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SYNOPSIS 

Diketopyrrolopyrrole (DPP) pigment was first developed and 

synthesized by Farnum et al. featuring two phenyl units. This 8-π 

electron fused ring known as pentalene, displayed remarkable 

insolubility in typical organic solvents and bright red colouration. Later, 

Iqbal and co-workers improved the synthetic process using succinic 

method. Subsequently, a wide range of DPP derivatives, displaying 

colours from red to blue, have been designed which include DPP 

pigments flanked by phenyl, pyridyl, thienyl, furayl, and seleneyl 

groups. These substituents can influence the planarity of the DPP 

pigment, its energy levels, and the distance between π-π stacked 

molecules. DPP pigments contain two amine and carbonyl units in their 

structure (Figure 1), capable to form strong hydrogen bonds, which leads 

to less solubility in common organic solvents. However, alkylation can 

disrupt these hydrogen bonds, significantly and improves the solubility. 

To synthesize DPP-based small organic molecules (SOMs)/polymers, 

reactions such as Stille, Suzuki coupling, electrochemical 

polymerization, and Buchwald coupling were used. Strong electron 

deficiency, outstanding planarity of the DPP unit, a broad π-conjugation 

system, and exceptional aggregation qualities are the favourable features 

of DPP-based small organic molecules (SOMs). Diketopyrrolopyrrole 

(DPP) derivatives have good thermal stability and broad optical 

absorbance, which makes them ideal for a wide range of applications. In 

solar cells, DPP derivatives are used for their improved photovoltaic 

properties, for enhancing the efficiency and performance of these 

devices. DPP based derivatives contribute to aggregation-induced 

emission in the field of organic electronics, thus increasing the 

efficiency of light emission and are also crucial in photodynamic therapy 

to produce reactive oxygen species in response to light stimulation for 

cancer treatment. These compounds are utilized in bioimaging due to 

their fluorescent characteristics, which enable accurate visualization of 

biological processes and tissues. The DPP based derivatives are used for 

the development of laser dyes as well as used for the fabrication of 
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photoconductive materials for improving the efficiency of various 

electronics and optoelectronic devices. They are also used in making 

fluorescent sensors due to their high sensitivity and specificity. The 

extensive utility of DPP derivatives across these diverse applications 

highlights their significance in both industrial and therapeutic contexts. 

 

 

Figure 1. The molecular structure of Diketopyrrolopyrrole (DPP). 

 

Different chemically active functional groups are present in the structure 

of DPP such as the double bonds in the DPP, the aromatic rings at 

positions 3 and 6, and the oxygen and nitrogen atoms in the amide 

moiety. Nucleophilic attacks can occur at the carbonyl carbon atom and 

the α, β-unsaturated system within the bicyclic DPP unit, particularly at 

the 3 and 6 positions. Donor–Acceptor architectures featuring strong 

absorption in the visible to near-infrared (NIR) range and a reduced 

HOMO–LUMO gap hold considerable promise for organic photovoltaic 

applications. Our research has explored various donor (e.g., carbazole, 

triphenylamine, ferrocene) and acceptor (TCBD) functionalized DPP-

based D–A systems. The comprehensive investigation of their 

photophysical, electrochemical, and computational characteristics 

indicates their potential applications in the field of organic electronics.  
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The main objectives of this study are:  

➢ To investigate the impact of substituting various donor and 

acceptor units on the diketopyrrolopyrrole core and to 

explore the donor-acceptor interactions in molecular 

system by tuning the HOMO-LUMO gap. 

➢ To improve the photonic properties of 

diketopyrrolopyrrole chromophores by modifying the 

donor strength at the terminal positions and incorporating 

cyano-based acceptors between the diketopyrrolopyrrole 

core and its substituents. 

➢ To study the effect of extended conjugation on the 

photophysical and electrochemical properties of DPP 

based chromophores. 

➢ To study the electronic structure, electron density distribution 

across the HOMO and LUMO energy levels, and the 

photophysical properties of donor-acceptor functionalized 

diketopyrrolopyrrole through density functional theory (DFT) 

and time-dependent density functional theory (TDDFT) 

calculations. 

 

Figure 2. General representation of donor-acceptor functionalized 

diketopyrrolopyrroles in this work. 
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Chapter 1: Introduction  

This Chapter elucidates the methodologies employed for 

synthesizing and functionalizing DPP derivatives, as well as their 

diverse applications in the field of organic photovoltaics and 

bioimaging. 

Chapter 2: Materials and experimental techniques 

This Chapter provides a comprehensive overview of the general 

experimental procedures, characterization techniques, and specific 

instruments utilized for analysis and characterization. Each method and 

tool are described in detail to ensure clarity and reproducibility. 

 

Chapter 3: Design and Synthesis of N-phenyl carbazole 

Substituted Diketopyrrolopyrrole Based Monomers and 

Dimers: A Comparative Study 

In an effort to see the effect of conjugation length and substitution at 

different positions of N-phenyl carbazole, we designed and synthesized 

symmetrical and unsymmetrical acetylene bridged N-phenyl carbazole 

based diketopyrrolopyrroles (DPPs 5–9) by the Pd-catalyzed 

Sonogashira cross-coupling and Stille coupling reactions. A 

comparative study of isomeric N-phenyl carbazole (meta- and para- 

isomers), attached to the DPP were performed. The N-phenyl carbazole 

based DPP monomers (5–7, 10 and 11) exhibit absorption in the visible 

region whereas the corresponding dimers (8 and 9) show broad 

absorption towards near-infrared (NIR) region with lowering of HOMO-

LUMO gap. The para-N-phenyl carbazole based DPPs (8, 10 and 11) 

show red shifted absorption compared to their meta-substituted 

analogues (9, 5 and 6). The emission spectra reveal that DPP monomers 

(5–7) are fluorescent in nature whereas quenching of fluorescence was 

observed in DPP dimers (8 and 9). The thermogravimetric analysis 

shows higher thermal stability for meta-N-phenyl carbazole based DPPs 

as compared to their para-based analogues. Monomers of carbazole 

based DPPs are thermally more stable as compared to their dimers. The 
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electrochemical study reveals multiple oxidation waves related to donor 

moieties (such as thiophene and carbazole) and one reduction wave 

corresponding to DPP unit. 

 

Figure 3. Chemical structure of N-phenyl carbazole functionalized 

DPPs 5 –11. 

 

Chapter 4: Symmetrical and Unsymmetrical N, N-

dimethylaniline/Triphenylamine Functionalized 

Diketopyrrolopyrroles 

 

In order to investigate the effect of using different donors and variable 

length, symmetrical and unsymmetrical N, N-dimethylaniline and 

Triphenylamine (TPA) functionalized DPPs (NDPPs 1–8) were 

designed and synthesized by the Sonogashira cross-coupling reaction 

followed by click type [2+2] cycloaddition retro-electrocyclization 

reaction. The photophysical and electrochemical properties were 

systematically studied. The incorporation of TCBD in NDPPs 1, 3 and 

6 red shifted the absorption spectra towards NIR region and lowers the 

HOMO–LUMO gap due to increase in donor-acceptor interactions. The 

absorption spectra of DPP based derivatives NDPPs 1–6 exhibit a strong 

electronic absorption band in the visible region corresponding to π-π* 

transition. The TCBD bridged DPP derivatives exhibit an additional 

band at longer wavelength corresponding to intramolecular charge 

transfer (ICT) band. The attack of tetracyanoethylene (TCNE) on the 
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side of N, N- dimethylaminophenyl group in NDPP 6 indicates the 

strong donor strength of it as compared to triphenylamine thus 

exclusively an asymmetric product NDPP 7 was obtained. The broad 

absorption in visible region extended upto NIR region, multiple redox 

potentials and low HOMO–LUMO gap indicates that these molecules 

are potential candidate for optoelectronic and photovoltaic applications. 

 

Figure 4. Normalized electronic absorption spectra of NDPP 1–

NDPP 8 in dichloromethane at 1.0 × 10−5 M concentration (solid 

line) and as thin film (dashed lines). 

 

Chapter 5: Impact of Donor Strength on [2+2] 

Cycloaddition Retroelectro-cyclization in 

Tetracyanobutadiene-Functionalized 

Diketopyrrolopyrrole Derivatives 

In this Chapter various unsymmetrical ferrocene functionalized DPPs 

(FcDPPs 1–8) were designed and synthesized by Sonogashira cross-

coupling reaction followed by click type [2+2] cycloaddition retro-

electrocyclization reaction. Mono-TCBD functionalization took place 

on acetylene bridge linked to N, N-dimethyl amino phenyl side (FcDPP 

6) indicating strong donor strength of N, N-dimethylamino phenyl unit 

in comparison to the ferrocene where as in FcDPP 1 and FcDPP 2, the 

attack of first TCNE took place at acetylene bridge linked to ferrocene 
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side indicating strong donor strength of ferrocene relative to 

triphenylamine and N-phenyl carbazole unit. An additional band at 

longer wavelength corresponding to ICT was observed in the TCBD 

bridged derivatives (FcDPPs 2, 4, 5, 7 and 8), while only π-π* transition 

band was observed in acetylene bridged derivatives (FcDPPs 1, 3 and 

6). The electrochemical studies on FcDPPs 1–8 explained that presence 

of powerful acceptor Diketopyrrolopyrrole unit and additional cyano 

based acceptors TCBD tune the HOMO-LUMO energy levels 

significantly.  

 

Figure 5. Normalized electronic absorption spectra of FcDPPs 

3–8 in dichloromethane at 1.0 × 10−5 M concentration (solid line) 

and as thin film (dashed line). 
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Chapter 6: Phenothiazine Based 

Diketopyrrolopyrrole Derivatives Functionalized 

with Different Donors. 

A series of phenothiazine based DPP derivatives P-1–P-6 were 

designed and synthesized by the Pd-catalyzed Sonogashira cross-

coupling reaction followed by click type [2+2] cycloaddition 

retro-electrocyclization reaction in which Diketopyrrlopyrrole 

(DPP) unit was used as an electron withdrawing unit and 

phenothiazine (PZ), triphenylamine (TPA), N, N-dimethylamino 

phenyl (NDI), N-phenyl carbazole (NPC) moieties were used as 

an electron donating units. In these chromophores variation of 

donor unit and π-linker units are the key factors in tuning the 

photophysical and electronic properties, which was systematically 

investigated by the photophysical, electrochemical and 

computational studies. The di-substituted phenothiazine-based 

derivatives P-4–P-6 exhibit broader absorption spectra relative to 

mono-substituted derivatives P-1–P-3 within the range of 300–

800 nm due to extended π-conjugation. The cyclic 

voltammograms of phenothiazine-based derivatives P-1–P-6 

explained that the presence of diketopyrrolopyrrole entity as 

powerful acceptor in the molecular system enhanced the π-

conjugation and tuned the HOMO-LUMO energy levels. The 

computational studies revealed that there was a good agreement 

with experimental data. 
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Figure 6. Cyclic voltammograms of P-1–P-3 in DCM using 

TBAF as electrolyte. 

 

Chapter 7: Diketopyrrolopyrroles Functionalized Mono-, 

Di- and Tri- Substituted Triphenylamine Derivatives: A 

Comparative Study 

In this Chapter we have investigated the effect of number of 

diketopyrrolopyrrole (DPP) and ferrocenyl–diketopyrrolopyrrole units 

on the photophysical and electrochemical properties. We have designed 

and synthesized DPP and ferrocenyl-DPP based mono–, di– and tri– 

substituted derivatives with triphenylamine (TPA) as a central core 

TPA–DPPs 1–6 by the Pd-catalyzed Sonogashira cross–coupling 

reactions. The photophysical and electrochemical properties of DPP and 

ferrocenyl-DPP based derivatives were studied and compared. The 

electronic absorption spectra show that the ferrocenyl-DPP based 

derivatives TPA–DPPs 4–6 exhibit the red shifted absorption compared 

to DPP based derivatives TPA–DPPs 1–3. The di- and tri- substituted 

DPP (TPA–DPPs 2 and 3) and ferrocenyl-DPP based TPA (TPA–DPPs 

5 and 6) show slight red shifted absorption compared to monomer 

analogues (TPA–DPPs 1 and 4). The electrochemical investigation 

exhibits additional low voltage oxidation peak in ferrocenyl-DPP based 
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derivatives due to oxidation of ferrocenyl unit.  The TPA–DPPs 1–6 

exhibit good thermal stability. The effect of additional end capping 

ferrocene has also been investigated which exhibit red shift of 

absorption, additional low oxidation potential and lowers the HOMO-

LUMO gap. 

 

Figure 7. Structure of DPP based chromophores TPA-DPP 1–TPA-

DPP-6. 

 

Chapter 8: Conclusion and Future Prospects 

This Chapter highlights the key achievements of the research and 

discusses future directions for developing new materials for 

optoelectronic applications. It outlines the significant findings and 

suggests potential advancements and innovations in the field. 
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Chapter 01: Introduction 

 
1.1.Background 

Push-pull chromophores with extended π-conjugation have attracted 

significant interest within the scientific community. This is primarily 

attributed to their broad utility across various domains such as 

optoelectronics, data storage, OLEDs, and biological research.[1] These 

molecules are characterized by a conjugated core with an electron-

donating (push) group and an electron-withdrawing (pull) group at 

opposing ends. The asymmetric distribution of electron density within 

the molecule creates a dipole moment, resulting in unique electronic 

properties that make push-pull chromophores highly versatile. The 

photonic and electronic properties of the push-pull systems can be easily 

tuned by altering the strength of push and pull units in the π-conjugated 

systems.[2] The combination of highest occupied molecular orbital 

(HOMO) and lowest unoccupied molecular orbital (LUMO) energy 

levels of push and pull units in the push-pull systems result in a set of 

new HOMO and LUMO energy levels as shown in Figure 1.1, which is 

more tuned compared to individual HOMO and LUMO energy levels of 

push and pull units and also exhibited narrow energy gap. Thus, the 

HOMO–LUMO energy gap of organic chromophores can be effectively 

perturbed by altering the donor and acceptor units in the push-pull 

systems.[3] 
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Figure 1. 1. Schematic representation of frontier molecular orbitals of 

push-pull chromophore. 

 
Emerging Applications of Push-Pull Chromophores: 

1. In the field of optoelectronics, push-pull chromophores play a 

crucial function in shaping emission wavelengths and promoting 

effective charge transfer. This amplifies sensitivity in 

photodetectors and empowers the fine-tuning of light emission 

in OLEDs, thus propelling advancements in optoelectronic 

technologies.[4] 

2. Push-pull chromophores are crucial in nonlinear optics, 

particularly in photonic devices like modulators and switches, 

due to their strong nonlinear optical responses.[5] These devices 

are essential for signal processing and telecommunications, 

utilizing the light manipulation capabilities of push-pull 

chromophores to enhance nonlinear functionalities. 

3. In photovoltaics, especially in organic solar cells [6], push-pull 

chromophores utilize efficient light absorption, adjustable 

energy levels, and charge mobility to enhance power conversion 

efficiency. 

4. Across various sensing technologies, push-pull chromophores 

play a vital role in chemical sensors [7] and imaging probes [8] via 
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enhancing sensitivity and selectivity in chemical detection. 

Through their functionalization, they facilitate accurate 

detection and imaging across a spectrum of biological and 

medical applications. 

 

1.2. Diketopyrrolopyrrole (DPP) 

The distinctive feature of DPP pigment lies in its fundamental 

structure comprising two amine units and carbonyl groups 

forming a bicyclic structure. This particular arrangement 

imparts strong electron deficient character to DPP pigments, 

rendering them suitable for designing donor-acceptor (D-A) 

conjugated materials. The initial design and synthesis of DPP 

pigments by Farnum and co-workers in 1974 involved 

incorporating two phenyl units, resulted in a low yield of the 

compound i.e. a fused ring hydrocarbon called pentalene with 

eight π electrons, exhibited high insolubility in organic 

solvents and displayed a deep red colour. [9] Later, Iqbal and 

co-workers adapted the synthesis technique involving just 

one reaction step employing an aromatic nitrile and dialkyl 

succinate.[10] This alteration paved the way for producing 

various DPP derivatives spanning a range of colours. These 

derivatives include isomeric DPP as well as DPP variants 

flanked by phenyl, pyridyl, thienyl, furanyl, or seleneyl 

groups as shown in Figure 1.2. Incorporation of these diverse 

groups altered the planarity of the DPP pigment, its energy 

levels, and the distance between π-π stacking. DPP pigments 

exhibit low solubility because of the hydrogen bonding 

established by the core carbonyl and amine units in their solid 

state. However, introducing alkyl chains can disrupt this 

hydrogen bonding, resulting in improved solubility. DPP 

chromophores and their derivatives are essential in designing 

high-performance materials for electronic devices, including 

sensors and solar cells. Numerous articles have been 

published highlighting the applications of DPP chromophores 
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in organic field-effect transistors (OFETs)[11]
, sensors[12], and 

solar cells[13], emphasizing the effect of structural 

modifications and band gap engineering on the device 

properties. Researchers are particularly interested in 

exploring structural modifications and optimizing energy 

level alignment and morphology/crystallinity to achieve high 

performance in organic photovoltaic (OPV) devices. 

 

 

Figure 1. 2. Structure of DPP flanked with different aromatic groups. 

 
1.3. Synthesis of Diketopyrrolopyrrole 

1.3.1. Preparation of DPP through the Reformatsky approach. 

During the early 1970s, Donald Farnum and his research group 

endeavored to produce β-lactam 1 by reacting ethyl bromoacetate 

with benzonitrile in the presence of zinc using the Reformatsky 

method. Instead of the desired product, they unexpectedly isolated 

a previously unknown product 2 as shown in Scheme 1.1, 

possessing unique properties such as bright red colour and low 

solubility.[9] Farnum proposed a reaction mechanism which was 

later found to be incorrect. In the 1980's, Scientists of Ciba-Geigy 

revisited Farnum's work, revealing a true mechanism involving the 

Reformatsky reaction involving ethyl bromoacetate and 

benzonitrile.[10],[14] Subsequent alkylation and cyclization steps 

led to the formation of DPP 2 as shown in Scheme 1.2. In 2005, 

Shaabani et al. improved the yield by using a modified 

Reformatsky reaction upto 70%.[15] 
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Scheme 1. 1. Proposed reaction mechanism for the synthesis of DPP 

by Farnum. 

 

 

 

Scheme 1. 2. Updated reaction mechanism suggested for the synthesis 

of DPP by Ciba-Geigy. 
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1.3.2. Succinic method  

A retrosynthetic approach (Scheme 1.3) proposed by the scientists 

of Ciba-Geigy indicated that starting with benzonitrile and a 

succinic acid ester would be favoured. In fact, benzonitrile reacts 

with dialkyl succinate when alkali metal alkoxides are present, 

efficiently producing DPP 2. This reaction under the Reformatsky 

conditions, results in the direct formation of diester 4 from 

succinate and nitrile (Scheme 1.2.). Fine-tuning of conditions 

revealed optimal results using specific parameters, rendering the 

succinic method a proficient approach for DPP synthesis, 

particularly from unhindered aromatic nitriles. Despite limitations 

associated with nitriles that are either rich in electrons or impeded 

by large groups, Ciba-Geigy's base-promoted condensation of 

nitriles with succinic acid esters (Scheme 1.4.) remains a widely 

employed and practical method, offering simplicity, a wide range 

of usable nitriles, and high yields.[10], [14], [16] 

 

 

Scheme 1. 3. Retrosynthetic analysis of DPP. 

 

 

Scheme 1. 4. Synthesis of DPP by succinic method. 
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1.3.3. Condensation approach and related methods 

The following synthetic method addresses the challenge of 

obtaining asymmetrical DPPs exclusively, overcoming limitations 

observed in the succinic method. While the succinic method is 

effective for symmetric DPPs, it faces difficulties in the synthesis 

of asymmetrical pigments due to the formation of various DPP 

derivatives as shown in Scheme 1.5., making separation 

challenging.[10],[14] In order to tackle this issue, chemists at Ciba-

Geigy developed a method based on the reaction of nitriles with 

aminoester 8 or lactam 9 under basic conditions. Aminoester 8 can 

be obtained by reacting a nitrile with the dianion 7 produced from 

succinic ester. Upon exposure to acidic conditions, compound 8 

cyclizes to form 3-alkyloxycarbonyl-2-pyrrolin-5-one (9). Both 

aminoester 8 and lactam 9 undergoes a reaction with nitriles in the 

presence of alkoxides, resulting in the formation of DPP. (Scheme 

1.6). This approach enables the precise synthesis of both 

symmetric and asymmetric DPP pigments with excellent 

efficiency.[17] 

 

Scheme 1. 5. Synthesis of multiple DPPs during mixed condensation 

reaction. 

 

Scheme 1. 6. Synthesis of DPP from 8 or 9. 
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1.3.4. Synthesis of DPPs using 2,5-Dihydrofuro[4,3-c]furan-1,4-

diones (DFFs) as precursors. 

The following method involves converting unstable 

bisdiazotetraketones 12 into 13 diketofurofurans (DFFs) by 

heating, with milder conditions achieved through refluxing the 

suspension in toluene as shown in Scheme 1.7. [18] This provides 

an alternative route for the DFF synthesis via the thermolysis of 

diacylsuccinates. DFFs derivatives lack intermolecular hydrogen 

bonding as seen in corresponding DPP pigments. The process of 

synthesis of  N, N-diaryl DPP 16 from DFF, involves interactions 

with aromatic amines using DCC and a catalytic amount of TFA 

as shown in Scheme 1.8.This convenient method, demonstrated by 

Langhals and co-workers, involves nucleophilic attack, ring-

opening elimination, and cyclization, enabling controlled and 

efficient DFF to DPP transformation.[19] This method broadens the 

availability of symmetrical tetraaryl DPPs, thus acting as reactants 

in the synthesis of various functional dyes. 

 

 

Scheme 1. 7. Synthesis of DFF (13). 
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Scheme 1. 8. Synthesis of DPP 16 from DFF (13). 

 

1.3.5. Additional alternative techniques for synthesizing DPPs 

Gompper et al. introduced a different method for synthesizing 

DPP, using succinic acid diamide and N, N-dimethylbenzamide 

diethyl acetal (19), resulting in the formation of DPP 2 in 30% 

yield, along with compound 21. Conversion of 21 to DPP 2 using 

potassium tert-butoxide results in an overall DPP yield of around 

60%. The reaction of succinic amide with tetramethylurea acetal 

(20) forms non-conjugated tautomer 22 which undergoes N-

methylation to produce yellow DPP derivative 23 with 

trimethyloxonium salt (Scheme 1.9.). Despite lower synthetic 

importance, these methods provide diverse pathways for obtaining 

different DPP derivatives.[20] 

 

Scheme 1. 9. Synthesis of DPP by succinic amide. 
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1.4. Reactive functionalization sites of DPP/ Reactions of DPP 

The structure of DPP incorporates various chemically active 

functional groups. These groups exhibit distinct reactivity 

characteristics. Notably, certain units within the structure are 

susceptible to electrophilic attack such as the oxygen and nitrogen 

atoms within the amide moiety, the double bonds within the DPP, 

and the aromatic rings situated at the 3 and 6 positions. 

Conversely, nucleophilic attacks are also plausible, involving the 

carbonyl carbon atom and the α, β-unsaturated system within the 

bicyclic DPP unit. Such nucleophilic additions occur at the 3 and 

6 positions. In specific instances, nucleophilic reactions may 

extend to the aromatic substituents.  

 

Figure 1. 3. Functionalization sites of Diketopyrrolopyrrole. 

 

1.4.1. Reactive amide group of DPP  

In alkaline conditions, diketopyrrolopyrrole (DPP) undergoes 

deprotonation, forming ambidentate anions, where the negative 

charge is dispersed between the oxygen and nitrogen atoms of the 

amide group. (24 and 25, Scheme 1.10.). The charge can 

alternatively shift to the other oxygen atom, creating a mesomeric 

structure (26). This stabilization contributes to DPP's relatively 

high acidity.[21] Despite this, DPP pigments exhibit low solubility 

due to strong intermolecular hydrogen bonding, necessitating the 

use of solvents with partial dissolution capabilities. 
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Scheme 1. 10. Different Mesomeric structures of anions formed by 

deprotonation of DPP. 

 

The enhancement of solubility in standard organic solvents is 

achieved by alkylation of the DPP molecule using alkyl halides or 

alkyl sulfonates in the presence of potassium carbonate. Typically, 

alkylations are carried out in dimethylformamide (DMF) at 

temperatures exceeding 100 °C. [22],[23] The reactivity towards 

alkylation is influenced by the aromatic substituents at 3 and 6 

positions of the DPP, affecting the solubility and acidity thus, 

aprotic and polar solvents, notably DMF, are commonly employed 

in such reactions. Similarly, Amabilino and co-workers employed 

acetonitrile (MeCN) as alternative solvent for DPP alkylation in 

place of most commonly used solvent DMF, where they utilized 

Cesium carbonate as a catalyst, as demonstrated in Scheme 

1.11.[24] Recent advancements have focused on synthesizing 

water-soluble Diketopyrrolopyrrole 32 by coupling 31 with N-

alkyl substituents containing quaternary ammonium moieties. 

Gryko and coworkers conducted this reaction in 

dimethylformamide (DMF) at 40 °C for 1 hour, employing sodium 

hydride (NaH) and subsequently replacing the bromide counter-

ion with a chloride anion using sodium chloride (NaCl) in water 

(Scheme 1.12).[25] 
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Scheme 1.11. Alkylation of DPPs using CsCO3 and acetonitrile. 

 

 

Scheme 1.12. Synthesis of water soluble DPP 32 by Gryko and 

coworkers. 

   

Riggs et al. conducted one side N-arylation of DPP by reacting 

ester 33 with N-arylbenzimidoyl chloride 34, resulting in the 

formation of mono-N-arylated DPP 35 in 63% yield and enamine 

36 (Scheme 1.13).[26] Subsequent reactions of 35 with methyl-p-

toluenesulfonate and potassium carbonate (K2CO3) in 

dimethylformamide (DMF) yielded unsymmetrical DPP 37 in 56–

89% yield, while the treatment of 35 with benzyl bromide 

produced the N-benzyl DPP derivative 38 in 63–95% yield. 

Furthermore, the reaction of DPP 35 with 1-fluoro-2,4-

dinitrobenzene resulted in the formation of DPP 39 in 80–82% 

yield (Scheme 1.13). [26] 
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Scheme 1. 13. Synthesis of N-arylated DPP. 

 

1.4.2. Reactions of carbonyl group of DPP 

The carbonyl groups in DPP, act as electrophilic center and can 

undergo various transformations. When treated with P4S10/LR 

(Lawesson’s reagent), DPPs yield dithioketo-pyrrolopyrroles (40) 

in good yields (Scheme 1.14).[20], [27]   By this method, DPP 2 was 

converted to dithiolactam 40, a compound existing in several 

polymorphic crystalline forms. The resulting compounds were 

studied for their photophysical and electronic properties, mainly 

by Mizuguchi and co-workers.[28] Compound (40) reacts with 

alkyl halides to primarily yield S, S-dialkylated compound 41.[20], 

[29], [30] This discrepancy is attributed to the superior 

nucleophilicity of sulfur atoms compared to nitrogen or oxygen 

atoms. The alkylthiol groups in diazapentalenes (41) are very 

reactive and undergo nucleophilic substitution reactions as their 
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interaction with malononitrile sodium salt leads to the production 

of the dicyanomethylene derivative 42. [20] The direct substitution 

of carbonyl oxygen atoms in DPP with nucleophiles poses a 

challenge; however, activation of the carbonyl group can be 

achieved by employing phosphoryl chloride. Chemists from Ciba-

Geigy developed a method to activate carbonyl groups in DPP 

using POCl3 where DPP 2 is heated with an excess of POCl3 and 

catalytic DMF, it results in the production of phosphorylated salt 

43 as shown in Scheme 1.14. [31]  which is more reactive toward 

nucleophiles than the starting DPP and undergoes reactions with 

sodium sulfide and aromatic amines, leading to monothiocarbonyl 

DPP derivative 44 and dye 45, respectively.[31] Würthner et al. 

introduced a novel approach for expanding the DPP chromophore, 

which involves combining the aromatic nucleophilic substitution 

reaction of DPP with the substitution of carbonyl oxygen atoms 

using aromatic amines.[32] Initially, arylation of DPP with 1-

fluoro-2-nitro-4-(trifluoromethyl)benzene results in the formation 

of N, N-diaryl derivatives with moderate yields (50–57%). The 

subsequent reduction of nitro groups to amino groups followed by 

reaction with TiCl4 and DABCO in mesitylene at elevated 

temperatures leads to the generation of fully conjugated polycyclic 

compounds of type 48.[32] These compounds feature a rare 6–5–5–

5–5–6 fused ring system as shown in Scheme 1.15. 
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Scheme 1. 14. Various reactions of carbonyl group of DPP 2. 

   

The reactions and transformations described above showcase the 

versatility of DPP structures and their potential applications in 

various fields, including materials science and organic electronics. 

 

 

Scheme 1. 15. Synthesis of expanded DPP 48 
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1.4.3. Reactions at 3 and 6 positions of DPP 

Various Diketopyrrolopyrrole (DPP) derivatives with aromatic 

substituents at positions 3 and 6 are explored in the literature. [33-

36] These aryl groups are integral constituents of dyes and pigments 

derived from the DPP framework, participating in characteristic 

reactions typical of aromatic compounds, particularly 

electrophilic aromatic substitution. DPP 2 also reacts differently 

with bromine and chlorine, leading to para-dibrominated DPP 49 

and a chlorine addition product 50, respectively (Scheme 

1.16.).[10]  

 

Scheme 1. 16. Halogenation of DPP 2. 

 

Bromination of N, N-disubstituted DPPs with heteroaromatic 

substituents (thiophene, furan, and selenophene) is highly 

efficient. These DPP derivatives serve as starting materials in Pd-

catalyzed cross-coupling reactions, including the Suzuki[33], 

Stille[34], Heck[33], Sonogashira[35], and Buchwald–Hartwig[36] 

reactions (Scheme 1.17). These reactions proceed in high yields, 

expands the DPP chromophore and shifts the absorption maxima, 

making them useful for applications in semiconducting devices 

like organic field-effect transistors (OFETs) and organic 

photovoltaics (OPVs). 
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Scheme 1. 17. Coupling Reactions of Dibromo DPPs. 

 

1.5. Applications of Diketopyrrolopyrroles 

The donor-acceptor functionalized DPP based chromophores have 

garnered considerable interest across diverse applications, 

encompassing organic light-emitting diodes (OLEDs), 

photovoltaic devices and bioimaging. The following segment 

explores important applications of DPP based derivatives. 

 

1.5.1. Organic solar cells 

As global warming escalates, the need for eco-friendly and non-

CO2 emitting electricity production is in demand. To harness 

photovoltaic cells as a clean energy source and reducing the cost 

of solar energy production is crucial.[37] The primary hurdle lies in 

the high cost of crystalline silicon.[38] A promising alternative is 

thin films of organic small molecules/polymers, offering easy 

application over diverse substrates using wet-processing 

techniques. Organic solar cells (OSCs), particularly small-

molecule and polymer-based type derivatives, attract attention for 

their simple structure, ease of fabrication, and low production 

costs. Achieving a precise balance in device fabrication, 

morphology, molecular design, and interfacial layers is key for 

maximizing Power Conversion Efficiencies (PCEs). Small-

molecule OSCs employ highly conjugated systems, while 
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polymer-based OSCs use long-chained molecular systems. These 

solar cells can be further classified into three types based on 

production methods: organic bulk heterojunction thin-film solar 

cells, organic tandem solar cells, and organic dye-sensitized solar 

cells. 

