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ABSTRACT

With the increase in high-speed-data demand for the upcoming fifth generation
(5G) and beyond communication systems visible light communications (VLC) has
emerged as a low-cost, green, and secure technology complementary to the cur-
rently congested traditional radio frequency (RF) communications owing to its wide
license-free spectrum. In VLC, data transmission is achieved by modulating the
intensity of light emitted from light-emitting diodes (LEDs). Using LEDs as trans-
mitters, VLC enables simultaneous data communication and illumination.

Despite VLC’s promise as a viable supplement to RF-based communication sys-
tems, the performance of a VLC system is significantly limited by several factors,
such as: (a) multiplicative fading distortion due to user mobility and multipath be-
tween receiver and transmitter, (b) nonlinear characteristics of an LED, (c) presence
of thermal and ambient noise, (d) absence of a direct link, and (e) limited coverage
as visible light can not penetrate obstacles and is reflected back due to the high
penetration loss. Moreover, the illumination requirements of LEDs pose a challenge
to the practical deployment of VLC. The aforementioned VLC channel impairments
significantly degrade the achievable bit error rate (BER) performance, and cause
a significant performance-gap between the promised and the achieved sum rate of
VLC based systems.

In this context, conventional modulation schemes for VLC such as, optical or-
thogonal frequency division multiplexing (OOFDM) are capable of mitigating inter-
symbol-interference (ISI) due to time-domain dispersion caused by multipath reflec-
tions. Further, user mobility leads to variations in VLC channel-gains, that in-turn,
leads to lowering of instantaneous signal-to-noise ratio (SNR). To jointly mitigate
impairments due to user mobility and multipath dispersion, recently, orthogonal
time frequency space (OTFS) modulation technique has been proposed. There are
primarily two ways to mitigate the effect of LED nonlinearity i.e. by using pre-
distorters and post-distorters. Pre-distortion techniques are known to outperform
static inversion, however, it requires perfect feedback of the channel state infor-
mation (CSI) from the receiver to the transmitter in a closed loop. Further, the
performance of a VLC system is significantly limited by the absence of direct links
or blockage of the line-of-sight (LoS) channel, which creates blind spots. Optical re-
flecting intelligent surface (ORIS) is a recently developed promising technology that
uses reflecting surfaces to facilitate the non-line-of-sight (NLoS) paths and improve
the performance of wireless communication systems. The mirror array (MA)-based
RIS and the metasurface array (MSA)-based RIS are the two most popular reflecting
surface designs employed for ORIS in VLC systems, where MA-based RIS performs
better. Additionally, poor channel estimation can be caused by nonlinear distortions,
which can seriously impair signal reception and add an equivalent additive distortion
at the receiver. Similarly, practical VLC systems also suffer from ambient and ther-
mal noise. Ambient light noises may arise from sunlight, skylights, incandescent and
fluorescent lamps, and other light sources present in the indoor environment. Fur-
thermore, the trans-impedence receiver circuitry produces the thermal noise. Hence,
the goal of this thesis is to develop new advanced techniques for enhancing of a VLC
link under various distortions considered.

In the first work, a hyperparameter-free random Fourier feature (RFF)-based re-
ceiver was proposed for OTFS to mitigate transmit side device nonlinearity. Further,
analytical bounds for the performance of the proposed receiver are presented, which



were validated via computer simulations over VLC channels with user-mobility. The
close overlap of the analytical BER with the simulated BER verifies the analytical
contributions. The results obtained establish robustness of the proposed RFF-based
post-distortion for the mitigation of transmit side nonlinearity for OTFS VLC based
system with user-mobility.

In the previous work, the inherent sparsity of the OTFS VLC system was not ex-
ploited. Next, zero attracting least mean square (ZALMS)-based channel estimator
is proposed for a VLC-OTFS system with the dispersive mobile multipath channel.
Furthermore, it was observed from the simulations that due to the sparse nature
of the VLC channel represented in the delay-Doppler domain, ZALMS performed
better than the traditional least mean square (LMS) and orthogonal matching pur-
suit (OMP) algorithm. The simulated findings show that ZALMS is a more suitable
low-complexity solution for channel estimation in the OTFS-VLC system.

In the previous works, the distortion effects resulting from user mobility and LED
nonlinearity were discussed, with a primary focus on improving BER performance.
However, transmission in visible light suffers from severe performance degradation
due to LoS blockage, as visible light can not pass through obstacles due to its high
penetration loss. Moreover, the illumination requirements of LEDs pose a challenge
to the practical deployment of VLC. In this context, ORIS is proposed to address
this issue. In the simulation-based 3D grid world, a subarray of ORIS elements is
learned to align according to the multi-user positions. The proposed approach has
significantly less overhead and is independent of the sizes of state and action spaces.

To further provide 3600 coverage, the performance of an optical simultaneously
transmitting and reflecting-RIS (OSTAR-RIS) is analyzed next. Most studies relied
on on-off-keying (OOK) modulation in VLC systems. Color shift keying (CSK)-
based VLC systems offer several advantages over conventional modulation schemes
like OOK and pulse-amplitude modulation (PAM). A deep neural network (DNN)-
based symbol detector was proposed for direct symbol detection and compared with
the traditional LMS-based channel estimator.

In the previous works, VLC systems scenarios with no eavesdropper were consid-
ered. An eavesdropper can intercept transmitted data, gaining unauthorized access
to sensitive information. In scenarios like VLC, where the broadcast nature of light
makes the signals easily detectable, this risk increases. To address the growing data
demands of users in VLC systems for beyond 5G communication, a novel multi-
ple access scheme known as non orthogonal multiple access (NOMA) is proposed.
The secrecy sum rate (SSR) performance of NOMA is compared with traditional
orthogonal multiple access (OMA).

ii
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Chapter 1

Introduction

1.1 Overview

In the recent years, the exponential growth in communication technology has cre-

ated a drastic surge in bandwidth and capacity requirements. The growing need

for expanded data and multimedia services has led to congestion within the con-

ventionally utilized radio frequency (RF) spectrum. In response to this challenge,

optical wireless communication (OWC) systems have emerged as a pivotal solution,

capitalizing on distinctive features such as large bandwidth, license-free spectrum,

high data rate, easy and quick deployment, and lower power requirements that set

them apart. The mechanism of OWC involves the utilization of an optical carrier

to convey information from the transmitter to the receiver through an unguided

channel, typically free space or the Earth’s atmosphere. As illustrated in Figure 1.1,

OWC can be broadly categorized into three main types: visible light communication

(VLC), ultraviolet communication (UVC) and free space optics (FSO). UVC har-

nesses ultraviolet (UV) radiation for signal transmission, capable of being dispersed

and bounced off particles and aerosols suspended in the air. FSO communication

systems can be more specifically categorized into terrestrial and space optical links.

The indoor optical systems which include visible light communication systems, are

the main focus of this thesis.

The human eye is most responsive to visible light, with the sun being the predom-

inant natural source of visible light in nature. From the view of the electromagnetic

spectrum as shown in Figure 1.2, the visible spectrum extends from about 390 to
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1.1. OVERVIEW

Figure 1.1: Classification of the optical wireless communication system.

Figure 1.2: Electromagnetic spectrum

700 nm in terms of wavelength and 430 THz to 770 THz in terms of frequency,

which is ten thousand times higher than radio waves, i.e. 770 THz as compared

to a maximum of 300 GHz for radio waves. This suggests that light is capable of

transmitting more pulses of data in much less time than radio waves.

VLC has become a good complementary technology to RF systems for facilitating

high-speed data communication in next-generation wireless systems. It operates by

modulating the intensity of light emitting diode (LED) lamps based on the input

signal at an undetectable speed to the human eye. This enables the simultaneous

accomplishment of both illumination and communication objectives. Photodiodes or

photodetectors (PDs) are employed at the receiver end to convert the optical signal

into electrical current. VLC has the following desired features over the conventional

RF-based systems:

� Wide spectrum: Raising the carrier frequency enhances the information-

carrying capacity of a communication system. In RF, the allowable bandwidth
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CHAPTER 1. INTRODUCTION

can be up to 20% of the carrier frequency. VLC has a license-free, huge

bandwidth of 400 THz, which alleviates the spectrum crunch faced by RF

communication systems. In VLC, even if the bandwidth is taken to be 1%

of carrier frequency (∼ 1016Hz), the allowable bandwidth would be 100 THz,

which is 105 times that of RF carrier.

� High directivity: The gain of an antenna is dependent on its directivity. The

superiority of an optical carrier compared to an RF carrier can be observed as

Goptical

GRF

≈
4π/θ2optical
4π/θ2RF

(1.1)

where θRF and θoptical are RF and optical beam divergence, respectively. The

beam divergence is proportional to λ/D where D is aperture diameter, and λ

is carrier wavelength. As the optical wavelength is very small, high directivity

and gain are obtained.

� Cost-effective: VLC-based systems offer a cost-effective and less complex

implementation, leveraging the widespread presence of LEDs in existing in-

frastructures. The dual-purpose utilization of LEDs for both illumination

and data transmission not only streamlines the deployment process but also

enhances the overall cost-effectiveness of these systems. This inherent compat-

ibility with prevalent infrastructure positions VLC as an accessible and eco-

nomical solution for achieving efficient communication alongside illumination

in various settings. The seamless integration of data transmission capabilities

into the existing lighting framework further underscores the practicality and

ease of adopting VLC technology.

� Energy efficient: VLC-based systems utilize LEDs as transmitters, which are

recognized for their energy efficiency compared to incandescent light bulbs,

placing them within the realm of environmentally friendly communication

technology.

� Security: Unlike traditional wireless communication technologies such as RF

that may extend beyond physical barriers, VLC restricts the transmission of

information to the illuminated area. VLC has higher security compared to RF-
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based system as visible light can not pass through the opaque boundaries and

hence prevents eavesdropping. Moreover, VLC systems can be implemented

with additional security features, such as encryption and authentication pro-

tocols, further fortifying the communication link.

� Electromagnetic interference (EMI): VLC-based communication systems

exhibit a notable advantage in terms of resilience against electromagnetic in-

terference, making them particularly suitable for deployment in environments

sensitive to RF disturbances, such as hospitals and aircraft. As a result, VLC

systems are less prone to the disruptive effects of competing signals and elec-

tromagnetic noise, ensuring a more reliable and undistorted communication

environment.

� Reusability: VLC-based systems boast superior data density owing to the

confined and highly directional nature of visible light beams. This character-

istic allows for efficient data transmission along with spatial reusability within

a closed environment. The focused nature of VLC beams enables multiple

simultaneous communication links without interference, making it an ideal

choice for applications requiring high data throughput in crowded spaces. This

unique capability enhances the scalability and performance of VLC-based sys-

tems, making them well-suited for scenarios where maximizing data density is

paramount.

� High signal-to-noise ratio (SNR): As LEDs provides high illumination

levels (typically of the order of 400-600 lux), high SNRs are practically achiev-

able for VLC as compared to its RF counterparts. This advantage positions

VLC as a favourable choice for scenarios where maintaining high SNRs is cru-

cial for effective communication. The elevated illumination levels from LEDs

contribute to the superior signal quality achievable in VLC setups.

Because of the aforementioned benefits, VLC finds applications in diverse fields,

including light-fidelity (LiFi) systems, intelligent transportation systems (such as

vehicle-to-infrastructure (V2I) communication and vehicle-to-vehicle (V2V) com-

munication), smart lighting, underwater communication, internet of things (IoT)

ecosystems, and wearable devices.
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Figure 1.3: Architecture of visible light communication systems.

1.2 System Components and Architecture

A VLC system consists of several key components and follows a specific architecture

to enable communication through visible light, as shown in Figure 1.3. In the VLC

system, the optical signals emitted from the LEDs travel through complex communi-

cation channels consisting of line-of-sight (LoS) and non-line-of-sight paths (NLoS).

The transmitter is composed of a modulator/encoder, digital-to-analog converter

(DAC), and LED luminaires. First, the data bits are modulated using an appro-

priate modulation technique outlined in IEEE 802.15.7 standard for VLC systems.

Further, reflection, diffusion, interference and noise in the channel cause the loss and

distortion of the transmitted signal. The PD at the receiver, receives the modulated

symbols transmitted through nonlinear LEDs. Similar to the transmitter block, the

receiver block consists of a demodulator/decoder, analog-to-digital converter (ADC)

and PD.

1.2.1 Light Sources

The advent of the LED has opened up new possibilities in the domain of VLC. The

LED is a semiconductor that has the property that its frequency can be modulated

rapidly at such a high speed that turning it on and off is undetectable by human eyes.
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An LED luminaire consists of an LED driver and an LED lamp. The function of

LED driver is to control the amount of current flowing through the LED depending

on the type of modulation technique considered. For example, in the conventional

on-off keying (OOK) scheme, the light is turned ON and OFF by using an LED

driver circuit, where the ‘ON’ state is represented by the high-intensity level of

light, and the ‘OFF’ state is represented by the low intensity of light. In most

deployments, a white LED is generally used for transmission in VLC systems, which

produce white light in either of the two ways:

� by using a blue LED coated with yellow phosphorous,

� by using three separate red, green and blue (RGB) LEDs, which generate

white light by mixing red, green, and blue light.

Next, the signal is transmitted via a multipath VLC channel, which consists of both

LoS and NLoS channel links creating multipath channel.

1.2.2 Photodetectors and Receivers

The signal transmitted by LED can be received by either of the two receivers:

� PD/non-imaging sensor,

� imaging/camera sensor.

PDs are used at the receiver for conversion of optical signal to electrical signal.

visible light signals can also be received by camera sensors, which is a collection of

several photodetectors arranged in an integrated circuit and are generally available

in the smart mobile devices. However, data rates achieved by imaging sensors are

very low due to its low sampling rate. PD is a crucial component in a VLC system,

serving as the receiver to capture the modulated light signal. The key functions of

the photodetector include:

� Light Absorption: When exposed to modulated light, the photodetector

absorbs photons, generating electron-hole pairs within its semiconductor ma-

terial.
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� Conversion to Electrical Current: The absorbed photons release energy,

causing the generation of free electrons and positively charged holes. This

process results in the conversion of optical energy into an electrical current.

� Signal Amplification: The generated electrical current, representing the

modulated information, is often weak. Therefore, amplifiers are employed to

strengthen the signal for further processing.

� Filtering and Demodulation: The amplified signal may undergo filtering

to isolate the desired frequency or information. Demodulation is then applied

to extract the original data signal encoded in the light modulation.

� Output to Receiver: The final electrical signal, now containing the transmit-

ted data, is sent to the receiver for further processing, decoding, and eventual

utilization.

1.3 Channel Modelling

Channel modelling constitutes the initial and critical phase in the design of a VLC

system, aiming for efficiency, reliability, and robustness. Numerous endeavours have

been made to address VLC channel modelling, as indicated by various studies [2, 3].

Deterministic channel models

Deterministic channel models are usually based on the detailed description of a

specific propagation environment, channel scenario, and the position and orientation

of the LEDs and photodetectors or users. The ceiling bounce model is used to

investigate the effect of multipaths due to reflection of light by various objects in

an indoor environment. The channel impulse response (CIR) of the ceiling bounce

(CB) model is given as

h(τ) =
6α6

(τ + α)7
u(τ)

where α = 12
√

11
13
DRMS, DRMS is the root-mean-square (RMS) delay spread of the

multipath channel, and u(τ) is the unit step function. In the study by [4], Monte

Carlo ray tracing is employed to assess the CIR within an empty room at visible light
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Figure 1.4: Home scenario for channel modelling using Zemax®

wavelengths. However, this approach overlooks wavelength dependency, assuming

fixed reflectance values for surface materials. Similarly, in [2], the recursive method

proposed in [5] is utilized to derive CIR in the visible light band, yet fixed reflectance

is presumed. Addressing the impact of wavelength dependency in channel modelling,

[6] computes reflectance values as the average of wavelength-dependent coefficients

over the visible light band. Notably, [3] stands out as the sole work explicitly

accounting for wavelength dependency. Here, a recursive method is employed to

determine the CIR of an empty room. Nevertheless, akin to preceding studies, [3] is

constrained by assumptions of solely diffuse reflections and ideal Lambertian sources,

conditions that may not be universally applicable in practical scenarios.

In [7], the authors introduced an innovative approach to VLC channel modelling,

addressing limitations present in previous models. They provide multiple CIRs

tailored for diverse indoor environments, which are also incorporated into IEEE

802.15r1 PAN VLC channels. This methodology utilizes the ray tracing functional-

ities of the commercial optical and illumination design software Zemax®, allowing

for a precise depiction of ray interactions emitted from lighting sources within spec-

ified confined spaces. Within the simulation environment created using Zemax®,

users can define the geometry of the environment, objects present, and specifications

of the light sources (LEDs) and receivers (PD). Leveraging the non-sequential ray

tracing tool, the software computes detected power and path lengths from the light

source to the detector for each ray, considering a specified number of rays and reflec-
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Figure 1.5: Line-of-sight channel gain model.

tions. Figure 1.4 shows the indoor home scenario considered for channel modelling

using Zemax®by authors in [7]. The nine yellow circles (L1,· · · ,L9) are the nine

luminaries, and there are eight test points (T1,· · · ,T8) represented by black circles.

The Zemax®non-sequential ray tracing program generates an output file containing

the detected power and path lengths for each ray from source to detector. This file

is then imported into Matlab®, where the information is utilized to represent the

CIR as:

h(t) =
Nr∑
i=1

Pi δ(t− τi) (1.2)

where Pi is the power of the i
th signal, τi is the propagation time of the ith ray, δ(t)

is the dirac-delta function, and Nr is the number of receivers at the detector.

Several statistical channel models have been proposed for stationary and uni-

formly distributed users in prior works, such as [8]. The LoS channel gain, consider-

ing the direct path between the transmitter (LED) and the receiver photodetector

as shown in Figure 1.5, is given as follows:

hLoS =
m+ 1

2πd2
A cosm(ϕ) cos(θ)g(θ) (1.3)

where d is used to represent the distance between the LED transmitter and the PD,

A is the area of the PD, ϕ is the light angle of incidence, θ is the angle of reception

of the light at the photodiode, and g(θ) is the optical concentrator gain expressed

as:

g(θ) =
n2

sin(θc)
(1.4)
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where n is the refractive index of the optical concentrator, θc is the field-of-view

(FOV), and m is the order of Lambertian emission estimated as:

m = − 1

log2(cos(θ1/2)
(1.5)

where θ1/2 is the semi-angle of the LED.

Stochastic channel models

In stochastic models, the impulse responses of OWC channels are characterized by

the law of wave propagation applied to specific LEDs, photodetector, and scatterer

geometries, which are predefined in a stochastic fashion according to certain prob-

ability distributions. In recent studies, like those in [9, 10], researchers used the

random-way-point (RWP) mobility model to study the SNR in indoor LiFi systems.

For the RWP model, the channel’s probability distribution function (pdf) is specified

as follows:

p(h) =


∑4

l=1Klh
−βl , hmin ≤ h ≤ hmax;

0, otherwise
(1.6)

where K1 = K[27 + 35D2

r2max
+ 8D4

r4max
], K2 = −K 35

r2max
S

2
a+3 , K3 = −K 8

r4max
S

4
a+3 , and

K4 = −K 16D2

r4max
S

2
a+3 , K = 12S

2
a+3

73(a+3)r2max
, β1 = 2

a+3
+ 1, β2 = β4 = 4

a+3
+ 1, and

β3 =
6

a+3
+1, where S = b(a+1)Da+1, b = R

2π
. The line of sight distance of the LED

from the user is denoted as D, the effective geometric area of the detector is denoted

by R, and rmax is the radius of the maximum coverage area. hmin = S

(r2max+D2)
a+3
2
,

hmax = S
D(a+3) and, a = −1

log(cos(ϕ 1
2
))

where ϕ 1
2
is the half-angle of the fixature of the

LED transmitting.

1.4 Challenges and Open Issues in VLC

The practical deployment of VLC faces several challenges, which can impact its

widespread adoption. Various such challenges are discussed in detail in subsequent

subsections:
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1.4.1 Noise Sources

The dominant noise sources in a typical VLC system, as shown in Figure 1.3, are

given in detail as follows:

Ambient noise

Ambient light noises may arise from sunlight, skylights, incandescent and fluorescent

lamps, and other light sources present in the indoor environment. The presence of

ambient light gives rise to DC photocurrent, inducing shot noise. The variance

of this shot noise originating from ambient light (represented as σ2
ambient) can be

expressed as:

σ2
ambient = 2qM2F (Ib + Ix)B (1.7)

where q symbolizes the charge of the electron, M corresponds to the average gain of

the PD, B represents the bandwidth of the PD, Ib refers to the average photocurrent

generated at the PD due to the average optical power received from sunlight, Ix

signifies the average photocurrent generated at the PD due to the average optical

power received from the LED, and F is characterized as the excess noise calculated

as:

F = rM +

(
2− 1

M

)
(1− r) (1.8)

where r symbolizes the hole-to-electron ionization rate. The ambient light noise

can be approximated by Gaussian distribution with mean 0 and variance σ2
ambient.

Ambient light noise has been considered in the literature.

Thermal noise

The variance of the thermal noise (σ2
thermal) is given by

σ2
thermal = 4

(
KBT

RL

)
FnB (1.9)

where KB is the Boltzmann constant, T is the temperature (in Kelvin), Fn is the

PD noise, and RL is the load resistance (typically of the order of 50 Ω). Thermal

noise can be modelled by Gaussian distribution with mean 0 and variance σ2
thermal.
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Figure 1.6: Transfer characteristics of the Rapp’s nonlinear model for light emitting
diode

Impulsive noise

The Middleton Class-A noise model is the most considered statistical noise model-

based on Poisson-Gaussian to model impulsive noise induced due to imperfect optical

components and other factors such as lightning, sunlight, etc. The Poisson process

is employed to depict the likelihood of impulsive noise events occurring, while the

Gaussian process is utilized to describe the amplitude distribution of said impulsive

noise. The effective variance of the Class-A noise model is determined by:

σ2
impulse = K

σ2
b

A
(1.10)

where σ2
impulse is the variance of the impulsive noise and σ2

b is the variance of the

background noise, K represents the average power of the impulsive noise, and the

parameter A represents the probability of impulsive noise on the time axis.

