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ABSTRACT

This thesis establishes comprehensive frameworks for addressing generalized reduced
biquaternion matrix equations (RBMEs), exploring their solutions, applications, and
sensitivity to perturbations. Firstly, the thesis focuses on structured least squares
solutions for generalized RBMEs. To this end, it introduces the concept of reduced
biquaternion L-structures, which accommodate linear relationships between matrix entries.
A comprehensive framework is established for deriving L-structure least squares solutions
to RBMEs, with particular attention to specialized structures such as Toeplitz, Hankel,
symmetric Toeplitz, and circulant matrices. The developed techniques are further extended
to applications like color image restoration and solving partially described inverse eigenvalue

problems (PDIEPs) and generalized PDIEPs.

Next, the thesis investigates generalized inverses of RB matrices, such as the {2}-inverse
and {1,2}-inverse, under prescribed conditions on row and/or column spaces. By solving
RBME:s, conditions for the existence of these generalized inverses are derived, and their

efficient representations are established.

Following this, the reduced biquaternion equality constrained least squares (RBLSE)
problem is studied. Algebraic techniques are developed to compute real and complex
solutions to the RBLSE problem. An upper bound for the relative forward error is derived
to ensure the reliability and accuracy of the solutions. This analysis is particularly relevant

for applications requiring robust solutions in the presence of data perturbations.

Expanding beyond least squares, the thesis also introduces the reduced biquaternion
mixed least squares and total least squares (RBMTLS) method to solve overdetermined
systems AX ~ B. This method is tailored to scenarios where errors exist in both matrix
B and specific columns of matrix A. Two special cases—the reduced biquaternion total
least squares (RBTLS) method, addressing errors in both A and B, and the reduced
biquaternion least squares (RBLS) method, which assumes errors only in B—are also
explored. For these methods, conditions for the existence and uniqueness of solutions are
derived, along with explicit formulas for their relative normwise condition numbers. These

condition numbers quantify the sensitivity of solutions to perturbations in input data.

Finally, perturbation analysis is performed for the RBMTLS, RBTLS, and RBLS
methods, providing explicit bounds for the relative forward error. This ensures the reliability

of the proposed solutions in practical applications.
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CHAPTER 1

INTRODUCTION

The study of hypercomplex numbers, such as quaternions and reduced biquaternions,
has significantly contributed to advancements in fields such as signal processing, image
processing, and control theory [27, 41, 50, 60, 66, 88]. Among these number systems,
quaternions have been widely recognized for their ability to represent multi-dimensional
data in a compact form. Introduced by William Rowan Hamilton in 1843, quaternions
form a four-dimensional hypercomplex number system consisting of one real component
and three imaginary components. Quaternions have been applied effectively in control

systems, computer graphics, signal, and image processing [1, 9, 23, 40, 51, 52, 59].

Despite their versatility, quaternions present a significant challenge: non-commutative
multiplication, where the order of multiplication matters. This non-commutative property
complicates many operations, leading to increased computational complexity and more
intricate algorithm designs [25, 56, 57]. To address this limitation, reduced biquaternions
(RBs), also known as commutative quaternions, were introduced [61]. Like quaternions,
RBs are four-dimensional hypercomplex numbers, but their multiplication is commutative,
making them more suitable for real-time applications where computational efficiency is
crucial, particularly in signal and image processing. As a result, RBs have been applied to
reduced biquaternion discrete Fourier transforms, convolutions, and correlation operations
in signal and image processing [31, 55, 56]. Researchers have also explored the potential of
RBs in theoretical physics, such as their connection to Maxwell’s equations [8, 32], further

broadening the applicability of RBs.

This growing interest in RBs has led to the development of several algorithms for
matrix computations involving RBs. For instance, algorithms for eigenvalue and eigenvector
computations, as well as singular value decompositions of RB matrices, are detailed in
[57]. Zhang et al. explored the singular value decomposition and generalized inverses of
RB matrices [85], and further investigated the diagonalization process in [86], where they
established the necessary and sufficient conditions for diagonalization and introduced two

numerical methods to facilitate this task. In [19], authors discussed the LU decomposition



of RB matrices. These studies underscore the increasing relevance of RB matrices in both

theoretical and applied contexts.

Color image processing is one area where RBs have demonstrated significant potential.
A color image can be represented as an RB matrix, efficiently capturing the relationships
between the red, green, and blue (RGB) color channels without losing spatial arrangement

[57]. A color image I is expressed as
I = Ri+Gj+ Bk,

where 2, 7, and k represent the basis imaginary units of RBs, and R, GG, and B represent
the red, green, and blue channels, respectively. This RB-based representation preserves
inter-channel relationships and offers an advantage over conventional methods that treat

each color channel separately.

In image restoration, RB matrix equations are particularly useful for modeling and

correcting image degradation. The linear discrete model for image restoration is given by
g=Kf+n,

where ¢ is the observed (degraded) image, f is the true image, K is the blurring matrix, and
n is additive noise [39]. Solving this equation involves finding the purely imaginary least
squares solution of the reduced biquaternion matrix equation K f = g, thereby restoring

the original image.

Additionally, eigenvalue problems involving RB matrices have been explored in the
literature. For example, in [33], Guo et al. studied the eigenvalue problem of RB matrices
by solving the matrix equation AX = XB. If A € Q" and there exists a non-zero RB
vector « such that Aa = a\, where A € Qg, then )\ is called an eigenvalue of A, and « is its
corresponding eigenvector. Such eigenvalue problems have proven effective in applications

like color face recognition [33, 57].

Despite the advancements of RBs in various applications, the available literature on
reduced biquaternion matrix equations (RBMEs) remains relatively sparse, particularly
regarding structured solutions. For instance, in [18], the authors explored unstructured
solutions to matrix equations of the form XF - AX = BY and XF - AX = BY over
commutative quaternions. Additionally, least squares solutions for matrix equations such
as AX = B and AXC = B over commutative quaternions were investigated in [81]. The

results in [67] further examine real representation methods for finding least squares solutions

2



to the RB matrix equation AXC = B. Moreover, [75] discusses unstructured solutions to

matrix equations over the commutative quaternion ring.

While significant progress has been made in finding unstructured solutions to the
RBMEs, structured least squares solutions remain largely unexplored. For instance, [71]
discusses least squares Toeplitz and bi-Hermitian solutions for the equation X + AXB =C,
while [80] addresses Hermitian solutions for RBMEs of the form (AXB,CXD) = (E, F). In
this thesis, we extend the study to structured solutions for generalized RBMESs, covering L-
structure solutions that encompass known structures such as Toeplitz, symmetric Toeplitz,
Hankel, circulant, and lower triangular matrices. With our developed comprehensive

framework, we can address the problem discussed in [71] in a more effective way.

Further studies have addressed equality constrained least squares problems, as seen
in [83], where techniques for solving the reduced biquaternion equality constrained least
squares (RBLSE) problem were developed. However, special solutions for the RBLSE
problem, along with their detailed perturbation analysis, remain unexplored in the existing

literature.

In numerical analysis, the concept of relative forward error is essential for evaluating
the accuracy and stability of solutions to mathematical problems, particularly for the
RBLSE problem in this case. This measure becomes especially critical when solutions
are computed in the presence of data perturbations. While computing the solution of
the RBLSE problem, inaccuracies arising from machine precision limits, floating-point
arithmetic, or data input errors can introduce deviations between the computed solution
and the true solution. The relative forward error effectively quantifies these discrepancies,
helping to gauge the sensitivity of the solution to small data perturbations. By identifying
the extent of these errors, researchers can evaluate the robustness and reliability of the
solution methods employed. Furthermore, understanding these discrepancies is crucial in
practical applications, where RB algebra is applied in domains such as robotics, image
processing, and control systems. Therefore, conducting a detailed study of the perturbation
analysis for the RBLSE problem is crucial to ensure solution reliability and accuracy—an

aspect that has yet not been addressed in current research.

Recent research has also focused on the total least squares (TLS) method for finding
an approximate solution to the matrix equation AX ~ B in commutative quaternionic

theory. For instance, [82] explored solutions to the TLS problem, while [84] examined



special solutions in the commutative quaternionic theory. These studies provide valuable
insights into TLS methods, but they leave open areas for further exploration, particularly
concerning the reduced biquaternion mixed least squares and total least squares (RBMTLS)

problem and its associated perturbation analysis.

Both least squares (LS) and TLS methods find approximate solutions to the linear
system AX ~ B by making certain assumptions about the input data that may not be valid
across all practical applications. In scenarios where these assumptions do not hold, the
RBMTLS method offers a more flexible and accurate approach to obtaining solutions. This
flexibility arises from the RBMTLS method’s capacity to account for errors in the matrix
B and only a few columns of matrix A, which is not inherently addressed in standard LS
and TLS methods.

This thesis addresses these research gaps by developing a comprehensive framework

for solving RBMEs. The key contributions of this thesis are as follows:

Chapter 1 is introductory in nature and provides the history of RBs, the fundamental
properties of RBs and RB matrices, background ideas, and prerequisites for the remaining

chapters.

Chapter 2 focuses on least squares structured solutions for generalized RBMEs. In
this chapter, we develop a comprehensive framework that accommodates various matrix
structures, allowing for any set of linear relationships between matrix entries. This class of

matrices is referred to as the reduced biquaternion L-structure, defined as follows:

Reduced Biquaternion L-structure: Let € be a submodule of Q™. The subset of RB

matrices of order m x n, given by
L(m,n) ={X e Qg™ | vec(X) € Q}

is called the reduced biquaternion L-structure.

For example, consider the following matrices:

Tl Ti2 i3 Ti1+ 212 Ti2+3 T
Xi1=|xoy x11 x12|, Xo=|wo + (2 + 37:+j) T21 To1 |»
xX31 T21 T11 x11 Z12 Z11

where 211, x19, 213, To1, 31 € Qr. Clearly, X is an L-structure matrix, but X is not.

4



Applications of least squares solutions in color image restoration and solving inverse
eigenvalue problems are explored. Both the partially described inverse eigenvalue problems

(PDIEPs) and the generalized PDIEPs are addressed:

e PDIEP: Given vectors {uy,us, ..., u;} ¢ F* (k < n), values {\1,Ag, ..., A\r} c F,
and a set £ of structured matrices, find a matrix M € £ such that Mu; = A\;u; for
i=1,2,... k.

e Generalized PDIEP: Given vectors {uj,us,...,ux} ¢ F?* (k < n) and values

{A\, A, ..., A} €T, find matrices M, N € £ such that Mu; = \;Nu; for i =1,... k.

Chapter 3 focuses on computing the {2}-inverse and {1, 2}-inverse of RB matrices
with predefined conditions on the row and/or column space. Conditions for the existence
and effective representations of these generalized inverses are established by solving RBME
of the form (AXB,CXD) = (E,F). This chapter builds on the framework developed
in Chapter 2, applying it to find unstructured solutions of the RBME. The results and

algorithms presented here demonstrate the versatility of the techniques introduced earlier.

Chapter 4 addresses the RBLSE problem. The goal is to solve the system
H}}n |AX - B|, subjectto CX =D.

where the constraints on X do not fall under the L-structure framework discussed in
Chapter 2. In this chapter, algebraic techniques are developed to find both real and
complex solutions to the RBLSE problem. An upper bound is also established for the

relative forward error associated with these solutions:

” Xcomputed - Xexact ||

”Xexact ||

Relative Forward Error =

Minimizing this error ensures the accuracy of our solutions in practical applications.

Chapter 5 explores solutions to the RBME
AX ~ B,

a specific case of the generalized RBMEs studied in Chapters 2 and 3. In earlier chapters, a
least squares framework was developed under the assumption that errors are only present
in matrix B. However, in practical applications, matrix A may also contain errors, or these
errors may be limited to only a few columns of A.

5



This chapter extends the framework to address these scenarios by introducing the
RBMTLS method. The RBMTLS method is particularly well-suited for cases where errors
occur in both matrix B and specific columns of matrix A. Two special cases of this method

are also discussed:

e Reduced biquaternion total least squares (RBTLS): Suitable when both A
and B contain errors.
e Reduced biquaternion least squares (RBLS): Suitable when only B contains

errors, as detailed in earlier chapters.

This chapter explores the conditions for the existence and uniqueness of real solutions
to the RBMTLS, RBTLS, and RBLS problems. Explicit formulas are derived for the
relative normwise condition number, which quantifies the sensitivity of the solutions to
small perturbations in the input data. Additionally, upper bounds for the relative forward

error are determined for each method, ensuring the reliability and accuracy of the solutions.

Chapter 6 provides a summary of the thesis and outlines potential directions for

future research.

By bridging the gaps in current research and providing new theoretical insights,
this thesis advances the field of RBMEs and their applications across various domains.
Furthermore, to ensure a comprehensive understanding, the fundamental properties of

both RBs and RB matrices are reviewed.

1.1. Reduced Biquaternions

The concept of the reduced biquaternion was first introduced by Segre in 1892. A
reduced biquaternion is a four-dimensional hyper-complex number system that extends
the complex number system by incorporating one real component and three imaginary

components. The set of reduced biquaternions is defined as:
QR = {T’ =7+ 7"1’1:+ ’I"Qj-i- 7”3’{5 | T0,7T1,72,73 € R} , (111)
where ¢, 7, and k are imaginary units. These units satisfy the following algebraic relationships

P=k=-1, and 5 =1,



with the multiplication rules
ig=71=Fk, jk=kj=1 and ki=1k=-j.

Given two reduced biquaternions a = ag+a 2+ asj+ask € Qg and b = by + b1+ byj+ b3k € Qp,

we have

a=b <= a;=b;, for i=0,1,2,3. (1.1.2)

The operations of addition and multiplication are defined as follows:

For addition:
a+b=(ag+by)+ (ar+b1)i+ (az+by)j+ (az+ bs)k,
and for multiplication:
ab = (agbg — a1by + asbs — azbs) + (agby + arbg + asbs + azbs)i
+ (agbg — a1bs + asby — agby)j+ (aghs + arby + ashy + asby) k.

These operations extend the familiar algebraic rules of complex numbers into a higher-
dimensional system, enabling the representation of more complex relationships. The
commutative properties of the multiplication operation make reduced biquaternions

especially useful in applications where simplicity and computational efficiency are required.

Real number and complex numbers can be thought of as reduced biquaternions in a
natural way. For a reduced biquaternion r = 7o + 712+ r9j+r3k € Qg, the real, complex, and

imaginary parts are defined as
R(r)=re, C(r)=ro+mri, and J(r)=rii+ryj+rsk.
Unlike the quaternion algebra, reduced biquaternion r has three types of conjugates [33]:
P =g —rii+roj—rsk, TP =rg+rii-ryj-rsk, 73 =g —rii-roj+rsk.

7 is also denoted by r#. The norm of r is defined in [6, 33] as

|7 = VrrOF@FG) = [ (ro +1r2)2 + (r1 +73)2] [(ro — 12)% + (r1 — 73)2].

r is said to be nonsingular if there exists a reduced biquaternion p such that rp=pr =1,

written as r~! = p, and

i FF(2)F(3)
ro=s—

I
which is different from the inverse of quaternions [33].
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Any reduced biquaternion number r = rq+ 712+ 35+ r3k can also be uniquely expressed
as
r=(ro+r1t) + (ro +1r38)J = a1 + asJ,
where a; =rg+ 712 and as = ro + r32 are complex numbers.

The set Qr forms a commutative ring with identity, where addition and multiplication

are defined in the usual way.

Zero Divisors of Qg: Let 0 # p € Qg, and if there exists another element 0 # g € Qg such

that pg = 0, then p is referred to as a zero divisor of Qg.

Let e; and ey be two special numbers defined as

1+3 d 1-3
ep=— and ey=—=.
2 2
We have
n n—1 2 n n—1 2
e1ea =0, e =€l =...=ef=€, ey=ey =...=e€5=e€o.

Therefore, e; and ey are both idempotent elements (€2 = ey, €2 = e5) and divisors of zero.
Any RB of the form cje; or cyes (where ¢; and ¢y are any complex numbers) is also a

divisor of zero.

Thus, for RBs, there are infinite solutions for the variable x in the following equation:
ur =0, if w=cre;orcoes.
Hence, Qg does not form a complete division algebra.

Unit in Qgr: An element r in Qg is defined as a unit if there exists an element s € Qg
such that

rs=sr=1,
where 1 represents the multiplicative identity in Qg. In this context, s is referred to as the

inverse of r. Units are thus sometimes called invertible elements in Q.

It is important to note that not every nonzero element in Qg is a unit, unlike in R

and C. For instance, there is no solution for the variable x in the following equation:
ur =1, if w=cre;orcoes.

Since Qg forms a commutative ring, we can extend the concept of vector spaces to that of
a module, where scalars are taken from a ring rather than a field. We begin by presenting

the definition of a module [5].



Definition 1.1.1. A module over a ring Qg is an abelian group (M,+) together with a
scalar multiplication operation Qg x M — M, defined as (r,z) = r -z, such that for all

r,s € Qr and x,y € M, the following properties hold:

(1) Distributivity over module addition: r-(x+y) =r-x+71-Yy,
(2) Distributivity over ring addition: (r+s)-x=r-z+s-x,
(3) Associativity: (rs)-x=71-(s-x),

(4) Identity: 1-x =z (1 is multiplicative identity in Q).

Then we say that M is a Qr-module.

Next, we present some definitions concerning Qg-module bases [5].
Definition 1.1.2. Let M be a Qr-module, and let T' = {m, | « € A} be a subset of M.

(1) T is an Qr-module basis of M if every m € M can be written as a finite linear

combination of the elements of T".

(2) A finite subset {mq,,...,mq,} of distinct elements of I' is said to be linearly
independent over Qg if, whenever for some x1,...,x, € Qr, we have
T1Mgy + o+ TyMy, =0 == z1=--=72, =0.

(3) T is linearly independent over Qg if every finite subset of distinct elements from T
18 linearly independent over Qg.

(4) T is a free Qr-module basis of M if I is a Qg-module basis of M and T" is linearly
independent over Qg.

(5) M is a free Qg-module if M has a free Qg-module basis.

A Qr-module basis of M is often referred to as the basis of M.

Remark 1.1.3. The basis of a vector space differs from the basis of a module in the

following ways:

o IfI" is a basis of M, this does not imply that every element of M can be written
uniquely as a linear combination of elements from T'.
o [T is a free Qr-module basis of M, then every nonzero element of M can be written

uniquely as a linear combination of elements from T'.
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Definition 1.1.4. A Qgr-module M is said to be finitely generated if M has a finite basis

C={my,...,my,}.

The elements in a basis [" are called generators of M. The rank of a free Qg-module is
the number of generators in a free basis of the module. Clearly, Qg itself is a Qr-module

with {1} being a free Qr-module basis of Q.

Definition 1.1.5. Let M be a module over a ring Qr. A subset N ¢ M is called a

submodule if:

(1) N is closed under addition, i.e., x+y € N for all x,y € N,
(2) N is closed under scalar multiplication, i.e., r-x € N for all 7 € Qg and v € N,

(3) N contains the zero element of M.

In simpler terms, a submodule is a subset of a module that retains the structure of a

module over Qg.

Now, we introduce the definition of the Moore-Penrose generalized inverse for an RB

element, along with its algebraic representation, as detailed in [85].

Definition 1.1.6. Let r € Qg. An RB element, denoted by r', is called the Moore-Penrose

generalized inverse of r if x = r! satisfies the following four equations:
(Drazr=r, (Qarzx=z, 3)@z)?=rz, 4)(@r)? =ar

Theorem 1.1.7. Let r = ro+r1t+r9g+13k = by +boj € Qr, where by = ro+r1t and by = ro+134.

Then, the Moore-Penrose generalized inverse of r is given by

ro+7rit—1r9g—r3k B2 2 2
(T0+T1’i)2—(T2+T3i)27 ! »
(ro+7e) = (ri+13)i+ (ro+12)j— (r1 +13)k ~

, b1 = b2 * 0,
Tf_ 2(7"0+7"2)2+2(’f‘1+7"3)2
(7”0—7’2)—(7"1—T3)’l:—(7’0—7‘2)j+(7’1—7"3)k _
, b1 =-by#0,
2(ro—12)? +2(r1 —1r3)?
0, b2 =12 =0,

1.2. Reduced Biquaternion Matrices

In this section, we introduce the foundational concepts and operations related to RB

mMmXn

matrices, where each entry in the matrix is an RB number. Any matrix A € QF*" can be

10



uniquely expressed as
A=Ag+ Ari+ Ay + Ask,

where Ay, A1, Ay, Az € R™*", Alternatively, A can also be written as

A= Bl +ng,

where By = Ag + A1t and By = Ay + A3t are complex matrices of size m x n.

The Frobenius norm for A = (a;;) € Q"™ is defined in [80] as

m n
1Az =] 20D lai;l,
i=1 j=1

where, for any RB number r = rg + 14+ roj + r3k, we define |r| as

22 2, 2
|r| = \/7’0 +ri+ri+73
For a matrix A = Ag + Ayt + Asg+ Ask e Qg™ its transpose is given by

AT = AT + ATi+ AL5+ ALE,

and the ik-conjugate and the ik-conjugate transpose are defined as in [85]:

A=Ay-Avi+ Agj—Ask and AP = AT - AT+ ATj- ATk,

(1.2.1)

RB Unitary Matrix: A matrix A € Q3" is called an RB unitary matrix if it satisfies

AAH = AH A = I, [85].

The collection of all m xn RB matrices, denoted by Qp*", forms a Qg-module, defined

by the following operations:

e Matrix Addition: For A, B € Q2”", the (i,j)-th element of A+ B is

(A+ B)z] = Aij + Bzg

e Scalar Multiplication: For a scalar r € Qg and a matrix A € Qg*", the (7,7)-th

element of A is

(rA)ij =1(A)ij

Foreach¢=1,2,...,mand j=1,2,...,n, let E;; denote the m x n matrix whose entries

are defined as follows:
if (p,q) = (4,7),
(Eij)pq = ) o
0 if (p,q) # (4,7).

11



The set of matrices I'= {E;; | 1 <i<m,1<j <n} forms a free Qg-module basis of QF*".

Thus, QF*" is a finitely generated, free Qg-module of rank mn.

Similarly, the set Q%' = Q! consisting of all column vectors of size m, is a free Qg-
module of rank m. Likewise, Q1*", the set of all row vectors of size n, is a free Qg-module

of rank n.

We now define the determinant, minor, adjoint, and inverse of an RB matrix, along

with a discussion of their properties [5, 48].

Determinant of an RB Matrix: Let A = (a;;) € Q¢*". Define

det : Q" - Qg

det(A) = ZSgn(a)ala(l)CLQJ(Q)'"ana(n)7

where the summation extends over all permutations o of {1,2,...,n}, i.e., over all o
in the symmetric group S,, on n letters. The symbol sgn(o) represents the sign of the
permutation o, which is (+) for even permutations and (-) for odd permutation. Recall that
a permutation is even (odd) if it can be written as an even (odd) product of transpositions.
The map det : Q" - Qg is called the determinant or determinant map, and det(A) is

called the determinant of A.

For A, B € Q¢*", the determinant of an RB matrix satisfies the following properties:

o det(AB) = det(A)det(B).
o det(AT) = det(A).

Minor of an RB Matrix: Let A € Q"™ and suppose 1 <k <min{m,n}. A k x k minor

of A refers to the determinant of a k& x k& submatrix of A.

In particular, for A € QF*™, we will use the notation [A]; ; to denote the k x k& minor
of A, where the rows are indexed by the elements of the set I and the columns are indexed
by the elements of the set J. Here, I is a subset of {1,...,m} with exactly k elements,
and J is a subset of {1,...,n} with exactly k& elements. This notation will be consistently

used throughout the thesis to specify minors of RB matrices.

Definition 1.2.1. For a matriz A € Q¢*", the notion of cofactors is defined as follows:

12



(1) Foranyi,j=1,2,...,n, let M;;(A) denote the (n—1)x(n—1) minor of A, obtained
by deleting the i-th row and j-th column of A.

(2) The element (=1)"7 M;;(A) is called the i, j-th cofactor of A. We denote this cofactor
as cofi;(A).

Adjoint of an RB Matrix: The adjoint of a matrix A € QF*", denoted by adj(A), is
defined by

(adj(A))ij = Ciji(A) forall 4,7=1,2,...,n.
For A e Q§™, we have

Aadj(A) =adj(A) A =det(A)L,.

Inverse of an RB Matrix: A matrix A € Qg*" is an invertible matrix if there exists a

matrix B € Q" such that

AB=BA=1,.

The matrix B is called the inverse of A and is denoted by A-!.

Proposition 1.2.2. Let Ae Qp*". Then A is invertible if and only if det(A) is a unit in
Q-

Remark 1.2.3. [t is important to note that, in the context of reduced biquaternion algebra,
a nonzero determinant det(A) does not necessarily imply invertibility of A, which differs

from matrices over a field.

In the case when det(A) is a unit in Qg, A~! is given by

a1 :
A = det(A)adJ(A)’

Non-singular RB Matrix: A matrix A € Qg that is invertible is said to be a non-

singular matrix.

Next, we present some examples to illustrate the concept of the determinant and the

invertibility of an RB matrix.

Example 1.2.4. Consider the matriz
1+27 3+4
S R
5+67 7+83
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We compute the determinant as
det(A) = ~16 - 16;.
Since det(A) is not a unit in Qg, the matriz A is not invertible.

Example 1.2.5. Consider the matrix

A:

1-7 4
ok 2|

det(A) = 2.

The determinant is

Here, det(A) is a unit in Qr, making A invertible. The inverse is given by

12 -
B=c .
2[—% 1-3]

Verifying, we have AB = BA = I, thus confirming that A~! = B.

Next, we define the SVD of an RB matrix and explore its utility in defining the
Moore-Penrose generalized inverse, as well as various other generalized inverses of RB
matrices. Additionally, we provide an explicit expression for the minimum norm solution

of the RBME Az = b, which is derived using the SVD approach [57, 85].

Theorem 1.2.6. Let A = By + Byj € Qp", where By, By € C™ ™. Suppose the SVD of
By - By and By + By are given by

o 3. o] .
B - By, =U Vi = Uy Vi,
. 0 0_
e[ 0]
By+ By =SVl =0, |V,
_O 0_
where Ul,UQ e Cmm and ‘71,‘72 e Cvn qre unitary matrices, 3, = diag(T1,Toy -, Ts),

Y, = diag(vy1,72, -,V ), with s = rank(By - By), t = rank(By+ Bs), and 71 > 73 > -+ > 7 > 0,
Y1 2 Yo 2 2 > 0 being the singular values of By — By and By + Bsy, respectively.

Then there exist two RB unitary matrices U € QF*™ and V € Qg™ such that

VH (1.2.2)




where %, = diag(o1, 09, ...,0,) with

TT+tM 1= T .
_ 7+7

] 2 2 2

1=1,2,....m (1.2.3)

where r = max{s,t}, with 7, =0 if r > s and v, =0 if r > t. We have |oq| > |o2| > -+ > |o,| > 0,

and o, s referred to as the singular values of the RB matriz A.

Remark 1.2.7. The singular values of an RB matriz differ from those in real, complex,
or quaternion matrices. In particular, rather than being nonzero real numbers, the singular
values have the form a + bj, where a,b € R. Additionally, for RB matrices, the parameter r

does not necessarily represent the rank of the matriz as it does in standard matrix theory.

Definition 1.2.8. Let A € QF*". A matriz X is called the Moore-Penrose generalized
inverse of A, denoted by A, if X satisfies the following Penrose conditions:

(1) AXA= A,
(2) XAX = X,
(3) (AX)" = AX,
(4) (XA)H = XA,

The matriz AT is unique.

We further define additional generalized inverses of RB matrices that satisfy a subset
of the Penrose conditions. For any subset § ¢ {1,2,3,4}, where condition (i) corresponds
to i € 6, the set of RB matrices that meet the specified conditions in ¢ is denoted by A{d}.
Any RB matrix in A{d} is referred to as the d-inverse of A and is denoted by A®).

Theorem 1.2.9. Let A e Q™™ and suppose its SVD is

2, 0
A=U VH,
0 0

as in Theorem 1.2.6. Then the Moore-Penrose generalized inverse of the matrixz A is given

by

where Y = diag(af, O'g, . ,JZ).
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Theorem 1.2.10. Let A€ QF*™ and suppose its SVD is

5, 0
A=U VH,
0 0

as i Theorem 1.2.6. Then
(1) G e A{1} if and only if

G=V

f
ErKfUH
L M|

where K ¢ @TRX(W—T); Le @E{n—T)xri and M € Q]gl—r)x(m—r)'
(2) G e A{1,3} if and only if

G=V

f
w0 -
L M ’

where L € Qg_ﬂxr and M ¢ Qg_r)x(m_r).
(3) G e A{1,4} if and only if

where K € @?Rx(m_r) and M e @E&n_r)x(m_r).

Theorem 1.2.11. Let A € Q" and b € Q@*'. Then the general solutions x and the

minimum norm solution xps of
min |Az - b|
are given by
x =Alb+ (I, - ATA) 2,
rrLs = Afb,

respectively, where z € Q%! is any RB wvector.

1.3. Preliminaries

This section introduces fundamental definitions and key results that will be utilized
throughout this thesis. These foundational concepts, originating from the complex domain,

are essential tools for solving problems in the RB domain, which is the primary focus of
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this work. The results presented here are primarily drawn from references [3, 30, 70] and

will serve as the basis for the subsequent chapters.

We begin by discussing the definition and basic properties of the Kronecker product.

Definition 1.3.1. Let A = (a;;) € C™" and B = (b;;) € CP*4. The Kronecker product of A
and B, denoted by A® B, is defined as follows:

anB Ce alnB
A® B = : : e CP e,
amB ... an,B
1 3
1 5 7
Example 1.3.2. Let A=|2 4| and B = . Then
3 2 4
3 1
1 5 7 3 15 21]
3 2 4 9 6 12
2 10 14 4 20 28
A®B= )
6 4 8 12 8 16
3 15 21 1 5 7
9 6 12 3 2 4

Some properties of the Kronecker product are as follows:

e For any A and B, we have
(A®B)'=AT® BT and (Ae B)" =A% ¢ BH.
o Let AcCmn BeCr*s, C'e C™ and D € C*4. Then

(A® B)(C® D) =(AC ® BD) e C"™"4,

Pseudoinverse: The pseudoinverse of a matrix A € C™*"  denoted by At € C"*™  satisfies

the following four properties, commonly referred to as the Moore-Penrose conditions:

(1) AATA = A,
(2) AtAAT = At
(3) (AANT = AAt,
(4) (AtA)T = AtA.
17



The pseudoinverse has several notable properties:

o Al always exists and is unique.

o If the matrix A is invertible, then Af = A1

e The following identities hold: (A")! = A, (AT)! = (4N)”, (Z)Jr = AT, and (AH)' =
(An".

e For a scalar a # 0, we have (aA)’ = a-1At

Remark 1.3.3. The following properties hold for the pseudoinverse AT under specific rank

conditions of A:

o If A has full column rank, then A" A is invertible, and the pseudoinverse of A is
given by
AP = (AT A) ™ A1
o If A has full row rank, then AAH is invertible, and the pseudoinverse of A can be

expressed as

AT = AT (AATY
Lemma 1.3.4. Consider the complex matrix equation AX = B. The following results hold:

(1) The matriz equation has a solution X if and only if AATB = B. In this case, the

general solution is given by
X=A'B+(1-ATA)Y,

where Y is an arbitrary matriz of suitable size. Furthermore, if the consistency
condition is satisfied, then the matrix equation has a unique solution if and only if

A is of full column rank. In this case, the unique solution is
X =A'B.
(2) The least squares solutions of the matriz equation can be expressed as
X=A'B+(1-ATA)Y,

where Y is an arbitrary matriz of suitable size. The least squares solution with the

least norm 1is

X =A'B.
18



Singular Value Decomposition (SVD): For any nonzero matrix A € C™" with rank

r, the matrix A can be decomposed as
A=UxVH, (1.3.1)

where U € C"™™ and V € C™" are unitary matrices, and ¥ is a diagonal matrix of the form
Y = diag(oy,...,0,) € R™". The entries o1 > 03 > - > 0, > 0 are known as the singular

values of A. This factorization is called the SVD of A.

