
I

TRANSIENT FAULT RELIABILITY AND

SECURITY OF IP CORES

Ph.D. Thesis

By

DEEPAK KACHAVE

DISCIPLINE OF COMPUTER SCIENCE AND ENGINEERING

INDIAN INSTITUTE OF TECHNOLOGY INDORE
DECEMBER 2018

II

TRANSIENT FAULT RELIABILITY AND

SECURITY OF IP CORES

A THESIS

Submitted in partial fulfillment of the

requirements for the award of the degree

of

DOCTOR OF PHILOSOPHY

by

DEEPAK KACHAVE

DISCIPLINE OF COMPUTER SCIENCE AND ENGINEERING

INDIAN INSTITUTE OF TECHNOLOGY INDORE
DECEMBER 2018

III

INDIAN INSTITUTE OF TECHNOLOGY

INDORE

CANDIDATE’S DECLARATION

 I hereby certify that the work which is being presented in the thesis entitled TRANSIENT FAULT

RELIABILITY AND SECURITY OF IP CORES in the partial fulfillment of the requirements for the

award of the degree of DOCTOR OF PHILOSOPHY and submitted in the DISCIPLINE OF

COMPUTER SCIENCE AND ENGINEERING, INDIAN INSTITUTE OF TECHNOLOGY

INDORE, is an authentic record of my own work carried out during the time period from JUNE, 2015 to

DECEMBER 2018 under the supervision of Dr. ANIRBAN SENGUPTA, Assistant Professor, Indian

Institute of Technology, Indore.

 The matter presented in this thesis has not been submitted by me for the award of any other degree

of this or any other institute.

 signature of the student with date

(DEEPAK KACHAVE)

--

 This is to certify that the above statement made by the candidate is correct to the best of my/our

knowledge.

Signature of Thesis Supervisor with date

 (ANIRBAN SENGUPTA)

 DEEPAK KACHAVE has successfully given his/her Ph.D. Oral Examination held on

16/April/2019.

Signature of Chairperson (OEB) Signature of External Examiner Signature(s) of Thesis Supervisor(s)

Date: Date: Date:

Signature of PSPC Member #1 Signature of PSPC Member #2 Signature of Convener, DPGC

Date: Date: Date:

Signature of Head of Discipline

Date:

IV

ACKNOWLEDGEMENTS

I would like to express my gratitude to my supervisor Dr. Anirban Sengupta for

providing me the opportunity to do work under his supervision. I would like to

thank him for his persistence and faith in me, without his relentless effort,

guidance and deadlines I would have not been to understand the importance of

research and the sacrifice it requires to reach a certain level.

Further, I would like to thank my parents and TA supervisors for their

continuous support. I would like to thank all the faculty members and colleagues

for their continuous support. The time spent at IIT Indore will be one of the

most valuable memories of my life.

I would like to thank Ministry of Electronics and Information Technology

(MEITY) for financial support.

V

Dedicated to OLD HANDS who care for their children

(parents)

&

STRONG HANDS who mold careers

(Teachers)

VI

ABSTRACT

The rapid growth of consumer electronics (CE) industry has led to a cut-throat

competition of developing sophisticated devices. As the complexity of the CE

design increases along with shortening of time-to-market deadlines, the

designers are becoming heavily reliant on reusable Intellectual Property (IP)

cores generated at higher levels of design abstraction. A malicious attacker may

exploit dependency on IP cores through security issues/vulnerabilities such as

piracy, Trojan insertion, overbuilding, reverse engineering, etc. Hence,

methodologies are required to ensure the security of the IP cores.

Further similar to IP core security, IP core reliability is also becoming a major

concern. As the demand for CE devices with sophisticated features such as low-

power consumption, smaller silicon area, etc. increases, the IP core designers

are heavily depending upon technology scaling to meet these design objectives.

However, technology scaling enhances several reliability concerns such as bias

temperature instability, multi-cycle, and multi-unit transient faults,

electromigration, etc. Hence, methodologies are required for designing reliable

IP cores.

To advance the state-of-the-art for designing reliable and secured IP cores, this

thesis makes following contributions: (a) A novel methodology for generating

a DSP IP core that is simultaneously resilient/secure against multi-cycle

(temporal) and (multi-unit) spatial effect of transient fault. (b) A novel

methodology for generating a DSP IP core that is simultaneously tolerant

against a multi-cycle temporal and multi-unit spatial effect of transient fault for

data-intensive applications. (c) A novel methodology for generating a DSP IP

core that is simultaneously tolerant against a multi-cycle temporal and multi-

unit spatial effect of transient fault for loop-based control intensive applications.

(d) A novel methodology for generating a low-cost, highly secure, functionally

obfuscated DSP IP core. (e) A novel methodology for analyzing the aging effect

of NBTI stress on the performance of DSP IP core. (f) A novel computational

forensic engineering methodology for resolving ownership conflict of DSP IP

core generated using high-level synthesis.

VII

LIST OF PUBLICATIONS

PEER-REVIEWED JOURNALS (10):

1. Anirban Sengupta, Deepak Kachave, "Spatial and Temporal

Redundancy for Transient Fault Tolerant Datapath," in IEEE

Transactions on Aerospace and Electronic Systems (TAES), Volume:

54, Issue:3, June 2018, pp. 1168-1183

2. Anirban Sengupta, Deepak Kachave, Dipanjan Roy "Low Cost

Functional Obfuscation of Reusable IP Cores used in CE Hardware

through Robust Locking", IEEE Transactions on Computer Aided

Design of Integrated Circuits & Systems (TCAD), Accepted, 2018.

3. Deepak Kachave, Anirban Sengupta, "Shielding CE Hardware Against

Reverse-Engineering Attacks Through Functional Locking", in IEEE

Consumer Electronics, vol. 7, no. 2, pp. 111-114, March 2018.

4. Deepak Kachave, Anirban Sengupta, “Performance Degradation of DSP

Cores due to NBTI Stress Attack (Invited Paper)”, IEEE Potentials,

2018.

5. Deepak Kachave, Anirban Sengupta, "Applying digital forensic for

hardware protection: resolving false claim of IP ownership", IEEE

VLSI Circuits & Systems Letter, Volume 4, Issue 1, pp. 10 - 13, Feb

2018.

6. Deepak Kachave, Anirban Sengupta, Shubha Neema, Panugothu Sri

Harsha" Effect of NBTI Stress on DSP cores used in CE Devices: Threat

Model and Performance Estimation", IET Journal on Computers &

Digital Techniques (CDT), Volume 12, Issue 6, November 2018, p. 268

– 278.

7. Anirban Sengupta, Deepak Kachave "Particle Swarm Optimisation

Driven Low Cost Single Event Transient Fault Secured Design during

Architectural Synthesis (Invited Paper)", IET Journal of Engineering,

p. 184-194, 2017

8. Anirban Sengupta, Deepak Kachave "Low Cost Fault Tolerance against

kc-cycle and km-unit Transient for Loop Based Control Data Flow

Graphs during Physically Aware High Level Synthesis", Elsevier

VIII

Journal on Microelectronics Reliability, Volume 74, July 2017, pp. 88-

99.

9. Anirban Sengupta, Deepak Kachave "Forensic Engineering for

Resolving Ownership Problem of Reusable IP Core generated during

High Level Synthesis", Elsevier Journal on Future Generation

Computer Systems, Volume 80, Pages 29-46, March 2018.

10. Deepak Kachave, Anirban Sengupta, “Integrating Physical Level

Design and High Level Synthesis for Simultaneous Multi-Cycle

Transient and Multiple Transient Fault Resiliency of Application

Specific Datapath Processors”, Elsevier Journal on Microelectronics

Reliability, Volume 60, Pages 141-152, May 2016.

BOOK CHAPTER (1):

11. Deepak Kachave, Anirban Sengupta, "Hardware Reliability Analysis of

DSP Cores", IET Book: VLSI and Post-CMOS Devices, Circuits and

Modelling, Invited Book Chapter, 2017.

PEER-REVIEWED CONFERENCES (3):

12. Anirban Sengupta, Deepak Kachave, "Generating Multi-cycle and

Multiple Transient Fault Resilient Design During Physically Aware

High Level Synthesis," 2016 IEEE Computer Society Annual

Symposium on VLSI (ISVLSI), Pittsburgh, PA, 2016, pp. 75-80.

13. Anirban Sengupta, Deepak Kachave, Shubha Neema, Panugothu Sri

Harsha, "Reliability and Threat Analysis of NBTI Stress on DSP Cores,"

2017 IEEE International Symposium on Smart Electronic Systems

(IEEE-iSES, formerly IEEE-iNIS), Bhopal, 2017, pp. 11-14.

14. Deepak Kachave, Anirban Sengupta, "Protecting Ownership of

Reusable IP Core Generated during High Level Synthesis," 2016 IEEE

International Symposium on Smart Electronic Systems (IEEE-iSES,

formerly IEEE-iNIS), Gwalior, 2016, pp. 80-82.

IX

TABLE OF CONTENTS

 ABSTRACT VI

 LIST OF PUBLICATIONS VII

 LIST OF FIGURES XII

 LIST OF TABLES XIV

 NOMENCLATURE XV

 ACRONYMS XVII

1. Chapter1 1

 Introduction

 1.1 IP core and its background 2

 1.2 Generic VLSI design flow 3

 1.3 Background on High-Level Synthesis 4

 1.4 Transient fault reliability of IP cores 5

 1.5 Security of IP cores 5

 1.6 NBTI stress analysis based accelerated aging attack on IP

cores

6

 1.7 Organization of thesis 6

2. Chapter 2 9

 State of the art

 2.1 State of the art on transient fault security/tolerance of an

IP core

9

 2.2 State of the art on the security of an IP core 11

 2.3 State of the art on NBTI stress analysis of DSP IP cores 12

 2.4 The objective of the thesis 12

 2.5 Summary of the contributions 13

3. Chapter 3 17

 Methodology for generating a DSP IP core that is

simultaneously resilient/secure against multi-cycle temporal and

multi-unit spatial effect of transient fault

 3.1 Introduction 17

 3.2 Proposed approach 18

 3.3 Demonstrative example 25

 3.4 Advantages and disadvantages of the proposed approach 28

 3.5 Summary 28

4 Chapter 4 31

X

 Methodology for generating a low-cost DSP IP core that is

simultaneously tolerant against multi-cycle temporal and multi-

unit spatial effects of transient fault for data-intensive

applications

 4.1 Introduction 31

 4.2 Proposed approach 32

 4.3 Proposed methodology for generating kc-cycle transient

fault tolerant design

34

 4.4 Proposed methodology for generating km-unit transient

fault tolerant design

37

 4.5 PSO-DSE framework for generating low-cost kc-cycle

and km-unit transient fault tolerant design

40

 4.6 Summary 42

5 Chapter 5 43

 Methodology for generating a low-cost DSP IP core that is

simultaneously tolerant against multi-cycle temporal and multi-

unit spatial effects of transient fault for loop-based control

intensive applications

 5.1 Introduction 43

 5.2 Proposed approach 43

 5.3 Preprocessing of CDFG 46

 5.4 Proposed methodology for generating a kc-cycle

transient fault tolerant design

48

 5.5 Proposed methodology for generating a km-unit transient

fault tolerant design

52

 5.6 Proposed PSO-DSE framework for generating low-cost

kc-cycle and km-unit transient fault tolerant design

55

 5.7 Summary 58

6 Chapter 6 59

 Methodology for generating a low-cost, highly secure,

functionally obfuscated DSP IP core

 6.1 Introduction 59

 6.2 Threat model 61

 6.3 Proposed approach 61

 6.4 Proposed PSO-DSE framework for generating low-cost

functionally obfuscated DSP IP core

69

 6.5 Summary 70

7 Chapter 7 71

 Methodology for analyzing the aging effect of NBTI stress on

the performance of DSP IP core

XI

 7.1 Introduction 71

 7.2 Proposed approach 72

 7.3 Accelerated aging attack: Modelling and detection 77

 7.4 Summary 78

8 Chapter 8 79

 Computational forensic engineering methodology for resolving

ownership conflict of DSP IP core generated using high-level

synthesis

 8.1 Introduction 79

 8.2 Computational forensics engineering framework 80

 8.3 Proposed approach 81

 8.4 Case study 82

 8.5 Summary 93

9 Chapter 9 95

 Experimental results and analysis

 9.1 Results and analysis: Methodology for generating a DSP

IP core that is simultaneously secure/resilient against

multi-cycle temporal and multi-unit spatial effect of

transient fault.

95

 9.2 Results and analysis: Methodology for generating a DSP

IP core that is simultaneously tolerant against multi-cycle

temporal and multi-unit spatial effect of transient fault.

99

 9.3 Results and analysis: Methodology for generating a low-

cost, highly secure, functionally obfuscated DSP IP core

103

 9.4 Results and analysis: Methodology for analyzing the

aging effect of NBTI stress on the performance of DSP

IP core

106

 9.5 Results and analysis: Computational forensic engineering

for resolving ownership conflict of DSP IP core

generated using high-level synthesis

112

10 Conclusion and future work 121

 10.1 Conclusion 121

 10.2 Future work 122

 APPENDIX-A 123

 APPENDIX-B 126

 REFERENCES 129

XII

LIST OF FIGURES

Figure 1.1 Generic IC design flow 3

Figure 3.1 Overview of proposed transient fault security approach 18

Figure 3.2 Flow diagram of the proposed methodology for

generating simultaneously kc and km resilient DSP IP

core

19

Figure 3.3 Protecting the guard: Error-detection block 21

Figure 3.4 A dual modular redundant system of IIR Filter 24

Figure 3.5 2-cycle transient fault resilient DMR schedule of IIR

Filter

25

Figure 3.6 4-unit transient fault resilient floorplan based on the 2-

cycle transient fault resilient SDFG of IIR (2A, 2M)

26

Figure 3.7 IIR floorplan (2A, 2M) with no rules of multiple

Transient fault security

26

Figure 4.1 Overview of proposed TF tolerant approach for data-

intensive applications

32

Figure 4.2 Flow graph of the proposed TF tolerant methodology for

data-intensive applications

33

Figure 4.3 Un-timed TMR system for DWT DFG benchmark 36

Figure 4.4 4-cycle TF tolerant schedule of DWT DFG for particle

position Xi = {3A, 2M}

36

Figure 4.5 Proposed km-unit transient fault tolerant floorplanning

rules

38

Figure 4.6 Non-tolerant Floorplan of DWT benchmark 39

Figure 4.7 kc= 4 and km=4 fault-tolerant floorplan of DWT

benchmark

39

Figure 5.1 Overview of proposed TF tolerant approach for loop-

based control intensive applications

44

Figure 5.2 Flow graph of the proposed TF tolerant methodology for

loop-based control intensive applications

45

Figure 5.3 Unrolled CDFG of differential equation benchmark for

UF = 2

46

Figure 5.4 TMR system of unrolled CDFG (UF = 2) of differential

equation benchmark

47

Figure 5.5 4-cycle TF fault tolerant SCDFG TMR of differential

equation benchmark for (6M, 3A, 3S, 2C, UF=2)

47

XIII

Figure 5.6 Proposed km-unit transient fault tolerant floorplanning

rules

52

Figure 5.7 Non-tolerant Floorplan of differential equation

benchmark

54

Figure 5.8 kc=4 and km=4 fault-tolerant floorplan of differential

equation benchmark

54

Figure 6.1 The possibility of Reverse engineering attack during

various stages of IC design

60

Figure 6.2 Details of proposed functional obfuscation methodology 62

Figure 6.3 Proposed IP core locking Blocks 64

Figure 6.4 Obfuscated (locked) gate-level 4-bit FIR for (1A, 1M,

µ=2) locked with a 64-bit key

67

Figure 7.1 Proposed NBTI stress analysis methodology 73

Figure 7.2 (a) Pseudocode of FIR benchmark 75

Figure 7.2 (b) Scheduling and allocation diagram based on sample

resource configuration (1A, 1M)

75

Figure 7.3 NAND based gate level implementation of FIR datapath 76

Figure 7.4 (a) FIR IP core block 77

Figure 7.4 (b) Modified Hardware logic 77

Figure 8.1 The process of resolving the ownership conflict of a

given IP core (IPID) using CFE

83

Figure 8.2 Flow graph representing the feature extraction

methodology for scheduling algorithm feature

84

Figure 8.3 Schedule displaying chaining of adder w.r.t. multiplier

functional unit

85

Figure 8.4 Proposed algorithm to detect chaining in an IP 87

Figure 8.5 HDL code 88

Figure 8.6 Pipelining feature in IP with resource configuration (2A,

1M)

91

Figure 9.1 Nand based gate level implementation of FIR datapath

on FPGA board

110

Figure 9.2 Effect of NBTI stress on ARF Benchmark 111

Figure A.1 Fibonacci implementation of LFSR 123

Figure A.2 Galois implementation of LFSR 123

XIV

LIST OF TABLES

Table 3.1 Conflict details of sister operations in 2-cycle transient

fault resilient SDFG DMR of IIR

23

Table 3.2 Library details based on 15nm NanGate 27

Table 7.1 Gate delay and PMOS details corresponding to stress

time 1 year for input test vector 11101 (Note: G1, ….,

G23 represents gates of FIR datapath)

76

Table 9.1 Results comparison of proposed 2-cycle, 2-unit

transient fault resilient design with non-transient fault

resilient in terms of chip area and corresponding

overhead

96

Table 9.2 Results comparison of proposed 10-cycles, 4-units

transient fault resilient designs with non-transient fault

resilient in terms of chip area and corresponding

overhead

97

Table 9.3 Power comparison results of proposed 10-cycle, 4-unit

multiple transient fault resilient designs and non-

transient fault resilient DMR designs

98

Table 9.4 Cost comparison of proposed method with [12] for

kc=4 & km=4

102

Table 9.5 Comparison of power of proposed method with [12]

for kc=4 & km=4

102

Table 9.6 Comparison of area of proposed method with [12] for

kc=4 & km=4 (Note : 1 unit = 768nm)

102

Table 9.7 Comparison of delay of proposed method with [12] for

kc=4 & km=4

102

Table 9.8 Strength of obfuscation comparison of proposed

functionally obfuscated approach w.r.t. [21]

105

Table 9.9 Power comparison of proposed functionally obfuscated

approach w.r.t. [21]

105

Table 9.10 Cost comparison of proposed functionally obfuscated

approach w.r.t. [21]

105

Table 9.11 Delay after 1 year of continuous NBTI stress of IIR

Benchmark

109

Table 9.12 Delay after applying 1 year of continuous NBTI stress

on ARF benchmark

109

Table 9.13 Feature-set of IPID and IPCT for ARF benchmark 115

Table 9.14 Feature-set of IPID and IPCT for FFT benchmark 116

Table 9.15 Feature-set of IPID and IPCT for FIR benchmark 117

Table 9.16 Feature-set of IPID and IPCT for JPEG_IDCT

benchmark

118

Table 9.17 Average time consumed (ms) for feature extraction

through proposed CFE approach

119

Table 9.18 Advantages of proposed CFE approach over

watermarking [13] for IP protection during HLS

119

XV

NOMENCLATURE

Xi Particle encoding

L[k] List of conflicting hardware

kc Strength of temporal effect of transient fault

km Strength of spatial effect of transient fault

OU Original unit

DU Duplicate unit

t(v) control step (time) at which operation v is scheduled

t(v’) control step (time) at which operation v’ is scheduled

t(v’’) control step (time) at which operation v’’ is scheduled

S(Mv) Starting point of placement of hardware module (M) allocated

to operation v

S(Mv’) Starting point of placement of hardware module (M) allocated

to operation v’

cij Connectivity between ith and jth hardware units

dij Manhattan distance between ith and jth hardware units

Cf (Xi) Cost/fitness of design solution with respect to resource

configuration (Xi)

LDMR Latency of kc-cycle transient fault resilient design solution

Lmax
DMR Maximum latency of kc-cycle transient fault resilient design

space

AFP Area of transient fault resilient design solution

Amax
FP Maximum area of kc-cycle transient fault resilient design space

WFP Wirelength of transient fault tolerant floorplan

Wmax
FP Maximum wirelength of transient fault resilient design space

φ1, φ2,

φ3

User defined weights

OC Original copy

DC Duplicate copy

TC Triplicate copy

v Operation belonging to original copy

v’ Operations belonging to duplicate copy

v’’ Operations belonging to triplicate copy

[Ri] List of hardware resources in the kc-cycle fault tolerant

schedule

(𝑍𝑅𝑖
[𝑅𝑗]) List of hardware in conflict with ith resource due to spatial

effect of TF

Pi ith particle of the swarm

NRD Number of resources in the Dth dimension of the design space

LFT Latency of fault tolerant design solution explored during PSO-

DSE

Lmax
FT Maximum latency of the fault tolerant design space

AFT Area of the fault tolerant design solution

Amax
FT Maximum area of the fault tolerant design solution

XVI

𝑅𝑑𝑖
 Number of resources of ith particle in dth dimension

𝑅𝑑𝑖

+ Updated number of resources of ith particle in dth dimension

𝑉𝑑𝑖
 Velocity of the ith particle in the dth dimension of the design

space

𝑉𝑑𝑖

+ Updated velocity of the ith particle in the dth dimension of the

design space

ω Inertia weight

b1, b2 Acceleration coefficients

r1, r2 Random numbers

𝑅𝑑𝑔𝑏
 Global best in the dth dimension

𝑅𝑑𝑙𝑏𝑖
 Local best in the dth dimension

LTMR Latency of kc-cycles transient fault tolerant TMR design

Lseq Latency of sequential body

Lpar Latency of the parallel body

µ A random integer between 1 and TILB (1 ≤ µ ≤ TILB).

TILB Total number of ILBs in the initial design space before AES

block integration

POB Power of the obfuscated design solution explored during PSO-

DSE

Pmax
OB Maximum power of the obfuscated design in the design space

DOB Delay of the obfuscated design solution explored during PSO-

DSE

Dmax
OB Maximum delay of the obfuscated design in the design space

ΔVth Change in the threshold voltage

a Input signal probability

b Constant

t Time in seconds

n Time exponential constant

T Delay of PMOS transistor

K Technology based proportionality constant

Vth
new New threshold voltage

IPID Intellectual property core whose ownership is to be identified

IPCTn Intellectual property core generated using nth claimant’s tool

FUi Functional unit of ith type

CSs(Fui) Starting control step of ith functional unit

CSE(Fui) Ending control step of ith functional unit

CSS(N)1 Starting control step of the data set 1

CSE(N)1 Ending control step of the data set 1

m Matching percentage

XVII

ACRONYMS

HLS High-level synthesis

VLSI Very Large Scale Integration

IP Intellectual property

DSP Digital signal processor

CE Consumer Electronics

IC Integrated Circuits

SoC System on chip

RTL Register Transfer Level

VHDL Very High Speed Integrated Circuit Hardware Description

Language

GDS Graphic Database System

ALU Arithmetic Logic Unit

DFG Data Flow Graph

CDFG Control Data Flow Graph

FSM Finite State Machine

TF Transient Fault

MTF Multi-unit Transient Fault

MCT Multi-cycle Transient Fault

SET Single Event Transient

MOSFET Metal Oxide Semiconductor Field Effect Transistor

PMOS P-channel Metal Oxide Semiconductor

NBTI Negative Bias Temperature Instability

CFE Computational Forensic Engineering

PSO Particle Swarm Optimization

DSE Design Space Exploration

DMR Dual Modular Redundant

TMR Triple Modular Redundant

ILB IP functional Locking Block

LET Linear Energy Transfer

SDFG Scheduled Data Flow Graph

TFH Transient Fault Hazards

CS Control Step

FP Floor Plan

FU Functional unit

DWT Discrete Wavelet Transform

FIR Finite Impulse Response

IIR Infinite Impulse Response

ASP Application Specific Processor

ASIC Application Specific Integrated Circuit

UF Unrolling Factor

3PIP 3rd party Intellectual Property

ASAP As Soon As Possible

ALAP As Late As Possible

opn operation

Mux Multiplexer

Demux Demultiplexer

XVIII

LFSR Linear Feedback Shift Register

ARF Auto-Regressive Filter

BPF Band Pass Filter

DCT Discrete Cosine Transform

DWT Discrete Wavelet Transform

EWF Elliptic Wave Filter

FFT Finite Fourier Transform

FIR Finite Impulse Response

IIR Infinite Impulse Response

JPEG IDCT Joint Photographic Experts Group Inverse Discrete Cosine

Transform

MPEG MV Moving Pictures Experts Group Motion Vector

1

Chapter 1

Introduction

The invention of the transistor in the mid-20th century has led to unimaginable

progress of electronics industry. Since its invention, the reduction in transistors’

dimension has followed a well-known prediction termed as Moore’s law [1]. In

the 1970-80s the devices made from transistors such as computers could only

be afforded by the large-scale industries/business-houses due to their features

such as large size, high power consumption, high cost, etc. However, as the

transistor scaling continues, devices having characteristics such as low power

consumption, compact form-factor, better heat dissipation, were made possible.

These advances have led to a whole new industry, centered toward

manufacturing electronics devices for personal/home usage known as consumer

electronics (CE). Along with transistor scaling; other technological advances

such as the internet, smartphones, etc. have made consumer electronics a major

market force (with estimated sales in multi-billion dollars [2]). Due to the huge

demand for CE devices, the competition for designing the best product and

launching them as fast as possible has increased tremendously. The cut-throat

competition has resulted in very stringent (short) time-to-market deadlines.

Additionally, the increasing demand for minuscule devices possessing as many

features as possible has resulted in enhanced design complexity (for devices

such as smartphones, smartwatches, etc.). In order to meet these stringent time-

to-market deadlines as well as reduce design complexity, the device designers

are highly dependent on third-party Intellectual property (IP) cores designed at

higher levels of design abstraction through high-level synthesis / behavioral

synthesis / architectural synthesis [3-5].

As more and more sophisticated electronic devices are becoming an integral

part of business-critical and mission-critical systems, along with globalization

of supply-chain, the chances of a malicious attack on an electronic device in a

mission-critical system have increased tremendously [3-5]. Therefore, it is

mandatory to devise algorithms that can ensure the security of IP cores.

Furthermore, the devices designed using scaled transistors are becoming

increasingly sensitive to their environment than earlier technology scales.

2

Therefore, as the technology scaling continues in the sub-nanometer range, the

reliability of contemporary and future IP cores has become a major concern.

Thus, methodologies are required for developing a reliable IP core for mission-

critical systems [6, 66-68].

This chapter presents the background of the methodologies proposed in this

thesis for designing reliable and secured IP cores. The first section discusses

IP cores and their relevance in the electronics industry. The second section

briefly discusses various design abstraction levels of a generic integrated circuit

(IC) design flow. The third section describes the higher level of design

abstraction known as ‘high-level synthesis (HLS)’. Subsequently, the fourth,

fifth, and sixth sections discuss the proposed reliability and security

methodologies. Finally, the seventh section discusses the organization of the

thesis.

1.1. IP core and its background

An intellectual property core in electronics refers to a reusable logic block that

is an intellectual property of an IP owner. Reusable IP cores play a vital role in

reducing the design complexity and help the designers to meet time-to-market

deadlines. An IP core is analogues to a library in the context of a computer

program. Like a library, an IP core can be utilized to design a system on chip

(SoC) quickly and easily. An IP buyer could purchase IP core(s) from third-

party IP vendors and combine them along with in-house technologies (if any)

to generate a ‘market-ready’ product. For instance, consider a company

interested in developing a personal computer, it may buy IP cores of the digital

signal processor (DSP), memory, etc. and combine it with its in-house

components to create a ‘market-ready’ product. Thereby, reducing time, effort

and cost to build in-house IP cores. An IP core can be of three types; soft IP

core, hard IP core or firm IP core [7]. A soft IP core is typically delivered as a

synthesizable Register transfer level (RTL) code in a hardware description

language (such as Verilog or VHDL) or schematic design. Similarly, a hard IP

is typically delivered as a layout design in the form of a GDS II file [4]. A soft

IP core is comparatively more modifiable/tweakable than a hard IP core. The

word hard and soft represents modifiability of these IP core. A question arise

3

several times whether an IP core should be provided as a soft IP core or hard IP

core? A hard IP core is easily predictable but not portable for instance, a hard

IP core cannot be ported from initially targeted foundry to another foundry. On

the other hand, a soft IP core is portable but not predictable i.e., its performance

may vary significantly as it gets converted into lower levels of design

abstractions. Therefore, the third type of IP core is required that is

simultaneously predictable and portable. This type of IP core is termed ‘firm IP

core’ [7, 69]. An IP core design process can be clearly understood with the help

of a generic integrated circuit design flow as discussed in section 1.2.

1.2. Generic VLSI design flow

A generic integrated circuit design flow is based on divide and conquer

technique. As shown in fig. 1.1, complex design is divided into various

abstraction levels. At each level, the design is optimized to achieve certain

objectives/goals. A generic IC design flow takes system specification as input

in the form of a programming language or a hardware description language.

Subsequently, high-level synthesis is performed to obtain a register transfer

level (RTL) datapath as discussed in section 1.3. Later, the RTL datapath is

converted into gate level netlist using logic synthesis. The gate level netlist thus

obtained is converted into layout design (typically in the form of a GDS II file)

during the physical design step of the IC design flow. The layout file thus

generated is analyzed to check whether the layout design meets the design

objectives (specification/constraints). Once the layout is verified, it is sent for

fabrication. Once, the fabrication is completed, a ‘die’ is created. Subsequently,

the die is packaged and tested. The test approved ICs are made available in the

market [3-7, 21].

Register

transfer

level (RTL)

High level

synthesis

(HLS)

Logic

Synthesis
Physical

design

System

specification

Gate level

netlist
Layout

(GDS II)

Physical

verification

Die

Fabrication

Packaging

& Testing

Fig. 1.1 Generic IC design flow

Market ready

Integrated circuit

4

1.3. Background on High-Level Synthesis

High-level synthesis (a.k.a. behavioral or architectural synthesis) is a technique

to convert a behavioral description of a system into a register transfer level

design. The HLS methodology takes a behavioral description of a system (such

as processors) and converts it into register transfer level design (having elements

such as ALU, muxes, demuxes, registers, etc.). The first step of the HLS is to

convert behavioral description in the form of a programming language or

hardware description Language into an internal representation. Two types of

internal representation are typically used during HLS: parse tree and graphs

[8,9]. In our proposed methodologies we have utilized graphical representation.

The graphical representation can further be in the form of a data flow graph

(DFG) or a control data flow graph (CDFG). The next two steps of high-level

synthesis namely ‘scheduling’ and ‘allocation’ are closely related to each other

[8, 9, 46]. Scheduling step is responsible for assigning the operations to the

control steps, while allocation step assigns the hardware resources to the

operations i.e. functional units, storage and communication elements (such as

muxes, demuxes, buses). The aim of scheduling is to minimize the number of

control steps or time required for completion of the program, while the aim of

allocation is to minimize the number of hardware resources required for

complete execution of the program. Once the scheduling and allocation steps

are completed, the binding step is executed. The aim of binding is to determine

the size of the switching elements (muxes/demuxes) of the datapath. Once the

binding step is completed, the register transfer level datapath is obtained.

However, the controller to drive the datapath (as per the schedule’s requirement)

is yet to be built.

A controller is typically implemented either as a hardwired or micro-coded

design. In hardwired controller design, a control step corresponds to a state in

the finite state machine (FSM). Similarly, in a micro-coded controller, a control

step corresponds to a microprogram step [8, 9]. Subsequently, the controller is

optimized and synthesized. Once the controller and datapath of design are

available in the form of a register transfer level design, the lower level design

steps are executed to obtain the ‘market-ready’ integrated circuit as shown in

the fig. 1.1.

5

1.4. Transient fault reliability of IP cores

 As the transistor scaling continues in the sub-nanometer range, the amount of

charge stored in a circuit’s nodes continues to shrink, thereby enhancing its

susceptibility to reliability concerns such as multi-cycle and multi-unit transient

fault [10, 11]. A transient fault may occur when a particle with moderate energy

strikes a circuit node. As the amount of charge that can be stored in a node is

reduced (due to technology scaling), so does the critical charge required for

changing the logic level of a circuit, thereby increasing chances of transient fault

due to a particle with moderate energy. Additionally, a particle with moderate

energy that could affect a single node in previous technology scale, can affect

more than one node placed within the same nanometer area in subsequent

technology scales (spatial effect) [27]. Therefore, the resulting impact of

transient fault could affect multiple hardware units placed in the neighborhood.

Therefore, the spatial effect of TF is termed as a multi-unit transient fault.

Similarly, as a result of continuous technology scaling, the supply voltage of the

device and clock-cycle time is decreasing (frequency is increasing). Therefore,

the temporal effect of a single particle strike that could last for a single clock

cycle in previous technology scales can last for multiple clock cycles in current

and future technology scales [12, 17]. Hence, methodologies are required to

tackle both multi-cycle (temporal) as well as multi-unit (spatial effect) of single

event transient. This thesis presents methodologies developed for ensuring

reliability against a simultaneous spatial and temporal effect of transient fault.