 

1.5.1.1. Bulk heterojunction organic solar cells 

Bulk Heterojunction (BHJ) solar cells employ a single layer with 

donor and acceptor materials to convert solar energy into 

electricity. The basic structure of device includes a glass substrate, 

a transparent metal electrode, a hole contact layer, BHJ active 

layer, and an electron contact.[39] The simplified working principle 

involves photon absorption, exciton formation, exciton diffusion 

and splitting, charge transportation, and charge collection. [39] The 

donor material, usually a conjugated polymer, absorbs light, 

generate excitons with an electron-hole pair. The BHJ interface 

facilitates exciton splitting, ensuring electron and hole carriers to 

reach their respective electrodes without recombination. The 

active layer should possess wide absorption, nanoscale phase 

separation, suitable HOMO/LUMO alignment, and high charge 

mobility. BHJ solar cells, introduced in 1995, offer advantages 

like low cost, light weight, and easy fabrication compared to 

traditional photovoltaic devices.[40] 

Chen and co-workers synthesized star-shaped donor-acceptor (D-A) 

small molecules, denoted as 51, 52, and 53, via Suzuki cross-coupling 

reaction (Figure 1.4).[41] These compounds displayed narrow optical 

band gaps (1.68−1.72 eV) and low-energy highest occupied molecular 

orbital (HOMO) levels (−5.09∼−5.13 eV), indicating their promising 

suitability as electron donors in organic solar cells (OSCs). 

Subsequently, the photovoltaic characteristics of these small molecules 

when blended with [6,6]-phenyl-C61-butyric acid methyl ester 

(PC61BM) as the electron acceptor were examined. Among them, the 

OSC incorporating the 51:PC61BM blend demonstrated the highest 

power conversion efficiency (PCE) of 2.98%, exhibiting an open-circuit 



19 

voltage (Voc) of 0.72 V, a short-circuit current density (Jsc) of 7.94 

mA/cm2, and a fill factor (FF) of 52.2%. This superior performance is 

attributed to the highest hole mobility of molecule 51 compared to 52 

and 53, which yielded PCE of 1.63% and 1.98%, respectively.[41] 

 

Figure 1. 4. DPP based chromophores for BHJ organic solar cells. 

 

1.5.1.2. Dye sensitized solar cells (DSSC) 

Dye-sensitized solar cells (DSSCs) are a hybrid organic-inorganic 

system that uses small-molecule absorber dyes adsorbed onto 

electron-accepting materials such as titanium dioxide. These cells, 

introduced in 1991, have gained attention for their lightweight, 

colorful, and flexible characteristics, making them an alternative 

to conventional silicon-based solar cells due to their low cost and 

simple fabrication.[42] DSSCs consist of a mesoporous metal oxide 

semiconductor sensitized with an organic dye as the working 

electrode, supported by a transparent electrode and counter 

electrode with an electrolytic solution between them. The four 

major steps in DSSC operation include photon absorption, 

electron ejection, carrier transportation, and dye regeneration. The 

cell's efficiency is determined by factors like photocurrent density, 
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open circuit voltage, and fill factor.[43] The sensitizer, a crucial 

component, influences light harvesting and charge separation, 

with various donor-acceptor groups and metal-free organic dyes 

being explored for enhanced performance. 

Yemene et al. synthesized five DPP chromophores, designated as 

54–58, utilizing direct C-H arylation with a 3,6-dithienyl 

backbone (Figure 1.5).[44] These chromophores exhibited broad 

absorption spanning 350–800 nm with high molar extinction 

coefficients. In terms of power conversion efficiency (PCE) for 

dye-sensitized solar cells (DSSCs), the performance of all five 

dyes was relatively similar, ranging from 2.83% – 3.35%. Dyes 

incorporating phenothiazine as a linker (54, 55, and 58) 

demonstrated higher open-circuit voltage (Voc) compared to those 

with phenyl linkers. Notably, dye 57, featuring phenothiazine as 

the donor and phenyl as the spacer, exhibited the highest short-

circuit voltage (Jsc). When combined with Chenodeoxycholic acid 

(CDCA), dye 57 showed an increased PCE of 3.41%. Enhancing 

the performance of these dyes could be achieved through device 

engineering strategies.[44] 
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Figure 1. 5. DPP based chromophore for dye sensitized solar cells. 

 

1.5.1.3. Perovskite solar cells (PSCs) 

Perovskite solar cells (PSCs) are a type of solar cell that utilizes 

perovskite-structured materials as the light-harvesting active 

layer. The perovskite structure typically involves a metal cation 

(such as lead or tin), an organic cation (such as methylammonium 

or formamidinium), and a halide anion (such as iodide or 

bromide). The unique crystalline structure of perovskite materials 

allows for efficient absorption of sunlight and the generation of 

electric charge carriers. PSCs have garnered significant attention 

in recent years due to their rapid progress in efficiency and the 

ease of fabrication. They offer advantages such as low-cost 

production, simple processing methods (including solution-based 

processes), and the potential for flexibility in design and 

application. [45] However, challenges remain, including stability 
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issues, toxicity concerns associated with lead-based perovskites, 

and scalability hurdles. Researchers continue to explore and 

develop new perovskite formulations, encapsulation techniques, 

and device architectures to address these challenges and unlock 

the full potential of perovskite solar cells for large-scale, efficient, 

and sustainable solar energy harvesting. 

Kini and co-workers designed and synthesized two Hole 

transporting materials (HTMs) based on DPP via a straightforward 

molecular engineering approach (Figure 1.6).[46] These 

compounds displayed intense absorption within the wavelength 

range of 500 to 750 nm. The photovoltaic device utilizing HTM 

59, doped with lithium bis(trifluoromethanesulfonyl)imide, 

achieved a maximum power conversion efficiency (PCE) of 

15.57%. This remarkable efficiency was attributed to excellent 

energy level alignment, optimal balance between aggregation and 

processability, facilitating effective passivation of the perovskite 

layer through enhanced surface coverage and suppression of 

charge recombination. Conversely, HTM 60 exhibited a slightly 

lower PCE of 14.49%, primarily due to its poor film quality 

stemming from its propensity for high aggregation.[46] 

 

 

 

Figure 1. 6. DPP based chromophore for PSCs. 
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1.5.2. Photothermal cancer therapy 

Photothermal therapy (PTT) has emerged as a promising approach 

for cancer treatment due to its high selectivity towards tumor cells 

and minimal side effects, addressing limitations of traditional 

methods like chemotherapy and surgery.[47] PTT involves using 

light-absorbing agents to convert near-infrared (NIR) light into 

heat energy, destroying tumor cells. Accurate tumor localization 

and sizing are crucial, leading to the integration of non-invasive 

imaging techniques. Photoacoustic (PA) imaging, with its spectral 

selectivity and ability to reconstruct optical absorption 

distribution, serves as an effective tool.[48] Various photothermal 

transducers, including organic agents, have been developed to 

enhance PTT efficacy. PTT, through NIR laser-induced tumor cell 

ablation, is gaining attention for its high selectivity and non-

invasiveness in cancer treatment. 

In the pursuit of synergistic cancer therapy, there exists a 

compelling imperative to devise a singular, versatile compound 

proficient in amalgamating photodynamic therapy (PDT), 

photothermal therapy (PTT), and chemotherapy modalities. The 

desired compound should additionally demonstrate solubility, 

responsiveness to minimal irradiation levels, and exceptional 

tumor-targeting efficacy. To achieve this objective, Dong et al. 

have conjugated the chemotherapy drugs chlorambucil and all-

trans retinoic acid onto a small dye molecule diketopyrrolopyrrole 

(designated as 61 and 62) as shown in Figure 1.7.[49] The resultant 

soluble nanoparticles (NPs) of 61 and 62, formed via 

reprecipitation, exhibit selective accumulation in tumors, release 

chemotherapy drugs under acidic conditions, and demonstrate 

efficient generation of reactive oxygen species (ROS) and 

photothermal conversion under low-power xenon lamp irradiation 

(40 mW/cm2). Both NP formulations effectively eradicate cancer 

cells and suppress cancer growth at a low dosage (0.4 mg/kg).[49] 
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Figure 1. 7. DPP based nanoparticles for Photothermal cancer therapy. 

 

1.5.3. Fluorescent Probes 

Fluorescent probes are invaluable tools for analyte detection due 

to their simplicity, selectivity, sensitivity, rapid response, and 

interference resistance and play critical roles across various 

fields including life sciences, environmental monitoring, human 

health, and industries such as food and pharmaceuticals. 

Diketopyrrolopyrrole (DPP) dyes, encompassing small 

molecules, polymers, and organic nanoparticles and act as 

promising fluorescent probes owing to their advantageous 

properties including high photostability, fluorescence quantum 

yields, and thermal stability. 

Probe 63, featuring α, β-unsaturated ketone and DPP 

components, was tailored for the selective and sensitive 

detection of CN- ions. Its reaction with CN- ions resulted in a 

distinctive blue shift in the UV-vis spectrum, accompanied by a 

colour change in solution. Furthermore, the fluorescence of 

probe 63 was completely quenched upon interaction with CN- 

ions, demonstrating a remarkably low detection limit. 

Additionally, test strips based on probe 63 proved effective in 

detecting CN- ions in solutions.[50] On the other hand, probe 64, 

a versatile and highly selective probe, was developed for the 

detection of Al3+ and Fe3+ ions, each eliciting distinct 
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fluorescence signals. The addition of Al3+ ions led to significant 

changes in the absorption spectrum, while Fe3+ induced a 

different absorption response along with alterations in 

fluorescence emission characteristics. These findings 

underscore the potential of probes 63 and 64 as valuable tools 

for analytical and diagnostic applications in various domains 

(Figure 1.8).[50] 

 

Figure 1. 8. DPP based chromophores as fluorescent probes. 

 

1.5.4. Electrochromic applications 

Electrochromism is a phenomenon where the absorption and 

emission spectra of certain dyes can shift significantly under a 

strong electric field. It involves reversible colour changes in 

response to electrochemical reactions, typically transitioning 

between transparent and coloured states or between different 

coloured states.[51] Electrochromic materials may exhibit multiple 

colours if more than two redox states are available, termed 

polyelectrochromic or multicolour electrochromism. This optical 

change is induced by a small electric current at low voltages. 

Electrochromic devices function like rechargeable batteries, with 

an electrochromic electrode separated from a counter electrode by 

an electrolyte, undergoing colour changes through charging and 

discharging the electrochemical cell. 

Lim and co-workers developed and created a small molecular 

electrochromic material utilizing a DPP framework along with 

substantial side chains. This material, identified as 65, consisted 

of a core composed of dithiophene-phenylene, a π-linker of DPP, 

and an end unit of rhodanine (Figure 1.9.). The electrochromic 



26 

behavior of molecule 65 led to a blue colouration with rapid 

switching occurring in just 0.4 seconds and a coloration efficiency 

exceeding 300 cm²/C. [52] 

 

Figure 1. 9. DPP based chromophore for electrochromic applications. 

 

1.5.5. Two photon absorption (TPA) 

Two-photon absorption (TPA) is a nonlinear optical 

phenomenon where two photons, collectively possessing 

sufficient energy, are simultaneously absorbed by a 

molecule or material, causing an electronic excitation. 

This process occurs when the energy of individual photons 

is insufficient for electron transition, but when combined, 

they meet the required energy threshold.[53] TPA is more 

likely in materials with high nonlinear susceptibilities, 

characterized by large transition dipole moments and 

electronic resonances. TPA finds applications in various 

fields: 

1. Multiphoton Microscopy: TPA is extensively 

used in techniques like two-photon fluorescence 

microscopy and second harmonic generation 

microscopy, offering reduced photodamage and 

increased penetration depth compared to one-

photon excitation methods.[54] 
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2. Optical Data Storage: TPA is explored for high-

density optical data storage systems, enabling sub-

diffraction-limited spatial resolution and encoding 

information in precise three-dimensional 

structures.[55] 

3. Photodynamic Therapy (PDT): TPA is utilized 

in targeted cancer treatment, activating 

photosensitizing agents selectively in tumor tissues 

with near-infrared light, inducing localized 

cytotoxicity and tumor cell death.[56] 

4. Advanced Optical Devices and Sensors: 

Materials exhibiting strong TPA characteristics are 

studied for all-optical switches, modulators, and 

sensors, offering nonlinear optical response and 

potential performance enhancements.[57] 

 

Overall, TPA presents unique advantages in various 

scientific and technological domains, driving ongoing 

research and technological advancements. 

Grzybowski and co-workers devised and synthesized 

novel π-expanded diketopyrrolopyrroles (66–69) as shown 

in Figure 1.10.[58] Through strategic positioning of a 

fluorene framework at the edges of diketopyrrolopyrrole 

via tandem Friedel–Crafts-dehydration reactions, they 

produced dyes with exceptional solubility. Photophysical 

analyses of these innovative dyes revealed superior 

properties compared to expanded DPPs, particularly in 

terms of two-photon absorption cross-section. By 

introducing two amine groups at the peripheral positions 

of resulting dyes (68 and 69), two-photon absorption 

cross-section values reaching around 2000 GM at 

approximately 1000 nm were attained. Coupled with high 

fluorescence quantum yields (0.84–0.96), these dyes 

exhibited a two-photon brightness of roughly 1600 GM. 
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With strong red emission (665 nm), these newly developed 

π-expanded diketopyrrolopyrroles show significant 

potential as two-photon dyes for bioimaging 

applications.[58] 

 

 

Figure 1. 10. DPP based chromophore for TPA based applications. 

 

1.5.6. Aggregation-Induced Emission (AIE) 

The phenomenon of AIE was first observed by Scheibe 

and Jelley in 1936, and the term "aggregation-induced 

emission" was officially coined by Tang and his coworkers 

in the early 2000s, where emission occurs when molecules 

are in an aggregated state.[59] AIE was observed in the π-

conjugated fluorescent organic materials containing 

functional groups capable of free rotation, such as 

triphenylamine or tetraphenylethene. However, 

understanding the AIE mechanism poses challenges as it 

contradicts classical photophysics concepts. Multiple 

mechanisms have been proposed to explain Aggregation-

Induced Emission (AIE), including the restriction of 

intramolecular rotation (RIR), the suppression of 

intramolecular charge transfer (ICT), twisted 

intramolecular charge transfer (TICT), and the generation 

of J-aggregates.[60] Despite ongoing efforts, a universal 

theory to explain AIE remains evasive, but significant 

research is underway to identify AIE systems and develop 

industrial applications. 
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Diketopyrrolopyrrole (DPP) is a well-known π-conjugated 

fluorescent organic dye appreciated for its outstanding 

fluorescence characteristics. Due to its electron-deficient 

nature, DPP serves as an electron acceptor when coupled 

with an electron donor such as electron-rich 

triphenylamine moieties. Hwang and co-workers 

synthesized a range of diketopyrrolopyrrole compounds 

integrating three distinct triphenylamine moieties (70–72) 

depicted in Figure 1.11.[61] These compounds displayed 

unique red emissions indicative of aggregation-induced 

emission. Disparities in luminescence properties among 

the synthesized diketopyrrolopyrrole compounds were 

attributed to the diverse functional groups attached to the 

triphenylamine moieties. Fluorescence quantum yields of 

solid thin films for diketopyrrolopyrrole-based 

chromophores 70, 71 and 72 were determined to be 31%, 

26% and 9%, respectively. Consequently, 

diketopyrrolopyrrole compounds featuring optimized 

triphenylamine moieties exhibit promising potential as 

superior solid-state emissive materials through 

aggregation-induced emission.[61] 
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Figure 1. 11. DPP based chromophore showing AIE effect. 

 

1.5.7. OFETs 

Organic Field-Effect Transistors (OFETs) are electronic 

devices that employ organic semiconductors as their active 

components. They function by regulating the movement of 

charge carriers (electrons or holes) within the 

semiconductor layer via an external electric field. 

Typically, an OFET comprises three primary elements: 1. 

Substrate: Generally crafted from glass or silicon, it 

provides the structural support for the transistor. 2. Gate 

electrode: Positioned on the substrate, it governs the flow 

of charge carriers within the semiconductor layer by 

applying voltage. 3. Organic semiconductor layer: 

Positioned between the gate electrode and the source/drain 



31 

electrodes, this layer facilitates the transportation of charge 

carriers.[62] OFETs offer numerous advantages over 

conventional silicon-based transistors, such as flexibility, 

cost-effectiveness in manufacturing, and compatibility 

with large-area, solution-based processing methods. These 

characteristics make OFETs appealing for a range of uses, 

such as flexible displays, electronic paper, and sensor 

technology. [63]  

The synthesis of donor-acceptor (D-A)-type 

diketopyrrolopyrrole (DPP)-based small molecules (73 

and 74) was conducted for their application as the active 

layer in solution-processable organic field-effect 

transistors (OFETs) by Lim et al.[64] Both molecules, 73 

and 74 (Figure 1.12) incorporate silaindacenodithiophene 

as electron donor units along with DPP serving as an 

electron-accepting linker and octylrhodanine as the 

electron-accepting end group. Variations in side chains 

were introduced to investigate their impact on OFET 

performance. Compound 73 features a simple branched 

alkyl side chain, while 74 is characterized by a bulky 

siloxane-terminated hybrid alkyl chain. The enhanced 

crystallinity observed in 74, attributed to its siloxane side 

chains, results in notably high field-effect mobility (up to 

3.04 cm2 V−1 s−1). Notably, 74 exhibits excellent solubility 

and maintains its high mobility even when processed in the 

environmentally friendly solvent 2-methyltetrahydrofuran 

with low-temperature annealing at 100 °C, owing to the 

presence of bulky siloxane-terminated alkyl side 

chains.[64] 
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Figure 1. 12. DPP based chromophore for OFETs. 

 

1.6. Current Work 

Donor-acceptor (D–A) architectures play a crucial role in organic 

photovoltaics, particularly those exhibiting strong absorption in 

the visible to near-infrared (NIR) region and a narrow HOMO–

LUMO gap. To enhance absorption in the NIR region and reduce 

the HOMO–LUMO gap, researchers have explored various 

modifications of the diketopyrrolopyrrole (DPP) unit through 

symmetrical and unsymmetrical functionalization with different 

donors, acceptors, and linkers. The substitution of different donor 

and acceptor units has been studied extensively to understand their 

impact on the photonic, thermal, and electrochemical properties of 

these DPP-based D–A systems. By adjusting the strength of the 

donor or acceptor units, researchers can fine-tune the 

photophysical, electrochemical properties, and HOMO–LUMO 

gap of these systems. Various donor units such as carbazole, 

triphenylamine, ferrocene, phenothiazine and acceptor unit TCBD 
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and DPP have been integrated to obtain various D–A systems. 

Investigation of their photophysical, thermal and electrochemical 

properties help in explaining their potential applications in diverse 

fields. These findings suggest the versatility and suitability of 

these tailored DPP-based D–A systems for a range of practical 

applications. 

 

Main objectives of the current work 

1. Development and synthesis of donor-acceptor (D–A) 

functionalized diketopyrrolopyrrole (DPP) based 

chromophores tailored for optoelectronic applications and 

ultrafast investigations. 

2.  Synthesis of both symmetrical and unsymmetrical DPP-

based chromophores by modifying the donor/acceptor unit 

at the 3- and 6- positions. 

3.  Examination of the impact of various donor/acceptor 

functionalization on the photophysical and redox 

characteristics of DPP. 

4. Alteration of the HOMO-LUMO gap through 

modifications in conjugation length and the introduction of 

acceptors such as TCBD into the D-A system. 

5. Exploration of the electronic structure, electron density 

distribution across HOMO and LUMO energy levels, and 

photophysical attributes of DPP chromophores utilizing 

density functional theory (DFT) and time-dependent 

density functional theory (TD-DFT) calculations. 
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1.7. Organization of thesis 

Chapter 1 of the thesis provides in-depth overview of the 

historical evolution of different synthetic approaches, 

functionalization methods, reactivity, and applications of DPPs 

across various domains. It outlines recent advancements in 

functionalization strategies, which are subsequently investigated 

in D-A systems in later Chapters. 

 

Chapter 2 of the thesis provides a concise overview of the 

equipment and standard procedures employed in the current 

research.  

 

Chapter 3 of the thesis explores the effects of conjugation length 

and positional substitution on N-phenyl carbazole in both 

symmetrical and unsymmetrical acetylene-bridged N-phenyl 

carbazole-based diketopyrrolopyrroles. It also investigates their 

photophysical and redox properties. 

 

Chapter 4 outlines a sequence of investigations involving the 

synthesis of symmetrical and unsymmetrical 

Diketopyrrolopyrrole derivatives functionalized with N, N-

dimethylaniline/Triphenylamine moieties, alongside an 

examination of the impact of varied donor and acceptor groups on 

their optoelectronic characteristics. 

 

Chapter 5 of the thesis presents an array of unsymmetrical 

Diketopyrrolopyrrole derivatives functionalized with ferrocene 

groups, alongside an investigation into the influence of donor 

strength on [2+2] cycloaddition-retroelectrocyclization within 

tetracyanobutadiene-functionalized diketopyrrolopyrrole 

derivatives. 

 

Chapter 6 of the thesis presents the development and synthesis of 

a range of symmetric and asymmetric chromophores based on 
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Diketopyrrolopyrrole, featuring phenothiazine functionalization 

and incorporating diverse donors such as triphenylamine, N-

phenyl carbazole, and N, N-dimethylamine. Additionally, the 

Chapter delves into the examination of their photophysical, redox, 

and computational properties. 

 

Chapter 7 of the thesis introduces a collection of 

Diketopyrrolopyrrole (DPP) and ferrocenyl-DPP derivatives, 

mono-, di-, and tri-substituted, featuring triphenylamine as a 

central core, synthesized via Pd-catalyzed Sonogashira cross-

coupling reactions. The Chapter involves the examination and 

comparison of the photophysical and electrochemical 

characteristics of these DPP and ferrocenyl-DPP based 

derivatives. 

 

Chapter 8 of the thesis outlines the key aspects of the research 

and discusses potential future directions. 

  



36 

1.8. References 

[1] (a) Crossley, D. L., Urbano, L., Neumann, R., Bourke, S., 

Jones, J., Dailey, L. A., Green, M. A., Humphries, M., 

King, S. M., Turner, M. L., Ingleson, M. J. (2017), Post-

Polymerization C-H Borylation of Acceptor Materials 

Gives Highly Efficient Solid State Near-Infrared Emitters 

for NIR-OLEDs and Effective Biological Imaging, ACS 

Appl. Mater. Interfaces, 9, 28243−28249 

(DOI:10.1021/acsami.7b08473); (b) Anthony, J. E., 

Facchetti, A., Heeney, M., Marder, S. R., Zhan, X. (2010), 

n-Type Organic Semiconductors in Organic Electronics, 

Adv. Mater., 22, 3876−3892 (DOI: 

10.1002/adma.200903628); (c) Grimsdale, A. C., Chan, 

K., Martin, R. E., Jokisz, P. G., Holmes, A. B. (2009), 

Synthesis of Light-Emitting Conjugated Polymers for 

Applications in Electroluminescent Devices, Chem. Rev., 

109, 897−1091 (DOI: 10.1021/cr000013v); (d) Shih, P. I., 

Chuang, C. Y., Chien, C. H., Diau, E. W. G., Shu, C. F. 

(2007), Highly Efficient Non-Doped Blue-Light-Emitting 

Diodes Based on an Anthrancene Derivative End-Capped 

with Tetraphenylethylene Groups, Adv. Funct. Mater., 17, 

3141−3146 (DOI: 10.1002/adfm.200700355); (e) Tibaldi, 

A., Fillaud, L., Anquetin, G., Woytasik, M., Zrig, S., Piro, 

B., Mattana, G., Noel, V. (2019), Electrolyte-gated 

Organic Field-effect Transistors (EGOFETs) as 

Complementary Tools to Electrochemistry for the Study of 

Surface Processes, Electrochem. Commun., 98, 43−46 

(DOI: 10.1016/j.elecom.2018.10.022); (f) Leonardi, F., 

Casalini, S., Zhang, Q., Galindo, S., Gutierrez, D., ́Mas-

Torrent, M. (2016), Electrolyte-Gated Organic Field-

Effect Transistor Based on a Solution Sheared Organic 

Semiconductor Blend, Adv. Mater., 28, 10311−10316 

(DOI:10.1002/adma.201602479); (g) Sisto, T. J., Zhong, 

Y., Zhang, B., Trinh, M. T., Miyata, K., Zhong, X., Zhu, 



37 

X.-Y., Steigerwald, M. L., Ng, F., Nuckolls, C. (2017), 

Long, Atomically Precise -Acceptor Cove-Edge 

Nanoribbons as Electron Acceptors, J. Am. Chem. Soc., 

139, 5648−5651 (DOI: 10.1021/jacs.6b13093); (h) Li, G., 

Zhu, R., Yang, Y. (2012), Polymer Solar Cells, Nat. 

Photonics, 6, 153−161 (DOI: 10.1038/nphoton.2012.11); 

(i) Kawashima, K., Tamai, Y., Ohkita, H., Osaka, I., 

Takimiya, K. (2015), High-Efficiency Polymer Solar Cells 

with Small Photon Energy Loss, Nat. Commun., 6, No. 

10085 (DOI: 10.1038/ncomms10085); (j) Lu, L., Zheng, 

T., Wu, Q., Schneider, A. M., Zhao, D., Yu, L. (2015), 

Recent Advances in Bulk Heterojunction Polymer Solar 

Cells, Chem. Rev.,115, 12666−12731 

(DOI:10.1021/acs.chemrev.5b00098); (k) Shirota, Y., 

Kageyama, H. (2007), Charge Carrier Transporting 

Molecular Materials and Their Applications in Devices, 

Chem. Rev., 107, 953−1010 (DOI: 10.1021/cr050143+); 

(l) Wang, J., Gadenne, V., Patrone, L., Raimundo, J-. M. 

(2024), Self-Assembled Monolayers of Push–Pull 

Chromophores as Active Layers and Their Applications, 

Molecules, 29(3), 559 

(DOI:  https://doi.org/10.3390/molecules29030559). 

[2] (a) Kivala, M., Diederich, F. (2009), Acetylene-Derived 

Strong Organic Acceptors for Planar and Nonplanar 

Donor–Acceptor Chromophores, Acc. Chem. Res., 42, 

235–248 (DOI:10.1021/ar8001238); (b) Kivala, M., 

Boudon, C., Gisselbrecht, J.-P., Seiler, P., Gross, M., 

Diederich, F. (2007), A novel reaction of 7,7,8,8-

tetracyanoquinodimethane (TCNQ): charge-transfer 

chromophores by [2 + 2] cycloaddition with alkynes, 

Chem. Commun., 4731–4733 (DOI: 10.1039/B713683H); 

(c) Reutenauer, P., Kivala, M., Jarowski, P. D., Boudon, 

C., Gisselbrecht, J.-P., Gross, M., Diederich, F. (2007), 

New strong organic acceptors by cycloaddition of TCNE 

https://doi.org/10.3390/molecules29030559


38 

and TCNQ to substituted cyanoalkynes, Chem. Commun., 

4898–4900 (DOI: 10.1039/B714731G); (e) Beaujuge, P. 

M., Amb, C. M., Reynolds, J. R. (2010), Spectral 

Engineering in π-Conjugated Polymers with 

Intramolecular−Acceptor Interactions, Acc. Chem. Res., 

43, 11, 1396−1407 (DOI:10.1021/ar100043u). 

[3] (a) Wang, J. -L., Xiao, Q., Pei, J. (2010), 

Benzothiadiazole-Based D–π–A–π–D Organic Dyes with 

Tunable Band Gap: Synthesis and Photophysical 

Properties, Org. Lett., 12, 4164−4167 (DOI: 

10.1021/ol101754q); (b) Štacková, L., Muchová, E., 
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Chapter 02:  Materials and Experimental 

Techniques 

 

2.1. Introduction 

This Chapter outlines the materials used, the overall synthetic methods, 

the techniques for characterization, and the instrumentation utilized in 

this thesis. 

 

2.2. Chemicals for synthesis 

Standard purification procedures were applied to common solvents used 

in synthesis. [1] 2-thiophene carbonitrile, sodium tert-butoxide, dimethyl 

succinate, concentrated hydrochloric acid, and 1-bromodecane were 

sourced from Spectrochem India. Triethylamine was obtained from S. 

D. Fine Chem. Ltd., while CuI, Pd(PPh3)4, PdCl2(PPh3)2, ferrocene, and 

tetrabutylammonium hexafluorophosphate (TBAF6), Ethynyl ferrocene 

were procured from Aldrich Chemicals USA. Silica gel (100 – 200 mesh 

and 230 – 400 mesh) was purchased from Rankem Chemicals, India, 

and TLC pre-coated silica gel plates (Kieselgel 60F254, Merck) were 

obtained from Merck, India. 

Dry solvents including dichloromethane, chloroform, tetrahydrofuran 

(THF), N,N-dimethylformamide (DMF), tert-butanol, and methanol 

were sourced from Spectrochem and S. D. Fine Chem. Ltd. Oxygen or 

moisture-sensitive reactions were conducted under a nitrogen/argon 

atmosphere using the standard Schlenk method. Unless specified, 

solvents and reagents were used as received. N-Bromosuccinimide was 

recrystallized from hot water before use. Photophysical and 

electrochemical studies utilized spectroscopic grade solvents. 
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2.3. Spectroscopic measurements 

2.3.1. Mass spectrometry 

High resolution mass spectra (HRMS) were recorded on Brucker-

Daltonics, micrOTOF-Q II mass spectrometer using positive and 

negative mode electrospray ionizations. 

 

2.3.2. NMR spectroscopy 

1H NMR (400/500 MHz), and 13C NMR (100 MHz) spectra were 

recorded on the Bruker Avance (III) 400 MHz, using CDCl3 and 

acetone-d6 as solvent. Chemical shifts in 1H, and 13C NMR spectra were 

reported in parts per million (ppm). In 1H NMR chemical shifts are 

reported relative to the residual solvent peak (CDCl3, 7.26 ppm). 

Multiplicities are given as: s (singlet), d (doublet), t (triplet), q (quartet), 

dd (doublet of doublets), m (multiplet), and the coupling constants J, are 

given in Hz. 13C NMR chemical shifts are reported relative to the solvent 

residual peak (CDCl3, 77.16 ppm). 

 

2.3.3. UV-Vis spectroscopy 

UV-Vis absorption spectra were recorded using a Varian Cary100 Bio 

UV-Vis and PerkinElmer LAMBDA 35 UV/Vis spectrophotometer. 

 

2.3.4. Fluorescence spectroscopy 

Fluorescence emission spectra were recorded upon specific excitation 

wavelength on a Horiba Scientific Fluoromax-4 spectrophotometer. The 

slit width for the excitation and emission was set at 2 nm. 

 

The fluorescence quantum yields (ɸF) 

The fluorescence quantum yields (ɸF) of compounds were calculated by 

the steady-state comparative method using following equation, 

ɸF = ɸst × Su/Sst × Ast / Au × n2Du/n2 Dst ………………….. (Eq. 1) 

Where ɸF is the emission quantum yield of the sample, ɸst is the emission 

quantum yield of the standard, Ast and Au represent the absorbance of 

the standard and sample at the excitation wavelength, respectively, 

while Sst and Su are the integrated emission band areas of the standard 
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and sample, respectively, and nDst and nDu the solvent refractive index 

of the standard and sample, u and st refer to the unknown and standard, 

respectively. 

 

2.4. Electrochemical studies 

Cyclic Voltamograms (CVs) were recorded on CHI620D 

electrochemical analyzer using Glassy carbon as working electrode, Pt 

wire as the counter electrode, and Ag/Ag+/SCE as the reference 

electrode. The scan rate was 100 mVs‐1. A solution of 

tetrabutylammonium hexafluorophosphate (TBAPF6) in CH2Cl2 (0.1 M) 

was employed as the supporting electrolyte. 

