel EEG

signals. These features have proven effective for the MI BCI framework. Canonical cor-

relation analysis (CCA) is traditionally used for identifying SSVEP frequency, which has

been suggested as a feature extraction method. The MIF-CCA features have been used to

i



develop a robust SSVEP framework with improved performance in mobile environments.

Furthermore, the thesis proposed a joint time-frequency framework based on MIF and dis-

crete energy separation algorithms, which has been used to develop a drowsiness detection

framework from EEG. The proposed algorithms have been evaluated using real-time EEG

databases. Finally, the thesis concludes the presented work and discusses directions for

future research.

The performance of the proposed frameworks has also been compared with the state-

of-the-art methods. This thesis contributes to the field of EEG signal processing by pre-

senting innovative methods for multichannel signal decomposition, feature extraction, and

classification. The findings offer promising implications for the development of more effec-

tive diagnostic tools and interactive brain-computer systems, highlighting the importance of

adaptive signal decomposition and machine learning-based techniques in future neurotech-

nological applications.

Keywords: Brain-computer interface (BCI), drowsiness detection, electroencephalo-

gram (EEG), neurological disease, motor imagery movement detection, multivariate itera-

tive filtering (MIF), Parkinson’s disease, schizophrenia, steady-state visual evoked potential

(SSVEP).
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Chapter 1

Introduction

A German neuropsychiatrist, Hans Berger, discovered electroencephalogram (EEG) for

humans [1]. The EEG is an electrophysiological method for capturing electrical activity

generated by a large group of neural populations in the human brain. Due to the exceptional

temporal sensitivity of EEG, it is useful for studying dynamic brain activity. EEG is espe-

cially helpful for diagnosing patients with epilepsy and probable seizures [2], dementia [3],

etc. Nowadays, EEG has been extensively used for research in the areas of neuroscience,

cognitive psychology, cognitive science, brain-computer interface (BCI), and neurolinguis-

tics [4, 5, 6].

EEG has also been used for a number of other clinical purposes. For example, EEG

can be used to track the level of anesthesia during surgery, to detect motor imagery (MI)

movements, etc., because it is so sensitive to detecting quick changes in brain activity. EEG

has shown to be very useful for monitoring the depth of anesthesia and for keeping an eye

out for prospective issues like ischemia or infarction [7]. The average of EEG waveforms

corresponding to a particular task gives rise to evoked potentials and event-related potentials

(ERPs). These potentials represent the neural activity of interest that is temporally related

to a specific stimulus. In both clinical practice and research, evoked potentials and ERPs

are utilized to examine auditory, visual, somatosensory, and higher cognitive functioning.

In the cerebral cortex, the cortical pyramidal neurons, positioned perpendicular to the

surface of the brain, are assumed to be the main source of the EEG. The summation of the

excitatory and inhibitory postsynaptic potentials of relatively large groups of synchronously
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firing neurons can be detected by the EEG [1]. Traditional EEG recorded on the scalp or

cortical surface can not record the momentary local field potential changes resulting from

neuronal action potentials [8, 9].

1.1 EEG Acquisition

The acquisition of physiological signals and images has become necessary in the early

diagnosis of various diseases. Examples of few of the recordings of the electrical activity

of the human body are electrocardiogram (ECG) [10], electromyogram (EMG) [11], EEG

[5, 9], electrogastrogram [12], and electrooculogram (EOG) [13] signals which represent

the electrical activity of the heart, muscles, brain, stomach, and eye, respectively. Similarly,

magnetoencephalography (MEG) is the measurement of the magnetic field generated due

to electrical activity in the neurons of the human brain. There are various imaging tech-

niques also which play an equal role in early or on-time diagnosis of disease, such as sonog-

raphy (ultrasound imaging), magnetic resonance imaging (MRI), functional MRI (fMRI),

computed tomography (CT), positron emission tomography (PET), single photon emission

tomography (SPET), and near-infrared spectroscopy (NIRS) [5]. EEG, MEG, and fMRI

signals and images capture the physiological and functional changes happening inside the

brain. The applications of fMRI as compared to EEG or MEG signals are limited because

of the following reasons [14]:

1. fMRI has very low time resolution, i.e., approximately 2 frames/s.

2. fMRI cannot capture various mental activities and brain disorders as they have less

effect on the level of blood oxygenation.

3. fMRI is limited access as well costly.

4. Additionally, fMRI demands a sophisticated lab setup.

In contrast with other neuroimaging techniques, EEG has not been limited by the afore-

mentioned limitations. In this paragraph, the evaluation of EEG technology is discussed in

2



CHAPTER 1. INTRODUCTION

short. The very first electrical neural activity was captured with the help of a simple gal-

vanometer. As the pointer variation of the galvanometer was very fine, light was projected

on the galvanometer and reflected on a wall with the help of a mirror in order to record

or visualize the variations. Lippmann and Marey introduced the capillary electrometer. In

1903, Einthoven introduced the string galvanometer, which is a very sensitive and accurate

measuring instrument. The string galvanometer enabled photographic recording and be-

came a standard instrument for a few decades. The recent EEG recording systems consist

of a set of components, namely, delicate electrodes, one differential amplifier per channel or

electrode, filters, and registers. The multichannel EEG signals captured using the aforemen-

tioned systems could be plotted on the paper. After the arrival of this product in the market,

researchers felt a need for a system that can digitize (using multichannel analog-to-digital

converters) and store it, as analysis of these on computers needed the same [14].

The computerized EEG recording systems are equipped with stimulations, control on the

sampling frequency, and availability of some advanced signal processing tools to preprocess

the recorded signals. Generally, most of the significant information is present in the 0-100

Hz frequency region; therefore, a minimum sampling rate of 200 samples/s is required.

There are few applications of EEG signal processing where high-frequency information

is important; hence, flexibility in choosing the sampling rate up to approximately 2000

samples/s is provided in the EEG recording devices.

For the quantization of the EEG signals, the 16-bit quantization is very popular as it

maintains the diagnostic information. This makes the archiving volume of the EEG signals

very high for applications like epileptic seizure monitoring and sleep EEG records. There-

fore, for archiving the longer-duration EEG signals from so many patients, a larger storage

facility is required in diagnostic or research centers and hospitals.

The EEG electrodes and their proper functioning play a very important role in the quality

of acquired data. There are several types of EEG electrodes used for EEG signal record-

ing, namely, pre-gelled and gel-less disposable electrodes; tin, stainless steel, silver, or gold

reusable disc electrodes; saline-based electrodes; electrode caps; needle or cortical elec-

trodes, etc. Ag-AgCl disk electrodes are the most commonly used ones with a diameter

of less than 3 mm and have wired leads that can be connected to amplifiers. The cortical
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electrodes are used for recording invasive EEG signals by implanting them under the skull

via minimal invasive operations. The use of high-impedance electrodes or the presence of

high impedance between the cortex and the electrodes can lead to severe distortion of EEG

signals. Recording of EEG signals with electrodes with impedance less than 5000 Ω pro-

vides satisfactory signal quality. Due to very low amplitude (in the range of microvolt), a

high gain amplifier is required. A typical EEG amplifier usually provides a voltage gain

of 5000 to 50000. The distribution of the potential is non-uniform over the scalp because

of the spiral and layered structure of the brain, which may affect the results of the source

localization performed using EEG signals.

1.1.1 EEG Acquisition Device

There are numerous commercially accessible EEG recording devices. Based on the ap-

plication requirement, properly choosing an EEG device is important. These devices can be

categorized based on the connectivity with the computer system, electrode connection, etc.

[15]. Several parameters, like the number of channels, device and electrode connectivity,

amplifier gain, etc., need to be carefully considered for the selection of EEG devices. Ad-

vanced wired EEG recording systems with a notch filter, different amplifier gain options are

shown in Fig. 1.1.

Figure 1.1: BIOPACK 10-channel EEG recording system.
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1.1.1.1 Wired and Wireless EEG

The connectivity of the acquisition device has been established using wired technology

or wirelessly using Bluetooth or WiFi. Wired EEG devices provide more stable data transfer

with a higher data transfer rate. Wireless EEG devices offer freedom of movement. On the

other hand, lack of freedom of movement is a drawback for wired EEG. Due to the loss of

wireless connectivity, data loss may happen, and a repetition of the experiment needs to be

done. Movements of cables and electrodes introduce artifacts in both devices.

1.1.1.2 Electrode Connection

The proper connection between the electrode and the scalp is of utmost necessity to

obtain a good-quality signal. To establish the connection between the electrode and scalp,

conductive gel, saline solution, or conductive adhesive paste is used, which reduces the

impedance between the scalp and electrodes. A few modern EEG devices also come up

with dry electrodes. For short-duration experiments, saline solution-based or dry electrodes

are suitable as the setup time of these kinds of electrodes is less. But with time, saline

water will dry, and the impedance between the scalp and electrodes will increase, which

deteriorates the signal quality. Due to this, conductive gel-based electrodes are preferred for

long-duration experiments.

1.1.1.3 Wearable EEG

For a few applications like human-computer interaction, imagined speech recognition-

based BCI systems, EEG-based rehabilitation devices, epileptic seizure onset prediction,

continuous recording, and monitoring for several days and months are necessary. However,

placing electrodes with wires and other bulky accessories reduces the user’s comfort and

restricts the long-term recording of EEG signals. Recently, researchers have been trying to

develop wearable EEG electrodes with reduced channels [16, 17]. A flexible electronic sys-

tem printed on the scalp, like a tattoo or ear electrode, has been developed for the recording

of EEG signals for BCI applications [18].
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1.1.2 Conventional EEG Electrode Positioning

In Fig. 1.2, a conventional 10-20 electrode positioning is depicted, which is recom-

mended by the International Federation of Societies for Electroencephalography and Clin-

ical Neurophysiology. It consists of a total of 21 electrodes, including the two earlobe

electrodes (A1 and A2), which are used as reference. The name of the electrodes is given

based on the cerebral lobe position, e.g., if the electrode is placed on the frontal lobe (FL),

then these are named with the letter ‘F’. The electrodes in the left hemisphere are numbered

with odd numbers, the right hemisphere electrodes are numbered with even numbers, and

the electrodes on the longitudinal fissure are marked using the letter ‘z’ like Cz.

Figure 1.2: 10-20 international standard for EEG electrode position.

To record EEG with higher spatial resolution, a large number of electrodes are required

where electrodes are positioned equidistantly in between the above electrodes in a typi-

cal 10-20 system. For example, F2 is placed between F4 and Fz. Extra electrodes are

sometimes employed to measure the ECG, EOG, and EMG of the eyelid and surrounding

muscles, which may help in multimodal applications and artifact removal. Also, for some
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applications like BCI, fewer number electrodes and even single electrodes are used.

The EEG signal can be recorded in a bipolar (differential) or unipolar (referential) fash-

ion. In bipolar recording, two inputs of the amplifier are attached, with two EEG electrodes

placed in different locations on the scalp. Bipolar recordings are suitable for the analysis

of localized neural activity. On the other hand, in unipolar recording, one or two reference

electrodes are commonly connected to one input of the amplifier, and the other input of

the amplifier is connected to the general EEG electrodes like F1 and F2. In literature, the

reference electrodes are placed on different locations like Cz, earlobe, mastoid. There are

also reference-free EEG acquisition approaches that employ a common average reference.

In a typical EEG recording experiment, the following steps are performed [19]:

1. A technician measures your head and traces your scalp with a special pencil to indicate

where the electrodes will be attached.

2. Electrodes will be attached using adhesive conductive paste. Sometimes, an elastic

cap with electrodes inside is used to place the electrodes all over the scalp easily.

3. Establish a proper connection between the electrodes and the amplifier for recording

the EEG.

A typical experimental procedure for recording EEG signals is shown in Fig. 1.3, where

an EEG cap is placed on the subject’s head, and the technician is filling conductive elec-

trode gel to establish a proper connection with the scalp. Figure 1.4 shows a 10-channel

differentially recorded EEG signal [20].

1.2 EEG Artifacts

Artifacts are undesired signals which adversely affect the signal of interest. It is de-

sirable to prevent artifacts from appearing while recording. However, the EEG signal is,

unfortunately, frequently corrupted by physiological and environmental factors other than

cerebral activity. An important component of EEG signal processing is removing noise

and artifacts, which is typically required for more trustworthy signal analysis. The two
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Figure 1.3: EEG cap placement and filling conductive gel.

Figure 1.4: EEG signals (Ch i represents ith channel EEG signal, here i varies from 1 to 10).
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main types of artifacts are physiological/biological caused by non-cerebral physiological

sources and nonphysiological artifacts caused by electrical phenomena or equipment in the

recording environment. Physiological artifacts include eye movement, cardiac, glossoki-

netic, respiratory, pulse, sweat, and muscle and movement artifacts [4]. Power line noise,

cable movement, and electromagnetic interference are common environmental artifacts. In

the preceding section, we will give a brief overview of artifacts common to EEG.

1.2.1 Physiological Artifacts

1.2.1.1 Ocular Artifact

Significant artifacts are generated by ocular movements in the EEG recordings. Eye

movements and blinks are the cause of ocular artifacts. To be more precise, retinal and

corneal dipole orientation alterations cause eye movement artifacts, and alterations of con-

tact of the cornea with the eyelid affect ocular conductance, which results in blink artifacts.

Moreover, the ocular artifact spread to the head’s surface and was recorded by the EEG

electrodes as a result of the volume conduction effect. EOG often has a frequency similar to

EEG signals and an amplitude many times greater than EEG, which disqualifies frequency

domain filtering as an artifact removal technique [21].

1.2.1.2 Muscle Artifact

Activities from different groups of muscles contaminate EEG, which is known as muscle

artifacts. These artifacts can be caused by the subject’s talking, sniffing, swallowing, or

muscle contraction and stretch close to the signal recording sites. Depending on the muscles

are stretched and contracted, the amplitude and shape of the EMG will change. Conceivably,

muscle activities detected by EMG have a wide frequency range between 0 Hz and 200 Hz.

Obtaining the activity from a single channel measurement is extremely difficult compared

to EOG and eye-tracking. As a result, it can be extremely difficult to get rid of EMG

artifacts. Significant statistical separation exists between EMG contamination and EEG in

both time and space. This suggests that using independent components analysis to exclude

EMG contamination would be a good idea.
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1.2.1.3 Cardiac Artifact

When EEG electrodes are positioned on or close to a blood vessel, cardiac artifacts may

be created due to the expansion and contraction caused by the heart. It is challenging to

eliminate these pulse distortions since they can appear in the EEG with a similar waveform

and with a frequency of about 1.2 Hz [27]. The electrical activity of the heart, which is

known as ECG, can also be contaminated with EEG. As ECG can be monitored with a rec-

ognizable regular pattern and recorded separately from brain activity, unlike pulse artifacts,

it may be simpler to remove these artifacts by simply utilizing a reference waveform.

1.2.2 Extrinsic Artifacts

In addition to the aforementioned artifacts, EEG measurement is negatively impacted by

external sources of artifacts, which include cable movements, misplacement of electrodes,

etc. Proper planning and improved signal acquisition can be helpful in minimizing these

kinds of artifacts. Another sort of external artifact that influences the EEG data is electro-

magnetic interference from the environment, which belongs to a specific frequency band.

Power line artifact is generated due to the interference by the power source having a fre-

quency of 50/60 Hz [22]. Movement of any part of the recording devices, like electrode

wire, can generate artifacts.

1.3 Signal Processing for EEG

EEG signals present a landscape of neural activity of the brain with high temporal res-

olution. At the same time, EEG suffers from drawbacks like noise prone, high complexity,

etc. Due to very low amplitude (in the microvolt range), various physiological and en-

vironmental noises easily affect the EEG signal, which degrades the signal-to-noise ratio.

Analysis of such noisy EEG signals may lead to erroneous interpretation. Few of these

artifacts can be reduced by taking proper measures during recording, but most of them

are unavoidable. To improve the signal quality and make it eligible for further process-

ing, artifact removal is a useful pre-processing technique where signal processing has been

10



CHAPTER 1. INTRODUCTION

proven to be a valuable tool. Also, to extract useful information from complex EEG signals

and have meaningful interpretation, signal processing is necessary. Many adaptive signal

decomposition techniques like empirical wavelet transform (EWT) [23], empirical mode

decomposition (EMD) [24], multivariate EWT (MEWT) [2], multivariate iterative filtering

(MIF) [25], sparse spectrum-based swarm decomposition [26], Fourier-Bessel series ex-

pansion (FBSE)-based EWT (FBSE-EWT) [27] have been used for decomposing the EEG

signal and feature extraction. Time-frequency representation (TFR) of EEG signal is also

helpful for classification with deep neural network [28, 29, 30]. Instead of using deep learn-

ing techniques like convolutional neural network (CNN) for classification, activation, or

output from a particular layer or multiple layers are combinedly used as the deep features

which can be further classified with the help of machine learning classifier [26]. A general

approach for automated classification of EEG signals based on signal processing and artifi-

cial intelligence includes signal recording, pre-processing, signal decomposition and feature

extraction, and classification, which is depicted in Fig. 1.5.

Figure 1.5: A block diagram of a general approach for automated classification of EEG
signals.

1.3.1 Artifact Removal

The EEG signals are employed as a cutting-edge diagnostic tool for various neural ill-

nesses, in BCI applications, and in studying fundamental neuroscience because they cap-

ture electrical activities produced by brain cells. But oftentimes, undesirable artifacts taint
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the EEG signals and make it difficult to interpret the neural activity [31, 32, 33]. Signal

processing-based techniques have been proposed to remove the artifact effectively.

In this section, we will discuss a state-of-the-art artifact removal technique. A

frequency-spatial filtering-based ocular artifact removal technique to remove ocular arti-

facts has been proposed in [31]. EWT and dictionary-based spatial filtering have been em-

ployed to develop the artifact removal framework. An isolated artifact dictionary is formed

by selecting the contaminated EEG channels and EWT-based frequency domain filtering.

More preciously, the delta rhythms of the highly contaminated channels are taken out and

added to an artifact dictionary. Afterward, the ocular artifact is isolated by spatially filtering

the delta-rhythms of multichannel EEG data using the developed dictionary. After elimi-

nating the artifact components, the clean EEG delta-rhythm is reconstructed using inverse

spatial filtering. In the end, to get the ocular artifact-free signals, the clear delta rhythms

are merged with other EEG rhythms. The suggested technique eliminates the ocular artifact

while leaving the baseline EEG data unchanged.

1.3.2 EEG Rhythm Separation

Visual examination of EEG data can be used to diagnose various brain illnesses. EEG

signals typically have a frequency range of 0.1 to 100 Hz, and based on the frequency

content, they can be further divided into five distinct rhythms. These rhythms are delta (0.1-

4 Hz), theta (4-8 Hz), alpha (8-13 Hz), beta (13-30 Hz), and gamma (30-100 Hz). Clinical

professionals with expertise in this area are familiar with the manifestation of brain rhythms

in EEG signals. The amplitudes and frequency of these rhythms vary depending on the

human’s state, such as awake or asleep. Age also alters the properties of the rhythm waves

[34].

1.3.3 Feature Extraction

Due to the complexity of EEG signals, it is highly challenging to extract information

from them using the naked eye. These days, we may use sophisticated automatic processing

methods to retrieve hidden information from EEG data owing to computers. There exist var-
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ious ways to represent EEG using features such as time domain features (mean, standard de-

viation (SD), entropy [25, 35]), frequency domain features (mean frequency, band-power),

time-frequency domain features (Shannon entropy, time-varying energy, instantaneous am-

plitude, and frequency [36, 37]) and synchronisity features, which look to the relationship

between two or more EEG channels (coherence, mutual information, correlation), merely

to name a few. Deep learning networks have also been used to extract automated or deep

features from the EEG signal or TFR of the EEG signal.

1.4 Applications of EEG

A large number of studies suggested that EEG is useful for assessing human mental

health states, clinical conditions, imagination, thoughts, etc. EEG finds its applications in

various areas like clinical diagnosis, BCI, biometrics, fundamental neuroscience, neuromar-

keting, custom solutions, etc. [9, 15, 38].

1.4.1 Clinical Applications

EEG is a very useful diagnostic tool used for various neurological disease diagnoses and

predictions, including but not limited to epilepsy, dyslexia, Alzheimer’s disease, Parkinson’s

disease, attention deficit hyperactivity disorder (ADHD), sleep disorders, Huntington’s dis-

ease, anxiety and depression, schizophrenia, level of consciousness. Monitoring EEG sig-

nals during neurosurgery helps to complete the procedure smoothly and properly and in-

creases the success rate. A few representative clinical diagnostic applications are described

below.

1.4.1.1 Epilepsy

The simultaneous irregular firing of a neuronal population causes epilepsy, which is

the second most well-known neurological condition in the brain. Almost 60 million peo-

ple worldwide are affected by epilepsy. EEG signal is a gold-standard diagnostic tool for

epilepsy, but it requires long-term monitoring of the EEG signal. However, it is a labo-
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rious and time-consuming task to manually monitor the patient’s EEG signal for an ex-

tended period. Furthermore, muscle artifacts, background noise, and other neurological

symptomatology may contaminate the recorded EEG data. Hence, a system that automati-

cally detects seizures will make it easier to monitor and treat epileptic seizures in real-time

[2, 27, 29, 39, 40, 41]. An automated technique for focal and non-foal EEG signal classifi-

cation using synchrosqueezing transform and CNN is described here.

Madhavan et al. [41] proposed an automated classification of focal and non-focal EEG

signals. The nonstationary EEG signal is represented in the time-frequency plane using syn-

chrosqueezing transform and wavelet synchrosqueezing transform. The two-dimensional

CNN is used to classify the time-frequency matrix of EEG signals into focal and non-focal

classes.

1.4.1.2 Sleep Analysis

In sleep apnea, airflow is temporarily stopped or reduced during sleep for a few seconds.

This decrease in breathing is accompanied by loud snoring, which could cause the person to

feel choked and awakened. Researchers have developed a number of techniques to diagnose

sleep apnea. Polysomnography (PSG) has been suggested as the most effective for the

analysis of sleep, which monitors several physiological parameters like brain waves, heart

rate, breathing pattern, eye movements, blood oxygen level, limb and body movements,

snoring sound, etc. Simultaneous recording of these parameters is complicated and creates

user discomfort. Also, the analysis of PSG is cumbersome and tedious. There are six stages

of sleep for a healthy person: awake, S1, S2, S3, S4, and rapid eye movements (REM)

[30]. Precise sleep stage grading can provide clinical information for identifying people

with sleep disorders [42]. The automatic detection of sleep stages and sleep apnea from

biological signals using signal processing and artificial intelligence-based techniques have

been reported in many research [26, 43]. One such method for the sleep stage scoring from

EEG signals is described here.

The nonstationary signal analysis technique, namely the Fourier-Bessel decomposition

method (FBDM) and deep learning classifier, are used for scoring the different sleep stages

from the EEG signal [30]. The FBDM is used to decompose EEG signals into oscilla-
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tory modes or Fourier-Bessel intrinsic band functions, which are suitable for obtaining in-

stantaneous frequency (IF) and amplitude envelope (AE) using Hilbert transform. A time-

frequency image is obtained from the IF and AE of the EEG signal. CNN has been employed

to classify the time-frequency image of EEG signals. Using EEG signals, the developed

method has been utilized to categorize six different stages of sleep.

1.4.2 Brain-computer Interface and Rehabilitation Applications

In many pieces of research, EEG signals have been suggested for BCI-based rehabili-

tation applications, where an alternative communication path has been established between

the brain and the outside world.

1.4.2.1 Emotion Recognition

Emotions are essential to human existence and have an impact on daily functions like

cognition, decision-making, and intelligence, among many others. A recent trend in the field

of human-computer interactions is the development of emotional artificial intelligence. Ad-

ditionally, emotion has a direct connection to many mental diseases, including depression,

ADHD, autism, and game addiction. The importance of understanding emotion has given

birth to a new scientific field, affective computing, which primarily deals with identifying

and modeling human emotions. Compared to other methods that rely on outward manifesta-

tions like facial expression, gesture, or speech signals [7], which may show faked emotions,

EEG signals are found to be more compelling for emotion recognition [35, 44, 45, 46].

The multivariate FBSE-EWT (M-FBSE-EWT) has been used for developing an EEG-

based emotion detection method where the multichannel EEG signals have been decom-

posed into narrowband subband signals. Different successive joint instantaneous amplitude

and frequency of subband signals are selected to have multiscaling properties in the spectral

domain. On the other hand, subband signals are added, and the entropy of the cumulative

signals has been computed as temporal multiscale entropies. The spectral and temporal mul-

tiscale entropies are smoothened and classified using an autoencoder-based random forest

classifier for emotion classification [46].
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1.4.2.2 Cognitive Workload Assessment

Studying the mental effort involved in problem-solving is crucial to fully comprehending

how the brain allocates cognitive resources to interpret information. Mental effort suggests

the quantity of cognitive resources allocated for a particular task. The EEG is an effective

physiological signal-based approach for assessing mental workload [47]. An EEG-based

mental workload assessment framework is described below.

To induce a different level of mental effort, scientific problems have been given. Based

on the complexity of the problem, different levels of mental effort are induced. Power in dif-

ferent EEG rhythms during problem-solving is compared with reference intervals where the

subject was not performing any task. The percentage change in rhythm power is quantified:

a positive value or increase in band power indicates event-related synchronization (ERS),

and a negative value or decrease in band power indicates event-related desynchronization

(ERD). This study finds an increase in alpha (lower: 8–10 Hz) desynchronization in the

occipital and parietal regions and theta (4–7 Hz) synchronization in the FL. These findings

suggest that mental effort due to scientific problem-solving demands cognitive resources

like visuospatial processing, working memory, and semantic processing [48].

1.4.2.3 Imagined Speech Identification

Several diseases, for example, pseudocoma or lock-in syndrome, affect the speech gen-

eration process, and subjects lose their ability to communicate verbally. In many cases, the

brain or central nervous system of such patients works normally. So, the BCI system can be

a substitute for reading the commands from the brain itself. Many studies try to decode the

EEG signal corresponding to imagined speech, where the subject imagines a vowel or word

without articulating. The imagined-speech-based BCI system is useful for a person with a

speech disorder not in the central nervous system [24, 49].

A multiscale signal decomposition-based approach has been proposed to classify EEG

signals corresponding to five vowels for an imagined speech BCI system. Multivariate fast

EMD has been used to decompose the multichannel EEG signals into oscillatory compo-

nents at different scales. Several statistical features like slope domain entropy, sample en-
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tropy, bubble entropy, energy have been computed from the oscillatory modes. Gradient

boosting-based machine learning algorithms have been used for classifying the EEG signal

[49].

1.4.3 Fundamental Neuroscience

EEG signals have been used to understand the complex neural processing underlying

different cognitive processes, brain function, and dysfunction. We have presented a few

areas of neuroscience where EEG signals have been used to understand brain functioning.

1.4.3.1 Visual Object Recognition

Computational neuroscientists try to reveal the brain’s neural functioning behind visual

processing for object recognition by computational and mathematical models. Through a

number of phases of linear and nonlinear transformations functioning at a millisecond time

frame, the human brain recognizes visual objects. Signal processing and machine learning

methods have been used to explain and predict these transformations.

In [50], a large dataset of EEG signals during visualization of 16,740 image conditions

are reported for visual object recognition modeling. A total of 82,160 trials for the image

conditions were performed. Based on this dataset, visual cognition models have been de-

veloped for predicting synthesized EEG signals as a response to an image, identifying the

image conditions from synthesized EEG data. This study also shows the effect of varying

numbers of trials and image conditions on the visual object identification model.

1.4.3.2 Study of Visual Imagery and Perception

Visual imagery and perception share similar kinds of brain resources, which has been

shown by studying the EEG signals during visual imagery and perception [51, 52]. These

help biological organisms in cognizing beyond their immediate response to a physically

presented stimulus to behave adaptively and with enough flexibility.

Based on multivariate pattern analysis of EEG signal using signal processing and ma-

chine learning algorithms, it has been shown that alpha rhythm in parieto-occipital cortex
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has shared representation for visual imagery and perception [52]. The study was performed

on EEG signals recorded from 38 subjects during the visual perception task and visual im-

agery task. For the visual imagery task, the name of the object to be imagined was uttered

to instruct the subject for imagination.

1.4.3.3 Effect of Meditation on Brain

An exponentially growing number of studies are searching for the biological mechanism

underlying the beneficial effects of meditation [53]. There exist several pieces of evidence

supporting its positive impacts on both physical and mental health. We briefly discussed a

study where the effect of meditation on the human brain has been studied with the help of

EEG signal analysis.

In [20], the EEG rhythm powers have been used as a marker to analyze the effect of

Manta meditation (‘Hare Krishna Mahamantra’) on the human brain. The EEG rhythm

powers were computed using the FBSE before and after the mantra meditation. The alpha

band power has increased significantly after meditation, indicating a calm and relaxed state

of mind.

1.5 Multivariate Adaptive Signal Decomposition

Adaptive signal decomposition techniques are highly useful in a wide range of appli-

cations, as they provide flexible and adaptive methods for separating complex signals into

their constituent components. These techniques have gained significant attention due to

their ability to handle nonstationary and time-varying signals, where traditional methods

may be limited. For example, the Fourier transform represents any signal using sinusoidal

basis functions of infinite duration. Almost all the signals of interest are of finite dura-

tion, and representing a finite duration signal using an infinite duration basis function is not

an effective way. Moreover, the time-varying characteristic of the signal can not be prop-

erly captured using the Fourier transform. Signals exhibiting time-varying spectral content

cannot be adequately characterized by conventional Fourier analysis [54, 55, 56, 57]. In

order to capture the time-varying spectral content, short-time Fourier transform (STFT) has
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been proposed [58, 59]. A small sliding window (duration of the window is much lower

as compared to the signal duration) has been used to select the signal corresponding to a

particular time, and spectral content is estimated using Fourier transform for that time [28].

