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ABSTRACT

Indoor monitoring is the process of continuous observation and analysis of indoor spaces

using sensors, cameras, and similar sensing deployments. These systems typically monitor:

environmental parameters like temperature, air quality; disaster scenarios like fire, earth-

quakes; and human behaviour such as activities of daily living, unnatural and abnormal

activities, occupancy of spaces, indoor localization, and marked behavioural changes. In-

door monitoring has a wide range of applications in elderly-care, health-care, and in systems

facilitating smart-homes.

The monitoring devices used in indoor monitoring systems largely comprise ambient

sensors, wearable sensors (useful mostly in human monitoring) and vision sensors (typi-

cally cameras). Ambient and wearable sensors for indoor monitoring have limited effec-

tiveness and are constrained largely in terms of performance and convenience respectively.

These constraints can largely be overcome by the use of vision sensors largely comprising

visible cameras. The issue with visible cameras, however, is compromise of privacy in such

indoor spaces. The main objective of this thesis, therefore, is to devise privacy-preserving

mechanisms for indoor monitoring utilizing vision sensors. These mechanisms harness the

benefits of vision sensors in indoor monitoring whilst overcoming the limitations of pri-

vacy preservation. The thesis also conceives the use of appropriate learning algorithms for

analyzing privacy-preserving visual data to enable automated monitoring.

Initially, a vision based fire detection framework for monitoring private spaces whilst

preserving the privacy of occupants is proposed. This is a novel endeavour as no other

approach has looked at the issue of privacy preservation in fire detection with vision sensors.

The framework utilises a Near Infra-Red (NIR) camera to capture images in a manner that

the privacy of occupants is preserved. To confirm that images captured with this camera

do preserve occupants’ privacy, two random user surveys were conducted. For effective

fire detection using these images, a novel system incorporating both spatial and temporal

properties of fire is employed. Experiments were conducted and confirm the superiority of

the proposed framework when compared with existing techniques in literature both in terms

of performance and model size. In addition to this, the lightweight nature of the proposed



system enables its effective use over resource-constrained environments. This is validated

through a real-world prototypical implementation.

Continuing from fire detection, the thesis progresses to monitoring human activities in

indoor space whilst preserving occupants’ privacy. This is of significant utility in applica-

tions like health-care and elderly-care. A robust framework for automatic human activity

recognition is proposed that uses depth sensors that preserve privacy and are cost-effective.

Depth sensors provide two data modalities, namely depth maps and skeleton sequences,

used together for activity recognition. Two novel descriptors, Joint Position Descriptor

(JPD) based on the position of joints; and Bone Angle Descriptor (BAD) based on bone

inclination, are generated from the skeleton sequence data. The descriptors convey both

spatial and temporal information and are scale and view-point invariant. The other set of

data obtained from depth sensors, depth maps, are used along with the descriptors to deal

with the issue of noisy and missing skeleton sequences. The data modalities and descrip-

tors are fused using a two-level fusion strategy for a multi-channel Convolutional Neural

Network (CNN) framework. The proposed system is validated and shown to be superior

to the existing state of the art through comparisons over four widely used public datasets.

A computational complexity analysis of the system confirms its efficacy in real time. A

prototypical implementation of the proposed system further validates its practicability.

Depth sensors and their use in indoor monitoring are effective and are appropriate for

concealing the identity and preserving of an individual. In certain circumstances, however,

this is not enough. Considering a scenario where the occupant of a certain private space (a

room, for instance) is common knowledge; concealing the identity of the individual is not

enough. The need here is preserving the activity privacy of the individual i.e. information on

the activity(ies) that the monitored individual is indulging in. This is a bigger challenge and

requires even coarser granularity as far as the monitored individual’s depiction is concerned.

We endeavour to strike a balance between capturing depth images that do not betray the

activity privacy of the monitored individuals whilst being good enough for deep learning

models to assess their well being. The refinement of existing deep learning models to be

up to this task is discussed in this thesi. In addition to this, a survey over a crowd-sourcing

platform to assess the degree of privacy that people are comfortable with is also included.



Finally experiments are discussed that were conducted to confirm the utility of the proposed

approach and validate its efficacy.
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Chapter 1

Introduction

Monitoring of indoor spaces is imperative given the requirements of safety, security, and

ensuring the well being of occupants of such spaces. The conventional approach to indoor

monitoring is manual with individuals assigned and paid to monitor such spaces round the

clock in shifts. This approach, while effective to an extent, is not commonly practicable

today given the shortage of labour, rising salaries, and issues of intrusion into private spaces.

Technology has come to the rescue and is being widely harnessed today for monitoring

indoor spaces. Advancements in sensor technologies, computational infrastructure, and

affordability of such systems is making them effective and easily accessible.

Such automated indoor monitoring systems typically involve the deployment of sensors

to gather data, and surveillance systems with intelligent algorithms to analyse the data. The

integration of sensing devices and artificial intelligence has enhanced the capabilities of

indoor monitoring systems, allowing for real-time insights and proactive decision-making.

These systems form part of a wide range of applications, including and not limited

to home safety and security (i.e., monitoring fire, earthquake, air-quality) [1–3], elderly-

care through anomaly detection (i.e, detecting a fall of an elderly occupant) [4–6], health

monitoring [7–9], activity recognition [10–12]. A typical use-case of indoor monitoring
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Intelligent Algorithms

Alert to Caregiver/Hospital
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Figure 1.1: Illustration of Indoor Monitoring

system comprising sensor(s) and processing and alert system is shown in Figure 1.1.

An effective indoor monitoring system has two major components: a sensing compo-

nent to gather data and an algorithmic component to analyse the sensed data. The sensing

component comprises a variety of sensors, depending on the specific application and re-

quirement. The sensors used in indoor monitoring are primarily categorized into ambient

sensors, wearable sensors, and vision sensors. Figure 1.2 shows the categorization of the

sensors used for indoor monitoring.

Ambient sensors are deployed all over the monitored space such as on walls, ceil-

ings, floors. These mostly include, environmental sensors (to detect temperature, humid-

ity, smoke, gas) [13], motion sensors (PIR, ultrasonic; to detect movements) [14], iner-

tial sensors (i.e., accelerometer, gyroscope, pressure sensor; to detect relevant movement

paramters) [15, 16], Wi-Fi, Bluetooth, microphones, magnetic reed switches, and so on.

Wearable sensors, on the other hand, are sensors that are worn on the human body. These

include, accelerometers, gyroscopes, pedometers, heart rate monitors, respiration rate sen-

sors, GPS devices, and so on [6, 17, 18]. Wearable sensors are commonly integrated into

smartwatches, fitness trackers, smart clothing, and other wearable devices. They provide
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Figure 1.2: Categories of the sensors utilized in Indoor Monitoring

valuable data for monitoring the health and well-being of individuals.

Another category of sensors used for indoor monitoring are vision sensors and includes,

RGB color cameras (mostly referred to as, visible sensor in this thesis), thermal infrared

cameras, and depth cameras. Of these, color cameras [10, 19, 20] are extensively used in

literature for monitoring as part of various applications and are proven to be superior in

terms of accuracy and response time.

Thermal cameras work on the principle of temperature and capture images based on the

amount of heat emitted by objects. Thermal infrared cameras are more commonly used in

security applications such as monitoring military installation, home security, and others ow-

ing mainly to their ‘night vision’ capabilities [21]. Another important application of thermal

cameras is in capturing remote sensing images using unmanned aerial vehicles (UAV) [22].

Depth cameras, on the other hand, work on the principle of distance and capture data based

on the distance of the object from the camera. Depth cameras accurately model the third

dimension (i.e., depth) of the object and are therefore used in applications like industrial

automation, robotics, activity and gesture recognition, and several others [7, 12, 23, 24].

Each of these sensors have limitations, and the choice of the sensor becomes crucial

for specific use-cases. The major limitation associated with ambient sensors are their sub-

3



CHAPTER 1. INTRODUCTION

Figure 1.3: Approaches for privacy preservation in visual data

par precision owing largely to their dependence on environmental factors [25]. Wearable

sensors on the other hand, are accurate but inconvenient as one needs to wear them all the

time. It is also not uncommon for the monitored individual to have forgotten to wear the

sensor [26]. Vision sensors, especially the visible color cameras, overcome the limitations

of accuracy and inconvenience but are plagued by concerns of privacy in indoor locations

[27, 28]. As color cameras capture rich visual representations of the monitored space, there

become infeasible for indoor monitoring especially of private spaces such as bedrooms,

living rooms, offices, toilets, and others. In addition to this, the other major limitation of

color cameras is sensitivity to light; these cannot work effectively in low light conditions

and hence are not suitable for monitoring in the night [29].

Privacy-preserving monitoring is the idea of collecting, sharing, and processing data for

legitimate purpose whilst protecting the privacy (i.e., identity and activity) of the involved

individual. Approaches for privacy-preservation in literature are divided into two categories:

Post-capture privacy also known as Redaction; and Pre-capture privacy also known as In-

tervention [30]. Figure 1.3 shows the various ways of privacy preservation in visual data.

Post-capture privacy preservation, redaction, is the most common approach used in lit-

erature and captures the data first. Subsequently, algorithms process the data and remove
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(a) Post-capture privacy

(b) Pre-capture privacy

Figure 1.4: A high-level depiction of post-capture privacy and pre-capture privacy approaches

privacy sensitive information. Simple post-capture methods include, blurring, pixlation,

masking, down-sampling, or removal of specific portions like human faces from the im-

ages [31, 32]. More complex post-capture methods include, image encryption, encoding,

and adversarial learning to conceal privacy sensitive information [33, 34]. Post-capture pri-

vacy preservation approaches make the data vulnerable to intrusions during transit from the

sensing device or during storage. Furthermore, most post-capture algorithms can be reverse

engineered with modern technologies and infrastructure.

Pre-capture privacy preservation, intervention, on the other hand, is the approach

wherein the sensor does not capture privacy-sensitive information. As sensitive information

is never captured in this approach, it is completely privacy preserving. Common pre-capture

privacy preserving approaches include: the use of sensors like thermal or depth cameras

[35, 36], low resolution cameras, customised cameras [37, 38]. The images captured us-

ing depth or thermal do not preserve privacy completely as person can be identified from

them. Moreover, the use of the images captured through low-resolution camera or down-

sampled images is restricted to localization or motion sensing in the literature. Such sensors
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are not suitable for complex applications like activity monitoring. A pictorial depiction of

post-capture and pre-capture privacy preservation approaches is shown in Figure 1.4.

Privacy preservation is important and essential in assisted living and healthcare facilities

because it upholds the dignity, autonomy, and well-being of residents, who may already

face vulnerabilities. The breach of privacy in many cases may leads to emotional and phys-

iological impact such as loss of security, anxiety, and loss of trust in the residents. The

following case studies effectively convey the need of privacy preservation in assisted living

and healthcare facilities.

[Case 1] Mrs. Elizabeth, an 82-year-old widow with early-stage dementia, moved into

an assisted living facility to receive help with her daily needs. She was a retired teacher,

valued her independence, and had always been private about her personal life. The facility

implemented a new monitoring system with cameras in residents’ rooms to enhance safety.

One day, a video of Mrs. Elizabeth in her room, captured by the monitoring system, was

accidentally accessed by an unauthorized individual. Shortly after, a caregiver inadvertently

discussed Mrs. Elizabeth’s routine loudly in a common area, where other residents and

visitors overheard sensitive information. Mrs. Elizabeth felt humiliated and violated with

this as her private moments were exposed. She became withdrawn, refusing care, and her

trust in the staff and system eroded.

[Case 2] Mr. David, a 78-year-old retired engineer, lived alone in his family home. Due

to his family’s concerns about his safety, they installed a smart home surveillance system,

including indoor and outdoor cameras, to monitor his well-being remotely. The cameras

were intended to provide peace of mind and help the family respond in emergencies. Al-

though, David valued his privacy and cherished his ability to live independently, he agreed

to the installation, believing the cameras would be used only during emergencies. One day,

David began noticing unusual interactions in his daily life. A neighbor mentioned details
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about his activities, such as what he watched on television or what he ate in the dinner last

night. David was confused because he had not shared this information. Upon investigation,

he discovered that his video data had been accessed without his permission. The neigh-

bor, a tech-savvy individual, had exploited a vulnerability in the devices to access David’s

activities.

Subsequent to capture of data, specialised algorithms are harnessed to make sense of the

data and thus enable effective monitoring of the indoor space. The algorithms used for this

purpose are divided into two categories: hand crafted feature based approaches; and deep

learning based approaches. Recent literature mostly utilizes deep learning based approaches

due to their automated feature extraction capabilities and superior accuracy [39, 40]. Algo-

rithmic approaches for monitoring are further also categorized based on spatial and tempo-

ral representations of the images/videos. Spatial representations include extraction of class

specific features from still images or frames of videos; whereas temporal representations

consider the correlation of features in the temporal direction [41]. Most applications (i.e,

activity recognition, fall detection) involving videos perform well when both spatial and

temporal features are considered.

1.1 Motivation

With rapid increase in the number of elderly-care, health-care, and smart homes’ fa-

cilities worldwide, demand for effective indoor monitoring systems are on the rise. These

systems should be capable of monitoring indoor spaces continuously and sending an alert to

concerned persons/organizations in case of a deviation from the normal sequence of events.

As discussed earlier, research in recent times prescribes the use of various types of

sensors (i.e., ambient, wearable, and vision) for such indoor monitoring. Vision sensors, es-

pecially, have been extensively explored for data collection followed by the use of machine
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learning and deep learning algorithms to make sense of the data. These have demonstrably

proven to be effective and accurate. In spite of the superior performance of such vision

sensor based systems, the major concern with them remains the compromise of occupants’

privacy.

The work in this thesis is, therefore, towards devising mechanisms for indoor monitoring

using vision sensors in a manner that the occupants’ privacy is preserved whilst accurately

and effectively monitoring the spaces. Our work mainly focuses on pre-capture privacy by

preventing sensors from capturing sensitive information and using appropriate learning al-

gorithms to analyze privacy-preserving data in an effective manner. The pre-capture privacy

techniques used in our work are different from the existing ones in a way that we modified

the existing sensors rather than just down-sampling the images.

1.2 Thesis Contributions

This section presents significant contributions of this research in effectively utilising the

vision sensors for indoor monitoring in a privacy-preserving manner. In addition to this,

the research focuses on the efficient use of learning algorithms for effective monitoring of

indoor spaces.

1.2.1 Privacy-preserving efficient fire detection system

Indoor fires are becoming nowadays and often unfortunately lead to large causalities,

property damage, and financial losses. The state of the art approaches for fire detection

have major shortcomings related to privacy, cost, and performance. Keeping these factors

in mind, we developed a lightweight, fast, and efficient fire detection system using Convo-

lutional Neural Network and the temporal properties of fire. A strategically modified Near

Infrared camera was utilized for privacy preserving monitoring. Since privacy is subjective
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in nature, an acceptable level of privacy was identified through user surveys. In the absence

of privacy preserving data, a large dataset of privacy preserving images of both fire and

non-fire was created and a comparative analysis of the proposed system with existing state

of the art methods was done. Finally, a prototypical deployment of the proposed system on

a resource constraint device is done to show it‘s applicability in the real-world.

1.2.2 Privacy-preserving human activity recognition system

Monitoring daily activities is an important aspect in elderly-care environments that facil-

itates independent living for the elderly. This includes the detection of abnormal activities

like fall, and can help in other behavioural monitoring. Considering the privacy, conve-

nience, cost, and robustness, we developed an efficient and privacy preserving system for

recognising human activities from depth data and skeleton sequences. A robust activity

recognition system using a multi-stream convolutional neural network is proposed along

with two level fusion strategy. Two novel descriptors are derived to enable scale and view

invariant recognition from skeleton sequence data. A thorough evaluation and a compara-

tive analysis on four public data sets in done to show the efficacy of the proposed system.

Finally, a prototypical implementation and computational complexity analysis is done to

show the suitability of the proposed system in the real-world.

1.2.3 Identity and activity privacy preserving posture recognition sys-

tem

Most of the existing research in privacy-preserving indoor monitoring considers the

identity of monitored individual as the only factor to be preserved. But, in the scenarios

where only, only one or two individuals live in a house, the identity is not that crucial but

the fine-grained activities need to be preserved form the intruders. In this work, we in-
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troduced the concept of activity privacy in indoor monitoring and develop a system using

Convolutional Neural Network and structural characteristics of human body to recognise

body postures. The proposed system, utilizes strategically modified depth camera to cap-

ture the data that preserve both identity and fine-grained activities of the individuals while

the course-grained activities can be classified efficiently. Privacy-accuracy trade-off of the

system is calculated from both human and machine perception using user surveys and deep

learning models, respectively.

1.3 Thesis Organization

The thesis is organized into six chapters including this introductory chapter. A flow

diagram of the chapters is shown in Figure 1.5. Continuing from this chapter, the remainder

of the thesis is structured as follows:

Chapter 2: Literature Review 2

This chapter provides a detailed overview of indoor monitoring and its applications in

assisted living, health care, and smart homes. The review is done with an emphasis on pri-

vacy concerns and their solutions in vision based monitoring. The chapter also provides

a summary of classification algorithms (both Machine Learning and Deep Learning) em-

ployed in indoor monitoring applications.

Chapter 3: Privacy-Preserving Fire Detection System 3

This chapter introduces a privacy-preserving system for detecting indoor fire whilst pre-

serving occupants’ privacy. This include creating a privacy-preserving fire dataset using

modified near-infrared camera and developing a lightweight classification system using spa-

tial and temporal properties of the fire.
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Figure 1.5: Flow diagram of the thesis
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Chapter 4: Privacy-Preserving Human Activity Recognition System 4

This chapter introduces a robust human activity recognition system to recognise daily

activities and detect a deviation from such activities (such a fall, for example) of the elderly

in a manner that preserves their privacy. This includes the development of a multi-stream

convolutional neural network to classify human activities based on the movements of dif-

ferent body part from depth data and skeleton sequences.

Chapter 5: Identity and Activity Privacy-Preserving Posture Recogni-

tion System 5

This chapter introduces the new concept of activity privacy in elderly care applications

and develops an indoor monitoring system to recognise postures and coarse-grained activi-

ties (like, walk, sleep, fall). Fine-grained activities like (eating, drinking, talking on phone,

and the like) are not discerned and thus the activity privacy of the individual is preserved.

Chapter 6: Conclusion & Future Work 6

This chapter comprises discussions and contributions of the thesis. It also includes pos-

sible future directions of work in privacy-preserving indoor monitoring systems, especially

those meant for elderly-care and health-care applications.
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Literature Review

Indoor monitoring comprises tracking and observing conditions, activities, and events

in indoor locations. This involves the monitoring of smart homes, elderly care, health care

facilities, commercial buildings, to name just a few. Indoor monitoring has a wide range of

applications including monitoring for security, environmental parameters, disasters, health-

care, daily activities, and behavioral analysis.

The literature related to indoor monitoring is reviewed along three dimensions, namely:

sensing methodologies; privacy concerns; and algorithmic approaches for monitoring. The

review of sensing methodologies explores studies utilizing various types of sensors, such

as ambient, wearable, and vision-based sensors, in diverse indoor monitoring applications.

Following this, research addressing privacy concerns and privacy-preserving techniques in

indoor monitoring is analyzed, highlighting the importance of privacy and the strategies

commonly employed to ensure it. Next, the commonly used algorithmic approaches includ-

ing machine learning and deep learning algorithms are explored in the context of indoor

monitoring. Finally, the literature on specific applications is reviewed, which include fire

detection systems; human activity recognition systems; and posture recognition systems for

indoor spaces in a privacy-preserving manner.
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2.1 Sensing Methodologies for Indoor Monitoring

Researchers have explored the working of sensors along three main categories: wearable

sensors; ambient sensors; and vision sensors.

Wearable sensors are typically lightweight sensors worn by individuals on their bodies

to collect data on their activities and/or the environment. Wearable sensors may be deployed

on various locations of the individuals body such as fingers, wrists, arms, thighs, neck, head,

shoes, and clothing. Sensors of these kinds include accelerometers, gyroscopes, oximeters,

thermometers, pressure sensors, electrocardiograms (ECG or EKG) sensors, electrodermal

activity (EDA) sensors, among others. Authors in [18] review the use of wearable sen-

sors like accelerometers and gyroscopes to detect human motion and as part of activity

recognition systems. The review also include the use of EEG and EMG sensors for sleep

monitoring and gesture recognition, respectively. Another study in [42] reviews the use of

wearable sensors in health monitoring. This includes the use of pressure sensors for pulse

and blood pressure monitoring, ECG sensors for heart disease monitoring, EEG sensors

for brain diseases, GCM sensors for glucose monitoring, optical sensors for blood pressure

monitoring, and so on. Recent studies in [43, 44] present the use of electro-mechanical sen-

sors (like pressure sensor, strain sensor, tactile sensors) in human activity monitoring, health

monitoring, tactile perception. [45] discusses the use of EEG and ECG sensors for mental

health monitoring. Another study in [46] presents the use of wearable sensors in security

applications like person identification. Studies in [6, 47] discuss the use of wearable sensors

like accelerometer and gyroscopes in human safety applications like fall detection.

Ambient sensors are sensors deployed within the monitored space on walls, roof, gates,

furniture, and so on. These include environmental sensors like temperature sensors, humid-

ity sensors, gas sensors, sound sensors, motion sensors, among others. Studies in [14, 48]
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discuss indoor localization approaches using various types of sensors such as wi-fi, blue-

tooth, RFID, LED light sensors, ultrasonic sensors, acoustic sensors, radar sensors, IR

arrays. Similarly [44] discusses the use of sensors for human activity recognition in in-

door spaces. Another interesting study presents the use of various gas sensors [13] for air

quality monitoring and various sensors [49] for environmental monitoring in indoor spaces.

[50, 51] presents the use of gas sensors in fire detection. Approaches for health monitoring

using ambient sensors are explored in [52].

Vision sensors play an important role in indoor monitoring. These sensors capture vi-

sual data such as videos/images from the monitored space and provide information about

the scene. Commonly used vision sensor are visible (color) camera, infrared thermal cam-

era, and depth camera. A study in [53] reviews surveillance approaches based on vision

sensors for varied applications such as person identification, activity recognition, abnor-

mal/suspicious activity detection, safety applications like fall detection, security applica-

tions, and others. [54, 55] explores approaches for detecting abnormal events like violence,

robbery, falls, both indoor and outdoor. Approaches for fire detection using vision sensors

are extensively explored in [1, 56–58]. The authors in [59–63] review the approaches for

human activity recognition using various kinds of vision sensors.

2.2 Privacy Concern in Indoor Monitoring

Privacy concerns in indoor monitoring revolve around the potential invasion of per-

sonal space, the collection of sensitive information, and the risk of unauthorized access

to recorded data. Indoor monitoring systems, such as CCTV cameras or smart sensors, can

intrude into an individuals’ private spaces, such as homes, workplaces, or commercial es-

tablishments. It may inadvertently capture sensitive information about individuals, such as

their identity information, activities, and/or personal interactions. This invasion of privacy
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can lead to discomfort and may violate individuals’ rights to solitude and confidentiality.

Without proper safeguards, this information could potentially be used to track individuals

and even cause harm to them.

Studies in [64, 65] consider privacy invasion as one of the prominent barriers in large-

scale adoption of indoor monitoring systems in smart homes or indoor spaces. The study in

[66] conducted a survey of the elderly and questioned them on their willingness to permit

installion of surveillance systems in their homes. The survey concluded that along with fi-

nancial cost, invasion of privacy was marked as a major concern with installing surveillance

systems. Authors in [67] conducted surveys to understand the need of privacy in indoor

monitoring. This survey discovered multiple reasons to justify the preservation of privacy

of the elderly. [68] explores the legal compliance factors related to an individual’s privacy.

The findings of this work emphasize the importance of ensuring privacy of sensitive infor-

mation in accordance with the relevant laws and regulations.

As compared to other sensing methodologies, vision sensor based (especially visible

sensor) monitoring approaches raise serious privacy concerns due to their intrusive nature

and the potential for collecting sensitive information about individuals and surrounding. The

sensitive information may include facial features, body features, bio-metric data, personal

activities, surrounding objects, and so on. Several researchers highlighted this issue of

privacy invasion [26, 31, 37, 69, 70] in visible sensor based approaches.

Considering the importance of privacy in indoor monitoring, privacy preservation and

studies related to it have gained prominence. Approaches for privacy preservation in liter-

ature fall into two categories, namely: post-capture privacy also known as redaction; and

pre-capture privacy also known as intervention [30].

Post-capture privacy, as the name suggests, includes methods to hide sensitive informa-

tion (such as images of person’s face, body parts, and other identifiable information) after
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capturing the data. The studies in [31, 32, 71, 72] review various approaches for post-capture

privacy in the data captured with vision sensors (i.e. images or videos). A few common ap-

proaches include blurring [73], pixelation, masking, scrambling, removal of the human face

or body parts from the captured images [? ? ]. Encryption and down-sampling [74–76] of

the images are other commonly used approaches in the literature to preserve privacy. Recent

literature [33, 34, 77] explores the use of adversarial learning to conceal privacy sensitive

information in images.

