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ABSTRACT 

Over the past decade, smartphones have become an integral part of our daily life. With 

the advancements in technology, smartphones have become feature-rich, affordable and 

very sophisticated containing several built-in sensors such as orientation sensor, 

accelerometer sensor and gyroscope sensor. Equipping smartphones with intelligence has 

been a topic of interest to researchers working in diverse fields such as biometrics, 

healthcare, and financial services. 

Readings from dedicated body-worn inertial sensors have been shown to carry 

information useful for various tasks including human gait recognition, sports activity 

recognition, fall detection and health monitoring. In general, the major disadvantage of 

such approaches is the cost of employing dedicated sensors for data acquisition. In 

addition, these approaches are less user-friendly as they are likely to cause inconvenience 

to the users. The possibility of overcoming these drawbacks by utilizing the built-in 

sensors in smartphones motivated us to perform the analysis of smartphone sensor data to 

extract information regarding human behavioral characteristics. The analysis of human 

behavior has been proven to be effective in various applications including biometric-

based user authentication, smart spaces, human-machine interactions, physical activity 

recognition and surveillance. The key advantage is that the human behavior can be 

captured unobtrusively without requiring a conscious effort on the part of the user. 

Therefore, the human behavior-based intelligence for smartphones is quite promising. 

The prime objective of this thesis is to enhance the capabilities of smartphone-based 

biometric recognition and smartphone-based health monitoring systems through the 

analysis of human behavioral information acquired from the smartphone’s built-in 

sensors. Specifically, we analyze the behavioral information with the objective to develop 

efficient approaches for biometric authentication, gender recognition and physical 

activity recognition. Nowadays, it is quite common to see people performing banking 

transactions and storing sensitive information on smartphones. Therefore, it is extremely 

important that these devices are able to perform user authentication. In this thesis, we 

propose an approach for user authentication in smartphones using behavioral biometrics. 

This approach analyses the behavioral data, which is collected while the user performs 

different gestures during his/her interaction with the device. In addition to the touch point 
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locations, the proposed approach utilizes the information from the built-in accelerometer 

sensor and orientation sensor in the smartphone. The modified Hausdorff distance 

(MHD) is employed for matching features of the gestures performed by the user. 

The biometric authentication performance can be improved by supplementing 

traditional biometric information with soft biometrics like gender, age, height, weight, 

and ethnicity. Such soft biometric attributes can also be exploited in various applications 

including surveillance, human-machine interactions, and smart spaces. In this thesis, we 

perform gender recognition while a user interacts with the device as well as when a user 

walks with a smartphone in the trouser pocket. Our first approach performs gender 

recognition by capturing the behavioral information while the user interacts with the 

smartphone’s touchscreen. The behavioral data comprising readings from the 

accelerometer sensor, gyroscope sensor and orientation sensor are acquired during the 

user’s interaction with the device. Two-dimensional attribute maps are then formed using 

the set of attributes. GIST descriptors computed on these images provide the 

discriminatory information for gender recognition. Our second approach for gender 

recognition utilizes gait information collected using built-in sensors in the smartphone. 

Specifically, readings from the accelerometer sensor and gyroscope sensor are captured 

while the user walks with the smartphone in the trouser pocket. We propose a histogram 

of gradient-based approach to extract features useful for gender recognition.    

Smartphone-based activity recognition has attracted a lot of attention as it provides 

information about daily physical activities performed by an individual and consequently, 

helps improve the health monitoring applications. Excessive sitting and lack of adequate 

levels of physical activity are associated with health problems such as obesity, diabetes, 

cardiovascular disease, poor metabolic health and depression, leading to the increased 

risk of mortality. In this thesis, we present an approach that utilizes readings from the 

built-in sensors in the smartphone to recognize various physical activities performed by 

the user. Accelerometer and gyroscope sensor signals are analyzed to identify the activity 

performed by the user. We propose a descriptor-based approach to compute the 

discriminatory characteristics for activity recognition. 

In summary, the results presented in this thesis clearly suggest that the data acquired 

from the built-in sensors of a smartphone carries information useful for analysis of the 
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user’s behavior. Our experimental results show that the approaches proposed in this 

thesis achieve state-of-the-art performances for gesture-based biometric authentication, 

gesture-based gender recognition, gait-based gender recognition, and physical activity 

recognition.  
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Chapter 1 

Introduction 

All over the world, mobile phone use has increased significantly over the past decade, 

mainly due to the convenience it provides to the users, thereby making their daily lives 

easier. Earlier, mobile phone usage was largely limited to making or receiving phone 

calls. However, with the advancements in technology, mobile phones have been 

transformed into smartphones that are feature-rich, affordable and one of the widely used 

electronic gadgets. The advancements in mobile technology have also led to more 

number of customers embracing smartphones as compared to personal computers. 

Additionally, smartphones nowadays have become so user friendly that people who are 

not tech-savvy can also use it without difficulty. It is reported [1] that the factors such as 

lower price and increased capabilities have resulted in more number of smartphones 

being sold worldwide these days as compared to personal computers. According to a 

survey [2], the result of which is shown in Fig. 1.1, the number of smartphone users 

worldwide has been increasing significantly every year. In the year 2016, 62.9% of the 

world population had a mobile phone. Mobile phone ownership is projected to increase 

further to 67% by the year 2019. 

 

Figure 1.1: The number of smartphone users worldwide from 2014 to 2020 [2]. 
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Nowadays, the use of smartphones and tablets has increased to such an extent that 

these devices have become indispensable part of our lives. These devices are quite 

commonly used for performing banking transactions, storing sensitive data, reading e-

mails and news, analyzing daily activities, etc. These devices also help the user to 

socialize and share data with other people. In addition, these devices can also be used as 

remote control, recorder, translator and navigator and more importantly, they can also be 

used for online shopping, which often prompts the user to store banking information on 

the smartphone. The increased dependency and extensive use of smartphones call for 

enhanced data security to safeguard user’s data stored in these devices. If a smartphone 

falls into the wrong hands, the consequences can be as serious as a stranger accessing the 

user’s bank accounts and other confidential information such as passwords, emails, 

personal details and business documents.  

The increasing popularity and use of smartphones have motivated the researchers 

worldwide to explore the information acquired from the smartphone for various tasks 

such as biometric authentication, access control, surveillance, navigation and health 

monitoring. The smartphones have become very sophisticated containing several built-in 

sensors such as motion sensors, position sensors, camera, proximity sensor, pressure 

sensor, and microphone, as presented in Fig. 1.2 [3].  Smartphones’ capabilities are 

further enhanced by system on a chip (SoC), which contains the central processing unit 

(CPU), graphics processing unit (GPU), display processor, video processor, etc. With 

advances in the nanometer technology, the storage capacity of the memory (e.g. random 

access memory (RAM)) and the internal storage has also increased. In addition, the low 

power memory employed in smartphones leads to a reduction in the battery consumption. 

With the incorporation of long-term evolution (LTE) modems, data sharing using 

advanced smartphones is expected to get easier. The aforementioned advancements and 

subsequent generation of huge amount of smartphone data has motivated researchers 

working in diverse fields to acquire and analyze the data in an attempt to derive useful 

information. 
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Figure 1.2: A typical smartphone board with sensors [3]. 

1.1 Smartphone sensors 

In the literature, it has been observed that readings from dedicated body-worn inertial 

sensors carry information useful for various applications related to biometric recognition 

and health monitoring systems. However, these dedicated inertial sensors result in 

additional cost. Additionally, these approaches may cause inconvenience to the user and 

the data collection cannot be performed inconspicuously. These drawbacks inspired us to 

utilize the readings from built-in sensors of the smartphone to extract information related 

to the user’s behavior. 

Equipping smartphones with intelligence has been a topic of interest to researchers 

working in diverse fields such as biometrics, healthcare, and financial services. Typically, 

smartphones are equipped with sensors such as motion sensor, position sensor and 

environmental sensor, which provide readings with high precision and accuracy [4]. 

These sensors help determine the movement and position of the device, and also monitor 

environmental changes near the device [5]. Motion sensors, which include accelerometer 

sensor, gyroscope sensor, gravity sensor and rotation vector sensor, provide acceleration 

and rotational forces in three directions. Position sensors, on the other hand, provide 

information about the physical position of the device with respect to the world’s frame of 

reference. They comprise orientation sensor, proximity sensor and magnetometer sensor. 

Environmental sensors such as barometer, temperature sensor, pressure sensor and light 
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sensor measure different environmental properties namely, humidity, ambient 

temperature, ambient pressure and illuminance [4]. 

In this thesis, we analyze the data acquired from the built-in sensors in the 

smartphone for biometric-based user authentication, gender recognition and physical 

activity recognition. Specifically, readings from motion sensors namely, accelerometer 

sensor and gyroscope sensor, and position sensor namely, orientation sensor are 

investigated for the aforementioned problems. An Android application is developed to 

collect the tri-axial readings from these sensors by using a sensor event, which provides 

sensor readings and the timestamp for the event when there is a change in sensor value 

(onSensorChanged) [4]. While acquiring the sensor readings, the delay is set to its least 

value using the command SENSOR_DELAY_FASTEST. The coordinate system for 

sensor measurements is defined with respect to the screen of the device when the device 

is held in the portrait mode, as shown in Fig. 1.3. The following subsections present 

details of the sensors employed in our work [4]. 

1.1.1 Accelerometer sensor 

The accelerometer sensor measures the amount of linear movement applied by the user 

on the device. Specifically, it provides the linear acceleration (in m/s
2
) in x , y  and z  

directions at each time instant. Fig. 1.3 shows the x , y  and z  directions defined relative to 

the smartphone. Most smartphones nowadays come equipped with the accelerometer 

sensor, which is used to detect shake, tilt and swing of the device.   

1.1.2 Gyroscope sensor 

Gyroscope sensor measures the angular speed (in rad/sec) applied on the phone along x ,

y  and z  directions. Fig. 1.4 shows coordinate system defined relative to the smartphone. 

The positive rotation is measured in the counter-clockwise direction. This sensor is 

commonly used to detect rotation such as spin, turn and to watch 360
0 

panoramic view. 

As the user moves the phone, gyroscope sensor senses the motion and the panoramic 

view is changed accordingly. 
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Figure 1.3: x , y and z  directions for the accelerometer sensor defined relative to the smartphone. 

                                                                                                                           

Figure 1.4: x , y and z directions for the gyroscope sensor defined relative to the smartphone.  

1.1.3 Orientation sensor 

Orientation sensor records the position of the device with respect to the world’s frame of 

reference. At each event time, it provides orientation values in the following three 

directions (as shown in Fig. 1.5): 
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Azimuth: It indicates the rotation around z -axis. Specifically, it is the angle between 

magnetic north and device’s y -axis. Azimuth is 0
0
 when the top of the device faces 

towards north and 180
0
 when its top faces towards south. 

Pitch: It indicates the rotation around x -axis. It is the angle between the screen of the 

device and the ground. If the device is held parallel to the ground with its top edge away 

from the user, it will be positive when the top edge of the device moves towards the 

ground and will be negative if it moves away from the ground. The pitch values lie 

between -180
0
 and 180

0
. 

Roll: It indicates the rotation around y -axis. It is the angle between the plane 

perpendicular to the screen of the device and the plane perpendicular to the ground. If the 

device is held parallel to the ground with its top edge away from the user, the roll value 

will be positive if the user rotates the right edge of the device away from the ground and 

will be negative if he moves the right edge towards the ground. The range of roll values is 

from -90
0
 to 90

0
.      

 

Figure 1.5: Azimuth, pitch and roll for the orientation sensor defined relative to the smartphone. 

In addition to the inertial and position sensor information, there are various behavioral 

characteristics that can be collected while a user performs different gestures during 

his/her interaction with the device. An Android application is developed to acquire the 

North

Azimuth 

Angle

East

South

West

Pitch

Roll



7 

 

readings when the user performs a touch event such as press, release, and different touch 

gestures on the touchscreen of the smartphone (OnTouchListener) [4]. The following 

readings are acquired for smartphone-based user authentication and gender recognition 

using touchscreen gestures: 

1) Event time: It provides the time instant at which the touch event occurs. 

2) x - y  coordinates: It indicates the position of finger on touchscreen. Specifically, 

when user performs a gesture, this provides the x - y  coordinate values of finger position 

at each time event. 

3) Finger area: This provides an approximation of area of the finger touched on the 

screen. It returns a scalar value at a given time event. The actual value of touch area in 

pixels is normalized for the device’s explicit range and scaled to a value between 0 and 1. 

4) Pressure: This provides the pressure exerted by the user on the touchscreen of the 

smartphone. The pressure information generally ranges between 0 and 1.  

5) Pointer count: This indicates the information on the number of fingers touching on 

the screen at each time event. This information is employed to differentiate between 

zoom and other gestures. 

1.2 Related work and motivation 

In the past decade, readings from dedicated body-worn inertial sensors have been shown 

to carry information useful for various tasks including human gait recognition [6], sports 

activity recognition [7], fall detection [8], and health monitoring [9]. In general, the major 

disadvantage of such approaches is the cost of employing the dedicated sensors for data 

acquisition. In addition, these approaches are less user-friendly as they are likely to cause 

inconvenience to the users. The possibility of overcoming these drawbacks by utilizing 

the built-in sensors in smartphones motivated us to perform the analysis of smartphone 

sensor data to extract information regarding human behavioral characteristics.  

The analysis of human behavior has been proven to be effective in various 

applications including biometric-based user authentication [10], smart spaces [11], 

human-machine interactions [12], and surveillance [13]; therefore, the human behavior-
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based intelligence for smartphones is quite promising. It has been shown that the 

signature verification performance can be improved by integrating the human behavioral 

characteristics such as total duration, number of pen-ups and pen-downs with the 

handwritten signature [10]. Chen et al. [11] developed a smart system for home energy 

management based on energy usage patterns of the users. Mondal et al. [12] utilized 

keystroke information captured during the user’s interaction with the computer. Liu et al. 

[13] demonstrated that inclusion of gait information leads to considerable improvement 

in the performance of person re-identification. Further, Lu et al. [14] proposed an 

approach for user authentication that captures in-air-handwriting using wearable inertial 

sensors.  

Human behavior-based intelligence for smartphones using the built-in sensors has 

also been explored in the literature. Burda [15] and Jin et al. [16] performed user 

authentication based on the manner in which a user picks up the smartphone from a table 

or the trouser pocket by using the readings from the built-in accelerometer sensor. In a 

similar way, Kunnathu [17] performed user authentication by analyzing the 

accelerometer sensor readings collected when the user picks up the phone and holds it to 

the ear. On the other hand, Feng et al. [18] acquired motion trajectories for user 

authentication by using the built-in accelerometer and gyroscope sensors in the 

smartphone, while the user picks up the phone. Conti et al. [19] captured accelerometer 

and orientation sensor information while the user answers or makes a phone call. Findling 

et al. [20] utilized accelerometer sensor readings to unlock a mobile phone without any 

screen-based interaction. In their approach, an unlocked wrist-watch and a mobile phone 

are shaken together, and the mobile phone is unlocked when this event is detected in the 

accelerometer sensor readings. Zhu et al. [21] performed user authentication using 

readings acquired from the built-in accelerometer and gyroscope sensors, while the user 

shakes the device to unlock. Hong et al. [22] acquired the accelerometer sensor data for 

user authentication, while he/she moves the device to form the specific shape in the air. 

Ryu et al. [23] proposed an approach for user authentication when the verification code is 

received on smartphone or smart watch. The authors utilized behavioral pattern and 

environmental information while the user checks the smartphone or smart watch for 

verification code. The behavioral information was collected using accelerometer and 



9 

 

gyroscope sensors and the environmental information was collected using global 

positioning system (GPS), wireless access point, Bluetooth, and device model. Li et al. 

[24] investigated behavioral patterns collected using built-in accelerometer, gyroscope 

and magnetometer sensors of the smartphone for continuous user authentication. The 

authors extracted time and frequency domain features from the sensor readings. User 

authentication in smartphones using gait information extracted from the accelerometer 

sensor readings was explored in [25, 26]. Primo et al. [27] collected the gait data in 

different scenarios, including when the device is kept inside the trouser pockets on both 

sides as well as when the device is held in each hand. As can be observed from the above 

review of literature, human behavioral characteristics are useful for various tasks. In 

addition, the key advantage is that the human behavior can be captured unobtrusively 

without requiring a conscious effort on the part of the user. This thesis deals with the 

analysis of human behavior for smartphone-based user authentication, gender 

recognition, and physical activity recognition. Specifically, we analyze the data acquired 

from the built-in sensors in the smartphone with the objective to develop efficient 

approaches for the above-mentioned problems. 

1.2.1 Biometric-based user authentication 

Nowadays, smartphones are commonly used to perform banking transactions and access 

confidential information such as corporate data, email and social media accounts. Also, 

since they are often used as a means for storing important and sensitive information, the 

security of data stored in smartphones is a major concern. Therefore, it is imperative that 

these devices are able to perform user authentication, even more so, in the event of lost or 

stolen phones in order to prevent access to user’s data by impostors. Traditionally, 

personal computers have been secured by password-based authentication, which has the 

inherent limitation that the passwords can be stolen or forgotten. Behavioral biometrics 

such as keystroke and mouse dynamics provide a more secure and reliable alternative to 

password-based authentication in computers [29]. Keystroke dynamics performs 

authentication based on the way the user operates the keyboard [30], while mouse 

dynamics [31, 32] is an emerging behavioral biometric trait that performs authentication 

based on the user’s mouse operating patterns. In general, user authentication in computers 
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can be achieved in two ways; static and continuous authentication. Static authentication is 

a one-time user verification performed at the time of unlocking the computer [30]. The 

major limitation of this approach is that once the system is unlocked, it does not continue 

to provide any security against unauthorized access. In other words, an unauthorized 

person can operate the system as it has already been unlocked. On the other hand, 

continuous authentication [33] overcomes this problem by constantly authenticating the 

user and thereby, preventing unauthorized access to the system by an impostor.  

In recent years, with the rapid increase in the use of smartphones and subsequent 

increase in the security issues associated with it, researchers have focused their effort on 

developing methodologies for static as well as continuous user authentication. Static 

authentication in smartphones is achieved using traditional or biometric authentication 

techniques. Traditional techniques include swipe or click to unlock, creating a specific 

pattern on the screen to unlock and password-based authentication, whereas commonly 

employed biometric techniques for static authentication include face [34-36], voice [37-

39], fingerprint [40, 41] and keystroke [42-45] based authentication. In addition to this, 

researchers have explored other physiological biometric traits such as finger knuckle 

[46], iris [47] and palmprint [48-50]. Multimodal biometric solutions [51-57] have also 

been proposed for mobile user authentication. However, it may be noted that these 

biometrics traits are more suited for providing static authentication in mobile phones. A 

detailed survey of various biometric approaches proposed for user authentication in 

mobile phones can be found in [58-61].  

Keystroke based authentication in computers inspired researchers to explore similar 

approaches for touchscreen devices. Authors in [62] performed user authentication using 

the information acquired from a touchpad, which records finger pressure, finger position, 

hold time and inter-key time. The approach achieved 1% equal error rate (EER) when 

only the finger pressure information utilized. However, their approach was evaluated on a 

dataset of only ten users. Luca et al. [63] presented an approach for behavioral biometric 

based static authentication when the user performs a password pattern on the touchscreen. 

As discussed earlier, static user authentication has inherent limitations and therefore, 

continuous authentication approaches are more desirable for securing smartphones. Most 
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of the existing approaches for continuous authentication are based on behavioral 

characteristics acquired during the user’s continuous interaction with the device. 

