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ABSTRACT

Cardiovascular diseases (CVDs) are the major cause of death globally. The global

contribution of the CVDs is 30% of all deaths every year. The electrocardiogram

(ECG) is the most popular non-invasive tool for detecting the heart diseases. The

cardiologists perform the manual inspection of the ECG recordings for the detec-

tion of heart diseases. The accuracy (Ar) of the diagnosis depends upon skills and

experience of the cardiologist. Lack of expertise may result in an inaccurate diag-

nosis. Therefore, the automated decision making methods are needed to help the

doctors during the diagnosis and also can reduce their workload. Hence, we have

proposed computer-aided automated methods for the diagnosis of different types of

heart disorders in this thesis work. These methodologies are described below:

Coronary artery disease (CAD) causes maximum death among all types of heart

disorders. Therefore, we have proposed a new technique which can detect CAD

automatically. In this method, the heart rate variability (HRV) signals are de-

composed to sub-band signals using flexible analytic wavelet transform (FAWT).

Two parameters namely; K-nearest neighbour (K-NN) entropy estimator and fuzzy

entropy (FEnt) are computed from the decomposed sub-band signals. Various rank-

ing methods are also used for optimising the features. The proposed methodology

has shown better performance using entropy ranking technique. The least squares-

support vector machine (LS-SVM) with Morlet wavelet and radial basis function

(RBF) kernels yielded the highest classification Ar on the studied dataset.

An automated method for the detection of CAD using ECG signals is also pro-

posed. First, the ECG signals of normal and CAD subjects are segmented into

beats. The cross information potential (CIP) is computed from the detail coeffi-

cients obtained by FAWT based decomposition of ECG beats. For CAD subjects,

mean values of CIP parameters are found higher than normal subjects. Further, the

features are fed to LS-SVM classifier. We have observed significant improvement

in the classification Ar up to the fourth level of decomposition. At the fifth level

of decomposition, no significant improvement is noticed in the classification Ar as

compared to the fourth level of decomposition. Hence, the ECG beats are analyzed

up to the fifth level of decomposition. The Ar of classification is slightly higher for

Morlet wavelet kernel (99.60%) than RBF kernel (99.56%).



Myocardial infarction (MI) is a condition which can cause the death of the heart

muscles. Therefore, we have developed a method for automated identification of

MI ECG signals using FAWT. First, the segmentation of ECG signals into beats

is performed. Then, FAWT is applied to each ECG beat to decompose them into

sub-band signals. Sample entropy (SEnt) is extracted from each sub-band signal.

We have achieved the highest classification Ar of 99.31% when SEnt is fed to the

LS-SVM classifier. We have also incorporated Wilcoxon and Bhattacharya ranking

methods and observed no improvement in the performance.

A method for automated diagnosis of congestive heart failure (CHF) is proposed

in this work. In this methodology, HRV signals of three different lengths (500,

1000, and 2000 samples) are analyzed using FAWT based decomposition. The ac-

cumulated fuzzy entropy (AFEnt) and accumulated permutation entropy (APEnt)

are computed from the different combination of the obtained sub-band signals and

ranked using the Bhattacharyya ranking method. Further, these ranked features

are applied to the LS-SVM classifier. The proposed system has obtained the Ar

of 98.21%, 98.01%, and 97.71%, for the 500, 1000, and 2000-sample length of HRV

signals.

Atrial fibrillation (AF) represents a condition of abnormal heart rhythm. Hence,

a new approach for the detection of AF using FAWT is developed. First, the small

segments of 1000 ECG samples are extracted from the long duration ECG signals.

Then, the permutation entropy (PEnt) and log energy entropy (LEE) features are

computed from different sub-band signals which are obtained using FAWT. The

classification Ar of LEE features is observed better as compared to PEnt features.

We have obtained Ar, sensitivity (Ss), and specificity (Sc) of 96.84%, 95.8%, and

97.6% respectively using LEE features with random forest (RF) classifier.

ii
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Chapter 1

Introduction

For a healthy human, proper circulation of the blood to the body tissues and organs

is vitally important. The essential nutrients and oxygen are carried to the tissues

and organs via the circulation of blood. It also carries carbon dioxide from the

tissues to the lungs (Graaff et al., 2010). Blood circulation is controlled by the

cardiovascular system. The heart is the main part of this system. It pumps the

blood to suffice the demand of the human body. Hence, proper functioning of the

heart is of prime importance for a living human. Its function may get disrupted due

to the cardiovascular diseases (CVDs). The CVDs can be diagnosed using cardiac

signals such as electrocardiogram (ECG) and heart rate variability (HRV).

The cardiac signals can be used to monitor the pathological conditions of the hu-

man heart. These signals have valuable information about a particular state of the

human heart (Acharya et al., 2007). The clinical aspect of the acquisition of cardiac

signals is to assess the information to distinguish the normal and pathological states

of the heart. The meaningful information from cardiac signals can be assessed using

signal processing methods and used for the diagnosis of CVDs. The obtained infor-

mation can also be utilized to design the computer-aided decision-making system.

These systems can be employed in the hospitals and remote locations for assisting

the doctors in the diagnosis of various cardiac diseases. In the following section, a

brief explanation of the human heart is provided.
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1.1 Human heart and its functioning

Human heart is a muscular pump. The muscle wall consists inner, middle, and

outermost layers. The inner layer which lines the heart chambers is named as en-

docardium. The middle layer is called as myocardium. Its function is to provide

the sufficient force for blood pumping. The outermost layer, pericardium, which

consists fluid to reduce the friction against the heart movements (Acharya et al.,

2007). The heart is divided into the right side and the left side by a wall of tissues

named as septum (Cromwell et al., 2012). These two sides are further divided into

two parts. The left side of the heart is divided into the left atrium (LAm) and left

ventricle (LVc), and the right side is divided into the right atrium (RAm) and right

ventricle (RVc). Thus, the human heart can be considered as the collection of four

different chambers namely, LAm, RAm, LVc, and RVc (Cromwell et al., 2012).

The heart receives blood through the atria (LAm and RAm) and pumps the blood

out via the ventricles (LVc and RVc). The LAm is the smallest and the LVc is the

largest among all the four chambers. Veins are those blood vessels through which

blood comes to the heart, and the vessels that carried blood away from the heart are

known as arteries. The oxygenated blood flows via the arteries and deoxygenated

blood moves through the veins. The pulmonary artery (PA) and the pulmonary

vein (PV) are the exceptions. The PA carries deoxygenated blood from the heart

to lungs, and the PV transports the oxygenated blood from lungs to the heart.

The heart has two atrioventricular valves (AVVs) and two semilunar valves

(SLVs). The AVV valve located between LAm and LVc is called as mitral valve

(MVe). The other AVV is positioned between RAm and RVc which is named as

tricuspid valve (TVe) (Cromwell et al., 2012; Graaff et al., 2010). The opening and

closing of the AVVs depend on the pressure in the heart chamber. It opens when the

pressure in the atria exceeds than the pressure in the ventricular part and vice-versa.

One SLV is the pulmonary valve (PVe) which is located between the RVc and PA.

The other SLV, aortic valve (AVe), is positioned between the LVc and aorta (Graaff

et al., 2010). Functioning of these valves is also similar to the AVV. The SLVs open

when the pressure in the LVc and RVc is higher in comparison to the pressure in

aorta and PA.

The regulation of blood flow in the human body can be summarized in following
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steps (Cromwell et al., 2012; Graaff et al., 2010):

Step 1 : First, the impure blood or the deoxygenated blood from the different organs

and parts of the body comes to the RAm via the vene cava.

Step 2 : When the pressure of the blood in the RAm more than the RVc, TVe opens

and impure blood starts passing to the RVc. Then, RAm contracts and passes

all the impure blood to the RVc.

Step 3 : Now, the RVc contracts to pump the blood to the lungs. The TVe closes to

make sure that no backward flow of the blood to the RAm. At this time PVe

opens, and blood passes through PA to the lungs where the impure blood gets

oxygenated. When the pressure in the RVc comes down to the pressure of the

PA, then PVe closes and prevents the reverse flow of the blood to the RVc.

Step 4 : Then, the oxygenated blood comes to the LAm via PV.

Step 5 : From the LAm, it passes to the LVc through MVe in the same way as it

passes RAm to RVc.

Step 6 : Finally, the LVc contracts and AVe opens to pump the oxygenated blood to

the whole body via the aorta. At the time of LVc contraction, MVe closes to

stop the blood flowing in the reverse direction. AVe closes when the pressure

in the aorta increases as compared to the LVc to ensure the blood will not flow

back to the LVc.

The above mentioned steps represent a cardiac cycle which starts with the re-

ceiving of the deoxygenated blood in the RAm from the organs of the body and

completes when body organs and parts receive the oxygenated blood from the LVc.

The cardiac cycle can be considered as a combination of two parts, namely, systole

and diastole. Systole indicates the contraction of the heart muscles, and diastole

represents the relaxation phase of the heart muscles (Cromwell et al., 2012; Graaff

et al., 2010).

For the pumping of the blood in an efficient manner, all the heart chambers must

contract in a synchronized way. It is achieved by the electrical conduction system

(ECS) of the heart. The ECS is initiated by the sino-atrial (SA) node located in
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the upper part of the RAm (Acharya et al., 2007). It is also termed as the natural

pacemaker. It originates electrical impulse which propagates via the myocardium

to the LAm and RAm and causes their contraction. The atria and the ventricles

are electrically separated by the non-conducting tissues. The electrical impulse

propagates to the ventricles from the atria via atrioventricular (AV) node. The AV

node provides a short time delay to the electrical signal which gives time to the

LVc and RVc to fill with the blood before contraction (Acharya et al., 2007). Then,

electrical impulse propagates through the bundle of His to the myocardium of the

LVc and RVc and leads their contraction (Cromwell et al., 2012). The working of the

heart can be disturbed due to CVDs which are described in the following section.

1.2 Cardiac diseases

The CVDs are responsible for more deaths in the world than any other disease. Each

year, these diseases contribute 30% of all deaths globally (Wong, 2014). The 80%

deaths due to CVDs occur in low and middle-income countries. It is also a leading

cause of death in India. The mortality rate in India due to CVDs is 272 per 100000

population. It is higher as compared to the global average CVDs death rate of 235

per 100000 population (Prabhakaran et al., 2016). The common CVDs are coronary

artery diseases (CAD), myocardial infarction (MI), congestive heart failure (CHF),

and atrial fibrillation (AF).

The CAD is a most common cause of mortality among all types of CVDs (Wong,

2014). In this disease, blood supplying arteries to the heart muscles become narrow

due to the deposition of plaque inside them. This condition reduces the blood

supply to the heart muscles (National Heart, Lung and Blood Institute, 2015a).

Hence, heart muscles cannot receive the sufficient amount of oxygen and nutrients

for proper functioning. This condition is becoming worse with the time and affects

the metabolic activity of cardiac muscles. Finally, muscles become weak and lead to

arrhythmias and heart failure (National Heart, Lung and Blood Institute, 2015a).

The MI is the indication of the death of the heart muscles (Thygesen & et al,

2012). This happens due to the disruption of the blood supply to a segment of the

myocardium. It is the result of the plaque formation inside the coronary arteries.
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This condition becomes worse when the deposited plaque ruptures and resulting

in the build-up of blood clots and further restricts the flow of blood to the heart

muscles (Thygesen & et al, 2012). Finally, the segment of the heart muscles start

to die and may cause CHF or heart attack.

The CHF represents a condition in which the heart is unable to pump sufficient

amount of blood to fulfill the requirement of the body. The CAD, diabetes, and high

blood pressure are the common causes of the CHF (National Heart, Lung and Blood

Institute, 2015b). Around the world, 17% to 45% of the CHF patients die within a

year of their admission in the hospital (Ponikowski et al., 2014). The CHF is not a

curable disease. Use of medicines and change in lifestyle may help the patient to live

better and longer life (National Heart, Lung and Blood Institute, 2015b). Hence,

timely diagnosis can save many of the lives.

The AF indicates irregularity and rapidity of heart rhythm. In AF, the electrical

signals are not regulated by the SA node as in normal case (Cottrell, 2012). In this

case, signals also generate from other parts of the atria. Hence, different parts of

atria work in an uncoordinated manner, and atrial contraction rate increases to 350

per minute. In this arrhythmia, contraction rate of ventricle also increases to 180

beats/minute (Acharya et al., 2007). Therefore, the heart is unable to pump the

blood properly.

The cardiac signals can be used to diagnose the CVDs. The cardiac signals are

presented in the next section.

1.3 Cardiac signals

Cardiac signals are the noninvasive tool which can be used to assess the information

about the health of the heart. The cardiac signals used in this work are described

below:

1.3.1 Electrocardiogram

The ECG represents the electrical activity of the heart. A typical ECG signal

taken from the Fantasia open-access database at physionet (Iyengar et al., 1996;

Goldberger et al., 2000) is shown in Figure 1.1. An ECG beat comprises of P-wave,
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Figure 1.1: A plot of ECG signal.

QRS-complex, and T-wave (Cromwell et al., 2012). P-wave is the result of the

depolarization of the atria. QRS-complex consists of three components, namely, Q,

R, and S waves. This complex occurs in response to the ventricles depolarization.

T-wave is the reflection of the repolarization of the ventricles (Graaff et al., 2010).

Sometimes, one another wave after the T-wave also reflects in the ECG signal due

to late depolarization of ventricles (Acharya et al., 2007).

The standard ECG recording system used by the physicians has twelve leads.

It consists of 3-limb leads (LLs) (bipolar leads), 3-augmented limb leads (ALLs)

(unipolar leads) and 6-precordial leads (PLs) (unipolar leads). The standard ECG

system has ten surface electrodes (Cromwell et al., 2012). Out of 10, 6-electrodes

(V1-V6) are placed on left side of chest called as precordial electrodes. In the four

remaining electrodes, two are placed on the right and left arms which termed as

right arm electrode (RA) and left arm electrode (LA), respectively. The other two

electrodes are left leg electrode (LL), and right leg electrode (RL) placed on the

left and right legs, respectively. The RL is used for the ground reference. A pair of

electrodes (positive & negative) placed on the body is considered as lead (Acharya

et al., 2007). In case of unipolar lead, the second electrode is virtual.

There are three bipolar leads, namely, lead-I, lead-II, and lead-III. A pair of

LA and RA forms lead-I. The electrodes placed on the right arm and left leg form

lead-II. Lead-III is the combination of the LL and LA. The three ALLs are aVL,

aVR, and aVF. For aVL, the real terminal is LA, and the virtual terminal is the
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combination of RA and LL. The aVR lead has the real electrode on the right arm,

and LL and LA together work as the virtual electrode. For aVF, LL works as a real

electrode, and the virtual terminal is formed by the LA and RA. The precordial

electrodes (V1-V6) work as the real electrodes for the 6-PLs. The virtual electrode

for the PLs is formed by the combination of LA, RA, and LL (Acharya et al., 2007).

In the following section, the HRV signals are briefly explained.

1.3.2 HRV signals

The HRV signals also carry useful information about the state of the heart. These

signals represent the variation in the time interval between the two consecutive R-

peaks in the ECG signals (Acharya et al., 2007). A plot of typical HRV signal

downloaded from Fantasia database is depicted in Figure 1.2. The analysis of HRV

signals also provides the assess to the state of the heart and autonomic nervous

system (ANS) (Acharya et al., 2007). A significant connection between ANS and

cardiac mortality is observed in (Vaseghi & Shivkumar, 2008). Hence, HRV can also

serve as an important tool for the detection of cardiac diseases.

The computer-based analysis of the cardiac signals (ECG, HRV) is discussed in

the next section.
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Figure 1.2: A plot of HRV signal.
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1.3.3 Computer-based analysis of cardiac signals

The ECG signals possess information about the electrical function of the heart. Any

change or alteration in the shape of P, QRS, and T waves may be the indication of

any disease or pathological conditions (Acharya et al., 2007). It takes a lot of time for

a cardiologist to diagnose the pathological conditions manually by viewing the ECG

signals. Analysis of the ECG signal can also be performed using the computer-based

methods. The implementation of such system is possible with the help of signal

processing techniques and artificial intelligence methods (Patidar, 2014). These

methods can provide a way for the better diagnosis of cardiac disorders by fetching

more broader information from ECG signals. Development of these methods involve

some necessary steps. These steps are discussed below.

First step is the acquisition and preprocessing of the cardiac signals. The aim

of this stage is to provide the signal in a suitable format for the computer analysis.

It is followed by the noise removal step. The ECG signals, during the time of

recording, may be corrupted by noise due to the motion artifacts, respiration, power

line interference, electrode contact noise, and muscle contraction (Acharya et al.,

2007). It is an essential step, as the presence of noise can mislead the diagnostic

result.

The second step involves feature extraction process. Numerous types of features

for studying the ECG signals are suggested in the literature. Time domain features

such as QRS width (Yeap et al., 1990; Chazal et al., 2004), T-wave duration (Chazal

et al., 2004), and presence or absence of P-wave (Chazal et al., 2004) are suggested

for ECG signal analysis. Other than these features, T-wave slope and hight of QRS

are also suggested in (Yeap et al., 1990). Frequency domain features such as spec-

tral power (Small et al., 2000) and predominant frequency (Chen, 2000) are used to

analyze the ECG signals. The statistical features such as higher order cumulants

are also explored in for studying the ECG beats (Osowski & Linh, 2001). The other

way of ECG signals analysis is to convert them into the HRV signals. These sig-

nals also have wide application in assessing the information of heart states (Acharya

et al., 2003). Various features such as average heart rate (HR), energy of the band,

correlation dimension, and fractal dimension are studied to analyze the HRV sig-

nals (Acharya et al., 2003, 2005).
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Next step is the selection of the suitable features for the classification. Feature

selection can be performed using the ranking methods. These methods are able to

reduce the complexity of the system without degrading the performance (Duda et al.,

2000). Feature reduction methods such as principal component analysis (PCA) and

independent component analysis (ICA) are also utilized for the optimization of the

features (Giri et al., 2013).

