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ABSTRACT

This thesis establishes comprehensive frameworks for addressing generalized reduced

biquaternion matrix equations (RBMEs), exploring their solutions, applications, and

sensitivity to perturbations. Firstly, the thesis focuses on structured least squares

solutions for generalized RBMEs. To this end, it introduces the concept of reduced

biquaternion L-structures, which accommodate linear relationships between matrix entries.

A comprehensive framework is established for deriving L-structure least squares solutions

to RBMEs, with particular attention to specialized structures such as Toeplitz, Hankel,

symmetric Toeplitz, and circulant matrices. The developed techniques are further extended

to applications like color image restoration and solving partially described inverse eigenvalue

problems (PDIEPs) and generalized PDIEPs.

Next, the thesis investigates generalized inverses of RB matrices, such as the {2}-inverse
and {1,2}-inverse, under prescribed conditions on row and/or column spaces. By solving

RBMEs, conditions for the existence of these generalized inverses are derived, and their

e”cient representations are established.

Following this, the reduced biquaternion equality constrained least squares (RBLSE)

problem is studied. Algebraic techniques are developed to compute real and complex

solutions to the RBLSE problem. An upper bound for the relative forward error is derived

to ensure the reliability and accuracy of the solutions. This analysis is particularly relevant

for applications requiring robust solutions in the presence of data perturbations.

Expanding beyond least squares, the thesis also introduces the reduced biquaternion

mixed least squares and total least squares (RBMTLS) method to solve overdetermined

systems AX ≈ B. This method is tailored to scenarios where errors exist in both matrix

B and specific columns of matrix A. Two special cases—the reduced biquaternion total

least squares (RBTLS) method, addressing errors in both A and B, and the reduced

biquaternion least squares (RBLS) method, which assumes errors only in B—are also

explored. For these methods, conditions for the existence and uniqueness of solutions are

derived, along with explicit formulas for their relative normwise condition numbers. These

condition numbers quantify the sensitivity of solutions to perturbations in input data.

Finally, perturbation analysis is performed for the RBMTLS, RBTLS, and RBLS

methods, providing explicit bounds for the relative forward error. This ensures the reliability

of the proposed solutions in practical applications.



xii



LIST OF PUBLICATIONS

List of Published/Communicated Research Papers from the Thesis

1. S. S. Ahmad and N. Bhadala, L-structure least squares solutions of generalized

reduced biquaternion matrix equations with applications, Linear and Multilinear

Algebra, 1-29, 2024.

DOI: https://doi.org/10.1080/03081087.2024.2437658.

2. N. Bhadala, S. S. Ahmad, and P. S. Stanimirović, Outer inverse of reduced
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, we denote it as

diag(ε1,ε2, . . . ,εn), where aij = 0 whenever i ≠ j and

aii = εi for i = 1, . . . , n
vec(A) For matrix A = (aij) ∈ Qm⌐n

R
, vec(A) = [a1, a2, . . . , an]T ,
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#(d,n) The vec-permutation matrix of size dn ⌐ dn, defined as
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j=1Eij ⋊ET

ij
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of {1, . . . , n} consisting of k elements

C(A) For A ∈ Qm⌐n
R

, the submodule generated by the columns of

matrix A

R(A) For A ∈ Qm⌐n
R

, the submodule generated by the rows of

matrix A

A(∶, j) For any matrix A ∈ Fm⌐n and j ∈ {1, 2, . . . , n}, this returns
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CHAPTER 1

INTRODUCTION

The study of hypercomplex numbers, such as quaternions and reduced biquaternions,

has significantly contributed to advancements in fields such as signal processing, image

processing, and control theory [27, 41, 50, 60, 66, 88]. Among these number systems,

quaternions have been widely recognized for their ability to represent multi-dimensional

data in a compact form. Introduced by William Rowan Hamilton in 1843, quaternions

form a four-dimensional hypercomplex number system consisting of one real component

and three imaginary components. Quaternions have been applied e!ectively in control

systems, computer graphics, signal, and image processing [1, 9, 23, 40, 51, 52, 59].

Despite their versatility, quaternions present a significant challenge: non-commutative

multiplication, where the order of multiplication matters. This non-commutative property

complicates many operations, leading to increased computational complexity and more

intricate algorithm designs [25, 56, 57]. To address this limitation, reduced biquaternions

(RBs), also known as commutative quaternions, were introduced [61]. Like quaternions,

RBs are four-dimensional hypercomplex numbers, but their multiplication is commutative,

making them more suitable for real-time applications where computational e”ciency is

crucial, particularly in signal and image processing. As a result, RBs have been applied to

reduced biquaternion discrete Fourier transforms, convolutions, and correlation operations

in signal and image processing [31, 55, 56]. Researchers have also explored the potential of

RBs in theoretical physics, such as their connection to Maxwell’s equations [8, 32], further

broadening the applicability of RBs.

This growing interest in RBs has led to the development of several algorithms for

matrix computations involving RBs. For instance, algorithms for eigenvalue and eigenvector

computations, as well as singular value decompositions of RB matrices, are detailed in

[57]. Zhang et al. explored the singular value decomposition and generalized inverses of

RB matrices [85], and further investigated the diagonalization process in [86], where they

established the necessary and su”cient conditions for diagonalization and introduced two

numerical methods to facilitate this task. In [19], authors discussed the LU decomposition



of RB matrices. These studies underscore the increasing relevance of RB matrices in both

theoretical and applied contexts.

Color image processing is one area where RBs have demonstrated significant potential.

A color image can be represented as an RB matrix, e”ciently capturing the relationships

between the red, green, and blue (RGB) color channels without losing spatial arrangement

[57]. A color image I is expressed as

I = Ri +Gj +Bk,

where i, j, and k represent the basis imaginary units of RBs, and R, G, and B represent

the red, green, and blue channels, respectively. This RB-based representation preserves

inter-channel relationships and o!ers an advantage over conventional methods that treat

each color channel separately.

In image restoration, RB matrix equations are particularly useful for modeling and

correcting image degradation. The linear discrete model for image restoration is given by

g =Kf + n,
where g is the observed (degraded) image, f is the true image, K is the blurring matrix, and

n is additive noise [39]. Solving this equation involves finding the purely imaginary least

squares solution of the reduced biquaternion matrix equation Kf = g, thereby restoring

the original image.

Additionally, eigenvalue problems involving RB matrices have been explored in the

literature. For example, in [33], Guo et al. studied the eigenvalue problem of RB matrices

by solving the matrix equation AX = XB. If A ∈ Qn⌐n
R

and there exists a non-zero RB

vector ε such that Aε = εω, where ω ∈ QR, then ω is called an eigenvalue of A, and ε is its

corresponding eigenvector. Such eigenvalue problems have proven e!ective in applications

like color face recognition [33, 57].

Despite the advancements of RBs in various applications, the available literature on

reduced biquaternion matrix equations (RBMEs) remains relatively sparse, particularly

regarding structured solutions. For instance, in [18], the authors explored unstructured

solutions to matrix equations of the form XF − AX = BY and XF − A ⌝X = BY over

commutative quaternions. Additionally, least squares solutions for matrix equations such

as AX = B and AXC = B over commutative quaternions were investigated in [81]. The

results in [67] further examine real representation methods for finding least squares solutions

2



to the RB matrix equation AXC = B. Moreover, [75] discusses unstructured solutions to

matrix equations over the commutative quaternion ring.

While significant progress has been made in finding unstructured solutions to the

RBMEs, structured least squares solutions remain largely unexplored. For instance, [71]

discusses least squares Toeplitz and bi-Hermitian solutions for the equation X +AXB = C,

while [80] addresses Hermitian solutions for RBMEs of the form (AXB,CXD) = (E,F ). In
this thesis, we extend the study to structured solutions for generalized RBMEs, covering L-

structure solutions that encompass known structures such as Toeplitz, symmetric Toeplitz,

Hankel, circulant, and lower triangular matrices. With our developed comprehensive

framework, we can address the problem discussed in [71] in a more e!ective way.

Further studies have addressed equality constrained least squares problems, as seen

in [83], where techniques for solving the reduced biquaternion equality constrained least

squares (RBLSE) problem were developed. However, special solutions for the RBLSE

problem, along with their detailed perturbation analysis, remain unexplored in the existing

literature.

In numerical analysis, the concept of relative forward error is essential for evaluating

the accuracy and stability of solutions to mathematical problems, particularly for the

RBLSE problem in this case. This measure becomes especially critical when solutions

are computed in the presence of data perturbations. While computing the solution of

the RBLSE problem, inaccuracies arising from machine precision limits, floating-point

arithmetic, or data input errors can introduce deviations between the computed solution

and the true solution. The relative forward error e!ectively quantifies these discrepancies,

helping to gauge the sensitivity of the solution to small data perturbations. By identifying

the extent of these errors, researchers can evaluate the robustness and reliability of the

solution methods employed. Furthermore, understanding these discrepancies is crucial in

practical applications, where RB algebra is applied in domains such as robotics, image

processing, and control systems. Therefore, conducting a detailed study of the perturbation

analysis for the RBLSE problem is crucial to ensure solution reliability and accuracy—an

aspect that has yet not been addressed in current research.

Recent research has also focused on the total least squares (TLS) method for finding

an approximate solution to the matrix equation AX ≈ B in commutative quaternionic

theory. For instance, [82] explored solutions to the TLS problem, while [84] examined

3



special solutions in the commutative quaternionic theory. These studies provide valuable

insights into TLS methods, but they leave open areas for further exploration, particularly

concerning the reduced biquaternion mixed least squares and total least squares (RBMTLS)

problem and its associated perturbation analysis.

Both least squares (LS) and TLS methods find approximate solutions to the linear

system AX ≈ B by making certain assumptions about the input data that may not be valid

across all practical applications. In scenarios where these assumptions do not hold, the

RBMTLS method o!ers a more flexible and accurate approach to obtaining solutions. This

flexibility arises from the RBMTLS method’s capacity to account for errors in the matrix

B and only a few columns of matrix A, which is not inherently addressed in standard LS

and TLS methods.

This thesis addresses these research gaps by developing a comprehensive framework

for solving RBMEs. The key contributions of this thesis are as follows:

Chapter 1 is introductory in nature and provides the history of RBs, the fundamental

properties of RBs and RB matrices, background ideas, and prerequisites for the remaining

chapters.

Chapter 2 focuses on least squares structured solutions for generalized RBMEs. In

this chapter, we develop a comprehensive framework that accommodates various matrix

structures, allowing for any set of linear relationships between matrix entries. This class of

matrices is referred to as the reduced biquaternion L-structure, defined as follows:

Reduced Biquaternion L-structure: Let $ be a submodule of Qmn

R
. The subset of RB

matrices of order m ⌐ n, given by

L(m,n) = {X ∈ Qm⌐n
R
⌝ vec(X) ∈ $}

is called the reduced biquaternion L-structure.

For example, consider the following matrices:

X1 =
⌞⌞⌞⌞⌞⌞⌞⌞⌞

x11 x12 x13

x21 x11 x12

x31 x21 x11

⌞⌟⌟⌟⌟⌟⌟⌟⌟
, X2 =

⌞⌞⌞⌞⌞⌞⌞⌞⌞

x11 + 2i x12 + 3 x11

x21 + (2 + 3i + j) x21 x21

x11 x12 x11

⌞⌟⌟⌟⌟⌟⌟⌟⌟
,

where x11, x12, x13, x21, x31 ∈ QR. Clearly, X1 is an L-structure matrix, but X2 is not.

4



Applications of least squares solutions in color image restoration and solving inverse

eigenvalue problems are explored. Both the partially described inverse eigenvalue problems

(PDIEPs) and the generalized PDIEPs are addressed:

⋉ PDIEP: Given vectors {u1, u2, . . . , uk} ⊂ Fn (k ≤ n), values {ω1,ω2, . . . ,ωk} ⊂ F,

and a set L of structured matrices, find a matrix M ∈ L such that Mui = ωiui for

i = 1,2, . . . , k.
⋉ Generalized PDIEP: Given vectors {u1, u2, . . . , uk} ⊂ Fn (k ≤ n) and values

{ω1,ω2, . . . ,ωk} ⊂ F, find matrices M,N ∈ L such that Mui = ωiNui for i = 1, . . . , k.
Chapter 3 focuses on computing the {2}-inverse and {1,2}-inverse of RB matrices

with predefined conditions on the row and/or column space. Conditions for the existence

and e!ective representations of these generalized inverses are established by solving RBME

of the form (AXB,CXD) = (E,F ). This chapter builds on the framework developed

in Chapter 2, applying it to find unstructured solutions of the RBME. The results and

algorithms presented here demonstrate the versatility of the techniques introduced earlier.

Chapter 4 addresses the RBLSE problem. The goal is to solve the system

min
X

⌝AX −B⌝
F
, subject to CX =D.

where the constraints on X do not fall under the L-structure framework discussed in

Chapter 2. In this chapter, algebraic techniques are developed to find both real and

complex solutions to the RBLSE problem. An upper bound is also established for the

relative forward error associated with these solutions:

Relative Forward Error = ⌝Xcomputed −Xexact⌝⌝Xexact⌝ .

Minimizing this error ensures the accuracy of our solutions in practical applications.

Chapter 5 explores solutions to the RBME

AX ≈ B,

a specific case of the generalized RBMEs studied in Chapters 2 and 3. In earlier chapters, a

least squares framework was developed under the assumption that errors are only present

in matrix B. However, in practical applications, matrix A may also contain errors, or these

errors may be limited to only a few columns of A.
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This chapter extends the framework to address these scenarios by introducing the

RBMTLS method. The RBMTLS method is particularly well-suited for cases where errors

occur in both matrix B and specific columns of matrix A. Two special cases of this method

are also discussed:

⋉ Reduced biquaternion total least squares (RBTLS): Suitable when both A

and B contain errors.

⋉ Reduced biquaternion least squares (RBLS): Suitable when only B contains

errors, as detailed in earlier chapters.

This chapter explores the conditions for the existence and uniqueness of real solutions

to the RBMTLS, RBTLS, and RBLS problems. Explicit formulas are derived for the

relative normwise condition number, which quantifies the sensitivity of the solutions to

small perturbations in the input data. Additionally, upper bounds for the relative forward

error are determined for each method, ensuring the reliability and accuracy of the solutions.

Chapter 6 provides a summary of the thesis and outlines potential directions for

future research.

By bridging the gaps in current research and providing new theoretical insights,

this thesis advances the field of RBMEs and their applications across various domains.

Furthermore, to ensure a comprehensive understanding, the fundamental properties of

both RBs and RB matrices are reviewed.

1.1. Reduced Biquaternions

The concept of the reduced biquaternion was first introduced by Segre in 1892. A

reduced biquaternion is a four-dimensional hyper-complex number system that extends

the complex number system by incorporating one real component and three imaginary

components. The set of reduced biquaternions is defined as:

QR = {r = r0 + r1i + r2j + r3k ⌝ r0, r1, r2, r3 ∈ R} , (1.1.1)

where i, j, and k are imaginary units. These units satisfy the following algebraic relationships

i
2 = k2 = −1, and j

2 = 1,
6



with the multiplication rules

ij = ji = k, jk = kj = i, and ki = ik = −j.
Given two reduced biquaternions a = a0+a1i+a2j+a3k ∈ QR and b = b0+b1i+b2j+b3k ∈ QR,

we have

a = b ⇐↢ ai = bi, for i = 0,1,2,3. (1.1.2)

The operations of addition and multiplication are defined as follows:

For addition:

a + b = (a0 + b0) + (a1 + b1)i + (a2 + b2)j + (a3 + b3)k,
and for multiplication:

ab = (a0b0 − a1b1 + a2b2 − a3b3) + (a0b1 + a1b0 + a2b3 + a3b2)i
+ (a0b2 − a1b3 + a2b0 − a3b1)j + (a0b3 + a1b2 + a2b1 + a3b0)k.

These operations extend the familiar algebraic rules of complex numbers into a higher-

dimensional system, enabling the representation of more complex relationships. The

commutative properties of the multiplication operation make reduced biquaternions

especially useful in applications where simplicity and computational e”ciency are required.

Real number and complex numbers can be thought of as reduced biquaternions in a

natural way. For a reduced biquaternion r = r0 + r1i+ r2j+ r3k ∈ QR, the real, complex, and

imaginary parts are defined as

R(r) = r0, C(r) = r0 + r1i, and I(r) = r1i + r2j + r3k.
Unlike the quaternion algebra, reduced biquaternion r has three types of conjugates [33]:

r̄(1) = r0 − r1i + r2j − r3k, r̄(2) = r0 + r1i − r2j − r3k, r̄(3) = r0 − r1i − r2j + r3k.
r̄(1) is also denoted by rH . The norm of r is defined in [6, 33] as

⌝r⌝ = 4
⌟
rr̄(1)r̄(2)r̄(3) = 4

⌝[(r0 + r2)2 + (r1 + r3)2] [(r0 − r2)2 + (r1 − r3)2].
r is said to be nonsingular if there exists a reduced biquaternion p such that rp = pr = 1,
written as r⋊1 = p, and

r⋊1 = r̄(1)r̄(2)r̄(3)⌝r⌝4 ,

which is di!erent from the inverse of quaternions [33].
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Any reduced biquaternion number r = r0+r1i+r2j+r3k can also be uniquely expressed

as

r = (r0 + r1i) + (r2 + r3i)j = a1 + a2j,
where a1 = r0 + r1i and a2 = r2 + r3i are complex numbers.

The set QR forms a commutative ring with identity, where addition and multiplication

are defined in the usual way.

Zero Divisors of QR: Let 0 ≠ p ∈ QR, and if there exists another element 0 ≠ q ∈ QR such

that pq = 0, then p is referred to as a zero divisor of QR.

Let e1 and e2 be two special numbers defined as

e1 = 1 + j
2

and e2 = 1 − j
2

.

We have

e1e2 = 0, en1 = en⋊11 = . . . = e21 = e1, en2 = en⋊12 = . . . = e22 = e2.
Therefore, e1 and e2 are both idempotent elements (e21 = e1, e22 = e2) and divisors of zero.

Any RB of the form c1e1 or c2e2 (where c1 and c2 are any complex numbers) is also a

divisor of zero.

Thus, for RBs, there are infinite solutions for the variable x in the following equation:

ux = 0, if u = c1e1 or c2e2.
Hence, QR does not form a complete division algebra.

Unit in QR: An element r in QR is defined as a unit if there exists an element s ∈ QR

such that

rs = sr = 1,
where 1 represents the multiplicative identity in QR. In this context, s is referred to as the

inverse of r. Units are thus sometimes called invertible elements in QR.

It is important to note that not every nonzero element in QR is a unit, unlike in R

and C. For instance, there is no solution for the variable x in the following equation:

ux = 1, if u = c1e1 or c2e2.
Since QR forms a commutative ring, we can extend the concept of vector spaces to that of

a module, where scalars are taken from a ring rather than a field. We begin by presenting

the definition of a module [5].
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Definition 1.1.1. A module over a ring QR is an abelian group (M,+) together with a

scalar multiplication operation QR ⌐M → M , defined as (r, x) ↦ r ⋅ x, such that for all

r, s ∈ QR and x, y ∈M , the following properties hold:

(1) Distributivity over module addition: r ⋅ (x + y) = r ⋅ x + r ⋅ y,
(2) Distributivity over ring addition: (r + s) ⋅ x = r ⋅ x + s ⋅ x,
(3) Associativity: (rs) ⋅ x = r ⋅ (s ⋅ x),
(4) Identity: 1 ⋅ x = x (1 is multiplicative identity in QR).

Then we say that M is a QR-module.

Next, we present some definitions concerning QR-module bases [5].

Definition 1.1.2. Let M be a QR-module, and let % = {mω ⌝ ε ∈&} be a subset of M .

(1) % is an QR-module basis of M if every m ∈ M can be written as a finite linear

combination of the elements of %.

(2) A finite subset {mω1 , . . . ,mωn} of distinct elements of % is said to be linearly

independent over QR if, whenever for some x1, . . . , xn ∈ QR, we have

x1mω1 +⧖ + xnmωn = 0 %↢ x1 = ⧖ = xn = 0.
(3) % is linearly independent over QR if every finite subset of distinct elements from %

is linearly independent over QR.

(4) % is a free QR-module basis of M if % is a QR-module basis of M and % is linearly

independent over QR.

(5) M is a free QR-module if M has a free QR-module basis.

A QR-module basis of M is often referred to as the basis of M .

Remark 1.1.3. The basis of a vector space di!ers from the basis of a module in the

following ways:

⋉ If % is a basis of M , this does not imply that every element of M can be written

uniquely as a linear combination of elements from %.

⋉ If % is a free QR-module basis of M , then every nonzero element of M can be written

uniquely as a linear combination of elements from %.
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Definition 1.1.4. A QR-module M is said to be finitely generated if M has a finite basis

% = {m1, . . . ,mn}.
The elements in a basis % are called generators of M . The rank of a free QR-module is

the number of generators in a free basis of the module. Clearly, QR itself is a QR-module

with {1} being a free QR-module basis of QR.

Definition 1.1.5. Let M be a module over a ring QR. A subset N ⊆ M is called a

submodule if:

(1) N is closed under addition, i.e., x + y ∈ N for all x, y ∈ N ,

(2) N is closed under scalar multiplication, i.e., r ⋅ x ∈ N for all r ∈ QR and x ∈ N ,

(3) N contains the zero element of M .

In simpler terms, a submodule is a subset of a module that retains the structure of a

module over QR.

Now, we introduce the definition of the Moore-Penrose generalized inverse for an RB

element, along with its algebraic representation, as detailed in [85].

Definition 1.1.6. Let r ∈ QR. An RB element, denoted by r , is called the Moore-Penrose

generalized inverse of r if x = r satisfies the following four equations:

(1) rxr = r, (2)xrx = x, (3) (rx)H = rx, (4) (xr)H = xr.
Theorem 1.1.7. Let r = r0+r1i+r2j+r3k = b1+b2j ∈ QR, where b1 = r0+r1i and b2 = r2+r3i.
Then, the Moore-Penrose generalized inverse of r is given by

r =

⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟⎨⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟⎩

r0 + r1i − r2j − r3k(r0 + r1i)2 − (r2 + r3i)2 , b21 ≠ b22,
(r0 + r2) − (r1 + r3)i + (r0 + r2)j − (r1 + r3)k

2(r0 + r2)2 + 2(r1 + r3)2 , b1 = b2 ≠ 0,
(r0 − r2) − (r1 − r3)i − (r0 − r2)j + (r1 − r3)k

2(r0 − r2)2 + 2(r1 − r3)2 , b1 = −b2 ≠ 0,
0, b21 = b22 = 0.

1.2. Reduced Biquaternion Matrices

In this section, we introduce the foundational concepts and operations related to RB

matrices, where each entry in the matrix is an RB number. Any matrix A ∈ Qm⌐n
R

can be
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uniquely expressed as

A = A0 +A1i +A2j +A3k,

where A0,A1,A2,A3 ∈ Rm⌐n. Alternatively, A can also be written as

A = B1 +B2j,

where B1 = A0 +A1i and B2 = A2 +A3i are complex matrices of size m ⌐ n.
The Frobenius norm for A = (aij) ∈ Qm⌐n

R
is defined in [80] as

⌝A⌝
F
=
4556 m⊍

i=1
n⊍
j=1
⌝aij ⌝2, (1.2.1)

where, for any RB number r = r0 + r1i + r2j + r3k, we define ⌝r⌝ as
⌝r⌝ =⌝r20 + r21 + r22 + r23.

For a matrix A = A0 +A1i +A2j +A3k ∈ Qm⌐n
R

, its transpose is given by

AT = AT

0 +AT

1 i +AT

2 j +AT

3 k,

and the ik-conjugate and the ik-conjugate transpose are defined as in [85]:

⌝A = A0 −A1i +A2j −A3k and AH = AT

0 −AT

1 i +AT

2 j −AT

3 k.

RB Unitary Matrix: A matrix A ∈ Qn⌐n
R

is called an RB unitary matrix if it satisfies

AAH = AHA = In [85].

The collection of all m⌐n RB matrices, denoted by Qm⌐n
R

, forms a QR-module, defined

by the following operations:

⋉ Matrix Addition: For A,B ∈ Qm⌐n
R

, the (i, j)-th element of A +B is

(A +B)ij = Aij +Bij.

⋉ Scalar Multiplication: For a scalar r ∈ QR and a matrix A ∈ Qm⌐n
R

, the (i, j)-th
element of rA is

(rA)ij = r(A)ij.
For each i = 1,2, . . . ,m and j = 1,2, . . . , n, let Eij denote the m ⌐ n matrix whose entries

are defined as follows:

(Eij)pq =
⌟⌟⌟⌟⌟⎨⌟⌟⌟⌟⎩
1 if (p, q) = (i, j),
0 if (p, q) ≠ (i, j).
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The set of matrices % = {Eij ⌝ 1 ≤ i ≤m,1 ≤ j ≤ n} forms a free QR-module basis of Qm⌐n
R

.

Thus, Qm⌐n
R

is a finitely generated, free QR-module of rank mn.

Similarly, the set Qm

R
= Qm⌐1

R
, consisting of all column vectors of size m, is a free QR-

module of rank m. Likewise, Q1⌐n
R

, the set of all row vectors of size n, is a free QR-module

of rank n.

We now define the determinant, minor, adjoint, and inverse of an RB matrix, along

with a discussion of their properties [5, 48].

Determinant of an RB Matrix: Let A = (aij) ∈ Qn⌐n
R

. Define

det ∶ Qn⌐n
R
→ QR

by

det(A) =⊍
ε

sgn(ϑ)a1ε(1)a2ε(2)⧖anε(n),
where the summation extends over all permutations ϑ of {1,2, . . . , n}, i.e., over all ϑ

in the symmetric group Sn on n letters. The symbol sgn(ϑ) represents the sign of the

permutation ϑ, which is (+) for even permutations and (−) for odd permutation. Recall that

a permutation is even (odd) if it can be written as an even (odd) product of transpositions.

The map det ∶ Qn⌐n
R
→ QR is called the determinant or determinant map, and det(A) is

called the determinant of A.

For A,B ∈ Qn⌐n
R

, the determinant of an RB matrix satisfies the following properties:

⋉ det(AB) = det(A)det(B).
⋉ det(AT ) = det(A).

Minor of an RB Matrix: Let A ∈ Qm⌐n
R

and suppose 1 ≤ k ≤min{m,n}. A k ⌐ k minor

of A refers to the determinant of a k ⌐ k submatrix of A.

In particular, for A ∈ Qm⌐n
R

, we will use the notation [A]I,J to denote the k ⌐ k minor

of A, where the rows are indexed by the elements of the set I and the columns are indexed

by the elements of the set J . Here, I is a subset of {1, . . . ,m} with exactly k elements,

and J is a subset of {1, . . . , n} with exactly k elements. This notation will be consistently

used throughout the thesis to specify minors of RB matrices.

Definition 1.2.1. For a matrix A ∈ Qn⌐n
R

, the notion of cofactors is defined as follows:
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(1) For any i, j = 1, 2, . . . , n, let Mij(A) denote the (n−1)⌐(n−1) minor of A, obtained

by deleting the i-th row and j-th column of A.

(2) The element (−1)i+jMij(A) is called the i, j-th cofactor of A. We denote this cofactor

as cof
ij
(A).

Adjoint of an RB Matrix: The adjoint of a matrix A ∈ Qn⌐n
R

, denoted by adj(A), is
defined by

(adj(A))
ij
= cofji(A) for all i, j = 1,2, . . . , n.

For A ∈ Qn⌐n
R

, we have

Aadj(A) = adj(A)A = det(A)In.
Inverse of an RB Matrix: A matrix A ∈ Qn⌐n

R
is an invertible matrix if there exists a

matrix B ∈ Qn⌐n
R

such that

AB = BA = In.
The matrix B is called the inverse of A and is denoted by A⋊1.

Proposition 1.2.2. Let A ∈ Qn⌐n
R

. Then A is invertible if and only if det(A) is a unit in

QR.

Remark 1.2.3. It is important to note that, in the context of reduced biquaternion algebra,

a nonzero determinant det(A) does not necessarily imply invertibility of A, which di!ers

from matrices over a field.

In the case when det(A) is a unit in QR, A⋊1 is given by

A⋊1 = 1

det(A)adj(A).
Non-singular RB Matrix: A matrix A ∈ Qn⌐n

R
that is invertible is said to be a non-

singular matrix.

Next, we present some examples to illustrate the concept of the determinant and the

invertibility of an RB matrix.

Example 1.2.4. Consider the matrix

A = ⌞⌞⌞⌞⌞⌞
1 + 2j 3 + 4j
5 + 6j 7 + 8j

⌞⌟⌟⌟⌟⌟ .
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We compute the determinant as

det(A) = −16 − 16j.
Since det(A) is not a unit in QR, the matrix A is not invertible.

Example 1.2.5. Consider the matrix

A = ⌞⌞⌞⌞⌞⌞
1 − j i

2k 2

⌞⌟⌟⌟⌟⌟ .
The determinant is

det(A) = 2.
Here, det(A) is a unit in QR, making A invertible. The inverse is given by

B = 1

2

⌞⌞⌞⌞⌞⌞
2 −i
−2k 1 − j

⌞⌟⌟⌟⌟⌟ .
Verifying, we have AB = BA = I2, thus confirming that A⋊1 = B.

Next, we define the SVD of an RB matrix and explore its utility in defining the

Moore-Penrose generalized inverse, as well as various other generalized inverses of RB

matrices. Additionally, we provide an explicit expression for the minimum norm solution

of the RBME Ax = b, which is derived using the SVD approach [57, 85].

Theorem 1.2.6. Let A = B1 + B2j ∈ Qm⌐n
R

, where B1,B2 ∈ Cm⌐n. Suppose the SVD of

B1 −B2 and B1 +B2 are given by

B1 −B2 = Û1’̂1V̂
H

1 = Û1

⌞⌞⌞⌞⌞⌞
’̀s 0

0 0

⌞⌟⌟⌟⌟⌟ V̂
H

1 ,

B1 +B2 = Û2’̂2V̂
H

2 = Û2

⌞⌞⌞⌞⌞⌞
’́t 0

0 0

⌞⌟⌟⌟⌟⌟ V̂
H

2 ,

where Û1, Û2 ∈ Cm⌐m and V̂1, V̂2 ∈ Cn⌐n are unitary matrices, ’̀s = diag(ϖ1, ϖ2, . . . , ϖs),
’́t = diag(ϱ1,ϱ2, . . . ,ϱt), with s = rank(B1−B2), t = rank(B1+B2), and ϖ1 ≥ ϖ2 ≥ ⧖ ≥ ϖs > 0,
ϱ1 ≥ ϱ2 ≥ ⧖ ≥ ϱt > 0 being the singular values of B1 −B2 and B1 +B2, respectively.

Then there exist two RB unitary matrices U ∈ Qm⌐m
R

and V ∈ Qn⌐n
R

such that

A = U ⌞⌞⌞⌞⌞⌞
’r 0

0 0

⌞⌟⌟⌟⌟⌟V
H , (1.2.2)
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where ’r = diag(ϑ1,ϑ2, . . . ,ϑr) with
ϑl = ϖl + ϱl

2
+ ϱl − ϖl

2
j, l = 1,2, . . . , r, (1.2.3)

where r =max{s, t}, with ϖr = 0 if r > s and ϱr = 0 if r > t. We have ⌝ϑ1⌝ ≥ ⌝ϑ2⌝ ≥ ⧖ ≥ ⌝ϑr⌝ > 0,
and ϑr is referred to as the singular values of the RB matrix A.

Remark 1.2.7. The singular values of an RB matrix di!er from those in real, complex,

or quaternion matrices. In particular, rather than being nonzero real numbers, the singular

values have the form a + bj, where a, b ∈ R. Additionally, for RB matrices, the parameter r

does not necessarily represent the rank of the matrix as it does in standard matrix theory.

Definition 1.2.8. Let A ∈ Qm⌐n
R

. A matrix X is called the Moore-Penrose generalized

inverse of A, denoted by A , if X satisfies the following Penrose conditions:

(1) AXA = A,
(2) XAX =X,

(3) (AX)H = AX,

(4) (XA)H =XA.

The matrix A is unique.

We further define additional generalized inverses of RB matrices that satisfy a subset

of the Penrose conditions. For any subset ς ⊆ {1,2,3,4}, where condition (i) corresponds
to i ∈ ς, the set of RB matrices that meet the specified conditions in ς is denoted by A{ς}.
Any RB matrix in A{ς} is referred to as the ς-inverse of A and is denoted by A(ϑ).

Theorem 1.2.9. Let A ∈ Qm⌐n
R

and suppose its SVD is

A = U ⌞⌞⌞⌞⌞⌞
’r 0

0 0

⌞⌟⌟⌟⌟⌟V
H ,

as in Theorem 1.2.6. Then the Moore-Penrose generalized inverse of the matrix A is given

by

A = V ⌞⌞⌞⌞⌞⌞
’r 0

0 0

⌞⌟⌟⌟⌟⌟U
H ,

where ’r = diag(ϑ1,ϑ2, . . . ,ϑr).
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Theorem 1.2.10. Let A ∈ Qm⌐n
R

and suppose its SVD is

A = U ⌞⌞⌞⌞⌞⌞
’r 0

0 0

⌞⌟⌟⌟⌟⌟V
H ,

as in Theorem 1.2.6. Then

(1) G ∈ A{1} if and only if

G = V ⌞⌞⌞⌞⌞⌞
’r K

L M

⌞⌟⌟⌟⌟⌟U
H ,

where K ∈ Qr⌐(m⋊r)
R

, L ∈ Q(n⋊r)⌐r
R

, and M ∈ Q(n⋊r)⌐(m⋊r)
R

.

(2) G ∈ A{1,3} if and only if

G = V ⌞⌞⌞⌞⌞⌞
’r 0

L M

⌞⌟⌟⌟⌟⌟U
H ,

where L ∈ Q(n⋊r)⌐r
R

and M ∈ Q(n⋊r)⌐(m⋊r)
R

.

(3) G ∈ A{1,4} if and only if

G = V ⌞⌞⌞⌞⌞⌞
’r K

0 M

⌞⌟⌟⌟⌟⌟U
H ,

where K ∈ Qr⌐(m⋊r)
R

and M ∈ Q(n⋊r)⌐(m⋊r)
R

.

Theorem 1.2.11. Let A ∈ Qm⌐n
R

and b ∈ Qm⌐1
R

. Then the general solutions x and the

minimum norm solution xLS of

min
x
⌝Ax − b⌝F

are given by

x = A b + (In −A A) z,
xLS = A b,

respectively, where z ∈ Qn⌐1
R

is any RB vector.

1.3. Preliminaries

This section introduces fundamental definitions and key results that will be utilized

throughout this thesis. These foundational concepts, originating from the complex domain,

are essential tools for solving problems in the RB domain, which is the primary focus of
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this work. The results presented here are primarily drawn from references [3, 30, 70] and

will serve as the basis for the subsequent chapters.

We begin by discussing the definition and basic properties of the Kronecker product.

Definition 1.3.1. Let A = (aij) ∈ Cm⌐n and B = (bij) ∈ Cp⌐q. The Kronecker product of A

and B, denoted by A⋊B, is defined as follows:

A⋊B =
⌞⌞⌞⌞⌞⌞⌞⌞⌞

a11B . . . a1nB

⋮ ⋮
am1B . . . amnB

⌞⌟⌟⌟⌟⌟⌟⌟⌟
∈ Cmp⌐nq.

Example 1.3.2. Let A =
⌞⌞⌞⌞⌞⌞⌞⌞⌞

1 3

2 4

3 1

⌞⌟⌟⌟⌟⌟⌟⌟⌟
and B = ⌞⌞⌞⌞⌞⌞

1 5 7

3 2 4

⌞⌟⌟⌟⌟⌟ . Then

A⋊B =

⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞

1 5 7 3 15 21

3 2 4 9 6 12

2 10 14 4 20 28

6 4 8 12 8 16

3 15 21 1 5 7

9 6 12 3 2 4

⌞⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟

.

Some properties of the Kronecker product are as follows:

⋉ For any A and B, we have

(A⋊B)T = AT ⋊BT and (A⋊B)H = AH ⋊BH .

⋉ Let A ∈ Cm⌐n, B ∈ Cr⌐s, C ∈ Cn⌐t, and D ∈ Cs⌐q. Then

(A⋊B)(C ⋊D) = (AC ⋊BD) ∈ Cmr⌐tq.

Pseudoinverse: The pseudoinverse of a matrix A ∈ Cm⌐n, denoted by A ∈ Cn⌐m, satisfies
the following four properties, commonly referred to as the Moore-Penrose conditions:

(1) AA A = A,
(2) A AA = A ,

(3) (AA )H = AA ,

(4) (A A)H = A A.
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The pseudoinverse has several notable properties:

⋉ A always exists and is unique.

⋉ If the matrix A is invertible, then A = A⋊1.
⋉ The following identities hold: (A ) = A, (AT ) = (A )T , (A) = A , and (AH) =
(A )H .
⋉ For a scalar ε ≠ 0, we have (εA) = ε⋊1A .

Remark 1.3.3. The following properties hold for the pseudoinverse A under specific rank

conditions of A:

⋉ If A has full column rank, then AHA is invertible, and the pseudoinverse of A is

given by

A = (AHA)⋊1AH .

⋉ If A has full row rank, then AAH is invertible, and the pseudoinverse of A can be

expressed as

A = AH (AAH)⋊1 .
Lemma 1.3.4. Consider the complex matrix equation AX = B. The following results hold:

(1) The matrix equation has a solution X if and only if AA B = B. In this case, the

general solution is given by

X = A B + (I −A A)Y,
where Y is an arbitrary matrix of suitable size. Furthermore, if the consistency

condition is satisfied, then the matrix equation has a unique solution if and only if

A is of full column rank. In this case, the unique solution is

X = A B.

(2) The least squares solutions of the matrix equation can be expressed as

X = A B + (I −A A)Y,
where Y is an arbitrary matrix of suitable size. The least squares solution with the

least norm is

X = A B.
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Singular Value Decomposition (SVD): For any nonzero matrix A ∈ Cm⌐n with rank

r, the matrix A can be decomposed as

A = U’V H , (1.3.1)

where U ∈ Cm⌐m and V ∈ Cn⌐n are unitary matrices, and ’ is a diagonal matrix of the form

’ = diag(ϑ1, . . . ,ϑr) ∈ Rm⌐n. The entries ϑ1 ≥ ϑ2 ≥ ⧖ ≥ ϑr > 0 are known as the singular

values of A. This factorization is called the SVD of A.

Remark 1.3.5. Let A ∈ Cm⌐n be a matrix of rank r with SVD given by A = U’V H , as in

(1.3.1). The SVD of A provides a straightforward way to compute the pseudoinverse A .

Specifically, the pseudoinverse can be expressed as

A = V ’ UH ,

where ’ = diag(1/ϑ1, . . . ,1/ϑr) ∈ Rn⌐m.

The SVD of matrix A provides a foundation for approximating A by matrices of lower

rank.

Eckart-Young-Mirsky Matrix Approximation Theorem: Let the SVD of A ∈ Rm⌐n
be given by

A = r⊍
i=1

ϑiuiv
T

i
,

where r = rank(A), ϑ1 ≥ ϑ2 ≥ ⧖ ≥ ϑr > 0 are the singular values, and U = [u1, u2, . . . , um] ∈
Rm⌐m and V = [v1, v2, . . . , vn] ∈ Rn⌐n are orthonormal matrices. If k < r, define

Ak = k⊍
i=1

ϑiuiv
T

i
.

Then Ak is the best rank-k approximation to A in the Frobenius norm. Specifically, we

have

min
rank(B)=k ⌝A −B⌝F = ⌝A −Ak⌝F =

4556 r⊍
i=k+1

ϑ2
i
.

Inner Product: Let V be a vector space over a field F. An inner product, denoted by

⟨⋅, ⋅⟩ ∶ V ⌐ V → F, is a function that satisfies the following properties:

(1) ⟨u, u⟩ ≥ 0 for all u ∈ V ,

(2) ⟨u, u⟩ = 0 if and only if u = 0,
(3) ⟨u + v,w⟩ = ⟨u,w⟩ + ⟨v,w⟩ for all u, v,w ∈ V ,

(4) ⟨cu, v⟩ = c⟨u, v⟩ for all c ∈ F and u, v ∈ V ,
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(5) ⟨u, v⟩ = ⟨v, u⟩.
For vectors u, v ∈ Cn, the inner product is defined as ⟨u, v⟩ = vHu.
Norm: For a vector space V over a field F, a function ⌝ ⋅ ⌝ ∶ V (F)→ R is called a norm if

it satisfies the following conditions:

(1) ⌝v⌝ ≥ 0 for all v ∈ V ,

(2) ⌝v⌝ = 0 if and only if v = 0,
(3) ⌝εv⌝ = ⌝ε⌝⌝v⌝ for all v ∈ V and ε ∈ F,
(4) ⌝v + u⌝ ≤ ⌝v⌝ + ⌝u⌝ for all v, u ∈ V (triangle inequality).