1.5. Security of IP cores

In the past few years, the globalization of the market has presented several

opportunities for growth. However, globalization comes with its own

drawbacks. As the number of components of a device that are manufactured

outside the homeland continues to increase, the threat of a malicious attack is

also increasing. Further, the lack of strict laws for punishing attackers has

resulted in higher vulnerability against these security threats. Traditionally,

intellectual property was protected using techniques/tools such as patents,

trademarks, copyright, trade secret, etc. However, these methodologies are

either not applicable or are inefficient in protecting IP cores of digital systems

6

[5, 13]. An IP core is vulnerable against various threats such as IP piracy, IP

overbuilding, trojan insertion, etc. Hence, methodologies are required to protect

IP cores against these threats. The methodologies presented in this thesis

protects/secures an IP core against these threats as discussed in upcoming

chapters.

Although most of the approaches, either address only security or only reliability.

However, negative bias temperature instability based accelerated aging attack

belongs partially to both reliability as well as the security domain [14, 15]. The

thesis proposes novel solutions to these problems.

1.6. NBTI stress analysis based accelerated aging attack on IP cores

Aging is a natural process of an electronic device. As a result of it, the

performance of aged systems become unreliable. Natural aging is a reliability

concern that can be accelerated by a malicious attack that aims to reduce the

life-span of the device [15]. This type of attack is known as an accelerated aging

attack.

Negative bias temperature instability is a physical phenomenon observed in

metal oxide semiconductor field effect transistors (MOSFETs). NBTI is a major

factor contributing to the natural aging process of a transistor. A malicious

attacker can accelerate the aging of third-party IP core by applying an input

vector that can cause maximum performance degradation when the device is in

inactive (standby mode) state. Thereby, causing maximum degradation without

detection (as testing and validation are typically performed in active states).

This calls for a methodology to identify the presence of an accelerated aging

attack in IP cores. This thesis presents a methodology to perform NBTI stress

analysis on DSP IP cores, that can further be applied to predict/identify the

presence of an accelerated aging attack on DSP IP cores.

1.7. Organization of thesis

The upcoming chapters of the thesis are organized as follows: Chapter 2

presents state-of-art with respect to proposed methodologies. Chapter 3

presents the proposed methodology to provide simultaneous resiliency against

the multi-cycle temporal and multi-unit spatial effect of single event transient

7

in DSP IP cores. Chapter 4 presents the proposed methodology to provide

simultaneous tolerance against a multi-cycle temporal and multi-unit spatial

effect of single event transient for data-intensive applications. Chapter 5

presents the proposed methodology to generate a low-cost (low-area, low-delay)

optimized DSP IP core simultaneously tolerant against the multi-cycle

temporal and multi-unit spatial effect of transient fault for loop-based control-

intensive applications. Chapter 6 will present presents a methodology to

generate low-cost, highly-secure, logic obfuscated DSP IP cores to provide

security against key-sensitization based attacks. Chapter 7 presents a

methodology to analyze the effect of NBTI stress on DSP IP core and identify

the presence of an accelerated aging attack. Chapter 8 presents computational

forensics engineering based methodology to resolve ownership of DSP IP core.

Chapter 9 presents the experimental results of the proposed methodologies and

compares them with their respective state-of-the-art. Chapter 10 concludes the

thesis and briefly discusses future work.

9

Chapter 2

State of the art

This chapter discusses state-of-the-art related to the proposed methodologies

presented in this thesis. The first section presents state-of-the-art on transient

fault (TF) reliability. The second section presents approaches related to security

of DSP IP cores. The third section presents state-of-the-art on NBTI stress

analysis of DSP IP cores. The fourth section describes the objective of this

thesis. The fifth section summarizes the contributions of this thesis.

2.1. State of the art on transient fault security/tolerance of an IP core

As discussed in the previous chapter, a transient fault may occur due to a particle

strike. Reliability against transient fault can be achieved either through security

(resiliency) or tolerance. A security mechanism aims to detect the occurrence

of a transient fault in a circuit. However, it cannot prevent the impact of transient

fault from affecting the correct functionality of the circuit. On the other hand, a

tolerance mechanism aims to preserve the correct functionality of the circuit.

In other words, a tolerant IP core guarantees the generation of correct output in

the presence of a transient fault. Whereas, a secure IP core only detects the

occurrence of transient fault but cannot guarantee the generation of correct

output in the presence of a transient fault.

State-of-art on transient fault security: methodologies for creating transient

fault secured circuits can be designed at various levels of design abstractions. A

few approaches such as [16], [17], and [18] consider transient fault security at

the behavioral level. However, none of these approaches provide simultaneous

security against the multi-cycle temporal and multi-unit spatial effect of

transient fault.

Multi-cycle transient fault security: The approaches presented in [16-18]

have adopted a dual modular redundancy (DMR) based technique for detecting

a concurrent error due to the transient fault. The primary motive of the DMR

structure is to isolate the impact of the transient fault in one of the modules, such

that the other unaffected module could produce the correct output. Hence, when

the outputs of the two modules are compared, a difference indicates the

10

occurrence of a transient fault in the device. However, there is no technique to

identify which one of these two modules have produced the correct output.

Hence, only detection is possible through DMR based approaches.

The approach presented in [17] is more sophisticated than [16, 18]. This is

because in [16, 18], at-least two-distinct hardware were required for ensuring

security, which is not mandatory in [17]. The methodology presented in [17]

ensures transient fault detection using a single hardware resource of a particular

type. All these techniques consider only multi-cycle temporal effect of transient

fault. However, they do not consider the spatial effect of a single event transient.

Multi-unit transient fault security: Most approaches in the literature consider

multiple event transient fault on memory. However, a few approaches such as

[19, 20] consider the effect of multiple transient faults at the logic level.

Nonetheless, these approaches do not consider security at the behavioral level.

The proposed approach presents a novel methodology to provide simultaneous

security against multi-cycle temporal and multi-unit spatial effects of single

event transient on DSP IP cores generated using high-level synthesis.

State-of-art on transient fault tolerance:

Multi-cycle transient fault tolerance: There is only one work that presents a

technique to create a multi-cycle transient fault-tolerant design using high-level

synthesis [12]. However, it fails to provide either security or tolerance against

the spatial effect of transient fault.

Multi-unit transient fault tolerance: There is no technique present in the

literature to generate multi-unit TF tolerant design using high-level synthesis.

However, the techniques such as [19], [20] are present in the literature that only

considers security (no tolerance) against the multi-unit spatial effect of transient

fault. The approaches [19], [20] do not consider the multi-cycle temporal effect

of TF. Further, these approaches do not take measures to reduce design

overhead and are not applicable to loop-based applications.

This thesis presents novel techniques for generating a low-cost DSP IP core that

is simultaneously tolerant against the multi-cycle temporal and multi-unit

11

spatial effect of single event transient for loop-based control intensive and non-

loop based data intensive DSP applications.

2.2. State of the art on the security of an IP core

An IP core is vulnerable against several security threats such as IP piracy, IP

overbuilding, false claim of ownership, Trojan insertion, etc. To tackle these

security threats, several approaches are present in the literature such as IP

metering, structural obfuscation, functional obfuscation, etc. However, in this

section, we only discuss the state-of-the-art approaches that are closely related

to our proposed methodologies for ensuring the security of IP cores i.e.,

functional obfuscation and hardware watermarking of DSP core.

State-of-art on functional obfuscation: The aim of functional obfuscation is

to protect an IP core from a malicious attacker present in the third-party

fabrication facility. Functional obfuscation (a.k.a. functional locking) is a

technique that locks an IP core by inserting locking units (such as logic gates,

multiplexers/demultiplexers). Thereby, only the person who knows the valid

key can unlock the IP core. The state-of-the-art functional obfuscation

techniques are presented in [21], [22]. Authors of [21] and [22] have presented

some novel attacks based on ‘key-sensitization’ technique. Subsequently, they

have suggested a few security features that can enhance resiliency against key-

sensitization based attacks.

The proposed functional obfuscation methodology enhances resiliency against

key-sensitization attacks with the help of novel locking units termed as ‘IP

functional locking blocks (ILBs)’. The proposed ILBs are an 8-key bit (per ILB)

intertwined structures of many logic gates such as AND, NAND, NOT, XOR,

XNOR, etc. On the other hand, function obfuscation technique of [21], [22] uses

only XOR and/or XNOR gates as locking units (1-key bit per locking unit). The

novel security features of the proposed ILBs enormously enhances resiliency

against ‘key-sensitization’ attacks. Furthermore, the proposed approach

integrates particle swarm optimization based design space exploration (PSO-

DSE) framework for exploring low-cost functionally obfuscated design

solution. However, no effort was made in [21] or [22] to obtain low-cost design

solution.

12

State-of-art on ownership protection of DSP IP cores: digital watermarking

based approaches (such as [13], [23]) were the state-of-the-art techniques to

resolve ownership conflict of DSP IP core generated using high-level synthesis.

However, the security of a watermarked IP core can be breached using attacks

such as signature tampering, reverse engineering, etc. Furthermore, the integral

step of digital watermarking such as signature insertion can cause performance

degradation, design overhead, etc. Hence, a more sophisticated signature-free

methodology was required to resolve ownership of an IP core. The proposed

computational forensics engineering (CFE) based methodology overcome these

drawbacks as it does not depend on in-design based step such as signature

insertion and there is no known attack on the proposed approach.

2.3. State of the art on NBTI stress analysis of DSP IP cores

NBTI stress is a physical phenomenon observed in PMOS transistors that

partially contributes to the natural aging of these transistors. There was no effort

made in the literature to study and analyze the impact of aging on IP cores

generated using high-level synthesis. The proposed approach presents a novel

methodology for analyzing the aging effect of NBTI stress on the performance

of DSP IP core generated using high-level synthesis. The phenomenon of

natural aging due to NBTI stress can be utilized to perform the accelerated aging

attack. An attacker can accelerate the natural aging process of a transistor by

continuously applying NBTI stress when the device is in inactive usage (such

as in standby mode). The aim of an attacker is to the accelerated aging process

of a device such that it fails within the warranty period [15]. The proposed

methodology to analyze the natural aging of DSP IP core can further be utilized

to detect the presence of an accelerated aging attack on the IP cores generated

using high-level synthesis.

2.4. The objective of the thesis

The objective of the thesis is to develop novel methodologies for ensuring

reliability and security of DSP IP core against specific hardware

threats/concerns. To achieve this aim following objectives were set:

13

1. To develop a methodology for generating a DSP IP core that is

simultaneously secure/resilient against the multi-cycle temporal and

multi-unit spatial effect of transient fault.

2. To develop a methodology for generating a low-cost DSP IP core that is

simultaneously tolerant against the multi-cycle temporal and multi-unit

spatial effect of transient fault for data-intensive applications.

3. To develop a methodology for generating a low-cost DSP IP core that is

simultaneously tolerant against the multi-cycle temporal and multi-unit

spatial effect of transient fault for loop-based control intensive

applications.

4. To develop a methodology for generating a low-cost, highly secure,

functionally obfuscated DSP IP core.

5. To develop a methodology for analyzing the aging effect of NBTI stress

on the performance of DSP IP core.

6. To develop a methodology for resolving the ownership conflict of DSP

IP core.

2.5. Summary of the contributions

This thesis presents several novel methodologies for ensuring/enhancing

reliability and security of DSP IP core. In order to advance the state-of-the-art,

the following contributions were made:

▪ A novel methodology for generating a DSP IP core that is

simultaneously resilient/secure against the multi-cycle temporal and

multi-unit spatial effect of transient fault. (publications: J7, J10, B1, C1)

- Proposes a novel security-aware floor-planning technique/rules for

providing resiliency against the multi-unit spatial effect of transient

fault.

- Proposes an integrated approach for providing security

simultaneously against the multi-cycle temporal and multi-unit

spatial effect of transient fault.

- Presents a novel cost function for evaluating the cost of the design

solution based on schedule latency, chip area, and wire-length.

▪ A novel methodology for generating a DSP IP core that is

simultaneously tolerant against the multi-cycle temporal and multi-

14

unit spatial effect of transient fault for data-intensive applications.

(publications: J1, B1)

- Propose novel scheduling rules for generating multi-cycle transient

fault tolerant triple modular redundant (TMR) schedule.

- Propose novel tolerance-aware floor-planning rules for ensuring

tolerance against the multi-unit spatial effect of transient fault.

- Integrates a particle swarm optimization based design space

exploration (PSO-DSE) framework for exploring low-cost transient

fault-tolerant design solution for data-intensive DSP applications.

- The proposed methodology is applicable to data-intensive DSP

application.

▪ A novel methodology for generating a DSP IP core that is

simultaneously tolerant against the multi-cycle temporal and multi-

unit spatial effect of transient fault for loop-based control intensive

applications. (publications: J8, B1)

- Integrates a modified particle swarm optimization based design

space exploration (PSO-DSE) framework for exploring low-cost

design solution for loop-based control-intensive DSP applications.

- Integrates a pre-processing technique for generating optimal

unrolling factor for loop-based control-intensive DSP applications.

▪ A novel methodology for generating a low-cost, highly secure,

functionally obfuscated DSP IP core. (publications: J2, J3)

- Proposes a novel Functional obfuscation methodology for

obfuscating DSP IP cores.

- Proposes a set of novel locking units termed as IP functional locking

blocks (ILBs).

- Presents security enhancing features/properties of proposed ILBs.

- Integrates a modified PSO-DSE framework for exploring low-cost

obfuscated design solution.

- Presents a novel technique for insertion of proposed ILBs.

- Security comparison of the proposed approach with the state-of-art

approach shows a minimum security enhancement of 4.29 e+9 times

for the tested benchmarks.

15

▪ A novel methodology for analyzing the aging effect of NBTI stress on

the performance of DSP IP core. (publications: J4, J6, C2)

- Proposes a technique to identify input vector that causes maximum

performance degradation due to NBTI stress on DSP IP core.

- Proposes a methodology to analyze the effect of NBTI stress with

respect to varying stress times on critical path delay of DSP cores.

- Presents a performance comparison of stress v/s no-stress condition

of DSP cores with respect to various input vector samples.

- Presents a technique to predict the presence of an accelerated aging

attack on DSP IP core.

▪ A novel computational forensic engineering methodology for resolving

ownership conflict of DSP IP core generated using high-level synthesis.

(publications: J5, J9, C3)

- Proposes a novel feature-set containing ten features that can be

utilized for resolving ownership conflict of an IP core.

- Proposes novel feature extraction rules/algorithms for each of the

proposed features.

- The proposed technique incurs zero-overhead, zero-performance

degradation compared to watermarking based IP core protection

(due to its signature independence). The signature insertion step in

watermarking based approaches requires insertion of a few

additional elements such as registers, multiplexers, demultiplexers,

etc. However, the proposed methodology does not require signature

insertion step, therefore, resulting in comparatively zero-overhead

and zero-performance degradation.

17

Chapter 3

Methodology for generating a DSP IP core that is

simultaneously resilient/secure against multi-cycle

temporal and multi-unit spatial effect of transient fault

This chapter presents a novel methodology for detecting the presence of

transient fault due to temporal and spatial effects of single event transient. The

first section introduces the problem. The second section provides a detailed

description of the proposed approach. Subsequently, the proposed methodology

is illustrated with the help of a demonstrative example in the third section.

Further, the advantages and disadvantages of the proposed approach are

presented in the fourth section and conclusions are drawn in the fifth section.

3.1. Introduction

As discussed in earlier chapters, a transient fault (TF) may occur when a particle

with moderate energy strikes a circuit. A particle with linear energy transfer

(LET) value more than critical charge can change the logic state of the affected

node. An example of such a particle capable of causing transient fault is ‘α-

particle’ (present in packaging material of an integrated circuit). In the past, the

impact of a single particle strike was assumed (modeled) to be capable of

affecting only a single node. However, as the technology scale reaches the 130-

nanometer range, it becomes evident that this assumption can no longer hold

true for current and future technology scales [24-27]. In the future, a single

particle strike is more likely to affect more than one node placed adjacent to

each other [27]. Additionally, if these nodes belong to different hardware units,

then all these hardware units will produce faulty outputs. This spatial impact of

transient fault on more than one hardware unit is termed as a multi-unit transient

fault (MTF). In our proposed approach, the worst-case spatial impact of

transient fault is considered as ‘km-units’. The value of ‘km’ is estimated by the

designer based on the environment in which the circuit will be deployed and fed

as an input to the proposed approach.

In a manner similar to the spatial effect, the temporal effect of a single event

transient is expected to last for multiple clock cycles [12, 17, 24]. This is due to

18

factors such as input voltage scaling, increasing frequency of the devices, etc.

This temporal effect of transient fault is termed as a multi-cycle transient fault

(MCT). In the proposed approach, the worst-case temporal effect of transient

fault is considered as ‘kc-cycles’. The value of ‘kc’ is estimated by the designer

and fed as an input to the proposed methodology.

Moreover, as technology scaling continues and the demand for smaller and

faster devices increases, the design complexity has also increased. Therefore, to

reduce the effort required to design complex circuits, many designers have

moved to a higher level of design abstraction such as architectural (a.k.a.

behavioral/high) level [3-6]. Hence, novel methodologies are required at the

architectural level to identify the presence of the temporal and spatial effect of

transient fault. The proposed approach presents a novel methodology that

integrates ‘high-level synthesis (HLS)’ and ‘physical design’ frameworks for

generating a DSP IP core that is simultaneously resilient/secure against multi-

cycle temporal and multi-unit spatial effects of the transient fault.

3.2. Proposed approach

This section provides a detailed description of our proposed methodology.

3.2.1. Problem formulation

Given a DSP application in the form of data flow graph (DFG) along with

module library, strength of multi-cycle transient fault (kc-cycles), strength of

multi-unit transient fault (km-units), user-provided resource constraint Xi,

generate a kc-cycle and km-unit transient fault resilient design.

Fig.3.1. Overview of proposed transient fault security approach

Transient Fault Secured Block

Block for generating kc-cycle transient fault

resilient design using DMR Scheduling (during

HLS)

Block for generating km-unit transient fault

resilient design using Physical Floorplanning

List L[k] of hardware modules

kc-cycle & km-unit transient fault resilient

design

Latency of DMR schedule

Area of Enveloping Rectangle

Transient fault strength in

temporal domain (kc)

Transient fault strength in

spatial domain (km)

CDFG/ DFG

Module Library/ Resource

constraint

Input Block

19

3.2.2. Overview of proposed methodology

As discussed earlier, in future technologies, a transient fault occurring due to

radiation strike can last for multiple cycles as well as can affect multiple

hardware units placed in the neighborhood of the affected unit (node). Hence, it

is necessary for future technologies to consider both the temporal and spatial

effect of a transient fault during the creation of transient fault resilient (secured)

design. A single particle strike could simultaneously cause multi-cycle and

multi-unit transient faults. However, as MCT affects in the temporal domain

and MTF effects in the spatial domain. Therefore, domain-specific independent

techniques are required to detect the effect of a transient fault in their respective

domains. As shown in fig.3.1, the proposed approach integrates multi-cycle

transient fault resilient ‘high-level synthesis’ framework with a novel multi-unit

TF resilient ‘physical design’ framework to generate a simultaneously MCT and

MTF resilient DSP IP core design.

A detailed flow diagram of the proposed approach is shown in fig.3.2. In the

initial step of the proposed approach, a dual modular redundant (DMR) system

is created by duplicating all the operations of the DFG application.

Subsequently, these operations are concurrently scheduled based on the user-

specified resource constraint (Xi). The scheduled DFG (SDFG) thus obtained,

Building DMR Scheduling using List scheduling Algorithm

Generating kC –cycle secured DMR Schedule

Generating km –unit Resilient Floorplan (FP) based on proposed FP Design Rules

Perform global routing of Modules in FP

Apply proposed H/w allocation rules

Latency, List of H/w Components, Interconnection

Evaluate enveloping rectangle area & wire-length from Floorplan

Cost Evaluation

Strength of multi-

cycle Transient

Fault (kc)

Module

Library

Input Block

Resource

Constraints

(Xi)

Strength of Multi-

unit Transient

Fault (km)

DFG

Is Floorplan results

into NPE?

No

 Yes

Fig.3.2 Flow diagram of proposed methodology for generating

simultaneously kc and km resilient DSP IP core

20

along with the strength of multi-cycle transient fault (kc-cycles) are fed into a

multi-cycle transient fault resiliency algorithm (adapted from [28, 17]) to obtain

a kc-cycle transient fault resilient SDFG DMR. The scheduling latency of kc-

cycle resilient design is extracted and stored for cost/fitness evaluation in the

future. Once temporal resiliency is achieved, the MCT resilient design along

with the strength of multi-unit TF (km-units) are fed into a spatial resiliency

framework. In the first step of spatial resiliency framework, a list ‘L[k]’ of

hardware modules comprising of functional units, multiplexers/demultiplexers

units, etc. is generated. Subsequently, a physical level floorplan ([70]) is

generated based on the proposed km-unit transient fault resiliency rules.

Further, global routing of modules is performed based on which wirelength is

estimated. Subsequently, wirelength and rectangular chip area of the km-unit

transient fault tolerant floorplan along with schedule delay (stored earlier) are

utilized for evaluating the cost of the generated design solution as discussed in

section 3.2.6. The upcoming sections 3.2.3 and 3.2.4 will discuss the framework

for multi-cycle and multi-unit resiliency respectively.

3.2.3. Methodology for generating a kc-cycle transient fault resilient

design

This section provides a detailed description of the methodology for designing

kc-cycle fault resilient SDFG DMR (adapted from [28, 17]). The MCT

resiliency algorithm takes resource constraints (Xi), DFG application, the

strength of MCT (kc-cycles) and module library as inputs and produces a kc-

cycle transient fault resilient DMR schedule. The initial step of resiliency

algorithm is to create a DMR system by duplicating all the operations of original

(input) DFG as duplicate DFG. The DMR system thus created has the original

unit (OU) and duplicate unit (DU) as shown in fig 3.3. In the next step, both OU

and DU are concurrently scheduled (a step of HLS) based on list scheduling

algorithm and the user-specified resource constraints Xi. Once scheduled DMR

system is generated, the hardware allocation of both the units (OU and DU) is

performed based on the following fault resiliency conditions as stated below:

i. Allocate opn (v) ∈ OU and opn (v′) ∈ DU to distinct operators

(hardware units) based on availability.

ii. If unavailable, then:

Keep same assignment for v′ (as v) in DU such that:

21

t(v') – t(v) ≥ kc (3.1)

iii. If the above condition (Eq. (3.1)) is false, then:

Push v′ (and its successors) ∈ DU one CS below until Eq. (3.1) is

true.

Hardware allocation of duplication unit’s operations without obeying conditions

(i), (ii) or (iii) may result in transient fault hazards (TFH) between similar

operations of OU and DU. In other words, TFH occurs if:

t(v') – t(v) ≤ kc; where (v) ∈ OU and (v′) ∈ DU (3.2)

The TFHs are resolved by pushing the affected operation of the duplicate unit

(along with its successors) in later control steps. The pushing of operations

ensures that the time interval between v and v′ is greater than (or equals to) kc-

cycles [28]. Hence, the temporal effect of transient fault will remain isolated in

the affected module. Therefore, when a single event transient will cause a fault

in one of the modules, another module will produce the correct output. Thus,

the difference between the output of the original unit and the duplicate unit will

indicate the presence of a transient fault in a DSP IP core. The outputs of the OU

and DU are compared with the help of a special circuit as discussed in the

upcoming sub-section.

Protecting the guard in DMR schedule

As shown in fig. 3.3, error detection block comprises of two stages. In the first

stage, outputs of the original & duplicate units of the scheduled DMR are fed

into three comparators (C1, C2 & C3). In the second stage, the output of the

comparators C1, C2 & C3 are subsequently fed to a voter (V). This multi-stage

setup (adapted from [29]) protects the transient fault resilient design against a

Original unit Duplicate unit

Comparator

(C1)

Comparator

(C2)

Comparator

(C3)

Voter (V)

Stage 1

Stage 2

Fig.3.3. Protecting the guard: Error-detection block

Error-detection block

DMR system

22

possible vulnerability of transient fault due to a particle strike on the

comparator.

The transient fault can affect the comparator(s) in two possible scenarios: (a)

faulty comparator & fault in hardware of original unit or duplicate unit: In this

scenario, any two faultless comparators will produce logic ‘1’ as an output

indicating a difference in outputs of the original and duplicate unit. On the

contrary, the faulty comparator will yield a logic ‘0’ indicating no difference in

output of OU and DU. Therefore, when the outputs of these three comparators

are fed into voter, a logic ‘1’ will be produced at voter output thereby, indicating

the presence of a transient fault in the DMR system. (b) faulty comparator & no

fault in hardware original or duplicate: In this scenario, two faultless

comparators will produce logic ‘0’ as an output indicating no difference in

outputs of OU and DU while faulty comparator will produce logic ‘1’ indicating

a difference in outputs of OU and DU. Therefore, when the outputs of three

comparators are fed into voter, a logic ‘0’ will be produced at voter output

thereby, indicating no occurrence of a transient fault in the DMR system.

Both the scenario shows that the multi-stage setup will always detect the

presence of the transient fault in the circuit even if the particle strike affects a

comparator. Further, note that the voter adopted in our proposed approach is

tolerant against the temporal effect of transient fault [30].

3.2.4. Methodology for generating a km-unit transient fault resilient

design

The proposed algorithm takes kc-cycle transient fault resilient schedule and

obtains the list ‘L[k]’ of hardware modules (functional units, interconnect units,

etc.). The hardware module list L[k], along with the strength of multi-unit

transient fault (km) are fed as input to the proposed km-resiliency algorithm.

Subsequently, the hardware modules present in the L[k] are placed based on the

proposed resiliency/security aware floorplanning rules:

1. Select a pair of sister operations (v & v′) in kc-cycle resilient SDFG DMR.

2. Find corresponding sister hardware functional modules (Mv & Mv′)

assigned to sister operations in DMR SDFG.

3. Place sister hardware modules in a floorplan such that they are at least km

units apart i.e. S(Mv′) ≥ S(Mv) + km; where S(Mv′) and S(Mv) are the

23

starting point of placement of modules Mv & Mv′ along x-axis or y-axis

(spatial domain) in a floorplan.

4. Repeat steps 2–3 for all remaining pair of sister operations present in the kc-

cycle resilient DMR SDFG.

The aim of the proposed floorplanning rules is to isolate the spatial effect of a

transient fault within a single module of the DMR system. To this end, FP rules

ensure that any pair of functional modules allocated to sister operations are bi-

directionally placed at least km units apart from each other in a floorplan. This

is because, if functional modules allocated to sister operations are bi-

directionally placed within km units, then the spatial effect of transient fault due

to a potential radiation strike may affect both the units similarly. In such a

scenario, both OU and DU will produce the same erroneous output (concurrent

error). Therefore, the error detection block will not be able to (distinguish

between the output of OU and DU) detect a fault. Thus, proposed floorplanning

rules ensure a minimum bi-directional distance of km units between functional

units allocated to sister operations.

 In our proposed methodology, the strength of multi-unit transient fault is

considered in terms of km-units. Where 1 unit = 0.768 μm has been assumed

based on sample values of MTF (in nanometer range) presented in [19,31]. the

strength of multi-unit transient fault (km) represents the worst possible impact

of MTF provided to the designer as an input. For the purpose of demonstration

km = 4 is assumed. However, our proposed algorithm is applicable for any value

Operation
of UOG

Operation
of UDP

Corr. H/w of
UOG

Corr. H/w
of UDP

1 1’ M1 M2

2 2’ M2 M1

3 3’ M1 M2

4 4’ A1 A2

5 5’ A1 A2

6 6’ M2 M1

7 7’ A1 A2

8 8’ M1 M2

9 9’ A1 A2

10 10’ C1 C2

Table 3.1 Conflict details of sister operations in 2-cycle

transient fault resilient SDFG DMR of IIR

24

of km. In a practical scenario, the km value depends on the expected energy of

the particle. (Note: in our approach, we have assumed the spatial impact of

transient fault between functional units such as adders, multipliers, etc. but not

on multiplexers/demultiplexers)

3.2.5. Wirelength estimation

Once kc-cycle and km-unit transient fault resilient floorplan is generated,

wirelength is estimated as per the following equation.

dijcijW
ji

FP =
,

 (3.3)

Where cij is connectivity between hardware units i & j and dij is Manhattan

distance between the center of rectangles i & j. For evaluating Manhattan

distance, the I/O connectivity is assumed to be at the center of each module.

3.2.6. Cost evaluation

In the proposed approach, the cost is evaluated as the normalized weighted sum

of wirelength, chip area (enveloping rectangular area), and latency as shown by

the following equation:

FP

FP

FP

FP

DMR

DMR

if
W

W

A

A

L

L
XC

maxmax

2

max

1 3)(++= (3.4)

Where, Cf (Xi), is the cost/fitness function of transient fault resilient design

based on resource constraint Xi; φ1 = φ2 = φ3 are the user-specified weights of

schedule latency, floorplan chip area, and floorplan wirelength respectively.

+

* *

+

*

+

+

* *

2 1 3

4

5

6

7

8

9

OU DU

Fig.3.4. A dual modular redundant system of IIR Filter

+

* *

+

*

+

+

* *

2’ 1’ 3’

4’

5’

6’

7’

8’

9’

25

Equal weightage is assumed for φ1 = φ2 = φ3 = 0.333. LDMR = latency of kc-

cycle transient fault resilient DMR schedule, based on user-provided resource

constraint Xi; Lmax
DMR = latency of kc-cycle transient fault resilient DMR

schedule, based on maximum resources available for each type in the design

space; AFP = floorplan chip area of km-unit TF resilient floorplan based on user-

provided resource constraints; Amax
FP = floorplan chip area of km-unit multiple

transient fault resilient floorplan based on maximum number of resources in the

design space; WFP = wirelength of FP based on user-provided resource

constraints; Wmax
FP = wirelength of FP based on maximum number of resources

in the design space.

3.3. Demonstrative example

This section provides a detailed description of the proposed approach with the

help of an example of an IIR filter benchmark. In the demonstrative example,

the strength of multi-cycle and multi-unit transient faults are assumed to be kc=2

cycles and km=4 units (where, 1 unit=768 nm) respectively. Further, in the

demonstrative example, 1 cycle or control step is equal to 100 ps. In the initial

step of the proposed approach, a DMR system is created by duplicating all the

operations of original DFG application as duplicate unit DU as demonstrated

with IIR benchmark shown in fig. 3.4. Subsequently, scheduling (using list

> C1 9

1

2

3

4

5

6

7

8

A1
+

* *

+
*

+

+

*

*

M2

M2

A1

M1

A1

M1
A1

M1 2 1

3
4

5

6

7

8

9
M2

M2

6’

3’

M2

A2

A2 M1

M1

A2

A2

1’

*

*

+

+

+

+

*

* *

2’

4’

5’

7’

8’

9’

Fig.3.5. 2-cycle transient fault resilient dual modular redundant

schedule of IIR Filter

> C3 > C2

26

scheduling algorithm) of the DMR system is performed based on user-specified

resource constraints Xi = (2A, 2M). Once Scheduled DMR system is generated

proposed kc-cycle transient fault resilience rules are applied to generate 2-cycle

transient fault resilient design as shown in fig. 3.5.