 

2.5. Computational Calculations 

The density functional theory (DFT) calculations were carried out at the 

B3LYP/6‐31G** level for C, N, O, H, S and Lanl2DZ level for Fe in the 

Gaussian 09 program.[2] 
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Chapter 03: Design and synthesis of N-phenyl 

carbazole substituted Diketopyrrolopyrrole based 

monomers and dimers:A comparative study 

 
3.1. Introduction 

The development of clean and renewable energy sources has become 

one of the most important goal undertaken by modern science.[1] 

Organic small molecules based on donor-acceptor (D-A) design have 

been investigated for their use in organic light emitting diodes (OLEDs), 

organic photovoltaics (OPVs), nonlinear optical (NLO) switches and 

data storage devices.[2] The optoelectronic properties of D–A molecular 

framework with extensive π-conjugation can be easily perturbed by 

varying the donor and acceptor unit.[2],[3]  

Diketopyrrolopyrrole (DPP) has recently captured the attention of many 

researchers in building efficient D-A architecture due to its planarity, 

well conjugated structure, broad absorption in visible region and high 

photochemical stability.[4],[5] The DPP derivatives have been widely 

used for various optoelectronic applications due to their high optical 

densities and exceptional stabilities with high tendency to form semi 

crystalline structure.[6] Various D-A functionalized DPPs have been 

reported for application in OLEDs, organic field-effect transistors 

(OFETs), OSCs and photothermal cancer therapy.[11-13] Introduction of 

long alkyl chain at N- atom of DPP unit enhances the solubility in 

organic solvents.[7],[8]  

 Triphenylamine, carbazole and ferrocene are widely used donors in 

organic electronics. The planar heteroarenes (like thiophene, carbazole) 

have been introduced in organic small molecular backbone in order to 

introduce desirable characteristics like high charge mobility and broader 

absorption.[9],[10] Carbazole is an aromatic heterocyclic compound 

possesses good electron donating and charge transport property.[14] 

Carbazole is commonly used donor for the synthesis of molecular 

architectures for organic electronics and photonic applications. The 
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small molecules and polymers based on carbazole functionalized DPP 

have reported in literature for efficient OPV applications.[17],[18] 

 

Figure 3. 1. Chemical structures of meta- and para N-phenyl carbazole 

based DPPs. 

 

 Recently Our group have reported the para-N-phenyl carbazole 

functionalized DPPs (10 and 11) for BHJ OSCs.[15],[16] In continuation 

of this work, we were further interested to see positional effect of N-

phenyl carbazole on photophysical and electrochemical properties of 

DPP. In this regard we have synthesized meta-N-phenyl carbazole 

functionalized DPPs (5–7) and dimers (8 and 9) of meta- and para-N-

phenyl carbazole functionalized DPP. The effect of number of donor as 

well as acceptor units on photophysical and electrochemical properties 

of DPP was also investigated. The unsymmetrical DPP derivative 

containing meta- and para-N-phenyl carbazole (7) was also synthesized 

for comparison. 

 

3.2. Results and Discussion 

The meta N-phenyl carbazole-substituted DPPs 5 and 6 were 

synthesized by the Pd-catalyzed Sonogashira cross-coupling reaction of 

1 and 2 with 1.1 and 2.2 equivalents of N-(3-Ethynylphenyl) carbazole 

in 60% and 65% yield respectively (Scheme 3.1.).  
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Scheme 3. 1. Scheme for synthesis of DPP based derivatives 5–7. 

 

The Pd-catalyzed Sonogashira cross-coupling reaction of dibromo 2 

with one equivalent of N-(4-ethynylphenyl) carbazole forms 3, which on 

subsequent Pd-catalyzed Sonogashira cross-coupling reaction with 1.1 

equivalents of N-(3-ethynylphenyl) carbazole gives 7 in 45% yield 

(Scheme 3.1). We have recently reported the synthesis and 

photophysical properties of para-substituted DPPs 10 and 11 which we 

have taken here for the sake of comparison. The Pd-catalyzed Stille 

cross–coupling reaction of 3 and 4 with 0.4 equivalents of 

bis(tributylstannyl)acetylene resulted in 55% and 53% yield of 8 and 9 

respectively (Scheme 3.2). 
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Scheme 3. 2. Synthesis of meta and para N-phenyl carbazole based 

DPP dimers 8 and 9. 

The carbazole substituted DPPs 5–9 were purified by repeated silica gel 

column chromatography and recrystallization techniques. The DPPs 5–

9 are readily soluble in common organic solvents and were fully 

characterized by 1H NMR, 13C NMR, (5–7) HRMS, (8 and 9) MALDI 

techniques. 

 

3.3. Photophysical and Thermal properties 

The electronic absorption spectra of DPPs 5–9 in 2×10-4 M 

concentration were recorded in dichloromethane at room temperature 

[Figure 3.2. (a) and (b)] and data are listed in Table 3.1.  

The carbazole based DPP monomers (5–7) and dimers (8 and 9) show 

absorption in visible to near-infrared (NIR) region. The para-N-phenyl 

carbazole based DPPs (10 and 11) showed red shifted absorption 

compared to their meta-substituted analogues (5–7). 

The DPPs 5–9 exhibit absorption maxima at 578 nm, 612 nm, 613 nm, 

621 nm, and 628 nm respectively which are due to π-π* transitions. The 

lower wavelength absorption maxima for 5–7 were observed at 541 nm, 

568 nm and 570 nm respectively. The di-N-phenyl carbazole based 

DPPs (6 and 11) exhibited red shifted absorption compared to mono- N-

phenyl carbazole based DPPs (5 and 10) respectively due to extension 

of conjugation. The absorption bands of para- N-phenyl carbazole 

substituted DPPs (8, 10 and 11) show red shifted absorption compared 

to their meta-substituted analogues (9, 5 and 6) respectively which may 

be due to better electronic communication.  
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Figure 3. 2. (a) Normalized electronic absorption spectra of DPPs 5–7 

and 10–11 in dichloromethane, (b) Normalized electronic absorption 

spectra of 5 and DPPs 8–10 in dichloromethane. 

The absorption maximum of asymmetric N-phenyl carbazole 

substituted DPP 7 lies in between 6 and 11. The ethyne bridged meta- 

and para- N-phenyl carbazole based DPP dimers 8 and 9 exhibit broad 

absorption bands and absorption maxima at 628 nm and 621 nm 

respectively. Red shift of 9 nm and 12 nm were observed for dimers 9 

and 8 compared to their monomer analogues 5 and 10 respectively. The 

optical band gap of 5–9 are 1.99 eV, 1.81 eV, 1.82 eV, 1.58 eV and 1.39 

eV respectively. The optical band gap follows the order 5 > 10 > 6 > 7 

> 11 > 9 > 8, which indicates that increase in conjugation length results 

in red shift of absorption maxima with lowering of optical gap. The 

Figure 3.2.(b) and Table 3.1. show that the dimerization of carbazole 

based DPP results in the red shifted broad absorption with lowering of 

optical gap. The colored photograph of N-phenyl carbazole based DPPs 

5–9 is shown in Figure 3.3. 
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Figure 3. 3. Photograph of DPPs 5–9 in DCM taken in day light. 

 

The emission spectra of 5–9 were recorded in dichloromethane at room 

temperature (Figure 3.4). The N-phenyl carbazole based DPP 

derivatives 5–7 are highly emissive in nature and show emission bands 

at 602 nm, 634 nm and 634 nm respectively. Fluorescence quantum 

yield for 5–9 are 0.64, 0.65, 0.79, 0.03 and 0.22 respectively using 

Rhodamine 6G in ethanol as standard which shows quenching of 

fluorescence takes place in dimers 8 and 9. 
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Figure 3. 4. Emission spectra of 5–9 in dichloromethane. 
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Figure 3. 5. Thermogravimetric analysis of DPPs 5–9 under a nitrogen 

atmosphere. 

 

The thermal properties of DPPs 5–9 were investigated by 

thermogravimetric analysis (TGA) under nitrogen atmosphere and their 

thermograms are shown in Figure 3.5. The DPPs 5–9 exhibit good 

thermal stability. The decomposition temperatures at 5% weight loss 

were found to be 402 oC, 426 oC, 414 oC, 279 oC, 297 oC 333 oC and 398 

oC for 5–11 respectively.  The thermal stability follows the order 6 > 7 

> 5 > 11 > 10 > 9 > 8 indicating that meta-substituted N-phenyl 

carbazole based DPPs exhibit higher thermal stability compared to that 

of para-substituted DPPs.[14] The carbazole based monomers are 

comparatively more stable than their dimer analogues. 
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Table 3. 1. The photophysical, thermal and computational properties 

of DPPs 5–11. 

DPP λabs (nm) ε 

(×104 M-1cm-1)a 

Tb
 

(oC) 

Ec 

 (eV) 

Ed 

(eV) 

5 578 

541 

2.7 

2.4 

402 1.99 2.22 

6 612 

568 

1.9 

1.6 

426 1.89 2.06 

7 613 

570 

3.8 

3.4 

414 1.88 2.04 

8 628 2.9 279 1.39 1.56 

9 621 6.2 297 1.58 1.58 

10 580 

543 

3.8 

3.5 

333 1.93 2.21 

11 616 

571 

6.3 

5.5 

398 1.73 2.03 

aAbsorbance measured in CH2Cl2 solution; ϵ: extinction coefficient; 

bDecomposition temperatures at 5% weight loss at a heating rate of 10 oC min-

1 under a nitrogen atmosphere; cOptical band gap; dTheoretical HOMO-LUMO 

gap. 

 

3.4. Electrochemical properties 

The electrochemical properties of carbazole based DPPs 5–9 were 

explored by cyclic voltammetry (CV) and differential pulse 

voltammetry (DPV) techniques in dichloromethane using 0.1 M 

tetrabutylammonium hexafluorophosphate (Bu4NPF6) as supporting 

electrolyte. The CV and DPV plots are shown in Figure 3.6. The 

corresponding electrochemical data are listed in Table 3.2.[14] 

DPPs 5–9 show two oxidation peaks, first corresponds to the oxidation 

of thiophene moiety and second related to oxidation of carbazole moiety 

respectively (Table 3.2). The DPPs 5–9 show one reduction peak 

corresponding to reduction of DPP moiety at -0.96 V, -0.96 V, -0.97 V, 

-0.97 V and -1.34 V respectively. The reduction potential of DPPs 5–11 

follow the trend 9 > 10=11 >7=8 >5=6 which indicate that para-
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substituted monomer (10 and 11) are difficult to reduce as compared to 

their meta-substituted monomer (5 and 6). 
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Figure 3. 6. CV (black line) and DPV plots (red line) of 5–9 in DCM.  
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The first oxidation potential of DPPs 5–11 follow the trend 8 >6=7 >5=9 

>10 >11 which indicate that meta substituted monomer 5–7 are difficult 

to oxidize as compared to para substituted monomer 10 and 11 while it 

is difficult to oxidize para substituted dimer 8 as compared to its meta 

analogue 9. The electrochemical data (Table 3.2) shows that the 

dimerization of meta N-phenyl carbazole based DPP makes reduction 

harder in 9 as compared to its monomer 5 whereas oxidation of para-N-

phenyl carbazole based DPP 8 is harder after dimerization. 

  

Table 3. 2. Electrochemical propertiesa of DPPs 5–11. 

DPP E1 

Red (V) 

E1 

Oxid (V) 

E2 

Oxid (V) 

 5 -0.96 0.95 1.39 

 6 -0.96 0.96 1.38 

 7 -0.97 0.96 1.40 

 8 -0.97 1.00 1.42 

 9 -1.34 0.95 1.49 

 10 -1.03 0.93 1.60 

 11 -1.03 0.92 1.20 

aThe electrochemical analysis was performed in a 0.1 M solution of Bu4NPF6 

in dichloromethane at 100 mVs−1 scan rate, versus Ag/Ag+ at 25 °C. 

 

3.5. Theoretical calculations 

 Density Functional Theory Calculations 

To get deeper insights into the structures and geometry of DPPs 5–9, 

density functional theory (DFT) calculations were carried out using the 

Gaussian 09W program.[19] The long alkyl chains on lactam ring was 

replaced by ethyl group to reduce the computation time. The DFT 

calculations were performed at the B3LYP/6-31+G** for C, H, O, N 

and S level of theory. 
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Figure 3. 7. Frontier molecular orbitals (FMOs) of 6, 7 and 11 estimated 

from DFT calculations. 

 

The electron density distribution of HOMO and LUMO in 6, 7 and 11 

shown in Figure 3.7. The FMOs of carbazole based dimers 8 and 9 are 

shown in Figure 3.8. The N-phenyl carbazole based DPPs show planar 

geometry and the HOMO and LUMO electron density is distributed on 

DPP unit. The electron density in HOMO and LUMO of dimers 8 and 9 

are located on both the DPP units. The calculated HOMO energy levels 

for 5–11 are -4.96, -4.97, -4.93, -4.82, -4.86, -4.93 and -4.90 eV and the 

corresponding LUMO levels are -2.74, -2.91, -2.89, -3.11, -3.13, -2.72 

and -2.87 eV respectively.  

 

Figure 3. 8. FMOs of 8 and 9 estimated by DFT calculations at B3LYP 

level. 

 

Time Dependent Density Functional Theory (TD-DFT) 

Calculation 

To get an idea about the various electronic transitions, the time 

dependent density functional theory (TD-DFT) calculation was 

performed. The results of TD-DFT indicates that 5 and DPPs 8–11 show 

two main electronic transitions in the Vis-NIR region whereas 6 and 7 

shows only one electronic transition in visible region. The major 
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electronic transitions of carbazole based DPPs with compositions, 

oscillator strengths and assignments are shown in Table 3.3. The 

transitions that occur from HOMO to LUMO in longer wavelength are 

due to π-π* transitions of DPP moiety. The other transitions in short 

wavelength region for 5, 10 and 11 are due to charge transfer 

transitions.The main charge transfer transition in 5, 10 and 11 occur 

from HOMO-3 to LUMO, HOMO-3 to LUMO and HOMO-5 to LUMO 

respectively while the other short wavelength transitions in 8 and 9 from 

HOMO-1 to LUMO+1 corresponds to π-π* transitions of DPP moiety. 

 

 

Table 3. 3. Major electronic transitions of DPPs 5–11 calculated by 

TD-DFT. 

Compound Wavelength 

(nm) 

Composition fa 

5 573 

381 

HOMO→LUMO (0.71) 

HOMO-3→LUMO (0.48) 

1.06 

0.51 

6 629 HOMO→LUMO (0.71) 1.77 

7 640 HOMO→LUMO (0.70) 1.99 

8 798 

552 

HOMO→LUMO (0.71) 

HOMO-1→LUMO+1 

(0.67) 

3.54 

0.50 

9 785 

545 

HOMO→LUMO (0.71) 

HOMO-1→LUMO+1 

(0.69) 

3.25 

0.39 

10 575 

388 

HOMO→LUMO (0.71) 

HOMO-3→LUMO (0.37) 

0.75 

0.20 

11 578 

366 

HOMO→LUMO (0.71) 

HOMO-5→LUMO (0.54) 

1.39 

0.25 

fa=oscillation strength 
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The DFT and TD-DFT calculations results show that, as the number of 

N-phenyl carbazole and DPP unit increases, it enhances the conjugation 

with the red shift in absorption that lowers the HOMO–LUMO gap. 

 

3.6. Experimental Section 

General Methods 

Chemicals were used as received unless otherwise indicated. All 

moisture-sensitive reactions were performed under an argon atmosphere 

using the standard Schlenk method. 1H NMR (400 MHz) and 13C NMR 

(100 MHz) spectra were recorded by using CDCl3 as the solvent. The 

1H NMR chemical shifts are reported in parts per million (ppm) relative 

to the solvent residual peak (CDCl3, 7.26 ppm). The multiplicities are 

given as s (singlet), d (doublet), t (triplet), or m (multiplet), and the 

coupling constants, J are expressed in Hz. The 13C NMR chemical shifts 

are reported relative to the solvent residual peak (CDCl3,77.02 ppm). 

HRMS and MALDI were recorded on an ESI–TOF and MALDI-TOF 

spectrometer. The UV/vis absorption spectra of DPPs were recorded on 

UV/vis spectrophotometer in CH2Cl2. The TGA analysis were 

performed on a thermal analysis system at the heating rate of 10oC/min 

under a nitrogen atmosphere. Cyclic voltammograms (CV) and 

differential pulse voltammograms (DPV) were recorded on an 

electrochemical analyzer using a glassy carbon working electrode, a Pt 

wire counter electrode, and a saturated Ag/Ag+ reference electrode. 

 

Synthesis of 5 

In a 100 mL round-bottom flask, 1 (0.250 g, 0.37 mmol) and N-(3-

ethynylphenyl) carbazole (0.111 g, 0.41 mmol) were dissolved in 

anhydrous tetrahydrofuran (20 mL) and triethylamine (5 mL). The 

reaction mixture was degassed with argon for 15 min and Pd(PPh3)4 

(0.017 g, 0.015 mmol), and CuI (0.006 g, 0.030 mmol) were then added. 

The reaction mixture was stirred overnight at 70oC. After completion of 

the reaction, the reaction mixture was allowed to cool down to room 

temperature. The solvent was removed under vacuum and the crude 
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product was purified by repeated silica gel column chromatography with 

hexane/DCM (3:1) as an eluent to get 5 in 60% yield. 

1H NMR (400 MHz, CDCl3, δ in ppm): 8.91 (2H, d, J = 4 Hz), 8.16 (2H, 

d, J = 8 Hz), 7.77 (1H, s), 7.62 (4H, m), 7.43 (5H, m), 7.29 (3H, m), 4.08 

(4H, m), 1.75 (4H, m), 1.42 (4H, m), 1.33 (24H, m), 0.85 (6H, m); 13C 

NMR (100 MHz, CDCl3, δ in ppm): 161.4, 140.7, 140.5, 138.8, 138.2, 

135.7, 135.2, 133.5, 131.1, 131.0, 130.4, 130.2, 130.0, 129.7, 128.7, 

127.9,127.8, 126.1, 124.3, 123.6, 120.4, 120.3, 109.7, 108.7, 107.9, 

96.4, 83.5, 42.4, 31.92, 31.91, 30.1, 30.0, 29.7, 29.6, 29.5,29.3, 26.9, 

22.7, 14.2, 14.1; HRMS (ESI) m/z calcd for C54H59N3S2O2 + Na: 

868.3941 [M + Na+], found 868.3948; UV/vis (Dichloromethane) λmax  

578 nm, ϵ [M-1cm-1] (2.7×104 ). 

 

Synthesis of 6 

In 100 mL round-bottom flask, 2 (0.250 g, 0.34 mmol) and N-(3-

ethynylphenyl) carbazole (0.199 g, 0.75 mmol) were dissolved in 

anhydrous tetrahydrofuran (20 mL) and triethylamine (5 mL). The 

reaction mixture was degassed with argon for 15 min and Pd(PPh3)4 

(0.017 g, 0.015 mmol) and CuI (0.005 g, 0.027 mmol) were then added. 

The reaction mixture was stirred overnight at 70oC. After completion, 

the reaction mixture was allowed to cool to room temperature. The 

solvent was removed under vacuum and the crude was purified by silica 

gel column chromatography with hexane/CH2Cl2 (3:1) as an eluent to 

get 6 in 65 % yield. 

1H NMR (400 MHz, CDCl3, δ in ppm): 8.94 (2H, d, J = 4 Hz), 8.16 (4H, 

d, J = 8 Hz), 7.62 (8H, m), 7.32 (14H, m), 4.06 (4H, s), 1.75 (4H, m), 

1.43 (6H, m), 1.25 (22H, m), 0.84 (6H, m) ); 13C NMR (100 MHz, 

CDCl3, δ in ppm): 160.9, 140.4, 138.9, 137.9, 135.3, 133.3, 130.6, 

130.2, 130.0, 129.9, 129.7, 127.9, 127.7, 127.6, 125.9, 123.9, 123.3, 

120.3, 120.2, 120.1, 120.0, 109.6, 109.54, 109.52, 109.51, 109.4, 108.6, 

83.2, 53.51, 53.50, 53.44, 53.41, 53.2, 42.2, 31.74, 31.71, 31.70, 31.68, 

31.60, 30.0, 29.9, 29.8, 29.6, 29.5, 29.4, 29.3, 29.2, 29.1, 29.0, 26.73, 

26.71, 26.6, 22.4, 13.92, 13.90; HRMS (ESI) m/z calcd for 
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C74H70N4O2S2 + Na: 1133.4832 [M + Na+], found 1133.4927; UV/Vis 

(Dichloromethane) λmax 612 nm, ϵ [M-1cm-1] (1.9×104). 

 

Synthesis of 7 

In a 250 mL round-bottom flask, 2 (0.500 g, 0.68 mmol) and N-(4-

ethynylphenyl) carbazole (0.182 g, 0.68 mmol) were dissolved in 

anhydrous tetrahydrofuran (20 mL) and triethylamine (5 mL). The 

reaction mixture was degassed with argon for 15 min and Pd(PPh3)4 

(0.039 g, 0.034 mmol), and CuI (0.006 g, 0.030 mmol) were then added. 

The reaction mixture was stirred overnight at 65oC. After completion, 

the reaction mixture was allowed to cool to room temperature. The 

solvent was removed under vacuum and the crude was purified by silica 

gel column chromatography with hexane/CH2Cl2 (3:1) as an eluent to 

get 3 in 40% yield and then in a 100 mL round-bottom flask, 3 (0.200 g, 

0.21 mmol) and N-(3-ethynylphenyl) carbazole (0.067, 0.25 mmol) were 

dissolved in anhydrous tetrahydrofuran (20 mL) and triethylamine (5 

mL). The reaction mixture was degassed with argon for 15 min and 

Pd(PPh3)4 (0.017 g, 0.015 mmol), and CuI (0.006 g, 0.030 mmol) were 

then added. The reaction mixture was stirred overnight at 65oC. After 

completion, the reaction mixture was allowed to cool to room 

temperature. The solvent was removed under vacuum and the crude was 

purified by silica gel column chromatography with hexane/CH2Cl2 (3:1) 

as an eluent to get 7 in 45% yield. 

1H NMR (400 MHz, CDCl3, δ in ppm): 8.96 (2H, s), 8.15 (4H, m), 7.80 

(2H, d, J= 8 Hz), 7.63 (5H, m), 7.45 (9H, m), 7.33 (6H, m), 4.10 (4H, d, 

J = 8 Hz), 1.76 (4H, m), 1.44 (4H, m), 1.34 (24H, m), 0.86 (6H, m); 13C 

NMR (100 MHz, CDCl3, δ in ppm): 161.2, 140.7, 140.4, 139.2, 139.1, 

138.2, 135.6, 135.5, 133.5, 133.4, 133.1, 130.9, 130.7, 130.4, 130.2, 

130.0, 128.8, 128.1, 127.9, 126.9, 126.1, 124.2, 123.7, 123.5, 121.0, 

120.4, 120.3, 109.7, 108.9, 108.8, 96.6, 83.5, 83.2, 42.4, 31.9, 30.1, 29.5, 

29.4, 29.3, 29.2, 26.9, 22.7, 14.1; HRMS (ESI) m/z calcd for 

C74H70N4O2S2 + Na: 1133.4832 [M + Na+ ], found 1133.4870; UV/Vis 

(Dichloromethane) λmax 613 nm, ϵ [M-1cm-1] (3.8×104 ). 
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Synthesis of 8 

In a 250 mL round-bottom flask, 2 (0.500 g, 0.68 mmol) and N-(4-

ethynylphenyl) carbazole (0.182 g, 0.68 mmol) were dissolved in 

anhydrous tetrahydrofuran (20 mL) and triethylamine (5 mL). The 

reaction mixture was degassed with argon for 15 min and Pd(PPh3)4 

(0.039 g, 0.034 mmol), and CuI (0.006 g, 0.030 mmol) were then added. 

The reaction mixture was stirred overnight at 65oC. After completion, 

the reaction mixture was allowed to cool to room temperature. The 

solvent was removed under vacuum and the crude was purified by silica 

gel column chromatography with hexane/CH2Cl2 (3:1) as an eluent to 

get 3 in 35% yield and then in a 100 mL round-bottom flask, 3 (0.200 g, 

0.21 mmol) were dissolved in 20 mL toluene. The reaction mixture was 

degassed with argon for 15 min and Pd(PPh3)4 (0.039 g, 0.034 mmol) 

and Bis(tributylstannyl)acetylene (0.065 g, 0.11 mmol) were then added. 

The reaction mixture was stirred overnight at 85 oC. After completion, 

the reaction mixture was allowed to cool to room temperature. The 

solvent was removed under vacuum and the crude was purified by silica 

gel column chromatography with hexane/DCM (1:1) as an eluent to get 

8 in 55% yield. 

1H NMR (400 MHz, CDCl3, δ in ppm): 8.97 (2H, s), 8.14 (4H, s), 

7.61(26H, m), 4.08 (8H, s), 1.76 (8H, m), 1.42 (58H, m), 0.93 (14H, m); 

13C NMR (100 MHz, CDCl3, δ in ppm): 140.7, 134.6, 130.5, 130.3, 

128.2, 126.2, 123.6, 120.5, 120.3, 109.8, 109.7, 42.5, 32.0, 30.2, 29.8, 

29.7, 29.6, 29.5, 29.4, 27.0 22.8, 14.2; MALDI m/z calcd for 

C110H116N6O4S4: 1713.7974 [M+], found 1713.979; UV/Vis 

(Dichloromethane) λmax 628 nm, ϵ [M-1cm-1] (2.9×104 ). 

 

Synthesis of 9 

In a 250 mL round-bottom flask, 2 (0.500 g, 0.68 mmol) and N-(3-

ethynylphenyl) carbazole (0.182 g, 0.68 mmol) were dissolved in 

anhydrous tetrahydrofuran (20 mL) and triethylamine (5 mL). The 

reaction mixture was degassed with argon for 15 min and Pd(PPh3)4 

(0.039 g, 0.034 mmol), and CuI (0.006 g, 0.030 mmol) were then added. 

The reaction mixture was stirred overnight at 65oC. After completion, 
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the reaction mixture was allowed to cool to room temperature. The 

solvent was removed under vacuum and the crude was purified by silica 

gel column chromatography with hexane/CH2Cl2 (3:1) as an eluent to 

get 4 in 35% yield and then in a 100 mL round-bottom flask 4 (0.200 g, 

0.21 mmol) were dissolved in 20 mL toluene. The reaction mixture was 

degassed with argon for 15 min and Pd(PPh3)4 (0.039 g, 0.034 mmol) 

and Bis(tributylstannyl)acetylene (0.065 g, 0.11 mmol) were then added. 

The reaction mixture was stirred overnight at 85 oC. After completion, 

the reaction mixture was allowed to cool to room temperature. The 

solvent was removed under vacuum and the crude was purified by silica 

gel column chromatography with hexane/DCM (1:1) as an eluent to get 

9 in 53% yield. 

1H NMR (400 MHz, CDCl3, δ in ppm): 8.94 (2H, s), 8.13 (4H, s), 7.50 

(10H, m), 7.35 (10H, m), 7.25 (6H, m), 4.04 (8H, m), 1.73 (8H, m), 1.41 

(54H, m), 0.84 (14 H, m); 13C NMR (100 MHz, CDCl3, δ in ppm): 140.7, 

134.6, 130.5, 130.3, 128.2, 126.2, 123.6, 120.5, 120.3, 109.8, 109.7, 

42.5, 32.0, 30.23, 30.21, 30.1, 29.82, 29.80, 29.8, 29.7, 29.6, 29.5, 29.4, 

27.0, 26.98, 22.82, 22.80, 14.2; MALDI m/z calcd for C110H116N6O4S4: 

1713.7974 [M+], found 1713.945; UV/Vis (Dichloromethane) λmax 621 

nm, ϵ [M-1cm-1] (6.2×104 ). 

 

3.7. Conclusions 

We have designed and synthesized meta- and para-substituted 

symmetrical as well as unsymmetrical N-phenyl carbazole based DPP 

derivatives 5–9 in order to see the effect of number of donor and 

acceptor unit on photophysical and electrochemical properties of DPP. 

The N-phenyl carbazole based DPP derivatives exhibit broad absorption 

in visible to NIR region. The para substituted DPPs show red shifted 

absorption compared to their meta-substituted analogues. The 

dimerization of N-phenyl carbazole based DPP results in the red shifted 

broad absorption with lowering of HOMO-LUMO gap. The quenching 

of fluorescence was observed in emission spectra of dimers 8 and 9. The 

electrochemical investigation showed multiple oxidation waves due to 

thiophene and carbazole donors whereas only one reduction wave was 
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observed which is related to reduction of DPP unit. The broad absorption 

in Vis-NIR region, low HOMO-LUMO gap and good thermal stability 

make these derivatives potential candidates for optoelectronic 

applications. 
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Chapter 04: Symmetrical and Unsymmetrical N, 

N-dimethylaniline/Triphenylamine 

Functionalized Diketopyrrolopyrroles 

 

4.1. Introduction 

The use of solar energy for the production of clean and renewable fuels 

is required for fulfilling the future energy demands. In this direction, the 

field of organic electronics has drawn great deal of attention of scientific 

community.[1-11] Organic small molecules with extensive π–conjugation 

based on donor– acceptor (D–A) framework have been studied for their 

wide range of optoelectronic applications such as OSCs, nonlinear 

optical (NLO) switches, sensors, fluorescent near-infrared (NIR) probes 

and data storage devices.[12-27] The optoelectronic properties of D–A 

framework can be tuned by designing D–π–A–π–D, A–π–D–π–A, D–π–

A type of molecular systems.[28-37] Diketopyrrolopyrrole (DPP) is π–

conjugated bicyclic di–lactam moiety and is one of the widely used 

organic dyes due to its simple synthesis and excellent thermal 

stability.[28-40] DPP derivatives exhibit poor solubility in organic 

solvents due to strong π–π interactions and Hydrogen bonding 

interactions but the N–alkylation enhances its solubility in common 

organic solvents.[41-48] DPP possesses features like strong electron 

accepting property, planarity and high fluorescence quantum yield.[49-55] 

The combination of donor thiophene with acceptor DPP (i.e. dithienyl 

DPP) led to small organic molecule with absorption in visible region. 

The literature reveals that DPP coupled with a variety of donors are 

explored as small organic molecules for BHJ solar cells. A variety of 

linear and star shaped DPP derivatives have been reported for 

optoelectronic applications. The nature of donor used for the design of 

efficient small organic molecules significantly influences the D–A 

interaction.[54,55] N, N-dimethylaminophenyl and Triphenylamine (TPA) 

are widely used donor unit for the synthesis of various organic 

molecules based on D–A framework. 1,1,4,4-Tetracyanobutadiene 
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(TCBD) is a strong electron-withdrawing group that can be incorporated 

into electron-rich alkynes by [2+2] cycloaddition–

retroelectrocyclization reaction. The motivation of choosing this work 

is to compare the changes observed in the photophysical and 

electrochemical properties on substituting two sides of acceptor (DPP) 

with different donors (N, N-dimethylaniline and TPA) and to study 

further the effect of incorporation of TCBD moiety. Herein We designed 

and synthesized symmetrical and unsymmetrical DPP based derivatives 

NDPPs 1–8 by the Sonogashira cross-coupling reaction and followed 

by [2+2] cycloaddition–retroelectrocyclization reaction.  

 

Figure 4. 1. Chemical structure of symmetrical and unsymmetrical DPP 

based derivatives NDPPs 1–8 

 

4.2. Results and Discussion 

The symmetrical and unsymmetrical N, N-

dimethylaminophenyl/Triphenylamine functionalized DPP derivatives 

(NDPPs 1–8) were synthesized using a Pd-catalyzed Sonogashira cross-

coupling reaction followed by [2+2] cycloaddition-

retroelectrocyclization reactions with tetracyanoethylene (TCNE) as 

shown in Figure 4.1. The Sonogashira cross-coupling reaction of DPP 

1 with an equivalent of 4-ethynyl-N, N-dimethylaniline in toluene as 

solvent and triethylamine as a base at 80oC for 12 h gives NDPP 1 in 

60% yield. Similarly, the reaction of DPP 2 with two equivalents of 4-

ethynyl-N, N-dimethylaniline at 80oC for 12 h yielded NDPP 3 in 70% 

yield and synthesized here for the sake of comparison as shown in 

Scheme 4.1. 
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Scheme 4. 1. Synthesis of N, N-Dimethylaminophenyl functionalized 

DPP based derivatives NDPPs 1–5.  