Frank et al. [64] proposed an approach for continuous user authentication using 30 

behavioral features extracted from the touchscreen input. Authors explored two 

classifiers namely, k-nearest neighbors (k-NN) and support vector machine (SVM) and 

reported EER between 0% and 4% for different experimental scenarios. However, the 

authors considered only up-down and left-right scrolling in their study. Feng et al. [65] 

developed a glove sensor that captures linear and angular acceleration of the finger 

movement. By combining the information acquired from the touchscreen and the sensor 

glove, their approach yielded false acceptance rate (FAR) of 4.66% and false reject rate 

(FRR) of 0.13%. However, the use of additional sensor to improve the accuracy is a 

major drawback. In another work, Feng et al. [66] proposed to maintain separate 

templates for each application. Their approach was evaluated on a dataset of only 23 

users. In addition, the increased memory requirements due to separate templates might 

limit its applicability in mobile phones. Authors in [67] presented an approach that uses 

21 features, which are fed into a neural network classifier. They also employed particle 

swarm optimization (PSO) to optimize the neural network and reported an improved EER 

of 2.92%. Authors in [68] acquired 22 multi-touch gestures such as drag, swipe, pinch 

and user-defined gestures on an iPad. They employed dynamic time warping (DTW) for 

matching and achieved an average EER of 7.88%. Antal et al. [69] gathered data from 71 

users for horizontal and vertical scrolling using eight different tablets and mobile phones. 

The authors explored k-NN and random forest algorithm for classification and reported 

more than 95% accuracy. However, the authors considered only horizontal and vertical 

scrolling in their work. Zhao et al. [70, 71] proposed a novel method for user 

authentication, in which the trace of points (swipe gesture) is converted into an image. 

They represented the trace movement and pressure as shape and intensity values in a two-

dimensional (2D) image. On a dataset of 30 users, their approach achieved 2.62% EER 

when six gestures [70] were combined. Fierrez et al. [72] evaluated a behavioral pattern 

based approach on four public databases of touch gesture data collected while the users 

performed horizontal and vertical swipes. Mahbub et al. [73] computed a total of 24 

features, including stroke duration, mid-stroke pressure and mean resultant length from 
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the swipe gesture data. Their method achieved EER ranging from 22% to 38% using 

different classifiers on a dataset of 48 subjects. Kumar et al. [74] investigated the fusion 

of swiping gestures, typing patterns and phone movement patterns collected from 28 

users. Their method achieved 93.33% authentication accuracy for the feature level fusion 

of swiping and phone movement patterns, and 89.31% authentication accuracy for the 

score level fusion of typing and phone movement patterns. In [75], the authors 

demonstrated that the swipe gesture based-continuous authentication using one-class 

classifier is possible if sufficient training data of the genuine user is available. Sitov et al. 

[76] collected behavioral data such as hand movement, orientation of the device, tap 

events and keystroke features, while the user was sitting and walking during his 

interaction with the device. The authors achieved the best EER of 10.05% on the sitting 

dataset and 7.16% on the walking dataset, when all the features were combined at score 

level. Zhang et al. [77] proposed a sparse representation-based approach, which utilized 

linear and kernelized dictionaries for evaluating swipe gestures. Serwadda et al. [78] 

collected behavioral data such as pressure, finger area and time event during the user’s 

interaction with the device. They investigated the performance of ten classifiers and 

achieved the best mean EER of more than 10%. Li et al. [79] utilized WiFi and 

accelerometer sensor data for user authentication when he or she interacts with the 

application installed on the smartphone for 3 seconds. In another work, Li et al. [80] 

collected accelerometer and gyroscope sensor readings for user authentication during the 

user’s interaction with the application installed on the smartphone. Lee et al. [81] 

proposed an approach for user authentication, which utilized keystroke data such as time, 

coordinates and finger size in addition to motion sensor readings such as accelerometer, 

gyroscope and rotation. Authors in [82] investigated deep learning autoencoder, which 

utilized accelerometer sensor readings acquired during the user’s interaction with the 

device for continuous user authentication. Authors in [83] performed continuous user 

authentication using behavioral characteristics captured during the user’s interaction with 

the device. The authors computed deep features using Siamese convolutional neural 

network (CNN) and performed classification was performed using one-class SVM. A 

detailed survey on touch dynamics-based user authentication in mobile devices can be 

found in [84]. 
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1.2.2 Gender recognition 

In recent years, an increasing number of researchers have focused their efforts on soft 

biometrics traits such as age, gender and ethnicity of people to enhance the performance 

of biometric recognition systems. Such soft biometric attributes can be utilized in various 

applications such as surveillance, biometric authentication, access control, marketing and 

human-machine interactions. In addition, the gender information can be used in pervasive 

computing applications. For example, the information can be communicated to devices 

embedded in the smart space to adjust the intensity and color of the room lighting based 

on general preferences of the identified gender. Gender information can also be utilized 

by access control systems in smart spaces, where only a particular gender (male or 

female) is allowed to enter. Human beings can easily discriminate between male and 

female by looking at the face, analyzing the style of walking or listening to the speech. 

However, automated gender identification by computer is still a challenging task [85]. 

Researchers have extensively studied gender classification using face [86-88] 

biometrics. The authors in [86] utilized near-infrared and thermal face images for gender 

classification. They employed histogram of local binary patterns as the feature vector and 

evaluated the performance using different classifiers such as SVM, k-NN, and Adaboost. 

Lu et al. [87] identified gender and ethnicity by consolidating the range and intensity 

information from facial scans. Danisman et al. [88] proposed a fuzzy inference-based 

gender classification approach, which utilizes hair volume, mustache, and information 

from a vision-sensor. Additionally, researchers have investigated other physiological 

biometric traits such as ear [89], fingerprint [90], hand geometry [91] and iris [92, 93] for 

gender identification. 

In the literature, gender recognition using traditional behavioral biometrics such as 

signature [84], video-based gait [95-97], voice [98, 99] and keystroke [100, 101] has been 

studied extensively. Other behavioral characteristics [102, 103] have also been 

investigated for gender recognition. Inspired by the problem of hidden identities in social-

networking sites, Peersman et al. [102] proposed an approach to recognize the age and 

gender based on the user’s behavior. This information, for example, can help protect the 

minors from pedophiles on the prowl in social media. The authors collected data from a 

Belgian social-networking site for evaluations. The features extracted from the short chat 
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messages include words, emoticons, and punctuations. Balen et al. [103] performed 

mouse dynamics based gender recognition and evaluated their approach on a dataset of 

94 users. They collected 256 mouse movements from which temporal, spatial and 

movement accuracy metrics are computed.  

A comprehensive review of biometric-based gender recognition is presented in [85] 

and [104]. Researchers have also investigated multimodal approaches that involve a 

combination of multiple biometric traits for gender classification [90, 105-107]. Shafey et 

al. [105] performed a fusion of visual (face) and acoustic information to improve the 

performance of gender classification. Li et al. [90] proposed a fusion of face and 

fingerprint for gender recognition. The authors in [106, 107] performed gender 

classification using face and gait biometric traits. In biometric systems, the authentication 

accuracy can be enhanced by supplementing traditional biometric traits with soft 

biometric traits such as gender [108-110]. Jain et al. [108] demonstrated improved 

performance when soft biometric traits such as gender, height, and ethnicity are 

incorporated into user authentication that employs face and fingerprint as primary 

characteristics. Park et al. [109] achieved improvement in performance when soft 

biometric traits such as gender, ethnicity and facial marks (scars, moles, and freckles) are 

incorporated into face recognition. Similarly, Idrus et al. [110] demonstrated performance 

enhancement when soft biometrics such as gender, age, and handedness are combined 

with the behavioral biometric characteristic namely, keystroke dynamics. 

Over the last decade, the use of smartphones has increased rapidly. Currently, 

smartphones play a significant role in our everyday life. Therefore, researchers have also 

focused their efforts on developing several applications, including smartphone-based 

healthcare systems [111-113]. Ogunduyile et al. [111] utilized the built-in sensors in 

mobile phones for diagnosis, remote monitoring and to provide advice to patients. Ren et 

al. [112] also utilized the built-in sensors to detect spoofing in mobile healthcare systems. 

Minutolo et al. [113] proposed an innovative and efficient decision support system to 

provide remote health monitoring. They also showed the effectiveness of the system in 

real-time conditions on mobile devices. Incorporating gender information into mobile 

healthcare systems can enable gender-specific medical advice to the patients, especially 

in smartphone-based remote medical advice services [114]. Furthermore, gender 
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information in smartphones can be used to improve user’s interaction with the device 

[115]. Specifically, gender information can be used to present better search results for 

shopping, themes, and new applications to the smartphone user. Another potential 

application is the targeted advertisement, in which advertisements can be recommended 

based on the user’s gender [116, 117]. As reported by a study [118], women are more 

concerned about their safety and use their phones more for safety purposes as compared 

to men. The existing mobile applications for women safety can also utilize the gender 

information to improve its safety features.  

Researchers have investigated the problem of gender recognition in mobile phones 

using physiological biometric traits such as face [119] and ocular [120], as well as 

behavioral biometric traits [121-123]. Eidinger et al. [119] proposed an approach that 

performs age and gender recognition by analyzing the face images acquired using 

smartphones. Rattani et al. [120] explored several texture descriptors for ocular 

biometric-based gender recognition in mobile phones. 

Agneessens et al. [121] analyzed audio signals acquired using a smartphone to 

identify the number of speakers and their gender. The authors in [122] analyzed the 

mobile phone usage to derive information about the user’s gender. Specifically, they 

analyzed the data relating to mobile phone usage that includes information on the number 

of incoming and outgoing calls, duration of calls, number of incoming and outgoing 

messages and the number of unique phone numbers connected with the user. Choi et al. 

[123] proposed a method that analyzes text messages for predicting mobile phone users’ 

gender. 

Table 1.1 shows a summary of the existing methods for mobile phone-based gender 

recognition using behavioral biometrics. In this table, ACC stands for the classification 

accuracy. 

1.2.2.1 Gender recognition using touchscreen gestures 

In the recent past, researchers have investigated gender recognition in mobile phones 

using keystroke dynamics [124, 125] and touch gestures [115, 125, 126]. The comparison 

of these methods is presented in Table 1.1. Buriro et al. [124] extracted time-based 

keystroke features from 4 or 16 digits secret key entered by the user to determine his/her 

age, gender, and operating hand information. The approach proposed in [125] utilizes 
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Table 1.1: A summary and comparison of the existing methods for gender classification in 

mobile phones using behavioral biometrics 

Study Modality Methodology 

Number of 

subjects in 

the dataset  

Best 

performance 
Remarks 

Agneessens 

et al. [121] 
Speech 

Mean of 

probability 

distribution 

function with 

predefined 

threshold 

1 male  

and  

1 female 

ACC: 90% 

(i) Suited for telephone-

based applications 

(ii) Evaluated on a small 

dataset 

Sarraute et 

al. [122] 

Mobile 

phone 

usage 

A set of features 

based on 

incoming and 

outgoing calls 

and SMS  

284150 males  

and  

215850 

females 

ACC: 82.8% 

(i) The data should be 

analyzed for a longer 

period of time for better 

performance 

(ii) It is difficult to predict 

the gender if there is no 

incoming or outgoing 

activity. 

Choi et al. 

[123] 
Text data 

Based on 

similarities 

between the text 

data and the 

word-set of each 

gender 

16 males and 

16 females 
F-score: 0.87 

(i) Requires less 

computation 

(ii) Some of the words 

cannot be classified into 

either category, i.e., 

unclassified cases 

(iii) In some languages, the 

texts used by the male 

and female users are 

subtle 

Buriro et 

al. [124] 
Keystroke 

A set of timing 

based keystroke 

features with 

random forests 

classification 

45 males and  

105 females 
ACC: 82.8% 

(i) No risk of privacy of 

users 

(ii) User needs to remember 

password  

(iii) The performance is not 

very promising 

Antal and 

Nemes 

[125] 

Keystroke 

A set of 71 

features with 

random forests 

classification 

18 males and 

18 females 
ACC: 64.76% 

Swipe 

gestures 

A set of 9 

features with 

random forests 

classification 

38 males and 

38 females 
ACC: 57.16% (i) No need to remember 

password 

(ii) Evaluated on a small 

dataset. 

(iii) Only horizontal swipes 

are considered. 
Antal et al. 

[126] 

Swipe 

gestures 

A set of 15 

features with k-

NN, random 

forests and SVM 

classifiers 

9 males  

and 

 9 females 

ACC: 88% 

Miguel-

Hurtado et 

al. [115] 

Swipe 

gestures 

A set of 14 

features with 

multilinear 

logistic 

regression 

classifier 

57 males and 

59 females 
ACC: 78.2% 

(i) Vertical swipes are also 

considered. 

(ii) The performance is not 

very promising, 

therefore it does not 

seem a reliable way to 

classify gender 

(iii) query sample is the 

average of each feature 

across all the samples 

from the user 

(iv) zoom-in and zoom-out 

gestures are not 

considered 
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Weiss and 

Lockhart 

[133] 

Gait 

A set of statistical 

features with NN, 

IB3 and J48 

classifiers 

38 males and 

28 females 
ACC: 71.2% 

(i) Can be performed 

unobtrusively 

(ii) Data from only the 

accelerometer sensor is 

employed 

(iii) Evaluated on a small 

dataset 

(iv) Variations in walking 

speed are not considered 

Jain and 

Kanhangad 

[135] 

Gait 

Multi-level local 

pattern-based 

features with 

bagging classifier 

25 males and 

17 females 
ACC: 77.45% 

(i) Can be performed 

unobtrusively 

(ii) Readings from both 

accelerometer and 

gyroscope sensors are 

explored 

(iii) Evaluated on a small 

dataset 

(iv) Different walking speeds 

are considered but no 

cross-speed 

experimental results 
 

behavioral information extracted from a 14-digit password as well as from the swipe 

gestures performed by the user while interacting with touchscreen-based mobile phones. 

To predict the user’s gender using keystroke patterns, the authors employed time-based 

features, pressure and finger area information. On the other hand, they computed features 

such as velocity, mean of finger area and mean of accelerometer sensor readings for 

gender classification using touch swipes. Their approach achieved classification accuracy 

of 64.76% and 57.16% on the keystroke and swipe gesture datasets, respectively. In their 

work, only horizontal swipe gesture has been explored for gender recognition. Antal et al. 

[126] computed statistical features namely, pressure, finger area and x - y coordinate 

values from horizontal swipes. They evaluated the performance using 3-fold cross-

validation on a dataset of 18 subjects. The main limitation of their work is that the 

performance was evaluated on a small dataset with user overlap between the training and 

test set. In addition, the authors considered only horizontal swipe in their study. The 

authors in [115] acquired data relating to both horizontal and vertical swipes from 57 

males and 59 females. The performance of their approach was evaluated using 10-fold 

cross-validation. Since the average of each feature across all samples (for every swipe) of 

a subject is computed, the issue of user overlap does not arise. The drawback is that their 

test feature vectors are also computed by averaging each feature across all the samples of 

a user. 
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All of the aforementioned existing works utilize pressure information acquired from 

the smartphone sensor. This is a major drawback as most of the latest smartphones do not 

sense the pressure exerted by fingers on the touchscreen. The usefulness of information 

that can be extracted from motion sensors in smartphones remains largely unexplored, 

except for the approach proposed by Antal et al. [125] that utilized accelerometer sensor 

readings for touch gesture-based gender identification. Furthermore, the gestures 

considered in the existing works are limited to horizontal and vertical swipes, and 

gestures such as zoom-in and zoom-out have never been explored for touch gesture-based 

gender recognition. Although the existing studies have validated the potential of features 

extracted from touch gesture data for gender recognition and reported promising results, 

there is a pressing need to further improve the performance of smartphone-based gender 

recognition before it can be incorporated into real-world applications. 

1.2.2.2 Gender classification using gait information 

Vision-based gait biometric traits have also been employed for gender classification. Hu 

et al. [95] employed shape descriptor for spatial information and periodic shape 

variations for temporal information. Li et al. [96] developed an algorithm to obtain gait 

information from the movements of different parts of the silhouette. Lu et al. [97] 

investigated arbitrary walking directions to recognize the identity and gender. Igual et al. 

[127] and Kastaniotis et al. [128] performed gender recognition using gait data captured 

from a depth camera. Igual et al. [127] proposed a fast feature extraction algorithm that 

utilizes a three-dimensional (3D) point cloud obtained from gait image sequences. 

Kastaniotis et al. [128] developed a method in which motion of frames is encoded using 

an angular representation. 

Several approaches have also been proposed for user authentication based on gait 

biometrics captured using wearable sensors [6, 129-131]. Zhang et al. [6] proposed an 

approach for user authentication by capturing gait information from wearable 

accelerometer sensors placed at various locations on the human body. Thang et al. [130] 

employed only the accelerometer sensor readings, while the authors in [131] utilized gait 

information captured from both the accelerometer and gyroscope sensors for smartphone-

based user authentication. Soft biometric traits such as gender, age and height have been 
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determined in [132] using gait signals acquired from four dedicated body-worn sensors 

placed at different locations on the body. 

The comparison of the approaches available in the literature for gait-based gender 

recognition is presented in Table 1.1. Weiss and Lockhart [133] identified soft biometric 

traits such as height, weight, and gender using 43 statistical features extracted from the 

built-in accelerometer sensor readings. They investigated the performance of different 

classifiers from the Weka data mining tool [134], particularly, instance-based learning 

(IB3), J48 decision tree and multilayer neural network. However, their study is limited to 

gait information obtained from only the accelerometer sensor. In a more recent work 

[135], the combination of information captured by the accelerometer and gyroscope 

sensors in a smartphone has been investigated for gender recognition. The results 

presented in [135] suggest that the combination of gait information captured by the two 

sensors results in improved performance for gender classification. However, the 

performance of gait-based gender recognition in smartphones needs to be improved 

significantly, before it can be incorporated into mobile phone-based healthcare services 

or other real-world applications. 

1.2.3 Human activity recognition 

Activity recognition, which is an integral task in several health monitoring applications 

[136, 137], is performed by capturing the contextual information while a user performs 

different activities. Excessive sitting and lack of adequate levels of physical activity are 

associated with health problems such as obesity, diabetes, cardiovascular disease, poor 

metabolic health and depression [137], leading to the increased risk of mortality. 

According to a study [138], life expectancy can be increased by two years, if individuals 

in the USA reduce their sedentary time to less than 3 hours per day. Activity recognition 

can be used for continuous analysis of the daily activities performed by the user. Such an 

analysis is useful in understanding the behavior and thereby, making it possible to 

provide automated suggestions for reducing the risk factor for various non-communicable 

diseases. In addition to healthcare applications, activity recognition is also useful in 

applications such as smart homes, security and transportation mode detection [139]. 
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The contextual information for activity recognition can be collected by placing 

sensors such as camera in the environment. This approach, however, is only suited for 

applications operating in controlled environments [140]. Another approach to activity 

recognition is using body-worn sensors, which are appropriate for uncontrolled indoor 

and outdoor environments. In this approach, the information is usually collected from a 

set of dedicated body-worn motion sensors, which are placed at different body locations 

such as wrist, chest and ankle. In comparison, this approach is less user-friendly as the 

body-worn sensors may cause inconvenience. Also, the data collection in this approach 

cannot be performed inconspicuously. However, the aforementioned drawbacks can be 

overcome by utilizing built-in inertial sensors of smartphones for activity recognition. 

Smartphones, over the last decade, have become an indispensable part of our daily lives. 

Typically, these devices have built-in sensors such as accelerometer, gyroscope, global 

positioning system (GPS), magnetometer and microphones. For activity recognition, the 

data from smartphone sensors can be collected by keeping the phone in the user’s trouser 

pocket, while he/she performs daily activities such as sitting, standing, walking. The key 

advantage of this approach is that the data collection, which can be performed 

unobtrusively [140], does not require any additional hardware. Therefore, this approach 

to activity recognition is well suited for continuous analysis of the user’s daily activities. 