Remark 1.3.5. Let A € C™" be a matrixz of rank v with SVD given by A=UXVH, as in
(1.3.1). The SVD of A provides a straightforward way to compute the pseudoinverse Af.

Specifically, the pseudoinverse can be expressed as
AT =V 2iUH,

where X1 = diag(1/o4,...,1]0,) € Rm,

The SVD of matrix A provides a foundation for approximating A by matrices of lower

rank.

Eckart-Young-Mirsky Matrix Approximation Theorem: Let the SVD of A e R™»

be given by
T
A= Z o]
i=1
where r = rank(A), o1 > 09 >+ > 0, > 0 are the singular values, and U = [uy,ug, ..., U] €
Rm*m and V' = [vq,vs,...,0,] € R are orthonormal matrices. If k < r, define

k
T
Ak = Z o;u;v; .

i=1
Then Ay is the best rank-k approximation to A in the Frobenius norm. Specifically, we

have

i A-Bl|rp=|A-A|F= 2,
i JA=Ble=lA-Ade=y| 8o
Inner Product: Let V be a vector space over a field F. An inner product, denoted by

(-,-) : V xV =T, is a function that satisfies the following properties:

(1) (u,u)>0 for all ueV,
(2) (u,u)=0if and only if u =0,
(3) (u+v,w) = (u,w) + (v,w) for all u,v,weV,
(4) (cu,v) = c{u,v) for all ce F and u,v eV,
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(5) (u,v) = (v,u).

For vectors u,v € C", the inner product is defined as (u,v) = vHu.

Norm: For a vector space V over a field F, a function |- | : V/(F) - R is called a norm if

it satisfies the following conditions:

(1) |v| >0 for all v eV,
(2) |v| =0 if and only if v =0,
(3) |av| =|af|jv] for all v eV and a € F,

(4) |v+u| < |v| + |u| for all v,u €V (triangle inequality).

For z = (z;) € C", the function |z| = /¥, |z;|* defines a norm on C", commonly referred

to as the 2-norm. Similarly, for a matrix A = (a;;) € C™", the Frobenius norm of A is

defined as
[AllF =+ ‘ > > lagl?.
i=1j=1

This norm can also be expressed in terms of the trace of A# A as

[ Al = Vir(ARA),

where tr(-) denotes the trace.

Unitary Matrix: A matrix U € C™*" is called unitary if it satisfies the property
URU =1,=UU",

Unitary matrices preserve norms, and the Frobenius norm exhibits the following property:
[UAV|F = |AlF,

for any matrix A € C™" and unitary matrices U and V.

Orthogonal Complement of S: Let S be a subset of C". The orthogonal complement
of S, denoted S*, is defined as the set of vectors in C" that are orthogonal to every vector
in S. That is,

St={xeC"|(x,y)=0forall yeS}.

The set S* is nonempty, as it includes at least the zero vector.
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Consider A € C™*" which can be viewed as a linear transformation from C" to C™.
For a vector x € C", the transformation maps x to Ax € C™. Two fundamental subspaces

associated with this transformation are:

e The null space of A, denoted N (A), is a subspace of C* defined by
N(A)={xeC"| Az =0}.
e The range of A, denoted R(A), is a subspace of C™ defined by

R(A)={Ax |z eC"}.

It is known that
72(AH)l =N(A).

QR Decomposition: Let A € C»" be a nonsingular matrix. There exist unique matrices
@, R € C» guch that @) is unitary, R is upper triangular with real, positive entries on the

main diagonal, and A = QR.

Theorem 1.3.6. For any matriz A € C™™ with m > n, there exist matrices ) € C™*™

and R e C™" such that Q is unitary and

—~

R
0

R:

)

where R € C™™ is upper triangular, and A = QR.

Theorem 1.3.7. If A= QR is the QR factorization of a matrix A € C™™ with full column
rank, and if

A=lay,...,a,], Q=[aq1, - qm]
are the column partitionings of A and Q, respectively, then for Q1 = Q(1 : m,1 : n),
Q2=Q(1:m,n+1:m), and Ry = R(1:n,1:n), we have

R(A) = R(Ql)a

R(A)" = R(Q2).
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CHAPTER 2

L-STRUCTURE LEAST SQUARES SOLUTIONS OF
GENERALIZED REDUCED BIQUATERNION MATRIX
EQUATIONS

This chapter presents a comprehensive framework for computing structure-constrained
least squares solutions to generalized reduced biquaternion matrix equations (RBMEs).
It investigates three main types of matrix equations: a linear matrix equation involving
multiple unknown L-structures, a linear matrix equation with a single unknown L-structure,
and general coupled linear matrix equations with one unknown L-structure. The proposed
method leverages the complex representation of reduced biquaternion matrices to derive

these solutions.

The versatility of the framework is demonstrated through the derivation of least
squares purely imaginary solutions for the RBME AX = E with applications to color
image restoration. Furthermore, the framework is utilized to obtain structure-constrained
solutions for complex and real matrix equations, broadening its applicability to various
inverse problems. Specific attention is given to partially described inverse eigenvalue
problems (PDIEPs) and generalized PDIEPs. The chapter concludes with illustrative

numerical examples to validate the effectiveness of the proposed approach.

2.1. Introduction

In matrix theory, linear matrix equations play a crucial role due to their wide range of
applications in control theory, inverse problems, and linear optimal control [15, 26, 35].
Owing to their widespread application in various fields, one encounters the problem of
finding approximate solutions for linear matrix equations. There are many different forms

of matrix equations. Some simple examples of these are:

AX=B, AXB+CX"D=FE, AXB+CYD=E.



A great deal of research has been carried out on real and complex matrix equations, which
have applications across a range of scientific and engineering disciplines [11, 24, 37, 46].
Quaternion matrix equations, in particular, have been studied extensively due to their
significance in areas like image and signal processing [43, 77, 78, 90]. However, a notable
limitation of quaternions is their non-commutative multiplication, which restricts their

applicability in certain contexts.

To address this issue, reduced biquaternions have emerged as a powerful alternative.
Reduced biquaternions allow for commutative multiplication, simplifying many operations,
especially in image and digital signal processing. For example, [56] demonstrated that
analyzing complex symmetric multichannel systems and symmetric lattice filter systems
using reduced biquaternions significantly reduces computational complexity. Additionally,
reduced biquaternions have been shown to provide a more efficient and straightforward
method for color-sensitive edge detection between two colors compared to traditional

quaternions.

Further illustrating their utility, [57] demonstrated that reconstructing original
color images using reduced biquaternion matrices requires only three-fourths of the
computational complexity needed for quaternion matrices. Given these advantages, solving
matrix equations that arise from commutative quaternion theory has become increasingly

important in various practical fields.

Recent studies have focused on RBMEs. For example, Zhang et al. [81] investigated the
least squares solutions for matrix equations such as AXC = B and AX = B. The authors
in [85] discussed the SVD and generalized inverse of reduced biquaternion matrices and
used these tools to find the least squares solution of the RBME Az = b. Similarly, [82]
studied the total least squares solutions of the RBME Az = b, while [83] explored the
equality constrained least squares solutions of the RBME AX = B.

Most of the existing literature focuses on unstructured least squares solutions for
RBMEs. Structured least squares solutions, however, have been relatively less explored.
One of the few notable studies is [71], which addresses least squares Toeplitz and bi-
Hermitian solutions for X + AXB = C. Furthermore, Yuan et al. [80] examined the
Hermitian solutions of the RBME (AX B,CXD) = (E,G). In this chapter, we extend this
research direction by exploring least squares structured solutions for generalized RBMEs,

specifically considering matrices whose entries adhere to specific linear constraints, referred
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to as reduced biquaternion L-structures.

Surprisingly, the least squares Toeplitz, symmetric Toeplitz, Hankel, and circulant
solutions of the generalized RBMEs have not been discussed in the literature despite
their significance in scientific computing, inverse problems, image restoration, and signal
processing [7, 54, 89]. Given the above context, this chapter addresses least squares
L-structure solutions for generalized RBMEs, with particular attention to reduced
biquaternion Toeplitz, symmetric Toeplitz, Hankel, circulant, purely imaginary, complex,

and real solution. The matrix equations considered are:

Y AX,B =E, (2.1.1)
=1

r q

Y AXB+> C,X"D,=E, (2.1.2)
=1 p=1

(AlXBl, AQXBQ, e ,ATXBT) = (Eh EQ, ‘e 7Er>. (213)

In addition to deriving solutions for these RBMEs, the chapter also explores their
applications, such as color image restoration and inverse eigenvalue problems. Several
applications of the inverse eigenvalue problem, which involve reconstructing matrices from
prescribed spectral data, deal with structured matrices. When the spectral data contain
only partial information about the eigenpairs, this kind of inverse problem is called a
PDIEP. In both PDIEP and generalized PDIEP, two pivotal questions arise: the theory
of solvability and the numerical solution methodology (see textbook [12] and references
therein). Regarding solvability, a major challenge has been identifying the necessary or
sufficient conditions for a PDIEP or a generalized PDIEP to be solvable. On the other
hand, numerical solution methods focus on developing procedures to construct matrices in
a numerically stable manner when the given spectral data are feasible. In this chapter, we
successfully develop a numerical solution methodology for both PDIEP and generalized
PDIEP by employing our proposed framework. Our primary focus is on two structures:

Hankel and symmetric Toeplitz matrices.
In summary, the main applications discussed in this chapter include:

e The application of the least squares purely imaginary reduced biquaternion solution

of the matrix equation AX = E to color image restoration.
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e The use of the framework to determine structure-constrained solutions for complex
and real matrix equations, which are a special case of RBMEs. This enables tackling
various inverse eigenvalue problems, including PDIEP.

e Solutions for generalized PDIEP for symmetric Toeplitz and Hankel structures.

The chapter is structured as follows. Section 2.2 introduces preliminary results. In
Section 2.3, we define reduced biquaternion L-structures and examine their properties.
Section 2.4 outlines the general framework for solving RBMEs, with a specific focus on
equations involving multiple unknown L-structures in Subsection 2.4.1. Section 2.5 applies
the framework to practical cases, and Section 2.6 provides numerical examples to validate

the results.

2.2. Preliminaries

To ensure this chapter is self-contained, we summarize key concepts and results that will
be used in the following sections. For any reduced biquaternion matrix Z = Z; + Zyj € Qg™™,

where 77, Zy € C™*" we represent it using the complex matrix form
\IJZ = [Zl, ZQ] € meZn.

Similarly, for any reduced biquaternion r = r; + 797 € Qgr, where r; and ry are complex

numbers, we use the vector form
_ 1x2
\I/T—[’I"bT'Q]E(C .

Lemma 2.2.1. For any reduced biquaternion matriz Z = Z, + Zoj € Qg*", its Frobenius

norm is given by

125 = 12l = V12005 + 1205 = IR + 1320 1 + [93(Z2) [ + [3(Z2) -

Proof. The proof follows directly from the definition of the Frobenius norm of a reduced

biquaternion matrix in (1.2.1). =

The complex representation h(Z) of a reduced biquaternion matrix Z = Z;+ Z,j € Q"

WZ) = lZI 22

as defined in [80], is given by:

Zy 74
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For matrices Y € Q2" and Z € Qp'”, the following property holds:
Y Z)=hY)h(Z). (2.2.1)

Lemma 2.2.2. Let a € R, ¢ = ¢1 + g2 € Qgr, and matrices X = X; + Xoj € Qp*",
Y =Y +Yoje QF™, and Z = Zy + Zyj € Q§**. Then, the following properties hold:

(1) Vox =a¥y.

(2) Ux,y =Vyx+Uy.
(3) Vyx = ¥gh(X).
(4) Uy, =Uyh(Z).

Proof. For part (1), we have aX = aX; + aXsj, so
U,x = [aXy,aXs] = a[ X7, Xo] = aVy.
For part (2), since X +Y = (X1 + Y1) + (X2 +Y3)7, we get
Ux,y =[X1+ Y1, Xo+ Y] = Uy + Uy
For part (3), we have ¢X = (1 X1 + ¢2X2) + (1 X2 + ¢2.X1)7, which gives
Uox = [ X1+ @Xo, 1 Xo + 2. X1 ] = Y, h(X).
Finally, for part (4), since Y Z = (Y121 + Y2 Z5) + (Y122 + Y2 Z1)j, we get

Uyz =[Y121+YsZ, Y122+ Y221 = Uyh(Z). m

For any matrix Z = Z; + Z»j, the vector operator vec(Z) is defined as
vec(Z) = vec(Zy) + vec(Zs)j.
For the matrix Wy, the vector operator vec(W ) is expressed as

Vec(Zl):|'

2.2.2
vec(Zs) ( )

vec(Uy) = [
Now, let Z = Z) + Zyj e Qg", and define Z = [R(Z21),3(Z1),R(Z3),3(Z)] e Rm=4n. The

—
vectorization of Z is given by

[vec(R(Zy))]
vec(JI(Z1))
vee(R(Z)) |

| vec(3(22)) |
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This establishes the following relationship:

—_
1205 = 102 ] 5 = [vec(U2) | = [vee(Z) . (223)

2.3. Reduced Biquaternion L-structure Matrices

This section aims to define the concept of reduced biquaternion L-structure and explore
some specific examples of this class of matrices. A reduced biquaternion L-structure refers
to the set of all reduced biquaternion matrices of a given order whose entries adhere to
specific linear constraints. A notable example of this class includes unstructured matrices,
where no linear restrictions are placed on the matrix entries. The subsequent definition

offers a formalized explanation of this concept.

Definition 2.3.1. Let 2 be a subspace of Q™. The subset of reduced biquaternion matrices

of order m x n given by
L(m,n) ={X € Qg*"|vec(X) € Q} (2.3.1)
1s known as the reduced biquaternion L-structure.

Remark 2.3.2. Qg and Qf are vector spaces over R with dimensions 4 and 4n, respectively.

To better comprehend the above definition, let us consider the following examples.

Example 2.3.3. Let

o O O o o O
o O O = O O
o = O O O O
o O O O O =
o O O o o O
_ o O O O O
o O O o = O
o O =R O O O
o O O o o O

and define

0 = {veQ¥!| Av=0}.
Clearly, 0 is a subspace of Q¥*. The corresponding reduced biquaternion L-structure is
given by

L(3,3) = {X e Q¥®| vec(X) € Q1 }.
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The set L(3,3) represents the class of diagonal matrices of size 3 x 3. In this case, six
linear restrictions are imposed on the entries of the matriz X = (x;;) € Q¥3, such that
xi; =0 fori# j. Thus, the collection of all reduced biquaternion diagonal matrices of a

given order belongs to the class of reduced biquaternion L-structures.

It is evident that the collection of all purely imaginary reduced biquaternion vectors
of order n is a subspace of Q&*'. Hence, the collection of all purely imaginary reduced

biquaternion matrices forms a reduced biquaternion L-structure.

Example 2.3.4. Let
Q= {ve Qg™ | R(v) =0}.
Clearly, Sy is a subspace of Qe¥*'. The corresponding reduced biquaternion L-structure is
given by
L(4,4) = {X € Qg* | vec(X) € Qy}.
The set L(4,4) represents the collection of all purely imaginary reduced biquaternion

matrices of size 4 x 4. Thus, the collection of all purely imaginary reduced biquaternion

matrices of a given order forms an L-structure.

In the same way, the collection of all real reduced biquaternion matrices of a given
order forms a reduced biquaternion L-structure. Other reduced biquaternion L-structure
examples include the set of all reduced biquaternion Toeplitz, symmetric Toeplitz, Hankel,
circulant, lower triangular, and upper triangular matrices of a given order. These classes
of matrices consider only equality relationships between the matrix entries. Here is an
example of a reduced biquaternion L-structure with some linear relationships between the

matrix entries.

Example 2.3.5. Let

1 -1 100 0 0 0 O
B=lo 0 011 -10 0 0,
0 0 000 0 1 -11

and define
Q3 ={veQy'|Bv=0}.
Clearly, Qs is a subspace of Q¥*. The corresponding reduced biquaternion L-structure is
given by
L(3,3) = {X e Q¥®| vec(X) € Q3}.
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This set L(3,3) represents the collection of all reduced biquaternion matrices X = (x;;) €

Q2 with the following linear restrictions imposed on the entries of X :

Z11 +T31 =21, X12tTo2 =232, T13+ X33 = Ta3.

The remaining section focuses on some reduced biquaternion L-structure matrices
that frequently appear in practical applications. Our primary focus lies on reduced
biquaternion Toeplitz, symmetric Toeplitz, Hankel, circulant, real, complex, and purely
imaginary matrices. To commence our exploration, we initially examine the vec-structure

of some real structured matrices.
Definition 2.3.6. A matriz X € R™" is Toeplitz if it has the following form.:

I’O :El 'Iz PRy PRy ‘Tn—l

T_9 T
X =
Ty X2
-1 Xo I
T_pn+l “es e X9 T4 Zo

For X e R vecr(X) is defined as
veer(X) = [T ni1, Tonso, - -, X1, L0, L1, - - - ,xn_l]T e R¥-1, (2.3.2)

Definition 2.3.7. A matriz X € R is symmetric Toeplitz if it has the following form.:

xo 'Tl ‘T2 cen cen xn71

T g 1

To I
X =
X1 X2
1 To I1
xn—l cee cee $2 :Cl :L'O

For X e R, vecgr(X) is defined as

VeCST(X) = [1'0, T1,T2,... 7$n—1]T e R"™. (233)
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Definition 2.3.8. A matriz X € R™™ is Hankel if it has the following form:

l‘n—l PRy PRy a’/‘g 1’1 "EO

Ir1 Xy Tr_1

T )
X =
) T
T o X1
X T_1 T_g9 - “es T_pil
For X e R vecy (X)) is defined as
X):= e R 2.3.4
veey (X) = [Tpo1,Tn-2y -, X1, 20, X1,y ..y, Tops1] € ) (2.3.4)

Definition 2.3.9. A matriz X € R™™ is circulant if it has the following form.:

Ty Tp-1 o T2 I
T o Tp-1 T2
X = T o
Tn-2 Tn-1
_:L‘n—l Tp-2 X1 X )

For X e R vece(X) is defined as
veee (X)) = [zo, T1, To, .. Tp1]’ € R™ (2.3.5)
In the following four lemmas, we describe the structure of some particular classes of

real matrix sets.

Lemma 2.3.10. If X e R™", then X € TR™" < vec(X) = Krveer(X), where veer(X)

is of the form (2.3.2), and the matriz Kp € R"*<n=1) s represented as

€n C€n-1 €ng v € e 0 0

0 e, €ep1 - e3 e e - 0
Kr=

0 0 0O - e, ep1 = €y e O

0 0 0O - 0 e, ey = e €1

Proof. Consider the Toeplitz matrix X as defined in Definition 2.3.6. Let wu; for

1=1,2,...,n denote the i*" column of the matrix X. Then, we can express the vectorization
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of X as
Uy

vee(X) = =

Unp

We now calculate each column w;. For uy, we have

(000 010 - 0 0]
000 100 00
Uy = S S veer(X)
00 1 0 « 0 0
0 1 .00
0 .00
z—en €n-1 €p-2 ** €2 € 0O -~ 0 O]VGCT(X).

Next, for us, we get

0 1 -0 0
10 00
wel, T e ()
001 - 0 0
010 0 0 0 0 0
=—0 €n €p1 - €3 €y e - 0 0]vecT(X).
Finally, for u,, we have
(000 0 0 1]
000 -0 1 0
Up =i 1 oo veep(X)

oo0--001=- 00
oo0-010 - 00

=000 0 e ey - e el]vecT(X).

By substituting the computed values of uq, us, ..., u, into the vectorization of X, we
conclude that

vec(X) = Kpveer(X). =
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Lemma 2.3.11. If X € R¥" then X € STR™" < vec(X) = Kgrvecsr(X), where
vecsr(X) is of the form (2.3.3). When n is even, let n = 2l. In this case, the matriz

2 .
Ksr € R 45 represented as

61 62 63 e el €l+1 en_l en
€2 e] t+eé3 €4 €141 €42t en 0
€3 €2 + €4 e1 t+es €142 €143 0 0
KST = €] €1 t€1 €2+t€uo - €1+en 1 €n 0 0
€l+1 e +eno €1 +ey3 0 exte, e; - 0 0
€n,1 67’L72 + en €n73 ove cee e e 61 0
| €En €n-1 €n—-2 “e ves “ee e €9 61_

When n is odd, let n =2l 1. In this case, the matriz Kgp € R is represented as

€1 €2 €3 €] €l+1 ** €Ep-1 €Ep
€2 €1 +é3 €4 e €2 ey 0
€3 €2 + €4 eg+es - ey ey - 0 0
Kesr=| e e_1+es1 €o+e€ua - e1+e, 0 - 0 0
€41 € tena eptens o € eec - 0 0
€n-1 €n-2 =+ €n €n-3 e e e el O
| €n eTL—l e’I’L—Q oo cee cee 62 el‘

Proof. The proof is similar to the proof method used in Lemma 2.3.10. =

To gain a deeper understanding of the above lemma, let’s explore specific cases for

n =4 and n = 7. In these cases, the matrix K¢y takes the following forms:

For n =4, we have

€1 €9 €3 €4
es e;+es eq 0

€3 €y+teq €1 0

| €4 €3 €2 €1 ]

33



For n =7, the matrix Kgr takes the following form:

€1
€2
€3
Ksr=ey
€5
€6

€7

€2
€1 + €3
€9 + €4
e3 + e
€4 + €4
€5 + e7

€6

€3

€4
€1 + €5
€ + €
ez + €7

€4

€5

€4 €5
€5 €6
€6 (&
e +er 0
€9 €1
€3 €2
€4 €3

€6 67-
er 0
0 0
0 O
0 0
e;r O
ez €]

Lemma 2.3.12. If X e R™" then X € HR™ <> vec(X) = Kyvecy (X)), where vecy (X)

is of the form (2.3.4), and the matriz Ky € Rv*<n=1) s represented as

—61 €2

0 e
Ky =

0 0

_O 0

€3

€2

€n-1

e, O 0

€n-2 €n-1 €En

€1

62 cee en—l

€1 €2

0
0 0
e, 0
€n-1 €n

Proof. The proof is similar to the proof method used in Lemma 2.3.10. =

Lemma 2.3.13. If X e R™", then X € CR™™ < vec(X) = Kevece(X), where veco(X)

is of the form (2.3.5), and the matriz Ko € RV is represented as

€1

€2

KC’ = 63

€n

€2
€3

€4

€1

€n-1 €n
€n €1
€1 €2
€n-2 €n-1

Proof. The proof is similar to the proof method used in Lemma 2.3.10. =

In the following lemmas, we present the vec-structure of reduced biquaternion L-

structure matrices based on the vec-structure of real structure matrices.

Lemma 2.3.14. If X = X; + Xy5¢€ QF*", then
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(1) X eTQp™ < VeC()_()) = MTvecT(Y), where

Ky 0 0
0 Kr 0
My = g
0 0 Kp
0 0 o0

0

0

0
Ky

: VeCT(?) =

(2) X eSTQR"™ < VQC(?) = MSTvecST(?), where

Ksr
0
0
0

Mgy =

0
Ksr
0
0

0 0
0 0
, VeCST(Y) =
Kqgr 0
0 Kgr|

(3) X eHQp" < Vec(}) = MHvecH(}), where

Ky 0
0 K

My = "
0 0

0 0

0
0
Ky
0

0
0
0
Ky |

N
, vecy(X) =

(4) X eCQp" < Vec(}) = Mcvecc(}), where

Ko 0
0 K

M = ©
0 0

0 0

Proof. We will prove the first part of the statement, as the remaining parts follow using a

similar argument.

It is known that X € TQR" < R(X;),3(X,), R(X3),I(X,) € TR™". Utilizing this

0

0
K¢

0

0

0

0
K¢ |

ﬁ
, veco(X) =

fact along with Lemma 2.3.10, we can write

Vec(}) =

Thus, we can conclude

[veer (R(X1))
veer(J(X1)) '
vecr(R(Xs))

| veer(T(X2)) |

[veesr(R(X1)) ]
vecsr(T(X1))
vecst(R(X:)) |
| vecsr(T(X2)) |

[vee (R(X1))]
vecy (J(X1)) ‘
veey (R(X2))

—Vecc(i)‘{(Xl))

| veco(I(X2)) |

| vecy (J(X2)) |

veco(T(X1)) '
veco (R(X3))

[vec(R(X))]  [Krveer(R(X1))]
vec(TJ(X1)) ) Krveer(3(X1))
vec(R(X:)) | | Krveer(R(X2)) |

| vec(T(X2)) | | Krveer(3(X2)) |

Vec()—()) = MTveCT(}). [
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Lemma 2.3.15. If X = X; + Xy5€ Qg™", then

(1) X eIQp*" «— Vec()—f) :M]VeCI(})7 where

00 0 (3(X1))
vec
Ln 0 0 X 1
M, = o o | vecr(X) = [vec(R(X3)) |-
mn vec(J(X
| 0 0 [mn_ ( ( 2))

P L VeCC(?):lvec(m(Xl))]_
0 0 vee(J(X1))

(3) X e R «— vec(?) = MRvecR()—()), where

Mp = : VecR(Y) = vec(R(X1)).

Proof. The proof follows from the fact that X e IQF*" <= 9(X;) = 0, while X «
Cm . «—= MR(X3) =0 and J(X3) = 0. Additionally, X e R™" «—= J(X;) =0, R(X;) =0,
and j(XQ) =0. m

Up to this point, we have explored the representation of a reduced biquaternion
L-structure matrix using a corresponding real structure matrix for a specific class of
matrix sets. Based on the preceding discussion regarding reduced biquaternion L-structure

matrices, the findings can be summarized as follows:

For X = X + Xpj € Q2" we have X = [R(X1),T(X1),R(X3),T(Xs)] e Rmx4n, Let G
be a subspace of R4 and M, be the basis matrix for G. The subset of real matrices of

order m x 4n given by
— —
LE(m,4n) = {X e R™" | vec(X) € G} (2.3.6)

is called as a real L-structure.
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Remark 2.3.16. M, represents the basis matriz of the subspace G. For simplicity, we

will refer to My, as the basis matriz of L (m,4n) throughout this chapter.

Thus, we have the following Lemma.

Lemma 2.3.17. Let My, be the basis matriz of L (m,4n). Then X € L(m,n) < VGC(F()) =
MLVGCL(}), where vecL(Y) corresponds to the representation of? according to the basis

matriz My,

Proof. The proof follows from the generalization of Lemmas 2.3.10 and 2.3.14 to any

L-structure matrix X. m

Now that we have described the reduced biquaternion L-structure, we turn our attention
to solving a RBME. Our approach for addressing the RBME involves transforming it into

a complex matrix equation. For A e C™" X ¢ C™, and B € C**!, we have
vec(AX B) = (BT ® A)vec(X). (2.3.7)

In the context of reduced biquaternion algebra, we investigate vec(W 4xp) rather than
vec(AX B).

Lemma 2.3.18. Let A= A1 + A2j€ @ﬁ?xn, X = X1 + X2j€ @ﬁxs, and B = B1 + BQjE @f{t.
Then
vee(VUaxg) = (h(B)T ® A1 + h(Bj)" ® As) vec(Vx).

Proof. Using (2.2.1) and Lemma 2.2.2, we have
Vaxp=VA(XB) =V, h(X)W(B)

which can be expanded as

Uaxp =[A1X1B1 + Ay XoB1 + A1 XoBo + Ay X1 By, A1 X1 By + As XoBo + A1 Xo By + Ay X 1 By

Now, from (2.2.2) and (2.3.7), we get

[ (BT ® Ay)vee(X;) + (BT ® Ay)vec(X,) |
+(BT @ Ay)vec(X3) + (BT @ Ay)vec(X;)
(B @ Ay)vec(X;) + (BT ® Ay)vec(Xs)

| +(Bf ® Aj)vec(Xy) + (B ® Ay)vec(Xy) |

BT BT BT BT vec(X7)
® Al + ® Ag .
BT BT BT BT vec(Xs)

VeC(\I’AXB)
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Finally, we arrive at

vec(Uaxp) = (h(B)T ® A + h(Bj)" ® As) vec(Vx). =

Set

I 'Ins 0 0 ns 0
Wns = ’ 5 Sns = Q ) (238)
0 0 ]ns zIns 0 Qns

where @), is the commutation matrix, a row permutation of the identity matrix I,.

We have examined vec(W¥ 4xp) within reduced biquaternion algebra. The following
lemma outlines vec(W axp) when X possesses an L-structure in reduced biquaternion

algebra.

Lemma 2.3.19. Let A=Ay +Ayje QF™, X = X1+ Xoje L(n,s), and B = By + Byj e Q3.
Then
. —>
vec(Uaxp) = (R(B)T ® Ay + h(Bj)" ® As) WasMpvecr (X)),
. —>
vee(Uxrp) = (R(B)T ® A1 + h(Bj)" ® As) SpsWisMpvecy (X),

where My, represents the basis matrix of Lf(n,4s), and W,s and S,s are defined as in

(2.3.8).

Proof. Using (2.2.2), (2.3.8), and Lemmas 2.3.17 and 2.3.18, we obtain
vec(Uaxp) = (h(B)T ® Ay + h(Bj)" ® Ay) vec(¥x)

—Vec(Xl)]

= (W(B)” ® A, + h(Bj)T ® A
(h(B)" @ (Bj)" ® )-VeC(XZ)

= (h(B)" ® A1 + h(Bj)" ® As)

—Vec(iﬁ(Xl)) + ivec(’J(Xl))]
| vec(R(Xz)) + ivec(T(X2))

~ (A(B)T ® A, + h(B)T © A3) Wyovee(X)

(h(B)T ® Ay + h(Bj)” ® As) WaeM vee, (X).

Next, we have

vec(Vyr) = [VGC(XlT)]

[QnsveC(Xl)]
vec(XT)

S vec(X1)
Qnsvec(Xy) "

=S, W, Mrvec )_(> .
vec(Xg)] weer(X)

The proof follows from simple calculations. m
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2.4. General Framework for Solving Constrained RBMEs

The purpose of this section is to demonstrate how we can solve constrained generalized
linear matrix equations over commutative quaternions. As part of our approach, the

constrained RBME is reduced to the following unconstrained real matrix system:

@
T =e, 2.4.1
o 24

where @)1, Q)2 are real matrices of appropriate dimension, x and e are real matrices or
vectors of appropriate size. From [13, Theorem 2| the generalized inverse of a partitioned

matrix [U, V] is given by

. |ut-utva
(U V] = :
H
where
H=R'+(I-R'R)ZV'UTUT (I-VR"), R=(I-UU")V,
Z=(I+(I-RIR)VTUTUV (I- R'R))™
We have
T
Ut-UWVH
[, v =[u,v]" = Y = [UTt - HTVTUTH HT].
By substituting U = QT and V = QT we get
o o' [e
o=@l -HTQ.Q1 HT], 1 =0l + RR (2.4.2)
Q2 Q2] | Q2

where
H=R'+(I-R'R)ZQ:QIQ\" (I-Q¥RY), R=(I-QQ:)Q7,

3 (2.4.3)
Z=(I+(I-R'R)Q.QIQI"QY (I-R'R)) .

Using the results mentioned above, we deduce the following lemma that is helpful in

developing the main results.

Q1

Lemma 2.4.1. Consider the real matrix system of the form [ ]x =e. We have the

2
following results:
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@1

2

f
|:Q1] e=e. In this case,

2

(1) The matriz equation has a solution x if and only zf[
the general solution is
v=[Q] - H'QQ], H" Je+ (I - Q[Q: - RR)y,

where y is an arbitrary matrix or vector of suitable size. Furthermore, if the

consistency condition is satisfied, then the matrix equation has a unique solution if

and only if matrix |:Q1] 15 of full column rank. In this case, the unique solution is

2
r=[Q] - H'Q,Q[, H ]e.
(2) The least squares solutions of the matriz equation can be expressed as
v=[Q] - H"Q:Q[, H" Je+ (I -Q[Q: - RRY)y,

where y is an arbitrary matriz or vector of suitable size, and the least squares

solution with the least norm is

r=[Q] - H'Q,Q, H]e.