Further, DPP 3 underwent a Sonogashira cross-coupling reaction with 

an equivalent of Triphenylamine at 80oC for 12 h in toluene as solvent 

and triethylamine as solvent gives NDPP 6 in 75% yield. The [2+2] 

cycloaddition-electrocyclization reaction of NDPP 1 with an equivalent 

of TCNE in dichloromethane as solvent at room temperature for 1 h 

yielded NDPP 2 in 85% yield, while NDPP 3 reacted with 1.0 and 2.0 

equivalents of TCNE in DCM solvent at room temperature to give 

NDPP 4 and NDPP 5 in 75% and 90% yields, respectively. The reaction 

of the unsymmetrical DPP-based derivative NDPP 6 with 1.0 and 2.0 

equivalents of TCNE in DCM at room temperature produced NDPP 7 
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and NDPP 8 in yields of 80% and 85%, respectively, as shown in 

Scheme 4.2. 

 

Scheme 4. 2. Synthesis of N, N-Dimethylaminophenyl and 

triphenylamine functionalized DPP based derivatives NDPPs 6–8. 

All the synthesized N, N-dimethylaniline/Triphenylamine 

functionalized DPPs NDPPs 1–8 were purified by repeated silica gel 

column chromatography and recrystallization techniques and are readily 

soluble in common organic solvents such as dichloromethane, 

chloroform, toluene, tetrahydrofuran, ethyl acetate and 

dimethylsulfoxide.and were fully characterized by common 

spectroscopic techniques (1H NMR, 13C NMR and HRMS). The ¹H 

NMR spectra of NDPP 6 exhibit a singlet for the six methyl protons of 

the N, N-dimethylaminophenyl group at 3.0 ppm, and the four phenyl 

protons of the same group appear in the region of 6.5–7.5 ppm. After 

incorporating a tetracyanobutadiene group (NDPP 7), the singlet for the 
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six methyl protons shifts to 3.12 ppm, and the peaks for the four phenyl 

protons shift beyond 7.5 ppm. This shift indicates that the TCNE attack 

initially occurs at the more electron-rich acetylene bridge linked to the 

N, N-dimethylaminophenyl group, resulting in the synthesis of NDPP 7. 

This suggests the strong donor strength of the N, N-

dimethylaminophenyl group relative to the triphenylamine group. 

 

4.3. Photophysical properties 

The electronic absorption spectra of symmetrical and unsymmetrical 

DPP based derivatives NDPPs 1–8 were recorded in DCM solution at 

1.0 × 10-5 M and as film at room temperature (Figure 4.2.) and the 

corresponding data are listed in Table 4.1. 

The acetylene bridged derivatives NDPP 1, NDPP 3 and NDPP 6 

exhibits a broad absorption band in the region of 400–700 nm 

corresponding to π-π* transition. A red shifted absorption band was 

observed for disubstituted DPP based derivatives (NDPP 3 and NDPP 

6) relative to mono-substituted DPP based derivative (NDPP 1) due to 

extended conjugation. In the TCBD bridged derivatives (NDPP 2, 

NDPP 4, NDPP 5, NDPP 7 and NDPP 8) red shift in absorption band 

were observed relative to the corresponding acetylene bridged 

derivatives (NDPP 1, NDPP 3 and NDPP 6) due to increase in donor-

acceptor interactions as well as two absorption bands were observed, 

one at the shorter wavelength corresponding to π-π* transition and other 

at longer wavelength corresponding to Intramolecular charge transfer 

(ICT) from donor to acceptor unit. Substitution of one N, N-

dimethylaniline group of NDPP 3 with TPA as a donor yields 

unsymmetrical derivative NDPP 6. The blue shifted absorption maxima 

of triphenylamine linked DPP derivatives NDPP 6 (629 nm) and NDPP 

7 (722 nm) relative to N, N-dimethylaminophenyl linked DPP 

derivatives NDPP 3 (632 nm) and NDPP 4 (732 nm) indicate strong 

donor-acceptor interactions in N, N-dimethylaminophenyl linked DPP 

derivatives. 
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Figure 4. 2. Normalized electronic absorption spectra of NDPPs 1–8 in 

dichloromethane at 1.0 × 10−5 M concentration (solid line) and as thin 

film (dashed lines). 

The optical band gap and theoretical HOMO-LUMO gap of NDPPs 1–

8 were calculated from onset absorption and time dependent density 

functional theory (TD-DFT) calculations respectively and the data are 

listed in Table 4.1. implies that the incorporation of TCBD unit 

significantly lowers the HOMO–LUMO gap. 
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Table 4. 1. The optical and theoretical/computational properties of 

NDPPs 1–8. 

NDPP λabs(nm)a λabs(nm)b ε 

(×104 M-

1cm-1)a 

Ec (eV) Ed (eV) 

NDPP 1 585 

558 

605 

538 

1.48 

1.32 

1.89 2.17 

NDPP 2 678 

467 

783 

496 

1.11 

1.41 

1.54 1.92 

NDPP 3 632 

598 

711 

597 

4.72 

1.41 

1.75 1.99 

NDPP 4 732 

467 

776 

478 

0.61 

0.58 

1.40 1.67 

NDPP 5 734 

682 

471 

765 

702 

488 

1.72 

1.43 

3.06 

1.48 1.75 

NDPP 6 629 

594 

650 

607 

0.97 

0.83 

1.76 2.07 

NDPP 7 722 

467 

737 

477 

1.02 

0.92 

1.40 1.68 

NDPP 8 738 

683 

473 

768 

700 

485 

0.70 

0.57 

1.11 

1.48 1.74 

a Absorbance measured in DCM solution; ϵ: extinction coefficient; babsorbance 

measured in film; cOptical band gap; dTheoretical band gap. 

 

 The computational calculations showed good agreement with 

experimental absorption spectra. The absorption band get broadened up 

to 1000 nm in thin film compared to in solution due to aggregation in 

solid state. The solvent dependent absorption spectra of NDPPs 1–8 

were recorded in toluene, dichloromethane (DCM), tetrahydrofuran 

(THF), ethylacetate (EAA) and N, N-dimethylformamide (DMF) 

solvents at concentration of 1.0 × 10-5 M. In the acetylene bridged 

derivatives (NDPP 1, NDPP 3 and NDPP 6), no significant changes 
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were observed in the absorption spectra with the increase in polarity of 

solvent while in TCBD bridged derivatives (NDPP 2, NDPP 4, NDPP 

5, NDPP 7 and NDPP 8) blue shifts in the absorption band at longer 

wavelength was observed while no significant change were observed in 

the absorption band at shorter wavelength with the increase in polarity 

of solvent as shown in Figure 4.3. 
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Figure 4. 3. Normalized absorption spectra of NDPP 1 and NDPP 4 in 

different solvents at 1.0 × 10−5 M concentration. 
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4.4. Electrochemical properties 

The electrochemical properties of the symmetrical and unsymmetrical 

N, N-dimethylaniline/TPA functionalized DPP derivatives NDPPs 1–8 

were explored by cyclic voltammetry (CV) technique in 

dichloromethane solvent using 0.1M tetrabutylammonium 

hexafluorophosphate (Bu4NPF6) as a supporting electrolyte. The cyclic 

voltammograms of NDPPs 1–8 are shown in Figure 4.4. and the 

corresponding redox data are listed in Table 4.2. 

The acetylene bridged derivatives NDPPs 1, 3 and 6 exhibit one 

reduction waves corresponding to reduction of DPP unit. The TCBD 

bridged NDPPs 2, 4, 5, 7 and 8 exhibit three reduction waves in which 

first two waves correspond to the reduction of TCBD moiety into mono- 

and di- anion formation and the remaining wave corresponds to the 

reduction of DPP moiety. The derivatives NDPPs 1–8 exhibit multiple 

oxidation waves corresponding to oxidation of various donors such as 

N, N-dimethylaminophenyl, Triphenylamine and thiophene attached to 

DPP unit. 

The first oxidation potential of NDPPs 1–8 follow the trend NDPP 

5>NDPP 8>NDPP 2>NDPP 7> NDPP 6> NDPP 4>NDPP 1> NDPP 

3. The redox properties revealed that it was difficult to oxidize the 

TCBD incorporated derivatives (NDPPs 2, 4, 5, 7 and 8) relative to their 

corresponding acetylene bridged derivatives (NDPPs 1, 3 and 6) 

however reduction becomes easier in the former ones due to presence of 

strong acceptor (Tetracyanobutadiene).  

 



93 

-2.0 -1.5 -1.0 -0.5 0.0

0.0

5.0µ

10.0µ

15.0µ

C
u

rr
e

n
t 

(A
)

Potential Vs SCE (V)

 NDPP 1

 NDPP 3

 NDPP 6
 

 

0.0 0.5 1.0 1.5 2.0

-25.0µ

-20.0µ

-15.0µ

-10.0µ

-5.0µ

0.0

5.0µ

C
u

rr
e
n

t 
(A

)

Potential Vs SCE (V)

 NDPP 1

 NDPP 3

 NDPP 6

 



94 

-2.0 -1.5 -1.0 -0.5 0.0

-10.0µ

-5.0µ

0.0

5.0µ

10.0µ

15.0µ

20.0µ

25.0µ

30.0µ
C

u
rr

e
n

t 
(A

)

Potential Vs SCE (V)

 NDPP 2

 NDPP 4

 NDPP 5

 NDPP 7

 NDPP 8

 

0.0 0.5 1.0 1.5 2.0

-20.0µ

-15.0µ

-10.0µ

-5.0µ

0.0

5.0µ

C
u

rr
e

n
t 

(A
)

Potential Vs SCE (V)

 NDPP 2

 NDPP 4

 NDPP 5

 NDPP 7

 NDPP 8

 

Figure 4. 4. Cyclic voltammograms of NDPPs 1–8 in DCM using 

TBAF as electrolyte. 
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The electrochemical data (Table 4.2.) shows that the substitution of 

triphenylamine on side of DPP makes reduction easier in NDPP 6 as 

compared to its symmetrical N, N-dimethylaminophenyl functionalized 

derivative NDPP 3 whereas oxidation becomes difficult due to the 

presence of relatively weak donor triphenylamine. 

 

Table 4. 2. The redox propertiesa of symmetrical and unsymmetrical 

DPP based derivatives NDPPs 1–8. 

 

NDPP 

E3 

Red 

(V) 

E2 

Red 

(V) 

E1 

Red  

(V) 

E1 

Oxid 

(V) 

E2 

Oxid  

(V) 

E3 

Oxid  

(V) 

NDPP 1 - - -1.23 0.81 1.03 1.19 

NDPP 2 -1.49 -0.65 -0.43 1.17 1.44 - 

NDPP 3 - - -1.18 0.77 1.20 1.53 

NDPP 4 -1.43 -0.66 -0.45 0.88 1.15 - 

NDPP 5 -1.65 -0.84 -0.39 1.47 - - 

NDPP 6 - - -1.66 0.91 1.23 1.56 

NDPP 7 -1.57 -0.65 -0.46 1.00 1.18 1.42 

NDPP 8 -1.61 -0.77 -0.35 1.35 - - 

aThe electrochemical analysis was performed in a 0.1 M solution of Bu4NPF6 

in dichloromethane at 100 mVs−1 scan rate, versus SCE at 25 °C. 

 

4.5. Theoretical calculations 

 Density Functional Theory Calculations 

The density functional theory (DFT) calculations were carried out to 

understand the geometry, and the electronic structure of the symmetrical 

and unsymmetrical N, N-dimethylaminophenyl/Triphenylamine 

functionalized derivatives NDPPs 1–8 using the Gaussian09W 

program.[56] The long alkyl chains on lactam ring were replaced by ethyl 

group to reduce the computation time. The DFT calculations were 

performed at the B3LYP/6-31+G** for C, H, O, N and S level of theory. 

The frontier molecular orbitals (FMOs) of NDPPs 2-8 are shown in 

Figure 4.5. 
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Figure 4. 5. HOMO-LUMO gap of NDPPs 3-8 calculated via 

B3LYP/6-31+G** for C, H, O, N and S level of theory. 

 

The electron density at highest occupied molecular orbitals (HOMOs) 

of NDPPs 1, 3 and 6 are distributed over the whole molecule whereas 

the electron density in their lowest unoccupied molecular orbitals 

(LUMOs) are localized mainly on the DPP core as shown in Figure 4.5. 

The D–A interaction has been observed in TCBD bridged NDPPs 2, 4, 

5, 7 and 8 from donors (N, N-dimethylaminophenyl/TPA to acceptors 

(DPP and TCBD moieties) which is reflected from FMOs. The 

calculated HOMO energy levels for NDPPs 1–8 are -4.62, -5.40, -4.40, 

-5.00, -5.73, -4.52, -5.07, -5.73 eV and the corresponding LUMO levels 

are -2.45, -3.48, -2.41, -3.33, -2.45, -3.39 and -3.99 eV respectively. The 

theoretically calculated HOMO-LUMO gap follow the trend NDPP 

1>NDPP 6>NDPP 3>NDPP 2>NDPP 5>NDPP 8>NDPP 7>NDPP 4. 

 

Time Dependent Density Functional Theory (TD-DFT) Calculation 

To get an idea about the various electronic transitions, the time 

dependent density functional theory (TD-DFT) calculation was 

performed. The major electronic transitions in NDPPs 1–8 calculated 

from TD–DFT with composition and oscillator strengths are shown in 

Table 4.3. The transitions that occur from HOMO→LUMO in longer 
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wavelength are due to intramolecular charge transfer while the other 

transitions in shorter wavelength region for NDPPs 1, 3 and 6 are due 

to π-π* transitions of DPP moiety. The ICT band in TCBD incorporated 

DPP based derivatives NDPPs 2, 4, 5, 7 and 8 arises from the transitions 

HOMO-1→LUMO+1, HOMO→LUMO, HOMO-1→LUMO+1, 

HOMO→LUMO, HOMO→LUMO respectively while the other major 

transitions correspond to π-π* transition. The HOMO–LUMO gap 

values obtained from DFT calculations shows that the incorporation of 

TCBD unit lowers the HOMO-LUMO gap in NDPPs 1, 3 and 6 which 

found to be in good agreement with the optical band gap values from the 

onset absorption. 

 

Table 4. 3. Major electronic transitions of NDPPs 1-8 calculated by 

TD-DFT. 

NDPP Wavelength 

(nm) 

Composition Oscillation 

strength 

(fa) 

NDPP 1 555.34 

419.01 

376.62 

HOMO→LUMO 

(0.71) 

HOMO-1→LUMO 

(0.63) 

HOMO→LUMO+1 

(0.50) 

0.92 

0.13 

0.12 

NDPP 2 674.16 

455.28 

430.00 

 

HOMO→LUMO 

(0.70) 

HOMO→LUMO+2 

(0.63) 

HOMO-

1→LUMO+1 (0.69) 

 

0.73 

0.14 

0.12 

NDPP 3 575.17 

396.03 

HOMO→LUMO 

(0.71) 

1.27 

0.16 
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HOMO→LUMO+1 

(0.43) 

NDPP 4 695.36 

470.82 

423.23 

HOMO→LUMO 

(0.70) 

HOMO→LUMO+2 

(0.64) 

HOMO-

2→LUMO+1 (0.63) 

1.02 

0.15 

0.13 

NDPP 5 738.78 

537.74 

457.62 

HOMO→LUMO 

(0.71) 

HOMO→LUMO+2 

(0.70) 

HOMO-

1→LUMO+1 (0.68) 

1.19 

0.05 

0.01 

NDPP 6 676.37 

445.24 

380.39 

HOMO→LUMO 

(0.70) 

HOMO-1→LUMO 

(0.66) 

HOMO-5→LUMO 

(0.50) 

0.36 

0.34 

0.09 

NDPP 7 691.48 

465.85 

429.93 

HOMO→LUMO 

(0.70) 

HOMO→LUMO+2 

(0.63) 

HOMO-

2→LUMO+1 (0.69) 

1.01 

0.16 

0.14 

NDPP 8 584.24 

459.46 

HOMO→LUMO 

(0.70) 

HOMO-

1→LUMO+1 (0.63) 

0.99 

0.10 

           fa=oscillation strength 
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4.6. Experimental Section 

General methods 

The chemicals were used as received unless otherwise indicated. All the 

moisture sensitive reactions were performed under argon atmosphere 

using the standard Schlenk method. 1H NMR (400 MHz) and 13C NMR 

(100 MHz) spectra were recorded by using CDCl3 as the solvent. The 

1H NMR chemical shifts are reported in parts per million (ppm) relative 

to the solvent residual peak (CDCl3, 7.26 ppm). The multiplicities are 

given as: s (singlet), d (doublet), m (multiplet), and the coupling 

constants, J, are given in Hz. The 13C NMR chemical shifts are reported 

with relative to the solvent residual peak (CDCl3, 77.02 ppm). HRMS 

were recorded on a mass spectrometer (ESI-TOF). The absorption 

spectra of DPPs were recorded on UV-visible Spectrophotometer in 

dichloromethane. Cyclic voltammograms (CVs) were recorded on an 

electrochemical analyzer using glassy carbon as working electrode, Pt 

wire as the counter electrode, and saturated calomel electrode as the 

reference electrode. 

 

Synthesis of NDPP 1 

DPP 1 (0.250 g, 0.37 mmol) and 4-ethynyl-N, N-dimethylaniline (0.080 

g, 0.55 mmol) were dissolved in a 100 mL round bottom flask containing 

anhydrous toluene (20 mL) and triethylamine (5 mL). The reaction 

mixture was degassed with argon for 20 min followed by addition of 

Pd(PPh3)4 (0.017 g, 0.015 mmol), and CuI (0.006 g, 0.030 mmol). The 

reaction mixture was stirred overnight at 80oC. The reaction mixture was 

allowed to cool down at room temperature after completion of reaction. 

The solvent was removed under vacuum and the crude product was 

purified by repeated silica gel column chromatography with 

hexane/DCM (3:2) as an eluent to get NDPP 1 in 60% yield. 

1H NMR (400 MHz, CDCl3, δ in ppm): 8.93 (2H, m), 8.66 (1H, m), 7.62 

(1H, d), 7.39 (2H, m), 7.31 (1H, m), 6.66 (1H, m), 6.56 (1H, m), 4.02 

(4H, m), 2.88 (6H, m), 1.73 (4H, m), 1.33 (28H, m), 0.86 (6H, m) ; 13C 

NMR (100 MHz, CDCl3, δ in ppm): 161.4, 161.2, 150.6, 139.6, 139.5, 

135.8, 135.2, 133.1,132.9, 131.9, 130.6, 130.2, 129.9, 129.3, 128.6, 
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112.0, 111.7, 108.6, 108.0, 107.9, 80.8, 42.3, 40.1, 31.9, 30.1, 30.0, 29.5, 

29.3, 29.2, 26.9, 22.7, 14.1; HRMS m/z calcd for C44H57N3O2S2: 

746.3784 [M+Na+], found 746.3282; UV/vis (Dichloromethane) λmax  

585 nm, ϵ [M-1cm-1] (1.48×104 ).   

 

Synthesis of NDPP 2 

NDPP 1 (0.100 g, 0.138 mmol) and tetracyanoethylene (0.026 g, 0.207 

mmol) were dissolved in 50 mL round bottom flask containing 

anhydrous dichloromethane under argon atmosphere. The reaction 

mixture was allowed to stirred for 15 minutes at room temperature. The 

solvent was removed under vaccum and the crude product was purified 

by repeated silica gel column chromatography with hexane/DCM (1:4) 

as an eluent to get NDPP 2 in 85% yield.[58] 

1H NMR (400 MHz, CDCl3, δ in ppm): 8.96 (2H, s), 7.41 (4H, d), 7.31 

(2H, s), 6.65 (4H, m), 4.09 (4H, s), 3.02 (12H,s), 1.76 (4H, s), 1.35 (28H, 

m), 0.87 (6H, s); 13C NMR (100 MHz, CDCl3, δ in ppm): 161.2, 150.6, 

139.0, 135.7, 132.9, 131.9, 130.1, 129.4, 111.7, 108.7, 108.3, 100.0, 

80.9, 42.4, 40.1, 31.9, 30.1, 29.6, 29.3, 26.9, 22.7, 14.1; HRMS m/z 

calcd for C54H66N4O2S2: 889.4519 [M+Na+], found 889.4521; UV/vis 

(Dichloromethane) λmax  632 nm, ϵ [M-1cm-1] (4.72×104 ).  

 

 Synthesis of NDPP 3 

DPP 2 (0.250 g, 0.34 mmol) and 4-ethynyl-N, N-dimethylaniline (0.122 

g, 0.84 mmol) were dissolved in a 100 mL round bottom flask containing 

anhydrous toluene (20 mL) and triethylamine (5 mL). The reaction 

mixture was degassed with argon for 20 min followed by addition of 

Pd(PPh3)4 (0.017 g, 0.015 mmol), and CuI (0.006 g, 0.030 mmol). The 

reaction mixture was stirred overnight at 80oC. The reaction mixture was 

allowed to cool down at room temperature after completion of reaction. 

The solvent was removed under vacuum and the crude product was 

purified by repeated silica gel column chromatography with 

hexane/DCM (3:2) as an eluent to get NDPP 3 in 70% yield. 

1H NMR (400 MHz, CDCl3, δ in ppm): 9.16 (1H, d), 9.02 (1H, d), 7.78 

(4H, m), 7.34 (1H, s), 6.71 (2H, d), 4.07 (4H, s), 3.17 (6H, s), 1.72 (4H, 
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m), 1.41 (28H, m), 0.87 (6H, m); 13C NMR (100 MHz, CDCl3, δ in ppm): 

162.0, 161.4, 160.6, 157.9, 154.6, 143.9, 139.9, 137.9, 137.3, 135.6, 

135.1, 133.3, 132.5, 129.2, 117.7, 114.2, 113.3, 113.1, 112.7, 112.3, 

111.9, 108.4, 80.1, 42.7, 42.5, 40.2, 31.9, 30.4, 29.8, 29.5, 29.3, 29.2, 

26.8, 22.7, 14.2, 14.1; HRMS m/z calcd for C50H57N7O2S2: 874.3907 

[M+Na+], found 874.3336; UV/vis (Dichloromethane) λmax  678 nm, ϵ 

[M-1cm-1] (1.11×104 ).  

 

Synthesis of NDPP 4 

NDPP 3 (0.100 g, 0.11 mmol) and tetracyanoethylene ( 0.018 g, 0.14 

mmol) were dissolved in 50 mL round bottom flask containing 

anhydrous dichloromethane under argon atmosphere. The reaction 

mixture was allowed to stirred for 10 minutes at room temperature. The 

solvent was removed under vaccum and the crude product was purified 

by repeated silica gel column chromatography with hexane/DCM (1:4) 

as an eluent to get NDPP 4 in 75% yield. 

1H NMR (400 MHz, CDCl3, δ in ppm): 9.20 (1H, d), 9.03 (1H, d), 7.78 

(3H, m), 7.42 (2H, m), 7.35 (1H, m), 6.68 (4H, m), 4.07 (4H, d), 3.17 

(3H, s), 3.07 (3H, s), 1.75 (4H, s), 1.33 (28H, m), 0.86 (6H, m); 13C 

NMR (100 MHz, CDCl3, δ in ppm): 162.0, 161.4, 160.3, 157.6, 154.5, 

150.8, 143.1, 140.1, 138.7, 138.6, 137.9, 137.0, 135.07, 135.02, 134.8, 

133.5, 133.4, 133.2, 133.0, 132.7, 132.6, 128.4, 117.8, 114.2, 113.3, 

113.2, 113.1, 113.0, 112.4, 112.2, 112.0, 111.9, 111.8, 111.7, 108.7, 

108.0, 102.6, 42.8, 42.7, 42.6, 42.5, 40.4, 40.3, 40.2, 40.0, 32.1, 32.0, 

31.9, 30.5, 30.4, 30.3, 30.2, 30.1, 30.0, 29.9, 29.8, 29.7, 29.5, 29.3, 29.2, 

27.0, 26.9, 26.8, 22.9, 22.8, 22.7, 14.3, 14.1; HRMS m/z calcd for 

C60H66N8O2S2: 994.4745 [M+], found 994.4227; UV/vis 

(Dichloromethane) λmax  731 nm, ϵ [M-1cm-1] (0.61×104 ).  

 

 Synthesis of NDPP 5 

NDPP 3 (0.100 g, 0.11 mmol) and tetracyanoethylene (0.035 g, 0.27 

mmol) were dissolved in 50 mL round bottom flask containing 

anhydrous dichloromethane under argon atmosphere. The reaction 

mixture was allowed to stirred for 15 minutes at room temperature. The 
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solvent was removed under vaccum and the crude product was purified 

by repeated silica gel column chromatography with hexane/DCM (1:9) 

as an eluent to get NDPP 5 in 90% yield. 

1H NMR (400 MHz, CDCl3, δ in ppm): 9.14 (2H, d), 7.78 (6H, m), 6.72 

(4H, m), 4.06 (4H, m), 3.18 (12H, s), 1.71 (4H, m), 1.25 (28H, m), 0.87 

(6H, m); 13C NMR (100 MHz, CDCl3, δ in ppm): 161.5, 160.6, 158.0, 

154.6, 139.4, 139.1, 138.5, 136.8, 132.5, 117.6, 114.1, 113.3, 112.8, 

112.7, 112.4, 111.5, 81.8, 42.9, 40.3, 31.9, 30.3, 29.5, 29.3, 29.2, 26.8, 

22.7, 14.1; HRMS m/z calcd for C66H66N12O2S2: 1145.4765 [M+Na+], 

found 1145.4892; UV/vis (Dichloromethane) λmax  735 nm, ϵ [M-1cm-1] 

(1.72×104 ). 

 

Synthesis of NDPP 6 

DPP 2 (0.250 g, 0.34 mmol) and 4-ethynyl-N, N-diphenylaniline (0.082 

g, 0.30 mmol) were dissolved in a 100 mL round bottom flask containing 

anhydrous toluene (20 mL) and triethylamine (5 mL). The reaction 

mixture was degassed with argon for 20 min followed by addition of 

Pd(PPh3)4 (0.017 g, 0.015 mmol), and CuI (0.006 g, 0.030 mmol). The 

reaction mixture was stirred overnight at 60oC. The reaction mixture was 

allowed to cool down at room temperature after completion of reaction. 

The solvent was removed under vacuum and the crude product was 

purified by repeated silica gel column chromatography with 

hexane/DCM (3:2) as an eluent to get DPP 3 in 55% yield. DPP 3 (0.150 

g, 0.16 mmol) and 4-ethynyl-N, N-dimethylaniline (0.035 g, 0.24 mmol) 

were dissolved in a 100 mL round bottom flask containing anhydrous 

toluene (20 mL) and triethylamine (5 mL). The reaction mixture was 

degassed with argon for 20 min followed by addition of Pd(PPh3)4 

(0.017 g, 0.015 mmol), and CuI (0.006 g, 0.030 mmol). The reaction 

mixture was stirred overnight at 80oC. The reaction mixture was allowed 

to cool down at room temperature after completion of reaction. The 

solvent was removed under vacuum and the crude product was purified 

by repeated silica gel column chromatography with hexane/DCM (1:1) 

as an eluent to get NDPP 6 in 75% yield. 
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1H NMR (400 MHz, CDCl3, δ in ppm): 8.93 (2H, m), 7.35 (9H, m), 7.12 

(5H, m), 7.01 (2H, m), 6.65 (2H, m), 4.07 (4H, m), 3.02 (6H, s), 1.74 

(4H, m), 1.35 (28H, m), 0.86 (6H, s); 13C NMR (100 MHz, CDCl3, δ in 

ppm): 146.9, 132.9, 132.6, 132.0, 129.5, 125.3, 124.0, 121.7, 111.8, 

42.4, 40.1, 31.9, 30.1, 29.6, 26.9, 22.7,14.1; HRMS m/z calcd for 

C64H70N4O2S2: 1013.4832 [M+Na+], found 1013.4985; UV/vis 

(Dichloromethane) λmax  629 nm, ϵ [M-1cm-1] (0.97×104 ). 

 

Synthesis of NDPP 7 

NDPP 6 (0.100g, 0.10 mmol) and tetracyanoethylene (0.015g, 0.12 

mmol) were dissolved in 50 mL round bottom flask containing 

anhydrous dichloromethane under argon atmosphere. The reaction 

mixture was allowed to stirred for 15 minutes at room temperature. The 

solvent was removed under vaccum and the crude product was purified 

by repeated silica gel column chromatography with hexane/DCM (1:4) 

as an eluent to get NDPP 7 in 80% yield. 

1H NMR (400 MHz, CDCl3, δ in ppm): 9.16 (1H, d), 9.03 (1H, d), 7.78 

(3H, m), 7.38 (2H, m), 7.30 (4H, m), 7.12 (5H, m), 7.01 (2H, m), 6.73 

(2H, m), 4.06 (4H, m), 1.72 (4H, m), 1.41 (28 H, m), 0.88 (6H, m); 13C 

NMR (100 MHz, CDCl3, δ in ppm): 162.0, 161.4, 160.5, 157.7, 154.5, 

149.0, 146.8, 142.9, 139.9, 138.3, 137.9, 137.2, 135.3, 135.2, 132.8, 

132.7, 132.5, 132.3, 129.5, 129.1, 125.5, 124.2, 121.4, 117.8, 114.2. 

113.9, 113.8, 109.0, 100.7, 81.8, 79.9, 42.5, 40.2, 31.9, 31.8, 30.4, 29.9, 

29.7, 29.5, 29.3, 29.2, 26.8, 22.7,14.1; HRMS m/z calcd for 

C70H70N8O2S2: 1141.4955 [M+Na+], found 1141.5012; UV/vis 

(Dichloromethane) λmax 722 nm, ϵ [M-1cm-1] (1.02×104 ). 

 

Synthesis of NDPP 8 

NDPP 6 (0.100 g, 0.10 mmol) and tetracyanoethylene (0.032 g, 0.25 

mmol) were dissolved in 50 mL round bottom flask containing 

anhydrous dichloromethane under argon atmosphere. The reaction 

mixture was allowed to stirred for 5 h at room temperature. The solvent 

was removed under vaccum and the crude product was purified by 
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repeated silica gel column chromatography with hexane/DCM (1:9) as 

an eluent to get NDPP 8 in 85% yield. 

1H NMR (400 MHz, CDCl3, δ in ppm): 9.15 (2H, d), 7.66 (6H, m), 7.39 

(4H, m), 7.28 (1H, m), 7.22 (3H, m), 6.91 (2H, d), 6.72 (2H, d), 4.07 

(4H, s), 3.18 (6H, s), 1.58 (4H, s), 1.41 (28H, m), 0.88 (6H, m); 13C NMR 

(100 MHz, CDCl3, δ in ppm): 161.9, 161.5, 160.6, 158.0, 157.4, 154.6, 

154.1, 144.3, 139.6, 139.3, 139.1, 138.6, 138.4, 136.9, 136.7, 132.5, 

131.8, 130.2, 126.8, 120.7, 118.1, 117.6, 114.1, 113.4, 113.3, 112.8, 

112.6, 112.4, 111.5, 81.8, 81.6, 42.9, 40.2, 31.9, 30.3, 29.7, 29.5, 29.4, 

29.3, 29.2, 26.7, 22.7, 14.1; ; HRMS m/z calcd for C76H70N12O2S2: 

1269.5078 [M+Na+], found 1269.5268; UV/vis (Dichloromethane) λmax  

738 nm, ϵ [M-1cm-1] (0.70×104 ) . 

