
FPGA-based Communication

Protocols for High Performance

Computing: Molecular Dynamics

Simulation Application

M.S Research Thesis

By

ANKITKUMAR VIPULKUMAR PATEL

DEPARTMENT OF ELECTRICAL ENGINEERING

INDIAN INSTITUTE OF TECHNOLOGY INDORE
JUNE 2024

FPGA-based Communication

Protocols for High Performance

Computing: Molecular Dynamics

Simulation Application
A Thesis

Submitted in partial fulfillment of the

requirements for the award of the degree

of

Master of Research

by

ANKITKUMAR VIPULKUMAR PATEL

DEPARTMENT OF ELECTRICAL ENGINEERING

INDIAN INSTITUTE OF TECHNOLOGY INDORE
JUNE 2024

INDIAN INSTITUTE OF TECHNOLOGY INDORE
CANDIDATE’S DECLARATION

I hereby certify that the work which is being presented in the thesis entitled FPGA-based

Communication Protocols for High-Performance Computing: Molecular Dynamics Sim-

ulation Application in the partial fulfillment of the requirements for the award of the degree

of MASTER OF SCIENCE (RESEARCH) and submitted in the Department of Electrical

Engineering, Indian Institute of Technology Indore, is an authentic record of my own work

carried out during the time period from August 2022 to June 2024 under the supervision of

Prof. Srivathsan Vasudevan, Professor, Department of Electrical Engineering, Indian Institute

of Technology, Indore and Prof. Satya S. Bulusu, Professor, Department of Chemistry, Indian

Institute of Technology, Indore.

The matter presented in this thesis has not been submitted by me for the award of any other

degree of this or any other institute.

Signature of the Student with Date

(Ankitkumar Vipulkumar Patel)

This is to certify that the above statement made by the candidate is correct to the best of my

knowledge.

Signature of Thesis Supervisor with Date Signature of Thesis Supervisor with Date

(Prof. Srivathsan Vasudevan) (Prof. Satya S. Bulusu)

Ankitkumar Vipulkumar Patel has successfully given his MS (Research) Oral Examination

held on

Signature of Chairperson, OEB with Date Signature of Thesis Supervisors with date

Signature of Convener, DPGC with date Signature of Head of Department with date

ACKNOWLEDGEMENTS

First and foremost, I would like to express my sincere appreciation to my thesis super-

visors, Prof. Srivathsan Vasudevan, Professor, Department of Electrical Engineering,

IIT Indore, and Prof. Satya S. Bulusu, Professor, Department of Chemistry, IIT Indore.

Their generous guidance, support, mentoring, constant encouragement, and invaluable

suggestions have been instrumental in making this work possible.

I am extremely grateful to the MS (Research) Coordinator, Prof. Trapti Jain, for

her assistance from the admission process to the final evaluation. Her valuable advice,

insightful comments, and cooperation throughout my research have been greatly appre-

ciated.

I am deeply thankful to IIT Indore for providing essential lab facilities and support-

ing my academic endeavors.

I would also like to express my heartfelt gratitude to my parents, Vipulkumar Ke-

shavlal Patel and Mrs. Ashaben Vipulkumar Patel. Their excellent guidance, un-

wavering support, and belief in me have been the pillars of my strength. I am also

thankful to my sister, Mrs. Jaimini Rohit Patel, for her continuous encouragement

and unconditional support.

I would like to extend my wholehearted thanks to Mr. Abhishek Ojha and Ms.

Aparna Gangwar for their trustworthy help, discussions, unwavering support, and for

creating a positive environment in the lab during challenging times. I also thank Mr.

Kishore Reddy Kurapati and Mr. Dharmendra Kartikey for their assistance in my

research work. My gratitude also extends to my other lab members, Dr. Suhel Khan,

Mr. Pracheta Chatterjee, Ms. Prerna, and Mr. Bhusan Borah, for their support

whenever needed.

Last but not the least, I am thankful to my friends, without whom this journey

wouldn’t have been as enjoyable. All the tea breaks, mall trips, dancing, and campus

wanderings with Shruti Ghodke, Komal Gupta, Sai Ganesh, Radheshyam Sharma,

Neeraj Nikhil, Gulrej Khan, Anupma Sharma and many others will be the most

memorable part of my M.S (Research) life.

I am sincerely thankful to the Ministry of Human Resource Development (MHRD),

Government of India, and the Council of Scientific and Industrial Research, Government

of India, for providing me the fellowship to pursue this research work.

Ankitkumar Vipulkumar Patel

This Thesis is Dedicated

to

My Family and Friends

Abstract

Molecular Dynamics (MD) simulation for computing Interatomic Potential (IAP) is a

very important High-Performance Computing (HPC) application. MD simulation on

particles of experimental relevance takes huge computation time despite using an ex-

pensive high-end server. Heterogeneous computing, a combination of FPGA and a

computer, is proposed as a solution to compute MD simulation efficiently. In such het-

erogeneous computation, communication between FPGA and Computer is necessary.

One such MD simulation, explained in the paper, is the ANN-based IAP computation

of gold (Au147 & Au309) nanoparticles. MD simulation calculates the forces between

atoms and the total energy of the chemical system. This work proposes the novel design

and implementation of an ANN IAP-based MD simulation for Au147 & Au309 using

communication protocols, such as UART and Ethernet, for communication between the

FPGA and the host computer. To improve the latency of MD simulation through het-

erogeneous computing, UART and Ethernet communication protocols were explored to

conduct MD simulation of 50,000 cycles. In this study, computation times of 17.54

hours and 18.70 hours were achieved with UART and Ethernet, respectively, compared

to the conventional server time of 29 hours for the Au147 atomic cluster. The results

pave the way for the development of a Lab-on-a-chip application.

i

LIST OF PUBLICATIONS

• Journal Publications:

1. Ankitkumar Patel, Srivathsan Vasudevan, & Satya S. Bulusu. "FPGA Accelera-

tors for Computing Interatomic Potential-based Molecular Dynamics Simulation

for Gold Nanoparticles: Exploring Different Communication Protocols". Com-

puters, Materials & Continua (CMC). (IF 3.1)

ii

Contents

Abstract i

PUBLICATIONS ii

LIST OF FIGURES vi

LIST OF TABLES viii

LIST OF ABBREVIATIONS ix

Chapter 1: Introduction 1

1.1 Field Programmable Gate Array (FPGA) 2

1.2 High Performance Computing (HPC) 3

1.2.1 Heterogeneous Computing . 3

1.3 FPGA Accelerator: Using PCIe Communication Protocol 6

1.3.1 PCIe Communication Protocol 7

1.3.2 Limitations of PCIe Communication Protocol 9

1.4 Objectives . 9

1.5 Organization of the Thesis . 10

Chapter 2: Literature Survey 11

2.1 FPGA Architecture and Design Flow 12

2.1.1 FPGA Architecture . 12

2.1.2 FPGA Hardware Design Flow 17

2.1.3 FPGA Software Development Flow (Xilinx SDK) 20

iii

2.1.4 Advantages and Disadvantages of FPGA 21

2.1.5 Kintex-7 KC705 FPGA Board 22

2.2 Communication Protocols . 23

2.2.1 UART: Universal Asynchronous Receiver-Transmitter 23

2.2.2 Ethernet . 25

2.3 Floating Point Numbers Conversion in IEEE-754 Format 29

2.3.1 Single Precision (32-bit) Format 30

2.3.2 Double Precision (64-bit) Format 30

Chapter 3: Hardware-Softyware Co-design Development: Using UART or

Ethernet 31

3.1 Introduction . 32

3.2 System Architecture Overview . 33

3.2.1 Xilinx FPGA IPs . 33

3.2.2 Hardware Accelerator HLS IP for ANN-based IAP Calculation . 36

3.3 Hardware-Software Co-design Implementation 38

3.3.1 UART Implementation . 39

3.3.2 Ethernet Implementation . 43

3.3.3 Data Transfer Comparision between Au147 and Au309 47

Chapter 4: Results and Discussion 48

4.1 Results . 49

4.1.1 Potential Energy Comparision 49

4.1.2 Computation Time Comparision 51

4.1.3 FPGA Resources Utilization 52

4.1.4 On-Chip Power Consumption 53

4.2 Discussion . 54

4.2.1 Au147 Time Calculations . 54

4.3 Conclusion . 58

4.4 Future Scope . 59

iv

Bibliography 66

v

List of Figures

1.1 GPU-CPU and FPGA-CPU Heterogeneous Computing Platform 4

1.2 FPGA Accelerator Hardware-Software Co-design Using PCIe Commu-

nication . 5

1.3 System Architecture of FPGA Accelerator using PCIe Communication

[18] . 6

1.4 PCIe Protocol Stack. 8

2.1 FPGA Architecture. 12

2.2 FPGA Configurable Logic Block. 13

2.3 FPGA Programmable I/O Block. 15

2.4 FPGA Hardware Design Flow. 17

2.5 FPGA Software Development Flow (Xilinx SDK). 20

2.6 Xilinx Kintex-7 KC705 FPGA Board. 22

2.7 UART with Data Bus [39]. 24

2.8 UART Frame Format. 24

2.9 OSI Model. 26

2.10 Ethernet Protocol Architecture. 27

2.11 IEEE 802.3 Ethernet Frame Format. 27

2.12 IEEE-754 Single Precision Format.. 30

2.13 IEEE-754 Double Precision Format. 30

3.1 Proposed Hardware-Software Co-design Prototype for MD Simulation. . 32

3.2 Block diagram of hardware-software co-design for MD simulation. . . . 33

3.3 Microblaze IP. 34

3.4 (a)AXI UartLite IP and (b) AXI EthernetLite IP. 35

vi

3.5 Memory Interface Generator IP. 36

3.6 Algorithm for ANN-based IAP Calculation. 37

3.7 Design Flow for HLS IP Creation. 38

3.8 Data Flow Diagram of System Implementation for MD Simulation. . . . 39

3.9 SDK Flow Diagram for UART Implementation. 40

3.10 Algorithm of host computer software Module (C-code) for UART. . . . 42

3.11 SDK Flow Diagram for Ethernet Implementation. 44

3.12 Host Computer Ethernet C-code for Open input file. 45

4.1 Potential Energy of Au147 vs. Number of MD Cycles. 50

4.2 Potential Energy of Au309 vs. Number of MD Cycles. 50

vii

List of Tables

3.1 Data Transfer Comparision between Au147 and Au309 47

4.1 Computation Time Comparision of UART, Ethernet & PCIe Communi-

cation based Design for Au147 . 51

4.2 Computation Time Comparision of UART, Ethernet & PCIe Communi-

cation based Design for Au309 . 52

4.3 UART, Ethernet & PCIe Communication based FPGA Implementation

Resources Utilization for Au147 . 53

4.4 On-Chip Power Comparision of UART, Ethernet & PCIe Communica-

tion based Design for Au147 (Au309) 53

4.5 Tipping Point Calculation for Different Protocols 57

viii

LIST OF
ABBREVIATIONS

HPC - High Performance Computing

CPU - Central Processing Unit

GPU - Graphics Processing Unit

ASIC - Application Specific Integrated Circuit

FPGA - Field Programmable Gate Array

MD - Molecular Dynamics

ANN - Artificial Neural Network

IP - Intellectual Property

CLB - Configurable Logic Block

LUT - Look Up Table

MUX - Multiplexer

HDL - Hardware Design Language

AXI - Advanced eXtensible Interface

HLS - High Level Synthesis

RISC - Reduced Instruction Set Computer

IAP - Interatomic Potential

DSP - Digital Signal Processing

PCIe - Peripheral Component Interconnect Express

ix

UART - Universal Asynchronous Receiver-Transmitter

SRAM - Static Random Access Memory

IO - Input Output

BRAM - Block Random Access Memory

SDK - Software Development Kit

DDR - Double Data Rate

SPI - Serial Peripheral Interface

OSI - Open System Interconnect

LAN - Local Area Network

LLC - Logical Link Control

MAC - Medium Access Control

NIC - Network Interface Card

CRC - Cyclic Redundancy Check

IC - Instruction Cache

DC - Data Cache

FIFO - First In First Out

MII - Media Independent Interface

MIG - Memory Interface Generator

RTL - Register Transfer Level

x

Chapter 1
Introduction

1.1 Field Programmable Gate Array (FPGA)

Field-programmable gate arrays (FPGAs) are reconfigurable computer chips

that can be programmed to implement any digital hardware circuit. FPGAs con-

sist of an array of programmable blocks (logic, I/O, and others) that can be inter-