The following lemma will be used for the development of main results.

Lemma 2.4.2. Consider the matriz equation AX = B, where A e C™", X e R4, and

B e C™*d, The matriz equation AX = B is equivalent to the following linear system.:
R(A R(B
@], _[rm]
3(4) J(B)
In the following subsection, we aim to find )1, )2, and e for each of the three

constrained RBMEs and solve them.

Remark 2.4.3. [t is important to emphasize that the values of Q1, QQ2, and e vary

depending on the specific matrix equation we are attempting to solve.
2.4.1. Linear Matrix Equation in Several Unknown L-structures

The class of matrix equation (2.1.1) encompasses many important matrix equations.
Some simple examples are AXB+CYD=FE, AX +Y B =FE. We now introduce a general
framework for finding the least squares solutions of RBME of the form (2.1.1). The problem

can be formally stated as follows:
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Problem 2.4.4. Let Al = All + Ale € ngnl, Bl € Q%Xt, and E = El + EQJ € Q]]T{?Xt fOT'
[=1,2,...,r. Let
F}

imz&—E

=1

SN AX,B, - E
=1

= min

o Xieli(ng,si)

Nig = {[Xl,XQ, X ]| X e Li(n, s1),

Then find [X1g, Xok, ..., Xrg] € NLg such that

. 2 2 2\3
I[X1e, Xog, -, Xop]|p = min (1 X115+ 1 Xl + -+ 1 X 5) % -

[X1,X2,...Xr]eNLE

To solve Problem 2.4.4, we employ the following notations: for [ =1,2,...,r, let My, be

the basis matrix of L*(ny,4s;), and

Spi= (W(B)" ® A + h(Big)" ® Ain) Wiy, My, (2.4.4)
- —>
vecr, (X7)
X,
2= VeCLi( 2)| (2.4.5)
_VeCLT()_(:)_

Additionally, @1,Q2, and e (as in (2.4.1)) are in the following form:

Q= [%(51)7%(52)7 ce 7%(Sr)] ;o Qe = [3(51)7 j(‘5(2)7 s 73(57)] )

N [vec(m(%))] (24.6)
| vee(@(WR)) |

In case of inconsistency in matrix equation (2.1.1), we provide the least squares solutions.

The following result provides the solution to Problem 2.4.4.

Theorem 2.4.5. Let A e Qp™, B e Q', and E € Q< for1=1,2,...,7. Let Q1,Q2,
and e be of the form (2.4.6) and T = diag(Mp,, My,,..., My, ). Then

—Vec(z)-

%
vec(Xs)

Nip=1[X1,Xa,..., X, ] =T[Q{—HTQZQ{,HT]e+’7'(I_Q{Q1_RRf)y 7

[ vee(X;)
(2.4.7)
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where y is any vector of suitable size. The unique solution [X1g, Xop, ..., X,p] € Npg to
Problem 2.4.4 satisfies

—vec(X—lEf)-

VeC(A‘XQE) _ T[Q{ B HTQ2Q{, HT] e. (2.4.8)

_vec()a)_

Proof. By using (2.2.3) and Lemma 2.2.2, we get

2 2 2

Zvec (U4, x,8) —vec(Vg)
=1

Z Vax,B-VYE

=1

Y AXB -

=1

F F F

Using Lemma 2.3.19, we have
vee (Wax,m,) = (M(B)T ® An + h(Big)" ® App) Wi,e My, vecr, (X)),
Now, using (2.4.4), we get
ZVGC Ua,x,B)= ZZ; (h(Bl)T ® Ap +h(Bj)T ® Alg) W, MleecLl()—(E)
ZT;SlvecLl(Xl

Using (2.4.5) and Lemma 2.4.2, we have

2 2

ZAleBl—E = ZSlvecLl()—()l)—vec(\I/E)
=1 ro = F
_ s . 2
vecr, (X1)
(X2)
1081, Sy S| vee (W)
. —>
| vecr, (X)) | -

[%(sl) R(S) - m(&)]x[vec(m(%))r
J(Sy) I(S2) - TI(Sy) vec (J(Vg))

Using (2.4.6), this simplifies to

X1B-FE

8
|
o

e

42

F



Hence, Problem 2.4.4 can be solved by finding the least squares solutions of the following

[Qll )
€T = €.
Qs

By Lemma 2.4.1, the least squares solutions of the above real matrix system is:

unconstrained real matrix system:

v =[Q1 - H'Q:Q], H" Je+ (I - QiQ: - RR")y,
where g is any vector of suitable size, and the least squares solution with the least norm is
[Q] - H'Q:Q}, H' ]e.

Using Lemma 2.3.17, we have
—VeC(Z )]

—

vec(X3)

[vee (X))
Thus, we can obtain (2.4.7) and (2.4.8). m

The following theorem presents the consistency condition for obtaining the solution

X € Li(ny, s;) for the RBME of the form (2.1.1) and a general formulation for the solution.

Theorem 2.4.6. Consider the RBME of the form (2.1.1) and let T = diag (M, Mp,,...,

My,). Then the matriz equation (2.1.1) has an L-structure solution X; € Li(ny,s;), for

l=1,2,...,r, if and only if
f
[Qll [Ql] e=e, (2.4.9)
Q2 || Q2

where QQ1,Q2, and e are in the form of (2.4.6). In this case, the general solution
X, € Li(ny, s;) satisfies

—Vec()ﬁ)‘

vee(Xa) =T[Q] - H'Q.Q], H e+ T (I - Q]Q: - RR)y,

[ vee(X))
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where y is any vector of suitable size. Further, if the consistency condition holds, then the

RBME of the form (2.1.1) has a unique solution X; € Li(ny,s;) if and only if

- JEEEENG
vecr, (X7)

rank ([Qll) = dim VECL, ()?;)
Q2 :

‘ —
-VeCLr (XT)_

In this case, the unique solution X; € Ly(ny,s;) satisfies

—vec(z)-

—
vec(Xy)

=T[Q] - H'Q.Q], H ]e.

'—>
| vee(X,) |

Proof. The proof follows using Lemma 2.4.1 and from the fact that

—VeCLl(f(—_;)-
R(S1) R(S) - m(sr)] veer, (Xo) :[Vec(m(%))]'

zT:AleBl:EQ
=1 3(51) 3(5'2) j(Sr) Vec(j(\l’E))

' —
-VeCLr (XT)_

Remark 2.4.7. The problem of finding the least squares real or purely imaginary
solutions to the RBMFE AX = E is a particular case of Problem 2.4.4. To solve this,
we simply need to find the least squares solution of the matriz equation YV, x = Vg. This
method is computationally less expensive compared to solving the least squares problem for
vec(Vay) = vec(Vg), as the latter involves matrices of much larger dimensions due to the

Kronecker product.

Specifically, we have

Uux = U4h(X)

= [A,, As) le XQ]

X, Xy

=[A1 X1+ Ay X, A1 X + A X ]

= [A1R(X1) +1413(X7) + AR(Xy) + 1A5T0(X5),
AR(X) + A1 3(Xs) + ADR(X)) + iA4:3(X1)]
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Therefore, we have
||AX - E”F = H\I]AX - \PE”F

3 —Alg}t(Xl) + ’LAlj(Xl) + AQ%(XQ) + 'LAQ:T(XQ)
-Alm(Xg) + ’I,Alj(Xg) + AQ%(Xl) + ’l;AQj(Xl)

Ey
E, -
[2R(X))]
B Al ’I,Al A2 'LA2 j(Xl)
A2 ZAQ Al ZAl g{(XQ)

| 3(X2) |

Ey
Es

For a purely imaginary solution, we set R(X1) = 0. For a real solution, we impose
the conditions J(X1) =0, R(Xs) =0, and I(Xs) = 0. Similarly, any RBME of the form
(2.1.1), where By for1=1,2,...,r are identity matrices and X; = X for all1=1,2,...,r,

F

can be solved using the same method.

The remaining subsection focuses on addressing the least squares problem associated
with matrix equations (2.1.2) and (2.1.3). This involves finding the least squares solutions

for the following unconstrained real matrix system:

@ veer (X) = e. (2.4.10)
Q2
Let Mj, be the basis matrix of Lf(n,4s). Using Lemma 2.3.17, we get vec(?) from

VeCL()_()) in the following way:
— —
vec(X) = Mpvecr(X).

The methodology for solving RBMEs of the form (2.1.2) and (2.1.3) remains the same as
outlined in Subsection 2.4.1. Therefore, our focus here is solely on presenting the values
for @1, ()2, and e, while intentionally omitting the detailed results.

Linear Matrix Equation in One Unknown L-structure

Consider the matrix equation (2.1.2) and let A; = Ap + Apj e Q" B € Q¥*, C, =
Cp1 + Cpoje Qprs, D, e Q' E = Ey + Epje Q¥ for [=1,2,...,r and p=1,2,...,q. Let

S = (Z (h(Bl)T ® All + h(Bl])T ® Al2)) WnsML>
=1

N = (Z (h(Dp)T ® Cpl + h(Dp])T ® Cp2)) SnsWnsML‘
p=1
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Q1,Q2, and e (as in (2.4.10)) for solving RBME of the form (2.1.2) are in the following

form:

Qu=R(S) +R(N), Q,:=3(S)+3I(N), and ezzlvec(m(%))]_

vec(J(Ug))

Generalized Coupled Linear Matrix Equations in One Unknown L-structure
Consider the matrix equation (2.1.3) and let A; = Ay + Apj € QF™, B, € Q' and
E =Ej+EpjeQp~tfor1=1,2,...,7. Let

—h(Bl)T ® All + h(Blj)T ® Alg- —vec(\I/El)‘
h(B)T ® Ay + h(Beg)T ® A LG

T .- ( 2) 21+. ( 2.7) 22 WMy, 2= VeC(. E2) .
| A(B)T® A+ W(B,j)T ® A2 | | vec(Ug,) |

Q1,Q2, and e (as in (2.4.10)) for solving RBME of the form (2.1.3) are in the following

form:

Q1 =R(T), Q»:=3(T), and e:= lsﬁ(z)].
J(2)

2.5. Solutions of Matrix Equation AXB + CYD = E

We now apply the framework developed in Section 2.4 to specific cases, exploring how
the theory can be utilized in various applications. These include the least squares purely
imaginary solution of the RBME AX = E and its application to the image restoration
problem, L-structure solutions for complex matrix equations, L-structure solutions for real

matrix equations, solving PDIEP, and the generalized PDIEP.

2.5.1. The Least Squares Solutions of AX = E for X ¢ IQp**

Our discussion in this subsection focuses on the least squares purely imaginary reduced

biquaternion solutions to the following RBME
AX =F. (2.5.1)

Problem 2.5.1. Let A=A + Ay je Qg™ and E = By + Eyj€ Qg*°. Define

Iig = {X | X =X, + Xp5€IQR, |AX - E|; = min

XelQpxs

A% - EHF}.
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Find X; =X+ XppgeZpg such that

IXilp = in |X],.

n
ILE

The following notations will be used to solve Problem 2.5.1. Define

A Ay 1A
T R (2.5.2)
1Ay Ap 1A
Further @Q1,Q2,x, and e (as in (2.4.1)) for this problem are given by:
(R(E) ]
J(X41) R(E,)
Qr=R(V), Q2:=3(V), xz:=[R(Xy)|, and e:= ’J(EQ) : (2.5.3)
1
J(X2) N
| I(E>) |

The following result provides the expression for the solution to Problem 2.5.1.

Theorem 2.5.2. Let A e Q" and E € QF*°. Let (1,Q)2, and e be as defined in (2.5.3).

Then
I(X4)
Tiw={ X | R(X1) = 0,|R(X,) | = [Q - H'Q:Q], HT Je + (I - Q]Q1 - RRT) Y
I(X)
where Y is any matriz of suitable size. The unique solution Xi € Irg to Problem 2.5.1
satisfies
3(Xn)
R(Xn)=0, [R(Xp)|=[Q]-HQ.Q],H]e. (2.5.4)
J(X2)

Proof. From Remark 2.4.7 and using the fact that X € IQE*® if and only if 8(X;) =0, we

have
) ) J(X1)
1A Ay 1A, Ey O
IAX - Elp = . O [[’(Xe) |- = r-e| .
1Ay A 1A ~ E, Q2
3(Xe) i "

The rest of the proof follows the same approach as the proof of Theorem 2.4.5. =

The following theorem provides the condition for the matrix equation (2.5.1) to have a

purely imaginary reduced biquaternion solution, along with an expression for this solution.
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Theorem 2.5.3. The RBME AX = E has a purely imaginary reduced biquaternion solution

X eIQp*® if and only if
t
lQll lQl] e=e, (2.5.5)
Q2] Q2

where Q1,Q2, and e are as defined in (2.5.3). In this case, the general solution, given by
X =3(X1) i+ R(X2) i+ I(Xo) k, satisfies

J(X1)
R(X) = [QF - HTQuQ], HT ] e + (1 - Q]Q, - RR)Y,
J(X2)
where Y is any matriz of suitable size. Further, if the consistency condition is satisfied,

then the RBME of the form (2.5.1) has a unique solution if and only if

2]

In this case, the unique solution, given by X =J(X1) 1+ R(X2) 7+ I (X2) k, satisfies

3(X1)
R(X,) | = [Q - HTQ:Q], H ] e.
J(X2)

Proof. Based on Remark 2.4.7 and the fact that X € IQE** if and only if R(X;) =0, we
have

R(V)
V)

AX = F

r=e. N

Using the solution to Problem 2.5.1, we can restore color images. Each pixel in a color
image is composed of three primary color components: red, green, and blue (RGB). These
colors are interrelated, and their relationships must be preserved during the restoration
process. In 2004, Pei et al. proposed that the red, green, and blue values of each pixel in a
color image can be represented as a pure imaginary reduced biquaternion [56]. Thus, an

m x n color image I can be represented as a pure imaginary reduced biquaternion matrix:
I = Ri+Gjy+ BE,

where R, GG, and B are real matrices representing the red, green, and blue channels,

respectively.
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The linear discrete model of image restoration can be described by the matrix-vector

equation [39]:
g=Kf+n,

where g is the observed (degraded) image, f is the true or ideal image, n is additive noise,
and K is a matrix representing the blurring phenomena [34, 79]. Image restoration methods
aim to construct an approximation of f based on ¢, K, and, in some cases, statistical
information about the noise. In most cases, the noise n is unknown, and we seek to find

the solution fx such that:
Inl =15 fx - gl = min [ K f - g].

Since a color image can be represented as a pure imaginary reduced biquaternion matrix,
the image restoration problem can be reformulated as finding the least squares purely

imaginary reduced biquaternion solution to the matrix equation K f = g.
2.5.2. Solutions of Matrix Equation AXB + CYD =E for [X,Y] ¢ HC»® x HC»»
As a special case, we now discuss the Hankel solutions of the complex matrix equation

AXB+CYD=E, (2.5.6)

where A,C' e C B, D e C»s, and E € Cm*s, The following notations will be used to

solve matrix equation (2.5.6). Define

0
Ky

Kn

W::(B%A)[an,unz]hH ] J::(DT®C)[Inz,z'Inz][O [f] (2.5.7)

Further @1,Q2,z, and e (as in (2.4.1)) are given in the form:

Q1= [RW),R(J)], Q2:=[I(W),3(J)],
[veey (R(X))]

o |yeen@COY | [vec(m(E)) (2.5.8)
veey (R(Y)) | vec(3(E)) |
| veer (3(Y)) |
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Using (2.3.7), (2.5.7), and Lemma 2.3.12, we have
vec(AXB) = (BT ® A)vec(X)
= (BT ® A) (vec(R(X)) + ivec(I(X)))

. L [vee(mr(x))
= (BT @ A)[L, i,
S ] _Vec(’J(X))]

= (BT ® A) [1,2,41,2] K0 ”VGCH(%(X))]
| 0 Ky || vecy(3(X))
_w lvech(X))] |
veey (J(X))
Similarly,

Ky 0
vee(CY D) = (DT @ C) [I,2,il,2]|
0 Kp

vecH(m(Y))] _ lvecH(?ﬁ(Y))
vecy (I(Y)) vecy (J(Y))

Using the expressions for vec(AX B) and vec(CY D) along with equation (2.5.8) and
Lemma 2.4.2, we obtain

AXB+CYD =E < vec(AXB) +vec(CY D) = vec(E)

@W[vecH(SR(X)) o[ @OD]
vecy (J(X)) vecy (J(Y))
[vec (R(X))]
vecy (J3(X))
<= |W,J =vec(FE
: ] vecy (R(Y)) (E)
| vecy (3(Y)) |

_ [m(W) mw]x ) [vec(%(E))] |
IW)  3(J) vec(J(E))

Finally, using @1, ()2, and e from (2.5.8), we rewrite the equation as

@1
T = €.
o

Hence, matrix equation AXB+CY D = E for [X,Y] e HC™" x HC™" can be solved by

solving the following unconstrained real matrix system:

Q>
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By Lemma 2.3.12, we have

[veeR(X)] [Kw 0 0 0
vec(TJ(X)) 0 Ky 0 0
vec(R(Y)) 0 0 Ky O

| vee(T(Y)) | 0 0 0 Ky

2.5.3. Solutions of Matrix Equation AXB + CYD = E for [X, Y] € STR™"® x STR»*n

As a special case, we now discuss the symmetric Toeplitz solutions of the real matrix
equation

AXB+CYD=E, (2.5.9)

where A,C e R B/ D e R and F € R™*s. Using (2.3.7) and Lemma 2.3.11, we have

AXB+CYD =FE < vec(AXB) +vec(CY D) = vec(F)
= (BT ® A) vec(X) + (DT ® C) vec(Y) = vec(F)

< (BT ® A) Kgrvecsr(X) + (DT ® C’) Kgrvecsr(Y) = vec(E)

< [(B"®A)Ksr, (D" C) Kor|

Hence, matrix equation AX B+ CY D = E for [X,Y] e STR™" x STR™" can be solved by

solving the following unconstrained real matrix system:

Qr =F¢,

vecsr(X)

where Q = [(BT ® A) Kgr, (DT ® C) Kgr], x = [
vecsr(Y)

], and € = vec(F). Using Lemma
2.3.11, we have

vec(Y) 0 Ksr

VeC(X)]

Kor 0]
X

2.5.4. PDIEP and Generalized PDIEP

In this subsection, we aim to demonstrate the application of our developed framework
in solving a range of inverse problems. Here, we develop a numerical solution methodology
for the inverse problems in which the spectral constraints involve only a few eigenpair
information rather than the entire spectrum. Mathematically, the problem statement is as

follows:
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Problem 2.5.4 (PDIEP). Given vectors {uy,us,...,ur} c F* (k <n), values {A1, As, . ..,
A} € F, and a set L of structured matrices, find a matrizc M € L such that

MUZ'Z)\Z'UZ', ’i=1,2,...7]€.

To simplify the discussion, we will use the matrix pair (A, ®) to describe partial

eigenpair information, where

A= diag(/\l, A27 Cee /\k:) € Fka,
(2.5.10)
® = [uy, us, ..., uy] € FF

PDIEP can be written as M® = ®A. By using the transformations
A=1, X=M,
B=®, and FE =®A,
we can find solution to PDIEP by solving matrix equation AXB = E for X € L.

Next, we investigate generalized PDIEPs. In a nutshell, the problem is:

Problem 2.5.5 (Generalized PDIEP). Given vectors {uy,usa, ... ,ux} c F* (k <n), values
{A, Ao, ..., e} € F, and a set L of structured matrices, find pair of matrices M, N € L
such that

Mui:AiNui, i:1,27...7l€.

Generalized PDIEP can be written as M® = NO®A, where A and ® are as in (2.5.10).

By using the transformations
A=I,, X=M, B=¢, (C=-1,,
Y=N, D=®A, and E-=0,

we can find solution to Generalized PDIEP by solving matrix equation AXB+CYD =FE
for X,Y e L.

Though the primary emphasis of this paper is on inverse problems having symmetric
Toeplitz or Hankel structures, the overall approach can be extended to encompass any

structures where any set of linear relationships among matrix entries is permissible.
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2.6. Numerical Verification

In this section, we present numerical examples to validate our proposed results. All
computations are performed on an Intel Core i7-9700 @3.00GHz with 16GB RAM using
MATLAB R2021b. Eight numerical examples are provided, each highlighting a different

aspect of our framework.

We begin by computing the error between the least squares Toeplitz solution of the
RBME AX B+ CY D = FE obtained using our method and the corresponding exact solution.
Additionally, we evaluate the error between the least squares Hankel solution of the RBME
(AXB,CXD)=(E,F) computed using our approach and its exact counterpart.

Our method is further applied to solve an image restoration problem, demonstrating its
practical effectiveness. We also investigate the PDIEP for a Hankel and symmetric Toeplitz
matrix, followed by an analysis of the generalized PDIEP for Hankel and symmetric

Toeplitz structures.

Finally, we compare our approach for computing least squares Toeplitz solutions of
the RBME X + AX B = C with the method presented in [71], highlighting key differences

and improvements.

We now provide an example for finding the structure-constrained least squares solution
to the RBME of the form (2.1.1).

Example 2.6.1. Consider the following matrices:

A =rand(4,5) + rand(4,5)j, B =rand(5,7)+rand(5,7)j,

C = ones(4,5) +rand(4,5)j, D =rand(5,7) +ones(5,7)j.
Let the column and row vectors for the Toeplitz matrices be defined as:

e =[4,2+4,0,1,4, r=[40, 261, 1+4,

e =[1,342+34,1,0], r=[1,0,1,4 2]

Define the reduced biquaternion matrix X = )?1 + )?2]', where )?1 = toeplitz(cy, 1) and
X, = toeplitz(cy,s).
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Similarly, let the column and row vectors for another Toeplitz matrix be:

c3=[2+4,4,4, 1+34 24, r3g=[2+1, 7+6% 3+2¢ 1, 1 +1],
ca=[1+3%31,2+3%,3,5+1], ry=[1+3405, 1+61% 3+, 2.
Define the reduced biquaternion matriz Y=Y+ ?2_7, where Y = toeplitz(cs,r3) and
Y, = toeplitz(cy,r4). Let
E=AXB+CYD.

Thus, [)?,}7] is the least squares Toeplitz solution with the least norm of the RBME
AXB+CYD=F.

Now, we take the matrices A, B,C, D, and E as input to compute the least squares
Toeplitz solution with the least norm for the RBME AXB + CYD = E. We obtain the
matrices X = X1+ Xog and Y =Y + Yy, where

(0414 0-0i 042 1-0i 1+1i (1-05 0+0i 1-0i 0+14 2-04

2+12 0+12 0-02z 0+22 1-02 0+32 1-0¢ 0+0z 1-02 O+12
X1={0-02 2+12 0+12 0-0¢ 0+2¢|, Xo=|2+372 0+3¢2 1-02 0+02 1-02],
1+02 0-02 2+1z 0+12 0-02 140t 2+3%2 0+3¢ 1-02 0+02
~O+1i 1+0z 0-02 2+12 ()+1'i_ _0+Oz’ 1402 2+32 0+ 32 1—0i_
(2414 7+6i 3+25 041 1+14 (1436 5+0i 1463 3+1i 0+24
4+02 2+1¢ 7T+62 3+22 0+12 0+3%2 1+32 5+02 1+62 3+1¢
Yi=10+12 4+02 2+1¢ 7T+6¢ 3+2¢|, Yo=|2+32 0+3¢ 1+32 5+02 1+62].
1+37 0+12 4+0¢ 2+12 7+612 3+0% 2+37 0+3% 1+34 5+01
_O+2i 1+32 0+12z 4+02 2+1'i_ ~5+1i 3+02 2+3t 0+32 1+3'i_

Clearly, X andY are reduced biquaternion Toeplitz matrices. The error is given by
e=|[X,Y]-[X,¥]], = 1.7470 x 1015,

From Example 2.6.1, we find that the error € is in the order of 10~ and is negligible.
This demonstrates the effectiveness of our method in determining the structure-constrained

least squares solution to the RBME of the form (2.1.1).

To further illustrate, we now provide an example for finding the structure-constrained

least squares solution to the RBME of the form (2.1.3).
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Example 2.6.2. Consider the following matrices:
A =ones(4,5) +rand(4,5)j, B =ones(5,7)+rand(5,7)j,
C =rand(4,5) +rand(4,5)j, D =ones(5,7)+rand(5,7)j.
Let the column and row vectors for the Hankel matrices be defined as:
1 =[3+%2+44,6+1%,2+1%3%], ri=[347,3+241+49+4],
co=[1+24,5+34,3%,1+7%3], ro=[3,1+42+8%2+1,2+24].

Define the reduced biquaternion matriz X = )Nfl + ng, where Xl = hankel(cy,r1) and
X, = hankel(cy,79). Next, let

E=AXB, F=CXD.

Thus, X is the least squares Hankel solution with the least norm of the RBME
(AXB,CXD) =(E,F).

Now, we take the matrices A, B, C, D, E, and F as input to compute the least squares
Hankel solution with the least norm for the RBME (AXB,CXD) = (E,F). We obtain
the matrix X = X1 + X53, where

(3415 2444 6+14 2+1i 0+ 3i]
2+41 6+1t 2+1¢ 0+32 7+02
X1=|6+1% 2+13 0+3% 7+0¢ 3+2i|,
2+12 0+3¢ 7+02 3+2¢ 1+1¢
_O+3i 7+0t 3+2¢ 1+12 9+1i_
and ) -
1+22 5+3%1 0+3¢2 1+72 3+012
5+31 0+3¢ 1+72 3402 1+12
Xo=|0+3%i 1+7¢ 3+0% 1+1i 2+8i].
1+74 3+02 1+17 2+8% 2+11¢
_3+Oi 1+12 2+82 2+ 112 2+2i_

Clearly, X s a reduced biquaternion Hankel matriz. The error is given by € = HX - )?HF =
5.7042 x 10713, which is negligibly small.

From Example 2.6.2, we find that the error € is in the order of 10~ and is negligible.
This demonstrates the effectiveness of our method in determining the structure-constrained

least squares solution to the RBME of the form (2.1.3).
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To illustrate the practical application of our proposed framework, we present the

following example.

Example 2.6.3. Figure 2.6.1(a) shows a 480x500 color image I. The reduced biquaternion
matriz representation of I is given by F = Ri+ G j+ Bk, where R, G, and B are the real
matrices corresponding to the red, green, and blue channels, respectively. The matriz F'

represents the image matriz of the original image I.

To simulate a distorted image, the red channel matrix R is disturbed using the
parameters len = 30 and theta = 60, with the MATLAB function fspecial(‘motion’,
len, theta) to generate the disturbed matriz Rp. The corresponding blurring matriz
K = R4R is then used to disturb the green and blue channel matrices, obtaining Gp = KG
and Bp = KB. Consequently, the disturbed image matriz becomes Fp = Rpt+Gpj+ Bpk,

and the corresponding distorted image Ip is shown in Figure 2.6.1(b).

Figure 2.6.1. (a) Original image I (b) Distorted image Ip (c) Restored image Ig

Now, we take matrices K and Fp as input to compute the least squares purely
imaginary reduced biquaternion solution F” of the matrix equation K X = Fpp. This is done
by solving:

|KF' = Fyl =min | KX - Fp|.
The solution F” is the image matrix corresponding to the recovered image after the
restoration process, and the recovered image I is shown in Figure 2.6.1(c). The computed
error is € = | F" - F'| = 3.1014 x 1077, indicating that the error is negligible, as it is of the

order 1077. This demonstrates the effectiveness of Theorem 2.5.2 in solving Problem 2.5.1.

Next, we will discuss Hankel PDIEPs [12, Problem 5.1]. Given a set of vectors
{uy,ug,...,u} ¢ C*, where k > 1, and a set of numbers {A;, \a,..., A} ¢ C, our aim

56



is to construct a Hankel matrix M € C™" satisfying Mu; = \ju; for i =1,2,... k. Now, we

will illustrate this problem with an example.

Example 2.6.4. To establish test data, we first generate a Hankel matriz M. Define
M =nhankel(c,r), where

c=[1+24, 244, -1+34, 4], r=[4,3+44 23, 3].

Let (A, ®) denote the eigenpairs of M, where A = diag(Ai,...,\y) € C** and & =

[ur, ug, uz, us] € C>4. The eigenvalues are
[A1, A2, Az, Aq] = [-3.8029 + 7.925014, —2.7826 — 3.56291, 5.6954 — 1.06194, 6.8900 + 5.69987]

and the matriz ® of eigenvectors is given by

[ 0.6240 +0.0000¢  —0.4940 — 0.0377 —0.5395—0.2011% 0.1572 — 0.20474)
-0.6145 - 0.08852 —0.5863 +0.02192 0.0172-0.12362 0.4818 -0.11132
0.4246 +0.0774%  0.1217-0.1368%  0.5855 +0.0000%  0.6784 + 0.0000% |
| -0.1893 +0.0550%  0.6138 + 0.00002 -0.5259 - 0.18322 0.4609 - 0.1275%]

Case 1. Reconstruction from one eigenpair (k = 1): Let the prescribed partial eigen-

information be given by

A=X3e¢C, & =uzeC™.

Construct the Hankel matriz M such that ]T[u;; = A\3ug. Using the transformations A = Iy,
X =M, B=3®, and E = B, we solve the matriz equation AXB = E to obtain

[ 1.6614+0.3115¢  1.0564 +0.6597¢ —1.8088 + 0.4921% 2.6736 — 0.47634 |
1.0564 + 0.6597¢ —-1.8088 + 0.4921¢ 2.6736 —0.4763%z  2.0823 — 0.52221
~1.8088 +0.49215 2.6736 - 0.4763i  2.0823 - 0.5222¢ —1.7415 +0.7505% |
| 2.6736-0.47637  2.0823 - 0.52222 -1.7415+0.75052 1.2459 + 0.28331 |

<

Thus, M is the desired Hankel matriz.

Case 2. Reconstruction from two eigenpairs (k = 2): Let the prescribed partial eigen-

information be given by

A = diag(Ag, A3) € C*2, D = [uy,ug] € C*2,
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Construct the Hankel matriz M such that ]T[ui = \u; for i = 2,3. Using the same

transformations as in Case 1, we solve the matriz equation AX B = E and obtain

[1.0000 +2.0000¢  2.0000 —4.0000¢ —1.0000 + 3.0000% 4.0000 + 0.00007]
2.0000 - 4.0000¢ -1.0000 + 3.00002 4.0000 + 0.0000z  3.0000 + 4.0000%
~1.0000 + 3.00005  4.0000 + 0.00004  3.0000 + 4.0000¢  0.0000 + 2.0000% |
| 4.0000 +0.00002  3.0000 +4.00002  0.0000 +2.0000z 3.0000 + 0.0000% |

M =

Thus, M is the desired Hankel matriz.

Case 1(k=1) Case 2 (k=2)

Eigenpair Residual HMuz - /\iuiH2 FEigenpairs Residual H]\’ZuZ - )\iuiH2

(s, u3) 2.7792 x 10-15 (Do, 2) 3.1349 x 10-14
()\3,U3) 2.2761 x 1014

Table 2.6.1. Residual H]\AfuZ - \iu; |, for Example 2.6.4.

I,

From Table 2.6.1, we find that the residual HﬂuZ - )\iui“Q for 1 = 3 in Case 1 and
for i =2,3 in Case 2 is on the order of 10714, which is negligible. This demonstrates the

effectiveness of our method in solving the Hankel PDIEP.
Next, we illustrate the example for solving the symmetrix Toeplitz PDIEP.

Example 2.6.5. To establish test data, we first generate a real symmetric Toeplitz matrix

T. Define T = toeplitz(c), where
¢ =[5.30, 2.50, 4.60, -3.70, 2.80] .

Let (A, ®) denote the eigenpairs of T, where A = diag(A1,...,\5) € R>® and & =

[uy, ug, us, ug, us] € RS, The eigenvalues are
(AL Aoy Ay Aws As] = [-4.6650, —1.0842, 7.8650, 10.4951, 13.8891]

and the matrix ® of eigenvectors is given by

[ 04627 0.4077  0.5347 —0.3460 —0.4627)
05347 0.2169 04627 0.6165 -0.2699
®=[-0.0000 —0.7573 0.0000 -0.0193 —0.6528].
0.5347 02169 -0.4627 0.6165 —0.2699
04627 04077 ~0.3347 0.3460 —0.4627
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Case 1. Reconstruction from two eigenpairs (k = 2): Let the prescribed partial eigen-

information be given by
K = diag()\l, )\2) € RQXQ, 5 = [ul, U,Q] (S R5X2.