 

4.7. Conclusions 

In conclusion, symmetrical and unsymmetrical N, N-dimethylaniline 

and TPA-functionalized DPPs (NDPPs 1–8) were designed and 

synthesized using Pd–catalyzed Sonogashira cross-coupling reactions, 

followed by a click-type [2+2] cycloaddition-electrocyclization ring-

opening reaction. In NDPP 6, TCNE attacks initially targeted the more 

electron-rich acetylene bridge linked to the N, N-dimethylaminophenyl 

group, resulting in the formation of NDPP 7. This observation 

underscores the strong electron-donating nature of the N, N-

dimethylaminophenyl group compared to the triphenylamine group. The 

photophysical and electrochemical properties of NDPPs 1–8 were 

extensively studied. Incorporation of the TCBD unit led to a red shift in 

absorption spectra, additional low reduction potentials, and a reduced 

HOMO–LUMO gap. Moreover, NDPPs 1–8 demonstrated good 

solubility in common organic solvents. Electrochemical analysis 

revealed two additional low-voltage reduction waves in TCBD-based 

derivatives, attributed to oxidation of the TCBD unit. The broad 

absorption in the visible region, multiple redox potentials, and low 

HOMO–LUMO gap collectively indicate the potential of these 

molecules for optoelectronic applications. 
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Chapter 05: Impact of Donor Strength on [2+2] 

Cycloaddition-Retroelectrocyclization in 

Tetracyanobutadiene-Functionalized 

Diketopyrrolopyrrole Derivatives. 

 

5.1. Introduction 

Organic semiconductors have gained significant attention in recent years 

due to their potential applications in electronic and optoelectronic 

devices such as organic photovoltaics [1-4], organic field-effect 

transistors[5], and organic light-emitting diodes[6]. The design and 

synthesis of novel small molecules with tailored electronic properties is 

crucial for achieving improved device performance and efficiency. 

Diketopyrrolopyrrole (DPP) is a π–conjugated bicyclic di–lactam 

moiety and is one of the widely used organic dyes.[7-10] DPP derivatives 

exhibit poor solubility in organic solvents due to strong π–π interactions 

and H–bonding interactions but the N–alkylation enhances its solubility 

in common organic solvents. DPP derivatives have emerged as 

promising acceptor units in these materials due to their strong electron-

accepting nature, good thermal stability, and high charge mobility.[11] 

These properties make them suitable candidates for use in organic 

photovoltaic devices and other optoelectronic applications.[12-15] To 

modulate the electronic properties of DPP-based molecules and enhance 

their charge transport abilities, the incorporation of electron-donating 

moieties is a common strategy.[16-17] In this regard, ferrocene, 

triphenylamine, and N, N-dimethylamine have gained attention as 

effective donor units. These donor units not only introduce a push-pull 

effect within the molecules but also enable tuning of the energy levels, 

charge carrier mobility, and photophysical properties of the resulting 

materials. The synthesis of these complex molecular architectures often 

requires efficient coupling methodologies that ensure regioselectivity 

and high yields. The Sonogashira cross-coupling reaction has proven to 

be a valuable tool for constructing carbon-carbon bonds under mild 
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conditions.[18-19, 23] This method allows for the incorporation of various 

functional groups and substituents with high precision, enabling the 

design of tailored molecular structures. Additionally, the [2+2] 

cycloaddition-retroelectrocyclization reaction, often referred to as a 

"click-type" reaction, has emerged as a powerful tool for the 

construction of conjugated systems.[20-22] This reaction involves the 

formation of a cyclobutane ring followed by its electrocyclic ring-

opening, resulting in the generation of a conjugated π-system. The click-

type reaction offers advantages such as high atom economy, 

regioselectivity, and compatibility with a wide range of functional 

groups, making it an attractive method for the construction of complex 

organic frameworks. In this study, we aim to design and synthesize a 

series of small organic molecules (FcDPP 1–FcDPP 8) by incorporating 

DPP as an acceptor unit and ferrocene, triphenylamine, and N, N-

dimethylamine as donor units as shown in Figure 5.1. We employed the 

Sonogashira cross-coupling reaction to achieve efficient coupling of 

these units and subsequently explore the [2+2] cycloaddition-

retroelectrocyclization reaction to access π-conjugated systems with 

tunable electronic properties. By systematically varying the donor 

strength and position, we anticipate gaining insights into the impact of 

these modifications on the optoelectronic properties of the resulting 

materials. This research not only contributes to the fundamental 

understanding of structure-property relationships in organic 

semiconductors but also opens doors for the development of high-

performance materials for various electronic and optoelectronic 

applications. 
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Figure 5. 1. Structures of ferrocenyl substituted DPPs FcDPPs 1–8. 

 

5.2. Result and Discussions 

The ferrocene-based DPP derivative 1 was synthesized through the 

Sonogashira cross-coupling reaction involving dibromo DPP and 

ethynyl ferrocene, following a procedure documented in the 

literature.[23] Subsequent transformations of derivative 1 were achieved 

by subjecting it to Sonogashira cross-coupling reactions with various 

aryl alkynes, including 9-(4-ethynylphenyl)-9H-carbazole (a), 4-

ethynyl-N, N-dimethylaniline (b), and 4-ethynyl-N, N-diphenylaniline 

(c). The reactions were carried out using Pd(PPh3)4 as a catalyst, CuI as 

a co-catalyst, toluene as a solvent, and triethylamine as base, at a 

temperature of 90 °C for 12 h. This methodology yielded FcDPP 1, 

FcDPP 6 and FcDPP 3 in yields ranging from 60% to 65%.as shown in 

Scheme 5.1. FcDPP 1 was subjected to a reaction with 1 equiv. of TCNE 

at room temperature for 24 hours, leading to the exclusive formation of 

the mono-TCBD bridged derivative, FcDPP 2, in 80% yield. Despite 

efforts to produce the di-TCBD bridged derivative (FcDPP 9) by 

employing harsher reaction conditions, such as elevating the 

temperature to 40 °C using DCM as the solvent, or to 80 °C using DCE 

as the solvent, were unsuccessful. The reaction of FcDPP 3 with 1 equiv. 

of TCNE in DCM at room temperature for 3 hours resulted in the 

formation of mono- and di-TCBD functionalized derivatives, FcDPP 4 

and FcDPP 5, in 62% and 20% yields respectively. Moreover, the 

reaction of FcDPP 3 with 2 equiv. of TCNE at room temperature for 6 

hours yielded FcDPP 5 in 85% yield. Upon reaction of FcDPP 6 with 1 
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equiv. of TCNE at room temperature for 15 minutes, FcDPP 7 and 

FcDPP 8 were generated in 68% and 20% yields respecticely. When 

FcDPP 6 was reacted with 2 equiv. of TCNE at room temperature for 1 

hour, FcDPP 8 was synthesized in 90% yield as shown in Scheme 5.2. 

These results suggested that the attack of TCNE occurs primarily on the 

electron-rich triple bond, and the rate of the cycloaddition reaction with 

TCNE depends on the donor strength linked to it. Specifically, the 

reaction proceeds rapidly when employing a strong donor, such as N, N-

dimethylaniline, taking only a few minutes to complete. However, with 

decreasing donor strength (as observed with TPA and N-phenyl 

carbazole), the reaction extends to several hours before reaching 

completion. 

 

 

Scheme 5. 1. Synthetic scheme of ferrocene based DPPs FcDPPs 1, 3 

and 6. 

 

The ferrocene based DPP derivatives (FcDPPs 1–8) were purified by 

repeated silica gel column chromatography and recrystallization 

techniques. FcDPPs 1–8 are readily soluble in common organic solvents 

and were fully characterized by common spectroscopic techniques (1H 

NMR, 13C NMR and HRMS). The ¹H NMR spectra of FcDPP 1 and 

FcDPP 3 exhibit signals for protons of the ferrocene group in the region 
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of 4.0–4.5 ppm. After incorporating a tetracyanobutadiene group 

(FcDPP 2 and FcDPP 4), the signals for ferrocene protons shifts in the 

region of 4.0–5.5 ppm, this shift indicates that the TCNE attack initially 

occurs at the more electron-rich acetylene bridge linked to the ferrocene 

group, resulting in the synthesis of FcDPP 2 and FcDPP 4. This 

suggests the strong donor strength of the Ferrocene group relative to the 

N-phenyl carbazole and triphenylamine group. The ¹H NMR spectra of 

FcDPP 6 exhibit a singlet for the six methyl protons of the N, N-

dimethylaminophenyl group at 3.0 ppm but after incorporating a 

tetracyanobutadiene group (FcDPP 7), the singlet for the six methyl 

protons shifts to 3.17 ppm. This shift indicates that the TCNE attack 

initially occurs at the more electron-rich acetylene bridge linked to the 

N, N-dimethylaminophenyl group, resulting in the synthesis of FcDPP 

7. This suggests the strong donor strength of the N, N-

dimethylaminophenyl group relative to the ferrocene group. 
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Scheme 5. 2. Synthetic scheme of ferrocene based DPP derivatives 

FcDPPs 2, 4, 5, 7, 8 and 9.  
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5.3. Photophysical Properties 

The electronic absorption spectra ferrocene based DPP derivatives 

FcDPPs 1–8 were recorded in 10-5 M DCM solution and as film at room 

temperature (Figure 5.2.) and the corresponding data are listed in Table 

5.1.  
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Figure 5. 2. Normalized electronic absorption spectra of FcDPPs 1-8 

in 10-5 M DCM (solid lines) and in thin films (dash lines). 
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The absorption spectra of FcDPP 1–8 exhibit broad absorption bands 

covering visible-NIR region from 400–900 nm in DCM solution and 

from 400–1100 nm in film prepared using spin coater. The absorption 

bands for TCBD bridged derivatives (FcDPPs 5, 7 and 8) at shorter 

wavelength region and longer wavelength region correspond to the π–

π* transition and intramolecular charge transfer (ICT) from donor to 

DPP respectively. The di-TCBD bridged derivatives FcDPP 5 and 

FcDPP 8 exhibited red shifted absorption maxima relative to mono-

TCBD bridged deriatives FcDPP 4 and FcDPP 7 due to increase in 

donor–acceptor interaction. The similar trends were observed while 

comparing the mono-TCBD bridged derivatives (FcDPP 2, FcDPP 4 

and FcDPP 7) with their acetylene linked deriartives (FcDPP 1, FcDPP 

3 and FcDPP 6) due to strong donor-acceptor interactions. The 

synthesized ferrocene-based DPP derivatives (FcDPP) exhibit distinct 

photophysical properties that arise from variations in their molecular 

structures and donor-acceptor interactions. In terms of absorption 

wavelengths (λabs), FcDPP 2 displays the highest values both in solution 

(710 nm) and thin film (786 nm), indicating its efficient light absorption 

across a broad spectrum. On the other hand, FcDPP 7 shows the largest 

difference between its solution-phase (720 nm) and thin-film (761 nm) 

absorption maxima, potentially due to aggregation effects in the solid 

state. The molar extinction coefficients (ε) reflect the efficiency of light 

absorption by the compounds. FcDPP 6 exhibits the highest ε values 

indicative of strong light-absorbing properties resulting from its 

molecular structure. Conversely, FcDPP 8 shows comparably lower ε 

values, suggesting relatively weaker light absorption efficiency. The 

optical band gap (Ec) values provide insights into the energy required 

for electronic transitions within the molecules. FcDPP 4 possesses the 

low optical band gap (1.35 eV), indicating its potential for efficient 

charge transport and utilization in photovoltaic devices. On the other 

hand, FcDPP 2 exhibits the high optical band gap (1.45 eV), suggesting 

its role as a potential electron acceptor in organic solar cells. The optical 

band gap and theoretical HOMO-LUMO gap of ferrocene-based 

derivatives FcDPPs 1–8 were calculated from onset absorption and 
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density functional theory calculations respectively and the data are listed 

in Table 5.1. The incorporation of additional TCBD group significantly 

lowers the optical band gap and theoretical HOMO–LUMO gap.  
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Figure 5. 3. Normalized UV-vis absorption spectra of FcDPPs 5 and 7 

in different solvents. 

 

The solvent dependent absorption spectra of FcDPPs 1–8 was recorded 

in toluene, dichloromethane (DCM), tetrahydrofuran (THF), 

ethylacetate (EAA) and N, N-dimethylformamide (DMF) shows 

negative solvatochromism. The absorption curve undergoes blue shift as 

the polarity of solvent increases from toluene to DMF as shown in 

Figure 5.3. 
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Table 5. 1. The optical and theoretical/computational properties of 

FcDPPs 1-8. 

FcDPP λabs(nm)a λabs(nm)b ε 

(×104 M-

1cm-1)a 

Ec 

(eV) 

Ed (eV) 

FcDPP 1 620 

580 

679 

626 

0.47 

0.39 

1.76 2.05 

FcDPP 2 710 786 1.04 1.45 1.74 

FcDPP 3 626 

586 

659 

610 

1.26 

1.01 

1.75 2.02 

FcDPP 4 728 724 0.99 1.35 1.63 

FcDPP 5 736 

685 

479 

768 

704 

495 

1.42 

1.22 

1.20 

1.44 1.71 

FcDPP 6 628 

590 

671 

616 

2.50 

2.13 

1.72 2.03 

FcDPP 7 720 

465 

761 

476 

0.69 

0.79 

1.40 1.78 

FcDPP 8 733 

686 

471 

780 

701 

497 

0.59 

0.51 

0.73 

1.48 1.75 

a Absorbance measured in DCM solution; ϵ: extinction coefficient; babsorbance 

measured in film; cOptical band gap; dTheoretical band gap. 

 

5.4. Electrochemical Properties 

The electrochemical properties of ferrocene based DPP derivatives 

FcDPP 1–FcDPP 8 were explored by cyclic voltammetry (CV) 

technique in dichloromethane solvent using 0.1M tetrabutylammonium 

hexafluorophosphate (Bu4NPF6) as supporting electrolyte. The CV plots 

of FcDPP 1–FcDPP 8 are shown in Figure 5.4. and the corresponding 

electrochemical data are listed in Table 5.2. 

The ferrocene-based DPP derivatives FcDPP 1–FcDPP 8 exhibit 

multiple oxidation waves between 0.54–1.67 V corresponding to the 

donor units (ferrocene, thiophene and N-phenyl 
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carbazole/triphenylamine/N, N-dimethyl aniline). The acetylene bridged 

ferrocene-based derivatives FcDPP 1, FcDPP 3 and FcDPP 6 exhibit 

one reduction waves corresponding to mono-anion formation of DPP. 

The TCBD bridged derivatives FcDPP 2, FcDPP 4, FcDPP 5, FcDPP 

7 and FcDPP 8 exhibit three reduction waves in which first two 

reduction waves between -0.35 – -0.87 V corresponds to the reduction 

of TCBD moiety into mono- and di- anion and the remaining wave 

corresponds to the reduction of DPP moiety. The oxidation of ferrocene 

becomes difficult in mono- and di-TCBD functionalized ferrocene 

derivatives (FcDPP 2, FcDPP 4, FcDPP 5, FcDPP 7 and FcDPP 8) 

relative to corresponding acetylene bridged derivatives (FcDPP 2, 

FcDPP 3 and FcDPP 6) due to introduction of strong electron acceptor 

group (Tetracyanobutadiene) whereas reduction becomes easier upon 

incorporation of acceptor group as shown in Table 5.2. 

 

Table 5. 2. The electrochemical propertiesa of ferrocene-based 

derivatives FcDPP 1–FcDPP 8. 

 

FcDPP 

E3 

Red 

(V) 

E2 

Red 

(V) 

E1 

Red  

(V) 

E1 

Oxid 

(V) 

E2 

Oxid  

(V) 

E3 

Oxid  

(V) 

E4 

Oxid  

(V) 

FcDPP 1 - - -1.73 0.55 0.89 1.31 1.67 

FcDPP 2 -1.83 -0.71 -0.43 0.81 1.04 1.34 1.64 

FcDPP 3 - - -1.12 0.54 0.81 1.04 1.41 

FcDPP 4 -1.82 -0.71 -0.44 0.55 0.88 1.10 1.48 

FcDPP 5 -1.75 -0.84 -0.35 0.87 1.11 1.24 1.67 

FcDPP 6 - - -1.72 0.55 0.73 0.94 - 

FcDPP 7 -1.64 -0.65 -0.46 0.56 0.77 1.11 1.32 

FcDPP 8 -1.60 -0.87 -0.35 0.86 1.28 1.57 - 

aThe electrochemical analysis was performed in a 0.1 M solution of Bu4NPF6 

in dichloromethane at 100 mVs−1 scan rate, versus SCE at 25 °C. 
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The trend in the first oxidation potential of FcDPP 1–FcDPP 8 follows 

the order: FcDPP 3<FcDPP 1≈FcDPP 4≈FcDPP 6<FcDPP 7<FcDPP 

2<FcDPP 8<FcDPP 5. The trend in the first reduction potential of 

FcDPP 1–FcDPP 8 follows the order: FcDPP 5≈FcDPP 8<FcDPP 

2<FcDPP 4<FcDPP 7< FcDPP 3<FcDPP 6<FcDPP 1. 
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Figure 5. 4. Cyclic voltammograms of FcDPPs 1–8 in 

dichloromethane solvent using 0.1 M tetrabutylammonium 

hexafluorophosphate (Bu4NPF6) as supporting electrolyte. 
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5.5. Theoretical Calculations 

Density Functional Theory 

The density functional theory (DFT) calculation was carried out to 

understand the geometry, and the electronic structure of the 

asymmetrical ferrocene functionalized DPP FcDPPs 1–8 using the 

Gaussian09W program.[24] The long alkyl chains on lactam ring were 

replaced by ethyl group to reduce the computation time. The DFT 

calculations were performed B3LYP/6-31G** for C, H, N, S, O and 

Lanl2DZ for the Fe. The frontier molecular orbitals (FMOs) of FcDPPs 

3–8 are shown in Figure 5.5. 

 

 

Figure 5. 5. The electron density distribution and the HOMO-LUMO 

gap in FcDPPs 3–8. 

 

The electron density at highest occupied molecular orbitals (HOMOs) 

of FcDDP 1, FcDPP 3, FcDPP 6 and FcDPP 8 are distributed on the 

whole molecule whereas the electron density in their lowest unoccupied 

molecular orbitals (LUMOs) are localized mainly on the acceptor units 

(DPP). The delocalization of HOMOs on donors 

(triphenylamine/Ferrocene/N, N-dimethylaniline/N-phenyl carbazole) 

as well as acceptor (DPP/TCBD) and LUMOs on acceptors only 
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(DPP/TCBD units) shows the typical D–A interaction and charge 

transfer from donor to acceptor in FcDPP 2, FcDPP 4, FcDPP 5 and 

FcDPP 7. The HOMO energy level in FcDPP 1 is -4.81 eV and the 

LUMO energy level in TCNE is at -4.56 eV while after the incorporation 

of one TCBD group in FcDPP 1 the HOMO energy level gets more 

stabilized in FcDPP 2 (-5.38 eV), Thus the energy level difference 

between the HOMO of FcDPP 2 and the LUMO of TCNE is higher as 

compared to the energy level difference between the HOMO of FcDPP 

1 and LUMO of TCNE as shown in Figure 5.6. This hinders the further 

reaction of TCNE group with FcDPP 2 and could be the possible reason 

for not getting FcDPP 3 even on elevated temperature. 

 

 

Figure 5. 6. HOMO-LUMO gap calculations of FcDPP 1, 2 and 

TCNE. 

 

The calculated HOMO energy levels for FcDPPs 1-8 are -4.81, -5.38, -

4.64, -5.14, -5.81, -4.55, -5.22, -5.84 eV and the corresponding LUMO 

levels are -2.76, -3.64, -2.62, -3.51, -4.09, -2.52, -3.44, -4.09 eV 

respectively. The theoretically calculated HOMO-LUMO gap follow the 

trend FcDPP 1>FcDPP 6>FcDPP 3>FcDPP 7>FcDPP 8>FcDPP 

2>FcDPP 5>FcDPP 4. 
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Time Dependent Density Functional Theory (TD–DFT)  

The time dependent density functional theory (TD–DFT) calculation 

was performed in order to get the idea of electronic transitions in DPP 

based derivatives with ferrocene as one end capping donor FcDPPs 1–

8. The major electronic transitions in FcDPPs 1–8 calculated from TD–

DFT with composition and oscillator strengths are shown in Table 5.3. 

The major charge transfer transition in FcDPPs 1–8 occur from HOMO-

2→LUMO+5, HOMO→ LUMO, HOMO-2→LUMO+5, 

HOMO→LUMO, HOMO-1→LUMO, HOMO→LUMO, 

HOMO→LUMO+1 and HOMO-1→LUMO respectively while the 

other transitions in FcDPP 1, FcDPP 3, FcDPPs 6–8 occurs from 

HOMO→LUMO, HOMO→LUMO, HOMO-3→LUMO+3, 

HOMO→LUMO and HOMO→LUMO respectively corresponds to π-

π* transitions. The theoretical HOMO-LUMO gaps of FcDPPs 1–8 is 

in good agreement with the optical band gaps as shown in Table 5.1. 

 

Table 5. 3. Major electronic transitions of FcDPPs 1–8 calculated by 

TD-DFT. 

Compound Wavelength 

(nm) 

Composition Oscillation 

Strength (fa) 

FcDPP 1 642 

599 

HOMO→LUMO (0.65) 

HOMO-2→LUMO+5 (0.30) 

1.67 

0.23 

FcDPP 2 586 HOMO→ LUMO (0.70) 0.89 

 

FcDPP 3 654 

601 

HOMO→LUMO (0.68) 

HOMO-2→LUMO+5 (0.31) 

1.96 

0.12 

FcDPP 4 804 

642 

HOMO→LUMO (0.70) 

HOMO-1→LUMO (0.68) 

1.48 

0.15 

 

FcDPP 5 

882 

736 

 

HOMO→LUMO (0.62) 

HOMO-1→LUMO (0.63) 

 

0.015 

1.16 

 

 

FcDPP 6 

648 

599 

HOMO→LUMO (0.68) 

HOMO-3→LUMO+3 (0.39) 

1.78 

0.12 
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FcDPP 7 599 

501 

HOMO→LUMO (0.70) 

HOMO→LUMO+1 (0.69) 

0.63 

0.24 

FcDPP 8 789 

733 

HOMO-1→LUMO (0.67) 

HOMO→LUMO (0.68) 

 

0.04 

1.10 

 

  fa=oscillation strength 

 

5.6. Experimental Section: 

General methods 

The chemicals were used as received unless otherwise indicated. All the 

moisture sensitive reactions were performed under argon atmosphere 

using the standard Schlenk method. 1H NMR (400 MHz/500 MHz) and 

13C NMR (100 MHz) spectra were recorded by using CDCl3 as the 

solvent. The 1H NMR chemical shifts are reported in parts per million 

(ppm) relative to the solvent residual peak (CDCl3, 7.26 ppm). The 

multiplicities are given as: s (singlet), d (doublet), m (multiplet), and the 

coupling constants, J, are given in Hz. The 13C NMR chemical shifts are 

reported with relative to the solvent residual peak (CDCl3, 77.0 ppm). 

HRMS was recorded on a mass spectrometer (ESI-TOF). The absorption 

spectra of DPPs were recorded on UV-visible Spectrophotometer in 

dichloromethane. Cyclic voltammograms (CVs) were recorded on an 

electrochemical analyzer using glassy carbon as working electrode, Pt 

wire as the counter electrode, and SCE as the reference electrode. 

 

Synthesis of FcDPP 1  

In 100 mL round bottom flask, dibromo–DPP (0.250 g, 0.34 mmol) and 

ethynyl ferrocene (0.064 g, 0.30 mmol) were dissolved in anhydrous 

toluene (20 mL) and triethylamine (5 mL). The reaction mixture was 

degassed with argon for 20 minutes and Pd(PPh3)4 (0.017 g, 0.015 

mmol) and CuI (0.006 g, 0.030 mmol) were then added. The reaction 

mixture was stirred overnight at 60 oC. The reaction mixture was 

allowed to cool down at room temperature after completion of reaction. 

The solvent was removed under vacuum and the crude product was 
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purified by repeated silica gel column chromatography with 

hexane/DCM (3:2) as an eluent to get 1 in 62% yield and then in 100 

mL round bottom flask, 1 (0.150g, 0.16 mmol) and 9-(4-ethynylphenyl)-

9H-carbazole (a) (0.043 g, 0.16 mmol) were dissolved in anhydrous 

toluene (20 mL) and triethylamine (5 mL). The reaction mixture was 

degassed with argon for 20 minutes and Pd(PPh3)4 (0.009 g, 0.008 

mmol) and CuI (0.002 g, 0.014 mmol) were then added. The reaction 

mixture was stirred overnight at 80 oC. The reaction mixture was 

allowed to cool down at room temperature after completion of reaction. 

The solvent was removed under vacuum and the crude product was 

purified by repeated silica gel column chromatography with 

hexane/DCM (3:2) as an eluent to get FcDPP 1 in 60% yield. 

1H NMR (400 MHz, CDCl3, δ in ppm): 8.93 (2H, s), 8.16-8.14 (2H, m), 

7.80-7.78 (2H, m), 7.63-7.61 (2H, m), 7.46-7.44 (4H, m), 7.33-7.22 (4H, 

m), 4.56 (4H, s), 4.33-4.28 (5H, m), 4.10-4.08 (4H, m), 1.77 (4H, s), 

1.51-1.26 (28H, m), 0.87 (6H, s); 13C NMR (100 MHz, CDCl3, δ in 

ppm): 161.4, 161.2, 140.5, 139.7, 138.7, 138.5, 136.9, 135.4, 133.5, 

133.2, 132.4, 130.9, 130.2, 129.5, 128.2, 127.0, 126.3, 123.8, 121.2, 

120.6, 120.5, 109.9, 109.0, 108.5, 98.6, 97.1, 83.4, 78.9, 71.8, 70.3, 69.7, 

63.9, 42.5, 32.1, 32.0, 30.2, 29.7, 29.5, 29.4, 27.0, 22.8, 14.3; HRMS 

(ESI) m/z calcd for C66H67FeN3O2S2: 1053.4020 [M+] found 1053.4009; 

UV/vis (Dichloromethane) λmax  620 nm, ϵ [M-1cm-1] (0.47×104 ). 

 

Synthesis of FcDPP 2 

FcDPP 1 (0.100g, 0.10 mmol) and tetracyanoethylene (0.015g, 0.12 

mmol) were dissolved in 50 mL round bottom flask containing 

anhydrous dichloromethane under argon atmosphere. The reaction 

mixture was allowed to stirred for 6 h at room temperature. The solvent 

was removed under vaccum and the crude product was purified by 

repeated silica gel column chromatography with hexane/DCM (1:4) as 

an eluent to get FcDPP 2 in 80% yield. 

1H NMR (500 MHz, CDCl3, δ in ppm): 9.17-9.16 (1H, m), 9.00-8.99 

(1H, m), 8.16-8.14 (2H, d, J=10 Hz), 7.80-7.78 (2H, d, J=10 Hz), 7.65 

(3H, m), 7.63-7.49 (1H, m), 7.48-7.41 (3H, m), 7.34-7.30 (2H, m), 7.22 
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(1H, s), 5.58 (1H, s), 5.07 (1H, s), 4.88 (1H, s), 4.53-4.36 (5H, m), 4.28 

(1H, s), 4.10-4.03 (4H, m), 1.73-1.72 (4H, m), 1.42-1.25 (28H, m), 0.89-

0.86 (6H, m); 13C NMR (100 MHz, CDCl3, δ in ppm): 172.0, 161.4, 

160.6, 155.0, 142.8, 141.5, 139.7, 138.9, 138.0, 137.8, 136.4, 135.7, 

135.1, 133.7, 133.3, 131.1, 130.0, 127.0, 126.3, 123.8, 120.8, 120.6, 

113.7, 113.0, 112.7, 112.5, 109.8, 109.4, 98.8, 83.1, 79.5, 78.7, 76.3, 

76.0, 75.2, 72.9, 72.6, 71.7, 70.4, 42.9, 42.7, 34.3, 32.0, 30.5, 30.1, 29.7, 

29.6, 29.4, 29.3, 27.0, 26.9, 22.8, 22.5, 14.3, 14.2; HRMS (ESI) m/z 

calcd for C72H67FeN7O2S2: 1181.4144 [M+] found 1181.3984; UV/vis 

(Dichloromethane) λmax  710 nm, ϵ [M-1cm-1] (1.04×104 ). 

 

Synthesis of FcDPP 3 

In 100 mL round bottom flask, dibromo–DPP (0.250 g, 0.34 mmol) and 

ethynyl ferrocene (0.064 g, 0.30 mmol) were dissolved in anhydrous 

toluene (20 mL) and triethylamine (5 mL). The reaction mixture was 

degassed with argon for 20 minutes and Pd(PPh3)4 (0.017 g, 0.015 

mmol) and CuI (0.006 g, 0.030 mmol) were then added. The reaction 

mixture was stirred overnight at 60oC. The reaction mixture was allowed 

to cool down at room temperature after completion of reaction. The 

solvent was removed under vacuum and the crude product was purified 

by repeated silica gel column chromatography with hexane/DCM (3:2) 

as an eluent to get 1 in 62 % yield and then in 100 mL round bottom 

flask, 1(0.150 g, 0.16 mmol) and 3(4-ethynyl-N, N-diphenylaniline) 

(0.044 g, 0.16 mmol) were dissolved in anhydrous toluene (20 mL) and 

triethylamine (5 mL). The reaction mixture was degassed with argon for 

20 minutes and Pd(PPh3)4 (0.009 g, 0.008 mmol) and CuI (0.002 g, 0.014 

mmol) were then added. The reaction mixture was stirred overnight at 

80 oC. The reaction mixture was allowed to cool down at room 

temperature after completion of reaction. The solvent was removed 

under vacuum and the crude product was purified by repeated silica gel 

column chromatography with hexane/DCM (3:2) as an eluent to get 

FcDPP 3 in 62% yield. 

1H NMR (400 MHz, CDCl3, δ in ppm): 8.90 (2H, m), 7.70 (2H, m), 7.37 

(4H, m), 7.30 (4H, m), 7.12 (4H, m), 7.08 (2H, m), 4.55(2H, s), 4.30 
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(5H, m), 4.07 (4H, s), 1.75 (4H, m), 1.35 (28H, m), 0.86 (6H, m); 13C 

NMR (100 MHz, CDCl3, δ in ppm): 158.68, 158.66, 146.1, 144.3, 136.7, 

136.5, 136.3, 133.0, 129.7, 127.7, 127.4, 127.2, 126.9, 126.7, 125.1, 

125.0, 122.8, 122.2, 121.4, 119.1, 111.9, 111.5, 106.0, 96.1, 95.7, 69.1, 

67.0, 61.3, 39.85, 39.83, 31.7, 31.3, 29.4, 29.3, 29.1, 28.9, 27.8, 27.68, 

27.64, 27.5, 27.2, 27.18, 27.15, 27.11, 27.07, 27.02, 26.8, 26.75, 26.70, 

26.65, 26.4, 26.1, 24.39, 24.38, 23.43, 23.40, 20.18, 20.16, 11.6; HRMS 

(ESI) m/z calcd for C66H69FeN3O2S2: 1055.4180 [M+] found 1055.4177; 

UV/vis (Dichloromethane) λmax  625 nm, ϵ [M-1cm-1] (3.8×104 ). 

 

Synthesis of FcDPP 4 

FcDPP 3 (0.10 g, 0.09 mmol) synthesized as per reported procedure23 

and tetracyanoethylene (0.014g, 0.11 mmol) were dissolved in 50 mL 

round bottom flask containing anhydrous dichloromethane under argon 

atmosphere. The reaction mixture was allowed to stirred for 3 h at room 

temperature. The solvent was removed under vaccum and the crude 

product was purified by repeated silica gel column chromatography with 

hexane/DCM (1:4) as an eluent to get FcDPP 4 in 62% yield. 