connected using prefabricated routing tracks with programmable switches. The

functionality of all FPGA blocks and the configuration of the routing switches

are controlled by millions of static random-access memory (SRAM) cells, which

are programmed at runtime to realize a specific function. The user describes the

desired functionality in a hardware description language (HDL) such as Verilog

or VHDL, or possibly uses high-level synthesis to translate C or OpenCL to

HDL. The HDL design is then compiled using a complex computer-aided de-

sign (CAD) flow into a bitstream file used to program the FPGA’s configuration

SRAM cells [1].

Compared to developing a custom application-specific integrated circuit (ASIC),

FPGAs offer significantly lower initial engineering costs and quicker time-to-

market. Using a pre-made off-the-shelf FPGA, a complete system can be set

up within weeks, bypassing the need for physical design, layout, fabrication,

and verification typical of custom ASICs. Moreover, FPGAs allow for seam-

less hardware updates post-deployment by simply loading a new bitstream in

the field, hence the name "field-programmable." This feature makes FPGAs an

attractive option for medium and small-scale projects, especially given the rapid

product turnover in today’s markets. These benefits have encouraged the use of

FPGAs in various fields, such as wireless communications [2], embedded sig-

nal processing [3], networking [4], ASIC prototyping [5], and high-frequency

trading [6].

Due to its parallel computing feature, FPGA is the most attractive choice for

the heterogeneous computing platform.

2

1.2 High Performance Computing (HPC)

High performance computing (HPC) is a way to process large amounts of data

that goes through some computing algorithm at high speeds to solve complex

problems in engineering, science, or business fields in a broad context. HPC

systems can perform calculations much faster than traditional computers and

can be more powerful than a single workstation, server, or computer [7]. To

achieve HPC computation, processors/clusters work simultaneously to handle

large-scale multi-dimensional datasets to solve complex problems at very high

speeds [8].

HPC performance is typically measured using two fundamental metrics:

"time" and "number of operations." The most commonly used metric in HPC

is "floating point operations per second," or "flops" [9]. While advancements in

semiconductor technology continue to push the boundaries of computing, this

progress also brings manufacturing closer to physical limits. Managing heat and

power becomes increasingly challenging as processor speeds and core counts in-

crease. In response to evolving user needs and power constraints, heterogeneous

computing platforms have emerged as a viable solution [10].

1.2.1 Heterogeneous Computing

With the tremendous increase in data volume, traditional CPUs are finding it

challenging to keep up with the demands of HPC [11]. Researchers are working

on improving the speed of HPC applications. With advancements in the VLSI

hardware industry, they use heterogeneous computing platforms to improve the

performance of these HPC applications [12]. Heterogeneous computing is a

unique method of handling many tasks simultaneously by spreading them across

different systems. This not only boosts performance but also saves power [10]

[13]. It moves beyond Moore’s Law and tackles issues like power usage, per-

3

formance, and scalability. A heterogeneous platform efficiently manages tasks

using different computing units, finding the right balance between performance

and power. These platforms employ various computing units like CPUs, GPUs,

DSPs, ASICs, and FPGAs [14] [15] [16]. Among these, FPGAs stand out for

their ability to handle multiple tasks simultaneously, speeding up computations

[17]. Figure 1.1 shows the GPU-CPU and FPGA-CPU heterogeneous comput-

ing platforms. In contrast, homogeneous computing platforms use the same type

of computing units for every task.

Figure 1.1: GPU-CPU and FPGA-CPU Heterogeneous Computing Platform

Although CPUs are great for handling tasks sequentially and FPGAs for

parallel tasks, they are essential in heterogeneous computing setups. However,

FPGA-CPU heterogeneous computing platforms have limitations, with a signif-

icant drawback being the communication overhead between FPGA and CPU.

4

Initially, our group developed an FPGA accelerator for machine learning

IAP-based molecular dynamics of gold (Au13, Au55, Au147, Au309, etc.) nanopar-

ticles using the phenomenon of heterogeneous computing [18]. The block di-

agram of hardware-software co-design is shown in Figure 1.2. For implemen-

tation, they utilized the PCIe communication protocol for communication be-

tween FPGA and CPU. Gold nanoparticles were chosen because they have al-

ways been a subject of interest in various applications like biomedical, chemical,

plasmonics, and non-linear optics, among others [19].

Figure 1.2: FPGA Accelerator Hardware-Software Co-design Using PCIe Com-

munication

Molecular dynamics is a routinely used High Performance Computing(HPC)

technique, which involves many computers to perform the task of obtaining the

dynamic properties of atoms and molecules. For such calculations, the bottle-

neck usually involves computing forces (energy derivatives) for each particle at

every time step. To get equilibrium properties, we have to run the simulations

for more than 3 million steps.

Initially, this ML-IAP based MD ran on an HPC Server. But, In HPC servers,

several processors run in parallel, consuming a large amount of power and incur-

ring high capital and maintenance costs. To address these issues, researchers are

exploring the concept of FPGA-CPU heterogeneous computing platform[20].

5

1.3 FPGA Accelerator: Using PCIe Communica-

tion Protocol

In hardware accelerator architecture, the ML-IAP based MD program is divided

into two parts: a) calculations of IAP-based Intellectual Property (IP) block for

energy and atomic forces that will be implemented on FPGA and b) integration

of Newton’s equations of motion that will be executed on a computer (CPU)

[18]. Besides, there exist several dependencies in the algorithm which restrict

concurrent computation. Identifying each and every step of such processes and

paving the way for efficient parallelization involves detailed analysis of timing

diagrams and proposing alternative programming options without compromis-

ing precision and resource utilization.

Figure 1.3: System Architecture of FPGA Accelerator using PCIe Communica-

tion [18]

The system architecture of the hardware-software co-design, shown in Fig-

6

ure 1.3 [18], divides the system into two parts. The FPGA hardware handles

complex, time-intensive computations while the host computer manages control

functions and sequential computations. The heterogeneous computing-based

MD simulation model requires constant communication between the host com-

puter and the FPGA board for proper operation. This communication is facil-

itated using the PCIe protocol. The DMA subsystem for PCIe allows the host

computer to access memory residing on the FPGA board. During computations

on the FPGA, certain tasks require large floating-point arrays, which are stored

in DDR memory. The AXI protocol is used for communication between various

IP cores on the FPGA chip.

In every MD cycle, the Cartesian coordinates (X, Y, and Z) are sent from

the host computer to the FPGA, and the outputs (forces and energy values) are

sent from the FPGA to the host computer using PCIe communication. Thus,

around 3.5KB of data transfer occurs between the FPGA and a host computer in

every MD cycle using PCIe for Au147. With PCIe communication 50,000 MD

cycles, PCIe took 19.84 hours, whereas HPC Server took 29 hours for Au147

atomic clusters. With PCIe, the computation time was reduced by 1.5 times, as

reported by Bulusu et al. [18].

1.3.1 PCIe Communication Protocol

PCIe is a serial expansion bus standard used for connecting a computer to one

or more peripheral devices. Compared to parallel buses like PCI and PCI eX-

tended, PCIe offers lower latency and higher data transfer rates. Each device

connected to a motherboard via PCIe has its own dedicated point-to-point con-

nection. This means that expansion card devices don’t have to compete for

bandwidth because they aren’t sharing the same bus [21].

7

Figure 1.4: PCIe Protocol Stack.

PCIe achieves reliable data transfers using a three-layer PCIe protocol stack

as shown in Figure 1.4.

1. Physical Layer specifies the electrical and logical design. It represents the

size and shape of the PCIe cards, slots, pin configuration and the use of

differential signal pairs.

2. Data Link Layer specifies the ways in which data is packaged, sequenced

and moved. It handles the initialization, data movement and signaling

between the PCIe device and the host interface.

3. Transaction Layer is the highest and most abstract layer of a PCIe standard

that defines the content – how data is structured and what’s contained

within each package of PCIe data as they move between points.

PCIe is suitable for a wide range of applications across various sectors such

as Communications, Datacenter, Enterprise, Embedded, Test & Measurement,

8

Military, and others. It serves as a peripheral device interconnect, a chip-to-chip

interface, and a bridge to many other protocol standards.

1.3.2 Limitations of PCIe Communication Protocol

A thorough study by Kucharczyk et al. [13] on FPGA applications points out

PCIe problems. First, it says we need special hardware and drivers, like a PCIe

slot and its drivers, which make programming more complicated. Second, it

mentions that the PCIe cannot support hot plug operations, requiring a system

restart for reconfiguration. Also, PCIe for small data transfers, like 3.5KB for

Au147 and 7.2KB for Au309, adds unnecessary complexity. Hence, the advan-

tage of high-speed and low-latency data transfer is reduced due to the complex-

ity overhead in small KB data transfers.

1.4 Objectives

1. Explore UART and Ethernet communication protocols as alternatives to

PCIe communication for ANN-based MD simulation for gold nanoparti-

cles. The emphasis is on implementing ANN interatomic potential-based

MD simulations, prioritizing simplicity, user-friendliness, performance,

and energy consumption efficiency.

2. Integrate the Microblaze soft-core processor to enhance hardware control,

ensuring a system that is easily debuggable and well-controlled.

3. Implement the MD calculation in the FPGA-Computer (CPU) based sys-

tem using both communication protocols.

9

1.5 Organization of the Thesis

This section provides an overview of how the thesis is organized. The thesis

consists of four chapters whose contents are as follows:

Chapter 1 introduces the various topics necessary to understand the need for

the thesis work. It also describes the motivation and objectives of the thesis.

Chapter 2 explores the theoretical fundamentals and literature survey required

to develop the FPGA Accelerator for IAP-based MD Simulation.

Chapter 3 details the hardware and software development and implementation

on the Kintex-7 KC705 FPGA board.

Chapter 4 presents the results and discussion. It concludes with a summary

and explores the future scope of the work.

