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SYNOPSIS 

The field of energy storage has witnessed significant advancements, 

with a growing focus on sustainable and efficient battery materials. 

Amidst global resource constraints and the demand for renewable 

energy solutions, sodium-ion batteries (SIBs) are emerging as a 

promising alternative to lithium-ion batteries due to the abundance and 

low cost of sodium. However, achieving high energy density, structural 

stability, and energy efficiency in SIBs presents notable challenges, 

particularly concerning cathode materials [1]. Layered oxide materials, 

commonly composed of sodium-transition metal oxides like NaₓMeO₂, 

exhibit varying phase structures such as P2, P3, and O3. These phases 

refer to different atomic arrangements within the material, each 

influencing electrochemical properties like ion mobility and capacity 

retention. In terms of electrochemical properties, the P2 type 

frameworks show higher ionic conductivity and structural stability but 

suffer from low specific capacities. In contrast, O3 type materials exhibit 

relatively higher specific capacities but are known to undergo O3 to P3 

phase transformations during desodiation, limiting their cyclability. P3 

type compounds, on the other hand, have properties similar to P2 phases. 

These are known to have good Na+ transport properties and form at 

lower calcination temperatures, which makes it easier to synthesize [2]. 

To improve the electrochemical performance of layered oxide cathodes, 

researchers have widely investigated biphasic cathode materials with 

mixed O3 and P2-type phases. In O3/P2 biphasic cathodes, the 

coexistence of both phases creates a synergistic effect that improves 

structural stability and Na+ ion transport, leading to enhanced rate 

capability and cycling stability. Although less studied, P2/P3 biphasic 

cathodes show similar improvements, with the interlocking P2 and P3 

structures offering better electrochemical performance than monophasic 

materials. Combining P3 and P2 phases leverages the high Na+ transport 

properties of both structures, while these materials can also be 
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synthesized at relatively lower calcination temperatures compared to 

those with P2/O3-type phases [3, 4]. 

Another strategy to enhance electrochemical performance in layered 

oxides involves the partial incorporation of electrochemically inactive 

ions, such as Mg2+, Al3+, or Zn2+, into the transition metal layers. These 

ions act as “pillar” ions that stabilize the structure during cycling without 

contributing directly to electrochemical reactions. While less studied in 

SIB cathodes, Al3+ substitution has shown to improve rate performance 

and cycle stability in LIB cathodes, suggesting promising benefits for 

similar modifications in SIBs [5, 6]. 
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Figure S1. (a) Pseudo-ternary diagram of Na3/4(Mn-Al-Ni)O2 system. 

(b) Rietveld refinement of XRD data showing deconvoluted P2 and P3 

phases in the 2θ range of 30-40° belonging to NNM1-750,780, and 850 

samples (λ = 1.54 Å). (c) Zoomed views of Operando Synchrotron x-

ray diffraction patterns of NMA1-750 obtained during the 

galvanostatic charge/discharge process at 0.1C in the vicinity of the 8-

10° (λ = 0.8312 Å). 

This study investigates cathode materials within the Na3/4(Mn-Al-Ni)O₂ 

pseudo-ternary system (figure S1(a)), targeting structural and 

electrochemical optimization for SIBs. Beginning with Na0.75 

Mn0.75Ni0.25O2 (NMA1) and Na0.75Mn0.75Al0.25O2(NMA2), synthesized 
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in monophasic P3, biphasic P3/P2, and monophasic P2 configurations, 

the materials were subjected to controlled calcination to adjust phase 

proportions (figure S1(b)). Initial findings showed that P3-phase 

materials had the highest specific capacity, with biphasic P3/P2 

compositions achieving better rate performance due to their finer 

particle size and an optimal phase fraction. Operando synchrotron XRD 

revealed that the biphasic Na0.75 Mn0.75Ni0.25O2 cathodes prevented 

phase transitions (e.g., P3→O′3/O3) seen in monophasic P3 under 

cycling (figure S1(c)), while Na0.75Mn0.75Al0.25O2 retained the P3 phase 

throughout, likely due to the stabilizing influence of Al3+.  

The study expanded to investigate trends in structural and 

electrochemical performance across compositions in the Na3/4(Mn-Al-

Ni)O2 pseudo-ternary diagram, focusing on the variations in Jahn-Teller 

active Mn3+ and Mn4+ ions. Notably, P3-type cathodes with high Ni 

content (represented NMA3 and NMA5 in figure S1(a)) demonstrated 

impressive capacities of nearly 195 mAh g-1 and 75 mAh g-1 at 0.1C and 

6C, respectively, within a voltage window of 1.5 to 4.0 V (figure S2). 

The concentration of Mn3+, alongside the material’s biphasic nature, was 

found to significantly impact cycling performance. For example, the 

biphasic P3/P2-Na0.75Mn0.50Ni0.25Al0.25O2 cathode, free from Mn3+, 

retained 70% of its original capacity over 300 cycles at 1C between 1.5–

4.0 V which improved ~80% when the cell was cycled between 2.0-4.0 

V (figure S2). Operando synchrotron XRD data revealed notable unit 

cell variation in the P3 and P2 phases during cycling below 2 V due to 

Mn3+/Mn4+ redox activity and confirmed that Al-substitution effectively 

prevented P3 to O3 phase transitions, thus enhancing cyclic stability. 
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Figure S2. Rate performance (a)-(b) and (c)-(d) cyclic stability curves 

of NMA3 and NMA5 series of cathodes cycled between 1.5 V and 4.0 V. 

(e) Cyclic performance of NMA3-P3P2 and NMA5-P3P2 at 1C 

between 2.0 V and 4.0 V. 

Following the identification of biphasic P3/P2- 

Na0.75Mn0.50Ni0.25Al0.25O2  as an optimal cathode, additional Mn3+-free 

compositions were explored along the “zero Mn³⁺ line” 

(Na3
4

Mn5−𝑥
8

Al2𝑥
8

Ni3−𝑥
8

O2, with x ranging from 0 to 1, depicted as A0 -A4 

in figure S3) in the pseudo ternary diagram. Phase diagrams, particularly 

in layered oxides, are essential for designing optimal cathode 

compositions by clarifying the complex relationships between metal 

cations in LO cathodes and their electrochemical properties. Unlike 

traditional phase diagrams, where elemental composition alone 

primarily determines phase properties, pseudo-ternary systems also 

depend heavily on the oxidation states of electrochemically active 

elements, influencing composition-structure-property behavior. In this 

study, the 'zero Mn³⁺ line' is introduced, confining Mn ions to a 4+ 

oxidation state by varying Mn, Ni, and Al concentrations. This 

innovative approach contrasts with traditional ternary diagrams, where 

at least one element’s concentration remains fixed. In the Na3/4(Mn-Al-

Ni)O₂ pseudo-ternary system, the 'zero Mn3+ line' also delineates the 

boundary between a forbidden region (where Ni is restricted to a 2+ 

state) and an allowed region, offering new insights into phase stability 

and functionality. 



 

viii 
 

Figure S3. Pseudo-ternary diagram of Na3/4(Mn-Al-Ni)O2 system 

depicting the ‘zero Mn3 line’+. 

Structural analysis of this series of cathode materials, performed using 

X-ray diffraction (XRD) and Extended X-ray Absorption Fine Structure 

(EXAFS), revealed that increasing Al³⁺ content (notated as Ax-1 for P3 

structures and Ax-3 for P2 structures) increased Na+ conduction 

bottleneck area in both P3 and P2 structures. This enhanced the rate 

performance of Al-substituted samples. Furthermore, X-ray Absorption 

Near-Edge Structure (XANES) and X-ray Photoelectron Spectroscopy 

(XPS) analyses confirmed the absence of Mn3+ in the A0-A4 cathode 

materials series, showing only Mn4+ present (see Figure S4). 
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Figure S4. a) XANES spectra of A0-A4 samples taken at Mn Kedge with 

relevant standard compounds. (b) Mn 2p XPS plots of A0-2 to A4-2 

compounds. 

The electrochemical performance of the cathode samples was evaluated 

between 1.5-4.2V and 2.0-4.0 V voltage windows. The P3 type cathodes 

showed a high specific capacity of ~ 195 mAh g-1, which decreased with 

increased P2 phase concentration. Compared to the 

Na0.75Mn0.625Ni0.375O2 cathode (A0), the Al-substituted samples 

exhibited significantly higher rate performance and cyclic stability. It 

was also observed that, within each composition, the biphasic cathode 

with ~ 50% P3 and ~ 50% P2 phase fractions outperformed their 

monophasic counterparts in almost all electrochemical performance 

parameters. The biphasic A2 sample with 0.125 Al concentration, in 

particular, demonstrated excellent cyclic properties, retaining close to 

78% of its initial specific capacity after 300 cycles at 1C between 1.5-

4.2 V, which improved to 87% after 500 cycles when the cycling was 

limited in the 2.0-4.0 V voltage range. The material also exhibited about 

88% energy efficiency after 500 cycles. Various properties of all 

biphasic cathode materials are summarized in Figure S5. Further, the full 

cell assembled with the biphasic A2 cathode showed only a 10% 

reduction in specific capacity compared to its half-cell and retained 90% 

capacity after 100 cycles at 0.2C. The remarkable electrochemical 

performance of the biphasic cathode was attributed to the synergistic 

effect of P3/P2 coexistence, which was found to suppress the volume 

expansion of both the P3 and P2 structures during cycling.  
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Figure S5. Spider charts comparing the various characteristics of 

biphasic A0 to A4 cathode materials. All biphasic cathodes of each 

composition are represented by Ax-2. 

The stabilizing role of Al3+ also allowed for further structural 

innovation. By increasing the Na content in Na3
4

Mn4.5
8

Al1
8

Ni2.5
8

O2 to 

NaMn4.5
8

Al1
8

Ni2.5
8

O2(Na1), a high Na-containing P3 and P2 cathodes 

were synthesised. Al3+ not only mitigated the formation of O3 phases 

but also bolstered the performance and cycle stability of these materials. 

A full cell with the monophasic P2-type cathode delivered a specific 

capacity of 123 mAh g-1 at 0.1C and retained 90% capacity after 200 

cycles at 0.2C (figure S6). The excellent stability of both monophasic 
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P2 and biphasic P3/P2 materials was attributed to the suppression of 

structural transformations, as verified by operando synchrotron XRD. 

These findings underline the promise of Al-doped, Mn3+-free layered 

oxide cathodes for achieving durable, high-capacity sodium-ion 

batteries. 

Figure S6. (a) GCD curves of Na1-P2 Full cells at various C rates. (b) 

Cyclic performance curves of Na1-P2 Full cell at 0.2C along with 

columbic efficiency after each cycle.    

Finally, a new P2-type cathode material, Na0.7Ni0.2Cu0.15Ti0.65O2 

(NNCT), was investigated as an extension of previous work on 

Na0.77Ni0.2Cu0.15TixMn(0.65-x)O2-based cathodes. This study aimed to 

complete the series by examining NNCT, the end member where Ti⁴⁺ 

fully substitutes Mn⁴⁺. Impedance studies and chronoamperometric data 

revealed that NNCT exhibited a poor conductivity of ~ 1.37 × 10-7 S cm-

1 at room temperature, with the electronic conductivity contribution to 

the total electrical conduction to be only 0.4%. The sample exhibited 

specific capacities of 83 mAh g-1, 54 mAh g-1, and 42 mAh g-1 at 

discharge rates of 0.1C, 0.5C, and 1C, respectively, with a remarkable 
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cyclic stability of 96% capacity retention after 700 cycles at 0.5C (figure 

S7) which makes NNCT an attractive cathode for Na-ion batteries in 

stationary storage applications. The ex-situ XRD analysis confirmed 

that NNCT maintains a single P2 phase during cycling between 2.0 V to 

4.2 V. NNCT also exhibited moisture stability, thus enabling the use of 

a cost-effective water-based slurry for cathode layer fabrication.  

Figure S7. (a) Galvanometric charge-discharge curves and (b) rate 

performance of NNCT cathode at different discharge rates. (c) Cyclic 

performance of NNCT at 0.5C for 700 cycles. 
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Introduction 

1.1. Energy Storage Systems 

Energy storage systems are increasingly becoming the cornerstone of modern 

energy infrastructure and are pivotal in efficient power management. As global 

energy demand continues to rise, and as nations increasingly shift towards 

renewable energy sources such as wind and solar, the need for reliable and 

efficient energy storage solutions has never been more critical. They store excess 

energy generated during periods of low demand and compensate for the excess 

demand during times of peak consumption, thereby ensuring a consistent and 

reliable power supply. Furthermore, energy storage systems are vital for the 

seamless integration of intermittent renewable energy sources, such as wind and 

solar, which are inherently variable and unpredictable. They allow for the 

storage of surplus energy generated during periods of high renewable output and 

release it when production is low, making it possible to rely more heavily on 

clean energy and reduce dependence on fossil fuels. Beyond their role in grid 

stabilization and renewable integration, in the rapidly expanding electric vehicle 

market, energy storage systems are crucial for supporting the necessary charging 

infrastructure and ensuring that the grid can handle the additional load.  

Energy storage systems exist in various forms (Figure 1.1). They include 

potential, mechanical, thermal, electrical, chemical, and electrochemical. Even 

though each type has its own distinct features, electrochemical energy storage 

systems are often regarded as the most versatile of all. 
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Figure 1.1. Types of energy storage systems. 

1.2. Electrochemical energy storage 

Electrochemical energy storage systems have revolutionized the way we store 

and utilize energy, offering unparalleled efficiency, scalability, and adaptability 

across a wide range of applications. These systems operate by converting 

electrical energy into chemical energy during charging and then reversing the 

process to convert chemical energy back into electrical energy during discharge. 

They are known for their high energy density, allowing them to store substantial 

amounts of energy in compact spaces, which is crucial for applications like 

portable electronics and electric vehicles. In addition, it also possesses rapid 

response capabilities, providing short-term energy bursts, which is invaluable 

for grid stabilization and emergency backup.  
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Electrochemical energy storage systems can be primarily classified into 3 

different types: batteries, supercapacitors, and fuel cells. Supercapacitors deliver 

rapid bursts of energy and quick charge/discharge cycles, ideal for applications 

needing fast power delivery. Fuel cells continuously generate electricity from 

fuel and oxidants with high efficiency and low emissions, while batteries store 

energy through chemical reactions for use in everything from portable 

electronics to grid-scale storage. Unlike supercapacitors, which are suited for 

short bursts of power, batteries can provide a sustained energy supply over a 

longer period. Compared to fuel cells, batteries are more widely established, 

with a broad range of available chemistries that don't require a continuous supply 

of fuel, making them more versatile and convenient. Figure 1.2 displays a 

Ragone plot that compares different types of electrical and electrochemical 

energy storage systems based on their specific energy (Wh kg-1) and specific 

power (W kg-1) outputs.  

Figure 1.2. A typical Ragone plot comparing different energy storage systems. 

The dashed cyan lines indicate discharge times. 
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1.3. Batteries 

Batteries, as compact and versatile energy storage systems, play a pivotal role in 

the energy storage market. They are divided into two types: primary and 

secondary batteries. Primary batteries are non-rechargeable and deliver power 

until the chemical components are exhausted. Secondary batteries, on the other 

hand, are rechargeable, store energy through reversible chemical reactions, and 

are widely employed in a variety of applications, from gadgets to electric 

vehicles. Popular examples of secondary batteries include ion storage batteries 

such as Li-ion and Na-ion batteries. The global secondary lithium-ion battery 

market was valued at approximately $44 billion in 2020 and is expected to reach 

around $193 billion by 2030, growing at an annual rate of around 18-20% during 

this period. This growth is primarily driven by the increasing adoption of electric 

vehicles (EVs) and the need for energy storage solutions to support renewable 

energy sources like solar and wind power.      

1.4. The ion storage cell 

Ion Storage cells that use Li ions or Na ions are primarily composed of 5 

components: cathode, anode, electrolyte, current collector, and separator.  Ion 

storage cells use a rocking chair mechanism where the ions cycle between the 

positive (cathode) and negative (anode) electrodes through the electrolyte during 

charging and discharging (Figure 1.3).  Current collectors serve as the pathways 

for electrons to move between the electrodes and the external circuit, while 

separators in liquid electrolyte-based cells have electrical Insulation between the 

cathode and anode.  When a cell is charged, ions move from the cathode to the 

anode through the electrolyte, and electrons flow through an external circuit to 

balance the charge. During discharge, the ions move back from the anode to the 

cathode, releasing energy that is used to power devices connected to the external 

circuit. Among the different components in ion storage cells, cathodes contribute 

50% of the cost and 60% of the weight. This makes cathode-active materials a 

critical component in ion storage batteries. The choice of cathode material 

affects not just the performance and longevity of the battery but also its 
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applicability in different devices, from smartphones to electric vehicles. Hence, 

ongoing research and development in cathode materials are crucial for 

advancing battery technology and meeting the growing demands for energy 

storage solutions. 

Figure 1.3. Schematic representation of an ion storage cell. 

1.5. Choice of Ions storage batteries 

Since their commercialization by Sony in 1991, Li ion batteries have dominated 

the market. The energy density of these batteries has also risen significantly from 

90-100 Wh kg-1 in the 1990s to 200-250 Wh kg-1 today. The cathode materials 

used in Lion batteries have also diversified from LiCoO2 (150-200 Wh kg-1; ~3.7 

V (nominal)) to LiFePO4 (90-120 Wh kg-1; ~3.2-3.3 V), Li(NiₓMnₓCoₓ)O₂, 

where x varies like in the case of NMC111, NMC622, NMC811 (150-220 Wh 

kg-1 depending on the composition);  ~3.7-3.8 V) and LiNiₓCoₓAlₓO₂ (200-250 

Wh kg-1; 3.6-3.7 V ). The advances in manufacturing, economies of scale, and 

improvements in battery chemistry have resulted in a steady decrease in the cost 

of Li ion batteries over the last decade to around $101 per kWh as of 2023 [1].  
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While lithium-ion (Li-ion) batteries are becoming cheaper each year, As the 

demand for batteries continues to rise across various sectors, having a diversified 

portfolio of battery technologies will be crucial. Na-ion batteries provide an 

alternative that can be used in specific scenarios where they offer advantages 

over Li-ion batteries, thereby reducing the pressure on lithium resources. 

Sodium is far more abundant and cheaper to source than lithium, leading to 

lower raw material costs and reducing the risk of supply chain disruptions as 

battery demand grows. As of recent data, lithium carbonate costs around $30,000 

to $40,000 per ton. This high cost is driven by increasing demand, limited 

supply, and the concentration of lithium resources in specific geographic 

regions. In contrast, sodium precursors, such as sodium carbonate or sodium 

hydroxide, are significantly cheaper, with sodium carbonate costing around 

$200 to $300 per ton. The extraction and processing of sodium generally has a 

lower environmental impact compared to lithium. This makes Na-ion batteries 

a more environmentally friendly option, which is increasingly important as 

industries seek to reduce their carbon footprints. While Na-ion batteries may not 

completely replace Li-ion batteries, they are seen as a complementary 

technology, particularly for large-scale energy storage and applications where 

cost and resource availability are critical factors [2, 3].  

1.6. Cathode materials for Na ion batteries 

Various cathode materials have been explored for NIBs, including Layered 

oxides, NASICON-type, and Prussian blue analogs. NASICON (Na Super Ionic 

Conductor) type materials are known for their structural stability. NASICON-

type cathode materials like Na3V2(PO4)3 and Na4VMn(PO4)3 exhibit specific 

capacities close to 120 mAh g-1 with nominal voltages greater than 3.4 V and are 

promising cathode materials. Similarly, Prussian blue analog cathodes offer 

open frameworks that facilitate rapid sodium ion diffusion, contributing to their 

high-rate capabilities. Despite these advantages, challenges such as limited 

capacity and stability issues under prolonged cycling still need to be addressed 

[2, 3]. 
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Layered oxides (LOs) are known for their compositional flexibility, seamless 

synthesis, and superior electrochemical performance compared to the other 

cathodes, which makes them the most popular option for replacing Li-ion-based 

cathodes in commercial Na ion batteries. In addition, the current Li-ion battery 

technology also uses cathodes based on the layered oxide structure and shares 

many commonalities with Na-ion-based layered oxide cathodes. This would 

pave the way for their accelerated growth, as much of the data available on Li-

ion-based cathodes can aid in advancing Na-based LOs, which is an added 

benefit.  

1.7. Layered oxide cathodes 

LOs typically have a basic formula of NaxTMO2; 0 ≤  x ≤  1; TM- transition 

metal cation or a mixture of multiple cations and are known to exist in a variety 

of phases like P2, P3, O3, O2, etc. This classification is based on the site 

configuration of Na-ions and the number of different O layers in the unit cell. 

O3-type LOs have x ~ 1, while P2 and P3 phases typically have x < 0.75 [2, 4]. 

With higher Na-ion concentrations, O3 phases usually show higher specific 

capacitates, while P2 and P3 type LOs fare better in rate and cyclic performance. 

This is due to the comparatively better open structure and resilience of P-type 

LOs to phase transition, which improves Na-ion conduction dynamics in the 

material. 
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In P2 and P3-type materials, the Na-ion occupies a prismatic site as opposed to 

an octahedral site in the O3-type compounds. Further, in a P2-type framework, 

Na-ions occupy 2 different prismatic sites, which are either face-sharing (Naf) 

or edge-sharing (Nae) with the transition metal octahedron (TM-O6). In P3, all 

prismatic sites are crystallographically equivalent Naf sites (Figure 1.4) [5].  

Figure 1.4. Diagram representing P2 and O3 type layered oxide structures 

 

P3, P2, and O3 layered oxide structures are known to undergo phase transitions 

during the intercalation and deintercalation of sodium ions. These phase 

transitions are critical phenomena that affect the performance, stability, and 

longevity of sodium-ion (Na-ion) batteries. During cycling, as sodium ions are 

inserted, the P3 structure is reported to undergo transitions to an O3-type phase. 

P3-type structures also develop monoclinic distortion at lower Na+ 

concentrations (typically when x < 0.3) and transform into P'3-type structures. 

In P2-type materials, during the deintercalation of Na ions (particularly at low 

sodium concentrations), P2 structures can transition to O2, P′2, or OP4 phases. 

These transitions are typically associated with changes in the coordination 

environment of sodium ions and alterations in the stacking sequence of the 

layers. The P2-to-O2 transition, for example, involves a shift in the oxygen 

layers, which can be reversible but may still cause some structural strain [4, 6]. 
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1.8. Literature Survey 

1.8.1. Layered oxide structures 

The literature on various structures and electrochemical properties of P2 and O3-

type cathode materials is extensive [7-10]. Materials based on a P2-type 

framework possess notable features such as improved electrical conductivity and 

cyclic stability compared to the other structures because of their relatively open 

structure and resilience to resist phase transformations during Na-ions extraction 

[11-13]. O3-type materials typically exhibit higher specific capacities but suffer 

from poor rate performance and cyclic stability. In contrast, research on 

thermodynamically stable P3-type materials has only recently started to emerge 

[10, 14-17]. The studies on the P3 phase primarily revolve around those obtained 

electrochemically during the charging of O3-type cathodes, where the diffusion 

coefficient of the material shows a sharp rise [14, 18]. New reports on 

thermodynamically synthesized P3-type materials also suggest high diffusion 

coefficients comparable to P2-type materials [17, 19, 20]. However, rapid 

structural changes during cycling render this ineffective as other phases (O3, 

O’3, and P′3 that form at lower and higher voltages) do not support fast Na-ion 

kinetics, severely limiting the rate performance of these P3 phases [20-22].  

1.8.2. Mono-metallic layered oxides  

In layered oxide cathodes, the transition metal site can contain single or multiple 

redox-active transition metal elements. The presence of each of these transition 

metal elements brings its advantages and disadvantages. Monometallic oxides 

containing single transition metals such as NaxMnO2 [23, 24], NaxCoO2, and 

NaNiO2 [25, 26] are known to show high specific capacities close to 200 mAh/g 

during the first charge-discharge cycle but suffer from rapid capacity 

degradation to about 50% of the original capacity in less than 100 cycles, even 

at a C/10 discharge rate. The charge/discharge curves of these materials also 

show multiple plateaus, which, in most cases, indicate various phase transitions 

during cycling.  
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These phase changes are caused by Na+ vacancy ordering and anisotropic 

volume changes induced by Jahn Teller active ions (such as Mn3+) during 

cycling, which affects cyclability. Interestingly, in NaxMnO2 and NaxCoO2, the 

P2 phase showed similar capacity degradations with each cycle and had a similar 

number of phase transitions as that of P3 and O3 type phases (synthesized by 

altering the concentration of Na+). In the case of iron-based LOs such as P2 and 

O3 type NaxFeO2, the Jahn Teller active Fe4+ ions and possible migration of Fe3+ 

ions from their octahedral site to neighboring tetrahedral interstitials due to the 

lower octahedral stabilization energy (OSSE) of Fe3+ ions. In most cases, this is 

irreversible and leads to phase transformations [6, 27]. OSSE is the difference 

in crystal field stabilization energy of octahedral and tetrahedral sites. It is an 

indicator of the relative stability of an ion in an octahedral coordination 

compared to a tetrahedral coordination.  The OSSE of Fe3+ ions is equal to 0, 

meaning they possess the same energy in both sites.  This increases the 

probability of their migration from their original octahedral site. Overall, among 

monometallic Fe-based LOs, O3-NaFeO2 reportedly showed a capacity of 120 

mAh/g at a discharge rate of C/10 with a 50% reduction in initial capacity after 

10 cycles [28].  