Choosing the proper window length is a major challenge in STFT; there is no thumb rule for

choosing the window length. STFT provides uniform frequency resolution for all frequency

components. Additionally, the frequency resolution is limited by Heisenberg’s boxes [60].

The wavelet transform has been introduced with multiresolution property [61, 62], which

uses a time-localized window function (wavelet) for analysis of any signal. Though these

methods have been applied for the analysis of various biomedical signals, pre-defined basis

functions may not be well suited for the representation of real-time signals. Moreover, the

time-frequency localization provided by these methods is limited. The STFT and wavelet

transform require the selection of a basis function or mother wavelet. Improper selection

of these can badly affect the signal representation. Wigner-Ville distribution has been pro-

posed, which does not require to choose any separate basis function [60].

The aforementioned problems have been addressed in EMD, a data-adaptive signal de-

composition technique [63, 64, 65, 66, 67]. In biomedical signal processing, adaptive signal

decomposition methods play a crucial role in extracting relevant information from complex

physiological signals. Biomedical signals often exhibit nonstationary characteristics, mak-

ing them challenging to analyze using traditional techniques. Adaptive methods such as

EMD and its variants allow the decomposition of biomedical signals into intrinsic mode

functions (IMFs), which capture the underlying oscillatory components at different scales

[63]. This enables the identification of specific frequency bands or components associated

with physiological processes, such as heart rate variability in ECG signals or sleep stages

in EEG signals. Overall, adaptive signal decomposition techniques provide versatile tools

for analyzing, extracting, and manipulating signals in various domains. By adaptively de-

composing signals into their constituent components, these methods enable the extraction

of relevant information, removal of noise or interference, and facilitate improved analysis,

interpretation, and manipulation of complex signals in diverse applications [28].

EEG signals are highly nonstationary and complex in nature. Adaptive signal decompo-

sition techniques adaptively adjust their basis functions to effectively capture the changing
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features of the signal. Adaptive methods can offer a more accurate and detailed analysis of

the complex EEG signals. Since the last decades after the introduction of adaptive multi-

variate decomposition techniques, it finds various applications in EEG signal analysis and

classification [38, 45, 46, 68, 69, 70].

1.6 Motivations

In recent times, novel approaches have emerged for decomposing multicomponent sig-

nals into amplitude frequency modulated components data adaptively [71]. The availability

of multivariate (multichannel) data has increased significantly due to advancements in sen-

sor technology. EEG signals provide very high temporal resolution but suffer from poor

spatial resolution. Spatial resolution can be improved by using more number of electrodes.

However, the processing of these multivariate signals using a univariate signal decomposi-

tion, e.g., EMD, EWT, results in a loss of mutual information present in the signal. Process-

ing of these multichannel EEG signals demands multivariate decomposition techniques. As

a means to leverage the interdependence among multichannel signals through joint time-

frequency analysis, the concepts of modulated bivariate and trivariate data oscillations have

been introduced initially, followed by the generalization of these concepts to accommo-

date an arbitrary number of channels [72, 73, 74]. The univariate signal decomposition

techniques have been extended for multivariate signals. The multivariate extensions are de-

veloped in such a manner so that they can generate the same number of multivariate oscilla-

tory modes across different channels and have similar frequency components. The existing

multivariate decomposition techniques are found to be useful but take a longer time for de-

composition. So, a multivariate signal decomposition technique with lower time complexity

needs to be developed.

Schizophrenia is a chronic and severe mental illness affecting 20 million people, about

1 percent of the world population worldwide [75], and more than 1 million cases in India.

In active states of schizophrenia, it associates with symptoms like dellucinations (fixed false

belief), hallucinations (experience of seeing, hearing, tasting, smelling, or feeling that does

not really occur), disorganized speech and thinking, abnormal motor behavior (movements
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that can range from childish silliness to unpredictable agitation or purposeless movements)

[76]. Though there is no permanent cure for schizophrenia, many patients do well with min-

imal symptoms with treatment [76]. Most of the symptoms of schizophrenia will greatly be

improved, and the likelihood of recurrence can be diminished. Diagnosis and treatment

can be complicated by substance misuse. Before a diagnosis can be made, however, a

psychiatrist should conduct a thorough examination to rule out substance misuse or other

neurological disorders whose symptoms mimic schizophrenia. This examination may be

a lengthy time-consuming procedure and depends on several factors that may give rise to

erroneous diagnosis. Accurate prediction of schizophrenia can help a lot to start treatment

without delay and also reduce the risk of substance misuse. People with schizophrenia are

2-3 times more likely to die early than the general population [77]. This is often due to phys-

ical illnesses such as cardiovascular, metabolic, and infectious diseases, which are treatable

if extra care can be taken [78]. For that, the detection of schizophrenia is important. More

than 69% of people with schizophrenia are not receiving appropriate care [75], ninety per-

cent of people with untreated schizophrenia live in low- and middle-income countries. Lack

of access to mental health services is an important issue. In this scenario, easy, convenient,

and cost-effective detection techniques may be beneficial for all humankind.

Parkinson’s disease is a progressive, chronic, neurodegenerative disorder that affects

movements [79, 80]. Substantia nigra, a specific area of the brain, is predominantly affected

by Parkinson’s disease where dopamine-producing (dopaminergic) neurons are located [80].

Ten million people suffer from Parkinson’s disease worldwide, and more than one million

cases per year are reported in India. Only four percent (estimated) of people are diag-

nosed with Parkinson’s disease before the age of 50 years. Behavioral symptoms are hardly

apparent and difficult to diagnose in the early stages of Parkinson’s disease. Parkinson’s dis-

ease symptoms might differ from person to person, which complicates the early diagnosis.

Signs and symptoms of Parkinson’s disease may include slowed movement (bradykinesia),

tremors, impaired posture and balance, rigid muscles, loss of automatic movements, uri-

nary disturbances, speech changes, difficulties in writing, etc. [79, 80]. There are currently

no definite imaging or biochemical markers for detecting Parkinson’s disease [79]. Well-

trained neurologists can diagnose Parkinson’s disease based on medical history, signs, and
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symptoms, physical and neurological examinations. Mimicking symptoms from other neu-

rological illnesses can adversely affect diagnosis, so drug misuse may happen during treat-

ment. Early identification of Parkinson’s disease is critical for initiating effective treatments

and care.

BCI is a state-of-the-art technology that aims to establish a direct communication path

between the brain and the computer or external supportive device [69]. Brain activity pat-

terns are analyzed and decoded in order to generate commands for computers. A cognitive

process, in which imagination of movement of any part of the body is performed without

actually moving it, is known as MI task [69]. EEG signal recorded during an event of per-

forming MI movement is termed as MI EEG which is analyzed to detect the intention in

EEG based MI BCI [69, 81]. EEG based MI BCI tries to reveal the features of brain electri-

cal activity during MI movement, which are very important for fundamental neuroscience

and related applications, such as noninvasive exoskeletons and bioprostheses controlled by

brain, or supportive device for rehabilitation of patients after stroke or trauma [82, 83].

The BCI technology is an effective rehabilitation technique for patients with neuromus-

cular diseases and supports the daily life of healthy individuals by facilitating an alternate

communication path. Steady-state visual evoked potential (SSVEP) is one of the widely

used exogenous BCI paradigms due to its strong responses to brain activity [84]. Stimuli

flickering at a particular frequency can cause sustained brain response in the occipital area,

which is termed SSVEP [84]. The change in the brain response due to the visual stimuli can

be detected from EEG signals. Individuals afflicted with neurological conditions or neu-

rodegenerative diseases experience difficulties in controlling their muscles through neural

pathways. The SSVEP approach offers a highly effective and reliable means of communi-

cation, facilitating the implementation of a non-invasive BCI.

Drowsiness or fatigue is one of the major challenges for road safety, and due to this,

severe injuries, economic loss, and even death can happen. Lack of alertness due to an un-

conscious transition from wakefulness to sleep may lead to serious accidents. There may be

several factors like lack of sleep, restlessness, long journeys, mental pressure, or consump-

tion of alcohol behind the fatigue. Nowadays, road traffic is increasing rapidly, which surge

the probability of undesired incidents due to drowsiness. In 2018, 2841 deaths and 400,000
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(estimated) injuries in crashes are taken place on account of distracted driving, according

to a report published by the national highway traffic safety administration (NHTSA) [85].

The onset of fatigue or disengagement mode detection-based alertness monitoring system

can force the driver to pay continuous attention, which may help avoid many fatal accidents.

Drowsiness detection will also be helpful for aircraft pilots, power-plant controllers, or sim-

ilar kinds of working environments where automaton reduces the role of humans to passive

observation. Still, continuous attention is required to take prompt action when necessary to

avoid any accidents.

1.7 Objectives

The EEG signal presents important information about the brain with high temporal res-

olution. EEG signal is widely used for neurological disease diagnosis and BCI applications.

However, manual inspection of long-duration EEG signals is a tedious task. Also required

interventions of expert neurologists. The thesis aims to develop EEG signal analysis and

classification frameworks based on multivariate analysis. The objectives of the thesis are as

follows:

Objective 1: To classify schizophrenia EEG signals based on MIF-based multivariate EEG

rhythms

Objective 2: To classify Parkinson’s disease from EEG signals using phase-space repre-

sentation (PSR)-based features

Objective 3: To identify MI movement for BCI application based on MIF-common spatial

patterns (CSP) based feature

Objective 4: To detect different flickering frequencies in SSVEP for the BCI framework

with improved performance

Objective 5: To develop a framework for drowsiness detection from multichannel EEG

signals
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1.8 Contributions of the Thesis

A summary of the contributions of the thesis is presented in this section. In particu-

lar, we have divided the contributions into two subsections: neurological disease diagnosis

framework and BCI applications.

1.8.1 Neurological Disease Diagnosis

We have made contributions in multichannel EEG rhythm separation; feature extrac-

tion and dimension reduction; and high-dimensional PSR-based features for the automatic

diagnosis of neurological disorders from EEG signals.

Schizophrenia detection framework: An approach based on MIF has been developed for

the reliable prediction of schizophrenia from multichannel EEG signals. Multichannel

EEG data are decomposed into multivariate oscillatory modes using MIF. An adap-

tive multivariate decomposition based EEG rhythm separation technique has been

proposed. Multivariate oscillatory modes are grouped based on their mean frequency

to obtain EEG rhythms, which have been further represented using Hjorth parameters

features. These features are ranked based on student t-tests, and significant features

are selected. Machine learning classifiers are developed for classifying the EEG sig-

nals using these features.

Parkinson’s disease detection framework: This chapter presented a novel MIF based

framework to extract the oscillatory modes present in the signal adaptively. The os-

cillatory modes are represented in higher dimensions based on PSR. The Euclidean

distance of each point in PSR from the origin is computed to get the Euclidean dis-

tance curve. The area under the Euclidean distance curve is proposed as a potential

biomarker for Parkinson’s disease. The area of Euclidean distance curve-based fea-

tures is classified using machine learning classifiers. Moreover, three different fusion

strategies based on feature level and decision level fusion to get a more reliable Parkin-

son’s disease identification framework. We have evaluated the proposed framework

using a real-time EEG dataset.
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1.8.2 Brain-computer Interface Applications

MI movement detection: We have proposed a MIF-based MI movement detection frame-

work for BCI applications. MIF has been used to handle the data variability. MIF

adaptively decomposes the multichannel EEG data and helps to select the optimum

frequency band automatically. The variability in the frequency content across differ-

ent channels adversely affects the performance. The mode alignments property of

MIF enables us to extract CSP-based feature extraction. Then, from each band, CSP

features are extracted and classified using a linear discriminant analysis (LDA)-based

classifier.

SSVEP frequency detection: We have developed an SSVEP frequency detection frame-

work. MIF is used to analyze the nonstationary EEG signal. MIF extracts narrowband

oscillatory modes from EEG signals. Canonical correlation analysis (CCA) has been

used widely for SSVEP classification. We have proposed CCA as feature extraction

method from each multivariate IMF (MIMF). Different SSVEP frequencies are iden-

tified using a support vector machine (SVM) classifier based on the proposed feature

representation of EEG signals.

Drowsiness detection: A drowsiness detection framework is developed based on the MIF

algorithm. MIF is used to decompose the multichannel EEG signals. The discrete

energy separation algorithm (DESA) is used to compute the joint AE and IF for joint

TFR (JTFR). The joint marginal spectrum obtained from the JTFR is proposed as a

feature and classified using an artificial neural network (ANN) into different mental

states.

1.9 Road-map

The thesis contains eight chapters. The outline of the thesis is presented in Fig. 1.6.

After introducing EEG signal processing and the importance of multivariate signal decom-

position for the analysis of EEG signals, we have reviewed the existing multivariate signal

decomposition techniques and presented the proposed MIF techniques (Chapter 2).
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Figure 1.6: Outline of the thesis.

Chapter 3 introduces a novel schizophrenia detection framework. It also presented the

results of the experiments and a comparative study with state-of-the-art methods.

Chapter 4 presents the proposed Parkinson’s disease detection framework from multi-

channel EEG signals with the obtained results. The results obtained and comparative per-

formance analysis of the Parkinson’s disease detection framework are also included in this

chapter.

Chapter 5 presents the developed MI BCI framework for BCI applications based on MIF

and CSP. The proposed framework for MI movement identification is evaluated using two

databases, and the results and discussion are presented in this chapter.

Chapter 6 presents the proposed SSVEP frequency detection framework based on MIF

and CCA. The framework is evaluated in a mobile environment to test the robustness of the

SSVEP detection framework.

Chapter 7 introduces a drowsiness detection framework based on the JTFR-based feature

and ANN classifier. The performance of the framework and comparative results with the

existing framework are presented in this chapter.

Chapter 8 concludes the presented work and as well as discusses future work.
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Multivariate Iterative Filtering

In this chapter, we have described the mathematical representation of multichannel sig-

nals, the multivariate extension of adaptive signal decomposition algorithms, and the mul-

tivariate iterative filtering (MIF) algorithm. The decomposed oscillatory components for

synthetic signal and real-time electroencephalogram (EEG) signal are shown for each algo-

rithm.

2.1 Adaptive Signal Decomposition

The univariate adaptive decompositions like empirical mode decomposition (EMD)

[63], empirical wavelet transform (EWT) [67], variational mode decomposition (VMD)

[65], iterative filtering [64] have attracted the focus of large research communities from

various domains. Though these methods have been used for the analysis of multichannel

signals, they face drawbacks like the absence of mode alignment, missing mutual informa-

tion, and unequal number of oscillatory modes among different channels. One major issue

with univariate EMD, mode mixing, has been attempted to solve using a multivariate ex-

tension of EMD [86, 87]. The key requirements of multivariate decomposition techniques

are:

(1) Mode alignment: Estimation of common frequencies or shared oscillatory patterns

across channels provides proper mode alignment to the extracted oscillatory modes.
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(2) Equal number of modes: The number of oscillatory components should be the same

across different channels.

Proper mode alignment enables the algorithm to identify and characterize the joint in-

stantaneous frequencies in a manner that accounts for variations in different oscillatory

modes. By finding the joint instantaneous frequency (IF), we gain valuable insights into

the synchronized oscillatory behavior across multiple channels and obtain a comprehensive

picture of the oscillatory patterns present in the multichannel signal [2, 74].

The adaptive univariate decomposition techniques like EMD [87], EWT [2], and VMD

[88], iterative filtering have been extended to analyze multivariate signals.

2.2 Mathematical Representation of Multivariate Signals

The analysis of univariate modulated oscillations has seen more advanced development

compared to the multivariate case [63, 64, 65, 67]. In both scenarios, the initial step involves

establishing a model for the underlying structure of the signal. Let us define a multivariate

time series x(t) as follows [74]:

x(t) =


x1(t)

x2(t)
...

xC(t)

 (2.1)

where C is the number of channels and xc(t) is the signal corresponding to cth channel. This

C-variate signal can also be termed as a multichannel and/or multidimensional signal [71].

The signal can be represented in terms of amplitude-frequency modulated oscillation

u(t) = a(t)ejϕ(t) where a(t) ≥ 0, dϕ(t)
dt

≥ 0. Many approaches have been explored for

univariate signals [89, 90, 91] in order to represent using amplitude-frequency modulated

oscillatory components. C-variate monocomponent signal can be written in the form as
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follows:

x(t) =


a1(t)ejϕ

1(t)

a2(t)ejϕ
2(t)

...

aC(t)ejϕ
C(t)


In practice, signals are commonly multicomponent, implying that they can be expressed

as linear combinations of individual signals or components [92]. A signal x(t) with P -

components can be written as,

x(t) =
P∑
p


u1
p(t)

u2
p(t)
...

uC
p (t)

 =
P∑
p


a1p(t)e

jϕ1(t)

a2p(t)e
jϕ2(t)

...

aCp (t)e
jϕC(t)

 (2.2)

Let us consider the three-channel synthetic multicomponent signal given as,

xs(t) =


xs1(t) + 0.4xs2(t)

xs2(t) + xs3(t)

xs1(t) + xs3(t)

 (2.3)

where xs1(t), xs2(t), and xs3(t) are defined as follows:

xs1(t) = 2 sin (70πt+ π sin (2πt))

xs2(t) = (1 + 0.6 sin (2πt)) cos (40πt)

xs3(t) =

0, 0.67 ≤ t ≤ 1.35

sin (10πt) , otherwise
(2.4)

For simulation purposes, a sampling frequency of 100 Hz has been considered for the syn-

thetic signal xs(t). Figure 2.1 is showing the signal xs(t) and its components xs1(t), xs2(t),

and xs3(t). A resting-state multichannel EEG signal is taken to show the decomposed com-

ponents based on multivariate decomposition algorithms (shown in Fig. 2.2) [20].
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Figure 2.1: (a) xs1(t), (b) xs2(t), and (c) xs3(t) components of (d) synthetic signal xs(t).

Figure 2.2: Four-channel EEG signals.

2.3 Multivariate Adaptive Signal Decomposition

2.3.1 Multivariate Empirical Mode Decomposition

EMD is a data-driven signal processing technique that has gained significant popularity

for analyzing nonlinear and nonstationary signals. It is an adaptive method that decomposes
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a signal into a set of oscillatory components called intrinsic mode functions (IMFs). EMD

provides an automated and effective way to analyze signals with varying frequencies and

time-varying characteristics, making it particularly useful in various fields such as biomed-

ical signal processing, image analysis, and environmental signal processing [63].

The primary goal of EMD is to decompose a signal into its underlying components

without making any prior assumptions about its properties. Unlike traditional Fourier-based

methods that assume signal components to be sinusoidal or stationary, EMD focuses on

capturing the local dynamics and extracting the inherent oscillatory patterns present in the

signal. This adaptability makes EMD well-suited for analyzing signals with rapidly chang-

ing frequencies or complex nonlinear behavior [63].

The decomposition process in EMD starts by identifying the local extrema points (max-

ima and minima) of the signal. These extrema points are then connected by cubic spline

interpolation to form upper and lower envelopes, which bind the signal. The mean of these

envelopes, referred to as the local mean, represents the slowly varying trend or the low-

frequency component of the signal. By subtracting the local mean from the original signal,

the high-frequency components are extracted. The process is iteratively repeated on the

obtained high-frequency components, treating them as new input signals until a stopping

criterion is met. In each iteration, the local extrema points, envelopes, and local mean are

computed specifically for the current input signal. The final result of the decomposition is a

set of IMFs, each characterized by a well-defined frequency scale.

The IMFs extracted by EMD satisfy two main criteria: (1) They should have equal

numbers of zero crossings and extrema, and (2) the mean value of the envelopes defined by

the local maxima and minima should be close to zero. These criteria ensure that the IMFs

capture the oscillatory patterns inherent in the signal.

In the literature, several approaches can be found to extend the EMD algorithm for multi-

variate data, including bivariate EMD [93, 94], rotation invariant EMD [95], trivariate EMD

[96], etc. In the context of multivariate signals, the computation of the local mean becomes

a critical step since the concept of local extrema is not clearly defined. To address this

challenge, Rehman and Mandic [87] proposed a novel approach that involves calculating

envelopes and the local mean for multivariate signals by employing real-valued projections
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along multiple directions on hyperspheres (n-spheres). To extend the concept of EMD, a

set of direction vectors has been defined that facilitates the decomposition process in the

multivariate domain.

A unit hypersphere (n-spheres) has been sampled using both uniform angular sampling

methods and quasi-Monte Carlo-based low-discrepancy sequences to obtain these direction

vectors. This approach enables the adaptation of EMD to multivariate signals, allowing for

effective decomposition and analysis of complex multivariate data.

The multivariate time series x(t) can be represented as a C-dimensional vector

{x(t)}Tt=1= {x1(t), x2(t), . . . , xC(t)}. A set of direction vectors vγk = {vk1 , vk2 , . . . , vkC}

along the directions γk = {γk
1 , γ

k
2 , . . . , γ

k
C−1} is defined on an (C − 1)-sphere. The multi-

variate EMD (MEMD) algorithm is described using the following steps [87]:

Step 1: Select an appropriate set of points for sampling on an (C − 1)-dimensional sphere.

Step 2: Compute the projection, represented as {pγk(t)}Tt=1, of the input signal {x(t)}Tt=1

along the direction vector vγk for all k (the complete set of direction vectors), re-

sulting in the set of projections pγk(t) for k = 1 to K.

Step 3: Identify the time points {tγkj } that correspond to the maxima of the set of projected

signals pγk(t) for k ranging from 1 to K.

Step 4: Perform interpolation on the pairs [tγkj , x(tγkj )] to generate multivariate envelope

curves ∆γk(t) for k ranging from 1 to K.

Step 5: The mean m(t) of the envelope curves for a set of K direction vectors is computed as

follows:

m(t) =
1

K

K∑
k=1

∆γk(t) (2.5)

Step 6: Calculate detail component d(t) as the difference between the original signal x(t)

and the mean m(t) of the envelope curves: d(t) = x(t) − m(t). If d(t) satisfies the

stoppage criterion [63], apply the same procedure described above to x(t) − d(t),

treating it as the new input signal. Otherwise, apply the procedure to d(t) instead.
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Figure 2.3: MIMFs corresponding to the synthetic signal xs(t) obtained from MEMD.

Figure 2.4: MIMFs corresponding to EEG signal obtained from MEMD.

The synthetic signal xs(t) (defined in Eq. (2.3)) is decomposed using MEMD, and

the multivariate IMFs (MIMFs) are shown in Fig. 2.3. The first three MIMFs contained

33



CHAPTER 2. MULTIVARIATE ITERATIVE FILTERING

two components xs1 and xs2 of the synthetic signal. MEMD fails to separate xs1 and xs2

components properly and suffers from mode mixing. The EEG signal (Fig. 2.2) is decom-

posed using MEMD, and the MIMFs are presented in Fig. 2.4. The MEMD algorithm is

computationally very complex [25, 70]. The MEMD algorithm is modified to reduce the

computational time in fast MEMD [97].

2.3.2 Multivariate Empirical Wavelet Transform

The EWT is a data-driven signal analysis technique that combines the principles of EMD

and wavelet analysis. It aims to decompose a signal into a set of localized oscillatory com-

ponents called empirical wavelets, which capture the local dynamics and spectral character-

istics of the signal in both time and frequency domains. Unlike traditional wavelet analysis,

the EWT does not rely on predefined wavelet basis functions but derives the wavelets di-

rectly from the data. The decomposition process in EWT involves selecting a set of scales

or frequencies for each IMF and applying wavelet transforms at those scales. The wavelet

transforms are performed using adaptive basis functions derived from the IMF’s local char-

acteristics.

The adaptive wavelet-based bandpass filters generated by univariate EWT result in dis-

tinct components for multichannel signals corresponding to different channels. The number

of components and their frequency ranges may vary across channels, creating an obstacle

for multivariate analysis. To adapt univariate EWT for multichannel signals, a new concept

for adaptive boundary detection is proposed to extract MIMFs for each channel [2]. This

modified boundary detection ensures the MIMFs have similar frequency components across

different channels. The steps involved in multivariate EWT (MEWT) for multivariate signal

x(t) (defined in Eq. (2.1)) are explained below.

Step 1: To obtain a unique set of boundaries for all channels, authors in [2] calculated the

mean spectrum magnitude of multichannel signals acquired from all channels. The

mean spectrum magnitude is defined as follows:

X̂(f) =
1

C

C∑
c=1

|Xc(f)| (2.6)
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where the Fourier spectrum of each channel signal xc(t) is denoted as Xc(f).

Step 2: The mean Fourier spectrum is segmented into N contiguous segments using the

EWT boundary detection method [67]. The set of boundaries can be denoted as

{Ωb}b=0,1,...,B. It is important to mention that the first boundary frequency (Ω0) is

0, and the last boundary frequency (ΩB) is π. Based on these boundaries, the segment

can be defined as [0,Ω1], [Ω1,Ω2], . . ., [ΩB−1,ΩB].

Step 3: Empirical wavelets are defined as the bandpass filters applied to each segment. To

construct the empirical wavelet-based filter for each segment, we draw inspiration

from the concept used in the construction of Littlewood-Paley and Meyer’s wavelets

[62]. The wavelet and scaling functions are defined empirically as, follows: [67]:

Scaling function: χb(Ω) =


1, if |Ω| ≤ (1− ϕ)Ωb

cos
(

πΛ(ϕ,Ωb)
2

)
, if (1− ϕ)Ωb ≤ |Ω| ≤ (1 + ϕ)Ωb

0, otherwise
(2.7)

Wavelet function: Ψb(Ω) =



1, if (1 + ϕ)Ωb ≤ |Ω| ≤ (1− ϕ)Ωb+1

cos
(
πΛ(ϕ,Ωb+1)

2

)
, if (1− ϕ)Ωb+1 ≤ |Ω| ≤ (1 + ϕ)Ωb+1

sin
(
πΛ(ϕ,Ωb)

2

)
, if (1− ϕ)Ωb ≤ |Ω| ≤ (1 + ϕ)Ωb

0, otherwise
(2.8)

where Λ(ϕ,Ωb) = κ
(

|Ω|−(1−ϕ)Ωb

2ϕΩb

)
. Here, the condition on variable ϕ ensures that the

scaling and wavelet will have a tight frame, which can be mathematically expressed

as ϕ <
(

Ωb+1−Ωb

Ωb+1+Ωb

)
. κ(p) is an arbitrary function as defined below.

κ(p) =


0, if p ≤ 0

κ(p) + κ(1− p) = 1, ∀p ∈ [0, 1]

1, if p ≥ 1

(2.9)
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Step 4: The approximation and detail coefficients are obtained by taking the inner product of

the applied signals x(t) with the scaling and wavelet functions.

Figure 2.5: MIMFs corresponding to the synthetic signal xs(t) obtained from MEWT.

The wavelet and scaling functions obtained in the previous step will be the same for

all channels; hence, they provide exactly the same number of modes and frequency-aligned

modes in all channels. The MIMFs from MEWT for synthetic signal xs(t) are shown in Fig.

2.5. MEWT divided the first component xs1(t) into two modes which is known as mode

splitting problem. The MEWT-based decomposition result for the EEG signal is shown in

Fig. 2.6.

2.3.3 Multivariate Fourier-Bessel Series Expansion based Empirical

Wavelet Transform

Similar to the Fourier series, the Fourier-Bessel series possesses orthogonality proper-

ties that facilitate signal representation and analysis. This property enables straightforward

decomposition and reconstruction of signals using the expansion coefficients [28, 98, 99].

Since nearly all the real-time signals are nonstationary in nature, it is essential to use non-

stationary basis functions for their representation. The widely used Fourier transform rep-
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resentation uses sinusoidal functions as basis functions. The Fourier-Bessel representation

employs nonstationary Bessel functions as a basis set, which helps to provide a more mean-

ingful representation. The Fourier-Bessel representation of a signal yields unique coeffi-

cients, and their length is equal to the length of the signal. In contrast, the Fourier transform

provides unique coefficients of length equal to half the length of the signal (for real sig-

nal). As a result, the Fourier-Bessel representation can offer double frequency resolution

compared to the discrete Fourier transform-based representation. Fourier-Bessel series ex-

pansion (FBSE) has been used to represent EEG signals in literature and provided better

performance [20, 45, 100, 101].

By leveraging this advantage, the EWT has been improved by using the FBSE [66].

The univariate FBSE-based EWT (FBSE-EWT) is extended for multichannel signal in [46,

66, 99, 101]. The multivariate FBSE-EWT (M-FBSE-EWT) has similar steps to MEWT,

described in Section 2.3.2 except for the boundary detection procedure. In M-FBSE-EWT,

the FBSE-spectrum is used instead of the Fourier transform-based spectrum. Due to the

Figure 2.6: MIMFs corresponding to EEG signal obtained from MEWT.
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higher resolution of the FBSE spectrum, the signal separation has improved [66]. The FBSE

spectrum of signal y(n) can be obtained from the FBSE coefficients of the signal [46, 99].

The FBSE coefficient can be computed as,

Ci =
2

U2 (J1(βi))
2

U−1∑
n=0

ny(n)J0

(
βin

U

)
(2.10)

where, J0(·) and J1(·) denote zero and first order Bessel functions, respectively. βi with

i = 1,2,...,U are the positive roots of the zero-order Bessel function (J0(β) = 0) arranged

in ascending order. The magnitude of the FBSE coefficient |Ci| will provide the FBSE

spectrum [66]. For M-FBSE-EWT, the Fourier spectrum in MEWT is replaced with the

FBSE spectrum for better separation of components, and the other steps are the same as

those in MEWT.

The separated components using M-FBSE-EWT for synthetic signal xs(t) are shown in

Fig. 2.7. All three modes present in the synthetic signal are separated into three MIMFs

by M-FBSE-EWT. First, MIMF is an insignificant component that can be discarded based

on energy-based thresholding or other thresholding techniques. The M-FBSE-EWT based

decomposed components of the EEG signal are shown in Fig. 2.8.

Figure 2.7: MIMFs corresponding to the synthetic signal xs(t) obtained from M-FBSE-
EWT.
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Figure 2.8: MIMFs corresponding to EEG signal obtained from M-FBSE-EWT.