10

Chapter 2
Literature Survey

2.1 FPGA Architecture and Design Flow

2.1.1 FPGA Architecture

Today’s FPGAs feature specialized components tailored for specific tasks along-

side flexible configurable logic. This mix of dedicated functionality and adapt-

able logic contributes to architectures that boast lower power consumption and

enhanced performance [22] [23] [24]. The basic FPGA architecture is shown in

Figure 2.1.

Figure 2.1: FPGA Architecture.

Configurable Logic Block (CLB)

A CLB is the core component of an FPGA, enabling it to adopt various hardware

setups. Essentially, an FPGA is comprised of numerous CLBs, forming its struc-

ture. With thousands of these on modern FPGAs, they can be programmed to

execute nearly any logical operation. Each CLB contains its own set of discrete

logic elements, including look-up tables (LUTs), multiplexers, and flip-flops

[25] [26]. The basic CLB structure is shown in Figure 2.2.

12

Figure 2.2: FPGA Configurable Logic Block.

1. Look-up Table

The Lookup Table (LUT), a pivotal element within the CLB of an FPGA,

serves as a cornerstone for its functionality. It operates as a customizable

truth table, associating input configurations with corresponding output

values. LUTs possess programmable capabilities, enabling them to exe-

cute various combinational logic functions. Their flexibility is paramount

in digital circuit design, as they empower engineers to implement diverse

logic operations tailored to specific requirements. From basic logic gates

to intricate functions such as adders and multiplexers, LUTs provide a

versatile platform for crafting custom digital circuits, accommodating a

spectrum of computational tasks with precision and efficiency [25] [26].

2. Flip-flop or Latches

Flip-flops or latches, integral components within a CLB, play a vital role

in FPGA functionality by providing the capability to both store and syn-

chronize data. These flip-flops or latches serve multiple purposes within

the digital circuitry: they can store intermediate results during complex

computations, implement sequential logic to control the order of opera-

tions and create memory elements for temporary or permanent data stor-

13

age. Their versatility enables the FPGA to manage and manipulate data

streams effectively, enhancing its overall performance and functionality

in various applications [25] [26].

3. Multiplexer (MUX)

The multiplexer (MUX) housed within a CLB is critical in managing data

flow within an FPGA. It acts as a switchboard, enabling the selection of

different inputs based on control signals. This capability allows signals

from various sources to be routed and connected to different components

within the CLB as needed. By providing this flexibility, the multiplexer

facilitates the adaptation of the FPGA to diverse operational requirements.

For instance, it permits the selection of appropriate input signals for spe-

cific computational tasks or conditions, thereby enhancing the versatility

and efficiency of the FPGA’s operation. Additionally, the MUX is crucial

in optimizing resource utilization within the CLB, ensuring that signals

are efficiently directed to the appropriate destinations for processing or

further routing [25].

Programmable Interconnects

In FPGAs, routing consists of wire segments of varying lengths interconnected

by electrically programmable switches. The density of logic blocks within an

FPGA is influenced by the length and number of these wire segments used

for routing. Balancing the number of connecting segments is crucial as it af-

fects both the density of logic blocks and the space occupied by routing. Pro-

grammable routing links logic and input/output blocks to complete a user-defined

design unit. This routing circuit comprises multiplexers, pass transistors and tri-

state buffers. Pass transistors and multiplexers within a logic cluster establish

connections between the logic units [22] [23].

14

Programmable I/O Blocks

FPGAs are equipped with adaptable IO structures designed to facilitate com-

munication with a diverse range of devices, establishing them as pivotal com-

munication hubs in numerous systems. However, accommodating multiple IO

interfaces and standards using a single set of physical IOs presents significant

challenges, requiring adaptation to varying voltage levels, electrical characteris-

tics, timing specifications, and command protocols [22] [23].

Figure 2.3: FPGA Programmable I/O Block.

A Configurable Input/Output (I/O) Block, shown in Figure 2.3, brings sig-

nals onto the chip and transmits them off again. This block comprises an input

buffer and an output buffer, each featuring controls for three-state and open

collector outputs. Typically, pull-up resistors are incorporated on the outputs,

with the potential addition of pull-down resistors to terminate signals and buses

internally, eliminating the need for external resistors. Additionally, users can

program the output polarity as either active high or active low and adjust the

slew rate for fast or slow rise and fall times. Incorporating flip-flops on outputs

enables clocked signals to be output directly to the pins, reducing delay and

facilitating compliance with setup time requirements for external devices. Sim-

ilarly, flip-flops on inputs minimize the signal delay before reaching a flip-flop,

15

thereby reducing the FPGA’s hold time requirement.

Digital Signal Processing (DSP) Slice

The DSP slice, block, or cell, often referred to interchangeably, represents a

specialized unit within an FPGA dedicated to digital signal processing (DSP)

tasks. Unlike general-purpose CLBs, which can handle various functions, the

DSP slice is optimized explicitly for filtering, multiplying, and other DSP oper-

ations. This specialization allows it to execute these functions more efficiently

and quickly than implementing them using multiple CLBs. Typically, DSP

slices are equipped with dedicated hardware resources such as multipliers, accu-

mulators, and specialized adders tailored to perform DSP computations rapidly

and with minimal resource overhead. Their presence significantly enhances the

FPGA’s ability to handle real-time signal processing tasks, making them indis-

pensable in applications ranging from telecommunications and audio to image

and video processing [27].

Block Random Access Memory (BRAM)

Memory options on an FPGA board vary, but the dedicated memory on the chip

itself is known as block RAM or BRAM. Each block has a fixed size, such as

36K bits for Xilinx 7 series chips, but these blocks can be divided or combined

to create smaller or larger BRAM sizes. Additionally, they offer various opera-

tional settings and can support special features like error correction [28].

Clock Circuitry

The chip contains special I/O blocks equipped with powerful clock drivers that

are designed to handle high-drive clock signals. These drivers connect to clock

input pads and transmit the clock signals onto the global clock lines. These

16

global clock lines are optimized for minimal skew and rapid signal propagation.

It’s important to note that synchronous design is essential with FPGAs because

only the global clock lines can ensure consistent skew and delay [29].

2.1.2 FPGA Hardware Design Flow

The flowchart for designing and implementing hardware on the FPGA is shown

in Figure 2.4 [30]:

Figure 2.4: FPGA Hardware Design Flow.

Design Entry

The logic description can be created using a schematic editor, a finite state ma-

chine (FSM) editor, or a hardware description language (HDL). This involves

selecting components from a library and directly mapping the design functions

to chosen computing blocks. When managing designs with many functions be-

comes challenging visually, HDL can be utilized to capture the design struc-

17

turally or behaviorally. In addition to VHDL and Verilog, which are well-

established HDLs, several C-like languages are available, such as Handel-C,

Impulse C, and System C [31] [32] [33] .

Behavioral Simulation

This step plays a crucial role in ensuring the accuracy of the HDL by comparing

the output of the HDL model with the behavioral model. Utilizing RTL descrip-

tion, behavioral simulation allows for functionality testing with the assistance

of Electronic Design Automation (EDA) tools [34].

Design Synthesis

This process involves translating the HDL code into a device netlist format, rep-

resenting a complete circuit with logical elements. Synthesis includes checking

the code syntax, analyzing the hierarchy of the design architecture, and compil-

ing the code along with optimization. The resulting netlist is saved as a .ngc file

[35].

Design Implementation

The design implementation comprises the following steps [36]:

1. Translate: During translation, netlists are combined into a single NGD

file, followed by timing and logical design rule checks. Constraints from

the user constraint file (UCF) are then integrated into the merged netlist.

2. Map: In this phase, the tool assigns resources to basic logic elements and

handles location and timing constraints. It then optimizes the target and

produces the physical design database, along with a post-map STA report

detailing block and routing delays.

18

3. Place and Route: This phase involves placement and routing of the de-

sign, resulting in the post-place-and-route STA report detailing all nets

and delays in the design.

Device Programming

The routed design must be loaded and converted into a format supported by

the FPGA. Thus, the routed .ncd file is provided to the BitGen program, which

generates a bitstream file containing all programming information for the FPGA

[37].

Timing Analysis

In this phase, a timing tool checks whether the implemented design meets user-

specified timing constraints, including clock frequency, setup violation, and

hold violation.

19

2.1.3 FPGA Software Development Flow (Xilinx SDK)

Figure 2.5: FPGA Software Development Flow (Xilinx SDK).

The typical process for developing a software application for Vivado® embed-

ded system design using Xilinx® SDK is as follows:

1. Launch Xilinx SDK. When prompted, open an existing workspace or cre-

ate a new one using a Hardware Platform generated from Vivado® IP

Integrator.

2. Begin developing the software application. Xilinx SDK provides docu-

mentation for software libraries and drivers included in the board support

package.

3. SDK automatically generates a default linker script for the application.

Use linker generation tools to adjust the memory map as needed.

20

4. When ready to test the application on the hardware target, create a run/debug

configuration to run/debug the application. If necessary, download the

hardware bitstream to the FPGA device.

2.1.4 Advantages and Disadvantages of FPGA

FPGAs offer numerous advantages. They can execute faster and parallel sig-

nal processing, a task typically challenging for processors, as they can be pro-

grammed at the logic level. Unlike ASICs, which are fixed once programmed,

FPGAs are reprogrammable at any time, even remotely, enabling multiple reuses.

Their ready availability and swift programming using HDL code ensures faster

solutions to market. Moreover, FPGA development is cost-effective, requiring

fewer expenses and less costly tools than ASICs, eliminating significant Non-

Recurring Expenses (NRE). Additionally, FPGA design involves minimal man-

ual intervention, as software manages routing, placement, and timing, stream-

lining the design flow and eliminating complexities.

FPGAs have several drawbacks. Programming requires expertise in VHDL

/ Verilog and digital system fundamentals, unlike the more straightforward C

programming used in processor-based hardware. Additionally, power consump-

tion is higher, with limited control over optimization compared to ASICs. Once

a specific FPGA is chosen, programmers are constrained by available resources,

limiting design size and features. Choosing the right FPGA from the start is cru-

cial. While suitable for prototyping and low-quantity production, costs increase

with higher FPGA quantities, unlike ASICs.

21

2.1.5 Kintex-7 KC705 FPGA Board

Figure 2.6: Xilinx Kintex-7 KC705 FPGA Board.

The KC705 evaluation board for the Kintex®-7 FPGA offers a hardware envi-

ronment suitable for developing and evaluating designs targeting the Kintex-7

XC7K325T-2FFG900C FPGA. It includes features commonly found in many

embedded processing systems, such as DDR3 SODIMM memory, an 8-lane

PCI Express® interface, a tri-mode Ethernet PHY, general-purpose I/O, and a

UART interface. Additional features can be integrated using FPGA Mezzanine

Cards (FMCs), which can be connected to either of the two VITA-57 FPGA

mezzanine connectors provided on the board. These connectors support both

High Pin Count (HPC) and Low Pin Count (LPC) FMCs. Additionally, the

board includes features like an I2C bus, status LEDs, switches, and configura-

tion ports. Figure 2.6 shows the KC705 FPGA board. A detailed explanation of

the KC705 board is provided in [38].