We construct the symmetric Toeplitz matriz T such that Tu; = Nu; for i = 1,2. Using
the transformations A = I5, X = T, B =3, and E = ®\, we solve the matriz equation
AXB =FE to obtain:

[ 530 250 4.60 -3.70 2.80 |
250 530 250 4.60 -3.70
T=|460 250 530 250 4.60
370 460 250 530  2.50
280 370 460 250 530 |

Thus, T is the desired symmetric Toeplitz matrix.

Case 2. Reconstruction from two eigenpairs (k = 2): Let the prescribed partial eigen-

information be given by
A = diag(\q, As) e R*?, & = [ug,us] € R

We construct the symmetric Toeplitz matrix T such that Tu; = M\u; fori=1,3. Following

the same approach as in Case 1, we solve the matriz equation AXB = E and obtain:

[ 10667 3.1000 0.3667 -3.1000 —1.4333]
31000 1.0667 3.1000 0.3667 ~3.1000
T=|03667 31000 1.0667 3.1000 0.3667
31000 0.3667 3.1000 1.0667  3.1000
|-1.4333 31000 0.3667 3.1000 1.0G67 |

Thus, T is the desired symmetric Toeplitz matrix.

Case 1 (k=2) Case 2 (k=2)

Figenpairs Residual HTuz - /\iuiH2 FEigenpairs Residual HTUZ - )\iuin

(A1, u1) 5.7430 x 10-15 (A1, u1) 2.2505 x 1015
(A2, us) 1.2200 x 10-14 (A3, us) 6.1218 x 1015

Table 2.6.2. Residual HTUZ - \iu; |, for Example 2.6.5.

I,
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From Table 2.6.2, we observe that the residual Hful - )\iuiHQ for 7 =1,2 in Case 1
and for 7 =1,3 in Case 2 is on the order of 10~!4, which is negligible. This confirms the

effectiveness of our method in solving the symmetric Toeplitz PDIEP.

Similar to PDIEP, one can solve the generalized PDIEP (Problem 2.5.5). We now
illustrate the generalized PDIEP for Hankel and symmetric Toeplitz structure.

Example 2.6.6. To establish test data, we first generate a linear matrixz pencil M — AN,
where M and N are Hankel matrices. Specifically, we define M = hankel(cy,r1) and
N = hankel(cy, 1), where

c1=[4+28,2-44, -1+34,4+34], r;=[4+34 43 9+24 3+1],

Cco=[3+24,6—14 -5+24,4+74], ro=[4+7i 3+44, 2+24, 3-81].
Let (A, ®) denote the eigenpairs of M — AN, where A = diag(\1, A2, A3, \q) € C¥* and
O = [uy, ug, us, us] € C¥4. The eigenvalues are

[A1, A2, A3, Ag] = [<0.3953 + 0.60274, 0.3708 — 0.71554, 0.6743 — 0.36554, 0.6761 + 0.11574] ,

and the matriz ® of eigenvectors is given by

[~0.4881+0.1767% —0.4811 - 0.3552¢ —0.7739 + 0.1499%  0.7130 + 0.28704 |
0.4383 +0.4624¢  0.4236 +0.57642 -0.8976 + 0.1024¢z 0.1416 + 0.5177%
0.4194 - 0.58064 —0.1700 +0.0352i —0.3007 + 0.3084i —0.3339 + 0.50074

[ -0.5678 = 0.08752  0.3392 -0.11232  0.0061 + 0.18822 -0.3560 - 0.23704]

Case 1. Reconstruction from one eigenpair (k = 1): Let the prescribed partial eigen-

information be given by
A=X\eC, ®&=ueC™.

We construct the Hankel matrices M and N such that Mui = Aiﬁui fori=1. Using the
transformations A= 14, X = M,B=®,C=-1,,Y=N, D=3®A, and E =0, we solve the
matrix equation AX B+ CY D = E. The resulting matrices are

[1.0472 +0.34064 1.1937 +0.5288% 0.8984 + 0.8802¢ 1.0875 + 1.12824]
— | 1.1937 + 0.52882 0.8984 + 0.8802¢ 1.0875+1.12822 0.7748 + 1.0806%

0.8984 +0.88027 1.0875+ 1.1282¢ 0.7748 + 1.08062 0.6237 + 1.33992
[ 1.0875 +1.1282¢ 0.7748 + 1.08067 0.6237 +1.33992 0.3267 + 1.28601 ]
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[1.4161 +0.7678¢  1.3606 + 0.9305¢ 1.0320 + 0.89144 0.9574 + 1.10343]
_ |1.3606 +0.9305¢ 1.0320 +0.8914% 0.9574 + 1.1034% 0.8624 + 0.89613

1.0320 + 0.8914¢ 0.9574 +1.1034¢ 0.8624 +0.89614 0.6464 + 0.9076% |
0.9574 + 110343 0.8624 + 0.89614  0.6464 + 0.9076¢ 0.5615 + 0.70724]

Thus, M - AN is the desired Hankel matriz pencil.

Case 2. Reconstruction from two eigenpairs (k = 2): Let the prescribed partial

eigeninformation be given by
A = diag(Ai, A3) € C*2 and @ = [uy, us] € C*2,

Construct the Hankel matrices M and N such that Muz = Ai]vui foriv=1,3. Following the

same approach as in Case 1, we solve the matriz equation AXB +CY D = E and obtain:

[ 0.2460 - 0.0000¢ —0.0696 — 0.0231% 0.1118 —0.0226¢ —0.0519 + 0.04364]
-0.0696 - 0.0231¢ 0.1118 -0.02262 —0.0519 +0.04362 0.0299 + 0.13252

0.1118 = 0.02262 -0.0519 + 0.04362 0.0299 + 0.13252  0.1243 — 0.06212
[-0.0519 +0.04362  0.0299 +0.13252  0.1243 - 0.06212 0.0711+0.07772 |
[ 0.1767 +0.04164  0.1067 - 0.0146 —0.0352 + 0.08504  0.0696 — 0.09107 |

7o 0.1067 - 0.0146¢ —-0.0352 + 0.08502z 0.0696 —0.0910z —0.0943 + 0.1694%

~0.0352 +0.0850%  0.0696 — 0.0910 —0.0943 + 0.1694% —0.0396 + 0.0850% |
| 0.0696 - 0.09102  —-0.0943 +0.16942 -0.0396 + 0.08502 -0.0269 + 0.0197+2]

Thus, M — AN s the desired Hankel matriz pencil.

Case 1 (k=1) Case 2 (k=2)

FEigenpairs Residual H]TiuZ - )\i]vui H2 FEigenpairs Residual HM% - Ai]vui H2

(M, 1) 2.7626 x 1015 (M, 1) 1.0906 x 10-14
(/\3,U3) 2.7570 x 10~15

Table 2.6.3. Residual HZ\AfuZ - Aiﬁui“z for Example 2.6.6.

From Table 2.6.3, we find that the residual H]TfuZ - )\Z-]VuiHQ, for i=1in Case 1 and
for i = 1,3 in Case 2, is in the order of 10~ and is negligible. This demonstrates the

effectiveness of our method in solving the generalized PDIEP for Hankel structure.
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Example 2.6.7. To generate the test data, we first construct a linear matrix pencil
M — AN, where both M and N are symmetric Toeplitz matrices. Specifically, M and N
are defined as M =toeplitz(c;) and N =toeplitz(cs), where the vectors ¢; and co are

given by
¢ = [7.80, 5.50, 3.70, -2.30, 8.90], 9 =[4.20, 1.20, -3.50, 3.90, 9.80] .

Let (A, ®) denote the eigenpairs of M — AN, where A = diag(Aq,...,A5) € C>5 and

D = [uy, ug, us, uyg, us] € C>5. The eigenvalues are
[\, Aoy Mg, Aa, As] = [4.1157, —1.7144, 0.2371, —0.1060 + 1.13364, —0.1060 — 1.13364] ,

and the matriz ® of eigenvectors is given by

——0.2481 0.3192 -0.2773 -0.2700 +0.73002 -0.2700 - 0.730071‘
-0.4470 -0.8953 -0.4115 0.6140+0.14252 0.6140 - 0.1425%
®=[-1.0000 1.0000 1.0000 -0.0000+ 0.0000% -0.0000+ 0.0000%-
-0.4470 -0.8953 -0.4115 -0.6140-0.14252 -0.6140 +0.1425%
_—().2481 0.3192 -0.2773 0.2700 - 0.73002  0.2700 + 0.7300%2 ]

Case 1. Reconstruction from two eigenpairs (k = 2): Let the prescribed partial eigen-

information be given by
A = diag(Ai, A3) € C*2, & = [uyg,ug] € C2.

Construct the symmetric Toeplitz matrices M and N such that Mu; = \\Nu; fori=1,3.
Using the transformations A=1I5, X =M, B=®, C=-I5, Y =N, D =®A, and E =0, we
solve the matriz equation AX B +CY D = E. The resulting matrices are

[ 1.3921 1.0473 0.6772 -0.2032 0.6735 ]
1.0473  1.3921 1.0473 0.6772 -0.2032
0.6772 1.0473 1.3921 1.0473 0.6772
-0.2032 0.6772 1.0473 1.3921 1.0473

I 0.6735 -0.2032 0.6772 1.0473 1.3921 ]

<

[ 0.6339 0.1905 -0.3161 0.6055 0.7404 ]
0.1905 0.6339  0.1905 -0.3161 0.6055
N =[-0.3161 0.1905 0.6339 0.1905 -0.3161{.
0.6055 -0.3161 0.1905 0.6339  0.1905
| 0.7404  0.6055 -0.3161 0.1905 0.6339 |

Hence, M = AN s the desired symmetric Toeplitz matrix pencil.
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Case 2. Reconstruction from three eigenpairs (k = 3): Let the prescribed partial eigen-

information be given by
A= diag(A1, A2, A3) € C>?, ¢ = (w1, uz, us] € c>.

Construct the symmetric Toeplitz matrices M and N such that Mui = )\iﬁui for

1=1,2,3. Using the same transformations as in Case 1, we solve the matrix equation
AXB+CYD =FE and obtain

[ 0.9214 0.6497 0.4371 -0.2717 1.0513 ]
0.6497  0.9214 0.6497 04371 -0.2717
M=10.4371 0.6497 0.9214 0.6497 0.4371
-0.2717 0.4371 0.6497 0.9214  0.6497
I 1.0513 -0.2717 0.4371 0.6497 0.9214 ]

[ 0.4961 0.1417 -0.4134 0.4607 1.1576 ]
0.1417 0.4961 0.1417 -0.4134 0.4607
N =1-0.4134 0.1417 0.4961 0.1417 -0.4134{.
0.4607 -0.4134 0.1417 0.4961  0.1417
i 1.1576  0.4607 -0.4134 0.1417 0.4961 |

Hence, M - AN s the desired symmetric Toeplitz matrix pencil.

Case 1 (k=2) Case 2 (k=3)

FEigenpairs Residual HMuZ - Ai]vui"Q FEigenpairs Residual H]\’\[uZ - )\Zf\fuiHQ

(A1, u1) 3.3675 x 10715 (A1, u1) 6.9900 x 10-15
(A3, u3) 2.3481 x 10715 (A2, us) 2.4962 x 10715
(A3, u3) 2.5686 x 10-15

Table 2.6.4. Residual "Muz —\iNw;|., for Example 2.6.7.

-

From Table 2.6.4, we find that the residual HMUZ - )\Z-Nuz-

and for ¢ =1,2,3 in Case 2, is in the order of 10~ and is negligible. This demonstrates

01 for 2 =1,3 in Case 1

the effectiveness of our method in solving the generalized PDIEP for symmetric Toeplitz

structure.

Next, we provide an example to compare our method for finding the least squares

Toeplitz solutions of the matrix equation X + AXB = C, where A, B,C € Q¢*", with the
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method reported in [71]. By setting r =2, g=0, Ay =By =1,, As=A, Bo=B,and E=C
in (2.1.2), our proposed framework can solve the RBME reported in [71] more efficiently.
We compare both the error and CPU time to demonstrate the accuracy and efficiency of

our proposed method relative to that in [71].
Example 2.6.8. Let

A =rand(n) + rand(n)i+ rand(n)j+ rand(n)k,

B =rand(n) + rand(n)é+ rand(n)j+ rand(n)k.
Define
X = toeplitz(ay,as) + toeplitz(by,by)i+ toeplitz(cy,co)j+ toeplitz(dy,ds)k,
where a; = by = ¢; = dy = randn(n, 1) and ag = by = ¢y = dy = randn(1,n). Let
C=X+AXB.

Hence, X is the least squares Toeplitz solution with the least norm for X + AXB = C.

Next, we use matrices A, B, and C as input to calculate the least squares Toeplitz
solution with the least norm for X + AXB = C. Let X be the solution obtained using our
method, and X be the solution obtained using Algorithm 2 from [T1].

We compute the errors between the solution obtained by our framework and the actual
solution, defined as €, =log,o(|X = X|r), and the errors between the solution obtained by
[71] and the actual solution, defined as €3 =log,o(| X = X | ). From Table 2.6.5, we observe
that the accuracy of both methods is high; €1 and €y are comparable and consistently less
than =11 for various matriz dimensions. This demonstrates that our method is as effective

as the one proposed in [T1].

Let ty and ty represent the CPU time consumed by our method and the method
reported in [71], respectively, for computing X and X. As shown in Table 2.6.5, our
method consistently requires less time compared to the method in [71] across various matriz
dimensions, highlighting its superior efficiency. This is because our method employs only
real and complex operations, which are more convenient and efficient. In contrast, the
method in [T1] involves reduced biquaternion operations, which are considerably more
time-consuming.
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Error CPU time

n €1 €2 t]_ t2

5 -13.0918 -13.4447 0.0110 0.1379
10 -12.8390 -12.6899 0.0252 2.5883
15 -12.0256 -12.3873 0.0562 18.1414
20 -12.0689 -12.1151 0.1130 76.1936
25 -11.9322 -11.9998 0.2419  233.1581
30 -11.8615 -11.8008 0.5344  574.7308
35 -11.8275 -12.0263 1.1164 1.2119 x 103
40 -11.3621 -11.7243 2.3388 2.4118 x 103
45 -11.7765 -11.3134 4.2934 4.2807 x 103
50 -11.1779 -11.5833 7.2243 7.0931 x 103

Table 2.6.5. Comparison of error and CPU time for computing the Toeplitz
solution of X + AXB = C using our method and the method reported in [71]

across various matrix dimensions.

Conclusion: In this chapter, we have explored various L-structure reduced
biquaternion matrix sets, including reduced biquaternion Toeplitz, symmetric Toeplitz,
Hankel, circulant, real, complex, and purely imaginary matrix sets. Furthermore, we have
developed a generalized framework for finding the least squares L-structure solutions for
three generalized RBMEs. Additionally, we have demonstrated how the proposed theory
extends to several practical applications, such as image restoration problem, L-structure
solutions for complex and real matrix equations, solution of PDIEP, and generalized
PDIEP.

These contributions provide a foundation for further research in reduced biquaternion
matrix theory, particularly in areas where the underlying L-structure plays a crucial role.
The framework and methodologies discussed here open up new possibilities for solving

advanced matrix equations in both theoretical and applied contexts.
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CHAPTER 3

GENERALIZED INVERSE OF REDUCED BIQUATERNION
MATRICES

This chapter focuses on computing the outer and {1, 2}-generalized inverses of reduced
biquaternion matrices (RBGI). The main results pertain to RBGIs that satisfy specific
conditions related to column and/or row spaces. Conditions for the existence and effective
representations of these generalized inverses are established. The existence condition is
determined using the rank function and regularity, while the representation is achieved by
solving RBME of the form (AXB,CXD) = (E, F). Additionally, numerical algorithms
based on these representations are presented, and their effectiveness is demonstrated

through numerical examples.

3.1. Introduction

The concept of generalized inverse, first introduced by E.H. Moore in 1920 [53], was
initially defined using matrix projectors. For several decades, little progress was made until
the 1950s when interest in generalized inverses was renewed due to their applications in
solving linear systems. In 1955, R. Penrose [58] advanced the field by demonstrating that
Moore’s inverse uniquely satisfies four matrix equations. However, for certain applications,
matrices that satisfy fewer than all four equations are also of interest. The primary goal of
constructing a generalized inverse is to extend the concept of an inverse matrix to a broader
class of matrices, including those that are not invertible. Various types of generalized
inverses have been introduced in the literature, particularly for solving both consistent

and inconsistent systems of linear equations [3, 20, 68, 69].

This chapter focuses on generalized inverses with predefined conditions. The study of
such generalized inverses for real and complex matrices is well-documented; see, for example,
[10, 62, 64, 72, 73, 74]. In [63], the authors established determinantal representations of

generalized inverses over the quaternion skew field using the theory of column and row



determinants. Similarly, [4] explored generalized inverses with predefined column and/or

row spaces, particularly for matrices over a commutative ring with identity.

In this chapter, we investigate the generalized inverses of RB matrices with predefined
conditions on the column and/or row spaces. We begin by stating the definition of particular

generalized inverses for RB matrices. Consider the following conditions:
(P) AXA=A (P)XAX=X. (3.1.1)

The set of all RB matrices satisfying conditions defined by the set § ¢ {1,2}, where the
condition (P;) corresponds to i € 4, is denoted as A{d}. Any RB matrix in A{0} is referred
to as the d-inverse of A and is denoted by A, The matrix A® is called the generalized
inverse of matrix A, and A® is also referred to as the outer generalized inverse of A.

nxm

A matrix A € QF*" is said to be regular if there exists a matrix X € Qg™ satisfying
AXA=A.

Additional important generalized inverses include outer inverses and {1,2}-inverses
with prescribed column and/or row spaces. An element X € A{d} satisfying C(X) = C(5)
(respectively R(X) = R(T)) is denoted by A((Z?S),* (respectively AS?Q(T))’ where C(X)
and R(X) denote the column space and row space of matrix X. If X satisfies both the

requirements C(X) = C(S) and R(X) = R(T) it is denoted by Aé&()S) R(T)"

In [85], Zhang et al. studied the generalized inverse problem of RB matrices using
their singular value decomposition. Their work discussed the Moore-Penrose generalized
inverse, {1}-inverse, and {1,2}-inverse of RB matrices. Outer inverses with prescribed
column and/or row spaces are explored in [4] for matrices over a commutative ring with
identity. Notably, the set of all RB matrices forms a commutative ring with identity. In
this chapter, we examine the existence and representation of generalized inverses of an RB

matrix A € Qg*", including:

(2) @) (2) (1.2) (12) (12)
AC(S),*’ A*,R(T)’ AC(S),R(T)’ AC(S),*’ A*,R(T)’ AC(S),R(T)' (312)

The existence conditions for these RBGIs are determined by the rank function, regularity,
and the properties of the column and row spaces of RB matrices. The representation
of RBGIs is derived by solving appropriate RBMEs. Solutions to these RBMEs are
obtained by transforming them into equivalent systems of linear equations with complex
matrix coefficients (CSoLE), utilizing tools like the Kronecker product and vectorization

techniques.
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This chapter is organized as follows: Section 3.2 introduces preliminary results.
Section 3.3 presents the framework for solving RBMEs of the form AXB = E and
(AXB,CXD)=(E,F). Section 3.4 investigates the existence and representation of outer
and {1, 2}-generalized inverses of RB matrices with specified column and/or row spaces.

Finally, Section 3.5 provides numerical verification of the proposed results.

3.2. Preliminaries

To ensure this chapter is self-contained, we will briefly summarize key concepts and
results that are essential for the discussions in the following sections. We start by presenting
the definitions of the column space and row space of an RB matrix, which are provided in

Definitions 3.2.1 and 3.2.2, respectively.

Definition 3.2.1. Let A € Q2" and x = [z, ... ,xn]T € Qf. Suppose Col;(A) represents
jth column of A, for j=1,...,n. Then, the column space C(A) of A is defined as the span

of its columns:
C(A) ={z1Col;(A) + -+ z,Col,,(A) |1, ...,2, € Qr} = {Azx |z € Q}}.

Definition 3.2.2. Let A e Q" and y = [y1, ..., Ym] € Q™. Suppose Row;(A) represents
the ith row of A, fori=1,...,m. Then, the row space R(A)of A is defined as the span of

1ts rows:
R(A) = {;nRow1(A) + -+ ymRowm (A) [y1, ..., ym € Qr} = {yA|y € Qg"}.

Remark 3.2.3. (1) The set Qg forms a commutative ring with identity, where addition
and scalar multiplication are defined in the usual way.
(2) The set Qg""(Qr) is a Qr-module with standard addition and scalar multiplication.
(3) For AeQp", the set C(A) is a Qr-submodule of QF generated by the columns of
A.
(4) For A e Qpm, the set R(A) is a Qgr-submodule of Q™ generated by the rows of A.

In the subsequent Lemma 3.2.4, we examine the properties of the column and row
space of a matrix. This lemma will be utilized to present representations of the outer
inverse and {1,2}-inverse that meet specific conditions related to the column space and/or

TrOw Space.
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Lemma 3.2.4. Let X e Qu™, S e Qp*, and T € Q5™ be given RB matrices. Then

(1) C(X) cC(S) if and only if there exists U € Q™ such that X = SU.
(2) R(X) cR(T) if and only if there exists V € Q@' such that X =VT.

Proof.

(1) Let Col;(X) represent the ith column of matrix X for i = 1,...,m, and Col;(.5)
denote the jth column of matrix S for j =1,..., k. Since C(X) c C(S), for each

i=1,...,m, there exist scalars [uy;,...,ux |’ such that
COZZ(X) = UMC’Oll(S) + oo+ uk,Colk(S)
Therefore, we can write
Urp U2 - Uim
X=5]: : 2 |=5U.
Ukl Uk2 - Ukm

(2) Let Row;(X) represent the ith row of matrix X fori=1,...,n, and Row;(T") denote
the jth row of matrix T for j=1,...,1. Since R(X) ¢ R(T), for each i = 1,...,n,

there exist scalars [v;1,. .., v;] such that
Row;(X) = vy Row(T) + - + vy Row, (T).
Therefore, we can write

V11 V12 - Uy

X=1: : 2| T=VT. m
Unl Un2 - Upl

For a matrix over a field, such as the fields of real or complex numbers, the concept
of rank(A) is well defined as the dimension of the subspace generated by the columns of
A. However, Qg does not constitute a field, since not every nonzero element in Qg has a
multiplicative inverse (e.g., 1+ 7). Consequently, the standard properties of rank do not
universally apply when dealing with matrices having entries from Qg. In such instances,
an alternative approach involving determinantal rank and a rank function is employed for

matrices over Q.

Definition 3.2.5. Given A € QF*"; the determinantal rank of A, marked with p(A), is

the size of the largest submatriz of A with a nonzero determinant.
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For the definition of the determinant of a matrix A € Q¢*", refer to [48, Page 18].
It is important to note that, in the context of reduced biquaternion algebra, a nonzero
determinant det(A) does not necessarily imply non-singularity of A, which differs from
matrices over a field. A matrix A € Q" is said to be nonsingular, or equivalently invertible,

if its determinant det(A) is a unit in Qg.

To study matrix properties in the RB domain, it is crucial to analyze minors and
their behavior under matrix multiplication. Lemma 3.2.6 establishes a key relationship,
expressing the minors of the product of two rectangular matrices in terms of the minors
of the individual matrices. This result is instrumental in exploring determinantal rank

properties.

Lemma 3.2.6. Suppose A € Qg"", B € Q¢** and k < min{m,n,s}. Then k x k minor
[AB];.; of matriz AB, where I is a subset of {1,2,...,m} with k elements and J is a

subset of {1,2,...,s} with k elements, is equal to

[AB]1; = > .[Al1k[Blk.,

K

where the sum performs over all subsets K € {1,...,n} involving k elements.

Proof. Since Qg is a commutative ring with identity, the proof directly follows from

Theorem 1.5 in [48, Page 21]. m

In Lemma 3.2.7, we delve into properties of the determinantal rank of a matrix. These
properties will be later utilized in this chapter to investigate the properties of the rank

function of a matrix.

Lemma 3.2.7. The subsequent statements hold for A e Q@»", B e Q¢**, and C' € Q™

(1) p(AB) <min(p(A), p(B)).
(2) If B is a right invertible matriz and n < s, then p(AB) = p(A).
(3) If C is a left invertible matriz and m < t, then p(C'A) = p(C).

Proof.

(1) The proof is straightforward, follows from Lemma 3.2.6.
(2) Given that B is right invertible, there exists a matrix P € Q™ such that BP = I,,.

Therefore, we can express A as

A= Al, = A(BP) = (AB)P.
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Using part (1), we deduce that p(A) < p(AB). Additionally, p(AB) < p(A).

Consequently, we conclude that

p(AB) = p(A).

iven that C is left invertible, there exists a matrix ) € Q7" such that = Iy
3) Gi hat C' is left i ible, th i 'QQR” h that QC = [

Therefore, we can express A as
A=1,A=(QC)A=Q(CA).

Using part (1), we deduce that p(A) < p(CA). Additionally, since p(C A) < p(A),
it follows that

p(CA) = p(A).
All parts of the proof are verified. m

In [47, Definition 2.2], the author defined the rank function for a matrix over a
commutative ring with identity. Since Qg is a commutative ring with identity, the

corresponding definition of the rank function for a matrix over Qg is provided as follows.

Definition 3.2.8. Let £ = {e € Qr | €? = e and e # 0} be the set involving all nonzero

idempotent elements in Qr. The rank function of a matriz A € Qgr, denoted by Z 4, is an
integer-valued function X4 : E — 7 defined by Z4(e) = p(eA) for all e €.

Remark 3.2.9. For Qg, the set £ is equal to &€ = {1, % + %j, % - %]}

Remark 3.2.10. In the case of real and complez fields, the set & is defined by € = {1}.
Therefore, the rank function of a matrixz in these fields corresponds to the usual rank of a

matriz.

Properties of the rank function are studied in the following Lemmas 3.2.11, 3.2.12, and
3.2.13. These lemmas will play a key role in characterizing the conditions for the existence
of outer and {1,2}-generalized inverse that meet specific criteria related to the column

space and/or row space.

Lemma 3.2.11. The subsequent characterization are valid for A € Qg>", B € Q§*°, and
C c Q]%xm

(1) If B is a right invertible matrixz and n < s, then XZap = R 4.

(2) If C is a left invertible matriz and m < t, then XBca = Ra.
72



Proof. The proof straightforwardly follows from Lemma 3.2.7. m

As Qg forms a commutative ring with identity, Lemmas 3.2.12 and 3.2.13 that follow
can be directly inferred from [47, Theorem 2.2] and utilizing Lemma 3.2.4.

Lemma 3.2.12. Let A€ Q™" be reqular and of determinantal rank r, and B be an m xp

matrix. The following statements are equivalent for T = [A B]:

(1) p(eA) =p(eT) for every idempotent e € Qg;
(2) Za=%r;
(3) The matriz equation AX = B is consistent;

(4) C(B) cC(A).

Lemma 3.2.13. Let A € Qg™ be regular and of determinantal rank r, and C be a matriz

A
of size ¢ xn. The subsequent statements are equivalent for S = [C] :

(1) p(eA) =p(eS) for every idempotent e € Qg;
(2) % =%s;

(3) Matriz equation X A = C' is solvable;

(4) R(C)cR(A).

3.3. Solutions to the RBME of the Form (AXB,CXD) = (E,F)

The aim in this section is to derive existence conditions and solutions of the RBMEs
(AXB,CXD)=(E,F) and AXB = FE. Let
A=A1+A2j€ Qﬁglxn, X:X1+X2j€ QH’%XS, B:Bl+B2jE @E{tl,
C=Cy+Coge Qg™ D=Dy+DojeQy"? FE=E +EyjeQg", (3.3.1)

F =F + Fyje Qg ™.

Before proceeding, we introduce the subsequent notations:

—B{®A1+Bg®A2 B?@AQ-FB;@A{ —vec(El)
BI'® Ay +BT'e® Ay, BI'eAy,+Bl'e A E
M=|" o 22 2 | and e= vee(£2) . (3.3.2)
D{@Cl +Dg®02 D?@CQ‘FD;@C& VeC(Fl)
| DI'eCi+ D9 Cy DY ®Cy+ DT ®Ch] | vee(Fy) |
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Theorem 3.3.1. Consider the RBME (AXB,CXD) = (E,F) with coefficient matrices
defined in (3.3.1). Let M € C2matitmat2)x2ns gnd e ¢ C2mititmat2)x1 je g5 qn (3.3.2). Then
X = Xq + X5 € QF® is a solution of the RBME (AXB,CXD) = (E,F) if and only if
MMte =e. In addition, the generic solution X € Q** satisfies the following

lvec(Xl)

=Me+ [ns—MfM , 3.3.3
vec(XQ)] ( ’ )y ( )

where the vector y € C?™*1 is arbitrary.

Proof. Application of the operators vec and ¥ on the initial RBME leads to
(AXB,CXD)=(E,F) <= (vec(Vaxp),vec(Vexp)) = (vec(Vg),vec(Vr)).

Using (2.2.1) and Lemma 2.2.2 yields

Vaxp=VYa4h(XB)

X1 Xy
Xo Xy

By By

= [Ah AQ]
By, By

= [AleBl + AQXQBl + AlXQBQ + AQXlBQ, AleBQ + AQXQBQ + A1X2B1 + AQXlBl] s
\IICXD = [CleDl + CQXQDl + ClXQDQ + 02X1D27 CleDQ + OQXQDQ + OlXQDl + OQXlDl] .
Utilizing (2.2.2), we obtain the expression for vec(¥ 4xp) and vec(¥oxp) as follows

—VeC(AleBl + AQXgBl + AlXQBQ + AQXlBQ)

VGC(‘I’AXB) =
_VeC(A1X132 + A2X2B2 + AngBl + AQXlBl)

(BT ® Ay)vec(X1) + (BY ® Ag)vec(X3)
+(BY ® Ay)vec(Xz) + (BT ® Ag)vec(X;)
(B @ Ay)vec(X1) + (BY ® Az)vec(X3)

+ (BT ® Ay)vec(Xs) + (B ® Ag)vec(X7) |

Vec(Xl)]
vee(Xs) |

vec(Xl)].
vec(X3)

—Bf®A1+Bg®A2 B{®A2+Bg®A1
_Bg@Al-i-B%j@Ag Bg®A2+BlT®A1

—D{®01+Dg®02 D?®02+Dg®cl

VeC(\I/CXD) =
| DJeCi+ DI ®Cy, DI®Cy+ D ®Cy

Usage of (3.3.2) leads to

vec(X7)
AXB,CXD) = (E,F) < M —e.
( )= (B.F) [VGC(XZ)]
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Hence, the RBME (AXB,CXD) = (E,F) is consistent if and only the above matrix
equation, determined by (3.3.2), is solvable. Thus, (AXB,CXD) = (E, F) is consistent if
and only if M M'e = e and the general solution X is determined by (3.3.3). =

Remark 3.3.2. The solution to the RBME (AXB,CXD) = (E,F) can also be obtained
using [80, Theorem 3.1] and [75, Theorem 3.1]. In [80], the structured solution for the
RBME is presented, while [75] focuses on the unstructured solution to a system of RBMEs.
Both papers employ the complex representation of RB matrices. In their approach, they
first convert the RBME into a complex linear system and then further transform it into a
real linear system to find the solution. This additional transformation is essential when

seeking structured solutions.

In our method, to find the unstructured solution, we convert the RBME into a complex
linear system and solve it without the additional transformation to a real linear system.
This modification reduces computational overhead and improves overall efficiency in finding
the unstructured solution to (AXB,CXD) = (E,F).

In accordance with Theorem 3.3.1, we now outline an algorithm designed to compute

the solution X of RBME (AXB,CXD)=(E,F).