Then, the last step is the decision making about the pathological condition of

the heart. On the basis of this step further action may take place. Hence, it is an

important clinical step. Various methods are proposed for decision making such as

neural network based approach in (Chen & Yu, 2012) and support vector machine

(SVM) based method in (Osowski et al., 2004; Ye et al., 2012). A neuro-fuzzy

based approach in (Engin, 2004) and radial basis function (RBF) neural network

in (Korurek & Dogan, 2010) are also utilized for ECG beat classification.

1.4 Motivation

The ECG is the most general tool used by the cardiologist for the diagnosis of

the heart diseases. It is a non-invasive tool and represents the state of the heart.

Minute changes in the ECG signals may be the indicator of a particular disease.

The accuracy (Ar) of the diagnosis depends upon the correct identification of these

changes. Visual detection of these minute changes is quite difficult. It requires a

lot of skills and years of experience. Also, the manual analysis of ECG signals is

a tedious and time consuming task as it requires the visual inspection of several

hours of ECG recordings. Lack of skills and fatigue may cause inaccurate diagnosis.

Therefore, a computer-aided system is required which can help the doctors to make

their diagnosis faster and accurate.

Computer-based decision-making system involves two essential steps; feature

extraction and classification for decision making. Advanced signal processing (ASP)

techniques can be used for feature extraction, and machine learning methods can

be utilized for decision making based on the extracted features. These techniques

can be integrated with the portable ECG recording devices to detect the heart

disorders. This integration can facilitate continuous monitoring of ECG signals for
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a longer period of time without human intervention and diagnosis of heart disorders

is possible in a more versatile way. These developed methodologies can also be

installed in the hospitals. These systems can provide effective assistance to clinicians

for improving their diagnostic Ar. These systems can also be upgraded for home-

based telemonitoring applications. Home-based telemonitoring systems can provide

better clinical assistance for the old age heart patients. These patients are more

prone to severe complications and require continuous monitoring. These state of the

art techniques for the diagnosis of heart patients can be useful in early prediction

of complications and can play an important role in monitoring and controlling the

heart disorders.

The cardiac signals (ECG, HRV) show nonlinear and non-stationary character-

istics (Acharya et al., 2007, 2004). Therefore, the extraction of the meaningful

information from the cardiac signals is a challenging task. Use of the linear methods

may miss the subtle information. Hence, the state of the art method which can deal

with the nonlinear and non-stationary nature of the cardiac signals will be more

suitable for information extraction. Wavelet transform (WT) is a useful tool for

analyzing the non-stationary signals. The performance of the WT based method

depends upon the proper selection of the mother wavelet according to the applica-

tion. Flexible analytic wavelet transform (FAWT) (Bayram & Selesnick, 2009) is an

advanced WT method which provides the flexibility of adjusting the mother wavelet

as per the requirement. Hence, it is a useful tool for analyzing the cardiac signals.

The FAWT decomposes the signals into sub-band signals. These sub-band sig-

nals can be used to capture the subtle information about the heart disease. The

information present in the sub-band signals can be extracted using nonlinear param-

eters as cardiac signals have nonlinear characteristics. Further, these parameters can

be used as an input of the classifiers for decision making. Therefore, we have investi-

gated different nonlinear features in the FAWT framework for automated detection

of cardiac signals related to different classes.

1.5 Objectives

The objectives of this dissertation are as follows:
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• To develop FAWT based automated detection method for CAD disease using

entropy based features extracted from HRV signals.

• Development of automated diagnosis method for CAD disease based on FAWT

and cross information potential (CIP) using ECG signals.

• To develop an automated identification method for the MI ECG signals using

sample entropy (SEnt) feature extracted in FAWT framework.

• To propose a computer-based approach for the automated diagnosis of CHF

patients using FAWT based accumulated entropies extracted from HRV sig-

nals.

• Development of computer-aided identification method for AF ECG signals by

computing the entropy based features in FAWT domain.

1.6 Contributions

The contributions of this thesis are summarized as follows:

• A FAWT based automated detection method for CAD disease is developed

using HRV signals. The HRV signals are decomposed into the sub-band sig-

nals using FAWT. These sub-band signals are used to compute the K-nearest

neighbor (K-NN) entropy estimator (Kraskov et al., 2004) and fuzzy entropy

(FEnt) (Chen et al., 2007) features. These features yielded maximum classifi-

cation Ar with the least squares-support vector machine (LS-SVM) (Suykens

& Vandewalle, 1999) classifier on the studied dataset.

• An automated diagnosis method for CAD disease using ECG signals is de-

veloped. The ECG signals are segmented into the beats, and then, FAWT is

applied to decompose the ECG beats. The CIP parameter (Xu & Erdogmuns,

2010) is extracted from the detail coefficients obtained using FAWT. Further,

the features are used with LS-SVM classifier for decision making. The perfor-

mance of the proposed method is found better than the other method studied

on the same dataset.
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• A method for automated identification of MI ECG signal using FAWT is

developed. In this method, FAWT is applied to the ECG beats segmented

from the ECG signals. Then, obtained sub-band signals are used to compute

SEnt (Richman & Moorman, 2000). The suitable parameters to compute the

SEnt and level of decomposition (J) in FAWT domain for the accurate detec-

tion of MI subjects are identified. The method achieved better classification

performance than the compared works.

• A computer-based approach for the automated diagnosis of CHF patients is

developed. In this approach, accumulated fuzzy entropy (AFEnt) and accu-

mulated permutation entropy (APEnt) are computed over cumulative sums of

the sub-band signals provided by FAWT based decomposition of HRV signals.

Then, features are ranked and given as an input to the LS-SVM classifier. Our

proposed system has obtained better performance than the other work studied

on the same dataset with a smaller length of HRV signals.

• A computer-aided identification method for AF ECG signals using FAWT is

developed. First, smaller ECG segments of 1000 samples are obtained from the

long duration ECG signals. Further, FAWT is used to extract the sub-band

signals from ECG segments. Then, log energy entropy (LEE) (Han et al., 2009)

and permutation entropy (PEnt) (Bandt & Pompe, 2002) are computed from

the sub-band signals. The performance of the proposed method is comparable

to other methods. However, R-peak and P-wave detection are not required in

this method. It is the advantage of this method than the other methods.

1.7 Organization of the thesis

The remaining portion of this thesis is organized in the following way:

• In chapter 2, the FAWT method is explained. Signal decomposition using

FAWT is also presented in this chapter.

• The FAWT based automated detection method for CAD disease using HRV

signals is explained in chapter 3. The extraction steps of K-NN entropy esti-

mator and FEnt features are explained. Ranking methods are also presented
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in this chapter. Explanation of LS-SVM classifier and various kernel functions

are provided. Finally, results are presented and discussed.

• Development of automated diagnosis method for CAD disease using ECG

signals based on FAWT is provided in chapter 4. The computation of CIP

features from the FAWT coefficients is explained in this chapter. Finally, the

obtained results using the LS-SVM classifier are discussed in detail.

• An automated identification method for the MI ECG signals in FAWT frame-

work is presented in chapter 5. The SEnt computation from the decomposed

sub-band signals is given in this chapter. The selection of suitable parameter

for the computation of SEnt is explained. Selection of the decomposition level

(J) is also discussed. The random forest (RF) classifier is also provided in this

chapter. Finally, achieved results and discussion part is given.

• A computer-based approach for the automated diagnosis of CHF patients using

HRV signals is described in chapter 6. The computation of PEnt is explained

in this chapter. A way of obtaining the different frequency scales from the

combination of decomposed sub-band signals is shown. The computation of

AFEnt and APEnt from the accumulated sub-band signals is presented. The

results obtained from the different length of the HRV signals are discussed.

• Development of computer-aided identification method for AF ECG signals

using FAWT is demonstrated in chapter 7. The computation of LEE features

from the sub-band signals is given in this chapter. The results achieved using

this method are presented and discussed in the chapter.

• Finally, the whole work is concluded in chapter 8. The direction of future

research work is also provided in this chapter.

13





Chapter 2

Flexible analytic wavelet

transform

2.1 Introduction

The biomedical signals such as ECG, electroencephalogram (EEG), and electromyo-

gram (EMG) exhibit non-stationary nature. The characteristics of these signals

change rapidly. Analysis of these signals required the information in both time and

frequency plane. Hence, the Fourier transform is not suitable for the analysis of

this kind of signals, as it does not provide the information about the variation of

frequency contents with time (Gao & Yan, 2011). The short-time Fourier transform

(STFT) and WT-based methods are more suitable for the analysis of non-stationary

signals.

In STFT, the width of the window remains constant during the analysis of the

signal. Hence, the time and frequency resolution cannot be altered during analysis.

The resolution in time and frequency domain depends on the width of the window

function. The selection of a wider window in time-domain yields fine frequency

resolution and poor time resolution, and vice-versa (Cohen, 1989). In many of

the situations during the analysis of non-stationary signals, it requires good time

resolution at the occurrence of high frequency and finer frequency resolution at the

event of low-frequency (Chui, 1992). Therefore, the performance of the STFT is

limited due to the fixed resolution. The WT has the property to provide multi-

resolution analysis to deal this kind of situations. It has scaling parameter which
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allows the analysis of a signal with different resolution in time and frequency domain.

Hence, it finds suitable applications in the analysis of cardiac signals.

In (Inan et al., 2006), the ECG signals are analyzed using WT to detect the

premature ventricular contractions. It is also used as a QRS detector in (Kadambe

et al., 1999). The WT based morphological features are utilized for ECG signal

classification in (Ince et al., 2009). In (Kaur et al., 2016), discrete wavelet transform

(DWT) is employed for the detection of arrhythmia. The WT is also found useful

in the study of myocardial ischaemic HRV signals (Gamero et al., 2002). A WT

based HRV approach is also proposed for the analysis of ventricular tachycardia

in (Chen, 2002). The performance of the WT based methods also depends on the

proper selection of the mother wavelet according to the application.

The wavelet packet transform (WPT) based method is also used for the analysis

of the HRV signals (German-Sallo, 2014). It is also explored for the analysis of AF

ECG signals in (Qiao & Zhou, 2007). The dual tree complex wavelet transform is

also employed for the denoising of the ECG signals in (Mishu et al., 2014). The

tunable-Q wavelet transform (TQWT) method is also used for the analysis of the

cardiac signals (Patidar et al., 2015a). The TQWT has an advantage than the other

WT based method that it has the facility to adjust the Q-factor and the redundancy.

Hence, a suitable wavelet for the application can be selected easily as compared

to the other WT based method. Moreover, after selecting the Q-factor and the

redundancy, it is not possible to adjust the dilation factor in the TQWT (Bayram,

2013).

The signal adaptive method such as empirical mode decomposition (EMD) (Huang

et al., 1998) is also explored for the analysis of the cardiac signals. In this method,

the signal is decomposed in to the intrinsic mode functions (IMFs). In (Ortiz et al.,

2005), EMD is applied to HRV signals for studying the different conditions related

to the fetal activity. It is also used for the investigation of CAD HRV signals

in (Acharya et al., 2014; Sood et al., 2016). The EMD based method also incorpo-

rated for the analysis of ECG beats in (Shahnaz et al., 2015). The EMD technique

suffers from the mode-mixing problem (Tang et al., 2012). The other limitation of

the EMD is the lack of the mathematical background.

Recently, the FAWT has been proposed which allows to easily adjust the dilation
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factor, quality factor (QF), and redundancy (R). The QF can be expressed as,

QF=2−β
β

(Bayram, 2013). Redundancy is the ratio of the output samples and the

input samples and can be derived as R = (f
g
) 1
1−(b/c) (Bayram, 2013). QF controls the

frequency resolution of FAWT. The high QF provides finer filter banks for analyzing

the signals in the frequency domain. For fixed dilation and QF, the redundancy

controls the position of the wavelet in the time domain. The FAWT provides shift-

invariance, tunable oscillatory bases, and flexible time-frequency covering (Zhang

et al., 2015). These features make it more suitable for analyzing a signal as compared

to the TQWT and other WT based methods.

2.2 Signal analysis based on FAWT

The FAWT (Bayram, 2013) has the facility to analyze the signal with easily ad-

justable parameters b, c, f, g and β. The parameters b and c are used to set the

up and down sampling rates for low pass channel, respectively. The up and down

sampling rates for high pass channels can be controlled by the parameters f and

g, respectively. The J th level decomposition of FAWT can be implemented using

iterative filter bank (Bayram, 2013). Each level of implementation consists of two

high pass channels and one low pass channel as depicted in Figure 2.1. The two high

pass channels are used to separate the positive and negative frequencies and pro-

vide analytic bases. The wavelet bases of FAWT are obtained in Hilbert transform

pairs (Bayram, 2013). These properties make it enable to analyze the transient and

oscillatory parts of a signal (x[n]).

Frequency response of the low pass filter is defined as (Bayram, 2013):

H(w) =



(bc)1/2, |w| < wp

(bc)1/2θ
(
w−wp
ws−wp

)
, wp ≤ w ≤ ws

(bc)1/2θ
(
π−w+wp
ws−wp

)
, −ws ≤ w ≤ −wp

0, |w| ≥ ws

(2.1)

where, The wp and ws are the cutoff frequencies of the pass-band and stop-band for

the low pass filter, respectively, and can be computed as (Bayram, 2013):

wp = (1−β)π
b

+ ε
b
, ws = π

c
,
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Figure 2.1: J th level FAWT based decomposition of a signal.

Frequency response of the high pass filter is defined as (Bayram, 2013):

G(w) =



(2fg)1/2θ
(
π−w−w0

w1−w0

)
, w0 ≤ w < w1

(2fg)1/2, w1 ≤ w < w2

(2fg)1/2θ
(
w−w2

w3−w2

)
, w2 ≤ w ≤ w3

0, w ∈ [0, w0) ∪ (w3, 2π)

(2.2)

where, The w0 and w3 are the stop-band cutoff frequencies for the high pass filter,

and w1 and w2 are the pass-band cutoff frequencies. These frequencies can be defined

as (Bayram, 2013):

w0 = (1−β)π+ε
f

, w1 = bπ
cf

, and

w2 = π−ε
f

, w3 = π+ε
f

, ε ≤ b−c+βc
b+c

π.

The θ(w) can be given as (Bayram, 2013; Bayram & Selesnick, 2009):

θ(w) =
[1 + cos(w)]

√
(2− cos(w))

2
for w ∈ [0, π] (2.3)

In order to achieve perfect reconstruction filter bank, following conditions must

be satisfied (Bayram, 2013):

|θ(π − w)|2 + |θ(w)|2 = 1 (2.4)

(
1− b

c

)
≤ β ≤

(
f

g

)
(2.5)
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The FAWT is utilized for the faults detection in rotating machinery (Zhang et al.,

2015) and for the study of EEG signals in (Gupta et al., 2017; Sharma et al., 2017b).

Matlab toolbox of FAWT is available at http://web.itu.edu.tr/ibayram/AnDWT/.

The value of the factor c/b closer to 1 provides narrow sub-bands in the frequency

domain. The factor g/f controls the oscillations of the bases. The ratio g/f ≥ 3

provides high oscillatory bases. The parameter β can be used to further adjust the

oscillations of the bases of FAWT (Zhang et al., 2015). Therefore, these parameters

must be selected carefully according to the applications. In our work, we choose these

parameters by trial and error experimentation. We varied the factor b/c between

0.5 to 1 and g/f between 1 to 3 as suggested in (Zhang et al., 2015). Finally, we

selected the parameters values at which we achieved better results according to our

applications. FAWT based decomposition of the ECG signal at J = 4 is shown in

Figure 2.2, for parameter values, b = 5, c = 6, f = 1, g = 2, and β=0.8×(f/g).
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Figure 2.2: A plot of the sub-band signals obtained using FAWT based decomposi-
tion of the ECG signal.

In Figure 2.2., Sx1 to Sx4 are the sub-band signals which are reconstructed

from the detail coefficients. The sub-band signal Sx5 is reconstructed from the

approximate coefficients. The 4th level decomposition of the HRV signal is depicted

in Figure 2.3.

The sub-band signal SH5 is reconstructed from the approximate coefficients, and
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Figure 2.3: The plot of the decomposed components of the HRV signal extracted
using FAWT based decomposition.

SH1 to SH4 are the sub-band signals which are reconstructed from the detail coef-

ficients. The parameter values are kept same as for the signal shown in Figure 2.2.

The ECG and HRV signals are taken from the Fantasia open-access database (Iyen-

gar et al., 1996; Goldberger et al., 2000).

The advantage of using FAWT on the ECG and HRV signals is that it can de-

compose the signals in to the different subbands. The computation of the features

from these subbands allow to assess broader information as compared to the compu-

tation of the features directly from the signals. In this work, the nonlinear features

are computed from the subbands as the HRV and ECG signals possess the nonlinear

characteristics.

2.3 Summary

The FAWT is a convincing technique for signal analysis as it consists adjustable

parameters. The advantage of FAWT over WT is that by varying the parameters, the

shape of the mother wavelet can be adjusted accordingly. Unlike the EMD method,

it has a proper mathematical foundation. The main property of this method is that

we can easily tune the QF, dilation factor, and redundancy as per the requirement.
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Chapter 3

Automated detection method for

normal and CAD HRV signals

using FAWT

3.1 Introduction

The CVDs are the major causes of death in the world. Every year almost 17 million

people die due to CVDs globally (Wong, 2014). Deaths due to CAD are higher than

any other type of heart disease (Wong, 2014). The CAD is the result of the blockage

of the coronary arteries due to the accumulation of cholesterol and fatty substances

called plaque (National Heart, Lung and Blood Institute, 2015a). It reduces the

blood supply to the heart muscles. Hence, there will be a reduction in oxygen and

essential nutrients to the heart muscles (National Heart, Lung and Blood Institute,

2015a). It affects the strength of heart muscles, which disturbs heart pumping.