Hence, the overall noise in a VLC system is an independent and identically

distributed (i.i.d) complex additive white Gaussian noise (AWGN) with zero mean

and variance σ2, where σ2 = σ2
ambient + σ2

thermal + σ2
impulse.
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1.4.2 Nonlinear Characteristics of LEDs

LEDs are widely deployed in the existing infrastructure and have completely re-

placed conventional fluorescent and incandescent lamps due to its several desirable

features, like lifetime, light density, reliability, and energy efficiency. The response of

LEDs displays nonlinearity due to the nonlinear conversion of current to voltage and

current to optical power. Specifically, the characteristics of LEDs become nonlinear

in the presence of signals with a substantial dynamic range and at high switch-

ing frequencies. LED’s nonlinear models are mainly divided into memoryless and

memory nonlinear models. The memoryless nonlinear block is modelled by Rapp’s

model, which can be mathematically written as amplitude-to-amplitude (AM/AM)

modelling as follows:

f(s) =
s− vth

(1 + ( s−vth
isat

)2kf )
1

2kf

(1.11)

where isat is the saturation current, f(s) the output LED intensity, vth is the cut-in

voltage of the LED, and kf controls the level of nonlinearity, also termed as knee

factor. kf controls the smoothness of transition from linear to the saturation region,

as can be seen in Figure 1.6. Furthermore, the capacitance and conductance of an

LED are frequency-dependent, which results in LED’s nonlinearity with memory

effects.

1.4.3 Impact of User Mobility and Multipath Effects

The performance of a VLC link degrades as a result of mobile receivers or trans-

mitters causing relative motion between the transmitter and the receiver, and the

presence of multipath between the transmitter and receiver. In addition to the LoS

component, multiple reflections among the ceiling, floor, and walls of the room for

an indoor VLC scenario result in NLoS components for a VLC link. Hence, the VLC

channel is frequency selective in nature and results in severe inter-symbol-interfernce

(ISI), particularly under the high data rate regime, i.e., when the delay spread is

larger than the symbol period. In real-world scenarios, users may engage in activi-

ties such as reading, talking on a cell phone, or shopping in a mall while in motion.

This dynamic behaviour introduces a probabilistic nature to the overall VLC sys-
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(a) (b)

Figure 1.7: Reflecting intelligent surface-aided indoor visible light communication
system model.

tem. The effect of user mobility leads to an effective multiplicative distortion that

degrades the VLC link due to dispersion in the time domain, causing inter-carrier

interference (ICI).

1.4.4 Blind Spots: Absence of Direct Link

Despite VLC’s promise as a viable supplement to RF-based communication systems,

the performance of a VLC system is significantly limited by the absence of direct

links or blockage of the LoS channel, which creates blind spots as shown in Figure

1.7(a). As visible light cannot penetrate obstacles, it is reflected back due to the

high penetration loss. In Figure 1.7(a), User 2 and User 3 have direct LoS and

NLoS links available, while User 1 is in a blind spot with User 1 and plants blocking

the LoS paths. In this context, to facilitate the data requirements of users like

User 1, optical reflecting intelligent surface (RIS) has recently been introduced in

the literature as a promising solution to overcome the drawbacks of LoS blockages

and broaden the coverage area by reconfiguring the propagation environment [11].

Figure 1.7(b) shows the roll and yaw angle of the RIS which can be optimized as

per user location.
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1.5 Motivation

VLC systems are emerging as a viable alternative to traditional wireless communica-

tion technologies, especially in indoor environments where RF spectrum is limited.

VLC offers numerous advantages, such as high bandwidth availability, enhanced se-

curity, and immunity to RF interference, making it ideal for applications in smart

homes, offices, and industrial settings. However, there are significant technical chal-

lenges associated with optimizing VLC systems, including managing the effects of

relative mobility between LEDs and user, nonlinearities in optical components, accu-

rately estimating channel characteristics in multipath environments, and achieving

high data rates while ensuring reliability in complex dynamic scenarios. To address

Doppler effects due to user mobility orthogonal time frequency space (OTFS) mod-

ulation offers promising solution. Assessing the performance of OTFS in nonlinear

VLC systems is essential to understand its feasibility and robustness in practical

applications where LED nonlinearity can degrade system performance.

The OTFS channel mapped in delay-Doppler domain is inherently sparse. The

zero attracting least mean square (ZALMS) algorithm can efficiently estimate sparse

channels, but its performance needs to be evaluated in the context of multi-carrier

VLC systems to ensure robustness and accuracy in real-world deployments. Fur-

ther, the requirement of the next-generation wireless communication system can be

fulfilled by employing smart technologies i.e., RIS.

The RIS-aided communication systems can achieve the stringent requirements

of the 5G and beyond systems, such as ultra-high data rate, global coverage, and

connectivity, extremely high reliability, and low latency. RIS have shown promise

in enhancing signal quality and coverage in indoor VLC systems by dynamically

adjusting the reflection and direction of light. By leveraging reinforcement learn-

ing for rate maximization, an RIS-assisted VLC system can adapt to environmen-

tal changes and user movement, optimizing data rates while maintaining energy

efficiency. Integrating non orthogonal multiple access (NOMA) with optical simul-

taneously transmitting and reflecting-RIS (OSTAR-RIS) provides opportunities to

enhance user multiplexing and improve spectral efficiency in VLC systems. Evaluat-

ing such configurations will provide insights into their potential to support multiple
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users efficiently within the limited spectral resources of VLC.

Color shift keying (CSK) modulation can further increase data transmission rates

in VLC by utilizing different colors of LEDs i.e. red, green and blue. By combining

this modulation with deep neural network (DNN)-based symbol detection, VLC

systems with OSTAR-RIS support can achieve higher accuracy in symbol decoding,

even in complex indoor environments with substantial interference and multipath

effects.

1.6 Thesis Flowchart, Outline, and Contributions

Distortion due to LED non-linearity, user mobility, and multipath

Hyperparameter-free least square-RFF based post-distorter for OTFS VLC Systems.
(Mitigates non-linear distortion, Inter carrier and inter-symbol interference)

Exploit inherent sparsity of OTFS VLC systems

ZA-LMS-based sparse channel estimator for OTFS-VLC Systems
(Manages interference due to user mobility and exploit inherent channel sparsity.)

Optimization of roll and yaw angle of ORIS to enhance SR   

Rate Maximization for IRS-Assisted Indoor Visible Light Communications Using Q-Learning
(Enhances SR by selecting the best angles of RIS.)

Analyze the performance of OSTAR-RIS aided VLC system based on a CSK modulation scheme impaired by LED non-linearity

Degraded  SSR due to absence of LoS link between the transmitter and receiver, presence of eavesdropper, imperfect CSI and SIC

NOMA OSTAR-RIS-Aided VLC Systems with Perfect and Imperfect CSI and SIC
(Enhances SSR of indoor VLC systems in presence of eavesdropper.)

DNN-Based symbol detection for CSK-modulated bits in OSTAR-RIS-aided VLC systems.
(Enhanced SR and robust receiver for symbol detection.)

Figure 1.8: Flowchart of the thesis.

The flowchart of the thesis is shown in Figure 1.8 which shows the advancement

of future wireless communication technology with their capability. The thesis is

organized into 7 chapters, which are briefly described with their contributions as

follows:

Chapter 1. Introduction : In chapter 1, a brief introduction to the VLC

channel, user mobility, blind spots, channel characterization, various performance
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metrics, simultaneous information transfer, OTFS, an RIS, hardware imperfections

like nonlinear LED impairments, ISI, ICI, and finally, the motivation and major

contributions of the work presented in the thesis are provided.

Chapter 2. OTFS Modulation aided nonlinear VLC Systems: In this

chapter, the performance of OTFS modulation in nonlinear VLC systems is investi-

gated. VLC systems, suffers from degradation due to LED nonlinearity, multipath

and relative mobility between the transmitter and the receiver. OTFS modulation is

proposed addresses impairments due to multipath and user-mobility. To mitigate the

distortions due to LED nonlinearity, hyperparameter-free RFF-based post-distorter

is proposed. Analytical bounds for the bit-error-rate (BER) performance of the pro-

posed post-distorter are presented, and validated via simulations over realistic VLC

channels.

Chapter 3. ZALMS-based sparse channel estimator in multi-carrier

VLC system: In the last chapter, the inherent channel sparsity of OTFS mod-

ulated VLC systems was not exploited. Effective representation of the channel in

the delay-Doppler domain is inherently sparse when the number of channel paths is

small compared to the number of symbols transmitted per frame. In this chapter,

a formal analysis of the convergence and bit-error rate of the proposed ZA-LMS

algorithm is presented, along with supporting simulations. The performance of the

proposed algorithm with the traditional least mean square (LMS) and orthogonal

matching pursuit (OMP) algorithm is compared.

Chapter 4. Rate Maximization for RIS-Assisted Indoor VLC Systems:

In the previous chapter, the distortion effects resulting from user mobility and LED

nonlinearity were addressed, with a primary focus on improving BER performance.

Moreover, the illumination requirements of LEDs pose a challenge to the practical

deployment of VLC. In this chapter, an optimization problem to find the optimum

angles for RIS corresponding to different user positions to maximize the long-term

discounted sum rates is formulated. The proposed function-approximation algo-

rithm needs lower updates, irrespective of the state size and action space, which is

a significant improvement in terms of computational needs.

Chapter 5. CSK Modulation Scheme and DNN-Based Symbol De-

tection in OSTAR-RIS-aided VLC Systems: In the previous chapter, the
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performance of a ORIS is analyzed for VLC systems. In this chapter to further

provide 3600 coverage, the performance of an OSTAR-RIS aided VLC system based

on CSK modulation scheme is analyzed. For performance analysis, a closed-form

expression of the achieved BER is derived. Further, the impact of impairments and

other parameters on the system performance are highlighted.

Chapter 6. NOMA OSTAR-RIS-Aided VLC Systems: In the previous

chapter, the achievable user rate and BER performance of nonlinear VLC system was

enhanced by employing CSK modulation scheme and DNN-based detection scheme.

In this chapter, in addition to low coverage area, and loss of the VLC signal due

to the absence of a direct link between the transmitter and the receiver caused by

blockages present in the environment the impact of eavesdropper on secrecy sum

rate (SSR) of a VLC system is analyzed. The performance of NOMA OSTAR-RIS

VLC is compared with the benchmark methods. Detailed simulation results demon-

strate that the NOMA scheme outperforms the orthogonal multiple access (OMA)

scheme for the proposed system, particularly in terms of the SSR.

Chapter 7. Conclusions and Future Works: All the contributions of the

thesis have been summarized in this chapter, and important insights and conclusions

have been presented. Further, the scope for future works is also discussed.
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Chapter 2

OTFS Modulation in Nonlinear

VLC Systems

VLC has emerged as a viable green supplement for traditional RF communication

due to its unique features, such as wide licence free spectrum, low EMI, higher se-

curity, and low cost [12]. Although promising, the performance of a VLC system

is known to degrade due to the following two limiting factors: (1) nonlinear char-

acteristic of LED [13] that adds an equivalent additive distortion at the receiver,

and (2) user-mobility and ISI which leads to time-domain and frequency-domain

spreading respectively [14]. Conventional modulation schemes for VLC such as,

optical-orthogonal frequency division multiplexing (O-OFDM) are capable of miti-

gating ISI due to time-domain dispersion caused by multipath reflections [15]. For

O-OFDM-based VLC system, various pre-distorters [13] and post-distorters [16] are

used to mitigate the effect of LED nonlinearity. Further, user mobility leads to vari-

ations in VLC channel-gains, that in-turn, leads to lowering of instantaneous SNR

[14]. To jointly mitigate impairments due to user mobility and multipath dispersion,

recently, OTFS modulation technique has been proposed [17].

There are primarily two ways to mitigate the effect of LED nonlinearity i.e. by

using pre-distorters and post-distorters. Pre-distortion techniques are known to out-

perform static inversion, however, it requires perfect feedback of the channel state

information (CSI) from the receiver to the transmitter in a closed loop. To allevi-

ate the need for precise feedback, authors in [18–20] substituted pre-distorters with

open loop post-distorters based on Volterra and Hammerstein polynomials. How-
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ever, the Volterra (ex. Volterra least mean square (VLMS)) and Hammerstein-based

approaches have high computational complexity and suffer from modelling impair-

ments due to truncation of polynomial series. Thus, due to their universal represen-

tation, open loop reproducing kernel Hilbert space (RKHS) based post-distortion

methods have been proposed recently. RKHS-based approaches are computationally

simple and provide superior BER performance. Among the existing RKHS-based

post-distortion techniques, the kernel least mean square (KLMS) and kernel mini-

mum symbol error rate (KMSER) are the most popular. RKHS-based post-distorter

based on KLMS/KMSER algorithm delivers better performance over polynomial

series-based post-distorters. However, KLMS/KMSER-based approaches rely on

growing dictionary of data sets, which is difficult to implement practically. Fur-

thermore, the feature function of Gaussian kernel allows for approximation as ran-

dom Fourier feature (RFF). However, the performance of RKHS-based techniques

whether dictionary-based or RFF is highly sensitive to the choice of kernel-width

parameter. Building on this observation, in this chapter hyperparameter-free RFF-

based post-distorter for OTFS VLC System is proposed. Extensive research is re-

quired to exploit VLC-OTFS systems in the beyond 5G communication system.

Authors in [21] have proposed direct current optical-OTFS (DCO-OTFS) based

relay-assisted VLC system to enhance the spectral efficiency. To enhance VLC

links and for generic impairment-mitigation, hyperparameter-free RFF-based post-

distorters have emerged as promising solution for the OTFS VLC system. The main

contributions of this chapter are:

� OTFS for VLC system impaired by both multipath and user mobility is pro-

posed. For our studies, CIR measurements generated using Zemax software

for realistic trajectories are considered [14].

� To mitigate distortions due to LED nonlinearity the hyperparameter-free least

square-RFF (LS-RFF) based post-distorter is proposed for OTFS, and its BER

performance is evaluated.

� A lower bound on the BER of the proposed RFF-based post-distorter is ob-

tained analytically and validated via computer simulations over nonlinear VLC

channels with varying severity levels.
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2.1 System Model

Figure 2.1: Block diagram of the considered system model.

In this section, the system model for the VLC-OTFS system impaired by LED

nonlinearity and the multipath channel is described in Figure 2.1. The number

of symbols transmitted per frame is Ns = UV, where U and V are the number

of symbols and the number of sub-carriers, respectively. The transmitted binary

phase shift keying (BPSK) symbols mapped in delay-Doppler domain are represented

as x ∈ CNs×1. Two dimensional (2D) inverse symplectic fast Fourier transform

(ISFFT) is applied on input BPSK modulated vector x to transform it into time-

frequency domain such that:

Xv,u =
U−1∑
l=0

V−1∑
k=0

xl,ke
−j2π(ul

U
− vk

V
). (2.1)

In the second step, Heisenberg transform on the output of the ISFFT X is applied

to transform it into time-domain:

x̃(t) =
U−1∑
u=0

V−1∑
v=0

Xv,ue
j2πu∆f(t−vT )gx(t− vT ), (2.2)

where gx(t) is the transmitted pulse. In the time-frequency domain sampling is done

at intervals T and ∆f , respectively, to obtain a 2D lattice Λ = (vT, u∆f), where

v = 0, . . . , V − 1, and u = 0, . . . , U − 1. After OTFS modulation, a cyclic prefix of

length (Cp− 1) is affixed to the output before transmitting, where Cp is the number

of channel paths. After adding cyclic prefix, the DC bias is added to the transmitted

signal to bring the LEDs into the forward bias (operating) region. Next, symbols are

transmitted through LED with nonlinear characteristics. As LEDs have amplitude-
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to-amplitude (AM/AM) modelling, nonlinear characteristics of LED is modelled by

Rapp’s model as follows:

f(x̃) =
x̃

(1 + ( x̃
isat

)2kf )
1

2kf

, (2.3)

where isat is the saturation current of the LED and kf is the knee factor which

controls smoothness of the transition from the linear to the saturation region. The

output is transmitted over mobile-multipath VLC channel H(τ, ν) [14], defined as:

H(τ, ν) =

Cp∑
i=1

hiδ(τ − τi)δ(ν − νi), (2.4)

where νi, τi, hi are Doppler shift, delay and channel gain, respectively, for the ith

cluster, and δ(·) denotes the Dirac delta function.

Due to LED nonlinearity, the bit vector transmitted is denoted by f(x̃). There-

fore, the received signal at the photodiode after discarding the cyclic prefix can be

written as [17]:

r(t) =

∫
ν

∫
τ

H(τ, ν)f(x̃(t− τ))ej2πν(t−τ)dτdν + z(t),

r = H⊗ f(x̃) + z, (2.5)

where z ∈ CNs×1 is independent and identically distributed (i.i.d.) AWGN whose

tth entry is defined as zt ∼ CN (0, σ2
z). At the receiver, the symbols received by the

photodiode are in the time-domain r(t) and are mapped back to the information

domain after post distortion. First, the time-domain symbols are mapped back to

time-frequency domain Yv,u by applying Wigner transform:

: Yv,u =

∫
r(τ)r∗x(τ − t)e−j2πf(t−τ)dτ, (2.6)

where r∗x is the conjugate of the received pulse rx. Receiving and transmitting

pulses gx and rx are ideal such that they satisfy the property of biorthogonality.

Then symplectic fast Fourier transform (SFFT) is applied on output of Wigner

transform Yv,u [17] to transform signal mapped in the time-frequency domain to
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the information domain:

yl,k =
1√
UV

V−1∑
v=0

U−1∑
u=0

Yv,ue
−j2π(ul

U
− vk

V
). (2.7)

Therefore, the input-output relation of the considered system model in the informa-

tion domain, i.e. delay-Doppler domain, can be equated as:

y = Heffx+ z̃, (2.8)

where Heff is the effective channel matrix in information domain, and z̃ is the noise

which has the same statistical properties of z. In the next section, a hyperparameter-

free LS-RFF based post-distorter is proposed for the mitigation of transmit-side LED

nonlinearity, and its performance bounds are derived.

2.1.1 Channel Model

The CIRs are obtained through ray-tracing by Zemax by authors in [14]. For the CIR

modeling, a transmit LED-bandwidth of 20 MHz and a transmit baud-rate of 1 Gbps

is considered. The channel-gain is dependent on the indoor spatial structure, user

trajectory and user equipment orientation. To integrate these physical parameters

into the VLC channel modelling, a framework which allows defining trajectories

within an indoor environment and obtaining channel-gains along them is presented.

In addition, the user orientation and the posture of the receiver terminal are defined,

and the user is only allowed to move along coordinates without furniture/objects.

Denoting the current location of the user as (xp, yp) and the next location is (xn, yn),

the movement is modeled as:

xn =xp +∆r cos θd, (2.9)

yn =yp +∆r sin θd, (2.10)

where δr is the radial-change and θd is the movement direction. We assume that

δr is equal to 40 cm, and θd is a uniformly distributed random variable between 0

and 2π . The user is initially assumed to face the wall for the considered trajectory

shown in Fig. 2.2. The rotation of user is changed according to the direction of the
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trajectory while the rotation (i.e., 450) and location of cell phone in his/her hand

are fixed with respect to the user’s ear.

Figure 2.2: Trajectory under consideration [14].

2.2 Hyperparameter-free LS-RFF

In this section, a hyperparameter-free LS-RFF based post-distorter for mitigating

transmit-side nonlinearity for the considered OTFS-VLC system is proposed. Owing

to the superior performance of RFF-based technique in RKHS over the classical

polynomial-based techniques such as VLMS and advantage of finite-memory budget

over other RKHS-based methods,a hyperparameter-free-based approach is proposed

to alleviate the need for estimating the hyperparameter i.e. kernel-width. Notably,

the hyperparameter-free RFF are viable for mitigation of arbitrary transmit-side

nonlinearity without the knowledge of hyperparameters like kernel-width or the

explicit nature of the underlying nonlinearity.

Reference waveforms rref are considered at the receiver corresponding to the pre-

determined pilots x̃ref . Further, without loss of generality, the first Ntr subcarriers

of rref are used for training, the same is denoted as rref < 1 : Ntr >, corresponding

to pilots x̃ref < 1 : Ntr >. Further, the augmented regressors by concatenation of

the real and imaginary parts are denoted as follows:

rcref < 1 : Ntr >= [real(rref < 1 : Ntr >); imag(rref < 1 : Ntr >)], (2.11)
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and

x̃c
ref < 1 : Ntr >= [real(x̃ref < 1 : Ntr >); imag(x̃ref < 1 : Ntr >)]. (2.12)

Further, the regressors are mapped to RKHS by the hyperparameter-free RFF,

which, for nG RFFs, is denoted as follows:

Φ(rcref < 1 : Ntr >) =

√
2

nG

cos (diag[ζ]Arcref < 1 : Ntr > +b), (2.13)

where the vectors ζ is drawn from a Gamma distribution, Γ[α, β], and mapping

coefficients A and b are drawn respectively from a zero mean normal distribution

with unit variance, and uniformly distributed random variable in the interval [0, 2π].

Further, the parameters of the Gamma distribution can be initialized as follows:

α =
UV

2
,

β = ϵ,

where ϵ is an arbitrarily small constant. Using these hyperparameter free RFFs, the

estimate of the autocorrelation matrix, R̂Φ, is expressed as follows:

R̂Φ =
1

Ntr

Ntr∑
m=1

Φ(rcref < 1 : Ntr >)Φ(rcref < 1 : Ntr >)
T . (2.14)

and the cross covariance is expressed as:

r̂Φ =
1

Ntr

Ntr∑
m=1

(x̃c
ref < 1 : Ntr >)Φ(rcref < 1 : Ntr >). (2.15)

which allows for the following estimate of the equalizer weights,

w = R̂−1
Φ r̂Φ. (2.16)

which, in-turn, allows for the following unwarped/equalized estimate, rcunwarped, as

follows:

rcunwarped = wTΦ(rcref ). (2.17)
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The MSE of the proposed receiver, σ2
e , can be given as follows:

σ2
e = 1− r̂TΦR̂

−1
Φ r̂Φ. (2.18)

which allows for the following the SNR:

γ =
1

σ2
e + σ2

z

. (2.19)

which, in turn, results in the following lower bound for BER [22],

BER ≥ UV − 1

2UV
Q(
√

2γ). (2.20)

Putting the value of γ from (2.19), finally the lower bound of BER is:

BER ≥ Ns − 1

2Ns
Q

(√
2

σ2
e + σ2

z

)
. (2.21)

The accuracy of the proposed post-distorter can be validated in Figure 2.3. The

accuracy of the model can be estimated as:

Accuracy =
Total number of correct estimations

Total number of bits transmitted
× 100, (2.22)

From Table 2.1, it is observed that for SNR=0 dB in both Case-1 where kf = 0.5,

and isat = 1, and Case-2 where kf = 0.5, and isat = 0.5, the accuracy of the

proposed model is ∼ 59%. However, as the SNR is increased to 10 dB the accuracy

is enhanced to 87.32% for Case-1 and 87.3% for Case-2. On further increasing the

SNR, the proposed model achieves an accuracy of more than 99%.