Algorithm 3.3.1 Computation of Solution X to RBME (AXB,CXD) = (E,F)
Input: A=A+ Ayje Qp"", B=B;i + Byje Q%th’ C = Oy + Coje QU™

D =Dy +Dyje Q5™ E=Ey + Byje Qg F = Fy + Fyje Q.

Output: X = X + Xy5€ Q.

Step 1: Matrix and Vector Computation: Compute M and e using equation (3.3.2).

Step 2: Consistency Check: Verify the consistency of the RBME (AXB,CXD) =
(E, F) by checking the condition M MTe = e. If this condition holds, proceed to
the next step.

Step 3: Solution Calculation: Compute

e lvec(Xl)

=Mte+ (Iy, - MTM)vy,
vec(Xg)] e (L )y

where y € C?7s*1 is an arbitrary vector.
Step 4: Reshaping: Reshape = into the matrices X; and X5 using the Matlab function

reshape:

X = reshape(z(1:ns,:),n,s), X,=reshape(z(ns+1:2ns,:),n,s).
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Next, we derive the explicit expression for existence condition and solution of the RBME
AXB = E with coefficient matrices defined in (3.3.1). Before proceeding we introduce
certain notations

|BieAi+BI @Ay Bl @A+ By ®A
) [BQT®A1+BIT®A2 BQT®A2+BlT®A1]

vec(E))
vec(FEy)

. (3.3.4)

Corollary 3.3.3. Consider the RBME AXB = E with coefficient matrices defined in
(3.3.1). Let N e C?mitv<2ns gnd f e C2mtv<! be qs in (3.3.4). Then AX B = E has a solution
X = X1+ XojeQp if and only if NNTf = f. In this case, the general solution X € Qi
satisfies the following
vec(X1)
|:V€C(X2)

where the vector y € C*s*1 is arbitrary.

] =N7f+(Ions— N'N)y, (3.3.5)

Proof. The RBME AXB = E can be considered as a specific instance of the RBME
(AXB,CXD) = (FE,F). Therefore, the proof directly follows from the proof method of
Theorem 3.3.1. m

Remark 3.3.4. Algorithm 3.3.1 can also be used to solve the RBEME AX B = E under the
particular settings C' =0, D =0, and F =0 of the algorithm.

3.4. Generalized Inverse of RB Matrices

(2) (2) (2)
C(S),*’ A*,R(T)’ AC(S),R(T)’

Aél(’g’*, Ai;’izm, and Aél(’SQ;R(T). The formalized definitions for these generalized inverses

are outlined as follows:

In this section, we will explore the properties of RBGIs A

Definition 3.4.1. An outer inverse of A € Q™ with a predefined column space C(S),
denoted by AéQ()S) .» s a matriz X that satisfies the following conditions: XAX = X and
also satisfies AXA = A, then it is referred to as a

C(X) =C(S). In addition, if Aff(g) )
{1,2}-inverse of A with the predefined column space C(S), denoted as Aél(;;*

Definition 3.4.2. An outer inverse of A € Qg™ with a predefined row space R(T),
denoted by A® is a matriz X that satisfies the following conditions: XAX = X and

*R(T)’
R(X) =R(T). In addition, if AS«27)€(T) also satisfies AX A=A, then it is referred to as a
{1,2}-inverse of A with the predefined row space R(T'), denoted as Asng).
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Definition 3.4.3. An outer inverse of A € QF*™ with a prescribed column space C(S)

and row space R(T), denoted by A((f()s) R(T)’ 1s a matrix X that satisfies the following
conditions: XAX = X, C(X) =C(S), and R(X) = R(T). In addition, if Aéz(g) R(T) OIS0

satisfies AXA = A, then it is referred to as a {1,2}-inverse of A with the prescribed column
space C(S) and row space R(T'), denoted as A&;i R(TY-

The notations A{2}C(S),m A{LQ}C(S),*; A{2}*,R(T); A{1;2}*,R(T)a A{2}C(S),R(T)7 and
A{1,2}¢(s),r(r) are used for the sets of generalized inverses AP ALY 4@

C(8),x? “7C(8),x) T R(T)’
(1,2) (2) (1,2) .
A*,'R(T)’ AC(S)7R(T)7 and AC(S),R(T)’ I”eSpeCtlvely.

Theorem 3.4.4 offers equivalent conditions for the existence and general representations

of an outer inverse with a specified column space C(.5).

Theorem 3.4.4. Let the RB matrices A € Q@ and S € Q¥ be given. Then

(1) The subsequent claims are equivalent to each other:
(i) There exists X € A{2} satisfying C(X) =C(S);
(11) There exists Y € QF™ such that SY AS = S;
(i1i) AS is regular and R(AS) = R(S);
(iv) AS is reqular and Ras = Xs;
(v) AS is reqular and S = S(AS)MAS for some (AS)M) e AS{1}.
(2) If the statements in (1) hold, then

A{2}e(s), = {SY|Y e QF™, SY AS = S}
={9(A8) V[ (AS)M e (AS){1}}.

Proof.

(1) (i) = (i1). Let X e Qg™ satisfy XAX = X and C(X) = C(S). By Lemma 3.2.4,
there exist matrices Y € Q™ and W e Qg such that X = SY and S = XW.

Therefore, we conclude that

S=XW=XAXW = XAS =SY AS.

(#1) = (i). Let Y € Q& such that SYAS = S. We will show that X = SY is a
{2}-inverse of A and satisfies C(X) = C(S). First, since

XAX = SYASY = SY =X,
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it follows that X € A{2}. Additionally, since X = SY, it implies that
C(X)=C(SY)cC(S).
Moreover, given that S = SY AS = X AS, we have
C(S)=C(XAS)cC(X).
Thus, we conclude that C(X) = C(S5).
(#1) = (44i). Let Y € QF™ such that SY AS = S. This implies that
AS = A(SY AS) = (AS)Y (AS),

which shows that Y € (AS){1}, meaning that AS is regular. By Definition 3.2.2,
we conclude that
R(AS) cR(S5).
Moreover, since SY AS = 5, it follows that
R(S) =R(SYAS) c R(AS).

Thus, we have R(AS) = R(S5).
(i71) = (iv). Let AS be regular and assume that R(AS) = R(S). Clearly, we have
R(S) c R(AS). Now, consider the matrix

— |AS
S =
[S

By applying Lemma 3.2.13, we obtain #,g = #g. Next, observe that
— |AS A
S = =
S I,
] is left invertible, since

[0 1,] [2] -1,

Therefore, using Lemma 3.2.11, we conclude that Zg = Zs. Consequently, we obtain

RHas = Ks.

S.

A
Notably, the matrix [

n

(iv) = (7ii). Assume that AS is regular and Z4s = Zs. Consider the matrix

_ [AS
=

S
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From the previous argument for (i7i) = (iv), we obtain that
K= Rs.

Thus, it follows that
K =K as.

By using Lemma 3.2.13, we have R(S) ¢ R(AS). Additionally, since R(AS) € R(S),
it follows that R(AS) = R(.S), as required.

(i17) = (v). Let AS be regular, and suppose that R(AS) = R(S). Since R(S) ¢
R(AS) is evident from the assumption, we can apply Lemma 3.2.4, which guarantees
the existence of a matrix ¥ € Qg™ such that S =Y AS.

Given that AS is regular, there exists an arbitrary {1}-inverse of AS, denoted
by (AS)(1). Thus, we can express S as follows:

S=Y(AS)=YAS(AS)VAS = S(AS)MV AS.

This establishes the necessary relationship for the result.

(v) = (i). Let S = S(AS)MAS for some (AS)M) € (AS){1}. We aim to show that
X = S(AS)M belongs to A{2} and satisfies C(X) = C(.9). First, observe that

XAX = S(AS)MAS(AS)D = 5(AS)W = X,
This confirms that X € A{2}. Next, since X = S(AS)(® it follows that
C(X)=C(S(AS)W) cc(9).
Moreover, from S = S(AS)MAS = X AS, we have
C(S)=C(XAS)cC(X).

Consequently, we conclude that C(X) =C(S).

(2) From the results in part (1), we derive the following chain of inclusions
A2}y S {SY|Y e Qg™, SY AS = S}
c {S(AS)V[(A5)M e (AS){1}}
< A{2}c(s),-
The proof is complete. =

Corollary 3.4.5 reveals known results derived for complex matrices in [65].
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Corollary 3.4.5. Let Ae C™" and S € C™* be fized. Then A((f(?g)’* exists if and only if
rank(AS) = rank(S). In this case, A{2}c(s),» = {S(AS)D[(AS)D) € (AS){1}}.

Proof. Follows from Theorem 3.4.4, utilizing the fact that in the complex field, AS' is

regular, and the rank function corresponds to the usual rank of a matrix. m

Theorem 3.4.6 provides the existence conditions and representations of outer inverses

with specified row space R(T).
Theorem 3.4.6. Let the RB matrices A € Q@ and T € QX™ be given. Then

(1) The subsequent claims are equivalent to one another:
(i) There exists X € A{2} such that R(X) =R(T);
(17) There exists Z € Q¥ such that TAZT =T
(it7) TA is regular and C(TA) =C(T);
(iv) TA is reqular and Xra = Xr;
(v) TA is reqular and T = TA(TA)YMT for some (TA)M e (TA){1}.
(2) If the statements in (1) are valid, then

ALY umery ={2T|Z e Q! TAZT =T}
={(TA)OT(TA)D e (TA){1}}.

Proof.

(1) (7) = (di). Let X € Q¢*™ be such that XAX = X and R(X) = R(T"). According to
Lemma 3.2.4, there exist matrices Z € Q! and W € Q™ such that X = ZT and
T =W X. Therefore, we have

T=WX=WXAX =TAX =TAZT.

(#1) = (4). Let Z € Q! be such that TAZT = T. We will demonstrate that X = ZT
is a {2}-inverse of A and satisfies R(X) = R(T'). First, since

XAX =ZTAZT =7T =X,
it follows that X € A{2}. Additionally, since X = ZT', it implies that

R(X) =R(ZT) < R(T).
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Moreover, given that T'=TAZT =TAX, we have
R(T) = R(TAX) € R(X).
Thus, we conclude that R(X) = R(T).
(#4) = (44i). Let Z € Q@' such that TAZT =T. We have
TA=TAZTA=(TA)Z(TA),

which implies that Z € (T'A){1}, meaning that T A is regular. According to Definition
3.2.1, we conclude that

C(TA) cC(T).
Moreover, since TAZT =T, we deduce
C(T)=C(TAZT)<cC(TA).
Thus, it follows that C(T'A) =C(T).

(i17) = (iv). Let T A be regular and assume that C(T'A) = C(T'). Clearly, we have
C(T)cC(TA). Define the matrix

T-[ra 7).
By applying Lemma 3.2.12, we conclude that %4 = Z7. Now, observe that
T-|rA 7|-7[A 1]

The matrix [ A ]m] is right invertible since

(A 1] [I?n] =1,

As a result, using Lemma 3.2.11, we obtain %z = %Zr. Thus, we can conclude that
'%TA = '%T'
(iv) = (i1i). Let T'A be regular and assume that %4 = Zr. Define
T-[ra 71].
Referring to the proof of (i7i) = (iv), we obtain that
%f = %T-

Thus, it follows that

%T = %TA-
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By Lemma 3.2.12, we have C(T") < C(T'A). Furthermore, since C(T'A) ¢ C(T'), we
conclude that C(T'A) =C(T).

(i17) = (v). Let T'A be regular and assume that C(T'A) = C(T"). Since it is clear
that C(T") ¢ C(T'A), by Lemma 3.2.4, there exists a matrix ¥ € Q™ such that
T=TAY.

Given that T'A is a regular matrix, there exist an arbitrary {1}-inverse of T'A,

denoted by (T'A)M. Thus, we can express T as follows:
T =(TA)Y =TA(TAYVDTAY =TA(TA)VT.

This establishes the necessary relationship for the result.

(v) = (i). Let T = TA(TA)WT for some (TA)M e (TA){1}. We need to verify
that X = (TA)MWT is an element of A{2} and satisfies R(X) = R(T'). First, observe
that

XAX = (TAYODTATAYDT = (TA)DT = X.
This confirms that X € A{2}. Next, since X = (TA)(DT, it follows that
R(X) =R(TA)VT) c R(T).
Moreover, from T'= TA(TA)M)T = TAX, we have
R(T)=R(TAX) c R(X).

Consequently, we conclude that R(X) = R(T).
(2) From the results in part (1), we derive the following chain of inclusions
ALY r(r) S{ZT|Z e Q¥!, TAZT =T}
c {(TAOTT AW e (TA){1}}

c A{2}*,R(T)-
The proof is complete. m

Corollary 3.4.7. Let A e C™ " and T € C™>*™. In this case, A£27)3(T) ezists if and only if

rank(T'A) = rank(T'). Moreover, A{2}, r(ry = {(TA)MT |(TA)M e (TA){1}}.

Proof. The proof follows from Theorem 3.4.6, using the fact that in the complex field,

T A is regular, and the rank function corresponds to the usual rank of a matrix. m
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Now, Theorem 3.4.8 presents equivalent conditions for the existence and representation

of an outer inverse with a prescribed column space C(.S) and row space R(T).
Theorem 3.4.8. Let the RB matrices A€ Qp", S e Q* and T e Q™ be given. Then

(1) The subsequent statements are equivalent:
(i) There exists X € A{2} satisfying C(X) =C(S) and R(X) =R(T);
(i1) There exists Y € QF such that SYTAS =S and TASYT =T;
(iti) TAS is reqular, C(TAS) =C(T), and R(TAS) =R(S);
(iv) TAS is reqular and Xras = Br = Xs;
(v) TAS is regular, S = S(TAS)MTAS, and T = TAS(TAS)DT for some
(TAS)M e (TAS){1}.
(2) If the statements in (1) are satisfied, then

A(Q)

o rry = {SYT|Y € Q¥ SYTAS = S, and TASYT =T}

={S(TAS)IT[(TAS)D e (TAS){1}}.

Proof.

(1) (i) = (4i). Let X € Qg*™ be such that XAX = X, C(X) =C(S5), and R(X) = R(T).
By Lemma 3.2.4, there exist matrices Y7 € QF™, Y € Q¥ W e Qu** and V' e Qb
such that

X=5Y1=YT, S=XW, and T=VX.
This implies
X = XAX = (SY1)A(YST) = S(Y1AY,)T.

Let Y =Y AY,. Then, Y € QF and X = SYT'. Consequently, we obtain
S=XW=XAXW =XAS=SYTAS

and

T=VX=VXAX =TAX =TASYT.

(17) = (i). Let Y € Q& be such that SYTAS = S and TASYT = T. We aim
to show that X = SYT is an element of A{2}, satisfying both C(X) = C(S) and
R(X) =R(T). First, observe that

XAX =SYTASYT =SYT =X,
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which implies that X € A{2}. Furthermore, since X = SYT, it follows that
C(X)=C(SYT)cC(S) and R(X)=R(SYT)cR(T).

Additionally, from S =SYTAS = XAS and T =TASYT =TAX, we deduce
C(S)=C(XAS)c(C(X) and R(T)=R(TAX)c<R(X).

Consequently, we conclude that C(X) =C(S) and R(X) = R(T).

(#4) = (44i). Let Y € Q& be such that SYTAS =S and TASYT =T. From this, it
follows that
TAS = TA(SYTAS) = (TAS)Y (TAS),

which implies that Y e (TAS){1}, and thus T'AS is regular. By Definitions 3.2.1
and 3.2.2, we conclude that

C(TAS)cC(T) and R(TAS)cR(S).
Furthermore, the conditions SYTAS = S and TASYT =T imply
C(T) =C(TASYT) cC(TAS) and R(S)=R(SYTAS) < R(TAS).
Thus, we conclude that
C(TAS)=C(T) and R(TAS)=R(S).

(i17) = (iv). Let TAS be regular, with C(T'AS) = C(T) and R(TAS) = R(S).
It is clear that C(T") < C(T'AS). Define
T-|TAs T).
By applying Lemma 3.2.12, we conclude that
Rras = K.

Now, expressing T as
T-T[AS 1.,

it follows that the matrix [AS Im] is right invertible since

(A5 1, [I(;] =1,

Thus, by Lemma 3.2.11, we obtain

%f = %T-
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Consequently, we have

Hras = K-
Additionally, since R(S) ¢ R(T'AS), define

— |TAS
S = :
S
By Lemma 3.2.13, it follows that
%TAS = %g.
Expressing S as
— |TA
= S,
I,

|TA
where the matrix

; ] is left invertible because

o 1.] [7;:1] - I,

applying Lemma 3.2.11 gives

Thus, we conclude
Hras = Ks,
and therefore Zrag = %r = %s.
(iv) = (i1i). Let TAS be regular, with Zras = %1 = #s. Define

TAS
S

T=[TAS T] and §=[

From the proof of (i#i) = (iv), we can conclude
K=Ky and Hg=Xs.
Thus, we have
Fr = Kras and Hg=Rras.

By Lemma 3.2.12, it follows that

C(T) < C(TAS),
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and by Lemma 3.2.13, we conclude that
R(S) cR(TAS).
Furthermore, we have
C(TAS)cC(T) and R(TAS)cR(SY).

Consequently, it follows that C(T'AS) =C(T) and R(TAS) = R(S).

(iti) = (v). Let T AS be regular with the additional properties C(T'AS) = C(T)
and R(TAS) =R(S). It is evident that C(T") c C(TAS) and R(S) c R(TAS). By

Lemma 3.2.4, there exist matrices Y € Q™ and W e Q¢! such that
T=TASY and S=WTAS.

Since TAS is a regular matrix, there exists an arbitrary {1}-inverse (T'AS)(") of

TAS. Thus, we can express
T=(TAS)Y =TAS(TAS)VTASY =TAS(TAS)VDT

and

S=W(TAS)=WTAS(TAS)VTAS = S(TAS)VTAS.

(v) = (7). Let S = S(TAS)MTAS and T = TAS(TAS)IT for some (TAS)D) e
(TAS){1}. We aim to show that X = S(TAS)MT belongs to A{2} and satisfies
C(X)=C(5) and R(X) =R(T). Indeed, since

XAX = S(TAS)WTAS(TAS)VT = S(TAS)VT = X,
it follows that X € A{2}. Moreover, X = S(TAS)MT implies that
C(X)=C(S(TAS)MNT)cC(S) and R(X)=R(S(TAS)NT)cR(T).
Additionally, from the relationships
S=8S(TASYMTAS = XAS and T =TAS(TAS)VT =TAX,
we deduce that
C(S)=C(XAS)cC(X) and R(T)=R(TAX)<R(X).

Thus, we conclude that C(X) =C(S) and R(X) = R(T).
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(2) From the proof of part (1), it follows

A{2Yesyrem) € {SYT|Y € QF', SYTAS = Sand TASYT =T}
c {S(TAS)VT|(TAS)Y e (TAS){1}}

€ A{2}c(s)r(r)-
The proof is complete. =

Corollary 3.4.9 reveals known results derived for complex matrices.

Corollary 3.4.9. If Ae C™n, S eCv™, and T € C*™ are given, then A((f(g) R(T) CIStS if

and only if rank(T' AS) = rank(T') = rank(S). If these conditions are satisfied then

(2)
A (8),R(T)

= {S(TAS)IT| (TAS)W e (TAS){1}}.
Proof. The proof follows from Theorem 3.4.8, using the fact that in the complex field,

T AS is regular, and the rank function corresponds to the usual rank of a matrix. m

Next, we outline conditions for the existence and several representations of a {1,2}-

inverse with a predefined column space C(S).
Theorem 3.4.10. Let the RB matrices A € Qg™ and S € QE** be given. Then

(1) The subsequent claims are equivalent one another:
(i) There exists X € A{1,2} satisfying C(X) =C(S);
(17) There exists U € QR™ satisfying SUAS =S and ASUA = A;
(1i2) There exist U,V € Q8™ such that SUAS =S and ASV A = A;
(iv) AS is regular, R(AS) =R(S), and C(AS) =C(A);
(v) AS is reqular and Bas = RBs = Xa;
(vi) AS is regular, S = S(AS)MAS, and A = AS(AS)MA for some (AS)D) €
AS{1}.
(2) If the statements in (1) are satisfied, then

A{1,2}¢(s)« = {SU|U e QF™, SUAS = S, and ASUA = A}

= {S(AS)W | (AS)M € (AS){1}}.

Proof.
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(1) (i) = (it). Let X e Qg™ satisfy X e A{1,2} and C(X) = C(S). According to
Lemma 3.2.4, there exist matrices U € QF™ and W € Qg* such that X = SU and
S = XW. As a result, we obtain the following

A=AXA=ASUA

and

S=XW=XAXW = XAS =SUAS.

(17) = (4). Let U € Q&*™ be such that SUAS = S and ASUA = A. The objective is
to show that X = SU € A{1,2} and that C(X) =C(S). Indeed, since

AXA=ASUA= A,

by applying Theorem 3.4.4, part (iz) = (i), it follows that X € A{1,2} and satisfies
C(X) =C(9).

(i7) = (iii). The result follows directly from part (7i) of the theorem.
(74) = (4i). Let U,V € Q&™ be such that SUAS = S and ASV A = A. We can then

proceed as follows

A=ASVA=A(SUAS)VA=ASU(ASV A) = ASUA.

(#1) = (iv). Let U € QF™ be such that SUAS = S and ASUA = A. By Theorem
3.4.4, from (i7) = (éi1), we know that AS is regular and satisfies R(AS) = R(S).
It is evident that C(AS) c C(A). Moreover, since A = ASUA, we also have

C(A) =C(ASUA) cC(AS).
Hence, we conclude that C(AS) =C(A).

(iv) = (v). Let AS be regular, with R(AS) = R(S) and C(AS) =C(A). It is evident
that C(A) € C(AS). Consider the matrix

S=las 4].
Using Lemma 3.2.12, we obtain Zs5 = #5. Now, we can express S as
S=[as a]=4ls 1.

Notably, the matrix [S In] is right invertible, as

s 1. [[0] - 1,.
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Consequently, applying Lemma 3.2.11, we conclude that #Zg = Z4. Thus, Zas = % a.
According to Theorem 3.4.4 (iii) = (iv), we can assert that Zas = Xs.

Therefore, we have

Has=Hs=XKa.
(v) = (). Let AS be regular with Zsg = Zs = %. Consider the matrix
S=[as 4]

Using the proof of (iv) = (v), we deduce that Zg = #Z4. Thus, we have Zg = X as.
According to Lemma 3.2.12, it follows that C(A) < C(AS). Furthermore, since
C(AS) cC(A), we conclude that C(AS) =C(A).

Finally, by applying Theorem 3.4.4, part (iv) = (iii), we can affirm that
R(AS) =R(9).

(iv) = (vi). Let AS be regular, with R(AS) = R(S) and C(AS) =C(A). It follows
that C(A) ¢ C(AS). By Lemma 3.2.4, there exists a matrix W e Q& such that
A = ASW. Since AS is regular, let (AS)(M) be an arbitrary {1}-inverse of AS.

Consequently, we have
A= (ASYW = AS(AS)DASW = AS(AS)V A.

Applying Theorem 3.4.4, part (iii) = (v), we can conclude that S = S(AS)MAS.

(vi) = (7). Let S = S(AS)WAS and A = AS(AS)M A for some (AS)M) e (AS){1}.
We claim that X = S(AS)(™ is an element of A{1,2} that satisfies C(X) = C(S).

To demonstrate this, we observe that
AXA=AS(ASYVA= A,
By Theorem 3.4.4, part (v) = (i), it is clear that X € A{1,2} and that C(X) =C(S).
(2) From the proof of part (1), it follows
A{1,2}¢(s)x S {SU|U e Q™ SUAS = S, and ASUA = A}
c {S(AS)W | (AS)MV € (A9){1}}
c A{1,2}¢(s),4-
The proof is complete. =

Corollary 3.4.11 reveals known results derived for complex matrices in [65].
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Corollary 3.4.11. Let A € C™™ and S € C"k. Then A((zl(g* exists if and only if
rank(AS) = rank(S) =rank(A). In this case,

A{1,2} ¢y, = {S(AS)D [(AS)D) € (AS){1}}.

Proof. The proof follows from Theorem 3.4.10, using the fact that in the complex field,

AS is regular, and the rank function corresponds to the usual rank of a matrix. m

The following theorem offers equivalent conditions for the existence and representation

of {1,2}-inverse with a specified row space R(T).

Theorem 3.4.12. Let the RB matrices A € QF>™ and T € Q™ be given. Then

(1) The subsequent claims are equivalent:
(i) There exists X € A{1,2} satisfying R(X) =R(T);
(11) There exists U € Qg such that TAUT =T and AUT A = A;
(¢i2) There exist U,V € Q! such that TAUT =T and AVT A= A;
(iv) TA is reqular, C(TA) =C(T), and R(TA) = R(A);
(v) TA is reqular and Bra =Ry = Ka;
(vi) TA is reqular, T = TA(TAYMT, and A = A(TAYMTA for some (TA)M ¢
(TA){1}.
(2) If the statements in (1) are valid, then

A{1,2}, () ={UT|U e Qp, TAUT =T, and AUTA = A}
={(TAHWT(TA)D e (TA){1}}.

Proof. The proof follows by employing Theorem 3.4.6 and follows a similar approach as

outlined in Theorem 3.4.10. m

Corollary 3.4.13. Let A € C™™ and T € C»*™. Then A(*%ET) exists if and only if
rank(T'A) = rank(7T") = rank(A). In this case,

A{1, 2}, rery = {(TAOT | (TA)D e (TA){1}}.

Proof. The proof follows from Theorem 3.4.12, using the fact that in the complex field,

T A is regular, and the rank function corresponds to the usual rank of a matrix. m

In Theorem 3.4.14 we outline equivalent existence conditions for {1,2}-inverse with a

prescribed column space C(.S) and row space R(T).
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Theorem 3.4.14. Let the RB matrices A € Qg>™, S € Qp*, and T € Q™ be given. Then

(1) The subsequent claims are equivalent to one another:

(i) There exists X € A{1,2} satisfying C(X) =C(S) and R(X) =R(T);

(17) There exist U € Q™ and V e Q' such that SUAS = S, ASUA = A,
TAVT =T, and AVTA = A;

(it7) AS and T A are regular, C(AS) =C(A), R(AS) =R(S), C(TA) =C(T), and
R(TA) = R(4);

(iv) AS and T A are reqular, s = Bs = Ra, and Bra = Br = Ra;

(v) AS and TA are regular, S = S(AS)MAS, T = TA(TA)DT, and A =
AS(ASYMA = A(TAYDTA for some (AS)D) e (AS){1} and (TA)D €
(TA){1}.

(2) If the statements in (1) are valid, then
A{172}C(S),R(T) = {SUAVT‘ Ue Qﬁxm’ Ve QﬁXl, SUAS = S,
ASUA=A, TAVT =T, and AVTA = A}
= {S(AS)WA(TA)DT [ (AS)M) € (AS){1} and
(TA)M e (TA){1}}.

Proof.

(1) The proof follows by the application of Theorems 3.4.8, 3.4.10, and 3.4.12.

(2) Let U € Q™ and V e Q% be such that SUAS = S, ASUA = A, TAVT =T,
and AVTA = A. We will verify that X = SUAVT € A{1,2} and that it satisfies
C(X)=C(S) and R(X) =R(T). First, observe the following:

XAX = (SUAVT)A(SUAVT) = SU(AVTA)SUAVT
- (SUAS)UAVT = SUAVT = X,
and
AXA= A(SUAVT)A = ASU(AVTA) = ASUA = A.
Hence, X € A{1,2}. Furthermore, since X = SUAVT, it follows that
C(X)=C(SUAVT)cC(S)

and
R(X)=R(SUAVT) c R(T).
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Additionally, from S = SUAS = SU(AVTA)S = (SUAVT)AS = XAS and
T=TAVT =T(ASUA)VT =TA(SUAVT) =TAX, we deduce that

C(S)=C(XAS)cC(X) and R(T)=R(TAX)cR(X).

Therefore, we conclude that C(X) =C(S) and R(X) = R(T).
Similarly, it can be verified that X = S(AS)MWA(TA)WT e A{1,2}, and that
C(X)=C(S)and R(X)=R(T). m

Corollary 3.4.15. For arbitrary A € C™n, S e Cvk and T € C>*™ the {1,2}-inverse
Aél(’g,R(T) exists if and only if rank(AS) = rank(T'A) = rank(T") = rank(S) = rank(A). In

this case,

A{1, 2} sy rery = {S(AS) W A(TA)YDT | (AS) D € (AS){1} and (TA)D e (TA){1}}.

Proof. The proof follows directly from Theorem 3.4.14, using the fact that in the complex
field, AS and T'A are regular, and the rank function corresponds to the usual rank of a

matrix. m

3.5. Algorithms for Computing RBGIs and Numerical Verification

Building on the discussions from the preceding section, this section presents numerical
algorithms for computing the outer inverse and {1, 2}-inverse of an RB matrix A e QF*",
adhering to specific conditions regarding column and/or row space. Additionally, we
provide examples to validate the efficiency of the proposed algorithms. Implementation
and numerical experiments are carried out on an Intel Core 7 - 9700@3.00GH z/16G B
computer utilizing MATLAB R2021b software.

Building on Theorem 3.4.4, we propose Algorithm 3.5.1 for computing the outer inverse
of A e Qp*™ with a specified column space C(.S). To further evaluate the accuracy and
efficiency of our proposed method, we present an example demonstrating the computation

of the generalized inverse Aéz()s) , for reduced biquaternion matrices.
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Algorithm 3.5.1 Computation of X = Aé%)S),*
Input: A=A; + Ayje Qpm, S =51 + Saje Q.

Output: X = X + Xyp5€ Q™.

Step 1: Consistency Check: Verify the consistency of the RBME SYAS = S for

Y =Y + Y5 e QF™ using Remark 3.3.4. Proceed with the next steps only if the

equation is consistent.
Step 2: Solve: Solve the RBME SY AS = S using Remark 3.3.4.

Step 3: Compute: Determine Aéz()s,) L, =5Y.

Example 3.5.1. Consider A= A; + Ayje Q¥? and S = S + Sy5 € QE2, where

(1+2i 1+34 3+4i 4+5i
Ai=|1+4% 7+62|, Ax=|6+¢ 51 [,
_4+9i 8+612 5 21

Sy =

3440 5+10])  [3+30 244
342i 743 0 [1+2i 4 |
We apply Algorithm 3.5.1 to determine the outer inverse X = X1 + Xoj € Q¥ of RB

matriz A with specified column space C(S). Solving the matriz equation SY AS =S for
Y =Y+ Yage Q%3 gives
Vi - [0.0073+0.01234 0.0194+0.03243  0.0162 - 0.01554

' | 0.0026 +0.0040¢  0.0049 - 0.0064¢ —0.0129 + 0.0025% 7

~ [—0.0085 - 0.01824 —0.0448 + 0.00294  0.0144 — 0.01334 |
| 0.0061-0.0007z  0.0119-0.0138z -0.0064 + 0.01097 .

Then X =SY s given by

. [—0.0545 - 0.0035% —0.0468 + 0.08605  0.0476 — 0.09894 |
! | 0.0117+0.0203i  0.0438 -0.03615  ~0.0029 +0.02397 |’

~ [0.0147 +0.00204  0.0481 + 0.04165  0.0148 - 0.03634
0.0338 - 0.04432  -0.0413 - 0.0963z -0.0120 + 0.0730¢ .

Taking into account X = SY and S = SY AS = XAS, we get C(X) = C(S). Additionally,

|XAX = X[ = 14550 x 101, Thus, X = AT .

Example 3.5.2. Let

A:A1+A2j€ Q%Xn7 stl+52j6 QﬁXk,
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where the complex components are generated as:
Ay = Ay = rand(m,n) + rand(m,n)i e C™",
Sy = Sy = rand(n, k) + rand(n, k)i e C™*.
The matriz dimensions are chosen based on a variable parameter t, such that:
m=t, n=t+b, k=t.
In this example, t varies from 5 to 70 in increments of 5.

Objective: We compute A® giwven by X = SY, where Y is the solution to the RBME:

C(S),*

SYAS =8.