Angina and shortening of breath are the common symptoms of the CAD. But in few

people, CAD will be latent and does not show any symptoms (National Heart, Lung

and Blood Institute, 2015a). Subsequently, it may lead to arrhythmia, heart attack

and heart failure (National Heart, Lung and Blood Institute, 2015a). According to

the report of world health organization (WHO), 7.4 million people died worldwide

due to CAD in 2012 (World Health Organization: Cardiovascular diseases, 2015).

Hence, CAD is a life-threatening disease and if detected at an early stage can save

the life.
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To detect the presence of CAD, physicians review the clinical history of the sub-

ject and perform diagnostic tests such as; exercise stress test (EST), ECG, echocar-

diogram, chest X-Ray, cardiac catheterization and coronary angiography (National

Heart, Lung and Blood Institute, 2015a). All these techniques have a few limitations.

In stress test, information about the status of the heart using ECG signals during

the exercise is recorded. These recordings of heart information are termed as stress

ECG. During EST, there is always a risk of cardiac arrest, and all CAD patients

may not be able to achieve the targeted HR (Roman et al., 1998; Acharya et al.,

2014). Resting ECG recordings are also used for the diagnosis of CAD (Schreck

et al., 1988; Nowak et al., 1993).

It is difficult to interpret the minute changes in the ECG signals manually, due

to small amplitude, presence of noise and baseline wander. In few cases, ECG

recordings may not show significant difference between CAD and normal patients

(Giri et al., 2013). Cardiac catheterization and coronary angiography are invasive

techniques and can be performed in the presence of expert clinicians (National Heart,

Lung and Blood Institute, 2015a; Giri et al., 2013). Hence, a computer-aided method

with ASP techniques can help to capture the subtle information and minute changes

in ECG signals. Therefore, an automated system can provide immense help to

clinicians and doctors in the diagnosis of CAD during routine screening.

Advanced digital signal processing techniques can be used to diagnose the CAD

patients. These techniques may be helpful to extract the information provided by

the HR signals. These signals depict nonlinear and non-stationary characteristics

and may have valuable information about the nature of heart disease (Acharya et al.,

2004). The variations of HR signals are also termed as HRV. These signals have wide

applications in biomedical engineering for detecting diseases related to the heart. In

(Chua et al., 2008), HRV signals of normal and arrhythmia subjects are investigated

using higher order spectral analysis. Moreover, HRV signals are used to predict the

risk of CVDs (Acharya et al., 2008) and sudden cardiac death (Fujita et al., 2016).

Other than heart diseases these signals are also used to detect diabetes (Pachori

et al., 2015; Acharya et al., 2015b; Pachori et al., 2016). Significant variations

are noticed in the range of nonlinear features for normal and CAD HR signals

(Acharya et al., 2014). Power spectral analysis and time-domain based features are
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obtained from HR signals (Bigger et al., 1995). All these parameters are found to

be significantly lower for CAD patients. In (Hayano et al., 1990), it is shown that

spectral components of HR signals have a relationship with the angiographic features

of the CAD. In (Acharya et al., 2005), wavelet transform and fractal dimensions are

used to analyse the HR signals. Fractal dimension showed decrease values for the

diseased heart. Block entropies are estimated from healthy and CAD HR time series.

They have shown higher values for healthy subjects as compared to CAD subjects

(Karamanos et al., 2006).

HRV signals of normal and CAD subjects are studied for different sample lengths

(Sood et al., 2016). Five features namely, amplitude modulation (AM) bandwidth,

frequency modulation (FM) bandwidth, second-order difference plot, analytic sig-

nal representation area and mean frequency of Fourier-Bessel expansion (FBE) are

extracted from IMFs. The FM-bandwidth, AM-bandwidth, and mean frequency of

FBE showed more discriminating ability among five features. In (Ji et al., 2016),

the ECG signals and photoplethysmography of CAD and normal subjects are stud-

ied. Further, heartbeat interval series, diastolic time interval series, and systolic

time interval series are constructed from these signals. Thereafter, cross-correlation,

mutual information, cross-conditional entropy, coherence function, cross FEnt and

cross SEnt are studied on these constructed series for diagnosis of CAD.

The objective of present work is to develop a noninvasive methodology that can

automatically diagnose the CAD using HR signals. To deal with the non-stationary

nature of HR signals, FAWT (Bayram, 2013) is used to decompose the signals in

terms of sub-band signals. Nonlinear features namely; K-NN entropy estimator and

FEnt are used to extract the nonlinear dynamics corresponding to sub-band signals

obtained from HR signals. The steps performed in the present work are shown in

Figure 3.1.

Our proposed CAD diagnosis expert system is completely automated. It com-

prises two steps: (i) training and (ii) testing. During training step, classifier is

trained using entropy features extracted from the subbands of FAWT. In the testing

phase, unknown HR signal is fed to our system. Then same entropy features are

extracted and fed to the pre-trained classifier for automated diagnosis (normal or

CAD). Such an expert system will help the clinicians in their daily screening of car-
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Figure 3.1: The proposed automated method for detecting CAD based on HRV
signals.

diac patients. It can substantially reduce the possible human errors, screening time,

and make the system robust. The organization of remaining part of this chapter is

as follows:

Section 3.2 describes data acquisition, preprocessing, signal decomposition, non-

linear features studied, feature ranking methods, and LS-SVM classifier. The ob-

tained results are provided in section 3.3. Section 3.4 presents the discussion part.

Finally, section 3.5 provides the summary of the work.

3.2 Methodology

3.2.1 Process of data acquisition

The ECG signals were recorded from 10 healthy subjects and 10 CAD patients

at Iqraa Hospital, Calicut, Kerala, India (Acharya et al., 2014). The BIOPACTM

equipment was used to record ECG signals at a sampling rate of 500 Hz (BIOPAC

Systems Canada, Inc., 2010). All the CAD subjects participated in the study were

on similar medication. The age of all the subjects under the study ranges between 40
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to 70 years. All the procedure of signal acquiring was performed with the assistance

of an experienced cardiologist. The patients suffering from other heart diseases such

as; myopathy, AF, right and left bundle branch block, and ventricular hypertrophy

were not considered for the study. Finally, we have created 82 CAD files and 61

normal files with each file having 1000 samples from 10 normal and 10 CAD subjects.

3.2.2 Preprocessing of acquired signals

The following steps are performed to get the HR signal from the ECG signal

(Acharya et al., 2014; Giri et al., 2013):

Step 1: Unwanted noise and baseline wander (Warlar & Eswaran, 1991) present in the

ECG signals were eliminated by applying a band pass filter of lower and higher

cut-off frequency of 0.3 Hz and 15 Hz, respectively.

Step 2: Power line interferences were eliminated, using a notch filter of 50 Hz cut off

frequency.

Step 3: Pan-Tompkins algorithm (Pan & Tompkins, 1985) was used to identify the

location of R peaks.

Step 4: Finally, the duration between the two consecutive R peaks (tRR) was com-

puted.

Finally, HR can be defined in terms of beat per minute as (Acharya et al., 2014):

HR =
60

tRR
(3.1)

ECG data were recorded for 15 minutes. The plots of HR signals for CAD and

normal subjects are shown in Figure 3.2.

3.2.3 Signal decomposition based on FAWT

The plots of sub-band signals of CAD and normal classes obtained from FAWT are

shown in Figure 3.3. In Figure 3.3, D1, D2 and D3 are reconstructed from detail

coefficients of levels 1, 2, and 3 respectively. A3 is reconstructed from approximate
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coefficients of level 3. In the present work, b = 7, c = 8, f = 1, g = 2, and β =

0.8× (f/g) are selected (Zhang et al., 2015).

3.2.4 Nonlinear features extraction

Nonlinear features are widely used to analyze the HR signals (Acharya et al., 2004,

2013, 2014). These features unearth the hidden nonlinear nature of HR signals

(Acharya et al., 2004; Giri et al., 2013). In this work, nonlinear parameters namely;

K-NN entropy estimator and FEnt are used as features. These features are explained

in the following sections.
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Figure 3.2: The plots of HR signals: (a) CAD subject, (b) Normal subject.

26



3.2.5 K-nearest neighbour entropy estimator

The K-NN entropy estimator H(x) of differential entropy for a variable x can be

defined as (Kraskov et al., 2004; Veselkov et al., 2010):

H(x) = −ψ(K) + ψ(M) + log (CD) + (D/M)
M∑
j=1

log [ε(j)] (3.2)

where M denotes the total number of samples and D is used to represent the di-

mension of x. ε(j) is the distance between the jth sample of x and its K nearest

neighbours.
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Figure 3.3: Typical level 3 FAWT based decomposition of HR signal: (a) CAD
subject, (b) Normal subject.
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In (7), ψ(y) is a digamma function and defined as follows (Kraskov et al., 2004):

ψ(y) =
1

Γ(y)

dΓ(y)

dy
(3.3)

The CD represents the volume of D-dimensional unit ball, and for Euclidean norm

it is defined as follows (Veselkov et al., 2010):

CD =
πD/2

Γ(1 + D
2

)
(3.4)

The K-NN entropy estimator is used to measure the systemic metabolic disrup-

tions in patho-physiological states (Veselkov et al., 2010).

3.2.6 Fuzzy entropy

The computation of FEnt measures the similarity that occurs in a HRV signal.

For the computation of the FEnt, the following steps have to be performed (Chen

et al., 2007):

1. First, the sequences of length e are extracted from the HRV signal.

2. Compute the similarity degree Sejk between two sequences (j-th and k-th) using

the fuzzy function (Chen et al., 2007) as follows:

Sejk = q(sejk, u, v) (3.5)

where q, u, and v represent the fuzzy function, the gradient, and the width of

the fuzzy similarity boundary, respectively and sejk is the maximum absolute

difference of the two sequence lengths.

3. Computation of ϕe(u, v) as follows (Chen et al., 2007):

ϕe(u, v) =
1

P − e

P−e∑
j = 1

1

P − e− 1

[
P−e∑

k = 1,k 6= j

(Sejk)

]
(3.6)

where P denotes the total number of samples present in the HRV signal.
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4. Finally, the FEnt can be computed as follows (Chen et al., 2007):

FEnt(e, u, v, P ) = ln [ϕe(u, v)]− ln
[
ϕe+1(u, v)

]
(3.7)

The FEnt is used to characterize the surface EMG signals (Chen et al., 2007),

epilepsy (Acharya et al., 2015a), and to discriminate non-focal and focal EEG signals

(Sharma et al., 2015b).

3.2.7 Features ranking methods

Most significant features can be selected using features ranking methods. These

methods assign ranks to the available features and arrange them according to their

clinical significance. The lower ranked features can be neglected, and higher ranked

features can be used for classification (Duda et al., 2000). These methods reduce

the complexity of the system without affecting the classification performance. We

have used four methods of features ranking: (1) Wilcoxon method, (2) Entropy

method, (3) Receiver operating characteristic (ROC) method and (4) Bhattacharya

space algorithm in this work. Wilcoxon method ranks based on non-parametric test

(Derryberry et al., 2010). In ROC method, features are ranked according to the area

under the ROC curve (Theodoridis & Koutroumbas, 2003). Entropy method uti-

lizes the divergence method (Theodoridis & Koutroumbas, 2003) for measuring the

separability between different classes. Bhattacharya space algorithm uses the Bhat-

tacharya distance (Theodoridis & Koutroumbas, 2003) to measure the separability

between the two classes.

3.2.8 Classification based on LS-SVM method

The SVM is a widely used machine learning technique in the field of pattern recog-

nition. In SVM method, the features corresponding to different categories of data

are classified by obtaining a hyperplane in the higher dimensional space (Suykens &

Vandewalle, 1999). If SVM is employed with least square method, then it is termed

as LS-SVM. It is prominently used in biomedical signal analysis applications. It

is employed to analyze the EEG signals (Sharma et al., 2017a; Sharma & Pachori,

2017; Bhattacharyya et al., 2016, 2017a; Singh & Pachori, 2017) and analysis of
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the heart sound signals (Patidar & Pachori, 2014; Patidar et al., 2015b). It is also

used for automated diagnosis of diabetes in (Pachori et al., 2016) and glaucoma

using fundus images in (Maheshwari et al., 2017a,b). LS-SVM is also utilized in

the analysis of alcoholic EEG signals in (Patidar et al., 2017). Mathematically, it is

represented as (Suykens & Vandewalle, 1999):

T = sign

[
M∑
m=1

αmwmF (y, ym) + b

]
(3.8)

where F (y, ym) represents a kernel function, αm denotes the Lagrangian multiplier,

ym is the mth input vector of D-dimension, b is used as bias term, and wm is the

target vector.

In the present study, RBF and Morlet wavelet are used as the kernel of LS-

SVM. Kernel functions are used with LS-SVM to map the input space to the higher

dimension space and the two classes can be separated using an optimal hyper-

plane (Suykens & Vandewalle, 1999).

RBF kernel can be expressed as (Khandoker et al., 2007):

F (y, ym) = e
−‖y−ym‖2

2γ2 (3.9)

In the RBF kernel, γ controls the width.

The expression of Morlet wavelet kernel is given as (Bajaj & Pachori, 2012; Zavar

et al., 2011):

F (y, ym) =
D∏
n=1

cos

[
z0
yn − ynm

l

]
e
−‖yn−ynm‖

2

2l2 (3.10)

here l represents the scaling parameter of Morlet wavelet kernel and D denotes

dimension of feature vectors set.

The other kernel functions that can also be used with LS-SVM are linear and

polynomial kernels and mathematically defined as (Suykens & Vandewalle, 1999):

Linear kernel:

F (y, ym) = yTmy (3.11)

Polynomial kernel:

F (y, ym) = (yTmy + 1)r (3.12)
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where r is the order of the polynomial kernel.

In the present work, Ar, sensitivity (Ss), and specificity (Sc) (Azar & El-Said,

2014) are computed for performance evaluation.

3.3 Results

We have used FAWT to obtain the sub-band signals from the HRV signals of CAD

and normal classes. In order to choose the level of decomposition, we computed

probability (p) values for the features obtained from the sub-band signals at dif-

ferent levels of FAWT based decomposition using Kruskal-Wallis (KW) test. We

observed lowest p-value at the third level of decomposition for FEnt computed from

approximation signal (see Table 3.1). Lowest p-value indicates that this feature has

highest discrimination ability. Therefore, we choose the third level of decomposition

to analyze the CAD and normal HR signals. Furthermore, K-NN entropy estimator

Table 3.1: The p-values of features computed from the approximation signal at
various levels of FAWT based decomposition for normal and CAD classes.

Features Second level Third level Fourth level Fifth level

FEnt 7.534× 10−19 1.11× 10−19 1.648× 10−19 4.738× 10−18

K-NN entropy estimator 9.407× 10−7 6.06× 10−7 2.99× 10−7 5.961× 10−7

and FEnt are computed from these sub-band signals. In our work, essential pa-

rameters required to compute K-NN entropy estimator and FEnt are selected using

trial and error experimentation in such a way to maximize the classification Ar. For

K-NN entropy estimator, the number of neighbours is selected to be 7. For FEnt,

the value of e, u, and v are chosen to be 5, 2, and 0.3, respectively (Chen et al.,

2007). The range of these features can be seen in Table 3.2.

The p-values computed using KW test (McKight & Najab, 2010) are also shown

in Table 3.3. Significantly low p-values (p < 0.05) are observed for these features in

Table 3.3, except K-NN entropy estimator computed from detail signal at the third

level. Recently, KW test has been explored to test the statistical significance of the
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Table 3.2: Mean (µ) and standard deviation (STD) of the features computed from
sub-band signals of FAWT for normal and CAD classes.

Features
Sub-band CAD class Normal class

signals (µ± STD) (µ± STD)

K-NN entropy estimator

D1 −34.4144± 7.2939 −33.6003± 3.1676

D2 −38.2082± 7.8436 −38.1883± 2.4542

D3 −38.4634± 7.8750 −38.9568± 2.8859

A3 −25.1109± 4.1989 −22.5484± 1.7965

FEnt

D1 0.1461± 0.0631 0.2471± 0.0653

D2 0.0724± 0.0698 0.0859± 0.0245

D3 0.0631± 0.0696 0.0640± 0.0254

A3 0.2767± 0.1171 0.5207± 0.1491

features in various biomedical signal analysis applications (Pachori, 2008; Pachori &

Patidar, 2014; Sharma et al., 2015c; Bhati et al., 2017; Sharma et al., 2017e). The

boxplots for K-NN entropy estimator and FEnt are depicted in Figures 3.4 and 3.5

respectively. N represents normal class, and C represents CAD class in Figures 3.4

and 3.5.

Table 3.3: The p-values of features computed from sub-band signals of FAWT for
normal and CAD classes.