Table 2.1: Accuracy of proposed hyperparameter-free RFF-based post-distorter.

SNR Case 1: kf = 0.5, and
isat = 1

Case 2: kf = 0.5, and
isat = 0.5

0 dB 59.89% 59.24%
10 dB 87.32% 87.3%
20 dB 99.78% 99.04%
30 dB 99.96% 99.92%
40 dB 99.99% 99.99%
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Figure 2.3: Accuracy of the proposed post-distorter for both the considered scenarios
i.e. kf = 0.5, and isat = 1, 2) kf = 0.5, and isat = 0.5.

2.3 Message Passing detector

In this section, the message passing (MP) detection algorithm for VLC is described.

The total number of non-zero elements out of Ns in each row and column of Heff

given in (2.8) are S, where S < Cp. Let Ub and Vd be the sets of position of non-zero

values in the bth row and dth column of Heff , respectively such that |Ub| = |Vd| = S.

Based on (2.8), the system is modelled such that there are Ns variable nodes

corresponding to x. Similarly, corresponding to y, there are Ns observation nodes

[23–25]. In the factor graph shown in Figure 2.4, the observation node xd is con-

nected to the set of variable nodes {yb, b ∈ Vd}. Similarly, the variable node yb is

connected to the set of observation nodes xd, d ∈ Ub}. The joint maximum aposteri-

ori probability (MAP) detection rule for estimation of the transmitted information

symbols from the received symbols is defined as:

x̂ = arg max
x∈ANs×1

Pr(x|y,Heff ). (2.23)

Symbol-by-symbol MAP detection rule is considered for 0 ≤ d ≤ Ns − 1,

x̂d = argmax
aj∈A

Pr(xd = aj|y,Heff )

= argmax
aj∈A

1

|A|
Pr(y|xd = aj,Heff ). (2.24)
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Figure 2.4: Messages in the factor graph.

Assume the probability of transmitting all the information symbols aj ∈ A is the

same. Also, x and y are independent of each other.

x̂d ≈ argmax
aj∈A

∏
e∈Ub

Pr(yb|xd = aj,Heff ). (2.25)

In MP algorithm, mean and variance of the interference-plus-noise terms (ϱbd) are

transmitted as messages from observation nodes yb for b ∈ Vd to variable nodes xd

for each d = 0, . . . , Ns − 1. The probability mass function of the alphabets in A is

defined as:

pdb = {pdb(aj)|aj ∈ A}. (2.26)

The steps in Algorithm 1 are detailed below. First initialize the iteration index

i = 1 and p0
db =

1
|A| for d = {0, . . . , Ns − 1} and d ∈ Ub. Then, messages are passed

to the variable nodes xd from the observation nodes yb. Thus, the message passed

has a Gaussian pdf which is computed as:
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Algorithm 1 MP algorithm for detection of OTFS symbols

% Input:
y (estimated signal vector after post-distortion and OTFS demodulation) and Heff

(effective channel matrix)
% Initialization:
Choose pmf p

(0)
db = 1

|A| for d = {0, . . . , Ns − 1} and d ∈ Ub, imax

% Computation:
for i = 1; i < imax; i++

� Compute means (µ
(i)
b,d) and variances (σ

(i)2
b,d ) of interference-plus-noise term ϱib,d

using p
(i−1)
db and pass them through observation nodes to variable nodes as

messages.

� Variable node update p
(i)
db using the message received and passing it to the

observation node.

� Update the decision on the information symbol transmitted.

� Increment i till maximum iteration i.e. imax is reached.

end for
% Output:
x̂d (signal vector detected).

yb =
∑
e∈Ub

xdHeff b,d + z̃

= xdHeff b,d +
∑

e∈Ub,e ̸=d

xeHeff b,e + z̃

= xdHeff b,d + ϱbd (2.27)

where ϱbd is the interference-plus-noise term and Heff b,d is the element in the bth row

and the dth column of Heff . As the considered noise is Gaussian, ϱbd can also be

approximated as a Gaussian random variable with mean and variance denoted by

µ
(i)
bd , and σ

(i)2
bd respectively. The transmitted symbols are presumed to be i.i.d. and

independent of noise. Variable nodes send messages to the observation nodes. The

new message obtained from xd to yb carries the probability mass function (pmf)

vector p
(i)
db defined as:

p
(i)
db (aj) = ∆ · p̂(i)

db (aj) + (1−∆) · p(i−1)
db (aj), (2.28)
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where ∆ ∈ (0, 1] is defined as the damping factor.

p̂
(i)
db (aj) ∝

∏
e∈Ub,e̸=d

Pr(ye|xd = aj,Heff ), (2.29)

The final decision on the transmitted symbols is thus,

x̂d = argmax
aj∈A

pd(aj), d ∈ {0, . . . , Ns − 1} (2.30)

where,

pd(aj) =
∏
e∈Ub

(ye|xd = aj,Heff ). (2.31)

Table 2.2: Simulation Parameters for OTFS-based VLC channel model.

Parameters Specifications

Number of symbols transmitted per frame (Ns) 2048

Number of subcarriers (V ) 1024

Knee factor (kf ) [26] 0.5

Saturation current of LED (isat)[26] 0.5,1

α 1024

β 10−3

Number of training pilots (Ntr) 100

2.4 Numerical and Simulation Results

In this section, simulations are presented for validating the proposed hyperparameter-

free RFF-based receiver. The simulation parameters are summarized in Table 2.2.

A non-stationary channel for VLC is considered using a temporal evolution of CIRs,

which is obtained by ray tracing using Zemax software [14]. To generalize the per-

formance of the proposed post-distorter, two cases for nonlinearity are considered:

� Case-1: isat = 1 and kf = 0.5,

� Case-2: isat = 0.5 and kf = 0.5.
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Figure 2.5: Bit error rate performance comparison for orthogonal time frequency
space for linear channel and nonlinear channel for kf = 0.5, and isat = 1, 0.5.

0 10 20 30 40 50

SNR (dB)

10-8

10-6

10-4

10-2

100

B
E

R

Linear Channel

Without Compensation

VLMS

Hyperparameter-free RFF

Analytical Bound

Figure 2.6: Bit error rate performance comparison for orthogonal time frequency
space for the linear channel, nonlinear channel, and with hyperparameter free least
square-random Fourier feature-based compensation for kf = 0.5, and isat = 1.

The BER performance of both cases is compared with the linear channel as

shown in Figure 2.5. The green curve is for the most severe case, i.e. Case-2, and

the red curve is for the less severe case, i.e. Case-1. From Figure 2.5, the degradation

in the BER performance of the proposed OTFS-VLC system after considering LED

nonlinearity can be observed.

For the proposed detector, the results shown in Figure 2.6 indicate a consider-

able improvement in the BER performance compared to the compensation by VLMS

and uncompensated scenario. Also, 2nd order truncated VLMS-based post-distorter

gives better performance than the uncompensated scenario owing to the nonlinear

approximation. Furthermore, it is observed that there is a gap between the per-
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Figure 2.7: Bit error rate performance comparison for orthogonal time frequency
space for the linear channel, nonlinear channel, and with hyperparameter free least
square-random Fourier feature-based compensation for kf = 0.5, and isat = 0.5.

formances of the proposed hyperparameter-free RFF-based detector and the BER

performance corresponding to the linear channel. Notably, this gap is quantified

in (2.20) in terms of SNR, which is further mapped via (2.22) to account for the

degradation in the BER performance of the proposed receiver. These analytical

results are validated in Figure 2.6 considering kf = 0.5, isat = 1, which indicate a

close overlap with the analytical results in (2.20-2.22).

In Figure 2.7, similar results are obtained for a more severe nonlinearity with kf =

0.5, isat = 0.5, and compared to the case in Figure 2.6, interestingly, similar BER

performance is achieved, which reconfirms that the proposed hyperparameter-free

RFF-based receiver is best suitable for the considered VLC-OTFS system compared

to VLMS-based receiver. For both cases, the performance of the proposed post-

distorter is validated with the analytical results obtained. From Figure 2.6 and

Figure 2.7, it is observed that the hyperparameter-free LS-RFF and analytical bound

curves overlap in the high SNR regime. Also, the complexity of the proposed receiver

is of the order O(n2
G), which is similar to the existing low-complexity methods of

post-distortion, which requires hyperparameter tuning such as RFF-KRLS [16].

2.5 Summary

In this chapter, a hyperparameter-free RFF-based receiver was proposed for OTFS

to mitigate transmit side device nonlinearity. Further, analytical bounds for the
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performance of the proposed receiver are presented, which were validated via com-

puter simulations over VLC channels with user-mobility. The close overlap of the

analytical BER with the simulated BER verifies the analytical contributions. The

results obtained establish robustness of the proposed RFF-based post-distortion

for the mitigation of transmit side nonlinearity for OTFS VLC based system with

user-mobility. However, the channel mapped in delay-Doppler domain is inherently

sparse which is analyzed further in the next chapter.
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Chapter 3

ZALMS-based sparse channel

estimator in multi-carrier VLC

system

In the last chapter, the inherent channel sparsity of OTFS modulated VLC systems

was not exploited. In this chapter, a formal analysis of the convergence and bit-

error rate of the proposed ZALMS algorithm is presented, along with supporting

simulations. Effective representation of the channel in the delay-Doppler domain is

inherently sparse when the number of channel paths is small compared to the number

of symbols transmitted per frame [17]. Various channel estimation approaches for

OTFS have been proposed in the literature. Authors in [27] have proposed time do-

main channel estimation and equalization method for OTFS with fractional Doppler

shifts. For an RF-based communication system, authors in [28] have proposed a

sparse coding-based channel estimation approach for OTFS-sparse code multiple

access (SCMA) in the uplink. Taking advantage of inherent sparsity, authors in

[29] have presented sparse signal recovery methods such as OMP and modified sub-

space pursuit (MSP) for channel estimation in uplink-OTFS. For massive-multiple

input multiple output OTFS, authors in [30] have proposed a three-dimensional

structured orthogonal matching pursuit (3D-SOMP) for channel estimation in the

downlink with low pilot overhead. However, techniques based on greedy algorithms,

like OMP and its derivatives, heavily rely on calculating the precise stopping criteria

and might result in high convergence error, which reduces overall performance [31].
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CHAPTER 3. ZALMS-BASED SPARSE CHANNEL ESTIMATOR IN
MULTI-CARRIER VLC SYSTEM

For static VLC systems, authors in [32] have proposed a ZALMS-based sparse chan-

nel estimation algorithm. For mobility-impaired OTFS-VLC systems, the channel

estimation problem has not yet been investigated thoroughly. To estimate sparse

dispersive OTFS-VLC channels and to overcome the shortcomings of the previous

greedy-algorithm-based schemes, ZALMS based channel estimator is proposed with

analysis in this chapter.

Recognizing the inherent sparse nature of effective channels in delay-Doppler

domain, in this chapter, a ZALMS-based channel estimation method for the VLC-

OTFS system is proposed. Simulations performed over a realistic mobile VLC chan-

nel modelled by RWP model indicate that OTFS with ZALMS mitigate distortions

due to the user mobility and multipaths and gives better performance compared to

the conventional LMS algorithm and OMP algorithm. Major contributions of this

chapter are given as follows:

� OTFS for realistic indoor VLC systems to mitigate the distortion caused by

multipath and user mobility is proposed.

� Recognizing the inherent sparse nature of effective VLC channel in the delay-

Doppler domain, the ZALMS-based channel estimation method is proposed.

The proposed algorithm gives superior performance compared to the conven-

tional LMS and the OMP-based algorithms in terms of BER and computa-

tional complexity.

� The proposed system’s BER is calculated analytically and validated using

computer simulations over RWP VLC channel.

� Computational complexity of the ZALMS is compared with the conventional

existing algorithms such as OMP and LMS.

� With simulations, the impact of impulsive noise on the VLC-OTFS system is

shown by varying parameters.

3.1 System Model

In this section, a block diagram of the considered system model of the OTFS-VLC

system affected by impairments due to user mobility, multipath between the receiver
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Figure 3.1: Block diagram of the considered system model.

and transmitter and ambient light noise and thermal noise is depicted in Figure 3.1.

Let Ns = KL represent the number of symbols transmitted in each frame, where K

and L represent the number of symbols and sub-carriers, respectively. Let x ∈ CNs×1

be transmitted BPSK symbols. For OTFS modulation, Zac transformation is done

on the input vector to transform delay-Doppler mapped symbols to the time domain

for transmission. Zac transform is computationally complex and performed in two

steps. First, the input BPSK modulated vector x is transformed into the time-

frequency domain using the 2D ISFFT such that:

Xt[v, u] =
K−1∑
l=0

L−1∑
k=0

xl,ke
−j2π(ul

K
− vk

L
). (3.1)

In the second step, Heisenberg transform on the output of ISFFT is applied to

transform it into the time domain:

x̃(t) =
K−1∑
u=0

L−1∑
v=0

Xt[v, u]e
j2πu∆f(t−vT )g(t− vT ), (3.2)

where g(t) denotes the pulse transmitted. To create a 2D lattice in the time-

frequency domain, sampling is done at intervals T and ∆f , respectively, where

Λ = (vT, u∆f), and v = 0, . . . , L− 1, and u = 0, . . . , K − 1.

Before transmitting the time domain data, the output of Heisenberg transform x̃

in (3.2) is prefixed with cyclic prefix of length (Cp−1), where Cp is the total number

of channel paths. The symbols are broadcasted through LED in the time domain

after OTFS modulation and adding cyclic prefix. The output is transmitted over

a mobile VLC channel, h, modelled by the RWP channel model. The channel is
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denoted by the expression h = [h0, h1, . . . , hCp−1]
T . After removing the cyclic prefix,

the received information signal in the temporal domain can be expressed as:

r = Hx̃+ w̃, (3.3)

where H is estimated as:

H (τ, ν) =

Cp∑
i=1

hiδ (τ − τi) δ (ν − νi) , (3.4)

where νi, τi are Doppler shift and delay, respectively, for the ith cluster, and δ(·)

denotes the Dirac delta function. In this work, both ambient light noise and thermal

noise are approximated by a zero mean Gaussian distribution denoted by w̃ ∈ CNs×1

and is additive i.i.d. whose ith entry is defined as wi ∼ CN (0, σ2). Where σ2 =

σ2
a + σ2

t and σ2
a and σ2

t is the variance of ambient light noise and thermal noise,

respectively.

Similar to the transmitter side, at the receiver side, the symbols received by pho-

todetector r(t) are in the time domain and are transformed back to the information

domain using the inverse Zac transformation. Similar to Zac transformation, inverse

Zac transformation can be done in two following simple steps. First, the received

time domain symbols are transformed to time-frequency domain Y[v, u] by applying

the Wigner transform:

Y[v, u] =

∫
r(τ)p∗(τ − t)e−j2πf(t−τ)dτ, (3.5)

where p is the received pulse. Pulses g and p are ideal such that they satisfy bi-

orthogonality and robustness. Then SFFT is applied on the output of the Wigner

transform Yv,u [17] to transform signal mapped in time-frequency to delay-Doppler,

i.e. information domain.

yl,k =
1√
KL

L−1∑
v=0

K−1∑
u=0

Y[v, u]e−j2π(ul
K
− vk

L
) +w. (3.6)

y = Heffx+w, (3.7)

where y ∈ CNs×1 is the symbol received at the receiver in the information domain
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i.e. delay-Doppler domain, Heff ∈ CNs×Ns is the effective channel matrix which is

sparse in nature, x ∈ CNs×1 is the transmitted BPSK symbols mapped in delay-

Doppler domain and, w is the noise having the same statistical properties of w̃.

Alternatively, the relation in (3.7) can be written as:

y = Xhb +w, (3.8)

where hb ∈ CNL×1 is a NL × 1 vector with Cp non-zero elements and X ∈ CNs×NL .

Based on the received observations ZALMS-based receiver is trained, and symbols

are estimated by zero-forcing (ZF) using the channel estimated after training. The

estimated symbols are then detected by maximum likelihood (ML) detector [33].

The detected symbols are then passed through a BPSK demodulator to receive the

transmitted bits.

3.2 ZALMS for OTFS-VLC System

In this section, the ZALMS-based channel estimation algorithm for the OTFS-VLC

system impaired by dispersive VLC channel is described as shown in Algorithm

2. As Cp << KL, effective channel matrix Heff in (3.7) is sparse in nature. Hence,

in this chapter, the ZALMS algorithm is implemented for channel estimation as it

takes advantage of inherent channel sparsity [23]. The channel estimation problem

can be described as a non-convex combinatorial problem that is formulated as:

min
hb

∥hb∥0, (3.9)

s.t. ∥yp −Xphb∥22 ≤ β,

where yp and Xp are the received, and the transmitted pilots, and β is the er-

ror tolerance parameter which always has a positive value. Various offline training

methods for sparse channel estimation are proposed in the literature to solve the

aforementioned problem, such as OMP [34] and sparse Bayesian learning (SBL) [35]

etc.. However, because these methods are offline, they have a significant propa-

gation latency and high computational cost since they must calculate the matrix

inversions for each iteration. The ZALMS algorithm is proposed to address the
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problem statement without having the drawbacks of offline techniques. The mean

square deviation (MSD) based cost function JZA(n) for ZALMS [36] is therefore

defined as:

JZA(j) = E{∥yp(j)−Xp(j)ĥb(j)∥2}+ γf(ĥb(j)), (3.10)

where ĥb is the estimated channel, γ is the regularization parameter, and f(·) is the

penalty term inducing sparsity. Following the use of the traditional steepest descent

algorithm [37] the estimated channel ĥb(j + 1) can be iteratively updated as:

ĥb(j + 1) = ĥb(j)−
µ

2
∇ĥb(j)

(JZA(j)), (3.11)

where the step-size parameter is denoted as µ. The gradient ∇ĥb(j)
of the cost

function considered earlier is estimated as:

∇ĥb(j)
(JZA(j)) = 2Rxxĥb(j)− 2Rxy − ρg(f(ĥb(j))), (3.12)

where g(f(ĥb(j))) = ∇ĥb(j)
(f(ĥb(j))) represents the gradient of the penalty function

f(·) which is inducing sparsity, ρ = γµ
2

denotes regularization step-size, Rxx is the

auto-covariance of the transmitted pilot in delay-Doppler domain X computed as

E{XT
pXp}, and Rxy is the cross-covariance between the transmitted and received

pilot vectors Xp and yp computed as E{XT
p yp}. The gradient of the cost function

can be substituted to simplify the weight update equation from (3.12) to (3.11) such

that:

ĥb(j + 1) = ĥb(j) + µ(Rxy −Rxxĥb(j))− ρg(f(ĥb(j))). (3.13)

Pursuing the stochastic-gradient approach, the final update expression of the esti-

mated channel can be obtained as:

ĥb(j + 1) = ĥb(j) + µXT
p (j)e(j)− ρg(f(ĥb(j))), (3.14)
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where e(j) represents the instantaneous observation error estimated as:

e(j) = yp(j)−Xp(j)ĥb(j), (3.15)

Algorithm 2 ZALMS based channel estimation

Require: Received pilot signal yp and transmitted pilot signal Xp

Ensure: Maximum iteration=Max Iter
1: ĥb ⇐ 0
2: for j = 1:Max Iter do
3: e(j) ⇐ yp(j)−Xp(j)ĥb(j);

4: Update ĥb(j + 1) using (3.14)
5: end for

3.2.1 ZALMS using l1-norm approximation

The l1-norm approximation represented as f1(·), can be determined as [36],

f1(ĥb(j)) = ∥ĥb(j)∥1 =
L2∑
i=1

|ĥb(j)(i)|. (3.16)

The gradient term g(f1(ĥb(j))) can be estimated as follows:

g(f1(ĥb(j))) = sgn(ĥb(j)). (3.17)

where sgn(·) is the signum function. The update equation for ZALMS-l1-norm is

given as:

ĥb(j + 1) = ĥb(j) + µX(j)e(j)− ρsgn(ĥb(j)). (3.18)

Upon adaptation, the tap coefficients of the weight to be updated are attracted to

zero by the third term present in these equations (also known as zero attractor) i.e.