22

2.2 Communication Protocols

The communication protocol plays a significant role in coordinating communi-

cation between devices. It is tailored differently depending on system needs,

with specific rules agreed upon between devices to ensure successful communi-

cation. In heterogeneous computing systems, continual communication between

FPGA and the host computer is essential. Various FPGA communication pro-

tocols are used for this purpose. Here, we delve into two of the most common:

UART and Ethernet.

2.2.1 UART: Universal Asynchronous Receiver-Transmitter

UART is a fundamental communication protocol in various systems, including

embedded systems, microcontrollers, and computers, primarily due to its sim-

plicity and efficiency. Unlike other communication protocols, such as SPI or

I2C, UART requires only two wires for transmitting and receiving data, making

it a preferred choice in many applications.

UART operates on asynchronous serial communication at its core, offering

configurable speeds to accommodate diverse system requirements. In this asyn-

chronous mode, data transmission occurs without a synchronized clock signal

between the transmitting and receiving devices. Instead, UART devices rely on

predefined baud rates to ensure proper data transfer [39].

Each UART device comprises two essential signals: the Transmitter (Tx)

and the Receiver (Rx). These signals enable the transmission and reception of

serial data between devices, facilitating seamless communication. As shown in

Figure 2.7, the transmitting UART initially sends data in parallel form over a

controlling data bus, which is then serialized and transmitted to the receiving

UART bit by bit. Here, the serial data is converted back into parallel form for

the receiving device’s use.

23

Figure 2.7: UART with Data Bus [39].

Despite its simplicity, synchronization is crucial in UART communication to

ensure accurate data transmission and reception. The transmitting and receiving

devices must operate at the same baud rate, with a permissible deviation of up to

10%. Beyond this threshold, discrepancies in timing may occur, leading to data

handling issues during communication processes. Therefore, carefully consid-

ering baud rate alignment is essential for successful UART communication. The

UART frame format is shown in Figure 2.8 [40].

Figure 2.8: UART Frame Format.

Advantages and Disadvantages of UART Communication Protocol

UART communication presents several benefits [41]:

1. It operates efficiently by utilizing only two wires, simplifying the hard-

ware setup required for communication between devices.

24

2. Unlike synchronous communication protocols, UART does not necessi-

tate a dedicated clock signal, reducing system complexity.

3. UART incorporates a parity bit, enabling error checking to ensure data

integrity during transmission.

4. The flexibility of UART allows for modifying the data packet structure as

long as both transmitting and receiving ends are configured accordingly.

However, despite its advantages, UART communication comes with its lim-

itations [41].

1. One notable drawback is the restricted size of the data frame, which is

limited to a maximum of 9 bits. This limitation may pose challenges

when dealing with larger data sets.

2. UART does not support multiple slave or master systems, limiting its ap-

plicability in specific scenarios where such configurations are necessary.

3. Maintaining consistent baud rates across UART devices is crucial, as devi-

ations exceeding 10% may lead to synchronization issues and data trans-

mission errors, posing challenges in ensuring reliable communication be-

tween devices.

2.2.2 Ethernet

As shown in Figure 2.9, the OSI networking model [42] [43] comprises seven

layers, each with its own protocols, including the physical, data link, network,

transport, session, presentation, and application layers. The first two layers, the

physical and data link layers, are particularly associated with a widely used set

of Ethernet protocols. Ethernet, defined by the IEEE 802.3 standard, is a preva-

lent networking technology utilized in various forms. It encompasses protocols,

25

ports, cables, and computer chips necessary to connect devices to a local area

network (LAN) for efficient data transmission via coaxial or fiber optic cables.

Figure 2.9: OSI Model.

Within the OSI network model, Ethernet protocol operates primarily at the

first two layers: the Physical and Data Link layers. However, as shown in Figure

2.10, Ethernet further divides the Data Link layer into two distinct layers: the

Logical Link Control (LLC) layer and the Medium Access Control (MAC) layer

[44]. The physical layer focuses on hardware elements such as repeaters, cables,

and network interface cards (NICs), specifying cable types, lengths, and optimal

network topologies. Meanwhile, the data link layer manages data packet trans-

mission between different nodes. Ethernet employs an access method known as

CSMA/CD (Carrier Sense Multiple Access/Collision Detection), where com-

puters listen to the cable before transmitting data to avoid collisions on the net-

work.

26

Figure 2.10: Ethernet Protocol Architecture.

Ethernet protocol transmission speeds are measured in Mbps (millions of

bits per second) and are available in three types: 10 Mbps (Standard Ethernet),

100 Mbps (Fast Ethernet), and 1,000 Mbps (Gigabit Ethernet). The actual trans-

mission speed represents the maximum achievable speed under ideal conditions,

though real-world network output often needs to catch up to this highest speed.

Figure 2.11: IEEE 802.3 Ethernet Frame Format.

As shown in Figure 2.11, the Ethernet frame format [45] required for all

MAC implementation is defined in the IEEE 802.3 standard. It begins with

the Preamble and SFD, both functioning at the physical layer. Following this,

the Ethernet header contains both the Source and Destination MAC addresses,

succeeded by the frame’s payload. Lastly, the CRC field is included to detect

27

errors within the frame.

Ethernet communication has several advantages:

1. High speed: Ethernet offers faster speeds compared to wireless connec-

tions, up to 10Gbps or even 100Gbps.

2. Efficiency: Ethernet cables like Cat6 are power-efficient, consuming less

power than Wi-Fi.

3. Good data transfer quality: Resilient to noise, ensuring high-quality data

transfer.

4. Security: Provides higher security levels, controlling network access to

prevent unauthorized access.

5. Low cost: Ethernet setup is inexpensive and requires minimal investment.

6. Reliability: Minimal radio frequency interruptions ensure reliable con-

nections with no bandwidth shortages.

However, despite its advantages, Ethernet communication comes with its

limitations.

1. Limited expandability: Additional expenses and time required for ex-

panding networks due to rewiring and additional equipment.

2. Crosstalk with longer cables: Longer Ethernet cables can suffer from

crosstalk.

3. Restricted connections: A single Ethernet connection allows for only one

device; multiple devices require more cables.

4. Not ideal for real-time applications: Ethernet lacks deterministic services,

making it unsuitable for real-time or interactive applications.

28

5. Limited mobility: Suitable for stationary devices, limiting mobility.

6. Inefficiency with traffic-intensive applications: Efficiency decreases as

Ethernet traffic increases.

7. Complex installation: Requires professional assistance for installation.

8. Troubleshooting difficulties: Identifying problematic cables in the net-

work can be challenging.

2.3 Floating Point Numbers Conversion in IEEE-

754 Format

Floating point numbers are used in a wide range of applications, including high

performance scientific computing, 3D graphics rendering, and financial analy-

sis. To store any floating point number in a computer, mainly two IEEE repre-

sentations are used [46].

1. Single Precision (32-bit) Format

2. Double Precision (64-bit) Format

The normalized form of the floating number is:

(−1)S ×1.M×2E

Where: S = Sign, M = Mantissa and E = Exponent

29

2.3.1 Single Precision (32-bit) Format

Figure 2.12: IEEE-754 Single Precision Format..

2.3.2 Double Precision (64-bit) Format

Figure 2.13: IEEE-754 Double Precision Format.

30

Chapter 3
Hardware-
Software
Co-design

Development:
Using UART or

Ethernet

3.1 Introduction

As shown in Figure 3.1, the proposed system is divided into two parts to achieve

heterogeneous computing functionality: 1. hardware, implemented on the FPGA,

and 2. software, implemented on the host computer. The FPGA hardware han-

dles complex, time-intensive computations while the host computer manages

controlling functions and sequential computations. Compared to the PCIe mode,

the PCIe communication protocol is replaced with UART or Ethernet commu-

nication protocols.

Figure 3.1: Proposed Hardware-Software Co-design Prototype for MD Simula-

tion.

32

3.2 System Architecture Overview

Figure 3.2: Block diagram of hardware-software co-design for MD simulation.

The computation is executed on the FPGA using digital IPs. Since most of

the computations are data-intensive, there is constant data transfer between the

hardware accelerator IP and memory. Once the computation is complete, the

final data is transferred between the FPGA and the host computer via commu-

nication IPs (e.g., UARTLite or EthernetLite). Figure 3.2 illustrates two IPs:

MicroBlaze and DDR memory. During computation, a large number of multi-

dimensional arrays need to be stored for further processing, which is managed

by the DDR memory controller. MicroBlaze, a soft-core processor, functions as

the master controller of the hardware.

3.2.1 Xilinx FPGA IPs

Microblaze: Soft-Core Processor

It is a 32-bit general-purpose Reduced Instruction Set Computer (RISC) soft-

core processor. This processor features a 32-bit general-purpose register, RISC

Harward Architecture, a 3-stage pipeline, and an interrupt module [47]. Uti-

lizing the local memory bus (LMB), Microblaze accesses on-chip memory and

33

is compatible with the IEEE 754 single-precision floating-point format. It also

includes an Instruction Cache (IC) and Data Cache (DC), exception handling, a

debug module, and a barrel shifter. Except for the Zynq family, Microblaze is

supported in most Xilinx FPGA families (Artix-7, Kintex-7, Spartan, etc.). A

comprehensive explanation of Microblaze is provided in [48].

Figure 3.3: Microblaze IP.

Xilinx provides a software environment called Software Development Kit

(SDK) with the Embedded processor (Microblaze). The SDK supports C/C++

languages for writing software code and is responsible for controlling the oper-

ation of the Microblaze soft-core processor. It extends support to all peripherals

IPs used with the processor. Figure 3.3 shows the Microblaze IP.

Communication IP (AXI UARTLite / EthernetLite)

The Advanced eXtensible Interface (AXI) UARTLite serves as a control in-

terface for asynchronous serial data transfer. It supports full-duplex commu-

nication, providing AXI4-Lite interface register access and data transfer. The

receiver and transmitter (First in First out) FIFO size are limited to 16 Bytes.

This module incorporates configurable baud rates (e.g., 9600, 115200, 421800,

921600, etc.). UARTLite IP follows the standard UART frame format. A com-

prehensive explanation of AXI UARTLite is available in [49]. The AXI UAR-

TLite IP is shown in Figure 3.4 (a).

34

Figure 3.4: (a)AXI UartLite IP and (b) AXI EthernetLite IP.

The AXI EthernetLite is designed to incorporate the features of the IEEE

802.3 Ethernet standard. It facilitates connection to external 10/100 Mb/s phys-

ical (PHY) transceivers through the Media Independent Interface (MII). It uti-

lizes the AXI4/AXI4-Lite on-chip communication protocol to enable commu-

nication with the Microblaze soft-core Processor. EthernetLite IP follows the

IEEE 802.3 standard Ethernet frame format for communication. A comprehen-

sive explanation of the AXI EthernetLite is provided in [50]. The AXI Ether-

netLite IP is shown in Figure 3.4 (b).