We apply three different methods to compute Y :

(a) Our proposed Algorithm 3.3.1.
(b) The approach based on Theorem 3.1 from [80].
(¢) The approach based on Theorem 3.1 from [75].

Let X1, X5, and X3 denote the computed solutions using these three methods, respectively.

Error and CPU Time FEvaluation: The error metrics are defined as:
€= [ X1AX) - Xi|r, e =|XoAXo-Xo|p, €= X3AX3- Xs]p.

We conduct 50 trials and compute the average CPU time for each method. Let ti, ts, and
t3 be the average CPU time for computing X1, Xo, and X3, respectively.

Results and Discussion:

e Figure 3.5.1(a) illustrates the average CPU times, demonstrating that our method
is computationally more efficient than the other methods.

e Figure 3.5.1(b) presents a comparative analysis of the error values, verifying whether
the computed solutions satisfy the {2}-inverse property. To confirm this, we compute
the error | XAX - X|p, ensuring that all computed solutions meet the required
inverse conditions. The results demonstrate that the errors remain below 10718,

validating the accuracy and correctness of the obtained solutions.

Following the results obtained in Theorem 3.4.6, we now propose Algorithm 3.5.2 for

mxn

calculating the outer inverse of A € Q™ with a specified row space R(T').
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Figure 3.5.1. CPU time and error comparison for computing A((zz(g) , using

different methods.

Algorithm 3.5.2 Computation of X = Af%(T)

Input: A=A; + Ayje Qg T =T + Toje Q™.

Output: X = X, + Xy5€ Qg ™.

Step 1: Consistency Check: Verify the consistency of the RBME TAZT = T for
Z = Zy + Zyj € Qi using Remark 3.3.4. Proceed with the next steps only if the

equation is consistent.

Step 2: Solve: Solve the RBME TAZT =T using Remark 3.3.4.

Step 3: Compute: Determine Af,,)z(T) =ZT.

Example 3.5.3. Consider A= A; + Ayje Q%3 and T =Ty + Tog € Q%2, where

o |7r2i sesio 243 [6+5i 1+3i 2496
" lo+si s+2i 3+3if S+i T+2 2+5i|
[5+73 3+134 5+3i 8+7i
T1: 5 T= .
|5+32 T+97 S+Tt 4+4

We employ Algorithm 3.5.2 to determine the outer inverse X = X; + Xoj € Q¥? of RB

matriz A with specified row space R(T). Solving the matriz equation TAZT =T for
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3x2

Z =7+ Zyge Qge gives
[_0.0155 - 0.00365 —0.0066 — 0.00383]
Z1 =1 0.0061 -0.0149¢ -0.0034 +0.0139%],
| 0.0149 +0.0036i  —0.0058 - 0.01864]
[ 0.0005+0.00264  0.0247 + 0.00617 |
Zo =1 0.0099 - 0.0078; —0.0187 +0.01074] .
| -0.0005 +0.01565  —~0.0093 - 0.00694 ]

Then X = ZT = X1 + Xoj is given by

[ 0.0027 +0.05294
=1-0.0184 - 0.05884
| 0.0282-0.01124

0.0499 - 0.1501¢
0.0804 + 0.07702 |,
0.0011 +0.07842

0.0177 - 0.00832
-0.0596 + 0.01742
| 0.0270 - 0.05872

-0.0226 + 0.10112
-0.0109 - 0.02187 | .
-0.0626 - 0.0566%

XQZ

Taking into account X = ZT and T =TAZT =TAX, we get R(X) =R(T). Additionally,

IXAX = X | = 4.7851 x 1075, Thus, X = A% .

By Theorem 3.4.8, we present Algorithm 3.5.3 for computing the outer inverse of

A e Q™ with a specified column space C(S) and row space R(T).

Algorithm 3.5.3 Computation of X = AZ) -

Input: A= Al + AQjE @ﬁlxn, S=5+ nge Qﬁéxk, T=T + TQjE @]llgm
Output: X = X, + Xy5€ Qp™.

Step 1: Consistency Check: Verify the consistency of the RBME (SYTAS, TASYT) =
(S,T) for Y =Y] + Yoj e Q& using Step 2 of Algorithm 3.3.1. If the equation is
consistent, proceed to the subsequent steps.

Step 2: Solve: Solve the RBME (SYTAS, TASYT) = (S,T) using Steps 3 and 4 of

Algorithm 3.3.1.

(2)

C(S)R(T) = SYT.

Step 3: Compute: Determine A
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Example 3.5.4. Consider A= Ay +Asje Q¥3, S =51+55€ QY% and T =T, +Trje Q¥2,

where

A1:'3+2i 6+ 54 4+7i]’ A2:[1+5z‘ 2+ 9 4+27:]7
| 1+2 6+91 3+817 1+11z 5+ 52 7
(4430 5i ] (4420 2% ]

S1=13+2¢ 4+7i|, Sy=| 2 41 |,
| 2 5+ 44 [3+42 5+91]
[ 2 5i | (3+443 4+ 3]

Ty=|1+7 2+5¢|, 1Ts= 3 31
|3 +21 2+ 31] |2+ 82 9+ 4]

We apply Algorithm 3.5.3 to compute the outer inverse X = X; + Xoj € Q¥? of the RB
matriz A with the specified column space C(S) and row space R(T'). Solving the matriz
system (SYTAS, TASYT) = (S,T) forY =Y +Yaje Q%3 yields

" [ 0.0617-0.0152¢  0.0504 + 0.0463 —0.0247 + 0.04874]
! | -0.0315 +0.01254  ~0.0300 - 0.02075  0.0095 — 0.02664 |
v [_0.0613+0.01755 —0.0512 - 0.04235  0.0253 — 0.05214 |
? | 0.0306-0.0136i  0.0202 +0.01845  ~0.0090 + 0.02854 |

By computing X = SYT, we obtain
[ 0.0110 + 0.0880i —0.0075 — 0.08704

X1 =] 0.0724+0.0735¢ —0.0635 — 0.0336%
[ -0.1262 - 0.02192  0.0797 - 0.0543% |

[ 0.1023 +0.0452i  —0.0777 - 0.05134]
Xo=1-0.0243 - 0.14477 0.0325 +0.07891
| 0.0429 - 0.06312  0.0101 +0.1059% |
Taking into account that X = SYT, S =SYTAS = XAS, and T =TASYT =TAX, we
conclude that C(X) = C(S) and R(X) = R(T). Additionally, | XAX - X | p =1.9577x 10713,

confirming that X = A((f(?g) R(T)"

By Theorem 3.4.10, we introduce Algorithm 3.5.4 for computing A&;; .- Furthermore,

Algorithm 3.5.5, which is based on the results of Theorem 3.4.12, is designed to compute

the {1,2}-inverse of A with a specified row space R(T’). Finally, by Theorem 3.4.14, we

(1,2)
C(9),R(T)"
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Algorithm 3.5.4 Computation of X = Aél(’sz))’*

Input: A=A; + Ayje Qpm, S =51 + Saje Q.

Output: X = X, + Xy5€ Q™.

Step 1: Consistency Check: Verify the consistency of the RBME (SUAS, ASUA) =

(S, A) for U = Uy + Usyj e QF™ using Step 2 of Algorithm 3.3.1. If the equation is

consistent, proceed with the subsequent steps.
Step 2: Solve: Solve the RBME (SUAS, ASUA) = (S,A) using Steps 3 and 4 of
Algorithm 3.3.1.

Step 3: Compute: Calculate A((f(?g) . =5U.

Algorithm 3.5.5 Computation of X = A%

Input: A=A, + Ayje Qg T =T, + Trje QL.

Output: X = X, + Xy5€ Qp™.

Step 1: Consistency Check: Verify the consistency of the RBME (TAUT, AUT A) =

(T, A) for U = U, + Uyge Q@' using Step 2 of Algorithm 3.3.1. If the equation is

consistent, proceed with the subsequent steps.
Step 2: Solve: Solve the RBME (TAUT,AUTA) = (T,A) using Steps 3 and 4 of
Algorithm 3.3.1.

Step 3: Compute: Calculate Af,,)z(T) =UT.

Algorithm 3.5.6 Computation of X = Aél(lsz))R(T)

Input: A=A; + Ayje Qp™, S =5+ Sj e Qpk, T =Ty + Toje Q™.

Output: X = X, + Xy5€ Qp™.

Step 1: Consistency Check: Verify the consistency of the RBMEs (SUAS, ASUA) =
(S, A) for U = Uy + Upj e Q™ and (TAVT, AVTA) = (T, A) for V = Vi + Vaje

nxl

< using Step 2 of Algorithm 3.3.1. If both equations are consistent, proceed

with the next steps.
Step 2: Solve: Solve the RBMEs (SUAS, ASUA) = (S, A) and (TAVT, AVTA) = (T, A)
using Steps 3 and 4 of Algorithm 3.3.1.

Step 3: Compute: Calculate A((jl(;g R(T) = SUAVT.
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Example 3.5.5. Consider A=Ay +Asje Q¥?, S =51+55€ Q%% and T =T, +Trje Q%3,

where

(9435 24 9 1+44

Ar=13+45 3 |, Ay=|4+3: Ti |,
7 1+52 5+2¢ 3+ 32

[1+4 1 1+2i 2+3i
Slz ’ 52: )

| i 2+3i 34 3

(1435 3 2+2i 1+55 2478 9
le 5 T2: .

| 1+4 3+4i 44 3+3i i 5+3i

Using Algorithm 3.5.6, we compute the {1,2}-inverse X = X + Xoj € Q¥? of the RB
matriz A, with specified column space C(S) and row space R(T). Solving the RBMEs
(SUAS,ASUA) = (S,A) for U = Uy + Usj € Q¥3, and (TAVT,AVTA) = (T,A) for
V =V +Vaje Q2 we obtain

U, |0:0275+0.04330 ~0.0738 - 0.0132i -0.0059 +0.03014
" [0.0401-0.01165  0.0012+0.02845 —0.0244 - 001443’
;. _ [F0-0600+0.0182i 0.0137-0.0489 0.0693 +0.0163i
*|-0.0030-0.0130i 0.0098 +0.02026 0.0075 - 0.03607
and
L _[00074+0.0017¢ 0.0134-0.05194
| -0.0277-0.02096 0.0458 +0.00593
v [ 0:0179.+0.04608  -0.0395 +0.0018i
" -0.0195-0.0112i 0.0131+0.0103i |

Thus, X = SUAV'T is determined as

. [-0.2830 - 0.0362¢ —0.0622 + 0.08104 0.1481 + 0.34664
"] 0.1198-0.0907i  0.0598-0.00756  0.1784 + 0.07623’
o _[0:0187-0.08867 ~0.0466 -0.0493i 0.0928 - 0.2341i
" 0.2134-0.05034  0.0245-0.1400i  ~0.0955 - 0.03007]

Using X = SUAVT, along with S = SUAS = SU(AVTA)S = (SUAVT)AS = XAS and
T=TAVT =T(ASUA)VT =TA(SUAVT) =TAX, we confirm that C(X) = C(S) and
R(X) = R(T). Additionally, we find |AXA - A|p ="7.2786 x 1071 and | XAX - X|r =
2.4072 x 10715, Therefore, X = A((jl(’;;’R(T).
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In the previous examples, we demonstrated the effectiveness of Algorithm 3.5.6 in

computing A((?l(’;;,R(T)‘ Now, we will focus on comparing the efficiency of different methods
for computing X = Aél(g R(T)"

Example 3.5.6. Let
A:A1+A2j€ Q%Xn, stl-i'SQjG @ﬁéxk, T:T1+T2j6 @%m)
where the complex components are generated as:
Ay = Ay = rand(m,n) + rand(m,n)ie C"™",
Sy = Sy = rand(n, k) + rand(n, k)ie C™*,
Ty =Ty = rand(l,m) + rand(l,m)ie C™*™.
The matriz dimensions depend on a positive integer t as follows:

m=t, n=t+b, k=t, [=t+10.

In this example, t varies from 2 to 50 in increments of 2.

Objective: We compute Aél(g R(T) giwen by X = SUAV'T, where U and V' are solutions
to the RBMFEs:

(SUAS,ASUA) =(S,A), (TAVT ,AVTA)=(T,A).
We apply three different methods to compute U and V :

(a) Our proposed Algorithm 3.3.1.
(b) The approach based on Theorem 3.1 from [80].
(¢) The approach based on Theorem 3.1 from [75].

Let X1, Xs, and X3 be the computed Aél(;i R(T) using our method, the approach based on

[80], and the approach based on [75], respectively.

Error and CPU Time Evaluation: To assess accuracy, we define the following error

metrics:
€1 = |[AX1A-Alp, e =|AXoA-Alp, & =|AX3A-A|r,
6%: HXlAXl_X1”F7 6% = HX2AX2_X2”F7 ng “XgAXg—Xg”F

100



To ensure reliable results, we run each experiment for 50 trials and compute the average
CPU time for each method. Let t1, ty, and t3 be the average CPU time for computing X,
Xy, and X3, respectively.

800

——1

[e2]
o
o

CPU time (seconds)
) I
o o
o o

Figure 3.5.2. Comparison of CPU time for computing Aél(g R(T) using different

methods.
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(a) Error comparison for {1}-inverse. (b) Error comparison for {2}-inverse.

Figure 3.5.3. Error comparison for computing Aél(g R(T) using different methods.

Results and Discussion:

e Figure 3.5.2 illustrates the average CPU times for different methods. The results
show that our method outperforms the other methods in terms of computational
efficiency.

e Figure 3.5.3 presents a comparative analysis of the error values obtained using the

three different methods. Specifically, we assess whether the computed solutions X
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satisfy the conditions for being a {1,2}-inverse of A. To verify this, we compute
the errors |XAX — X |z for the {2}-inverse property and |AX A — Al for the
{1}-inverse property. The results indicate that in all cases, the errors remain below

1018 confirming the high accuracy and reliability of the proposed methods.

Conclusion: In this chapter, we have examined existence condition and representation
of outer inverses and {1,2}-inverses with predefined column and/or row space of RB
matrices (RBGI). Some new relationships between computation of RBGIs and solution of
RBMEs are established. The research in this chapter generalizes results obtained in [65].
We presented the transformation of necessary RBMEs into equivalent complex systems of
linear equations. Some specificities of the basic terms, such as rank function, column, and
row space of RB matrices, are also studied. Known results and algorithms about complex

matrices are derived as particular cases.

One of promising possibility for future research is solving the corresponding RBMEs
in the time-varying case, as well as calculating RBGIs using development of corresponding

continuous-time recurrent neural networks, such as zeroing neural networks.
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CHAPTER 4

ON SOLUTIONS OF REDUCED BIQUATERNION
EQUALITY CONSTRAINED LEAST SQUARES PROBLEM

This chapter addresses the problem of solving the reduced biquaternion equality
constrained least squares (RBLSE) problem. The main results focus on developing algebraic
methods to derive both complex and real solutions for the RBLSE problem by exploiting
the complex and real forms of reduced biquaternion matrices. In addition, a detailed
perturbation analysis is conducted to evaluate the sensitivity of these solutions, and an
upper bound for the relative forward error is established. Numerical examples are provided
to demonstrate the effectiveness of the proposed methods and validate the accuracy of the

derived upper bound for the relative forward errors.

4.1. Introduction

In many practical applications, determining the solution to a linear system, typically
expressed as AX »~ B, is a common challenge. The least squares method is a well-established
approach to address this problem. An extension of the least squares problem is the equality
constrained least squares problem, which has been studied extensively in real and complex
domains. Several valuable results for the real (or complex) equality constrained least

squares problem have been obtained in the literature [2, 16, 17, 22, 44].

To represent multi-dimensional data in a compact form, quaternions and reduced
biquaternions are frequently utilized, particularly in applications related to digital signal
and image processing. When studying the theoretical and numerical aspects of these
applications, one often encounters equality constrained least squares problems in the

quaternion and reduced biquaternion domains.

The quaternion equality constrained least squares (QLSE) problem has garnered
significant attention. For example, in [36], the authors solve the QLSE problem using the

complex representation and generalized SVD of quaternion matrices. In [38], employing



the complex representation of quaternion matrices, the relationship between the solutions
of the QLSE problem and the complex equality constrained least squares (CLSE) problem
is established, leading to a novel technique for finding solutions to the QLSE problem. Li
et al. [42] proposed a real structure-preserving algorithm for solving the QLSE problem
by transforming it into the corresponding quaternion weighted least squares problem.
The work in [91] provides another approach, where the authors solve the QLSE problem
using quaternion SVD and the real representation of quaternion matrices. In [87], a
real structure-preserving algorithm for the minimal norm solution of the QLSE problem
is proposed by leveraging quaternion QR decomposition and the real representation of

quaternion matrices.

Despite extensive research on the equality constrained least squares problem in real,
complex, and quaternion domains, the study of these problems in the reduced biquaternion
domain remains sparse. Previous research, such as the work in [81], explored least squares
solutions for matrix equations like AX = B and AXC = B over commutative quaternions.
In [83], the authors discussed solution techniques for computing reduced biquaternion

solutions to the RBLSE problem.

This chapter aims to advance the study of the RBLSE problem by developing methods
for obtaining both complex and real solutions. Additionally, an upper bound for the
relative forward error associated with these solutions is established, ensuring accuracy and

reliability in solving RBLSE problems.

The remainder of this chapter is organized as follows: Section 4.2 introduces the
preliminary concepts required for understanding the RBLSE problem. Section 4.3 outlines
the method for finding the complex solution to the RBLSE problem. In Section 4.4, we
discuss the technique for obtaining real solutions to the RBLSE problem. Finally, Section

4.5 presents the numerical validation of the proposed methods.

4.2. Preliminaries

To ensure this chapter is self-contained, we present key results relevant to the subsequent
sections. In particular, we define the real and complex representations of an RB matrix

M, denoted as M and M, respectively. Let M be an RB matrix expressed as:

M = M() + Ml’i-i- M2j+ Mgk: N1 + NQjE ngn7
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where My, My, My, Ms are real matrices, and N, = My + My, No = My + M3t are complex

matrices.

The real and complex representations of M are defined as:

My -My M, —M;]
My M, Ms M. N1 N
ME=|TTH TSR oo | TR (4.2.1)
M2 —M3 MO —M1 N2 Nl
(M3 My My My |
Let ME denote the first block column of the matrix M#, which is defined as:
" T
ME=[M7 M MP M (4.2.2)
Using MZE the matrix M* can be represented as:
M"=[ME Q. ME R, ME, S, MF], (4.2.3)
where the matrices Q,,,, R,,, and S,, are given by:
(0 -, 0 ] (0 0 I, 0]
I, 0 0 0 0O 0 0 I,
Qm = ) R, = )
0 0 0 -I, I, 0 0 O
0 0 I, 0] 0 I, 0 0]
] ] (4.2.4)
0 0 0 -I,
0 I, O
and S, =
-1, O
h[m O -

The following lemma relates the Frobenius norm of a matrix M to its real representation.

Lemma 4.2.1. Let M € QF>™, and let ME and ME be defined as in (4.2.2) and (4.2.3),
respectively. Then, the Frobenius norm of M can be expressed as:

1

Ml. ==
M=

R| _|l\R
|3 = 2]
Proof. The proof directly follows from the definition of the Frobenius norm for a reduced

biquaternion matrix and a real matrix. =

The following result shows the relationship between the Frobenius norm of a real

matrix and that of a block real matrix, where each block has entries of equal norm.
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Lemma 4.2.2. Let P e R™", Q e Rm4 R e R™P, and S € R™4. If |P|r = |Q|F =
|R|F = |S|F, then we have
1
|27 =5 1[P.Q, R, 5]l
Proof. The proof directly follows from the definition of the Frobenius norm for a real

matrix. m

Next, consider the complex representation. Let M¢ represent the first block column of

the matrix M¢, which is defined as:
T
M¢ =[Nt NE| (4.2.5)
Using M€, the matrix M¢ can be represented as:
M€ =[ME, P, ME], (4.2.6)
where the matrix P, is defined as:
0 I,
P, = . (4.2.7)
I, O

The following lemma relates the Frobenius norm of a matrix M to its complex

representation.

Lemma 4.2.3. Let M € Q" and let ME and M be defined as in (4.2.5) and (4.2.6),

respectively. Then, the Frobenius norm of M can be expressed as:

[Mllp = 2= M = M7

5|
V2
Proof. The proof directly follows from the definition of the Frobenius norm for a reduced

biquaternion matrix and a complex matrix. =

We also provide the following result, which illustrates how the Frobenius norm of a

complex matrix is related to a block complex matrix whose each entry has equal norm.

Lemma 4.2.4. Let P e C™" and Q €e C™4. If |P|r = ||Q| F, then we have
1
Pl.=—|[[P.Q]]..
171 = <= 1P.QUl

Proof. The proof directly follows from the definition of the Frobenius norm for a complex

matrix. m

Finally, we present results for both the real and complex representations of RB matrices.
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Lemma 4.2.5. ForaeR, feC, P,Q € Qg"", and R € Q¢**, the following properties hold:

(1) P=Q < PC=QC < PR=QF,

(2) (P+Q)"=PR+QF, (P+Q)" = PC+QC.
(3) (aP)"=aP®, (3P)° = BPC.

(4) (PR)" = PRRE_ (PR)“ = PCRC.

4.3. Algebraic Method for Complex Solution of RBLSE Problem

This section focuses on an algebraic approach to derive the complex solution for the
RBLSE problem. The method is based on analyzing the solution of the associated complex
LSE problem. Suppose

A= DM +Myje Q" B=N;,+Nyje Q< (4.3.1)
C=Ry+Ryje QY™ D=5 +SyjeQl (4.3.2)

We will limit our discussion to the scenario where m > n + d, and both matrices C' and C¢

have full row rank. With these assumptions, the RBLSE problem can be stated as follows:

min |AX - B|, subject to CX =D. (4.3.3)
XeCnx

To establish the connection between the RBLSE problem and its complex counterpart,

consider the following complex LSE problem:

min
Xe(cnxd

AYX -~ BCCHF subject to CYX = DC. (4.3.4)

To find the complex solution of the RBLSE problem, we begin by computing the QR

factorization of (C$)H, which is given by:

R

()" = @[0 , (4.3.5)

where () € C™" is a unitary matrix and R € C?*?P is a nonsingular upper triangular matrix.

Next, partition ACQ as:
ACC’@ = [P;? ﬁQ] ’ (436)

where P; € C2<2% and P, e C2mx(»-2p) With these notations in place, we now present the

main result of this section.
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Theorem 4.3.1. Consider the RBLSE problem defined in (4.3.3) and the complex LSE
problem in (4.3.4), with notations specified in (4.3.5) and (4.3.6). For a matriz X € Cd,
X is a complex solution of the RBLSE problem (4.3.3) if and only if X solves the complex
LSE problem (4.3.4). In this scenario, the unique solution X with minimum norm can be

expressed as:

X=Q (EH)_I De (4.3.7)
P (Be- PR DS -
Proof. If X € C"*¢ is a solution of the complex LSE problem (4.3.4), then
|ASX - BY|| . =min, CYX =DE. (4.3.8)

The Frobenius norm of a complex matrix remains invariant under unitary transformations.

Since the matrix P, in (4.2.7) is unitary, it follows that:
|A€X = B = [P (AEX - BY)|
Using equations (4.2.1), (4.2.6), along with Lemmas 4.2.3, 4.2.4 and 4.2.5, we obtain

ACX - BY|, AYX - BY), P, (ASX - BY
F

f I
_ E I[ACX, P, ACX] - [BE, PuBC]|

1 X

0 X

F
: % |4°xe 5],
- Zslax-py),
= |AX - Bl p.
From (4.3.8), we obtain
|ASX - BY|,. = |AX - B|;» = min, (4.3.9)

and

(¢, p,CE] X

c

f(] - [0,
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Using (4.2.6), we know that C¢ = [C¢, P,C¢] and D¢ = [D¢, P,DY]. Applying this, we
get

CCXC — DC,
(CX)“=DC,
CX =D. (4.3.10)

By combining (4.3.9) and (4.3.10), we conclude that X € C** is a complex solution to the
RBLSE problem (4.3.3), and vice versa.

To find the expression for X, we solve the complex LSE problem (4.3.4). Set

o Y
-]

where Y € C2%d and Z € C("-2)xd_ Equation 4.3.4 can be rewritten as
m)}n "AEQQHX - BCCHF subject to  CYQQ"X = DC. (4.3.11)
Utilizing (4.3.5), we have

C°QQ"X = D¢ — [EH o] Y = DY

Since RH is a nonsingular matrix, we get Y = (ﬁH)_1 D¢ Using (4.3.6), equation (4.3.11)

takes the form
min | R,Z - (BE - AY)| .

The minimum norm solution of the above least squares problem is Z = 1’52T (BCC - ]31Y).

Thus, we can derive the desired expression for X. m

Next, we aim to examine how perturbations in A, B, C', and D affect the complex
solution X¢y, of the RBLSE problem (4.3.3). Let

—_ —_

A:A+AA7 B:B+AB7
_ _ (4.3.12)
C=C+AC, D=D+AD,

where AA, AB, AC, and AD represent the perturbations of the input data A, B, C,

and D, respectively. We assume that the perturbations AA, AB, AC, and AD are small
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enough to guarantee that the perturbed matrices C' and ég retain full row rank. These

perturbations are measured normwise by the smallest e for which

|[AA[p <eAlp, [AB[p<elBlg,

(4.3.13)
|AC|r<elClp, |AD|p<e|D|g.
Let Xcp, be the complex solution to the perturbed RBLSE problem
min [AX —EH subject to CX =D, (4.3.14)
XeCnxd F

and let AXCL = XC’L - XCL-

Theorem 4.3.2. Consider the RBLSE problem defined in (4.3.3) and the perturbed RBLSE
problem described in (4.3.14). If the perturbations AA, AB, AC, and AD are sufficiently
small, as described in (4.3.13), then we have

AKX, D¢ B¢
| CL|FS€(,C3( 10l +1)+,Cg( 152l +1)
[Xorlr CE T [ Xzl [A91x [Xerlr

. (4.3.15)
1C€ ] | Bel

ICCQ( ACr, 1) ) O(€?) = Ugy,
B\ acy, 145 2el 1) gy e, ) £ O = Ve

where

g =471 (ac p)']

t f
o KS=1CE Ly, L= (1.~ (A9R) AT) (€)'
P,=1,-(C%)'c¢ R,=BS-AXc,.
Proof. The perturbed complex LSE problem corresponding to the perturbed RBLSE
problem (4.3.14) is given by:

min
Xe(C"Xd

(A); X-(B),| . subject to (), X = (D). . (4.3.16)

Using Theorem 4.3.1, we know that X is the solution to the perturbed complex LSE
problem (4.3.16). From (4.3.12) and utilizing Lemma 4.2.5, we have
(A); =47+ (AA), (B) =B+ (AB),
(O); =€ +(A0), (D), =D+ (AD) .
Thus, the perturbed complex LSE problem (4.3.16) can be rewritten as:
min (ACC + (AA)CC) X - (BCC + (AB)CC)HF subject to
Xetr (4.3.17)
(€S +(A0)) X = (D + (AD)).
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Using (4.3.13) and Lemma 4.2.3, we can establish the following bounds for the perturbation:

c c
[(ad): < el Al [aB): | <e| B,
. o . o (4.3.18)
[acy: | <elcely, Iap) |, <e|Dd],-
With the perturbed problem (4.3.17) and the bounds in (4.3.18), and using Theorem 4.3.1,
the sensitivity analysis of the complex solution to the RBLSE problem (4.3.3) reduces to
evaluating the sensitivity of the solution to the complex LSE problem (4.3.4). Consequently,
the upper bound Ugy, for the relative forward error of the complex solution to the RBLSE
problem can be obtained from [14, Equation 4.11]. m

4.4. Algebraic Method for Real Solution of RBLSE Problem

This section focuses on an algebraic approach to derive the real solution for the RBLSE
problem. The method is based on analyzing the solution of the associated real LSE problem.

Suppose
A=Ag+Avi+ Agj+ Aske Q™ B=DBy+ Byi+ Byj+ Bske Qp?  (4.4.1)
C'=Cy+Cri+Coj+Cske Q" D=Dy+ Dyi+ Dyj+ Dyke QU (4.4.2)

We will limit our discussion to the scenario where m > n +d, and both matrices C' and CF

have full row rank. With these assumptions, the RBLSE problem can be stated as follows:

min |AX - B, subject to CX =D. (4.4.3)

XecRnxd

To establish the connection between the RBLSE problem and its real counterpart, consider

the following real LSE problem:

min

AEX - BE|,  subject to  CEX = DF. (4.4.4)
XeRnx

To find the real solution of the RBLSE problem, we first compute the QR factorization of
(CE)T | given by:
R
] ) (4.4.5)

cRY' -0
(cH) |,

where () € R™" is an orthonormal matrix and R € R%>4 is a nonsingular upper triangular

matrix. Next, partition ARQ as:

A?@ = [?17?2] ) (446)
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where P; € Rém<4pr and P, € R4mx(n-4p) With these notations, we now present the main

result of this section.

Theorem 4.4.1. Consider the RBLSE problem defined in (4.4.3) and the real LSE problem
in (4.4.4), with notations specified in (4.4.5) and (4.4.6). For a matriz X e R4 X is a
real solution of the RBLSE problem (4.4.3) if and only if X solves the real LSE problem

(4.4.4). In this scenario, the unique solution with minimum norm X can be expressed as:

-1
12} (RT) Df ( )
X=Q|_ -1 . 4.4.7
P, (Bf -7, (R') Dgf)
Proof. If X € R™ is a solution of the real LSE problem (4.4.4), then
|AFX - BE|,. =min, CFX=DF. (4.4.8)

The Frobenius norm of a real matrix remains invariant under orthogonal transformations.

Since the matrices Q,,, R, and S,, in (4.2.4) are orthogonal, it follows that:
[AEX = B = [ Qm (AZX = BE) | = [Bon (AZX = BE)| . = |S (ATX = BE)| .
Using equations (4.2.1), (4.2.3), along with Lemmas 4.2.1, 4.2.2 and 4.2.5, we obtain
1
[AEX = B, = S [[(AZX = BE), Qu (AZX = BE), Ron (AZX = BY) , Sy (AZX = BY)]|

= S I[ARX, QuARX, R ARX, 5, AFX] -

—

BE,Q.BE, R,.BE,S,.BF]| .

X 0 0 0]
:% [AE, Q. AE R, AL, S, AT 8 )o( )O( 8 (4.4.9)
(0 0 0 X
- [BF, QmBE, R BE, S, BF]|
- 5 lamxe -],
=S leax-m)7,
= |AX - B|.
From (4.4.8), we obtain
|ARX - Bf| . = |AX - B|;» = min, (4.4.10)
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and

[Ccl%anCcI%aRpCfL?SpCcR] = [DfanvaRpr7SpD5]'

Using (4.2.3), we get CF = [CE,Q,CE R,CE S,CE], and DE = [DE,Q,DE, R,DE, S,DE].
Applying this, we obtain

CRXR — DR
(CX)F = DF,
CX =D. (4.4.11)

By combining (4.4.10) and (4.4.11), we conclude that X € R™*? is a real solution to the
RBLSE problem (4.4.3), and vice versa. The expression for X can be obtained by following
the proof method of Theorem 4.3.1. m

Next, we aim to examine how perturbations in A, B, C', and D affect the real solution
Xgy, of the RBLSE problem (4.4.3). Let

—_ —

A=A+AA, B=B+AB,

R R (4.4.12)

C:C—}-AO, _D:_D‘f‘AD7
where AA, AB, AC, and AD represent the perturbations of the input data A, B, C,
and D, respectively. We assume that the perturbations AA, AB, AC, and AD are small
enough to ensure that the perturbed matrices C and af retain full row rank. These

perturbations are measured normwise by the smallest e for which

|[AA[p <e|Alp, [AB|p<elBlg,

(4.4.13)
|AC]z<e|Clr, [AD]z<e|D].
Let X rr be the real solution to the perturbed RBLSE problem
min || AX - EH subject to CX =D, (4.4.14)
XeRnxd F

and let AXRL = XRL _XRL-

Theorem 4.4.2. Consider the RBLSE problem defined in (4.4.3) and the perturbed RBLSE

problem described in (4.4.14). If the perturbations AA, AB, AC, and AD are sufficiently
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small, as described in (4.4.13), then we have

AX DE BE
| RLHFSE(,C}A%( 107 +1)+,Cg( LA +1)
Xl Gl [Xnils [P Xl

h (4.4.15)
|CE | B |

ICRQ( ARL, 1) ) O(€?) = Upp,
(B \amy, 147+ 1) Tam) e, )+ O = Ve

where

K =42, (arp.)]