In the literature, activity recognition using sensors placed in the environment and the 

dedicated body-worn sensors have been extensively studied. A detailed survey on activity 

recognition using wearable sensors is presented in [141-143]. The authors in [144, 145] 

explored motion sensors for activity recognition. Specifically, their approaches involve 

placing wearable sensors at multiple body locations. In [144], the authors collected bi-

axial accelerometer data from sensors placed at four different limb locations and a sensor 

at the right hip. The approach [145] uses two sets of tri-axial accelerometer sensors 

attached to the left and the right sides of a waist belt. Tapia et al. [146] developed a real-

time activity recognition system using five tri-axial accelerometer sensors and a heart rate 

monitor. In general, the approaches using multiple wearable sensors achieve high 

accuracy for activity recognition. However, as mentioned previously, these sensors may 

become too cumbersome to wear, especially for continuous activity recognition in which 

users may have to wear the sensors for extended periods of time.  
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Activity recognition using inertial sensors in smartphones has also been investigated 

in the literature. Bieber et al. [147] developed a mobile phone application that detects 

daily physical activities using the built-in accelerometer. Kwapisz et al. [148] performed 

activity recognition using the accelerometer data collected from a smartphone. The 

subjects kept the phone in the front pocket of their trousers while performing the daily 

activities such as walking, jogging, ascending stairs, descending stairs, sitting, and 

standing. Lv et al. [149] performed activity recognition using the accelerometer sensor 

readings collected from a smartwatch and a mobile phone. Dernbach et al. [150] 

investigated the usefulness of both accelerometer and gyroscope sensor readings for 

classification of simple as well as complex activities. The performance of their approach 

for the classification of complex activities is not very promising. Kwon et al. [151] 

presented an unsupervised machine learning based method for activity recognition. 

Recently, Chen et al. [152] employed readings from the accelerometer and gyroscope 

sensors in a smartphone for classification of five different activities. The authors explored 

time, frequency and wavelet domain features and Kolmogorov-Smirnov test based 

dimensionality reduction for activity recognition. Shoaib et al. [153] performed 

smartphone based activity recognition using hand and leg movement data collected from 

the pocket and the wrist positions. In addition to the routine physical activities, the 

authors considered activities such as typing, smoking and eating. A comprehensive 

survey of inertial sensors based activity recognition in the smartphone can be found in 

[154, 155].  

Anguita et al. [156] considered six activities namely standing, sitting, laying, walking, 

downstairs and upstairs. A set of 27 additional signals was derived from the tri-axial 

accelerometer and gyroscope sensor readings. Their approach, which employs statistical 

features and SVM classifier, achieved 96.33% average classification accuracy on a 

dataset of 7352 training and 2947 test samples. Wu et al. [157] investigated a set of time 

and frequency domain features and k-NN classifier for smartphone based activity 

recognition. Performance evaluation using 10-fold cross-validation yielded 90.2% 

average classification accuracy on a dataset that contains 2807 sensor readings 

corresponding to nine different activities. Since the aforementioned works demonstrated 

the feasibility of recognizing activities using the built-in sensors in smartphones or a 
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similar device with promising performance on large datasets, there is a pressing need to 

develop approaches that provide highly accurate and reliable performance. Moreover, 

enhancing the performance is imperative for the smartphone-based solution to be a 

superior alternative to the dedicated body-worn sensor based methods in real-world 

applications.  

1.3 Performance measure 

The performance measures employed in this thesis for biometrics-based user 

authentication and classification approaches are discussed below: 

1.3.1 Receiver operating characteristic 

The evaluation of user authentication method presented in this thesis is performed using 

receiver operating characteristic (ROC) curve, which is a plot of FAR versus genuine 

acceptance rate (GAR) [29]. Additionally, the user authentication method is compared 

using the scalar performance measure namely, equal error rate (EER). EER corresponds 

to the crossover point of FAR and FRR curves. While FAR indicates the probability of an 

imposter being mistakenly accepted as a genuine user, FRR indicates the probability of a 

genuine user falsely rejected as imposter user. FRR can also be computed as 1-GAR. If 

the query sample belongs to the same user as the template, the user is referred to as 

genuine user and the score generated by comparing the two samples is denoted as 

genuine score. On the other hand, if query sample and template belong to different users, 

the user is referred to as imposter user and the score generated by comparing the two 

samples is denoted as imposter score.  

1.3.2 k-fold cross-validation 

The classification approaches employed in this thesis are evaluated using k-fold cross-

validation. In this scheme, the data samples are divided in to k-partitions [158]. Out of 

them, k-1 partitions are used for training purpose and the remaining one partition is used 

for testing. This process is repeated k times by considering each of the k-partitions as a 

testing partition. Finally, value of the performance metric obtained in each of the 

repetitions is averaged. 
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1.4 Challenges and objectives  

Lately, there has been much research focus on the analysis of information acquired from 

smartphones for various applications. In this thesis, we focus on three problems namely, 

biometric authentication, gender recognition and physical activity recognition using 

smartphone sensor data. In the preceding sections, we have discussed various drawbacks 

of the solutions, which exist for the aforementioned problems. In addition, most of the 

existing approaches have been evaluated on small datasets, and the experiments to 

ascertain their performance on datasets collected using multiple devices have largely 

been ignored. 

In general, information acquired from the built-in sensors in smartphones has not 

been fully exploited for gesture-based user authentication and gender recognition. The 

existing methods for gait-based gender recognition and activity recognition utilize 

dedicated body-worn sensors for signal acquisition. The dedicated body-worn sensors are 

generally expensive and not suited for various indoor and outdoor scenarios. Since the 

user needs to wear these sensors while performing the activity, the data cannot be 

collected unobtrusively. Additionally, it may be too cumbersome to wear these sensors, 

especially for continuous monitoring. In addition to the above-mentioned specific 

drawbacks, obtaining highly accurate and reliable performance for approaches that utilize 

smartphone sensor data remains a major challenge, which needs to be overcome in order 

for these solutions to be useful for real world applications. 

The prime objective of this thesis is to enhance the capabilities of smartphone-based 

biometric recognition and smartphone-based health monitoring systems through the 

analysis of human behavioral information acquired from the smartphone’s built-in 

sensors. The specific objectives of this thesis are as follows: 

(1) To investigate the suitability of the information acquired from the built-in sensors 

of the smartphone for biometric authentication, gender recognition, and physical 

activity recognition. 

(2) To devise novel approaches that provide highly accurate and reliable 

performance and are suitable for real-world deployments. 

(3) To evaluate the performances of the proposed approaches on large datasets. 
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(4) To ascertain the performances of the proposed approaches on datasets collected 

using different devices.  

1.5 Thesis contributions 

In this thesis, we aim to develop efficient approaches for smartphone-based biometric 

authentication, gender recognition, and physical activity recognition based on human 

behavioral characteristics. Specifically, we analyze the data acquired from the built-in 

sensors in a smartphone to extract user’s behavioral information useful for the above-

mentioned problems. We also focus on overcoming some of the drawbacks of the 

existing approaches. The performances of the approaches proposed in this thesis are 

evaluated on relatively large datasets collected using two different devices. Additionally, 

we perform performance comparisons with the existing approaches. Major contributions 

of this thesis can be summarized as follows:  

(i) We propose an approach for user authentication in smartphones using behavioral 

biometrics. The approach involves analyzing behavioral traits, while the user 

performs different gestures during his interaction with the device. In addition to the 

commonly employed features such as x - y  coordinate information and finger area, 

the proposed approach investigates the usefulness of information acquired from 

accelerometer and orientation sensors. The feature set is further enriched with 

features such as point curvature and curvature of the swipe. The feature matching is 

performed using the modified Hausdorff distance (MHD).  

(ii) We present an approach for gender recognition in smartphones using touchscreen 

gestures performed by the user. The proposed work investigates the information 

extracted from the built-in sensors in a smartphone to identify the user’s gender. 

Specifically, behavioral characteristics reflected in accelerometer sensor readings, 

gyroscope sensor readings, orientation sensor readings and finger area are captured 

during the user’s interaction with the touchscreen device. These characteristics are 

further enriched by deriving a secondary set of attributes such as velocity of swipe, 

point curvature, and length of swipe. We have considered touch gestures such as 

horizontal swipes, vertical swipes, zoom in and zoom out for gender classification. 

Additionally, different combinations of these gestures have been explored to improve 
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the performance of gender recognition. Our approach involves forming two-

dimensional attribute maps for each of the six gestures using a set of attributes. GIST 

descriptors are then computed on the attribute maps to obtain a holistic image 

representation in the form of a low-dimensional feature vector.  

(iii) We propose a novel approach for classification of the gender of a smartphone user 

using gait signals. The proposed work explores the combination of gait information 

collected from accelerometer and gyroscope sensors for gender recognition in 

smartphones. Histogram of gradient (HG) method is proposed to extract features from 

the gait data. We have considered three variations in speed namely, slow, normal and 

fast to determine the gender of the user. In addition, we have performed cross-speed 

experiments to analyze the impact of speed on the performance of gender recognition. 

(iv) We propose a descriptor-based approach for activity classification using built-in 

sensors in smartphones. In addition to the acquired accelerometer and gyroscope 

sensor readings, a set of time and frequency domain signals are derived to identify the 

activities performed by the user. In the proposed approach, two descriptors namely, 

HG and centroid signature based Fourier descriptor (FD), are employed to extract 

feature sets from these signals. We have investigated the performance of the feature 

and score level fusion of these descriptors. Furthermore, we have demonstrated the 

usefulness of the additional time and frequency domain signals employed in this 

work. 

1.6 Organization of the thesis 

The subsequent chapters of this thesis are organized as follows: 

Chapter 2 presents the proposed approach for user authentication in smartphones using 

touch gestures captured during the user’s interaction with the device. This chapter also 

details the Android application developed to collect the touch gesture data employed to 

achieve the goal. In addition, this chapter discusses different score normalization and 

score fusion approaches.  

Chapter 3 describes our approach for gender recognition in smartphones using 

behavioral information collected during his or her interaction with the device. This 
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chapter also discusses the 2D attribute map formed by employing the primary and 

secondary sets of attributes. It also provides a brief overview of GIST descriptor.  

Chapter 4 presents details of the proposed gender classification approach that utilizes the 

gait information obtained using the built-in accelerometer and gyroscope sensors in 

smartphones. This chapter also describes the Android application developed to acquire 

gait signals for gender recognition. Further, it provides a detailed description of the 

proposed HG descriptor. 

Chapter 5 details the proposed descriptor-based approach for activity classification using 

the accelerometer and gyroscope sensors in smartphones. This chapter discusses the 

centroid signature based FD in detail and presents descriptions of the datasets employed 

for performance evaluation. 

Chapter 6 presents the conclusions and directions for future research. 
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Chapter 2 

Personal Authentication in Smartphones using 

Touchscreen Gestures  

Nowadays, people often use their mobile phones for performing banking transactions, 

accessing and storing confidential information such as corporate data, emails and social 

media accounts. They also store important and sensitive information on their 

smartphones. Therefore, it is extremely important that these devices are able to perform 

user authentication. Password-based authentication can be employed to secure the mobile 

phones, but passwords can be easily stolen or forgotten. Behavioral biometrics can 

provide a more secure and reliable alternative to password-based authentication in 

smartphones. In this chapter, we present a touch gesture based user authentication 

approach in smartphones. The proposed approach utilizes the built-in sensors of the 

smartphone along with the commonly used features such as x - y coordinate locations 

and finger area. The major contributions of this work can be summarized as follows:  

(1) We propose a new approach for user authentication in smartphones using 

modified Hausdorff distance (MHD) for matching. 

(2) This study investigates the usefulness of information acquired from accelerometer 

sensor and orientation sensor for user authentication. 

(3) Performance evaluation of the proposed approach is performed on a relatively 

large dataset of 104 users. 

(4) Performance evaluation on a second dataset of 30 users acquired using another 

smartphone to study the impact of device on the verification performance. 

The rest of the chapter is organized as follows: The proposed approach is detailed in 

Section 2.1, in which firstly, an overview of the approach is provided followed by 

detailed descriptions of techniques employed for feature extraction, score computation, 

score normalization and fusion of scores. Section 2.2 presents experimental results and 
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discussion. This section also presents a description of the datasets used for performance 

evaluation. Finally, Section 2.3 summarizes this chapter. 

2.1 Proposed approach 

Fig. 2.1 shows a complete overview of the proposed approach. In this approach, an 

Android application is employed to capture the behavioral data during user’s interaction 

with the device. Specifically, a set of behavioral data is captured at every touch point 

when the user performs a specific gesture on touchscreen. In this study, we consider the 

following seven gestures: left to right swipe (L2R), right to left swipe (R2L), scroll up 

(SU), scroll down (SD), zoom in (ZI), zoom out (ZO) and single tap (ST). The set of data 

captured by our application for each of the above gestures include x - y coordinates, 

accelerometer sensor readings, orientation sensor readings and the area covered by the 

finger on the screen. In the next step, the acquired data is processed to identify the 

category of the gesture. This is done in order to facilitate the matching of feature 

templates of the corresponding gestures in the matching stage. 

 

 

 

 

 

 

Figure 2.1: Overview of the proposed approach for user authentication. 

  In addition to the behavioral data, which we also refer to as raw data, captured by 

our application, two additional features are computed by using the x - y  coordinate 

information. One of the features is the curvature at each touch point of swipe and the 

other one is the curvature of swipe. The computation of these features is detailed in 

Section 2.1.2. During the enrolment phase, the behavioral data, along with the two 

extracted features are stored as feature templates in the database. In this way, the database 

contains feature templates corresponding to each of the seven gestures performed by 

every user. During the authentication stage, the Android application running on the 
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smartphone captures user’s behavioral data. In the first step of processing, the type of 

gesture performed by the user is identified and the two additional features are extracted to 

form a query feature set. This is followed by matching of the query feature set with the 

corresponding feature templates from the database, generating multiple matching scores. 

These matching scores are then normalized and combined using fusion of scores 

technique to obtain the final score. Finally, the decision stage utilizes the final score to 

determine whether the user is genuine or impostor. 

2.1.1 Classification of gestures 

In this work, we considered the following seven most commonly used gestures in 

touchscreen devices: L2R, R2L, SU, SD, ZI, ZO and ST. L2R and R2L are commonly 

used for performing tasks such as unlocking the phone, browsing photos and switching 

between the home pages. SD and SU gestures are often performed while reading a 

document and browsing internet. ZI and ZO gestures are used for viewing specific 

content in images and documents, while ST is used to write a message or mail and more 

generally, to select an option [70]. As discussed in the previous section, the identification 

of the gesture performed by the user is an important task in the proposed approach for 

user authentication. For this purpose, we developed a simple and efficient heuristic 

method based on the x - y coordinate information captured by the application. In this 

method, L2R, R2L, SU and SD gestures are identified by computing differences between 

x and y coordinates of the first and last points of the gesture. If the magnitude of the 

difference of x -coordinates is greater than that of y -coordinates, the gesture is either 

L2R or R2L. Further, based on the sign of the difference of x -coordinates, the gesture 

can be classified as L2R or R2L. In a similar way, SU and SD are identified based on the 

difference of y -coordinates. ZI and ZO gestures are first separated from other gestures 

using the finger count on touchscreen. Further, the distance between the start point of one 

finger and the start point of second finger is calculated. Similarly, the distance between 

the two end points is also calculated. If the distance between the start points is greater 

than that of the end points, the gesture is ZO, otherwise the gesture is classified as ZI. 

The identification of ST is trivial as it contains only a single point. 
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2.1.2 Feature extraction  

The feature set in the proposed approach comprises a set of raw behavioral data acquired 

by the Android application and the two additional features extracted from the x - y

coordinate information. The raw behavioral data comprises of keystroke data namely x -

y coordinates and finger area in addition to motion sensor readings such as 

accelerometer sensor readings and orientation sensor readings. The detailed description 

of these constituents of our feature set is provided in Section 1.1: 

Figs. 2.2 and 2.3 show patterns of orientation along the roll for two users acquired at 

two time instances. It may be observed from these figures that the two patterns belonging 

to a user are very similar (high intra-class similarity). It may also be observed that there is 

hardly any inter-class similarity in this case. This has motivated us to explore the 

effectiveness of information from the built-in orientation sensor for user authentication. 

In addition to the set of behavioral data described above, we computed the following 

two additional features for every gesture, except for the ST gesture. Since the ST gesture 

contains only a single point for x - y coordinates, the following features cannot be 

computed. 

 Point curvature: Curvature at each point specifies the slope formed by the user at 

each successive point. At time it , curvature can be computed by [67]: 
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Figure 2.2: Orientation along roll of a user at two time instances. 

 

Fig. 2. Orientation along roll of a user at two time instances. 

 

Fig. 3. Orientation along roll of another user at two time instances. 
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Figure 2.3: Orientation along roll of another user at two time instances. 

where ix , iy  are the x and y coordinates of the sample point at event time it and 1ix  , 1iy   

are the x and y coordinates of the sample point at the previous time event ( 1it  ). Slope at 

the first point is considered to be zero.  

 Swipe curvature: Curvature of swipe specifies the slope formed by the user while 

performing a particular gesture. Curvature of swipe can be calculated by [66]: 
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where startx and starty are the x and y coordinates of the start point of gesture, endx and endy  

are the x and y coordinates of the end point of gesture.  

2.1.3 Score computation and normalization 

During enrolment, feature templates that contain the above mentioned features are 

created for each of the gestures. In a similar way, a query template is formed when the 

user performs a gesture on the touchscreen device. During verification, matching of the 

corresponding feature sets is performed using the modified Hausdorff distance (MHD) 

[159]. The reason for choosing MHD is that it compares each index of query gesture with 

every index of training gesture and vice versa, whereas other distance measures the 

distance between corresponding indices. Additionally, it has also been observed through 

experiments that in Dubuisson and Jain [160] the modified Hausdorff distance (MHD) is 

more robust to outliers and consistently outperforms other possible Hausdorff based 

 

Fig. 3. Orientation along roll of another user at two time instances. 
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distance measures, when used to measure similarity or dissimilarity between two sets of 

points. Therefore, in this work, we employed MHD for computation of matching scores. 

The modified Hausdorff distance between two sets },...,,{ 21 paaaA  and },...,,{ 21 qbbbB   is 

defined as 

      ABhBAhBAH ,,,max,                                       (2.3) 
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In the above equations, .  represents the 2L norm between the two points of sets A

and B . Also, ),( BAh is the forward Hausdorff distance and ),( ABh is the reverse 

Hausdorff distance. Essentially, the average of minimum distances from every point of 

one set with the other set is computed in both forward and reverse directions. The MHD 

is then computed by finding the maximum of the forward and the reverse Hausdorff 

distance.  

The proposed approach for matching features using MHD generates matching scores 

for each of the constituents of our feature set. In the case of a scalar feature, the swipe 

curvature in our case, the feature matching using the MHD effectively reduces to 

matching the corresponding features using the Euclidean distance. As the information 

acquired from the accelerometer and orientation sensors is measured in three directions, 

the matching process generates a total of six scores. The matching of rest of the features 

that include x - y coordinates, finger area, point curvature and swipe curvature generates 

a score each. Therefore, a comparison or a match between a query and reference template 

in the database results in a total of 10 matching scores for each of the gestures, except for 

ST. As discussed earlier, since point curvature and swipe curvature cannot be computed 

for ST, the number of scores generated for a comparison between corresponding ST 

features is only 8.  
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The next step in our approach is to normalize multiple matching scores generated to a 

common domain. There are various techniques available in the literature for score 

normalization [160, 161]. In this work, we have investigated the following techniques for 

score normalization. 

1. min-max: min-max normalization technique linearly transforms matching scores 

into the range of 0 to 1. Normalized matching scores are computed as follows:  
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where min and max  are the minimum and the maximum values of matching scores, 

respectively.  

2. z-score: In this technique, normalized matching scores are computed as follows:  
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where   and   are the mean and standard deviation of matching scores, respectively. 

3. tanh-estimator: The mathematical expression for score normalization using tanh-

estimator is given as follows: 










































 
 101.0tanh

2

1'

G

Gk
k

s
s




                 (2.8)

 

where G and G  are the mean and standard deviation of genuine scores. In Equations 

(2.6), (2.7), (2.8), ks and
'

ks are the matching score and the normalized matching score, 

respectively.  

4. w-score: The w-score scheme is originally proposed for score normalization in the 

recognition framework [160], and the approach uses distribution of scores generated by 

matching a probe to all gallery samples. Since we performed experiments in the 

verification scenario, which is more appropriate for user authentication in smartphones, 

overall distribution of genuine and impostor scores is used for score normalization. This 

is consistent with other score normalization techniques considered in our work. 
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2.1.4 Fusion of scores 

The score normalization technique transforms the scores into a common domain, so that 

the scores can be combined using a fusion method [162]. There are numerous ways by 

which scores can be combined. Some of them are sum of scores, maximum score, 

minimum score, weighted sum and product of scores [163]. In this work, we have 

explored the following rules for combination of matching scores. 