Pre-capture privacy, on the other hand, includes mechanisms to ensure that the sensing

device captures data in such a way that sensitive information is excluded. Studies in this

direction use various categories of vision sensors to preserve the privacy of individuals in

monitored indoor spaces. The approaches in [35, 36, 78, 79] make use of depth or thermal

sensors for monitoring indoor spaces in a privacy-preserving manner. This becomes possible

owing to the relatively less intrusive nature of such vision sensors thanks mainly to the

lack of color and texture information. Certain other approaches use low-resolution sensors

[37, 80–82] or modified sensors [38] to capture privacy-preserving images/videos.

Enhanced privacy often comes at the cost of reduced accuracy, work in [83] emphasizes

this fact and explores the effects of different privacy-preservation methods on the perfor-

mance of the system.

2.3 Algorithmic Approaches for Vision Based Monitoring

Vision-based monitoring relies on a variety of algorithmic approaches to analyze and

interpret visual data. These approaches can be categorized into traditional hand-crafted

feature based techniques, and modern deep learning based methods [61]. Furthermore, the

approaches are also categorized based on spatial representation in the case of static images

and/or temporal representation in the case of videos, or a combination of both.
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Hand-crafted feature based techniques comprise three modules: region of interest (ROI)

identification; feature extraction; and classification [39, 40]. Background subtraction, tem-

poral differencing, color-based segmentation, contour-based segmentation, and optical flow

analysis are the commonly used techniques for ROI identification and tracking in the tempo-

ral domain [84–86]. Methods involved in feature extraction include Scale-Invariant Feature

Transform (SIFT) [86], Histogram of Gradient (HOG) , Histogram of Flow (HOF) [63], and

Local Binary Pattern (LBP) [23] from individual frames [84, 87] or the images representing

the video clips such as Motion History Image (MHI), Motion Energy Image (MEI), Depth

Motion Map (DMM) [88], and others. Feature representation methods such as dictionary

learning or Bayesian networks are popularly used to combine the features extracted from

individual frames of the videos [61]. Finally, the classification algorithms include Support

Vector Machine (SVM) [89], Logistic regression [90], Extreme Learning Machine [91],

K-means clustering [92], neural networks [93], and several others [61, 84, 87]. Commonly

used methods for temporal modeling include Hidden Markov Model (HMM), wavelet trans-

form, optical flow analysis in video sequences [1, 39, 87].

Hand-crafted feature based approaches used in vision based system are somewhat com-

plicated and require significant human expertise and efforts. Hence, the selection of algo-

rithms used in each module, especially feature extraction, becomes critical and is problem

dependant [40, 41]. Deep learning based approaches reduce human intervention by taking

the visual data directly as input and appropriately processing it.

Deep learning approaches used in vision-based monitoring systems commonly in-

clude Convolutional Neural Networks (CNN) [94–96], Recurrent Neural Networks (RNN),

and Graph Neural Networks (GNN) [39, 61]. 2D-CNNs are most popularly used either

as feature extractors or classifiers due to their automatic feature extraction capabilities

[40, 41, 87]. Other works employ 3D-CNNs for classification in video clips considering the

18



CHAPTER 2. LITERATURE REVIEW

temporal correlation of different frames of the videos [39, 40]. GNN based unsupervised

learning approaches are explored for their use in pose estimation and activity classification

in videos and/or skeleton data [29, 97]. RNN based models, such as Long Short Term Mem-

ory (LSTM) are capable of learning dependencies in sequential data and are extensively used

for feature integration in the temporal domain [7, 41, 61, 98, 99].

2.4 Indoor Fire Monitoring System

Indoor fires, as discussed in the previous chapter, unfortunately lead to some of the

worst disasters affecting human livelihood and economies. This leads to the need of auto-

mated fire detection systems and many researchers explored this. Literature in this area is

reviewed along the following two dimensions: literature on sensing devices; and literature

on algorithmic techniques to assess the sensed parameters.

The more common sensor-based fire detection systems’ performance is adversely af-

fected by limitations of the sensors [56] and these often result in false alarms. Vision-based

fire detection systems, on the other hand, perform better in terms of accuracy and are widely

researched. Visible color image cameras [85][1] are increasingly being used for fire detec-

tion in both indoor and outdoor spaces. Infrared based cameras have proven most suitable

for fire detection as a large amount of infrared energy emanates from fire. IR cameras are

extensively used in satellites and/or Unmanned Aerial Vehicles (UAVs) [22][58] for for-

est/outdoor fire detection. It is now a proven fact that infrared cameras are more accurate

in fire detection. In spite of this, IR cameras are seldom used for fire detection in indoor

spaces owing to the high cost of such cameras.

The performance of fire detection systems are commonly augmented with focused algo-

rithms that make better sense of the collected data. Classification techniques used in tradi-

tional vision-based fire detection techniques mostly comprise three major steps: 1) fire re-
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gion identification; 2) feature extraction; and 3) classification. There are several approaches

to accomplish the first step: segmentation based on color or brightness [1][22][58] in still

images, and background subtraction and/or frame differencing [85][100],[86] in videos are

the popular approaches for fire region identification. Various kinds of features such as color

features [85][1], motion features using optical flow analysis [93][22], flame centroid motion

[1][86], and shape based features such as variations in flame shape, boundary roughness

[85][1][58], key points features using SIFT descriptor [86], and the like are extracted. The

last step comprises classifying the identified regions as fire or non-fire based on the features

extracted in the previous step. Frameworks in [85][1][58] utilize the decision rules based

approaches. Machine learning techniques such as Neural Network [93], Logistic Regres-

sion [100], Support Vector Machine [86] [92], K-mean clustering [92], and others are also

employed in various endeavours.

Convolutional Neural Network (CNN) has emerged as a popular technique for object

detection and classification in images mainly due to its automatic feature extraction capa-

bility that reduces human intervention to a minimum. The superiority of CNN in image

classification led to the development of several fire detection models around it over the past

few years. Approaches have been proposed by modifying existing CNN models or by de-

veloping new ones from scratch. [101] proposes a 9-layer CNN architecture from scratch

for fire and smoke detection in videos. The model is trained on a small dataset and achieves

superior performance. A CNN model based on the Xception network is proposed in [94]

wherein the network is trained using an infrared image dataset of forest fires. The work also

proposes a fire detection segmentation approach employing the UNet architecture. [102]

proposes a fire detection framework based on deep learning models such as Faster-CNN, R-

FCN, SSD and YOLO. These models are trained via transfer learning using relatively small

datasets of around 15, 000 images and achieve good performance. An endeavour that uses
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Faster R-CNN and SVM is proposed in [95] in which R-CNN is used to detect regions of fire

within images and subsequently the VLAD representation vectors of the detected regions

are classified using SVM. The model is trained on a very small dataset of 550 images and

achieves comparable performance. Khan Muhammad et al. propose fire detection models

[20] [103][104] based on MobileNet, SqueezeNet, and GoogleNet respectively. All these

models employ pre-trained weights on the well-known Imagenet dataset, followed by fine-

tuning of the fire dataset. The models are trained with a large number of labeled images and

achieve better accuracy than other state of the art methods. Efforts towards reducing the size

of the network are made in [105] and [106] to make them work in resource-constrained en-

vironments. In [107] and [98], fire detection frameworks are proposed using combinations

of CNN and LSTM to utilize the temporal property of fire. A hybrid approach combining

convolutional neural network with genetic algorithms is proposed in [108] to cater to a more

generic scenario. The technique can readily be customised for fire detection.

2.5 Indoor Human Monitoring System

Monitoring of individual’s activities especially in elderly care or health care is another

prominent area where researchers explored automated human activity recognition or posture

recognition systems using verity of sensors. As discussed in previous section, the vision

sensor (especially visible camera) based systems raise a serious privacy concern, due to

which many researchers explored ToF imaging depth sensor based systems due to their

insensitivity to light and privacy unobtrusiveness.

2.5.1 Human Activity Recognition Using Depth Sensors

Research on Human Activity Recognition (HAR) using depth vision sensors in litera-

ture can be divided into three parts: HAR using depth data; HAR using skeleton sequence
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data; and HAR using a combination of the two. Most recent techniques on human activ-

ity recognition that use depth data are based on Depth Motion Maps (DMM) [62, 88, 109]

from multiple (mainly front, side, and top) views. Other approaches [110, 111] that use

depth data are based on feature extraction from depth frames in sequence, followed by their

concatenation in the time domain.

Approaches based on skeleton joint information primarily use the position of joints

[112], angles between joints [91, 113], and/or a combination of the two [96, 114] for both

spatial and temporal features. [112] uses the distance of joints from the floor. [91] utilizes

the angles between selected joint triplets within frames and between pairs of joints in con-

secutive frames for spatial and temporal features. The distance between each pair of joints

is combined with the joints’ angles with the principle axes in [114], and the angle between

joints triplets in [96]. Other approaches in [24, 115] involve arranging skeleton sequences

in a 3D matrix and using these for feature extraction. Another approach proposes a solution

based on graph theory by representing the skeleton joint information on graphs. A graph is

created by concatenating the skeletons from all the frames in a skeleton sequence in [29].

Certain approaches use a combination of skeleton and depth data for human activity

recognition. [12, 62] combine DMMs derived from depth data with angles obtained from

spherical coordinates systems. Similarly, other approaches combine DMMs with the angle

between joint segments in consecutive frames (joint segments are obtained by summing up

joints in each body part) [63]. In [116], the surface normal vector for each body part is

calculated in the depth maps and concatenated in the temporal domain. The skeleton joints

are used to segment the body parts in the depth maps.

Algorithmic approaches used for human activity recognition can be categorized in two

ways: hand-crafted feature based, and deep learning based. The techniques used in hand-

crafted feature based approaches mostly comprise two major steps: 1) feature extraction and
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representation; 2) classification. In systems based on depth maps, the approaches for feature

extraction include Histogram of Gradients (HOG) [62, 63, 109], Local Binary Pattern (LBP)

[23], Space-Time Auto Correlation of Gredients (STACOG) [88], and wavelet decomposi-

tion [117]. The features in skeleton based techniques comprise the distance between joints

[96, 118], the angles between joints [12, 62, 63, 91, 96], and the original joint positions

[114]. Classification algorithms like Support Vector Machine (SVM)[63, 89, 115, 116, 119],

Extreme Learning Machine (ELM) [23, 62, 91], Logistic Regression (LR) [90, 111], and

Collaborative Representation Classifier (CRC) [88] are commonly used for human activity

recognition.

Convolutional Neural Networks (CNN), a class of deep learning, have emerged as an

effective object detection and classification technique that are demonstrably superior in im-

age classification. [12, 96, 114] utilize 2D CNN models for activity classification from the

skeleton or depth based images. Another deep neural network class is Recurrent Neural

Networks (RNN), which model information in the time domain. These networks, especially

Long Short Term Memory (LSTM), are suitable for video activity recognition systems and

work by processing information frame by frame. An approach in [7] employs LSTM based

architectures for activity classification. Other approaches in [24, 99, 120] involve a combi-

nation of CNN and LSTM for exploiting spatial and temporal features. A special class of

CNN, namely Graph Convolutional Network (GCN), is utilized in [29] involving skeleton

based graphs.

2.5.2 Identity and activity privacy preserving posture recognition sys-

tem

Although, the depth sensors are less privacy invasive as compared to the visible color

sensors due to lack of color and texture information, but the depth sensors also invade the

23



CHAPTER 2. LITERATURE REVIEW

privacy of individuals and are not completely suitable for privacy-preserving indoor moni-

toring.

2.5.2.1 Privacy in Depth Data

Most of the work in literature considered depth data privacy-preserving as the texture

and color information in depth domain is missing which make it difficult to identify the

individuals in depth images. Work in [121] generated Depth Motion Maps (DMM) from

depth video clips and utilize them for elderly fall detection. Authors consider the depth

videos privacy-preserving and develop a fall detection system using with CNN and ELM.

Another work in [4] developed a fall detection system using top mounted depth sensors and

considered top-view depth images as privacy preserving. Authors in [79, 122, 123] utilized

depth sensors for action recognition in indoor spaces claiming the depth clips as privacy-

preserving. Another interesting work in [124], utilized depth sensors for slipping detection

of elderly in bathroom, which is extremely private space. In healthcare application, an in-

bed pose monitoring system [35] is developed for monitoring patients activities using depth

sensors considering them privacy preserving.

While majority approaches considered depth data privacy-preserving, there are studies

questions the privacy of the depth images. A recent study in [125], claims that the depth

images are not fully privacy-preserving and validated this claim by performing face recog-

nition in depth images with 98% accuracy. Works in [76, 82] also question the privacy of

depth images and proposed solutions using low-scale depth images for pose estimation and

action recognition, respectively. These work assumed that down-sampling the depth images

to significantly smaller dimensions can preserve the identity of individuals. Another work in

[126] also made the same assumption and utilize severely down-sampled depth images for

human pose detection and tracking inside smart room. Author in [38], considered depth im-
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ages privacy-invasive and develop a modified depth sensor for capturing privacy-preserving

images to preserve individual’s identity. Some other works in [127–129] employ depth data

based face recognition and each work achieved more than 85% accuracy. These observa-

tions concludes that the depth images do not preserve identity privacy and are not suitable

for privacy-preserving indoor monitoring.

2.5.2.2 Privacy Preservation in Vision Sensor based Systems

The vision sensor based approaches those consider individual’s privacy can be cate-

gorized into two categories; post-capture privacy and pre-capture privacy. In post-capture

privacy, the idea is to hide the privacy sensitive information (i.e., human faces) using vari-

ous methods after capturing the images. The simplest approaches for post-capture privacy

includes down-sampling [76, 82], blurring human faces [73], and pixelation/removal of hu-

man region [130]. Another category of approaches used in post-capture privacy are based

on encryption [74, 75, 75, 131] to change the visual representation of the images. The

most recent approaches used in post-capture privacy use adversarial learning [33, 34, 77] to

conceal identity oriented information from images.

Pre-capture privacy, as name suggests, enable sensor to capture data without privacy sen-

sitive information. One of very few work in [126] utilize an sparse array of depth sensors

for human tracking in indoor spaces. Another approach in [80] also utilize a low resolution

depth camera to capture privacy-preserving data to locate elderly individual inside home. A

very interesting study in [38] presents a modified depth sensor to capture privacy preserv-

ing data. Though, all the approaches discussed above consider privacy concern focus on

preserving individual’s identity based of facial recognition.
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2.5.2.3 Posture Recognition

Human posture recognition is crucial part of coarse-grained daily activities (i.e., sleep-

ing, walking, running, exercising) and the abnormal activities like fall. Many researchers

developed posture recognition systems, we discuss the posture recognition systems using

vision sensors in this section. A simplistic approach in [132] exploit the height of human

body as a feature to classify different body postures using various decision rules. Some

other approaches in [5, 133, 134] employ some complex machine learning techniques such

as Neural Network and Support Vector Machine to classify human postures with LBP based

features and projection histogram features, respectively. Other recent approach in [135] uti-

lized CNN based classifier to recognised human postures from low scale infrared image.

A work in [136] employ a multi-channel CNN model for posture recognition using a com-

bination of RGB and depth images. Applications of posture recognition in yoga and sport

activities are explored in [137, 138].
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Chapter 3

Privacy-Preserving Indoor Fire

Detection System

3.1 Introduction

Fire is unfortunately one of the primary sources of calamities on our planet. Casual-

ties, both human and property, are large in fire based catastrophes. According to a report

by the US Fire Administration [139], around 13 million fire incidents were reported per

year in the five year period between 2013 and 2017 in the USA alone and resulted in 3316

deaths, 15370 injuries. To mitigate the damage from such incidents, several endeavours are

directed towards developing effective frameworks for fire detection. A fire detection frame-

work should ideally identify a fire in varied environments (such as residential, commercial,

outdoor, forest) as quickly as possible to minimise damage.

The performance of a fire detection system is broadly dependent on two factors: a sens-

ing device; and an algorithmic mechanism to assess the sensed parameters. Various kinds

of sensors are employed in literature to detect fires effectively. These include and are not

limited to heat, light, humidity, and gas sensors. The major limitations of such sensor based

systems [56] include frequent false alarms and a high response time. To overcome these,
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work in the more recent past is directed towards utilising vision-based sensors [93][85] for

fire detection wherein images and/or videos across spectral bands such as visible, infrared,

and multi-spectral are used. Vision-based sensors have superior classification accuracy and

smaller response-time. Within the spectrum of vision-based sensors, infrared systems are

the most effective for fire detection owing to their unique property of depiction wherein

‘hotter objects are brighter’.

In spite of the advantages of vision-based fire detection systems, the big drawback of

these systems that make them impracticable for most residential and office spaces is the

intrusion on occupants’ privacy [68]. While visible color image-based systems are not at all

suitable for monitoring private spaces, even infrared image-based systems that do ‘fuzzify’

images to an extent are unacceptable. In addition to this, the high costs of thermal IR cam-

eras is another important limiting factor in their use for regular monitoring. Two major

directions of work towards privacy preservation are available in literature, these are: Inter-

vention (preventing the camera from capturing private information); and Image redaction

(hiding sensitive information such as human faces in captured images).

Complementing sensors in their bid to effectively detect fires are algorithms of various

kinds that draw conclusions from the parameters sensed. Most algorithms used in vision-

based fire detection systems, however, are complicated and require considerable human

expertise and effort. In this context, Convolutional Neural Networks (CNN) are emerging

as a powerful approach for object detection in images that significantly reduce human in-

tervention by taking direct images as input instead of hand-engineered features. There are

several approaches that utilise CNN [20][105] to detect fire using images/videos and are

demonstrably superior to other machine learning approaches.

In this chapter, a vision-based privacy-preserving efficient fire detection system based

on both spatial and temporal properties of fire is proposed for private spaces in residential
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and commercial establishments. In addition to efficiently detecting fires whilst preserving

privacy, the system reduces false alarms drastically as is characteristic of a vision-based

approach. The approach to privacy preservation is of the Intervention kind and employs a

Near Infra-Red (NIR) camera. The NIR camera is employed in a manner that it captures

infrared images with severely reduced visibility and effectively conceals human presence

and activities. The proposed fire detection technique harnesses the high intensity difference

between regions of fire and normal objects in such images to detect fires and simultaneously

preserve privacy. The proposed technique is able to efficiently distinguish such non-fire

images from those of fire.

Another issue with privacy is its subjective nature. An image may be perfectly accept-

able in terms of privacy preservation to one individual and not so much to another. To

address this, a survey comprising individuals across demographics was conducted locally

and globally through personal solicitations and using Amazon Mechanical Turk (AMT).

The results of the survey enabled us to safely identify the ‘level’ of images to use that would

be efficient in fire detection whilst simultaneously preserve occupant privacy.

Given the superiority of CNN in object detection and classification, we developed a

light-weight CNN architecture for exploiting the spatial properties of the images. In addition

to this, the temporal characteristics of fire motion (i.e. fire flame movement) were also

harnessed using continuous frame differencing. An integrated model combining both spatial

and temporal properties is proposed as an effective means of fire detection. In addition to fire

detection capability, the framework is deliberately made light-weight so as to be seamlessly

deployed in remote, resource-constrained locations.

Keeping all these factors: privacy, cost, performance, and resource constraints in mind;

the key contributions of the work in this chapter are as follows:

1. Assessment of an acceptable level of privacy in images by surveying both local and
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global audiences utilising crowd-sourcing services.

2. Development of a lightweight, fast, and efficient fire detection system using CNN and

temporal features.

3. Demonstration of the efficacy of the proposed framework by comparing it with ex-

isting techniques and through a prototypical deployment in a real-world resource-

constrained environment.

The content of this chapter is organised as follows. The proposed methodology including

camera modification, privacy assessment, and the proposed architectures is elucidated in

Section 3.2. A few case-studies demonstrating the utility of the proposed framework in

the real world are included in Section 3.3. Experimental validation of the approach and

deployment in a resource constrained environment are included in Section 3.4. Finally,

Section 3.5 concludes the chapter.

3.2 Proposed Methodology

In this section, the approach proposed is discussed in detail. In an endeavour to capture

images in private spaces without compromising on occupants’ privacy, a vision sensor (a

simple color camera) is modified appropriately. The details of this modification are dis-

cussed first. Subsequently, details of a survey, conducted to ensure that the images captured

by the modified camera are indeed privacy preserving, are discussed. Finally, the efficient

lightweight model proposed to detect fires within these diminished images/videos is de-

scribed. The schematic diagram of the proposed framework is shown in Figure 3.1. In

addition to depicting the steps of the framework, the diagram also shows deployment of the

system in a resource-constrained environment.
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Figure 3.1: Workflow of the proposed Fire Detection System

3.2.1 Camera Modification and Tuning

The approach utilises an NIR camera in a manner that the images captured are of sig-

nificantly reduced visibility and ensure privacy of inhabitants. In our work, we utilize a

modified color camera to capture privacy-preserving images while retaining information

that can distinguish fire flames from other non-fire objects. A Canon SX430 PowerShot

20MP digital camera is used whose cost is around $200. The camera modification was done

in two stages to make it suitable for the proposed work: the first stage of modification in-

volved the conversion of the given color camera into an NIR camera. This stage is required

only if one chooses to use a color camera and may be skipped if one has an NIR camera to

start with; subsequently modifications were done to further diminish the quality of images

captured to effectively preserve occupants’ privacy.

In the first stage of camera modification, the installed IR block filter was removed and re-

placed with an IR pass filter similar to [140] that allows radiations of wavelength above 850

nm (Near IR spectrum) to pass through and blocks light in the visible spectrum. The cost of

this modification worked out to around $70 and included the cost of the filter. The camera

modified in this manner became an NIR camera which can capture the reflected infrared

radiations from objects and works much like a visible camera. The Sun and fire are two
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(a) (b)

Figure 3.2: Differences in captured images: (a) Image using an NIR camera, (b) Image using a Color
Camera

primary sources of infrared radiations, especially near infrared radiations. Tungsten bulbs,

LEDs, quartz halogen lights also emit a small amount of NIR radiations. An NIR camera is

sensitive to all NIR light sources such as fire, sunlight, light bulbs. As it is sensitive to NIR

radiations and less sensitive to visible light, it is a suitable choice for fire detection whilst

preserving occupants’ privacy. This can be seen in the image in Figure 3.2(a) taken by the

developed NIR camera. Figure 3.2(b) is an image taken by a regular color camera of the

same setting at about the same time. The setting is of the evening hours with no sunlight

and no other source of NIR radiations except a small candle. Therefore, nothing is visible

in the first image except the light from the candle.

An NIR camera is sensitive to sunlight, hence objects in images captured by the NIR

camera in daylight, are visible but are not very clear. To further reduce the visibility of such

non-fire objects, the second stage of modification of the camera was done and comprised

placing a thin translucent LDPE (Low-Density PolyEthylene) film before the camera lens.

The image quality depends mainly on the amount of light that passes through the camera

lens, hence the light reaching the lens in the camera is restricted by the LDPE film. Accord-

ing to a technical report [141], the wavelength of light is reciprocal to the refractive index of

the material. Therefore, when light of different wavelengths (i.e., visible and NIR) passes

through the translucent LDPE film, the low wavelength visible light experiences high refrac-

tion in comparison to NIR light. Most NIR light thus reaches the lens while most visible
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Figure 3.3: Images at the 6 privacy levels

light gets lost in refraction. This significantly reduces the visibility of objects. This reduced

visibility is not applicable, however, to NIR light sources such as fire, sunlight (that comes

through windows), light bulbs, LEDs, all of which are visible and easily distinguishable.

As we discuss the utility of NIR cameras in fire detection, it is important to note that

Thermal Infra-Red (TIR) cameras that work by sensing the temperature of objects are also

useful for fire detection tasks. The incapability of such cameras in preserving the privacy of

occupants, however, make them unsuitable for indoor fire detection. TIR cameras are sen-

sitive to the heat from fires and capture these very effectively. These cameras are, however,

also sensitive to the heat emitted by human beings and effectively detect their presence and

activities as well. While this may be a boon in certain circumstances, it is a disadvantage in

indoor fire detection as the privacy of occupants is compromised. TIR cameras are thus not

preferred for this application. In addition to this, TIR cameras in general are more expensive

than NIR cameras and are not ideal for mass adoption and deployment. There are, however,

contradicting claims in this regard with cheaper versions of TIR cameras also available.

3.2.2 Assessment of Privacy levels

As the proposed fire detection system is meant for private spaces, a privacy assessment

exercise was conducted to understand the acceptable degree of privacy in images. Degrees

of Privacy from least private to most private may be classified as: everything is visible in

the image; to nothing is visible. Nothing is visible is the highest degree of privacy. From
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the point of view of privacy preservation, this should be the degree of privacy maintained

when capturing images. The limitation with this, though, is that the classifier being used

to identify fire in such images may not effectively be able to differentiate fire from non-fire

scenes. On the other hand, while working on an image where everything is visible, the

performance of the classifier in fire detection is the best but the privacy of occupants is not

preserved. The solution, therefore, is a level of privacy somewhere in between these two

extremes that enables both precise fire detection and preserves occupants’ privacy. To deter-

mine this optimal level of privacy in images, six privacy levels were identified comprising

images captured by modifying the NIR camera to different extents.

The modifications were done by progressively changing the number of layers of the

LDPE film placed before the camera lens and by varying the shutter speed. The six privacy

levels in decreasing levels of visibility (and consequently increasing levels of privacy) are

as follows:

– L1: Images taken with NIR camera at low shutter speed.

– L2: Images taken with NIR camera at high shutter speed.

– L3: Images taken with NIR camera with a layer of film before camera lens at low

shutter speed.