ρsgn(ĥb(j)). The strength of the zero attractor is regulated by the regularization

parameter which is represented as ρ. The speed of convergence of the proposed

algorithm depends on the sparsity of the channel matrix.
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3.3 Analytical BER Expression for VLC-OTFS

System Over Mobility Impaired Channel

In this section, the BER expression of the mobility-impaired VLC-OTFS system is

derived, assuming a transmitted constellation of BPSK. The average pairwise error

probability (PEP) between symbol matrices given by (3.8) can be written as:

P (XA → XB) = E

[
Q

(√
γ ∥hb(XA −XB)∥2

2

)]
, (3.19)

where γ is the signal-to-noise ratio. This can be further simplified by writing:

∥hb(XA −XB)∥2 = hb(XA −XB)(XA −XB)
Hhb

′H . (3.20)

The matrix (XA −XB)(XA −XB)
H is Hermitian and can by diagonalized as:

(XA −XB)(XA −XB)
H = UΛUH (3.21)

where U is unitary and Λ = diag{λ21, · · ·λ2P}, λi is the ith singular value of difference

matrix ∆AB = (XA −XB). Therefore, (3.19) can be expressed simply as:

P (XA → XB) = E

Q
√
γ
∑L

l=1 |hl|2λ2l
4

 . (3.22)

Using an approximation of Q-function:

Q(
√
x) ≈ 1

12
e

−x
2 +

1

4
e

−2x
3 . (3.23)

Therefore, (3.22) can be written as:

P (XA → XB) ≈ E
[
1

12
e

−γ
∑L

l=1 |hl|
2λ2l

8 +
1

4
e

−γ
∑L

l=1 |hl|
2λ2l

6

]
≈ 1

12
E
[
e

−γ
∑L

l=1 |hl|
2λ2l

8

]
+
1

4
E
[
e

−γ
∑L

l=1 |hl|
2λ2l

6

]
. (3.24)
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E
[
e

−γ
∑L

l=1 |hl|
2λ2l

8

]
= E

[
e

−γ|h1|
2λ21

8 e
−γ|h2|

2λ22
8 . . . e

−γ|hL|2λ2L
8

]
= E

[
e

−γ|h1|
2λ21

8

]
E
[
e

−γ|h2|
2λ22

8

]
· E
[
e

−γ|hL|2λ2L
8

]
. (3.25)

E
[
e

−γ|h1|
2λ21

8

]
=

∫ h2
max

h2
min

e
−γ|h1|

2λ21
8

4∑
i=1

Qi

2
h

−βi
2 dh

=
4∑

i=1

Qi

2

∫ h2
max

h2
min

e
−γ|h1|

2λ21
8 h

−βi
2 dh (3.26)

Let,
γλ2

1

8
= a and βi

2
= b. Thus,

E
[
e

−γ|h1|
2λ21

8

]
=

4∑
i=1

Qi

2

∫ h2
max

h2
min

e−ahh−bdh

=
4∑

i=1

Qi

2

[
−ab−1Γ(1− b, ah)

]h2
max

h2
min

=
4∑

i=1

−ab−1Qi

2

[
Γ(1− b, ah2max)− Γ(1− b, ah2min)

]
(3.27)

The upper incomplete gamma function at high signal-to-noise ratio can be approx-

imated as:

Γ(
−ai + 1

2
, βih

2) ≈ e−βih
2

(βih
2)

−ai−1

2 . (3.28)

Thus, (3.27) can be approximated as:

E
[
e

−γ|h1|
2λ21

8

]
=

4∑
i=1

−ab−1Qi

2

[
e−ah2

max(ah2max)
−b − e−ah2

min(ah2min)
−b
]

=
4∑

i=1

−Qi

2a

[
e−ah2

max(h2max)
−b − e−ah2

min(h2min)
−b
]
. (3.29)

Substituting a and b in (3.29):

E
[
e

−γ|h1|
2λ21

8

]
=

4∑
i=1

−4Qi

γλ21

[
e

−γλ21h
2
max

8 (hmax)
−βi − e

−γλ21h
2
min

8 (hmin)
−βi

]
. (3.30)
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Thus, first part of (3.24) can be written as:

1

12
E
[
e

−γ
∑L

l=1 |hl|
2λ2l

8

]
=

(−1)L

12

L∏
l=1

4∑
i=1

4Qi

γλ2l

[
e

−γλ2l h
2
max

8 (hmax)
−βi − e

−γλ2l h
2
min

8 (hmin)
−βi

]
.

(3.31)

Similarly, the second part of (3.24) can be estimated as:

1

4
E
[
e

−γ
∑L

l=1 |hl|
2λ2l

6

]
=

(−1)L

12

L∏
l=1

4∑
i=1

3Qi

γλ2l

[
e

−γλ2l h
2
max

6 (hmax)
−βi − e

−γλ2l h
2
min

6 (hmin)
−βi

]
.

(3.32)

Thus, (3.19) is finally:

P (XA → XB) =
(−1)L

12

L∏
l=1

4∑
i=1

4Qi

γλ2l

[
e

−γλ2l h
2
max

8 (hmax)
−αi − e

−γλ2l h
2
min

8 (hmin)
−αi

]
+

· (−1)L

4

L∏
l=1

4∑
i=1

3Qi

γλ2l

[
e

−γλ2l h
2
max

6 (hmax)
−βi − e

−γλ2l h
2
min

6 (hmin)
−βi

]
. (3.33)

The PEP with a minimum value of L dominates the overall BER. Thus, on assuming

L=1.

P (XA → XB) =
−1

12

4∑
i=1

4Qi

γλ21

[
e

−γλ21h
2
max

8 (hmax)
−βi − e

−γλ21h
2
min

8 (hmin)
−βi

]

− 1

4

4∑
i=1

3Qi

γλ21

[
e

−γλ21h
2
max

6 (hmax)
−βi − e

−γλ21h
2
min

6 (hmin)
−βi

]
. (3.34)

Finally,

P (XA → XB) =
4∑

i=1

−Qi

3γλ21

[
e

−γλ21h
2
max

8 (hmax)
−βi − e

−γλ21h
2
min

8 (hmin)
−βi

]
− 3Qi

4γλ21

[
e

−γλ21h
2
max

6 (hmax)
−βi − e

−γλ21h
2
min

6 (hmin)
−βi

]
. (3.35)

The exact expression for the PEP using the characteristic function of the RWP

channel model is given by (3.33). Using the PEP expression, an upper bound on the

BER is obtained given by (3.35). From the simulation results, the analytical results

are verified, and it is observed that the BER bound is tight at high SNRs.
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Figure 3.2: Computational complexity of orthogonal matching pursuit and zero
attracting least mean square for orthogonal time frequency space-visible light com-
munication system.

3.4 Computational Complexity Analysis

The computational complexity of the channel estimation in each iteration for both

LMS and ZALMS-l1 is in the order of O(2Nt), while for the OMP is O(N3
t ), which

is significantly higher in comparison to the proposed scheme. From Figure 3.2, it

can be observed that the rate of increase in the number of computations with input

data size is more in OMP as compared to the traditional LMS and proposed ZALMS

algorithm for the VLC-OTFS system.

Table 3.1: Simulation Parameters for ZALMS-aided OTFS VLC systems.

Parameters Specifications
Number of symbols transmitted per frame (Ns) 512

Number of subcarriers (V ) 256
Step-size (µ) 0.005

Regularization parameter (γ) 5× 10−8

3.5 Numerical and Simulation Results

In this section, the simulation results to illustrate the enhanced performance of the

ZALMS-based channel estimator are demonstrated over the classical LMS-based

channel estimator and OMP-based channel estimator for the dispersive OTFS-VLC

system, with channel modelled by RWP model. The system parameters for simula-
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Figure 3.3: Effect of light emitting diode nonlinearity on bit error rate vs signal-
to-noise ratio performance of zero attracting least mean square for orthogonal time
frequency space-visible light communication system.

tions are listed in Table 3.1. We have considered Ns = 512 for simulations. The

BPSK modulation scheme is used to modulate symbols mapped in delay-Doppler do-

main. For channel-estimation, step-size (µ) is considered to be 0.005, regularization

parameter (γ) for ZALMS is 5 × 10−8. After OTFS demodulation at the receiver,

the ZALMS-based channel estimation algorithm is applied to estimate the CIR from

the pilot symbols. Results are compared with the LMS and OMP estimator.

The BER performance of the proposed ZALMS algorithm in the epresence of

LED nonlinearity is shown in Figure 3.3. Four different cases of nonlinearity are

considered by varying values of knee factor (kf ) and saturation current (isat). As

the value of knee factor or saturation current is decreased the severity of nonlinearity

increases. From Figure 3.3, the degradation in the BER performance of the proposed

OTFS-VLC system after considering LED non-linearity can be observed.

In Figure 3.4, the convergence performance of ZALMS, OMP, and LMS estima-

tors is compared for signal-to-noise ratio of 50 dB. The convergence plot of ZALMS

falls below both the OMP and the LMS on saturation, i.e. ZALMS has lower mean

square deviation than OMP and LMS upon saturation. Thus, it can be inferred

that for sparse OTFS- VLC systems ZALMS is a better alternative to the OMP and

traditional LMS method.

Figure 3.5 presents the BER performance of OMP, LMS and ZALMS. OTFS

with ZALMS and LMS-based channel estimator gives considerable gain compared

to OMP-based receiver. While ZALMS gives a gain of approximately 4 dB at BER of
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Figure 3.4: Mean square deviation performance for orthogonal time frequency space-
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Figure 3.5: Bit error rate performance for orthogonal time frequency space-visible
light communication system

10−3. Thus, it can be concluded that the proposed ZALMS-based channel estimator

is a better estimator as compared to the conventional techniques for exploiting the

inherent sparsity of the OTFS-VLC system.

3.6 Summary

In this chapter, ZALMS-based channel estimator is proposed for a VLC-OTFS sys-

tem with the dispersive mobile multipath channel. Furthermore, it was observed

from the simulations that due to the sparse nature of the VLC channel represented

in the delay-Doppler domain, ZALMS performed better than the traditional LMS

and OMP algorithm. The simulated findings show that ZALMS is a more suitable
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low-complexity solution for channel estimation in the OTFS-VLC system. In this

chapter and in chapter 2, the distortion effects resulting from user mobility and LED

nonlinearity are addressed, with a primary focus on improving BER performance.

However, VLC systems often face obstacles leading to LoS blockage, as visible light

cannot pass through obstacles due to its high penetration loss causing low sum rate

owing to significant signal loss which is explored in the next chapter.
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Chapter 4

Rate Maximization for

RIS-Assisted Indoor VLC Systems

In the previous chapters, the distortion effects resulting from user mobility and LED

nonlinearity were discussed, with a primary focus on improving BER performance.

However, transmission in visible light suffers from severe performance degradation

due to LoS blockage, as visible light can not pass through obstacles due to its high

penetration loss [13, 38]. Moreover, the illumination requirements of LEDs pose a

challenge to the practical deployment of VLC [39]. In this context, ORIS and using

LEDs as relays have been proposed in the literature [11, 40]. In addition to this,

there are other benefits of using ORIS instead of LEDs as relays, such as low power

consumption, reduced complexity, easy deployment, and low interference. RIS has

recently been introduced in the literature as a solution to mitigate the impact of LoS

blockages, broaden the coverage area, and enhance the achievable user rate [11, 41].

ORIS is a promising technology that facilitates NLoS paths to enhance the per-

formance of optical wireless communication systems [42]. The mirror array (MA)-

based RIS and the metasurface array (MSA)-based RIS are the two most popular

reflecting surface designs employed for ORIS in VLC systems [11] where in MA, the

received power gain is always positive. In [43], for the rate maximization problem,

a low-complexity iterative solution based on the sine-cosine algorithm is proposed

to determine the optimal orientation of the RIS MA. However, the study has only

considered a single-user scenario. In [44], a low-complexity algorithm is proposed

to maximize the achievable sum rate. In [45], authors have proposed RIS and angle
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diversity-assisted receivers for indoor VLC systems to improve average SNR perfor-

mance. Recently, deep Q-learning-based solutions have been investigated to improve

the performance of wireless networks [46, 47]. However, since deep learning methods

have huge time and space complexity overhead and are more suited for unstructured

problems, a function-approximate learning solution with much lower computational

overhead for the (structured) phase control problem of the VLC system is pro-

posed. The integration of function approximation into Q-learning has been inspired

by the classical works in reinforcement learning (RL). Function approximation is a

widely utilized technique in Q learning. Notably, the author in [48] laid the foun-

dational groundwork for Q-learning, which is introduced as a model-free, off-policy

RL method. While the original Q-learning algorithm was tabular, the concept of

function approximation has since been integrated to handle high-dimensional state

spaces. Additionally, the application of function approximation in Q-learning can

be traced back to the work in [49]. This marked a significant step towards utilizing

function approximation, particularly neural networks, to generalize Q-values across

states, enabling more efficient learning in complex environments. Further contribu-

tions by authors in [50–52] provide comprehensive insights into the fundamentals

of Q-learning and its extensions. Thus, in this letter, a Q-learning framework is

proposed for a multi-user, multi-LED, ORIS-assisted VLC system that is one of the

RL paradigms as the future machine learning paradigm. The main components of

Q-learning are agent, environment, state, action, and reward. After convergence,

the agent discovers the optimal policy, a rule of actions that maximizes the reward.

In the proposed scheme, Q-learning defines an environment to maximize a sum

rate-defined reward. The contributions of this chapter can be listed as follows:

� A Q-learning framework in an ORIS-assisted multi-user VLC system is pre-

sented. The proposed ORIS array is divided into subarrays, whose number

equals the number of active LEDs or active users. Each subarray is controlled

jointly by roll and yaw angles.

� A function approximation is proposed to reduce conventional Q-learning’s

search and update requirements. The update equation is then obtained us-

ing the gradient descent approach. The proposed scheme has less storage and

computation needs. The number of trainable parameters is independent of the
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Figure 4.1: Multi-user optical reflecting intelligent surface-aided indoor visible light
communication system model.

state size and action spaces.

� Simulations are performed in a standard indoor environment, considering prac-

tical constraints. Specifically, a 3D grid is considered for multi-user locations,

and their movements follow the Markov process. ORIS effectively improves the

sum rates, and function-approximated learning provides similar performance

as conventional Q-learning with lower computation resources.

4.1 System Model

A realistic indoor optical ORIS-assisted VLC system is considered, as shown in

Figure 4.1. There are N low-cost passive reflecting elements in the MA-based optical

ORIS deployed on a wall. Two rotational degrees of freedom given by the yaw angle

(γ) and roll angle (ω) can be used to adjust the orientation of each array element. Let

s = [s1, s2, . . . , sL]
T ∈ RL×1 be the transmitted symbols on L LEDs. Corresponding

to U users, the ORIS is divided into U equal parts, with yaw and roll angle of each

group of ORIS optimized to cater for the respective user so as to maximize the sum

rate. The ORIS is divided into equal parts such that fairness among the users is

maintained while maximizing the sum rate. For simplicity, an indoor scenario with

two LEDs (L = 2) and two users (U = 2) where LED 1 is intended for User 1 and

LED 2 is intended for User 2 is considered, as shown in Figure 4.1. The symbols are

transmitted through the LEDs after adding a DC bias to bring the LEDs into the

forward-biased operating region [53]. The resulting signal is sent over a practical

VLC channel composed of LoS and NLoS components. Subsequently, at the receiver,
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the transmitted signals are received by the PD at the uth user:

yu = y(LoS)u + y(NLoS)
u + zu, (4.1)

where y
(LoS)
u and y

(NLoS)
u are the symbols received by the LoS and NLoS paths,

respectively, and zu is the AWGN with zero mean and σ2 variance, i.e., zu ∼ N (0, σ2)

where u = 1, · · · , U .

4.1.1 LoS Channel Gain

The LoS channel gain from the lth LED to the uth user within the field-of-view (FoV)

of PD (0 ≤ ξl,u ≤ ξFoV) follows the Lambertian model as

h
(LoS)
l,u =

(Lm + 1)APD cosLm (ϕ)T (ξl,u)Go (ξ)Gi (ξ) cos (ξ)

2πd2l,u
, (4.2)

where Lm represents the Lambertian index computed as:

Lm =
(
log2 1/cos(θ1/2)

)−1
, (4.3)

where θ1/2 denotes the angle of half-intensity radiation. In (4.2), the physical surface

area of the PD is represented as APD, ϕ is the angle of irradiance, ξ is the angle

of incidence, dl,u denotes the distance between the LED and the user, Go(ξ) is the

gain of the optical filter and Gi(ξ) denotes the gain of the non-imaging concentrator

within the FoV. The gain of the non-imaging concentrator can be computed as:

Gi(ξ) =
r2f

sin2 ξFoV
, (4.4)

where ξ ∈ [0, ξFoV] and the refractive index of the concentrator is denoted as rf . It

can be noted that the angle of irradiance (ϕ) is not affected by the orientation of the

user’s device, whereas the incidence angle (ξ) is highly influenced by the device’s

orientation. The cosine of the angle of incidence ξ can be represented in terms of
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the device’s elevation angle (α) and the azimuth angle (β) as:

cos (ξl,u) =

(
xl − xu
dl,u

)
cos (β) sin (α)+

(
yl − yu
dl,u

)
sin (β) sin (α)+

(
zl − zu
dl,u

)
cos (α) ,

(4.5)

where (xl, yl, zl), l = 1, . . . , L are the position vectors specifying the locations of the

LEDs on the roof of the room and (xu, yu, zu) are the position vectors specifying the

locations of the users. For modelling the elevation angle, the Laplace distribution

with the mean and the standard deviation of 41o and 9o is used, respectively. The

range of the elevation angle is typically considered to be [0, π
2
]. The azimuth angle

follows a uniform distribution β ∼ U [−π, π]. The received signal from the LoS path

can be obtained as the signals received from all LEDs as:

y(LoS)u =
L∑
l=1

ρh
(LoS)
l,u Psl. (4.6)

where ρ is the responsivity of the PD; and P is the emission power of the LED.

4.1.2 NLoS Channel Gain

The NLoS channel consists of two components: 1) First, the wall/ORIS is the

receiver of the light emitted by the LED, and 2) the wall/ORIS acts as a point

source that re-emits the light to the user. The reflective surface, i.e. wall/ORIS, is

equally divided into K squared surfaces. Each kth surface is considered to have an

area of dAk. Further, it is assumed that the incident ray from the LED is reflected

exactly from the centre of the reflective surfaces. For the NLoS channel, the following

two cases are considered:

Case I (No-ORIS VLC channel)

In the case of a VLC channel without ORIS, the light is reflected by the kth segment

of the wall surface to the uth user. The corresponding NLoS channel can be written

for the FoV (0 ≤ ξu,k ≤ ξFoV) as:

h
(NLoS)
l,k,u = χwall

(m+ 1)APD

2π2d2l,kd
2
u,k

dAk cos
m(ϕl,k)cos (ξl,k)cos (ϕu,k) cos (ξu,k)T (ξl,k)G (ξu,k) ,

(4.7)
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where χwall denotes the reflection coefficient of the wall surface; dl,k and du,k are the

distances between the lth LED and the kth wall segment, and the kth wall segment

and the user, respectively; ϕl,k and ϕu,k are the angles of irradiance from the LED

to the wall segment and from the wall towards the user, respectively; ξl,k and ξu,k

are the angles of incidence on the wall and the user, respectively.

Case II (ORIS-assisted VLC channel)

Similarly, for an optical ORIS-aided VLC channel, the channel gain of the reflected

signal from the kth mirror array is obtained for the FoV (0 ≤ ξu,k ≤ ξFoV) as:

h
(NLoS)
l,k,u (γl, ωl) = χRIS

(m+ 1)APD

2π2d2l,kd
2
u,k

dAk cos
m(ϕl,k)cos (ξl,k) cos (ϕu,k) cos (ξu,k)T (ξl,k)G (ξu,k) ,

(4.8)

where χRIS is the reflection coefficient of the ORIS element. In addition to the

reflection coefficient, the channel gain above is different from that of Case I in the

sense that the cosine of the angle of irradiance is specified by the yaw and roll angles

of the MA and can be computed as:

cos (ϕu,k) =
(xk − xu)

du,k
cos (ω) sin (γ) +

(yk − yu)

du,k
cos (ω) cos (γ) +

(zk − zu)

du,k
sin (ω) ,

(4.9)

where (xk, yk, zk) represents the coordinates of the kth element of the ORIS. The

received signal from the NLoS path can be given as:

y(NLoS)
u = ρ

L∑
l=1

N∑
k=1

h
(NLoS)
l,k,u Psl. (4.10)

Based on the received signals via LoS and NLoS paths, the sum rate across users

can be computed as:

R =
W

2

L∑
u=1

log2

(
1 +

e

2π
δu

)
, (4.11)

where e is the value of the base of natural logarithms. The modulation bandwidth

is denoted as W . The signal-to-interference-plus noise ratio (SINR) of uth user is
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Figure 4.2: Impact of roll and yaw angle on sum rate at different user locations of
User 2.

represented as δu and can be obtained as:

δu =
ρ2P 2

∣∣∣h(LoS)l,u +
∑N

k=1 h
(NLoS)
l,k,u

∣∣∣2
l=u

σ2 + ρ2P 2

∣∣∣∑(
h
(LoS)
l,u +

∑N
k=1 h

(NLoS)
l,k,u

)∣∣∣2
l ̸=u

. (4.12)

The objective is to maximize the rate by jointly optimizing the ORIS yaw and roll

angles for all users. The impact of roll and yaw angle on the sum rate is shown in

Figure 4.2. It can be observed that the sum rate is maximum at a fixed roll and

yaw angle.

Towards this, Q-learning is employed, where the problem is translated to the

maximization problem of the long-term average discounted sum rate described in

the following section.

4.2 Proposed Q-learning framework

In this section, the conventional and the proposed Q-learning approaches are pre-

sented. First, the rate maximization problem can be formulated in terms of Q-

learning framework by defining the states, actions, and rewards as follows. Subse-

quently, the proposed approach is presented.
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4.2.1 State space

It can be noted that the variations in the VLC channel are assumed to follow a

Markov process, since different channels are estimated at different user positions.

For this framework, a state of the system is defined in terms of user location as:

s = (xu, yu, zu,∀u) ∈ S ⊂ R3, (4.13)

where S is a finite set specifying the grid locations in an indoor environment. Re-

garding state transitions, it can be noted that a user can move to its neighbour

grid, not to other places in the grid state space, which makes these states a part of

the Markov chain. It can be noted that VLC channel gain depends on the user’s

location. Therefore, the variations in the channel can also be modelled as a Markov

process.

4.2.2 Action space

In the present system model, actions are to select the roll and yaw angles of the

mirror elements. Since there are L LEDs, the mirror elements of the ORIS array

are grouped into L groups corresponding to each LED. Each group will be set

with the same yaw and roll angle values. Thus, there are 2L variables need to

be obtained for action selection, that is, γl, ωl ∈
[
−π

2
, π
2

]
, l = 1, . . . , L. For finite

angles resolutions, the values of these angles are selected from an angle codebook

C =
{
θ̃1, . . . , θ̃|C| : θ̃i ∈

[
−π

2
, π
2

]}
. For simplicity, a uniform codebook is chosen, e.g.,

for b-bit codebook, C =
{
−π

2
,−π

2
+∆,−π

2
+ 2∆, . . .