1. Min Rule: In this rule, the combined score is the minimum of the set of scores 

being combined 

),......,,min( 21 nsssS                                (2.9) 

2. Max Rule: The combined score is the maximum of the set of scores being 

combined 
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3.  Product Rule: Product rule is mathematically expressed as follows: 
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4.  Sum Rule: Mathematically, the combined score is computed as follows: 
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2.2 Experimental results and discussion 

Ideally, the proposed approach should be effective on any touchscreen device. To 

ascertain this aspect of the performance of the proposed approach, two different devices 

were selected as they were popular smartphones differing in certain aspects. Specifically, 

they differ in screen size, weight and precision of the finger area measurement. 
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2.2.1 Dataset-I 

Since there is no publicly available database that contains all the behavioral data that we 

have explored in this work, we developed a database of 104 users (Dataset-I). For the 

purpose of data acquisition, we developed an Android application on IntelliJ IDEA 

platform and ran it on Samsung Galaxy S-II GT-I9100 Android phone. Out of 104 users, 

82 users were having prior experience of operating touchscreen phones. Participants in 

the data collection process conducted at our institute primarily included students aged 

between 19 and 36 years. Specifically, the dataset comprises 9 users between the age 31-

36 years, 40 users between 26-30 years and 55 users between 19-25 years. 

Approximately 80% of the participants were students. Among the student participants, 

the majority were studying IT and related subjects, while others were pursing mechanical 

engineering. A few of the student participants were studying the science subjects such as 

bioscience, mathematics and physics. These participants were asked to perform the 

following gestures on the touchscreen: L2R, R2L, SU, SD, ZI, ZO and ST. Each of these 

gestures was performed three times by every user. As described in Section 2.1, the raw 

data captured by our application consists of x - y coordinates, finger area, accelerometer 

and orientation sensor readings from the touchscreen. 

The following sections present results from a set of experiments carried out to 

evaluate the performance of the proposed approach. In our initial experiments, we 

evaluated various combinations of score normalization and fusion techniques. Results 

from these experiments are presented in Section 2.2.2. Based on these results, the best 

techniques for score normalization and fusion are identified and these techniques are 

investigated further.    

2.2.2 Performance of different score normalization and fusion 

techniques 

The objective of this set of experiments is to evaluate the performance of different score 

normalization and fusion techniques for matching gestures in our dataset. Table 2.1 

summarizes EERs obtained for score level fusion of all gestures using various score 

normalization and fusion techniques. As can be seen in this table, using min-max and z-

score normalization techniques results in unacceptably high EERs. This may be because 
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the parameters associated with min-max and z-score normalization are sensitive to 

outliers, and therefore, these approaches are less robust. The robustness of a score 

normalization technique, as defined in [160], is its insensitivity towards outliers. If an 

approach performs better than the other in the presence of outliers, the former approach is 

more insensitive to outliers than the latter and hence, more robust. As can be seen in this 

table, tanh-estimator normalization approach consistently provides the best matching 

performance, except for the case in which fusion is performed with min rule. According 

to the observations in [160], tanh-estimator is highly efficient and robust as it is less 

sensitive to outliers in the matching scores. It can also be noted that EER of w-score 

normalization with max rule is quite high as compared to its performance with other 

fusion rules. The major problem with the max rule is that if any of the individual scores 

being combined is 1 (upper limit of normalized scores), then the fused score gets 

confined to 1. In our experiments, we observed that w-score normalization is more likely 

(than tanh-estimator) to yield a score with value 1 and this leads to high verification error 

as majority of the fused scores have a value of 1. This explains the poor performance of 

the max rule based fusion with w-score normalization. It can also be seen in the table that 

min, max and product score fusion approaches perform poorly compared to sum rule 

based fusion. This may be because min, max and product rule are highly sensitive to 

outliers. A single outlier will affect the fused score in the case of min, max and product 

rule. On the other hand, fusion using sum rule depends on the scores generated by each 

constituent of the feature set. 

Table 2.1: EERs (%) obtained with different score normalization and fusion techniques 

Score normalization 

technique 

Score level fusion technique 

Min Max Product Sum 

min-max 12.84 47.14 50.14 24.12 

z-score 64.29 56.09 50.02 50.64 

w-score 11.76 50 5.43 1.92 

tanh-estimator 27.80 3.40 0.32 0.31 
 

In addition, the combination of tanh-estimator for score normalization and sum rule 

for fusion provides the best matching performance among different combinations 

considered. Fig. 2.4, 2.5, 2.6 and 2.7 show receiver operating characteristics (ROC) of  
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Figure 2.4: ROCs for score level combination of gestures with min rule and different 

normalization techniques. 

 

Figure 2.5: ROCs for score level combination of gestures with max rule and different 

normalization techniques. 
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Figure 2.6: ROCs for score level combination of gestures with product rule and different 

normalization techniques. 

 

Figure 2.7: ROCs for score level combination of gestures with sum rule and different 

normalization techniques. 
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score level fusion techniques with different score normalization schemes. It may be noted 

that for the product and max rule based fusion schemes in Figs. 2.5 and 2.6, ROC curves 

corresponding to the w-score normalization are not plotted. This is due to the nature of 

distribution of fused matching scores. Specifically, range of values of genuine scores is 

quite high with majority of scores having low values and a few of them having very high 

values. This necessitates a very small increment in threshold to plot a smooth ROC curve. 

However, a small step size (threshold increment) results in high computational 

complexity and leads to memory error in MATLAB. 

2.2.3 Performance of score normalization techniques with sum rule for 

fusion  

In this section, sum rule is employed for fusion of scores and performance (in terms of 

EERs) of different score normalization techniques are investigated for matching 

individual gestures. Here, matching of gestures is performed by considering the entire 

feature set. A set of genuine and impostor scores generated using the MHD based 

matching of corresponding features are normalized using min-max, z-score, w-score and 

tanh-estimator techniques. These normalized scores are then combined using sum rule. 

Experimental results are presented in Table 2.2, which shows EERs of individual gestures 

and their combination. It may also be noted from Tables 2.1 and 2.2 that w-score 

normalization scheme performs significantly better than z-score. A similar trend has been 

observed in [161] for recognition. However, more important observation is that tanh-

estimator scheme for score normalization clearly outperforms min-max, z-score and w-

score techniques. This may be due to the fact that min-max technique uses minimum and 

maximum value, while the z-score method employs mean and standard deviation of 

matching scores; hence both these techniques are quite sensitive to outliers in the 

matching scores and cause performance degradation. This observation is also consistent 

with the results presented in [160] for sum rule based fusion. Superior performance of 

tanh-estimator on our dataset as compared to other schemes considered in this study is 

probably due to its robustness to noisy data [160, 161]. 
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Table 2.2: EERs (%) for gesture matching with sum rule based fusion 

Gesture min-max z-score w-score tanh-estimator 

L2R 36.53 48.98 12.03 3.42 

R2L 20.96 48.37 9.44 3.69 

SD 32.03 47.73 13.44 4.68 

SU 33.27 48.39 11.83 3.06 

ST 25.86 46.14 9.96 7.47 

ZI 23.43 45.46 10.83 3.10 

ZO 24.26 45.83 7.02 1.61 

Combined 24.12 50.64 1.92 0.31 

 

2.2.4 Performance of fusion rules with tanh-estimator for score 

normalization 

In this set of experiments, matching scores are normalized using tanh-estimator technique 

and the performance of four commonly used score level fusion rules is evaluated. Table 

2.3 presents EERs achieved while matching individual gestures with this experimental 

setting. This table also presents EERs for score level fusion of all gestures. The 

corresponding ROCs for fusion of all gestures are depicted in Fig. 2.8. It can be observed 

from the table that sum and product rules clearly outperform (with significant reduction 

in EERs) min and max rules for score level fusion. Interestingly, EERs achieved with the 

product rule are quite comparable to that of the sum rule. However, a closer observation 

of the ROCs (in Fig. 2.8) of two of these score level fusion techniques reveals that sum 

rule based fusion yields consistently higher genuine acceptance rates (GAR) for the same 

range of false acceptance rates (FAR). This experimental observation shows that sum rule 

performs better than other fusion schemes is consistent with the observation in [163], in 

which authors reported experimental results from extensive evaluation of different 

combination schemes.   

For the rest of the experiments in this section, tanh-estimator and sum rule are 

employed for normalization and fusion of matching scores, respectively.  This is based on 

our observation from the above set of experiments that these techniques for normalization 

and fusion of matching scores achieve better performance as compared to other 

techniques. 
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Table 2.3: EERs (%) for gesture matching with tanh-estimator for score normalization 

Gesture Min Max Product Sum 

L2R 28.19 5.03 3.48 3.42 

R2L 29.32 6.31 3.64 3.69 

SD 37.74 7.51 4.68 4.68 

SU 33.51 3.95 3.05 3.06 

ST 27.99 8.40 7.54 7.47 

ZI 45.34 4.71 3.23 3.10 

ZO 24.39 2.32 1.60 1.61 

Combined 27.80 3.40 0.32 0.31 

 

 

Figure 2.8: ROCs for score level combination of gestures with tanh-estimator for score 

normalization. 

As a comparative study, we have also implemented dynamic time warping (DTW) 

based matching, as it has been found very effective [63, 66, 68] for user authentication 

based on touchscreen gestures. In order to compare the performance of the proposed 

approach with DTW, we performed two sets of experiments in the verification mode. The 

objective of the first set of experiments was to evaluate the effectiveness of individual 

features, while in the second, we ascertained the matching performance of individual 

gestures and their combination. 
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 In the first set of experiments, we considered one feature at a time for each of the 

gestures. In order to compute EER for each of the features, a set of genuine scores are 

generated by comparing a gesture with the rest of the corresponding gesture samples of 

the same user. This is repeated for all the gestures considered in this work. This 

experimental setting assumes that users perform all gestures during authentication. 

Multiple matching scores generated from matching of these gestures are normalized 

using tanh-estimator technique and then combined using sum rule to obtain a 

consolidated score. Since we have collected three samples of each gesture from 104 

users, the total number of genuine scores generated is 312. Similarly, a set of impostor 

scores are generated by matching gestures of a user with the corresponding gestures of all 

other users in the dataset, resulting in 48204 impostor scores.  

The results from this set of experiments are presented in Table 2.4. As it can be 

observed from this table, the orientation feature achieves EER of 0.56% and outperforms 

all other features considered in this study. Fig. 2.9 shows distribution of genuine and 

impostor matching scores for orientation feature. It can be noticed from the figure, there 

is only a little overlap between the genuine and impostor scores, which explains the 

promising results obtained for gesture matching using orientation feature. 

It is also important to note from Table 2.4 that the proposed approach outperforms the 

DTW based matching for three of the features namely, orientation sensor, x - y  

coordinates and the point curvature, with significant improvement in performance. For 

the rest of the features, the EERs of the two methods are quite comparable, with DTW 

approach achieving marginal improvement over our approach. Fig. 2.10 shows 

performance of the features individually in terms of the ROC for DTW and MHD based 

matching. It can be observed in the figure that accelerometer and orientation sensors 

perform significantly better than the rest of the features employed in this work. 

Additionally, at a FAR of 0.01%, GAR of MHD based matching for orientation sensor is 

100%, while that of DTW based matching is 96.79%. More importantly, it can be 

observed from the figure that MHD based matching works better than DTW for all the 

features except finger area at low FAR. This implies that our approach can be used in the 

applications, where security is a major concern. 
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Table 2.4: EER (%) of individual features 

Features DTW MHD 

Accelerometer sensor 2.91 3.35 

Orientation sensor 1.67 0.56 

x - y coordinates 17.03 11.24 

Finger area 13.06 14.12 

Point curvature 27.36 19.70 

Swipe curvature 21.83 22.70 

 

 
Figure 2.9: Distribution of genuine and impostor scores for orientation feature. 

 

Figure 2.10: ROCs of individual features with DTW and the proposed MHD based matching. 
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In second set of experiments, firstly, we investigated the performance of the proposed 

approach when the user performs only one of the gestures considered in this study. 

Secondly, we also investigated the performance for score level combination of all 

gestures. In order to evaluate and compare the performance of the gestures, we 

considered one gesture at a time. 

A set of genuine scores are then generated by matching a query gesture with the rest 

of the corresponding gesture samples of the same user. As described in Section 2.1.3, 

matching a pair of gestures involves matching of the corresponding features in the feature 

set. Multiple matching scores generated in the process are then combined using sum rule 

to get a consolidated score. In the same way, the impostor scores are obtained by 

comparing a query gesture with corresponding gestures of other users. The process is 

repeated for every gesture and corresponding EERs are calculated. Table 2.5 presents 

EERs obtained for gesture matching using the proposed and the DTW based method. It 

can be seen that ZO gesture provides the best authentication performance in our dataset. 

Also, it can be observed that performance of ST gesture is relatively poor. This is quite 

expected as the ST gesture, being a single point gesture, does not contain much 

information. More importantly, it may also be observed that our approach outperforms 

DTW based matching consistently for all gestures. To further investigate the combined 

performance of all gestures, the scores generated from matching of individual gestures 

are combined using the sum rule. Table 2.5 also shows EERs obtained for this 

experiment. The proposed approach achieves EER of 0.31%, a significant improvement 

(of 80%) over the DTW based method. In other words, the total number of falsely 

accepted impostor and falsely rejected genuine samples has reduced from 5 to 1. Fig. 

2.11 shows comparison of ROCs for the proposed and the DTW based matching for score 

level fusion of all gestures. It can be seen in the figure that MHD based approach 

achieves higher GARs for all FARs. Specifically, at a FAR of 0.01%, GAR of MHD 

based matching for combination of all the gestures is 99.68%, while that of DTW is 

97.76%.  

Table 2.6 shows average time taken to calculate matching scores for individual 

gestures using DTW and MHD based matching. It can be observed from this table that 

the proposed approach, as compared to DTW, requires significantly less time to perform  
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Table 2.5: EER (%) of individual gestures and their combination 

Gesture DTW MHD 

L2R 6.22 3.42 

R2L 4.87 3.69 

SD 8.98 4.68 

SU 3.86 3.06 

ST 8.04 7.47 

ZI 13.20 3.10 

ZO 4.88 1.61 

Combined 1.55 0.31 
 

 
Figure 2.11: ROCs for score level combination (sum rule) of all gestures. 

matching of gestures. It can also be noted that average time taken to match ST gestures is 

very less as compared to other gestures. It is because the ST gesture contains single point 

for matching. In addition, two of the features namely, the point curvature and swipe 

curvature features are not employed for matching ST gestures. Matching of ST gestures 

using MHD achieves highest performance improvement of 80% over DTW. For score 

level combination of all gestures, our approach achieves an improvement of 18.84% over 

DTW based matching. From these experimental results, it is evident that the proposed 

approach outperforms DTW based matching in terms of both error rate and the 

computational time. 
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It may be noted that, in our experiments, we have not considered weighted 

combination (sum) of the matching scores as we do not have adequate data to train the 

system on an independent training subset to obtain optimal values for weights. We 

believe that if optimal weights are employed for combination of matching scores, it may 

be possible to further improve the performance of the system. 

Table 2.6: Time (ms) required for matching individual gestures 

Gesture DTW MHD Performance improvement (%) 

L2R 8.66 5.96 31.18 

R2L 9.24 6.52 29.44 

SD 11.34 8.74 22.93 

SU 11.50 8.79 23.56 

ST 1.30 0.26 80 

ZI 20.76 19.98 3.76 

ZO 14.58 12.55 13.92 

Combined 77.38 62.8 18.84 
 

2.2.5 Performance of orientation, accelerometer versus the rest 

In this section, the individual performance of orientation feature is compared with rest of 

the features. The ROC curves corresponding to the orientation feature and score level 

combination of rest of the features using sum rule are shown in Fig. 2.12. In terms of 

EERs, user authentication based solely on orientation feature yielded 0.56% EER, while 

the sum rule combination of rest of the features yielded an EER of 1.2%.  

 

Figure 2.12: Performance comparison of orientation feature with the sum rule based score level 

combination of rest of the features. 
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Furthermore, we have performed experiments to compare performance of the 

proposed user authentication approach using combination of orientation and 

accelerometer features with the combination of rest of the features. Fig. 2.13 shows ROC 

curves from this set of experiments. It may be noted from this figure that the combination 

of accelerometer and orientation features yielded EER of 0.64%, while the combination 

of rest of the features yielded EER of 6.26%, suggesting that the combination of 

accelerometer and orientation features clearly outperforms the combination of rest of the 

features. The above experimental results indicate that the orientation and accelerometer 

sensor readings carry significant discriminatory information for user authentication in 

smartphones. It may be noted that the data acquired from built-in orientation sensor not 

only provides information on how the user holds the device, but also provides 

measurement of the continuous changes (on all three axes) in the orientation of the device 

while the user performs a gesture. The accelerometer sensor also operates in a similar 

manner providing linear acceleration of the device along the three axes. On the other 

hand, gesture features such as x - y  coordinates, point curvature and swipe curvature rely 

mainly on the pattern (shape) of the gesture performed on the touchscreen. Intra-class 

variability of these gesture patterns causes erroneous matches resulting in higher error 

rates. This probably explains why these features carry limited discriminatory information 

as compared to orientation and accelerometer sensor readings. 

 

Figure 2.13: Performance comparison of combination of orientation and accelerometer 

features with combination of rest of the features. 
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2.2.6 Dataset-II 

To investigate if the device used for data acquisition has any impact on the performance 

of the proposed authentication approach, we evaluated performance on a new dataset, 

which we refer to as Dataset-II. This dataset contains data from 30 subjects acquired 

using another smartphone-Samsung Galaxy Note-II N7100. Out of the 30, only two users 

were not having prior experience of operating touchscreen phones. Similar to Dataset-I, 

most of the participants in collection of Dataset-II were also students. Experimental 

setting for data acquisition remained the same as that of Dataset-I. The performance of 

the proposed authentication algorithm for different features on Dataset-II is summarized 

in Table 2.7. The key observation in Table 2.7 is that, although the individual EERs 

corresponding to different features have changed, their performance trend remains the 

same as in dataset-I. More importantly, it can be observed that the orientation sensor 

readings offer the best discrimination, followed by the accelerometer. It may be noted 

that a one-to-one comparison of EERs reported in Tables 2.4 and 2.7 cannot be made as 

these performance statistics are obtained on two different datasets, with Dataset-II having 

considerable number (about 50%) of new users. The above results suggest that the device 

has no considerable impact on the performance of the proposed approach for mobile user 

authentication. 

Table 2.7: EER (%) of individual features for Dataset-II 

Features EER 

Accelerometer sensor 4.55 

Orientation sensor 0.99 

x - y coordinates 7.63 

Finger area 19.45 

Point curvature 23.07 

Swipe curvature 23.17 

Combined 0.03 

2.3 Summary 

In this chapter, we presented an approach for user authentication in smartphones based on 

behavioral biometrics. The Android application that we have developed in this work runs 

on the smartphones and acquires a set of behavioral data when the user interacts with the 
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device. The modified Hausdorff distance (MHD) is used for matching of features of the 

corresponding gestures, after identifying the category of the gesture performed by the 

user. Performance evaluation on a relatively large dataset (Dataset-I) of 104 users show 

that the proposed MHD based matching achieves better performance (in terms of both 

error rate and computational time) than the approach based on DTW. Our approach 

achieves the lowest EER of 0.31% when all the gestures performed by the users are 

combined at the score level for user authentication. Our experimental results also show 

that the information acquired from the built-in orientation and accelerometer sensors 

carry high discriminatory information for user authentication. This also indicates that the 

way user performs gestures on mobile phones is unique to some extent and the 

information can be exploited for user authentication. The performance of the proposed 

algorithm is also ascertained on a dataset (Dataset-II) of 30 subjects captured using 

another smartphone. The experimental results show a performance trend similar to the 

one on the Dataset-I. It can be inferred that changing the device does not affect the 

performance of the proposed algorithm. The framework for user authentication developed 

in this work is very well suited for continuous authentication in smartphones.  
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Chapter 3 

Gender Recognition in Smartphones using Touchscreen 

Gestures  

In Chapter 2, we have presented an approach for user authentication using touchscreen 

gestures. It has been observed in the literature that the performance of biometric 

authentication can be improved by combining traditional biometric information with soft 

biometrics like gender, age, height, weight, and ethnicity. Gender classification in 

smartphones has a lot of potential applications apart from biometric authentication. The 

gender recognition approaches can also be utilized to validate the gender information 

provided by the user. For instance, in order to gain illegitimate access to the smartphone 

an imposter may not provide the correct gender information. In addition, the interaction 

between human and machine can be enhanced based on the gender information. 

