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ABSTRACT  

Memristive Crossbar Array-based Frameworks for Image 

Analysis and Classification  

by 

Kumari Jyoti 

Department of Electrical Engineering 

Indian Institute of Technology Indore 

Supervisor: Prof. Shaibal Mukherjee, and Prof. Ram Bilas Pachori  

This thesis explores application of an yttrium oxide (Y₂O₃)-based 

memristive crossbar array (MCA) model, MCA developed through a dual 

ion beam sputtering system, for high cyclic stability in resistive switching 

applications. The experimentally obtained data from the fabricated MCA 

was validated against an analytical MCA-based model, showing excellent 

alignment with experimental results. Utilizing this validated model, we 

applied it to biomedical image processing, specifically in analysing 

computed tomography (CT) and magnetic resonance imaging (MRI) 

images, through a two-dimensional image decomposition technique. By 

employing varying decomposition levels and threshold values, we 

evaluated reconstructed image quality through metrics such as peak 

signal-to-noise ratio (PSNR), structural similarity index (SSIM), and 

mean square error (MSE). In our analysis, MRI and CT scan images 

exhibited compression ratios of 21.01% and 47.81% using Haar and 

18.82% and 46.05% with biorthogonal wavelets. Brightness analysis 

showed significant improvements in image quality, with increases of 

103.72% for CT scans and 18.59% for MRI images using Haar wavelets. 

These findings underscore the potential of the MCA-based model for 

image compression, facilitating reduced computation times and storage 

requirements in biomedical engineering. 

In light of the COVID-19 pandemic, the MCA model is further applied to 

a two-dimensional tunable Q-wavelet transform (TQWT) for 

decomposing chest X-ray images from two distinct datasets, supporting 

rapid and cost-effective COVID-19 detection for further diagnosis. 
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TQWT achieved optimal results in terms of PSNR and SSIM at a quality 

factor (Q) of 4, oversampling rate (r) of 3, and decomposition level (J) of 

2. Processed images were then classified using ResNet50 and AlexNet 

convolutional neural networks (CNNs), achieving average accuracies of 

98.82% and 94.64% for small and large datasets, respectively, 

outperforming conventional deep learning methods. Compared to CMOS-

based technology, the proposed approach offers enhanced accuracy with 

lower power, area, and cost requirements, making it a viable solution for 

rapid and accurate COVID-19 detection. 

The MCA model also demonstrated high efficacy in detecting lung 

diseases like pneumonia. Using chest X-ray images from two datasets, 

this study employed a TQWT and MCA-based model to classify lung 

conditions through CNNs, achieving an average accuracy of 99.24% with 

EfficientNet and significant gains in efficiency over other conventional 

methods. Additionally, the novel Y₂O₃-MCA model, with a custom-

designed activation function, showed a classification efficiency of 

99.94%, surpassing the conventional sigmoid function. 

This thesis also covers digit recognition and glaucoma detection. For digit 

recognition, a convolutional neural network (CNN) with a ReLU 

activation function was applied to the MNIST dataset, yielding efficient 

feature extraction and storage through a memristive system. In glaucoma 

detection, the integration of MCA with two-dimensional Fourier-Bessel 

series expansion empirical wavelet transforms (2D FBSE-EWT) and 

EfficientNet CNN achieved a high PSNR of 26.23 dB and SSIM of 

95.38%, resulting in an impressive 94.15% accuracy in glaucoma 

classification. Further applications in agriculture demonstrated the 

model’s capacity to classify soybean leaf diseases with an accuracy of 

94.3%, presenting a scalable and sustainable solution for real-time disease 

monitoring in agriculture. 

The Y₂O₃-based MCA model presents a versatile and powerful tool for 

diverse applications in biomedical imaging, disease diagnosis, and 

agriculture. Its robust performance in image compression, classification 

accuracy, and energy efficiency highlights the potential of memristive 

systems to address real-world challenges in cost-sensitive and data-



xxiv 
 

intensive fields. 

Future research will aim to integrate this memristive model with Internet 

of Things (IoT) devices for continuous monitoring in healthcare and 

agriculture, allowing for real-time data acquisition and processing. 

Additional work will also focus on refining classification algorithms to 

enhance accuracy and robustness further, making the system adaptable to 

various other applications in machine learning and deep learning 

frameworks. 
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Chapter 1  

Introduction 

1.1. Motivation 

The most familiar basic circuit elements describing the relation 

between the parameters in a circuit like voltage (v), current (i), charge 

(q), and flux (ϕ) are resistors, capacitors, and inductors as shown in 

Fig. 1.1. Leon Chua proposed a new fundamental circuit element in 

1971, which would relate flux and charge and hence complete 

symmetry [1]. He named it the ‘memory resistor,’ or memristor, 

theorizing that it could retain its last applied state and switch between 

states accordingly. Also postulated that a memristor’s I-V characteristic 

is a unique hysteresis loop which is slightly pinched. The very first 

physical realization of the element was successful in 2008 when a team 

of HP researchers which was led by Stanley Williams fabricated a 

device that mimicked the I-V characteristics of a memristor [2]. 

Afterwards, the exploration in the field of memristors and its 

applications has been continuing [2,3]. 

 

Figure 1. 1: Schematic shows image processing using MCA based 

model 
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Because a memristor’s dynamic characteristic is based on the previous 

history of applied voltages and currents passed through it, a memristor 

model can be described by two different equations. One of them 

establishes the relationship between the current and voltage across it 

while the other equation establishes the relationship between the state 

variable, an intrinsic property of the memristor, and time [3, 4].  

As shown in Fig. 1.1, the performance of the biological brain in terms 

of brain-inspired computing is modelled using memristive devices. In 

biological systems, neurons and synapses include dendrites positioned 

between pre-neurons and post-neurons via synapses. Information is 

transferred to the synaptic terminal through the axon, which functions 

similarly to artificial memristive neurons. This study uses an analytical 

model of a memristive device, featuring a structure with gallium zinc 

oxide (GZO) as the bottom electrode, aluminum (Al) as the top 

electrode, and Y2O3 as the resistive switching layer [5]. The 

memristive device-based model is activated by voltage (v) 

corresponding to pixel values VR1, VR2, ..., VRM, with a normalizing 

voltage VAvg. It generates spike events via the membrane, analogous to 

the soma of a neuron [5]. The concept of memristive biological 

neurons is inspired by the intricate structure and complex functioning 

of biological neurons found in the human brain. These artificial 

neurons mimic the way biological neurons process and transmit 

information, utilizing memristive devices to emulate synaptic 

behaviours such as learning and memory retention. Memristive 

biological neurons hold significant potential in the realm of artificial 

intelligence, particularly for tasks that require efficient and accurate 

image classification. By leveraging the unique properties of 

memristors, these neurons can process vast amounts of data swiftly and 

with high precision, thereby enhancing the performance of AI systems 

in recognizing and categorizing images [5]. A memristive model-based 

framework, characterized by lower power consumption compared to 

CMOS based systems, has the potential to scale these technological 
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constraints. When it comes to tasks like pattern processing, the 

memristive model shows better processing speed and energy efficiency 

than Von Neumann circuits especially when applied to neural networks 

[5]. Extensive research has been conducted on utilizing memristive 

model for various applications, including neuromorphic computing 

particularly in neural network applications. 

1.2. Memristor 

A memristor device can be controlled by current, voltage, charge or 

flux as per the equations 1.1, 1.2, 1.3 and 1.4 given below [1]: 

𝑣(𝑡) = 𝑀(𝑞(𝑡))𝑖(𝑡)             (1.1) 

𝑖(𝑡) = 𝑊(𝜙(𝑡))𝑣(𝑡)            (1.2) 

𝑊(𝜙) =
𝑑𝑞(𝜙)

𝑑𝜙
                   (1.3) 

𝑀(𝑞) =
𝑑𝜙(𝑞)

𝑑𝑞
                     (1.4) 

where M, the memristance, has the unit of resistance (Ω) and W, the 

memductance, has the unit of conductance (Ω−1) including v, i, q, ϕ 

represents voltage, current, charge and flux with time, ‘t’. The 

memristor acts like a resistor when there is no variation in M. The 

memristance, M is the functional relation between the charge held in 

the memristor and magnetic flux as shown in Fig. 1.2 (a). This 

increases when the electric current flowing through the device is in one 

direction. When the current flowing through the device is along the 

opposite direction, the memristance decreases [4-7]. Then when power 

supply is absent, the electrical resistance freezes until power is 

restored, then the memristor will remember the last state of the 

resistance, this is the unique property of the memristor and this 

property is the essence of its non-volatility which makes it suitable for 

many applications such as resistive random-access memory (RRAM) 

[8], neuromorphic computing [9], logic gates [10], etc. 
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Traditional architectures, such as von Neumann machines, encounter 

limitations when addressing the computational demands of image 

processing. Memory bottlenecks and data transfer inefficiencies often 

hinder the real-time processing of large and complex image datasets [4, 

5]. Memristors, characterized by their non-volatile nature and analog 

resistance changes, present a paradigm shift by enabling in-memory 

computing directly within the storage unit. This aligns seamlessly with 

the requirements of image processing, where simultaneous data 

processing and storage are paramount [6]. The motivation extends 

beyond the mere optimization of computational efficiency. 

Memristors, when configured in crossbar arrays, exhibit neuromorphic 

properties, mirroring the synaptic behaviour of the human brain. This 

opens avenues for advanced image recognition systems that can learn 

and adapt, thereby enhancing the overall capabilities of image 

processing applications. The potential energy efficiency gains afforded 

by memristive image processing systems are noteworthy [7]. The non-

volatile nature of memristors eliminates the constant power 

requirements for data retention, reducing overall power consumption. 

This holds significant implications for portable and edge computing 

devices, where energy efficiency is a critical concern. 

(a)  
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(b)  

Figure 1. 2: Relationship between (a) fundamental circuit elements and 

basic circuit parameters, and (b) the operation of a memristive device. 

 

Applications that are based on memristive devices need an appropriate 

model for research and during the simulation of the system. The first 

ever practical model of a memristor was introduced by the scientists of 

HP lab. The HP memristor model works on the principle of the drift of 

oxygen vacancies. The HP lab memristor model comprises of 

Pt/TiO2/Pt sandwiched structure as shown in Fig.1.2. Positively 

charged oxygen vacancies are present on one side of the TiO2 oxide 

layer in the HP lab’s model. It is sandwiched between the two layers of 

platinum [11]. The doped part of oxide layer has low resistance 

behaviour while the high resistance behaviour is demonstrated by an 

undoped portion of the oxide layer. On an application of appropriate 

voltage, the drift of ions in the middle of doped and undoped region 

leads to a variation in the doped region’s width, the doped region’s 

width is considered as the state variable [12]. Also, when the doped 

region’s width is nearly zero, the memristor reaches a high resistance 

state (HRS) and when the width of the region approaches a boundary, 

the memristor reaches a low resistance state (LRS). Since the 

dimensions of memristor are very small (~nm), a low excitation in the 

supply can lead to a variation in the doped region, in this way the 

resistance of the device fluctuates in between HRS and LRS [3].  

1.3. Image Decomposition 
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The integration of memristors emerges as a compelling and innovative 

approach, motivated by the intrinsic properties of these memory 

resistors. Image processing tasks often demand efficient storage, rapid 

retrieval, and intricate pattern recognition, posing challenges to 

conventional computing architectures. The motivation behind 

incorporating memristors lies in their unique ability to revolutionize 

the way we handle and manipulate visual data [13].  

Memristor, and the concept is used for doped and undoped interface 

and interface between electrodes. The doped region changes according 

to the input signal that has been applied. Also, in this model, the 

vacancies can drift over the complete length of a memristor. But it has 

been reported that the vacancies drift in a non-linear way near the 

interfaces of the boundary [14]. That is due to the non-linear drift of 

vacancies caused by a large electric field even for a small excitation 

signal. Another problem in the linear drift model is non-zero boundary 

conditions, i.e., the state variable never reaches zero. Which indicates 

the scarcity of oxygen vacancies and because of the lack of undoped 

region, the doped region is not able take the complete length because 

of which the memristor cannot work [14].  

The memristive systems are promising candidates for next-generation 

high performance [1, 2], dense computing architecture [2-4], and data 

storage [3, 4] applications and could also be used to realize Boolean 

operations [2]. The memristor based memory architecture has offered 

higher density as a data storage medium as compared to common 

architectures [1]. Memristive system offers many outstanding physical 

characteristics such as non-volatile nature [2, 3], low leakage current 

[5], and nano-level device dimension [6]. Further, it is widely 

recognized that the energy consumption in memristive devices and 

circuits is significantly less which further attracts a substantial global 

interest in in-memory computation [3, 4], image processing [6], 

neuromorphic computation [7], and logic operations [2]. Moreover, 

memristive systems are being applied in various fields of image 

processing, such as pattern recognition and edge detection [8]. Zhu et 
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al [9] have recently demonstrated an algorithm for memristive crossbar 

array (MCA)-based image enhancement. Further, Cai et al [10] and 

Mannion et al [8] have proposed methods for feature extraction and 

analysis using memristor based networks. Owing to their attractive 

properties such as non-volatility [5] and compatibility with the 

complementary metal-oxide semiconductor (CMOS) fabrication 

process [1, 11], memristive devices are one of the most suitable 

substitutes for next generation memory technologies [2, 12]. To 

achieve substantially high-density memories, MCA architecture is 

utilized which offers a matrix-like structure [13]. Such MCA-based 

analytical model is used for image processing by taking natural basis 

function for computation as it shows an analogy memory functionality 

and is also able to perform parallel computing tasks known as 

memcomputing which consists of array-like structures [14, 15]. These 

structures have large numbers of MCA on board were complex, and/or 

neuromorphic computations take place. 

Our research group has demonstrated the fabrication of memristive 

device based on Y2O3 oxide [6, 14] and developed the analytical 

models [7]. These developed analytical models show a strong 

correlation with the reported data of fabricated MCA by incorporating 

the non-linear behaviour [13, 14]. Further, these models are also 

utilized to analyse the various neuromorphic characteristics such as 

learning behaviour and synaptic plasticity of the MCA and are 

immensely beneficial for the implementation of hardware for neural 

systems. Y2O3- based MCA architecture has been fabricated by 

utilizing a dual ion beam sputtering (DIBS) system [6]. The DIBS 

system is used to deposit the insulating layer, bottom electrode, and 

resistive switching layer as it produces high-quality thin films with 

better compositional stoichiometry, low surface roughness, and 

provides excellent adhesion at room temperature as compared to other 

sputtering systems [6, 14]. DIBS supports controlled deposition and 

provides ease of fabrication as the number of defects in different 

regions of the film can be suitably controlled by modifying oxygen 
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partial pressure during thin film growth [6]. These MCA fabricated 

experimental results used to design analytical model, that analytical 

model further used in image processing. 

