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ABSTRACT 

The rapid growth of consumer electronics (CE) industry has led to a cut-throat 

competition of developing sophisticated devices. As the complexity of the CE 

design increases along with shortening of time-to-market deadlines, the 

designers are becoming heavily reliant on reusable Intellectual Property (IP) 

cores generated at higher levels of design abstraction. A malicious attacker may 

exploit dependency on IP cores through security issues/vulnerabilities such as 

piracy, Trojan insertion, overbuilding, reverse engineering, etc. Hence, 

methodologies are required to ensure the security of the IP cores.  

Further similar to IP core security, IP core reliability is also becoming a major 

concern. As the demand for CE devices with sophisticated features such as low-

power consumption, smaller silicon area, etc. increases, the IP core designers 

are heavily depending upon technology scaling to meet these design objectives. 

However, technology scaling enhances several reliability concerns such as bias 

temperature instability, multi-cycle, and multi-unit transient faults, 

electromigration, etc. Hence, methodologies are required for designing reliable 

IP cores. 

To advance the state-of-the-art for designing reliable and secured IP cores, this 

thesis makes following contributions: (a) A novel methodology for generating 

a DSP IP core that is simultaneously resilient/secure against multi-cycle 

(temporal) and (multi-unit) spatial effect of transient fault. (b) A novel 

methodology for generating a DSP IP core that is simultaneously tolerant 

against a multi-cycle temporal and multi-unit spatial effect of transient fault for 

data-intensive applications. (c) A novel methodology for generating a DSP IP 

core that is simultaneously tolerant against a multi-cycle temporal and multi-

unit spatial effect of transient fault for loop-based control intensive applications. 

(d) A novel methodology for generating a low-cost, highly secure, functionally 

obfuscated DSP IP core. (e) A novel methodology for analyzing the aging effect 

of NBTI stress on the performance of DSP IP core. (f) A novel computational 

forensic engineering methodology for resolving ownership conflict of DSP IP 

core generated using high-level synthesis. 
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Chapter 1 

Introduction 

The invention of the transistor in the mid-20th century has led to unimaginable 

progress of electronics industry. Since its invention, the reduction in transistors’ 

dimension has followed a well-known prediction termed as Moore’s law [1]. In 

the 1970-80s the devices made from transistors such as computers could only 

be afforded by the large-scale industries/business-houses due to their features 

such as large size, high power consumption, high cost, etc. However, as the 

transistor scaling continues, devices having characteristics such as low power 

consumption, compact form-factor, better heat dissipation, were made possible. 

These advances have led to a whole new industry, centered toward 

manufacturing electronics devices for personal/home usage known as consumer 

electronics (CE). Along with transistor scaling; other technological advances 

such as the internet, smartphones, etc. have made consumer electronics a major 

market force (with estimated sales in multi-billion dollars [2]). Due to the huge 

demand for CE devices, the competition for designing the best product and 

launching them as fast as possible has increased tremendously. The cut-throat 

competition has resulted in very stringent (short) time-to-market deadlines. 

Additionally, the increasing demand for minuscule devices possessing as many 

features as possible has resulted in enhanced design complexity (for devices 

such as smartphones, smartwatches, etc.). In order to meet these stringent time-

to-market deadlines as well as reduce design complexity, the device designers 

are highly dependent on third-party Intellectual property (IP) cores designed at 

higher levels of design abstraction through high-level synthesis / behavioral 

synthesis / architectural synthesis [3-5]. 

As more and more sophisticated electronic devices are becoming an integral 

part of business-critical and mission-critical systems, along with globalization 

of supply-chain, the chances of a malicious attack on an electronic device in a 

mission-critical system have increased tremendously [3-5]. Therefore, it is 

mandatory to devise algorithms that can ensure the security of IP cores. 

Furthermore, the devices designed using scaled transistors are becoming 

increasingly sensitive to their environment than earlier technology scales. 
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Therefore, as the technology scaling continues in the sub-nanometer range, the 

reliability of contemporary and future IP cores has become a major concern. 

Thus, methodologies are required for developing a reliable IP core for mission-

critical systems [6, 66-68]. 

This chapter presents the background of the methodologies proposed in this 

thesis for designing reliable and secured IP cores. The first section discusses 

IP cores and their relevance in the electronics industry. The second section 

briefly discusses various design abstraction levels of a generic integrated circuit 

(IC) design flow. The third section describes the higher level of design 

abstraction known as ‘high-level synthesis (HLS)’. Subsequently, the fourth, 

fifth, and sixth sections discuss the proposed reliability and security 

methodologies. Finally, the seventh section discusses the organization of the 

thesis.  

1.1.  IP core and its background 

An intellectual property core in electronics refers to a reusable logic block that 

is an intellectual property of an IP owner. Reusable IP cores play a vital role in 

reducing the design complexity and help the designers to meet time-to-market 

deadlines. An IP core is analogues to a library in the context of a computer 

program. Like a library, an IP core can be utilized to design a system on chip 

(SoC) quickly and easily. An IP buyer could purchase IP core(s) from third-

party IP vendors and combine them along with in-house technologies (if any) 

to generate a ‘market-ready’ product. For instance, consider a company 

interested in developing a personal computer, it may buy IP cores of the digital 

signal processor (DSP), memory, etc. and combine it with its in-house 

components to create a ‘market-ready’ product. Thereby, reducing time, effort 

and cost to build in-house IP cores. An IP core can be of three types; soft IP 

core, hard IP core or firm IP core [7]. A soft IP core is typically delivered as a 

synthesizable Register transfer level (RTL) code in a hardware description 

language (such as Verilog or VHDL) or schematic design. Similarly, a hard IP 

is typically delivered as a layout design in the form of a GDS II file [4]. A soft 

IP core is comparatively more modifiable/tweakable than a hard IP core. The 

word hard and soft represents modifiability of these IP core. A question arise 
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several times whether an IP core should be provided as a soft IP core or hard IP 

core? A hard IP core is easily predictable but not portable for instance, a hard 

IP core cannot be ported from initially targeted foundry to another foundry.  On 

the other hand, a soft IP core is portable but not predictable i.e., its performance 

may vary significantly as it gets converted into lower levels of design 

abstractions. Therefore, the third type of IP core is required that is 

simultaneously predictable and portable. This type of IP core is termed ‘firm IP 

core’ [7, 69]. An IP core design process can be clearly understood with the help 

of a generic integrated circuit design flow as discussed in section 1.2. 

1.2.  Generic VLSI design flow 

A generic integrated circuit design flow is based on divide and conquer 

technique. As shown in fig. 1.1, complex design is divided into various 

abstraction levels. At each level, the design is optimized to achieve certain 

objectives/goals. A generic IC design flow takes system specification as input 

in the form of a programming language or a hardware description language. 

Subsequently, high-level synthesis is performed to obtain a register transfer 

level (RTL) datapath as discussed in section 1.3. Later, the RTL datapath is 

converted into gate level netlist using logic synthesis.  The gate level netlist thus 

obtained is converted into layout design (typically in the form of a GDS II file) 

during the physical design step of the IC design flow. The layout file thus 

generated is analyzed to check whether the layout design meets the design 

objectives (specification/constraints). Once the layout is verified, it is sent for 

fabrication. Once, the fabrication is completed, a ‘die’ is created. Subsequently, 

the die is packaged and tested. The test approved ICs are made available in the 

market [3-7, 21]. 
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1.3.  Background on High-Level Synthesis 

High-level synthesis (a.k.a. behavioral or architectural synthesis) is a technique 

to convert a behavioral description of a system into a register transfer level 

design. The HLS methodology takes a behavioral description of a system (such 

as processors) and converts it into register transfer level design (having elements 

such as ALU, muxes, demuxes, registers, etc.). The first step of the HLS is to 

convert behavioral description in the form of a programming language or 

hardware description Language into an internal representation. Two types of 

internal representation are typically used during HLS: parse tree and graphs 

[8,9]. In our proposed methodologies we have utilized graphical representation. 

The graphical representation can further be in the form of a data flow graph 

(DFG) or a control data flow graph (CDFG). The next two steps of high-level 

synthesis namely ‘scheduling’ and ‘allocation’ are closely related to each other 

[8, 9, 46]. Scheduling step is responsible for assigning the operations to the 

control steps, while allocation step assigns the hardware resources to the 

operations i.e. functional units, storage and communication elements (such as 

muxes, demuxes, buses). The aim of scheduling is to minimize the number of 

control steps or time required for completion of the program, while the aim of 

allocation is to minimize the number of hardware resources required for 

complete execution of the program. Once the scheduling and allocation steps 

are completed, the binding step is executed. The aim of binding is to determine 

the size of the switching elements (muxes/demuxes) of the datapath. Once the 

binding step is completed, the register transfer level datapath is obtained. 

However, the controller to drive the datapath (as per the schedule’s requirement) 

is yet to be built.  

A controller is typically implemented either as a hardwired or micro-coded 

design. In hardwired controller design, a control step corresponds to a state in 

the finite state machine (FSM). Similarly, in a micro-coded controller, a control 

step corresponds to a microprogram step [8, 9]. Subsequently, the controller is 

optimized and synthesized. Once the controller and datapath of design are 

available in the form of a register transfer level design, the lower level design 

steps are executed to obtain the ‘market-ready’ integrated circuit as shown in 

the fig. 1.1.  



5 

1.4. Transient fault reliability of IP cores 

 As the transistor scaling continues in the sub-nanometer range, the amount of 

charge stored in a circuit’s nodes continues to shrink, thereby enhancing its 

susceptibility to reliability concerns such as multi-cycle and multi-unit transient 

fault [10, 11]. A transient fault may occur when a particle with moderate energy 

strikes a circuit node. As the amount of charge that can be stored in a node is 

reduced (due to technology scaling), so does the critical charge required for 

changing the logic level of a circuit, thereby increasing chances of transient fault 

due to a particle with moderate energy. Additionally, a particle with moderate 

energy that could affect a single node in previous technology scale, can affect 

more than one node placed within the same nanometer area in subsequent 

technology scales (spatial effect) [27]. Therefore, the resulting impact of 

transient fault could affect multiple hardware units placed in the neighborhood. 

Therefore, the spatial effect of TF is termed as a multi-unit transient fault. 

Similarly, as a result of continuous technology scaling, the supply voltage of the 

device and clock-cycle time is decreasing (frequency is increasing). Therefore, 

the temporal effect of a single particle strike that could last for a single clock 

cycle in previous technology scales can last for multiple clock cycles in current 

and future technology scales [12, 17]. Hence, methodologies are required to 

tackle both multi-cycle (temporal) as well as multi-unit (spatial effect) of single 

event transient. This thesis presents methodologies developed for ensuring 

reliability against a simultaneous spatial and temporal effect of transient fault. 

1.5. Security of IP cores 

In the past few years, the globalization of the market has presented several 

opportunities for growth. However, globalization comes with its own 

drawbacks. As the number of components of a device that are manufactured 

outside the homeland continues to increase, the threat of a malicious attack is 

also increasing. Further, the lack of strict laws for punishing attackers has 

resulted in higher vulnerability against these security threats. Traditionally, 

intellectual property was protected using techniques/tools such as patents, 

trademarks, copyright, trade secret, etc. However, these methodologies are 

either not applicable or are inefficient in protecting IP cores of digital systems 
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[5, 13].  An IP core is vulnerable against various threats such as IP piracy, IP 

overbuilding, trojan insertion, etc. Hence, methodologies are required to protect 

IP cores against these threats. The methodologies presented in this thesis 

protects/secures an IP core against these threats as discussed in upcoming 

chapters. 

Although most of the approaches, either address only security or only reliability. 

However, negative bias temperature instability based accelerated aging attack 

belongs partially to both reliability as well as the security domain [14, 15]. The 

thesis proposes novel solutions to these problems. 

1.6. NBTI stress analysis based accelerated aging attack on IP cores 

Aging is a natural process of an electronic device. As a result of it, the 

performance of aged systems become unreliable. Natural aging is a reliability 

concern that can be accelerated by a malicious attack that aims to reduce the 

life-span of the device [15]. This type of attack is known as an accelerated aging 

attack.  

Negative bias temperature instability is a physical phenomenon observed in 

metal oxide semiconductor field effect transistors (MOSFETs). NBTI is a major 

factor contributing to the natural aging process of a transistor. A malicious 

attacker can accelerate the aging of third-party IP core by applying an input 

vector that can cause maximum performance degradation when the device is in 

inactive (standby mode) state. Thereby, causing maximum degradation without 

detection (as testing and validation are typically performed in active states). 

This calls for a methodology to identify the presence of an accelerated aging 

attack in IP cores. This thesis presents a methodology to perform NBTI stress 

analysis on DSP IP cores, that can further be applied to predict/identify the 

presence of an accelerated aging attack on DSP IP cores. 

1.7.  Organization of thesis 

The upcoming chapters of the thesis are organized as follows: Chapter 2 

presents state-of-art with respect to proposed methodologies.  Chapter 3 

presents the proposed methodology to provide simultaneous resiliency against 

the multi-cycle temporal and multi-unit spatial effect of single event transient 



7 

in DSP IP cores. Chapter 4 presents the proposed methodology to provide 

simultaneous tolerance against a multi-cycle temporal and multi-unit spatial 

effect of single event transient for data-intensive applications. Chapter 5 

presents the proposed methodology to generate a low-cost (low-area, low-delay) 

optimized DSP IP core simultaneously tolerant against the multi-cycle 

temporal and multi-unit spatial effect of transient fault for loop-based control-

intensive applications. Chapter 6 will present presents a methodology to 

generate low-cost, highly-secure, logic obfuscated DSP IP cores to provide 

security against key-sensitization based attacks. Chapter 7 presents a 

methodology to analyze the effect of NBTI stress on DSP IP core and identify 

the presence of an accelerated aging attack. Chapter 8 presents computational 

forensics engineering based methodology to resolve ownership of DSP IP core. 

Chapter 9 presents the experimental results of the proposed methodologies and 

compares them with their respective state-of-the-art. Chapter 10 concludes the 

thesis and briefly discusses future work.  
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Chapter 2 

State of the art 

This chapter discusses state-of-the-art related to the proposed methodologies 

presented in this thesis. The first section presents state-of-the-art on transient 

fault (TF) reliability. The second section presents approaches related to security 

of DSP IP cores. The third section presents state-of-the-art on NBTI stress 

analysis of DSP IP cores. The fourth section describes the objective of this 

thesis. The fifth section summarizes the contributions of this thesis.  

2.1. State of the art on transient fault security/tolerance of an IP core 

As discussed in the previous chapter, a transient fault may occur due to a particle 

strike. Reliability against transient fault can be achieved either through security 

(resiliency) or tolerance. A security mechanism aims to detect the occurrence 

of a transient fault in a circuit. However, it cannot prevent the impact of transient 

fault from affecting the correct functionality of the circuit. On the other hand, a 

tolerance mechanism aims to preserve the correct functionality of the circuit. 

In other words, a tolerant IP core guarantees the generation of correct output in 

the presence of a transient fault. Whereas, a secure IP core only detects the 

occurrence of transient fault but cannot guarantee the generation of correct 

output in the presence of a transient fault. 

State-of-art on transient fault security: methodologies for creating transient 

fault secured circuits can be designed at various levels of design abstractions. A 

few approaches such as [16], [17], and [18] consider transient fault security at 

the behavioral level. However, none of these approaches provide simultaneous 

security against the multi-cycle temporal and multi-unit spatial effect of 

transient fault.  

Multi-cycle transient fault security: The approaches presented in [16-18] 

have adopted a dual modular redundancy (DMR) based technique for detecting 

a concurrent error due to the transient fault. The primary motive of the DMR 

structure is to isolate the impact of the transient fault in one of the modules, such 

that the other unaffected module could produce the correct output. Hence, when 

the outputs of the two modules are compared, a difference indicates the 
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occurrence of a transient fault in the device. However, there is no technique to 

identify which one of these two modules have produced the correct output. 

Hence, only detection is possible through DMR based approaches.  

The approach presented in [17] is more sophisticated than [16, 18]. This is 

because in [16, 18], at-least two-distinct hardware were required for ensuring 

security, which is not mandatory in [17]. The methodology presented in [17] 

ensures transient fault detection using a single hardware resource of a particular 

type. All these techniques consider only multi-cycle temporal effect of transient 

fault. However, they do not consider the spatial effect of a single event transient. 

Multi-unit transient fault security: Most approaches in the literature consider 

multiple event transient fault on memory. However, a few approaches such as 

[19, 20] consider the effect of multiple transient faults at the logic level. 

Nonetheless, these approaches do not consider security at the behavioral level.  

The proposed approach presents a novel methodology to provide simultaneous 

security against multi-cycle temporal and multi-unit spatial effects of single 

event transient on DSP IP cores generated using high-level synthesis.  

State-of-art on transient fault tolerance: 

Multi-cycle transient fault tolerance: There is only one work that presents a 

technique to create a multi-cycle transient fault-tolerant design using high-level 

synthesis [12]. However, it fails to provide either security or tolerance against 

the spatial effect of transient fault. 

Multi-unit transient fault tolerance: There is no technique present in the 

literature to generate multi-unit TF tolerant design using high-level synthesis. 

However, the techniques such as [19], [20] are present in the literature that only 

considers security (no tolerance) against the multi-unit spatial effect of transient 

fault. The approaches [19], [20] do not consider the multi-cycle temporal effect 

of TF. Further, these approaches do not take measures to reduce design 

overhead and are not applicable to loop-based applications. 

This thesis presents novel techniques for generating a low-cost DSP IP core that 

is simultaneously tolerant against the multi-cycle temporal and multi-unit 
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spatial effect of single event transient for loop-based control intensive and non-

loop based data intensive DSP applications. 

2.2. State of the art on the security of an IP core 

An IP core is vulnerable against several security threats such as IP piracy, IP 

overbuilding, false claim of ownership, Trojan insertion, etc. To tackle these 

security threats, several approaches are present in the literature such as IP 

metering, structural obfuscation, functional obfuscation, etc. However, in this 

section, we only discuss the state-of-the-art approaches that are closely related 

to our proposed methodologies for ensuring the security of IP cores i.e., 

functional obfuscation and hardware watermarking of DSP core. 

State-of-art on functional obfuscation: The aim of functional obfuscation is 

to protect an IP core from a malicious attacker present in the third-party 

fabrication facility. Functional obfuscation (a.k.a. functional locking) is a 

technique that locks an IP core by inserting locking units (such as logic gates, 

multiplexers/demultiplexers). Thereby, only the person who knows the valid 

key can unlock the IP core. The state-of-the-art functional obfuscation 

techniques are presented in [21], [22]. Authors of [21] and [22] have presented 

some novel attacks based on ‘key-sensitization’ technique. Subsequently, they 

have suggested a few security features that can enhance resiliency against key-

sensitization based attacks.  

The proposed functional obfuscation methodology enhances resiliency against 

key-sensitization attacks with the help of novel locking units termed as ‘IP 

functional locking blocks (ILBs)’. The proposed ILBs are an 8-key bit (per ILB) 

intertwined structures of many logic gates such as AND, NAND, NOT, XOR, 

XNOR, etc. On the other hand, function obfuscation technique of [21], [22] uses 

only XOR and/or XNOR gates as locking units (1-key bit per locking unit). The 

novel security features of the proposed ILBs enormously enhances resiliency 

against ‘key-sensitization’ attacks. Furthermore, the proposed approach 

integrates particle swarm optimization based design space exploration (PSO-

DSE) framework for exploring low-cost functionally obfuscated design 

solution. However, no effort was made in [21] or [22] to obtain low-cost design 

solution. 
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State-of-art on ownership protection of DSP IP cores: digital watermarking 

based approaches (such as [13], [23]) were the state-of-the-art techniques to 

resolve ownership conflict of DSP IP core generated using high-level synthesis. 

However, the security of a watermarked IP core can be breached using attacks 

such as signature tampering, reverse engineering, etc. Furthermore, the integral 

step of digital watermarking such as signature insertion can cause performance 

degradation, design overhead, etc. Hence, a more sophisticated signature-free 

methodology was required to resolve ownership of an IP core. The proposed 

computational forensics engineering (CFE) based methodology overcome these 

drawbacks as it does not depend on in-design based step such as signature 

insertion and there is no known attack on the proposed approach. 

2.3.  State of the art on NBTI stress analysis of DSP IP cores 

NBTI stress is a physical phenomenon observed in PMOS transistors that 

partially contributes to the natural aging of these transistors. There was no effort 

made in the literature to study and analyze the impact of aging on IP cores 

generated using high-level synthesis. The proposed approach presents a novel 

methodology for analyzing the aging effect of NBTI stress on the performance 

of DSP IP core generated using high-level synthesis. The phenomenon of 

natural aging due to NBTI stress can be utilized to perform the accelerated aging 

attack. An attacker can accelerate the natural aging process of a transistor by 

continuously applying NBTI stress when the device is in inactive usage (such 

as in standby mode). The aim of an attacker is to the accelerated aging process 

of a device such that it fails within the warranty period [15]. The proposed 

methodology to analyze the natural aging of DSP IP core can further be utilized 

to detect the presence of an accelerated aging attack on the IP cores generated 

using high-level synthesis.   

2.4. The objective of the thesis 

The objective of the thesis is to develop novel methodologies for ensuring 

reliability and security of DSP IP core against specific hardware 

threats/concerns. To achieve this aim following objectives were set: 
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1. To develop a methodology for generating a DSP IP core that is 

simultaneously secure/resilient against the multi-cycle temporal and 

multi-unit spatial effect of transient fault. 

2. To develop a methodology for generating a low-cost DSP IP core that is 

simultaneously tolerant against the multi-cycle temporal and multi-unit 

spatial effect of transient fault for data-intensive applications. 

3. To develop a methodology for generating a low-cost DSP IP core that is 

simultaneously tolerant against the multi-cycle temporal and multi-unit 

spatial effect of transient fault for loop-based control intensive 

applications. 

4. To develop a methodology for generating a low-cost, highly secure, 

functionally obfuscated DSP IP core. 

5. To develop a methodology for analyzing the aging effect of NBTI stress 

on the performance of DSP IP core. 

6. To develop a methodology for resolving the ownership conflict of DSP 

IP core. 

2.5. Summary of the contributions 

This thesis presents several novel methodologies for ensuring/enhancing 

reliability and security of DSP IP core. In order to advance the state-of-the-art, 

the following contributions were made: 

▪ A novel methodology for generating a DSP IP core that is 

simultaneously resilient/secure against the multi-cycle temporal and 

multi-unit spatial effect of transient fault. (publications: J7, J10, B1, C1) 

- Proposes a novel security-aware floor-planning technique/rules for 

providing resiliency against the multi-unit spatial effect of transient 

fault. 

- Proposes an integrated approach for providing security 

simultaneously against the multi-cycle temporal and multi-unit 

spatial effect of transient fault. 

- Presents a novel cost function for evaluating the cost of the design 

solution based on schedule latency, chip area, and wire-length. 

▪ A novel methodology for generating a DSP IP core that is 

simultaneously tolerant against the multi-cycle temporal and multi-
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unit spatial effect of transient fault for data-intensive applications. 

(publications: J1, B1) 

- Propose novel scheduling rules for generating multi-cycle transient 

fault tolerant triple modular redundant (TMR) schedule. 

- Propose novel tolerance-aware floor-planning rules for ensuring 

tolerance against the multi-unit spatial effect of transient fault. 

- Integrates a particle swarm optimization based design space 

exploration (PSO-DSE) framework for exploring low-cost transient 

fault-tolerant design solution for data-intensive DSP applications. 

- The proposed methodology is applicable to data-intensive DSP 

application. 

▪ A novel methodology for generating a DSP IP core that is 

simultaneously tolerant against the multi-cycle temporal and multi-

unit spatial effect of transient fault for loop-based control intensive 

applications. (publications: J8, B1) 

- Integrates a modified particle swarm optimization based design 

space exploration (PSO-DSE) framework for exploring low-cost 

design solution for loop-based control-intensive DSP applications. 

- Integrates a pre-processing technique for generating optimal 

unrolling factor for loop-based control-intensive DSP applications.  

▪ A novel methodology for generating a low-cost, highly secure, 

functionally obfuscated DSP IP core. (publications: J2, J3) 

- Proposes a novel Functional obfuscation methodology for 

obfuscating DSP IP cores. 

- Proposes a set of novel locking units termed as IP functional locking 

blocks (ILBs). 

- Presents security enhancing features/properties of proposed ILBs.  

- Integrates a modified PSO-DSE framework for exploring low-cost 

obfuscated design solution.  

- Presents a novel technique for insertion of proposed ILBs. 

- Security comparison of the proposed approach with the state-of-art 

approach shows a minimum security enhancement of 4.29 e+9 times 

for the tested benchmarks. 
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▪ A novel methodology for analyzing the aging effect of NBTI stress on 

the performance of DSP IP core. (publications: J4, J6, C2) 

- Proposes a technique to identify input vector that causes maximum 

performance degradation due to NBTI stress on DSP IP core. 

- Proposes a methodology to analyze the effect of NBTI stress with 

respect to varying stress times on critical path delay of DSP cores. 

- Presents a performance comparison of stress v/s no-stress condition 

of DSP cores with respect to various input vector samples.  

- Presents a technique to predict the presence of an accelerated aging 

attack on DSP IP core. 

▪ A novel computational forensic engineering methodology for resolving 

ownership conflict of DSP IP core generated using high-level synthesis. 

(publications: J5, J9, C3) 

- Proposes a novel feature-set containing ten features that can be 

utilized for resolving ownership conflict of an IP core. 

- Proposes novel feature extraction rules/algorithms for each of the 

proposed features. 

- The proposed technique incurs zero-overhead, zero-performance 

degradation compared to watermarking based IP core protection 

(due to its signature independence). The signature insertion step in 

watermarking based approaches requires insertion of a few 

additional elements such as registers, multiplexers, demultiplexers, 

etc. However, the proposed methodology does not require signature 

insertion step, therefore, resulting in comparatively zero-overhead 

and zero-performance degradation. 

  





17 

Chapter 3 

Methodology for generating a DSP IP core that is 

simultaneously resilient/secure against multi-cycle 

temporal and multi-unit spatial effect of transient fault 

This chapter presents a novel methodology for detecting the presence of 

transient fault due to temporal and spatial effects of single event transient. The 

first section introduces the problem. The second section provides a detailed 

description of the proposed approach. Subsequently, the proposed methodology 

is illustrated with the help of a demonstrative example in the third section. 

Further, the advantages and disadvantages of the proposed approach are 

presented in the fourth section and conclusions are drawn in the fifth section. 