M1
d3

M2
d4

A1

m11

A2

m04 m13 m03

m12

d1

d2

m14

m01

m02

8
 u

n
it

s
3
.7

5
 u

n
it

s
3
.2

5
 u

n
it

s

8
.7

5
 u

n
it

s

2
 u

n
it

s

7
.5

 u
n
it

s

1
 u

n
it

4 units 4 units

12 units

Fig.3.6. 4-unit transient fault resilient floorplan based on the

2-cycle transient fault resilient SDFG of IIR (2A, 2M)

C1

C2

5
.7

5
 u

n
it

s

M1 M2

m11

A2

m04 m13 m03

m12

d1

d2

d4

d3

A1

m14

m01

m02

8
.7

5
 u

n
it

s

2
 u

n
it

s
1
 u

n
it

8
 u

n
it

s
7
.5

 u
n

it
s

3
.2

5
 u

n
it

3
.7

5
 u

n
it

4 units 1 unit each

12 units

Fig. 3.7. IIR floorplan (2A, 2M) with no rules of multiple

Transient fault security

C2 C1

5
.7

5
 u

n
it

27

The kc-cycle transient fault-tolerant design thus obtained is used to create a list

of hardware modules L[k]. The list L[k] of the SDFG DMR thus obtained is

L[k] = {(Adders: A1, A2), (Comparator: C1, C2, C3), (Multipliers: M1, M2),

(2:1MUX: m01, m02), (4:1MUX: m11, m12), (8:1MUX:m03,m13,m04,m14),

(demux1:4:d1,d2), (demux1:8: d3,d4) }

After list L[k] is created, a table comprising of conflicting hardware resources

(hardware resources allocated to sister operations within kc control steps) is

generated as shown by table 1. Subsequently, the hardware modules are floor

planned based on the proposed km-unit transient fault resilient floorplanning

rules discussed in section 3.2.4. (Note that the geometric dimensions of the

modules based on NanGate 15 nm open source technology library [31] are

shown in table 2.) For example, consider a pair of conflicting hardware M1 and

M2 allocated to operation 1 and 1’ respectively (within kc-cycles). Hence, to

avoid transient fault impacting both the operations 1 and 1’, hardware modules

M1 and M2 must be placed at least km-units apart from each other. Hence, as

shown in fig. 3.6, M1 and M2 are placed km=4 units distance apart from each

other. Similarly, other conflicting hardware modules are placed. The floorplan

thus obtained is km-unit & kc-cycles transient fault resilient. On the contrary,

fig. 3.7 shows the non-resilient floorplan. In this normal floorplan hardware

modules, M1 and M2 are placed adjacent to each other. Hence, in such a design

Module name Height width

 nm units nm units

Multiplier 6144 8 3072 4

Adder 1536 2 768 1

Comparator 4480 5.75 768 1

Subtractor 1792 2.25 768 1

2:1 MUX 832 1 768 1

4:1 MUX 2496 3.25 768 1

8:1 MUX 5824 7.5 768 1

16:1 MUX 12480 16.25 768 1

32:1 MUX 25792 33.5 768 1

1:2 demux 960 1.25 768 1

1:4 demux 2880 3.75 768 1

1:8 demux 6720 8.75 768 1

1:16 demux 14400 18.75 768 1

1:32 demux 29760 38.75 768 1

Table 3.2. Library details based on 15nm NanGate

28

although kc-cycle (temporal) resiliency is achieved. However, the design is still

vulnerable to the spatial effect of transient fault. Therefore, to ensure complete

resiliency against transient faults, it is mandatory that the resiliency is provided

against both the temporal as well as the spatial effect of single event transient

(SET). The proposed approach ensures resiliency against both temporal and

spatial effects of SET.

3.4. Advantages and disadvantages of the proposed approach

at the behavioral level

3.4.1. Advantages

(i) Offers lower implementation runtime than existing fault secured

approaches at a lower level.

(ii) Offers greater reliability (i.e. temporal & spatial transient fault aware

digital design synthesis flow) than lower level techniques.

(iii) Offers automated generation of multiple alternative hardware

implementations that are simultaneously resilient against multi-cycle

and multi-transient fault compared to lower level techniques.

(iv) Offers flexibility to design resilient digital systems against any kc-cycle

and km-unit transient fault as per user requirement compared to lower

level techniques where the specification of worst-case transient fault

range (strength) may not be possible as input.

3.4.2. Disadvantages

(i) Area, power and delay overhead may be larger compared to lower level

techniques.

(ii) Lower level interconnection/wirelength/datapath details are not

available much at the behavioral level which makes solution cost

evaluation complicated.

3.5. Summary

The proposed methodology is the first approach in the literature that

simultaneously consider the temporal and spatial effects of the transient fault. It

integrates ‘high-level synthesis’ and ‘physical design’ frameworks for

providing security/resilience against multi-cycle temporal and multi-unit spatial

effects of the transient fault. Further, the proposed approach presents novel

29

security-aware floor-planning rules for providing resiliency against the multi-

unit spatial effect of transient fault. Additionally, the proposed approach

presents a novel cost function for evaluating the cost of the design solution

based on schedule latency, chip area, and wire-length. By virtue of these novel

contributions the proposed approach can generate a DSP IP core that is

simultaneously resilient against multi-cycle temporal and multi-unit spatial

effects of the transient fault.

31

Chapter 4

Methodology for generating a low-cost DSP IP core that

is simultaneously tolerant against multi-cycle temporal

and multi-unit spatial effects of transient fault for data-

intensive applications

This chapter presents the proposed approach to generate a DSP IP core that will

produce the correct output even on the occurrence of a transient fault. The first

section introduces the problem. The second section presents a brief overview of

the proposed methodology. The third, fourth and fifth section describes the

major blocks of the proposed approach. The sixth section summarizes the major

contributions of the proposed approach.

4.1. Introduction

As discussed in preceding chapters, the radiation-induced transient fault in

digital systems has become a major reliability concern. Although, detection of

transient faults can be sufficient in many applications. However, the only

detection of a transient fault is not enough for mission-critical applications. Due

to the criticality of the application, it is mandatory to ensure that correct output

is generated even on the occurrence of a transient fault.

For instance, consider a mission-critical application such as an aircraft control

system. The aircraft control system comprises of important sub-systems such as

computers (involving processors), sensors and actuators. The criticality of these

control systems mandates ensuring correct operation of processing cores such

as application specific processing (ASPs) cores or integrated circuits (ASICs)

even on the occurrence of a transient fault. Moreover, due to the typical working

environment of aircraft, they remain exposed to radiations that may result in

transient faults. Further, due to demand for high operational speeds (high

frequency), low area, low power application specific processors in the aerospace

systems. The chances of the temporal effect of transient fault lasting for multiple

cycles has increased manifold. Similarly, the chances of the spatial effect of a

transient fault affecting multiple units placed in the neighborhood have also

increased. Hence, it is mandatory to consider both the temporal as well as the

32

spatial impact of transient fault while designing applications for mission-critical

systems.

The proposed approach presents a novel methodology for generating a ‘low cost

optimized transient fault-tolerant hardware against multi-cycle (temporal) and

multi-unit (spatial) effect of transient fault for data-intensive digital signal

processing (DSP) applications’.

4.2. Proposed approach

This section provides a brief overview of our proposed methodology.

4.2.1. Problem formulation

Given a data intensives DSP application in the form of data flow graph (DFG)

along with module library, the strength of multi-cycle transient fault (kc), the

strength of multi-unit transient fault (km), as inputs, generate a kc-cycle and km-

unit transient fault tolerant low-cost design solution as output.

4.2.2. Overview of proposed methodology

As shown in fig 4.1, the proposed methodology comprises of three major

components. The first component particle swarm optimization-based design

space exploration (PSO-DSE) is primarily responsible for generating low-cost

design solution. The second component is responsible for providing tolerance

against the temporal effect of transient fault. The third and the last component

provides tolerance against the spatial effect of transient fault.

As shown in fig.4.2, The first step of the proposed approach is to initialize the

particle swarm [32, 33]. Subsequently, cost along with PSO-DSE parameters

PSO-DSE block

Tolerance against spatial effect

(km) of transient fault

Proposed approach

Spatial (km) & temporal (kc) fault tolerant

low cost design solution

Fig.4.1. Overview of proposed TF tolerant approach for data

intensive applications

Tolerance against temporal effect

(kc) of transient fault

DFG

Application

Module library

Strength of

temporal effect

(kc)

Strength of

spatial effect

(km)

I
N
P
U
T

B
L
O
C
K

33

such as velocity, local best and global best are initialized. Afterward, for each

particle of the swarm, a triple modular redundant (TMR) system is created, and

the proposed kc-cycle transient fault tolerant rules are applied to obtain kc-cycle

transient fault tolerant schedule. The latency of the schedule thus generated, is

stored for cost evaluation. Subsequently, a list of conflicting hardware is created

and proposed km-unit fault-tolerant design rules are applied to obtain km-unit

transient fault tolerant floorplan. The overall system thus generated is kc-cycle

and km-unit transient fault-tolerant design. The rectangular floorplan (chip) area

thus obtained is stored for cost evaluation. Further, the cost of the transient fault-

tolerant design is evaluated and PSO-DSE parameters (local best, global best,

velocity, particle’s position) are updated. The process is repeated until one of

the PSO-DSE termination criteria is met [33,32]. The optimal design solution

thus explored is the low-cost kc-cycle and km-unit transient fault-tolerant

design solution.

The upcoming sections describe major components of the proposed

methodology in detail.

DFG application

Module library

Strength of temporal

impact (kc)

Strength of spatial

impact (km)

I
N
P
U
T

B
L
O
C
K

Initialize the particle swarm

Evaluate cost

Create TMR of the DFG

Schedule DFG based on proposed kc-cycle fault

tolerant rules

Obtain the list of hardware conflicts

Generate the km-unit fault tolerant floorplan

Fig.4.2. Flow graph of the proposed TF tolerant methodology for

data intensive applications

PSO-DSE

Tolerance against temporal effect of
transient fault

Tolerance against spatial effect of transient
fault

Update local best and global best position

Update velocity and swarm position

34

4.3. Proposed Methodology for generating a kc-cycle transient

fault tolerant design

This section provides a detailed description of the proposed methodology for

designing kc-cycle transient fault tolerant scheduled DFG (SDFG) TMR

system. The aim of the proposed methodology is to isolate the impact of a

transient fault in any one of the three modules (copy) of the TMR system such

that remaining two modules (copies) should function correctly even in the

presence of a transient fault. Hence, when a voter is applied to the TMR system

then the voter will always vote-in the correct output.

The proposed algorithm takes resource constraints (Xi), DFG application, the

strength of multi-cycle transient fault (kc) and module library as inputs and

produces a kc-cycle transient fault tolerant TMR schedule. The initial step of

the proposed approach is to create a triple module redundant system by copying

all the operations of original (input) DFG (OC) as a duplicate copy (DC) and

triplicate copy (TC) as shown in fig 4.3. Subsequently, scheduling and allocation

of the TMR system are performed based on resource constraints (particle

position Xi, produced from PSO-DSE block) using the proposed kc-cycle

transient fault-tolerant scheduling and allocation rules.

The temporal effect of the transient fault may cause hardware conflicts during

scheduling and allocation. The hardware conflict arises when a hardware

resource allocated to an operation of a copy is re-allocated to another operation

of its cloned copies within kc-cycles. The proposed kc-cycle transient fault-

tolerant scheduling and allocation rules to resolve these hardware conflicts are:

a. Hardware resource (R) allocated to an operation of a copy can be re-

allocated to an operation of the same copy within kc control steps

(cycles).

b. Shift operation of a copy if no hardware resource can be allocated without

conflicts. Thus, allocations are made based on the following:

i. Resource ‘R’ allocated to an operation of OC (v ∈ OC) can be re-

allocated to an operation of DC (v’ ∈ DC) or operation of TC (v’’ ∈ TC)

only after a distance of kc control steps (cycles).

i.e. t(v’)-t(v)> kc, and

35

t(v’’)-t(v)> kc

ii. Resource ‘R’ allocated to an operation of DC (v’ ∈ DC) can be re-

allocated to an operation of OC (v ∈ OC) or operation of TC (v’’ ∈ TC)

only after a distance of kc control steps (cycles).

i.e. t(v)-t(v’)> kc, and

t(v’’)-t(v’)> kc

iii. Resource ‘R’ allocated to an operation of TC (v’’ ∈ TC) can be re-

allocated to an operation of OC (v ∈ OC) or operation of DC (v’ ∈ DC)

only after a distance of kc control steps (cycles).

i.e. t(v)-t(v’’)> kc, and

t(v’)-t(v’’)> kc

Proposed scheduling and allocation rules ensure fault isolation within a single

copy i.e., a single particle strike causing a transient fault in a copy (OC, DC or

TC) of the TMR system will not affect the remaining two copies. Hence, even

in the presence of (temporal effect of) transient fault due to a single particle

strike, two copies will always produce correct output thus voter will ensure

correct output is always produced as the final output of the TMR system. The

delay of the kc-cycle transient fault-tolerant design thus generated is stored for

future utilization during cost evaluation.

4.3.1 A demonstrative example of the proposed methodology for

generating a kc-cycle transient fault tolerant design

This section illustrates the proposed kc-cycle transient fault-tolerant scheduling

and allocation rules with the help of an example of a DWT DFG benchmark.

For the demonstrative purpose, the realistic delay value of one control step is

taken as 100 ps [24]. Further, the values of area and delay of hardware resources

are based on 15nm technology open source NanGate library [31]. Additionally,

for demonstrative purpose strength of transient fault is assumed to be (kc =) 4

control steps/cycles (equivalent to 400 ps) as adopted from [24]. However, note

that the proposed approach is applicable for any other kc values.

Fig. 4.3 shows a basic TMR system of DWT benchmark. The proposed kc-cycle

transient fault-tolerant scheduling and allocation rules are applied on the TMR

system to obtain a 4-cycle transient fault-tolerant scheduling based on particle

36

*
2

*
3

*
4

*
5

+
7

+
8

+
9

*
1

+
6

+
10

+
11

+
12

+
13

+
14

+
15

+
16

+
17

*
2’

*
3’

*
4’

*
5’

+
7’

+
8’

+
9’

*
1’

+
6’

+

10’

+
11

’

+
12’

+
13’

+
14’

+
15’

+
16’

+
17

’

*
2’’

*
3’’

*
4’’

*
5’’

+
7’’

+
8’’

+
9’’

*
1’’

+
6’’

+

10’’

+
11’

’

+
12’’

+
13’

’

+
14’

’

+
15’

’

+
16’’

+
17’

’

OC
DC TC

Fig.4.3. Un-timed TMR system for DWT DFG benchmark

V
V1

*
M2 2

*
M1 3

*
M2 4

*
M1 5

+
A1 7

+
A2 8

+
A1 9

*
M1 1

+
A1 6

+
A3 10

*
M1 11

+
A1 12

*
M1 13

+
A1 14

*
M1 15

+
A1 16

+
A1 17

*
M2 2’

*
M2 3’

*
M2 4’

*
M2 5’

+
A2 7’

+
A2 8’

+
A2 9’

*
M2 1’

+
A2 6’

+
A2 10’

*
M2 11’

+
A2 12’

*
M2 13’

+
A1 14’

*
M2 15’

+
A1 16’

+ A1 17’

*
M1 2’’

*
M1 3’’

*
M1 4’’

*
M1 5’’

+
A3 7’’

+
A3 8’’

+
A2 9’’

*
M1 1’’

+
A3 6’’

+
A3 10’’

*
M1 11’’

+
A2 12’’

*
M1 13’’

+
A2 14’’

*
M1 15’’

+
A1 16’’

+
A1 17’’

CS 1

CS 2

CS 3

CS 4

CS 5

CS 6

CS 7

CS 8

CS 9

CS 10

CS 11

CS 12

CS 13

CS 14

CS 15

CS 16

CS 17

CS 18

CS 19

CS 20

CS 21

CS 22

CS 23

CS 24

OC

DC

TC

CS 25

Fig.4.4. 4-cycle TF tolerant schedule of DWT DFG for particle position Xi = {3A, 2M}

37

position Xi = {3A, 2M} as shown in fig.4.4. The proposed rule ‘a’ permits a

hardware resource allocated in previous control steps to an operation of a copy

to be re-allocated within kc cycles to another operation of same copy. This is

because fault affected hardware will perform operations of the same copy within

kc cycles, hence fault will remain isolated in the same copy and will not

propagate to other copies. Further, it results in better hardware resource

utilization leading to a reduction in delay of the scheduled DFG. Thus, fault

isolation within the same copy is ensured as long as rules b is also satisfied. For

example, rule ‘a’ permits hardware M1 allocated to opn 1 (of OC) to be re-

allocated to opn 3 of the same copy within kc-control steps/cycles. As per the

proposed rule ‘b’, opn 1’ of DC has been shifted to CS7 since no allocation was

possible due to hardware conflicts. Further as per rule b i., hardware resource

A1 allocated to opn 17 of OC at CS10 is re-allocated to opn 14’ (of DC) at CS15

only after 4 cycles (control steps). Similarly, M1 allocated to opn 15 of OC at

CS8 is re-allocated to operation 1’’ of TC at CS13 only after 4-cycles.

Additionally, according to rule b.ii., hardware A2 allocated to opn 9’ can only

be re-allocated to opn 9’’ (of TC) in CS 18 after 4 cycles. Further, according to

rule b.iii., M1 allocated to operation 1’’ (of TC) could only be re-allocated to an

operation of DC or OC after 4 cycles. Thus, M1 allocated to 1’’ could not be re-

allocated to 13’ or 15’.

4.4. Proposed Methodology for generating km-unit transient

fault tolerant design

The proposed methodology for generating a km-unit transient fault-tolerant

design takes kc-cycle fault tolerant TMR system along with the strength of the

spatial effect of transient fault (km) as input and generates kc-cycles & km-unit

fault tolerant floorplan as output.

The proposed methodology considers the spatial effect of a transient fault in

term of hardware conflicts. A hardware conflict due to spatial effect occurs

when a hardware resource allocated to an operation of a copy is placed within

km-unit distance to any hardware resource allocated to an operation of

remaining two copies within kc-CS (cycles). In such a scenario if two hardware

resources allocated to different copies are placed less than km-unit to each other

38

then, the fault may propagate from one copy to another due to the spatial effect

of transient fault. Hence, more than one copy will generate incorrect output

leading to incorrect output by the voter. Therefore, resolving hardware conflicts

due to the spatial effect of transient fault is important to provide complete

tolerance against transient faults. (Note that the voter utilized in the proposed

approach is transient fault tolerant [30]).

As shown in fig. 4.5, the first step of the proposed methodology is to obtain a

list of all hardware resources [Ri] present in kc-cycle fault-tolerant design. In

the next step, a list of conflicting hardware (𝑍𝑅𝑖
[𝑅𝑗]) due to the spatial effect of

transient fault is generated for all the resources present in the list [Ri].

Subsequently, the hardware resources are placed during floorplanning such that

each resource Ri is placed at least km-unit distance apart from its conflicting

resources Rj. These steps are repeated till all the resources are placed. The

floorplan thus obtained is kc-cycle and km-unit transient fault tolerant floorplan.

4.4.1 A demonstrative example of the proposed methodology for

generating a km-unit transient fault tolerant floorplan

This section illustrates the proposed km-unit transient fault tolerant

methodology with the help of an example of a DWT DFG benchmark. In the

initial step, list of all hardware resource is obtained from 4-cycle transient fault

tolerant TMR system (discussed earlier in section 3.2.4) as L[R] = {M1, M2,

A1, A2, A3}. Subsequently, for each of the hardware resources, a list of

conflicting hardware is created. For instance, consider hardware resource M1,

the M1 allocated to an operation 1 of OC at CS 1 will be in conflict with all the

hardware allocated to any operation of DC or TC within kc = 4 cycles. However,

there is no other operation of DC or TC scheduled until CS5. Hence, for M1

Obtain a list 𝑳ሾ𝑹𝒊ሿ of all hardware resource (𝑹𝒊) from kc-cycle fault

tolerant SDFG

(where i=1,2,.., n.)

Obtain list of conflicting hardware resources ൫𝑍𝑅𝑖
[𝑅𝑗]൯ for each element of

ሾ𝑅𝑖ሿ .

Place each element of 𝐿ሾ𝑅𝑖ሿ such that it is at least km-unit distance apart

from each of its conflicting hardware listed in 𝑍𝑅𝑖
[𝑅𝑗] .

Repeat until 𝐿ሾ𝑅𝑖ሿ ≠ ∅.

Fig.4.5 Proposed km-unit transient fault tolerant

floorplanning rules

39

allocated to operation 1 of OC, there is no conflict. Similarly, M1 allocated to

opn 3 at CS2 has no conflict. However, M1 allocated to opn 5 of OC at CS3

conflicts with M2 allocated to opn 1’ of DC. likewise, M1 allocated to opn 11

at CS4 conflicts with M2 and A2 allocated to opn 1’ and 6’ of DC respectively.

Similarly, other conflicts of resource M1 is evaluated and the list of conflicting

hardware of resource M1 thus obtained is 𝑍𝑀1[𝑅𝑗] = {𝑀2, 𝐴1, 𝐴2}. In a similar

manner list of all conflicting hardware is obtained. Subsequently, in the third

and final step of the proposed km-unit transient fault tolerant approach, the

conflicting hardware are placed at least km-unit (=4) bidirectional distance apart

from each other. For example, consider the list of conflicting hardware of M1 :

𝑍𝑀1[𝑅𝑗] = {𝑀2, 𝐴1, 𝐴2} and A3 : 𝑍𝐴3[𝑅𝑗] = {𝑀2, 𝐴1, 𝐴2} . Since both the conflicting

list does not contain A3, or M1 respectively. Hence, both M1 and A3 can be

placed adjacent to each other as shown in fig.4.7. Similarly, as a list of M1

contain A2, hence M1 and M2 are placed at least km=4 unit distance apart from

each other.

On the contrary, in the case of spatially non-tolerant floorplan all the hardware

resources are compactly placed as shown in fig.4.6. Although such a floorplan

has a lesser area compared to the proposed approach, it is vulnerable to the

spatial effect of transient fault. The main crux of the proposed approach is to

M1

M2

A
2

A
1 V

1

A
3

2

8
 u

n
it

s

3
1

.2
5

 u
n

it
s

13 units

AREA = 406.25 Sq. units

Fig.4.7. kc=4 and km=4 fault-tolerant

floorplan of DWT benchmark

8
 u

n
it

s

4 units

4 units

4 units

6
 u

n
it

s

A1

A2
M1 M2

A3

2
 u

n
it

s
ea

ch

8
 u

n
it

s

9 units

AREA = 72 Sq. units

4 units

Fig.4.6. Non-tolerant Floorplan

of DWT benchmark

40

provide tolerance against temporal as well as the spatial effect of the transient

fault. Additionally, the proposed approach reduces the impact of area overhead

by exploring low-cost design solution with the help of PSO-DSE framework.

4.5. PSO-DSE framework for generating low-cost kc-cycle and

km-unit transient fault tolerant design

This section provides a detailed description of particle swarm optimization

based design space exploration PSO-DSE framework [32, 33]. The PSO-DSE

framework comprises of four major steps as follows:

4.5.1 Particle encoding and swarm initialization

In the initial step of the PSO-DSE framework, particles of the swarm (Pi) are

encoded as Xi = {NR1, NR2, …, NRD} where Xi denotes position of ith particle

in the design space, NRD represents the number of resources of type RD in the

Dth dimension of the design space[32, 33]. Each particle of the swarm represents

a number of hardware resources utilized for generating transient fault-tolerant

design solutions. Subsequently, particles are initialized in the design space. The

first three particles (P1, P2, and P3) are initialized as:

X1={min(R1), min(R2), … , min(RD)}

X2={max(R1), max(R2), … , max(RD)}

X3={[min(R1) + max(R1)]/2, … , [min(RD) + max(RD)]/2}

Representing minimum, maximum, and middle positions of the design space.

Hence, ensuring good coverage of design space. Afterward, the remaining

particles (Pi) are initialized as:

Xi={[min(R1) + max(R1)]/2 ± 𝛼, … , [min(RD) + max(RD)]/2 ± 𝛼}

Where min(RD) and max(RD) denotes the minimum and maximum resource in

Dth dimension respectively. 𝛼 is a random integer between the min(RD) and max

(RD).

4.5.2 Fitness / cost evaluation

Each particle’s position in the design space represents the number of hardware

resources utilized for generating kc-cycle and km-unit transient fault-tolerant

design solution. Based on the varying resource configuration (particle position)

41

fault-tolerant design solutions are generated and evaluated for analyzing fitness

based on the following cost function.

FTA

FTA

FTL

FTL

iXfC

max
2

max
1)(+=

(4.1)

where Cf (Xi) represents the cost/fitness of fault tolerant design solution based

on the (resource configuration) particle position Xi, 1 and 2 are weightage of

schedule latency and area of floorplan respectively. LFT is the latency of

transient fault-tolerant design, Lmax
FT is the maximum latency of transient fault-

tolerant design solution in the design space (derived using the minimum number

of hardware resources), AFT is the enveloping floorplan chip area of the fault

tolerant design solution, Amax
FT is the maximum floorplan area of the transient

fault-tolerant design (derived using the maximum number of hardware

resources).

4.5.3 Updating local best and global best

In each iteration of the PSO-DSE framework, particle ‘P’ of the swarm explores

some position ‘Xi’ in the design space. The local best denotes least cost (best

fit) position explored by an individual particle ‘P’ of the swarm till the current

iteration. Whereas, global best represents the best-fit design solution explored

by the entire particle population till the current iteration.

In each iteration, the local best of a particle ‘P’ is updated if a lower cost design

solution compared to current local best is explored by particle ‘P’ in the current

iteration. Similarly, in each iteration global best of entire particle swarm is

updated, if a lower cost design solution compared to previous global best is

explored by particle swarm in the current iteration.

4.5.4 Updating Velocity and particle’s position

After the local best and global best are updated, the velocity of a particle is

updated using Eq. 4.2.

𝑉𝑑𝑖

+ = 𝜔𝑉𝑑𝑖
+ 𝑏1𝑟1ሾ𝑅𝑑lbi

− 𝑅𝑑𝑖
ሿ + 𝑏2𝑟2ሾ𝑅𝑑𝑔𝑏

− 𝑅𝑑𝑖
ሿ (4.2)

Subsequently, the position of a particle is updated using 4.3.

𝑅𝑑𝑖
+ = 𝑅𝑑𝑖 + 𝑉𝑑𝑖

+ (4.3)

https://en.wikipedia.org/wiki/File:Greek_phi_Didot.svg
https://en.wikipedia.org/wiki/File:Greek_phi_Didot.svg

42

Where 𝑉𝑑𝑖

+ ,𝑉𝑑𝑖
 ,𝜔, 𝑅𝑑lbi

 , 𝑅𝑑𝑔𝑏
 , 𝑅𝑑𝑖

 ,b1, b2 ,𝑟1 and 𝑟2 are as defined in the

nomenclature of this thesis ([32, 33]).

Subsequently, for the new particle positions, kc-cycle and km-unit transient fault

tolerant designs are generated and finesses are evaluated. This process continues

until one of the termination criteria is satisfied:

1. The global best is not updated for the last 10 iterations.

2. The user-defined maximum number of iterations have been executed.

The PSO-DSE process generates optimal low-cost kc-cycle and km-unit transient

fault-tolerant design solution upon termination.

4.6. Summary

The proposed methodology is the first approach in the literature to generate DSP

IP cores that are simultaneously tolerance against multi-cycle temporal and

multi-unit spatial effects of transient fault for data-intensive applications. The

proposed approach presents novel TF tolerant Scheduling and floorplanning

techniques for generating DSP IP cores simultaneously tolerant against the

temporal and spatial effect of transient fault. Further, the proposed approach

generates low-cost design solution with the help of integrated PSO-DSE

framework.

43

Chapter 5

Methodology for generating a low-cost DSP IP core that

is simultaneously tolerant against multi-cycle temporal

and multi-unit spatial effects of transient fault for loop-

based control intensive applications

The previous chapter has presented the methodology for generating transient

fault tolerant DSP IP core for data-intensive applications. In this chapter, we

will discuss the methodology for generating transient fault tolerant DSP IP core

for loop-based control intensive applications. The chapter is organized into five

sections. In the first section, we will introduce the problem. In the second

section, we will present a brief overview of the proposed solution. The third,

fourth and fifth section will describe the major blocks of the proposed solution

with the help of a demonstrative example. The fifth and last section will

conclude the chapter.

5.1. Introduction

As discussed in the previous chapter, it is necessary to consider tolerance against

radiation-induced transient faults while designing applications for mission-

critical systems. Further, due to very stringent requirements such as low-power,

low-area, low-delay of mission-critical systems, it is equally (if not more)

important to consider optimization while designing reliable systems. The

mission-critical systems require both data-intensive as well as control intensive

applications. Therefore, although the technique discussed in the previous

chapter generates optimal design solutions for data-intensive applications, it is

not applicable to loop-based control-intensive applications. Hence, a novel

methodology is required for generating optimal designs for control-intensive

DSP applications.

The proposed approach presents a novel methodology for generating a ‘low cost

optimized transient fault tolerant hardware against multi-cycle (temporal) and

multi-unit (spatial) effect of transient fault for loop-based control intensive

digital signal processing (DSP) applications’

5.2. Proposed approach

44

This section briefly describes the major components of the proposed

methodology.

5.2.1 Problem formulation

Given a control intensives DSP application in the form of control data flow

graph (CDFG) along with module library, strength of multi-cycle transient fault

(kc), strength of multi-unit transient fault (km), generate a low-cost kc-cycle and

km-unit transient fault-tolerant design solution.

5.2.2 Overview of proposed methodology

As shown in fig 5.1, the proposed methodology comprises of four major

components namely PSO-DSE block, pre-processing block, kc-cycle tolerance

block, and km-unit tolerance block. The particle swarm optimization-based

design space exploration (PSO-DSE) block is primarily responsible for

exploring low-cost design solution. The pre-processing block takes CDFG

application as input and determines the optimal unrolling factor. The kc-cycle

tolerance block is responsible for providing tolerance against the temporal effect

of transient fault. The fourth and final block provides tolerance against the

spatial effect of transient fault.

As shown in fig. 5.2, The first step of the proposed methodology is to perform

pre-processing of the CDFG application for identifying optimal unrolling

factors (UF) for the design space. Subsequently, based on the pre-processed

 CDFG

Application

Strength of

MCT (kc)

Strength of

MTF (km)

Module

library

INPUT BLOCK

PSO DSE

Block in

HLS

Pre-processing of CDFG

MTF (Km-unit) fault tolerant

HLS block

Proposed approach

kc-cycle & km-unit fault tolerant low-cost design solution

Fig.5.1. Overview of proposed TF tolerant approach for loop-

based control intensive applications

MCT (Kc-cycle) fault tolerant HLS

block

45

unrolling factors, particle swarm is initialized as Xi = {NR1, NR2, …, NRD, UF}

where Xi denotes the position of an ith particle in the design space, NRD is the

number of resources of type RD in the Dth dimension of the design space, UF is

unrolling factor. Further, for each particle position Xi, CDFG application is

unrolled based on unrolling factor UF. Subsequently, a TMR system of unrolled

CDFG is created with respect to each particle position Xi. Afterward, proposed

transient fault tolerant rules are applied to generate kc-cycle transient fault

tolerant schedule. The kc-cycle transient fault tolerant schedule thus obtained is

utilized for creating a list of hardware conflicts. Subsequently, the proposed km-

unit fault tolerant rules are applied for generating kc cycle and km unit transient

fault tolerant floorplan. Once kc-cycle and km-unit transient fault tolerant

design is generated, the cost is evaluated and PSO-DSE parameters such as

velocity, local best and global best are updated. The process is repeated until

one of the PSO-DSE termination criteria is met. The optimal design solution

thus explored is the low-cost kc-cycle and km-unit transient fault tolerant

control intensive DSP application. The upcoming sections describe major

components of the proposed methodology in detail.

CDFGs Module Library Strength of multi-cycle

transient fault (kc)

Strength of multi-unit

transient fault (km)

Perform Pre-processing for

Unrolling Factor (UF)

Initialize the

swarm with

resource config

and UF

Update velocity

and swarm

position

Evaluate Fitness

Upgrade local best

and global best

Perform unrolling of CDFG for the

obtained UF

Create TMR of the unrolled CDFG

and perform scheduling using list

scheduling algorithm

Schedule the CDFG based on

proposed kc-cycle MCT fault

tolerant rules

Obtain the list of hardware conflicts

Create the km-unit fault tolerant

floorplan

INPUTS BLOCK

P
S
O

D
S
E

B
L
O
C
K

Fig. 5.2. Flow graph of the proposed TF tolerant methodology for loop-

based control intensive applications

Pre-processing

of CDFGs

MCT (kc-cycle)

fault tolerant block

MTF (km- unit)

fault tolerant block

46

5.3. Preprocessing of CDFG

The pre-processing of CDFG application is a process by which optimal

unrolling factors for the given application are determined. The pre-processing

step performs optimization by removing non-optimal UFs. Thereby, reducing

design space to include only optimal unrolling factors. As shown in fig. 5.2, pre-

processing step comprises of two sub-steps as described below

5.3.1 Preprocessing of CDFG application for determining optimal

unrolling factors

The pre-processing approach is adopted from [32]. The pre-processing step

takes CDFG application as input and determines the desirable unrolling factors

as per the following equation

where ‘I’ is a total number of loop iterations and UF is unrolling factor. The

UFs thus obtained are most desirable UFs as shown in [VCAL vol.2 issue2 etc.

papers].