1.4. Image Classification 

MCA brings a new opportunity for the advancement of computer 

technology as well as the development of image processing, which 

includes importing the image via image acquisition tools, analysing, 

and manipulating the image. Generally, software or hardware 

techniques can be used to implement image compression methods [15]. 

Software techniques generally rely on image compression approaches 

by employing the forward transform phase which consists of a vector-

matrix multiplication and matrix transpose. Due to large computational 

costs and unrealistic memory requirements, such procedures are not 

appropriate for real-time applications [15-17]. Furthermore, the 

memristor based synaptic devices with inherent learning and memory 

functions are more suitable for image compression methods. These 

synaptic devices are realized through a metal-insulator semiconductor 

(MIS) structure that offers nonlinear transmission characteristics, long-

term plasticity, and short-term plasticity which are beneficial for the 

transmission and storage of compressed images [5]. In today’s world 

of Big Data analysis and emerging IoT applications across various 

domains of security, healthcare [17], social media, large scientific and 

engineering experiments, and image compression plays a crucial role 

in efficient storage and fast communication by removing redundant 

data [4, 18].  

COVID-19, caused by the novel SARS-CoV-2 virus can be understood 

as a type of pneumonia [19]. Patients diagnosed with COVID-19 suffer 

from dry cough, sore throat, and fever which may lead to organ failure 

[20]. The most prevalent method to diagnose COVID-19, the real-time 

reverse transcription-polymerase chain reaction (RT-PCR) test takes 

around 10 to 15 hours to produce the result, making the diagnosis 

process very slow [21]. Another way to diagnose COVID-19 is the 
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rapid diagnostic test (RDT) which takes 30 minutes to give the result. 

Even though the RDT method is faster, it is less reliable [22]. There is 

a need to explore other methods for COVID-19 diagnosis, especially in 

a populous country like India and many countries in the Asian 

subcontinent. Various studies have shown that COVID-19 affects the 

lungs of the patient. Hence chest X-ray images of suspected patients 

are the most feasible method to detect COVID-19 at an early stage [4]. 

Clinical imaging data are one of the most crucial diagnostic bases in all 

COVID-19 diagnostic data. Unfortunately, drawing the target area of 

medical images manually is a time-consuming and laborious task. It 

increases the burden on the clinicians given the complexity. Therefore, 

computer technology can be used to diagnose the disease using 

medical imaging techniques [13]. Deep learning techniques, which are 

a subset of machine learning techniques, have been explored to 

diagnose COVID-19 automatically using chest X-ray images [23]. 

Convolutional neural networks (CNNs), specially designed for images, 

are a class of deep neural networks in deep learning [24]. Residual 

neural network (ResNet) is a deep CNN, which is used for feature 

extraction and classification [8]. ResNet50 has been applied in various 

image recognition and classification applications such as metastatic 

cancer recognition [9], hyperspectral image classification [10], and 

chromosome classification [11]. On the other hand, AlexNet is an 8-

layer model with 5 convolutional layers and 3 fully connected layers 

[12], which has various applications in image processing like 

identification of maize leaf disease [13], COVID-19 virus detection, 

and power equipment classification [14], scene image classification 

[15]. ResNet50 and AlexNet are two CNN models explored in this 

work for the classification of chest X-ray images that are preprocessed 

by a wavelet decomposition technique called tunable Q-wavelet 

transform (TQWT) [18-25]. The images are decomposed by setting 

TQWT parameters, namely quality factor (Q), oversampling rate (r), 

and the number of decomposition levels (J), to their optimized values. 

TQWT is described in detail in the later sections. The usage of TQWT 
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to decompose the input chest X-ray images for classification 

application using an MCA-based model is novel and has not been 

reported elsewhere to the best of the author’s knowledge. Performance 

of proposed model computed for two-class classification of chest X-

ray image databases such as COVID-19 and normal class.  

The current ongoing deep learning technologies are based on CMOS 

circuits which have more operations in computation [17], area 

consumption, energy consumption [18], processing time, and power 

consumption [26]. These technological limitations can be overcome 

using the MCA as these significantly reduce the power consumption as 

compared to the CMOS-based conventional systems [20]. MCA is 

gaining popularity in various domains of image processing, such as 

pattern recognition and edge detection [5]. 

MCA is more efficient in terms of energy as well as processing time as 

compared to the traditional Von Neumann circuits in some applications 

such as pattern processing [22-27]. The energy consumption of a 

memristor-based RRAM is less which attracts a lot of attention to in-

memory computation for various applications [17]. Various studies on 

memristor-based accelerator architectures and memristor-based 

architectures for neuromorphic applications have been previously 

published. In conventional CMOS-based neural networks, the neurons 

are represented by capacitors that are bulky and occupy a large area, 

thus making the integration of a large number of neurons in a chip 

extremely challenging. On the other hand, by representing the neural 

parameters with the resistance state of memristor cells [25], an MCA 

can work as a dot-production engine and can eliminate the data transfer 

overhead of numerous neural weights.  

Glaucoma, primarily occurs due to an imbalance between fluid 

production and drainage, resulting in increased pressure on the optic 

nerve head (ONH) and subsequent damage [23, 24]. As a leading cause 

of blindness, glaucoma often manifests without early-stage symptoms 

[25]. The condition is characterized by elevated fluid pressure within 

the optic nerve, resulting from a blockage in the eye’s drainage system, 
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ultimately causing damage to the ONH [26, 27]. Deterioration of the 

optic nerve can be detected through fundus images, leading to 

structural alterations in the optic nerve head and impacting vision [27].  

  It is crucial to prioritize early detection and diagnosis of glaucoma 

owing to its cause blindness in the absence of prompt intervention [25]. 

Recently, biomedical imaging technique has emerged as a formidable 

tool for the non-invasive detection and diagnosis of a wide variety of 

human diseases [26]. The biomedical imaging field, stemming from 

the discovery of X-ray [3] has seen the development of diverse 

imaging models, including electromagnetic spectrum, radio, 

ultrasound, microscope, and others imaging techniques [5]. Moreover, 

eye diseases can be similarly detected early by employing biomedical 

imaging techniques, particularly fundus imaging [5]. Among the 

diseases that can be detected and diagnosed from fundus images, 

glaucoma detection and diagnosis is an active area of research due to 

the potential severity of the condition. Glaucoma can take different 

forms, the most common is primary open angle glaucoma, which 

gradually affects vision [25]. There is also angle closure glaucoma, 

where eye pressure suddenly spikes, requiring urgent attention [26, 

27]. Some individuals experience normal tension glaucoma, where eye 

pressure remains normal, but vision is still in danger. Secondary 

glaucoma and different types can result from various eye or body 

conditions, making it vital to pinpoint the specific type for the right 

treatment and the protection of your eyesight [24]. The proposed 

research aims to precisely categorize fundus images, to detect signs of 

glaucoma or normal conditions, particularly in cases where the cup 

size varies. Early detection of glaucoma is paramount in preventing 

long-term vision loss [26]. 

In recent years, several automated machine-learning algorithms have 

been developed for glaucoma diagnosis using fundus images. 

Encompassing those different approaches have been explored, such as 

artificial neural networks (ANN) [6], support vector machines (SVM) 

[7], Gabor transform [8], Radon transform [9], wavelet-based 
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decompositions [5], and deep learning (DL) techniques [11]. However, 

these methods employ various image preprocessing techniques, and 

classification algorithms using CNNs to detect glaucoma. Henceforth, 

DL ensemble EfficientNetb0 model using two-dimensional Fourier 

Bessel series expansion empirical wavelet transforms (2D FBSE-

EWT) with MCA based model has shown promising performance in 

glaucoma detection and diagnosis compared to traditional machine 

learning and DL algorithms [11]. Furthermore, the traditional methods 

have encountered several challenges in decomposing 2D signals, due 

to limitations such as interference, incompatibility with non-stationary 

signals, lack of adaptability, and limited scale coverage [3]. While the 

2D FBSE-EWT [21] is adaptive in nature, it suffers from interference 

and redundancy issues in image spectrum segmentation. The proposed 

method introduces various advantages 2D FBSE-EWT employs non-

stationary basis functions, enhancing its suitability for real-world 

signal representation and analysis compared with Fourier transform 

(FT). The 2D FBSE-EWT techniques utilize grouping operations, 

enabling the attainment of any decomposition level in a single 

computation, without distortion of amplitude and phase in the filtered 

signal. Boundary detection in the 2D FBSE-EWT domain using the 

instantaneous frequency method imparts robustness to noise. 2D 

FBSE-EWT exclusively provides positive frequencies to real signals, 

facilitating the straightforward implementation of the adaptive wavelet 

transform. The length of 2D FBSE-EWT coefficients is half that of the 

signal, allowing the 2D FBSE-EWT method to effectively separate 

closely spaced frequency components [3, 12]. Thus, this work 

investigates the motivation and significance of employing 2D FBSE-

EWT as an effective technique for expanding functions in such 

domains. 

In this paper, an advanced approach is proposed using FBSE-based 

spectrum instead of FT based spectrum for improved segmentation and 

boundary identification [13, 14]. The method introduces a 2D FBSE-

EWT with MCA-based model, incorporating multi-frequency scales 
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for boundary detection. The proposed methods are then applied to 

fundus image decomposition and classification for glaucoma disease 

detection and diagnosis. 2D FBSE-EWT is particularly well-suited for 

non-stationary signals as it employs non-stationary Bessel functions as 

a basis set represented as Bessel 0 and Bessel 1 of order 0 and order 1, 

respectively. Unlike the FT, FBSE exclusively represents real signals 

with positive frequencies, simplifying the application of filter-based 

decomposition techniques and reducing distortion. Furthermore, 2D 

FBSE-EWT generates unique coefficients of the same length as the 

original signal, providing twice the frequency resolution compared to 

FT. These unique characteristics make 2D FBSE-EWT a compact 

representation option for wide-band signals, capitalizing on the non-

stationary characteristics and amplitude modulation of Bessel 

functions, which can be advantageous for various applications [1-3]. 

Deep learning technologies currently rely on CMOS circuits, which 

suffer from drawbacks such as high computation operations, area 

consumption, energy consumption, processing time, and power 

consumption [15] compared to the MCA-based model. To overcome 

these limitations, MCA-based model offers a promising solution by 

significantly reducing power consumption compared to conventional 

CMOS-based systems [16]. The adoption of MCA-based model has 

gained power in image processing domains, including pattern 

recognition and edge detection, due to its advantages as mentioned 

above. 

Patients who have infectious lung diseases exhibit symptoms such as 

fever, sore throat, and dry cough, which can ultimately lead to organ 

failure [1]. Pneumonia is a severe respiratory infection that can be life-

threatening, especially for the elderly, infants, and individuals with 

compromised immune systems. Early detection is crucial for effective 

treatment and better patient outcomes. Leveraging advanced 

technologies like memristive device-based model in conjunction with 

CNNs offers a promising approach for improving the accuracy and 

speed of pneumonia detection using chest X-ray images. Although RT-
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PCR is the most widely used method for detecting pneumonia, 

COVID-19, and lung cancer, it is a time-consuming process that takes 

10 to 15 hours to provide results [2]. Therefore, densely populated 

countries need to explore alternative diagnostic techniques for 

identifying infectious lung diseases. Chest X-rays are the most 

effective method for identifying infectious lung diseases at an early 

stage since COVID-19, pneumonia, and lung cancer all affect the lungs 

[3]. However, manually outlining the target area of medical images is a 

time-consuming and labour-intensive process, placing a greater burden 

on clinicians.  

Therefore, medical imaging techniques can automate the diagnosis 

process [4]. Machine learning methods, specifically deep learning 

techniques, have been applied to automatically diagnose infectious 

lung diseases by analysing chest X-ray images [5]. CNNs are a type of 

neural network that is particularly useful for image processing, are 

used for feature extraction and classification. EfficientNetb0 model of 

deep CNN that is used in image recognition and classification 

applications is used in propsed work [6]. It has been used to identify 

various diseases, including lung cancer, hyperspectral image 

classification, and chromosome identification [7-9]. Additionally, the 

NASNet model which consists fully connected layers and 

convolutional layers with varying numbers of layers, has been used for 

image processing in infectious lung disease detection, power 

equipment fault detection, and maize leaf early disease identification 

[10]. 

This research explores the application of two CNN models, 

EfficientNetb0 and NASNet in the classification of chest X-ray images 

that have been pre-processed using TQWT. [11]. Wavelet transforms, 

which possess the ability to localize offer multiresolution features, 

have found extensive usage in several image processing applications, 

such as edge detection and image compression. The TQWT parameters 

were optimized to obtain the decomposed images, which were then 

classified into the two classes of pneumonia and healthy chest x-ray 
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images. This research marks the establishment of the application of 

TQWT in decomposing chest X-ray images for classification through 

the memristive model. Traditional deep learning technologies are 

dependent on CMOS circuits, which are restricted by significant 

computational operations, area demands, energy consumption, 

processing time constraints, and power consumption requirements [5].  

 A memristive model-based framework, characterized by lower power 

consumption compared to CMOS based systems, has the potential to 

scale these technological constraints. When it comes to tasks like 

pattern processing, the memristive model shows better processing 

speed and energy efficiency than Von Neumann circuits especially 

when applied to neural networks [5]. Extensive research has been 

conducted on utilizing memristor based architectures for various 

applications, including neuromorphic computing particularly in neural 

network applications.  

The memristive model can function as a vector matrix multiplication, 

that eliminates the necessity for transferring large amounts of neural 

weights data, making them highly compatible substitutes for CMOS 

based neural networks. To address the limitations of previous studies, 

this research aims to optimize the TQWT parameters for image 

decomposition and utilize the memristive model to conduct 

mathematical research on the 2D TQWT for further applications in 

image decomposition and classification. The processed images are 

utilized for computational diagnosis and early disease detection of 

pneumonia and other infectious lung diseases via CNN models, which 

analyze chest X-ray images. Memristive model-based devices present 

an advantage in image processing due to their simultaneous storage 

and processing capabilities, non-volatile memory, and adaptability. 

This offers the potential for the development of more efficient and 

intelligent systems in image processing applications with cost 

effectiveness. The key benefits of using MCA based model in 

computational tasks include high density, low power consumption, and 
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the ability to perform parallel computations, making them ideal for 

implementing neural networks. 