For x = (xj) ∈ Cn, the function ⌝x⌝ =⌝⩀n

j=1 ⌝xj ⌝2 defines a norm on Cn, commonly referred

to as the 2-norm. Similarly, for a matrix A = (aij) ∈ Cm⌐n, the Frobenius norm of A is

defined as

⌝A⌝F =
4556 m⊍

i=1
n⊍
j=1
⌝aij ⌝2.

This norm can also be expressed in terms of the trace of AHA as

⌝A⌝F =⌝tr(AHA),
where tr(⋅) denotes the trace.

Unitary Matrix: A matrix U ∈ Cn⌐n is called unitary if it satisfies the property

UHU = In = UUH .

Unitary matrices preserve norms, and the Frobenius norm exhibits the following property:

⌝UAV ⌝F = ⌝A⌝F ,
for any matrix A ∈ Cm⌐n and unitary matrices U and V .

Orthogonal Complement of S: Let S be a subset of Cn. The orthogonal complement

of S, denoted S⊥, is defined as the set of vectors in Cn that are orthogonal to every vector

in S. That is,

S⊥ = {x ∈ Cn ⌝ ⟨x, y⟩ = 0 for all y ∈ S}.
The set S⊥ is nonempty, as it includes at least the zero vector.
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Consider A ∈ Cm⌐n, which can be viewed as a linear transformation from Cn to Cm.

For a vector x ∈ Cn, the transformation maps x to Ax ∈ Cm. Two fundamental subspaces

associated with this transformation are:

⋉ The null space of A, denoted N (A), is a subspace of Cn defined by

N (A) = {x ∈ Cn ⌝ Ax = 0}.
⋉ The range of A, denoted R(A), is a subspace of Cm defined by

R(A) = {Ax ⌝ x ∈ Cn}.
It is known that

R(AH)⊥ = N (A).
QR Decomposition: Let A ∈ Cn⌐n be a nonsingular matrix. There exist unique matrices

Q,R ∈ Cn⌐n such that Q is unitary, R is upper triangular with real, positive entries on the

main diagonal, and A = QR.

Theorem 1.3.6. For any matrix A ∈ Cm⌐n with m > n, there exist matrices Q ∈ Cm⌐m
and R ∈ Cm⌐n such that Q is unitary and

R = ⌞⌞⌞⌞⌞⌞
⎡R
0

⌞⌟⌟⌟⌟⌟ ,
where ⎡R ∈ Cn⌐n is upper triangular, and A = QR.

Theorem 1.3.7. If A = QR is the QR factorization of a matrix A ∈ Cm⌐n with full column

rank, and if

A = [a1, . . . , an], Q = [q1, . . . , qm]
are the column partitionings of A and Q, respectively, then for Q1 = Q(1 ∶ m,1 ∶ n),
Q2 = Q(1 ∶m,n + 1 ∶m), and R1 = R(1 ∶ n,1 ∶ n), we have

R(A) =R(Q1),
R(A)⊥ =R(Q2).
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CHAPTER 2

L-STRUCTURE LEAST SQUARES SOLUTIONS OF

GENERALIZED REDUCED BIQUATERNION MATRIX

EQUATIONS

This chapter presents a comprehensive framework for computing structure-constrained

least squares solutions to generalized reduced biquaternion matrix equations (RBMEs).

It investigates three main types of matrix equations: a linear matrix equation involving

multiple unknown L-structures, a linear matrix equation with a single unknown L-structure,

and general coupled linear matrix equations with one unknown L-structure. The proposed

method leverages the complex representation of reduced biquaternion matrices to derive

these solutions.

The versatility of the framework is demonstrated through the derivation of least

squares purely imaginary solutions for the RBME AX = E, with applications to color

image restoration. Furthermore, the framework is utilized to obtain structure-constrained

solutions for complex and real matrix equations, broadening its applicability to various

inverse problems. Specific attention is given to partially described inverse eigenvalue

problems (PDIEPs) and generalized PDIEPs. The chapter concludes with illustrative

numerical examples to validate the e!ectiveness of the proposed approach.

2.1. Introduction

In matrix theory, linear matrix equations play a crucial role due to their wide range of

applications in control theory, inverse problems, and linear optimal control [15, 26, 35].

Owing to their widespread application in various fields, one encounters the problem of

finding approximate solutions for linear matrix equations. There are many di!erent forms

of matrix equations. Some simple examples of these are:

AX = B, AXB +CXTD = E, AXB +CY D = E.



A great deal of research has been carried out on real and complex matrix equations, which

have applications across a range of scientific and engineering disciplines [11, 24, 37, 46].

Quaternion matrix equations, in particular, have been studied extensively due to their

significance in areas like image and signal processing [43, 77, 78, 90]. However, a notable

limitation of quaternions is their non-commutative multiplication, which restricts their

applicability in certain contexts.

To address this issue, reduced biquaternions have emerged as a powerful alternative.

Reduced biquaternions allow for commutative multiplication, simplifying many operations,

especially in image and digital signal processing. For example, [56] demonstrated that

analyzing complex symmetric multichannel systems and symmetric lattice filter systems

using reduced biquaternions significantly reduces computational complexity. Additionally,

reduced biquaternions have been shown to provide a more e”cient and straightforward

method for color-sensitive edge detection between two colors compared to traditional

quaternions.

Further illustrating their utility, [57] demonstrated that reconstructing original

color images using reduced biquaternion matrices requires only three-fourths of the

computational complexity needed for quaternion matrices. Given these advantages, solving

matrix equations that arise from commutative quaternion theory has become increasingly

important in various practical fields.

Recent studies have focused on RBMEs. For example, Zhang et al. [81] investigated the

least squares solutions for matrix equations such as AXC = B and AX = B. The authors

in [85] discussed the SVD and generalized inverse of reduced biquaternion matrices and

used these tools to find the least squares solution of the RBME Ax = b. Similarly, [82]

studied the total least squares solutions of the RBME Ax = b, while [83] explored the

equality constrained least squares solutions of the RBME AX = B.

Most of the existing literature focuses on unstructured least squares solutions for

RBMEs. Structured least squares solutions, however, have been relatively less explored.

One of the few notable studies is [71], which addresses least squares Toeplitz and bi-

Hermitian solutions for X + AXB = C. Furthermore, Yuan et al. [80] examined the

Hermitian solutions of the RBME (AXB,CXD) = (E,G). In this chapter, we extend this

research direction by exploring least squares structured solutions for generalized RBMEs,

specifically considering matrices whose entries adhere to specific linear constraints, referred
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to as reduced biquaternion L-structures.

Surprisingly, the least squares Toeplitz, symmetric Toeplitz, Hankel, and circulant

solutions of the generalized RBMEs have not been discussed in the literature despite

their significance in scientific computing, inverse problems, image restoration, and signal

processing [7, 54, 89]. Given the above context, this chapter addresses least squares

L-structure solutions for generalized RBMEs, with particular attention to reduced

biquaternion Toeplitz, symmetric Toeplitz, Hankel, circulant, purely imaginary, complex,

and real solution. The matrix equations considered are:

r⊍
l=1

AlXlBl = E, (2.1.1)

r⊍
l=1

AlXBl + q⊍
p=1

CpX
TDp = E, (2.1.2)

(A1XB1,A2XB2, . . . ,ArXBr) = (E1,E2, . . . ,Er). (2.1.3)

In addition to deriving solutions for these RBMEs, the chapter also explores their

applications, such as color image restoration and inverse eigenvalue problems. Several

applications of the inverse eigenvalue problem, which involve reconstructing matrices from

prescribed spectral data, deal with structured matrices. When the spectral data contain

only partial information about the eigenpairs, this kind of inverse problem is called a

PDIEP. In both PDIEP and generalized PDIEP, two pivotal questions arise: the theory

of solvability and the numerical solution methodology (see textbook [12] and references

therein). Regarding solvability, a major challenge has been identifying the necessary or

su”cient conditions for a PDIEP or a generalized PDIEP to be solvable. On the other

hand, numerical solution methods focus on developing procedures to construct matrices in

a numerically stable manner when the given spectral data are feasible. In this chapter, we

successfully develop a numerical solution methodology for both PDIEP and generalized

PDIEP by employing our proposed framework. Our primary focus is on two structures:

Hankel and symmetric Toeplitz matrices.

In summary, the main applications discussed in this chapter include:

⋉ The application of the least squares purely imaginary reduced biquaternion solution

of the matrix equation AX = E to color image restoration.

25



⋉ The use of the framework to determine structure-constrained solutions for complex

and real matrix equations, which are a special case of RBMEs. This enables tackling

various inverse eigenvalue problems, including PDIEP.

⋉ Solutions for generalized PDIEP for symmetric Toeplitz and Hankel structures.

The chapter is structured as follows. Section 2.2 introduces preliminary results. In

Section 2.3, we define reduced biquaternion L-structures and examine their properties.

Section 2.4 outlines the general framework for solving RBMEs, with a specific focus on

equations involving multiple unknown L-structures in Subsection 2.4.1. Section 2.5 applies

the framework to practical cases, and Section 2.6 provides numerical examples to validate

the results.

2.2. Preliminaries

To ensure this chapter is self-contained, we summarize key concepts and results that will

be used in the following sections. For any reduced biquaternion matrix Z = Z1+Z2j ∈ Qm⌐n
R

,

where Z1, Z2 ∈ Cm⌐n, we represent it using the complex matrix form

(Z = [Z1, Z2] ∈ Cm⌐2n.

Similarly, for any reduced biquaternion r = r1 + r2j ∈ QR, where r1 and r2 are complex

numbers, we use the vector form

(r = [r1, r2] ∈ C1⌐2.

Lemma 2.2.1. For any reduced biquaternion matrix Z = Z1 +Z2j ∈ Qm⌐n
R

, its Frobenius

norm is given by

⌝Z⌝
F
= ⌝(Z⌝F =

⎤⌝Z1⌝2F + ⌝Z2⌝2F =
⎤⌝R(Z1)⌝2F + ⌝I(Z1)⌝2F + ⌝R(Z2)⌝2F + ⌝I(Z2)⌝2F .

Proof. The proof follows directly from the definition of the Frobenius norm of a reduced

biquaternion matrix in (1.2.1). ∎
The complex representation h(Z) of a reduced biquaternion matrix Z = Z1+Z2j ∈ Qm⌐n

R
,

as defined in [80], is given by:

h(Z) = ⌞⌞⌞⌞⌞⌞
Z1 Z2

Z2 Z1

⌞⌟⌟⌟⌟⌟ .
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For matrices Y ∈ Qm⌐n
R

and Z ∈ Qn⌐p
R

, the following property holds:

h(Y Z) = h(Y )h(Z). (2.2.1)

Lemma 2.2.2. Let ε ∈ R, q = q1 + q2j ∈ QR, and matrices X = X1 + X2j ∈ Qm⌐n
R

,

Y = Y1 + Y2j ∈ Qm⌐n
R

, and Z = Z1 +Z2j ∈ Qn⌐s
R

. Then, the following properties hold:

(1) (ωX = ε(X .

(2) (X+Y = (X +(Y .

(3) (qX = (qh(X).
(4) (Y Z = (Y h(Z).

Proof. For part (1), we have εX = εX1 + εX2j, so

(ωX = [εX1,εX2] = ε[X1,X2] = ε(X .

For part (2), since X + Y = (X1 + Y1) + (X2 + Y2)j, we get

(X+Y = [X1 + Y1,X2 + Y2] = (X +(Y .

For part (3), we have qX = (q1X1 + q2X2) + (q1X2 + q2X1)j, which gives

(qX = [q1X1 + q2X2, q1X2 + q2X1] = (qh(X).
Finally, for part (4), since Y Z = (Y1Z1 + Y2Z2) + (Y1Z2 + Y2Z1)j, we get

(Y Z = [Y1Z1 + Y2Z2, Y1Z2 + Y2Z1] = (Y h(Z). ∎
For any matrix Z = Z1 +Z2j, the vector operator vec(Z) is defined as

vec(Z) = vec(Z1) + vec(Z2)j.
For the matrix (Z , the vector operator vec((Z) is expressed as

vec((Z) =
⌞⌞⌞⌞⌞⌞
vec(Z1)
vec(Z2)

⌞⌟⌟⌟⌟⌟ . (2.2.2)

Now, let Z = Z1 +Z2j ∈ Qm⌐n
R

, and define
&→
Z = [R(Z1),I(Z1),R(Z2),I(Z2)] ∈ Rm⌐4n. The

vectorization of
&→
Z is given by

vec(&→Z ) =
⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞

vec(R(Z1))
vec(I(Z1))
vec(R(Z2))
vec(I(Z2))

⌞⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟
.
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This establishes the following relationship:

⌝Z⌝
F
= ⌝(Z⌝F = ⌝vec((Z)⌝F = ⎣vec(&→Z )⎣

F

. (2.2.3)

2.3. Reduced Biquaternion L-structure Matrices

This section aims to define the concept of reduced biquaternion L-structure and explore

some specific examples of this class of matrices. A reduced biquaternion L-structure refers

to the set of all reduced biquaternion matrices of a given order whose entries adhere to

specific linear constraints. A notable example of this class includes unstructured matrices,

where no linear restrictions are placed on the matrix entries. The subsequent definition

o!ers a formalized explanation of this concept.

Definition 2.3.1. Let $ be a subspace of Qmn

R
. The subset of reduced biquaternion matrices

of order m ⌐ n given by

L(m,n) = {X ∈ Qm⌐n
R
⌝vec(X) ∈ $} (2.3.1)

is known as the reduced biquaternion L-structure.

Remark 2.3.2. QR and Qn

R
are vector spaces over R with dimensions 4 and 4n, respectively.

To better comprehend the above definition, let us consider the following examples.

Example 2.3.3. Let

A =

⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞

0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 1 0 0

0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0

0 0 1 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0

⌞⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟

,

and define

$1 = {v ∈ Q9⌐1
R
⌝ Av = 0}.

Clearly, $1 is a subspace of Q9⌐1
R

. The corresponding reduced biquaternion L-structure is

given by

L(3,3) = {X ∈ Q3⌐3
R
⌝ vec(X) ∈ $1}.
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The set L(3,3) represents the class of diagonal matrices of size 3 ⌐ 3. In this case, six

linear restrictions are imposed on the entries of the matrix X = (xij) ∈ Q3⌐3
R

, such that

xij = 0 for i ≠ j. Thus, the collection of all reduced biquaternion diagonal matrices of a

given order belongs to the class of reduced biquaternion L-structures.

It is evident that the collection of all purely imaginary reduced biquaternion vectors

of order n is a subspace of Qn⌐1
R

. Hence, the collection of all purely imaginary reduced

biquaternion matrices forms a reduced biquaternion L-structure.

Example 2.3.4. Let

$2 = {v ∈ Q16⌐1
R
⌝R(v) = 0}.

Clearly, $2 is a subspace of Q16⌐1
R

. The corresponding reduced biquaternion L-structure is

given by

L(4,4) = {X ∈ Q4⌐4
R
⌝ vec(X) ∈ $2}.

The set L(4,4) represents the collection of all purely imaginary reduced biquaternion

matrices of size 4 ⌐ 4. Thus, the collection of all purely imaginary reduced biquaternion

matrices of a given order forms an L-structure.

In the same way, the collection of all real reduced biquaternion matrices of a given

order forms a reduced biquaternion L-structure. Other reduced biquaternion L-structure

examples include the set of all reduced biquaternion Toeplitz, symmetric Toeplitz, Hankel,

circulant, lower triangular, and upper triangular matrices of a given order. These classes

of matrices consider only equality relationships between the matrix entries. Here is an

example of a reduced biquaternion L-structure with some linear relationships between the

matrix entries.

Example 2.3.5. Let

B =
⌞⌞⌞⌞⌞⌞⌞⌞⌞

1 −1 1 0 0 0 0 0 0

0 0 0 1 1 −1 0 0 0

0 0 0 0 0 0 1 −1 1

⌞⌟⌟⌟⌟⌟⌟⌟⌟
,

and define

$3 = {v ∈ Q9⌐1
R
⌝ Bv = 0}.

Clearly, $3 is a subspace of Q9⌐1
R

. The corresponding reduced biquaternion L-structure is

given by

L(3,3) = {X ∈ Q3⌐3
R
⌝ vec(X) ∈ $3}.
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This set L(3,3) represents the collection of all reduced biquaternion matrices X = (xij) ∈
Q3⌐3

R
with the following linear restrictions imposed on the entries of X:

x11 + x31 = x21, x12 + x22 = x32, x13 + x33 = x23.

The remaining section focuses on some reduced biquaternion L-structure matrices

that frequently appear in practical applications. Our primary focus lies on reduced

biquaternion Toeplitz, symmetric Toeplitz, Hankel, circulant, real, complex, and purely

imaginary matrices. To commence our exploration, we initially examine the vec-structure

of some real structured matrices.

Definition 2.3.6. A matrix X ∈ Rn⌐n is Toeplitz if it has the following form:

X =

⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞

x0 x1 x2 ⧖ ⧖ xn⋊1
x⋊1 x0 x1 ⋱ ⋮
x⋊2 x⋊1 ⋱ ⋱ ⋱ ⋮
⋮ ⋱ ⋱ ⋱ x1 x2

⋮ ⋱ x⋊1 x0 x1

x⋊n+1 ⧖ ⧖ x⋊2 x⋊1 x0

⌞⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟

.

For X ∈ Rn⌐n, vecT (X) is defined as

vecT (X) ∶= [x⋊n+1, x⋊n+2, . . . , x⋊1, x0, x1, . . . , xn⋊1]T ∈ R2n⋊1. (2.3.2)

Definition 2.3.7. A matrix X ∈ Rn⌐n is symmetric Toeplitz if it has the following form:

X =

⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞

x0 x1 x2 ⧖ ⧖ xn⋊1
x1 x0 x1 ⋱ ⋮
x2 x1 ⋱ ⋱ ⋱ ⋮
⋮ ⋱ ⋱ ⋱ x1 x2

⋮ ⋱ x1 x0 x1

xn⋊1 ⧖ ⧖ x2 x1 x0

⌞⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟

.

For X ∈ Rn⌐n, vecST (X) is defined as

vecST (X) ∶= [x0, x1, x2, . . . , xn⋊1]T ∈ Rn. (2.3.3)
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Definition 2.3.8. A matrix X ∈ Rn⌐n is Hankel if it has the following form:

X =

⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞

xn⋊1 ⧖ ⧖ x2 x1 x0

⋮ ⋰ x1 x0 x⋊1
⋮ ⋰ ⋰ ⋰ x⋊1 x⋊2
x2 x1 ⋰ ⋰ ⋰ ⋮
x1 x0 x⋊1 ⋰ ⋮
x0 x⋊1 x⋊2 ⧖ ⧖ x⋊n+1

⌞⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟

.

For X ∈ Rn⌐n, vecH(X) is defined as

vecH(X) ∶= [xn⋊1, xn⋊2, . . . , x1, x0, x⋊1, . . . , x⋊n+1]T ∈ R2n⋊1. (2.3.4)

Definition 2.3.9. A matrix X ∈ Rn⌐n is circulant if it has the following form:

X =

⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞

x0 xn⋊1 ⧖ x2 x1

x1 x0 xn⋊1 x2

⋮ x1 x0 ⋱ ⋮
xn⋊2 ⋱ ⋱ xn⋊1
xn⋊1 xn⋊2 ⧖ x1 x0

⌞⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟

.

For X ∈ Rn⌐n, vecC(X) is defined as

vecC(X) ∶= [x0, x1, x2, . . . , xn⋊1]T ∈ Rn. (2.3.5)

In the following four lemmas, we describe the structure of some particular classes of

real matrix sets.

Lemma 2.3.10. If X ∈ Rn⌐n, then X ∈ TRn⌐n⇔ vec(X) =KTvecT (X), where vecT (X)
is of the form (2.3.2), and the matrix KT ∈ Rn

2⌐(2n⋊1) is represented as

KT =

⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞

en en⋊1 en⋊2 ⧖ e2 e1 0 ⧖ 0 0

0 en en⋊1 ⧖ e3 e2 e1 ⧖ 0 0

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
0 0 0 ⧖ en en⋊1 ⧖ e2 e1 0

0 0 0 ⧖ 0 en en⋊1 ⧖ e2 e1

⌞⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟

.

Proof. Consider the Toeplitz matrix X as defined in Definition 2.3.6. Let ui for

i = 1, 2, . . . , n denote the ith column of the matrix X. Then, we can express the vectorization
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of X as

vec(X) =
⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞

u1

u2

⋮
un

⌞⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟
.

We now calculate each column ui. For u1, we have

u1 =

⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞

0 0 0 ⧖ 0 1 0 ⧖ 0 0

0 0 0 ⧖ 1 0 0 ⧖ 0 0

⋮ ⋮ ⋮ ⋰ ⋮ ⋮ ⋮ ⋮ ⋮
0 0 1 ⧖ 0 0 0 ⧖ 0 0

0 1 0 ⧖ 0 0 0 ⧖ 0 0

1 0 0 ⧖ 0 0 0 ⧖ 0 0

⌞⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟

vecT (X)

= ⎦en en⋊1 en⋊2 ⧖ e2 e1 0 ⧖ 0 0⎢vecT (X).
Next, for u2, we get

u2 =

⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞

0 0 0 ⧖ 0 0 1 ⧖ 0 0

0 0 0 ⧖ 0 1 0 ⧖ 0 0

0 0 0 ⧖ 1 0 0 ⧖ 0 0

⋮ ⋮ ⋮ ⋰ ⋮ ⋮ ⋮ ⋮ ⋮
0 0 1 ⧖ 0 0 0 ⧖ 0 0

0 1 0 ⧖ 0 0 0 ⧖ 0 0

⌞⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟

vecT (X)

= ⎦0 en en⋊1 ⧖ e3 e2 e1 ⧖ 0 0⎢vecT (X).
Finally, for un, we have

un =

⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞

0 0 0 ⧖ 0 0 0 ⧖ 0 1

0 0 0 ⧖ 0 0 0 ⧖ 1 0

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋰ ⋮ ⋮
0 0 0 ⧖ 0 0 1 ⧖ 0 0

0 0 0 ⧖ 0 1 0 ⧖ 0 0

⌞⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟

vecT (X)

= ⎦0 0 0 ⧖ 0 en en⋊1 ⧖ e2 e1⎢vecT (X).
By substituting the computed values of u1, u2, . . ., un into the vectorization of X, we

conclude that

vec(X) =KTvecT (X). ∎
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Lemma 2.3.11. If X ∈ Rn⌐n, then X ∈ STRn⌐n ⇔ vec(X) = KSTvecST (X), where
vecST (X) is of the form (2.3.3). When n is even, let n = 2l. In this case, the matrix

KST ∈ Rn
2⌐n is represented as

KST =

⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞

e1 e2 e3 ⧖ el el+1 ⧖ en⋊1 en

e2 e1 + e3 e4 ⧖ el+1 el+2 ⧖ en 0

e3 e2 + e4 e1 + e5 ⧖ el+2 el+3 ⧖ 0 0

⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋮
el el⋊1 + el+1 el⋊2 + el+2 ⧖ e1 + en⋊1 en ⧖ 0 0

el+1 el + el+2 el⋊1 + el+3 ⧖ e2 + en e1 ⧖ 0 0

⋮ ⋮ ⋮ ⋱ ⋮ ⋮
en⋊1 en⋊2 + en en⋊3 ⧖ ⧖ ⧖ ⧖ e1 0

en en⋊1 en⋊2 ⧖ ⧖ ⧖ ⧖ e2 e1

⌞⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟

.

When n is odd, let n = 2l − 1. In this case, the matrix KST ∈ Rn
2⌐n is represented as

KST =

⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞

e1 e2 e3 ⧖ el el+1 ⧖ en⋊1 en

e2 e1 + e3 e4 ⧖ el+1 el+2 ⧖ en 0

e3 e2 + e4 e1 + e5 ⧖ el+2 el+3 ⧖ 0 0

⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋮
el el⋊1 + el+1 el⋊2 + el+2 ⧖ e1 + en 0 ⧖ 0 0

el+1 el + el+2 el⋊1 + el+3 ⧖ e2 e1 ⧖ 0 0

⋮ ⋮ ⋮ ⋱ ⋮ ⋮
en⋊1 en⋊2 + en en⋊3 ⧖ ⧖ ⧖ ⧖ e1 0

en en⋊1 en⋊2 ⧖ ⧖ ⧖ ⧖ e2 e1

⌞⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟

.

Proof. The proof is similar to the proof method used in Lemma 2.3.10. ∎
To gain a deeper understanding of the above lemma, let’s explore specific cases for

n = 4 and n = 7. In these cases, the matrix KST takes the following forms:

For n = 4, we have

KST =
⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞

e1 e2 e3 e4

e2 e1 + e3 e4 0

e3 e2 + e4 e1 0

e4 e3 e2 e1

⌞⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟
.
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For n = 7, the matrix KST takes the following form:

KST =

⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞

e1 e2 e3 e4 e5 e6 e7

e2 e1 + e3 e4 e5 e6 e7 0

e3 e2 + e4 e1 + e5 e6 e7 0 0

e4 e3 + e5 e2 + e6 e1 + e7 0 0 0

e5 e4 + e6 e3 + e7 e2 e1 0 0

e6 e5 + e7 e4 e3 e2 e1 0

e7 e6 e5 e4 e3 e2 e1

⌞⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟

.

Lemma 2.3.12. If X ∈ Rn⌐n, then X ∈ HRn⌐n⇔ vec(X) =KHvecH(X), where vecH(X)
is of the form (2.3.4), and the matrix KH ∈ Rn

2⌐(2n⋊1) is represented as

KH =

⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞

e1 e2 e3 ⧖ en⋊1 en 0 0 ⧖ 0

0 e1 e2 ⧖ en⋊2 en⋊1 en ⧖ 0 0

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
0 0 0 ⧖ e1 e2 ⧖ en⋊1 en 0

0 0 0 ⧖ 0 e1 e2 ⧖ en⋊1 en

⌞⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟

.

Proof. The proof is similar to the proof method used in Lemma 2.3.10. ∎
Lemma 2.3.13. If X ∈ Rn⌐n, then X ∈ CRn⌐n⇔ vec(X) =KCvecC(X), where vecC(X)
is of the form (2.3.5), and the matrix KC ∈ Rn

2⌐n is represented as

KC =

⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞

e1 e2 ⧖ en⋊1 en

e2 e3 ⧖ en e1

e3 e4 ⧖ e1 e2

⋮ ⋮ ⋮ ⋮
en e1 ⧖ en⋊2 en⋊1

⌞⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟

.

Proof. The proof is similar to the proof method used in Lemma 2.3.10. ∎
In the following lemmas, we present the vec-structure of reduced biquaternion L-

structure matrices based on the vec-structure of real structure matrices.

Lemma 2.3.14. If X =X1 +X2j ∈ Qn⌐n
R

, then
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(1) X ∈ TQn⌐n
R
⇔ vec(&→X) =MTvecT (&→X), where

MT =
⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞

KT 0 0 0

0 KT 0 0

0 0 KT 0

0 0 0 KT

⌞⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟
, vecT (&→X) =

⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞

vecT (R(X1))
vecT (I(X1))
vecT (R(X2))
vecT (I(X2))

⌞⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟
.

(2) X ∈ STQn⌐n
R
⇔ vec(&→X) =MSTvecST (&→X), where

MST =
⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞

KST 0 0 0

0 KST 0 0

0 0 KST 0

0 0 0 KST

⌞⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟
, vecST (&→X) =

⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞

vecST (R(X1))
vecST (I(X1))
vecST (R(X2))
vecST (I(X2))

⌞⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟
.

(3) X ∈ HQn⌐n
R
⇔ vec(&→X) =MHvecH(&→X), where

MH =
⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞

KH 0 0 0

0 KH 0 0

0 0 KH 0

0 0 0 KH

⌞⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟
, vecH(&→X) =

⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞

vecH(R(X1))
vecH(I(X1))
vecH(R(X2))
vecH(I(X2))

⌞⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟
.

(4) X ∈ CQn⌐n
R
⇔ vec(&→X) =MCvecC(&→X), where

MC =
⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞

KC 0 0 0

0 KC 0 0

0 0 KC 0

0 0 0 KC

⌞⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟
, vecC(&→X) =

⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞

vecC(R(X1))
vecC(I(X1))
vecC(R(X2))
vecC(I(X2))

⌞⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟
.

Proof.We will prove the first part of the statement, as the remaining parts follow using a

similar argument.

It is known that X ∈ TQn⌐n
R
⇔ R(X1),I(X1),R(X2),I(X2) ∈ TRn⌐n. Utilizing this

fact along with Lemma 2.3.10, we can write

vec(&→X) =
⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞

vec(R(X1))
vec(I(X1))
vec(R(X2))
vec(I(X2))

⌞⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟
=
⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞

KTvecT (R(X1))
KTvecT (I(X1))
KTvecT (R(X2))
KTvecT (I(X2))

⌞⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟
.

Thus, we can conclude

vec(&→X) =MTvecT (&→X). ∎
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Lemma 2.3.15. If X =X1 +X2 j ∈ Qm⌐n
R

, then

(1) X ∈ IQm⌐n
R

⇐↢ vec(&→X) =MIvecI(&→X), where

MI =
⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞

0 0 0

Imn 0 0

0 Imn 0

0 0 Imn

⌞⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟
, vecI(&→X) =

⌞⌞⌞⌞⌞⌞⌞⌞⌞

vec(I(X1))
vec(R(X2))
vec(I(X2))

⌞⌟⌟⌟⌟⌟⌟⌟⌟
.

(2) X ∈ Cm⌐n ⇐↢ vec(&→X) =Mcvecc(&→X), where

Mc =
⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞

Imn 0

0 Imn

0 0

0 0

⌞⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟
, vecc(&→X) =

⌞⌞⌞⌞⌞⌞
vec(R(X1))
vec(I(X1))

⌞⌟⌟⌟⌟⌟ .

(3) X ∈ Rm⌐n ⇐↢ vec(&→X) =MRvecR(&→X), where

MR =
⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞

Imn

0

0

0

⌞⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟
, vecR(&→X) = vec(R(X1)).

Proof. The proof follows from the fact that X ∈ IQm⌐n
R

⇐↢ R(X1) = 0, while X ∈
Cm⌐n ⇐↢ R(X2) = 0 and I(X2) = 0. Additionally, X ∈ Rm⌐n ⇐↢ I(X1) = 0, R(X2) = 0,
and I(X2) = 0. ∎

Up to this point, we have explored the representation of a reduced biquaternion

L-structure matrix using a corresponding real structure matrix for a specific class of

matrix sets. Based on the preceding discussion regarding reduced biquaternion L-structure

matrices, the findings can be summarized as follows:

For X =X1 +X2j ∈ Qm⌐n
R

, we have
&→
X = [R(X1),I(X1),R(X2),I(X2)] ∈ Rm⌐4n. Let G

be a subspace of R4mn and ML be the basis matrix for G. The subset of real matrices of

order m ⌐ 4n given by

LR(m,4n) = {&→X ∈ Rm⌐4n ⌝ vec(&→X) ∈ G} (2.3.6)

is called as a real L-structure.
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Remark 2.3.16. ML represents the basis matrix of the subspace G. For simplicity, we

will refer to ML as the basis matrix of LR(m,4n) throughout this chapter.
Thus, we have the following Lemma.

Lemma 2.3.17. Let ML be the basis matrix of LR(m, 4n). Then X ∈ L(m,n)⇔ vec(&→X) =
MLvecL(&→X), where vecL(&→X) corresponds to the representation of

&→
X according to the basis

matrix ML.

Proof. The proof follows from the generalization of Lemmas 2.3.10 and 2.3.14 to any

L-structure matrix X. ∎
Now that we have described the reduced biquaternion L-structure, we turn our attention

to solving a RBME. Our approach for addressing the RBME involves transforming it into

a complex matrix equation. For A ∈ Cm⌐n,X ∈ Cn⌐s, and B ∈ Cs⌐t, we have

vec(AXB) = (BT ⋊A)vec(X). (2.3.7)

In the context of reduced biquaternion algebra, we investigate vec((AXB) rather than
vec(AXB).
Lemma 2.3.18. Let A = A1 +A2j ∈ Qm⌐n

R
, X =X1 +X2j ∈ Qn⌐s

R
, and B = B1 +B2j ∈ Qs⌐t

R
.

Then

vec((AXB) = (h(B)T ⋊A1 + h(Bj)T ⋊A2)vec((X).
Proof. Using (2.2.1) and Lemma 2.2.2, we have

(AXB = (Ah(XB) = (Ah(X)h(B)
which can be expanded as

(AXB = [A1X1B1 +A2X2B1 +A1X2B2 +A2X1B2,A1X1B2 +A2X2B2 +A1X2B1 +A2X1B1] .
Now, from (2.2.2) and (2.3.7), we get

vec((AXB) =
⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞

(BT

1 ⋊A1)vec(X1) + (BT

1 ⋊A2)vec(X2)
+(BT

2 ⋊A1)vec(X2) + (BT

2 ⋊A2)vec(X1)
(BT

2 ⋊A1)vec(X1) + (BT

2 ⋊A2)vec(X2)
+(BT

1 ⋊A1)vec(X2) + (BT

1 ⋊A2)vec(X1)

⌞⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟
= ⎥⟦
⌞⌞⌞⌞⌞⌞
BT

1 BT

2

BT

2 BT

1

⌞⌟⌟⌟⌟⌟⋊A1 +
⌞⌞⌞⌞⌞⌞
BT

2 BT

1

BT

1 BT

2

⌞⌟⌟⌟⌟⌟⋊A2

⟦
⟦
⌞⌞⌞⌞⌞⌞
vec(X1)
vec(X2)

⌞⌟⌟⌟⌟⌟ .
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Finally, we arrive at

vec((AXB) = (h(B)T ⋊A1 + h(Bj)T ⋊A2)vec((X). ∎
Set

Wns =
⌞⌞⌞⌞⌞⌞
Ins i Ins 0 0

0 0 Ins i Ins

⌞⌟⌟⌟⌟⌟ , Sns =
⌞⌞⌞⌞⌞⌞
Qns 0

0 Qns

⌞⌟⌟⌟⌟⌟ , (2.3.8)

where Qns is the commutation matrix, a row permutation of the identity matrix Ins.

We have examined vec((AXB) within reduced biquaternion algebra. The following

lemma outlines vec((AXB) when X possesses an L-structure in reduced biquaternion

algebra.

Lemma 2.3.19. Let A = A1+A2j ∈ Qm⌐n
R

,X =X1+X2j ∈ L(n, s), and B = B1+B2j ∈ Qs⌐t
R

.

Then

vec((AXB) = (h(B)T ⋊A1 + h(Bj)T ⋊A2)WnsMLvecL(&→X),
vec((AXTB) = (h(B)T ⋊A1 + h(Bj)T ⋊A2)SnsWnsMLvecL(&→X),

where ML represents the basis matrix of LR(n,4s), and Wns and Sns are defined as in

(2.3.8).

Proof. Using (2.2.2), (2.3.8), and Lemmas 2.3.17 and 2.3.18, we obtain

vec((AXB) = (h(B)T ⋊A1 + h(Bj)T ⋊A2)vec((X)
= (h(B)T ⋊A1 + h(Bj)T ⋊A2)

⌞⌞⌞⌞⌞⌞
vec(X1)
vec(X2)

⌞⌟⌟⌟⌟⌟
= (h(B)T ⋊A1 + h(Bj)T ⋊A2)

⌞⌞⌞⌞⌞⌞
vec(R(X1)) + ivec(I(X1))
vec(R(X2)) + ivec(I(X2))

⌞⌟⌟⌟⌟⌟
= (h(B)T ⋊A1 + h(Bj)T ⋊A2)Wnsvec(&→X)
= (h(B)T ⋊A1 + h(Bj)T ⋊A2)WnsMLvecL(&→X).

Next, we have

vec((XT ) = ⌞⌞⌞⌞⌞⌞
vec(XT

1 )
vec(XT

2 )
⌞⌟⌟⌟⌟⌟ =
⌞⌞⌞⌞⌞⌞
Qnsvec(X1)
Qnsvec(X2)

⌞⌟⌟⌟⌟⌟ = Sns
⌞⌞⌞⌞⌞⌞
vec(X1)
vec(X2)

⌞⌟⌟⌟⌟⌟ = SnsWnsMLvecL(&→X).
The proof follows from simple calculations. ∎
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2.4. General Framework for Solving Constrained RBMEs

The purpose of this section is to demonstrate how we can solve constrained generalized

linear matrix equations over commutative quaternions. As part of our approach, the

constrained RBME is reduced to the following unconstrained real matrix system:

⌞⌞⌞⌞⌞⌞
Q1

Q2

⌞⌟⌟⌟⌟⌟x = e, (2.4.1)

where Q1, Q2 are real matrices of appropriate dimension, x and e are real matrices or

vectors of appropriate size. From [13, Theorem 2] the generalized inverse of a partitioned

matrix [U,V ] is given by

[U,V ] = ⌞⌞⌞⌞⌞⌞
U −U V H

H

⌞⌟⌟⌟⌟⌟ ,
where

H = R + (I −R R)ZV TU TU (I − V R ) , R = (I −UU )V,
Z = (I + (I −R R)V TU TU V (I −R R))⋊1 .

We have

[U,V ]T = [U,V ] T = ⌞⌞⌞⌞⌞⌞
U −U V H

H

⌞⌟⌟⌟⌟⌟
T

= ⟦UT −HTV TUT ,HT ⟦ .
By substituting U = QT

1 and V = QT

2 , we get

⌞⌞⌞⌞⌞⌞
Q1

Q2

⌞⌟⌟⌟⌟⌟ = ⟦Q1 −HTQ2Q1,H
T ⟦ , ⌞⌞⌞⌞⌞⌞

Q1

Q2

⌞⌟⌟⌟⌟⌟
⌞⌞⌞⌞⌞⌞
Q1

Q2

⌞⌟⌟⌟⌟⌟ = Q1Q1 +RR , (2.4.2)

where

H = R + (I −R R)ZQ2Q1Q
T

1 (I −QT

2R ) , R = (I −Q1Q1)QT

2 ,

Z = (I + (I −R R)Q2Q1Q
T

1 QT

2 (I −R R))⋊1 . (2.4.3)

Using the results mentioned above, we deduce the following lemma that is helpful in

developing the main results.

Lemma 2.4.1. Consider the real matrix system of the form
⌞⌞⌞⌞⌞⌞
Q1

Q2

⌞⌟⌟⌟⌟⌟x = e. We have the

following results:
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(1) The matrix equation has a solution x if and only if
⌞⌞⌞⌞⌞⌞
Q1

Q2

⌞⌟⌟⌟⌟⌟
⌞⌞⌞⌞⌞⌞
Q1

Q2

⌞⌟⌟⌟⌟⌟ e = e. In this case,

the general solution is

x = ⟦Q1 −HTQ2Q1,H
T ⟦ e + (I −Q1Q1 −RR ) y,

where y is an arbitrary matrix or vector of suitable size. Furthermore, if the

consistency condition is satisfied, then the matrix equation has a unique solution if

and only if matrix
⌞⌞⌞⌞⌞⌞
Q1

Q2

⌞⌟⌟⌟⌟⌟ is of full column rank. In this case, the unique solution is

x = ⟦Q1 −HTQ2Q1,H
T ⟦ e.

(2) The least squares solutions of the matrix equation can be expressed as

x = ⟦Q1 −HTQ2Q1,H
T ⟦ e + (I −Q1Q1 −RR ) y,

where y is an arbitrary matrix or vector of suitable size, and the least squares

solution with the least norm is

x = ⟦Q1 −HTQ2Q1,H
T ⟦ e.

The following lemma will be used for the development of main results.

Lemma 2.4.2. Consider the matrix equation AX = B, where A ∈ Cm⌐n, X ∈ Rn⌐d, and
B ∈ Cm⌐d. The matrix equation AX = B is equivalent to the following linear system:

⌞⌞⌞⌞⌞⌞
R(A)
I(A)

⌞⌟⌟⌟⌟⌟X =
⌞⌞⌞⌞⌞⌞
R(B)
I(B)

⌞⌟⌟⌟⌟⌟ .

In the following subsection, we aim to find Q1, Q2, and e for each of the three

constrained RBMEs and solve them.

Remark 2.4.3. It is important to emphasize that the values of Q1, Q2, and e vary

depending on the specific matrix equation we are attempting to solve.

2.4.1. Linear Matrix Equation in Several Unknown L-structures

The class of matrix equation (2.1.1) encompasses many important matrix equations.