5.3.2 Unrolling of CDFG

In our proposed approach, each particle position Xi = {NR1, NR2, …, NRD, UF}

comprises of a desirable UF. For each Xi, CDFG application is unfolded ‘UF-

1’ times to get unrolled CDFG. For instance, as shown in fig. 5.3, The original

CDFG application (1st iteration) is unfolded once more (2nd iteration) to obtain

unrolled CDFG with UF=2. The 1st and 2nd iterations are represented by light

desirable UF = ((I mod UF <
𝑈𝐹

2
) && (UF <=

𝐼

2
)) (5.1)

*
1

*
2

*
3

*
10

*
11

*
12

+
19

*
4

*
5

*
13

*
14

*
8

*
17

<
20

-
6

-
15

-
7

+
9

-
16

+
18

Fig. 5.3. Unrolled CDFG of differential equation benchmark for

UF = 2

OC

Iteration 1 Iteration 2

47

*
1

*
2

*
3

*
10

*
11

*
12

+
19

*
4

*
5

*
13

*
14

*
8

*
17

<
20

-
6

-
15

-
7

+
9

-
16

+
18

*
1’

*
2’

*
3’

*
10’

*
11’

*
12’

+
19’

*
4’

*
5’

*
13’

*
14’

*
8’

*
17’

<
20’

-
6’

-
15’

-
7’

+
9’

-
16’

+
18’

*
1’’

*
2’’

*
3’’

*
10’’

*
11’’

*
12’’

+
19’’

*
4’’

*
5’’

*
13’’

*
14’’

*
8’’

*
17’’

<
20’’

-
6’’

-
15’’

-
7’’

+
9’’

-
16’’

+
18’’

Fig. 5.4. TMR system of unrolled CDFG (UF = 2) of differential equation benchmark

OC DC TC

Iteration 1 Iteration 2

*
M1 8’

+
A1 9’

-
S1 7’

M6

*
2’

*
M5 1’

*
M4 4’

*
M3 3’

*
M3 5’

-
S3 6’

<
C2 20’

+
A2 19’

-
S1 16’

*
M1 17’

+
A1 18’

*
M3 14’

*
M4 12’

-
S2 15’

*
M6 11’

*
M5 10’

*
M5 13’

+
A3 19’’

<
C1 20’’

*
M4 10’’

*
M5 11’’

*
M6 12’’

*
M2 13’’

-
S1 15’’

*
M3 14’’

*
M1 17’’

+
A1 18’’

-
S1 16’’

*
M2 3’’

*
M2 5’’

*
M2 1’’

*
M2 2’’

*
M6 4’’

-
S3 6’’

-
S2 7’’

*
M2 8’’

+
A2 9’’

*
M2 5

-
S1 6

-
S1 7

+
A1 19

<
C1 20

*
M1 1

*
M2 2

*
M3 3

*
M1 4

*
M1 8

+
A1 9

*
M4 10

*
M5 11

*
M3 13

*
M6 12

*
M4 14

-
S2 15

-
S2 16

*
M2 17

+
A2 18

CS 1

CS 2

CS 3

CS 4

CS 5

CS 6

CS 7

CS 8

CS 9

CS 10

CS 11

CS 12

CS 13

CS 14

CS 15

CS 17

CS 18

CS 16

Fig. 5.5. 4-cycle TF fault tolerant SCDFG TMR of differential equation benchmark for (6M, 3A, 3S, 2C, UF=2)

v

v

v
V1

V1

V1

OC
DC TC

Iteration

1

Iteration 2

48

blue and purple colored outlines respectively. The additional circuit comprising

of an adder and a comparator is utilized for counting (incrementing) the number

of iterations executed and comparing them with the maximum number of

iterations (I) to be performed. This section provides a detailed description of the

proposed methodology for designing kc-cycle transient fault tolerant scheduled

DFG (SDFG) TMR system. The aim of the proposed methodology is to isolate

the impact of a transient fault in any one of the three modules (copy) of the TMR

system such that remaining two modules (copies) should function correctly even

in the presence of a transient fault. Hence, when a voter is applied to the TMR

system then the voter will always vote-in the correct output. The pre-processed

and unrolled CDFG thus generated is fed as input to the next step of our

proposed methodology.

5.4. Proposed Methodology for generating a kc-cycle transient

fault tolerant design

The proposed methodology comprises of two steps as described below.

5.4.1. Creating TMR of the unrolled CDFG

The first step of kc-cycle transient fault tolerant methodology takes unrolled

CDFG as input and creates a triple modular redundant (TMR) system by

copying all the operations of original unrolled CDFG (OC) as a duplicate copy

(DC) and triplicate copy (TC) as shown in fig. 5.3. The TMR system thus

generated is fed into our proposed methodology for generating kc-cycle

transient fault tolerant scheduled TMR system as discussed in the following sub-

section.

5.4.2. Methodology for generating kc-cycle transient fault tolerant

scheduled TMR system

The proposed algorithm takes D-dimensional resource configuration extracted

from particle position Xi as input along with unrolled CDFG based TMR

system, strength of multi-cycle transient fault (kc) and module library and

produces a kc-cycle transient fault tolerant scheduled TMR system as output.

The first step of the proposed approach is to perform scheduling and allocation

49

of a TMR system based on resource configuration extracted from Xi, using the

proposed kc-cycle transient fault tolerant scheduling and allocation rules.

The proposed approach considers the temporal effect of transient fault as

hardware conflicts. A hardware conflict arises when a hardware resource

allocated to an operation of a copy is re-allocated to another operation of its

cloned copies within kc-cycles. The proposed kc-cycle transient fault tolerant

scheduling and allocation rules applied to resolve these hardware conflicts are:

a. Hardware resource (R) allocated to an operation of a copy can be re-

allocated to an operation of the same copy within kc control steps

(cycles).

b. Shift operation of a copy if no hardware resource can be allocated without

conflicts. Thus, allocations are made based on the following:

i. Resource ‘R’ allocated to an operation of OC (v ∈ OC) can be re-

allocated to an operation of DC (v’ ∈ DC) or operation of TC (v’’ ∈ TC)

only after a distance of kc control steps (cycles).

i.e. t(v’)-t(v)> kc, and

t(v’’)-t(v)> kc

ii. Resource ‘R’ allocated to an operation of DC (v’ ∈ DC) can be re-

allocated to an operation of OC (v ∈ OC) or operation of TC (v’’ ∈ TC)

only after a distance of kc control steps (cycles).

i.e. t(v)-t(v’)> kc, and

t(v’’)-t(v’)> kc

iii. Resource ‘R’ allocated to an operation of TC (v’’ ∈ TC) can be re-

allocated to an operation of OC (v ∈ OC) or operation of DC (v’ ∈ DC)

only after a distance of kc control steps (cycles).

i.e. t(v)-t(v’’)> kc, and

t(v’)-t(v’’)> kc

c.

i. There should be at least control steps (cycles) delay between

execution of two consecutive sequential loops such that there are no

conflicts:

i.e. 𝑇𝑆ⅇ𝑞2
𝑠 − 𝑇𝑆ⅇ𝑞1

𝐸 > 𝑘𝐶,

50

ii. There should be at least control steps (cycles) delay between

execution of two consecutive parallel loops such that there are no

conflicts:

i.e. 𝑇𝑝𝑎𝑟2
𝑠 − 𝑇𝑝𝑎𝑟1

𝐸 > 𝑘𝐶,

iii. There should be at least control steps (cycles) delay between the start

of the execution of sequential loop1 and completion of parallel loop2

such that there are no conflicts:

i.e. 𝑇𝑆ⅇ𝑞1
𝑠 − 𝑇𝑝𝑎𝑟2

𝐸 > 𝑘𝐶,

Proposed scheduling and allocation rules ensure fault isolation within a single

copy i.e., a single particle strike causing a transient fault in a copy (OC, DC or

TC) of the TMR system will not affect the remaining two copies. Hence, even

in the presence of (temporal effect of) transient fault due to a single particle

strike, two copies will always produce the correct output. Hence, voter applied

to the output of the TMR system will ensure the correct output is always

produced as the final output of the TMR system. The proposed rules are

elaborated in upcoming section 5.4.3. The delay of the kc-cycle transient fault

tolerant design thus generated is evaluated (as discussed below) and stored for

future utilization during cost evaluation.

Proposed Latency model: The latency of kc-cycle transient fault tolerant TMR

(LTMR) is given by the following equation

𝐿𝑇𝑀𝑅 = (𝐼%𝑈𝐹) ∗ 𝐿𝑠ⅇ𝑞 + (
𝐼

𝑈𝐹
)

𝑞𝑢𝑜𝑡𝑖ⅇ𝑛𝑡

∗ 𝐿𝑝𝑎𝑟
(5.2)

Where, (𝐼%𝑈𝐹) indicates the number of sequential loops, and (
𝐼

𝑈𝐹
)

𝑞𝑢𝑜𝑡𝑖ⅇ𝑛𝑡

 denotes

the number of parallel loops, 𝐿𝑠ⅇ𝑞, 𝐿𝑝𝑎𝑟 denotes latency of sequential body and

parallel body respectively. The 𝐿𝑠ⅇ𝑞, 𝐿𝑝𝑎𝑟 are calculated as the summation of

‘delay of each control step of the kc-cycle fault tolerant schedule’ and ‘delay of

strength of kc-cycle transient fault’ as shown by eq. (3).

𝐿𝑠ⅇ𝑞/𝑝𝑎𝑟 = {∑ 𝑀𝑎𝑥(𝐷(𝑜𝑝𝑖), . . , 𝐷(𝑜𝑝𝑛), 𝐷(𝑜𝑝𝑖′), . . , 𝐷(𝑜𝑝𝑛′), 𝐷(𝑜𝑝𝑖′′), . . , 𝐷(𝑜𝑝𝑛′′)
𝑁

𝑐𝑠=1
} + 𝑘𝑐(5.3)

Where delay of a control step is evaluated as a maximum value among ‘delay

of all the operations belonging to any copy of the TMR system’. where ‘D(opi)’,

‘D(opi’)’, ‘D(opi’’)’ represents a delay of operation belonging to the original

51

copy, duplicate copy, and triplicate copy respectively. Further, 1 ≤ i ≤ n; 1’≤ i’

≤ n’; 1’’≤ i’’ ≤ n’’, where, i, i’ and i’’ = operations of the original copy, duplicate

copy and triplicate copy respectively. n, n’ and n’’ = maximum number of nodes

of original, duplicate and triplicate copy respectively; N = maximum number of

control steps (cs) of the scheduled CDFG; kc denotes the delay of kc-cycles.

Addition of kc in the eq. (5.3), ensures the kc-cycle difference between execution

of consecutive sequential/parallel loops. Hence, ensuring fault doesn’t

propagate within two consecutively scheduled sequential and parallel bodies.

The upcoming sub-section will describe the proposed methodology with the

help of an example.

5.4.3. A demonstrative example of the proposed methodology for

generating a kc-cycle transient fault tolerant design for control-

intensive DSP applications.

This section illustrates the proposed kc-cycle transient fault tolerant scheduling

and allocation rules with the help of an example of a differential equation

benchmark. For the demonstrative purpose, the realistic delay value of one

control step is taken as 1000 ps for designing an application specific processor

with frequency 1Ghz. Additionally, for demonstrative purpose strength of

transient fault is assumed to be (kc =) 2 control steps (equivalent to 2000 ps) as

adopted from [39,41,40]. Further, the values of area and delay of hardware

resources are based on 15nm technology open source NanGate library [30].

However, note that the proposed approach is applicable for any other kc values.

Fig. 5.3 shows a basic TMR system of unrolled differential equations

benchmark. The proposed kc-cycle transient fault tolerant scheduling and

allocation rules are applied on the TMR system to obtain a 2-cycle transient

fault tolerant schedule based on D-dimensional resource constraints extracted

from particle position Xi = {6M, 3A, 3S, 2C, UF=2} as {6M, 3A, 3S, 2C} where

UF=2 is already utilized during creation of unrolled CDFG.

The proposed rule ‘a’ permits a hardware resource allocated in previous control

steps to an operation of a copy to be re-allocated within kc cycles to another

operation of same copy. This is because fault affected hardware will perform

operations of the same copy within kc cycles, hence fault will remain isolated

52

in the same copy and will not propagate to other copies. Further, it results in

better hardware resource utilization leading to the reduction in delay of the

scheduled CDFG. Thus, fault isolation within the same copy is ensured as long

as rules b and c are also satisfied. For example, rule ‘a’ permits hardware M1

allocated to opn 1 (of OC) to be re-allocated to opn 4 of the same copy within

kc-control steps/cycles.

As per proposed rule ‘b’, opn 1’ & 2’of DC have been shifted to CS4 since no

allocation was possible due to hardware conflicts. Further, as per rule b i.,

hardware resource M5 allocated to opn 11 of OC at CS1 can only be re-allocated

to opn 1’ (of DC) at CS4 after 2 cycles (control steps). Similarly, as per rule b

ii., hardware resource M5 allocated to opn 13’ of DC at CS6 is re-allocated to

opn 10’’ (of TC) at CS9 only after 2 cycles (control steps). Further, according to

rule b.iii., M5 allocated to operation 10’’ (of TC) could only be re-allocated to

an operation of OC or DC after 2 cycles in case re-allocation of M5 was needed.

5.5. Proposed Methodology for generating a km-unit transient

fault tolerant design

The proposed methodology for generating a km-unit transient fault tolerant

design takes kc-cycle fault tolerant TMR system along with the strength of the

spatial effect of transient fault (km) as input and generates kc-cycles & km-unit

fault tolerant floorplan as output.

The proposed methodology considers the spatial effect of a transient fault in

term of hardware conflicts. A hardware conflict due to spatial effect occurs

when a hardware resource allocated to an operation of a copy is placed within

km-unit distance to any hardware resource allocated to an operation of

Obtain a list 𝑳ሾ𝑹𝒊ሿ of all hardware resource (𝑹𝒊) from kc-cycle fault tolerant

SDFG (where i=1,2,.., n.)

Obtain list of conflicting hardware resources ൫𝑍𝑅𝑖
[𝑅𝑗]൯ for each element of ሾ𝑅𝑖ሿ

.

Place each element of 𝐿ሾ𝑅𝑖ሿ such that it is at least km-unit distance apart from

each of its conflicting hardware listed in 𝑍𝑅𝑖
[𝑅𝑗] .

Repeat until 𝐿ሾ𝑅𝑖ሿ ≠ ∅.

Fig. 5.6 Proposed km-unit transient fault tolerant floorplanning rules

53

remaining two copies within kc-CS (cycles). In such a scenario if two hardware

resources allocated to different copies are placed less than km-unit to each other

then, the fault may propagate from one copy to another due to the spatial effect

of transient fault. Hence, more than one copy will generate incorrect output

leading to incorrect output by the voter. Therefore, resolving hardware conflicts

due to the spatial effect of transient fault is important to provide complete

tolerance against transient faults.

As shown in fig. 5.5, the first step of the proposed methodology is to obtain a

list of all hardware resources [Ri] present in kc-cycle fault tolerant design. In

the next step, a list of conflicting hardware (𝑍𝑅𝑖
[𝑅𝑗]) due to the spatial effect of

transient fault is generated for all the resources present in the list [Ri].

Subsequently, the hardware resources are placed during floorplanning such that

each resource Ri is placed at least km-unit distance apart from its conflicting

resources Rj. These steps are repeated till all the resources are placed. The

floorplan thus obtained is kc-cycle and km-unit transient fault tolerant floorplan.

5.5.1 A demonstrative example of the proposed methodology for

generating a km-unit transient fault tolerant floorplan

This section illustrates the proposed km-unit transient fault tolerant

methodology with the help of an example of a differential equation benchmark.

In the initial step, list of all hardware resource is obtained from 2-cycle transient

fault tolerant TMR system (discussed earlier in section 5.4) as L[R] = {M1, M2,

… , M6, A1, A2, A3, S1, S2, S3, C1, C2}. Subsequently, for each of the

hardware resources, a list of conflicting hardware is created. for instance,

consider hardware resource M1, the M1 allocated to an operation 1 of OC at CS

1 will be in conflict with all the hardware allocated to any operation of DC or TC

within kc = 2 cycles. Thus, for M1 scheduled at CS1 allocated to opn 1 of OC,

the conflicting hardware in terms of spatial effect are A2, C2 (allocated to opn

19’ and 20’ of DC at CS 1 and 2 respectively) and A3 (allocated to opn 19’’ of

TC at CS1). Similarly, for M1 scheduled at CS2, the conflicting hardware in

terms of spatial effect are C2, M5, and M6. Similarly, for M1 scheduled at CS5,

the conflicting hardware are: M5, M6, M4, M3, C1, S3, S1 and S2. Further, for

M1 scheduled at CS10, the conflicting hardware are M2, M6, S3, M4, M5, S2,

and M3. Likewise, for M1 scheduled at CS11 the conflicting hardware are M2,

54

M6, S3, M4, M5, S2, M3, S1 for all occurrences of M1 is obtained and a set of

all those conflict hardware as shown below is termed as the list of conflicting

hardware with respect to M1:

 𝑍𝑀1[𝑅𝑗] = {𝑀2, 𝑀3, 𝑀4, 𝑀5, 𝑀6, 𝐶1, 𝐶2, 𝑆1, 𝑆2, 𝑆3, 𝐴2, 𝐴3}

A1

A2
M1 M2 M3

M4 M5 M6

C

1

C

2
S1

S3

S2

A3

2
 u

n
it

s
ea

ch
 1

6
 u

n
it

s

2
.2

5

8
 u

n
it

s

16 units

AREA = 256 Sq. units

4 units

Fig. 5.7. non-tolerant Floorplan of

differential equation benchmark

M1

M3

M2

M5

M4

M6

C

1

C

2

S3

S2 S1

A1 A2

V

1

A3
2

.2
5

2

8
 u

n
it

s

3
1

.2
5

 u
n

it
s

5
.7

5
 u

n
it

s

22 units

AREA = 687.5 Sq. units

Fig. 5.8. kc=4 and km=4 fault-tolerant floorplan of

differential equation benchmark

8
 u

n
it

s

4 units

4 units

4 units

4 units

4 units

4 units

4
 u

n
it

s
4

 u
n

it
s

55

Similarly, the list of all the conflicting hardware with A2 is

𝑍𝐴2[𝑅𝑗] = {𝑀1, 𝑀2, 𝑀3, 𝑀4, 𝑀5, 𝑀6, 𝑆1, 𝑆2, 𝑆3, 𝐴1, 𝐴3, 𝐶1}.

Therefore, as evident from the above lists, A2 has a conflict with M1 and vice-

versa. Hence, A2 cannot be placed in the neighborhood of M1. In a similar

manner, in the third and final step of the proposed km-unit transient fault

tolerant floorplanning approach. The conflicting hardware are placed at least

km-unit (=2) bidirectional distance apart from each other as shown in fig.5.6.

Likewise, the voter is also placed at km-distance apart from each hardware

resource of the TMR system to avoid fault propagation from hardware resources

to voter and vice-versa.

On the contrary, in the case of spatially non-tolerant floorplan all the hardware

resources are compactly placed as shown in fig.5.5. Hence, a transient fault due

to particle strike with strengths kc=2 (and km=2) affecting M1 during execution

of operation 8 in CS5 will affect both M2 and M4 due to spatial effect and hence

will affect operation 4’, 12’. Hence, the fault will propagate from the original

copy (OC) to duplicate copy (DC). Thus, the voter will not be able to vote-in

correct output in case of the non-tolerant floorplan. Therefore, although such a

floorplan has a lesser area compared to the proposed approach, it is vulnerable

to the spatial effect of transient fault. The main crux of the proposed approach

is to provide tolerance against temporal as well as the spatial effect of the

transient fault. Hence, a small area overhead could be inconsequential.

However, considering the criticality of mission-critical systems, the proposed

approach reduces the impact of area overhead by exploring low-cost design

solution with the help of PSO-DSE framework.

5.6. Proposed PSO-DSE framework for generating low-cost kc-

cycle and km-unit transient fault tolerant design

This section provides a detailed description of optimization based on PSO-DSE

framework. The PSO-DSE framework comprises of four major steps as follows:

5.6.1 Particle encoding and swarm initialization

In the initial step of the PSO-DSE framework, particles of the swarm (Pi) are

encoded as Xi = {NR1, NR2, …, NRD, UF} where Xi denotes position of ith

56

particle in the design space, NRD represents the number of resources of type RD

in the Dth dimension of the design space, UF is the pre-processed unrolling

factor. Each particle of the swarm represents the number of hardware resources

(along with unrolling factor) utilized for generating transient fault tolerant

design solutions. Subsequently, particles are initialized in the design space. The

first three particles (P1, P2, and P3) are initialized at positions:

X1={min(R1), min(R2), … , min(RD), min(UF)}

X2={max(R1), max(R2), … , max(RD), max(UF)}

X3={[min(R1) + max(R1)]/2, … , [min(RD) + max(RD)]/2,

[min(UF) + max(UF)]/2}

Representing minimum, maximum, and middle positions of the design space.

Hence, ensuring good coverage of design space. Subsequently, the remaining

particles (Pi) are initialized at positions:

Xi={[min(R1) + max(R1)]/2 ± 𝛼, … , [min(RD) + max(RD)]/2 ± 𝛼,

[min(UF) + max(UF)]/2 ± 𝛼}

Where min(RD) and max(RD) denotes the minimum and maximum resource in

Dth dimension respectively. Similarly, min(UF) and max(UF) denotes minimum

and maximum pre-processed unrolling factor respectively. 𝛼 is a random integer

between the minimum and the maximum value of Dth dimensional resource or

unrolling factor.

5.6.2 Fitness / cost evaluation

Each particle’s position in the design space contains the number of hardware

resources in Dth dimension and unrolling factor. From each position, resource

configuration is extracted and utilized for generating kc-cycle and km-unit

transient fault tolerant design solution. The fitness of the generated design

solution is evaluated using the following cost/fitness function.

FTA

FTA

FTL

FTL

iXfC

max
2

max
1)(+=

(5.4)

where Cf (Xi) represents the cost/fitness of fault tolerant design solution based

on the (resource configuration) particle position Xi, 1 and 2 are weightage of

schedule latency and area of floorplan respectively. LFT is the latency of

https://en.wikipedia.org/wiki/File:Greek_phi_Didot.svg
https://en.wikipedia.org/wiki/File:Greek_phi_Didot.svg

57

transient fault tolerant design, Lmax
FT is the maximum latency of transient fault

tolerant design solution in the design space (derived using the minimum number

of hardware resources), AFT is the enveloping floorplan chip area of the fault

tolerant design solution, Amax
FT is the maximum floorplan area of the transient

fault tolerant design (derived using the maximum number of hardware

resources).

5.6.3 Updating local best and global best

In each iteration of the PSO-DSE framework, particle ‘P’ of the swarm explores

some position ‘Xi’ in the design space. The local best denotes least cost (best

fit) position ‘Xi’ explored by an individual particle ‘P’ of the swarm till the

current iteration. Whereas, global best represents the best-fit design solution

explored by the entire particle population until the current iteration.

In each iteration, the local best of a particle ‘P’ is updated if a lower cost design

solution compared to current local best is explored by particle ‘P’ in the current

iteration. Similarly, in each iteration global best of entire particle swarm is

updated, if a lower cost design solution compared to previous global best is

explored by particle swarm in the current iteration.

5.6.4 Updating Velocity and particle’s position

After the local best and global best are updated, the velocity of a particle is

updated using Eq. 5.5.

𝑉𝑑𝑖

+ = 𝜔𝑉𝑑𝑖
+ 𝑏1𝑟1ሾ𝑅𝑑lbi

− 𝑅𝑑𝑖
ሿ + 𝑏2𝑟2ሾ𝑅𝑑𝑔𝑏

− 𝑅𝑑𝑖
ሿ (5.5)

Subsequently, the position of a particle is updated using Eq. 3.

𝑅𝑑𝑖
+ = 𝑅𝑑𝑖 + 𝑉𝑑𝑖

+ (5.6)

Where 𝑉𝑑𝑖

+ ,𝑉𝑑𝑖
 ,𝜔, 𝑅𝑑lbi

 , 𝑅𝑑𝑔𝑏
 , 𝑅𝑑𝑖

 ,b1, b2 ,𝑟1 and 𝑟2 are as defined in the

nomenclature of this thesis ([32, 33]).

Subsequently, for the new particle positions, kc-cycle and km-unit transient fault

tolerant designs are generated and finesses are evaluated. This process continues

until one of the termination criteria is satisfied:

3. The global best is not updated for the last 10 iterations.

4. The user-defined maximum number of iterations have been executed.

58

The PSO-DSE process generates optimal low-cost kc-cycle and km-unit transient

fault tolerant design solution upon termination.

5.7. Summary

The paper presented a novel methodology that achieves fault tolerance against

the multi-cycle temporal and multi-unit spatial effect of a single event transient

in loop-based control intensive DSP IP cores generated using high-level

synthesis. Further, the proposed approach generates low-cost design solution

for loop based CDFG applications with the help of integrated PSO-DSE

framework.

59

Chapter 6

Methodology for generating a low-cost, highly secure,

functionally obfuscated DSP IP core

This chapter presents the proposed methodology for generating low-cost

functionally obfuscated DSP IP core. The chapter is organized in four sections.

In the first section, the problem is introduced. In the second section, the threat

model is presented. The third and fourth section describes the proposed solution

with the help of a demonstrative example. The fifth section will summarize the

chapter.

6.1. Introduction

As discussed in the introductory chapters, continuous technology scaling has

led to various reliability and security concerns. Further, rapid technology

scaling and increasing the cost of maintaining an advanced fabrication facility

has led to the monopoly of a few advanced fabrication facilities. Majority of

design houses lacks an in-house fabrication facility and must send their designs

to a third-party fabrication facility. This dependency of design houses on

advanced fabrication facilities has enhanced security vulnerabilities such as IP

Piracy, IP overbuilding, reverse engineering, etc. [21, 34, 35]. Hence,

methodologies are required for providing protection against these security

vulnerabilities/threats.

The proposed approach provides protection against some of these threats using

logic locking (a.k.a. functional obfuscation/locking). Logic locking is a

technique that inserts locking units (logic gates such as AND/ OR/ XNOR etc.)

such that correct output cannot be obtained until a correct key is applied to the

locked circuit. A malicious attacker would be motivated to identify the correct

key with the help of attacks based on reverse engineering [21, 35]. The proposed

approach provides protection by enhancing the complexity of reverse

engineering. The proposed approach presents novel locking units termed as ‘IP

locking blocks (ILBs)’. The proposed ILBs incorporates some novel properties

to enhance its robustness against state-of-art attacks. Further, the proposed

approach integrates PSO-DSE framework for generating a low-cost logically

60

L
o

ck
ed

n
etlist o

f IP

co
re

F
u

n
ctio

n
al

o
b

fu
scatio

n

L
o

ck
ed

n
etlist

L
a
y
o

u
t

F
ab

ricatio
n

P
ack

ag
in

g

D
S

P
 ap

p
licatio

n

O
rig

in
al

n
etlist o

f IP

co
re

C
E

 d
ev

ice
-

S
o

C
 R

T
L

n
etlist

G
D

S
II

M
ask

N
o

n
-

fu
n
ctio

n
al

IC

IC

A
ctiv

atio
n

 F
u

n
ctio

n
al

IC
 (m

ark
et

read
y
)

R
ev

erse E
n
g

in
eerin

g

L
o

ck
ed

 N
etlist

F
ig

. 6
.1

 P
o

ssib
ility

 o
f R

ev
erse en

g
in

eerin
g
 attack

 d
u
rin

g
 v

ario
u
s stag

es o
f IC

 d
esig

n

A
ttac

k

D
ecip

h
ered

 N
etlist

61

locked DSP IP core. This is because DSP circuits have several alternative design

solutions and selection of an optimal (or low-cost) alternative requires

integration of a design space exploration framework such as PSO-DSE. In case,

if an optimization framework such as PSO-DSE is not incorporated while

designing DSP IP cores, then the generated design may incur huge area, power,

and delay overheads.

The proposed approach presents a novel methodology for generating a ‘low cost

highly secure, functionally obfuscated DSP IP core through robust locking’

6.2. Threat model

Fig. 6.1 shows the typical IC design flow. The IP core designer will take DSP

application as input and perform functional obfuscation (functional locking) to

generate a locked netlist of the IP core. These IP cores will be integrated into

SoC designs and a layout of SoC is created in the form of GDS-II file which is

further processed as shown in fig.6.2. A malicious attacker could perform

reverse engineering on layout, mask, non-functional IC to obtain the locked

netlist. Further, he could perform attack such as key sensitization attack to

obtain the unlocked (deciphered netlist). The primary motive of an attacker is

to determine the secret key so that he/she could unlock the circuit, manufacture

the IC and sell them illegally. Additionally, an attacker can understand the

design if correct key-bits are known and hence could insert hard to detect trojans

at safe places [21, 22]. To accomplish these attacks, an attacker is assumed to

possess the following:

(a) Locked netlist: obtained through theft or reverse engineering of layout or

mask.

(b) A functional IC: brought from the open market.

6.3. Proposed approach

This section briefly describes the major components of the proposed

methodology.

6.3.1. Problem formulation

Given a DSP application in the form of data flow graph (DFG) or control data

flow graph (CDFG) along with module library, IP core locking blocks (ILBs),

62

PSO control parameters as inputs, generate a low-cost highly secure

functionally obfuscated DSP IP core.

6.3.2. Overview of proposed methodology

As shown in fig 6.2, the proposed methodology comprises of two major

components namely PSO-DSE and IP functional locking. The first step of the

proposed approach is to initialize the particle swarm [32]. For each particle

position, a gate level datapath structure is created. Subsequently, proposed IP

locking blocks are inserted in the gate level structure. Further, fitness and

security (strength of obfuscation) of the obfuscated design for each particle’s

position is evaluated. Based on the particle’s fitness PSO-DSE parameters are

updated. This process is repeated until one of the PSO-DSE termination criteria

is met. The solution thus generated is low-cost functionally obfuscated DSP IP

core. The functionally obfuscated design thus obtained will be highly robust

against reverse engineering based attacks. The particle swarm optimization-

based design space exploration (PSO-DSE) block is primarily responsible for

exploring low-cost design solution.

Input Blocks

DFG

application
Module

library

IP core

Locking

blocks (8-bit

key/data bit)

PSO control
parameters

(ω,p,b)

Initialize the particle swarm

Evaluate cost

Generate a random variable µ

Generate the gate level structure based

on particle position

Insert ILBs at the output of each

Functional unit (FU) based on µ

Fig. 6.2. Details of proposed functional obfuscation methodology

PSO-DSE

IP functional locking

Update local best and global best

Update velocity and swarm position

63

The upcoming section describes our proposed IP locking blocks and discusses

their properties responsible for enhancing the strength of obfuscation.

6.3.3. Proposed IP core locking blocks

This section discusses the properties of proposed ILBs shown in fig. 6.3. Each

ILB provides the same robustness against RE and key sensitization attacks.

However, they activate for different key bits. Further, Each ILB has a different

structure that causes different implications on hardware power and delay. These

implications are considered and incorporated in the PSO-DSE framework with

the help of modified particle encoding. The modified design space represents

particle positions as Xi = {NR1, NR2, …, NRD, µ} for DFG applications and Xi

= {NR1, NR2, …, NRD, UF, µ} for CDFG applications. Where µ is a random

integer. The proposed methodology is applicable to both DFG as well as CDFG

applications. However, to avoid confusion, the proposed approach will be

presented in the context of DFG applications.

The proposed ILBs incorporate robust security features such as multi-pairwise

security, prohibition of key gate isolation, etc. These security features enhance

robustness against reverse engineering and key sensitization attacks as

discussed below:

• Multi-pairwise security: This security feature is responsible for providing

protection against key sensitization attack. Key sensitization is an attempt

of an attacker to identify and apply input pattern combination that

sensitizes key-bits to primary output pins [21, 22]. The attacker can

identify a single input pattern or a combination of input patterns for

sensitizing key-bits and apply them to observe correct key bits at the

output pins of a functional IC. Key-bits K1 & K2 are said to be pairwise

secure if an attacker cannot sensitize K1 without knowing/controlling

key bit K2 and vice-versa [21]. Our proposed ILBs are multi-pairwise

secured, i.e., any of the 8 key-bits cannot be sensitized without

knowing/controlling other 7 key-bits. Therefore, an attacker must apply

a brute-force attack to determine the correct key. Thereby proposed

ILB’s multi-pairwise security property enhances the robustness of

functional obfuscation methodology and increases the complexity of

reverse engineering in comparison to other locking units present in

literature.

64

• Prohibiting key gate isolation: Isolated key gates can be easily sensitized

using key sensitization attacks as shown in [21]. A key Kiso is said to be

isolated if there is no path between Kiso and remaining keys of the locked

design and vice-versa. Hence, such keys are highly vulnerable to

sensitization attacks and therefore must be avoided. The proposed ILBs

have multiple paths between key bits and none of the key-bits are isolated

hence proposed ILBs have higher resiliency against key sensitization

attack.

• Protection against the run of key gates: A few combinations of run-of

key gates may reduce the effort of an attacker to identify the correct key

by increasing the number of valid keys [21]. Further, an attacker could

replace run of key gates with a single gate. This is not feasible in case of

proposed ILBs as key gates of proposed ILBs are intertwined for 8-key

bits. Hence, it is very difficult to identify the run of key gates in the

structure of the proposed ILBs.