 Among lesser-known cathode materials based on Cr, Cu, and V, NaCrO2 stands 

out. Even though the scarcity of Cr ores and its poisonous nature would limit the 

practical application of Cr-based cathodes of the O3 type, NaCrO2 demonstrated 

excellent electrochemical performance [29, 30]. The cathode exhibits a nominal 

voltage of 3V and achieved a specific capacity of 120 mAh/g, with almost 90% 

of the initial capacity retained after 300 cycles at 1 C. Even at a discharge rate 

of 100C, this cathode maintained a capacity of 60 mAh/g, which is quite 

impressive [30]. The capacity fading mechanism in Cr-based cathode materials 

is also quite different from those already discussed. In the case of O3 type 

NaCrO2, rock salt CrO2 was formed during charging due to the instability of Cr4+ 

ions in the LO structure [31-33].  
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1.8.3. Multi-metallic layered oxides 

In Cu-based monometallic cathodes, such as O3 type NaCuO2, the dissociation 

of the compound into CuO and Na2O at higher voltages causes severe capacity 

fading in just 10 cycles [34].  NaVO2, with V3+ ions as the active TM, is 

challenging to synthesize, as it requires a reducing atmosphere to prevent V3+ 

ions from assuming a 5+ oxidation state. The material with a specific capacity 

of 110 mAh/g shows a nominal voltage of only 1.8 V and, hence, has a low 

energy density [35].   

Each monometallic LOs discussed has decent specific capacities, but rapid phase 

transitions induced by Na-ion vacancy ordering pose various challenges that 

limit their cyclic stability. Like Li-based cathode materials, cationic substitutions 

in the TM layer can help circumvent many of these challenges. Cationic 

substitutions involving active materials use transition metals such as Ni2+, Cu2+, 

Co3+, etc., that show their corresponding redox reactions. This helps reduce 

dependence on a single metal ion for charge compensation processes and can 

reduce some of its drawbacks. Additionally, the presence of multiple elements 

in the TM site in LOs has been reported to be instrumental in preventing Na-ion 

vacancy ordering during charging, which can help avoid multiple phase 

transitions that plague monometallic oxides. Typically, NaxMnO2 is preferred as 

the parent material for catatonic substitutions. This is mainly due to 2 reasons: a 

relative abundance of Mn ores, making Mn-based cathodes relatively cheaper, 

and the second being the ability of Mn to show a 3+ and 4+ oxidation state. This 

enables greater flexibility in the concentration of Na and allows for the inclusion 

of other cations with 2+ oxidation states, as Mn ions would readily assume a 4+ 

oxidation to compensate for the loss. For example, substituting Mn with Ni2+ ion 

is a well-studied combination where the Ni underdoes a 2-electron transfer 

reaction from a 2+ to 4+ oxidation state during charging and hence boosts the 

cathode's capacity. P2 type Na0.67Mn(0.66+x)Ni(0.33-x)O2 series of cathode materials 

have shown capacities close to 130 mAh/g [36-38]. The detrimental effect of 

phase transformations on cyclic stability can be imbibed from the operational 
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voltage dependent studies on Na0.67Mn0.66Ni0.33O2, where the sample was able to 

show excellent cyclic properties retaining 75% of initial capacity at a discharge 

rate of 5C when cycled between 2-4 V after 1200 cycles when compared to just 

70% of initial capacity retention after 70 cycles at 0.1C between 1.5-4.5V. This 

is because the material has been shown to undergo phase transformations beyond 

initial voltage ranges. Mn4+ remains largely inactive in the cathode when Ni 

~0.33. At lower Ni concentrations, the concentration of the Jahn Teller Mn3+ ions 

increases, which drastically affects cyclic properties. The recently reported P3 

type Na0.67Mn0.66Ni0.33O2 shows similar capacities as the P2 type sample. Still, 

it has inferior cyclic and rate performance due to phase changes between P3, O3, 

and Z phases and lower Na-ion diffusion coefficients [10, 39].  Even with 

commendable electrochemical properties, Na0.67Mn0.66Ni0.33O2 cathode exhibits 

a nominal low voltage close to 3 V due to the low reduction potential of Ni4+/2+ 

redox couples. Na-ion vacancy ordering persists as a challenge in this cathode. 

Even its performance at higher voltages above 3.8 V leaves much to be desired. 

Surprisingly, Cu substitution for Ni in Na-Ni-Mn based system mitigated many 

of these challenges. The P2 type NaxMn0.67Ni0.33-xCuxO2 [13, 40-43] series of 

cathodes have shown an elevated nominal voltage of 3.4 V (mainly due to higher 

oxidation potentials of Cu2+/3+ at 3.9V) with considerable reduction in Na-ion 

vacancy ordering during charging. P2 type Na0.67Mn0.67Ni0.18Cu15O2 [41]  and 

Na0.70Mn0.65Ni0.20Cu0.15O2 [43] cathodes have shown a 115 mAh/g and have 

improved structural stability with phase transformations occurring only at 4.4V.  

Even with the inclusion of Cu, the rate performance and cyclic properties 

remained unchanged, with 95% capacity retentions reported after 300 cycles at 

a 1C rate between 2.0-4.3 V. Similar enhancement in structural stability with the 

inclusion of Cu has also been seen in Na-Fe-Mn and Na-Fe-Ni-Mn based 

systems where structural stability of both cathodes improved with the inclusion 

of Cu ions. Even though the capacities of these cathodes reduced drastically 

from 180 mAh/g to 90 mAh/g, the cyclic stability showed exceptional 

improvements, with 85% capacity retained after 150 cycles at a discharge rate 

of 1C [44-46] compared to 60% retained after 30 cycles for the parent 



Chapter 1 

 

13 
 

compounds Na0.67FexMn1-xO2 [47] and Na0.67Ni0.33-xFexMn0.67O2 [48-55]. In Fe-

based systems, the migration of Fe to tetrahedral voids at voltages below 4 V 

was observed to have dwindled with Cu addition, which delays the formation of 

the OP4 phase during charging. Even in Na0.67Cu0.14Mn0.86O2 [42] compounds, 

drastic improvements in cyclic performance have been reported compared to 

Na0.67MnO2. Another popular substituent in Na-Mn systems is cobalt (Co), 

which shows impressive electrochemical properties in bimetallic and 

polymetallic LOs. Na0.67CoxMn1-xO2 [56-59] with Co substitution behaves 

similarly to Cu-substituted LOs. Although the former has shown higher specific 

capacities, the rate performance and cyclability improvements are comparable 

to the Na0.67(Ni-Cu-Mn)O2 series of cathodes already discussed.  

Similar to the substitution of the multiple electrochemically active ions, the 

incorporation of electrochemically inactive ions, such as Al3+, Zn2+, Mg2+, Ti4+, 

etc., into the transition metal layers is a widely explored strategy to improve the 

electrochemical performance of layered oxide cathodes. These inactive ions 

function as structural supports during the insertion and extraction of Na ions and 

have been shown to enhance the cyclic stability of layered oxide compounds. As 

their name implies, these ions do not participate in electrochemical reactions but 

act as stabilizing pillars during cycling. For example, in the case of Ti4+,  It was 

reported that the presence of a larger ion (such as Ti-ions) in place of Mn4+ ions 

in Na0.7Ni0.2Cu0.15Mn0.65O2 [43, 60] led to the expansion of the unit cell and an 

increase in the area of the Na ion conduction bottlenecks. Consequently, the 

Na0.7Ni0.2Cu0.15Mn0.575Ti0.075O2 cathode also showed improvements in its 

particle morphology and electrical properties, which led to a remarkable 

improvement of 27% in the observed specific capacity of the parent compound. 

In another instance, Ti substituted P2 Na0.67Ni0.33Mn0.67O2, effectively 

suppressing P2 to O2/OP4 phase transitions and enhancing cyclic performance 

[61, 62]. Other inactive ions, such as Mg2+ and Zn2+, have also been reported to 

have similar effects on the P2-type structure [63-65]. The 2+ oxidation state of 

these ions is particularly useful in Mn-based layered oxides, as it helps reduce 

Mn3+ concentrations. Although not extensively studied in NIB cathodes, Al3+ 
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substitution in layered oxides is reported to enhance the rate performance and 

cyclic stability of LIB cathodes [1, 66-69]. 

1.8.4. Mixed phase layered oxides 

Another approach that has recently garnered significant research interest for 

improving the electrochemical performance of layered oxide cathodes involves 

the use of hybrid P2/O3 cathodes with different fractions of O3 and P2 type 

phases [41, 70-74]. This method has demonstrated improvements in cyclic 

stability without sacrificing specific capacity. Additionally, biphasic P2/O3 

cathode materials have successfully reduced structural distortions caused by the 

activation of Mn3+/4+ in NaNixMn1-xO2. This allows a wider operational voltage 

window during cycling, substantially boosting the specific capacity [74, 75]. 

Further, in O3/P2 biphasic cathodes, the synergistic effect arising from the 

coexistence of P2 and O3 type phases has been reported to enhance structural 

stabilities and Na+ transport kinematics, leading to better rate and cyclic 

performance [8, 22, 76]. Although not as extensively studied, P2/P3 biphasic 

cathodes also show similar enhancement in electrochemical properties due to an 

interlocking of P3 and P2 structures [16, 17, 77, 78]. These materials have shown 

higher rate performance compared to their monophasic counterparts. Combining 

P3 and P2 type phases also leverages the superior Na+ transport properties of 

both phases; the biphasic P3 and P2 type compounds can be obtained at 

relatively lower calcination temperatures than the P2 and O3 type phases. The 

electrochemical properties of various cathode materials are compared in table 

1.1 
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Table 1.1. Comparison of electrochemical properties between different layered 

oxide cathodes.  

Composition 

Specific 

capacity 

(mAh/g) 

Cyclability 

(%, C-rate, 

Cycles) 

Ref 

Na0.5Ni0.25Mn0.75O2 210 (1.5-4.4 

V) 

80% after 50 

cycles at 1 C 

[37] 

Na0.67Cu0.28Mn0.72O2  109 (2-4.5 V) 98% after 50 

cycles at 1 C 

[79] 

NaNi1/3Mn1/3Fe1/3O2 
130 (2-4.3 V) 

75% after 200 

cycles at 1C 

[80] 

NaNi0.25Fe0.25Mn0.5O2 193 (1.5-

4.3V) 

40% after 50 

cycles at 0.5C 

[81] 

Na0.67Ni0.1Cu0.2Mn0.7O2 114 (2-4.5V) 78% after 200 

cycles 1C 

[42] 

Na0.67Mn0.65Ni0.2Co0.15O2 155 (1.5-

4.2V) 

78% after 100 

cycles at 1 C 

[82] 

NaCu0.22Fe0.30Mn0.48O2 100 (2-4.05 

V) 

97% after 100 

cycles at 0.1 

C 

[83] 

Na0.75Ni0.82Co0.12Mn0.06O2 171 (2-4V) 65% after 400 

cycles at 1C 

[84] 

Na0.83Cr1/3Fe1/3Mn1/6Ti1/6O2 161 (1.5-4.1 

V) 

35% after 100 

cycles at 0.2C 

[85] 

Na0.8 Mn0.55 Ni0.25 Fe0.1 Ti0.1 O2 155 (1.5-4.3 

V) 

80% after 

100 cycles at 

0.1C 

[86] 

Na0.67Mn0.67Ni0.23Mg0.1O2  
120 (1.5-4.0 

V) 

95% after 50 

cycles at 1C 
 [87] 
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Na0.6Ni0.22Al0.11Mn0.66O2 252 (1.5-4.6 

V) 

80% after 50 

cycles at 20 

mA·g−1 

[88] 

Na2/3Ni1/3 Mn5/9Al1/9O2 117 (1.6-4.0 

V) 

77.5% after 

100 cycles at 

0.2 C 

[89] 

NaNi0.32Mn1/3Fe1/3Zn0.01O2 125(2-4.3) 82% after 200 

cycles at 1C 

[80] 

NaCu0.22Fe0.30Mn0.43Ti0.05O2 90 (2.5-4.05 

V) 

96% after 200 

cycles at 2C 

[90] 

NaNi0.4Fe0.2Mn0.2Ti0.2O2 145(2-4.2) 84% after 200 

cycles at 1C 

[91] 

Na0.70Ni0.20Cu0.15Mn0.575Ti0.075O2 130 (2-4.25 

V) 

95% after 300 

cycles at 1C 

[43] 

NaNi0.45Mn0.2Ti0.3Zr0.05O2 141 (2-4 V) 70% after 200 

cycles at 

0.05C 

[92] 

 Na2/3Mn0.7Ni0.1Fe0.1Mg0.1O2 122 (2-4.3 V) 80% after 250 

cycles at 0.2 

C 

[93] 

NaMn0.48Ni0.2Fe0.3Mg0.02O2 160 (1.5-4.2 

V) 

99% after 100 

cycles at 0.1 

C. 

[94] 

Na0.9Cu0.12Ni0.10Fe0.30Mn0.43Ti0.05O2  105 (2.5-4.2 

V) 

90% after 200 

cycles at 0.2C 

[90] 

Na0.9Ca0.05Ni1/3Fe1/3Mn1/3O2  127 (2-4 V) 92% after 

200 cycles at 

0.2C 

[95] 

P2/O3 

Na0.80Mn0.60Ni0.30Cu0.10O2 

146 (2.0–4.2 

V) 

92% after 200 

cycles at 1C 

[96] 



Chapter 1 

 

17 
 

P2/O3 

Na0.736Ni0.264Mg0.1Mn0.636O2  

130 (2.0–

4.3 V) 

73.1% after 

200 at 1C 
[97] 

P2/O3 

Na0.80Li0.13Ni0.20Fe0.10Mn0.57O2 

181 (2.0–4.5 

V) 

89.6% after 

100 cycles at 

1C 

[76] 

P2/O3 

Na0.67Li0.15Ni0.18Mg0.02Mn0.8O2 

160 (1.5–

4.2 V) 

70% after 100 

cycles 0.1C 
[98] 

P2/O3 

Na0.76Ni0.33Mn0.50Fe0.10Ti0.07O2  

160 (2.2–

4.3 V) 

79.2% after 

100 cycles at 

1C 

[99] 

P2/O3 

Na0.8Li0.2Ni0.33Mn0.67O2  

132 (2.0–4.3 

V) 

80.1% after 

120 cycles at 

1C 

[100] 

P2/O3 

Na0.85Ni0.34Mn0.33Ti0.33O2  

126 (2.2–4.4 

V) 

80.6% after 

200 cycles at 

1C 

[74] 

P2/Tunnel/Z 

Na0.7MnO2.5  

185 (2.0–4.3 

V) 

77% after 100 

cycles at 0.5C 
[101] 

 

1.9. Motivation  

India is the third largest consumer of energy in the world. About 42% of India's 

total installed energy capacity comes from renewable sources (Figure 1.5). India 

ranks fourth globally in installed wind power and fifth in solar power capacity. 

Over the last decade, India has witnessed a rapid jump in solar power generation 

form from 2.6 GW to 89.43 GW since 2014. Given India’s ambitious renewable 

energy targets to reach 500 GW of renewable capacity by 2030 and increasing 

energy demand, there is a pressing need for cost-effective and scalable energy 

storage solutions [102].  
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Figure 1.5 Energy production in India by source. 

Sodium-ion (Na-ion) batteries present a promising option for India due to their 

cost-effectiveness and reliance on locally abundant sodium precursors. Unlike 

lithium, which is scarce and requires imports, sodium is plentiful and 

inexpensive. This reduces the overall cost of battery production and aligns with 

India's Atmanirbhar Bharat initiative, which seeks to enhance domestic 

manufacturing and reduce import dependency.  Additionally, the layered oxide 

cathode materials studied in this work incorporate widely available elements 

such as manganese and aluminum, abundantly found in India, a key global 

exporter of these materials (Figure 1.6). Hence, developing high-performance 

Na-ion batteries using locally abundant resources like sodium is a strategic 

move. This would lower costs, strengthen India's energy security, and boost its 

domestic manufacturing capabilities. Enhanced battery performance ensures 

competitiveness with lithium-ion technology while promoting sustainability and 

reducing the environmental impact of mining for rare materials. 
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Figure 1.6 Manganese and Bauxite (Al ore) production over the world.  

1.10. Scope of the thesis work 

The thesis primarily focuses on designing and optimizing the composition of 

monophasic/mixed phase layered oxide cathode materials (such as P2/O3 and 

P3/P2 phases) to improve their electrochemical performance. The objectives 

outlined for the study are as follows: 

1. To synthesize and study the structural, electrical, and electrochemical 

properties of mixed phase layered oxides. 

2. To explore the electrochemical properties of biphasic/triphasic systems 

involving P2, P3, and O3 phases in varying concentrations. 

3. To undertake a systematic study of a system of cathode materials and 

map the effect of each of its constituent elements on functional 

properties.  

4. To study the structural evolution of the different cathode materials and 

the various parameters that influence them during cycling.  

5. To establish a fabrication protocol for the preparation of full cells using 

hard carbon anode. 
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Materials and Methods 

2.1. Sol-gel synthesis 

A conventional sol-gel method was used to prepare the P2/P3 series of cathode 

materials. A homogeneous solution containing stoichiometric amounts of 

precursors such as manganese (Ⅱ) acetate tetrahydrate (source of Mn ions), 

nickel acetate tetrahydrate (source of Ni ions), aluminum nitrate (source of Al 

ions), and sodium carbonate (source of Na ions) was prepared in DI water and 

stirred for 6 h, after which ethylene glycol and citric acid were added. After 

stirring for another 12 h, the solution was heated to produce a gel. The gel was 

then dried and subsequently ground to obtain a powder. The powder was heat 

treated at 550 °C in air for 12 h and further calcined at different temperatures 

(700 – 850 ℃) to obtain the final product before being moved into a glovebox 

(Figure 2.1). 

Figure 2.1. The steps involved in sol-gel synthesis. 

2.2. Cell Fabrication  

The slurry for the positive electrode was prepared by blending the active 

material, Ketjen black, and a PVDF binder in NMP, with a weight ratio of 

75:10:15. This mixture was applied to an aluminum current collector, dried, and 

then cut into 16 mm discs. In a similar process, the negative electrode was 

formed by mixing commercially available hard carbon with Ketjen black and 
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PVDF binder in NMP, using the same 75:10:15 weight ratio. The resulting slurry 

was coated using a desktop coater (Figure 2.2) and dried at 100 °C for 8 h in a 

vacuum oven onto an aluminum current collector and punched into 16 mm discs. 

CR2032 half cells were fabricated for electrochemical tests of cathodes using 

the Na metal as the counter electrode, 1M NaClO4 in Ethylene Carbonate -

Propylene Carbonate (vol. ratio of 1:1) as the electrolyte, and a Whatman GF/D 

filter paper acting as the separator in a glovebox. The full cells, on the other 

hand, contain hard carbon anode discs instead of Na metal.  

Figure 2.2. Desktop coating machine used in cathode preparation. 

2.3. Structural characterization 

2.3.1. X-ray diffraction 

X-ray diffraction (XRD) is a powerful analytical technique used to determine 

the crystal structure, identify crystalline phases, analyze lattice parameters, and 

detect structural changes. The powder x-ray diffraction (XRD) patterns were 

obtained at room temperature using Malvern Panalytical, Empyrean, 

diffractometer (Cu-Kα radiation source) between 10°- 70° 2 range (Figure 2.3). 

The crystallographic data for the samples were obtained through Rietveld 

refinement of the XRD data with the help of the TOPAS Academic (version 6) 

software package.  
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Figure 2.3 The Malvern Panalytical diffractometer. 

2.3.2 Field Emission Scanning Electron Microscopy (FESEM) 

Field Emission Scanning Electron Microscopy (FESEM) is an advanced 

imaging technique used to capture highly detailed images of a material's surface 

at the nanoscale. FESEM uses a field emission gun to produce a focused beam 

of electrons, which interacts with the sample, generating high-resolution images 

with minimal beam damage. The microstructure of the samples was analyzed 

using a Joel field emission scanning electron microscope (model JEOL-7610) 

equipped with energy-dispersive x-ray spectroscopy (EDS) for elemental 

mapping (Figure 2.4).  
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Figure 2.4. The JEOL-7610 Field Emission Scanning Electron Microscope. 

 

2.3.3. X-ray Photoelectron Spectroscopy 

XPS spectra were acquired to determine the valence states of their constituent 

elements in each sample. In XPS, a sample is irradiated with X-rays, which 

causes the emission of photoelectrons from the material's surface. By measuring 

the kinetic energy and number of emitted electrons, researchers can identify the 

elements present and analyze their chemical bonding and oxidation states. X-ray 

photoelectron spectra (XPS) were obtained using a Thermofisher Scientific -

Naxsa base with an Al Kα X-ray source (1486.6 eV). 

2.3.4. Inductively Coupled Plasma  

Inductively Coupled Plasma (ICP) is an analytical technique used to detect and 

quantify trace elements in various materials. In ICP, a sample is ionized by 

exposing it to a high-temperature plasma (typically generated using argon gas), 

which excites the atoms and ions. These excited species emit light at 

characteristic wavelengths. The intensity of the emitted light correlates with the 
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concentration of each element, allowing for precise elemental analysis. 

Inductively coupled plasma atomic emission spectrometry (ICP-AES) 

(SPECTRO Analytical Instruments GmbH, Germany, Model: ARCOS, 

Simultaneous ICP Spectrometer) was used to determine the specific chemical 

compositions of the cathode materials. 

2.3.5. Extended X-ray absorption fine structure (EXAFS) 

The Mn and Ni K-edge extended x-ray absorption fine structure (EXAFS) 

spectra were obtained from the scanning EXAFS beamline (BL-9) at Indus-2 

synchrotron source (2.5 GeV, 150 mA) at Raja Ramanna Centre for Advanced 

Technology (RRCAT) Indore, India, and were analyzed using ATHENA and 

ARTEMIS software packages. EXAFS is a technique used to study the local 

atomic environment around specific elements within a material. EXAFS is part 

of X-ray absorption spectroscopy (XAS), focusing on the oscillations that occur 

in the X-ray absorption spectrum just beyond the absorption edge of an element. 

These oscillations arise due to interference between outgoing photoelectrons 

(ejected by X-ray absorption) and the surrounding atoms. By analyzing these 

oscillations, EXAFS provides detailed information about the distances, 

coordination numbers, and types of neighboring atoms, as well as the disorder 

around the absorbing atom. 

2.4. Electrochemical Characterization 

2.4.1. Cyclic Voltammetry 

Cyclic voltammetry (CV) is an electrochemical technique used to study the 

redox behavior of materials and reaction mechanisms. The redox peaks in CV 

curves indicate the voltages at which the cathode material undergoes oxidation 

and reduction, revealing the active redox couples. The cyclic voltammetry (CV) 

tests were performed at a scan rate of 0.1 mV/s with the help of a Keithley Model 

2450-EC Source Meter. 
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2.4.2 Galvanostatic Charge/Discharge and Galvanometric Intermittent 

Titration Technique 

Galvanometric charge-discharge (GCD) tests and the galvanometric intermittent 

titration technique (GITT) were carried out using a Neware battery tester (CT-

4008T). The rate performance of the samples was evaluated at different currents, 

and the cyclic performance was tested for 200-500 cycles. The mass loading for 

the samples was around 2-3 mg/cm2 (unless otherwise specified), and C-rates 

were calculated assuming a nominal capacity of 150 mAh/g (assuming a Na+ 

extraction of ~0.6). 

2.4.3. Electrochemical impedance spectroscopy 

Impedance measurements were performed using a computer-controlled LCR 

meter (model: ZM 2376, NF Corp.) equipped with an internal DC bias up to 5 

V over a 1 mHz – 1 MHz frequency range. The impedance data was analyzed 

using equivalent circuit modelling. The impedance was fitted to equivalent 

circuit models to extract parameters such as electrolyte resistance, charge 

transfer resistance, and interfacial layers resistance from the overall cell 

resistance. 