Some simple examples are AXB +CY D = E, AX + Y B = E. We now introduce a general

framework for finding the least squares solutions of RBME of the form (2.1.1). The problem

can be formally stated as follows:
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Problem 2.4.4. Let Al = Al1 + Al2j ∈ Qm⌐nl
R

, Bl ∈ Qsl⌐t
R

, and E = E1 + E2j ∈ Qm⌐t
R

for

l = 1,2, . . . , r. Let
NLE = ⟧[X1,X2, . . . ,Xr] ⌝Xl ∈ Ll(nl, sl),⟧ r⊍

l=1
AlXlBl −E⟧

F

= min⌜Xl∈Ll(nl,sl)⟧
r⊍
l=1

Al
⌝XlBl −E⟧

F

⟧ .
Then find [X1E,X2E, . . . ,XrE] ∈ NLE such that

⌝[X1E,X2E, . . . ,XrE]⌝F = min[X1,X2,...,Xr]∈NLE

(⌝X1⌝2F + ⌝X2⌝2F +⧖ + ⌝Xr⌝2F ) 12 .

To solve Problem 2.4.4, we employ the following notations: for l = 1,2, . . . , r, let MLl
be

the basis matrix of LR

l
(nl,4sl), and
Sl ∶= (h(Bl)T ⋊Al1 + h(Blj)T ⋊Al2)Wnlsl

MLl
, (2.4.4)

x ∶=
⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞

vecL1(&→X1)
vecL2(&→X2)

⋮
vecLr(&→Xr)

⌞⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟
. (2.4.5)

Additionally, Q1,Q2, and e (as in (2.4.1)) are in the following form:

Q1 ∶= [R(S1),R(S2), . . . ,R(Sr)] , Q2 ∶= [I(S1),I(S2), . . . ,I(Sr)] ,
and e ∶= ⌞⌞⌞⌞⌞⌞

vec(R((E))
vec(I((E))

⌞⌟⌟⌟⌟⌟ .
(2.4.6)

In case of inconsistency in matrix equation (2.1.1), we provide the least squares solutions.

The following result provides the solution to Problem 2.4.4.

Theorem 2.4.5. Let Al ∈ Qm⌐nl
R

, Bl ∈ Qsl⌐t
R

, and E ∈ Qm⌐t
R

for l = 1,2, . . . , r. Let Q1,Q2,

and e be of the form (2.4.6) and T = diag(ML1 ,ML2 , . . . ,MLr). Then

NLE =
⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟⎨⌟⌟⌟⌟⌟⌟⌟⌟⌟⎩
[X1,X2, . . . ,Xr]

⟧⟧⟧⟧⟧⟧⟧⟧⟧⟧⟧⟧⟧⟧⟧⟧⟧⟧⟧⟧⟧⟧⟧⟧⟧

⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞

vec(&→X1)
vec(&→X2)
⋮

vec(&→Xr)

⌞⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟
= T ⟦Q1 −HTQ2Q1,H

T ⟦ e + T (I −Q1Q1 −RR ) y
⟧⌟⌟⌟⌟⌟⌟⌟⌟⌟⎬⌟⌟⌟⌟⌟⌟⌟⌟⌟⎭
,

(2.4.7)
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where y is any vector of suitable size. The unique solution [X1E,X2E, . . . ,XrE] ∈ NLE to

Problem 2.4.4 satisfies

⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞

vec(&&→X1E)
vec(&&→X2E)
⋮

vec(&&→XrE)

⌞⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟
= T ⟦Q1 −HTQ2Q1,H

T ⟦ e. (2.4.8)

Proof. By using (2.2.3) and Lemma 2.2.2, we get

⟧ r⊍
l=1

AlXlBl −E⟧
2

F

= ⟧ r⊍
l=1

(AlXlBl
−(E⟧

2

F

= ⟧ r⊍
l=1

vec ((AlXlBl
) − vec ((E)⟧

2

F

.

Using Lemma 2.3.19, we have

vec ((AlXlBl
) = (h(Bl)T ⋊Al1 + h(Blj)T ⋊Al2)Wnlsl

MLl
vecLl

(&→Xl).
Now, using (2.4.4), we get

r⊍
l=1

vec ((AlXlBl
) = r⊍

l=1
(h(Bl)T ⋊Al1 + h(Blj)T ⋊Al2)Wnlsl

MLl
vecLl

(&→Xl)
= r⊍

l=1
SlvecLl

(&→Xl).
Using (2.4.5) and Lemma 2.4.2, we have

⟧ r⊍
l=1

AlXlBl −E⟧
2

F

= ⟧ r⊍
l=1

SlvecLl
(&→Xl) − vec ((E)⟧

2

F

=
NNNNNNNNNNNNNNNNNNNNNNNNN
[S1, S2, . . . , Sr]

⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞

vecL1(&→X1)
vecL2(&→X2)

⋮
vecLr(&→Xr)

⌞⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟
− vec ((E)

NNNNNNNNNNNNNNNNNNNNNNNNN

2

F

=
NNNNNNNNNNNN
⌞⌞⌞⌞⌞⌞
R(S1) R(S2) ⧖ R(Sr)
I(S1) I(S2) ⧖ I(Sr)

⌞⌟⌟⌟⌟⌟x −
⌞⌞⌞⌞⌞⌞
vec (R((E))
vec (I((E))

⌞⌟⌟⌟⌟⌟
NNNNNNNNNNNN
2

F

.

Using (2.4.6), this simplifies to

⟧ r⊍
l=1

AlXlBl −E⟧
2

F

=
NNNNNNNNNNNN
⌞⌞⌞⌞⌞⌞
Q1

Q2

⌞⌟⌟⌟⌟⌟x − e
NNNNNNNNNNNN
2

F

.
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Hence, Problem 2.4.4 can be solved by finding the least squares solutions of the following

unconstrained real matrix system:

⌞⌞⌞⌞⌞⌞
Q1

Q2

⌞⌟⌟⌟⌟⌟x = e.
By Lemma 2.4.1, the least squares solutions of the above real matrix system is:

x = ⟦Q1 −HTQ2Q1,H
T ⟦ e + (I −Q1Q1 −RR ) y,

where y is any vector of suitable size, and the least squares solution with the least norm is

⟦Q1 −HTQ2Q1,H
T ⟦ e.

Using Lemma 2.3.17, we have

⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞

vec(&→X1)
vec(&→X2)
⋮

vec(&→Xr)

⌞⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟
= T x.

Thus, we can obtain (2.4.7) and (2.4.8). ∎
The following theorem presents the consistency condition for obtaining the solution

Xl ∈ Ll(nl, sl) for the RBME of the form (2.1.1) and a general formulation for the solution.

Theorem 2.4.6. Consider the RBME of the form (2.1.1) and let T = diag (ML1 ,ML2 , . . . ,

MLr). Then the matrix equation (2.1.1) has an L-structure solution Xl ∈ Ll(nl, sl), for
l = 1,2, . . . , r, if and only if

⌞⌞⌞⌞⌞⌞
Q1

Q2

⌞⌟⌟⌟⌟⌟
⌞⌞⌞⌞⌞⌞
Q1

Q2

⌞⌟⌟⌟⌟⌟ e = e, (2.4.9)

where Q1,Q2, and e are in the form of (2.4.6). In this case, the general solution

Xl ∈ Ll(nl, sl) satisfies
⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞

vec(&→X1)
vec(&→X2)
⋮

vec(&→Xr)

⌞⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟
= T ⟦Q1 −HTQ2Q1,H

T ⟦ e + T (I −Q1Q1 −RR ) y,
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where y is any vector of suitable size. Further, if the consistency condition holds, then the

RBME of the form (2.1.1) has a unique solution Xl ∈ Ll(nl, sl) if and only if

rank
⎥
⟦
⌞⌞⌞⌞⌞⌞
Q1

Q2

⌞⌟⌟⌟⌟⌟
⟦
⟦ = dim

⎥⎜⎜⎜⎜⎜⎜⎜⟦

⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞

vecL1(&→X1)
vecL2(&→X2)

⋮
vecLr(&→Xr)

⌞⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟

⟦⎟⎟⎟⎟⎟⎟⎟⟦
.

In this case, the unique solution Xl ∈ Ll(nl, sl) satisfies
⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞

vec(&→X1)
vec(&→X2)
⋮

vec(&→Xr)

⌞⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟
= T ⟦Q1 −HTQ2Q1,H

T ⟦ e.

Proof. The proof follows using Lemma 2.4.1 and from the fact that

r⊍
l=1

AlXlBl = E⇔
⌞⌞⌞⌞⌞⌞
R(S1) R(S2) ⧖ R(Sr)
I(S1) I(S2) ⧖ I(Sr)

⌞⌟⌟⌟⌟⌟

⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞

vecL1(&→X1)
vecL2(&→X2)

⋮
vecLr(&→Xr)

⌞⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟
= ⌞⌞⌞⌞⌞⌞

vec(R((E))
vec(I((E))

⌞⌟⌟⌟⌟⌟ . ∎

Remark 2.4.7. The problem of finding the least squares real or purely imaginary

solutions to the RBME AX = E is a particular case of Problem 2.4.4. To solve this,

we simply need to find the least squares solution of the matrix equation (AX = (E. This

method is computationally less expensive compared to solving the least squares problem for

vec((AX) = vec((E), as the latter involves matrices of much larger dimensions due to the

Kronecker product.

Specifically, we have

(AX = (Ah(X)
= [A1,A2]

⌞⌞⌞⌞⌞⌞
X1 X2

X2 X1

⌞⌟⌟⌟⌟⌟
= [A1X1 +A2X2,A1X2 +A2X1]
= [A1R(X1) + iA1I(X1) +A2R(X2) + iA2I(X2),
A1R(X2) + iA1I(X2) +A2R(X1) + iA2I(X1)] .
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Therefore, we have

⌝AX −E⌝
F
= ⌝(AX −(E⌝F
=
NNNNNNNNNNNN
⌞⌞⌞⌞⌞⌞
A1R(X1) + iA1I(X1) +A2R(X2) + iA2I(X2)
A1R(X2) + iA1I(X2) +A2R(X1) + iA2I(X1)

⌞⌟⌟⌟⌟⌟ −
⌞⌞⌞⌞⌞⌞
E1

E2

⌞⌟⌟⌟⌟⌟
NNNNNNNNNNNNF

=
NNNNNNNNNNNNNNNNNNNNNNNNN

⌞⌞⌞⌞⌞⌞
A1 iA1 A2 iA2

A2 iA2 A1 iA1

⌞⌟⌟⌟⌟⌟

⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞

R(X1)
I(X1)
R(X2)
I(X2)

⌞⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟
− ⌞⌞⌞⌞⌞⌞

E1

E2

⌞⌟⌟⌟⌟⌟

NNNNNNNNNNNNNNNNNNNNNNNNNF
.

For a purely imaginary solution, we set R(X1) = 0. For a real solution, we impose

the conditions I(X1) = 0, R(X2) = 0, and I(X2) = 0. Similarly, any RBME of the form

(2.1.1), where Bl for l = 1,2, . . . , r are identity matrices and Xl = X for all l = 1,2, . . . , r,
can be solved using the same method.

The remaining subsection focuses on addressing the least squares problem associated

with matrix equations (2.1.2) and (2.1.3). This involves finding the least squares solutions

for the following unconstrained real matrix system:

⌞⌞⌞⌞⌞⌞
Q1

Q2

⌞⌟⌟⌟⌟⌟vecL(
&→
X) = e. (2.4.10)

Let ML be the basis matrix of LR(n,4s). Using Lemma 2.3.17, we get vec(&→X) from
vecL(&→X) in the following way:

vec(&→X) =MLvecL(&→X).
The methodology for solving RBMEs of the form (2.1.2) and (2.1.3) remains the same as

outlined in Subsection 2.4.1. Therefore, our focus here is solely on presenting the values

for Q1, Q2, and e, while intentionally omitting the detailed results.

Linear Matrix Equation in One Unknown L-structure

Consider the matrix equation (2.1.2) and let Al = Al1 + Al2j ∈ Qm⌐n
R

,Bl ∈ Qs⌐t
R

, Cp =
Cp1 +Cp2j ∈ Qm⌐s

R
, Dp ∈ Qn⌐t

R
, E = E1 +E2j ∈ Qm⌐t

R
for l = 1,2, . . . , r and p = 1,2, . . . , q. Let

S ∶= ( r⊍
l=1
(h(Bl)T ⋊Al1 + h(Blj)T ⋊Al2))WnsML,

N ∶= ( q⊍
p=1
(h(Dp)T ⋊Cp1 + h(Dpj)T ⋊Cp2))SnsWnsML.
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Q1,Q2, and e (as in (2.4.10)) for solving RBME of the form (2.1.2) are in the following

form:

Q1 ∶=R(S) +R(N), Q2 ∶= I(S) + I(N), and e ∶= ⌞⌞⌞⌞⌞⌞
vec(R((E))
vec(I((E))

⌞⌟⌟⌟⌟⌟ .
Generalized Coupled Linear Matrix Equations in One Unknown L-structure

Consider the matrix equation (2.1.3) and let Al = Al1 + Al2j ∈ Qm⌐n
R

,Bl ∈ Qs⌐t
R

, and

El = El1 +El2j ∈ Qm⌐t
R

for l = 1,2, . . . , r. Let

T ∶=
⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞

h(B1)T ⋊A11 + h(B1j)T ⋊A12

h(B2)T ⋊A21 + h(B2j)T ⋊A22

⋮
h(Br)T ⋊Ar1 + h(Brj)T ⋊Ar2

⌞⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟
WnsML, z ∶=

⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞

vec((E1)
vec((E2)
⋮

vec((Er)

⌞⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟
.

Q1,Q2, and e (as in (2.4.10)) for solving RBME of the form (2.1.3) are in the following

form:

Q1 ∶=R(T ), Q2 ∶= I(T ), and e ∶= ⌞⌞⌞⌞⌞⌞
R(z)
I(z)

⌞⌟⌟⌟⌟⌟ .

2.5. Solutions of Matrix Equation AXB +CYD = E
We now apply the framework developed in Section 2.4 to specific cases, exploring how

the theory can be utilized in various applications. These include the least squares purely

imaginary solution of the RBME AX = E and its application to the image restoration

problem, L-structure solutions for complex matrix equations, L-structure solutions for real

matrix equations, solving PDIEP, and the generalized PDIEP.

2.5.1. The Least Squares Solutions of AX = E for X ∈ IQn⌐s
R

Our discussion in this subsection focuses on the least squares purely imaginary reduced

biquaternion solutions to the following RBME

AX = E. (2.5.1)

Problem 2.5.1. Let A = A1 +A2 j ∈ Qm⌐n
R

and E = E1 +E2 j ∈ Qm⌐s
R

. Define

ILE = ⟧X ⌝X =X1 +X2 j ∈ IQn⌐s
R

, ⌝AX −E⌝
F
= min⌜X∈IQn⌐s

R

⌜A ⌝X −E⌜
F
⟧ .
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Find XI =XI1 +XI2 j ∈ ILE such that

⌝XI⌝F = min
X∈ILE

⌝X⌝
F
.

The following notations will be used to solve Problem 2.5.1. Define

V ∶= ⌞⌞⌞⌞⌞⌞
iA1 A2 iA2

iA2 A1 iA1

⌞⌟⌟⌟⌟⌟ . (2.5.2)

Further Q1,Q2, x, and e (as in (2.4.1)) for this problem are given by:

Q1 ∶=R(V ), Q2 ∶= I(V ), x ∶=
⌞⌞⌞⌞⌞⌞⌞⌞⌞

I(X1)
R(X2)
I(X2)

⌞⌟⌟⌟⌟⌟⌟⌟⌟
, and e ∶=

⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞

R(E1)
R(E2)
I(E1)
I(E2)

⌞⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟
. (2.5.3)

The following result provides the expression for the solution to Problem 2.5.1.

Theorem 2.5.2. Let A ∈ Qm⌐n
R

and E ∈ Qm⌐s
R

. Let Q1,Q2, and e be as defined in (2.5.3).

Then

ILE =
⌟⌟⌟⌟⌟⌟⎨⌟⌟⌟⌟⌟⎩
X ⌝R(X1) = 0,

⌞⌞⌞⌞⌞⌞⌞⌞⌞

I(X1)
R(X2)
I(X2)

⌞⌟⌟⌟⌟⌟⌟⌟⌟
= ⟦Q1 −HTQ2Q1,H

T ⟦ e + (I −Q1Q1 −RR )Y
⟧⌟⌟⌟⌟⌟⎬⌟⌟⌟⌟⌟⎭
,

where Y is any matrix of suitable size. The unique solution XI ∈ ILE to Problem 2.5.1

satisfies

R(XI1) = 0,
⌞⌞⌞⌞⌞⌞⌞⌞⌞

I(XI1)
R(XI2)
I(XI2)

⌞⌟⌟⌟⌟⌟⌟⌟⌟
= ⟦Q1 −HTQ2Q1,H

T ⟦ e. (2.5.4)

Proof. From Remark 2.4.7 and using the fact that X ∈ IQn⌐s
R

if and only if R(X1) = 0, we
have

⌝AX −E⌝
F
=
NNNNNNNNNNNNNNNNNN
⌞⌞⌞⌞⌞⌞
iA1 A2 iA2

iA2 A1 iA1

⌞⌟⌟⌟⌟⌟
⌞⌞⌞⌞⌞⌞⌞⌞⌞

I(X1)
R(X2)
I(X2)

⌞⌟⌟⌟⌟⌟⌟⌟⌟
− ⌞⌞⌞⌞⌞⌞

E1

E2

⌞⌟⌟⌟⌟⌟
NNNNNNNNNNNNNNNNNNF
=
NNNNNNNNNNNN
⌞⌞⌞⌞⌞⌞
Q1

Q2

⌞⌟⌟⌟⌟⌟x − e
NNNNNNNNNNNNF

.

The rest of the proof follows the same approach as the proof of Theorem 2.4.5. ∎
The following theorem provides the condition for the matrix equation (2.5.1) to have a

purely imaginary reduced biquaternion solution, along with an expression for this solution.
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Theorem 2.5.3. The RBME AX = E has a purely imaginary reduced biquaternion solution

X ∈ IQn⌐s
R

if and only if

⌞⌞⌞⌞⌞⌞
Q1

Q2

⌞⌟⌟⌟⌟⌟
⌞⌞⌞⌞⌞⌞
Q1

Q2

⌞⌟⌟⌟⌟⌟ e = e, (2.5.5)

where Q1,Q2, and e are as defined in (2.5.3). In this case, the general solution, given by

X = I(X1) i +R(X2) j + I(X2)k, satisfies
⌞⌞⌞⌞⌞⌞⌞⌞⌞

I(X1)
R(X2)
I(X2)

⌞⌟⌟⌟⌟⌟⌟⌟⌟
= ⟦Q1 −HTQ2Q1,H

T ⟦ e + (I −Q1Q1 −RR )Y,

where Y is any matrix of suitable size. Further, if the consistency condition is satisfied,

then the RBME of the form (2.5.1) has a unique solution if and only if

rank
⎥
⟦
⌞⌞⌞⌞⌞⌞
Q1

Q2

⌞⌟⌟⌟⌟⌟
⟦
⟦ = 3n.

In this case, the unique solution, given by X = I(X1) i +R(X2) j + I(X2)k, satisfies
⌞⌞⌞⌞⌞⌞⌞⌞⌞

I(X1)
R(X2)
I(X2)

⌞⌟⌟⌟⌟⌟⌟⌟⌟
= ⟦Q1 −HTQ2Q1,H

T ⟦ e.

Proof. Based on Remark 2.4.7 and the fact that X ∈ IQn⌐s
R

if and only if R(X1) = 0, we
have

AX = E ⇐↢ ⌞⌞⌞⌞⌞⌞
R(V )
I(V )

⌞⌟⌟⌟⌟⌟x = e. ∎

Using the solution to Problem 2.5.1, we can restore color images. Each pixel in a color

image is composed of three primary color components: red, green, and blue (RGB). These

colors are interrelated, and their relationships must be preserved during the restoration

process. In 2004, Pei et al. proposed that the red, green, and blue values of each pixel in a

color image can be represented as a pure imaginary reduced biquaternion [56]. Thus, an

m ⌐ n color image I can be represented as a pure imaginary reduced biquaternion matrix:

I = Ri +Gj +Bk,

where R, G, and B are real matrices representing the red, green, and blue channels,

respectively.
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The linear discrete model of image restoration can be described by the matrix-vector

equation [39]:

g =Kf + n,
where g is the observed (degraded) image, f is the true or ideal image, n is additive noise,

and K is a matrix representing the blurring phenomena [34, 79]. Image restoration methods

aim to construct an approximation of f based on g, K, and, in some cases, statistical

information about the noise. In most cases, the noise n is unknown, and we seek to find

the solution fK such that:

⌝n⌝ = ⌝KfK − g⌝ =min
f

⌝Kf − g⌝.
Since a color image can be represented as a pure imaginary reduced biquaternion matrix,

the image restoration problem can be reformulated as finding the least squares purely

imaginary reduced biquaternion solution to the matrix equation Kf = g.

2.5.2. Solutions of Matrix Equation AXB +CYD = E for [X,Y] ∈ HCn⌐n ⌐HCn⌐n

As a special case, we now discuss the Hankel solutions of the complex matrix equation

AXB +CY D = E, (2.5.6)

where A,C ∈ Cm⌐n, B,D ∈ Cn⌐s, and E ∈ Cm⌐s. The following notations will be used to

solve matrix equation (2.5.6). Define

W ∶= (BT ⋊A) [In2 , i In2]⌞⌞⌞⌞⌞⌞
KH 0

0 KH

⌞⌟⌟⌟⌟⌟ , J ∶= (DT ⋊C) [In2 , i In2]⌞⌞⌞⌞⌞⌞
KH 0

0 KH

⌞⌟⌟⌟⌟⌟ . (2.5.7)

Further Q1,Q2, x, and e (as in (2.4.1)) are given in the form:

Q1 ∶= [R(W ),R(J)] , Q2 ∶= [I(W ),I(J)] ,

x ∶=
⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞

vecH(R(X))
vecH(I(X))
vecH(R(Y ))
vecH(I(Y ))

⌞⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟
, and e ∶= ⌞⌞⌞⌞⌞⌞

vec(R(E))
vec(I(E))

⌞⌟⌟⌟⌟⌟ .
(2.5.8)
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Using (2.3.7), (2.5.7), and Lemma 2.3.12, we have

vec(AXB) = (BT ⋊A)vec(X)
= (BT ⋊A) (vec(R(X)) + ivec(I(X)))
= (BT ⋊A) [In2 , i In2]⌞⌞⌞⌞⌞⌞

vec(R(X))
vec(I(X))

⌞⌟⌟⌟⌟⌟
= (BT ⋊A) [In2 , i In2]⌞⌞⌞⌞⌞⌞

KH 0

0 KH

⌞⌟⌟⌟⌟⌟
⌞⌞⌞⌞⌞⌞
vecH(R(X))
vecH(I(X))

⌞⌟⌟⌟⌟⌟
=W ⌞⌞⌞⌞⌞⌞

vecH(R(X))
vecH(I(X))

⌞⌟⌟⌟⌟⌟ .
Similarly,

vec(CY D) = (DT ⋊C) [In2 , i In2]⌞⌞⌞⌞⌞⌞
KH 0

0 KH

⌞⌟⌟⌟⌟⌟
⌞⌞⌞⌞⌞⌞
vecH(R(Y ))
vecH(I(Y ))

⌞⌟⌟⌟⌟⌟ = J
⌞⌞⌞⌞⌞⌞
vecH(R(Y ))
vecH(I(Y ))

⌞⌟⌟⌟⌟⌟ .
Using the expressions for vec(AXB) and vec(CY D) along with equation (2.5.8) and

Lemma 2.4.2, we obtain

AXB +CY D = E⇔ vec(AXB) + vec(CY D) = vec(E)
⇔W

⌞⌞⌞⌞⌞⌞
vecH(R(X))
vecH(I(X))

⌞⌟⌟⌟⌟⌟ + J
⌞⌞⌞⌞⌞⌞
vecH(R(Y ))
vecH(I(Y ))

⌞⌟⌟⌟⌟⌟ = vec(E)

⇔ [W,J]
⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞

vecH(R(X))
vecH(I(X))
vecH(R(Y ))
vecH(I(Y ))

⌞⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟
= vec(E)

⇔ ⌞⌞⌞⌞⌞⌞
R(W ) R(J)
I(W ) I(J)

⌞⌟⌟⌟⌟⌟x =
⌞⌞⌞⌞⌞⌞
vec(R(E))
vec(I(E))

⌞⌟⌟⌟⌟⌟ .
Finally, using Q1, Q2, and e from (2.5.8), we rewrite the equation as

AXB +CY D = E⇔ ⌞⌞⌞⌞⌞⌞
Q1

Q2

⌞⌟⌟⌟⌟⌟x = e.
Hence, matrix equation AXB +CY D = E for [X,Y ] ∈ HCn⌐n ⌐HCn⌐n can be solved by

solving the following unconstrained real matrix system:

⌞⌞⌞⌞⌞⌞
Q1

Q2

⌞⌟⌟⌟⌟⌟x = e.
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By Lemma 2.3.12, we have

⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞

vec(R(X))
vec(I(X))
vec(R(Y ))
vec(I(Y ))

⌞⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟
=
⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞

KH 0 0 0

0 KH 0 0

0 0 KH 0

0 0 0 KH

⌞⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟
x.

2.5.3. Solutions of Matrix Equation AXB +CYD = E for [X,Y] ∈ STRn⌐n ⌐ STRn⌐n

As a special case, we now discuss the symmetric Toeplitz solutions of the real matrix

equation

AXB +CY D = E, (2.5.9)

where A,C ∈ Rm⌐n, B,D ∈ Rn⌐s, and E ∈ Rm⌐s. Using (2.3.7) and Lemma 2.3.11, we have

AXB +CY D = E⇔ vec(AXB) + vec(CY D) = vec(E)
⇔ (BT ⋊A)vec(X) + (DT ⋊C)vec(Y ) = vec(E)
⇔ (BT ⋊A)KSTvecST (X) + (DT ⋊C)KSTvecST (Y ) = vec(E)
⇔ ⟦(BT ⋊A)KST , (DT ⋊C)KST ⟦

⌞⌞⌞⌞⌞⌞
vecST (X)
vecST (Y )

⌞⌟⌟⌟⌟⌟ = vec(E).
Hence, matrix equation AXB +CY D = E for [X,Y ] ∈ STRn⌐n ⌐ STRn⌐n can be solved by

solving the following unconstrained real matrix system:

⌝Qx = ⌝e,
where ⌝Q = [(BT ⋊A)KST , (DT ⋊C)KST ], x =

⌞⌞⌞⌞⌞⌞
vecST (X)
vecST (Y )

⌞⌟⌟⌟⌟⌟, and ⌝e = vec(E). Using Lemma

2.3.11, we have ⌞⌞⌞⌞⌞⌞
vec(X)
vec(Y )

⌞⌟⌟⌟⌟⌟ =
⌞⌞⌞⌞⌞⌞
KST 0

0 KST

⌞⌟⌟⌟⌟⌟x.

2.5.4. PDIEP and Generalized PDIEP

In this subsection, we aim to demonstrate the application of our developed framework

in solving a range of inverse problems. Here, we develop a numerical solution methodology

for the inverse problems in which the spectral constraints involve only a few eigenpair

information rather than the entire spectrum. Mathematically, the problem statement is as

follows:
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Problem 2.5.4 (PDIEP). Given vectors {u1, u2, . . . , uk} ⊂ Fn (k ≤ n), values {ω1,ω2, . . . ,

ωk} ⊂ F, and a set L of structured matrices, find a matrix M ∈ L such that

Mui = ωiui, i = 1,2, . . . , k.

To simplify the discussion, we will use the matrix pair (),*) to describe partial

eigenpair information, where

) = diag(ω1,ω2, . . . ,ωk) ∈ Fk⌐k,
* = [u1, u2, . . . , uk] ∈ Fn⌐k.

(2.5.10)

PDIEP can be written as M* = *). By using the transformations

A = In, X =M,

B = *, and E = *),
we can find solution to PDIEP by solving matrix equation AXB = E for X ∈ L.

Next, we investigate generalized PDIEPs. In a nutshell, the problem is:

Problem 2.5.5 (Generalized PDIEP). Given vectors {u1, u2, . . . , uk} ⊂ Fn (k ≤ n), values
{ω1,ω2, . . . ,ωk} ⊂ F, and a set L of structured matrices, find pair of matrices M,N ∈ L
such that

Mui = ωiNui, i = 1,2, . . . , k.

Generalized PDIEP can be written as M* = N*), where ) and * are as in (2.5.10).

By using the transformations

A = In, X =M, B = *, C = −In,
Y = N, D = *), and E = 0,

we can find solution to Generalized PDIEP by solving matrix equation AXB +CY D = E
for X,Y ∈ L.

Though the primary emphasis of this paper is on inverse problems having symmetric

Toeplitz or Hankel structures, the overall approach can be extended to encompass any

structures where any set of linear relationships among matrix entries is permissible.
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2.6. Numerical Verification

In this section, we present numerical examples to validate our proposed results. All

computations are performed on an Intel Core i7-9700 @3.00GHz with 16GB RAM using

MATLAB R2021b. Eight numerical examples are provided, each highlighting a di!erent

aspect of our framework.

We begin by computing the error between the least squares Toeplitz solution of the

RBME AXB+CY D = E obtained using our method and the corresponding exact solution.

Additionally, we evaluate the error between the least squares Hankel solution of the RBME

(AXB,CXD) = (E,F ) computed using our approach and its exact counterpart.

Our method is further applied to solve an image restoration problem, demonstrating its

practical e!ectiveness. We also investigate the PDIEP for a Hankel and symmetric Toeplitz

matrix, followed by an analysis of the generalized PDIEP for Hankel and symmetric

Toeplitz structures.

Finally, we compare our approach for computing least squares Toeplitz solutions of

the RBME X +AXB = C with the method presented in [71], highlighting key di!erences

and improvements.

We now provide an example for finding the structure-constrained least squares solution

to the RBME of the form (2.1.1).

Example 2.6.1. Consider the following matrices:

A = rand(4,5) + rand(4,5)j, B = rand(5,7) + rand(5,7)j,
C = ones(4,5) + rand(4,5)j, D = rand(5,7) + ones(5,7)j.

Let the column and row vectors for the Toeplitz matrices be defined as:

c1 = [i, 2 + i, 0, 1, i], r1 = [i, 0, 2i, 1, 1 + i],
c2 = [1, 3i, 2 + 3i, 1, 0], r2 = [1, 0, 1, i, 2].

Define the reduced biquaternion matrix ⌝X = ⌝X1 + ⌝X2j, where ⌝X1 = toeplitz(c1, r1) and⌝X2 = toeplitz(c2, r2).
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Similarly, let the column and row vectors for another Toeplitz matrix be:

c3 = [2 + i, 4, i, 1 + 3i, 2i], r3 = [2 + i, 7 + 6i, 3 + 2i, i, 1 + i],
c4 = [1 + 3i, 3i, 2 + 3i, 3, 5 + i], r4 = [1 + 3i, 5, 1 + 6i, 3 + i, 2i].

Define the reduced biquaternion matrix ⌝Y = ⌝Y1 + ⌝Y2j, where ⌝Y1 = toeplitz(c3, r3) and⌝Y2 = toeplitz(c4, r4). Let
E = A ⌝XB +C⌝Y D.

Thus, ⟦ ⌝X, ⌝Y ⟦ is the least squares Toeplitz solution with the least norm of the RBME

AXB +CY D = E.

Now, we take the matrices A,B,C,D, and E as input to compute the least squares

Toeplitz solution with the least norm for the RBME AXB + CY D = E. We obtain the

matrices X =X1 +X2j and Y = Y1 + Y2j, where

X1 =

⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞

0 + 1i 0 − 0i 0 + 2i 1 − 0i 1 + 1i
2 + 1i 0 + 1i 0 − 0i 0 + 2i 1 − 0i
0 − 0i 2 + 1i 0 + 1i 0 − 0i 0 + 2i
1 + 0i 0 − 0i 2 + 1i 0 + 1i 0 − 0i
0 + 1i 1 + 0i 0 − 0i 2 + 1i 0 + 1i

⌞⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟

, X2 =

⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞

1 − 0i 0 + 0i 1 − 0i 0 + 1i 2 − 0i
0 + 3i 1 − 0i 0 + 0i 1 − 0i 0 + 1i
2 + 3i 0 + 3i 1 − 0i 0 + 0i 1 − 0i
1 + 0i 2 + 3i 0 + 3i 1 − 0i 0 + 0i
0 + 0i 1 + 0i 2 + 3i 0 + 3i 1 − 0i

⌞⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟

,

Y1 =

⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞

2 + 1i 7 + 6i 3 + 2i 0 + 1i 1 + 1i
4 + 0i 2 + 1i 7 + 6i 3 + 2i 0 + 1i
0 + 1i 4 + 0i 2 + 1i 7 + 6i 3 + 2i
1 + 3i 0 + 1i 4 + 0i 2 + 1i 7 + 6i
0 + 2i 1 + 3i 0 + 1i 4 + 0i 2 + 1i

⌞⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟

, Y2 =

⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞

1 + 3i 5 + 0i 1 + 6i 3 + 1i 0 + 2i
0 + 3i 1 + 3i 5 + 0i 1 + 6i 3 + 1i
2 + 3i 0 + 3i 1 + 3i 5 + 0i 1 + 6i
3 + 0i 2 + 3i 0 + 3i 1 + 3i 5 + 0i
5 + 1i 3 + 0i 2 + 3i 0 + 3i 1 + 3i

⌞⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟

.

Clearly, X and Y are reduced biquaternion Toeplitz matrices. The error is given by

φ = ⌜[X,Y ] − ⟦ ⌝X, ⌝Y ⟦⌜
F
= 1.7470 ⌐ 10⋊13.

From Example 2.6.1, we find that the error φ is in the order of 10⋊13 and is negligible.

This demonstrates the e!ectiveness of our method in determining the structure-constrained

least squares solution to the RBME of the form (2.1.1).

To further illustrate, we now provide an example for finding the structure-constrained

least squares solution to the RBME of the form (2.1.3).
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Example 2.6.2. Consider the following matrices:

A = ones(4,5) + rand(4,5)j, B = ones(5,7) + rand(5,7)j,
C = rand(4,5) + rand(4,5)j, D = ones(5,7) + rand(5,7)j.

Let the column and row vectors for the Hankel matrices be defined as:

c1 = [3 + i,2 + 4i,6 + i,2 + i,3i], r1 = [3i,7,3 + 2i,1 + i,9 + i],
c2 = [1 + 2i,5 + 3i,3i,1 + 7i,3], r2 = [3,1 + i,2 + 8i,2 + i,2 + 2i].

Define the reduced biquaternion matrix ⌝X = ⌝X1 + ⌝X2j, where ⌝X1 = hankel(c1, r1) and⌝X2 = hankel(c2, r2). Next, let
E = A ⌝XB, F = C ⌝XD.

Thus, ⌝X is the least squares Hankel solution with the least norm of the RBME

(AXB,CXD) = (E,F ).
Now, we take the matrices A, B, C, D, E, and F as input to compute the least squares

Hankel solution with the least norm for the RBME (AXB,CXD) = (E,F ). We obtain

the matrix X =X1 +X2j, where

X1 =

⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞

3 + 1i 2 + 4i 6 + 1i 2 + 1i 0 + 3i
2 + 4i 6 + 1i 2 + 1i 0 + 3i 7 + 0i
6 + 1i 2 + 1i 0 + 3i 7 + 0i 3 + 2i
2 + 1i 0 + 3i 7 + 0i 3 + 2i 1 + 1i
0 + 3i 7 + 0i 3 + 2i 1 + 1i 9 + 1i

⌞⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟

,

and

X2 =

⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞

1 + 2i 5 + 3i 0 + 3i 1 + 7i 3 + 0i
5 + 3i 0 + 3i 1 + 7i 3 + 0i 1 + 1i
0 + 3i 1 + 7i 3 + 0i 1 + 1i 2 + 8i
1 + 7i 3 + 0i 1 + 1i 2 + 8i 2 + 1i
3 + 0i 1 + 1i 2 + 8i 2 + 1i 2 + 2i

⌞⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟

.

Clearly, X is a reduced biquaternion Hankel matrix. The error is given by φ = ⌜X − ⌝X⌜
F
=

5.7042 ⌐ 10⋊13, which is negligibly small.

From Example 2.6.2, we find that the error φ is in the order of 10⋊13 and is negligible.

This demonstrates the e!ectiveness of our method in determining the structure-constrained

least squares solution to the RBME of the form (2.1.3).
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To illustrate the practical application of our proposed framework, we present the

following example.

Example 2.6.3. Figure 2.6.1(a) shows a 480⌐500 color image I. The reduced biquaternion

matrix representation of I is given by F = R i +G j +B k, where R, G, and B are the real

matrices corresponding to the red, green, and blue channels, respectively. The matrix F

represents the image matrix of the original image I.

To simulate a distorted image, the red channel matrix R is disturbed using the

parameters len = 30 and theta = 60, with the MATLAB function fspecial(‘motion’,

len, theta) to generate the disturbed matrix RD. The corresponding blurring matrix

K = RdR is then used to disturb the green and blue channel matrices, obtaining GD =KG

and BD =KB. Consequently, the disturbed image matrix becomes FD = RD i +GD j +BD k,

and the corresponding distorted image ID is shown in Figure 2.6.1(b).

(a) (b) (c)

Figure 2.6.1. (a) Original image I (b) Distorted image ID (c) Restored image IR

Now, we take matrices K and FD as input to compute the least squares purely

imaginary reduced biquaternion solution F ′ of the matrix equation KX = FD. This is done

by solving:

⌝KF ′ − FD⌝ =min
X

⌝KX − FD⌝ .
The solution F ′ is the image matrix corresponding to the recovered image after the

restoration process, and the recovered image IR is shown in Figure 2.6.1(c). The computed

error is φ = ⌝F ′ − F ⌝ = 3.1014 ⌐ 10⋊7, indicating that the error is negligible, as it is of the

order 10⋊7. This demonstrates the e!ectiveness of Theorem 2.5.2 in solving Problem 2.5.1.

Next, we will discuss Hankel PDIEPs [12, Problem 5.1]. Given a set of vectors

{u1, u2, . . . , uk} ⊂ Cn, where k ≥ 1, and a set of numbers {ω1,ω2, . . . ,ωk} ⊂ C, our aim
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is to construct a Hankel matrix M ∈ Cn⌐n satisfying Mui = ωiui for i = 1, 2, . . . , k. Now, we
will illustrate this problem with an example.

Example 2.6.4. To establish test data, we first generate a Hankel matrix M . Define

M = hankel(c, r), where
c = [1 + 2i, 2 − 4i, −1 + 3i, 4] , r = [4, 3 + 4i, 2i, 3] .

Let (),*) denote the eigenpairs of M , where ) = diag(ω1, . . . ,ω4) ∈ C4⌐4 and * =
[u1, u2, u3, u4] ∈ C4⌐4. The eigenvalues are

[ω1,ω2,ω3,ω4] = [−3.8029 + 7.9250i, −2.7826 − 3.5629i, 5.6954 − 1.0619i, 6.8900 + 5.6998i] ,
and the matrix * of eigenvectors is given by

* =
⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞

0.6240 + 0.0000i −0.4940 − 0.0377i −0.5395 − 0.2011i 0.1572 − 0.2047i
−0.6145 − 0.0885i −0.5863 + 0.0219i 0.0172 − 0.1236i 0.4818 − 0.1113i
0.4246 + 0.0774i 0.1217 − 0.1368i 0.5855 + 0.0000i 0.6784 + 0.0000i
−0.1893 + 0.0550i 0.6138 + 0.0000i −0.5259 − 0.1832i 0.4609 − 0.1275i

⌞⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟
.

Case 1. Reconstruction from one eigenpair (k = 1): Let the prescribed partial eigen-

information be given by

⌝) = ω3 ∈ C, ⌝* = u3 ∈ C4⌐1.

Construct the Hankel matrix ⌜M such that ⌜Mu3 = ω3u3. Using the transformations A = I4,
X = ⌜M , B = ⌝*, and E = ⌝*⌝), we solve the matrix equation AXB = E to obtain

⌜M =
⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞

1.6614 + 0.3115i 1.0564 + 0.6597i −1.8088 + 0.4921i 2.6736 − 0.4763i
1.0564 + 0.6597i −1.8088 + 0.4921i 2.6736 − 0.4763i 2.0823 − 0.5222i
−1.8088 + 0.4921i 2.6736 − 0.4763i 2.0823 − 0.5222i −1.7415 + 0.7505i
2.6736 − 0.4763i 2.0823 − 0.5222i −1.7415 + 0.7505i 1.2459 + 0.2833i

⌞⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟
.

Thus, ⌜M is the desired Hankel matrix.