Features D1 D2 D3 A3

K-NN
1.59× 10−4 2.73× 10−2 6.41× 10−2 6.06× 10−7

entropy estimator

FEnt 6.14× 10−18 1.36× 10−10 9.10× 10−7 1.11× 10−19

Moreover, various ranking methods are used to achieve maximum Ar of classi-

fication using least number of feature vectors. Extracted features are arranged in
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Figure 3.4: The boxplots showing ranges for K-NN entropy estimator.

the descending order according to their statistical significance. These ranked fea-

tures are fed to the classifier one by one until the highest classification performance

is reached. RBF and Morlet wavelet kernels are used with LS-SVM classifier to

test the performance. For the performance validation of the LS-SVM, dataset is

partitioned into training and testing sets using ten-fold cross-validation (TFCV)

method (Kohavi, 1995). The TFCV method has widely used for the classification

task (Sharma & Pachori, 2015; Sharma et al., 2015b, 2017c; Tiwari et al., 2017;

Bhattacharyya et al., 2017b; Sharma & Pachori, 2018). A plot of the number of
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Figure 3.5: The boxplots for Fuzzy entropy.

features versus accuracies for the various ranking method is shown in Figures 3.6

and 3.7 for RBF and Morlet wavelet kernels, respectively. The LS-SVM attained
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Figure 3.6: A plot showing accuracies for different number of features for RBF
kernel.

maximum classification using entropy ranking method with four features, (see Fig-

ures 3.6 and 3.7). Maximum Ar of 100% is obtained for RBF and Morlet wavelet

kernel functions. We have got 100% Ss and 100% Sc for RBF and Morlet wavelet

kernels. These results are obtained using kernel parameter γ = 0.4 for RBF kernel,

and l = 1.05 and z0 = 0.42 for Morlet wavelet kernel.
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Figure 3.7: The variation of accuracies for different number of features with Morlet
wavelet kernel.
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3.4 Discussion

The performances of various methods used for automatic diagnosis of CAD subjects

are summarised in Table 3.4. In (Karimi et al., 2005), heart sound signals (HSS)

are used to diagnose CAD and normal subjects. The WPT and DWT are used to

decompose the signals. Furthermore, variance, kurtosis, k-factor and skewness are

computed and fed to the artificial neural network (ANN). The Ar of classification

for abnormal cases is 85% and 90% for DWT and WPT respectively. In (Lee et al.,

2007), nonlinear and linear features are used to detect the CAD subjects. The ex-

tracted features yielded the highest Ar of 90% using SVM classifier. In (Zhao & Ma,

2008), Teager energy operator (TEO) and EMD based methodology is used to diag-

nose CAD with HSS. Classification rate of 85% is obtained using back propagation

neural network (BPNN).

In (Babaoglu et al., 2010), binary particle swarm optimization (BPSO) and ge-

netic algorithm (GA) are used for feature selection from EST data. Thereafter,

these features are tested with SVM classifier. Highest classification Ar of 81.46%

is obtained using BPSO feature selection method. Furthermore, PCA is used to

reduce the features extracted from EST data (Babaoǧlu et al., 2010). These fea-

tures in combination with SVM gave classification Ar of 79.17%. In (Dua et al.,

2012), classification is performed using nonlinear features extracted from HRV sig-

nals. The PCA is applied to compute the principal components. These principal

components are tested with eight different classifiers, and highest performance of

89.5% is achieved with multilayer perceptron (MLP). In (Giri et al., 2013), DWT is

used to decompose the HRV signals and extracted features are reduced using ICA,

PCA, and linear discriminant analysis (LDA). Highest classification Ar of 96.8% is

attained using Gaussian mixture model (GMM).

Linear and nonlinear methods are applied to HRV signals to diagnose CAD pa-

tients (Poddar et al., 2015). Feature dimension is reduced using PCA and 91.67%

Ar is reported using SVM classifier. In (Patidar et al., 2015a), HR signal decom-

position is performed with TQWT, and correntropy features are extracted from

the decomposed signals. Correntropies are further transformed using PCA to ob-

tain more meaningful features. The 3-fold cross-validation method is used for the

data partition. Finally, 99.72% average classification Ar is achieved using LS-SVM
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classifier.

In this work, we have developed a new methodology to diagnose CAD using

HRV signals based on FAWT decomposition method. These signals are decomposed

upto third level using FAWT. K-NN entropy estimator and FEnt are used to fetch

the information from detail and approximation signals at each level. K-NN entropy

estimation is based on the distance of a sample from its K nearest neighbours, and it

quantifies the degree of scattering of the time series (Veselkov et al., 2010). It should

be noted that higher values of K-NN entropy estimator show a wider scattering of

time series. On the other hand, low values of K-NN entropy estimator indicate the

limited scattering of time series. From Table 3.2, we can observe higher values of

K-NN entropy estimator for detail signals D1, D2, and approximate signal A3 for

normal subjects than CAD subjects. It shows slightly lower value for detail signal

D3 for normal subjects. However, for detail signal D3, K-NN entropy estimator does

not show discrimination ability as p-value is high (p > 0.05) in Table 3.3. For detail

signals D1, D2, and approximate signal A3 lower p-values (p < 0.05) are observed.

Signal A3 shows maximum discrimination ability for K-NN entropy estimator to

separate the two classes as minimum p-value is observed for A3 (see Table 3.3).

Therefore, we are considering D1, D2, and A3 sub-band signals to estimate K-NN

entropy and study the dynamics of HRV signals. The lower values of K-NN entropy

estimator for D1, D2, and A3 for CAD subjects indicate that CAD HRV signals are

less scattered compared to normal HRV signals.

FEnt is the measure of similarity in the time series. The measure of similarity

is based on exponential function in (Chen et al., 2007). From Table 3.2, we can

observe that, FEnt values for CAD subjects are smaller than normal subjects for

all detail signals (D1, D2, and D3) and approximation signal (A3). All these signals

(D1, D2, D3, and A3) show good discrimination ability for both classes (p < 0.05) in

Table 3.3 for FEnt. For FEnt, approximation signal A3 shows highest discrimination

ability for both classes as p-value is found to be lowest (see Table 3.3). Moreover,

the smaller value of FEnt shows more regularity of time series which means CAD

HR signals have more regularity than normal HR signals. Finally, for RBF and

Morlet wavelet kernels, maximum classification Ar of 100% is obtained using our

proposed algorithm.
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The main advantage of our work as compared to other existing works is that

the proposed method uses less number of features (only four) to obtain the highest

Ar. However, (Patidar et al., 2015a) also achieved a classification Ar of 99.72%

with two features. They used 3-fold cross-validation method, while we used TFCV

method, which makes our method more robust and reliable as compared to the

method proposed in (Patidar et al., 2015a). Therefore, the proposed system in this

paper is suitable for clinicians and can be installed in the hospitals to detect CAD

automatically using HR signals. As we are using four features, the diagnosis of CAD

will be fast. In future, home telemonitoring can also be employed with this system

to make it more dynamic. Therefore, the proposed methodology can help to save

the life of the CAD patients. The limitation of the present work is small data set.

Before the deployment of the proposed system for clinical purpose, it needs to be

tested using large data set.

3.5 Summary

In the present work, a novel technique is proposed for the diagnosis of CAD patients

based on FAWT decomposition method. In our work, HR signals are decomposed up

to the third level using FAWT. The K-NN entropy estimator and FEnt are computed

to fetch the nonlinear dynamics of HR signals. Several ranking methods are used

to optimize the classification performance. Highest classification performance is

observed with initial four significant parameters computed using entropy ranking

method. Use of TFCV procedure makes the system more robust and reliable. Hence,

it can be concluded by the observed performance that the proposed methodology is

very efficient to diagnose the CAD subjects.
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Chapter 4

An automated diagnosis method

for CAD patients using ECG

signals based on FAWT

4.1 Introduction

The commonly used methods for CAD detection by the doctors and their shortcom-

ings are explained in chapter 3.

In literature, various computer-aided diagnostic methods are suggested based

on ECG signals (Antanavičius et al., 2008; Arafat et al., 2005) and HRV sig-

nals (Acharya et al., 2014; Bigger et al., 1995; Karamanos et al., 2006; Sood et al.,

2016). Nonlinear features such as, mutual information, embedding dimension error,

fractal dimension, and recurrence percentage are found significantly different for

ECG signals of CAD and non-CAD subjects (Antanavičius et al., 2008). In (Arafat

et al., 2005), stress ECG signals are studied using fuzzy, probabilistic, and combined

uncertainty models. Literature review on the analysis of CAD patients using HRV

signals is provided in chapter 3.

The aim of this work is to develop an accurate, fast, and automated system to

diagnose CAD non-invasively using ECG signals. In order to achieve this, first, we

segmented the ECG signals into beats. Then, each beat is subjected to FAWT which

decomposes it into detail and approximation coefficients. Further, CIP parameters

are computed from the detail coefficients. In the end, classification is performed
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using these CIP features. Flowchart of the proposed methodology is shown in Figure

4.1. The remaining sections of this chapter are arranged in the following way:

Section 4.2 presents the dataset, preprocessing steps, decomposition of the beats,

and computation of CIP. The obtained results are described in section 4.3. Sec-

tion 4.4 gives the discussion of the results. Finally, the summary of the work is

presented in section 4.5.

Decomposition 
of beats using 
FAWT

Computation of CIP 
from the real values 
of detail coefficients 

Classification using LS-
SVM with RBF and 
Morlet wavelet kernels

CAD class

Normal class

Raw ECG 
signal

Noise and baseline 
wander removal

Segmentation of ECG 
signal into beats

Figure 4.1: The automated diagnosis method for CAD disease using ECG signals.

4.2 Methodology

4.2.1 Dataset

In the present study, the ECG signals of CAD subjects are downloaded from St.

Petersburg Institute of Cardiological Technics 12-lead Arrhythmia Database (Gold-

berger et al., 2000). The ECG signals of normal subjects are downloaded from

Fantasia open-access database (Iyengar et al., 1996; Goldberger et al., 2000). In the

present work, ECG signals of 40 normal subjects (20 young and 20 old subjects)

and 7 CAD subjects are used. We have used ECG signals of lead-II in this work.

4.2.2 Preprocessing of downloaded ECG signals

The recording duration of the downloaded CAD and normal ECG are 0.5 hours

and 2 hours respectively. Sampling frequency of CAD and normal ECG signals

are 257 and 250 samples per second, respectively. In the present work, to make
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the ECG dataset uniform, normal ECG signals are up-sampled to 257 samples per

second. The baseline wander and noise exist in the ECG signals are eliminated using

Daubechies 6 (db6) basis function of wavelet (Martis et al., 2013a,b).

4.2.3 Beats segmentation from preprocessed ECG signals

To segment the ECG signals into individual beats, first R-peak need to be detected.

In this work, Pan-Tompkin’s algorithm (Pan & Tompkins, 1985) is used to detect

the R-peak from each ECG signal (Martis et al., 2013b). On the basis of detected

R-peaks, ECG signals are segmented into beats. Each ECG beat consists of 64

samples before the R peak and 104 samples after R peak. Thus, one ECG beat is a

segment of 169 samples and covers P, QRS, and T waves. In this work, 44,426 beats

of CAD ECG signals and 137,587 beats of normal ECG signals are used.

4.2.4 Decomposition of the beats using FAWT

In this work, we have applied FAWT for the decomposition of ECG beats. The values

of the parameters that are used in the present work are b = 5, c = 6, f = 1, g = 2,

and β = 0.8(f/g) (Zhang et al., 2015). Real values of the coefficients obtained after

decomposing the ECG beats using FAWT are shown in Figures 4.2(a) and 4.2(b)

for CAD and normal subjects, respectively. In Figures 4.2(a) and 4.2(b), CV is

the magnitude of the coefficient, and CN represents the corresponding coefficient.

These coefficients are the detail coefficients. CV1a and CV1b are representing detail

coefficients of 1st level. Likewise, CV2a and CV2b, CV3a and CV3b, CV4a and CV4b,

and CV5a and CV5b represent 2nd level, 3rd level, 4th and 5th level detail coefficients,

respectively.

4.2.5 Feature computation from the detail coefficients

In the present work, CIP is computed between the real values of detail coefficients

at each level.

Information potential is the non-parametric estimator of Renyi’s quadratic en-

tropy (Xu & Erdogmuns, 2010). It can be estimated using kernel-based approach
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as (Xu & Erdogmuns, 2010):

V̂ (X) =
1

P 2

P∑
a=1

P∑
b=1

k(xa − xb) (4.1)

where, k(xa − xb) represents the kernel function, and P is the total number of

samples. xa and xb are the ath and bth samples of the signal.
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Figure 4.2: The plots of real coefficients obtained using FAWT based decomposition:
(a) CAD subject and (b) Normal subject
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CIP is the measure of similarity between the two probability density func-

tions (Xu et al., 2008). CIP can be estimated as (Xu & Erdogmuns, 2010):

V̂ (X, Y ) =
1

P 2

P∑
a=1

P∑
b=1

k(xa − yb) (4.2)

xa is the ath sample of the signal X and yb is the bth sample of the signal Y . In the

present work, we have used ITL toolbox (http://www.sohanseth.com/Home/codes)

for computing the CIP, which uses the incomplete Cholesky decomposition to com-

pute the CIP. Gaussian kernel is used to compute the CIP and kernel size (γ) of 1

is used in the present work.

4.2.6 Classification using LS-SVM

The LS-SVM method is briefly explained in chapter 3.

4.3 Results

In the present study, resting ECG signals are segmented into beats to diagnose CAD.

The segmented beats are subjected to FAWT decomposition technique to get detail

and approximation coefficients. Further, CIP parameters are computed from detail

coefficients. In this work, we have analysed the ECG beats up to five decomposition

levels. We have applied KW statistical test (McKight & Najab, 2010) and computed

the p-values of features at different levels of decomposition. The p-value, µ and STD

of CIP parameters at various levels of decomposition are provided in Table 4.1. We

can observe from the table that, for normal subjects, CIP parameters have lower

values at each decomposition level as compared to CAD beats. The box plots at

each level of decomposition are computed using KW statistical test and shown in

Figure 4.3.

Clinically significant p-values of CIP parameters at each level of decomposition

can be seen in Table 4.1. At each level of decomposition, the effectiveness of CIP

features is evaluated by computing Ar, Ss, Sc and Matthews correlation coefficient

(MCC). The RBF and Morlet wavelet are used as kernel functions of LS-SVM clas-

sifier. The kernel parameters used in this work are shown in Table 4.2.
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Table 4.1: The µ and STD values of CIP features computed from various levels of
FAWT decomposition for normal and CAD ECG beats.

Level of
Features

CAD class Normal class
p-values

decomposition (µ± STD) (µ± STD)

1 CIPD1 0.1987± 0.0734 0.1488± 0.1096 0

2 CIPD2 0.1857± 0.0524 0.1595± 0.0768 0

3 CIPD3 0.2281± 0.0546 0.1860± 0.0883 0

4 CIPD4 0.2004± 0.0685 0.1593± 0.1045 0

5 CIPD5 0.0830± 0.0417 0.0740± 0.0621 0

Table 4.2: Results of classification at different levels of decomposition using different
kernel functions.

Level of Kernel Kernel Ar(%) Ss(%) Sc(%) MCC

decomposition parameter values

Level 1
RBF γ = 1 89.53 90.48 89.23 0.769

Morlet wavelet l = 1.2 z0 = 0.25 89.58 90.16 89.39 0.769

Level 2
RBF γ = 1 96.44 94.74 96.98 0.906

Morlet wavelet l = 1.2 z0 = 0.25 96.51 94.93 97.02 0.908

Level 3
RBF γ = 1 98.37 97.62 98.61 0.957

Morlet wavelet l = 1.2 z0 = 0.25 98.53 97.87 98.74 0.961

Level 4
RBF γ = 1 99.54 99.36 99.60 0.987

Morlet wavelet l = 1.2 z0 = 0.25 99.58 99.45 99.62 0.988

Level 5
RBF γ = 1 99.56 99.50 99.58 0.988

Morlet wavelet l = 1.2 z0 = 0.25 99.60 99.57 99.61 0.989
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Figure 4.3: Box plots of CIP features at various decomposition levels of CAD and
normal ECG beats: (a) Level-1, (b) Level-2, (c) Level-3, (d) Level-4 (e) Level-5.
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Performance of the classifier is validated using TFCV method (Kohavi, 1995). At

first level of decomposition, the classification accuracies are 89.53% and 89.58% with

RBF and Morlet wavelet kernels, respectively. Remaining classification parameters

can be observed in Table 4.2. Further, we have obtained classification accuracies of

96.44% for RBF kernel and 96.51% for Morlet wavelet kernel at the second level of

decomposition. At this level, we have used CIP parameters (CIPD1 and CIPD2)

computed from both levels of detail coefficients. The values of Ar, Ss, Sc, and MCC

are tabulated in Table 4.2. Significant improvement is observed in classification

performance at the second level of decomposition as compared to the first level of

decomposition.

At the third level of decomposition, the classification Ar of 98.37% and 98.53%

are obtained using RBF and Morlet wavelet kernel functions, respectively. All four

CIP features (CIPD1, CIPD2, CIPD3, and CIPD4) are fed to the LS-SVM classifier

and observed an Ar of 99.54% and 99.58% using RBF and Morlet wavelet kernel

functions at the fourth level of decomposition. The classification performance is im-

proved at the fourth level of decomposition. At the fifth level, five CIP parameters

(CIPD1, CIPD2, CIPD3, CIPD4, and CIPD5) are applied to the input of LS-SVM.

We have obtained classification performance parameters, Ar=99.56%, Ss=99.50%,

Sc=99.58% and MCC=0.988, respectively for RBF kernel. The classification perfor-

mance parameters, Ar=99.60%, Ss=99.57%, Sc=99.61% and MCC=0.989 are ob-

tained for Morlet wavelet kernel. We did not observe significant improvement when

we increased the decomposition from fourth to fifth level. Therefore, we did not in-

crease the decomposition level further. The Ar, Ss, and Sc for various folds of TFCV

is shown in Figures 4.4 and 4.5 for RBF and Morlet wavelet kernels, respectively.

4.4 Discussion

A summary of the performance of various diagnostic techniques used for CAD de-

tection is presented in Table 4.3. In (Acharya et al., 2017e), higher order statistics

(HOS) are used for diagnosis of CAD and normal subjects using ECG signals. HOS

bispectrum and cumulant features are studied on the ECG beats. A classification

Ar of 98.99% is achieved when 31 cumulant features are fed to the decision tree
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Figure 4.4: The plot of performance measures versus the number of folds for LS-SVM
classifier for RBF kernel at 5th level of decomposition.