3.1. Introduction 

As discussed in earlier chapters, a transient fault (TF) may occur when a particle 

with moderate energy strikes a circuit. A particle with linear energy transfer 

(LET) value more than critical charge can change the logic state of the affected 

node. An example of such a particle capable of causing transient fault is ‘α-

particle’ (present in packaging material of an integrated circuit). In the past, the 

impact of a single particle strike was assumed (modeled) to be capable of 

affecting only a single node. However, as the technology scale reaches the 130-

nanometer range, it becomes evident that this assumption can no longer hold 

true for current and future technology scales [24-27]. In the future, a single 

particle strike is more likely to affect more than one node placed adjacent to 

each other [27]. Additionally, if these nodes belong to different hardware units, 

then all these hardware units will produce faulty outputs. This spatial impact of 

transient fault on more than one hardware unit is termed as a multi-unit transient 

fault (MTF). In our proposed approach, the worst-case spatial impact of 

transient fault is considered as ‘km-units’. The value of ‘km’ is estimated by the 

designer based on the environment in which the circuit will be deployed and fed 

as an input to the proposed approach. 

In a manner similar to the spatial effect, the temporal effect of a single event 

transient is expected to last for multiple clock cycles [12, 17, 24]. This is due to 
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factors such as input voltage scaling, increasing frequency of the devices, etc. 

This temporal effect of transient fault is termed as a multi-cycle transient fault 

(MCT). In the proposed approach, the worst-case temporal effect of transient 

fault is considered as ‘kc-cycles’. The value of ‘kc’ is estimated by the designer 

and fed as an input to the proposed methodology. 

Moreover, as technology scaling continues and the demand for smaller and 

faster devices increases, the design complexity has also increased. Therefore, to 

reduce the effort required to design complex circuits, many designers have 

moved to a higher level of design abstraction such as architectural (a.k.a. 

behavioral/high) level [3-6]. Hence, novel methodologies are required at the 

architectural level to identify the presence of the temporal and spatial effect of 

transient fault. The proposed approach presents a novel methodology that 

integrates ‘high-level synthesis (HLS)’ and ‘physical design’ frameworks for 

generating a DSP IP core that is simultaneously resilient/secure against multi-

cycle temporal and multi-unit spatial effects of the transient fault. 

3.2. Proposed approach 

This section provides a detailed description of our proposed methodology.    

3.2.1. Problem formulation 

Given a DSP application in the form of data flow graph (DFG) along with 

module library, strength of multi-cycle transient fault (kc-cycles), strength of 

multi-unit transient fault (km-units), user-provided resource constraint Xi, 

generate a kc-cycle and km-unit transient fault resilient design.  

Fig.3.1. Overview of proposed transient fault security approach 
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3.2.2. Overview of proposed methodology 

As discussed earlier, in future technologies, a transient fault occurring due to 

radiation strike can last for multiple cycles as well as can affect multiple 

hardware units placed in the neighborhood of the affected unit (node). Hence, it 

is necessary for future technologies to consider both the temporal and spatial 

effect of a transient fault during the creation of transient fault resilient (secured) 

design. A single particle strike could simultaneously cause multi-cycle and 

multi-unit transient faults. However, as MCT affects in the temporal domain 

and MTF effects in the spatial domain. Therefore, domain-specific independent 

techniques are required to detect the effect of a transient fault in their respective 

domains. As shown in fig.3.1, the proposed approach integrates multi-cycle 

transient fault resilient ‘high-level synthesis’ framework with a novel multi-unit 

TF resilient ‘physical design’ framework to generate a simultaneously MCT and 

MTF resilient DSP IP core design. 

A detailed flow diagram of the proposed approach is shown in fig.3.2. In the 

initial step of the proposed approach, a dual modular redundant (DMR) system 

is created by duplicating all the operations of the DFG application. 

Subsequently, these operations are concurrently scheduled based on the user-

specified resource constraint (Xi). The scheduled DFG (SDFG) thus obtained, 

Building DMR Scheduling using List scheduling Algorithm 

Generating kC –cycle secured DMR Schedule 

Generating km –unit Resilient Floorplan (FP) based on proposed FP Design Rules 

Perform global routing of Modules in FP 
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Fig.3.2 Flow diagram of proposed methodology for generating 

simultaneously kc and km resilient DSP IP core 
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along with the strength of multi-cycle transient fault (kc-cycles) are fed into a 

multi-cycle transient fault resiliency algorithm (adapted from [28, 17]) to obtain 

a kc-cycle transient fault resilient SDFG DMR. The scheduling latency of kc-

cycle resilient design is extracted and stored for cost/fitness evaluation in the 

future. Once temporal resiliency is achieved, the MCT resilient design along 

with the strength of multi-unit TF (km-units) are fed into a spatial resiliency 

framework. In the first step of spatial resiliency framework, a list ‘L[k]’ of 

hardware modules comprising of functional units, multiplexers/demultiplexers 

units, etc. is generated. Subsequently, a physical level floorplan ([70]) is 

generated based on the proposed km-unit transient fault resiliency rules. 

Further, global routing of modules is performed based on which wirelength is 

estimated. Subsequently, wirelength and rectangular chip area of the km-unit 

transient fault tolerant floorplan along with schedule delay (stored earlier) are 

utilized for evaluating the cost of the generated design solution as discussed in 

section 3.2.6. The upcoming sections 3.2.3 and 3.2.4 will discuss the framework 

for multi-cycle and multi-unit resiliency respectively. 

3.2.3. Methodology for generating a kc-cycle transient fault resilient 

design 

This section provides a detailed description of the methodology for designing 

kc-cycle fault resilient SDFG DMR (adapted from [28, 17]). The MCT 

resiliency algorithm takes resource constraints (Xi), DFG application, the 

strength of MCT (kc-cycles) and module library as inputs and produces a kc-

cycle transient fault resilient DMR schedule. The initial step of resiliency 

algorithm is to create a DMR system by duplicating all the operations of original 

(input) DFG as duplicate DFG. The DMR system thus created has the original 

unit (OU) and duplicate unit (DU) as shown in fig 3.3. In the next step, both OU 

and DU are concurrently scheduled (a step of HLS) based on list scheduling 

algorithm and the user-specified resource constraints Xi. Once scheduled DMR 

system is generated, the hardware allocation of both the units (OU and DU) is 

performed based on the following fault resiliency conditions as stated below: 

i. Allocate opn (v) ∈ OU and opn (v′) ∈ DU to distinct operators 

(hardware units) based on availability. 

ii. If unavailable, then:  

Keep same assignment for v′ (as v) in DU such that: 
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t(v') – t(v) ≥ kc                (3.1) 

iii. If the above condition (Eq. (3.1)) is false, then: 

Push v′ (and its successors) ∈ DU one CS below until Eq. (3.1) is 

true.  

Hardware allocation of duplication unit’s operations without obeying conditions 

(i), (ii) or (iii) may result in transient fault hazards (TFH) between similar 

operations of OU and DU. In other words, TFH occurs if: 

t(v') – t(v) ≤ kc; where (v) ∈ OU and (v′) ∈ DU             (3.2) 

The TFHs are resolved by pushing the affected operation of the duplicate unit 

(along with its successors) in later control steps. The pushing of operations 

ensures that the time interval between v and v′ is greater than (or equals to) kc-

cycles [28]. Hence, the temporal effect of transient fault will remain isolated in 

the affected module. Therefore, when a single event transient will cause a fault 

in one of the modules, another module will produce the correct output. Thus, 

the difference between the output of the original unit and the duplicate unit will 

indicate the presence of a transient fault in a DSP IP core. The outputs of the OU 

and DU are compared with the help of a special circuit as discussed in the 

upcoming sub-section. 

Protecting the guard in DMR schedule 

As shown in fig. 3.3, error detection block comprises of two stages. In the first 

stage, outputs of the original & duplicate units of the scheduled DMR are fed 

into three comparators (C1, C2 & C3). In the second stage, the output of the 

comparators C1, C2 & C3 are subsequently fed to a voter (V). This multi-stage 

setup (adapted from [29]) protects the transient fault resilient design against a 

Original unit Duplicate unit 

Comparator 

(C1) 

Comparator 

(C2) 

Comparator 

(C3) 

Voter (V) 

Stage 1 

Stage 2 

Fig.3.3. Protecting the guard: Error-detection block 

Error-detection block 

DMR system 
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possible vulnerability of transient fault due to a particle strike on the 

comparator.  

The transient fault can affect the comparator(s) in two possible scenarios: (a) 

faulty comparator & fault in hardware of original unit or duplicate unit: In this 

scenario, any two faultless comparators will produce logic ‘1’ as an output 

indicating a difference in outputs of the original and duplicate unit. On the 

contrary, the faulty comparator will yield a logic ‘0’ indicating no difference in 

output of OU and DU. Therefore, when the outputs of these three comparators 

are fed into voter, a logic ‘1’ will be produced at voter output thereby, indicating 

the presence of a transient fault in the DMR system. (b) faulty comparator & no 

fault in hardware original or duplicate: In this scenario, two faultless 

comparators will produce logic ‘0’ as an output indicating no difference in 

outputs of OU and DU while faulty comparator will produce logic ‘1’ indicating 

a difference in outputs of OU and DU. Therefore, when the outputs of three 

comparators are fed into voter, a logic ‘0’ will be produced at voter output 

thereby, indicating no occurrence of a transient fault in the DMR system. 

Both the scenario shows that the multi-stage setup will always detect the 

presence of the transient fault in the circuit even if the particle strike affects a 

comparator. Further, note that the voter adopted in our proposed approach is 

tolerant against the temporal effect of transient fault [30]. 

3.2.4. Methodology for generating a km-unit transient fault resilient 

design 

The proposed algorithm takes kc-cycle transient fault resilient schedule and 

obtains the list ‘L[k]’ of hardware modules (functional units, interconnect units, 

etc.). The hardware module list L[k], along with the strength of multi-unit 

transient fault (km) are fed as input to the proposed km-resiliency algorithm. 

Subsequently, the hardware modules present in the L[k] are placed based on the 

proposed resiliency/security aware floorplanning rules:  

1. Select a pair of sister operations (v & v′) in kc-cycle resilient SDFG DMR. 

2. Find corresponding sister hardware functional modules (Mv & Mv′) 

assigned to sister operations in DMR SDFG. 

3. Place sister hardware modules in a floorplan such that they are at least km 

units apart i.e. S(Mv′) ≥ S(Mv) + km; where S(Mv′) and S(Mv) are the 
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starting point of placement of modules Mv & Mv′ along x-axis or y-axis 

(spatial domain) in a floorplan. 

4. Repeat steps 2–3 for all remaining pair of sister operations present in the kc-

cycle resilient DMR SDFG. 

The aim of the proposed floorplanning rules is to isolate the spatial effect of a 

transient fault within a single module of the DMR system. To this end, FP rules 

ensure that any pair of functional modules allocated to sister operations are bi-

directionally placed at least km units apart from each other in a floorplan. This 

is because, if functional modules allocated to sister operations are bi-

directionally placed within km units, then the spatial effect of transient fault due 

to a potential radiation strike may affect both the units similarly. In such a 

scenario, both OU and DU will produce the same erroneous output (concurrent 

error). Therefore, the error detection block will not be able to (distinguish 

between the output of OU and DU) detect a fault. Thus, proposed floorplanning 

rules ensure a minimum bi-directional distance of km units between functional 

units allocated to sister operations. 

 In our proposed methodology, the strength of multi-unit transient fault is 

considered in terms of km-units. Where 1 unit = 0.768 μm has been assumed 

based on sample values of MTF (in nanometer range) presented in [19,31]. the 

strength of multi-unit transient fault (km) represents the worst possible impact 

of MTF provided to the designer as an input. For the purpose of demonstration 

km = 4 is assumed. However, our proposed algorithm is applicable for any value 

 

Operation 
of UOG 

Operation 
of UDP 

Corr. H/w of 
UOG 

Corr. H/w 
of UDP 

1 1’ M1 M2 

2 2’ M2 M1 

3 3’ M1 M2 

4 4’ A1 A2 

5 5’ A1 A2 

6 6’ M2 M1 

7 7’ A1 A2 

8 8’ M1 M2 

9 9’ A1 A2 

10 10’ C1 C2 

 

Table 3.1 Conflict details of sister operations in 2-cycle 

transient fault resilient SDFG DMR of IIR 
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of km. In a practical scenario, the km value depends on the expected energy of 

the particle. (Note: in our approach, we have assumed the spatial impact of 

transient fault between functional units such as adders, multipliers, etc. but not 

on multiplexers/demultiplexers)  

3.2.5. Wirelength estimation 

Once kc-cycle and km-unit transient fault resilient floorplan is generated, 

wirelength is estimated as per the following equation. 

dijcijW
ji

FP =
,

 
     (3.3) 

Where cij is connectivity between hardware units i & j and dij is Manhattan 

distance between the center of rectangles i & j. For evaluating Manhattan 

distance, the I/O connectivity is assumed to be at the center of each module. 

3.2.6. Cost evaluation 

In the proposed approach, the cost is evaluated as the normalized weighted sum 

of wirelength, chip area (enveloping rectangular area), and latency as shown by 

the following equation: 

FP

FP

FP

FP

DMR

DMR

if
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1 3)(  ++=       (3.4) 

Where, Cf (Xi), is the cost/fitness function of transient fault resilient design 

based on resource constraint Xi; φ1 = φ2 = φ3 are the user-specified weights of 

schedule latency, floorplan chip area, and floorplan wirelength respectively. 
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Equal weightage is assumed for φ1 = φ2 = φ3 = 0.333. LDMR = latency of kc-

cycle transient fault resilient DMR schedule, based on user-provided resource 

constraint Xi; Lmax
DMR = latency of kc-cycle transient fault resilient DMR 

schedule, based on maximum resources available for each type in the design 

space; AFP = floorplan chip area of km-unit TF resilient floorplan based on user-

provided resource constraints; Amax
FP = floorplan chip area of km-unit multiple 

transient fault resilient floorplan based on maximum number of resources in the 

design space; WFP = wirelength of FP based on user-provided resource 

constraints; Wmax
FP = wirelength of FP based on maximum number of resources 

in the design space. 

3.3. Demonstrative example 

This section provides a detailed description of the proposed approach with the 

help of an example of an IIR filter benchmark. In the demonstrative example, 

the strength of multi-cycle and multi-unit transient faults are assumed to be kc=2 

cycles and km=4 units (where, 1 unit=768 nm) respectively. Further, in the 

demonstrative example, 1 cycle or control step is equal to 100 ps. In the initial 

step of the proposed approach, a DMR system is created by duplicating all the 

operations of original DFG application as duplicate unit DU as demonstrated 

with IIR benchmark shown in fig. 3.4. Subsequently, scheduling (using list 
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scheduling algorithm) of the DMR system is performed based on user-specified 

resource constraints Xi = (2A, 2M). Once Scheduled DMR system is generated 

proposed kc-cycle transient fault resilience rules are applied to generate 2-cycle 

transient fault resilient design as shown in fig. 3.5. 

 

M1 
d3 

M2 
d4 

A1 

m11 

A2 

m04 m13 m03 

m12 

d1 

d2 

m14 

m01 

m02 

8
 u

n
it

s 
3
.7

5
 u

n
it

s 
3
.2

5
 u

n
it

s 

8
.7

5
 u

n
it

s 

2
 u

n
it

s 

7
.5

 u
n
it

s 

1
 u

n
it

 

4 units 4 units 

12 units 

 

Fig.3.6. 4-unit transient fault resilient floorplan based on the 

2-cycle transient fault resilient SDFG of IIR (2A, 2M) 

C1 

C2 

5
.7

5
 u

n
it

s 

 

M1 M2 

m11 

A2 

m04 m13 m03 

m12 

d1 

d2 

d4 

d3 

A1 

m14 

m01 

m02 

8
.7

5
 u

n
it

s 

2
 u

n
it

s 
1
 u

n
it

 

8
 u

n
it

s 
7
.5

 u
n

it
s 

3
.2

5
 u

n
it

 

3
.7

5
 u

n
it

 

4 units 1 unit each 

12 units 

 

Fig. 3.7. IIR floorplan (2A, 2M) with no rules of multiple 

Transient fault security 

C2 C1 

5
.7

5
 u

n
it

 



27 

The kc-cycle transient fault-tolerant design thus obtained is used to create a list 

of hardware modules L[k]. The list L[k] of the SDFG DMR thus obtained is 

L[k] = {(Adders: A1, A2), (Comparator: C1, C2, C3), (Multipliers: M1, M2), 

(2:1MUX: m01, m02), (4:1MUX: m11, m12), (8:1MUX:m03,m13,m04,m14), 

(demux1:4:d1,d2), (demux1:8: d3,d4) } 

After list L[k] is created, a table comprising of conflicting hardware resources 

(hardware resources allocated to sister operations within kc control steps) is 

generated as shown by table 1. Subsequently, the hardware modules are floor 

planned based on the proposed km-unit transient fault resilient floorplanning 

rules discussed in section 3.2.4. (Note that the geometric dimensions of the 

modules based on NanGate 15 nm open source technology library [31] are 

shown in table 2.) For example, consider a pair of conflicting hardware M1 and 

M2 allocated to operation 1 and 1’ respectively (within kc-cycles). Hence, to 

avoid transient fault impacting both the operations 1 and 1’, hardware modules 

M1 and M2 must be placed at least km-units apart from each other. Hence, as 

shown in fig. 3.6, M1 and M2 are placed km=4 units distance apart from each 

other. Similarly, other conflicting hardware modules are placed. The floorplan 

thus obtained is km-unit & kc-cycles transient fault resilient. On the contrary, 

fig. 3.7 shows the non-resilient floorplan. In this normal floorplan hardware 

modules, M1 and M2 are placed adjacent to each other. Hence, in such a design 

 
Module name Height width 

 nm units nm units 

Multiplier 6144 8 3072 4 

Adder 1536 2 768 1 

Comparator 4480 5.75 768 1 

Subtractor 1792 2.25 768 1 

2:1 MUX 832 1 768 1 

4:1 MUX 2496 3.25 768 1 

8:1 MUX 5824 7.5 768 1 

16:1 MUX 12480 16.25 768 1 

32:1 MUX 25792 33.5 768 1 

1:2 demux 960 1.25 768 1 

1:4 demux 2880 3.75 768 1 

1:8 demux 6720 8.75 768 1 

1:16 demux 14400 18.75 768 1 

1:32 demux 29760 38.75 768 1 

 

Table 3.2. Library details based on 15nm NanGate 
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although kc-cycle (temporal) resiliency is achieved. However, the design is still 

vulnerable to the spatial effect of transient fault. Therefore, to ensure complete 

resiliency against transient faults, it is mandatory that the resiliency is provided 

against both the temporal as well as the spatial effect of single event transient 

(SET). The proposed approach ensures resiliency against both temporal and 

spatial effects of SET. 

3.4. Advantages and disadvantages of the proposed approach 

at the behavioral level 

3.4.1. Advantages 

(i) Offers lower implementation runtime than existing fault secured 

approaches at a lower level. 

(ii) Offers greater reliability (i.e. temporal & spatial transient fault aware 

digital design synthesis flow) than lower level techniques. 

(iii) Offers automated generation of multiple alternative hardware 

implementations that are simultaneously resilient against multi-cycle 

and multi-transient fault compared to lower level techniques. 

(iv) Offers flexibility to design resilient digital systems against any kc-cycle 

and km-unit transient fault as per user requirement compared to lower 

level techniques where the specification of worst-case transient fault 

range (strength) may not be possible as input. 

3.4.2. Disadvantages 

(i) Area, power and delay overhead may be larger compared to lower level 

techniques. 

(ii) Lower level interconnection/wirelength/datapath details are not 

available much at the behavioral level which makes solution cost 

evaluation complicated. 

3.5. Summary 

The proposed methodology is the first approach in the literature that 

simultaneously consider the temporal and spatial effects of the transient fault. It 

integrates ‘high-level synthesis’ and ‘physical design’ frameworks for 

providing security/resilience against multi-cycle temporal and multi-unit spatial 

effects of the transient fault. Further, the proposed approach presents novel 
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security-aware floor-planning rules for providing resiliency against the multi-

unit spatial effect of transient fault. Additionally, the proposed approach 

presents a novel cost function for evaluating the cost of the design solution 

based on schedule latency, chip area, and wire-length. By virtue of these novel 

contributions the proposed approach can generate a DSP IP core that is 

simultaneously resilient against multi-cycle temporal and multi-unit spatial 

effects of the transient fault. 
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Chapter 4 

Methodology for generating a low-cost DSP IP core that 

is simultaneously tolerant against multi-cycle temporal 

and multi-unit spatial effects of transient fault for data-

intensive applications 

This chapter presents the proposed approach to generate a DSP IP core that will 

produce the correct output even on the occurrence of a transient fault. The first 

section introduces the problem. The second section presents a brief overview of 

the proposed methodology. The third, fourth and fifth section describes the 

major blocks of the proposed approach. The sixth section summarizes the major 

contributions of the proposed approach. 

4.1. Introduction 

As discussed in preceding chapters, the radiation-induced transient fault in 

digital systems has become a major reliability concern. Although, detection of 

transient faults can be sufficient in many applications. However, the only 

detection of a transient fault is not enough for mission-critical applications. Due 

to the criticality of the application, it is mandatory to ensure that correct output 

is generated even on the occurrence of a transient fault. 

For instance, consider a mission-critical application such as an aircraft control 

system. The aircraft control system comprises of important sub-systems such as 

computers (involving processors), sensors and actuators.  The criticality of these 

control systems mandates ensuring correct operation of processing cores such 

as application specific processing (ASPs) cores or integrated circuits (ASICs) 

even on the occurrence of a transient fault. Moreover, due to the typical working 

environment of aircraft, they remain exposed to radiations that may result in 

transient faults. Further, due to demand for high operational speeds (high 

frequency), low area, low power application specific processors in the aerospace 

systems. The chances of the temporal effect of transient fault lasting for multiple 

cycles has increased manifold. Similarly, the chances of the spatial effect of a 

transient fault affecting multiple units placed in the neighborhood have also 

increased. Hence, it is mandatory to consider both the temporal as well as the 
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spatial impact of transient fault while designing applications for mission-critical 

systems. 

The proposed approach presents a novel methodology for generating a ‘low cost 

optimized transient fault-tolerant hardware against multi-cycle (temporal) and 

multi-unit (spatial) effect of transient fault for data-intensive digital signal 

processing (DSP) applications’. 

4.2. Proposed approach 

This section provides a brief overview of our proposed methodology.  

4.2.1. Problem formulation 

Given a data intensives DSP application in the form of data flow graph (DFG) 

along with module library, the strength of multi-cycle transient fault (kc), the 

strength of multi-unit transient fault (km), as inputs, generate a kc-cycle and km-

unit transient fault tolerant low-cost design solution as output.  

4.2.2. Overview of proposed methodology 

As shown in fig 4.1, the proposed methodology comprises of three major 

components. The first component particle swarm optimization-based design 

space exploration (PSO-DSE) is primarily responsible for generating low-cost 

design solution. The second component is responsible for providing tolerance 

against the temporal effect of transient fault. The third and the last component 

provides tolerance against the spatial effect of transient fault.  

As shown in fig.4.2, The first step of the proposed approach is to initialize the 

particle swarm [32, 33]. Subsequently, cost along with PSO-DSE parameters 

PSO-DSE block 

Tolerance against spatial effect 

(km) of transient fault 

Proposed approach 

Spatial (km) & temporal (kc) fault tolerant 

low cost design solution 

Fig.4.1. Overview of proposed TF tolerant approach for data 

intensive applications 
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such as velocity, local best and global best are initialized. Afterward, for each 

particle of the swarm, a triple modular redundant (TMR) system is created, and 

the proposed kc-cycle transient fault tolerant rules are applied to obtain kc-cycle 

transient fault tolerant schedule. The latency of the schedule thus generated, is 

stored for cost evaluation. Subsequently, a list of conflicting hardware is created 

and proposed km-unit fault-tolerant design rules are applied to obtain km-unit 

transient fault tolerant floorplan. The overall system thus generated is kc-cycle 

and km-unit transient fault-tolerant design. The rectangular floorplan (chip) area 

thus obtained is stored for cost evaluation. Further, the cost of the transient fault-

tolerant design is evaluated and PSO-DSE parameters (local best, global best, 

velocity, particle’s position) are updated. The process is repeated until one of 

the PSO-DSE termination criteria is met [33,32]. The optimal design solution 

thus explored is the low-cost kc-cycle and km-unit transient fault-tolerant 

design solution. 

The upcoming sections describe major components of the proposed 

methodology in detail.  
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Fig.4.2. Flow graph of the proposed TF tolerant methodology for 

data intensive applications 
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4.3. Proposed Methodology for generating a kc-cycle transient 

fault tolerant design 

This section provides a detailed description of the proposed methodology for 

designing kc-cycle transient fault tolerant scheduled DFG (SDFG) TMR 

system. The aim of the proposed methodology is to isolate the impact of a 

transient fault in any one of the three modules (copy) of the TMR system such 

that remaining two modules (copies) should function correctly even in the 

presence of a transient fault. Hence, when a voter is applied to the TMR system 

then the voter will always vote-in the correct output.  

The proposed algorithm takes resource constraints (Xi), DFG application, the 

strength of multi-cycle transient fault (kc) and module library as inputs and 

produces a kc-cycle transient fault tolerant TMR schedule. The initial step of 

the proposed approach is to create a triple module redundant system by copying 

all the operations of original (input) DFG (OC) as a duplicate copy (DC) and 

triplicate copy (TC) as shown in fig 4.3. Subsequently, scheduling and allocation 

of the TMR system are performed based on resource constraints (particle 

position Xi, produced from PSO-DSE block) using the proposed kc-cycle 

transient fault-tolerant scheduling and allocation rules.  

The temporal effect of the transient fault may cause hardware conflicts during 

scheduling and allocation. The hardware conflict arises when a hardware 

resource allocated to an operation of a copy is re-allocated to another operation 

of its cloned copies within kc-cycles. The proposed kc-cycle transient fault-

tolerant scheduling and allocation rules to resolve these hardware conflicts are:  

a. Hardware resource (R) allocated to an operation of a copy can be re-

allocated to an operation of the same copy within kc control steps 

(cycles). 

b. Shift operation of a copy if no hardware resource can be allocated without 

conflicts. Thus, allocations are made based on the following: 

i. Resource ‘R’ allocated to an operation of OC (v ∈ OC) can be re-

allocated to an operation of DC (v’ ∈ DC) or operation of TC (v’’ ∈ TC) 

only after a distance of kc control steps (cycles). 

i.e.  t(v’)-t(v)> kc, and 
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t(v’’)-t(v)> kc 

ii. Resource ‘R’ allocated to an operation of DC (v’ ∈ DC) can be re-

allocated to an operation of OC (v ∈ OC) or operation of TC (v’’ ∈ TC) 

only after a distance of kc control steps (cycles). 

i.e.  t(v)-t(v’)> kc, and 

t(v’’)-t(v’)> kc 

iii. Resource ‘R’ allocated to an operation of TC (v’’ ∈ TC) can be re-

allocated to an operation of OC (v ∈ OC) or operation of DC (v’ ∈ DC) 

only after a distance of kc control steps (cycles). 

i.e.  t(v)-t(v’’)> kc, and 

t(v’)-t(v’’)> kc 

Proposed scheduling and allocation rules ensure fault isolation within a single 

copy i.e., a single particle strike causing a transient fault in a copy (OC, DC or 

TC) of the TMR system will not affect the remaining two copies. Hence, even 

in the presence of (temporal effect of) transient fault due to a single particle 

strike, two copies will always produce correct output thus voter will ensure 

correct output is always produced as the final output of the TMR system. The 

delay of the kc-cycle transient fault-tolerant design thus generated is stored for 

future utilization during cost evaluation.  

