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Abstract 

In a world shaped by geopolitical uncertainties and evolving threats, the 

pursuance of war readiness has become the defining objective of defence forces 

across the globe. The experiences derived from previous war situations 

emphasize that true war readiness goes beyond sheer numerical superiority, 

focusing on the reliable performance of critical military assets. An important 

aspect of qualifying a critical military system as war ready lies in meticulously 

evaluating three fundamental factors: the system's mission capability, 

operational availability, and mission reliability. Traditionally, the primary focus 

has been on attaining operational availability of mission-capable systems, which 

is constrained by its emphasis on the system's current state, without necessarily 

ensuring future mission success. As a result, defence forces are currently 

observing a significant change in focus from just ensuring the operational 

availability of critical systems to the broader measure of mission reliability. 

Scientifically supporting this shift, this thesis presents a series of research-based 

studies that investigate scientific approaches tailored to the unique requirements 

of the defence forces. Through a focused examination of these approaches, the 

thesis aims to provide insights into how defence forces can effectively ensure 

the mission reliability of their critical military systems in order to effectively 

attain war readiness in a manner that aligns with the distinct challenges and 

complexities of the military landscape. 

 Firstly, this thesis introduces two comprehensive methodologies for 

predicting the mission reliability of critical military equipment. One 

methodology expands upon the existing mission reliability prediction method 

by integrating essential military-specific factors with the help of adjustment 

factors, while the other introduces a novel machine learning-based approach. 

These enhanced methods aim to provide accurate and contextually relevant 

prediction of mission reliability by considering a comprehensive set of 

identified military-specific factors, such as operations in diverse operating fields 

with extreme environmental conditions, multiple deployment roles requiring 

distinct set of functionalities, the use of refurbished, cannibalized or non-OEM 

spares, and human error in maintenance under strenuous situations. Numerical 
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investigations using these methodologies have been conducted on multiple 

pragmatic scenarios relevant to military operations. These investigations seek 

to establish the effects of essential military-specific factors on component life 

and, consequently, mission reliability.  

 Acknowledging the fact that the way to attaining and ensuring the 

desired mission reliability has an intricate relationship with the opted 

maintenance strategy, this thesis introduces a maintenance approach that 

addresses the imperative of war readiness in tandem with mission reliability. 

This mission reliability based selective maintenance approach works with the 

principle that the exploitation, as well as maintenance of mission-critical 

equipment, should be balanced in such a way that mission critical equipment is 

always ready for deployment on specific missions or can be made ready within 

a specified allowable deployment delay for maintenance as per readiness 

expectations. A parallel genetic algorithm is developed to optimize the 

associated selective maintenance strategy, identifying a cost-optimal set of 

maintenance activities.  Demonstration of the proposed approach is presented 

with the help of cases of maintaining war readiness by ensuring the mission 

reliability of one of the most critical military equipment – the Main Battle Tank 

across multiple deployment roles. With the help of numerical experimentation, 

critical parameters of the proposed approach, like mission reliability thresholds, 

and allowable deployment delay for maintenance in readiness definition, are 

optimized for the considered demonstration cases. Significant changes in the 

key metrics, such as maintenance frequency, maintenance cost, maintenance 

duration, etc., were observed on varying the deployment role and terrains of 

missions. This validated the consideration of military-specific factors and 

concluded that the notion of a one-size-fits-all approach proves inadequate in 

the context of military maintenance management. Through comprehensive 

evaluation, the superiority of the present approach over the conventional time-

based preventive maintenance policy is further established. By incurring ~6% 

lesser cost, the present approach resulted in maintaining the mission reliability 

of the MBT higher than the predefined threshold for more than 90% of the 

overall lifecycle in the considered time horizon. Studying the suggestions from 

the literature regarding the war readiness definition, the approach is developed 
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to present the readiness level of the fleet in categorization as theoretical 

readiness and practical readiness. Leveraging the developed approach and 

outcomes of the numerical investigations, mechanisms are developed to provide 

war readiness of a fleet at a glance to the high authority decision-makers 

involved in the development of doctrines. Overall, the proposed approach offers 

strategic insights and an effective maintenance strategy tailored to military 

needs, presenting a substantial improvement over traditional time-based 

maintenance approaches. 

 Throughout the early stages of this research endeavor, including the 

field study undertaken to explore and investigate the subject area, a significant 

deficiency in crucial maintenance-related data has been starkly revealed, both 

in terms of quantity and quality. This data scarcity poses a major hindrance to 

the applicability of the developed approaches within the scope of this thesis and 

also impedes recent trends such as artificial intelligence-driven decision-making 

in defense forces based on contemporary analytics, which heavily rely on data. 

Recognizing data scarcity as a pivotal concern, this thesis adopts a proactive 

approach to address this issue on two fronts. Firstly, it systematically explores 

alternate approaches for probability distribution parameter estimation as 

perceived in the literature. Through meticulous examination, six alternate 

methods have been identified and are presented in a sequential manner, with the 

aim of estimating the probability distribution parameters crucial for reliability 

predictions. Furthermore, in an effort to provide a resolution to this challenge, 

this thesis introduces a blockchain-enabled maintenance management 

framework designed specifically for military equipment. After careful 

consideration of the causes of the data deficiency and the challenges behind it 

from the military operations viewpoint, technological choices are made to 

develop the blockchain framework. Availing of this framework will solve the 

issue of scarcity of accurate maintenance data, resulting in enhanced accuracy 

in crucial estimations like mission reliability, thereby improving war readiness 

and sustainability estimations of military organizations. 

 Overall, in this thesis, significant contributions are made in the form of 

scientific approaches aimed at ensuring mission reliability and achieving war 

readiness levels. Novel insights into mission reliability prediction, maintenance 
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strategy optimization, and data management in military operations are provided, 

thus making valuable contributions to the broader understanding of war 

readiness management in defence forces. 
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1 Introduction 

 

 

 

 

❖  

Chapter 1 

Introduction 

 

 

In this introductory chapter, the background, rationale, theory, gaps, objectives, 

and contributions of the present research are presented to highlight the 

challenges and significance of mission reliability based war readiness 

assessment for defence forces. In the end, the outline of the thesis is given. 
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1.1 Research Background and Motivation 

Future of Warfare: 

During the next two decades, military conflict will most likely be driven 

by the same factors that have historically prompted wars - ranging from resource 

protection, economic disparities, and ideological differences to the pursuit of 

power and influence. However, the manner in which wars are fought will 

undergo significant transformation driven by evolving doctrines and emerging 

technologies [1]. The continuous infusion of modern technologies into critical 

military assets highlights the ever-changing nature of military development, a 

pattern emphasized by NATO's Report on Science and Technology Trends from 

2020 to 2040, clearly illustrating the swift modernization of defence forces [2].  

The integration of Artificial Intelligence (AI) and Information and 

Communication Technologies (ICTs) has revolutionized military equipment, 

enabling them to operate as a cohesive and interconnected force. This shift 

towards network-centric warfare dominated by technologies enhances 

battlefield awareness and accelerates decision-making processes [3]; and 

promises to fundamentally change the nature of warfare in the future [4]. The 

adoption of cutting-edge technologies, such as active protection systems (APS) 

like the Israeli ‘Trophy’ system or the Russian ‘Arena’ system, exemplifies the 

modernization of military systems. These APS can detect and neutralize threats 

like anti-tank missiles and rockets, significantly enhancing the survivability of 

critical military equipment on the battlefield. For example, integrating such 

modern technologies with advanced sensor systems like thermal imaging and 

laser rangefinders has notably improved situational awareness for critical 

military equipment, enhancing their ability to detect and engage targets 

effectively, even in challenging environments. Modern equipment like India’s 

‘Atharva’ – a hybrid marvel offering a promising blend of power, agility, and 

cutting-edge technology; and weaponry like India’s ‘Aditya’ are poised to make 

a significant impact on warfare. These advancements have expanded the 

horizons for doctrine makers in defence forces, prompting them to think beyond 

what was feasible a decade ago. 

Nevertheless, as these advanced systems become more widespread and 

accessible, they will bring about additional complications, making more assets 
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vulnerable, making combat potentially more deadly, and heightening the risk of 

escalation. Policymakers in the defence domain recognize the importance of 

anticipating these shifts in order to effectively plan for the future of warfare. 

Despite the widespread interest in this prediction, accurately forecasting the 

course of warfare remains a difficult challenge. Even technologically advanced 

militaries have struggled in this endeavor [5]. In this evolving landscape, where 

predicting when and how the war will happen is very difficult, it is evident that 

defence forces must prioritize their readiness as the most all-encompassing 

course of action. 

War Readiness: 

The core of the claim for prioritizing the military readiness lies in the 

basic principles of defence capabilities, which are summarized by the ability to 

achieve a specified wartime objective. The defence capability of any nation is 

made up of four essential components: force structure, modernization, 

readiness, and sustainability (Figure 1.1) [6].  

 

Figure 1.1 Four pillars of military capabilities 

The experiences derived from previous war situations emphasize that 

true defence capability goes beyond sheer numerical superiority. Key historical 

conflicts, such as the Six-Day War of 1967 fought by Israel [7], the 2008 Russo-

Georgian War [8], and the 1940 Winter War fought by Finland [9], serve as 

notable examples that reinforce this understanding. It becomes evident that the 

readiness of critical assets for deployment and their sustained operational 

capability until the achievement of war objectives plays a pivotal role in 

defining overall defense capability.  In this context, readiness is defined as the 
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ability of forces, armored vehicles, and weapon systems to deliver the output 

for which they were designed, including the ability to deploy and employ 

without unacceptable delays [6]. Whereas sustainability is defined as the staying 

power of the forces after deployment, often measured in days [6]. The 

sustainability of forces is heavily contingent upon their state of readiness. If a 

war were to break out while the forces were not ready as desired, their 

sustainability would be largely irrelevant. Therefore, the pursuance of war 

readiness has become the defining objective of military forces across the globe. 

Although all four pillars of defence capability are essential, readiness 

provides defence forces with a decisive edge by instilling them with the element 

of surprise - a cornerstone of contemporary military doctrines. In the context of 

warfare, surprise is termed as ‘strike the enemy at a time or place or in a manner 

for which he is unprepared. Surprise can be in tempo, size of force, direction or 

location of main effort, and timing’ [10]. The element of surprise constitutes a 

pivotal aspect of warfare, conferring significant advantages to defence forces 

[11]. By catching adversaries off-guard and disrupting their operational tempo, 

the surprise element enables defence forces to seize the initiative and dictate the 

terms of engagement. Unless and until the desired high levels of readiness are 

attained, leveraging the element of surprise is nearly impossible. As a result, 

defence forces view the readiness metric as a critical component in developing 

neoteric doctrines.  

Todd Harrison's article 'Rethinking Readiness' emphasizes the 

significant correlation between all aspects of the US defence budget and their 

war readiness, highlighting the sincere commitment of the defence forces to 

prioritize their readiness levels [12]. Within the context of defence forces, 

readiness is typically classified into three specific tiers: strategic, operational, 

and tactical. Harrison places particular emphasis on the importance of 

operational readiness, arguing that it is the most important among the three. He 

evaluates existing readiness models in the US military, highlighting their 

primary emphasis on supply chain logistics and personnel training, while 

comparatively overlooking the crucial element of operational readiness through 

asset management. This critique emphasizes the significance of reassessing 
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current frameworks to guarantee thorough readiness throughout all tiers of 

military operations.  

Although significant amounts of funding have been allocated to improve 

military readiness, defence forces around the world have faced difficulties in 

reaching optimal levels [13]. A report by the Government Accountability Office 

in the US identifies multiple factors causing a deficiency in achieving the 

desired readiness levels [13]. It is important to highlight the significance given 

to accurately considering external military-related factors and ensuring the 

realistic nature of readiness models. This report emphasizes the importance of 

creating a thorough strategy to tackle readiness weaknesses at the operational 

level. One more difficulty in current war readiness strategies is their primarily 

subjective nature. In order to substantially model and achieve enhanced 

operational readiness levels, bringing more objectivity is necessary [14]. 

The Department of Defense, United States, officially defines military 

readiness as the ability of military forces to fight and meet the demands of 

assigned missions [15]. This doctrinal perspective on readiness is based on 

assessing the extent to which a military unit, and collectively all units, can 

accomplish operational missions. Similar to the aforementioned approaches, 

this definition emphasizes numerous parameters within militaries, including 

equipment. However, it places relatively less emphasis on the approaches for 

achieving readiness.  

To explicitly translate the readiness definition within the scope of 

equipment readiness, all of the above-mentioned definitions can be 

deconstructed and examined from a narrower yet more detailed perspective 

focusing on equipment readiness. In doing so, readiness in the context of 

military equipment can be understood as the ability of equipment or a fleet of 

equipment to be deployed on the designated mission at any given point in time 

to perform towards achieving the stated objective. Alternatively, it should be 

capable of deployment within a predefined short duration, allowing for adequate 

preparation. Where the extent of this predefined short duration adversely 

influences the actual extent of readiness, it is imperative to consider it given its 

potential trade-off with overall maintenance efforts.  
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Readiness – the Indian Context: 

India is perhaps the only country in the world involved in severe 

territorial disputes with two nuclear-armed neighbors - which also have a close 

strategic relationship, if not an outright alliance [16]. Following the Galwan 

crisis between India and China in the summer of 2020, the specter of a two-front 

war reached a fever pitch among India’s strategic community. According to 

certain media reports, in the past two decades, the Indian government examined 

the option of a limited-scale attack for several times following the enemy's 

escalation, but the lack of cold-start war readiness among Indian forces 

prompted decision-makers to reject that option [17]. Considering the frequency 

of escalations faced by the Indian defence forces in the past, cold-start readiness 

emerges as the primary preparatory choice. The numerous advantages that the 

cold-start war readiness brings to the offensive doctrine are quite evident. 

However, it is needless to mention that cold-start readiness has an equal, if not 

greater, impact on the outcomes of war when it comes to defensive doctrines. 

The advancements made by the Indian defense forces in terms of 

modernization are notably commendable; however, concerns persist regarding 

their readiness levels. A report of the Comptroller and Auditor General of India 

on working of Army Base Workshops for the year ended March 2016 highlights 

several serious concerns regarding the backlogs and delays in maintenance of 

critical military equipment like main battle MBTs, posing serious questions on 

the overall readiness levels [18]. In a report that was tabled in the Indian 

Parliament, the CAG suggested that the army should have a detailed plan to 

keep the weapons system available for any eventuality [19]. Against this 

backdrop, the concepts of war readiness hold more weightage and gravity to the 

Indian defence forces. 

War Readiness Assessments: 

Given the evident importance that defence forces place on evaluating 

and enhancing their readiness for war, it is imperative to study the current 

approaches employed by defence forces globally for assessing their war 

readiness. Concerning the war readiness assessment approaches, there is a 

paucity of open-domain literature. Nonetheless, there are a few commentaries 

available, which provide insights into these approaches. Notably, analyses of 
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approaches utilized by the US defense forces stand out among the sparse 

available literature. US defence forces used multiple readiness metrics for 

different situations and to cater to different verticals in the forces. Notable 

metrics include Defence Readiness Condition (DEFCON) [20], [21], Readiness 

Condition (REDCON) [22], and Force Protection Condition (FPCON). Among 

these, DEFCON holds particular significance, putting slight consideration on 

equipment readiness, while REDCON and FPCON emphasize personnel 

formations and their mobilization only. 

With the very limited information available in the open domain, there is 

a great degree of variation in how DEFCON is interpreted. DEFCON, 

characterized by five escalating levels of readiness, serves as an alert state for 

the US armed forces, ranging from DEFCON 1 (most severe) to DEFCON 5 

(least severe) [21]. These gradual levels indicate the readiness to match varying 

military situations; DEFCON 1 indicates maximum readiness for immediate 

action; DEFCON 2 indicates that the armed forces are ready to deploy and 

engage in less than six hours of time. Finally, DEFCON 5 indicates the lowest 

state of readiness. It is crucial to recognize that while DEFCON prioritizes 

personnel formation readiness, it tends to put less emphasis on achieving the 

overall readiness of mission-critical equipment. Indeed, none of the existing 

approaches in the public domain adequately address the readiness of essential 

equipment vital to military operations. In the context of Indian defence forces, 

Lt. Gen. NB Singh, in his article ‘The Alchemy of Equipment Sustainment’, 

highlighted the need of development of metrics to realistically portray how well 

equipment readiness capabilities support the doctrine [23].  

Existing Approaches for Achieving War Readiness: 

 The traditional approaches to achieving war readiness for critical 

military equipment mostly revolve around achieving great equipment 

availability, which is primarily concerned with whether the equipment is up and 

operational at a particular time. However, this metric does not speak anything 

about the equipment's future performance during actual missions. For example, 

a fleet may have 100% availability due to no equipment failures at a given 

period, but this does not reflect how well the equipment functions during 

wartime operations. The Russia - Ukraine conflict is a striking example, where 
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despite deploying initially operating mission critical equipment from Russia, 

reports show significant damage to their main battle MBTs, significantly 

affecting mission outcomes. Hence, while equipment availability remains 

essential, it's imperative to recognize its limitations in predicting future 

performance. Mission reliability, a statistical metric that appears to be more 

promising for military applications, is becoming more acceptable in the 

industrial sphere, and systematically focuses on the availability of equipment in 

the future (t>0). Charles T. Kelley's thorough research emphasizes the crucial 

difference between equipment availability and mission reliability. He showed 

that while initial availability has a modest effect on combat effectiveness, 

mission reliability has a severe impact on the combat effectiveness [24]. As a 

result, defence forces are currently observing a significant change in focus from 

just ensuring the operational availability of critical systems to the broader 

measure of mission reliability. Furthermore, it is critical to emphasize the 

importance of selecting technically capable equipment for deployment against 

a specific mission, as deploying equipment that is incapable of providing the 

functionalities required for mission accomplishment can result in undesirable 

outcomes. Thus, assessing the technical suitability of equipment before 

deployment is crucial for accomplishing intended mission goals. 

 In essence, in the context of war readiness in the contemporary warfare, 

a crucial aspect of qualifying a critical military equipment as war-ready involves 

meticulous evaluation of three fundamental factors: the equipment's mission 

capability, operational availability, and mission reliability.  

Mission Reliability based War Readiness: 

Mission reliability is defined as the probability that a system will 

perform its required mission-critical functions for the duration of a specified 

mission under conditions stated in the mission profile [25]. In its conventional 

context, reliability is commonly perceived as a function of time, a perspective 

that aligns with probabilistic principles. However, concerning military 

equipment, the DOD’s guide for achieving Reliability, Availability, and 

Maintainability [26] advocate for a more nuanced definition of mission 

reliability. According to these guidelines, reliability should be conceptualized 

with respect to a clearly defined mission and the specific conditions under which 
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the equipment will operate. This approach emphasizes that reliability is 

influenced by the environment and stresses encountered by a system during its 

mission. Since a mission profile typically outlines these factors 

comprehensively, it is advisable to evaluate reliability by considering all 

mission-specific elements rather than solely as a function of time.  

The above stated comprehensive definition of mission reliability 

inherently encompasses the essential criteria for assessing the war readiness of 

critical military equipment. Mission reliability-based methodologies offer a 

paradigm shift in war readiness management, promising to supersede 

conventional approaches by changing the ways decision makers look at their 

war readiness. Despite the acknowledgment of mission reliability's suitability 

in war readiness management within the existing literature, scholarly works 

explicitly demonstrating its application remain scarce. With the evolving 

landscape of military technology and warfare dynamics, it is imperative for 

defence forces and researchers within the domain to explore diverse approaches 

aimed at achieving and ensuring mission reliability for critical military assets. 

Role of Mission Reliability in overall Military Operations and Maintenance: 

 The importance of mission reliability in the administration of war 

readiness has been previously emphasized. However, the role of mission 

reliability extends beyond solely ensuring readiness for combat scenarios. 

Mission reliability is considered one of the most effective levers for effective 

sustainment [27]. It also plays a crucial role in the broader spectrum of military 

operations and maintenance, contributing to the effective execution of various 

important tasks and assisting decision-makers and policymakers in their 

decision-making. In the context of military operations, the reliability of 

equipment directly impacts the success and efficiency of missions. Moreover, 

in the context of maintenance, mission reliability serves as a guiding principle 

for optimizing maintenance schedules, resource allocation, and overall asset 

management strategies. By prioritizing mission reliability across all facets of 

military operations and maintenance, armed forces can enhance their overall 

operational effectiveness in an ever-evolving warfare landscape.  
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 While operating and maintaining the critical military equipment, the 

authorities come across several crucial questions for further decision making. 

Mission reliability can directly assist in answering these questions leading to 

effective and data-backed decision making. Some of the important questions 

whose answers are layered under mission reliability are as follows. 

• For a given mission profile, which is the best available equipment for the 

deployment? 

• For a given mission profile, which fleet (regiment/squadron) is the best for 

deployment? 

• Which fleet can be mobilized immediately so that it will not require high 

maintenance after mobilization? 

• On the deployment of a particular equipment on a mission, what are the 

chances that the equipment will not encounter any failure during the 

mission? 

• What all components are to be maintained before the deployment for 

successful execution of the mission? 

• Which spares to carry along while executing the mission? 

While the significance of mission reliability across various critical 

decision-making in military contexts is widely recognized, the current body of 

literature lacks comprehensive methodologies to effectively implement it for 

defence forces. Consequently, a pressing need arises for defence forces and 

researchers within the defence domain to evaluate approaches aimed at 

achieving and maintaining mission reliability for vital military equipment. 

While existing literature extensively addresses reliability prediction within 

conventional manufacturing and logistics spheres, it is crucial to acknowledge 

that the direct application of these reliability prediction models to critical 

military systems may be inappropriate. This incoherence arises from the failure 

of such models to incorporate the effect of several crucial military-specific 

factors.  

This thesis attempts to bridge this gap by presenting a series of studies 

that investigate scientific approaches tailored to the unique requirements of the 

defence forces. As outcome of the investigations, this thesis aims to provide 
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insights into how defence forces can effectively ensure the mission reliability 

of their critical military systems in a manner that aligns with the distinct 

challenges and complexities of the military landscape. 

Data Scarcity – A Big Challenge: 

 Reliability engineering, being a data-centric domain, requires a 

sufficient amount of data, particularly failure and maintenance related data, for 

performing several of the analyses developed in the present research. The 

efficacy of the developed approaches is intricately linked to the quality and 

quantity of the underlying operations and maintenance data. This is more 

important in the domain of Reliability, Availability, Maintainability, and Safety 

(RAMS) management for military systems, where accurate data-analytics play 

a crucial role. However, it has been found that a lack of data poses substantial 

obstacles to defense forces, reducing their ability to make analytical decisions 

based on existing data. Recent trends like industry 4.0 are claiming the 

possibility to transform the current military capabilities [28]. However, these 

strategies expect high level of preparedness from data management perspective; 

and the absence thereof creates hinders the seamless application of such modern 

techniques. The absence of a mechanism for the systematic management of 

operations and maintenance data in defence organizations is the prime reason 

for the data unavailability, and it poses a formidable obstacle in the pursuit of 

comprehensive war readiness assessment and management in the age of 

analytics.  

 The defence sector faces unique challenges in managing a large set of 

maintenance related data securely for critical decision-making. Issues such as 

data registry, integrity, and security are more complex due to the vast amount 

of data generated by military organizations and the involvement of multiple 

partners in the overall value chain. The increasing number of equipment and 

their strategic deployment in diverse locations pose challenges for maintenance 

data management. The introduction of the Government-Owned, Contractor-

Operated (GOCO) model in defence maintenance further complicates data 

management with concerns like data sharing, integrity, transparency, and 

increased bureaucratic processes. Handling maintenance data within such a vast 

and challenging scenario, especially with the anticipated level of detail, presents 
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a considerable challenge. In the era of data analytics, mere possession of data is 

insufficient; it must also be presented in suitable electronic formats to ensure its 

efficacy. Eventually, if the necessary data is maintained with the desired level 

of accuracy and granularity by any traditional mechanism, especially 

considering its criticality in military operations, it must be stored in a highly 

secure environment. 

Acknowledging data scarcity as a pivotal concern, this thesis takes a 

proactive stance by addressing this issue on two levels. The essence lies in 

recognizing that without a reliable source of ample and quality data, the 

envisioning and execution of scientific approaches for war readiness 

management remain an impregnable challenge.   

 

1.2 Problem Description 

As outlined in previous section, achieving war readiness is one of the 

paramount objectives for defence forces. In this context, the significance of 

assessing and ensuring mission reliability is visibly increasing. However, 

scholarly literature demonstrating mission reliability based war readiness 

management is not seen in the existing pool of literature. This research 

systematically identifies and addresses the evolving research problem in the 

context of the shift of conventional war readiness management from ensuring 

operational availability to mission reliability. Hence, this thesis presents 

comprehensive studies of some approaches to predict the mission reliability of 

critical military equipment, ensure it to be higher than desired, thereby 

achieving its war readiness. 

 To explicitly formulate the problem, a systematic literature review is 

carried out. Although very limited scientific literature about war readiness 

assessment and its way forward is openly available, some standard reports and 

commentaries from reputed organizations helped understand the landscape 

better. Additionally, in-depth discussions with the experts in the defence domain 

helped understanding the scenario in a better manner. However, for all the 

technological advancements attempted in this thesis, sufficient literature is 

available, which is thoroughly studied for the present research.  



13 

 

Critical findings and research gaps are as follows: 

(A) Most of the literature in the domain of war readiness management keeps 

focus on achieving operational availability through traditional maintenance 

practices. Some scientific reports have perceived that mission reliability is a 

better metric for war readiness assessment. However, scholarly literature 

demonstrating mission reliability based evaluations is not seen in the existing 

pool of literature.  

(B) The available mission reliability prediction methods do not suffice to be 

viable for critical military equipment, as they lack the ability to incorporate the 

effect of numerous key military-specific factors on mission reliability, resulting 

in compromised accuracy.     

(C) The currently available maintenance optimization models pose a 

computational challenge by needing longer computation time, which is not 

appropriate for a fast-paced organization like defence. The advancement of 

modern machine learning algorithms opens up newer avenues for faster and 

more effective methods of mission reliability evaluation. These avenues are 

rarely investigated in the literature.   

(D) The present maintenance approaches, like selective maintenance models, 

consider the mission reliability of systems. However, they do not fit into the 

exact modus operandi of the maintenance function of the defence forces as they 

do not correspond to the war readiness expectations.  

(E) The literature acknowledges the challenges in RAMS domain posed by data 

scarcity. Although there are many frameworks available for effective data 

management, it does not suffice the adequacy to be viable for defence 

maintenance management, given the numerous challenges which are unique to 

the defence organizations. 

 

1.3 Research Objectives 

Based on the presented rationale and the findings from the literature 

review, the overall objective is as follows: 
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Development of a maintenance approach that exactly suits the modus operandi 

of defence forces in attaining and sustaining war readiness by ensuring the 

mission reliability of critical military equipment.  

The overall objective is further divided into the following Sub Objectives (SO): 

SO1: Development of a mission reliability prediction method with modeling 

the combined impact of identified military-specific factors on system reliability. 

Further, link the predicted system reliability to the functional reliability of the 

critical military equipment.   

SO2: Development of mission reliability based selective maintenance planning 

approach to ensure desired mission reliability for critical military equipment 

against multiple mission profiles.  

SO3: Critical analysis of the proposed approach by comparing its performance 

against the conventional maintenance practice. 

SO4: Development of a comprehensive framework for military maintenance 

data management to increase the applicability of developed approaches and 

make military maintenance future-ready in the era of analytics. 

 

1.4 Key Contributions and Broader Impact 

The overall research toward fulfilling all of the above-stated objectives 

started with investigating the subject area, which included a detailed study of 

military literature available in the open domain and in-depth discussions with 

defence professionals involved in decision-making, operations, and 

maintenance. The investigation of the subject area not only helped understand 

the existing maintenance function and gather the required information for 

performing the research but also helped to refine the research objectives to 

effectively align them with the exact modus operandi of the defence forces. 

 In light of the serious scarcity of data from a quality as well as quantity 

viewpoint, this thesis presents a comprehensive study of alternate methods to 

estimate the required data for mission reliability prediction. Some hybrid 

models are presented that effectively leverage the knowledge of domain/field 
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experts to estimate the parameters for probability distribution for the failure data 

in the absence of actual failure data – a fundamental need for parametric 

approaches for conventional reliability prediction methods. Following the 

acquisition of comprehensive insights into the maintenance function of military 

equipment and gathering essential data for reliability prediction, the efforts are 

directed toward fulfilling the stated research objectives. 

The paramount objective of this research is to ensure the mission 

reliability of critical military equipment, thereby achieving its war readiness. In 

order to make the mission reliability prediction for military equipment accurate, 

literature strongly suggests incorporation of the military specific factors, which 

is rarely seen in the present literature. In order to address this expectation, with 

the subject area investigations, and literature review, essential military specific 

factors which are influential to the mission reliability of the critical military 

equipment are identified. Further, this thesis proposes two comprehensive 

methodologies for predicting mission reliability of critical military equipment. 

One methodology represents a scientific expansion of the existing mission 

reliability prediction method, while the other introduces a novel approach based 

on machine learning. Aiming to provide a more accurate and contextually 

relevant prediction of mission reliability, both of these enhanced methods 

incorporate a comprehensive set of identified military-specific factors, and 

maps their combined effect on mission reliability of critical military systems.  

Acknowledging the fact that the way to attaining and ensuring the 

desired mission reliability has an intricate relationship with the opted 

maintenance strategy, this thesis attempts to propose a tailored maintenance 

approach that addresses the imperative of war readiness in tandem with mission 

reliability. This thesis proposes a novel mission reliability based selective 

maintenance approach which ensures that the critical military equipment under 

consideration should always possess the mission reliability of a desired 

predefined level. It balances the utilization and maintenance of critical military 

equipment in such a way that the equipment is always in the state of readiness 

with the desired predefined level of mission reliability. In order to effectively 

integrate the selective maintenance planning with the proposed approach, a 
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comprehensive review of the state of the art literature on selective maintenance 

is performed and is presented in this thesis.  

In order to demonstrate the effectiveness of the developed selective 

maintenance based approach for ensuring mission reliability and, ultimately war 

readiness at the fleet level of the equipment, a parallel genetic algorithm is used 

to implement the developed maintenance approach at the fleet level. The use of 

a parallel genetic algorithm has helped to analyze several of the key parameters 

in selective maintenance optimization without requiring significantly more 

computational time, irrespective of the significant increase in the problem 

complexity. An added contribution lies in the outcomes of this demonstration 

of the developed maintenance approach at the fleet level, as it facilitated the 

optimization of some of the key parameters in the selective maintenance 

problem. 

While working in the domain of reliability engineering and maintenance 

management for military equipment, and investigating the subject area in the 

scope of the present research, it was identified that because of the absence of a 

mechanism for the systematic management of operations and maintenance data 

in defence organizations, data scarcity is a big concern. And this data scarcity 

poses a formidable obstacle in the pursuit of comprehensive war readiness 

assessment and management in the age of analytics. To provide a holistic 

solution to the problem of operation and maintenance data scarcity in the 

defence forces and to increase the applicability of the developed approaches, 

this thesis presents a novel blockchain enabled maintenance data management 

framework for military equipment, with the intent of making military 

maintenance future ready in the era of analytics. 

On a broader scale, this thesis contributes significantly in several key 

aspects. Firstly, it introduces comprehensive mission reliability prediction 

approaches that have wide-ranging applications within the military domain. 