(DT) classifier. The other methods for the detection of CAD are already discussed

in chapter 3.
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Figure 4.5: A plot of performance measures versus the number of folds when Morlet
wavelet is used with LS-SVM classifier as a kernel (5th level of decomposition).

In the present work, FAWT decomposition method and CIP are used to capture

the hidden information from ECG beats of 40 normal and 7 CAD subjects. The

advantage of using FAWT is that it separates the detail components from ECG

beats by adjusting the Q factor, redundancy and dilation factor. Hence, more

meaningful information can be extracted using FAWT. Furthermore, CIP is able
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to extract information from detail coefficients provided by FAWT decomposition.

CIP parameters are larger for CAD ECG beats. CIP parameter is the measure of

Table 4.3: Comparison of the proposed automated classification method of CAD
and normal classes with the other existing method.

Authors Data set used Methodology Classifier used
Ar

%

Acharya et al. (2016)

ECG signals HOS

DT 98.9940 normal and 31 cumulant

7 CAD subjects features

In the present work

ECG signals FAWT LS-SVM and

99.6040 normal and and CIP Morlet wavelet

7 CAD subjects feature kernel

similarity (Xu et al., 2008). Hence, larger values of CIP parameters indicate more

similarity between the detail coefficients of FAWT based decomposition of CAD

beats as compared to the normal beats. The total number of ECG beats used in

our work is 182,013 (44,426 CAD ECG beats and 137,587 normal ECG beats). The

size of the feature matrix is 182,013×5. This is a huge dataset of ECG beats. The

present methodology is able to classify the 182,013 ECG beats with an Ar of 99.60%

with LS-SVM classifier with TFCV method.

The advantage of the proposed algorithm is that we have used resting ECG

signals. Hence, there is no risk of possible cardiac arrest during recording as in

stress ECG signals. The developed algorithm is simple and fast. It is robust and

repeatable as we employed TFCV. The limitation of the present work is that we

have used only 7 CAD subjects.

4.5 Summary

In this work, a new methodology is proposed to diagnose the CAD automatically

using ECG signals. First, ECG signals are segmented and decomposed using FAWT.
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Five CIP parameters are computed from the five levels of FAWT detail coefficients.

The performance of the method is examined at different levels of decomposition

from J = 1 to J = 5. The CIP parameters with LS-SVM and RBF kernel yielded a

classification Ar of 99.54% and 99.56% at the fourth and fifth level of decomposition

respectively. The Ar of classification using Morlet wavelet kernel improved to 99.58%

and 99.60% at the fourth and fifth level of decomposition respectively. The use

of TFCV technique makes the proposed methodolpgy more robust. The present

method can be extended for early detection of CAD.
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Chapter 5

Automated identification method

for normal and MI ECG signals

using FAWT

5.1 Introduction

MI is a condition which indicates the injury of a heart cell due to the lack of oxy-

genated blood in the cardiac arteries (Thygesen & et al, 2012). The main cause

of MI is the coronary heart disease which is responsible for nearly one-third of all

deaths in the age group of above 35 years (Sanchis-Gomar et al., 2016; Acharya

et al., 2016). MI is silent in nature and may lead to fast and non-recoverable dam-

age to the muscles of heart (Acharya et al., 2016). If MI is not controlled timely

then, myocardial structure and function of the LVe continue to damage further.

For the diagnosis of MI, the ECG is used due to its low operating cost and non-

invasive nature (Lu et al., 2000). Vital information related to the functioning of the

heart can be assessed by analyzing the ECG signals. Moreover, the MI results in

the ST deviations and T wave abnormalities in the ECG signal (Lu et al., 2000).

Manual identification of the changes in the ECG signals is a difficult task. Only

82% ST-segment elevation in MI subjects may be recognised by the experienced

cardiologists (Liu et al., 2015). Therefore, an automated identification system for

MI patients is needed to facilitate the clinicians in their accurate diagnosis. The

classification of ECG signals and the extracted beats from ECG signals have been
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studied in the literature for diagnosis of heart disorders (Crippa et al., 2015; Biagetti

et al., 2014; Li et al., 2016).

In literature, various studies are performed for the detection of MI patients based

on time-domain, frequency-domain, wavelet-domain, and nonlinear analysis. In (Saf-

darian et al., 2014), total integral of one ECG cycle and T-wave integral are sug-

gested as features for the detection of MI. Time-domain features computed from

12-lead ECG signals are explored with fuzzy-MLP network to classify the MI ECG

signals (Bozzola et al., 1996). In (Sun et al., 2012), a new multiple instance learning

based approach is proposed for the detection of MI. The Hermite basis functions

are used to decompose the multi-lead ECG signals, and the obtained coefficients are

found effective for the detection of acute MI (Haraldsson et al., 2004). The phase

space fractal dimension features and the ANN classifier are explored to detect the

MI (Lahiri et al., 2009).

In (Lu et al., 2000), authors have applied neuro-fuzzy approach for the diagnosis

of MI patients using multi-lead ECG signals. A hybrid approach based on hidden

Markov models (HMMs) and GMMs is proposed to distinguish the MI ECG signal

from the normal ECG signal in (Chang et al., 2009). In (McDarby et al., 1998),

characterization of the QRS complex of normal and MI subjects is performed using

DWT. Three different wavelets are used to decompose the ECG signals up to the

fourth level of decomposition. The Daubechies wavelet performed best among the

three chosen wavelets. The DWT technique is incorporated to extract the QRS

complex of ECG signals, and it is found that identification of MI subject is possible

by detecting the QRS complex (Banerjee & Mitra, 2010).

In (Tripathy & Dandapat, 2016), the phase of the complex wavelet coefficients

obtained from the dual-tree complex wavelet transform of 12-lead ECG signals is

computed. Then, multiscale phase alteration values are used as features to identify

the normal, MI, and other abnormal ECG signals. In (Acharya et al., 2017a), the

ECG signals of normal, MI, and CAD are applied to DWT, EMD, and discrete

cosine transform (DCT) techniques. The authors in this study achieved the best

performance when features obtained using DCT techniques are subjected to the

K-NN classifier. Counterlet transform (CT) and shearlet transform (STm) based

technique is proposed to distinguish normal, MI, CAD, and CHF subjects using
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ECG beats in (Acharya et al., 2017d). The performance of the CT based technique

is found to be better in comparison to the STm based method.

Our aim is to develop an automated diagnosis of MI patients in this work. We

have analyzed normal and ECG beats using SEnt in FAWT (Bayram, 2013; Zhang

et al., 2015) framework. First, preprocessing is performed to remove the baseline

wandering and other noise present in the ECG signals. Then, ECG signals are seg-

mented into the beats. Further, these beats are decomposed up to 24th level of de-

composition using FAWT. The SEnt is computed from each sub-band signal which is

reconstructed from the corresponding coefficients of the FAWT based decomposition.

The computed features are subjected to the RF (Breiman, 2001), J48 DT (Quinlan,

1986, 1993), BPNN (Jang et al., 1997), and LS-SVM classifiers (Suykens & Van-

dewalle, 1999) for separating the ECG beats of MI and normal classes. The steps

performed in the present work are shown in Figure 5.1. The organization of the

remaining sections of the chapter is as follows:
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Figure 5.1: The proposed method for automated identification of the MI patients.

The dataset used, preprocessing, segmentation of the ECG signals into beats,

SEnt, and classification methods are provided in section 5.2. The obtained results

in this work are given in section 5.3 and discussed in section 5.4. Finally, section 5.5

presents the summary of the work.
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5.2 Methodology

5.2.1 Dataset studied in this work

The dataset, containing normal and MI ECG signals, were downloaded from Physika-

lisch Technische Bundesanstalt (PTB) diagnostic ECG 12-lead database from the

physiobank (Bousseljot et al., 1995; Goldberger et al., 2000). Each signal was ac-

quired at the sampling rate of 1000 Hz. The dataset contains normal ECG recordings

of 52 subjects and MI ECG recordings of 148 subjects. The ECG signals obtained

from the lead-2 have been used in present work.

5.2.2 Preprocessing and segmentation of ECG signals

We have used db6 wavelet basis function to eliminate baseline wander and noise

present in the ECG signals (Martis et al., 2013a,b). After preprocessing, each ECG

signal is segmented into beats based on R-peak detection. The Pan–Tompkins algo-

rithm is applied to identify the R-peaks (Pan & Tompkins, 1985). The 250 samples

from the left and 400 samples from the right of the R-point are considered as one

ECG beat (Acharya et al., 2016). Thus, each ECG beat contains 651 samples.

Finally, we have 40182 MI ECG beats and 10546 normal ECG beats.

5.2.3 Sample entropy

SEnt (Richman & Moorman, 2000) measures the complexity of the time series. It

improves the performance by excluding the bias due to the self-matches counted

in the computation of approximate entropy. Higher values of SEnt indicate more

complexity of the signal, on the other hand, the lower value of SEnt shows less

complexity of the signal.

Let us consider a time-series (y1, y2, ..........., yP ) of length P for which the SEnt can

be computed as (Sokunbi et al., 2013):

SEnt(e, r, P ) = − ln

[
Ie+1(r)

Ie(r)

]
(5.1)
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where Ie(r) is defined as follows (Sokunbi et al., 2013):

Ie(r) =
1

(P − eτ)

P−eτ∑
j=1

Ce
j (r) (5.2)

and

Ce
j (r) =

Srj
P − (e+ 1)τ

(5.3)

where Srj is the total count for which L [Y (j), Y (k)] ≤ r without considering the

self-matches. The parameter L [Y (j), Y (k)] is the distance between Y (j) and Y (k)

vectors. Y (j) and Y (k) can be given as (Sokunbi et al., 2013):

Y (j) = {yj, yj+τ , .........., yj+(e−1)τ}

Y (k) = {yk, yk+τ , .........., yk+(e−1)τ}

where, j and k vary from 1 to P − eτ and k 6= j.

In this work, we have experimentally chosen threshold (r) = 0.35, delay (τ) = 1, and

embedding dimension (e) = 5. Parameter selection procedure has been explained in

the section 5.3.

5.2.4 Studied classification techniques

We have used RF, J48 DT, BPNN, and LS-SVM in this work to perform the classi-

fication of normal and MI ECG beats based on the extracted features. In this work,

we have used Waikato environment for knowledge analysis (WEKA) toolbox for the

implementation of RF, J48 DT, and BPNN classifiers (Hall et al., 2009). We have

used default parameters provided in WEKA toolbox for RF, J48 DT, and BPNN

classifiers. Recently, RF, J48 DT, and BPNN classifiers have been used to analyze

the sleep stages in (Sharma et al., 2017d).

In the present work, we have evaluated the classification performance in terms

of Ar, Ss, and Sc (Azar & El-Said, 2014).

5.3 Results

In this work, we have computed SEnt in FAWT domain to classify MI and normal

ECG beats. We have used b = 5, c = 6, f = 1, g = 2 and β = (0.8 × f)/g (Zhang

et al., 2015) in the present work. First, we have segmented the MI and normal ECG
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signals into the beats. Each ECG beat of both classes is decomposed into different

sub-band signals using FAWT. The SEnt are computed from these different sub-band

signals. We start performing the experiments with J = 5 and initial parameters for

SEnt e = 2, τ = 1, and r = 0.15 are chosen (Sokunbi et al., 2013). Typical sub-band

signals extracted from the decomposition of normal and MI ECG beats at 5th level of

decomposition using FAWT are shown in Figures 5.2(a) and 5.2(b), respectively. In

Figure 5.2, sub-band signals SB1 to SB5 are reconstructed from the detail coefficients

from level 1 to level 5 and SB6 is reconstructed from the approximate coefficients at

level 5.
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Figure 5.2: The plots of decomposed sub-band signals: (a) Normal ECG beat, (b)
MI ECG beat.
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We fed the features to the RF classifier for selecting the suitable parameters.

Variation of classification accuracies for various values for e and τ is provided in

Table 5.1. It can be inferred from the table that Ar of classification is highest for

e = 5 and τ = 1. Classification Ar for various values of r is shown in Figure 5.3.

We have achieved the maximum classification Ar for r = 0.35. Hence, we have

used the parameters e = 5, τ = 1, and r = 0.35 to compute the SEnt in this

work. Moreover, we have increased the decomposition level to J = 6, and observed

that the classification Ar is increased to 91.95%. Hence, we further increased the

decomposition level up to maximum possible decomposition level using FAWT with

parameters values b = 5, c = 6, f = 1, g = 2 and β = (0.8× f)/g.

Table 5.1: Classification accuracies computed using RF classifier for different values
of e and τ using SEnt with r = 0.15.

e −→ 2 3 4 5

τ↓

1 87.716% 89.353% 89.353% 89.629%

2 88.92% 89.128% 89.32% 89.075%

3 89.126% 88.84% 88.739% 88.84%
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Figure 5.3: The plot of Ar (%) versus r of SEnt with RF classifier.

The plot of classification Ar versus decomposition levels is shown in Figure 5.4.
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We can observe that Ar is increasing with increase in the decomposition level. The

highest classification Ar of 97.10% is attained with RF classifier at J = 24. We have

employed TFCV procedure for the training and testing of the classifier (Kohavi,

1995). The classification Ar achieved using J48 DT and BPNN classifiers are 93.97%

and 92.85%, respectively.
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Figure 5.4: A plot of Ar (%) versus level of decomposition with RF classifier.

Further, we have also tested the features with LS-SVM classifier with different

kernel functions namely, polynomial, linear, RBF, and Morlet wavelet kernels at

J = 24. Variation of classification Ar (%) with the RBF kernel parameter γ is

shown in Figure 5.5. We can observe from Figure 5.5 that classification Ar of LS-

RBF kernel parameter
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Figure 5.5: The plot of accuracies versus parameter γ of RBF kernel.
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SVM is maximum for RBF kernel parameter γ = 2.2. A plot of changes in the

value of Ar (%) for variation in the parameter l of Morlet wavelet kernel is shown

in Figure 5.6. LS-SVM showed maximum Ar with Morlet wavelet kernel at l =

Morlet kernel parameter
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Figure 5.6: A plot of accuracies versus parameter l of Morlet wavelet kernel.

11. The performance of LS-SVM using four different kernels used in our work, is

summarized in Table 5.2. LS-SVM yielded the highest classification performance

with RBF kernel. The attained values of Ar, Sc, and Ss are 99.31%, 98.12%, and

99.62%, respectively.

Table 5.2: Classification performance (%) of LS-SVM for different kernel functions.

Kernel function Parameters Ar (%) Ss (%) Sc (%)

Linear 83.32 81.83 89.02

Polynomial
x = 2 96.30 96.01 97.43

x = 3 96.74 96.44 97.92

RBF γ = 2.2 99.31 99.62 98.12

Morlet wavelet l = 11, z0 = 0.25 99.30 99.64 97.92

We have also employed Wilcoxon and Bhattacharya ranking methods for improv-

ing the performance of the proposed system (Derryberry et al., 2010; Theodoridis

& Koutroumbas, 2003). The plots of the classification Ar (%) for various ranked
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features are shown in Figures 5.7 and 5.8 for RBF and Morlet wavelet kernels, re-

spectively. It can be noted that the ranking methods are not able to improve the
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Figure 5.7: A plot of Ar (%) versus number of features using LS-SVM with RBF
kernel.

classification performance. The discrimination ability of the features is determined

by computing the p-values using KW test (McKight & Najab, 2010). The p-values
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Figure 5.8: The plot of Ar (%) versus number of features using LS-SVM with Morlet
wavelet kernel.

are found significantly low (p < 0.0001) for all the features (SEnt computed from 25

sub-band signals) which indicate good discrimination ability of all the computed fea-

tures. The values of µ and STD for features are provided in Table 5.3. In Table 5.3,

SEnt refers to the sample entropy and the subscript refers to the corresponding
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sub-band signal from which SEnt is computed.

Furthermore, we test the classification performance with the equal number of

beats (10,546 beats of each class) from both classes with same parameter values of

SEnt and FAWT. Classification Ar for this case using LS-SVM classifier is presented

in Table 5.4.

5.4 Discussion

In the present work, the ECG beats are decomposed upto 24th level of decomposition

using FAWT for obtaining sub-band signals. Further, SEnt is computed from each

of the sub-band signals. We can observe from Table 5.3 that SEnt computed from

the lower frequency sub-band signals (SB21, SB22, SB24, and SB25) showed higher

values for normal ECG beats in comparison to the MI ECG beats. Therefore, lower

frequency sub-band signals show higher complexity for normal ECG beats than MI

ECG beats. However, lower values of SEnt are observed for higher frequency sub-

band signals extracted from normal ECG beats. Hence, the complexity of higher

frequency sub-band signals is lower for normal ECG beats. Finally, our method

achieved 99.31% Ar using LS-SVM classifier with RBF kernel.

Summary of the comparison of the present work with the other existing work

is provided in Table 5.5. In (Arif et al., 2010), time-domain features are computed

from 12-lead ECG signals. The computed features are fed to the BPNN classifier

which yielded Ss of 97.5%. In (Al-Kindi et al., 2011), a time-domain method is

used for extracting the features from the ECG signals to diagnose the MI patients.

The authors have used 12-lead ECG signals of 20 normal and 20 MI subjects. They

achieved a Ss of 85% to detect the MI subjects. In (Banerjee & Mitra, 2014),

the authors proposed a method based on the spectral differences of cross wavelet

transform (XWT) of the ECG signals. Further, they proposed threshold based

classifier and achieved 97.6% classification Ar. In (Liu et al., 2015), an algorithm

based on the parametrization of ECG signal is developed. In this algorithm, a

20th order polynomial is fitted with the ECG signal. Their method showed 94.4%

classification Ar with J48 DT model for the diagnosis of MI. The approach presented

in (Sharma et al., 2015a) utilized the evaluation of multiscale energy and eigenspace
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Table 5.3: The µ, STD values for normal and MI classes.