2.4.4. Operando Synchrotron XRD 

Operando X-ray Diffraction (operando XRD) combines X-ray diffraction with 

real-time monitoring of materials under operating conditions during 

electrochemical reactions in batteries. This method allows observing structural 

changes in materials while they are functioning, providing valuable insights into 

their behavior and performance. Operando Synchrotron XRD studies were 

carried out using extreme conditions angle dispersive/energy dispersive 

synchrotron X-ray diffraction (BL11) at the Indus-2 beamline (RRCAT) with 

different beam wavelengths and beam energy of 2.5 GeV in transmission mode. 

The CR2032 coin cells for the operando studies were prepared by drilling 3 mm 
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holes in the cathode and anode casings, which were sealed using Kapton films 

(schematically shown in Figure 2.5).  

Figure 2.5. Schematic of the operando Synchrotron XRD setup. 
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Unveiling the Potential of P3 Phase in Enhancing the 

Electrochemical Performance of a Layered Oxide Cathode 

In this chapter, a series of P3/P2 biphasic Na0.75Mn0.75Ni0.25O2 (NNM) cathode with 

varying P2/P3 phase fractions were synthesized, and the impact of a varying P3 

phase on the electrochemical properties between 1.5 V and 4.2 V is reported. The 

variable concentration of the P3 phase, ranging from 0-100%, was achieved by 

appropriately tuning the calcination temperature. The P3 phase typically forms a 

lower temperature compared to the P2 and O3 phases. This was found to have 

profound implications on the morphology and electrochemical properties of the 

cathode material, with P3 dominant biphasic cathodes showing substantially 

superior rate performance and cyclic stability compared to monophasic P2 and P3 

cathodes. Apart from morphological changes, the manifestation of the synergetic 

effect between the two phases mitigated the severe structural distortions during 

cycling, resulting in a better cyclability of biphasic cathodes. 

3.1 Structural Characteristics 

The Na0.75Mn0.75Ni0.25O2 (NNM-x; x represents the calcination temperatures) series 

of materials were synthesized through the sol-gel route with calcination 

temperatures ranging between 700 to 850 ℃. Powder XRD was used to analyze the 

crystal structure of these samples. The room temperature XRD pattern of each 

sample and their corresponding Rietveld refinement profiles are depicted in Figure 

3.1(a) & (c) and Figure 3.2. Initial analysis of Figure 3.1(a) shows drastic variations 

in the peaks’ positions and intensities, confirming the changes in the crystal structure 

of the material due to the change in calcination temperature. The Rietveld refinement 

of the XRD data for the NNM-700 and 750 samples confirms the existence of a 

single P3 (𝑅3̅𝑚 space group) phase, with minor impurities (< 10 wt.%) observed in 

the former sample. With further increase in synthesis temperature, the P3 (006), 

(101), (102), (104), and (015) peaks show a gradual decline in intensity in 

comparison to P2 (002), (100), (102), (103), (104) diffraction indicating the 

emergence of a biphasic P2/P3 system with P2 phase becoming dominant with the 

increase in calcination temperate from 750 ℃ - 850 ℃. The deconvoluted XRD 

patterns of P2 and P3 phases for NNM-750, 780, and 850 between the 2θ range of 

30°- 40° are shown in Figure 3.1(c). 
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The XRD data confirm a continuous conversion of the P3 phase into a P2-type phase 

with an increase in the calcination temperature and complies with the recent reports 

in the literature where the P3 phase is regarded as an ordered phase of P2 with lower 

calcination temperatures [1, 2]. In this investigation, we have synthesized hitherto 

unknown pure P3 phase in extensively studied Na0.75Mn0.75Ni0.25O2. More 

importantly, these XRD results demonstrated that the phase fraction of the P2/P3 

biphasic system could be tailored from 0% to 100% simply by controlling the 

calcination temperature. The crystallographic parameters obtained from Rietveld 

refinement (Table 3.1) also show that unit cell volume for P2 (number of formula 

unit cells in one crystallographic unit cell, Z = 2) and P3 (Z = 3) phases formed at 

different synthesis temperatures remained essentially unchanged and was found to 

be around ~80.4 Å3 and ~121.2 Å3, respectively, with similar areas of around 9.51 

Å2 for the prismatic faces that form the primary Na+ migration bottlenecks. The P2 

and P3 crystal structures generated using VESTA [3] and output parameters of 

Rietveld refinement are depicted in Figure 3.1(b).  
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Figure 3.1. (a) Phase evolution of Na0.75Mn0.75Ni0.25O2 with calcination 

temperature. (b) 2D visualization of P2 and P3 structures generated using 

VESTA software. (c) Rietveld refinement of XRD data belonging to NNM-

750,780, and 850 samples, along with the deconvoluted P2 and P3 phases in 

the 2θ range of 30-40°. 

Another noticeable feature of NNM samples investigated in the present study is the 

considerable influence of Na content on the phase fractions obtained at various 

calcination temperatures. Figure 3.3 displays the room temperature XRD patterns of 

NNM-700, 750 & 800 prepared by adding 5% extra Na. The peaks marked by a * 

correspond to an O3 phase. This establishes 0.75 as a critical point of Na 

concentration for obtaining a P2/P3 biphasic system in Na0.75Mn0.75Ni0.25O2, above 

which a tri-phasic system involving P2/P3/O3 starts to form. Interestingly, the 
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temperature at which O3 peaks appeared matched that of the P3 phase formation 

temperature at ~ 700 ℃. With an increase in synthesis temperature, however, the 

conversion of the P3 phases in the P2 phase continued even in the 5% extra Na 

samples. At the same time, the relative intensity of the O3 peaks remained the same 

even after the entire P3 phase had transformed into a P2 phase at 850 ℃. Since the 

main aim of this study was to investigate the structural, electrical, and 

electrochemical properties of the biphasic P2/P3 system, further characterizations of 

the 5% additional Na samples were not carried out.  

 

Figure 3.2. Rietveld refinement profiles of XRD data of NNM-765 and 800 

samples. 

The local structure around the transition metal ions in P3 type NNM-750 and P2 

type NNM-850 were probed using fitting of EXAFS data at Mn and Ni K-edge. 

Figure 3.4(a-d) represents the Fourier transforms of Mn and Ni K-edge in NNM-750 

and NNM-850 samples. The peaks representing (Mn/Ni)-O and (Mn/Ni)-TM 

coordination are also marked in the figures. The (Mn/Ni)-O bond lengths obtained 

from the fit for P2 and P3 type phases matched those obtained from the Rietveld 

refinement of XRD data and put the bond lengths at ~2 Å. The distance between the 

transition metal ions obtained from the fit in both P2 and P3 type structures was 

estimated to be around 2.88 Å. 
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Figure 3.3. Room temperature XRD patterns of NNM-750, 765, and 850 

synthesized with 5% extra Na2CO3. 

Figure 3.4 (a-b) Mn-K edge and (c-d) Ni K edge EXAFS spectra of NNM-750 and 

NNM-850 samples.  
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Table 3.1. Lattice parameters of NNM-x samples obtained from the Rietveld 

refinement of room temperature XRD data. 

Sample Phase 

(Fraction) 

a (Å) c (Å) V (Å3) Reliability 

Factors 

NNM-

750 

P3 (100%) 2.8866 

±0.0001 

16.792 

± 0.002 

121.18 

± 0.01 

Rexp: 2.00 

Rwp: 2.72 

Rp: 2.12 

GOF: 1.14 

P2 (0%) - - - 

NNM-

765 
P3 

(76.7%) 

2.8879 

± 

0.0001 

16.636 

± 0.002 

121.07 

± 0.02 

Rexp: 2.00 

Rwp: 2.72 

Rp: 2.12 

GOF: 1.14 P2 

(23.3%) 

2.8864 

± 

0.0001 

11.144 

± 0.002 

80.41 

± 0.01 

NNM-

780 

P3 

(48.3%) 

2.8895 

± 

0.0003 

16.771 

± 0.002 

121.26 

± 0.03 

Rexp : 2.35     

Rwp : 2.68 

Rp : 2.12   

 GOF: 

1.14 

P2 (52.7) 2.8874 

± 

0.0001 

11.154 

± 0.001 

80.54 

± 0.01 

NNM-

800 

P3 

(28.4%) 

2.8887 

± 

0.0003 

16.744 

± 0.002 

121.01 

± 0.03 

Rexp : 2.11     

Rwp : 2.72 

Rp  : 2.06 

GOF : 1.28 P2 

(81.6%) 

2.8880 

± 

0.0001 

11.1493 

± 

0.0006 

80.53 

± 0.09 

P3 (0%) - - - Rexp : 2.85 
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NNM-

850 
P2 (100%) 

 

2.9041 

± 

0.0007 

 

11.1485 

± 

0.0004 

 

80.33 

± 0.01 

 

Rwp : 2.15 

Rp  : 2.19 

GOF : 1.32 

 

The morphology and microstructure of the NNM-x samples were studied using 

FESEM. The representative SEM micrographs of NNM-750, 780, and 850 are 

displayed in Figure 3.5(a-c), and those of NNM-765 and 800 are presented in Figure 

3.6. The figures show agglomerated and fused particles for samples calcined at 800 

℃ and 850 ℃. In contrast, the samples calcinated at temperatures below 800 ℃ 

have smaller particles with better-defined contours and facets. The elemental map 

of NNM-780 portrayed in Figure 3.5(b1-b4) shows the homogeneous distribution of 

all the constituent elements.  

Figure 3.5. SEM micrographs of (a) NNM-750, (b) NNM-780, and (c) NNM-850, 

along with (b1-b4) elemental maps depicting the distribution of the Na, Mn, Ni, 

and O in NNM-780. 

Figure 3.6. SEM images of (a) NNM-765 and (b) NNM-800. 
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The microstructure of a cathode material is a significant factor in determining its 

GCD rate performance. Samples with smaller and lesser agglomerated particles 

usually show higher specific capacities (especially at higher discharge rates) than 

those with larger and fused particles. This is because liquid electrolytes typically 

have much higher ionic conductivities than cathode materials; hence, a porous 

cathode layer with smaller particles effectively provides a shorter diffusion path for 

Na-ions than a cathode with larger and highly agglomerated particles [4, 5]. The 

effect of particle sizes is not so apparent at low discharge rates (~ 0.1C) but becomes 

a deterministic factor in boosting specific capacity at higher discharge rates. Hence, 

even though the available literature on layered oxides suggests a higher value of Na+ 

diffusion coefficient for P2-type materials compared to P3-types, the higher 

concentration of fused particles observed in the P2-dominated NNM-800 and NNM-

850 samples could lower their specific capacities at high discharge rates (inferior 

rate performance) compared to the P3 dominated samples NNM-750 and 780 

samples. 
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Figure 3.7. XPS spectra of NNM-750 and NNM-850. 

The XPS spectra of the NNM-750 and 850 samples were acquired to determine the 

valence states of their constituent elements, shown in Figure 3.7, along with the 

fitted data. The Ni 2p spectra shows 2 coupled peaks at 854.26 and 871.75 eV, which 

suggests the presence of Ni2+ ions [6-8]. The O 1s spectra show the presence of 

adsorbed CO2 along with bonded oxygen in the LO. The Mn 2p XPS spectra can be 

deconvoluted into 4 peaks: at 641.8 & 653.2 eV belonging to Mn3+, 643.2 & 654.7 

eV corresponding to Mn4+, indicating a mixed valence state of Mn-ions in 3+ and 

4+ oxidation states in these samples [6-8].   

The X-ray absorption near edge structure spectra (XANES) of NNM-750 and 850 

at Mn and Ni K-edge, depicted in Figure 3.8, also show similar energy levels for Mn 

and Ni ions for both samples. The XANES and XPS spectra of both samples are 

almost identical, suggesting that Na volatilization during the NNM-x series synthesis 

was negligible. This also indicates that the phase transformation of NNM from a P3-
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type to a P2-type upon increasing the calcination temperature from 750 ℃ to 850 

℃ is not guided by the starvation of Na-ion within the structure (due to Na 

volatilization) and both the P3 and P2 type cathodes contained a similar 

concentration on Na-ions.  

Figure 3.8. Normalized XANES spectra of NNM-750 and 850 at Mn and Ni K 

edges. 

3.2. Electrochemical Characteristics 

The electrochemical characterization of NNM-x samples was evaluated in a coin 

cell configuration, cycled between 1.5 and 4.2 V. Figure 3.9 shows the cyclic 

voltammograms of NNM-750, 780, and 850 and the same for NNM-765 and NNM-

800 are displayed in Figure 3.10. The redox peaks observed below 3 V in the cyclic 

voltammograms are attributed to the Mn3+/4+ redox process [9, 10]. In comparison, 

the peaks in 3.0 V – 3.5 V and 3.5 V - 4.0 V ranges indicate the activity of Ni2+/3+ 

and Ni3+/4+ couples, respectively [11, 12]. Interestingly, in the NNM-750 sample, 

containing a pure P3 phase, the CV curve shows only 3 pairs of distinct peaks at 

2.35/1.79 V, 3.50/3.00 V, and 3.92/3.35 V. An increased number of peaks are 

observed in the CV curves for P2 dominated NNM-800, 850 samples, possibly due 

to Na+ vacancy ordering in P2-type materials as reported in the literature [9, 13]. 

The relatively lower concentration of Na-ion vacancy ordering peaks in the other P3 

dominant samples points to an innate ability of the P3-type phase to suppress Na-

ion vacancy ordering. This could reflect higher rate performance and cyclic stability 

in the P3 dominant samples, as ordering of Na-ion vacancies is known to induce 

severe structural transitions that degrade electrochemical performance. 
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 Figure 3.9.  Cyclic voltammograms of NNM-750, 780, and 850 samples. 

Figure 3.10. Cyclic voltammograms of NNM-765 and 800. 

The galvanostatic charge-discharge curves of NNM-x half cells obtained at different 

C rates are displayed in Figure 3.11(a).  As expected, the GCD curves for all the 

samples show multiple plateaus relating to different redox couples at voltage ranges 

identified in their respective cyclic voltammograms. To further analyze the 

charge/discharge performance of the cathodes, the dQ/dV vs. voltage (V) plots were 

obtained for all samples at 0.1C. The dQ/dV vs. V plots (Figure 3.11(b)) reveal an 

interesting trend: ∆V between corresponding oxidation and reduction peaks 

decreases from ~ 0.2 V for NNM-750 (with a single P3 phase) sample to ~ 0.05 V 

for NNM-780 (with a biphasic P2/P3 structure). This could be due to the multiple 

phase transformations occurring in the cathode, which lowers the diffusion 

coefficient of Na-ions and increases the polarisation voltage. With the introduction 

of the P2 phase in the NNM-760 and NNM-780 samples, ∆V reduces considerably, 

suggesting better stabilisation of the structure in the biphasic cathodes. In contrast, 

a higher ∆V of almost 0.15 V in P2 phase dominant NNM-800 and NNM-850 
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samples may result from their particle morphologies (fused and agglomerated 

particles, as reported in the microstructural section).  

Figure 3.11. (a) GCD curves of NNM-x series of cathode materials at different 

C rates. (b) dQ/dV vs. voltage (V) plots of NNM-x cathodes at a discharge rate 

of 0.1C. (c) Rate performance and (d) cyclic stability of NNM-x cathodes at a 

discharge rate of 1C. 

Another striking feature of GCD curves (Figure 3.11(a)) is the decrease in the 

specific capacity of the NNM-x cathodes with an increase in P2 concentration at a 

charge/discharge rate of 0.1C. The specific capacity decreases from 190 mAh g-1 in 

the NNM-750 to 180 mAh g-1 in NNM-765, 172 mAh g-1 in NNM-780, and further 

to 155 mAh g-1 for the NNM-850. This corresponds to the extraction/insertion of 

about 0.8 Na-ions in the monophasic P3 sample, which drops to 0.65 Na-ions in the 

NNM-850 cathode. The higher amount of Na-ions required during cycling of the P3 

type cathode is obtained from the Na metal anode during the discharge process. It is 

important to keep in mind that the as-synthesized NNM-750 contains only 0.75 Na-

ions per formula unit cell, assuming a final concentration of Na0.15Mn0.75Ni0.25O2 at 

the end of charging, a deficiency of 0.25 Na ions need to be compensated to obtain 

a capacity of 190 mAh/g. Hence, in a full-cell configuration, the P3-type cathode 

cannot deliver the same specific capacity. Accordingly, other synthesis techniques 
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should be explored to stabilize Na-rich P3-type structures. The decreasing trend in 

specific capacity with the increase in P2 concentration is also expected. It confirms 

often theorized speculations in the literature about a thermodynamically synthesized 

P3-type phase being able to accommodate higher amounts of Na ions within its 

structure than its P2 counterpart. With the increase in C rate (Figure 3.11(c)), the P3 

dominant samples start to underperform, losing about 60% of their capacity at 0.1C 

to reach about 74 mAh g-1 at 1C, which then lowers to only ~ 5 mAh g-1 at 6C. In 

contrast, NNM-765 and 780 cathodes show incredible rate performance, with their 

specific capacities reaching 122 mAh g-1 and 130 mAh g-1 at 1C, representing a 

fading of only about 32% and 23% of their capacities at 0.1C. Even with a 

charge/discharge rate of 6C, these cathodes exhibited a capacity of about 82 mAh g-

1 and 97 mAh g-1, respectively. Such high-rate performance makes these samples 

attractive for stationary and portable storage applications. The lower rate 

performance of the P3 represents a poor Na-ion diffusion coefficient of the material, 

possibly due to rapid phase conversions that do not support a fast transport of Na-

ions. Incorporating a P2 phase may have opened up better Na+ conducting pathways 

within the material and prevented unwanted phase transitions, resulting in greater 

extraction of Na+ even at high C rates in the NNM-765&780 cathodes. On the other 

hand, the lower rate performance observed for NNM-800 and NNM-850 samples 

(where specific capacities drop from around 155 mAh g-1 at 0.1C to about 74 mAh 

g-1 and 64 mAh g-1 at 1C, respectively) could be resulting from agglomerated & fused 

particle morphologies caused by higher calcination temperatures that increase the 

overall diffusion path for Na-ions in cathode layer. 

Figure 3.11(d) illustrates the cyclic performance of the NNM-x cathodes at a 

charge/discharge rate of 1C between 1.5 V and 4.2 V. The cyclic data indicates the 

monophasic P3 cathode to have the highest capacity retention of ~ 90% after 200 

cycles. On the other hand, the high-performing NNM-765 and 780 show a specific 

capacity of 97 mAh g-1 and 104 mAh g-1, respectively, after 200 cycles, which is 

close to 83% and 80% of their initial capacity at 1C. The poor cyclic performance 

of the NNM-800 & NNM-850 cathodes (only 65 % capacity retention after 200 

cycles) was expected as the detrimental effects of activating Mn3+/4+ on the P2 

structure in the Na-Mn-Ni system are well reported in the literature due to the 

presence of Jahn-Teller active Mn3+ below 2 V [14, 15]. Early signs of structural 
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instability in these compounds with the introduction of Mn3+ can be inferred from 

their GCD curves (Figure 3.11(a)), where a notch-like feature caused by the sudden 

change in slope is visible at 1.7 V. Moreover, the biphasic cathodes also exhibit lower 

polarization potentials, which enabled them to achieve energy efficiencies of ~85% 

compared to ~75% in the P3-type cathodes. This is depicted in the GCD curves of 

the NNM-750 (Figure 3.12), with the portion shaded in red representing energy loss.  

Figure 3.12. GCD curves of NNM-750, 765, 780, and 850 depicting energy loss 

and energy recovered during discharge. 

 The Nyquist plots of NNM-750, 780, and 850 cells illustrated in Figure 3.13 also 

concur with the cyclic data where after 200 charge/discharge cycles, the NNM-850 

cell showed an increased resistance of 1150 Ω, which is almost twice that of the 550 

Ω in NNM-780. Compared to the P2 phase, the P3 structure seems resilient to the 

structural distortions induced by the Mn3+. The resilience of the P3-type structure in 

maintaining its structural integrity even after undergoing multiple phase transitions 

may have also been aided by its smaller particle size and lower degrees of 

agglomeration, allowing each particle to expand and contract freely without 

generating a high degree of stress.  Further, the widely reported synergistic effects 

found in biphasic layered oxides prevent each other from undergoing structural 
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transformations during cycling and may have also contributed to the higher cyclic 

stability of NNM-780 [2, 16-18].  

Figure 3.13. Nyquist plots of half-cells with NNM-750, 780, and 850 cathodes (a) 

before and (b) after cycling. The impedance data in Figure 3.13 was fitted using 

the equivalent circuit shown in the figure inset. 

The Na-ion diffusion kinetics for the NNM-x samples were investigated using the 

galvanostatic intermittent titration technique (GITT) between 1.5 and 4.2 V. The 

technique involves applying a constant current pulse for 10 minutes, followed by a 

dwell time, during which the cell is allowed to reach a quasi-equilibrium state. This 

process is repeated till the cut-off voltages are reached. Figure 3.14 shows the GITT 

charge-discharge curves for the NNM-x samples. The Na+ diffusion inside the 

cathode material is assumed to obey Fick’s first law, and the Na+ diffusion coefficient 

(𝐷𝑁𝑎+) can be calculated using the following Eq. 3.1. 

𝐷𝑁𝑎+ =
4

𝜋𝜏
(

𝑚𝐵𝑉𝑚

𝑀𝐵𝑆
)

2

(
∆𝐸𝑆

∆𝐸𝜏
)

2

                                      (3.1) 

Here, 𝑀𝐵  and 𝑉𝑚   represent the molar mass and molar volume of the cathode 

material, 𝑚𝐵 is the mass of active material,  is the time of a single constant current 

pulse, and 𝑆 denotes the active surface area of the electrode. ∆𝐸𝑆 and ∆𝐸𝜏 represent 

the change of the steady-state voltage and the voltage change during the constant 

current pulse, respectively. Figure 3.15 shows the variation of DNa
+ of NNM-x with 

voltage. Unsurprisingly, NNM-765 and 780 cathodes showed the highest diffusion 
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coefficient of 4 ×10-10 and 7.6 ×10-10 cm2s-1, respectively, while the NNM 750 & 850 

showed the lowest diffusion coefficients close to 1 ×10-10 cm2 s-1.  

 

 Figure 3.14. GITT curves of NNM-x series of cathodes. 

All NNM-x cathodes show slow diffusion kinetics at the start of a charge and 

discharge process. The lower diffusion coefficients at the outset of the charging are 

due to a larger concentration of Na-ions within the structure, causing starvation of 

Na-ion vacancies. In contrast, a higher number of Na-ion vacancies may have led to 

sluggish Na-ion diffusion kinetics at the initial phase of the discharge process. The 

Na-ion diffusion coefficient also shows lower variations in the P2 type structure, 

which points to its excellent structure stability throughout the charge-discharge 

process, while larger variations in the P3 containing cathodes, especially at voltages 

where a peak is observed in their corresponding dQ/dV vs. V plots, may be due to 

structural variations within the P3 type structure. Nevertheless, the decline in the 
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intensity of these variations and higher diffusion coefficients in NNM-765 and 

NNM-780 cathodes aligns with the observations from the GCD rate performance 

curves on the importance of the P2 phase enhancing Na+ diffusion through the 

material. 

Figure 3.15. Variation of diffusion coefficients of NNM-x cathodes during 

charging and discharging. 

3.3. Operando Synchrotron XRD studies 

Many of the speculations regarding the varied electrochemical performance of the 

P3-type NNM-750 and other biphasic cathodes can be confirmed through the 

operando synchrotron XRD studies of NNM-750 (Figure 3.16) and NNM-780 

(Figure 3.17) cathodes. The operando SXRD patterns of NNM-750 portray the 

structural evolution of the P3 phase during a charge/discharge cycle. Apart from the 

apparent shifting of the P3 (003) peak (Figure 3.16(b)) towards higher angles during 

discharge and the appearance of an O3 phase at lower voltages (~ below 2.5 V), the 

emergence of a new but subtle O′3 phase in P3-type NNM-750 at voltages below 

3.6 V (Figure 3.16(b1)) is an important development [11, 12, 18]. This phase appears 

at about ~3.6 V during the discharge cycle and persists throughout the discharge 

process, even after the entire P3 is converted into an O3 phase (at about 2 V, as 

shown in Figure 3.16(b1 & c). However, the O′3 peaks coalesce with the existing P3 
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peaks during the charging cycle. The emergence of the O′3 phase at 3.6 V during 

discharge and its coalescence with the P3 phase at 3.2 V would explain the increase 

in polarisation potential observed from the dQ/dV vs. V plots, especially at higher 

voltages, where Ni2+/3+ and Ni3+/4+ redox couples are active. During the charging 

cycle, the Na ions are extracted from a pure P3 phase at the characteristic oxidation 

potential of Ni2+ to 3+ & 4+ oxidation states, which will be vastly different from the 

potential required to reduce the Ni4+ to 2+ oxidation state in the P3/O′3 biphasic 

system developed during the discharge process, widening the potential gap between 

the two redox processes. The existence of the O′3 phase alongside the P3 and O3 

phases for extended voltage windows could also explain the poor rate performance 

exhibited by NNM-750, as the distorted monoclinic O′3 phase shows slower Na ion 

transport properties. 
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Figure 3.16. (a) Operando Synchrotron x-ray diffraction patterns of NNM-750 

obtained during the galvanostatic charge/discharge process at 0.1C with (b-d) 

displaying zoomed views in the vicinity of the marked regions. 