These approaches are designed to enhance the overall war readiness 

management by ensuring the mission reliability of critical military equipment 

through scientifically validated methodologies. The outcomes derived from the 

analysis using these developed prediction methods have unveiled valuable 
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insights and non-obvious learnings. These insights are expected to contribute to 

further advancements in research related to maintenance management and war 

readiness within military organizations. The thesis also addresses a critical gap 

identified in the literature, which emphasizes the need for more advanced 

techniques to manage war readiness assessment models effectively. While 

literature acknowledges this need, it falls short in providing practical 

suggestions on how to achieve it. This thesis fills this gap by presenting 

scientific approaches that can augment the existing war readiness assessment 

practices. Furthermore, this thesis serves as a valuable ready reference for 

defence forces globally that are endeavoring to enhance their war readiness 

management strategies. By uniquely integrating reliability engineering and 

maintenance management with the critical domain of war readiness in military 

management, this thesis makes a novel contribution that significantly enhances 

the overall understanding of this crucial area within the research community. 

 

1.5 Organization of Thesis 

 The thesis is broadly divided into six chapters. The current chapter 

introduces the reader to the rationale of the work, outlines the research 

objectives, and briefly enumerates the overall contribution. Chapter 2 presents 

comprehensive insights into the existing maintenance function of critical 

military equipment like armored vehicles. Chapter 3 presents the developed 

approaches for mission reliability prediction while incorporating the combined 

impact of several identified military-specific factors. This chapter also presents 

a novel machine learning based approach for mission reliability prediction. 

With the outcomes of numerical investigations, the effect of various military-

specific factors on systems life and mission reliability is presented. Chapter 4 

proposes the novel mission reliability based selective maintenance approach, 

presents the demonstration of the proposed approach on a fleet of main battle 

MBTs, and with the numerical experiment, highlights optimization of the 

critical parameters in the formulated problem. Chapter 5 presents a blockchain 

enabled comprehensive framework for military maintenance data management 

to increase the applicability of developed approaches and make military 

maintenance future-ready in the era of analytics. Chapter 6 draws conclusions 
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from the overall research and discusses some of the important future directions 

for expanding the work done within the scope of this thesis. Figure 1.2 depicts 

the overall flow of the organization of the thesis. 

 

1.6 Summary 

The introduction chapter provides a brief overview of the research journey 

in the scope of the present thesis. It begins with providing the rationale for the 

present work, explaining the reasons behind undertaking this study. This sets 

the stage for the subsequent discussion on the research background and 

motivation, where existing knowledge gaps and the need for further 

investigation are highlighted. This leads to the establishment of clear research 

objectives, outlining the goals and aims that the study seeks to achieve. 

Furthermore, the key contributions of the research and its broader impact are 

briefly outlined. It emphasizes the innovative approaches that this research 

brings to the field. Finally, the organization of the thesis is presented, providing 

a structured overview of how the content is divided into chapters to address the 

research objectives and present the findings systematically.  
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Figure 1.2 Organization of the thesis. 
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2 Main Battle Tank Operations – A Subject Matter 

Exploration 

 

❖  

Chapter 2 

Main Battle Tank Operations  

- Subject Matter Exploration 

 

 

This chapter lays the foundation for the thesis by examining the overall 

operation function of critical military equipment. It draws upon two key sources 

of information: publicly available military documents and discussions with 

expert industry professionals involved in both the manufacturing and decision-

making sides of defence. The chapter focuses on gleaning insights from these 

sources that are directly relevant to the methodological approaches presented in 

later chapters of the thesis. 
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As discussed in the preceding section, this thesis proposes some 

approaches for war readiness management through effective management of 

mission reliability of critical military equipment. Although the overall objective 

is to develop approaches which are generic in nature and should be able to be 

applied to a wide range of mission critical equipment, for the development and 

further demonstration of the approaches within the scope of this thesis, Main 

Battle Tanks (MBT) have been chosen as the subject matter. This consideration 

is based on the large proportion of the MBTs among all the mission-critical 

equipment in the defence forces. Given that the developmental effectiveness of 

the approaches hinges upon understanding the operational and maintenance 

functions of MBTs, it is imperative to delve into these aspects. Consequently, 

this chapter discusses the overall operation function of MBTs, which is acquired 

from the military documents which are available in the open domain [29], [30], 

[31], and in-depth discussion with the professionals working in the 

manufacturing as well as decision making of the defence domain. Despite the 

extensive amount of data and insights garnered through these activities, the 

chapter selectively presents insights pertinent to the developed approaches 

which are further discussed in this thesis. This comprehensive exploration of 

the subject matter not only facilitated the acquisition of requisite information 

and data for approach development and demonstration but also largely helped 

to refine the objectives of this study in order to align them well with the exact 

modus operandi of defence forces for overall war readiness management. 

 

2.1 Employment Scenarios 

The overall lifecycle of an MBT, along with many other mission-critical 

military equipment, during its employment phase can be classified into two 

primary categories: Peacetime and Wartime. The majority of equipment 

utilization occurs during peacetime, encompassing routine operations, mission 

exercises, and training activities. Consequently, the majority of equipment 

maintenance activities are also conducted during peacetime, with the objective 

of ensuring the equipment remains operational and available for wartime 

deployments, for which it is primarily intended. In peacetime, MBTs are utilized 

for routine operations and participation in predefined training exercises. Further 
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delineation of the employment phase reveals four distinct scenarios [32], as 

depicted in Figure 2.1.  

 

Figure 2.1 Employment Scenarios 

 

• Routine running:  

In this scenario, MBTs are not deployed on missions or training exercises. 

Instead, they are solely tasked with performing routine runs. Maintenance of the 

MBT follows a predefined schedule. Following maintenance, the MBT resumes 

its normal routine runs. In this scenario, the timeline for scheduled maintenance 

events, the duration of maintenance events, and the subsequent operational run 

duration of the MBT are all predetermined and known. A significant portion of 

the MBT lifecycle in the employment phase is dedicated to performing this 

scenario. 

• Planned training exercises: 

During training exercise, an MBT has to complete its assigned mission that 

closely simulates actual battle situations. The only distinction between a real 

mission and a training exercise is that the training exercise follows a pre-defined 

schedule, and the MBT must operate appropriately. As the schedule for the 

training exercise is known well-before, there is a chance to complete all 

essential maintenance tasks to ensure that the MBTs are well-prepared for the 

upcoming exercise. 
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• Mission with maintenance time before start: 

As previously discussed, predicting the outbreak of war is inherently difficult, 

and this uncertainty extends to determining the timing of MBT deployments for 

missions. Once a mission is assigned, there is often a very limited window of 

opportunity to prepare the equipment for participation. Depending on the 

available timeframe before the mission, decisions regarding performing 

maintenance activities must be made. This scenario introduces the possibility 

that there may not be adequate time to complete all desired maintenance 

activities before the mission commences. 

• Mission without maintenance time before start: 

This scenario arises when there is no time for maintenance prior to the mission 

commencement. Under these circumstances, no maintenance activities can be 

performed on the MBTs before they embark on the mission in an emergency 

situation, necessitating their deployment in their existing condition.  

This extreme scenario underscores the importance of cold-start 

readiness, wherein MBTs must be maintained during peacetime to ensure they 

are not only capable of initiating but also completing missions of certain 

duration in the event of an unforeseen outbreak of war. 

 

2.2 Deployment Roles 

MBTs are expected to serve multiple deployment roles (DR) across their 

lifecycle. At its most fundamental level, the roles MBT performs in war time 

can be classified into Attack and Defense role. In both of these roles, MBTs are 

deployed on different mission types. For a particular MBT, the different 

possible mission types are as follows [30]: 

DR 1. Tank to Tank Combat  

MBT is involved in direct combat with enemy’s MBT on war field. 

DR 2. Deep Penetration  
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MBT is involved in travelling deep into enemy’s territory; and battling deep in 

enemy territory.   

DR 3. Close Fire  

MBT is involved in intensive firing on enemy’s resources including 

infrastructure.  

DR 4. Infantry Protection  

MBT or group of MBTs has to provide protection to critical resources including 

infantry.  

DR 5. Reconnaissance  

MBT is sent for military observation of a region to locate the enemy or to 

perform preliminary surveying or research. 

 

2.3 Functions 

In order to successfully perform any of the aforementioned deployment roles, 

an MBT performs the following four different functions independently or 

sometimes simultaneously [29]. 

F1. Mobility 

The primary ability of an MBT enabling rapid maneuverability on the battlefield 

to swiftly engage enemy targets or reposition as needed. 

F2. Firepower 

The ability to fire using potent armaments such as main guns, machine guns, 

and anti-MBT missiles, allowing them to engage and destroy enemy vehicles, 

and personnel formations effectively. 

F3. Protection 

The ability of an MBT to provide armored protection to several things including 

itself, other MBTs, infantry, some soft resources, own posts etc. 

F4. Communication 
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The ability of an MBT to seamlessly coordinate with other units and command 

centers, enabling real-time information exchange, target acquisition, and 

tactical decision-making. 

 

2.4 Organization of MBTs 

The organization of MBTs within military forces typically follows a 

hierarchical structure designed to optimize operational effectiveness and 

command coordination. Although the names may vary, prime militaries in the 

world follow a very similar organization of their MBTs, where slight variations 

in numbers may be found. Understanding the various levels of MBT fleets and 

their organization is crucial, as the majority of decision-making regarding 

deployment occurs at the fleet level. 

At the lowest level, a strategic grouping of three to four MBTs is referred 

to as a troop or platoon. Three to four of these groups collectively constitute a 

squadron or company, which serve as the basic tactical units assigned for 

mission roles. Additionally, three to four of these groups are combined to form 

a regiment or brigade, which also includes some MBTs from the headquarters 

command [31]. To mitigate ambiguity arising from variations in these titles, the 

organization of MBTs as utilized by the Indian Army, based on available 

knowledge in open domain literature [33], is adopted within the scope of this 

thesis, as shown in Figure 2.2. 

 

Figure 2.2 Organization of MBTs 
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2.5 Mission Profile Definition 

The operational planning and execution of a fleet of MBTs in militaries 

heavily relies on the mission profile definition. The process entails the 

methodical identification and outlining of objectives, activities, and 

requirements for MBTs to effectively accomplish specified mission goals. As 

the present study deals with mission reliability prediction, it is imperative to 

understand all the factors which are required to define a actual mission for fleet 

of MBTs. 

• Deployment Role: Attack / Defence 

• Mission Type: Tank to Tank / Deep Penetration / Close fire / 

Reconnaissance / Infantry Protection 

• Distance to travel: Probable distance the MBT has to maneuver.  

• Mission Duration: Probable duration the MBT has to operate. 

• Mission Location: Exact location where the mission needs to carry out. 

• Equivalent Full Charge (EFC) Requirement: Expected firing rounds. 

 

2.6 System Configuration 

In the context of mission reliability prediction, the creation of a Reliability 

Block Diagram (RBD) constitutes a pivotal step. The reliability function 

derived from the RBD serves as the basis for mission reliability prediction. A 

comprehensive understanding of the system configuration of the equipment is 

essential for constructing the RBD. The system configuration encompasses a 

list of all assemblies and their respective sub-assemblies. Achieving a finer 

granularity in the system configuration enhances the accuracy of predictions. In 

this study, the system configuration of an MBT as presented by [32] is utilized. 

Based on discussions with experts, slight modifications have been incorporated 

into this system configuration, including a few additional sub-assemblies. The 

system configuration used in the scope of this study is presented in Annexure 

A. 
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2.7 Probability Distribution Parameter Estimation 

Probability distribution parameter estimation is a fundamental component 

of the traditional parametric approach utilized in reliability prediction, as it 

offers valuable insights into the behavior of systems and components over time. 

This process encompasses the selection of an appropriate probability 

distribution that aligns with the observed data characteristics, followed by the 

application of statistical techniques to estimate the parameters associated with 

the chosen distribution. These statistical techniques encompass methods such as 

Maximum Likelihood Estimation (MLE), Least square method, probability 

plotting, among others. The accuracy of the estimated parameters is 

significantly influenced by the quality and quantity of lifetime data available for 

the component under consideration.  

Despite the availability of probability distribution parameters for the 

majority of components as presented by [32], estimating them for the added 

components posed a significant challenge due to insufficient quality and 

quantity of lifetime data. Furthermore, literature pertaining to lifetime data or 

probability distribution parameters of components utilized in MBTs is not 

readily accessible in the open domain. Unfortunately, in many instances, the 

absence of a systematic maintenance and failure data collection mechanism 

poses a significant challenge, resulting in a scarcity of accurate lifetime data. 

This deficiency complicates the process of effective reliability prediction.  To 

overcome the said challenge of data unavailability, literature perceived that the 

expertise of domain specialists within these industries could be systematically 

used and integrated with the statistical models to fetch the required estimates 

[34], [35], [36], [37], [38]. Therefore, within the scope of the present research, 

a comprehensive review of the literature is conducted to explore alternative non-

conventional methods for estimating probability distribution parameters for 

reliability prediction. Six methods are presented in a sequential manner, with 

established priorities, to facilitate a comprehensive understanding of their 

applicability and effectiveness in estimating probability distribution parameters 

for reliability predictions; which are relevant to the defence maintenance 

function. In this research context, the primary method prioritized for parameter 

estimation involves utilizing MLE when exact lifetime data for the component 
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is available in adequate quality and quantity. Considering the mechanical nature 

of the components in the system configuration under consideration, the Weibull 

distribution is assumed to be the underlying probability distribution, as it can 

effectively model increasing, decreasing and constant failure rates based on the 

value of shape parameter.  

2.7.1 Alternate Method 01 – Using Interval Lifetime Data 

When lifetime data is available in the form of intervals, often 

encountered due to limited observation capabilities, the use of the MLE method 

for parameter estimation holds applicability. Interval data arises when the exact 

failure times of components are unknown, and only information on the time 

intervals within which failures occurred is available. This scenario commonly 

arises when component inspections are made at discrete intervals. In such cases, 

MLE provides a robust approach to estimate the parameters of the probability 

distribution that best fits the observed interval data [39].  

2.7.2 Alternate Method 02 – Using OEM Provided Life Estimates 

The Original Equipment Manufacturer (OEM) of the component 

possesses the design data pertaining to the component, which includes certain 

life estimates derived from laboratory testing results. These life estimates serve 

as valuable inputs for estimating the distribution parameters. Specifically, the 

life estimates denote the percentage of the population that has survived until a 

specified time, with "L10 life" representing an industry-standard value 

indicating the time at which 90% of the parts are surviving, or conversely, 10% 

of the parts have failed. Knowledge of any two such life estimates result in a 

system of two equations with two unknowns. Eq. 1 presents the reliability 

function for Weibull distribution [40]. For instance, when the user specifies the 

L10 life, the reliability of the component for that duration can be deemed as 0.9 

(Eq. 2), while specifying the L90 life corresponds to a reliability of 0.1 for the 

component within the specified time duration (Eq. 3). Consequently, by 

inputting any two life estimates, two reliability equations can be formulated 

using the reliability function. Solving these equations simultaneously yields the 

two parameters, namely the scale parameter (ƞ) and shape parameter (). 
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𝑅(𝑡) = 𝑒𝑥𝑝 [− (
𝑡

𝜂
)

𝛽

] Eq. 1 

0.9 = 𝑒𝑥𝑝 [− (
𝐿10 𝐿𝑖𝑓𝑒

𝜂
)

𝛽

] Eq. 2 

0.1 = 𝑒𝑥𝑝 [− (
𝐿90 𝐿𝑖𝑓𝑒

𝜂
)

𝛽

] Eq. 3 

2.7.3 Alternate Method 03 – Using OEM Provided Life Estimates and 

Expert Judgement 

Maintenance personnel tasked with the maintenance of these MBTs 

possess significant expertise regarding the equipment and its failure patterns 

[41]. While these maintenance experts, along with others in the design domain, 

may have extensive practical experience with the equipment, it is not expected 

from them to possess knowledge of the underlying failure distributions. In cases 

where only one life estimate is available from the OEM, only one reliability 

equation can be generated. To obtain the other reliability equation, expert 

judgment can be relied upon. The expert judgement in the form of answers to 

some of the following questions can be used to create the other equation [38], 

[42].  

• What is the maximum survival time observed by the expert? 

• What if the time at which the component is most likely to fail? 

• How many failures are observed by the expert?  

• How much preventive replacements are observed by the experts? And at 

what time? 

The maximum observed life of a component suggested by the expert indicates 

a high probability of failure at that time, leading to the generation of an equation 

for failure probability based on this information as Eq. 4. Additionally, with 

information about number of failures and the highest survival time observed by 

the experts, failure probability can be estimated using Benard’s approximation 

for median rank estimation, as suggested by [42].  
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𝐹(𝑡) = 1 − 𝑒𝑥𝑝 [− (
𝑡

𝜂
)

𝛽

] Eq. 4 

 

Similarly, the most likely life of the component as stated by the expert suggests 

the mode value of the time-to-failure distribution, resulting in the creation of 

another equation as Eq. 5. 

𝑡𝑚𝑜𝑑𝑒 = [
𝛽 − 1

𝛽
]1/𝛽 ×  ƞ Eq. 5 

 

In case of no failures seen, the minimum life observed of component stated by 

the expert along with the number of preventive replacements seen by the 

individual expert leads to the usage of zero failure test where the reliability of 

that component can be estimated using the number of failures seen by the 

individual expert and the confidence level (CL). The equation for estimating the 

zero failure reliability is given as Eq. 6 and Eq. 7. 

1 − 𝐶𝐿 = 𝑅𝑛 

 

Eq. 6 

 

1 − 𝐶𝐿 = 𝑃(𝑋 ≤ 𝐶) =  ∑
𝑛 !

𝑋!  (𝑛 − 𝑋)!

𝐶

𝑋=0

 𝑃𝑋(1 − 𝑃)𝑛−𝑋 

 

Eq. 7 

 

As discussed earlier the life estimate provided by the OEM has higher priority 

for parameter estimation, here for solving the two equations with two variables, 

one equation from OEM life estimate is always used and for the other equation 

any one of the three equations discussed above in this section can be used. 

2.7.4 Alternate Method 04 – Using Expert Judgement 

In instances where even one life estimate is unavailable, one can rely 

solely on expert judgment. In such cases, the expert need to provide responses 

to at least two of the questions outlined in sub-section  2.7.3. Based on the 

expert's answers to these questions, the corresponding equations (among Eq. 4, 

Eq. 5, Eq. 6, Eq. 7) are formulated and solved concurrently to estimate the 

necessary probability distribution parameters [38], [42]. 
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2.7.5 Alternate Method 05 – Using Standard Reliability Databases 

Standard reliability databases such as the NPRD (Non-Electronic Parts 

Reliability Data) [43], EPRD (Electronic Parts Reliability Data) [44], NSWC 

(Naval Surface Warfare Center) handbook for reliability prediction [45], and 

several MIL standards provide valuable resources for estimation of probability 

distribution parameters in instances where actual field lifetime data and all the 

other data mentioned in above subsection is unavailable. These databases 

contain extensive records of failure rates, failure modes, and other reliability-

related information for a wide range of components and systems. By leveraging 

the data compiled within these databases, probability distribution parameters 

can be estimated. Majority of these reliability databases provides the failure rate 

for the components. Additionally, a set of failure modes is also provided, among 

which a particular failure mode and its respective shape parameter need to be 

identified first. On acquiring the knowledge about failure rate and the shape 

parameter, remaining another parameter - scale parameter can be estimate as 

follows: 

𝑀𝑒𝑎𝑛 =  
1

𝐹𝑎𝑖𝑙𝑢𝑟𝑒 𝑟𝑎𝑡𝑒
  Eq. 8 

𝑀𝑒𝑎𝑛 =  𝜂 ×  Γ (
1

𝛽
+ 1) 

Eq. 9 

 

where,                Γ(𝑛) = ∫ 𝑒−𝑥∞

0
 𝑥(𝑛−1) 𝑑𝑥 Eq. 10 

𝜂 =
1

𝐹𝑎𝑖𝑙𝑢𝑟𝑒 𝑅𝑎𝑡𝑒 ×  Γ (
1
𝛽

+ 1)
 Eq. 11 

 

2.7.6 Alternate Method 06 – Using Approximate Probability of Failure 

In an extreme case, where none of the data required in above discussed methods 

are available, including the case where the expert is also not confident enough 

o provide the required judgement, this priority six method can be used which 

has its links to fundamentals of reliability prediction as statistical probabilistic 

inference. The expert can specify the probabilities of failure of a component for 

different time duration and the model will estimate the parameters from those 
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failure probabilities. The data expected for this type of estimation is described 

with the help of an example below. 

Table 2.1. Approximate Probability of Failures 

Interval 
Probability 

of Failure 

What is the probability of failure in interval 0 to A? 0.1 

What is the probability of failure in interval A to B? 0.2 

What is the probability of failure in interval B to C? 0.5 

What is the probability of failure in interval C to D? 0.2 

 

Using the standard method of Least square fitting [40], the given data can be 

used to estimate the probability distribution parameters.  
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3 Mission Reliability Prediction Approaches 

❖  

Chapter 3 

Mission Reliability Prediction Approaches 

 

 

In this chapter, two novel methodologies for predicting the mission reliability 

of critical military equipment are presented.  First, a detailed discussion of 

several military-specific factors that significantly impact mission reliability is 

presented. Subsequently, the development of the two new mission reliability 

prediction approaches is described.  Finally, the results of numerical 

investigations utilizing these methods are presented.  The impact of the 

identified military-specific factors on mission reliability is then highlighted 

through analysis of these results.  This investigation provides valuable insights 

for both operational as well as maintenance planning within the military context.  

 

 

 

 

The work presented in this chapter is published in two parts. Firstly, under the title “Residual 

Life Prediction in the Presence of Human Error Using Machine Learning” in “Proceedings of 

4th IFAC Workshop on Advanced Maintenance Engineering, Services and Technologies - 

AMEST 2020”, University of Cambridge, September 2020. doi: 10.1016/j.ifacol.2020.11.019. 

Secondly, under the title “XGBoost based residual life prediction in the presence of human 

error in maintenance” in “Neural Computing & Applications” vol. 35, pp. 3025–3039. 

doi:10.1007/s00521-022-07216-2. 
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The overall objective of the present thesis deals with the notion of achieving 

desired war readiness by ensuring mission reliability of critical military 

equipment. Consequently, within the scope of this research, mission reliability 

prediction becomes a pivotal aspect. This chapter delineates the development of 

two distinct approaches developed for the prediction of mission reliability of 

critical military equipment. 

3.1 Mission Reliability of Military Equipment 

In today’s scenario, reliability engineering is a well-established, multi-

disciplinary scientific discipline which aims at providing an ensemble of formal 

methods to address the following questions [46], [47], [48]: 

• Why systems fail, e.g. by using the concepts of reliability physics to 

discover causes and mechanisms of failure and to identify 

consequences; 

• How to develop reliable systems, e.g. by reliability-based design; 

• How to measure and test reliability in design, operation and 

management; 

• How to maintain systems reliable, through maintenance practices. 

In the context of present thesis, research focuses on the last question listed 

above, and attempts to provide scientific approaches to maintain critical military 

systems reliable, through maintenance practices. 

Reliability is traditionally viewed as a time-dependent function, aligning 

with established probabilistic principles. However, concerning military 

equipment, the DOD’s guide for achieving Reliability, Availability, and 

Maintainability [26] advocates for a more nuanced understanding of mission 

reliability. According to these guidelines, reliability should be framed within 

the context of a well-defined mission profile and the specific operational 

conditions under which the equipment will be deployed. This approach 

highlights that reliability is shaped by the environmental factors and operational 

challenges encountered by a system during its mission execution. Since a 

mission profile typically encompasses these factors comprehensively, it is 

recommended to evaluate reliability by considering all mission-specific 

elements rather than solely as a time-dependent function [26]. 
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Leveraging insights from the DOD's guide [26], a literature review was 

undertaken to explore factors affecting reliability predictions, aiming to 

improve the accuracy of mission reliability prediction. This review identified 

several military-specific factors that significantly impact the mission reliability 

of critical military equipment. Although literature recognizes the impact of 

certain factors individually, their collective influence on mission reliability has 

not been thoroughly examined in the current literature. Additionally, there is a 

gap in the existing literature concerning a mission reliability prediction 

approach that aligns with the operational practices of military organizations, 

which would integrate the combined effects of essential military-specific 

factors. As previously highlighted, mission reliability plays a pivotal role in the 

present approaches for war readiness management. Therefore, achieving 

accuracy in mission reliability prediction is paramount. Therefore, rather than 

employing conventional mission reliability prediction approaches [32], this 

thesis introduces a tailored mission reliability prediction methodology. This 

methodology incorporates the combined impact of following four essential 

military-specific factors, leading to more accurate and realistic predictions. 

(i) Deployment across multiple terrains characterized by extreme 

environmental conditions. 

(ii) Different deployment roles requiring different functionalities. 

(iii) Use of Refurbished/Cannibalized/Non-OEM Spares in maintenance. 

(iv) Human error in maintenance. 

These are discussed in detail hereunder. 

3.1.1 Deployment across multiple terrains 

Given the dynamic nature of warfare and the geographical constraints 

faced by nations, critical military equipment like MBTs are deployed across 

diverse locations across borders which are characterized by different terrains. 

Often, escalating situations necessitate the deployment of a fleet of MBTs from 

one terrain to another. These terrains are characterized by extreme 

environmental conditions, as observed in specific instances such as the 

deployment of T-72 MBTs by the Indian Army in the East Ladakh region in 

2019 [49]. These MBTs were previously deployed in different regions with 
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distinct environmental conditions, highlighting the adaptability required of 

military equipment [50]. Similarly, during the Gulf War, US Army’s M1 

Abrams tanks encountered harsh desert conditions in Iraq and Kuwait, posing 

challenges uncommon in their native operational environment [51]. Such 

examples underscore the necessity for critical military equipment, including 

MBTs, to operate effectively across diverse terrains with varying environmental 

conditions. 

The impact of extreme environmental conditions on component aging 

and subsequent reliability is well-documented in literature [52], [53]. Extensive 

research into the reliability of mining equipment has revealed that 

environmental conditions during operation, including factors such as 

temperature, humidity, dust levels can significantly impact the reliability of the 

system, machine, or its components [52]. However, most traditional and even 

some modern reliability estimation models designed for conventional 

manufacturing systems, prioritize the consideration of a particular  

environmental conditions considering the stationary nature of systems over 

those operating in diverse terrains. In contrast, for MBTs and other critical 

military equipment, the environmental factor significantly influences mission 

reliability and should be factored into reliability prediction models to enhance 

accuracy [32]. 

Furthermore, it is imperative to acknowledge that environmental 

conditions can fluctuate not only across terrains but also due to seasonal changes 

within each terrain [54]. For example, there can be a temperature difference of 

nearly 50C in Indian desert terrain between summer and winter seasons. While 

the robust design of MBTs is engineered to adapt to such diverse conditions, the 

impact on performance and component degradation within the system can 

significantly vary. Various well-received reliability databases provide the 

multipliers to the failure rate of the components operating under different 

possible environmental conditions [43]; which acknowledges the effect of 

environmental conditions onto the system/component’s reliability.  Therefore, 

simply considering the terrain of operation is insufficient for accurate mission 

reliability prediction. Instead, incorporating seasonal variations in 

environmental conditions is crucial, as different seasons can substantially alter 
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overall environmental factors impacting equipment reliability and performance. 

Therefore, a comprehensive approach considering both terrain and seasonal 

variations is essential for precise mission reliability prediction and maintenance 

decision-making in military operations. 

In addition to the environmental factors like the terrain and season in 

which the MBT operates, various other operational factors also play a crucial 

role in determining the degradation characteristics of its components. For 

instance, the engine load is a known significant factor in the overall degradation 

of the system. Critical military equipment often operates in diverse deployment 

roles, each requiring different levels of load. Considering the extensive range of 

critical military equipment, there are multiple factors that must be taken into 

account when formulating the mission reliability function. 

The consideration of multiple such factors into mission reliability 

prediction can be considered slightly analogous with the reliability estimation 

for phased mission systems; whose treatment is well handled in the literature 

[55], [56], [57]. In the light of absence of well structured definitions of phased 

missions in the context of varied military equipment, the present research works 

on the different treatment for reliability prediction. However, taking inspiration 

from this concept, the effective way to incorporate the combined effect of all 

the essential environmental as well as operational factors, the concept of 

operation phase is used. Here, a phase for a system can be defined by a 

combination of all the operational and environmental parameters that affect the 

life of the system / component. For instance, in the case of an engine and its 

subsystems, the phase parameter could be the percentage capacity or load at 

which the engine operates. Continuous operation of the engine at higher loads 

for prolonged periods accelerates component degradation. Similarly, 

environmental conditions such as temperature can also serve as phase 

parameters, as operating in higher temperature environments significantly 

affects the lifespan of certain components. 

In order to quantify the phase parameters and integrate it to the mission 

reliability formulation, phases are defined as following. Firstly, all the phase 

parameters are listed (Table 3.1) along with their units and ranges to incorporate 
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their variable effect on the component’s life and ultimately the mission 

reliability. 

Table 3.1 Phase parameter definition 

Phase 

Parameter 

ID 

Phase 

Parameter 

Measuring 

Unit 

Parameter 

Range ID 

Range 

Lower 

limit 

Range 

Upper 

Limit 

PP1 
Ambient 

Temperature 
°C 

PP1,1 -40 5 

PP1,2 6 40 

PP1,3 41 58 

 

Finally, each phase (Pi) is created as a unique combination of every range (a) 

of every phase parameter defined (b). Where ‘a’ ranges from 1 to the total 

number of phase parameters, and ‘b’ ranges from 1 to the total number of levels 

in the parameters range. In the case of two phase parameters, Pi will be a 

combination of PPa,b. An example of phase assuming two phase parameters, 

where in addition to the phase parameter defined in Table 3.1, one more phase 

parameter – absolute humidity (in two parameter range IDs are defined) is 

given in Table 3.2.   

Table 3.2 Phase definition 

Phase ID Phase Parameter 01 Phase Parameter 02 

P1 PP1,1 (Temp in range -40 to 5 °C) PP2,1 (Relative humidity in low range) 

P2 PP1,1 (Temp in range -40 to 5 °C) PP2,2 (Relative humidity in high range) 

PP : : 

 

Throughout its operational life cycle, an MBT operates within specific phases 

as defined. As previously discussed, transitioning between phases directly 

impacts the lifespan of system components and overall system performance. To 

effectively account for this influence, an Adjustment Factor (AF) known as the 

‘Phase-wise Adjustment Factor’ is implemented. In this research, the Weibull 

distribution serves as the model for reliability analysis considering the 

mechanical nature of the components under consideration and the all 

encompassing ability of the distribution. The scale parameter ƞ (Eta) represents 

the characteristic life of the component and is directly associated with its 

lifespan. The Phase-wise Adjustment Factor is utilized to mitigate the impact 
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of phase transitions and standardizes each phase relative to a predetermined 

default phase (baseline phase). This adjustment factor is determined by 

calculating the ratio between the scale parameter of the system/component in a 

given phase and that in the default phase Eq. 12. 

𝑨𝑭𝑷𝒙
=  

𝜂𝑃𝑥

𝜂𝑃𝑑𝑒𝑓𝑎𝑢𝑙𝑡

 Eq. 12 

In system operations, components may not be continuously active 

throughout a mission or may experience varying loads compared to their rated 

capacities during operation. To account for these scenarios, a parameter known 

as the Duty Cycle (DC) is commonly employed. For example, certain 

components are utilized only during specific phases, such as during engine 

ignition when ambient pressure is extremely low. Consequently, these 

components are activated selectively during particular phases, influencing the 

overall duty cycle of MBT components. The duty cycle is formally defined as 

the ratio of the operational duration of a given component to the total operational 

duration of the parent system. This value is always positive, with a default value 

of 1 indicating continuous operation at the rated load. Any deviation from this 

default value reflects different load conditions relative to the rated load or total 

operational time. For example, a duty cycle of 0.5 suggests that a component 

operates only half of the time during the system's operation. When considering 

phase-wise operations, a multiplier termed as the 'Duty Cycle Multiplier' is 

utilized to quantify the impact of duty cycle variations resulting from phase 

changes Eq. 13.  