Feature Normal class MI class

(µ± STD) (µ± STD)

SEntSB1 0.0111± 0.0248 0.0448± 0.0651

SEntSB2 0.0250± 0.0385 0.0742± 0.0664

SEntSB3 0.0030± 0.0039 0.0071± 0.0112

SEntSB4 0.0032± 0.0026 0.0058± 0.0070

SEntSB5 0.0282± 0.0298 0.0660± 0.0491

SEntSB6 0.0625± 0.0431 0.0971± 0.0483

SEntSB7 0.0727± 0.0390 0.0973± 0.0420

SEntSB8 0.0696± 0.0388 0.0965± 0.0413

SEntSB9 0.0501± 0.0324 0.0722± 0.0338

SEntSB10 0.0493± 0.0246 0.0596± 0.0257

SEntSB11 0.0569± 0.0251 0.0680± 0.0244

SEntSB12 0.0674± 0.0305 0.0902± 0.0205

SEntSB13 0.0627± 0.0354 0.0928± 0.0288

SEntSB14 0.0599± 0.0340 0.0754± 0.0374

SEntSB15 0.0501± 0.0305 0.0663± 0.0380

SEntSB16 0.0480± 0.0221 0.0597± 0.0329

SEntSB17 0.0521± 0.0162 0.0607± 0.0247

SEntSB18 0.0894± 0.0151 0.0978± 0.0227

SEntSB19 0.1437± 0.0129 0.1442± 0.0157

SEntSB20 0.1491± 0.0056 0.1515± 0.0070

SEntSB21 0.1501± 0.0066 0.1475± 0.0087

SEntSB22 0.1230± 0.0100 0.1197± 0.0104

SEntSB23 0.0904± 0.0030 0.0911± 0.0038

SEntSB24 0.0665± 0.0010 0.0663± 0.0013

SEntSB25 0.0420± 0.0087 0.0363± 0.0107
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Table 5.4: Classification performance (%) of LS-SVM with different kernel functions
for balanced dataset.

Kernel function Parameters Ac (%) Ss (%) Sc (%)

Linear 85.74 84.64 86.83

Polynomial
x = 2 94.06 92.61 95.52

x = 3 96.88 95.98 97.77

RBF γ = 2.2 98.27 99.13 97.40

Morlet wavelet l = 11, z0 = 0.25 98.19 99.20 97.17

(MEES) features. The suggested method used SVM classifier with RBF kernel and

achieved 96.15% classification Ar.

In (Acharya et al., 2016), ECG beats are decomposed up to the 4th level of

decomposition using DWT. From the DWT coefficients, 12 nonlinear parameters

are extracted. The authors achieved 98.8% Ar using K-NN classifier. They also

performed statistical tests for determining the significance levels of the studied fea-

tures. A method to automatically detect the MI using ECG signals is also proposed

in (Acharya et al., 2017b). The achieved accuracies were 93.53% and 95.22% using

convolutional neural network (CNN) algorithms for the ECG beats with noise and

without noise removal, respectively.

We have achieved highest Ar in comparison to the existing methods which are

mentioned in Table 5.5. Moreover, the methods suggested in (Arif et al., 2010; Al-

Kindi et al., 2011; Banerjee & Mitra, 2014; Liu et al., 2015; Sharma et al., 2015a)

used ECG recording of the multiple leads. However, our method uses only lead-2

ECG recordings which makes our method less complex than multiple leads methods.

The method suggested in (Acharya et al., 2016) also requires ECG records of one

lead (lead-11) only. However, the method in (Acharya et al., 2016) achieved 98.8%

classification Ar with 47 features. In comparison to the method in (Acharya et al.,

2016), our method has achieved 99.31% Ar with 25 features. Our method showed

better results than the method in (Acharya et al., 2016) with less number of features.

The study proposed in (Acharya et al., 2017b) also used lead-2 ECG signals and

achieved 95.22% Ar with 11-layer deep neural network. This method is more complex
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than our method and also time-consuming.

5.5 Summary

In this work, normal and MI ECG beats are analyzed using SEnt in FAWT frame-

work. We have achieved the highest classification performance using lead-2 ECG

signals than the reported works. We have identified the suitable parameters to

compute the SEnt in FAWT domain for the detection of MI subjects accurately.

Parameters for the computation of SEnt and decomposition level in FAWT do-

main are selected on the basis of classification Ar computed using RF classifier.

Achieved classification accuracies with RF, J48 DT, BPNN, and LS-SVM classifiers

are 97.10%, 93.97%, 92.85% and 99.31%, respectively using the entire dataset. Our

method achieved a classification Ar of 98.27% with LS-SVM using balanced data

set. Therefore, we can conclude that our methodology has performed well for the

detection of MI patients using both balanced and unbalanced (entire) datasets. Our

automated system can be used to assist cardiologists to cross-check their diagnosis.
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Chapter 6

A computer-based method for the

diagnosis of CHF HRV signals

using FAWT

6.1 Introduction

Around the world, nearly 26 million people are living with CHF (Ponikowski et al.,

2014). It is a pathophysiological condition in which heart is unable to provide

sufficient blood supply to fulfill the requirements of the body (National Heart, Lung

and Blood Institute, 2015b). It may be the result of structural or functional cardiac

disorders. These disorders reduce the blood pumping ability of ventricles (Pazos-

López et al., 2011). Dyspnea, edema, and fatigue are the common symptoms of

CHF (National Heart, Lung and Blood Institute, 2015b; Pazos-López et al., 2011).

It is the last stage of several cardiac diseases namely; heart valve disease, MI, and

dilated cardiomyopathy (Jong et al., 2011). In many cases, CHF is not discernible.

Moreover, CHF patients are more susceptible to sudden cardiac death (Khaled et al.,

2006). Therefore, CHF must be diagnosed at an early stage. In this work, our aim

is to develop such a system that can automatically distinguish the normal persons

and CHF patients using HRV signals.

Visual detection of the variations present in the HRV signals can be a tedious

work, and there is a possibility of the inaccurate classification of diseased and normal

signals. Therefore, several studies have been carried out for automated detection
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of normal and abnormal HRV signals. These signals have been widely used for

diagnosing the heart diseases (Giri et al., 2013; Patidar et al., 2015a; Chua et al.,

2008). HRV signals of post-MI patients are studied in (Stein et al., 2000). These

signals are also studied to investigate hypertension patients (Mussalo et al., 2001)

and patients who are at the risk of sudden cardiac death (Malliani et al., 1994).

In (Nolan et al., 1998), time-domain analysis of HRV signals is performed, and it

is concluded that CHF has an association with autonomic dysfunction. In (Hadase

et al., 2004), frequency-domain parameters, namely very low frequency (VLF), low

frequency (LF), high frequency (HF), total power and the ratio of LF to HF powers,

are computed from the HRV signals. The VLF power is found to be an independent

risk predictor in CHF patients. Depressed HRV is observed in CHF patients as

compared to healthy persons (Musialik- Lydka et al., 2003). In (Asyali, 2003), the

STD of normal to normal beat intervals has shown the largest discrimination ability

for normal and CHF subjects among nine long-term HRV measures. Significantly

lower values of the normalized power of the LF component are observed in CHF

patients (Guzzetti et al., 2000). Low risk patients (LRP) and high risk patients

(HRP) of CHF are analyzed using HRV signals (Melillo et al., 2013). Frequency-

domain parameters computed from HRV signals are found depressed in HRPs, except

LF/HF. In (Arbolishvili et al., 2006), the authors have studied HRV in CHF subjects

and observed lower values of standard HRV measures, except HF power. The low

values of HRV parameters have a correlation with the functional severity of heart

failure (Arbolishvili et al., 2006).

In (Maestri et al., 2007), the analysis of the nonlinear properties of HRV gives in-

dependent information in the risk stratification of patients with CHF. In (Thakre &

Smith, 2006), complex Poincare plots are observed for the CHF patients. In (Shah-

bazi & Asl, 2015), linear and nonlinear features are used to discriminate the LRP

and HRP of CHF disease. The discrimination ability of nonlinear features is found

to be better than linear features. Various nonlinear features, such as detrended fluc-

tuation analysis (DFA) (Jong et al., 2011), approximate entropy (Liu et al., 2014),

and SEnt (Liu et al., 2014), are found to be effective in the analysis of CHF HRV

signals.

In this work, we have analyzed the HRV signals of the CHF and normal subjects
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for three different signal lengths at different frequency scales. The FAWT (Bayram,

2013; Zhang et al., 2015) is used to decompose the HRV signals up to the fifth level of

decomposition. Decomposed sub-band signals are used to obtain different frequency

scales of HRV signals. AFEnt and APEnt are computed from the signals at different

frequency scales to measure the complexity of HRV signals at different frequency

scales. A total of 10 different frequency scales are obtained in which five frequency

scales are obtained by adding the lower frequency sub-band signals (LFSBSs) into

the higher frequency sub-band signal (HFSBS), and the other five are obtained by

adding the HFSBSs into the LFSBS. Finally, the obtained features are ranked using

the Bhattacharyya ranking method (Theodoridis & Koutroumbas, 2003) and fed

to the LS-SVM classifier (Suykens & Vandewalle, 1999). The steps followed in our

work are dipicted in Figure 6.1. The remaining part of the paper is organized as

follows:

CHF 
class

Normal 
class

HRV 
signal

Decomposition 
of signal using 

FAWT

Adding lower 
frequency sub-bands 
to higher frequency 

sub-band

Adding higher 
frequency sub-bands 
to lower frequency 

sub-band

Computation 
of AFEnt and 

APEnt

Classification 
using 

LS-SVM

Ranking 
of 

features

Figure 6.1: The proposed automated diagnosis method for CHF using HRV signals.

Section 6.2 describes the HRV dataset used in the present work, the segmentation

of the HRV dataset, PEnt, FAWT-based accumulated entropies, the ranking method,

and classification. Section 6.3 and section 6.4 present the obtained results and

discussion part, respectively. Finally, the work is summarised in section 6.5.

6.2 Methodology

6.2.1 HRV dataset

In this work, we have used online available databases for CHF and normal subjects.

For CHF patients, the Beth Israel Deaconess Medical Center (BIDMC) CHF dataset
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from physiobank (Baim et al., 1986; Goldberger et al., 2000) is used. The HRV sig-

nals of 15 CHF patients (11 males and 4 females) are used in this study. The age of

the patients varies from 22 to 71 years for male subjects and from 54 to 63 years for

female subjects. For normal subjects, two different datasets, Massachusetts Institute

of Technology-Beth Israel Hospital (MIT-BIH) normal sinus rhythm (NSR) (Gold-

berger et al., 2000) and Fantasia (Iyengar et al., 1996; Goldberger et al., 2000) from

physiobank, are used. From the MIT-BIH NSR dataset, we have obtained HRV

signals of 18 subjects (5 males and 13 females). The age of male subjects ranges

from 26 to 45 years, and for female subjects, age varies in between 20 and 50 years.

From the Fantasia dataset, the HRV records of 40 subjects (20 young and 20 old)

are obtained. The age variation of young subjects is 21 to 34 years, and for old

subjects, it varies from 68 to 85 years. Information on RR-intervals is provided in

text format in the physiobank. We have obtained RR-intervals directly from the

physiobank.

6.2.2 Segmentation of HRV signals

We have segmented the HRV signals into three different signal lengths: 500, 1000,

and 2000 samples. Table 6.1 summarizes the number of HRV segments used for each

signal length (500, 1000, and 2000 samples) of the two classes. The plots of normal

(MIT-BIH NSR dataset) and CHF (BIDMC dataset) HRV signals for 500 samples

length are shown in Figure 6.2.

Table 6.1: Total number of extracted segments for various signal lengths.

Database

Total segments

SL = 500 Samples SL = 1000 Samples SL = 2000 Samples

CHF/BIDMC 3212 1606 803

Normal/MIT-BIH 3420 1710 855

Normal/Fantasia 500 250 125
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Figure 6.2: The plots of HRV signals of a 500-sample length: (a) CHF subject and
(b) normal subject.

6.2.3 Features studied in this work

Nonlinear features are found suitable for analysis of the HRV signals (Acharya et al.,

2004). Therefore, nonlinear parameters, namely AFEnt and APEnt, are proposed

as features to classify the CHF and normal HRV signals in this work. A brief

explanation of these parameters is provided in the following sections.
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6.2.4 Permutation entropy

It measures the complexity of HRV signals, which is determined by comparing the

permutation patterns present in the samples of the signal (Bandt & Pompe, 2002).

Its computation depends on sequence length e and delay time τ . A total number

of e! permutations are possible for the selected value of e. If the probability of

occurrence of the k-th permutation pattern is denoted by Bk, then the PEnt can be

computed as follows (Bandt & Pompe, 2002; Zanin et al., 2012):

PEnt = −
e!∑

k = 1

Bklog(Bk) (6.1)

where, Bk can be computed as follows (Bandt & Pompe, 2002):

Bk =
total occurance of kth pattern

P − e+ 1
(6.2)

where, P is the length of the signal, and P − e + 1 denotes the total number of

vectors of e length.

6.2.5 Fuzzy entropy

The computation steps of FEnt are provided in chapter 3. In this work, the param-

eters u = 2, v = 0.2 (Chen et al., 2007) are selected to compute the FEnt.

6.2.6 FAWT-based accumulated entropies

The values of the parameters used in the present work are b = 5, c = 6, f = 1,

g = 2 and β = (0.8f)/g (Zhang et al., 2015). The 5th level FAWT-based decompo-

sition of the signals in Figure 6.2 is shown in Figure 6.3. The sub-band signals are

ordered from the highest frequency to the lowest one in Figure 6.3. A5 represents

the approximation signal with lower frequency components than D1 to D5.

APEnt and AFEnt can be computed over cumulative sums of sub-band signals

obtained by the decomposition of HRV signals using the FAWT method.

The APEnt can be defined as follows:

APEnt(i, e, τ) = PEnt[Sisub-bands, e, τ ] (6.3)

72



−0.1
0

0.1

D
1

−0.05
0

0.05

D
2

−0.05
0

0.05
D

3

−0.05
0

0.05

D
4

−0.05
0

0.05

D
5

0 50 100 150 200 250 300 350 400 450 500
0.7
0.8
0.9

A
5

Sample number

(a)

−0.1
0

0.1

D
1

−0.05
0

0.05

D
2

−0.05
0

0.05

D
3

−0.02
0

0.02

D
4

−0.02
0

0.02

D
5

0 50 100 150 200 250 300 350 400 450 500
0.6
0.8

1

A
5

Sample number

(b)

Figure 6.3: Decomposition of HRV signals using the FAWT method: (a) CHF sub-
ject and (b) normal subject.

The AFEnt can be defined as follows:

AFEnt(i, e, u, v, P ) = FEnt[Sisub-bands, e, u, v, P ] (6.4)

where Sisub-bands can be expressed as:

Sisub-bands = SLi, i = 1, 2, .., J (6.5)

when sub-band signals are combined from the LF to the HF. For the combination
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of sub-band signals from HF to LF, Sisub-bands can be given as:

Sisub-bands = SHi, i = 1, 2, .., J (6.6)

We have selected τ = 2 in our work to compute the APEnt. In 6.5 and 6.6, J

represents the decomposition level, which is selected as 5 in the present work. A

total of 5 detail sub-band signals (D1 to D5) and the approximation signal (A5) are

used to obtain different frequency scales. The frequency-scaled sub-band signals

are shown in Figures 6.4 and 6.5 for CHF and normal subjects corresponding to a

500-sample length of the HRV signal.

The combination of sub-band signals is provided in Table 6.2. In (Pachori et al.,

2009), IMFs obtained from the EMD method are utilized in combination of LF to

HF and HF to LF for analyzing the postural time series.

Table 6.2: Signals at different frequency scales and the combination of used sub-band
signals.

Signals at different Accumulation of Signals at different Accumulation of

frequency scales sub-band signals frequency scales sub-band signals

SL1 A5 SH1 D1

SL2 A5 + D5 SH2 D1 + D2

SL3 A5 + D5 + D4 SH3 D1 + D2 + D3

SL4 A5 + D5 + D4 + D3 SH4 D1 + D2 + D3 + D4

SL5 A5 + D5 + D4 + D3 + D2 SH5 D1 + D2 + D3 + D4 + D5

6.2.7 Ranking and classification

In this work, we have used Bhattacharyya ranking method and LS-SVM classifier

which are already explained in chapter 3. In the present work, the classification

performance measures, namely Sc, Ss and Ar (Azar & El-Said, 2014), are computed

to determine the effectiveness of the classifier.
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6.3 Results

In the present work, we have computed APEnt and AFEnt at different frequency

scales. These different frequency scales of HRV signals are obtained by adding

the sub-band signal from the HF component to the LF component and the LF

component to the HF component. These sub-band signals are obtained from FAWT-

based decomposition. We have analyzed HRV signals for three signal lengths, 500,

1000, and 2000 samples. The obtained results for these three different lengths of

HRV signals are as follows:
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Figure 6.4: The plots of HRV signals at various frequency scales (the first subplot
represents the highest frequency sub-band signal, and remaining subplots are the
addition of the LFSBSs to the HFSBS): (a) CHF subject and (b) normal subject.
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6.3.1 Results with a signal length of 500 samples

We have used one dataset for CHF patients (BIDMC) and two datasets of normal

subjects (Fantasia dataset and MIT-BIH NSR dataset). The HRV signals of two

classes (normal and CHF) are subjected to FAWT-based decomposition. The signals

are decomposed up to the fifth level. We have made four different combinations of

datasets, namely; unbalanced dataset 1 (UD1), unbalanced dataset 2 (UD2), Bal-

anced dataset 1 (BD1) and balanced dataset 2 (BD2).
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Figure 6.5: The plots of HRV signals at various frequency scales (the first subplot
represents the lowest frequency sub-band signal, and remaining subplots are the
addition of the HFSBSs to the LFSBS): (a) CHF subject and (b) normal subject.
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Results for UD1

This dataset has the recordings of MIT-BIH NSR for normal subjects and the

BIDMC dataset for CHF patients. This is the largest dataset among the four com-

binations of the dataset used in the present work. This selected dataset has 3420

normal segments and 3212 CHF segments of HRV signals. To find the suitable value

of e for AFEnt and APEnt, we have computed the classification Ar at various value

of e for AFEnt and APEnt using the LS-SVM classifier. Classification Ar for various

values of e is shown in Table 6.3 for AFEnt and APEnt. From Table 6.3, we can

observe that AFEnt and APEnt show better performance for the value of e = 3 and

4, respectively. For AFEnt and APEnt, the highest classification Ar of 96.29% and

91.39% using Morlet wavelet kernel is obtained respectively. For further analysis,

we have used e = 3 for AFEnt and e = 4 for APEnt.