K& = |CE| 1Ll Lo = (1 - (ARP) AR) (CF),

27

P.=I,-(CRY CE R, =BE-AfXp,.

Proof. The perturbed real LSE problem corresponding to the perturbed RBLSE problem
(4.4.14) is given by:

min
XeRnxd

(D)X= (B)] . subject to (C).'X =(D),". (4.4.16)

Using Theorem 4.4.1, we know that X, is the solution to the perturbed real LSE problem
(4.4.16). From (4.4.12) and utilizing Lemma 4.2.5, we have

(A), = AZ+ (AN, (B),=BE+(AB)!,
(), =cr+a0)!, (D)= DE+(AD)]
Thus, the perturbed real LSE problem (4.4.16) can be rewritten as:
min ||(AF + (AA)?) X - (BE+ (AB)f)HF subject to

el (4.4.17)
(CE+(AC)T) X = (DE+(AD)F).

Using (4.4.13) and Lemma 4.2.1, we can establish the following bounds for the perturbation:

R R
A, < el OB, <8, ",
R R o
[AO) < ellCelzs [(AD)], <€ D] -
With the perturbed problem (4.4.17) and the bounds in (4.4.18), and using Theorem
4.4.1, the sensitivity analysis of the real solution to the RBLSE problem (4.4.3) reduces to
evaluating the sensitivity of the solution to the real LSE problem (4.4.4). Consequently,
the upper bound Ugy, for the relative forward error of the real solution to the RBLSE

problem can be obtained from [14, Equation 4.11]. m
114



4.5. Numerical Verification

Building on the previous discussions, this section presents numerical algorithms
designed to find special solutions to the RBLSE problem. We also include numerical
examples to validate these algorithms. Additionally, we assess the upper bound for the

relative forward error of both complex and real solutions to the RBLSE problem.

All computations were performed using a computer equipped with an Intel Core
17 — 9700 processor at 3.00 GHz and 16 GB of RAM, running MATLAB R2021b software.

Building on Theorem 4.3.1, we now outline Algorithm 4.5.1, which is designed to
compute the complex solution to the RBLSE problem (4.3.3).

Algorithm 4.5.1 Complex Solution to the RBLSE Problem (4.3.3)
Input: A= Ml + MQjE ngn7 B = N1 + N2j€ Q%Xd, C= Rl + RQjE @f{n,

D=5 +5j¢ Qf{d. Assume m > n + d and that both matrices C' and C¢ have full row

rank.

Output: X (the complex solution to the RBLSE problem).

Step 1: QR Factorization: Find the QR factorization of (C¢)™ as described in (4.3.5).

Step 2: Matrix Partitioning: Partition the matrix AQ as shown in (4.3.6).

Step 3: Solution Computation: Compute the complex solution X to the RBLSE
problem (4.3.3) using the formula given in (4.3.7).

Building on Theorem 4.4.1, we now outline Algorithm 4.5.2, which is designed to
compute the real solution to the RBLSE problem (4.4.3).

Algorithm 4.5.2 Real Solution to the RBLSE Problem (4.4.3)

Input: A= Ag+ Ari+ Asj+ Aske Qp", B = By + Byi+ Byj+ Bsk e Qp*,
C'=Co+Chi+ Coj+Cske QU™ D = Do+ Dyi+ Dyj+ Dsk e Q2% Assume m >n +d and
that both matrices C' and Cf have full row rank.

Output: X (the real solution to the RBLSE problem).

Step 1: QR Factorization: Find the QR factorization of (CR)" as described in (4.4.5).
Step 2: Matrix Partitioning: Partition the matrix AZQ as shown in (4.4.6).

Step 3: Solution Computation: Compute the real solution X to the RBLSE problem
(4.4.3) using the formula given in (4.4.7).
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Next, to thoroughly assess the performance of the proposed algorithms, we present a
comprehensive step-by-step flop count analysis. This detailed examination systematically
quantifies the computational cost at each stage, offering valuable insights into the overall
efficiency of the algorithm. By explicitly evaluating the number of floating-point operations
required, we provide a deeper understanding of the computational complexity involved.
In particular, we conduct an in-depth analysis of the efficiency of the complex solution
algorithm. A meticulous step-by-step flop count is outlined, highlighting the additional

computations necessitated by the complex structure.

Step Description Flop Count
1 QR decomposition of (C¢)" O(32np?)
2 Compute ASQ O(16mn? — 4mn)
3 Partition ACQ into P, and P, o(1)
4 Compute P} O(48m(n - 2p)? +40(n - 2p)3)
5 Solve (R#)™ D¢ O(16p2d + 10pd)
6 Compute P (EH)_l D¢ O(32mpd — 4md)
7 Compute BS - P, (.}~%H)71 D¢ O(4md)
8 Compute P} (B¢ - P, (EHY1 DY) O(16m(n—2p)d)
9 Compute X O(8n?d)
Total Flop Count O(32np2 +16mn? — 4mn + 48m(n -

2p)2 +40(n - 2p)? + 16p3d + 10pd +
32mpd —4md +4md+16m(n—-2p)d+
8n2d)

Table 4.5.1. Flop count for the computational steps to find the complex solution
of the RBLSE problem.

To analyze the efficiency of the real solution algorithm, a detailed step-by-step flop

count is provided below.
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Step Description Flop Count
1 QR decomposition of (CF)” O(32np?)
2 Compute ARQ O(8mn? — 4mn)
3 Partition ARQ into P; and P, o(1)
4 Compute F; O(24m(n —4p)? +10(n - 4p)3)
-1
5 Solve (R')  DE O(16p2d)
— y—7\"1
6 Compute P (R ) DE O(32mpd — 4md)
— y/—7\"1
7 Compute Bff - P, (R ) DE O(4md)
—1 — y/—7\"1
8 Compute Py(BE - P (R ) DE) O(8m(n—4p)d)
9 Compute X O(2n%d)

Total Flop Count O(32n}92 + 8mn? — 4mn + 24m(n —
4p)? +10(n - 4p)3 + 16p>d + 32mpd -

dmd + 4md + 8m(n - 4p)d + 2n2d)

Table 4.5.2. Flop count for the computational steps to find the real solution of
the RBLSE problem.

Next, we provide examples to evaluate the effectiveness of the proposed algorithms.

Example 4.5.1. Let A = My + nge Qﬁgxn} B=N;+ NQ] € Qﬁng, C = Ry + RQ] € Qﬁxn,
and D =Sy + Sy5¢€ Qﬁ’gd. Let

M; = rand(m,n) + rand(m,n)ie C™"  fori=1,2,
N; = rand(m,d) + rand(m,d)ie C™?  fori=1,2,
R; = rand(p,n) + rand(p,n)iec C"  fori=1,2,
S; = rand(p,d) + rand(p,d)ie C¢,  fori=1,2.

Take m = 40t, n = 6t, p = 2t, and d = 3. Here, t is an arbitrary number. We apply

Algorithm 4.5.1 to determine the complex solution of the RBLSFE problem. Let X be the
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complex solution of the RBLSE problem
g{n}%n IR subjectto AX=B+R. CX=D.

Let ¢ = |AXcr - (B+ Re)||p and e = |CXcp — D| . In Table 4.5.3, we compute ¢, and

€y for different values of t.

t €1 €9

8.5131 x 10716 2.0907 x 10~1°
7.0956 x 10716 2.5624 x 10-15
1.0499 x 10~ 3.7683 x 10715
1.2804 x 10~ 4.5681 x 10-15
1.4232 x 1071 8.1546 x 10715

© N ot w =

Table 4.5.3. Computational accuracy of Algorithm 4.5.1 for computing the
complex solution of the RBLSE problem (4.3.3)

Table 4.5.3 shows that the errors €; and ey across different values of ¢ are consistently
below 10712, This indicates that Algorithm 4.5.1 is highly effective in determining the
complex solution for the RBLSE problem (4.3.3).

Example 4.5.2. In Example 4.5.1, we introduce random perturbations AA, AB, AC,
and AD to the input matrices A, B, C, and D, respectively, to examine how these
small perturbations affect the complex solution Xcp, of the RBLSE problem (4.3.3). These
perturbations are measured normuwise by the smallest €, as in (4.3.13). We define the
exact relative forward errors for these solutions as %—fﬁfh Table 4.5.4 presents the

calculated exact relative forward errors and the corresponding upper bound Ucy, (calculated

using equation (4.3.15)) for these solutions across different values of t and e.

Table 4.5.4 shows that the exact relative forward errors of the complex solution to the
RBLSE problem (4.3.3) are consistently lower than their respective upper bounds across
various values of ¢ and e. This verifies the reliability of the derived upper bound U¢y, for

the relative forward error.
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€

I XcL-Xcrlr

Ucr

IXcrlr
7.0103 x 10713 1.3055 x 10712 2.7846 x 10-11
7.0580 x 10710 1.3349 x 1072  2.8036 x 1078
8.9885 x 1077 1.81513 x 1076 3.5704 x 1076
7.1245 x 10711 1.1503 x 1071 9.5002 x 10~?
8.9399 x 1072  2.0884 x 108  1.1921 x 1076
1.0173 x10®  1.5357x10®  1.3565x 1076
7.1497 x 10712 1.2430 x 10~ 1.3370 x 10~
6.6856 x 10719 1.2308 x 10™2  1.2502 x 1077
1.0212x 1077 2.5587 x 1077 1.9096 x 10~°

Table 4.5.4. Comparison of relative forward errors and their upper bounds for

the complex solution of a perturbed RBLSE problem (4.3.3)

Example 4.5.3. Let A= Ag+ Ari+ Ayj+ Aske Qp>™, B = By + Byi+ Byj+ B3k e Qp?,
C= C() +012+ OQJ+O3kE Q]]f{n, and D = D[) +D12+ D2]+ D3k€ Qﬁ d. Let

=randn(m,n) e R™"  fori=0:3,

fori=0:3,

=randn(p,n) € RP”"

(

, = randn(m, d) e R™*¢,
( fori=0:3,
(

= randn(p,d) e R”*?,  fori=0:3.

Take m = 30t, n = 10t, p = 2t, and d = 2. Here, t is an arbitrary number. We apply
Algorithm 4.5.2 to determine the real solution of the RBLSE problem. Let Xgr be the real

solution of the RBLSE problem

&n}%n IR.|» subjectto AX=B+R, CX-=D.

Let ¢ = |AXpr - (B+R,)|p and €3 = |CXgp, — D| . In Table 4.5.5, we compute €; and

€ for different values of t.

Table 4.5.5 shows that the errors €; and e across different values of ¢ are consistently
below 10714, This indicates that Algorithm 4.5.2 is highly effective in determining the real
solution for the RBLSE problem (4.4.3).
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€1

€9

© N ot w =

2.9063 x 10~1°
2.5053 x 10715
3.7915 x 1012
3.9204 x 1071°
5.2026 x 10715

3.0851 x 10719
5.5184 x 10715
1.0949 x 10-14
1.3185 x 10~
1.7247 x 10~14

Table 4.5.5. Computational accuracy of Algorithm 4.5.2 for computing the real
solution of the RBLSE problem (4.4.3)

| Xre-XrelrF

¢ [Xrelr Urt
7.3638 x 10712 2.3814 x 10-11 8.0339 x 1010
7.3677 x 1010 21476 x 100 8.0381 x 105
7.9614 x 105 7.6845x 10-7  8.6858 x 10-6

7.1742 x 1014

2.6216 x 10713

9.0524 x 1012

8.1702 x 10711 1.5855x 10719 1.0309 x 108
71758 x 107 2.6438 x 1078 9.0544 x 107
7.2567 x 10711 2.4717 x 10710 1.0430 x 108
7.2735x 107 25130 x 1078 1.0454 x 1076
8.7538 x 1077 1.8374x 1076 1.2581 x 104

Table 4.5.6. Comparison of relative forward errors and their upper bounds for

the real solution of a perturbed RBLSE problem (4.4.3)

Example 4.5.4. In Example 4.5.3, we introduce random perturbations AA, AB, AC,
and AD to the input matrices A, B, C, and D, respectively, to examine how these
small perturbations affect the real solution Xgy of the RBLSE problem (4.4.3). These

perturbations are measured normwise by the smallest €, as in (4.4.13). We define the exact

IXrL-XrLlF
[ Xrelr

exact relative forward errors and the corresponding upper bound Ugy (calculated using

relative forward errors for these solutions as . Table 4.5.6 presents the computed

equation (4.4.15)) for these solutions across different values of t and .
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Table 4.5.6 shows that the exact relative forward errors of the real solution to the
RBLSE problem (4.4.3) are consistently lower than their respective upper bounds across
various values of ¢ and e. This verifies the reliability of the derived upper bound Ugy, for

the relative forward error.

Example 4.5.5. Let A = My + Myj € Q10 C = Ry + Ryj € Q¥'0, and X, =
rand(10,3) + rand(10,3)i e C1O3. Let

M; = rand(m, 10) + rand(m, 10)ie C™ 1 fori=1,2

R; =rand(3,10) + rand(3,10)ie C>1° fori=1,2.
Take B = AXy and D = CXy. Thus, Xy is the complex solution to the RBLSE problem
(4.3.3). To measure the performance of the proposed technique for the RBLSE problem
(4.3.3), Algorithm 4.5.1 is employed to determine the complex solution X. Let the error

be € = | X — Xo| . Here, m is a variable parameter. We evaluate the errors € for various

values of m. The relationship between the errors € and m is presented in Table 4.5.7.

m e=|X - Xo|lr
100 1.3154 x 10~
200 6.2150 x 10715
300 6.5603 x 1015
400 6.1485 x 1015
500 3.2441 x 10715

Table 4.5.7. Computational accuracy of Algorithm 4.5.1 for computing the
complex solution of the RBLSE problem (4.3.3)

Table 4.5.7 shows that the error € between the complex solution derived from
Algorithm 4.5.1 and the corresponding true solution to the RBLSE problem (4.3.3)
remains consistently below 10~ for various values of m. This indicates the high accuracy

of Algorithm 4.5.1 in computing the complex solution to the RBLSE problem (4.3.3).

Example 4.5.6. Let A= Ag+ Ari+ Asj+ Aske Q50 C = Cy+ Cri+ Coj+ Cske QR
and X, = randn(50,30) € R5030. Let

A; = randn(m,50) e R™*° fori=0:3
C; = randn(10,50) e R0 fori=0:3.
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Toke B = AXy and D = CXy. Clearly, Xo is the real solution to the RBLSE problem
(4.4.3). To measure the performance of the proposed technique for the RBLSE problem
(4.4.3), Algorithm 4.5.2 is employed to determine the real solution X. Define the error
as € = | X - Xo| . Here, m is a variable parameter. We evaluate the errors e for various

values of m. The relationship between the errors € and m is presented in Table 4.5.8.

m e=|X - Xo|lr
1000 3.8948 x 1014
2000 4.4732 x 10714
3000 4.1257 x 1014
4000 3.7531 x 1014
5000 4.6532 x 1014

Table 4.5.8. Computational accuracies of Algorithm 4.5.2 for computing the real
solution of the RBLSE problem (4.4.3)

Table 4.5.8 shows that the error € between the real solution derived from Algorithm 4.5.2
and the corresponding true solution to the RBLSE problem (4.4.3) remains consistently
below 10~ for various values of m. This indicates the high accuracy of Algorithm 4.5.2 in

computing the real solution to the RBLSE problem (4.4.3).

The following example evaluates the efficiency of our method in computing both real
and complex solutions of the RBLSE problem. To assess its performance and scalability,
we apply our approach to large matrix sizes and compare the real and complex solutions
in terms of computational accuracy and CPU runtime, demonstrating the effectiveness of

our method for large-scale problems.

Example 4.5.7. To evaluate the accuracy and performance of the proposed methods for
solving the RBLSFE problem, we use random data matrices of varying sizes. The problem

matrices are defined as follows:

A= AO +A17:+A2j+ Agk: M1 +M2j€ Qﬁbxn, B= BO + Bl?:+ ng+ ng: N1 +N2j6 Qﬁng,
C = CO +Cli+ ng'i' ng: Rl +R2j€ Q%Xn7 D= DO +D1’i+ D2j+ ng: Sl + nge Q%Xd.
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The real matriz components A;, B;, C;, and D; are generated as:

A; =rand(m,n) e R™", 1=0,1,2,3,
B; = rand(m,d) e R™4,  i=0,1,2,3,
C; =rand(p,n) e R”"  1=0,1,2,3,

D; =rand(p,d) e R, i=0,1,2,3.
The matriz dimensions depend on a positive integer t defined as:
m=30t, n=10t, p=2t, d=2.

In this example, t is varied from 10 to 400 in increments of 10.

Objective: We aim to compute the real and complex solutions of the RBLSE problem and

compare their accuracy and computational efficiency.

Computational Methods:
(a) Real Solution Xgp: The real solution of the RBLSE problem is computed as:

g{n}{n |R.|r subjectto AX=B+R, CX=D.

yAr

(b) Complex Solution Xy : The complex solution of the RBLSE problem is computed

as:

)Igl%%n |R.||r subject to AX=B+R., CX-=D.

ydle

Error and CPU Time FEvaluation: To assess accuracy, we define the following error

metrics:

&1 = |[AXgL —(B+R,)|r, €2 =|CXgrr—D|F.
€1 =|AXcrL - (B+R.)|r, €2=|CXcr—D|p.

To ensure reliable results, we run each experiment for 50 trials and compute the average
CPU time. Let:

e t,. be the average CPU time for computing the real solution Xgy .

o t. be the average CPU time for computing the complex solution X¢y .
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Figure 4.5.1. Comparison of CPU time for computing real and complex solution

of the RBLSE problem.
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Figure 4.5.2. Accuracy of our method for computing the real and complex

solutions of the RBLSE problem.

Results and Discussion:

e Figure 4.5.1 compares the average CPU times to compute real and complex solutions
of the RBLSE problem. The results indicate that the algorithm for computing the

real solution takes significantly less time than the one for computing the complex

solution. This is consistent with the theoretical complexity of the methods.

e Figure 4.5.2 presents the error comparison for both real and complex solutions. Both

solutions exhibit accuracy with error values below 1073, confirming the accuracy of

the methods.
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Conclusion: In this chapter, we have developed an algebraic method for solving the
RBLSE problem by transforming it into equivalent complex and real LSE problems. This
transformation is achieved by utilizing the complex and real representations of reduced
biquaternion matrices, which facilitates efficient computation of both the complex and real
solutions to the RBLSE problem. Furthermore, we have derived the upper bound for the
relative forward error associated with these solutions, thereby demonstrating the accuracy

of our proposed method in effectively solving the RBLSE problem.
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CHAPTER 5

ALGEBRAIC TECHNIQUE FOR REDUCED
BIQUATERNION MIXED LEAST SQUARES AND TOTAL
LEAST SQUARES PROBLEM

This chapter introduces the reduced biquaternion mixed least squares and total least
squares (RBMTLS) method for solving the overdetermined system AX ~ B within the
reduced biquaternion algebra. The main results focus on leveraging the real representations
of RB matrices to derive conditions under which a real RBMTLS solution exists and to
provide an explicit formula for this solution. The RBMTLS method also encompasses two
important special cases: the reduced biquaternion total least squares (RBTLS) method
and the reduced biquaternion least squares (RBLS) method. Furthermore, this chapter
demonstrates the application of the RBMTLS method in finding the best approximate
solution to AX ~ B over the complex field. Additionally, a perturbation analysis of the
real RBMTLS, RBTLS, and RBLS solutions is conducted to evaluate their stability and
sensitivity to input variations. Numerical examples are provided to validate the theoretical

results and illustrate the effectiveness of the proposed methods.

5.1. Introduction

The formulation of a solution procedure for many application problems often entails
finding the best approximate solution to an inconsistent linear system. In this chapter,
we explore how to compute the best approximate solutions to an overdetermined linear

system
AX ~ B, (5.1.1)

where A = Ay + Aji+ Asj+ Ask € Q@™ (m >n), B = By + Bii+ Byj+ Bk € Q¢ and
m > n +d that arises within the framework of commutative quaternionic theory. Our
primary focus is on addressing inconsistent systems. This chapter investigates several
methods for solving the linear approximation problem (5.1.1), among which the least

squares (LS) approach is a widely used method to find the best approximate solution.



The multidimensional RBLS problem is formulated as:

min H@HF subject to AX =B +G. (5.1.2)
X,G

Once the minimizing G is found, then any X that solves the corrected system in (5.1.2) is

referred to as the RBLS solution.

However, the RBLS method assumes that all errors are contained in matrix B, with
matrix A being error-free. In practice, matrix A may also be corrupted by noise, particularly
in real-world applications. The RBLS method fails to account for errors in matrix A,
potentially leading to suboptimal results. To address this issue, the total least squares

(TLS) approach was introduced, which handles errors in both A and B.

The multidimensional RBTLS problem is formulated as:

min. H [E, @] H

1 subject to (A+E)X =B+G. (5.1.3)
X.BEG

F

Once the minimizing [E, @] is found, then any X that solves the corrected system in

(5.1.3) is called the RBTLS solution.

The TLS method is extensively applied in areas such as system theory, signal processing,
and computer algebra. However, in some applications, the errors may be confined to the
observation matrix B and only a few columns of matrix A, while other columns of A
remain free from errors. Perturbing these accurately known columns using the RBTLS
method can reduce the accuracy of the estimated parameter X. To handle such situations,

the RBMTLS method is proposed.

While the LS, TLS, and MTLS techniques have been well-studied in the context
of real matrices [28, 29, 76], only the LS method has been examined within the RB
domain. For example, Zhang et al. [81] investigated the least squares solutions to reduced
biquaternion matrix equations AXC = B and AX = B. To the best of our knowledge, the
RBMTLS solution techniques have not yet been explored in the RB domain. Notably, the
RBMTLS method encompasses both the RBLS and RBTLS methods, making it more
widely applicable.

In this chapter, we focus on finding real solutions to the linear approximation problem

(5.1.1) in the RB domain. The key contributions of this chapter are summarized as follows:
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e We present the RBMTLS method for obtaining the best approximate solution
to the multidimensional overdetermined linear system AX ~ B. Additionally, we
investigate the existence conditions for a unique real RBMTLS solution and derive
an explicit expression for the solution.

e We propose the RBTLS and RBLS solution techniques as special cases of the
RBMTLS problem. Specifically, when all columns of matrix A are contaminated
with noise, the RBMTLS method reduces to the RBTLS method, and we derive
the conditions for the existence of a unique real RBTLS solution. Similarly, when
matrix A is error-free, the RBMTLS method reduces to the RBLS problem, and we
use our developed technique to find real RBLS solutions.

e The developed solution methods are also applied to solve the complex matrix
equation AX ~ B as a special case of the reduced biquaternion matrix equation.

e We establish upper bounds for the relative forward errors of the real RBMTLS,

RBTLS, and RBLS solutions using their relative normwise condition numbers.

The chapter is organized as follows: In Section 5.2, we provide preliminary results.
Section 5.3 presents the solution techniques for RBMTLS, RBTLS, and RBLS problems. In
Section 5.4, we conduct a perturbation analysis for the real RBMTLS, RBTLS, and RBLS

solutions. Finally, Section 5.5 provides numerical verification of the developed results.

5.2. Preliminaries

To ensure this chapter is self-contained, we present key results relevant to the subsequent
sections. Let a = ag+ayt+agj+azke Qr and b = by + by i+ boj+ bk € Qr. Then, the equality

property of RB numbers states:
a=b — G():bo, alzbl, ngbg, andagzbg.
We now establish two essential lemmas that will be utilized in the subsequent analysis.

Lemma 5.2.1. Let A = Ag+ Ayi+ Ayg+ Ask € Qg"", m > n. Then matriz A has full

column rank if and only if matriz AR = [AT, AT, AT ATT e RY™" has full column rank.

Proof. Let A = (a;;), where a;; = a;jo + a1t + a;jo) + a;jsk. Let v; € Q@ denote the jih
column of matrix A. The proof follows from the fact that the set of vectors {vy,vs,...,v,}
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is linearly independent if the vector equation xv; + x9vs + -+ + x,v, = 0 has only the trivial

solution x1 = ¥y =--- =z, = 0, and by the equality property of RB numbers. m

Using the real representation in (4.2.1) and utlizing (1.2.1), we derive the following
lemma, which establishes key relationships between the Frobenius norms of block RB

matrices and their real representations.

Lemma 5.2.2. Let A=A+ Aji+ Ayj+ Aske Qi and B = By + Byi+ Byj+ Bsk e Q.
Denote AE = [AT, AT AT AT and BE = [Bl,BY,BY,BI1". Then, the following
properties hold.

(1) 1[4, Bllr = 5I[A, B]?|#.
(2) I[A, BI®|F = |[A%, B]| .
(3) ITA%, BE]|r = 2[[AF, BE]|p-

To support the main findings of this chapter, we recall some well-known results.
Specifically, we rephrase the Eckart-Young-Mirsky matrix approximation theorem [21] to

align it with our analysis.

Lemma 5.2.3. Let the SVD of A e R™" be given by A = USVT with r = rank(A) and
k<r. Let

k. n-k k n-k
k m—k _ _ _
_ _ _ Vo 21 0 k [/ — ‘/11 ‘/12 k
7= [U1 0, ] o pM ) , and V 3 g
0 22 m—k ‘/21 ‘/22 n-k

where U e R™™ gqnd V e R are orthornormal matrices. Denote the diagonal matrices
as ¥y = diag(Gy,...,0%) and Xy = diag(G441,...,0,). If

4T

Vii Vig
Vor Vi

i A-B|p=|A-Ax|F = 2.
Lmin A= Ble= A=Al \|za

In this lemma, Aj represents the best rank-k approximation of matrix A with respect

= [U1 Vi, U Vo ),

N >
Ap =[O0, 05]|
0 0

then

to the Frobenius norm.
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5.3. An Algebraic Technique for RBMTLS Problem

In this section, we derive an algebraic solution technique for the RBMTLS problem by
exploring the solution of the corresponding real MTLS problem. Suppose

A:A0+A1i+ A2j+A3k€@$xn and B:BO+B1’i+ B2j+ ngEQﬁng. (531)

Let the first n; columns of matrix A be known exactly, and the remaining ny columns be

contaminated by noise, where n; + no = n. Partition A and X as
A=[A, 4] and X =[XI X", (5.3.2)

where A, = Ago + Agit+ Agof + Agsk € Qg™ Ay = Ao + Api+ Apog + Apsk € Q™" and
partitioning of X is conformal with A, and A,. For this analysis, we confine ourselves to

the case when m >n +d and A, has full column rank.
The multidimensional RBMTLS problem can be formulated as:

min _|[E,, G|, subject to A, X, +(Ay+E}) X, =B+G. (5.3.3)
Xa, Xy, Ey,G

Once a minimizing [E;, G] is found, then any X = [X7 , X717 which solves the corrected

system in (5.3.3) is called the RBMTLS solution.

Remark 5.3.1. By varying ny from 0 to n, the above formulation can incorporate the

RBTLS, RBMTLS, and RBLS problems:

e When ny =0, the formulation reduces to the RBTLS problem.
e When 0 < ny <n, it represents the RBMTLS problem.
e When ny =n, the formulation reduces to the RBLS problem.

To connect the RBMTLS problem with its real counterpart, let
O =| AT AT AT AT 4 Rimxnr o | AT AT AT AT 4 RAmxn2
a= [AaO An Ag Aa3] € ’ b= [Abo Ay Ap Ab3] € )

T
and define C' = [C,,C,] and D = [BOT B BT B?)T] € R¥d Then, consider a

multidimensional real MTLS problem

mlIl _ H[Eb, é] HF Subject to CaXa + (Cb + Eb) Xb =D+ é (534)
Xa,Xp,Ep,G

Once a minimizing [Ey, G] is found, then any X = [X7 , X717 which solves the corrected

system in (5.3.4) is called the real MTLS solution.
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In the forthcoming results on the RBMTLS solution, we will be using the following

notations: Let
Ey=[EL EL EL ELT e R™ " and G =[GE,GT,GY,GE]" e R,

where Ey, € R™™ and G, € R™*? for ¢t = 0,1,2,3. The next theorem establishes the
equivalence between the RBMTLS and real MTLS problems.

Theorem 5.3.2. Consider the RBMTLS problem (5.3.3) and the real MTLS problem
(5.3.4). Let X = [XT, X[ be a real matriz. Then, X is an RBMTLS solution if and only
if X is a real MTLS solution. In this case, if X represents a real MTLS solution, then
there exist Eb and G such that

H[E,, é]HF =min, C,X,+(Cp+ E,)Xb =D+G.
Let Ey = By + Epi+ Eypj+ Eyke Qg™ and G=Go+Gri+Goj+Gske Qu=d. Then,
|[B,. G|, =min, A.X,+ (A +E)X,=B+G.
Therefore, there exist By, and G such that X is an RBMTLS solution.
Proof. If X = [ X7, X[]T e R4 is a real MTLS solution, then there exist real matrices
E, € R4z and G e R4xd guch that
H[Eb, é]HF =min, [C,,Co+ E)]X =D+G.

We have

[[Ca7 Cb + Eb]? Qm[caa Cb + Eb]a Rm[Caa Cb + Eb]? Sm[Ca7 Cb + Eb]:l

=[(D+G),Qu(D+G),Ru(D+G),Sn(D+G)].

(5.3.5)
Now,
[ Awo Aso + Eyo | [ B, + G|
~ Ag Ay + E ~ |Bi+G
[Co,Cy+ Ey]=|"0 "7 paG=|"" . (5.3.6)
A A+ Ep By + G
| gz Apz + Eps | | B3 + G3 |
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Construct the following reduced biquaternion matrices

A= [Ago, Ayo + Eno] + [Aat, Ayt + Eyy i+ [Aaa, Ao + Eip g+ [Aas, As + Fus ]k,
B = (By+Go) + (Bi+G1)i+ (Ba+ Gy)j+ (Bs + Gy)k,

Ey := Eyo + Epi+ Epj+ Eysk,

G := Gy + Gri+ Goj+ Gsk.