Proposed ILB 2

K1

K2

K3
K4

K5
K6
K7
K8

i/p

O/P O/P

i/p

Proposed ILB 1

K1

K2

K3
K4

K5
K6
K7
K8

O/P

Proposed ILB 3

K1

K2

K3
K4

K5
K6

K7
K8

i/p

Proposed ILB 4

K1

K2

K3
K4

K5
K6

K7
K8

O/P

i/p

Fig. 6.3 Proposed IP core locking Blocks

65

• Non-mutable key gates: An attacker tries to identify a ‘non-key’ primary

input between the path connecting two key bits K1 and K2 such that by

controlling this input, the effect of K1 can be stopped from reaching K2

and simultaneously K2 can be sensitized to a primary output. Such a key

gate K1 is termed as a mutable key gate. The proposed ILBs have

intertwined paths between its 8 key-bits. Hence, it is infeasible to

sensitize a particular key bit without controlling the remaining 7 key bits.

Further, the effect of 7 key bits cannot be muted by controlling a single

input. Thus, proposed ILBs are robust against muting based key

sensitization attacks presented in [21].

6.3.4. Insertion technique of proposed ILBs

As discussed earlier, the particle positions are encoded as Xi = {NR1, NR2, …,

NRD, µ} where µ is a random number between 1 and TILB; where, µ symbolizes

user specified repetition pattern of ILB insertion. TILB is the total number of

different ILB structures available for selection. Once a gate level structure is

generated with respect to each particle position, the proposed ILBs are inserted

at the output of each functional unit (FU), each data output bit is locked using

an ILB. The same ILB is inserted ‘µ’ times. After ‘µ’ repetitions new ILB is

selected from TILB and inserted ‘µ’ times. The process is repeated till all the

output bits of FUs are locked using proposed IP functional locking blocks

(ILBs).

An illustrative example of 4-bit FIR locked datapath generated for particle

position {1A, 1M, µ=2} is shown in fig.6.3. Initially, a gate level structure of

FIR benchmark is generated based on resource configuration (1Adder,

1Multiplier). Subsequently, as µ=2, the proposed ILB1 is inserted at first two

output bits of the adder functional unit. Further, after ‘µ=2’ repetitions, ILB2 is

selected and inserted at the next two output data bits. The process is repeated

till all the output bits of each FU is locked.

6.3.5. Security due to insertion of proposed ILBs

The security enhancement due to the insertion of proposed ILBs is given by the

following equation

𝐾𝑆 = 2 ^ (𝑏 ∗ 𝑚 ∗ 𝑓) (6.1)

66

Where KS symbolizes the key-space (Strength of Obfuscation), b = key-bits per

ILB, m = number of ILBs inserted per functional unit, f = number of functional

unit in the datapath. For example, consider the security evaluation of 4-bit FIR

benchmark shown in fig.6.3. The number of output bits of each FU is 4.

Therefore, the number of ILBs inserted per functional unit is (m=) 4. Further,

as each ILB structure has 8 key-bit therefore b=8. Additionally, as the FIR

datapath is generated for resource configuration (1 adder, 1 multiplier). Hence,

the number of functional units in the datapath is (f=) 2. Therefore, the strength

of obfuscation of 4-bit FIR datapath is KS = 2 ^ (8*4*2) = 1.8 e+19.

The upcoming section analyzes the security of proposed methodology from an

attacker’s perspective.

6.3.6. Security analysis of proposed methodology

An attacker is assumed to have the following tools/facilities to unlock the locked

design:

• Access to an advanced fabrication facility.

• A locked gate-level netlist obtained through theft or reverse engineering

the layout or mask of the locked design.

• Functional IC bought from the open market.

An attacker who has access to these tools will try to determine the number of

key bits through reverse engineering. Once an attacker determines the correct

set of key-bits. He/she will try to apply key sensitization attack to determine the

value of key-bit that matches with a valid key. As the proposed methodology is

resilient to several state-of-art attacks (see section 6.3.3 and 6.3.7). Hence, an

attacker is forced to apply brute force attack to identify the valid key. For a

demonstrative example, consider an FIR datapath having 64 key-bits, an

attacker has to apply 2 ^ 64 different combination of key-bits to determine the

correct key. Hence, if 1 billion combinations of key-bits could be applied in 1

second [21], it would require 10^21 years to determine the valid key using brute

force attack.

67

S0

S’0

I21

I22

I23

I24

S0

I1

I2

I3

I4

I5

I6

I7

I8

I9

I10

I11

I12

I13

I14

I15

I16

S0

I53 I54

I57 I58 I61

I62
I65 I66

I55 I56

I59 I60 I63
I64

I67 I68

I69 I70

I73 I74 I77
I78

I81 I82

I71 I72

I75 I76 I79
I80

I83 I84

S’0

S’0

I17 I18

I19

I20
I25

I26

I27
I28

I35

I36
I45
I46

I47
I48

I33
I34

I39

I40
I49

I50

I51
I52

I38
I37

I29 I30

I31

I32
I41

I42

I43
I44

Mux_Add SR_Latch 4 bit Adder SR_Latch Proposed ILBs Demux

4x4 Multiplier

SR Latch

Demux

Fig. 6.4 Obfuscated (locked) gate-level 4-bit FIR for (1A, 1M, µ=2) locked with 64-bit key

68

6.3.7. The resiliency of proposed methodology against various state-of-art

attacks

This section discusses the resiliency of the proposed approach against key-

sensitization attack [21, 22], IP piracy attack [36, 37], and Trojan insertion

attack [38].

(i) Key sensitization attack based on isolated key-bits: A isolated key bit

can be easily sensitized. Hence, to avoid its sensitization isolation must

be avoided. A key-bit kiso is said to be isolated if there is no path between

kiso and any of the remaining key-bits utilized for locking the circuit. As

discussed earlier, our proposed ILB are the intertwined structure of 8

key-bits interdependent on each other. Hence, key sensitization due to

isolated key-bits is not feasible in our proposed ILB structures.

(ii) Key sensitization attack based on the run of key-gates: A back-to-back

connection of key gates is termed as a run of key gates [21]. The run of

key gates can increase the valid (correct) key in the key space. Thereby,

reducing the effort to identify a valid key through brute force attack. In

run-of-key based attack, an attacker tries to identify and replace a run of

key gates with a single key gate and identify the input value of the

replaced key gate. Based on this value, the correct key bits are

determined. The proposed ILBs are an intertwined connection of gates

among 8 key inputs. Hence, complexity to identify and replace the run

of key gates is increased compared to XOR/XNOR based run of key

gates.

(iii)Key sensitization attack based on mutable key-gates: An attacker

attempts to mute the impact of a key bit (kmutable) from reaching another

key-bit (ksensitizable), such that while kmutable is muted, the key-bit ksensitizable

could be sensitized to the primary output. The muting is performed by

controlling the path between two key bits by controlling a few primary

inputs. Such an attack is not feasible through our proposed ILB

structures as the proposed ILBs doesn’t have any such controllable (by

primary inputs) path between its 8 key bits. Furthermore, proposed

ILB’s multi-pairwise security feature ensures a key bit cannot be

69

sensitized without controlling the remaining 7 key-bits. Hence, proposed

ILBs are resilient to mutable key-gates based sensitization attacks.

(iv) IP piracy and trojan insertion attacks: An attacker or a pirate must

understand the correct functionality of the IP core so that a pirate can

identify the appropriate buyer for re-selling the IP core and market

(explain) the IP properly. Further, an attacker targeting trojan insertion

must understand the correct functionality so that the trojan(s) could be

inserted at safe places. Thereby reducing the chances of detection. The

proposed functional obfuscation methodology based on ILBs enhances

the effort of an attacker to identify the correct key as it is resilient to

many state-of-art attacks discussed above.

6.4. Proposed PSO-DSE framework for generating low-cost

functionally obfuscated DSP IP core.

This section provides a detailed description of PSO-DSE framework. The PSO-

DSE framework comprises of four major steps as follows:

6.4.1 Particle encoding and swarm initialization

The particles of the swarm (Pi) are encoded as Xi = {NR1, NR2, …, NRD, µ},

where Xi denotes position of ith particle in the design space, NRD represents the

number of resources of type RD in the Dth dimension of the design space, µ is a

random integer between 1 and TILB (1 ≤ µ ≤ TILB). Each particle represents a

number of hardware resources (along with µ) utilized for generating

functionally obfuscated IP cores. Subsequently, particles swarm is initialized.

The first three particles (P1, P2, and P3) are initialized at positions:

X1={min(R1), min(R2), … , min(RD), µ}

X2={max(R1), max(R2), … , max(RD), µ}

X3={[min(R1) + max(R1)]/2, … , [min(RD) + max(RD)]/2, µ}

Representing minimum, maximum, and middle positions of the design space

[32, 33]. Hence, ensuring good coverage of design space. Subsequently, the

remaining particles (Pi) are initialized as:

Xi={[min(R1) + max(R1)]/2 ± 𝛼, … , [min(RD) + max(RD)]/2 ± 𝛼,µ}

70

Where min(RD) and max(RD) denotes the minimum and the maximum resources

in Dth dimension respectively. 𝛼 is a random integer between the minimum and

the maximum value of Dth dimensional resource.

6.4.2 Fitness / cost evaluation

For each particle’s position, a gate level structure is created based on the number

of hardware resources in Dth dimension. Subsequently, ILBs are inserted based

on µ. The fitness of the obfuscated IP core thus generated is evaluated using

following cost/fitness function.

𝐶𝑓(𝑋𝑖) = 𝜙1

𝑃𝑂𝐵

𝑃𝑚𝑎𝑥
𝑂𝐵 + 𝜙2

𝐷𝑂𝐵

𝐷𝑚𝑎𝑥
𝑂𝐵 (6.2)

where Cf (Xi) represents the cost/fitness of the obfuscated IP core, based on the

(resource configuration) particle position Xi. 1 and 2 are weightage of power

and delay of obfuscated IP core respectively. POB and DOB are the power and

delay of the IP core based on particle position Xi. Pmax
OB and Dmax

OB are the

maximum power and maximum delay of the functionally obfuscated IP core’s

design space.

6.4.3 Updating local best and global best

The local best and global best are updated as explained in PSO-DSE framework

of previous chapters as well as in [32, 33].

6.4.4 Updating Velocity and particle’s position

The velocity and particle’s position are updated as explained in PSO-DSE

framework of the previous chapter. The PSO-DSE process generates low-cost,

highly secure, functionally obfuscated design solution upon termination.

6.5. Summary

The proposed approach presents a novel methodology for generating a low-cost

highly secured functionally obfuscated DSP IP core. Further, the proposed

methodology introduces a novel locking unit termed as IP locking block (ILB).

This chapter presented the security enhancing properties of the ILB.

Subsequently, the security of the proposed approach is evaluated and

demonstrated with the help of an example of an FIR benchmark.

https://en.wikipedia.org/wiki/File:Greek_phi_Didot.svg
https://en.wikipedia.org/wiki/File:Greek_phi_Didot.svg

71

Chapter 7

Methodology for analyzing the aging effect of NBTI

stress on the performance of DSP IP core

This chapter provides a detailed description of the proposed approach to analyze

the impact of negative bias temperature instability (NBTI) stress on the

performance of DSP IP core. The given methodology can be utilized to detect

the presence of an accelerated aging attack on an IP core. In the first section, we

will introduce the problem. In the second section, we will present a brief

overview of the proposed solution. The third section will describe the major

blocks of the proposed solution with the help of a demonstrative example. The

fourth will conclude the chapter.

7.1. Introduction

As discussed in previous chapters, technology scaling has raised several

reliability and security concerns. One such reliability concern is negative bias

temperature instability [39-42]. NBTI occurs when a negative bias is applied

between gate and source terminal of a PMOS transistor at an elevated

temperature resulting in instability of transistor’s parameters such as threshold

voltage (Vth), transconductance(gm), etc. The continuous application of NBTI

stress causes degradation in delay (performance) of the transistor. A malicious

attacker may exploit this phenomenon to accelerate the aging process of a

PMOS transistor due to NBTI stress [15]. Different input vector activates

(stresses) different PMOS transistors in a circuit thereby degrading the

performance of different transistors [43, 44]. An attacker would like to

determine the input vector causing maximum degradation of the critical path of

a circuit thereby causing maximum acceleration in performance degradation

(aging) of the device. On the other hand, a designer would like to determine

these input vectors and apply input vectors causing minimum performance

degradation during the standby mode. The proposed approach presents a novel

methodology for (a) estimating performance degradation of DSP IP cores

subjected to NBTI stress (b) determine input vectors that cause

minimum/maximum degradation. (c) presents a hardware-based attack model

for an accelerated aging attack on DSP IP cores.

72

A large share of electronic products manufacturing companies focuses primarily

on consumer electronics (CE) devices such as television, cameras, mobile

phones, etc. Majority of these electronic devices contains at least one digital

signal processing (DSP) component. Further, due to arduous competition and

stringent time-to-market deadlines, CE industry relies heavily on 3rd party IP

core to beat the competition. This dependency of CE industry on 3rd party IP

cores can be exploited by a malicious attacker in the IP design house or IP

supply chain to perform several types of attacks such as trojan insertion, IP

piracy, etc. One such attack is accelerated aging attack using NBTI stress [15].

In this type of attack, an attacker aims to modify the IP core such that the IP

core remains under constant NBTI stress in the standby mode. The aim of the

attacker is to ensure continuous performance degradation of the IP core (thereby

of the device that integrates the compromised IP core), even when the device is

not in active usage. The primary motive of the attacker is to cause device failure

within the warranty period [15]. In this work ‘aging' refers to degradation in

delay of a gate (viz. performance) due to NBTI stress on the PMOS transistors

as per equations 7.1, 7.2 and 7.3 as discussed later in section 7.2.3. Different

input vectors cause a different amount of NBTI stress on the circuit [43, 44].

Therefore, techniques are required to identify the impact of input vectors on the

DSP IP core.

The proposed approach presents a novel methodology for ‘performing NBTI

stress analysis of DSP IP core that can be utilized to identify the presence of an

accelerated aging attack on DSP IP cores’

7.2. Proposed approach

This section provides a brief overview of our proposed methodology.

7.2.1. Problem formulation

Given a DSP application in the form of data flow graph (DFG) or control data

flow graph (CDFG) along with module library, perform the NBTI stress

analysis to determine the input vectors that cause maximum degradation due to

continuous NBTI stress.

7.2.2. Overview of proposed methodology

73

The proposed work presents a novel methodology for analyzing the effect of

NBTI stress on DSP IP cores. Based on the analysis the input vectors causing

maximum degradation are determined and are utilized to identify the presence

of an accelerated aging attack on the DSP IP core. As shown in fig.7.1, The first

step of the proposed approach takes DSP application in the form of DFG or

CDFG as input and performs high-level synthesis (scheduling, allocation, and

binding) to generate a register transfer level (RTL) datapath. The RTL datapath

thus obtained is converted into a gate level structure. Subsequently, the critical

path of the gate level structure is determined. Later, input vectors are applied on

the gate level structure and degradation in performance parameter (threshold

voltage) is evaluated. Subsequently, the degraded threshold voltage is utilized

to calculate delay degradation. The process is repeated for all input vectors and

the input vector(s) causing maximum degradation are identified. Further, the

presence of an accelerated aging attack in the device is identified by operating

the device in the standby mode for a substantial amount of time (say 15 days).

If the device’s performance degrades with a similar rate as that of the maximum

rate of degradation, then accelerated aging attack is said to be present in the

device. The approach for evaluating the effect of NBTI stress on the DSP IP

core is discussed in the upcoming section.

7.2.3. Evaluating the effect of NBTI stress on DSP IP core

DSP core in the form of Control/Data Flow Graph

(CDFG or DFG)

Binding

Convert Register transfer level datapath in gate level

module

Identify the critical path

Evaluate Degradation in threshold voltage due to NBTI

stress using eq. (7.1)

Evaluate delay Degradation using eq. (7.3)

Apply input Vectors

Repeat for all input

Vectors

Identify set of most degrading input Vectors

Fig. 7.1 Proposed NBTI stress analysis methodology

Allocation

Scheduling

High level Synthesis

Register transfer

level

74

The various combinations of input vector are applied on the gate level structure

of DSP IP core and the impact of NBTI stress on PMOS transistor’s parameters

such as threshold voltage and delay are evaluated using equations 7.1, 7.2 and

7.3.

 𝛥𝑉th = 𝑏 ⋅ 𝑎𝑛𝑡𝑛 (7.1)

Where, ΔVth represents change in threshold voltage due to NBTI stress. b = 3.9

x 10-3 V.s-1\6, n is time exponential constant=0.16, a = input signal probability,

t = time in seconds.

 𝑉𝑡ℎ
𝑛ⅇ𝑤 = 𝑉th + 𝛥𝑉th (7.2)

Where, 𝑉𝑡ℎ
𝑛ⅇ𝑤 represents new threshold voltage after the PMOS transistor is

stressed for ‘t’ amount of time. Vth represents threshold voltage= 0.365V for

65nm technology scale [15]. Further, the new threshold voltage(𝑉𝑡ℎ
𝑛ⅇ𝑤) of pmos

thus obtained is utilized in eq. 7.3

 𝑇 = 𝐾
𝑉

(𝑉−𝑉𝑡ℎ
𝑛𝑒𝑤)𝛼 (7.3)

Where, T= delay of PMOS transistor, K is technology based proportionality

constant, V = VDD. For 65nm technology scale, V= 1.2V is adopted from [15],

and α=1.4, K=155 x 10-6 is adapted from [45].

Equation 7.1 represents a change in threshold voltage when a continuous NBTI

stress is applied for a duration of ‘t’ seconds. The change in threshold voltage

is added to the original threshold voltage to obtain new threshold voltage using

eq.7.2. Subsequently, the new threshold voltage is utilized to evaluate the

degraded delay of stressed PMOS transistor using Eq. 7.3. Note that the delay

of NMOS transistor is evaluated using the original threshold voltage instead of

a new threshold voltage because NBTI stress does not affect NMOS transistors.

A case-study of the proposed methodology on FIR benchmark is presented in

the upcoming sub-section.

7.2.4. Case-study

The FIR application can be represented as pseudocode shown in fig.7.2(a). In

the initial step of the proposed approach, the application’s pseudocode is

converted into a data flow graph (DFG) and taken as input. Subsequently, high-

75

level synthesis is performed to obtain register level datapath [46]. HLS

comprises of three sub-steps: Scheduling, allocation, and binding. In the first

sub-step, the scheduling of FIR benchmark is performed based on resource

configuration (1A, 1M). Subsequently, resources are allocated to each operation

during allocation step of HLS. The scheduled and allocated FIR application is

shown in fig.7.2(b). Subsequently, all the operations allocated to particular

hardware resources (say adder1 (A1)) are bonded together during the binding

step of HLS. The RTL datapath thus generated is subsequently converted into

subsequent gate level modules (of NAND gates) and critical path is identified

as shown by the red colored line in fig.7.3. The critical path comprises of 11

gates (G1, …, G11) in the critical path of multiplier and 12 gates (G12, …, G23)

in the critical path of adder sub-circuits. Subsequently, various combinations of

input vector are automatically generated using an automatic test pattern

generator (ATPG) tools such as linear feedback shift register (LFSR) circuits

[15] (see Appendix ‘A’). These input patterns when applied to the primary input

of FIR datapath

y(n)

x(n) h0

x(n-1) h1 *

Latch 1 Latch 2

Mux 1 Mux 2

Demux 1

Latch 3

RegY

Reg A

M1 1

A1 2

A1

3 M1

4

CS 1

(3970.5 µs)

CS 2

(4452.3 µs)

CS 3

(4452.3 µs)

Reg B

+

Latch 4 Latch 5

Mux 3 Mux 4

Demux 2

Latch 6

*

Latch 1 Latch 2

Mux 1 Mux 2

Demux 1

Latch 3

+

Latch 4 Latch 5

Mux 3 Mux 4

Demux 2

Latch 6

Reg C Reg D Reg E

For (i = 0 ; i< 2 ; i++)

{

 Y(n) + = x(n-i) * hi

} Fig 7.2(a) Pseudocode of FIR benchmark

Fig.7.2(b) Scheduling and allocation diagram based on sample

resource configuration (1A, 1M)

76

2PMOS

261.8 µs

2NMOS

478.8 µs

1P 1N

266.7 µs

2NMOS

478.8 µs

1P 1N

266.7 µs

2NMOS

478.8 µs

2PMOS

261.8 µs

2NMOS

478.8 µs

1P 1N

261.8 µs

2NMOS

478.8 µs

2PMOS

261.8 µs

3970.5 µs

G1 G2 G3 G4 G5 G6 G7 G8

G9 G10 G11 Total

2PMOS

261.8 µs

2NMOS

478.8 µs

1P 1N

261.8 µs

2NMOS

478.8 µs

1P 1N

261.8 µs

2NMOS

478.8 µs

1P 1N

266.7 µs

2NMOS

478.8 µs

G20

266.7 µs

G21

478.8 µs

G22

266.7 µs

G23

478.8 µs

Total

4452.3 µs

G12 G13 G14 G15 G16 G17 G18 G19

1P 1N 2NMOS 1P 1N 2NMOS ----

2NMOS

478.8 µs

2PMOS

261.8 µs

2NMOS

478.8 µs

1P 1N

261.8 µs

2NMOS

478.8 µs

2PMOS

261.8 µs

1P 1N

266.7 µs

2NMOS

478.8 µs

G20

266.7 µs

G21

478.8 µs

G22

266.7 µs

G23

478.8 µs

Total

4452.3 µs

G12 G13 G14 G15 G16 G17 G18 G19

1P 1N 2NMOS 2PMOS 2NMOS Total

CS 1

CS 2

CS 3

Table 7.1. Gate delay and pmos details corresponding to stress time 1 year for input

test vector 11101 (Note : G1, …., G23 represents gates of FIR datapath)

SR latch

SR latch 1:2 DEMUX

SR latch

Adder (R1) in

Reg Y

2:1 MUX 1

2:1 MUX 2

SR latch

SR latch

1: 2 DEMUX

A*B

C*D

Multiplier(R2)

2:1 MUX 3

2:1 MUX 4

Reg E

Reg A

Reg B

Reg C

Reg D

S1

S0

S’0

S’1

S0

S’0

1
2

3

8
9

10 11

6 7

4
5

SR latch

1 bit Half Adder (R1)

15
16

20
21

18

17 19

12
13

14 22 23

Fig. 7.3 NAND based gate level implementation of FIR datapath

12 Gates (G12,,G23) in the critical path of adder datapath

11 Gates (G1, ……., G11) in the critical path of Multiplier datapath

77

and correspondingly turned on PMOS/NMOS transistors of each gate of the

critical path is tabulated. Table 7.1 shows the turned on PMOS/NMOS

transistors on applying input vector 11101. The NBTI stress occurs on PMOS

transistor of CMOS NAND gates when logic’0’ is applied at its input. The

degraded delay of stressed PMOS transistors is evaluated using equations 7.1,

7.2 and 7.3. The process is repeated for each possible combination of input

vectors. Finally, the input pattern causing maximum degradation is identified.

Based on the identified vector, an attacker could launch an accelerated aging

attack as discussed below.

7.3. Accelerated aging attack: Modelling and detection

This section presents the attack model and detection mechanism of accelerated

aging attack

7.3.1 Attack model

An attacker would exploit the natural aging of the PMOS transistor due to NBTI

stress to accelerate the aging process. To achieve acceleration, an attacker must

keep PMOS transistor in stressed (turned on) state for as long as possible. To

accomplish this goal, an attacker must devise an attack that applies continuous

stress when the device is in standby mode (i.e., outside natural aging due to

active usage). The attack could be launched through hardware as well as

software modifications as discussed below

En

Fig.7.4(a) FIR IP core block Fig.7.4(b) Modified Hardware logic

1.2V

1 0

1 0

1 0

1 0

1 0

FIR block

RegA

Reg B

Reg C

Reg D

RegE

En

FIR block

Reg A

Reg B

Reg C

Reg D

RegE

78

• Hardware-based attack model: As shown in fig.7.4(b), The attacker can

devise a hardware modification such that the modified DSP IP core age

naturally (functions correctly) when enable signal ‘EN’ is ‘1’. Moreover,

aging is accelerated when ‘EN’ is ‘0’ (in standby mode) by applying the

most harmful vector 11101.

• Software-based attack model [15]: An attacker could also identify the

correct working of DSP IP core by reverse engineering the device.

Subsequently, a software modification is devised such that the hardware is

in continuous stress in operating system mode.

7.3.2 Detection of an accelerated aging attack

As discussed in the previous section, an aging attack could be modeled as

hardware or software based attack. However, the detection method of both type

of attack is the same. A tester should keep the device activated in the standby

mode or operating system mode for a substantial amount of time (say fifteen

days). After 15 days the tester can test the delay of the device if the degradation

of IP core occurs roughly at the same rate as the maximum rate (degradation

due to input vector causing maximum degradation) then the presence of

accelerated aging attack is confirmed. Hence, if an attack is detected, the design

house should check for and remove any malicious hardware or software

modifications.

7.4. Summary

The proposed approach presents a novel methodology to analyze the impact of

aging due to NBTI stress on DSP IP cores. The impact of NBTI stress is

analyzed based on the following: (a) performance degradation of DSP IP cores

subjected to NBTI stress (b) input vectors that cause minimum/maximum

degradation. The proposed approach presents a hardware-based attack model

for an accelerated aging attack on DSP IP cores.

79

Chapter 8

Computational forensic engineering methodology for

resolving ownership conflict of DSP IP core generated

using high-level synthesis

This chapter provides a detailed description of the proposed approach to resolve

a false claim of ownership of reusable DSP IP core using computational forensic

engineering (CFE). The first section introduces the problem. The second section

presents a brief overview of the proposed solution. The third and fourth section

describes the proposed methodology with the help of demonstrative examples.

The fifth section concludes the chapter.

8.1. Introduction

As discussed in previous chapters, consumer electronic industries rely heavily

on 3rd party IP (3PIP) core to beat the competition. This is because 3PIP cores

help in achieving higher productivity and reducing design development time.

However, 3PIP cores are vulnerable against several threats such as abuse of IP

ownership, IP piracy, false claim of ownership, etc. [36-38, 47-48] Hence,

protection mechanisms are required to provide protection against these threats.

The proposed methodology provides protection against one such threat known

as the false claim of ownership.

Although mechanisms such as patents, copyright, trademarks, etc. are provided

by law to enjoy the legal ownership. However, these mechanisms are either

incapable or inadequate in protecting reusable IP cores [13]. Further, in the

context of reusable IP cores, IP piracy is a major threat. A malicious attacker

can obtain the IP by means of theft/fraud. By virtue of which he/she can also

claim to be the rightful owner of the IP. In such a scenario, methodologies to

resolve ownership conflict of reusable IP core is needed. One such approach is

digital watermarking [13, 49]. In this approach, the signature is inserted in the

design without affecting the functionality of the design by the IP designer.

Further, if someone else falsely claims the ownership of the IP, the signature

detection step is carried out to identify the rightful owner. Because signature

will be known only to the rightful owner (although rarely, but an attacker can

80

recover signature through reverse engineering), if the signature is detected in

the IP core, ownership will be awarded to the rightful claimant. However,

watermarking requires signature insertion while designing an IP core. In case if

the designer doesn’t forecast the possibility of the threat or does not take

appropriate measures such as signature insertion (watermarking) during the

design phase. Then, ownership claims will become very hard to resolve.

Moreover, watermarking is vulnerable to signature tampering attacks. Hence,

methodologies are required that can resolve the ownership without depending

on proactive measures such as signature insertion. In this chapter, we will

present a novel methodology that does not depend on such proactive measures.

Further, there is no known attack on the generic CFE, which is the baseline

framework used in our proposed approach.

The proposed approach presents a novel computational forensic engineering

based methodology to ‘protect reusable DSP IP cores generated using high-

level synthesis against the false/fraudulent claim of ownership’

8.2. Computational Forensic Engineering Framework

This section provides a brief description of the generic CFE framework utilized

in our proposed methodology.

8.2.1. Generic CFE: Problem definition

A typical CFE problem can be formulated as: given a solution ‘S’ to a problem

‘P’ having a finite set of algorithms/tools AT_n (n is a non-zero positive integer)

applicable to problem P, that can generate solution S, identify with a certain

degree of confidence that the algorithm/tool AT_i has been applied to generate

the solution S [50, 51].

8.2.2. Overview of generic CFE

A generic CFE approach comprises of four stages: (a) feature and data

collection (b) feature extraction (c) Algorithm clustering, and (d) Validation

[50]. During the execution of the first stage, features are identified that can

classify the data point in one of the categories during multi-category

classification. Further, features are extracted from each solution of the various

algorithms, during feature extraction stage of CFE. Once the features are

81

extracted, the data points (algorithms/tools) are classified (clustered) in several

categories during the algorithm clustering stage of CFE. Finally, during the

validation phase, the accuracy of the classification is checked for. If the

classification is sufficiently accurate (say ≥ 95% accuracy), then the CFE

approach is said to be able to classify any other data point with the same

accuracy. If the classification is not sufficiently accurate, consequently new

features should be introduced for increasing accuracy.

8.2.3. Comparison of proposed CFE vs generic CFE

In our proposed methodology, we have adopted only three stages of generic

CFE as (a) IP core feature and data collection, (b) IP core feature extraction,

and (b) IP validation. Note that in our proposed approach we have not adopted

the algorithm clustering stage as our problem is loosely related to clustering.

The proposed approach classifies the claimant in just two categories: ‘Rightful

owner’ and ‘fraudulent claimants’. In practical scenarios, the number of IP

vendors claiming to be the rightful owner of an IP core will be very few

(typically 2 to 3) with only one rightful claimant. Hence, the ownership problem

has very few data points and thus will create two clusters (classes) of size 1 and

‘n-1’ (typically 1 to 2) respectively. Therefore, our proposed approach does not

require a separate clustering stage. Moreover, while resolving ownership

conflicts, the resolution must be 100% accurate. Hence, our adoption of IP

validation stage necessitates 100% accuracy. Therefore, our proposed

methodology skips the optional algorithm clustering and identify the ‘rightful

claimant’ in the IP validation stage.

8.3. Proposed approach

This section describes the proposed methodology for resolving ownership of

reusable IP cores generated using HLS.

8.3.1 Key points about the proposed approach

• The proposed CFE approach for IP ownership is applicable in scenarios

where ‘n’ IP vendors are claiming to be the rightful owner of an IP core.

Each IP vendor is assumed to have its own HLS tool to generate their

respective IP designs. However, if two or more IP vendors use a common

third-party HLS tool then the proposed approach is not applicable.

82

• The proposed approach does not require source code, packaging information

of HLS tools, only an executable version of HLS tools of each IP claimant

is required.

• If any IP claimant refuses to provide an executable version of HLS tool or

‘respectively generated RTL description in the supervision of a legal entity’.

Then, that specific claimant will be disqualified. As rightful owner will be

willing to provide at least RTL description generated using its own HLS

tool.

• The proposed approach is applicable for HLS tools that target the generation

of an application-specific IP core (processors) of digital signal processing

applications. The HLS tools that target the generation of general purpose

processors does not fall in the scope of the proposed work.

8.3.2 Problem formulation

Given the IP core whose ownership is to be identified (termed as IPID) along

with IPs generated from HLS tools of IP claimants (termed as IPCT n, where ‘n’

signify the IP core generated using HLS tool of ‘nth’ claimant) identify the

rightful owner of the IPID.

8.3.3 Overview of proposed methodology

As discussed earlier, the proposed CFE based approach comprises of three

major steps (a) IP core feature and data collection (b) IP core feature extraction,

and (c) IP core validation. In the first step of the proposed approach, the HLS

tools are collected from the competing IP vendors. Subsequently, HLS tools are

executed to generate IP cores with respect to each vendor’s HLS tool (IPCT n).

Once all the IP cores are generated, IPCT n are examined to identify features that

can distinguish IP cores based on their originating HLS tool. A set of such

features is termed as ‘feature set’. In the second step of the proposed step,

feature extraction rules are devised. Based on these rules, features are extracted

from IPCT n and IPID. In the third and final step of the proposed approach, the

ownership of IPID is awarded to the vendor whose IPCT’s feature set matches

100% with the feature set of IPID. The upcoming section demonstrate the

proposed approach with the help of a case study

8.4. Case study

83

In this case study, we have considered a scenario where seven claimants are

legally competing for the ownership of IPID in a court of law and the court must

award IP ownership to the rightful claimant. (Note: we have used seven

claimants to demonstrate the proposed approach effectively). The case study

considers industrial as well as academics HLS tools [12, 13, 17, 33, 52- 54]. In

the first step of the proposed approach, the HLS tools are obtained from the

respective IP vendor’s company. Further, each tool is executed to generate a

solution IPCT n, (n = 1, …, 7). Subsequently, each IPCT is studied to identify

properties that can distinguish an IP core based on its parent HLS tool.