2.3.4 Multivariate Variational Mode Decomposition

VMD is a signal processing technique that decomposes a signal into a set of modes

with distinct frequency bands [65]. It is a data-driven approach that provides an adaptive

and self-tuning method for analyzing signals with varying frequencies and time-varying

characteristics.

The main idea behind VMD is to find a set of modes that best capture the signal while

minimizing the cross-mode interference. Unlike traditional Fourier-based methods that as-

sume a fixed set of sinusoidal components can represent the signal, VMD adaptively deter-

mines the modes based on the signal’s intrinsic characteristics.

The VMD algorithm starts by assuming that the signal can be represented as a sum

of K modes, each mode representing a component with a distinct frequency band. The

decomposition is obtained by solving an optimization problem that promotes both sparsity

and smoothness of the modes. The optimization problem seeks to find the modes that best

capture the signal while minimizing the mutual interference between the modes.
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To solve the optimization problem, VMD uses a constrained optimization approach. It

introduces a constraint on the IF of each mode, which limits the spread of energy in the time-

frequency plane. By imposing this constraint, VMD ensures that each mode is localized in

both time and frequency domains.

The VMD algorithm iteratively updates the modes and their associated weights until

convergence is achieved. At each iteration, the algorithm estimates the modes by minimiz-

ing the objective function, which is a combination of data fidelity and regularization terms.

The weights represent the importance or energy distribution of each mode in the signal.

Rehman and Aftab [88] proposed an extension of the VMD algorithm to handle multi-

variate or multichannel data. The proposed multivariate VMD (MVMD) aims to effectively

capture multivariate modulated oscillations (joint or common frequency components shared

across all channels) present in the signal. In MVMD, the cost function to be minimized

is an extension of the cost function used in standard VMD, specifically tailored for mul-

tivariate data. The cost function is defined as the sum of bandwidths of all signal modes

across all input data channels. This modified cost function takes into account the charac-

teristics of multivariate signals and aims to optimize the decomposition by minimizing the

collective bandwidths of the modes across all channels. By minimizing this cost function,

the MVMD method aims to achieve an effective decomposition of the multivariate data into

distinct modes with minimized bandwidths. A C-variate signal x(t) defined in Eq. (2.1),

can be represented using K number of multivariate oscillatory components vk(t) having

center frequency ωk as,

x(t) =
K∑
k=1

vk(t) (2.11)

where, vk(t) = [vk,1, vk,2, . . . , vk,C ]. The steps involved in the MVMD algorithm to find

vk(t) are presented below.

Step 1: Initialize the center frequency ωk of the multivariate modes, which can be done in

various ways, such as by choosing complete random values.

Step 2: Compute the analytic representation v̂k(t) of the multivariate signal vk(t) to obtain

the spectrum having a frequency in the positive frequency part only.

40



CHAPTER 2. MULTIVARIATE ITERATIVE FILTERING

Step 3: For each mode obtained in the decomposition, apply a frequency shift to bring the

mode’s frequency spectrum to the baseband by mixing it with an exponential function

tuned to the estimated center frequency of the mode.

Step 4: The estimation of bandwidth is performed by assessing the Gaussian smoothness of

the demodulated signal, specifically by considering the squared norm of the gradient.

This smoothness measure provides an estimate of the bandwidth of each mode. The

resulting constrained variational problem can be formulated as follows:

minimize
{vk,c}{ωk}

{∑
k

∑
c

∣∣∣∣∂t [e−jωktv̂k,c(t)
]∣∣∣∣2

2

}
subject to

∑
k

v̂k,c(t) = xc(t), c = 1, 2, . . . , C

(2.12)

Step 5: Convert the above-constrained optimization problem into an unconstrained optimiza-

tion problem by introducing a quadratic multiplier and Lagrangian function, denoted

as L. The mathematical expression can be given as,

L ({v̂k,c(t)}, {ωk}, {λc}) = β
∑
k

∑
c

∣∣∣∣∂t [e−jωktv̂k,c(t)
]∣∣∣∣2

2

+
∑
c

∣∣∣∣∣
∣∣∣∣∣xc(t)−

∑
k

vk,c(t)

∣∣∣∣∣
∣∣∣∣∣
2

2

+
∑
c

〈
λc(t), xc(t)−

∑
k

vk,c(t)

〉 (2.13)

Step 6: The complex optimization problem can be efficiently solved using the alternating di-

rection method of multipliers (ADMM) algorithm. ADMM is a powerful optimization

technique that decomposes the problem into multiple simpler sub-problems, making

it easier to solve [65, 102].

The MIMFs corresponding to the synthetic signal have been shown in Fig. 2.9. It also

separates the three components into four MIMFs. The first component xs1 is split into two

modes similar to MEWT. The MVMD-based decomposition of the EEG signal is shown

41



CHAPTER 2. MULTIVARIATE ITERATIVE FILTERING

Figure 2.9: MIMFs corresponding to the synthetic signal xs(t) obtained from MVMD.

Figure 2.10: MIMFs corresponding to EEG signal obtained from MVMD.

in Fig. 2.10. Liu and Yu have proposed an alternate extension of the VMD algorithm for

successive extraction of MIMFs [103].
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2.3.5 Others Multivariate Adaptive Decomposition Techniques

In literature, several other univariate adaptive data decomposition approaches have been

proposed, like ensemble EMD (EEMD) [104], local mean decomposition [105], singular

spectrum analysis [106, 107, 108], local characteristic scale decomposition [109], intrinsic

time scale decomposition [110], dynamic mode decomposition [111], nonlinear mode de-

composition [112], adaptive local iterative filtering [113], Fourier decomposition method

[114]. Several approaches among these techniques have been extended for multivariate

data analysis, namely, multivariate nonlinear chirp mode decomposition [115, 116], mul-

tivariate singular spectrum analysis [117, 118], multivariate dynamic mode decomposition

[119, 120], etc. [121].

2.4 Multivariate Iterative Filtering

Decomposing signals into different IMFs gives access to more meaningful insights into

the signals. Lin et al. [122] proposed iterative filtering as an alternative algorithm of EMD

[63], which addresses the fundamental mathematical issues with EMD, like stopping crite-

ria, the convergence of the sifting process has not been proven [123, 124, 125]. In addition,

iterative filtering generates stable IMFs in noisy environments whereas EMD being highly

data adaptive generates complete different set of IMFs. The iterative filtering method is

briefly described to provide a clear understanding of the proposed MIF.

2.4.1 Iterative Filtering

Iterative filtering extracts the oscillatory components by using a moving average filter

designed based on the extrema present in the signal [64]. Iterative filtering extracts the

modes from signals one after another, starting from the higher frequency with the help of a

moving average filter. Defining a double averaging filter operator as Ψ(x), operates on the

input signal x[k], k ∈ N, and generates a moving average of x[k]. The length of the moving
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average filter at stage j is chosen as follows:

Lj =

⌊
αN

E

⌋
(2.14)

where, α is a constant, N is the number of samples in signals, E is the number of extrema in

signal. Designing a filter based on the signal properties makes the algorithm data adaptive.

Choosing moving average or low pass filter, having compact support is an essential aspect

of iterative filtering, for handling nonstationarity and nonlinearity of the signal. Solution

of the Fokker-Plank equation can be used as such filter (w is the filter coefficients) with

compact support and smoothness. With the help of the moving average operator, let us

define a sifting operator Sj(x), such that Sj(xn) = xn[k]−Ψ(xn) = xn+1. After n-iteration

of sifting operator on signal x[k], it generates first IMF as I1 = limn→∞ Sn
j=1(x). Applying

operator Sj=2(x) on the residual part after extracting IMF1, x− I1 gives second IMF. In this

way, iterating the process J times gives J th IMF. Iterative filtering has to stop when there are

no maxima or minima present in the signal. The iterative filtering is presented in Algorithm

2.1.

Algorithm 2.1 Iterative filtering
Input: x (univariate signal)
Output: IMF

1: IMF = {}
2: while e ≥ 2 do //e is the number of extrema of x
3: m = 1
4: xm = x
5: while stopping criterion (Eq. (2.15)) is not satisfied do
6: compute the filter length lm for xm(n)
7: design moving average filter wm(n) of length lm

8:
m+1
x (n) =

m
x(n)−

∑lm
k=−lm

m
x(n+ k)wm(k)

9: m = m+ 1
10: end while
11: IMF = IMF ∪ {xm}
12: x = x− xm

13: end while
14: IMF = IMF ∪ {x}

where,
m
x and

m+1
x are the intermediate IMFs at mth and (m + 1)th steps of iteration,
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respectively. At mth step of the sifting process, the length of the filter and filter coefficients

are defined as lm and wm. The stopping criteria for the sifting process to extract a particular

IMF is defined as [64], ∑N−1
n=0 |m+1

x (n)− m
x(n)|2∑N−1

n=0 |mx(n)|2
< Th, (2.15)

When threshold (Th) is chosen as small, then a larger number of sifting steps will be per-

formed, and for a large value of Th, the number of sifting steps will be smaller.

Due to the random nature and low signal-to-noise ratio of EEG signals, univariate

decomposition techniques fail to generate unique IMFs across different channels when

channel-by-channel analysis is performed. This problem of having different numbers of

IMFs and frequency properties across different channels is referred to as the uniqueness

problem [69], which may heavily deteriorate the performance of the analysis when multi-

channel signals are processed in a channel-wise fashion. Any mutual information present

among the channels may lost due to univariate processing.

The univariate iterative filtering has been extended for multivariate signals by choosing

a unique moving average filter for all channels [25]. We set the length of the moving aver-

age filter (used to filter the signals from all channels) based on the maximum value of the

extrema of signals from all channels.

MIF is described by the following steps:

Step 1: Define a moving average filter (a(n)) of length L based on the extrema present in the

signal x(n) ∈ RN×C, where N is the number of samples [64]. Length L is computed

as,

L =

⌊
γN

max(E)

⌋
(2.16)

Here, γ represent a constant, E vector hold the number of extrema of all C channels

(E = [e1, e2, . . . , eC ], where ec is the number of extrema for cth channel), and max(·)

is an operator to find the maximum value. The moving average operation can be

defined by a operator MA(·) as,

MA(x) = a(n) ∗ x(n) (2.17)
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where * denotes the convolution operator.

Step 2: With the help of the moving average operator, the signal x(n) is sifted iteratively,

which is defined with an operator Ξ(·) as,

Ξ(
m
x(n)) =

m
x(n)− MA(

m
x(n)) =

m+1
x (n) (2.18)

The superscript m on x(n) denotes the intermediate signal as mth iteration step. Re-

peated application of the sifting operator Ξ(·) on the input signal, j times, effectively

isolates the fluctuating part of the signal, known as the MIMF. The p-th MIMF Ip, can

mathematically expressed as Ip = limj→∞ Ξj(x). Here, j represents the number of

times the sifting operator operates on the signal x(n), which is ideally infinite. Based

on the IMF stopping criterion defined in Eq. (2.15) [63], the iteration can be stopped

after finite repetition.

Step 3: Upon subtracting the extracted MIMF from the signal x(n), if the resulting signal still

contains oscillatory components, proceed to apply steps 1 and 2 iteratively to extract

the remaining MIMFs. Conversely, when there are no oscillatory components present

(i.e., the number of extrema is at most one), the remaining signal can be regarded as a

trend component r(n). The input signal x(n) can then be expressed as a combination

of MIMFs and the trend component as follows:

x(n) =
P−1∑
p=0

Ip (n) + r (n) (2.19)

=
P∑

p=0

Ip (n) , r(n)
∆
= IP (n)

where P is the total number of MIMFs.

The details of MIF are shown in the Algorithm 2.2. In Algorithm 2.2, the outer loop

gives one MIMF after a single iteration, and the inner loop is for properly extracting a

particular MIMF. The flowchart of MIF is represented in Fig. 2.11.

The MIF algorithm is used to separate the components of the multichannel synthetic
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Algorithm 2.2 Multivariate iterative filtering
Input: x (multivariate or multichannel signal)
Output: MIMF

1: MIMF = {}, c is number of channel
2: Compute E of x, E ∈ Rc×1 // E is the number of extrema
3: while any value in E ≥ 2 do
4: m = 1 // m counts the number of inner loop iteration
5:

m
x = x

6: while stopping criterion (Eq. (2.15)) is not satisfied do
7: Compute E of x
8: Compute the lm based on maximum(E) for

m
x

9: design moving average filter wm(n) of length lm

10:
m+1
x (n) =

m
x(n)−

∑lm
k=−lm

m
x(n+ k)wm(k)

11: m = m+ 1
12: end while
13: MIMF = MIMF ∪ {mx}
14: x = x− m

x
15: Compute E of x
16: end while
17: MIMF = MIMF ∪ {x}

Figure 2.11: Flowchart for MIF.
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signal xs(t) defined in Eq. (2.3) 1. The obtained modes are shown in Fig. 2.12 The MIF-

based decomposed components of the synthetic signal xs(t) are shown in Fig. 2.12. The

first three MIMFs of the MIF algorithm are corresponding to three components of xs(t).

The MIMF2 of channel 3 shows a slight mode mixing problem, where part of the xs1 is

mixed with the MIMF2. The MIF-based EEG signal decomposition is shown in Fig. 2.13.

Cicone and Pellegrino proposed another extension of univariate iterative filtering in [126].

Figure 2.12: MIMFs corresponding to the synthetic signal xs(t) obtained from MIF.

2.5 Summary

This chapter has introduced the concept of multivariate adaptive decomposition and its

usefulness for nonstationary signal processing. The mathematical definition of the multi-

variate time series is provided. The amplitude-frequency modulated component-based rep-

resentation of the multivariate signal is mathematically defined. Adaptive signal decompo-

sition techniques can be used to extract these amplitude-frequency modulated components

or MIMFs. Various multivariate adaptive decomposition techniques, including MEMD,

MEWT, M-FBSE-EWT, MVMD, and MIF, are described with steps. Decomposition re-

1https://github.com/kpdas95/MIF
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Figure 2.13: MIMFs corresponding to EEG signal obtained from MIF.

sults for both synthetic and real-time EEG signals are presented in the chapter. The area

of adaptive multivariate adaptive decomposition is an emerging research area that has ap-

plications in almost all areas of science and engineering. In the last decades, it has drawn

the focus of researchers from various fields. More research efforts are required to improve

various problems like mode mixing, mode splitting in multivariate adaptive decomposition.
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Chapter 3

Schizophrenia Detection Based on

Multivariate EEG Rhythms

3.1 Introduction

Schizophrenia is a chronic and severe mental illness affecting approximately 20 mil-

lion people worldwide, including over 1 million cases in India [75]. It is characterized by

symptoms such as delusions, hallucinations, disorganized speech and thinking, and abnor-

mal motor behavior [76]. Although no permanent cure exists, many patients can manage

their symptoms effectively with treatment, reducing the likelihood of recurrence [77]. Diag-

nosis can be complicated by substance misuse, requiring thorough psychiatric evaluation to

rule out other disorders. Early and accurate prediction of schizophrenia is crucial for timely

treatment and reducing risks associated with the illness, including premature death due to

treatable physical conditions. Unfortunately, over 69% of people with schizophrenia do not

receive appropriate care, particularly in low- and middle-income countries, highlighting the

need for accessible, convenient, and cost-effective detection techniques.

Most disorders related to the brain, like Parkinson’s disease, Alzheimer’s disease,

epilepsy, etc., can be assessed by brain imaging techniques (Computed tomography (CT),

magnetic resonance imaging (MRI), etc.) [127, 128, 129], or analyzing electroencephalo-

gram (EEG) signals [2, 130, 131, 132]. In the literature, there are several studies that have

shown the effectiveness of MRI in the detection of schizophrenia. However, imaging tech-
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niques are costly, require sophisticated lab facilities with high-end instruments, and demand

more computing resources for analysis. On the other hand, acquiring EEG is inexpensive,

non-invasive, possible even in remote locations with minimal instruments, and ease of use

makes it another choice over imaging techniques for studying brain functions.

In literature, there are several techniques have been proposed for the detection of

schizophrenia based on EEG signals. Kim et al. [133] proposed a schizophrenia detec-

tion technique, using EEG signals recorded with 21 gold-plated electrodes placed on the

scalp, according to 10-20 international system for EEG electrodes placement. The power

in different EEG bands was calculated using discrete Fourier transform, and used as fea-

tures for the classification algorithm. They attained the highest accuracy of 62.2% using

this method. Devy-Aharon et al. [134] used time-frequency representation (TFR) of EEG

signals as classification features, and show 92.0% to 92.9% performance in correctly clas-

sifying schizophrenia, using the best five electrodes signal. Santos-Mayo et al. [135] use

EEG ERP signals of subjects involved in auditory tasks. Brain signals were recorded using

Brain Vision Equipment and electrode placement was according to 10-20 international sys-

tem. EEGLAB was used for preprocessing, and then four frequency domain and ten time

domain features were extracted. Linear discriminant analysis (LDA) and mutual informa-

tion feature selection were used for feature selection. Multi-layer perception provided high

classification rates of 93.42% and 92.23%, respectively. Ibanez-Molina et al. [136] used

Neuroscan SynAmps 32 channel amplifier to collect EEG data in rest and involved in nam-

ing task. They concluded that the complexity in the right frontal lobe (FL) was higher in

schizophrenia patients in the rest state. Jahmunah et al. [137] proposed a method for the

detection of schizophrenia based on nonlinear features extraction and obtained an accuracy

of 92.19% with a support vector machine (SVM)-radial basis function classifier. In another

study, they reported a deep convolutional neural network (CNN)-based feature extraction

and classification method with an accuracy of 98.07% [138]. Krishanan et al. [139] decom-

posed EEG signals into multivariate intrinsic mode functions (MIMFs) using multivariate

empirical mode decomposition (MEMD), and extracted five different entropies of MIMFs

as a complexity measure. In their proposed method, they have claimed an accuracy of 93.0%

using the SVM-radial basis function classifier.
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The deep learning-based approach needs more computational resources, large training

data, and a longer time to develop. Other feature extraction-based approaches decomposed

multichannel EEG data individually using the univariate decomposition method. As a con-

sequence, if there is any mutual information in multichannel data, then that will be lost. In

the MEMD-based approach, EEG signal is decomposed into MIMFs using MEMD, which

is computationally very expensive for higher dimensional data [87].

Carefully considering the aforementioned issues, we have proposed a MIF based ap-

proach for schizophrenia detection. MIF is an extension of univariate iterative filtering for

multivariate data. Using MIF, multichannel EEG data is decomposed into MIMFs, and

grouped based on mean frequency in order to separate the EEG rhythms. Time domain

based features are extracted from EEG rhythms and ranked using student t-test. Finally,

the most significant 30 features are chosen for the classification of schizophrenia. We have

tested our proposed method of schizophrenia detection on real-time EEG data, which shows

promising results.

3.2 EEG Data

We have used a publicly available dataset of schizophrenia from the Institute of Psychi-

atry and Neurology, Warsaw, Poland, for this study [140]. Dataset contains EEG recordings

of 14 patients (seven males with mean age 27.9±3.3 years and seven females with mean age

28.3±4.1 years) suffering from paranoid schizophrenia according to international classifi-

cation of diseases, tenth revision criteria for paranoid schizophrenia. Control group contains

14 EEG recordings of 7 males (Age: 26.8±2.9 years) and 7 females (Age: 28.7±3.4 years).

EEG were acquired for 15 minutes using 19 channels. Electrodes placement was according

to 10-20 international system for EEG electrode placement system. EEG were recorded

from the following positions: Fp1, Fp2, F7, F3, Fz, F4, F8, T3, C3, Cz, C4, T4, T5, P3, Pz,

P4, T6, O1, O2, FCz (reference electrode) at a sampling rate of 250 Hz.
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3.3 Methodology

The proposed approach is briefly depicted in block diagram Fig. 3.1. Major parts of

the method are decomposing signal into modes using MIF, groping of modes in order to

obtain EEG rhythms, and classifier for detecting schizophrenia EEG patterns. The following

subsections illustrate each item of the block diagram briefly.

Figure 3.1: Block diagram of proposed MIF based schizophrenia detection.

3.3.1 Data Segmentation and Preprocessing

EEG signals are segmented into 25 s epochs each, with no data overlap. Segmentation

gives 1142 EEG patterns of 6250 × 19 sample points. The healthy group contains 516 EEG

patterns, and 626 belong to the other group. A notch filter is employed to remove the power

line interface (PLI) artifact from the EEG epoch.

3.3.2 MIF based EEG Rhythm Separation

EEG signal generally lies in the frequency range 0.1 Hz to 100 Hz [141]. EEG signals

can be further classified into different bands known as rhythms depending on frequency.

EEG rhythms are delta (δ: 0.1-4 Hz), theta (θ: 4-8 Hz), alpha (α: 8-13 Hz), beta (β: 13-30

Hz), and gamma (γ: 30-100 Hz).
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Multichannel EEG signals are decomposed into MIMFs using the MIF (described in

Chapter 2) algorithm. The EEG signal x[n] can be represented using MIMFs up[n] based as

follows:

x[n] =
P∑

p=1

up[n] (3.1)

For a clear visual representation, EEG signals corresponding to three electrodes (Fz, Cz,

and Pz) of a healthy subject are chosen and decomposed using the proposed MIF method.

Selected decomposed MIMFs, and power spectral density (PSD) obtained using the Weltch

method [142] are shown in Fig. 3.2 and Fig. 3.3. An important characteristic of multivariate

Figure 3.2: MIF decomposition of 3-channel EEG signal: (a) EEG signal and (b)-(c) se-
lected MIMFs (MIMF2, MIMF3, and MIMF4).

decomposition technique is its ability to detect common variability, or joint oscillatory mode

(having the same frequency components) in a set of multiple time series. Alignment of

mode is necessary for many different data analysis applications [74, 87]. Figure 3.2 shows

that MIF has detected the joint oscillations across multiple channels and properly aligned

them. MIMF2−4 across three selected channels have similar kinds of PSD, which implies

55



CHAPTER 3. SCHIZOPHRENIA DETECTION BASED ON MULTIVARIATE EEG
RHYTHMS

modes are properly aligned. Decomposing the multichannel signal separately, using the

univariate decomposition technique, will not properly align the similar oscillatory modes

into the same numbered MIMFs as in the case of multivariate decomposition [87]. We have

implemented the MIMF algorithm using a fast Fourier transform (FFT) based approach

described in [143].

Figure 3.3: PSD of EEG signal (top left) and selected MIMFs (MIMF2 (top right), MIMF3

(bottom left), and MIMF4 (bottom right)).

MIMFs are grouped to separate rhythms from EEG signal, based on mean frequency

[144]. Mean frequency, µf is defined as follows:

µf =

N
2
−1∑

K=0

fK |U [K]|2

N
2
−1∑

K=0

|U [K]|2
(3.2)

Where, U [K] = 1
N

∑
u[k] exp(−j 2π

N
Kk) is discrete Fourier transform of u[k], and fK =(

K
N
fs
)
, where fs is sampling rate of EEG signal.
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Figure 3.4: EEG rhythms separated using MIF: delta (δ), theta (θ), alpha (α), beta (β), and
gamma (γ).

.

EEG rhythms are obtained using the following equations:

Delta rhythm : rhδ =
∑

up[k], 0.1 Hz < MF(up) ≤ 4 Hz (3.3)

Theta rhythm : rhθ =
∑

up[k], 4 Hz < MF(up) ≤ 8 Hz (3.4)

Alpha rhythm : rhα =
∑

up[k], 8 Hz < MF(up) ≤ 13 Hz (3.5)

Beta rhythm : rhβ =
∑

up[k], 13 Hz < MF(up) ≤ 30 Hz (3.6)
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Gamma rhythm : rhγ =
∑

up[k], 30 Hz < MF(up) ≤ 100 Hz (3.7)

where MF(up) is mean frequency of up[k]. EEG rhythms of the EEG signal of Fig. 3.2. are

shown in Fig. 3.4.

3.3.3 Feature Extraction and Ranking

In literature, several features like Shannon’s entropy [145], approximate entropy [146],

largest Lyapunov exponents [147], Hjorth parameters (activity, mobility, and complexity)

[148] are used for classification of schizophrenia and healthy groups. For this study, we

have tried with several features and got promising results with Hjorth parameters, which

measure the statistical properties of signal in the time domain.

3.3.3.1 Hjorth Activity

It is an indicator of signal power and can be calculated by the variance of the signal, as

follows:

HjorthActivity = var(x(t)) (3.8)

where var(·) denotes the variance operator operating on the signal.

3.3.3.2 Hjorth Mobility

The mobility parameter is an indicator of the mean frequency of signal x(t), and can be

defined mathematically as follows:

HjorthMobility =

√
var(dx(t)

dt
)

var(x(t))
(3.9)
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3.3.3.3 Hjorth Complexity

Complexity is a measure of the nonstationarity of the signal, as it represents the changes

in frequency. Defined as,

HjorthComplexity =
Mobility(dx(t)

dt
)

Mobility(x(t))
(3.10)

All three above-mentioned Hjorth parameters described above are calculated for five EEG

rhythms (δ, θ, α, β, γ) corresponding to a set of 19 channels. Each channel gives 15 param-

eters, combining all the parameters from 19 channels gives a feature vector of dimension

285. The features are then ranked based on the p-value of the student t-test. The best 30

features were selected among 285 features.

3.3.4 Classification

The previous section briefly describes about feature extraction. The robustness of ex-

tracted features for the classification of healthy and schizophrenia is exploited using differ-

ent classifiers, namely SVM, k-nearest neighbors (KNN), LDA, etc. [149].

SVM is developed based on statistical theory by Vapnic [150] for two group classifi-

cation. A high-dimensional feature space is separated using a linear decision surface. The

discrimination functions can be expressed as follows [151]:

y(x) = sign

[
P∑

p=1

αpypϕ(x, xp) + b

]
, (3.11)

for two class classification problem for a training set of P data points {yp, xp}Pp=1, where

xp ∈ RN , is the p-th input vector and yp ∈ R, is p-th output. In Eq. (3.11), αp, yp, ϕ(x, xp),

b represent real constant, p-th output, kernel function, bias, respectively. In this study, linear

kernel (ϕ(x, xp) = xT
p x), and polynomial kernels (ϕ(x, xp) = (xT

p x+1)d, quadrature (d=2)

and cubic (d=3)) are used.

KNN is a non-parametric method for classification [152, 153]. It does not depend on

prior probabilities, which makes this algorithm faster. KNN algorithm finds K nearest
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neighbours of input vector x ∈ RN from the training data, and then depends on the majority

voting it predicts the class of input. In our study, cosine distance is used, and distance (d)

between two vectors x1 and x2 is defined as follows:

d = 1− arccos
(

x1

||x1||
.
x2

||x2||

)
, (3.12)

Moreover, LDA [154] and decision tree [155] were explored. LDA maximizes the ratio

of inter-class variance to intra-class variance in the training dataset. In this way, this gives

maximum class separation. A decision tree, as the name implies, is used to separate a dataset

into classes. During training a tree model is formed which basically partitioned the feature

space into smaller subspaces can be represented using tree.

3.4 Results and Discussion

This section presents the results obtained using the proposed MIF-based classification of

schizophrenia and healthy EEG signals. As compared to other multivariate decomposition

techniques proposed MIF is computationally efficient. For comparing the computational

time of the proposed MIF with other existing multivariate signal decomposition algorithms,

we have decomposed the same multichannel EEG signal of length 6250 samples (arbitrarily

chosen from the used database, and the first 15 channels are used for decomposition) ten

times, and the average computation time of each algorithm is shown in Table 3.1. All

algorithms were run on a desktop having Intel Core i7 4790 CPU, 3.60 GHz, RAM of 28

GB, windows 10 Education, MATLAB 2019B. MEMD 1 [87] generates 14 MIMFs using

default parameter setting in the code. Input parameters for multivariate variational mode

decomposition (MVMD) 2 were α = 2000, τ = 0, K = 14, DC = 0, init = 1, tol = 10−7.

Multivariate fast iterative filtering (MvFIF) 3 was run with the setting α = 1 to keep the

number of generated MIMFs similar to MEMD. The decomposition time for the proposed

MIF algorithms is approximately 40 times less than MEMD and approximately 300 times

1http://www.commsp.ee.ic.ac.uk/ mandic/research/emd.htm
2https://www.mathworks.com/matlabcentral/fileexchange/72814-multivariate-variational-mode-

decomposition-mvmd
3https://github.com/Acicone/MvFIF
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less than MVMD. Fast decomposition will help generate decisions faster with less latency.

The speed of the brain-computer interface (BCI) frameworks based on the MIF will have a

faster data transfer rate between the brain and computer.

Table 3.1: Comparison of computation time of proposed MIF with the existing multivariate
algorithms.

Algorithm Time Number of
(s) MIMFs

MEMD [87] 119.18 14
MVMD [88] 923.27 14

MvFIF ([126]) 4.74 20
MIF (proposed) 3.05 21

The most significant thirty features, their mean, standard deviation (SD), and corre-

sponding p-value (obtained using student t-test) are listed in Table 3.2. Features have been

named using the convention defined as, location of the EEG electrode then EEG rhythm

separated by an underscore sign. For example, Cz β denotes β rhythm of the location Cz.

Boxplot of 10 most discriminant features (Cz β, Cz θ, Fz β, P4 α, F4 β, Pz β, Pz α,

Cz α, F3 δ, T3 δ) are shown in Fig. 3.5.

The plot of accuracy versus the number of features used in SVM with the polynomial

kernel is shown in Fig. 3.6. Classification accuracy attains maximum value of 98.9% when

30 most significant features are used. Further, adding more features does not increase accu-

racy. Due to this, only the first 30 features are used for classification to keep the method as

computationally efficient as possible.

The performance of the different classifiers used in this study is tested using the fol-

lowing statistical parameters [156]: accuracy (Acc), sensitivity (Sen), specificity (Spe), and

positive predictive value (PPV). These parameters are defined by the following mathemati-

cal equations:

Acc =
TP + TN

TP + FP + TN + FN
(3.13)

Sen =
TP

TP + FN
(3.14)
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Figure 3.5: Boxplot of 10 most significant features.
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Table 3.2: Most significant 30 features chosen using student t-test.