1H NMR (500 MHz, CDCl3, δ in ppm): 9.16-8.97 (3H, m), 7.72-7.63 

(2H, m), 7.38-7.30 (6H, m), 7.14-7.12 (4H, m), 7.10-6.91 (3H, m), 5.56 

(1H, s), 5.06 (1H, s), 4.87 (1H, s), 4.57-4.52 (4H, m), 4.36-4.29 (2H, m), 

4.07-4.03 (4H, m), 1.73-1.70 (4H, m), 1.41-1.27 (28H, m), 0.89-0.85 

(6H, m); 13C NMR (100 MHz, CDCl3, δ in ppm):171.9, 161.4, 160.4, 

151.8, 149.1, 146.8, 139.7, 138.4, 137.7, 136.0, 135.0, 134.8, 133.8, 

132.7, 132.4, 131.8, 130.1, 129.6, 129.0, 126.9, 126.8, 125.5, 124.2, 

121.3, 118.1, 113.8, 113.6, 113.0, 112.9, 112.6, 112.5, 108.9, 100.8, 

81.8, 79.4, 78.3, 76.09, 75.9, 75.0, 72.8, 72.4, 71.8, 71.6, 70.2, 69.9, 

42.7, 42.5, 31.9, 30.4, 29.9, 29.7, 29.5, 29.3, 29.2, 26.8, 22.7, 14.1; 

HRMS (ESI) m/z calcd for C72H69FeN7O2S2: 1206.4196 [M+Na]+
 found 

1206.4199; UV/vis (Dichloromethane) λmax  728 nm, ϵ [M-1cm-1] 

(0.99×104 ). 
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Synthesis of FcDPP 5 

FcDPP 3 (0.144 g, 0.14 mmol) and tetracyanoethylene (0.034 g, 0.27 

mmol) were dissolved in 50 mL round bottom flask containing 

anhydrous dichloromethane under argon atmosphere. The reaction 

mixture was allowed to stirred for 5 h at room temperature. The solvent 

was removed under vaccum and the crude product was purified by 

repeated silica gel column chromatography with hexane/DCM (1:9) as 

an eluent to get FcDPP 5 in 85% yield. 

1H NMR (500 MHz, CDCl3, δ in ppm): 9.15-9.08 (2H, m), 7.75-7.66 

(4H, m), 7.42-7.38 (4H, m), 7.29 (2H, s), 7.23-7.21 (4H, m), 6.93-6.90 

(2H, m), 5.61 (1H, s), 5.09 (1H, s), 4.89 (1H, s), 4.53-4.45 (5H, m), 4.36-

4.29 (1H, m), 4.05-4.03 (4H, m), 1.72-1.68 (4H, m), 1.41-1.24 (28H, m), 

0.89-0.87 (6H, m); 13C NMR (100 MHz, CDCl3, δ in ppm):171.5, 161.9, 

160.6, 157.4, 154.1, 144.3, 139.4, 139.3, 138.7, 138.6, 138.2, 138.0, 

137.9, 137.6, 136.7, 136.5, 131.8, 130.2, 126.9, 120.7, 118.0, 113.5, 

113.4, 112.7, 112.6, 112.0, 111.5, 81.7, 80.0, 79.3, 75.7, 75.2, 72.9, 72.6, 

71.5, 42.8, 31.9, 30.2, 29.7, 29.5, 29.4 29.3, 29.2, 26.8, 26.7, 22.7, 14.1; 

HRMS (ESI) m/z calcd for C78H69FeN11O2S2: 1334.4321 [M+Na]+
 

found 1334.4209; UV/vis (Dichloromethane) λmax  736 nm, ϵ [M-1cm-1] 

(1.42×104 ). 

 

Synthesis of FcDPP 6 

In 100 mL round bottom flask, 1 (0.175 g, 0.19 mmol) and 4-ethynyl-

N,N-dimethylaniline (b) (0.028 g, 0.19 mmol) were dissolved in 

anhydrous toluene (20 mL) and triethylamine (5 mL). The reaction 

mixture was degassed with argon for 20 minutes and Pd(PPh3)4 (0.009 

g, 0.008 mmol) and CuI (0.002 g, 0.014 mmol) were then added. The 

reaction mixture was stirred overnight at 80oC. The reaction mixture was 

allowed to cool down at room temperature after completion of reaction. 

The solvent was removed under vacuum and the crude product was 

purified by repeated silica gel column chromatography with 

hexane/DCM (3:2) as an eluent to get FcDPP 6 in 65% yield. 

1H NMR (500 MHz, CDCl3, δ in ppm): 8.97-8.88 (2H, m), 7.43-7.41 

(2H, d, J=10 Hz), 7.32-7.31 (2H, m), 6.68-6.66 (2H, d, J=10 Hz), 4.55 
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(3H, s), 4.32-4.28 (6H, m), 4.09-4.05 (4H, m), 3.02 (6H, s), 1.78-1.74 

(4H, m), 1.44-1.26 (28H, m), 0.87 (6H, s); 13C NMR (100 MHz, CDCl3, 

δ in ppm): 161.4, 161.3, 150.7, 139.4, 138.9, 136.0, 135.5, 133.0, 132.4, 

132.1, 130.4, 129.7, 129.6, 129.4, 111.9, 108.7, 108.6,108.4, 100.2, 

98.3, 81.0, 78.9, 71.8, 70.3, 69.7, 64.0, 53.6, 42.5, 40.3, 32.0, 30.2, 29.7, 

29.4, 27.0, 22.8, 14.3; HRMS (ESI) m/z calcd for C56H65FeN3O2S2: 

954.3761 [M+Na]+
 found 954.3623; UV/vis (Dichloromethane) λmax  

628 nm, ϵ [M-1cm-1] (2.50×104 ). 

 

Synthesis of FcDPP 7 

FcDPP 6 (0.08 g, 0.08 mmol) and tetracyanoethylene (0.011g, 0.08 

mmol) were dissolved in 50 mL round bottom flask containing 

anhydrous dichloromethane under argon atmosphere. The reaction 

mixture was allowed to stirred for 15 minutes at room temperature. The 

solvent was removed under vaccum and the crude product was purified 

by repeated silica gel column chromatography with hexane/DCM (1:4) 

as an eluent to get FcDPP 7 in 68% yield. 

1H NMR (500 MHz, CDCl3, δ in ppm): 9.14 (1H, s), 9.04 (1H, s), 7.81-

7.77 (3H, m), 7.36 (1H, s), 6.73-6.71 (2H, d, J=10 Hz), 4.57 (2H, s), 

4.35 (2H, s), 4.28 (5H, s), 4.10 (4H, s), 3.17 (6H, s), 1.75 (4H, s), 1.54-

1.26 (28H, m), 0.88-0.86 (6H, m); 13C NMR (100 MHz, CDCl3, δ in 

ppm): 162.1, 161.5, 160.6, 157.9, 154.6, 143.1, 140.0, 138.4, 138.0, 

137.3, 135.3, 135.2, 132.8, 132.7, 132.6, 128.8, 117.9, 114.3, 113.4, 

113.2, 112.4, 109.0, 100.7, 79.9, 78.9, 74.8, 71.9, 70.4, 70.0, 63.5, 53.6, 

42.9, 42.6, 40.3, 32.0, 31.9, 30.5, 30.1, 30.0, 29.7, 29.6, 29.4, 29.3, 26.9, 

22.8, 14.3, 14.2; HRMS (ESI) m/z calcd for C62H65FeN7O2S2: 

1082.3884 [M+Na]+
 found 1082.3863; UV/vis (Dichloromethane) λmax  

720 nm, ϵ [M-1cm-1] (0.69×104 ). 

 

Synthesis of FcDPP 8 

FcDPP 6 (0.100 g, 0.11 mmol) and tetracyanoethylene (0.028 g, 0.22 

mmol) were dissolved in 50 mL round bottom flask containing 

anhydrous dichloromethane under argon atmosphere. The reaction 

mixture was allowed to stirred for 1 h at room temperature. The solvent 
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was removed under vaccum and the crude product was purified by 

repeated silica gel column chromatography with hexane/DCM (1:9) as 

an eluent to get FcDPP 8 in 90% yield. 

1H NMR (400 MHz, CDCl3, δ in ppm): 9.14-9.08 (2H, m), 7.80-7.65 

(4H, m), 6.74-6.72 (2H, m), 5.61 (1H, s), 5.09 (2H, s), 4.89 (1H, s), 4.53-

4.46 (5H, m), 4.03 (4H, s), 3.18 (6H, s), 1.70-1.69 (4H, m), 1.47-1.11 

(28 H, m), 0.88-0.81 (6H, m); 13C NMR (100 MHz, CDCl3, δ in ppm): 

171.6, 161.6, 160.7, 160.6, 158.1, 155.0, 154.7, 139.6, 139.3, 139.2, 

138.5, 138.4, 137.9, 136.9, 136.5, 132.6, 117.7, 114.2, 113.6, 113.4, 

112.9, 112.8, 112.7, 112.5, 112.2, 111.6, 81.9, 80.1, 79.4, 75.3, 74.6, 

73.0, 72.7, 71.7, 42.9, 40.3, 32.0, 29.8, 29.6, 29.5, 29.4, 29.3, 26.9, 22.8, 

14.2; HRMS (ESI) m/z calcd for C68H65FeN11O2S2: 1210.4008 [M+Na]+
 

found 1210.3927; UV/vis (Dichloromethane) λmax  733 nm, ϵ [M-1cm-1] 

(0.59×104 ). 

 

5.7. Conclusions 

In conclusion, we have designed and synthesized ferrocene based DPP 

derivatives FcDPPs 1–8 by the Pd–catalyzed Sonogashira cross-

coupling reactions followed by followed by [2+2] cycloaddition-

electrocyclization ring opening reaction. Their photophysical and 

electrochemical properties were investigated which shows that the 

incorporation of TCBD groups red shifts the absorption, exhibit 

additional two reduction potentials and lowers the HOMO–LUMO gap. 

Mono-TCBD incorporation took place on acetylene linked N, N-

dimethyl aniline side (FcDPP 6) indicating strong donor strength of N, 

N-dimethylaniline unit in comparison to the ferrocene where as in 

FcDPP 1 and FcDPP 2, the attack of first TCNE took place at triple 

bond linked to ferrocene side indicating strong donor strength of 

ferrocene relative to triphenylamine and N-phenyl carbazole unit. The 

electrochemical study exhibits multiple oxidation waves in ferrocene 

based DPP derivatives due to oxidation of various donor units 

(Ferrocene/thiophene/N-phenyl carbazole/Triphenylamine). The broad 

absorption in visible region, multiple redox potentials and low HOMO–
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LUMO gap indicates that these molecules are potential candidate for 

optoelectronic applications. 
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Chapter 06: Phenothiazine Based 

Diketopyrrolopyrrole Derivatives Functionalized 

with Different Donors 

 

6.1. Introduction 

Over the past two decades, there has been significant development in 

donor–acceptor (D–A) conjugated materials, particularly for their 

applications in organic electronics.[1-4] These materials have garnered 

attention due to their unique electronic structures and versatile 

properties, which can be tailored through strategic design. One effective 

strategy involves the synthesis of conjugated donor-acceptor system that 

incorporate electron-rich donor and electron-deficient acceptor 

segments linked by a bridging unit.[5-9] This molecular architecture 

allows for precise control over the physical and optoelectronic 

properties of the small molecules by chemically modifying the donor, 

acceptor, or the linking group.[10-15] By fine-tuning these structural 

elements, researchers can achieve materials with desired characteristics 

such as enhanced charge carrier mobility, improved stability, and 

optimized energy levels for efficient charge transport.[16,17] Donor-

acceptor based Small organic molecules (SOMs) are of interest for their 

ability to facilitate intrachain push-pull charge transfer, a mechanism 

that underpins their utility in organic electronics. This mechanism 

enables the synthesis of highly conjugated SOMs with minimized 

energy gaps, thereby extending their absorption spectrum into the visible 

and near-infrared regions. Such extended absorption profiles are crucial 

for applications requiring efficient light harvesting, such as in 

photovoltaic devices.[18-22] Among the various acceptor groups, 

Diketopyrrolopyrrole (DPP) derivatives have emerged as a promising 

building block. The planar structure of DPP facilitates strong π-π 

interactions, which is essential for promoting efficient charge transport 

and such molecular systems have demonstrated excellent performance 
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in various electronic devices, owing to their electron-deficient nature 

and superior light absorption properties.[23] Initially utilized as pigments 

in inks and coatings, DPP derivatives gained attraction in organic 

electronics following advancements in their synthesis for solution-

processable semiconductors around 2008.[24-28] By incorporating 

electron-donating moieties such as N-phenyl carbazole, triphenylamine, 

and N, N-dimethylaminophenyl, researchers can further modulate the 

electronic structure of DPP-based materials. These donor units not only 

introduce a push-pull effect within the molecular framework but also 

allow precise adjustment of energy levels, charge carrier mobility, and 

photophysical properties, thereby optimizing performance in specific 

electronic applications. In this study, our focus is on the design and 

synthesis of a series of small organic molecules P-1–P-6 via 

Sonogashira cross-coupling reactions with DPP as the electron-deficient 

acceptor unit, complemented by various donor units including N-phenyl 

carbazole, triphenylamine, and N, N-dimethylaminophenyl, with 

phenothiazine serving as the central core (Figure 6.1). The synthesis of 

these complex molecular architectures is achieved through the 

Sonogashira cross-coupling reaction, a versatile method known for its 

ability to construct carbon-carbon bonds under mild conditions. This 

approach allows for the efficient assembly of π-conjugated systems with 

tunable electronic properties, essential for exploring structure-property 

relationships in organic semiconductors. By systematically varying the 

donor strength and position within these molecular designs, our study 

aims to provide insights into how these modifications impact the 

optoelectronic properties of the resulting materials.  

 

---  
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Figure 6. 1. Structure of phenothiazine functionalized 

diketopyrrolopyrrole P-1–P-6. 

 

6.2. Result and Discussions 

The Sonogashira cross-coupling reactions of 1 with various aryl alkynes, 

including 9-(4-ethynylphenyl)-9H-carbazole (a), 4-ethynyl-N, N-

diphenylaniline (b), and 4-ethynyl-N, N-dimethylaniline (c) using 

Pd(PPh3)4 as a catalyst, CuI as a co-catalyst, THF as a solvent, and 

triethylamine as base, at a temperature of 60 °C for 8h gives 2, 3 and 4 

respectively in 50–60% yields (Scheme 6.1). Further reactions of 

intermediates 2, 3 and 4 with 3-ethynyl-10-propyl-10H-phenothiazine 

(5) via Sonogashira cross-coupling reaction using Pd(PPh3)4 as a 

catalyst, CuI as a co-catalyst, toluene as a solvent, and triethylamine as 

base, at a temperature of 90 °C for 12h gives mono-substituted 

derivatives of phenothiazine P-1–P-3 respectively in yields 65–75% 

(Scheme 6.2). Similarly, the Sonogashira cross-coupling reactions of 

intermediates 2, 3 and 4  with 3,7-diethynyl-10-propyl-10H-

phenothiazine (6) using Pd(PPh3)4 as a catalyst in the presence of CuI in 

toluene as solvent and triethylamine as base at 90 °C for 12h gives di-

substituted derivatives of phenothiazine P-4–P-6 respectively in yields 

50–65% (Scheme 6.3). 
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Scheme 6. 1. Synthesis of Diketopyrrolopyrrole based intermediates 2–4. 

 

 

Scheme 6. 2. Synthesis of phenothiazine functionalized DPPs P-1–P-3. 

 

The phenothiazine based DPP derivatives (P-1–P-6) were purified by 

repeated silica gel column chromatography and recrystallization 

technique. P-1–P-6 are readily soluble in common organic solvents such 

as dichloromethane, ethyl acetate, tetrahydrofuran, toluene etc and were 

fully characterized by common spectroscopic techniques (1H NMR, 13C 

NMR and HRMS/MALDI). 
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Scheme 6. 3. Synthesis of phenothiazine functionalized DPPs P-4–P-6. 

 

6.3. Photophysical Properties 

The electronic absorption spectra of phenothiazine based DPP 

derivatives P-1–P-6 were recorded in 10-5 M DCM solution (Figure 6.2.) 

and the corresponding data are listed in Table 6.1.  
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Figure 6. 2. Electronic absorption spectra of P-1–P-6 in 10-5 M DCM. 
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The phenothiazine based DPP derivatives P-1–P-6 exhibit broad 

absorption band in the range of 300–800 nm in DCM covering Vis-NIR 

region as shown in Figure 6.2. They exhibit two major absorption bands; 

both correspond to the π–π* transitions.  The mono-substituted 

phenothiazine-based derivatives (P-1–P-3) exhibit absorption maxima 

at 620 nm, 626 nm and 629 nm whereas di-substituted phenothiazine-

based derivatives (P-4–P-6) exhibit their absorption maxima at 625 nm, 

625 nm and 629 nm. This shows that phenothiazine based DPP 

derivatives P-1–P-6 exhibit similar absorption maxima values even on 

increasing the length of conjugation this might be because of break of 

conjugation between the two arms due to non-planarity in di-substituted 

phenothiazine derivatives (P-4–P-6). When the end-capped donor in 

DPP functionalized phenothiazine molecules (P-1–P-6) was switched 

from N-phenyl carbazole to N, N-dimethylamino phenyl group, the 

absorption bands shifted to a longer wavelength (red shift). This shows 

a strong interaction between the donor-acceptor interactions in P-3 and 

P-6. The molar extinction coefficients (ε) reflect the efficiency of light 

absorption by the compounds. The derivative P-4 exhibits the highest ε 

values indicative of strong light-absorbing properties Conversely, P-6 

shows comparably lower ε values, suggesting relatively weaker light 

absorption efficiency.  
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Figure 6. 3. Normalized UV-vis absorption spectra of P-1 and P-4 in 

different solvents. 

 

The optical band gap and theoretical HOMO-LUMO gap of 

phenothiazine-based derivatives P-1–P-6 were calculated from onset 

absorption and density functional theory calculations respectively and 

the data are listed in Table 6.1. The substitution of end-capping group 

linked to phenothiazine by strong donor (N, N-dimethylaminophenyl) 

slightly lowers the optical band gap and theoretical HOMO–LUMO gap. 

The solvent dependent absorption spectra of P-1–P-6 was recorded in 

toluene, chloroform, dichloromethane (DCM), tetrahydrofuran (THF), 

and N, N-dimethylformamide (DMF) shows no significant change in the 

absorption bands thus indicating absence of any charge transfer band as 

shown in Figure 6.3. 
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Table 6. 1. The optical and theoretical/computational properties of P-

1–P-6. 

Compound λabs(nm) ε 

(×104 M-1cm-

1) 

Ea(eV) Eb(eV) 

P-1 620 

579 

341 

4.7 

4.0 

3.2 

 

1.85 2.01 

P-2 626 

586 

351 

6.1 

5.2 

3.9 

1.83 1.99 

P-3 629 

591 

339 

2.8 

2.4 

1.7 

1.80 1.99 

P-4 625 

589 

342 

15.0 

13.1 

10.2 

1.78 1.97 

P-5 625 

589 

352 

3.9 

3.6 

4.2 

1.76 1.95 

P-6 629 

589 

339 

2.2 

1.9 

1.4 

1.75 1.95 

Absorbance measured in DCM solution; ϵ: extinction coefficient; aOptical 

band gap; bTheoretical band gap. 

6.4. Redox Properties 

The redox properties of phenothiazine-based DPP derivatives P-1–P-6 

were explored by cyclic voltammetry (CV) technique in 

dichloromethane solvent using 0.1M tetrabutylammonium 

hexafluorophosphate (Bu4NPF6) as supporting electrolyte. The CV plots 

of P-1–P-6 are shown in Figure 6.4. and the corresponding 

electrochemical data are listed in Table 6.2. 
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Figure 6. 4. Cyclic voltammograms of P-1–P-6 in dichloromethane 

solvent using 0.1 M tetrabutylammonium hexafluorophosphate 

(Bu4NPF6) as supporting electrolyte. 

 

The phenothiazine-based DPP derivatives P-1–P-6 exhibit multiple 

oxidation waves between 0.40–1.05 V corresponding to oxidation of 

various donor units (N-phenyl carbazole / triphenylamine/N, N-dimethyl 

amino phenyl/thiophene) in which derivatives P-1–P-3 exhibits three 

oxidation waves corresponding to oxidation of different end capping 

donor (N-phenyl carbazole / triphenylamine/N, N-dimethyl amino 

phenyl); phenothiazine and thiophene of DPP while in case of P-3–P-6 

only two oxidation waves were observed. These derivatives exhibit one 

reversible reduction wave in the range of -1.05 – -1.35 corresponding to 

reduction of DPP into mono-anion formation as shown in Figure 6.5. In 

both mono- and di-substituted phenothiazine-based DPP derivatives (P-

1–P-6), it was observed that it is easier to oxidize N, N-dimethyl amino 



151 

phenyl (P-3 and P-6) and triphenylamine end-capped phenothiazine 

derivatives (P-2 and P-5) as compared to N-phenyl carbazole end-

capped derivatives (P-1 and P-4) thus reduction becomes difficult in P-

3 and P-6. The trend in the first oxidation potential of P-1–P-6 follows 

the order P-4> P-5> P-6> P-1> P-2≈P-3. The trend in the first reduction 

potential of P-1–P-6 follows the order: P-3> P-2> P-1> P-6> P-5> P-4. 

 

Table 6. 2. The electrochemical propertiesa of phenothiazine based 

DPPs P-1–P-6. 

Compound E1 

Red  

(V) 

E1 

Oxid 

(V) 

E2 

Oxid  

(V) 

E3 

Oxid  

(V) 

P-1 -1.26 0.42 0.59 0.92 

P-2 -1.33 0.41 0.69 1.04 

P-3 -1.34 0.41 0.67 0.98 

P-4 -1.08 0.89 1.20 - 

P-5 -1.12 0.87 1.20 - 

P-6 -1.13 0.76 1.19 - 

aThe electrochemical analysis was performed in a 0.1 M solution of Bu4NPF6 

in dichloromethane at 100 mVs−1 scan rate, versus Ag/AgCl at 25 °C. 

 

 

6.5. Theoretical calculations 

Density Functional Theory 

The density functional theory (DFT) calculation was carried out to 

understand the geometry, and the electronic structure of the 

phenothiazine-based DPP derivatives P-1–P-6 using the Gaussian 09W 

program.[29] The long alkyl chains on lactam ring were replaced by ethyl 

group to reduce the computation time. The DFT calculations were 

performed B3LYP/6-31G (d, p) for C, H, N, S and O. The frontier 

molecular orbitals (FMOs) of P-1–P-6 are shown in Figure 6.5. 
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Figure 6. 5. Frontier molecular orbitals of phenothiazine based DPPs 

P-1–P-8 calculated by DFT using B3LYP/6-31G (d, p) for C, H, N, S, 

O. 

 

The phenothiazine-based DPP derivatives P-1–P-6 exhibit non-planar 

geometry. The electron density of highest occupied molecular orbitals 

(HOMOs) of phenothiazine-based DPP derivatives P-1–P-6 are 

distributed on the whole molecule whereas their lowest unoccupied 

molecular orbitals (LUMOs) are localized mainly on the acceptor unit 

(DPP core), this indicates presence of donor-acceptor interactions as 

shown in Figure 6.5.  



153 

 

Figure 6. 6. HOMO-LUMO gap of P-1–P-6 calculated by DFT using 

B3LYP/6-31+G (d, p) for C, H, O, N and S. 

The calculated HOMO energy levels for P-1–P-6 are -4.78, -4.62, -4.53, 

-4.81, -4.64, -4.54 eV and the corresponding LUMO levels are -2.77, -

2.63, -2.54, -2.84, -2.69, -2.59 eV respectively. The theoretically 

calculated HOMO-LUMO gap follow the trend P-1>P-2≈P-3>P-4>P-

5≈P-6. 

 

Time Dependent Density Functional Theory (TD–DFT)  

The time dependent density functional theory (TD–DFT) calculation 

was performed in order to get the idea of electronic transitions in 

phenothiazine-based DPP derivatives P-1–P-6.  The major electronic 

transitions in P-1–P-6 calculated from TD–DFT with composition and 

oscillator strengths are shown in Table 6.3. 
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Table 6. 3. Major electronic transitions of P-1–P-6 calculated by TD-DFT. 

Compound Wavelength 

(nm) 

Composition Oscillation 

Strength (fa) 

P-1 608 

366 

HOMO→LUMO (0.70) 

HOMO-1→ LUMO+1 (0.51) 

1.69 

0.18 

P-2 617 

396 

HOMO→LUMO (0.71) 

HOMO-3→LUMO (0.51) 

1.83 

0.24 

P-3 614 

396 

HOMO→LUMO (0.70) 

HOMO-2→LUMO (0.50) 

 

1.74 

0.41 

P-4 720 

678 

HOMO→LUMO (0.67) 

HOMO→LUMO+1 (0.68) 

3.07 

0.92 

P-5 658 

607 

HOMO→LUMO (0.63) 

HOMO-1→LUMO (0.61) 

2.39 

0.82 

P-6 736 

698 

HOMO→LUMO (0.65) 

HOMO→LUMO+1 (0.58) 

3.36 

1.16 

     fa=oscillation strength 

 

The break of conjugation between the two arms in phenothiazine 

substituted DPPs (P-4–P-6) due to non-planar structure can also be 

illustrated by FMOs obtained via computational calculations. This may 

be the probable reason for the similar absorption bands for the mono- 

(P-1–P-3) and di- substituted (P-4–P-6) phenothiazine-based dimer 

DPP derivatives. The major electronic transition in P-1–P-6 occur from 

HOMO→LUMO corresponds to π-π* transitions while the other 

transitions in P-1–P-6 occurs from HOMO-1→ LUMO+1, HOMO-

3→LUMO, HOMO-2→LUMO, HOMO→LUMO+1, HOMO-

1→LUMO, HOMO→LUMO+1 respectively corresponds to 

intramolecular charge transfer transitions. The theoretical HOMO-

LUMO gaps of P-1–P-6 is in good agreement with the optical band gaps 

as shown in Table 6.1. The absorption spectra of P-1 and P-2 calculated 

from TDDFT are shown in Figure 6.7. 
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Figure 6. 7. Theoretical absorption spectra of P-1 and P-2. 

 

6.6. Experimental section: 

General methods 

The chemicals were used as received unless otherwise indicated. All the 

moisture sensitive reactions were performed under argon atmosphere 

using the standard Schlenk method. 1H NMR (400 MHz/500 MHz) and 

13C NMR (100 MHz) spectra were recorded by using CDCl3 as the 

solvent. The 1H NMR chemical shifts are reported in parts per million 

(ppm) relative to the solvent residual peak (CDCl3, 7.26 ppm). The 

multiplicities are given as: s (singlet), d (doublet), m (multiplet), and the 

coupling constants, J, are given in Hz. The 13C NMR chemical shifts are 

reported with relative to the solvent residual peak (CDCl3, 77.0 ppm). 

HRMS was recorded on a mass spectrometer (ESI-TOF). The absorption 

spectra of DPPs were recorded on UV-visible Spectrophotometer in 

dichloromethane. Cyclic voltammograms (CVs) were recorded on an 

electrochemical analyzer using glassy carbon as working electrode, Pt 

wire as the counter electrode, and Ag/AgCl as the reference electrode. 
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Synthesis of P-1 

In a 250 mL round-bottom flask, 1 (0.500 g, 0.68 mmol) and N-(4-

ethynylphenyl) carbazole (0.182 g, 0.68 mmol) were dissolved in 

anhydrous tetrahydrofuran (20 mL) and triethylamine (5 mL). The 

reaction mixture was degassed with argon for 15 min and Pd(PPh3)4 

(0.039 g, 0.034 mmol), and CuI (0.006 g, 0.030 mmol) were then added. 

The reaction mixture was stirred overnight at 65oC. After completion, 

the reaction mixture was allowed to cool to room temperature. The 

solvent was removed under vacuum and the crude was purified by silica 

gel column chromatography with hexane/CH2Cl2 (3:1) as an eluent to 

get 2 in 40% yield and then in a 100 mL round-bottom flask, 2 (0.200 g, 

0.22 mmol) and 3-ethynyl-10-propyl-10H-phenothiazine (0.058 g, 0.22 

mmol) were dissolved in anhydrous toluene (20 mL) and triethylamine 

(5 mL). The reaction mixture was degassed with argon for 15 min and 

Pd(PPh3)4 (0.017 g, 0.015 mmol), and CuI (0.006 g, 0.030 mmol) were 

then added. The reaction mixture was stirred overnight at 90oC. After 

completion, the reaction mixture was allowed to cool to room 

temperature. The solvent was removed under vacuum and the crude was 

purified by silica gel column chromatography with hexane/CH2Cl2 (3:1) 

as an eluent to get P-1 in 68% yield. 

1H NMR (400 MHz, CDCl3, δ in ppm): 8.97-8.90 (2H, m), 8.15-8.13 

(2H, m), 7.77-7.75 (2H, d, J = 8 Hz), 7.61-7.59 (2H, m), 7.47-7.43 (5H, 

m), 7.33-7.27 (5H, m), 7.16-7.10 (2H, m), 6.94-6.83 (2H, m), 6.79-6.77 

(1H, m), 4.10-4.05 (4H, m), 3.82-3.79 (2H, m), 1.85-1.74 (6H, m), 1.29-

1.27 (28H, m), 1.03-1.01 (3H, m), 0.88-0.85 (6H, m); 13C NMR (100 

MHz, CDCl3, δ in ppm): 161.2, 161.1, 146.1, 144.3, 140.4, 139.4, 138.7, 

138.3, 135.9, 135.4, 133.3, 133.1, 132.7, 130.9, 130.8, 130.0, 129.3, 

128.2, 127.5, 127.4, 126.9, 126.1, 124.9, 123.9, 123.7, 122.9, 121.1, 

120.4, 115.7, 115.6, 115.0, 109.7, 108.8, 108.5, 97.8, 97.0, 83.2, 82.4, 

49.4, 42.4, 31.9, 30.1, 29.7, 29.6, 29.3, 26.9, 22.7, 20.1, 14.1, 11.3; 

HRMS (ESI) m/z calcd for C71H72N4O2S3: 1108.4812 [M+] found 

1108.4816; UV/vis (Dichloromethane) λmax  620 nm, ϵ [M-1cm-1] 

(4.7×104 ). 



157 

Synthesis of P-2 

In 100 mL round bottom flask, 1 (0.250 g, 0.34 mmol) and 4-ethynyl-N, 

N-diphenylaniline (0.072 g, 0.27 mmol) were dissolved in anhydrous 

THF (20 mL) and triethylamine (5 mL). The reaction mixture was 

degassed with argon for 20 minutes and Pd(PPh3)4 (0.017 g, 0.015 

mmol) and CuI (0.006 g, 0.030 mmol) were then added. The reaction 

mixture was stirred overnight at 60 oC. The reaction mixture was 

allowed to cool down at room temperature after completion of reaction. 

The solvent was removed under vacuum and the crude product was 

purified by repeated silica gel column chromatography with 

hexane/DCM (3:2) as an eluent to get 3 in 55% yield and then in 100 

mL round bottom flask, 3 (0.150 g, 0.16 mmol) and 3-ethynyl-10-

propyl-10H-phenothiazine (0.042 g, 0.16 mmol) were dissolved in 

anhydrous toluene (20 mL) and triethylamine (5 mL). The reaction 

mixture was degassed with argon for 20 minutes and Pd(PPh3)4 (0.009 

g, 0.008 mmol) and CuI (0.002 g, 0.014 mmol) were then added. The 

reaction mixture was stirred overnight at 90oC. The reaction mixture was 

allowed to cool down at room temperature after completion of reaction. 

The solvent was removed under vacuum and the crude product was 

purified by repeated silica gel column chromatography with 

hexane/DCM (3:2) as an eluent to get P-2 in 72% yield. 