 In comparison, the number of structural transformations in the biphasic NNM-780 

sample appears to be limited. The operando SXRD patterns do not show any 

changes to the P2-type structure throughout the discharge process. At the same time, 

only a partial conversion of the P3 to O3 phase conversion is observed, possibly due 

to the synergetic effect of the P2/P3 system [2, 16-18]. No evidence of the P2 → 

OP4 phase transformation (often reported in the literature) during charging (in the 

2.0 to 4.2 V range) or the P3→O′3 transformation is observed in the SXRD plots, 

suggesting high structural stability of the material. The endurance of its structure 
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towards phase transformations and the coexistence of highly conducting P2 & P3 

phases throughout most of its charge-discharge process has resulted in the superior 

cyclic stability and rate performance exhibited by NNM-780.  

 

Figure 3.17. (a) Operando SXRD patterns of NNM-780 with (a1) depicting the 

zoomed portion between a 2θ range of 8° to 9°. 
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Impact of P3/P2 Mixed Phase on the Structural and Electrochemical 

Performance of Na0.75Mn0.75Al0.25O2 Cathode 

This chapter reports a novel method to suppress the structural modifications brought 

about by the activation of Mn3+/4+ redox reactions by preparing a P3/P2 biphasic 

Na0.75Mn0.75Al0.25O2 (NMA) where 25% of the Mn ions were substituted with Al3+ 

ions. An inactive Al3+ was chosen to act as a pillar ion during the charge/discharge 

process. It has a similar ionic radius as Mn4+ in an octahedral configuration that 

prevents transition metal ordering. Along with introducing Al3+, a biphasic P2/P3 

type cathode configuration was adopted to stabilise the cathode structure during 

cycling further. Similar to the Na0.75Mn0.75Ni0.25O2 cathode reported in Chapter 3, 

the phase fraction of the P2 and P3 phases in the P2/P3 biphasic cathode was found 

to be dependent on the calcination temperature. Moreover, the lower calcination 

temperature required for P3-type materials was instrumental in obtaining the desired 

P2/P3 phase fractions at lower calcination temperatures. This was found to have 

profound implications on the morphology and electrochemical properties of the 

cathode material, with P3 dominant biphasic cathodes showing substantially 

superior rate performance and cyclic stability compared to monophasic P2 cathodes 

that formed at higher temperatures. Further, the manifestation of the synergetic 

effect between the two phases mitigated the severe structural distortions induced 

during cycling, resulting in a better cyclability of the biphasic cathodes. 

4.1 Structural Characteristics 

Various Na0.75Mn0.75Al0.25O2 samples were prepared by varying the calcination 

temperature between 600 °C and 800 °C. Figure 4.1(a) shows the room temperature 

XRD patterns of Na0.75Mn0.75Al0.25O2 (NMA-x: x denotes the calcination 

temperature in °C) samples calcinated at different temperatures along with the Bragg 

positions of P3 (JCPDS No. 04-020-1860) and P2 (JCPDS No.27-0751) type phases. 

The figure shows an unreacted phase at 600 °C and a P2/P3 mixed phase forming at 

around 650 °C with diffraction peaks corresponding to the P2 phase gradually 

increasing in intensity with increased calcination temperature. At a calcination 

temperature of 800 °C, a monophasic P2-type structure is obtained with no peaks 

corresponding to the P3 phase discernible in the XRD pattern. This is confirmed by 

the Rietveld refinement of the XRD data (Figure 4.1(b)), which shows the P2:P3 

phase ratio around ~ 52:48 for the sample calcined at 650 °C. The fraction of the P2 
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phase increased to ~ 72.5% in the sample calcined at 750 °C, and a pure P2-type 

material was obtained at 800 °C.  

The crystallographic parameters of the NMA-x series of materials obtained after 

refinement are presented in Table 1. The refinement results show that the 

crystallographic volume for P2 and P3 type phases remained largely invariant, ~78.4 

Å3 and ~117.4 Å3
,
 respectively, in all samples. The unit cell volume of P3 is about 

1.5 times the P2 phase, which is expected as the number of formula unit cells in one 

crystallographic unit cell (Z) for P2 is 2, while for P3, Z is 3. The area of rectangular 

faces of the triangular prisms in P2 and P3 type structures, which forms a major 

bottleneck to Na ion conduction, was around 11.11 Å2. This points to similar inter-

layer spacings (in both the TM-O and Na-O layers) in the P2 and P3 phases. 

Although P3 is often regarded as an ordered P2 phase where Na ions reside in a 

single crystallographically equivalent lattice site as opposed to the 2 different sites 

in the latter, the structural information obtained through Rietveld refinement for 

NMA-x series materials suggests similar Na+ conduction dynamics in both the 

phases.  The detailed structural parameters of the P2 and P3 type NMA obtained 

from the Rietveld refinement of XRD patterns are given in Tables S1 and S2, 

respectively. 
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Figure 4.1. (a) Phase evolution of Na0.75Mn0.75Al0.25O2 samples at various 

calcination temperatures along with brag positions of P3 (JCPDS: 04-020-1860) 

and P2 (JCPDS: 27-0751) type structures. (b) Rietveld refinement of room 

temperature XRD data belonging to NMA-650, 750, and 850 samples, along with 

the deconvoluted P2 and P3 phases in the 2θ range of 30-40°. 
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Table 4.1. Lattice parameters of NMA-x samples obtained after the Rietveld 

refinement of room temperature XRD data. 

Sample 
Phase 

(Fraction) 
a (Å) c (Å) V (Å3) 

Reliability 

Factors 

NMA-650 

P3 (47.7%) 
2.8500 

± 0.0003 

16.678 

± 0.003 

117.47 

± 0.03 

Rexp: 1.73 

Rwp: 2.30     

Rp: 1.79 

GOF: 1.33 
P2 (52.3%) 

2.8580 

± 0.0003 

11.126 

± 0.001 

78.81 

± 0.02 

NMA-750 

P3 (27.5%) 
2.8453 

± 0.0003 

16.716 

± 0.003 

117.41 

± 0.03 

Rexp: 2.12     

Rwp: 2.51 

Rp: 1.98    

GOF: 1.18 
P2 (72.5%) 

2.8491 

± 0.0002 

11.137 

± 0.001 

78.81 

± 0.01 

NMA-800 P2 (100%) 
2.8577 

± 0.0009 

11.1474 

± 0.0008 

78.839 

± 0.008 

Rexp: 1.97   

Rwp: 2.34  

Rp: 1.84    

GOF: 1.18 

 

Table 4.2. Crystallographic parameters of P2-type NMA obtained from the Rietveld 

refinement of room temperature XRD data. 

P2 Type NMA (P63/mmc space group) 

Atom x y z Occupancy Site 

Na1 2/3 1/3 1/4 0.45 2d 

Na2 0 0 1/4 0.30 2b 

Mn/Al 0 0 0 0.75/0.25 2a 

O 2/3 1/3 0.090 1 4f 
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Table 4.3. Crystallographic parameters of P3-type NMA obtained from Rietveld 

refinement of room temperature XRD data. 

P3 Type NMA (R3m space group) 

Atom x y z Occupancy Site 

Na 0 0 0.17 0.75 3a 

Mn/Al 0 0 0 0.75/0.25 3a 

O1 0 0 0.394 0.75/0.25 3a 

O2 0 0 0.607 1 3a 

 

Further, the crystallographic parameters obtained from Rietveld refinement were 

used to simulate the Na ion migration pathways and calculate the migration energy 

barrier in the P3 and P2 type structures of NMA using the bond-valence site energy 

(BVSE) calculation. The calculated migration energy for Na+ in P2 and P3 type 

NMA was 0.181 eV and 0.237 eV, respectively (Figure 4.2(a & b). The reaction 

pathway diagram of P2 and P3 type structures generated using VESTA [1] is shown 

in Figure 4.2(c & d). Besides the higher activation energy, another drawback of using 

P3-type cathodes in Na-ion batteries is related to the multiple structural 

transformations P3 undergoes during cycling. These transformations lead to a lower 

Na+ conductivity and degrade the cathode’s electrochemical performance. In 

addition to enhancing the overall conduction in the material, the P2 phase in the 

biphasic cathodes is expected to stabilise the P3 phase and prevent unwanted phase 

transitions during the charge/discharge process [2, 3]. 
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Figure 4.2. Na+  migration energy barrier of (a) P3 and (b) P2 type structures 

obtained after BVSE analysis. Schematic of diffusion pathways (depicted in cyan) 

in (c) P3 and (d) P2 type structures. The I1 in (a) stands for interstitial site 1. 

The SEM micrographs on NMA-650, 750, and 800 displayed in Figure 4.3 depict 

hexagonally shaped grains consistent with layered oxides. The elemental map of 

NMA-750 is portrayed in Figure 4.3(b1-b4). In NMA-650, the particles with well-

defined contours and facets with a relatively low agglomeration are observed. In 

contrast, the microstructure in NMA-750 and 800 display a higher degree of 

agglomeration, with particles fusing to form lumps in NMA-800. Particle 

morphology is an important parameter that affects electrochemical properties such 

as the rate performance of cathodes. Ideally, nano-size particles with a low degree 

of agglomeration are preferred in cathodes as they increase the total surface area of 

each particle (in contact with the liquid electrolyte) compared to its volume. As 

liquid electrolytes have higher ionic conductivities than cathode materials, nano-

sized particles could reduce the Na+ conduction path through the crystalline material, 

enhancing Na+ extraction/insertion during cycling, especially at high 

charge/discharge rates [4, 5]. Hence, NMA-650 is expected to show a better rate 

performance than the other samples.  



Chapter 4 

71 
 

Figure 4.3. SEM micrographs of (a) NMA-650, (b) 750, and (g) 800, along with 

(b1-4) elemental maps depicting the distribution of Na, Mn, Al, and O in NMA-

750. 

The Mn 2p and Al 2s XPS spectra (Figure 4.4) for NMA-650 and 800 samples were 

obtained to confirm the valence states of the Mn and Al ions in each compound. The 

peak at 85 eV in the Al 2p spectra suggests the presence of Al3+ ions in all the 

samples [6-8]. In contrast, the Mn 2p XPS spectra can be deconvoluted into 4 peaks; 

the 2 coupled peaks at 641.8 & 653.2 eV belong to Mn3+, while those at 643.2 & 

654.7 eV correspond to Mn4+ [6, 7, 9]. The similarity of Mn 2p XPS spectra of both 

samples indicates their similar Na+ contents. Lower Na+ content in either sample 

would alter the sample’s peak intensity ratio of Mn3+ and Mn4+ ions. Hence, the P3 

to P2 phase transformation observed in the NMA-x samples can only be driven by 

the better stability of P2 over the P3 at higher temperatures rather than due to the 

change in Na-ions concentration in the sample. 

Figure 4.4. XPS spectra of NMA-650 and NMA-800. 
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4.2 Electrochemical Characteristics 

 The electrochemical properties of the NMA-x cathodes were analysed between 1.5 

V and 4.2 V using a coin cell with Na metal acting as the reference & counter 

electrode. The cyclic voltammograms in Figure 4.5 show peaks indicating the redox 

activity of Mn ions below 3V in all the cathode materials [10, 11]. While the CV 

curves of NMA-650 show only a single redox peak, multiple peaks attributing the 

Mn3+/4+ redox reaction can be observed for NMA-750 and 800 samples. Multiple 

peaks attributed to the same redox reaction in the latter samples could indicate 

structural changes in the cathode materials caused by either Na-ion vacancy ordering 

or Jahn-Teller active Mn3+. Structural variations induced by the activity of Mn3+ are 

usually reported as the primary reason behind capacity fading in P2-type layered 

oxides where Mn is active [9, 10, 12-14]. In the P2 dominant NMA-750 and 800 

samples, a higher amount of the P2 phase seems to be initiating a similar reduction 

in specific capacity with cycling as the peak intensities of the oxidation and 

reduction peak appear to be fading with each cycle along with the area under the 

curve. In contrast, the cyclic voltammogram of NMA-650 with ~ 52% P3 phase 

shows almost no reductions in peak intensities or area under the curves, suggesting 

better structural durability. As a result, a biphasic cathode could show better cyclic 

performance. 

Figure 4.5. Cyclic voltammograms of NMA-600, 750, and 800 samples. 
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The galvanostatic charge-discharge curves of NMA-650, 750, and 800, presented in 

Figure 4.6, concur with the CV curves. The GCD curves show rapid voltage drops 

between 4.2 V and 3 V, with plateaus emerging only below 3V. This is also reflected 

in the dQ/dV vs. voltage curves (Figure 4.7), as peaks (indicating the changes in 

slopes of the GCD curve) between 1.5 V and 3 V. Overall, the NMA-650 exhibited 

the highest specific capacity, 150 mAh g-1 at a discharge rate of 0.1C. With an 

increase in the P2 phase fraction, the specific capacity dropped to 139 mAh g-1 in 

NMA-750 and 113 mAh g-1 in NMA-800, which marks about a 32% decline in 

capacity from NMA-650.  

Figure 4.6. GCD curves of NMA-x cathode materials at different C rates. 

P3-type cathodes are generally reported to have higher specific capacities than P2-

type materials, as these can accommodate more Na ions by undergoing a reversible 

transformation to O3-type structures) [2, 3, 15, 16]. Hence, a lower specific capacity 

in the cathodes with a dominant P2 phase is expected. In terms of the amount of Na+ 

extracted, 150 mAh g-1 (in NMA-650) corresponds to about 0.55. while a specific 

capacity of 113 mAh g-1 in NMA-800 corresponds to only about 0.40. Even with a 
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higher Na+ extraction, the NMA-650 still exhibits a higher energy efficiency of ~ 

83%, compared to 76% for the monophasic NMA-800 cathode (Figure 4.8). This is 

an interesting observation, as in the NMA layered oxide cathodes, a higher specific 

capacity also means a higher concentration of Mn3+ at the end of the discharge cycle, 

which would induce higher stresses in the material that could trigger structural 

transformations that hinder energy efficiency. The higher capacity while maintaining 

an impressive energy efficiency points to the resilience of the NMA-650 biphasic 

cathode and could be attributed to the widely reported synergetic often found in 

multiphasic cathodes [2, 3, 16, 17].  

Figure 4.7. dQ/dV vs. voltage (V) plots of NNM-x cathodes at a discharge rate of 

0.1C. 

Figure 4.8. GCD curves of NMA-x samples. The portions colored in green depict 

energy recovered during discharge. 
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As the discharge rate increases from 0.1C to 4C, the specific capacities of all the 

cathodes deteriorate drastically (Figure 4.6 and Figure 4.9). NMA-650 shows a 

specific capacity of 80 mAh g-1 and 73 mAh g-1 at 1C and 4C, respectively. Even 

though 80 mAh g-1 denotes a 42% reduction in capacity compared to the material’s 

original capacity at 0.1C, it is still 30% higher than the P2-type cathode. While the 

presence of the P2 phase might have been beneficial in opening better Na+ 

conducting pathways within the material, the drastic reduction in specific capacity 

in NMA-650 suggests a decrease in diffusion coefficient with an increase in the C-

rate. On the other hand, the unexpected drop in rate performance of the P2 dominant 

NMA-750 and 800 cathodes might be due to their agglomerated & fused particle 

morphologies that lowered the extraction of Na+ at high C rates by increasing the 

overall diffusion path for Na-ions in the cathode layer. 

Figure 4.9. Rate performance of NMA-x cathodes with C.E representing columbic 

efficiency. 

Figure 4.10 illustrates the cyclic performance of the cathodes at 1C when cycled 

between 1.5 V and 4.2 V. The data indicate that the specific capacity of the NMA-

650 cathode dropped from 86 mAh g-1 to 67 mAh g-1, exhibiting an ~ 80% capacity 

retention after 200 cycles. In contrast, the other cathodes, NMA-750 and 800, 

showed a substantial reduction in specific capacity by being able to retain only about 

67% and 56% of their original capacity at 1C.  
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Figure 4.10. Cyclic stability of NMA-x cathodes at a discharge rate of 1C. 

Figure 4.11 shows the Nyquist plots of NMA-650 and 800 cells before and after 200 

charge/discharge cycles. The figure shows a drastic increase in the total resistance 

of the NMA-800 cell (from 480 Ω to 970 Ω), while the NMA-650 cell exhibits only 

a 50% increase in resistance after 200 charge/discharge cycles. Further, analysis of 

the Nyquist plot using equivalent circuit modeling revealed a 130% increase in 

charge transfer resistance in the cell with NMA-800 cathode. In comparison, the 

increase in resistance was ~ 60% in the cell with NMA-650 cathode (R1, R2, and 

R3 in the equivalent circuit in Figure 4.11 inset denote the electrolyte resistance, SEI 

layer resistance, and charge transfer resistance, respectively [18-20]). The higher 

charge transfer resistance in NMA-800 could be due to structural degradation of the 

active material, side reactions, etc., causing the material to exhibit lower capacity 

retention than NMA-650 at the end of 200 charge-discharge cycles. 

The excellent structural resilience of the NMA-650 cathode material predicted from 

the CV curves enabled it to harness the capacity obtained by activating Mn3+/4+ redox 

couple, which is usually avoided in Mn-based layered oxides due to its detrimental 

effects on cyclic performance. The improved cyclic stability of the NMA-650 over 

the other cathodes suggests that the adoption of a biphasic composition of the same 

material with nearly equal shares of P2 and P3 phases could be ideal for enhancing 

capacity retention in other layered oxide-based cathodes in literature where severe 

structural deformations have been identified as the primary cause of capacity 

degradation.  
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Figure 4.11. Nyquist plots of half-cells with NMA-650 and 800 cathodes (a) 

before and (b) after cycling. The impedance data was fitted using the equivalent 

circuit shown in Figure 4.11(a) inset. 

Figure 4.12 shows the variation of Na+ diffusion coefficients in the NMA-x samples 

obtained from the galvanostatic intermittent titration technique (GITT). The 

technique, performed between a voltage range of 1.5 V – 4.2 V, involves the 

application of a constant current pulse for 10 minutes, followed by a dwell time of 

30 minutes, during which the cell is allowed to reach a quasi-equilibrium state. This 

process is repeated till the cut-off voltages are reached. The diffusion kinematics of 

Na ion through the materials are assumed to obey Fick’s first law, and the Na+ 

diffusion coefficient (𝐷𝑁𝑎+) can be calculated using the following Eq. 3.1.  

As expected, the diffusion coefficient of NMA-650 showed the highest diffusion 

coefficient of 2.5 ×10-10 while the diffusion coefficients of NMA-750 & 800 were ~ 

50% lower. The lower diffusion coefficients at the onset of the charge/discharge 

process are due to a larger/smaller concentration of Na-ions within the structure, 

causing starvation of vacancies/ Na-ions.  
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Figure 4.12. Variation of diffusion coefficients of NMA-x cathodes during 

charging and discharging. 

4.3 Operando Synchrotron XRD studies 

The structural evolution of the material during the charge/discharge cycle could 

confirm many of the speculations regarding the electrochemical properties of NMA-

x cathodes. Figure 4.13 and Figure 4.14 illustrate the operando synchrotron XRD 

(SXRD) patterns NMA-650 and NNM-750 during the second cycle. The SXRD 

pattern of the NNM-650 sample obtained during the formation cycle (cycle 1) is 

displayed in Figure 4.15. The data analysis for both the cathode materials reveals an 

interesting detail, where a continued existence of the P3 phase is observed 

throughout the entire charge-discharge process. The P3 phase is usually reported to 

appear at higher voltages when the concentration of Na in the compound is below ~ 

0.75 [3, 15, 16, 21]. At lower voltages, a P3→O3 phase transformation is expected. 

However, in both NMA-650 and 750, the P3→O3 phase conversion is not observed. 

The continued existence of the P3 phase also explains the improved cyclability and 

rate performance of the biphasic compounds, as the P3 phase is known to have a 

higher diffusion coefficient than the O3 phase. The continued existence of P3 phase 

transformations in layered oxides is rarely reported and could result from a relatively 

high Al content in the compound. Even at a low voltage of 1.5 V, where Na 

concentration in the unit cell exceeds ~ 0.8 in NMA-650, the P3 structure appears 

stable across the voltage window. During the first discharge cycle, the P3 phase 

contracts along the c axis, where c reaches a value of ~16.59 Å at the end of 
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discharge. In the subsequent charge-discharge cycle, the c axis expands to only about 

16.66 Å at the fully charged state as opposed to its initial value of 16.69 Å at the 

pristine state, as evidenced by the presence of 2 peaks between 7-8° in Figure 4.13 

as opposed to a single broad & asymmetric peak at the start of the first charging 

cycle (Figure 4.15).  

Figure 4.13. Operando Synchrotron x-ray diffraction patterns of NMA-650 

obtained during the second galvanostatic charge/discharge cycle at 0.1C. 

Figure 4.14. (a) Operando SXRD patterns of NMA-750 obtained during the 

second charge/discharge cycle at 0.1C. 

Regarding volume expansion, the NMA-650 only shows an increase of only about 

0.5%, which is marginal compared to the 1.5 % in NMA-750, where c increased 

from 16.74 Å to 17.01 Å. The P2 phase shows almost no volume changes and 
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behaves like a pillar within the material. During charging/discharging, the P2 layers 

remain nearly invariant; hence, stress develops at the phase boundary in a direction 

opposite to the gliding direction of TMO2 layers in the adjacent P3 phase (usually, 

the gliding motion of the TM-O2 layers is initiated when the change in c parameter 

of the unit cell reaches a critical value and is responsible for the P3-O3 phase 

transitions), which restrains the transition metal layers from gliding. This synergetic 

interaction between the two phases interlocks the TM-O2 layers of adjacent P2 and 

P3 layers, which ensures better stability to the P3 structure [2, 3, 16, 17]. 

In both the compounds, most of the change in the c parameters occurs below 2 V 

during the discharge cycle (indicated by a more significant degree of shift in (003) 

peak towards higher angles in Figure 4.12, which is consistent with the results from 

the electrochemical tests where the Mn4+/3+ reduction peaks were obtained below 2 

V.  

Figure 4.15. (a) Operando SXRD patterns of NMA-650 obtained during the first 

galvanostatic charge/discharge cycle at 0.1C. 
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Rational Design of an Optimal Al-substituted Layered Oxide Cathode for Na-

ion Batteries 

Chapter 5 explores trends in the structural and electrochemical performance of 

various compositions in the Na3/4(Mn-Al-Ni)O2 pseudo-ternary system (Figure 5.1) 

to identify optimal cathodes. All the compositions were synthesized in 3 different 

phase configurations: monophasic P3, biphasic P3/P2, and monophasic P2. 

Na0.75Mn0.75Ni0.25O2 and Na0.75Mn0.75Al0.25O2 (marked as NMA1 and NMA2 in 

Figure 5.1) reported earlier were the parent materials chosen for the study.  Phase 

diagrams, especially in layered oxides, help to rationally design optimal cathode 

compositions by revealing the complex relationship between metal cations in LO 

cathodes and different electrochemical properties [1, 2]. It is important to point out 

that, unlike a traditional phase diagram, where the elemental compositions alone 

largely determine the functional properties of various phases, in a pseudo-ternary 

system, the oxidation states of the electrochemically active elements involved also 

play a major role in deciding composition-structure-property behaviour. The 

concentration of the Jahn-Teller active Mn3+ and commonly preferred Mn4+ ions 

vary across all the compositions, which may significantly affect the electrochemical 

properties of the cathode materials. The Al-substituted compounds synthesized for 

the study, Na0.75Mn0.5Ni0.25Al0.25O2, Na0.75Mn0.625Ni0.125Al0.25O2, 

Na0.75Mn0.625Ni0.25Al0.125O2, and Na0.75Mn0.75Ni0.125Al0.125O2 are a part of the 

Na3/4(Mn-Al-Ni)O2 pseudo ternary diagram and will hereafter be referred to as 

NMA3, NMA4, NMA5 and NMA6, respectively. 
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Figure 5.1. The positions of compositions under investigation in this study in the 

pseudo-ternary Na3/4(Mn-Al-Ni)O2 system. 