In practical scenarios, each company has its own set of proprietary

algorithms/techniques that are uniquely developed by that company to advance

state-of-art. These, properties are unique to that particular company thus

features based on such properties are termed as ‘unique feature’. Further, the

proposed unique feature set includes properties that are rarely found but can

potentially be available in more than one advanced HLS tools. The unique

features identified through our case study are {reliability, trojan security, loop

support, pipelining, chaining, multi-cycling, design objective}. Moreover,

every HLS tool implements some common HLS framework. The framework

can be implemented using different algorithms resulting in different properties

of IP cores. These properties are examined to create a generic feature set:

{Scheduling algorithm, resource type, bus width support}. A feature set

comprising of both generic, as well as unique features, is created. Subsequently,

HLS tool of
Vendor 1

HLS tool of
Vendor 2

HLS tool of
Vendor n

Given IPID

(RTL HDL)

IPCT 1
(RTL HDL)

Automated portion
of proposed CFE

Actual vendor (owner) of IPID identified

Inputs

Fig 8.1 Process of resolving ownership conflict of a given IP

core (IPID) using CFE

IP core feature
and data
collection

IP core feature
extraction

IP core
validation

Proposed CFE for IP protection

IPCT 2
(RTL HDL)

IPCT n
(RTL HDL)

84

in the second step of the proposed approach feature extraction rules are devised

and features are extracted as discussed in upcoming sub-sections.

8.4.1 Scheduling algorithm

The feature extraction methodology to extract the scheduling algorithm feature

takes controller HDL file of IP core as input and identify the scheduling

algorithm utilized during HLS of the IP core. The proposed technique classifies

the scheduling algorithm as one of ASAP scheduling, ALAP scheduling, or List

scheduling (three most widely used scheduling algorithms [55-57]) (fig.8.2).

The feature extraction rules to identify the scheduling algorithm used are:

▪ ASAP scheduling: A scheduling algorithm satisfying both the conditions (a)

and (b) is ASAP scheduling.

(a) All functional units of independent operations should be activated in the first

control step.

(b) All dependent operations and its successors should be placed in the

consecutive control step based on their dependencies.

▪ ALAP scheduling: A scheduling algorithm satisfying both the conditions (c)

and (d) is ALAP scheduling.

(c) All functional units having primary outputs should be activated in the last

control step.

ASAP: both rule a & b conditions should satisfy
simultaneously

a) All Functional Units (FUs) of independent

operations are activated in first control Step (first
clock cycle)

b) All dependent operations and its successors
should be placed in consecutive control steps

based on their dependencies.

Check for scheduling algorithm

ALAP: both rule a & b conditions should satisfy
simultaneously

a) All Functional Units having Primary Outputs

should be activated in last control step
b) All parent operations and its predecessors should
be placed in consecutive control steps based on their

dependencies.

LIST: Rule a or b must satisfy simultaneously
with either c or d for scheduling to be
identified as list algorithm:
a) All functional units of independent
operations should not be activated in the first
control step.
b) All dependent operations and its successors
should not be placed in consecutive control
step based on their dependencies.
c) All functional units having primary outputs
should not be activated in last control step.
d) All parent operations and its predecessors
should be placed in consecutive control steps.

ASAP/ALAP/LIST

ASAP/ ALAP/

LIST

Fig. 8.2 Flow graph representing the feature extraction methodology for scheduling algorithm

feature

85

(d) All parent operations and its predecessors should be placed in the

consecutive control steps.

▪ LIST scheduling: A scheduling algorithm that satisfies conditions (e) or (f)

along with either (g) or (h), then the scheduling algorithm is list scheduling.

(e) All functional units of independent operations should not be activated in the

first control step.

(f) All dependent operations and its successors should not be placed in the

consecutive control step based on their dependencies.

(g) All functional units having primary outputs should not be activated in the

last control step.

(h) All parent operations and its predecessors should not be placed in the

consecutive control steps.

This feature distinguishes (HLS tools utilized for creating) IPID and IPCTn. If

IPID utilizes a different scheduling algorithm than IPCTn, then HLS tool that

generates IPCTn cannot be the rightful owner.

8.4.2 Resource configuration type

The resource configuration type feature extraction methodology takes datapath

HDL file of IP core as input. Further, HDL file is examined to identify the

different type of resources (functional units) utilized in the RTL datapath of the

IP core. For instance, if an IP core has adder, subtractor and multiplier resources,

the resource config type feature is represented as “A, S, M”.

Control step

*

+

+

1

2

3

4

5

6

7

38

39

40

A1

A2

M1

Fig. 8.3 Schedule displaying chaining of adder

w.r.t. multiplier functional unit

2

1 3

86

component Adder

 port (enable_R1 : in std_logic;

 Data_out7 : in std_logic_vector (15 downto 0);

 Data_out8 : in std_logic_vector (15 downto 0);

 Data_in9 : out std_logic_vector (15 downto 0));

 end component;

8.4.3 Chaining

Chaining is an optimization technique that targets the reduction of schedule

delay. The concept of chaining can be understood with the help of an exemplary

schedule shown in fig.8.3. In this example, two addition operations (1 & 2) are

scheduled during a single execution of multiplication operation (3). If there was

no chaining, operation 2 would have been scheduled at control step 41. Hence,

the overall delay of the design without chaining would be 41 control steps. The

rule to identify the presence of chaining feature can be stated as: if more than

one operation of the functional unit of type ‘i’ (FUi), is executed within a single

execution of FUj; then, chaining feature is present in the IP core. The chaining

feature extraction rule is algorithmically represented in fig.8.4.

The chaining feature extraction algorithm takes controller HDL file of IP core

as input and identifies the presence or absence of chaining feature in the given

IP core. In Fig.8.4, ‘n’ represents the total number of functional units presents

in the IP core. CSS(FUi) and CSE(FUi) represents the starting and ending control

steps of ith functional unit respectively. The starting and ending control steps of

an FU can be determined from the controller HDL file. For instance, consider

the controller shown in fig.8.5, the first multiplication operation starts its

execution in control step 1 (MUL_EN_1<=‘1’) and ends in control step 40

(MUL_EN_1<=‘0’).Hence, CSS(multiplier) = 1 and CSE(multiplier) = 40. As

shown in fig. 8.4, ‘i’ and ‘j’ are loop variables. The first loop runs for all FUs.

The second loop allows all the FUi such that i ≠ j. Further, the first if allows

comparison of ith FU with only those jth FUs that have started their execution

after execution of ith FU is started and FUs that have ended their execution

before execution of ith FU is ended. If the number of all such FUs is ≥ 2 then

chaining feature is present in the IP core.

8.4.4 Bus width support

The Bus width support feature extraction algorithm takes datapath HDL file of

IP core as input. Subsequently, the top level entity HDL code is examined to

87

identify the bus width of register components. A portion of the HDL code is

shown below:

component registerTp

 port (tp : in std_logic_vector (7 downto 0);

 regtp: out std_logic_vector (7 downto 0);

 strobe: in std_logic);

 end component;

As shown in the HDL code, register components are identified with the help of

the component’s name. Further, the size of register components is determined

as the highest size of the variable using statements such as std_logic_vector

(7 downto 0). Where 7 down to 0 indicates variable size as 8 bits. Similarly,

the size of all the variables is evaluated and the largest variable’s size is taken

as the size of the register. Similarly, the largest size among all the register

components present in an IP is taken as the bus width supported by the

architecture of an IP core.

8.4.5 Data pipelining

The pipelining technique intends to reduce the delay of the overall design of the

IP core. The data pipelining feature extraction algorithm takes datapath HDL

file of IP core as input and identify the presence of pipelining feature as per the

following equation:

(CSE(N)1 - CSS(N)1 +1) > (CSE(N)2 – CSE(N)1 +1) (8.1)

Algorithm (Input: controller HDL of IP: Output: detection of

chaining)

for (i=1 to n)

{

 for (j=1 to n && j != i)

 {

 if (CSS(FUi) ≤ CSS(FUj) && CSE(FUi) ≥ CSE(FUj))

 {

if (CSE(FUi) – CSS(FUi) ≥ (CSE(FUj) – CSS(FUj))1 + (

CSE(FUj) – CSS(FUj))2 + …. + (CSE(FUj) – CSS(FUj))m

)

 {

Chaining feature detected in IP core!

 }

 }

 }

}

Fig. 8.4 Proposed algorithm to detect chaining in an IP

88

Where CSE(N)1 and CSE(N)2 denotes the ending control steps of data set 1 and

2. Similarly, CSS(N)1 denotes starting control step od data set 1. Further,

(CSE(N)1 - CSS(N)1 +1) represents the execution time of data set 1. Likewise,

(CSE(N)2 – CSE(N)1 +1) represents the time difference between ending control

step of data set 1 and ending control step of data set 2. Hence, in the case when

the IP core does not incorporate the pipelining feature. Both the right-hand side

and the left-hand side of Eq. (8.1) will be equal. However, if pipelining is

present in the IP core eq. (8.1) will be satisfied. For instance, consider the

schedule of an IP core shown in fig.8.6. The output of data set 1 and data set 2

are available in register Y at control step 42 and 82 respectively. Hence, The

L.H.S of Eq. 1 can be written as (42-1+1) = 42. Similarly, R.H.S. can be written

as (82-42+1) = 41. Hence, Eq. (8.1) is satisfied when pipelining is present in an

IP core.

8.4.6 Multi-cycling

The multi-cycling feature extraction algorithm takes controller HDL file of IP

core as input. Subsequently, on examining HDL code if there is a functional unit

whose execution time span more than 1 control step, then the multi-cycling

entity control_unit is

port(

 clock, reset: in std_logic;

 :

 :

 :

 ADD_EN_1, ADD_EN_2, MUL_EN_1 : out

std_logic;

 REG_Y : out std_logic;

 :

 :

 :

);

end control_unit;

architecture Behavioral of control_unit is

signal CS: INTEGER RANGE 0 TO 19;

signal count: INTEGER RANGE 0 TO 10;

signal busy : std_logic;

 begin

 process(clock,reset)

 begin

if (clock'event and clock='1') then

 if(reset='0')then

 if CS =0 then

 clk<='1';

 REG_IP_A_EN <='1';

 REG_IP_B_EN <='1';

 REG_IP_C_EN <='1';

 REG_IP_D_EN <='1';

REG_IP_E_EN <='1';

 end if;

Fig. 8.5(a) Portion of a HDL code

89

 CS <= CS +1;

 end if;

---------------------------------CONTROL STEP 1---------------------------

if CS=1 then

 if count=first_count

 ADD_EN_1<='1';

 MUL_EN_1<='1'; //start
of multiplication operation//
 count <= count+1;

 end if;

 :

 :

 If count = last_count

 ADD_EN_1 <= '0';

 count <= '0';

 end if;

 CS <= CS+1;

end if;

---------------------------------CONTROL STEP 2---------------------------

if CS=2 then

 if count= first_count

 ADD_EN_1<='1';

 count <= count+1;

 end if;

 :

 :

 :

 If count = last_count

 ADD_EN_1 <= '0';

 count <= '0';

 end if;

 CS <= CS+1;

end if;

:

---------------------------------CONTROL STEP 40--------------------------

if CS=40 then

 if count= first_count

 count <= count+1;

 REG_IP_A_EN <='0';

 REG_IP_B_EN <='0';

 REG_IP_C_EN <='0';

 REG_IP_D_EN <='0';

 REG_IP_E_EN <='0';
 end if;

 :

 :

 :

 If count = last_count

 MUL_EN_1 <= '0'; //end
of multiplication operation//

REG_IP_A_EN <='1';

 REG_IP_B_EN <='1';

 REG_IP_C_EN <='1';

 REG_IP_D_EN <='1';

 REG_IP_E_EN <='1';

 count <= '0';

 end if;

 CS <= CS+1;

end if;

---------------------------------CONTROL STEP 41--------------------------

if CS=41 then

 if count= first_count

 count <= count+1;

 ADD_EN_1 <= '1';

 ADD_EN_2 <= '1';

MUL_EN_1 <= '1';

Fig. 8.5(b) Portion of a HDL code

 REG_Y <='0';

 end if;

 :

 :

 :

 If count = last_count

 ADD_EN_1 <= '0';

 ADD_EN_2 <= '0';

 count <= '0';

 end if;

 CS <= CS+1;

end if;

-----------------------------CONTROL STEP 42---------------------------

if CS=42 then

 if count= first_count

 REG_Y <='1';//output of
data set 1 available//
 count <= count+1;

 ADD_EN_1 <= '1';
 end if;

 :

 :

 :

 If count = last_count

 ADD_EN_1 <= '0';

 count <= '0';

 end if;

 CS<=CS+1;

end if;

-----------------------------CONTROL STEP 80---------------------------

if CS=80 then

 if count= first_count

 count <= count+1;

 REG_IP_A_EN <='0';

 REG_IP_B_EN <='0';

 REG_IP_C_EN <='0';

 REG_IP_D_EN <='0';

 REG_IP_E_EN <='0';

 end if;

 :

 :

 :

 If count = last_count

 MUL_EN_1 <= '0';

REG_IP_A_EN <='1';

 REG_IP_B_EN <='1';
 REG_IP_C_EN <='1';

 REG_IP_D_EN <='1';

 REG_IP_E_EN <='1';

 count <= '0';

 end if;

 CS<=CS+1;

end if;

-----------------------------CONTROL STEP 81---------------------------

if CS=81 then

 if count= first_count

 count <= count+1;

 ADD_EN_1 <= '1';

 ADD_EN_2 <= '1';

 MUL_EN_1 <= '1';

 REG_Y <='0';

 end if;

 :

 :

 :

 If count = last_count

 ADD_EN_1 <= '0';

 ADD_EN_2 <= '0';

 count <= '0';

Fig. 8.5(c) Portion of a HDL code

90

feature is said to be present in the IP core. In other words, if a functional unit’s

operation ends at control step greater than the starting control step (eq.8.2), then

multi-cycling is present in the IP core:

CSE(FUi) > CSS(FUi) (8.2)

8.4.7 Design Objective

The design objective feature extraction methodology takes executable HLS

tool’s interface as input. By examining the user interface, various design

objectives/constraints supported by that particular HLS tool such as area, power,

delay, etc. can be identified.

8.4.8 Reliability

Reliability is an advanced feature and typically found in sophisticated HLS

tools. Reliability can be incorporated in the IP core in various ways such as

security/tolerance against permanent faults [58], intermittent fault [59], or

transient fault [60], etc. In our proposed approach, we have considered recent

reliability handling techniques that uses dual modular redundancy (DMR) such

end if;
 CS <= CS+1;

end if;

---------------------------------CONTROL STEP 82---------------------------
if CS=82 then
 if count= first_count

 REG_Y <='1';//output of dataset 2

available//

 count <= count+1;

 ADD_EN_1 <= '1';

 end if;
 :

 :

 :

 If count = last_count
 ADD_EN_1 <= '0';

 count <= '0';

 end if;
 CS<=CS+1;

end if;

:
:
-----------------------CONTROL STEP 4001(for 100 data set) -------
--if (clock'event and clock='1') then

 elsif(reset='1')then

 count<=0;
 end if;

end if;

--end if;
end process;

--count1 <=count;

end Behavioral;

Fig. 8.5(d) Portion of a HDL code

91

as [17], [54]. Note, there are other techniques to generate reliable IP core using

HLS. However, the proposed approach has considered only recent DMR based

techniques.

The reliability feature extraction methodology takes datapath HDL (RTL code)

of IP core as input. Subsequently, the top level entity HDL code of the IP core

is examined to identify the presence of DMR. If a top-level entity HDL contains

a comparator component that takes two input signals coming from the output

register of module 1 (output register signal 1), and output register of module 2

(output register signal 2), and its output signal is the final output of the IP core.

Then such a comparator component indicates the presence of DMR structure,

thereby indicating the presence of reliability feature in the IP core. An

exemplary comparator’s port map is: port map (output register signal 1, output

register signal 2, comparator output signal).

8.4.9 Loop support

The loop support feature extraction methodology takes an input application file

of the executable HLS tool as input. The input file considered in this case study

can be a control intensive application (in the form of control data graph

(CDFG)) or a data-intensive application (in the form of data flow graph). The

CDFG application typically contains the maximum iterations value. However,

as DFG applications don’t contain any iteration information. Hence, this

property of input application can help distinguish HLS tools that supports

+

+

*

+

REG Y

A B C D E

+

+

*

+

REG Y

A B C D E

Control Step

1

2

:
:

39
40
41
42

43

:
:

80

81

82

Fig. 8.6 Pipelining feature in IP with resource configuration (2A, 1M)

92

CDFG application from those who don’t. The feature is termed as loop support

feature. This feature tries to remove HLS tools that do not support loop based

CDFG applications. For instance, if IPID is generated for some CDFG

application such as FIR, then all the HLS tools that do not support loop based

CDFGs will be eliminated.

8.4.10 Trojan security

Similar to reliability, trojan security is also one of the advanced features used in

highly sophisticated HLS tools. Trojan security can be understood as the

detection of hardware trojans in an IP core. The typical approach to identify

hardware trojans utilizes hardware resources from at least two different vendors

and a DMR system is designed [53].

The trojan security feature extraction methodology takes datapath HDL file and

module library as input. Subsequently, the top level entity datapath is examined

to identify a comparator component that takes two inputs, one each from the

primary output of module 1 (as output signal 1) and module 2 (as output signal

2). Moreover, the final output of the IP core is the output of the comparator

(comparator output signal) then dual modular redundancy is detected.

Additionally, input module library of the HLS tool is examined to identify

whether modules from more than 1 (at least 2) vendors are present or not? If

DMR, as well as the presence of hardware resources from multiple vendors, are

detected then, HLS tool supports trojan security feature.

The upcoming subsection describes the third and final step of the proposed

methodology.

IP validation: Once all the features are extracted, the feature set of IPID is

compared with the feature set of every competing HLS tool and ownership is

awarded to the IP vendor whose feature set matches exactly (100%) with the

feature set of the IPID. The following equation is utilized to evaluate the match

percentage (m) between feature sets of IPID and IPCTn

m=
𝑁𝑢𝑚𝑏ⅇ𝑟 𝑜𝑓 𝑚𝑎𝑡𝑐ℎ𝑖𝑛𝑔 𝑓ⅇ𝑎𝑡𝑢𝑟ⅇ𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏ⅇ𝑟 𝑜𝑓 𝑓ⅇ𝑎𝑡𝑢𝑟ⅇ𝑠 𝑖𝑛 𝑓ⅇ𝑎𝑡𝑢𝑟ⅇ 𝑠ⅇ𝑡
∗ 100 (8.3)

In a very rare case, the feature set of more than one HLS tool will match exactly

with feature set of IPID. In such a scenario, number of features can be increased

93

for achieving better results. However, note that such a case is very rare, as

proposed methodology incorporates unique features along with generic

features. Further, in case if none of the competing HLS tool’s feature set

matches 100% with the feature set of IPID then ownership will not be awarded

to any of the competing vendors.

8.5. Summary

The proposed approach presents a novel computational forensic engineering

based methodology for resolving false claim of ownership of DSP IP cores.

Further, the proposed methodology introduces a novel feature-set comprising of

ten features. Feature extraction rules for extracting these features were

presented. Based on these rules, feature-sets of IPID and IPCTn were obtained

and matched. Finally, the IP ownership was award to the claimant whose IPCT’s

feature-set matches exactly with the feature set of IPID.

The proposed approach is compared with watermarking based approaches for

resolving ownership conflicts. The proposed approach is found to be more

reliable as it incurs zero-overhead (due to lack of signature-insertion step) and

has no known attack in comparison with watermarking based approaches (as

they are vulnerable to reverse engineering based attack such as signature

tampering) [5].

95

Chapter 9

Experimental Results and Analysis

This chapter discusses the experimental results and analyses of the proposed

methodologies presented in this thesis.

9.1. Results and analysis: Methodology for generating a DSP IP core that

is simultaneously secure/resilient against the multi-cycle temporal

and multi-unit spatial effect of transient fault.

This section discusses the experimental results of the proposed methodology

presented in chapter 3 of this thesis. The proposed approach is implemented in

Java and executed on Intel Core i5 3210M processor with 3MB cache, 4GB

DDR3 primary memory, and frequency of 2.5GHz. The proposed methodology

is applied on DSP IP benchmarks such as auto regression filter (ARF), elliptic

wave filter (EWF), etc. adopted from [61, 73, 74] (see Appendix B). Note that

the proposed approach is the first work in the literature which simultaneously

provides resiliency against multi-cycle (kc) and multi-unit (km) transient fault

affected due to single radiation strike at the behavioral/architecture level. The

proposed approach simultaneously achieves temporal and spatial resiliency

through a novel unification of high-level synthesis and physical level design.

All prior work that handled multiple transient faults were at lower levels such

as gate-level or transistor level. Nevertheless, comparisons to baseline

duplication (non-security DMR designs) and normal designs (no duplication &

security constraints) for chip area, delay and power has been reported in Tables

9.1, 9.2, and 9.3. The results are compared on the basis of following design

metrics

a) Chip area of the multi-unit (km) transient fault resilient floorplan.

b) Delay of the multi-cycle (kc) transient fault resilient DMR schedule.

c) Power of the transient fault resilient design.

9.1.1 Area comparison

Table 9.1 shows the area comparison of the proposed fault resilient design with

a non-resilient design. It is easily evident that the proposed approach incurs a

modest area overhead in comparison with the non-resilient design. This is

96

because imposing km-unit MTF resiliency constraint affects the placement of

modules within the floorplan. For example consider DCT benchmark with

resource constraint Xi = (7M, 4A), the floorplan which does not follow our km-

unit MTF resiliency constraint, results in a chip area of 556 sq.units. On the

contrary, the floorplan which abides by our km-unit MTF resiliency constraint

results in a chip area of 590.75sq.units. Thus, an area overhead of 34.75 sq. units

due to imposing resiliency constraint is visible. The results are compared for a

large value of kc (=10) and km (=4), as large values are likely to produce high

overhead. However, as evident from the results, the proposed approach incurs a

nominal overhead even for significantly large strength of transient fault.

9.1.2 Delay comparison

The delay comparison of the proposed approach with the non-resilient design is

reported in table 9.2. The designs generated for large kc-cycle transient fault

resiliency constraint (such as kc = 10) results in delay overhead compared to

both non-transient fault resilient schedules (with and without duplication). This

is because large resiliency constraint value creates more chances of hardware

conflicts, therefore to avoid transient fault hazards operations must be pushed

in the lower control step (thereby increasing delay overhead).

9.1.3 Power comparison

Benchmark

User

Resource

Constraint

Chip area in sq.

units

(Non-transient

fault resilient

DMR design)

Chip area in

sq. units

(km-unit

transient

fault

resilient

design)

Chip area

overhead

in sq.units

Benchmark

User

Resource

Constraint

Chip area

in sq. units

(Non-

transient

fault

resilient

DMR

design)

Chip area

in sq.

units

 (km-unit

transient

fault

resilient

design)

Chip area

overhea

d in sq.

units

ARF
4A, 4M 556 556 0.00

EWF
4A,2M 607.25 654.75 47.5

3A, 3M 428 556 128 3A,2M 465 654.5 189.5

2A, 2M 321 321 0.00 2A,2M 465 561 96

BPF
3A, 4M 556 556 0.00

FFT
8A,4M 396 445.5 49.5

3A, 3M 316 428 112 8A,3M 376 423 47

3A, 2M 401.25 428 26.75 8A,2M 262.5 374.5 112

DCT
8A, 4M 590.75 695 104.25

FIR
8A,8M 556 556 0.00

7A,4M 556 590.75 34.75 7A,7M 516 556 40

6A,4M 516 556 40 6A,6M 516 556 40

Table 9.1. Results comparison of proposed 2-cycle, 2-unit transient fault resilient design with non-

transient fault resilient in terms of chip area and corresponding overhead

97

The power comparison of the proposed approach with the non-resilient design

is reported in table 9.3. A small overhead is observed for some designs of the

proposed approach due to the imposing of simultaneous multi-cycle & multi-

fault resiliency constraints. This is because, imposing the constraints may cause

an increase in register/multiplexer count (due to the possibility of a different

schedule/binding) in some cases, resulting in a slightly higher power magnitude.

The power value reported includes total power due to functional units

(hardware), steering logic (multiplexer, demultiplexer, interconnects) and

storage elements. The results show that with minimal power overhead

Benchmark

User

Resource

Constraint

Delay in ns

(Non-transient

fault resilient

design)

Delay in

ns

(10-cycle

transient

fault

resilient

DMR

design)

Delay overhead

in ns

Chip area

in sq. units

(Non-

transient

fault

resilient

DMR

design)

Chip area

in sq.

units

(4-unit

transient

fault

resilient

DMR

design)

Chip area

overhead

in

sq.units
Non-

DMR
DMR

Non-

DMR
DMR

BPF

3A, 4M 0.522 0.914 0.916 0.38 0.002 556 556 0.00

3A, 3M 0.522 0.914 0.980 0.38 0.066 316 428 112

3A, 2M 0.524 0.918 0.984 0.38 0.066 401.25 428 26.75

DCT

8A, 4M 0.522 0.720 0.720 0.20 0.000 590.75 695 104.25

7A,4M 0.524 0.722 0.786 0.20 0.198 556 695 139

6A,4M 0.58 0.788 0.788 0.20 0.000 516 625.5 109.5

EWF

4A,2M 0.90 1.172 1.172 0.27 0.000 607.25 748 47.5

3A,2M 0.97 1.364 1.366 0.39 0.002 465 654.5 189.5

2A,2M 1.03 1.752 1.944 0.72 0.192 465 561 96

FFT

8A,4M 0.39 0.46 0.46 0.07 0.000 396 562.5 49.5

8A,3M 0.46 0.65 0.658 0.19 0.008 376 454.75 47

8A,2M 0.46 0.85 0.856 0.39 0.006 262.5 428 112

FIR

8A,8M 0.57 0.64 0.644 0.07 0.004 556 764.5 0.00

7A,7M 0.58 0.64 0.646 0.06 0.006 516 625.5 40

6A,6M 0.58 0.64 0.646 0.06 0.006 516 625.5 40

JPEG

IDCT

24A,24M 0.520 0.59 0.916 0.396 0.326 1816 1972 156

20A,20M 0.522 0.654 0.98 0.458 0.326 1560 1880 320

Table 9.2. Results comparison of proposed 10-cycles, 4-units transient fault

resilient designs with non-transient fault resilient in terms of chip area and

corresponding overhead

98

sometimes (while no power overhead for most cases), the proposed approach

generates DSP IP cores that are simultaneous resilient against multi-cycle and

multi-unit transient fault.

Benchmark

User

Resource

Constraint

Power in µW

(Non-transient

fault resilient

design)

Power in µW

 (10-cycle, 4-

unit

transient

fault resilient

DMR design)

Power overhead in

µW

ARF
2A 2M 9.605 10.117 0.512

3A 3M 9.022 9.278 0.256

4A 4M 8.840 8.840 0.00

BPF
3A 2M 8.110 8.110 0.00

3A 3M 8.162 9.058 0.896

3A 4M 8.572 8.956 0.384

DCT
6A 4M 14.598 14.598 0.00

7A 4M 13.821 14.077 0.256

8A 4M 12.579 12.579 0.00

EWF
2A 2M 9.394 9.522 0.128

3A 2M 11.109 11.493 0.384

4A 2M 10.911 10.911 0.00

FFT
8A 2M 8.486 8.486 0.00

8A 3M 10.308 10.308 0.00

8A 4M 9.511 9.511 0.00

FIR
6A 6M 8.322 8.322 0.00

7A 7M 8.478 8.478 0.00

8A 8M 8.928 8.928 0.00

JPEG

IDCT

20A 20M 39.398 39.398 0.00

24A 24M 36.875 36.875 0.00

Table 9.3. Power comparison results of proposed 10-cycle,

4-unit multiple transient fault resilient designs and non-

transient fault resilient DMR designs

99

9.2. Results and analysis: Methodology for generating a DSP IP core that

is simultaneously tolerant against multi-cycle temporal and multi-

unit spatial effect of transient fault.

The methodologies for generating DSP IP core tolerant against multi-cycle and

multi-unit transient fault has been discussed in chapter 4 for data-intensive

applications and in chapter 5 for loop based control intensive applications. This

section presents results and analysis of both these methodologies. The proposed

methodologies are implemented in Java and executed on Intel Core i5 3210M

processor with 3MB cache, 4GB DDR3 primary memory, and frequency of

2.5GHz. The proposed methodologies are implemented on data-intensive

applications such as BPF, DCT, DWT as well as loop-based control intensive

applications such as Differential equations, FFT, FIR, and Test_case of express

benchmark suite [61]. The experimental results thus obtained are analyzed

based on the following metrics

a) Fitness/cost of the explored kc-cycles, km-units tolerant design solution.

b) The power consumption of the explored kc-cycles, km-units tolerant

design solution.

c) Rectangular chip area of the km-units fault tolerant floorplan.

d) Delay of the kc-cycles fault tolerant scheduled C/DFG TMR

As discussed earlier in chapter 2, there is no work in the literature that

simultaneously provide tolerance against multi-cycle and multi-unit transient

fault. A prior work that closely relates to the proposed approaches is [12]. The

results of the comparison of the proposed approach with [12] are tabulated in

table 9.4, 9.5, 9.6 and 9.7 respectively. The comparison of the proposed

approach with [12] is performed for multi-cycle kc=4 (equivalent to 400ps)

[12,24] & multi-unit km=4 (equivalent to 3072nm) [62,63,64] transient fault

impact. However, note that the proposed methodologies are applicable for any

value of kc and km.

As reported in table 9.4, the proposed approach always generates low cost

(better fitness) tolerant design solution compared to [12]. This is due to the

integrated PSO-DSE framework that explores low-cost transient fault tolerant

design. On the other hand, [12] is not capable to obtain a low-cost design

100

solution due to lack of optimization framework in the tolerance algorithm,

besides being deficient in providing tolerance against spatial effects of transient

fault. Additionally, [12] is not capable of performing pre-processing of

unrolling factor (especially filters UF with large sequential loops) and exploring

a combination of loop UF for control-intensive applications. Thus [12] provides

tolerance without appropriate unrolling and produces an expensive fault-

tolerant solution. Further, due to the lack of design space exploration

framework, the design solution of [12] never produces low-cost results. For

comparison purpose, the design solution for [12] is based on the particle

encoding with mid-hardware configuration. For example, as shown in table 9.4,

for DCT benchmark, the proposed approach has explored a low-cost solution

having design cost of 0.37, while [12] yielded a high-cost solution with a design

cost of 0.49. Thus, the relative cost improvement of 0.12 is achieved. Similarly,

cost improvements for other benchmarks are reported in table 9.4. An average

cost reduction of ~30 % is achieved for benchmarks tabulated in table 9.4.

As evident from table 9.5, a significant reduction in power consumption of the

proposed approach has been obtained with respect to [12]. The power reported

in table 9.5 is evaluated based on the following power model.

Power Model: For a given functional resource, the power consumption (adapted

from [17]) can be given as:

))()((
1

i

Max

i

i

TMRFT

T FUpFUKP =
=

−

 (9.1)

Where, p(FUi) is the power consumed by FUi (as per 15nm technology scale

open cell NanGate Library [31]); K(FUi) is the number of instances of FUi used

in the FT-TMR design and ‘Max’ indicates the index of the last FU type used

in the FT-TMR design.

The proposed approach implements PSO based DSE for generating a fault-

tolerant solution based on an appropriate combination of loop unrolling factor

and hardware resources compared to [12] which does not perform any

optimization to handle overhead. Thus, the proposed approach results in

significantly lesser power consumption. For example, as shown in table 9.5, for

DCT benchmark, the proposed approach has explored the fittest design solution

101

having the power of 2.49 uW, while [12] yielded a design cost 5.05uW. Thus,

the relative power reduction of 2.56uW is achieved. Similarly, power reductions

for other benchmarks are reported in table 9.5. An average power reduction of

~57 % is achieved for benchmarks tabulated in table 9.5.

Table 9.6 and 9.7 shows the area and the delay value of the obtained design

solutions for the standard benchmarks. As represented in table 9.6, area of

proposed approaches is lesser than the area of [12] (for all the benchmarks) as

design solution explored through proposed approach obtains lesser number of

hardware resources and unrolling factor compared to [12], which does not

explore appropriate combination of unrolling factor and hardware as well as

does not perform preprocessing of unfit unrolling factors. Further, as shown in

table 9.7 significantly larger number of resources are utilized in [12], hence due

to higher parallelization, delay of [12] may sometimes be lesser compared to the

proposed approach. Nonetheless, the overall design cost and power of [12] is

significantly higher than the proposed approach due to lack of provision of

optimization technique during tolerance design.

