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Abstract

Department of Computer Science and Engineering
Bachelor of Technology

Thermal Management Methodology for Heterogeneous System

As hardware platforms are evolving, the transistor density in the system is increasing. This
has led to rise in the power density of the system.The power density of the microprocessors
have already exceeded the power density of hot plates and some have even reached the power
density of a nuclear reactor. This has increased the demand for an effective temperature man-
agement system. In this project,  have proposed a methodology to reduce this increase in power
density and formation of high temperature zones, also called hotspots. The project has shown
two approaches to do so: Proportional-Integral-Derivative Controller (PID) and Model Predic-
tive Controller (MPC). I have also shown a comparison between the two controllers. The model
of each of the cores involved in the system are made for determining the temperature of the
system considering each core present in the microprocessor as a different entity. This model is
made using Extra Randomized Tree Regression. Proposed method also uses workload predic-
tor which uses Support Vector Regression (SVR). The proposed method then uses optimization
function (LQR) available in a library of Python to find the operational frequency of the cores of
the system.
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Chapter 1

Introduction

1.1 Background

Moore’s law states that with the development of a new node in semiconductor technology ev-
ery two years the area occupied by an electronic circuit is reduced by half due to the shrinking
size of transistors. The semiconductor industry has followed this trend in their development
plans over many decades creating products with ever higher circuit densities and increased
functionality.From the circuit design perspective, the industry focus shifted with the rise of mo-
bile and wearable computing from traditional Central Processing Units (CPUs) to System-on-
Chips (SoCs). SoCs feature increased functionality by integrating on the same piece of silicon,
additionally to Multi-Core CPUs, components such as memory, wireless connectivity (Bluetooth,
WiFi, 3G, 4G, LTE), dedicated graphics processors, power management circuits, global position-
ing system circuits, etc.

The growth and advancement in technology has lead to rise of a new era in the field of micro-
processors called the More than Moore era. In this era the transistor size has already decreased
more than that predicted by Moore’s Law. The advent of 22ym and more recent 5ym technology
has lead to much more heat dissipation and an increase in both functional density and power
density of the over all system. The chip temperature and cooling techniques available today are
already facing major consequences and drawbacks because of the same.

As can be seen in the figure shown , the power density curve for PentiumlIIl is much higher
that hot plate’s power density. The current model of intel i7(Ivy Bridge) has been found out
to be almost 0.481W/mm2. The newer versions on Intel Skylake and Intel E bridge processors
also have similar power densities. I have taken into consideration the high power density of the
processors and have implemented it using the already available softwares like HotSpot v6.0.

Increased power density is an important topic for modern planar ICs. Figure 1 shows the
power density curve for the planar IC. Power density in Intel CPUs increased nearly exponen-
tially from about 2 W/cm?2 for the i386 fabricated in 1.5 ym technology introduced in 1985 to
about 100 W/cm?2 for the Pentium IV fabricated in 0.13 ym technology introduced in 2000. To-
day’s CPUs and SoCs with transistor counts in the billions reach even higher values.

This causes occurrence of hotspots(Hotspots are regions of especially high computational
density that feature heat fluxes that can exceed several kW /cm2) with elevated temperature on
the chip.The elevated circuit temperatures degrade gate oxide reliability[1] and cause reduced
life-time as well as reduced performance and degraded functionality of the whole chip. In addi-
tion since silicon is not a good heat conductor.This makes efficient heat and power management
essential.

In this project, I tried to solve this problem by providing a specific methodology which can
be easily implemented on a real-life system like the hardware of Odroid-XU4. The management
technique was also replicated on the Intel- i5 6500T processor and on Odroid XU3. This ensured
the flexibility of the system and also helped me determine that the methodology is independent
of the system we are working on.



2 Chapter 1. Introduction

1000, Rocket Nozzlg

[Muclear Reacor N, .

100 Pentium IV
_ Pentium Il
E Pentium II
= . Pentium Pro
2 q0 [Hotplate _ _ N _____.
E Pentium
§ 386
o 4
[T
z
[=]
[-%

0.1

10 100 1000 100000

Technology node (nm)

FIGURE 1.1: Trend in Power Density by Intel

The present literature emphasizes the use of DVES for effective temperature control[2]. This
method is more preferable to many other methods as it prevents unnecessary losses in perfor-
mance. The methodology involves the following step:1)Model making 2)Controller assembling
3)Optimizer configuration 4)Encapsulation

I used the Extra Tree Regression Randomized Tree algorithm to get a model which will help
us predict the temperature for the next time sample by taking the input as current tempera-
ture and current operational frequency.The workload predictor is made using Support Vector
Machine[3]. The optimization used scipy.optimize library of Python[4].