5.1. Structural Characteristics  

The NMAx series of cathode materials were synthesized through the sol-gel route. 

Each cathode material is synthesized in 3 different phase configurations, namely P3, 

P2, and P3/P2 mixed phase with equal proportions. This was achieved by calcining 

the samples at optimum temperatures (by a hit-and-trial method). Table 5.1 

summarizes the ICP-AES data of the P2-type NMAx series of cathode materials. 

The results from ICP concurred with the expected compositions of each cathode.  

Table 5.1. The chemical compositions of the as-prepared samples were measured 

by inductively coupled plasma atomic emission spectroscopy (ICP-AES).  

Sample 

Nominal composition Calculated composition 

Na/ Mn/ Ni/ Al Na/ Mn/ Ni/ Al 

NMA3-P2 0.75/0.50/0.25/0.25 0.735/0.501 /0.252/0.247 
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NMA4-P2 0.75/0.625/0.125/0.25 0.744/0.628/0.123/0.245 

NMA5-P2 0.75/0.625/0.25/0.125 0.742/0.621/0.247/0.127 

NMA6-P2 0.75/0.75/0.125/0.125 0.745/0.739/0.128/0.123 

 

Figure 5.2 displays the room temperature XRD patterns of NMAx cathodes calcined 

at different temperatures. The figure shows peaks consistent with a P3-type structure 

at 650 °C, transforming into a P2-type structure at higher calcination temperatures. 

Similar phase evolution in Na0.75Mn0.75Ni0.25O2 (NMA1) and Na0.75Mn0.75Ni0.25O2 

(NMA2) compounds was reported earlier. Additionally, 0.75 Na was identified as 

the critical concentration of sodium at which an O3-type phase can be avoided 

during synthesis. The detailed analysis of the crystal structure and quantification of 

phase concentrations in the monophasic and P3/P2 mixed-phase samples was 

performed using the Rietveld refinement of XRD data (Figure 5.3 and Figure 5.4). 

The crystallographic information for each of the NMA3-NMA6 materials is given 

in Tables 5.2-5.5. The refinement confirmed the biphasic nature of the NMAx-P3P2 

series of cathodes with close to 50% P3 and P2 phases. It also established the 

presence of only monophasic P3 (R3m space group) and P2-type (P63/mmc space 

group) phases at the lower (< 750 °C) and high calcination temperatures, 

respectively, in all compositions.  
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Figure 5.2. Structural evolution of NMA3, NMA4, NMA5, and NMA6 cathode 

materials with calcination temperature. 
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Figure 5.3. Rietveld refinement of XRD data for NMA3-P3P2, NMA4-P3P2, 

NMA5-P3P2, and NMA6-P3P2 samples with their respective along with the 

deconvoluted P2 and P3 phases in the 2θ range of 30-40°. 

Figure 5.4. Rietveld refinement of XRD data for NMAx-P3 and NMAx-P2 

samples. 
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Table 5.2. Lattice parameters of NMA3 samples obtained from the Rietveld 

refinement of room temperature XRD data. 

Sample 
Phase 

(Fraction) 
a (Å) c (Å) V (Å3) 

Reliability 

Factors 

NMA3-P3 P3 (100%) 2.8838 (1) 
16.7924 

(2) 
120.97 (1) 

Rexp: 2.23 

Rwp: 2.51 

Rp: 1.99 

GOF: 1.12 

NMA3-

P3P2 

P3 

(47.3%) 
2.8864 (1) 16.773 (1) 121.00 (2) 

Rexp: 2.29 

Rwp: 3.41     

Rp: 2.59 

GOF: 1.48 P2 

(52.7%) 
2.8842 (2) 11.164 (1) 80.42 (1) 

NMA3-P2 P2(100%) 2.8834 (2) 
11.1669 

(4) 
80.404 (5) 

Rexp: 1.98 

Rwp: 3.41  

Rp: 2.49 

GOF: 1.71 

 

Table 5.3. Lattice parameters of NMA4 samples obtained from the Rietveld 

refinement of room temperature XRD data. 

Sample 
Phase 

(Fraction) 
a (Å) c (Å) V (Å3) 

Reliability 

Factors 

NMA4-P3 P3 (100%) 2.8762 (2) 
16.7789 

(4) 

119.87 

(2) 

Rexp: 2.49 

Rwp: 3.08 

Rp: 2.39 

GOF: 1.23 

NMA4-

P3P2 

P3 (50%) 2.8876 (2) 
16.761 

(2) 

120.05 

(2) 

Rexp: 2.11 

Rwp: 2.75    

Rp: 2.12 

GOF: 1.30 P2 (50%) 2.8820 (1) 
11.133 

(2) 

80.18 

(1) 
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NMA4-P2 P2(100%) 2.8751 (3) 
11.176 

(2) 

80.01 

(1) 

Rexp: 2.29 

Rwp: 2.75  

Rp: 2.14 

GOF: 1.19 

 

Table 5.4. Lattice parameters of NMA5 samples obtained from the Rietveld 

refinement of room temperature XRD data. 

Sample 
Phase 

(Fraction) 
a (Å) c (Å) V (Å3) 

Reliability 

Factors 

NMA5-P3 P3 (100%) 

2.8862 

(1) 

 

16.775 

(2) 

 

120.02 

(1) 

 

Rexp: 2.11 

Rwp: 2.57 

Rp: 1.98 

GOF: 1.21 

NMA5-

P3P2 

P3 

(53.25%) 

2.8875 

(2) 

16.778 

(2) 

120.50 

(2) 

Rexp: 2.09 

Rwp: 2.68      

Rp: 1.91 

GOF: 1.28 
P2 

(46.75%) 

2.8840 

(3) 

11.147 

(1) 
80.29 (1) 

NMA5-P2 P2(100%) 
2.8800 

(1) 

11.165 

(1) 
80.25 (1) 

Rexp: 2.67 

Rwp: 3.38  

Rp: 2.66 

GOF: 1.26 

 

Table 5.5. Lattice parameters of NMA6 samples obtained from the Rietveld 

refinement of room temperature XRD data. 

Sample 
Phase 

(Fraction) 
a (Å) c (Å) V (Å3) 

Reliability 

Factors 

NMA6-

P3 
P3 (100%) 

2.8848 

(1) 

16.7749 

(1) 

120.89 

(1) 

Rexp: 2.01 

Rwp: 2.45 

Rp:1.92 

GOF: 1.21 
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NMA6-

P3P2 

P3 

(48.5%) 

2.8751 

(1) 

16.775 

(1) 

120.23 

(1) 

Rexp: 1.90 

Rwp: 2.21 

Rp: 1.16 

GOF: 1.79 
P2 

(51.5%) 

2.8746 

(1) 

11.160 

(5) 

79.80 

(1) 

NMA6-

P2 
P2(100%) 

2.876 

(2) 

11.164 

(4) 

80.02 

(2) 

Rexp: 1.95 

Rwp: 3.49  

Rp: 2.49 

GOF: 1.78 

 

The varying concentrations of Mn3+ in the NMAx series have been identified by 

analyzing their Mn 2p X-ray photoelectron spectra (Figure 5.5). The Mn 2p XPS 

spectra of NMA4 to NMA6 are deconvoluted into 4 peaks at 641.8 & 653.2 eV and 

643.2 & 654.7 eV belonging to Mn3+ and Mn4+, respectively [3-5]. The increasing 

intensity of the deconvoluted Mn3+ peaks from NMA4 to NMA5 and NMA6 points 

to a rising concentration of Mn3+ in these compounds. Unlike the other samples, the 

Mn 2p spectra of NMA3 are fitted with only 2 peaks at 643.2 and 654.7 eV 

belonging to Mn4+, indicating the absence of Mn3+. The nominal concentration of 

Mn3+ and Mn4+ in the NMA series of cathodes is summarised in Table S6, and 

analysis of XPS data fitting indicates that the Mn3+ and Mn4+ fractions match closely 

with expected values within the acceptable error margins. Additionally, the Mn 2p 

spectra of P3-type samples in the NMAx series resemble their corresponding P2-

type counterparts. This suggests a negligible Na loss during the calcination of P2-

type samples, as a loss of Na during calcination would have increased the Mn4+ 

concentration in these materials, leading to alterations in the peaks in the Mn 2p 

spectrum. The Ni 2p XPS spectra of the NMAx samples displayed in Figure 5.6 

show similar peak energies, indicating the presence of only Ni2+ in all samples [3-

5].  
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Figure 5.5. Mn 2p XPS plots of NMAx-P3 and NMAx-P2 type compounds. 
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Figure 5.6. Ni 2p XPS plots of NMAx-P3 and NMAx-P2 type samples. 

Table 5.6. The nominal concentration of Mn3+ and Mn4+ in the NMAx series of 

compounds. 

Composition 
Mn3+ 

concentration  

Mn4+ 

concentration  

Na0.75Mn0.50Ni0.25Al0.25O2 (NMA3) 0 0.5 

Na0.75Mn0.625Ni0.125Al0.25O2(NMA4) 0.25 0.375 

Na0.75Mn0.625Ni0.25Al0.125O2(NMA5) 0.125 0.5 

Na0.75Mn0.75Ni0.125Al0.125O2(NMA6) 0.375 0.375 
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The microstructural and morphological characteristics of the cathode materials were 

observed using FESEM, and the micrographs are displayed in Figure 5.7 and Figure 

5.8. The SEM images of the P3 and P3/P2 mixed-phase samples show spheroidal 

and hexagonally shaped particles with a relatively lower degree of agglomeration. 

With increased calcination temperature, agglomeration increases, resulting in large 

particle clusters in the P2-type samples. Typically, materials with smaller particle 

sizes are preferred in cathode materials as these enhance the rate performance and 

cyclic stability of the electrode materials [6, 7]. Accordingly, it is expected that P3 

and P3/P2 mixed-phase cathodes would exhibit better electrochemical performance 

than their P2 counterparts. The elemental maps of NMA5-P3P2 displayed in Figure 

5.7 show a homogeneous distribution of all its constituent elements. 

Figure 5.7. SEM micrographs of (a1-a3) NMA5-P3, NMA5-P3P2, and NMA5-P2 

with (a4-a8) depicting the elemental maps of the NMA5-P3P2 sample. 
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Figure 5.8. SEM micrographs of (a1-a3) NMA3-P3, P3P2, and P2, respectively. 

(b1-b3) NMA4-P3, P3P2, and P2, respectively. (c1-c3) NMA6-P3, P3P2, and P2, 

respectively. 

5.2. Electrochemical Characteristics 

The galvanostatic charge-discharge (GCD) curves of NMAx samples cycled at 

different C rates between 1.5 V and 4.0 V are depicted in Figures 5.9 and 5.10. The 

cathodes were cycled in a half-cell configuration with Na metal as the counter 

electrode. The initial columbic efficiency of all the cathodes is higher than 100% 

because of the increasing reduction of Mn4+ ions when the concentration of Na+ 

exceeds 0.75 in these samples during the discharge process. 
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Figure 5.9. Charge discharge profiles of (a1) NMA3-P3, (a2) NMA3-P3P2, (a3) 

NMA3-P2 (b1) NMA5-P3, (b2) NMA5-P3P2, (b3) NMA5-P2 series of cathodes at 

different C rates. 
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Figure 5.10. Charge-discharge profiles of (a) NMA4-P3, (b) NMA4-P3P2, (c) 

NMA4-P2, (d) NMA6-P3, (e) NMA6-P3P2, and (f) NMA6-P2 cathodes at 

different C rates. 

Among different cathodes in the NMAx series, the NMA3-P3 and NMA5-P3 stand 

out in their specific capacities. At a charge-discharge rate of 0.1C, both the cathodes 

show specific capacities close to 195 mAh g-1 due to the higher Ni concentrations 

(Figure 5.9(a1) and (b1)). This is validated by multiple peaks appearing in their 

respective dQ/dV vs V plots above 3 V (Figure 5.11) that correspond to Ni2+/4+ redox 

couples [5, 8-10]. In contrast, the lower concentration of Ni2+ in NMA4 and NMA6 

cathodes limited their specific capacity to 170 mAh g-1 at 0.1C. Moreover, unlike 

NMA3-P3 and NMA5-P3, more than 50% of the specific capacity in NMA4-P3 and 

NMA6-P3 is due to the activation of Mn3+/4+ redox couples, which could lead to 

lower cyclic performance in the latter. 
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Figure 5.11. dQ/dV vs. V plots of NMA3 (a1-a3) and NMA5 (b1-b3) series of 

cathodes cycled at 0.1C. 

With an increase in the P2 phase concentration, the specific capacities of all the 

cathode materials show a decreasing trend. In NMA3-P3P2 and NMA5-P3P2, the 

specific capacities drop to ~ 175 mAh g-1, further decreasing to ~ 150 mAh g-1 in 

NMA3-P2 and NMA5-P2. We had earlier reported such reductions in specific 

capacities with an increase in P2 phase concentration in both NMA1 and NMA2 

compounds, which was attributed to the ability of the P3 phase to accommodate 

more Na ions by transforming to an O3 type phase, as in the case of NMA1-P3. 

Regarding other electrochemical performance parameters, such as rate performance, 

unlike NMA1 and NMA2, the monophasic P3 type cathodes of the NMAx 

compounds showed marginally better rate performance than their corresponding 

P3/P2 mixed-phase counterparts (Figure 5.12(a-b) and Figure 5.13(a-b)). At a 

discharge rate of 1C, NMA3-P3 and NMA5-P3 exhibited a specific capacity of 126 
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mAh g-1 and 115 mAh g-1, respectively. At a higher discharge rate of 6 C, NMA3-

P3 and NMA5-P3 and their P3/P2 mix phase compounds could sustain a specific 

capacity of ~ 77 mAh g-1. Meanwhile, in the NMA4 and NMA6 type cathodes, their 

P3 and P3/P2 mix phased compounds showed much lower capacities, close to 95 

mAh g-1 at 0.1 C and 60 mAh g-1 at 6C. Another notable feature of the rate 

performance curves is the consistently poor capacities exhibited by the P2-type 

cathodes. In all compositions, P2-type phases showed higher drops in specific 

capacities with an increase in discharge current, which could be attributed to large 

particle agglomerations in the P2 materials.  

Figure 5.12. Rate performance (a)-(b) and (c)-(d) cyclic stability curves of NMA3 

and NMA5series of cathodes cycled between 1.5 V and 4.0 V. (e) Cyclic 

performance of NMA3-P3P2 and NMA5-P3P2 at 1C between 2.0 V and 4.0 V. 



Chapter 5 

101 
 

Figure 5.13. Rate performance (a-b) and (c-d) cyclic stability curves of NMA4 

and NMA6 series of cathodes cycled between 1.5 V - 4.0 V. 

Even though the P3-type cathodes showed a relatively high specific capacity and 

rate performance, their cyclic stability was surprisingly underwhelming. Figures 

5.12(c-d) and 5.13(c-d) depict the cyclic performance of the NMAx series of cathode 

materials at 1C between 1.5 V and 4.0 V. The biphasic P3/P2 type cathodes 

consistently retain higher capacity than their P3 and P2 counterparts in all the 

compounds. For instance, in NMA3 and NMA5 cathodes, NMA3-P3/P2 and 

NMA5-P3/P2 showed ~ 70% capacity retention after 300 cycles, while their P3 and 

P2 type cathodes retained less than 60% of their initial specific capacities, at 1C. 

Cyclic performance drops even in the case of NMA4-P3P2 and NMA6-P3P2, where 

capacity retention is only about 60% of the initial capacity after 300 cycles. This 

could be due to the increased activity of Mn3+/4+ redox couples in NMA4 and NMA6, 

which is known to cause large variations in unit cell volume during cycling. The 

interlocking between the P3 and P2 phases may aid in minimizing this large 

variation in unit cell volume at low voltages in the mixed-phase samples, allowing 

these to achieve higher cyclic stabilities.  

To limit the activation of Mn3+/4+ redox couples, NMA3-P3P2 and NMA5-P3P2 

were tested further in a narrower voltage window between 2.0 V and 4.0 V (Figure 
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5.12(e)). NMA3-P3P2 and NMA5-P3P2 exhibited about 82% and 75% capacity 

retention after 300 cycles at 1C in this voltage window. Although the superior cyclic 

performance of the NMA3-P3P2 compared to NMA5-P3P2 could be attributed to 

the presence of Jahn-Teller active Mn3+ in the latter, the enhancement of cyclic 

stabilities of the cathode materials in the narrower voltage range is evidence of the 

detrimental impact (on cyclic stability) of utilizing Mn3+/4+ redox couples in layered 

oxide cathodes.  

Nyquist plots of half-cells with NMA3-P3P2 and NMA5-P3P2 samples as cathodes 

illustrated in Figure 5.14 concur with the cyclic data. The Nyquist plot was analyzed 

through an equivalent circuit model shown in Figure 5.14 inset. The circuit consists 

of 3 resistors, R1, R2, and R3, which represent the DC resistances of the electrolyte, 

SEI layers, and charge transfer, respectively. NMA3-P3P2 and NMA5-P3P2 cells 

show higher overall resistance after cycling between 1.5-4.0 V when compared to 

the resistance of the cells cycled in the 2.0-4.0 V range. In NMA3-P3P2, there was 

a drastic increase in the charge transfer resistance (R2) (60 to 350 Ω) after cycling 

between 1.5-4.0 V compared to 2.0-4.0 V (60 to 150 Ω) NMA5-P3P2 also exhibited 

similar trends in charge transfer resistance which is consistent with a higher degree 

of structural degradation in the cathodes cycled between 1.5-4.0 V.   
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Figure 5.14. Nyquist plots of NMA3-P3P2 and NMA5-P3P2 cathodes before and 

after cycling. Figure inset shows the equivalent circuit used to fit the impedance 

data.  

5.3. Operando Synchrotron XRD 

Operando Synchrotron XRD (SXRD) was used to probe variations in lattice 

parameters during cycling and investigate the structural variations in the cathode 

materials during cycling. Figure 5.15(a-b) illustrates the operando SXRD pattern of 

NMA3-P3P2 and NMA5-P3P2 samples obtained at different states of charge. As 

expected, the figure shows large changes in the c lattice parameter of the P3 and P2 

type unit cells below 2 V in both the cathodes, indicated by the significant shift in 

the (003) and (002) peaks of the P3 and P2 type phases. As discussed earlier, the 

change in the c lattice parameter is due to the presence of Jahn-Teller active Mn3+, 

which causes large distortions in the hexagonal lattice, leading to poor cyclic 

stability in the monophasic cathodes.  
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Interestingly, as reported in NMA2, the presence of Al3+ in the NMA3 and NMA5 

cathodes has also impeded the transformation of P3 phases into an O3-type structure 

at lower voltages. Even when the specific capacity of the cathodes reached as high 

as 190 mAh g-1, no peaks corresponding to the O3 phase were observed in both 

mixed-phase cathodes. P3 to O3 phase transformations have long been observed in 

P3 and O3-type materials. The slab glide mechanism leading to this transformation 

is often believed to cause rapid capacity degradation in these materials. Such 

transformations were also observed in NMA1-P3 and NMA1-P3P2 materials, which 

limited their cyclic performances. The absence of P3 to O3 transformations in both 

the Al-substituted compounds is an important finding and could open new avenues 

for research into O3 and P3-type layered oxides. The absence of phase transitions 

and the synergistic effect due to the biphasic nature of the NMA3-P3P2 and NMA5-

P3P2 cathodes enhanced their structural stability, allowing them to achieve excellent 

cyclic properties. 

Figure 5.15. Operando Synchrotron XRD patterns (a) NMA3-P3P2 (collected 

with a beam of a wavelength of 0.6645 Å) and (b) NMA5-P3P2 (collected with a 

beam of a wavelength of 0.74 Å) half cells obtained during the first 

charge/discharge cycle at 0.1C. 
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Figure 5.16 classifies the compositions in the NMAx series along different Mn3+ 

concentration lines in the Na3/4(Mn-Al-Ni)O2 pseudo-ternary diagram and reveals 

some interesting trends. Along the constant Al content (= 0.25) from NMA2 to 

NMA3, both the specific capacity and rate performance increased. This was 

expected; as the Ni2+ concentration in these cathode materials increased from 0 (for 

NMA2) to 0.25 (NMA3), the amount of Na+ that could be extracted also increased. 

This is further evidenced by similar specific capacities observed in NMA1, NMA5, 

and NMA3 cathodes having the same Ni content. The rate performance, on the other 

hand, improved along this line from NMA1 to NMA3. This is attributed to the 

increase in the Na+ conduction bottleneck area with an increase in Al content from 

NMA1 to NMA3. Further, NMA3 and NMA5 compositions that exhibit the best rate 

performance and highest cyclic stability lie along the 0-Mn3+ and 0.125-Mn3+ lines, 

respectively. In a limited voltage window between 2.0 to 4.0 V, where the Mn3+/4+ 

redox couple is largely inactive, NMA3-P3P2 showed better cyclic performance. 

Hence, the various Mn3+ concentration lines displayed in Figure 5.16 could serve as 

a guide to identify an optimal cathode material in the Na3/4(Mn-Al-Ni)O2 pseudo-

ternary diagram.  
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Figure 5.16. Pseudo-ternary diagram of Na3/4(Mn-Al-Ni)O2 system showing 

constant Mn3+ concentration lines. The solid blue arrow indicates the increasing 

specific capacity, cyclability, and rate performance in compositions with constant 

Al3+ content. The dotted arrow depicts the compositions (constant Ni2+ content) 

along which the rate performance improves. 

It should be noted that while Mn is +4 oxidation state in as-synthesized NMA3, 

during discharging to lower voltages in a half-cell configuration, sodiation could 

activate the Mn4+/3+ redox due to additional Na-ions supplied by the Na metal anode. 

In the wider 1.5 V – 4.0 V window, NMA3-P3P2 and NMA5-P3P2 cathodes 

exhibited a 30% higher specific capacity than the 2.0 V – 4.0 V window while 

retaining 70% of their initial specific capacity after 300 cycles. This cyclic 

performance points to excellent structural stabilities of NMA3-P3P2 and NMA5-

P3P2 enabled by the presence of Al3+ and their biphasic nature, which mitigate the 

effects of the structural distortions caused by the presence of Mn3+. Therefore, it 

stands to reason that an optimal cathode composition in the Na3/4(Mn-Al-Ni)O2 

pseudo-ternary diagram may be found along the lower Mn3+ concentration line; 

however, the activation of Mn3+/4+ redox couple could still be utilized to improve the 

electrochemical behaviour while maintaining the structural stability of these 

cathodes. 
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Identification of Optimal Composition with Superior Electrochemical 

Properties Along the Zero Mn3+ Line in Na0.75(Mn-Al-Ni)O2 Pseudo Ternary 

System 

This chapter explores the structural and electrochemical properties of P3/P2 biphasic 

cathode materials that lie on the so-called ‘zero Mn3+ line’ (Figure 6.1) in the 

Na3/4(Mn-Al-Ni)O2 pseudo-ternary phase diagram. The compounds identified have 

a general formula Na3

4

Mn5−𝑥

8

Al2𝑥

8

Ni3−𝑥

8

O2 (x = 0, 0.25, 0.50, 0.75, and 1).  The ‘zero 

Mn3+ line’ identified in this study confines the Mn ions to a 4+ oxidation state by 

varying the concentration of Mn, Ni, and Al ions. This novel approach differs from 

the conventional method of analyzing ternary diagrams in which the concentration 

of at least one of the elements remains constant. Moreover, in the Na3/4(Mn-Al-

Ni)O2 pseudo-ternary system, the ‘zero Mn3+ line’ is also the boundary between the 

forbidden region (assuming Ni is only allowed to maintain a 2+ oxidation state) and 

the allowed region. As the presence of Jahn-Teller active Mn3+ is considered 

detrimental to cyclic performance, structural and electrochemical analysis in 

monophasic and biphasic P2/P3 samples along the ‘zero Mn3+ line’ is crucial in 

identifying compositions with desired electrochemical properties in the Na3/4(Mn-

Al-Ni)O2
 system. This approach can be extended to other composition phase 

diagrams involving Jahn-Teller active cations in selecting electrode materials with 

superior performance. The Al substituted series of compounds Na3

4

Mn5

8

Ni3

8

O2 , 

Na3

4

Mn4.75

8

Al0.5

8

Ni2.75

8

O2 , Na3

4

Mn4.5

8

Al1

8

Ni2.5

8

O2 , Na3

4

Mn4.25

8

Al1.5

8

Ni2.25

8

O2 , and 

Na3

4

Mn1

2

Al1

4

Ni1

4

O2, (general composition Na3

4

Mn5−𝑥

8

Al2𝑥

8

Ni3−𝑥

8

O2, where x = 0, 0.25, 

0.50, 0.75, and 1) synthesized for the study will henceforth be abbreviated as A0, 

A1, A2, A3, and A4, respectively (also see Table 1 for details). 
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Table 6.1. Details of the composition and phase type for various samples prepared 

in the study. 