Table 6.3: Classification performance for UD1 (Length of the signal = 500 samples)
using AFEnt and APEnt separately with LS-SVM for different values of e and differ-
ent kernel functions and parameters (entropies computed from all of the frequency
scales are used for classification).

Features

Sequence Linear RBF Morlet wavelet Polynomial

length kernel kernel kernel kernel

Ar (%) Ar (%) Ar (%) Ar (%)

AFEnt

3 90.66 95.67 96.29 95.02

4 90.86 94.54 95.31 94.52

5 89.77 94.90 95.98 94.43

6 92.12 95.43 95.92 95.38

7 91.36 94.84 95.55 94.79

APEnt

3 82.62 89.32 89.17 88.16

4 84.80 91.26 91.39 90.89

5 84.84 90.65 90.65 90.75

6 83.05 89.24 89.2 89.02

7 78.69 85.93 86.17 85.20

The µ and STD values of AFEnt for e = 3 and APEnt for e = 4 are given in
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Table 6.4. We have also computed p-values using the KW test (McKight & Najab,

2010) to check the statistical significance of the features in order to discriminate

normal and CHF HRV signals. We can observe in Table 6.4 that p-values are

significantly low (p-value < 0.05) for all of the features. Further, we have applied

the Bhattacharyya ranking method to rank the features. These ranked features are

presented in Table 6.5. We can observe in Table 6.5 that AFEnt features achieve a

higher ranking as compared to APEnt features. In Table 6.5, the indices (SH1 to

SH5 and SL1 to SL5) represent the frequency-scaled signals from which AFEnt and

APEnt are computed. These ranked features are fed to the LS-SVM classifier by

appending the next lower ranking features to the highest ranking feature up to 20

features. The accuracies of the ranked features with LS-SVM for different kernels

(linear, RBF, polynomial and Morlet wavelet) are shown in Figure 6.6. It can be

observed from Figure 6.6 that the LS-SVM classifier achieved the highest Ar for

Morlet wavelet kernel with the first 18 features, for the polynomial kernel with the

first 17 features, and for the RBF kernel with the first 14 features. The classification

Ar with the linear kernel is highest for 20 features. The classifier is trained and tested

using the TFCV method (Kohavi, 1995). The best classification performance of LS-

SVM for different kernels is provided in Table 6.6. The maximum value of Ar can

be seen from Table 6.6, which is 98.21% for Morlet wavelet kernel.

Results for UD2

This dataset includes the HRV signals from Fantasia (normal subject) and the

BIDMC dataset (CHF patients). This dataset has 500 segments of normal and

3212 segments of CHF HRV signals. The p-values, µ and STD values of AFEnt

and APEnt are given in Table 6.7. We can observe from Table 6.7 that p-values

are significantly low (p-value <0.05) for all of the features, except AFEnt for SH1

and APEnt for SL5 and SL4.

The classification Ar of the LS-SVM classifier for the ranked features with the

different kernels used in this work is shown in Figure 6.7. For RBF, polynomial,

and Morlet wavelet kernels, the highest Ar of classification is 97.33% with 19 fea-

tures, 96.20% with 17 features, and 97.31% with 20 features, respectively. For the

linear kernel, maximum classification Ar is 90.38% from 20 features. The remaining
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Figure 6.6: The plot of the classification accuracies versus the number of features
for UD1 (Length of the signal = 500 samples).

classification parameters (Ss and Sc) are given in Table 6.6.

Results for BD1

In this dataset, we have used 500 HRV segments from the MIT-BIH NSR dataset of

normal subjects and 500 HRV segments from the BIDMC dataset of CHF patients.

Classification accuracies corresponding to the used number of features are presented

in Figure 6.8. The highest classification accuracies for linear, Morlet wavelet, RBF,

and polynomial kernels are 96.60% using 18 features, 99.4% using 15 features, 99.5%

using 15 features, and 98.4% using 11 features, respectively. Other computed clas-

sification parameters, namely Ss and Sc, are provided in Table 6.6.

Table 6.5: Ranked features using the Bhattacharyya ranking method for UD 1
(Signal length = 500 samples).

Feature rank 1 2 3 4 5 6 7

Feature name AFEntSH1 AFEntSH2 APEntSL2 APEntSL3 APEntSL1 APEntSH2 AFEntSH3

Feature rank 8 9 10 11 12 13 14

Feature name AFEntSH4 AFEntSL4 APEntSH5 APEntSH4 AFEntSL1 AFEntSH5 APEntSL4

Feature rank 15 16 17 18 19 20

Feature name AFEntSL3 AFEntSL2 AFEntSL5 APEntSH3 APEntSH1 APEntSL5
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Table 6.6: Classification performance of the LS-SVM classifier for various combina-
tions of datasets (Signal length = 500 samples) with different kernel functions.

Combinations
Kernels Kernel parameters

Number of
Ss (%) Sc (%) Ar (%)

of datasets features

UD1

Morlet wavelet
l = 6.2, z0 = 0.25

18 98.07 98.33 98.21

Polynomial
Order = 3

17 97.76 97.72 97.74

RBF
γ = 1

14 97.98 98.33 98.16

Linear 20 90.26 93.74 92.05

UD2

Morlet wavelet
l = 7.9, z0 = 0.25

20 97.85 93.80 97.31

Polynomial
Order = 3

17 96.51 94.20 96.20

RBF
γ = 1.2

19 97.95 93.40 97.33

Linear 20 91.38 84.00 90.38

BD1

Morlet wavelet
l = 6.7, z0 = 0.25

15 99.60 99.20 99.40

Polynomial
Order = 3

11 99.00 97.80 98.40

RBF
γ = 1

15 99.80 99.20 99.50

Linear 18 96.00 97.20 96.60

BD2

Morlet wavelet
l = 7.7, z0 = 0.25

16 97.60 97.80 97.70

Polynomial
Order = 3

12 97.60 96.40 97.00

RBF
γ = 1.2

16 97.60 98.00 97.80

Linear 20 93.60 90.20 91.90
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Figure 6.7: A plot of classification accuracies versus the number of features for UD2
(Length of the signal = 500 samples).
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Results for BD2

This dataset has 500 normal HRV segments from the Fantasia dataset and 500 CHF

HRV segments from the BIDMC dataset. Classification accuracies obtained for this

dataset are shown in Figure 6.9. The highest values of Sc, Ss, and Ar obtained using

LS-SVM for different kernels are summarized in Table 6.6.
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Figure 6.8: A plot of classification accuracies versus number of features for BD1
(Length of the signal = 500 samples).
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Figure 6.9: A plot of accuracies versus number of features for BD2 (Signal length
= 500 samples).
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6.3.2 Results with a signal length of 1000 samples

For a signal length of 1000 samples, again, we have made four different combinations

of the datasets as described in section 6.3.1. We have used the same parameters for

AFEnt and APEnt and the same ranking method, classifier, and kernel functions

as in section 6.3.1. The obtained highest classification performances for different

combinations of datasets for a signal length of 1000 samples are provided in Table 6.8.

Table 6.8: Classification performance of the LS-SVM classifier for various combina-
tions of datasets (Signal length = 1000 samples) with different kernel functions.

Combinations
Kernels Kernel parameters

Number of
Ss (%) Sc (%) Ar (%)

of datasets features

UD1

Morlet wavelet
l = 7.7, z0 = 0.25

20 97.95 98.07 98.01

Polynomial
Order = 3

17 96.70 97.54 97.13

RBF
γ = 1.8

19 98.01 97.95 97.98

Linear 20 91.22 94.44 92.88

UD2

Morlet wavelet
l = 6.4, z0 = 0.25

20 98.75 92.80 97.95

Polynomial
Order = 3

11 96.76 95.60 96.60

RBF
γ = 1.4

20 98.57 94.00 97.95

Linear 18 92.65 84.80 91.60

BD1

Morlet wavelet
l = 6, z0 = 0.25

16 100.00 99.60 99.80

Polynomial
Order = 3

10 99.20 98.40 98.80

RBF
γ = 1

16 100.00 99.60 99.80

Linear 18 97.20 99.60 98.40

BD2

Morlet wavelet
l = 7.9, z0 = 0.25

20 98.40 98.40 98.40

Polynomial
Order = 3

10 98.80 96.80 97.80

RBF
γ = 1.2

20 97.20 98.40 97.80

Linear 18 94.00 92.80 93.40

6.3.3 Results with a 2000-sample signal length

We have also formed four different combinations of datasets for a signal length of

2000 samples as explained in section 6.3.1. In this case, the same parameters are

84



selected for AFEnt and APEnt. For this case, we have also applied the same ranking

method, classifier and kernel functions as described in section 6.3.1. For a signal

length of 2000 samples, the highest obtained values of Ss, Sc, and Ar are provided

in Table 6.9.

Table 6.9: Classification performance of the LS-SVM classifier for various combina-
tions of datasets (Signal length = 2000 samples) with different kernel functions.

Combinations
Kernels Kernel parameters

Number of
Ss (%) Sc (%) Ar (%)

of datasets features

UD1

Morlet wavelet
l = 7.1, z0 = 0.25

15 97.51 97.78 97.65

Polynomial
Order = 3

15 95.39 96.84 96.14

RBF
γ = 1.4

16 97.76 97.67 97.71

Linear 20 92.41 95.32 93.91

UD2

Morlet wavelet
l = 6, z0 = 0.25

19 98.38 91.92 97.52

Polynomial
Order = 3

11 96.77 92.82 96.23

RBF
γ = 1.3

19 98.38 91.92 97.52

Linear 19 92.54 85.64 91.59

BD1

Morlet wavelet
l = 7.6, z0 = 0.25

16 98.40 100.00 99.20

Polynomial
Order = 3

9 99.17 98.33 98.80

RBF
γ = 1.8

16 98.40 100.00 99.20

Linear 19 98.46 99.17 98.78

BD2

Morlet wavelet
l = 8, z0 = 0.25

20 98.40 99.23 98.82

Polynomial
Order = 3

9 96.79 95.96 96.41

RBF
γ = 1.6

20 98.40 99.23 98.82

Linear 20 96.73 95.06 95.95

6.4 Discussion

In this work, we have analyzed the complexity of CHF and normal HRV signals at

different frequency scales obtained using FAWT. The FAWT is applied to the CHF

and normal HRV signals to decompose them into sub-band signals. We have com-

bined these sub-band signals so that we can observe the complexity of HRV signals

at different frequency scales. For complexity measurement, AFEnt and APEnt are
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computed from different frequency-scaled signals. We observed that AFEnt is more

suitable to analyze the complexity of CHF and normal HRV signals, as it showed

higher Ar as compared to APEnt, and it can be seen in Table 6.3. Most of the

frequency scaled signals (except SH1 and SH2 in Table 6.4) showed lower mean val-

ues of AFEnt for CHF HRV signals. These results show the lower complexity of

CHF HRV signals as compared to the normal HRV signals for most of the frequency

scales. The reduced complexity of CHF HRV signals may be the reflection of the

reduced parasympathetic modulation of HR (Acharya et al., 2017c).

The comparison of our methodology with the other existing works is summa-

rized in Table 6.10. In (Khaled et al., 2006), the normal and CHF HRV signals

are analyzed using the Poincare plot and time-domain features. The positive pre-

dictive Ar of 98.19% is achieved for time-domain features with the BPNN classi-

fier. Time and frequency-domain based features are computed to separate normal

and CHF classes in (Pecchia et al., 2011). The classification and regression tree

(CART) method provided 96.4% classification Ar. The DFA-based features with

SVM yielded 96% classification Ar to discriminate normal and CHF HRV signals

in (Jong et al., 2011). In (Yu & Lee, 2012), the authors have studied time-domain

features, frequency-domain features and bispectrum features to analyze HRV signals

of CHF and normal subjects. They incorporated GA and SVM classifier in their

method and obtained 98.79% classification Ar. In (Narin et al., 2014), the standard

HRV measures, nonlinear parameters, and wavelet-based measures are used to dis-

tinguish CHF and normal HRV signals. They achieved 91.56% Ar using 27 selected

features with the SVM classifier.

Two balanced and two unbalanced datasets of HRV signals (CHF and normal

subjects) are studied in (Acharya et al., 2017c). First, the signals are decomposed

using the EMD method; then, 13 nonlinear parameters are computed from these

decomposed IMFs. They achieved 97.64% Ar for UD1 with 22 features, 95.79% Ar

for UD2 with 35 features, 96.7% Ar for BD1 with 12 features, and 94% Ar for BD2

with 11 features.

In this work, we have analyzed the HRV signals of CHF and normal subjects

with 500, 1000, and 2000 sample lengths, while the authors in (Acharya et al., 2017c)

have used a 2000 sample length in their study. We have achieved better classifica-
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tion Ar with fewer features as compared to the study presented in (Acharya et al.,

2017c). The computational complexity of our method is lesser than the method pro-

posed in (Acharya et al., 2017c), as we have computed only two parameters (AFEnt

and APEnt), while (Acharya et al., 2017c) have computed 13 nonlinear parameters.

Moreover, we have also achieved good classification accuracies for a 1000-sample sig-

nal length and a 500-sample signal length. Therefore, our methodology is suitable

for short-term HRV signals, which can provide great help to the doctors and clini-

cians during their diagnosis of CHF patients. The proposed methodology requires

HRV signals of a smaller length as compared to the method given in (Acharya et al.,

2017c), which is desired in the biomedical signal recording.

The limitation of our work is that we have used only 15 CHF subjects in the

study. Our developed algorithm needs to be tested with a huge dataset before

clinical usage.

6.5 Summary

In this work, the CHF and normal subjects are analyzed using 500, 1000, and 2000

samples of HRV signals. The AFEnt and APEnt are computed at different frequency

scales of HRV signals (CHF and normal classes). To get the different frequency scales

of HRV signals, we have used the sub-band signals obtained by the decomposition

of HRV signals using the FAWT method. The HRV signals are decomposed up

to the fifth level. Our methodology performed well for all three signal lengths of

HRV signals. We have tested our methodology with two combinations of unbalanced

and balanced datasets. The presented method performed significantly well for all

four combinations of datasets. Moreover, we have used the LS-SVM classifier with

TFCV method and tested it with four different kernels (linear, RBF, polynomial,

and Morlet wavelet), which increases the robustness of our method. This method

may assist clinicians in the faster diagnosis of CHF patients and to provide timely

treatment. Thus, it may be a useful tool in improving the quality of life of CHF-

affected patients.
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Chapter 7

A computer-aided methodology

for the identification of normal

and AF ECG signals

7.1 Introduction

AF is a type of cardiac arrhythmia which can be characterized by irregularity and

rapidity of cardiac contraction (Asgari et al., 2015; Markides & Schilling, 2003).

About 2.2 million people in the USA and 4.5 million people in Europian Union have

this arrhythmia (Fuster & et. al., 2011). In the next 40 years, the number of people

having AF is expected to double in north America (Gillis et al., 2013). AF may

lead to stroke and CHF (Fuster & et. al., 2011). The death rate for AF patients

is double as compared to the normal subjects (Fuster & et. al., 2011). The risk of

death may be reduced if timely treatment is available for the AF patients. Hence,

an early stage diagnosis of AF can avoid unnecessary complications and save a life.

The AF patients may show dyspnea and fatigue (Asgari et al., 2015). These signs

may not be present in all the AF patients. Hence, there is a possibility that many

AF patients may be left undetected. In order to diagnose the AF, the ECG is widely

used by the cardiologists. Manual detection of AF using ECG is a tedious and time-

consuming task (Asgari et al., 2015). The Ar of the AF detection by many primary

care physicians using ECG signals is not sufficiently high (Mant et al., 2007). Hence,

a computer-aided detection system for AF patients is required to help the doctors
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for accurate diagnosis.

Various approaches are suggested to diagnose the presence of AF. A method

based on the absence of P-wave for AF detection over a short duration of ECG

is proposed in (Ladavich & Ghoraani, 2015). An AF detection method based on

time domain features is also presented in (Du et al., 2014). In (Slocum et al.,

1992), a computer-based AF detection algorithm is suggested. This algorithm is

based on power spectral analysis of remainder ECG. Percent power of the remainder

ECGs is observed to be significantly different for the rhythms of AF and control

groups. A method based on SEnt is presented in (Lake & Moorman, 2011) and can

detect the AF using 12 ECG beats. The AF detection technique proposed in (Zhou

et al., 2014) computes symbolic sequence from the RR-interval sequence. Further,

Shannon entropy is computed from the symbolic-sequence to detect the presence of

AF. In (Jiang et al., 2012), the RR-interval distribution difference curve is used to

detect the transition between the AF and normal rhythms. It is the reflection of

the variability of RR-interval. In (Lee et al., 2013), root mean square of successive

RR differences (RMSSD), Shannon entropy, and SEnt are found to be useful in the

assessment of AF. A four-step process is explored for the AF detection from RR-

interval in (Huang et al., 2011). These steps include histogram, standard deviation

analysis, numbering abbrent rhythm recognition, and Kolmogorov-Smirnov (KS)

test.