Another application is performed for agriculture domain, where 

soybean is one of the most valuable crops globally, providing a 

significant source of protein and oil for human consumption and 

animal feed. However, soybean production is frequently threatened by 

a range of diseases that affect the leaves, leading to substantial yield 

losses and compromised crop quality. Multiclass soybean leaf disease 

refers to the concurrent presence of multiple disease types on soybean 

leaves, each caused by different pathogens with distinct symptoms and 

management requirements. Common soybean leaf diseases include 

bacterial blight, frogeye leaf spot, brown spot, downy mildew, and 

cercosporin leaf blight. Effective management of these diseases 

necessitates accurate identification, as misdiagnosis can lead to 

inappropriate treatment and further crop damage. Integrated disease 

management (IDM) strategies, which combine cultural practices, 

resistant varieties, chemical controls, and biological methods, are 

essential for mitigating the impact of these diseases. The complexity of 

managing multiclass soybean leaf diseases is further compounded by 

challenges such as pathogen evolution, climate change, and the 

development of resistance to fungicides and bactericides. As such, 

ongoing research and advancements in diagnostic tools, breeding for 

resistance, and understanding pathogen ecology are critical for 

developing sustainable management practices. This thesis aims to 

explore the intricacies of multiclass soybean leaf disease, emphasizing 

the importance of integrated management strategies and the need for 

continual innovation to safeguard soybean production. This research 

work carried out image analysis and classification using MCA based 

model for the application in healthcare and agriculture domain. 

1.5. Thesis Organization 

The organizational structure of the thesis is outlined as follows: 
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Chapter 1 explain the proposed work focuses on improving image 

processing techniques using a combination of wavelet families, CNNs, 

and MCA. It aims to enhance images, classify elements within them, 

and decompose them into finer details. Wavelet transforms allow 

multi-resolution analysis, capturing intricate image features. CNNs 

excel in automatically learning and extracting features for accurate 

classification. MCA based model, known for their efficiency and low 

power consumption, will be used to accelerate these processes. This 

integrated approach is expected to create a robust and efficient 

framework for advanced image processing tasks. 

Chapter 2 Different decomposition techniques used for image 

decomposition in healthcare and agriculture include the Discrete 

Cosine Transform (DCT), Discrete Wavelet Transform (DWT), 

Tunable Q-Factor Wavelet Transform (TQWT), Empirical Wavelet 

Transform (EWT), two dimensional Fourier-Bessel Series Expansion-

based Empirical Wavelet Transform (2D FBSE-EWT), and Wavelet 

Packet Transform (WPT). These methods help in breaking down 

images into their constituent parts, enabling detailed analysis and 

processing. This facilitates the enhancement of image quality and 

improves decision-making processes in healthcare for tasks such as 

medical imaging and diagnostics, as well as in agriculture for 

monitoring crop health and analysing plant characteristics. 

Chapter 3 The DWT integrated with a MCA-based model is used for 

biomedical image enhancement, employing Haar and biorthogonal 

wavelets. This approach is compared with other wavelet families, also 

considering optimized wavelet series and decomposition levels. This 

comparison aims to determine the most effective wavelet techniques 

for enhancing image quality, thereby improving the clarity and 

diagnostic value of biomedical images.  

Chapter 4 Image decomposition using the TQWT for chest X-ray 

images is applied to the early detection and diagnosis of pneumonia 

through a MCA based model. This method optimizes various TQWT 

parameters to produce high-quality reconstructed images, thereby 
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improving the accuracy and reliability of lungs infection like COVID-

19 and pneumonia diagnoses from chest X-ray images. 

Chapter 5 Using 2D FBSE-EWT for image decomposition facilitates 

the early detection of glaucoma disease using fundus images. The 

memristive model employed in this process saves energy, power, and 

area consumption due to the reduced number of operations, which 

directly impacts the cost of the device, making it more efficient and 

economical for medical diagnostics. 

Chapter 6 The focus is on the early detection of diseases in soybean 

crops through leaf image classification using WPT, covering multiple 

classes of soybean diseases identified from leaf images. The project 

also delineates the development of an Android/iOS application 

customized for real-time and remote monitoring purposes. This 

application offers a detailed retrospective analysis of disease 

occurrences in specific fields, providing insights on a daily, weekly, 

and monthly basis regarding the types of diseases detected in soybean 

crops through leaf image classification.  

Chapter 7 Thesis encapsulates a brief overview of the conducted 

research, highlighting its key findings and contributions. Furthermore, 

it delineates prospective paths for future exploration, proposing 

potential directions for ongoing research endeavours within this 

domain. 
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 Chapter 2  

Integration of MCA Model with Image 

Decomposition Techniques 

2.1. Introduction 

Image decomposition techniques have become indispensable tools in 

various fields, particularly in healthcare and agriculture, due to their 

ability to break down images into fundamental components for detailed 

analysis and processing. This chapter explores several prominent 

decomposition methods, including the Discrete Cosine Transform 

(DCT), Discrete Wavelet Transform (DWT), Tunable Q-Factor 

Wavelet Transform (TQWT), Empirical Wavelet Transform (EWT), 

two dimensional Fourier-Bessel Series Expansion-based Empirical 

Wavelet Transform (2D FBSE-EWT), and Wavelet Packet Transform 

(WPT). Each of these techniques offers unique advantages and 

applications, enhancing image quality and facilitating improved 

decision-making processes. 

2.2. Discrete Wavelet Transform 

Initially, the DCT is widely used in image processing for its ability to 

represent images in the frequency domain. It transforms spatial domain 

data into a sum of cosine functions at various frequencies [5]. DCT is 

particularly effective in compressing images, reducing the amount of 

data required to store high-quality images [15]. In healthcare, DCT is 

used in medical imaging techniques such as MRI and CT scans, where 

it helps in reducing noise and improving image clarity. This 

transformation aids in accurate diagnosis and analysis. In agriculture, 

DCT assists in monitoring crop health by enhancing the visualization 

of various plant characteristics. 

The DWT enables multi-resolution analysis of images, offering both 

spatial and frequency domain localization with an advantage over the 
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DCT, which provides frequency information alone [16]. This dual 

localization makes DWT particularly effective for analysing non-

stationary signals. In medical imaging, DWT is widely used for image 

denoising and compression, resulting in clearer and more precise 

visuals that enhance diagnostic accuracy [17]. In agricultural 

applications, DWT is valuable for analysing multispectral images, 

which plays a crucial role in assessing soil characteristics and crop 

health. 

In this work, DWT is a powerful mathematical tool used in image 

processing and analysis. It decomposes a signal into different 

frequency components, each with a resolution matched to its scale, 

making it particularly effective for analysing non-stationary signals 

with time-varying frequency content [28-32]. The DWT has extensive 

applications across diverse fields, including image compression, 

denoising, and biomedical signal processing. By utilizing wavelet basis 

functions that are localized in both time and frequency domains, the 

DWT offers a distinct advantage over Fourier transforms, which rely 

on sinusoidal basis functions. This property allows wavelets to 

effectively represent data with sharp transitions and localized features. 

Through multi-resolution analysis, the DWT enables a layered 

examination of signals at various scales, making it a powerful tool for 

complex image processing tasks. It decomposes the signal into 

approximate (low-frequency) and detail (high-frequency) components 

at various levels, capturing both coarse and fine details. Filter Banks 

provides in the DWT is implemented using a series of high-pass and 

low-pass filters. The input image is passed through these filters, and 

the outputs are down sampled by a factor of two, separating the images 

into different frequency bands [15, 16]. 

Wavelet families have several families of wavelets, each with different 

characteristics. Common wavelets include Haar, Daubechies, Symlets, 

and Coiflets. The choice of wavelet depends on the specific application 

and the nature of the image being analysed as seen in K. Jyoti et al. 

There are many applications like image compression using DWT is 
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used in image compression algorithms, such as JPEG2000 [17,32]. It 

allows for efficient representation of image data by concentrating 

energy in a few coefficients, enabling significant compression with 

minimal loss of quality. In image denoising, the DWT effectively 

reduces noise while retaining crucial features [33-42]. By applying 

thresholding to the detail coefficients, noise can be minimized without 

compromising essential information. For feature extraction, DWT 

plays a key role in applications like texture analysis and pattern 

recognition, capturing vital characteristics of the signal that aid in 

classification and analysis [17, 32]. In biomedical applications, DWT 

is used for analysing ECG, EEG, and other physiological signals. It 

helps in detecting abnormalities, such as arrhythmias or epileptic 

seizures, by isolating relevant frequency components [17]. 

Mathematical foundation is the original signal can be reconstructed 

from the approximation and detail coefficients through the inverse 

DWT [5]. Advantages of DWT is locality in DWT that provides both 

time and frequency localization, making it suitable for analysing 

signals with transient characteristics. Sparsity shows many natural 

signals have sparse representations in the wavelet domain, which is 

beneficial for compression and denoising [17]. Multi-resolution in the 

multi-resolution nature allows for analysing signals at different scales, 

capturing both global and local features. Also, there are limitations like 

shift sensitivity in DWT that can be sensitive to shifts in the input 

signal, leading to variations in the wavelet coefficients for similar 

signals with slight shifts [32]. Boundary effects at the edges of the 

signal, the finite length can cause artifacts due to boundary conditions. 

The DWT is a versatile tool in signal processing, offering unique 

advantages for analysing and processing non-stationary signals. Its 

ability to decompose signals into different frequency components with 

varying resolutions makes it indispensable in applications ranging from 

image compression to biomedical signal analysis [33]. Despite its 

limitations, the DWT remains a cornerstone in the field, continuously 

evolving with new wavelet designs and computational techniques. 
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2.3. Tunable Q-Factor Wavelet Transform 

TQWT [18, 43-44] is an advanced wavelet transform that allows for 

the adjustment of the Q-factor, making it highly adaptable to various 

signal characteristics. This adaptability makes TQWT particularly 

useful in healthcare for analysing biomedical signals and images with 

varying properties. For example, TQWT can enhance the detection of 

subtle features in medical images, which is critical for early diagnosis 

of diseases. In agriculture, TQWT aids in the detailed analysis of plant 

and soil characteristics, leading to better crop management practices. 

 

Figure 2.1: TQWT analysis and synthesis filter bank. 

In image processing, many wavelets have limitations on their constant 

quality factor. Quality factor (Q) is a fixed parameter determined by 

the basis function and the number of decomposition levels. To ensure 

consistency in the oscillatory behavior of the image being transformed, 

the Q of the wavelet transform must match that of the image [11]. Most 

wavelet transforms, such as DWT have a fixed Q value that can 

negatively impact the quality of the reconstructed output image. To 

mitigate this problem, Selesnick et al. proposed the TQWT technique 

[11], which is a nonlinear signal decomposition method capable of 

selecting an appropriate Q based on the signal being decomposed. 

TQWT works effectively with one dimensional signal such as EEG 

signals, speech, and cardiac sounds [2, 7, 8]. It may also be applicable 

for two-dimensional signals like images with varying textures. The 

TQWT method comprises parameters such as Q, redundancy (r), and 

the number of decomposition levels (J), where J+1 sub-bands are 

produced for J decomposition levels, each represented by v. The 

proposed research employs the TQWT technique to break down chest 
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X-ray images from both large and small datasets by utilizing optimized 

Q, r, and J values, as detailed in [11]. Furthermore, the MCA-based 

model considers the number of sub-band coefficients, referred to as ‘v’ 

in TQWT for the application of image decomposition. The 

decomposed image coefficients are stored in MCA based model, where 

each cross point holds a coefficient value [5, 16, 17]. Input image 

coefficient values are fed along the rows of the memristive model, and 

image retrieval is performed using the current values collected along 

the columns, as depicted the level decomposition. CNNs are a class of 

deep learning models particularly effective in image processing tasks. 

It automatically and adaptively learns spatial hierarchies of features 

from input images, making them highly suitable for medical imaging 

applications, such as detecting pneumonia from chest X-rays images. 

The pre-trained CNN models employing inception residual blocks for 

image classification during the training process. The initial phase 

involves decomposing the chest X-ray images utilizing the TQWT 

technique, and subsequently determining the optimal values for the 

TQWT parameters. The decomposition parameters are then set to their 

optimal values for pre-processing of images. After image 

decomposition at each level, sub-bands with both lower and higher 

frequency components are obtained. At each iteration, sequential 

decomposition is carried out for the higher levels of the sub-bands, 

focusing exclusively on the coefficient originating from the 

approximation component. The transfer functions of the low-pass and 

high-pass filter banks are denoted as responses 𝐻0(𝜔) and 𝐻1(𝜔), 

respectively. In the subsequent decomposition stage, the low-pass 

coefficient obtained from the initial stage functions as the input. 

Scaling operations are applied following both the low-pass and high-

pass filters at each stage. Equations (1), (2), (3), (4), and (5) 

demonstrate the relationships between the parameters Q and r and the 

low-pass scaling factor (LPS α) and high-pass scaling factor (HPS β), 

respectively.  

                         Q = (2-β)/β                                         (1) 
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                         r = β/(1-α)                                        (2) 

The TQWT wavelet employs the two-channel filter banks mentioned 

above to iteratively apply low-pass filtering to the image 

decomposition it into J+1 narrowband components. Fig. 2.1 illustrates 

the decomposition process for a three-layer TQWT. For perfect 

reconstruction, the frequency responses 𝐻0(𝜔) and 𝐻1(𝜔), of the 

TQWT must satisfy the following conditions:  

𝐻0
2(𝜔) + 𝐻0

2(𝜔) = 1                                                         (3) 

Among them, 𝐻0(𝜔) and 𝐻1(𝜔) defined as, 

𝐻0(𝜔) = {

1,                           |𝜔| ≤ (1 − 𝛽)𝜋,

𝜃 (
𝜔+(𝛽−1)𝜋

𝛼+𝛽−1
) , [1 − 𝛽]𝜋 ≤ |𝜔| ≤ 𝛼𝜋,

0,                             𝛼𝜋 ≤ |𝜔| ≤ 𝜋

             (4) 

 

𝐻1(𝜔) = {

0,                           |𝜔| ≤ (1 − 𝛽)𝜋,

𝜃 (
𝛼𝜋−𝜔

𝛼+𝛽−1
) , [1 − 𝛽]𝜋 ≤ |𝜔| ≤ 𝛼𝜋,

1,                             𝛼𝜋 ≤ |𝜔| ≤ 𝜋

                  (5) 

The identification of optimal values of Q, r, and J is essential to allow 

TQWT to pre-process chest X-ray images. Afterward, an analytical 

framework is utilized to formulate a computational strategy cantered 

on memristive model, with the goal of effectively storing the 

decomposed images. 