Composition  Phase type Label 

𝐍𝐚𝟑

𝟒

𝐌𝐧𝟓

𝟖

𝐍𝐢𝟑

𝟖

𝐎𝟐 P3 A0- 1 

P3+P2 A0- 2 

P2 A0- 3 

𝐍𝐚𝟑

𝟒

𝐌𝐧𝟒.𝟕𝟓

𝟖

𝐀𝐥𝟎.𝟓

𝟖

𝐍𝐢𝟐.𝟕𝟓

𝟖

𝐎𝟐 P3 A1- 1 

P3+P2 A1- 2 

P2 A1- 3 

𝐍𝐚𝟑

𝟒

𝐌𝐧𝟒.𝟓

𝟖

𝐀𝐥𝟏

𝟖

𝐍𝐢𝟐.𝟓

𝟖

𝐎𝟐 P3 A2- 1 

P3+P2 A2- 2 

P2 A2- 3 

𝐍𝐚𝟑

𝟒

𝐌𝐧𝟒.𝟐𝟓

𝟖

𝐀𝐥𝟏.𝟓

𝟖

𝐍𝐢𝟐.𝟐𝟓

𝟖

𝐎𝟐 P3 A3- 1 

P3+P2 A3- 2 

P2 A3- 3 

𝐍𝐚𝟑

𝟒

𝐌𝐧𝟏

𝟐

𝐀𝐥𝟏

𝟒

𝐍𝐢𝟏

𝟒

𝐎𝟐 P3 A4- 1 

P3+P2 A4- 2 

P2 A4- 3 
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6.1. Structural characteristics 

A series of Al-substituted Na3

4

Mn5−𝑥

8

Al2𝑥

8

Ni3−𝑥

8

O2 (x = 0, 0.25, 0.50, 0.75, and 1) were 

synthesized through the sol-gel route. All these compositions (A0-A4) lie on the 

‘zero Mn3+ line’ in the Mn-Ni-Al pseudo-ternary diagram where the concentration 

of Mn3+ is 0, as illustrated in Figure 6.1. All compositions were synthesized with 

three intended phase structures: monophasic P3 (denoted as -1), monophasic P2 

(denoted as -2), and biphasic P3/P2 (denoted as -3). For example, the P3 and P2 

phases of A0 are denoted as A0-1 and A0-3, respectively, and the P3/P2 biphasic A0 

will be denoted as A0-2. 

Figure 6.1. Pseudo-ternary diagram of Na3/4(Mn-Al-Ni)O2 system. 

Figure 6.2 illustrates the phase evolution of the A0 to A4 series of compounds with 

calcination temperature. The figure shows that the P3 phase in all 5 compositions 

formed at 650 °C, and as the calcination temperature increased, peaks consistent 

with a P2-phase started to emerge, while the intensity of those corresponding to the 

P3 phase decreased.  
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Figure 6.2. (a-e) Structural evolution of A0-A4 cathode materials with calcination 

temperature. 

Another noticeable feature of Figure 6.2 is that the complete transformation of all 

the materials to a P2-type phase occurs at different temperatures. For A4 (which has 

the highest, i.e., 0.25, Al content), a monophasic P2 phase (A4-3) is obtained at 900 

°C. In contrast, in other compositions with lower levels of Al3+, like in the case of 

A2 and A0, a pure P2 phase was obtained at relatively lower temperatures of 850 °C 

and 825 °C, respectively. Accordingly, the calcination temperatures for biphasic A2-
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2 and A0-2 were also lower than A4-2.  The changes to crystallographic parameters 

in the P3 and P2 phases in the A0-A4 series of compounds were analyzed using 

Rietveld refinement of room temperature XRD data (Figures 6.3-6.7). The 

refinement confirmed the existence of a single P3 phase (𝑅3𝑚 space group) in all 

samples at 650 °C. With an increase in temperature, the intensities of (101), (102), 

and (105) peaks belonging to the P3 phase decline while (100), (102), and (103) 

peaks belonging to the P2 phase (P63/mmc space group) become prominent. Table 

6.2-6.6 displays the crystallographic parameters of the A0-A4 series of compounds 

obtained after Rietveld refinement of XRD data. Interestingly, the P3 and P2 unit 

cell volumes were ~ 121 Å3 and 80.5 Å3 across all compositions. On the other hand, 

TM-O6 octahedral volume in P3 and P2 type structures decreased from ~ 10.92 Å3 

and 10.90 Å3 in A0 to ~ 9.67 Å3 and 10.05 Å3 in A4 while the volume of Na-O6 prism 

increased from 11.98 Å3 and 11.91 Å3 in the former to 12.90 Å3 and 12.59 Å3 in 

latter. As a result, Na ion conduction bottlenecks (area of the rectangular face of Na-

O6 prism) are also bigger in A4. 

The contraction of the TM-O2 layers with an increase in Al concentration was further 

confirmed by the fitting of EXAFS data obtained at the Mn K-edge (Figure 6.8). The 

Fourier transform fits of Mn K-edge in P3 and P2 type A0-A4 samples show 

decreasing Mn-O bond lengths from 2.01 Å (for P2 and P3) in A0 to 1.94 Å (P3) 

and 1.96 Å (P2) in A4. The decrease in effective TM-O bond length could be due to 

a higher bond strength of Al-O bonds (511 kJ mol-1) compared to Ni-O (382 kJ mol-

1) and Mn-O (401 kJ mol-1) bonds, which lowers the effective TM-O bond lengths 

in P3 and P2 layered oxide compounds, allowing the TM-O6 octahedra to shrink 

with an increase in Al content [1]. Such alterations to TM-O2 layers in layered oxide 

materials have also been reported in the Na-Mn-O system of cathode materials, 

where similar reductions in TM-O6 octahedral volume were reported with Al 

substitution [2]. The higher bottleneck area in A4 compared to A0 could also lower 

the Na+ migration energy with the material, which would help enhance its rate 

performance. 
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Figure 6.3. Rietveld refinement of XRD data for A2-1, A2-2, and A2-3 samples, 

along with their deconvoluted P2 and P3 phases.  

Figure 6.4. Rietveld refined XRD data for A0-1, A0- 2, and A0- 3 samples. 
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Figure 6.5. Rietveld refinement of XRD data for A1-1, A1-2, and A1-3 samples. 

 

Figure 6.6. Rietveld refinement of XRD data for A3-1, A3-2, and A3-3 samples. 
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Figure 6.7. Rietveld refinement of XRD data for A4-1, A4-2, and A4-3 samples. 

Figure 6.8. Mn K edge EXAFS spectra of A2-1, A2-3, A0-1, and A0-3 samples. 
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Table 6.2. Lattice parameters of A0 samples obtained from the Rietveld refinement 

of room temperature XRD data. 

Sample 
Phase 

(Fraction) 
a (Å) c (Å) V (Å3) 

Reliability 

Factors 

A0-1 P3 (100%) 

2.8875 

±0.0001 

16.765 

± 0.001 

120.92 

± 0.01 

Rexp: 2.92 

Rwp: 4.72 

Rp: 3.34 

GOF: 1.61 

A0-2 

P3 (48.3%) 

2.8879 

± 0.0002 

16.774 

± 0.002 

121.15 

± 0.02 

Rexp: 2.89 

Rwp: 4.41 

Rp: 3.06 

GOF: 1.52 

P2 (51.7%) 

2.8885 

± 0.0001 

11.15 

± 0.002 

80.57 

± 0.01 

A0-3 P2(100%) 

2.8885 

± 0.0001 

11.1457 

± 0.0005 

80.53 

± 0.01 

Rexp: 2.99 

Rwp: 4.70  

Rp: 3.79 

GOF: 1.57 
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Table 6.3. Lattice parameters of A1 samples obtained from the Rietveld refinement 

of room temperature XRD data. 

Sample 
Phase 

(Fraction) 
a (Å) c (Å) V (Å3) 

Reliability 

Factors 

A1-1 P3 (100%) 

2.8885 

±0.0001 

16.7745 

± 0.001 

121.21 

± 0.01 

Rexp: 2.71 

Rwp: 4.02 

Rp: 2.86 

GOF: 1.47 

A1-2 

P3 (52.9%) 

2.8874 

± 0.0002 

16.757 

± 0.002 

120.99 

± 0.02 

Rexp: 3.04 

Rwp: 4.51      

Rp: 3.17 

GOF: 1.48 

P2 (47.1%) 

2.8874 

± 0.0001 

11.134 

± 0.002 

80.391 

± 0.01 

A1-3 P2(100%) 

2.8878 

± 0.0001 

11.143 

± 0.001 

80.47 

± 0.01 

Rexp: 2.69 

Rwp: 4.31  

Rp: 3.05 

GOF: 1.59 
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Table 6.4. Lattice parameters of A2 samples obtained from the Rietveld refinement 

of room temperature XRD data. 

Sample 
Phase 

(Fraction) 
a (Å) c (Å) V (Å3) 

Reliability 

Factors 

A2-1 P3 (100%) 

2.8864 

±0.0001 

16.758 

± 0.001 

120.92 

± 0.01 

Rexp: 2.72 

Rwp: 3.54 

Rp: 2.75 

GOF: 1.3 

A2-2 

P3 (52.6%) 

2.8858 

± 0.0002 

16.781 

± 0.002 

121.04 

± 0.02 

Rexp: 2.82 

Rwp: 3.43      

Rp: 2.65 

GOF: 1.36 

P2 (47.4%) 

2.8878 

± 0.0001 

11.143 

± 0.002 

80.47 

± 0.01 

A2-3 P2(97%) 

2.8881 

± 0.0001 

11.137 

± 0.001 

80.45 

± 0.01 

Rexp: 2.76 

Rwp: 3.30  

Rp: 2.57 

GOF: 1.19 
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Table 6.5. Lattice parameters of A3 samples obtained from the Rietveld refinement 

of room temperature XRD data. 

Sample 
Phase 

(Fraction) 
a (Å) c (Å) V (Å3) 

Reliability 

Factors 

A3-1 P3 (100%) 

2.8841 

±0.0001 

16.779 

± 0.001 

120.87 

± 0.01 

Rexp: 2.67 

Rwp: 3.24 

Rp: 2.54 

GOF: 1.21 

A3-2 

P3 (54.3%) 

2.8863 

± 0.0001 

16.7620 

± 0.002 

120.93 

± 0.02 

Rexp: 2.73 

Rwp: 3.44 

Rp: 2.72 

GOF: 1.25 

P2 (45.7%) 

2.8854 

± 0.0001 

11.163 

± 0.001 

80.49 

± 0.01 

A3-3 P2(100%) 

2.8834 

± 0.0002 

11.1669 

± 0.0004 

80.404 

± 0.005 

Rexp: 1.98 

Rwp: 3.41  

Rp: 2.49 

GOF: 1.71 
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Table 6.6. Lattice parameters of A4 samples obtained from the Rietveld refinement 

of room temperature XRD data. 

Sample 
Phase 

(Fraction) 
a (Å) c (Å) V (Å3) 

Reliability 

Factors 

A4-1 P3 (100%) 

2.8838 

±0.0001 

16.7924 

± 0.002 

120.97 

± 0.01 

Rexp: 2.23 

Rwp: 2.51 

Rp: 1.99 

GOF: 1.12 

A4-2 

P3 (47.5%) 

2.8864 

± 0.0001 

16.773 

± 0.001 

121.00 

± 0.02 

Rexp: 2.29 

Rwp: 3.41     

Rp: 2.59 

GOF: 1.48 

P2 (52.5%) 

2.8842 

± 0.0002 

11.164 

± 0.001 

80.42 

± 0.01 

A4-3 P2(100%) 

2.8834 

± 0.0002 

11.1669 

± 0.0004 

80.404 

± 0.005 

Rexp: 1.98 

Rwp: 3.41  

Rp: 2.49 

GOF: 1.71 

 

 



Chapter 6 

122 
 

The morphological and microstructural studies of the A0-A4 series were carried out 

using FESEM. Figure 6.9(a-c) portrays the SEM micrographs of A2-1,2,3, while the 

SEM images of A0, A1, A3, and A4 series of compounds are displayed in Figure 

6.10. The SEM micrographs reveal an increase in particle agglomeration with 

increased calcination temperature. The monophasic P3-type samples of all 

compounds show smaller particles with spheroid shape. In comparison, the biphasic 

P3/P2 type materials can be observed to have bigger particles with a slightly higher 

degree of agglomeration. Samples with smaller particles and a relatively lower 

degree of agglomeration are preferred in cathode materials as they usually show 

better rate performance and cyclic stabilities [3, 4]. In this regard, the P2-type 

compounds that exhibit highly agglomerated particle clusters may show 

degradations in specific capacities at higher C rates. The elemental mapping of A2-

2 displayed in Figure 6.9(b1-b5) confirms a homogeneous distribution of all the 

constituent elements.  

Figure 6.9. SEM micrographs of  (a) A2-1, (b) A2-2, and (c) A2-3 samples with 

(b1-5) representing the elemental maps of different elements in A2-2. 
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Figure 6.10. SEM micrographs of (a1) A0-1, (a2) A0-2, (a3) A0-3, (b1) A1-1, (b2) 

A1-2, (b3) A1-3, (c1) A3-1, (c2) A3-2, (c3) A3-3, (d1) A4-1, (d2) A4-2, and (d3) 

A4-3 samples. 

A combination of X-ray absorption near-edge spectra (XANES) obtained at the Mn 

K-edge and Mn 2p X-ray photoelectron spectra (XPS) was used to analyze the 

oxidation state of Mn ions in the as-synthesized A0-A4 series of materials. In Mn 

K-edge XANES spectra (Figure 6.11(a)), the peak energies of all the compositions 

coincide at ~ 6561 eV, which indicates a 4+ oxidation state of Mn ions in these 

samples [5-8]. Similar conclusions are drawn from the Mn 2p spectra (Figure 

6.11(b)), which can be deconvoluted into 2 peaks at 643.2 and 654.7 eV, suggesting 
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the presence of only Mn4+ in these samples [9-11]. The oxidation state of Ni ions 

was identified by analyzing Ni 2p XPS spectra (Figure 6.12), where the peaks at 

854.26 and 871.75 eV confirmed a 2+ oxidation state of Ni ions in all samples [9-

11]. The 4+ oxidation state of Mn ions is a highly desirable feature in layered oxide 

cathodes that boosts their cyclic stability. Confirming the absence of Jahn-Teller 

active Mn3+ has tremendous implications on the structural stability of the cathode 

materials during cycling, ensuring better cyclic performance. 

Figure 6.11. (a) XANES spectra of A0-A4 samples taken at Mn Kedge with 

relevant standard compounds. (b) Mn 2p XPS plots of A0-2 to A4-2 compounds. 

Figure 6.12. Ni 2p XPS plots of A0-2 to A4-2 samples. 
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6.2. Electrochemical characteristics 

The impacts of Al content and different P3/P2 phase fractions on electrochemical 

characteristics were analyzed by varying the charge-discharge rate between 0.1C 

and 6C in a 1.5-4.2 V range. Figure 6.13 portrays the charge-discharge curves of A2-

1, A2-2, and A2-3 along with their corresponding dQ/dV vs. Voltage plots at 0.1C, 

while the same for A0, A1, A3, and A4 series of samples are displayed in Figure 

6.14-6.17. Interestingly, despite the decrease in the concentration of Ni2+ active ions 

from A0 to A4, P3-type cathodes in all compositions (i.e., A0-1, A1-1, A2-1, A3-1, 

and A4-1) showed similar capacities close to 200 mAh g-1 at 0.1C, which is 

equivalent to the extraction of ~ 0.8 Na+ from each formula unit cell. Concurrently, 

all the biphasic P3/P2 and monophasic P2 type cathodes also exhibited similar 

specific capacities close to 175 mAh g-1 and 155 mAh g-1, respectively. This suggests 

an increase in the activity of Mn4+ from A0-A4, as evidenced by the increase in the 

broadness of redox peaks below 2.5 V in the dQ/dV vs. Voltage (V) plots from A0 

to A4, compensating for the decrease in Ni content (the redox peaks above 3 V in 

dQ/dV vs. Voltage plots are attributed to Ni3+/4+ redox couples).  
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Figure 6.13. (a-c) GCD curves of A2-1, A2-2, and A2-3 cathode materials at 

different C rates with (a1-c1) showing their respective dQ/dV vs. voltage (V) plots 

at 0.1C. 
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Figure 6.14. GCD curves of (a) A0-1, (b) A0-2, and (c) A0-3 cathode materials at 

different C rates with (a1-c1) showing their respective dQ/dV vs. voltage (V) plots 

at 0.1C. 
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Figure 6.15. GCD curves of (a) A1-1, (b) A1-2, and (c) A1-3 cathode materials at 

different C rates with (a1-c1) showing their respective dQ/dV vs. voltage (V) plots 

at 0.1C. 
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Figure 6.16. GCD curves of (a) A3-1, (b) A3-2, and (c) A3-3 cathode materials at 

different C rates with (a1-c1) showing their respective dQ/dV vs. voltage (V) plots 

at 0.1C. 
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Figure 6.17. GCD curves of (a) A4-1, (b) A4-2, and (c) A4-3 cathode materials at 

different C rates with (a1-c1) showing their respective dQ/dV vs. voltage (V) at 

plots at 0.1C. 

Further, the activity of Mn3+/4+ redox couples also points to an increase in Na content 

in the cathode materials beyond 0.75. Hence, the specific capacities obtained at 0.1C 

between 1.5-4.2 V may not be realistic in a full-cell configuration. A possible 

solution to this problem would be to explore layered oxide cathodes with high Na or 

to limit the voltage window to 2.0-4.2 V, where Mn activity can be constrained. 

Limiting the voltage window to 2 V would cause an obvious reduction in specific 

capacity (up to 40% in A3 and A4 samples). Nevertheless, A3 and A4 cathodes 

possess larger Na+ conduction bottleneck areas that facilitate superior rate 

performance and cyclic stability and can be employed in batteries for stationary 

storage applications. The decrease in specific capacity observed with an increase in 

P2 phase fraction is also widely reported in the literature. This is due to the inability 

of the P2 phase to accommodate a higher number of Na-ions [12-14]. In contrast, 
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P3 phases can circumvent this problem by readily transforming into an O3 phase, 

typically when the concentration of Na+ exceeds 0.75. Similar differences in specific 

capacities between P2 and P3 phases and superior performance of the P2/P3 mixed 

phase at high C rates in Mn/Ni-based layered oxide cathodes have also been reported 

previously. 

To study the rate performance behaviour, GCD tests were conducted at different C-

rates. Figures 6.18(a), 6.18(b), and 6.18(c) represent the specific capacities of P3, 

biphasic P2/P3, and P2 samples for all compositions, respectively. The biphasic 

samples for all compositions (except A4) show better specific capacity at higher C-

rates than their monophasic counterparts. In P3-type cathodes, A4-1 shows the 

highest rate performance, with discharge capacities close to 125 mAh g-1 and 77 

mAh g-1 at 1C and 6C, respectively. This was closely followed by the A3-1, which 

exhibited specific capacities close to 120 mAh g-1 and 66 mAh g-1 at 1C and 6C, 

respectively. The superior rate performance of A4-1 and A3-1 concurs with the 

conclusions drawn from XRD data, where a higher Na+ conduction bottleneck area 

was observed with increased Al content. In contrast, Al-substituted P2-type cathodes 

(A1-A4) show higher degradation in specific capacities during cycling. This could 

be attributed to the higher agglomeration of particles observed in the P2-type 

materials reported earlier.  

Contrary to the trend observed in P3 type cathodes, the rate performed of the P3/P2 

biphasic cathode materials (Figure 6.18(b)) initially improved with an increase in Al 

content till A1-2 and then decreased till A4-2. The P3/P2 biphasic A2-2 cathodes 

exhibited exceptional rate performance, delivering a specific capacity of 125 mAh 

g-1 and 91 mAh g-1 at 1C and 6C, respectively. At the same time, the initial 

enhancement in rate performance with an increase in Al content can be attributed to 

the increasing area of Na+ conduction bottlenecks, with further increase in Al 

content, drastic reduction in electronic conduction due to the presence of a high 

concentration of inactive Al3+. This inevitably became the bottleneck limiting Na+ 

extraction from the cathode materials, leading to inferior rate performance in A3-2 

and A4-2. Since such a reduction in rate performances was not observed in the P3-

type cathodes, the size of the cathode particles may have played a pivotal role in 

boosting their electronic conductivities. The Ketjen black additive mixed with the 

cathode slurry (to boost electronic conduction) is more effective in enhancing the 
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electronic conductivity of the cathode layer containing smaller P3 phase particles 

(compensating for the decrease in electronic conductivity of P3 cathodes with high 

Al content) than in the larger and much more agglomerated P3/P2 cathodes. 

 

Figure 6.18. Rate performance of (a) A0-1 to A4-1, (b) A0-2 to A4-2, and (c) A0-3 

to A4-3 series of cathodes cycled between 1.5-4.2 V. 

To evaluate the effect of Mn3+/4+ redox couples on the cyclic performance of the 

cathodes, the cells were cycled between two different voltage windows: 1.5-4.2 V 

and 2.0-4.0 V (Mn3+/4+ redox couples are largely active below 2.0 V). In the 1.5-4.2 

V voltage window (Figure 6.19(a1-a3)), the cyclic stability of the biphasic cathode 

materials in all five compositions is higher than their respective monophasic P3 and 
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P2 counterparts. The superior cyclic performance of the biphasic cathode materials 

is attributed to the synergistic effect (manifested due to the coexistence of two 

phases) that stabilizes both the P3 and P2 type structures, preventing phase 

transitions and large volume changes during cycling [15, 16].  

With an increase in the Al content, the cyclic stability shows rapid improvement 

initially, with A1-2 and A2-2 exhibiting about 68% and 78% capacity retention after 

300 cycles compared to just 50% in A0-2. However, with a further increase in Al 

content beyond A2-2, capacity retention drops back to 68% in A4-2. The poor cyclic 

stability could be attributed to the increasing activity of Mn3+/4+ redox couples 

(known to degrade structural stability) in the A4 and A3 compositions. Additionally, 

in the unsubstituted cathode samples (A0), the cyclic performance curves show a 

rapid decay in specific capacity after only a few cycles of steady performance, 

consistent with rapid structural degradation with cycling. This appears to have been 

remedied in the Al-substituted samples, where the capacity degradation appears 

gradual, suggesting improved structural stability with the substitution of Al3+ for 

Mn4+ and Ni2+. After limiting the voltage window to 2.0-4.0 V (Figure 6.19(b1-b3)), 

A2-2 still delivered an impressive capacity of 99 mAh g-1 at 1C and retained 87% 

of the initial capacity after 500 cycles. This is a substantial improvement over the 

unsubstituted biphasic A0-2, which exhibits a capacity retention of only 55% after 

500 cycles. The monophasic P2 and P3 type A2 cathodes (Figure 6.19(b2)) also 

showed higher cyclic performance, retaining up to 78% of their original capacity 

after 500 cycles. In higher Al substituted samples, A4-2 showed capacity retention 

of 78%, dropping from 87 mAh g-1 to 66 mAh g-1 after 500 cycles. Liming the lower 

cutoff voltage to 2 V limited the activity of the Mn3+/4+ redox couple, which 

improved the cyclic performance of all the cathode materials.  
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Figure 6.19. Cyclic performance of A0-A4 series of cathodes at a discharge rate of 

1C (a1-a3) between 1.5-4.2 V and (b1-b3) between 2.0-4.0 V. 

The A2-2 cell was also able to achieve a 94% energy efficiency during the initial 

cycles at 1C and still maintained an energy efficiency as high as 88% after 500 cycles 

(Figure 6.20). Energy efficiency is vital to battery performance, often unreported in 

the literature. It determines the practical applicability of high-energy electrode 

materials and can also be used to diagnose various structural instabilities/variations 

(especially in interaction-type electrode materials) [17]. In the GCD curves plotted 

in Figure 6.20, the overpotential seems to increase when the voltage drops below 3.0 

V, indicating large-scale structural variations/transformations. Even at a high 

discharge rate of 1C, the high energy efficiency makes A2-2 a strong contender for 

commercialization in Na ion batteries. 
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Figure 6.20. GCD curves of A2-2 depicting energy loss and energy recovered 

during charge-discharge at 1C. 