4.3.1 A demonstrative example of the proposed methodology for 

generating a kc-cycle transient fault tolerant design 

This section illustrates the proposed kc-cycle transient fault-tolerant scheduling 

and allocation rules with the help of an example of a DWT DFG benchmark. 

For the demonstrative purpose, the realistic delay value of one control step is 

taken as 100 ps [24]. Further, the values of area and delay of hardware resources 

are based on 15nm technology open source NanGate library [31]. Additionally, 

for demonstrative purpose strength of transient fault is assumed to be (kc =) 4 

control steps/cycles (equivalent to 400 ps) as adopted from [24]. However, note 

that the proposed approach is applicable for any other kc values. 

Fig. 4.3 shows a basic TMR system of DWT benchmark. The proposed kc-cycle 

transient fault-tolerant scheduling and allocation rules are applied on the TMR 

system to obtain a 4-cycle transient fault-tolerant scheduling based on particle  
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Fig.4.3. Un-timed TMR system for DWT DFG benchmark 
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position Xi = {3A, 2M} as shown in fig.4.4. The proposed rule ‘a’ permits a 

hardware resource allocated in previous control steps to an operation of a copy 

to be re-allocated within kc cycles to another operation of same copy. This is 

because fault affected hardware will perform operations of the same copy within 

kc cycles, hence fault will remain isolated in the same copy and will not 

propagate to other copies. Further, it results in better hardware resource 

utilization leading to a reduction in delay of the scheduled DFG. Thus, fault 

isolation within the same copy is ensured as long as rules b is also satisfied. For 

example, rule ‘a’ permits hardware M1 allocated to opn 1 (of OC) to be re-

allocated to opn 3 of the same copy within kc-control steps/cycles. As per the 

proposed rule ‘b’, opn 1’ of DC has been shifted to CS7 since no allocation was 

possible due to hardware conflicts. Further as per rule b i., hardware resource 

A1 allocated to opn 17 of OC at CS10 is re-allocated to opn 14’ (of DC) at CS15 

only after 4 cycles (control steps). Similarly, M1 allocated to opn 15 of OC at 

CS8 is re-allocated to operation 1’’ of TC at CS13 only after 4-cycles. 

Additionally, according to rule b.ii., hardware A2 allocated to opn 9’ can only 

be re-allocated to opn 9’’ (of TC) in CS 18 after 4 cycles. Further, according to 

rule b.iii., M1 allocated to operation 1’’ (of TC) could only be re-allocated to an 

operation of DC or OC after 4 cycles. Thus, M1 allocated to 1’’ could not be re-

allocated to 13’ or 15’.  

4.4. Proposed Methodology for generating km-unit transient 

fault tolerant design 

The proposed methodology for generating a km-unit transient fault-tolerant 

design takes kc-cycle fault tolerant TMR system along with the strength of the 

spatial effect of transient fault (km) as input and generates kc-cycles & km-unit 

fault tolerant floorplan as output. 

The proposed methodology considers the spatial effect of a transient fault in 

term of hardware conflicts. A hardware conflict due to spatial effect occurs 

when a hardware resource allocated to an operation of a copy is placed within 

km-unit distance to any hardware resource allocated to an operation of 

remaining two copies within kc-CS (cycles). In such a scenario if two hardware 

resources allocated to different copies are placed less than km-unit to each other 
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then, the fault may propagate from one copy to another due to the spatial effect 

of transient fault. Hence, more than one copy will generate incorrect output 

leading to incorrect output by the voter. Therefore, resolving hardware conflicts 

due to the spatial effect of transient fault is important to provide complete 

tolerance against transient faults. (Note that the voter utilized in the proposed 

approach is transient fault tolerant [30]). 

As shown in fig. 4.5, the first step of the proposed methodology is to obtain a 

list of all hardware resources [Ri] present in kc-cycle fault-tolerant design. In 

the next step, a list of conflicting hardware (𝑍𝑅𝑖
[𝑅𝑗]) due to the spatial effect of 

transient fault is generated for all the resources present in the list [Ri]. 

Subsequently, the hardware resources are placed during floorplanning such that 

each resource Ri is placed at least km-unit distance apart from its conflicting 

resources Rj.  These steps are repeated till all the resources are placed. The 

floorplan thus obtained is kc-cycle and km-unit transient fault tolerant floorplan.  

4.4.1 A demonstrative example of the proposed methodology for 

generating a km-unit transient fault tolerant floorplan 

This section illustrates the proposed km-unit transient fault tolerant 

methodology with the help of an example of a DWT DFG benchmark. In the 

initial step, list of all hardware resource is obtained from 4-cycle transient fault 

tolerant TMR system (discussed earlier in section 3.2.4) as L[R] = {M1, M2, 

A1, A2, A3}. Subsequently, for each of the hardware resources, a list of 

conflicting hardware is created. For instance, consider hardware resource M1, 

the M1 allocated to an operation 1 of OC at CS 1 will be in conflict with all the 

hardware allocated to any operation of DC or TC within kc = 4 cycles. However, 

there is no other operation of DC or TC scheduled until CS5. Hence, for M1 

Obtain a list 𝑳ሾ𝑹𝒊ሿ of all hardware resource (𝑹𝒊) from kc-cycle fault 

tolerant SDFG  

(where i=1,2,.., n.) 

Obtain list of conflicting hardware resources ൫𝑍𝑅𝑖
[𝑅𝑗]൯ for each element of 

ሾ𝑅𝑖ሿ . 

Place each element of 𝐿ሾ𝑅𝑖ሿ such that it is at least km-unit distance apart 

from each of its conflicting hardware listed in 𝑍𝑅𝑖
[𝑅𝑗] . 

 
Repeat until 𝐿ሾ𝑅𝑖ሿ ≠ ∅. 

Fig.4.5 Proposed km-unit transient fault tolerant 

floorplanning rules 
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allocated to operation 1 of OC, there is no conflict. Similarly, M1 allocated to 

opn 3 at CS2 has no conflict. However, M1 allocated to opn 5 of OC at CS3 

conflicts with M2 allocated to opn 1’ of DC. likewise, M1 allocated to opn 11 

at CS4 conflicts with M2 and A2 allocated to opn 1’ and 6’ of DC respectively. 

Similarly, other conflicts of resource M1 is evaluated and the list of conflicting 

hardware of resource M1 thus obtained is 𝑍𝑀1[𝑅𝑗] = {𝑀2, 𝐴1, 𝐴2}. In a similar   

manner list of all conflicting hardware is obtained. Subsequently, in the third 

and final step of the proposed km-unit transient fault tolerant approach, the 

conflicting hardware are placed at least km-unit (=4) bidirectional distance apart 

from each other. For example, consider the list of conflicting hardware of M1 :  

𝑍𝑀1[𝑅𝑗] = {𝑀2, 𝐴1, 𝐴2} and A3 : 𝑍𝐴3[𝑅𝑗] = {𝑀2, 𝐴1, 𝐴2} . Since both the conflicting 

list does not contain A3, or M1 respectively. Hence, both M1 and A3 can be 

placed adjacent to each other as shown in fig.4.7. Similarly, as a list of M1 

contain A2, hence M1 and M2 are placed at least km=4 unit distance apart from 

each other. 

On the contrary, in the case of spatially non-tolerant floorplan all the hardware 

resources are compactly placed as shown in fig.4.6. Although such a floorplan 

has a lesser area compared to the proposed approach, it is vulnerable to the 

spatial effect of transient fault. The main crux of the proposed approach is to 
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provide tolerance against temporal as well as the spatial effect of the transient 

fault. Additionally, the proposed approach reduces the impact of area overhead 

by exploring low-cost design solution with the help of PSO-DSE framework.  

4.5. PSO-DSE framework for generating low-cost kc-cycle and 

km-unit transient fault tolerant design 

This section provides a detailed description of particle swarm optimization 

based design space exploration PSO-DSE framework [32, 33]. The PSO-DSE 

framework comprises of four major steps as follows: 

4.5.1 Particle encoding and swarm initialization 

In the initial step of the PSO-DSE framework, particles of the swarm (Pi) are 

encoded as Xi = {NR1, NR2, …, NRD} where Xi denotes position of ith particle 

in the design space, NRD represents the number of resources of type RD in the 

Dth dimension of the design space[32, 33]. Each particle of the swarm represents 

a number of hardware resources utilized for generating transient fault-tolerant 

design solutions. Subsequently, particles are initialized in the design space. The 

first three particles (P1, P2, and P3) are initialized as: 

X1={min(R1), min(R2), … , min(RD)} 

X2={max(R1), max(R2), … , max(RD)} 

X3={[min(R1) + max(R1)]/2, … , [min(RD) + max(RD)]/2}  

Representing minimum, maximum, and middle positions of the design space. 

Hence, ensuring good coverage of design space. Afterward, the remaining 

particles (Pi) are initialized as: 

Xi={[min(R1) + max(R1)]/2 ± 𝛼, … , [min(RD) + max(RD)]/2  ± 𝛼}  

Where min(RD) and max(RD) denotes the minimum and maximum resource in 

Dth dimension respectively. 𝛼 is a random integer between the min(RD) and max 

(RD).  

4.5.2 Fitness / cost evaluation 

Each particle’s position in the design space represents the number of hardware 

resources utilized for generating kc-cycle and km-unit transient fault-tolerant 

design solution. Based on the varying resource configuration (particle position) 
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fault-tolerant design solutions are generated and evaluated for analyzing fitness 

based on the following cost function.  

FTA

FTA

FTL

FTL

iXfC

max
2

max
1)(  +=

 

(4.1) 

where Cf (Xi) represents the cost/fitness of fault tolerant design solution based 

on the (resource configuration) particle position Xi, 1 and 2 are weightage of 

schedule latency and area of floorplan respectively. LFT is the latency of 

transient fault-tolerant design, Lmax
FT is the maximum latency of transient fault-

tolerant design solution in the design space (derived using the minimum number 

of hardware resources), AFT is the enveloping floorplan chip area of the fault 

tolerant design solution, Amax
FT is the maximum floorplan area of the transient 

fault-tolerant design (derived using the maximum number of hardware 

resources).  

4.5.3 Updating local best and global best 

In each iteration of the PSO-DSE framework, particle ‘P’ of the swarm explores 

some position ‘Xi’ in the design space. The local best denotes least cost (best 

fit) position explored by an individual particle ‘P’ of the swarm till the current 

iteration. Whereas, global best represents the best-fit design solution explored 

by the entire particle population till the current iteration.  

In each iteration, the local best of a particle ‘P’ is updated if a lower cost design 

solution compared to current local best is explored by particle ‘P’ in the current 

iteration. Similarly, in each iteration global best of entire particle swarm is 

updated, if a lower cost design solution compared to previous global best is 

explored by particle swarm in the current iteration.  

4.5.4 Updating Velocity and particle’s position 

After the local best and global best are updated, the velocity of a particle is 

updated using Eq. 4.2. 

𝑉𝑑𝑖

+ = 𝜔𝑉𝑑𝑖
+ 𝑏1𝑟1ሾ𝑅𝑑lbi

− 𝑅𝑑𝑖
ሿ + 𝑏2𝑟2ሾ𝑅𝑑𝑔𝑏

−  𝑅𝑑𝑖
ሿ (4.2) 

Subsequently, the position of a particle is updated using 4.3. 

𝑅𝑑𝑖
+ =  𝑅𝑑𝑖 + 𝑉𝑑𝑖

+ (4.3)    

https://en.wikipedia.org/wiki/File:Greek_phi_Didot.svg
https://en.wikipedia.org/wiki/File:Greek_phi_Didot.svg
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Where 𝑉𝑑𝑖

+ ,𝑉𝑑𝑖
 ,𝜔, 𝑅𝑑lbi

 , 𝑅𝑑𝑔𝑏
 , 𝑅𝑑𝑖

 ,b1, b2 ,𝑟1 and 𝑟2 are as defined in the 

nomenclature of this thesis ([32, 33]). 

Subsequently, for the new particle positions, kc-cycle and km-unit transient fault 

tolerant designs are generated and finesses are evaluated. This process continues 

until one of the termination criteria is satisfied: 

1. The global best is not updated for the last 10 iterations. 

2. The user-defined maximum number of iterations have been executed. 

The PSO-DSE process generates optimal low-cost kc-cycle and km-unit transient 

fault-tolerant design solution upon termination.  

4.6. Summary 

The proposed methodology is the first approach in the literature to generate DSP 

IP cores that are simultaneously tolerance against multi-cycle temporal and 

multi-unit spatial effects of transient fault for data-intensive applications. The 

proposed approach presents novel TF tolerant Scheduling and floorplanning 

techniques for generating DSP IP cores simultaneously tolerant against the 

temporal and spatial effect of transient fault. Further, the proposed approach 

generates low-cost design solution with the help of integrated PSO-DSE 

framework. 

  



43 

Chapter 5 

Methodology for generating a low-cost DSP IP core that 

is simultaneously tolerant against multi-cycle temporal 

and multi-unit spatial effects of transient fault for loop-

based control intensive applications 

The previous chapter has presented the methodology for generating transient 

fault tolerant DSP IP core for data-intensive applications. In this chapter, we 

will discuss the methodology for generating transient fault tolerant DSP IP core 

for loop-based control intensive applications. The chapter is organized into five 

sections. In the first section, we will introduce the problem. In the second 

section, we will present a brief overview of the proposed solution. The third, 

fourth and fifth section will describe the major blocks of the proposed solution 

with the help of a demonstrative example. The fifth and last section will 

conclude the chapter. 

5.1. Introduction 

As discussed in the previous chapter, it is necessary to consider tolerance against 

radiation-induced transient faults while designing applications for mission-

critical systems. Further, due to very stringent requirements such as low-power, 

low-area, low-delay of mission-critical systems, it is equally (if not more) 

important to consider optimization while designing reliable systems. The 

mission-critical systems require both data-intensive as well as control intensive 

applications. Therefore, although the technique discussed in the previous 

chapter generates optimal design solutions for data-intensive applications, it is 

not applicable to loop-based control-intensive applications. Hence, a novel 

methodology is required for generating optimal designs for control-intensive 

DSP applications. 

The proposed approach presents a novel methodology for generating a ‘low cost 

optimized transient fault tolerant hardware against multi-cycle (temporal) and 

multi-unit (spatial) effect of transient fault for loop-based control intensive 

digital signal processing (DSP) applications’ 

5.2. Proposed approach 
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This section briefly describes the major components of the proposed 

methodology.  

5.2.1 Problem formulation 

Given a control intensives DSP application in the form of control data flow 

graph (CDFG) along with module library, strength of multi-cycle transient fault 

(kc), strength of multi-unit transient fault (km), generate a low-cost kc-cycle and 

km-unit transient fault-tolerant design solution. 

5.2.2 Overview of proposed methodology 

As shown in fig 5.1, the proposed methodology comprises of four major 

components namely PSO-DSE block, pre-processing block, kc-cycle tolerance 

block, and km-unit tolerance block. The particle swarm optimization-based 

design space exploration (PSO-DSE) block is primarily responsible for 

exploring low-cost design solution. The pre-processing block takes CDFG 

application as input and determines the optimal unrolling factor. The kc-cycle 

tolerance block is responsible for providing tolerance against the temporal effect 

of transient fault. The fourth and final block provides tolerance against the 

spatial effect of transient fault.  

As shown in fig. 5.2, The first step of the proposed methodology is to perform 

pre-processing of the CDFG application for identifying optimal unrolling 

factors (UF) for the design space. Subsequently, based on the pre-processed 
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unrolling factors, particle swarm is initialized as Xi = {NR1, NR2, …, NRD, UF} 

where Xi denotes the position of an ith particle in the design space, NRD is the 

number of resources of type RD in the Dth dimension of the design space, UF is 

unrolling factor. Further, for each particle position Xi, CDFG application is 

unrolled based on unrolling factor UF. Subsequently, a TMR system of unrolled 

CDFG is created with respect to each particle position Xi. Afterward, proposed 

transient fault tolerant rules are applied to generate kc-cycle transient fault 

tolerant schedule. The kc-cycle transient fault tolerant schedule thus obtained is 

utilized for creating a list of hardware conflicts. Subsequently, the proposed km-

unit fault tolerant rules are applied for generating kc cycle and km unit transient 

fault tolerant floorplan. Once kc-cycle and km-unit transient fault tolerant 

design is generated, the cost is evaluated and PSO-DSE parameters such as 

velocity, local best and global best are updated. The process is repeated until 

one of the PSO-DSE termination criteria is met. The optimal design solution 

thus explored is the low-cost kc-cycle and km-unit transient fault tolerant 

control intensive DSP application. The upcoming sections describe major 

components of the proposed methodology in detail.  
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Fig. 5.2. Flow graph of the proposed TF tolerant methodology for loop-

based control intensive applications 
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5.3. Preprocessing of CDFG 

The pre-processing of CDFG application is a process by which optimal 

unrolling factors for the given application are determined. The pre-processing 

step performs optimization by removing non-optimal UFs. Thereby, reducing 

design space to include only optimal unrolling factors. As shown in fig. 5.2, pre-

processing step comprises of two sub-steps as described below 

5.3.1 Preprocessing of CDFG application for determining optimal 

unrolling factors 

The pre-processing approach is adopted from [32]. The pre-processing step 

takes CDFG application as input and determines the desirable unrolling factors 

as per the following equation 

where ‘I’ is a total number of loop iterations and UF is unrolling factor.  The 

UFs thus obtained are most desirable UFs as shown in [VCAL vol.2 issue2 etc. 

papers].  

5.3.2 Unrolling of CDFG 

In our proposed approach, each particle position Xi = {NR1, NR2, …, NRD, UF} 

comprises of a desirable UF. For each Xi, CDFG application is unfolded ‘UF-

1’ times to get unrolled CDFG. For instance, as shown in fig. 5.3, The original 

CDFG application (1st iteration) is unfolded once more (2nd iteration) to obtain 

unrolled CDFG with UF=2. The 1st and 2nd iterations are represented by light   

desirable UF = ((I mod UF <
𝑈𝐹

2
 ) && (UF <= 

𝐼

2
 ))  (5.1) 
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blue and purple colored outlines respectively. The additional circuit comprising 

of an adder and a comparator is utilized for counting (incrementing) the number 

of iterations executed and comparing them with the maximum number of 

iterations (I) to be performed. This section provides a detailed description of the 

proposed methodology for designing kc-cycle transient fault tolerant scheduled 

DFG (SDFG) TMR system. The aim of the proposed methodology is to isolate 

the impact of a transient fault in any one of the three modules (copy) of the TMR 

system such that remaining two modules (copies) should function correctly even 

in the presence of a transient fault. Hence, when a voter is applied to the TMR 

system then the voter will always vote-in the correct output. The pre-processed 

and unrolled CDFG thus generated is fed as input to the next step of our 

proposed methodology. 

5.4. Proposed Methodology for generating a kc-cycle transient 

fault tolerant design 

The proposed methodology comprises of two steps as described below. 

5.4.1. Creating TMR of the unrolled CDFG 

The first step of kc-cycle transient fault tolerant methodology takes unrolled 

CDFG as input and creates a triple modular redundant (TMR) system by 

copying all the operations of original unrolled CDFG (OC) as a duplicate copy 

(DC) and triplicate copy (TC) as shown in fig. 5.3. The TMR system thus 

generated is fed into our proposed methodology for generating kc-cycle 

transient fault tolerant scheduled TMR system as discussed in the following sub-

section.   

5.4.2. Methodology for generating kc-cycle transient fault tolerant 

scheduled TMR system 

The proposed algorithm takes D-dimensional resource configuration extracted 

from particle position Xi as input along with unrolled CDFG based TMR 

system, strength of multi-cycle transient fault (kc) and module library and 

produces a kc-cycle transient fault tolerant scheduled TMR system as output. 

The first step of the proposed approach is to perform scheduling and allocation 
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of a TMR system based on resource configuration extracted from Xi, using the 

proposed kc-cycle transient fault tolerant scheduling and allocation rules.  

The proposed approach considers the temporal effect of transient fault as 

hardware conflicts. A hardware conflict arises when a hardware resource 

allocated to an operation of a copy is re-allocated to another operation of its 

cloned copies within kc-cycles. The proposed kc-cycle transient fault tolerant 

scheduling and allocation rules applied to resolve these hardware conflicts are:  

a. Hardware resource (R) allocated to an operation of a copy can be re-

allocated to an operation of the same copy within kc control steps 

(cycles). 

b. Shift operation of a copy if no hardware resource can be allocated without 

conflicts. Thus, allocations are made based on the following: 

i. Resource ‘R’ allocated to an operation of OC (v ∈ OC) can be re-

allocated to an operation of DC (v’ ∈ DC) or operation of TC (v’’ ∈ TC) 

only after a distance of kc control steps (cycles). 

i.e.  t(v’)-t(v)> kc, and 

t(v’’)-t(v)> kc 

ii. Resource ‘R’ allocated to an operation of DC (v’ ∈ DC) can be re-

allocated to an operation of OC (v ∈ OC) or operation of TC (v’’ ∈ TC) 

only after a distance of kc control steps (cycles). 

i.e.  t(v)-t(v’)> kc, and 

t(v’’)-t(v’)> kc 

iii. Resource ‘R’ allocated to an operation of TC (v’’ ∈ TC) can be re-

allocated to an operation of OC (v ∈ OC) or operation of DC (v’ ∈ DC) 

only after a distance of kc control steps (cycles). 

i.e.  t(v)-t(v’’)> kc, and 

t(v’)-t(v’’)> kc 

c.  

i. There should be at least control steps (cycles) delay between 

execution of two consecutive sequential loops such that there are no 

conflicts: 

i.e.  𝑇𝑆ⅇ𝑞2
𝑠 −  𝑇𝑆ⅇ𝑞1

𝐸 > 𝑘𝐶, 
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ii. There should be at least control steps (cycles) delay between 

execution of two consecutive parallel loops such that there are no 

conflicts: 

i.e.  𝑇𝑝𝑎𝑟2
𝑠 −  𝑇𝑝𝑎𝑟1

𝐸 > 𝑘𝐶, 

iii. There should be at least control steps (cycles) delay between the start 

of the execution of sequential loop1 and completion of parallel loop2 

such that there are no conflicts: 

i.e.  𝑇𝑆ⅇ𝑞1
𝑠 −  𝑇𝑝𝑎𝑟2

𝐸 > 𝑘𝐶, 

Proposed scheduling and allocation rules ensure fault isolation within a single 

copy i.e., a single particle strike causing a transient fault in a copy (OC, DC or 

TC) of the TMR system will not affect the remaining two copies. Hence, even 

in the presence of (temporal effect of) transient fault due to a single particle 

strike, two copies will always produce the correct output. Hence, voter applied 

to the output of the TMR system will ensure the correct output is always 

produced as the final output of the TMR system. The proposed rules are 

elaborated in upcoming section 5.4.3. The delay of the kc-cycle transient fault 

tolerant design thus generated is evaluated (as discussed below) and stored for 

future utilization during cost evaluation.  

Proposed Latency model: The latency of kc-cycle transient fault tolerant TMR 

(LTMR) is given by the following equation 

𝐿𝑇𝑀𝑅 = (𝐼%𝑈𝐹) ∗ 𝐿𝑠ⅇ𝑞 + (
𝐼

𝑈𝐹
)

𝑞𝑢𝑜𝑡𝑖ⅇ𝑛𝑡

∗ 𝐿𝑝𝑎𝑟 
(5.2) 

Where, (𝐼%𝑈𝐹) indicates the number of sequential loops, and (
𝐼

𝑈𝐹
)

𝑞𝑢𝑜𝑡𝑖ⅇ𝑛𝑡

 denotes 

the number of parallel loops, 𝐿𝑠ⅇ𝑞, 𝐿𝑝𝑎𝑟 denotes latency of sequential body and 

parallel body respectively. The 𝐿𝑠ⅇ𝑞, 𝐿𝑝𝑎𝑟 are calculated as the summation of 

‘delay of each control step of the kc-cycle fault tolerant schedule’ and ‘delay of 

strength of kc-cycle transient fault’ as shown by eq. (3).  

𝐿𝑠ⅇ𝑞/𝑝𝑎𝑟 = {∑ 𝑀𝑎𝑥(𝐷(𝑜𝑝𝑖), . . , 𝐷(𝑜𝑝𝑛), 𝐷(𝑜𝑝𝑖′), . . , 𝐷(𝑜𝑝𝑛′), 𝐷(𝑜𝑝𝑖′′), . . , 𝐷(𝑜𝑝𝑛′′)
𝑁

𝑐𝑠=1
} + 𝑘𝑐(5.3) 

Where delay of a control step is evaluated as a maximum value among ‘delay 

of all the operations belonging to any copy of the TMR system’. where ‘D(opi)’, 

‘D(opi’)’, ‘D(opi’’)’ represents a delay of operation belonging to the original 
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copy, duplicate copy, and triplicate copy respectively. Further, 1 ≤ i ≤ n; 1’≤ i’ 

≤ n’; 1’’≤ i’’ ≤ n’’, where, i, i’ and i’’ = operations of the original copy, duplicate 

copy and triplicate copy respectively. n, n’ and n’’ = maximum number of nodes 

of original, duplicate and triplicate copy respectively; N = maximum number of 

control steps (cs) of the scheduled CDFG; kc denotes the delay of kc-cycles. 

Addition of kc in the eq. (5.3), ensures the kc-cycle difference between execution 

of consecutive sequential/parallel loops. Hence, ensuring fault doesn’t 

propagate within two consecutively scheduled sequential and parallel bodies. 

The upcoming sub-section will describe the proposed methodology with the 

help of an example. 

5.4.3. A demonstrative example of the proposed methodology for 

generating a kc-cycle transient fault tolerant design for control-

intensive DSP applications. 

This section illustrates the proposed kc-cycle transient fault tolerant scheduling 

and allocation rules with the help of an example of a differential equation 

benchmark. For the demonstrative purpose, the realistic delay value of one 

control step is taken as 1000 ps for designing an application specific processor 

with frequency 1Ghz. Additionally, for demonstrative purpose strength of 

transient fault is assumed to be (kc =) 2 control steps (equivalent to 2000 ps) as 

adopted from [39,41,40]. Further, the values of area and delay of hardware 

resources are based on 15nm technology open source NanGate library [30]. 

However, note that the proposed approach is applicable for any other kc values. 

Fig. 5.3 shows a basic TMR system of unrolled differential equations 

benchmark. The proposed kc-cycle transient fault tolerant scheduling and 

allocation rules are applied on the TMR system to obtain a 2-cycle transient 

fault tolerant schedule based on D-dimensional resource constraints extracted 

from particle position Xi = {6M, 3A, 3S, 2C, UF=2} as {6M, 3A, 3S, 2C} where 

UF=2 is already utilized during creation of unrolled CDFG.  