2.4. Fourier-Bessel Series Expansion-based Empirical 

Wavelet Transform 

2D FBSE-EWT combines the principles of Fourier and wavelet 

transforms, providing a comprehensive analysis of image components. 

This hybrid approach is beneficial in medical imaging for enhancing 

image resolution and contrast, which are critical for accurate diagnosis 

and treatment planning. In agricultural applications, 2D FBSE-EWT 

facilitates detailed analysis of spectral data, aiding in the monitoring of 

crop development and detection of stress factors. 
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Figure 2.2: Plot of basis functions using sine and cosine for the 

Fourier transform representation 

In this work, DL ensemble EfficientNetb0 model using 2D FBSE-

EWT with MCA based model has shown promising performance in 

glaucoma detection and diagnosis compared to traditional machine 

learning and DL algorithms [44-46]. Furthermore, the traditional 

methods have encountered several challenges in decomposing 2D 

signals, due to limitations such as interference, incompatibility with 

non-stationary signals, lack of adaptability, and limited scale coverage 

[17]. While the 2D FBSE-EWT [39] is adaptive in nature, this method 

can be considered as an improved version of 2D EWT method [40]. 

The proposed method introduces various advantages 2D FBSE-EWT 

employs non-stationary basis functions, enhancing its suitability for 

real-world signal representation and analysis compared with FT. The 

2D FBSE-EWT techniques utilize grouping operations, enabling the 

attainment of any decomposition level in a single computation, without 

distortion of amplitude and phase in the filtered signal. Boundary 

detection in the 2D FBSE-EWT domain using the instantaneous 

frequency method imparts robustness to noise. 2D FBSE-EWT 

exclusively provides positive frequencies to real signals, facilitating 

the straightforward implementation of the adaptive wavelet transform. 

The length of 2D FBSE-EWT coefficients is half that of the signal, 

allowing the 2D FBSE-EWT method to effectively separate closely 

spaced frequency components [23]. Thus, this work investigates the 
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motivation and significance of employing 2D FBSE-EWT as an 

effective technique for expanding functions in such domains. 

This work proposes an advanced approach using an FBSE-based 

spectrum in place of the traditional FT-based spectrum to improve 

segmentation and boundary identification [23]. The method introduces 

a 2D FBSE-EWT model integrated with an MCA-based approach, 

incorporating multi-frequency scales for effective boundary detection. 

The proposed technique is applied to fundus image decomposition and 

classification for the detection and diagnosis of glaucoma.  

As illustrated in Fig. 2.2, the 2D FBSE-EWT is particularly suited for 

non-stationary signals, employing non-stationary Bessel functions 

(Bessel 0 and Bessel 1 of orders 0 and 1, respectively) as its basis set 

[17]. Unlike the FT, which represents both positive and negative 

frequencies, the FBSE exclusively captures real signals with positive 

frequencies, simplifying filter-based decomposition and reducing 

distortion. Additionally, the 2D FBSE-EWT produces unique 

coefficients that match the original signal’s length, offering twice the 

frequency resolution of FT. These distinct properties make the 2D 

FBSE-EWT a compact representation for wide-band signals, 

leveraging the non-stationary characteristics and amplitude modulation 

capabilities of Bessel functions, which offer advantages across various 

applications [15-17].  

In this work, the authors utilized first-order FBSE, as it demonstrated 

superior results for full-scale images compared to order zero FBSE [3], 

motivating its use in the proposed methodology. Mathematical 

expression of order one FBSE of signal x(l) of length L is shown in 

Equations (6) respectively, where Bk are the coefficients of order one 

FBSE respectively, which are expressed in Equations (7). Here, J1(.) 

are Bessel functions of order one respectively. Parameter ζk denotes the 

kth positive roots of equation J1(.) = 0. 

𝑥(𝑙) =  ∑ 𝐵𝑘
𝐿
𝑘=1 𝐽1 (

𝜁𝑘𝑙

𝐿
) ,    𝑙 = 0,1, … . , 𝐿 − 1                   (6) 

𝐵𝑘 =
2

𝐿2(𝐽1(𝜁𝑘))
2  ∑ 𝑙𝐿−1

𝑙=0 𝑥(𝑙)𝐽1 (
𝜁𝑘𝑙

𝐿
)                                    (7) 
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DL technologies currently rely on CMOS circuits, which suffer from 

drawbacks such as high computation operations, area consumption, 

energy consumption, processing time, and power consumption [16] 

compared to the MCA-based model. To overcome these limitations, 

MCA-based model offers a promising solution by significantly 

reducing power consumption compared to conventional CMOS-based 

systems [17]. The adoption of MCA-based model has gained power in 

image processing domains, including pattern recognition and edge 

detection, due to its advantages as mentioned 

2.5. Wavelet Packet Transform  

WPT extends the traditional wavelet transform by providing a finer 

decomposition of signals, making it particularly effective for analysing 

complex signals [47, 48]. This capability is valuable in image 

processing within healthcare and agriculture, as it enhances the 

resolution and clarity of medical images, supporting greater diagnostic 

accuracy. In agriculture, WPT is applied to hyperspectral images to 

extract detailed information about plant health and soil properties, 

which is crucial for precision farming. 

Together, decomposition techniques such as DCT, DWT, TQWT, 

EWT, 2D FBSE-EWT, and WPT play a vital role in improving image 

quality and facilitating informed decision-making in healthcare and 

agriculture. By breaking down images into their fundamental 

components, these methods enable detailed analysis and processing, 

ultimately contributing to better outcomes in both fields. 
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 Chapter 3  

MCA-based Computing Framework for 

Image Enhancement and Decomposition 

using DWT 

3.1. Introduction 

The obtained experimental results Y2O3-based MCA are validated with 

an analytical MCA based model, which exhibits extremely well fitting 

with the corresponding experimental data. Moreover, the 

experimentally validated analytical model is further used for 

biomedical image analysis, specifically computed tomography (CT) 

scan and magnetic resonance imaging (MRI) images by utilizing the 2-

dimensional image decomposition technique. The different levels of 

decomposition are used for different threshold values which help to 

analyse the quality of the reconstructed image in terms of peak signal-

to-noise ratio (PSNR), structural similarity index (SSIM), and mean 

square error (MSE). For the MRI and CT scan images, at the first 

decomposition level, the data compression ratio of 21.01%, and 

47.81% with Haar and 18.82%, and 46.05% with biorthogonal wavelet 

are obtained. Furthermore, the impact of brightness is also analysed 

which shows a sufficient increment in the quality of output image by 

103.72% and 18.59% for CT scan and MRI image, respectively for 

Haar wavelet. The proposed MCA based model for image processing 

is a novel approach to reduce the computation time and storage for 

biomedical engineering. 

3.2. Description of proposed techniques 

Memristive systems are promising candidates for next-generation high 

performance [3, 49], dense computing architecture [3-5], and data 

storage [4, 5] applications and could also be used to realize Boolean 



29 

 

 

 

operations [3]. The memristor based memory architecture has offered 

higher density as a data storage medium as compared to common 

architectures [49]. Memristive system offers many outstanding 

physical characteristics such as non-volatile nature [3, 4], low leakage 

current [6], and nano-level device dimension [7]. Further, it is widely 

recognized that the energy consumption in memristive devices and 

circuits is significantly less which further attracts a substantial global 

interest in in-memory computation [4, 5], image processing [7], 

neuromorphic computation [8], and logic operations [3]. Moreover, 

memristive systems are being applied in various fields of image 

processing, such as pattern recognition and edge detection [9]. Zhu et 

al [10] have recently demonstrated an algorithm for MCA model-based 

image enhancement.  

 

Figure 3.1: Flow chart of image processing technique using the 

memristive system. 

Further, Cai et al [11] and Mannion et al [9] have proposed methods 

for feature extraction and analysis using memristor based networks. 

Owing to their attractive properties such as non-volatility [6] and 

compatibility with the CMOS fabrication process [12, 49], memristive 

devices are one of the most suitable substitutes for next generation 

memory technologies [3, 50]. To achieve substantially high-density 

memories, a MCA architecture is utilized which offers a matrix-like 

structure [13]. Such MCA-based analytical model is used for image 

processing by taking natural basis function for computation as it shows 
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an analogy memory functionality and is also able to perform parallel 

computing tasks known as memcomputing which consists of array-like 

structures [14]. These structures have large numbers of MCA on board 

were complex, and neuromorphic computations take place. 

3.2.1. MCA based model 

Our research group has demonstrated the fabrication of memristive 

device based on Y2O3 oxide [6] and developed the analytical models 

[8]. Y2O3 has been chosen as the switching layer in the MCA due to its 

exceptional electrical, structural, and dielectric properties, which make 

it highly suitable for resistive switching applications. Y2O3 has been 

chosen as the switching layer in the MCA design due to several key 

advantages. Its wide bandgap of approximately 5.5 eV ensures 

excellent insulation properties and high thermal stability, which are 

essential for reliable resistive switching [6]. The switching mechanism 

in Y2O3 is primarily governed by the formation and rupture of 

conductive filaments composed of oxygen vacancies, enabling stable 

and repeatable switching characteristics [90]. Additionally, Y2O3 

facilitates low-power operation due to its favourable defect chemistry 

and controlled oxygen vacancy dynamics, making it an ideal candidate 

for energy-efficient memory and neuromorphic computing applications 

[120]. Another significant advantage is its compatibility with CMOS 

technology, allowing seamless integration into conventional 

semiconductor fabrication processes, which is crucial for large-scale 

MCA implementations. Moreover, Y2O3 exhibits superior endurance 

and retention properties compared to other oxides, ensuring long-term 

reliability in memristive devices. Given these benefits, Y2O3 is a highly 

promising material for high-performance, non-volatile memory, 

neuromorphic computing, and logic-in-memory applications, making it 

a suitable choice for the switching layer in MCA. These developed 

analytical models show a strong correlation with the reported data of 

fabricated MCA by incorporating the non-linear behaviour [13, 14]. 
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Further, these models are also utilized to analyse the various 

neuromorphic characteristics such as learning behaviour and synaptic 

plasticity of the MCA and are immensely beneficial for the 

implementation of hardware for neural systems. Y2O3 based MCA 

architecture has been fabricated by utilizing a dual ion beam sputtering 

(DIBS) system [6]. The DIBS system is used to deposit the insulating 

layer, bottom electrode, and resistive switching layer as it produces 

high-quality thin films with better compositional stoichiometry, low 

surface roughness, and provides excellent adhesion at room 

temperature as compared to other sputtering systems [6, 14]. DIBS 

supports controlled deposition and provides ease of fabrication as the 

number of defects in different regions of the film can be suitably 

controlled by modifying oxygen partial pressure during thin film 

growth [6]. XRD patterns of yttria thin films at lower temperature 

(100-200℃) show sharp diffraction peaks, indicating high crystallinity. 

yttria thin films at 300℃ exhibits a broad peak, suggesting a near-

amorphous structure with short-range ordering [120]. Yttria thin films 

at 400℃ displays no distinct peaks, confirming its amorphous nature. 

Yttria thin films at 500℃ demonstrates multiple diffraction peaks, 

revealing a polycrystalline structure [120]. The results show a clear 

transition from crystalline to amorphous and back to polycrystalline 

structure across the samples.  MCA which depicted that the deposited 

material layers have perfectly aligned with each other to form cross 

point structure. 

𝐼(𝑡) =  {
𝑎1𝑥(𝑡) sinh(𝑏1𝑉(𝑡)) ,                  𝑉𝑖(𝑡) ≥ 0

𝑎2𝑥(𝑡) sinh(𝑏2𝑉(𝑡)) ,                  𝑉𝑖(𝑡) < 0
}      (1) 

𝑑𝑥 𝑑𝑡⁄ = {
𝐺(𝑉(𝑡))ⅇ−𝛼𝑝𝑈(𝑥−𝑥𝑝)(𝑥−𝑥𝑝) (1 + (𝑤𝑝 − 1)𝑈(𝑥 − 𝑥𝑝)) , 𝑉(𝑡) > 0

𝐺(𝑉(𝑡))ⅇ𝛼𝑛𝑈(𝑥𝑝−𝑥)(𝑥𝑝−𝑥) (1 + (𝑤𝑛 − 1)𝑈(𝑥𝑝 − 𝑥)) ,   𝑉(𝑡) < 0
          (2) 

 

𝐺(𝑉(𝑡)) = {
𝐴𝑝(ⅇ𝑉(𝑡) − 1),          𝑉(𝑡) > 0

−𝐴𝑛(ⅇ−𝑉(𝑡) − 1),     𝑉(𝑡) < 0
}                (3) 

 

𝑤𝑝 =
𝑥𝑝−𝑥

𝑥𝑛
+ 1                                 (4) 
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𝑤𝑛 =
𝑥

𝑥𝑃
                                           (5) 

Equation (1) describes the current-voltage (I-V) relationships for the 

discussed MCA based model [8]. In this I-V equation, various variable 

parameters such as a1, a2, b1, and b2 are used to emulate the resistive 

switching response of the analytical model. Here, the fitting 

parameters, b1, and b2 are used to control the conductivity slope of the 

resistive switching response, and a1 (7×10-4) and a2 (3.9×10-5) are used 

as the experimental fitting parameters. The x(t) is defined as a state 

variable and V(t) is the input applied voltage. The variation in the state 

variable (x(t)) is defined by equation (2) and is influenced by a range 

of parameters, including the programming voltage (G(V(t))), control 

parameters for the rate of change of the state variable (αp, αn) with a 

value of 1.2, the magnitude of exponentials (Ap, An) with a value of 

0.0021, and the constant values determining the boundedness of state 

variable represented by xn and xp, set to 0.3 and 0.7, respectively. 

Furthermore, the determination of the boundedness of the state variable 

relies on the unit step function U(t), as defined in equations (3). The I-

V relationship is dependent on x(t), and here, the coefficients collected 

from wavelet transform are considered as state variables in the image 

compression process, which provides a significant change in the device 

resistance [8]. The range of x(t) is defined between 0 and 1, which 

directly influences the device conductivity which is again associated 

with the image quality. Further, equations (4) and (5) describe the 

window function for the discussed model [8]. Here, one additional 

boundary condition is imposed i. e., xp + xn = 1 over the window 

function which further provides better controllability over the 

analytical model. The analytical parameter values and their physical 

interpretation are also shown in Table 3.1.  