Case 2. Reconstruction from two eigenpairs (k = 2): Let the prescribed partial eigen-

information be given by

⌝) = diag(ω2,ω3) ∈ C2⌐2, ⌝* = [u2, u3] ∈ C4⌐2.
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Construct the Hankel matrix ⌜M such that ⌜Mui = ωiui for i = 2,3. Using the same

transformations as in Case 1, we solve the matrix equation AXB = E and obtain

⌜M =
⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞

1.0000 + 2.0000i 2.0000 − 4.0000i −1.0000 + 3.0000i 4.0000 + 0.0000i
2.0000 − 4.0000i −1.0000 + 3.0000i 4.0000 + 0.0000i 3.0000 + 4.0000i
−1.0000 + 3.0000i 4.0000 + 0.0000i 3.0000 + 4.0000i 0.0000 + 2.0000i
4.0000 + 0.0000i 3.0000 + 4.0000i 0.0000 + 2.0000i 3.0000 + 0.0000i

⌞⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟
.

Thus, ⌜M is the desired Hankel matrix.

Case 1 (k = 1) Case 2 (k = 2)
Eigenpair Residual ⌜⌜Mui − ωiui⌜2 Eigenpairs Residual ⌜⌜Mui − ωiui⌜2
(ω3, u3) 2.7792 ⌐ 10⋊15 (ω2, u2) 3.1349 ⌐ 10⋊14

(ω3, u3) 2.2761 ⌐ 10⋊14
Table 2.6.1. Residual ⌜⌜Mui ⌐ ωiui⌜2 for Example 2.6.4.

From Table 2.6.1, we find that the residual ⌜⌜Mui − ωiui⌜2 for i = 3 in Case 1 and

for i = 2,3 in Case 2 is on the order of 10⋊14, which is negligible. This demonstrates the

e!ectiveness of our method in solving the Hankel PDIEP.

Next, we illustrate the example for solving the symmetrix Toeplitz PDIEP.

Example 2.6.5. To establish test data, we first generate a real symmetric Toeplitz matrix

T . Define T = toeplitz(c), where
c = [5.30, 2.50, 4.60, −3.70, 2.80] .

Let (),*) denote the eigenpairs of T , where ) = diag(ω1, . . . ,ω5) ∈ R5⌐5 and * =
[u1, u2, u3, u4, u5] ∈ R5⌐5. The eigenvalues are

[ω1,ω2,ω3,ω4,ω5] = [−4.6650, −1.0842, 7.8650, 10.4951, 13.8891] ,
and the matrix * of eigenvectors is given by

* =

⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞

0.4627 0.4077 0.5347 −0.3460 −0.4627
−0.5347 0.2169 0.4627 0.6165 −0.2699
−0.0000 −0.7573 0.0000 −0.0193 −0.6528
0.5347 0.2169 −0.4627 0.6165 −0.2699
−0.4627 0.4077 −0.5347 0.3460 −0.4627

⌞⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟

.
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Case 1. Reconstruction from two eigenpairs (k = 2): Let the prescribed partial eigen-

information be given by

⌝) = diag(ω1,ω2) ∈ R2⌐2, ⌝* = [u1, u2] ∈ R5⌐2.

We construct the symmetric Toeplitz matrix ⌝T such that ⌝Tui = ωiui for i = 1,2. Using
the transformations A = I5, X = ⌝T , B = ⌝*, and E = ⌝*⌝), we solve the matrix equation

AXB = E to obtain:

⌝T =

⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞

5.30 2.50 4.60 −3.70 2.80

2.50 5.30 2.50 4.60 −3.70
4.60 2.50 5.30 2.50 4.60

−3.70 4.60 2.50 5.30 2.50

2.80 −3.70 4.60 2.50 5.30

⌞⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟

.

Thus, ⌝T is the desired symmetric Toeplitz matrix.

Case 2. Reconstruction from two eigenpairs (k = 2): Let the prescribed partial eigen-

information be given by

⌝) = diag(ω1,ω3) ∈ R2⌐2, ⌝* = [u1, u3] ∈ R5⌐2.

We construct the symmetric Toeplitz matrix ⌝T such that ⌝Tui = ωiui for i = 1,3. Following
the same approach as in Case 1, we solve the matrix equation AXB = E and obtain:

⌝T =

⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞

1.0667 3.1000 0.3667 −3.1000 −1.4333
3.1000 1.0667 3.1000 0.3667 −3.1000
0.3667 3.1000 1.0667 3.1000 0.3667

−3.1000 0.3667 3.1000 1.0667 3.1000

−1.4333 −3.1000 0.3667 3.1000 1.0667

⌞⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟

.

Thus, ⌝T is the desired symmetric Toeplitz matrix.

Case 1 (k = 2) Case 2 (k = 2)
Eigenpairs Residual ⌜⌝Tui − ωiui⌜2 Eigenpairs Residual ⌜⌝Tui − ωiui⌜2
(ω1, u1) 5.7430 ⌐ 10⋊15 (ω1, u1) 2.2505 ⌐ 10⋊15
(ω2, u2) 1.2200 ⌐ 10⋊14 (ω3, u3) 6.1218 ⌐ 10⋊15

Table 2.6.2. Residual ⌜⌝Tui ⌐ ωiui⌜2 for Example 2.6.5.
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From Table 2.6.2, we observe that the residual ⌜⌝Tui − ωiui⌜2 for i = 1,2 in Case 1

and for i = 1,3 in Case 2 is on the order of 10⋊14, which is negligible. This confirms the

e!ectiveness of our method in solving the symmetric Toeplitz PDIEP.

Similar to PDIEP, one can solve the generalized PDIEP (Problem 2.5.5). We now

illustrate the generalized PDIEP for Hankel and symmetric Toeplitz structure.

Example 2.6.6. To establish test data, we first generate a linear matrix pencil M − ωN ,

where M and N are Hankel matrices. Specifically, we define M = hankel(c1, r1) and

N = hankel(c2, r2), where
c1 = [4 + 2i, 2 − 4i, −1 + 3i, 4 + 3i] , r1 = [4 + 3i, 4i, 9 + 2i, 3 + i] ,

c2 = [3 + 2i, 6 − i, −5 + 2i, 4 + 7i] , r2 = [4 + 7i, 3 + 4i, 2 + 2i, 3 − 8i] .
Let (),*) denote the eigenpairs of M − ωN , where ) = diag(ω1,ω2,ω3,ω4) ∈ C4⌐4 and

* = [u1, u2, u3, u4] ∈ C4⌐4. The eigenvalues are

[ω1,ω2,ω3,ω4] = [−0.3953 + 0.6027i, 0.3708 − 0.7155i, 0.6743 − 0.3655i, 0.6761 + 0.1157i] ,
and the matrix * of eigenvectors is given by

* =
⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞

−0.4881 + 0.1767i −0.4811 − 0.3552i −0.7739 + 0.1499i 0.7130 + 0.2870i
0.4383 + 0.4624i 0.4236 + 0.5764i −0.8976 + 0.1024i 0.1416 + 0.5177i
0.4194 − 0.5806i −0.1700 + 0.0352i −0.3007 + 0.3084i −0.3339 + 0.5007i
−0.5678 − 0.0875i 0.3392 − 0.1123i 0.0061 + 0.1882i −0.3560 − 0.2370i

⌞⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟
.

Case 1. Reconstruction from one eigenpair (k = 1): Let the prescribed partial eigen-

information be given by

⌝) = ω1 ∈ C, ⌝* = u1 ∈ C4⌐1.
We construct the Hankel matrices ⌜M and ⌝N such that ⌜Mui = ωi

⌝Nui for i = 1. Using the

transformations A = I4, X = ⌜M , B = ⌝*, C = −I4, Y = ⌝N , D = ⌝*⌝), and E = 0, we solve the

matrix equation AXB +CY D = E. The resulting matrices are

⌜M =
⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞

1.0472 + 0.3406i 1.1937 + 0.5288i 0.8984 + 0.8802i 1.0875 + 1.1282i
1.1937 + 0.5288i 0.8984 + 0.8802i 1.0875 + 1.1282i 0.7748 + 1.0806i
0.8984 + 0.8802i 1.0875 + 1.1282i 0.7748 + 1.0806i 0.6237 + 1.3399i
1.0875 + 1.1282i 0.7748 + 1.0806i 0.6237 + 1.3399i 0.3267 + 1.2860i

⌞⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟
,
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⌝N =
⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞

1.4161 + 0.7678i 1.3606 + 0.9305i 1.0320 + 0.8914i 0.9574 + 1.1034i
1.3606 + 0.9305i 1.0320 + 0.8914i 0.9574 + 1.1034i 0.8624 + 0.8961i
1.0320 + 0.8914i 0.9574 + 1.1034i 0.8624 + 0.8961i 0.6464 + 0.9076i
0.9574 + 1.1034i 0.8624 + 0.8961i 0.6464 + 0.9076i 0.5615 + 0.7072i

⌞⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟
.

Thus, ⌜M − ω ⌝N is the desired Hankel matrix pencil.

Case 2. Reconstruction from two eigenpairs (k = 2): Let the prescribed partial

eigeninformation be given by

⌝) = diag(ω1,ω3) ∈ C2⌐2 and ⌝* = [u1, u3] ∈ C4⌐2.

Construct the Hankel matrices ⌜M and ⌝N such that ⌜Mui = ωi
⌝Nui for i = 1, 3. Following the

same approach as in Case 1, we solve the matrix equation AXB +CY D = E and obtain:

⌜M =
⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞

0.2460 − 0.0000i −0.0696 − 0.0231i 0.1118 − 0.0226i −0.0519 + 0.0436i
−0.0696 − 0.0231i 0.1118 − 0.0226i −0.0519 + 0.0436i 0.0299 + 0.1325i
0.1118 − 0.0226i −0.0519 + 0.0436i 0.0299 + 0.1325i 0.1243 − 0.0621i
−0.0519 + 0.0436i 0.0299 + 0.1325i 0.1243 − 0.0621i 0.0711 + 0.0777i

⌞⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟
,

⌝N =
⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞

0.1767 + 0.0416i 0.1067 − 0.0146i −0.0352 + 0.0850i 0.0696 − 0.0910i
0.1067 − 0.0146i −0.0352 + 0.0850i 0.0696 − 0.0910i −0.0943 + 0.1694i
−0.0352 + 0.0850i 0.0696 − 0.0910i −0.0943 + 0.1694i −0.0396 + 0.0850i
0.0696 − 0.0910i −0.0943 + 0.1694i −0.0396 + 0.0850i −0.0269 + 0.0197i

⌞⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟
.

Thus, ⌜M − ω ⌝N is the desired Hankel matrix pencil.

Case 1 (k = 1) Case 2 (k = 2)
Eigenpairs Residual ⌜⌜Mui − ωi

⌝Nui⌜2 Eigenpairs Residual ⌜⌜Mui − ωi
⌝Nui⌜2

(ω1, u1) 2.7626 ⌐ 10⋊15 (ω1, u1) 1.0906 ⌐ 10⋊14
(ω3, u3) 2.7570 ⌐ 10⋊15

Table 2.6.3. Residual ⌜⌜Mui ⌐ ωi
⌝Nui⌜2 for Example 2.6.6.

From Table 2.6.3, we find that the residual ⌜⌜Mui − ωi
⌝Nui⌜2, for i = 1 in Case 1 and

for i = 1,3 in Case 2, is in the order of 10⋊14 and is negligible. This demonstrates the

e!ectiveness of our method in solving the generalized PDIEP for Hankel structure.
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Example 2.6.7. To generate the test data, we first construct a linear matrix pencil

M − ωN , where both M and N are symmetric Toeplitz matrices. Specifically, M and N

are defined as M = toeplitz(c1) and N = toeplitz(c2), where the vectors c1 and c2 are

given by

c1 = [7.80, 5.50, 3.70, −2.30, 8.90] , c2 = [4.20, 1.20, −3.50, 3.90, 9.80] .
Let (),*) denote the eigenpairs of M − ωN , where ) = diag(ω1, . . . ,ω5) ∈ C5⌐5 and

* = [u1, u2, u3, u4, u5] ∈ C5⌐5. The eigenvalues are

[ω1,ω2,ω3,ω4,ω5] = [4.1157, −1.7144, 0.2371, −0.1060 + 1.1336i, −0.1060 − 1.1336i] ,
and the matrix * of eigenvectors is given by

* =

⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞

−0.2481 0.3192 −0.2773 −0.2700 + 0.7300i −0.2700 − 0.7300i
−0.4470 −0.8953 −0.4115 0.6140 + 0.1425i 0.6140 − 0.1425i
−1.0000 1.0000 1.0000 −0.0000 + 0.0000i −0.0000 + 0.0000i
−0.4470 −0.8953 −0.4115 −0.6140 − 0.1425i −0.6140 + 0.1425i
−0.2481 0.3192 −0.2773 0.2700 − 0.7300i 0.2700 + 0.7300i

⌞⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟

.

Case 1. Reconstruction from two eigenpairs (k = 2): Let the prescribed partial eigen-

information be given by

⌝) = diag(ω1,ω3) ∈ C2⌐2, ⌝* = [u1, u3] ∈ C5⌐2.
Construct the symmetric Toeplitz matrices ⌜M and ⌝N such that ⌜Mui = ωi

⌝Nui for i = 1,3.
Using the transformations A = I5, X = ⌜M , B = ⌝*, C = −I5, Y = ⌝N , D = ⌝*⌝), and E = 0, we
solve the matrix equation AXB +CY D = E. The resulting matrices are

⌜M =

⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞

1.3921 1.0473 0.6772 −0.2032 0.6735

1.0473 1.3921 1.0473 0.6772 −0.2032
0.6772 1.0473 1.3921 1.0473 0.6772

−0.2032 0.6772 1.0473 1.3921 1.0473

0.6735 −0.2032 0.6772 1.0473 1.3921

⌞⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟

,

⌝N =

⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞

0.6339 0.1905 −0.3161 0.6055 0.7404

0.1905 0.6339 0.1905 −0.3161 0.6055

−0.3161 0.1905 0.6339 0.1905 −0.3161
0.6055 −0.3161 0.1905 0.6339 0.1905

0.7404 0.6055 −0.3161 0.1905 0.6339

⌞⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟

.

Hence, ⌜M − ω ⌝N is the desired symmetric Toeplitz matrix pencil.
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Case 2. Reconstruction from three eigenpairs (k = 3): Let the prescribed partial eigen-

information be given by

⌝) = diag(ω1,ω2,ω3) ∈ C3⌐3, ⌝* = [u1, u2, u3] ∈ C5⌐3.

Construct the symmetric Toeplitz matrices ⌜M and ⌝N such that ⌜Mui = ωi
⌝Nui for

i = 1,2,3. Using the same transformations as in Case 1, we solve the matrix equation

AXB +CY D = E and obtain

⌜M =

⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞

0.9214 0.6497 0.4371 −0.2717 1.0513

0.6497 0.9214 0.6497 0.4371 −0.2717
0.4371 0.6497 0.9214 0.6497 0.4371

−0.2717 0.4371 0.6497 0.9214 0.6497

1.0513 −0.2717 0.4371 0.6497 0.9214

⌞⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟

,

⌝N =

⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞

0.4961 0.1417 −0.4134 0.4607 1.1576

0.1417 0.4961 0.1417 −0.4134 0.4607

−0.4134 0.1417 0.4961 0.1417 −0.4134
0.4607 −0.4134 0.1417 0.4961 0.1417

1.1576 0.4607 −0.4134 0.1417 0.4961

⌞⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟

.

Hence, ⌜M − ω ⌝N is the desired symmetric Toeplitz matrix pencil.

Case 1 (k = 2) Case 2 (k = 3)
Eigenpairs Residual ⌜⌜Mui − ωi

⌝Nui⌜2 Eigenpairs Residual ⌜⌜Mui − ωi
⌝Nui⌜2

(ω1, u1) 3.3675 ⌐ 10⋊15 (ω1, u1) 6.9900 ⌐ 10⋊15
(ω3, u3) 2.3481 ⌐ 10⋊15 (ω2, u2) 2.4962 ⌐ 10⋊15

(ω3, u3) 2.5686 ⌐ 10⋊15
Table 2.6.4. Residual ⌜⌜Mui ⌐ ωi

⌝Nui⌜2 for Example 2.6.7.

From Table 2.6.4, we find that the residual ⌜⌜Mui − ωi
⌝Nui⌜2, for i = 1,3 in Case 1

and for i = 1,2,3 in Case 2, is in the order of 10⋊15 and is negligible. This demonstrates

the e!ectiveness of our method in solving the generalized PDIEP for symmetric Toeplitz

structure.

Next, we provide an example to compare our method for finding the least squares

Toeplitz solutions of the matrix equation X +AXB = C, where A,B,C ∈ Qn⌐n
R

, with the
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method reported in [71]. By setting r = 2, q = 0, A1 = B1 = In, A2 = A, B2 = B, and E = C
in (2.1.2), our proposed framework can solve the RBME reported in [71] more e”ciently.

We compare both the error and CPU time to demonstrate the accuracy and e”ciency of

our proposed method relative to that in [71].

Example 2.6.8. Let

A = rand(n) + rand(n)i + rand(n)j + rand(n)k,
B = rand(n) + rand(n)i + rand(n)j + rand(n)k.

Define

⌝X = toeplitz(a1, a2) + toeplitz(b1, b2)i + toeplitz(c1, c2)j + toeplitz(d1, d2)k,
where a1 = b1 = c1 = d1 = randn(n,1) and a2 = b2 = c2 = d2 = randn(1, n). Let

C = ⌝X +A ⌝XB.

Hence, ⌝X is the least squares Toeplitz solution with the least norm for X +AXB = C.

Next, we use matrices A,B, and C as input to calculate the least squares Toeplitz

solution with the least norm for X +AXB = C. Let X be the solution obtained using our

method, and ⎡X be the solution obtained using Algorithm 2 from [71].

We compute the errors between the solution obtained by our framework and the actual

solution, defined as φ1 = log10(⌝X − ⌝X⌝F ), and the errors between the solution obtained by

[71] and the actual solution, defined as φ2 = log10(⌝ ⎡X − ⌝X⌝F ). From Table 2.6.5, we observe

that the accuracy of both methods is high; φ1 and φ2 are comparable and consistently less

than −11 for various matrix dimensions. This demonstrates that our method is as e!ective

as the one proposed in [71].

Let t1 and t2 represent the CPU time consumed by our method and the method

reported in [71], respectively, for computing X and ⎡X. As shown in Table 2.6.5, our

method consistently requires less time compared to the method in [71] across various matrix

dimensions, highlighting its superior e”ciency. This is because our method employs only

real and complex operations, which are more convenient and e”cient. In contrast, the

method in [71] involves reduced biquaternion operations, which are considerably more

time-consuming.
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Error CPU time

n φ1 φ2 t1 t2

5 −13.0918 −13.4447 0.0110 0.1379

10 −12.8390 −12.6899 0.0252 2.5883

15 −12.0256 −12.3873 0.0562 18.1414

20 −12.0689 −12.1151 0.1130 76.1936

25 −11.9322 −11.9998 0.2419 233.1581

30 −11.8615 −11.8008 0.5344 574.7308

35 −11.8275 −12.0263 1.1164 1.2119 ⌐ 103
40 −11.3621 −11.7243 2.3388 2.4118 ⌐ 103
45 −11.7765 −11.3134 4.2934 4.2807 ⌐ 103
50 −11.1779 −11.5833 7.2243 7.0931 ⌐ 103

Table 2.6.5. Comparison of error and CPU time for computing the Toeplitz

solution of X + AXB = C using our method and the method reported in [71]

across various matrix dimensions.

Conclusion: In this chapter, we have explored various L-structure reduced

biquaternion matrix sets, including reduced biquaternion Toeplitz, symmetric Toeplitz,

Hankel, circulant, real, complex, and purely imaginary matrix sets. Furthermore, we have

developed a generalized framework for finding the least squares L-structure solutions for

three generalized RBMEs. Additionally, we have demonstrated how the proposed theory

extends to several practical applications, such as image restoration problem, L-structure

solutions for complex and real matrix equations, solution of PDIEP, and generalized

PDIEP.

These contributions provide a foundation for further research in reduced biquaternion

matrix theory, particularly in areas where the underlying L-structure plays a crucial role.

The framework and methodologies discussed here open up new possibilities for solving

advanced matrix equations in both theoretical and applied contexts.
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CHAPTER 3

GENERALIZED INVERSE OF REDUCED BIQUATERNION

MATRICES

This chapter focuses on computing the outer and {1, 2}-generalized inverses of reduced

biquaternion matrices (RBGI). The main results pertain to RBGIs that satisfy specific

conditions related to column and/or row spaces. Conditions for the existence and e!ective

representations of these generalized inverses are established. The existence condition is

determined using the rank function and regularity, while the representation is achieved by

solving RBME of the form (AXB,CXD) = (E,F ). Additionally, numerical algorithms

based on these representations are presented, and their e!ectiveness is demonstrated

through numerical examples.

3.1. Introduction

The concept of generalized inverse, first introduced by E.H. Moore in 1920 [53], was

initially defined using matrix projectors. For several decades, little progress was made until

the 1950s when interest in generalized inverses was renewed due to their applications in

solving linear systems. In 1955, R. Penrose [58] advanced the field by demonstrating that

Moore’s inverse uniquely satisfies four matrix equations. However, for certain applications,

matrices that satisfy fewer than all four equations are also of interest. The primary goal of

constructing a generalized inverse is to extend the concept of an inverse matrix to a broader

class of matrices, including those that are not invertible. Various types of generalized

inverses have been introduced in the literature, particularly for solving both consistent

and inconsistent systems of linear equations [3, 20, 68, 69].

This chapter focuses on generalized inverses with predefined conditions. The study of

such generalized inverses for real and complex matrices is well-documented; see, for example,

[10, 62, 64, 72, 73, 74]. In [63], the authors established determinantal representations of

generalized inverses over the quaternion skew field using the theory of column and row



determinants. Similarly, [4] explored generalized inverses with predefined column and/or

row spaces, particularly for matrices over a commutative ring with identity.

In this chapter, we investigate the generalized inverses of RB matrices with predefined

conditions on the column and/or row spaces. We begin by stating the definition of particular

generalized inverses for RB matrices. Consider the following conditions:

(P1) AXA = A, (P2)XAX =X. (3.1.1)

The set of all RB matrices satisfying conditions defined by the set ς ⊆ {1,2}, where the

condition (Pi) corresponds to i ∈ ς, is denoted as A{ς}. Any RB matrix in A{ς} is referred
to as the ς-inverse of A and is denoted by A(ϑ). The matrix A(ϑ) is called the generalized

inverse of matrix A, and A(2) is also referred to as the outer generalized inverse of A.

A matrix A ∈ Qm⌐n
R

is said to be regular if there exists a matrix X ∈ Qn⌐m
R

satisfying

AXA = A.
Additional important generalized inverses include outer inverses and {1,2}-inverses

with prescribed column and/or row spaces. An element X ∈ A{ς} satisfying C(X) = C(S)
(respectively R(X) = R(T )) is denoted by A(ϑ)C(S),∗ (respectively A(ϑ)∗,R(T )), where C(X)
and R(X) denote the column space and row space of matrix X. If X satisfies both the

requirements C(X) = C(S) and R(X) =R(T ) it is denoted by A(ϑ)C(S),R(T ).

In [85], Zhang et al. studied the generalized inverse problem of RB matrices using

their singular value decomposition. Their work discussed the Moore-Penrose generalized

inverse, {1}-inverse, and {1,2}-inverse of RB matrices. Outer inverses with prescribed

column and/or row spaces are explored in [4] for matrices over a commutative ring with

identity. Notably, the set of all RB matrices forms a commutative ring with identity. In

this chapter, we examine the existence and representation of generalized inverses of an RB

matrix A ∈ Qm⌐n
R

, including:

A(2)C(S),∗, A(2)∗,R(T ), A(2)C(S),R(T ), A(1,2)C(S),∗, A(1,2)∗,R(T ), A(1,2)C(S),R(T ). (3.1.2)

The existence conditions for these RBGIs are determined by the rank function, regularity,

and the properties of the column and row spaces of RB matrices. The representation

of RBGIs is derived by solving appropriate RBMEs. Solutions to these RBMEs are

obtained by transforming them into equivalent systems of linear equations with complex

matrix coe”cients (CSoLE), utilizing tools like the Kronecker product and vectorization

techniques.
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This chapter is organized as follows: Section 3.2 introduces preliminary results.

Section 3.3 presents the framework for solving RBMEs of the form AXB = E and

(AXB,CXD) = (E,F ). Section 3.4 investigates the existence and representation of outer

and {1,2}-generalized inverses of RB matrices with specified column and/or row spaces.

Finally, Section 3.5 provides numerical verification of the proposed results.

3.2. Preliminaries

To ensure this chapter is self-contained, we will briefly summarize key concepts and

results that are essential for the discussions in the following sections. We start by presenting

the definitions of the column space and row space of an RB matrix, which are provided in

Definitions 3.2.1 and 3.2.2, respectively.

Definition 3.2.1. Let A ∈ Qm⌐n
R

and x = [x1, . . . , xn]T ∈ Qn

R
. Suppose Colj(A) represents

jth column of A, for j = 1, . . . , n. Then, the column space C(A) of A is defined as the span

of its columns:

C(A) = {x1Col1(A) +⧖ + xnColn(A) x1, . . . , xn ∈ QR} = {Ax x ∈ Qn

R
}.

Definition 3.2.2. Let A ∈ Qm⌐n
R

and y = [y1, . . . , ym] ∈ Q1⌐m
R

. Suppose Rowi(A) represents
the ith row of A, for i = 1, . . . ,m. Then, the row space R(A)of A is defined as the span of

its rows:

R(A) = {y1Row1(A) +⧖ + ymRowm(A) y1, . . . , ym ∈ QR} = {yA y ∈ Q1⌐m
R
}.

Remark 3.2.3. (1) The set QR forms a commutative ring with identity, where addition

and scalar multiplication are defined in the usual way.

(2) The set Qm⌐n
R
(QR) is a QR-module with standard addition and scalar multiplication.

(3) For A ∈ Qm⌐n
R

, the set C(A) is a QR-submodule of Qm

R
generated by the columns of

A.

(4) For A ∈ Qm⌐n
R

, the set R(A) is a QR-submodule of Q1⌐n
R

generated by the rows of A.

In the subsequent Lemma 3.2.4, we examine the properties of the column and row

space of a matrix. This lemma will be utilized to present representations of the outer

inverse and {1, 2}-inverse that meet specific conditions related to the column space and/or

row space.
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Lemma 3.2.4. Let X ∈ Qn⌐m
R

, S ∈ Qn⌐k
R

, and T ∈ Ql⌐m
R

be given RB matrices. Then

(1) C(X) ⊆ C(S) if and only if there exists U ∈ Qk⌐m
R

such that X = SU .

(2) R(X) ⊆R(T ) if and only if there exists V ∈ Qn⌐l
R

such that X = V T .

Proof.

(1) Let Coli(X) represent the ith column of matrix X for i = 1, . . . ,m, and Colj(S)
denote the jth column of matrix S for j = 1, . . . , k. Since C(X) ⊆ C(S), for each
i = 1, . . . ,m, there exist scalars [u1i, . . . , uki]T such that

Coli(X) = u1iCol1(S) +⧖ + ukiColk(S).
Therefore, we can write

X = S
⌞⌞⌞⌞⌞⌞⌞⌞⌞

u11 u12 ⧖ u1m

⋮ ⋮ ⋮
uk1 uk2 ⧖ ukm

⌞⌟⌟⌟⌟⌟⌟⌟⌟
= SU.

(2) Let Rowi(X) represent the ith row of matrix X for i = 1, . . . , n, and Rowj(T ) denote
the jth row of matrix T for j = 1, . . . , l. Since R(X) ⊆ R(T ), for each i = 1, . . . , n,
there exist scalars [vi1, . . . , vil] such that

Rowi(X) = vi1Row1(T ) +⧖ + vilRowl(T ).
Therefore, we can write

X =
⌞⌞⌞⌞⌞⌞⌞⌞⌞

v11 v12 ⧖ v1l

⋮ ⋮ ⋮
vn1 vn2 ⧖ vnl

⌞⌟⌟⌟⌟⌟⌟⌟⌟
T = V T. ∎

For a matrix over a field, such as the fields of real or complex numbers, the concept

of rank(A) is well defined as the dimension of the subspace generated by the columns of

A. However, QR does not constitute a field, since not every nonzero element in QR has a

multiplicative inverse (e.g.,1 + j). Consequently, the standard properties of rank do not

universally apply when dealing with matrices having entries from QR. In such instances,

an alternative approach involving determinantal rank and a rank function is employed for

matrices over QR.

Definition 3.2.5. Given A ∈ Qm⌐n
R

; the determinantal rank of A, marked with ↼(A), is
the size of the largest submatrix of A with a nonzero determinant.
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For the definition of the determinant of a matrix A ∈ Qn⌐n
R

, refer to [48, Page 18].

It is important to note that, in the context of reduced biquaternion algebra, a nonzero

determinant det(A) does not necessarily imply non-singularity of A, which di!ers from

matrices over a field. A matrix A ∈ Qn⌐n
R

is said to be nonsingular, or equivalently invertible,

if its determinant det(A) is a unit in QR.

To study matrix properties in the RB domain, it is crucial to analyze minors and

their behavior under matrix multiplication. Lemma 3.2.6 establishes a key relationship,

expressing the minors of the product of two rectangular matrices in terms of the minors

of the individual matrices. This result is instrumental in exploring determinantal rank

properties.

Lemma 3.2.6. Suppose A ∈ Qm⌐n
R

, B ∈ Qn⌐s
R

and k ≤ min{m,n, s}. Then k ⌐ k minor

[AB]I,J of matrix AB, where I is a subset of {1,2, . . . ,m} with k elements and J is a

subset of {1,2, . . . , s} with k elements, is equal to

[AB]I,J =⊍
K

[A]I,K[B]K,J ,

where the sum performs over all subsets K ⊆ {1, . . . , n} involving k elements.

Proof. Since QR is a commutative ring with identity, the proof directly follows from

Theorem I.5 in [48, Page 21]. ∎
In Lemma 3.2.7, we delve into properties of the determinantal rank of a matrix. These

properties will be later utilized in this chapter to investigate the properties of the rank

function of a matrix.

Lemma 3.2.7. The subsequent statements hold for A ∈ Qm⌐n
R

, B ∈ Qn⌐s
R

, and C ∈ Qt⌐m
R

:

(1) ↼(AB) ≤min(↼(A),↼(B)).
(2) If B is a right invertible matrix and n ≤ s, then ↼(AB) = ↼(A).
(3) If C is a left invertible matrix and m ≤ t, then ↼(CA) = ↼(C).

Proof.

(1) The proof is straightforward, follows from Lemma 3.2.6.

(2) Given that B is right invertible, there exists a matrix P ∈ Qs⌐n
R

such that BP = In.
Therefore, we can express A as

A = AIn = A(BP ) = (AB)P.
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Using part (1), we deduce that ↼(A) ≤ ↼(AB). Additionally, ↼(AB) ≤ ↼(A).
Consequently, we conclude that

↼(AB) = ↼(A).
(3) Given that C is left invertible, there exists a matrix Q ∈ Qm⌐t

R
such that QC = Im.

Therefore, we can express A as

A = ImA = (QC)A = Q(CA).
Using part (1), we deduce that ↼(A) ≤ ↼(CA). Additionally, since ↼(CA) ≤ ↼(A),
it follows that

↼(CA) = ↼(A).
All parts of the proof are verified. ∎

In [47, Definition 2.2], the author defined the rank function for a matrix over a

commutative ring with identity. Since QR is a commutative ring with identity, the

corresponding definition of the rank function for a matrix over QR is provided as follows.

Definition 3.2.8. Let E = {e ∈ QR e2 = e and e ≠ 0} be the set involving all nonzero

idempotent elements in QR. The rank function of a matrix A ∈ QR, denoted by RA, is an

integer-valued function RA ∶ E → Z defined by RA(e) = ↼(eA) for all e ∈ E .
Remark 3.2.9. For QR, the set E is equal to E = ∣1, 12 + 1

2j,
1
2 − 1

2j∣.
Remark 3.2.10. In the case of real and complex fields, the set E is defined by E = {1}.
Therefore, the rank function of a matrix in these fields corresponds to the usual rank of a

matrix.

Properties of the rank function are studied in the following Lemmas 3.2.11, 3.2.12, and

3.2.13. These lemmas will play a key role in characterizing the conditions for the existence

of outer and {1,2}-generalized inverse that meet specific criteria related to the column

space and/or row space.

Lemma 3.2.11. The subsequent characterization are valid for A ∈ Qm⌐n
R

, B ∈ Qn⌐s
R

, and

C ∈ Qt⌐m
R

:

(1) If B is a right invertible matrix and n ≤ s, then RAB =RA.

(2) If C is a left invertible matrix and m ≤ t, then RCA =RA.
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Proof. The proof straightforwardly follows from Lemma 3.2.7. ∎
As QR forms a commutative ring with identity, Lemmas 3.2.12 and 3.2.13 that follow

can be directly inferred from [47, Theorem 2.2] and utilizing Lemma 3.2.4.

Lemma 3.2.12. Let A ∈ Qm⌐n
R

be regular and of determinantal rank r, and B be an m⌐ p
matrix. The following statements are equivalent for T = ⎦A B⎢:
(1) ↼(eA) = ↼(eT ) for every idempotent e ∈ QR;

(2) RA =RT ;

(3) The matrix equation AX = B is consistent;

(4) C(B) ⊆ C(A).
Lemma 3.2.13. Let A ∈ Qm⌐n

R
be regular and of determinantal rank r, and C be a matrix

of size q ⌐ n. The subsequent statements are equivalent for S = ⌞⌞⌞⌞⌞⌞
A

C

⌞⌟⌟⌟⌟⌟:
(1) ↼(eA) = ↼(eS) for every idempotent e ∈ QR;

(2) RA =RS;

(3) Matrix equation XA = C is solvable;

(4) R(C) ⊆R(A).

3.3. Solutions to the RBME of the Form (AXB,CXD) = (E,F)
The aim in this section is to derive existence conditions and solutions of the RBMEs

(AXB,CXD) = (E,F ) and AXB = E. Let

A = A1 +A2j ∈ Qm1⌐n
R

, X =X1 +X2j ∈ Qn⌐s
R

, B = B1 +B2j ∈ Qs⌐t1
R

,

C = C1 +C2j ∈ Qm2⌐n
R

, D =D1 +D2j ∈ Qs⌐t2
R

, E = E1 +E2j ∈ Qm1⌐t1
R

,

F = F1 + F2j ∈ Qm2⌐t2
R

.

(3.3.1)

Before proceeding, we introduce the subsequent notations:

M =
⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞

BT

1 ⋊A1 +BT

2 ⋊A2 BT

1 ⋊A2 +BT

2 ⋊A1

BT

2 ⋊A1 +BT

1 ⋊A2 BT

2 ⋊A2 +BT

1 ⋊A1

DT

1 ⋊C1 +DT

2 ⋊C2 DT

1 ⋊C2 +DT

2 ⋊C1

DT

2 ⋊C1 +DT

1 ⋊C2 DT

2 ⋊C2 +DT

1 ⋊C1

⌞⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟
and e =

⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞

vec(E1)
vec(E2)
vec(F1)
vec(F2)

⌞⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟
. (3.3.2)
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Theorem 3.3.1. Consider the RBME (AXB,CXD) = (E,F ) with coe”cient matrices

defined in (3.3.1). Let M ∈ C2(m1t1+m2t2)⌐2ns and e ∈ C2(m1t1+m2t2)⌐1 be as in (3.3.2). Then

X = X1 +X2j ∈ Qn⌐s
R

is a solution of the RBME (AXB,CXD) = (E,F ) if and only if

MM e = e. In addition, the generic solution X ∈ Qn⌐s
R

satisfies the following

⌞⌞⌞⌞⌞⌞
vec(X1)
vec(X2)

⌞⌟⌟⌟⌟⌟ =M e + (I2ns −M M) y, (3.3.3)

where the vector y ∈ C2ns⌐1 is arbitrary.

Proof. Application of the operators vec and ( on the initial RBME leads to

(AXB,CXD) = (E,F )⇐↢ (vec((AXB),vec((CXD)) = (vec((E),vec((F )).
Using (2.2.1) and Lemma 2.2.2 yields

(AXB = (Ah(XB)
= [A1,A2]

⌞⌞⌞⌞⌞⌞
X1 X2

X2 X1

⌞⌟⌟⌟⌟⌟
⌞⌞⌞⌞⌞⌞
B1 B2

B2 B1

⌞⌟⌟⌟⌟⌟
= [A1X1B1 +A2X2B1 +A1X2B2 +A2X1B2,A1X1B2 +A2X2B2 +A1X2B1 +A2X1B1] ,

(CXD = [C1X1D1 +C2X2D1 +C1X2D2 +C2X1D2, C1X1D2 +C2X2D2 +C1X2D1 +C2X1D1] .
Utilizing (2.2.2), we obtain the expression for vec((AXB) and vec((CXD) as follows

vec((AXB) =
⌞⌞⌞⌞⌞⌞
vec(A1X1B1 +A2X2B1 +A1X2B2 +A2X1B2)
vec(A1X1B2 +A2X2B2 +A1X2B1 +A2X1B1)

⌞⌟⌟⌟⌟⌟

=
⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞

(BT

1 ⋊A1)vec(X1) + (BT

1 ⋊A2)vec(X2)
+ (BT

2 ⋊A1)vec(X2) + (BT

2 ⋊A2)vec(X1)
(BT

2 ⋊A1)vec(X1) + (BT

2 ⋊A2)vec(X2)
+ (BT

1 ⋊A1)vec(X2) + (BT

1 ⋊A2)vec(X1)

⌞⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟
= ⌞⌞⌞⌞⌞⌞

BT

1 ⋊A1 +BT

2 ⋊A2 BT

1 ⋊A2 +BT

2 ⋊A1

BT

2 ⋊A1 +BT

1 ⋊A2 BT

2 ⋊A2 +BT

1 ⋊A1

⌞⌟⌟⌟⌟⌟
⌞⌞⌞⌞⌞⌞
vec(X1)
vec(X2)

⌞⌟⌟⌟⌟⌟ ,

vec((CXD) =
⌞⌞⌞⌞⌞⌞
DT

1 ⋊C1 +DT

2 ⋊C2 DT

1 ⋊C2 +DT

2 ⋊C1

DT

2 ⋊C1 +DT

1 ⋊C2 DT

2 ⋊C2 +DT

1 ⋊C1

⌞⌟⌟⌟⌟⌟
⌞⌞⌞⌞⌞⌞
vec(X1)
vec(X2)

⌞⌟⌟⌟⌟⌟ .
Usage of (3.3.2) leads to

(AXB,CXD) = (E,F )⇔M
⌞⌞⌞⌞⌞⌞
vec(X1)
vec(X2)

⌞⌟⌟⌟⌟⌟ = e.
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Hence, the RBME (AXB,CXD) = (E,F ) is consistent if and only the above matrix

equation, determined by (3.3.2), is solvable. Thus, (AXB,CXD) = (E,F ) is consistent if
and only if MM e = e and the general solution X is determined by (3.3.3). ∎
Remark 3.3.2. The solution to the RBME (AXB,CXD) = (E,F ) can also be obtained

using [80, Theorem 3.1] and [75, Theorem 3.1]. In [80], the structured solution for the

RBME is presented, while [75] focuses on the unstructured solution to a system of RBMEs.

Both papers employ the complex representation of RB matrices. In their approach, they

first convert the RBME into a complex linear system and then further transform it into a

real linear system to find the solution. This additional transformation is essential when

seeking structured solutions.

In our method, to find the unstructured solution, we convert the RBME into a complex

linear system and solve it without the additional transformation to a real linear system.

This modification reduces computational overhead and improves overall e”ciency in finding

the unstructured solution to (AXB,CXD) = (E,F ).
In accordance with Theorem 3.3.1, we now outline an algorithm designed to compute

the solution X of RBME (AXB,CXD) = (E,F ).
Algorithm 3.3.1 Computation of Solution X to RBME (AXB,CXD) = (E,F)
Input: A = A1 +A2j ∈ Qm1⌐n

R
, B = B1 +B2j ∈ Qs⌐t1

R
, C = C1 +C2j ∈ Qm2⌐n

R
,

D =D1 +D2j ∈ Qs⌐t2
R

, E = E1 +E2j ∈ Qm1⌐t1
R

, F = F1 + F2j ∈ Qm2⌐t2
R

.

Output: X =X1 +X2j ∈ Qn⌐s
R

.

Step 1: Matrix and Vector Computation: Compute M and e using equation (3.3.2).

Step 2: Consistency Check: Verify the consistency of the RBME (AXB,CXD) =
(E,F ) by checking the condition MM e = e. If this condition holds, proceed to

the next step.