Our objective is to propose a computer-based approach to diagnose the AF

patients automatically. To achieve the objective, we have computed entropy based

features in FAWT (Bayram, 2013; Zhang et al., 2015) domain to discriminate NR

and AF ECG segments. Here, NR represents the rhythm other than AF, atrial

flutter (AFL), and AV junctional rhythms in the MIT-BIH AF database (MIT-BIH

AFDB) (Moody & Mark, 1983; Goldberger et al., 2000). The ECG segments are

decomposed in to the sub-band signals using FAWT. We have computed LEE and

PEnt from these sub-band signals. Then, the features are fed to the RF (Breiman,

2001) and J48 DT (Quinlan, 1986, 1993) classifiers to classify the ECG segments

of NR and AF classes. The block diagram of the proposed system is shown in

Figure 7.1. The remaining of the chapter is organized in the following way:

The dataset used, preprocessing, segmentation of the ECG signals, entropy based
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features, and classification methods are provided in section 7.2. The obtained results

in this work are given in section 7.3 and discussed in section 7.4. Finally, section

7.5 presents the summary of the work.

ECG 
signal

Pre-
processing

Extraction of small 
segments from ECG signal 

Decomposition of 
segments using FAWT

Computation of PEn
from decomposed 
sub-band signals 

Computation of LEE 
from decomposed 
sub-band signals Classification

Classification

Classification

N

AF

N

AF

AF

N

Figure 7.1: The proposed computer-aided identification method for AF ECG signals.

7.2 Methodology

7.2.1 Dataset used

In this work, we have used MIT-BIH AFDB which is publicly available at physionet.

The dataset has ECG signals of 23 AF patients. The ECG signals present in the

dataset are sampled at the rate of 250 samples per second. The duration of the

recording is 10 hours. The dataset contains four types of rhythm AF, AFL, AV

junctional, and NR. In this work, we have studied AF and NR rhythms. We have

formed two classes namely, NR and AF from the database according to the anno-

tations available in this dataset. We have excluded the two patients (“04936” and

“05091”) which are wrongly annotated (Zhou et al., 2014) in this study. Hence, we

have analysed 243 NR and 247 AF rhythms of ECG signals corresponding to 21 AF

patients. In the dataset, there are two ECG signals corresponding to each patient.

We have used first ECG signal corresponding to each patient in this work.
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7.2.2 Noise removal and segmentation of ECG signals

The db6 wavelet basis function for eliminating baseline wander and noise from the

ECG signals is utilized (Martis et al., 2013a,b). After pre-processing, we have ex-

tracted 1000 samples segments from the NR and AF rhythms from 21 patients’ ECG

signals. The 1000 samples of the signal corresponding to the 4 second duration of the

signal. Finally, we have 77,267 AF ECG segments and 114,214 NR ECG segments

of length 1000 samples.

7.2.3 Features

We have used LEE and PEnt features to study the NR and AF ECG segments in

this work. These features are described below:

7.2.4 Log energy entropy

The LEE parameter can be defined as follows (Han et al., 2009):

LEE =
P∑
j=1

log(x2j)

where, xj is the jth sample of the signal, and P is the number of samples in the

signal.

7.2.5 Permutation entropy

In this work, PEnt is used for complexity analysis of NR and AF ECG segment. Its

explanation is provided in chapter 6. In this work, we have selected e = 3 (Bandt

& Pompe, 2002).

7.2.6 Classification methods

The extracted features are applied to the input of J48 DT and RF classifiers to

classify NR and AF ECG segments in this work. The WEKA toolbox is used to

implement the classifiers with their default parameters (Hall et al., 2009).
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We have used the performance measure namely, Ar, Sc, and Ss in this work (Azar

& El-Said, 2014). TFCV method is also employed to train and test the classi-

fiers (Kohavi, 1995).

7.3 Results

First, the long duration ECG signals are segmented into small segments of 1000

samples. The plots of ECG segments of both classes can be observed in Figure 7.2.

Each segment is subjected to FAWT and decomposed into various sub-bands. The

values of parameters b, c, f , and g are selected 5, 6, 1, and 2, respectively, and β

is chosen as (0.8 × f)/g (Zhang et al., 2015) in this work. We have analysed the

ECG segments at different levels of decomposition (J = 5, 10, 15, and 20). The

obtained sub-band signals at J = 5 are shown in Figure 7.3. For J = 5, we have 5

detail sub-band signals and one approximate signal. In Figure 7.3, sub-band signals

S1 to S6 are arranged in decreasing order of frequency. The sub-band signals S1

and S6 are corresponding to the highest and lowest frequency sub-band signals. The

S6 sub-band signal is reconstructed from approximate coefficients, and other sub-

band signals are reconstructed from the corresponding detail coefficients obtained

using FAWT. In the same way, for J = 10, 15, and 20, we have total 11 (10 detail

and 1 approximate), 16 (15 detail and 1 approximate), and 21 (20 detail and 1

approximate) sub-band signals, respectively.

From the decomposed ECG segments, we have computed LEE and PEnt param-

eters. The STD and µ values for LEE and PEnt are summarised in Tables 7.1 and

7.2. In this work, we have employed Student’s t-test (Box, 1987) to evaluate the

discrimination ability of the computed features. The p-values corresponding to the

computed features are also given in the Tables 7.1 and 7.2 respectively. We can

observe that the p-values are less than 0.05 for all LEE and PEnt features except

the LEE feature computed from S2 sub-band signal.

Further, the features are applied to RF and J48 classifiers. We have observed

the classification performance using both the features separately and also with their

combination. The classification results for the individual feature are arranged in

Tables 7.3 and 7.4. The classification performance of RF classifier is found to be
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Figure 7.2: The plots of ECG segments for two classes: (a) NR, (b) AF.

Table 7.1: The µ and STD values and corresponding p-values for LEE features
computed at J = 5 level.

Sub-band signal−→ S1 S2 S3 S4 S5 S6

AF
Mean -7019.06 -10099.54 -5065.82 -2982.59 -2492.53 4838.49

STD 1604.63 1730.39 1700.76 1515.11 1296.66 1955.98

NR
Mean -6966.14 -10087.94 -5110.26 -2930.00 -2181.84 5244.25

STD 1276.95 1235.13 1294.48 1302.97 1264.18 1496.54

p-values p <0.001 p=0.08 p <0.001 p <0.001 p <0.001 p <0.001

94



S
1

-2
0
2

S
2

-1
0
1

S
3

-2
0
2

S
4

-5
0
5

S
5

-5
0
5

Sample number
100 200 300 400 500 600 700 800 900 1000

S
6

-200
0

200

(a)

S
1

-1
0
1

S
2

-0.5
0

0.5

S
3

-2
0
2

S
4

-2
0
2

S
5

-5
0
5

Sample number
100 200 300 400 500 600 700 800 900 1000

S
6

-100
0

100

(b)

Figure 7.3: The plots of decomposed ECG segments using FAWT for two classes:
(a) NR, (b) AF.

Table 7.2: The µ and STD values and corresponding p-values for PEnt features
computed at J = 5 level.

Sub-band signal−→ S1 S2 S3 S4 S5 S6

AF
Mean 1.59107 1.77694 1.74185 1.69385 1.62561 1.26887

STD 0.0185 0.0018 0.0048 0.0062 0.0054 0.0863

NR
Mean 1.59416 1.77688 1.74266 1.69210 1.62449 1.27385

STD 0.0196 0.0023 0.0053 0.0059 0.0052 0.0768

p-values p <0.001 p <0.001 p <0.001 p <0.001 p <0.001 p <0.001
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better than J48 classifier. The classification performances of both the classifiers are

better for LEE features than PEnt features. The LEE features showed the highest

Ar of 96.84% when subjected to the RF classifier with J = 20.

Table 7.3: Classification performance of RF classifier at various decomposition levels
(J) of FAWT.

Feature J Total features Ar (%) Sc (%) Ss (%)

LEE

5 6 86.12 90.01 80.2

10 11 91.16 93.6 87.5

15 16 95.12 96.3 93.5

20 21 96.84 97.6 95.8

PEnt

5 6 70.50 80.6 55.6

10 11 76.45 85.2 63.6

15 16 81.07 85.6 74.3

20 21 85.84 86.8 84.5

For PEnt, the maximum classification Ar of 85.84% is observed using RF classifier

at J = 20. The LEE and PEnt features yielded 93.41% and 79.77% Ar with J48

classifier at J = 20 respectively. The classification results for the combination of the

two features are provided in Table 7.5.

Table 7.4: Classification performance of J48 classifier for different values of J of
FAWT.

Feature J Total features Ar (%) Sc (%) Ss (%)

LEE

5 6 83.75 87.7 77.9

10 11 87.6 90 84

15 16 91.5 92.9 89.5

20 21 93.41 94.5 91.8

PEnt

5 6 69.78 79.6 55.2

10 11 71.93 79.1 61.3

15 16 75.33 78.9 70

20 21 79.77 81.1 77.8

From, Tables 7.3, 7.4, and 7.5, we can observe that LEE parameter has yielded
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higher classification performance than PEnt, and the combination of PEnt and LEE

for the same number of features. In Figure 7.4, classification Ar for each fold is

shown for RF and J48 classifiers at J = 20.
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Figure 7.4: The plot of classification Ar at each fold for TFCV process.

Table 7.5: Classification performance of RF and J48 classifiers at various decompo-
sition levels (J) of FAWT with the combination of LEE and PEnt features.

Classifier J Features Ar (%) Sc (%) Ss (%)

RF
5 12 89.73 93.2 84.5

10 22 92.24 94.7 88.5

J48
5 12 85.90 88.9 81.5

10 22 88.06 90.2 85

7.4 Discussion

In this work, we have used FAWT to decompose the ECG segments of the two classes

due to the non-stationary nature of ECG signals. The LEE and PEnt are nonlinear

features which are employed to capture the nonlinear information present in the ECG

segments. We have analysed the signal at different levels of decomposition. These

decomposed sub-band signals are corresponding to the different frequency bands.

The computation of entropy features from different frequency bands are performed.
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We have noticed that the Ar of classification is increased with the increase in levels

of decomposition which also increases the computation cost with the increase in the

number of features.

From Table 7.1, we can observe that LEE features show lower value for AF in

all the sub-band signals except S3 sub-band signal. We have also observed negative

values of LEE features for HFSBSs (S1 to S5) and positive values for LFSBS (S6)

in Table 7.1 which indicates that LFSBS (S6) has higher energy as compared to the

HFSBSs. From Table 7.2, we can observe that PEnt features showed higher value

for S1, S3, and S6 sub-band signals for NR class, and at S2, S4, and S5 sub-band

signals showed lower values for NR class as compared to AF class. Moreover, LEE

is an energy-based feature and computation of PEnt is based on the occurrence

of a pattern in the time series. The classification performance of LEE features is

found much better than PEnt features, which means that energy based feature is

more efficient as compared to the similarity based feature for the identification of

AF ECG segment. Moreover, we have also used the combination of the two features

with the classifiers. We found an increment in the Ar of classification. If we compare

the classification performance of LEE features, PEnt features, and the combination

of LEE and PEnt features, we can observe that for the same number of features

performance of LEE is higher than PEnt, and the combination of LEE and PEnt

features.

In Table 7.6, we have provided the summary of the automated diagnosis tech-

niques used for the detection of AF. In (Tateno & Glass, 2001), the density histogram

(DH) of the RR and 4 RR-intervals is determined and compared with the standard

density histograms (SDH). Then, KS test is used to evaluate the difference between

the DH of a subject and SDH. The 4 RR-interval based approach showed better re-

sults with a Ss of 94.4% and Sc of 97.2%. In (Babaeizadeh et al., 2009), an algorithm

based on RR-intervals is provided which utilized Markov modeling for computing

the R-R Markov score. The P wave morphology similarity and P-R interval vari-

ability measures are also used. The algorithm achieved 92% Ss in detecting the AF

episodes.

In (Dash et al., 2009), RMSSD, turning points ratio, and Shannon entropy are

computed from the RR-interval time series for the characterization of AF. They
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Table 7.6: Summary of the computer-based automatic AF detection methods.

Author and years Dataset Methods Results (%)

Tateno and
MIT-BIH AFDB

RR and 4 RR- Ss = 94.40

Glass (2001) intervals, KS-test Sc = 97.20

Babaeizadeh 633 Holter ECG records P wave similarity

Ss = 92et al. (2009) MIT-BIH AFDB and P-R interval,

variation measures

Dash et al.
MIT-BIH AFDB

RR-intervals analysis Ss = 94.4

(2009) sample entropy Sc = 95.1

Rodenas et al.

MIT-BIH AFDB

Wavelet entropy Ar = 95.28

(2015) analysis Ss = 96.47

Sc = 94.19

Present work MIT-BIH AFDB

FAWT Ar = 96.84

LEE features Ss = 95.8

Sc = 97.6

observed a Sc and Ss of 95.1% and 94.4%, respectively. A wavelet entropy-based

approach is suggested for detecting AF episodes in (Rodenas et al., 2015). Their

method yielded the Ar, Ss, and Sc of 95.28%, 96.47%, and 94.19% respectively.

In comparison to the methods (Tateno & Glass, 2001; Babaeizadeh et al., 2009;

Dash et al., 2009; Rodenas et al., 2015), the main advantage of our method is

that we do not need to detect the R-peak and P-wave. In (Tateno & Glass, 2001;

Babaeizadeh et al., 2009; Dash et al., 2009), the Ar of AF detection depends on the

correct detection of R-peaks as they are using RR-intervals in their analysis. If there

is an error in the R-peak detection, then the Ar of AF detection is also affected. Due

to the use of ECG signals, our system does not suffer from this limitation. Hence,

our proposed method is more robust in comparison to these methods. In (Rodenas

et al., 2015), TQ interval was computed after R-peak detection. They used an

adaptive approach to make it insensitive to the possible error of R-peak detection.

However, our results are comparable to their results. We have achieved better Ar

as compared to (Rodenas et al., 2015).
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7.5 Summary

In this work, we have computed LEE and PEnt in FAWT framework to analyze NR

and AF ECG segments. Our results show that the LEE features performed better

than the PEnt features in the automated diagnosis of AF using ECG signals. We

have also observed that the performance of our system increased with decomposition

levels. We have provided the results for 4 different levels of decomposition (J = 5,

10, 15, and 20). Classification Ar for J = 20 is higher as compared to J = 5, 10, and

15. This automated system can be implemented in hospitals to help the cardiologists

to reduce their workload.
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Chapter 8

Conclusion and future work

8.1 Conclusion

The cardiac signals (ECG, HRV) are able to serve as a potential tool for the diagnosis

of different diseases related to the heart. The use of ASP methods together with the

machine learning methods can effectively execute the task of decision making about

the abnormal conditions of the heart.

CAD and normal HRV signals are investigated using FAWT. HRV signals are

decomposed up to the third level using FAWT. Two computed parameters, K-NN

entropy estimator and FEnt can capture the nonlinear dynamics of HRV signals.

Several ranking methods are used to optimize the classification performance. High-

est classification performance is observed with initial four significant parameters

computed using entropy ranking method.

ECG beats of normal and CAD subjects are analyzed. Five CIP parameters are

computed from the five levels of FAWT detail coefficients. These CIP parameters

have shown higher values for CAD ECG beats as compared to normal ECG beats.

It indicates more similarity between the detail coefficients of FAWT based decom-

position of CAD beats than the normal beats. The present methodology can be

extended for early detection of the CAD.

Normal and MI ECG beats are studied using SEnt in FAWT framework. Ex-

tracted features are applied to the input of different classifiers to achieve the highest

performance. The classification Ar is computed for different values of J . The per-

formance of the proposed method is highest for LS-SVM classifier at J = 24.
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HRV signals of CHF and normal subjects are analyzed using AFEnt and APEnt

at different frequency scales. To get the different frequency scales of HRV signals,

the sub-band signals obtained using the FAWT method are accumulated in different

combinations. We observed that AFEnt is more suitable to analyze the complexity

of CHF and normal HRV signals. Most of the frequency-scaled signals showed lower

mean values of AFEnt for CHF HRV signals.

ECG segments of NR and AF rhythms are studied using LEE and PEnt features

in FAWT framework. The LEE and PEnt are nonlinear features which are employed

to capture the nonlinear information present in the ECG segments. The results

indicated that the LEE features performed better than the PEnt features in the

automated diagnosis of AF.

8.2 Future work

The proposed automated identification methods based on ASP techniques and ma-

chine learning are found effective in decision making using cardiac signals. The

proposed diagnosis framework for heart diseases consists of preprocessing, segmen-

tation, feature extraction and selection, and classification of cardiac signals. How-

ever, further improvement of the proposed methodologies is possible in future by

addressing the following issues.

Further work can be done for reducing the computation time of the used features

in the proposed work. New features with lesser computation time can be proposed,

and dedicated hardware may be implemented using the proposed methodologies.

We have performed trial and error experimentation for the parameter selection of

the studied features, kernels, and other classification parameters. Hence, it may

possible that the selected values of these parameters are not the optimal values.

Further work can be performed for the optimal selection of the parameters values

and an automated parameter selection techniques may be developed. In future,

we also intend to perform the classification using deep learning algorithms. An-

other limitation of the proposed methods is the use of the limited dataset. Hence,

the testing of the developed methods with the huge dataset is needed before their

implementation for the clinical purpose. Moreover, we have considered two class
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classification in this thesis work. Further work can be performed in the direction of

multi-class classification of the heart disorders.

The extension and modification of the suggested methods for the analysis of

other biomedical signals such as EEG and EMG would be of great interest. With the

incorporation of some new features, our proposed framework can also be utilized for

the diagnosis of other abnormal conditions like as, arrhythmia, alzheimer’s disease,

ischemia, autism, septal defects, congenial heart diseases, and diseases related to

the heart valves.
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