The proposed rule ‘a’ permits a hardware resource allocated in previous control 

steps to an operation of a copy to be re-allocated within kc cycles to another 

operation of same copy. This is because fault affected hardware will perform 

operations of the same copy within kc cycles, hence fault will remain isolated 
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in the same copy and will not propagate to other copies. Further, it results in 

better hardware resource utilization leading to the reduction in delay of the 

scheduled CDFG. Thus, fault isolation within the same copy is ensured as long 

as rules b and c are also satisfied. For example, rule ‘a’ permits hardware M1 

allocated to opn 1 (of OC) to be re-allocated to opn 4 of the same copy within 

kc-control steps/cycles.  

As per proposed rule ‘b’, opn 1’ & 2’of DC have been shifted to CS4 since no 

allocation was possible due to hardware conflicts. Further, as per rule b i., 

hardware resource M5 allocated to opn 11 of OC at CS1 can only be re-allocated 

to opn 1’ (of DC) at CS4 after 2 cycles (control steps). Similarly, as per rule b 

ii., hardware resource M5 allocated to opn 13’ of DC at CS6 is re-allocated to 

opn 10’’ (of TC) at CS9 only after 2 cycles (control steps). Further, according to 

rule b.iii., M5 allocated to operation 10’’ (of TC) could only be re-allocated to 

an operation of OC or DC after 2 cycles in case re-allocation of M5 was needed. 

5.5. Proposed Methodology for generating a km-unit transient 

fault tolerant design 

The proposed methodology for generating a km-unit transient fault tolerant 

design takes kc-cycle fault tolerant TMR system along with the strength of the 

spatial effect of transient fault (km) as input and generates kc-cycles & km-unit 

fault tolerant floorplan as output. 

The proposed methodology considers the spatial effect of a transient fault in 

term of hardware conflicts. A hardware conflict due to spatial effect occurs 

when a hardware resource allocated to an operation of a copy is placed within 

km-unit distance to any hardware resource allocated to an operation of 

Obtain a list 𝑳ሾ𝑹𝒊ሿ of all hardware resource (𝑹𝒊) from kc-cycle fault tolerant 

SDFG (where i=1,2,.., n.) 

Obtain list of conflicting hardware resources ൫𝑍𝑅𝑖
[𝑅𝑗]൯ for each element of ሾ𝑅𝑖ሿ 

. 

Place each element of 𝐿ሾ𝑅𝑖ሿ such that it is at least km-unit distance apart from 

each of its conflicting hardware listed in 𝑍𝑅𝑖
[𝑅𝑗] . 

Repeat until 𝐿ሾ𝑅𝑖ሿ ≠ ∅. 

Fig. 5.6 Proposed km-unit transient fault tolerant floorplanning rules 
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remaining two copies within kc-CS (cycles). In such a scenario if two hardware 

resources allocated to different copies are placed less than km-unit to each other 

then, the fault may propagate from one copy to another due to the spatial effect 

of transient fault. Hence, more than one copy will generate incorrect output 

leading to incorrect output by the voter. Therefore, resolving hardware conflicts 

due to the spatial effect of transient fault is important to provide complete 

tolerance against transient faults. 

As shown in fig. 5.5, the first step of the proposed methodology is to obtain a 

list of all hardware resources [Ri] present in kc-cycle fault tolerant design. In 

the next step, a list of conflicting hardware (𝑍𝑅𝑖
[𝑅𝑗]) due to the spatial effect of 

transient fault is generated for all the resources present in the list [Ri]. 

Subsequently, the hardware resources are placed during floorplanning such that 

each resource Ri is placed at least km-unit distance apart from its conflicting 

resources Rj.  These steps are repeated till all the resources are placed. The 

floorplan thus obtained is kc-cycle and km-unit transient fault tolerant floorplan.  

5.5.1 A demonstrative example of the proposed methodology for 

generating a km-unit transient fault tolerant floorplan 

This section illustrates the proposed km-unit transient fault tolerant 

methodology with the help of an example of a differential equation benchmark. 

In the initial step, list of all hardware resource is obtained from 2-cycle transient 

fault tolerant TMR system (discussed earlier in section 5.4) as L[R] = {M1, M2, 

… , M6, A1, A2, A3, S1, S2, S3, C1, C2}. Subsequently, for each of the 

hardware resources, a list of conflicting hardware is created. for instance, 

consider hardware resource M1, the M1 allocated to an operation 1 of OC at CS 

1 will be in conflict with all the hardware allocated to any operation of DC or TC 

within kc = 2 cycles. Thus, for M1 scheduled at CS1 allocated to opn 1 of OC, 

the conflicting hardware in terms of spatial effect are A2, C2 (allocated to opn 

19’ and 20’ of DC at CS 1 and 2 respectively) and A3 (allocated to opn 19’’ of 

TC at CS1). Similarly, for M1 scheduled at CS2, the conflicting hardware in 

terms of spatial effect are C2, M5, and M6. Similarly, for M1 scheduled at CS5, 

the conflicting hardware are: M5, M6, M4, M3, C1, S3, S1 and S2. Further, for 

M1 scheduled at CS10, the conflicting hardware are M2, M6, S3, M4, M5, S2, 

and M3. Likewise, for M1 scheduled at CS11 the conflicting hardware are M2, 
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M6, S3, M4, M5, S2, M3, S1 for all occurrences of M1 is obtained and a set of 

all those conflict hardware as shown below is termed as the list of conflicting 

hardware with respect to M1: 

 𝑍𝑀1[𝑅𝑗] = {𝑀2, 𝑀3, 𝑀4, 𝑀5, 𝑀6, 𝐶1, 𝐶2, 𝑆1, 𝑆2, 𝑆3, 𝐴2, 𝐴3}   
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Similarly, the list of all the conflicting hardware with A2 is  

𝑍𝐴2[𝑅𝑗] = {𝑀1, 𝑀2, 𝑀3, 𝑀4, 𝑀5, 𝑀6, 𝑆1, 𝑆2, 𝑆3, 𝐴1, 𝐴3, 𝐶1}.  

Therefore, as evident from the above lists, A2 has a conflict with M1 and vice-

versa. Hence, A2 cannot be placed in the neighborhood of M1. In a similar 

manner, in the third and final step of the proposed km-unit transient fault 

tolerant floorplanning approach. The conflicting hardware are placed at least 

km-unit (=2) bidirectional distance apart from each other as shown in fig.5.6. 

Likewise, the voter is also placed at km-distance apart from each hardware 

resource of the TMR system to avoid fault propagation from hardware resources 

to voter and vice-versa.  

On the contrary, in the case of spatially non-tolerant floorplan all the hardware 

resources are compactly placed as shown in fig.5.5. Hence, a transient fault due 

to particle strike with strengths kc=2 (and km=2) affecting M1 during execution 

of operation 8 in CS5 will affect both M2 and M4 due to spatial effect and hence 

will affect operation 4’, 12’. Hence, the fault will propagate from the original 

copy (OC) to duplicate copy (DC). Thus, the voter will not be able to vote-in 

correct output in case of the non-tolerant floorplan. Therefore, although such a 

floorplan has a lesser area compared to the proposed approach, it is vulnerable 

to the spatial effect of transient fault. The main crux of the proposed approach 

is to provide tolerance against temporal as well as the spatial effect of the 

transient fault. Hence, a small area overhead could be inconsequential. 

However, considering the criticality of mission-critical systems, the proposed 

approach reduces the impact of area overhead by exploring low-cost design 

solution with the help of PSO-DSE framework.  

5.6. Proposed PSO-DSE framework for generating low-cost kc-

cycle and km-unit transient fault tolerant design 

This section provides a detailed description of optimization based on PSO-DSE 

framework. The PSO-DSE framework comprises of four major steps as follows: 

5.6.1 Particle encoding and swarm initialization 

In the initial step of the PSO-DSE framework, particles of the swarm (Pi) are 

encoded as Xi = {NR1, NR2, …, NRD, UF} where Xi denotes position of ith 
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particle in the design space, NRD represents the number of resources of type RD 

in the Dth dimension of the design space, UF is the pre-processed unrolling 

factor. Each particle of the swarm represents the number of hardware resources 

(along with unrolling factor) utilized for generating transient fault tolerant 

design solutions. Subsequently, particles are initialized in the design space. The 

first three particles (P1, P2, and P3) are initialized at positions: 

X1={min(R1), min(R2), … , min(RD), min(UF)} 

X2={max(R1), max(R2), … , max(RD), max(UF)} 

X3={[min(R1) + max(R1)]/2, … , [min(RD) + max(RD)]/2,  

[min(UF) + max(UF)]/2}  

Representing minimum, maximum, and middle positions of the design space. 

Hence, ensuring good coverage of design space. Subsequently, the remaining 

particles (Pi) are initialized at positions: 

Xi={[min(R1) + max(R1)]/2 ± 𝛼, … , [min(RD) + max(RD)]/2  ± 𝛼,  

[min(UF) + max(UF)]/2 ± 𝛼} 

Where min(RD) and max(RD) denotes the minimum and maximum resource in 

Dth dimension respectively. Similarly, min(UF) and max(UF) denotes minimum 

and maximum pre-processed unrolling factor respectively. 𝛼 is a random integer 

between the minimum and the maximum value of Dth dimensional resource or 

unrolling factor. 

5.6.2 Fitness / cost evaluation 

Each particle’s position in the design space contains the number of hardware 

resources in Dth dimension and unrolling factor. From each position, resource 

configuration is extracted and utilized for generating kc-cycle and km-unit 

transient fault tolerant design solution. The fitness of the generated design 

solution is evaluated using the following cost/fitness function.  

FTA

FTA

FTL

FTL

iXfC

max
2

max
1)(  +=

 

(5.4) 

where Cf (Xi) represents the cost/fitness of fault tolerant design solution based 

on the (resource configuration) particle position Xi, 1 and 2 are weightage of 

schedule latency and area of floorplan respectively. LFT is the latency of 

https://en.wikipedia.org/wiki/File:Greek_phi_Didot.svg
https://en.wikipedia.org/wiki/File:Greek_phi_Didot.svg
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transient fault tolerant design, Lmax
FT is the maximum latency of transient fault 

tolerant design solution in the design space (derived using the minimum number 

of hardware resources), AFT is the enveloping floorplan chip area of the fault 

tolerant design solution, Amax
FT is the maximum floorplan area of the transient 

fault tolerant design (derived using the maximum number of hardware 

resources).  

5.6.3 Updating local best and global best 

In each iteration of the PSO-DSE framework, particle ‘P’ of the swarm explores 

some position ‘Xi’ in the design space. The local best denotes least cost (best 

fit) position ‘Xi’ explored by an individual particle ‘P’ of the swarm till the 

current iteration. Whereas, global best represents the best-fit design solution 

explored by the entire particle population until the current iteration.  

In each iteration, the local best of a particle ‘P’ is updated if a lower cost design 

solution compared to current local best is explored by particle ‘P’ in the current 

iteration. Similarly, in each iteration global best of entire particle swarm is 

updated, if a lower cost design solution compared to previous global best is 

explored by particle swarm in the current iteration.  

5.6.4 Updating Velocity and particle’s position 

After the local best and global best are updated, the velocity of a particle is 

updated using Eq. 5.5. 

𝑉𝑑𝑖

+ = 𝜔𝑉𝑑𝑖
+ 𝑏1𝑟1ሾ𝑅𝑑lbi

−  𝑅𝑑𝑖
ሿ + 𝑏2𝑟2ሾ𝑅𝑑𝑔𝑏

−  𝑅𝑑𝑖
ሿ (5.5) 

Subsequently, the position of a particle is updated using Eq. 3. 

𝑅𝑑𝑖
+ =  𝑅𝑑𝑖 + 𝑉𝑑𝑖

+ (5.6)    

Where 𝑉𝑑𝑖

+ ,𝑉𝑑𝑖
 ,𝜔, 𝑅𝑑lbi

 , 𝑅𝑑𝑔𝑏
 , 𝑅𝑑𝑖

 ,b1, b2 ,𝑟1 and 𝑟2 are as defined in the 

nomenclature of this thesis ([32, 33]).  

Subsequently, for the new particle positions, kc-cycle and km-unit transient fault 

tolerant designs are generated and finesses are evaluated. This process continues 

until one of the termination criteria is satisfied: 

3. The global best is not updated for the last 10 iterations. 

4. The user-defined maximum number of iterations have been executed. 
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The PSO-DSE process generates optimal low-cost kc-cycle and km-unit transient 

fault tolerant design solution upon termination.  

5.7. Summary 

The paper presented a novel methodology that achieves fault tolerance against 

the multi-cycle temporal and multi-unit spatial effect of a single event transient 

in loop-based control intensive DSP IP cores generated using high-level 

synthesis. Further, the proposed approach generates low-cost design solution 

for loop based CDFG applications with the help of integrated PSO-DSE 

framework.  
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Chapter 6 

Methodology for generating a low-cost, highly secure, 

functionally obfuscated DSP IP core 

This chapter presents the proposed methodology for generating low-cost 

functionally obfuscated DSP IP core. The chapter is organized in four sections. 

In the first section, the problem is introduced. In the second section, the threat 

model is presented. The third and fourth section describes the proposed solution 

with the help of a demonstrative example. The fifth section will summarize the 

chapter. 

6.1. Introduction 

As discussed in the introductory chapters, continuous technology scaling has 

led to various reliability and security concerns. Further, rapid technology 

scaling and increasing the cost of maintaining an advanced fabrication facility 

has led to the monopoly of a few advanced fabrication facilities. Majority of 

design houses lacks an in-house fabrication facility and must send their designs 

to a third-party fabrication facility. This dependency of design houses on 

advanced fabrication facilities has enhanced security vulnerabilities such as IP 

Piracy, IP overbuilding, reverse engineering, etc. [21, 34, 35]. Hence, 

methodologies are required for providing protection against these security 

vulnerabilities/threats. 

The proposed approach provides protection against some of these threats using 

logic locking (a.k.a. functional obfuscation/locking). Logic locking is a 

technique that inserts locking units (logic gates such as AND/ OR/ XNOR etc.) 

such that correct output cannot be obtained until a correct key is applied to the 

locked circuit. A malicious attacker would be motivated to identify the correct 

key with the help of attacks based on reverse engineering [21, 35]. The proposed 

approach provides protection by enhancing the complexity of reverse 

engineering. The proposed approach presents novel locking units termed as ‘IP 

locking blocks (ILBs)’. The proposed ILBs incorporates some novel properties 

to enhance its robustness against state-of-art attacks. Further, the proposed 

approach integrates PSO-DSE framework for generating a low-cost logically 
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locked DSP IP core. This is because DSP circuits have several alternative design 

solutions and selection of an optimal (or low-cost) alternative requires 

integration of a design space exploration framework such as PSO-DSE. In case, 

if an optimization framework such as PSO-DSE is not incorporated while 

designing DSP IP cores, then the generated design may incur huge area, power, 

and delay overheads.  

The proposed approach presents a novel methodology for generating a ‘low cost 

highly secure, functionally obfuscated DSP IP core through robust locking’  

6.2. Threat model 

Fig. 6.1 shows the typical IC design flow. The IP core designer will take DSP 

application as input and perform functional obfuscation (functional locking) to 

generate a locked netlist of the IP core. These IP cores will be integrated into 

SoC designs and a layout of SoC is created in the form of GDS-II file which is 

further processed as shown in fig.6.2. A malicious attacker could perform 

reverse engineering on layout, mask, non-functional IC to obtain the locked 

netlist. Further, he could perform attack such as key sensitization attack to 

obtain the unlocked (deciphered netlist). The primary motive of an attacker is 

to determine the secret key so that he/she could unlock the circuit, manufacture 

the IC and sell them illegally. Additionally, an attacker can understand the 

design if correct key-bits are known and hence could insert hard to detect trojans 

at safe places [21, 22]. To accomplish these attacks, an attacker is assumed to 

possess the following:  

(a) Locked netlist: obtained through theft or reverse engineering of layout or 

mask. 

(b) A functional IC: brought from the open market. 

6.3. Proposed approach 

This section briefly describes the major components of the proposed 

methodology.  

6.3.1. Problem formulation 

Given a DSP application in the form of data flow graph (DFG) or control data 

flow graph (CDFG) along with module library, IP core locking blocks (ILBs), 
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PSO control parameters as inputs, generate a low-cost highly secure 

functionally obfuscated DSP IP core. 

6.3.2. Overview of proposed methodology 

As shown in fig 6.2, the proposed methodology comprises of two major 

components namely PSO-DSE and IP functional locking. The first step of the 

proposed approach is to initialize the particle swarm [32]. For each particle 

position, a gate level datapath structure is created. Subsequently, proposed IP 

locking blocks are inserted in the gate level structure. Further, fitness and 

security (strength of obfuscation) of the obfuscated design for each particle’s 

position is evaluated. Based on the particle’s fitness PSO-DSE parameters are 

updated. This process is repeated until one of the PSO-DSE termination criteria 

is met. The solution thus generated is low-cost functionally obfuscated DSP IP 

core. The functionally obfuscated design thus obtained will be highly robust 

against reverse engineering based attacks. The particle swarm optimization-

based design space exploration (PSO-DSE) block is primarily responsible for 

exploring low-cost design solution.  

Input Blocks 

DFG 

application 
Module 

library 

IP core 

Locking 

blocks (8-bit 

key/data bit) 

PSO control 
parameters 

(ω,p,b) 

Initialize the particle swarm 

Evaluate cost 

Generate a random variable µ  
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The upcoming section describes our proposed IP locking blocks and discusses 

their properties responsible for enhancing the strength of obfuscation.  

6.3.3. Proposed IP core locking blocks 

This section discusses the properties of proposed ILBs shown in fig. 6.3. Each 

ILB provides the same robustness against RE and key sensitization attacks. 

However, they activate for different key bits. Further, Each ILB has a different 

structure that causes different implications on hardware power and delay. These 

implications are considered and incorporated in the PSO-DSE framework with 

the help of modified particle encoding. The modified design space represents 

particle positions as Xi = {NR1, NR2, …, NRD, µ} for DFG applications and Xi 

= {NR1, NR2, …, NRD, UF, µ} for CDFG applications. Where µ is a random 

integer. The proposed methodology is applicable to both DFG as well as CDFG 

applications. However, to avoid confusion, the proposed approach will be 

presented in the context of DFG applications. 

The proposed ILBs incorporate robust security features such as multi-pairwise 

security, prohibition of key gate isolation, etc. These security features enhance 

robustness against reverse engineering and key sensitization attacks as 

discussed below: 

• Multi-pairwise security: This security feature is responsible for providing 

protection against key sensitization attack. Key sensitization is an attempt 

of an attacker to identify and apply input pattern combination that 

sensitizes key-bits to primary output pins [21, 22]. The attacker can 

identify a single input pattern or a combination of input patterns for 

sensitizing key-bits and apply them to observe correct key bits at the 

output pins of a functional IC. Key-bits K1 & K2 are said to be pairwise 

secure if an attacker cannot sensitize K1 without knowing/controlling 

key bit K2 and vice-versa [21]. Our proposed ILBs are multi-pairwise 

secured, i.e., any of the 8 key-bits cannot be sensitized without 

knowing/controlling other 7 key-bits. Therefore, an attacker must apply 

a brute-force attack to determine the correct key. Thereby proposed 

ILB’s multi-pairwise security property enhances the robustness of 

functional obfuscation methodology and increases the complexity of 

reverse engineering in comparison to other locking units present in 

literature. 



64 

• Prohibiting key gate isolation: Isolated key gates can be easily sensitized 

using key sensitization attacks as shown in [21]. A key Kiso is said to be 

isolated if there is no path between Kiso and remaining keys of the locked 

design and vice-versa. Hence, such keys are highly vulnerable to 

sensitization attacks and therefore must be avoided. The proposed ILBs 

have multiple paths between key bits and none of the key-bits are isolated 

hence proposed ILBs have higher resiliency against key sensitization 

attack. 

• Protection against the run of key gates: A few combinations of run-of 

key gates may reduce the effort of an attacker to identify the correct key 

by increasing the number of valid keys [21]. Further, an attacker could 

replace run of key gates with a single gate. This is not feasible in case of 

proposed ILBs as key gates of proposed ILBs are intertwined for 8-key 

bits. Hence, it is very difficult to identify the run of key gates in the 

structure of the proposed ILBs.  
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Fig. 6.3 Proposed IP core locking Blocks 
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• Non-mutable key gates: An attacker tries to identify a ‘non-key’ primary 

input between the path connecting two key bits K1 and K2 such that by 

controlling this input, the effect of K1 can be stopped from reaching K2 

and simultaneously K2 can be sensitized to a primary output. Such a key 

gate K1 is termed as a mutable key gate. The proposed ILBs have 

intertwined paths between its 8 key-bits. Hence, it is infeasible to 

sensitize a particular key bit without controlling the remaining 7 key bits. 

Further, the effect of 7 key bits cannot be muted by controlling a single 

input. Thus, proposed ILBs are robust against muting based key 

sensitization attacks presented in [21]. 

6.3.4. Insertion technique of proposed ILBs 

As discussed earlier, the particle positions are encoded as Xi = {NR1, NR2, …, 

NRD, µ} where µ is a random number between 1 and TILB; where, µ symbolizes 

user specified repetition pattern of ILB insertion. TILB is the total number of 

different ILB structures available for selection. Once a gate level structure is 

generated with respect to each particle position, the proposed ILBs are inserted 

at the output of each functional unit (FU), each data output bit is locked using 

an ILB. The same ILB is inserted ‘µ’ times. After ‘µ’ repetitions new ILB is 

selected from TILB and inserted ‘µ’ times. The process is repeated till all the 

output bits of FUs are locked using proposed IP functional locking blocks 

(ILBs).  

An illustrative example of 4-bit FIR locked datapath generated for particle 

position {1A, 1M, µ=2} is shown in fig.6.3. Initially, a gate level structure of 

FIR benchmark is generated based on resource configuration (1Adder, 

1Multiplier). Subsequently, as µ=2, the proposed ILB1 is inserted at first two 

output bits of the adder functional unit. Further, after ‘µ=2’ repetitions, ILB2 is 

selected and inserted at the next two output data bits. The process is repeated 

till all the output bits of each FU is locked. 

6.3.5. Security due to insertion of proposed ILBs 

The security enhancement due to the insertion of proposed ILBs is given by the 

following equation  

𝐾𝑆 =  2 ^ (𝑏 ∗ 𝑚 ∗ 𝑓) (6.1)    
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Where KS symbolizes the key-space (Strength of Obfuscation), b = key-bits per 

ILB, m = number of ILBs inserted per functional unit, f = number of functional 

unit in the datapath. For example, consider the security evaluation of 4-bit FIR 

benchmark shown in fig.6.3. The number of output bits of each FU is 4. 

Therefore, the number of ILBs inserted per functional unit is (m=) 4. Further, 

as each ILB structure has 8 key-bit therefore b=8. Additionally, as the FIR 

datapath is generated for resource configuration (1 adder, 1 multiplier). Hence, 

the number of functional units in the datapath is (f=) 2. Therefore, the strength 

of obfuscation of 4-bit FIR datapath is KS = 2 ^ (8*4*2) = 1.8 e+19.  

The upcoming section analyzes the security of proposed methodology from an 

attacker’s perspective. 

6.3.6. Security analysis of proposed methodology 

An attacker is assumed to have the following tools/facilities to unlock the locked 

design: 

• Access to an advanced fabrication facility. 

• A locked gate-level netlist obtained through theft or reverse engineering 

the layout or mask of the locked design. 

• Functional IC bought from the open market.  

An attacker who has access to these tools will try to determine the number of 

key bits through reverse engineering. Once an attacker determines the correct 

set of key-bits. He/she will try to apply key sensitization attack to determine the 

value of key-bit that matches with a valid key. As the proposed methodology is 

resilient to several state-of-art attacks (see section 6.3.3 and 6.3.7). Hence, an 

attacker is forced to apply brute force attack to identify the valid key. For a 

demonstrative example, consider an FIR datapath having 64 key-bits, an 

attacker has to apply 2 ^ 64 different combination of key-bits to determine the 

correct key. Hence, if 1 billion combinations of key-bits could be applied in 1 

second [21], it would require 10^21 years to determine the valid key using brute 

force attack.  
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6.3.7. The resiliency of proposed methodology against various state-of-art 

attacks 

This section discusses the resiliency of the proposed approach against key-

sensitization attack [21, 22], IP piracy attack [36, 37], and Trojan insertion 

attack [38]. 

(i) Key sensitization attack based on isolated key-bits: A isolated key bit 

can be easily sensitized. Hence, to avoid its sensitization isolation must 

be avoided. A key-bit kiso is said to be isolated if there is no path between 

kiso and any of the remaining key-bits utilized for locking the circuit. As 

discussed earlier, our proposed ILB are the intertwined structure of 8 

key-bits interdependent on each other. Hence, key sensitization due to 

isolated key-bits is not feasible in our proposed ILB structures.    

(ii) Key sensitization attack based on the run of key-gates: A back-to-back 

connection of key gates is termed as a run of key gates [21]. The run of 

key gates can increase the valid (correct) key in the key space. Thereby, 

reducing the effort to identify a valid key through brute force attack. In 

run-of-key based attack, an attacker tries to identify and replace a run of 

key gates with a single key gate and identify the input value of the 

replaced key gate. Based on this value, the correct key bits are 

determined.  The proposed ILBs are an intertwined connection of gates 

among 8 key inputs. Hence, complexity to identify and replace the run 

of key gates is increased compared to XOR/XNOR based run of key 

gates.  

(iii)Key sensitization attack based on mutable key-gates: An attacker 

attempts to mute the impact of a key bit (kmutable) from reaching another 

key-bit (ksensitizable), such that while kmutable is muted, the key-bit ksensitizable 

could be sensitized to the primary output. The muting is performed by 

controlling the path between two key bits by controlling a few primary 

inputs. Such an attack is not feasible through our proposed ILB 

structures as the proposed ILBs doesn’t have any such controllable (by 

primary inputs) path between its 8 key bits. Furthermore, proposed 

ILB’s multi-pairwise security feature ensures a key bit cannot be 
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sensitized without controlling the remaining 7 key-bits. Hence, proposed 

ILBs are resilient to mutable key-gates based sensitization attacks.  

(iv) IP piracy and trojan insertion attacks: An attacker or a pirate must 

understand the correct functionality of the IP core so that a pirate can 

identify the appropriate buyer for re-selling the IP core and market 

(explain) the IP properly. Further, an attacker targeting trojan insertion 

must understand the correct functionality so that the trojan(s) could be 

inserted at safe places. Thereby reducing the chances of detection. The 

proposed functional obfuscation methodology based on ILBs enhances 

the effort of an attacker to identify the correct key as it is resilient to 

many state-of-art attacks discussed above.    

6.4. Proposed PSO-DSE framework for generating low-cost 

functionally obfuscated DSP IP core. 