Step 3: Solution Calculation: Compute

x = ⌞⌞⌞⌞⌞⌞
vec(X1)
vec(X2)

⌞⌟⌟⌟⌟⌟ =M e + (I2ns −M M) y,
where y ∈ C2ns⌐1 is an arbitrary vector.

Step 4: Reshaping: Reshape x into the matrices X1 and X2 using the Matlab function

reshape:

X1 = reshape(x(1 ∶ ns, ∶), n, s), X2 = reshape(x(ns + 1 ∶ 2ns, ∶), n, s).
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Next, we derive the explicit expression for existence condition and solution of the RBME

AXB = E with coe”cient matrices defined in (3.3.1). Before proceeding we introduce

certain notations

N = ⌞⌞⌞⌞⌞⌞
BT

1 ⋊A1 +BT

2 ⋊A2 BT

1 ⋊A2 +BT

2 ⋊A1

BT

2 ⋊A1 +BT

1 ⋊A2 BT

2 ⋊A2 +BT

1 ⋊A1

⌞⌟⌟⌟⌟⌟ and f = ⌞⌞⌞⌞⌞⌞
vec(E1)
vec(E2)

⌞⌟⌟⌟⌟⌟ . (3.3.4)

Corollary 3.3.3. Consider the RBME AXB = E with coe”cient matrices defined in

(3.3.1). Let N ∈ C2m1t1⌐2ns and f ∈ C2m1t1⌐1 be as in (3.3.4). Then AXB = E has a solution

X =X1 +X2j ∈ Qn⌐s
R

if and only if NN f = f . In this case, the general solution X ∈ Qn⌐s
R

satisfies the following ⌞⌞⌞⌞⌞⌞
vec(X1)
vec(X2)

⌞⌟⌟⌟⌟⌟ = N f + (I2ns −N N) y, (3.3.5)

where the vector y ∈ C2ns⌐1 is arbitrary.

Proof. The RBME AXB = E can be considered as a specific instance of the RBME

(AXB,CXD) = (E,F ). Therefore, the proof directly follows from the proof method of

Theorem 3.3.1. ∎
Remark 3.3.4. Algorithm 3.3.1 can also be used to solve the RBME AXB = E under the

particular settings C = 0, D = 0, and F = 0 of the algorithm.

3.4. Generalized Inverse of RB Matrices

In this section, we will explore the properties of RBGIs A(2)C(S),∗, A(2)∗,R(T ), A(2)C(S),R(T ),
A(1,2)C(S),∗, A(1,2)∗,R(T ), and A(1,2)C(S),R(T ). The formalized definitions for these generalized inverses

are outlined as follows:

Definition 3.4.1. An outer inverse of A ∈ Qm⌐n
R

with a predefined column space C(S),
denoted by A(2)C(S),∗, is a matrix X that satisfies the following conditions: XAX = X and

C(X) = C(S). In addition, if A(2)C(S),∗ also satisfies AXA = A, then it is referred to as a

{1,2}-inverse of A with the predefined column space C(S), denoted as A(1,2)C(S),∗.

Definition 3.4.2. An outer inverse of A ∈ Qm⌐n
R

with a predefined row space R(T ),
denoted by A(2)∗,R(T ), is a matrix X that satisfies the following conditions: XAX =X and

R(X) =R(T ). In addition, if A(2)∗,R(T ) also satisfies AXA = A, then it is referred to as a

{1,2}-inverse of A with the predefined row space R(T ), denoted as A(1,2)∗,R(T ).
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Definition 3.4.3. An outer inverse of A ∈ Qm⌐n
R

with a prescribed column space C(S)
and row space R(T ), denoted by A(2)C(S),R(T ), is a matrix X that satisfies the following

conditions: XAX = X, C(X) = C(S), and R(X) = R(T ). In addition, if A(2)C(S),R(T ) also
satisfies AXA = A, then it is referred to as a {1, 2}-inverse of A with the prescribed column

space C(S) and row space R(T ), denoted as A(1,2)C(S),R(T ).

The notations A{2}C(S),∗, A{1,2}C(S),∗, A{2}∗,R(T ), A{1,2}∗,R(T ), A{2}C(S),R(T ), and
A{1,2}C(S),R(T ) are used for the sets of generalized inverses A(2)C(S),∗, A(1,2)C(S),∗, A(2)∗,R(T ),
A(1,2)∗,R(T ), A(2)C(S),R(T ), and A(1,2)C(S),R(T ), respectively.

Theorem 3.4.4 o!ers equivalent conditions for the existence and general representations

of an outer inverse with a specified column space C(S).
Theorem 3.4.4. Let the RB matrices A ∈ Qm⌐n

R
and S ∈ Qn⌐k

R
be given. Then

(1) The subsequent claims are equivalent to each other:

(i) There exists X ∈ A{2} satisfying C(X) = C(S);
(ii) There exists Y ∈ Qk⌐m

R
such that SY AS = S;

(iii) AS is regular and R(AS) =R(S);
(iv) AS is regular and RAS =RS;

(v) AS is regular and S = S(AS)(1)AS for some (AS)(1) ∈ AS{1}.
(2) If the statements in (1) hold, then

A{2}C(S),∗ = ∣SY Y ∈ Qk⌐m
R

, SY AS = S∣
= ∣S(AS)(1) (AS)(1) ∈ (AS){1}∣ .

Proof.

(1) (i) ↢ (ii). Let X ∈ Qn⌐m
R

satisfy XAX = X and C(X) = C(S). By Lemma 3.2.4,

there exist matrices Y ∈ Qk⌐m
R

and W ∈ Qm⌐k
R

such that X = SY and S = XW .

Therefore, we conclude that

S =XW =XAXW =XAS = SY AS.

(ii) ↢ (i). Let Y ∈ Qk⌐m
R

such that SY AS = S. We will show that X = SY is a

{2}-inverse of A and satisfies C(X) = C(S). First, since
XAX = SY ASY = SY =X,
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it follows that X ∈ A{2}. Additionally, since X = SY , it implies that

C(X) = C(SY ) ⊆ C(S).
Moreover, given that S = SY AS =XAS, we have

C(S) = C(XAS) ⊆ C(X).
Thus, we conclude that C(X) = C(S).
(ii)↢ (iii). Let Y ∈ Qk⌐m

R
such that SY AS = S. This implies that

AS = A(SY AS) = (AS)Y (AS),
which shows that Y ∈ (AS){1}, meaning that AS is regular. By Definition 3.2.2,

we conclude that

R(AS) ⊆R(S).
Moreover, since SY AS = S, it follows that

R(S) =R(SY AS) ⊆R(AS).
Thus, we have R(AS) =R(S).
(iii)↢ (iv). Let AS be regular and assume that R(AS) =R(S). Clearly, we have

R(S) ⊆R(AS). Now, consider the matrix

S = ⌞⌞⌞⌞⌞⌞
AS

S

⌞⌟⌟⌟⌟⌟ .
By applying Lemma 3.2.13, we obtain RAS =R

S
. Next, observe that

S = ⌞⌞⌞⌞⌞⌞
AS

S

⌞⌟⌟⌟⌟⌟ =
⌞⌞⌞⌞⌞⌞
A

In

⌞⌟⌟⌟⌟⌟S.

Notably, the matrix
⌞⌞⌞⌞⌞⌞
A

In

⌞⌟⌟⌟⌟⌟ is left invertible, since

⎦0 In⎢
⌞⌞⌞⌞⌞⌞
A

In

⌞⌟⌟⌟⌟⌟ = In.
Therefore, using Lemma 3.2.11, we conclude that R

S
=RS. Consequently, we obtain

RAS =RS.

(iv)↢ (iii). Assume that AS is regular and RAS =RS. Consider the matrix

S = ⌞⌞⌞⌞⌞⌞
AS

S

⌞⌟⌟⌟⌟⌟ .
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From the previous argument for (iii)↢ (iv), we obtain that

R
S
=RS.

Thus, it follows that

R
S
=RAS.

By using Lemma 3.2.13, we have R(S) ⊆R(AS). Additionally, since R(AS) ⊆R(S),
it follows that R(AS) =R(S), as required.
(iii) ↢ (v). Let AS be regular, and suppose that R(AS) = R(S). Since R(S) ⊆
R(AS) is evident from the assumption, we can apply Lemma 3.2.4, which guarantees

the existence of a matrix Y ∈ Qn⌐m
R

such that S = Y AS.

Given that AS is regular, there exists an arbitrary {1}-inverse of AS, denoted

by (AS)(1). Thus, we can express S as follows:

S = Y (AS) = Y AS(AS)(1)AS = S(AS)(1)AS.
This establishes the necessary relationship for the result.

(v)↢ (i). Let S = S(AS)(1)AS for some (AS)(1) ∈ (AS){1}. We aim to show that

X = S(AS)(1) belongs to A{2} and satisfies C(X) = C(S). First, observe that

XAX = S(AS)(1)AS(AS)(1) = S(AS)(1) =X.

This confirms that X ∈ A{2}. Next, since X = S(AS)(1), it follows that
C(X) = C(S(AS)(1)) ⊆ C(S).

Moreover, from S = S(AS)(1)AS =XAS, we have

C(S) = C(XAS) ⊆ C(X).
Consequently, we conclude that C(X) = C(S).

(2) From the results in part (1), we derive the following chain of inclusions

A{2}C(S),∗ ⊆ {SY Y ∈ Qk⌐m
R

, SY AS = S}
⊆ {S(AS)(1) (AS)(1) ∈ (AS){1}}
⊆ A{2}C(S),∗.

The proof is complete. ∎
Corollary 3.4.5 reveals known results derived for complex matrices in [65].
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Corollary 3.4.5. Let A ∈ Cm⌐n and S ∈ Cn⌐k be fixed. Then A(2)C(S),∗ exists if and only if

rank(AS) = rank(S). In this case, A{2}C(S),∗ = {S(AS)(1) (AS)(1) ∈ (AS){1}} .
Proof. Follows from Theorem 3.4.4, utilizing the fact that in the complex field, AS is

regular, and the rank function corresponds to the usual rank of a matrix. ∎
Theorem 3.4.6 provides the existence conditions and representations of outer inverses

with specified row space R(T ).
Theorem 3.4.6. Let the RB matrices A ∈ Qm⌐n

R
and T ∈ Ql⌐m

R
be given. Then

(1) The subsequent claims are equivalent to one another:

(i) There exists X ∈ A{2} such that R(X) =R(T );
(ii) There exists Z ∈ Qn⌐l

R
such that TAZT = T ;

(iii) TA is regular and C(TA) = C(T );
(iv) TA is regular and RTA =RT ;

(v) TA is regular and T = TA(TA)(1)T for some (TA)(1) ∈ (TA){1}.
(2) If the statements in (1) are valid, then

A{2}∗,R(T ) = ∣ZT Z ∈ Qn⌐l
R

, TAZT = T∣
= ∣(TA)(1)T (TA)(1) ∈ (TA){1}∣ .

Proof.

(1) (i)↢ (ii). Let X ∈ Qn⌐m
R

be such that XAX =X and R(X) =R(T ). According to

Lemma 3.2.4, there exist matrices Z ∈ Qn⌐l
R

and W ∈ Ql⌐n
R

such that X = ZT and

T =WX. Therefore, we have

T =WX =WXAX = TAX = TAZT.
(ii)↢ (i). Let Z ∈ Qn⌐l

R
be such that TAZT = T . We will demonstrate that X = ZT

is a {2}-inverse of A and satisfies R(X) =R(T ). First, since
XAX = ZTAZT = ZT =X,

it follows that X ∈ A{2}. Additionally, since X = ZT , it implies that

R(X) =R(ZT ) ⊆R(T ).
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Moreover, given that T = TAZT = TAX, we have

R(T ) =R(TAX) ⊆R(X).
Thus, we conclude that R(X) =R(T ).
(ii)↢ (iii). Let Z ∈ Qn⌐l

R
such that TAZT = T . We have

TA = TAZTA = (TA)Z(TA),
which implies that Z ∈ (TA){1}, meaning that TA is regular. According to Definition

3.2.1, we conclude that

C(TA) ⊆ C(T ).
Moreover, since TAZT = T , we deduce

C(T ) = C(TAZT ) ⊆ C(TA).
Thus, it follows that C(TA) = C(T ).
(iii)↢ (iv). Let TA be regular and assume that C(TA) = C(T ). Clearly, we have

C(T ) ⊆ C(TA). Define the matrix

T = ⎦TA T ⎢ .
By applying Lemma 3.2.12, we conclude that RTA =R

T
. Now, observe that

T = ⎦TA T ⎢ = T ⎦A Im⎢ .
The matrix ⎦A Im⎢ is right invertible since

⎦A Im⎢
⌞⌞⌞⌞⌞⌞
0

Im

⌞⌟⌟⌟⌟⌟ = Im.
As a result, using Lemma 3.2.11, we obtain R

T
=RT . Thus, we can conclude that

RTA =RT .

(iv)↢ (iii). Let TA be regular and assume that RTA =RT . Define

T = ⎦TA T ⎢ .
Referring to the proof of (iii)↢ (iv), we obtain that

R
T
=RT .

Thus, it follows that

R
T
=RTA.
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By Lemma 3.2.12, we have C(T ) ⊆ C(TA). Furthermore, since C(TA) ⊆ C(T ), we
conclude that C(TA) = C(T ).
(iii) ↢ (v). Let TA be regular and assume that C(TA) = C(T ). Since it is clear

that C(T ) ⊆ C(TA), by Lemma 3.2.4, there exists a matrix Y ∈ Qn⌐m
R

such that

T = TAY .

Given that TA is a regular matrix, there exist an arbitrary {1}-inverse of TA,

denoted by (TA)(1). Thus, we can express T as follows:

T = (TA)Y = TA(TA)(1)TAY = TA(TA)(1)T.
This establishes the necessary relationship for the result.

(v) ↢ (i). Let T = TA(TA)(1)T for some (TA)(1) ∈ (TA){1}. We need to verify

that X = (TA)(1)T is an element of A{2} and satisfies R(X) =R(T ). First, observe
that

XAX = (TA)(1)TA(TA)(1)T = (TA)(1)T =X.

This confirms that X ∈ A{2}. Next, since X = (TA)(1)T , it follows that
R(X) =R((TA)(1)T ) ⊆R(T ).

Moreover, from T = TA(TA)(1)T = TAX, we have

R(T ) =R(TAX) ⊆R(X).
Consequently, we conclude that R(X) =R(T ).

(2) From the results in part (1), we derive the following chain of inclusions

A{2}∗,R(T ) ⊆ {ZT Z ∈ Qn⌐l
R

, TAZT = T}
⊆ {(TA)(1)T (TA)(1) ∈ (TA){1}}
⊆ A{2}∗,R(T ).

The proof is complete. ∎
Corollary 3.4.7. Let A ∈ Cm⌐n and T ∈ Cl⌐m. In this case, A(2)∗,R(T ) exists if and only if

rank(TA) = rank(T ). Moreover, A{2}∗,R(T ) = {(TA)(1)T (TA)(1) ∈ (TA){1}} .
Proof. The proof follows from Theorem 3.4.6, using the fact that in the complex field,

TA is regular, and the rank function corresponds to the usual rank of a matrix. ∎
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Now, Theorem 3.4.8 presents equivalent conditions for the existence and representation

of an outer inverse with a prescribed column space C(S) and row space R(T ).
Theorem 3.4.8. Let the RB matrices A ∈ Qm⌐n

R
, S ∈ Qn⌐k

R
, and T ∈ Ql⌐m

R
be given. Then

(1) The subsequent statements are equivalent:

(i) There exists X ∈ A{2} satisfying C(X) = C(S) and R(X) =R(T );
(ii) There exists Y ∈ Qk⌐l

R
such that SY TAS = S and TASY T = T ;

(iii) TAS is regular, C(TAS) = C(T ), and R(TAS) =R(S);
(iv) TAS is regular and RTAS =RT =RS;

(v) TAS is regular, S = S(TAS)(1)TAS, and T = TAS(TAS)(1)T for some

(TAS)(1) ∈ (TAS){1}.
(2) If the statements in (1) are satisfied, then

A(2)C(S),R(T ) = ∣SY T Y ∈ Qk⌐l
R

, SY TAS = S, and TASY T = T∣
= ∣S(TAS)(1)T (TAS)(1) ∈ (TAS){1}∣ .

Proof.

(1) (i)↢ (ii). Let X ∈ Qn⌐m
R

be such that XAX =X, C(X) = C(S), and R(X) =R(T ).
By Lemma 3.2.4, there exist matrices Y1 ∈ Qk⌐m

R
, Y2 ∈ Qn⌐l

R
, W ∈ Qm⌐k

R
, and V ∈ Ql⌐n

R

such that

X = SY1 = Y2T, S =XW, and T = V X.

This implies

X =XAX = (SY1)A(Y2T ) = S(Y1AY2)T.
Let Y = Y1AY2. Then, Y ∈ Qk⌐l

R
and X = SY T . Consequently, we obtain

S =XW =XAXW =XAS = SY TAS

and

T = V X = V XAX = TAX = TASY T.

(ii) ↢ (i). Let Y ∈ Qk⌐l
R

be such that SY TAS = S and TASY T = T . We aim

to show that X = SY T is an element of A{2}, satisfying both C(X) = C(S) and
R(X) =R(T ). First, observe that

XAX = SY TASY T = SY T =X,
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which implies that X ∈ A{2}. Furthermore, since X = SY T , it follows that

C(X) = C(SY T ) ⊆ C(S) and R(X) =R(SY T ) ⊆R(T ).
Additionally, from S = SY TAS =XAS and T = TASY T = TAX, we deduce

C(S) = C(XAS) ⊆ C(X) and R(T ) =R(TAX) ⊆R(X).
Consequently, we conclude that C(X) = C(S) and R(X) =R(T ).
(ii)↢ (iii). Let Y ∈ Qk⌐l

R
be such that SY TAS = S and TASY T = T . From this, it

follows that

TAS = TA(SY TAS) = (TAS)Y (TAS),
which implies that Y ∈ (TAS){1}, and thus TAS is regular. By Definitions 3.2.1

and 3.2.2, we conclude that

C(TAS) ⊆ C(T ) and R(TAS) ⊆R(S).
Furthermore, the conditions SY TAS = S and TASY T = T imply

C(T ) = C(TASY T ) ⊆ C(TAS) and R(S) =R(SY TAS) ⊆R(TAS).
Thus, we conclude that

C(TAS) = C(T ) and R(TAS) =R(S).
(iii)↢ (iv). Let TAS be regular, with C(TAS) = C(T ) and R(TAS) = R(S).

It is clear that C(T ) ⊆ C(TAS). Define
T = ⎦TAS T ⎢ .

By applying Lemma 3.2.12, we conclude that

RTAS =R
T
.

Now, expressing T as

T = T ⎦AS Im⎢ ,
it follows that the matrix ⎦AS Im⎢ is right invertible since

⎦AS Im⎢
⌞⌞⌞⌞⌞⌞
0

Im

⌞⌟⌟⌟⌟⌟ = Im.
Thus, by Lemma 3.2.11, we obtain

R
T
=RT .
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Consequently, we have

RTAS =RT .

Additionally, since R(S) ⊆R(TAS), define
S = ⌞⌞⌞⌞⌞⌞

TAS

S

⌞⌟⌟⌟⌟⌟ .
By Lemma 3.2.13, it follows that

RTAS =R
S
.

Expressing S as

S = ⌞⌞⌞⌞⌞⌞
TA

In

⌞⌟⌟⌟⌟⌟S,

where the matrix
⌞⌞⌞⌞⌞⌞
TA

In

⌞⌟⌟⌟⌟⌟ is left invertible because

⎦0 In⎢
⌞⌞⌞⌞⌞⌞
TA

In

⌞⌟⌟⌟⌟⌟ = In,
applying Lemma 3.2.11 gives

R
S
=RS.

Thus, we conclude

RTAS =RS,

and therefore RTAS =RT =RS.

(iv)↢ (iii). Let TAS be regular, with RTAS =RT =RS. Define

T = ⎦TAS T ⎢ and S = ⌞⌞⌞⌞⌞⌞
TAS

S

⌞⌟⌟⌟⌟⌟ .
From the proof of (iii)↢ (iv), we can conclude

R
T
=RT and R

S
=RS.

Thus, we have

R
T
=RTAS and R

S
=RTAS.

By Lemma 3.2.12, it follows that

C(T ) ⊆ C(TAS),
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and by Lemma 3.2.13, we conclude that

R(S) ⊆R(TAS).
Furthermore, we have

C(TAS) ⊆ C(T ) and R(TAS) ⊆R(S).
Consequently, it follows that C(TAS) = C(T ) and R(TAS) =R(S).
(iii) ↢ (v). Let TAS be regular with the additional properties C(TAS) = C(T )
and R(TAS) =R(S). It is evident that C(T ) ⊆ C(TAS) and R(S) ⊆R(TAS). By
Lemma 3.2.4, there exist matrices Y ∈ Qk⌐m

R
and W ∈ Qn⌐l

R
such that

T = TASY and S =WTAS.

Since TAS is a regular matrix, there exists an arbitrary {1}-inverse (TAS)(1) of
TAS. Thus, we can express

T = (TAS)Y = TAS(TAS)(1)TASY = TAS(TAS)(1)T
and

S =W (TAS) =WTAS(TAS)(1)TAS = S(TAS)(1)TAS.
(v)↢ (i). Let S = S(TAS)(1)TAS and T = TAS(TAS)(1)T for some (TAS)(1) ∈
(TAS){1}. We aim to show that X = S(TAS)(1)T belongs to A{2} and satisfies

C(X) = C(S) and R(X) =R(T ). Indeed, since
XAX = S(TAS)(1)TAS(TAS)(1)T = S(TAS)(1)T =X,

it follows that X ∈ A{2}. Moreover, X = S(TAS)(1)T implies that

C(X) = C(S(TAS)(1)T ) ⊆ C(S) and R(X) =R(S(TAS)(1)T ) ⊆R(T ).
Additionally, from the relationships

S = S(TAS)(1)TAS =XAS and T = TAS(TAS)(1)T = TAX,

we deduce that

C(S) = C(XAS) ⊆ C(X) and R(T ) =R(TAX) ⊆R(X).
Thus, we conclude that C(X) = C(S) and R(X) =R(T ).
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(2) From the proof of part (1), it follows
A{2}C(S),R(T ) ⊆ {SY T Y ∈ Qk⌐l

R
, SY TAS = S and TASY T = T}

⊆ {S(TAS)(1)T (TAS)(1) ∈ (TAS){1}}
⊆ A{2}C(S),R(T ).

The proof is complete. ∎
Corollary 3.4.9 reveals known results derived for complex matrices.

Corollary 3.4.9. If A ∈ Cm⌐n, S ∈ Cn⌐k, and T ∈ Cl⌐m are given, then A(2)C(S),R(T ) exists if

and only if rank(TAS) = rank(T ) = rank(S). If these conditions are satisfied then

A(2)C(S),R(T ) = ∣S(TAS)(1)T (TAS)(1) ∈ (TAS){1}∣ .

Proof. The proof follows from Theorem 3.4.8, using the fact that in the complex field,

TAS is regular, and the rank function corresponds to the usual rank of a matrix. ∎
Next, we outline conditions for the existence and several representations of a {1,2}-

inverse with a predefined column space C(S).
Theorem 3.4.10. Let the RB matrices A ∈ Qm⌐n

R
and S ∈ Qn⌐k

R
be given. Then

(1) The subsequent claims are equivalent one another:

(i) There exists X ∈ A{1,2} satisfying C(X) = C(S);
(ii) There exists U ∈ Qk⌐m

R
satisfying SUAS = S and ASUA = A;

(iii) There exist U,V ∈ Qk⌐m
R

such that SUAS = S and ASV A = A;
(iv) AS is regular, R(AS) =R(S), and C(AS) = C(A);
(v) AS is regular and RAS =RS =RA;

(vi) AS is regular, S = S(AS)(1)AS, and A = AS(AS)(1)A for some (AS)(1) ∈
AS{1}.

(2) If the statements in (1) are satisfied, then

A{1,2}C(S),∗ = ∣SU U ∈ Qk⌐m
R

, SUAS = S, and ASUA = A∣
= ∣S(AS)(1) (AS)(1) ∈ (AS){1}∣ .

Proof.
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(1) (i) ↢ (ii). Let X ∈ Qn⌐m
R

satisfy X ∈ A{1,2} and C(X) = C(S). According to

Lemma 3.2.4, there exist matrices U ∈ Qk⌐m
R

and W ∈ Qm⌐k
R

such that X = SU and

S =XW . As a result, we obtain the following

A = AXA = ASUA

and

S =XW =XAXW =XAS = SUAS.

(ii)↢ (i). Let U ∈ Qk⌐m
R

be such that SUAS = S and ASUA = A. The objective is

to show that X = SU ∈ A{1,2} and that C(X) = C(S). Indeed, since
AXA = ASUA = A,

by applying Theorem 3.4.4, part (ii)↢ (i), it follows that X ∈ A{1, 2} and satisfies

C(X) = C(S).
(ii)↢ (iii). The result follows directly from part (ii) of the theorem.

(iii)↢ (ii). Let U,V ∈ Qk⌐m
R

be such that SUAS = S and ASV A = A. We can then

proceed as follows

A = ASV A = A(SUAS)V A = ASU(ASV A) = ASUA.

(ii)↢ (iv). Let U ∈ Qk⌐m
R

be such that SUAS = S and ASUA = A. By Theorem

3.4.4, from (ii)↢ (iii), we know that AS is regular and satisfies R(AS) = R(S).
It is evident that C(AS) ⊆ C(A). Moreover, since A = ASUA, we also have

C(A) = C(ASUA) ⊆ C(AS).
Hence, we conclude that C(AS) = C(A).
(iv)↢ (v). Let AS be regular, with R(AS) =R(S) and C(AS) = C(A). It is evident
that C(A) ⊆ C(AS). Consider the matrix

S = ⎦AS A⎢ .
Using Lemma 3.2.12, we obtain RAS =R

S
. Now, we can express S as

S = ⎦AS A⎢ = A ⎦S In⎢ .
Notably, the matrix ⎦S In⎢ is right invertible, as

⎦S In⎢
⌞⌞⌞⌞⌞⌞
0

In

⌞⌟⌟⌟⌟⌟ = In.
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Consequently, applying Lemma 3.2.11, we conclude that R
S
=RA. Thus, RAS =RA.

According to Theorem 3.4.4 (iii) ↢ (iv), we can assert that RAS = RS.

Therefore, we have

RAS =RS =RA.

(v)↢ (iv). Let AS be regular with RAS =RS =RA. Consider the matrix

S = ⎦AS A⎢ .
Using the proof of (iv)↢ (v), we deduce that R

S
=RA. Thus, we have R

S
=RAS.

According to Lemma 3.2.12, it follows that C(A) ⊆ C(AS). Furthermore, since

C(AS) ⊆ C(A), we conclude that C(AS) = C(A).
Finally, by applying Theorem 3.4.4, part (iv) ↢ (iii), we can a”rm that

R(AS) =R(S).
(iv)↢ (vi). Let AS be regular, with R(AS) =R(S) and C(AS) = C(A). It follows
that C(A) ⊆ C(AS). By Lemma 3.2.4, there exists a matrix W ∈ Qk⌐n

R
such that

A = ASW . Since AS is regular, let (AS)(1) be an arbitrary {1}-inverse of AS.

Consequently, we have

A = (AS)W = AS(AS)(1)ASW = AS(AS)(1)A.
Applying Theorem 3.4.4, part (iii)↢ (v), we can conclude that S = S(AS)(1)AS.
(vi)↢ (i). Let S = S(AS)(1)AS and A = AS(AS)(1)A for some (AS)(1) ∈ (AS){1}.
We claim that X = S(AS)(1) is an element of A{1,2} that satisfies C(X) = C(S).
To demonstrate this, we observe that

AXA = AS(AS)(1)A = A.
By Theorem 3.4.4, part (v)↢ (i), it is clear that X ∈ A{1, 2} and that C(X) = C(S).

(2) From the proof of part (1), it follows
A{1,2}C(S),∗ ⊆ ∣SU U ∈ Qk⌐m

R
, SUAS = S, and ASUA = A∣

⊆ ∣S(AS)(1) (AS)(1) ∈ (AS){1}∣
⊆ A{1,2}C(S),∗.

The proof is complete. ∎
Corollary 3.4.11 reveals known results derived for complex matrices in [65].
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Corollary 3.4.11. Let A ∈ Cm⌐n and S ∈ Cn⌐k. Then A(1,2)C(S),∗ exists if and only if

rank(AS) = rank(S) = rank(A). In this case,

A{1,2}C(S),∗ = ∣S(AS)(1) (AS)(1) ∈ (AS){1}∣ .
Proof. The proof follows from Theorem 3.4.10, using the fact that in the complex field,

AS is regular, and the rank function corresponds to the usual rank of a matrix. ∎
The following theorem o!ers equivalent conditions for the existence and representation

of {1,2}-inverse with a specified row space R(T ).
Theorem 3.4.12. Let the RB matrices A ∈ Qm⌐n

R
and T ∈ Ql⌐m

R
be given. Then

(1) The subsequent claims are equivalent:

(i) There exists X ∈ A{1,2} satisfying R(X) =R(T );
(ii) There exists U ∈ Qn⌐l

R
such that TAUT = T and AUTA = A;

(iii) There exist U,V ∈ Qn⌐l
R

such that TAUT = T and AV TA = A;
(iv) TA is regular, C(TA) = C(T ), and R(TA) =R(A);
(v) TA is regular and RTA =RT =RA;

(vi) TA is regular, T = TA(TA)(1)T , and A = A(TA)(1)TA for some (TA)(1) ∈
(TA){1}.

(2) If the statements in (1) are valid, then

A{1,2}∗,R(T ) = ∣UT U ∈ Qn⌐l
R

, TAUT = T, and AUTA = A∣
= ∣(TA)(1)T (TA)(1) ∈ (TA){1}∣ .

Proof. The proof follows by employing Theorem 3.4.6 and follows a similar approach as

outlined in Theorem 3.4.10. ∎
Corollary 3.4.13. Let A ∈ Cm⌐n and T ∈ Cl⌐m. Then A(1,2)∗,R(T ) exists if and only if

rank(TA) = rank(T ) = rank(A). In this case,

A{1,2}∗,R(T ) = ∣(TA)(1)T (TA)(1) ∈ (TA){1}∣ .
Proof. The proof follows from Theorem 3.4.12, using the fact that in the complex field,

TA is regular, and the rank function corresponds to the usual rank of a matrix. ∎
In Theorem 3.4.14 we outline equivalent existence conditions for {1, 2}-inverse with a

prescribed column space C(S) and row space R(T ).
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Theorem 3.4.14. Let the RB matrices A ∈ Qm⌐n
R

, S ∈ Qn⌐k
R

, and T ∈ Ql⌐m
R

be given. Then

(1) The subsequent claims are equivalent to one another:

(i) There exists X ∈ A{1,2} satisfying C(X) = C(S) and R(X) =R(T );
(ii) There exist U ∈ Qk⌐m

R
and V ∈ Qn⌐l

R
such that SUAS = S, ASUA = A,

TAV T = T , and AV TA = A;
(iii) AS and TA are regular, C(AS) = C(A), R(AS) =R(S), C(TA) = C(T ), and

R(TA) =R(A);
(iv) AS and TA are regular, RAS =RS =RA, and RTA =RT =RA;

(v) AS and TA are regular, S = S(AS)(1)AS, T = TA(TA)(1)T , and A =
AS(AS)(1)A = A(TA)(1)TA for some (AS)(1) ∈ (AS){1} and (TA)(1) ∈
(TA){1}.

(2) If the statements in (1) are valid, then

A{1,2}C(S),R(T ) = ∣SUAV T U ∈ Qk⌐m
R

, V ∈ Qn⌐l
R

, SUAS = S,
ASUA = A, TAV T = T, and AV TA = A∣

= ∣S(AS)(1)A(TA)(1)T (AS)(1) ∈ (AS){1} and
(TA)(1) ∈ (TA){1}∣ .

Proof.

(1) The proof follows by the application of Theorems 3.4.8, 3.4.10, and 3.4.12.

(2) Let U ∈ Qk⌐m
R

and V ∈ Qn⌐l
R

be such that SUAS = S, ASUA = A, TAV T = T ,

and AV TA = A. We will verify that X = SUAV T ∈ A{1,2} and that it satisfies

C(X) = C(S) and R(X) =R(T ). First, observe the following:

XAX = (SUAV T )A(SUAV T ) = SU(AV TA)SUAV T

= (SUAS)UAV T = SUAV T =X,

and

AXA = A(SUAV T )A = ASU(AV TA) = ASUA = A.
Hence, X ∈ A{1,2}. Furthermore, since X = SUAV T , it follows that

C(X) = C(SUAV T ) ⊆ C(S)
and

R(X) =R(SUAV T ) ⊆R(T ).
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Additionally, from S = SUAS = SU(AV TA)S = (SUAV T )AS = XAS and

T = TAV T = T (ASUA)V T = TA(SUAV T ) = TAX, we deduce that

C(S) = C(XAS) ⊆ C(X) and R(T ) =R(TAX) ⊆R(X).
Therefore, we conclude that C(X) = C(S) and R(X) =R(T ).

Similarly, it can be verified that X = S(AS)(1)A(TA)(1)T ∈ A{1,2}, and that

C(X) = C(S) and R(X) =R(T ). ∎
Corollary 3.4.15. For arbitrary A ∈ Cm⌐n, S ∈ Cn⌐k, and T ∈ Cl⌐m the {1,2}-inverse
A(1,2)C(S),R(T ) exists if and only if rank(AS) = rank(TA) = rank(T ) = rank(S) = rank(A). In
this case,

A{1,2}C(S),R(T ) = ∣S(AS)(1)A(TA)(1)T (AS)(1) ∈ (AS){1} and (TA)(1) ∈ (TA){1}∣ .

Proof. The proof follows directly from Theorem 3.4.14, using the fact that in the complex

field, AS and TA are regular, and the rank function corresponds to the usual rank of a

matrix. ∎

3.5. Algorithms for Computing RBGIs and Numerical Verification

Building on the discussions from the preceding section, this section presents numerical

algorithms for computing the outer inverse and {1,2}-inverse of an RB matrix A ∈ Qm⌐n
R

,

adhering to specific conditions regarding column and/or row space. Additionally, we

provide examples to validate the e”ciency of the proposed algorithms. Implementation

and numerical experiments are carried out on an Intel Core i7 − 9700@3.00GHz/16GB

computer utilizing MATLAB R2021b software.

Building on Theorem 3.4.4, we propose Algorithm 3.5.1 for computing the outer inverse

of A ∈ Qm⌐n
R

with a specified column space C(S). To further evaluate the accuracy and

e”ciency of our proposed method, we present an example demonstrating the computation

of the generalized inverse A(2)C(S),∗ for reduced biquaternion matrices.
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Algorithm 3.5.1 Computation of X =A(2)C(S),∗
Input: A = A1 +A2j ∈ Qm⌐n

R
, S = S1 + S2j ∈ Qn⌐k

R
.

Output: X =X1 +X2j ∈ Qn⌐m
R

.

Step 1: Consistency Check: Verify the consistency of the RBME SY AS = S for

Y = Y1 + Y2j ∈ Qk⌐m
R

using Remark 3.3.4. Proceed with the next steps only if the

equation is consistent.

Step 2: Solve: Solve the RBME SY AS = S using Remark 3.3.4.

Step 3: Compute: Determine A(2)C(S),∗ = SY .

Example 3.5.1. Consider A = A1 +A2j ∈ Q3⌐2
R

and S = S1 + S2j ∈ Q2⌐2
R

, where

A1 =
⌞⌞⌞⌞⌞⌞⌞⌞⌞

1 + 2i 1 + 3i
1 + 4i 7 + 6i
4 + 9i 8 + 6i

⌞⌟⌟⌟⌟⌟⌟⌟⌟
, A2 =

⌞⌞⌞⌞⌞⌞⌞⌞⌞

3 + 4i 4 + 5i
6 + i 5i

5 2i

⌞⌟⌟⌟⌟⌟⌟⌟⌟
,

S1 =
⌞⌞⌞⌞⌞⌞
3 + 4i 5 + 10i
3 + 2i 7 + 3i

⌞⌟⌟⌟⌟⌟ , S2 =
⌞⌞⌞⌞⌞⌞
3 + 3i 2 + 4i
1 + 2i 4

⌞⌟⌟⌟⌟⌟ .
We apply Algorithm 3.5.1 to determine the outer inverse X = X1 + X2j ∈ Q2⌐3

R
of RB

matrix A with specified column space C(S). Solving the matrix equation SY AS = S for

Y = Y1 + Y2j ∈ Q2⌐3
R

gives

Y1 =
⌞⌞⌞⌞⌞⌞
−0.0073 + 0.0123i 0.0194 + 0.0324i 0.0162 − 0.0155i
0.0026 + 0.0040i 0.0049 − 0.0064i −0.0129 + 0.0025i

⌞⌟⌟⌟⌟⌟ ,

Y2 =
⌞⌞⌞⌞⌞⌞
−0.0085 − 0.0182i −0.0448 + 0.0029i 0.0144 − 0.0133i
0.0061 − 0.0007i 0.0119 − 0.0138i −0.0064 + 0.0109i

⌞⌟⌟⌟⌟⌟ .
Then X = SY is given by

X1 =
⌞⌞⌞⌞⌞⌞
−0.0545 − 0.0035i −0.0468 + 0.0860i 0.0476 − 0.0989i
0.0117 + 0.0203i 0.0438 − 0.0361i −0.0029 + 0.0239i

⌞⌟⌟⌟⌟⌟ ,

X2 =
⌞⌞⌞⌞⌞⌞
0.0147 + 0.0020i 0.0481 + 0.0416i 0.0148 − 0.0363i
0.0338 − 0.0443i −0.0413 − 0.0963i −0.0120 + 0.0730i

⌞⌟⌟⌟⌟⌟ .
Taking into account X = SY and S = SY AS = XAS, we get C(X) = C(S). Additionally,
⌝XAX −X⌝F = 1.4550 ⌐ 10⋊15. Thus, X = A(2)C(S),∗.
Example 3.5.2. Let

A = A1 +A2j ∈ Qm⌐n
R

, S = S1 + S2j ∈ Qn⌐k
R

,
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where the complex components are generated as:

A1 = A2 = rand(m,n) + rand(m,n)i ∈ Cm⌐n,
S1 = S2 = rand(n, k) + rand(n, k)i ∈ Cn⌐k.

The matrix dimensions are chosen based on a variable parameter t, such that:

m = t, n = t + 5, k = t.
In this example, t varies from 5 to 70 in increments of 5.

Objective: We compute A(2)C(S),∗ given by X = SY , where Y is the solution to the RBME:

SY AS = S.
We apply three di!erent methods to compute Y :

(a) Our proposed Algorithm 3.3.1.

(b) The approach based on Theorem 3.1 from [80].

(c) The approach based on Theorem 3.1 from [75].

Let X1, X2, and X3 denote the computed solutions using these three methods, respectively.

Error and CPU Time Evaluation: The error metrics are defined as:

φ1 = ⌝X1AX1 −X1⌝F , φ2 = ⌝X2AX2 −X2⌝F , φ3 = ⌝X3AX3 −X3⌝F .
We conduct 50 trials and compute the average CPU time for each method. Let t1, t2, and

t3 be the average CPU time for computing X1, X2, and X3, respectively.

Results and Discussion:

⋉ Figure 3.5.1(a) illustrates the average CPU times, demonstrating that our method

is computationally more e”cient than the other methods.

⋉ Figure 3.5.1(b) presents a comparative analysis of the error values, verifying whether

the computed solutions satisfy the {2}-inverse property. To confirm this, we compute

the error ⌝XAX −X⌝F , ensuring that all computed solutions meet the required

inverse conditions. The results demonstrate that the errors remain below 10⋊18,
validating the accuracy and correctness of the obtained solutions.

Following the results obtained in Theorem 3.4.6, we now propose Algorithm 3.5.2 for

calculating the outer inverse of A ∈ Qm⌐n
R

with a specified row space R(T ).
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(a) CPU time comparison. (b) Error comparison.

Figure 3.5.1. CPU time and error comparison for computing A(2)C(S),∗ using

di!erent methods.

Algorithm 3.5.2 Computation of X =A(2)∗,R(T)
Input: A = A1 +A2j ∈ Qm⌐n

R
, T = T1 + T2j ∈ Ql⌐m

R
.

Output: X =X1 +X2j ∈ Qn⌐m
R

.

Step 1: Consistency Check: Verify the consistency of the RBME TAZT = T for

Z = Z1 +Z2j ∈ Qn⌐l
R

using Remark 3.3.4. Proceed with the next steps only if the

equation is consistent.

Step 2: Solve: Solve the RBME TAZT = T using Remark 3.3.4.

Step 3: Compute: Determine A(2)∗,R(T ) = ZT .