– L4: Images taken with NIR camera with a layer of film before camera lens at high

shutter speed.

– L5: Images taken with NIR camera with two layers of film before camera lens at low

shutter speed.

– L6: Images taken with NIR camera with two layers of film before camera lens at high

shutter speed.

Images at these six privacy levels for the same scene are shown in Figure 3.3 along

with the reference color image. The decreasing visibility with increasing privacy levels is

34



CHAPTER 3. PRIVACY-PRESERVING INDOOR FIRE DETECTION SYSTEM

Table 3.1: Survey Questionnaire

Q.No. Questions

1 Where, in your opinion, is this picture taken (Kitchen, Bedroom, Living-room, Lab-
oratory, Store-room, or any other location)?

2 What living or non-living objects do you see in the image? (e.g one or tow persons,
one bed, two computers, or any thing else)?

3 If, according to you, the image has one or more human-being(s), what is his/her/their
location? (e.g. Floor, Bed, Sofa, Chair).

4 If, according to you, the image has one or more human-being(s), what is his/her/their
position? (e.g. Standing, Sitting, Lying).

5 If, according to you, the image has one or more human-being(s), what activity or
activities do they seem to be doing? (e.g. Eating, Reading, Talking, Working, Sleep-
ing).

6 Any other comments? (Optional)
Note: What can you see in this image? (If you cannot see anything, please write ’Not
Clear’ as the answer.) In cases that you feel there is more than one human-being in the
image, please provide information for each person separately.

apparent from the figure. To understand the acceptable levels of privacy in images, two

surveys were conducted involving both local and global participants.

In the first survey, 70 participants from various geographical locations, age groups, edu-

cational backgrounds, and occupations were contacted of which we received responses from

50 participants. The second survey was published on Amazon Mechanical Turk (AMT)

where we solicited 50 responses from participants across time zones, age groups, educa-

tional backgrounds, and occupations.

The survey involved showing the participants images captured at various locations such

as Living room, Bedroom, Computer Lab, Storeroom, Hall, among others in varying light

conditions. Fifteen images at different privacy levels (two at Level 1, two at Level 2, two at

Level 3, six at Level 4, two at Level 5, and one at Level 6) were included in the survey. The

images used in the survey were similar to those in Figure 3.3 and are available at following

link: SurveyLink.
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The questions asked in the survey are included in Table 3.1. Responses collected from

both the surveys were analysed to identify the image level optimal for maintaining privacy

as well as providing good discriminating properties for accurate fire detection. In the

analysis, the collected responses were categorized as: correct, incorrect, not clear. The

total number of responses in each category (correct, incorrect, and not clear) was counted

for all images at that level corresponding to each question. The calculations were done as

per Equation (3.1).

8Ix 2 Li

TLiCjQk
=

PX
x=1 RCjQk

(Ix)Pj
C=1

PX
x=1 RCjQk

(Ix)
(3.1)

– i = Six privacy levels.

– j = Three categories (i.e. correct, incorrect, and not clear).

– k = Five questions (i.e. place, #humans, location, position, and activity).

– x = Number of images in survey of level Li.

where Li, Cj , Qk represent the privacy-level[i], category[j], and question[k], respec-

tively. RCjQk
(Ix) is the response to question[k] on image[x] of category[j]. TLiCjQk

is the percentage of total responses in category[j] and privacy-level[i] corresponding to

question[k].

3.2.3 Fire Detection System

The proposed system for fire detection based on deep learning and temporal properties

is presented in this section. It is observed that combining both spatial and temporal features

of images can significantly improve fire detection efficacy.
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Figure 3.4: Spatially-Aware Fire Detection System (SA-FDS)

3.2.3.1 System based on Spatial Properties

To exploit the spatial properties of images, a lightweight convolutional neural network,

namely SA-FDS (Spatially Aware Fire Detection System), is proposed that utilises the fire

module of the well-known SqueezeNet architecture [142]. The Fire module comprises two

layers: squeeze and expand; where the squeeze layer contains only 1x1 convolution filters;

and the expand layer contains a combination of 1x1 and 3x3 convolution filters. The 1x1

filters play a vital role in parameter reduction as they have fewer parameters as compared to

the high dimensional 3x3 filters.

The SA-FDS architecture with ten layers, including three fire modules, is shown in

Figure 3.4. A grayscale input image first goes through a convolution layer with a filter

size of 3x3, followed by the rectified linear unit activation. Subsequent to this, three max-
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pooling layers and fire modules are used in an alternating manner. A 1x1 convolution layer

is applied with ReLU activation, followed by a global average pooling layer. To deal with

model over-fitting, a dropout layer is added after each fire module with dropout ratios: 0.2,

0.2, and 0.5, respectively. Similar to SqueezeNet, the proposed model also does not include

any fully connected layer, and this reduces the number of parameters significantly. Finally, a

softmax layer is placed to produce the probability distribution for both the classes (i.e., Fire

and Non-fire). The Softmax function computes the probability of each class as described in

Equation (3.2).

Pj =
exp (Cj

2)
P2

j=1 exp (Cj
2)
, j = 1, 2 (3.2)

C2 is the output of the Global Average Pooling (GAP) layer and Pj is the probability of

Class j. Here j = 1 denotes fire and j = 2 denotes non-fire. The final output is the class

label corresponding to input image (I) along with the confidence score of the prediction.

The class label is given based on the maximum probability index and is defined by Equation

(3.3).
Class label[I] = argmax

j2{1,2}
(Pj)

Confidence[I] = max
j2{1,2}

(Pj)
(3.3)

The confidence score is the maximum probability corresponding to the class label. As fire

detection is a binary classification problem, the binary cross entropy loss function is utilized

to train the proposed SA-FDS. The binary cross entropy loss is defined in Equation (3.4).

Loss = �
1

N

NX

i=1

yi ⇤ log(pi) + (1� yi) ⇤ log(1� pi) (3.4)

where pi is the probability of class label yi and N is the number of samples.

The proposed SA-FDS framework is an adaption of the SqueezeNet [142] architecture
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with certain modifications to make it light-weight and suitable for a resource constrained

environment. The modifications involve reducing the number of fire modules and the

number of filters within each fire module. This reduces the number of parameters

significantly. In addition to this, pooling layers are added after each fire module to more

quickly down-sample the feature maps and compensate for the reduced number of layers.

A dropout layer is added after each fire module barring the last one to reduce over-fitting.

The size of the input and output in SA-FDS are also different from the original SqueezeNet.

A detailed description of the modifications is given in Appendix (A).

3.2.3.2 Integrated System using Spatial and Temporal Properties

A fire detection system based on convolutional neural networks takes individual im-

ages as input and predicts the image label based on spatial properties only. The continuous

movement of a fire flame is an important feature and is used along with SA-FDS to further

improve performance. Temporal considerations significantly reduce false alarms often trig-

gered by fire shaped ‘non-fire’ objects. In a stationary camera setting, a fire scene changes

very frequently when compared to a non-fire scene because of the movement of the flame(s).

Figure 3.5 shows how the shape of the fire flame changes continuously with time.

Continuous frame differencing that calculates the difference (or similarity) between two

frames is handy in this scenario. The distance between two similar frames is about zero

and this value is high for dissimilar frames as given in Equation (3.6). The Mean Square

Error (MSE) technique [143] is used for frame differencing because of its simplicity and

low time-complexity. We also experimented with the Minkowski distance metric described

in Equation (3.5) with different values of m. We found that Minkowski distance with m = 2

(similar to MSE) is better in terms of performance and/or speed. The results and a detailed
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analysis of these experiments are included in Appendix (A).

Distancem = (
nX

i=1

|Xi � Yi|

m

)

1
m

(3.5)

where X and Y are two n-dimensional data points and m is the order.

The distances between subsequent frames in Figure 3.5 are 127.28, 63.88, and 73.73

respectively. Frame differencing alone is not sufficient for classification as there can be

several other reasons (i.e., light variation, movement due to normal activities) that cause

changes in the scene. The proposed integrated framework, ST-FDS (Spatio-Temporal Fire

Detection System), therefore combines the spatial and temporal aspects respectively of the

Algorithm 3.1 Spatio-Temporal Fire Detection System (ST-FDS)
Input : Video Stream (VS)
Output: Prediction Labels (prediction)

Initialize: Fref  None

foreach k
th frame Ft in VS do

CNN Label, Confidence = SA-FDS(Ft)
if Fref is None then

prediction=CNN Label
else

if Confidence > T1 then
prediction=CNN Label

else

Distance =
1

w.h

w�1X

i=0

h�1X

j=0

[Ft(i, j)� Fref (i, j)]
2

/* where w and h are the width and height of the frame,
respectively. */

if Distance > T2 then
prediction = FIRE

else
prediction = NON-FIRE

/* where T1 and T2 are the thresholds for SA-FDS confidence and
distance between two images, respectively. */

Fref = Ft
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two techniques for increased efficacy. The framework is described in Algorithm (3.1).

Distance = 0, if Ix
.
= Iy

Distance > 0, if Ix 6= Iy

(3.6)

where Ix and Iy are the two images. Distance represents the difference between Ix and Iy.

The video stream is the input to the algorithm. Each frame F (t) of the video stream is

extracted, and its distance dist(t) from the frame captured k time units earlier, F (t � k) is

calculated. Frame F (t) is then fed into a trained SA-FDS model to produce the predicted

image label and confidence score. If the confidence score is below a threshold T1 indicating

that the SA-FDS classifier is not so sure of its prediction; the distance dist(t) is compared

with another threshold T2. If dist(t) is below T2, it implies that the image frames have not

changed significantly and hence the classification is that of ‘non-fire’. Conversely, if dist(t)

is larger than threshold T2, the implication is that the frames have changed as is the nature

of fire and the classification is that of fire. The value of thresholds T1 and T2 are chosen

according to Equation (3.7).

maximize
T12S1,T22S2

A(T1, T2), maximize
T12S1,T22S2

R(T1, T2)

s.t. T1, T2 > 0.
(3.7)

where A and R are functions that denote Accuracy and Recall. These depend on the

variables T1 and T2 that represent the thresholds. S1={s10,s11,s12,......,s1m} and S2={s20,

s21, s22, .......,s2n} are the domains of T1 and T2, respectively.

3.3 Case Studies

The following case studies effectively convey the utility of the proposed framework in

the domain of fire detection in indoor spaces.
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Frame at time ’t’
F(t)

Frame at time ’t+k’
F(t+k)

Frame at time ’t+2k’
F(t+2k)

Frame at time ’t+3k’
F(t+3k)

Figure 3.5: Movement of a fire flame in contiguous video frames

[Case I] Jane is working in the kitchen of her 17th floor apartment. Her apartment is

endowed with good quality smoke detectors. It has been a while and Jane decides to cook

fried eggs today. While they are delicious, cooking them involves heating them for several

minutes on a frying pan. She starts cooking them and the inevitable smoke starts escaping

from the frying pan. Before she realises it, her smoke detector is triggered and sets off an

alarm. Within a few seconds the alarm triggers other alarms throughout the sky-scraper and

at least 500 people rush down the stairs because of what was unfortunately a false alarm.

[Case 2] John and Harry, as most others of their age, are easy-going, carefree teenagers. It

is their lucky day as John’s parents are travelling to another city. They decide to meet up at

John’s apartment and have some fun. They decide to build a small ‘bonfire’ in the balcony

with some pizza, pop, and their favourite movie. They are having a good time. They build

the fire and it burns smoothly with very little smoke of which most escapes outside from the

balcony. The smoke detector in the apartment fails to detect anything, until, unfortunately

a wooden chair accidentally falls on the fire and starts burning. The fire spreads and gets

hold of the curtains. Only then are the smoke detectors triggered. It is too late.

In the two cases above, a visual sensor would have been more effective. Visual sensors

are not triggered by harmless kitchen smoke. In the second case, a visual sensor would have

detected a fire even when it was very small and had not attained dangerous proportions.

The following case study is about issues with visual sensors.
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[Case 3] Chris and Molly are a happy couple and decide to install visual sensors in their

apartment. These are cheaper, cleaner, and more effective. They, however, restrict these to

only their living area, kitchen, and balcony. They understandably are not comfortable with

such visual fire sensing systems in their bedrooms and washrooms.

Taking into account, this rather important limitation of visual sensors, the proposed

technique ensures the use of visual sensors in a manner that their benefits are harnessed

whilst preserving the occupants’ privacy.

3.4 Experimental Evaluation

To identify a level of privacy acceptable to most people, a survey was conducted with

images of different privacy levels and the survey results were analysed. Subsequently, im-

ages falling in the category of ‘acceptable privacy level’ were used to evaluate fire detection

capabilities of the proposed integrated fire detection system.

3.4.1 Survey Analysis

Apart from the informal perception of the research team and verbal feedback from a

number of people, two surveys with the random crowd were performed to identify the

appropriate privacy-preserving level of images. Each survey comprised fifty participants

from different geographic locations, with different levels of education, professions, and

age groups. The survey where participants were contacted by the research team comprised

mostly people in country India; whereas in the survey conducted over AMT, the participants

were mostly from countries USA and India. Furthermore, most participants were in the age

group of 20-40 years and had a Bachelors’ or Masters’ degree. The number of salaried

employees in both the surveys was larger than other occupations.

Images corresponding to the six levels of privacy (described in detail in Section III B) i.e.
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(a) (b) (c)

Figure 3.6: Number of ‘correct’, ‘incorrect’, and ‘not clear’ responses received at each privacy level
in the surveys

from Privacy Level 1 (Highest Visibility, Least Privacy) to Privacy Level 6 (Least Visibility,

Highest Privacy) were included in the surveys. Images in the survey were similar to those

in Figure 3.3.

A wide range of responses was received for each question corresponding to each im-

age. Responses were categorized as: correct, incorrect, and not clear. For each level of

privacy, the total number of responses in each category (correct, incorrect, and not clear)

was calculated for all images at that level corresponding to each question using Equation

(3.1). Figure 3.6 (a)-(c) includes plots of correct, incorrect, and not clear responses at the

six privacy levels. All 100 survey responses from the two surveys (50 from each survey)

were used to calculate the percentage values plotted in Figure 3.6. Percentage values for

correct responses calculated separately for the two surveys are shown in Table 3.2.

Table 3.2: Analysis of the correct responses received in two surveys (values are given in %)

Amazon Mechanical Turk Survey Survey with Random Participants
L1 L2 L3 L4 L5 L6 L1 L2 L3 L4 L5 L6

Place 98 98 32 5 1 2 99 96 44 16 1 0
#Human 93 87 61 13 1 0 91 91 63 20 1 0
Location 96 95 57 12 0 0 95 96 24 21 0 0
Position 97 91 45 10 0 0 92 91 11 11 1 2
Activity 81 77 9 4 0 0 73 76 17 2 0 0
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The majority of respondents of the two surveys gave incorrect or not clear responses

to questions corresponding to images at Privacy Levels 5 and 6. Given this fact, images at

Privacy Levels 5 and 6 would be perfect for privacy preservation. These images, however, do

not have discriminating properties that are adequate for effectively distinguishing between

fire and non-fire objects. This is because objects in these images are not apparent, and edges

are highly blurred. At the other extreme, around 90% respondents gave correct responses

to questions corresponding to images in Privacy Levels 1 and 2, implying that most objects

in these images are visible thus making these image unsuitable for privacy preservation.

The number of correct responses received for images at Privacy Level 3 was smaller than

those for Privacy Levels 1 and 2. At Privacy Level 3, question related to human presence

was correctly responded to by about 60% of the respondents. Questions about the place and

location of the human were correctly responded to by about 40% of the respondents. Even

though the correct responses pertaining to the activities of the human-beings in the images

were significantly low at Privacy Level 3, it is still not good enough to be used for a privacy

preserving system. Interestingly, images at Privacy Level 3 received the largest number of

incorrect responses as compared to other levels indicating that the level saw a good number

of random guessing, owing perhaps to the degree of visibility in the images which tempted

a guess but was not good enough for the guesses to be correct.

The images at Privacy Level 4 received very few correct responses, less than 20% across

questions. Over 70% of the responses were not clear at this level. The questions on the lo-

cation of humans in the images and the number of humans in the images received between

15-20% correct responses, and possibly even these correct responses were due to there

being fewer choices and thus increased chances of a correct guess. The number of cor-

rect responses to questions on human presence and location at Privacy Level 4 is smaller

than what could be achieved by random guessing (i.e., for five choices, the probability of
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a correct response is 20% in random guessing). For questions pertaining to other crucial

information like place, human position and activities, the correct response rate was not even

10%, which is again much worse than random guessing. This indicates that images at Pri-

vacy Level 4 are appropriate for privacy preservation. In addition to this, images at this

level have discriminating properties and are adequate for correctly distinguishing fire from

other bright non-fire objects. We also did some preliminary investigations on the efficacy

of images at Levels 5 and 6 in detecting fires and these were found to be inferior to Level 4

images. Level 5 and 6 images are, however, better than Level 4 images in privacy preserva-

tion. Intuitively also, it is clear that the blurred edges and low intensity of Level 5 and Level

6 images make objects indistinguishable and result in poor classification performance. The

images at Privacy Level 4 are, therefore, ideal for a privacy preserving and efficient fire

detection system.

To more concretely analyze the image clarity at various privacy levels, we calculate a

distance of the image at that level from the image at Level 1 (the clearest of all images) using

the MSE technique [143]. A large distance indicates a less clear image and a low ‘clarity

index’. A small value of the distance indicates a more clear image and a large clarity index.

The distances of the images at different privacy levels (given in Figure 3.3) along with their

clarity indices are included in Table 3.3.

Table 3.3: Clarity Index of the images of different privacy levels

Image-1 Image-2 Distance Clarity Index

Privacy Level-1 Privacy Level-2 183.48 6
Privacy Level-1 Privacy Level-3 203.34 5
Privacy Level-1 Privacy Level-4 229.24 4
Privacy Level-1 Privacy Level-5 300.79 3
Privacy Level-1 Privacy Level-6 328.60 2

The results in Table 3.3 indicate that the distance of images at Privacy Level 2 are less
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than the corresponding images at higher privacy levels. The distances of images at Level 6

are highest, thus indicating lower clarity of images at higher levels of privacy.

3.4.2 Fire Detection System

This section comprises details on the experiments conducted, dataset created, and train-

ing of the proposed CNN architecture SA-FDS and the integrated system ST-FDS, for fire

detection. All experiments were conducted using a dataset containing images/videos at

Privacy Level 4, collected using the modified NIR camera. Comparisons of the proposed

framework with other state of the art techniques are also included in this section.

3.4.2.1 Dataset

Research on fire detection using vision-based sensors has mostly been done using color

images/videos. Therefore, datasets of images in the infrared or near-infrared spectrum are

not available (except aerial infrared images). Also, vision based fire monitoring has only

been explored for outdoor and/or public spaces until now. The focus in this chapter is at ex-

ploring the use of vision-based systems for fire detection in personal spaces (such as living

rooms, bedrooms, kitchens, office spaces) whilst simultaneously preserving the occupants’

privacy. In the absence of an appropriate dataset of images in the infrared and near-infrared

regions, especially those of private spaces, we created a fire and non-fire dataset using the

modified camera described earlier. This dataset includes images at Privacy Level 4 in line

with the conclusions drawn in Section V(A) about Privacy Level 4 being the most appropri-

ate level for privacy preservation and fire detection.

The fire dataset, images of actual fires, was collected from eight different locations inside

under-construction buildings and storerooms at our institute, after due approvals. Similarly,

the non-fire dataset was collected from different locations comprising private spaces inside
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3.7: Sample images from the dataset created, (a)-(d) are fire images, and (e)-(h) are non-fire
images. (Images from the created dataset are in the first & third row and the correspond-
ing color images are in the second & fourth row, respectively)

a home, an office space, computer laboratories, store rooms, and other spaces inside under-

construction buildings. To introduce variation, the dataset was collected by placing the

camera along all four directions (East, West, North, and South) for each captured scene and

at varying distances in the range from 2 meters to 6 meters. The fire dataset contains images

captured mostly at daytime (90%) and a few at night (10%).

All images in the non-fire dataset were taken during the day. Both the datasets were

collected in the form of short videos of 30 to 40 seconds each to start with. To make the

dataset diverse, several non-redundant small video clips of 1 to 5 seconds duration were

extracted from random points in the original videos. This was done to reduce the number
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of similar images extracted from the long videos. This resulted in around 1000 small video

clips (136,056 frames), comprising an equal number of fire and non-fire clips. Sample

images from the created dataset are shown in Figure 3.7. The dimensions of the original

images are 640x480 and are converted into grayscale. Our dataset contains a large number

of non-fire images comprising scenarios with sunlight (coming through the window), light

sources such as LED, bulbs and other such NIR sources. The dataset is made publicly

available and can be downloaded from the following link: DATASET.

3.4.2.2 Training

Training of the SA-FDS and ST-FDS algorithms was done separately. The dataset was

randomly divided into training and test sets in a 70:30 ratio. The training and test set splits

were done randomly from 1000 small video clips captured from different settings. Also,

clips in the test set were not seen by the model during training. We, therefore, ensured that

the training and test sets contained sufficiently different samples. In training the SA-FDS

model, 80% of the training data was used to train the model and the remaining 20% of

the training data was used for validation. Adam optimization was employed with an initial

learning rate of 0.001 and decay parameters: �1 = 0.90 and �2 = 0.99. The model weights

were initialized randomly and the model was trained for 100 epochs using a binary cross

entropy loss function. A regularization parameter weight decay of 0.001 was used to avoid

over-fitting of the model. Apart from this, data augmentation of various types (i.e. horizontal

flip, width-shift, height-shift, shearing, variation in brightness and size) were harnessed to

effectively handle model over-fitting. To compare the proposed models with prominent ones

in literature, the latter were implemented and trained using the same dataset with similar

augmentation strategies. All the model structures and their respective parameters were kept

same as mentioned in original papers. The input image shapes of the various architectures
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were different, and hence images were re-scaled to the required dimensions before feeding

them to the respective models.

ST-FDS combines the SA-FDS framework with the temporal factor. For training the ST-

FDS framework, two parameters T1 and T2 used in Algorithm (3.1) need to be tuned. T1

is the optimal confidence score of the prediction made by SA-FDS, and T2 is the optimal

distance of the current frame from the previous one. The values of the thresholds T1 and

T2 are decided through a grid search on a large range of values. For threshold T1, values

ranging from 0.8 to 1.0 were tried at fixed intervals of 0.01. Similarly, for threshold T2,

values ranging from 0 to 100 were tested (the range was decided based on the mean distance

of non-fire data). It was observed that both T1 and T2 are dependent upon each other and

need to be chosen in pairs. In fire detection, false negatives are more dangerous than false

positives and hence there should be greater emphasis on eliminating these. Thresholds T1

and T2 were, therefore, chosen so as to achieve the highest possible accuracy whilst keeping

the false negatives as low as possible. At threshold T1 = 0.92, and T2 = 36, the accuracy

with the training set was the best, and false negatives were the least.

Another parameter k used in Algorithm (3.1) determines the gap between two frames.

A value of k = 5 implies that every 5th frame is used for classification, which works out to

approximately 1/6th of a second. A value of k = 5 was chosen because with a value of k

smaller than 5, the distance between two frames was not discriminating enough (the scene

does not change significantly from one frame to the next); whereas with a large k, only a

small number of frames reach SA-FDS and the classification was delayed.

3.4.2.3 Results

Every 5th frame of the clips in the test-set was used for testing. Comparison of the

performance of SA-FDS (Spatially Aware Fire Detection System) and ST-FDS (Spatio-
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Table 3.4: Performance comparison of fire-detection techniques

Technique Precision
(%)

Recall
(%)

F-Score
(%)

Accuracy
(%)

Proposed ST-FDS 96.38 100 98.16 98.13
Proposed SA-FDS 90.52 99.99 95.01 94.76

[104] 92.67 99.79 96.10 95.95
[20] 91.92 99.71 95.66 95.50

[103] 89.24 99.37 94.03 93.62
[106] 88.30 98.75 93.23 92.85
[105] 95.88 92.06 93.93 94.08
[101] 89.48 99.79 94.35 94.05

Temporal Fire Detection System) with existing models is included in Table 3.4 and compar-

isons of the different model sizes are shown in Table 3.5. It is evident from Table 3.4 that

the proposed ST-FDS comfortably outperforms all existing techniques.

Four evaluation metrics (i.e. Accuracy, Precision, Recall, and F-Score) in a manner sim-

ilar to [20] are employed to evaluate the system performance. These metrics are calculated

as shown in Equation (3.8).

Accuracy =
TP + TN

TP + TN + FP + FN

Precision =
TP

TP + FP

Recall =
TP

TP + FN

F � Score =
2 ⇤ Precision ⇤Recall

Precision+Recall

(3.8)

– TP: True Positive (Positive examples classified as positive).

– TN: True Negative (Negative examples classified as negative).

– FP: False Positive (Negative examples classified as positive).

– FN: False Negative (Positive example classified as negative).

Here TP and TN are correct classifications whereas FP and FN are mis-classifications. Ac-

curacy indicates the percentage of correctly classified examples. Precision is a measure of
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Table 3.5: Model size comparison of fire-detection techniques

Technique Input Shape
(WxH)

FLOPs
(in millions)

Number of
Parameters

Size on Disk
(in KB)

Proposed ST-FDS 112x112 8.21 18018 324
Proposed SA-FDS 112x112 8.21 18018 324

[104] 224x224 530.98 723522 4560
[20] 224x224 612.73 2260546 12768
[103] 299x299 11469.10 5601954 21370
[106] 299x299 4705.67 986370 3982
[105] 64x64 17.81 646818 7631
[101] 64x64 23.75 30035 411

the classified positive examples that are actually positive whereas Recall is a measure of

positive examples that are correctly classified. The F-Score is the harmonic mean of the

Precision and Recall and is a good indicator even in the case of unbalanced data.