Moreover, the gender information can be used in pervasive computing applications. For 

example, the information can be communicated to devices embedded in the smart space 

to adjust the intensity and color of the room lighting based on general preferences of the 

identified gender. This chapter presents an approach for gender recognition in 

smartphones using touchscreen gestures performed by the user. The behavioral 

characteristics such as accelerometer sensor readings, gyroscope sensor readings and 

finger area are captured during the user’s interaction with the touchscreen device. This set 

of behavioral characteristics is referred to as primary set of attributes. These 

characteristics are further enriched by deriving a secondary set of attributes such as 

velocity of swipe, point curvature, and length of swipe. The two-dimensional attribute 

maps are then formed for the gestures considered in this work by utilizing the primary 

and secondary sets of attributes. We have employed GIST descriptors to determine the 

holistic image representation into a low-dimensional feature vector. The contribution of 

this work can be summarized as follows: a novel approach is presented for gender 

recognition in smartphones using touchscreen gestures. The information extracted from 

the built-in sensors in smartphones is investigated for gender recognition. The suitability 

of an expanded set of touch gestures that includes horizontal swipes, vertical swipes, 
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zoom-in and zoom-out is investigated for gender recognition. Additionally, different 

combinations of these gestures are explored for performance improvement. 

The rest of the chapter is organized as follows: The proposed approach for gender 

recognition is described in Section 3.1. The description of the datasets employed as well 

as the experimental results and discussion are reported in Section 3.2. Section 3.3 

presents summary of this work. 

3.1 Proposed approach 

Fig. 3.1 shows the block diagram of the proposed approach for gender recognition using 

touchscreen gestures. The Android application collects behavioral data during a user’s 

interaction with the smartphone. These behavioral characteristics are collected at every 

touch point when a user performs gestures on the touchscreen. The primary set of 

behavioral attributes acquired using the Android application consists of accelerometer 

sensor readings, gyroscope sensor readings, orientation sensor readings and the area 

covered by the finger on the screen. A total of six gestures are considered in this work 

namely, L2R, R2L, SU, SD, ZI and ZO. These gestures are classified based on the 

starting and end points of the collected x - y   coordinates. In addition to the primary 

attributes, a secondary set of attributes are derived from x - y   coordinates. Feature 

selection is performed on a set of image-based features extracted from the primary and 

secondary gesture attributes to identify the best set of features for gender classification. A 

classifier then generates matching scores by comparing the query sample with the 

training templates. The scores thus generated are combined using a score level fusion 

method. Finally, a decision (based on the consolidated score) is taken as to whether the 

query sample belongs to a male or a female user.  

 

Figure 3.1: Block diagram of the proposed approach for gender recognition. 
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3.1.1 Data acquisition and classification of gestures 

We have developed an Android application to collect behavioral data during the user’s 

touchscreen-based interaction with the smartphone. The behavioral data collected using 

the Android application includes x - y coordinates, accelerometer sensor readings, 

gyroscope sensor readings, orientation sensor readings and the finger area. The x  and y  

coordinates provide locations of the finger at every touch point on the touchscreen when 

the user performs a gesture. Accelerometer sensor readings signify the amount of linear 

acceleration in ,  x y and z  directions. Gyroscope sensor records the angular speed in

,  x y and z directions. Orientation sensor is a position sensor, which determines the 

position of the device with respect to the world’s frame of reference in the three 

directions [4]. The finger area measurement gives the area covered by the finger on the 

touchscreen. The acquired data is processed to identify the user’s gesture using the 

approach described in Section 2.1.1, which relies on the starting and end positions of the 

swipe. 

3.1.2 Feature extraction  

As mentioned previously, our approach uses a set of secondary gesture attributes derived 

from the collected x - y  coordinate data. This set of attributes includes velocity of swipe, 

point curvature, and length of swipe. Velocity at each touch point is a measure of 

distance traveled from previous touch point to current touch point over the time taken. 

Velocity at it  is computed as follows: 
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Point curvature represents the slope formed at each touch point while performing the 

gesture. The curvature at point i  can be determined by [164]: 
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Length of swipe is a measure of distance covered by the finger while performing the 

gesture. At finger location i , length of swipe can be calculated by: 



54 

 

2 2

1 11
( ) ( )i i i ii i

L L x x y y 


         (3.3) 

For each gesture, these secondary attributes are computed at every touch point. The 

next step in our approach involves extraction of features from the primary and secondary 

gesture attributes. For this purpose, a two-dimensional (2D) attribute map is obtained for 

every attribute by forming an image, the size of which is the same as that of the 

touchscreen. This idea of 2D representation of attributes is partly inspired by the 

approach presented by Zhao et al. [71], in which images are formed by using x - y

coordinates and the corresponding pressure values. In our approach, the pixel value at a 

particular pixel in each of the 2D attribute maps is the corresponding attribute value at 

that location on the touchscreen. Since accelerometer sensor, gyroscope sensor, and 

orientation sensor provide the tri-axial readings at each touch point, nine attribute maps 

are formed using these attributes. In addition, four attribute maps are formed by using 

finger area, velocity of swipe, point curvature and length of swipe, as they provide only 

one value at each touch point. In this way, a total of 13 attribute maps are formed for each 

swipe gesture. In the case of multi-touch gestures such as ZI and ZO, locations of both 

the fingers are used to form the attribute maps. Fig. 3.2 shows velocity attribute maps of 

R2L and SU swipes performed by 10 male and 10 female users. In general, it appears that 

female users perform longer horizontal swipes and more curved vertical swipes as 

compared to male users.  

To extract discriminatory features for gender classification, GIST descriptor is 

computed on the attribute maps. GIST descriptor was originally proposed for scene 

recognition by Oliva et al. [165]. We have chosen this descriptor as it captures holistic 

spatial properties of an image in the form of a low-dimensional vector. As can be 

observed in Fig. 3.2, the value of most of the pixels in the attribute maps is zero. 

Therefore, local descriptors do not seem to be appropriate. In the literature, GIST 

descriptor has been successfully employed in various applications involving image 

processing, including recognizing human actions [166], human-human interaction 

recognition [167], scene completion, [168], object/place recognition [169, 170] and copy 

detection [170]. 
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Prior to computing GIST descriptor, attribute maps are enhanced by contrast 

stretching. Thereafter, to compute the GIST descriptors, attribute maps are first 

convolved with 32 Gabor filters (at 4 scales and 8 orientations) [165]. This process 

generates 32 output maps of the same size as the input attribute maps. Subsequently, each 

of the output maps is divided into non-overlapping 4  4 grids, and the average of each 

grid is computed. This results in a vector having 16 elements (average values) for each 

output map. Vectors thus generated from 32 output maps are concatenated to form the 

final representation. In this way, our feature extraction using GIST descriptor generates a 

512-dimensional feature vector, which represents the ‘gist’ of the attribute maps at 

different scales and orientations. 

                                         
                 Male               Female 

(a) R2L 

                     
       Male       Female 

(b) SU 

Figure 3.2: Samples of swipes (a) R2L (b) SU performed by 10 male and 10 female users (the 

images are enhanced for better visibility). 
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3.1.3 Feature selection       

Feature selection is employed to identify the best features for gender recognition from the 

set of features discussed in Section 3.1.2. In the proposed approach, feature selection is 

performed using wrapper subset evaluator with the BestFirst attribute selection approach 

[171]. The default settings available in WEKA data mining toolbox [134] are used for 

both wrapper subset evaluator and the BestFirst attribute selection. Wrapper approach 

evaluates the subset of attributes by using induced classifier and finds the best possible 

feature set. BestFirst searches for attribute subsets in one of the three ways namely, 

forward, backward and bi-directional. The forward direction search starts with an empty 

set of attributes and moves forward to generate the feature subset. The backward search 

starts with the complete set of attributes and deletes the non-improving features. The bi-

directional search starts with any random point and adds or deletes features from both 

directions. In this work, we have employed the forward direction attribute selection 

approach to identify the best subset of features. 

3.1.4 Information fusion       

In order to achieve the best performance for gender recognition, we have explored the 

information fusion at feature level and score level [29]. Feature level fusion is performed 

by concatenating the feature sets, as shown below: 

In order to utilize multiple attributes of a touch gesture and multiple gestures for 

predicting the user’s gender, we have explored feature level and score level [29] 

information fusion techniques. Specifically, concatenating the feature sets in the 

following manner performs feature level fusion: 

           1 2 3[   .... ]NF f f f f                           (3.4)        

and linear combination of multiple matching scores performs score level fusion, which is 

mathematically shown as follows: 

      1 1 2 2 .... N NS w s w s w s                      (3.5) 

where 
1 2, ,..., Ns s s  are matching scores generated by the classifiers and 

1 2, ,..., Nw w w  are 

weights, which are selected in such a way that 
1 2 ... 1Nw w w    . In our experiments, we 

have employed equal weights to combine the scores. 
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3.1.5 Classifiers 

In the proposed approach, k-NN classifier is employed to predict the user’s gender based 

on a set of features computed from his/her touchscreen gestures. This classifier [172] 

predicts the class label for every test sample based on a set of distances computed 

between the feature vector corresponding to the test sample and those corresponding to 

the training samples. Typically, the category of the test sample is determined based on 

majority voting by considering k smallest distances. In our experiments, Euclidean 

distance is used as a measure of distance between feature vectors and the parameter k is 

set to 1. 

3.2 Experimental results and discussion 

The performance of the proposed approach for gender recognition has been evaluated on 

two datasets. We have collected these datasets during users’ interaction with two 

different devices. Brief descriptions of the datasets and our experiments are presented in 

the following sub-sections.  

3.2.1 Data acquisition 

We have developed an Android application using IntelliJ IDEA platform to acquire 

behavioral data while a user performs gestures on the touchscreen. As discussed in 

Section 2.2, behavioral data was collected using two touchscreen devices namely, 

Samsung Galaxy Note-II N7100 (Note-II) and S-II GT-I9100 (S-II). A total of 126 users 

from our institute participated in data collection process. Every subject performed six 

gestures namely, L2R, R2L, SU, SD, ZI and ZO three times. The application collected x

- y coordinates, accelerometer sensor readings, gyroscope sensor readings, orientation 

sensor readings and finger area.  

3.2.2 Evaluation on Dataset-I 

Dataset-I, which was created using Note-II device, contains touch gesture data from 39 

female and 45 male subjects. All our performance evaluations are based on 5-fold cross 

validation. While partitioning the dataset into 5 folds, we have ensured that there is no 

overlap of subjects between the training and test set. We have divided the dataset in such 

a way that all the samples from a subject are grouped into a single fold. Specifically, all 

the samples of 45 male subjects are distributed equally into 5 folds, whereas all the 
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samples of 35 female participants are divided equally into 5 folds and the remaining 

samples from 4 female subjects are distributed equally into four of the five folds. In this 

way, four of the five folds contain all the samples of 9 male and 8 female subjects and the 

remaining fold contains all the samples of 9 male and 7 female subjects.  

In the first set of experiments, the performance of features computed from seven 

gesture attributes (discussed in Section 3.1.2) are evaluated individually. The 

classification accuracies for each of the gestures are shown in Fig. 3.3. Although no 

single gesture attribute provides the best performance for all the gestures, each attribute 

performs well for at least one of the gestures. 

 
(a)                    (b) 

 
(c)                    (d) 

 

 
 (e)                    (f) 

Figure 3.3: Comparison of individual performances of the GIST features computed from the 

attribute maps for all the gestures. 
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In Fig. 3.3, it can be observed that all the attributes considered in this study contain 

information useful for predicting the user’s gender. Therefore, the combination of GIST 

features extracted from the seven attributes is explored using feature level and score level 

techniques for each of the gestures. The results of this set of experiments are presented in 

Table 3.1. As can be observed, the score level fusion performs consistently better than the 

feature level fusion. The performance of score level fusion can perhaps be improved 

further by optimizing the weights involved in the fusion. In the remaining sets of 

experiments, only the score level fusion is employed. 

Table 3.1: Comparison of feature level and score level fusion of information from the attribute 

maps on Dataset-I  

Gesture Feature level fusion Score level fusion 

L2R 73.46% 78.23% 

R2L 74.26% 77.50% 

SD 71.47% 74.27% 

SU 73.06% 80.10% 

ZI 77.03% 77.40% 

ZO 73.07% 76.23% 

 

To investigate whether the combination of gestures leads to improved gender 

recognition, different combinations are evaluated. The bar graph in Fig. 3.4 shows the 

classification accuracies obtained when gestures are combined at the score level. Initially, 

all possible combinations of two gestures are considered. The second bar in Fig. 3.4 

indicates the resulting minimum, maximum and average classification accuracies. 

Similarly, other combinations involving 3, 4, and 5 gestures are evaluated and the results 

displayed in Fig. 3.4. As can be observed, the gender classification accuracy increases 

with the number of gestures combined. However, the maximum classification accuracy 

achieved when five gestures are combined is marginally better than the accuracy 

achieved when all the gestures are combined. Specifically, our approach achieves 94.46% 

accuracy when all the gestures except R2L are combined, as against 93.65% when all the 

gestures are combined. 
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Figure 3.4: Performance of gender classification for different combinations of gestures. 

In the next set of experiments, the proposed approach is compared with the current 

state-of-the-art for gender prediction from swipe gestures [115]. For this purpose, we 

have implemented their approach and evaluated its performance on our datasets. Since 

Note-II device does not provide pressure information, it is not utilized while evaluating 

the existing approach on Dataset-I. Additionally, since Miguel-Hurtado et al. [115] have 

not considered multi-touch gestures such as ZI and ZO in their work, only four gestures 

namely L2R, R2L, SD, and SU are considered for a fair comparison of the two 

approaches. Since their approach achieved the best classification accuracy with decision 

level fusion, a comparison of results with plurality voting based fusion of decisions is 

also reported. The results of this set of experiments are presented in Table 3.2. As can be 

observed, the proposed approach achieves considerably higher classification accuracy 

compared to the current state-of-the-art approach. Also, our approach provides consistent 

improvement, including when the gestures are combined at the score and decision levels. 
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Table 3.2: Performance comparison with the existing approach for gender recognition on  

Dataset-I 

Gestures Miguel-Hurtado et al. [115] Proposed approach 

L2R 64.27% 78.23% 

R2L 59.63% 77.50% 

SD 55.88% 74.27% 

SU 53.75% 80.10% 

Score level fusion 60.74% 92.45% 

Decision level fusion 66.77% 84.98% 

3.2.3 Evaluation on Dataset-II 

To ascertain the performance of the proposed approach, we have performed experiments 

similar to the ones explained in Section 3.2.2 on another dataset collected using a 

different device. Specifically, touch gesture data in Dataset-II is acquired using S-II 

device. This dataset contains gesture data collected from 17 female and 25 male subjects. 

As in the previous experiments, we have ensured that there is no overlap of users between 

the training and test datasets used for 5-fold cross validation. Specifically, all the samples 

of 25 male subjects are distributed equally into 5 folds, whereas all the samples of 15 

female participants are divided equally into 5 folds and the samples of the remaining 2 

female subjects are distributed equally into two of the five folds. In this way, two of the 

five folds contain all the samples of 5 male and 4 female subjects and the remaining folds 

contain all the samples of 5 male and 3 female subjects. 

The results of our first set of experiments are presented in Fig. 3.5, which shows the 

gender classification accuracies achieved using individual attributes of each of the touch 

gestures. In general, the performance trend is similar to what has been observed on 

Dataset-I with no clear winner among the attributes.  

In the next set of experiments, we have evaluated the performance when GIST 

features computed from the seven attributes are combined at the feature and score levels. 

The classification accuracies achieved using each of the gestures are presented in Table 

3.3. As can be observed, score level fusion yields higher classification accuracy than 

feature level fusion in a majority of cases. Therefore, the rest of our experimental 

evaluations are based only on the score level fusion of gesture attributes. 
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(a) (b) 

 
(c) (d) 

 
(e)      (f) 

Figure 3.5: Comparison of individual performances of the GIST features computed from the 

attribute maps for all the gestures. 

 

Table 3.3 Comparison of feature level and score level fusion of information from the attribute 

maps on Dataset-II 

Gesture Feature level fusion Score level fusion 

L2R 77.13% 82.59% 

R2L 77.78% 76.39% 

SD 70.09% 72.22% 

SU 77.10% 77.41% 

ZI 81.48% 82.22% 

ZO 83.70% 77.40% 
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Furthermore, we have performed experiments to evaluate different combinations of 

gestures and the results are presented in Fig. 3.6. The experimental protocol and 

performance metrics remain the same as the ones used for evaluations on Dataset-I. Our 

approach achieves the highest gender classification accuracy of 92.96% when all the 

gestures are combined at the score level. 

 

Figure 3.6: Performance of gender classification for different combinations of gestures. 

In the last set of experiments, the proposed approach is compared with the existing 

approach presented by Miguel-Hurtado et al. [115]. Since S-II device records pressure 

information, it is considered while evaluating their approach on Dataset-II. A 

performance comparison between the two approaches is presented in Table 3.4. Again, 

the proposed approach achieves higher classification accuracy for gender classification 

using individual gestures as well as their combination. Overall, the results of our 

evaluations on Dataset-I and Dataset-II demonstrate cross-device capability of the 

proposed approach. 
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Table 3.4: Performance comparison with the existing approach for gender recognition on 

 Dataset-II 

Gestures Miguel-Hurtado et al. [115] Proposed approach 

L2R 69.17% 82.59% 

R2L 47.50% 76.39% 

SD 56.11% 72.22% 

SU 57.50% 77.41% 

Score level fusion 62.32% 88.80% 

Decision level fusion 57.50% 78.70% 

3.3 Summary 

In this chapter, we have presented an approach for touchscreen gesture-based gender 

recognition in smartphones. A smartphone application is developed to acquire a set of 

behavioral data during the user’s interaction with the touchscreen-based smartphone. A 

2D attribute map is generated for each of the seven gesture attributes, which include 

accelerometer sensor readings, gyroscope sensor readings, orientation sensor readings, 

finger area, swipe velocity, point curvature and length of swipe. Our approach uses GIST 

descriptor to extract holistic spatial features of the attribute maps and a feature selection 

approach to identify the best set of features for gender recognition. The performance of 

the proposed approach has been evaluated on two datasets collected using different 

devices. Our results suggest that the attributes considered in this study provide 

information useful for touch gesture-based gender recognition. In addition, the 

combination of gestures using score level fusion technique results in enhanced gender 

classification. Most importantly, the proposed approach achieves state-of-the-art 

performance on both the datasets and handles cross-device scenarios well. In summary, 

the results of this study suggest that the behavioral data acquired during the user’s 

interaction with the device can be utilized to recognize user’s gender reliably. 
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Chapter 4 

Gender Classification in Smartphones using Gait 

Information 

In the previous chapter, we have presented an approach for gender recognition in 

smartphones using the touchscreen gestures collected during the user’s interaction with 

the device. However, for continuous classification of gender, the information from the 

smartphone should be collected continuously even if the user is not interacting with the 

device. Therefore, we perform gender recognition while the user walks with a 

smartphone in the trouser pocket. In this chapter, we present an approach for gender 

classification using users’ gait information acquired from the built-in sensors of a 

smartphone. Histogram of gradient (HG) method is proposed to extract features from the 

gait data, which includes a set of signals collected from accelerometer and gyroscope 

sensors of a smartphone. The motivation behind choosing gait is that it can be captured 

unobtrusively without any conscious effort from the user. The key contributions of this 

work are as follows: 

1) A novel approach for classification of gender of a smartphone user using the 

proposed histogram of gradient (HG) features.  