TABLE 3.1 

PHYSICAL INTERPRETATION AND VALUE OF PARAMETERS FOR ANALYTICAL MODELING 

Parameters Numerical values Physical interpretation 

a1 7 × 10−4 Experimental fitting parameters 

a2 3.9 × 10−5 Experimental fitting parameters 

b1 3.8 Conductivity slope controlling parameter 

b2 1.5 Conductivity slope controlling parameter 

αp, αn 1.2 Control parameters for the rate of change of state 
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variable 

xp 0.7 Constant for determining the bounded- ness of 

state variable 
Ap, An 0.0021 Magnitude of exponentials 

xn 0.3 Constant for determining the bounded-ness of 

state variable 

The proposed analytical model [8] has better accuracy than the 

previously reported model [39]. The proposed model has a maximum 

error deviation (MED) of 16.66%, while the previous model has an 

MED of 36.8%. The proposed model was validated by comparing its 

results to the experimental results of a single Y2O3 MCA based device 

[8]. The electrical performance of Y2O3 MCA was fabricated and 

characterized by researchers for the purpose of image processing. 

Owing to practically minimal leakage current, which offers long-

endurance, fast write time, and compact cell size, a two-terminal MCA 

has demonstrated superior storage and information processing 

capabilities, making it a potential building block for in-memory 

computing. This supports parallel computing and provides energy-

efficient computing thereby combining processing and storage by 

using the same physical elements of the MCA based system.  

3.2.2. MCA Fabrication 

MCA brings a new opportunity for the advancement of computer 

technology as well as the development of image processing, which 

includes importing the image via image acquisition tools, analysing, 

and manipulating the image. Generally, software or hardware 

techniques can be used to implement image compression methods [15]. 

Software techniques generally rely on image compression approaches 

by employing the forward transform phase which consists of a vector-

matrix multiplication and matrix transpose. Due to large computational 

costs and unrealistic memory requirements, such procedures are not 

appropriate for real-time applications [15, 16]. Furthermore, the 

memristor based synaptic devices with inherent learning and memory 

functions are more suitable for image compression methods. These 

synaptic devices are realized through a metal-insulator semiconductor 
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(MIS) structure that offers nonlinear transmission characteristics, long-

term plasticity, and short-term plasticity which are beneficial for the 

transmission and storage of compressed images [6]. In today’s world 

of big data analysis and emerging IoT applications across various 

domains of security, healthcare [17], large scientific and engineering 

experiments, and image compression plays a crucial role in efficient 

storage and fast communication by removing redundant data [5, 32].  

Several studies have explored using memristive systems for image 

processing, highlighting the need for high storage capacity and fast 

access [13]. One of these studies proposed a memristive system that 

employs three distinct MCA, with one for computation, another for 

storing coefficients of row-column transformation, and the last for 

preserving compressed data of the original image for image 

decomposition and storage [33, 34]. Zhu et al [10] employed 

memristance, the internal resistance of the device, as a parameter for 

adjusting and mitigating the noise effect (fogging) in the image being 

used. However, Zhu et al [10, 35] did not establish a direct relationship 

between memristance (M) and the adjusting parameters, leading to 

limitations in their reported model’s effectiveness. In contrast, our 

presented model utilizes conductivity-controlled parameters to directly 

influence the device current, which in turn affects the image properties. 

While Zhu et al [10] used a filamentary-type memristor (NiO as a 

resistive switching layer) for digital image processing, the authors 

employ an interfacial-type memristor (Y2O3 as a resistive switching 

layer) for analog image processing. In our model, the device 

conductance varies according to pixel values, allowing for more 

precise control over image processing. Bettayeb et al [36] utilized 

filtered images (processed with random spray retinex (RSR)) to 

implement in-memory computation tasks for image enhancement using 

a 65 nm CMOS technology and SPICE circuit simulator. 

However, filtered images inherently reduce the noise margin, resulting 

in reduced accuracy compared to experimental data. In proposed work, 

one performs image compression and enhancement processes using a 
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pure memristor model without any filter implementation, showcasing 

the fundamental capabilities of memristor-based image enhancement 

and computation tasks. Bettayeb et al [36] introduced the retinex 

algorithm for spatial colour processing in a probabilistic manner, 

which occasionally yields averaged local intensity minima, reducing 

the error rate. On the other hand, authors choose not to employ spatial 

colour mapping that prevent the occurrence of averaged local intensity 

minima. Instead, we directly consider the original pixel values during 

the processing stage.  

 

Figure 3.2: Image pixel values in form of vector stored in MCA 

based device, and digital microscope image of a section of the 

fabricated  

Analog in-memory computing is enabled by the MCA design, which 

saves electrical power and storage space as compared to the standard 

digital methods [5]. The MCA not only offers a more convenient 

storage format for binary images but also offers a new greyscale 

storage method [40]. In this work, mentioned values of various 

variable parameters are used to simulate the MCA based model for 

image compression. Moreover, in this proposed work, the biological 

image computation and assessment are comprehensively analysed by 

utilizing MCA based model with the more efficient two-dimensional 

wavelet transform. Further, it should be noted that the variations in the 



36 

 

 

 

MCA non-linearity can be studied by changing the values of the 

conductive slope controlling parameter as described in the analytical 

model. The effect of the device’s non-linearities on the quality of 

reconstructed output images. This model can be directly mapped into a 

crossbar in hardware where the wave decomposition vector is obtained 

after decomposition as inputs, along the rows of the MCA, and the 

output coefficients for reconstruction are obtained along the columns. 

 

 

Figure 3.3: Digital camera image of fabricated memristive crossbar 

array of (30×25) on a 3-inch Si substrate (top view). 

An analytical model for MCA can also be used in artificial neural 

networks and intelligent information processing [40]. As a result, an 

analytical MCA based model for image compression can provide 

significant benefits in the domain of in-computing and image 

processing. The MCA size of (30×25) which is realized by utilizing the 

DIBS system is shown in Fig. 3.3. A cleaned 3-inch silicon (100) 

wafer is used as a substrate for the fabrication of (30×25) crossbar 

array. After the proper cleaning process [14], a layer of polycrystalline 

Y2O3 is deposited with the help of the DIBS system [14] to function as 

an insulating layer. During insulating layer deposition, a pure Ar+ 

environment with substrate temperature is maintained at 100 °C [14]. 

In the next step, Ga-doped ZnO (GZO) layer is deposited in the 

presence of pure Ar+ to function as a bottom electrode (BE) [6]. The 
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developed BE is 100 nm thick and is very conducting (5.4×10-4 Ω.cm) 

in nature. The developed layer of GZO is then patterned via the 

shadow mask method. The contact developed between the GZO (Ga-

doped ZnO) bottom electrode and Si is a Schottky contact. This is 

primarily due to the difference in work functions between GZO and Si, 

which creates a potential barrier at the interface, leading to rectifying 

behavior. The presence of this Schottky barrier is crucial for certain 

device applications, as it influences charge transport properties, 

leakage currents, and overall device performance [6]. The minimum 

feature size is fixed at 1000 µm. Next, a layer of 50 nm amorphous 

Y2O3 [6] is grown which acts as a switching layer (SL) and pattern via 

shadow mask. A layer of amorphous Y2O3 is formed under the 

conditions of 300 °C substrate temperature, and a 2:3 Ar to O2 ratio in 

the assist ion source of DIBS. At the final step of fabrication, a layer of 

Al is deposited over Y2O3 SL. This layer is of 70 nm thickness and is 

deposited using a direct-current magnetron sputtering system and acts 

as a top electrode (TE) of the crossbar array and has a line width of 

300 to 600 µm. To characterize the fabricated crossbar array design, a 

semiconductor parameter analyzer (SPA-4200A) is used to perform 

electrical measurements of the crossbar array. After the fabrication and 

performance evaluation, it is essential to analytically investigate the 

outcome of a device or system to understand the underlying physics. 

The analytical model helps one to analyse the possible factors 

triggering any deviation in the response of the fabricated electronic 

device from its ideal behaviour. In the following section, a detailed 

analytical model has been discussed which helps to understand the 

device’s behaviour. The discussed analytical model exhibits a 

promising way to simulate the MCA for image processing applications. 

The step-by-step fabrication methodology, including substrate 

preparation, deposition of the switching layer, and electrode patterning, 

is thoroughly described [14]. To ensure clarity, the process begins with 

cleaning a 3 inch low-resistivity, n-type Si (100) substrate using 

trichloroethylene, acetone, and isopropyl alcohol under sonication. The 
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substrate is then subjected to Ar⁺ plasma etching to remove the native 

SiO₂ layer, followed by the deposition of a 150 nm polycrystalline 

Y₂O₃ insulating layer. A 100 nm Ga-doped ZnO (GZO) bottom 

electrode (BE) is subsequently deposited and patterned using a metal 

shadow mask. A 50 nm amorphous Y₂O₃ resistive switching layer (SL) 

is then deposited, maintaining precise process conditions. Finally, a 70 

nm Al top electrode (TE) is deposited using DC magnetron sputtering, 

with the TE line width varied between 600 μm and 300 μm to study its 

impact on device characteristics [14]. Regarding dimensional 

specifications, the thesis explicitly provides details such as, spacing 

between two bottom electrodes is 300 μm, width of the electrodes is 

1000 μm (for BE) and varied from 600 to 300 μm (for TE), pixel size 

of the Y₂O₃ switching layer is corresponding to the electrode 

dimensions (normalized between 0 to 1), and spacing between two top 

electrodes is 300 µm. 

3.2.3. Decomposition Techniques 

Additionally, Dong et al [34] proposed an adaptive memristive pulse 

coupled neural network (PCNN) for image processing, while Mannion 

et al illustrated a way to use memristive-based potential divider to 

perform edge detection in images. Our literature review has identified 

several limitations and drawbacks in existing techniques for computed 

tomography (CT) scan, magnetic resonance imaging (MRI), and other 

medical imaging modalities. These limitations include limited contrast, 

speckle noise, algorithm computational complexity, lack of 

standardization in evaluation [37], and the need for improved texture 

and image enhancement [38]. The research gaps include limited focus, 

lack of interdisciplinary approach, limited discussion on energy, 

power, and area consumption that directly affect cost of the device 

[13]. 

In this work, the researchers fabricated and characterized the electrical 

performance of Y2O3 MCA for the application of image processing. As 
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our research group leading in the field of Y2O3-based memristors, it is 

important to note that Y2O3 has several advantages over other 

transition metal oxide materials such as TiO2, HfO2, SiO2, ZnO, and 

Ta2O5 [6]. Y2O3 is a more suitable material candidate for MCA 

structures due to its physical properties, such as high dielectric 

constant, low lattice mismatch, transparency, and Schottky behaviour 

with aluminium [6]. The electrical characterizations obtained through 

experimentation were validated by utilizing an analytical model [8]. 

This analytical model, which was specifically designed for 

computational work, was further employed for performing image 

compression. The proposed MCA-based model was applied to a 

greyscale input image of resolution (512×512), and decomposition 

techniques were applied to it. Image compression was performed with 

varied DL, and the decomposed image was imposed through the MCA-

based model at source. An inverse decomposition operation was 

performed on the processed image for reconstruction purposes at the 

receiver’s end. 

The discussed MCA based model assists in the storage of a 

compressed image with less power consumption in a small area as 

compared to conventional technology based on the application 

specified integrated circuit (ASIC) for storing biomedical images [4, 

5]. The decomposed image coefficients are stored in the MCA by 

mapping the coefficient values to appropriate voltage levels. As shown 

in Fig. 3.2, the mapped voltages are fed to the crossbar array along the 

rows. For reconstruction of the images, the column currents are 

collected, and then these values are used to perform the inverse 

wavelet transform operation. Fig. 3.2 shows the storage mechanism 

and a digital microscope image of the fabricated MCA that indicates 

the deposited material layers are perfectly aligned with each other to 

form cross-point structures. The most significant benefit of the 

suggested analytical model given here is that it offers designers and 

engineers useful feedback when designing MCA based systems for a 

variety of real-time applications.  The designer can use this model to 
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check the accuracy and efficiency of an MCA based system and would 

be able to comprehend the behaviour and interactions of the MCA 

based system better with the aid of the given analytical modelling. 

Moreover, the discussed analytical model will be more equipped to 

deal with the overall system’s complexity. Owing to the immense 

popularity of multimedia, the demand for the powerful representation 

of various types of data is huge. There is a pressing need to minimize 

the amount of data to be transmitted and protected from unauthorized 

access. Images are extensively used in multimedia applications, 

therefore, a good compression and encryption scheme for images has 

substantial applications.  

 

Figure 3.4: Stepwise decomposition process of an image. 

It is known that the image decomposition technique gives rise to wave 

decomposition vectors in a single array that can be used as input 

signals in the MCA for image compression and encryption [34]. Table 

3.2 shows the in-depth comparison of our work with other existing 

decomposition techniques. It can be perceived that the application of 

MCA-based model is more compatible with the DWT image 

decomposition technique compared to DCT and signal vector 

decomposition (SVD) [41-46]. DWT provides substantial 

improvement in picture quality at high compression ratio due to better 

energy compaction properties with different locations and scale of 

wavelet transform having lesser computational complexity [5, 46], and 

these special properties are not present in SVD and DCT [41]. 
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TABLE 3.2 

COMPARISON OF EXISTING DECOMPOSITION TECHNOLOGIES WITH 

THE PROPOSED WORK 

Technology Images PSNR (dB) SSIM 

 

DCT 

Magnetic resonance imaging 

(MRI) 

18.9153 0.6718 

Computed tomography (CT) 

scan 

12.3299 0.6172 

 

SVD 

MRI  17.5627 0.6129 

CT Scan 14.4363 0.4396 

 

 

 

Our Work 

MRI (without brightness) 19.1451 0.6774 

MRI (with brightness) 22.4299 0.7441 

CT Scan (without 

brightness) 

12.3299 0.6674 

CT Scan (with brightness) 24.97 0.8542 

In the process of decomposition, wavelet analysis has become a 

destination for many applications due to the usage of various basis 

functions in the form of distinct mother wavelets [42, 43, 51]. It is 

well-known that a wavelet is a zero-mean, and quickly fading wave-

like oscillation [51]. Unlike sinusoids, which have infinite duration, 

wavelets have a limited duration. Further, wavelets are available in a 

variety of sizes, and forms and wavelet transform are used to suppress 

noise, which is out of the frequency band of the input signal [42, 52]. 