The proposed techniques perform well not just in terms of Accuracy but also other stan-

dard performance metrics like Precision, Recall, and F-score. ST-FDS has an Accuracy of

98.13% . It has a 100% Recall, which implies that all the fire images were classified cor-

rectly. It has a Precision of 96.38% indicating that only 3.6% non-fire images are classified

as fire. The F-score is 98.16% which indicates an overall superior performance.

The results included in Table 3.5 demonstrate the superiority of the proposed models

in terms of size, requiring markedly less space on disk. Also, the proposed models are

the fastest among existing techniques as they perform the least number of FLOPs (Floating

point Operations). The small size and speed of SA-FDS and ST-FDS makes them useful for

constrained environments like those of a Raspberry pi or mobile phones commonly used in

IoT deployments.

We now compare the proposed SA-FDS model with the SqueezeNet [142] architecture

especially because SA-FDS is based on Squeezenet with certain modifications. Table 3.6

compares the performance of the two models. The table also compares the proposed ST-
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Table 3.6: Comparison of proposed technique with SqueezeNet

Technique Accuracy (%) Parameters (K) FLOPs (M)

Proposed ST-FDS 98.13 18.02 8.21
Proposed SA-FDS 94.76 18.02 8.21
SqueezeNet [142] 95.95 723.52 530.98

SqueezeNet with TmP 97.54 723.52 530.98

FDS with SqueezeNet augmented with temporal properties (in a manner that SA-FDS is

combined with temporal properties to give ST-FDS). Here, SqueezeNet is trained for two

class classifications with transfer learning to avoid over-fitting given the large network size.

Table 3.6 shows that the performance of Squeezenet is better than the proposed SA-FDS

without taking the temporal properties into consideration. Subsequent to inclusion of the

temporal properties, the proposed ST-FDS is marginally superior to SqueezeNet with tem-

poral properties. The important point to note here is that SA-FDS and ST-FDS, while being

comparable to SqueezeNet in classification efficacy, are much superior to the SqueezeNet

architecture in terms of speed and size. This is shown in Table 3.6 by the Number of Flops

(speed), and Number of Parameters (size), respectively.

3.4.3 Analysis of the System

The common approach to analyse algorithms in terms of computational complexity is

by representing their time and space requirements asymptotically. Usually computational

analysis is performed to determine the time and space requirements of an algorithm in the

worst-case scenario. This is known as the worst case complexity and is denoted by the ‘big

oh’ notation: O.

In the case of CNN models, however, it is uncommon to do their asymptotic complexity

analysis. The time complexity of a CNN model is estimated by the measure of computations

it devours. The larger the computations, higher is the time complexity. In this chapter,
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the time complexity of the proposed model is estimated by the number of FLOPs (Floating

Point Operations) performed during inference. Similarly, the space complexity of the model

is measured by the number of its parameters. The number of FLOPs performed and the

number of parameters of the proposed models along with those of existing models are shown

in Table 3.5.

A quick analysis of the performance, size, and speed of the proposed models when com-

pared with existing state-of-the-art models is as follows: of the existing models, [20] and

[104] perform the best in terms of Accuracy. The proposed ST-FDS comfortably outper-

forms the same while SA-FDS has Accuracy results close to those of [20] and [104]. The

model in [101] is of the smallest size (on disk) and [105] is the fastest amongst the existing

techniques in literature. Both SA-FDS, and ST-FDS are superior in terms of size requiring

markedly less space on disk. Both models are also the best in terms of speed performing

least number of FLOPs.

3.4.4 Deployment in a Resource Constrained Environment

The effectiveness of the proposed framework in terms of speed was tested by deploying

it over a real world resource-constrained environment comprising a Raspberry Pi 3B device.

Raspberry Pi 3B is a small, single board computer that is composed of a 1.2 GHz Quad

core processor, and a 1 GB RAM. Both the proposed frameworks, SA-FDS and ST-FDS,

were tested on a Raspberry Pi and were found to be light enough to run efficiently with an

impressive frame rate. The Frame rate was calculated in two ways: 1) classification time

only; and 2) frame reading time along with classification time. Table 3.7 shows the frame

rates for the two models.

The classification time includes the time required for frame prepossessing that involves

conversion to gray-scale, resizing to 112x112, and pixel normalization to the [0 � 1] range
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Table 3.7: Frame Rates on Raspberry Pi

Model Classification
Only

Frame Reading +
Classification

SA-FDS 115 fps 66 fps
ST-FDS 72 fps 50 fps

along with the time taken by the model for actual classification. The frame reading time in-

cludes the time taken for extracting every 5th frame of the video from the time that the video

capturing process starts. The effective frame rate of the ST-FDS model is 50 frames/second

which enables it to comfortably process the streaming video frames (a regular camera cap-

tures videos at a frame rates of 30 frames/second of which only 6 frames/second need to be

processed in the ST-FDS model).

3.5 Summary of the chapter

In this chapter, a privacy-preserving system for fire detection using vision-based moni-

toring was proposed. The main contribution of this chapter is the development of a privacy-

preserving, lightweight, and efficient fire detection system for indoor spaces. To ensure

privacy, a strategically modified vision camera was utilized to capture videos followed by

identification of the appropriate privacy level using user surveys. In addition, a lightweight

and efficient fire detection system was developed to work with these privacy-preserving

images without compromising accuracy. The use of a modified vision sensor, the privacy

assessment and the combination of the motion characteristics of the fire flame with the shape

of the flame for fire detection was a novel idea which was not explored in the literature.

Systematic surveys were conducted to assess the privacy requirements of people and

an appropriate ‘level’ of images was identified that was able to preserve privacy whilst

providing enough discrimination for accurate fire detection. In lieu of the absence of an
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appropriate dataset, a new dataset was created and used to effectively validate the system.

The proposed fire detection system ST-FDS based on both spatial and temporal properties

of fire, was able to detect fire accurately and found to outperform existing state of the art

techniques in both detection accuracy and model size. The proposed model was shown to be

lightweight by running it efficiently on a resource constrained environment at an acceptable

frame rate.
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Chapter 4

Privacy-Preserving Human Activity

Recognition System

4.1 Introduction

With a rapidly aging population and a depleting workforce, automated human activity

recognition systems are slated to become the norm in societies worldwide. These systems

facilitate, among other things, monitoring of the daily activities of the elderly, healthcare

interventions, indoor surveillance, and public safety [7, 10, 11, 15, 19, 120]. The approach

is to continuously monitor indoor locations and raise a flag on detecting an event out of

the ordinary. The working of these systems are also based on two components: a sensing

component; and an algorithmic component. The sensing component comprises a single or

heterogeneous combination of sensing devices of varied kinds. Sensing devices employed

for human activity recognition can broadly be categorized into three types: wearable sensors

(accelerometers, gyroscopes, EEG sensors, GPS trackers) [11, 17]; ambient sensors (passive

infrared sensors, pressure sensors, contact switches, radar sensors, wi-fi routers) [15, 16];

and vision sensors (color cameras, infrared cameras, depth cameras) [7, 10, 12, 19, 23, 62,

89, 109–111, 114, 115, 144].
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As discussed in Chapter 1, ambient and wearable sensors have limitations related to ac-

curacy and convenience, respectively. Vision sensors, on the other hand are privacy invasive

and can not be used for monitoring private indoor spaces. To overcome these limitations,

an effective solution for human activity recognition in private spaces is one that harnesses

depth information obtained from depth sensors. Depth sensors work on the principle of an

object’s distance from the sensor. Depth sensors are, therefore, not sensitive to light and

work well in dimly lit spaces. These are also relatively inexpensive compared to thermal in-

frared cameras. The images captured also appear distorted to the human eye and, therefore,

serve the purpose of preserving privacy [4, 35].

With such advantages, several studies [23, 62, 109–111] employ depth data to recog-

nize human activities effectively. These methods are either based on analyzing hand-crafted

features extracted directly from depth frames [110, 111] or by creating a depth motion map

(DMM) [23, 62, 109]. A DMM is an image corresponding to a depth video clip generated

by computing the differences between consecutive frames of the clip. Systems based on

processing individual frames of depth videos do an outstanding job of recognizing simple

actions (like standing, running) but fail to recognize complex/similar-looking human ac-

tivities (like drinking, eating etc.) owing to a lack of strong temporal correlation. DMM

based methods possess temporal correlation but lack in terms of modeling speed variations

and changes in the order of movements. They, therefore, suffer from intra-class variations.

Another issue with DMMs is that two activities appear similar from one view (like the front

view) and are totally different from another (like a side or top view). This potentially leads to

incorrect classification when only one DMM is used. Furthermore, the data captured using

depth sensors is noisy and prone to occlusion, degrading the activity recognition efficacy.

An interesting approach that utilizes depth videos for human activity recognition extracts

skeleton sequence data from these videos. Real-time skeleton tracking algorithms [145]
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extract such skeleton sequence data, which can unambiguously provide human presence

and movement information. The easy availability of skeleton data led several researchers to

work on skeleton based human activity recognition systems[7, 89, 114, 115].

Activity recognition using skeleton sequence data is effective to an extent but somewhat

restricted by the absence of skeleton joint information, as most skeleton tracking algorithms

fail to extract joint information correctly. Lack of joint information adversely affects recog-

nition. Furthermore, skeleton sequence data based approaches using joint positions features

[112] are susceptible to scale variation (i.e., each individual’s height and size in the image

can differ due to distance from the camera). Also, approaches using joint angles based

features [89, 91] are susceptible to change in orientation but remain the same with varying

scales. Studies in [12, 62] use a combination of depth and skeleton sequence data for better

activity recognition. Still, these also suffer from a lack of temporal features in DMM and

scale/orientation in skeleton sequences.

In this work, we use a combination of depth videos and skeleton sequences to develop

a robust, cost-effective activity recognition system for private spaces. The datasets used in

this work are captured using a depth camera embedded in the Microsoft Kinect device. The

depth camera captures information in a scene using the distance of objects from itself and

maps the same into gray-scale images. The use of depth data enables privacy preservation

as the individual’s identity is preserved. Use of raw depth video instead of DMMs in the

analysis preserves the temporal aspects of the data. Additionally, we utilise joint information

from skeleton sequence data and incorporate this in our analysis. To do this, we devise two

novel descriptors: Joint Position Descriptor (JPD), which records the variations in the body

joint positions with time; and Bone Angle Descriptor (BAD), which records the variations

in the inclination of the bones with time.

In addition to using a combination of depth data and skeletal sequence data effectively
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for activity recognition, the other significant contribution of this work is in using 3D CNN

models for extracting spatial and temporal features from depth videos. The use of 3D CNN

is limited in literature owing to the unavailability of large datasets of depth videos. We over-

come this limitation by utilising transfer learning approaches to reuse pre-trained weights

for models like ResNet [146] inspired 2D-CNN and I3D [147] inspired 3D-CNN. ResNet

(Residual Network) is a popular 2D Convolutional Neural Network (CNN) used for image

classification by applying 2D convolution filters successively on the image data. Similarly,

I3D (Inflated 3D) is a popular 3D CNN used for video classification by applying 3D con-

volution filters on video data, with the third dimension being time. ResNet and I3D are

extensively used in applications employing RGB color data.

Finally, a two-level fusion scheme is proposed: fusion of features extracted using the two

descriptors (JPD and BAD) called Feature Level Fusion Strategy (FLFS). Subsequently, the

classification scores using the depth data and skeletal data, respectively, are also fused, and

this fusion is called Score Level Fusion Strategy (SLFS). Combining the two descriptors

of skeleton data, JPD and BAD, makes the system robust and shields it from variations in

scale and orientation of the human body. Further, combining the two modalities, depth and

skeleton data, protects the system from noisy depth maps and missing skeleton joints.

Keeping the following factors in mind: privacy, convenience, cost, and robustness; the

key contributions of this work include:

1. A robust system for activity monitoring using a two-stream CNN architecture is pro-

posed for depth and skeleton data, respectively.

2. Two novel descriptors from skeleton sequence data, JPD and BAD, are proposed to

model the movement of body parts irrespective of the scale and orientation of an

individual.
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Figure 4.1: Workflow of the proposed Human Activity Recognition System

3. A two-level fusion strategy is proposed to effectively combine the different inputs.

4. Two modified deep CNN architectures are proposed to deal with the overfitting prob-

lem in the absence of large datasets.

5. A thorough evaluation of the proposed system is done on four public datasets, and it

is shown to outperform most existing work. Also, computational complexity analysis

and a prototypical implementation of the system suggest that it can work in real-time.

4.2 Proposed Methodology

In this section, we discuss the proposed approach for human activity recognition in de-

tail. We use two data modalities for human action recognition: 1) depth data; and 2) skeleton

sequence data. The first input (i.e., depth data) is used directly in its raw form after necessary

pre-processing. The second input (i.e., skeleton sequence) is converted into two descriptors,

namely JPD and BAD, followed by their mapping into color images. The pre-processing

of depth data and the generation of the descriptors, JPD and BAD, are first discussed in

this section. Subsequently, the proposed deep learning based framework comprising two

primary channels (one for each data modality, depth, and skeleton sequence) is discussed.

Finally, we discuss the fusion strategies adopted for combining the analyses of the two data
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modalities. The schematic diagram of the proposed framework is included in Figure 4.1.

4.2.1 Data Preparation

4.2.1.1 Depth Data

In this work, we utilise depth data for each activity largely in its raw form, with mini-

mum pre-processing. The minor pre-processing required includes: 1) background removal;

and 2) temporal normalization. Video captured using a depth camera contains gray-scale

values and often suffers from a phenomenon called ‘depth camouflage’ wherein the back-

ground and foreground have the same gray-scale values. Therefore, it becomes difficult to

distinguish between the two, especially when the foreground is close to the background. To

rectify this, we adopt the well-known ‘background subtraction’ approach [148] that removes

the background from such frames following Equation (4.1). A background model B(x, y, t)

is first computed from the initial frames of the video in the absence of not-stationary fore-

ground objects. Subsequently, each frame of the video is subtracted from the background

model. This highlights the foreground objects by removing the stationary background de-

tails. A threshold is imposed that suppresses tiny noises arising due to the environmental

changes and produces clear foreground objects in the background subtracted image. Post-

processing exercises like morphological operations are undertaken if the resultant images

are still noisy. Figure 4.2(a) shows a depth frame after background subtraction.

S(x, y, t) =

8
><

>:

1, if |F (x, y, t)� B(x, y, t)| �T

0, otherwise
(4.1)

Where, S(x, y, t) is the pixel after background subtraction, F (x, y, t) is the frame at

time t, B(x, y, t) is the background model, and T is a threshold. Threshold T varies for

each dataset, therefore we utilized Otsu method [149] to calculate appropriate value of the
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threshold T . The threshold value obtained using Otsu method for our dataset is T=40.

The second pre-processing task, temporal normalization, comprises converting varying

length depth video clips to a fixed temporal length. The optimal temporal length of clips for

a dataset depends on the lengths (i.e., time taken to perform an activity) of all the clips in

the dataset and is close to the most frequent temporal length (Mf ). This gives a rough idea

of the lengths of most clips. To determine Mf , we categorize the lengths of clips as those

falling in the intervals 0-10, 10-20, 20-30, and so on. We consider such intervals when the

value of the range R = 10. Based on their lengths, the clips fall into one of these intervals.

The number of clips that fall in the interval with the largest number of clips is Mf . The

number of clips falling in the interval immediately preceding the interval with the largest

number is Mp. The number of clips in the interval immediately succeeding the one with the

largest number is Ms. These values are used with Equation (4.2), and we get an estimate of

the optimal length (Te) of the video clips in a dataset. This broadly gives us the statistical

mode of the temporal lengths of the clips. In addition, there is a minor spatial normalization

that the depth video clips are subjected to and undergo simple image resizing to a smaller

224 ⇥ 224 size. This is mainly done for easier accommodation in the framework and to

reduce computational costs.

Te = L+

 
Mf �Mp

2Mf �Mp �Ms

!
⇤R (4.2)

where:

- Te is the estimated temporal length for a dataset.

- Mf : Number of the most frequent temporal lengths in any interval.

- Mp,Ms: Number of temporal lengths preceding and succeeding the interval of Mf .
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(a) (b) (c)

Figure 4.2: Depiction of Human Body: a) Depth image; b) Skeleton joints and bones; c) Bone angles.

- L: Lower limit of the interval with Mf .

- R: Range of intervals.

4.2.1.2 Skeleton Joint Data

Human activity recognition from videos containing skeleton joint information is based

on two aspects: the spatial posture of the body in each frame of the video; and the movement

of body parts in the temporal domain. The spatial and temporal information from the skele-

ton sequences are encoded in two descriptors: Joint Position Descriptor (JPD); and Bone

Angle Descriptor (BAD), based respectively on joint positions and inclination of bones.

Datasets comprising skeleton joint information usually describe the human body with a

certain number of joints. The datasets used in our experiments, in most cases, have 20 or 25

joints in the human body. Sample skeleton joints in the MSR Action3D dataset are shown

in Figure 4.2(b).

In skeleton joint information, the body is usually divided into five parts: the spine, the

two hands, and the two legs. Each body part is represented by a certain number of joints.

In the MSR Action3D dataset, each body part has four joints. Human activities involve

the movement of one or more body parts, and hence the movement of the joints of those

parts. An activity is distinguished from another based on the dominant movement of one

set of joints compared to others and vice-versa. The joint groupings for the MSR Action3D
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dataset are as follows (Figure 4.2(b)): right-hand {1, 8, 10, 12}; left-hand {2, 9, 11, 13};

right-leg {5, 14, 16, 18}, left-leg {6, 15, 17, 19}, and spine {20, 3, 4, 7}.

A skeleton joint sequence comprises several frames of joint information. A joint se-

quence JS is represented as: JS{F1, F2, F3, ....Fn}, where Fi is the ith frame of the se-

quence. Each frame with m joints is represented as Fi{J1, J2, J3, ....Jm}, where Jk is the

kth joint of Fi. Each joint is represented by its position J(x, y, z) in the 3D Cartesian

coordinate system. The Joint Position Descriptor (JPD) image is generated based on this

information described in Algorithm (4.1). The movement of spine joints is minimal, which

does not contribute much to activity classification. We, therefore, only consider joints of the

hands and legs while generating the JPD.

The joint sequence corresponding to an activity is the input to Algorithm (4.1) along

with the grouping of joints (i.e., joints of the left hand are grouped together, followed by

the joints of the right hand, and so on). Joints in each frame are first arranged according to

the grouping sequence to create a 2D matrix AJ containing three column vectors (one for

each coordinate). The matrices AJ of consecutive frames are further concatenated to form

an action cube of position (P), a matrix with dimensions: Width x Height x Coordinates

(W ⇥H ⇥ C). Figure 4.3 is a high-level depiction of the formation of the action cube.

The ranges of the three coordinates are usually quite different, with the large range

dominating the smaller ones. To overcome this discrepancy, normalization of the action

cube of positions (P) is done with respect to each coordinate (i.e., c = x, y, z) within the

fixed range of [0-255]. Finally, the normalized action cube of positions (N) along three

coordinates are concatenated to form JPD, which is mapped to an RGB image. The RGB

image is further used for human activity recognition.

In addition to joint positions, the inclination of bones of the human body also encodes

human activities’ spatial and temporal dynamics. The hands and legs contain four bones
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Algorithm 4.1 Joint Position Descriptor (JPD) based image generation.
Input : Skeleton Joint Sequence JS {F1, F2, ...., Fn}

Input : Joints grouping (JG) according to body parts
Output: RGB image (W x H x C)

P=EmptySequence
foreach frame in JS do

AJ = ArrageJoints(frame,JG)
P=AppendColumn(P ,AJ)

Nc = 255 ⇤ Pc�min{Pc}
max{Pc}�min{Pc} , c = 1, 2, 3

JPD = [Nc=1|Nc=2|Nc=3]

I = ConvertToImage(JPD)

Procedure ArrageJoints(F , Seq):
AJ = EmptyFrame

for s in Seq do
AJ = AppendRow(AJ , F [s])

return AJ

End Procedure
// ‘|’ is concatenation over 3rd axis

// AppendRow(): method to concatenate m joints to create a column
vector.
// AppendColumn(): method to concatenate n column vectors, where n is

number of frames.
// ConvertToImage(): method to map a 3D array into an RGB image.

each, of which three are more susceptible to movement, as shown in Figure 4.2(b). We

select three bones, each from the two hands and legs, making a total of 12. The angles

between each bone and the X , Y , and Z axes, namely, ⇥x, ⇥y, and ⇥z respectively, are

calculated. Figure 4.2(c) shows the three angles of one of the bones.

The complete calculation of angles corresponding to each bone in each frame and their

subsequent concatenation in the temporal direction to form the Bone Angle Descriptor

(BAD) is described in Algorithm (4.2). The algorithm takes the joint sequence correspond-

ing to an activity as input along with the sequence in which the bones are arranged in a
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Figure 4.3: Image generation from the skeleton joint sequence of consecutive frames of an activity.

body part (e.g., bones B1(J2, J9), B2(J9, J11), and B3(J11, J13) represent the left hand, and

similarly bones B4, B5, and B6 represent the right hand in the human body). The three

angles for each bone, calculated against the three principle axes, are appended into a vector

forming a 12 ⇥ 3 matrix (F ). This process is repeated for each frame and concatenated

one after the other to form an action cube of angles (I). The bones have a different range

of angles for the three axes that lead to different features for the same activity when the

human-camera angle changes. To overcome this, normalization of each angle is done in a

fixed range of [0-255]. Finally, the normalized action cube of angles (N) along three axes

are concatenated to form BAD. BAD is further mapped to an RGB image which is used for

activity recognition.

The images generated from both the JPD and BAD have the following dimensions: the

height of the image; the width of the image; and the depth of the image. The height of the

image represents the number of joints in the image in the case of JPD and the number of

bones in the case of BAD. The width of the images is representative of the number of frames

generated from the video. Finally, the depth of the images is the number of coordinates used

to depict the joint position in the case of JPD and the number of bone angles in the case of

BAD.

For any dataset, the number of joints or bones is fixed, and therefore the height of the
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Algorithm 4.2 Bone Angle Descriptor (BAD) based image generation
Input : Skeleton Joint Sequence JS {F1, F2, ...., Fn}

Input : Sequence of bones (BONES) according to body parts as tuple of joints (Ja, Jb)
Output: RGB image (W x H x C)

I=EmptySequence
foreach frame in JS do

F=EmptyFrame

foreach bone in BONES do
angles = CalculateAngles(bone)
F= AppendRow(F ,angles)

end
I=AppendColumn(I ,F )

end

Nc = 255 ⇤ Ic�min{Ic}
max{Ic}�min{Ic} , c = 1, 2, 3

BAD = [Nc=1|Nc=2|Nc=3]

I = ConvertToImage(BAD)

Procedure CalculateAngles(bn):
AJ = EmptyFrame

if (bn[Jb] != 0) and (bn[Ja] != 0) then
b bn[Jb]� bn[Ja]

else
b 0

end
b = b / kbk
⇥x = acos(b.AX)
⇥y = acos(b.AY )
⇥z = acos(b.AZ)

return [⇥x,⇥y,⇥z]

End Procedure
// AX, AY, and AZ are X, Y, and Z axes, respectively.

images is the same. The depth, as mentioned, depends on the number of coordinates/angles

and is also fixed at 3. The width, however, is variable as the length of the video clips can

vary, and correspondingly so do the number of frames. As a 2D CNN framework requires a

fixed size, we make the images undergo an image resizing operation and fix the image size at
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Figure 4.4: Sample JPD (left) and BAD (right) based images for various activities in the three
datasets. MSR Action3D dataset (a-c); UTD-MHAD dataset (d-f); and TST Fall
dataset(g-i). a) High arm wave; b) Hand clap; c) Forward kick; d) High arm throw;
e) Tennis serve; f) Walk; g) Grasp object; h) Front fall; and i) Walk

224⇥ 224⇥ 3. Sample JPD and BAD of nine different activities from three datasets, MSR

Action3D, UTD-MHAD, and TST Fall, are shown in Figure 4.4. The activities depicted

include one hand movement (a & d); two hands movement (b & e); and leg movement (c &

f); whereas activities (g-i) involve the movement of all body parts.

4.2.2 Human Activity Recognition System

As shown in Figure 4.1, the proposed method comprises two primary channels for hu-

man activity recognition: a 3D CNN based on I3D [147] and a 2D CNN based on ResNet

[146].
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(a) (b)

Figure 4.5: (a) Modified I3D based 3D-CNN architecture, (b) Modified Inflated Inception Module
employed in our 3D-CNN

4.2.2.1 3D CNN

Inflated 3D (I3D) [147] is a popular 3D CNN architecture for video classification in

the color domain. As the name suggests, I3D is based on inflated convolutional filters and

pooling kernels (inflated filters are 3D filters obtained by adding an additional dimension to

the usual 2D filters). The I3D architecture utilizes an Inception Module based design with

inflated 3D filters to process video data. Figure 4.5(a) shows the complete I3D architecture.