1H NMR (400 MHz, CDCl3, δ in ppm): 8.94-8.93 (2H, m), 7.38-7.27 

(10H, m), 7.14-7.01 (8H, m), 6.99-6.91 (3H, m), 6.86-6.78 (2H, m), 

4.07-4.03 (4H, m), 3.83-3.79 (2H, m), 1.86-1.71 (6H, m), 1.36-1.26 

(28H, m), 1.03-1.00 (3H, m), 0.88-0.85 (6H, m); 13C NMR (100 MHz, 

CDCl3, δ in ppm): 161.2, 148.7, 146.9, 146.1, 144.3, 139.1, 138.9, 

135.7, 135.6, 132.7, 132.6, 130.9, 130.1, 130.0, 129.9, 129.5, 129.4, 

129.0, 127.5, 127.4, 125.4, 124.9, 124.0, 123.9, 122.9, 121.6, 115.8, 

115.6, 115.1, 114.5, 108.6, 108.5, 98.7, 97.7, 82.4, 81.8, 49.4, 42.4, 31.9, 

30.0, 29.7, 29.6, 29.4, 29.3, 29.2, 26.9, 22.7, 20.1, 14.1, 11.3; HRMS 

(ESI) m/z calcd for C71H74N4O2S3: 1110.4968 [M+] found 1110.4959; 

UV/vis (Dichloromethane) λmax  626 nm, ϵ [M-1cm-1] (6.1×104 ). 
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Synthesis of P-3 

1 (0.250 g, 0.34 mmol) and 4-ethynyl-N, N-dimethylaniline (0.039 g, 

0.27 mmol) were dissolved in a 100 mL round bottom flask containing 

anhydrous THF (20 mL) and triethylamine (5 mL). The reaction mixture 

was degassed with argon for 20 min followed by addition of Pd(PPh3)4 

(0.017 g, 0.015 mmol), and CuI (0.006 g, 0.030 mmol). The reaction 

mixture was stirred overnight at 60oC. The reaction mixture was allowed 

to cool down at room temperature after completion of reaction. The 

solvent was removed under vacuum and the crude product was purified 

by repeated silica gel column chromatography with hexane/DCM (3:2) 

as an eluent to get 4 in 50% yield. 4 (0.150 g, 0.19 mmol) and 3-ethynyl-

10-propyl-10H-phenothiazine (0.050 g, 0.19 mmol) were dissolved in a 

100 mL round bottom flask containing anhydrous toluene (20 mL) and 

triethylamine (5 mL). The reaction mixture was degassed with argon for 

20 min followed by addition of Pd(PPh3)4 (0.017 g, 0.015 mmol), and 

CuI (0.006 g, 0.030 mmol). The reaction mixture was stirred overnight 

at 90oC. The reaction mixture was allowed to cool down at room 

temperature after completion of reaction. The solvent was removed 

under vacuum and the crude product was purified by repeated silica gel 

column chromatography with hexane/DCM (1:1) as an eluent to get P-

3 in 70% yield. 

1H NMR (400 MHz, CDCl3, δ in ppm): 8.97-8.96 (1H, d, J=4Hz), 8.93-

8.92 (1H, d, J=4 Hz), 7.42-7.40 (2H, m), 7.34-7.29 (4H, m), 7.17-7.10 

(2H, m), 6.95-6.78 (3H, m), 6.67-6.65 (2H, m), 4.08-4.04 (4H, m), 3.84-

3.80 (2H, m), 3.01 (6H, s), 1.86-1.71 (6H, m), 1.36-1.25 (28H, m), 1.04-

1.00 (3H, m), 0.80-0.85 (6H, m); 13C NMR (100 MHz, CDCl3, δ in 

ppm): 161.3, 161.1, 150.6, 146.0, 144.3, 139.4, 138.6, 135.9, 135.4, 

132.9, 132.7, 131.9, 130.8, 130.3, 130.2, 130.0, 129.3, 128.8, 127.5, 

127.4, 124.9, 124.0, 122.9, 115.8, 115.6, 115.1, 111.7, 108.6, 108.2, 

100.2, 97.6, 82.4, 80.9, 49.4, 42.4, 40.1, 31.9, 30.1, 29.7, 29.5, 29.3, 

29.2, 26.9, 22.7, 20.1, 14.1, 11.3; HRMS (ESI) m/z calcd for 

C61H70N4O2S3: 986.4655 [M+] found 986.4655; UV/vis 

(Dichloromethane) λmax  629 nm, ϵ [M-1cm-1] (2.8×104 ). 
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Synthesis of P-4 

 In 100 mL round bottom flask, 3,7-diethynyl-10-propyl-10H-

phenothiazine (0.01 g, 0.03 mmol) and 2 (0.055 g, 0.06 mmol) were 

dissolved in anhydrous toluene (20 mL) and triethylamine (5 mL). The 

reaction mixture was degassed with argon for 20 minutes and Pd(PPh3)4 

(0.004 g, 0.004 mmol) and CuI (0.001 g, 0.007 mmol) were then added. 

The reaction mixture was stirred overnight at 90oC. The reaction mixture 

was allowed to cool down at room temperature after completion of 

reaction. The solvent was removed under vacuum and the crude product 

was purified by repeated silica gel column chromatography with DCM 

as an eluent to get P-4 in 52% yield. 

1H NMR (400 MHz, CDCl3, δ in ppm): 8.97-8.94 (4H, m), 8.15-8.13 

(4H, d, J=8Hz), 7.78-7.76 (4H, m), 7.62-7.59 (5H, m), 7.47-7.31(15H, 

m), 7.00 (2H, s), 6.79-6.73 (4H, m), 4.10-4.05 (8H, m), 3.80 (2H, s), 

1.84-1.75 (10H, m), 1.46-1.25 (56H, m), 1.05-1.00 (3H, m), 0.88-0.86 

(12H, m); 13C NMR (100 MHz, CDCl3, δ in ppm): 161.2, 161.1, 140.4, 

135.4, 133.3, 133.1, 132.8, 131.0, 130.8, 126.9, 126.1, 123.7, 120.4, 

115.3, 109.7, 108.8, 42.4, 31.9, 31.8, 30.3, 30.1, 29.7, 29.6, 29.5, 29.4, 

29.3, 29.2, 26.9, 22.7, 19.9, 14.1, 11.2; MALDI calcd for 

C127H129N7O4S5: 1977.753 [M+] found 1977.839; UV/vis 

(Dichloromethane) λmax  625 nm, ϵ [M-1cm-1] (15.0×104 ). 

Synthesis of P-5 

In 100 mL round bottom flask, 3,7-diethynyl-10-propyl-10H-

phenothiazine (0.010 g, 0.03 mmol) and 3 (0.056 g, 0.06 mmol) were 

dissolved in anhydrous toluene (20 mL) and triethylamine (5 mL). The 

reaction mixture was degassed with argon for 20 minutes and Pd(PPh3)4 

(0.004 g, 0.004 mmol) and CuI (0.001 g, 0.007 mmol) were then added. 

The reaction mixture was stirred overnight at 90oC. The reaction mixture 

was allowed to cool down at room temperature after completion of 

reaction. The solvent was removed under vacuum and the crude product 

was purified by repeated silica gel column chromatography with DCM 

as an eluent to get P-5 in 59% yield. 
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1H NMR (400 MHz, CDCl3, δ in ppm): 8.95-8.93 (4H, m), 7.53 (2H, s), 

7.38-7.33 (8H, m), 7.32-7.27 (12H, m), 7.25-7.01 (12H, m), 7.00-6.99 

(4H, m), 4.08-4.05 (8H, m), 3.83-3.81 (2H, m), 1.85-1.74 (10H, m), 

1.45-1.23 (56H, m), 1.05-1.01 (2H, m), 0.94-0.83 (12H, m); 13C NMR 

(100 MHz, CDCl3, δ in ppm): 161.2, 161.1, 148.7, 146.9, 145.0, 142.9, 

139.3, 139.2, 138.9, 135.7,135.5, 135.2, 132.8, 132.6, 131.0, 129.9, 

129.5, 128.6, 125.3, 124.1, 123.9, 123.5, 121.6, 115.9, 114.4, 114.0, 

108.6, 108.5, 97.3, 42.2, 34.9, 34.7, 34.5, 33.8, 31.9, 31.6, 31.4, 30.2, 

29.7, 29.6, 29.5, 29.4, 29.3, 29.2, 29.1, 28.9, 26.9, 22.7, 20.0, 14.1, 11.2; 

MALDI calcd for C127H133N7O4S5: 1979.902 [M+] found 1979.836; 

UV/vis (Dichloromethane) λmax  625 nm, ϵ [M-1cm-1] (3.9×104 ). 

Synthesis of P-6 

In 100 mL round bottom flask, 3,7-diethynyl-10-propyl-10H-

phenothiazine (0.010 g, 0.003 mmol) and 4 (0.048 g, 0.006 mmol) were 

dissolved in anhydrous toluene (20 mL) and triethylamine (5 mL). The 

reaction mixture was degassed with argon for 20 minutes and Pd(PPh3)4 

(0.004 g, 0.004 mmol) and CuI (0.001 g, 0.007 mmol) were then added. 

The reaction mixture was stirred overnight at 90oC. The reaction mixture 

was allowed to cool down at room temperature after completion of 

reaction. The solvent was removed under vacuum and the crude product 

was purified by repeated silica gel column chromatography with DCM 

as an eluent to get P-6 in 62% yield. 

1H NMR (400 MHz, CDCl3, δ in ppm): 8.98-8.97 (2H, d, J=8 Hz), 8.92 

(2H, s), 7.43-7.41 (4H, d, J=8 Hz), 7.35-7.31 (4H, m), 7.23-7.21 (2H, 

m), 6.82-6.76 (4H, m), 6.74-6.66 (4H, m), 4.08-4.05 (8H, m), 3.82-3.79 

(2H, m), 3.02 (12H, s), 1.85-1.72 (10H, m), 1.44-125 (56H, m), 1.05-

1.01 (3H, m), 0.99-0.85 (12H, m); 13C NMR (100 MHz, CDCl3, δ in 

ppm): 161.3, 161.1, 140.4, 136.0, 135.8, 135.3, 133.0, 132.9, 132.8, 

131.9, 130.9, 130.0, 129.3, 128.9, 128.5, 127.7, 126.9, 126.1, 124.1, 

123.9, 123.7, 120.4, 115.3, 111.7, 108.2, 71.8, 49.6, 42.4, 40.2, 40.1, 

31.9, 30.3, 30.1, 29.7, 29.6, 29.4, 29.3, 29.2, 27.7, 26.9, 22.7, 19.9, 19.2, 

14.1, 11.2; ; MALDI calcd for C107H125N7O4S5: 1732.842 [M+] found 
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1732.988; UV/vis (Dichloromethane) λmax  629 nm, ϵ [M-1cm-1] (2.2×104 

). 

6.7. Conclusions 

In conclusion, we have designed and synthesized phenothiazine-based 

DPP derivatives P-1–P-6 by the series of Pd–catalyzed Sonogashira 

cross-coupling reactions. Their photophysical and redox properties were 

investigated which shows that the incorporation of strong donor (N, N-

dimethylaminophenyl) red shifts the absorption, exhibit low oxidation 

potentials and lowers the HOMO–LUMO gap. The phenothiazine based 

DPP derivatives P-1–P-6 exhibit similar absorption bands even on 

increasing the length of conjugation this might be because of break of 

conjugation between the two arms due to non-planarity in di-substituted 

phenothiazine derivatives. The electrochemical study exhibits multiple 

oxidation waves in phenothiazine-based DPP derivatives due to 

oxidation of various donor units (thiophene/N-phenyl 

carbazole/Triphenylamine/N, N-dimethylaminophenyl). The broad 

absorption in visible region, multiple redox potentials and low HOMO–

LUMO gap indicates that these molecules are potential candidate for 

optoelectronic applications. 

 

6.8. References 

[1] Forrest, S. R., Thompson, M. E. (2007), Introduction: Organic 

electronics and optoelectronics, Chem. Rev., 107, 923–925 

(DOI: https://doi.org/10.1021/cr0501590). 

[2] Chen, H., Zhang, W., Li, M., He, G., Guo, X. (2020), Interface 

engineering in organic field-effect transistors: Principles, 

applications, and perspectives, Chem. Rev. 120, 2879–2949 

(DOI: https://doi.org/10.1021/acs.chemrev.9b00532). 

[3] Song, J., Lee, H., Jeong, E. G., Choi, K. C., Yoo, S. (2020), 

Organic light‐emitting diodes: Pushing toward the limits and 

beyond, Adv. Mater., 32, 1907539 (DOI: 

https://doi.org/10.1002/adma.201907539). 

https://doi.org/10.1021/cr0501590


162 

[4] Cui, Y., Hong, L., Hou, J. (2020), Organic photovoltaic cells 

for indoor applications: Opportunities and challenges, ACS 

Appl. Mater. Interfaces, 12, 38815–38828 (DOI: 

https://doi.org/10.1021/acsami.0c10444). 

[5] Walker, B., Liu, J., Kim, C., Welch, G. C., Park, J. K., Lin, J., 

Zalar, P., Proctor, C. M., Seo, J. H., Bazan, G. C., Nguyen, T. -

Q. (2013), Optimization of energy levels by molecular design: 

evaluation of bis-diketopyrrolopyrrole molecular donor 

materials for bulk heterojunction solar cells, Energy Environ. 

Sci., 6, 952–962 (DOI: https://doi.org/10.1039/c3ee24351f). 

[6] Roncali, J. (2007), Molecular engineering of the band gap of π‐

conjugated systems: Facing technological applications, 

Macromol. Rapid Commun., 28, 1761–1775 (DOI:  

https://doi.org/10.1002/marc.200700345). 

[7] Brabec, C. J., Hauch, J. A., Schilinsky, P., Waldauf, C. (2005), 

Production aspects of organic photovoltaics and their impact on 

the commercialization of devices, MRS Bull. 30, 50–52 (DOI: 

https://doi.org/10.1557/mrs2005.10). 

[8] Facchetti, A. (2011), π-conjugated polymers for organic 

electronics and photovoltaic cell applications, Chem. Mater. 23, 

733–758 (DOI: https://doi.org/10.1021/cm102419z). 

[9] Zhou, H., Yang, L., You, W. (2012), Rational design of high 

performance conjugated polymers for organic solar cells, 

Macromolecules, 45, 607–632 (DOI: 

https://doi.org/10.1021/ma201648t). 

[10] Patil, Y., Jadhav, T., Dhokale, B., Misra, R. (2016), 

Tuning of the HOMO–LUMO Gap of Symmetrical and 

Unsymmetrical Ferrocenyl-Substituted Diketopyrrolopyrroles. 

Eur. J. Org. Chem., 2016, 733–738 (DOI: 

https://doi.org/10.1002/ejoc.201501123). 

[11] Patil, Y., Misra, R., Keshtov, M. L., Sharma, G. D., 

(2017), Small molecule carbazole-based diketopyrrolopyrroles 

with tetracyanobutadiene acceptor unit as a non-fullerene 

acceptor for bulk heterojunction organic solar cells. J. Mater. 



163 

Chem. A., 5, 3311–3319 (DOI: 

https://doi.org/10.1039/C6TA09607G). 

[12] Patil, Y., Misra, R., Keshtov, M. L., Sharma, G. D., 

(2016), 1,1,4,4-Tetracyanobuta-1,3-diene Substituted 

Diketopyrrolopyrroles: An Acceptor for Solution Processable 

Organic Bulk Heterojunction Solar Cells. J. Phys. Chem. C., 

120, 6324–6335 (DOI: 10.1021/acs.jpcc.5b12307). 

[13] Patil, Y., Misra, R., Chen, F. C., Keshtov, M. L., Sharma, 

G. D., (2016), Symmetrical and unsymmetrical triphenylamine 

based diketopyrrolopyrroles and their use as donors for solution 

processed bulk heterojunction organic solar cells. RSC. Adv., 6, 

99685–99694 (DOI: https://doi.org/10.1039/C6RA10442H). 

[14] Khan, F., Jang, Y., Patil, Y., Misra, R., and D’Souza, F. 

(2021) Photoinduced charge separation prompted intervalence 

charge transfer in a bis(thienyl)diketopyrrolopyrrole bridged 

donor‐TCBD push‐pull system. Angew. Chem. Weinheim 

Bergstr. Ger., 133, 20681–20690 (DOI: 

https://doi.org/10.1002/anie.202108293).  

[15] Rout, Y., Chauhan, V., and Misra, R. (2020) Synthesis 

and characterization of isoindigo-based push–pull 

chromophores. J. Org. Chem., 85, 4611–4618 (DOI: 

https://doi.org/10.1021/acs.joc.9b03267).  

[16] Farnum, D. G., Mehta, G., Moore, G. G. I., Siegal, F. P. 

(1974), Attempted reformatskii reaction of benzonitrile, 1,4-

diketo-3,6-diphenylpyrrolo[3,4-C]pyrrole. A lactam analogue of 

pentalene, Tetrahedron Lett., 15, 2549–2552 (DOI: 

https://doi.org/10.1016/s0040-4039(01)93202-2). 

[17] Hao, Z., Iqbal, A. (1997), Some aspects of organic 

pigments, Chem. Soc. Rev., 26, 203–213 (DOI: 

https://doi.org/10.1039/cs9972600203). 

[18] Ghosh, S., Shankar, S., Philips, D. S., Ajayaghosh, A. 

(2020), Diketopyrrolopyrrole-based functional supramolecular 

polymers: next-generation materials for optoelectronic 



164 

applications, Mater. Today Chem., 16, 100242 (DOI: 

https://doi.org/10.1016/j.mtchem.2020.100242). 

[19] Loser, S., Lou, S. J., Savoie, B. M., Bruns, C. J., 

Timalsina, A., Leonardi, M. J., Smith, J., Harschneck, T., 

Turrisi, R., Zhou, N., Stern, C. L., Sarjeant, A. A., Facchetti, A., 

Chang, R. P. H., Stupp, S. I., Ratner, M. A., Chen, L. X., Marks, 

T. J. (2017), Systematic evaluation of structure–property 

relationships in heteroacene – diketopyrrolopyrrole molecular 

donors for organic solar cells, J. Mater. Chem. A, 5, 9217–9232 

(DOI: https://doi.org/10.1039/c7ta02037f). 

[20] Grzybowski, M., Gryko, D. T. (2015), 

Diketopyrrolopyrroles: Synthesis, reactivity, and optical 

properties, Adv. Opt. Mater. 3, 280–320 (DOI: 

https://doi.org/10.1002/adom.201400559). 

[21] Qu, S., Tian, H. (2012), Diketopyrrolopyrrole (DPP)-

based materials for organic photovoltaics, Chem. Commun., 48, 

3039-3051 (DOI: https://doi.org/10.1039/c2cc17886a). 

[22] Zhang, G., Fu, Y., Xie, Z., Zhang, Q. (2011), Synthesis 

of low bandgap polymer based on 3,6-dithien-2-yl-2,5-

dialkylpyrrolo[3,4-c]pyrrole-1,4-dione for photovoltaic 

applications, Sol. Energy Mater. Sol. Cells, 95, 1168–1173 

(DOI: https://doi.org/10.1016/j.solmat.2010.12.049). 

[23] Iqbal, A., Jost, M., Kirchmayr, R., Pfenninger, J., Rochat, 

A., Wallquist, O. (1988), The synthesis and properties of 1,4‐

diketo‐pyrrolo[3,4‐C]pyrroles, Bull. Soc. Chim. Belg, 97, 615–

644 (DOI: https://doi.org/10.1002/bscb.19880970804). 

[24] Wallquist, O., Lenz, R. (2002), 20 years of DPP pigments 

– future perspectives, Macromol. Symp., 187, 617–630 (DOI: 

https://doi.org/10.1002/1521-3900(200209)187:1<617::aid-

masy617>3.0.co;2-5). 

[25] Li, Y., Sonar, P., Murphy, L., Hong, W. (2013), High 

mobility diketopyrrolopyrrole (DPP)-based organic 

semiconductor materials for organic thin film transistors and 

https://doi.org/10.1016/j.solmat.2010.12.049


165 

photovoltaics, Energy Environ. Sci., 6, 1684–1710 (DOI: 

https://doi.org/10.1039/c3ee00015j). 

[26] Zhao, B., Sun, K., Xue, F., Ouyang, J. (2012), Isomers of 

dialkyl diketo-pyrrolo-pyrrole: Electron-deficient units for 

organic semiconductors, Org. Electron., 13, 2516–2524 (DOI: 

https://doi.org/10.1016/j.orgel.2012.07.015). 

[27] Walker, B., Han, X., Kim, C., Sellinger, A., Nguyen, T. 

-Q. (2012), Solution-processed organic solar cells from dye 

molecules: An investigation of diketopyrrolopyrrole:Vinazene 

heterojunctions, ACS Appl. Mater. Interfaces, 4, 244–250 (DOI: 

https://doi.org/10.1021/am201304e). 

[28] Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, 

G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., 

Mennucci, B., Petersson, G. A., Nakatsuji, H., Caricato, M., Li, 

X., Hratchian, H. P., Izmaylov, A. F., Bloino, J., Zheng, G., 

Sonnenberg, J. L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., 

Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., 

Nakai, H., Vreven, T., Montgomery Jr., J. A., Peralta, J. E., 

Ogliaro, F., Bearpark, M., Heyd, J. J., Brothers, E., Kudin, K. N., 

Staroverov, V. N., Kobayashi, R., Normand, J., Raghavachari, 

K., Rendell, A.,  Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, 

M., Rega, N., Millam, J. M., Klene, M., Knox, J. E., Cross, J. B., 

Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, 

R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., 

Ochterski, J. W., Martin, R. L., Morokuma, K., Zakrzewski, V. 

G., Voth, G. A., Salvador, P., Dannenberg, J. J., Dapprich, S., 

Daniels, A. D., Farkas, Ӧ., Foresman, J. B., Ortiz, J. V., 

Cioslowski, J., Fox, D. J., Gaussian 09, revision Gaussian, D.01, 

Inc., Wallingford, CT, USA, 2009. 

  



166 

Chapter 07: Ferrocenyl-diketopyrrolopyrroles 

functionalized mono-, di- and tri- substituted 

triphenylamine derivatives: A comparative study 

 

7.1. Introduction 

Harnessing solar energy for the production of clean and renewable fuels 

is critical to addressing future energy demands. Organic electronic 

devices, such as organic field-effect transistors (OFETs)[1-5] and organic 

solar cells (OSCs),[6-9]have emerged as significant players in this 

endeavor. These devices utilize organic small molecules with extensive 

π-conjugation based on donor-acceptor (D-A) frameworks, which are 

extensively researched for their wide range of optoelectronic 

applications, including OSCs, nonlinear optical (NLO) switches,[10,12] 

sensors,[13,14] fluorescent near-infrared (NIR) probes,[15-17] and data 

storage devices.[18,19] Diketopyrrolopyrrole (DPP) stands out due to its 

π-conjugated bicyclic di-lactam structure, making it one of the most 

utilized organic dyes. DPP is favored for its straightforward synthesis, 

excellent thermal stability, strong electron-accepting properties, 

planarity, high fluorescence quantum yield, and robust photostability.[20-

22] These features make DPP a highly suitable candidate for diverse 

optoelectronic applications. Despite its poor solubility in organic 

solvents caused by strong π–π interactions and hydrogen bonding, N–

alkylation of DPP significantly enhances its solubility in common 

organic solvents.[23-27] Additionally, DPP-based materials demonstrate 

high charge-carrier mobility and efficient light absorption across a broad 

spectrum, including the visible region. Combining the donor thiophene 

with the acceptor DPP (resulting in dithienyl DPP) produces small 

organic molecules that absorb visible light, which is crucial for solar 

energy applications.[28-30] A crucial method for synthesizing DPP 

derivatives involves Sonogashira coupling, a powerful and widely used 

cross-coupling reaction in organic chemistry. The Sonogashira coupling 

reaction is highly valued for its ability to form carbon-carbon bonds 
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under relatively mild conditions, offering high functional group 

tolerance and enabling the construction of complex molecular 

architectures. In the context of DPP-based materials, Sonogashira 

coupling facilitates the introduction of various substituents, enhancing 

the solubility, electronic properties, and overall performance of the 

resulting compounds.[31-33]The nature of donor used for the design of 

efficient small organic molecules significantly influences the D–A 

interaction. Ferrocene is widely used donor unit for the synthesis of 

various organic molecules based on D–A framework due to its excellent 

thermal, photochemical stability and strong NLO response.[34, 35]  

Zhang et al. reported a series of star-shaped molecules with 

fused aromatic ring 1,3,5-tri(thiophen-2-yl) benzene (TTB), 2,4,6-

tri(thiophene-2-yl)-1,3,5-triazene (TTT) as core for OSCs.[36-39] 

Triphenylamine (TPA) is widely used as an electron donor to design 

efficient D–A based molecules. In recent years, many star–shaped small 

molecules based on TPA as a central core have been widely studied for 

organic photovoltaics.[40,41] The sp3 hybrid N atom of triphenylamine 

breaks the electronic conjugation between three arms, However its 

special propeller structure is easy to form amorphous material and 

contact closely with fullerene acceptor which leads to poor phase 

separation and charge recombination and enhance the charge 

dissociation efficiency.[42,43] Herein we have designed and synthesized 

mono–, di– and tri– substituted DPP and ferrocenyl–DPP based 

derivatives with TPA as a central core TPA-DPPs 1–6 by the Pd-

catalyzed Sonogashira cross–coupling reactions in order to investigate 

the effect of number of DPP and ferrocenyl–DPP units on the 

photophysical and electrochemical properties. The effect of increasing 

the number as well as change of end capping group has also been 

investigated. 
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Figure 7. 1. Chemical structures of DPP and ferrocenyl-DPP based 

derivatives TPA–DPPs 1–6. 

 

7.2. Results and discussion 

The mono–, di– and tri– DPP substituted triphenylamines TPA–DPPs 

1–3 were synthesized by the palladium catalyzed Sonogashira cross–

coupling reaction of 1, 2 and 3 with 1.0, 2.0 and 3.0 equivalents of 

monobromo DPP (DPP-Br) in 75%, 60% and 65% yield respectively 

(Scheme 7.1). Recently we have reported the synthesis and solar cell 

properties of TPA–DPP 1 and we have taken it here for the sake of 

comparison.[32] The mono–, di– and tri– ferrocenyl–DPP based 

derivatives with TPA as central core (TPA–DPPs 1–6) were 

synthesized by palladium catalyzed Sonogashira cross–coupling 

reactions of 1, 2 and 3 ( with 1.0, 2.0 and 3.0 equivalents of mono bromo 

ferrocenyl-DPP in 60%, 62% and 65% yield respectively (Scheme 1). 

The DPP and ferrocenyl DPP functionalized TPA derivatives (TPA–

DPPs 1–6) were purified by repeated silica gel column chromatography 

and recrystallization techniques. TPA–DPPs 1–6 are readily soluble in 

common organic solvents and were fully characterized by common 

spectroscopic techniques (1H NMR, 13C NMR, HRMS and MALDI). 
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Scheme 7. 1. Synthesis of DPP and ferrocenyl-DPP based derivatives 

with triphenylamine as central core TPA–DPPs 1–6. 

 

7.3. Photophysical properties 

The electronic absorption spectra of DPP and ferrocenyl-DPP based 

derivatives with TPA as central core TPA-DPPs 1–6 were recorded in 

dichloromethane solution and as film at room temperature (Figure 7.2.) 

and the corresponding data are listed in Table 7.1.  
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Figure 7. 2. Normalized UV-vis absorption spectra of DPP and 

ferrocenyl-DPP based derivatives with TPA as central core TPA–DPPs 

1–6 in DCM solution and as film. 
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The absorption spectra of TPA-DPPs 1–6 exhibit broad absorption 

bands covering visible region from 450 nm–700 nm in DCM solution 

and from 500 nm–900 nm in film prepared using spin coater. The 

absorption bands in solution at shorter wavelength region (around 500 

nm) and longer wavelength region (around 600 nm) correspond to the 

π–π* transition.The DPP based derivatives TPA–DPPs 1–3 exhibit 

absorption bands at 583 nm, 586 nm and 586 nm whereas ferrocenyl-

DPP based derivatives TPA–DPPs 4–6 exhibit their absorption bands 

at 625 nm, 627 nm and 627 nm respectively. This shows that the di– and 

tri– substituted DPP (TPA– DPPs 2 and 3) and ferrocenyl-DPP (TPA–

DPPs 5 and 6) based derivatives with TPA as central core show 

negligible red shift since sp3 hybridized N atom of TPA breaks the 

conjugation between three arms of core. Increasing the number of 

substitutions by end capping groups resulted in the red shift of 

absorption to small extent but the incorporation of additional ferrocenyl 

unit red shift the absorption by~ 40 nm. 
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Table 7. 1. The optical properties of DPP and ferrocenyl–DPP based 

derivatives with TPA as central core TPA–DPPs 1–6. 

TPA-

DPP 

λabs(nm)a λabs(nm)b ε 

(×104 M-

1cm-1)a 

Ec 

(eV) 

Ed 

(eV) 

Te 

(oC) 

TPA-

DPP 1 

583 

551 

610 

570 

2.3 

2.8 

1.83 2.23 359 

TPA-

DPP 2 

586 

552 

614 

570 

1.9 

1.6 

1.78 2.09 377 

TPA-

DPP 3 

586 

554 

612 

566 

4.9 

4.3 

1.75 2.06 306 

TPA-

DPP 4 

625 

586 

662 

608 

3.8 

2.6 

1.66 2.01 343 

TPA-

DPP 5 

627 

586 

656 

608 

4.6 

3.3 

1.65 1.96 233 

TPA-

DPP 6 

627 

587 

653 

607 

5.2 

4.1 

1.53 1.93 426 

a Absorbance measured in DCM solution; ϵ: extinction coefficient; babsorbance 

measured in film; cOptical band gap; dTheoretical band gap ;eDecomposition 

temperatures at 5% weight loss at a heating rate of 10 oC min-1 under a nitrogen 

atmosphere. 

 

The optical band gap and theoretical HOMO-LUMO gap of DPP and 

ferrocenyl-DPP based derivatives TPA–DPPs 1–6 were calculated from 

onset absorption and density functional theory calculations respectively 

and the data are listed in Table 7.1. The incorporation of additional 

ferrocenyl unit significantly lowers the optical band gap and theoretical 

HOMO–LUMO gap. The absorption band get broadened up to 1000 nm 

in thin film compared to in solution due to aggregation in solid state. 

The emission spectra of TPA–DPPs 2–6 were recorded in 

dichloromethane at room temperature (Figure 7.3). The DPP 

functionalized TPA (TPA–DPPs 1–3) are highly emissive in nature. 

Fluorescence quantum yield for TPA–DPPs 1–6 are 0.34, 0.61, 0.30, 

0.04, 0.06 and 0.02 respectively using Rhodamine 6G in ethanol as 
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standard which shows quenching of fluorescence takes place in 

ferrocenyl DPP functionalized TPA (TPA–DPPs 4–6). 
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Figure 7. 3. Emission spectra of DPP based derivatives TPA–DPP 2–6 

in DCM. 

 

7.4. Thermogravimetric analysis 

The thermogravimetric analysis of TPA–DPPs 1–6 were carried out 

under nitrogen atmosphere and their thermograms are shown in Figure 

7.4. The DPP and ferrocenyl–DPP functionalized TPA derivatives 

TPA–DPPs 1–6 exhibit good thermal stability. The thermal stability 

follows the order TPA–DPPs 6 > 2 > 1 > 4 > 3 > 5 indicating that tri-

substitued ferrocenyl DPP derivative TPA–DPP 6 exhibits high thermal 

stability as compared to its mono- (TPA–DPP 4) and di- substituted 

(TPA–DPP 5) analogues. The di- substituted DPP derivative (TPA–

DPP 2) exhibits high thermal stability as compared to its mono- (TPA–

DPP 1) and tri- substituted (TPA–DPP 3).  



174 

150 300 450 600 750

30

45

60

75

90

105

%
 W

e
ig

h
t

Temperature (oC)

 TPA-DPP 1

 TPA-DPP 2

 TPA-DPP 3

 TPA-DPP 4

 TPA-DPP 5

 TPA-DPP 6

 

Figure 7. 4. Thermogravimetric analysis of TPA–DPPs 1–6 under a 

nitrogen atmosphere. 