Memory Interface Generator (MIG)

The core of the Xilinx® 7 series FPGAs memory interface solutions comprises

a pre-engineered controller and physical layer (PHY). It facilitates interfacing 7

series FPGA user designs and AMBA® AXI4 slave interfaces with DDR3 and

DDR2 SDRAM devices. Within the Embedded Development Kit (EDK), this

core is accessible through the Xilinx Platform Studio (XPS) as the axi_7series_ddrx

IP, featuring a static AXI4 to DDR3 or DDR2 SDRAM architecture. The Kintex-

7 KC705 board contains DDR3 SDRAM, which is utilized with this MIG IP. A

detailed explanation of the 7 series MIG is available in [51]. The MIG IP is

shown in Figure 3.5.

35

Figure 3.5: Memory Interface Generator IP.

AXI InterConnect

The AXI Interconnect core facilitates the connection of a mixture of AXI mas-

ter and slave devices, allowing variations in data width, clock domain, and AXI

sub-protocol (AXI4, AXI3, or AXI4-Lite). In instances where the interface

characteristics of any connected master or slave device differ from those of the

crossbar switch within the interconnect, the necessary conversions are automati-

cally performed by inferring and connecting the appropriate infrastructure cores

within the interconnect. A detailed explanation of the AXI Interconnect is avail-

able in [52].

3.2.2 Hardware Accelerator HLS IP for ANN-based IAP Cal-

culation

In this subsection, FPGA hardware blocks are introduced for reconfigurable

high performance computation. Generally, high performance computation con-

tains multiple loops. So, in conventional processors, all loops run sequentially.

However, FPGA can take up several independent serial loops and parallelize

them [53]. So, when implemented on FPGA, similar tasks are performed con-

currently, and the algorithm will be converted into multipliers and adders (MAC

blocks) that go along multiple loops.

36

Figure 3.6: Algorithm for ANN-based IAP Calculation.

The algorithm for constructing the ANN-based IAP for gold nanoparticles,

as described in [18], is illustrated in Figure 3.6. The first step involves obtaining

the Cartesian coordinates of the atomic placements, which are then transferred

from the host computer to the FPGA via UART or Ethernet communication.

These coordinates are stored in memory. The algorithm that uses these coor-

dinates to calculate the forces and energy is performed on the FPGA and is

implemented as an IP (Intellectual Property) block within the FPGA design.

37

Figure 3.7: Design Flow for HLS IP Creation.

Vivado-HLS (High-Level Synthesis) software was chosen to accelerate this

high performance computation algorithm. Utilizing the C-based code of the

above-described algorithm in Vivado HLS, it was converted into HDL. As shown

in Figure 3.7, the AXI_return directive made it AXI-compatible after composing

the C language code. After that, a pipeline directive was applied to improve the

latency and throughput of the system. Also, all operations are floating-point op-

erations and contain multidimensional arrays. So, it requires significant space

in memory. Array partitioning directive is used to optimize multidimensional

arrays. After achieving the optimal design, the algorithm was exported to the

RTL design and converted into IP. This module’s physics and mathematical cal-

culations are completely discussed in Bulusu et al. [18].

3.3 Hardware-Software Co-design Implementation

The data flow direction is shown in Figure 3.8. The inputs of the proposed

system consist of the (X, Y, Z) Cartesian coordinates of atoms, while the outputs

include forces and total energy of the cluster. Since MD simulation is an iterative

process, a separate coordinates file is used to initialize the system. Initially,

the Cartesian coordinates are sent from the computer to the FPGA using the

software C-language code that we developed, which we will explain in detail in

the particular UART or Ethernet implementation. Following initialization, the

MD simulation performs calculations and generates forces and total energy for

the atomic cluster.

38

Figure 3.8: Data Flow Diagram of System Implementation for MD Simulation.

On the FPGA side, coordinates are received using UART/Ethernet IP and

stored in DDR memory with the help of the MicroBlaze microcontroller. Sub-

sequently, the HLS IP performs calculations and generates outputs in terms of

atomic forces and total system potential energy, which are stored in DDR mem-

ory. These outputs are then sent back to the host computer. Upon receiving

force and energy values from the FPGA board, the next cycle’s coordinates are

generated by processing the previous cycle’s force values on the host computer

using Verlet algorithm. Implementations were carried out for Au147 and Au309

atomic nanoclusters. The data transfer size varies according to the cluster size.

The complete FPGA implementations of UART and Ethernet communication-

based heterogeneous computing systems are discussed in detail in the following

subsection.

3.3.1 UART Implementation

On FPGA board (Hardware Module)

To design a communication interface, a schematic-based design was developed

in Xilinx Vivado [54]. This design included DDR3 SDRAM on the Kintex-7

39

KC-705 board for data storage during processing. The Microblaze soft-core pro-

cessor acted as the master controller, operating at 300 MHz, while the hardware

accelerator MD simulation IP operated at 100 MHz. Communication between

the FPGA and the host computer was handled by the AXI UartLite IP. Other

Peripheral IPs communicated with the Microblaze processor through AXI In-

terconnect or SmartConnect IP.

Figure 3.9: SDK Flow Diagram for UART Implementation.

An Embedded-C language code was written in Xilinx SDK to control the

hardware [55]. This code handled tasks such as data reception and transmission,

data storage in DDR memory, and initiation and termination of the hardware

accelerator module. The flowchart of the SDK code is shown in Figure 3.9.

40

The structure of the SDK code is nearly identical for UART and Ethernet-based

designs. Changes related to communication interfaces were highlighted with

different colored rectangular dotted boxes.

As shown in the flowchart in Figure 3.9, all IP drivers utilized in the block

diagram were initiated, and a for loop was introduced to define the number of

MD cycles. Using a while loop, XYZ coordinates were awaited from the host

computer. After receiving the coordinates, they were stored in DDR memory as

specified. Then, the hardware accelerator module was started, using a polling

mechanism to check if the IP’s calculation was complete. When the IP’s work

was finished, force and energy values were automatically stored in DDR mem-

ory at the specified location. The SDK coding procedure remained the same for

UART and Ethernet-based systems before the output data was sent back to the

host computer. The output data was sent back using the UartLite standard SDK

function for UART-based designs. The UartLite IP used the standard frame for-

mat for sending and receiving data through the UART interface. The standard

UART frame format is discussed above.

On Host Computer C-code (Software Module)

The Verlet algorithm was used to execute the remaining sequential operations

and compile all necessary MD files in the host computer. On the host computer

side, a C-language code was used for UART-based communication to transmit

XYZ coordinates from the host computer to the FPGA and to receive force and

energy values from the FPGA. This code manages control and data transfer from

the host computer. Algorithm 2 of the host computer software module for UART

is shown in Figure 3.10.

41

Figure 3.10: Algorithm of host computer software Module (C-code) for UART.

In the main function, all the functions are called step by step. The first func-

tion called was to define the UART interface port for connectivity. Following

that, the send data function was invoked, which reads data from the input files

and sends it to the FPGA via the UART interface. Subsequently, the program

waited for the output data received from the FPGA, and once the data was re-

ceived, it was stored in floating-point format.

To establish the UART port connection, the definition of the UART interface

is outlined in the interface definition function. This function defines the UART

baud rate, parity bit, start and stop bits, and the size of data bits. In our design,

42

a baud rate of 921600 is used.

Once the UART connection is established, the UART send data function is

invoked. Initially, this function opens the input coordinates file and reads data

from it. Subsequently, the data is organized in UART frame format, transmitted

via UART, and finally, the file is closed.

Following the successful completion of data transmission, the receive data

function is triggered. Within this function, the output binary file is initially

generated, followed by waiting for the complete data reception. When the data

reception is successfully completed, the store float data function is executed.

The final step involves invoking the store float function to convert the re-

ceived data into 32-bit floating point numbers. During the conversion process,

each 32-bit data is grouped and stored in the file. This data is crucial for gener-

ating new Cartesian coordinates in the subsequent cycle.

3.3.2 Ethernet Implementation

On FPGA board (Hardware Module)

In the UART-based implementation discussion, a similar approach was followed

for the Ethernet-based design. Firstly, a schematic-based design was devel-

oped in Xilinx Vivado [54]. The schematic design mirrors the UART-based de-

sign, the only difference being the communication interface IP. Compared to the

UART-based design, the AXI UartLite IP is replaced by the AXI EthernetLite IP

for Ethernet communication. This IP communicates with the Microblaze master

using the AXI4 protocol and utilizes the Media Independent Interface (MII) for

external communication with the host computer. Like the UART-based hard-

ware design in Xilinx Vivado, Microblaze and its peripherals operate at 300

MHz, while our Hardware Accelerator MD simulation IP operates at 100 MHz.

43

The primary change in the Ethernet-based system is in the control aspects,

where an Embedded-C language code is written in the Xilinx SDK [55]. The

flowchart of the SDK code for Ethernet-based design is shown in Figure 3.11.

As the UART implementation explains, the initial steps remain the same for both

UART and Ethernet communication-based designs. The only difference occurs

when sending output data back to the host computer, as indicated in Figure 3.11

by the green dotted rectangular box. After reading the output force and energy

values, Ethernet frames are created according to the Ethernet standard IEEE

802.3. These Ethernet frames are then transmitted back to the host computer by

leveraging the AXI EthernetLite driver’s high-level functions in the SDK.

Figure 3.11: SDK Flow Diagram for Ethernet Implementation.

44

On Host Computer (Software Module)

The reception and transmission of Ethernet frames in the host computer are

managed by C-language code. The Verlet software code remains identical for

both UART and Ethernet communication, with the only difference being invo-

cating the C language code for transmission and reception. The algorithm of

this Ethernet’s C-language code is shown in Figure 3.12.

Figure 3.12: Host Computer Ethernet C-code for Open input file.

Initially, the input file was opened to read the Cartesian coordinate values.

Within the input files, our input Cartesian coordinates are stored.

After opening the input file, the data from the file was read. The size of

45

the input data was 1768 bytes, comprising 147 floating-point values in each X,

Y, and Z direction, along with one value for the MD cycle count. Given that

the maximum payload size for Standard Ethernet is 1500 bytes, two Ethernet

frames were necessary. Consequently, the data was divided into frames, with

one containing a payload of 1000 bytes and the other 768 bytes.

Once the data reading process is finished, the Ethernet frame header follow-

ing the IEEE 802.3 standard is created. Initially, the length of the payload data

is defined, determining the total frame length. Next, the Ethernet frame type

is determined, followed by fixing the source and destination MAC addresses

according to our requirements. Since the input data is sent from the host com-

puter to the FPGA, the source MAC address is the computer’s address, while

the destination MAC address is the FPGA’s address.

Following the creation of Ethernet frames, each frame is compiled into stan-

dard Ethernet frame format and sent individually. The total length of the first

frame was 1014 bytes (comprising a 14-byte frame header and 1000 bytes of

payload data), while the size of the second frame was 782 bytes (consisting of a

14-byte frame header and 768 bytes of payload data).

After completing the data transmission, an output file was generated, and the

system awaited the incoming data. For data reception, only data from the FPGA

board was desired, so a filter was employed to block frames with other MAC

addresses, allowing only those with matching source and destination MAC ad-

dresses to be received. In contrast to the input process, the source and destina-

tion MAC addresses were swapped in the output.

Similar to the input data, the output data was received in two frames. To

await the arrival of both frames, a while loop was utilized. Upon receiving a

frame, the payload data was extracted by discarding the initial 14 bytes of the

frame header. Subsequently, the payload data was stored in the output file.