𝑫𝑪𝑷𝒙
=  

𝑇𝑜𝑡𝑎𝑙 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 𝑡ℎ𝑒 𝑠𝑦𝑠𝑡𝑒𝑚/𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 𝑜𝑝𝑒𝑟𝑎𝑡𝑒𝑠 𝑖𝑛 𝑃𝑥

𝑇𝑜𝑡𝑎𝑙 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 𝑡ℎ𝑒 𝑝𝑎𝑟𝑒𝑛𝑡 𝑠𝑦𝑠𝑡𝑒𝑚 𝑜𝑝𝑒𝑟𝑎𝑡𝑒𝑠 𝑖𝑛 𝑃𝑥
 Eq. 13 

 

Both of these multipliers are further recorded for all the possible phases in a 

given context for a particular critical military system, as given in Table 3.3. 

Table 3.3 Phase wise Adjustment factor and Duty Cycle Multiplier Definition 

Phase ID PP1 PP2 
Phase wise Adjustment 

Factor (𝑨𝑭𝑷𝒙
) 

Duty Cycle Multiplier 

(𝑫𝑪𝑷𝒙
) 

P1 
Default Phase 

PP1,1 PP2,1 𝐴𝐹𝑃1
 𝐷𝐶𝑃1

 

P2 PP1,1 PP2,2 𝐴𝐹𝑃2
 𝐷𝐶𝑃2

 

P3 PP1,2 PP2,1 𝐴𝐹𝑃3
 𝐷𝐶𝑃3

 

P4 PP1,2 PP2,2 𝐴𝐹𝑃4
 𝐷𝐶𝑃4
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The process outlined above for systematically capturing the impact of 

operational and environmental phases can be effectively applied across a wide 

spectrum of military equipment. Nonetheless, for the MBTs considered within 

this study, after evaluating available data and engaging in thorough discussions 

with domain experts, it becomes evident that all phases can be delineated by 

taking into account the terrain and season in which the MBT is deployed. 

Typically, MBTs operate across diverse terrains such as plains, deserts, high-

altitude areas, forests, and shores, while experiencing seasonal changes 

encompassing summer, winter, and monsoon periods. A normal season can 

serve as the benchmark or baseline season for MBTs operations. 

3.1.2 Different deployment roles require different functionalities 

As delineated in Section 2.2, MBTs are anticipated to fulfill multiple 

deployment roles (DR) throughout their lifecycle, encompassing both offensive 

and defensive scenarios. These roles include tank-to-tank combat, deep 

penetration, close fire, infantry protection, and reconnaissance, which 

collectively cover a wide range of deployment roles in attack and defense 

situations. To effectively execute any of these deployment roles across different 

operational phases, an MBT must independently or concurrently perform four 

key functions: mobility, firepower, protection, and communication.  

Table 3.4 delineates the correlation between the necessity of various 

functionalities across different deployment roles. It is evident that not every 

function is indispensable for every deployment role. If a specific mission profile 

does not necessitate a particular functionality, then performing maintenance 

solely on the components associated with that functionality would not yield 

significant benefits, given the mission requirements and limited maintenance 

duration. For instance, if an upcoming MBT mission involves reconnaissance, 

focusing maintenance efforts on the assemblies or sub-assemblies related to 

firepower functionality would not maximize the benefits in achieving the 

desired mission reliability from a practicality viewpoint. While this approach 

may improve the mission reliability metric, its practical applicability in the field 

may not be optimal. Hence, it is imperative to integrate the mission reliability 

of equipment with its various functionalities and estimate it in terms of 

functional reliability. The current mission reliability formulation attempts to 
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establish this linkage by initially mapping all functionalities to the system's sub-

systems and components. Subsequently, utilizing this mapping, the mission 

reliability function is customized for each prediction based on the specified 

mission profile. 

Table 3.4 Correlation between functionalities and deployment roles 

 F1 F2 F3 F4 

DR1 ✔  ✔ ✔ ✔ 

DR2 ✔ ✔ ✔ ✔ 

DR3 ✔ ✔ ✔  

DR4 ✔  ✔  

DR5 ✔   ✔ 

 

3.1.3 Use of Refurbished/Cannibalized/Non-OEM Spares 

As suggested by [26], mission reliability should not only be perceived 

as a function of time, but also function of several other factors including 

maintenance. Most of the literature on reliability analysis and maintenance 

modelling considers that every replacement of the component is done using new 

and genuine spares. In the context of military equipment maintenance, this 

assumption does not always hold true [18]. Considering several factors related 

to limited maintenance duration, compact due dates, complex procurement 

procedures, financial aspects, etc., practices like cannibalization and 

refurbishment flourish. Sometimes due to necessity or sometimes considering a 

sustainable practice, components are replaced with refurbished or 

remanufactured spares. The reconditioning of the spare part may be done by 

OEM or the user. Generally, in military scenarios, in addition to this, 

cannibalization of spares is also practiced. Where a component from some 

equipment is taken out and installed with another equipment without any 

significant maintenance. In some situations of unavailability of spare largely 

due to discontinuation of product or remote locations, the user is forced to 

replace the component with some non-OEM spare. These refurbished/non-

OEM spares generally follow some different lifetime probability distribution 

compared to the genuine new spares [58], [59]. Whereas, the cannibalized spare 
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comes with already utilized age. There is a major influence of using such 

components on their residual life and the overall system performance [60]. 

Considering the unavoidability of these practices in the context of military 

maintenance function, it is important to integrate their effects in the mission 

reliability prediction for military equipment [32]. The present mission reliability 

formulation considers the possibility of replacement of any spare using new – 

genuine (G) or refurbished (R) or cannibalized (C) or non-OEM (N-O) spare. 

To account for the effect of using such spares with different lifetime distribution 

on the system reliability, Spare wise Adjustment factor is used. However, in the 

case of using the cannibalized spare, there is no change in the lifetime 

distribution as the product is very same. Therefore, for cannibalized product, 

there is no requirement of an adjustment factor; and the cannibalized age of the 

component can be added to the initial age of the component (Table 3.5).  

Table 3.5 Spare wise Adjustment Factors 

Sr. No. Spare Type Spare wise Adjustment factor 𝑨𝑭𝑺𝒙
 

1 New - Genuine 𝐴𝐹𝑆𝐺
 

2 Refurbished 𝐴𝐹𝑆𝑅
 

3 Non-OEM 𝐴𝐹𝑆𝑁𝑂
 

4 Cannibalized 
𝐴𝐹𝑆𝐺

   

Effective Age = Cannibalized Age 

 

Figure 3.1 represents the depiction of the effect of using the different 

types (G/R/C/N-O) on the component’s effective age across the chronological 

time of usage. For ease of illustration, it is assumed that, in this particular case 

of cannibalization, the spare is replaced with a cannibalized part that has 

acquired the same operating age. 
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Figure 3.1 Effective Age for different spare types 

 

3.1.4 Human error in maintenance 

Humans are susceptible to making errors, and wherever human 

intervention is involved in maintenance activities, there is always a potential for 

human error. Such errors during maintenance can result in failures or accelerate 

the degradation of a component, affecting its overall performance [61]. 

Extensive literature underscores the human error as a significant contributor to 

system failures [62], [63], [64]. Dhillon et al. [65] highlighted the significant 

impact of human error on system failures across various industrial sectors. In 

fossil power plants, human error contributes to 20% of all system failures and 

can lead to up to 60% of total annual power loss due to maintenance-related 

errors [65]. Similarly, in the mining industry, human-related causes account for 

25-35% of machine breakdowns [66]. Koval et al. conducted a study indicating 

that human error causes approximately 7.4% of computer system failures [67]. 

Furthermore, data from the Major Hazard Incident Data Service (MHIDAS), as 

cited by [68], reveals that 22% of accidents in refineries are attributed to human 

errors. Additionally, human error is identified as the root cause in 41% of 

failures in the pipeline industry [62]. These findings underscore the critical role 

of addressing human factors in enhancing system reliability and safety across 

diverse industrial domains. Despite the recognized impact of human error 
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during maintenance on component life, its integration into reliability 

formulations is often overlooked to a great extent in domains other than nuclear 

power generation. Conventional reliability modeling and analysis primarily rely 

on probability distribution parameters provided by the OEM or derived from 

historical failure data, which do not consider the influence of human error in 

maintenance. Reliability models that fail to account for this factor are unlikely 

to provide accurate predictions. In military maintenance contexts, where 

maintenance tasks can be stressful and strenuous [69], considering the limited 

maintenance duration, stress on the maintenance personnel, ergonomically poor 

conditions, the possibility of human error in installation or maintenance 

activities is relatively higher [70]. Therefore, there is a critical need to 

incorporate the effect of human error in maintenance into reliability predictions 

for critical military equipment [32]. This research aims to address this need by 

integrating the effect of human error in maintenance into mission reliability 

predictions for critical military equipment. 

The effectiveness of a human operator in executing a specified task within 

defined conditions and time constraints plays a critical role in determining the 

overall reliability of a system [71]. This effectiveness is formally termed as 

Human Reliability, which is essentially the complement of Human Error 

Probability (HEP). The term human reliability is defined as the probability that 

a person (1) correctly performs some system required activity in a specified time 

period and (2) performs no extraneous activity that can degrade the system [72].  

HEP is the probability that a given task within a specific time interval was 

accomplished with errors [73]. Factors which influence the likelihood of a 

failure occurring are so called Performance Shaping Factors (PSFs) [74]. These 

PSFs encompass environmental or personal factors that can either positively or 

negatively impact a human operator's performance [74]. Figure 3.2 [62] depicts 

various human performance factors leading to the human error in any industrial 

activity.  
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Figure 3.2 Human performance factors leading to human error  

Identifying and analyzing these factors constitute a fundamental aspect of 

all HRA methodologies. To adequately integrate human error in maintenance 

within the mission reliability prediction framework, it is crucial to comprehend 

the existing methodologies for quantifying human error and conducting its 

analysis. Therefore, a literature review was undertaken on the literature 

discussing evolution of HRA, different methodologies, and their formulations. 

To date, over 50 distinct HRA methods have been proposed and are 

typically classified into three generations, with each generation addressing the 

shortcomings of earlier methods and advocating necessary advancements. The 

initial generation of HRA methods primarily relied on simplistic qualitative 

approaches, utilizing expert judgment and subjective analysis for identifying 

human errors [62]. Many methods in this generation were influenced by risk 

assessment methodologies like Probabilistic Risk Assessment (PRA), a trend 

that continued into subsequent generations of HRA methods. Second-

generation methods focused on quantifying human error probability by 

considering cognitive processes and Performance Shaping Factors (PSFs) such 

as workload, stress, sociological and psychological factors, and illness. The 

third generation of HRA methods recognized the importance of interrelated 

PSFs and their dependencies, leveraging Bayesian networks to model these 

relationships effectively. Bayesian networks facilitate capturing the 
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interdependencies among PSFs in a structured manner, enhancing the 

understanding of their impacts on human reliability. Figure 3.3 provides an 

overview of the evolutionary progression of prominent HRA methodologies 

across these three generations. 

 

Figure 3.3 Evolution of HRA methodologies in three generations 

Several articles have conducted reviews and analyses of HRA methods 

within the manufacturing domain. French et al. [75] conducted a seminal review 

of HRA methods that did not make domain-specific assumptions.  Nevertheless, 

their findings are valuable and apply to the manufacturing domain as well. Di 

Pasquale et al. [76], [77] offer a comprehensive overview of techniques for 

analyzing human reliability in manufacturing, including assembly systems. 

Their work underscores that while numerous HRA methods exist, many fails to 

capture the dynamics of ongoing accidents or general human behavior. 

Extending their previous work, Di Pasquale et al. [77] systematically reviewed 

HRA approaches specifically for manual assembly systems, demonstrating the 

efficacy of HRA methods in predicting human error probability and identifying 

critical error-influencing factors in such systems. Franciosi et al. [78] proposed 

a taxonomy of PSFs relevant to HRA in industrial maintenance, including 

factors such as available task time, ergonomics, and task complexity. Their 

analysis emphasizes the significance of considering human error in maintenance 

activities due to the non-negligible impact of different error types on the studied 

systems. Petruni et al. [79] utilized the Analytic Hierarchy Process (AHP) to 

assist in evaluating and selecting appropriate HRA methods for the automotive 
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industry. Such approaches are increasingly relevant given the growing number 

of available HRA methods. 

Despite active research in HRA, none of the mentioned articles 

comprehensively covers both system and human reliability assessment for 

manufacturing systems [71]. This gap underscores the need for a standardized 

method that adequately captures the effect of HEP on the mission reliability of 

manufacturing systems, highlighting an area where literature lacks a 

standardized approach. 

In the scope of the problem under consideration, to map the effect of 

human error (estimated in the form of HEP) on the life of the component and 

further its mission reliability, an Adjustment Factor (AFHEP) is used. A large 

range of HRA methodologies provide quantitative assessment of the occurrence 

of human error in any of the industrial activity in the form of HEP. Although 

the present methodology is capable of making use of HEP estimated using any 

of the standard HRA methodologies, in this particular context, Standardized 

Plant Analysis Risk – Human Reliability Analysis (SPAR-H) is used for HEP 

calculation. This selection is particularly based on the outcomes from the 

comparative studies presented in [68], [80]. SPAR-H is a model for HRA 

invented by U.S. Nuclear Regulatory Commission in conjunction with the Idaho 

National Laboratory [81]. SPAR-H method considers eight PSFs: available 

time, stress, complexity, experience/training, procedures, ergonomics, fitness 

for duty, and work processes. After collecting ratings for each of these PSF and 

categorizing the task as action or diagnosis task for Nominal Human Error 

Probability (NHEP) selection, HEP value can be calculated using Eq. 14 [81]. 

𝐻𝐸𝑃 =  
𝑁𝐻𝐸𝑃 × 𝑃𝑆𝐹𝑐𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑒

𝑁𝐻𝐸𝑃 (𝑃𝑆𝐹𝑐𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑒 − 1) + 1
 Eq. 14 

 

𝑤ℎ𝑒𝑟𝑒, 𝑃𝑆𝐹𝐶𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑒 =  ∏ 𝑃𝑆𝐹𝑖

8

1

 Eq. 15 

NHEP for Action = 0.0001 

NHEP for Diagnosis = 0.001 

Generally, following any maintenance activity, an inspection procedure is 

conducted. During these inspections, errors are often identified and 
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subsequently rectified as well. Consequently, the effective HEP is estimated as 

Eq. 16 based on the calculated HEP and the probability of detecting the human 

error. 

𝐸𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒 𝐻𝐸𝑃 =  [𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝐻𝐸𝑃]  ×  [1 − 𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 𝑑𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛] Eq. 16 
 

Finally, the AFHEP is estimated using Eq. 17 

𝐴𝐹𝐻𝐸𝑃  =  [𝐸𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒 𝐻𝐸𝑃]  ×  [𝐸𝑥𝑝𝑒𝑟𝑡 𝑗𝑢𝑑𝑔𝑒𝑚𝑒𝑛𝑡 𝑓𝑜𝑟 𝑒𝑓𝑓𝑒𝑐𝑡 𝑜𝑓 𝐻𝐸𝑃]

+  [1 − 𝐸𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒 𝐻𝐸𝑃] 

Eq. 17 

 

In the absence of required data, this methodology makes use of expert 

judgement as suggested by [38], and the effect of particular HEP on the 

component is captured through expert judgement. Here, the expert states the 

judgement regarding the effect of HEP in a particular range on the component 

life in the form of an adjustment factor to the scale parameter of the component. 

 

3.2 Mission Reliability Prediction incorporating the effect of 

essential military-specific factors 

Reliability is defined as the probability that a component or system will 

perform a required function for a given period of time (t) when used under stated 

operating conditions [82]. It is the probability of a nonfailure over time. Eq. 18 

expresses this relationship of reliability with time in mathematical form where, 

T is a continuous random variable – time to failure of the component or system.  

𝑅(𝑡) = 𝑃𝑟{𝑇 ≥ 𝑡} Eq. 18 

where, 

𝑅(𝑡) ≥ 0, 𝑅(0) = 1, 𝑎𝑛𝑑 lim
𝑡→∞

𝑅(𝑡) = 0  

Reliability function represents area under the curve defined by the probability 

density function f(t) (Eq. 19). 
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𝑅(𝑡) = ∫ 𝑓(𝑡′)𝑑𝑡′
∞

𝑡

 Eq. 19 

The methodology for conducting reliability analysis on equipment or a 

fleet of equipment involves a systematic approach comprising six key steps 

[83]: 

(1) Understanding the system and identifying subsystems and faults within it, 

and creating the reliability block diagram. 

(2) Collecting, sorting, and classifying Time to Failure (TTF) data for each 

subsystem and fault. 

(3) Analyzing the data to verify the assumption of Identically and Independently 

Distributed (IID) data. 

(4) Fitting the TTF data of subsystems and faults with appropriate theoretical 

probability distributions. 

(5) Estimating reliability for each subsystem and the overall system using the 

best-fit distribution. 

(6) Identifying critical subsystems and faults and formulating an enhanced 

maintenance policy to improve overall system reliability. 

In the above six step methodology, step 1 – 4 are combinedly worked upon and 

presented in Annexure A.  

In context of step 5 - estimating reliability for each subsystem and the overall 

system using the best-fit distribution, this study models the reliability function 

considering the Weibull distribution. Eq. 1 presents the reliability function for 

2P - Weibull distribution. The probability density function is given by Eq. 20. 

𝑓(𝑡) =
𝛽

𝜂
  (

𝑡

𝜂
)

𝛽−1

 𝑒
−(

𝑡
𝜂

)
𝛽

 Eq. 20 

 

In order to estimate the reliability of a component which has already 

accumulated some age (Age), conditional reliability of that component is 

estimated as given in Eq. 21 
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𝑅(𝑡|𝐴𝑔𝑒) =
𝑅(𝑡 + 𝐴𝑔𝑒)

𝑅(𝐴𝑔𝑒)
 Eq. 21 

 

In case of a 2 – parameter Weibull distribution, this conditional reliability 

function takes the form as: 

𝑅(𝑡|𝐴𝑔𝑒) =
𝑒

−(
𝑡+𝐴𝑔𝑒

𝜂
)

𝛽

𝑒
−(

𝐴𝑔𝑒
𝜂

)
𝛽

 Eq. 22 

 

The mission reliability of the whole MBT (RTank) for the future mission profile 

is estimated from the mission reliability of every component according to the 

MBT’s reliability block diagram and all the parameters mentioned in Annexure 

A. Ultimately, mission reliability of a MBT (RTank) is estimated using Eq. 23. 

𝑅𝑇𝑎𝑛𝑘 = ∏ ( ∏ (𝑅(𝑖,𝑗))

𝑀(𝑖,𝑗)

𝑗=1

)

𝑁(𝑖)

𝑖=1

 Eq. 23 

where, 

𝑁(𝑖) is the number of assemblies, 

𝑀(𝑖,𝑗) is the number of components in the ith assembly, 

R(i,j) is the reliability of the jth components in the ith assembly, 

RTank is the reliability of the MBT. 

 The standard approach for reliability prediction, as outlined above, is 

widely recognized within the domain. However, when essential military-

specific factors are integrated into the mission reliability formulation, the 

process becomes notably intricate. At various decision points where mission 

reliability needs to be predicted, the formulation must consider a broad spectrum 

of factors. For example, as discussed previously, MBTs operate in diverse 

terrains that are marked by extreme environmental conditions. Within these 

terrains, they require to navigate through multiple operating phases, and 

maintenance activities are conducted at different echelons as necessary. As a 

result, when attempting to predict the mission reliability of MBTs operating 



53 

 

within such varied deployment scenarios, it becomes challenging to incorporate 

these complexities within a single mathematical function. Figure 3.4 illustrates 

the overall complexity involved in mission reliability prediction for MBTs, 

incorporating the combined impact of essential military-specific factors.  

 

Figure 3.4 Overall complex scenario for mission reliability prediction 

  

In formulating mission reliability prediction within such a complex 

scenario, characterized by the aforementioned military-specific factors, 

extensive data and information must be captured. As various MBTs operate in 

diverse military fields across different terrains, degradation rates vary. 

Moreover, maintenance activities predominantly occur in field maintenance 

workshops, complicating maintenance record tracking across workshops. 

Additionally, varying levels of human error in maintenance further contribute 

to the complexity of mission reliability prediction. To address this complexity, 

systematic registration of MBT operation information is essential. This need 

stems from the objective of integrating the impact of essential military-specific 

factors into the mission reliability prediction process. Figure 3.5 illustrates the 

comprehensive information required for mission reliability prediction, 

categorized into data related to equipment history and data related to future 

missions. Within the equipment history, three key characteristics are 

considered, namely environmental, operational, and maintenance data. This 

encompasses information such as the terrains where the equipment has 

operated, the operational phases it has undergone, and detailed logs of all 
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maintenance events including the actions taken and HEP in those actions. 

Moreover, regarding a future mission, it is assumed that all necessary 

information is available. This future mission profile information is organized 

into three main verticals: deployment characteristics, usage requirements, and 

environment profile. The data within these categories includes elements such as 

the MBT's role, mission type, terrain and season specifics, mission duration, 

travel distance, and EFC requirement. 
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Figure 3.5 Information for mission reliability predictions. 
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As all the considered essential military specific factors influence the 

degradation of the system while utilization, age of a component / system is a 

good way to consider the effect of all these factors on the component / system. 

Therefore, in the proposed methodology for mission reliability prediction, the 

effect of all the considered military-specific factors is incorporated in the age of 

systems / components in the equipment, i.e. MBT. 

In the context of present research, it is crucial to acknowledge that the 

degradation of systems due to the impact of all the aforementioned essential 

military-specific factors is experienced during their utilization. The age of 

components or systems is considered an effective method for incorporating the 

combined effect of these factors on the overall reliability. Therefore, in the 

proposed methodology for predicting mission reliability, the influence of all 

identified military-specific factors is incorporated by correlating them with the 

age of systems and components of the MBT. 

3.2.1 Effective age estimation 

The concept of virtual age has been introduced by Kijima et al. as a 

means to quantify the effect of a maintenance on the future lifetime of a 

repairable system [84]. To clarify on the notion, it is worth pointing out that 

several authors in the statistical literature refer to the virtual age as the effective 

age [85], encompassing the effects induced by interventions beyond 

maintenance. While the former term is specifically utilized in models based on 

the principles established by Kijima et al., the latter term is more commonly 

used across various contexts. Moreover, the concept of effective age pertains to 

defining the virtual age function as outlined by Kijima et al. or in its subsequent 

relevant extensions. The primary objective of effective age modeling is to 

develop a stochastic model that can effectively describe and analyze recurring 

events with interventions to comprehend the dynamics introduced by these 

interventions [85]. In the proposed methodology, effective age serves as a 

parameter that incorporates the impact of all essential military-specific factors 

into the degradation of the MBT during its utilization. The operational age of 

the system/component after factoring in all military-specific factors is referred 

to as effective age. Given the objective of estimating the mission reliability of a 

component and subsequently the MBT, the developed methodology calculates 
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the effective age of all components in the MBT. To determine the effective age 

of components, three aspects require careful consideration: (i) Environmental 

history, (ii) Operational history, and (iii) Maintenance history. 

 In order to comprehensively address the three aforementioned 

characteristics, a usage monitoring mechanism has been developed. Illustrated 

in Figure 3.6, this mechanism systematically records the status of the MBT at 

regular observation intervals. Alongside the MBT status, various other pertinent 

information is also logged, such as the timestamp of inspection, the operational 

phase, and the assignment of a Maintenance ID (MID) based on the system's 

operational status. This MID serves as a representation of the maintenance 

action executed and is primarily utilized to denote the type of spare utilized 

during maintenance operations. Table 3.6 provides an overview of the 

interpretations associated with each MID. For instance, MID ‘0’ indicates the 

MBT is operational without any failures; ‘F’ signifies a detected failure, while 

‘D’ denotes a failed state with delayed maintenance. The remaining MIDs 

specify the specific maintenance activities carried out and identify the type of 

spare employed for replacement. In scenario 1, during observation interval #3, 

the MBT is recorded as being in a failed state. However, by observation interval 

4, the MBT has undergone maintenance and is operational again, with the 

component replaced using a new and genuine spare. The corresponding Human 

Error Probability (HEP) is also estimated for this maintenance activity. In 

scenario 2, at observation interval 1, the MBT is noted to be in a failed state. 

During observation interval 2, the MID ‘D’ signifies a delay in the required 

maintenance activity. Subsequently, by observation interval 3, the MBT has 

been restored after maintenance, with the faulty component replaced with a 

cannibalized spare. Each data record includes the date, precise time, and 

maintenance duration for every maintenance event. 
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Figure 3.6 Systematic capturing of information for effective age estimation 
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Table 3.6 Interpretation of Maintenance IDs 

 

Based on the data records depicted in Figure 3.6, the Current Age (CA) for any 

component within MBT refers to the amount of time or usage that has elapsed 

since the component was first placed into service. And it is calculated to 

represent the actual utilization of the component in terms of time. Utilizing 

information regarding operational phases, spares utilized in maintenance 

activities for replacements, and the HEP associated with each maintenance 

activity, the relevant adjustment factors and duty cycle multipliers are extracted 

from Table 3.3, Table 3.5, and Eq. 17. Ultimately, the effective age of every 

component in an MBT is estimated as shown in Eq. 24. 

𝐸𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒 𝐴𝑔𝑒(𝐸𝐴𝑖) =  
𝐶𝐴 × 𝐷𝐶𝑝ℎ𝑎𝑠𝑒

𝐴𝐹𝑝ℎ𝑎𝑠𝑒 × 𝐴𝐹𝑚𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒 × 𝐴𝐹𝐻𝐸𝑃
 Eq. 24 

 

In the traditional approach, reliability prediction is based on time-based usage 

adjusted for operational phases and the duty cycle. However, this approach does 

not account for the effects of using refurbished, cannibalized, or non-OEM 

spares, nor for human error during the installation process.  
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 As previously discussed, mission reliability is fundamentally a function 

of time. For estimating the mission reliability of a MBT, the complete mission 

profile is translated into one time duration. The mission profile for which the 

reliability of the particular MBT is to be predicted, is known in the form of three 

different attributes, viz: deployment characteristics, usage requirements and 

environment profile. For instance, consider a mission profile where the MBT is 

expected to be ready for an attack role, necessitating the use of all four 

functionalities. This mission may require the MBT to travel 150 kilometers in 

desert terrain during the summer season, with a continuous operation duration 

of 36 hours. Given this mission profile, the operational phase in which the MBT 

will operate and the mission duration are known. With this information, the 

corresponding adjustment factor for phase wise operation AFPhase is determined. 

Accordingly, the effective mission duration (Md) is estimated for every 

component of MBT considering its duty cycle. The formulation for effective 

mission duration is as follows: 

𝐸𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒 𝑀𝑖𝑠𝑠𝑖𝑜𝑛 𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛(𝑀𝑑) =  
𝑀𝑖𝑠𝑠𝑖𝑜𝑛 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 × 𝐷𝐶𝑝ℎ𝑎𝑠𝑒

𝐴𝐹𝑝ℎ𝑎𝑠𝑒 
 Eq. 25 

Once the Md is known for every component (using Eq. 25), mission reliability 

of every component can be predicted using Eq. 22 and translated into mission 

reliability of MBT using Eq. 23. 

 

3.3 Machine Learning approach for mission reliability 

prediction for MBT 

As outlined in previous sections, ensuring accuracy in predicting mission 

reliability for critical military equipment holds paramount importance due to its 

direct impact on high-level decision-making processes such as maintenance 

management, readiness assessment, and deployment strategies. Inaccuracies in 

predicted mission reliability can lead to undesirable outcomes in these strategic 

domains. Incorporating the effects of military-specific factors is crucial to 

achieving the desired accuracy in mission reliability predictions.  Figure 3.5 

illustrates the comprehensive array of military-specific factors essential for 



61 

 

mission reliability prediction. Given the current situation of lack of adequate 

data, the methodology proposed in section 3.2 relied on adjustment factors 

derived from expert judgment. However, recognizing the necessity for highly 

accurate predictions, transitioning from expert judgment-based adjustment 

factors to the parameters derived from the actual data is imperative in the 

foreseeable future. Nevertheless, deriving such parameters from actual data 

poses significant challenges, especially given the complexity of military 

maintenance functions for MBTs. Moreover, future decision-making models 

will necessitate understanding the collective or individual impacts of these 

military-specific factors on system life, performance, and reliability to inform 

critical decision-making processes. While the methodology in section 3.2 is 

very much able to incorporate the combined effect of the essential military 

specific factors on the mission reliability of MBT, it will be difficult for it to 

establish the exact quantitative effect of any particular military specific factors 

on the life of the component under consideration.  

Establishing the aggregate and independent effect of all essential military-

specific factors on component reliability using conventional methodologies can 

be highly complex and may lead to inaccurate results. The conventional 

approach involves estimating an additional probability distribution parameter 

for each military-specific factor affecting a component's life. However, the 

existing parameter estimation methods pose mathematical challenges in 

estimating these additional parameters. Generally, the MLE is used for 

parameter estimation. Parameter estimation in the case of Weibull distribution 

for the two parameters Scale and Shape using MLE itself is a tedious process. 

These estimates often involve complicated nonlinear functions based on 

observed data. As the number of parameters to be estimated increases in the 

likelihood function, the complexity of solving the function also escalates [86]. 

Numerical methods are usually employed to solve the likelihood function, but 

they come with issues such as instability in estimated parameters [86] and high 

sensitivity to seed parameter choices [87]. This complexity has often led to the 

oversight of this effect in reliability estimations and maintenance management 

practices. 
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The advent of machine learning (ML) has opened up several avenues to 

handle such mathematically complicated problems with ease. Building upon 

this advancement, a machine learning methodology is devised for Remaining 

Useful Life (RUL) based mission reliability prediction. In the recent times, 

researchers have successfully applied machine learning algorithms for residual 

life predictions in broad domains [88] such as belts [89], gears [90], batteries 

[91]. A thorough examination of existing models in the literature has informed 

the design of the proposed machine learning model for RUL prediction and 

subsequent mission reliability assessment. Based on the nature of maintenance 

data, including operational phases, replacements with 

refurbished/cannibalized/non-OEM spares, and the HEP in every maintenance 

activity, a decision tree-based ensemble machine learning model emerges as the 

optimal choice, which provides the prediction of component’s RUL with 

satisfactory accuracy, thereby contributing to enhanced mission reliability 

prediction. 

3.3.1 Proposed Machine Learning based Methodology 

This section describes the proposed ML based methodology for 

predicting RUL and further the mission reliability while incorporating the effect 

of essential military specific factors. In this methodology, the required data is 

collected and processed for the ML algorithm; the decision tree based boosted 

ensemble algorithm is developed, trained and tested on the pre-processed data; 

and ultimately, using the trained model, RUL is predicted and according to the 

user-defined future mission profile, Mission reliability prediction is done. Key 

steps in the methodology are discussed here in detail. 