2) The proposed work explores the combination of gait information collected from 

accelerometer and gyroscope sensors for gender recognition in smartphones.   

3) A total of 654 gait data is acquired from 109 subjects using smartphone sensors 

with variations in walking speed. The gait data is collected using two different 

devices to ascertain the gender recognition accuracy of the proposed approach. 

The rest of the chapter is organized as follows: A detailed description of the proposed 

approach for gender recognition is presented in Section 4.1. Section 4.2 presents details 

about the gait dataset collected using smartphones. This section also presents 

experimental results and discussion. Finally, summary of this chapter is presented in 

Section 4.3.  
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4.1 Proposed method 

The block diagram of the proposed approach for gender classification is shown in Fig. 

4.1. The Android application collects the gait biometrics of the user. Specifically, 

readings from built-in accelerometer and gyroscope sensors of smartphone are recorded 

with the help of this application. The accelerometer and gyroscope sensor readings in x , y

and z  directions constitute the gait data, which are preprocessed for resampling and low 

pass filtering in the time domain. In the next stage, features are extracted from the gait 

data. Finally, the discriminatory features extracted from accelerometer and gyroscope 

sensor readings are combined to obtain the final feature representation, which is fed to a 

binary classifier for classification of the user’s gender. 

 

 

 

 

4.1.1 Data acquisition 

The Android application captures the accelerometer and gyroscope sensor readings of the 

user’s gait in x , y  and z  directions of the smartphone. Accelerometer sensor provides the 

amount of linear acceleration on the phone in x , y  and z  directions. Fig. 4.2 shows typical 

accelerometer readings of the user’s gait captured by the Android application. 

                            
Figure 4.2. Accelerometer sensor signals in x , y and z  directions.  

Figure 4.1: Block diagram of proposed approach for gender recognition. 
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On the other hand, gyroscope sensor measures angular speed exerted on the phone by 

the user along x , y  and z  directions. Fig. 4.3 shows typical gyroscope readings of the 

user’s gait captured by the Android application. 

                         

Figure 4.3. Gyroscope sensor signals in x , y and z directions. 

4.1.2 Preprocessing 

4.1.2.1 Normalization 

The accelerometer and gyroscope sensor readings are normalized to have zero mean and 

unit standard deviation [131]. Since the sampling rate of the signals captured by the 

application from accelerometer and gyroscope sensors is not fixed, it is necessary to 

resample the signal at a fixed sampling rate before further processing. In this work, these 

signals are resampled at a fixed sampling rate of 100 Hz by using cubic spline 

interpolation. This is followed by moving average filtering of the signals to reduce noise.  

4.1.2.2 Gait cycle extraction 

As can be seen in Fig. 4.4, human gait signals generally exhibit periodically repeating 

patterns with multiple gait cycles. However, the gait cycles in the recorded gait data may 

vary with time because of many reasons including variations in walking speed of the user 

and irregular walking behavior. Majority of the existing techniques for gait cycle 

extraction utilize accelerometer sensor reading in only one direction. However, our 

preliminary experiments indicated that such an approach might not provide accurate gait 
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cycles. Therefore, in this work, we have developed a heuristic technique to extract gait 

cycles using sensor readings in all the three directions. Our approach primarily relies on 

accelerometer signal in the z -direction for identifying local minima points, which help us 

in extracting gait cycles. Specifically, a point is considered to be local minimum if the 

value of the current sample is less than that of its neighboring samples and their 

differences are higher than a threshold. These local minima points are refined using 

accelerometer signals in x  and y  directions. Specifically, only those points that have 

corresponding local minima points (within a small neighborhood of 0.5 sec) in 

accelerometer signals in x  and y  directions are considered for extracting gait cycles. Fig. 

4.4(a) shows the local minima points computed for linear acceleration signal in z - 

direction, in which the set of sample points between two consecutive minima constitute 

one gait cycle. In our experiments, a total of seven such gait cycles are extracted for 

further processing. However, we have also performed a set of experiments to study the 

effect of the number of gait cycles on the gender recognition performance, results of 

which are presented in Section 4.2.4. Fig. 4.4(b) shows gait cycles extracted from the 

accelerometer sensor signal in z -direction. Similarly, gait cycles from the rest of the 

signals - accelerometer sensor signals in x  and y  directions and gyroscope sensor signals 

in x , y  and z  directions are extracted by considering the sample points that correspond to 

those constituting the gait cycles extracted from accelerometer sensor signal in the z - 

direction. 

            
                (a)                                                                                        (b) 

Figure 4.4: (a) Local minima points of accelerometer signal in z -direction and (b) the extracted 

gait cycles. 
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4.1.3 Feature extraction  

The proposed approach for gender classification employs a novel feature extraction 

technique, which is based on the histogram of oriented gradients (HOG) proposed by 

Dalal and Triggs [173]. The HOG was originally proposed for human detection in 

images. Due to its excellent performance, HOG and its variants have been successfully 

employed for numerous computer vision applications including face recognition [174], 

character recognition [175], traffic sign recognition [176] and video surveillance system 

[177]. Besides these applications, HOG descriptors have also been utilized to recognize 

gender from still images of body parts [178]. In this work, we develop a one-dimensional 

(1D) version of the HOG descriptor. Since gradients are oriented in only one direction in 

a 1D signal, we refer to the modified descriptor as the histogram of gradients (HG). Fig. 

4.5 shows the computational stages involved in the proposed feature extraction technique. 

Details of each of these stages are presented in the following sub-sections.  

 

Figure 4.5: Overview of the proposed feature extraction method. 

4.1.3.1 Computation of gradients 

The first step in the proposed feature extraction process is to compute the gradient and 

the angle of gradient. For discrete signals, gradients can be estimated using different 

masks. In this work, we have explored the following masks [173] for computation of 

gradients: centered [-1,0,1], uncentered [-1,1] and cubic-corrected [1,-8,0,8,-1].  

4.1.3.2 Histogram binning 

The key processing stage in the proposed feature extraction technique is the histogram 

binning, which generates a gradient-based histogram feature. In this stage, the gait cycle 

is divided into six non-overlapping cells and a histogram for each cell is computed using 

the gradient and the angle of gradient. The range of gradient angle (0˚ - 180˚) is divided 

uniformly to generate six histogram bins [173]. Fig. 4.6 shows an example of a cell 

histogram computed using the gradient and angle of gradient. A bin for each element of 

the cell is identified using its gradient angle and it is voted with the gradient value of the 
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element. This process is repeated for every element of the cell to generate a cell 

histogram.   

 

Figure 4.6: Generation of HG descriptor. 

4.1.3.3 Block normalization 

The cell histograms computed in the previous stage are normalized by considering a 

group of cells or a block. In this work, overlapping blocks consisting of two cells are 

considered. This generates five overlapping blocks for a gait cycle with six cells. The cell 

histograms of a block can be normalized using various methods and we have explored L1-

norm, L1-sqrt and L2-norm based normalization techniques, which are defined as follows 

[173]: 

(1) L1-norm:                                 
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where H  is the histogram generated by concatenating two cell histograms in a block, 
NH  

is the corresponding normalized histogram and  is a very small constant. The block 
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normalization process generates five normalized histograms for each gait cycle, which 

are concatenated to form the HG descriptor of length 60. Finally, the normalized 

histograms corresponding to seven gait cycles are concatenated to form a feature vector 

of length 420 for a gait signal. 

4.1.4 Feature level combination 

As discussed in the previous section, the proposed approach generates a histogram 

feature of length 420 for each of the gait signals acquired from accelerometer and 

gyroscope sensors in x , y  and z  directions. Therefore, there is a need for efficient 

combination of this information. Broadly, information fusion can be performed in two 

ways namely, pre-classification fusion and post-classification fusion. Jain et al. [160] 

observed that pre-classification fusion is expected to perform better than post-

classification fusion. Therefore, in the proposed work, information fusion is performed at 

feature level (pre-classification) by concatenating the normalized histograms to obtain the 

final representation. In our case, the pre-classification information fusion can be 

represented as:  

] ..... H H [ 321 NnNNNNcat HHH                   (4.4) 

where, 
NnNNN HHHH  ....., , , , 321

 are the histogram features and 
NcatH  is the concatenated 

histogram. In eqn. (4.4), individual histogram features (of length 420) that are computed 

from accelerometer and gyroscope sensor readings in x , y  and z  directions are 

concatenated to form the final feature representation of length 2520.  

4.1.5 Classification 

Bootstrap aggregating [179], also known as bagging, is designed to provide stable and 

improved performance for machine learning algorithms used for classification and 

regression. It is an ensemble method in which multiple predictors are aggregated. It trains 

an ensemble of decision trees either for classification or regression using bootstrap 

method. Specifically, it generates an aggregated predictor by using multiple versions of a 

predictor, which are created by training the base predictor on bootstrap replicates of the 

training set. Finally, bagging generates an aggregated model by combining the outputs of 

the individual models using plurality voting in the case of classification.    
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4.2 Experimental results and discussion 

4.2.1 Data acquisition 

We have developed an Android application on IntelliJ platform to acquire users’ gait 

information. The application captures accelerometer and gyroscope sensor readings in x ,

y  and z  directions of the device, which we collectively refer to as gait data. We have 

employed two devices namely, Samsung Galaxy S-II GT-I9100 (S-II) and Note-II N7100 

(Note-II) for collection of gait data. A total of 109 subjects participated in the data 

collection process. These subjects were instructed to keep the device in the front pocket 

of their trouser and to walk in a straight path. To collect gait data corresponding to 

different walking speeds, subjects were instructed to walk at (what they think is) normal, 

fast and slow walking speeds. This process was repeated twice, collecting six gait data 

from each subject. Therefore, our dataset consists of a total of 654 gait data acquired 

from 109 subjects. 

4.2.2. Experiments with S-II device 

The S-II device was used to collect gait data from 46 subjects, out of which 25 were male 

and 21 were female subjects in the age range of 19 and 36 years. This subset of our 

dataset consists of 276 gait data. Initially, we have performed experiments to evaluate 

individual performances of accelerometer and gyroscope sensor readings for gender 

identification. In this set of experiments, we have used the 5-fold cross-validation 

methodology and ensured that no overlap of subjects existed between our training and 

testing datasets. This is ensured by partitioning the dataset in such a way that all gait data 

from a subject is grouped into a single partition. Specifically, gait data belonging to 25 

male subjects are equally divided to generate 5 partitions, with each partition containing 5 

male subjects’ gait data. Similarly, gait data belonging to 20 female subjects are 

distributed equally into five partitions and the remaining gait data belonging to a female 

user is considered to be part of one of the five partitions. In this way, four partitions for 

the 5-fold cross-validation contain gait data belonging to 5 male and 4 female subjects 

and the fifth partition contains gait data belonging to 5 male and 5 female subjects.  

Our preliminary experiments indicated that the centered mask with L1-norm based 

normalization provides better performance than other combinations of gradient 



73 

 

computation and histogram normalization techniques for gender classification. Therefore, 

we have employed the above techniques for further analysis. The average 5-fold cross-

validation accuracy of the proposed approach on this dataset is presented in Table 4.1. It 

can be observed from the table that the performance of gender classification using gait 

data collected from gyroscope sensor is comparable with that of the approach based only 

on the accelerometer sensor readings, except for the case when subjects walked at slow 

pace. This observation motivated us to explore the combination of information from 

gyroscope and accelerometer sensor readings to further improve the gender classification 

accuracy. We have performed pre-classification fusion by concatenating the two HG 

descriptors derived from accelerometer and gyroscope sensors readings. The accuracy of 

the gender classification approach which combines information from accelerometer and 

gyroscope sensors is presented in the last column of Table 4.1. It can be seen that the 

gender classification approach based on the combination of information from 

accelerometer and gyroscope sensors clearly outperforms the one based on either 

accelerometer or gyroscope sensors. Therefore, it can be concluded from this set of 

experiments that in addition to accelerometer sensor readings, gyroscope sensor readings 

also provide the discriminatory information for gender recognition and their feature level 

combination leads to significant improvement in classification accuracy.  

Table 4.1: Comparison of individual performance of gait information collected from 

accelerometer and gyroscope sensors with the combined performance for gender classification 

Gait Information  

Walking 

Speed 
Accelerometer Gyroscope 

Accelerometer 

 +  

Gyroscope 

Normal 78.56% 81.67% 91.78% 

Fast 81.11% 80% 94.44% 

Slow 83.33% 70.83% 88.89% 

We have also performed a set of experiments, which considers more realistic 

scenarios. It is very unlikely that a user walks at the same speed all the time. Therefore, 

ideally, the performance of gender classification approach should not be affected by 

variations in the user’s walking speeds. To evaluate the performance of the proposed 

approach under such scenarios, we have performed experiments with training and testing 



74 

 

sets consisting of gait data corresponding to different walking speeds, which we refer to 

as cross-speed gender classification. The experimental results from this set of 

experiments are presented in Table 4.2. In all these experiments, we have partitioned the 

dataset into training and testing sets, which contain all users’ gait data corresponding to a 

specific category. However, for normal versus normal, fast versus fast and slow versus 

slow cases, gait data belonging to 50% of the users is used for training, while the rest of 

the gait data is used for testing, which ensures that there is no overlap of users between 

training and testing sets. It can be observed from Table 4.2 that the performance 

deterioration for cross-speed cases is only marginal, except for the cases such as slow 

versus fast and fast versus slow. This is possibly due to significant change in the walking 

speeds between the training and testing sets for those cases.  

Table 4.2: Cross-speed gender classification accuracy on gait dataset collected using S-II device 

                        Normal Fast Slow 

Normal 93.18% 92.22% 92.04% 

Fast 92.39% 95.45% 88.64% 

Slow 89.13% 85.56% 92.86% 

To analyze why the HG features are effective for gender classification, we have 

identified the top 3 features in the proposed HG based feature vector and plotted a scatter 

diagram. The complete set of gait data corresponding to normal walking speed collected 

using S-II device is used for this purpose. We have employed the Fisher score based 

feature selection technique [180], which assigns a rank to each feature based on its 

discriminative capability, to identify the top 3 features. Fig. 4.7 shows the scatter 

diagram, which helps us visualize the discriminative capability of these features. As can 

be seen in this figure, the majority of data points corresponding to male and female 

subjects are well separated in the three-dimensional feature space. In the original feature 

space, the separation between the two clusters of data points belonging to male and 

female subjects is expected to improve further due to the inclusion of additional features. 

This possibly explains why the proposed features are effective for gender classification 

using gait data. 

Train 
Test 
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Figure 4.7: Scatter diagram of the top three features determined using Fisher score based feature 

selection method. 

4.2.3 Experiments with Note-II device 

In this section, we present results from a set of experiments carried out to evaluate the 

performance of the proposed approach on a dataset collected using a different device. The 

key objective of this experiment is to ascertain the performance of the proposed gender 

classification approach and to investigate if the device used for data collection has any 

impact on its performance. As described in Section 4.2.1, we have employed Note-II 

device to collect gait data from 63 subjects. Out of 63 subjects, 33 were male and 30 were 

female subjects aged between 20 and 33 years. The two sets of subjects (who participated 

in experiments with S-II and Note-II devices) are disjoint. Six gait samples with 

variations in walking speed (slow, normal and fast) are acquired from each subject. 

Therefore, this dataset contains a total of 378 gait data.  

In the first set of experiments, effectiveness of features extracted from accelerometer 

and gyroscope sensor readings are investigated separately. In addition, we have also 

explored the feature level combination of accelerometer and gyroscope sensor readings. 

In these experiments, we have used 5-fold cross-validation methodology and partitioned 

the dataset in such a way that no overlap of subjects existed between the five subsets. 

Specifically, we have created five subsets, with each subset containing gait data of 6 male 

and 6 female subjects. The gait data belonging to remaining 3 male subjects are 
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distributed into three different subsets. The average 5-fold classification accuracies from 

this set of experiments are presented in Table 4.3. It can be observed that the 

classification accuracies presented in Tables 4.1 and 4.3 are comparable and therefore the 

performance is consistent across the two gait datasets. The results presented in Table 4.3 

further demonstrate that gyroscope sensor readings are useful for gait based gender 

recognition in mobile phones. As expected, the combination of information from 

accelerometer and gyroscope sensor readings results in significant improvement in 

classification accuracy.  

Table 4.3: Comparison of individual performance of gait information collected from 

accelerometer and gyroscope sensors with the combined performance for gender identification 

Gait Information  

Walking Speed Accelerometer  Gyroscope  

Accelerometer 

 +  

Gyroscope 

Normal 85.59% 76.08% 90.48% 

Fast 85.13% 76.68% 91.07% 

Slow 78.53% 71.39% 88.46% 

In the second set of experiments, we have considered cross-speed gender 

classification scenarios. We have followed the same experimental protocol as the one 

adopted for cross-speed experiments described in Section 4.2.2. The experimental results 

are summarized in Table 4.4. The key observation in this table is that the performance 

trend remains the same as in the first dataset. Specifically, there is slight deterioration in 

the classification accuracy for majority of the cross-speed cases presented in Table 4.4. 

However, the performance deterioration is significant for fast versus slow and slow 

versus fast scenarios, indicating that the proposed approach may not be very effective 

when there is significant change in walking speeds between training and testing data.   

Table 4.4: Cross-speed gender classification accuracy on gait dataset collected using Note-II 

device  

                                      Normal Fast Slow 

Normal 93.33% 88.33% 87.72% 

Fast 90.98% 91.67% 80.70% 

Slow 83.61% 70.83% 87.50% 

 

Train Test 
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In order to visualize the effectiveness of the proposed HG features on this dataset, the 

top 3 features in the HG based feature vector have been determined using Fisher score 

based feature selection technique (please refer to Section 4.2.2). The complete set of gait 

data corresponding to normal walking speed collected using Note-II device has been used 

for this experiment. Fig. 4.8 shows the scatter diagram of the top 3 features of the 

proposed HG feature vector. As expected, most of the data points belonging to male and 

female subjects are well separated in the three-dimensional feature space. Also, it is 

noteworthy that the distribution of these features belonging to male and female users is 

quite similar to the one shown in Fig. 4.7.    

 

Figure 4.8: Scatter diagram for the top three features determined using Fisher score based feature 

selection method. 

4.2.4 Effect of number of gait cycles on the performance 

To study the effect of the number of gait cycles on the performance of the proposed 

approach, a set of experiments has been performed by varying the number of cycles 

employed for feature extraction. Fig. 4.9 shows the classification accuracy versus the 

number of gait cycles for datasets captured using S-II and Note-II devices. As can be 

observed, the gender recognition accuracy increases with the number of gait cycles. 

These results indicate that employing more number of gait cycles for feature extraction 

leads to better characterization of the user's gender at the expense of the computational 
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performance. Since the maximum number of gait cycles available for feature extraction is 

7 for some of the users in the dataset, we have set this parameter to 7 in our experiments. 

 

Figure 4.9: Classification accuracy versus the number of gait cycles employed for gender 

recognition. 