1.2 Related Works

The following section discusses literature pertaining to previously known methods of thermal
management for real life application. The techniques were based on DVFS algorithms for the
same

1.2.1 Distributed and Self calibrating Thermal Management System

Conventional thermal management algorithms aim to maintain the temperature of the core in
the safe region(upto 385K) by changing the frequency of the system. In this technique, Model
Predictive controller(MPC) has been used. The schematic of the same has been shown in Figure
2. The author used Linear Model to predict the temperature for the next time instance while
taking the temperature and the frequency for the system as input. Each system has its own
model for the prediction.

The algorithm calibrates itself at the start of the system. The control is online and had been
tested on a software called HotSpot v6.0.[5]. The self calibration routine is a heuristic and uses
pessimistic approach for calibration.

1.2.2 Reinforcement Learning

This method used Q-Table algorithm for predicting the next course of action under any situa-
tion.The variables that were considered the state of the system were:Stress and Aging. The action
was the allocation of applications and frequency and voltage changing.

Thermal Stress is defined in the terms of thermal cycles. The thermal aging is defined in
terms of MTTE. The main focus of the work was to differentiate the case of intra-process switch-
ing and inter-process switching. The difference between these processes has been shown in the
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following graph. The first half shows inter-process scheduling and the second half shows intra-
process scheduling.
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FIGURE 1.4: Model Predictive control by Anup et al.

The most important drawback of this method is that it takes a lot of time to calibrate at each
boot time. The system also has to store the value of each action to each state(Q-Table). This
increases the memory requirement for the system.

|| Past Work Machine Learning Temperature Measurements  Platform ||

[1] Yes HotSpot Simulation
[6] No HotSpot Simulation
[7] Yes Sensors Multicore
[8] Yes HotSpot Simulation
[9] Yes Thermal Model Simulation
Proposed Yes Sensors Multicore

1.3 Overall Objective

e Device a methodology to be implemented on a real system. The current literature has most
of the techniques been tested and implemented from a simulation software.(As shown in
the Table)
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e The control should be online control to tackle the case of applications whose profiling
have not been done yet. This will also add to the universal nature of the system and
methodology.






Chapter 2

Prelimnary Concepts

2.1 Dynamic Voltage and Frequency Scaling

Many studies have focused on power and thermal management of multi-core processors. The
most popular approach for processor power optimization is dynamic voltage and frequency
scaling (DVEFS). In the DVFS technique, the operational voltage and the operating frequency of
the IC are changed based on threshold values for circuit temperature or other variables in order
to reduce heat and lower the power consumption. In electronic devices, running on battery such
as laptops or mobile devices, DVFES is used to lower power consumption and extend battery-life
while in high-performance CPUs it is employed to avoid overheating. DVFS has limitations as
there is a trade-off between the performance and the power consumption of an IC. Lowering
the operational voltage or frequency of cores of an SoC reduces its performance. This can cause
delays for time- critical applications such as multimedia, control or gaming. Recently an opti-
mized DVFS technique has been proposed that is supposed to work better under performance
constraints.

In this technique, the execution time for each computational task is estimated and taken into
account for dynamic voltage scaling in order to better handle time-sensitive applications. While
this is an important improvement on the existing DVFS technique, it has to be combined with
a smart and fast control system that is scalable in order to be useful for 2D ICs. In addition
to the power versus performance trade-off mentioned above, the current DVFES technique faces
more challenges. Abrupt changes from low power-mode to the regular-power mode of oper-
ation or vice versa increases delay and consumed energy. Furthermore, abrupt changes of the
mode of operation of the cores worsen thermal cycles and degrade reliability and life-time of the
IC[1]. In order to reduce thermal cycles, frequency and voltage changes in the IC’s functional
blocks should be smooth and continuous in combination with strategies that allow predicting
temperature and workload.