3.3.1.1 Decision Tree Algorithm 

For achieving accuracy in prediction problems, selecting an effective 

ML algorithm is critical. In this work, decision tree based algorithm is used for 

RUL prediction. Decision tree-based algorithms are a popular choice in 

regression tasks, including RUL prediction, due to their inherent ability to 

model complex, non-linear relationships within data. They operate by 

recursively partitioning the data into subsets based on feature thresholds, 

allowing them to capture intricate patterns in the failure and degradation 

behaviour of components. For RUL prediction, decision tree algorithms excel 



63 

 

because they can effectively handle high-dimensional feature sets and are less 

sensitive to data scaling, making them highly adaptable to varied maintenance 

and operational histories. Additionally, decision tree models provide 

interpretability, as the decision-making paths within the tree structure can be 

easily visualized, supporting insights into which features most significantly 

influence the predictions. This makes decision tree-based models a robust 

choice for regression-based RUL prediction tasks where transparency and 

handling of non-linear relationships are critical. The goal of the decision tree is 

to develop a model which can predict the target variable by learning certain 

decision rules inferred from the data structures [92]. With the decision tree 

algorithm, the predictor space, i.e. the entire population, is segmented into 

multiple homogeneous sets based on appropriate differentiators [93]. The 

fundamental structure and the terminology of an individual decision tree is 

shown in Figure 3.7 (A) [90]. There are three types of nodes in any decision 

tree. The entire population of the dataset is represented by the root node which 

is split into multiple nodes using differentiators. Each decision node represents 

the test on the attribute and results into the subsequent branches depending on 

the true/false result of the test. The nodes which do not get segmented any 

further are known as terminal or leaf nodes. Generally, the terminal node 

represents the decision to be made. In case of RUL prediction, the life of the 

component itself is represented by the terminal node, whereas the decision 

nodes represent several parameters deciding the life, like the range of HEP, 

spare type, etc., as shown Figure 3.7 (B). 

 

Figure 3.7 (A) Fundamental structure and terminology of a decision tree (B) 

Sample decision tree 
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In literature, it has been pointed out that a single decision tree is highly 

susceptible to overfitting [94]. To mitigate this risk, ensemble models 

combining multiple trees have been favored. Studies indicate that ensemble 

machine learning models outperform single prediction algorithms [94]. When 

employing ensembles, boosting algorithms are commonly utilized to 

amalgamate individual trees due to their high flexibility and interpretability 

[95]. Boosting algorithms, like Gradient boosting, are known to enhance the 

predictive power of a model by converting weak learners into strong learners 

[96]. The ensemble decision tree model generates multiple trees sequentially, 

aiming to minimize the residual error from the previous tree in each iteration. 

In this study, the decision tree ensemble learning approach is adopted to analyze 

maintenance and operation data related to the component. Gradient boosting, as 

an extension of boosting algorithms, is a widely adopted method known for its 

effective and accurate predictions [94], [95]. This method leverages the gradient 

descent algorithm to optimize differentiable loss functions. 

3.3.1.2 XGBoost: Extreme Gradient Boosting Algorithm 

XGBoost is recognized as a scalable machine learning system for tree 

boosting that requires significantly fewer resources compared to many existing 

systems [97]. Due to its substantial impact in various renowned machine 

learning and data mining challenges worldwide, XGBoost has emerged as the 

preferred choice among data scientists across different domains. Over the past 

six years, its applications have expanded significantly in diverse areas such as 

healthcare [98], industrial [99], communications [100], transportation [101], 

among others. The exceptional performance of XGBoost in supervised learning, 

particularly in prediction tasks, has led to its adoption in this study for residual 

life prediction. 

XGBoost operates as a gradient boosting library where the system learns 

sequentially by constructing successive decision trees. A detailed understanding 

of its functionality and underlying principles can be found in [97]. It is a 

decision tree-based algorithm that builds an ensemble of trees in a sequential 

manner to enhance prediction accuracy. Each subsequent tree in the XGBoost 

model aims to correct the errors made by the previous trees, achieving this 

through gradient boosting, which minimizes the residuals of the prior 
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predictions. By learning from the errors iteratively, XGBoost efficiently 

converges to a model that can capture complex dependencies and interactions 

within the data. Importantly, XGBoost includes several optimizations, such as 

regularization, shrinkage, and weighted quantile sketch for handling sparse data, 

which improve both the model’s predictive performance and its robustness. In 

the context of RUL prediction, XGBoost’s ability to adaptively model non-

linear degradation patterns make it particularly suited for accurately forecasting 

the remaining life of components based on their historical maintenance and 

operational data. Each decision tree within XGBoost maps random input data 

to distinct nodes and generates corresponding continuous scores. These scores 

determine the thresholds for tree classification. Predictions are made with each 

tree, and using the training data, residuals or errors are computed as the 

disparities between predicted and actual data points. The model is trained 

iteratively, generating new trees while considering the residuals or errors from 

the preceding tree. Figure 3.8 illustrates the overall workflow of the XGBoost 

algorithm. 

 

Figure 3.8 Working of XGBoost 

The training of the model progresses by generating newer trees, with the 

primary aim of minimizing prediction errors. This consecutive tree generation 

is guided by the objective of minimizing the error in the predictions. XGBoost 

supports multiple loss functions, each catering to different regression 

objectives. Common choices include Mean Squared Error (MSE), Mean 

Absolute Error (MAE), and Huber loss. MSE is widely used for general 

regression due to its sensitivity to large errors, which can be beneficial for 

applications where outliers carry meaningful information. MAE, on the other 

hand, is more robust to outliers, making it a suitable choice in cases with 
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substantial noise or uncertainty. In this study, MSE was selected as the loss 

function for the XGBoost model, as it is well-suited for capturing the variance 

in the time-to-failure data and emphasizes larger errors, which are critical in 

RUL prediction to ensure that the model is attuned to the most impactful 

deviations. This choice aligns with the goal of minimizing the prediction error 

in RUL, where accurate reliability predictions are essential for effective 

maintenance planning. The objective function of the XGBoost model is the 

summation of an error function and a model complexity function. The objective 

function to be minimized is given as Eq. 26 [102]. 

𝑂𝑏𝑗 = ∑ 𝐿(𝑦𝑖, 𝑦𝑖̂
(𝑡)

)

𝑡

𝑖

 +   ∑ Ω (𝑓𝑖)

𝑡

𝑖

 Eq. 26 

 

Where, 𝑦𝑖  is the actual data point, 𝑦𝑖̂
(𝑡)

 is the predicted value and 𝐿(𝑦𝑖, 𝑦𝑖̂
(𝑡)

) is 

the loss function for tree t. Ω (𝑓𝑖) is the term for regularization whose objective 

is to reduce the complexity of the tree function, and it is estimated as Eq. 27.  

Ω (𝑓) = 𝛾 𝑇 +   
1

2
 𝜆 || 𝜔 ||2 Eq. 27 

 

Here, T is the number of leaves; the weight of the leaves is given by 𝜔. 𝛾 is the 

learning rate or shrinkage which is used for tree pruning, and 𝜆 is the 

regularization coefficient that prevents the overfitting of the model.   

3.3.1.3 Data Requirements 

The data-driven approach of XGBoost necessitates well-structured data 

to facilitate its learning and precise prediction process. As previously 

highlighted, our proposed methodology seeks to forecast the RUL of 

components by integrating the collective influence of essential military specific 

factors: (i) diverse operational phases, (ii) types of spare parts utilized, and (iii) 

human error during maintenance activities. To effectively train the XGBoost 

algorithm and establish correlations between the component's lifespan and these 

factors, a meticulously documented dataset encompassing maintenance and 

operational details specific to the system/component is essential. For the 

proposed approach, the requirement of the data of the component across its 

lifecycle is depicted in Figure 3.9. 
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Figure 3.9 Requirement of component’s data across its lifecycle 

Based on the requirements depicted in Figure 3.9, the systematic data is 

expected in the format given in Table 3.7. 

Table 3.7 Component wise data requirement 

Component Details 
Phase wise Operating 

History across lifespan 

TTF 
Comp 

Name 

Comp 

ID 

Spare 

Type 
HEP 

P1 

(%) 

P2 

(%) 

P3 

(%) 

AAA1 FP456 N 0.6 38 44 18 415 

AAA1 FP457 R 0.75 64 05 31 368 

 

To predict the RUL of the component, it is necessary to provide details about 

the current status of the component, including its current age. Given the current 

age of the considered component, the algorithm slices the component wise data 

(Table 3.7) at the time equal to current age, into history and future profile. This 

processed data sliced at a given age (format shown in Table 3.8) is the primary 

input to the XGBoost model. As per the quality of the data, it requires some pre-

processing before it is used in the model. Generally, data cleaning, including 

outlier removal is done with the specified interquartile range, and some of the 

encodings are done at this stage. The formatted and pre-processed data is then 

used for training the XGBoost model. A significant portion of the data is used 

for the training of the model. To gain the desired accuracy in the predictions, 

hyperparameters of the models play a vital role. Some of the prominent 

hyperparameters in the XGBoost are the number of decision trees in the model, 
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maximum depth of a tree, learning rate, minimal instance rate, subsample ratio, 

regularization coefficient, etc. After hyperparameter tuning, the model is tested 

for accuracy using a portion of the dataset reserved for testing purposes. Once 

the desired accuracy is achieved, the prediction for residual life can be made for 

the component for which the user defines the expected future mission profile. 

Table 3.8 Processed data input to algorithm 

Component Details Operating History 
Phase wise operation 

after sliced age 

TTF 
Comp 

Name 

Spare 

Type 
HEP 

P1 

(%) 

P2 

(%) 

P3 

(%) 

P1 

(%) 

P2 

(%) 

P3 

(%) 

AAA1 N 0.6 42 48 10 60 25 15 415 

AAA1 R 0.75 40 32 28 52 20 28 368 

 

3.3.1.4 Uncertainties in mission profile definition 

As the ultimate aim of the methodology is to predict the RUL of component and 

further its mission reliability, definition of the mission profile is an important 

step. The definition of mission profile for equipment like MBT is discussed 

previously. However, in reality, the user can specify the number of phases the 

component is supposed to operate in, but it is difficult for the user to specify the 

exact proportion of mission duration in every operating phase. Additionally, 

such user inputs for future expectations about real life missions are often 

coupled with the uncertainties and variabilities. These uncertainties and 

variabilities are based on the ability of the user to provide the input with 

accuracy. Any machine learning model seeking to establish an effective 

connection between the military specific factors and component’s life, should 

be able to effectively handle these uncertainties and variabilities. To effectively 

deal with the uncertainties and variabilities in the user input for future expected 

mission profile, in this model, three different cases are considered as follows: 

Case 1: The user provides the exact future mission profile. Here the exact 

mission duration and the proportion of operating phases in a small range are 

made available.  
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Case 2: The user provides the future mission profile in a range of mission 

duration along with the ranges of proportions in each operating phase. 

Case 3: The user provides only the mission duration of the future mission profile 

and the user is unable to specify the proportions of mission duration in each of 

the operating phases.  

In the ideal scenario, denoted as case 1, all necessary information is accurately 

provided to the model. However, in cases 2 and 3, even if the user is not able to 

provide the exact number of phases the component is expected to operate, the 

model has the provision of estimating the number of phases using the ranges of 

operating parameters provided by the user for across the mission duration. In 

case 2 and 3, if the user specifies the wrongly estimated proportions in every 

phase, the maintenance decision is likely to be significantly influenced. To 

mitigate these challenges in cases 2 and 3, the current methodology utilizes 

probability distributions for the proportion of operating time in each phase. 

These distributions can be derived from historical phase-wise operational data, 

as depicted in Figure 3.10. When the user cannot specify the exact mission 

profile, pre-estimated distribution parameters for phase-wise operations are 

employed to generate realistic proportions of mission duration in all operational 

phases. By leveraging these underlying probability distributions, the algorithm 

simulates multiple scenarios with different phase-wise operations. For each 

scenario, the RUL is predicted, and based on its comparison with the mission 

duration, mission reliability is estimated as proportions. 
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Figure 3.10 Mission profile definition with phase wise usage from probability 

distributions. 

3.3.1.5 RUL based mission reliability prediction 

Finally, in this step, the component's RUL is forecasted using a trained 

and validated XGBoost model based on each data input. To enhance the realism 

of mission reliability prediction, it is imperative to incorporate uncertainties into 

the predicted RUL. Consequently, a confidence interval is computed for each 

prediction to gauge model uncertainty. Due to the challenge of knowing the 

underlying probability distribution for predicted RUL consistently, this study 

utilizes Chebyshev’s inequality [103] for estimating the desired confidence 

interval. According to the Chebyshev’s inequality, for any real number k > 0, 

𝑃𝑟(|𝑃 − 𝜇| ≥ 𝑘𝜎) <
1

𝑘2 
 Eq. 28 

 

In probability theory, the Chebyshev’s inequality guarantees that, for a wide 

class of probability distributions, no more than 
1

𝑘2 of the distribution’s values 
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can be more than k standard deviations away from the mean [104]. Using the 

mean and the standard deviation obtained using the errors in the predictions 

from the XGBoost model, the confidence interval for 2σ is estimated as 

(𝜇𝑒𝑟𝑟𝑜𝑟 ± 2𝜎𝑒𝑟𝑟𝑜𝑟). Where the error of prediction is estimated as the difference 

between the predicted life and the actual life in the testing dataset. And the 

standard deviation of this prediction error is used to estimate the confidence 

interval. Using the limit of 2σ gives the confidence that a minimum of 75% of 

predictions will lie in this range [103]. For mission reliability prediction, the 

lower bound of residual life serves as the basis. The process entails predicting 

mission reliability by juxtaposing this lower bound of RUL against the 

anticipated future mission duration across one thousand simulated scenarios. 

The mission reliability of the component is determined by the proportion of 

scenarios where the lower bound of RUL exceeds the mission duration. 

Utilizing a non-parametric approach in mission reliability prediction introduces 

a risk index with each prediction. The decision-maker can set a risk index 

threshold based on the component's criticality. As data management becomes 

more streamlined, this uncertainty is expected to diminish, thereby enhancing 

the accuracy of mission reliability prediction. 

3.3.2 Demonstration of proposed methodology 

To demonstrate the proposed methodology, the prediction of RUL and 

subsequent mission reliability for a mission-critical component utilized in a 

specific MBT is undertaken. This component represents the lowest maintainable 

unit from a maintenance standpoint. Given that the current methodology relies 

on a machine learning algorithm, it necessitates sufficient systematic data to 

train the model effectively. To achieve this, a maintenance data simulator is 

developed as part of this study. The simulator is designed to mimic the 

generation of field failure records and operational data within a military-specific 

environment. An essential aspect of the data simulator is its capability to handle 

uncertainties and variations in the correlation of multiple factors that influence 

the component's life effectively. 

3.3.2.1 Data Simulator 

This subsection addresses the development of a data simulator aimed at 

generating adequate maintenance and operational data. The data simulator is 
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designed to enhance the realism of simulated data from a military perspective 

by incorporating all previously discussed essential military-specific factors.  

One crucial aspect is the identification and capture of operating phases 

for the component under consideration. For this component, the sole phase 

parameter identified as influencing its life is the percentage of load on the engine 

where the component is installed. Based on the ranges of this phase parameter, 

the component operates within three phases denoted as P1, P2, and P3. P1 

represents the baseline phase, while P2 and P3 denote the extreme phases. 

Analyzing some of the maintenance and operation history from the system 

housing the component, a phase transition probability matrix for the component 

is assumed for data simulator and presented in Table 3.9. 

Table 3.9 Phase transition probability matrix 

 Phase 01 Phase 02 Phase 03 

Phase 01 0.5 0.3 0.2 

Phase 02 0.2 0.5 0.3 

Phase 03 0.3 0.2 0.5 

 

As previously mentioned, changes in the operating phase have varying 

impacts on the component's life and consequently affect system reliability. The 

failure characteristics of the considered component are provided by the OEM 

and follow a 2P-Weibull distribution. However, the scale parameter provided 

by the OEM pertains only to the baseline phase. Utilizing this scale parameter 

across different and extreme phases would introduce inaccuracies in subsequent 

estimations. Due to insufficient maintenance data, conventional parameter 

estimation methods are limited in estimating parameters for different phases 

accurately. To address the phase-wise impact on the component's life, a 

multiplier known as the ‘Phase Eta Multiplier’ (EMP) is introduced to adjust the 

scale parameter of the failure time distribution. This multiplier aims to 

normalize component usage across phases relative to the baseline phase and 

accommodate the effects of phase changes. The determination of these Phase 

Eta Multipliers typically relies on expert judgment, following the methodology 

outlined by Lad and Kulkarni [38]. Given the challenge of precisely defining 



73 

 

multipliers for phase-wise operations, the simulator allows for the use of 

multipliers from a specified range or probability distribution, thus managing 

uncertainty regarding the distinct operational phases' effects on the component's 

life. The estimated Phase Eta Multipliers for all three phases are detailed in 

Table 3.10. 

Table 3.10 Phase Eta Multipliers 

Phase Phase Eta Multiplier 

Phase 01 [EMP01] 01 → Baseline Phase 

Phase 02 [EMP02] 0.83 – 0.87 

Phase 03 [EMP03] 0.73 – 0.77 

 

To account for the impact of refurbished or Non-OEM spares, a 

multiplier known as the ‘Spare-wise Eta Multiplier’ (EMS) is used, which 

adjusts the scale parameter accordingly. These multipliers are determined 

through expert judgment and are outlined in Table 3.11. When a component is 

replaced with a cannibalized spare, its actual age is set to the accumulated age 

pre-replacement. In such case of cannibalization, assuming no maintenance is 

conducted, the component maintains its original quality and follows the same 

probability distribution as before. Defining precise multipliers for different 

spare types is challenging due to the probabilistic nature of component lifetimes. 

Experts may propose a range of multipliers reflecting the effect of using 

different spare types on component life. In the developed simulator, the 

provision is made to use this spare wise eta multiplier from a range suggested 

by the user. This provision handles the uncertainty in the effect of using other 

than genuine or new spare on component’s life. 

Table 3.11 Spare-Wise Eta Multiplier 

Spare Type Spare-Wise Eta Multiplier 

G: Genuine  [EMGS] 01 

R: Refurbished  [EMRS] 0.75 - 0.80 

N-O: Non-OEM  [EMN-OS] 0.45 – 0.55 
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To consider the impact of human error in maintenance on 

system/component reliability, a factor known as the ‘HEP Eta Multiplier’ 

(EMHEP) is introduced, which adjusts the scale parameter accordingly. Table 

3.12 presents the HEP Eta multipliers for different ranges of HEP during the 

installation activities of the component, as estimated through expert judgment. 

The simulator utilizes this multiplier from a specified range or predefined 

probability distribution. This approach helps address the uncertainties and 

variabilities associated with defining the effect of HEP on the component's life. 

Table 3.12 HEP Eta Multiplier 

HEP HEP Eta Multiplier [EMHEPRi] 

0 - 0.1 01 

0.1 - 0.3 0.93 – 0.98 

0.3 – 0.6 0.88 – 0.92 

0.6 - 0.9 0.81 – 0.87 

0.9 – 1.0 0.73 – 0.80 

 

In this data simulator, all the aforementioned multipliers are used only 

in order to make the simulated data more realistic from the military perspective. 

The developed maintenance data simulator simulates the data with the first 

event as installation of the component (genuine/refurbished/cannibalized/Non-

OEM – based on estimated probabilities) at time 00:00 hrs. on day 01. At the 

time of installation of the component, the simulator simulates one HEP estimate. 

The component starts operating in one of the three identified phases. The 

simulator simulates the operations of the fuel pump in all the three phases based 

on the phase transition probabilities (Table 3.9). At the end of day 01, the age 

of the component is calculated phase wise, and according to the corresponding 

phase eta multiplier, the age of component (for that day only) is converted to 

the age in the baseline phase. Based on the probability distribution parameters, 

the time to failure of the component is inversely estimated using Eq. 29 [32]. 

The lifetime distribution parameters provided by the OEM for the considered 

component are, Scale parameter (η)= 350 hrs. and Shape parameter (β) = 4. 

These distribution parameters are used in Eq. 29 for the simulation. 
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𝑡 = {[−𝑙𝑛 (𝑅 × 𝑒
−(

𝑇
𝜂

)
𝛽

)]

1/𝛽

} × 𝜂 −   𝑇 Eq. 29 

 

Here, R is assumed reliability of the component which is a random variable 

generated using a uniform distribution (0 - 1). If the estimated time to failure is 

higher than 24 hrs (duration of that day), the component is considered as 

survived and not failed. This continues till the estimated time to failure is higher 

than 24 hrs. When the time to failure is less than 24 hrs. the component is 

considered failed on that day. In this case, the time to failure value (which is 

less than 24 hrs.) is added to the age of the component after converting that age 

according to the baseline phase. As the maintenance data is simulated using the 

actual lifetime distribution parameters, the simulated maintenance data is 

expected to closely adhere with the real data. The sample of simulated data for 

the fuel pump is shown in Table 3.13. 
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Table 3.13 Simulated Data 

Installation Data 

Component 

Name 

Spare 

Type 

Installation Date 

& Time 
HEP 

Comp A1 New DD-MM-YY 00:00 0.605 

Operational Data 

Day Interval 
Parameter 

01 
Phase Status 

1 

1 30 1 Working 

2 30 1 Working 

3 62 2 Working 

:    

:    

14 1 93 3 Failed 

TTF 317 hrs. 

Installation Data 

Component 

Name 

Spare 

Type 

Installation Date 

& Time 
HEP 

Comp A2 Refurbished DD-MM-YY 01:00 0.502 

Operational Data 

Day Interval 
Parameter 

01 
Phase Status 

1 

1 25 1 Working 

2 71 2 Working 

: : : : 

 

3.3.2.2 User Input and RUL based mission reliability prediction 

To predict the RUL using developed XGBoost methodology, and further the 

mission reliability, the model requires the future mission profile for the 

component as an input to the methodology. Once the future mission profile for 

a component is provided by the user, the algorithm fetches the historical data 

for the component from the database. With this, the installation time of the 

component, HEP in its installation activity, its current age, its spare type, and 

historical phase wise operational data of the component is available to the 

model. Considering the mission profile, the overall datapoint for RUL 

prediction by the user is formatted in Table 3.14. 
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Table 3.14 User input for RUL prediction 

Component Name 

(Spare Type) 

HEP 

(installati

on) 

Current 

age 

(hrs) 

Operational History 

Phase 01 

(%) 

Phase 02 

(%) 

Phase 03 

(%) 

Comp A 

(G) 
0.277 80 33.75 33.75 32.5 

Future Profile 

Mission Duration 

(hrs) 

Expected to operate in 

Phase 1  

(%) 

Phase 2   

(%) 

Phase 3  

(%) 

250 40 45 15 

 

The algorithm considers the current age of the component, and with this current 

age, it slices the data (at the time equal to current age) into history and future 

profile. Table 3.15 shows the sample for sliced data based on the current age of 

the component, which is the primary input to the algorithm.  

Table 3.15 Processed data after slicing based on the user input 

Component 

Details 

Operating  

History 

Operating  

Env after sliced age 

TTF 

C
o

m
p

 

N
o

. 

S
p

a
re

 

HEP 
P1 

(%) 

P2 

(%) 

P3 

(%) 

P1 

(%) 

P2 

(%) 

P3 

(%) 

1 G 0.63 32.5 41.2 26.2 33.1 32.0 34.7 330.3 

2 G 0.21 42.5 32.5 25.0 27.4 35.5 37.0 341.7 

3 R 0.31 62.3 12.7 25.0 0 0 0 77.02 

 

To start with the XGBoost model training, a basic model is initialized 

with default model parameters. Moreover, the basic model’s parameters have 

been tuned to further improve the model accuracy and reduce the prediction 

error. The model also implemented cross validation for better accuracy. For the 

best prediction results, the hyperparameters are tuned as follows:  

maximum tree depth = 6  

number of estimators = 4500  

learning rate = 0.1 
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regularization coefficient = 0.08 

minimum child weight = 5 

subsample = 1  

subsample ratio of columns = 0.7  

After hyperparameter tuning of the model, 20% of the dataset is used for testing 

the accuracy of the model. Mean absolute error of the prediction is estimated 

using Eq. 30, and found to be equal to 18 hrs., which is ~5% of the characteristic 

life of the component, and hence considered as acceptable. 

𝑀𝐴𝐸 =  
∑ |𝑦𝑖 − 𝑥𝑖|

𝑛
𝑖=1

𝑛
 Eq. 30 

Where, yi and xi are predictions and true TTFs respectively. n is total number of 

datapoints.  

For the above input (Table 3.14), the model predicted the residual life equal to 

175 hrs. where the actual residual life of the component in the data is 178.7 hrs. 

The confidence interval for this residual life prediction is estimated as discussed 

in section 3.3.1.5. 

 For mission reliability prediction, considering the uncertainty in mission 

profile definition from user, one thousand scenarios are simulated where the 

installation data and the operating history of the component remain constant, 

and the scenario is different because the operating proportion in every phase is 

different depending on the uncertainty in mission profile definition. Finally, the 

user input is formatted as given in Table 3.16 and inputted to the XGBoost 

model for RUL prediction. 

Table 3.16 Simulated user input for RUL prediction 

C
o

m
p

 

N
o

. 
S

p
a

re
 

HE

P 

Operating History 

C
u

rr
e
n

t 

A
g

e
 

M
is

si
o

n
 

D
u

ra
ti

o
n

 

Future Profile 

RUL 

P1_H P2_H P3_H P1_R P2_R P3_R 

1 G 0.63 0.325 0.412 0.262 80 240 ± 10 0.331 0.320 0.348 ? 

2 G 0.63 0.325 0.412 0.262 80 240 ± 10 0.482 0.412 0.106 ? 

: : : : : : : : : : : : 

1 0 0 0
 G 0.63 0.325 0.412 0.262 80 240 ± 10 0.523 0.206 0.271 ? 
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For the given simulated user input, the XGBoost model predicts the RUL 

against all the scenarios. Here, in the considered example, 1000 scenarios are 

generated. Where, first eight columns in Table 3.16 are constant and the 

scenario is distinct based on the variation in column 9 – 11. Once the RUL for 

every scenario is predicted, the confidence interval for each of the scenarios is 

estimated using Chebyshev’s inequality. The lower bound of the RUL in every 

scenario is then compared with the higher end of mission duration (here, 250 

hrs), and accordingly the proportions of scenarios where predicted RUL is 

higher than the mission duration are calculated. In the present example, mission 

reliability of the component is predicted to be 0.93, with a risk of 7%. A 

threshold for this risk index need to be set by the user depending on the 

criticality of the component.   

3.4 Discussion 

In this section, we presented two distinct approaches for predicting mission 

reliability of critical military equipment while considering the collective impact 

of essential military-specific factors. The first approach involves employing 

specific adjustment factors for each military-specific factor and integrating 

them with the effective age of components in the system, which is then applied 

in the formulation of conditional mission reliability. On the other hand, the 

second approach utilizes an XGBoost-based machine learning algorithm for 

predicting RUL, which is subsequently utilized for mission reliability 

prediction. Both approaches offer unique advantages and drawbacks. While the 

second approach is computationally efficient and relieves the user from the 

complex statistical treatments associated with the first approach, it necessitates 

a substantial amount of data. Once an adequate dataset is available, this machine 

learning-based approach promises ease of use and effective implementation. 

This approach is envisioned to seamlessly integrate with new-generation 

autonomous decision-making systems in the military organizations. However, 

in the absence of such a rich dataset, the first approach remains a viable and 

effective option. In this study, we utilize both approaches to evaluate the impact 

of the considered essential military-specific factors on component life and the 

mission reliability of the MBT.   
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By employing the first approach, mission reliability is assessed across 

various scenarios involving diverse terrains, seasons, and deployment roles for 

the MBT. To examine the relationship between mission reliability and 

terrain/season, multiple scenarios are analyzed where the mission duration 

remains constant at 36 hours and the MBT has already operated for 200 hours.  

Detailed input data for mission reliability prediction, along with system 

configuration and respective adjustment factors, is outlined in Annexure A. 

User defined mission profile for one such extreme scenario is mentioned below: 

An MBT has to execute a 36-hour mission in a deep penetration 

deployment role, specifically in an attack formation within the desert 

region during the month of May. Ensuring uninterrupted operational 

capability of the MBT without any failures is imperative throughout the 

mission duration. 

Transitioning from a scenario involving plains terrain and normal season to 

one involving desert terrain and summer season resulted in an approximate 12% 

alteration in mission reliability prediction. This underscores the crucial role of 

terrain and season considerations in predicting mission reliability for the MBT, 

as illustrated in Figure 3.11 across four distinct scenarios. 
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Figure 3.11 Change in mission reliability with change in terrain and season 

In a separate investigation, the decline in mission reliability across three 

distinct deployment roles has been analyzed. The mission reliability of an 

identical MBT undertaking a 36-hour mission but in varying deployment roles 

has been predicted and graphed, as depicted in Figure 3.12. The analysis clearly 

illustrates a reduction in mission reliability across all three deployment roles, 

each following a unique trajectory. For instance, in role 1, encompassing all 

four functionalities, the mission reliability dipped below the critical threshold 

of 0.8 after 135 hours of operation, while for role 2 (requiring mobility, 

firepower, and protection), it occurred at 156 hours, and for role 3 (focused on 

mobility and communication), the threshold was reached at 181 hours of 

operation. This distinct variation in mission reliability decline underscores the 

significance of factoring in diverse deployment roles when predicting mission 

reliability for critical military equipment like MBTs. Such considerations are 

particularly crucial in military contexts where these equipment types often 

operate in specific deployment roles for prolonged periods, especially during 

peace time. 
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Figure 3.12 Deployment role wise change in conditional mission reliability 

To examine the impact of different levels of human error in maintenance 

on residual life of the component using the proposed machine learning based 

approach, numerical experiments were conducted. The experiments utilized the 

developed XGBoost algorithm to predict the residual life of the considered 

component across 18 distinct scenarios. These scenarios encompassed three 

types of spare parts: genuine, refurbished, and non-OEM. Cannibalized spare 

parts were not considered as a separate category due to the considerations 

discussed in section 3.1.3, where the impact of cannibalized spares is contingent 

upon their initial age, characterized as genuine if the initial age is zero. For all 

three spare types, the current age was set to 80 hours, and the phase-wise 

operating profile remained constant. By varying the HEP value six times, 

ranging from no human error conditions to very high HEP, the prediction of the 

component's life was conducted. The trends in the life predictions are 

graphically represented in Figure 3.13, with each sub-diagram having a different 

scale on the Y-axis to accommodate the graphical data effectively. 
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Figure 3.13 Effect of varying HEP on component's life 

The observable impact of varying Human Error Probability (HEP) on the 

component's life and consequent residual life, as predicted by the proposed 

methodology, indicates a consistent trend. As the HEP increases, there is a 

corresponding decrease in the component's life across all scenarios. This 

observed pattern not only reinforces the expected behavior but also serves to 

validate the accuracy of the developed algorithm. 

In another observation, the influence of human error on the component's 

life was analyzed in relation to the spare type. Through the same numerical 

experiment (refer to Figure 3.13), it was noted that for genuine spares, the 

variation in predicted component life between scenarios where human error is 

negligible (HEP = 0.01) versus when it is considered significant (HEP = 0.9) 

could reach up to 5.8%. This disparity was more pronounced for refurbished 

spares at 8.0%, and notably higher for non-OEM spares, approaching almost 

10% (Figure 3.14). The increasing percentage change in life underscores the 

necessity of accounting for human error to avoid erroneous mission reliability 

estimations. In terms of managerial implications, the utilization of non-OEM 

spares in environments prone to human error during maintenance is 

discouraged. Given the substantial impact of human error on component life 
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across all scenarios, acknowledging this factor in maintenance considerations is 

imperative. 

 

Figure 3.14 Spare-wise % change in life considering extreme HEP 

In the numerical experiments, a notable observation emerged regarding 

the impact of human error on component life relative to the component's age. 