}
, where ∆ = π

2b
. With yaw and

roll angles combined, the action space can be represented with 2Lb bits codebook

as:

a = (γl, ωl,∀l = 1, . . . , L) ∈ C2L. (4.14)
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4.2.3 Reward function

The objective of the Q-learning is to maximize the long-term discounted rates as:

max
γl(t),ωl(t),∀l

∞∑
i=t

γi−tR(γl(t), ωl(t))

s.t. γl(t), ωl(t) ∈
[
−π
2
,
π

2

]
,∀l, (4.15)

where the notation of (t) is introduced to show the time-slot dependent operations.

Thus, the reward function can be written in terms of the rate as:

r(s, a) = R(γl, ωl,∀l). (4.16)

4.2.4 Conventional Q-learning

Algorithm 3 Coventional Q-learning algorithms.

Require: Initial state s0 randomly and Q0(s, a) = 0,∀s, a
for t = 1, 2, . . . do

ORIS configuration: take ϵ-greedy action at+1

at+1 =

{
argmax

a
Qt(st, a) w.p. 1− ϵt

random a w.p. ϵt

Obtain reward rt and get users’ next position st+1

Update Q-function using (4.21)
end for

In this section, the conventional Q-learning algorithm given in Algorithm 3 is ex-

plained. Q-learning is a trial-and-error algorithm, where, based on the observations,

actions are taken in order to find better actions in a sequential manner by com-

puting Q-function. The Q-function, also known as the state-action value function,

evaluates the pair of a state and an action. Using Bellman’s equation, the relation

for optimum Q-value can be written as:

Q∗(s, a) = r(s, a) + γEmax
b
Q∗(s1, b), (4.17)

where s1 is the next state obtained after taking action a in the state s; and γ is the

discount factor. Given the optimum Q-values, one can take an optimal action for a
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given state as:

a∗t+1 = argmax
a
Q∗(st, a), (4.18)

which yields the optimum policy π∗ : S → C. However, since optimum Q-values are

not known, the square of the difference of both sides, i.e. ∆2
t , is minimized by using

the gradient descent method, where ∆t is the temporal difference. Thus, providing

the Q-update equation as:

Qt+1(st, at+1) = Qt(st, at+1) + βt∆t, (4.19)

where βt is the step-size. The temporal difference is calculated as:

∆t =
[
rt + γmax

b
Qt(st+1, b)

]
−Qt(st, at+1), (4.20)

with rt = r(st, at+1) being the instantaneous reward. However, since the optimal

Q-values are not available, they are obtained iteratively using the update equation

in the stochastic gradient descent as:

Qt(st, at+1) = (1− βt)Qt−1(st, at+1) + βt

[
rt + γmax

b
Qt−1(st+1, b)

]
. (4.21)

In gradient descent method, if the function F (x) is defined and differentiable in a

neighborhood of a point xn, then it follows that:

xn+1 = xn − β∇F (xn). (4.22)

In conventional Q-learning, F := 1
2
∆2 and x := Q, thus giving:

Qt = Qt−1 − β∇Q

[
1

2
∆2

t−1

]
= Qt−1 − β∆t−1∇Q∆t−1

= Qt−1 + β∆t−1

= Qt−1 + β
[
rt−1 + γmax

b
Q(st, b)

]
− βQt−1(st−1, at)

= (1− β)Qt−1(st−1, at) + β
[
rt−1 + γmax

b
Q(st, b)

]
(4.23)
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where,

∇Q(s,a)∆ = ∇Q

[
rt + γmax

b
Q(s′, b)

]
−∇QQ(s, a) (4.24)

= ∇Q

[
γmax

b
Q(s′, b)

]
− 1 (4.25)

= −1 (4.26)

Now, when Q-learning is replaced by the linear function approximation (LFA) as:

Qθ(st, at+1) ≈ uT (st, at+1)θ, (4.27)

then the differentiation will be done with respect to θ. That is, the updated equation

of gradient descent is:

θt = θt−1 − β
∂

∂θ

[
1

2
∆2

t−1

]
= θt−1 − β∆t−1

∂

∂θ
[∆t−1]

= θt−1 − β∆t−1
∂Q

∂θ
· ∂

∂Q
[∆t−1]

= θt−1 + β∆t−1u(st−1, at) (4.28)

where ∂
∂Q

[∆t−1] = −1 and ∂Q(s,a)
∂θ

= u(s, a). Steps of the iterative update algorithm

are presented in the Algorithm 3, where after initialization of the state of users,

a ϵ-greedy random action is performed. The action leads to rewards, and the next

state, which is used to update the Q-values. These steps are run until episodes

are completed. In each episode, the exploration and the step-update factors are

updated. From the literature [54], it can be seen that for finite sets, the Q-learning

algorithm converges if step size and exploration are chosen appropriately. The decay

parameter ζ as βt = βt−1(1− ζ) and ϵt = ϵt−1(1− ζ).

4.2.5 Function approximated Q-learning

In this section, the proposed function approximated Q-learning algorithm is ex-

plained as given in Algorithm 4. Despite the simplicity of the updates in the

conventional Q-learning, it has limited practical utility when applied to real-world
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Algorithm 4 Approximated Q-learning algorithms.

Require: Initial state s0 randomly and Q0(s, a) = 0, ∀s, a
for t = 1, 2, . . . do

ORIS configuration: take ϵ-greedy action at+1

at+1 =

{
argmax

a
Qt(st, a) w.p. 1− ϵt

random a w.p. ϵt

Obtain reward rt and get users’ next position st+1

Update θk,l using (4.32) and compute Q-function approximation.
end for

systems. Specifically, the size of Q-matrix is of the order |S| × |C|2L, which grows

prohibitively with the number of LEDs, rendering convergence of the table entries

unacceptably slow. In addition, action selection in max
a
Q(s, a) requires an extensive

exhaustive search of the feasible action set.

A popular method for making Q-learning applicable in real-world settings is

through function approximation [55, 56]. The approximation in our set-up is inspired

by the fractional form of the rate expression. Specifically, Q(st, at) is approximated

to Q̂(st, at) as:

Q̂(st, at) =
W

2

L∑
u=1

log2

1 +
e

2π

ρ2P 2
∣∣∣h(LoS)l,u θ0,l +

∑N
k=1 θk,lh

(NLoS)
l,k,u

∣∣∣2
l=u

σ2 + ρ2P 2

∣∣∣∑(
h
(LoS)
l,u θ0,l +

∑N
k=1 θk,lh

(NLoS)
l,k,u

)∣∣∣2
l ̸=u

 .

(4.29)

where θk,l, k = 1, . . . , N, l = 1, . . . , L are the coefficients introduced for the approx-

imation. Here, N and L are the number of mirrors in the mirror array and the

number of LEDs, respectively. In function approximation, a function that maxi-

mizes the reward function is used. Intuitively, in every iteration, the action taken

by the next policy at a given state is obtained by selecting the action that yields

the best action value (in our case, maximizes the sum rate). Thus, function ap-

proximation in our setup is inspired by the sum rate across users, as is given in

(4.12).

Function approximation reduces the original task in conventional Q-learning al-

gorithm of learning nearly |S| · |C|2L parameters to learn (L + 1)L parameters. In

practical scenarios, which will generally have a very large size of states and ac-

tions, this reduction has a significant computational improvement as only (L+ 1)L
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parameters are to be learned to maximize the sum rates. The error in function

approximation for approximate Q-learning can be given by the temporal difference

equation. The parameters can be updated by minimizing the squared temporal

difference using the gradient descent method as:

θk,l(t) = θk,l(t− 1)− αk,l

2
∇k,l∆

2
t (st, at, θk,l), ∀k, l (4.30)

Regarding the non-linear function approximation (NLFA) of the Q-values:

∇k,l =
∂Q̂

∂θk,l
=

∂W
2

∑L
u=1 log2

(
1 + e

2π

ρ2P 2
∣∣∣h(LoS)

l,u θ0,l+
∑N

k=1 θk,lh
(NLoS)
l,k,u

∣∣∣2
l=u

σ2+ρ2P 2
∣∣∣∑(

h
(LoS)
l,u θ0,l+

∑N
k=1 θk,lh

(NLoS)
l,k,u

)∣∣∣2
l̸=u

)
∂θk,l

(4.31)

For User 1, the (4.31) can be simplified as:

∇k,1 =

∂W
2
log2

(
1 + e

2π

ρ2P 2
∣∣∣h(LoS)

1,1 θ0,1+
∑N

k=1 θk,1h
(NLoS)
1,k,1

∣∣∣2
σ2+ρ2P 2

∣∣∣∑(
h
(LoS)
2,1 θ0,2+

∑N
k=1 θk,2h

(NLoS)
2,k,1

)∣∣∣2
)

∂θk,1
(4.32)

∇k,1 =
Weρ2P 2|h(LoS)1,1 θ0,1 +

∑N
k=1 θk,1h

(NLoS)
1,k,1 |

eρ2P 2|h(LoS)1,1 θ0,1 +
∑N

k=1 θk,1h
(NLoS)
1,k,1 |2

+ 2π

(
σ2 + ρ2P 2

∣∣∣∑(
h
(LoS)
2,1 θ0,2 +

∑N
k=1 θk,2h

(NLoS)
2,k,1

)∣∣∣2)


(4.33)

Similarly for User 2,

∇k,2 =
Weρ2P 2|h(LoS)2,2 θ0,2 +

∑N
k=1 θk,2h

(NLoS)
2,k,2 |

eρ2P 2|h(LoS)2,2 θ0,2 +
∑N

k=1 θk,2h
(NLoS)
2,k,2 |2

+ 2π

(
σ2 + ρ2P 2

∣∣∣∑(
h
(LoS)
1,2 θ0,1 +

∑N
k=1 θk,1h

(NLoS)
1,k,2

)∣∣∣2)


(4.34)
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Figure 4.3: Locations of light emitting diode, optical intelligent reflecting surface
and users.

4.3 Computational Complexity

In this section, the computational complexity of the proposed function approxi-

mated Q-learning algorithm is compared with the exhaustive search method and

conventional Q-learning algorithm. In order to compare the proposed function ap-

proximatedQ-learning, it is assumed that oneQ-value is approximated per step of an

episode. Using an exhaustive search method, both roll and yaw angles were searched

in the range [0, π] with a step size of π/16. Thus, the number of computations re-

quired in an exhaustive search method for one user position is 128 × 16 × 16. As

the dimension of ORIS increases with an increase in the number of users, the search

space also increases dramatically. Since Q-values depend on θ-values, after updation

of θ-values, one can compute more Q-values to fill the Q-matrix faster, that is, to

converge in lower iterations and subsequently get better rewards in earlier episodes.

In terms of complexity, conventional Q-learning requires to learn Q-matrix of size

nearly |S| · |C|2L to learn (L + 1)L parameters. While for function approximated

Q-learning, only (L+ 1)L parameters are to be learnt to maximize the sum rates.
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4.4 Numerical and Simulation Results

In an indoor environment, without loss of generality, an environment is considered

with two LEDs of 5 W and two users, one fixed at the centre of the area and one

moving in a circular path. The mobile user (User 2) is considered to be moving on

a circular trajectory to provide dynamic conditions while the static user (User 1)

is considered to be standing at a random location. In Figure 4.3, LED 1 and LED

2 are represented by yellow circles placed on the roof at axis positions (1,2,3) and

(3,2,3), respectively. User 1 is fixed at the centre of the room (2,2,0.75), while User 2

is moving on a circular trajectory. The trajectory of User 2 is considered such that it

enters the room and then moves on a circular trajectory. L1 is the point on trajectory

when User 2 enters the room thus L1 lies outside the circular trajectory, then User 2

moves on circular trajectory following L2 → L3 → L4 → L5 → L6. The locations

considered on the circular trajectory are (L1:3,3,0.75), (L2:2,3,0.75), (L3:3,2,0.75),

(L4:1,2,0.75), (L5:2,1,0.75), and (L6:2.5,2.87,0.75). Two LEDs are optimally placed

so as to completely illuminate the room of dimension 4m × 4m × 3m as shown in

Figure 4.3. With respect to the position of LEDs, the ORIS is placed on the centre

of a wall so as to have the minimum distance from both LEDs to reduce the loss

between the LED and the ORIS. The modulation bandwidth is considered to be 200

MHz. The reflection coefficients of the ORIS element and the wall are 0.95 and 0.8,

respectively. The PD’s responsivity with FoV 85o is 0.53 A/W. The half-intensity

radiation angle of the LED is 70o. The PD’s area is 1cm2. The refractive index of the

concentrator is 1.5, and the optical fibre gain is 1. Yaw and roll angles are computed

for one ORIS array having 128 elements since one user location is fixed. Simulations

assuming perfect instantaneous channel state information of the composite channel

(LED-ORIS-user) for Q-learning are run for 6000 episodes, where each episode has

2000 steps. Other Q-learning parameters are as follows: γ = 0.7, ζ = 0.001, ϵ0 = 1,

β0 = 0.8.

Figure 4.4 compares the cases of ORIS and no-ORIS for conventional Q-learning

and function approximated Q-learning framework at SNR=30 dB. First, it can be

seen that the average reward increases and converges for both Q-learning and the

proposed function approximated Q-learning method. In the case of no-ORIS, the
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Figure 4.4: Performance comparison and convergence of Q-learning and function
approximated Q-learning.

average rewards (sum rates) are much lower and almost similar for different user

positions across episodes. After convergence of the roll and yaw angle selection

policy, the achievable rates of Q-learning are approximately 4.5 times of the without

ORIS, which is due to the number of ORIS elements, creating multi-path diversity.

It can be observed that the proposed algorithm gives the best result as it coincides

with the exhaustive search method after convergence.

Figure 4.5 shows the performance of the proposed function-approximate Q-

leaning framework considering different SNR values to depict the sensitivity of the

SNR on the sum rate, i.e., the average sum reward. As can also be seen from (4.12),

when the SNR value decreases, the sum rate also decreases. The same is also ob-

served in our simulation results. On increasing the SNR from 10 dB to 30 dB, the

gain of around 102 times is observed, while on increasing SNR from 30 dB to 60 dB,

the gain observed is around 103 times.

4.5 Summary

In this chapter, optimum ORIS (roll and yaw) angles for multi-user VLC systems

using the RL framework are obtained. Two approaches are presented, of which

the proposed function approximation method achieves the same performance with
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Figure 4.5: Performance of function approximated Q-learning with different signal-
to-noise ratio values.

lower computational complexity. In the simulation-based 3D grid world, a subarray

of ORIS elements is learned to align according to the multi-user positions. The

proposed approach has significantly less overhead and is independent of the sizes of

state and action spaces. In this chapter, the performance of ORIS is analyzed for

VLC systems. To further provide 3600 coverage, the performance of an OSTAR-RIS

is analyzed in the next chapter.
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Chapter 5

CSK Modulation and Symbol

Detection in OSTAR-RIS-aided

VLC Systems

In the previous chapter, the performance of a ORIS is analyzed for VLC systems.

To further provide 3600 coverage in this chapter, we analyze the performance of

an OSTAR-RIS aided VLC system based on a CSK modulation scheme. However,

most studies relied on OOK modulation in VLC systems. CSK-based VLC sys-

tems offer several advantages over conventional modulation schemes like OOK and

pulse-amplitude modulation (PAM). These advantages include maintaining a con-

stant combined intensity of the RGB bands to prevent flickering, reducing intensity

fluctuations perceived by the human eye, minimizing inrush currents when used with

large LED arrays, and achieving higher data rates [57]. The performance of CSK

has been analyzed in the case with AWGN [58], where a mathematical expression for

the BER was provided. Additionally, [59] introduced a four-color CSK format that

is utilized in the IEEE 802.15.7 standard. In addition, LEDs introduce distortions

due to their nonlinear characteristics, resulting in poor channel estimation. Tradi-

tional methods like LS and minimum mean square error (MMSE) have been used

for channel estimation and symbol detection in linear wireless systems. The tradi-

tional schemes, including LS, MMSE, and LMS, explicitly estimate the CSI before

detecting the transmitted symbols. In contrast, DNN models can be trained under

various channel conditions to predict transmitted data, allowing for direct recovery
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5.1. SYSTEM MODEL

Figure 5.1: OSTAR-RIS-aided indoor VLC system model.

of transmitted symbols without explicitly estimating CSI [60]. Our contributions in

this chapter are listed as follows:

� An OSTAR-RIS-based indoor VLC system model impaired by LoS blockage,

ambient noise, and LED nonlinearity is proposed.

� A DNN-based symbol detector is proposed for direct symbol detection without

explicit channel estimation.

� For performance analysis, the expressions of BER is derived. The data rate

and BER performance of OOK, 3-CSK and 4-CSK are compared and analyzed.

5.1 System Model

We consider a practical indoor OSTAR-RIS-assisted VLC system, as depicted in

Figure 5.1, where there are N -low-cost elements on the OSTAR-RIS mounted on

a wall between Room 1 and Room 2. The LED is in the centre of the ceiling of

Room 1 and serves users in the two rooms simultaneously. Due to room design

requirements, Room 1 with LED serves as a workspace and Room 2 without any

light fixtures serves as a relaxation or sleeping area. The mirror elements on the

OSTAR-RIS act as reflector elements, while the liquid crystal (LC)-based elements

act as refractor elements to serve User 2. The symbol set of M-CSK modulation is

denoted by A = {x1,x2, . . . ,xM} where xi = (IR, IG, IB) is a vector and IR, IG, and

IB represent the emitted power from forward-biased RGB LED, respectively whose

nonlinear characteristics distorts the input symbols. This nonlinear behaviour can
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be characterized by AM/AM modelling and can be described using Rapp’s model:

s = f(x) =
x

(1 + ( x
isat

)2kf )
1

2kf

, (5.1)

where isat and kf are the saturation current and knee factor of the LED, respectively.

The knee factor regulates the transitional smoothness of LED features from the

linear to the saturation region. The resulting signal is sent over a VLC channel,

which comprises of LoS and NLoS components. The effective channel hj between

the LED and users where (j = 1, 2), corresponding to User 1 and User 2, respectively,

can be estimated as:

hj =

h
LoS
j + hMA

j + hWall
j , j = 1,

hLCj , j = 2,

(5.2)

where hLoS is the LoS path between the LED and the User 1, hMA and hWall are the

NLoS reflected channels of the User 1 reflected from the MA elements of OSTAR-

RIS and the wall, respectively. Similarly, hLC is the channel gain of User 2, refracted

from the LC element of the OSTAR-RIS. The channel coefficients hLoS, hMA, hLC

and hWall can be calculated as in [1]. Subsequently, at the receiver, the transmitted

signals are received by the photodetector, which yields the following output:

yj = ρhjs+ zj, (5.3)

where the received symbol by the jth user yj = (yR, yG, yB) is composed of elements

which represent the electric currents of the photodetectors with RGB optical filters,

and ρ is the responsivity of the photodetector. A zero-mean Gaussian distribution

is used in this study to simulate ambient light noise denoted by z = (zR, zG, zB) is

additive i.i.d. with variance σ2. The symbols received by the PD are then passed

through a DNN for direct symbol detection without explicit channel estimation.

Before deploying the DNN online, the weights for the neurons are optimized, and

the optimal weights are obtained on a training set.
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5.1.1 LoS Channel Gain

The LoS channel between the LED and the jth user in Room 1 follows the Lamber-

tian model within the FoV 0 ≤ ξ ≤ ξFoV as

hLoSj = ι

(
(L+ 1)APD cosL (ϕ)Go (ξ)Gi (ξ) cos (ξ)

2πd2j

)
, (5.4)

where ι ∈ 0, 1 a parameter to indicate whether the LoS path is present or blocked

by possible blockers, L represents the Lambertian index and can be computed as

L =

(
log2

1

cos(θ1/2)

)−1

, (5.5)

θ1/2 represents the angle of half-intensity radiation. The physical surface area of the

photodetector is denoted by APD, ϕ and ξ are the angles of irradiance and incidence,

respectively, dj is the distance between the LED and the jth user, Go(ξ) and Gi(ξ)

denotes the gain of the optical filter and the non-imaging concentrator, i.e. Gi(ξ) is

defined as

Gi(ξ) =
rf

2

sin2 ξFoV
, (5.6)

The refractive index of the concentrator is denoted by rf . The cosine of ξ can be

expressed as a function of the azimuth angle (αa) and the elevation angle (αe) of

the device:

cos (ξ) =

(
xl − xj
dl,j

)
sin (αe) cos (αa) +

(
yl − yj
dl,j

)
sin (αe) sin (αa) +

(
zl − zj
dl,j

)
cos (αe) ,

(5.7)

The position vectors specifying the location of the LED is denoted by (xl, yl, zl) and

the position vectors specifying the location of the jth user is denoted by (xj, yj, zj).

dl,j is the distance between the LED and the jth user. For modelling the elevation

angle, the Laplace distribution with the mean being 41o and the variance being 9o.

The range of the elevation angle is typically considered to be [0, π
2
]. The uniform

distribution αa ∼ U [−π, π] is considered for the azimuth angle.

In Room 1, the NLoS channel of the jth user after reflection from the wall is
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computed as

hWall
j = χwall

(L+ 1)APD

2π2d2l,kd
2
j,k

dA cosL(ϕl,k)cos (ξl,k)cos (ϕj,k) cos (ξj,k)Go (ξl,k)Gi (ξj,k) ,

(5.8)

where χwall is the reflection coefficient of the wall surface, and dA represents the area

of the wall segment. The LED-to-kth wall segment distance is denoted by dl,k, and

the distance between the kth wall segment and the jth user is denoted by dj,k. The

angles of irradiance from the LED to the wall segment and from the wall segment

towards the jth user are ϕl,k and ϕj,k, respectively. The angles of incidence on the

wall and on the jth user are ξl,k and ξj,k, respectively. Similarly, the NLoS channel

of users in Room 1 after reflection from the OSTAR-RIS is computed as

hMA
j =χRIS

(L+ 1)APD

2π2d2l,id
2
j,i

dA cosL(ϕl,i)cos (ξl,i) cos (ϕj,i) cos (ξj,i)Go (ξl,i)Gi (ξj,i) ,

(5.9)

where the reflection coefficient of the MA in OSTAR-RIS is denoted by the χRIS.