2.2 Model Predictive Controller((MPC)

In order to overcome the issues of threshold-based techniques, the use of a controller is rea-
sonable. Classic proportional-integral-derivative (PID) and linear-quadratic regulator (LQR)
controllers do not have predictive abilities and are also not flexible enough for controlling the
dynamic behavior of complex multi-core processor architectures [WMW11]. Model Predictive
Controllers employ a control algorithm that optimizes the current time-slot while taking future
time-slots into account. A model of the system that is controlled is used to optimize a finite time-
horizon while implementing the current time-slot. By taking future time-slots into account when
making the next control decision, smooth transitions between states of operation can be achieved
and sudden changes are avoided. Because they rely on a model of a system they control, MPCs
allow making precise control decisions even for complex systems such as multi-core proces-
sors. Recent studies have shown that MPC-based thermal controllers for multi-core processors
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perform better compared with threshold-based DVFS and LQR control techniques [Zan+11].
For the same temperature capping, MPC-controlled CPUs could handle a higher computational
workload, performing 25better compared to threshold-based DVFS systems. For the power and
heat management of 3D multi-core architectures, MPCs are therefore the premier choice [10].

The main challenge for the implementation of an MPC is identifying an accurate model of
the system to be controlled. As the model is an integral part of the controller feedback, the
more accurate the model, the more precise the actions of the controller can be. Unfortunately,
a model of the system is not always readily available, especially for multi-core processors. In
previous works, the authors used different methods to identify or estimate the model of the chip
to be controlled. In [7] the authors used a state-space model which changes based on the chip
power consumption depending on the dynamic thermal behavior of the chip. They calibrated
their model on an Intel Core i7 940 CPU fabricated in 45 nm technology. Relationships between
temperature, performance counters and operating frequency were extracted first. These pre-
captured thermal models were stored in a lookup table and k-means clustering techniques were
used to relate each new workload during CPU operation to the appropriate thermal model.
Based on the selected model the circuit temperature was controlled using the DVFES technique. In
this approach, it is necessary to identify the thermal model in the design phase of the controller
because the characterization of the thermal model during run-time is time-consuming and uses
computational resources. Additionally, this approach is also not easily scalable.

In [6] a model of the CPU was estimated during run-time using the linear relationship be-
tween power and DVES level. The estimated model was used to predict the temperature of a
multi-core CPU using an MPC. The model parameters of the MPC were dynamically updated
based on the measured power data. On the one hand, the accurate model increases the precision
of the controller but on the other hand updating the model at run-time increases the computa-
tional load on the CPU. It is estimated that the computational load for this approach increases
exponentially with the number of CPU cores. In the proof of concept study , the authors char-
acterized a temperature model for a multi-core system using power input traces. A Linear Time
Invariant (LTI) state space model, using a subspace system identification called Numerical Al-
gorithm for Subspace State Space System Identification, was derived. In order to avoid the
problem of over-fitting they reduced the order of their model. The authors of [2] reduced the
computational complexity of MPC by using the explicit approximation method. Their imple-
mentation on an 8-core Niagara-1 system showed a significant reduction in computational load
while performance loss related to simplification was negligible. In the studies advantages of
decentralized and distributed MPC over the centralized ones are described. The main feature of
distributed MPC is that the control system is divided into different local controllers, whichhave
some level of communication established between them.

r(t
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State Prediction [|ﬂp\fl Prf\”lcﬂnn]
| )

. . o [
INSSS 8 0 g s,
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FIGURE 2.1: Generic Model Predictive control

For this project, we plan to combine the advantages from different approaches. We plan to
follow a decentralized or distributed MPC approach to reduce model complexity and ensure fast
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run-time. Each subsystem of the multi-core SoC will be modeled by the power-series expansion
of its power in terms of DVFS value and computational load. The complete model will be tested
by running dynamic 3D thermal simulations of the multi-core SoC that we use as a proof of con-
cept platform. The proof of concept SoC is based on ARMs big.LITTLE architecture and features
eight cores. By using thermal simulations of the multi-core SoC, we can adjust the parameters
for each subsystem to reflect heat distribution in the system under load well. Interaction terms
will be included to reflect the interdependence of subsystems. Once the simulations have con-
firmed the model, we will use empirical data measured on the multi-core SoC by running test
applications to fine tune the model parameters. A sample for MPC is given in the figure below:

2.3 Extra Randomized Tree Regression

This is a machine learning algorithm which is a type of ensemble algorithm. An ensemble algo-
rithm is an algorithm which is mixture of more than one algorithms. The method is similar to
decision tree regression, where data is divided into subsets in order to maximize the prediction
accuracy. In extra tree regression, the decision of tree formation is completely randomized and
the best tree is chosen for higher accuracy. The code was a python code and the ExtratreeRegres-
sion function of sklearn library in python was used for making this model.