Figure 3.15 illustrates that as the age of the component increases, the effect of 

human error becomes more pronounced. This trend is evident when comparing 

the component's RUL under minimal HEP conditions to scenarios where HEP 

is considered significant. For instance, with genuine spares, at an age of 80 

hours, the RUL change is approximately 4.05%. This change increases to 7.27% 

at 120 hours of age and further escalates to 10.43% at 160 hours. A similar trend, 

although with different magnitudes, is observed for refurbished and Non-OEM 

spares. For Non-OEM spares, the analysis includes component ages of 40, 60, 

and 80 hours. Due to the shorter lifespan of Non-OEM spares compared to 

genuine and refurbished ones, there were fewer data points available for Non-

OEM spares with ages exceeding 200 hours. Consequently, the model's ability 

to predict RUL for aged Non-OEM spares was unstable, resulting in less 

accurate predictions. Nonetheless, the trend of HEP effects with increasing 

component age remained consistent for Non-OEM spares when considering 

shorter component ages. From a managerial perspective, it is imperative to 

incorporate the HEP effect in maintenance planning, particularly for aged 

components. This consideration holds heightened importance for military 

organizations, which frequently utilize vintage equipment. Neglecting to 

account for HEP can lead to inaccurate mission reliability predictions and 

impede critical maintenance management efforts. Therefore, emphasizing this 

consideration in mission reliability prediction and critical maintenance 
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management is crucial for effective decision-making and equipment 

maintenance within such organizations. 

 

Figure 3.15 Effect of human error with increasing age of component 

 

3.5 Summary 

The paramount objective of this research is to ensure the mission reliability of 

critical military equipment, thereby achieving its war readiness. In order to make 

the mission reliability prediction for military equipment accurate, literature 

strongly suggests incorporation of the military as well as nation-specific factors, 

which is rarely seen in the present literature. This chapter tackles this limitation by 

introducing two comprehensive methodologies for predicting mission reliability of 

critical military equipment. One methodology represents a scientific expansion of 

the existing mission reliability prediction method, while the other introduces a 

novel approach based on machine learning. Aiming to provide a more accurate and 

contextually relevant prediction of mission reliability, both of these enhanced 

methods incorporates a comprehensive set of identified military-specific factors as 

follows: (i) Operations in diverse operating fields featuring extreme environmental 

conditions, (ii) Multiple deployment roles exhibiting multiple functionalities, (iii) 

Use of cannibalized, refurbished, or non-OEM spares instead of new-genuine 
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spares, and (iv) Human error in maintenance of critical equipment in strenuous 

situations.  

In the first methodology, the mission profile for which the readiness of the 

particular equipment is to be assured is determined in the form of three different 

attributes, viz: deployment characteristics, usage requirements, and 

environment profile.  Accordingly, the effective mission duration is estimated 

for which every component’s reliability is predicted. This approach involves 

employing specific adjustment factors for each military-specific factor and 

integrating them with the effective age of components in the system, which is 

then applied in the formulation of conditional mission reliability.  Further, 

considering the RBD of the equipment characterized by series–parallel 

configurations, its mission reliability is predicted. 

In the second methodology, a novel XGBoost based algorithm for residual 

life prediction of critical military equipment is developed and used, which is 

further used in simulation for mission reliability prediction. Given the current 

age of the considered component, the algorithm is designed to slice the 

operational data into history and future profiles. This processed maintenance 

data sliced at a given age is the primary input to the XGBoost model. After 

training the model and achieving the desired accuracy in predictions, the 

prediction for residual life is done. In light of the uncertainties involved in the 

mission profile definition, the presented algorithm is developed capable of 

handling a good extent of these uncertainties and variabilities. Once the residual 

life is predicted, confidence bounds are set on the predicted residual life, and 

further, it is compared with the derived mission duration to predict the mission 

reliability. On multiple tests, the model predictions are found to be in the desired 

level of accuracy and mean absolute errors are found well within the desired 

limits. 

The numerical investigations using the developed mission reliability 

prediction methods have revealed that the terrain in which an MBT operates 

plays a pivotal role in determining its mission reliability. Significant variations 

in mission reliability have been observed across different terrains, indicating the 

necessity for tailored reliability assessments for specific roles in diverse 
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environmental contexts. Deployment roles have been identified as crucial 

determinants of mission reliability. Noteworthy differences in mission 

reliability outcomes have been observed when transitioning between 

deployment roles. This underscores the importance of considering deployment 

roles in evaluating mission reliability in terms of functional reliability. 

The developed model is further used to investigate the effect of human error 

in maintenance and spare type on the life of the component. Outcomes of 

numerical investigations suggests that the magnitude of the varied impact of 

human error in maintenance on component life depends upon the choice of spare 

type, viz. genuine, refurbished, cannibalized, and non-OEM options. 

Additionally, the impact of human error on component life is observed to be 

amplified with the increasing age of the component, emphasizing the necessity 

of factoring in this effect, particularly in maintenance planning for critical 

equipment with aging components. 
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4 Mission Reliability based Selective Maintenance 

Planning Approach 

 

❖  

Chapter 4 

Mission Reliability based Selective 

Maintenance Planning Approach 

 

 

This chapter presents a novel mission reliability based selective maintenance 

approach for military equipment. The chapter discusses how the predicted 

mission reliability is utilized to achieve and sustain war readiness through 

selective maintenance strategies. A review of the relevant selective maintenance 

literature is presented. Following problem formulation, key parameters are 

optimized, and the overall approach is then demonstrated for multiple 

operational scenarios.  Comparative evaluation establishes the superiority of 

this approach over traditional time-based methods. The chapter then 

demonstrates a mechanism for rapid fleet-level readiness assessment for high 

level decision makers. Finally, numerical analyses illustrate the influence of 

critical parameters on managerial decision-making.  

 

 

 

A part of the work presented in this chapter is published under the title “Novel Selective 

Maintenance Approach to Ensure Mission Reliability of Armoured Vehicles Considering 

Multiple Deployment Roles in Distinct Operating Profiles” in “Defence Science Journal” vol. 

74(4), pp. 447-459, 2024, DOI: 10.14429/dsj.74.19370. 
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The overall objective of the research outlined in this thesis is to develop an 

approach tailored to suit the modus operandi of defence forces in attaining and 

sustaining war readiness by ensuring the mission reliability of critical military 

equipment. This chapter elaborates on how the predicted mission reliability of 

critical military equipment, as determined through the previously presented 

methodologies, is utilized in approaches to achieve and sustain war readiness. 

The pivotal aspect of effectively managing military equipment and ensuring 

their readiness to the desired standard lies in the selection and subsequent 

management of an effective maintenance approach.  

 If the overall objective of attaining and sustaining war readiness by 

ensuring the mission reliability of critical military equipment is translated into 

a base level actionable program, in its simplest manner, it essentially means 

guaranteeing that the considered critical military equipment consistently 

exhibits a higher level of mission reliability than what is required for its 

deployment in wartime scenarios. Accomplishing this signifies that the 

equipment, or a fleet of such equipment, is war-ready with the desired level of 

confidence. However, during peacetime operations, in the form of routine 

running or regular exercises, these critical equipment experience degradation, 

leading to a reduction in their mission reliability against some predefined 

mission profiles. This underscores the crucial role of the maintenance function 

to maintain the mission reliability of critical equipment while its utilization 

resulting in its degradation, resulting in fall of mission reliability.  

Maintenance function has been always coupled with equipment 

downtime and resource cost. A whole lot of literature in maintenance 

management strives to balance this tradeoff, however, scholarly literature 

discussing overall maintenance management which suits the exact modus 

operandi of military organization in achieving mission reliability and ultimately, 

war readiness is not available. Consequently, while the maintenance function is 

viewed as the solution to ensure the mission reliability of critical military 

equipment, it raises several critical questions for which answers are lacking in 

the existing literature. These questions include determining the appropriate level 

of mission reliability to be maintained, defining acceptable downtime during 

maintenance activities in line with war readiness expectations, evaluating 
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whether the accepted downtime level during maintenance impacts the war 

readiness metric, establishing acceptable maintenance costs, determining the 

optimal maintenance frequency, and other related considerations. 

Existing maintenance policies are not directly applicable to meet the 

expectations of war readiness and address the crucial questions mentioned 

earlier. The literature on maintenance modeling primarily focuses on 

maintenance policies for conventional manufacturing and logistics spheres, and 

thus, its intricacies are tailored to that domain. However, these maintenance 

models, primarily designed for conventional manufacturing systems, cannot be 

easily adapted for the maintenance of critical military systems, particularly 

mission-critical systems where war readiness is of utmost importance. 

Numerous challenges such as, challenging conditions for repair personnel with 

limited maintenance duration availability, extreme operational environments, 

uncertain spare parts availability at remote maintenance locations, and others 

contribute to the distinct nature of maintenance in military systems compared to 

manufacturing systems. Additionally, factors such as usage patterns of military 

equipment further compound these differences. The overall lifecycle of critical 

military equipment can be classified into two categories, peacetime and 

wartime, which bring the extremely varied stress levels to the equipment. The 

majority of the usage of the equipment happens in peacetime in the form of 

routine running, mission exercises, etc., and hence, most of the maintenance of 

the equipment is performed in peacetime only, but with the objective of keeping 

the equipment ready for wartime operations for which it is actually intended. 

Looking at the usage patterns, battlefield situations, maintenance practices, and 

on top of that the expectation from the maintenance function, it is evident that 

the conventional maintenance practices are not sufficient for ensuring the war 

readiness of the critical military equipment. 

There exists a necessity for a tailored maintenance approach that aligns 

with the exact modus operandi of military organizations by integrating crucial 

military-specific factors, while also meeting the expectations of war readiness 

for critical military equipment. This chapter aims to fulfill this requirement by 

introducing a novel mission reliability based selective maintenance approach. 

This approach is tailored for military equipment and effectively integrates the 



92 

 

essential military-specific factors, thereby addressing the identified need 

effectively. The technical insights into the operational mechanism of the 

proposed approach are presented in the following sections. 

 

4.1 Mission reliability based maintenance planning 

The present approach works with the principle that the exploitation, as 

well as maintenance of mission-critical equipment, should be balanced in such 

a way that if, at any point in time, the equipment is ordered to be deployed on a 

certain specific mission, it should be ready; otherwise, it should be able to be 

ready in a specified maintenance duration as per readiness expectation. Here, 

the readiness of a critical equipment is seen from two different yet related 

viewpoints; one being its immediate ability to be deployed and the other being 

its ability to achieve deployable status within a short maintenance timeframe. In 

this context, inspired by real-world military operations, mission readiness for 

an MBT is defined as either being fully prepared for immediate deployment on 

predefined mission profiles or capable of being made mission-ready within a 

predefined short maintenance window. For instance, if an MBT is not currently 

prepared but can be made mission-ready within a specified short time frame 

through maintenance, it qualifies as mission-ready due to the mission start time 

being greater than the allowable maintenance duration. 

In the proposed approach, the methodology involves continuous 

monitoring of the mission reliability of every critical equipment in the fleet 

under consideration for predefined mission profiles. Depending on the 

utilization of the equipment, the mission reliability against the predefined 

mission profiles starts decreasing. Considering the objective of maintaining the 

mission reliability to the desired levels always, whenever the mission reliability 

against the predefined mission reaches a predefined lower threshold of mission 

reliability, a maintenance event is triggered. In this triggered maintenance event, 

necessary maintenance activities are performed that increase the mission 

reliability of the equipment to a predefined higher threshold of mission 

reliability. Upon reaching this higher reliability level, the equipment becomes 

available for utilization once again. Subsequently, when the mission reliability 
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decreases again for predefined mission profiles to the lower threshold, another 

maintenance event is triggered. In this way, the equipment is not allowed to be 

utilized beyond a predefined lower mission reliability threshold. However, the 

triggered maintenance event is coupled with the downtime of the considered 

critical equipment, which is undesirable. Therefore, the utilization of the 

equipment is systematically managed in such a way that the duration for 

triggered maintenance event should be attempted to be smaller than the 

allowable maintenance window as per the readiness definition. In other words, 

it can be stated that the equipment is not allowed to be utilized beyond a certain 

point, from where maintaining it to the desired higher reliability threshold 

within a predefined maintenance time is difficult. This approach ensures that 

the equipment under consideration is either prepared for deployment on specific 

predefined mission profiles with the desired mission reliability or is undergoing 

maintenance, where the maintenance process is designed to be completed within 

a small maintenance window, aligning with the readiness definition and 

ensuring prompt deployment of the equipment thereafter. Figure 4.1 depicts the 

approach with the trend of mission reliability of equipment against a mission 

profile.  

 

Figure 4.1 Mission reliability based maintenance planning 

While examining the trajectory of declining mission reliability, depicted in 

Figure 4.1, it is crucial to note the significant variations in mission reliability 

decline associated with changes in deployment roles, as illustrated in Figure 
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3.12. Deployment roles are expected to highly influence the mission reliability 

of the same equipment (Figure 4.2). The current approach systematically 

accounts for this influence by monitoring mission reliability across a predefined 

set of deployment roles. 

 

Figure 4.2 Change in conditional mission reliability wrt different deployment 

roles 

Upon the trigger of a maintenance event, a pivotal decision revolves 

around selecting a suitable set of maintenance activities for the equipment. The 

primary goal here is to execute necessary maintenance tasks that elevate the 

mission reliability of the equipment to meet the higher mission reliability 

threshold within the specified duration outlined in the readiness definition. 

However, this maintenance event is always coupled with resource constraints 

such as limited maintenance duration, budgetary constraints, spare parts 

availability, etc. Consequently, considering the maintenance scenario and its 

associated constraints, a maintenance optimization problem is formulated at the 

onset of each triggered maintenance event. By solving this optimization 

problem, a set of optimal maintenance activities is identified, enabling the 

attainment of the higher threshold of mission reliability through their execution. 

4.2 Selective maintenance planning  

The key to effectively managing military equipment and ensuring their 

mission preparedness to the desired level is the selection of an effective 
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maintenance approach. In various industrial applications, systems are often 

required to execute a sequence of predefined missions with a maintenance break 

between them. To maintain a system at an acceptable operating condition during 

its production or during succeeding missions, necessary maintenance actions 

must be performed on deteriorated components during these maintenance 

breaks. However, it is not always the case that all of the components will be 

replaced with new ones, especially when resources such as time, budget, spares, 

and maintenance personnel are limited. Nonetheless, maintaining the 

components is essential to ensure a high probability of a system successfully 

completing a subsequent mission. In this scenario, managers must decide which 

components should be flexibly maintained according to actual conditions rather 

than following a fixed schedule all the time. This maintenance strategy is known 

as Selective Maintenance (SM), a policy of attempting to ‘do more with less’ 

[105]. Literature suggests the applicability of selective maintenance (SM) for 

military systems [32], [106], [107]. The overall scenario of SM along with its 

criteria influencing and steering the maintenance decision making process are 

depicted in Figure 4.3.  When compared to various other maintenance policies, 

SM exhibits unique characteristics that render it highly practical in certain real 

industrial scenarios. These distinctive features primarily include its mission-

oriented approach and condition-based maintenance policy. Considering the 

nature of the maintenance scenario and its associated constraints, formulation 

of selective maintenance problem (SMP) is justified. A comprehensive 

examination of the state-of-the-art literature on SM was conducted to effectively 

formulate the SMP and seamlessly integrate it into the developed approach. 
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Figure 4.3 Selective Maintenance - Scenario and Criteria 

 

4.2.1 State-of-the-art review on selective maintenance 

The SM is particularly suited for the maintenance of multi-component systems 

following an alternating sequence of missions and breaks [105]. To enhance the 

ability of such systems to successfully complete their subsequent missions, 

maintenance actions are carried out on components during scheduled breaks. 

However, limited maintenance resources such as time, budget, spare parts, and 

repair crews restrict the number and levels of maintenance activities that can be 

performed before the next mission. The optimal selection of components to 

maintain is known as the SMP and can be traced back to [108]. The primary 

goal is to maximize system reliability for upcoming missions or minimize 

overall maintenance costs for maintenance activities to be carried in the present 

maintenance break, considering various pertinent maintenance and logistics 

constraints. Solving the resulting optimization problems, even for the 

fundamental version of the SMP, is often exceedingly challenging. The last two 
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decades have witnessed a significant interest from researchers in the 

maintenance domain towards making the SMP more comprehensive and 

pragmatically applicable. Following the original SM approach, many new SM 

optimization models and solutions have been extensively explored from various 

research and application prospects. The two major exploration directions are 

formulation characteristics, and solution approaches. While advancing the 

research on SM on these two directions, researchers worked on expanding the 

application of SMP for complex real industrial systems considering 

uncertainties in various characteristics at multiple levels. The systematic 

detailed review on literature discussing SMP can be found in [105], [109], [110]. 

Figure 4.4 presents the categorization of SMP formulation characteristics and 

solution approaches [110].  

The very first work on SM presented a mathematical model to 

selectively determine a subset of replacement actions for a series – parallel 

configured system composed of identical components with a constant failure 

rate [108]. However, industrial systems in reality often feature non-identical 

components. Subsequently, research extended the SM problem to address 

systems composed of non-identical components connected in series – parallel 

configuration [111]. Series – parallel systems are the most studied in the SM 

literature, as many real world systems can be modelled as series – parallel 

configurations. Following the initial work on SM, many researchers modelled 

their SMP on such configuration [32], [112], [113], [114], [115], [116], [117]. 

A limited number of studies delve into the SMP for complex reliability 

architectures. [118] expanded the initial SMP to encompass subsystems within 

complex structures. Further, to efficiently address the SMP for large, intricate 

structures, which include serial k-out-of-n systems with non-identical 

components, a nonlinear SMP is converted into a multidimensional knapsack 

problem [119]. While the majority of SM investigations depict system 

configuration through RBD, a few studies opt for alternative methodologies 

such as dynamic fault tree [120], tree and leaf representation [121], and directed 

graph modeling [122]. 
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Figure 4.4 Categorization of SMP formulation characteristics &  

solution approaches 
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Early advancements in SM were constrained to binary-state systems 

with binary-state components (BSS-BSC), where the system and its components 

could exist in either a failed or functional state. However, certain industrial 

systems and components exhibit continuous degradation over time, leading to 

the classification of Multi-State Systems (MSS). MSS encompasses systems 

with a multi-state nature alongside binary-state components (MSS-BSC) or both 

multi-state systems and components (MSS-MSC). Consequently, the SMP was 

applied to numerous MSS scenarios to optimize maintenance decisions. [123] 

presented a methodology to address SM decisions within MSS-BSC featuring 

non-coherent states. [124] expanded the SMP to encompass multi-mission 

multi-state systems, while [125] explored single-mission SMP in an MSS with 

binary-state components. These studies commonly assess system performance 

using capacity or productivity metrics, prevalent in energy transmission, 

manufacturing, and power generation systems. Building upon this work, the 

investigation of SMP for MSS was extended to include MSC in an MSS (MSC-

MSS) rather than solely BSC [126]. Subsequent studies have delved deeper into 

SMP considerations for MSS, with [127] examining SMP within an MSS where 

components experience variable loading conditions leading to degradation 

based on their operational state and applied load. 

The maintenance function plays a pivotal role in characterizing the 

deterioration in the state of a system. The original SM model [108] focused 

solely on replacing failed components. Subsequent developments by [128] 

extended the model to include Minimal Repair (MR) and Preventive 

Maintenance (PM). Eventually, [129] proposed the inclusion of Imperfect 

Maintenance (IM) in the SMP. They presented a case study where the SMP was 

applied for the maintenance of a power generation coal transportation system. 

Here, the authors integrated the IM into the SMP with the use of the Kijima 

Type II model [84]. They used Genetic Algorithms (GA) to solve the 

optimization problem and additionally presented the effect of considering IM 

on the SM outcomes. It was observed that the incorporation of IM in SMP 

achieves more accurate outcomes as it has a direct influence on maintenance 

cost and break duration. To incorporate the effect of IM in SMP, [126] used an 

age reduction factors which manipulates the effective age of every component 
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after every maintenance action. An approach - Hybrid hazard rate was also used 

to capture the effect of IM, where every IM action characterized the change in 

the base hazard rate of the component [130]. A majority of the models 

considered the predefined level of IM; whereas, SMP was also demonstrated 

where the level of IM is stochastic, as it could be highly uncertain [131].  

In addition to the levels of IM, several parameters in the SMP are 

inherently uncertain such as mission and break durations, system state 

determination and resource consumption. Neglecting the stochastic and/or 

uncertain nature of many such parameters can lead to the overestimation of 

system reliability. Specifically, stochastic aspects like mission length and 

maintenance duration have been underexplored in the literature on SM. Some 

studies have addressed this by incorporating probability distributions such as 

Gamma and Triangular distributions to model uncertain durations [132], [133], 

[134], [135]; while others have used discrete random variables [136] or fuzzy 

values [137], [138]. Studies have shown that the stochastic nature of failure 

times, mission duration, operation time lead to uncertainty about the effective 

age of components at the beginning of the next mission [139]. The sequence of 

maintenance actions also impacts the chance of completing maintenance actions 

if there is stochasticity [140].  

A limited body of literature within SM has focused on addressing the 

intricate challenge of system state determination. This has been achieved 

through various methodologies such as formulating nonlinear, discrete, chance-

constrained programming optimization models to handle diagnostic 

uncertainties related to built-in test equipment [141], employing Bayes’ theorem 

and probability analysis to derive component state distributions from uncertain 

diagnostic outcomes [142], and proposing fuzzy Mult objective models to 

optimize the fuzzy reliability of individual subsystems and developing robust 

SM strategies to identify optimal maintenance actions for binary-state systems 

under imperfect observations [143].  

All of the intricate considerations in the above discussed literature on 

SM contribute to multiplying the complexity of the formulations of the SMPs. 

One of the main challenges faced by SMP models is their difficulty in achieving 
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optimal solutions, especially for large-scale industrial problems involving 

extensive systems and numerous realistic considerations. Rice [144] 

demonstrated that the basic SMP is NP-hard, indicating that the computation 

time increases exponentially as the number of variables grows, a characteristic 

shared by its extensions. Different methodologies and techniques are used for 

solving the SMP, which could be clustered into two groups: exact and heuristics 

approaches as shown in Figure 4.4. A vast majority of the SMP in the literature 

used exact algorithms and meta-heuristics, whereas a limited research work can 

be found that uses simulation based algorithms and deep learning.  

The early stages of research development in SM were predominantly 

marked by the utilization of exact algorithms, such as total enumeration [108], 

shortest path method [145], and search space reduction [146]. Subsequently, 

researchers continued to employ exact methods in their SMPs, including the 

max-min approach [147] and branch and bound type procedures [148]. The 

computationally expensive nature of most SMP exact solution methods limits 

their applicability to small sized problems. As a result, alternative approaches 

such as general heuristics, meta-heuristics, simulation, and deep-learning-based 

methods are employed to efficiently obtain near-optimal solutions. Subsequent 

to the fundamental work on SM, several studies use general heuristics to handle 

SMPs [149], [150]. Knowing the benefits of using meta-heuristics over the 

general heuristics, the majority of the SMPs were solved using the evolutionary 

algorithms. [151] first used GA to find the best maintenance strategy for a large-

scale SMP. Subsequently, many studies used GA to solve large-size instances 

of the SMP [32], [106], [152], [153]. In addition to GA, DE, another 

evolutionary algorithm, is used intensively in SM optimization. [154] used the 

DE for the first time as a solution approach for large size instances of the SMP, 

following this various other studies used DE for SM optimization [126], [133]. 

Besides evolutionary algorithms, other meta-heuristics are also used such as 

simulated annealing algorithm [139], [155], particle swarm optimization [141], 

[156], and ant colony optimization [157]. Recently, some of the modern hybrid 

techniques also have been used to solve SMP efficiently. A SMP, which is a 

dynamic optimization problem, is formulated as a discrete time finite horizon 

Markov decision process; and a deep reinforcement learning method is used to 
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find the optimal maintenance action [158]. [159] demonstrated application of 

hybrid deep learning with differential evolution algorithm for SMP. Some 

approaches with maintenance priority of components are developed which 

guides the algorithm to select the components for maintenance [160], [161]. 

The literature on SM showcases substantial research advancement 

aimed at refining and enhancing this policy's maturity and practicality. 

However, its applications across various industrial domains remain limited in 

the literature. Despite being recommended for military equipment, the actual 

implementation of SM on operational military systems is documented only in a 

couple of research papers. The primary focus of SM studies tends to revolve 

around manufacturing and transportation systems. While the presented review 

of the literature on SM helps setting a strong foundation for the SMP for the 

problem under consideration, it is crucial to note that each industrial domain 

differs, and a particular maintenance policy may not be universally applicable. 

Therefore, for optimal outcomes, the maintenance policy must be tailored while 

considering specific domain-related factors. 

The operation of missions in many real‐world applications often 

involves different mission requests, planning horizons, and mission types that 

need to be considered simultaneously during SM decision‐making. 

Furthermore, the modeling approach for system reliability may vary across 

missions based on specific requirements. However, existing literature on SM 

has somewhat overlooked the variety of mission profile characteristics. 

Therefore, exploring SM with regard to different mission types and working 

conditions presents a promising avenue for further research. 

Various approaches have been discussed to solve this nonlinear 

programming problem of SM. However, there lacks a universal approach that 

simultaneously addresses result reliability and computational complexity. In 

real life industrial systems, the component count can be substantial, 

significantly expanding the potential solution space. Interestingly, it's evident 

that different methods are not mutually exclusive but rather complementary and 

interconnected. Thus, to overcome the limitations of individual solution 

methods and leverage diverse approaches, further investigation into a hybrid 
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solution method, integrating different methods, may offer an efficient 

resolution. Moreover, the emergence of parallel computing and machine 

learning presents promising avenues for exploration in this domain. 

4.2.2 SMP Formulation 

The initial point in the triggered maintenance event is referred to as 

maintenance decision point. Here, the SMP is optimized to find an optimal 

subset of maintenance activities, on execution of which, the higher mission 

reliability threshold can be achieved. The objective of the present SMP is to find 

a cost-optimal set of maintenance actions that achieves MBT's mission 

reliability greater than the higher mission reliability threshold in a shorter time 

than the given one according to the readiness definition. The formulation of the 

SMP under consideration at the maintenance decision point is as follows: 

 

Eq. 31 

Such that, 

 

 

Where, 

𝐶(𝑖,𝑗) : Cost of jth component of ith assembly 

𝑀(𝑖,𝑗) : Binary Variable indicating Maintenance Decision 

𝑀(𝑖,𝑗) = 0, if component is not replaced in this maintenance activity; and 1 if the 

component is replaced in this maintenance activity 

𝑅𝑇𝑎𝑛𝑘:  Mission Reliability of the tank predicted using Eq. 23 

𝑅𝐷𝑒𝑠 :  Desired Mission Reliability of the tank (higher threshold) 

𝑇𝑚 :    Total maintenance time required 

𝑇𝑎𝑣 :   Total maintenance time available 

𝑅(𝑖,𝑗) :  Conditional reliability of of jth component of ith assembly 

𝑀𝑖𝑛 𝐶 = ∑ ( ∑ ((𝐶(𝑖,𝑗)𝑀(𝑖,𝑗)))

𝑁(𝑖,𝑗)

𝑗=1

)

𝑁(𝑖)

𝑖=1

 

𝑅𝑇𝑎𝑛𝑘  ≥   𝑅𝐷𝑒𝑠 

𝑇𝑚 ≤  𝑇𝑎𝑣 
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𝑀𝑑 :   Effective mission duration 

 𝐴𝑔𝑒. :  Effective age of component 

𝜂 & 𝛽 :  Weibull distribution parameters 

Given that the mission reliability based SM approach operates based on 

the mission reliability estimated using previously discussed approaches, which 

are tailored to integrate all essential military-specific factors, the outcomes of 

the SMP are comprehensively informed by these factors. In addition to the 

previously considered four military specific factors in mission reliability 

prediction (refer section 3.1), one more factor is considered in this SMP. In the 

case of maintenance of an MBT, more than one maintenance person/crew works 

simultaneously. Hence, the total time to perform all the maintenance activities 

(Tm) is estimated, assuming three crews working simultaneously on different 

maintenance activities of one MBT.  

4.2.3 Parallel Genetic Algorithm for optimization 

To solve the formulated SMP, GA is used, as it is largely acknowledged 

in the literature on SM. For demonstrating the developed approach on a single 

MBT, this developed GA is used. However, the expansion of the solution space 

with an increase in the number of components, along with the provision of using 

multiple type of spares, make the chromosomes complex, posing challenges, as 

GA tends to require significantly more time. This poses difficulties for 

conducting numerical investigations across multiple scenarios. Consequently, 

in this study a Parallel Genetic Algorithm (PGA) is developed and used to 

optimize the SMP efficiently. 

A PGA works by harnessing the power of parallel computing to expedite 

the process of optimization. It operates based on the principles of GAs, which 

mimic natural selection and evolution to iteratively improve solutions to 

complex problems. In a PGA, the population of potential solutions is divided 

into subpopulations that can be processed concurrently on multiple processors 

or cores. This parallel processing enables simultaneous execution of genetic 

operations such as selection, crossover, and mutation on different parts of the 

population. The key steps in a PGA include initializing a population of 

candidate solutions, evaluating their fitness using a predefined objective 
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function, selecting individuals for reproduction based on fitness, applying 

genetic operators to generate new solutions, and iterating these steps until a 

satisfactory solution is found or a convergence criterion is met. All these 

algorithms try to solve the same task and after they’ve completed their job, the 

best individual of every algorithm is selected, then the best of them is selected, 

and this is the solution to a problem. This approach is often called ‘island model’ 

because populations are isolated from each other, like real-life creature 

populations may be isolated living on different islands. This is one of the most 

popular approaches to parallel genetic algorithms, even though there are others. 

Figure 4.5 depicts the overall working of PGA in multiple islands. 

 

Figure 4.5 Working of Parallel Genetic Algorithm 

 By leveraging parallelism, PGA can achieve significant speedup and 

scalability, making it well-suited for tackling large-scale optimization problems 

across various domains. It offers a potent approach to tackle computationally 

intensive optimization problems by harnessing parallel computing capabilities. 
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In the scope of this thesis, a python library for PGAs – PGAPy 2.4 is utilized 

on an Intel I5 processors with four cores, where four islands are created.  

4.3 Demonstration of the proposed approach 

This section aims to demonstrate the effectiveness of the proposed 

approach in managing the readiness of an MBT during routine peacetime usage 

while maintaining its desired readiness level for some predefined missions. 

Initially, all necessary information for mission reliability prediction and SM 

optimization is collected, including parameters of 2-P Weibull distribution, 

maintenance duration, costs associated with different maintenance actions, and 

various adjustment factors for operational phases, distinct spares, and human 

error in maintenance. The complete dataset for the MBT is provided in 

Annexure A2. Utilizing this dataset, the MBT's utilization and required 

maintenance until its first scheduled overhaul are analyzed using the present 

approach. As detailed in section 4.1, continuous monitoring of the MBT's 

mission reliability for a predefined mission is conducted. Whenever the mission 

reliability falls below the lower threshold, a maintenance event is triggered. 

Employing PGA, SM optimization is carried out to determine the cost-optimal 

subset of maintenance activities required to achieve the higher mission 

reliability threshold. Upon completion of these maintenance activities, the MBT 

is once again available for utilization with its mission reliability exceeding the 

higher threshold for the specified mission. 

In demonstration case I, the MBT is required to be ready for the following 

mission profile. 

Case I: An MBT has to be ready with the mission reliability of 0.8 for a 

mission of deep penetration in attack role in the plain region and normal 

season, for continuous operation of 36 hours, with the allowable 

deployment window of 04 hours for necessary maintenance. 