The distance between the LED and the ith OSTAR-RIS segment is denoted by dl,i,

while dj,i is the distance between ith MA and the jth user. The angles of irradiance

from the LED to the MA and the MA to the jth user are denoted by ϕl,i and ϕj,i,

respectively. The angle of incidence on the MA and the jth user are ξl,i and ξj,i,

respectively. The cosine of the angle of irradiance is represented in the form of the

yaw (γMA) and roll (ωMA) angles of the MA elements of the OSTAR-RIS array and

can be computed as

cos (ϕj,i) =
(xi − xj)

dj,i
sin (γMA) cos (ωMA) +

(yi − yj)

dj,i
cos (γMA) cos (ωMA) +

(zi − zj)

dj,i
sin (ωMA) ,

(5.10)

where (xi, yi, zi) represents the coordinates of the ith element of the OSTAR-RIS.
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Similarly, for users in Room 2, the effective channel is given by

hLCj =


ψLC

(L+1)AD

2π2(dl,i)
2
(dj,i)

2
dAGo (ξl,i)Gi (ξl,i) cos

L (ϕl,i)

× cos (ξl,i) cos (ϕj,i) cos (ξj,i) , 0 ≤ ξj,i ≤ ξFoV,

0, ξj,i > ξFoV,

(5.11)

where

cos (ϕj,i) =

(
xi − xj
dj,i

)
sin (γLC) cos (ωLC) +

(
yi − yj
dj,i

)
cos (γLC) cos (ωLC) +

(
zi − zj
dj,i

)
sin (ωLC) ,

(5.12)

where yaw (γLC) and roll (ωLC) are the angles of the LC elements of the OSTAR-RIS

array. The transition coefficient, ψLC, can be given by

ψLC = Tan (ξj,i)× Tna (θ) , (5.13)

where the angular transmittances as the signal enters and exits the LC cell are

denoted by Tan (ξj,i) and Tna (θ), respectively. They can be respectively expressed in

terms of the angular reflectance as Tan (ξj,i) = 1−Ran (ξj,i) and Tna (θ) = 1−Rna (θ).

The angular reflectance can be derived as

Ran (ξj,i) =
1

2

(
η2 cos (ξj,i)−

√
η2 − sin2 (ξj,i)

η2 cos (ξj,i) +
√
η2 − sin2 (ξj,i)

)2

+
1

2

(
cos (ξj,i)−

√
η2 − sin2 (ξj,i)

cos (ξj,i) +
√
η2 − sin2 (ξj,i)

)2

,

(5.14)

Rna (θ) =
1

2

(
cos (θ)−

√
η2r − sin2 (θ)

cos (θ) +
√
η2r − sin2 (θ)

)2

+
1

2

(
η2r cos (θ)−

√
η2r − sin2 (θ)

η2r cos (θ) +
√
η2r − sin2 (θ)

)2

,

(5.15)

where ηc and ηa represent the refractive indices of the LC cell and air, respectively,

and η = ηc/ηa and ηr = ηa/ηc denotes the relative refractive indices. The range of

ηc varies from 1.5 to 1.7 and needs to be tuned because ψLC can be optimized by

tuning ηc. In the OSTAR-RIS light amplification for the emerging signal can be

achieved by the LC elements via stimulated emission. Beer’s absorption law can be
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used to determine the output signal power Pout following the amplification of light

signal in the presence of an external electric field when an optical signal with power

Pin refracts from an LC cell with the transition coefficient ψLC:

Pout = Pin × exp (AGCD)× ψLC, (5.16)

where the amplification gain coefficient denoted by AGC is given by

AGC =
2πη3c

cos (ξnû)λ
EoE, (5.17)

The LC cell’s depth is indicated by D, and the exponential rise in incident signal

power is shown by the expression exp(AGCD). In (5.16), λ is the wavelength of the

optical signal, Eo is the electro-optic coefficient, and E (in V/m) is the external

electric field. The external electric field E can be calculated as E = VE/D, where VE

is

VE =VTH − log

− tan

tan
−1

(
ηo
√

(η2e−η2o)(η
2
e−η2c )

ηc(η2e−η2o)

)
2

− π

4


 . (5.18)

where ηe and ηo denote the extraordinary and ordinary refractive indices of the LC

based element’s in OSTAR-RIS, respectively.

5.2 Modulation Schemes

This section introduces CSK modulation for ORIS-aided VLC systems, where Figure

5.2 illustrates the constellation diagrams for different modulation techniques: OOK,

3-CSK, and 4-CSK. In OOK, LED switching is controlled by turning it “ON” or

“OFF” based on bit streams, with high and low amplitude pulses representing logical

‘1’ and ‘0’, respectively, as shown in Figure 5.2(a). The OOK constellation features

two symbols corresponding to two LED intensity levels. The color bands used in

CSK modulation are specified in IEEE 802.15.7 VLC standard, where each symbol

is associated with a specific color combination. This chapter introduces two CSK

modulation schemes, 3-CSK and 4-CSK, depicted in Figure 5.2(b) and Figure 5.2(c),
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5.2. MODULATION SCHEMES

Figure 5.2: Constellation diagram and decision region of modulated techniques: (a)
OOK, (b) 3-CSK, and (c) 4-CSK.

respectively.

5.2.1 CSK Modulation

In this subsection, the 3-CSK and 4-CSK modulation schemes are discussed for RIS-

aided indoor VLC systems. In the 3-CSK modulation, three peripheral symbols are

utilized, as presented in the constellation diagram in Figure 5.2(b). Let coordinates

x̄ = (xx, xy), z̄ = (zx, zy) and ȳ = (yx, yy) denote the 2D coordinates of the projected

points on plane IR + IG + IB = PT from x = (xR, xG, xB), z = (zR, zG, zB), y =

(yR, yG, yB), respectively. The 2D coordinates x̄ = (xx, xy), z̄ = (zx, zy), and ȳ =

(yx, yy) could be calculated as

x̄ = Tx (5.19)

z̄ = Tz (5.20)

ȳ = Ty (5.21)

where the geometric transformation matrix T from the 3D coordinate system to the

2D coordinate system is given by

T =

− 1√
2

1√
2

0

− 1√
6

− 1√
6

2√
6

 (5.22)

Likewise, the equivalent 2D symbol set is presented by Ā = {x̄1, x̄2, . . . , x̄M}. As

shown in Figure 5.2(c), in 4-CSK, three of the symbols denoted by R, G, and B are

located at the centers of the RGB color bands on the xy color coordinates, while the
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fourth symbol, W, is chosen such that its distance is the maximum from the other

three symbols. The constellation diagram for 4-CSK is shown in Figure 5.2(c). In

4-CSK, the symbols are positioned within an equilateral triangle on the plane, as

defined by the transformation in (5.22).

5.2.2 Constraints on CSK signals

In this subsection, the constraints on CSK signals due to the illumination require-

ments of VLC systems are outlined as:

1. Optical power emitted from LEDs is always positive, thus the elements in the

signal vector x satisfy the following constraint:

IR ≥ 0, IG ≥ 0, IB ≥ 0, (5.23)

2. The total optical power PT of the RGB LEDs is assumed to be a constant in

every symbol duration to avoid flickering, such that:

IR + IG + IB = PT (5.24)

Based on these constraints the generated CSK symbols are transmitted through

LED with nonlinear characteristics.

5.3 DNN-based symbol detection

In this section, we propose a DNN-based model for direct symbol detection without

explicit channel estimation. The model designed for offline training comprises of

5-layers with, 1-input layer and 1-output layer, and remaining 3 layers in between

are hidden layers as shown in Figure 5.3. The number of neurons in each layers are

512, 700, 400, 120, 16, respectively. Every 16 bits of the data transmitted through

LEDs are grouped together and predicted simultaneously based on a single model

trained independently at SNR 40 dB. These bits are then concatenated for the

final output. For activation, the rectified linear activation function (ReLU) defined

as f(a) = max(0, a) is used after each hidden layer, where a is the input to the
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Figure 5.3: Proposed DNN model for training.

activation function. The regression layer is used for the output layer to predict a

real-valued output. For online deployment output of the trained DNN model x̂ is a

cascade of nonlinear transformation of y,

x̂ = f(y,w) = fL−1(fL−2(. . . (f 1(y)))), (5.25)

where L is the number of layers and w denotes the weights of the neural network.

Thus, for the proposed architecture with 3 hidden layers, the estimated output is

computed as:

x̂ = f 4(f 3(f 2(f 1(y)))). (5.26)

Before deploying the neural network online the weights for the neurons are optimized

and, the optimal weights are obtained on a training set, with known desired outputs

given in Eq. (5.3). The proposed DNN-based model is designed to minimize the error

between the predicted output generated by the network and the actual transmitted

data. This discrepancy is quantified by the L2 loss or mean squared error (MSE)

loss. The L2 loss is a standard metric used in regression tasks, where the goal is

to measure how well the predicted values align with the true values. The MSE loss

function is chosen as the cost function owing to its sensitivity to large deviations

and is given as

L2 =
1

Nt

(x− x̂)2, (5.27)

where Nt is the number of training symbols per frame, and x̂ are the predicted
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Figure 5.6: Achievable data rate for different modulation schemes.

symbols employing the trained DNN model. The number of training samples is

determined through experimentation, starting with a minimal configuration of hid-

den layers and progressively increasing them until the DNN achieves satisfactory

performance, as shown in Figure 5.4. It can be observed from Figure 5.4 that as

the number of hidden layers is increased from 1 to 2, there is marginal enhance-

ment in the performance. However, on further increasing the number of layers to 3,

significant improvement in the performance can be observed. On further increasing

the number of layers, no improvement was observed in addition to high computa-

tional complexity. Thus, for the neural network, the number of hidden layers is fixed

to 3. The selection of an appropriate activation function was determined through

comparative analysis of commonly used functions including eLU, ReLU, and tanh.

Figure 5.5 presents the comparative performance metrics of these activation func-

tions. Based on the results demonstrated in the performance curves, ReLU emerged

as the optimal choice for the neural network architecture.

5.3.1 BER Analysis

In this section, we derive the BER for the CSK scheme. To estimate the BER,

we first define the transition probability. The transition probability is defined as

the probability of a symbol detected as another symbol i.e. the probability that a

symbol transmitted, xk, is decoded incorrectly as another symbol, xl. This transition

probability, also referred to as the symbol PEP, Pe(xl|xk), can be calculated using

decision region partitioning [58]. This method determines the transition probability
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by evaluating the noise superimposed on the transmitted symbol within the decision

regions of two types, I and II, characterized by parameters α, δ, γ, and β [58]. For

type II decision regions, the transition probability is expressed as:

Pe(xl|xk) =

∫ γ

α

∫ ∞

R(θ)

pn(r, θ)drdθ, (5.28)

where R(θ) =

√
α|h|2γ sin(β)

sin(|θ−α|+β)
, γ represents the SNR at the receiver, pn is the PDF of

the noise. Gauss formula denoted by G(·) can be used to numerically evaluate the

definite integral given in (5.28) with the desired accuracy [58]. Therefore, if any

symbol in the received sequence is incorrect, the entire sequence will be interpreted

erroneously. The sequence PEP is given by:

P (Sl|Sk) =
Ns∏
i=1

P (xl,i|xk,i), (5.29)

where xk,i and xl,i denote the i
th codewords corresponding to the transmitted Sk, and

the received Sl sequence, respectively. The Hamming distance d(Cl, Ck) between the

transmitted and the received code words gives the number of erroneous bits, where

Cl and Ck are the codewords associated with sequence Sk and Sl, respectively.

Therefore, the obtained exact analytical expression of the BER, Pb, by summing all

the PEP is

Pb=
1

M

∑2M

t=1

∑3Ns

r=1,r ̸=t
d(Cl, Ck)P (Sk)P (Sl|Sk), (5.30)

where P (xk) is the a priori probability of transmitting a sequence, M = ⌊log2 3Ns⌋

bits, where ⌊·⌋ is the floor operator and Ns is the number of symbols in the sequence

(Ns = 2). It is assumed that no error correction coding is employed.

5.4 Numerical and Simulation Results

In this Section, we present the simulation results and compare the performance of

OOK, 3-CSK, and 4-CSK for the proposed OSTAR-RIS aided indoor VLC system.

The simulation parameters are summarized in Table 5.1.

Figure 5.6 compares the achievable data rates of the considered modulation tech-
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Table 5.1: Simulation Parameters for CSK modulated OSTAR-RIS aided OTFS
VLC systems[1]

Parameter Symbol Specification

Photodetector’s responsivity ρ 0.53 A/w

Photodetector’s field-of-view (FOV) ξFoV 85o

Photodetector’s area AD 1cm2

Concentrator refractive index rf 1.5

Gain optical filter Go(ξ) 1.0

Reflection coefficient of mirror array χRIS 0.95

Reflection coefficient of wall χWALL 0.8

Refractive index of air ηa 1

Ordinary refractive index of LC cell ηo 1.5

Extraordinary refractive index of LC cell ηe 1.7

Depth of LC cell D 0.75 mm

Electro-optic coefficient Eo 12pm/V

Critical voltage threshold Vth 1.34 V

Bandwidth W 200 MHz
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niques, i.e. OOK, 3-CSK, and 4-CSK. To ensure a fair comparison, equal symbol

duration for all modulation techniques is assumed. It can be observed that 4-CSK

can provide the maximum achievable data rate of 2 bits/channel use (bpcu). 3-CSK

(Ns = 2) provides a better achievable data rate of 1.33 bpcu as compared to OOK

which has an achievable data rate of 1 bpcu.

Figure 5.7 compares the RMSE performance of the proposed DNN-based re-

ceiver and traditional LMS-based algorithm by varying the nonlinearity parameter,

i.e., knee factor (kf ). The performance of LMS deteriorates as the knee factor value

is decreased from 2 to 0.5. This is due to the fact that the severity of the VLC sys-

tem’s nonlinearity increases on decreasing the knee factor. The DNN-based receiver

shows consistent and better performance than LMS for both cases of nonlinearity

considered. This further proves the robustness of DNN-based receivers.

Figure 5.8 depicts the BER performance of OOK, 3-CSK and, 4-CSK modulation

techniques as a function of the SNR considering kf = 2 and isat = 2. As expected,

4-CSK has the worst BER performance as it gives the maximum data rate, closely

followed by the OOK, while, 3-CSK gives the best BER performance. BER of 10−2

is achieved at 6 dB, 6.2 dB and 8 dB, respectively, for 3-CSK, OOK and 4-CSK.

Thus, 3-CSK provides a gain of 2 dB over 4-CSK.

5.5 Summary

In this chapter, a CSK modulation scheme was proposed to enhance the achiev-

able data rate of ORIS-aided indoor VLC systems impaired by LED nonlinearity.

A DNN-based symbol detector was proposed for direct symbol detection and com-

pared with the traditional LMS-based channel estimator. In this context, 3-CSK

and 4-CSK modulation techniques were introduced and compared with the OOK

modulation technique. The provided simulation results demonstrated that 3-CSK

offered the best BER performance compared to both 4-CSK and OOK and also

a relatively higher achievable data rate as compared to OOK. Owing to its supe-

rior performance, 3-CSK is thus a desirable modulation technique for a variety of

applications in OSTAR-RIS-aided indoor VLC systems, with different requirements

which depend on data rate, reliable communication, and implementation complexity.
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However, in addition to low data rate, and loss of the VLC signal due to the absence

of a direct link the SSR of a VLC system is also compromised by the presence of an

eavesdropper which we will analyze in the next chapter.
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Chapter 6

NOMA OSTAR-RIS-Aided VLC

Systems

In the previous chapter, the achievable user rate and BER performance of nonlinear

VLC system was enhanced by employing CSK modulation scheme and DNN-based

detection scheme. However, we considered only a scenario with no eavesdropper.

An eavesdropper can intercept transmitted data, gaining unauthorized access to

sensitive information. In scenarios like VLC, where the broadcast nature of light

makes the signals easily detectable, this risk increases. The SSR performance of

a VLC system is highly compromised due to the presence of an eavesdropper. Si-

multaneously, to address the growing data demands of users in VLC systems for

beyond 5G communication, a novel multiple access scheme known as NOMA, or

more specifically, power division multiple access, has garnered significant attention.

[61–63]. Recently, NOMA has been recognized as a viable option for integration

into STAR-RIS VLC systems for several reasons: (a) NOMA effectively manages a

small number of users, which is typical in a Li-Fi attocell environment [12], and (b)

tuning the angles of STAR-RIS and adjusting the FoV provide additional degrees of

freedom for multiplexing signals of different users present in the environment. This

results in differential channel gains, which enhance power diversity [64]. In [1], au-

thors investigated power-domain NOMA and rate splitting multiple access (RSMA)

to enhance the sum rate of optical STAR-RIS-Aided VLC systems. However, the

impact of LED nonlinearity and the presence of eavesdroppers on the SSR has not

yet been explored in OSTAR-VLC-based systems. For the maximization problem
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Figure 6.1: Optical simultaneously transmitting and reflecting-reflecting intelligent
surface assisted indoor visible light communication system model.

of the SSR, authors in [65] have employed the particle swarm optimization (PSO)

based method owing to its simplicity in optimum solutions to complex problems

with efficient self-adaptability, robustness and lower complexity as compared to the

straightforward exhaustive search method. Poor channel estimation can be caused

by nonlinear distortions, which can seriously impair signal reception [13] and add an

equivalent additive distortion at the receiver. Similarly, practical VLC systems also

suffer from ambient and thermal noise. Ambient light noises may arise from sun-

light, skylights, incandescent and fluorescent lamps, and other light sources present

in the indoor environment. Furthermore, the transimpedence receiver circuitry pro-

duces the thermal noise. The primary contributions of this chapter are summarized

as follows:

� A novel multi-user indoor VLC system employing NOMA and assisted by

OSTAR-RIS is proposed. The impact of LED nonlinearity, ambient and ther-

mal noise, device orientation, and the existence of non-user blockers are all

taken into consideration in the proposed system.

� We thoroughly examine the design of the realistic STAR-RIS NOMA VLC

system, taking into account both perfect and imperfect successive interference

cancellation (SIC) and CSI.
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� For a special case of two users, we propose a PSO-based solution to the problem

of maximizing the SSR by optimizing the roll and yaw angle of the STAR-RIS,

refractive indices of the LC cell, and power allocation factor for NOMA within

some constraints. The same can be further extended to more than two user

scenarios.

� Detailed simulation results demonstrate that the NOMA scheme outperforms

the OMA scheme for the proposed system, particularly in terms of the SSR.
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Figure 6.2: Considered indoor visible light communication system model.

6.0.1 System Model

We consider a realistic indoor OSTAR-RIS-assisted VLC system, as shown in Figure

6.1, where we consider N -low-cost passive elements on the OSTAR-RIS mounted on

a wall between Room 1 and Room 2. The LED is in the centre of the ceiling of Room

1 and serves K users in the two rooms simultaneously by modulating the intensity of

the light emitted. The eavesdropper is assumed to be in Room 2. Multiple blockers

are also present in Room 1, which can potentially block the path of light. The

OSTAR-RIS is composed of κ and ϑMA-based and LC-based elements, respectively,

such that κ + ϑ = N . The mirror elements on the OSTAR-RIS act as reflector

elements, while the LC-based elements act as refractor elements. As the channel

strength of the users present in Room 1 is stronger than the users present in Room 2,

the channel strength of all the users can be sorted out as h1 ≥ · · · ≥ hi ≥ · · · ≥ hK .

Without the loss of generality, we assume that the users in Room 1, i.e. User

1,· · · , User i, are sorted in a descending order according to their channels, i.e.

h1 ≥ h2 ≥ · · · ≥ hi. Similarly, users in Room 2, i.e. User i + 1,· · · , User K, are
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sorted in a descending order according to their channels, i.e. hi+1 ≥ hi+2 ≥ · · · ≥ hK .

As shown in the considered indoor VLC system model shown in Figure 6.2, using

NOMA, the LED transmits the OOK symbols s1, · · · , sK with associated power

values P1, · · · , PK , where sj conveys information intended for the jth user. Thus,

the K transmitted signals are superimposed in the power domain as follows:

x =
K∑
j=1

Pjsj, (6.1)

where Pj = αPj−1, α denotes the power allocation factor (0 < α < 1), and the LED

peak transmit power is expressed as

PT =
K∑
j=1

Pj. (6.2)

These modulated symbols are transmitted through a forward-biased LED with non-

linear characteristics, which distorts the symbols. As LEDs have AM/AMmodelling,

the nonlinear characteristic is modelled by Rapp’s model as follows:

ŝ = f(x) =
x

(1 + ( x
isat

)2kf )
1

2kf

, (6.3)

where isat and kf are the saturation current and knee factor of the LED, respec-

tively. The knee factor regulates the transitional smoothness of LED features from

the linear to the saturation region. With the aid of the Bussgang theorem, if the

input signal of a memoryless nonlinear function is Gaussian, then the output of the

function corrupted by a distortion component can be expressed in the form of the

input signal as its scaled version. Therefore, we have

ŝ = ςx+ zdis, (6.4)

where ς is the scaling factor and zdis is the distortion signal with zero mean and

variance σ2
d. The resulting signal, ŝ, is transmitted over a VLC channel. For the
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users and eavesdropper, the effective channel is given as

heffj =

h
LoS
j + hMA

j + hWall
j , 1 ≤ j ≤ i,

hLCj , i+ 1 ≤ j ≤ K,

(6.5)

heffeav =h
LC
eav, (6.6)

where hLoSj is the LoS path between the LED and the jth users, hMA
j and hWall

j

are the NLoS reflected channels of the jth user reflected from the MA elements of

OSTAR-RIS and the wall, respectively. Similarly, hLCj and hLCeav are the channel gain

of the jth user and eavesdropper, respectively, refracted from the LC element of the

OSTAR-RIS. Subsequently, at the receiver, the transmitted signal is received by the

photodetector of the users and the eavesdropper as follows:

yj = ρheffj

K∑
m=1

Pmŝm + nj, (6.7)

yeav = ρheffeav

K∑
m=1

Pmŝm + neav, (6.8)

where yj and yeav, are the symbol vectors received by the jth user and eavesdropper,

respectively, ρ is the responsivity of the photodetector, nj and neav are all zero mean

i.i.d. AWGN with variance σ2, σ2 = σ2
a + σ2

t and σ2
a and σ2

t are the variances of

ambient light noise and thermal noise, respectively. At the receiver, as per the

mechanism of NOMA, User 1 to User K−1 adopt SIC to decode the messages with

the same decoding order. As it is assumed that User K has the weakest channel, it

can directly decode its own message without performing SIC.