This section provides a detailed description of PSO-DSE framework. The PSO-

DSE framework comprises of four major steps as follows: 

6.4.1 Particle encoding and swarm initialization 

The particles of the swarm (Pi) are encoded as Xi = {NR1, NR2, …, NRD, µ}, 

where Xi denotes position of ith particle in the design space, NRD represents the 

number of resources of type RD in the Dth dimension of the design space, µ is a 

random integer between 1 and TILB (1 ≤ µ ≤ TILB). Each particle represents a 

number of hardware resources (along with µ) utilized for generating 

functionally obfuscated IP cores. Subsequently, particles swarm is initialized. 

The first three particles (P1, P2, and P3) are initialized at positions: 

X1={min(R1), min(R2), … , min(RD), µ} 

X2={max(R1), max(R2), … , max(RD), µ} 

X3={[min(R1) + max(R1)]/2, … , [min(RD) + max(RD)]/2, µ}  

Representing minimum, maximum, and middle positions of the design space 

[32, 33]. Hence, ensuring good coverage of design space. Subsequently, the 

remaining particles (Pi) are initialized as: 

Xi={[min(R1) + max(R1)]/2 ± 𝛼, … , [min(RD) + max(RD)]/2  ± 𝛼,µ} 
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Where min(RD) and max(RD) denotes the minimum and the maximum resources 

in Dth dimension respectively. 𝛼 is a random integer between the minimum and 

the maximum value of Dth dimensional resource. 

6.4.2 Fitness / cost evaluation 

For each particle’s position, a gate level structure is created based on the number 

of hardware resources in Dth dimension. Subsequently, ILBs are inserted based 

on µ. The fitness of the obfuscated IP core thus generated is evaluated using 

following cost/fitness function.  

𝐶𝑓(𝑋𝑖) = 𝜙1

𝑃𝑂𝐵

𝑃𝑚𝑎𝑥
𝑂𝐵 + 𝜙2

𝐷𝑂𝐵

𝐷𝑚𝑎𝑥
𝑂𝐵 (6.2) 

where Cf (Xi) represents the cost/fitness of the obfuscated IP core, based on the 

(resource configuration) particle position Xi. 1 and 2 are weightage of power 

and delay of obfuscated IP core respectively. POB and DOB are the power and 

delay of the IP core based on particle position Xi. Pmax
OB and Dmax

OB are the 

maximum power and maximum delay of the functionally obfuscated IP core’s 

design space. 

6.4.3 Updating local best and global best 

The local best and global best are updated as explained in PSO-DSE framework 

of previous chapters as well as in [32, 33]. 

6.4.4 Updating Velocity and particle’s position 

The velocity and particle’s position are updated as explained in PSO-DSE 

framework of the previous chapter. The PSO-DSE process generates low-cost, 

highly secure, functionally obfuscated design solution upon termination.  

6.5. Summary 

The proposed approach presents a novel methodology for generating a low-cost 

highly secured functionally obfuscated DSP IP core. Further, the proposed 

methodology introduces a novel locking unit termed as IP locking block (ILB). 

This chapter presented the security enhancing properties of the ILB. 

Subsequently, the security of the proposed approach is evaluated and 

demonstrated with the help of an example of an FIR benchmark.  

https://en.wikipedia.org/wiki/File:Greek_phi_Didot.svg
https://en.wikipedia.org/wiki/File:Greek_phi_Didot.svg
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Chapter 7 

Methodology for analyzing the aging effect of NBTI 

stress on the performance of DSP IP core 

This chapter provides a detailed description of the proposed approach to analyze 

the impact of negative bias temperature instability (NBTI) stress on the 

performance of DSP IP core. The given methodology can be utilized to detect 

the presence of an accelerated aging attack on an IP core. In the first section, we 

will introduce the problem. In the second section, we will present a brief 

overview of the proposed solution. The third section will describe the major 

blocks of the proposed solution with the help of a demonstrative example. The 

fourth will conclude the chapter. 

7.1. Introduction 

As discussed in previous chapters, technology scaling has raised several 

reliability and security concerns. One such reliability concern is negative bias 

temperature instability [39-42]. NBTI occurs when a negative bias is applied 

between gate and source terminal of a PMOS transistor at an elevated 

temperature resulting in instability of transistor’s parameters such as threshold 

voltage (Vth), transconductance(gm), etc. The continuous application of NBTI 

stress causes degradation in delay (performance) of the transistor. A malicious 

attacker may exploit this phenomenon to accelerate the aging process of a 

PMOS transistor due to NBTI stress [15]. Different input vector activates 

(stresses) different PMOS transistors in a circuit thereby degrading the 

performance of different transistors [43, 44]. An attacker would like to 

determine the input vector causing maximum degradation of the critical path of 

a circuit thereby causing maximum acceleration in performance degradation 

(aging) of the device. On the other hand, a designer would like to determine 

these input vectors and apply input vectors causing minimum performance 

degradation during the standby mode. The proposed approach presents a novel 

methodology for (a) estimating performance degradation of DSP IP cores 

subjected to NBTI stress (b) determine input vectors that cause 

minimum/maximum degradation. (c) presents a hardware-based attack model 

for an accelerated aging attack on DSP IP cores. 
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A large share of electronic products manufacturing companies focuses primarily 

on consumer electronics (CE) devices such as television, cameras, mobile 

phones, etc. Majority of these electronic devices contains at least one digital 

signal processing (DSP) component. Further, due to arduous competition and 

stringent time-to-market deadlines, CE industry relies heavily on 3rd party IP 

core to beat the competition. This dependency of CE industry on 3rd party IP 

cores can be exploited by a malicious attacker in the IP design house or IP 

supply chain to perform several types of attacks such as trojan insertion, IP 

piracy, etc. One such attack is accelerated aging attack using NBTI stress [15]. 

In this type of attack, an attacker aims to modify the IP core such that the IP 

core remains under constant NBTI stress in the standby mode. The aim of the 

attacker is to ensure continuous performance degradation of the IP core (thereby 

of the device that integrates the compromised IP core), even when the device is 

not in active usage. The primary motive of the attacker is to cause device failure 

within the warranty period [15]. In this work ‘aging' refers to degradation in 

delay of a gate (viz. performance) due to NBTI stress on the PMOS transistors 

as per equations 7.1, 7.2 and 7.3 as discussed later in section 7.2.3. Different 

input vectors cause a different amount of NBTI stress on the circuit [43, 44]. 

Therefore, techniques are required to identify the impact of input vectors on the 

DSP IP core.  

The proposed approach presents a novel methodology for ‘performing NBTI 

stress analysis of DSP IP core that can be utilized to identify the presence of an 

accelerated aging attack on DSP IP cores’ 

7.2. Proposed approach 

This section provides a brief overview of our proposed methodology.  

7.2.1. Problem formulation 

Given a DSP application in the form of data flow graph (DFG) or control data 

flow graph (CDFG) along with module library, perform the NBTI stress 

analysis to determine the input vectors that cause maximum degradation due to 

continuous NBTI stress.  

7.2.2. Overview of proposed methodology 



73 

The proposed work presents a novel methodology for analyzing the effect of 

NBTI stress on DSP IP cores. Based on the analysis the input vectors causing 

maximum degradation are determined and are utilized to identify the presence 

of an accelerated aging attack on the DSP IP core. As shown in fig.7.1, The first 

step of the proposed approach takes DSP application in the form of DFG or 

CDFG as input and performs high-level synthesis (scheduling, allocation, and 

binding) to generate a register transfer level (RTL) datapath. The RTL datapath 

thus obtained is converted into a gate level structure. Subsequently, the critical 

path of the gate level structure is determined. Later, input vectors are applied on 

the gate level structure and degradation in performance parameter (threshold 

voltage) is evaluated. Subsequently, the degraded threshold voltage is utilized 

to calculate delay degradation. The process is repeated for all input vectors and 

the input vector(s) causing maximum degradation are identified. Further, the 

presence of an accelerated aging attack in the device is identified by operating 

the device in the standby mode for a substantial amount of time (say 15 days). 

If the device’s performance degrades with a similar rate as that of the maximum 

rate of degradation, then accelerated aging attack is said to be present in the 

device. The approach for evaluating the effect of NBTI stress on the DSP IP 

core is discussed in the upcoming section.  

7.2.3. Evaluating the effect of NBTI stress on DSP IP core  

DSP core in the form of Control/Data Flow Graph 

(CDFG or DFG) 

Binding 

Convert Register transfer level datapath in gate level 

module 

Identify the critical path 

Evaluate Degradation in threshold voltage due to NBTI 

stress using eq. (7.1) 

Evaluate delay Degradation using eq. (7.3) 

Apply input Vectors 

Repeat for all input 

Vectors 

Identify set of most degrading input Vectors 

Fig. 7.1 Proposed NBTI stress analysis methodology 
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The various combinations of input vector are applied on the gate level structure 

of DSP IP core and the impact of NBTI stress on PMOS transistor’s parameters 

such as threshold voltage and delay are evaluated using equations 7.1, 7.2 and 

7.3. 

         𝛥𝑉th =  𝑏 ⋅ 𝑎𝑛𝑡𝑛                                                  (7.1) 

Where, ΔVth represents change in threshold voltage due to NBTI stress. b = 3.9 

x 10-3 V.s-1\6, n is time exponential constant=0.16, a = input signal probability, 

t = time in seconds. 

 𝑉𝑡ℎ
𝑛ⅇ𝑤 =  𝑉th +  𝛥𝑉th     (7.2) 

Where, 𝑉𝑡ℎ
𝑛ⅇ𝑤 represents new threshold voltage after the PMOS transistor is 

stressed for ‘t’ amount of time. Vth represents threshold voltage= 0.365V for 

65nm technology scale [15]. Further, the new threshold voltage(𝑉𝑡ℎ
𝑛ⅇ𝑤) of pmos 

thus obtained is utilized in eq. 7.3  

 𝑇 =  𝐾
𝑉

(𝑉−𝑉𝑡ℎ
𝑛𝑒𝑤)𝛼       (7.3) 

Where, T= delay of PMOS transistor, K is technology based proportionality 

constant, V = VDD. For 65nm technology scale, V= 1.2V is adopted from [15], 

and α=1.4, K=155 x 10-6 is adapted from [45]. 

Equation 7.1 represents a change in threshold voltage when a continuous NBTI 

stress is applied for a duration of ‘t’ seconds. The change in threshold voltage 

is added to the original threshold voltage to obtain new threshold voltage using 

eq.7.2. Subsequently, the new threshold voltage is utilized to evaluate the 

degraded delay of stressed PMOS transistor using Eq. 7.3. Note that the delay 

of NMOS transistor is evaluated using the original threshold voltage instead of 

a new threshold voltage because NBTI stress does not affect NMOS transistors. 

A case-study of the proposed methodology on FIR benchmark is presented in 

the upcoming sub-section.  

7.2.4. Case-study  

The FIR application can be represented as pseudocode shown in fig.7.2(a). In 

the initial step of the proposed approach, the application’s pseudocode is 

converted into a data flow graph (DFG) and taken as input. Subsequently, high-
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level synthesis is performed to obtain register level datapath [46]. HLS 

comprises of three sub-steps: Scheduling, allocation, and binding. In the first 

sub-step, the scheduling of FIR benchmark is performed based on resource 

configuration (1A, 1M). Subsequently, resources are allocated to each operation 

during allocation step of HLS. The scheduled and allocated FIR application is 

shown in fig.7.2(b). Subsequently, all the operations allocated to particular 

hardware resources (say adder1 (A1)) are bonded together during the binding 

step of HLS. The RTL datapath thus generated is subsequently converted into 

subsequent gate level modules (of NAND gates) and critical path is identified 

as shown by the red colored line in fig.7.3. The critical path comprises of 11 

gates (G1, …, G11) in the critical path of multiplier and 12 gates (G12, …, G23) 

in the critical path of adder sub-circuits. Subsequently, various combinations of 

input vector are automatically generated using an automatic test pattern 

generator (ATPG) tools such as linear feedback shift register (LFSR) circuits 

[15] (see Appendix ‘A’). These input patterns when applied to the primary input 

of FIR datapath  
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and correspondingly turned on PMOS/NMOS transistors of each gate of the 

critical path is tabulated. Table 7.1 shows the turned on PMOS/NMOS 

transistors on applying input vector 11101. The NBTI stress occurs on PMOS 

transistor of CMOS NAND gates when logic’0’ is applied at its input. The 

degraded delay of stressed PMOS transistors is evaluated using equations 7.1, 

7.2 and 7.3. The process is repeated for each possible combination of input 

vectors. Finally, the input pattern causing maximum degradation is identified. 

Based on the identified vector, an attacker could launch an accelerated aging 

attack as discussed below.  

7.3. Accelerated aging attack: Modelling and detection 

This section presents the attack model and detection mechanism of accelerated 

aging attack 

7.3.1 Attack model  

An attacker would exploit the natural aging of the PMOS transistor due to NBTI 

stress to accelerate the aging process. To achieve acceleration, an attacker must 

keep PMOS transistor in stressed (turned on) state for as long as possible. To 

accomplish this goal, an attacker must devise an attack that applies continuous 

stress when the device is in standby mode (i.e., outside natural aging due to 

active usage). The attack could be launched through hardware as well as 

software modifications as discussed below 

En 

Fig.7.4(a) FIR IP core block Fig.7.4(b) Modified Hardware logic 
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• Hardware-based attack model: As shown in fig.7.4(b), The attacker can 

devise a hardware modification such that the modified DSP IP core age 

naturally (functions correctly) when enable signal ‘EN’ is ‘1’. Moreover, 

aging is accelerated when ‘EN’ is ‘0’ (in standby mode) by applying the 

most harmful vector 11101. 

• Software-based attack model [15]: An attacker could also identify the 

correct working of DSP IP core by reverse engineering the device. 

Subsequently, a software modification is devised such that the hardware is 

in continuous stress in operating system mode.  

7.3.2 Detection of an accelerated aging attack  

As discussed in the previous section, an aging attack could be modeled as 

hardware or software based attack. However, the detection method of both type 

of attack is the same. A tester should keep the device activated in the standby 

mode or operating system mode for a substantial amount of time (say fifteen 

days). After 15 days the tester can test the delay of the device if the degradation 

of IP core occurs roughly at the same rate as the maximum rate (degradation 

due to input vector causing maximum degradation) then the presence of 

accelerated aging attack is confirmed. Hence, if an attack is detected, the design 

house should check for and remove any malicious hardware or software 

modifications. 

7.4.  Summary 

The proposed approach presents a novel methodology to analyze the impact of 

aging due to NBTI stress on DSP IP cores. The impact of NBTI stress is 

analyzed based on the following: (a) performance degradation of DSP IP cores 

subjected to NBTI stress (b) input vectors that cause minimum/maximum 

degradation. The proposed approach presents a hardware-based attack model 

for an accelerated aging attack on DSP IP cores. 
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Chapter 8 

Computational forensic engineering methodology for 

resolving ownership conflict of DSP IP core generated 

using high-level synthesis 

This chapter provides a detailed description of the proposed approach to resolve 

a false claim of ownership of reusable DSP IP core using computational forensic 

engineering (CFE). The first section introduces the problem. The second section 

presents a brief overview of the proposed solution. The third and fourth section 

describes the proposed methodology with the help of demonstrative examples. 

The fifth section concludes the chapter.  

8.1. Introduction 

As discussed in previous chapters, consumer electronic industries rely heavily 

on 3rd party IP (3PIP) core to beat the competition. This is because 3PIP cores 

help in achieving higher productivity and reducing design development time. 

However, 3PIP cores are vulnerable against several threats such as abuse of IP 

ownership, IP piracy, false claim of ownership, etc. [36-38, 47-48] Hence, 

protection mechanisms are required to provide protection against these threats. 

The proposed methodology provides protection against one such threat known 

as the false claim of ownership. 

Although mechanisms such as patents, copyright, trademarks, etc. are provided 

by law to enjoy the legal ownership. However, these mechanisms are either 

incapable or inadequate in protecting reusable IP cores [13]. Further, in the 

context of reusable IP cores, IP piracy is a major threat. A malicious attacker 

can obtain the IP by means of theft/fraud. By virtue of which he/she can also 

claim to be the rightful owner of the IP. In such a scenario, methodologies to 

resolve ownership conflict of reusable IP core is needed. One such approach is 

digital watermarking [13, 49]. In this approach, the signature is inserted in the 

design without affecting the functionality of the design by the IP designer.  

Further, if someone else falsely claims the ownership of the IP, the signature 

detection step is carried out to identify the rightful owner. Because signature 

will be known only to the rightful owner (although rarely, but an attacker can 
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recover signature through reverse engineering), if the signature is detected in 

the IP core, ownership will be awarded to the rightful claimant. However, 

watermarking requires signature insertion while designing an IP core. In case if 

the designer doesn’t forecast the possibility of the threat or does not take 

appropriate measures such as signature insertion (watermarking) during the 

design phase. Then, ownership claims will become very hard to resolve. 

Moreover, watermarking is vulnerable to signature tampering attacks. Hence, 

methodologies are required that can resolve the ownership without depending 

on proactive measures such as signature insertion. In this chapter, we will 

present a novel methodology that does not depend on such proactive measures. 

Further, there is no known attack on the generic CFE, which is the baseline 

framework used in our proposed approach. 

The proposed approach presents a novel computational forensic engineering 

based methodology to ‘protect reusable DSP IP cores generated using high-

level synthesis against the false/fraudulent claim of ownership’ 

8.2. Computational Forensic Engineering Framework 

This section provides a brief description of the generic CFE framework utilized 

in our proposed methodology.  

8.2.1. Generic CFE: Problem definition 

A typical CFE problem can be formulated as: given a solution ‘S’ to a problem 

‘P’ having a finite set of algorithms/tools AT_n (n is a non-zero positive integer) 

applicable to problem P, that can generate solution S, identify with a certain 

degree of confidence that the algorithm/tool AT_i has been applied to generate 

the solution S [50, 51]. 

8.2.2. Overview of generic CFE 

A generic CFE approach comprises of four stages: (a) feature and data 

collection (b) feature extraction (c) Algorithm clustering, and (d) Validation 

[50]. During the execution of the first stage, features are identified that can 

classify the data point in one of the categories during multi-category 

classification. Further, features are extracted from each solution of the various 

algorithms, during feature extraction stage of CFE. Once the features are 
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extracted, the data points (algorithms/tools) are classified (clustered) in several 

categories during the algorithm clustering stage of CFE. Finally, during the 

validation phase, the accuracy of the classification is checked for. If the 

classification is sufficiently accurate (say ≥ 95% accuracy), then the CFE 

approach is said to be able to classify any other data point with the same 

accuracy. If the classification is not sufficiently accurate, consequently new 

features should be introduced for increasing accuracy. 

8.2.3. Comparison of proposed CFE vs generic CFE 

In our proposed methodology, we have adopted only three stages of generic 

CFE as (a) IP core feature and data collection, (b) IP core feature extraction, 

and (b) IP validation. Note that in our proposed approach we have not adopted 

the algorithm clustering stage as our problem is loosely related to clustering. 

The proposed approach classifies the claimant in just two categories: ‘Rightful 

owner’ and ‘fraudulent claimants’. In practical scenarios, the number of IP 

vendors claiming to be the rightful owner of an IP core will be very few 

(typically 2 to 3) with only one rightful claimant. Hence, the ownership problem 

has very few data points and thus will create two clusters (classes) of size 1 and 

‘n-1’ (typically 1 to 2) respectively. Therefore, our proposed approach does not 

require a separate clustering stage. Moreover, while resolving ownership 

conflicts, the resolution must be 100% accurate. Hence, our adoption of IP 

validation stage necessitates 100% accuracy. Therefore, our proposed 

methodology skips the optional algorithm clustering and identify the ‘rightful 

claimant’ in the IP validation stage. 

8.3. Proposed approach 

This section describes the proposed methodology for resolving ownership of 

reusable IP cores generated using HLS. 

8.3.1 Key points about the proposed approach  

• The proposed CFE approach for IP ownership is applicable in scenarios 

where ‘n’ IP vendors are claiming to be the rightful owner of an IP core. 

Each IP vendor is assumed to have its own HLS tool to generate their 

respective IP designs. However, if two or more IP vendors use a common 

third-party HLS tool then the proposed approach is not applicable. 
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• The proposed approach does not require source code, packaging information 

of HLS tools, only an executable version of HLS tools of each IP claimant 

is required. 

• If any IP claimant refuses to provide an executable version of HLS tool or 

‘respectively generated RTL description in the supervision of a legal entity’. 

Then, that specific claimant will be disqualified. As rightful owner will be 

willing to provide at least RTL description generated using its own HLS 

tool. 

• The proposed approach is applicable for HLS tools that target the generation 

of an application-specific IP core (processors) of digital signal processing 

applications. The HLS tools that target the generation of general purpose 

processors does not fall in the scope of the proposed work.   

8.3.2 Problem formulation 

Given the IP core whose ownership is to be identified (termed as IPID) along 

with IPs generated from HLS tools of IP claimants (termed as IPCT n, where ‘n’ 

signify the IP core generated using HLS tool of ‘nth’ claimant) identify the 

rightful owner of the IPID. 

8.3.3 Overview of proposed methodology 

As discussed earlier, the proposed CFE based approach comprises of three 

major steps (a) IP core feature and data collection (b) IP core feature extraction, 

and (c) IP core validation. In the first step of the proposed approach, the HLS 

tools are collected from the competing IP vendors. Subsequently, HLS tools are 

executed to generate IP cores with respect to each vendor’s HLS tool (IPCT n). 

Once all the IP cores are generated, IPCT n are examined to identify features that 

can distinguish IP cores based on their originating HLS tool. A set of such 

features is termed as ‘feature set’. In the second step of the proposed step, 

feature extraction rules are devised. Based on these rules, features are extracted 

from IPCT n and IPID. In the third and final step of the proposed approach, the 

ownership of IPID is awarded to the vendor whose IPCT’s feature set matches 

100% with the feature set of IPID. The upcoming section demonstrate the 

proposed approach with the help of a case study  

8.4. Case study 
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In this case study, we have considered a scenario where seven claimants are 

legally competing for the ownership of IPID in a court of law and the court must 

award IP ownership to the rightful claimant. (Note: we have used seven 

claimants to demonstrate the proposed approach effectively). The case study 

considers industrial as well as academics HLS tools [12, 13, 17, 33, 52- 54]. In 

the first step of the proposed approach, the HLS tools are obtained from the 

respective IP vendor’s company. Further, each tool is executed to generate a 

solution IPCT n, (n = 1, …, 7). Subsequently, each IPCT is studied to identify 

properties that can distinguish an IP core based on its parent HLS tool. 

In practical scenarios, each company has its own set of proprietary 

algorithms/techniques that are uniquely developed by that company to advance 

state-of-art. These, properties are unique to that particular company thus 

features based on such properties are termed as ‘unique feature’. Further, the 

proposed unique feature set includes properties that are rarely found but can 

potentially be available in more than one advanced HLS tools. The unique 

features identified through our case study are {reliability, trojan security, loop 

support, pipelining, chaining, multi-cycling, design objective}. Moreover, 

every HLS tool implements some common HLS framework. The framework 

can be implemented using different algorithms resulting in different properties 

of IP cores. These properties are examined to create a generic feature set: 

{Scheduling algorithm, resource type, bus width support}. A feature set 

comprising of both generic, as well as unique features, is created. Subsequently, 
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in the second step of the proposed approach feature extraction rules are devised 

and features are extracted as discussed in upcoming sub-sections.  

8.4.1 Scheduling algorithm 

The feature extraction methodology to extract the scheduling algorithm feature 

takes controller HDL file of IP core as input and identify the scheduling 

algorithm utilized during HLS of the IP core. The proposed technique classifies 

the scheduling algorithm as one of ASAP scheduling, ALAP scheduling, or List 

scheduling (three most widely used scheduling algorithms [55-57]) (fig.8.2). 

The feature extraction rules to identify the scheduling algorithm used are:  

▪ ASAP scheduling: A scheduling algorithm satisfying both the conditions (a) 

and (b) is ASAP scheduling.  

(a) All functional units of independent operations should be activated in the first 

control step. 

(b) All dependent operations and its successors should be placed in the 

consecutive control step based on their dependencies. 

▪ ALAP scheduling: A scheduling algorithm satisfying both the conditions (c) 

and (d) is ALAP scheduling.  

(c) All functional units having primary outputs should be activated in the last 

control step. 

ASAP: both rule a & b conditions should satisfy 
simultaneously 

 
a) All Functional Units (FUs) of independent 

operations are activated in first control Step (first 
clock cycle) 

b) All dependent operations and its successors 
should be placed in consecutive control steps 

based on their dependencies. 

Check for scheduling algorithm 

ALAP: both rule a & b conditions should satisfy 
simultaneously 

 
a) All Functional Units having Primary Outputs 

should be activated in last control step 
b) All parent operations and its predecessors should 
be placed in consecutive control steps based on their 

dependencies. 

LIST: Rule a or b must satisfy simultaneously 
with either c or d for scheduling to be 
identified as list algorithm: 
a) All functional units of independent 
operations should not be activated in the first 
control step. 
b) All dependent operations and its successors 
should not be placed in consecutive control 
step based on their dependencies.  
c) All functional units having primary outputs 
should not be activated in last control step. 
d) All parent operations and its predecessors 
should be placed in consecutive control steps.  

ASAP/ALAP/LIST  

ASAP/ ALAP/ 

LIST 

Fig. 8.2 Flow graph representing the feature extraction methodology for scheduling algorithm 

feature 
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(d) All parent operations and its predecessors should be placed in the 

consecutive control steps. 

▪ LIST scheduling: A scheduling algorithm that satisfies conditions (e) or (f) 

along with either (g) or (h), then the scheduling algorithm is list scheduling.  

(e) All functional units of independent operations should not be activated in the 

first control step. 

(f) All dependent operations and its successors should not be placed in the 

consecutive control step based on their dependencies. 

(g) All functional units having primary outputs should not be activated in the 

last control step. 

(h) All parent operations and its predecessors should not be placed in the 

consecutive control steps. 

This feature distinguishes (HLS tools utilized for creating) IPID and IPCTn. If 

IPID utilizes a different scheduling algorithm than IPCTn, then HLS tool that 

generates IPCTn cannot be the rightful owner. 

8.4.2  Resource configuration type 

The resource configuration type feature extraction methodology takes datapath 

HDL file of IP core as input. Further, HDL file is examined to identify the 

different type of resources (functional units) utilized in the RTL datapath of the 

IP core. For instance, if an IP core has adder, subtractor and multiplier resources, 

the resource config type feature is represented as “A, S, M”. 
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component Adder 

   port (enable_R1 : in    std_logic;  

         Data_out7 : in    std_logic_vector (15 downto 0);  

         Data_out8 : in    std_logic_vector (15 downto 0);  

         Data_in9  : out   std_logic_vector (15 downto 0)); 

   end component; 

  

8.4.3 Chaining 

Chaining is an optimization technique that targets the reduction of schedule 

delay. The concept of chaining can be understood with the help of an exemplary 

schedule shown in fig.8.3. In this example, two addition operations (1 & 2) are 

scheduled during a single execution of multiplication operation (3). If there was 

no chaining, operation 2 would have been scheduled at control step 41. Hence, 

the overall delay of the design without chaining would be 41 control steps. The 

rule to identify the presence of chaining feature can be stated as: if more than 

one operation of the functional unit of type ‘i’ (FUi), is executed within a single 

execution of FUj; then, chaining feature is present in the IP core. The chaining 

feature extraction rule is algorithmically represented in fig.8.4.  