The mathematical equations for the same are as shown: For node , representing a region
with observations, common criteria to minimise as for determining locations for future splits
are Mean Squared Error, which minimizes the L2 error using mean values at terminal nodes,
and Mean Absolute Error, which minimizes the L1 error using median values at terminal nodes.

Mean Square Error:

1
Cm = E Wi
Nm

iENm

H(Xn) = 2= 3 (s = en)?

N
N, L=
™ e Nom

Mean Absolute Error:

Pp, (Y =c|X =x) Py (¥ = €] =2)

Py(Y = clX = x)

FIGURE 2.2: Extra Randomized Tree Regression
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In extra randomized tree regression, the sample data set is distributed randomly into many
subset with each of these subsets being used for training the model. These models are of tree
type as has been explained previously. The final result of the algorithm is the arithmetic mean
of the resulting models. This property has many advantages and disadvantages.

Advantages:

o It gives better results for high dimensional sample space

e Takes into account the property of randomness in the input data
Disadvantages:

e It has a chance of over-fitting of a large number of subtrees is chosen

o The error for deterministic data is quite high
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PID Implementation

The basic idea of the controller is as shown in the diagram below:

> P k

—3> D k,s

FIGURE 3.1: Basic design of PID controller

Before trying the idea of PID , it was essential to try it on HotSpot Simluation Software.
PID has been said as not powerful enough to control the temperature of the system in previous
works[2][10]. So, we tried it on simulation.

3.1 Implementation on Simulation

We tried to take a 3x3 core floorplan for the experiment and tried reducing the temperature from
the given example in HotSpot example suite. The figures shown below shows heatmaps of the
core system before and after implementation of PID controller on the system.

The standard way of tuning a PID system is that the values for Derivative constant and
Integral constant are left as zero and the value of Proportionality constant is increased gradually
till an oscillating output is obtained. We the call this value of Proportionality constant as Kp and
the time period of oscillation as Ti.

There are two methods of obtaining the other parameters of the PID controller and they are
as follows:

The graphs obtained from both are shown below:

As we can see from the graphs that the overshoot value for Tyreus-Luyben method is less
compared to its counterpart and hence we choose to use it.
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a)

Before

b) After
FIGURE 3.2: Effect of PID controller
Method Kp Ti Td
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3.2 Implementation on Odroid XU4

The next step was implementing the PID on Odroid XU4 board as it proved to be working on the
system. The tuning of the system was done as shown in the last section. The tuned PID was then
tested on Nasa Parallel Benchmarks(NPB)[11]. These benchmarks are standardized benchmarks
for the purpose of application profiling. We have the results as shown in the figure.

As can be seen in the graph obtained for the application the temperature of the board goes
to a high of 95°C without any thermal management policy and remains above 85°C for atleast
10 seconds. It can also be clearly seen that due to the effect of the thermal management policies
the temperature of the system goes down considerably. This justifies the effective working of
the system.

The PID method does have some drawbacks. To mention a few:

e The system conditions like moisture content, ambient temperature ,etc. do play an impor-
tant role in determining the temperature curve of the system. This may require repeated
tuning.

e The PID requires some time to stabilize which may cause performance degradation and
overhead in some cases.

e Due to the causal nature of the control system the possibility of an upcoming thermal
emergency can not be discovered hence increasing the safety risks involved.
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Chapter 4

MPC Implementation

The MPC or Model Predictive Controller have been around since a few decades with their uses
varying from the oil field industries to the day to day electronics working and functioning. The
recent advancement of these controllers in industry have caused a significant increase in their
application on different fields. The poosibility of these controllers being used has been explored
already in works like [2].