Feature (Loca-
tion rhythm)

Healthy
(mean±SD)

Schizophrenia
(mean±SD)

p-value t-value

Cz β 1.89±1.42 4.41±4.14 2.50e− 44 14.53

Cz θ 2.09±1.14 4.36±4.31 2.71e− 35 12.79

Fz β 2.85±2.08 5.14±4.42 3.84e− 31 11.93

P4 α 7.02±8.98 14.25±12.91 9.74e− 31 11.84

F4 β 3.34±2.42 6.14±5.58 4.99e− 30 11.69

Pz β 1.88±1.60 3.79±3.84 7.83e− 30 11.65

Pz α 8.55±11.31 15.36±12.77 2.71e− 24 10.39

Cz α 8.11±9.99 13.65±10.41 6.77e− 23 10.05

F3 δ 17.54±13.77 36.45±46.77 8.63e− 22 9.77

T3 δ 8.37±6.19 18.58±25.89 2.83e− 21 9.64

Cz δ 7.34±4.10 26.42±50.36 1.54e− 20 9.45

T3 β 2.80±2.03 4.92±5.34 2.45e− 20 9.40

Fz θ 3.31±2.00 5.83±6.63 1.99e− 19 9.16

P3 α 7.73±9.66 13.26±12.64 8.48e− 19 9.00

F3 β 3.48±2.32 4.99±3.66 1.07e− 18 8.97

Pz δ 6.81±5.78 14.57±21.53 6.37e− 18 8.76

C4 β 2.28±2.18 4.38±5.85 4.22e− 17 8.53

Fz δ 17.42±14.64 36.44±54.23 4.50e− 17 8.52

C4 α 6.37±6.92 10.00±9.05 4.47e− 16 8.24

F3 θ 2.99±1.90 4.98±5.85 6.37e− 16 8.19

P4 β 2.27±2.43 4.37±6.54 5.64e− 14 7.60

P4 δ 6.62±6.69 23.34±56.73 4.08e− 13 7.33

T5 α 26.29±30.56 17.34±15.21 2.39e− 12 7.08

P3 β 1.82±1.77 3.22±4.83 8.32e− 12 6.90

F7 δ 33.28±28.76 59.12±90.33 9.97e− 12 6.87

T6 α 28.81±30.20 19.96±19.79 8.27e− 11 6.55

F4 θ 3.32±2.59 5.34±7.37 1.09e− 10 6.51

Fp1 β 5.32±3.79 7.80±8.97 1.63e− 10 6.45

Pz θ 1.86±1.80 2.74±3.04 2.24e− 10 6.40

Fp2 β 5.35±3.56 8.41±11.79 5.24e− 10 6.26

Spe =
TN

FP + TN
(3.15)

PPV =
TP

TP + FP
(3.16)

where true positive (TP) is number of truly detected schizophrenia EEG, true negative (TN)

is the number of truly detected healthy EEG, false positive (FP) is number of healthy EEG
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Figure 3.6: Accuracy of SVM (Cubic) classifier with different number of features.

misclassified as schizophrenia EEG, and false negative (FN) is number of schizophrenia

EEG is misclassified as healthy EEG.

Table 3.3: Performance parameters of different classifiers used in this study (when proposed
MIF is used for EEG rhythm separation).

K-Fold Classifier Acc Sen Spe PPV AUC

(mean ± SD) (mean ± SD) (mean ± SD) (mean ± SD) (mean)

5- Fold

SVM-Cubic 97.9±1.1 99.1±1.2 97.0±1.9 96.2±2.5 0.999

SVM-Quadrature 97.7±0.9 99.0±1.0 96.7±1.6 95.7±2.1 0.999

SVM-Linear 95.4±2.3 96.2±3.3 94.7±1.9 93.4±2.2 0.994

Linear discriminant 93.5±3.2 94.0±4.8 93.0±3.3 91.4±3.5 0.985

KNN 95.6±1.7 96.8±2.4 94.5±3.1 93.3±3.0 0.995

Decision tree 93.3±2.4 92.6±4.7 93.8±2.5 92.1±3.2 0.981

10- Fold

SVM-Cubic 98.9±0.9 99.0±1.4 98.8±1.3 98.4±1.9 0.999

SVM-Quadrature 97.9±1.1 98.8±1.0 97.2±2.0 96.5±2.7 0.999

SVM-Linear 94.2±2.4 93.6±1.6 94.7±3.5 93.3±4.8 0.989

Linear discriminant 90.6±3.0 89.7±5.4 91.2±3.0 88.9±4.2 0.974

KNN 95.3±2.1 95.8±4.0 94.8±3.7 94.0±3.6 0.996

Decision tree 93.7±2.5 93.6±4.3 93.8±3.6 92.5±4.4 0.984

Note: Bold entries denote the highest values of performance parameters.
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Table 3.4: Performance parameters of different classifiers used in this study (when MvFIF
is used for EEG rhythm separation).

K-Fold Classifier Acc Sen Spe PPV AUC

(mean ± SD) (mean ± SD) (mean ± SD) (mean ± SD) (mean)

5- Fold

SVM-Cubic 96.0±1.5 96.0±2.2 95.9±1.9 95.1±2.1 0.999

SVM-Quadrature 94.5±2.5 94.5±3.6 94.6±2.8 93.4±3.8 0.998

SVM-Linear 84.1±2.0 81.8±4.8 86.0±3.1 82.8±3.2 0.923

Linear discriminant 79.8±3.8 80.5±4.1 79.3±5.0 76.3±3.9 0.896

KNN 81.6±5.0 81.6±4.6 81.6±6.6 78.7±5.6 0.928

Decision tree 86.8±2.6 86.8±4.7 86.7±5.6 84.6±4.9 0.966

10- Fold

SVM-Cubic 95.8±1.8 96.1±2.8 95.6±2.5 94.5±3.0 0.999

SVM-Quadrature 93.2±1.7 93.3±4.5 93.3±3.2 91.6±4.1 0.994

SVM-Linear 85.0±3.1 82.2±6.5 87.5±3.9 83.8±5.1 0.925

Linear discriminant 80.1±4.0 81.1±5.0 79.7±5.3 76.0±4.3 0.895

KNN 83.2±2.1 88.6±3.4 78.5±3.9 78.5±3.8 0.959

Decision tree 86.1±2.9 87.7±4.2 84.9±5.4 82.3±5.4 0.964

Table 3.3 presents the above-mentioned performance parameters of different classifiers

used in this study. Performance parameters of different classifies are shown in Table 3.4

when EEG rhythms separation is done using MvFIF proposed by Cicone and Pellegrino

in [126], and all other steps are the same. Accuracy and other parameters for correctly

classifying EEG segments corresponding to schizophrenia are better when our proposed

MIF algorithm is used for EEG rhythm separation. We have also included the area under

the receiver operating characteristic curve (AUC) [157] as another performance measure of

the proposed method.

We have analyzed the EEG signal from different lobes to study the effect of schizophre-

nia on different parts of the brain based on the proposed framework. EEG channels are

selected and categorized into five groups based on their position on the brain lobe: Frontal

(Fp1, Fp2, F7, F3, Fz, F4, and F8), temporal (T3, T4, T5, and T6), central (C3, Cz, and

C4), parietal (P3, Pz, and P4), and occipital (O1 and O2). The 10-fold classification per-

formance for different lobes is showcased in Table 3.5 for the SVM (cubic) classifier. EEG

signals from the temporal lobe provide higher accuracy, which may lead to the conclusion
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that schizophrenia affects the temporal lobe more severely [158].

Table 3.5: The performance of the framework for different lobe’s EEG.

Lobe Acc Sen Spe PPV AUC
(mean ± SD) (mean ± SD) (mean ± SD) (mean ± SD)

Frontal 87.4 ±2.7 87.2 ±5.8 87.9±4.2 85.6±4.7 0.999
Temporal 90.6±2.8 86.2±5.7 94.4±2.2 92.6±3.2 0.999
Central 87.4±3.6 74.9±5.5 97.9±1.3 96.7±2.1 0.999
Parietal 87.4±3.9 75.5±6.6 97.6±1.5 96.3±2.3 0.999
Occipital 77.9±4.2 56.5±7.9 95.3±3.3 91.0±6.0 0.999

Table 3.6: Performance comparison of proposed method with existing methods.

Authors Methodology Performance

Oh et al. [138]
(2019)

Deep CNN
Acc = 98.07%/81.26%
Sen = 97.32%/75.0%
Spe = 98.17%/87.59%

Jahmunah et al.
[137] (2019)

Nonlinear feature extraction and SVM-radial basis function
classifier

Acc = 92.91%
Sen = 93.45%
Spe = 92.25%

Krishnan et al.
[139] (2020)

Entropy feature
Acc = 93.00%
Sens = 94.0%
Spe = 92.0%

Shalbaf et al.
[159] (2020)

TFR using continuous wavelet transform and transfer learning
using res-net-18-SVM

Acc = 98.6%
Sens = 99.65%
Spe = 96.92%

Rach et al. [160]
(2020)

Graph theoretical analysis based feature extraction along with
random forest classifier.

Acc = 89.29%
Sen = 78.57%
Spe = 100%
AUC = 0.857

Aslan et al.
[161] (2020)

Short-time Fourier transform (STFT) based TFR is used as in-
put to CNN

Acc = 97.33%
AUC = 0.974

Singh et al.
[162] (2020)

EEG bands are separated using FFT spectrum, and several fea-
tures are extracted and used as input to CNN.

Acc = 98.56%
Sen = 98.55%
Spe = 98.57%

Chandran et al.
[163] (2020)

Nonlinear feature extraction and long short-term memory
(LSTM) technique

Acc = 99.1%
Sen = 97.90%

This work
Hjorth features are extracted from EEG rhythms, obtained from
EEG signal using MIF based approach. SVM (Cubic) classifier
is used for classification.

Acc = 98.9%
Sen = 99.0%
Spe = 98.8%
AUC = 0.999

Table 3.6 presents the comparison of the proposed method with existing methods de-

veloped based on this database. For classifying schizophrenia, researchers have explored

many different signal processing techniques along with machine learning or deep learning

methods. The classification methods proposed by Santos-Mayo et al. [135] and Krish-

nan et al. [139] both achieved higher accuracy of about 93.0% using the machine learning
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approach. Whereas our proposed method provides a classification accuracy of 98.9%. In

addition, Krishanan et al. [87, 139] have used MEMD for decomposing multichannel EEG

data, which is a computationally complex algorithm for higher dimensional data. Both deep

learning-based approaches proposed by Oh et al. [138], Shalbaf et al. [159], and others

achieve higher accuracy, around 98.0%, which is similar to our model’s accuracy. However,

deep learning-based models are computationally expensive and demand a longer time to

be developed as compared to the machine learning-based approach. Hence, our proposed

method of detecting schizophrenia is competent to be used as a diagnostic tool.

3.5 Summary

In this chapter, we have proposed a method for the classification of schizophrenia and

healthy EEG signals. A novel extension of iterative filtering is developed for multivari-

ate data. Iterative filtering in its original form aims to decompose a single channel multi-

components signal into univariate modulated oscillations. MIF decomposes multichannel

EEG signals into MIMFs. MIMFs are grouped according to mean frequency in order to ob-

tain different EEG band signals, namely delta, theta, alpha, beta, and gamma rhythms. From

each band, Hjorth parameters are extracted and used as features for classifiers. Different

classifiers like SVM, KNN, LDA, and decision trees are used to evaluate the performance

of features and obtain an accuracy of 98.9% with the SVM (Cubic) classifier.

Comparison of our proposed method with the existing works shows significant improve-

ment in Acc, Spe, and Sen. Other deep CNN-based approaches achieved a similar level of

accuracy as our method. But, machine learning based approach is computationally efficient

than deep learning based approaches. Thus, the proposed method can be proved as a more

realistic and reliable method in predicting schizophrenia and help a medical practitioner to

provide better treatment to schizophrenia patients such that they can live a better life.
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Chapter 4

Parkinson’s Disease Identification Based

on Phase-space Representation

4.1 Introduction

Several researchers tried to detect Parkinson’s disease using different imaging tech-

niques such as magnetic resonance imaging (MRI), ultrasound of the brain, positron emis-

sion tomography (PET) scans, electroencephalogram (EEG), etc. [79]. The conventional

subjective method for Parkinson’s disease diagnosis is time-consuming and prone to errors

[164]. Positron emission tomography (PET), functional MRI (fMRI) based techniques have

shown promising performance, but these require high computational facilities, sophisticated

instruments, and laboratory setup. EEG signal processing-based methods have several ad-

vantages over other neuroimaging techniques, like cost-effectiveness, non-radioactivity, etc.

In the literature, several methods for Parkinson’s disease detection from EEG signals

have been proposed. Jeong et al. [165] proposed a Parkinson’s disease detection method

based on the wavelet decomposition technique. Relative wavelet energy and wavelet co-

herence are used as features for classification based on (linear discriminant analysis) LDA.

They found that relative wavelet energy was increased for lower frequencies, and the value

was lower than in healthy subjects. Liu et al. [166] developed a Parkinson’s disease detec-

tion framework using sample entropy features extracted from three-level discrete wavelet

transform subbands. Naghsh et al. [167] used a fast Fourier transform (FFT)-based spec-
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trum of EEG signals to diagnose Parkinson’s disease. They used independent component

analysis to choose the EEG source from the basal ganglia region of the brain. The alpha and

beta band powers of the EEG sources in the basal ganglia region are probable indicators of

Parkinson’s disease. Betrouni et al. [168] have proposed a method based on spectral power

analysis and k-nearest neighbors (KNN) classifier to classify the different stages of Parkin-

son’s disease, which achieved an accuracy of 84.0%. Oh et al. [169] classified the EEG

signals belonging to healthy and Parkinson’s disease patients using deep convolutional neu-

ral network (CNN). They have reported classification accuracies of 88.25% 88.31%. Loh et

al. [170] developed Gabor transform and deep neural network-based method for Parkinson’s

disease detection. Their methods obtained an accuracy of 99.46%. Anjum et al. [171] used

linear predictive coding for EEG with the power spectral density (PSD) for the identifica-

tion of Parkinson’s disease. Jackson et al. [164] showed phase-amplitude coupling between

beta and broadband gamma (50-150 Hz) is a useful metric for diagnosing Parkinson’s dis-

ease. Waveform shape measure metrics like sharpness and steepness ratios are also used to

categorize EEG signals into healthy and Parkinson’s disease classes. George et al. [172]

reported a decrease in cortical beta-band coherence and an increase in beta band power af-

ter dopaminergic medication, generally used to treat Parkinson’s disease. Authors in [173]

proposed a Parkinson’s disease detection framework based on CNN and long short-term

memory (LSTM) networks to incorporate structural features and context dependency.

Several methods in literature have used the Fourier transform for the analysis of EEG

signals [167, 168]. However, Fourier transform-based methods are not suitable for the anal-

ysis of nonstationary signals due to the use of complex sinusoidal basis functions with in-

finite duration to represent any signal [28]. To capture the time-varying properties, time-

localized basis functions are required. Wavelet transforms use a predefined set of basis

functions, which also fail to provide proper representation.

By considering the aforementioned issues in existing methods, we have proposed a mul-

tivariate analysis-based method for the detection of Parkinson’s disease. Multivariate itera-

tive filtering (MIF) has been used to decompose the multichannel EEG data into multivariate

oscillatory modes, which are further represented in higher dimensions through phase-space

representation (PSR). The area under the Euclidean distance curve obtained from the PSR
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has been extracted as features. The support vector machine (SVM) and KNN-based machine

learning classifiers have been developed to classify the extracted features into Parkinson’s

disease and healthy categories.

EEG signals are prone to several artifacts, and analysis of artifact-contaminated seg-

ments can be misleading. The existing Parkinson’s disease detection frameworks have ana-

lyzed a single small segment of EEG data for identifying Parkinson’s disease. To reduce the

effect of artifacts, instead of using a single segment, we have used multiple mini-segments

for decision-making. Information fusion is used to obtain a more reliable final decision.

Information fusion is typically classified into three types based on the level of abstraction of

data processing: data-level fusion, feature-level fusion, and decision-level fusion [174]. In

this chapter, we have proposed feature-level and decision-level fusion strategies to get the

final decision from multiple mini-segments.

Figure 4.1: Block diagram of the proposed framework for Parkinson’s disease detection
from EEG (Note: PD denotes Parkinson’s disease).

The main contributions of the chapter are as follows:

1. The characteristics of the EEG signal have been studied using MIF for Parkinson’s

disease detection.

2. A data-adaptive signal decomposition-based framework has been developed for the
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detection of Parkinson’s disease from EEG signal.

3. PSR-based feature has been proposed for the classification of EEG signals.

4. Different fusion strategies have been proposed for obtaining more reliable decisions

with high sensitivity.

4.2 Database

We have used a publicly available database for evaluating the proposed Parkinson’s dis-

ease detection framework. The EEG data corresponding to 15 Parkinson’s disease patients

and 16 healthy subjects were collected at a sampling frequency of 512 Hz [164]. The Parkin-

son’s disease patients were suffering from mild to moderate Parkinson’s disease (between

stage II and III on the Hoehn and Yahr scale) [172]. For Parkinson’s disease subjects, EEG

signals are recorded with two conditions: medications on and off. A 32-channel Biosemi

ActiveTwo bio amplifier is used to record the EEG data for at least 3 minutes. During the

data recording, subjects were instructed to sit steadily and to fixate on a cross shown on a

screen. Data were filtered using a highpass filter of cut-off frequency 0.5 Hz. EEG signals

corresponding to a healthy subject and a Parkinson’s disease patient are shown in Figs. 4.2

(a) and (b), respectively. For more details about the dataset used in this study, please refer

to [164].

4.3 Methodology

The proposed framework for Parkinson’s disease detection, as illustrated in Fig. 4.1,

used MIF to decompose the multichannel signal into narrowband multivariate intrinsic mode

functions (MIMFs), adaptively. PSR is used to extract features from MIMFs. Finally, us-

ing a machining learning classifier and information fusion techniques, the EEG signals are

classified into two groups: Healthy and Parkinson’s disease. Each step is described below.
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(a) (b)

Figure 4.2: EEG signals corresponding to (a) healthy and (b) Parkinson’s disease subjects.

4.3.1 Preprocessing

In the preprocessing stage, we have partitioned the continuously recorded EEG signals

into 3 s EEG epochs. A notch filter centered around 60 Hz has been used in order to

remove power line noise. EEGLAB toolbox [175] has been used for notch filtering. The 3

s epoch is further divided into mini-segments having different window lengths (W ) of 1 s

(512 samples) or 1.5 s (768 samples) for information fusion-based classification. We get 3

mini-segments for 1 s length and 2 mini-segments for 1.5 s length. The EEG segments are

z-score normalized before further processing.

4.3.2 Signal Decomposition based on MIF

The signals associated with biological systems are generally complex, nonlinear, and

nonstationary in nature. Due to lower time-frequency localization and using predefined

basis functions, conventional signal processing techniques like Fourier transform, wavelet

analysis tools fail to provide an effective representation of bio-signals. The EEG signals

are decomposed into narrowband oscillatory components using MIF algorithms described

in Chapter 2. For the proposed framework, we have considered Th as 0.001 for the stopping

criteria of the MIF algorithm.
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4.3.3 Phase-space Representation (PSR)

PSR has been used for representing physiological signals to get more insights. PSR is

an effective tool for mapping the signal in such a way that the dynamics of the signal or how

the signal has evolved forward in time can be easily observed [176, 177, 178].

A signal x[n] = {x[1], x[2], . . . , x[L]} of length L, can be represented mathematically in

the form of PSR vector as follows: xPSR(k) = [x[k], x[k + l], . . . , x[k + (D − 1)l]], where k

will vary in the range 1 to L− (D− 1)l. l and D denote time lag and embedding dimension

of PSR, respectively [179]. The PSR vector can be written in expanded form as,

xPSR =


xPSR(1)

xPSR(2)
...

xPSR(L− (D − 1)l)



=


x[1] x[1 + l] · · · x[1 + (D − 1)l]

x[2] x[2 + l] · · · x[2 + (D − 1)l]
...

...
. . .

...

x[L− (D − 1)l] x[L− (D − 1)l + l] · · · x[L]



(4.1)

The PSR is a useful representation to depict the nature of nonlinearity, whether the signal

is chaotic or not, etc.

4.3.4 Feature Extraction

We have computed the Euclidean distance between all the points in PSR and the center

of PSR, which is termed the Euclidean distance curve. The mathematical expression for the

Euclidean distance curve can be expressed as follows:

Ed(k) =
√

x2(k) + x2(k + l) + x2(k + (D − 1)l) (4.2)
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The area under the Euclidean distance curve is computed based on numerical integration

using the trapezoidal method [180]. The area under the Euclidean distance curve extracted

from the MIMFs corresponding to all channels is used as features. The norm of the Eu-

clidean distance curve is used for feature representation in [181].

4.3.5 Classification

We have used SVM and KNN classifiers to evaluate the effectiveness of the proposed

feature space for detecting Parkinson’s disease from EEG signals. SVM classifier has been

successfully used in EEG signal processing-related applications [25, 182]. Vapnic et al.

[150] have developed the statistical theory behind the SVM classifier for binary classifica-

tion. A linear decision surface is used to discriminate a high-dimensional feature space.

Figure 4.3: (a) EEG signals, (b) 3-D PSRs, and (c) Euclidean distance curves correspond-
ing to healthy and Parkinson’s disease subjects (Note: H denotes healthy and PD denotes
Parkinson’s disease).

KNN is a supervised and non-parametric classifier that classifies a given data point based

on the majority of its surrounding data points [152]. The working principle of KNN includes

two steps: finding the k nearest neighbor based on distance metrics like Euclidean distance,

cosine distance, etc., and assigning the class to the new data point based on the majority in

the neighbor. Here, we consider Euclidean distance and k = 1 for the KNN classifier.
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4.3.6 Fusion for Decision

Classification results from a single small segment of signals may provide an erroneous

decision due to the presence of a short-duration artifact. Multiple segment-based fused

classifications may improve the system’s performance. Artifact-affected segments can be

one possible cause of misclassification, which can be avoided by using multiple segments

for decisions. Here, we proposed several fusion strategies for multi-segment classification

at different levels, like feature-level and decision-level. In feature-level decision fusion, the

extracted features from different segments are averaged, and a single classifier is developed

based on the averaged feature vector. This fusion strategy is named as fusion model 1 (M1).

The fusion model M1 can help to reduce the effect of sudden changes in signal due to the

appearance of noise.

In decision-level fusion, multiple classifiers are trained for each mini-segment feature.

Then, the classification outputs for mini-segment data are fused using Boolean logic, AND

and OR logic, which are named as fusion models 2 (M2) and 3 (M3), respectively.

4.4 Results and Discussion

In this section, we have presented the results obtained for the proposed MIF-PSR-based

Parkinson’s disease detection method. Additionally, we have discussed the results and com-

pared the performance with the state-of-the-art methods for Parkinson’s disease detection.

In the preprocessing stage, a total of 1018 and 1990 3 s epochs are obtained for healthy

and Parkinson’s disease classes, respectively. We have combined the medications on and

off data epoch to form the Parkinson’s disease class. MIF is used to decompose the multi-

channel EEG epoch into oscillatory components. Figure 4.3 (a) shows decomposed MIMFs

corresponding to EEG signals (shown at the top of Figs. 4.2 (a) and (b) for healthy and

Parkinson’s disease subjects, respectively). Only the first six MIMFs are selected for fea-

ture extraction as they give discriminant features, as observed in the preliminary experiment.

All MIMFs have been represented individually in n-dimension PSR. Figure 4.3 (b) shows

3D PSRs of MIMFs, shown in 4.3 (a). The Euclidean distance between each point and the

center of the PSR is computed, which is shown in Fig. 4.3 (c). The area under the Euclidean
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distance curve is computed and used as a feature for training classifiers. A total of 192

features are obtained from the MIMFs of 32-channel EEG data (32 channels × 6 MIMFs).

Based on information fusion strategies (M1, M2, and M3), SVM and KNN classifiers are

developed for the identification of Parkinson’s disease.

A group of statistical measurements, including accuracy (Acc), sensitivity (Sen), and

specificity (Spe), are used to assess the classification performance of the proposed frame-

work. These parameters are defined in Eqs. (3.13)-(3.15).

Here, true positive (TP) denotes the Parkinson’s disease EEG segments truly detected

as Parkinson’s disease, false negative (FN) denotes the Parkinson’s disease EEG segments

classified as healthy, true negative (TN) denotes truly predicted healthy EEG, and false

positive (FP) refers to healthy EEG segments classified as Parkinson’s disease segments.

Table 4.1: Performance measures (in %) of MIF-PSR for various embedding dimensions of
PSR and mini-segment lengths.

D Parameters
W = 512 W = 768

M1 M2 M3 M1 M2 M3
SVM KNN SVM KNN SVM KNN SVM KNN SVM KNN SVM KNN

2
Acc 98.27 95.11 96.38 90.16 95.15 89.56 98.27 95.08 96.91 92.32 96.84 92.49
Sen 98.99 96.28 94.87 86.63 99.80 99.70 98.99 96.28 96.28 90.80 99.70 99.10
Spe 96.86 92.83 99.31 97.05 86.05 69.74 96.86 92.73 98.13 95.28 91.26 79.57

3
Acc 98.20 95.05 96.34 89.93 95.05 89.59 98.24 95.05 96.97 92.22 96.81 92.49
Sen 99.05 96.23 94.82 86.28 99.80 99.70 98.99 96.23 96.33 90.85 99.70 99.10
Spe 96.56 92.73 99.31 97.05 85.76 69.84 96.76 92.73 98.23 94.89 91.16 79.57

4
Acc 98.20 95.05 96.31 89.83 95.05 89.79 98.17 95.01 96.97 92.35 96.78 92.59
Sen 99.05 96.13 94.77 86.13 99.80 99.70 98.94 96.13 96.33 90.90 99.70 99.10
Spe 96.56 92.93 99.31 97.05 85.76 70.43 96.66 92.83 98.23 95.19 91.06 79.86

5
Acc 98.24 95.05 96.38 89.86 95.01 89.79 98.17 95.05 97.01 92.39 96.78 92.72
Sen 99.05 96.13 94.87 86.23 99.80 99.65 98.99 96.13 96.38 90.90 99.70 99.10
Spe 96.66 92.93 99.31 96.95 85.66 70.53 96.56 92.93 98.23 95.28 91.06 80.26

6
Acc 98.24 95.05 96.34 89.86 94.98 89.76 98.24 95.11 97.01 92.45 96.81 92.69
Sen 99.05 96.08 94.82 86.23 99.75 99.75 99.05 96.18 96.38 91.01 99.70 99.10
Spe 96.66 93.03 99.31 96.95 85.66 70.24 96.66 93.03 98.23 95.28 91.16 80.16

7
Acc 98.14 95.05 96.34 89.99 94.98 89.76 98.20 95.18 97.04 92.45 96.88 92.69
Sen 98.94 96.08 94.82 86.33 99.75 99.75 99.05 96.23 96.43 91.06 99.75 99.10
Spe 96.56 93.03 99.31 97.15 85.66 70.24 96.56 93.12 98.23 95.19 91.26 80.16

8
Acc 98.14 95.08 96.34 90.03 95.01 89.83 98.20 95.18 97.04 92.49 96.84 92.69
Sen 98.94 96.13 94.82 86.38 99.75 99.70 99.05 96.23 96.43 91.01 99.75 99.10
Spe 96.56 93.03 99.31 97.15 85.76 70.53 96.56 93.12 98.23 95.38 91.16 80.16

9
Acc 98.17 95.08 96.38 90.09 95.05 89.83 98.27 95.15 97.07 92.52 96.81 92.65
Sen 98.94 96.13 94.87 86.43 99.75 99.70 99.05 96.23 96.48 91.06 99.75 99.10
Spe 96.66 93.03 99.31 97.25 85.85 70.53 96.76 93.03 98.23 95.38 91.06 80.06

10
Acc 98.17 95.15 96.38 90.03 95.05 89.93 98.24 95.15 97.11 92.55 96.84 92.59
Sen 98.89 96.18 94.87 86.33 99.75 99.70 98.99 96.23 96.53 91.06 99.75 99.10
Spe 96.76 93.12 99.31 97.25 85.85 70.83 96.76 93.03 98.23 95.48 91.16 79.86

The performance measures of the classifiers obtained for different parameters, includ-
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ing PSR embedding dimension (D) and length of the mini-segment (W ), are showcased in

Table 4.1. A five-fold cross-validation scheme is used to evaluate the performance of the

classifiers. Fusion model M1 provides the highest accuracy of 99.27% (Sen: 98.99% and

Spe: 96.86%) for mini-segment length and PSR embedding dimensions of 512 samples and

2, respectively. PSR with two dimensions and a mini-segment length of 512 samples pro-

vides 99.80% Sen for the classification of Parkinson’s disease with an accuracy of 95.15%.

A high sensitivity will ensure that any patients suffering from Parkinson’s disease will not

be wrongly diagnosed as healthy subjects. For this model, the specificity has decreased to

85.76%, which may lead to the diagnosis of a healthy person with Parkinson’s disease. This

model will be useful for primary screening purposes. Further confirmation needs to be taken

from an expert, and proper treatment can be started.

Table 4.2 shows the performance when Parkinson’s disease medication on and medica-

tion off-state have been considered as two different classes. The proposed framework based

on model M1 with embedding dimension 4, mini-segment length 512, and SVM classifier

archives an Acc of 94.95%, Sen of 94.77%, and Spe of 96.77%.