This mission profile definition provides several important variables in the 

proposed formulation. The considered MBT is presently working in peacetime 

and performing its routine running of 20 mins every day. However, the user's 

mandate is to maintain the tank in a state of readiness for the defined mission 

profile. Specifically, if this MBT is instructed for deployment on the specified 
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mission, it should have a minimum mission reliability of 0.8. In case it falls 

short, there is an allowable maintenance window of 4 hours for necessary 

maintenance to achieve readiness. Despite the required mission reliability being 

0.8, routine running causes a decline in mission reliability. Following the 

proposed approach, maintenance is performed whenever mission reliability 

reaches 0.8, enhancing it to a higher threshold. For this demonstration case, the 

higher mission reliability threshold is assumed to be 0.9, with the lower 

threshold at 0.8 as per user specifications.   

Upon implementing the proposed mission reliability based SM approach 

for the specified duration of the MBT during routine peacetime, it was noted 

that a total of 12 maintenance events were triggered. The specific details 

regarding these maintenance events can be found in Table 4.1.  

Table 4.1 Details of Maintenance actions in Demonstration Case I 

Maintenance 

Event 
Maintenance Action 

1 L3 (R) | L4 (R) | N3 (G) 

2 A10 (G) | D2 (NO) | D3 (G) | L1 (G) | L5 (G) | N3 (G) 

3 A6 (G) | D4 (G) | D5 (G) | D7 (G) | L2 (NO) | N2 (G) | N3 (G) 

4 A2 (G) | A3 (G) | A5 (G) | F5 (G) | L3 (G) | N3 (G)  

5 A4 (R) | A8 (R) | L4 (NO) | N3 (G) 

6 A10 (R) | D2 (R) | D3 (R) | L1 (G) | L5 (G) 

7 A7 (NO) | D4 (R) | D5 (G) | L3 (R) | L4 (R) 

8 D7 (G) | L2 (R) | N2 (G) | N3 (G) 

9 A2 (R) | A3 (NO) | A6 (R) | D3 (R) | L5 (G) | N3 (G) 

10 A5 (G) | A10 (G) | D2 (NO) | L1 (G) | L3 (G) | L4 (G) | N3 (G) 

11 A4 (NO) | A8 (NO) | D4 (NO) | D5 (NO) | F5 (NO) | N3 (R) 

12 A7 (R) | D3 (R) | D7 (R) | L2 (NO) | L3 (R) | L4 (G) | L5 (G) 

 

In summary, when the mission reliability of the MBT initially dropped to 

0.8, the first maintenance event was triggered. Through SM optimization, it was 

determined that replacing components L3, L4, and N3 would result in achieving 

a mission reliability of 0.9, meeting the higher mission reliability threshold. 

Furthermore, the approach proposed that in the absence of new genuine spares, 

which alternative spare types would also achieve the desired higher mission 
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reliability threshold. The letters denoted in brackets alongside the component 

IDs indicate the type of spare that can be utilized in such circumstances. For 

instance, the maintenance action of L3(R) in the first maintenance event 

suggests that installing a refurbished spare for L3 would suffice if a new genuine 

spare is unavailable. However, it is always recommended to use new genuine 

spares as they lead to a higher reliability enhancement, thereby delaying the 

triggering of the next maintenance event.  

Considering the requirement based on user defined mission profile, 04 

hours of deployment window for maintenance is allowed. Consequently, 

measures are taken to ensure that each maintenance event is completed within 

or below this 4-hour timeframe. The maintenance events which resulted in 

achieving the higher mission reliability threshold within the allowable 

deployment window for maintenance are termed here as successful events. 

However, certain components within the system have a TTR exceeding this 

allowable maintenance window. As a result, it is expected that some 

maintenance events will exceed the 4-hour window. Nevertheless, through SMP 

optimization, efforts are directed towards assessing the feasibility of keeping 

the maintenance duration within the designated deployment window. In the 

present demonstration case I, out of twelve maintenance events, only four events 

resulted in maintenance duration of more than 4 hours, resulting in ~67% 

maintenance events as successful events. Further details regarding the 

maintenance cost and maintenance duration implications of executing these 

maintenance plans at each trigger are illustrated in Figure 4.6. 
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Figure 4.6 Details of Maintenance events in Demonstration Case I 

As discussed, an MBT has to undergo multiple deployment roles in 

distinct terrains characterized by extreme environmental conditions. In order to 

demonstrate the application of the proposed approach for deployment roles in 

different terrains, the approach is applied to the same MBT but for deployment 

roles in different terrains. 

In demonstration case II, the MBT is required to be ready for the 

following mission profile. 

Case II: An MBT has to be ready with the mission reliability of 0.8 for a 

mission of deep penetration in attack role in the dessert region and 

summer season, for continuous operation of 36 hours, with the 

allowable deployment window of 04 hours for necessary maintenance. 

On performing the same analysis for the same duration till first designated 

overhaul, a significant change is observed in the maintenance events. Figure 4.7 

depicts the details of every maintenance event like maintenance cost and 

duration in this analysis. 
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Figure 4.7 Details of Maintenance events in Demonstration Case II 

In this scenario, where the terrain changes to desert and the season shifts to 

summer as illustrated in Figure 4.7, out of fifteen maintenance events, six events 

could not achieve the required level of mission reliability within the 4-hour 

window. 

Upon comparing the outcomes of analyses in both of the demonstration cases, 

a significant difference in key metrics is observed despite achieving readiness. 

With the transition from plains to desert terrain and normal to summer season, 

metrics such as the maintenance frequency increased by ~25%. Consequently, 

planned downtime also rose by ~53%. Furthermore, the total cost incurred in all 

maintenance events increased by ~21%. These variations underscore the 

importance of considering terrain and seasonal changes in MBT utilization 

during maintenance planning and management. 

 Upon analyzing the approach for the same deployment role but in 

different terrains, a significant change in key metrics was observed. Figure 4.8 

illustrates the changes in four key metrics for three different terrains with 

respect to the plain terrain: maintenance frequency, the percentage of events 

where the readiness level cannot be achieved within the allowable deployment 

delay for maintenance, the total maintenance cost incurred in all maintenance 

events, and the total planned downtime across the considered time horizon. In 
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Figure 4.8, it is evident that all four key metrics vary remarkably with the 

change in terrain, with all metrics skewed towards the scenario with desert 

terrain characterized by the most extreme environmental conditions. This 

observation highlights the need for systematic independent analysis of the 

approach for cases where multiple or different terrains are involved. The notion 

of a ‘one-size-fits-all’ approach proves inadequate in the context of military 

maintenance management, as notable disparities are found in key metrics such 

as maintenance cost, planned downtime, and maintenance frequency when 

planning maintenance for the same equipment deployed across different 

terrains. 

 The analyses conducted offer insights into the management of MBTs 

from a spares management perspective as well. While it is generally advisable 

to utilize genuine spares for maintenance activities, traditional practices like 

refurbishment and cannibalization, as well as the use of Non-OEM spares, may 

be necessitated by specific circumstances. In such cases, the insights derived 

from the analyses can aid decision-making processes. For critical equipment 

that frequently changes operations across multiple terrains, refurbishment or 

cannibalization may not be viable solutions. However, in situations where 

refurbishment is necessary, these spares may be suitable for equipment 

operating in less critical roles. For example, there are some equipment like 

infantry combat vehicle, which slightly shares the design and a few important 

spares with the MBTs, but some of them are classified to operate in a lesser 

critical operations. In compelling situations, decision makers may opt to allocate 

the genuine spares to the mission critical MBTs while providing refurbished 

spares to the less critical infantry combat vehicles, where it is known that the 

terrain of operation is not going to be changed frequently. Contrarily, for the 

MBTs for which the change in terrain and seasons is frequently expected, 

replacements with the genuine spares should be considered a priority choice. 
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Figure 4.8 Operating terrain wise comparison 

 

As previously discussed, an MBT has to undergo multiple deployment 

roles in distinct terrains. The different deployment role necessitates different set 

of functionalities in order to accomplish the deployment role. In order to 

demonstrate the application of the proposed approach for different deployment 

roles, the approach is applied to the same MBT but for a deployment role. 

In demonstration case III, the MBT is required to be ready for the 

following mission profile. 

Case III: An MBT has to be ready with the mission reliability of 0.8 for a 

mission of reconnaissance in defence role in the plain region and 

normal season, for continuous operation of 36 hours, with the allowable 

deployment window of 04 hours for necessary maintenance. 

On performing the same analysis for the same time horizon, a significant change 

is observed in the maintenance events. In this case, for the same time horizon, 

only eleven maintenance events are triggered; out of which, for eight events, the 

maintenance could be completed within the allowable deployment delay for 

maintenance, and the required reliability was achieved. Figure 4.9 highlights all 

the other relevant details in this case of demonstration. 
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Figure 4.9 Details of Maintenance events in Demonstration Case III 

With the outcomes of all the three demonstration cases, it is evident that 

the desired level of readiness for a given time horizon can be achieved for the 

critical military equipment by employing the proposed mission reliability based 

SM approach.   

4.3.1 Optimization of mission reliability thresholds 

The mission reliability threshold is a crucial parameter in the proposed 

approach, with both lower and higher thresholds playing a pivotal role in its 

effective execution. Systematically setting these thresholds involves 

considering their tradeoff with key metrics like maintenance frequency, cost, 

and planned downtime. While the lower threshold is dictated by fleet-level 

mission requirements, the user plays a role in optimizing the higher threshold. 

The manner in which a mission for an MBT is stated has been discussed 

previously. However, when it comes to the actual scenarios, where the missions 

are handled at the fleet level by higher commands, mission definitions 

encompass broader fleet-level considerations, as exemplified below: 
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The squadron needs to carry out an attack role of deep penetration 

mission of 36 hrs. of continuous operation, in the High-Altitude region. 

Where the squadron will be covering a distance of 50 kms. In order to 

successfully accomplish the mission, at least 11 MBTs should be 

working with full functionalities at the end of the mission with 

confidence more than 80%. Allowable deployment delay for 

maintenance is 04 hours. 

Similar to the previously discussed mission for an MBT, this mission profile 

commanded to the fleet of MBTs provides all the variables required to the 

proposed mission reliability based SM approach. It provides additional 

important information regarding the requirement of total number MBTs for 

accomplishing the mission. This information facilitates estimating the lower 

threshold of mission reliability which is to be maintained across the time 

horizon under consideration. The information provided can be translated into 

the classical form of k out of n configuration. In the above discussed example 

of fleet level mission profile, there are fourteen MBTs in a squadron and one 

MBT for replacement from HQ, out of these fifteen MBTs, at least eleven MBTs 

are expected not to encounter any of the failures, with the confidence of 80%. 

This makes the case of 11 out of 15 tanks with confidence of more than 80%. 

This configuration can be estimated using Binomial distribution, and for the 

present example, the expectation comes out to maintain all the MBTs in the 

squadron with the mission reliability of more than 80%. Therefore, the lower 

threshold of mission reliability is set to be 0.8. So that while implementing the 

proposed approach on the considered squadron, the mission reliability of all the 

MBTs should not fall below 0.8.  

 The user is required to systematically establish the higher threshold for 

mission reliability. While aiming for the highest possible threshold of mission 

reliability may seem intuitive, its implications on the other key metrics need to 

be critically evaluated. To conduct this evaluation, the developed PGA-based 

optimization approach is applied to a squadron of MBTs. Initially, the approach 

is employed across all squadron MBTs at three different higher mission 

reliability thresholds - 0.85, 0.9, and 0.95, while maintaining a constant lower 

threshold at 0.8, as per the user-defined mission profile. To encompass a diverse 
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set of MBTs based on age, reflecting varied initial mission reliability levels, the 

squadron's MBTs are considered with varying ages. Table 4.2 illustrates the 

calculated data for a specific case (Lower threshold = 0.8, and higher threshold 

= 0.9) as an example of this analysis. 

Table 4.2 Fleet level data for optimizing higher threshold of mission reliability 

(Case I) 

Higher mission reliability threshold = 0.90 

MBT ID Initial Rel. M. Events Success Ev Cost  
Downtime 

(Hrs) 

1 0.995057 13 8 941010 91.6 

2 0.990075 13 8 906290 88.6 

3 0.995057 13 8 892600 85.6 

4 0.981903 13 8 933750 91.6 

5 0.991836 13 8 902400 91.6 

6 0.993498 13 8 896280 86.6 

7 0.988821 13 8 914340 91.2 

8 0.974287 14 8 994750 87.6 

9 0.984134 13 8 1040350 95.6 

10 0.986232 13 8 903000 93.6 

11 0.979527 13 8 965600 95.6 

12 0.976994 13 8 972600 95.6 

13 0.995057 13 8 912300 94 

14 0.971393 14 9 1004900 91.6 

 

Upon conducting an analysis of the approach's execution on the same squadron 

with varied higher thresholds of 0.85 and 0.95, corresponding data sets were 

gathered. The collected data from all three scenarios underwent a thorough 

evaluation concerning four crucial metrics: average total maintenance events 

(maintenance frequency), the percentage of events successfully completed 

within the allowable deployment delay, average maintenance cost, and average 

planned downtime. The graphical representation of this analysis is depicted in 

Figure 4.10. Notably, it is evident that the 0.85 option is suboptimal when 

considering maintenance frequency, successful event percentages, and average 
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downtime. Comparatively, between the 0.9 and 0.95 options, there is no 

significant deviation in maintenance frequency and successful event 

percentages. However, upon assessing the tradeoff between average 

maintenance cost and average downtime, the 0.9 threshold emerges as the most 

optimal choice among these three levels. 

 

Figure 4.10 Comparison between three options for higher threshold           

(0.85 | 0.9 | 0.95) 

 

Following the determination of 0.9 as the optimal higher threshold for mission 

reliability, a more precise estimation was sought through a similar analysis. This 

analysis was conducted using closely related thresholds of 0.89, 0.9, and 0.91 

to determine the optimal higher threshold of mission reliability. The graphical 

representation of this analysis is depicted in Figure 4.11. Reducing the choice 

of criteria, the metrics – maintenance frequency and % successful events 

suggest no change in all the three cases. The two metrics – average maintenance 

cost and average downtime, curtail the option of 0.91 being optimal among the 

three. Looking at the slight tradeoff between average maintenance cost and 

average downtime, 0.9 emerges as the optimal choice for higher threshold of 

mission reliability.  
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Figure 4.11 Comparison between three options for higher threshold                 

(0.89 | 0.9 | 0.91) 

 

4.3.2 Optimization of allowable deployment delay for maintenance 

Efforts in war readiness management are primarily geared towards 

achieving cold start war readiness, although this may not be applicable to all 

critical equipment. For certain critical equipment, militaries allow a small 

duration before deployment. This situation could arise due to the fleet 

formation, where deployment occurs after front-runner fleets are deployed, or it 

might be linked to specific events that offer some preparation time. Hence, in 

many scenarios, equipment fleets are granted a brief period before actual 

deployment, during which maintenance activities can be carried out to ensure 

readiness. This concept introduces the notion of allowable deployment delay for 

maintenance. In the previous analysis, this duration was assumed to be 4 hours, 

a value derived from extensive discussions with domain experts. However, this 

duration of allowable deployment delay for maintenance plays instrumental role 

in overall maintenance management of critical military equipment. Therefore, 
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it is imperative to systematically study the effect of varying this duration, and 

accordingly optimize it for executing the proposed approach effectively. 

The concept of allowable deployment delay for maintenance is a 

significant aspect in war readiness management, complementing the importance 

of cold start readiness. It introduces two sub-concepts: theoretical readiness and 

practical readiness, which are closely interdependent and aid doctrine makers in 

assessing the overall state of readiness. Theoretical readiness represents the 

equipment population ready for deployment with the desired mission reliability 

at the present time (t=0). In contrast, practical readiness represents the 

equipment population that can be made ready for deployment at a specified time 

in the very near future (t>0). For instance, if a mission is scheduled to start in 

the next four hours, theoretical readiness would include equipment currently 

meeting the desired mission reliability. On the other hand, practical readiness 

would also include equipment that can achieve the desired mission reliability 

within the next four hours through maintenance activities. For example, in a 

squadron, if there are 10 MBTs whose mission reliability is higher than 0.8, the 

theoretical readiness is estimated to be 10/14 = 71.42%. However, there are two 

MBTs with mission reliability of 0.78 and 0.76, which require 02 hours and 03 

hours respectively for maintenance in order to achieve the mission reliability of 

0.8 or higher, the practical readiness will count these MBTs as ready 

considering the fact that these MBTs will require maintenance duration lesser 

than the mission start duration, and all the required maintenance resources are 

available. Hence, the practical readiness will be estimated to be 12/14 = 85.71%. 

It is very important to understand that, although these metrics do not directly 

affect the reality, they provide valuable insights to military strategists for 

informed decision-making in doctrine development. 

The selection of allowable deployment delay for maintenance within 

readiness definitions significantly impacts practical readiness levels at the fleet 

level. While opting for higher values may obviously appear to elevate practical 

readiness levels, considering its delusional effect on overall war readiness, it is 

important to assess the tradeoff it has with the other important metrics. 

Therefore, firstly the effect of varying this allowable deployment delay for 

maintenance on average practical readiness is assessed in multiple scenarios 
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featured with changing deployment roles. Additionally, the lower peaks of 

practical readiness are also critically studied, as it is not desirable to experience 

a dip in that. Figure 4.12 presents the comparison of scenarios where initially, 

the allowable deployment delay for maintenance is varied from 04 hours to 06 

hours and 08 hours, for deployment role of tank-to-tank battle; later it was 

varied in the same levels but for a deployment role of reconnaissance.  

 

Figure 4.12 Change in average practical readiness with change in allowable 

deployment delay for maintenance 

In Figure 4.12, it is evident that increasing the allowable deployment 

delay for maintenance leads to a slight rise in the average practical readiness of 

the fleet. However, there is a minimal change observed in the dip of the practical 

readiness due to the relatively stable minimum levels. This indicates that the 

increase in allowable deployment delays for maintenance has an insignificant 

impact on the fleet's average practical readiness levels. While extending the 

duration of allowable deployment delay could notably enhance average 

practical readiness levels, it is crucial to recognize that such an increase may 

create a misleading impression of readiness. Although practical readiness levels 

may appear to be inflated on paper, this could lead to challenges during actual 

deployment, requiring more time and potentially resulting in undesirable 

outcomes.   

While the obvious inclination to extend the allowable deployment delay 

for maintenance in readiness definition may be strong, it is crucial to avoid 
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excessive increases beyond a certain threshold, which inherently remains in  a 

minimal bound. Optimization of this duration is essential, taking into account 

the specific context of the situation. To determine the optimal value among 4, 

6, and 8 hours in the present context of managing the readiness of the MBTs, 

numerical investigations have been conducted.  

After conducting an analysis of the approach's execution on the same 

squadron with varied allowable deployment delays for maintenance of 4, 6, and 

8 hours, while keeping the lower and higher mission reliability thresholds 

constant at 0.8 and 0.9 respectively, corresponding datasets were collected. 

These datasets underwent thorough evaluation regarding four crucial metrics: 

average total maintenance events (maintenance frequency), the percentage of 

events successfully completed within the allowable deployment delay, average 

maintenance cost, and average planned downtime. The graphical representation 

of this analysis is depicted in Figure 4.13.  

 

Figure 4.13 Comparison between three options for allowable deployment 

delay for maintenance 
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Notably, it is evident that the maintenance frequency metric showed no 

change in all three cases. However, considering the tradeoff between the 

remaining three metrics, a duration of 4 hours for the allowable deployment 

delay for maintenance was found to be optimal. While the average maintenance 

cost metric suggests that 8 hours is a good choice, the resulting average 

downtime is not desirable. Therefore, based on this analysis, a duration of 4 

hours for the allowable deployment delay for maintenance is considered 

optimal. 

 

4.4 Fleet level readiness at a glance 

The preceding sections have demonstrated the efficacy of the current 

approach in managing the readiness of critical military equipment fleets, such 

as MBTs, by ensuring their mission reliability. For decision-makers and 

policymakers within defense forces, maintaining fleet readiness and having 

real-time insight into future readiness levels are equally critical. The proposed 

approach not only ensures fleet readiness for critical military equipment but also 

offers a systematic method to evaluate fleet-level readiness across diverse 

scenarios, encompassing various deployment roles and equipment fleets. This 

section further explores how the current approach can be leveraged to provide 

a comprehensive snapshot of fleet-level readiness to higher authorities involved 

in decision-making processes.  

The mission reliability based SM approach outlined in this research 

facilitates the efficient management of equipment readiness across diverse 

deployment roles and mission profiles, allowing the specification of one role as 

the primary deployment role. In this approach, a maintenance event is triggered 

when the mission reliability for the primary deployment role falls below the 

lower mission reliability threshold, aiming to restore it to the desired higher 

threshold. Despite undergoing maintenance, the equipment's mission reliability 

for alternative deployment roles may still exceed the specified lower threshold. 

This implies that under exceptional circumstances where maintenance cannot 

be immediately conducted, the equipment may not be fully ready for its primary 

deployment role but can maintain readiness for other deployment roles at the 
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desired mission reliability level. For instance, if the mission reliability of an 

MBT for tank-to-tank battle deployment drops below the lower threshold, its 

mission reliability for roles such as infantry protection or reconnaissance may 

still remain above the desired level. Consequently, although the MBT may not 

meet readiness requirements for its primary attack role, it can still be considered 

prepared for other roles such as attack or defense formations. Figure 4.14 

visually illustrates this scenario for clarity. 

 

Figure 4.14 Readiness levels for multiple deployment roles 

Expanding upon this rationale, the results derived from executing the proposed 

approach on various fleets of critical military equipment can be consolidated to 

devise a framework for illustrating fleet-level readiness assessment across 

multiple deployment roles. This framework would significantly aid high-level 

decision-makers in formulating doctrines based on the real-time state of 

readiness for multiple fleets of critical equipment such as MBTs. Figure 4.15 

provides a graphical depiction of the mechanism for assessing fleet-level 

readiness at a glance. This depiction showcases the readiness status of all MBTs 

within a fleet across three distinct deployment roles. By employing the 

methodology elucidated in Figure 4.14, this representation gauges the fleet's 

readiness by assessing the status of each MBT in the fleet at any given moment. 

In Figure 4.15, initially, all MBTs are shown to be fully ready for the three 

predefined deployment roles, indicating 100% readiness across all roles. 

However, in the subsequent scenario, MBT 01 and MBT 02 enter a maintenance 

phase due to a drop in mission reliability below the lower threshold, resulting 

in reduced readiness for deployment role 1. Nonetheless, both MBTs retain their 

desired mission reliability for deployment roles 2 and 3, maintaining 100% 
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readiness for these roles. Through this framework, decision-makers in defense 

forces can accurately ascertain the precise state of readiness of their fleet. 

 

Figure 4.15 Fleet level readiness assessment at a glance 
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4.5 Comparison with traditional approach  

Based on the outcomes observed in the demonstrated cases, it becomes 

evident that the current approach effectively provides the required assurance 

regarding the readiness of critical equipment by ensuring the desired level of 

mission reliability. Nevertheless, to evaluate its practicality for implementation 

in real-world scenarios, a fundamental question must be addressed: "Does this 

approach outperform the conventional one?" In order to scientifically address 

this question, this section undertakes a comparative analysis between the 

proposed approach and a representative conventional maintenance approach. 

Given the substantial quantity of equipment and the intricacies involved 

in overall maintenance management, a prevalent practice in military equipment 

maintenance is the adoption of a time-based preventive maintenance policy 

[18], [162]. This policy involves the classification of components into multiple 

PM groups, each with a distinct maintenance frequency. In the context of the 

considered representative time-based maintenance policy, PM groups are 

categorized from 01 to 04, with respective maintenance frequencies of 2, 3, 4, 

and 5 years. When an MBT undergoes maintenance according to this policy, all 

components within the designated PM group are simultaneously replaced. Table 

4.3 delineates the maintenance groups in accordance with this representative 

time-based maintenance policy. Additionally, there exist some more PM groups 

with maintenance intervals surpassing the time horizon considered in the current 

demonstration cases; hence, these groups are not enumerated here. 

Table 4.3 Representative conventional time based preventive maintenance 

policy 

PM Group 1 

Sr. No. Comp ID Cost TTR (hrs) 

1 D3 9000 01 

2 L4 9000 01 

PM Group 2 

Sr. No. Comp ID Cost TTR (hrs) 

1 A3 8000 12 

2 D2 14000 01 

3 D4 2300 01 
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4 L3 6000 01 

5 N2 1900 0.25 

6 N3 1500 04 

PM Group 3 

Sr. No. Comp ID Cost TTR (hrs) 

1 A2 2500 12 

2 A4 3500 16 

3 A5 6000 0.5 

4 A6 8000 01 

5 A7 100000 01 

6 D5 1000 01 

7 D7 1000 01 

8 F5 4000 7.6 

9 L1 3500 01 

10 L2 300000 02 

PM Group 4 

Sr. No. Comp ID Cost TTR (hrs) 

1 A8 5000 16 

2 A10 5500 01 

3 L5 900 0.5 

 

 

Figure 4.16 Timeline of PM Group triggers 
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Upon analyzing the same MBT to adhere to this representative time-based 

maintenance policy, various key metrics were assessed. In order to strictly 

follow this time-based maintenance policy for an MBT within a time horizon 

similar to the demonstration cases, a total planned (fixed) maintenance cost of 

1009800 is required. The planned (fixed) downtime required to follow this 

policy is 82 hours. However, even with strict adherence to the time-based 

maintenance policy, the mission reliability of the MBT is found to be dropped 

significantly, as this policy primarily emphasizes operational availability rather 

than mission reliability. Specifically, the mission reliability of the MBT for a 

mission duration of 36 hours of continuous operation (identical to 

demonstration case I) just before the initial PM event drops to 0.451. 

Subsequently, to achieve the desired mission reliability of 0.9, a maintenance 

duration of at least 18 hours would be required. Following the first maintenance 

event as per the PM policy, the mission reliability of the MBT for the attack role 

would improve to 0.7. From this juncture, an additional 12 hours of maintenance 

break is necessary to attain the desired mission reliability of 0.9. Moreover, the 

mission reliability of the MBT just before the second PM event (at the 

conclusion of the third year of usage) declines to 0.3. Post the second PM break, 

the mission reliability would increase to 0.39. However, achieving the higher 

mission reliability threshold from this point onwards becomes exceedingly 

challenging, hindering the prompt deployment of the fleet of MBTs on missions 

without encountering unacceptable delays. These circumstances leads to the 

previously mentioned undesirable situation where the MBT cannot be deployed 

for its intended wartime mission. 

On the contrary, with the developed approach, for ~ 90% of the time 

horizon, the mission reliability of the MBT is higher than 0.8, from where the 

desired mission reliability can be achieved within 4 hours. (for 67% of 

maintenance triggers); and the MBT can be called mission ready as per the 

readiness definition. With this approach, ~ 09% of the time horizon, the mission 

reliability of the MBT is lesser than 0.8, whereas, with the representative 

conventional PM policy, ~ 83% of the time horizon, the mission reliability of 

the MBT is lesser than 0.8 (Figure 4.17). It is apparent that the existing approach 

results in excellent readiness management of the MBT, while outperforming the 
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conventional time based PM policy in terms of achieving mission reliability and 

ultimately readiness. Looking at the economic aspect of the approaches, the 

proposed approach guaranteed delivers this readiness level with almost the same 

costs when compared to representative conventional PM policy. 

 

Figure 4.17 Mission reliability wise comparison with the time-based PM 

approach 

 

 

4.6 Summary  

Acknowledging the fact that the way to attaining and ensuring the desired 

mission reliability has an intricate relationship with the opted maintenance 

strategy, this chapter introduces a maintenance approach that addresses the 

imperative of war readiness in tandem with mission reliability. This mission 

reliability based SM approach works with the principle that the exploitation, as 

well as maintenance of mission-critical equipment, should be balanced in such 

a way that if, at any point in time, the equipment is ordered to be deployed on a 

certain specific mission, it should be ready, otherwise, it should be able to be 

ready in a specified allowable deployment delay for maintenance as per 

readiness expectation. Whenever the mission reliability of any equipment in the 

fleet touches down the predefined lower threshold of mission reliability due to 

its usage, the developed algorithm triggers a maintenance event, where a SMP 

is optimized using PGA to find a cost optimal set of maintenance activities to 

perform on MBT to uplift its mission reliability to the higher threshold for a 

predefined mission profile.  

On analyzing the proposed approach where the readiness expectation is 

set for a particular deployment role, and the terrain is kept varying, significant 

changes in the key metrics were observed. Similarly, significant changes in the 
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same key metrics were observed on varying the deployment role. This validated 

the consideration of military-specific factors and concluded that the notion of a 

one-size-fits-all approach proves inadequate in the context of military 

maintenance management. Notable disparities are found in key metrics such as 

maintenance cost, planned downtime, and maintenance frequency when 

planning maintenance for the same equipment deployed across different 

terrains. 

The mission reliability threshold stands as a critical parameter within the 

proposed approach, where the lower and higher thresholds hold significant 

importance for its optimal execution. Establishing these thresholds 

systematically entails evaluating their trade-offs with essential metrics such as 

maintenance frequency, cost, and planned downtime. The lower threshold is 

primarily determined by fleet-level mission specifications, while optimizing the 

higher threshold involves the user's active role. While aiming for the highest 

possible threshold of mission reliability may seem intuitive, the results of 

numerical experimentation shed light on the adverse implications of excessively 

high thresholds on average maintenance costs and planned downtime. Although 

such thresholds may decrease the total number of maintenance events over a 

given time horizon, it is imperative to recognize the trade-offs involved and 

optimize them for each specific scenario. To optimize the higher mission 

reliability threshold, the proposed approach is analyzed on all the MBTs in a 

squadron on three different levels of higher mission reliability threshold (0.85, 

0.90, and 0.95). Finally, an optimum level of a higher threshold is derived by 

critically examining all the aforementioned four important metrics. 

Additionally, the allowable deployment delay for maintenance that suits 

the readiness expectation is also optimized. Studying the suggestions from the 

literature regarding the war readiness definition, the approach is developed to 

present the readiness level of the fleet in categorization as theoretical readiness 

and practical readiness. The effect of varying the maintenance duration on this 

categorization is explicitly studied and the outcomes are presented in this 

chapter. The selection of allowable deployment delay for maintenance within 

readiness definitions significantly impacts practical readiness levels at the fleet 

level. While opting for higher values may obviously appear to elevate practical 
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readiness levels, it is essential to acknowledge the potentially misleading nature 

of this parameter. Leveraging the developed approach and outcomes of the 

numerical investigations, mechanisms are developed to provide war readiness 

at a glance to the high authority decision-makers involved in development of 

doctrines. 

Through comprehensive evaluation, the superiority of the present 

approach over the conventional time-based preventive maintenance policy is 

further established. By incurring ~6% lesser cost, the present approach resulted 

in maintaining the mission reliability of the MBT higher than the predefined 

threshold, for more than 90% of the overall lifecycle in the considered time 

horizon. The present approach provides the strategic decision-makers with the 

insight necessary to be war ready with the desired mission reliability and 

provides a superior and effective maintenance strategy as compared to 

conventional time-based maintenance. 
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5 Blockchain Enabled Maintenance Data Management 

Framework 

❖  

Chapter 5 

Blockchain Enabled Maintenance Data 

Management Framework 

 

This chapter presents a novel framework that leverages blockchain technology 

to revolutionize maintenance data management within military organizations. 

The chapter commences by analyzing the specific challenges that hinder 

traditional military maintenance data management practices. Subsequently, the 

technological choices made to design the proposed blockchain architecture are 

meticulously detailed.  Following this, a comprehensive overview of user 

interactions with the framework is presented.  Finally, the chapter culminates 

by highlighting the significant benefits this framework offers for military 

maintenance data management.  In particular, the chapter emphasizes how this 

framework enhances the applicability and effectiveness of the various 

methodologies developed throughout this thesis.    