I3D takes an input video of size (Time (T) x Width (W) x Height (H)) as input and gives a

activity category as output.

The original I3D architecture is modified in two ways: the last average pooling layer is

replaced by a Global Average Pooling (GAP) layer that averages over the entire feature map

instead of just over the size filters. Next, a module named Score Generator-1 is added that

generates scores corresponding to each activity. The Score Generator-1 module contains

a dense layer with ‘A’ neurons, where ‘A’ is the number of activity categories. A softmax

layer is added at the end, giving a probability distribution for the ‘A’ classes; next, a spatial

dropout layer [150] is included in the 3D inception module after the concatenation layer.

This helps reduce the dependence among values in the motion maps and reduces over-

fitting by dropping the entire motion map with a drop probability of pd. Equation (4.3)

expresses the feed-forward process with a spatial dropout. The structure of the modified
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inflated inception module is shown in Figure 4.5(b).

X l = �

✓ CX

c=1

K l
c ⇤ (X

l�1
c .ml

c)

◆
(4.3)

Where, X l�1 and X l are the outputs of the previous and current layers, respectively.

ml
c is Bernoulli’s random variable that takes a value of ‘0’ or ‘1’ depending on the drop

probability pd; whenever ml
c = 0, the entire feature map becomes ‘0’ and does not contribute

to the weight updation of the model. Other feature maps where ml
c = 1 update the weights in

that iteration. This process repeats in every iteration during training and avoids over-fitting.

K l
c 2RKw⇥Kh⇥KT is the convolution kernel and � is the non-linearity activation function.

‘.’ denotes scalar multiplication, and ‘*’ denotes the correlation operation using the given

filter.

Unlike standard dropout, which drops the input features randomly without considering

correlations between nearby pixels, spatial dropout drops either the entire feature map or

none. This results in adjacent values in the feature map that are either all ‘0’ or all active.

The spatial dropout at the input layer helps handle noise or missing data. Through exper-

iments, it was observed that spatial dropout was more effective at higher layers and hence

used in the last three inception modules and in the input layer.

4.2.2.2 2D CNN

ResNet [146] is a reasonably successful CNN architecture for image classification. It

comprises a modularized architecture composed of residual blocks and skip connections

that help solve the vanishing gradient problem in deep CNN architectures. The ResNet50

architecture and the structure of single residual module is shown in Figure 4.6(a) and Fig-

ure 4.6(b), respectively.

In our work, the original ResNet50 architecture is modified in two ways: the residual
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(a) (b) (c)

Figure 4.6: (a) Modified ResNet50 based 2D-CNN architecture; (b) Residual Block used in original
ResNet50; (c) Modified Residual Block employed in our 2D-CNN

block is first modified by inserting a spatial dropout layer after each processing layer (i.e.,

Conv + BN + Activation). Figure 4.6(c) shows the modified residual block with the bottle-

neck design. As mentioned earlier, spatial dropout helps deal with data independence and

over-fitting at higher layers. We use modified residual blocks in the last two stacks. As

mentioned, spatial dropout is added to the input layer to deal with missing or noisy data.

In addition to this, spatial dropout also augments the data by randomly removing a feature

map at each iteration. The second modification to the ResNet50 architecture involves the

removal of the dense layer at the end and its use in feature extraction. After feature fusion

(discussed in the next section), a module named ’Score Generator-2’ is added to generate

scores from fused feature vectors. ‘Score Generator-2’ includes three dense layers with

512, 128, and ‘A’ neurons respectively. A softmax layer is added at the end to generate

probability scores corresponding to each activity ‘A’.

4.2.3 Fusion Strategies

As discussed earlier, the depth and skeleton data modalities are effective and mostly give

precise results. They do, however, suffer from shortcomings and are occasionally erroneous.

We seek to harness the redundancy advantage that the availability of two modalities offers
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and compensate for the errors of one with the correctness of the other and vice-versa. Also,

the features based on only joint positions often suffer from scale variation. We adopt a

two-level fusion approach and combine the classification results of the channels.

4.2.3.1 Feature Level Fusion Strategy

The Feature Level Fusion Strategy (FLFS) combines the features extracted from the

skeleton data’s sub-channels (CH21 and CH22) for better performance. In this strategy,

features are combined in the following four ways: 1) element-wise average (FLFS-avg); 2)

element-wise product (FLFS-prod); 3) concatenation of two feature vectors (FLFS-cc); and

4) element-wise maximum (FLFS-mx). In FLFS, features from sub-channels CH21 and

CH22 are combined following Equation (4.4) after the Global Average Pooling layer.

XFLFS�avgi =
XJPDi +XBADi

2

XFLFS�prodi = XJPDi ⇤XBADi

XFLFS�mxi = max(XJPDi , XBADi)

XFLFS�cc = (XJPD1 , XJPD2 , ..., XJPDl
,

XBAD1 , XBAD2 , ..., XBADl
)

(4.4)

Where XJPD 2 Rl is the vector comprising JPD based features; XBAD 2 Rl is the

vector of BAD based features; XFLFS�avg 2 Rl, XFLFS�prod 2 Rl, XFLFS�mx 2 Rl,

and XFLFS�cc 2 R2l are respectively the fused feature vectors following the four methods

mentioned above. Feature fusion in XFLFS�avg is done by calculating the element-wise

average of the values in the two feature vectors. A similar approach is used in XFLFS�prod

and XFLFS�mx to find the element-wise product and maximum. In XFLFS�cc, two input

feature vectors are appended, resulting in a larger vector. The fused feature vectors are fed

to the Score Generator-2 to generate scores for each activity.
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4.2.3.2 Score Level Fusion Strategy

In Score Level Fusion Strategy (SLFS), the score vectors of the two Score Generators,

Score Generator-1 and Score Generator-2, are combined. The softmax function in each

of the Score Generators generates a vector S{s1, s2, ..., sA} that comprises the probability

distributions of the various activities according to Equation (4.5).

Sj =
exp (Fj

2)
PA

j=1 exp (Fj
2)
, j = 1, 2, ..., A. (4.5)

Where Fj is the jth value in the output of the last dense layer of the score generator;

Sj is the probability of class j; and A denotes the total number of activity categories. For

the skeleton data channel (CH2), Score Generator-2 takes the feature vector XFLFS as an

input, and processes it in the dense layers, thus leading to a feature vector F with a size

equal to the number of activities ‘A’. A softmax layer, at the end, takes F as an input

and generates the probability score vector S containing the score of each activity j as per

Equation (4.5). Similarly, Score Generator-1 takes the feature vector obtained from the

3D-CNN and generates the score vector S for the depth data channel (CH1).

Score level fusion happens in the following six ways: 1) weighted sum of scores (SLFS-

ws); 2) weighted product of scores (SLFS-wp); 3) maximum of scores (SLFS-mx); 4) logis-

tic regression (SLFS-lr); 5) Random Forest (SLFS-rf); and 6) Naive Bayes (SLFS-nb). The

first three are based on simple score fusion operations described in Equation (4.6), whereas

the latter three utilise supervised learning algorithms on concatenated score vectors.
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XSLFS�ws =
X

m=1,2

Wm ⇤ Sm

XSLFS�wp =
Y

m=1,2

SWm
m

XSLFS�mx = 8i maxi

�
||m(Sm)

�

s.t.
X

m=1,2

Wm = 1

(4.6)

Where, SLFS’s are the fused score vectors; Sm’s are the score vectors from each

trait; Wm’s are the fusion weights assigned to each classifier that are tuned empirically. In

XSLFS�ws and XSLFS�wp, the element-wise weighted sum and the weighted product of the

score vectors from the depth channel (CH1) and the skeleton (CH2) channel are calculated.

Similarly, the element-wise maximum of the corresponding values in the two score vectors

is calculated in XSLFS�mx. The class label is determined by the index of the maximum

value in the fused score vector from Equation (4.6).

4.3 Experimental Evaluation

The proposed human activity recognition system is evaluated by training and testing

it with popular and publicly available datasets comprising depth and skeleton data. The

system’s performance is subsequently compared with existing state-of-the-art techniques

and shown to be superior. Four public datasets are harnessed in our experiments: MSR

Action3D[110]; UTD-MHAD[151]; TST Fall V2[152]; and MSR Daily Activity[118]. The

first two datasets comprise general activities, the third dataset contains data on fall activities,

and the fourth dataset includes data on daily activities. The third and fourth datasets are spe-

cific to indoor activities and are related to elderly care applications. A detailed description

and a few visual examples from each of the above datasets are included in the Appendix

(B).
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4.3.1 Experimental Setup

In our experiments, a combination of a 2D-CNN and a 3D-CNN is used for feature

extraction from skeleton and depth based inputs. For the 2D-CNN, pre-trained weights

from the well-known Imagenet dataset are used, comprising over 14 million annotated

color images distributed across 1000 categories. The approach for reusing pre-trained

weights, known as transfer learning, is adopted. This is followed by fine-tuning the rel-

atively small set of images generated using algorithms (4.1) and (4.2). For the 3D-CNN,

pre-trained weights from a large-scale Kinetics dataset containing 65000 annotated video

clips of around 400 activities are used. Here also, transfer learning is adopted with fine-

tuning with the pre-processed depth clips, as discussed in Section III(A.1).

The three chosen datasets [110, 118, 151] are already clean and do not have a back-

ground. The fourth dataset [152] does include background information in the depth maps,

but these are used as it is. The only pre-processing, therefore, for the depth video clips

needed is temporal and spatial normalization. The optimal values of the parameter, tempo-

ral length (Te), for each dataset are estimated using Equation (4.2), and their effectiveness

is verified empirically. The length of activities in the MSR DailyAct dataset and the TST

Fall dataset is large, and the activities are performed multiple times in a depth clip. For this

reason, every 3rd and 4th frame, respectively, are used for these two datasets. Ti is the input

temporal length used in 3D CNN after frame selection. The estimated temporal lengths (Te)

and the input temporal lengths (Ti) for different datasets are included in Table 4.1.

The approach taken is data augmentation to further address the issue of over-fitting,

especially with less training data. Image data augmentation commonly involves rotation,

translation, scaling, brightness, cropping, flipping, shifting, etc. As images in this work are

generated from the skeleton joint information where each joint/angle is mapped to a pixel,

the techniques mentioned are not helpful as they alter the pixel position. The augmentation
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Table 4.1: Optimal Values of the Temporal Lengths and Score Fusion Weights in Various Datasets.

Dataset Te Ti Weights (W1,W2)

MSR Action 38 40 (0.43,0.57)
UTD MHAD 68 68 (0.68,0.32)
MSR DailyAct 194 65 (0.41,0.59)
TST Fall v2 144 36 (0.46,0.54)

Te: Estimated Temporal Length; Ti: Input Temporal Length used in the 3DCNN.

approach adopted, therefore, is width-shift augmentation that varies an activity’s start and

end time. Similarly, for video clips, the augmentation approaches include speed sampling

that changes the speed of performing activities; random temporal cropping that varies the

starting point of activities; random rotation, random translation, random resizing, spatial

random cropping, and horizontal flipping for camera angle, human position, distance from

the camera, and left/right-handed activities.

The learning rate is initialized at 0.001 and decreased several times with a decay of

0.004 until it becomes 1e�4. The training takes different epochs for the three channels

and subsequent fusions. A weight decay of 0.001 with the L2 regularizer is used, and the

training is done using the ADAM optimization algorithm. During training, the batch sizes

respectively for 2D-CNN and 3D-CNN are 32 and 16. The framework in Figure 4.1 is

implemented, trained, and tested using Keras with a TensorFlow backend on a PC with

Ubuntu 18.04 and 16GB Tesla V100 GPU. To improve the reliability of the results, all the

fusion experiments are conducted thrice, and the average performance is reported.

4.3.2 Model Selection and Ablation Study

To select the most suitable 2D-CNN architecture for our work, we experimented

with eight well-known models with transfer learning and fine-tuning, as discussed earlier.
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Table 4.2: Impact of Input Temporal Length (Ti) on the Performance of 3DCNN.

Length(Ti) 24 32 40 64 96

Accuracy(%) 87.64 92.00 93.45 92.73 92.73

ResNet50 gave the best results of these eight models with the two descriptors and hence was

selected for our 2D-CNN. Similarly, for appropriately configuring our 3D-CNN, we exper-

imented with different temporal lengths and augmentation methods. Although the temporal

length is estimated by Equation (4.2) and is validated in Table 4.2. The best results were ob-

tained with a certain amount of data augmentation. Augmentation beyond this point resulted

in the degradation of results. Details related to our choice of models for both 2D-CNN and

3D-CNN are included in the Appendix (B).

The weights used in SLFS as given in Equation (4.6) are obtained empirically using

grid search on the training data for each dataset. These are shown in Table 4.1. Numeric

data augmentation is employed on the scores for better generalization, where 10% noise is

randomly imputed (added/subtracted) in the training data scores.

We conducted an ablation study to analyze the effectiveness of the spatial dropout mod-

ule. The experiments were conducted on the MSR Action3D dataset. Including spatial

dropout modules in both 2D-CNN and 3D-CNN leads to an improvement in performance

while avoiding overfitting. The accuracy improved from 92.00% to 93.61% in the JPD

based channel (CH21), from 85.45% to 88.73% in the BAD based channel (CH22), and

from 92.53% to 94.21% after FLFS (CH2). In the depth based channel (CH1), the accu-

racy improved from 93.45% to 94.18%. The overall performance improvement was from

96.72% to 98.18% when spatial dropout was used.
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Table 4.3: Classification Performance of the Individual and Fused Streams on Four Public Datasets.

Streams MSR Action3D MSR Action3D (ES2) UTD-MHAD TST Fall MSR DailyAct
(ES-1) AS1 AS2 AS3 Avg (CS) (CS) (CS)

CH1 94.18 94.33 95.57 99.10 96.33 93.26 98.33 78.75
CH21 93.61 87.73 93.75 92.85 91.44 95.34 94.16 73.12
CH22 88.73 87.73 91.96 89.29 89.66 94.42 89.99 65.63
FLFS-cc 94.21 90.88 96.13 93.45 93.49 97.52 95.00 76.25
FLFS-avg 93.60 91.51 96.43 93.75 93.90 98.32 95.00 74.99
FLFS-prod 93.55 88.68 94.64 92.26 91.86 95.58 93.89 72.29
FLFS-mx 92.88 90.25 95.53 92.26 92.68 96.74 94.44 73.33

FLFS (best) 94.21 91.51 96.43 93.75 93.90 98.32 95.00 76.25

SLFS-ws 97.45 99.06 96.46 99.06 98.19 98.60 100.00 81.87
SLFS-wp 98.18 99.06 96.46 99.10 98.21 98.83 100.00 81.87
SLFS-mx 95.67 94.34 92.03 99.10 95.16 93.02 99.16 81.25
SLFS-lr 96.00 98.11 96.46 99.10 97.89 97.20 100.00 80.00
SLFS-rf 94.90 95.28 95.57 95.53 95.46 96.51 99.16 78.75
SLFS-nb 96.00 98.11 96.46 99.10 97.89 96.51 100.00 79.37

SLFS (best) 98.18 99.06 96.46 99.10 98.21 98.83 100.00 81.87

4.3.3 Performance Evaluation

A concise summary of the classification performance of all the channels and fusions on

the four datasets is included in Table 4.3. The first three rows provide information on clas-

sification based on depth data, classification based on skeleton data using JPD, and classifi-

cation based on skeleton data using BAD. The subsequent four rows provide information on

the performance of FLFS using different methods, with the best FLFS performance included

in the following row. Similarly, the performance of SLFS, using six different methods, is

also included, followed by the best overall accuracy.

Of the various methods used with FLFS, the average operation method performs well in

most cases, along with the concatenate operation. The average method performs best as it

is a linear operation where the gradient flows nicely, leading to the better tuning the training

weights considering both inputs. The concatenate operation, on the other hand, works on

any kind of input irrespective of the possible correlation. With SLFS, the weighted product
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Figure 4.7: Effect of multilevel fusion on the overall performance on different datasets

operation performs best in all cases. This is because it maximizes the fused score of the

correct classes (and the misclassified correct classes in one of the traits). Figure 4.7 shows

the effect of multilevel fusion depicting the performance improvement.

For comparison with state-of-the-art, we only consider existing work using either skele-

ton or depth data. Techniques that use RGB color data or sensor data are excluded as these

are privacy-invasive and discomforting. Also, we do not consider literature where the eval-

uation settings are not properly described or are inconsistent.

4.3.4 Results on MSR Action3D dataset

The MSR Action3D dataset comprises depth maps and skeleton sequences of 567 action

instances of 20 action categories. The MSR Action3D dataset is widely used in literature for

evaluation in the following three settings: 1) cross-subject evaluation on the entire dataset

[109]; 2) cross-subject evaluation on three subsets of the data (i.e., AS1, AS2, AS3) [110];

and 3) evaluation by randomly dividing the dataset into training and test set [110]. In this

work, evaluation settings (1) and (2) (namely ES-1 and ES-2, respectively) are used for

assessing the proposed system. Setting (2) is especially popular and has been used in most
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Table 4.4: Performance Comparison on MSR Action3D Dataset

Technique Year Data Method Acc (%)

Nunez et al. [24] 2018 S DL 95.70
Qi et al. [115] 2018 S ML 86.81
Huynh-The et al. [114] 2019 S DL 97.90
Liu and Zhao [89] 2020 S ML 94.60
Sima et al. [91] 2022 S ML 93.68
Zhang et al. [29] 2022 S DL 94.81
Li et al. [110] 2010 D ML 74.70
Farooq et al. [109] 2018 D ML 96.50
Weiyao et al. [23] 2019 D ML 98.20
Trelinski and Kwolek [111] 2021 D DL 95.64
Bulbul et al. [88] 2022 D ML 93.00
Ji et al. [116] 2018 D+S ML 90.30
Kamel et al. [12] 2018 D+S DL 94.51
Chao et al. [63] 2020 D+S ML 91.58
Li et al. [62] 2021 D+S ML 95.60

Proposed (IncludingAll Joints) 2022 D+S DL 98.21
Proposed (ExcludingErroneous Joints) 2022 D+S DL 98.16

D: Depth data; S: Skeleton data ; D+S: Both Depth and Skeleton data.
ML: Use Machine Learning Algorithm; DL: Use Deep Learning Algorithm

recent endeavors. Both these settings are cross-subject evaluations where odd subjects are

used for training and even subjects for testing.

Table 4.4 compares the proposed framework’s performance with existing state-of-the-art

techniques. The MSR Action3D dataset has missing joints in a few of its sequences. There-

fore, most existing skeleton based monitoring methods ignore these erroneous sequences

(that are 10 in number) and use 557 out of the total 567 sequences. Our model, on the

other hand, utilizes all 567 sequences and gives good results. This displays its robustness

even in the face of missing data. Therefore, the accuracy of the skeleton based channel

of the proposed framework is 93.90% as given in FLFS(best) row of Table 4.3 which is a
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little less than that of existing methods, but it makes up for it through fusion strategies and

reports an overall accuracy of 98.21%. The accuracy using data with only non-erroneous

joints (i.e., 557) is also included in Table 4.4 to show fair comparison with the existing

methods those excluded erroneous joints. The best accuracies using skeleton data, depth

data, and a combination of both, reported in the literature, are 97.90% [114], 98.20%[23],

and 95.60%[62], respectively. The proposed framework outperforms these techniques by a

comfortable margin.

Skeleton data based approaches in [89, 91, 115] extract hand-crafted features and utilize

machine learning algorithms. Their performance is mostly inferior to the proposed method,

which uses deep learning. The approach in [24] extracts features from each frame separately

and combines them in the temporal dimension using LSTM. Although LSTMs are meant for

modeling sequential data, they have trouble recalling details about lengthy sequences with

a large number of time steps. [114] uses a combination of positions and angles of joints

to model an activity but suffers from missing joint data in practical use-case scenarios. In

contrast, the proposed approach uses depth data and is able to effectively handle missing

joints.

Depth data based approaches [110] exhibit weak temporal correlation due to the concate-

nation of individual frame features. DMM [23, 88, 109], on the other hand, lacks modeling

speed and order variation. In [111], features extracted from each depth frame are individu-

ally combined using an ensemble of a multi-channel 1D-CNN and Dynamic Time Warping

(DTW). The complexity of DTW limits its use, and it is cannot be used for large datasets

with lengthy sequences. The proposed approach uses 3D-CNN, which processes the tem-

poral information through the whole network. Moreover, only depth data based methods

experience degraded performance due to noise and occlusion in depth maps.

Approaches using both depth and skeleton data [12, 62, 63] mostly generate DMMs from
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(a) (b) (c)

Figure 4.8: Confusion matrices for three action subsets (AS) of MSR Action3D dataset using Eval-
uation Setting (2): a) AS1; b) AS2; c) AS3

depth data which has inherent drawbacks, as discussed earlier. [12] and [62] use features

based on the spherical coordinate of joints and are susceptible to viewpoint and rotation.

Approaches in [63, 89, 116] use hand-crafted features and machine learning algorithms. In

contrast, the proposed approach models temporal features in a better way using 3D-CNN

and utilizes joint positions and bone inclinations from skeleton joints to make the system

robust and unaffected by scale and viewpoint variations. Although, the methods in [114]

and [23] have comparable performance to the proposed method on this dataset but has a

huge difference in the performance on UTD-MHAD dataset.

It is evident from Table 4.3 that the accuracies of the FLFS operations are superior

to those of individual skeleton based channels. The accuracy of the SLFS operations is

also better than the combinations of skeleton and depth channels. Two operations, SLFS-

mx and SLFS-rf, give accuracy slightly inferior but still better than those of depth and

skeleton channels. The confusion matrices in Figure 4.8(a-c) show the precision of each

activity in (AS1, AS2, and AS3). The matrices in Figure 4.9(a) show the precision of ac-

tivities in the entire dataset. Only a few instances of activities are misclassified. These

include PickUp&Throw, which is confused with Bend in AS1, HandCatch, which is

confused with HighArmWave in AS2, and Jogging is confused with ForwardKick ow-

ing to somewhat similar movement of body parts.
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(a) (b)

Figure 4.9: Confusion matrices: a) MSR Action3D dataset (ES1); b) UTD MHAD dataset

4.3.5 Results on UTD-MHAD Dataset

The UTD MHAD dataset is captured along four data modalities: RGB clips, depth maps,

skeleton sequences, and sensor readings. The dataset comprises 861 instances of 27 action

categories. This work uses the evaluation setting followed in [151], where odd subjects are

used for training and even subjects for testing. The UTD-MHAD dataset is comparatively

large and includes more activities. The depth clips in this dataset are clean, and the skeleton

sequences are less noisy. Therefore the performance of individual skeleton based channels is

much better, as seen in Table 4.3. Integrating JPD and BAD in FLFS significantly improves

performance even when using just skeleton data.

A comparison of the proposed framework with the state-of-the-art is included in Ta-

ble 4.5, and the former comfortably outperforms the latter. A skeleton based method in [96]

that uses multi-stream CNN with decision-level fusion has a performance that is somewhat

close to the proposed. The proposed framework is, however, more robust due to the integra-

tion of the depth data with skeleton sequences. The approach in [91] suffers from temporal

correlation due to concatenation and LSTM. Another approach in [29] represents skele-

ton joints as a large graph and uses a Graph Convolution Network (GCN) that is sensitive
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Table 4.5: Performance Comparison on UTD-MHAD dataset.

Technique Year Data Method Acc (%)

Huynh-The et al. [114] 2019 S DL 90.90
Banerjee et al. [96] 2020 S DL 97.91
Sima et al. [91] 2022 S ML 86.37
Zhang et al. [29] 2022 S DL 94.19
Weiyao et al. [23] 2019 D ML 88.70
Trelinski and Kwolek [111] 2021 D DL 88.14
Bulbul et al. [88] 2022 D ML 93.30
Kamel et al. [12] 2018 D+S DL 88.14
Chao et al. [63] 2020 D+S ML 89.53
Li et al. [62] 2021 D+S ML 94.20

Proposed 2022 D+S DL 98.83

D: Use Depth data only; S: Use Skeleton data only; D+S: Use Depth and Skeleton data.
ML: Use Machine Learning Algorithm; DL: Use Deep Learning Algorithm

to noise and small variations in joints. The proposed approach exhibits a strong tempo-

ral correlation in skeleton data by combining frames in an image and is comparatively less

sensitive to noise.

The proposed approach is significantly better in terms of performance when compared

to existing depth data based approaches [23, 88, 111] due mainly to the strong temporal

correlation provided by the 3D-CNN, and the fusion of data modalities. Approaches [12,

62, 63] that utilise both depth and skeleton data are also notably inferior to the proposed

approach. This is largely owing to weak temporal correlations in DMM and the use of only

one of the two features: joint position or joint angle. In contrast, the proposed approach

utilizes both the joint position and the novel bone inclination based feature to represent

even a small movement of the bones effectively.

The confusion matrix in Figure 4.9(b) shows the precision of each activity. There

are a few misclassifications here as well, owing to similarities in action, such as

85



CHAPTER 4. PRIVACY-PRESERVING HUMAN ACTIVITY RECOGNITION
SYSTEM

RightArmThrow being confused with SwipeLeft, Squat being confused with ArmCurl,

and Walking being confused with Jogging.