In the literature, most of the studies used PSR realized in lower dimensions like two or

three dimensions due to the possibility of easy visualization [177, 181]. However, in this

chapter, we have analyzed the performance of the proposed MIF-PSR with higher dimen-

sional PSR. The time taken to obtain the PSR and compute the area feature is calculated for

all the epochs. The mean and standard deviation (SD) values for feature computation time

are shown in Fig. 4.4 (a) for different embedding dimensions. The computation time has

gradually increased for the higher embedding dimension of the PSR. Figure 4.4 (b) shows

the evaluation of accuracy with the embedding dimension of PSR. We have not found any

significant improvement in classification accuracies for higher dimensions, but the compu-

tation time has increased. The results, shown in Table 4.1 and Fig. 4.4, present evidence that

lower dimension PSR is also useful to differentiate between the dynamics of MIMFs corre-

sponding to healthy and Parkinson’s disease EEG signals. So, for the Parkinson’s disease

detection application, lower-dimensional PSR features can also be used due to the lower

computational complexity compared to higher-dimensional PSR-based features.

The effect of varying time lag parameters (l) on the accuracy of the Parkinson’s disease
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(a)

(b)

Figure 4.4: (a) Feature computation time for different embedding dimensions of the PSR
(the bold lines show the median of computation time, and the shaded area shows the in-
terquartile range of feature computation time) and (b) evaluation of accuracy (for M1 fusion
model) with embedding dimensions of the PSR.

detection framework is assessed by choosing l between 1 to 700 or the maximum possible

value (L− (D− 1)l > 0). The evaluation of accuracy with increasing time lag is illustrated

in Fig. 4.5. The accuracy remains the same up to a certain range of time lag parameters. So,

we chose time lag l as 1 in the proposed framework.

The proposed MIF-PSR Parkinson’s disease detection framework fused information
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Table 4.2: Performance measures (in %) of MIF-PSR for various embedding dimensions of
PSR and mini-segment lengths for model M1.

D Parameters
W = 512 W = 768

SVM KNN SVM KNN

2
Acc 94.85 89.13 94.88 89.16
Sen 94.67 86.82 94.77 86.72
Spe 96.67 94.44 96.72 94.49

3
Acc 94.91 89.10 94.85 89.10
Sen 94.77 86.82 94.77 86.62
Spe 96.77 94.39 96.72 94.44

4
Acc 94.95 89.13 94.91 89.20
Sen 94.77 86.52 94.87 86.62
Spe 96.77 94.49 96.72 94.54

5
Acc 94.88 89.20 94.91 89.30
Sen 94.77 86.52 94.87 86.62
Spe 96.67 94.59 96.72 94.69

6
Acc 94.85 89.16 94.85 89.39
Sen 94.67 86.42 94.77 86.72
Spe 96.67 94.59 96.67 94.69

7
Acc 94.85 89.06 94.81 89.36
Sen 94.77 86.32 94.77 86.62
Spe 96.62 94.49 96.62 94.69

8
Acc 94.85 89.10 94.88 89.43
Sen 94.77 86.42 94.87 86.62
Spe 96.62 94.54 96.62 94.79

9
Acc 94.85 89.10 94.91 89.43
Sen 94.77 86.42 94.97 86.62
Spe 96.62 94.54 96.62 94.79

10
Acc 94.88 89.16 94.91 89.39
Sen 94.77 86.42 94.97 86.62
Spe 96.72 94.59 96.67 94.74

from multiple mini-segments to generate a final decision. A short-duration artifact can

affect the decision of the whole segment when we analyze the whole segment at a time. To

illustrate this, an EEG epoch (only noise-contaminated channels are shown) of a Parkinson’s

disease patient is shown in Fig. 4.6. The EEG epoch is divided into three mini-segments of

length 512 samples which are separated using red dashed lines. It can be observed that the

first and second mini-segments are affected by artifacts. The classifier fails to predict these

initial two mini-segments (highlighted using red boxes) as Parkinson’s disease EEG. The

last mini-segment has been successfully predicted as Parkinson’s disease, which has been

highlighted using a green box. The final decision for the EEG epoch has been obtained by

the proposed M3 fusion strategy, which correctly marked the 3 s segment as Parkinson’s

disease EEG. On the other hand, when the whole EEG epoch (shown in Fig. 4.6) is used

for prediction, due to the presence of artifacts, the epoch has been classified as a healthy
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Figure 4.5: Evaluation of Acc (for M1 fusion model) with time lag of the PSR.

Figure 4.6: EEG signals corresponding to Parkinson’s disease subject divided into three
mini-segments of window length 512 samples (vertical red dashed lines are separating the
mini-segment). (Note: PD denotes Parkinson’s disease)

epoch. The proposed fusion model M3 helps in increasing the Sen of the Parkinson’s dis-

ease identification framework. High Sen is very important for the disease screening process

[183].

The performance comparison between using the original EEG signal and MIF-based

decomposed component is presented in Fig. 4.7 to show the usefulness of MIF. The average

of the performance obtained for different PSR dimensions is shown in Fig. 4.7. Also,

univariate iterative filtering is used to decompose the multichannel EEG signal in a channel-

wise manner, and the performance is evaluated. The number of decomposed components are
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Figure 4.7: Performance comparison between EEG and MIMF (for M1 fusion model).
(Note: UIF denotes univariate iterative filtering)

kept as six same as MIF decomposition. The iterative filtering does not guarantee the same

number of oscillatory modes in all channels. When iterative filtering provides a number

of oscillatory modes less than six, we consider a constant zero signal to obtain the same

number of oscillatory modes in all channels. All the statistical parameters Acc, Sen, and Spe

have increased significantly for MIF-based decomposed components. An uneven number

of modes in different channels and improper mode alignment are two major drawbacks of

univariate signal decomposition [25].

The proposed features (average over all epochs) for different MIMFs corresponding to

healthy and Parkinson’s disease classes are shown using topoplot in Fig. 4.8. The difference

between the average feature between the healthy and Parkinson’s disease subjects’ EEG is

shown in the bottom row. The color in the topoplot represents the value of the variable

(feature/difference of feature). The higher color difference in the topoplot between healthy

and Parkinson’s disease classes signifies the feature’s discrimination ability. Features cor-

responding to the fourth and fifth MIMFs are showing visible differences between healthy

and Parkinson’s disease subjects in the central, temporal, and occipital lobes of the brain.

The features corresponding to the second and third MIMFs show a clear difference in the

FL of the brain.

Figure 4.2 shows the EEG segments corresponding to healthy and Parkinson’s disease
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Figure 4.8: Topoplot of the extracted features corresponding to healthy and Parkinson’s
disease subjects and their difference for different MIMFs. (Note: PD denotes Parkinson’s
disease)

patients. A neurologist can level the EEG signals by correlating the symptoms of the pa-

tients whether the EEG segments belong to Parkinson’s disease or not. It is not possible to

infer any visual difference from the EEG signals belonging to the two classes. The features

derived from the EEG signals are ranked based on two-sample t-tests. The five most signif-

icant features corresponding to healthy and Parkinson’s disease subjects are shown using a

boxplot presented in Fig. 4.9. The feature values corresponding to the Parkinson’s disease

EEG segments are higher than the healthy EEG segments. The proposed features make it

easy to see the visual difference between healthy and Parkinson’s disease classes. Hence,

the interpretability of the feature can directly help to understand the classes of EEG signals.

This feature can be used as a diagnostic feature. Moreover, it can be observed that all five

significant features lie in the central region of the brain. A similar finding has been obtained

from the topoplot also, presented in Fig. 4.8.

The proposed MIF-PSR-based technique is compared with the state-of-the-art methods

to assess its superiority and effectiveness in Parkinson’s disease detection in Table 4.3. For

classifying Parkinson’s disease, researchers have used signal processing algorithms along

with machine learning or deep learning classifiers. Our proposed framework is based on

a machine learning classifier but provides similar performance to deep learning classifiers.

The machine learning methods are computationally less complex but need to be fed with
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Figure 4.9: Features corresponding to healthy and Parkinson’s disease EEG segments: (a)
MIMF5 of Cz channel, (b) MIMF4 of Cz, (c) MIMF4 of C3 channel, (d) MIMF4 of CP1
channel, and (e) MIMF5 of C3 channel. (Note: H denotes healthy, and PD denotes Parkin-
son’s disease)

hand-crafted features. Depending on the features chosen, accuracy may be adversely af-

fected. The deep learning-based classifiers extract automatic features from the data, but the

deep network demands more computational resources as compared to the machine learning

classifiers.

The proposed framework has used 32-channel EEG data for Parkinson’s disease detec-

tion. In the future, channel selection based on the significance can be incorporated with the

proposed framework, which may be helpful in reducing the effort of recording EEG signals,

achieving a computationally less complex framework.

The automated Parkinson’s disease detection system will be helpful in detecting the

disease with less manual effort in rural areas where there is generally limited access to neu-

rologists and movement disorder specialists. In urban areas, hospitals are available, but due

to the high number of patients coming to avail of health-related services, the workload of the

doctors and healthcare providers is very high. The proposed system can be an assistive tool
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Table 4.3: Comparative performance of the proposed Parkinson’s disease identification
framework with existing methods.

Authors
(Years)

Dataset Methodology Performance
measures

Jeong et
al. [165]
(2016)

Subjects: 52 (Healthy:
26 & PD: 26)

Relative wavelet energy and wavelet coherence with
LDA

Acc = 79.18%
Sen = 81.84%
Spe = 76.49%

Liu et
al. [166]
(2017)

Subjects: 42 (Healthy:
25 & PD: 17)

Sample entropy of subbands extracted using discrete
wavelet transform and three-way optimal center con-
structive covariance

Acc = 92.86%

Naghsh et
al. [167]
(2020)

Subjects: 20 (Healthy:
10 & PD: 10)

FFT based PSD and fine Gaussian SVM classifier Acc = 95.00%

Oh et
al. [169]
(2020)

Subjects: 40 (Healthy:
20 & PD: 20)

CNN having thirteen layers
Acc = 88.25%
Sen = 84.71%
Spe = 91.77%

Loh et
al. [170]
(2020)

Subjects: 31 (Healthy:
16 & PD: 15) *

Gabor transform and deep neural network Acc = 99.46%

Anjum et
al. [171]
(2020)

Subjects: 82 (Healthy:
41 & PD: 41)

Linear predictive coding EEG algorithm
Acc = 85.70%
Sen = 85.70%
Spe = 85.70%

Li et al.
[173]
(2023)

Subjects: 55 (Healthy:
30 & PD: 25)

CNN and LSTM based hybrid deep neural network
Acc = 98.60%
Sen = 97.10%
Spe = 97.60%

Proposed
work

Subjects: 31
(Healthy: 16 &
PD: 15)

MIF and PSR-based feature extraction and SVM
classifier with information fusion model M1 (win-
dow length of 512 samples)

Acc = 98.27%
Sen = 98.99%
Spe = 96.86%

Fusion model M3 (window length of 512 samples)
Acc = 95.15%
Sen = 99.80%
Spe = 86.05%

Note: * denotes the same database as used in our study.

for doctors to make efficient diagnoses, thereby improving patient outcomes and alleviating

the burden on healthcare professionals.

4.5 Summary

In this chapter, we have proposed a computer-aided method for detecting Parkinson’s

disease from EEG signals based on MIF and PSR-based features. Also, a detailed explo-

ration to find suitable parameters for the framework is performed. The multichannel EEG
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signals are decomposed into multivariate oscillatory modes using MIF, which is represented

in higher dimensions based on PSR. The proposed area feature is computed from different

MIMFs and channels of EEG signals. The method is validated using a publicly available

dataset. The SVM classifier achieves an accuracy of 98.27%, sensitivity of 98.99%, and

specificity of 96.86% based on feature-level information fusion with a window length of

512. Based on the decision level feature fusion M2 with a window length of 512 sam-

ples, we have obtained 99.80% sensitivity with an accuracy of 95.15%. The experimental

results show the efficacy and reliability of the Parkinson’s disease detection system. The

comparative study between the proposed method and existing methods shows significant

improvement in classification performance. The proposed biomarker for detecting Parkin-

son’s disease will be helpful in reducing the manual effort of healthcare service providers

by providing automatic, accurate diagnostics.
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Chapter 5

Motor Imagery Brain-computer

Interface using Common Spatial Pattern

5.1 Introduction

Different experimental techniques, including Functional magnetic resonance imaging

(fMRI) [184], electroencephalogram (EEG) [69, 82, 185], magnetoencephalography (MEG)

[186], transcranial magnetic stimulation (TMS) [187], positron emission tomography (PET)

[188] etc., are used to study motor imagery (MI) brain-computer interface (BCI). Among

these techniques, EEG is the most widely used technique and is continuously gaining more

interest for BCI systems because it is noninvasive, has the potential for mobility in user, has

high time resolution, comparatively low cost, and lastly, recording is possible outside the

lab environment with minimum instrument requirements.

A fast-growing number of studies indicates that mu (8-12 Hz) and beta (18-25 Hz)

rhythms of EEG are the neurophysiological basis for MI BCI, observed in the sensory-

motor cortex (SMC) area of the brain [69]. A study carried out by Nikouline et al. [189] has

reported suppression of mu rhythms at both the ipsilateral and contralateral somatosensory

cortex due to somatosensory stimuli while Pfurtscheller et al. [190] demonstrated changes

of EEG activity, due to voluntary movements, in low-frequency bands including mu and

beta rhythms. Several studies attempted to develop an MI BCI system based on analyz-

ing band powers of mu and beta rhythms [189, 191]. However, most of the studies so far
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have employed Fourier analysis. Fourier transformation tries to decompose any signal us-

ing a predefined set of orthogonal basis functions, namely sine-cosine wave. In most cases,

biomedical signals are characterized by short, impulse-like events that represent transitions

between different phases of a biological cycle, e.g., the activation potential of the neuron.

Complex biological systems produce highly nonlinear and nonstationary signals; due to

that, the usefulness of a fixed basis function-based algorithm is less appropriate. These ap-

proaches extracted frequency bands using bandpass filtering of the data. But, unfortunately,

MI responsive frequency bands vary across subjects and even for different trials of the same

subject [69, 192]. To address this issue, researchers go for subject-specific frequency bands

selection based on manual visualization or set to unspecified broadband.

Data adaptive techniques like empirical mode decomposition (EMD) [63], variational

mode decomposition (VMD) [65, 193], iterative filtering [64] may be the solution to the

problems associated with Fourier transform or wavelet analysis. EMD-based techniques

were proposed for MI BCI to resolve issues like nonlinearity and nonstationarity of the

EEG signal. But multichannel EEG data decomposed by univariate EMD generates intrinsic

mode functions (IMFs) for different channels having varying frequency properties, which is

known as the uniqueness problem [69].

Park et al. [69] overcame this problem by using multivariate EMD (MEMD) [87] tech-

nique, which decomposes data into set of data-adaptive basis termed as multivariate IMF

(MIMF). Gaur et al. [185, 194] also used MEMD along with common spatial pattern (CSP)

for developing MI BCI systems. All the above approaches have combined the selected

MIMFs based on their relevance to reconstruct EEG signal. Several parameters like classi-

fication accuracies, mean, and median frequency of MIMFs were used for determining the

relevance of a particular MIMF. A study, performed by Ang et al. [192], tried to find most

appropriate frequency bands for MI BCI.

In MI-based BCI using EEG, CSP is the most popular method of discriminant feature

extraction [195, 196, 197]. CSP is a data-driven supervised algorithm that analyses multi-

channel EEG data associated with two different classes. This signal is then projected into a

new space, in such a way that the variance of the projected signal corresponding to one class

of MI task will be maximized, simultaneously it will be minimized for the other class of MI
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task. However, the performance of CSP depends on the operational frequency bands, which

are selected manually or set to a broad frequency range in most of the previously developed

applications. Due to subject-to-subject or even trial-to-trial variability of frequency band

affected by MI task, these methods suffer from poor performance. Jin et al. [198] proposed

a CSP based MI BCI technique where they have used Demster-Shafer theory for internal

feature selection. This method suppressed the outliers, which may adversely affect the per-

formance. In another CSP based MI BCI approach, Jin et al. [196] used correlation based

channel selection method to select more relevant channels. CSP is very sensitive to outliers;

for that, Jin et al. [199] developed feature optimization and outlier detection techniques.

The effectiveness of CSP depends on the selection of frequency bands. Therefore, a poorly

selected frequency band can adversely affect the classification performance.

To overcome the aforementioned issues, we have proposed an MI BCI algorithm based

on MIF and CSP. Instead of choosing an arbitrary broadband signal or any user-specific

particular band, MIF automatically extracts the different oscillatory modes from the signal.

The MIF algorithm is able to properly align the oscillatory modes into the same numbered

MIMF across different channels, which allows us to use CSP successfully. CSP features

are ranked and classified using the linear discriminant analysis (LDA) classifier. The main

contributions of the chapter are the following:

1. The adaptive signal decomposition property of MIF is explored to analyze nonstation-

ary MI BCI EEG signals.

2. A data-adaptive signal decomposition-based optimal frequency bands selection

framework for MI BCI application is proposed.

3. An LDA classifier is developed for MI BCI application, based on the CSP features

extracted from the multivariate oscillatory component of the multichannel EEG sig-

nal.
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5.2 Dataset

We used BCI competition IV 2a (dataset 1) and BCI competition III-IIIa (dataset 2)

EEG datasets to validate our proposed model for MI BCI [200]. Dataset 1 consists of EEG

data from nine different subjects who were imagining of left-, right-hand, both feet, and

tongue movement. For each of the four classes of MI movement, 72 trials were recorded.

Two sessions, consisting of 288 trials (72×4), recorded from each subject on different days,

one is used for training the model and another is used for evaluating the performance of the

model.

Figure 5.1: (a) Timing scheme of MI BCI experiment, (b) Electrode position (LM: left
mastoid and RM: Right mastoid).

A fixation cross appeared on the black screen 2 s prior to cue onset. A cue in the

form of an arrow pointing to left, right, down, or up corresponding to four classes was

displayed. The timing scheme of the experiment is shown in Fig. 5.1 (a). EEG signals were

recorded using 22 Ag/AgCl electrodes monopolarly using the montage shown in Fig. 5.1

(b). Electrodes were placed according to 10-20 international standards for EEG electrode

position. Right mastoid (RM) and left mastoid (LM) are used for connecting ground (Gnd)

and reference (Ref) electrodes, respectively. An additional three electrooculogram (EOG)

channels were recorded for artifact processing related to eye movement. The signals were

acquired at a sampling rate of 250 Hz, and bandpass filtered between 0.5-100 Hz. For more
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detail about the dataset refer to [200].

Figure 5.2: Block diagram of proposed MIF based MI BCI algorithm (MIF-CSP).

In dataset 2, sixty channels of EEG data were recorded at the sampling rate of 250 Hz

from three subjects. EEG signals were corresponding to four different MI tasks and each

class has 60 trials (for subject k3 each class has 90 trials). For more detail about the dataset,

refer to [201].

5.3 Methodology

In this section, a brief description of all the steps involved in the proposed MIF-CSP

method is given. Figure 5.2 shows the block diagram of the MIF-CSP algorithm.

5.3.1 Preprocessing

The continuous EEG signals are segmented into trials having signal of duration -1 s to

3 s based on the cue onset at 0 s. We have considered the signal of 1 s before the cue onset

to avoid any edge artifact that may arise due to filtering of the signal. We visually check

the spectrum of the EEG signal; for a few participants, the power line interface (PLI) [25] is

very prominent. To get rid of PLI, we employ a notch filter at the frequency of 50 Hz. The

training set trials marked as artifacts were removed as CSP are very sensitive to noise and

a little perturbation may affect the performance adversely. But for evaluation, we keep all
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the trials even those are contaminated with artifacts to check the robustness of the proposed

method. All the preprocessing steps were performed with the help of an open-source EEG

signal processing package EEGLAB [175].

5.3.2 Signal Decomposition

As previously mentioned, biological systems generate complex, nonlinear, and nonsta-

tionary signals. Predefined basis based signal analysis tools like Fourier analysis, wavelet

analysis tools are not effective due to lower time-frequency localization. We have used a

data-adaptive signal decomposition technique, namely MIF, for the analysis of MI EEG

signals. The convergence of IMF extraction process or stability of iterative filtering is math-

ematically proved in [64], and we have graphically demonstrated the same. We have shown

the mean square error (MSE) between the original signal and the reconstructed signal at

different iteration steps (different numbers of IMFs are used to reconstruct the signal) in

Fig. 5.3. It can be observed that MSE is reducing monotonously or converging when IMFs

are added iteratively one by one as part of signal energy covered by the IMFs, is increasing.

After the sixteenth iteration steps, the MSE has become very small or negligible where the

iteration process can be terminated. In MIF-CSP framework, Th in stopping criteria of MIF

Figure 5.3: Convergence of MIF.

algorithm is set to 0.001 [64].
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5.3.3 Common Spatial Pattern (CSP)

Scalp EEG signal, having very poor spatial resolution due to volume conduction, is hard

to analyze [9]. It becomes even more challenging when the signal of interest is dominated by

some other strong rhythms from nearby sources (e.g., sensory-motor rhythms are dominated

by the EEG rhythms from the occipital lobe). Different spatial filters like small Laplacian

[191], large Laplacian [191], common average reference [202], CSP [81, 191, 203] were

studied to improve the spatial resolution of EEG.

In several MI BCI applications, CSP and its variants are frequently used for discriminant

feature extraction [69, 191]. CSP targets to extract a spatial pattern such that it will maxi-

mize the variance of the projected signal corresponding to the positive class and minimize

the same for the negative class.

Here, we present an overview of the CSP algorithm for EEG data represented by a

C × N matrix, where C is the number of channels and N is the number of samples. The

normalized spatial covariance matrix, Cx ∈ RC×C , corresponding to X ∈ RC×N can be

computed using Eq. (5.1).

Cx =
XXT

tr(XXT )
(5.1)

where, tr(X) is the trace or sum of the diagonal elements of X and (·)T denotes transpose

operator. The average covariance matrix C̄d∈[1,2] for a task belonging to class 1 or class

2 is obtained by taking an average of the covariance matrix of task trials. The composite

covariance matrix, Cs is given by the sum of the covariance matrix of individual class as,

Cs = C̄1 + C̄2, (5.2)

Cs is factored as Cs = VsλsV
T
s , where Vs has eigenvectors in its column and λs is diagonal

matrix of eigenvalues. The variances in the space spanned by Vs are equalized to unity by

whitening transformation given by the following equation [191]:

Wh(Cs) = PCsP
T ,where P =

√
λ−1
s V T

s , (5.3)
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where Wh(·) denotes whitening transformation operator.

Secondly, let S1 = PC̄1P
T and S2 = PC̄2P

T then S1 and S2 will share common

eigenvectors B as defined in Eq. (5.4).

BTS1B = λ1, B
TS2B = λ2 (λ1 + λ2 = I), (5.4)

The final spatial filter is given by W T = (BTP ). EEG signal can be projected using derived

CSP filter W as,

Z = W TX, (5.5)

each column vector wj (j = 1, 2, · · · , C) of inverse of W T is termed as spatial filter. The

variance of the spatially filtered signal, Z, is used as a feature for classifying the two MI

EEG data. The first and last m row vectors are corresponding to largest eigenvalues in λ1

and λ2 will have maximum difference in the variance between two groups. The variance

features are computed as follows:

fp = log

(
var(zp)∑

i=1,··· ,m(var(zi)) +
∑

i=C−m+1,··· ,C(var(zi))

)
, (5.6)

where, zp is the pth row vector of spatially filtered signal Z and var(·) denotes variance

operator. The MIMFs corresponding to time segment 0.5-2.5s are used for CSP feature

extraction. For each MIMF, we have extracted six CSP features by considering m = 3.

Detailed steps for extracting CSP features are described in Algorithm 5.1. The value of r

can be set in between 4 to 8 as the lower frequency MIMFs will not lie in the EEG frequency

range (0.1-100 Hz).

Algorithm 5.1 CSP feature extraction from MIMFs
Input: MIMFd∈[1,2]
Output: FCSP (CSP features)

1: for r = 1 to R do //R is the number of MIMFs
2: Calculate covariance matrix Cr from rth MIMF for classes 1 & 2 (Eq. (5.1))
3: Design CSP filter Wr (Eqs. (5.2)-(5.4))
4: Transform MIMFr (Eq. (5.5))
5: FCSP = extract 2m features using Eq. (5.6)
6: end for
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5.3.4 Feature Ranking and Classification

CSP features are ranked based on the p-value of the student t-test. In the preparatory

experiment, we considered both the support vector machine (SVM) and LDA classifiers.

LDA classifier provides higher accuracy, so we have selected LDA classifier.

5.3.4.1 Linear Discriminant Analysis (LDA)

LDA is generally used for reducing the dimensionality of the data as well as maintaining

most of the discriminatory information [154]. LDA classifier tries to fit a linear boundary

between two classes. For EEG based MI BCI application, LDA is widely used for both

classification [81] or choosing an optimum set of features. Lets say, two classes C1 and

C2, having n-dimensional sample points x = [x1, x2, · · · , xn], are to be separated by a

linear boundary, y = wTx, ((·)T is transpose operator). For best discrimination of the two

classes, the mean of the two classes should be separated maximally, and variance should

be minimum after projecting on the boundary [81, 154]. To achieve this, the ratio of mean

separation to the within class variances, J(w) has to be maximized. J(w) is defined in Eq.

(5.7).

J(w) =
wT (µ1 − µ2)

2w

wTS1w + wTS2w
, (5.7)

where numerator is corresponding to the separation of mean between two classes and de-

nominator is corresponding to within class variance of two classes. Mean µi and standard

deviation (SD) Si for class i ∈ {C1, C2} are defined by following equations:

µi =
1

Ni

∑
x, (5.8)

where Ni is the number of samples in the class i.

Si =
∑

(x− µi)(x− µi)
T , (5.9)

J(w) will be maximum when w is wmax defined by following equation:

wmax = (S1 + S2)
−1(µ1 + µ2), (5.10)
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where wmax is the weight vector which provides the optimum projection direction, as well

as the linear separability will be preserved. Decision boundary constructed based on the

computed weight vector wmax is used in Fisher’s LDA [154] to classify data using feature

vector x as, y = wT
maxx + b, where b is the bias or threshold. Based on the sign of y, the

features are assigned to a particular class.

5.4 Results and Discussion

In this section, we have showcased the obtained results for the proposed method for MI

BCI classification. The four different MI tasks available in the dataset are classified using

six different binary classifiers. We decompose multichannel EEG signals into oscillatory

modes or MIMFs using MIF. EEG signal and corresponding four MIMFs for subject A03T

(‘T’ in ‘A03T’ denotes training session data), when performing left hand MI task, are shown

in Fig. 5.4. CSP is employed to extract the most discriminant features from the oscillatory

Figure 5.4: EEG signals and four MIMFs for subject A03T during left hand MI task. For
clear visualization, EEG signals corresponding to three channels (C3, Cz, and C4) are
shown.
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modes. Covariance matrices corresponding to left and right hand MI task, the weight of the

spatial filters, and the spatially filtered MIMFs (MIMF2 and MIMF3) of EEG signals are

shown in Fig. 5.5. These features are ranked using student t-test, which is used for feature

ranking for EEG based classification problem [25]. We have trained an LDA classifier using

all the trials provided in the training set. The trained model is evaluated using a completely

different set of trials provided in the evaluation set.

Figure 5.5: CSP based spatial filtering of EEG signals of subject A03T. Note: cLH and cRH:
covariance matrices obtained for left and right hand MI tasks, W : spatial filter, z1 and z22:
spatially filtered signals corresponding to first and twenty-second row, respectively, and f1
and f22: variance features of first and twenty-second row.

Fig. 5.6 shows the evaluation of classification accuracies, when different numbers of

features are used, for six different classifiers. We have chosen a minimum number of most

significant features which can achieve maximum accuracy in subject specific fashion, which

may reduce the flexibility of the proposed framework. To make the framework more gen-

eral, the number of features (Nf ) can be chosen subject independently, based on the average

accuracy. The average accuracy over all the subjects is shown in Fig. 5.6. Table 5.1 presents
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(a) (b)

(c) (d)

(e) (f)

Figure 5.6: Evaluation of classification accuracies when different number of features are
used, (a) left versus right hand, (b) left hand versus feet, (c) left hand versus tongue, (d)
right hand versus feet, (e) right hand versus tongue, and (f) feet versus tongue.

the subject-wise accuracies and number of features used for classification of different com-

binations of MI tasks (left- versus right-hand (L&R), left hand versus feet (L&F), left hand

versus tongue (L&T), right hand versus feet (R&F), right hand versus tongue (R&T), and

feet versus tongue (F&T)). Additionally, the last row of Table 5.1 presents the accuracies

when Nf is chosen subject independently. When Nf is chosen in a subject-independent

fashion, then the algorithm becomes more general but with the cost of reduced accura-

cies. Based on the application requirement, Nf can be chosen in subject specific manner or
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subject-independent fashion. The variability in the performance of different subjects may

arise for various reasons, such as changes in recording conditions and variability of the

subject’s attention to perform the MI task.

Table 5.1: Classification accuracy (in %) obtained for proposed method on BCI competition
IV 2a dataset.

Subject
L&R L&F L&T R&F R&T F&T
Acc Nf Acc Nf Acc Nf Acc Nf Acc Nf Acc Nf

A01 95.14 7 97.92 12 97.92 5 99.31 7 100.0 5 75.69 9
A02 58.33 13 77.78 13 68.75 11 80.56 15 69.44 2 79.86 5
A03 97.92 5 95.14 3 95.14 5 95.83 7 96.53 2 79.86 1
A04 79.92 5 85.42 7 86.11 5 85.42 4 81.94 15 68.75 8
A05 84.03 2 68.06 3 80.56 18 77.78 15 82.64 3 61.11 1
A06 65.28 18 63.19 1 75.69 10 55.56 5 70.14 3 66.67 14
A07 85.42 8 99.31 8 97.22 7 100.0 2 97.22 5 88.19 4
A08 95.83 9 93.75 3 95.14 4 90.97 7 89.58 7 86.81 16
A09 93.75 12 95.14 16 97.92 13 85.42 8 72.22 20 88.19 3
Average 83.18 - 86.19 - 88.27 - 85.65 - 84.41 - 77.24 -
SD 14.50 - 13.49 - 10.98 - 13.78 - 12.07 - 9.95 -
SI 80.71 5 83.10 6 86.34 7 82.56 8 82.02 5 73.07 6
Nf : Number of features, SI: Subject independent

MIF-CSP is also evaluated using another publicly available dataset to show the gener-

ality of the algorithm. Accuracies for different MI tasks are tabulated in Table 5.2, which

lie in a similar range to dataset 1. For subjects k3 and l1, MIF-CSP provides accuracy

around 80.0% , but for k6, MIF-CSP shows comparatively lower (by 2-40%) classification

performance.