46

3.3.3 Data Transfer Comparision between Au147 and Au309

Table 3.1: Data Transfer Comparision between Au147 and Au309

Description (w.r.t per

cycle)

Au147 Au309

No. of Bytes transfer

(PC -> FPGA)

1768 3712

No. of Bytes transfer

(FPGA -> PC)

1768 3712

No. of Ethernet Frames

(PC -> FPGA)

2 3

No. of Ethernet Frames

(FPGA -> PC)

2 3

47

Chapter 4
Results and
Discussion

For performing the MD simulation, two different examples are explored.

They are Au147 and Au309 nanoparticles. The FPGA used was Xilinx Kintex-

7 KC-705 evaluation FPGA board. In addition to the accelerator IP developed,

a Microblaze-based microcontroller system was also implemented through the

block design of the Xilinx Vivado software. The accelerator outputs energy and

force values which need to be transferred to the computer. A separate Verlet

algorithm will take the force and energy values and calculate the next set of co-

ordinates at the computer side. The accelerator IP on the FPGA works at 100

MHz, while the Microblaze processor and its peripherals operate at 300 MHz.

For communicating between the FPGA and the computer, AXI UARTLite and

AXI EthernetLite IPs were implemented. Microblaze processor controls the

data transfer between the FPGA memory (RAM) and the different communica-

tion IPs, and this program was written in embedded C.

4.1 Results

4.1.1 Potential Energy Comparision

The first step in this exploration is to identify the accuracy of the results ob-

tained through the proposed communication strategies. The calculated energy

for every MD cycle from the FPGA-based heterogeneous computing system

should match with the conventional approach (using a server). To check the ac-

curacy, both UART and Ethernet-based communication were implemented, and

the MD simulations were run on the board for 500 cycles. The results of energy

and forces obtained at every cycle were compared with a conventional approach,

and the results are plotted in Figure 4.1 and 4.2. There is no difference between

the results obtained from all the approaches, and this proves that the proposed

approach yields accurate results for several cycles as well. It validates that the

total potential energy obtained using UART and Ethernet designs is correct and

49

identical to the PCIe-based design and HPC server, as explained in Bulusu et al.

[18].

Figure 4.1: Potential Energy of Au147 vs. Number of MD Cycles.

Figure 4.2: Potential Energy of Au309 vs. Number of MD Cycles.

50

4.1.2 Computation Time Comparision

Now that the accuracy of the system is verified, the system was explored to

determine the computation time for the two different communication protocols

implemented onto the FPGA board. A comparison of the computation time of

the proposed two communication approaches with the conventional PCIe and

HPC server is shown in Table 4.1 and Table 4.2 for Au147 and Au309 nanopar-

ticles respectively. UART operates at a baud rate of 921600 bits/sec, while

Ethernet works at a standard speed of 100 Mb/sec. PCIe speed is noted as 5

GT/sec, and in the HPC server, seven CPUs run in parallel at a frequency of

2600 MHz. Interestingly, UART and Ethernet-based communication protocols

can withstand 50,000 iterations of MD computations, and the time it takes for

50,000 iterations comes to 17.54 hours & 18.7 hours for UART & Ethernet com-

munication, respectively for Au147 and 64.36 hours & 65.56 hours respectively

for Au309. This shows the robustness of the system and the potential to provide

a lab-on-a-chip solution for such IAP computations.

Table 4.1: Computation Time Comparision of UART, Ethernet & PCIe Com-

munication based Design for Au147

No. of

MD

Cycles

Computation Time

UART Ethernet PCIe HPC Server

921600 bits/sec 100 MB/sec 5 GT/sec —

1 1.26 sec 1.35 sec 1.39 sec 2.09 sec

10 13.89 sec 14.71 sec 15.18 sec 22.94 sec

100 2.12 min 2.26 min 2.34 min 3.51 min

500 10.54 min 11.20 min 11.58 min 17.43 min

5000 1.75 hr 1.86 hr 1.98 hr 2.90 hr

50000 17.54 hr 18.70 hr 19.84 hr 29.00 hr

51

Table 4.2: Computation Time Comparision of UART, Ethernet & PCIe Com-

munication based Design for Au309

No. of

MD

Cycles

Computation Time

UART Ethernet PCIe HPC Server

921600 bits/sec 100 MB/sec 5 GT/sec —

1 4.74 sec 4.76 sec 4.83 sec 8.38 sec

10 52.19 sec 52.21 sec 53.57 sec 92.00 sec

100 7.99 min 8.01 min 8.12 min 14.01 min

500 39.62 min 39.72 min 40.25 min 69.94 min

5000 6.55 hr 6.56 hr 6.70 hr 11.64 hr

50000 64.36 hr 65.56 hr 66.97 hr 116.34 hr

Initially, XYZ values are sent to the FPGA, and the return data will be the

computed force and energy values. For the Au147 atoms, 442 32-bit numbers

(147 force values in each X, Y, and Z direction + 1 total energy value) were

transmitted from the memory to the computer. The return communication was

441 32-bit numbers back to the FPGA. In such cases, the total data transfer

would be 3.5 KB per cycle. Even though PCIe communication is faster, the

overheads (e.g. frame construction) and loading of the drivers take more time.

It is interesting to note that UART and Ethernet communication can achieve

better computational efficiency compared to PCIe communication, despite PCIe

being faster.

4.1.3 FPGA Resources Utilization

The next step is to determine the resources used by the FPGA board in both

communication approaches. This has a direct correlation to the power of the

52

system. The results, as tabulated in Table 4.3, reveal that the UART and Ethernet

designs, leveraging a Microblaze soft-core processor, demonstrate lower overall

resource utilization than the PCIe-based design.

Table 4.3: UART, Ethernet & PCIe Communication based FPGA Implementa-

tion Resources Utilization for Au147

FPGA

Resources (%)
UART Ethernet PCIe

LUT 55.50 55.80 65.85

LUT RAM 19.34 19.36 23.58

Flip-Flop 26.34 26.87 32.44

BRAM 50.79 51.69 42.02

DSP Slices 49.40 49.40 49.52

4.1.4 On-Chip Power Consumption

For a Lab-on-a-chip application, power consumption plays a very important

role. Table 4.4 shows the power consumed by the different communication pro-

tocols. It is clear that UART consumes the least power, followed by the other

protocols. This again can be attributed to the simplicity of the communication

protocols.

Table 4.4: On-Chip Power Comparision of UART, Ethernet & PCIe Communi-

cation based Design for Au147 (Au309)

Communication

Protocols
UART Ethernet PCIe

Power (W) 5.9 (6.1) 6.0 (6.3) 8.9 (9.2)

53

4.2 Discussion

The communication speeds of UART and Ethernet 100× 106 bps are three or-

ders, respectively, and the same three orders of difference are observed between

ethernet and PCIe 31×109 bps. Despite such high communication speeds, the

computational time obtained from our experimental systems is quite contradic-

tory and worth discussing and reasoning them.

While the packet size of UART is 10 bits of communication (8 bits of ac-

tual data), ethernet and PCIe communication communicates with several initial

frames and library initialization. The reason behind such a contradictory result

obtained could be ascertained by estimating the overheads of this communica-

tion protocol. Needless to say, UART has minimal overhead and can be consid-

ered negligible compared to its own communication speed.

Ideally, one complete cycle of the MD calculation with any communication

protocol is a combination of computation and communication time. This is

shown in Equation 4.1 below.

T(1 cycle) = T(comm)+T(comp)+T(overhead) (4.1)

Where T(1 cycle) is the total time taken for one complete cycle, T(comm) is

the communication time and T(comp) is the time taken for computations in both

FPGA And PC. T(overhead) is the overhead time required for the initialization

of several libraries and frames, especially in the case of Ethernet and PCIe.

T(overhead) for UART is negligible and therefore we will ignore its contribution

in calculating T(1 cycle).

4.2.1 Au147 Time Calculations

In the case of UART Communication for 1 cycle,

54

TU
(1 cycle) = 1.26 seconds (Table 4.1) (4.2)

TU
(comm) =

No. of bits transferred
Speed/baudrate

=
35360

921600
= 0.038 seconds (4.3)

From equation (4.1),

T(comp) = 1.22 seconds (4.4)

T(comp) is identical for all the communication protocols. TU
(1 cycle) and

TU
(comm)8 - are the total time for 1 cycle and the communication time for UART

communication protocol.

In the case of Ethernet Communication for 1 cycle,

T E
(1 cycle) = 1.35 seconds (4.5)

T E
(comm) =

No. of bits transferred
Speed

=
28864

100×106 = 0.288×10−3 seconds

(4.6)

From equation 4.1, we know that

T E
(1 cycle) = T E

(comm)+T(comp)+T E
(overhead) (4.7)

T E
(overhead) = 0.128 seconds (4.8)

T E
(overhead) / f rame =

T E
(overhead)

No. o f Ethernet f rames
=

0.128
4

= 0.032seconds

(4.9)

T E
(1 cycle), T E

(comm) and T E
(overhead) are the total time for 1 cycle, commu-

nication time and the overhead time in case of Ethernet communication protocol.

55

From the above analogy, it is very clear that to find the tipping point where

Ethernet communication will have a better hand compared to UART, the ac-

countability of overhead of 0.032 seconds is to be taken into account. With these

overheads in mind, one can propose which communication protocol should be

used and can be predicted with simple calculations. The tipping point occurs

when the time taken in 1 cycle using UART is the same as the time taken in 1

cycle using Ethernet in transferring some data. This can be shown as,

TU
(1 cycle) = T E

(1 cycle) (4.10)

TU
(comm) = T E

(comm) +T E
(overhead) (4.11)

In equation 4.11, we omitted T(comp) because it is the same both for UART

and Ethernet. Using equation 4.11, we can predict the tipping point by calcu-

lating TU
(comm) and T E

(comm) for different nanoparticles (number of bits trans-

ferred varies with the nanoparticles size).

To explain it experimentally, Table 4.5 shows T(comm) + T(overhead) time for

different sizes of nanoparticles. It is evident from Table 4.7 that, for nanopar-

ticles of approximately 430 atoms, the T(comm) + T(overhead) times for UART

and Ethernet are almost the same. However, when the size exceeds 430 atoms,

TU
(comm) time surpasses T E

(comm) + T E
(overhead) time resulting in better com-

munication efficiency for Ethernet. The same analogy can be extended to PCIe

communication as well. PCIe operates at a speed of 5 GTps (equivalent to 31

Gbps for a Gen2 8-lane PCIe bus). When T E
(comm) + T E

(overhead) reaches to

0.2 seconds, it equals to the T P
(comm) + T P

(overhead) time of PCIe communica-

tion. Estimated calculations suggest that this occurs when 3.5 million bits are

transferred per cycle, which approximately corresponds to a nanoparticle size of

18,000 atoms. Practically, this size does not fall under the category of nanopar-

ticles. Therefore, for MD calculations of nanoparticles or nanoalloys, Ethernet

56

communication offers better efficiency.