Example 3.5.3. Consider A = A1 +A2j ∈ Q2⌐3
R

and T = T1 + T2j ∈ Q2⌐2
R

, where

A1 =
⌞⌞⌞⌞⌞⌞
7 + 2i 5 + 8i 2 + 3i
9 + 3i 8 + 2i 3 + 3i

⌞⌟⌟⌟⌟⌟ , A2 =
⌞⌞⌞⌞⌞⌞
6 + 5i 1 + 3i 2 + 9i
8 + i 7 + 2i 2 + 5i

⌞⌟⌟⌟⌟⌟ ,

T1 =
⌞⌞⌞⌞⌞⌞
5 + 7i 3 + 13i
5 + 3i 7 + 9i

⌞⌟⌟⌟⌟⌟ , T2 =
⌞⌞⌞⌞⌞⌞
5 + 3i 8 + 7i
5 + 7i 4 + 4i

⌞⌟⌟⌟⌟⌟ .

We employ Algorithm 3.5.2 to determine the outer inverse X = X1 +X2j ∈ Q3⌐2
R

of RB

matrix A with specified row space R(T ). Solving the matrix equation TAZT = T for
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Z = Z1 +Z2j ∈ Q3⌐2
R

gives

Z1 =
⌞⌞⌞⌞⌞⌞⌞⌞⌞

−0.0155 − 0.0036i −0.0066 − 0.0038i
0.0061 − 0.0149i −0.0034 + 0.0139i
0.0149 + 0.0036i −0.0058 − 0.0186i

⌞⌟⌟⌟⌟⌟⌟⌟⌟
,

Z2 =
⌞⌞⌞⌞⌞⌞⌞⌞⌞

0.0005 + 0.0026i 0.0247 + 0.0061i
0.0099 − 0.0078i −0.0187 + 0.0107i
−0.0005 + 0.0156i −0.0093 − 0.0069i

⌞⌟⌟⌟⌟⌟⌟⌟⌟
.

Then X = ZT =X1 +X2j is given by

X1 =
⌞⌞⌞⌞⌞⌞⌞⌞⌞

0.0027 + 0.0529i 0.0499 − 0.1501i
−0.0184 − 0.0588i 0.0804 + 0.0770i
0.0282 − 0.0112i 0.0011 + 0.0784i

⌞⌟⌟⌟⌟⌟⌟⌟⌟
,

X2 =
⌞⌞⌞⌞⌞⌞⌞⌞⌞

0.0177 − 0.0083i −0.0226 + 0.1011i
−0.0596 + 0.0174i −0.0109 − 0.0218i
0.0270 − 0.0587i −0.0626 − 0.0566i

⌞⌟⌟⌟⌟⌟⌟⌟⌟
.

Taking into account X = ZT and T = TAZT = TAX, we get R(X) =R(T ). Additionally,
⌝XAX −X⌝F = 4.7851 ⌐ 10⋊15. Thus, X = A(2)∗,R(T ).

By Theorem 3.4.8, we present Algorithm 3.5.3 for computing the outer inverse of

A ∈ Qm⌐n
R

with a specified column space C(S) and row space R(T ).
Algorithm 3.5.3 Computation of X =A(2)C(S),R(T)
Input: A = A1 +A2j ∈ Qm⌐n

R
, S = S1 + S2j ∈ Qn⌐k

R
, T = T1 + T2j ∈ Ql⌐m

R
.

Output: X =X1 +X2j ∈ Qn⌐m
R

.

Step 1: Consistency Check: Verify the consistency of the RBME (SY TAS,TASY T ) =
(S,T ) for Y = Y1 + Y2j ∈ Qk⌐l

R
using Step 2 of Algorithm 3.3.1. If the equation is

consistent, proceed to the subsequent steps.

Step 2: Solve: Solve the RBME (SY TAS,TASY T ) = (S,T ) using Steps 3 and 4 of

Algorithm 3.3.1.

Step 3: Compute: Determine A(2)C(S),R(T ) = SY T .
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Example 3.5.4. Consider A = A1+A2j ∈ Q2⌐3
R

, S = S1+S2j ∈ Q3⌐2
R

, and T = T1+T2j ∈ Q3⌐2
R

,

where

A1 =
⌞⌞⌞⌞⌞⌞
3 + 2i 6 + 5i 4 + 7i
1 + i 6 + 9i 3 + 8i

⌞⌟⌟⌟⌟⌟ , A2 =
⌞⌞⌞⌞⌞⌞
1 + 5i 2 + 9i 4 + 2i
1 + 11i 5 + 5i 7

⌞⌟⌟⌟⌟⌟ ,

S1 =
⌞⌞⌞⌞⌞⌞⌞⌞⌞

4 + 3i 5i

3 + 2i 4 + 7i
2 5 + 4i

⌞⌟⌟⌟⌟⌟⌟⌟⌟
, S2 =

⌞⌞⌞⌞⌞⌞⌞⌞⌞

4 + 2i 2i

2 4i

3 + 4i 5 + 9i

⌞⌟⌟⌟⌟⌟⌟⌟⌟
,

T1 =
⌞⌞⌞⌞⌞⌞⌞⌞⌞

2 5i

1 + i 2 + 5i
3 + 2i 2 + 3i

⌞⌟⌟⌟⌟⌟⌟⌟⌟
, T2 =

⌞⌞⌞⌞⌞⌞⌞⌞⌞

3 + 4i 4 + 3i
3 3i

2 + 8i 9 + 4i

⌞⌟⌟⌟⌟⌟⌟⌟⌟
.

We apply Algorithm 3.5.3 to compute the outer inverse X = X1 +X2j ∈ Q3⌐2
R

of the RB

matrix A with the specified column space C(S) and row space R(T ). Solving the matrix

system (SY TAS,TASY T ) = (S,T ) for Y = Y1 + Y2j ∈ Q2⌐3
R

yields

Y1 =
⌞⌞⌞⌞⌞⌞
0.0617 − 0.0152i 0.0504 + 0.0463i −0.0247 + 0.0487i
−0.0315 + 0.0125i −0.0300 − 0.0207i 0.0095 − 0.0266i

⌞⌟⌟⌟⌟⌟ ,

Y2 =
⌞⌞⌞⌞⌞⌞
−0.0613 + 0.0175i −0.0512 − 0.0423i 0.0253 − 0.0521i
0.0306 − 0.0136i 0.0292 + 0.0184i −0.0090 + 0.0285i

⌞⌟⌟⌟⌟⌟ .
By computing X = SY T , we obtain

X1 =
⌞⌞⌞⌞⌞⌞⌞⌞⌞

0.0110 + 0.0880i −0.0075 − 0.0870i
0.0724 + 0.0735i −0.0635 − 0.0336i
−0.1262 − 0.0219i 0.0797 − 0.0543i

⌞⌟⌟⌟⌟⌟⌟⌟⌟
,

X2 =
⌞⌞⌞⌞⌞⌞⌞⌞⌞

0.1023 + 0.0452i −0.0777 − 0.0513i
−0.0243 − 0.1447i 0.0325 + 0.0789i
0.0429 − 0.0631i 0.0101 + 0.1059i

⌞⌟⌟⌟⌟⌟⌟⌟⌟
.

Taking into account that X = SY T , S = SY TAS = XAS, and T = TASY T = TAX, we

conclude that C(X) = C(S) and R(X) =R(T ). Additionally, ⌝XAX −X⌝F = 1.9577⌐10⋊15,
confirming that X = A(2)C(S),R(T ).

By Theorem 3.4.10, we introduce Algorithm 3.5.4 for computing A(1,2)C(S),∗. Furthermore,

Algorithm 3.5.5, which is based on the results of Theorem 3.4.12, is designed to compute

the {1,2}-inverse of A with a specified row space R(T ). Finally, by Theorem 3.4.14, we

present Algorithm 3.5.6 for computing A(1,2)C(S),R(T ).
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Algorithm 3.5.4 Computation of X =A(1,2)C(S),∗
Input: A = A1 +A2j ∈ Qm⌐n

R
, S = S1 + S2j ∈ Qn⌐k

R
.

Output: X =X1 +X2j ∈ Qn⌐m
R

.

Step 1: Consistency Check: Verify the consistency of the RBME (SUAS,ASUA) =
(S,A) for U = U1 +U2j ∈ Qk⌐m

R
using Step 2 of Algorithm 3.3.1. If the equation is

consistent, proceed with the subsequent steps.

Step 2: Solve: Solve the RBME (SUAS,ASUA) = (S,A) using Steps 3 and 4 of

Algorithm 3.3.1.

Step 3: Compute: Calculate A(2)C(S),∗ = SU .

Algorithm 3.5.5 Computation of X =A(1,2)∗,R(T)
Input: A = A1 +A2j ∈ Qm⌐n

R
, T = T1 + T2j ∈ Ql⌐m

R
.

Output: X =X1 +X2j ∈ Qn⌐m
R

.

Step 1: Consistency Check: Verify the consistency of the RBME (TAUT,AUTA) =
(T,A) for U = U1 +U2j ∈ Qn⌐l

R
using Step 2 of Algorithm 3.3.1. If the equation is

consistent, proceed with the subsequent steps.

Step 2: Solve: Solve the RBME (TAUT,AUTA) = (T,A) using Steps 3 and 4 of

Algorithm 3.3.1.

Step 3: Compute: Calculate A(2)∗,R(T ) = UT .

Algorithm 3.5.6 Computation of X =A(1,2)C(S),R(T)
Input: A = A1 +A2j ∈ Qm⌐n

R
, S = S1 + S2j ∈ Qn⌐k

R
, T = T1 + T2j ∈ Ql⌐m

R
.

Output: X =X1 +X2j ∈ Qn⌐m
R

.

Step 1: Consistency Check: Verify the consistency of the RBMEs (SUAS,ASUA) =
(S,A) for U = U1 + U2j ∈ Qk⌐m

R
and (TAV T,AV TA) = (T,A) for V = V1 + V2j ∈

Qn⌐l
R

using Step 2 of Algorithm 3.3.1. If both equations are consistent, proceed

with the next steps.

Step 2: Solve: Solve the RBMEs (SUAS,ASUA) = (S,A) and (TAV T,AV TA) = (T,A)
using Steps 3 and 4 of Algorithm 3.3.1.

Step 3: Compute: Calculate A(1,2)C(S),R(T ) = SUAV T .
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Example 3.5.5. Consider A = A1+A2j ∈ Q3⌐2
R

, S = S1+S2j ∈ Q2⌐2
R

, and T = T1+T2j ∈ Q2⌐3
R

,

where

A1 =
⌞⌞⌞⌞⌞⌞⌞⌞⌞

2 + 3i 2i

3 + 4i 3

7 1 + 5i

⌞⌟⌟⌟⌟⌟⌟⌟⌟
, A2 =

⌞⌞⌞⌞⌞⌞⌞⌞⌞

2 1 + 4i
4 + 3i 7i

5 + 2i 3 + 3i

⌞⌟⌟⌟⌟⌟⌟⌟⌟
,

S1 =
⌞⌞⌞⌞⌞⌞
1 + i 1

i 2 + 3i
⌞⌟⌟⌟⌟⌟ , S2 =

⌞⌞⌞⌞⌞⌞
1 + 2i 2 + 3i
3i 3

⌞⌟⌟⌟⌟⌟ ,

T1 =
⌞⌞⌞⌞⌞⌞
1 + 3i 3 2 + 2i
1 + i 3 + 4i 4i

⌞⌟⌟⌟⌟⌟ , T2 =
⌞⌞⌞⌞⌞⌞
1 + 5i 2 + 7i 9

3 + 3i i 5 + 3i
⌞⌟⌟⌟⌟⌟ .

Using Algorithm 3.5.6, we compute the {1,2}-inverse X = X1 + X2j ∈ Q3⌐2
R

of the RB

matrix A, with specified column space C(S) and row space R(T ). Solving the RBMEs

(SUAS,ASUA) = (S,A) for U = U1 + U2j ∈ Q2⌐3
R

, and (TAV T,AV TA) = (T,A) for

V = V1 + V2j ∈ Q2⌐2
R

, we obtain

U1 =
⌞⌞⌞⌞⌞⌞
0.0275 + 0.0433i −0.0738 − 0.0132i −0.0059 + 0.0301i
0.0401 − 0.0116i 0.0012 + 0.0284i −0.0244 − 0.0144i

⌞⌟⌟⌟⌟⌟ ,

U2 =
⌞⌞⌞⌞⌞⌞
−0.0600 + 0.0182i 0.0137 − 0.0489i 0.0693 + 0.0163i
−0.0030 − 0.0130i 0.0098 + 0.0202i 0.0075 − 0.0360i

⌞⌟⌟⌟⌟⌟ ,
and

V1 =
⌞⌞⌞⌞⌞⌞
−0.0074 + 0.0017i 0.0134 − 0.0519i
−0.0277 − 0.0209i 0.0458 + 0.0059i

⌞⌟⌟⌟⌟⌟ ,

V2 =
⌞⌞⌞⌞⌞⌞
0.0179 + 0.0460i −0.0395 + 0.0018i
−0.0195 − 0.0112i 0.0131 + 0.0103i

⌞⌟⌟⌟⌟⌟ .
Thus, X = SUAV T is determined as

X1 =
⌞⌞⌞⌞⌞⌞
−0.2830 − 0.0362i −0.0622 + 0.0810i 0.1481 + 0.3466i
0.1198 − 0.0907i 0.0598 − 0.0075i −0.1784 + 0.0762i

⌞⌟⌟⌟⌟⌟ ,

X2 =
⌞⌞⌞⌞⌞⌞
0.0187 − 0.0886i −0.0466 − 0.0493i 0.0928 − 0.2341i
0.2134 − 0.0503i 0.0245 − 0.1400i −0.0955 − 0.0300i

⌞⌟⌟⌟⌟⌟ .
Using X = SUAV T , along with S = SUAS = SU(AV TA)S = (SUAV T )AS = XAS and

T = TAV T = T (ASUA)V T = TA(SUAV T ) = TAX, we confirm that C(X) = C(S) and
R(X) = R(T ). Additionally, we find ⌝AXA −A⌝F = 7.2786 ⌐ 10⋊14 and ⌝XAX −X⌝F =
2.4072 ⌐ 10⋊15. Therefore, X = A(1,2)C(S),R(T ).
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In the previous examples, we demonstrated the e!ectiveness of Algorithm 3.5.6 in

computing A(1,2)C(S),R(T ). Now, we will focus on comparing the e”ciency of di!erent methods

for computing X = A(1,2)C(S),R(T ).

Example 3.5.6. Let

A = A1 +A2j ∈ Qm⌐n
R

, S = S1 + S2j ∈ Qn⌐k
R

, T = T1 + T2j ∈ Ql⌐m
R

,

where the complex components are generated as:

A1 = A2 = rand(m,n) + rand(m,n)i ∈ Cm⌐n,
S1 = S2 = rand(n, k) + rand(n, k)i ∈ Cn⌐k,
T1 = T2 = rand(l,m) + rand(l,m)i ∈ Cl⌐m.

The matrix dimensions depend on a positive integer t as follows:

m = t, n = t + 5, k = t, l = t + 10.
In this example, t varies from 2 to 50 in increments of 2.

Objective: We compute A(1,2)C(S),R(T ) given by X = SUAV T , where U and V are solutions

to the RBMEs:

(SUAS,ASUA) = (S,A), (TAV T,AV TA) = (T,A).
We apply three di!erent methods to compute U and V :

(a) Our proposed Algorithm 3.3.1.

(b) The approach based on Theorem 3.1 from [80].

(c) The approach based on Theorem 3.1 from [75].

Let X1, X2, and X3 be the computed A(1,2)C(S),R(T ) using our method, the approach based on

[80], and the approach based on [75], respectively.

Error and CPU Time Evaluation: To assess accuracy, we define the following error

metrics:

φ11 = ⌝AX1A −A⌝F , φ12 = ⌝AX2A −A⌝F , φ13 = ⌝AX3A −A⌝F ,
φ21 = ⌝X1AX1 −X1⌝F , φ22 = ⌝X2AX2 −X2⌝F , φ23 = ⌝X3AX3 −X3⌝F .
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To ensure reliable results, we run each experiment for 50 trials and compute the average

CPU time for each method. Let t1, t2, and t3 be the average CPU time for computing X1,

X2, and X3, respectively.

Figure 3.5.2. Comparison of CPU time for computing A(1,2)C(S),R(T ) using di!erent

methods.

(a) Error comparison for {1}-inverse. (b) Error comparison for {2}-inverse.
Figure 3.5.3. Error comparison for computing A(1,2)C(S),R(T ) using di!erent methods.

Results and Discussion:

⋉ Figure 3.5.2 illustrates the average CPU times for di!erent methods. The results

show that our method outperforms the other methods in terms of computational

e”ciency.

⋉ Figure 3.5.3 presents a comparative analysis of the error values obtained using the

three di!erent methods. Specifically, we assess whether the computed solutions X
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satisfy the conditions for being a {1,2}-inverse of A. To verify this, we compute

the errors ⌝XAX − X⌝F for the {2}-inverse property and ⌝AXA − A⌝F for the

{1}-inverse property. The results indicate that in all cases, the errors remain below

10⋊18, confirming the high accuracy and reliability of the proposed methods.

Conclusion: In this chapter, we have examined existence condition and representation

of outer inverses and {1,2}-inverses with predefined column and/or row space of RB

matrices (RBGI). Some new relationships between computation of RBGIs and solution of

RBMEs are established. The research in this chapter generalizes results obtained in [65].

We presented the transformation of necessary RBMEs into equivalent complex systems of

linear equations. Some specificities of the basic terms, such as rank function, column, and

row space of RB matrices, are also studied. Known results and algorithms about complex

matrices are derived as particular cases.

One of promising possibility for future research is solving the corresponding RBMEs

in the time-varying case, as well as calculating RBGIs using development of corresponding

continuous-time recurrent neural networks, such as zeroing neural networks.
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CHAPTER 4

ON SOLUTIONS OF REDUCED BIQUATERNION

EQUALITY CONSTRAINED LEAST SQUARES PROBLEM

This chapter addresses the problem of solving the reduced biquaternion equality

constrained least squares (RBLSE) problem. The main results focus on developing algebraic

methods to derive both complex and real solutions for the RBLSE problem by exploiting

the complex and real forms of reduced biquaternion matrices. In addition, a detailed

perturbation analysis is conducted to evaluate the sensitivity of these solutions, and an

upper bound for the relative forward error is established. Numerical examples are provided

to demonstrate the e!ectiveness of the proposed methods and validate the accuracy of the

derived upper bound for the relative forward errors.

4.1. Introduction

In many practical applications, determining the solution to a linear system, typically

expressed as AX ≈ B, is a common challenge. The least squares method is a well-established

approach to address this problem. An extension of the least squares problem is the equality

constrained least squares problem, which has been studied extensively in real and complex

domains. Several valuable results for the real (or complex) equality constrained least

squares problem have been obtained in the literature [2, 16, 17, 22, 44].

To represent multi-dimensional data in a compact form, quaternions and reduced

biquaternions are frequently utilized, particularly in applications related to digital signal

and image processing. When studying the theoretical and numerical aspects of these

applications, one often encounters equality constrained least squares problems in the

quaternion and reduced biquaternion domains.

The quaternion equality constrained least squares (QLSE) problem has garnered

significant attention. For example, in [36], the authors solve the QLSE problem using the

complex representation and generalized SVD of quaternion matrices. In [38], employing



the complex representation of quaternion matrices, the relationship between the solutions

of the QLSE problem and the complex equality constrained least squares (CLSE) problem

is established, leading to a novel technique for finding solutions to the QLSE problem. Li

et al. [42] proposed a real structure-preserving algorithm for solving the QLSE problem

by transforming it into the corresponding quaternion weighted least squares problem.

The work in [91] provides another approach, where the authors solve the QLSE problem

using quaternion SVD and the real representation of quaternion matrices. In [87], a

real structure-preserving algorithm for the minimal norm solution of the QLSE problem

is proposed by leveraging quaternion QR decomposition and the real representation of

quaternion matrices.

Despite extensive research on the equality constrained least squares problem in real,

complex, and quaternion domains, the study of these problems in the reduced biquaternion

domain remains sparse. Previous research, such as the work in [81], explored least squares

solutions for matrix equations like AX = B and AXC = B over commutative quaternions.

In [83], the authors discussed solution techniques for computing reduced biquaternion

solutions to the RBLSE problem.

This chapter aims to advance the study of the RBLSE problem by developing methods

for obtaining both complex and real solutions. Additionally, an upper bound for the

relative forward error associated with these solutions is established, ensuring accuracy and

reliability in solving RBLSE problems.

The remainder of this chapter is organized as follows: Section 4.2 introduces the

preliminary concepts required for understanding the RBLSE problem. Section 4.3 outlines

the method for finding the complex solution to the RBLSE problem. In Section 4.4, we

discuss the technique for obtaining real solutions to the RBLSE problem. Finally, Section

4.5 presents the numerical validation of the proposed methods.

4.2. Preliminaries

To ensure this chapter is self-contained, we present key results relevant to the subsequent

sections. In particular, we define the real and complex representations of an RB matrix

M , denoted as MR and MC , respectively. Let M be an RB matrix expressed as:

M =M0 +M1i +M2j +M3k = N1 +N2j ∈ Qm⌐n
R

,
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where M0, M1, M2, M3 are real matrices, and N1 =M0 +M1i, N2 =M2 +M3i are complex

matrices.

The real and complex representations of M are defined as:

MR =
⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞

M0 −M1 M2 −M3

M1 M0 M3 M2

M2 −M3 M0 −M1

M3 M2 M1 M0

⌞⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟
, MC = ⌞⌞⌞⌞⌞⌞

N1 N2

N2 N1

⌞⌟⌟⌟⌟⌟ . (4.2.1)

Let MR
c

denote the first block column of the matrix MR, which is defined as:

MR

c
= ⎦MT

0 MT

1 MT

2 MT

3 ⎢T . (4.2.2)

Using MR
c
, the matrix MR can be represented as:

MR = ⟦MR

c
,QmM

R

c
,RmM

R

c
, SmM

R

c
⟦ , (4.2.3)

where the matrices Qm, Rm, and Sm are given by:

Qm =
⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞

0 −Im 0 0

Im 0 0 0

0 0 0 −Im
0 0 Im 0

⌞⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟
, Rm =

⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞

0 0 Im 0

0 0 0 Im

Im 0 0 0

0 Im 0 0

⌞⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟
,

and Sm =
⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞

0 0 0 −Im
0 0 Im 0

0 −Im 0 0

Im 0 0 0

⌞⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟
.

(4.2.4)

The following lemma relates the Frobenius norm of a matrix M to its real representation.

Lemma 4.2.1. Let M ∈ Qm⌐n
R

, and let MR
c

and MR be defined as in (4.2.2) and (4.2.3),

respectively. Then, the Frobenius norm of M can be expressed as:

⌝M⌝
F
= 1

2
⌜MR⌜

F
= ⌜MR

c
⌜
F
.

Proof. The proof directly follows from the definition of the Frobenius norm for a reduced

biquaternion matrix and a real matrix. ∎
The following result shows the relationship between the Frobenius norm of a real

matrix and that of a block real matrix, where each block has entries of equal norm.
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Lemma 4.2.2. Let P ∈ Rm⌐n, Q ∈ Rm⌐d, R ∈ Rm⌐p, and S ∈ Rm⌐q. If ⌝P ⌝F = ⌝Q⌝F =
⌝R⌝F = ⌝S⌝F , then we have

⌝P ⌝
F
= 1

2
⌝[P,Q,R,S]⌝

F
.

Proof. The proof directly follows from the definition of the Frobenius norm for a real

matrix. ∎
Next, consider the complex representation. Let MC

c
represent the first block column of

the matrix MC , which is defined as:

MC

c
= ⎦NT

1 NT

2 ⎢T . (4.2.5)

Using MC
c
, the matrix MC can be represented as:

MC = ⟦MC

c
, PmM

C

c
⟦ , (4.2.6)

where the matrix Pm is defined as:

Pm =
⌞⌞⌞⌞⌞⌞
0 Im

Im 0

⌞⌟⌟⌟⌟⌟ . (4.2.7)

The following lemma relates the Frobenius norm of a matrix M to its complex

representation.

Lemma 4.2.3. Let M ∈ Qm⌐n
R

, and let MC
c

and MC be defined as in (4.2.5) and (4.2.6),

respectively. Then, the Frobenius norm of M can be expressed as:

⌝M⌝
F
= 1⌟

2
⌜MC⌜

F
= ⌜MC

c
⌜
F
.

Proof. The proof directly follows from the definition of the Frobenius norm for a reduced

biquaternion matrix and a complex matrix. ∎
We also provide the following result, which illustrates how the Frobenius norm of a

complex matrix is related to a block complex matrix whose each entry has equal norm.

Lemma 4.2.4. Let P ∈ Cm⌐n and Q ∈ Cm⌐d. If ⌝P ⌝F = ⌝Q⌝F , then we have

⌝P ⌝
F
= 1⌟

2
⌝[P,Q]⌝

F
.

Proof. The proof directly follows from the definition of the Frobenius norm for a complex

matrix. ∎
Finally, we present results for both the real and complex representations of RB matrices.
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Lemma 4.2.5. For ε ∈ R, ↽ ∈ C, P,Q ∈ Qm⌐n
R

, and R ∈ Qn⌐t
R

, the following properties hold:

(1) P = Q ⇐↢ PC = QC ⇐↢ PR = QR.

(2) (P +Q)R = PR +QR, (P +Q)C = PC +QC.

(3) (εP )R = εPR, (↽P )C = ↽PC.

(4) (PR)R = PRRR, (PR)C = PCRC.

4.3. Algebraic Method for Complex Solution of RBLSE Problem

This section focuses on an algebraic approach to derive the complex solution for the

RBLSE problem. The method is based on analyzing the solution of the associated complex

LSE problem. Suppose

A =M1 +M2j ∈ Qm⌐n
R

, B = N1 +N2j ∈ Qm⌐d
R

, (4.3.1)

C = R1 +R2j ∈ Qp⌐n
R

, D = S1 + S2j ∈ Qp⌐d
R

. (4.3.2)

We will limit our discussion to the scenario where m ≥ n + d, and both matrices C and CC
c

have full row rank. With these assumptions, the RBLSE problem can be stated as follows:

min
X∈Cn⌐d ⌝AX −B⌝F subject to CX =D. (4.3.3)

To establish the connection between the RBLSE problem and its complex counterpart,

consider the following complex LSE problem:

min
X∈Cn⌐d ⌜AC

c
X −BC

c
⌜
F

subject to CC

c
X =DC

c
. (4.3.4)

To find the complex solution of the RBLSE problem, we begin by computing the QR

factorization of (CC
c
)H , which is given by:

(CC

c
)H = ⌝Q⌞⌞⌞⌞⌞⌞

⌝R
0

⌞⌟⌟⌟⌟⌟ , (4.3.5)

where ⌝Q ∈ Cn⌐n is a unitary matrix and ⌝R ∈ C2p⌐2p is a nonsingular upper triangular matrix.

Next, partition AC
c
⌝Q as:

AC

c
⌝Q = ⟦ ⌝P1, ⌝P2⟦ , (4.3.6)

where ⌝P1 ∈ C2m⌐2p and ⌝P2 ∈ C2m⌐(n⋊2p). With these notations in place, we now present the

main result of this section.
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Theorem 4.3.1. Consider the RBLSE problem defined in (4.3.3) and the complex LSE

problem in (4.3.4), with notations specified in (4.3.5) and (4.3.6). For a matrix X ∈ Cn⌐d,
X is a complex solution of the RBLSE problem (4.3.3) if and only if X solves the complex

LSE problem (4.3.4). In this scenario, the unique solution X with minimum norm can be

expressed as:

X = ⌝Q⌞⌞⌞⌞⌞⌞
(⌝RH)⋊1DC

c⌝P2 ∣BC
c
− ⌝P1 (⌝RH)⋊1DC

c
∣
⌞⌟⌟⌟⌟⌟ . (4.3.7)

Proof. If X ∈ Cn⌐d is a solution of the complex LSE problem (4.3.4), then

⌜AC

c
X −BC

c
⌜
F
=min, CC

c
X =DC

c
. (4.3.8)

The Frobenius norm of a complex matrix remains invariant under unitary transformations.

Since the matrix Pm in (4.2.7) is unitary, it follows that:

⌜AC

c
X −BC

c
⌜
F
= ⌜Pm (AC

c
X −BC

c
)⌜

F
.

Using equations (4.2.1), (4.2.6), along with Lemmas 4.2.3, 4.2.4 and 4.2.5, we obtain

⌜AC

c
X −BC

c
⌜
F
= 1⌟

2
⌜⟦(AC

c
X −BC

c
) , Pm (AC

c
X −BC

c
)⟦⌜

F

= 1⌟
2
⌜⟦AC

c
X,PmA

C

c
X⟦ − ⟦BC

c
, PmB

C

c
⟦⌜

F

= 1⌟
2

NNNNNNNNNNNN
⟦AC

c
, PmA

C

c
⟦ ⌞⌞⌞⌞⌞⌞

X 0

0 X

⌞⌟⌟⌟⌟⌟ − ⟦B
C

c
, PmB

C

c
⟦NNNNNNNNNNNNF

= 1⌟
2
⌜ACXC −BC⌜

F

= 1⌟
2
⌜(AX −B)C⌜

F

= ⌝AX −B⌝
F
.

From (4.3.8), we obtain

⌜AC

c
X −BC

c
⌜
F
= ⌝AX −B⌝

F
=min, (4.3.9)

and

⟦CC

c
, PpC

C

c
⟦ ⌞⌞⌞⌞⌞⌞

X 0

0 X

⌞⌟⌟⌟⌟⌟ = ⟦D
C

c
, PpD

C

c
⟦ .
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Using (4.2.6), we know that CC = [CC
c
, PpCC

c
] and DC = [DC

c
, PpDC

c
]. Applying this, we

get

CCXC =DC ,

(CX)C =DC ,

CX =D. (4.3.10)

By combining (4.3.9) and (4.3.10), we conclude that X ∈ Cn⌐d is a complex solution to the

RBLSE problem (4.3.3), and vice versa.

To find the expression for X, we solve the complex LSE problem (4.3.4). Set

⌝QHX = ⌞⌞⌞⌞⌞⌞
Y

Z

⌞⌟⌟⌟⌟⌟ ,
where Y ∈ C2p⌐d and Z ∈ C(n⋊2p)⌐d. Equation 4.3.4 can be rewritten as

min
X

⌜AC

c
⌝Q⌝QHX −BC

c
⌜
F

subject to CC

c
⌝Q⌝QHX =DC

c
. (4.3.11)

Utilizing (4.3.5), we have

CC

c
⌝Q⌝QHX =DC

c
%↢ ⎦ ⌝RH 0⎢ ⌞⌞⌞⌞⌞⌞

Y

Z

⌞⌟⌟⌟⌟⌟ =D
C

c
.

Since ⌝RH is a nonsingular matrix, we get Y = (⌝RH)⋊1DC
c
. Using (4.3.6), equation (4.3.11)

takes the form

min
Z

⌜ ⌝P2Z − (BC

c
− ⌝P1Y )⌜

F
.

The minimum norm solution of the above least squares problem is Z = ⌝P2 (BC
c
− ⌝P1Y ).

Thus, we can derive the desired expression for X. ∎
Next, we aim to examine how perturbations in A, B, C, and D a!ect the complex

solution XCL of the RBLSE problem (4.3.3). Let

⎡A = A +&A, ⎡B = B +&B,

⎡C = C +&C, ⎡D =D +&D,
(4.3.12)

where &A, &B, &C, and &D represent the perturbations of the input data A, B, C,

and D, respectively. We assume that the perturbations &A, &B, &C, and &D are small
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enough to guarantee that the perturbed matrices ⎡C and ⎡CC
c
retain full row rank. These

perturbations are measured normwise by the smallest φ for which

⌝&A⌝
F
≤ φ ⌝A⌝

F
, ⌝&B⌝

F
≤ φ ⌝B⌝

F
,

⌝&C⌝
F
≤ φ ⌝C⌝

F
, ⌝&D⌝

F
≤ φ ⌝D⌝

F
.

(4.3.13)

Let ⎡XCL be the complex solution to the perturbed RBLSE problem

min
X∈Cn⌐d ⌜ ⎡AX − ⎡B⌜F subject to ⎡CX = ⎡D, (4.3.14)

and let &XCL = ⎡XCL −XCL.

Theorem 4.3.2. Consider the RBLSE problem defined in (4.3.3) and the perturbed RBLSE

problem described in (4.3.14). If the perturbations &A, &B, &C, and &D are su”ciently

small, as described in (4.3.13), then we have

⌝&XCL⌝F⌝XCL⌝F ≤ φ(KC

A
( ⌝DC

c
⌝
F⌝CC

c
⌝
F
⌝XCL⌝F + 1) +KC

B
( ⌝BC

c
⌝
F⌝AC

c
⌝
F
⌝XCL⌝F + 1)

+ (KC

B
)2 (⌝CC

c
⌝
F⌝AC

c
⌝
F

⌜AC

c
Lc⌜2 + 1) ⌝Rc⌝F⌝AC

c
⌝
F
⌝XCL⌝F ) +O(φ2) ≡ UCL,

(4.3.15)

where

KC

B
= ⌜AC

c
⌜
F
⎣(AC

c
Pc) ⎣

2
, KC

A
= ⌜CC

c
⌜
F
⌝Lc⌝2 , Lc = ∣In − (AC

c
Pc) AC

c
∣ (CC

c
) ,

Pc = In − (CC

c
) CC

c
, Rc = BC

c
−AC

c
XCL.

Proof. The perturbed complex LSE problem corresponding to the perturbed RBLSE

problem (4.3.14) is given by:

min
X∈Cn⌐d ⎣( ⎡A)Cc X − ( ⎡B)C

c
⎣
F

subject to ( ⎡C)C
c
X = ( ⎡D)C

c
. (4.3.16)

Using Theorem 4.3.1, we know that ⎡XCL is the solution to the perturbed complex LSE

problem (4.3.16). From (4.3.12) and utilizing Lemma 4.2.5, we have

( ⎡A)C
c
= AC

c
+ (&A)C

c
, ( ⎡B)C

c
= BC

c
+ (&B)C

c
,

( ⎡C)C
c
= CC

c
+ (&C)C

c
, ( ⎡D)C

c
=DC

c
+ (&D)C

c
.

Thus, the perturbed complex LSE problem (4.3.16) can be rewritten as:

min
X∈Cn⌐d ⌜(AC

c
+ (&A)C

c
)X − (BC

c
+ (&B)C

c
)⌜

F
subject to

(CC

c
+ (&C)C

c
)X = (DC

c
+ (&D)C

c
) . (4.3.17)
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Using (4.3.13) and Lemma 4.2.3, we can establish the following bounds for the perturbation:

⌜(&A)C
c
⌜
F
≤ φ ⌜AC

c
⌜
F
, ⌜(&B)C

c
⌜
F
≤ φ ⌜BC

c
⌜
F
,

⌜(&C)C
c
⌜
F
≤ φ ⌜CC

c
⌜
F
, ⌜(&D)C

c
⌜
F
≤ φ ⌜DC

c
⌜
F
.

(4.3.18)

With the perturbed problem (4.3.17) and the bounds in (4.3.18), and using Theorem 4.3.1,

the sensitivity analysis of the complex solution to the RBLSE problem (4.3.3) reduces to

evaluating the sensitivity of the solution to the complex LSE problem (4.3.4). Consequently,

the upper bound UCL for the relative forward error of the complex solution to the RBLSE

problem can be obtained from [14, Equation 4.11]. ∎

4.4. Algebraic Method for Real Solution of RBLSE Problem

This section focuses on an algebraic approach to derive the real solution for the RBLSE

problem. The method is based on analyzing the solution of the associated real LSE problem.

Suppose

A = A0 +A1i +A2j +A3k ∈ Qm⌐n
R

, B = B0 +B1i +B2j +B3k ∈ Qm⌐d
R

, (4.4.1)

C = C0 +C1i +C2j +C3k ∈ Qp⌐n
R

, D =D0 +D1i +D2j +D3k ∈ Qp⌐d
R

. (4.4.2)

We will limit our discussion to the scenario where m ≥ n + d, and both matrices C and CR
c

have full row rank. With these assumptions, the RBLSE problem can be stated as follows:

min
X∈Rn⌐d ⌝AX −B⌝F subject to CX =D. (4.4.3)

To establish the connection between the RBLSE problem and its real counterpart, consider

the following real LSE problem:

min
X∈Rn⌐d ⌜AR

c
X −BR

c
⌜
F

subject to CR

c
X =DR

c
. (4.4.4)

To find the real solution of the RBLSE problem, we first compute the QR factorization of

(CR
c
)T , given by:

(CR

c
)T = Q⌞⌞⌞⌞⌞⌞

R

0

⌞⌟⌟⌟⌟⌟ , (4.4.5)

where Q ∈ Rn⌐n is an orthonormal matrix and R ∈ R4p⌐4p is a nonsingular upper triangular

matrix. Next, partition AR
c
Q as:

AR

c
Q = ⟦P 1, P 2⟦ , (4.4.6)
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where P 1 ∈ R4m⌐4p and P 2 ∈ R4m⌐(n⋊4p). With these notations, we now present the main

result of this section.

Theorem 4.4.1. Consider the RBLSE problem defined in (4.4.3) and the real LSE problem

in (4.4.4), with notations specified in (4.4.5) and (4.4.6). For a matrix X ∈ Rn⌐d, X is a

real solution of the RBLSE problem (4.4.3) if and only if X solves the real LSE problem

(4.4.4). In this scenario, the unique solution with minimum norm X can be expressed as:

X = Q
⌞⌞⌞⌞⌞⌞⌞

∣RT∣⋊1DR
c

P 2 ∣BR
c
− P 1 ∣RT∣⋊1DR

c
)
⌞⌟⌟⌟⌟⌟⌟
. (4.4.7)

Proof. If X ∈ Rn⌐d is a solution of the real LSE problem (4.4.4), then

⌜AR

c
X −BR

c
⌜
F
=min, CR

c
X =DR

c
. (4.4.8)

The Frobenius norm of a real matrix remains invariant under orthogonal transformations.

Since the matrices Qm, Rm, and Sm in (4.2.4) are orthogonal, it follows that:

⌜AR

c
X −BR

c
⌜
F
= ⌜Qm (AR

c
X −BR

c
)⌜

F
= ⌜Rm (AR

c
X −BR

c
)⌜

F
= ⌜Sm (AR

c
X −BR

c
)⌜

F
.

Using equations (4.2.1), (4.2.3), along with Lemmas 4.2.1, 4.2.2 and 4.2.5, we obtain

⌜AR

c
X −BR

c
⌜
F
= 1

2
⌜⟦(AR

c
X −BR

c
) ,Qm (AR

c
X −BR

c
) ,Rm (AR

c
X −BR

c
) , Sm (AR

c
X −BR

c
)⟦⌜

F

= 1

2
⌜⟦AR

c
X,QmA

R

c
X,RmA

R

c
X,SmA

R

c
X⟦ − ⟦BR

c
,QmB

R

c
,RmB

R

c
, SmB

R

c
⟦⌜

F

= 1

2

NNNNNNNNNNNNNNNNNNNNNNNNN
⟦AR

c
,QmA

R

c
,RmA

R

c
, SmA

R

c
⟦
⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞

X 0 0 0

0 X 0 0

0 0 X 0

0 0 0 X

⌞⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟
(4.4.9)

− ⟦BR

c
,QmB

R

c
,RmB

R

c
, SmB

R

c
⟦⌜

F

= 1

2
⌜ARXR −BR⌜

F

= 1

2
⌜(AX −B)R⌜

F

= ⌝AX −B⌝
F
.

From (4.4.8), we obtain

⌜AR

c
X −BR

c
⌜
F
= ⌝AX −B⌝

F
=min, (4.4.10)
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and

⟦CR

c
,QpC

R

c
,RpC

R

c
, SpC

R

c
⟦
⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞

X 0 0 0

0 X 0 0

0 0 X 0

0 0 0 X

⌞⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟
= ⟦DR

c
,QpD

R

c
,RpD

R

c
, SpD

R

c
⟦ .

Using (4.2.3), we get CR = [CR
c
,QpCR

c
,RpCR

c
, SpCR

c
], andDR = [DR

c
,QpDR

c
,RpDR

c
, SpDR

c
] .