102

Table 9.4. Cost comparison of proposed method with [12] for kc=4 & km=4

Benchmark
Design

Solution
of [12]

Design
Cost

of [12]

Design
Solution

of
proposed
approach

Design
Cost of

proposed
approach

Reduction
in Design

Cost %
Benchmark

Design
Solution
of [12]

Cost
of

[12]

Design
Solution

of
proposed
approach

Design
Cost of

proposed
approach

Reduction
in cost %

BPF 5A, 6M 0.53 3A, 2M 0.37 30.18 % DIFF_EQ
12A, 12S,
36M, 2C,

UF=8
0.30

2A, 2S,
6M, 2C,

UF=4
0.18 40 %

DCT 12A,6M 0.49 5A, 3M 0.37 24.48 % FFT
26A,12S,
24M,2C,

UF=8
0.32

4A, 5S,
4M, 2C,

UF=4
0.20 37.5 %

DWT 6A, 8M 0.57 3A, 2M 0.42 26.31 % FIR
2A, 12M,
2C, UF=8

0.41
2A, 3M,
2C, UF=4

0.28 31.7 %

 TEST_CASE
14A,12M,
2C, UF=8

0.38
4A, 5M,
2C, UF=4

0.30 21 %

Table 9.5. Comparison of power of proposed method with [12] for kc=4 & km=4

Benchmark
Design

Solution
of [12]

Power
of

[12]
(in

µW)

Design
Solution

of
proposed
approach

Proposed
power
(in µW)

Reduction
in power

%
Benchmark

Design
Solution
of [12]

Power
of

[12]
(in

µW)

Design
Solution

of
proposed
approach

Proposed
power
(in µW)

Reduction
in power

%

BPF 5A, 6M 4.84 3A, 2M 2.95 39.04 % DIFF_EQ
12A, 12S,
36M, 2C,

UF=8
23.60

2A, 2S,
6M, 2C,

UF=4
4.20 82. 20 %

DCT 12A,6M 5.05 5A, 3M 2.49 50.69 % FFT
26A, 12S,
24M, 2C,

UF=8
19.37

4A, 5S,
4M, 2C,

UF=4
4.38 77.38 %

DWT 6A, 8M 4.86 3A, 2M 1.97 59.46 % FIR
2A, 12M,
2C, UF=8

6.92
2A, 3M,
2C, UF=4

2.72 60.69 %

 TEST_CASE
14A,12M,
2C, UF=8

8.22
4A, 5M,
2C, UF=4

5.61 31.75 %

Table 9.6. Comparison of area of proposed method with [12] for kc=4 & km=4 (Note : 1 unit = 768nm)

Benchmark
Design

Solution
of [12]

Area of
[12] (in

Sq.
units)

Design
Solution of
proposed
approach

Area of
proposed
approach

(in Sq.
units)

Benchmark
Design

Solution of
[12]

Area of
[12] (in

Sq.
units)

Design
Solution of
proposed
approach

Area of
proposed
approach

(in Sq.
units)

BPF 5A, 6M 500.0 3A, 2M 406.25 DIFF_EQ
12A, 12S,
36M, 2C,

UF=8
1640.5

2A, 2S, 6M,
2C, UF=4

593.75

DCT 12A, 6M 531.25 5A, 3M 437.5 FFT
26A, 12S,
24M, 2C,

UF=8
1247.75

4A, 5S, 4M,
2C, UF=4

593.75

DWT 6A, 8M 531.25 3A, 2M 406.25 FIR
2A, 12M,
2C, UF=8

625.0
2A, 3M, 2C,

UF=4
468.75

 TEST_CASE
14A, 12M,
2C, UF=8

687.5
4A, 5M, 2C,

UF=4
593.75

Table 9.7. Comparison of delay of proposed method with [12] for kc=4 & km=4

Benchmark
Design

Solution
of [12]

Delay
of [12]
(in ns)

Design
Solution

of
proposed
approach

Delay of
proposed
approach

(in ns)

Benchmark
Design

Solution of
[12]

Delay
of [12]
(in ns)

Design
Solution of
proposed
approach

Delay of
proposed
approach

(in ns)

BPF 5A, 6M 2.1 3A, 2M 3.1 DIFF_EQ
12A, 12S,

36M, 2C, UF=8
1.7

2A, 2S, 6M,
2C, UF=4

5.8

DCT 12A, 6M 1.9 5A, 3M 3.0 FFT
26A, 12S,

24M, 2C, UF=8
4.1

4A, 5S, 4M,
2C, UF=4

8.7

DWT 6A, 8M 1.6 3A, 2M 2.5 FIR
2A, 12M, 2C,

UF=8
2.5

2A, 3M, 2C,
UF=4

3.8

 TEST_CASE
14A, 12M, 2C,

UF=8
1.8

4A, 5M, 2C,
UF=4

3.8

103

9.3. Results and analysis: Methodology for generating a low-cost, highly

secure, functionally obfuscated DSP IP core

This section discusses the experimental results of the proposed methodology

presented in chapter 6 of this thesis. The proposed approach and methodology

presented in [21] have been implemented in Java and executed on Intel Core i5

3210M CPU with 4GB DDR3 primary memory and processor frequency of 2.5

GHz. The proposed methodology generates a low-cost, low-power, highly

secured functionally obfuscated IP core. The power and delay values are based

on 15 nm NanGate library [31]. The proposed approach and [21] are tested on

Express Benchmark suite [61]. The results obtained are analyzed based in terms

of the following parameters:

a. Comparison of the strength of obfuscation of the proposed approach

with [21] from an attacker’s perspective.

b. Power comparison of the proposed approach with [21].

The strength of obfuscation parameter represents the complexity for an attacker

to reverse engineer the design netlist. The strength of obfuscation of the

proposed approach and [21] are reported in table 9.8. This is an optimistic

estimate since for each key guess input-output pattern of the circuit is also

verified. For [21] since each key gate is encoded with 1 bit, therefore a number

of key gates are equal to the number of encoded key bits. For example, as shown

in table 9.8, the number of key bits for JPEG IDCT is 432, therefore, number of

key gates added is 432. The proposed approach is able to provide an

enhancement in the strength of obfuscation compared to [21]. For example, in

the case of JPEG IDCT benchmark, the attacker has to apply 3.83 e+404 brute-

force input combinations to decipher the netlist. Similarly, for [21] the brute-

force effort is 1.1 e+130. The strength of obfuscation enhancement through the

proposed approach is 3.46 e+274 times of [21].

As reported in table 9.9, the leakage power consumption of the proposed

obfuscation approach is less than the [21]. This is because proposed obfuscation

technique integrates PSO-DSE framework for the exploration of the low-cost

obfuscated design solution. Therefore, the design solution explored by the

proposed approach consumes less power compared to [21]. An average

104

reduction of 9.94 % in static power consumption of the proposed approach is

observed compared to [21]. The obfuscated cost of the proposed approach and

[21] are reported in table 9.10. An average cost reduction of 6.35% is obtained

through the proposed obfuscation approach. As discussed earlier, the low-cost

solution is obtained since the proposed approach integrates PSO-DSE

framework. Thus, even though there is marginal delay overhead due to ILBs,

however, it gets optimized during overall design delay reduction through PSO-

DSE. Altogether, the proposed approach in comparison with [21] yielded a

power reduction of ~ 10 %, design cost reduction of ~ 6.5 % and security

enhancement (strength of obfuscation) of at least 4.29 e+9 times.

105

DSP Core Benchmarks [19] No. of key-

bits

encoded for

proposed

obfuscation

(r)

Strength of

obfuscation

of proposed

approach

No. of

key-bits

encoded

for [21]

(r)

Strength of

obfuscation

of [21]

Strength of

obfuscation

enhancement

of proposed

approach (by

factor of)

Name Size

IIR 9919 192 6.28 e+57 96 7.92 e+28 7.92 e+28

Mesa Horner 10842 192 6.28 e+57 80 1.2 e+24 5.19 e+33

DWT 10958 128 3.40 e+38 96 7.92 e+28 4.29 e+ 9

ARF 14833 256 1.15 e+77 112 5.19 e+33 2.23 e+43

FIR 16047 320 2.13 e+96 144 2.23 e+43 9.57 e+52

JPEG IDCT 42710 1344 3.83 e+404 432 1.10 e+130 3.46 e+274

Mesa Interpolate 48853 832 2.86 e+250 464 4.76 e+139 6.01 e+110

Table 9.8. Strength of obfuscation comparison of proposed

functionally obfuscated approach w.r.t. [21]

Benchmark

Explored

proposed

functionally

obfuscated

Design

Solution

Gate

count of

netlist

(proposed

approach)

Power of

proposed

approach

(in µW)

Design

Solution

of [21]

Gate

count

of

netlist

[21]

Power

of [21]

(in

µW)

Gate

Reduction

(in %)

Power

Reduction

(in %)

IIR 1A, 2M, µ=4 6444 20.146 2A, 4M 7649 24.850 15.75 % 18.92 %

Mesa Horner 1A, 2M, µ=4 6641 26.080 2A, 4M 7780 28.986 14.64 % 10.02 %

DWT 1A, 1M, µ=1 5745 25.586 3A, 3M 7324 31.365 21.55 % 18.42 %

ARF 2A, 2M, µ=3 7741 39.234 3A, 4M 8495 43.967 8.87 % 10.76 %

FIR 3A, 2M, µ=4 8112 41.864 4A, 5M 9436 45.274 14.03 % 7.53 %

JPEG IDCT 11A,10M,µ=2 23370 172.523 12A,15M 23998 178.843 2.61 % 3.53 %

Mesa Interpolate 8A, 5M, µ=4 18061 132.924 13A,16M 24932 155.673 27.55 % 14.61 %

Table 9.9. Power comparison of proposed functionally obfuscated approach w.r.t. [21]

Benchmark

Proposed

functionally

obfuscated

Design

Solution

Cost of

proposed

approach

Design

Solution

of [21]

Cost

of [21]

Cost

Reduction

(in %)

IIR 1A, 2M, µ=4 0.6810 2A, 4M 0.7427 8.30 %

Mesa Horner 1A, 2M, µ=4 0.6526 2A, 4M 0.6820 4.31 %

DWT 1A, 1M, µ=1 0.7549 3A, 3M 0.7708 2.06 %

ARF 2A, 2M, µ=3 0.5259 3A, 4M 0.5281 0.41 %

FIR 3A, 2M, µ=4 0.5638 4A, 5M 0.5853 3.67 %

JPEG IDCT 11A,10M,µ=2 0.3629 12A,15M 0.4455 18.54 %

Mesa Interpolate 8A, 5M, µ=4 0.3093 13A,16M 0.3573 13.43 %

Table 9.10 Cost comparison of proposed functionally

obfuscated approach w.r.t. [21]

106

9.4. Results and analysis: Methodology for analyzing the aging effect of

NBTI stress on the performance of DSP IP core

This section discusses the experimental results of the proposed methodology

presented in chapter 7 of this thesis. The proposed investigation is performed

on Altera Cyclone II FPGA board EP2C20F484C7. The respective software

program Quartus II version 7.2 run on Intel® Xeon® CPU with 4GB RAM at

3.10 GHz. Fig. 9.1 shows the datapath diagram of Nand based gate level

implementation with its respective pin assignments. The gate level

implementations have been analyzed based on the following criteria

a) Change in Threshold Voltage Vs. Stress Time

b) Delay Degradation Vs. Stress Time

c) Delay degradation due to NBTI Stress and No-Stress for most threatful input

vector.

d) Delay degradation due to NBTI Stress and No-Stress for different samples of

an input vector.

9.4.1. Change in Threshold Voltage Vs. Stress Time

NBTI stress affects several parameters of a device including threshold voltage,

drain current, transconductance, etc. In our experiments, we have focused on

the effect of NBTI stress on the threshold voltage of the PMOS. More the NBTI

stress time, more is the increase in threshold voltage (as discussed in Eq. (7.1)

& (7.2)). This has been shown by varying the stress time for evaluating the

effect on the threshold voltage. Fig. 9.2(a) shows the change in threshold voltage

observed after applying NBTI stress for 1, 2 & 3 years respectively on ARF IP

core for distinct values of stress probability. Stress probability as defined in [65]

is the fraction of the time the PMOS transistor is under stress (it represents the

workload of the device). The value of stress probability is considered as the

number of control steps in which a gate is under NBTI stress out of the total

number of control steps.

9.4.2. Delay degradation Vs. Stress Time

Delay of the gate gets affected with change in threshold voltage (as shown in

Eq. (7.3)). Thus, when the threshold voltage of the pmos increases due to NBTI

107

stress, delay of the gate (corresponding to that pmos) also increases. This causes

performance degradation of the entire datapath. However, it also depends on the

input vector applied at the gates. This is because not all input vectors are capable

of turning ON all (or majority of) the pmos in the critical path. Depending on

the input applied, the number of pmos turned ON in the critical path changes.

Thus, it is important to analyze the effect of each input vector on the critical

path of the datapath, as critical path determines the delay of the circuit. The

following process is performed to evaluate the delay of the gate level datapath

for each input vector. First, for a specific test vector, the number of pmos in the

critical path being turned ON is determined, followed by determination of ΔVTh

corresponding to a specific stress time (t). Once ΔVTh is calculated, then the

new threshold voltage (VTh
New) corresponding to the pmos is calculated (using

Eq. (7.2)). Subsequently, the VTh
New is used to evaluate its gate delay (using Eq.

(7.3)). In case a test vector is applied that does not turn a pmos of a gate ON,

then the original threshold voltage corresponding to the nmos is used to evaluate

delay of the gate. If a test vector affects both pmos and nmos of a gate, then the

delay corresponding to the pmos is considered (as it is larger). Note: On

applying a test vector if the number of nmos being turned ON increases then

total delay increases. This is because nmos transistors are in series in NAND

gate representation. However, if the number of pmos transistor being turned

increases then delay doesn't increase as significantly as pmos transistors are

connected in parallel in NAND gate representation. Fig. 9.2 (b) shows the delay

of the gate level datapath corresponding to each test (input) vector applied. As

observed, the red colored ones (1010,1000,0010,0000) are most threatful as

they all incur the same maximum performance degradation. The green colored

ones (0011,1011,0111) produces the least delay degradation. Similar results

were observed for other benchmarks. Table 9.11 shows delay after 1 year of

continuous NBTI stress is applied on IIR core through each of the possible input

vector combinations. Similarly, the delay of the ARF IP core is reported in table

9.12.

9.4.3. Delay degradation due to NBTI Stress and No-Stress for most

threatful input vector (for varying Stress time)

108

Fig. 9.2(c) shows the delay of the gate level datapath of ARF under NBTI stress

and no-stress for most threatful input vector say ‘0000’ (i.e., the input vector

which causes maximum delay degradation as obtained in the previous section).

In other words, we analyze in this section how much degradation occurs when

NBTI stress is applied due to a specific input vector in contrast to when no-

NBTI stress occurs. No-stress here indicates a theoretical condition when NBTI

stress does not affect the pmos of the gate (i.e. its threshold voltage and

corresponding delay). Three possible cases have been investigated for stress

time (1 year, 2 years and 3 years) on datapath. As expected, with an increase in

stress time, the delay of the datapath has increased (due to the increase in

threshold voltage of the corresponding pmos of the gate). However, there is no

effect on delay when no NBTI stress is considered as threshold voltage remains

the same. This trend of Fig.9.2(c) is likely to remain the same as the increase in

stress time will always increase the threshold voltage.

9.4.4. Delay degradation due to NBTI Stress and No-Stress for different

input vectors

In this section, we investigate the effect of different samples of input vector on

the delay of the datapath for both NBTI stress and no-NBTI stress condition.

We have selected three samples viz. 0000(causing maximum delay

degradation), 0011 (causing minimum delay degradation) and 1101 (causing

median delay degradation) for this analysis. Fig. 9.2(d) shows the impact on the

delay of the datapath for the chosen sample vectors for NBTI stress and no-

stress condition. Similar trends are observed for all the tested benchmarks.

Concisely, the results can be utilized for analyzing the impact of aging on DSP

IP cores with varying parameters such as input vector, stress time, etc. Based on

the analysis a designer would be able to identify the presence of accelerated

aging attack on the circuit.

109

Input
Vectors

Individual Control Steps Total
Delay CS 1 CS 2 CS 3 CS 4 CS 5 CS 6

0000 4731.9 4201.7 5993.8 6427.6 6427.6 6427.6 34210.2

0001 4731.9 4201.7 5993.8 6427.6 6427.6 6427.6 34210.2

0010 4729.6 3980.9 5993.8 6427.6 6427.6 6427.6 33987.1

0011 4725.1 3973.2 5756.4 6192.8 6413.9 6415.6 33477.0

0100 4731.9 4201.7 5993.8 6427.6 6427.6 6427.6 34210.2

0101 4731.9 4201.7 5993.8 6427.6 6427.6 6427.6 34210.2

0110 4729.6 3980.9 5993.8 6427.6 6427.6 6427.6 33987.1

0111 4725.1 3973.2 5756.4 6192.8 6413.9 6415.6 33477.0

1000 4727.4 4194.0 5993.8 6427.6 6427.6 6427.6 34198.0

1001 4727.4 4194.0 5993.8 6427.6 6427.6 6427.6 34198.0

1010 4731.9 3984.8 5993.8 6427.6 6427.6 6427.6 33998.3

1011 4727.4 3973.2 5756.4 6192.8 6413.9 6415.6 33479.3

1100 4713.4 4182.4 5967.2 6411.0 6412.7 6195.7 33882.4

1101 4713.4 4182.4 5967.2 6411.0 6412.7 6195.7 33882.4

1110 4713.4 3979.9 5967.2 6411.0 6412.7 6195.7 33679.9

1111 4726.5 3980.9 6193.7 6203.2 6420.1 6203.1 33727.5

Table 9.11 Delay after applying 1 year of continuous NBTI stress of IIR Benchmark

Input

Vector

CS1 CS2 CS3 CS4 CS5 CS6 CS7 CS8 CS9 CS10 CS11 CS12 CS13 CS14 CS15 CS16 CS17 CS18 C19 TOTAL

0000 8446 7925 8446 9390 8655 9390 9390 7925 9390 8659 7925 9390 9390 8659 7925 9390 9390 8655 8655 167004

0001 8429 7689 8429 8911 8176 8911 8176 7689 8911 8436 7918 8911 8911 8436 7918 8911 8911 8176 8176 160034

0010 8446 7925 8446 9390 8655 9390 9390 7925 9390 8659 7925 9390 9390 8659 7925 9390 9390 8655 8655 167004

0011 8429 7666 8429 8670 7937 8671 8671 7666 8675 8432 7913 8889 8889 8432 7913 8889 8889 7677 7677 158425

0100 8419 7438 8419 9390 8655 9390 9390 7438 9390 8173 7912 9390 9390 8173 7438 9390 9390 8655 8655 164502

0101 8428 7696 8428 8911 8176 8911 8911 7696 8911 8427 7911 8911 8688 8427 8123 8911 8911 8176 8176 160739

0110 8419 7438 8419 9390 8655 9390 9390 7438 9390 8173 7912 9390 9390 8173 7438 9390 9390 8655 8655 164502

0111 8418 7675 8418 8887 7930 8890 8663 7675 8668 8424 7903 8676 8453 8424 7903 8676 8676 8204 8204 158776

1000 8446 7925 8446 9390 8655 9390 9390 7925 9390 8659 7925 9390 9390 8659 7925 9390 9390 8655 8655 167004

1001 8429 7689 8429 8911 8176 8911 8176 7689 8911 8436 7918 8911 8911 8436 7918 8911 8911 8176 8176 160034

1010 8446 7925 8446 9390 8655 9390 9390 7925 9390 8659 7925 9390 9390 8659 7925 9390 9390 8655 8655 167004

1011 8429 7666 8429 8670 7937 8671 8671 7666 8675 8432 7913 8889 8889 8432 7913 8889 8889 7677 7677 158425

1100 8390 7911 8390 9350 8423 9350 9157 7911 9157 8646 7905 9378 9378 8646 7911 9378 9378 8419 8419 165504

1101 8409 7426 8409 8952 8217 9335 8952 8952 8952 8414 8414 8952 8952 8414 8107 8952 8952 8217 8217 163205

1110 8390 7911 8390 9350 8423 9350 9157 7911 9157 8646 7905 9378 9378 8646 7911 9378 9378 8419 8419 165504

1111 8415. 7683 8415 9367 8631 9367 9365 7899 9367 8411 7898 9367 9367 8411 8108 9367 9367 8632 8632 166079

Table 9.12 Delay after applying 1 year of continuous NBTI stress on ARF benchmark

110

Fig.9.1 Nand based gate level implementation of FIR datapath on FPGA board

111

c a

d b

Fig. 9.2 Effect of NBTI stress on ARF Benchmark

(a) Change in threshold voltage with stress time,(b) Delay of the datapath corresponding to each

input vector applied, (c) Stress Vs No-Stress for 0000, (d) Delay wrt Stress Vs. no-Stress

112

9.5. Results and analysis: Computational forensic engineering for

resolving ownership conflict of DSP IP core generated using high-

level synthesis

The proposed approach and [13] were both implemented in Java and run on

Intel Core-i5-460M CPU with 3MB L3 cache memory; 4GB DDR3 memory at

2.5 GHz. The proposed approach containing 10 unique highly specialized

design features in the ‘feature set’ (encompassing feature types of objectives,

application type, data bit type, performance, and datapath structure) have been

investigated and tested on three major types of digital application specific IP

cores. For example, benchmarks ARF, BPF & DCT are data-intensive

application specific IPs; FFT & FIR are control-intensive (loop based)

application specific IPs and JPEG IDCT is condition based data-intensive

application specific IP cores [61]. Therefore the ‘feature set’ of the proposed

approach is enough and applicable on all type of digital application specific IP

cores. However, as mentioned in chapter 8, the proposed approach does not

apply to IP cores of general purpose applications. It is only applicable for any

type of application-specific IP cores such as from signal processing and

multimedia. The HLS tools selected for generating results for the proposed

approach are diverse in nature. For comprehensive analysis we have chosen

seven academic/industrial tools (i.e. n = 7, from IPCT 1 to IPCT 7) with varying

design objectives, varying DSE frameworks and varying properties as listed

below:

1. Hybrid PSO-GA based HLS tool [52].

2. Fault tolerant based HLS tool [12].

3. Fault secure based HLS tool [17].

4. Watermarking based HLS tool [13].

5. Trojan security based HLS tool [53].

6. PSO based HLS tool [33].

7. BFOA based HLS tool [54].

113

Testing proposed CFE for ownership resolution for n = 7 is sufficient as the

seven HLS tools are quite diverse and unique in nature. The same HLS tools are

suitable for different IP cores as long as they are digital application specific IP

by nature. Other HLS tools available in the literature mostly contain similar

properties, frameworks or design objectives. Thus, the addition of more HLS

tools for testing may incur redundancy. However, the current seven HLS tools

chosen for testing also comprises of HLS tools of similar characteristics. For

example, HLS tool 1 (IPCT 1), HLS tool 5 (IPCT 5) and HLS tool 7 (IPCT 7)

have several characteristics common in them. As shown in Table 9.13 for ARF

benchmark, these three tools share eight common characteristics, but still, the

proposed approach was capable of identifying the legal owner successfully.

Table 9.13 shows that HLS tool 5 (IPCT 5) has 100 % matching with given IPID.

Additionally, our results confirm that ten features in the feature set are sufficient

to resolve IP ownership conflict for HLS tools. This is because all ten features

in the set are unique though diverse and cover all the key aspects of HLS tools

ranging from objectives (area, delay, power, Trojan security, fault reliability),

application type (loop-based/non-loop based), data bit type (data width),

performance (scheduling type, chaining, multi-cycling, pipelining) and datapath

structure (resource type used). Tables 9.13 to 9.16 shows the feature-set of the

proposed CFE approach generated with respect to each competing HLS tool for

various benchmarks. The results indicate the matching percentage of feature-set

of each competing HLS tools (corresponding to each IP vendor) with feature-

set of IPID. The HLS tool whose IP feature-set matches 100 % with the feature-

set of IPID is considered as the rightful owner. For example in table 9.13, the

feature set decided for both IP to be identified (IPID) and competing IP tool

vendors (IPCT n) are: (scheduling algorithm, resource type, chaining, bus width

support, pipelining, multi-cycling, design objective, reliability, Trojan security,

loop support). The proposed feature extraction step determines the details of

features for IPID & IPCT1… IPCT7. For ARF benchmark in table 9.13, for

instance, in IPID, the presence of ‘chaining’ feature was detected (thus denoted

as ‘Yes’) and information of scheduling algorithm is indicated as ‘LIST’.

Similarly, details of remaining features after extraction are also indicated. As

evident, the feature extraction of all IP core from each competing HLS tool is

extracted. However, the feature set of only IP core generated by HLS tool 5

114

(IPCT5) matches completely with IPID. Similarly, results for other benchmarks

have been shown in table 9.13 to 9.16. Table 9.15 shows a case in which the

IPID’s feature-set doesn’t match with any of the feature-set of the competing IP

tools i.e. matching percentage is less than 100%. Therefore, in such a scenario

the legal ownership of the IPID cannot be awarded to any of the claimants.

Further, there is a possibility that more than one competing IP vendor tool can

have 100 % matching percentage. However, in our experiment, we didn’t

encounter a scenario. Nevertheless, in such a scenario, further analysis through

CFE is needed through the addition of more features in the current feature-set

(i.e. beyond the features in the current set). Table 9.17 shows the feature

extraction time of each of the features of the feature set by proposed CFE

approach. In other words, the features of the feature set are illustrated in

increasing order of time complexity. This shows that the extraction time taken

for ‘loop support’ is least, while for ‘scheduling algorithm’ is highest. Further,

this also shows that all the ten features of the feature set are extracted within

acceptable runtime (in order of a few milliseconds).

Additionally, the possibility of false positive and false negative does not arise

in the proposed results as the rightful IP owner is systematically determined

through several digital forensic evidences acquired during/after the high-level

synthesis design process. This is an inherent property of computational forensic

engineering performed on high-level synthesis based IP cores.

Table 9.18 shows the advantages of proposed CFE approach for IP core

protection over watermarking based IP protection approach [13] in terms of

storage overhead (i.e. a number of registers required in final design). As evident

from table 9.18, for watermarking approach [13], significant storage registers

are required in final IP design. This is because signature insertion is done at the

register allocation step of the architectural synthesis. The presence of this

signature is evaluated during signature detection stage for IP protection (by

resolving false claim of vendor ownership). On the contrary, the proposed

approach as shown in table 9.18 does not require embedding any vendor

signature thus resulting in zero registers during implementation (i.e. no design

hardware overhead). The proposed CFE approach provides greater/stronger

reliability and protection as it is almost non-vulnerable to any threats due to no

115

existence of reverse engineering step as well as vendor signature like in case of

watermark based approaches.

Benchmark: ARF (28 nodes)

IP features
Schedule
algorithm

Resource
type

chaining
Bus

width
support

Data
pipelining

Multi-
cycling

Design
objective

Fault
Reliability

Loop
support

Trojan
Security

Match
percent

IPID LIST A, M Yes 32 bit No Yes

Area -
Execution

time / Power-
Execution

time

No DFG No NA

IPCT 1
(Hybrid PSO-
GA HLS [52])

LIST A, M Yes 16 bit No Yes
Area-Power-

Latency
No DFG No 80

IPCT 2
[Fault secure

HLS [17])
LIST A, M, C No 16 bit No Yes

Area -
Execution

time / Power-
Execution

time

Yes DFG No 60

IPCT 3
(Watermark-

HLS [13])
LIST A, M, C, S No 32 bit No No

Area -
Execution

time / Power-
Execution

time

No DFG No 70

IPCT 4
(Trojan

Secure-HLS
[53])

LIST A, M, C, S No 16 bit No No

Area -
Execution

time / Power-
Execution

time

No DFG Yes 50

IPCT 5
(BFOA-HLS

[54])
LIST A, M Yes 32 bit No Yes

Area -
Execution

time / Power-
Execution

time

No DFG No 100

IPCT 6
(Fault

Tolerant-HLS
[12])

LIST A, M, C, S No 16 bit No No
Area -

Latency
Yes DFG No 40

IPCT 7
(PSO-HLS

[33])
LIST A, M Yes 8 bit Yes Yes

Area -
Execution

time / Power-
Execution

time

No DFG No 80

Table 9.13. Feature-set of IPID and IPCT for ARF benchmark

(Note: IPCT n = IP core generated by competing HLS tool by vendor ‘n’)

116

Benchmark: FFT (36 nodes)

IP features
Scheduling

algorithm

Resource

type
chaining

Bus

width

support

Data

pipelining

Multi-

cycling

Design

objective

Fault

Reliability

Loop

support

Trojan

Security

Match

percent

IPID
LIST A, M, C No 16 bit No Yes

Area -

Execution time

/ Power-

Execution time

Yes

Yes

(CDFG

& DFG)

No NA

IPCT 1
(Hybrid PSO-
GA HLS [52])

LIST A, M Yes 16 bit No Yes
Area-Power-

Latency
No

No

(DFG

ONLY)

No 50

IPCT 2
[Fault secure

HLS [17])

LIST A, M, C No 16 bit No Yes

Area -

Execution time

/ Power-

Execution time

Yes

Yes

(CDFG

& DFG)

No 100

IPCT 3
(Watermark-

HLS [13])

LIST A, M, C, S No 32 bit No No

Area -

Execution time

/ Power-

Execution time

No

Yes

(CDFG

& DFG)

No 60

IPCT 4
(Trojan

Secure-HLS
[53])

LIST A, M, C, S No 16 bit No No

Area -

Execution time

/ Power-

Execution time

No

Yes

(CDFG

& DFG)

Yes 60

IPCT 5
(BFOA-HLS

[54])

LIST A, M Yes 32 bit No Yes

Area -

Execution time

/ Power-

Execution time

No

No

(DFG

ONLY)

No 50

IPCT 6
(Fault

Tolerant-HLS
[12])

LIST A, M, C, S No 16 bit No No Area - Latency Yes

No

(DFG

ONLY)

No 60

IPCT 7
(PSO-HLS

[33])

LIST A, M, C Yes 8 bit Yes Yes

Area -

Execution time

/ Power-

Execution time

No

Yes

(CDFG

& DFG)

No 60

Table 9.14. Feature-set of IPID and IPCT for FFT benchmark

117

Benchmark: FIR (23 nodes)

IP features
Scheduling

algorithm

Resourc

e type
chaining

Bus

width

suppor

t

Data

pipelining

Multi-

cycling

Design

objective
Reliability

Loop

support

Trojan

Security

Match

percent

IPID
LIST A, M,C Yes 8 bit No Yes

Area - Execution

time / Power-

Execution time

No

Yes

(CDFG

& DFG)

Yes NA

IPCT 1
(Hybrid PSO-
GA HLS [52])

LIST A, M Yes 16 bit No Yes
Area-Power-

Latency
No

No

(DFG

ONLY)

No 50

IPCT 2
[Fault secure

HLS [17])

LIST A, M, C No 16 bit No Yes

Area - Execution

time / Power-

Execution time

Yes

Yes

(CDFG

& DFG)

No 60

IPCT 3
(Watermark-

HLS [13])

LIST
A, M, C,

S
No 32 bit No No

Area - Execution

time / Power-

Execution time

No

Yes

(CDFG

& DFG)

No 50

IPCT 4
(Trojan

Secure-HLS
[53])

LIST
A, M, C,

S
No 16 bit No No

Area - Execution

time / Power-

Execution time

No

Yes

(CDFG

& DFG)

Yes 60

IPCT 5
(BFOA-HLS

[54])

LIST A, M Yes 32 bit No Yes

Area - Execution

time / Power-

Execution time

No

No

(DFG

ONLY)

No 60

IPCT 6
(Fault

Tolerant-HLS
[12])

LIST
A, M, C,

S
No 16 bit No No Area - Latency Yes

No

(DFG

ONLY)

No 20

IPCT 7
(PSO-HLS

[33])

LIST A, M, C Yes 8 bit No Yes

Area - Execution

time / Power-

Execution time

No

Yes

(CDFG

& DFG)

No 90

Table 9.15. feature-set of IPID and IPCT for FIR benchmark

118

Benchmark: JPEG_IDCT (112 nodes)

IP features
Schedule

algorithm

Resourc

e type
chaining

Bus

width

support

Data

pipelin

e

Multi-

cycling

Design objective Reliability
Loop

support

Trojan

Security

Match

percent

IPID
LIST A, M Yes 8 bit Yes Yes

Area - Execution

time / Power-

Execution time

No DFG No NA

IPCT 1
(Hybrid PSO-GA HLS

[52])

LIST A, M Yes 16 bit No Yes
Area-Power-

Latency
No DFG No 70

IPCT 2
[Fault secure HLS

[17])

LIST A, M, C No 16 bit No Yes

Area - Execution

time / Power-

Execution time

Yes DFG No 50

IPCT 3
(Watermark-HLS

[13])

LIST
A, M, C,

S
No 32 bit No No

Area - Execution

time / Power-

Execution time

No DFG No 50

IPCT 4
(Trojan Secure-HLS

[53])

LIST
A, M, C,

S
No 16 bit No No

Area - Execution

time / Power-

Execution time

No DFG Yes 40

IPCT 5
(BFOA-HLS [54])

LIST A, M Yes 32 bit No Yes

Area - Execution

time / Power-

Execution time

No DFG No 80

IPCT 6
(Fault Tolerant-HLS

[12])

LIST
A, M, C,

S
No 16 bit No No Area - Latency Yes DFG No 30

IPCT 7
(PSO-HLS

[33])

LIST A, M Yes 8 bit Yes Yes

Area - Execution

time / Power-

Execution time

No DFG No 100

Table 9.16. feature-set of IPID and IPCT for JPEG_IDCT benchmark

119

Table 9.17. Average time consumed (ms) for feature extraction through proposed CFE approach

Benchmarks
Loop

support

Design

objective

Resource

type

Bus

width

support

Multi-

cycling

Fault

Reliability

Trojan

Security
chaining

Data

pipelining

Scheduling

algorithm

ARF 0.3 1.2 3.1 7.2 23.5 46.3 48.7 80.5 74.6 374.5

BPF 0.7 1.5 4.9 9.3 19.1 52.2 51.3 70.2 54.8 256.7

DCT 0.8 2.4 5.7 12.8 19.6 49.8 57.8 68.7 88.5 231.1

FFT 0.9 2.8 4.7 10.3 28.5 68.1 52.0 89.5 88.8 407.0

FIR 0.6 4.7 5.9 10.7 13.6 35.9 72.9 76.8 69.2 240.1

JPEG_IDCT 1.3 10.9 18.3 48.7 89.5 153.3 203.7 283.8 452.3 1903.0

Benchmark

Watermarking IP

protection HLS

approach [13]

Proposed CFE based

IP protection HLS

approach

Storage registers Storage registers

ARF 11 0

BPF 11 0

DCT 11 0

FFT 10 0

FIR 11 0

JPEG_IDCT 25 0

Table 9.18. Advantages of proposed CFE approach over

watermarking [13] for IP protection during HLS

121

Chapter 10

Conclusion and Future work

10.1. Conclusion

This thesis has presented novel methodologies for generating reliable and secure

IP cores. The following objectives were accomplished

• Proposed a methodology that integrates ‘high-level synthesis’

framework with ‘physical design’ framework for generating a DSP IP

core that is simultaneously secure/resilient against the multi-cycle

temporal and multi-unit spatial effect of transient fault. The transient

fault resiliency is achieved with a nominal design overhead.