The chaining feature extraction algorithm takes controller HDL file of IP core 

as input and identifies the presence or absence of chaining feature in the given 

IP core. In Fig.8.4, ‘n’ represents the total number of functional units presents 

in the IP core. CSS(FUi) and CSE(FUi) represents the starting and ending control 

steps of ith functional unit respectively. The starting and ending control steps of 

an FU can be determined from the controller HDL file. For instance, consider 

the controller shown in fig.8.5, the first multiplication operation starts its 

execution in control step 1 (MUL_EN_1<=‘1’) and ends in control step 40 

(MUL_EN_1<=‘0’).Hence, CSS(multiplier) = 1 and CSE(multiplier) = 40. As 

shown in fig. 8.4, ‘i’ and ‘j’ are loop variables. The first loop runs for all FUs. 

The second loop allows all the FUi such that i ≠ j. Further, the first if allows 

comparison of ith FU with only those jth FUs that have started their execution 

after execution of ith FU is started and FUs that have ended their execution 

before execution of ith FU is ended. If the number of all such FUs is ≥ 2 then 

chaining feature is present in the IP core.  

8.4.4 Bus width support 

The Bus width support feature extraction algorithm takes datapath HDL file of 

IP core as input. Subsequently, the top level entity HDL code is examined to 
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identify the bus width of register components. A portion of the HDL code is 

shown below: 

component registerTp 

      port ( tp   : in    std_logic_vector (7 downto 0);  

             regtp: out   std_logic_vector (7 downto 0);  

             strobe: in    std_logic); 

   end component; 

 

As shown in the HDL code, register components are identified with the help of 

the component’s name. Further, the size of register components is determined 

as the highest size of the variable using statements such as std_logic_vector 

(7 downto 0). Where 7 down to 0 indicates variable size as 8 bits. Similarly, 

the size of all the variables is evaluated and the largest variable’s size is taken 

as the size of the register. Similarly, the largest size among all the register 

components present in an IP is taken as the bus width supported by the 

architecture of an IP core. 

8.4.5 Data pipelining 

The pipelining technique intends to reduce the delay of the overall design of the 

IP core. The data pipelining feature extraction algorithm takes datapath HDL 

file of IP core as input and identify the presence of pipelining feature as per the 

following equation: 

(CSE(N)1 - CSS(N)1 +1) > (CSE(N)2 – CSE(N)1 +1)           (8.1) 

Algorithm (Input: controller HDL of IP: Output: detection of 

chaining) 

 

for ( i=1 to n) 

{ 

      for ( j=1 to n &&  j != i ) 

     { 

     if (CSS(FUi) ≤  CSS(FUj) && CSE(FUi)  ≥  CSE(FUj)) 

  {    

if ( CSE(FUi) – CSS(FUi) ≥  (CSE(FUj) – CSS(FUj))1 + ( 

CSE(FUj) – CSS(FUj))2 + …. + (CSE(FUj) – CSS(FUj))m  

  ) 

           { 

Chaining feature detected in IP core! 

            } 

    } 

      } 

} 

Fig. 8.4 Proposed algorithm to detect chaining in an IP  



88 

Where CSE(N)1 and CSE(N)2 denotes the ending control steps of data set 1 and 

2. Similarly, CSS(N)1 denotes starting control step od data set 1. Further, 

(CSE(N)1 - CSS(N)1 +1) represents the execution time of data set 1. Likewise, 

(CSE(N)2 – CSE(N)1 +1) represents the time difference between ending control 

step of data set 1 and ending control step of data set 2. Hence, in the case when 

the IP core does not incorporate the pipelining feature. Both the right-hand side 

and the left-hand side of Eq. (8.1) will be equal. However, if pipelining is 

present in the IP core eq. (8.1) will be satisfied. For instance, consider the 

schedule of an IP core shown in fig.8.6. The output of data set 1 and data set 2 

are available in register Y at control step 42 and 82 respectively. Hence, The 

L.H.S of Eq. 1 can be written as (42-1+1) = 42. Similarly, R.H.S. can be written 

as (82-42+1) = 41. Hence, Eq. (8.1) is satisfied when pipelining is present in an 

IP core.  

8.4.6 Multi-cycling 

The multi-cycling feature extraction algorithm takes controller HDL file of IP 

core as input. Subsequently, on examining HDL code if there is a functional unit 

whose execution time span more than 1 control step, then the multi-cycling  

entity control_unit is 

port( 

     clock, reset: in std_logic; 

   : 

   : 

   : 

   ADD_EN_1, ADD_EN_2, MUL_EN_1 : out 

std_logic;  

   REG_Y : out std_logic; 

   : 

   : 

   : 

   ); 

end control_unit; 

 

architecture Behavioral of control_unit is 

signal CS: INTEGER RANGE 0 TO 19; 

signal count: INTEGER RANGE 0 TO 10; 

signal busy : std_logic; 

 begin 

  process(clock,reset) 

   begin 

 

if (clock'event and clock='1') then 

    if(reset='0')then 

      if CS =0 then 

     clk<='1'; 

   REG_IP_A_EN <='1'; 

   REG_IP_B_EN <='1'; 

   REG_IP_C_EN <='1'; 

   REG_IP_D_EN <='1'; 

REG_IP_E_EN <='1'; 

      end if; 

 
Fig. 8.5(a) Portion of a HDL code  
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  CS <= CS +1; 

   end if; 

  

---------------------------------CONTROL STEP 1--------------------------- 

if CS=1 then 

 if count=first_count 

   ADD_EN_1<='1'; 

   MUL_EN_1<='1'; //start 
of multiplication operation// 
   count <= count+1;  

     end if; 

 : 

 :   

 If count = last_count 

   ADD_EN_1 <= '0'; 

   count <= '0'; 

 end if; 

   CS <= CS+1; 

end if; 

 

---------------------------------CONTROL STEP 2--------------------------- 

if CS=2 then 

 if count= first_count 

   ADD_EN_1<='1'; 

   count <= count+1;  

     end if; 

 : 

 :   

 : 

 If count = last_count 

   ADD_EN_1 <= '0'; 

   count <= '0'; 

 end if; 

   CS <= CS+1; 

end if; 

: 

---------------------------------CONTROL STEP 40-------------------------- 

if CS=40 then 

 if count= first_count 

   count <= count+1;  

   REG_IP_A_EN <='0'; 

   REG_IP_B_EN <='0'; 

   REG_IP_C_EN <='0'; 

   REG_IP_D_EN <='0'; 

   REG_IP_E_EN <='0'; 
     end if; 

 : 

 :   

 : 

 If count = last_count 

   MUL_EN_1 <= '0'; //end 
of multiplication operation// 

REG_IP_A_EN <='1'; 

   REG_IP_B_EN <='1'; 

   REG_IP_C_EN <='1'; 

   REG_IP_D_EN <='1'; 

   REG_IP_E_EN <='1'; 

   count <= '0'; 

 end if; 

   CS <= CS+1; 

end if; 

 

---------------------------------CONTROL STEP 41-------------------------- 

if CS=41 then 

 if count= first_count 

   count <= count+1; 

   ADD_EN_1 <= '1'; 

   ADD_EN_2 <= '1'; 

MUL_EN_1 <= '1'; 

Fig. 8.5(b) Portion of a HDL code  

   REG_Y <='0'; 

     end if; 

 : 

 :   

 : 

 If count = last_count 

   ADD_EN_1 <= '0'; 

   ADD_EN_2 <= '0'; 

   count <= '0'; 

 end if; 

   CS <= CS+1; 

end if; 

 

-----------------------------CONTROL STEP 42--------------------------- 

if CS=42 then 

 if count= first_count 

   REG_Y <='1';//output of 
data set 1 available// 
   count <= count+1; 

   ADD_EN_1 <= '1'; 
     end if; 

 : 

 :   

 : 

 If count = last_count 

   ADD_EN_1 <= '0'; 

   count <= '0'; 

 end if; 

   CS<=CS+1; 

end if; 

 

-----------------------------CONTROL STEP 80--------------------------- 

if CS=80 then 

 if count= first_count 

   count <= count+1;  

   REG_IP_A_EN <='0'; 

   REG_IP_B_EN <='0'; 

   REG_IP_C_EN <='0'; 

   REG_IP_D_EN <='0'; 

   REG_IP_E_EN <='0'; 

     end if; 

 : 

 :   

 : 

 If count = last_count 

   MUL_EN_1 <= '0'; 

REG_IP_A_EN <='1'; 

   REG_IP_B_EN <='1'; 
   REG_IP_C_EN <='1'; 

   REG_IP_D_EN <='1'; 

   REG_IP_E_EN <='1'; 

   count <= '0'; 

 end if; 

   CS<=CS+1; 

end if; 

 

-----------------------------CONTROL STEP 81--------------------------- 

if CS=81 then 

 if count= first_count 

   count <= count+1; 

   ADD_EN_1 <= '1'; 

   ADD_EN_2 <= '1'; 

   MUL_EN_1 <= '1'; 

   REG_Y <='0'; 

     end if; 

 : 

 :   

 : 

 If count = last_count 

   ADD_EN_1 <= '0'; 

   ADD_EN_2 <= '0'; 

      count <= '0'; 

Fig. 8.5(c) Portion of a HDL code  



90 

feature is said to be present in the IP core. In other words, if a functional unit’s 

operation ends at control step greater than the starting control step (eq.8.2), then 

multi-cycling is present in the IP core: 

CSE(FUi)  >  CSS(FUi)    (8.2) 

8.4.7 Design Objective 

The design objective feature extraction methodology takes executable HLS 

tool’s interface as input. By examining the user interface, various design 

objectives/constraints supported by that particular HLS tool such as area, power, 

delay, etc. can be identified. 

8.4.8 Reliability 

Reliability is an advanced feature and typically found in sophisticated HLS 

tools. Reliability can be incorporated in the IP core in various ways such as 

security/tolerance against permanent faults [58], intermittent fault [59], or 

transient fault [60], etc. In our proposed approach, we have considered recent 

reliability handling techniques that uses dual modular redundancy (DMR) such 

end if; 
   CS <= CS+1; 

end if; 

 
---------------------------------CONTROL STEP 82--------------------------- 
if CS=82 then 
 if count= first_count 

   REG_Y <='1';//output of dataset 2 

available// 

   count <= count+1; 

   ADD_EN_1 <= '1'; 

     end if; 
 : 

 :   

 : 

  

 If count = last_count 
   ADD_EN_1 <= '0'; 

   count <= '0'; 

 end if; 
   CS<=CS+1; 

end if; 

 
: 
: 
-----------------------CONTROL STEP 4001(for 100 data set) ------- 
--if (clock'event and clock='1') then  

    elsif(reset='1')then 

   count<=0; 
 end if;   

end if; 

--end if; 
end process;   

--count1 <=count; 

end Behavioral; 
 

Fig. 8.5(d) Portion of a HDL code  
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as [17], [54]. Note, there are other techniques to generate reliable IP core using 

HLS. However, the proposed approach has considered only recent DMR based 

techniques. 

The reliability feature extraction methodology takes datapath HDL (RTL code) 

of IP core as input. Subsequently, the top level entity HDL code of the IP core 

is examined to identify the presence of DMR. If a top-level entity HDL contains 

a comparator component that takes two input signals coming from the output 

register of module 1 (output register signal 1), and output register of module 2 

(output register signal 2), and its output signal is the final output of the IP core. 

Then such a comparator component indicates the presence of DMR structure, 

thereby indicating the presence of reliability feature in the IP core. An 

exemplary comparator’s port map is: port map (output register signal 1, output 

register signal 2, comparator output signal). 

8.4.9 Loop support 

The loop support feature extraction methodology takes an input application file 

of the executable HLS tool as input. The input file considered in this case study 

can be a control intensive application (in the form of control data graph 

(CDFG)) or a data-intensive application (in the form of data flow graph). The 

CDFG application typically contains the maximum iterations value. However, 

as DFG applications don’t contain any iteration information. Hence, this 

property of input application can help distinguish HLS tools that supports 

+ 
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Fig. 8.6 Pipelining feature in IP with resource configuration (2A, 1M) 
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CDFG application from those who don’t. The feature is termed as loop support 

feature. This feature tries to remove HLS tools that do not support loop based 

CDFG applications. For instance, if IPID is generated for some CDFG 

application such as FIR, then all the HLS tools that do not support loop based 

CDFGs will be eliminated. 

8.4.10 Trojan security 

Similar to reliability, trojan security is also one of the advanced features used in 

highly sophisticated HLS tools. Trojan security can be understood as the 

detection of hardware trojans in an IP core. The typical approach to identify 

hardware trojans utilizes hardware resources from at least two different vendors 

and a DMR system is designed [53]. 

The trojan security feature extraction methodology takes datapath HDL file and 

module library as input. Subsequently, the top level entity datapath is examined 

to identify a comparator component that takes two inputs, one each from the 

primary output of module 1 (as output signal 1) and module 2 (as output signal 

2). Moreover, the final output of the IP core is the output of the comparator 

(comparator output signal) then dual modular redundancy is detected. 

Additionally, input module library of the HLS tool is examined to identify 

whether modules from more than 1 (at least 2) vendors are present or not? If 

DMR, as well as the presence of hardware resources from multiple vendors, are 

detected then, HLS tool supports trojan security feature. 

The upcoming subsection describes the third and final step of the proposed 

methodology. 

IP validation: Once all the features are extracted, the feature set of IPID is 

compared with the feature set of every competing HLS tool and ownership is 

awarded to the IP vendor whose feature set matches exactly (100%) with the 

feature set of the IPID. The following equation is utilized to evaluate the match 

percentage (m) between feature sets of IPID and IPCTn  

m= 
𝑁𝑢𝑚𝑏ⅇ𝑟 𝑜𝑓 𝑚𝑎𝑡𝑐ℎ𝑖𝑛𝑔 𝑓ⅇ𝑎𝑡𝑢𝑟ⅇ𝑠

𝑇𝑜𝑡𝑎𝑙  𝑛𝑢𝑚𝑏ⅇ𝑟 𝑜𝑓 𝑓ⅇ𝑎𝑡𝑢𝑟ⅇ𝑠 𝑖𝑛 𝑓ⅇ𝑎𝑡𝑢𝑟ⅇ 𝑠ⅇ𝑡
∗ 100       (8.3) 

In a very rare case, the feature set of more than one HLS tool will match exactly 

with feature set of IPID. In such a scenario, number of features can be increased 
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for achieving better results. However, note that such a case is very rare, as 

proposed methodology incorporates unique features along with generic 

features. Further, in case if none of the competing HLS tool’s feature set 

matches 100% with the feature set of IPID then ownership will not be awarded 

to any of the competing vendors.  

8.5. Summary 

The proposed approach presents a novel computational forensic engineering 

based methodology for resolving false claim of ownership of DSP IP cores. 

Further, the proposed methodology introduces a novel feature-set comprising of 

ten features. Feature extraction rules for extracting these features were 

presented. Based on these rules, feature-sets of IPID and IPCTn were obtained 

and matched. Finally, the IP ownership was award to the claimant whose IPCT’s 

feature-set matches exactly with the feature set of IPID. 

The proposed approach is compared with watermarking based approaches for 

resolving ownership conflicts. The proposed approach is found to be more 

reliable as it incurs zero-overhead (due to lack of signature-insertion step) and 

has no known attack in comparison with watermarking based approaches (as 

they are vulnerable to reverse engineering based attack such as signature 

tampering) [5].  
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Chapter 9 

Experimental Results and Analysis 

This chapter discusses the experimental results and analyses of the proposed 

methodologies presented in this thesis.  

9.1. Results and analysis: Methodology for generating a DSP IP core that 

is simultaneously secure/resilient against the multi-cycle temporal 

and multi-unit spatial effect of transient fault. 

This section discusses the experimental results of the proposed methodology 

presented in chapter 3 of this thesis. The proposed approach is implemented in 

Java and executed on Intel Core i5 3210M processor with 3MB cache, 4GB 

DDR3 primary memory, and frequency of 2.5GHz. The proposed methodology 

is applied on DSP IP benchmarks such as auto regression filter (ARF), elliptic 

wave filter (EWF), etc. adopted from [61, 73, 74] (see Appendix B). Note that 

the proposed approach is the first work in the literature which simultaneously 

provides resiliency against multi-cycle (kc) and multi-unit (km) transient fault 

affected due to single radiation strike at the behavioral/architecture level. The 

proposed approach simultaneously achieves temporal and spatial resiliency 

through a novel unification of high-level synthesis and physical level design. 

All prior work that handled multiple transient faults were at lower levels such 

as gate-level or transistor level. Nevertheless, comparisons to baseline 

duplication (non-security DMR designs) and normal designs (no duplication & 

security constraints) for chip area, delay and power has been reported in Tables 

9.1, 9.2, and 9.3. The results are compared on the basis of following design 

metrics 

a) Chip area of the multi-unit (km) transient fault resilient floorplan. 

b) Delay of the multi-cycle (kc) transient fault resilient DMR schedule. 

c) Power of the transient fault resilient design. 

9.1.1 Area comparison 

Table 9.1 shows the area comparison of the proposed fault resilient design with 

a non-resilient design. It is easily evident that the proposed approach incurs a 

modest area overhead in comparison with the non-resilient design. This is 
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because imposing km-unit MTF resiliency constraint affects the placement of 

modules within the floorplan. For example consider DCT benchmark with 

resource constraint Xi = (7M, 4A), the floorplan which does not follow our km-

unit MTF resiliency constraint, results in a chip area of 556 sq.units. On the 

contrary, the floorplan which abides by our km-unit MTF resiliency constraint 

results in a chip area of 590.75sq.units. Thus, an area overhead of 34.75 sq. units 

due to imposing resiliency constraint is visible. The results are compared for a 

large value of kc (=10) and km (=4), as large values are likely to produce high 

overhead. However, as evident from the results, the proposed approach incurs a 

nominal overhead even for significantly large strength of transient fault. 

9.1.2 Delay comparison 

The delay comparison of the proposed approach with the non-resilient design is 

reported in table 9.2. The designs generated for large kc-cycle transient fault 

resiliency constraint (such as kc = 10) results in delay overhead compared to 

both non-transient fault resilient schedules (with and without duplication). This 

is because large resiliency constraint value creates more chances of hardware 

conflicts, therefore to avoid transient fault hazards operations must be pushed 

in the lower control step (thereby increasing delay overhead). 

9.1.3 Power comparison 

 

Benchmark 

User 

Resource 

Constraint 

Chip area in sq. 

units 

(Non-transient 

fault resilient 

DMR design) 

Chip area in 

sq. units 

(km-unit 

transient 

fault 

resilient 

design) 

Chip area 

overhead 

in sq.units  

Benchmark 

User 

Resource 

Constraint 

Chip area 

in sq. units 

(Non-

transient 

fault 

resilient 

DMR 

design) 

Chip area 

in sq. 

units 

 (km-unit 

transient 

fault 

resilient 

design) 

Chip area 

overhea

d in sq. 

units 

ARF 
4A, 4M 556 556 0.00 

EWF 
4A,2M 607.25 654.75 47.5 

3A, 3M 428 556 128 3A,2M 465 654.5 189.5 

2A, 2M 321 321 0.00 2A,2M 465 561 96 

     

BPF 
3A, 4M 556 556 0.00 

FFT 
8A,4M 396 445.5 49.5 

3A, 3M 316 428 112 8A,3M 376 423 47 

3A, 2M 401.25 428 26.75 8A,2M 262.5 374.5 112 

     

DCT 
8A, 4M 590.75 695 104.25 

FIR 
8A,8M 556 556 0.00 

7A,4M 556 590.75 34.75 7A,7M 516 556 40 

6A,4M 516 556 40 6A,6M 516 556 40 

 

Table 9.1. Results comparison of proposed 2-cycle, 2-unit transient fault resilient design with non-

transient fault resilient in terms of chip area and corresponding overhead 
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The power comparison of the proposed approach with the non-resilient design 

is reported in table 9.3. A small overhead is observed for some designs of the 

proposed approach due to the imposing of simultaneous multi-cycle & multi-

fault resiliency constraints. This is because, imposing the constraints may cause 

an increase in register/multiplexer count (due to the possibility of a different 

schedule/binding) in some cases, resulting in a slightly higher power magnitude. 

The power value reported includes total power due to functional units 

(hardware), steering logic (multiplexer, demultiplexer, interconnects) and 

storage elements. The results show that with minimal power overhead 

 

Benchmark 

User 

Resource 

Constraint 

Delay in ns 

(Non-transient 

fault resilient  

design) 

Delay in 

ns 

(10-cycle 

transient 

fault 

resilient 

DMR 

design) 

Delay overhead 

in ns 

 

Chip area 

in sq. units 

(Non-

transient 

fault 

resilient 

DMR 

design) 

Chip area 

in sq. 

units 

(4-unit 

transient 

fault 

resilient 

DMR 

design) 

 

 

Chip area 

overhead 

in 

sq.units 
Non-  

DMR 
DMR 

Non-  

DMR 
DMR 

 

BPF 

3A, 4M 0.522 0.914 0.916 0.38 0.002 556 556 0.00 

3A, 3M 0.522 0.914 0.980 0.38 0.066 316 428 112 

3A, 2M 0.524 0.918  0.984 0.38 0.066 401.25 428 26.75 

     

DCT 

8A, 4M 0.522 0.720 0.720 0.20 0.000 590.75 695 104.25 

7A,4M 0.524 0.722 0.786 0.20 0.198 556 695 139 

6A,4M 0.58 0.788 0.788 0.20 0.000 516 625.5 109.5 

        

EWF 

4A,2M 0.90 1.172 1.172 0.27 0.000 607.25 748 47.5 

3A,2M 0.97 1.364 1.366 0.39 0.002 465 654.5 189.5 

2A,2M 1.03 1.752 1.944 0.72 0.192 465 561 96 

        

FFT 

8A,4M 0.39 0.46 0.46 0.07 0.000 396 562.5 49.5 

8A,3M 0.46 0.65 0.658 0.19 0.008 376 454.75 47 

8A,2M 0.46 0.85 0.856 0.39 0.006 262.5 428 112 

        

FIR 

8A,8M 0.57 0.64 0.644 0.07 0.004 556 764.5 0.00 

7A,7M 0.58 0.64 0.646 0.06 0.006 516 625.5 40 

6A,6M 0.58 0.64 0.646 0.06 0.006 516 625.5 40 

        

JPEG 

IDCT 

24A,24M 0.520 0.59 0.916 0.396 0.326 1816 1972 156 

20A,20M 0.522 0.654 0.98 0.458 0.326 1560 1880 320 

 

 

Table 9.2. Results comparison of proposed 10-cycles, 4-units transient fault 

resilient designs with non-transient fault resilient in terms of chip area and 

corresponding overhead 
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sometimes (while no power overhead for most cases), the proposed approach 

generates DSP IP cores that are simultaneous resilient against multi-cycle and 

multi-unit transient fault.  

  

 

Benchmark 

User 

Resource 

Constraint 

Power in µW 

(Non-transient 

fault resilient  

design) 

Power in µW 

 (10-cycle, 4-

unit 

transient 

fault resilient 

DMR design) 

Power overhead in 

µW 

 

 

ARF 
2A 2M 9.605 10.117 0.512 

3A 3M 9.022 9.278 0.256 

4A 4M 8.840 8.840 0.00 

 

BPF 
3A 2M 8.110 8.110 0.00 

3A 3M 8.162 9.058 0.896 

3A 4M 8.572 8.956 0.384 

  

DCT 
6A 4M 14.598 14.598 0.00 

7A 4M 13.821 14.077 0.256 

8A 4M 12.579 12.579 0.00 

     

EWF 
2A 2M 9.394 9.522 0.128 

3A 2M 11.109 11.493 0.384 

4A 2M 10.911 10.911 0.00 

     

FFT 
8A 2M 8.486 8.486 0.00 

8A 3M 10.308 10.308 0.00 

8A 4M 9.511 9.511 0.00 

     

FIR 
6A 6M 8.322 8.322 0.00 

7A 7M 8.478 8.478 0.00 

8A 8M 8.928 8.928 0.00 

     

JPEG 

IDCT 

20A 20M 39.398 39.398 0.00 

24A 24M 36.875 36.875 0.00 

 

 

Table 9.3. Power comparison results of proposed 10-cycle, 

4-unit multiple transient fault resilient designs and non-

transient fault resilient DMR designs 
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9.2. Results and analysis: Methodology for generating a DSP IP core that 

is simultaneously tolerant against multi-cycle temporal and multi-

unit spatial effect of transient fault. 

The methodologies for generating DSP IP core tolerant against multi-cycle and 

multi-unit transient fault has been discussed in chapter 4 for data-intensive 

applications and in chapter 5 for loop based control intensive applications. This 

section presents results and analysis of both these methodologies. The proposed 

methodologies are implemented in Java and executed on Intel Core i5 3210M 

processor with 3MB cache, 4GB DDR3 primary memory, and frequency of 

2.5GHz. The proposed methodologies are implemented on data-intensive 

applications such as BPF, DCT, DWT as well as loop-based control intensive 

applications such as Differential equations, FFT, FIR, and Test_case of express 

benchmark suite [61]. The experimental results thus obtained are analyzed 

based on the following metrics 

a) Fitness/cost of the explored kc-cycles, km-units tolerant design solution. 

b) The power consumption of the explored kc-cycles, km-units tolerant 

design solution. 

c) Rectangular chip area of the km-units fault tolerant floorplan. 

d) Delay of the kc-cycles fault tolerant scheduled C/DFG TMR 

As discussed earlier in chapter 2, there is no work in the literature that 

simultaneously provide tolerance against multi-cycle and multi-unit transient 

fault. A prior work that closely relates to the proposed approaches is [12]. The 

results of the comparison of the proposed approach with [12] are tabulated in 

table 9.4, 9.5, 9.6 and 9.7 respectively. The comparison of the proposed 

approach with [12] is performed for multi-cycle kc=4 (equivalent to 400ps) 

[12,24] & multi-unit km=4 (equivalent to 3072nm) [62,63,64] transient fault 

impact. However, note that the proposed methodologies are applicable for any 

value of kc and km.  

As reported in table 9.4, the proposed approach always generates low cost 

(better fitness) tolerant design solution compared to [12]. This is due to the 

integrated PSO-DSE framework that explores low-cost transient fault tolerant 

design. On the other hand, [12] is not capable to obtain a low-cost design 
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solution due to lack of optimization framework in the tolerance algorithm, 

besides being deficient in providing tolerance against spatial effects of transient 

fault. Additionally, [12] is not capable of performing pre-processing of 

unrolling factor (especially filters UF with large sequential loops) and exploring 

a combination of loop UF for control-intensive applications. Thus [12] provides 

tolerance without appropriate unrolling and produces an expensive fault-

tolerant solution. Further, due to the lack of design space exploration 

framework, the design solution of [12] never produces low-cost results. For 

comparison purpose, the design solution for [12] is based on the particle 

encoding with mid-hardware configuration. For example, as shown in table 9.4, 

for DCT benchmark, the proposed approach has explored a low-cost solution 

having design cost of 0.37, while [12] yielded a high-cost solution with a design 

cost of 0.49. Thus, the relative cost improvement of 0.12 is achieved. Similarly, 

cost improvements for other benchmarks are reported in table 9.4. An average 

cost reduction of ~30 % is achieved for benchmarks tabulated in table 9.4. 