4.2.5 Comparison with existing methods 

The performance of the proposed approach has been compared with the existing 

approaches for gender classification [133, 135]. For a fair comparison, we have 

implemented the approaches reported in Weiss and Lockhart [133] and Jain and 

Kanhangad [135] and evaluated their performances on our datasets. As has been done in 

Weiss and Lockhart [133], the classification is performed using three classifiers namely, 

instance-based learning (IB3), J48 decision tree (J48) and multilayer neural network 

(NN), which are available in the Weka data mining tool [134]. In this set of experiments, 

we have adopted the leave-one-out method (LOOM), which was used for performance 

evaluation in Weiss and Lockhart [133]. Results from this set of experiments, performed 

on the datasets collected using S-II and Note-II, are presented in Table 4.5. It can be 

observed from this table that the proposed approach achieves higher classification 

accuracy than the existing approaches. It is also noteworthy that our approach provides 

considerable performance improvement consistently for different walking speeds 

considered in this study.  
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Table 4.5: Classification accuracy of the proposed and existing approaches for different walking 

speeds 

Reference Classifier 

Dataset 

S-II Note-II 

Normal Fast Slow Normal Fast Slow 

Weiss and 

Lockhart 

[133] 

NN 71.74% 79.76% 63.64% 73.77% 74.60% 75.16% 

IB3 72.83% 82.14% 60.23% 68.03% 73.81% 70.63% 

J48 82.61% 71.43% 54.55% 55.74% 68.25% 74.60% 

Jain and Kanhangad [135] 75% 67.50% 73.86% 74.75% 78.33% 65.79% 

This work 89.13% 92.22% 85.23% 88.52% 90% 84.21% 

The key strength of our approach is the discriminating power of the proposed HG 

features that provide superior performance. Apart from the information that these features 

carry, we believe that the way in which they are computed in our approach contributes to 

their higher discriminating power. Since the walking speed affects the duration of the gait 

cycles, we have extracted features from individual gait cycles. This approach makes the 

extracted features invariant to momentary changes in the user's walking speed. On the 

other hand, Weiss and Lockhart [133] computed a set of statistical features using 

windows of fixed duration. Similarly, Jain and Kanhangad [135] computed their local 

curvature-based features from segments of the gait signals that contain 8 cycles. Due to 

the fixed-length segments involved in their feature extraction process, the approaches 

mentioned above are likely to be adversely affected by momentary variations in user's 

walking speed. This is supported by our experimental results presented in Table 4.5. A 

disadvantage of the proposed approach is the higher dimensionality of our feature vector. 

In addition, our approach involves more parameters compared with the existing methods 

[133, 135]. 

4.2.6 Summary of experimental results 

This study considered more realistic conditions (compared to the existing studies) as we 

have carried out performance evaluation on two datasets collected using different 

devices. The experimental results suggest that the fusion of information extracted from 

linear acceleration and angular velocity gait signals leads to improved gender recognition. 

In addition, the results of our cross-speed experiments show that the proposed approach 

performs well when there is limited variation in the walking speed during the training and 
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test sessions. In other words, the approach is likely to fail if this variation is significant. 

This is because HG features capture local gradient information by dividing the signal into 

a number of cells and the use of fixed-size cells in our approach resulted in intra-class 

variations in the extracted features. A straightforward way to overcome this problem is to 

adapt the cell size to the speed of walking. This can be achieved through coarse-grained 

classification of user's gait speed into categories such as slow, normal and fast and 

assigning appropriate cell sizes to each of these walking speeds.  

4.3 Summary 

In this chapter, we have presented an approach for gender recognition in smartphones 

using gait biometrics. An Android application is developed to acquire gait data using 

built-in accelerometer and gyroscope sensors of smartphones and a novel approach based 

on histogram of gradients is proposed for feature extraction. The key observations from 

our experiments can be summarized as follows: 

1) Features extracted from gyroscope sensor readings also carry information useful for 

gender classification in smartphones. More importantly, the feature level 

combination of accelerometer and gyroscope sensor readings results in significant 

improvement of performance of the proposed approach.  

2) It is observed from the cross-speed experiments that variations in the user’s 

walking speed have a minimal impact on the performance of the proposed 

approach, except for cases where there is significant change in walking speeds 

between training and testing sets.  

3) Our experimental results also show that the performance of the proposed approach 

is consistent across two gait datasets collected using two different devices and it 

achieves higher classification accuracy than the existing works. 
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Chapter 5 

Human Activity Classification in Smartphones using 

Accelerometer and Gyroscope Sensors 

 

In the previous chapter, it is observed that the performance of gender recognition can be 

improved by classifying the walking speed of the user into categories namely slow, 

normal and fast. Further, this information can be utilized to compare the query sample 

only with the samples belonging to the same category of the walking speed in the training 

set. Activity classification in smartphones helps us monitor and analyze the physical 

activities of the user in daily life and has potential applications in healthcare systems. 

Moreover, excessive sitting and lack of adequate levels of physical activity are associated 

with health problems such as obesity, diabetes, cardiovascular disease, poor metabolic 

health and depression, leading to the increased risk of mortality. Activity recognition can 

be used for continuous analysis of the daily activities performed by the user. Such an 

analysis is useful in understanding the behavior and thereby, making it possible to 

provide automated suggestions for reducing the risk factor for various non-communicable 

diseases. Additionally, signals corresponding to the other activities performed by the user 

can also be collected using the built-in accelerometer and gyroscope sensors. A lot of 

research on activity recognition in the literature is focused on using the dedicated body-

worn sensors. These sensors may become too cumbersome to wear, especially for 

continuous activity recognition in which users may have to wear the sensors for extended 

periods of time. Therefore, in this chapter, we propose a descriptor-based approach for 

activity classification using built-in sensors of smartphones. Accelerometer and 

gyroscope sensor signals are acquired to identify the activities performed by the user.  

Since the existing works demonstrated the feasibility of recognizing activities using 

built-in sensors of smartphones or a similar device with promising performance on large 

datasets, there is a pressing need to develop approaches that provide highly accurate and 

reliable performance. Moreover, enhancing the performance is imperative for the 
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smartphone-based solution to be a superior alternative to the dedicated body-worn sensor 

based methods in real-world applications.  

The rest of the chapter is organized as follows: A detailed explanation of the proposed 

approach for activity classification is presented in Section 5.1. Section 5.2 presents the 

description of datasets employed in this thesis along with experimental results and 

discussion. Finally, Section 5.3 summarizes the chapter. 

5.1 Proposed approach 

Fig. 5.1 shows the block diagram of the proposed approach for activity classification. The 

input signals are acquired from the built-in accelerometer and gyroscope sensors of the 

smartphone. The signals captured from accelerometer and gyroscope sensors provide tri-

axial linear acceleration and angular velocity information, respectively. Additionally, a 

set of signals is derived from the input signals. The feature extraction is performed using 

the proposed descriptors and the resultant feature sets are combined at the feature level. 

Subsequently, the combined feature vector is fed to the classifier to determine the activity 

performed by the user. 

 

 

 

 

5.1.1 Input signal 

The set of input signals consists of linear acceleration and angular velocity signals 

collected using the built-in accelerometer and gyroscope sensors of the smartphone, while 

the user performs different activities. The tri-axial linear acceleration and tri-axial angular 

velocity signals are denoted as 
zyx aaa ,, and

zyx ggg ,, , respectively. Fig. 5.2 shows typical 

patterns in sample accelerometer sensor signals in x , y  and z  directions for different 

activities. It may be seen that patterns corresponding to most of the activities are distinct. 

For example, acceleration signals in x  and z  directions show distinct patterns for 

 

Figure 5.1:  Block diagram of the proposed approach for activity recognition. 
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walking upstairs and downstairs. Since features play a significant role in classification of 

activities, a careful observation of the signals in Fig. 5.2 indicates that the feature 

descriptors need to be designed to effectively characterize patterns of evolution of these 

signals.   

 

Figure 5.2:  Acceleration signals in x , y  and z  directions when a user performs different 

activities. 

5.1.2 Extraction of additional signals 

The proposed approach also utilizes a set of additional signals that are derived from the 

input signals. This approach is similar to the one adopted by Anguita et al. [156]. Firstly, 

two magnitude ( Mag ) signals corresponding to the acquired tri-axial linear acceleration 

and angular velocity signals are computed as follows: 

                              
222 zyxMag               (5.1) 

This results in a total of eight time-domain signals. The set of frequency domain 

signals in our approach includes the magnitude signals computed from the Fourier 

transforms of the time-domain signals. In this way, a total of eight time-domain and eight 

frequency-domain signals are generated for feature extraction. 
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5.1.3 Feature extraction 

In the proposed approach for activity recognition, feature extraction is performed using 

two descriptors namely, histogram of gradient (HG) and the Fourier descriptor (FD). 

Feature set-I is computed using HG descriptor that provides a locally normalized 

histogram of gradients. This feature is computed from all the sixteen signals. Feature set-

II is computed by forming a closed curve, which we refer to as activity curve in this 

chapter. The activity curve is formed by considering two signals )(tx  and )(ty  (from the 

set of 16 signals) and generating a set of 2D data points ))(),(( tytx , which in the 2D space 

forms a curve. Specifically, a closed curve is obtained by appending the first samples to 

the respective signals. Feature set-II comprises the shape features extracted from the 

activity curves. The reason for selecting only two signals at a time is to simplify the 

extraction of features from these curves. 

5.1.3.1 Feature set-I (FSI) 

This feature set is computed using a one-dimensional (1D) version of the HOG 

descriptor, which was originally proposed for human detection in images [173]. HOG and 

its variants have been shown to perform well for numerous applications including face 

recognition [174], fungus detection [181], etc. Since the gradients are oriented in only 

one direction in a 1D signal, we refer to the modified descriptor as the histogram of 

gradients (HG).  

Fig. 5.3 shows the computational stages involved in the HG technique. The first step 

is to compute the gradient and its angle. For discrete signals, gradients are estimated 

using the centered masks [-1,0,1]. The key processing stage in this technique is the 

histogram binning, which generates a gradient-based histogram feature. In this stage, 

input signal is divided into four non-overlapping cells and a histogram for each cell is 

computed using the gradient and the angle of gradient. The range of gradient angle (0˚ - 

180˚) is divided uniformly to generate seven histogram bins [173]. A bin for each sample 

of the cell is identified based on its gradient angle and the corresponding gradient value is 

voted to that particular bin. This process is repeated for every sample of the cell to 

generate a cell histogram. Cell histograms computed from a signal are normalized by 

considering a group of cells, which form a block. Specifically, cell histograms belonging 
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to a block are normalized using the L1-norm, as shown below: 

)1( 


H

H
N

H                               (5.2) 

where H is the histogram generated by concatenating cell histograms belonging to a 

block, 
NH  is the corresponding normalized histogram and   is a very small constant. In 

this work, overlapping blocks with each block consisting of two cells are considered. 

This generates three blocks (with an overlap of a cell between them) for a signal. Since 

each block yields a normalized histogram feature of length 14, the dimensionality of the 

HG based feature vector is 42. 

 

Figure 5.3:  Overview of computation of the HG based feature. 

5.1.3.2 Feature set-II (FSII) 

Feature set-II (FSII) consists of features that characterize the shape of the activity curves. 

This idea is loosely inspired by the approach presented by Wang et al. [182] for 

silhouette-based gait recognition, in which the trajectories formed by the gait sequences 

in the eigenspace are analyzed for gait recognition. In our approach, the shape of an 

activity curve is represented using the Fourier descriptors. 

FD based shape representation is not only very effective but also is translation, 

rotation and scale invariant [183]. Essentially, FD is the discrete Fourier transform (DFT) 

of a shape signature, which describes the shape of an object or in general, a closed 

contour. In the literature, FD based methods have been employed in various pattern 

recognition applications such as shape classification and shape retrieval [184, 185] and 

recognition of precipitation type in meteorology [186]. Commonly used signatures for 

shape representation using FDs are complex coordinates, centroid distance, curvature 

signature and cumulative angular function [185]. In the proposed approach, the centroid 

distance signature based FD is employed. Centroid distance of the activity curve with 

coordinates ))(),(( tytx  is determined as: 

               
22 )() cc y(t) - y (x(t) – x d(t)                           (5.3) 
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where, )(td  is the centroid distance at time t , which varies from 1 to N and N is the 

number of coordinates in the curve. The centroid of the curve, ),( cc yx  is computed as: 



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N

t
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N
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c ty
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        (5.4) 

The discrete Fourier transform of the centroid distance based shape representation is 

then determined as follows: 
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The Fourier coefficients,
nFD , 1,...,1,0  Nn , are referred to as the Fourier descriptors 

(FDs). In (5.3), the centroid, ),( cc yx  is subtracted from the curve coordinates to make the 

resultant signature invariant to translation. The rotation invariance is achieved by 

considering only the magnitude of the FDs. Since the centroid distances are real-valued, 

there will only be 2/N  unique FDs. In addition, lower frequency coefficients in DFT 

contain more relevant shape information as compared to higher frequency coefficients 

[184]. Therefore, the feature vector is formed using only the first 2/N  FDs. Discarding 

higher frequency coefficients also has the effect of suppressing noise or distortions in the 

activity curve. To achieve scale invariance, the magnitude of each of the retained 

coefficients is divided by the DC component [185] and the final FD-based representation 

is generated as shown below: 
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In our approach, a total of 14 activity curves are formed from the input time and 

frequency domain signals and their corresponding FDs are computed. Fig. 5.4 shows 

discriminatory power of the FDs for activity recognition. In this figure, we have plotted 

FDs extracted from a total of ten signals, with two signals each belonging to five 

activities. In this case, the activity curves are generated using only the first set of time 

domain signals. It is evident that there is high intra-class and low inter-class similarity 

among the FDs. 
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Figure 5.4:  Comparison of the centroid distance signature based FDs of different activities. 

The novelty of the feature extraction method employed in this work can be 

summarized as follows. While the HG descriptor characterizes patterns in the time and 

frequency domain signals by capturing the gradient information into a histogram feature, 

the FD captures shape of the activity curves. The latter characterizes patterns of evolution 

of a time or a frequency domain signal in relation to the other signal involved in 

generation of the activity curve. 

5.1.4 Information fusion 

Information fusion can be performed in two ways namely, pre-classification (feature 

level) fusion and post-classification (score level) fusion. In this work, we have 

investigated both of these approaches. Specifically, we have performed fusion at the 

feature level by concatenating the two feature sets, as shown below: 

] [ 21 ffF                      (5.7) 

and the score level fusion has been performed as follows:  

       2211 swswS                     (5.8) 

where 
21 , ss are the scores generated by the two classifiers for FSI and FSII, respectively 

and 
21 , ww  are the weight parameters, which are selected in such a way that 121  ww . 
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5.1.5 Classifiers 

In the proposed approach, a classifier is used to identify the user’s activity based on the 

extracted features. We have explored two classifiers namely, the multiclass support 

vector machine (SVM) [187] and the k-nearest neighbor (k-NN) [172]. In k-NN 

classifier, the parameter k is set to 1, and the Euclidean distance is used for computing 

distance between the feature vectors. The multiclass SVM framework [187] is achieved 

by decomposing a multiclass classifier into multiple binary classifiers [188]. The most 

commonly used approaches are one-against-all and one-against-one. In the one-against-

all approach, each class is discriminated from the remaining classes, which are 

considered as a single class. On the other hand, in the one-against-one approach, two 

classes are discriminated at a time, and likewise, all pairs of classes are discriminated. In 

this work, one-against-one approach is employed for building our multiclass SVM. 

5.2 Experimental results and discussion 

Performance evaluations have been carried out on two publicly available datasets namely, 

UCI HAR dataset [156] (Dataset-I) and the physical activity sensor data [157] (Dataset-

II). In this section, we report the activity recognition performance in terms of sensitivity 

(SEN), specificity (SPF) and accuracy (ACC) [189]. While ACC, which is computed 

using the total number of correctly classified signal segments in the test set, is a measure 

of overall performance, SEN and SPF are determined for individual classes.  

5.2.1 Evaluation on Dataset-I  

Dataset-I contains activity data from 30 candidates collected using Samsung Galaxy S-II 

smartphone [156]. Specifically, it contains tri-axial accelerometer and gyroscope signals 

acquired while a user performs different activities with the phone fixed to the waist belt. 

The set of physical activities includes standing, sitting, laying down, walking, downstairs 

and upstairs. The raw signals are preprocessed and resampled at 50Hz. The signals are 

then segmented using a fixed-width sliding window of 2.56s with 50% overlap between 

successive segments. The dataset is partitioned into training and test sets, which contain 

7352 and 2947 signal segments, respectively. Our experimental evaluations on Dataset-I 
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have been performed using these training and test sets.  

In the first set of experiments, we have investigated the effectiveness of feature level 

and score level fusion techniques. The two features sets FSI and FSII are combined using 

the methods described in Section 5.1.4. For score level fusion, we have partitioned the 

training data equally into non-overlapping training and validation sets. The weights are 

then determined based on the performance of individual classifiers on the validation set. 

Specifically, the weight parameters have been set using the performance weighting 

method discussed in [190]. Using this parameter estimation method, we have set the 

weight parameters
1w and 

2w  to 0.508 and 0.492 for fusion of SVM classifiers, and 0.516 

and 0.484 for fusion of k-NN classifiers. Finally, we have evaluated the performance of 

the proposed approach on the test set with feature level and score level fusion. The results 

of this set of experiments are presented in Table 5.1. As can be seen, the best average 

classification accuracies achieved using score level fusion and feature level fusion are 

96.47% and 97.12%, respectively. The feature level fusion clearly outperforms score 

level fusion and therefore, we have performed rest of the performance evaluations with 

feature level fusion. 

Table 5.1: Activity classification accuracy with feature level and score level fusion  

 

 

 

The objective of the second set of experiments is to compare the performance of the 

two classifiers considered in this work. To this end, we have evaluated their activity 

classification performance on the individual feature sets as well as their feature level 

combination. The results of this set of experiments are shown in Fig. 5.5. It can be seen 

that the SVM classifier provides consistently higher activity classification accuracies 

compared to the k-NN classifier. Therefore, further performance evaluations on Dataset-I 

have been carried out using only the SVM classifier. 

The objective of the next set of experiments is to ascertain the improvement in 

recognition performance resulting from the inclusion of additional time and frequency 

domain signals. To this end, firstly, we have extracted the two feature sets FSI and FSII 

Fusion method SVM k-NN 

Feature level fusion 97.12% 91.75% 

Score level fusion 96.44% 84.02% 
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Figure 5.5:  Performance comparison of the classifiers on Dataset-I using FSI, FSII and their 

feature level fusion. 

from the acquired tri-axial accelerometer and gyroscope signals and evaluated the 

performance of our approach using these features. In the literature, it has been shown that 

the activity classification performance can be improved by combining the features 

extracted from accelerometer and gyroscope sensor readings [140, 157]. We have 

observed similar performance trend (see classification accuracy for AT+GT in Fig. 5.6) 

in this set of experiments, results of which are summarized in Fig. 5.6 and Table 5.2. 

Thereafter, we have appended the features extracted from the magnitude signals to those 

extracted from the originally acquired signals. The same experimental protocol has been 

followed for investigating the usefulness of the frequency domain signals. Finally, we 

have combined the feature sets computed from time and frequency domain signals 

through concatenation. The bar graph in Fig. 5.6 shows the average activity classification 

accuracies with respect to the signals employed. These results indicate that the inclusion 

of additional signals leads to considerable improvement in performance. The individual 

performances of time and frequency domain signals are comparable. More importantly, 

the fusion of the corresponding information achieves higher activity classification 

accuracy. 
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AT: tri-axial accelerometer signals in time domain, GT: tri-axial gyroscope signals in time domain, MT: Magnitude of 

accelerometer and gyroscope signals in time domain, AF: tri-axial accelerometer signals in frequency domain, GF: tri-

axial gyroscope signals in frequency domain, MF: Magnitude of accelerometer and gyroscope signals in frequency 

domain, ALL: All the signals are considered. 

Figure 5.6:  Comparison of time and frequency domain signals with combined performance. 

The average activity classification accuracies achieved using FSI, FSII and their 

combination are presented in Table 5.2. These results show that the fusion leads to 

improved performance in all the three cases and the best performance is achieved when 

both time and frequency signals are utilized for activity classification. 

Table 5.2: Classification accuracy using feature sets FSI, FSII and their combination  

Signals FSI FSII Fusion 

Time domain 84.32% 82.01% 94.57% 

Frequency domain 87.78% 92.21% 93.82% 

Time domain + Frequency domain 92.67% 93.75% 97.12% 
 

We have also compared the performance of the proposed approach with those of the 

existing approaches [140, 156]. Tables 5.3, 5.4 and 5.5 present confusion matrices of the 

existing approaches (as reported in [156] and [140]) and the proposed approach. As can 

be observed, our approach correctly classifies more number of signal segments (see the 

diagonal elements) for majority of the activities. The performance of our approach is 

relatively poor when classifying segments belonging to the standing activity. It is 

interesting to note that considerable number of segments belonging to the standing 
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activity are misclassified as belonging to the sitting activity and vice versa. This is 

perhaps due to the non-repetitive nature of these activities. In addition, there exists only a 

slight difference in sensors’ readings for sitting and standing activities. The average 

classification accuracies computed from the confusion matrices in Tables 5.3, 5.4 and 5.5 

are 96.33%, 90.13% and 97.12%, respectively. A detailed comparison using the 

performance measures namely, SEN and SPF is presented in Table 5.6. We have 

excluded the method in [140] from this comparison, as it is evident (from the results 

presented in Tables 5.4 and 5.5) that our approach provides significantly better accuracy. 