An extensive experimental comparison is presented with the following state-of-the-art

MI BCI algorithms.

CSP [191]: EEG signals corresponding to time segment 0.5-2.5 s after cue appeared are

band-passed at 4-40 Hz, and CSP features are extracted for classification.

FBCSP [192]: EEG signals corresponding to time segment 0.5-2.5 s after cue onset are

separated into several bands using bandpass filter. EEG signals between the band 4 Hz and
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Table 5.2: Classification accuracy (in %) obtained for proposed method on BCI competition
III IIIa dataset.

Subject
L&R L&F L&T R&F R&T F&T
Acc Nf Acc Nf Acc Nf Acc Nf Acc Nf Acc Nf

k3 100.0 1 96.67 7 97.78 3 98.89 2 100.0 18 87.78 1
k6 60.00 1 61.67 18 88.33 2 75.00 9 85.00 2 85.00 12
l1 93.33 7 96.67 3 96.67 1 91.67 1 88.33 1 58.33 12
Average 84.44 - 85.00 - 94.26 - 88.52 - 91.11 - 77.04 -
SD 21.43 - 20.21 - 5.16 - 12.25 - 7.88 - 16.26 -
SI 81.67 1 82.96 19 93.33 2 87.04 11 90.19 2 74.07 12
Nf : Number of feature, SI: subject independent

40 Hz are separated into non-overlapping subbands of 4 Hz.

S-wLTL [204]: Azab et al. used transfer learning approach to reduce the calibration time

and requirement of large training data. CSP features are used to train a logistic regression

classifier.

MEMDBF-CSP [185]: Gaur et al. proposed an MI BCI algorithm, in which EEG signal

are filtered with the help of MEMD technique. Relevant IMFs are automatically selected

to reconstruct based on the median frequency of the IMF. CSP features of the reconstructed

EEG signal are used to classify using both LDA and SVM classifiers. We have shown the

results for LDA classifier as it provides slightly higher accuracy.

SS-MEMDBF-RG [194]: EEG signal are filtered and enhanced using MEMD based fil-

tering by selecting MIMFs, based on their mean frequency. Sample covariance matrices are

used as features, and different MI tasks are classified with the help of Riemannian geometry.

SW-LCR [81]: Another approach, proposed by Gaur et al., uses a sliding window to

get rid of the inconsistency associated with the varying activation time of the task from

trial to trial. They have extracted nine time frames using a sliding window of length 1

s from bandpassed (8-30 Hz) EEG signal. Different LDA classifiers are trained for each

time frame, based on the CSP features corresponding to that frame. The final prediction is

done based on the decision-level fusion of the intermediate predictions from nine classifiers.

Fusion is done in two ways: largest consecutive repetition (SW-LCR) of a particular class is
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chosen or maximum number of repetitions (SW-Mode) of a particular class in the sequence

of intermediate prediction. SW-LCR and SW-Mode provide average accuracy of 80.02%

and 79.78%, respectively. Accuracies of SW-LCR for each individual subject are shown in

Table 5.3.

TSGSP [205]: Temporally constrained sparse group spatial pattern tries to optimize

both the frequency band and time window to increase the classification accuracy. In this

method, predefined overlapping frequency bands were extracted from different time instants

with the help of a sliding window. Optimized CSP features are extracted and selected for

classification using a linear SVM classifier.

Table 5.3 summarizes the classification accuracies obtained from the above-described

algorithm. The proposed method provides an average accuracy of 83.18% for L&R MI

movement, which is higher than the existing state-of-the-art MI BCI algorithm. The highest

accuracy in L&R MI task classification is provided by MIF-CSP for four subjects. For a

fair comparison, we have performed feature ranking and classification in a similar way to

MIF-CSP for both CSP and filter bank CSP (FBCSP) methods. Table 5.4 showcased the av-

erage accuracy of MI tasks other than L&R MI task. TSGSP only studied the classification

accuracy for L&R and F&T MI tasks.

Table 5.3: Comparative performance (Acc in %) of MIF-CSP for L&R MI task from BCI
competition IV 2a dataset.

Subject CSP FBCSP S-wLTL MEMDBF-CSP SS-MEMD-RG SW-LCR TSGSP MIF-CSP

[191] [192] [204] [185] [194] [81] [205]
A01 84.03 65.28 90.00 90.78 91.49 86.81 87.00 95.14
A02 59.03 57.64 55.00 57.75 60.56 64.58 64.70 58.33
A03 95.14 72.22 93.00 97.08 94.16 95.83 93.80 97.92
A04 74.31 52.08 60.00 70.69 76.72 67.36 74.30 79.92
A05 54.86 60.42 68.00 61.48 58.52 68.06 90.40 84.03
A06 57.64 55.56 60.00 70.37 68.52 67.36 63.90 65.28
A07 72.22 89.58 73.00 72.14 78.57 80.56 91.40 85.42
A08 95.83 88.89 98.00 97.76 97.01 97.22 95.80 95.83
A09 93.06 86.81 83.00 94.62 93.85 92.36 81.30 93.75

Average 76.23 69.83 75.60 79.19 79.93 80.02 82.50 83.18
SD 16.60 15.10 16.00 15.85 14.99 13.45 12.20 14.50

Note: Bold entries denote the highest values of Acc.
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Table 5.4: Comparative performance (Acc in %) of MIF-CSP for other MI tasks from BCI
competition IV 2a dataset.

Methods L&F L&T R&F R&T F&T
CSP 82.33 85.49 83.18 83.02 73.38

FBCSP 71.91 73.77 71.22 72.61 66.74
SS-MEMD-RG 85.50 84.30 85.43 85.75 74.78

SW-LCR 83.64 86.19 84.64 83.49 72.99
TSGSP 82.50 - - - 84.00

MIF-CSP 86.19 88.27 85.65 84.41 77.24
Note: Bold entries denote the highest values of Acc.

Unlike, the previous approaches for MI BCI application where adaptive decomposition

techniques like EMD, ensemble EMD (EEMD), or MEMD are used for the reconstruction of

EEG signal by selecting a few relevant IMFs or MIMFs and combining them, we use MIF to

get oscillatory modes or frequency bands separated out from which event-related desynchro-

nization (ERD)/event-related synchronization (ERS) activity can be detected. Improvement

in classification accuracies suggested the usefulness of using oscillatory modes, present in

the signal, for CSP feature extraction instead of selecting predefined frequency bands ex-

tracted narrowband using bandpass filtering. This data-adaptive approach for selecting the

frequency band also addresses the problem of frequency variability across subjects or trials.

EEG signals are prone to different kinds of noises, so a robust selection of frequency

bands is necessary to ensure the reliability of the analysis method. Moreover, different

cognitive tasks affect a particular band, which presents a requirement to detect that particular

band. To handle different cognitive tasks in steady-state visual evoked potential (SSVEP)

based BCI application, ensemble task related component analysis with temporally local

weighting time filter was proposed by Jin et al. [206]. A study on human emotion based on

fMRI performed by Li et al. [207] shows that the neural representation changes for the same

state of emotion due to auditory only, visual only, and audiovisual stimuli. The performance

of the proposed MIF-CSP algorithm may prove that data adaptive MIF can handle changes

in EEG signal due to small perturbations in the condition of a cognitive task.

ERD is the phenomenon of blocking alpha rhythms due to motor or sensory behaviors

[1]. The opposite of ERD, namely an increase in alpha rhythmic activity, is called ERS.
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Frequency range (bandwidth), defined by energy coverage of 99% of total signal energy of

MIMFs, for subject A03, are shown in Fig. 5.7 with the help of box plots. Frequency ranges

of alpha rhythm are highlighted using the cyan band in Fig. 5.7. MIMF3 and MIMF4 overlap

in the alpha frequency band. From Fig. 5.4, it can be noticed that after cue onset (around

200 samples), the amplitudes of MIMF3 and MIMF4 have faced a decrease in amplitude

which implies the occurrence of ERD. MIMFs clearly show the occurrence of ERD than

EEG signals.

Figure 5.7: Frequency ranges of the MIMFs. (f Li and f Hi are lower and higher frequency
range of ith MIMF, respectively.)

In Fig. 5.8, CSP spatial filters corresponding to different MIMFs for subject A03T

(L&R MI task) are shown. It can be observed that spatial filters, corresponding to the

fourth MIMF, show distinct activation patterns in SMC area for L&R MI task, but other

MIMFs’ spatial filters do not have well-distinguishable activity patterns. For the right hand

MI task, CSP features from the fourth MIMF have higher values in the SMC area of the

right hemisphere. Similarly, for the left hand MI task a higher value is obtained in the left

hemisphere SMC area. MI movement and activation occur on the same side of the body,

which shows an ipsilateral relation. For visual representation, most significant two features

corresponding to different MIMFs are shown in Fig. 5.8. Features obtained from the fourth

MIMFs are linearly well separable, which confirms our previous finding that spatial filters

corresponding to the fourth MIMF have distinct activity patterns.
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(a)

(b)

Figure 5.8: (a) CSP filters corresponding to different MIMFs and (b) feature space corre-
sponding to the most significant two features extracted from the first five MIMFs.

Real-time implementation of MI BCI application and user convenience will directly

depend on the latency or prediction time, which further depends on the computational com-

plexity of the algorithm. EMD-based algorithm for MI BCI application suffers from the

uniqueness problem of IMF across different bands and is prone to noise [63]. Using EEMD

[104], stable IMFs can be generated in noisy conditions, but EEMD fails to address the

uniqueness problem for multichannel data. Park et al. [69] proposed an MI BCI classifi-

cation method, where they have used noise assisted MEMD (NA-MEMD), in which both

the uniqueness problem and instability due to noisy conditions are successfully addressed.

Both these EEMD and NA-MEMD-based methods demand very large computational re-

sources due to the complexity of these decomposition techniques. We have used MIF for
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data-adaptive decomposition, which is computationally much more efficient compared to

other existing multivariate decomposition techniques like MEMD, and MVMD [25].

Fig. 5.9 presents a comparative performance based on decomposition time taken by MIF

and other multivariate signal decomposition algorithms when three channel EEG signal of

length 500 are considered for decomposition (signal is shown in Fig. 5.4). The decomposi-

tion time for the MIF algorithm, being very small, is not properly visible for that, we have

shown an enlarged version for clear visualization. Parameters for MVMD were kept as the

default settings, which are as follows: α = 2000, DC = 0, init = 1, tol = 10−7. The number

of modes to be extracted in MVMD was set to K = 10 to get the same number of modes

as MEMD. For NA-MEMD, two additional channels of white Gaussian noise of 20 dB are

added during simulation [69].

Figure 5.9: Comparison of decomposition time of MIF with other multivariate algorithms.

The usefulness of the MIF algorithm for MI BCI classification is shown by presenting

a comparative study when MEMD and MVMD (with default parameters as defined in the

previous paragraph) are used instead of MIF by keeping all other parameters the same as

MIF-CSP. The classification accuracies for MI BCI are showcased in Fig. 5.10. For MEMD,

we have used 15 channels (channels are chosen based on the MEMD-based MI BCI method

proposed by Gaur et al. [208]) EEG signal out of 22 channels as MEMD code can capa-

ble of decomposing a maximum of 16 channels signal. The proposed MIF-CSP method

outperforms by 5-15% for all six MI BCI classification tasks as compared to MVMD and
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MEMD-based methods.

Figure 5.10: Classification accuracies of MVMD, MEMD based MI BCI and MIF-CSP
method.

Automatic selection of features is achieved using student t-test based ranking. We have

observed that for all the participants, the most significant CSP features are provided by

the second MIMF to the fourth MIMF. Based on this observation, we have used features

from the first four MIMFs only for feature extraction to classify MI BCI tasks. So, we can

stop the extraction of further lower frequency MIMFs after extracting four or five MIMFs

using the MIF algorithm, which will reduce the computational time without affecting the

performance. The decomposition time for decomposing using MIF up to five MIMFs is

shown in Fig. 5.9, which is denoted as MIF a. Whereas, without limiting the number of

MIMFs, MIF gives 8 MIMFs.

We can extend the binary MI classification algorithm for the multiclass MI BCI prob-

lem based on fusion at the decision level or feature level. Multiclass CSP [209] can al-

ternatively be used for designing multiclass MI BCI classification in the future. Peng et

al. [210] proposed an emotion detection algorithm from EEG signal based on a framework,

namely, graph regularized least square regression with feature importance learning for adap-

tively select features according to their contributions, frequency bands, and channels. An

auto weighting variable is used in least square regression classifier in order to achieve auto-

matic selection of important features, frequency bands, and channels. In proposed MIF-CSP

method, both critical frequency bands and features are adaptively chosen based on MIF and
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student t-test.

5.5 Summary

In the history of BCI technology, machine learning emerged as a revolutionary tool;

the advancement of computational technology makes real-time implementation possible.

Different approaches have been proposed to reduce the subject training time and prediction

time of the classifier simultaneously increase the classification accuracy of the MI BCI

algorithm. However, choosing appropriate frequency bands, in which ERD/ERS patterns

corresponding to sensory-motor activation and deactivation are prominent, is a challenging

task due to high-frequency variability across different subjects and even for different trials of

the same subject. In literature, researchers heuristically chose narrowband signal obtained

using band-pass filtering of the data, or a broadband signal for classification.

In this chapter, we proposed a novel MIF based framework to extract the oscillatory

modes present in the signal adaptively without any previous assumption of fixed frequency

bands. Using the spatial filtering technique, CSP, discriminant features are computed for

classification. We have shown that our proposed method outperforms by 1-15% state-of-the-

art technology with the help of the MI BCI EEG database, namely BCI competition IV 2a.

To show the generality, we also validated MIF-CSP using another publicly available dataset.

The superior accuracy provided by the MIF-CSP algorithm proved that it is a promising

candidate for MI BCI application.
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Chapter 6

SSVEP Detection in Mobile Environment

for Brain-computer Interface

6.1 Introduction

The intricate process of human movement requires complex coordination and integra-

tion of both the central and peripheral nervous systems. Electroencephalogram (EEG) has

emerged as the predominant choice for measuring brain activity for brain-computer interface

(BCI) applications due to its high time resolution, portability, and ease of use [5, 70]. The

ongoing process for human movement in the central nervous system may be affected due to

the mobile environment, which will be reflected in EEG signals. The mobile environment

also has the potential to introduce artifacts and signal distortion, ultimately compromising

accuracy and signal quality. A framework should be robust enough to handle the effects

arising from the mobile environment.

6.1.1 Related Works

In recent decades, numerous frameworks have been developed for detecting steady-

state visual evoked potential (SSVEP) from EEG signals [211]. The SSVEP detection

framework can be broadly classified into Fourier transform-based spectrum analysis, signal

decomposition-based analysis, spatial filtering-based, canonical correlation analysis (CCA)-
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based, and deep learning-based methods [84].

The widely used power spectral density (PSD) analysis for detecting SSVEP target fre-

quency faces problems like PSD can be easily affected by noise and demand EEG signal of

longer duration to provide good frequency resolution [212]. Lin et al. [213] have suggested

CCA for SSVEP detection for BCI applications, which gives improved performance and

draws the attention of many researchers. CCA uses sine-cosine reference signal, defined ac-

cording to the stimulation frequency. Due to the inter-trial and inter-subject variance, using

the same reference signal affects the performance of the SSVEP detection. To address this

issue, several researchers have optimized the reference signals [214].

The performance of the SSVEP framework also depends on the noise present in the

EEG signals, selecting specific bands from EEG signals. Chen et al. [215] have proposed

an SSVEP detection framework termed as filter bank CCA (FBCCA) based on applying

CCA on subband components of EEG signals. A filter bank, designed using zero-phase

Chebyshev type I infinite impulse response filters, is used to decompose the EEG signals

into subbands. The pass band of the filter banks has been identified based on choosing

equally spaced bands, according to the individual harmonic frequency or multiple harmonic

frequencies in a single band. The SSVEP components will vary in different subjects, trials,

and channels; hence, selecting predefined bands like FBCCA may be ineffective. Therefore,

various methods have attempted to choose the bands adaptively. Empirical mode decom-

positio (EMD) has been widely used to analyze nonstationary EEG signals [28]. Zheng et

al. [216] have explored EMD techniques and other variants of EMD, like ensemble EMD

(EEMD), improved complete EEMD with adaptive noise, and variational mode decompo-

sition (VMD) for SSVEP frequency detection. This study uses a single-channel EEG for

the detection of SSVEP frequency. Noise can easily affect a single-channel SSVEP; hence,

more than one channel is preferred to increase the robustness of the framework. Chen et

al. [217] used MEMD and CCA to detect SSVEP frequency, where they added white noise

channels to ensure the consistency of the decomposed multivariate intrinsic mode functions

(MIMFs) of EEG signals of different trials and subjects. Chang et al. [218] have proposed

a MVMD-based framework for SSVEP detection. The decomposed modes obtained from

multivariate VMD (MVMD) are weighted to reconstruct the EEG signals. Sparrow search
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algorithm is used to decide the weight for reconstruction. The CCA algorithm is used for

classifying the reconstructed EEG signal. The multivariate decomposition techniques are

computationally complex, adding more latency in SSVEP frequency predictions. More-

over, these techniques mainly aim at EEG signal denoising using multivariate mode decom-

position. While multivariate adaptive signal decomposition techniques have significantly

improved SSVEP detection, challenges remain. These include the computational complex-

ity of real-time implementation, the need for parameter optimization, and the handling of

inter-subject variability.

6.1.2 Key Contributions

This letter has addressed the aforementioned problems by proposing a multivariate iter-

ative filtering (MIF)-based CCA (MIF-CCA) framework for SSVEP detection. Multivariate

signal decomposition is performed using MIF in [70] for motor-imagery BCI applications

from multichannel EEG signals. Here, the MIF algorithm is explored to analyze SSVEP

EEG signals. In the literature, CCA-based studies have used CCA algorithm for classifica-

tion of the SSVEP frequency [217, 218]. The proposed MIF-CCA framework uses CCA

for feature extraction. The time complexity of the MIF is much less as compared to multi-

variate EMD (MEMD), MVMD, EEMD techniques, which will reduce the prediction time

[70]. Moreover, the MIF decomposition can be stopped after extracting a certain number of

MIMFs, which will save additional decomposition time [70].

6.1.3 Database

The proposed method has been evaluated using a real-time EEG database for SSVEP

detection. The EEG signals have been collected during visual gazing at flickering visual

stimuli. This experiment shows three different flickering frequencies (5.45, 8.57, and 12

Hz) for 5 s. These frequencies are selected, as 5-30 Hz are suitable for SSVEP frequency

detection, and the frequency below 12 Hz is significantly affected by the movement arti-

facts [219]. Subjects were asked to walk at different speeds (standing (speed: 0 m/s), slow

walking (speed: 0.8 m/s), walking (speed: 1.6 m/s), and slow running (speed: 2.0 m/s)) on
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a treadmill set up during the SSVEP experiment to incorporate the effect of movement on

SSVEP performance [219].

The EEG data were collected from 23 participants (male: 14 and female: 9, mean age of

24.6 ± 3.0 years) without any history of neurological disorders. Only 17 participants took

part in the experiment in slow-running conditions for personal reasons.

EEG signals were recorded using a 32-channel EEG acquisition device (BrainAmp,

Brain Product GmbH) at a sampling rate of 500 Hz. The electrodes are placed accord-

ing to 10-20 international standards of EEG electrode placement. FPz and FCz electrodes

are used as ground and reference electrodes, respectively. The electrode impedance was

maintained below 50 kΩ to ensure the signal quality.

Gazing at flickering visual stimuli evokes SSVEP over the occipital lobe of the human

brain. The EEG channels in the occipital lobe (O1, Oz, and O2) and nearby electrodes

(PO7, PO3, POz, PO4, and PO8) are chosen to identify the SSVEP target in this study.

The selection of specific channels and downsampling EEG data to 128 Hz will reduce the

computation complexity of the framework as well as increase performance by rejecting

irrelevant information.

6.2 Methodology

The proposed SSVEP detection framework is comprised of MIF-based decomposition

of EEG signals to get the oscillatory modes, CCA-based feature extraction, and a machine

learning classifier for the identification of three flickering frequencies. The proposed SSVEP

frequency detection framework is presented using a block diagram in Fig. 6.1. Each of the

blocks is described in the following sections.

6.2.1 Multivariate Iterative Filtering

The acquisition of EEG signals often involves multiple electrodes to enhance spatial

resolution. However, the inherent randomness and low signal-to-noise ratio in EEG signals

present challenges for univariate decomposition techniques. Univariate signal decomposi-

tion techniques provide varying numbers of IMFs and frequency properties across chan-
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Figure 6.1: The block diagram of the proposed framework for SSVEP frequency detection.

nels, which can significantly degrade the performance of multichannel signal analysis. To

address this issue, we have decomposed the multichannel EEG signals using the proposed

MIF method.

6.2.2 Canonical Correlation Analysis

CCA has been widely used to find the underlying correlation between two sets of vari-

ables u(t) ∈ RI1×N and r(t) ∈ RI2×N , where N is the number of samples in both the

variables [220]. CCA computes a set of two linear transforms κ ∈ RI1 and Λ ∈ RI2 which

aims to maximize the correlation between the transformed variables, û = κTu and r̂ = κT r.

CCA solves an optimization problem based on a generalized eigenvalue problem to find the

linear transforms.

In SSVEP-based BCI paradigms, CCA has been widely used to find the correlation

between the multichannel EEG signals and the stimulus or reference signals [213]. Let us

consider there are P stimulus frequencies to be detected in the SSVEP paradigm. EEG

signals are represented as variable u(t), where I1 is the number of channels, and N is the

number of samples. The reference signals r(t) can be constructed using sine-cosine waves

of P stimulus frequencies fp (p = 1, 2, . . . , P ) as [213],
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, . . . ,

N

fs
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ι denotes the number of harmonics and fs is the sampling frequency. The correlation be-

tween the EEG signals and the reference signal of each frequency is computed. The corre-

lation coefficients from different MIMFs are combined and used as feature.

6.2.3 Classification

The CCA-based features from MIMFs are classified using k-nearest neighbors (KNN),

support vector machine (SVM), and linear discriminant analysis (LDA) classifiers [221]. As

a supervised and non-parametric classifier, KNN categorizes a given data point by examin-

ing the majority of its neighboring data points. SVM classifier employs a linear decision

surface to discriminate within a high-dimensional feature space. LDA classifier finds a

linear boundary so that the mean of the two classes should be separated maximally and

variance after projection on the boundary should be minimum.

6.3 Results and Discussion

This section presents the results obtained for the proposed MIF-CCA-based SSVEP

framework for BCI applications. Additionally, we have discussed the results and compared

the performance with baseline CCA methods.

The multichannel EEG signals are decomposed into MIMFs using MIF methods. MIF

starts to extract the modes from the highest frequency; hence, the first MIMF will have the

mode with the highest frequency content. The subsequent MIMFs will have lower frequency

contents. The CCA of each MIMF is computed, and the maximum correlation coefficients

for each stimulation frequency are used as a feature. Here, three different stimulation fre-

quencies were there. So, each MIMF provides three correlation values corresponding to
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three stimulation frequencies. The features from different MIMFs are combined to obtain a

feature vector. The t-distributed stochastic neighbor embedding (t-SNE) plots of the feature

spaces obtained from different numbers of MIMFs are shown in Fig. 6.2. Each column in

Fig. 6.2 represents feature spaces corresponding to a specific speed at which the subject was

moving during the SSVEP experiment.

Three different classifiers, KNN, SVM, and LDA, were used to evaluate the proposed

feature extraction method. Five-fold cross-validation was performed to compute the statisti-

cal performance parameter. The evaluation of five-fold cross-validation accuracy for KNN,

SVM, and LDA classifiers when different numbers of MIMF are used for feature extraction

are shown in Fig. 6.3.

Figure 6.2: t-SNE plot for feature space obtained when the subject was moving at different
speeds and different number MIMFs are used for feature extraction.

The mean and standard deviation (SD) of the accuracy obtained for the subject-wise

classifier design paradigm are showcased in Tables 6.1-6.3 for KNN, LDA, and SVM, re-
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Figure 6.3: The SSVEP detection accuracy for varying the number of MIMFs used for
feature extraction, different classifiers when the subject was moving at a speed of (a) 0 m/s,
(b) 0.8 m/s, 1.6 m/s, and 2.0 m/s.

spectively. We also developed a subject-independent classifier for SSVEP frequency de-

tection. In which the features extracted from different subjects are combined and used to

develop a single classifier for all the subjects. The classification performance for the subject-

independent MIF-CCA system is showcased in Table 6.4.

In Fig. 6.2, the t-SNE plots for features extracted from the first MIMF do not provide

a discriminant feature space for different classes of stimulation frequency. Combining fea-

tures from more MIMFs improves the separation in the feature space. When the speed of

the subject increases, the feature discrimination in the feature space is adversely affected.

Including more MIMFs from higher frequency modes helps to increase the SSVEP tar-

get frequency prediction accuracy. Adding more than four MIMFs does not improve the

accuracy; rather, the accuracy starts to decrease. This finding shows that the fifth and higher

MIMFs are irrelevant to SSVEP frequency detection. This supports the intuitive under-

standing that the stimulation frequency will affect the EEG signals at the stimulation and

harmonic frequencies. When the speed of the subject increases, the accuracy decreases.

All the stimulation frequencies and harmonics will be greater than 5.45 Hz. So, the low-

frequency MIMFs having frequency content less than 5.45 Hz will be irrelevant for SSVEP

detection.

The subject-wise LDA classifier provides the best performance as compared to the other

two classifiers. The average accuracies for the LDA classifier are 88.99%, 84.13%, 81.52%,

and 76.62% for 0, 0.8, 1.6, and 2.0 m/s movement speeds, respectively.
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Table 6.1: Accuracy (in %) of the MIF-CCA based SSVEP frequency detection when
subject-wise KNN classifier is designed.

Subject
Speed

0 m/s 0.8 m/s 1.6 m/s 2.0 m/s

1 98.33 98.33 96.67 100.00
2 100.00 100.00 98.33 98.33
3 98.33 95.00 93.33 86.67
4 100.00 98.33 100.00 98.33
5 95.00 91.67 93.33 56.67
6 98.33 86.67 83.33 85.00
7 100.00 100.00 96.67 95.00
8 95.00 90.00 70.00 40.00
9 93.33 73.33 96.67 68.33
10 100.00 81.67 81.67 30.00
11 100.00 90.00 93.33 68.33
12 98.33 96.67 90.00 78.33
13 91.67 53.33 90.00 88.33
14 100.00 91.67 95.00 59.57
15 98.33 100.00 98.33 100.00
16 91.67 100.00 95.00 -
17 81.67 60.00 45.00 -
18 88.33 71.67 48.33 56.67
19 43.33 45.00 33.33 -
20 40.00 43.33 50.00 -
21 100.00 95.00 96.67 -
22 100.00 100.00 98.33 -
23 38.33 40.00 33.33 -
Mean 89.13 82.68 81.59 75.60
SD 19.79 20.39 22.60 19.79

Customizing the classifier for every individual for a subject-wise classification system

may be difficult. For that, a subject-independent classifier will be a better choice. The pro-

posed MIF-CCA method provides similar accuracy for the subject-independent framework.

The performance of the presented MIF-CCA method for SSVEP detection is compared

with the conventional CCA technique. The CCA provides 88.70± 19.52%, 83.12±18.68%,

80.65±20.38%, and 54.76±25.84% accuracy for four different speeds [213, 219]. The

accuracy for MIF-CCA methods is slightly higher for standing, slow, and fast walking for

the MIF-CCA framework. For slow running at a speed of 2.0 m/s, MIF-CCA provides

21.86% higher accuracy as compared to conventional CCA.
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Table 6.2: Accuracy (in %) of the MIF-CCA based SSVEP frequency detection when
subject-wise LDA classifier is designed.

Subject
Speed

0 m/s 0.8 m/s 1.6 m/s 2.0 m/s

1 98.33 96.67 98.33 100.00
2 100.00 96.67 98.33 98.33
3 98.33 93.33 95.00 95.00
4 100.00 98.33 100.00 98.33
5 98.33 96.67 93.33 41.67
6 100.00 90.00 85.00 91.67
7 100.00 100.00 95.00 95.00
8 95.00 86.67 73.33 55.00
9 93.33 73.33 100.00 70.00
10 98.33 80.00 86.67 35.00
11 100.00 91.67 91.67 66.67
12 95.00 95.00 93.33 83.33
13 88.33 61.67 86.67 88.33
14 100.00 95.00 96.67 65.96
15 100.00 100.00 98.33 100.00
16 96.67 100.00 100.00 -
17 78.33 66.67 55.00 -
18 90.00 76.67 46.67 41.67
19 51.67 41.67 33.33 -
20 33.33 53.33 28.33 -
21 100.00 96.67 95.00 -
22 100.00 100.00 95.00 -
23 31.67 45.00 30.00 -
Mean 88.99 84.13 81.52 76.62
SD 20.76 18.51 24.37 23.12

SSVEP-based BCI may open avenues to greatly enhance the quality of life for disabled

individuals beyond clinical settings. These advancements can significantly increase their

independence, autonomy, mobility, and overall capabilities, reducing social costs.