 

7.5. Lifetime measurements 

We conducted lifetime measurements to gain a better insight about the 

lifetime of excited state of DPP and ferrocenyl–DPP derivatives of TPA 

(TPA–DPPs 1–6) as shown in Figure 7.5. The average lifetime of TPA–

DPP 1–3 are 0.36 ns, 0.52 ns and 0.23 ns (Figure 7.5). Di-substituted 

DPP functionalized TPA (TPA–DPP 2) exhibit longer excited state 

lifetime as compared to their mono- and tri substituted DPP 

functinalized TPA (TPA–DPP 1 and 3). 
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Figure 7. 5. Time resolved decay curves of TPA–DPPs 1–3 at 620 nm. 

 

7.6. Electrochemical properties 

The electrochemical properties of the DPP and ferrocenyl-DPP based 

derivatives with triphenylamine as central core TPA–DPPs 1–6 were 

explored by cyclic voltammetry and differential pulse voltammetry (CV 
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and DPV) techniques in dichloromethane solvent using 0.1M 

tetrabutylammonium hexafluorophosphate (Bu4NPF6) as supporting 

electrolyte. The CV and DPV plots of TPA–DPPs 2, 4, 5 and 6 are 

shown in Figure 7.6. The corresponding electrochemical data are listed 

in Table 7.2. 

 DPP based derivatives with TPA as central core TPA-DPPs 1–3 exhibit 

three oxidation and one reduction waves. The two oxidation waves 

between 0.5–1.5V corresponds to oxidation of two asymmetric 

thiophene units and other due to oxidation of triphenylamine unit while 

one reduction waves ( -1.0 – -1.5V) correspond to the reduction of DPP 

unit. The ferrocenyl-DPP based derivatives TPA–DPPs 4–6 exhibit four 

oxidation and one reduction wave. First oxidation wave at around 0.64V 

corresponds to the oxidation of ferrocene unit and the next two oxidation 

waves between 0.7–1.5V correspond to the oxidation of asymmetric 

thiophene units and fourth oxidation wave corresponds to oxidation of 

TPA unit.  
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Figure 7. 6. CV (black line) and DPV (red line) curves of TPA–DPPs 

2, 4, 5 and 6. 

 

In DPP substituted TPA derivatives (TPA–DPPs 1–3), it has observed 

that it is difficult to oxidize disubstituted DPP derivative of TPA (TPA–

DPP 2) as compared to its tri– (TPA–DPP 3) and mono–substituted 

analogues (TPA–DPP 1). In case of ferrocenyl–DPP substituted TPA 

(TPA–DPPs 4–6), it has observed that first oxidation potentials of 

mono–, di– and tri–substituted ferrocenyl–DPP derivatives of TPA 

(TPA–DPPs 4, 5 and 6) are nearly same ~0.64V but reduction becomes 

difficult on increasing the number of ferrocenyl–DPP unit. The 

reduction potential of TPA–DPPs 1–6 indicates that it is difficult to 

reduce DPP functionalized TPA derivatives (TPA–DPPs 1–3) as 

compared to ferrocenyl DPP analogs (TPA–DPPs 4–6). 
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Table 7. 2. The electrochemical properties of DPP and ferrocenyl–

DPP based derivatives with TPA as central core TPA–DPPs 1–6. 

 

TPA-DPP 

E1 

Red 

E1 

Oxid 

E2 

Oxid 

E3 

Oxid 

E4 

Oxid 

TPA-DPP 1 -1.51 0.86 1.03 1.79 - 

TPA-DPP 2 -1.40 1.00 1.28 1.83 -  

TPA-DPP 3 -1.46 0.94 1.09 1.80 - 

TPA-DPP 4 -1.53 0.63 0.93 1.07 1.83 

TPA-DPP 5 -1.50 0.64 0.98 1.14 1.84 

TPA-DPP 6 -1.56 0.64 0.98 1.22 1.83 

The electrochemical analysis was performed in a 0.1 M solution of Bu4NPF6 

in DCM at 100 mVs−1 scan rate, versus Ag/Ag+ at 25 °C. 

 

7.7. Theoretical calculations 

Density Functional Theory (DFT)  

The density functional theory (DFT) calculation was carried out to 

understand the geometry, and the electronic structure of the DPP and 

ferrocenyl-DPP based derivatives with triphenylamine as central core 

TPA–DPPs 1–6 using the Gaussian09W program.[44] The geometry 

optimizations were carried out in the gas phase. The DFT calculations 

were performed at B3LYP/6-31 

+G** for C, H, N, S, and O and Lanl2DZ for the Fe level of theory. The 

frontier molecular orbitals (FMOs) of TPA–DPPs 1–6 are shown in 

Figures 7.7, 7.8 and 7.9. 
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Figure 7. 7. The FMOs of DPP and ferrocenyl-DPP based derivatives 

TPA–DPPs 1 and 4 estimated by DFT calculations. 

The electron density of highest occupied molecular orbitals (HOMOs) 

of DPP and ferrocenyl-DPP based monomers (TPA–DPPs 1 and 4) and 

dimers (TPA-DPPs 2 and 5) are distributed on the whole molecule 

whereas their lowest unoccupied molecular orbitals (LUMOs) are 

localized mainly on the DPP core (Figures 7.7 and 7.8).  

 

 

Figure 7. 8. The FMOs of DPP and ferrocenyl-DPP based derivatives 

TPA–DPPs 2 and 5 estimated by DFT calculations. 

 

The HOMOs of both DPP and ferrocenyl–DPP based derivatives TPA–

DPPs 3 and 6 are distributed on the whole molecule whereas LUMO 

and LUMO+1 are localized mainly on two strands of the DPP core 

(Figure 7.9). The localization of LUMO and LUMO+1 on DPP core 

indicates the acceptor nature of DPP in TPA–DPPs 3 and 6. The 
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localization of HOMOs on triphenylamine and LUMOs on DPP shows 

the typical D–A interaction and charge transfer from triphenylamine to 

DPP in TPA–DPPs 3 and 6.  

    

Figure 7. 9. The FMOs of DPP and ferrocenyl–DPP based trimers 

TPA–DPPs 3 and 6 estimated by DFT calculations. 

 

Time Dependent Density Functional Theory (TD–DFT)  

The time dependent density functional theory (TD–DFT) calculation 

was performed in order to get the idea of electronic transitions in DPP 

and ferrocenyl–DPP based derivatives with triphenylamine as central 

core TPA–DPPs 1–6.  The major electronic transitions in TPA–DPPs 

1–6 calculated from TD–DFT with composition and oscillator strengths 

are shown in Table 7.3. 

The strong electronic transitions from HOMO→LUMO in longer 

wavelength region were observed in TPA–DPPs 1–6 which corresponds 

to the ICT from triphenylamine to DPP whereas other short wavelength 

transitions due to π−π* transition were observed in TPA–DPPs 1–6 

(Table 7.3). The derivatives TPA–DPPs 3 and 6 exhibit additional 

transition in longer wavelength region from HOMO→LUMO+1 due to 

ICT. The localization electron density in HOMOs of DPP and 

ferrocenyl–DPP based trimers TPA–DPPs 3 and 6 on whole molecule 
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(on three arms along with triphenylamine) and distribution of LUMOs 

on two arms shows there is only communication between two arms 

(Figure 7.9). This may be the probable reason for the similar absorption 

bands for the DPP and ferrocenyl–DPP based dimer analogues (TPA–

DPPs 2 and 5). The HOMO–LUMO gap values obtained from DFT 

calculations shows that the incorporation of additional ferrocenyl unit 

lowers the HOMO-LUMO gap in TPA–DPPs 1–6 which found to be in 

good agreement with the optical band gap values from the onset 

absorption (Table 7.1). 

 

Table 7. 3. Major electronic transitions of TPA–DPPs 1–6 calculated 

by TD-DFT. 

Compound Wavelength 

(nm) 

Composition Oscillation 

Strength (fa) 

TPA–DPP 1 479 HOMO→LUMO (0.70) 0.56 

TPA–DPP 2 655 

583 

 

582 

HOMO→LUMO (0.70) 

HOMO-1→LUMO+1 

(0.69) 

HOMO-1→LUMO (0.59) 

1.83 

0.71 

 

0.53 

TPA–DPP 3 652 

651 

596 

HOMO→LUMO (0.70) 

HOMO→LUMO+1 (0.70) 

HOMO-2→LUMO (0.48) 

 

1.32 

1.38 

0.52 

TPA–DPP 4 654 HOMO→LUMO (0.68) 1.96 

 

TPA–DPP 5 

699 

627 

 

632 

HOMO→LUMO (0.69) 

HOMO-1→LUMO+1 

(0.65) 

HOMO-1→LUMO (0.55) 

2.63 

0.66 

 

0.59 

 

TPA–DPP 6 

706 

704 

648 

 

649 

HOMO→LUMO (0.69) 

HOMO→LUMO+1(0.69) 

HOMO-1→LUMO+1 

(0.51) 

HOMO-1→LUMO (0.67) 

1.75 

2.27 

0.67 

 

0.47 
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7.8. Experimental Section: 

General methods 

The chemicals were used as received unless otherwise indicated. All the 

moisture sensitive reactions were performed under argon atmosphere 

using the standard Schlenk method. 1H NMR (400 MHz) and 13C NMR 

(100 MHz) spectra were recorded by using CDCl3 as the solvent. The 

1H NMR chemical shifts are reported in parts per million (ppm) relative 

to the solvent residual peak (CDCl3, 7.26 ppm). The multiplicities are 

given as: s (singlet), d (doublet), m (multiplet), and the coupling 

constants, J, are given in Hz. The 13C NMR chemical shifts are reported 

with relative to the solvent residual peak (CDCl3, 77.0 ppm). HRMS was 

recorded on a mass spectrometer (ESI-TOF) and MALDI–TOF 

spectrometer. The absorption spectra of DPPs were recorded on UV-

visible Spectrophotometer in dichloromethane. The TGA analyses were 

performed on the thermal analysis system at the heating rate of 10 °C 

per minute under a nitrogen atmosphere. Cyclic voltammograms (CVs) 

and differential voltammograms (DPVs) were recorded on an 

electrochemical analyzer using glassy carbon as working electrode, Pt 

wire as the counter electrode, and saturated Ag/Ag+ as the reference 

electrode. For lifetime measurements, we used a picosecond TCSPC 

instrument obtained from Horiba (Fluorocube-01-NL). The samples 

were excited at 480 nm using a picosecond diode laser (model: 

PicoBrite-375L), and the decays were collected at 620 nm. We used a 

filter on the emission side to eliminate the scattered light. The signals 

were collected at magic angle (54.751) polarization using a 

photomultiplier tube (TBX-07C) as the detector. The full width half 

maximum (fwhm) of the instrument response function of our setup is 

~140 ps. Data analysis was performed using IBH DAS version 6 decay 

analysis software. Throughout all the measurements, we maintained the 

temperature (T) at 20oC. The decays were fitted with a multiexponential 

function. 
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Synthesis of TPA-DPP 2 

In 100 mL round bottom flask, DPP-Br (0.250 g, 0.37 mmol) and 2 (4-

ethynyl-N-(4-ethynylphenyl)-N-phenylaniline) (0.055 g, 0.18 mmol) 

were dissolved in anhydrous toluene (20 mL) and triethylamine (5 mL). 

The reaction mixture was degassed with argon for 20 minutes and 

Pd(PPh3)4 (0.017 g, 0.015 mmol) and CuI (0.006 g, 0.030 mmol) were 

then added. The reaction mixture was stirred overnight at 80oC. After 

completion of reaction the reaction mixture was allowed to cool down 

at room temperature. The solvent was removed under vacuum and the 

crude product was purified by repeated silica gel column 

chromatography with hexane/DCM (1:1) as an eluent to get TPA–DPP 

2 in 60 % yield. 

1H NMR (400 MHz, CDCl3, δ in ppm): 8.92 (4H, m), 7.65 (2H, d, J= 4 

Hz), 7.42 (5H, m), 7.34 (4H, m), 7.16 (3H, m), 7.08 ( 5H, m), 4.08 (8H, 

s), 1.75 (8H, m), 1.26 (56H, m), 0.87 (12H, m); 13C NMR (100 MHz, 

CDCl3, δ in ppm): 161.3, 147.7, 140.1, 135.45, 135.40, 133.6, 132.7, 

129.7, 128.8, 128.6, 126.0, 125.9, 124.8, 123.2, 123.0, 116.0, 107.8, 

98.0, 42.3, 31.8, 30.07, 30.05, 29.9, 29.7, 29.6, 29.5, 29.4, 29.29, 29.25, 

29.18, 29.11, 26.8, 22.6, 14.1; MALDI m/z calcd for C90H107N5O4S4 : 

1449.7206 [M+], found 1450.552; UV/vis (Dichloromethane) λmax  586 

nm, ϵ [M-1cm-1] (1.9×104 ). 

 

Synthesis of TPA-DPP 3 

In 100 mL round bottom flask, DPP-Br (0.250 g, 0.37 mmol) and 3 

(tris(4-ethynylphenyl) amine) (0.038 g, 0.12 mmol) were dissolved in 

anhydrous toluene (20 mL) and triethylamine (5 mL). The reaction 

mixture was degassed with argon for 20 minutes and Pd(PPh3)4 (0.017 

g, 0.015 mmol) and CuI (0.006 g, 0.030 mmol) were then added. The 

reaction mixture was stirred overnight at 80oC. The reaction mixture was 

allowed to cool down at room temperature after completion of reaction. 

The solvent was removed under vacuum and the crude product was 

purified by repeated silica gel column chromatography with 

hexane/DCM (1:3) as an eluent to get TPA–DPP 3 in 65% yield. 
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1H NMR (400 MHz, CDCl3, δ in ppm): 8.91 (6H, m), 7.65 (3H, d, J=4 

Hz), 7.47 (8H, m), 7.38 (2H, m), 7.29 (2H, m), 7.27 (2H, m), 7.10 (6H, 

m), 4.07 (12H, s), 1.75 (12H, m), 1.25 (83H, m), 0.87 (19H, m); 13C 

NMR (100 MHz, CDCl3, δ in ppm): 161.32, 161.30, 147.0, 140.2, 138.9, 

135.5, 135.3, 133.89, 133.87, 132.94, 132.93, 130.9, 130.4, 129.8, 

128.7, 128.6, 124.26, 124.22, 124.1, 117.3, 108.5, 107.9, 97.6, 82.6, 

53.4, 42.3, 33.4, 31.9, 30.1, 30.0, 29.74, 29.71, 29.68, 29.64, 29.5, 29.48, 

29.42, 29.41, 29.3, 29.2, 26.9, 26.8, 22.7, 14.1; MALDI m/z calcd for 

C126H153N7O6S6 : 2053.0240 [M+], found 2053.109; UV/vis 

(Dichloromethane) λmax  586 nm, ϵ [M-1cm-1] (4.9×104 ).   

 

 Synthesis of TPA-DPP 4 

In 100 mL round bottom flask, dibromo–DPP (0.250 g, 0.34 mmol) and 

ethynyl ferrocene (0.064 g, 0.30 mmol) were dissolved in anhydrous 

toluene (20 mL) and triethylamine (5 mL). The reaction mixture was 

degassed with argon for 20 minutes and Pd(PPh3)4 (0.017 g, 0.015 

mmol) and CuI (0.006 g, 0.030 mmol) were then added. The reaction 

mixture was stirred overnight at 60 oC. The reaction mixture was 

allowed to cool down at room temperature after completion of reaction. 

The solvent was removed under vacuum and the crude product was 

purified by repeated silica gel column chromatography with 

hexane/DCM (3:2) as an eluent to get Fc-DPP-Br in 62 % yield and 

then in 100 mL round bottom flask, Fc-DPP-Br (0.150 g, 0.16 mmol) 

and 1(4-ethynyl-N, N-diphenylaniline) (0.044 g, 0.16 mmol) were 

dissolved in anhydrous toluene (20 mL) and triethylamine (5 mL). The 

reaction mixture was degassed with argon for 20 minutes and Pd(PPh3)4 

(0.009 g, 0.008 mmol) and CuI (0.002 g, 0.014 mmol) were then added. 

The reaction mixture was stirred overnight at 80oC. The reaction mixture 

was allowed to cool down at room temperature after completion of 

reaction. The solvent was removed under vacuum and the crude product 

was purified by repeated silica gel column chromatography with 

hexane/DCM (3:2) as an eluent to get TPA-DPP 4 in 60% yield. 

1H NMR (400 MHz, CDCl3, δ in ppm): 8.90 (2H, m), 7.70 (2H, m), 7.37 

(4H, m), 7.30 (4H, m), 7.12 (4H, m), 7.08 (2H, m), 4.55(2H, s), 4.30 
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(5H, m), 4.07 (4H, s), 1.75 (4H, m), 1.35 (28H, m), 0.86 (6H, m); 13C 

NMR (100 MHz, CDCl3, δ in ppm): 158.68, 158.66, 146.1, 144.3, 136.7, 

136.5, 136.3, 133.0, 129.7, 127.7, 127.4, 127.2, 126.9, 126.7, 125.1, 

125.0, 122.8, 122.2, 121.4, 119.1, 111.9, 111.5, 106.0, 96.1, 95.7, 69.1, 

67.0, 61.3, 39.85, 39.83, 31.7, 31.3, 29.4, 29.3, 29.1, 28.9, 27.8, 27.68, 

27.64, 27.5, 27.2, 27.18, 27.15, 27.11, 27.07, 27.02, 26.8, 26.75, 26.70, 

26.65, 26.4, 26.1, 24.39, 24.38, 23.43, 23.40, 20.18, 20.16, 11.6; HRMS 

(ESI) m/z calcd for C66H69FeN3O2S2: 1055.4180 [M+] found 1055.4177; 

UV/vis (Dichloromethane) λmax  625 nm, ϵ [M-1cm-1] (3.8×104 ). 

 

Synthesis of TPA-DPP 5 

In 100 mL round bottom flask, Fc-DPP-Br (0.150 g, 0.16 mmol) and 4 

(4-ethynyl-N-(4-ethynylphenyl)-N-phenylaniline) (0.024 g, 0.08 mmol) 

were dissolved in anhydrous toluene (20 mL) and triethylamine (5 mL). 

The reaction mixture was degassed with argon for 20 minutes and 

Pd(PPh3)4 (0.009 g, 0.008 mmol) and CuI (0.002 g, 0.014 mmol) were 

then added. The reaction mixture was stirred overnight at 80 oC. The 

reaction mixture was allowed to cool down at room temperature after 

completion of reaction. The solvent was removed under vacuum and the 

crude product was purified by repeated silica gel column 

chromatography with hexane/DCM (1:1) as an eluent to get TPA-DPP 

5 62% in yield. 

1H NMR (400 MHz, CDCl3, δ in ppm): 8.92 (4H, m), 7.70 (1H, s), 7.43 

(5H, m), 7.34 (5H, m), 7.15 (2H, m), 7.07 (4H, m), 4.55 (4H, s), 4.30 

(11H, m), 4.07 (8H, s), 1.76 (8H, s), 1.33 (56 H, m), 0.87 (12H, s); 13C 

NMR (100 MHz, CDCl3, δ in ppm): 161.3, 161.2, 147.8, 139.3, 138.8, 

135.7, 135.5, 132.8, 132.3, 130.3, 129.9,129.8, 129.5, 128.9, 126.0, 

123.2, 116.1, 108.7, 108.4, 98.4, 98.1, 82.3, 69.6, 63.9, 42.4, 42.3, 32.0, 

31.9, 30.1, 29.7, 29.6, 29.4, 29.3, 26.9, 22.7, 14.1; MALDI m/z calcd for 

C114H123Fe2N5O4S4:1866.7190 found 1866.521; UV/vis 

(Dichloromethane) λmax  627 nm, ϵ [M-1cm-1] (4.6×104 ). 
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Synthesis of TPA-DPP 6 

In 100 mL round bottom flask, Fc-DPP-Br (0.150 g, 0.16 mmol) and 3 

(tris(4-ethynylphenyl) amine) (0.017 g, 0.052 mmol) were dissolved in 

anhydrous toluene (20 mL) and triethylamine (5 mL). The reaction 

mixture was degassed with argon for 20 minutes and Pd(PPh3)4 (0.009 

g, 0.008 mmol) and CuI (0.002 g, 0.014 mmol) were then added. The 

reaction mixture was stirred overnight at 80oC. The reaction mixture was 

allowed to cool down at room temperature after completion of reaction. 

The solvent was removed under vacuum and the crude product was 

purified by repeated silica gel column chromatography with 

hexane/DCM (1:3) as an eluent to get TPA-DPP 6 in 65% yield. 

 1H NMR (400 MHz, CDCl3, δ in ppm): 8.91(6H, m), 7.46 (7H, m), 7.37 

(2H, m), 7.11 (9H, m), 4.55 (6H, s), 4.30 (17H, m), 4.07 (12H, s), 1.76 

(12H, m), 1.34 (84H, m), 0.87 (18H, m); 13C NMR (100 MHz, CDCl3, δ 

in ppm): 161.3, 139.4, 138.7, 135.7, 135.4, 133.9, 133.0, 132.9, 132.3, 

130.4, 130.0, 129.5, 124.3, 124.2, 124.1, 108.8, 108.4, 98.4, 97.7, 82.7, 

71.7, 70.2, 69.6, 63.8, 42.4, 42.3, 31.9, 30.1, 29.7, 29.6, 29.5, 29.4, 29.3, 

26.9, 22.7, 14.2; MALDI m/z calcd for C162H177Fe3N7O6S6 : 2677.0166 

[M+] found 2677.042; UV/vis (Dichloromethane) λmax  627 nm, ϵ [M-

1cm-1] (5.2×104 ). 

 

7.9. Conclusions 

In conclusion, we have designed and synthesized DPP and ferrocenyl–

DPP based derivatives with TPA as central core TPA–DPPs 2, 4, 5 and 

6 by the Pd–catalyzed Sonogashira cross-coupling reactions. Their 

photophysical and electrochemical properties were investigated which 

shows that the incorporation of additional ferrocenyl unit red shifts the 

absorption, exhibit additional low oxidation potential and lowers the 

HOMO–LUMO gap. As the number of DPP or ferrocenyl-DPP units 

increases on TPA slightly red shifts the absorption. They possess good 

thermal stability and long excited state lifetime  

between the range of 0.2–0.5ns. The electrochemical study exhibits 

additional low voltage oxidation peak in ferrocenyl–DPP based 

derivatives due to oxidation of ferrocenyl unit. The broad absorption in 
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visible region, multiple redox potentials and low HOMO–LUMO gap 

indicates that these molecules are potential candidate for optoelectronic 

applications. 
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Chapter 08:  Conclusions and Future Scope 

 

8.1. Conclusions 

Diketopyrrolopyrrole (DPP) and its derivatives have emerged as crucial 

building blocks in the field of electronic devices.[1-3] The basic structure 

of DPP consists of a core unit featuring two amine groups and carbonyl 

functionalities, flanked by aromatic groups. This configuration imparts 

strong electron-deficient character to DPP, making it potential candidate 

for constructing donor-acceptor (D-A) conjugated materials.[4] The 

significance of DPP derivatives lies in their ability to exhibit strong π-π 

interactions and aggregation between neighbouring DPP moieties. 

These properties are essential for altering the electronic and 

optoelectronic properties of materials derived from DPP.[5] Such 

materials have found wide-range of applications in electronic devices 

including organic photovoltaics (OPVs),
 [6, 7]

 memory devices, [8] organic 

field-effect transistors (OFETs),[1] and sensors. [9] As research 

progresses, understanding the synthetic methods for preparing DPP 

derivatives becomes increasingly crucial. Straightforward synthesis that 

ensures stability, while maintaining high electrical and optical 

performance, pave the way for continued innovation and application 

development. The photonic and electronic properties can be easily tuned 

by functionalizing thiophene-flanked DPP with different push/pull 

substituents. We described the design and synthesize of push-pull 

Diketopyrrolopyrrole and investigated their photophysical and 

electrochemical properties. 

 

Chapter 3, describes the design and synthesis of symmetrical and 

unsymmetrical acetylene bridged N-phenyl carbazole based 

diketopyrrolopyrroles by the Pd-catalyzed Sonogashira cross-coupling 

and Stille coupling reactions. A comparative study of isomeric N-phenyl 

carbazole (meta- and para- isomers), attached to the DPP is performed. 

The N-phenyl carbazole based DPP monomers exhibit absorption in the 

visible region whereas the corresponding dimers show broad absorption 



196 

towards near-infrared (NIR) region with lowering of HOMO-LUMO 

gap. The para-N-phenyl carbazole based DPPs show red shifted 

absorption compared to their meta-substituted analogues. The emission 

spectra revealed that DPP monomers are fluorescent in nature whereas 

quenching of fluorescence was observed in DPP dimer. The 

thermogravimetric analysis shows higher thermal stability for meta-N-

phenyl carbazole based DPPs as compared to their para-based 

analogues. Monomers of carbazole based DPPs are thermally more 

stable as compared to their dimers. The electrochemical study reveals 

multiple oxidation waves related to donor moieties (such as thiophene 

and carbazole) and one reduction wave corresponding to DPP unit.[10] 

 

In Chapter 4, we describe the design and synthesis of a series of 

symmetrical and unsymmetrical push-pull functionalized 

diketopyrrolopyrrole (DPP) derivatives. In these compounds, the DPP 

unit serves as the central electron-acceptor core, while triphenylamine 

and N, N-dimethylaminophenyl act as electron-donor end groups. 

Additionally, tetracyanobutadiene (TCBD) was incorporated as an extra 

acceptor unit to extend the π-conjugation through [2+2] cycloaddition-

retroelectrocyclization reactions. The photophysical properties of 

TCBD-substituted derivatives reveal a strong electronic absorption band 

in the near-infrared region, indicative of intramolecular charge transfer 

(ICT). These TCBD-based derivatives exhibit multiple redox waves and 

a low electrochemical energy gap, highlighting the tuning of HOMO-

LUMO energy levels and enhanced π-conjugation. Computational 

studies align well with the experimental data, supporting our findings. 

We believe that the molecular design and synthesis of these symmetrical 

and unsymmetrical DPP derivatives pave the way for new building 

blocks in future organic electronics applications.[11] 

 

In Chapter 5, we describe the design and synthesis of a series of small 

organic molecules by incorporating DPP as an acceptor unit and 

ferrocene, triphenylamine, N-phenyl carbazole and N, N-

dimethylaminophenyl as donor units. We used the Sonogashira cross-
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coupling reaction to achieve efficient coupling of these units, followed 

by [2+2] cycloaddition-retroelectrocyclization to access π-conjugated 

systems with tunable electronic properties. The photophysical and 

electrochemical properties of these molecules were investigated, 

revealing that the incorporation of TCBD groups causes a red shift in 

absorption, exhibits additional reduction potentials, and lowers the 

HOMO-LUMO gap. Mono-TCBD incorporation occurred on the 

acetylene-linked N, N-dimethylaniline side, indicating the strong donor 

strength of N, N-dimethylaniline compared to ferrocene. Conversely, the 

first TCNE attack took place at the triple bond linked to the ferrocene 

side, indicating the strong donor strength of ferrocene relative to 

triphenylamine and N-phenyl carbazole units. The electrochemical study 

shows multiple oxidation waves in ferrocene-based DPP derivatives due 

to the oxidation of various donor units (ferrocene/thiophene/N-phenyl 

carbazole/triphenylamine). The broad absorption in the visible region, 

multiple redox potentials, and low HOMO-LUMO gap indicate that 

these molecules are potential candidates for optoelectronic applications. 

By systematically varying the donor strength and position, we anticipate 

gaining insights into the impact of these modifications on the 

optoelectronic properties of the resulting materials. 

 

In Chapter 6, we describe the design and synthesis of a series of small 

organic molecules based on functionalizing the active sites of 

phenothiazine with various donor end-capped diketopyrrolopyrrole 

(DPP) derivatives. These molecules incorporate DPP as the electron-

deficient acceptor unit, complemented by various donor units such as N-

phenyl carbazole, triphenylamine, and N, N-dimethylaminophenyl, with 

phenothiazine serving as the central core. The synthesis of these 

complex molecular architectures is achieved through the Sonogashira 

cross-coupling reaction, a versatile method known for constructing 

carbon-carbon bonds under mild conditions. This approach allows for 

the efficient assembly of π-conjugated systems with tunable electronic 

properties, essential for exploring structure-property relationships in 

organic semiconductors. Our investigation into their photophysical and 
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redox properties reveals that the incorporation of a strong donor (N, N-

dimethylaminophenyl) results in a red shift in absorption, exhibits low 

oxidation potentials, and lowers the HOMO-LUMO gap. The 

phenothiazine-based DPP derivatives display similar absorption bands 

even with increased conjugation length, possibly due to the break in 

conjugation between the two arms caused by non-planarity in di-

substituted phenothiazine derivatives. The electrochemical study shows 

multiple oxidation waves in phenothiazine-based DPP derivatives due 

to the oxidation of various donor units (thiophene/N-

phenylcarbazole/triphenylamine/N,N-dimethylaminophenyl) and one 

reduction wave corresponding to the formation of a mono-anion of DPP. 

The broad absorption in the visible region, multiple redox potentials, 

and low HOMO-LUMO gap indicate that these molecules are potential 

candidates for optoelectronic applications. By systematically varying 

the donor strength and position within these molecular designs, our 

study aims to provide insights into how these modifications impact the 

optoelectronic properties of the resulting materials. 

 

Chapter 7, describes the designed and synthesized mono–, di– and tri– 

substituted DPP and ferrocenyl–DPP based derivatives with TPA as a 

central core by the Pd-catalyzed Sonogashira cross–coupling reactions 

in order to investigate the effect of number of DPP and ferrocenyl–DPP 

units on the photophysical and electrochemical properties. The effect of 

increasing the number as well as change of end capping group has also 

been investigated. Their photophysical and electrochemical properties 

were investigated which shows that the incorporation of additional 

ferrocenyl unit red shifts the absorption, exhibit additional low oxidation 

potential and lowers the HOMO–LUMO gap. As the number of DPP or 

ferrocenyl-DPP units increases on TPA slightly red shifts the absorption. 

They possess good thermal stability and long excited state lifetime 

between the range of 0.2–0.5 ns. The electrochemical study exhibits 

additional low voltage oxidation peak in ferrocenyl–DPP based 

derivatives due to oxidation of ferrocenyl unit. The broad absorption in 

visible region, multiple redox potentials and low HOMO–LUMO gap 
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indicates that these molecules are potential candidate for optoelectronic 

applications.[12] 

 

8.2. Future scope 

The thesis underscores a pivotal strategy in the design and synthesis of 

Diketopyrrolopyrrole-based push-pull chromophores aimed at fine-

tuning of their photonic and electronic properties. DPP chromophores 

HOMO–LUMO band gap can be effectively modulated through several 

approaches: (a) adjusting the number of push/pull units, (b) extending 

the π-conjugation length, and (c) varying the π-linker structure. 

Furthermore, by incorporating strong acceptors such as tetracyano 

derivatives like TCNE, the push–pull interactions within 

Diketopyrrolopyrrole are intensified, leading to enhanced 

intramolecular charge-transfer at longer wavelengths, potentially 

extending into the near-infrared (NIR) region. These 

Diketopyrrolopyrrole based chromophores exhibit broad absorption 

spectra in the Vis-NIR region along with a reduced HOMO–LUMO 

band gap, rendering them highly promising for future optoelectronic 

applications. Moving forward, further exploration could focus on 

optimizing synthetic methodologies to enhance the efficiency and 

scalability of these chromophores, as well as exploring their 

performance in practical device applications such as organic 

photovoltaics and photodetectors. Additionally, investigating their 

stability under different environmental conditions and their 

compatibility with various substrate materials could broaden their 

potential utility in advanced optoelectronic technologies. 
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