There are various types of wavelets, among which the Haar wavelet is 

the most straightforward technique, mostly used in image processing 

[52]. In this work, 512×512 greyscale MRI and CT scan images [53, 

54] are used to perform the comparative analysis using seven different 

wavelets, such as Haar, Debauchies, Symlet, Coiflets, Biorthogonal, 

Reverse biorthogonal, and Fejer Korovokin. Each category of mother 

wavelet has several sub-wavelets [55]. A series of all the wavelets 

which have been used in this work are represented as Haar, db2, sym4, 

coif2, bior1.5, rbio3.1, and fk14, respectively.  

In 2D-DWT, the image is applied to high-pass and low-pass filters, 

according to the different DL required. To compress an image using 

2D-DWT, down sampling is performed to obtain approximation 

coefficients of the image with only low frequency components. The 

low-pass filter (LPF) calculates the averages of the coefficients causing 

a smoothing effect on the image, while the high-pass filter (HPF) 
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produces the details coefficients of an image. Both LPF and HPF will 

give separate frequency sub-bands in each DL, for which 

approximation coefficients of previous levels are considered as an 

input for the next DL. In every step of decomposition, four sub-bands 

will be received as the output, as mentioned earlier, and shown in Fig. 

4. The sub-band LL will provide an approximation coefficient with 

low frequency components having the maximum amount of 

information, LH sub-band extracts the horizontal features, HL sub-

band extracts vertical details of an input image and HH sub-band 

provides the diagonal features [10]. It is worth noting that the number 

of times the decomposition is performed will give the number of 

transformation levels which will reduce the complexity of computation 

[4, 5].  

The obtained coefficients, after performing image decomposition, as 

shown in Fig. 3.2, are used as wave decomposition vectors and input to 

the MCA. After applying different DL, the wavelet coefficients are 

stored in wave decomposition vectors (C1, C2, C3…, Cn) as state 

variables in the MCA device. These coefficients have the same 

normalized pixel value of an image as input voltages in the crossbar 

array. Retrieving the result involves summing up currents from each 

column, following Kirchhoff's current law, and using sensors to obtain 

corresponding voltages. Our research group holds a leading position in 

Y2O3-based memristor research, offering numerous advantages. 

3.3. Result and Discussion 

3.3.1. Characterization of MCA 

For the structural and materials characterizations of the fabricated 

MCA, optical microscopy, and field emission scanning electron 

microscopy (FESEM) are used which help to visualize the perfect 

crosspoint structure and amorphous nature of the deposited thin film 

which acts as switching layer. The amorphous Y2O3 is a promising 

candidate to realize highly stable MCA, as reported previously [6, 14].  
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Figure 3.5: (a) A digital image of the fabricated MCA (top view): 

optical microscopy images in (b) normal view and (c) magnified 

view; (d-e) FESEM image of amorphous Y2O3 switching layer at 

different scales. 

 

Figure 3.6: D2D statistical distribution of (a) VSET and (b) VRESET 

for 30 devices in the MCA fitted with Gaussian curves; C2C 

statistical distribution for 120 cycles of (c) VSET and (d) 

VRESET in a single memristor in the MCA with Gaussian fitting. 

Fig. 3.5(a) shows the fabricated crossbar array while Fig. 3.5(b) and 

3.5(c) show the optical microscopy images at the different scales. As 

seen from Fig. 3.5(c), the fabricated crossbar array has a perfect 

crosspoint structure, which is desirable in an MCA to avoid any 
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electrical shortage in memory cells via top and bottom electrodes. The 

FESEM results reveal the Y2O3 which confirms the amorphous nature 

of the deposited thin film, as shown in Fig. 3.5(d-e). To study the 

resistive switching electrical characteristics of the developed MCA 

based device, a triangular waveform with a peak-to-peak voltage of ±3 

V is applied as an input voltage to the MCA based system. The 

switching characteristics of the fabricated device and analytical model 

are depicted in Fig. 3.7(a).  The perfectly aligned layers forming a 

crosspoint structure in the array the purple-colored layer corresponds 

to the Y2O3. 

The pinched hysteresis loop observed is indicative of the MCA-based 

system’s characteristics [36]. The analytical model shows an extremely 

well correlation with the experimentally obtained result. The analytical 

data shows 98.7% R2 fitting with the corresponding experimental data 

of the fabricated MCA. Morphological analysis of the resistive 

switching layer of one of the important performance parameters of a 

MCA based device is the average value of the current ratio (IRatio) 

obtained between the high resistance state (HRS) and low resistance 

state (LRS). In Fig. 3.6 (b), the performance of the device remains 

unaltered up to ∼7.5 × 105 switching cycles, after which a reduction to 

∼30 is observed in the value of IRatio. A high average value of IRatio > 

200 defines that the MCA-based devices present in the crossbar array 

are reliable and stable. In case of retention analysis, the HRS and LRS 

are separated from each other up to 1.5 × 105 s with IRatio > 200. After 

an interval of 1.5 × 105 s, the value of IRatio is decreased to ∼30 as 

shown in Fig. 3.6(c).  It should be noted that the high memory window 

between HRS and LRS is beneficial to achieve high endurance and 

retention properties. The statistical analysis matching with the 

Gaussian fitting curves is seen in the statistical distribution of VSET for 

both devices-to-device (D2D) and cycle-to-cycle (C2C), as shown in 

Fig. 3.6. 
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Figure 3.7: (a) Semi-logarithmic resistive switching characteristic of 

the fabricated crossbar array structure fitted with validated data; (b) 

endurance measurement up to 7.5×105 cycles and degradation in 

the current ratio is found at nearly 7.5×105 cycles, and the inset 

shows the applied input programming voltage pulse;  (c) retention 

measurement of the fabricated device up to  2.25×105 s and 

degradation is found at nearly 1.5×105 s. 

 

The goodness-of-fit (χ2) and the error coefficient (R2) have estimated 

values of 0.01576 and 0.94635, respectively, for VSET and 0.045 and 

0.91386, respectively, for VRESET for D2D variability, as shown in Fig. 

3.7 (a) and (b). The χ2 and R2 have estimated values of 0.000639 and 

0.9611, respectively, for VSET and 0.002071 and 0.9482, respectively, 

for VRESET, respectively, for VSET, as shown in Fig. 3.7 (c) and (d). 

3.3.2. Proposed Work Formulation 

For the image quality assessment, various parameters such as PSNR, 

SSIM, and MSE are used. These assessment parameters are helpful to 

quantify the reduction in image quality due to compression done by 

utilizing as discussed MCA based model [8]. These assessment 

parameters can be computed, as shown by equations (6-10): 

𝐶𝑜𝑚𝑝𝑟ⅇ𝑠𝑠𝑖𝑜𝑛 𝑅𝑎𝑡𝑖𝑜(𝐶𝑅) =  [ 
𝑁𝑜𝑛−𝑧𝑒𝑟𝑜 𝑒𝑙𝑒𝑚𝑒𝑛𝑡 

𝑖𝑛 𝑖𝑛𝑝𝑢𝑡 𝐼𝑚𝑎𝑔𝑒
𝑁𝑜𝑛−𝑧𝑒𝑟𝑜 𝑒𝑙𝑒𝑚𝑒𝑛𝑡

 𝑖𝑛 𝑜𝑢𝑡𝑝𝑢𝑡 𝐼𝑚𝑎𝑔𝑒

]                   (6) 

 

𝐷𝑎𝑡𝑎 𝑐𝑜𝑚𝑝𝑟ⅇ𝑠𝑠𝑖𝑜𝑛 (%) = [
𝑁−𝑁1

𝑁
] × 100                          (7) 

 

where N and N1 show the size of the uncompressed image and 

compressed image at different DL.  

𝑃𝑆𝑁𝑅(𝐼, 𝐶) = 10 𝑙𝑜𝑔10 [
𝑀×𝑁

𝑀𝑆𝐸(𝐼,𝐶)
]                          (8)      

    𝑀𝑆𝐸(𝐼, 𝐶) = [
1

𝑀×𝑁
] ∑  𝑀

𝑖=0 ∑ (𝐼ij − 𝐶ij)
𝑁
𝑗=0

2                                    (9) 

(a) 
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where, M × N is the resolution of an uncompressed image, and i, j 

is coordinates in 2D image. 

𝑆𝑆𝐼𝑀(𝐼, 𝐶) = 𝑙 (𝐼, 𝐶) 𝑐 (𝐼, 𝐶) 𝑠 (𝐼, 𝐶)                       (10) 

where, ‘l’, ‘c’, and ‘s’ stands for luminesces, contrast, and structural 

similarity, respectively. 

 

Fig. 3.8: Simulation flow chart. 

The compression ratio (CR) is defined as the number of non-zero 

elements of the original image over the non-zero elements of the 
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compressed image [46], as mentioned in equation (6). The term 

compression is explained mathematically in equation (7). Data 

compression can be calculated by taking the ratio of the difference in 

the sizes of the input and reconstructed output image to the input image 

[56, 57]. The quality of the reconstructed output image (C) can be 

directly obtained from the value of PSNR [58] and the PSNR is given 

by the ratio between the peak or maximum intensity power of an image 

to the noise encountered in the image as given in equation (8). The 

PSNR value approaches infinity as MSE approaches zero; this shows 

that a higher PSNR value provides a better image quality [58]. MSE 

values can be evaluated by using equation (9). The SSIM is calculated 

by modelling image distortions as a combination of three factors that 

are the loss of correlation, luminance distortion, and contrast distortion 

[57] and is given by equation (10). The simulation part of the work, as 

described earlier, is shown via a flow chart in Fig. 8 to see how MCA-

based model is incorporated for image compression. 

3.3.3. Effect of Brightness/Quality on the Reconstructed Image via 

Different Mother Wavelets 

The DWT offers significant picture quality improvement at high 

compression ratios due to its superior energy compaction properties, 

involving wavelet transform at various locations and scales with lower 

computational complexity [46]. Images are tainted by noise during 

acquisition, compression, and transmission, causing distortion and loss 

of information present in the image [59-61]. There are many sources of 

noise in digital images mainly due to environmental conditions of the 

imaging sensor, electronic transmission of image data, and interference 

in the transmission channel [59]. Image compression can be achieved 

by removing these redundancies in an image wherever possible. 

According to DWT, the most important information in the image is 

present in high amplitudes, while less important information is 

associated with very low amplitude of signal [61]. 



48 

 

 

 

   In order to discard the low-amplitude information, the thresholding 

method is used which compresses the data. The wavelet transforms 

provide a high compression ratio along with a good quality of 

reconstruction [62]. It can be used for easy denoising of an image. The 

denoise image is obtained by considering only a limited number of 

higher coefficients present in the DWT spectrum and then performing 

the inverse transform of the DWT spectrum [60, 61]. MATLAB 

simulations are performed to analyse the effect of compression on the 

MRI and CT scan images. These images are considered since they are 

one of the most essential parameters for medical diagnosis. CT scan 

has been deployed as an effective tool for diagnosis of COVID-19, and 

MRI has been effective for diagnosis of Alzheimer’s disease [61]. In 

this study, a specific series of different mother wavelets compatible 

with the discussed MCA-based model are employed to achieve 

optimized results for image compression. 

The discussed analytical MCA based model is used to compress and 

store both MRI and CT scan images [8]. It is widely known that the 

different wavelets have different levels of compatibility with images; 

thus, any mother wavelet cannot be configured as the best for a 

particular image since its compatibility is different for different 

applications and models [61]. 

Among different mother wavelets, Haar and biorthogonal wavelets 

exhibit a better quality of reconstructed output image as compared to 

other mother wavelets which are depicted in Fig. 9. The technical 

reason behind their best performance compared with other wavelets is, 

the Haar wavelet [62-64] having basis function which is very simple 

and easily compatible with the nature of the image and biorthogonal 

[64] basis function makes resemblance with the decomposed image 

that provides better quality of reconstructed output image. The highest 

quality of reconstructed output images of MRI and CT scan is 18.9938 

dB, and 12.2567 dB using Haar mother wavelet, respectively. The 

second-best quality is obtained by using biorthogonal mother wavelet 

i.e., 11.5654 and 19.0168 dB for CT scan and MRI images, 
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respectively. For increasing the brightness, the intensity of each pixel 

is increased by a specific value which affects the quality of the output 

image and optimizes the performance of the image compression 

system. The increment in the quality of the output image by the 

insertion of some constant value resembles the effect of an amplifier 

towards the end of a signal receiver. To graphically explore this effect, 

as shown in the inset of Fig. 3.9, on the addition of a constant value of 

‘65’ to the CT scan output image and a multiplication factor of ‘2’ to 

the MRI output image the percentage of quality of the reconstructed 

image further enhances to produce optimized results. Also, it can be 

noted that the effect of brightness is most prominent when symlet 

mother wavelet is used to decompose CT scan and Fejer Korovokin 

mother wavelet is used to decompose MRI image, as presented in 

Table 3.3. The size of CT scan image is 228 Kilo Bytes (KB), and the 

size of MRI image is 73.3 KB. In vector matrix multiplication, the 

higher number of samples in matrix multiplication of a larger image 

size affects the quality of the output image at a higher scale. In the case 

of MRI image, less amount of data is stored in the wave decomposition 

vector as compared to that for the CT scan image because of the 

smaller image size, and this results in a smaller change in the quality of 

the output image for MRI as compared to that for CT scan. Therefore, 

the quality of the MRI images is better than that of the CT scan 

images, which can be perceived by the values of assessment 

parameters in Table 3.4 and 3.5 for MRI images, and Table 3.6 and 3.7 

for CT scan images, respectively. The effect of image size on the 

degradation in the quality of output image is shown in Table 3.4, and 

Table 3.5 for MRI images and Table 3.6, and Table 3.7 for CT scan 

images. Table 3.4 shows the degradation in the quality of the output 

image in terms of PSNR, SSIM, and MSE with the increment in DL of 

MRI image using Haar mother wavelet. The similarity index between 

input and output images of MRI reduces since SSIM is directly 

affected by the structural phase distortion of an image. 
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However, MSE increases because it has an inverse relation with the 

quality of the reconstructed output image, which indicates that the 

value of PSNR decreases for higher DL. At each higher value of DL, 

an increment in the error is introduced that can be noted by the value of 

MSE.  

 

Figure 3.9: The variation of PSNR (dB) of reconstructed image with a 

change in compression ratios for seven different mother wavelets. 

The inset shows the effect of brightness on reconstructed output 

image for different wavelets. 