In the Nyquist plots in Figure 6.21(a), A2-2 half cells show the lowest overall 

resistance ~ 300 Ω and 410 Ω after 500 cycles (cycled between 2.0 to 4.0 V) and 

300 cycles (cycled between 1.5 to 4.2 V), respectively. The analysis of EIS data 

using an equivalent circuit model revealed an increase in charge transfer resistance 

from ~170 Ω in the fresh cells to 387 Ω after 500 cycles (in the 2.0-4.0 V range) and 

to 587 Ω after 300 cycles (in the 1.5-4.2 V range) for cell with A4-2 as the cathode. 

The charge transfer resistance increased to 260 Ω (after 500 cycles) and 354 Ω (after 

300 cycles) in the half-cell with A2-2 cathode. The increase in charge transfer 

resistance of both the cells also indicates a higher degree of structural degradation 

in the materials when cycled in a wider voltage window. The lower charger transfer 

resistance in A2-2 also indicates the high structural durability of the cathode 

material. 
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The galvanostatic intermittent titration technique (GITT) was used to probe Na-ion 

kinematics in the A4, A2, and A0 series of compounds, and their resulting curves 

depicting the variation in Na+ diffusion coefficients at different states of charge are 

displayed in Figure 6.21(b), Figure 6.22, and Figure 6.23. As expected, in all the 

compounds, monophasic P3 and the biphasic P2/P3 biphasic cathodes show the 

lowest dispersion in diffusion coefficients at different states of charge compared to 

the P2-type cathode. In A2, the highest diffusion coefficient is observed in A2-2 (4.0 

× 10-10 cm2 s-1) type cathode, while in A1, the highest diffusion coefficient is 

observed in A4-1 (4.0 × 10-10 cm2 s-1) which concurs with the rate performance 

results.  

Figure 6.21. (a) Nyquist plots of A0-2, A2-2, and A4-2 cathodes before and after 

cycling. Figure inset shows the equivalent circuit used to fit the impedance data. 

(b) Variation of diffusion coefficients of A0-2, A2-2, and A4-3 cathodes during a 

charge/discharge cycle. 
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Figure 6.22. Variation of diffusion coefficients in A0-1, A2-1, and A4-1 cathodes 

during a charge/discharge cycle. 

Figure 6.23. Variation of diffusion coefficients in A0-3, A2-3, and A4-3 cathodes 

during a charge/discharge cycle. 
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The remarkable electrochemical performance of the A2-2 cathode prompted me to 

test the material further in a full-cell configuration with a hard carbon anode. The 

hard carbon was pre-sodiated before being assembled into the full cell; the charge-

discharge cycle of hard carbon is shown in Figure 6.24. During electrochemical 

tests, the A2-2 full cell exhibited a specific capacity of 104 mAh g-1 (~ 90% capacity 

of A2-2 half cell) between 2.0-4.0 V at a charge/discharge rate of 0.2C and retained 

90% of its initial specific capacity after 100 cycles (Figure 6.25). 

Figure 6.24. GCD curves of hard carbon half-cell cycled at 0.05C.  

Figure 6.25. GCD curves of A2-2 full cells cycled at 0.2C. 
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6.3. Operando Synchrotron XRD studies 

The improved structural stability of the Al-substituted cathodes and the adverse 

effects of Mn3+/4+ redox couples on the layered oxide structure were confirmed using 

operando Synchrotron XRD of cathode materials. The Synchrotron XRD patterns 

were obtained for the A2 and A4 series of cells while cycling at a charge/discharge 

rate of 0.1C between 1.5-4.2 V. Figure 6.26(a-c) depicts the XRD patterns of A2-1, 

A2-2, and A2-3 cathode materials, and the same for A4-1, A4-2, and A4-3 are 

presented in Figure 6.27. Initial analysis of the XRD patterns of both A2-1 and A4-

1 confirmed our speculations about large variations in lattice parameters associated 

with the activation of Mn3+/4+ in layered oxide structures, as evidenced by the shift 

in the (003) peak to higher angles (signifying a shrinkage of unit cell along the c axis 

due to a decreased repulsion between O2- with an increasing amount of Na+ in the 

unit cell)  during the discharge cycle when the cell voltage falls below 2 V. 
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Figure 6.26. Operando Synchrotron XRD patterns of half-cells employing (a) A2-

1, (b) A2-2, and (c) A2-3 samples as cathodes collected during the first 

charge/discharge cycle. 

 

 

 

 



Chapter 6 

141 
 

Figure 6.27. Operando synchrotron XRD patterns of half-cells employing (a) A4-

1, (b) A4-2, and (c) A4-3 samples as cathodes collected during the first 

charge/discharge cycle. 

Further analysis using Le-Bail fitting (Figure 6.28(a-c) and Figure 6.29(a-c)) also 

revealed a peculiar feature in the XRD patterns of Al substituted P3 type samples 

where a complete absence of the O3 phase was observed even when the voltage 

reached 1.5 V. Even in the A4-1, where the Mn3+/4+ redox couples were largely 

active, Le-Bail fitting could find any peaks related to an O3 phase. As discussed in 

the previous section, the activation of Mn3+/4+ redox couples in the A1-A4 series of 
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materials indicated an increase in Na content above 0.75, which would ideally 

trigger the P3-O3 phase transformations as reported in the literature, especially in 

A4-1 where Mn3+/4+ redox couples contributed close to 40% of its specific capacity 

[18-23]. Yet the complete absence of an O3 phase points to the ability of Al-ions to 

suppress the P3-O3 phase transformations in these samples. As Na+ kinetics in the 

O3 phases is quite poor compared to the P3 and P2 type structures, the absence of 

the O3 phase also explains the comparatively high-rate performance of the A4-1 

cathode.  

In the P2 type structures, the activation of Mn3+/4+ redox couple not only causes large 

variations in the c parameter of the P63/mmc unit cell but also initiates phase 

transformation as evidenced by the presence of an extra peak next to the P2 (002) at 

~ 7.5° in Figure 6.26(c) and Figure 6.27(c). This was confirmed to be the (004) peak 

of a P΄2 phase (C2/c space group) through Le-bail fitting of XRD patterns (Figure 

6.28(c) and Figure 6.29(c)). P2 to P΄2 phase transformation has been reported in Na-

Mn-Ni-based systems at low voltages [24, 25]. It is often described as an 

intermediatory phase that forms before the P2-type structure completely transforms 

into an OP4 phase. Contrary to the drastic structural variations and phase 

transformations observed in the P3 and P2-type cathodes, the operando-XRD 

patterns of the biphasic A2-2 and A4-2 cathode materials exhibit smoother structural 

variations throughout the entire charge/discharge cycle. The synergistic effects, 

widely reported in biphasic cathodes, appear to have stabilized both the P3 and P2 

type structures in the material, preventing any unwanted phase transformations even 

at voltages, which may very well have led to their impressive electrochemical 

performance [15, 16, 26]. As prominent structural changes observed in Figures 6.26 

and 6.27 occur when the cell is discharged below 2.0 V, restricting the charge-

discharge voltage window to 2.0-4.0 V improves the cycling performance of all the 

samples quite significantly, as expected. 
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Figure 6.28. Lebail fitted operando Synchrotron XRD patterns of (a) A2-1, (b) 

A2-2, and (c) A2-3 cathodes obtained at fully charged (4.2 V) and fully discharged 

(1.5 V) states with (a1-c1) depicting their respective variations in P2 and P3 unit 

cell volumes during cycling. 
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Figure 6.29. Lebail fitted operando synchrotron XRD patterns of (a) A4-1, (b) A4-

2, and (c) A4-3 cathodes obtained at fully charged (4.2 V) and fully discharged (1.5 

V) states with (a1-c1) depicting their respective variations in unit cell volume of 

P2 and P3 phases during cycling. 

To study the effect of Al substitution and the role of a biphasic cathode in structural 

stabilization, the variation in volume and lattice parameters of the hexagonal unit 

cells were quantified. The variation in volume of the A2 and A4 series of materials 

(Figure 6.28(a1-c1) and Figure 6.29(a1-c1)), on the other hand, shows a decrease in 

unit cell volume upon charging and expands during discharging. The variations in 

the c parameter of all A2 and A4 cathodes (Figure 6.30) follow a trend well 

documented in layered oxides where the unit cell expands and contracts along the c 

axis during charging and discharging [2, 24, 27]. Table 6.7 summarises the 

maximum percentage change in cell volume of P2 and P3 type phases in A4 and A2 

monophasic and biphasic cathodes. As expected, the P3 and P2 phases in the A2-2 
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and A4-2 cathodes exhibited much lower variation in cell volume than their 

monophasic counterparts. In fact, the P3 and P2 structures in the A2-2 only expanded 

to about 0.9% and 0.8% of the minimum volumes, which makes it on par with some 

of the ‘zero strain’ cathodes reported in the literature. Overall, biphasic P3/P2 

cathode materials were found to have superior electrochemical performance 

compared to their monophasic P3 and P2 counterparts. Figure 6.31 and Table 6.8 

compare the various properties of all biphasic cathode materials. During 

electrochemical testing, A2-2 exhibited several outstanding electrochemical 

properties, such as high specific capacity, cyclability, and energy efficiency, 

characteristics that are highly sought after in cathodes for commercial applications. 
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Figure 6.30. Variation in the c parameter of P2 and P3 phases in (a) A2-1, (b) A2-

2, (c) A2-3, (d) A4-1, (e) A4-2, and (f)A4-3 cathodes during cycling. 

 

Table 6.7. Percentage changes in unit cell volume of A2 and A4 series of cathodes. 

Sample 

Maximum percentage change in unit 

cell volume 

P2 P3 

A4 

A4-1 - 1.50% 

A4-2 1.3% 1.0% 

A4-3 3.6% - 

A2 

A2-1 - 1.3% 

A2-2 0.8% 0.9% 

A2-3 3.3% - 
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Table 6.8. Electrochemical properties of A0-2 to A4-2 cathodes. 

Material 

Specific 

capacity at 

C/10 

Rate performance 
Cyclic 

Performance 

𝑁𝑎3

4

𝑀𝑛5

8

𝑁𝑖3

8

𝑂2 

(A0-2) 

166 mAh g-1 

112 mAh g-1 at 1C 

70 mAh g-1 at 6C 

51 % 

capacity 

retention 

after 300 

cycles at 1C 

𝑁𝑎3

4

𝑀𝑛4.75

8

𝐴𝑙0.5

8

𝑁𝑖2.75

8

𝑂2 

(A1-2) 

173 mAh g-1 

125 mAh g-1 at 1C 

84 mAh g-1 at 6C 

69 % 

capacity 

retention 

after 200 

cycles at 1C 

𝑁𝑎3

4

𝑀𝑛4.5

8

𝐴𝑙1

8

𝑁𝑖2.5

8

𝑂2 

(A2-2) 

175 mAh g-1 

127 mAh g-1 at 1C 

92 mAh g-1 at 6C 

79% capacity 

retention 

after 300 

cycles at 1C 

𝑁𝑎3

4

𝑀𝑛4.25

8

𝐴𝑙1.5

8

𝑁𝑖2.25

8

𝑂2 

(A3-2) 

171 mAh g-1 

122 mAh g-1 at 1C 

72 mAh g-1 at 6C 

73 % 

capacity 

retention 

after 300 

cycles at 1C 

𝑁𝑎3

4

𝑀𝑛4

8

𝐴𝑙2

8

𝑁𝑖2

8

𝑂2 

(A4-2) 

173 mAh g-1 

110 mAh g-1 at 1C 

73 mAh g-1 at 6C 

69 % 

capacity 

retention 

after 300 

cycles at 1C 
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Figure 6.31. Spider charts comparing the various characteristics of A0-2 to A4-2 

cathode materials. 
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Elevating the Concentration of Na ions to 1 in P2 Type Layered Oxide Cathodes 

As discussed in the previous chapters, in an effort to identify the optimal cathode 

material in the Na3/4(Mn-Al-Ni)O2 pseudo-ternary diagram, the biphasic P2/P3-type 

Na3

4

Mn4.5

8

Al1

8

Ni2.5

8

O2  material was identified as the optimal cathode, showcasing 

impressive rate performance and cyclic stability. Additionally, the studies revealed 

that the presence of Al3+ in the P3 type structure helped prevent P3 to O3 type 

transitions, which were observed in non-Al-containing materials in the pseudo-

ternary system, such as the P3 type Na3

4

Mn3

4

Ni1

4

O2. It was concluded that Al3+ could 

stabilize the P3-type structure during the discharge cycle even when Na 

concentrations reached values beyond 0.8. In this chapter, this property of Al3+ has 

been leveraged to prepare high Na-containing P3 and P2-type cathodes by increasing 

the concentration of Na in Na3

4

Mn4.5

8

Al1

8

Ni2.5

8

O2  to NaMn4.5

8

Al1

8

Ni2.5

8

O2 . It is 

demonstrated that the presence of Al3+ can also prevent the formation of O3-type 

phases in high Na-containing P3 and P2-type layered oxide cathodes. Moreover, 

even with an increased Na-content in P2-type NaMn4.5

8

Al1

8

Ni2.5

8

O2  exhibited 

impressive rate performance and cyclic stability. 

7.1. Structural characteristics 

NaMn4.5

8

Al1

8

Ni2.5

8

O2  was prepared in 3 configurations: monophasic P3 (Na1-P3), 

monophasic P2 (with a minor O3 phase, henceforth referred to as Na1-P2), and 

biphasic P3/P2 (Na1-P3P2) with almost equal proportions of P3 and P2. This was 

achieved by calcinating the samples at different temperatures. This yielded a P3 

phase at lower temperatures (650 °C) with increasing P2 phase fractions as the 

calcination temperature increased. The composition of Na1-P3, Na1-P2, and Na1-

P3P2 was analyzed using ICP-AES (Table 7.1), which confirmed the concentration 

of Na to be close to 1.0 in all three materials. The crystal structure and phase 

configurations of the three materials were studied using Rietveld refinement of XRD 

data displayed in Figure 7.1. The diffraction peaks in Na1-P3 calcined at 650 °C 

were indexed with the R3m space group, while that of Na1-P2 calcinated at 850 °C 

was indexed using the P63/mmc space group. The analysis also confirmed the equal 

proportions of the P3 and P2 phases in the Na1-P3P2 sample, which was calcined at 

800 °C for 8 h. Additionally, the presence of a minor O3 phase was also identified 
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in both Na1-P3P2 and Na1-P2. This was expected as P2-type phases are rarely 

reported to contain Na concentrations beyond 0.8.  

Table 7.1. The chemical compositions of the as-prepared samples were measured 

by inductively coupled plasma atomic emission spectroscopy (ICP-AES). 

Sample 

Calculated composition 

Na/ Mn/ Ni/ Al 

Na1-P3 0.997/0.562/0.312/0.123 

Na1-P3P2 0.993/0.562/0.312/0.122 

Na1-P2 0.99/0.562/0.311/0.123 

 

Ordinarily, an O3-type phase is expected in high Na-containing layered oxide 

materials. Instead, in Na1, a P3 phase formed at a lower calcination temperature and 

converted into a P2-type phase at higher calcination temperatures, with O3 

crystalizing only as a minor phase. This could be due to the presence of Al3+ in the 

material, which may favor the formation of P-type phases. This was also noticed in 

our previous works involving the Na3/4(Mn-Al-Ni)O2 pseudo ternary system where 

operando synchrotron XRD on the P3 type materials showed that the P3 to O3 type 

transformations observed in a non-Al containing material was found to be absent in 

all Al substituted samples even after being discharged up to 1.5 V (where Na 

concentrations reach close to 1.0). The conclusion drawn from that study was that 

the presence of Al3+ in layered oxide compounds can stabilize the P3 crystal structure 

enough to prevent the ‘slab gliding’ mechanism that transforms it into an O3-type 

phase when Na ions are inserted into the structure electrochemically during cycling. 

The fact that the P-type phases contributed to most of the phase composition in the 

Na1 cathode material during synthesis proves that the Al3+ favors the formations of 

the P-type materials.   

The crystallographic parameters of all these materials obtained after Rietveld 

refinement are summarised in Table 7.2. Interestingly, the P2 unit cell volume was 

found to be 80.17 Å3, which was lower than the previously reported volume of the 
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P2 type Na3

4

Mn4.5

8

Al1

8

Ni2.5

8

O2 due to the former’s lower c parameter. This resulted 

from shrinking Na-O6 prisms in the Na1-P2 type structure, which could hinder the 

diffusion of Na-ions through the material initially during charging. However, unit 

cell parameters of the P3 structure remained unaffected by the increase in Na-ion 

concentration and were found to be similar to that of the P3 type 

Na3

4

Mn4.5

8

Al1

8

Ni2.5

8

O2.  

Figure 7.1. Rietveld refinement of XRD data for Na1-P3, Na1-P3P2, and Na1-P2 

materials with enlarged views of their respective deconvoluted P2, P3, and O3 

phases in the vicinity of 30-40° 2θ range. 
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Table 7.2. Lattice parameters of Na1-x samples obtained from the Rietveld 

refinement of room temperature XRD data. 

Sample 
Phase 

(Fraction) 
a (Å) c (Å) V (Å3) 

Reliability 

Factors 

Na1-P3 P3 (100%) 2.8857 (5) 
16.7656 

(2) 
121.05 (4) 

Rexp: 2.93 

Rwp: 4.51 

GOF: 1.54 

Na1-P3P2 

P3 (48%) 2.8869 (3) 
16.7745 

(2) 
120.86 (2) 

Rexp: 2.49 

Rwp: 2.99 

GOF: 1.20 

P2 (48%) 2.8891 (4) 
11.1125 

(1) 
80.34 (2) 

O3 (4%) 2.9404 (3) 16.10 (1) 120.58 (3) 

Na1-P2 

P2 (91%) 2.8834 (2) 
11.1669 

(4) 
80.404 (5) 

Rexp: 2.01 

Rwp: 2.41  

GOF: 1.28 

O3 (9%) 2.9409 (3) 16.097 (2) 120.05 (5) 

 

The microstructure of the Na1 samples was studied using a field emission secondary 

electron microscope (FESEM). The SEM micrographs of the materials in Figure 7.2 

show an increasing degree of particle agglomeration in samples synthesized at 

higher calcination temperatures. Smaller particle sizes and relatively lower degree 

of agglomeration of particles are preferred in cathode materials as they usually 

support better ionic conduction [1, 2]. Hence, Na1-P2, with its high degree of 

particle agglomeration, may not fare well in terms of rate performance. The 

elemental maps of the Na1-P3P2, shown in Figures 7.2(b1-b5), show a uniform 

distribution of its constituent elements within the sample.  
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Figure 7.2. SEM micrographs of (a) Na1-P3, (b) Na1-P3P2, and (c) Na1-P2 

samples with (b1-5) representing the maps of different elements in Na1-P3P2. 

The oxidation states of the constituent elements in the monophasic P3 and P2 type 

samples were identified by analyzing their respective Mn 2p and Ni 2p XPS spectra 

(Figure 7.3). The Mn 2p XPS spectra could be deconvoluted into 4 peaks at 641.8 

& 653.2 eV and 643.2 & 654.7 eV, suggesting a combination of 3+ and 4+ oxidation 

states for Mn ions in both materials [3-5]. In the Ni 2p XPS spectra, the peaks at 

854.26 eV and 871.75 eV indicated that Ni ions existed primarily in a 2+ oxidation 

state [3-5].  

Figure 7.3. Mn 2p and Ni 2p XPS plots of Na1-P3 and Na1-P2 samples. 
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7.2. Electrochemical characteristics 

The electrochemical properties of the three cathode materials were tested in half 

cells in a voltage range between 1.5 V and 4.0 V. This was to ensure the activation 

of both Mn3+/4+ and Ni2+/4+ redox couples, which are active between 1.5-2.5 V and 

3.0-4.0 V, respectively [6-9].  Figure 7.4 and Figure 7.5 depict the galvanostatic 

charge-discharge (GCD) curves of Na1-P3, Na1-P2, and Na1-P3P2 at various C 

rates, along with their respective dQ/dV vs. voltage plots at 0.1C. The curves show 

that the P3-type material exhibited the highest specific capacity of 196 mAh g-1 at 

0.1C, which decreased progressively in the materials with a higher P2 phase. The 

dQ/dV vs. voltage plots of all 3 materials also confirm the activity of Mn3+/4+ and 

Ni2+/4+ redox couples. Compared to its P2-type Na3

4

Mn4.5

8

Al1

8

Ni2.5

8

O2, Na1-P2 showed 

significant improvement in rate performance, exhibiting specific capacities reaching 

up to 121 mAh g-1 and 87 mAh g-1 at 1C and 6C, respectively (Figure 7.6(a)). 

Surprisingly, the Na1-P3 showed a significant decline in rate performance compared 

to the P3 type Na3

4

Mn4.5

8

Al1

8

Ni2.5

8

O2 , and this could be due to multiple phase 

transitions from P3 to P3' and P3" during cycling [10, 11]. 

Figure 7.4. (a-b) GCD curves of Na1-P3P2 and Na1-P2 cathode materials at 

different C rates with (c-d) showing their respective dQ/dV vs. voltage plots at 

0.1C.  
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Figure 7.5. GCD curves of Na1-P3 cathode material at different C rates along with 

its dQ/dV vs. voltage plots at 0.1C. 

In contrast, Na1-P3P2 demonstrated significantly enhanced rate performance 

compared to its single-phase counterparts, achieving specific capacities close to 102 

mAh g-1 at 6C. This remarkable enhancement in rate performance for the biphasic 

cathode material can be attributed to the continued existence of high Na-ion 

conducting P-type phases. Furthermore, the high specific capacities demonstrated 

by the Na1 series of materials are also achievable in a full cell configuration, as each 

started from a Na1 configuration and did not require the insertion of any additional 

sodium ions from the Na metal anode during cycling. 

Following the rate performance tests, the cyclic stability of the cathode materials 

was evaluated within a voltage range of 1.5-4.0 V at 1C over 300 cycles (Figure 

7.6(b)). The results indicated that Na1-P2 exhibited the highest cyclic performance 

with approximately 80% capacity retention, followed by Na1-P3P2 with 73% 

capacity retention after 300 cycles. Despite having a significantly lower specific 

capacity at 1C (80 mAh g-1), the monophasic P3-type cathode only retained about 

66% of its capacity. Additionally, the cyclic curve for the P3-type material showed 

a marked increase in slope after about 200 cycles. This indicates a rapid capacity 

decline with each subsequent cycle, which may have been caused by a severe 

structural degradation in the cathode material. Although subtle, a similar increase in 

slope was also observed in the biphasic Na1-P3P2 after 250 cycles. This provides 

two key insights: first, the capacity decline in the biphasic material may also be 

caused by structural degradation of its P3 phase; second, the presence of the P2 

phase in the biphasic cathode is beneficial in both delaying the onset of severe 

structural degradation in the P3 type structure and reducing its intensity in each 

subsequent cycle. Furthermore, contrary to what was observed in the other materials 
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in the Na3/4(Mn-Al-Ni)O2 pseudo-ternary system, the biphasic Na1-P3P2, for the 

first time, has shown inferior cyclic properties compared to its monophasic P2, 

counterpart. This points to the excellent structural stability of the high Na-containing 

P2 structure.  

Figure 7.6. (a) Rate performance of Na1 series of cathodes at various C rates and 

their (b) cyclic performance curves at 1 C. 

After conducting cyclic performance tests on the Na1-P2 half cells, the 

electrochemical performance of the Na1-P2 cathodes was evaluated in a full-cell 

configuration. In this setup, a pre-sodiated hard carbon was used as the anode (the 

GCD curve of HC half cells is displayed in Figure 7.7). Figure 7.8(a) presents the 

GCD curves of the Na1-P2 full cells between 1.5 to 4.0 V at various C rates. At a 

discharge rate of 0.1C, the Na1.0-P2 full cell exhibited a specific capacity of 123 

mAh g-1. The lower capacity observed in the full cell, compared to the Na1-P2 half-

cell, is attributed to the limited activity of the Mn3+/4+ redox couples in the cathode, 

which may only be active at further lower voltages in the full-cell configuration. The 

Na1-P2 full cells demonstrated excellent cyclic performance, retaining 

approximately 90% of their initial capacity after 200 cycles at a charge-discharge 
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rate of 0.2 C (Figure 7.8(b)). This impressive cycle stability might also be due to the 

limited activity of Mn3+/4+ redox couples within the cycled voltage window. 

Figure 7.7. GCD curve of a hard carbon half-cell at 0.1 C. 