As evident from table 9.5, a significant reduction in power consumption of the 

proposed approach has been obtained with respect to [12]. The power reported 

in table 9.5 is evaluated based on the following power model. 

Power Model: For a given functional resource, the power consumption (adapted 

from [17]) can be given as: 

))()((
1

i

Max

i

i

TMRFT

T FUpFUKP =
=

−

  (9.1) 

Where, p(FUi)  is the power consumed by FUi (as per 15nm technology scale 

open cell NanGate Library [31]);  K(FUi) is the number of instances of FUi used 

in the FT-TMR design and ‘Max’ indicates the index of the last FU type used 

in the FT-TMR design. 

The proposed approach implements PSO based DSE for generating a fault-

tolerant solution based on an appropriate combination of loop unrolling factor 

and hardware resources compared to [12] which does not perform any 

optimization to handle overhead. Thus, the proposed approach results in 

significantly lesser power consumption. For example, as shown in table 9.5, for 

DCT benchmark, the proposed approach has explored the fittest design solution 
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having the power of 2.49 uW, while [12] yielded a design cost 5.05uW. Thus, 

the relative power reduction of 2.56uW is achieved. Similarly, power reductions 

for other benchmarks are reported in table 9.5. An average power reduction of 

~57 % is achieved for benchmarks tabulated in table 9.5.  

Table 9.6 and 9.7 shows the area and the delay value of the obtained design 

solutions for the standard benchmarks. As represented in table 9.6, area of 

proposed approaches is lesser than the area of [12] (for all the benchmarks) as 

design solution explored through proposed approach obtains lesser number of 

hardware resources and unrolling factor compared to [12], which does not 

explore appropriate combination of unrolling factor and hardware as well as 

does not perform preprocessing of unfit unrolling factors. Further, as shown in 

table 9.7 significantly larger number of resources are utilized in [12], hence due 

to higher parallelization, delay of [12] may sometimes be lesser compared to the 

proposed approach. Nonetheless, the overall design cost and power of [12] is 

significantly higher than the proposed approach due to lack of provision of 

optimization technique during tolerance design. 
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Table 9.4. Cost comparison of proposed method with [12] for kc=4 & km=4 

Benchmark 
Design 

Solution 
of [12] 

Design 
Cost 

of [12] 

Design 
Solution 

of 
proposed 
approach 

Design 
Cost of 

proposed 
approach 

Reduction 
in Design 

Cost % 
Benchmark 

Design 
Solution 
of [12] 

Cost 
of 

[12] 

Design 
Solution 

of 
proposed 
approach 

Design 
Cost of 

proposed 
approach 

Reduction 
in cost % 

BPF 5A, 6M 0.53 3A, 2M 0.37 30.18 % DIFF_EQ 
12A, 12S, 
36M, 2C, 

UF=8 
0.30 

2A, 2S, 
6M, 2C, 

UF=4 
0.18 40 % 

DCT 12A,6M 0.49 5A, 3M 0.37 24.48 % FFT 
26A,12S, 
24M,2C, 

UF=8 
0.32 

4A, 5S, 
4M, 2C, 

UF=4 
0.20 37.5 % 

DWT 6A, 8M 0.57 3A, 2M 0.42 26.31 % FIR 
2A, 12M, 
2C, UF=8 

0.41 
2A, 3M, 
2C, UF=4 

0.28 31.7 % 

      TEST_CASE 
14A,12M, 
2C, UF=8 

0.38 
4A, 5M, 
2C, UF=4 

0.30 21 % 

 
Table 9.5. Comparison of power of proposed method with [12] for kc=4 & km=4 

Benchmark 
Design 

Solution 
of [12] 

Power 
of 

[12] 
(in 

µW) 

Design 
Solution 

of 
proposed 
approach 

Proposed 
power 
(in µW) 

Reduction 
in power 

% 
Benchmark 

Design 
Solution 
of [12] 

Power 
of 

[12] 
(in 

µW) 

Design 
Solution 

of 
proposed 
approach 

Proposed 
power 
(in µW) 

Reduction 
in power 

% 

BPF 5A, 6M 4.84 3A, 2M 2.95 39.04 % DIFF_EQ 
12A, 12S, 
36M, 2C, 

UF=8 
23.60 

2A, 2S, 
6M, 2C, 

UF=4 
4.20 82. 20 % 

DCT 12A,6M 5.05 5A, 3M 2.49 50.69 % FFT 
26A, 12S, 
24M, 2C, 

UF=8 
19.37 

4A, 5S, 
4M, 2C, 

UF=4 
4.38 77.38 % 

DWT 6A, 8M 4.86 3A, 2M 1.97 59.46 % FIR 
2A, 12M, 
2C, UF=8 

6.92 
2A, 3M, 
2C, UF=4 

2.72 60.69 % 

      TEST_CASE 
14A,12M, 
2C, UF=8 

8.22 
4A, 5M, 
2C, UF=4 

5.61 31.75 % 

 
Table 9.6. Comparison of area of proposed method with [12] for kc=4 & km=4 (Note : 1 unit = 768nm) 

 

Benchmark 
Design 

Solution 
of [12] 

Area of 
[12] (in 

Sq. 
units) 

Design 
Solution of 
proposed 
approach 

Area of 
proposed 
approach 

(in Sq. 
units) 

Benchmark 
Design 

Solution of 
[12] 

Area of 
[12] (in 

Sq. 
units) 

Design 
Solution of 
proposed 
approach 

Area of 
proposed 
approach 

(in Sq. 
units) 

BPF 5A, 6M 500.0 3A, 2M 406.25 DIFF_EQ 
12A, 12S, 
36M, 2C, 

UF=8 
1640.5 

2A, 2S, 6M, 
2C, UF=4 

593.75 

DCT 12A, 6M 531.25 5A, 3M 437.5 FFT 
26A, 12S, 
24M, 2C, 

UF=8 
1247.75 

4A, 5S, 4M, 
2C, UF=4 

593.75 

DWT 6A, 8M 531.25 3A, 2M 406.25 FIR 
2A, 12M, 
2C, UF=8 

625.0 
2A, 3M, 2C, 

UF=4 
468.75 

     TEST_CASE 
14A, 12M, 
2C, UF=8 

687.5 
4A, 5M, 2C, 

UF=4 
593.75 

 
Table 9.7. Comparison of delay of proposed method with [12] for kc=4 & km=4  

 

Benchmark 
Design 

Solution 
of [12] 

Delay 
of [12] 
(in ns) 

Design 
Solution 

of 
proposed 
approach 

Delay of 
proposed 
approach 

(in ns) 

Benchmark 
Design 

Solution of 
[12] 

Delay 
of [12] 
(in ns) 

Design 
Solution of 
proposed 
approach 

Delay of 
proposed 
approach 

(in ns) 

BPF 5A, 6M 2.1 3A, 2M 3.1 DIFF_EQ 
12A, 12S, 

36M, 2C, UF=8 
1.7 

2A, 2S, 6M, 
2C, UF=4 

5.8 

DCT 12A, 6M 1.9 5A, 3M 3.0 FFT 
26A, 12S, 

24M, 2C, UF=8 
4.1 

4A, 5S, 4M, 
2C, UF=4 

8.7 

DWT 6A, 8M 1.6 3A, 2M 2.5 FIR 
2A, 12M, 2C, 

UF=8 
2.5 

2A, 3M, 2C, 
UF=4 

3.8 

     TEST_CASE 
14A, 12M, 2C, 

UF=8 
1.8 

4A, 5M, 2C, 
UF=4 

3.8 
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9.3. Results and analysis: Methodology for generating a low-cost, highly 

secure, functionally obfuscated DSP IP core 

This section discusses the experimental results of the proposed methodology 

presented in chapter 6 of this thesis. The proposed approach and methodology 

presented in [21] have been implemented in Java and executed on Intel Core i5 

3210M CPU with 4GB DDR3 primary memory and processor frequency of 2.5 

GHz. The proposed methodology generates a low-cost, low-power, highly 

secured functionally obfuscated IP core. The power and delay values are based 

on 15 nm NanGate library [31]. The proposed approach and [21] are tested on 

Express Benchmark suite [61]. The results obtained are analyzed based in terms 

of the following parameters: 

a. Comparison of the strength of obfuscation of the proposed approach 

with [21] from an attacker’s perspective.  

b. Power comparison of the proposed approach with [21]. 

The strength of obfuscation parameter represents the complexity for an attacker 

to reverse engineer the design netlist. The strength of obfuscation of the 

proposed approach and [21] are reported in table 9.8. This is an optimistic 

estimate since for each key guess input-output pattern of the circuit is also 

verified. For [21] since each key gate is encoded with 1 bit, therefore a number 

of key gates are equal to the number of encoded key bits. For example, as shown 

in table 9.8, the number of key bits for JPEG IDCT is 432, therefore, number of 

key gates added is 432. The proposed approach is able to provide an 

enhancement in the strength of obfuscation compared to [21]. For example, in 

the case of JPEG IDCT benchmark, the attacker has to apply 3.83 e+404 brute-

force input combinations to decipher the netlist. Similarly, for [21] the brute-

force effort is 1.1 e+130. The strength of obfuscation enhancement through the 

proposed approach is 3.46 e+274 times of [21].  

As reported in table 9.9, the leakage power consumption of the proposed 

obfuscation approach is less than the [21]. This is because proposed obfuscation 

technique integrates PSO-DSE framework for the exploration of the low-cost 

obfuscated design solution. Therefore, the design solution explored by the 

proposed approach consumes less power compared to [21]. An average 
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reduction of 9.94 % in static power consumption of the proposed approach is 

observed compared to [21]. The obfuscated cost of the proposed approach and 

[21] are reported in table 9.10. An average cost reduction of 6.35% is obtained 

through the proposed obfuscation approach. As discussed earlier, the low-cost 

solution is obtained since the proposed approach integrates PSO-DSE 

framework. Thus, even though there is marginal delay overhead due to ILBs, 

however, it gets optimized during overall design delay reduction through PSO-

DSE. Altogether, the proposed approach in comparison with [21] yielded a 

power reduction of ~ 10 %, design cost reduction of ~ 6.5 % and security 

enhancement (strength of obfuscation) of at least 4.29 e+9 times. 
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DSP Core Benchmarks [19] No. of key-

bits  

encoded for 

proposed 

obfuscation 

(r) 

Strength of  

obfuscation 

of proposed 

approach  

 

No. of 

key-bits  

encoded 

for [21] 

(r) 

Strength of  

obfuscation 

of [21] 

Strength of 

obfuscation 

enhancement 

of proposed 

approach (by 

factor of) 

Name Size 

IIR 9919 192 6.28 e+57 96 7.92 e+28 7.92 e+28 

Mesa Horner 10842 192 6.28 e+57 80 1.2 e+24 5.19 e+33 

DWT 10958 128 3.40 e+38 96 7.92 e+28 4.29 e+ 9 

ARF 14833 256 1.15 e+77 112 5.19 e+33 2.23 e+43 

FIR 16047 320 2.13 e+96 144 2.23 e+43 9.57 e+52 

JPEG IDCT 42710 1344  3.83 e+404 432 1.10 e+130 3.46 e+274 

Mesa Interpolate 48853 832 2.86 e+250 464 4.76 e+139 6.01 e+110 

 

Table 9.8. Strength of obfuscation comparison of proposed 

functionally obfuscated approach w.r.t. [21] 

Benchmark 

Explored 

proposed 

functionally 

obfuscated 

Design 

Solution 

Gate 

count of 

netlist 

(proposed 

approach) 

Power of 

proposed 

approach 

(in µW) 

Design 

Solution 

of [21] 

Gate 

count 

of 

netlist 

[21] 

Power 

of [21] 

(in 

µW) 

Gate 

Reduction 

(in %) 

Power 

Reduction 

(in %) 

IIR 1A, 2M, µ=4 6444 20.146 2A, 4M 7649 24.850 15.75 % 18.92 % 

Mesa Horner 1A, 2M, µ=4 6641 26.080 2A, 4M 7780 28.986 14.64 % 10.02 % 

DWT 1A, 1M, µ=1 5745 25.586 3A, 3M 7324 31.365 21.55 % 18.42 % 

ARF 2A, 2M, µ=3 7741 39.234 3A, 4M 8495 43.967 8.87 % 10.76 % 

FIR 3A, 2M, µ=4 8112 41.864 4A, 5M 9436 45.274 14.03 % 7.53 % 

JPEG IDCT 11A,10M,µ=2 23370 172.523 12A,15M 23998 178.843 2.61 % 3.53 % 

Mesa Interpolate 8A, 5M, µ=4 18061 132.924 13A,16M 24932 155.673 27.55 % 14.61 % 

 

Table 9.9. Power comparison of proposed functionally obfuscated approach w.r.t. [21] 

Benchmark 

Proposed 

functionally 

obfuscated 

Design 

Solution 

Cost of 

proposed 

approach 

Design 

Solution 

of [21] 

Cost 

of [21] 

Cost 

Reduction 

(in %) 

IIR 1A, 2M, µ=4 0.6810 2A, 4M 0.7427 8.30 % 

Mesa Horner 1A, 2M, µ=4 0.6526 2A, 4M 0.6820 4.31 % 

DWT 1A, 1M, µ=1 0.7549 3A, 3M 0.7708 2.06 % 

ARF 2A, 2M, µ=3 0.5259 3A, 4M 0.5281  0.41 % 

FIR 3A, 2M, µ=4 0.5638 4A, 5M 0.5853 3.67 % 

JPEG IDCT 11A,10M,µ=2 0.3629 12A,15M 0.4455 18.54 % 

Mesa Interpolate 8A, 5M, µ=4 0.3093 13A,16M 0.3573 13.43 % 

 

Table 9.10 Cost comparison of proposed functionally 

obfuscated approach w.r.t. [21] 
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9.4. Results and analysis: Methodology for analyzing the aging effect of 

NBTI stress on the performance of DSP IP core 

This section discusses the experimental results of the proposed methodology 

presented in chapter 7 of this thesis. The proposed investigation is performed 

on Altera Cyclone II FPGA board EP2C20F484C7. The respective software 

program Quartus II version 7.2 run on Intel® Xeon® CPU with 4GB RAM at 

3.10 GHz. Fig. 9.1 shows the datapath diagram of Nand based gate level 

implementation with its respective pin assignments. The gate level 

implementations have been analyzed based on the following criteria  

a) Change in Threshold Voltage Vs. Stress Time 

b) Delay Degradation Vs. Stress Time 

c) Delay degradation due to NBTI Stress and No-Stress for most threatful input 

vector. 

d) Delay degradation due to NBTI Stress and No-Stress for different samples of 

an input vector. 

9.4.1. Change in Threshold Voltage Vs. Stress Time 

NBTI stress affects several parameters of a device including threshold voltage, 

drain current, transconductance, etc. In our experiments, we have focused on 

the effect of NBTI stress on the threshold voltage of the PMOS. More the NBTI 

stress time, more is the increase in threshold voltage (as discussed in Eq. (7.1) 

& (7.2)). This has been shown by varying the stress time for evaluating the 

effect on the threshold voltage. Fig. 9.2(a) shows the change in threshold voltage 

observed after applying NBTI stress for 1, 2 & 3 years respectively on ARF IP 

core for distinct values of stress probability. Stress probability as defined in [65] 

is the fraction of the time the PMOS transistor is under stress (it represents the 

workload of the device). The value of stress probability is considered as the 

number of control steps in which a gate is under NBTI stress out of the total 

number of control steps.  

9.4.2. Delay degradation Vs. Stress Time 

Delay of the gate gets affected with change in threshold voltage (as shown in 

Eq. (7.3)). Thus, when the threshold voltage of the pmos increases due to NBTI 
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stress, delay of the gate (corresponding to that pmos) also increases. This causes 

performance degradation of the entire datapath. However, it also depends on the 

input vector applied at the gates. This is because not all input vectors are capable 

of turning ON all (or majority of) the pmos in the critical path. Depending on 

the input applied, the number of pmos turned ON in the critical path changes. 

Thus, it is important to analyze the effect of each input vector on the critical 

path of the datapath, as critical path determines the delay of the circuit. The 

following process is performed to evaluate the delay of the gate level datapath 

for each input vector. First, for a specific test vector, the number of pmos in the 

critical path being turned ON is determined, followed by determination of ΔVTh 

corresponding to a specific stress time (t). Once ΔVTh is calculated, then the 

new threshold voltage (VTh
New) corresponding to the pmos is calculated (using 

Eq. (7.2)). Subsequently, the VTh
New is used to evaluate its gate delay (using Eq. 

(7.3)). In case a test vector is applied that does not turn a pmos of a gate ON, 

then the original threshold voltage corresponding to the nmos is used to evaluate 

delay of the gate. If a test vector affects both pmos and nmos of a gate, then the 

delay corresponding to the pmos is considered (as it is larger). Note: On 

applying a test vector if the number of nmos being turned ON increases then 

total delay increases. This is because nmos transistors are in series in NAND 

gate representation. However, if the number of pmos transistor being turned 

increases then delay doesn't increase as significantly as pmos transistors are 

connected in parallel in NAND gate representation. Fig. 9.2 (b) shows the delay 

of the gate level datapath corresponding to each test (input) vector applied. As 

observed, the red colored ones (1010,1000,0010,0000) are most threatful as 

they all incur the same maximum performance degradation. The green colored 

ones (0011,1011,0111) produces the least delay degradation. Similar results 

were observed for other benchmarks. Table 9.11 shows delay after 1 year of 

continuous NBTI stress is applied on IIR core through each of the possible input 

vector combinations. Similarly, the delay of the ARF IP core is reported in table 

9.12. 

9.4.3. Delay degradation due to NBTI Stress and No-Stress for most 

threatful input vector (for varying Stress time) 
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Fig. 9.2(c) shows the delay of the gate level datapath of ARF under NBTI stress 

and no-stress for most threatful input vector say ‘0000’ (i.e., the input vector 

which causes maximum delay degradation as obtained in the previous section). 

In other words, we analyze in this section how much degradation occurs when 

NBTI stress is applied due to a specific input vector in contrast to when no-

NBTI stress occurs. No-stress here indicates a theoretical condition when NBTI 

stress does not affect the pmos of the gate (i.e. its threshold voltage and 

corresponding delay). Three possible cases have been investigated for stress 

time (1 year, 2 years and 3 years) on datapath. As expected, with an increase in 

stress time, the delay of the datapath has increased (due to the increase in 

threshold voltage of the corresponding pmos of the gate). However, there is no 

effect on delay when no NBTI stress is considered as threshold voltage remains 

the same. This trend of Fig.9.2(c) is likely to remain the same as the increase in 

stress time will always increase the threshold voltage. 

9.4.4. Delay degradation due to NBTI Stress and No-Stress for different 

input vectors 

In this section, we investigate the effect of different samples of input vector on 

the delay of the datapath for both NBTI stress and no-NBTI stress condition. 

We have selected three samples viz. 0000(causing maximum delay 

degradation), 0011 (causing minimum delay degradation) and 1101 (causing 

median delay degradation) for this analysis. Fig. 9.2(d) shows the impact on the 

delay of the datapath for the chosen sample vectors for NBTI stress and no-

stress condition. Similar trends are observed for all the tested benchmarks. 

Concisely, the results can be utilized for analyzing the impact of aging on DSP 

IP cores with varying parameters such as input vector, stress time, etc. Based on 

the analysis a designer would be able to identify the presence of accelerated 

aging attack on the circuit.     
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Input 
Vectors 

Individual Control Steps Total 
Delay CS 1 CS 2 CS 3 CS 4 CS 5 CS 6 

0000 4731.9 4201.7 5993.8 6427.6 6427.6 6427.6 34210.2 

0001 4731.9 4201.7 5993.8 6427.6 6427.6 6427.6 34210.2 

0010 4729.6 3980.9 5993.8 6427.6 6427.6 6427.6 33987.1 

0011 4725.1 3973.2 5756.4 6192.8 6413.9 6415.6 33477.0 

0100 4731.9 4201.7 5993.8 6427.6 6427.6 6427.6 34210.2 

0101 4731.9 4201.7 5993.8 6427.6 6427.6 6427.6 34210.2 

0110 4729.6 3980.9 5993.8 6427.6 6427.6 6427.6 33987.1 

0111 4725.1 3973.2 5756.4 6192.8 6413.9 6415.6 33477.0 

1000 4727.4 4194.0 5993.8 6427.6 6427.6 6427.6 34198.0 

1001 4727.4 4194.0 5993.8 6427.6 6427.6 6427.6 34198.0 

1010 4731.9 3984.8 5993.8 6427.6 6427.6 6427.6 33998.3 

1011 4727.4 3973.2 5756.4 6192.8 6413.9 6415.6 33479.3 

1100 4713.4 4182.4 5967.2 6411.0 6412.7 6195.7 33882.4 

1101 4713.4 4182.4 5967.2 6411.0 6412.7 6195.7 33882.4 

1110 4713.4 3979.9 5967.2 6411.0 6412.7 6195.7 33679.9 

1111 4726.5 3980.9 6193.7 6203.2 6420.1 6203.1 33727.5 

 

Table 9.11 Delay after applying 1 year of continuous NBTI stress of IIR Benchmark 

Input 

Vector 

CS1 CS2 CS3 CS4 CS5 CS6 CS7 CS8 CS9 CS10 CS11 CS12 CS13 CS14 CS15 CS16 CS17 CS18 C19 TOTAL 

0000 8446 7925 8446 9390 8655 9390 9390 7925 9390 8659 7925 9390 9390 8659 7925 9390 9390 8655 8655 167004 

0001 8429 7689 8429 8911 8176 8911 8176 7689 8911 8436 7918 8911 8911 8436 7918 8911 8911 8176 8176 160034 

0010 8446 7925 8446 9390 8655 9390 9390 7925 9390 8659 7925 9390 9390 8659 7925 9390 9390 8655 8655 167004 

0011 8429 7666 8429 8670 7937 8671 8671 7666 8675 8432 7913 8889 8889 8432 7913 8889 8889 7677 7677 158425 

0100 8419 7438 8419 9390 8655 9390 9390 7438 9390 8173 7912 9390 9390 8173 7438 9390 9390 8655 8655 164502 

0101 8428 7696 8428 8911 8176 8911 8911 7696 8911 8427 7911 8911 8688 8427 8123 8911 8911 8176 8176 160739 

0110 8419 7438 8419 9390 8655 9390 9390 7438 9390 8173 7912 9390 9390 8173 7438 9390 9390 8655 8655 164502 

0111 8418 7675 8418 8887 7930 8890 8663 7675 8668 8424 7903 8676 8453 8424 7903 8676 8676 8204 8204 158776 

1000 8446 7925 8446 9390 8655 9390 9390 7925 9390 8659 7925 9390 9390 8659 7925 9390 9390 8655 8655 167004 

1001 8429 7689 8429 8911 8176 8911 8176 7689 8911 8436 7918 8911 8911 8436 7918 8911 8911 8176 8176 160034 

1010 8446 7925 8446 9390 8655 9390 9390 7925 9390 8659 7925 9390 9390 8659 7925 9390 9390 8655 8655 167004 

1011 8429 7666 8429 8670 7937 8671 8671 7666 8675 8432 7913 8889 8889 8432 7913 8889 8889 7677 7677 158425 

1100 8390 7911 8390 9350 8423 9350 9157 7911 9157 8646 7905 9378 9378 8646 7911 9378 9378 8419 8419 165504 

1101 8409 7426 8409 8952 8217 9335 8952 8952 8952 8414 8414 8952 8952 8414 8107 8952 8952 8217 8217 163205 

1110 8390 7911 8390 9350 8423 9350 9157 7911 9157 8646 7905 9378 9378 8646 7911 9378 9378 8419 8419 165504 

1111 8415. 7683 8415 9367 8631 9367 9365 7899 9367 8411 7898 9367 9367 8411 8108 9367 9367 8632 8632 166079 

 

Table 9.12 Delay after applying 1 year of continuous NBTI stress on ARF benchmark 
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Fig.9.1 Nand based gate level implementation of FIR datapath on FPGA board 
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c a 

 

 

 

 

d b 

Fig. 9.2 Effect of NBTI stress on ARF Benchmark 

(a) Change in threshold voltage with stress time,(b) Delay of the datapath corresponding to each 

input vector applied, (c) Stress Vs No-Stress for 0000, (d) Delay wrt Stress Vs. no-Stress 
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9.5. Results and analysis: Computational forensic engineering for 

resolving ownership conflict of DSP IP core generated using high-

level synthesis 

The proposed approach and [13] were both implemented in Java and run on 

Intel Core-i5-460M CPU with 3MB L3 cache memory; 4GB DDR3 memory at 

2.5 GHz. The proposed approach containing 10 unique highly specialized 

design features in the ‘feature set’ (encompassing feature types of objectives, 

application type, data bit type, performance, and datapath structure) have been 

investigated and tested on three major types of digital application specific IP 

cores. For example, benchmarks ARF, BPF & DCT are data-intensive 

application specific IPs; FFT & FIR are control-intensive (loop based) 

application specific IPs and JPEG IDCT is condition based data-intensive 

application specific IP cores [61]. Therefore the ‘feature set’ of the proposed 

approach is enough and applicable on all type of digital application specific IP 

cores. However, as mentioned in chapter 8, the proposed approach does not 

apply to IP cores of general purpose applications. It is only applicable for any 

type of application-specific IP cores such as from signal processing and 

multimedia. The HLS tools selected for generating results for the proposed 

approach are diverse in nature. For comprehensive analysis we have chosen 

seven academic/industrial tools (i.e. n = 7, from IPCT 1 to IPCT 7) with varying 

design objectives, varying DSE frameworks and varying properties as listed 

below: 

1. Hybrid PSO-GA based HLS tool [52]. 

2. Fault tolerant based HLS tool [12]. 

3. Fault secure based HLS tool [17]. 

4. Watermarking based HLS tool [13]. 

5. Trojan security based HLS tool [53]. 

6. PSO based HLS tool [33]. 

7. BFOA based HLS tool [54]. 
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Testing proposed CFE for ownership resolution for n = 7 is sufficient as the 

seven HLS tools are quite diverse and unique in nature. The same HLS tools are 

suitable for different IP cores as long as they are digital application specific IP 

by nature. Other HLS tools available in the literature mostly contain similar 

properties, frameworks or design objectives. Thus, the addition of more HLS 

tools for testing may incur redundancy. However, the current seven HLS tools 

chosen for testing also comprises of HLS tools of similar characteristics. For 

example, HLS tool 1 (IPCT 1), HLS tool 5 (IPCT 5) and HLS tool 7 (IPCT 7) 

have several characteristics common in them. As shown in Table 9.13 for ARF 

benchmark, these three tools share eight common characteristics, but still, the 

proposed approach was capable of identifying the legal owner successfully. 