The same concept is applicable for MRI reconstructed output images 

using biorthogonal mother wavelet for different DL, as shown in Table 

3.5. By comparing Table 3.4 and 3.5, it can be said that for the 

biorthogonal wavelet, MCA based model gives a better result as 

compared to the Haar wavelet. Moreover, the effect of brightness on 

PSNR and MSE at 1st DL using Haar gives rise to better results as 

compared to that for the biorthogonal wavelet on the reconstructed 

output MRI images. 
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TABLE 3.3 

PERFORMANCE OF DIFFERENT MOTHER WAVELETS 

REPRESENTED BY INCREASED PERCENTAGE OF PSNR 

WITH BRIGHTNESS EFFECT 

Wavelets Increment in PSNR (%) 

CT scan MRI 

Haar 103.72 18.59 

Daubechies 123.57 19.94 

Symlet 147.31 20.09 

Biorthogonal 119.28 17.62 

Reverse 

biorthog

onal 

83.23 8.29 

Coiflets 128.15 19.89 

Fejer 

Korovki

n 

130.46 20.71 

TABLE 3.4 

ASSESSMENT PARAMETERS OF MRI IMAGE USING HAAR 

WAVELET FOR DIFFERENT DL 

 

DL 

Without brightness With brightness 

PSNR 

(d

B) 

SSIM MSE 

PSNR 

(d

B) 

SSIM MSE 

1st 18.9938 0.6718 835.1 22.4299 0.7441 371.6 

2nd 18.0155 0.6442 1026.9 20.6528 0.7004 559.4 

3rd 16.7806 0.6121 1364.6 18.5505 0.6441 907.8 

4th 15.6231 0.5941 1781.4 16.7549 0.6129 1372.8 

5th 14.5734 0.5943 2268.5 15.4806 0.6018 1840.9 

TABLE 3.5 

ASSESSMENT PARAMETERS OF MRI IMAGE USING 

BIORTHOGONAL WAVELET FOR DIFFERENT DL 

 

DL 

Without brightness With brightness 

PSNR 

(d

B) 

SSIM MSE 

PSNR 

(d

B) 

SSIM MSE 

1st 19.0168 0.6743 815.4614 22.3683 0.7454 376.9225 

2nd 17.9389 0.6456 1045.2 18.5247 0.6379 913.3008 

3rd 16.7622 0.6099 1370.4 16.4737 0.5992 1464.6 

4th 15.3239 0.5887 1908.5 15.2639 0.5925 1935 

5th 14.5134 0.5887 2300.1 13.7571 0.5631 2343.16 

TABLE 3.6 

ASSESSMENT PARAMETERS OF CT SCAN IMAGE USING 

HAAR WAVELET FOR DIFFERENT DL 

 

DL 

Without brightness With brightness 

PSNR 

(d

B) 

SSIM MSE 

PSNR 

(d

B) 

SSIM MSE 

1st 12.2567 0.6386 3867.3 24.97 0.8542 209.1409 

2nd 11.6067 0.5321 4036.7 24.61 0.7052 319.9715 

3rd 11.4527 0.4141 4391 22.1594 0.5422 542.3594 

4th 10.9049 0.3564 4977.4 19.6888 0.4617 906.6293 

5th 10.7378 0.3378 6057.5 17.3748 0.4237 1573.9 

TABLE 3.7 

ASSESSMENT PARAMETERS OF CT SCAN USING 

BIORTHOGONAL WAVELET FOR DIFFERENT DL 

 

DL 

Without brightness With brightness 

PSNR 

(d

B) 

SSIM MSE 

PSNR 

(d

B) 

SSIM MSE 

1st 11.5654 0.593 4534.6 25.3617 0.8088 189.196 

2nd 11.1296 0.4636 5013.3 23.1343 0.6418 315.9768 

3rd 10.6866 0.3496 5551.7 20.6036 0.4797 565.8812 
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4th 10.6784 0.3124 5562.2 18.4412 0.4115 931.02 

5th 9.9405 0.3033 6592.2 15.9163 0.3874 1673.12 
 

From Table 3.6 and 3.7, it can be said that Haar mother wavelet-based 

CT scan output images produce better results as compared to those for 

biorthogonal-based output images. In the case of CT scan images, the 

effect of brightness on the quality of the reconstructed output image is 

more by using biorthogonal mother wavelet as compared to the Haar 

mother wavelet. From the first level to the fifth level of decomposition, 

using the Haar wavelet without any brightness effect, the percentage 

degradation in PSNR, SSIM, and percentage increase in MSE is 

calculated to be 23.27%, 11.53%, and 171.64%, respectively for MRI 

image and the similar values are 12.39%, 47.10%, and 56.63%, 

respectively, for CT scan image. Upon the addition of brightness 

parameter, the percentage degradation in PSNR, SSIM and percentage 

increase in MSE are improved and the values are 30.98%, 19.12%, and 

395.39%, respectively, for MRI images and the similar improved 

values are 30.41%, 50.39%, and 652.55%, respectively for CT scan 

image, on an increase of DL from first to the fifth level. On the other 

hand, using biorthogonal wavelet without any brightness effect, the 

percentage degradation in PSNR, SSIM, and percentage increase in 

MSE values are 23.68%, 12.66% and 182.06%, respectively, for MRI 

images and the similar values are 14.04%, 48.01%, and 45.37%, 

respectively, for CT scan image, while shifting from first to fifth DL. 

Upon addition of brightness with increment in DL, the percentage 

degradation in PSNR, SSIM and the percentage increase in MSE have 

also exhibited an improvement and these values are 31.76%, 20.51%, 

and 413.36%, respectively, for MRI images and similar improved 

values are 37.24%, 52.10%, and 784.33%, respectively, for CT scan 

image. Here, high data compression of reconstructed output image has 

been received for different DL by using MCA based model. 

3.3.4. Impact of compression percentage on varied DL 

For the compression of the reconstructed output image, threshold 

values at different percentages of compression have been utilized. The 
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degradation in the quality of the output images with an increase in DL 

is shown in Table 3.8. Input image having 512×512 resolution is 

compressed at the first DL to obtain a 256×256 resolution 

approximation image. Similarly, for the second DL, the resolution is 

further compressed to 128×128. This value of compression in quality 

might be tolerable and can be used for diagnostic purposes. However, 

for the third, fourth, and fifth DL, the corresponding resolution is 

64×64, 32×32, and 16×16, respectively.  

TABLE 3.8 
BIOMEDICAL IMAGES (MRI AND CT SCAN) WITH DIFFERENT DL 

Images MRI CT scan 

Decompositi

on 
Levels 

Haar Wavelet Biorthogonal 

Wavelet 

Haar Wavelet Biorthogonal 

Wavelet 

 

 
 

Original 

input 
image 

    
 

 

 
 

DL1 

    

 

 

 
 

DL2 

    
 

 

 
 

DL3 

    
 

 

 
 

DL4 

    
 
 

 

 
DL5 
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The exact number of 16×16 can easily be seen in Table 3.8 for the fifth 

DL. As evident in Table 3.8, the reconstructed quality of the image is 

not tolerable as it enhances the noise.   The insets of Fig. 3.10 and 3.11 

show the variation of PSNR with SSIM for different DL by using Haar 

and biorthogonal wavelets. The first, second, third, fourth, and fifth 

DL, are represented by DL1, DL2, DL3, DL4, and DL5, respectively. 

As one moves to higher DL, the values of PSNR, as well as SSIM, 

reduce because of degradation in the quality of the image after 

compression. 

The quality of the reconstructed image is reduced substantially during 

the initial stages of compression, afterwards, the change in the PSNR 

value is not significant with respect to an increase in CR.  For Haar 

wavelet, the reduction in PSNR for 1% of CR on switching from DL1 

to DL2 is 4.73% and 1.51% for the MRI image and CT scan image, 

respectively. Similarly, from DL2 to DL3 transition using Haar 

wavelet, the PSNR decreases by 6.82% and 3.02% compression for 

MRI image and CT scan image, respectively, at 1% CR. For 

biorthogonal wavelet, the reduction in PSNR values is 5.65% and 

3.76% for MRI image and CT scan image, respectively, on switching 

from DL1 to DL2 at 1% CR. At the same value of CR for biorthogonal 

wavelet, the PSNR is decreases by 6.47% and 3.98% while moving 

from DL2 to DL3 for MRI images and CT scan images, respectively. 

The DL2 is an optimum level of image decomposition for the MCA 

based algorithm for reconstructed output image as shown in Table 3.8. 

The above discussion also signifies that the reconstructed image by 

using MCA based with the help of the Haar mother wavelet 

compresses the input image by a larger amount as compared to that by 

the biorthogonal wavelet. Table 3.9 represents the values of data 

compression with varied DL for both the images. For MRI with first 

DL, the data compression ratio is 21.01% by using Haar wavelet and 

18.82% with biorthogonal wavelet, respectively. For CT scan with first 

DL, data compression ratio is obtained to be 47.81% by using Haar 

wavelet and 46.05% with biorthogonal wavelet. As discussed earlier, 
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from Fig. 3.10 and Fig. 3.11, it can be noted that the rate of 

degradation in the quality of reconstructed output image is higher for 

CT scan than MRI because of its higher memory size. The larger size 

of the CT scan image results in the presence of a greater number of 

samples for computation for the CT scan than for the MRI image and 

this is responsible for less degradation with enhancement in DL. The 

quality improvement upon the application of brightness is more 

prominent in CT scans as compared to MRI images because of wavelet 

compatibility. In comparison to CMOS-based model for image 

processing the MCA-based model is observed to significantly improve 

the values of PSNR and SSIM by 4 and 100 times, respectively, for CT 

scan image and 1.8 and 1.2 times, respectively, for MRI images. The 

motivation behind using the MCA-based model is reducing the number 

of operations, area, and power consumption with faster processing 

speed [5, 65]. The MCA has several nanometre level downscaling, and 

CMOS compatible fabrication process and are more favourable for 

storage and processing of data primarily for applications with limited 

storage resources. As given in Table 3.9, lesser number of devices and 

operations is used in MCA-based model as compared to the 

conventional CMOS-based counterparts as reported by Halawani et al 

[46] and Khalid et al [65] also by demonstrating image compression 

and digital logic operations. Image matrix multiplication using CMOS 

involves a substantial number of multiplications and additions, 

including [m×n×c] multiplications and [m×c×(n-1)] additions, where m 

denotes the number of rows in the first matrix, n represents the number 

of columns in the first matrix or rows in the second matrix, and c 

signifies the number of columns in the second matrix [46]. On the 

other hand, when employing a memristor-based approach, the 

outstanding properties such as pinched hysteresis switching behaviour 

in its I-V characteristics, non-volatile nature, same multiplications and 

additions can be accomplished through m×m multiplication and 

addition. 
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Figure 3.10:  Variation in PSNR (dB) of the reconstructed image with 

a change in CR for the Haar and biorthogonal wavelets with different 

DL for MRI image. The insets show the effect of brightness on 

reconstructed output image for varied DL. 

 

Figure 3.11:  Variation in PSNR (dB) of the reconstructed image with 

a change in CR for the Haar and biorthogonal wavelets with different 

DL for CT scan image. The insets show the effect of brightness on 

reconstructed output image for varied DL. 
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This is because the memristor-based approach can perform 

multiplication and addition in a single step within the memristor. As a 

result, utilizing the memristor crossbar architecture for real-time matrix 

multiplication for image transforms is much more efficient, in 

computation [46]. Factors such as device properties [14], size and 

complexity of the processed image [13], proposed image compression 

and enhancement algorithm, as well as the voltage and current levels 

used, have an influence on the parameters listed in Table IX. 

TABLE 3.10 

COMPARISON OF CONVENTIONAL CMOS BASED 

COMPUTING WITH MCA BASED IN-MEMORY 

COMPUTATION FOR IMAGE COMPRESSION 

Parameters CMOS  MCA Prominent 

Improve

ment 

Number of 

Operations 

[4, 45] 

5123 + 

(5122×5

11) 

5122 1023 times 

Area (m2) [4] 1585446.912 41943.04 37.8 times 

TABLE 3.9 

PERCENTAGE OF DATA COMPRESSION WITH 

DIFFERENT LEVEL OF DECOMPOSITION 

DL using Haar 

wavelet 

Size of 

decompose

d images 

(KB) 

Data Compression 

(%) 

MRI 

CT 

sca

n 

MRI CT scan 

Input image 

size 
73.3 228 73.3 228 

1st 57.9 119 21.01 47.81 

2nd 37.8 69.9 48.43 69.34 

3rd 26.7 41.4 63.57 81.84 

4th 19.6 27 73.26 88.16 

5th 15.1 18.7 79.39 91.79 

DL using 

biorthogon

al wavelet 

Size of 

decompose

d image 

(KB) 

Data compression 

(%) 

MRI 

CT 

sca

n 

MRI CT scan 

Input image 

size 
73.3 228 73.3 228 

1st 59.5 123 18.82 46.05 

2nd 39.1 67 46.65 70.61 

3rd 28 40.3 61.81 82.32 

4th 20.6 27.1 71.89 88.11 

5th 16.2 15.8 77.89 93.07 
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Energy 

Consumpti

on (pJ) 

[45] 

1115.4 1.484 752 times 

Processing 

Speed  

(s) [4, 45] 

0.15 0.06 2.5 times 

Power 

Consumpti

on (mW) 

[4] 

7436 24.733 300 times 

 A comparative analysis of compression for (512×512) image is 

performed using our MCA-based DWT model and conventional 

CMOS-based models in which values of various parameters in the 

calculation are taken from [46]. Table 3.10 displays MCA achieving of 

better performances as compared to the conventional CMOS-based 

models. Hence, our proposed approach makes the memristor-based 

solution very attractive for image processing applications. These 

components-based study is useful for circuitry design to the application 

of image classification via MCA model-based architecture [46]. As 

compression has been achieved with minimal losses using MCA based 

model between input and output images, the processed biomedical 

images are useful for diagnostic purposes. Moreover, the MCA not 

only provides a more convenient and cost-effective storage structure 

for biomedical images, but also presents a novel storage solution for 

compressed images which is performed by the MCA based system. 

Our work has shown promising results and can be further implemented 

on hardware to realize the compatible MCA based system for image 

processing applications. Furthermore, analysis of image recognition 

can be done using MCA based models, which would be very much 

helpful in understanding how a biological brain stores a captured 

visually. 