Table 4.5: Tipping Point Calculation for Different Protocols
Size of

Nanoparti-

cles

No. of bits

per cycle

Type of

Communi-

cation

T(comm)+T(overhead) in seconds

1 Cycle 10 Cycles 100 Cycles

55 atoms 10624

UART 0.024 0.235 2.329

Ethernet 0.117 1.179 12.082

PCIe 0.174 1.79 17.775

147 atoms 28288

UART 0.054 0.515 5.138

Ethernet 0.133 1.335 12.096

PCIe 0.178 1.771 18.160

309 atoms 59392

UART 0.103 1.017 10.103

Ethernet 0.130 1.280 12.120

PCIe 0.183 1.856 18.670

430 atoms 82624

UART 0.133 1.346 13.512

Ethernet 0.133 1.351 13.426

PCIe 0.188 1.863 18.810

561 atoms 107776

UART 0.180 1.811 18.085

Ethernet 0.136 1.374 13.965

PCIe 0.197 1.838 18.209

923 atoms 177280

UART 0.293 2.933 29.409

Ethernet 0.137 1.375 14.023

PCIe 0.200 1.986 19.110

57

4.3 Conclusion

The ANN-based MD Simulation for Au147 and Au309 were implemented on

the Xilinx Kintex-7 KC705 evaluation FPGA board. A hardware accelerator

module with new communication strategies is proposed and implemented for

50,000 MD cycles. The computation time for 50,000 MD cycles is 17.54 hours

and 18.7 hours for UART and Ethernet communication, respectively for Au147

and 64.36 hours & 65.56 hours respectively for Au309. Compared to the con-

ventional HPC server, the proposed methodology has improved the computation

time by 1.65 (1.81) times in UART and 1.55 (1.77) times in Ethernet communi-

cation for Au147 (Au309) nanoparticles. The actual MD simulation requires more

than 1 million cycles, so this computation time difference becomes more signif-

icant. The proposed systems significantly reduce resource utilization, resulting

in decreased on-chip power consumption. In the implemented system, on-chip

power consumption measured from Xilinx Vivado was 5.9 (6.1) Watts for UART

and 6.0 (6.5) Watts for Ethernet, respectively, for Au147 (Au309). Compared to

conventional PCIe, on-chip power is reduced by 33% and 32% in UART and

Ethernet, respectively. From this, we concluded that where the nanoparticle size

is larger than 430 atoms, Ethernet communication is preferable in comparison

to UART and PCIe, and if the nanoparticle size is less than 430 atoms, then

UART is more efficient. Both UART and Ethernet communication are robust,

hot-pluggable, and user-friendly. This can lead to low-cost HPC for students and

researchers who want to explore nanoparticles of experimental relevance. This

application paves the way for the development of a Lab-on-a-Chip platform for

the computation of IAP in the future.

58

4.4 Future Scope

UART and Ethernet communication-based systems were implemented for Au147

and Au309 nanoclusters, which are considered optimal sizes. The same UART

and Ethernet communication-based MD simulation will be extended to larger

clusters such as Au561, Au571, and Au923.

Zynq platform FPGAs are advanced, sophisticated, and high-performance

Xilinx FPGAs. Conventional FPGAs like Xilinx’s Kintex-7, Artix-7, and Spar-

tan series use softcore IPs like the Microblaze processor, AXI UartLite, and

AXI EthernetLite. However, in the Zynq platform, these IPs are embedded

on the FPGA chip as hardcore IPs, providing significantly higher performance.

Therefore, the next goal is to implement MD simulation on Zynq-based FPGAs

to further improve computation time. Additionally, the Zynq platform’s MP-

SoC FPGAs have multiple cores and processors available on the FPGA chip.

To reduce computation time, one possibility is to eliminate the role of the host

computer and implement the complete system directly on multiple processors,

thus removing the communication overhead between the host computer and the

FPGA. These are the future extensions of this work.

59

Bibliography

[1] A. Boutros and V. Betz, “Fpga architecture: Principles and progression,”

IEEE Circuits and Systems Magazine, vol. 21, no. 2, pp. 4–29, 2021.

[2] M. Cummings and S. Haruyama, “Fpga in the software radio,” IEEE com-

munications Magazine, vol. 37, no. 2, pp. 108–112, 1999.

[3] J. Rettkowski, A. Boutros, and D. Göhringer, “Hw/sw co-design of the

hog algorithm on a xilinx zynq soc,” Journal of Parallel and Distributed

Computing, vol. 109, pp. 50–62, 2017.

[4] A. Bitar, M. S. Abdelfattah, and V. Betz, “Bringing programmability to

the data plane: Packet processing with a noc-enhanced fpga,” in 2015 In-

ternational Conference on Field Programmable Technology (FPT), IEEE,

2015, pp. 24–31.

[5] R. W. Hartenstein and H. Grünbacher, Field-Programmable Logic and

Applications. The Roadmap to Reconfigurable Computing: 10th Interna-

tional Conference, FPL 2000 Villach, Austria, August 27-30, 2000 Pro-

ceedings. Springer Science & Business Media, 2000.

[6] A. Boutros, B. Grady, M. Abbas, and P. Chow, “Build fast, trade fast:

Fpga-based high-frequency trading using high-level synthesis,” in 2017

International Conference on ReConFigurable Computing and FPGAs (Re-

ConFig), IEEE, 2017, pp. 1–6.

60

[7] T. Sterling, M. Brodowicz, and M. Anderson, High performance comput-

ing: modern systems and practices. Morgan Kaufmann, 2017.

[8] E. Strohmaier, J. J. Dongarra, H. W. Meuer, and H. D. Simon, “Recent

trends in the marketplace of high performance computing,” Parallel Com-

puting, vol. 31, no. 3-4, pp. 261–273, 2005.

[9] J. J. Dongarra, “An overview of high performance computing and chal-

lenges for the future.,” in VECPAR, 2008, p. 1.

[10] Y. Li, X. Zhao, and T. Cheng, “Heterogeneous computing platform based

on cpu+ fpga and working modes,” in 2016 12th International conference

on computational intelligence and security (CIS), IEEE, 2016, pp. 669–

672.

[11] M. Vestias and H. Neto, “Trends of cpu, gpu and fpga for high-performance

computing,” in 2014 24th International Conference on Field Programmable

Logic and Applications (FPL), IEEE, 2014, pp. 1–6.

[12] R. K. Raj, C. J. Romanowski, J. Impagliazzo, et al., “High performance

computing education: Current challenges and future directions,” in Pro-

ceedings of the Working Group Reports on Innovation and Technology in

Computer Science Education, 2020, pp. 51–74.

[13] M. Kucharczyk and G. Dziwoki, “Simple communication with fpga de-

vice over ethernet interface,” in Computer Networks: 20th International

Conference, CN 2013, Lwówek Śląski, Poland, June 17-21, 2013. Pro-

ceedings 20, Springer, 2013, pp. 290–299.

[14] L. Shi, H. Chen, J. Sun, and K. Li, “Vcuda: Gpu-accelerated high-performance

computing in virtual machines,” IEEE Transactions on computers, vol. 61,

no. 6, pp. 804–816, 2011.

61

[15] J. Fang, K. Zhou, M. Zhang, and W. Xiang, “Resource scheduling strat-

egy for performance optimization based on heterogeneous cpu-gpu plat-

form,” Computers, Materials & Continua, vol. 73, pp. 1621–1635, 2022.

[16] M. C. Herbordt, T. VanCourt, Y. Gu, et al., “Achieving high performance

with fpga-based computing,” Computer, vol. 40, no. 3, pp. 50–57, 2007.

[17] S. Kestur, J. D. Davis, and O. Williams, “Blas comparison on fpga, cpu

and gpu,” in 2010 IEEE computer society annual symposium on VLSI,

IEEE, 2010, pp. 288–293.

[18] S. S. Bulusu and S. Vasudevan, “Fpga accelerator for machine learning

interatomic potential-based molecular dynamics of gold nanoparticles,”

IEEE Access, vol. 10, pp. 40 338–40 347, 2022.

[19] S. Jindal, S. Chiriki, and S. S. Bulusu, “Spherical harmonics based de-

scriptor for neural network potentials: Structure and dynamics of au147

nanocluster,” The Journal of chemical physics, vol. 146, no. 20, 2017.

[20] S. Páll, A. Zhmurov, P. Bauer, et al., “Heterogeneous parallelization and

acceleration of molecular dynamics simulations in gromacs,” The Journal

of Chemical Physics, vol. 153, no. 13, 2020.

[21] T. Fountain, A. McCarthy, F. Peng, et al., “Pci express: An overview of

pci express, cabled pci express and pxi express,” in 10th ICALEPCS Int.

Conf. on Accelerator & Large Expt. Physics Control Systems, 2005.

[22] A. Boutros and V. Betz, “Fpga architecture: Principles and progression,”

IEEE Circuits and Systems Magazine, vol. 21, no. 2, pp. 4–29, 2021. DOI:

10.1109/MCAS.2021.3071607.

[23] P. Babu and E. Parthasarathy, “Reconfigurable fpga architectures: A sur-

vey and applications,” Journal of The Institution of Engineers (India):

Series B, vol. 102, pp. 143–156, 2021.

62

https://doi.org/10.1109/MCAS.2021.3071607

[24] 7 series FPGAs data sheet: Overview (DS180), Xilinx, 2020. [Online].

Available: https://docs.amd.com/v/u/en-US/ds180_7Series_

Overview.

[25] 7 series FPGAs configurable logic block user guide (UG474), Xilinx,

2016. [Online]. Available: https://docs.amd.com/v/u/en- US/

ug474_7Series_CLB.

[26] K. Tatas, K. Siozios, N. Vasiliadis, et al., “Fpga architecture design and

toolset for logic implementation,” in Integrated Circuit and System De-

sign. Power and Timing Modeling, Optimization and Simulation: 13th

International Workshop, PATMOS 2003, Turin, Italy, September 10-12,

2003. Proceedings 13, Springer, 2003, pp. 607–616.

[27] 7 series DSP48e1 slice user guide (UG479), Xilinx, 2018. [Online]. Avail-

able: https : / / docs . amd . com / v / u / en - US / ug479 _ 7Series _

DSP48E1.

[28] 7 series FPGAs memory resources user guide (UG473), Xilinx, 2019.

[Online]. Available: https://docs.amd.com/v/u/en-US/ug473_

7Series_Memory_Resources.

[29] 7 series fpgas clocking resources user guide (UG472), Xilinx, 2018. [On-

line]. Available: https : / / docs . amd . com / v / u / en - US / ug472 _

7Series_Clocking.

[30] Vivado design suite user guide : Design flows overview (UG892), Xil-

inx, 2022. [Online]. Available: https://www.xilinx.com/support/

documents/sw_manuals/xilinx2022_1/ug892-vivado-design-

flows-overview.pdf.

[31] Vivado design suite user guide: System-level design entry (UG895), Xil-

inx, 2016. [Online]. Available: https://docs.amd.com/r/2021.1-

English/ug895-vivado-system-level-design-entry/Revision-

History.