 

 

 

 

The work presented in this chapter is published in two parts. Firstly, under the title “Fleet 

Maintenance Data Management Framework: A Novel Approach” in “Proceedings of 

International Conference on Precision, Meso, Micro and Nano Engineering -COPEN 2019”, IIT 

Indore, 2019. Secondly, under the title “Blockchain Enabled Maintenance Management 

Framework for Military Equipment” in “IEEE Transactions on Engineering Management” vol. 

69, no. 6, pp. 3938-3951. doi: 10.1109/TEM.2021.3099437. 



132 

 

 All of the approaches proposed in the previous sections of this thesis deal 

with the domain of mission reliability and maintenance modeling, which are 

predominantly data-driven. The efficacy of the developed data-driven 

approaches is intricately linked to the quality and quantity of the underlying 

operations and maintenance data. This holds especially true in the overall 

domain of RAMS management, where analytics plays a crucial role. The 

attainment of effective war readiness is contingent upon proficient RAMS 

management. Nonetheless, this study consistently encountered a dearth of 

requisite data, both in terms of quality and quantity. It has been found that a lack 

of data poses substantial obstacles to defense forces, reducing their ability to 

make analytical decisions based on existing data. Recent trends like industry 4.0 

are claiming the possibility to transform the current military capabilities [28]. 

However, these strategies expect preparedness of military workshops for the 

modern technological tools like data analytics using Artificial Intelligence and 

Machine Learning. In order to accommodate these prospective changes, data 

centric decisions will need the data from current maintenance scenarios. 

Furthermore, the unavailability of adequate data severely limits the practical 

application of the comprehensive approaches developed and proposed in the 

scope of this thesis. The absence of a mechanism for the systematic management 

of operations and maintenance data in defence organizations could be the prime 

reason for the data unavailability, and it poses a formidable obstacle in the 

pursuit of comprehensive war readiness assessment and management in the age 

of analytics. The essence lies in recognizing that without a reliable source of 

ample and quality data, the envisioning and execution of scientific approaches 

for war readiness management remain an impregnable challenge. 

Acknowledging data scarcity as a pivotal concern, this thesis takes a proactive 

stance by addressing this issue by presenting a research backed modern solution 

which not only increase the applicability of the developed approaches but also 

makes the military maintenance management future ready in the era of 

analytics.   

5.1 Challenges in Data Management 

 With the rising cognizance and prospects of data-driven decision-

making, the importance and awareness about data management is growing. 
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With the upsurging generation of big data and the rising concern over its 

security, the challenges in data management are increasingly pressing across all 

the sectors. One of the sectors which has a potential of transforming itself 

through increasing use of data-driven techniques in crucial decision-making, is 

the defense sector. Therefore, like all the other industrial domains, the defense 

sector needs to effectively manage the security critical data. However, in view 

of the gravity of the data generated by military organizations, the challenges in 

data management, especially with data registry and further data security, are 

multifold when compared to other industrial domains [163]. The challenges 

further increase due to the involvement of large in-house hierarchy, the 

involvement of multiple value chain partners, multi-echelon operations, etc. 

With the emergence of the GOCO model in defence maintenance [164], the 

issue of data scarcity will be compounded by issues like data sharing, data 

integrity, transparency in management, an increase in bureaucratic 

authentications, etc. 

 The persistent upgradation of militaries results into higher number of 

equipment; which makes the maintenance of these equipment a challenging 

task. Moreover, the strategic deployment of these equipment at distinct and 

extreme locations across the country makes maintenance scenarios more 

challenging. Managing maintenance data for such huge challenging scenario 

that too with expected granularity is cumbersome. Since militaries work in 

multiple hierarchical authority levels, monitoring and validating every 

maintenance activity by higher authority is arduous. However, this monitoring 

and validation is needed to run the maintenance program with the desired 

punctuality. In order to maintain this punctuality, a mechanism is required 

which can validate and record the maintenance activities with minimized human 

intervention and still has the check from higher authorities. 

 Above all, in the era of data science, just having the data is not adequate. It 

is also important to have it in appropriate formats. Still, the use of hand-written 

maintenance logs is not very uncommon. To make it usable for analytics based 

on contemporary techniques, this maintenance data needs to be electronically 

recorded in a proper format with accuracy and details. If by any traditional 

maintenance management mechanism the required data is maintained with 



134 

 

desired accuracy and granularity, this data being crucial military data, it has to 

be stored in utmost secured environment [165]. This becomes further essential 

in current situations with the emergence of GOCO model where involvement of 

third party vendors and service providers is increasing in military maintenance. 

The third-party service providers who deal with the maintenance or inventory 

of the military equipment need access to equipment usage data. This requires a 

controlled, monitored, and authenticated channel for the involvement of 

external agencies where only limited access is granted to them. 

 Considering the aforementioned scenario of maintenance function in 

military organizations and the associated challenges, there is a profound need 

for a tailor-made comprehensive maintenance management framework, which 

indeed suffices the need for inputs to advanced contemporary techniques while 

unraveling the aforementioned issues. The framework is essentially required to 

unravel the issues like scarcity of the maintenance data, traceability of the 

military equipment/components, difficulty in monitoring and validating every 

maintenance activity by higher authorities, maintaining security of the stored 

data even in the presence of third-party vendors and service providers. 

 

5.2 Representative Maintenance Scenario in Military 

This section aims to depict a typical representative scenario of 

maintenance of MBTs in military organizations. Comprehending this scenario 

is important for the development of the proposed architecture for maintenance 

data management.  

Considering the obvious security reasons, the maintenance units for 

MBTs are considered to be located far from the border region. Hence, the 

maintenance of the MBTs is carried out at distinct locations. The names used 

by militaries for their personnel formations, equipment formations and 

maintenance locations varies markedly depending on the country. The terms 

used here are generic. The scenario is presented in Figure 5.1. 
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Figure 5.1 Representative scenario of military equipment maintenance 

 

Field: Considering the fundamental function of the MBT, it is deployed in areas 

across a wide range of border regions known as fields. The MBT needs to work 
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in distinct terrains in different fields. The minor repairs or replacements needed 

at the field can be done under the supervision of a field manager.  

Tier I Workshop: Some routine inspections and replacements are carried out at 

these workshops. These are located in close vicinity of the deployment. 

Generally, one workshop is considered to be allotted to one field. Here, the 

workshop manager works under the supervision of Workshop Commandant - 

the top deciding authority of tier I workshop. 

Tier II Workshop: For the major replacements as well as overhauls, the MBTs 

are sent to these Tier II workshop, which are quite far from the border region 

due several strategic reasons including security. Here the workshop manager 

works under the supervision of Workshop Commandant - the top deciding 

authority of tier II workshop. 

Central Materiel Department (CMD): The spare inventories for all these 

maintenance activities gets administered by an inventory manager at central 

materiel department, which is again located at different location than the 

workshops. Its main function is to administer the quality and quantity of spares 

at workshop inventory (inventory associated with every workshop – W-Inv).  

Headquarter (HQ): Although the maintenance activities are carried out at 

aforementioned locations, the central higher authority at the HQ monitors all 

these maintenance activities remotely from a central location. Several key 

decisions regarding readiness, finance, organizational culture etc. are taken by 

central authority at HQ. 

For the majority of the maintenance tasks, whether scheduled or not, the 

MBT has to relocate a lot. Therefore, over its complete life cycle the MBT has 

to be at multiple locations undergoing different tasks. Making all the huge data 

generated by distinct players available for all the players wherever required is 

not an easy task. Therefore, it is needed to store this data and share it with the 

workshops or external agencies whenever needed while maintaining appropriate 

security measures. 

 This maintenance scenario leads to several issues whose solution leads 

to enhanced efficiency in these maintenance practices. Because these vehicles 
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need to relocate for the majority of the time, performing different tasks, which 

could be an assigned mission or a scheduled maintenance, it could be difficult 

for the higher authorities to trace and calculate the exact status of the vehicle. 

This issue of traceability is of two types. First, to trace the vehicle for its current 

location and working status; and second, to trace the journey of systems or 

subsystems inside a vehicle, in the light of practice of cannibalization and 

refurbishment in the military maintenances. Because of several reasons like 

emergency, due dates, unavailability of spares, etc. a component from one 

equipment can get installed in another with or without repairing. When this kind 

of replacements happens for times, maintaining the traceability of data gets 

more complex; and not maintaining this information makes this maintenance 

data less potent. When the MBT is sent to the workshops, the field unit that 

owns the MBT expects the information regarding the status of the MBT. The 

corresponding authority is also interested to know whether the workshop is able 

to respond to every maintenance work required, whether the workshop is able 

to deliver back the MBT in expected duration, whether the workshop is having 

all the required spares etc. Many times, the field unit is also interested in 

participating in the maintenance decisions. In case, the workshop is not able to 

perform all the required maintenances due to whichever reasons, the field unit 

authority will be required to communicate to the workshop on a common 

platform. 

 

5.3 Blockchain Enabled Maintenance Management 

Framework 

In light of the aforementioned maintenance scenario and its associated 

challenges, this thesis proposes a blockchain enabled maintenance management 

framework as a viable solution. This section delineates the developmental 

approach employed in creating this framework, encompassing a comprehensive 

examination of its technological aspects. In order to develop the framework 

comprehensively, some choices among the available technologies are made, and 

those are discussed in this section.  
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5.3.1 Blockchain Technology  

The advent of blockchain technology presents a momentous solution to 

resolve several issues associated with data management in a novel manner. 

Blockchain concept is getting increased attention, where the work is distributed 

in nature, because it enhances security and privacy [166], increases systems 

fault tolerance, provides a faster settlement and reconciliation, creates a scalable 

network [167] and helps in saving cost and time by removing intermediaries 

[168]. Employing blockchain, the transactions which mandatorily needed the 

centralized architecture and trustworthy third-party applications can now work 

in a decentralized manner, and that too with the same or increased level of 

inevitability [166]. With its unique package and characteristics, blockchain can 

be seen disrupting many traditional data management approaches. Considering 

the increasing awareness about blockchain technology, the core technology has 

been discussed and explained by many [166], [169], [170], [171]. Therefore, 

this thesis does not attempt to explain the basic mechanism of the technology. 

Casino et al. [172] have presented an excellent mindmap abstraction of different 

applications of blockchain where significant work is being carried. It has 

already found several industrial applications as financial services for the 

banking industry [173], [174], in healthcare for decentralized and secured data 

sharing [175], [176], [177], industry 4.0 manufacturing systems [178], IoT 

[179], traceability systems for food supply chains [180], logistics operation 

[181], [182], data management in government institutions where data in large 

volume is involved [183], identity management [184], agricultural ecosystem 

[185], for traceability of imported goods [186]. Several literatures on blockchain 

applications affirm its suitability for its application in the manufacturing sector 

[187], [188], [189]. In a nutshell, industrial situation where there is a need of a 

single source of truth, trusted transactions, immutable ledger store, and near 

real-time data sharing, blockchain application is going to have many more 

advantages than the conventional database systems [190]. 

Considering the nature of the challenges related to the data management 

in defense organizations, blockchain technology is being contemplated as a 

profound solution.  Therefore, defence ministries in several countries such as 

USA, Russia, China, etc. and some of the military alliances like NATO have 
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shown interest in using blockchain technology towards the goal of enhancing 

military strengths [191]. Defence executives surveyed by Accenture cite 

blockchain as one of the top emerging technologies which they are focused on 

to support greater industry growth and efficiency [192]. Studies indicate that 

more than 80% of the companies which work in the defense industry plan to 

integrate Blockchain into their different processes in 2021 [193]. Presently, the 

areas in the defense sector where the application of blockchain is being studied 

and implemented are cyber defense, tactical networks [194], communication, 

IoT [195], Supply Chain Management, Logistics etc. [191]. Furthermore, there 

are areas in the defense sector where the application of blockchain technology 

promises to deliver desirably effective solutions. One such area is the 

maintenance function in defense organizations. Despite several challenges 

associated with the maintenance data management in defense sector, this area is 

still untouched as far as the application of the blockchain in defense is 

concerned. 

As discussed, the literature shows the efforts made by researchers to use 

blockchain for providing solutions to various challenges in the industrial as well 

as the defense sector. However, the literature providing a systematic approach 

to make use of blockchain to strengthen the data governance in maintenance 

data management for militaries is not available. Considering the numerous 

challenges involved in maintenance data management especially in the military 

organizations, there is a need for a well-researched and systematic approach to 

make use of blockchain technology. As a solution, this thesis presents a 

blockchain enabled maintenance management framework for military 

equipment, which focuses on making the military maintenance function more 

comprehensive and future ready. As the awareness and interest in the 

blockchain technology are growing, this research provides a detailed approach 

as a ready reference to any military organization to develop their own 

blockchain enabled maintenance management system. 

5.3.2 Architecture of the Framework 

In order to develop the framework comprehensively, some choices among 

the available technologies are made, and those are discussed in this section.   
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Blockchain applications are categorized as public, private, and federated 

or consortium blockchain [196]. In this case of military organization, where the 

blockchain is proposed to manage military maintenance data, federated 

blockchain is favored among all, as it is not centralized as private; and only 

authorized nodes can participate, making it permissioned decentralized 

blockchain. All the nodes in this blockchain are identified users. Moreover, 

irrespective of the size of the network, the transaction gets validated in the 

duration of the order of milliseconds [170], [197].  

In order to achieve agreement of all the required nodes on any transaction, 

some consensus is required. To reach up to a consensus in a distributed 

environment is a challenge before blockchain. To resolve this issue, blockchain 

uses various consensus algorithms. For example, the cryptocurrency Bitcoin 

used Proof of Work (PoW) as a consensus algorithm [166]. There are several 

other consensus algorithms available such as Proof of Stake, Proof of Activity, 

Proof of Burn, Proof of Capacity, Practical byzantine fault tolerance, etc. [198] 

However, the one which is often used with the permissioned blockchain is the 

Proof of Elapsed Time (PoET). These consensus algorithms facilitate all the 

nodes in the blockchain to reach upto accordance about the existing state of the 

ledger. If any node of the blockchain attempts to add some information, it is 

very important for all the other nodes to agree on this information before it is 

permanently added into the blockchain. This consensus on incorporating every 

transaction into the blockchain brings the transparency and hence the trust in 

the network. The choice of consensus algorithm should depend on the type of 

blockchain and organizations’ expectations about the speed, efficiency, and 

trust in the blockchain operations. Unlike the several popular blockchains where 

cryptocurrencies are involved, in the presented military scenario, none of the 

nodes is working to win some rewards for mining. Additionally, one cannot 

expect the availability of high-end computational devices in all the fields 

considered in the present military maintenance scenario. In the present scenario, 

the consensus algorithm is required to ensure the transparency in the verification 

process of all the registered maintenance data.     

For the proposed framework, considering the need and nature of the 

consensus, PoET is considered more suitable. PoET is known an energy saving 

consensus algorithm without intensive mining process. In the present context 
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for military organizations, there is a need for a consensus algorithm that works 

without demanding the expensive computational power, and without the 

involvement of any kind of tokens. Here, the nodes are not working to win the 

rewards for mining in the blockchain, and hence PoET is highly applicable as 

the network will not have any tokens to burn or hoard, and the hardware or 

energy required is also minimal [171]. The PoET consensus algorithm is used 

in this framework with the prime objective of bringing the transparency in the 

process of validating every transaction before it permanently gets into the 

blockchain.  

PoET was developed by Intel in 2016, primarily for the permissioned 

blockchain. This is considered as an efficient form of the Proof of Work, while 

removing the need of computationally expensive mining intensive process with 

the randomized timer system. PoET works in conjunction with the Intel’s 

Software Guard Extension (SGX); which allows the trusted code to run 

independently irrespective of the system or platform it is working on. SGX has 

the ability to digitally attest that the trusted code is running properly without 

any manipulation in the trusted execution environment [199]. The memory 

where the trusted code is stored in the Trusted Execution Environment (TEE) is 

even safe from malicious attacks. The PoET algorithm generates a random 

waiting time for each considered node in the blockchain, and the node with the 

shortest waiting time wakes up first and is allowed to commit the newer block 

to the blockchain, broadcasting the necessary information to the complete 

network. This complete process happens in a completely randomized manner 

and PoET algorithm has several further analytical checks to ensure the security 

and trustworthiness in the process. Its integration with TEE typically ensures 

that there is no manipulation to the trusted code. Furthermore, literature suggest 

that the PoET algorithm is capable of scaling the network upto thousands of 

nodes in a network. For more detailed discussion on working of PoET and other 

important consensus algorithm [199] can be referred to. In the proposed 

framework, PoET is used to reach upto a consensus in all the validation 

processes by making them completely randomized to bring transparency in the 

network. For example, when the user creates any transaction for some 

maintenance activity performed on an MBT, it requires the successful validation 

to permanently get into the blockchain. In this framework, the superior authority 
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to the user who created the transaction at the same workshop performs the 

validation. In order to bring accuracy in the data stored in blockchain and to 

make validation process more uncompromising, the framework ensures that 

while creating the transaction, the user does not know about who is going to 

validate the particular transaction. Therefore, the validating node is selected 

randomly from all the available nodes with the superior authorities at the same 

workshop. In order to bring transparency and trust in these random selection 

processes for selecting validating nodes, PoET is used.    

The choices made for the proposed framework provide enhanced security 

and recoverability to the military maintenance data. Any single modification in 

any of the transactions by any of the nodes is going to disrupt the complete 

blockchain, and hence, no one can modify any transaction without everybody’s 

knowledge. All the verified transactions are cryptographically sealed with the 

help of hashing using available hashing algorithms like SHA-256 which returns 

the hash value of 256 bits. Moreover, the proposed blockchain based framework 

ensures the prevention of loss of data due to any reason with the help of one of 

the fundamental blockchain characteristics. If anything like a malware attack or 

damage happens to a ledger in a node, it will automatically fetch the latest ledger 

from the network bringing it to the latest version despite having lost its own. 

This makes the blockchain intrinsically secured and satisfies the claim that the 

use of this blockchain makes military maintenance data more secure and 

recoverable.  

Nick Szabo [200] introduced the concept of Smart Contract (SC) as ‘a 

computerized transaction protocol that executes the terms of a contract.’ Smart 

contracts enabled blockchain technology to minimize extrinsic engagement by 

automatic validation and execution. A smart contract facilitates translating 

contractual clauses into embeddable code. One of the main features of this 

technology is self-tracking the fulfillment of the predetermined requirements 

and decision making according to a predefined algorithm [200]. By using smart 

contracts, the need for trusted intermediaries between transacting parties is 

minimized. With the use of such smart contracts, military authorities can 

prevent their efforts in validating every maintenance activity and can rely more 

on the external agencies with necessary trust while keeping required 

transparency.  
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Based on the aforementioned choices within blockchain technology, the 

proposed framework is designed. In a particular case, this proposed framework 

considers seven distinct nodes to represent five different locations in the 

network (Figure 5.2).  

 

Figure 5.2 Structure of the framework 

 

Based on their authority, permission for the node to read, write, or validate 

in the blockchain is defined. Table 5.1 shows all the locations involved, actors 

in the blockchain, and their respective read/write/validate permissions in the 

particularly considered case of maintenance of MBTs. 

Table 5.1 Locations, Actors, and their Permissions in the Framework 

Sr. No. Location Authority 

Permission 

Read Write 
Valid-

ation 

1 Field Field Manager Y Y Y 

2 
Field 

Workshop 

Maintenance 

Manager 
N Y N 

Workshop 

Commandant 
Y N Y 
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3 Base Workshop 

Maintenance 

Manager 
N Y N 

Workshop 

Commandant 
Y N Y 

4 Head Quarter 
Concern Higher 

Authority 
Y N N 

5 
Central 

Materiel Dept. 

Inventory 

Manager 
Y N Y 

 

5.3.3 Access Control Policy 

To regulate access to the proposed blockchain based framework from a 

security perspective, an access control policy is defined. This policy regulates 

permission to interact with the distributed ledger and make transactions verified 

by the respective nodes. Additionally, this policy provides the authentication 

level to every node that decides the node's category as a full node or partial 

node. A full node has access to the complete ledger, whereas a partial node has 

only the respective subset of the distributed ledger. 

In the present permissioned blockchain framework, the Principal 

Administrator (PA) is the full node, which is authorized to set the access control 

to every other node in the network. On the creation of every node, the PA 

defines the authentication level of the node and provides a Node Identity (NId) 

over a secure channel. The whole process of NId generation is performed with 

the trusted code in the trusted execution environment, which cannot be 

manipulated. The NId also represents the authentication level of the respective 

node. The PA maintains the permissioned database of all the NIds and their 

corresponding authentication level. Five authentication levels (L1 – L5) are pre-

defined in this framework, nodes with authentication levels of L1, L2, L3 are 

partial nodes, and L4, L5 nodes are full nodes. L1 and L2 nodes are set as the 

partial nodes, which has access to a subset of the ledger related to the equipment 

at the location of the respective node and has the permission to write into the 
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blockchain by accessing the GUI. The authentication level of L1 permits the 

user to write the transaction in the form of a job card or maintenance activity 

using the GUI. The authentication level of L2 is assigned to the user with higher 

authority at every field and workshop; with this authentication level, the user 

can read the transaction to validate it. These nodes have access to 

read/write/validate the data only related to the equipment in their possession. 

All the nodes with the authentication level of L4 & L5 are set as the full nodes, 

which has the complete distributed ledger at their node and has complete access 

to it. L4 authentication level is assigned to the nodes where the organizational 

authorities are interested in analytics over the data in the blockchain. For 

analytics, these nodes may require data from all the nodes in the blockchain. 

The nodes with the L5 authentication level have access to the status of every 

equipment and group of equipment irrespective of their location. User with the 

top authorities in the military organization is assigned with the L5 level. L3 is 

the authentication level which is assigned to the third parties or external 

agencies involved in the maintenance and spare procurement process for the 

military equipment. In order to perform their analytics, access is given to these 

nodes, which are continuously monitored by the L4 nodes, and only the filtered 

data is made available to them to perform analytics. 

Whenever any node generates any maintenance activity transaction, the 

respective node receives an encrypted transaction key from PA, and this 

transaction key is stored in a database with PA. This transaction key becomes 

the part of the header of the transaction. At the time of validation of this 

transaction where the consensus algorithm selects one validation node, a smart 

contract checks for the transaction key associated with this transaction. The 

smart contract allows the transaction to be validated only if the transaction key 

is found in the PA database; otherwise, it rejects the transaction and raises the 

alarm to the PA for false entry of transaction. This process ensures that no 

unauthorized transaction is registered in the blockchain. 
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5.4 Interactions with the Framework 

In the considered representative maintenance scenario, when the MBT is 

working in the field, it is in the authority of the MBT commander. Whenever 

maintenance is required to the MBT, either scheduled or corrective, the MBT is 

taken to the field manager, who decides the future operation of the MBT. The 

authority at the field knows the issues about the MBT better, so this framework 

provides a platform for the field authority like MBT commander or the field 

manager to provide breakdown reasons if the MBT has failed and needs 

corrective maintenance and a list of repairs and replacement 

(corrective/preventive) expected. This expectation of the field authority can be 

recorded in the form of a digital job card. Within the same job card, using the 

GUI, the field manager can specify the expected return date, which can become 

a tentative due date target for the workshop authorities. On submission of the 

job card by the field manager, it becomes a transaction attribute and gets into 

the memory pool in the form of a JSON object (a sample JSON object for the 

job card is given here). 

---------------------------------------------------------------------------------------------- 

---------------------------------------------------------------------------------------------- 

This transaction attribute gets into the blockchain after its validation by 

someone among the corresponding top authorities in the respective field. This 

validation includes the correctness of the entries made in the job card, along 

with the availability check of the workshop and reasonable expected return 

dates. When the MBT sent by the field manager reaches its destined workshop 

(Tier I/II), the authority at the workshop has to receive it, and after some 

{    

"TankID": "T123", "Tank_Group": "ABC", 

"Tank_Status":"Working", “  

"BreakdownReasons": {"1 value": "None"},  

"MaintenanceRequired":  

{"1 value": "perform minor replacement 01",  

 "2 value":“Replace Hose B15” },  

"MaintDestination": "Tier I Workshop",  

"DispatchedDate": "01-Jan-2020",  

"ReturnExDate": "15-Jan-2020"      

} 
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inspection of the MBT about its overall condition and the specified maintenance 

requirements in the job card, the receipt needs to be recorded on the blockchain. 

This receipt needs some more information related to what all maintenance is 

required, what maintenance activities can be performed considering the load on 

the workshop and the spare availability etc., and whether the mentioned 

expected delivery date can be achieved. After inspecting everything along with 

the job card, the workshop manager can specify the possible delivery date. Once 

this receipt is registered on the blockchain, the current location of the MBT will 

be changed from ‘transit’ to the respective workshop; therefore, the nodes at 

higher authorities with the specific authentication level (L4 and L5) will be able 

to see the current status of the MBT. All the maintenance activities performed 

on the MBT needs to be recorded in the specific format that collects the 

maintenance data comprehensively. The user interface shown in Figure 5.3 

specifies the several information entities the workshop authority can register, 

which gets recorded in the blockchain. The form in Figure 5.3 consists of a sub 

form titled as ‘Maintenance Data Manager’, which has field for entering every 

maintenance activity done on the respective MBT. This sub form helps in 

fetching various important information required later for several analytics. It 

also records repair or replacement of the lowest maintainable unit, which is the 

lowest replaceable or repairable entity. This facilitates the framework in 

recording the maintenance data with the highest granularity. Along with the 

maintenance start and finish duration, it also records the category of replaced 

component, whether it is an original component or 

refurbished/cannibalized/duplicate component. Post-maintenance inspection 

and testing are crucial tasks to perform, and this form needs to be checked twice 

by the maintenance personnel for completion of maintenance tasks and, later 

on, completion of testing. Once the maintenance personnel submits this form, it 

is stored as a transaction attribute to the memory pool of the blockchain. After 

the workshop higher authority and inventory manager validate the transaction 

one after the other, it is registered with the blockchain. Here, to bring 

transparency in the validation process, as discussed earlier, the PoET consensus 

algorithm is used. This allows only one among all the available nodes with 

higher authorities at the same workshop to validate the complete transaction and 

add it to the blockchain. The consensus algorithm randomly selects one node 
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among the available nodes with higher authority at the same location with the 

typical procedure of PoET as discussed earlier. This randomized process 

ensures the transparency and accuracy in the registered data, since every node 

which is creating the transaction is totally unaware about who is going to 

validate their transactions. The JSON object generated on submission of the 

following form (Figure 5.3) is similar to one, which is given for the job card, 

with some additional attributes. 

 

Blockchain technology is known for its inherent way to provide the data 

integrity without requiring any external party to control the transaction [175]. 

The present framework makes use of this technology to its fullest to provide the 

data integrity. In the context of data management, data integrity refers to overall 

completeness, consistency, accuracy and trustworthiness of the data. The logical 

structure of the framework is developed such that every maintenance personnel 

has to register every maintenance related activity for every equipment whose 

maintenance is performed, so the consistency of the data gets maintained 

properly. 

Additionally, the validating authority does not give a clear pass to the 

data unless it is checked for its completeness and accuracy. Since every 

transaction of the data is linked with the maintenance personnel who registered 

the data and authority who validated the data, the trustworthiness of the data 

gets achieved. The use of consensus algorithm in validation process brings 

transparency and the trust in the network. Immutability being one of the key 

Figure 5.3 Maintenance data manager form with the job card 
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characteristics of the blockchain, keeping the data transactions unchanged is 

primarily achieved; hence the claim of bringing data integrity gets satisfied and 

the achieved integrity gets along with the registered data forever. 

In the complete maintenance process, the Inventory Manager (authority 

at CMD) plays a very crucial role. The quantity and quality of the spares 

required for all of this maintenance are taken care of by the CMD, which is 

centrally working, as mentioned in an earlier section. The inventory manager 

has to validate the form submitted by the workshop manager and then it gets 

validated by the workshop commandant. In this validation, the inventory 

manager checks for the replaced and newly installed part’s IDs and compares 

them with the IDs in ordered stock. By this validation, the inventory manager 

has the complete check on the quality of the parts by ensuring that only centrally 

procured parts have been used instead of locally purchased or refurbished or 

cannibalized. In case of refurbishment or cannibalization, part ID of that 

component helps tracking its complete history; hence, appropriate quality in 

spares can be maintained. As every maintenance activity is getting registered 

with the blockchain, and the inventory manager is one of the nodes, the 

inventory status file for the spare parts at the central inventory manager varies. 

Hence, inventory managers can monitor the stock of every spare in real time 

without being present at every workshop. In this proposed framework, several 

smart contracts are used to automate the validation process. One of the smart 

contracts used for validation and monitoring at the inventory manager node is 

shown in Figure 5.4. 
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Figure 5.4 Smart contract example 

 

This smart contract (developed in Solidity) helps in validating the authenticity 

of spares used in equipment maintenance. The function ‘checkPartExists’ gets 

part IDs of removed and installed parts from maintenance records submitted by 

workshop manager node and the inventory status file for all the parts (registered 

by CMD). It loops over the provided data to check whether the part IDs entered 

by the user while submitting the maintenance data form exists in the inventory 

status file or not. If both the part IDs are found in the data, (which implies use 

of authentic spares), it changes the status of the new part that has been installed 

to 'old', deducting the part ID from the new parts section in the inventory status 

file. In the event of not finding the part ID (removed / installed) in the inventory 

status file (which indicates the inauthenticity of the spares), the smart contract 

raises the flag as true, indicating the need for escalation of the issue to the 
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corresponding higher authority. This smart contract helps the inventory 

manager at CMD node to validate the large quantity of maintenance transaction 

with minimized human intervention that too in lesser time. In the form of these 

smart contracts, some algorithms with transaction protocols works for the 

validation process, resulting in a more uncompromising way of validation. 

 Because the workshop manager is updating every maintenance activity 

on the maintenance data manager sub form, the field manager as well as 

headquarter authority can monitor the status of maintenance of the MBT in real 

time. When the listed maintenance tasks are completed on the MBT, the 

workshop authority can set the status of MBT as ‘ready to deliver’. When the 

MBT is ready to deliver, the field manager can check whether all the expected 

maintenance activities are carried out or not. Only after getting completely 

satisfied with the performed maintenance activity, the field manager can accept 

the MBT to be returned to the field. Here, there is a scope for using a smart 

contract to validate the completeness of the work listed in job card. In case of 

any conflict here, both the parties can negotiate online in the presence of head 

quarter authority and can settle on common grounds. Otherwise, these issues 

can be escalated to the head quarter, where the authority at head quarter will be 

involved in this negotiation or settlement.  

Although all of these maintenance activities happening at the distinct 

workshops are continuously monitored by the HQ authorities, they are more 

interested in knowing the readiness or availability at the group levels of the 

MBTs. They are also interested in knowing the status of an MBT whether it is 

working or not; if it is under maintenance, where is the maintenance happening 

etc. The proposed framework presents the GUI based status monitoring to the 

HQ authority as shown in Figure 5.5. 

If the HQ authorities want to know the maintenance history of a 

particular MBT, it can also be fetched from the blockchain using its unique ID, 

as shown in the format given in Table 5.2. 
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Table 5.2 Maintenance history of an equipment 

  Last Five Transactions 

Sr. 

No. 
Date Location Status Maintenance Action 

1 05/01 
Received on Field 

Workshop 
Down 

Medium Repair 1 

Scheduled 

2 16/01 Field Workshop Working 
Medium Repair 1 

Completed 

3 17/01 
Sent to Field from Field 

Workshop 
Working NA 

4 20/01 Reached on Field Working NA 

5 30/01 Field Working Routine Inspection Done 

 

As discussed in the earlier sections, traceability of any system or sub 

system inside an MBT is a major issue. Information related to the transfer of 

any system or sub system from one MBT to another; and history of every 

equipment inside an MBT from its inception can be fetched from the blockchain 

Figure 5.5 Sample status report to the HQ authorities 

Figure 5.6 Component Traceability 
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framework using its unique ID. Figure 5.6 depicts the ability to trace every 

system within this framework, where a trace of component is described as its 

journey from one MBT to other through the workshops. 