6.0.2 VLC Channel

The LoS channel between the LED and the jth user in Room 1 follows the Lamber-

tian model within the FoV 0 ≤ ξ ≤ ξFoV as

hLoSj = ι

(
(L+ 1)APD cosL (ϕ)Go (ξ)Gi (ξ) cos (ξ)

2πd2j

)
, (6.9)
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where ι ∈ 0, 1 a parameter to indicate whether the LoS path is present or blocked

by possible blockers, L represents the Lambertian index and can be computed as

L =

(
log2

1

cos(θ1/2)

)−1

, (6.10)

θ1/2 represents the angle of half-intensity radiation. The physical surface area of the

photodetector is denoted by APD, ϕ and ξ are the angles of irradiance and incidence,

respectively, dj is the distance between the LED and the jth user, Go(ξ) and Gi(ξ)

denotes the gain of the optical filter and the non-imaging concentrator, i.e. Gi(ξ) is

defined as

Gi(ξ) =
rf

2

sin2 ξFoV
, (6.11)

The refractive index of the concentrator is denoted by rf . The cosine of ξ can be

computed in terms of the azimuth angle (αa) and the elevation angle (αe) of the

device as

cos (ξ) =

(
xl − xj
dl,j

)
sin (αe) cos (αa) +

(
yl − yj
dl,j

)
sin (αe)

× sin (αa) +

(
zl − zj
dl,j

)
cos (αe) , (6.12)

The position vectors specifying location of the LED is denoted by (xl, yl, zl) and the

position vectors specifying location of the jth user is denoted by (xj, yj, zj). dl,j is

the distance between the LED and the jth user. For modelling the elevation angle,

the Laplace distribution with the mean and the standard deviation of 41o and 9o

is used, respectively. The range of the elevation angle is typically considered to be

[0, π
2
]. The uniform distribution αa ∼ U [−π, π] is considered for the azimuth angle.

In Room 1, the NLoS channel of the jth user after reflection from the wall is

computed as

hWall
j = χwall

(L+ 1)APD

2π2d2l,kd
2
j,k

dA cosL(ϕl,k)cos (ξl,k)cos (ϕj,k) cos (ξj,k)Go (ξl,k)Gi (ξj,k) ,

(6.13)

where χwall is the reflection coefficient of the wall surface, and dA represents the

area of the wall segment. The LED-to-kth wall segment distance is denoted by dl,k,
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and the distance between the kth wall segment and the jth user is dj,k. The angles

of irradiance from the LED to the wall segment and from the wall segment towards

the jth user are ϕl,k and ϕj,k, respectively. The angles of incidence on the wall and

on the jth user are ξl,k and ξj,k, respectively. Similarly, the NLoS channel of users

in Room 1 after reflection from the OSTAR-RIS is computed as

hMA
j = χRIS

(L+ 1)APD

2π2d2l,id
2
j,i

dA cosL(ϕl,i)cos (ξl,i) cos (ϕj,i) cos (ξj,i)Go (ξl,i)Gi (ξj,i) ,

(6.14)

where the reflection coefficient of the MA in OSTAR-RIS is denoted by the χRIS.

The distance between the LED and the ith OSTAR-RIS segment is denoted by dl,i,

while dj,i is the distance between ith MA and the jth user. The angles of irradiance

from the LED to the MA and the MA to the jth user are denoted as ϕl,i and ϕj,i,

respectively. The angle of incidence on the MA and the jth user are ξl,i and ξj,i,

respectively. The cosine of the angle of irradiance is represented in the form of the

yaw (γMA) and roll (ωMA) angles of the MA elements of the OSTAR-RIS array and

can be computed as

cos (ϕj,i) =
(xi − xj)

dj,i
sin (γMA) cos (ωMA) +

(yi − yj)

dj,i

× cos (γMA) cos (ωMA) +
(zi − zj)

dj,i
sin (ωMA) , (6.15)

where (xi, yi, zi) represents the coordinates of the ith element of the OSTAR-RIS.

Similarly, for users in Room 2, the effective channel is given by

hLCj =


ψLC

(L+1)AD

2π2(dl,i)
2
(dj,i)

2
dAGo (ξl,i)Gi (ξl,i) cos

L (ϕl,i)

× cos (ξl,i) cos (ϕj,i) cos (ξj,i) , 0 ≤ ξj,i ≤ ξFoV,

0, ξj,i > ξFoV,

(6.16)
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where

cos (ϕj,i) =

(
xi − xj
dj,i

)
sin (γLC) cos (ωLC) +

(
yi − yj
dj,i

)
× cos (γLC) cos (ωLC) +

(
zi − zj
dj,i

)
sin (ωLC) , (6.17)

where yaw (γLC) and roll (ωLC) are the angles of the LC elements of the OSTAR-RIS

array. The transition coefficient, ψLC, can be given by

ψLC = Tan (ξj,i)× Tna (θ) , (6.18)

where the angular transmittance as the signal enters and exits the LC cell is denoted

by Tan (ξj,i) and Tna (θ). They can be respectively expressed in terms of the angular

reflectance as Tan (ξj,i) = 1 − Ran (ξj,i) and Tna (θ) = 1 − Rna (θ). The angular

reflectance can be derived as

Ran (ξj,i) =
1

2

(
η2 cos (ξj,i)−

√
η2 − sin2 (ξj,i)

η2 cos (ξj,i) +
√
η2 − sin2 (ξj,i)

)2

+
1

2

(
cos (ξj,i)−

√
η2 − sin2 (ξj,i)

cos (ξj,i) +
√
η2 − sin2 (ξj,i)

)2

,

(6.19)

Rna (θ) =
1

2

(
cos (θ)−

√
η2r − sin2 (θ)

cos (θ) +
√
η2r − sin2 (θ)

)2

+
1

2

(
η2r cos (θ)−

√
η2r − sin2 (θ)

η2r cos (θ) +
√
η2r − sin2 (θ)

)2

,

(6.20)

where η = ηc/ηa and ηr = ηa/ηc denotes the relative refractive indices and ηc and ηa

represent the refractive indices of the LC cell and air, respectively. The range of

ηc varies from 1.5 to 1.7 and needs to be tuned because ψLC can be optimized by

tuning ηc. In the ORIS light amplification for the emerging signal can be achieved

by the LC elements via stimulated emission. Beer’s absorption law can be used to

determine the output signal power Pout following the amplification of light signal

in the presence of an external electric field when an optical signal with power Pin

refracts from an LC cell with the transition coefficient ψLC:

Pout = Pin × exp (AGCD)× ψLC, (6.21)
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where the amplification gain coefficient denoted as AGC is given by

AGC =
2πη3c

cos (ξnû)λ
EoE, (6.22)

The LC cell’s depth is indicated by D, and the exponential rise in incident signal

power is shown by the expression exp(AGCD). In (6.22), λ is the wavelength of the

optical signal, Eo is the electro-optic coefficient, and E (in V/m) is the external

electric field. The external electric field E can be calculated as E = VE/D, where VE

is

VE = VTH − log

− tan

tan
−1

(
ηo
√

(η2e−η2o)(η
2
e−η2c )

ηc(η2e−η2o)

)
2

− π

4


 . (6.23)

where ηe and ηo denote the extraordinary and ordinary refractive indices of the

LC based element’s in OSTAR-RIS, respectively. Similar to users in Room 2, the

effective channel of the eavesdropper can be computed.

6.1 Performance Analysis

In this section, we formulate the analytical expression of SSR for the OSTAR-RIS-

VLC-NOMA system impaired by LED nonlinearity for both scenarios with both

perfect and imperfect SIC and CSI operations. For the sake of simplicity and deep

insight into the performance of NOMA, we will consider a two-user (K = 2, i = 1)

system such that one user is present in Room 1 and another user is present in Room

2 with an eavesdropper. The obtained insight can be extended to a general scenario

with more users. Depending on the characteristics of the channel, users might

be grouped into several clusters. The same time-frequency resources are used to

transmit user signals inside the same cluster [66]. To perform SIC successfully within

each cluster, the differences in the users’ channel conditions need to be sufficiently

large [67–69].
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6.1.1 OSTAR-RIS-VLC-NOMA with perfect CSI and SIC

We first derive the expressions for the received SINR and sum rate considering

perfect CSI and SIC. Based on (6.7) for two users, the received signal can be written

as

r1 = ρheff1 (ζ(P1s1 + P2s2) + zdis) + n1, (6.24)

r2 = ρheff2 (ζ(P1s1 + P2s2) + zdis) + n2. (6.25)

where heff1 = hLoS1 + hMA
1 + hWall

1 , P1 = PT/1+α and P2 = αPT/1+α. As User 1 is the

strong user, carried out SIC, where User 2 decodes its own signal directly. Therefore,

in the case of perfect CSI and SIC, the received the SINR at User 1 to decode User

2’s message directly is

SINR2
1 =

|ρζP2h
eff
1 |2

σ2 + |ρζP1heff1 |2 + |ρheff1 σd|2
. (6.26)

where σ2 = σ2
a + σ2

t . SINR at User 1, when User 1 decodes its own message, is

SINR1
1 =

|ρζP1h
eff
1 |2

σ2 + |ρheff1 σd|2
. (6.27)

Similarly, the received SINR at User 2 on decoding its own message is

SINR2
2 =

|ρζP2h
eff
2 |2

σ2 + |ρζP1heff2 |2 + |ρheff2 σd|2
. (6.28)

The received SINRs at the eavesdropper of the message ŝ1 and s̃2 is

SINR1
e =

|ρζP1h
eff
eav|2

σ2 + |ρζP2heffeav|2 + |ρheffeavσd|2
, (6.29)

SINR2
e =

|ρζP2h
eff
eav|2

σ2 + |ρζP1heffeav|2 + |ρheffeavσd|2
. (6.30)

96



CHAPTER 6. NOMA OSTAR-RIS-AIDED VLC SYSTEMS

Thus, the respective rates across the User 1 (Ru1), User 2 (Ru2) and the eavesdropper

(Reav) can be computed as

Ru1 =
W

2
log2

(
1 + SINR1

1

)
, (6.31)

Ru2 =
W

2
log2

(
1 + SINR2

2

)
, (6.32)

R1
eav =

W

2
log2

(
1 + SINR1

e

)
, (6.33)

R2
eav =

W

2
log2

(
1 + SINR2

e

)
. (6.34)

where the available modulation bandwidth is denoted by W . The SSR of the pro-

posed system can be defined as

Rsec = [Ru1 +Ru2 −R1
eav −R2

eav]
+, (6.35)

where [a]+ = max(0, a). The goal is to maximize the SSR, which depends on

parameters γMA, ωMA, ηc and α.

6.1.2 OSTAR-RIS-VLC-NOMA with imperfect CSI

In this section, we have analyzed the impact of imperfect CSI on the performance

of OSTAR-RIS-VLC systems. NOMA configurations rely heavily on having precise

channel coefficients for all users. This is pivotal for the receiver to recover data

successfully and for the transmitter to determine the appropriate power allocation

for each user. To effectively utilize SIC, users must receive signals at different

power levels depending on their channel gains. However, assuming perfect CSI is

impractical for indoor VLC systems. Quantization errors are introduced during the

ADC of channel estimates [70]. Thus, quantifying the impact of CSI imperfection on

NOMA OSTAR-RIS VLC system performance is therefore crucial. In this context,

the following noisy CSI model is considered:

ĥeffj = heffj + ϵn, (6.36)

where the channel estimation error is denoted by ϵn and is modeled with a zero-

mean Gaussian distribution with variance σ2
ϵn , i.e, ϵn ∼ N (0, σ2

ϵn), reasonable model
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commonly used for indoor VLC systems [71, 72]. Consequently, it immediately

follows that the channel estimate ĥeffj can be represented as ĥeffj ∼ N (heffj , σ2
ϵn).

Thus, the SINRs for the users and eavesdropper in the presence of imperfect CSI

are:

SINR2
1|CSI =

|ρζP2ĥ
eff
1 |2

σ2 + |ρζP2σϵn|2 + |ρζP1ĥeff1 |2 + |ρĥeff1 σd|2
. (6.37)

SINR1
1|CSI =

|ρζP1ĥ
eff
1 |2

σ2 + |ρζP1σϵn|2 + |ρĥeff1 σd|2
. (6.38)

SINR2
2|CSI =

|ρζP2ĥ
eff
2 |2

σ2 + |ρζP2σϵn|2 + |ρζP1ĥeff2 |2 + |ρĥeff2 σd|2
. (6.39)

SINR1
e|CSI =

|ρζP1ĥ
eff
eav|2

σ2 + |ρζP1σϵn|2 + |ρζP2ĥeffeav|2 + |ρĥeffeavσd|2
. (6.40)

SINR2
e|CSI =

|ρζP2ĥ
eff
eav|2

σ2 + |ρζP2σϵn|2 + |ρζP1ĥeffeav|2 + |ρĥeffeavσd|2
. (6.41)

6.1.3 OSTAR-RIS-VLC-NOMA with imperfect SIC

In this section, we have analyzed the impact of imperfect SIC on the performance of

OSTAR-RIS-VLC systems. The imperfect SIC occurs during the decoding process

when a fraction residue at the channel-information properties is left due to SIC errors

causing imperfect SIC at the receiver. For imperfect SIC receiver signals, User 1

does not have perfect knowledge of User 2’s signal information. Consequently, User

2’s signal is not perfectly removed at User 1. This scenario can be modeled by

incorporating the effect of VLC channel interference, resulting in a more realistic

situation compared to the ideal case of perfect SIC. Thus, the SINR for User 1

decoding its own message considering imperfect SIC is:

SINR1
1|SIC =

|ρζP1h
eff
1 |2

σ2 + β|ρζP2heff1 |2 + |ρheff1 σd|2
. (6.42)

where β is the residual interference due to imperfect SIC, 0 ≤ β ≤ 1, and β = 0

refers to perfect SIC.

Thus, the SINRs of respective users and eavesdropper under imperfect CSI and
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SIC can be computed as:

SINR2
1|I =

|ρζP2ĥ
eff
1 |2

σ2 + |ρζP1ĥeff1 |2 + |ρζP2σϵn|2 + |ρĥeff2 σd|2
. (6.43)

SINR1
1|I =

|ρζP1ĥ
eff
1 |2{

σ2 + |P2ĥ
eff
1 |2 + β|P2ĥ

eff
1 |2

+ |P1σϵn|2 + |ρĥeff2 σd|2

} . (6.44)

SINR2
2|I =

|ρζP2ĥ
eff
2 |2

σ2 + |P2σϵn|2 + |ρĥeff2 σd|2
. (6.45)

SINR1
e|I =

|ρζP1ĥ
eff
eav|2{

σ2 + |P2ĥ
eff
eav|2 + β|P2ĥ

eff
eav|2

+ |P1σϵn|2 + |ρĥeff2 σd|2

} . (6.46)

SINR2
e|I =

|ρζP2ĥ
eff
eav|2{

σ2 + |P1ĥ
eff
eav|2 + β|P2ĥ

eff
eav|2

+ |P2σϵn|2 + |ρĥeff2 σd|2

} . (6.47)

Similarly, the data rates of the users and eavesdropper in the presence of imperfect

CSI and SIC would be:

R̂u1 =
W

2
log2

(
1 + SINR1

1|I
)
. (6.48)

R̂u2 =
W

2
log2

(
1 + SINR2

2|I
)
. (6.49)

R̂1
eav =

W

2
log2

(
1 + SINR1

e|I
)
. (6.50)

R̂2
eav =

W

2
log2

(
1 + SINR2

e|I
)
. (6.51)

Thus, the SSR of the proposed system with imperfect CSI and SIC can be defined

as

R̂sec = [R̂u1 + R̂u2 − R̂1
eav − R̂2

eav]
+. (6.52)

The goal is to maximize the SSR, which depends on parameters γMA, ωMA, ηc and

α.
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6.1.4 BER analysis with perfect CSI

In this section, we will derive the BER equations for our proposed OSTAR-RIS

NOMA VLC system, considering perfect CSI. Considering OOK modulation for

transmitting signal, the probability of error (Pe,U2) for the User 2 can be expressed

as

Pe,U2 = P (y2 = 1|s1 = 0, s2 = 0)P (s1 = 0, s2 = 0) + P (y2 = 0|s1 = 0, s2 = 1)P (s1 = 0, s2 = 1)

+ P (y2 = 1|s1 = 1, s2 = 0)P (s1 = 1, s2 = 0) + P (y2 = 0|s1 = 1, s2 = 1)P (s1 = 1, s2 = 1).

(6.53)

It is assumed that the symbols of User 1 and User 2 are independent, such that

P (s1, s2) = P (s1)P (s2). Thus,

Pe,U2 =
1

4
{P (n2 > ith2) + P

(
2P2ρh

eff
2 + n2 < ith2

)
+ P

(
2P1ρh

eff
2 + n2 < ith2

)
+ P

(
2P1ρh

eff
2 + 2P2ρh

eff
2 + n2 < ith2

)
}, (6.54)

where ith2 is the threshold for User 2 symbol detection and 2P2ρh
eff
2 is the generated

photocurrent at User 2. It is to be noted that yk, k ∈ (1, 2), defined in (6.9) is a

Gaussian distributed random variable with the PDF

fyk(l) =
1√
2πσ2

k

e−(l−mk)
2/2σ2

k , (6.55)

where mk = 2P1ρh
eff
j s1+2P2ρh

eff
j s2 and σ

2
k = σ2

n are the mean and variance of the

kth user. The probability of error of yk, yk ̸= sk, can be given as

P (yk = 1 | s1, s2) =
1√
2πσ2

k

∫ ∞

imk

e−(l−mk)
2/2σ2

kdl

=
1

2
erfc

(
ilkk −mk√

2σk

)
. (6.56)
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Similarly,

P (yk = 0 | s1, s2) =
1√
2πσ2

k

∫ ilkk

−∞
e−(l−mk)

2/2σ2
kdl

=
1

2
erfc

(
mk − ikk√

2σk

)
. (6.57)

Thus, using (6.56) and (6.57), (6.54) can be solved as

Pe,U2 =
1

4
{2Q (β1P2) +Q (β1 (P2 − 2P1)) +Q (β1 (2P1 + P2))} , (6.58)

where β1 = ρheff
2 /σ The probability of error for the User 1 can be given as

Pe,U1 = P ′
e,U1P

U1
c,U2 + P ′′

e,U1P
U1
e,U2, (6.59)

where P ′
e,U1 is the error probability of User 1’s signal when User 2’s signal is correctly

decoded at User 1, i.e., SIC is successfully implemented, P ′′
e,U1 is the error probability

of User 1’s signal when User 2’s signal is incorrectly decoded at User 1, i.e., failure

of SIC, PU1
c,U2 = 1− PU1

e,U2 is the probability that User 2’s signal is correctly decoded

at User 1, and PU1
e,U2 is the error probability of User 2’s signal decoded at User 1.

The terms involved in (6.59) are derived below. The probability of error for User

2’s signal decoded by User 1 can be given as

PU1
e,U2 =P (y1 = 1 | s1 = 0, s2 = 0)P (s1 = 0, s2 = 0)

+ P (y1 = 0 | s1 = 0, s2 = 1)P (s1 = 0, s2 = 1)

+ P (y1 = 1 | s1 = 1, s2 = 0)P (s1 = 1, s2 = 0)

+ P (y1 = 0 | s1 = 1, s2 = 1)P (s1 = 1, s2 = 1) . (6.60)

Thus, again using (6.56) and (6.57), (6.60) can be written as

PU1
e,U2 =

1

4
{P
(
n1 > i′th2

)
+ P

(
2P2ρh

1
eff + n1 < i′th2

)
+ P

(
2P1ρh

1
eff + n1 < i′th2

)
+ P

(
2P1ρh

1
eff + 2P2ρh

1
eff + n1 < i′th2

)
}, (6.61)
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where i′th2
is the threshold for User 2 symbol detection at User 1. Thus, the terms

in (6.61) can be solved as:

PU1
e,U2 =

1

4
{2Q (β2P2) +Q (β2 (P2 − 2P1)) +Q (β2 (2P1 + P2))}, (6.62)

where β2 = ρheff
1 /σ. In order to evaluate Pe,U1 SIC is implemented after the User 2’s

signal is decoded first. Following the effective implementation of SIC, the signal at

User 1 can be estimated as

y′1 = 2P1ρh
eff
1 s1 + n1. (6.63)

The threshold for User 1 signal detection is ith1 = P1ρh
eff
1 . (6.63) can be solved as

P ′
e,U1 = Q (β2P1) . (6.64)

In case of SIC failure, the signal at User 1 can be expressed as

y′′1 = 2P1ρh
eff
1 s1 + 2P2ρh

eff
1 s2 + n1 − 2P2ρh

eff
1 s̃2, (6.65)

where s̃2 is the incorrectly decoded User 2’s signal at User 1. The error probability

of User 1 when User 2’s signal is incorrectly decoded at User 1 can be given as in

(6.66).

P ′′
e,U1P

U1
e,U2 =P (y′′1 = 1 | s1 = 0, s̃2 = 1)P (s̃2 = 1 | s1 = 0, s2 = 0)P (s1 = 0)P (s2 = 0)

+ P (y′′1 = 1 | s1 = 0, s̃2 = 0)P (s̃2 = 0 | s1 = 0, s2 = 1)P (s1 = 0)P (s2 = 1)

+ P (y′′1 = 0 | s1 = 1, s̃2 = 1)P (s̃2 = 1 | s1 = 1, s2 = 0)P (s1 = 1)P (s2 = 0)

+ P (y′′1 = 0 | s1 = 1, s̃2 = 0)P (s̃2 = 0 | s1 = 1, s2 = 1)P (s1 = 1)P (s2 = 1) .

(6.66)
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P ′′
e,U1P

U1
e,U2 =

1

4

{
P
(
n1 − 2P2ρh

eff
1 > ith1

)
P
(
n1 > i′th2

)
+ P

(
2P2ρh

eff
1 + n1 < ith1

)
P
(
2P2ρh

eff
1 + n1 < i′th2

)
+ P

(
2P1ρh

eff
1 + n1 − 2P2ρh

eff
1 < ith1

)
P
(
2P1ρh

eff
1 + n1 < i′th2

)
+P

(
2P1ρh

eff
1 + 2P2ρh

eff
1 + n1 < ith1

)
P
(
2P1ρh

eff
1 + 2P2ρh

eff
1 + n1 < i′th2

)}
.