6.4 Summary

The study introduced the MIF-CCA framework for the detection of SSVEP for BCI

applications. The proposed framework is evaluated using an EEG database recorded in a

mobile environment to assess its robustness. The subject-wise MIF-CCA framework had
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Table 6.3: Accuracy (in %) of the MIF-CCA based SSVEP frequency detection when
subject-wise SVM classifier is designed.

Subject
Speed

0 m/s 0.8 m/s 1.6 m/s 2.0 m/s

1 98.33 98.33 91.67 95.00
2 93.33 96.67 98.33 93.33
3 96.67 93.33 81.67 90.00
4 98.33 96.67 100.00 95.00
5 96.67 91.67 90.00 50.00
6 100.00 85.00 81.67 86.67
7 98.33 100.00 95.00 88.33
8 96.67 85.00 71.67 48.33
9 98.33 81.67 95.00 73.33
10 96.67 88.33 78.33 33.33
11 100.00 86.67 93.33 75.00
12 98.33 95.00 93.33 78.33
13 91.67 53.33 93.33 90.00
14 100.00 91.67 95.00 68.09
15 100.00 98.33 98.33 100.00
16 96.67 100.00 96.67 -
17 83.33 63.33 50.00 -
18 81.67 73.33 60.00 50.00
19 40.00 45.00 36.67 -
20 45.00 43.33 41.67 -
21 98.33 93.33 96.67 -
22 100.00 96.67 98.33 -
23 35.00 48.33 33.33 -
Mean 88.84 82.83 81.30 75.92
SD 19.98 18.77 21.61 20.45

Table 6.4: Accuracy (in %) of the MIF-CCA based SSVEP frequency detection when the
classifier is developed independent of subject for SSVEP based BCI paradigm.

Classifier
Speed

0 m/s 0.8 m/s 1.6 m/s 2.0 m/s

KNN 87.97 80.36 80.22 69.69
LDA 89.49 85.00 84.20 69.90
SVM 87.61 83.26 82.46 72.97

achieved mean accuracies of 88.99%, 84.13%, 81.52%, and 76.62% when the subjects were

running at a speed of 0.0 m/s, 0.8 m/s, 1.6 m/s, and 2.0 m/s, respectively using LDA clas-

sifier. Similarly, for the subject-independent framework, the proposed framework provides
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accuracies of 89.49%, 85.00%, 84.20%, and 69.90% for four different speeds. The improve-

ment in the detection accuracy for MIF-CCA shows the usefulness of the proposed feature.

The proposed MIF-CCA method provides high accuracy as compared to conventional CCA

in moving conditions, which shows the high potential of MIF-CCA in BCI applications.
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Chapter 7

Joint Time-frequency Analysis of EEG

Signal for Drowsiness Detection

7.1 Introduction

Driver drowsiness detection is one of the key technologies for road safety that can pre-

vent deadly accidents due to drowsiness. Several studies have described methods to detect

drowsiness in the literature, and each technique has its advantages and drawbacks. These

methods can be broadly classified into three categories: behavioral, vehicular, and physio-

logical parameter-based [222, 223].

Behavioral parameter-based techniques use drivers’ eye closer ratio, eye blinking rate,

eye fixation (region of interest), head position, yawning, facial expression [222, 223], etc.,

extracted through various image processing techniques to measure the different level of fa-

tigue. Vehicular parameter-based techniques for drowsiness detection were developed based

on lane detection, frequent changing of the lane, steering wheel angle, angular velocity or

grip force, [223, 224], etc. Both the above-mentioned categories achieved good accuracy

in predicting drowsiness, but these methods can be easily affected by several external fac-

tors like environmental changes, lighting conditions, illumination, geometric shape changes

of roads, the disparity in road infrastructure, etc. [222, 224]. Moreover, the initial stage of

drowsiness or disengagement does not affect the behavioral or vehicular parameters. So, the

above methods will have a high probability of missing the onset of the non-focused mode.

121



CHAPTER 7. JOINT TIME-FREQUENCY ANALYSIS OF EEG SIGNAL FOR
DROWSINESS DETECTION

Physiological parameters-based techniques are more reliable and accurate as they are

based on biological parameters like heart rate [225], breathing pattern, pulse rate, elec-

troencephalogram (EEG) [182, 226], electrocardiogram (ECG) [227], photoplethysmogram

(PPG), body temperature, etc. which are not affected by external parameters easily.

EEG signals present a landscape of the human brain with very high temporal resolution.

Any change in the focus level can be detected from EEG signals. In the literature, several

research articles described methods for detecting drowsiness level, focused or non-focused

state of mind from EEG signals [228]. The advantages of EEG signals for drowsiness

detection are ease of acquiring EEG, lower cost, portability, and reliability, as well as the

well-established nature of EEG technology.

7.1.1 Related Works

In this section, we have discussed recently developed EEG-based drowsiness detection

methods. Arico et al. [229] developed a system to detect the mental workload of an air

traffic controller using passive EEG brain-computer interface (BCI). Djamal et al. [226]

proposed a method for recognizing attention and inattention state using wavelet filter and

support vector machine (SVM). They have reported an accuracy of 77-83% for four sub-

jects. Yin et al. [230] proposed a fatigue detection method based on the fuzzy entropy

feature and SVM classifier. Tuncer et al. [231] extract dynamic center based binary pattern

and multi threshold ternary pattern as features where discrete wavelet transform is used as

the pooling method. The k-nearest neighbors (KNN) is used to classify the fatigue state.

Latreche et al. [232] and Lee et al. [233] used convolutional neural network (CNN) and

long short-term memory (LSTM) models for developing drowsiness detection framework.

Chaudhuri and Routray [234] proposed a fatigue detection based on sample entropy, ap-

proximate entropy, and modified sample entropy embedded with the SVM classifier. Min et

al. [235] developed a fatigue detection method from EEG signals based on several entropies

like spectral entropy, sample entropy, approximate entropy, and autoregressive modeling. Li

et al. [236] used multimodal data consisting of EEG and head movement measurement data

for drowsiness detection. They have achieved accuracies of 93.67% and 96.15% for five-
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level and two-level drowsiness detection. Authors in [237] suggested a CNN with a global

average puling layer for drowsiness detection. An accuracy of 73.22% for two-class classi-

fication of drowsiness and normal has been archived. Subasi et al. [238] proposed a fatigue

detection technique using flexible analytic wavelet transform. EEG signals are decomposed

into several subbands using flexible analytic wavelet transform. Statistical parameters like

mean absolute value, average power of the flexible analytic wavelet transform coefficients

are computed from each subband as features, which are further classified using machine

learning classifiers. They have reported accuracies of 97.90% and 97.10% for fatigue and

rest classes, respectively.

Aci et al. [239] developed a method for classifying different mental states (i.e., fo-

cused, non-focused, and drowsy) based on seven-channel EEG signals. The band power of

EEG signals in different frequency bands was calculated using short-time Fourier transform

(STFT) and used as features. With the SVM classifier, they achieved the highest accuracy of

96.70% (best) and 91.72% (average) for the subject-specific paradigm when the experiment

was performed on seven participants.

In the literature, the reported methods used manually extracted various time-domain and

frequency-domain features from EEG signals for mental state detection. Additionally, most

of the developed methods used EEG signals using many electrodes, but more electrodes or

multimodal data will add further complications and additional costs in system design.

We have proposed a multivariate iterative filtering (MIF) and discrete energy separa-

tion algorithm (DESA)-based approach for drowsiness (MIF-Drowsy) detection from mul-

tichannel EEG signals. Being nonlinear and nonstationary, EEG signals can not be properly

represented in the frequency domain using the Fourier spectrum representation. Joint time-

frequency representation (JTFR) can be proved to be a better option in this scenario [2]. So,

we have represented the EEG signal in the joint time-frequency domain with the help of

MIF [25] and DESA [240]. The joint marginal spectrum is obtained from the JTFR, which

has been classified using an artificial neural network (ANN) into different mental states.

Figure 7.1 presents the block diagram of the proposed automatic mental fatigue detection

method.

The major contributions of the present study are as follows:
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Figure 7.1: Block diagram of the proposed EEG-based mental state detection framework.

(1) Explore the nonstationary properties of EEG signals using MIF in the drowsiness

detection scenario.

(2) Defined time-frequency representation (TFR) using amplitude envelope (AE) and in-

stantaneous frequency (IF) of MIF-based oscillatory modes obtained from DESA.

(3) Proposed joint time-frequency distribution and marginal spectrum for multichannel

signals.

(4) Developed a mental state detection framework based on MIF and DESA-derived joint

marginal spectrum of multichannel EEG signals and ANN.

(5) Based on the developed MIF-Drowsy framework, the effects of drowsiness on differ-

ent locations of the brain and EEG rhythms are analyzed.

7.2 EEG Dataset

We have used two publicly available EEG datasets to evaluate our proposed method for

mental state detection. Dataset 1 [239] is used for detailed analysis and finding the optimum

setting of the parameters, and the second dataset [235] is used for proving the efficacy of

the developed method. The summary of the experimental setup is presented in Table 7.1.

7.2.1 Dataset 1

Dataset 1 contains approximately 25 hours of EEG recording of 5 participants, per-

forming low-intensity control tasks. Participants were asked to virtually drive a train in the

”Microsoft Train Simulator” program for 35 min to 55 min, over a primarily featureless

route. Each of the participants participated in 7 experiments. At most, one experiment was
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Table 7.1: Dataset summary

Details Dataset 1 Dataset 2
Participants 5 12
Recording duration 35-55 min 1-2 hours
Experimental session 7 1
Driving simulator Microsoft train Highway driving
Number of classes 3 2
Sampling frequency 128 Hz 1000 Hz
Number of EEG channels 7 32

(7 channels have been selected)

performed per day. The initial two experiments were for habituating the participants, so we

have excluded these trials from our study. The fifth participant could not perform the last

trial, so we have only four trials for the fifth participant.

This database consists of EEG recordings corresponding to three different mental states:

focused, non-focused, and drowsy. In the focused state, the participant was controlling the

train with focus and attention. After 10 minutes of focused state, the participant controlled

the train without focusing much or in disengaged supervision mode. The last segment of

the EEG signal corresponds to a drowsy state. In the first two states, the subjects were

not allowed to drowse or close their eyes. The subjects were carefully monitored by the

instructor. Additionally, the video was captured to check and ensure whether the experiment

complied with the stated structure.

EEG signals were acquired during the driving simulation task using EPOC+ device with

a modified head cap, at a sampling rate of 128 Hz, bandwidth between 0.2-43 Hz, and 0.51

voltage resolution. EEG electrodes were placed in the following locations F3, Fz, F4, C3,

Cz, C4, and Pz, according to the 10-20 international system for EEG electrode placement.

7.2.2 Dataset 2

Dataset 2 consists of EEG recordings from 12 subjects participating in a driving simu-

lation task inside a controlled lab environment. A 5 min practice session followed by a 10

min break was provided to each participant before starting the experiment to be habituated

with the experiment protocol. The subjects were asked to control the car for approximately

1-2 hours. The Chalder fatigue scale and Li’s subjective fatigue scale are used to confirm
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the fatigue state [235].

The EEG signal was recorded using a 32-channel electrode cap at a sampling rate of

1000 Hz. The signal is filtered using a 50 Hz notch and 0.15-45 Hz bandpass filters to

improve the signal quality. After 20 min of driving, the EEG signal corresponding to the

last five minutes is recorded and labeled as normal state EEG. Similarly, the last 5 min

segments were recorded from 40-100 min of driving when the subject was in a fatigue state,

indicated by above-mentioned scales.

7.3 Methodology

This section describes the proposed joint time-frequency analysis-based mental state

detection method from EEG signal. The following subsections discuss the different parts in

detail.

7.3.1 Data Segmentation

The continuous EEG signal is segmented into 5 s non-overlapping epochs. Additionally,

the mean of the signal is subtracted from the signal, given by x̂[n] = x[n]− 1
L

L−1∑
n=0

x[n], where

L is the length of the signal.

7.3.2 Multivariate Iterative Filtering

The multivariate decomposition of time-series x[n] can be expressed in expanded form

as,

x[n] =


I11 [n] I12 [n] · · · I1P [n]

I21 [n] I22 [n] · · · I2P [n]
...

...
. . .

...

IC1 [n] IC2 [n] · · · ICP [n]

 (7.1)

where Icp[n] is the pth multivariate intrinsic mode function (MIMF) corresponding to cth

channel and P is the number of MIMFs. Each column in the matrix in Eq. (7.1) will have
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similar oscillatory modes in terms of frequency contents due to the mode alignment property

of MIF.

7.3.3 Discrete Energy Separation Algorithm

The MIMFs extracted using MIF show the amplitude and frequency modulation struc-

tures. The time-varying amplitude and frequency of the MIMFs are computed using the

Teager nonlinear energy-tracking operator Γ(·) [28, 240, 241]. The Γ(·) operator can be

defined mathematically for signal y[n] as,

Γ(y[n]) = y2[n]− y[n+ 1]y[n− 1] (7.2)

The IF Ω[n] and AE a[n] of signal y[n] is computed using DESA as [28],

Ω[n] = cos−1

[
1− Γ(ν[n])− Γ(ν[n])

4Γ(y[n])

]
, 0 ≤ Ω[n] ≤ π (7.3)

|a[n]| =
√√√√ Γ(y[n])

1−
(
1− Γ(ν[n])−Γ(ν[n])

4Γ(y[n])

)2 (7.4)

where ν[n] = y[n]− y[n− 1]. It should be noted that if, for any sample n, Γ(y[n]) becomes

zero, DESA fails to estimate the Ω[n] [240]. For such scenarios, a[n] can be assigned with

zeros, and IF Ω[n] can be estimated from its previous sample (n − 1) as, Ω[n] = Ω[n − 1]

[240].

Now, the multivariate time series signal x[n] can be represented with IF Ωc
p[n] and AE

acp[n] of the MIMF Icp[n] as follows:

Ω[n] =


Ω1

1[n] Ω1
2[n] · · · Ω1

P [n]

Ω2
1[n] Ω2

2[n] · · · Ω2
P [n]

...
...

. . .
...

ΩC
1 [n] ΩC

2 [n] · · · ΩC
P [n]

 (7.5)
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a[n] =


a11[n] a12[n] · · · a1P [n]

a21[n] a22[n] · · · a2P [n]
...

...
. . .

...

aC1 [n] aC2 [n] · · · aCP [n]

 (7.6)

The evaluation of frequency and amplitude with respect to time can be seen from Eqs.

(7.5) and (7.6), respectively, for individual channels. For predicting IF and AE for a partic-

ular sample, DESA needs the signal value corresponding to that sample and values of two

consecutive previous and future samples. For example, to estimate IF and AE at nth sample,

the signal values at (n − 2)th, (n − 1)th, nth, (n + 1)th, and (n + 2)th samples are required.

Due to this, the sample length of AE and IF will be less by four samples than the sample

length of the signal. We can append two samples at both ends of the signals to obtain AE

and IF of the same length as the signal. Spline extrapolation has been used to predict the

values for extending the signal, which introduces errors in the few samples at the edge of

the signals. In literature, Hilbert spectral analysis has been used for estimating AE and IF,

which requires all the samples to compute the same [28]. In contrast, DESA only uses five

samples for estimating IF and AE, which helps to obtain localized information and real-time

implementation.

7.3.4 Joint Time-frequency Representation

The TFR is the distribution of signal energy over the 2-D time-frequency plane. The MIF

provides similar oscillatory components across different channels due to its mode alignment

property [25]. The AE and IF of all channels can be combined to obtain a JTFR for all the

channels. The joint IF ΩJ
p[n] and AE aJp[n] for pth MIMF can be obtained using following

equations [2]:

ΩJ
p[n] =

C∑
c=1

(acp[n])
2Ωc

p[n]

C∑
c=1

(acp[n])
2

(7.7)
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aJp[n] =

√√√√ C∑
c=1

(acp[n])
2 (7.8)

The JTFR TFJ(n,Ω) for multivariate time series can be obtained by considering all the

oscillatory levels as follows:

TFJ(n,Ω) = (aJp[n])
2δ(Ω− ΩJ

p[n]) for p = 1, 2, · · · , P (7.9)

where δ(·) represents Kronecker delta function. The proposed concept of JTFR based on

MIF and DESA is verified using synthetic and multichannel EEG signals.

7.3.4.1 Multivariate Synthetic Signal

In this section, we have presented the performance of the proposed MIF-based JTFR for

synthetic signal. Let us consider the three-channel synthetic signal given as,

xs(t) =


xs1(t) + 0.5xs2(t)

xs2(t) + xs3(t)

xs1(t) + xs3(t)

 (7.10)

where xs1(t), xs2(t), and xs3(t) are defined as follows:

xs1(t) = 2 sin (70πt+ 0.8π sin (2πt))

xs2(t) = (1 + 0.6 sin (2πt)) cos (40πt)

xs3(t) =

0, 0.67 ≤ t ≤ 1.35

sin (10πt) , otherwise
(7.11)

For simulation purposes, a sampling frequency of 100 Hz has been considered for the syn-

thetic signal xs(t). The multivariate synthetic signal xs(t) is shown in Figs. 7.2 (a)-(c). The

JTFR of xs(t) obtained using MIF and DESA algorithm is shown in Fig. 7.2 (d).
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Figure 7.2: Multivariate synthetic signal: (a) channel 1, (b) channel 2, (c) channel 3, and (d)
JTFR of xs(t).

7.3.4.2 Multichannel EEG Signal

To obtain the JTFR, the proposed model has been applied to the multichannel EEG

signals. The JTFRs of EEG signals corresponding to focused, non-focused, and drowsy

states of the brain (Fig. 7.4) based on the proposed MIF-DESA method are shown in Fig.

7.4 (middle).

7.3.5 Segmentation of Time-frequency Representation

EEG signals lie in the frequency band of 0.1 Hz to 100 Hz [25]. It can be further

classified into different rhythms based on frequency, delta (δ), theta (θ), alpha (α), beta

(β), and gamma (γ); their corresponding frequency bands are 0.5-4 Hz, 4-8 Hz, 8-13 Hz,

13-32 Hz, and 32-100 Hz, respectively. Different brain activities impact these rhythms

in various ways. EEG signal has been analyzed at different rhythmic scales to study the

effect of drowsiness on different EEG rhythms. The JTFRs are segmented depending on the

frequency bands of rhythms into different levels: L1 (δ: 0.5-4 Hz), L2 (δ − θ: 0.5-8 Hz),

L3 (δ − θ − α: 0.5-13 Hz), L4 (δ − θ − α − β: 0.5-32 Hz), and L5 (δ − θ − α − β − γ:

0.5-64 Hz). Here, we have considered the upper-frequency limit for γ rhythm as half of the
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sampling frequency (128 Hz) of EEG signals.

7.3.6 Joint Marginal Spectrum

The Fourier transform is suitable for representing stationary signals but fails to represent

nonstationary signals properly. EEG signal is nonstationary and complex in nature. The

marginal spectrum obtained from TFR has been proven more suitable for the analysis of

EEG signals [242, 243]. A joint marginal spectrum has been defined for multichannel EEG

signals x[n] from the JTFR TFJ(n,Ω) as follows:

XJ(Ω) =
N−1∑
n=0

TFJ(n,Ω) (7.12)

The marginal spectrum for the synthetic signal defined in Eq. (7.10) is shown in Fig.

7.3 (a). For comparison, the average Fourier spectrum of the same signal is shown in Fig.

7.3 (b). The average Fourier spectrum is obtained by taking an average of magnitudes of the

Fourier spectrum of the individual channels.

Figure 7.3: (a) Joint marginal spectrum and (b) average Fourier spectrum of xs(t).

For different rhythmic scales, a proper range of Ω has to be selected to obtain the spec-

trum corresponding to that scale. For example, L4 consists of δ − θ − α− β rhythms, so Ω

corresponding to 0.5 to 32 Hz is chosen for obtaining the joint marginal spectrum L4. The

marginal spectrum has been used as feature for classifying the different states of the brain.
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7.3.7 Artificial Neural Network

This study uses a shallow ANN to classify different mental states from the feature vector

computed in the previous steps. Cross-entropy between true outputs and predicted outputs

is used as a loss function. Cross entropy of true class (y) and predicted class (ŷ) is given by

equation [244],

J(y, ŷ) = − 1

M

M∑
i=1

CL∑
j=1

yijln(ŷij) +
λL

2
||W ||22 (7.13)

where M is number of observations and CL is number of classes. W and λL are the weight

matrix between the input and hidden layers and regularization parameter, respectively. Here,

λL is set to 0.0001. The developed ANN comprises an input layer, one hidden layer consist-

ing of 100 neuron units with rectified linear unit (ReLU) activation function, and an output

layer with softmax function for classifying different mental states.

7.4 Results and Discussion

Figure 7.4: EEG signals, JTFR, and joint marginal spectrum (left-to-right) correspond to
three different mental states: (a) focused, (b) non-focused, and (c) drowsy. (The inset figure
in the joint marginal spectrum shows a magnified version of the green highlighted box for
clear visualization. The theta, alpha, and beta rhythms are separated using lines (blue) in
the inset figure.)
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The proposed MIF-Drowsy framework for mental state detection is extensively analyzed

and evaluated using database 1. Further, to prove the efficacy of the proposed method, we

have also validated using another database for mental fatigue detection from EEG during

car driving. Results and discussions of the same are presented in this section.

Based on MIF and DESA, the JTFR of the EEG signal is obtained. Fig. 7.4 shows

sample EEG signals (C3, Cz, and C4 channels), JTFR, and joint marginal spectrum corre-

sponding to three different mental states from dataset 1. The proposed JTFR shows clear

separation of the frequency bands of EEG signal. Joint marginal spectrums are used as in-

put to ANN for automatically classifying different mental states. For rejecting unwanted

fluctuation, a moving average operator of a window length of three is applied on the joint

marginal spectrums [245].

The performance of the proposed drowsiness detection framework is evaluated in terms

of accuracy, given by, Accuracy = Number of correct predictions/Number of predictions.

We randomly divided the total available samples into five mutually exclusive parts for five-

fold cross-validation. The framework was developed and tested on MATLAB 2022b in-

stalled on a desktop having Windows 10 Education 64-bit operating system, intel i7 proces-

sor, and 28 GB RAM.

To find how drowsiness affects different regions of the brain and choose the most effec-

tive EEG electrodes for drowsiness detection, an experiment has been performed based on

the three sets of EEG signals from different regions of the brain: frontal lobe (FL) (elec-

trodes: F3, Fz, and F4), frontal and parietal lobe (FPL) (electrodes: C3, Cz, and C4), and

the midline sagittal plane (MSP) (electrodes: Fz, Cz, and Pz). The joint marginal spectrums

from FL, FPL, and MSP regions are used for classification individually. Also, the marginal

spectrums from these three regions are concatenated to obtain a feature vector for all seven

EEG channels, which has been used to develop a seven-channel-based mental state detection

framework.

To determine the suitable rhythmic scale for drowsiness detection, the framework is

studied for different rhythmic scales by choosing joint marginal spectrum corresponding to

different rhythmic scales: L1, L2, L3, L4, and L5. The joint marginal spectrums at different

levels correspond to the EEG signal (Fig. 7.4 (c)) are shown in Fig. 7.5.
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Figure 7.5: JTFRs and marginal spectrums at different rhythmic scales: (a) L1, (b) L2, (c)
L3, (d) L4, and (e) L5.

Table 7.2 presents the subject-wise validation accuracy of the proposed MIF-Drowsy

framework for dataset 1 in distinguishing mental states when the joint marginal spectrums

corresponding to different rhythmic scales and brain regions are used as input. The average

and standard deviation (SD) of classification accuracies for all subjects are mentioned at the

bottom of the table.

We achieved higher accuracy when joint marginal spectrum corresponding to L4 rhyth-

mic scale is used for classification in most of the cases. The use of joint marginal spectrum

corresponding to the L5 rhythmic scale does not significantly improve the results; even for a

few observations, the accuracy has dropped slightly. Previous research articles also claimed

that drowsiness affects the alpha and beta rhythms of EEG. Depending on our findings and

previous studies, we choose joint marginal spectrum-L4 for developing a mental state de-

tection algorithm. In the remaining article, we have shown the results corresponding to L4
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Table 7.2: Subject-wise classification Acc (in %) obtained from joint marginal spectrum
corresponding to different levels of JTFR and regions of the brain for dataset 1.

Subject Level
Brain region

FL FPL MSP All regions

1

L1 77.44 75.11 78.56 89.83
L2 85.67 83.00 84.56 91.56
L3 87.83 84.61 87.39 92.89
L4 88.33 88.33 87.17 94.06
L5 85.78 86.17 85.94 91.67

2

L1 77.33 78.39 78.61 88.28
L2 84.11 84.56 83.17 93.33
L3 85.22 88.22 85.39 93.39
L4 88.33 90.39 89.78 94.44
L5 86.50 91.11 89.56 94.28

3

L1 78.22 78.94 78.83 88.72
L2 84.50 83.72 85.00 91.94
L3 87.83 90.28 89.39 93.94
L4 89.78 91.56 92.11 94.94
L5 88.67 90.33 91.28 94.22

4

L1 78.20 78.76 77.18 88.73
L2 84.11 82.54 84.23 93.46
L3 87.04 83.38 87.27 94.76
L4 89.13 86.20 91.77 96.85
L5 89.46 84.51 90.31 96.28

5

L1 79.10 81.32 81.25 90.07
L2 84.17 87.01 86.74 92.08
L3 86.74 89.79 89.93 94.79
L4 89.03 89.93 90.07 94.86
L5 88.13 89.03 88.96 93.61

Average
± SD

L1 78.06±0.71 78.50±2.22 78.89±1.47 89.35±0.78
L2 84.51±0.67 84.17±1.77 84.74±1.31 92.48±0.87
L3 86.93±1.07 87.26±3.10 87.87±1.82 93.95±0.84
L4 88.92±0.61 89.28±2.08 90.18±1.97 95.03±1.08
L5 87.71±1.53 88.23±2.81 89.21±2.02 94.01±1.65

Note: Bold entries denote the highest values of Acc.

rhythmic scale only.

The proposed mental state detection framework has also been validated using another

multichannel EEG database for the generality. For a fair comparison, EEG signals from the

same set of channels, as chosen for dataset 1, are also used for dataset 2. The classification

accuracy obtained for dataset 2 is showcased in Table 7.3. The seven-channel MIF-Drowsy
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framework achieves a classification accuracy of 98.33±1.51%.

Table 7.3: Subject-wise classification accuracy (in %) obtained from the joint marginal
spectrum of L4 rhythmic scale corresponding to different regions of the brain for dataset 2.

Subject
Brain region

FL FPL MSP All regions
1 99.17 100.00 100.00 100.00
2 99.17 100.00 100.00 100.00
3 98.33 99.17 97.50 98.33
4 99.17 99.17 100.00 100.00
5 97.50 99.17 94.17 98.33
6 95.83 92.50 94.17 95.83
7 99.17 98.33 97.50 99.17
8 97.50 92.50 95.00 95.83
9 98.33 97.50 95.83 96.67

10 98.33 97.50 99.17 99.17
11 99.17 94.17 97.50 98.33
12 96.67 97.50 99.17 98.33

Average± SD 98.19±1.11 97.29±2.73 97.50±2.25 98.33±1.51

Table 7.4: Subject-wise classification accuracy (in %) obtained from average Fourier spec-
trum for L4 rhythmic scale for dataset 1.

Subject
Brain region

FP FPL MSP All regions
1 70.00 72.94 68.72 81.50
2 67.22 69.94 67.06 81.78
3 67.56 76.22 69.83 81.28
4 56.90 67.49 56.23 71.27
5 64.38 74.38 72.36 80.21

Average±SD 65.21±5.06 72.20±3.49 66.84±6.24 79.21±4.48

The joint marginal spectrum at L4 rhythmic scale from MSP regions gives slightly

higher accuracy than the other two regions. Results in Table 7.2 show that EEG signal from

the MSP brain region is best suitable for mental state detection based on 3-channel EEG

data and achieves an accuracy of 91.20% for dataset 1. When the joint marginal spectrum

from all channels is used, the accuracy has improved significantly to 95.82% for dataset 1.

The effectiveness of joint marginal spectrum over conventional Fourier spectrum is stud-

ied here with the help of both synthetic signal and EEG signal in the drowsiness detection
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framework. The multichannel synthetic signal defined in Eq. (7.10) contained frequency-

modulated, amplitude-modulated, and sinusoidal components. The amplitude-modulated

and sinusoidal components have constant frequency content centered around 20 Hz and 5

Hz, respectively. The joint marginal spectrum shows two peaks corresponding to amplitude-

modulated and sinusoidal components without much spectral leakage. On the other hand,

the Fourier spectrum in Fig. 7.3 (b) shows significant spectral leakage for amplitude-

modulated and sinusoidal components.

The marginal spectrum-based drowsiness detection framework is compared with the

conventional Fourier spectrum in the mental state detection scenario. The obtained results

for the Fourier spectrum at L4 rhythmic scale are presented in Table 7.4. The average

accuracy for the FFT-based spectrum is 79.21%, which is inferior to the average accuracy of

95.03% of the proposed framework for dataset 1. The presented results suggest the marginal

spectrum is more suitable to represent the frequency contents of nonstationary EEG signals.

The existing literature presents a plethora of EEG changes associated with fatigue; how-

ever, the results exhibit considerable variability [239, 246, 247]. From Fig. 7.5, two promi-

nent peaks in the joint marginal spectrum can be observed in the theta and alpha rhythm

regions. For the non-focused mode, signal energy has slightly increased in alpha rhythm as

compared to the focused mode. It also can be observed that the marginal spectral peak in

alpha rhythm appears at the higher range of alpha in focused mode. From Fig. 7.4, it can be

noticed that signal energy rises around alpha rhythm and suppression of theta rhythm energy

for the drowsy state [239, 246]. With sleepiness, the beta band power shows a slight reduc-

tion [248]. Several studies in literature reported the changes in energy in theta, alpha, and

beta bands of EEG signal due to drowsiness, which supports our findings [182, 239, 249].