Applying this, we obtain

CRXR =DR,

(CX)R =DR,

CX =D. (4.4.11)

By combining (4.4.10) and (4.4.11), we conclude that X ∈ Rn⌐d is a real solution to the

RBLSE problem (4.4.3), and vice versa. The expression for X can be obtained by following

the proof method of Theorem 4.3.1. ∎
Next, we aim to examine how perturbations in A, B, C, and D a!ect the real solution

XRL of the RBLSE problem (4.4.3). Let

⎡A = A +&A, ⎡B = B +&B,

⎡C = C +&C, ⎡D =D +&D,
(4.4.12)

where &A, &B, &C, and &D represent the perturbations of the input data A, B, C,

and D, respectively. We assume that the perturbations &A, &B, &C, and &D are small

enough to ensure that the perturbed matrices ⎡C and ⎡CR
c

retain full row rank. These

perturbations are measured normwise by the smallest φ for which

⌝&A⌝
F
≤ φ ⌝A⌝

F
, ⌝&B⌝

F
≤ φ ⌝B⌝

F
,

⌝&C⌝
F
≤ φ ⌝C⌝

F
, ⌝&D⌝

F
≤ φ ⌝D⌝

F
.

(4.4.13)

Let ⎡XRL be the real solution to the perturbed RBLSE problem

min
X∈Rn⌐d ⌜ ⎡AX − ⎡B⌜F subject to ⎡CX = ⎡D, (4.4.14)

and let &XRL = ⎡XRL −XRL.

Theorem 4.4.2. Consider the RBLSE problem defined in (4.4.3) and the perturbed RBLSE

problem described in (4.4.14). If the perturbations &A, &B, &C, and &D are su”ciently
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small, as described in (4.4.13), then we have

⌝&XRL⌝F⌝XRL⌝F ≤ φ(KR

A
( ⌝DR

c
⌝
F⌝CR

c
⌝
F
⌝XRL⌝F + 1) +KR

B
( ⌝BR

c
⌝
F⌝AR

c
⌝
F
⌝XRL⌝F + 1)

+ (KR

B
)2 (⌝CR

c
⌝
F⌝AR

c
⌝
F

⌜AR

c
Lr⌜2 + 1) ⌝Rr⌝F⌝AR

c
⌝
F
⌝XRL⌝F ) +O(φ2) ≡ URL,

(4.4.15)

where

KR

B
= ⌜AR

c
⌜
F
⎣(AR

c
Pr) ⎣

2
, KR

A
= ⌜CR

c
⌜
F
⌝Lr⌝2 , Lr = ∣In − (AR

c
Pr) AR

c
∣ (CR

c
) ,

Pr = In − (CR

c
) CR

c
, Rr = BR

c
−AR

c
XRL.

Proof. The perturbed real LSE problem corresponding to the perturbed RBLSE problem

(4.4.14) is given by:

min
X∈Rn⌐d ⎣( ⎡A)Rc X − ( ⎡B)R

c
⎣
F

subject to ( ⎡C)R
c
X = ( ⎡D)R

c
. (4.4.16)

Using Theorem 4.4.1, we know that ⎡XRL is the solution to the perturbed real LSE problem

(4.4.16). From (4.4.12) and utilizing Lemma 4.2.5, we have

( ⎡A)R
c
= AR

c
+ (&A)R

c
, ( ⎡B)R

c
= BR

c
+ (&B)R

c
,

( ⎡C)R
c
= CR

c
+ (&C)R

c
, ( ⎡D)R

c
=DR

c
+ (&D)R

c
.

Thus, the perturbed real LSE problem (4.4.16) can be rewritten as:

min
X∈Rn⌐d ⌜(AR

c
+ (&A)R

c
)X − (BR

c
+ (&B)R

c
)⌜

F
subject to

(CR

c
+ (&C)R

c
)X = (DR

c
+ (&D)R

c
) . (4.4.17)

Using (4.4.13) and Lemma 4.2.1, we can establish the following bounds for the perturbation:

⌜(&A)R
c
⌜
F
≤ φ ⌜AR

c
⌜
F
, ⌜(&B)R

c
⌜
F
≤ φ ⌜BR

c
⌜
F
,

⌜(&C)R
c
⌜
F
≤ φ ⌜CR

c
⌜
F
, ⌜(&D)R

c
⌜
F
≤ φ ⌜DR

c
⌜
F
.

(4.4.18)

With the perturbed problem (4.4.17) and the bounds in (4.4.18), and using Theorem

4.4.1, the sensitivity analysis of the real solution to the RBLSE problem (4.4.3) reduces to

evaluating the sensitivity of the solution to the real LSE problem (4.4.4). Consequently,

the upper bound URL for the relative forward error of the real solution to the RBLSE

problem can be obtained from [14, Equation 4.11]. ∎
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4.5. Numerical Verification

Building on the previous discussions, this section presents numerical algorithms

designed to find special solutions to the RBLSE problem. We also include numerical

examples to validate these algorithms. Additionally, we assess the upper bound for the

relative forward error of both complex and real solutions to the RBLSE problem.

All computations were performed using a computer equipped with an Intel Core

i7 − 9700 processor at 3.00 GHz and 16 GB of RAM, running MATLAB R2021b software.

Building on Theorem 4.3.1, we now outline Algorithm 4.5.1, which is designed to

compute the complex solution to the RBLSE problem (4.3.3).

Algorithm 4.5.1 Complex Solution to the RBLSE Problem (4.3.3)

Input: A =M1 +M2j ∈ Qm⌐n
R

, B = N1 +N2j ∈ Qm⌐d
R

, C = R1 +R2j ∈ Qp⌐n
R

,

D = S1 + S2j ∈ Qp⌐d
R

. Assume m ≥ n + d and that both matrices C and CC
c
have full row

rank.

Output: X (the complex solution to the RBLSE problem).

Step 1: QR Factorization: Find the QR factorization of (CC
c
)H as described in (4.3.5).

Step 2: Matrix Partitioning: Partition the matrix AC
c
⌝Q as shown in (4.3.6).

Step 3: Solution Computation: Compute the complex solution X to the RBLSE

problem (4.3.3) using the formula given in (4.3.7).

Building on Theorem 4.4.1, we now outline Algorithm 4.5.2, which is designed to

compute the real solution to the RBLSE problem (4.4.3).

Algorithm 4.5.2 Real Solution to the RBLSE Problem (4.4.3)

Input: A = A0 +A1i +A2j +A3k ∈ Qm⌐n
R

, B = B0 +B1i +B2j +B3k ∈ Qm⌐d
R

,

C = C0 +C1i +C2j +C3k ∈ Qp⌐n
R

, D =D0 +D1i +D2j +D3k ∈ Qp⌐d
R

. Assume m ≥ n + d and

that both matrices C and CR
c
have full row rank.

Output: X (the real solution to the RBLSE problem).

Step 1: QR Factorization: Find the QR factorization of (CR
c
)T as described in (4.4.5).

Step 2: Matrix Partitioning: Partition the matrix AR
c
Q as shown in (4.4.6).

Step 3: Solution Computation: Compute the real solution X to the RBLSE problem

(4.4.3) using the formula given in (4.4.7).
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Next, to thoroughly assess the performance of the proposed algorithms, we present a

comprehensive step-by-step flop count analysis. This detailed examination systematically

quantifies the computational cost at each stage, o!ering valuable insights into the overall

e”ciency of the algorithm. By explicitly evaluating the number of floating-point operations

required, we provide a deeper understanding of the computational complexity involved.

In particular, we conduct an in-depth analysis of the e”ciency of the complex solution

algorithm. A meticulous step-by-step flop count is outlined, highlighting the additional

computations necessitated by the complex structure.

Step Description Flop Count

1 QR decomposition of (CC
c
)H O(32np2)

2 Compute AC
c
⌝Q O(16mn2 − 4mn)

3 Partition AC
c
⌝Q into ⌝P1 and ⌝P2 O(1)

4 Compute ⌝P2 O(48m(n − 2p)2 + 40(n − 2p)3)
5 Solve (⌝RH)⋊1DC

c
O(16p2d + 10pd)

6 Compute ⌝P1 (⌝RH)⋊1DC
c

O(32mpd − 4md)
7 Compute BC

c
− ⌝P1 (⌝RH)⋊1DC

c
O(4md)

8 Compute ⌝P2 (BC
c
− ⌝P1 (⌝RH)⋊1DC

c
) O(16m(n − 2p)d)

9 Compute X O(8n2d)
Total Flop Count O(32np2 + 16mn2 − 4mn + 48m(n −

2p)2 + 40(n − 2p)3 + 16p2d + 10pd +
32mpd−4md+4md+16m(n−2p)d+
8n2d)

Table 4.5.1. Flop count for the computational steps to find the complex solution

of the RBLSE problem.

To analyze the e”ciency of the real solution algorithm, a detailed step-by-step flop

count is provided below.
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Step Description Flop Count

1 QR decomposition of (CR
c
)T O(32np2)

2 Compute AR
c
Q O(8mn2 − 4mn)

3 Partition AR
c
Q into P 1 and P 2 O(1)

4 Compute P 2 O(24m(n − 4p)2 + 10(n − 4p)3)
5 Solve ∣RT∣⋊1DR

c
O(16p2d)

6 Compute P 1 ∣RT∣⋊1DR
c

O(32mpd − 4md)
7 Compute BR

c
− P 1 ∣RT∣⋊1DR

c
O(4md)

8 Compute P 2(BR
c
− P 1 ∣RT∣⋊1DR

c
) O(8m(n − 4p)d)

9 Compute X O(2n2d)
Total Flop Count O(32np2 + 8mn2 − 4mn + 24m(n −

4p)2 + 10(n− 4p)3 + 16p2d+ 32mpd−
4md + 4md + 8m(n − 4p)d + 2n2d)

Table 4.5.2. Flop count for the computational steps to find the real solution of

the RBLSE problem.

Next, we provide examples to evaluate the e!ectiveness of the proposed algorithms.

Example 4.5.1. Let A = M1 +M2j ∈ Qm⌐n
R

, B = N1 +N2j ∈ Qm⌐d
R

, C = R1 +R2j ∈ Qp⌐n
R

,

and D = S1 + S2j ∈ Qp⌐d
R

. Let

Mi = rand(m,n) + rand(m,n)i ∈ Cm⌐n, for i = 1,2,
Ni = rand(m,d) + rand(m,d)i ∈ Cm⌐d, for i = 1,2,
Ri = rand(p, n) + rand(p, n)i ∈ Cp⌐n, for i = 1,2,
Si = rand(p, d) + rand(p, d)i ∈ Cp⌐d, for i = 1,2.

Take m = 40t, n = 6t, p = 2t, and d = 3. Here, t is an arbitrary number. We apply

Algorithm 4.5.1 to determine the complex solution of the RBLSE problem. Let XCL be the
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complex solution of the RBLSE problem

min
X,Rc

⌝Rc⌝F subject to AX = B +Rc, CX =D.

Let φ1 = ⌝AXCL − (B +Rc)⌝F and φ2 = ⌝CXCL −D⌝F . In Table 4.5.3, we compute φ1 and

φ2 for di!erent values of t.

t φ1 φ2

1 8.5131 ⌐ 10⋊16 2.0907 ⌐ 10⋊15
3 7.0956 ⌐ 10⋊16 2.5624 ⌐ 10⋊15
5 1.0499 ⌐ 10⋊15 3.7683 ⌐ 10⋊15
7 1.2804 ⌐ 10⋊15 4.5681 ⌐ 10⋊15
9 1.4232 ⌐ 10⋊15 8.1546 ⌐ 10⋊15

Table 4.5.3. Computational accuracy of Algorithm 4.5.1 for computing the

complex solution of the RBLSE problem (4.3.3)

Table 4.5.3 shows that the errors φ1 and φ2 across di!erent values of t are consistently

below 10⋊15. This indicates that Algorithm 4.5.1 is highly e!ective in determining the

complex solution for the RBLSE problem (4.3.3).

Example 4.5.2. In Example 4.5.1, we introduce random perturbations &A, &B, &C,

and &D to the input matrices A, B, C, and D, respectively, to examine how these

small perturbations a!ect the complex solution XCL of the RBLSE problem (4.3.3). These

perturbations are measured normwise by the smallest φ, as in (4.3.13). We define the

exact relative forward errors for these solutions as ⌜ ⌝XCL⋊XCL⌜F⌜XCL⌜F . Table 4.5.4 presents the

calculated exact relative forward errors and the corresponding upper bound UCL (calculated

using equation (4.3.15)) for these solutions across di!erent values of t and φ.

Table 4.5.4 shows that the exact relative forward errors of the complex solution to the

RBLSE problem (4.3.3) are consistently lower than their respective upper bounds across

various values of t and φ. This verifies the reliability of the derived upper bound UCL for

the relative forward error.

118



t φ ⌜ ⌝XCL⋊XCL⌜F⌜XCL⌜F UCL

1 7.0103 ⌐ 10⋊13 1.3055 ⌐ 10⋊12 2.7846 ⌐ 10⋊11
7.0580 ⌐ 10⋊10 1.3349 ⌐ 10⋊9 2.8036 ⌐ 10⋊8
8.9885 ⌐ 10⋊7 1.81513 ⌐ 10⋊6 3.5704 ⌐ 10⋊6

5 7.1245 ⌐ 10⋊11 1.1503 ⌐ 10⋊10 9.5002 ⌐ 10⋊9
8.9399 ⌐ 10⋊9 2.0884 ⌐ 10⋊8 1.1921 ⌐ 10⋊6
1.0173 ⌐ 10⋊8 1.5357 ⌐ 10⋊8 1.3565 ⌐ 10⋊6

9 7.1497 ⌐ 10⋊12 1.2430 ⌐ 10⋊11 1.3370 ⌐ 10⋊9
6.6856 ⌐ 10⋊10 1.2308 ⌐ 10⋊9 1.2502 ⌐ 10⋊7
1.0212 ⌐ 10⋊7 2.5587 ⌐ 10⋊7 1.9096 ⌐ 10⋊5

Table 4.5.4. Comparison of relative forward errors and their upper bounds for

the complex solution of a perturbed RBLSE problem (4.3.3)

Example 4.5.3. Let A = A0 +A1i +A2j +A3k ∈ Qm⌐n
R

, B = B0 +B1i +B2j +B3k ∈ Qm⌐d
R

,

C = C0 +C1i +C2j +C3k ∈ Qp⌐n
R

, and D =D0 +D1i +D2j +D3k ∈ Qp⌐d
R

. Let

Ai = randn(m,n) ∈ Rm⌐n, for i = 0 ∶ 3,
Bi = randn(m,d) ∈ Rm⌐d, for i = 0 ∶ 3,
Ci = randn(p, n) ∈ Rp⌐n, for i = 0 ∶ 3,
Di = randn(p, d) ∈ Rp⌐d, for i = 0 ∶ 3.

Take m = 30t, n = 10t, p = 2t, and d = 2. Here, t is an arbitrary number. We apply

Algorithm 4.5.2 to determine the real solution of the RBLSE problem. Let XRL be the real

solution of the RBLSE problem

min
X,Rr

⌝Rr⌝F subject to AX = B +Rr, CX =D.

Let φ1 = ⌝AXRL − (B +Rr)⌝F and φ2 = ⌝CXRL −D⌝F . In Table 4.5.5, we compute φ1 and

φ2 for di!erent values of t.

Table 4.5.5 shows that the errors φ1 and φ2 across di!erent values of t are consistently

below 10⋊14. This indicates that Algorithm 4.5.2 is highly e!ective in determining the real

solution for the RBLSE problem (4.4.3).
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t φ1 φ2

1 2.9063 ⌐ 10⋊15 3.0851 ⌐ 10⋊15
3 2.5053 ⌐ 10⋊15 5.5184 ⌐ 10⋊15
5 3.7915 ⌐ 10⋊15 1.0949 ⌐ 10⋊14
7 3.9204 ⌐ 10⋊15 1.3185 ⌐ 10⋊14
9 5.2026 ⌐ 10⋊15 1.7247 ⌐ 10⋊14

Table 4.5.5. Computational accuracy of Algorithm 4.5.2 for computing the real

solution of the RBLSE problem (4.4.3)

t φ ⌜ ⌝XRL⋊XRL⌜F⌜XRL⌜F URL

1 7.3638 ⌐ 10⋊12 2.3814 ⌐ 10⋊11 8.0339 ⌐ 10⋊10
7.3677 ⌐ 10⋊10 2.1476 ⌐ 10⋊9 8.0381 ⌐ 10⋊8
7.9614 ⌐ 10⋊8 7.6845 ⌐ 10⋊7 8.6858 ⌐ 10⋊6

3 7.1742 ⌐ 10⋊14 2.6216 ⌐ 10⋊13 9.0524 ⌐ 10⋊12
8.1702 ⌐ 10⋊11 1.5855 ⌐ 10⋊10 1.0309 ⌐ 10⋊8
7.1758 ⌐ 10⋊9 2.6438 ⌐ 10⋊8 9.0544 ⌐ 10⋊7

5 7.2567 ⌐ 10⋊11 2.4717 ⌐ 10⋊10 1.0430 ⌐ 10⋊8
7.2735 ⌐ 10⋊9 2.5130 ⌐ 10⋊8 1.0454 ⌐ 10⋊6
8.7538 ⌐ 10⋊7 1.8374 ⌐ 10⋊6 1.2581 ⌐ 10⋊4

Table 4.5.6. Comparison of relative forward errors and their upper bounds for

the real solution of a perturbed RBLSE problem (4.4.3)

Example 4.5.4. In Example 4.5.3, we introduce random perturbations &A, &B, &C,

and &D to the input matrices A, B, C, and D, respectively, to examine how these

small perturbations a!ect the real solution XRL of the RBLSE problem (4.4.3). These

perturbations are measured normwise by the smallest φ, as in (4.4.13). We define the exact

relative forward errors for these solutions as ⌜ ⌝XRL⋊XRL⌜F⌜XRL⌜F . Table 4.5.6 presents the computed

exact relative forward errors and the corresponding upper bound URL (calculated using

equation (4.4.15)) for these solutions across di!erent values of t and φ.
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Table 4.5.6 shows that the exact relative forward errors of the real solution to the

RBLSE problem (4.4.3) are consistently lower than their respective upper bounds across

various values of t and φ. This verifies the reliability of the derived upper bound URL for

the relative forward error.

Example 4.5.5. Let A = M1 + M2j ∈ Qm⌐10
R

, C = R1 + R2j ∈ Q3⌐10
R

, and X0 =
rand(10,3) + rand(10,3)i ∈ C10⌐3. Let

Mi = rand(m,10) + rand(m,10)i ∈ Cm⌐10, for i = 1,2
Ri = rand(3,10) + rand(3,10)i ∈ C3⌐10, for i = 1,2.

Take B = AX0 and D = CX0. Thus, X0 is the complex solution to the RBLSE problem

(4.3.3). To measure the performance of the proposed technique for the RBLSE problem

(4.3.3), Algorithm 4.5.1 is employed to determine the complex solution X. Let the error

be φ = ⌝X −X0⌝F . Here, m is a variable parameter. We evaluate the errors φ for various

values of m. The relationship between the errors φ and m is presented in Table 4.5.7.

m φ = ⌝X −X0⌝F
100 1.3154 ⌐ 10⋊14
200 6.2150 ⌐ 10⋊15
300 6.5603 ⌐ 10⋊15
400 6.1485 ⌐ 10⋊15
500 3.2441 ⌐ 10⋊15

Table 4.5.7. Computational accuracy of Algorithm 4.5.1 for computing the

complex solution of the RBLSE problem (4.3.3)

Table 4.5.7 shows that the error φ between the complex solution derived from

Algorithm 4.5.1 and the corresponding true solution to the RBLSE problem (4.3.3)

remains consistently below 10⋊14 for various values of m. This indicates the high accuracy

of Algorithm 4.5.1 in computing the complex solution to the RBLSE problem (4.3.3).

Example 4.5.6. Let A = A0 +A1i +A2j +A3k ∈ Qm⌐50
R

, C = C0 +C1i +C2j +C3k ∈ Q10⌐50
R

,

and X0 = randn(50,30) ∈ R50⌐30. Let
Ai = randn(m,50) ∈ Rm⌐50, for i = 0 ∶ 3
Ci = randn(10,50) ∈ R10⌐50, for i = 0 ∶ 3.
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Take B = AX0 and D = CX0. Clearly, X0 is the real solution to the RBLSE problem

(4.4.3). To measure the performance of the proposed technique for the RBLSE problem

(4.4.3), Algorithm 4.5.2 is employed to determine the real solution X. Define the error

as φ = ⌝X −X0⌝F . Here, m is a variable parameter. We evaluate the errors φ for various

values of m. The relationship between the errors φ and m is presented in Table 4.5.8.

m φ = ⌝X −X0⌝F
1000 3.8948 ⌐ 10⋊14
2000 4.4732 ⌐ 10⋊14
3000 4.1257 ⌐ 10⋊14
4000 3.7531 ⌐ 10⋊14
5000 4.6532 ⌐ 10⋊14

Table 4.5.8. Computational accuracies of Algorithm 4.5.2 for computing the real

solution of the RBLSE problem (4.4.3)

Table 4.5.8 shows that the error φ between the real solution derived from Algorithm 4.5.2

and the corresponding true solution to the RBLSE problem (4.4.3) remains consistently

below 10⋊14 for various values of m. This indicates the high accuracy of Algorithm 4.5.2 in

computing the real solution to the RBLSE problem (4.4.3).

The following example evaluates the e”ciency of our method in computing both real

and complex solutions of the RBLSE problem. To assess its performance and scalability,

we apply our approach to large matrix sizes and compare the real and complex solutions

in terms of computational accuracy and CPU runtime, demonstrating the e!ectiveness of

our method for large-scale problems.

Example 4.5.7. To evaluate the accuracy and performance of the proposed methods for

solving the RBLSE problem, we use random data matrices of varying sizes. The problem

matrices are defined as follows:

A = A0 +A1i +A2j +A3k =M1 +M2j ∈ Qm⌐n
R

, B = B0 +B1i +B2j +B3k = N1 +N2j ∈ Qm⌐d
R

,

C = C0 +C1i +C2j +C3k = R1 +R2j ∈ Qp⌐n
R

, D =D0 +D1i +D2j +D3k = S1 + S2j ∈ Qp⌐d
R

.
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The real matrix components Ai, Bi, Ci, and Di are generated as:

Ai = rand(m,n) ∈ Rm⌐n, i = 0,1,2,3,
Bi = rand(m,d) ∈ Rm⌐d, i = 0,1,2,3,
Ci = rand(p, n) ∈ Rp⌐n, i = 0,1,2,3,
Di = rand(p, d) ∈ Rp⌐d, i = 0,1,2,3.

The matrix dimensions depend on a positive integer t defined as:

m = 30t, n = 10t, p = 2t, d = 2.
In this example, t is varied from 10 to 400 in increments of 10.

Objective: We aim to compute the real and complex solutions of the RBLSE problem and

compare their accuracy and computational e”ciency.

Computational Methods:

(a) Real Solution XRL: The real solution of the RBLSE problem is computed as:

min
X,Rr

⌝Rr⌝F subject to AX = B +Rr, CX =D.

(b) Complex Solution XCL: The complex solution of the RBLSE problem is computed

as:

min
X,Rc

⌝Rc⌝F subject to AX = B +Rc, CX =D.

Error and CPU Time Evaluation: To assess accuracy, we define the following error

metrics:

φr1 = ⌝AXRL − (B +Rr)⌝F , φr2 = ⌝CXRL −D⌝F .
φc1 = ⌝AXCL − (B +Rc)⌝F , φc2 = ⌝CXCL −D⌝F .

To ensure reliable results, we run each experiment for 50 trials and compute the average

CPU time. Let:

⋉ tr be the average CPU time for computing the real solution XRL.

⋉ tc be the average CPU time for computing the complex solution XCL.
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Figure 4.5.1. Comparison of CPU time for computing real and complex solution

of the RBLSE problem.

(a) Error for computing real solution. (b) Error for computing complex solution.

Figure 4.5.2. Accuracy of our method for computing the real and complex

solutions of the RBLSE problem.

Results and Discussion:

⋉ Figure 4.5.1 compares the average CPU times to compute real and complex solutions

of the RBLSE problem. The results indicate that the algorithm for computing the

real solution takes significantly less time than the one for computing the complex

solution. This is consistent with the theoretical complexity of the methods.

⋉ Figure 4.5.2 presents the error comparison for both real and complex solutions. Both

solutions exhibit accuracy with error values below 10⋊13, confirming the accuracy of

the methods.
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Conclusion: In this chapter, we have developed an algebraic method for solving the

RBLSE problem by transforming it into equivalent complex and real LSE problems. This

transformation is achieved by utilizing the complex and real representations of reduced

biquaternion matrices, which facilitates e”cient computation of both the complex and real

solutions to the RBLSE problem. Furthermore, we have derived the upper bound for the

relative forward error associated with these solutions, thereby demonstrating the accuracy

of our proposed method in e!ectively solving the RBLSE problem.
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CHAPTER 5

ALGEBRAIC TECHNIQUE FOR REDUCED

BIQUATERNION MIXED LEAST SQUARES AND TOTAL

LEAST SQUARES PROBLEM

This chapter introduces the reduced biquaternion mixed least squares and total least

squares (RBMTLS) method for solving the overdetermined system AX ≈ B within the

reduced biquaternion algebra. The main results focus on leveraging the real representations

of RB matrices to derive conditions under which a real RBMTLS solution exists and to

provide an explicit formula for this solution. The RBMTLS method also encompasses two

important special cases: the reduced biquaternion total least squares (RBTLS) method

and the reduced biquaternion least squares (RBLS) method. Furthermore, this chapter

demonstrates the application of the RBMTLS method in finding the best approximate

solution to AX ≈ B over the complex field. Additionally, a perturbation analysis of the

real RBMTLS, RBTLS, and RBLS solutions is conducted to evaluate their stability and

sensitivity to input variations. Numerical examples are provided to validate the theoretical

results and illustrate the e!ectiveness of the proposed methods.

5.1. Introduction

The formulation of a solution procedure for many application problems often entails

finding the best approximate solution to an inconsistent linear system. In this chapter,

we explore how to compute the best approximate solutions to an overdetermined linear

system

AX ≈ B, (5.1.1)

where A = A0 + A1i + A2j + A3k ∈ Qm⌐n
R
(m > n), B = B0 +B1i +B2j +B3k ∈ Qm⌐d

R
, and

m ≥ n + d that arises within the framework of commutative quaternionic theory. Our

primary focus is on addressing inconsistent systems. This chapter investigates several

methods for solving the linear approximation problem (5.1.1), among which the least

squares (LS) approach is a widely used method to find the best approximate solution.



The multidimensional RBLS problem is formulated as:

min
X,⌝G ⌜ ⎡G⌜F subject to AX = B + ⎡G. (5.1.2)

Once the minimizing ⎡G is found, then any X that solves the corrected system in (5.1.2) is

referred to as the RBLS solution.

However, the RBLS method assumes that all errors are contained in matrix B, with

matrix A being error-free. In practice, matrix A may also be corrupted by noise, particularly

in real-world applications. The RBLS method fails to account for errors in matrix A,

potentially leading to suboptimal results. To address this issue, the total least squares

(TLS) approach was introduced, which handles errors in both A and B.

The multidimensional RBTLS problem is formulated as:

min
X,⌝E,⌝G ⌜[⎡E, ⎡G]⌜

F
subject to (A + ⎡E)X = B + ⎡G. (5.1.3)

Once the minimizing [⎡E, ⎡G] is found, then any X that solves the corrected system in

(5.1.3) is called the RBTLS solution.

The TLS method is extensively applied in areas such as system theory, signal processing,

and computer algebra. However, in some applications, the errors may be confined to the

observation matrix B and only a few columns of matrix A, while other columns of A

remain free from errors. Perturbing these accurately known columns using the RBTLS

method can reduce the accuracy of the estimated parameter X. To handle such situations,

the RBMTLS method is proposed.

While the LS, TLS, and MTLS techniques have been well-studied in the context

of real matrices [28, 29, 76], only the LS method has been examined within the RB

domain. For example, Zhang et al. [81] investigated the least squares solutions to reduced

biquaternion matrix equations AXC = B and AX = B. To the best of our knowledge, the

RBMTLS solution techniques have not yet been explored in the RB domain. Notably, the

RBMTLS method encompasses both the RBLS and RBTLS methods, making it more

widely applicable.

In this chapter, we focus on finding real solutions to the linear approximation problem

(5.1.1) in the RB domain. The key contributions of this chapter are summarized as follows:

128



⋉ We present the RBMTLS method for obtaining the best approximate solution

to the multidimensional overdetermined linear system AX ≈ B. Additionally, we

investigate the existence conditions for a unique real RBMTLS solution and derive

an explicit expression for the solution.

⋉ We propose the RBTLS and RBLS solution techniques as special cases of the

RBMTLS problem. Specifically, when all columns of matrix A are contaminated

with noise, the RBMTLS method reduces to the RBTLS method, and we derive

the conditions for the existence of a unique real RBTLS solution. Similarly, when

matrix A is error-free, the RBMTLS method reduces to the RBLS problem, and we

use our developed technique to find real RBLS solutions.

⋉ The developed solution methods are also applied to solve the complex matrix

equation AX ≈ B as a special case of the reduced biquaternion matrix equation.

⋉ We establish upper bounds for the relative forward errors of the real RBMTLS,

RBTLS, and RBLS solutions using their relative normwise condition numbers.

The chapter is organized as follows: In Section 5.2, we provide preliminary results.

Section 5.3 presents the solution techniques for RBMTLS, RBTLS, and RBLS problems. In

Section 5.4, we conduct a perturbation analysis for the real RBMTLS, RBTLS, and RBLS

solutions. Finally, Section 5.5 provides numerical verification of the developed results.

5.2. Preliminaries

To ensure this chapter is self-contained, we present key results relevant to the subsequent

sections. Let a = a0 +a1i+a2j+a3k ∈ QR and b = b0 + b1i+ b2j+ b3k ∈ QR. Then, the equality

property of RB numbers states:

a = b ⇐↢ a0 = b0, a1 = b1, a2 = b2, and a3 = b3.
We now establish two essential lemmas that will be utilized in the subsequent analysis.

Lemma 5.2.1. Let A = A0 + A1i + A2j + A3k ∈ Qm⌐n
R

, m > n. Then matrix A has full

column rank if and only if matrix AR
c
= [AT

0 ,A
T

1 ,A
T

2 ,A
T

3 ]T ∈ R4m⌐n has full column rank.

Proof. Let A = (aij), where aij = aij0 + aij1i + aij2j + aij3k. Let vj ∈ Qm

R
denote the jth

column of matrix A. The proof follows from the fact that the set of vectors {v1, v2, . . . , vn}
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is linearly independent if the vector equation x1v1 +x2v2 +⧖+xnvn = 0 has only the trivial

solution x1 = x2 = ⧖ = xn = 0, and by the equality property of RB numbers. ∎
Using the real representation in (4.2.1) and utlizing (1.2.1), we derive the following

lemma, which establishes key relationships between the Frobenius norms of block RB

matrices and their real representations.

Lemma 5.2.2. Let A = A0 +A1i+A2j+A3k ∈ Qm⌐n
R

and B = B0 +B1i+B2j+B3k ∈ Qm⌐d
R

.

Denote AR
c
= [AT

0 ,A
T

1 ,A
T

2 ,A
T

3 ]T and BR
c
= [BT

0 ,B
T

1 ,B
T

2 ,B
T

3 ]T . Then, the following

properties hold.

(1) ⌝[A,B]⌝F = 1
2⌝[A,B]R⌝F .(2) ⌝[A,B]R⌝F = ⌝[AR,BR]⌝F .

(3) ⌝[AR,BR]⌝F = 2⌝[AR
c
,BR

c
]⌝F .

To support the main findings of this chapter, we recall some well-known results.

Specifically, we rephrase the Eckart-Young-Mirsky matrix approximation theorem [21] to

align it with our analysis.

Lemma 5.2.3. Let the SVD of A ∈ Rm⌐n be given by A = Ū’̄V̄ T with r = rank(A) and
k < r. Let

k m⋊k
⎦ ⎢Ū = Ū1 Ū2 m

, ’̄ =
k n⋊k⌞⌞⌞⌞⌞⌞

⌞⌟⌟⌟⌟⌟
’̄1 0 k

0 ’̄2 m⋊k
, and V̄ =

k n⋊k⌞⌞⌞⌞⌞⌞
⌞⌟⌟⌟⌟⌟

V̄11 V̄12 k

V̄21 V̄22 n⋊k
,

where Ū ∈ Rm⌐m and V̄ ∈ Rn⌐n are orthornormal matrices. Denote the diagonal matrices

as ’̄1 = diag(ϑ̄1, . . . , ϑ̄k) and ’̄2 = diag(ϑ̄k+1, . . . , ϑ̄r). If
Ak = [Ū1, Ū2]

⌞⌞⌞⌞⌞⌞
’̄1 0

0 0

⌞⌟⌟⌟⌟⌟
⌞⌞⌞⌞⌞⌞
V̄11 V̄12

V̄21 V̄22

⌞⌟⌟⌟⌟⌟
T

= [Ū1’̄1V̄
T

11, Ū1’̄1V̄
T

21],
then

min
rank(B)=k ⌝A −B⌝F = ⌝A −Ak⌝F =

4556 r⊍
i=k+1

ϑ̄2
i
.

In this lemma, Ak represents the best rank-k approximation of matrix A with respect

to the Frobenius norm.
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5.3. An Algebraic Technique for RBMTLS Problem

In this section, we derive an algebraic solution technique for the RBMTLS problem by

exploring the solution of the corresponding real MTLS problem. Suppose

A = A0 +A1i +A2j +A3k ∈ Qm⌐n
R

and B = B0 +B1i +B2j +B3k ∈ Qm⌐d
R

. (5.3.1)

Let the first n1 columns of matrix A be known exactly, and the remaining n2 columns be

contaminated by noise, where n1 + n2 = n. Partition A and X as

A = [Aa,Ab] and X = [XT

a
,XT

b
]T , (5.3.2)

where Aa = Aa0 +Aa1i +Aa2j +Aa3k ∈ Qm⌐n1
R

, Ab = Ab0 +Ab1i +Ab2j +Ab3k ∈ Qm⌐n2
R

, and

partitioning of X is conformal with Aa and Ab. For this analysis, we confine ourselves to

the case when m ≥ n + d and Aa has full column rank.

The multidimensional RBMTLS problem can be formulated as:

min
Xa,Xb,

⌝Eb,
⌝G ⌜[⎡Eb, ⎡G]⌜

F
subject to AaXa + (Ab + ⎡Eb)Xb = B + ⎡G. (5.3.3)

Once a minimizing [⎡Eb, ⎡G] is found, then any X = [XT
a
,XT

b
]T which solves the corrected

system in (5.3.3) is called the RBMTLS solution.

Remark 5.3.1. By varying n1 from 0 to n, the above formulation can incorporate the

RBTLS, RBMTLS, and RBLS problems:

⋉When n1 = 0, the formulation reduces to the RBTLS problem.

⋉When 0 < n1 < n, it represents the RBMTLS problem.

⋉When n1 = n, the formulation reduces to the RBLS problem.

To connect the RBMTLS problem with its real counterpart, let

Ca = ⎦AT

a0 AT

a1 AT

a2 AT

a3⎢T ∈ R4m⌐n1 , Cb = ⎦AT

b0 AT

b1 AT

b2 AT

b3
⎢T ∈ R4m⌐n2 ,

and define C = [Ca, Cb] and D = ⎦BT

0 BT

1 BT

2 BT

3 ⎢T ∈ R4m⌐d. Then, consider a

multidimensional real MTLS problem

min
Xa,Xb,

⌜Eb,
⌜G ⌜[⌝Eb, ⌝G]⌜

F
subject to CaXa + (Cb + ⌝Eb)Xb =D + ⌝G. (5.3.4)

Once a minimizing [⌝Eb, ⌝G] is found, then any X = [XT
a
,XT

b
]T which solves the corrected

system in (5.3.4) is called the real MTLS solution.
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In the forthcoming results on the RBMTLS solution, we will be using the following

notations: Let

⌝Eb = [ET

b0,E
T

b1,E
T

b2,E
T

b3]T ∈ R4m⌐n2 and ⌝G = [GT

0 ,G
T

1 ,G
T

2 ,G
T

3 ]T ∈ R4m⌐d,

where Ebt ∈ Rm⌐n2 and Gt ∈ Rm⌐d for t = 0,1,2,3. The next theorem establishes the

equivalence between the RBMTLS and real MTLS problems.

Theorem 5.3.2. Consider the RBMTLS problem (5.3.3) and the real MTLS problem

(5.3.4). Let X = [XT
a
,XT

b
]T be a real matrix. Then, X is an RBMTLS solution if and only

if X is a real MTLS solution. In this case, if X represents a real MTLS solution, then

there exist ⌝Eb and ⌝G such that

⌜[⌝Eb, ⌝G]⌜
F
=min, CaXa + (Cb + ⌝Eb)Xb =D + ⌝G.

Let ⎡Eb = Eb0 +Eb1i +Eb2j +Eb3k ∈ Qm⌐n2
R

and ⎡G = G0 +G1i +G2j +G3k ∈ Qm⌐d
R

. Then,

⌜[⎡Eb, ⎡G]⌜
F
=min, AaXa + (Ab + ⎡Eb)Xb = B + ⎡G.

Therefore, there exist ⎡Eb and ⎡G such that X is an RBMTLS solution.

Proof. If X = [XT
a
,XT

b
]T ∈ Rn⌐d is a real MTLS solution, then there exist real matrices

⌝Eb ∈ R4m⌐n2 and ⌝G ∈ R4m⌐d such that

⌜[⌝Eb, ⌝G]⌜
F
=min, [Ca, Cb + ⌝Eb]X =D + ⌝G.

We have

⟦[Ca, Cb + ⌝Eb],Qm[Ca, Cb + ⌝Eb],Rm[Ca, Cb + ⌝Eb], Sm[Ca, Cb + ⌝Eb]⟦
⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞

X 0 0 0

0 X 0 0

0 0 X 0

0 0 0 X

⌞⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟
= ⟦(D + ⌝G),Qm(D + ⌝G),Rm(D + ⌝G), Sm(D + ⌝G)⟦ .

(5.3.5)

Now,

[Ca, Cb + ⌝Eb] =
⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞

Aa0 Ab0 +Eb0

Aa1 Ab1 +Eb1

Aa2 Ab2 +Eb2

Aa3 Ab3 +Eb3

⌞⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟
, D + ⌝G =

⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞

B0 +G0

B1 +G1

B2 +G2

B3 +G3

⌞⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟
. (5.3.6)
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Construct the following reduced biquaternion matrices

⎡A ∶= [Aa0,Ab0 +Eb0] + [Aa1,Ab1 +Eb1]i + [Aa2,Ab2 +Eb2]j + [Aa3,Ab3 +Eb3]k,
⎡B ∶= (B0 +G0) + (B1 +G1)i + (B2 +G2)j + (B3 +G3)k,
⎡Eb ∶= Eb0 +Eb1i +Eb2j +Eb3k,

⎡G ∶= G0 +G1i +G2j +G3k.

Using (4.2.1), (4.2.2), and (5.3.6), we have

⎡AR

c
= [Ca, Cb + ⌝Eb], ⎡BR

c
=D + ⌝G, ( ⎡Eb)R

c
= ⌝Eb, and ⎡GR

c
= ⌝G.

Using (4.2.1), (4.2.3), and (5.3.6), we get

⎡AR = ⟦[Ca, Cb + ⌝Eb],Qm[Ca, Cb + ⌝Eb],Rm[Ca, Cb + ⌝Eb], Sm[Ca, Cb + ⌝Eb]⟦ ,
⎡BR = ⟦(D + ⌝G),Qm(D + ⌝G),Rm(D + ⌝G), Sm(D + ⌝G)⟦ ,

XR =
⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞

X 0 0 0

0 X 0 0

0 0 X 0

0 0 0 X

⌞⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟
.