(6.67)

Using the same approach as in (6.56) and (6.57), Eq. (6.67) can be solved as:

P ′′
e,U1P

U1
e,U2 =

1

4
Q (β2 (P1 + 2P2))Q (β2P2) +Q (β2 (P1 − 2P2))Q (β2P2)

+Q (β2 (P1 − 2P2))Q (β2 (P2 − 2P1)) +Q (β2 (P1 + 2P2))Q (β2 (2P1 + P2)) .

(6.68)

Finally, substituting (6.68), (6.62), and (6.64) in (6.59), the error probability of User

1 can be calculated.

6.2 Secrecy sum rate optimization

In this section, we formulate the SSR maximization problem under the constraints

on total power transmitted by LED, roll and yaw angles of MA elements of the

OSTAR-RIS, refractive index of the LC cell and power allocation factor for NOMA

scheme.
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Using (6.52), the SSR maximization problem is formulated as

max
{γMA,ωMA,ηc}

R̂sec,

s.t.C1 :
K∑
j=1

Pj = PT ,

C2 : −π
2
≤ ωMA ≤ π

2
,

C3 : −π
2
≤ γMA ≤ π

2
,

C4 : 1.5 ≤ ηc ≤ 1.7,

C5 : 0.2 ≤ α ≤ 0.6. (6.69)

In the problem (6.69), R̂sec is SSR to be maximized within the given constraints. For

maximizing the SSR the OSTAR-RIS angles γMA and ωMA can take values within

the range [−π/2 π/2]. The refractive index of the LC cell can be varied in the limits

1.5 to 1.7, and the power allocation factor (α) for the NOMA scheme can be varied

between 0.2 to 0.6.

6.3 PSO-based optimization method

In this section, PSO-based optimizer is proposed to minimize the SSR. PSO is an

evolutionary algorithm proposed by Eberhart and Kennedy [73] that starts with

a random solution and iteratively improves it to find the optimal solution, similar

to the simulated annealing algorithm. It evaluates solutions based on their fitness.

PSO follows the best solutions found so far to locate the global optimum. Because

of its efficient search capabilities, PSO is effective for solving multi-objective opti-

mization problems. Thus, the PSO-based optimization algorithm can be applied

to solve the optimization problem given in (6.69), owing to its simplicity, less com-

plexity and its ability to efficiently explore complex search spaces as compared to

an exhaustive search. In PSO each particle symbolizes a possible solution to the

optimization problem. The algorithm used is presented in Algorithm 5. First, the

PSO parameters, such as particle position and velocity, are randomly initialized,

and we set the maximum iterations to 120. To determine the fitness value, particles

modify their movement based on their own experience and the experience of other
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Algorithm 5 PSO-based secrecy rate optimization algorithm.

% Initialization: Initialize PSO parameters, particle position and velocity. Swarm
size (Np = 40), maximum iteration (imax) = 120
% Computation:
for i = 1; i++

1. Evaluate Rsec for each particle to estimate the local and global best solution.

2. Update the velocity and position of each particle.

3. Check for constraints on γMA, ωMA, ηc, and α.

4. Go back to (1) and repeat till maximum iterations are reached.

end for
% Output:
Optimum values of γMA, ωMA, ηc, and α.

particles. The fitness function is the SSR that needs to be maximised under the

constraints given in (6.69). The fitness value of all the particles is estimated using

the fitness function, and this value is considered the local optimum for that particle.

The position corresponding to each particle’s local optimum is then initialized ac-

cordingly. Considering a D-dimensional search space and a swarm consisting of NP

particles, each particle’s position is denoted by a vector X. The particle’s velocity,

which guides its trajectory through the search space, is represented by a vector V ,

and is influenced by both its own movement history and that of the other particles.

The tth particle in the population is represented by the position and velocity at the

ith iteration. In the first iteration, the value of Rsec is evaluated for each particle to

estimate the local and best solution. Based on the best solution, the velocity and

position of each particle are updated. Position vector can be expressed as

Xt(i) = [x1t (i), x
2
t (i), . . . , x

D
t (i)]

T . (6.70)

The velocity vector is as follows:

Vt(i) = [v1t (i), v
2
t (i), . . . , v

D
t (i)]

T . (6.71)

As of the ith iteration, the best position searched by particle t is calculated as

P best
t (i) = [p1t (i), p

2
t (i), . . . , p

D
t (i)]

T . (6.72)
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Figure 6.3: Convergence performance of particle swarm optimization algorithm for
(a) non orthogonal multiple access and (b) orthogonal multiple access.

P best
t (i) is also called the local history optimal position. After comparing the fitness

values of each particle, the maximum fitness value, which represents the population’s

global ideal value, is determined. The global optimal position experienced by all

particles in a particle swarm is denoted as

Gbest(i) = min{pbest1 (i), pbest2 (i), . . . , pbestK (i)}. (6.73)

For the next iteration, the velocity and the position of each particle can be updated

as:

vjt (i+ 1) =ω · vjt (i) + c1 · r · (pbest,jt (i)− xjt(i)) + c2 · r ·
(
gbest,j(i)− xjt(i)

)
, (6.74)

xjt(i+ 1) =xjt(i) + vjt (i+ 1), (6.75)

where ω represents the inertia weight and plays an important role in balancing the

global search and local search, r is a random function within the range [0,1], c1

adjusts the particle’s movement towards its personal best position, and c2 directs

the particle towards the global best position in the swarm. c1 and c2 enable the

particles to have the ability to learn both socially and individually, making them

close to the individual optimal position and global optimal position, respectively.

For our application, when using the PSO algorithm, we have considered c1 = 2 and

c2 = 2. The PSO algorithm primarily ensures validity of solutions by optimizing
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Figure 6.4: Sum rate vs signal-to-noise ratio performance of optical simultaneously
transmitting and reflecting-reflecting intelligent surface visible light communication
system.

within the feasible solution space when addressing constraint conditions. Before

proceeding to the next iteration, the constraints on γMA, ωMA, ηc, and α are verified

as specified by constraints C1 to C5. This process repeats until the maximum

number of iterations (imax) is reached. A comparative analysis with the exhaustive

search method is provided to highlight the advantages of the PSO for the proposed

model. Once the optimal values for γMA, ωMA, ηc, and α are obtained, the channel

coefficients for both the users and the eavesdropper are calculated based on these

values.

6.3.1 Computational Complexity

The PSO method has a close performance compared to the benchmark exhaustive

search method with lower complexity. For exhaustive search, the complexity is

O(NNv
d ) where Nd is the number of possible values for each decision variable, and

Nv is the number of decision variables. The values of parameters γMA and ωMA

are searched in the range −pi/2 to pi/2 with interval size π/16, α is searched in the

range 0.2 to 0.6 with interval size 0.1 and ηc is searched in the range 1.5 to 1.7 with

interval size 0.01. Thus, Nd is 94 and Nv is 6. While for PSO, the complexity is

O(Npiconv) where Np is the swarm size considered as 40 and iconv is the total number

of iterations required to reach the optimum solution which is 20.
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Figure 6.5: Impact of varying power allocation factor on individual rate of both the
users.
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Figure 6.6: Impact of line-of-sight blockage on the secrecy sum rate performance of
(a) non orthogonal multiple access and (b) orthogonal multiple access schemes.
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Table 6.1: Simulation Parameters for NOMA OSTAR-RIS aided VLC systems.[1]

Parameter Symbol Specification

Photodetector’s responsivity ρ 0.53 A/w

Photodetector’s FOV ξFoV 85o

Photodetector’s area AD 1cm2

Concentrator refractive index rf 1.5

Gain optical filter Go(ξ) 1.0

Reflection coefficient of mirror array χRIS 0.95

Reflection coefficient of wall χWALL 0.8

Refractive index of air ηa 1

Ordinary refractive index of LC cell ηo 1.5

Extraordinary refractive index of LC cell ηe 1.7

Depth of LC cell D 0.75 mm

Optical signal wavelength λ 510 nm

Electro-optic coefficient Eo 12pm/V

Critical voltage threshold Vth 1.34 V

Bandwidth W 200 MHz

6.3.2 Numerical and Simulation Results

In this section, we present simulation results of the proposed optical RIS-aided

indoor VLC system. Both rooms are considered to have the same dimensions 5×5×3

m. All the users, eavesdropper and possible blockers are considered to be at a height

of 1.65 m, and the receiver is considered to be at a distance of 0.35 m from the body

of the user at a height of 0.85 m. The OSTAR-RIS has 8 rows and 8 columns

with an equal number of MA and LC elements i.e. 32. The reflection coefficients

of the MA OSTAR-RIS element and the wall are 0.95 and 0.8, respectively. The

photodetector’s responsivity with FoV 85o is 0.53 A/W. The half-intensity radiation

angle of the LED is 70o. The photodetector’s area is 1cm2. The refractive index
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of the concentrator is 1.5, and the optical filter gain is 1 [1]. All the simulation

parameters are summarised in Table 6.1.

Figs. 6.3(a) and 6.3(b) illustrate the convergence performance of the PSO al-

gorithm at SNR of 200 dB employing NOMA and OMA schemes, respectively. To

illustrate the effect of LED nonlinearity, different values of ζ and variance of zdis are

considered. It can be observed that by decreasing the value of scaling parameter ζ

or by increasing the value of zdis, the optimum value of the SSR is reduced owing to

the increase in severity of nonlinearity. Considering ζ = 0.9 and zdis = 0.1 the SSR

for NOMA and OMA schemes converges at 1.82× 109 and 5.88× 108. Thus, a gain

of approximate 3 times is observed in SSR on employing NOMA as compared to

OMA. We can observe that the PSO algorithm converges around 10 iterations for

OMA-STAR-RIS VLC system and in around 20 iterations for NOMA-STAR-RIS

VLC system.

Figure 6.4 illustrates the SSR performance of the PSO algorithm for OMA and

NOMA schemes for different values of SNR at different considered values of ς and

variance of zdis. It can be observed that by increasing the value of zdis from 0.1

to 0.15, the optimum value of the SSR for NOMA is reduced from 1.82 × 109 to

1.42 × 109. While for OMA the SSR for NOMA has fallen from 5.88 × 109 to

4.94 × 109. The degradation in the performance on increasing the value of zdis is

expected due to the increase in severity of nonlinearity, which is also in line with

the results obtained in Figure 6.3. For both the cases with considered nonlinearity,

we can observe that the NOMA scheme outperforms the benchmark OMA scheme

by providing a gain of around 3 times at SNR 200 dB. This is due to the fact

that PD-NOMA accommodates multiple users on the same frequency band through

power domain separation while OMA relies on separating users in time which leads

to insufficient utilization of resources.

Figs. 6.5(a) and 6.5(b) depict the impact of the power allocation factor of the

NOMA scheme on the individual performance of User 1 and User 2, respectively.

The simulations are done for different SNR values. For User 1, the sum rate decreases

with a decrease in the SNR value, as can be seen in Figure 6.5(a). The same trend

is observed in Figure 6.5(b) for User 2, emphasizing the sensitivity of users’ rates

on the SNR. The rate achieved by User 1 is higher as compared to User 2, due to
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Figure 6.7: Impact of imperfect SIC on the SSR performance.

the presence of the LoS path in Room 1, which carries maximum channel strength.

Further, it can be seen that on increasing the power allocation factor the rate of

User 2 enhances while the rate of User 1 deteriorates further. As expected, with

more power allocated to User 2 on increasing the power allocation factor the rate of

User 2 increases.

Figs. 6.6(a) and 6.6(b) depict the impact of the presence of blockage on the

rate of User 1 employing both OMA and NOMA schemes. As already stated, the

LoS link has the maximum strength and, as a result, has a larger impact on the

user rate. For scenario of blockage in Room 1, we have considered ι = 0 in (9),

similarly, for blockage free scenario ι = 1. For both NOMA and OMA a loss of

around 2.4990× 106. It can be inferred that the presence of blockage degrades the

rate of User 1 as LoS link with maximum channel strength is blocked. This further

necessitates the deployment of OSTAR-RIS in VLC system as a promising solution

to overcome the drawbacks of LoS blockages.

Figure 6.7 shows the SSR performance of the proposed indoor OSTAR-RIS VLC

system in the presence of an eavesdropper while considering imperfect SIC. The

perfect SIC is the case where, ϵ = 0. It can be seen that by increasing the SIC

error, the SSR of the proposed system degrades. The worst performance is observed

when the SIC error is considered to be ϵ = 0.1. Due to imperfect SIC, User 1 can

not successfully discard the information of User 2, which leads to inaccurate signal

decoding of User 1 and residual interference, ultimately degrading the SSR of the
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Figure 6.8: BER performance of NOMA considering imperfect CSI.
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Figure 6.9: BER performance of OMA and NOMA considering perfect SIC and CSI.

NOMA system.

Figure 6.8 shows the BER performance of the proposed indoor NOMA OSTAR-

RIS VLC system in the presence of an eavesdropper while considering imperfect

CSI and perfect SIC. The perfect CSI is the case with σ2
ϵn = 0. It can be seen that

by increasing the CSI error, the BER of the proposed system degrades. The worst

performance is observed when CSI error is considered to be σ2
ϵn = 20 × 10−5. The

degradation in performance is due to imperfect CSI, which leads to inaccurate power

allocation, ineffective SIC, and increased interference in the NOMA system.

Figure 6.9 shows the BER results of both OMA and NOMA schemes by varying

the severity of the nonlinearity of LED. Following, three cases of nonlinearity are
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considered: 1) isat = 1.5, and kf = 1, 2) isat = 1.5, and kf = 0.5, and 3) isat =

1.5, and kf = 0.2, where the nonlinearity severity increases as the value of kf

is decreased. The first case with Isat = 1.5, and kf = 1, represents the almost

linear case and is compared with our theoretical BER calculated. As expected, the

performance of both OMA and NOMA schemes is degraded with the increase in the

severity of LED nonlinearity. Although NOMA outperforms OMA in terms of SSR,

however as OMA signalling is interference-free, the simulation results show that

OMA has the best BER performance for both users. Thus it can be concluded that

while NOMA has the advantage of higher spectral efficiency and capacity by serving

multiple users simultaneously, the increased complexity of managing interference and

ensuring effective SIC often results in worse BER performance compared to OMA.

OMA’s orthogonal allocation inherently avoids interference, leading to better BER

performance.

6.4 Summary

This chapter considered an OSTAR-RIS VLC system model impaired by LED non-

linearity with two indoor users, an eavesdropper and possible blockers. However,

the challenges such as LED nonlinearities, limited coverage, signal loss due to block-

ages, and security vulnerabilities impede its performance. The introduction of an

OSTAR-RIS offers a potential solution to enhance coverage and mitigate dead zones.

This chapter further explored the integration of NOMA to enhance the SSR of VLC

systems. Through the application of PSO, which optimizes the reflector elements

of OSTAR-RIS along with the power allocation in NOMA, and the refractive in-

dex of the LC cell of the OSTAR-RIS array, significant improvements are achieved.

Comparative simulations underscore the effectiveness of the proposed optimization

methods, demonstrating their superiority over existing benchmark techniques.
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Conclusions and Future Works

7.1 Conclusions

This thesis presented a comprehensive analysis of various advancements and tech-

niques aimed at enhancing the performance of VLC systems, particularly within

the context of future wireless networks integrating RIS, OSTAR-RIS, and advanced

modulation techniques. VLC is becoming an increasingly promising alternative to

traditional RF communication due to its numerous advantages, such as being en-

vironmentally friendly, cost-effective, and secure. These advantages make VLC a

highly viable candidate for next-generation wireless communication systems, es-

pecially in dense indoor environments where traditional RF-based systems face

challenges such as interference, congestion, and security concerns. However, VLC

systems also face several challenges that need to be addressed for their successful

implementation. These include issues such as LED nonlinearity, which can cause

distortions in the transmitted signals, multipath interference, which arises from re-

flections and scattering of light, ambient noise, which can degrade signal quality,

and coverage limitations due to LoS blockages. These include issues such as LED

nonlinearity, which can cause distortions in the transmitted signals, multipath inter-

ference, which arises from reflections and scattering of light, ambient noise, which

can degrade signal quality, and coverage limitations due to LoS blockages. Addi-

tionally, user mobility and immobility pose significant challenges, as the changing

positions of users can affect the reliability and stability of VLC links, particularly in

dynamic environments. While mobile users may experience Doppler shifts and signal
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fading, immobile users may still face challenges due to fixed obstacles and varying

channel conditions. These mobility-related factors further complicate the design and

deployment of VLC systems. The proposed RFF-based post-distortion technique for

OTFS in nonlinear VLC demonstrated superior BER performance in dynamic VLC

environments, showing its robustness and effectiveness in real-world scenarios. In

addition, a ZA-LMS sparse channel estimator was proposed for multi-carrier VLC

systems, taking advantage of the inherent sparsity in the delay-Doppler domain of

the channel. The ZA-LMS algorithm significantly outperformed traditional channel

estimation methods, providing more accurate channel estimation, which is crucial

for achieving high data rates and reliable communication. Furthermore, the research

introduced rate-maximization strategies for RIS-aided indoor VLC systems through

Q-Learning, a reinforcement learning technique. Using a function-approximated

learning approach, RIS was effectively utilized to enhance the system’s data rates,

overcome LoS blockages, and adapt to user movement, demonstrating its potential

to significantly improve VLC performance in indoor environments. The study also

explored the use of CSK modulation along with a DNN-based symbol detector for

OSTAR-RIS-aided VLC, which greatly improved the BER and data rates while mit-

igating interference. This hybrid approach, combining advanced modulation tech-

niques with deep learning, proved to be highly effective in addressing the limitations

posed by interference in VLC systems. In addition, the integration of NOMA with

OSTAR-RIS was explored to further enhance spectral efficiency and increase the

SSR, an important metric for securing communication in multi-user environments.

A PSO-based optimization framework was designed for SSR maximization under re-

alistic constraints, demonstrating the potential of NOMA to increase capacity while

simultaneously improving security in multi-user VLC environments.

The thesis comprehensively addresses the practical requirements necessary for

implementing the advanced VLC techniques and algorithms it proposes. To real-

ize OTFS modulation and its hyperparameter-free RFF-based post-distorter, VLC

systems must employ high-speed LEDs with sufficient modulation bandwidth and

photodetectors capable of wide dynamic range and fast response. Real-time digital

signal processing hardware, such as FPGAs or high-performance DSPs, is essen-

tial to handle the computational demands of OTFS transformations, kernel-based
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post-distortion, and message passing detection. For RIS- and OSTAR-RIS-assisted

systems, the deployment of tunable metasurfaces-such as mirror arrays or liquid crys-

tal elements-requires precise mechanical or electronic control to dynamically adjust

reflection and refraction angles, along with a controller capable of running reinforce-

ment learning algorithms for optimal configuration in response to user mobility and

blockage scenarios. Implementing CSK modulation and DNN-based symbol detec-

tion demands multi-channel RGB LED arrays with accurate color calibration, as well

as embedded processors or GPUs for training and inference of deep learning models.

NOMA and advanced resource allocation schemes necessitate sophisticated driver

circuits for power-domain multiplexing and robust software for real-time optimiza-

tion of power allocation, user scheduling, and successive interference cancellation.

Across all these techniques, accurate channel modeling and estimation-often lever-

aging ray-tracing tools or stochastic models-are vital, as is the integration of robust

error correction and security protocols to meet the reliability and privacy require-

ments of practical deployments. Finally, adherence to industry standards (such as

IEEE 802.15.7) and careful system calibration for illumination constraints, safety,

and interoperability are crucial for translating these research advances into scalable,

real-world VLC solutions.

In conclusion, this thesis provides valuable insights and practical design guide-

lines for the future development of VLC systems. By leveraging advanced mod-

ulation techniques, machine learning, and RIS technologies, it presents innovative

solutions to overcome the challenges associated with VLC, including interference,

mobility, and coverage limitations. These advancements represent significant steps

toward the realization of high-performance VLC networks that are capable of achiev-

ing high data rates, reliability, and adaptability, particularly in complex indoor envi-

ronments. Furthermore, the integration of these technologies positions VLC as a key

enabler for the next generation of wireless communication systems, laying the foun-

dation for the development of VLC networks in the realms of 5G, and the emerging

6G technologies. These advancements are pivotal in shaping the future of wire-

less communication, offering new possibilities for secure, efficient, and sustainable

communication systems.
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7.2 Future Works

� In this work, MIMO techniques are not explored for dynamic OTFS-aided

VLC systems. However, considering the inherent advantages of MIMO in ad-

dressing challenges related to capacity, reliability, and coverage, it becomes

crucial to analyze and optimize MIMO for such systems. In the literature,

MIMO techniques have been widely recognized for their ability to exploit spa-

tial multiplexing and diversity, which significantly improve data rates and

robustness in VLC systems. Integrating MIMO with OTFS—a modulation

scheme known for its superior performance in multipath and high-mobility

scenarios—has the potential to further enhance the efficiency and reliability

of VLC systems, particularly in dynamic environments where challenges like

signal fading, LED non-linearity, and mobility-induced alignment issues are

prevalent.

� Analyzing the performance of movable-ORIS-aided VLC systems for dynamic

scenarios is essential for addressing real-world communication challenges. In

this work fixed ORIS is considered to be mounted on a wall which does not

cater to the need of mobile users. Movable-ORIS introduces a layer of adapt-

ability that can dynamically adjust its orientation or position to maintain op-

timal link quality, even in environments with mobility or changing obstacles.

Dynamic scenarios bring challenges like frequent misalignment, rapid changes

in line-of-sight (LoS) conditions, and multipath propagation. By incorporat-

ing movable-ORIS, the system can actively reconfigure itself to optimize the

channel gain and mitigate impairments like signal blockages or multipath fad-

ing.

� In this work, movement of multiple users is not considered which leads to

communication conditions which are constantly evolving. ORIS with OTFS-

based VLC systems presents a promising research avenue to address challenges

such as limited coverage and LoS blockages. In traditional VLC systems, LoS

is critical for maintaining high signal quality, but obstacles, mobility, and

dynamic environmental changes can lead to significant signal degradation. By
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combining IRS technology with OTFS modulation, it becomes possible to

dynamically manipulate signal propagation and improve system robustness in

such scenarios.

These future directions could significantly enhance the performance, robustness, and

versatility of VLC systems in practical scenarios.
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