• Proposed a methodology for generating a DSP IP core that is

simultaneously tolerant against multi-cycle temporal and multi-unit

spatial effect of transient fault for data-intensive applications. The

proposed approach is the first technique in the literature that considers

simultaneous tolerance against the temporal and spatial effect of single

event transient. The proposed approach presents novel transient fault

tolerance-aware floor-planning rules. Further, it integrates PSO-DSE

framework for exploring low-cost design solution.

• Proposed a methodology for generating a DSP IP core that is

simultaneously tolerant against multi-cycle temporal and multi-unit

spatial effect of transient fault for control-intensive applications. The

proposed approach achieves a design cost improvement of ~27% along

with power reduction of ~61% compared to the state-of-the-art.

• Proposed a methodology for generating a low-cost, highly secure,

functionally obfuscated DSP IP core. The proposed methodology

presents a novel IP functional locking block termed as ILB. The

proposed ILBs inherits security properties that enhance the strength of

obfuscation of the IP cores. Further, Security comparison of the

proposed approach with state-of-the-art shows a minimum security

enhancement of 4.29 e+9 times for the tested benchmarks.

122

• Proposed a methodology for analyzing the aging effect of NBTI stress

on the performance of DSP IP core. It presents a performance

comparison of stressed v/s not-stressed states of IP cores. Further, it

presents a technique to identify input vector that causes maximum

performance degradation due to NBTI stress on DSP IP core. The

proposed approach can be utilized to detect the presence of an

accelerated aging attack on IP core.

• Proposed a novel computational forensic engineering methodology for

resolving ownership conflict of DSP IP core generated using high-level

synthesis. The proposed approach presents a set of ten novel features

that can distinguish an IP core from another IP core generated using

different high-level synthesis tools. Further, the proposed approach

presents feature extraction rules/algorithms for each of the ten features

of the feature-set. The comparison of the proposed approach with state-

of-the-art (watermarking based) approach for resolving ownership

conflicts shows that the proposed approach incurs zero-overhead and

zero-performance degradation.

10.2. Future work

In the future, various reliability-aware methodologies for resolving reliability

concerns such as electromigration, intermittent faults, etc. can be devised for

DSP cores using high-level synthesis framework. In a similar manner, low

energy/power security aware methodologies can be devised for ensuring

protection against hardware Trojan, IP piracy, IP overbuilding, etc. using high-

level synthesis.

123

APPENDIX-A

GENERATION OF INPUT VECTORS AND AGING

EVALUATION

The input vectors for determining the most harmful threat vector can be

generated using ATPG tools [15] such as linear feedback shift registers (LFSR)

circuits [71, 72]. LFSR circuits can be implemented in Fibonacci

implementation and/or Galois implementations as shown in fig. A.(1) and A.(2)

respectively. In these figures, each rectangular block represents a D-flip flop.

Further, gi represents the weight of the tap such that gi = 0 implies no

connection; gi = 1 implies a connection (excluding for i=0 and i=m such that

gm and g0 are always 1). For identical feedback weights, both types of

implementations will produce the same sequence. The symbol ⊕ represents

modulo 2 operation (implemented through XOR gate during hardware

implementations).

LFSR circuit produces linear recursive sequences (LRS), the length of the

sequence before repetition depends upon feedback taps and an initial state (also

Q D

CLK

Q D

CLK

Q D

CLK

Q D

CLK

Q D

CLK

gm-1 gm-2 gm-3 g2 g1 gm =1 g0 =1

Fig.A.(1). Fibonacci implementation of LFSR

Q D

CLK

Q D

CLK

Q D

CLK

Q D

CLK

Q D

CLK

gm-1 gm-2 g3 g2 g1 g0=1 gm =1

Fig.A.(2). Galois implementation of LFSR

124

known as seed input). An LFSR of any given size m (number of flip-flops) can

produce every possible state during the period N=2m-1, if appropriately tapped

(i.e., if a proper feedback path is designed). Such a sequence is called a maximal

length sequence (a.k.a. maximal sequence or maximum length sequence),

abbreviated as m-sequence. Maximal length generators can produce two

sequences. One is the trivial one, of length one, that occurs when the initial state

of the generator is all zeros. The other one, the useful one, has a length of 2m -

1. Together, these two sequences account for all 2m states of an m-bit state

register. In our approach for determining aging due to NBTI stress on an IP core,

we utilize the LFSR circuits with maximal length sequence. Based on the no. of

input bits required LFSR circuit was designed. Subsequently, the maximal

length sequences are generated and applied as an input vector to the IP core for

a specific amount of time (say 1 year). Later on, the change in threshold voltage

due to NBTI stress is evaluated using equation 7.1.

 𝛥𝑉th = 𝑏 ⋅ 𝑎𝑛𝑡𝑛 (7.1)

Where, ΔVth represents change in threshold voltage due to NBTI stress, b = 3.9

x 10-3 V.s-1\6, n is time exponential constant=0.16, a = input signal probability,

t = time in seconds. Let’s consider an example of gate G1 in fig. 7.3, assuming

stress time of 1 year (= 31536000 seconds) is applied, the gate G1 has input

signal probability a = 0.3333 (the time for which gate G1 is under stress i.e., 1

control step out of 3 control steps), change in threshold voltage is evaluated as

𝛥𝑉th = (3.9 x 10-3 V.s-1\6) * (0.3333)0.16 * (31536000)0.16 s1/6 = 51.824 mV.

Subsequently, the change in threshold voltage thus obtained is added to the

original threshold voltage 𝑉th to get na ew threshold voltage as per equation 7.2.

𝑉𝑡ℎ
𝑛ⅇ𝑤 = 𝑉th + 𝛥𝑉th (7.2)

The initial threshold voltage value for 65nm technology scale = 0.365 V = 365

mV [15]. The new threshold voltage thus obtained = 365 mV + 51.824 mV =

416.824 mV. Subsequently, the new threshold voltage value is used to

determine the degraded delay of the PMOS transistor using equation 7.3

𝑇 = 𝐾
𝑉

(𝑉−𝑉𝑡ℎ
𝑛𝑒𝑤)𝛼

 (7.3)

125

For 65nm technology scale, V= 1.2V is adopted from [15], and α=1.4, K=155

x 10-6 is adopted from [45]. Therefore,

T = (155 * 10-6) * (1.2 / (1.2 – 0.416824)1.4) = (155 * 10-6) * 1.68957 = 2.618e-

4 = 261.8 µs.

The delay value thus obtained is reported for gate G1 in table 7.1. The proposed

circuit is made of NAND gates. The NAND gate consists of 2 PMOS and 2

NMOS transistors. The PMOS transistors are in parallel, therefore, the delay of

NAND gate when 1 or both PMOS transistors are turned ON = delay of 1 PMOS

transistor. However, the NMOS transistors are in serial, therefore, the delay of

NAND gate when both NMOS transistors are turned ON = 2 * (delay of 1

NMOS transistor). In our proposed work we are only considering NBTI stress

(affecting PMOS transistors) as NBTI stress >>> PBTI stress (affecting NMOS

transistors). Hence, delay of NMOS transistor is evaluated in No stress

condition i.e. change in threshold voltage = 0, hence, 𝑉th = 0.365 V and T =

239.4 µs. Thereby, when both NMOS transistors are turned ON, total delay = 2

* 239.4 = 478.8 µs is reported for gate G2 (in table 7.1) when input vector 11101

is applied. Similarly, delay degradation of all the gates in the critical path is

evaluated; Subsequently, the input vector with the largest delay is determined

as the most harmful vector. The most harmful threat vector thus determined can

be utilized for performing an accelerated aging attack as discussed in chapter 7.

126

APPENDIX-B

BENCHMARKS

The Benchmarks used in analyzing the methodologies discussed in this thesis

are adopted from [61, 73, 74]. A brief overview of these benchmarks are as

follows :

1. Auto Regressive filters (ARF): are based on auto regressive (AR) model.

Autoregressive models are developed on the idea that the current value

of a series x(t) can be explained as a function of p past values, x(t-1),

x(t-2), x(t-3), …. , x(t-p). where p denotes the number of past values

required to determine the current value. AR models find applications in

time series analysis, statistical analysis, the field of economics such as

stock market predictions, signal processing, etc. [73, 75].

2. Band-pass filter (BPF): passes frequency within the ‘band’ and filters-

out (remove) frequencies outside the ‘band’. Band-pass filters are

widely used in wireless communication. In transmitters, the main

function of BPF is to limit the output signal to the allocated band. In

receivers, BPF is responsible for allowing only signals within the band

to enter the system for further processing [73].

3. Elliptic wave filter (EWF): is a signal processing filter with equalized

ripple behavior in both the pass band and stop band. A detailed

description of the 5th order elliptic wave filter can be found in [76, 73].

4. JPEG-based benchmarks: Joint Photographic Expert group is the joint

committee between ISO/IEC JTC1 and ITU-T (formerly CCITT) that

created and maintains the JPEG standard. JPEG is a commonly used

method for image compression. The JPEG compression can be divided

into five steps: color space conversion, downsampling, 2-D DCT,

quantization, and entropy coding. The first two operations are used only

for color images [77]. The color space conversion transforms the RGB

input image to a luminance and chrominance space color, such as the

YCbCr representation. The downsampling operation reduces the

sampling rate of the color information (Cb and Cr) because the human

eye is less sensitive to chrominance components. The quantization

127

operation discards the 2-D DCT high frequency and small amplitude

coefficients. Finally, the entropy coding uses run-length encoding

(RLE), Huffman, variable length coding (VLC) and differential coding

to decrease the number of bits used to represent the image. JPEG

benchmarks such as forward discrete cosine transform (FDCT) and

Inverse discrete cosine transform (IDCT) performs forward and inverse

discrete cosine transforms (DCT) respectively. A detailed discussion of

JPEG DCT algorithms can be found in [78]. JPEG Smooth Downsample

benchmark perform ‘smoothing’ and ‘downsampling’ operations [61].

In the image processing smoothing is used for noise reduction [79].

5. Mesa-based benchmarks: Mesa is a project for open source

implementation of OpenGL specification (a system for interactive 3D

graphics). The various functions of Mesa 3D graphics library are utilized

for developing these benchmarks [61]. Matrices are often utilized during

digital signal processing. Mesa - invert matrix benchmark is an

implementation of the matrix inversion algorithm. Mesa – Matrix

Multiplication is an implementation of matrix multiplication algorithm.

Mesa – Horner Bezier benchmark represents a function to calculate a

point on a tensor product Bezier curve using Horner’s algorithm. Mesa

– smooth Triangle benchmark represents a smoothing subroutine. Mesa

– Interpolate aux benchmark presents interpolate aux function for

performing color interpolation between colors texture coordinates and

indexes. Mesa – Feedback points benchmark represents a function takes

vertex buffer as input and calculates texture coordinates for a feedback

buffer.

6. MPEG based benchmarks: Moving Picture Expert Group is a working

group of ISO/IEC. The aim of this group is to develop standards for

coded representation of digital audio, video, 3D graphics, and other

related domains. MPEG IDCT benchmark represents a function for

performing inverse two-dimensional discrete cosine transform [61].

Several MPEG standards such as MPEG-1 Part-2, MPEG-2 Part-2/

H.262, MPEG-4 Part-2 requires IDCT function.

The MPEG motion vector benchmark represents a function for

motion vector decoding. A motion vector is a key element in motion

128

estimation. The MPEG-4 standard defines motion vector as: ‘A two-

dimensional vector used for inter prediction that provides an offset from

the coordinates in the decoded picture to the coordinates in a reference

picture’.

7. Diffeq: The Differential equation solver benchmark represents the

hardware description for a small fixed-point calculation loop. The

algorithm tries to numerically solve the equation y'' + 3xy' + 3y = 0 [81,

74]

8. Discrete Wavelet Transform (DWT): represents a multiresolution

decomposition of a signal. DWT decomposes a signal into its

components in different frequency bands. DWT can be designed

specifically for a variety of wavelets such as Haar wavelet, Daubechies

wavelet, dual-tree complex wavelet, etc. or generically (independent of

the type of wavelet). DWT is widely used in fields of image processing,

biomedical signal processing, wireless communication, etc.[82].

9. Fast Fourier Transform (FFT): The Fourier transform is used for

characterizing linear systems and for identifying the frequency

components of a continuous waveform. However, for analyzing the

waveform on a digital computer, a discrete version of the Fourier

transform (DFT) is required. The Fast Fourier Transform (FFT) is an

efficient method for computing a discrete Fourier transform. FFT

substantially reduces the time required for performing DFT [80, 73].

10. Finite Input Response (FIR) and Infinite Input response (IIR) Filters: A

FIR filter is a filter whose impulse response (or response to any finite

length input) is of finite duration because it settles to zero in finite time.

This contrasts with infinite impulse response (IIR) filters, which may

have internal feedback and may continue to respond indefinitely

(usually decaying) [83].

129

REFERENCES

[1] Mack, C. A. (2011). Fifty years of Moore's law. IEEE Transactions on

semiconductor manufacturing, 24(2), 202-207.

[2] Consumer Technology Association (CTA) report 2018 https://lsc-

pagepro.mydigitalpublication.com/publication/?i=495372&ver=html5

[3] Sengupta, A. (2016). Evolution of the IP Design Process in the

Semiconductor/EDA Industry [Hardware Matters]. IEEE Consumer

Electronics Magazine, 5(2), 123-126.

[4] Sengupta, A. (2016). Cognizance on Intellectual Property: A High-Level

Perspective [Hardware Matters]. IEEE Consumer Electronics

Magazine, 5(3), 126-128.

[5] Sengupta, A. (2016). Intellectual property cores: Protection designs for

CE products. IEEE Consumer Electronics Magazine, 5(1), 83-88.

[6] Sengupta, A. (2016). Soft IP Core Design Resiliency Against Terrestrial

Transient Faults for CE Products [Hardware Matters]. IEEE Consumer

Electronics Magazine, 5(4), 129-131.

[7] Gajski, D. D., Wu, A. C. H., et al (2000). Embedded tutorial: essential

issues for IP reuse. In Proceedings of the 2000 Asia and South Pacific

Design Automation Conference (pp. 37-42). ACM.

[8] McFarland, M. C., Parker, A. C., & Camposano, R. (1990). The high-level

synthesis of digital systems. Proceedings of the IEEE, 78(2), 301-318.

[9] McFarland, M. C., Parker, A. C., & Camposano, R. (1988, June). Tutorial

on high-level synthesis. In Proceedings of the 25th ACM/IEEE Design

Automation Conference (pp. 330-336). IEEE Computer Society Press.

[10] Omana, M., Papasso, G., Rossi, D., & Metra, C. (2003, July). A model for

transient fault propagation in combinatorial logic. In On-Line Testing

Symposium, 2003. IOLTS 2003. 9th IEEE(pp. 111-115). IEEE.

[11] Andjelkovic, M., Krstic, M., Kraemer, R., Veeravalli, V. S., & Steininger,

A. (2017, November). A Critical Charge Model for Estimating the SET

and SEU Sensitivity: A Muller C-Element Case Study. In Asian Test

Symposium (ATS), 2017 IEEE 26th(pp. 82-87). IEEE.

[12] Inoue, T., Henmi, H., Yoshikawa, Y., & Ichihara, H. (2011, July). High-

level synthesis for multi-cycle transient fault tolerant datapaths. In On-

https://lsc-pagepro.mydigitalpublication.com/publication/?i=495372&ver=html5
https://lsc-pagepro.mydigitalpublication.com/publication/?i=495372&ver=html5

130

Line Testing Symposium (IOLTS), 2011 IEEE 17th International (pp. 13-

18). IEEE.

[13] Koushanfar, F., Hong, I., & Potkonjak, M. (2005). Behavioral synthesis

techniques for intellectual property protection. ACM Transactions on

Design Automation of Electronic Systems (TODAES), 10(3), 523-545.

[14] Amrouch, H., Krishnamurthy, P., Patel, N., et al (2017, October).

Emerging (un-) reliability based security threats and mitigations for

embedded systems: special session. In Proceedings of the 2017

International Conference on Compilers, Architectures and Synthesis for

Embedded Systems Companion (p. 17). ACM.

[15] Sinanoglu, O., Karimi, N., Rajendran, J., Karri, R., Jin, Y., Huang, K., &

Makris, Y. (2013, May). Reconciling the IC test and security dichotomy.

In Test Symposium (ETS), 2013 18th IEEE European (pp. 1-6). IEEE.

[16] Wu, K., & Karri, R. (2001, November). Algorithm level re-computing: a

register transfer level concurrent error detection technique.

In Proceedings of the 2001 IEEE/ACM international conference on

Computer-aided design (pp. 537-543). IEEE Press.

[17] Sengupta, A., & Sedaghat, R. (2015). Swarm intelligence driven design

space exploration of optimal k-cycle transient fault secured datapath

during high level synthesis based on user power–delay

budget. Microelectronics Reliability, 55(6), 990-1004.

[18] Wu, K., & Karri, R. (2004). Fault secure datapath synthesis using hybrid

time and hardware redundancy. IEEE Transactions on Computer-Aided

Design of Integrated Circuits and Systems, 23(10), 1476-1485.

[19] Rusu, C., Bougerol, A., Anghel, L., Weulerse, C., Buard, N.,

Benhammadi, S., ... & Gaillard, R. (2007, July). Multiple event transient

induced by nuclear reactions in CMOS logic cells. In On-Line Testing

Symposium, 2007. IOLTS 07. 13th IEEE International (pp. 137-145).

IEEE.

[20] Miskov-Zivanov, N., & Marculescu, D. (2010). Multiple transient faults

in combinational and sequential circuits: A systematic approach. IEEE

Transactions on Computer-Aided Design of Integrated Circuits and

Systems, 29(10), 1614-1627.

131

[21] Yasin, M., Rajendran, J. J., Sinanoglu, O., & Karri, R. (2016). On

improving the security of logic locking. IEEE Transactions on Computer-

Aided Design of Integrated Circuits and Systems, 35(9), 1411-1424.

[22] Rajendran, J., Pino, Y., Sinanoglu, O., & Karri, R. (2012, June). Security

analysis of logic obfuscation. In Proceedings of the 49th Annual Design

Automation Conference (pp. 83-89). ACM.

[23] Roy, D., & Sengupta, A. (2017). Low overhead symmetrical protection of

reusable IP core using robust fingerprinting and watermarking during high

level synthesis. Future Generation Computer Systems, 71, 89-101.

[24] Lisboa, C. A., Erigson, M. I., & Carro, L. (2007, May). System level

approaches for mitigation of long duration transient faults in future

technologies. In Test Symposium, 2007. ETS'07. 12th IEEE

European (pp. 165-172). IEEE.

[25] Heijmen, T. (1994). Radiation-induced soft errors in digital

circuits. energy, 7, 19.

[26] Rossi, D., Omana, M., Toma, F., & Metra, C. (2005, October). Multiple

transient faults in logic: An issue for next generation ICs?. In Defect and

Fault Tolerance in VLSI Systems, 2005. DFT 2005. 20th IEEE

International Symposium on (pp. 352-360). IEEE.

[27] Martin, R. C., Ghoniem, N. M., Song, Y., & Cable, J. S. (1987). The size

effect of ion charge tracks on single event multiple-bit upset. IEEE

Transactions on Nuclear Science, 34(6), 1305-1309.

[28] Sengupta, A. (2015). Exploration of kc-cycle transient fault-secured

datapath and loop unrolling factor for control data flow graphs during

high-level synthesis. Electronics Letters, 51(7), 562-564.

[29] Dubrova, E. (2013). Fault-tolerant design (pp. 55-65). New York:

Springer.

[30] Kshirsagar, R. V., & Patrikar, R. M. (2009). Design of a novel fault-

tolerant voter circuit for TMR implementation to improve reliability in

digital circuits. Microelectronics Reliability, 49(12), 1573-1577.

[31] Martins, M., Matos, J. M., Ribas, R. P., et al (2015, March). Open cell

library in 15nm FreePDK technology. In Proceedings of the 2015

Symposium on International Symposium on Physical Design(pp. 171-

178). ACM.

132

[32] Sengupta, A., & Mishra, V. K. (2014). Automated exploration of datapath

and unrolling factor during power–performance tradeoff in architectural

synthesis using multi-dimensional PSO algorithm. Expert Systems with

Applications, 41(10), 4691-4703.

[33] Mishra, V. K., & Sengupta, A. (2014). MO-PSE: Adaptive multi-

objective particle swarm optimization based design space exploration in

architectural synthesis for application specific processor

design. Advances in Engineering Software, 67, 111-124.

[34] Zhang, J. (2016). A Practical Logic Obfuscation Technique for Hardware

Security. IEEE Trans. VLSI Syst., 24(3), 1193-1197.

[35] Torrance, R., & James, D. (2009). The state-of-the-art in IC reverse

engineering. In Cryptographic Hardware and Embedded Systems-CHES

2009 (pp. 363-381). Springer, Berlin, Heidelberg.

[36] Koushanfar, F. (2011, May). Integrated circuits metering for piracy

protection and digital rights management: An overview. In Proceedings

of the 21st edition of the great lakes symposium on Great lakes symposium

on VLSI (pp. 449-454). ACM.

[37] Alkabani, Y., Koushanfar, F., & Potkonjak, M. (2007, November).

Remote activation of ICs for piracy prevention and digital right

management. In Proceedings of the 2007 IEEE/ACM international

conference on Computer-aided design (pp. 674-677). IEEE Press.

[38] Tehranipoor, M., & Koushanfar, F. (2010). A survey of hardware trojan

taxonomy and detection. IEEE design & test of computers, 27(1).

[39] Mahapatra, S., Goel, N., Desai, S., Gupta, S., Jose, B., Mukhopadhyay,

S., ... & Alam, M. A. (2013). A comparative study of different physics-

based NBTI models. IEEE Transactions on Electron Devices, 60(3), 901-

916.

[40] Grasser, T., Rott, K., Reisinger, H., Waltl, M., Schanovsky, F., & Kaczer,

B. (2014). NBTI in nanoscale MOSFETs—The ultimate modeling

benchmark. IEEE Transactions on Electron Devices, 61(11), 3586-3593.

[41] Mahapatra, S., Huard, V., Kerber, A., Reddy, V., Kalpat, S., & Haggag,

A. (2014, June). Universality of NBTI-From devices to circuits and

products. In Reliability Physics Symposium, 2014 IEEE International (pp.

3B-1). IEEE.

133

[42] Gös, W. (2011). Hole trapping and the negative bias temperature

instability. (PhD Thesis), Technische universität wien, Austria, December

2011

[43] Wang, Y., Chen, X., Wang, W., Balakrishnan, V., Cao, Y., Xie, Y., &

Yang, H. (2009, March). On the efficacy of input vector control to

mitigate NBTI effects and leakage power. In Quality of Electronic

Design, 2009. ISQED 2009. Quality Electronic Design (pp. 19-26). IEEE.

[44] Firouzi, F., Kiamehr, S., & Tahoori, M. B. (2011, May). A linear

programming approach for minimum NBTI vector selection.

In Proceedings of the 21st edition of the great lakes symposium on Great

lakes symposium on VLSI (pp. 253-258). ACM.

[45] Gonzalez, R., Gordon, B. M., & Horowitz, M. A. (1997). Supply and

threshold voltage scaling for low power CMOS. IEEE Journal of Solid-

State Circuits, 32(8), 1210-1216.

[46] Sengupta, A., Sedaghat, R., & Zeng, Z. (2010). A high level synthesis

design flow with a novel approach for efficient design space exploration

in case of multi-parametric optimization objective. Microelectronics

Reliability, 50(3), 424-437.

[47] Reece, T., & Robinson, W. H. (2016). Detection of hardware trojans in

third-party intellectual property using untrusted modules. IEEE

Transactions on Computer-Aided Design of Integrated Circuits and

Systems, 35(3), 357-366.

[48] Bhunia, S., Hsiao, M. S., Banga, M., & Narasimhan, S. (2014). Hardware

Trojan attacks: threat analysis and countermeasures. Proceedings of the

IEEE, 102(8), 1229-1247.

[49] Roy, D., & Sengupta, A. (2017). Low overhead symmetrical protection of

reusable IP core using robust fingerprinting and watermarking during high

level synthesis. Future Generation Computer Systems, 71, 89-101.

[50] Wong, J. L., Kirovski, D., & Potkonjak, M. (2004). Computational

forensic techniques for intellectual property protection. IEEE

Transactions on Computer-Aided Design of Integrated Circuits and

Systems, 23(6), 987-994.

134

[51] Franke, K., & Srihari, S. N. (2008, August). Computational forensics: An

overview. In International Workshop on Computational Forensics (pp. 1-

10). Springer, Berlin, Heidelberg.

[52] Ram, D. H., Bhuvaneswari, M. C., & Logesh, S. M. (2011, July). A novel

evolutionary technique for multi-objective power, area and delay

optimization in high level synthesis of datapaths. In A Novel Evolutionary

Technique for Multi-objective Power, Area and Delay Optimization in

High Level Synthesis of Datapaths. IEEE.

[53] Rajendran, J., Zhang, H., Sinanoglu, O., & Karri, R. (2013, July). High-

level synthesis for security and trust. In On-Line Testing Symposium

(IOLTS), 2013 IEEE 19th International(pp. 232-233). IEEE.

[54] Sengupta, A., & Bhadauria, S. (2015). Bacterial foraging driven

exploration of multi cycle fault tolerant datapath based on power-

performance tradeoff in high level synthesis. Expert Systems with

Applications, 42(10), 4719-4732.

[55] Coussy, P., Gajski, D. D., Meredith, M., & Takach, A. (2009). An

introduction to high-level synthesis. IEEE Design & Test of

Computers, 26(4), 8-17.

[56] Coussy, P., & Morawiec, A. (Eds.). (2008). High-level synthesis: from

algorithm to digital circuit. Springer Science & Business Media.

[57] Gajski, D. D., Dutt, N. D., Wu, A. C., & Lin, S. Y. (2012). High—Level

Synthesis: Introduction to Chip and System Design. Springer Science &

Business Media.

[58] Yu, S. Y., & McCluskey, E. J. (2001). Permanent fault repair for FPGAs

with limited redundant area. In Defect and Fault Tolerance in VLSI

Systems, 2001. Proceedings. 2001 IEEE International Symposium on (pp.

125-133). IEEE.

[59] Constantinescu, C. (2008, January). Intermittent faults and effects on

reliability of integrated circuits. In Reliability and Maintainability

Symposium, 2008. RAMS 2008. Annual (pp. 370-374). IEEE.

[60] Gomaa, M. A., & Vijaykumar, T. N. (2005, June). Opportunistic

transient-fault detection. In Computer Architecture, 2005. ISCA'05.

Proceedings. 32nd International Symposium on (pp. 172-183). IEEE.

135

[61] Express benchmark suite, University of California San Diego, 2016,

https://www.ece.ucsb.edu/EXPRESS/benchmark/

[62] Baumann, R. (2013, July). Landmarks in terrestrial single event effects.

In IEEE NSREC Short Course.

[63] Li, X. (2005). Tolerating Radiation-Induced Transient Faults in Modern

Processors DISSERTATION. In PhD Diss. University of California

Irvine.

[64] Gaillard, R. (2011). Single event effects: Mechanisms and classification.

In Soft Errors in Modern Electronic Systems (pp. 27-54). Springer,

Boston, MA.

[65] Wang, W., Wei, Z., Yang, S., & Cao, Y. (2007, November). An efficient

method to identify critical gates under circuit aging. In Proceedings of the

2007 IEEE/ACM international conference on Computer-aided

design (pp. 735-740). IEEE Press.

[66] Violante, M., Meinhardt, C., Reis, R., & Reorda, M. S. (2011). A low-

cost solution for deploying processor cores in harsh environments. IEEE

Transactions on Industrial Electronics, 58(7), 2617-2626.

[67] Sarkar, S., & Shinde, S. (2005, September). Effective IP reuse for high

quality SOC design. In SOC Conference, 2005. Proceedings. IEEE

International (pp. 217-224). IEEE.

[68] Xie, Y., & Hung, W. L. (2006). Temperature-aware task allocation and

scheduling for embedded multiprocessor systems-on-chip (MPSoC)

design. Journal of VLSI signal processing systems for signal, image and

video technology, 45(3), 177-189.

[69] Saleh, R., Wilton, S., Mirabbasi, S., Hu, A., Greenstreet, M., Lemieux,

G., ... & Ivanov, A. (2006). System-on-chip: Reuse and

integration. Proceedings of the IEEE, 94(6), 1050-1069.

[70] Sait, S. M., & Youssef, H. (1999). VLSI physical design automation:

theory and practice (Vol. 6). World Scientific Publishing Company.

[71] George, M., & Alfke, P. (2007). Linear feedback shift registers in virtex

devices. Xilinx apprication note XAPP210.

https://www.ece.ucsb.edu/EXPRESS/benchmark/

136

[72] Goresky, M., & Klapper, A. M. (2002). Fibonacci and Galois

representations of feedback-with-carry shift registers. IEEE Transactions

on Information Theory, 48(11), 2826-2836.

[73] Mohanty, S. P., Ranganathan, N., Kougianos, E., & Patra, P. (2008). Low-

power high-level synthesis for nanoscale CMOS circuits. Springer

Science & Business Media.

[74] HLSynth92 Benchmark (1992),

http://www.pldworld.com/_hdl/1/RESOURCES/ftp.ics.uci.edu/pub/hlsy

nth/HLSynth92/

[75] Shumway, R. H., & Stoffer, D. S. (2017). Time series analysis and its

applications: with R examples. Springer.

[76] Wang, H., Dutt, N., Nicolau, A., & Siu, K. Y. S. (1993, June). High-level

synthesis of scalable architectures for IIR filters using multichip modules.

In 30th ACM/IEEE Design Automation Conference (pp. 336-342). IEEE.

[77] Agostini, L. V., Silva, I. S., & Bampi, S. (2001). Pipelined fast 2D DCT

architecture for JPEG image compression. In Symposium on Integrated

Circuits and Systems Design (pp. 226-231). IEEE.

[78] Rao, K. R., & Yip, P. (2014). Discrete cosine transform: algorithms,

advantages, applications. Academic press.

[79] Fan, Z., & Li, F. (1996, September). Reducing artifacts in JPEG

decompression by segmentation and smoothing. In Proceedings of 3rd

IEEE International Conference on Image Processing (Vol. 2, pp. 17-20).

IEEE.

[80] Bergland, G. D. (1969). A guided tour of the fast Fourier transform. IEEE

spectrum, 6(7), 41-52.

[81] Paulin, P. G., Knight, J. P., & Girczyc, E. F. (1986). HAL: a multi-

paradigm approach to automatic data path synthesis. In Proceedings of the

23rd ACM/IEEE Design Automation Conference (pp. 263-270). IEEE

Press.

[82] Vishwanath, M., Owens, R. M., & Irwin, M. J. (1995). VLSI architectures

for the discrete wavelet transform. IEEE Transactions on Circuits and

Systems II: Analog and Digital Signal Processing, 42(5), 305-316.

[83] Litwin, L. (2000). FIR and IIR digital filters. IEEE potentials, 19(4), 28-

31.