The basic steps would be:

Formulation of the system model of the system

Making a workload predictor for the system

Making an optimizer for the system

Encapsulating all the above to form the final controller

Model Predictive Controller

perat |

> Y ¥

Predicted IPC for |

‘Workload next 6 cycles System M
PC value: Predictor Model
- - )
Predicted temperatures
Optimizer —
Frequency values
Core processor -

FIGURE 4.1: Proposed MPC Model

4.1 Formulation of System Model
We know that the temperature of a system is directly proportional to the power dissipated in

the system[9]. The relation between power and other physical properties of the system and the
properties of the application is [6].

P = kafreq- V3, + kp+ (ko + kp freq) - C PI*
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Where ky,kp kc and kp are dependent only on the physical properties of the system. The
value Vs is the input voltage of the transistors and CPI is clocks per instructions. In today’s
age and of multithreading applications, the term CPI has been replaced by Instructions per Cy-
cle(IPC). We will be using the Perf tool to measure the value of IPC and we shall be using the
temperature sensors present onboard for measuring the temperature.

Static
Mapping .

N
2D Chip| 89

)
Power/Performance
Temperature

Application

FIGURE 4.2: Proposed System Model

The following were the steps involved in making the model:

e Selecting applications from the NSB Benchmarks which represent tha maximum range of
applications possible.

e Collecting values of IPC , Frequency of the cores and temperature of the core for a fixed
interval of time for all possible permutations of active core and frequency values

e Making the model using ML algorithms and other curve fitting tools

I tried to make the model using the sklearn library of Python. The following algorithms gave
results with more than 85accuracy:

e Extra Randomized Decision Tree Regression (accuracy:90.4
e Decision Tree Regression (accuracy:87
e Linear Regression (accuracy:86

We choose Extra Randomized Tree Regression for the Model Making Task.

An Active core is that core of the board on which the application is runnig while an inactive
core is the one on which no application is ruuning.The graphs shown below give an estimate of
how well does the System Model perform.

As can be easily inferred from the graphs above, the prediction error is very less in both the
cases of active and inactive core (never exceeds 4°C in any case)
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4.2 Workload Predictor

The workload predictor is made using Support Vector Regression as has been proven effect in
[3]. The techniques used in Vapnik’s € sensitive method. A tube with the width of € is considered
about the predicted function. The values outside of the tube are penalized for the error and the
values inside the tube are desirable. The value of the output(y;) is a linear function of input (x;).
As we have to penalize any value outside of the tube, the loss function will be :

L .syr (t,¥)
B [ 0 iflt—yl < ¢
n |t —y|— & otherwise

Hence by optimizing the above constraints, we will get the SVR.

FIGURE 4.5: Epsilon Loss Function

FIGURE 4.6: SVR Tube and prediction error

The workload prediction done using this method has been tested in SPEC 2006 benchmark.
The following figure shows the available counters being utilized.

The analysis on SPEC 2006 Benchmark showed the accuracy to be 86The analysis was also
carried on by me for NSB benchmarks( UA class W, EP class A and BT class A). The average
accuracy was of 80The main focus of workload predictor is to prevent or warn about any up-
coming thermal emergencies and as can be seen later, this goal is successfully achieved.

4.3 Optimization

The literature has cases of optimization being chosen for the MPC implementation on Embedded
Systems platform. The popular techniques are :

e Linear Quadratic Regulator
e Look up Table

e Gradient descent method
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1 | CPU CLK UNHALTEDREF TSC