63

https://docs.amd.com/v/u/en-US/ds180_7Series_Overview
https://docs.amd.com/v/u/en-US/ds180_7Series_Overview
https://docs.amd.com/v/u/en-US/ug474_7Series_CLB
https://docs.amd.com/v/u/en-US/ug474_7Series_CLB
https://docs.amd.com/v/u/en-US/ug479_7Series_DSP48E1
https://docs.amd.com/v/u/en-US/ug479_7Series_DSP48E1
https://docs.amd.com/v/u/en-US/ug473_7Series_Memory_Resources
https://docs.amd.com/v/u/en-US/ug473_7Series_Memory_Resources
https://docs.amd.com/v/u/en-US/ug472_7Series_Clocking
https://docs.amd.com/v/u/en-US/ug472_7Series_Clocking
https://www.xilinx.com/support/documents/sw_manuals/xilinx2022_1/ug892-vivado-design-flows-overview.pdf
https://www.xilinx.com/support/documents/sw_manuals/xilinx2022_1/ug892-vivado-design-flows-overview.pdf
https://www.xilinx.com/support/documents/sw_manuals/xilinx2022_1/ug892-vivado-design-flows-overview.pdf
https://docs.amd.com/r/2021.1-English/ug895-vivado-system-level-design-entry/Revision-History
https://docs.amd.com/r/2021.1-English/ug895-vivado-system-level-design-entry/Revision-History
https://docs.amd.com/r/2021.1-English/ug895-vivado-system-level-design-entry/Revision-History

[32] Vivado design suite user guide: Designing with IP (UG896), Xilinx, 2021.

[Online]. Available: https://docs.amd.com/r/2021.2-English/

ug896-vivado-ip/Revision-History.

[33] Vivado design suite tutorial: High-level synthesis (UG871), Xilinx, 2020.

[Online]. Available: https://docs.amd.com/v/u/en-US/ug871-

vivado-high-level-synthesis-tutorial.

[34] Vivado design suite user guide: Logic simulation (UG900), Xilinx, 2021.

[Online]. Available: https://docs.amd.com/r/2021.2-English/

ug900-vivado-logic-simulation/Revision-History.

[35] Vivado design suite user guide: Synthesis (UG901), Xilinx, 2021. [On-

line]. Available: https://docs.amd.com/v/u/2021.2-English/

ug901-vivado-synthesis.

[36] Vivado design suite user guide: Implementation (UG904), Xilinx, 2021.

[Online]. Available: https://docs.amd.com/r/2021.2-English/

ug904-vivado-implementation/Revision-History.

[37] Vivado design suite user guide: Programming and debugging (UG908),

Xilinx, 2021. [Online]. Available: https://docs.amd.com/r/2021.

2-English/ug908-vivado-programming-debugging/Revision-

History.

[38] Kc705 evaluation board for the kintex-7 fpga user guide (UG810), Xilinx,

2019. [Online]. Available: https://docs.amd.com/v/u/en- US/

ug810_KC705_Eval_Bd.

[39] E. Peña and M. G. Legaspi, “Uart: A hardware communication protocol

understanding universal asynchronous receiver/transmitter,” Visit Analog,

vol. 54, no. 4, pp. 1–5, 2020.

64

https://docs.amd.com/r/2021.2-English/ug896-vivado-ip/Revision-History
https://docs.amd.com/r/2021.2-English/ug896-vivado-ip/Revision-History
https://docs.amd.com/v/u/en-US/ug871-vivado-high-level-synthesis-tutorial
https://docs.amd.com/v/u/en-US/ug871-vivado-high-level-synthesis-tutorial
https://docs.amd.com/r/2021.2-English/ug900-vivado-logic-simulation/Revision-History
https://docs.amd.com/r/2021.2-English/ug900-vivado-logic-simulation/Revision-History
https://docs.amd.com/v/u/2021.2-English/ug901-vivado-synthesis
https://docs.amd.com/v/u/2021.2-English/ug901-vivado-synthesis
https://docs.amd.com/r/2021.2-English/ug904-vivado-implementation/Revision-History
https://docs.amd.com/r/2021.2-English/ug904-vivado-implementation/Revision-History
https://docs.amd.com/r/2021.2-English/ug908-vivado-programming-debugging/Revision-History
https://docs.amd.com/r/2021.2-English/ug908-vivado-programming-debugging/Revision-History
https://docs.amd.com/r/2021.2-English/ug908-vivado-programming-debugging/Revision-History
https://docs.amd.com/v/u/en-US/ug810_KC705_Eval_Bd
https://docs.amd.com/v/u/en-US/ug810_KC705_Eval_Bd

[40] A. K. Gupta, A. Raman, N. Kumar, and R. Ranjan, “Design and imple-

mentation of high-speed universal asynchronous receiver and transmitter

(uart),” in 2020 7th International Conference on Signal Processing and

Integrated Networks (SPIN), IEEE, 2020, pp. 295–300.

[41] L. Cao, J. Chen, and J. Li, “Working principle and application analysis

of uart,” in 2023 IEEE 2nd International Conference on Electrical Engi-

neering, Big Data and Algorithms (EEBDA), IEEE, 2023, pp. 255–259.

[42] S. Kumar, S. Dalal, and V. Dixit, “The osi model: Overview on the seven

layers of computer networks,” International Journal of Computer Science

and Information Technology Research, vol. 2, no. 3, pp. 461–466, 2014.

[43] M. N. Sadiku and C. M. Akujuobi, “14.1 osi reference model,” Comput-

ers, Software Engineering, and Digital Devices, 2018.

[44] R. Hollenbeck, “The ieee 802.3 standard (ethernet): An overview of the

technology,” 2001.

[45] J. Sommer, S. Gunreben, F. Feller, et al., “Ethernet–a survey on its fields

of application,” IEEE Communications Surveys & Tutorials, vol. 12, no. 2,

pp. 263–284, 2010.

[46] J.-M. Muller, N. Brisebarre, F. De Dinechin, et al., Handbook of floating-

point arithmetic. Springer, 2018.

[47] J. G. Tong, I. D. Anderson, and M. A. Khalid, “Soft-core processors for

embedded systems,” in 2006 International Conference on Microelectron-

ics, IEEE, 2006, pp. 170–173.

[48] Microblaze processor reference guide (UG984), Xilinx, 2021. [Online].

Available: https : / / www . xilinx . com / content / dam / xilinx /

support/documents/sw_manuals/xilinx2021_2/ug984-vivado-

microblaze-ref.pdf.

65

https://www.xilinx.com/content/dam/xilinx/support/documents/sw_manuals/xilinx2021_2/ug984-vivado-microblaze-ref.pdf
https://www.xilinx.com/content/dam/xilinx/support/documents/sw_manuals/xilinx2021_2/ug984-vivado-microblaze-ref.pdf
https://www.xilinx.com/content/dam/xilinx/support/documents/sw_manuals/xilinx2021_2/ug984-vivado-microblaze-ref.pdf

[49] Axi uart lite v2.0 product guide (PG142), Xilinx, 2017. [Online]. Avail-

able: https://docs.amd.com/v/u/en-US/pg142-axi-uartlite.

[50] Axi ethernet lite mac logicore ip product guide (PG135), Xilinx, 2021.

[Online]. Available: https://docs.amd.com/r/en-US/pg135-axi-

ethernetlite/AXI- Ethernet- Lite- MAC- v3.0- LogiCORE- IP-

Product-Guide.

[51] 7 series fpgas memory interface solutions user guide (UG586), Xilinx,

2012. [Online]. Available: https : / / docs . amd . com / v / u / 1 . 4 -

English/ug586_7Series_MIS.

[52] Axi interconnect logicore ip product guide (PG059), Xilinx, 2022. [On-

line]. Available: https://docs.amd.com/r/en-US/pg059-axi-

interconnect/AXI-Interconnect-v2.1-LogiCORE-IP-Product-

Guide.

[53] M. B. Gokhale and L. Shannon, “Fpga computing.,” IEEE Micro, vol. 41,

no. 4, pp. 6–7, 2021.

[54] Vivado design suite user guide: Embedded processor hardware design

(UG898), Xilinx, 2021. [Online]. Available: https://docs.amd.com/

v/u/2021.1-English/ug898-vivado-embedded-design.

[55] Ultrafast embedded design methodology guide (UG1046), Xilinx, 2018.

[Online]. Available: https://docs.amd.com/v/u/en-US/ug1046-

ultrafast-design-methodology-guide.

66

https://docs.amd.com/v/u/en-US/pg142-axi-uartlite
https://docs.amd.com/r/en-US/pg135-axi-ethernetlite/AXI-Ethernet-Lite-MAC-v3.0-LogiCORE-IP-Product-Guide
https://docs.amd.com/r/en-US/pg135-axi-ethernetlite/AXI-Ethernet-Lite-MAC-v3.0-LogiCORE-IP-Product-Guide
https://docs.amd.com/r/en-US/pg135-axi-ethernetlite/AXI-Ethernet-Lite-MAC-v3.0-LogiCORE-IP-Product-Guide
https://docs.amd.com/v/u/1.4-English/ug586_7Series_MIS
https://docs.amd.com/v/u/1.4-English/ug586_7Series_MIS
https://docs.amd.com/r/en-US/pg059-axi-interconnect/AXI-Interconnect-v2.1-LogiCORE-IP-Product-Guide
https://docs.amd.com/r/en-US/pg059-axi-interconnect/AXI-Interconnect-v2.1-LogiCORE-IP-Product-Guide
https://docs.amd.com/r/en-US/pg059-axi-interconnect/AXI-Interconnect-v2.1-LogiCORE-IP-Product-Guide
https://docs.amd.com/v/u/2021.1-English/ug898-vivado-embedded-design
https://docs.amd.com/v/u/2021.1-English/ug898-vivado-embedded-design
https://docs.amd.com/v/u/en-US/ug1046-ultrafast-design-methodology-guide
https://docs.amd.com/v/u/en-US/ug1046-ultrafast-design-methodology-guide

	 Abstract
	 PUBLICATIONS
	 LIST OF FIGURES
	 LIST OF TABLES
	 LIST OF ABBREVIATIONS
	Chapter 1: Introduction
	Field Programmable Gate Array (FPGA)
	High Performance Computing (HPC)
	Heterogeneous Computing

	FPGA Accelerator: Using PCIe Communication Protocol
	PCIe Communication Protocol
	Limitations of PCIe Communication Protocol

	Objectives
	Organization of the Thesis
	Chapter 2: Literature Survey
	FPGA Architecture and Design Flow
	FPGA Architecture
	FPGA Hardware Design Flow
	FPGA Software Development Flow (Xilinx SDK)
	Advantages and Disadvantages of FPGA
	Kintex-7 KC705 FPGA Board

	Communication Protocols
	UART: Universal Asynchronous Receiver-Transmitter
	Ethernet

	Floating Point Numbers Conversion in IEEE-754 Format
	Single Precision (32-bit) Format
	Double Precision (64-bit) Format

	Chapter 3: Hardware-Softyware Co-design Development: Using UART or Ethernet
	Introduction
	System Architecture Overview
	Xilinx FPGA IPs
	Hardware Accelerator HLS IP for ANN-based IAP Calculation

	Hardware-Software Co-design Implementation
	UART Implementation
	Ethernet Implementation
	Data Transfer Comparision between Au147 and Au309

	Chapter 4: Results and Discussion
	Results
	Potential Energy Comparision
	Computation Time Comparision
	FPGA Resources Utilization
	On-Chip Power Consumption

	Discussion
	Au147 Time Calculations

	Conclusion
	Future Scope

	Bibliography