The performance of the proposed MIF-Drowsy framework is evaluated for four different

EEG segment lengths L of 1 s, 3 s, 5 s, and 10 s to find the effect of EEG segment length

on performance. The average and SD of accuracies for all subjects for different window

lengths are shown in Fig. 7.6. For dataset 1, the window of length 5 s gives the highest

accuracy of 95.03±1.08%. A statistical significance test is performed to assess the change in

accuracies due to different segment lengths of EEG. Student t-test based p-value is computed

for the group of validation accuracies (for five folds and all subjects) belonging to different
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segment lengths. The p-values are shown in Fig. 7.6. The significance test shows that 5

s segment length provides significantly higher performance for dataset 1 as compared to 1

s (p = 2.0 × 10−20) and 3 s (p = 1.5 × 10−6) EEG segments. However, the performance

obtained using the 10 s EEG segment does not have any statistically significant difference

(p = 0.23) with the performance of the 5 s EEG segment. For dataset 2, the 5 s segment of

EEG provides an accuracy of 98.3%, which is slightly lower (by 0.8%) than the accuracy

for the 3 s EEG segment. However, the performance between 5 s and 3 s EEG segments is

not significantly different (p = 0.10). So, the EEG segment of duration 5 s can be used for

the effective detection of drowsiness. Moreover, a higher length of EEG segment will be

more computationally expensive and add extra latency in prediction time. So, we did not go

for a segment with a length higher than 5 s.

Figure 7.6: Effect of different EEG segment lengths on classification accuracy.

Figure 7.7 shows the confusion matrix of the proposed MIF-Drowsy framework for

dataset 1. For an alertness monitoring system, detection of a non-focused or drowsy state is

important as probable risks are associated with these states. The misclassified samples (non-

focused or drowsy mode as a focused mode) are marked as hazardous detection in Fig. 7.7.

From the confusion matrix, it is clearly visible that the number of hazardous predictions

is negligible (less than 1.52% of total observations). Also, the number of false alarms is

negligible (1.42% of total observations).

In this study, the mental state of the human subject is distinguished based on EEG sig-
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Figure 7.7: Confusion matrix of the proposed MIF-Drowsy framework for dataset 1. (F:
Focused, NF: Non-focused, and D: Drowsy)

nals. The obtained results show that our method can classify the three mental states with

appreciable performance. In the literature, many studies also aim to point out the problem

of discriminating between a drowsy state and an attentive state based on EEG data in the

context of car driving. Our study differed from such studies in that we tried to separate the

focused state from the detached or unfocused state where participants do not explicitly doze,

but due to lower attention levels, quick responding ability is hindered. This non-focused

state can cause fatal accidents and is difficult to detect. The proposed method shows good

performance in discriminating such non-focused states.

Many past studies with a similar objective of differentiating the focused and drowsy

state of car drivers based on behavioral or vehicular parameters, e.g., eye fixation, lane

detection, video monitoring, etc., were employed. Although they have achieved good ac-

curacy, the performance of many such studies relies on many external conditions like road

infrastructure, light conditions, etc. Also, methods based on movements or videos face a

special challenge in detecting passive present or non-focused states, as these states do not

significantly affect behavioral or vehicular parameters. EEG-based alertness monitoring

systems directly monitor the neural activity of the brain, which carries important signatures

related to mental state. In this way, pitfalls associated with other physiological, behavioral,

or vehicular parameter-based methods can be avoided.

Results of previous studies carried out on drowsiness detection are summarized in Ta-

ble 7.5. Several methods have used different entropy measures for developing a drowsiness

139



CHAPTER 7. JOINT TIME-FREQUENCY ANALYSIS OF EEG SIGNAL FOR
DROWSINESS DETECTION

detection framework [230, 234, 235]. Subasi et al. [238] extracted low-order statistical

features from subband EEG obtained from flexible analytic wavelet transform for the clas-

sification of drowsiness. Deep learning-based classification techniques for the identification

of drowsiness have been reported by Latreche et al. [232] and Lee et al. [233].

Table 7.5: Comparison of previous studies with the proposed method.

Author (Year) Methods

Database
(Subject,
Number
of classes)

Accuracy
(in %)

Djamal et al.
(2016) [226]

Wavelet based filters and SVM 4, 2 80.00

Yin et al.
(2017) [230]

Fuzzy entropy and SVM 12, 2 95.00

Min et al.
(2017) [235]

Spectral entropy, approximate entropy, sample
entropy, and fuzzy entropy

12, 2 98.30

Chaudhuri
and Routray
(2019) [234]

Sample entropy, approximate entropy, and
modified sample entropy with SVM classifier

12, 11 86.00

Aci et al.
(2019) [239]

EEG signal energy in different frequency
bands and SVM classifier

5, 3 91.72

Tuncer et al.
(2021) [231]

Discrete wavelet transform, dynamic cen-
ter based binary pattern and multi threshold
ternary pattern for feature extraction and KNN
classifier

16, 2 97.29

Latreche et al.
(2022) [232]

1D-CNN and LSTM 11, 2 75.55

Subasi et al.
(2022) [238]

Flexible analytic wavelet transform based low
order statistical feature extraction and SVM
classifier

16, 2 97.50

Lee et al.
(2023) [233]

LSTM and CNN with 1 s window length for
selecting EEG

19, 3 86.00

This work MIF and DESA based JTFR, joint marginal
spectrum derived from JTFR, and ANN

5, 3 95.03
12, 2 98.33

Aci et al. [239] reported accuracy of 90.72% (best) and 87.13% (average) subject-

specific paradigm based on three-channel EEG. The proposed MIF-Drowsy three-channel

EEG-based method achieved an accuracy of 96.85% (best) and 90.18±1.97% (average).

Handcrafted feature-based techniques are normally tedious due to the manual finding of the

appropriate features. Here, we use joint marginal spectrum for classification using ANN.
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Latreche et al. [232] and Lee et al. [233] used CNN and LSTM on EEG signal for the classi-

fication of drowsiness. The multichannel EEG-based approach gives superior performance,

which can be shown in Table. 7.5.

Different parameters of the EEG acquisition subsystem, like bandwidth, sampling rate,

number of electrodes, etc., may affect the overall performance of the mental state detection

system. These parameters also affect the design cost, user comfort, etc. We have used

joint marginal spectrum L4 for classification, the frequency of which is limited to 32 Hz.

Performance of more than 90.0% can be recovered using the three electrodes lying on the

MSP region of the brain. These findings indicate that we can use an EEG acquisition system

with a relatively lower sampling rate of around 80 Hz and only three channels to develop a

mental state detector.

With all the previously mentioned advantages of the EEG-based mental state detection

method, it also suffers from a few complications. EEG acquisition will be affected by differ-

ent kinds of artifacts like motion and muscle artifacts. Any electrical or electronic devices

in the surroundings may interfere with EEG acquisition, which may lead to deterioration

of performance. These are not serious problems for a controlled indoor environment as we

can take different measures to minimize them, but outside of the laboratory, it is difficult to

avoid such interference. Incorporating EEG artifact removal techniques [250] as a prepro-

cessing step can be helpful in such scenarios. Extensive research is required to develop a

more robust EEG acquisition system, which will increase the effectiveness and reliability of

EEG-based mental state detectors.

7.5 Summary

In this chapter, we have demonstrated a subject-specific mental state detection frame-

work using MIF and DESA-based time-frequency analysis techniques and ANN. The multi-

channel EEG signals are decomposed into MIMFs using MIF. AE and IF of MIMFs are cal-

culated with the help of DESA, which are used to obtain JTFR and joint marginal spectrum.

An ANN is developed to distinguish different mental states. We evaluated the proposed

method using two EEG databases. Dataset 1 is extensively analyzed to find suitable param-
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eters like segment length of EEG, rhythmic scale, and EEG electrodes for identifying mental

states. The proposed MIF-Drowsy framework shows promising results in distinguishing dif-

ferent mental states, namely, focused, non-focused, and drowsy modes. For dataset 1, the

accuracy of the proposed method reached 96.85% (best) and 95.03±1.08% (average) us-

ing multichannel EEG data when joint marginal spectrum L4 is used. Dataset 2 is used to

show the generality of the algorithm. For the second database, the MIF-Drowsy framework

provides 98.33±1.51% accuracy. Comparison to other existing techniques reveals the su-

periority of the method described in this chapter in discriminating different mental states.

Significant improvement in performance is showing the usefulness of joint time-frequency

analysis of EEG signals in drowsiness detection.
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Chapter 8

Conclusion and Future Works

8.1 Conclusion

We have proposed a novel extension of univariate iterative filtering for multichannel

signals. The proposed multivariate iterative filtering (MIF)-based framework extracts the

common oscillatory modes present in the multichannel signal adaptively without any pre-

vious assumption of fixed frequency bands. Compared to other multivariate decomposition

techniques, MIF consumed much less time for the decomposition of the same signal. Hav-

ing much lower computational time is a great advantages of the proposed MIF algorithm

over other multivariate decomposition algorithms like multivariate empirical mode decom-

position (MEMD), multivariate variational mode decomposition (MVMD).

We have developed an automated schizophrenia detection framework based on multi-

variate electroencephalogram (EEG) rhythms obtained from MIF. The extracted feature,

namely the Hjorth parameters of each rhythm along with the support vector machine (SVM)

classifier, have provided 98.9% accuracy (99.0% sensitivity and 98.8% specificity). The

proposed schizophrenia detection method based on MIF has shown significant improve-

ment (approximately 5% higher) in accuracy over existing machine learning based algo-

rithms and similar performance like the deep learning-based method. Deep learning based

methods are computationally very expensive compared to machine learning based approach.

The proposed adaptive rhythm separation will be useful for EEG rhythm analysis for other

neuroscience applications.
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The development and implementation of an automated Parkinson’s disease detection

system represent a significant advancement in addressing diagnostic challenges associated

with Parkinson’s disease. By bridging healthcare gaps in both rural and urban settings, this

technology has the potential to revolutionize Parkinson’s disease management, leading to

earlier diagnosis, improved patient outcomes, and more efficient healthcare delivery. The

proposed method for classifying Parkinson’s disease based on the phase-space representa-

tion (PSR) of multivariate intrinsic mode function (MIMF) has been found to be suitable.

The proposed feature, the area under the Euclidean distance curve, can be used as a visual-

ization tool to discriminate Parkinson’s disease and healthy EEG signals. We have observed

that the feature values are higher for Parkinson’s disease EEG signals. This feature can be

used as a diagnostic feature. We have evaluated the framework based on raw EEG signals,

univariate iterative filtering-based intrinsic mode function (IMF), and MIF-based MIMF.

The proposed framework based on the MIMF obtained using MIF provides the highest per-

formance, which shows the usefulness of the MIF method for the analysis of multichannel

EEG signals.

We have developed an motor imagery (MI) brain-computer interface (BCI) framework

using multichannel EEG signals. The proposed method is a combination of MIF, common

spatial pattern (CSP), and linear discriminant analysis (LDA) classifiers. CSP is used to

extract the features from properly aligned MIMFs across different channels. The proposed

framework is also evaluated by replacing the MIF with other existing multivariate decompo-

sition algorithms. namely, MEMD and MVMD. The MIF-CSP framework provides higher

accuracy as compared to both the multivariate signal decomposition approach. Moreover,

due to the less time complexity of MIF, the computational time for the MIF-CSP framework

will be less.

We have proposed a framework to detect the flickering frequency of steady-state visual

evoked potential (SSVEP) from EEG signals. The properly aligned multivariate mode pro-

vided by the MIF method enabled us to use Canonical correlation analysis (CCA) for feature

extraction in an efficient manner. The LDA classifier is used to identify different frequencies

based on CCA-based features. The effectiveness of the feature are shown using t-distributed

stochastic neighbor embedding (t-SNE) plot. The framework has been evaluated using an
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EEG database recorded in a mobile environment. The performance of the proposed MIF-

CCA-based framework is similar to the baseline methods when the subject was standing or

moving at a slower speed. When the subject was running at a speed of 2 m/s, the proposed

SSVEP identification framework achieved 21.8% higher accuracy as compared to the con-

ventional CCA-based method. This shows the robustness of the proposed framework in the

mobile environment.

We have developed a drowsiness detection framework using MIF, discrete energy sep-

aration algorithm (DESA)-based joint time-frequency representation (JTFR), and artificial

neural network (ANN). The joint marginal spectrum obtained from MIF-based JTFR of

EEG signals is proposed as a feature for the classification of drowsy EEG. We have evalu-

ated the proposed drowsiness detection framework using two publicly available databases.

The MIF-Drowsy framework provides accuracies of 95.0% and 98.3% for the two databases.

The framework for MIF and DESA-based JTFR can be used for other physiological signal

analyses and classifications.

8.2 Future Work

The proposed method for EEG signal processing using MIF is found suitable for identi-

fying neurological disorders and BCI applications. The presented algorithms and framework

in the thesis address several issues like improper mode alignment in multichannel signal

decomposition, variability in the number of modes in different channels’ signals, high com-

putation complexity, feature extraction, feature processing and selection, and classification

of EEG signals.

However, the presented work in the thesis can be improved and extended further. The

developed framework can be implemented on stand-alone dedicated hardware for real-time

application. We manually chose the different parameters for MIF and classifiers throughout

the work. An optimization technique can be chosen to automate this step and choose the

best set of parameters. The developed frameworks have been validated using one or two

publicly available databases with EEG signals from a limited number of subjects. In the

future, the performance of the proposed frameworks can be tested on a large set of avail-
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able data. EEG signals have a wide range of applications. The MIF method can be used

to develop other applications based on EEG signals. The proposed framework is only used

for the analysis of EEG signals. Other imaging techniques like magnetoencephalography

(MEG), near-infrared spectroscopy (NIRS) signals can also be used to understand the dif-

ferent states of the brain. The MIF can be used to study these signals related to the brain.

More discriminated and visually separable diagnostic features can be developed using MIF

for EEG signal representation and classification. Brain connectivity is an important mea-

sure for understanding the states of the brain. MIF can be used for the analysis of brain

connectivity at different scales.

The proposed MIF method can be used to study other multichannel physiological sig-

nals like electrocardiogram (ECG), electromyogram (EMG), Electrooculogram (EOG), etc.

EEG signals together with other physiological signals, can be studied for a multimodal

framework to access the common oscillatory information across different modalities.

MIF decomposes the signals into narrowband components. MIF provides high-

frequency resolution for lower-frequency components and low-frequency resolution for

higher-frequency components. That means the higher frequency components will have a

wider band as compared to the lower frequency components. The MIF can be modified to

improve the separation of oscillatory components at higher frequencies. The MIF method

is found to be suitable for EEG signal analysis as the related information lies in the lower

frequency range in EEG signals. The computation time of the proposed MIF algorithm can

be further reduced by proper optimization of the algorithmic steps. Detail theoretical as-

sessment and analysis of the robustness of the proposed MIF algorithm need to be carried

out in future.
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[72] A. Ahrabian, D. Looney, L. Stanković, and D. P. Mandic, “Synchrosqueezing-based

time-frequency analysis of multivariate data,” Signal Processing, vol. 106, pp. 331–

341, 2015.

154



[73] J. M. Lilly and S. C. Olhede, “Bivariate instantaneous frequency and bandwidth,”

IEEE Transactions on Signal Processing, vol. 58, no. 2, pp. 591–603, 2009.

[74] J. M. Lilly and S. C. Olhede, “Analysis of modulated multivariate oscillations,” IEEE

Transactions on Signal Processing, vol. 60, no. 2, pp. 600–612, 2011.

[75] “Schizophrenia.” [Online]. Available: https://www.who.int/news-room/fact-sheets/

detail/schizophrenia

[76] “What is Schizophrenia?” [Online]. Available: https://www.psychiatry.org/

patients-families/schizophrenia/what-is-schizophrenia

[77] T. M. Laursen, M. Nordentoft, and P. B. Mortensen, “Excess early mortality in

schizophrenia,” Annual Review of Clinical Psychology, vol. 10, pp. 425–448, 2014.

[78] M. Olfson, T. Gerhard, C. Huang, S. Crystal, and T. S. Stroup, “Premature mortality

among adults with schizophrenia in the united states,” JAMA Psychiatry, vol. 72,

no. 12, pp. 1172–1181, 2015.

[79] Parkinson’s disease. [Online]. Available: https://www.mayoclinic.org/

diseases-conditions/parkinsons-disease/symptoms-causes/syc-20376055

[80] What is Parkinson’s? [Online]. Available: https://www.parkinson.org/

understanding-parkinsons/what-is-parkinsons

[81] P. Gaur, H. Gupta, A. Chowdhury, K. McCreadie, R. B. Pachori, and H. Wang, “A

sliding window common spatial pattern for enhancing motor imagery classification

in EEG-BCI,” IEEE Transactions on Instrumentation and Measurement, vol. 70, pp.

1–9, 2021.

[82] P. Chholak, G. Niso, V. A. Maksimenko, S. A. Kurkin, N. S. Frolov, E. N. Pitsik, A. E.

Hramov, and A. N. Pisarchik, “Visual and kinesthetic modes affect motor imagery

classification in untrained subjects,” Scientific Reports, vol. 9, no. 1, pp. 1–12, 2019.

155

https://www.who.int/news-room/fact-sheets/detail/schizophrenia
https://www.who.int/news-room/fact-sheets/detail/schizophrenia
https://www.psychiatry.org/patients-families/schizophrenia/what-is-schizophrenia
https://www.psychiatry.org/patients-families/schizophrenia/what-is-schizophrenia
https://www.mayoclinic.org/diseases-conditions/parkinsons-disease/symptoms-causes/syc-20376055
https://www.mayoclinic.org/diseases-conditions/parkinsons-disease/symptoms-causes/syc-20376055
https://www.parkinson.org/understanding-parkinsons/what-is-parkinsons
https://www.parkinson.org/understanding-parkinsons/what-is-parkinsons


[83] R. Foong, K. K. Ang, C. Quek, C. Guan, K. S. Phua, C. W. K. Kuah, V. A. Deshmukh,

L. H. L. Yam, D. K. Rajeswaran, N. Tang et al., “Assessment of the efficacy of EEG-

based MI-BCI with visual feedback and EEG correlates of mental fatigue for upper-

limb stroke rehabilitation,” IEEE Transactions on Biomedical Engineering, vol. 67,

no. 3, pp. 786–795, 2019.

[84] Y. Zhang, S. Q. Xie, H. Wang, and Z. Zhang, “Data analytics in steady-state visual

evoked potential-based brain–computer interface: A review,” IEEE Sensors Journal,

vol. 21, no. 2, pp. 1124–1138, 2020.

[85] National highway traffic safety administration (NHTSA). distracted driving 2018.

[Online]. Available: https://crashstats.nhtsa.dot.gov/Api/Public/ViewPublication/

812926

[86] C. Park, D. Looney, P. Kidmose, M. Ungstrup, and D. P. Mandic, “Time-frequency

analysis of EEG asymmetry using bivariate empirical mode decomposition,” IEEE

Transactions on Neural Systems and Rehabilitation Engineering, vol. 19, no. 4, pp.

366–373, 2011.

[87] N. Rehman and D. P. Mandic, “Multivariate empirical mode decomposition,” Pro-

ceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences,

vol. 466, no. 2117, pp. 1291–1302, 2010.

[88] N. Ur Rehman and H. Aftab, “Multivariate variational mode decomposition,” IEEE

Transactions on Signal Processing, vol. 67, no. 23, pp. 6039–6052, 2019.

[89] D. Gabor, “Theory of communication,” Proceedings of the Institution of Electrical

Engineers, vol. 93, pp. 429–457, 1946.

[90] D. Vakman, “On the analytic signal, the Teager-Kaiser energy algorithm, and other

methods for defining amplitude and frequency,” IEEE Transactions on Signal Pro-

cessing, vol. 44, no. 4, pp. 791–797, 1996.

[91] B. Picinbono, “On instantaneous amplitude and phase of signals,” IEEE Transactions

on Signal Processing, vol. 45, no. 3, pp. 552–560, 1997.

156

https://crashstats.nhtsa.dot.gov/Api/Public/ViewPublication/812926
https://crashstats.nhtsa.dot.gov/Api/Public/ViewPublication/812926
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[94] G. Rilling, P. Flandrin, P. Gonçalves, and J. M. Lilly, “Bivariate empirical mode

decomposition,” IEEE Signal Processing Letters, vol. 14, no. 12, pp. 936–939, 2007.

[95] M. U. B. Altaf, T. Gautama, T. Tanaka, and D. P. Mandic, “Rotation invariant com-

plex empirical mode decomposition,” in 2007 IEEE International Conference on

Acoustics, Speech and Signal Processing-ICASSP’07, vol. 3. IEEE, 2007, pp. III–

1009.

[96] N. ur Rehman and D. P. Mandic, “Empirical mode decomposition for trivariate sig-

nals,” IEEE Transactions on Signal Processing, vol. 58, no. 3, pp. 1059–1068, 2009.

[97] X. Lang, Q. Zheng, Z. Zhang, S. Lu, L. Xie, A. Horch, and H. Su, “Fast multivariate

empirical mode decomposition,” IEEE Access, vol. 6, pp. 65 521–65 538, 2018.

[98] J. Schroeder, “Signal processing via Fourier-Bessel series expansion,” Digital Signal

Processing, vol. 3, pp. 112–124, 1993.

[99] P. K. Chaudhary, V. Gupta, and R. B. Pachori, “Fourier-Bessel representation for

signal processing: A review,” Digital Signal Processing, vol. 135, p. 103938, 2023.

[100] A. Anuragi, D. S. Sisodia, and R. B. Pachori, “Automated alcoholism detection using

Fourier-Bessel series expansion based empirical wavelet transform,” IEEE Sensors

Journal, vol. 20, no. 9, pp. 4914–4924, 2020.

[101] R. B. Pachori and P. Sircar, “EEG signal analysis using FB expansion and second-

order linear TVAR process,” Signal Processing, vol. 88, no. 2, pp. 415–420, 2008.

[102] D. Zosso, K. Dragomiretskiy, A. L. Bertozzi, and P. S. Weiss, “Two-dimensional

compact variational mode decomposition: Spatially compact and spectrally sparse

157



image decomposition and segmentation,” Journal of Mathematical Imaging and Vi-

sion, vol. 58, pp. 294–320, 2017.

[103] S. Liu and K. Yu, “Successive multivariate variational mode decomposition,” Multi-

dimensional Systems and Signal Processing, vol. 33, no. 3, pp. 917–943, 2022.

[104] Z. Wu and N. E. Huang, “Ensemble empirical mode decomposition: A noise-assisted

data analysis method,” Advances in Adaptive Data Analysis, vol. 1, no. 01, pp. 1–41,

2009.

[105] J. S. Smith, “The local mean decomposition and its application to EEG perception

data,” Journal of the Royal Society Interface, vol. 2, no. 5, pp. 443–454, 2005.

[106] R. Vautard and M. Ghil, “Singular spectrum analysis in nonlinear dynamics, with

applications to paleoclimatic time series,” Physica D: Nonlinear Phenomena, vol. 35,

no. 3, pp. 395–424, 1989.

[107] J. Harmouche, D. Fourer, F. Auger, P. Borgnat, and P. Flandrin, “The sliding singular

spectrum analysis: A data-driven nonstationary signal decomposition tool,” IEEE

Transactions on Signal Processing, vol. 66, no. 1, pp. 251–263, 2017.

[108] D. S. Broomhead and G. P. King, “Extracting qualitative dynamics from experimental

data,” Physica D: Nonlinear Phenomena, vol. 20, no. 2-3, pp. 217–236, 1986.

[109] J. Zheng, J. Cheng, and Y. Yang, “A rolling bearing fault diagnosis approach based

on LCD and fuzzy entropy,” Mechanism and Machine Theory, vol. 70, pp. 441–453,

2013.

[110] M. G. Frei and I. Osorio, “Intrinsic time-scale decomposition: time–frequency–

energy analysis and real-time filtering of non-stationary signals,” Proceedings of the

Royal Society A: Mathematical, Physical and Engineering Sciences, vol. 463, no.

2078, pp. 321–342, 2007.

[111] P. J. Schmid, “Dynamic mode decomposition of numerical and experimental data,”

Journal of Fluid Mechanics, vol. 656, pp. 5–28, 2010.

158



[112] D. Iatsenko, P. V. McClintock, and A. Stefanovska, “Nonlinear mode decomposition:

A noise-robust, adaptive decomposition method,” Physical Review E, vol. 92, no. 3,

p. 032916, 2015.

[113] A. Cicone, J. Liu, and H. Zhou, “Adaptive local iterative filtering for signal decompo-

sition and instantaneous frequency analysis,” Applied and Computational Harmonic

Analysis, vol. 41, no. 2, pp. 384–411, 2016.

[114] P. Singh, S. D. Joshi, R. K. Patney, and K. Saha, “The Fourier decomposition method

for nonlinear and non-stationary time series analysis,” Proceedings of the Royal So-

ciety A: Mathematical, Physical and Engineering Sciences, vol. 473, no. 2199, p.

20160871, 2017.

[115] Q. Chen, L. Xie, and H. Su, “Multivariate nonlinear chirp mode decomposition,”

Signal Processing, vol. 176, p. 107667, 2020.

[116] J. Huang, C. Li, X. Xiao, T. Yu, X. Yuan, and Y. Zhang, “Adaptive multivariate

chirp mode decomposition,” Mechanical Systems and Signal Processing, vol. 186, p.

109897, 2023.

[117] R. Mahmoudvand, P. C. Rodrigues, and M. Yarmohammadi, “Forecasting daily ex-

change rates: A comparison between SSA and MSSA,” REVSTAT-Statistical Journal,

vol. 17, no. 4, pp. 601–616, 2019.

[118] P. C. Rodrigues and R. Mahmoudvand, “The benefits of multivariate singular spec-

trum analysis over the univariate version,” Journal of the Franklin Institute, vol. 355,

no. 1, pp. 544–564, 2018.

[119] Q. Zhang, R. Yuan, Y. Lv, Z. Li, and H. Wu, “Multivariate dynamic mode decompo-

sition and its application to bearing fault diagnosis,” IEEE Sensors Journal, vol. 23,

no. 7, pp. 7514–7524, 2023.

[120] A. S. S. Reddy and R. B. Pachori, “Multivariate dynamic mode decomposition for

automatic imagined speech recognition using multichannel EEG signals,” IEEE Sen-

sors Letters, vol. 8, p. 6001604, 2024.

159



[121] T. Matsuda and F. Komaki, “Multivariate time series decomposition into oscillation

components,” Neural Computation, vol. 29, no. 8, pp. 2055–2075, 2017.

[122] L. Lin, Y. Wang, and H. Zhou, “Iterative filtering as an alternative algorithm for

empirical mode decomposition,” Advances in Adaptive Data Analysis, vol. 1, no. 04,

pp. 543–560, 2009.

[123] A. Cicone, C. Garoni, and S. Serra-Capizzano, “Spectral and convergence analysis of

the discrete ALIF method,” Linear Algebra and its Applications, vol. 580, pp. 62–95,

2019.

[124] A. Cicone and P. Dell’Acqua, “Study of boundary conditions in the iterative filtering

method for the decomposition of nonstationary signals,” Journal of Computational

and Applied Mathematics, vol. 373, p. 112248, 2020.

[125] A. Cicone, “Iterative filtering as a direct method for the decomposition of nonstation-

ary signals,” Numerical Algorithms, vol. 85, no. 3, pp. 811–827, 2020.

[126] A. Cicone and E. Pellegrino, “Multivariate fast iterative filtering for the decomposi-

tion of nonstationary signals,” IEEE Transactions on Signal Processing, vol. 70, pp.

1521–1531, 2022.

[127] D. Sulzer, C. Cassidy, G. Horga, U. J. Kang, S. Fahn, L. Casella, G. Pezzoli, J. Lan-

gley, X. P. Hu, F. A. Zucca et al., “Neuromelanin detection by magnetic resonance

imaging (MRI) and its promise as a biomarker for Parkinson’s disease,” npj Parkin-

son’s Disease, vol. 4, no. 1, pp. 1–13, 2018.

[128] U. R. Acharya, S. L. Fernandes, J. E. WeiKoh, E. J. Ciaccio, M. K. M. Fabell, U. J.

Tanik, V. Rajinikanth, and C. H. Yeong, “Automated detection of Alzheimer’s disease

using brain MRI images–a study with various feature extraction techniques,” Journal

of Medical Systems, vol. 43, no. 9, p. 302, 2019.

[129] N. Salamon, J. Kung, S. Shaw, J. Koo, S. Koh, J. Wu, J. Lerner, R. Sankar, W. Shields,

J. Engel et al., “FDG-PET/MRI coregistration improves detection of cortical dyspla-

sia in patients with epilepsy,” Neurology, vol. 71, no. 20, pp. 1594–1601, 2008.

160



[130] V. Gupta and R. B. Pachori, “Epileptic seizure identification using entropy of FBSE

based EEG rhythms,” Biomedical Signal Processing and Control, vol. 53, p. 101569,

2019.

[131] V. Joshi, R. B. Pachori, and A. Vijesh, “Classification of ictal and seizure-free EEG

signals using fractional linear prediction,” Biomedical Signal Processing and Con-

trol, vol. 9, pp. 1–5, 2014.

[132] R. B. Pachori and V. Gupta, “Biomedical engineering fundamentals,” in Intelligent

Internet of Things. Springer, 2020, pp. 547–605.

[133] J. W. Kim, Y. S. Lee, D. H. Han, K. J. Min, J. Lee, and K. Lee, “Diagnostic utility

of quantitative EEG in un-medicated schizophrenia,” Neuroscience Letters, vol. 589,

pp. 126–131, 2015.

[134] Z. Dvey-Aharon, N. Fogelson, A. Peled, and N. Intrator, “Schizophrenia detection

and classification by advanced analysis of EEG recordings using a single electrode

approach,” PloS One, vol. 10, no. 4, p. e0123033, 2015.
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