27 | CPU CLK UMHALTED THREAD

3 | CYCLE_ACTIVITY CYCLES L1D PENDI
NG

4 | CYCLE_ACTIVITY CYCLES L2 PENDIN
G

5 | CYCLE_ACTIVITY CYCLES MIC PENDI
NG

§ | CYCLE_ACTIVITY CYCLES WO DISPAT
CH

7 | CYCLE ACTIVITY L1D FENDING

E | CYCLE_ACTIVITY L2 PENDING

9 | CYCLE_ACTIVITY MLC_PENDING

10 | CYCLE_ACTIVITY MO DISPATCH

11 | CYCLE _ACTIVITY STALL CYCLES LID

FENDING

12 | CYCLE _ACTIVITY STALL _CVYCLES L2 F
ENDING

13 | FP_COMF OPS EXE WE7

14 | FREERUN CORE C3 RESIDENCY

15 | FREERUN CORE (6 RESIDENCY

16 | FREERIUN CORE ) RESIDENCY

7 | INST_RETIRED AMY

18 | INSI RETIRED W&,

19 | LONGEST LAT CACHE MISS

30 | LOMGEST LAT CACHE REFERENCE

71 | MEMORY INSTRALL LOADS AND 8T
ORES

77 | MEMORY INSTR CACHEABLE LOADS_
AND STORES

77 | OFFCORE REQUESTS.ALL DATA RD

74 | OFFCORE_RESPOMNSE DEMAND DATA
EDLLC MISS REMOTE DRAM 0

75 | OFFCORE_RESPONSE DEMAND DATA
EDILC MISS REMOTE DRAM 1

76 | UNC C CLOCKTICKS

7 | UNC C LLC LOOKUP DATA READ

78 | UNC C LLC LOOKUF. WRITE

78 | UNC M CLOCKTICES

30 | UOPS DISPATCHED STALL CYCLES

31 | UOPS ISSUED.CORE STALL CYCLES

37 | UOPS ISSUEDSTALL CYCLES

37 | UOPS RETIRED STALL CYCLES

3 | UOPS REIIRED TOTAL CYCLES

FIGURE 4.7: Counter Types



20 Chapter 4. MPC Implementation

It has been found out that Look up Table method is the fastest method in application . The
drawback being the we will have an offline control in case of Look up table method and I wanted
to get an online Thermal Management System. Thus exploring the next best option, I tried
implementing the LQR optimization with the help of Scipy library[4] The optimization equation
was of the form:

Objective function: J = £*_(W1(T,-Ty.) + W2(freq-freq,,..)* )

constraints: 0.2<freq<2
Ti<Tinresnois

where:
e freq; is the operational frequency of the cores.
e freqpax is the maximum operational frequency for the cores.
o T; is the temperature at the time instances.
® TTpresnord is the threshold temperature to avoid thermal emergencies.
e wl and w2 are constants whose value is independent of the application being run

The scipy library was not able to respect the constraints as they are non-linear. Due to this
reason, I set the threshold temperature lower than the actual threshold temperature for the per-
formance to degrade. The penalizing in the equation helps in avoiding thermal emergencies.

The second limitation of Scipy library is that it takes time to solve which can be easily over-
come by decreasing the complexity of system model.

4.4 Encapsulating the code

The final code is divided into two parts. The interface to collect data from the system and reading
and writing to the system registers. The second half is implementation of the whole MPC.The
codes are in Python3. The libraries used in the project are:

e numpy
e pandas

e pickle

scipy

sklearn
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This chapter deals with the experimentation and actual implementation on the Odroid XU4
board. The following are the graphs for the thermal management system obtained at the end of
execution of the methodology. The Odroid XU4 board also have some limitations:
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FIGURE 5.1: Frequency Variation with time

16 18 20

The board has Exynos5422 chip which has big. LITTLE architecture. The big cores are ARM
Cortex A15 cores which are performance intensive while the LIITLE cores are ARM Cortex
A7 cores which are power efficient. As there is complex calculations involved in the MPC,
and float point functionality is only present in A15, the controller has to be mapped in A15,

or big , cores only

The board does not have individual hardware knob for each controlling the frequency of
each core. This means that the system can no longer be treated as purely heterogeneous
system. However, for a heterogeneous system, the steps shall not change much.

The temperature sensors are present only on the big cores and not on the LITTLE cores.

This limits the ability to get an accurate model for the LITTLE cores
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Chapter 6

Conclusion and Future Work

The objectives of this project were to

e Introduce a new and novel thermal management system for heterogeneous systems
e Provide a step by step methodology to implement it

e Evaluate the working of the thermal management system

In this project I have proposed a new methodology and a new thermal management sys-
tem for controlling the high temperature. The previous methods were either implemented on a
software or they were offline methods which were not adaptable to any new set of applications
which should be processed.

I also prepared an alternative methodology of using PID in place of MPC which will ease
the load on the processors and make sure that the temperature rise in the cores is not due to the
workload of the system. The methodology has been tried on Intel i5 6500T which gives similar
results and helps to prove the universal nature of the methodology.

Controller Type
o

e ATy
PID MPC
p A h A
Physical System
STy
Microprocessor
Board
R

FIGURE 6.1: Final Methodology

The future work in this domain would be to explore the flexibility of the methodology on
different scenarios like those of Mixed Criticality Systems and Mixed Priority Systems. It will
help us evaluate as to how good is the methodology performing in presence of extra factors.
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