Therefore, equation 5.3.5 is equivalent to

⎡ARXR = ⎡BR, (5.3.7)

( ⎡AX)R = ⎡BR,

⎡AX = ⎡B. (5.3.8)

Now,

⎡A = [Aa0,Ab0 +Eb0] + [Aa1,Ab1 +Eb1]i + [Aa2,Ab2 +Eb2]j + [Aa3,Ab3 +Eb3]k
= [(Aa0 +Aa1i +Aa2j +Aa3k), (Ab0 +Ab1i +Ab2j +Ab3k) + (Eb0 +Eb1i +Eb2j +Eb3k)]
= [Aa,Ab + ⎡Eb]. (5.3.9)

and

⎡B = (B0 +G0) + (B1 +G1)i + (B2 +G2)j + (B3 +G3)k
= (B0 +B1i +B2j +B3k) + (G0 +G1i +G2j +G3k) = B + ⎡G. (5.3.10)
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Using (5.3.9) and (5.3.10), equation 5.3.8 is equivalent to

[Aa,Ab + ⎡Eb]X = B + ⎡G,

[Aa,Ab + ⎡Eb]
⌞⌞⌞⌞⌞⌞
Xa

Xb

⌞⌟⌟⌟⌟⌟ = B +
⎡G,

AaXa + (Ab + ⎡Eb)Xb = B + ⎡G. (5.3.11)

Using Lemma 5.2.2, we can verify that

⌜[⎡Eb, ⎡G]⌜
F
= 1

2
⌜[⎡Eb, ⎡G]R⌜

F
= 1

2
⌜[⎡ER

b
, ⎡GR]⌜

F
= ⌜[⌝Eb, ⌝G]⌜

F
=min . (5.3.12)

Combining (5.3.11) and (5.3.12), we can conclude that there exist RB matrices ⎡Eb ∈ Qm⌐n2
R

and ⎡G ∈ Qm⌐d
R

such that X = [XT
a
,XT

b
]T ∈ Rn⌐d is an RBMTLS solution, and vice versa. ∎

Next, we derive an explicit expression for the real RBMTLS solution X. To begin,

perform n1 Householder transformations using a matrix Q ∈ R4m⌐4m on the matrix [C,D]
such that

QT [C,D] = QT [Ca, Cb,D] =
n1 n2 d⌞⌞⌞⌞⌞⌞

⌞⌟⌟⌟⌟⌟
R11 R12 R1d n1

0 R22 R2d 4m⋊n1

. (5.3.13)

Partition Q as Q = [Q1,Q2], where Q1 ∈ R4m⌐n1 and Q2 ∈ R4m⌐(4m⋊n1). Next, compute the

SVD of [R22,R2d]:
[R22,R2d] = U’V T , (5.3.14)

where U and V are real orthonormal matrices, ’ = diag(ϑ1,ϑ2, . . . ,ϑn2+d), and the singular

values of [R22,R2d] satisfy
ϑ1 ≥ ϑ2 ≥ . . . ≥ ϑn2 > ϑn2+1 ≥ . . . ≥ ϑn2+d > 0. (5.3.15)

Partition U , ’, and V as

n2 4m⋊n1⋊n2

⎦ ⎢U = U1, U2 4m⋊n1
, ’ =

n2 d⌞⌞⌞⌞⌞⌞
⌞⌟⌟⌟⌟⌟

’1 0 n2

0 ’2 4m⋊n1⋊n2

, and V =
n2 d⌞⌞⌞⌞⌞⌞

⌞⌟⌟⌟⌟⌟
V11 V12 n2

V21 V22 d

.

(5.3.16)

In the following theorem, we present the conditions for the existence of a unique real

RBMTLS solution, and in this case, provide an explicit expression for the real RBMTLS

solution.
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Theorem 5.3.3. With the notations in (5.3.13) and (5.3.16), consider the RBMTLS

problem (5.3.3). Let the SVD of [R22,R2d] be as in (5.3.14), and let its singular values

be as in (5.3.15). If ϑn2 > ϑn2+1 and V22 is nonsingular, then the real RBMTLS solution

exists and is unique. In this case, the real RBMTLS solution is given by

X = ⌞⌞⌞⌞⌞⌞
R⋊111R1d

0

⌞⌟⌟⌟⌟⌟ +
⌞⌞⌞⌞⌞⌞
R⋊111R12

−In2

⌞⌟⌟⌟⌟⌟V12V
⋊1
22 . (5.3.17)

Proof. Using Theorem 5.3.2, X represents an RBMTLS solution if and only if X is a real

MTLS solution. Therefore, to find the RBMTLS solution, we find the real MTLS solution.

Now, the real linear system corresponding to (5.1.1) is given by

[Ca, Cb]
⌞⌞⌞⌞⌞⌞
Xa

Xb

⌞⌟⌟⌟⌟⌟ ≈D, [Ca, Cb,D]
⌞⌞⌞⌞⌞⌞⌞⌞⌞

Xa

Xb

−Id

⌞⌟⌟⌟⌟⌟⌟⌟⌟
≈ 0.

To find the real MTLS solution, we modify the above system in such a way that it becomes

compatible. We achieve this by perturbing matrices Cb and D while keeping matrix Ca

exact, as in (5.3.4). By pre-multiplying both sides of the above system by QT and using

(5.3.13), we get

[Q1,Q2]T [Ca, Cb,D]
⌞⌞⌞⌞⌞⌞⌞⌞⌞

Xa

Xb

−Id

⌞⌟⌟⌟⌟⌟⌟⌟⌟
≈ 0, ⌞⌞⌞⌞⌞⌞

R11 R12 R1d

0 R22 R2d

⌞⌟⌟⌟⌟⌟
⌞⌞⌞⌞⌞⌞⌞⌞⌞

Xa

Xb

−Id

⌞⌟⌟⌟⌟⌟⌟⌟⌟
≈ 0.

Let

R ∶=
n1 n2 d⌞⌞⌞⌞⌞⌞

⌞⌟⌟⌟⌟⌟
R11 R12 R1d n1

0 R22 R2d 4m⋊n1

.

To make the above system compatible, the matrix [XT
a
,XT

b
,−Id]T should be in the null

space of R. Therefore, by the rank-nullity theorem, the rank of the matrix R must be

reduced to n1 + n2. We achieve this by modifying matrix R. To keep matrix Ca exact, we

modify matrix R without perturbing the matrix R11.

Now, matrix Aa has full column rank. In view of Lemma 5.2.1, the matrix Ca also has

full column rank n1, which implies that R11 is a nonsingular upper triangular matrix. As

a result, modifying R12 and R1d does not a!ect the rank of the matrix R. Consequently,

we do not modify these matrices. Instead, we modify matrices R22 and R2d.

135



Let

⌝R ∶= ⌞⌞⌞⌞⌞⌞
R11 R12 R1d

0 ⌝R22
⌝R2d

⌞⌟⌟⌟⌟⌟
be the modified matrix such that the system ⌝R[XT

a
,XT

b
,−Id]T = 0 is compatible. Now our

aim is to find ⌝R22 and ⌝R2d. We first focus on the reduced real TLS problem R22Xb ≈ R2d.

We have

[R22,R2d]
⌞⌞⌞⌞⌞⌞
Xb

−Id
⌞⌟⌟⌟⌟⌟ ≈ 0.

To find a solution to the reduced real TLS problem, the matrix ⟦XT

b
,−Id⟦T should be in

the null space of [R22,R2d]. Therefore, by the rank-nullity theorem, the rank of the matrix

[R22,R2d] must be reduced to n2. Let [⌝R22, ⌝R2d] denote the best rank n2 approximation

of [R22,R2d]. By Lemma 5.2.3, we have

[⌝R22, ⌝R2d] = [U1’1V
T

11, U1’1V
T

21].
If ϑn2 > ϑn2+1, then [⌝R22, ⌝R2d] represents the unique rank n2 approximation of [R22,R2d],
and the columns of the matrix

⌞⌞⌞⌞⌞⌞
V12

V22

⌞⌟⌟⌟⌟⌟ represent a basis for the null space of [⌝R22, ⌝R2d]. We

have

[⌝R22, ⌝R2d]
⌞⌞⌞⌞⌞⌞
V12

V22

⌞⌟⌟⌟⌟⌟ = 0.
If V22 is nonsingular, then we get

[⌝R22, ⌝R2d]
⌞⌞⌞⌞⌞⌞
−V12V ⋊122−Id

⌞⌟⌟⌟⌟⌟ = 0.
Hence, the reduced real TLS solution is unique and is given by Xb = −V12V ⋊122 . Notice that

the rank of the modified matrix ⌝R is n1 + n2.

After computing Xb, we calculate Xa. We have ⌝R[XT
a
,XT

b
,−Id]T = 0. Since R11 is

nonsingular, we obtain a unique solution Xa = R⋊111(R1d −R12Xb). ∎
Remark 5.3.4. The perturbation ⌝Eb to the matrix Cb is given by ⌝Eb = ⌝Cb −Cb, and the

perturbation ⌝G to the matrix D is given by ⌝G = ⌝D −D. We have

[Ca, ⌝Cb, ⌝D] = [Q1,Q2]⌝R = [Q1,Q2]
⌞⌞⌞⌞⌞⌞
R11 R12 R1d

0 ⌝R22
⌝R2d

⌞⌟⌟⌟⌟⌟ .
We obtain the perturbed matrices ⌝Cb ∶= Q1R12 +Q2

⌝R22 and ⌝D ∶= Q1R1d +Q2
⌝R2d, where⌝R22 = U1’1V T

11 and ⌝R2d = U1’1V T

21. Now, we can obtain ⎡Eb from ⌝Eb and ⎡G from ⌝G using

Theorem 5.3.2.
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Algebraic Technique for RBTLS Problem:

In the case where all columns of matrix A are contaminated by noise (i.e., n1 = 0 and n2 = n),
the RBMTLS problem (5.3.3) simplifies to an RBTLS problem (5.1.3). In this scenario, we

have Aa = 0 and Ab = A, as well as Ca = 0 and Cb = C. Let C = [AT

0 ,A
T

1 ,A
T

2 ,A
T

3 ]T ∈ R4m⌐n.
We now consider the corresponding multidimensional real TLS problem, which can be

formulated as:

min
X,⌜E,⌜G ⌜[⌝E, ⌝G]⌜

F
subject to (C + ⌝E)X =D + ⌝G. (5.3.18)

Once a minimizing [⌝E, ⌝G] is found, then any X which solves the corrected system in

(5.3.18) is called the real TLS solution.

In the forthcoming results on the RBTLS solution, we will be using the following

notations: Let

⌝E = [ET

0 ,E
T

1 ,E
T

2 ,E
T

3 ]T ∈ R4m⌐n and ⌝G = [GT

0 ,G
T

1 ,G
T

2 ,G
T

3 ]T ∈ R4m⌐d,

where Et ∈ Rm⌐n and Gt ∈ Rm⌐d for t = 0,1,2,3. In the following corollary, we provide the

solution technique for the RBTLS problem (5.1.3).

Corollary 5.3.5. Consider the RBTLS problem (5.1.3) and the real TLS problem (5.3.18).

Let X be a real matrix. Then, X is an RBTLS solution if and only if X is a real TLS

solution. In this case, if X represents a real TLS solution, then there exist ⌝E and ⌝G such

that

⌜[⌝E, ⌝G]⌜
F
=min, (C + ⌝E)X =D + ⌝G.

Let ⎡E = E0 +E1i +E2j +E3k ∈ Qm⌐n
R

and ⎡G = G0 +G1i +G2j +G3k ∈ Qm⌐d
R

. Then,

⌜[⎡E, ⎡G]⌜
F
=min, (A + ⎡E)X = B + ⎡G.

Therefore, there exist ⎡E and ⎡G such that X is an RBTLS solution.

Proof. By taking n1 = 0 and n2 = n, the proof proceeds in a manner analogous to the

proof of Theorem 5.3.2. ∎
We now derive an explicit expression for the real RBTLS solution X. By taking n1 = 0

and n2 = n, equations (5.3.13), (5.3.14), (5.3.15), and (5.3.16) simplify to

n d

⎦ ⎢QT [C,D] = R22 R2d 4m
. (5.3.19)
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Thus, the SVD of [R22,R2d] is given by

[R22,R2d] = U’V T , (5.3.20)

where U and V are real orthonormal matrices, ’ = diag(ϑ1,ϑ2, . . . ,ϑn+d), and the singular

values of [R22,R2d] satisfy
ϑ1 ≥ ϑ2 ≥ . . . ≥ ϑn > ϑn+1 ≥ . . . ≥ ϑn+d > 0. (5.3.21)

We partition U , ’, and V as follows:

n 4m⋊n
⎦ ⎢U = U1 U2 4m

, ’ =
n d⌞⌞⌞⌞⌞⌞

⌞⌟⌟⌟⌟⌟
’1 0 n

0 ’2 4m⋊n
, and V =

n d⌞⌞⌞⌞⌞⌞
⌞⌟⌟⌟⌟⌟

V11 V12 n

V21 V22 d

. (5.3.22)

In the following corollary, we present the conditions for the existence of a unique real

RBTLS solution, and in this case, provide an explicit expression for the real RBTLS

solution.

Corollary 5.3.6. With the notations in (5.3.19) and (5.3.22), consider the RBTLS

problem (5.1.3). Let the SVD of [R22,R2d] be as in (5.3.20), and let its singular values be

as in (5.3.21). If ϑn > ϑn+1 and V22 is nonsingular, then the real RBTLS solution exists

and is unique. In this case, the real RBTLS solution is given by

X = −V12V
⋊1
22 . (5.3.23)

Proof. By taking n1 = 0 and n2 = n, the proof follows similar to the proof of Theorem

5.3.3. ∎
Remark 5.3.7. The perturbation ⌝E to the matrix C is given by ⌝E = ⌝C − C, and the

perturbation ⌝G to the matrix D is given by ⌝G = ⌝D −D. We have

[⌝C, ⌝D] = Q[⌝R22, ⌝R2d].
We get the perturbed matrices ⌝C ∶= Q⌝R22 and ⌝D ∶= Q⌝R2d, where ⌝R22 = U1’1V T

11 and

⌝R2d = U1’1V T

21. Now, we can obtain ⎡E from ⌝E and ⎡G from ⌝G using Corollary 5.3.5.

Algebraic Technique for RBLS Problem:

When all columns of matrix A are error-free, i.e., n1 = n and n2 = 0, the RBMTLS problem

(5.3.3) becomes an RBLS problem (5.1.2). In this scenario, we have Aa = A and Ab = 0,
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also Ca = C and Cb = 0. Let C = [AT

0 ,A
T

1 ,A
T

2 ,A
T

3 ]T ∈ R4m⌐n. Consider a multidimensional

real LS problem

min
X

⌝CX −D⌝
F
. (5.3.24)

In the following corollary, we provide the solution technique for RBLS problem (5.1.2).

Corollary 5.3.8. Consider the RBLS problem (5.1.2) and the real LS problem (5.3.24).

Let X be a real matrix. Then, X is an RBLS solution if and only if X is a real LS solution.

In this case, the solution X is given by

X = C D + (I −C C)Z, (5.3.25)

where Z is an arbitrary matrix of suitable size and the least squares solution with the least

norm is X = C D.

Proof. By taking n1 = n and n2 = 0 in Theorem 5.3.2, we get that X is an RBLS solution

if and only if X is a real LS solution. Using Lemma 1.3.4, we get the desired expression

for the solution X. ∎
The results developed in this section can also be applied to several other special cases.

The following remarks are in order.

Remark 5.3.9. When d = 1, our results also include single-right-hand-side RBMTLS,

RBTLS, and RBLS problems.

Remark 5.3.10. Complex matrix equations are special cases of reduced biquaternion

matrix equations. Hence, our developed solution techniques are well-suited for finding the

best approximate solution to AX ≈ B over complex fields.

We take the real representation of matrix A = A0 +A1i ∈ Cm⌐n, where At ∈ Rm⌐n for

t = 0,1, denoted by ⌝AR as

⌝AR = ⌞⌞⌞⌞⌞⌞
A0 −A1

A1 A0

⌞⌟⌟⌟⌟⌟ .

Let ⌝Qm =
⌞⌞⌞⌞⌞⌞
0 −Im
Im 0

⌞⌟⌟⌟⌟⌟ . Let
⌝AR
c
denotes the first block column of the block matrix ⌝AR i.e.

⌝AR
c
= [AT

0 ,A
T

1 ]T . We have ⌝AR = [ ⌝AR
c
, ⌝Qm

⌝AR
c
]. By taking ⌝AR, ⌝Qm, and ⌝AR

c
as above, we can

obtain results to solve the complex LS, TLS, and MTLS problems.
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5.4. Perturbation Analysis of the RBMTLS Solution

Perturbation analysis is a crucial aspect of numerical analysis, focusing on how sensitive

a solution is to small changes in the input data, which is quantified by the condition

number. This section explores first-order perturbation bounds for real RBMTLS, RBTLS,

and RBLS solutions using their relative normwise condition numbers.

For the reduced biquaternion linear approximation system AX ≈ B, our objective is

to analyze how perturbations in A and B a!ect the real RBMTLS solution XM . Let

⎡A = A +&A = [ ⎡Aa, ⎡Ab] ∈ Qm⌐n
R

and ⎡B = B +&B ∈ Qm⌐d
R

,

where &A = &A0+&A1i+&A2j+&A3k and &B = &B0+&B1i+&B2j+&B3k represent the

perturbations of the input matrices A and B, respectively. Here, ⎡Aa ∈ Qm⌐n1
R

and ⎡Ab ∈ Qm⌐n2
R

.

Let ⎡XM denote the real RBMTLS solution to the perturbed reduced biquaternion system

⎡AX ≈ ⎡B. When the norm ⌝[&A,&B]⌝F is su”ciently small, the perturbation analysis of

singular values guarantees the existence of a unique solution ⎡XM . Let &XM = ⎡XM −XM

be the change in the solution.

Next, consider the perturbed matrices ⎡C and ⎡D, where

⎡C = C +&C = [⎡Ca, ⎡Cb] ∈ R4m⌐n and ⎡D =D +&D ∈ R4m⌐d.

Here, the matrices ⎡Ca ∈ R4m⌐n1 and ⎡Cb ∈ R4m⌐n2 represent the partitioned columns of ⎡C.

The perturbation matrices are given by

&C =
⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞

&A0

&A1

&A2

&A3

⌞⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟
and &D =

⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞

&B0

&B1

&B2

&B3

⌞⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟⌟
.

The relative normwise condition number of the real RBMTLS solution XM is defined

as follows:

kn

RBMTLS
(XM ,A,B) = lim

ϖ↢0
sup⟧⌝&XM⌝F

φ⌝XM⌝F ⌝ ⌝[&A,&B]⌝F ≤ φ⌝[A,B]⌝F⟧ .
Theorem 5.4.1. Consider the RBMTLS problem (5.3.3) and the real MTLS problem

(5.3.4). Assume the conditions specified in Theorem 5.3.3 for the existence and uniqueness

of the real RBMTLS solution XM are satisfied. Let Ca = UaSaV T
a

be the thin SVD of Ca,
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and denote Cb = [Cb,D]. With the notations in (5.3.15) and (5.3.16), set

’1 = diag(ϑ1,ϑ2, . . . ,ϑn2), ’2 = diag(ϑn2+1,ϑn2+2, . . . ,ϑn2+d),
C = ⌞⌞⌞⌞⌞⌞

−CaCb

In2+d

⌞⌟⌟⌟⌟⌟ , V1 =
⌞⌞⌞⌞⌞⌞
V11

V21

⌞⌟⌟⌟⌟⌟ , V2 =
⌞⌞⌞⌞⌞⌞
V12

V22

⌞⌟⌟⌟⌟⌟ ,

Sa =
⌞⌞⌞⌞⌞⌞
Sa 0

0 ’1

⌞⌟⌟⌟⌟⌟ , V 11 =
⌞⌞⌞⌞⌞⌞

Va 0

(CaCb)TVa V11

⌞⌟⌟⌟⌟⌟ .

Then, the relative normwise condition number of the real RBMTLS solution XM is expressed

as

kn

RBMTLS
(XM ,A,B) = ⌝HGZ⌝2 ⌝[C,D]⌝F⌝XM⌝F , (5.4.1)

where

H = #(d,n) ∣V ⋊T11 ⋊ V ⋊T22 ∣ ,
G = ⎥⟦∣S

2

a
⋊ Id∣ −

⌞⌞⌞⌞⌞⌞
0n1 0

0 In2

⌞⌟⌟⌟⌟⌟⋊ (’
T

2’2)⟦⟦
⋊1
⎦In ⋊’

T

2 , Sa ⋊ Id⎢ ,

Z = diag⎥⟦
⌞⌞⌞⌞⌞⌞

In1 0

−V T

1 (CaCb)TVa In2

⌞⌟⌟⌟⌟⌟⋊ Id, In ⋊ (CV2)T⟦⟦ .

Proof. Based on Theorem 5.3.2, XM is a real RBMTLS solution of AX ≈ B if and only

if XM is a real MTLS solution of the corresponding real linear system CX ≈ D. Using

(1.2.1), we have ⌝[&A,&B]⌝F = ⌝[&C,&D]⌝F and ⌝[A,B]⌝F = ⌝[C,D]⌝F . Consequently,
we obtain

kn

RBMTLS
(XM ,A,B) = lim

ϖ↢0
sup⟧⌝&XM⌝F

φ⌝XM⌝F ⌝ ⌝[&C,&D]⌝F ≤ φ⌝[C,D]⌝F⟧ ,
which is same as the relative normwise condition number (kn

MTLS
(XM , C,D)) of the MTLS

solution XM to CX ≈D.

Therefore, to study the perturbation analysis of the real RBMTLS solution, we only

need to study the perturbation analysis of the real MTLS solution of the corresponding real

linear system. Using [45, Theorem 3.3], we get the desired expression for kn

MTLS
(XM , C,D)

and, therefore, for kn

RBMTLS
(XM ,A,B). ∎
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Let ⇀n = ⌜[!A,!B]⌜F⌜[A,B]⌜F . Then, the upper bound UM for the relative forward error of the

real RBMTLS solution XM is given by

⌝&XM⌝F⌝XM⌝F ≤ kn

RBMTLS
(XM ,A,B)⇀n ≡ UM . (5.4.2)

Perturbation Analysis of the RBTLS Solution:

Now, we will examine how perturbations in A and B a!ect the real RBTLS solution XT

of AX ≈ B. For the RBTLS problem (i.e., n1 = 0 and n2 = n), let ⎡XT be the real RBTLS

solution to the perturbed system ⎡AX ≈ ⎡B. Let &XT = ⎡XT −XT . The relative normwise

condition number of the real RBTLS solution XT is defined as follows:

kn

RBTLS
(XT ,A,B) = lim

ϖ↢0
sup⟧⌝&XT ⌝F

φ⌝XT ⌝F ⌝ ⌝[&A,&B]⌝F ≤ φ⌝[A,B]⌝F⟧ .
Theorem 5.4.2. Consider the RBTLS problem (5.1.3) and the real TLS problem (5.3.18).

Assume the conditions specified in Corollary 5.3.6 for the existence and uniqueness of the

real RBTLS solution XT are satisfied. With the notations in (5.3.21) and (5.3.22), set

’1 = diag(ϑ1,ϑ2, . . . ,ϑn), ’2 = diag(ϑn+1,ϑn+2, . . . ,ϑn+d), V2 =
⌞⌞⌞⌞⌞⌞
V12

V22

⌞⌟⌟⌟⌟⌟ .
Then, the relative normwise condition number of the real RBTLS solution XT is expressed

as

kn

RBTLS
(XT ,A,B) = ⌝HGZ⌝2 ⌝[C,D]⌝F⌝XT ⌝F , (5.4.3)

where

H = #(d,n) (V ⋊T11 ⋊ V ⋊T22 ) ,
G = ∣∣’2

1 ⋊ Id∣ − ∣In ⋊ (’T

2’2)∣∣⋊1 ⎦In ⋊’
T

2 , ’1 ⋊ Id⎢ ,
Z = diag (In ⋊ Id, In ⋊ V T

2 ) .
Proof. The proof follows by setting n1 = 0 and n2 = n in Theorem 5.4.1. ∎

The upper bound UT for the relative forward error of the real RBTLS solution XT is

given by ⌝&XT ⌝F⌝XT ⌝F ≤ kn

RBTLS
(XT ,A,B)⇀n ≡ UT . (5.4.4)

Perturbation Analysis of the RBLS Solution:

Next, we examine how perturbations in A and B a!ect the real RBLS solution XL of

AX ≈ B. For the RBLS problem (i.e., n1 = n and n2 = 0), let ⎡XL be the real RBLS solution
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to the perturbed system ⎡AX ≈ ⎡B. Let &XL = ⎡XL −XL. Additionally, let S be the set of

perturbations in matrix A such that

S = ∣&A ∥R(&A) ⊆R(A), R((&A)T ) ⊆R(AT )∣ .

The relative normwise condition number of the real RBLS solution XL is defined as

follows:

kn

RBLS
(XL,A,B) = lim

ϖ↢0
sup⟧⌝&XL⌝F

φ⌝XL⌝F ⌝ ⌝[&A,&B]⌝F ≤ φ⌝[A,B]⌝F ,&A ∈ S⟧ .
Theorem 5.4.3. Consider the RBLS problem (5.1.2) and the real LS problem (5.3.24).

Let A be rank deficient, then the relative normwise condition number of the real RBLS

solution XL is expressed as

kn

RBLS
(XL,A,B) = ⌝C ⌝2⌝[C,D]⌝F⌝XL⌝F

⌝
1 + ⌝XL⌝22. (5.4.5)

Proof. The proof follows along similar lines as Theorem 5.4.1 and by applying [49, Theorem

3.1] to the corresponding real linear system CX ≈D. ∎
The upper bound UL for the relative forward error of the real RBLS solution XL is

given by

⌝&XL⌝F⌝XL⌝F ≤ kn

RBLS
(XL,A,B)⇀n ≡ UL. (5.4.6)

5.5. Numerical Verification

In this section, we present numerical algorithms for solving the RBMTLS, RBTLS, and

RBLS problems and provide numerical examples to validate these algorithms. First, we

illustrate the e!ectiveness of the RBMTLS method in solving the linear system AX ≈ B,

particularly when errors are present in all columns of matrix B and only a few columns of

matrix A. Next, we examine the upper bounds for the relative forward errors associated

with the real RBMTLS, RBTLS, and RBLS solutions.

Building on Theorem 5.3.3 and Corollary 5.3.6, we now outline algorithms to solve

the RBMTLS problem (5.3.3) and the RBTLS problem (5.1.3), respectively.
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Algorithm 5.5.1 For RBMTLS problem

Input: A = A0 +A1i +A2j +A3k ∈ Qm⌐n
R

, B = B0 +B1i +B2j +B3k ∈ Qm⌐d
R

, where

m ≥ n + d. Let the first n1 columns of matrix A be known exactly, and the remaining n2

columns be contaminated by noise, where n1 + n2 = n. Partition A = [Aa,Ab], where
Aa = Aa0 +Aa1i +Aa2j +Aa3k ∈ Qm⌐n1

R
, Ab = Ab0 +Ab1i +Ab2j +Ab3k ∈ Qm⌐n2

R
, and Aa has

full column rank.

Output: Perturbation ⎡Eb, ⎡G, and the solution X.

Step 1: Matrix Computation: Define C = [Ca, Cb] ∈ R4m⌐n, Ca = [AT

a0,A
T

a1,A
T

a2,A
T

a3]T ,
Cb = [AT

b0,A
T

b1,A
T

b2,A
T

b3]T , and D = [BT

0 ,B
T

1 ,B
T

2 ,B
T

3 ]T ∈ R4m⌐d.
Step 2: QR Decomposition: Find the orthogonal matrix Q = [Q1,Q2] ∈ R4m⌐4m, where

Q1 ∈ R4m⌐n1 and Q2 ∈ R4m⌐(4m⋊n1), that performs n1 Householder transformations

on the matrix [C,D] as in (5.3.13).

Step 3: SVD Computation: Compute the SVD of the matrix [R22,R2d]. Let the SVD

of [R22,R2d] be as in (5.3.14).

Step 4: Solution Computation: If ϑn2 > ϑn2+1 and V22 is nonsingular, compute the

solution X to the RBMTLS problem using Theorem 5.3.3.

Step 5: Perturbation Computation: Compute the perturbations ⎡Eb for matrix Ab and⎡G for matrix B using Theorem 5.3.2 and Remark 5.3.4.

Algorithm 5.5.2 For RBTLS problem

Input: A = A0 +A1i+A2j+A3k ∈ Qm⌐n
R

, B = B0 +B1i+B2j+B3k ∈ Qm⌐d
R

, where m ≥ n+d.
Output: Perturbations ⎡E, ⎡G, and the solution X.

Step 1: Matrix Computation: Set C = [AT

0 ,A
T

1 ,A
T

2 ,A
T

3 ]T ∈ R4m⌐n and D =
[BT

0 ,B
T

1 ,B
T

2 ,B
T

3 ]T ∈ R4m⌐d.
Step 2: Orthogonal Matrix: Find the orthogonal matrix Q ∈ R4m⌐4m such that

QT [C,D] = [R22,R2d] as in (5.3.19).

Step 3: SVD Computation: Compute the SVD of the matrix [R22,R2d] as described
in (5.3.20).

Step 4: Solution Computation: If ϑn > ϑn+1 and V22 is nonsingular, compute the

solution X to the RBTLS problem using Corollary 5.3.6.

Step 5: Perturbation Calculation: Compute the perturbations ⎡E for matrix A and ⎡G
for matrix B using Corollary 5.3.5 and Remark 5.3.7.
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Based on Corollary 5.3.8, we now describe algorithms for solving the RBLS problem

(5.1.2).

Algorithm 5.5.3 For RBLS problem

Input: A = A0 +A1i+A2j+A3k ∈ Qm⌐n
R

, B = B0 +B1i+B2j+B3k ∈ Qm⌐d
R

, where m ≥ n+d.
Output: X.

Step 1: Matrix Computation: Define C = [AT

0 ,A
T

1 ,A
T

2 ,A
T

3 ]T ∈ R4m⌐n and D =
[BT

0 ,B
T

1 ,B
T

2 ,B
T

3 ]T ∈ R4m⌐d.
Step 2: Solution Computation: Compute the solution X to the RBLS problem using

Corollary 5.3.8.

We now present numerical examples. All calculations are performed on an Intel Core

i7 − 9700@3.00GHz/16GB computer using MATLAB R2021b software.

Example 5.5.1. Let F = F0 +F1i +F2j +F3k ∈ Qm⌐50
R

(m > 50), where matrix components

are defined as follows:

F0 = F1 = F2 = F3 = randn(m,50) ∈ Rm⌐50.
Let X0 = randn(50, 35) ∈ R50⌐35. Set G = FX0, which implies that the reduced biquaternion

matrix equation FX = G is consistent, and X0 is its exact solution. We partition the

matrix F as

F = [Fa, Fb],
where Fa ∈ Qm⌐20

R
and Fb ∈ Qm⌐30

R
.

To assess the e!ectiveness of the proposed solution techniques in finding the best

approximate solution to an inconsistent linear system, we introduce errors into the entries

of matrices F and G, which makes the original system inconsistent.

Let the error terms be denoted as dA ∈ Qm⌐20
R

, dB ∈ Qm⌐30
R

, and dG ∈ Qm⌐35
R

. The

modified matrices are then defined as

Aa = Fa + dA, Ab = Fb + dB, and B = G + dG.

Consequently, we have an overdetermined linear system:

AX ≈ B,

where A = [Aa,Ab] ∈ Qm⌐50
R

and B ∈ Qm⌐35
R

are known, and X ∈ R50⌐35 is unknown. Now

we will consider three di!erent cases. In the first case, errors are introduced in matrices Fb
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and G. In the second case, errors are introduced in matrices Fa, Fb, and G. Lastly, in the

third case, errors are introduced only in matrix G.

Case 1: Take R = rand(65,65) and E = 0.01 (rand(m,65)R). Let
dA = 0,
dB = E(∶,1 ∶ 30) +E(∶,1 ∶ 30)i +E(∶,1 ∶ 30)j +E(∶,1 ∶ 30)k,
dG = E(∶,31 ∶ 65) +E(∶,31 ∶ 65)i +E(∶,31 ∶ 65)j +E(∶,31 ∶ 65)k.

We define Aa = Fa,Ab = Fb + dB, and B = G + dG.

Case 2: Take R = rand(85,85) and E = 0.01 (rand(m,85)R). Let
dA = E(∶,1 ∶ 20) +E(∶,1 ∶ 20)i +E(∶,1 ∶ 20)j +E(∶,1 ∶ 20)k,
dB = E(∶,21 ∶ 50) +E(∶,21 ∶ 50)i +E(∶,21 ∶ 50)j +E(∶,21 ∶ 50)k,
dG = E(∶,51 ∶ 85) +E(∶,51 ∶ 85)i +E(∶,51 ∶ 85)j +E(∶,51 ∶ 85)k.

We define Aa = Fa + dA, Ab = Fb + dB, and B = G + dG.

Case 3: Take R = rand(35,35) and E = 0.01 (rand(m,35)R). Let
dA = 0,
dB = 0,
dG = E +Ei +Ej +Ek.

We define Aa = Fa, Ab = Fb, and B = G + dG.

In each of the three cases, due to the presence of errors in matrices A and B, an exact

solution for the system AX ≈ B is not attainable, and thus, an approximate solution is

required. In this example, we compute the RBMTLS solution (XM), the RBTLS solution

(XT ), and the RBLS solution (XL) for the inconsistent system AX ≈ B across all three

cases.

Note: To achieve the highest possible accuracy in the estimated solution X, it is

essential to eliminate any errors present in the entries of matrices A and B. In all three

cases, if we remove all errors from these matrices, they reduce to matrices F and G,

respectively. Therefore, X0 represents the most accurate approximate solution for the

system AX ≈ B in all cases.

Next, we calculate XM , XT , and XL using Algorithms 5.5.1, 5.5.2, and 5.5.3,

respectively. Let the errors be denoted by φ1 = ⌝XM − X0⌝F , φ2 = ⌝XT − X0⌝F , and
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(a) Case 1 (b) Case 2

(c) Case 3

Figure 5.5.1. The errors from the three solution techniques for Cases 1, 2, and 3.

φ3 = ⌝XL − X0⌝F . In this example, m represents an arbitrary value. We compute the

errors φ1, φ2, and φ3 for various values of m. Since the input matrices are generated

randomly, we calculate φ1, φ2, and φ3 by averaging the results from solving this example

twenty times for each value of m.

Figure 5.5.1 presents comparison for Case 1 (5.5.1 (a)), Case 2 (5.5.1 (b)), and Case

3 (5.5.1 (c)), respectively, between φ1, φ2, and φ3. These comparisons are obtained by taking

di!erent values of m. For all values of m, we observe that in Case 1, φ1 < φ2 < φ3, while in

Case 2, φ2 < φ3 < φ1. Lastly, in Case 3, φ3 < φ2 < φ1.
We conclude Example 5.5.1 with the following remark:

Remark 5.5.2. (1) If there is an error in matrix B along with a few columns of matrix

A, then the RBMTLS solution technique o!ers the most accurate approximate

solution to the overdetermined system AX ≈ B.
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(2) In cases where errors are present in both matrix A and matrix B, the RBTLS solution

technique yields the most accurate approximate solution to the overdetermined system

AX ≈ B.

(3)When the error is solely present in matrix B, the RBLS solution technique provides

the most accurate approximate solution to the overdetermined system AX ≈ B.

Example 5.5.3. Consider the linear problem AX ≈ B, where A = A0 +A1i +A2j +A3k ∈
Q500⌐50

R
and B = B0 +B1i +B2j +B3k ∈ Q500⌐10

R
. The matrix components are generated as

follows:

A0 = A1 = A2 = A3 = rand(500,50), B0 = B1 = B2 = B3 = rand(500,10).
Let n1 = 20. In this example, we introduce random perturbations &A and &B to the input

matrices A and B, respectively. Our goal is to analyze how the real RBMTLS, RBTLS,

and RBLS solutions to AX ≈ B are a!ected when A and B are subject to these small

perturbations. The exact relative forward errors for the solutions are defined as follows:

⌝&XM⌝F⌝XM⌝F for RBMTLS,
⌝&XT ⌝F⌝XT ⌝F for RBTLS,

⌝&XL⌝F⌝XL⌝F for RBLS.

Using equations (5.4.2), (5.4.4), and (5.4.6), we compute the upper bounds for these relative

forward errors, denoted by UM for RBMTLS, UT for RBTLS, and UL for RBLS.

RBMTLS Method RBTLS Method RBLS Method

⌝[!A,!B]⌝F ⌜!XM⌜F⌜XM⌜F UM
⌜!XT⌜F⌜XT⌜F UT

⌜!XL⌜F⌜XL⌜F UL

1e − 10 3.5540e-11 2.7202e-09 1.5860e-10 8.5467e-09 6.6243e-12 2.1272e-11

1e − 09 1.9327e-09 1.7719e-07 1.0217e-08 5.5672e-07 3.8986e-10 1.3856e-09

1e − 08 7.5040e-09 3.8307e-07 2.1910e-08 1.2036e-06 8.8797e-10 2.9957e-09

1e − 07 4.3153e-08 2.7253e-06 1.0701e-07 8.5629e-06 6.2069e-09 2.1312e-08

1e − 06 6.6442e-07 2.8282e-05 1.8317e-06 8.8861e-05 7.1476e-08 2.2117e-07

Table 5.5.1. Comparison of relative forward errors and their upper bounds for a

perturbed problem with di!erent methods.

Table 5.5.1 presents a comparision of the exact relative forward errors of the real RBMTLS,

RBTLS, and RBLS solutions with their corresponding upper bounds for varying random

perturbations ⌝[&A,&B]⌝F . It is observed that the exact relative forward errors obtained
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using the three methods are consistently less than their respective upper bounds. This

confirms the validity of the derived upper bounds for the relative forward error.

Conclusion: In this chapter, we have introduced a method to find the best approximate

solution for an inconsistent linear system arising in commutative quantum theory. The

algebraic solution technique presented focuses on addressing the RBMTLS problem.

By transforming the RBMTLS problem into a real MTLS problem through the real

representation of reduced biquaternion matrices, we deduced conditions for the existence

of a unique real RBMTLS solution and derived explicit expressions for this solution.

Additionally, we proposed solution techniques for both the RBTLS and the RBLS

problems. These techniques can be considered special cases of the RBMTLS solution

method. Furthermore, the developed methods have been applied to solve the linear system

AX ≈ B over the complex field, illustrating their versatility in handling complex matrix

equations, which are special cases of reduced biquaternion matrix equations.

We also conducted a perturbation analysis of the real RBMTLS, RBTLS, and RBLS

solutions, deriving upper bounds for the relative forward errors. Numerical examples were

provided to verify the accuracy and e”ciency of the proposed methods.

Future research could explore the mixed and componentwise condition numbers of

the RBMTLS, RBTLS, and RBLS solutions. Additionally, tighter upper bound estimates

for the relative forward error could be derived to further enhance the reliability of these

solutions. The methods developed in this chapter have potential applications in digital

signal processing and image analysis within the framework of commutative quaternionic

theory.
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CHAPTER 6

CONCLUSION AND SCOPE FOR FUTURE WORK

Conclusion

This thesis develops comprehensive frameworks for solving generalized RBMEs, focusing

on their solutions, practical applications, and sensitivity to perturbations. Reduced

biquaternions, a class of four-dimensional hypercomplex numbers, are explored for their

computational advantages and unique properties. By formulating and solving RBMEs

with di!erent constraints, this thesis provides insights into their mathematical structure

and practical implications. Below is a summary of the major contributions presented in

each chapter:

In Chapter 1, the foundational concepts of RBs and RB matrices are introduced.

This chapter covers basic definitions, properties, and historical developments essential for

understanding the generalized RBMEs discussed in subsequent chapters.

In Chapter 2, a comprehensive framework for finding least squares structured solutions

to generalized RBMEs is developed. The notion of reduced biquaternion L-structures

is introduced, accommodating specific matrix constraints such as Toeplitz, symmetric

Toeplitz, Hankel, and circulant structures. Applications in color image restoration and

inverse eigenvalue problems, including PDIEP and generalized PDIEP, are also explored.

In Chapter 3, the focus shifts to computing {2}-inverse and {1,2}-inverse of RB

matrices with predefined conditions on the row and/or column space. Conditions for

existence and e!ective representations of these generalized inverses are established by

solving RBME of the form (AXB,CXD) = (E,F ). The results build upon the framework

in Chapter 2 to find the unstructured matrix solutions.

In Chapter 4, the RBLSE problem is addressed, where the system AX ≈ B is subject

to additional constraints CX =D. Both real and complex solutions to the RBLSE problem

are derived, along with an upper bound for the relative forward error. Minimizing this

error ensures the accuracy of solutions in practical applications.



In Chapter 5, the RBMTLS method is introduced to solve the overdetermined system

AX ≈ B within the reduced biquaternion algebra. Explicit conditions for the existence

and uniqueness of real RBMTLS solutions are derived, and an expression for obtaining

these solutions is presented. Special cases of RBMTLS, namely the RBTLS method

and the RBLS method, are also covered. Perturbation analysis is conducted to evaluate

the sensitivity of RBMTLS, RBTLS, and RBLS solutions to input variations. Relative

normwise condition numbers and forward error bounds are derived to ensure reliability in

practical applications.

Future Scope

To advance the findings of this thesis, it is vital to explore new research directions that

extend the current work. The following are potential directions for future research based

on the findings of this thesis:

⋉ Investigate perturbation analysis of constrained solutions of generalized RBMEs to

understand the sensitivity of the solutions under data perturbations.

⋉ Explore the QR decomposition of RB matrices to uncover new theoretical insights

and computational techniques for handling reduced biquaternion systems.

⋉ Study the generalized inverse of quaternion matrices.

The methodologies developed in this thesis for solving overdetermined linear systems have

potential applications in digital signal and image processing. Extending these methods

to real-time and dynamic systems could significantly enhance their relevance in practical

applications.
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