4.3.6 Results on TST Fall V2 dataset

The TST fall detection dataset is specific to indoor activities, and the fall instances in

this dataset seem useful for studying elderly care. The dataset is generated along three data

modalities: depth maps, skeleton sequences, and acceleration data. The dataset comprises

264 action instances depicting 8 actions. The actions in the dataset are grouped into two

categories: Falls and Activities of Daily Living (ADL). This work also uses a cross-subject

evaluation setting similar to [112]. Table 4.6 compares the proposed work with the existing

ones. A few existing techniques in literature classify Fall vs. ADL (i.e., 2 class classifica-

tion) while others classify all the 8 activities (i.e., 8 class classification). We compare our

work with both techniques using the 8 class classification, where our approach comfortably

outperforms existing techniques. All the activities are correctly classified in the test dataset.

Table 4.6: Performance Comparison on TST Fall Dataset.

Technique Year Class Method Acc (%)

Ghojogh et al. [113] 2017 2 ML 90.15
Xu and Zhou [153] 2018 2 DL 95.84
Hristov [120] 2021 2 DL 91.00
Maldonado et al. [112] 2022 2 ML 92.20
Ghojogh et al. [113] 2017 8 ML 88.64
Ghodsi et al. [117] 2018 8 ML 92.30
Akyash et al. [119] 2020 8 ML 98.80
Yin et al. [7] 2021 8 DL 93.90

Proposed 2022 8 DL 100

ML: Use Machine Learning Algorithm; DL: Use Deep Learning Algorithm.
2: Binary classification (ADL vs Fall); 8: Eight class classification.
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The existing approaches utilize only the skeleton joint data from this dataset as the depth

frames contain rich background information and are unsuitable for methods like DMM. As

3D-CNN is adept at extracting useful information from images with a background, we were

able to utilize depth data as well. Approaches in [112, 113] extract features from each

frame, concatenate the same in the temporal dimension and classify using machine learning

algorithms. Approaches in [7, 120, 153] harness LSTM for temporal modeling, leading to

inferior performance compared to the proposed approach. Approaches in [117, 119] utilize

dynamic time warping for temporal modeling. All approaches use raw skeleton joints and

are susceptible to variations in viewpoint and scale and the variations arising from missing

joints.

Table 4.3 includes comparisons of accuracies achieved with individual modalities and

fusion strategies on the TST Fall detection dataset. The performance is 95% when tested on

the skeleton data alone (after FLFS) and 98.33% using depth data alone. Most methods in

SLFS return 100% accuracy except SLFS-mx and SLFS-rf.

4.3.7 Results on MSR DailyActivity Dataset

As the name suggests, the MSR Daily Activity dataset contains 320 instances of 16

daily routine activities performed in each sitting and standing position. In this work, the

evaluation setting followed in [118] is used. Herein the evaluations are done in a cross-

subject (CS) manner while considering all activities.

The MSR Daily Activity dataset contains heavy occlusions in the depth clips as the

actors often sit or stand in front of the sofa. This results in very noisy skeleton sequences

owing to erroneous estimations by the tracking algorithm. Also, the fact that the actors are

in both sitting and standing positions makes this dataset more complex than others. Due to

these reasons, like other approaches, our model is also imprecise on this dataset. Another
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Table 4.7: Performance Comparison MSR Daily Activity Dataset.

Technique Year Data Method Acc(%)

Nunez et al. [24] 2018 S DL 63.10
Qi et al. [115] 2018 S ML 68.75
Reily et al. [90] 2020 S ML 82.00 1

Liu and Zhao [89] 2020 S ML 91.20
Debnath et al. [99] 2021 S DL 76.30 1

Farooq et al. [109] 2018 D ML 76.30
Wang et al. [118] 2012 D+S ML 85.75
Ji et al. [116] 2018 D+S ML 81.30

Proposed 2022 D+S DL 81.87

D: Use Depth data only; S: Use Skeleton data only; D+S: Use Depth and Skeleton data.
ML: Use Machine Learning Algorithm; DL: Use Deep Learning Algorithm

crucial factor behind the model’s poor performance is the human-object interactions in this

dataset. Actions like eating and drinking; or using the laptop, reading a book, and just

sitting still are semantically similar unless the objects (i.e., plate or glass; laptop or book)

are considered. In literature, too, this dataset performs well when used for RGB data (alone

or in combination with depth/skeleton data) or the objects are taken into account. Despite

this, we validate our proposed framework on this dataset using skeleton and depth data only

without object consideration.

Table 4.7 compares the proposed framework with the existing ones. The former mostly

outperforms the existing techniques except [89] and [118]. In skeleton based methods, [89]

uses the angle features of the bones by representing joints in Riemannian Geometry which

is well suited for curved spaces. This work uses an additional pre-processing (i.e., interpola-

tion technique) on skeleton joints to reduce noise, which leads to better performance. [118],

on the other hand, Local Occupancy Patterns (LOP) from the point cloud data of depth maps

to represent objects involved in each activity led to improved performance. The proposed
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Figure 4.10: Confusion matrices of MSR Daily Activity Dataset

approach significantly improves from [24, 115], which combines features from individual

frames in the temporal domain. Approaches in [109] and [116] utilizes machine learning al-

gorithms on hand-crafted features, resulting in inferior performance. Approaches in [90, 99]

utilize RGB data along with skeleton joints; the results shown here only use skeleton data.

Table 4.3 includes comparisons between various input channels and fusions. As skeleton

sequences are pretty noisy and irregular, the framework’s performance on both the skeleton

based channels is poor. The FLFS, however, somewhat improves the performance by com-

bining the joint positions and bone inclinations. SLFS further improves the performance as

compared to the depth and skeleton traits. The confusion matrix in Figure 4.10 shows the

precision of each activity. This dataset observes several misclassifications owing to human-

object interaction and noisy skeleton and depth data. For example, the playinggame activity

is mostly misclassified as the readingbook or sitstill activity; callingcellphone activities

are misclassified as the drinking or sitstill or tosspaper; and eat activity misclassified

as drink. These activities have similar hand movements and are difficult to distinguish,

especially with noisy data.

1This also used RGB data; accuracy using skeleton data only is reported here.
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4.3.8 Computational Complexity

The usual approach to analyse algorithms in terms of computational complexity is by

asymptotically representing their time and space requirements. For CNN models, however,

asymptotic complexity analysis is usually not done. Alternatively, to demonstrate the ef-

fectiveness of the proposed framework in real-time, we calculate the proposed framework’s

inference time, which is a rough estimate and is dependent on the available resources. Ta-

ble 4.8 includes the inference time of the framework on different datasets. The total in-

ference time is divided as follows: the preprocessing time of the depth data; the score

generation time taken by the 3D-CNN; the JPD and BAD generation time from the skeleton

sequences; the score generation time taken by the 2D-CNN (including FLFS); and the time

taken by the SLFS module. The preprocessing of depth data includes temporal & spatial

normalization and normalization of the input pixel values in the range of [-1,1]. As the av-

erage temporal lengths of the datasets are different, the processing time for each dataset is

also different. Similarly, the JPD and BAD generation time varies for different datasets due

Table 4.8: Average Computation Time per Activity Instance (in Milliseconds) of the Proposed
Framework on Different Datasets

Operation MSR
Action3D

UTD
MHAD

TST
FallV2

MSR Dai-
lyAct

Depth Preprocessing 29.91 53.89 58.77 61.44
3D-CNN Score Generation 35.46 60.39 32.47 58.76
CH1 (total time) (P2) 65.37 114.28 91.24 120.20
JPD Image Generation (P1) 1.12 2.03 3.19 3.67
BAD Image Generation (P1) 9.98 14.21 35.96 36.43
2D-CNN + FLFS + Score Generation 7.77 7.77 7.77 7.77
CH2 (total time) (P2) 17.75 21.98 43.73 44.19
SLFS 0.42 0.46 0.28 0.37

Total Time (considering P1 & P2) 65.79 114.74 91.52 120.57

Two (P1) operations can execute in parallel with each other; Similarly, two (P2) operations can also execute in parallel with each other.
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(a) (b)

Figure 4.11: Experimental setup for data collection; a) Placement of KinectV2 device; b) Multiple
data streams: (i) Color image (ii) Depth image (iii) Depth image after background
removal (iv) Human body skeleton

to different average temporal lengths. The score generation time of the 3D CNN depends on

the input Temporal Lengths, Ti, for each dataset. Higher the temporal length, the longer the

score generation time. The calculation of the total inference time also considers the parallel

execution of segments: like JPD & BAD can be generated in parallel (P1), and CH1 & CH2

can execute in parallel (P2). The inference time is calculated as the ratio of the total time

taken by all the inputs and the total number of inputs in the test set. The maximum inference

time per input is ⇡ 121 ms for the MSR Daily Activity dataset, which is well within the

acceptable range in real-time applications.

4.4 Prototypical Implementation of Proposed System

The feasibility of the proposed framework in the real world is validated through a pro-

totypical implementation. A KinectV2 depth sensor is utilized for capturing the depth and

skeleton data in a laboratory setup, as shown in Figure 4.11(a). Multiple streams captured

by the device are shown in Figure 4.11(b)[i-iv]. The Kinect device was placed on a tripod

around 4 feet from the floor, and activities were performed in the activity region between 4

feet and 10 feet from the device. The depth data was captured at approximately 30 fps.

A small dataset of five activities, namely, HandWave, HandClap, ForwardKick, Walk,

and Fall, is created to demonstrate the effectiveness of the proposed framework in a practical
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Figure 4.12: Hand Wave activity performed from four different angles and four different distances
in our prototype dataset; depth frame (first row); JPD based images (second row), BAD
based images (third row)

scenario. Six actors (four male, two female) with varying physiques performed the activ-

ities. Each actor performed an activity two to three times. To demonstrate the capability

of the proposed JPD and BAD in effectively representing activities at varying distances and

angles, each actor performed at least one activity at four different angles (i.e., 0�, 30�, 60�,

90�, where 0� implies that actor is facing the camera) and four different positions (i.e., 4

ft, 6ft, 8ft, 10ft from the device). In this way, the five activities were performed with eight

variations at least once.

The JPD and BAD based images shown in Figure 4.12 confirm that the descriptors at

different angles and distances for an activity are similar and can be distinguished from other

activities. For temporal variation, the activity clip length was varied roughly between 2.5

and 6 seconds. The dataset altogether contains 104 instances of 5 activities. A few visual

examples and the sample JPD and BAD based images for five activities are included in the

Appendix (B). The dataset and the codes for reading the data, can be downloaded from the

link: Dataset.

We utilized our pre-trained model for the TST Fall dataset (as this dataset was also

captured using a similar Kinect device) after appropriate fine-tuning and achieved 100%

classification accuracy. The fine-tuning involved modification and retraining both the score
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generators using the activities performed by the first five actors. Subsequently, the validation

was done using the activities performed by the sixth actor to conform with cross-subject

evaluation.

4.5 Summary of the chapter

In this chapter, a framework for human activity recognition using privacy-preserving

depth sensors was proposed. The main contribution of this chapter is the development of

a robust two-channel CNN-based architecture for classifying human activities using depth

clips and skeleton sequences. To ensure privacy, a depth sensor was employed, which in-

herently preserves privacy. The proposed architecture utilizes 3DCNNs and 2DCNNs for

feature extraction from depth clips and images generated from skeleton data, respectively.

Two novel descriptors, JPD and BAD, were introduced for scale- and view-invariant activity

recognition from skeleton data. Furthermore, a novel two-level fusion strategy, FLFS and

SLFS, was employed to effectively combine the JPD and BAD descriptors as well as the

depth and skeleton modalities. The integration of 3DCNN and 2DCNN for two data modal-

ity, generation of JPD and BAD, and the two-level fusion strategy is a novel idea which was

not explored in the literature.

The depth camera provided depth data clips that were directly used for activity recog-

nition over an appropriate CNN framework after necessary preprocessing. The skeleton se-

quences obtained from depth data were mapped to two descriptors based on joint positions

(JPD) and inclination of bones (BAD), respectively. The descriptors were further encoded

into color images and provided both spatial and temporal information. These were used over

a second channel of the CNN framework for activity recognition. Limited data was available

for most analyses, and this was offset by transfer learning and data augmentation. To benefit

from the multiple channels of analysis, fusion strategies were employed. A feature-level fu-
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sion strategy, FLFS, was used to combine JPD and BAD based features, and subsequently,

SLFS was used to combine the scores of the skeleton and depth based channels. The results

of the proposed framework were shown to outperform existing techniques on four public

datasets. The proposed framework was shown to be feasible in real-time through compu-

tational complexity analysis and prototypical implementation. The proposed system can

recognize activities from partially occluded depth videos through skeleton tracking algo-

rithms that enable the estimation of the joint information. However, occlusion beyond a

point prevents the tracking algorithm from effectively estimating joints. To overcome this,

a strategically planned multi-camera setup can be explored in future research.
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Chapter 5

Identity and Activity Privacy-Preserving

Posture Recognition System

5.1 Introduction

The global population is rapidly aging and the number of individuals aged 65 and more

is anticipated to become 1.6 billion by 2050 [154]. This demographic shift is leading coun-

tries to seriously consider providing a larger number of independent living environments for

the elderly. In this respect, the high cost and shortage of labor for elderly care, is spurring

significant investments in the development of automated monitoring systems for such envi-

ronments. Automated monitoring systems continuously observe living spaces and raise an

alarm on detecting unusual activities, such as falls, of the elderly occupants. The system, on

detecting an adverse medical condition, notifies caregivers or the next of kin of the victim

to minimize potential harm. According to the Center for Disease Control and Prevention

[155], around 3 million elderly are treated for injuries from falls each year of which around

800,000 are seriously injured and need to be hospitalized.

Most automated monitoring systems for assisted living environments function through

readings received from sensors of various kinds. Of these, as discussed in Chapter 1, wear-
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able and ambient sensor based systems are quite common. Although effective to an extent,

these have limitations related to convenience and accuracy. In this respect, more effective

systems are based on vision sensors. These are both convenient and accurate but are plagued

the severe limitation of the compromise of the monitored individuals’ privacy [27, 28, 73].

A good solution for overcoming privacy compromise amongst vision sensors is to use depth

sensor based systems [121, 124], which is also utilized in our work proposed in chapter 4.

Depth sensors are largely vision sensors that work on the idea of the distance of the ob-

ject from the sensor and capture images that are quite unclear, comfortably concealing the

identity of the monitored individual.

Most research that uses depth sensors for monitoring spaces conveniently assumes that

their use automatically guarantees privacy [121, 124]. A few studies, however, argue that

the images captured by depth sensors provide sufficient information for facial recognition

especially when the number of individuals involved is small (up to around 30 individuals)

[76, 125].

Moreover, for privacy preservation in assisted living environments, concealing an indi-

vidual’s identity, as claimed by most depth sensor based systems, is not enough and also not

important. This is because the living space allocated to individuals in assisted living centers

is fixed and known publicly and hence even if the depth camera based systems conceal the

identity of the monitored individual, it does not serve much purpose. In such cases, there-

fore, a much higher degree of information concealment is required such that fine-grained

activities performed by the monitored individuals, such as talking on the phone, consuming

alcohol, keeping money, etc. are indiscernible. This is another level of privacy that we call

‘activity privacy’. We, therefore, define two levels of privacy: identity privacy (that restricts

the detection of an individual’s identity from the captured images); and activity privacy (that

restricts the detection of fine-grained activities that an individual performs).
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It is important to understand, though, that depth sensor based systems that monitor as-

sisted living environments need to work with images that preserve activity privacy but at

the same time need to be coarse-grained enough for the algorithmic component of the mon-

itoring mechanisms to assess the well being of the individual. This means that the images

should conceal information on the specific tasks being done by the individual (like drink-

ing, eating, smoking) whilst providing enough information to detect actions like standing,

sitting, walking, lying, falling. It is critical that this balance, in the images captured, be

maintained to be able assess the well being of the individual along with preserving privacy.

This chapter introduces a novel vision-based privacy-preserving system that utilizes cus-

tomized depth sensors for monitoring indoor spaces. The modified depth sensors capture

images that effectively preserve both identity and activity privacy, while also efficiently rec-

ognizing the coarse-grained postures of the individuals enabling an assessment of their well

being.

The other challenge in devising such monitoring systems for private spaces is owing to

the fact that privacy is a subjective concept. One individual may consider a certain level

of privacy acceptable whereas another may find it to be an intrusion. To tackle this, we

endeavoured to understand and identify the level of privacy widely accepted by most peo-

ple. We conduced a survey involving individuals from diverse demographic backgrounds

over a crowd-sourcing platform, Amazon Mechanical Turk (AMT). The survey’s findings

enabled us to determine the degree of privacy in images that most people are comfortable

with in terms of both identify and activity privacy. In addition to this, two deep learning

based classifiers (person identification system [156] & human activity recognition system

proposed in chapter 4) were also employed to verify that the images, also preserved privacy

from a machine learning perspective again in terms of both identity and activity privacy.

With the privacy of the monitored individuals ensured, the other important task of the
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proposed system is correctly assessing their well being. The well being of monitored in-

dividuals whilst preserving their identify and activity privacy, is done through the well-

established effectiveness of Convolutional Neural Networks (CNNs) in object classification.

A CNN architecture based on VGG-16 [157] was employed for recognizing human postures

within privacy-preserving depth images.

Furthermore, to enhance the performance of posture recognition in privacy-preserving

images, structural characteristics of the human body in different postures were exploited

using horizontal projections and geometric information of the human body. A horizontal

projection map comprises images generated from the projection histogram of the horizontal

pixels in the binary image. Projection maps are especially popular and effective in hand-

written text recognition [158, 159] despite the noise and variations in handwritten text. We

utilized projection maps because our privacy-preserving depth images, much like hand-

written text, have variations in shapes owing to noise.

We also explored the statistical features of the shapes in the images such as the ratio

of height to width of the lower and upper body, and other such factors that provide high

discrimination in different postures. An integrated model was developed that combines the

CNN-based features from depth images and projection maps with statistical features.

Keeping privacy-preservation and performance in mind, the key contributions of this

chapter are as follows:

1. Modification and tuning of depth sensors for capturing depth images that preserve

both identity and activity privacy.

2. Validation of acceptable privacy level of depth images by surveying global audiences

utilizing crowd-sourcing services.

3. Validation of appropriate privacy levels for preserving identity and activity privacy
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Figure 5.1: Workflow of the proposed framework

using machine learning methods.

4. Developing an efficient posture recognition system using CNN with depth images,

horizontal projection maps, and geometric information of the human body.

5. Demonstration of the efficacy and feasibility of the proposed work through a proto-

typical implementation.

5.2 Proposed Methodology

In this section, the proposed approach for monitoring occupants’ well being in indoor

locations whilst preserving their privacy is discussed. As mentioned earlier we endeavour

to capture depth images that preserve the privacy of the monitored individual(s). To do this,

we modify standard depth sensors appropriately. We dwell upon these modifications first in

this section. Subsequently, we describe three levels of privacy of the depth images captured

and attempt to assess and validate the extent of privacy preservation ensured at these three

levels. We also assess the acceptability and effectiveness of these privacy levels to the hu-

man eye and to appropriately trained machine learning algorithms. Finally, in this section,

we describe a posture recognition system that is meant to correctly identify the posture of

the monitored individuals using depth images that are validated to be privacy preserving.

The idea is that accurate posture recognition of the monitored individual provides informa-
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(a) (b)

Figure 5.2: Kinect Device: (a) Original Kinect Device, (b) Sensors in Kinect Device

tion such as falls, sitting at one place for extended periods of time, sleeping for extended

periods of time, and so on, that are helpful in assessing the well being of the monitored indi-

vidual(s). All this using images that are privacy preserving. A schematic diagram depicting

the workflow of the proposed system is shown in Figure 5.1.

5.2.1 Modification & Tuning of Depth Sensor

We utilize a modified depth sensor to capture the privacy-preserving images that pre-

serve both identity and activity privacy. Identity privacy, as discussed earlier, prevents the

recognition of an individual through the images; whereas activity privacy prevents the iden-

tification of the activity being performed. For our work, we use the depth sensor embedded

in the KinectV2 device. Before discussing the modifications to the sensor, a brief introduc-

tion of the KinectV2 device and Time Of Flight (TOF) depth-sensing technology is pro-

vided. A KinectV2 device and the sensors available in KinectV2 are shown in Figure 5.2.

A Kinect device is equipped with a color camera, a depth camera, and an IR emitter.

The color camera works along the principles of light and captures high-resolution (1920 ×

1080) color images. The depth camera works on the principle of the distance of the objects

from the camera and captures depth and infrared images with a pixel resolution of 512 ×

424. The distance between the object and camera is calculated using the IR wave’s TOF.

The IR emitter projects IR light waves that are reflected back to the depth sensor. The phase
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shift between the projected and captured wave is used to calculate the distance between the

object and the sensor as per Equation (5.1).

d =
c

2f

�d

2⇡
(5.1)

Where �d denotes the phase shift, f is the frequency of the light wave, and c is the speed

of light.

The distance d is then mapped to a pixel intensity value to generate a depth image.

Similarly, the amplitude of the captured wave is mapped to generate an infrared image. The

depth, infrared, segmented depth image, and the reference color images captured using an

original depth sensor are shown in Figure 5.3 (first row).

To capture images that are privacy preserving, the modifications to the kinect sensor is

done in three steps. The first step involves placing an opaque black sheet before the color

camera sensor to restrict it from capturing color images. We call the images captured after

this first step of modification as being at privacy level 1, P1. The first row of Figure 5.3,

excluding the colour image comprises images at level PI. The second step of modification

is done by placing a plano-convex lens before the depth camera sensor. This modification

is inspired by the work in [38], where a plano-convex IR lens is used to capture de-focused

images. Images captured at this level are more privacy preserving than P1 and we call these

images at privacy level 2, P2 (second row of Figure 5.3). Finally, an LDPE film with a

rough surface is included before the plano-convex lens to further diminish the information

in the captured images, and augment the privacy. This modification is inspired by the work

in [160], and is referred as privacy level 3, P3, shown in the third row of Figure 5.3.
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Figure 5.3: Captured data in three privacy levels

5.2.2 Validation of Privacy Preservation

The images captured by the modified depth sensor need to be validated for their degree

of privacy, to ensure that they are indeed privacy preserving. We look at ensuring privacy

preservation as perceived by human beings in general and from the point of view of trained

machine learning algorithms. In other words, the privacy preserving images should preserve

identity and activity privacy, when seen by a human being as well as when seen by an

appropriate machine learning algorithm. The validation of the privacy-preserving nature of

each privacy level is therefore done in three ways: 1) identity and activity privacy assessment

through a user survey to ensure privacy when seen by humans in general; 2) identity privacy

assessment using an automated face recognizing system; and 3) activity privacy assessment

using a standard activity classifier. A detailed description of the approach taken for privacy

validation follows.

5.2.2.1 Identity and activity privacy assessment through a user survey

To validate the privacy-preserving nature of depth images from the perception of humans

in general, a user survey was conducted involving global participants. The survey was
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Table 5.1: Survey questionnaire

Sr.
No.

Questionnaire Options Keyword

Q1 Where, in your opinion, is this video
taken? (choose the most suitable op-
tion)

Living Room, bed-room,
computer-lab, kitchen, store-
room, office, some other place,
unable to recognize

Location

Q2 What living or non-living objects do
you see in the video? Please name the
objects. (select all appropriate options)

Person, bed, computer, fan,
door, almirah, refrigerator, un-
able not recognize

Detection

Q3 If, according to you, the video includes
a human being, what is their posture?
(Choose any one option)

Standing & facing the camera,
standing with back towards the
camera, sitting & facing the
camera, sitting with back to-
wards the camera, some other
posture, unable recognize

Posture

Q4 If, according to you, the video includes
a human being, what activity or activ-
ities do they seem to be carrying out.
(Choose any one option)

Drinking, eating, reading
book, using mobile phone,
sitting/standing still, some other
activity, unable to recognize

Activity

Q5 Depth images of six persons are shown
in first row and color images are shown
in the second row (in random order).
Match each person in depth image to
the corresponding person in color im-
age. (Match each depth images to it’s
correct color image)

First column shows the depth
image numbering (D1, D2, D3,
D4, D5, D6) and the second col-
umn shows the color (RGB) im-
age numbering (R1, R2, R3, R4,
R5, R6, Can’t identify).

Identity

published on Amazon Mechanical Turk (AMT), where we considered responses from the

first 100 participants representing a range of age groups, occupations, educational levels,

and time zones.

The survey involved showing images and videos at different privacy levels (i.e., P1, P2,

and P3) to participants. For each privacy level, two video clips comprising random activities

were included. Along with the clips, questions around the clips were asked. These questions

are included in Table 5.1.

In addition to this, the survey also comprised a matching exercise wherein a set of images

for each privacy level with different actors was included. Also included was a set of visible
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color images of the actors. The privacy-preserving images and the visible color images were

arranged in a random order and participants were asked to match the actors in the privacy-

preserving depth images to the actors in the visible color images. This exercise was yet

another approach in the survey to assess the preservation of identity privacy in the images.

The videos and images used in the survey were similar to those in Figure 5.3 and the survey

is available at following link: SurveyLink.

The participants’ observations for location, person detection, posture, and activity were

noted in the survey and were analysed to assess the privacy preservation capability of the

images at the three levels. The detection and identification of actors in the videos and im-

ages respectively enabled the assessment of identity privacy of the images at various levels.

Similarly, the identification of activities in the videos in the survey enabled assessment of

activity privacy of the images at various privacy levels.