Table 5.3: Confusion matrix of the approach presented in [156] 

  Predicted as 

  Walking Upstairs Downstairs Sitting Standing Laying Down 

A
ct

u
a
l 

C
la

ss
 

Walking 492 1 3 0 0 0 

Upstairs 18 451 2 0 0 0 

Downstairs 4 6 410 0 0 0 

Sitting 0 2 0 432 57 0 

Standing 0 0 0 14 518 0 

Laying Down 0 0 0 0 0 537 
 

Table 5.4: Confusion matrix of the approach presented in [140]  

  Predicted as 

  Walking Upstairs Downstairs Sitting Standing Laying Down 

A
ct

u
a
l 

C
la

ss
 

Walking 473 2 21 0 0 0 

Upstairs 17 444 10 0 0 0 

Downstairs 28 54 338 0 0 0 

Sitting 0 4 0 381 106 0 

Standing 0 10 0 38 484 0 

Laying Down 0 1 0 0 0 536 
 

Table 5.5: Confusion matrix of the proposed approach 

  Predicted as 

  Walking Upstairs Downstairs Sitting Standing Laying Down 

A
ct

u
a
l 

C
la

ss
 

Walking 491 0 5 0 0 0 

Upstairs 2 468 1 0 0 0 

Downstairs 1 4 415 0 0 0 

Sitting 0 0 0 446 45 0 

Standing 0 0 0 27 505 0 

Laying Down 0 0 0 0 0 537 
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Table 5.6: Performance measures of the proposed and the existing approaches 

Activity 

SEN SPF 

Anguita 

et al. [156] 

Proposed 

approach 

Anguita 

et al. [156] 

Proposed 

approach 

Walking 99.19% 98.99% 99.10% 99.88% 

Upstairs 95.75% 99.36% 99.64% 99.84% 

Downstairs 97.62% 98.81% 99.80% 99.76% 

Sitting 87.98% 90.83% 99.43% 98.90% 

Standing 97.37% 94.92% 97.64% 98.14% 

Laying 100% 100% 100% 100% 

5.2.2 Evaluation on Dataset-II 

To ascertain the performance of the proposed algorithm, we have performed a similar set 

of experiments on Dataset-II. The accelerometer and gyroscope sensor readings in this 

dataset are collected using iPod Touch [157]. The data is collected from 16 subjects, aged 

between 21 and 60 years, using the device kept in the front pocket of subject’s trousers. 

The activities performed by the users are slow walking (C1), normal walking (C2), brisk 

walking (C3), jogging (C4), sitting (C5), normal upstairs (C6), normal downstairs (C7), 

brisk upstairs (C8) and brisk downstairs (C9). The preprocessing includes noise removal 

and manual clipping of segments at the beginning and end of the acquired signals. For 

experiments, a set of signal segments is obtained by using a sliding window of 2s with 

50% overlap between consecutive segments. Since the signals are sampled at 30Hz, there 

are 60 sample values in a segment. A total of 2807 such segments are made available by 

Wu et al. [157]. We have performed 10-fold cross-validation on Dataset-II. This helps us 

make a fair comparison with their approach, for which 10-fold cross-validation results are 

available [157].  

In the first set of experiments, we have evaluated the performance of SVM and k-NN 

classifiers for activity classification. The classification accuracies achieved using 

individual feature sets and their fusion are shown in Fig. 5.7. Interestingly, k-NN 

performs consistently better than SVM on Dataset-II and therefore, we have employed 

only the k-NN classifier in our further performance analysis. It may be recalled that we 

observed the opposite trend on Dataset-I. In general, it has been observed in the literature 

[191-193] that the performance of classifiers depends mainly on the characteristics of the 

dataset and often a single classifier does not achieve the best performance on all datasets. 
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As discussed previously, the datasets used in this work for performance evaluation are 

collected using different devices in different settings. Also, the size of the training sets 

and sampling rates of the signals are different in these datasets. All of these factors have 

possibly contributed to the inconsistency in performance of the classifiers. Despite this 

inconsistency in performance, the proposed method with SVM classifier outperforms the 

existing methods [156, 157] on both datasets. 

 

Figure 5.7:  Performance comparison of the classifiers on Dataset-II using FSI, FSII and their 

feature level fusion. 

As was done in the case of Dataset-I, we have investigated the usefulness of 

additional time and frequency domain signals that are derived from the signals in 

Dataset-II. The bar graph in Fig. 5.8 shows the classification accuracies corresponding to 

the signals employed. The overall performance trend in this figure is very similar to that 

observed on Dataset-I. More importantly, the combination of FSI and FSII leads to 

considerable performance improvement in all cases. The results of this set of experiments 

are summarized in Table 5.7. These results clearly indicate that our approach provides the 

highest accuracy when both time and frequency domain signals are utilized. 

Table 5.7: Classification accuracy using feature sets FSI, FSII and their combination  

Signals FSI FSII Fusion 

Time domain 86.86% 92.73% 93.52% 

Frequency domain 87.03% 91.88% 94.29% 

Time domain + Frequency domain 91.77% 95.26% 96.83% 
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AT: tri-axial accelerometer signals in time domain, GT: tri-axial gyroscope signals in time domain, MT: Magnitude of 

accelerometer and gyroscope signals in time domain, AF: tri-axial accelerometer signals in frequency domain, GF: tri-

axial gyroscope signals in frequency domain, MF: Magnitude of accelerometer and gyroscope signals in frequency 

domain, ALL: All the signals are considered. 

Figure 5.8:  Comparison of time and frequency domain signals with their combined performance. 

The objective of the next set of experiments is to perform a comparative evaluation of 

our approach with an existing approach [157], which has been evaluated on Dataset-II. 

Tables 5.8 and 5.9 present confusion matrices of the two approaches. As can be observed, 

the classification accuracy of the proposed approach is higher for all the activities except 

for sitting activity (C5). In Table 5.8, it may be seen that the misclassifications occur 

mostly in discriminating activities C1 through C4. This may be because these activities 

differ mainly in speed. In addition, the walking speed is likely to vary from user to user. 

This makes the discrimination of these activities a challenging task. The performance of 

our approach is quite encouraging as it greatly reduces the number of misclassifications. 

The results presented in Table 5.8 also indicate that a significant number of segments 

belonging to activities C6 through C9 are misclassified as belonging to C1, C2 and C3. 

As can be observed in Table 5.9, the proposed approach greatly reduces the number of 

misclassifications for these cases as well.  

For a detailed analysis, we have computed SEN and SPF from the confusion matrices 

in Tables 5.8 and 5.9. These results are presented in Table 5.10. Overall, the proposed 

approach outperforms the existing approach with higher SEN and SPF for majority of the 

cases. It is noteworthy that our approach provides significant improvements in SEN for 
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classification of activities C6 through C9. The average classification accuracies computed 

from the confusion matrices in Tables 5.8 and 5.9 are 90.2% and 96.83%, respectively. 

Table 5.8: Confusion matrix of the approach presented in [157] 

  Predicted as 

  C1 C2 C3 C4 C5 C6 C7 C8 C9 

A
ct

u
a

l 
C

la
ss

 

C1 572 30 5 0 0 0 0 0 0 

C2 29 602 13 0 0 4 5 0 1 

C3 7 17 475 25 0 0 1 0 2 

C4 0 1 32 389 0 0 0 2 0 

C5 0 0 0 0 266 0 0 0 0 

C6 8 15 2 0 0 67 4 0 0 

C7 6 7 3 0 0 4 77 0 0 

C8 1 8 10 1 0 0 0 50 1 

C9 0 16 14 0 0 1 0 0 34 
 

Table 5.9: Confusion matrix of the proposed approach  

  Predicted as 

  C1 C2 C3 C4 C5 C6 C7 C8 C9 

A
ct

u
a
l 

C
la

ss
 

C1 586 7 4 5 0 0 1 1 3 

C2 5 642 7 0 0 0 0 0 0 

C3 4 10 511 1 0 0 0 0 1 

C4 3 1 0 420 0 0 0 0 0 

C5 3 0 0 0 260 0 1 0 2 

C6 5 0 0 0 0 91 0 0 0 

C7 5 0 0 0 1 1 86 1 3 

C8 1 1 1 0 0 4 1 63 0 

C9 1 2 2 0 0 0 1 0 59 
 

Table 5.10: Performance measures of the proposed and the existing approaches  

Activity 
SEN SPF 

Wu et al. [157] Proposed approach Wu et al. [157] Proposed approach 

C1 94.23% 96.54% 97.68% 98.77% 

C2 92.05% 98.17% 95.63% 99.02% 

C3 90.13% 96.96% 96.54% 99.39% 

C4 91.75% 99.06% 98.91% 99.75% 

C5 100% 97.74% 100% 99.96% 

C6 69.79% 94.79% 99.67% 99.82% 

C7 79.38% 88.66% 99.63% 99.85% 

C8 70.42% 88.73% 99.93% 99.93% 

C9 52.31% 90.77% 99.85% 99.67% 
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5.3 Summary 

In this chapter, we have presented a descriptor-based method for classification of daily 

physical activities using built-in sensors of a smartphone. Our approach utilizes 

accelerometer and gyroscope sensor readings from a smartphone or a similar device. The 

approach also utilizes a set of time and frequency domain signals that are derived from 

the originally acquired signals. The histogram of gradients and the centroid distance 

signature-based FD are employed for extracting discriminatory information. We have 

investigated feature level and score level fusion techniques for combination of the 

resultant information. The proposed approach has been evaluated on two publicly 

available datasets. Our experimental results show that the fusion at the feature level 

outperforms the score level fusion and that such a combination provides significant 

improvement in classification accuracy. Most importantly, the results from our 

experimental evaluations show that the proposed approach achieves state-of-the-art 

performance (with the highest average classification accuracy) on the two datasets, 

despite the fact that these datasets are collected using different devices with differences in 

the set of activities, sampling rates and placement of the devices. There are a large 

number of wearable devices that require the user to choose the activity they are 

performing. When integrated into such devices, our method will provide automatic 

recognition of activities as an additional feature. 
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Chapter 6 

Conclusions & Future Research Directions 

This chapter presents concluding remarks on the main contributions of the thesis and 

highlights the directions for future research. 

6.1 Conclusions 

The prime objective of this thesis is the analysis of human behavior based on the 

information extracted from the signals acquired using built-in sensors in the smartphones. 

We have proposed methodologies for smartphone-based biometric authentication, gender 

recognition and physical activity recognition. Our approaches for user authentication and 

gender recognition utilize the sensor data captured while the user interacts with the 

smartphone through its touchscreen. We have also investigated the problem of gender 

recognition in smartphones by analyzing the gait information acquired using the built-in 

accelerometer and gyroscope sensors. Furthermore, we have presented an approach that 

utilizes the same set of sensor readings to recognize various physical activities performed 

by the user.  

In Chapter 2, we have presented an approach for biometric authentication in 

smartphones based on a set of behavioral characteristics captured using built-in sensors in 

the smartphone during the user’s interaction with the device. The performance evaluation 

on a dataset of 104 users shows that the proposed MHD based matching achieves better 

performance (in terms of both the accuracy and computational time) than the existing 

DTW-based approach. Our experimental results also demonstrate that the information 

acquired from the built-in orientation and accelerometer sensors carry adequate 

discriminatory information for user authentication. This study indicates that the way user 

performs gestures on mobile phones is unique to some extent and the information can be 

exploited for user authentication. The performance of the proposed approach has also 

been ascertained on a second dataset of 30 subjects collected using another smartphone. 

The experimental results on the second dataset also show that the proposed approach 
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outperforms the existing DTW-based approach. The framework for user authentication 

developed in this thesis is very well suited for continuous authentication in smartphones. 

In Chapter 3, we have presented an approach for gender recognition in smartphones 

using behavioral biometrics. Our approach utilizes a set of attributes acquired during the 

user’s interaction with the smartphone’s touchscreen. The performance of the proposed 

approach has been evaluated on datasets collected from a total of 126 subjects using two 

devices. Our experimental results show that the attributes considered in this study provide 

information useful for gender recognition in smartphones. Our experiments also 

demonstrate that the score level fusion performs better than the feature level fusion on 

both the datasets. Moreover, a set of experiments performed to evaluate different 

combinations of gestures show that the accuracy of gender recognition increases with the 

number of gestures combined. Most importantly, the proposed approach outperforms the 

existing work on both the datasets. This study suggests that the behavioral traits acquired 

during the user’s interaction with the device provide reliable information on the gender of 

the smartphone user. 

In Chapter 4, we have proposed another approach for smartphone-based gender 

recognition using gait biometrics. The gait information is acquired using the built-in 

accelerometer and gyroscope sensors in the smartphone and a novel approach based on 

the histogram of gradients is proposed for feature extraction. The performance of the 

proposed approach has been evaluated on datasets collected from 109 subjects using two 

different devices. Our experimental results show that the features extracted from 

accelerometer and gyroscope sensor readings carry information useful for gender 

classification in smartphones. More importantly, the feature level combination of 

accelerometer and gyroscope sensor readings significantly improves the performance of 

the proposed approach. The results of our cross-speed experiments indicate that 

variations in the user’s walking speed have a minimal impact on the performance of the 

proposed approach, except for cases in which there is a significant change in walking 

speeds between the training and test sets. Our experimental results also demonstrate that 

the performance of the proposed approach is consistent across the two gait datasets and it 

achieves higher classification accuracy than the existing works. The results of this study 

are significant as they indicate that gait information captured using the smartphones’ 



101 

 

built-in sensors can be used to derive the user’s gender information reliably and 

unobtrusively. 

In Chapter 5, we have presented a descriptor-based method for classification of daily 

physical activities using built-in accelerometer and gyroscope sensors in the smartphone. 

The approach utilizes a set of time and frequency domain signals for activity recognition. 

We have investigated the feature level and score level fusion techniques for the 

combination of the resultant information. The proposed approach has been evaluated on 

two publicly available datasets. Our experimental results show that the fusion at the 

feature level outperforms the score level fusion and that such a combination provides a 

significant improvement in classification accuracy. Most importantly, the results of our 

experimental evaluations demonstrate that the proposed approach achieves state-of-the-

art performance (with the highest average classification accuracy) on the two datasets, 

despite the fact that these datasets are collected using different devices with differences in 

the set of activities, sampling rates and placement of the devices.  

In summary, each of the approaches proposed in this thesis has been evaluated on 

datasets collected using two different devices. We have developed an Android application 

to acquire the behavioral data while a user performs the touchscreen gestures or while 

he/she walks with the smartphone in the trouser pocket. The results of our comparative 

evaluations indicate that the approaches proposed in this thesis achieve state-of-the-art 

performance consistently. The results presented in this thesis clearly indicate that the 

smartphone sensor readings provide information related to the user’s behavior.  

Human behavior-based intelligence for smartphones is a relatively new area of 

research, which has gained significant attention from the researchers in recent times. This 

thesis has presented an explorative study on the applicability of the smartphone sensor 

data for various tasks. However, the current work has certain limitations. This study used 

in-house datasets as there are only a few public datasets. Although these in-house datasets 

are larger than most of the datasets used for evaluation of the methods reported in the 

literature, our datasets can be expanded further to obtain better estimates of the 

performance of the proposed approaches. In addition, the participants in our data 

collection processes were in the age group of 19-36 years. A more diverse age group can 

be considered for data collection for evaluating generalizability of the proposed 
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approaches. Secondly, the current interface for database collection built using an Android 

application may not be completely transparent to the user, thus making the user conscious 

of the data collection process. Running a data collecting application in the background is 

likely to provide a more realistic user data. Finally, in this work, tri-axial sensor readings 

were used to compute features, and the resulting dimensionality of the features is 

considerably high. The storage of the feature templates may not be an issue as the storage 

capacity of the smartphones has increased significantly in recent times. However, the 

prediction may take longer due to the increased feature length, which may affect the real-

time performance of the system. 

6.2 Future research directions 

The Android application developed in this work collects the touchscreen gestures and gait 

data while a smartphone user performs a set of predefined tasks. This data was analyzed 

by the proposed approaches, which were implemented in the MATLAB environment, for 

performing user authentication and gender recognition. Since our experimental results 

demonstrate that the performance of the proposed approaches is quite promising, these 

approaches can be employed to develop mobile applications that can be deployed on the 

end-user smartphones. Efforts can be taken for developing the mobile applications 

keeping in mind the computational constraints associated with the handheld devices such 

as limited computational power and storage capacity.  

Apart from using touch gesture information, another way of performing user 

authentication can be based on the usage of mobile applications in the smartphone. The 

way in which a user interacts with the applications and the choice of the applications 

installed in the device are expected to be specific to an individual. This behavioral 

information can be exploited to perform user authentication by acquiring the data using 

the mobile phone. In addition, the daily physical activities performed by the user can be 

analyzed to achieve user authentication. Since each individual has a habit of performing a 

particular set of activities in a certain way, these behavioral characteristics of the user can 

be utilized as a soft biometric trait to perform the smartphone-based user authentication.  

It has been demonstrated in the literature that the performance of the user 

authentication can be improved by supplementing the traditional biometrics with the soft 
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biometrics such as gender, age and emotion. The experiments performed in this thesis 

demonstrate promising gender recognition performance. Thus, the gender information of 

the smartphone user can be incorporated with the touch gesture and gait-based biometrics 

to improve the user authentication performance. Similarly, other soft biometric traits such 

as age, emotion and stress can also be recognized by analyzing the touchscreen gesture 

data and gait signals acquired using the smartphone. In addition, the daily physical 

activities performed by the individual can be explored to determine the gender, age, and 

ethnicity of the individual. 

In this thesis, the datasets were collected by instructing the subjects to perform a set 

of predefined tasks. In this condition, the user may become conscious while performing 

the tasks, affecting his behavior and hence, the behavioral data collected by the mobile 

application. For collecting the datasets in a more realistic scenario, the mobile application 

can be installed in the subject’s smartphone. The subject can be asked to use the phone as 

he normally would in his routine life. Additionally, the sensor information collected in 

this study may change if the user walks or travels in a vehicle while performing the 

gestures on the touchscreen of the smartphone. These scenarios can be explored to 

provide more realistic touch gesture-based user authentication and gender recognition. 

On the other hand, in this thesis, the gait signals were collected by keeping the 

smartphone in the front pocket of the trouser as generally people carry it. In addition, one 

may also study gender recognition using gait data collected from the phone kept in 

different pockets of the trouser. Furthermore, it is imperative to develop intelligent 

systems that perform gender recognition in more realistic and challenging scenarios that 

involve walking on level, inclined and uneven surfaces in indoor and outdoor 

environments (crowded place, rainy/sunny day, etc.). A scenario, in which users carry 

different objects while walking, may also be considered. The datasets of activity 

recognition employed in this thesis include most commonly performed daily physical 

activities. However, other complex physical activities such as cooking, cleaning, sports, 

and meditation as well as overlapping of activities such as talking while having a meal or 

walking while talking over the phone can also be explored for activity classification.  

Although it is difficult, it may be possible to imitate the behavior of a subject by 

another individual to gain illegitimate access to the biometric system. Therefore, a 
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systematic study should be carried out to investigate the vulnerability of the behavioral 

biometric system. In future, suitable countermeasures should be devised to secure the 

biometric systems against such attacks. Additionally, it may also be noted that for 

smartphone user authentication biometric templates need to be stored either on an 

external server or in the smartphone. This may pose security threat to the user since his 

personal and sensitive information may be accessible to a hacker. Therefore, it is 

essential to develop a smartphone-based biometric template protection approach.  
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