Figure 7.8. (a) GCD curves of Na1-P2 full cells at various C rates. (b) Cyclic 

performance of Na1-P2 Full cell at 0.2C along with columbic efficiency for each 

cycle. 
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7.3 Operando Synchrotron XRD studies 

Most electrochemical properties of cathode materials stem from structural changes 

or transformations during cycling. To explore the structural evolution of the cathode 

materials, operando synchrotron XRD measurements were carried out while the 

cells were being cycled at a constant 0.1C current. Figure 7.9 and Figure 7.10 show 

the operando SXRD patterns of Na1-P3P2 and Na1-P2 half cells at various states of 

charge. The XRD patterns show no visible transformations of the P3 and P2 type 

structures in both the cathode materials. From the onset of charging, the (002) and 

(003) peaks of P2 and P3 type structures in Na1-P3P2 and (002) of P2 in Na1-P2 

shift to lower angles, indicating the expansion of the unit cells along the c-axis [12-

14]. In contrast, the P2-type Na3

4

Mn4.5

8

Al1

8

Ni2.5

8

O2  had shown a P2 to P2' phase 

transition when discharged to lower voltages below 2.0 V when Mn4+/3+ redox 

couples became active, and Na concentrations increased above 0.75 in the structure. 

This was prevented in the biphasic P3/P2 type cathode of the same material. 

Increasing the Na content in the same P2-type cathode material to 1.0 also prevented 

phase transitions in the P2-type structure, especially at low voltages.    

Figure 7.9. Operando Synchrotron XRD patterns of Na1-P3P2 obtained at 0.1C. 
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Figure 7.10. Operando Synchrotron XRD patterns of Na1-P2 half-cell obtained at 

0.1C. 

Le-bail fitting was employed to analyze the operando XRD patterns of both cathodes 

(Figure 7.11-7.12). The analysis confirmed the absence of any phase transformations 

in P3 and P2 type structures in both materials. Figure 7.13 and Figure 7.14 display 

the variation in the c parameter and unit cell volume obtained from the Le-bail fitting 

of XRD data of both samples. The changes in the c parameter follow an expected 

trend. The maximum c parameter is obtained at the end of charging, and the 

minimum is observed at the end of the discharge. In contrast, the changes in unit cell 

volume follow the opposite trend due to the contraction of the unit cells along the a 

and b axis during charging and expansion on discharging. The fluctuation in cell 

volume in P2 type structures in Na1-P3P2 and Na1-P2 structures was calculated to 

be about 0.86% and 0.78%, respectively. The relatively low variation in unit cell 

volume and the absence of transformations in both the cathode materials led to their 

high-rate performance and excellent cyclic stability. 
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 Figure 7.11. Le-bail fitted operando synchrotron XRD patterns of Na1-P3P2 

cathode obtained at fully charged (4.0 V) and fully discharged (1.5 V) states. 

Figure 7.12. Le-bail fitted operando synchrotron XRD patterns of Na1-P2 cathode 

obtained at fully charged (4.0 V) and fully discharged (1.5 V) states. 
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Figure 7.13. Variation in the c and unit cell volume parameter of P2 and P3 phases 

in Na1-P3P2. 

Figure 7.14. Variation in the c and unit cell volume parameter of P2 in Na1-P2 

cathode during cycling. 
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Excellent Structural Stability Driven Cyclability in P2-type Ti-based Cathode 

for Na-ion Batteries 

The structural, electrical, and electrochemical properties of Na0.7Ni0.2Cu0.15Ti0.65O2 

(NNCT), which occupies the end member of the Na0.7Ni0.2Cu0.15Mn(0.65-x)TixO2 

series [1, 2] where Ti4+ ions fully replace Mn4+ ions are detailed in this chapter. In 

this compound Ni2+ and Cu2+ are both stable in the divalent state, which helps to 

stabilize Mn in the 4+ oxidation state. This is beneficial as Mn⁴⁺ is Jahn–Teller 

inactive, reducing structural distortion during cycling. Furthermore, the Ni²⁺/Ni⁴⁺ 

redox couple involves a two-electron transfer, which helps compensate for the 

capacity loss associated with the elimination of the Mn³⁺/Mn⁴⁺ redox activity in this 

composition. Cu2+ also contributes significantly to the stabilization of the P2-type 

layered structure, particularly at higher voltages, which enhances both cyclic 

performance and structural robustness. Additionally, Cu incorporation improves the 

ambient stability of the material, making it more suitable for practical applications. 

 

The oxidation potentials of Ni2+−Ni4+ (~ 3.2 V vs. Na/Na+) and Cu2+/Cu3+ (~ 4 V vs. 

Na/Na+) are higher than that of the Mn3+/Mn4+ redox couple which contributes to an 

improvement in energy density. The results obtained have been extensively 

compared with the parent material Na0.7Ni0.2Cu0.15Mn0.65O (NNCM) and 

Na0.7Ni0.2Cu0.15Mn0.575Ti0.075O2 (NNCMT) [2] which have been reported in the 

literature, to establish a trend of structural and electrochemical properties arising 

from Ti substitution. 

8.1. Structural characteristics 

 Figure 8.1(a) displays the XRD patterns of NNCT at different calcination 

temperatures between 700 °C – 950 °C. The figure shows the emergence of O3 and 

P3 type phases (along with impurity peaks related to other unreacted phases) at 850 

°C and 900 °C which is concurrent with the findings in NNCMT samples where a 

minor O3 phase (JCPDS:09- 0063) was detected upon Ti substitution. The total 

phase fraction of both these phases was estimated to be less than 10% of the total 

sample. Upon increasing the calcination temperature to about 950 °C, the O3 and P3 

phases disappeared, and a single P2 phase (JCPDS:27- 0751) was obtained. This 

was confirmed by Rietveld refinement of the room temperature XRD data of the 

sample calcinated at 950 °C, which shows the existence of a single P2 phase in a 
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P63/mmc space group (Figure 8.1(b)). The hexagonal unit cell was found to have a 

volume of 85.142 ± 0.004 Å3 with lattice parameters a = 2.96573 ± 0.00005 Å, c = 

11.1772 ± 0.0002 Å. The crystallographic parameters used in Rietveld refinement 

are displayed in Table 8.1. The disappearance of the O3 and P3 phases with 

temperature could be related to the volatilization of Na and the conversion of the 

P3-type structure to a P2-type structure at higher synthesis temperatures. For the 

sample synthesized at 950 °C, a minor impurity phase (a small peak at 2θ ~ 36º in 

Figure 8.1(a), possibly a CuO phase) was observed along with the dominant P2 

phase. As the fraction of this impurity phase was < 1 wt.%, it was ignored in further 

discussion. 

 

 

Figure 8.1. (a) XRD patterns illustrating the phase evolution of NNCT with 

calcination temperature recorded at room temperature. (b) Rietveld refinement 

profile of room temperature XRD data for the NNCT powder sample calcinated at 

950 °C. 
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Table. 8.1. Crystallographic parameters of P2-NNCT sample calcinated at 950 ºC.  

Atom x y z Occupancy Site 

Na1 2/3 1/3 1/4 0.45 2d 

Na2 0 0 1/4 0.25 2b 

Ti/ Ni/ 

Cu 
0 0 0 0.65/0.20/0.15 2a 

O 2/3 1/3 0.09 1 4f 

 

Compared to NNCT, NNCM and NNCMT LOs showed lower cell volumes and unit 

cell parameters [1, 2]. This is expected as Ti4+ ions (0.605 Å in 6 coordination) have 

a higher ionic radius compared to the Mn4+ ions (0.530 Å in 6 coordination), which 

would expand the unit cell, increasing its volume and is reported in the literature [3-

5]. The Vesta software package [6] was used to generate the 3D image visualization 

of the NNCT unit cell using the refined parameters, and the image is displayed in 

Figure 8.2. The volume of the TM–O6 octahedron and Na–O6 prism in the layered 

oxide structure were calculated to be around 10.44 Å3 and 13.45 Å3, respectively. In 

NNMC and NNMCT, however, the TM–O6 octahedra showed a lower volume (8.53 

Å3 and ~ 8.45 Å3, respectively), while Na–O6 prism had a higher volume (13.83 Å3 

and 14.09 Å3, respectively). Consequently, the area of the rectangular face of Na–

O6 (10.47 Å2) in NNCT was about 10-11% lower than the other samples. This face 

forms one of the primary bottlenecks for the Na-ion conduction through LOs. The 

lower area of this plane in NNCT indicates the possibility of lower Na-ion 

conduction that could limit its rate performance. Also, contrary to NNCM, the 

absence of superlattice peaks in NNCT at ~ 27.2° and 28.3° in the XRD patterns 

caused by Na-ion vacancy ordering shows a highly disordered Na-ion structure. Na-

ion vacancy ordering is a known phenomenon that induces various structural 

transformations of the cathode during cycling, severely limiting its cyclability [7-9]. 

The absence of Na-ion vacancy ordering in NNCT could enhance the structural 

stability of the NNCT unit cell during cycling, leading to better cyclic stability and 

Na-ion conduction through the material. 
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Figure 8.2. Crystal structure visualization of P2-type NNCT. 

Figure 8.3(a) shows the cross-sectional SEM image of the NNCT fractured pellet. 

The SEM micrograph of the powered sample (calcinated at 950 °C) is presented in 

Figure 8.3(b). The image of the powder sample shows particles with irregularly 

shaped polyhedra, possibly formed due to the agglomeration of individual particles. 

This is in sharp contrast to the hexagonal plates observed in NNMC and NNMCT 

samples, where an increase in the area of the (1̅00) (01̅0), (01̅0) (1̅00) was observed 

with an increase in Ti concentration, which was instrumental in improving the rate 

performance of the parent NNMC cathode sample. However, the elemental maps of 

the sample (Figure 8.3(b1- b5)) do not show any segregation of the constituent 

elements in the material. The SEM micrograph showing the cross-sectional of the 

sintered pellet indicates tightly packed and randomly oriented particles. The relative 

density of the pellet was estimated to be around 90  2 %.  
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Figure 8.3. SEM micrographs of the NNCT (a) fractured pellet sintered at 950 °C 

(b) powder sample. (b1) - (b5) Elemental maps of NNCT showing the distribution 

of its constituent elements. 

XPS was used to ascertain the oxidation states of the transition metal elements in 

the sample, and the spectra obtained for Cu 2p, Ni 2p, and Ti 2p are depicted in 

Figure 8.4. The Ni2p spectrum shows four peaks that belong to Ni 2p3/2 (~ 855 eV) 

and Ni 2p1/2(~ 872 eV) and their respective satellites, confirming the presence of 

Ni2+ [10-12]. The Cu 2p spectrum shows 2 peaks at ~ 933 eV (characteristic of Cu 

2p3/2) and ~ 953 eV (attributed to Cu 2p1/2), indicating Cu2+ in the materials [10-12]. 

The characteristic peaks at 458 and 464 eV in the Ti 2p spectrum are attributed to 

Ti 2p3/2 and Ti 2p1/2 and confirming that Ti maintains a 4+ oxidation state in the 

material [11, 12]. 
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Figure 8.4. XPS spectra of as-prepared Na0.7Ni0.20Cu0.15Ti0.65O2 sample. 

8.2. Electrical characteristics  

To investigate the transport phenomenon through the material, Complex Impedance 

Spectroscopy was performed on the pelletized sample sintered at 950 °C for 12 h. 

Figure 8.5(a) shows the Nyquist plots depicting the impedance data at different 

temperatures. A temperature-independent tail component observed at low 

frequencies in the Nyquist plot suggests ion-blocking by the silver electrodes and 

indicates substantial ionic conduction through the material. A decreasing trend of 

the overall resistance of the sample with an increase in temperature is also evident 

in the figure. Equivalent circuit modelling (Figure 8.5(a) insert) was used to analyze 

the Nyquist plot and estimate the conductivity of the sample. The room temperature 

conductivity of the NNCT sample was estimated to be about 1.37 × 10-7 S cm-1. In 

comparison, NNCM showed a room temperature conductivity of ~ 4.03 × 10-6 S cm-

1, and it increased to 3.07 × 10-5 S cm-1 in the Ti substituted NNCMT sample, both 

of which are considerably higher than that of the NNCT. Linear fitting of 

temperature-dependent conductivity values using the Arrhenius equation (equation 
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7.1) was used to estimate the activation energy (EA) of the overall sample (Figure 

8.5 (b)). 

                                                       𝜎(𝑇) = 𝜎𝑜 𝑒
−(

𝐸𝐴
𝑘𝑇

)
                                                       (7.1) 

Here σ0 is the pre-exponential factor, k is Boltzmann's constant, and T is the absolute 

temperature. The activation energy of the sample was calculated to be about 0.41 ± 

0.02 eV, which is about twice the value reported for the manganese analog 

Na0.7Ni0.2Cu0.1Mn0.65O2 sample [1]. This suggests poor ion conduction dynamics of 

the NNCT cathode, resulting from the lower area of the conduction bottlenecks and 

the irregular particle morphology observed earlier. The diffusion coefficient of the 

NNCT sample calculated using the Nernst Einstein relation at 310 K (equation 7.2) 

was around 1.94 ×10-16 m2 s-1. 

                                                        D = 
𝑘𝑇

𝑁𝑞2  𝜎𝐷𝐶                                                                  (7.2) 

N is the number density of charge carriers per unit volume of the unit cell, and q is 

the elementary charge. Even though the diffusion coefficient for NNCT is lower 

than that of NNCM and NNCMT cathodes, it is comparable to other cathodes such 

as Na0.67Mn0.65Ni0.2Co0.15O2, Na0.67Mn0.55Ni0.25Li0.2O2, Na2/3Ni1/3Mn5/9Al1/9O2, etc. 

reported in the literature [13-15]. However, the chronoamperometry data (Figure 

8.5(c)) of the NNCT put the electron transference number (te) of the sample at 0.004 

and Na+ transference number (tNa) at 0.996, which suggests significantly low 

electronic conduction through the material. This is typically observed in materials 

containing d0 ions, such as Ti4+, as the ion is relatively stable in the current 

configuration and does not donate its electrons to the conduction band, drastically 

bringing down the electronic conduction. Poor electronic conduction coupled with 

lower ionic conductivity would adversely affect the rate performance of the NNCT 

cathode during cycling. 
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Figure 8.5. Electrical properties of NNCT. (a) Nyquist plots at different 

temperatures and their fitted curves modeled using the equivalent circuit shown as 

an inset. (b) Arrhenius plot showing temperature dependence of electrical 

conductivity. (c) Chronoamperometry curve of NNCT under an applied potential 

of 1 V. 

8.3. Electrochemical characteristics 

Figure 8.6(a) depicts the cyclic voltammetry curves of the NNCT cathode between 

2 V and 4.2 V at a scan rate of 0.1 mV s-1. The curve portrays a broad peak at 3.7 V, 

attributed to the Ni2+/4+ and Cu2+/3+ redox couples.[3, 16] On the other hand, the 

NNCT and NNCMT samples showed 2 distinct peaks for Ni2+/4+ and Cu2+/3+ 

reactions between 3.3 V and 4.0 V, along with some vacancy ordering peaks, 

particularly in NNCM. This could be due to a comparatively higher disordering in 

the NNCT structure that inhibits Na-vacancy ordering. Ti maintains a 4+ oxidation 

state within the voltage range and acts like pillar ions supporting the structure during 

the extraction/ intercalation of Na-ions. The dQ/dV vs. voltage graphs are presented 
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in Figure 8.6(b) and show that the peak (at ~ 3.6 V at 1C rate) shifts toward higher 

voltages with an increase in the C-rate.  

Figure 8.6. (a) Cyclic voltammogram of NNCT at a scan rate of 0.1 mV s-1 

(b)dQ/dV vs voltage plots of NNCT at different C rates. 

Figure 8.7(a) shows the galvanostatic charge/discharge curves of NNCT at different 

C rates between 2 V and 4.2 V. The curve depicts a higher slope between 2 - 3 V 

compared to 3 - 4.2 V. This is due to the unavailability of the redox process in the 

lower voltage regions compared to the higher voltage ranges where Ni2+/4+ and 

Cu2+/3+ redox processes become active. At a comparatively lower discharge rate of 

0.1C, the NNCT cathode shows a specific capacity of 83 mAh g-1, which drops to 

54 mAh g-1 and 42 mAh g-1 at 0.5C and 1C, respectively. The rate performance of 

the cathode at different discharge rates between 0.1C and 2C is displayed in Figure 

8.7(b). In contrast, the NNMC cathode showed a specific capacity of 99 mAhg-1 and 

64 mAh g-1 at 0.1C and 1C discharge rates, which was increased to 127 mAh g-1 and 

96 mAh g-1 upon Ti substitution in the NNMCT sample. Even at a discharge rate of 

2C, a specific capacity of 87 mAh g-1 could be obtained from the latter. The 

comparatively high reduction in specific capacity with an increase in discharge rate 
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in the NNCT cathode sample can be attributed to the unfavorable structural 

properties, lower electrical conductivity, and te values discussed in the electrical 

properties section. In terms of cyclability, however, the cathode shows much better 

performance, with 96% of the initial capacity retained after 700 cycles at a 

charge/discharge rate of 0.5C with a median discharge voltage ~ 3.2 V. (Figure 

8.7(c)). This points to a remarkable resilience of the NNTC unit cell to distortions 

induced by repeated extraction/intercalation of Na ions during each cycle.  

Figure 8.7. (a) Galvanometric charge-discharge curves. (b) Rate performance of 

NNCT cathode at different discharge rates. (c) Cyclic performance of NNCT at 

0.5C for 700 cycles. 

To investigate the changes in structural parameters during cycling, ex-situ XRD was 

performed on the cathodes at different states-of-charge (Figure 8.8(a)). The data 

show an expansion of the unit cell with charging as illustrated by the shifting of the 

(002) and (004) peaks towards lower diffraction angles (Figure 8.8(a1, a2)) [17-19]. 

This trend was also observed in the NNCM and NNCMT cathodes due to the 

increased repulsion between oxygen layers in the LO structure after Na ions are 

extracted. These peaks return to their original positions upon discharging, implying 

the reversibility of the structural changes occurring during GCD cycling. The 

moisture sensitivity of the sample was tested by storing the cathode powder in DI 

water for 1 week. The XRD patterns of the dried water-treated samples showed no 

changes compared to that of the untreated sample (Figure 8.8(b)). This has allowed 

the use of CMC as the binder and DI water as the solvent. In addition, the excellent 



Chapter 8 

 

179 
 

moisture stability of the cathode also meant that the as-synthesized sample could be 

stored in ambient conditions. Both these factors would considerably reduce the 

fabrication cost of cells. 

Although the NNCT cathode shows excellent cycle stability, a property highly 

sought after in cathodes, its specific capacity at 0.1C is only about 56% of its 

theoretical capacity (146 mAh g-1). This could be due to its unfavorable structural 

and electrical properties discussed above, and this material could show considerably 

higher specific capacities at lower discharge rates (0.05C and lower). However, 

keeping the real-world applications in mind, the specific capacity of NNCT should 

be further improved at relevant C-rates (0.2C to 2C). As lower electronic and ionic 

conductivities seem to be the limiting factor for observed specific capacities, 

techniques such as in-situ carbon coating, tailoring the particle morphology of 

NNCT particles, etc., could be explored to address these issues. Nevertheless, 

excellent cycle stability makes NNCT an attractive candidate for Na-ion batteries in 

stationary storage applications.  
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Figure 8.8. (a) Ex-situ XRD patterns of NNCT cathode during 

charge(ch)/discharge(dis) cycle at 0.1C between 2.0 V to 4.2 V. (a1) and (a2) show 

the enlarged portion of the patterns in the vicinity of (002) and (004) peaks. The 

peaks marked by ♦ belong to the Al current collector. (b) XRD patterns of as-

prepared NNCT powder before and after being treated with water. 
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Conclusions and Future Scope of Work 

9.1. Conclusions 

This investigation into the Na3/4(Mn-Al-Ni)O2 pseudo-ternary system makes a 

significant contribution to the development of high-performance sodium-ion battery 

(SIB) cathodes by integrating structural and electrochemical optimization strategies. 

The study systematically examined the interplay between phase composition, 

oxidation states, and structural properties, offering novel insights into their impact 

on battery performance and presenting innovative approaches to cathode design.  

A key finding is the superior performance of biphasic P3/P2 cathodes, which 

outperformed monophasic counterparts in cyclic stability, rate capability, and 

energy efficiency. For instance, the biphasic composition Na3

4

Mn4.5

8

Al1

8

Ni2.5

8

O2 

retained 87% of its initial capacity after 500 cycles at 1C within a 2.0–4.0 V voltage 

window while maintaining 88% energy efficiency. This biphasic configuration 

effectively mitigated structural stress and volume expansion during cycling, 

demonstrating the advantages of phase coexistence. 

The "zero Mn³⁺ line" concept emerged as a pivotal innovation, confining Mn to the 

Mn⁴⁺ oxidation state while varying Mn, Al, and Ni concentrations to enhance 

cathode stability and performance. This approach expands the utility of pseudo-

ternary phase diagrams by incorporating oxidation state control, allowing for precise 

tuning of cathode properties. Al³⁺ substitution played a critical role in stabilizing P3 

and P2 phases, suppressing detrimental P3 → O3 transitions, and improving rate 

performance by enlarging the Na⁺ conduction bottleneck area. For example, the 

biphasic P3/P2 Na0.75Mn0.75Al0.25O2 cathode retained 70% of its initial capacity over 

300 cycles at 1C in the 1.5–4.0 V range, which improved to ~80% when cycled in 

the 2.0–4.0 V range, highlighting the dual benefits of Al³⁺ doping in capacity 

retention and cycle longevity. 

The study also extended its focus to high-Na-content cathodes, such as 

NaMn4.5

8

Al1

8

Ni2.5

8

O2 , which demonstrated stable performance while avoiding O3 

phase formation. A monophasic P2 cathode derived from this composition delivered 

123 mAh g⁻¹ at 0.1C and retained 90% of its capacity after 200 cycles at 0.2C, 

showcasing its scalability for commercial applications. 
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The investigation into Na0.7Ni0.2Cu0.15Ti0.65O2 (NNCT) revealed its potential for 

stationary energy storage. Despite moderate specific capacities (e.g., 83 mAh g⁻¹ at 

0.1C), NNCT achieved 96% capacity retention after 700 cycles at 0.5C. Its 

resistance to moisture facilitates cost-effective, water-based manufacturing, 

addressing critical challenges in SIB commercialization. 

Advanced characterization techniques, such as operando synchrotron XRD, XPS, 

and EXAFS, provided deep insights into structural and electrochemical 

mechanisms. These analyses clarified the suppression of phase transitions, the role 

of Mn³⁺/Mn⁴⁺ redox activity, and the absence of Mn³⁺ in Al-doped compositions, 

establishing a comprehensive framework for understanding and optimizing cathode 

materials. The introduction of the "zero Mn³⁺ line" further exemplifies a shift from 

traditional phase diagram methodologies to a more sophisticated design approach 

that integrates composition and oxidation state control. 

This work establishes a robust foundation for future studies focused on achieving an 

optimal balance between capacity, stability, and cost-efficiency in SIB cathodes. 

Developing moisture-stable materials like NNCT also supports sustainable and 

economically viable manufacturing practices. Overall, this research advances the 

understanding of SIB cathodes and offers actionable strategies for their practical 

application. The findings highlight the transformative potential of Al-doped, Mn³⁺ 

free layered oxides to drive sodium-ion battery innovation, offering competitive and 

environmentally friendly solutions for both portable and stationary energy storage 

needs. 

9.2. Future scope of work 

➢ Future studies can extend the biphasic approach to other layered oxide 

systems beyond the Na3/4(Mn-Al-Ni)O2 pseudo-ternary diagram. This can 

involve integrating additional transition metals like Cu, Fe, or Ti to explore 

their synergistic effects on structural stability, energy density, and rate 

performance. Investigating the role of phase composition beyond the P3/P2 

combination, such as incorporating O3-type phases, could further optimize 

performance metrics. 

➢ The "zero Mn³⁺ line" concept can be extended to design phase diagrams for 

other sodium-ion cathode systems, emphasizing the controlled oxidation 
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state of electrochemically active elements. Incorporating this framework into 

other pseudo-ternary systems (e.g., Mn-Co-Ni or Mn-Fe-Co) can facilitate 

the development of new compositions with optimized electrochemical and 

structural properties. 

➢ While this study highlighted the advantages of biphasic P3/P2 cathodes, 

further operando studies are needed to delve deeper into the mechanisms 

behind phase interaction during cycling. Advanced techniques such as 

neutron diffraction and in situ TEM could provide atomic-level insights into 

the interplay between coexisting phases and their influence on volume 

changes, stress distribution, and Na⁺ migration pathways. 

➢ Developing moisture-stable cathodes like NNCT highlights the need to adapt 

water-based manufacturing processes for other cathode materials. Future 

work should optimize slurry formulations, binder selection, and coating 

techniques to ensure scalability and cost-effectiveness while maintaining 

performance. 

➢ Finally, the research should progress from fabricating coin cells to 

developing pouch cells with higher active cathode material loading, a crucial 

step toward demonstrating the feasibility and scalability required for 

commercial applications. 

 

 

 

 

 

 

 

 