The collected responses of the survey are categorized as correct, incorrect, and not clear.

For a given privacy level, responses in each category are counted for all videos and images

separately. The category-wise scores for each privacy level are calculated as per Equation

(5.2) and Equation (5.3) for videos and images, respectively.

8Vx 2 Li, i = 1, 2, 3

TLi,Qj ,Ck
=

PX
x=1 RQj ,Cj(Vx)PC

j=1

PX
x=1 RQj ,Cj(Vx)

(5.2)

Where, Li denotes the privacy level (i.e., P1, P2, and P3), Qj denotes the question

number (i.e., Q1, Q2, Q3, and Q4), and Ck denotes the response category (i.e. 1 for Correct,

2 for incorrect, and 3 for Not-clear). TLi,Qj ,Ck
represents the percentage of responses falling

in category Ck of question Qj for videos at privacy level Li. RQj ,Cj(Vx) is the response to

Question Qk falling in category Cj . Vx denotes the set of video clips included in the survey
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for a given privacy level.

8Dx 2 Li, i = 1, 2, 3

NLi,Ck
=

PY
y=1 MCj(Dx)

PC
j=1

PX
x=1 MCj(Dx)

(5.3)

Where, NLi,Ck
represents the percentage of responses falling in the Ck category of pri-

vacy level Li. MCj(Dx) is a response wherein the respondent was able to correctly match

the person/object in the depth image Dx to that in the corresponding color image; and the

response falls in the Ck category.

In Equation (5.2), TL1,Q1,C1 , for example, indicates the percentage of correct (C1) re-

sponses to Question 1 (Q1) at privacy level 1 (L1). TL1,Q1,C1 is calculated by dividing the

correct responses to Question 1 (Q1) at privacy level 1 (L1) by all the responses to Question

1 at privacy level 1. The numerator is calculated by adding all the correct (C1) responses to

Question 1 (Q1) received across all videos at privacy level 1 (L1). The denominator is calcu-

lated by adding all the responses (C1- correct, C2- incorrect, and C3- not clear) to Question

1 (Q1) across videos at privacy level 1 (L1).

Similarly, in Equation (5.3), NL1,C1 indicates the percentage of correct (C1) responses at

privacy level 1 (L1). NL1,C1 is calculated by dividing the total number of responses correctly

(C1) matching a person in depth image to the person in color image, by all the responses at

privacy level 1 (L1). In the numerator (MC1(Dx), the responses that correctly (C1) match

a person in the depth images with those in the color images are added across all images at

privacy level 1 (L1). In the denominator, all responses (C1- correct, C2- incorrect, and C3-

not clear) for privacy level 1 (L1) are added.

In this manner, the identity and activity privacy of the images at the three privacy levels

are assessed as perceived by human beings in general.
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5.2.2.2 Identity privacy in a face recognition system

In addition to assessment of privacy as perceived by humans, we also endeavour to

validate privacy of the images as perceived by appropriate machine learning algorithms. We

first look at identity privacy assessed by a standard face recognition system. Low accuracy

in the face recognition system indicates a high degree of identity privacy and vice versa.

We use the well recognised, YOLOV3 (You Only Look Once) [156] based architec-

ture for face detection and recognition. YOLOV3 is a popular object detection algorithm

that utilizes a deep convolutional neural network to detect and identify objects in images.

YOLOV3 divides an input image into small regions and predicts the bounding boxes by

checking the ‘objectness’ score (the probability of having an object in a given region). The

Objectness score is calculated based on the similarity of the given region with one of the

predefined classes. The high scoring regions are considered to be correctly classified (as a

member of the closest class).

The YOLOV3 architecture comprises two parts, a feature extractor and a multi-scale

detector. The feature extractor used in YOLOV3 is DarkNet53 [156] which a 53-layer con-

volutional neural network that extracts meaningful information from an image. DarkNet53

contains combinations of 3x3 and 1x1 convolution filters in the form of residual blocks with

skip connections. Residual blocks allow the gradients to flow from a high layer to a lower

layer and help in convergence of deeper networks. Another 53 layers are added after the

feature extractor that serves as a detector thus making the architecture comprise 106 layers.

The object identification is done at three scales from feature maps of size 13⇥13, 26⇥26,

and 52⇥52 (taken from the 82nd, 94th, and 106th layer). Detection at three scales helps

preserve fine-grained details and thus detect both small and large objects. The feature map

of size 13⇥13 detects larger objects, whereas the feature map of size 52⇥52 detects smaller

objects in the image.
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We modified the original YOLOV3 architecture to make it suitable for our face detec-

tion/recognition task. The original YOLOV3 is trained for 80 different classes; we first

changed the number of 1⇥1 filters to utilize it for our work (2 for face detection and 6 for

face recognition, similar to the number of actors). Further, the number of layers is increased

in the first two residual blocks to enable the extraction of extra fine details, which usually

get lost due to down-sampling. Experiments show that these modifications make the model

suitable for face detection and recognition.

5.2.2.3 Activity Privacy in an activity recognition system

In addition to validation of activity privacy by humans in general through the user sur-

vey, we also validate that the activities being conducted in the privacy preserving images are

indeed private when an established activity recognition system is used. The activity recog-

nition system employed here is a fairly successful one and was proposed in an earlier work

of ours [123]. The system comprises a 3DCNN model that takes a depth video clip as input

and classifies the activity in the video clip into one of the defined categories. The activity

recognition system is based on a 3D-CNN architecture I3D [147], that is popular for video

classifications in a color domain.

I3D, as its name implies, is built around inflated convolutional and pooling filters (in-

flated filters are 3D filters created by giving standard 2D filters an extra dimension). The

third dimension in a 3D filter learns the correlations in the temporal direction of the video,

while the other two dimensions learn the spatial correlation in the frames. An inception

module based design is utilized in the I3D architecture to process the video data. The In-

ception module contains a combination of 3⇥3 and 1⇥1 convolutional filters in parallel that

make the network progressively wide but not deep. An inception module also uses (1⇥1⇥1)

convolutions for dimensionality reduction. The use of the inception module makes I3D, effi-
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cient and faster. Also, asymmetric kernels (2⇥7⇥7) are used in the first max pooling layers

of I3D to handle the frame rate of videos (i.e., the speed of performing activities vary).

The I3D architecture comprises a series of convolutional layers, max pooling layers and

inflated inception modules. At the end, an average pooling layer followed by a convolution

layer with filters of size (1⇥1⇥1) are used. As discussed in our work [123], two modifi-

cations are made to the original I3D architecture. These include, modifying the classifier

module and including a spatial dropout [150] layer in the inception module of I3D. Modi-

fication in the classifier module is done by replacing the last average pooling layer with a

Global Average Pooling (GAP) layer followed by adding a dense layer with a number of

neurons similar to the activity categories. Finally, a soft-max layer is added at the end of the

classifier module to compute the score probability distribution of each activity category.

A spatial dropout layer is incorporated in the 3D inception module due to its efficacy

in handling missing values and mitigating over-fitting. Spatial dropout drops the complete

motion map with a drop probability of Pd and thus reduces the dependence among the values

in motion maps. Equation (4.3) shows the feed-forward process with a spatial dropout layer.

5.2.3 Posture Recognition

The aim of the proposed system ultimately is to ensure the well-being of the monitored

elderly individuals. Therefore, it is imperative that the images that are unclear enough to

be privacy preserving, have some characteristics remaining that enable accurate posture

recognition. Posture recognition permits assessing the well being of the monitored elderly

through recognising incidents like falls, sitting idle at one place for an unnaturally long

time, lying down for an unnaturally long time at one place, and so on. In this chapter,

for simplicity we recognise two postures only: standing and sitting down. The work can

easily be extended to include other postures as well. The posture recognition approach in
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Figure 5.4: Integrated posture recognition system

the proposed system is based on deep learning and the structural properties of the human

body in different postures. It is observed that combining the structural properties with deep

learning methods significantly improves the posture recognition capability of the system

from the privacy-preserving images.

The depth data is pre-processed first before feeding it to the posture recognition sys-

tem. The pre-processing mainly includes the human body segmentation by removing the

background details. A depth image containing gray-scale values often suffers from ‘depth

camouflage’, a phenomenon in which the foreground and background pixels have identical
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values. Due to depth camouflage, it becomes challenging to distinguish the human being

from the background, especially when the human being is close to background. In order to

address this, a well-known ‘background subtraction’ method [148] is utilized in this work,

which segment the human body from the depth frame by eliminating the background details.

A background frame B(x, y) is first computed from the background frames of the video

in the absence of human being. Subsequently, the background frame is subtracted from each

frame of the video. This highlights the human body by removing the stationary background

details. The tiny noise arising due to environmental changes is suppressed by imposing

a threshold. Equation (4.1) expresses the background subtraction with threshold. Finally,

the post-processing exercises like morphological operations are undertaken if the resultant

images are still noisy. This results into a depth image with segmented human body as shown

in the last column of Figure 5.3.

As shown in Figure 5.4, the proposed posture recognition system comprises two CNN

channels, one for depth images and the other for projection maps. Projection histogram

maps are popularly used in handwritten text recognition [158, 159] and despite large intra-

class variations in handwritten letters, such methods have proven to be successful. The

privacy preserving images at privacy level P3, also have large shape variations due to noise,

much like handwritten letters, and thus we employed horizontal projection maps of the

human body for posture recognition in privacy preserving images.

A horizontal projection map is a histogram of the number of white pixels (pixels repre-

senting human body) accumulated along the rows of a binary image of size H ⇥W , where

H is the number of rows and W the number of columns. A mathematical representation of

the horizontal projection map is shown in Equation (5.4).

HPM(r) =
X

0<c<W

P (r, c) (5.4)

110



CHAPTER 5. IDENTITY AND ACTIVITY PRIVACY-PRESERVING POSTURE
RECOGNITION SYSTEM

A VGG16 [157] based architecture is exploited for feature extraction in both the chan-

nels. VGG16 is a simple yet fairly successful convolutional neural network model for object

classification in images. VGG16 consists of thirteen convolutional layers to extract useful

features from the image, five pooling layers for preserving features while decreasing the

size of the feature maps. Finally, there are three fully connected layers to classify the image

based on the features extracted by the preceding layers. The fully connected layers act as a

linear transformation function to classify the input into one of the categories.

We modified the existing VGG16 architecture by removing all the fully connected lay-

ers, as these are dependent on specific classification tasks. The rest of the VGG16 architec-

ture is utilized for feature extraction from the depth images and projection maps, separately.

The features extracted from the two inputs (i.e., depth image and projection map) are com-

bined into a large feature vector; this process is termed feature-level fusion.

Subsequently, a score generator module containing three dense layers and a softmax

layer is added at the end. The score generator generates a score vector containing the con-

fidence score of each posture category. Finally, the posture label is assigned using the

maximum value index in the score vector.

Although convolutional neural network based approaches are very popular mostly due

to their automatic feature extraction capabilities and the need for less human intervention,

CNN considers spatial relations by pooling the local features into a global representation

that sometimes performs sub-optimally when learning certain patterns. This fact is exhaus-

tively tested in [161, 162], where authors emphasize that CNNs are sensitive to an object’s

local features but have no access to global shapes. This motivated us to consider some of

the structural properties of the human body postures as additional features to counter the

fuzziness in the privacy-preserving images.

The ratio of the height of the body to the width of the body is very important when
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Algorithm 5.1 Posture Recognition using Weighted Average Score Fusion
Inputs: DI-Depth Image

HPM- Horizontal Projection Map

SP- Structural Features

Output: Prediction

CS = CNN(DI , HPM) // CNN Score

DS = DT(SF) // Decision Tree Score

SCOREc = W1 ⇤ CSc +W2 ⇤DSc, c = c1, c2

s.t.,W1 +W2 = 1

/* CSc and DSc are the scores of CNN and DT for a posture class ‘c’. */

Prediction =

8
><

>:

c1, If (SCOREc1 > SCOREc2)

c2, Otherwise

return Prediction

considering the body postures, especially in the case of standing and sitting postures. Fur-

thermore, the human body is also divided into the upper body and lower body using the

center of mass. The ratios of height to width for the upper and lower body are also strong

indications of the body posture. These three features are quite different for different postures

and are used with a Decision Tree (DT) based approach to classify the body postures. Fi-

nally, the decisions of both CNN and DT are combined to get more accurate classifications

of body postures. The complete process of combining the decisions of the two classifiers

(i.e., CNN and DT) is described in algorithm (5.1).

5.3 Experimental Evaluation

Validation of the privacy-preserving nature of the depth images for identity privacy and

activity privacy is done first and is conducted in three ways; namely, identity privacy us-

ing a face recognition system, activity privacy using an activity recognition system, and
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both identity and activity privacy using a user survey. The results of these experiments are

presented first. Subsequently, the validation of the utility of the depth images in posture

recognition is done using a CNN based posture recognition system. Finally, the perfor-

mance of the integrated posture recognition system on privacy preserving images (P3) is

presented. In this way, the effectiveness of the proposed system for ensuring the well being

of the elderly (through posture recognition) whilst preserving their privacy is validated.

Research on indoor monitoring using vision sensors is mostly done using color/depth

images, and most existing works in this direction do not look into the aspect of privacy

preservation. The few works that do consider privacy preservation utilize depth images, that

mostly conceal only the identity of the monitored individuals. As discussed earlier, this is

not true in the context of indoor monitoring systems as living spaces in most indoor loca-

tions are small in number and so are the occupants, thus making identity privacy ineffective

and redundant. The other aspect of privacy, activity privacy, where images conceal the fine

grained activities being performed by the individual, is therefore more important from a

privacy point of view. Very little depth images data, that preserve both identity and activity

level privacy, is available. This work focuses on exploring privacy-preserving monitoring of

elderly with a vision-based monitoring system. In the absence of such privacy-preserving

images’ datasets, we created datasets of the three different privacy levels (i.e., P1, P2, and

P3) using modified depth cameras, as described in Section III(A). The datasets were col-

lected in a laboratory setup, as shown in Figure 5.5.

5.3.1 Dataset Description

The dataset for each privacy level includes depth video clips of five activities performed

by six different actors. The activities were performed in two postures (i.e., standing and

sitting) and at four different positions in the activity area. All the datasets were collected
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Figure 5.5: Laboratory setup for data collection (a modified depth sensor placed on a tripod)

in the form of short videos of 5-10 seconds each to start with. For activity recognition,

several small clips were extracted from the original videos with almost 10-20% overlap.

This resulted in around 1000 small clips (40000 frames), comprising an equal number of

clips for each of the daily activities. A detailed description of the dataset for each privacy

level is included in Table 5.2.

Sample images from the created datasets are shown in Figure 5.6. The figure includes

sample images at each privacy level (i.e., P1, P2, and P3). Background subtracted images

corresponding to the depth images are also included in the figure.

5.3.2 Survey Analysis

A user survey was conducted with global participants to validate the privacy of the depth

images at the three privacy levels. The survey comprised 100 random participants from

diverse demographics, educational backgrounds, and age groups. Most participants had

bachelors’ level education and were in the age group of 20-40 years. The participants were

shown videos and a set of images for each privacy level and were asked questions related to

the location, presence of persons in the video/image, body posture of the persons, activity

being indulged in, and person identification as discussed in Section 5.2.2.1.
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(a) Images of privacy level P1

(b) Images of privacy level P2

(c) Images of privacy level P3

Figure 5.6: Sample images from the datasets created (original depth images and background sub-
tracted images). a) Images at privacy level P1, b) Images at privacy level P2, c) Images
at privacy level P3

The responses to the questions were classified into three categories: correct, incorrect,

and not clear. Correct response, as is obvious, implies that the participant gave the correct

answer to the given question, whereas incorrect response indicates that the participant’s

response was not correct. The ‘not clear’ response means the participant could not see the

required details in the video/image and chose the “cannot recognize” option.
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Table 5.2: Description of the datasets

Description

No. of activities 5
No. of Actors 6
Variations 4 locations, 2 postures
Clips Recorded 240
Smaller Clips 1000
Images 40000
Clips/activity 200
Images/posture 20000
Images/person 6600

Figure 5.7 shows the question-wise responses in the three categories at each privacy

level. The majority of respondents gave correct responses for videos/images at privacy level

P1, whereas the least number of correct responses were received at privacy level P3. The

questions involving privacy sensitive information like location, activity, and identity of the

individual were answered correctly by more than 85% of participants at privacy level P1.

This indicates that the videos/images at privacy level P1 do not preserve identity and activity

privacy. On the contrary, only around 5% of participants were able to answer questions

related to images/videos at privacy level P3 correctly, indicating the suitability of images at

level P3 for privacy-preserving monitoring.

Moreover, at privacy level P3, a large number of ‘not clear’ responses were received

for questions involving privacy sensitive information, information like facial features that

gives away the identity of the individual. Participants were clearly unable to recognize

privacy-sensitive information at level P3 and this further bolsters the belief of level P3 being

privacy-preserving. Similarly, a large number of incorrect responses at level P2 indicates

that participants were not sure about this information but were a little confident and were at

least trying to respond. This gives credence to out hypothesis that privacy preservation at
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(a) (b) (c)

Figure 5.7: Survey analysis; percentage of a) Correct; b) Incorrect; and c) Not Clear responses at
three privacy levels

level P3 is better than that at level P2.

However, the questions related to person/object detection and posture recognition were

answered correctly by 95% and 83% respondents respectively at privacy level P3 which

indicates the utility of these images in recognition of posture and other coarse grained ac-

tivities.

5.3.3 Validation of Identity Privacy

For validating the claim that the depth images at the higher levels of privacy are in-

deed privacy preserving with respect to the person’s identity even when established face

detection/recognition systems are harnessed, the system was trained for each privacy level

separately. As mentioned earlier, the dataset was collected at four locations (L1, L2, L3,

and L4) in the activity area. A cross-location evaluation was employed, where the data from

odd locations (i.e., L1 and L3) was used for training and data from even locations (i.e., L2,

L4) for testing. This is named EvenTest. Similarly, the process was repeated with training

with data from even locations and testing with data from odd locations, named OddTest.

The final results were an average of the two tests.

We used pre-trained weights from the popular Imagenet dataset, which contains more

than 14 million color images with annotations. Further, the model trained on color images
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Table 5.3: Face detection (person detection) at three privacy levels.

Privacy Level OddTest EvenTest Average

P1 98.64 99.63 99.13
P2 80.75 77.52 79.14
P3 50.15 48.65 49.40

was retrained on the Pandora dataset [163], which is a publicly available dataset of human

faces in the depth domain. Finally, the retrained model was fine-tuned with our privacy-

preserving datasets. To avoid over-fitting, data augmentation techniques like blurring, flip-

ping, rotation, and change in brightness were utilized. The Adam optimization algorithm

was used for training the model with an initial learning rate of 0.0001 and decay of 0.0005.

For face detection , the number of classes was set to one, as a face only needed to be

detected in the depth image. In the face recognition task, on the other hand, the number of

classes was set to six, corresponding to the number of actors. Table 5.3 and Table 5.4 show

the accuracy of face detection and face recognition in images at the three privacy levels. The

results are shown for cases where the confidence of the detection was at least 0.5.

The performance of the face detection and face recognition system is poor for images at

privacy levels P3 and P2, which indicates that images at both these privacy levels preserve

identity privacy. The performance of the face detection system for images at privacy level

P3 is around 50%, which means that half of the human faces were not even detected in

the images. Furthermore, the recognition accuracy for privacy level P3 is just 4%, which

indicates that these images are significantly privacy-preserving in the context of identity

privacy. On the contrary, the face recognition accuracy for system with images at privacy

level P1 was quite high (86%) and these, therefore, do not preserve the identity privacy of

the individuals.

118



CHAPTER 5. IDENTITY AND ACTIVITY PRIVACY-PRESERVING POSTURE
RECOGNITION SYSTEM

Table 5.4: Face recognition (person identification) accuracy at three privacy levels.

Privacy Level OddTest EvenTest Average

P1 88.18 83.77 85.98
P2 16.06 16.22 16.14
P3 3.71 3.90 3.80

5.3.4 Validation of Activity Privacy

Similarly, to ensure that the depth images at higher levels of privacy indeed preserve

activity privacy, activity recognition systems were trained for each privacy level separately.

Cross-subject evaluation was employed here as well where the images of odd-numbered

(i.e., 1,3,5) actors were used for training and even-numbered (i.e., 2,4,6) actors for testing.

This was named EvenSubTest. Similarly, images of even-numbered actors were used for

training, and odd-numbered actors for testing in OddSubTest. Cross-subject evaluation of

this kind is quite popular in activity recognition tasks.

For activity recognition, pre-trained weights from a large-scale kinetics dataset with

60,000 annotated video clips divided into 400 categories were employed. Transfer learning

with fine-tuning was adopted by training the classifier module while leaving the weights

of lower layers unchanged. The depth clips were made to undergo temporal and spatial

normalization to make them suitable for the CNN-based classifier. Temporal normalization

includes converting the variable length depth video clips to a fixed length. Spatial normal-

ization involves down-sampling of the depth frames according to the CNN architecture.

To further reduce over-fitting, especially with less training data, the approach taken

was data augmentation. The augmentation approaches included speed sampling to vary

the speed of performing the activities; temporal random cropping, to vary the starting point

of the activities. Other image augmentation approaches like random rotation, translation,

horizontal flipping, resizing, shifting were also utilized to make the model scale and loca-
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Table 5.5: Activity recognition accuracy at three privacy levels.

Privacy Level OddSubTest EvenSubTest Average

P1 86.27 89.43 87.85
P2 56.81 57.28 57.05
P3 32.40 29.65 31.03

tion invariant. The Adam optimization algorithm with an initial learning rate of 0.001 and a

decay of 0.004 was utilized.

Table 5.5 shows the performance of the activity recognition system with images at the

three privacy levels. At privacy level P1, around 88% of activity instances were classified

correctly, which means that privacy level P1 does not preserve activity privacy. The activity

recognition system performed poorly for images at privacy level P3 and only around 30%

instances were classified correctly for a five-class classification which is little higher than

the random guessing. Images at privacy level P3, therefore, seem to preserve activity privacy

properly and can be used for privacy preservation in indoor monitoring.

5.3.5 Posture Recognition System

Having validated the efficacy of the modified depth images in preserving identity and

activity privacy, it is important that the proposed system be able to recognise the posture

of the monitored individuals in the images at the higher levels of privacy. Effective posture

detection can be used for drawing conclusions on the well-being of the monitored individual.

CNN architectures based on VGGNet were trained separately for images at different

privacy levels using a transfer learning approach. The models were trained for binary clas-

sification as the datasets contain humans in two different postures namely, sitting and stand-

ing (this can easily be extended for a few other postures). The accuracy of the posture

recognition for different privacy levels is shown in Table 5.6.
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Table 5.6: Posture recognition accuracy at different privacy levels.

Privacy Level OddTest EvenTest Average

P1 99.24 99.70 99.47
P2 95.85 95.28 95.57
P3 93.92 84.05 88.99

The accuracy of posture recognition using images at privacy level (P1) is very high

which is obvious as these images contain rich information on the monitored individual. On

the other hand, the accuracy of posture recognition with images at privacy level (P3) is 89%

which is also quite good and indicates the utility of these images in posture and coarse-

grained activity recognition.

In order to improve the performance of posture recognition with images at privacy level

P3, an integrated system as shown in Figure 5.4 using original depth images, projection

map images, and structural features of the human body is explored. The performance of the

individual streams/features is included in Table 5.7.

Table 5.7 shows that combining the projections and structural features with depth im-

ages significantly improves the posture recognition performance. The accuracy of posture

recognition using the proposed integrated system is 96.28% which is very good and suitable

for real-time applications.

Table 5.7: Performance of integrated posture recognition system at privacy level P3.

Method EvenTest OddTest Average

Depth Images (DI) 84.05 93.92 88.99
Horizontal Projections (HP) 84.83 85.95 85.39
Multi-channel CNN [DI + HP](MC-CNN) 89.03 94.10 91.57
Decision Tree (DT) 92.89 91.03 91.96
MC-CNN + DT 94.16 98.40 96.28
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Figure 5.8: Utility vs Privacy trade-off of three privacy levels

5.3.6 Utility vs. Privacy trade-off

A trade-off between utility vs. privacy is an indicator of the utility of privacy preserving

images. Our work discusses two measures (i.e., user survey and ML algorithms) to validate

the privacy at different privacy levels. Similarly, a posture recognition system is used to

validate the utility of the images in terms of posture recognition at different privacy levels.

The results of all three measures are discussed in the previous sections. Figure 5.8 shows the

trade-off of utility vs. privacy. The X-axis represents the privacy and the Y-axis represents

the utility of the system at different privacy levels. Privacy of the data is inversely propor-

tional to the accuracy of the recognition/detection systems. For example, if the accuracy of

the face recognition system is high (i.e., 90%) then the data has less privacy (i.e, 10%), and

vice-versa. We utilize this fact and calculate the privacy by subtracting the accuracy from

100.

The line shown in light blue indicates the trade-off of utility vs privacy from a human

perception of the images and is calculated from the user survey. The line in magenta indi-

cates the trade-off of utility vs. privacy from a machine perception and is calculated from

the results of learning models given in Table 5.4, Table 5.5, and Table 5.6. Finally, the

dark blue line shows the trade-off of utility vs. privacy using both the human and machine
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perception and is calculated by taking an average of the results.