This framework considers almost every participant in this maintenance 

scenario as one distinct node. When every participant knows that the transaction 

done by him/her is getting validated by the corresponding higher authority, 

which is again monitored/validated by their higher authorities; and none of the 

transactions can be modified later due to the choice of consortium or federated 

blockchain; it provides great transparency as well as trust in every participant 

irrespective of their position in the hierarchy. Moreover, this blockchain enabled 

framework provides authentication for the nodes used by the external agencies, 

placing necessary validation checks (by military authorities) at several steps and 

monitoring the data accessed by them. Hence, resolves the issue of third-party 

involvement without tampering security or transparency of the complete 

network. In this way, the third-party maintenance agency or external suppliers 

can make use of the military maintenance data for several analytics at their end 

without actually possessing or extracting the whole data. Hence, the claim of 

blockchain bringing transparency and trust in the organization gets satisfied. 

The complete flow of maintenance data getting registered in blockchain through 

several validations is presented in the Figure 5.7. 

 

Figure 5.7 Maintenance data registry in the blockchain through validations 
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This blockchain enabled framework makes use of several characteristics 

of blockchain technology like Distributed Ledger (DL) and smart contracts; and 

hence promises the faster and efficient exchange of information. This 

framework promises an efficient way to enable the user with the required 

information at the right time with desired security. This efficient exchange of 

information through the distributed ledger and validation through smart 

contracts is depicted in Figure 5.8. 

 This framework offers more cost-effective solutions as compared to 

conventional maintenance management solutions. Firstly, this framework 

reduces the involvement of resources needed to operate, scale and secure the 

network; secondly, transparency across the network also reduces the cost of 

further verification. In addition, there are several other benefits in the form of 

accurate analytics, which can be fetched from the proposed blockchain 

Figure 5.8 Information exchange through distributed ledger 
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framework. Various benefits and analytics based on the information from the 

proposed blockchain are discussed in the next section. 

 

5.5 Advantages of the Proposed Framework 

The proposed framework serves several momentous advantages over the 

conventional database systems. The primary advantages are those which are 

inherited from the concept of blockchain, and secondary advantages are the 

efficient analytics based on the adequate data from the proposed blockchain and 

ease in several decision-making based on that. 

5.5.1 Inherent Advantages of the Blockchain 

Data security is one of the most needed characteristics for military data 

management frameworks where all the data stored is highly confidential. 

Blockchain is knows as intrinsically a very secure technology. The proposed 

framework claims to offer the highest level of security to the registered 

maintenance related data. Data security has the attributes known as the trio of 

confidentiality, integrity and availability. Confidentiality is used to protect data 

from unauthorized disclosure. Integrity is used to prevent users from changing 

data and in a broader sense it refers to overall completeness, consistency, 

accuracy and trustworthiness. Availability guarantees that data is accessible to 

authorized users whenever and wherever required. To provide all the three 

attributes of the data security to the stored military maintenance data, the 

proposed framework provides a logical structure while using the inherent 

characteristics of the blockchain technology. Confidentiality is the prime 

elementary property of data security, which is offered by this framework. The 

present access control policy ensures that the data stored in the blockchain is 

not accessible to any of the unauthorized party. With this policy, only authorized 

nodes can read/write/validate the transaction. Additionally, the predefined 

authentication levels associated with nodes strictly ensures that only the 

respective subset of ledger is available to the respective node. The present 

blockchain enabled framework ensures that the data entered in the form of 

transaction is encrypted, and hence the data modification is a difficult task. As 

this framework is based on consortium or federated blockchain, a single 
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modification in any of the transaction by any of the node is going to disrupt the 

complete blockchain, and hence no one can modify any transaction without 

everybody’s knowledge. At predefined intervals, verified transactions are 

cryptographically sealed with the help of hashing. For example, if maintenance 

personnel make a transaction for a maintenance activity performed at tier I 

workshop, where a particular component is replaced with a cannibalized one. 

Later this transaction in encrypted form is stored in the blockchain after 

successful validation by higher authority at the same tier I workshop and 

inventory manager. Once this encrypted transaction is stored in the blockchain, 

no one can make any modification in this transaction. For any reason, if anyone 

including the higher authority in the organization tries to trace this transaction 

and modify it, the encrypted transaction cannot be decrypted and manipulated. 

If someone tampers this transaction, the complete blockchain will be disrupted. 

With this disruption, the data from the distributed ledger of node with same 

authentication level will be fetched and replace the disrupted ledger in the node. 

With this feature of reproducing data upon the loss of data due to tampering at 

any node, this framework provides great data reliability to the stored 

maintenance data. Again, in this newly fetched ledger, the transaction will 

possess the same data, as it was earlier. Moreover, all the nodes in the network 

will get to know about this attempt. Hence, in this manner the immutability to 

the maintenance data is maintained in the blockchain. Tampering with the whole 

data in all the distributed ledgers simultaneously is practically impossible. In 

this manner the stored data is undisclosed to any unauthorized entity, 

maintaining high-level confidentiality. With the presented access control policy, 

every user of this framework has very limited and monitored access to the actual 

required data. Like, the node with the L1 authentication level, has a very limited 

access to the data which is related to the equipment that has direct connection 

with the same node. This node is not permitted to read the data from other fields 

or workshops and validate any of the maintenance transaction. The presented 

policy provides authenticated monitored access to the third parties involved in 

maintenance and inventory management for analytics purpose. The access to 

these parties is only granted with the necessary validation checks at several 

steps. These third parties are assigned with the authentication level of L3, which 

can only access the data that is on demand filtered by respective L4 node. 
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Hence, the framework resolves the issue of data access to external agencies 

without tampering with security or transparency of the complete network. 

Consequently, with the application of blockchain technology, the confidential 

data stored in the framework is highly secured. 

For accuracy in high level decision-making, data integrity is very 

important. The logical structure of the framework consisting of data entry along 

with necessary validations ensures the consistency and completeness of the data 

registered. When every participant knows that every transaction made is getting 

validated by the corresponding higher authority, which are again monitored / 

validated by their higher authorities; and none of the transactions can be 

modified later due to the immutability in the blockchain; it provides great 

trustworthiness to the data and to every participant irrespective of their position 

in the hierarchy along with the transparency in the whole network. This covers 

all the aforementioned four attributes of data integrity, which is served to the 

stored crucial military maintenance data. Distributed ledger is one of the core 

characteristics of blockchain technology. By integrating the several 

authentication levels in the access control policy with the distributed ledger, this 

framework ensures that the only required data is available to every node 

whenever needed. This brings the third attribute of data security i.e., data 

availability. 

5.5.2 Analytical Advantage of the Blockchain 

Several characteristics of blockchain technology used in this framework 

like distributed ledger, smart contracts, data immutability, etc. make the 

analytics smoother and enhances the accuracy in estimations resulting in 

improved decision-making. In this section, several pragmatic analytics based on 

the data from the proposed blockchain and decisions based on that are discussed. 

The first and foremost advantage of the developed blockchain enabled 

framework is that it enhances the applicability of all the developed approaches 

in the scope of this thesis by guaranteeing the availability of required data from 

a quality as well as quantity viewpoint.  The proposed framework is capable of 

maintaining the maintenance data with high granularity and hence, able to 

provide the maintenance data very accurately. The entries in the blockchain can 
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be queried to get information like the installed date and replacement date, along 

with the reason for the replacement. This accuracy surely reflects in the 

estimation of highly critical estimations like degree of repair, fleet availability, 

mission readiness, etc. Certain policy decisions for maintenance management, 

spare management or crew management can be taken with higher confidence 

with the available accurate maintenance data. Blockchain enables the user to 

use this data at particular nodes with great security. Because the maintenance 

data registered is validated at every step, the framework brings enhanced 

accuracy in the estimation. For the military equipment where the degree of 

restoration, which indicates the effect of any repair on the age of the equipment 

plays a vital role, improved estimations and their availability at required 

multiple nodes enhances the quality of overall maintenance planning. Because 

the maintenance actions are performed at different locations by different 

maintenance personnel and authorities, having the accurate estimates like 

degree of restoration wherever required (using distributed ledgers) helps in 

planning the maintenance efficiently. As the framework helps in estimating TTF 

with great accuracy, several OEM specified life estimates like Mean Time to 

Failure (MTTF) or Mean Time between Failure (MTBF) can be estimated and 

compared with the expected range, and corresponding measures can be taken. 

With these accurately estimated metrics, maintenance planning becomes more 

effective. 

This framework enables the user to escalate several maintenance 

management related issues to higher authorities. However, these escalations 

indicate irregularities in the workflow. In order to quantify these irregularities, 

this framework with the help of some programmed counters makes a provision 

for recording the number of events where maintenance issues have been 

escalated to the HQ. Several other important analytics-based data driven 

decision-making in a more accurate manner is possible with the use of this 

framework. Although there are numerous analytical decision-making queries 

which this blockchain can answer, for example some of those analytical queries 

are mentioned here.  

• What percentage of the time are the MBTs dispatched back after maintenance 

within the expected duration? 



159 

 

• After overhaul, in how many MBTs new engines are installed? 

• How many systems / Components are replaced with cannibalized spares?  

• How many times was the Inventory unable to provide the required spares? 

• Are there any cases of delay and conflict in validation by the workshop 

authorities? 

• Does the Mean Time to Repair - (MTTR) (for the specific component) matches 

with organizational policy? (Based on Maintenance duration recorded in the 

maintenance data manager). 

 

5.6 Summary  

With this research, a novel attempt is made to introduce blockchain 

technology to maintenance data management in military organizations. The 

framework presented here is a tool to assist military organizations in recording 

their equipment failure and maintenance data with the desired granularity, 

accuracy, and punctuality. Developed framework will solve the issue of scarcity 

of accurate maintenance data, resulting in enhanced accuracy in crucial 

estimations like mission reliability, thereby improving war readiness and 

sustainability estimations of military organizations. While this framework 

attempts to resolve the issue of traceability of equipment at different levels, it 

makes the maintenance data more potent.  

In addition, the framework delivers several inherent advantages of the 

blockchain technology, such as data integrity to military maintenance 

management, along with bringing transparency and trust to the organization. 

The selection of a federated blockchain allows only a few authenticated nodes 

to access the data and also addresses third-party involvement problems by 

providing multiple authentication levels to the nodes in the network, hence 

resolving the problem of data sharing and security across the network. By this 

approach, the framework allows third-party vendors or OEMs to run their 

analytics on the actual data without having actual access to the critical military 

data. The proposed framework attempts to encompass the viewpoint of almost 

every actor in the military maintenance scenario. This work considers seven 
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actors in the MBTs’ representative maintenance scenario. The roles of each 

actor in maintenance and interaction in the maintenance scenarios are 

comprehensively discussed for the proposed blockchain framework. The use of 

smart contracts for validation with minimized human intervention is presented 

in this study. Here only one smart contract is presented; there is scope for 

finding the situations where more smart contracts can be used. The choice of 

PoET as a consensus algorithm makes the framework more energy and cost 

efficient. The ability of the proposed framework to provide accurate and 

sufficient maintenance data on distributed ledger will further motivate the 

researchers to develop more accurate and novel approaches for reliability and 

maintenance modeling for military equipment. 

Although the framework utilizes most of the benefits of blockchain 

technology to improve the maintenance management of military equipment, 

there are a few issues associated with this technology in military maintenance 

data management. Most importantly, the package of all the benefits of using 

blockchain technology comes at a high establishment cost. The way this 

technology works, it requires a high number of computation systems 

proportionate to the size of the network. All the nodes are required to work 

simultaneously, where computationally expensive algorithms for consensus and 

encryptions need to run. This, in turn, requires a large amount of computational 

power. The energy costs and their environmental implications cannot be simply 

ignored. A major challenge lies in investing such high costs in establishing such 

frameworks while military organizations migrate to this from their existing 

systems. However, all the high environmental costs associated with this 

technology are linked to its ability to provide the desired high-end security to 

the crucial military data stored in the blockchain. Moreover, in this proposed 

framework, the technological choices are made such that the requirement of 

high computational power is minimized. It is hoped that the future rewards of 

employing this framework in the form of better decision-making with accurately 

and securely stored maintenance data will make this investment all worthwhile. 

Moreover, observing the persistent advancement in the research on blockchain 

technology, it can be believed that this requirement of high establishment cost 

will be reduced in the future. 
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The objective of this chapter is to provide a summary of the work reported in 

this thesis in terms of technological context from defence perspective, research 

contributions, and utility of the research. In the end, limitations and future scope 

of the study are given. 
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6.1 Summary and Conclusions 

The outcomes of the research in this work advances the existing body of 

knowledge by developing a tailored maintenance approach that exactly suits the 

modus operandi of defence forces in attaining and sustaining war readiness by 

ensuring the mission reliability of critical military equipment. Considering the 

pivotal role played by mission reliability in the effective management of war 

readiness, this thesis presents two novel methodologies for mission reliability 

prediction for critical military equipment while incorporating the combined 

effect of essential military-specific factors. With this consideration, a non-trivial 

problem of predicting the mission reliability of critical systems experiencing 

continuous exposure to multiple domain-specific factors is solved. This 

comprehensive consideration enhances the accuracy and contextual relevance 

of the overall analysis. Additionally, this research contributes to the existing 

pool of knowledge by presenting the non-obvious and non-intuitive learnings 

from the numerical experimentations performed on the demonstration case of 

maintenance of a main battle tank – one of the most critical military equipment. 

Finally, this thesis attempts to address the challenging problem of maintenance 

data management in the context of the military maintenance function by 

presenting a blockchain-enabled maintenance management framework for 

military equipment. In general, this research work can be assessed in the 

following contexts. 

6.1.1 Technological context from a defence perspective 

Present research adds the following innovative technical outcomes to the 

body of knowledge, which would be very important from the defence context. 

(A) Mission reliability prediction considering the combined effect of 

essential military-specific factors. 

The present methodology for mission reliability prediction presents a 

comprehensive approach for integrating the effect of all the domain-specific 

factors into mission reliability. This methodology presents a way to capture the 

effect of these domain-specific factors in the form of respective adjustment 

factors integrated with the effective age of the component, which is further used 

in the conditional reliability formulation. The outcomes derived from the 
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numerical investigation conducted using this developed mission reliability 

prediction methodology have confirmed the effectiveness of integrating 

domain-specific factors. The results have shown significant variations in 

mission reliability when transitioning across different scenarios, including 

variations in terrains and operational seasons. This highlights the critical role of 

considering terrain and season factors when predicting mission reliability for 

critical military equipment. Furthermore, the study revealed distinct decreases 

in mission reliability for equipment operating in the same terrain and season but 

across different deployment roles. This underscores the importance of 

accounting for diverse deployment roles in mission reliability predictions for 

critical military equipment, such as MBTs. Such considerations are particularly 

crucial in military contexts where these equipment types often operate in 

specific deployment roles for prolonged periods, especially during peace time. 

 

(B) XGBoost based machine learning methodology for mission reliability 

prediction. 

The machine learning-based methodology presented in this study 

introduces a novel approach for mission reliability prediction, particularly in 

scenarios with computationally complex formulations involving the integration 

of essential military-specific factors. Traditionally, such integrated modeling 

would require extensive computation time, potentially compromising prediction 

accuracy. This methodology contributes to the existing literature by leveraging 

XGBoost, demonstrating its effectiveness in mission reliability prediction and 

expanding its application in reliability engineering domains. The favorable 

outcomes of the model underscore the suitability of XGBoost for similar 

applications in reliability engineering. Additionally, this methodology 

addresses the challenging task of quantifying the precise impact of various 

factors, such as human error in maintenance and the utilization of non-genuine 

spares, on component life and subsequent mission reliability. The numerical 

investigations conducted highlight the dependency of the impact of human error 

in maintenance on the type of spare used, including genuine, refurbished, 

cannibalized, and non-OEM options. From a managerial perspective, the 
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findings strongly discourage the use of non-OEM spares in environments where 

human error during maintenance is prevalent due to their detrimental effects on 

component life and mission reliability. 

 

(C) Mission reliability based selective maintenance planning approach 

The present approach scientifically addresses how defence forces can 

effectively ensure the mission reliability of their critical military systems in 

order to effectively attain war readiness in a manner that aligns with the distinct 

challenges and complexities of the military landscape. The outcomes of 

numerical investigation using the developed approach provide several crucial 

insights into the effective implementation of the proposed approach. It is found 

that the key metrics for execution of the proposed approach significantly change 

with the change in terrain, season of operation, and deployment role. This 

concludes that the notion of a one-size-fits-all approach proves inadequate in 

the context of military maintenance management. For executing the developed 

approach, analyses need to be made with situation-specific factors derived from 

a mission profile for the deployment. Regarding the choice of higher threshold 

of mission reliability in the context of the present approach, aiming for the 

highest possible threshold of mission reliability may seem intuitive, but the 

results of numerical experimentation shed light on the adverse implications of 

excessively high thresholds on average maintenance costs and planned 

downtime. Although such thresholds may decrease the total number of 

maintenance events over a given time horizon, it is imperative to recognize the 

trade-offs involved and optimize them for each specific scenario. Moreover, the 

selection of allowable deployment delay significantly impacts practical 

readiness levels at the fleet level, requiring careful consideration to avoid 

potential misleading impressions of readiness. While opting for higher values 

may obviously appear to elevate practical readiness levels, it is essential to 

acknowledge the delusional nature of this parameter. While extending the 

duration of allowable deployment delay could notably enhance average 

practical readiness levels, it is crucial to recognize that such an increase may 

create a misleading impression of readiness. Although practical readiness levels 
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may appear inflated on paper, this could lead to challenges during actual 

deployment, requiring more time and potentially resulting in undesirable 

outcomes. The proposed approach not only guarantees fleet readiness but also 

enables fleet-level readiness assessment across various deployment roles and 

equipment fleets, aiding high authority decision-makers in doctrine 

development. Importantly, the present approach ensures equipment readiness 

while surpassing traditional time-based maintenance policies in war readiness 

levels and maintenance cost—a critical factor. 

 

(D) Blockchain enabled maintenance management framework for military 

equipment 

This research is a novel attempt made to introduce blockchain technology to 

maintenance management in military organizations. Blockchain technology is 

found to be a momentous solution to address several military-specific 

challenges causing the several issues in maintenance data management. 

Availing of this framework will solve the issue of scarcity of accurate 

maintenance data, resulting in enhanced accuracy in crucial estimations like 

mission reliability, thereby improving war readiness and sustainability 

estimations of military organizations. 

 

6.1.2 Utility of the research work 

The systematic approaches developed in the scope of the present research will 

help in the following manner: 

1. The mission reliability prediction methodologies enables the decision 

makers in defence forces to predict the mission reliability of their critical 

equipment with enhanced accuracy and contextual relevance. Which can 

be further used to numerous decision making events other than the 

presented approach for war readiness management. 

2. The developed mission reliability prediction methodology has the 

potential to help the users other than in defence domain, where critical 

assets experiences the unique domain specific factors.  
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3. The developed machine learning based methodology for mission 

reliability prediction not only makes the prediction process 

computationally effective, but also opens up newer avenues of using 

machine learning in the domain of reliability engineering especially in 

the domain of human reliability. 

4. Proposed novel mission reliability based selective maintenance 

approach is the first-of-its-kind work that demonstrates the systematic 

management of mission reliability for effective achievement of overall 

war readiness while considering multiple deployment roles, in a cost-

effective manner.    

5. In light of the serious challenges posed by data scarcity, the developed 

blockchain enable framework presents a scientific ready reference to the 

defence organization which are planning to develop some solution to 

circumvent this issue. This ready reference is hoped to enable the user 

with scientifically studied technological choices for development of 

their blockchain framework.  

6. The presented study of alternate methods for probability distribution 

parameter estimation will serve as a comprehensive guide for reliability 

estimation in the industrial scenarios characterized with the absence of 

adequate data.  

7. By harnessing the approaches and insights provided by this study, 

defence organizations can bridge the gap between theoretical concepts 

and practical implementation in the domain of reliability engineering, 

thereby realizing tangible improvements in their overall war readiness. 

 

6.2 Limitations and Future Scope of the study 

The primary focus of this work has been the development of approaches 

to ensure mission reliability and war readiness. Hence, after discussing the 

developed approaches, demonstration cases are presented for a specific type of 

MBT. Given the extensive materiel strength of defence forces worldwide, 

analyzing the implementation of these developed approaches for other types of 

critical equipment would yield further insights. 
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The absence of real data has impeded the analyses within the present 

scope in various aspects. The utilization of actual data in the analyses of the 

developed approaches, instead of expert judgment-based data, may lead to more 

realistic insights. However, it is noteworthy that the approaches and 

methodologies developed have been crafted in a manner such that their behavior 

remains consistent even with the use of real data, ensuring their effectiveness 

and reliability. For instance, due to the lack of data and reliance on a single 

published dataset, certain parameters such as TTR (Time to Repair) variances 

have not been factored in. However, with the inclusion of real-life data, these 

variances would be accounted for, leading to more nuanced and detailed 

insights. 

The application of developed mission reliability based selective 

maintenance approach on the field would result into high levels of war 

readiness, however, the induced change in maintenance patterns would affect 

the current spare parts management systems. The effect of application of the 

developed approaches on the spare parts management including war wastage 

reserves is worth exploring. 

The current approaches focus on managing critical equipment during 

peacetime. Extending these approaches to cover wartime scenarios would be a 

valuable area for exploration. This extension would require integrating casualty 

models with the developed approaches to provide a comprehensive framework 

for managing critical equipment in both peacetime and wartime conditions. 

In the context of the developed maintenance data management 

framework, while blockchain technology offers significant benefits, its 

implementation comes with a high establishment cost due to the need for 

extensive computational systems. All nodes must run computationally intensive 

algorithms simultaneously, leading to considerable energy costs and 

environmental implications. The proposed framework adopts technological 

choices aimed at minimizing the need for extensive computational power. The 

anticipated benefits, such as enhanced decision-making based on accurately and 

securely stored maintenance data, justify this investment. Additionally, given 

the ongoing advancements in blockchain technology research, it is foreseeable 
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that the high establishment costs associated with blockchain implementation 

will decrease over time. 
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Annexure 

System Configuration of MBT: 

Sub-

Assem

bly # 

Sub-

Assemb

ly ID 

Comp

onent 

ID 

Shape 

Parame

ter 

Scale 

paramete

r (hrs) 

Time to 

Replace 

(hrs) 

Cost of 

Replacemen

t (Rs.) 

1 

A 

A1   8 1000000 

2 A2 4.09 630.1 12 2500 

3 A3 5.5 559.8 12 8000 

4 A4 4.75 630.1 16 3500 

5 A5 5.2 715.2 0.5 6000 

6 A6 5.97 577.1 1 8000 

7 A7 5.4 703.8 1 100000 

8 A8 5.7 761.8 16 5000 

9 A9 6.3 3180 2 2700 

10 A10 3 804.4 1 5500 

11 

B 

B1   9 560000 

12 B2 4.42 3079 12 1500 

13 B3 4.56 4919 2 3500 

14 B4 4.56 4919 1 3500 

15 B5 4.56 4919 2 6200 

16 C C1 5.94 6962 10 350000 

17 

D 

D1   6 60000 

18 D2 4.4 477.1 1 14000 

19 D3 5.94 386.7 1 9000 

20 D4 4.84 580 1 2300 

21 D5 4.4 618 1 1000 

22 D6 4.62 4919 1 3000 

23 D7 4.62 628 1 1000 

24 D8 4.62 4919 1 25000 

25 D9 5.94 2320 1 2000 

26 E E1 5.5 1663 9.5 50000 

27 

F 

F1 5.94 8122 9.5 3500 

28 F2 4.4 6361 9 95000 

29 F3 5.94 8122 7.5 23000 

30 F4 2 8304 7 10500 

31 F5 4.59 743.1 7.6 4000 

32 F6 5.94 8122 10 8000 

33 F7 4.62 4697 10.5 20000 

34 F8 4.36 4697 10.5 125000 
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35 F9 4.4 3180 10 18000 

36 F10 4.4 3180 11 35000 

37 
G 

G1 6.52 4570 10 45000 

38 G2 6.52 4570 10 7500 

39 
H 

H1 6.52 4570 10.5 50000 

40 H2 6.52 4570 10.5 8000 

41 
I 

I1 6.52 4570 10 450000 

42 I2 5.94 1531 11 20000 

43 
J 

J1 5.18 4086 10 210000 

44 J2 5.94 1531 10.5 3000 

45 

K 

K1 3.92 3912 10.5 15000 

46 K2 4.71 3818 5 25000 

47 K3 4.62 2608 5.5 5200 

48 K4 4.55 2897 6 55000 

49 K5 4.55 2897 8 500000 

50 

L 

L1 4.27 612 1 3500 

51 L2 4.4 636 2 300000 

52 L3 4.09 482 1 6000 

53 L4 4.53 357 1 9000 

54 L5 2.5 831.5 0.5 900 

55 
M 

M1 5.22 3000 1 12575 

56 M2 5.62 4919 1 2400 

57 

N 

N1 7.48 6116 9.5 65000 

58 N2 6.71 537 0.25 1900 

59 N3 2.1 479 4 1500 

60 

O 

O1 3.6 3060 1 8000 

61 O2 3.2 4455 1 17000 

62 O3 4.7 4162 1.5 30000 

63 O4 2.9 3930 2 21000 

64 O5 5.2 3501 1 9000 
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Cost of replacement of different spares: 

Sub-
Assem
bly # 

Sub-
Assem
bly ID 

Comp
onent 

ID 

Cost of 
Replaceme

nt with 
New 

Genuine 
Spare  

Cost of 
Replaceme

nt with 
Refurbishe

d Spare 

Cost of 
Replaceme

nt with 
Cannibaliz
ed Spare 

Cost of 
Replaceme

nt with 
Non-OEM 

Spare 

1 

A 

A1 1000000 800000 600000 500000 

2 A2 2500 2000 1500 1250 

3 A3 8000 6400 4800 4000 

4 A4 3500 2800 2100 1750 

5 A5 6000 4800 3600 3000 

6 A6 8000 6400 4800 4000 

7 A7 100000 80000 60000 50000 

8 A8 5000 4000 3000 2500 

9 A9 2700 2160 1620 1350 

10 A10 5500 4400 3300 2750 

11 

B 

B1 560000 448000 336000 280000 

12 B2 1500 1200 900 750 

13 B3 3500 2800 2100 1750 

14 B4 3500 2800 2100 1750 

15 B5 6200 4960 3720 3100 

16 C C1 350000 280000 210000 175000 

17 

D 

D1 60000 48000 36000 30000 

18 D2 14000 11200 8400 7000 

19 D3 9000 7200 5400 4500 

20 D4 2300 1840 1380 1150 

21 D5 1000 800 600 500 

22 D6 3000 2400 1800 1500 

23 D7 1000 800 600 500 

24 D8 25000 20000 15000 12500 

25 D9 2000 1600 1200 1000 

26 E E1 50000 40000 30000 25000 

27 

F 

F1 3500 2800 2100 1750 

28 F2 95000 76000 57000 47500 

29 F3 23000 18400 13800 11500 

30 F4 10500 8400 6300 5250 

31 F5 4000 3200 2400 2000 

32 F6 8000 6400 4800 4000 

33 F7 20000 16000 12000 10000 

34 F8 125000 100000 75000 62500 

35 F9 18000 14400 10800 9000 

36 F10 35000 28000 21000 17500 

37 
G 

G1 45000 36000 27000 22500 

38 G2 7500 6000 4500 3750 

39 
H 

H1 50000 40000 30000 25000 

40 H2 8000 6400 4800 4000 
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41 
I 

I1 450000 360000 270000 225000 

42 I2 20000 16000 12000 10000 

43 
J 

J1 210000 168000 126000 105000 

44 J2 3000 2400 1800 1500 

45 

K 

K1 15000 12000 9000 7500 

46 K2 25000 20000 15000 12500 

47 K3 5200 4160 3120 2600 

48 K4 55000 44000 33000 27500 

49 K5 500000 400000 300000 250000 

50 

L 

L1 3500 2800 2100 1750 

51 L2 300000 240000 180000 150000 

52 L3 6000 4800 3600 3000 

53 L4 9000 7200 5400 4500 

54 L5 900 720 540 450 

55 
M 

M1 12575 10060 7545 6287.5 

56 M2 2400 1920 1440 1200 

57 

N 

N1 65000 52000 39000 32500 

58 N2 1900 1520 1140 950 

59 N3 1500 1200 900 750 

60 

O 

O1 8000 6400 4800 4000 

61 O2 17000 13600 10200 8500 

62 O3 30000 24000 18000 15000 

63 O4 21000 16800 12600 10500 

64 O5 9000 7200 5400 4500 
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Phase wise DC and AF for extreme scenarios: 

Sub-
Assembly 

# 

Sub-
Assembly 

ID 

Component 
ID 

𝑫𝑪𝑷𝑵𝒐𝒓𝒎𝒂𝒍
 𝑨𝑭𝑷𝑵𝒐𝒓𝒎𝒂𝒍

 𝑫𝑪𝑷𝑫𝒆𝒔𝒔𝒆𝒓𝒕
 𝑨𝑭𝑷𝑫𝒆𝒔𝒔𝒆𝒓𝒕

 

1 

A 

A1 1 1 1 1 

2 A2 1 1 1 0.7 

3 A3 1 1 1 0.75 

4 A4 1 1 1 0.8 

5 A5 1 1 1 0.9 

6 A6 1 1 1 0.8 

7 A7 1 1 1 1 

8 A8 1 1 1 0.9 

9 A9 1 1 1 0.9 

10 A10 1 1 1 0.7 

11 

B 

B1 1 1 1 1 

12 B2 1 1 1 0.8 

13 B3 1 1 1 1 

14 B4 1 1 1 1 

15 B5 1 1 1 1 

16 C C1 1 1 1 1 

17 

D 

D1 1 1 1 1 

18 D2 1 1 1 0.9 

19 D3 1 1 1 1 

20 D4 1 1 1 1 

21 D5 1 1 1 1 

22 D6 1 1 1 1 

23 D7 1 1 1 0.9 

24 D8 1 1 1 0.9 

25 D9 1 1 1 1 

26 E E1 1 1 1 1 

27 

F 

F1 1 1 1 1 

28 F2 1 1 1 1 

29 F3 1 1 1 1 

30 F4 1 1 1 1 

31 F5 1 1 1 1 

32 F6 1 1 1 1 

33 F7 1 1 1 1 

34 F8 1 1 1 1 

35 F9 1 1 1 1 

36 F10 1 1 1 1 

37 
G 

G1 1 1 1 1 

38 G2 1 1 1 1 

39 
H 

H1 1 1 1 1 

40 H2 1 1 1 1 
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41 
I 

I1 1 1 1 1 

42 I2 1 1 1 1 

43 
J 

J1 1 1 1 1 

44 J2 1 1 1 1 

45 

K 

K1 1 1 1 1 

46 K2 1 1 1 1 

47 K3 1 1 1 1 

48 K4 1 1 1 1 

49 K5 1 1 1 1 

50 

L 

L1 1 1 1 1 

51 L2 1 1 1 1 

52 L3 1 1 1 1 

53 L4 1 1 1 1 

54 L5 1 1 1 1 

55 
M 

M1 1 1 1 1 

56 M2 1 1 1 1 

57 

N 

N1 1 1 1 0.8 

58 N2 1 1 1 0.9 

59 N3 1 1 1 0.9 

60 

O 

O1 1 1 1 1 

61 O2 1 1 1 1 

62 O3 1 1 1 1 

63 O4 1 1 1 1 

64 O5 1 1 1 1 
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