Using (4.2.1), (4.2.2), and (5.3.6), we have
1’4\5 = [Ca, Cb + Eb], Ef =D+ é, (Eb)f = Eb; and éf = é
Using (4.2.1), (4.2.3), and (5.3.6), we get

ZR

[[Ca7 Cb + Eb]? Qm[caa Cb + Eb]u Rm[CCU Cb + Eb]7 Sm[Cau Cb + Eb]] ’

ER B [(D " é)’Qm(D * é)’Rm(D + é)asm(D + é)]?
(X 0 0 O]

R 0 X 0 0 |
0 0 X 0
0 0 0 X]|

Therefore, equation 5.3.5 is equivalent to

ARXE = B (5.3.7)
(AX)" = B~,
AX =B. (5.3.8)

Now,

A =[Auo, Ao + Eio] + [Aar, Aps + Ep1 i+ [Aaz, Apy + Epz 15 + [Aas, Aps + Fs |k
[(Aao + Aal’l:+ Aa2j+ Aa3k), (Abo + Abl’l:-i- Ab2j+ Abgk) + (Ebo + Ebl’l:+ Ebgj-i- Ebgk)]

= (Ao, 4y + By]. (5.3.9)
and

E = (Bo + GQ) + (Bl + Gl)’l:+ (BQ + GQ)j+ (Bg + Gg)k
= (By + Byi+ Boj+ Bsk) + (Go + Gyi+ Goj+ Gsk) = B+ G. (5.3.10)
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Using (5.3.9) and (5.3.10), equation 5.3.8 is equivalent to

[Aa7 Ab + Eb]X =B+ G\,

[Aa,Ab+Eb] “ =B+G7,
X
AuX,+ (A + E)X,=B+G. (5.3.11)
Using Lemma 5.2.2, we can verify that
=~ = 1y » Lycsp ~ ~ ~ )
|15, Cl, - L 11 G, - LB GPIl, = B Gl m i, (5312)

Combining (5.3.11) and (5.3.12), we can conclude that there exist RB matrices Fj, € Q"2
and G € Q¢ such that X = [X7, X7 e Rmd is an RBMTLS solution, and vice versa. m

Next, we derive an explicit expression for the real RBMTLS solution X. To begin,
perform n; Householder transformations using a matrix ¢ € R¥*4m on the matrix [C, D]

such that

ni ng d
QT[C, D] = Q7[C,,Cy, D] =| finr Flaz g |m (5.3.13)
0 Ry Ry | 4m—m

Partition Q as Q = [Q1,Q2], where Q; € R¥™ and Q, € R¥*(4m-n1) Next, compute the
SVD of [R227 Rgd]i

[Rag, Req] =UZVT, (5.3.14)
where U and V' are real orthonormal matrices, ¥ = diag(o, 09, . .., 0ny14), and the singular
values of [Ras, Rag] satisfy

012092 ...200,>0p,412 ... 2 0nyeq > 0. (5.3.15)
Partition U, X, and V' as
n2 d no d
nag 4dm-ni-no > 0 Vi Vi
U=t U Jamw o BE[ 0 v Vi Ve
0 X9 | 4m-ni-no Vor Voo | d
(5.3.16)

In the following theorem, we present the conditions for the existence of a unique real
RBMTLS solution, and in this case, provide an explicit expression for the real RBMTLS

solution.
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Theorem 5.3.3. With the notations in (5.3.13) and (5.3.16), consider the RBMTLS
problem (5.3.3). Let the SVD of [ Rag, Raq] be as in (5.3.14), and let its singular values
be as in (5.3.15). If 0, > Opye1 and Vay is nonsingular, then the real RBMTLS solution

exists and is unique. In this case, the real RBMTLS solution is given by

R Rig
0

Rif Ry

X = + ViaVig. (5.3.17)

—1y,

Proof. Using Theorem 5.3.2, X represents an RBMTLS solution if and only if X is a real
MTLS solution. Therefore, to find the RBMTLS solution, we find the real MTLS solution.

Now, the real linear system corresponding to (5.1.1) is given by
Xa

~ D, [Ca7 Cb, D] Xb ~ 0.
iy

a

[Ca; Ob]

Xy

To find the real MTLS solution, we modify the above system in such a way that it becomes
compatible. We achieve this by perturbing matrices Cj, and D while keeping matrix C|,
exact, as in (5.3.4). By pre-multiplying both sides of the above system by Q7 and using
(5.3.13), we get

A Ry R R Xa
[Q1, Q21" [Ca, Gy, D[ X, [0, |70 2 M x, | 0.
0 Ry Rog
14 —1q
Let
ni no d
R=| B B2 Riug | m
0 Ry Rog | 4m-m

To make the above system compatible, the matrix [ X7, X', -1;]" should be in the null
space of R. Therefore, by the rank-nullity theorem, the rank of the matrix R must be
reduced to n; + ny. We achieve this by modifying matrix R. To keep matrix C, exact, we

modify matrix R without perturbing the matrix Ry;.

Now, matrix A, has full column rank. In view of Lemma 5.2.1, the matrix C, also has
full column rank n;, which implies that Rj; is a nonsingular upper triangular matrix. As
a result, modifying Ris and R;4; does not affect the rank of the matrix R. Consequently,

we do not modify these matrices. Instead, we modify matrices Roy and Roy.
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Let
Riy Rz Ryg

0 Ry R
be the modified matrix such that the system E[ I XTI, -1,]T =0 is compatible. Now our

a

aim is to find Egg and Egd. We first focus on the reduced real TLS problem Ry Xy ~ Roy.

We have
X
Pl 0.
-1,

To find a solution to the reduced real TLS problem, the matrix [X L —[d]T should be in

[RZQ ) R2d]

the null space of [Rag, Raq]. Therefore, by the rank-nullity theorem, the rank of the matrix
[ Rao, Rog] must be reduced to ns. Let [ﬁgg, Egd] denote the best rank ny approximation

of [Ray2, Ragq]- By Lemma 5.2.3, we have
[Raa, Roa] = [Ui S0V, Ur 51 Vi) .
If 0, > Opys1, then [Egg, ﬁgd] represents the unique rank ny approximation of [ Ras, Raq],

\% ~ o~
and the columns of the matrix [ 12] represent a basis for the null space of [ Rag, Roq]. We

Vo
have
~ ~ V]
[Ro, Rad] | [ = 0.
Vao
If Va9 is nonsingular, then we get
~ o~ ViVt
[Boo, Bad]| 7% | =00
-1,

Hence, the reduced real TLS solution is unique and is given by X, = -V15V;!. Notice that

the rank of the modified matrix R is Ny + Noa.

After computing X, we calculate X,. We have E[Xg,Xg,—Id]T = 0. Since Ry is

nonsingular, we obtain a unique solution X, = R{{ (R4 - R12X;). =

Remark 5.3.4. The perturbation Eb to the matriz Cy is given by Eb = C*'b - Cy, and the
perturbation G to the matriz D is given by G=D-D. We have

Rll R12 Rld

Ca7675 = ) E: ) ~ ~
[Ca, G, D] = [Q1, Q2] 1 = [Q1, Q2] 0 B, B,

We obtain the perturbed matrices 51; = Q1Ro + Qgﬁgg and D = Q1Rq + Q2§2d, where
Egg =U1 5,V and I%d = U151 V. Now, we can obtain Eb from Eb and G from G using
Theorem 5.3.2.
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Algebraic Technique for RBTLS Problem:

In the case where all columns of matrix A are contaminated by noise (i.e., ny = 0 and ny = n),
the RBMTLS problem (5.3.3) simplifies to an RBTLS problem (5.1.3). In this scenario, we
have A, =0 and A, = A, as well as C, =0 and C, = C. Let C = [AL, AT, AT AT]T e RAm>n,
We now consider the corresponding multidimensional real TLS problem, which can be

formulated as:

min || [E,G] [

1 subject to (C+E)X =D+G. (5.3.18)
X.EG

F

Once a minimizing [E,G] is found, then any X which solves the corrected system in
(5.3.18) is called the real TLS solution.

In the forthcoming results on the RBTLS solution, we will be using the following

notations: Let
E=[Ey BT, B}, E{]" eR"™ ™ and G=[G},G1,G],G5]" e RM™,

where E; e R™™ and G; € R™*? for t =0, 1,2, 3. In the following corollary, we provide the
solution technique for the RBTLS problem (5.1.3).

Corollary 5.3.5. Consider the RBTLS problem (5.1.3) and the real TLS problem (5.3.18).
Let X be a real matrixz. Then, X is an RBTLS solution if and only if X is a real TLS
solution. In this case, if X represents a real TLS solution, then there exist E and G such

that
H[E,G]HF =min, (C+FE)X=D+G.

Let E = Eo+ Eyi+ Eyj+ Eske Q" and G = Go+Gri+ Gag+ Gike Q]’l’g”l. Then,
“[E\,@]‘|F:min, (A+E)X =B+G.

Therefore, there exist E and G such that X is an RBTLS solution.

Proof. By taking n; = 0 and ny = n, the proof proceeds in a manner analogous to the

proof of Theorem 5.3.2. m

We now derive an explicit expression for the real RBTLS solution X. By taking n; =0
and ny = n, equations (5.3.13), (5.3.14), (5.3.15), and (5.3.16) simplify to

n d
QT[C,D] = |Ray Raq | am ° (5.3.19)
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Thus, the SVD of [ Rag, Rag] is given by

[RQQ, RQd] = UZVT, (5320)
where U and V' are real orthonormal matrices, > = diag(oy, 09, ...,0,44), and the singular
values of [ Rag, Rag] satisfy

012092 ...20,>0p412...20p4q>0. (5.3.21)

We partition U, Y, and V as follows:

n d n d
n  4m-n
U:[Ul U, ]4m, D= X 0 fn 0 and v=| Vi V2 | n (5322
0 22 4m-n ‘/21 ‘/22 d

In the following corollary, we present the conditions for the existence of a unique real
RBTLS solution, and in this case, provide an explicit expression for the real RBTLS

solution.

Corollary 5.3.6. With the notations in (5.3.19) and (5.3.22), consider the RBTLS
problem (5.1.3). Let the SVD of [ Ra2, Raq] be as in (5.3.20), and let its singular values be
as in (5.3.21). If 0, > opy1 and Vao is nonsingular, then the real RBTLS solution ezists

and is unique. In this case, the real RBTLS solution is given by

X =-Vi,Vy' (5.3.23)

Proof. By taking n; = 0 and ny = n, the proof follows similar to the proof of Theorem

533. =

Remark 5.3.7. The perturbation E to the matriz C is given by E = C — C, and the
perturbation G to the matriz D is given by G = D — D. We have

[C, D] = Q[Raz, Roa].

We get the perturbed matrices C := Qﬁgg and D := Qﬁgd, where Rgy = U5,V and
Rog = U121 V], Now, we can obtain E from E and G from G using Corollary 5.3.5.

Algebraic Technique for RBLS Problem:
When all columns of matrix A are error-free, i.e., n; = n and ny = 0, the RBMTLS problem

(5.3.3) becomes an RBLS problem (5.1.2). In this scenario, we have A, = A and A4, =0,
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also C, = C and Cy, = 0. Let C = [AT, AT, AT/ AT]" e R4 Consider a multidimensional
real LS problem

min [CX - D] (5.3.24)

In the following corollary, we provide the solution technique for RBLS problem (5.1.2).

Corollary 5.3.8. Consider the RBLS problem (5.1.2) and the real LS problem (5.3.24).
Let X be a real matriz. Then, X is an RBLS solution if and only if X is a real LS solution.

In this case, the solution X is given by
X=C'D+(I-0C'C)Z, (5.3.25)

where Z s an arbitrary matriz of suitable size and the least squares solution with the least

norm is X = CTD.

Proof. By taking n; =n and ny = 0 in Theorem 5.3.2, we get that X is an RBLS solution
if and only if X is a real LS solution. Using Lemma 1.3.4, we get the desired expression

for the solution X. m

The results developed in this section can also be applied to several other special cases.

The following remarks are in order.

Remark 5.3.9. When d =1, our results also include single-right-hand-side RBMTLS,
RBTLS, and RBLS problems.

Remark 5.3.10. Complex matrix equations are special cases of reduced biquaternion
matriz equations. Hence, our developed solution techniques are well-suited for finding the

best approximate solution to AX ~ B over complex fields.

We take the real representation of matriz A = Ay + A1t€ C™" where A; € R™" for
t=0,1, denoted by AR as
Ay A
A1 A

AR -

_ 0 -1, _ _
Let Q,, = |:] 0 ] Let AR denotes the first block column of the block matriz AR i.e.

AR = [AT, AT]T. We have AR = [AR Q,,AR]. By taking AR, Q,,, and AR as above, we can
obtain results to solve the complex LS, TLS, and MTLS problems.
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5.4. Perturbation Analysis of the RBMTLS Solution

Perturbation analysis is a crucial aspect of numerical analysis, focusing on how sensitive
a solution is to small changes in the input data, which is quantified by the condition
number. This section explores first-order perturbation bounds for real RBMTLS, RBTLS,

and RBLS solutions using their relative normwise condition numbers.

For the reduced biquaternion linear approximation system AX »~ B, our objective is

to analyze how perturbations in A and B affect the real RBMTLS solution Xj;. Let
A=A+AA=[A, A,]cQp™ and B=B+ABeQp,

where AA = AAg+AA1+ AAyg+ AAsk and AB = ABy+AB;i+ AByj+ ABsk represent the
perturbations of the input matrices A and B, respectively. Here, A, € Qp™"" and A, € Qp ™.
Let X); denote the real RBMTLS solution to the perturbed reduced biquaternion system
AX ~ B. When the norm |[AA, AB]|r is sufficiently small, the perturbation analysis of
singular values guarantees the existence of a unique solution X Let AXy =Xy - Xus

be the change in the solution.
Next, consider the perturbed matrices C and D, where
C=C+AC=[C,,Cy]eR* " and D=D+AD eR"

Here, the matrices C, € Rimxm gand O € Rimxnz represent the partitioned columns of C.

The perturbation matrices are given by

(A A, ] [AB,|

AAl ABI
AC = and AD = )

AAQ AB2

| AA;3 ] | AB;3 |

The relative normwise condition number of the real RBMTLS solution X, is defined
as follows:

IAX | 7
€| Xl

Hirras(Xur 4. 8) = lingsun 1184.8B]|p <[4 B)lr).

Theorem 5.4.1. Consider the RBMTLS problem (5.3.3) and the real MTLS problem
(5.3.4). Assume the conditions specified in Theorem 5.3.3 for the existence and uniqueness

of the real RBMTLS solution Xy, are satisfied. Let C, = U,S,V.I' be the thin SVD of C,,
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and denote Cy, = [Cy, D]. With the notations in (5.3.15) and (5.3.16), set

i1 = diag(alu 02,... 7Un2)7 EQ = diag(0n2+17 Ong+2s -+ - 70n2+d)7
_ [-cic)] v v
C _ b : ‘/1 _ 11 ’ ‘/2 _ 12 :
| In2+d ] ‘/21 ‘/22
_[s, o] = V. 0
Sa = — | Vll = .
| 0 El_ (Cgob)TVa ‘/11

Then, the relative normwise condition number of the real RBMTLS solution Xy, is expressed

as

Homniros(Xor A, B) = |HGZ],. il (5.4.1)

where

H =14 (Vf ® VQET) :

G = ((?Z@[d) -

7 = diag(

Proof. Based on Theorem 5.3.2, X, is a real RBMTLS solution of AX ~ B if and only
if X, is a real MTLS solution of the corresponding real linear system CX ~ D. Using
(1.2.1), we have |[AA,AB]|r = ||[AC,AD]|r and |[A, B]|r = |[C, D]||r. Consequently,

we obtain

-1

O 0] re o =
(%) | [le,, Siel,
0 I,

I,

L ®1; I, (CW)T|.
vrciey v, 1, e )

Hirras (X A B) =tigoup | L2412 pac, D)l < e, D11 |,
which is same as the relative normwise condition number (k3,7 s(Xar, C, D)) of the MTLS

solution X, to CX » D.

Therefore, to study the perturbation analysis of the real RBMTLS solution, we only
need to study the perturbation analysis of the real MTLS solution of the corresponding real
linear system. Using [45, Theorem 3.3], we get the desired expression for k3, ¢(Xar, C, D)

and, therefore, for kg, 7, (X, A, B). =
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[AA, AB]|r

Let ¢, = H”[AW' Then, the upper bound U, for the relative forward error of the
real RBMTLS solution X, is given by
AX
| Xar|r

Perturbation Analysis of the RBTLS Solution:

Now, we will examine how perturbations in A and B affect the real RBTLS solution X
of AX ~ B. For the RBTLS problem (i.e., ny =0 and ny =n), let X7 be the real RBTLS
solution to the perturbed system AX ~ B. Let AXp = XT — X7. The relative normwise
condition number of the real RBTLS solution X7 is defined as follows:

|IAX 7| F

Frps(Xrs A, B) = limsup {— I[AA, AB] s < ][ A, B] rF} .
=0 €| X7|r

Theorem 5.4.2. Consider the RBTLS problem (5.1.3) and the real TLS problem (5.3.18).
Assume the conditions specified in Corollary 5.3.6 for the existence and uniqueness of the

real RBTLS solution Xt are satisfied. With the notations in (5.3.21) and (5.3.22), set

Vio

¥y =diag(oy,09,...,0,), 2o =diag(oni1,0n42, - 0nsd), Vo=

22

Then, the relative normuwise condition number of the real RBTLS solution X1 is expressed

as

I[C, DI~

k}%BTLS(XT7A7 B) = ||HG7”2X—7
| Xr|F

(5.4.3)
where

H = (Vi © V')

G= ((ff ® Id> - (In ® (§§§2)))_1 [In ®%,, T ® [d] :

Z =diag (I, ® Iy, I, ® V')

Proof. The proof follows by setting n; = 0 and ny =n in Theorem 5.4.1. =

The upper bound Uy for the relative forward error of the real RBTLS solution X7 is

given by
|AXT|F

| Xz r

Perturbation Analysis of the RBLS Solution:

Next, we examine how perturbations in A and B affect the real RBLS solution X of

AX ~ B. For the RBLS problem (i.e., ny = n and ny = 0), let X, be the real RBLS solution
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to the perturbed system AX ~ B. Let AX; = X, — X;. Additionally, let S be the set of

perturbations in matrix A such that

S={AA|R(AA) cR(A), R(AA)) c R(AT)}.

The relative normwise condition number of the real RBLS solution X} is defined as

follows:

IAXL|F

(A, AB|r < ][4, B]|r A € s}.
€| Xr|r

kIT%LBLS(XLv A, B) = l'ng SUP{

Theorem 5.4.3. Consider the RBLS problem (5.1.2) and the real LS problem (5.3.24).
Let A be rank deficient, then the relative normwise condition number of the real RBLS
solution X is expressed as

) Ct,|[C, D
thsas(Xe, A B) = SRR Pl TR (5.45)

Proof. The proof follows along similar lines as Theorem 5.4.1 and by applying [49, Theorem

3.1] to the corresponding real linear system CX ~ D. =

The upper bound Uy, for the relative forward error of the real RBLS solution X, is
given by

N~ 1 S kEBLs(XL,A, B)E:n = UL. (546)
F

5.5. Numerical Verification

In this section, we present numerical algorithms for solving the RBMTLS, RBTLS, and
RBLS problems and provide numerical examples to validate these algorithms. First, we
illustrate the effectiveness of the RBMTLS method in solving the linear system AX »~ B,
particularly when errors are present in all columns of matrix B and only a few columns of
matrix A. Next, we examine the upper bounds for the relative forward errors associated
with the real RBMTLS, RBTLS, and RBLS solutions.

Building on Theorem 5.3.3 and Corollary 5.3.6, we now outline algorithms to solve

the RBMTLS problem (5.3.3) and the RBTLS problem (5.1.3), respectively.
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Algorithm 5.5.1 For RBMTLS problem
Input: A=Ag+ Aji+ Asj+ Aske Qu™, B = By + Byi+ Byj+ B3k e Q) where

m >n+d. Let the first n; columns of matrix A be known exactly, and the remaining nq

columns be contaminated by noise, where ny + ny = n. Partition A = [A,, Ap], where

Ay =Ago + Agri+ Agag+ Ak e Q™™ Ay = Ao + Apt+ Apog + Apsk e Qp7", and A, has

full column rank.

Output: Perturbation E,, @, and the solution X.

Step 1: Matrix Computation: Define C = [C,, C}] e R C, = [AL, AT | AL,
Cy = [AL, AL, AL, ALY, and D = [BY, B, B, B] |7 e Rimxd,

Step 2: QR Decomposition: Find the orthogonal matrix @ = [@Q1, Q2] € R¥™4m where
Q; € R and Qq € R4mx(4m-n1) that performs n; Householder transformations
on the matrix [C, D] as in (5.3.13).

Step 3: SVD Computation: Compute the SVD of the matrix [Rag, Roq]. Let the SVD
of [ Raa, Ro4] be as in (5.3.14).

Step 4: Solution Computation: If 0,, > 0,,,1 and Vs, is nonsingular, compute the
solution X to the RBMTLS problem using Theorem 5.3.3.

Step 5: Perturbation Computation: Compute the perturbations Ej, for matrix A, and

G for matrix B using Theorem 5.3.2 and Remark 5.3.4.

Ag]”,

Algorithm 5.5.2 For RBTLS problem
Input: A= AO +A1?:+ A2j+ Agk € @ngn’ B=By+ B+ ng-f- ng € Q%Xd, where m > n +d.
Output: Perturbations E, @, and the solution X.

Step 1: Matrix Computation: Set C = [Al AT AT AT1T ¢ R*»n and D =
[BY, BT, BT, BT'|T e Rimxd,

Step 2: Orthogonal Matrix: Find the orthogonal matrix @ € R**%m guch that
QT[C, D] = [Raa2, Roq4] as in (5.3.19).

Step 3: SVD Computation: Compute the SVD of the matrix [ Ras, Ro4] as described
in (5.3.20).

Step 4: Solution Computation: If o, > 0,,; and Vi, is nonsingular, compute the
solution X to the RBTLS problem using Corollary 5.3.6.

Step 5: Perturbation Calculation: Compute the perturbations E for matrix A and G
for matrix B using Corollary 5.3.5 and Remark 5.3.7.
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Based on Corollary 5.3.8, we now describe algorithms for solving the RBLS problem
(5.1.2).

Algorithm 5.5.3 For RBLS problem

Input: A= Ay+ Aji+ Asg+ Ask e Q@™ B = By + Byi+ Byj+ Bsk € Q) where m > n+d.

Output: X.

Step 1: Matrix Computation: Define C' = [AT, AT AT AT]T ¢ R¥™n and D =
[BY, B, BT, BI']T e Rtmxd,

Step 2: Solution Computation: Compute the solution X to the RBLS problem using
Corollary 5.3.8.

We now present numerical examples. All calculations are performed on an Intel Core

i7-9700@3.00GH z/16G B computer using MATLAB R2021b software.

Example 5.5.1. Let F' = Fy + Fii+ Foj+ Fske Qg (m > 50), where matriz components

are defined as follows:
Fy = Fy = Fy = F3 = randn(m, 50) € R™*,

Let Xy = randn(50,35) € R?35. Set G = F' Xy, which implies that the reduced biquaternion
matriz equation FX = G is consistent, and Xq is its exact solution. We partition the

matrix F' as
F= [Fm Fb]a
where F, € Q@20 and F, e Qu=30.
To assess the effectiveness of the proposed solution techniques in finding the best

approzimate solution to an inconsistent linear system, we introduce errors into the entries

of matrices F' and G, which makes the original system inconsistent.

Let the error terms be denoted as dA € QE»*, dB € Qp®, and dG € Qg>**. The

modified matrices are then defined as
As=F,+dA, Ay=F,+dB, and B=G+dG.
Consequently, we have an overdetermined linear system:
AX ~ B,

where A =[A,, Ap] € QE5Y and B € Qp3° are known, and X € R%*35 4s unknown. Now

we will consider three different cases. In the first case, errors are introduced in matrices Fy,
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and G. In the second case, errors are introduced in matrices F,,, F,, and G. Lastly, in the

third case, errors are introduced only in matriz G.
Case 1: Take R = rand(65,65) and E =0.01 (rand(m,65)R). Let
dA =0,
dB=FE(;1:30)+ E(;,1:30)i+ E(:,1:30)j+ E(:,1:30)k,
dG = E(:,31:65) + E(:,31:65)i+ E(:,31:65)j+ E(:,31:65)k.
We define A, = F,, Ay = Fy +dB, and B =G+ dG.
Case 2: Take R =rand(85,85) and E =0.01 (rand(m,85)R). Let
dA=FE(,1:20)+ E(:,1:20)3+ E(:,1:20)j+ E(:,1:20)k,
dB = B(;,21:50) + E(;,21:50)i + E(:,21:50)§+ E(:, 21 : 50)k,
dG = E(:,51:85) + E(:,51:85)i+ E(:,51:85)j+ E(:,51:85)k.
We define A, = F, +dA, Ay = Fy,+dB, and B =G+ dG.
Case 3: Take R =rand(35,35) and E =0.01 (rand(m,35)R). Let
dA =0,
dB =0,
dG =FE+ FEi+ Ej+ FEk.

We define A, = F,, Ay =F, and B=G +dG.

In each of the three cases, due to the presence of errors in matrices A and B, an ezact
solution for the system AX ~ B is not attainable, and thus, an approzimate solution is
required. In this example, we compute the RBMTLS solution (X,r), the RBTLS solution
(X71), and the RBLS solution (Xp) for the inconsistent system AX ~ B across all three

Cases.

Note: To achieve the highest possible accuracy in the estimated solution X, it s
essential to eliminate any errors present in the entries of matrices A and B. In all three
cases, if we remove all errors from these matrices, they reduce to matrices F and G,
respectively. Therefore, Xy represents the most accurate approximate solution for the

system AX = B in all cases.

Next, we calculate Xy, Xp, and Xy using Algorithms 5.5.1, 5.5.2, and 5.5.3,

respectively. Let the errors be denoted by €1 = | Xy — Xo|r, € = | X7 - Xo|F, and
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Figure 5.5.1. The errors from the three solution techniques for Cases 1, 2, and 3.

es = | Xr — Xo|p. In this example, m represents an arbitrary value. We compute the
errors €1, €, and €3 for various values of m. Since the input matrices are generated
randomly, we calculate €1, €5, and €3 by averaging the results from solving this example

twenty times for each value of m.

Figure 5.5.1 presents comparison for Case 1 (5.5.1 (a)), Case 2 (5.5.1 (b)), and Case
3 (5.5.1 (c)), respectively, between €1, €5, and €3. These comparisons are obtained by taking
different values of m. For all values of m, we observe that in Case 1, ¢; < €3 < €3, while in

Case 2, €5 < €3 < ¢1. Lastly, in Case 3, €3 < €5 < €;.

We conclude Example 5.5.1 with the following remark:

Remark 5.5.2. (1) If there is an error in matriz B along with a few columns of matrix
A, then the RBMTLS solution technique offers the most accurate approximate

solution to the overdetermined system AX ~ B.
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(2) In cases where errors are present in both matriz A and matriz B, the RBTLS solution
technique yields the most accurate approrimate solution to the overdetermined system
AX ~ B.

(3) When the error is solely present in matriz B, the RBLS solution technique provides

the most accurate approximate solution to the overdetermined system AX ~ B.

Example 5.5.3. Consider the linear problem AX ~ B, where A = Ag+ Ayt+ Ayj+ Aske
Q%0 and B = By + B1i+ Boj+ B3k e QX°19. The matriz components are generated as

follows:

AO = Al = AQ = Ag = rand(500, 50), BO = Bl = B2 = B3 = rand(500, 10)

Let ny = 20. In this ezample, we introduce random perturbations AA and AB to the input
matrices A and B, respectively. Our goal is to analyze how the real RBMTLS, RBTLS,
and RBLS solutions to AX ~ B are affected when A and B are subject to these small

perturbations. The exact relative forward errors for the solutions are defined as follows:

IAX | 7 IAX 7| F IAXL|F

| Xl 7 1 X7] 7 | XL|F

Using equations (5.4.2), (5.4.4), and (5.4.6), we compute the upper bounds for these relative
forward errors, denoted by Uy for RBMTLS, Ur for RBTLS, and Uy, for RBLS.

for RBMTLS, for RBTLS, for RBLS.

RBMTLS Method

RBTLS Method

RBLS Method

[AXMF

lAXT[F

IAXL|F

I[AA, ABllr "yl Unm xlr Uz Xy le Uy

le-10 3.5540e-11  2.7202¢-09 1.5860e-10 8.5467¢-09 6.62430-12 2.1272¢-11
1e - 09 1.9327¢-09 1.7719¢-07 1.0217¢-08 5.5672e-07 3.8986e-10 1.38560-09
le - 08 7.5040e-09 3.8307¢-07 2.1910e-08 1.20360-06 8.8797¢-10 2.9957e-09
le - 07 4.31536-08 2.7253¢-06 1.0701e-07 8.5629¢-06 6.2069¢-09 2.1312-08
le - 06 6.64420-07 2.8282¢-05 1.8317¢-06 8.8%61e-05 7.14766-08 2.2117¢-07

Table 5.5.1. Comparison of relative forward errors and their upper bounds for a

perturbed problem with different methods.

Table 5.5.1 presents a comparision of the exact relative forward errors of the real RBMTLS,
RBTLS, and RBLS solutions with their corresponding upper bounds for varying random

perturbations |[AA, AB]|r. It is observed that the exact relative forward errors obtained
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using the three methods are consistently less than their respective upper bounds. This

confirms the validity of the derived upper bounds for the relative forward error.

Conclusion: In this chapter, we have introduced a method to find the best approximate
solution for an inconsistent linear system arising in commutative quantum theory. The
algebraic solution technique presented focuses on addressing the RBMTLS problem.
By transforming the RBMTLS problem into a real MTLS problem through the real
representation of reduced biquaternion matrices, we deduced conditions for the existence

of a unique real RBMTLS solution and derived explicit expressions for this solution.

Additionally, we proposed solution techniques for both the RBTLS and the RBLS
problems. These techniques can be considered special cases of the RBMTLS solution
method. Furthermore, the developed methods have been applied to solve the linear system
AX ~ B over the complex field, illustrating their versatility in handling complex matrix

equations, which are special cases of reduced biquaternion matrix equations.

We also conducted a perturbation analysis of the real RBMTLS, RBTLS, and RBLS
solutions, deriving upper bounds for the relative forward errors. Numerical examples were

provided to verify the accuracy and efficiency of the proposed methods.

Future research could explore the mixed and componentwise condition numbers of
the RBMTLS, RBTLS, and RBLS solutions. Additionally, tighter upper bound estimates
for the relative forward error could be derived to further enhance the reliability of these
solutions. The methods developed in this chapter have potential applications in digital
signal processing and image analysis within the framework of commutative quaternionic

theory.
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CHAPTER 6

CONCLUSION AND SCOPE FOR FUTURE WORK

Conclusion

This thesis develops comprehensive frameworks for solving generalized RBMEs, focusing
on their solutions, practical applications, and sensitivity to perturbations. Reduced
biquaternions, a class of four-dimensional hypercomplex numbers, are explored for their
computational advantages and unique properties. By formulating and solving RBMEs
with different constraints, this thesis provides insights into their mathematical structure
and practical implications. Below is a summary of the major contributions presented in

each chapter:

In Chapter 1, the foundational concepts of RBs and RB matrices are introduced.
This chapter covers basic definitions, properties, and historical developments essential for

understanding the generalized RBMEs discussed in subsequent chapters.

In Chapter 2, a comprehensive framework for finding least squares structured solutions
to generalized RBMEs is developed. The notion of reduced biquaternion L-structures
is introduced, accommodating specific matrix constraints such as Toeplitz, symmetric
Toeplitz, Hankel, and circulant structures. Applications in color image restoration and

inverse eigenvalue problems, including PDIEP and generalized PDIEP, are also explored.

In Chapter 3, the focus shifts to computing {2}-inverse and {1,2}-inverse of RB
matrices with predefined conditions on the row and/or column space. Conditions for
existence and effective representations of these generalized inverses are established by
solving RBME of the form (AXB,CXD) = (E, F'). The results build upon the framework

in Chapter 2 to find the unstructured matrix solutions.

In Chapter 4, the RBLSE problem is addressed, where the system AX ~ B is subject
to additional constraints C'X = D. Both real and complex solutions to the RBLSE problem
are derived, along with an upper bound for the relative forward error. Minimizing this

error ensures the accuracy of solutions in practical applications.



In Chapter 5, the RBMTLS method is introduced to solve the overdetermined system
AX »~ B within the reduced biquaternion algebra. Explicit conditions for the existence
and uniqueness of real RBMTLS solutions are derived, and an expression for obtaining
these solutions is presented. Special cases of RBMTLS, namely the RBTLS method
and the RBLS method, are also covered. Perturbation analysis is conducted to evaluate
the sensitivity of RBMTLS, RBTLS, and RBLS solutions to input variations. Relative
normwise condition numbers and forward error bounds are derived to ensure reliability in

practical applications.
Future Scope

To advance the findings of this thesis, it is vital to explore new research directions that
extend the current work. The following are potential directions for future research based

on the findings of this thesis:

e Investigate perturbation analysis of constrained solutions of generalized RBMEs to
understand the sensitivity of the solutions under data perturbations.

e Explore the QR decomposition of RB matrices to uncover new theoretical insights
and computational techniques for handling reduced biquaternion systems.

e Study the generalized inverse of quaternion matrices.

The methodologies developed in this thesis for solving overdetermined linear systems have
potential applications in digital signal and image processing. Extending these methods
to real-time and dynamic systems could significantly enhance their relevance in practical

applications.
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