Figure 5.8 clearly indicates that the privacy of images at level P3 is low (approx 13%)

but the accuracy is very high (almost 100%). On the other hand, the privacy of images at

level P3 is high (i.e., around 90%) and the accuracy is significant (i.e., 86%), considering

only CNN based classification. The accuracy at privacy level P3 is however improved (to

96%) by including additional features in integrated posture recognition system as shown in

Table 5.7. This concludes that the images at privacy level P3 have significant utility and

preserve both identity and activity privacy.

5.3.7 Computational Complexity

Usually the computational complexity of an algorithm is analyzed asymptotically. How-

ever, in CNN based approaches, it is uncommon to perform asymptotic complexity analysis.

Mostly, the time consumption for a given input or the number of floating point operations

(FLOPs) are calculated for CNN models. To illustrate the efficacy of the proposed approach

in real-world applications, we also conduct a time-complexity analysis by calculating the

inference time of the input instances (i.e., a depth image).

Table 5.8 shows the inference time of the proposed framework for a given input. The

total inference time for an input is calculated by adding the time taken by each module

shown in Figure 5.4. The modules include, depth pre-processing, projection map genera-

tion, statistical feature calculation, CNN score generation, decision tree score generation,

and classification. The depth data pre-processing includes background removal and spatial

normalization of the depth images. The depth pre-processing module runs the process in

a manner that the subsequent frame runs in parallel with the other modules processing the

current frame. This is, therefore, marked as (P0). Projection maps and statistical feature are

generated from the background subtracted images and these two modules run in parallel.
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Table 5.8: Average Inference Time Per Frame (in milliseconds) of the Proposed Integrated Posture
Recognition System (P0, P1, and P2 indicates the parallel execution of the modules)

Operation Time (ms)

Depth Preprocessing (P0) 22.22
Projection Map Generation (P1) 18.24
Statistical Feature Calculation (P1) 14.86
CNN Score Generation (P2) 12.03
Decision Tree Score Generation (P2) 0.006
Score Fusion & Classification 0.16

Total Inference Time 30.44

They are, therefore, marked as (P1). Furthermore, the CNN score generation time is the

time taken by the two-stream CNN architecture to generate scores, and the decision tree

score generation time is the time taken by the decision tree classifier to generate the classi-

fication scores. These two modules also run in parallel and are, therefore, marked as (P2).

Finally, the score fusion & classification time is the time taken for classifying the posture

after fusing the scores of the CNN and decision tree. For the modules running in parallel,

the largest time taken is considered in the calculation of total inference time.

The inference time is calculated as the ratio of the total time taken for all inputs to the

number of inputs. The average time per input is 30.44 millisecond that is 33 FPS, which is

well within the range of real-time systems.

5.4 Summary of the chapter

In this chapter, an indoor monitoring system was proposed for assisted living environ-

ments that preserves the identity and the activity privacy of the residents. The main con-

tribution of this chapter is the development of an indoor human monitoring system that

preserves both identity and activity privacy of residents. To ensure privacy, a strategically
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modified depth camera was used to capture privacy-preserving data. The privacy and util-

ity of the captured data were validated through user surveys and deep learning methods.

Additionally, an integrated posture recognition system was developed by combining the

structural and statistical characteristics of the human body. The use of a modified depth

sensor, privacy validation from both human and machine perspectives, and the introduction

of the concept of activity privacy represent a novel contribution not previously explored in

the literature. The proposed system employs a vision-based monitoring system compris-

ing modified depth sensors. In the absence of privacy-preserving data, datasets containing

privacy-preserving videos/images were created by us. The privacy and utility of the sys-

tem was validated through a user survey and over appropriate deep learning frameworks.

Finally, an integrated posture recognition system was developed and validated with privacy

preserving data. The privacy validation and posture recognition results conform with the

usability of the proposed framework in privacy-preserving indoor monitoring, especially in

elderly care. In future, this work can be extended for coarse-grained activity recognition

and pose estimation from privacy-preserving images.
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Conclusions and Future Works

Indoor monitoring is a multifaceted approach that enhances health, safety, comfort, and

facilitate independent living in indoor environments. The limitations related to convenience

in wearable sensors, performance in ambient sensors, and privacy in visible color sensors

makes them unsuitable for indoor monitoring in private spaces such as smart home, el-

derly care, and healthcare. The primary challenges for effective indoor monitoring system

thus include privacy, cost, convenience, and feasibility in real-world applications due to

speed and resource requirements. Most approaches in literature focus on the performance

of monitoring systems and neglect the issue of an individual’s privacy and the system’s

feasibility for real-world applications. The main objective of the research in this thesis in-

cludes privacy-preserving indoor monitoring using vision sensors. Considering the major

limitation of post-capture privacy, wherein data (videos/images) captured runs the risk of

being compromised or reverse-engineered, this thesis explores the use of vision sensors

modified appropriately to capture images that are privacy preserving and hence suitable for

indoor spaces. Along with the use of appropriate vision sensor, the thesis also develops and

effectively uses classification frameworks utilizing deep learning and machine learning ap-

proaches for privacy-preserving data. This chapter provides the concluding remarks on the
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work carried out in this thesis. Section 6.1 presents a summary of the contributing chapters

in this thesis. Subsequently, Section 6.2 highlights the possibilities to further extend the

work in future.

6.1 Summary of Contributions

This section presents the contribution made through the research work in this thesis. A

summary of each of the contributions is as follows:

6.1.1 Privacy-preserving fire detection system

A privacy-preserving efficient fire detection system using modified near-infrared cam-

eras (NIR) is proposed in this work. The images of different privacy levels are captured

using a progressively modified NIR camera. The camera captures images, based on the ex-

tent of its modification, across multiple levels of privacy ranging from least private to most

private. Given the subjective nature of privacy, two user surveys are conducted and analyzed

to assess and identify a level of privacy acceptable to most people. Finally, a lightweight

fire detection system is developed by utilizing the spatial and temporal properties of fire

using a CNN model and the idea of frame differencing, respectively. The experimental

results demonstrate that while the images preserve the privacy of occupants, the proposed

framework is capable of comfortably detecting fire from these privacy-preserving images.

A comparative analysis with the state-of-the-art techniques demonstrates the superiority of

the proposed framework. A prototypical implementation on a Raspberry Pi device shows

its applicability over a resource-constrained environment.
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6.1.2 Privacy-preserving human activity recognition system

A privacy-preserving efficient human activity recognition system using depth sensor is

proposed in this work. Two data modalities, depth clips and skeleton sequences extracted

from depth clips are utilized for human activity recognition. Two novel descriptors based on

the position of joint (JPD) and the angle between bones (BAD) are generated to model the

spatial and temporal dynamics and activity. A multi-channel CNN architecture comprising

a 3D-CNN for feature extraction from depth data and a two-channel 2D-CNN for feature

extraction from skeleton data are employed and fused through a multi-level fusion strat-

egy. The proposed framework is evaluated on four public datasets and found to be superior

than the state of the art. Finally, the computational complexity analysis and a prototypical

implementation of the proposed framework shows its applicability in the real-world.

6.1.3 Identity and activity privacy preserving posture recognition sys-

tem

An identity and activity privacy preserving human posture recognition system using

modified depth sensor is proposed in this part of the thesis. The privacy-preserving data

of three different privacy levels are collected and the privacy is validated frob both the hu-

man and machine perspective. To establish the level of privacy that people, in general, are

comfortable with, a user survey was conducted and analyzed to decide optimal level. To

validate the privacy from the machine perspective, deep learning based models like a face

recognition system for identity privacy and activity recognition systems for activity privacy

are utilized. Moreover, to validate the utility of the privacy preserving data at all privacy

levels, a posture recognition system is employed. Finally, an integrated posture recognition

system based on CNN and decision tree is developed for posture recognition from the im-

ages captured at the identified optimal privacy level. The experimental results and privacy
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vs. utility analysis demonstrate that while the captured data preserves both identity & activ-

ity privacy, it is also useful and effective in detecting postures. A computational complexity

analysis confirms the applicability of the proposed system in the real-world.

6.2 Future Research Directions

Research is a never ending process, the contributions made in this thesis offer various

avenues for further exploration. The following points provide the future directions to extend

the outcomes of this thesis.

1. A privacy-preserving human activity recognition system using skeleton and depth

data is proposed in chapter 4. The proposed system recognizes the activities from the

segmented clips, which can further be extended to the detection and recognition of ac-

tivities from streaming data. The activity recognition from non-segmented streaming,

data will enable continuous monitoring.

2. The proposed human activity recognition system can also be further extended to be-

havioral analysis of the elderly. Behavioural analysis includes the detection of be-

havioural abnormalities in the individual over both the short term and the long term.

Behavioural analysis may also be extended with the development of recommendation

systems that predict and communicate the expected next activity to the elderly and/or

dementia patients.

3. A privacy-preserving posture recognition system preserving both identity and activity

privacy is proposed in chapter 5. The proposed posture recognition system can be

further extended for the detection of coarse-grained activities (instead of postures) in

a privacy-preserving manner. A course-grained activity recognition system that also

preserves activity privacy will be very useful in elderly care and health care facilities.
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4. A pose-estimation framework can be developed to estimate the prominent joints of

the human body relevant for the posture/coarse-grained activity recognition from the

privacy-preserving data. The key joints extracted from the privacy-preserving data

captured using the modified depth sensor would enable the coarse-grained activity

recognition using skeleton data in a resource-constrained environment.

The core contributions made in this thesis include development of privacy preserving

indoor monitoring systems by leveraging characteristics of pre-capture privacy concepts. To

ensure pre-capture privacy, various types of vision sensors were strategically modified and

utilized in our work. The acceptable privacy level for residents, balancing privacy concerns

and monitoring utility, was determined through user surveys and learning algorithms. Since

the quality of privacy-preserving data captured by modified sensors differs from that of

conventional vision sensors, particularly in terms of visibility, optimized learning algorithms

are essential for effective analysis. We developed multiple machine learning algorithms to

analyze privacy-preserving data without compromising accuracy.

The broader impact of this thesis lies in demonstrating the utility of pre-capture pri-

vacy mechanisms to safeguard privacy in indoor spaces, particularly in assisted living and

healthcare facilities. Future research on privacy preservation in indoor monitoring can be

extended to other contexts. Pose estimation from privacy-preserving data is a promising

area to explore, as it could enable the effective classification of a broader range of coarse-

grained activities. Additionally, the activity detection framework could be further developed

to support behavioral anomaly detection, particularly for elderly individuals, enhancing its

utility in assisted living and healthcare settings.
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Appendix A

Supplementary Results (Fire Detection

System

A.1 Analysis of Minkowski Distance Metric

We analyzed the proposed ST-FDS using the Minkowski distance metric as given in

Equation (3.6). The results with different values of parameter m are included in Table A.1.

Table A.1: Performance and speed comparison for different values of m in Minkowski Metric

Parameter
(m)

Threshold
Accuracy

%
Precision

%
Recall

%
F-Score

%
Processing
Speed (fps)

MSE 36 98.13 96.38 100 98.16 70
m=1 3 95.78 92.20 100 95.94 53
m=2 36 98.13 96.38 100 98.16 52
m=3 800 98.23 96.56 100 98.25 23
m=4 25000 98.28 96.66 100 98.30 23
m=5 632410 98.29 96.68 100 98.31 23
m=10 9.6 E+16 98.71 97.62 99.85 98.72 23

The summary of the findings in Table A.1 are summarized in the following points.

1. The Accuracy, Precision, and F-Score increase with increasing values of m but the

increase is not significant.

2. The Recall decreases when the value of m is very high (i.e. m = 10).
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3. The processing speed is the number of distances calculated per second. The process-

ing speed is less than half (i.e. 23 fps) when the value of m > 2.

4. The MSE and Minkowski with m = 2 are the same. The processing speeds, however,

are different owing to the absolute function used in the Minkowski method which is

not the case in MSE, thanks to the even power.

5. We do not calculate the mth root of the distance (similar to MSE) as it is a time saving

approach. For analysis purposes, we compute the time taken to calculate the MSE

with square root which is much higher than the original MSE without square root.

The processing speed for MSE with square root is 65 fps which is slower than the

original MSE.

6. Processing speeds were calculated on a PC with an i7 Processor and 16 GB memory.

7. According to the data given in Table A.1, MSE/Minkowski with m = 2 is the most

suitable metric for distance while keeping performance and speed in mind.

In accordance with the above analysis, m = 2 is used for distance calculation in Equa-

tion (3.6).
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A.2 Comparison with Original SqueezeNet

The proposed SA-FDS is an adaption of the SqueezeNet architecture, with the sig-

nificant modifications. A diagram highlighting the key differences between the original

SqueezeNet architecture and the proposed SA-FDS is shown in Figure A.1. A comprehen-

sive discussion on the differences between the two architectures is as follow:

1. An important aspect of this work is the development of a light-weight system that can

be easily deployed over resource constrained environments. To achieve this, we use

only three fire modules as compared to eight fire modules in the original SqueezeNet.

2. We use fewer filters in each fire module as compared to the original SqueezeNet, again

to reduce the model size.

3. We use a max pooling layer after each fire module except the last one whereas

SqueezeNet uses the pooling layer after every 3 or 4 fire modules. As the archi-

tecture in our case is small, hence a pooling layer after each fire module is useful to

down-sample the image faster as compared to a large model.

4. We use a dropout after each fire module which is not the case in the original

SqueezeNet. Dropout forces the model to learn and avoid over-fitting . This is impor-

tant as the model is trained on relatively small datasets as compared to the very large

ImageNet dataset.

5. The input for SA-FDS is a single channel grayscale image, whereas SqueezeNet takes

a three channel color image as input.
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Figure A.1: Comparison of the proposed SA-FDS architecture with the original SqueezeNet
(SqueezeNet on the left; SA-FDS on the right)
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Appendix B

Supplementary Results (Human Activity

Recognition)

B.1 Dataset Description

A detailed description and visual examples of a few activity samples from various

datasets are included in this section. The depth maps in the visual examples are converted

to color-maps for better visualization. The skeleton joints are displayed in 2D geometry.

B.1.1 MSR Action3D Dataset

The MSR Action3D dataset is captured using a depth camera similar to the Microsoft

Kinect device along two data modalities: depth maps and skeleton sequences. The data set

comprises 20 actions performed by ten subjects in 2-3 repetitions, resulting in 567 depth

video clips and an equal number of skeleton sequences. The dataset is divided into three

subsets, namely AS1, AS2, and AS3. Actions with similar movements are grouped into

AS1 and AS2, and complex activities are included in AS3. Table B.1 gives a complete list

of activities in each action set. Visual examples of three activities containing depth frames

and skeleton joints are shown in Fig B.1.
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Table B.1: List of activities in MSR Action3D dataset.

Action Set 1 (AS1) Action Set 2(AS2) Action Set 3 (AS3)

Horizontal Arm Wave High Arm Wave High Throw
Hammer Hand Catch Forward Kick

Forward Punch Draw X Side Kick
High Throw Draw Tick Jogging
Hand Clap Draw Circle Tennis Swing

Bend Two Hand Wave Tennis Serve
Tennis Serve Forward Kick Golf Swing

Pickup & Throw Side Boxing Pickup & Throw

Figure B.1: Visual examples (Depth frames and Skeleton joints) of three activities: High Arm Wave;
Hand Clap; and Golf Swing; from MSR Action3D dataset.
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B.1.2 UTD MHAD Dataset

The UTD MHAD (Multimodel Human Action Dataset) is captured using a Microsoft

Kinect device and an inertial sensor along four data modalities: RGB clips, depth maps,

skeleton sequences, and sensor readings. The dataset comprises 27 actions performed by

eight subjects in four repetitions, resulting in 861 action instances. A complete list of actions

included in the dataset is given in Table B.2. Visual examples of three activities containing

depth images and skeleton joints are shown in Figure B.2.

Table B.2: List of activities in UTD MHAD dataset

Activities

1. Right Arm Swipe to Left 15. Tennis Right Hand Forehand Swing
2. Right Arm Swipe to Right 16. Arm Curl (Two Arms)
3. Right Hand Wave 17. Tennis Serve
4. Two Hand Front Clap 18. Two Hand Push
5. Right Arm Throw 19. Right Hand Knock on Door
6. Cross Arm in the Chest 20. Right Hand Catch an Object
7. Basketball Shoot 21. Right Hand Pickup & Throw
8. Right Hand Draw X 22. Jogging in Place
9. Right Hand Draw Circle (Clockwise) 23. Walking in Place
10. Right Hand Draw Circle (Counter-clockwise) 24. Sit to Stand
11. Draw Triangel 25. Stand to Sit
12. Bowling (Right Hand) 26. Forward Lunge (Left Foot Forward)
13. Front Boxing 27. Squat (Two Arm Stretch Out)
14. Baseball Swing From Right

B.1.3 TST Fall Dataset

The TST Fall detection dataset is generated using a Microsoft Kinect device and a wear-

able inertial sensor along three data modalities: depth maps, skeleton sequences, and accel-

eration data. The dataset comprises 8 actions performed by 11 actors in three repetitions,

resulting in 264 action instances. The size of the depth maps is 512 ⇥ 424, and the skele-

ton sequence contains 25 joints in each frame. The actions in the dataset are grouped into

two categories: Fall and Activities of Daily Living (ADL). A complete list of activities in

160



APPENDIX B. SUPPLEMENTARY RESULTS (HUMAN ACTIVITY RECOGNITION)

R
ig

h
t 

A
rm

 T
h

ro
w

Te
n

n
is

 S
er

ve
S

ta
n

d
 T

o 
S

it

Figure B.2: Visual examples (Depth frames and Skeleton joints) of three activities: Right Arm
Throw; Tennis Serve; and Stand to Sit; from UTD MHAD dataset.

both categories is given in Table B.3. Visual examples for three activities containing depth

frames and skeleton joints are shown in Fig B.3. In contrast to the above datasets, the depth

frames in this dataset contain background information.

Table B.3: List of activities in TST Fall dataset.

ADLs Fall

Grasp Object from Floor Fall from Front
Sit on a Chair Fall Backward

Walk Fall from Side
Lay Down Fall backward & End up Sit

B.1.4 MSR Daily Activity Dataset

The MSR Daily Activity dataset is also captured using a Kinect device along three

modalities: RGB clips, depth maps, and skeleton sequence information. The dataset con-
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Figure B.3: Visual examples (Depth frames and Skeleton joints) of three activities: Grasp Object;
Fall Backward; and Sit on a Chair; from TST Fall dataset.

tains 320 clips of 16 actions performed by ten individuals, twice each (one in a standing

position and the other in a sitting position). A complete list of activities included in this

dataset is included in Table B.4. The dataset is quite noisy, and the depth clips are not fully

clean. The background of the depth maps is partially subtracted, and close objects like the

sofa, side table, and other small objects are still visible. A few visual examples showing the

movement of body parts for the given activity are shown in Fig B.4.
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Table B.4: List of daily activities in MSR Daily Activity dataset.

Activities

1. Drink 9. Sit Still
2. Read 10. Toss Paper
3. Read Book 11. Play Game
4. Call Cellphone 12. Lay Down on Sofa
5. Write on a Paper 13. Walk
6. Use Laptop 14. Play Guitar
7. Use Vaccume Cleaner 15. Stand Up
8. Cheer Up 16. Sit Down

Figure B.4: Visual examples (Depth frames and Skeleton joints) of three activities: Eat; Use Laptop;
and Lay on Sofa; from MSR Daily Activity dataset.
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B.2 Model Selection

A selection of the most suitable models and parameters is crucial for the optimal per-

formance. We experimented with different architectures and set of parameters for selecting

optimal models. The results of these experiments are included in this section.

B.2.1 2DCNN

To select the best 2DCNN model for our work, we experimented with eight well-known

2D-CNN models in similar settings. Table B.5 provides a performance comparison of

the CNN models using both the JPD based images and the BAD based images. It can

be seen that the Resnet50 model outperforms the rest on both types of images, whereas

DenseNet201 has the next best results. We further modified the ResNet50 and DenseNet201

models as discussed in Section 3.2.2(in the paper). The modification leads to significant per-

formance improvement of ResNet50. We therefore use the modified ResNet50 model for

the 2D-CNN.

CNN Model JPD Accuracy(%) BAD Accuracy (%)

MobileNet 85.45 80.72
VGG16 86.10 81.45
InceptionV3 87.27 78.54
Xception 89.45 79.63
DenseNet121 87.99 79.63
DenseNet201 89.45 82.18
ResNet50 92.00 85.45
Mod-DenseNet201 90.17 83.27
Mod-Resnet50 93.61 88.73

Table B.5: Performance comparison of 2DCNN models on MSR Action3D dataset using Evaluation
Setting(1).

B.2.2 3DCNN

An Inflated 3D (I3D) CNN, which has demonstrably superior performance in video clas-

sification, is utilized in our work. To select the optimal configuration for our 3D-CNN, we

experiment with different combinations of augmentation methods and temporal lengths. The

performance comparison of some of the combinations of augmentation methods is shown in
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Table B.6. We observed significant performance improvement with an adequate amount of

augmentation as compared to training without augmentation. At the same time, augmenta-

tion beyond a point degraded the performance. Use was made, therefore, of the combination

shown in the third row of Table B.6.

Augmentation Accuracy (%)

None 88.00
Rotate (10%), Speed (20%), HFlip 90.55
Rotate (15%), Speed (30%), Resize (6%),
Translate (20%), Random Crop, HFlip

93.45

Rotate (20%), Speed (40%), Resize (10%),
Translate (20%), Random Crop, HFlip

92.00

Table B.6: Performance comparison of 3DCNN with different combinations of augmentation meth-
ods

We also modify the I3D model, as discussed in Section 3.2.1 (in the paper). The mod-

ification led to some improvement in performance whilst also avoiding over-fitting. The

performance on the original I3D and the modified I3D is shown in Table B.7.

Model Accuracy (%)

I3D 93.45
Mod-I3D 94.18

Table B.7: Performance comparison on 3DCNN before and after modification
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B.3 Prototype Dataset

As part of a prototypical implementation, we created a small dataset of 104 activity in-

stances containing 5 different activities. Each activity is performed by 6 actors in two/three

iterations. Figure B.5 shows the depth frames from activity clips of five activities in proto-

type dataset. The red lines in on the bodies in the depth frames show the lines connecting

the skeleton joints.

(a) Arm Wave activity

(b) Hand Clap activity

(c) Forward Kick activity

(d) Walking activity

(e) Falling activity

Figure B.5: Sample depth frames (skeleton are marked with red color in depth frame) of five activi-
ties from prototype dataset.

Figure B.6 shows the sample JPD and BAD based images for different activities from our
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dataset generated using the algorithms mentioned in our paper. It is evident from Figure B.6

that both JPD and BAD based images are sufficiently distinguishable and would facilitate

the classification of different activities.

(a) (b) (c) (d) (d)

Figure B.6: Sample images for five activities (JPD-top, BAD-bottom). a) Arm Wave; b) Hand Clap;
c) Forward Kick; d) Walking; e) Falling

167


	 List of Figures
	 List of Tables
	 List of Abbreviations
	Introduction
	Motivation
	Thesis Contributions
	Privacy-preserving efficient fire detection system
	Privacy-preserving human activity recognition system
	Identity and activity privacy preserving posture recognition system

	Thesis Organization

	Literature Review
	Sensing Methodologies for Indoor Monitoring
	Privacy Concern in Indoor Monitoring
	Algorithmic Approaches for Vision Based Monitoring
	Indoor Fire Monitoring System
	Indoor Human Monitoring System
	Human Activity Recognition Using Depth Sensors
	Identity and activity privacy preserving posture recognition system


	Privacy-Preserving Indoor Fire Detection System
	Introduction
	Proposed Methodology
	Camera Modification and Tuning
	Assessment of Privacy levels
	Fire Detection System

	Case Studies
	Experimental Evaluation
	Survey Analysis 
	Fire Detection System
	Analysis of the System
	Deployment in a Resource Constrained Environment

	Summary of the chapter

	Privacy-Preserving Human Activity Recognition System
	Introduction
	Proposed Methodology
	Data Preparation
	Human Activity Recognition System
	Fusion Strategies

	Experimental Evaluation
	Experimental Setup
	Model Selection and Ablation Study
	Performance Evaluation
	Results on MSR Action3D dataset
	Results on UTD-MHAD Dataset
	Results on TST Fall V2 dataset
	Results on MSR DailyActivity Dataset
	Computational Complexity

	Prototypical Implementation of Proposed System
	Summary of the chapter

	Identity and Activity Privacy-Preserving Posture Recognition System
	Introduction
	Proposed Methodology
	Modification & Tuning of Depth Sensor
	Validation of Privacy Preservation
	Posture Recognition

	Experimental Evaluation
	Dataset Description
	Survey Analysis
	Validation of Identity Privacy
	Validation of Activity Privacy
	Posture Recognition System
	Utility vs. Privacy trade-off
	Computational Complexity

	Summary of the chapter

	Conclusions and Future Works
	Summary of Contributions
	Privacy-preserving fire detection system
	Privacy-preserving human activity recognition system
	Identity and activity privacy preserving posture recognition system

	Future Research Directions

	Supplementary Results (Fire Detection System
	Analysis of Minkowski Distance Metric
	Comparison with Original SqueezeNet

	Supplementary Results (Human Activity Recognition)
	Dataset Description
	MSR Action3D Dataset
	UTD MHAD Dataset
	TST Fall Dataset
	MSR Daily Activity Dataset

	Model Selection
	2DCNN
	3DCNN

	Prototype Dataset