Table 9.13 shows that HLS tool 5 (IPCT 5) has 100 % matching with given IPID. 

Additionally, our results confirm that ten features in the feature set are sufficient 

to resolve IP ownership conflict for HLS tools. This is because all ten features 

in the set are unique though diverse and cover all the key aspects of HLS tools 

ranging from objectives (area, delay, power, Trojan security, fault reliability), 

application type (loop-based/non-loop based), data bit type (data width), 

performance (scheduling type, chaining, multi-cycling, pipelining) and datapath 

structure (resource type used). Tables 9.13 to 9.16 shows the feature-set of the 

proposed CFE approach generated with respect to each competing HLS tool for 

various benchmarks. The results indicate the matching percentage of feature-set 

of each competing HLS tools (corresponding to each IP vendor) with feature-

set of IPID. The HLS tool whose IP feature-set matches 100 % with the feature-

set of IPID is considered as the rightful owner. For example in table 9.13, the 

feature set decided for both IP to be identified (IPID) and competing IP tool 

vendors (IPCT n) are: (scheduling algorithm, resource type, chaining, bus width 

support, pipelining, multi-cycling, design objective, reliability, Trojan security, 

loop support).  The proposed feature extraction step determines the details of 

features for IPID & IPCT1… IPCT7. For ARF benchmark in table 9.13, for 

instance, in IPID, the presence of ‘chaining’ feature was detected (thus denoted 

as ‘Yes’) and information of scheduling algorithm is indicated as ‘LIST’. 

Similarly, details of remaining features after extraction are also indicated. As 

evident, the feature extraction of all IP core from each competing HLS tool is 

extracted. However, the feature set of only IP core generated by HLS tool 5 
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(IPCT5) matches completely with IPID. Similarly, results for other benchmarks 

have been shown in table 9.13 to 9.16. Table 9.15 shows a case in which the 

IPID’s feature-set doesn’t match with any of the feature-set of the competing IP 

tools i.e. matching percentage is less than 100%. Therefore, in such a scenario 

the legal ownership of the IPID cannot be awarded to any of the claimants. 

Further, there is a possibility that more than one competing IP vendor tool can 

have 100 % matching percentage. However, in our experiment, we didn’t 

encounter a scenario. Nevertheless, in such a scenario, further analysis through 

CFE is needed through the addition of more features in the current feature-set 

(i.e. beyond the features in the current set). Table 9.17 shows the feature 

extraction time of each of the features of the feature set by proposed CFE 

approach. In other words, the features of the feature set are illustrated in 

increasing order of time complexity. This shows that the extraction time taken 

for ‘loop support’ is least, while for ‘scheduling algorithm’ is highest. Further, 

this also shows that all the ten features of the feature set are extracted within 

acceptable runtime (in order of a few milliseconds). 

Additionally, the possibility of false positive and false negative does not arise 

in the proposed results as the rightful IP owner is systematically determined 

through several digital forensic evidences acquired during/after the high-level 

synthesis design process. This is an inherent property of computational forensic 

engineering performed on high-level synthesis based IP cores. 

Table 9.18 shows the advantages of proposed CFE approach for IP core 

protection over watermarking based IP protection approach [13] in terms of 

storage overhead (i.e. a number of registers required in final design). As evident 

from table 9.18, for watermarking approach [13], significant storage registers 

are required in final IP design. This is because signature insertion is done at the 

register allocation step of the architectural synthesis. The presence of this 

signature is evaluated during signature detection stage for IP protection (by 

resolving false claim of vendor ownership). On the contrary, the proposed 

approach as shown in table 9.18 does not require embedding any vendor 

signature thus resulting in zero registers during implementation (i.e. no design 

hardware overhead). The proposed CFE approach provides greater/stronger 

reliability and protection as it is almost non-vulnerable to any threats due to no 
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existence of reverse engineering step as well as vendor signature like in case of 

watermark based approaches. 

 

 

  

Benchmark: ARF (28 nodes) 

IP features 
Schedule 
algorithm 

Resource 
type 

chaining 
Bus 

width 
support 

Data 
pipelining 

Multi-
cycling 

Design 
objective 

Fault 
Reliability 

Loop 
support 

Trojan 
Security 

Match 
percent 

IPID LIST A, M Yes 32 bit No Yes 

Area - 
Execution 

time / Power- 
Execution 

time 

No DFG No NA 

IPCT 1 
(Hybrid PSO-
GA HLS [52]) 

LIST A, M Yes 16 bit No Yes 
Area-Power-

Latency 
No DFG No 80 

IPCT 2 
[Fault secure 

HLS [17]) 
LIST A, M, C No 16 bit No Yes 

Area - 
Execution 

time / Power- 
Execution 

time 

Yes DFG No 60 

IPCT 3 
(Watermark-

HLS [13]) 
LIST A, M, C, S No 32 bit No No 

Area - 
Execution 

time / Power- 
Execution 

time 

No DFG No 70 

IPCT 4 
(Trojan 

Secure-HLS 
[53]) 

LIST A, M, C, S No 16 bit No No 

Area - 
Execution 

time / Power- 
Execution 

time 

No DFG Yes 50 

IPCT 5 
(BFOA-HLS 

[54]) 
LIST A, M Yes 32 bit No Yes 

Area - 
Execution 

time / Power- 
Execution 

time 

No DFG No 100 

IPCT 6 
(Fault 

Tolerant-HLS 
[12]) 

LIST A, M, C, S No 16 bit No No 
Area - 

Latency 
Yes DFG No 40 

IPCT 7 
(PSO-HLS 

[33]) 
LIST A, M Yes 8 bit Yes Yes 

Area - 
Execution 

time / Power- 
Execution 

time 

No DFG No 80 

 

 

Table 9.13. Feature-set of IPID and IPCT for ARF benchmark  

(Note: IPCT n = IP core generated by competing HLS tool by vendor ‘n’) 

 



116 

 

  

Benchmark: FFT (36 nodes) 

IP features 
Scheduling 

algorithm 

Resource 

type 
chaining 

Bus 

width 

support 

Data 

pipelining 

Multi-

cycling 

Design 

objective 

Fault 

Reliability 

Loop 

support 

Trojan 

Security 

Match 

percent 

IPID 
LIST A, M, C No 16 bit No Yes 

Area - 

Execution time 

/ Power- 

Execution time 

Yes 

Yes 

(CDFG 

& DFG) 

No NA 

IPCT 1 
(Hybrid PSO-
GA HLS [52]) 

LIST A, M Yes 16 bit No Yes 
Area-Power-

Latency 
No 

No 

(DFG 

ONLY) 

No 50 

IPCT 2 
[Fault secure 

HLS [17]) 

LIST A, M, C No 16 bit No Yes 

Area - 

Execution time 

/ Power- 

Execution time 

Yes 

Yes 

(CDFG 

& DFG) 

No 100 

IPCT 3 
(Watermark-

HLS [13]) 

LIST A, M, C, S No 32 bit No No 

Area - 

Execution time 

/ Power- 

Execution time 

No 

Yes 

(CDFG 

& DFG) 

No 60 

IPCT 4 
(Trojan 

Secure-HLS 
[53]) 

LIST A, M, C, S No 16 bit No No 

Area - 

Execution time 

/ Power- 

Execution time 

No 

Yes 

(CDFG 

& DFG) 

Yes 60 

IPCT 5 
(BFOA-HLS 

[54]) 

LIST A, M Yes 32 bit No Yes 

Area - 

Execution time 

/ Power- 

Execution time 

No 

No 

(DFG 

ONLY) 

No 50 

IPCT 6 
(Fault 

Tolerant-HLS 
[12]) 

LIST A, M, C, S No 16 bit No No Area - Latency Yes 

No 

(DFG 

ONLY) 

No 60 

IPCT 7 
(PSO-HLS 

[33]) 

LIST A, M, C Yes 8 bit Yes Yes 

Area - 

Execution time 

/ Power- 

Execution time 

No 

Yes 

(CDFG 

& DFG) 

No 60 

 

Table 9.14. Feature-set of IPID and IPCT for FFT benchmark  
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Benchmark: FIR (23 nodes) 

IP features 
Scheduling 

algorithm 

Resourc

e type 
chaining 

Bus 

width 

suppor

t 

Data 

pipelining 

Multi-

cycling 

 

Design 

objective 
Reliability 

Loop 

support 

 

Trojan 

Security 

Match 

percent 

IPID 
LIST A, M,C Yes 8 bit No Yes 

Area - Execution 

time / Power- 

Execution time 

No 

Yes 

(CDFG 

& DFG) 

Yes NA 

IPCT 1 
(Hybrid PSO-
GA HLS [52]) 

LIST A, M Yes 16 bit No Yes 
Area-Power-

Latency 
No 

No 

(DFG 

ONLY) 

No 50 

IPCT 2 
[Fault secure 

HLS [17]) 

LIST A, M, C No 16 bit No Yes 

Area - Execution 

time / Power- 

Execution time 

Yes 

Yes 

(CDFG 

& DFG) 

No 60 

IPCT 3 
(Watermark-

HLS [13]) 

LIST 
A, M, C, 

S 
No 32 bit No No 

Area - Execution 

time / Power- 

Execution time 

No 

Yes 

(CDFG 

& DFG) 

No 50 

IPCT 4 
(Trojan 

Secure-HLS 
[53]) 

LIST 
A, M, C, 

S 
No 16 bit No No 

Area - Execution 

time / Power- 

Execution time 

No 

Yes 

(CDFG 

& DFG) 

Yes 60 

IPCT 5 
(BFOA-HLS 

[54]) 

LIST A, M Yes 32 bit No Yes 

Area - Execution 

time / Power- 

Execution time 

No 

No 

(DFG 

ONLY) 

No 60 

IPCT 6 
(Fault 

Tolerant-HLS 
[12]) 

LIST 
A, M, C, 

S 
No 16 bit No No Area - Latency Yes 

No 

(DFG 

ONLY) 

No 20 

IPCT 7 
(PSO-HLS 

[33]) 

LIST A, M, C Yes 8 bit No Yes 

Area - Execution 

time / Power- 

Execution time 

No 

Yes 

(CDFG 

& DFG) 

No 90 

 

 

Table 9.15. feature-set of IPID and IPCT for FIR benchmark  
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Benchmark: JPEG_IDCT (112 nodes) 

IP features 
Schedule 

algorithm 

Resourc

e type 
chaining 

Bus 

width 

support 

Data 

pipelin

e 

Multi-

cycling 

 

Design objective Reliability 
Loop 

support 

Trojan 

Security 

Match 

percent 

IPID 
LIST A, M Yes 8 bit Yes Yes 

Area - Execution 

time / Power- 

Execution time 

No DFG No NA 

IPCT 1 
(Hybrid PSO-GA HLS 

[52]) 

LIST A, M Yes 16 bit No Yes 
Area-Power-

Latency 
No DFG No 70 

IPCT 2 
[Fault secure HLS 

[17]) 

LIST A, M, C No 16 bit No Yes 

Area - Execution 

time / Power- 

Execution time 

Yes DFG No 50 

IPCT 3 
(Watermark-HLS 

[13]) 

LIST 
A, M, C, 

S 
No 32 bit No No 

Area - Execution 

time / Power- 

Execution time 

No DFG No 50 

IPCT 4 
(Trojan Secure-HLS 

[53]) 

LIST 
A, M, C, 

S 
No 16 bit No No 

Area - Execution 

time / Power- 

Execution time 

No DFG Yes 40 

IPCT 5 
(BFOA-HLS [54]) 

LIST A, M Yes 32 bit No Yes 

Area - Execution 

time / Power- 

Execution time 

No DFG No 80 

IPCT 6 
(Fault Tolerant-HLS 

[12]) 

LIST 
A, M, C, 

S 
No 16 bit No No Area - Latency Yes DFG No 30 

IPCT 7 
(PSO-HLS 

[33]) 

LIST A, M Yes 8 bit Yes Yes 

Area - Execution 

time / Power- 

Execution time 

No DFG No 100 

 

 

Table 9.16. feature-set of IPID and IPCT for JPEG_IDCT benchmark  
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Table 9.17. Average time consumed (ms) for feature extraction through proposed CFE approach 

Benchmarks 
Loop 

support 

Design 

objective 

Resource 

type 

Bus 

width 

support 

Multi-

cycling 

Fault 

Reliability 

Trojan 

Security 
chaining 

Data 

pipelining 

Scheduling 

algorithm 

ARF 0.3 1.2 3.1 7.2 23.5 46.3 48.7 80.5 74.6 374.5 

BPF 0.7 1.5 4.9 9.3 19.1 52.2 51.3 70.2 54.8 256.7 

DCT 0.8 2.4 5.7 12.8 19.6 49.8 57.8 68.7 88.5 231.1 

FFT 0.9 2.8 4.7 10.3 28.5 68.1 52.0 89.5 88.8 407.0 

FIR 0.6 4.7 5.9 10.7 13.6 35.9 72.9 76.8 69.2 240.1 

JPEG_IDCT 1.3 10.9 18.3 48.7 89.5 153.3 203.7 283.8 452.3 1903.0 

 

Benchmark 

Watermarking IP 

protection HLS 

approach [13] 

Proposed CFE based 

IP protection HLS 

approach 

Storage registers Storage registers 

ARF 11 0 

BPF 11 0 

DCT 11 0 

FFT 10 0 

FIR 11 0 

JPEG_IDCT 25 0 

 

Table 9.18. Advantages of proposed CFE approach over 

watermarking [13] for IP protection during HLS 
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Chapter 10 

Conclusion and Future work 

 

10.1. Conclusion 

This thesis has presented novel methodologies for generating reliable and secure 

IP cores. The following objectives were accomplished  

• Proposed a methodology that integrates ‘high-level synthesis’ 

framework with ‘physical design’ framework for generating a DSP IP 

core that is simultaneously secure/resilient against the multi-cycle 

temporal and multi-unit spatial effect of transient fault. The transient 

fault resiliency is achieved with a nominal design overhead. 

• Proposed a methodology for generating a DSP IP core that is 

simultaneously tolerant against multi-cycle temporal and multi-unit 

spatial effect of transient fault for data-intensive applications. The 

proposed approach is the first technique in the literature that considers 

simultaneous tolerance against the temporal and spatial effect of single 

event transient. The proposed approach presents novel transient fault 

tolerance-aware floor-planning rules. Further, it integrates PSO-DSE 

framework for exploring low-cost design solution. 

• Proposed a methodology for generating a DSP IP core that is 

simultaneously tolerant against multi-cycle temporal and multi-unit 

spatial effect of transient fault for control-intensive applications. The 

proposed approach achieves a design cost improvement of ~27% along 

with power reduction of ~61% compared to the state-of-the-art.  

• Proposed a methodology for generating a low-cost, highly secure, 

functionally obfuscated DSP IP core. The proposed methodology 

presents a novel IP functional locking block termed as ILB. The 

proposed ILBs inherits security properties that enhance the strength of 

obfuscation of the IP cores. Further, Security comparison of the 

proposed approach with state-of-the-art shows a minimum security 

enhancement of 4.29 e+9 times for the tested benchmarks. 
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• Proposed a methodology for analyzing the aging effect of NBTI stress 

on the performance of DSP IP core. It presents a performance 

comparison of stressed v/s not-stressed states of IP cores. Further, it 

presents a technique to identify input vector that causes maximum 

performance degradation due to NBTI stress on DSP IP core. The 

proposed approach can be utilized to detect the presence of an 

accelerated aging attack on IP core. 

• Proposed a novel computational forensic engineering methodology for 

resolving ownership conflict of DSP IP core generated using high-level 

synthesis. The proposed approach presents a set of ten novel features 

that can distinguish an IP core from another IP core generated using 

different high-level synthesis tools. Further, the proposed approach 

presents feature extraction rules/algorithms for each of the ten features 

of the feature-set. The comparison of the proposed approach with state-

of-the-art (watermarking based) approach for resolving ownership 

conflicts shows that the proposed approach incurs zero-overhead and 

zero-performance degradation. 

 

10.2. Future work  

In the future, various reliability-aware methodologies for resolving reliability 

concerns such as electromigration, intermittent faults, etc. can be devised for 

DSP cores using high-level synthesis framework. In a similar manner, low 

energy/power security aware methodologies can be devised for ensuring 

protection against hardware Trojan, IP piracy, IP overbuilding, etc. using high-

level synthesis.   
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APPENDIX-A 

GENERATION OF INPUT VECTORS AND AGING 

EVALUATION 

The input vectors for determining the most harmful threat vector can be 

generated using ATPG tools [15] such as linear feedback shift registers (LFSR) 

circuits [71, 72]. LFSR circuits can be implemented in Fibonacci 

implementation and/or Galois implementations as shown in fig. A.(1) and A.(2) 

respectively. In these figures, each rectangular block represents a D-flip flop. 

Further, gi represents the weight of the tap such that gi = 0 implies no 

connection; gi = 1 implies a connection (excluding for i=0 and i=m such that 

gm and g0 are always 1). For identical feedback weights, both types of 

implementations will produce the same sequence. The symbol ⊕ represents 

modulo 2 operation (implemented through XOR gate during hardware 

implementations).  

LFSR circuit produces linear recursive sequences (LRS), the length of the 

sequence before repetition depends upon feedback taps and an initial state (also 
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Fig.A.(1). Fibonacci implementation of LFSR 
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Fig.A.(2). Galois implementation of LFSR 
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known as seed input).  An LFSR of any given size m (number of flip-flops) can 

produce every possible state during the period N=2m-1, if appropriately tapped 

(i.e., if a proper feedback path is designed). Such a sequence is called a maximal 

length sequence (a.k.a. maximal sequence or maximum length sequence), 

abbreviated as m-sequence. Maximal length generators can produce two 

sequences. One is the trivial one, of length one, that occurs when the initial state 

of the generator is all zeros. The other one, the useful one, has a length of 2m - 

1. Together, these two sequences account for all 2m states of an m-bit state 

register. In our approach for determining aging due to NBTI stress on an IP core, 

we utilize the LFSR circuits with maximal length sequence. Based on the no. of 

input bits required LFSR circuit was designed. Subsequently, the maximal 

length sequences are generated and applied as an input vector to the IP core for 

a specific amount of time (say 1 year). Later on, the change in threshold voltage 

due to NBTI stress is evaluated using equation 7.1.   

         𝛥𝑉th =  𝑏 ⋅ 𝑎𝑛𝑡𝑛                                                  (7.1) 

Where, ΔVth represents change in threshold voltage due to NBTI stress, b = 3.9 

x 10-3 V.s-1\6, n is time exponential constant=0.16, a = input signal probability, 

t = time in seconds. Let’s consider an example of gate G1 in fig. 7.3, assuming 

stress time of 1 year (= 31536000 seconds) is applied, the gate G1 has input 

signal probability a = 0.3333 (the time for which gate G1 is under stress i.e., 1 

control step out of 3 control steps), change in threshold voltage is evaluated as 

𝛥𝑉th = (3.9 x 10-3 V.s-1\6 ) * (0.3333)0.16 * (31536000)0.16 s1/6 = 51.824 mV. 

Subsequently, the change in threshold voltage thus obtained is added to the 

original threshold voltage 𝑉th to get na ew threshold voltage as per equation 7.2.  

𝑉𝑡ℎ
𝑛ⅇ𝑤 =  𝑉th +  𝛥𝑉th     (7.2)    

The initial threshold voltage value for 65nm technology scale = 0.365 V = 365 

mV [15]. The new threshold voltage thus obtained = 365 mV + 51.824 mV = 

416.824 mV. Subsequently, the new threshold voltage value is used to 

determine the degraded delay of the PMOS transistor using equation 7.3 

𝑇 =  𝐾
𝑉

(𝑉−𝑉𝑡ℎ
𝑛𝑒𝑤)𝛼

       (7.3) 
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For 65nm technology scale, V= 1.2V is adopted from [15], and α=1.4, K=155 

x 10-6 is adopted from [45]. Therefore,  

T = (155 * 10-6) * (1.2 / (1.2 – 0.416824)1.4 ) = (155 * 10-6) * 1.68957 = 2.618e-

4 = 261.8 µs. 

The delay value thus obtained is reported for gate G1 in table 7.1. The proposed 

circuit is made of NAND gates. The NAND gate consists of 2 PMOS and 2 

NMOS transistors. The PMOS transistors are in parallel, therefore, the delay of 

NAND gate when 1 or both PMOS transistors are turned ON = delay of 1 PMOS 

transistor. However, the NMOS transistors are in serial, therefore, the delay of 

NAND gate when both NMOS transistors are turned ON = 2 * (delay of 1 

NMOS transistor). In our proposed work we are only considering NBTI stress 

(affecting PMOS transistors) as NBTI stress >>> PBTI stress (affecting NMOS 

transistors). Hence, delay of NMOS transistor is evaluated in No stress 

condition i.e. change in threshold voltage = 0, hence, 𝑉th = 0.365 V and T = 

239.4 µs. Thereby, when both NMOS transistors are turned ON, total delay = 2 

* 239.4 = 478.8 µs is reported for gate G2 (in table 7.1) when input vector 11101 

is applied. Similarly, delay degradation of all the gates in the critical path is 

evaluated; Subsequently, the input vector with the largest delay is determined 

as the most harmful vector. The most harmful threat vector thus determined can 

be utilized for performing an accelerated aging attack as discussed in chapter 7. 
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APPENDIX-B 

BENCHMARKS 

The Benchmarks used in analyzing the methodologies discussed in this thesis 

are adopted from  [61, 73, 74]. A brief overview of these benchmarks are as 

follows : 

1. Auto Regressive filters (ARF): are based on auto regressive (AR) model. 

Autoregressive models are developed on the idea that the current value 

of a series x(t) can be explained as a function of p past values, x(t-1), 

x(t-2), x(t-3), …. , x(t-p). where p denotes the number of past values 

required to determine the current value. AR models find applications in 

time series analysis, statistical analysis, the field of economics such as 

stock market predictions, signal processing, etc. [73, 75]. 

2. Band-pass filter (BPF): passes frequency within the ‘band’ and filters-

out (remove) frequencies outside the ‘band’. Band-pass filters are 

widely used in wireless communication. In transmitters, the main 

function of BPF is to limit the output signal to the allocated band. In 

receivers, BPF is responsible for allowing only signals within the band 

to enter the system for further processing [73]. 

3. Elliptic wave filter (EWF): is a signal processing filter with equalized 

ripple behavior in both the pass band and stop band. A detailed 

description of the 5th order elliptic wave filter can be found in [76, 73]. 

4.  JPEG-based benchmarks: Joint Photographic Expert group is the joint 

committee between ISO/IEC JTC1 and ITU-T (formerly CCITT) that 

created and maintains the JPEG standard. JPEG is a commonly used 

method for image compression. The JPEG compression can be divided 

into five steps: color space conversion, downsampling, 2-D DCT, 

quantization, and entropy coding. The first two operations are used only 

for color images [77]. The color space conversion transforms the RGB 

input image to a luminance and chrominance space color, such as the 

YCbCr representation. The downsampling operation reduces the 

sampling rate of the color information (Cb and Cr) because the human 

eye is less sensitive to chrominance components. The quantization 
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operation discards the 2-D DCT high frequency and small amplitude 

coefficients. Finally, the entropy coding uses run-length encoding 

(RLE), Huffman, variable length coding (VLC) and differential coding 

to decrease the number of bits used to represent the image. JPEG 

benchmarks such as forward discrete cosine transform (FDCT) and 

Inverse discrete cosine transform (IDCT) performs forward and inverse 

discrete cosine transforms (DCT) respectively. A detailed discussion of 

JPEG DCT algorithms can be found in [78]. JPEG Smooth Downsample 

benchmark perform ‘smoothing’ and ‘downsampling’ operations [61]. 

In the image processing smoothing is used for noise reduction [79]. 

5. Mesa-based benchmarks: Mesa is a project for open source 

implementation of OpenGL specification (a system for interactive 3D 

graphics). The various functions of Mesa 3D graphics library are utilized 

for developing these benchmarks [61]. Matrices are often utilized during 

digital signal processing. Mesa - invert matrix benchmark is an 

implementation of the matrix inversion algorithm. Mesa – Matrix 

Multiplication is an implementation of matrix multiplication algorithm. 

Mesa – Horner Bezier benchmark represents a function to calculate a 

point on a tensor product Bezier curve using Horner’s algorithm. Mesa 

– smooth Triangle benchmark represents a smoothing subroutine. Mesa 

– Interpolate aux benchmark presents interpolate aux function for 

performing color interpolation between colors texture coordinates and 

indexes. Mesa – Feedback points benchmark represents a function takes 

vertex buffer as input and calculates texture coordinates for a feedback 

buffer.  

6. MPEG based benchmarks: Moving Picture Expert Group is a working 

group of ISO/IEC. The aim of this group is to develop standards for 

coded representation of digital audio, video, 3D graphics, and other 

related domains. MPEG IDCT benchmark represents a function for 

performing inverse two-dimensional discrete cosine transform [61]. 

Several MPEG standards such as MPEG-1 Part-2, MPEG-2 Part-2/ 

H.262, MPEG-4 Part-2 requires IDCT function.  

The MPEG motion vector benchmark represents a function for 

motion vector decoding. A motion vector is a key element in motion 
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estimation. The MPEG-4 standard defines motion vector as: ‘A two-

dimensional vector used for inter prediction that provides an offset from 

the coordinates in the decoded picture to the coordinates in a reference 

picture’.    

7. Diffeq: The Differential equation solver benchmark represents the 

hardware description for a small fixed-point calculation loop. The 

algorithm tries to numerically solve the equation y'' + 3xy' + 3y = 0 [81, 

74] 

8. Discrete Wavelet Transform (DWT): represents a multiresolution 

decomposition of a signal. DWT decomposes a signal into its 

components in different frequency bands. DWT can be designed 

specifically for a variety of wavelets such as Haar wavelet, Daubechies 

wavelet, dual-tree complex wavelet, etc. or generically (independent of 

the type of wavelet). DWT is widely used in fields of image processing, 

biomedical signal processing, wireless communication, etc.[82].  

9. Fast Fourier Transform (FFT): The Fourier transform is used for 

characterizing linear systems and for identifying the frequency 

components of a continuous waveform. However, for analyzing the 

waveform on a digital computer, a discrete version of the Fourier 

transform (DFT) is required. The Fast Fourier Transform (FFT) is an 

efficient method for computing a discrete Fourier transform. FFT 

substantially reduces the time required for performing DFT [80, 73]. 

10. Finite Input Response (FIR) and Infinite Input response (IIR) Filters: A 

FIR filter is a filter whose impulse response (or response to any finite 

length input) is of finite duration because it settles to zero in finite time. 

This contrasts with infinite impulse response (IIR) filters, which may 

have internal feedback and may continue to respond indefinitely 

(usually decaying) [83].  
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