3.4. Conclusion 

In this paper, the MCA based model is used for compressing 

biomedical grayscale images (MRI and CT scan) with 512×512 

resolution at different DL. The experimental results prove the stability 
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of MCA in terms of minimized fluctuations in operating voltages. The 

statistical analysis for D2D and C2C variability is extremely stable and 

more beneficial in the image computation process. The Gaussian fitting 

parameters such as goodness-of-fit (χ2) and the error coefficient (R2) 

for VSET and VRESET for D2D and C2C variability are also depicted the 

better correlation with experimental data. The fabricated devices are 

stable and promising to replace or merge with the CMOS technology. 

   Among all seven mother wavelets, Haar and biorthogonal wavelets 

are shown comparatively better results in terms of several assessment 

parameters such as SSIM, PSNR, and MSE. As we go for the higher 

DL, the quality and structural similarity index of an image are 

decreased while MSE is increased which leads to the decrement in 

image pixel quality. The images imposed on the crossbar array have 

shown compression while maintaining a very high similarity with the 

input image. The brightness effect shows an increment in the quality of 

the output image by 103.72% and 18.59% in CT scan and MRI images, 

respectively, by using the Haar wavelet. The highest data compression 

value achieved is 47.81% in the reconstructed output image of CT scan 

by using Haar wavelet due to its higher memory size compared to MRI 

image. In the CT scan image, the degradation in quality from first to 

fifth DL is calculated as 12.39% and 14.06% for the same value of 

compression ratio using Haar and biorthogonal wavelets, respectively. 

In the MRI image, the degradation in quality from first DL to fifth DL 

is calculated as 23.27% and 23.68% for the same value of compression 

ratio using Haar and biorthogonal wavelets, respectively. The MCA 

based image processing not only provides a more convenient and cost-

effective storage structure for biomedical images but also presents a 

novel storage solution for compressed images. 
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 Chapter 4  

Automated Lung Disease Detection and 

MNIST Digit Classification Using the MCA 

Framework 

4.1. Introduction 

Coronavirus disease 2019 (COVID-19), an accurate method of 

diagnosis with less diagnosis time and cost can effectively help in 

controlling the disease spread with the new variants taking birth from 

time to time [20]. In order to achieve this, a 2D-TQWT based on a 

MCA is introduced in this work for the decomposition of chest X-ray 

images of two different datasets. TQWT has resulted in promising 

values of PSNR and SSIM at the optimum values of its parameters 

namely quality factor (Q) of 4, and oversampling rate (r) of 3 and at a 

decomposition level (J) of 2 [13]. The MCA-based model is used to 

process decomposed images for further classification with efficient 

storage. These images have been further used for the classification of 

COVID-19 and non-COVID-19 images using ResNet50 and AlexNet 

CNN models. The average accuracy values achieved for the processed 

chest X-ray images classification in the small and large datasets are 

98.82% and 94.64%, respectively which are higher than the reported 

conventional methods based on different models of deep learning 

techniques. The average accuracy of detection of COVID-19 via the 

proposed method of image classification has also been achieved with 

less complexity, energy, power, and area consumption along with 

lower cost estimation as compared to CMOS-based technology [46, 

66-74]. 

   The current ongoing deep learning technologies are based on CMOS 

circuits which have more operations in computation [74], area 

consumption, energy consumption [75], processing time, and power 
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consumption [46]. These technological limitations can be overcome 

using the MCA as these significantly reduce the power consumption as 

compared to the CMOS-based conventional systems [65]. MCA is 

gaining popularity in various domains of image processing, such as 

pattern recognition and edge detection [76]. 

 

Figure 4.1: Schematic shows the image decomposition and 

classification of the small and large datasets using the MCA-based 

model. 

MCA is more efficient in terms of energy as well as processing time as 

compared to the traditional Von Neumann circuits in some applications 

such as pattern processing [77]. The energy consumption of a 

memristor-based RRAM is less which attracts a lot of attention to in-

memory computation for various applications [74]. Various studies on 

memristor-based accelerator architectures [77] and memristor-based 

architectures for neuromorphic applications [29] have been previously 

published [30]. In conventional CMOS-based neural networks [31], the 

neurons are represented by capacitors that are bulky and occupy a large 

area [78], thus making the integration of many neurons in a chip 

extremely challenging [79]. On the other hand, by representing the 

neural parameters with the resistance state of memristor cells [31], an 

MCA can work as a dot-production engine and can eliminate the data 

transfer overhead of numerous neural weights [80].  

4.2. Proposed Methodology for Diagnosis of COVID-19 

COVID-19 caused by the novel SARS-CoV-2 virus can be understood 

as a type of pneumonia [13]. Patients diagnosed with COVID-19 suffer 

from dry cough, sore throat, and fever which may lead to organ failure 

[20]. The most prevalent method to diagnose COVID-19, the real-time 

RT-PCR test takes around 10 to 15 hours to produce the result, making 
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the diagnosis process very slow [19]. Another way to diagnose 

COVID-19 is the rapid diagnostic test (RDT) which takes 30 minutes 

to give the result. Even though the RDT method is faster, it is less 

reliable [21]. There is a need to explore other methods for COVID-19 

diagnosis, especially in a populous country like India and many 

countries in the Asian subcontinent. Various studies have shown that 

COVID-19 affects the lungs of the patient. Hence chest X-ray images 

of suspected patients are the most feasible method to detect COVID-19 

at an early stage [22]. Clinical imaging data are one of the most crucial 

diagnostic bases in all COVID-19 diagnostic data. Unfortunately, 

drawing the target area of medical images manually is a time-

consuming and laborious task. It increases the burden on the clinicians 

given the complexity. Therefore, computer technology can be used to 

diagnose the disease using medical imaging techniques [66]. Deep 

learning techniques, which are a subset of machine learning 

techniques, have been explored to diagnose COVID-19 automatically 

using chest X-ray images [23]. CNNs designed for images that are a 

class of deep neural networks in deep learning [67]. Residual neural 

network (ResNet) is a deep CNN, which is used for feature extraction 

and classification [68]. ResNet50 has been applied in various image 

recognition and classification applications such as metastatic cancer 

recognition [69], hyperspectral image classification [27], and 

chromosome classification [70]. On the other hand, AlexNet is an 8-

layer model with 5 convolutional layers and 3 fully connected layers 

[71], which has various applications in image processing like 

identification of maize leaf disease [28], COVID-19 virus detection, 

and power equipment classification [72], scene image classification 

[73]. ResNet50 and AlexNet are two CNN models explored in this 

work for the classification of chest X-ray images that are pre-processed 

by a wavelet decomposition technique called TQWT [18]. The images 

are decomposed by setting TQWT parameters, namely Q, r, and J, to 

their optimized values. TQWT is described in detail in the later 

sections. The usage of TQWT to decompose the input chest X-ray 
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images for classification application using an MCA-based model is 

novel and has not been reported elsewhere to the best of the author’s 

knowledge. Performance of proposed model computed for two-class 

classification of chest X-ray image databases such as COVID-19 and 

normal class.  

4.2.1. TQWT Image Decomposition with MCA 

   In this proposed work, chest X-ray images are used to diagnose 

COVID-19 using the MCA model based on the TQWT image 

decomposition technique and pre-trained CNN models [71]. Chest X-

ray images from two different datasets have been considered: a small 

dataset [81,82] having a total of 2193 chest X-ray images (COVID-19 

chest X-ray images - 852 and normal chest X-ray images - 1341) and a 

large dataset [30] having a total of 5275 chest X-ray images (COVID-

19 chest X-ray images - 2409 and normal chest X-ray images - 2866) 

have been used [13]. In addition to the RT-PCR test [83], chest X-ray 

images can also be utilized as an assistive tool to diagnose COVID-19 

with the help of image processing techniques with a machine learning 

algorithm. Many models have been proposed from all around the world 

for the diagnosis of COVID-19 using chest X-ray images. The best 

performance has been achieved by the ResNet50 model so far [22]. An 

accuracy of 98.82% has been achieved using the proposed 

methodology. A new model named COVID-Net has been proposed by 

Wang and Wong [84] which utilizes chest X-ray images for COVID-

19 diagnosis. This model has achieved an accuracy of 83.5%. Li et al 

[85] have proposed COVNet to detect COVID-19 using chest X-ray 

images. This model uses ResNet50 as the backbone network [21]. The 

sensitivity and specificity obtained from the COVNet model are 90% 

and 96%, respectively [85]. 

   The schematic of the proposed methodology is shown in Fig. 4.1. 

Firstly, chest X-ray images are decomposed by using TQWT 

technique; the optimum values for TQWT parameters are determined 

so that the chest X-ray images can be pre-processed with the 
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parameters of the decomposition set to their optimized values. The 

sub-bands obtained after each level of decomposition of the image 

contain both low and higher frequency components. For the higher 

levels of decomposition, further decomposition is performed iteratively 

on the approximation component only. As one goes for higher levels of 

decomposition the classification performance is observed to degrade 

since these components contain noise present in the image. The chest 

X-ray images of large and small datasets are decomposed using TQWT 

technique at an optimized value of Q, r, and J [18]. The decomposed 

image coefficients are then stored in an MCA, as shown in Fig. 4.1 

[86], where each cross point in the MCA is holding a coefficient value. 

The input image coefficient values are converted into voltages and fed 

to the MCA system-based model along the rows [13].  

 

Figure 4.2: Block diagram for TQWT for J level of TQWT 

decomposition. 

The current along the columns is collected and image retrieval is 

performed using these current values, as can be observed in Fig. 4.1 

level decomposition is given in Fig. 4.2. represented by ‘ω’ and 

further, it is considered as input in the memristive device-based model 

represented by ‘v’. The retrieved chest X-ray images are used for 

automatic image classification of COVID-19 via pre-trained CNN 

models using MATLAB version R2021a. Here, ResNet50 and AlexNet 

CNN models are used to classify chest X-ray images based on 

COVID-19 cases. A pre-trained adaptation of ResNet50 and AlexNet 

CNN models is separately processed in our utilized model, and all the 

chest X-ray images from the datasets are resized based on the input 

size requirement of the CNN models. 
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Figure 4.3: The simulation flow of work defines the algorithm for the 

proposed methodology. 

The proposed method has produced remarkable accuracy and has 

successfully identified COVID-19 positive chest X-ray images as 

COVID-19 and COVID-19 negative chest X-ray images as 

Healthy/Normal as shown in Fig. 4.1. There are various wavelets 

available that could be used for image processing, however, many of 



66 

 

 

 

the wavelet transforms have limitations due to their constant quality 

factor [18]. After determining the basis function and decomposition 

level number, the Q is fixed [44]. 

  

  

Figure 4.4: Filter-bank for TQWT decomposition at (a) J = 2, (b) J = 3, 

(c) J = 4, and (d) J = 5. 

The Q of a wavelet transform has to be in accordance with the 

oscillatory behaviour of the image to which it is being applied [18]. In 

most wavelet transforms such as DWT, it is not possible to tune the Q, 

which affects the quality of reconstructed output images, of the 

wavelet [44]. To overcome the drawback of constant Q in traditional 

wavelet transforms, Selesnick et al [18] has proposed TQWT 

technique, which is a nonlinear signal decomposition technique that 

facilitates a suitable Q of the wavelet basis function based on the signal 

to be decomposed [44]. TQWT technique is efficient in processing 

one-dimensional signals like speech, cardiac sound [44], and 

electroencephalogram (EEG) signals [87, 88]. Similarly, TQWT could 

also be suitable for 2D signals like images with texture variations. Q, r, 

and J are TQWT parameters [44]. It can be observed that for J level 
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decomposition, J+1 number of sub-bands are obtained which are 

represented by v. The transfer functions of the low-pass and high-pass 

filter banks are represented by H0(ω) and H1(ω), respectively. The 

low-pass coefficient obtained after one stage of decomposition is used 

as the input for the succeeding stage [13]. At each stage, the low-pass 

and the high-pass filter are followed by scaling. The parameters ‘Q’, 

and ‘r’ are related to the low-pass scaling factor (LPS α) and high-pass 

scaling factor (HPS β), as shown in Equations (1) and (2). 

𝑄 =
2−𝛽

𝛽
                                                  (1) 

 

𝑟 =
𝛽

1−𝛼
                                          (2) 

The optimum values of Q, r, and J are determined so that all the chest 

X-ray images can be pre-processed through TQWT [13]. The 

decomposed chest X-ray images are stored in a memristive system 

developed from an analytical model as described in the following 

subsection. 

   In Fig. 4. 4, the simulation flow of work represents the algorithm 

used in the proposed methodology, where the program starts with an 

input image for optimization of Q, r, and J in TQWT processing. For 

optimized conditions, both datasets are being processed which have 

sub-band image coefficients that pass through the memristive model 

for further processing using the CNN model. In the proposed 

methodology, 30% of the dataset is used for training and 70% of the 

dataset is used for testing the classification model. In the current 

technology, less number of images are needed for training of the model 

during the transfer learning approach, as shown by Hu et al by using 

30% of the input data [87]. The transfer learning technique comes as a 

rescue provided the input images are resized according to the pre-

trained network that is being used [87]. To achieve better performance 

and reduce the computational complexity with a reduced number of 

operations, 30% training data is used in the submitted manuscript 

instead of 70% training data. Two different pre-trained networks, 
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namely ResNet50, and AlexNet, as shown in Fig. 4.3, have been 

applied for the classification. ResNet50 comprises five stages, namely 

convolution layer, batch normalization layer, rectified linear unit 

(ReLU) activation layer, and maximum pooling layer. The next stage 

comprises of convolution block and an identity convolution block 

where each block has three convolutional layers in each. The output 

layer comprises the average pooling layer, fully connected layer, and 

softmax layer. Similarly, AlexNet consists of five convolutional and 

three fully connected layers as shown in Fig. 4.3. The outcome of both 

the networks gives two classes of identification that is COVID-19 

positive and normal or healthy chest X-ray images. 

4.3. Results and Discussion 

4.3.1. Image classification using CNN with MCA based model 

An MCA can be comprehended by a 3-dimensional (3D) structure like 

a human brain [88, 89]. The MCA offers remarkable downscaling at a 

nanoscale level which leads to high-density storage, ultrahigh 

switching speed, and longer operation cyclability which help to design 

an efficient system for image processing applications [89]. The ability 

to change synaptic weight is a crucial mechanism used in the process 

of learning by the human brain [86]. To emulate the brain pattern for 

image and speech recognition, one can introduce a neuromorphic 

MCA. As memristor-based systems are non-volatile, low-power 

consuming, and nanoscale dimensioned they are highly apt for in-

memory computing and also for implementing the computing systems 

[80] like CNNs. The proposed analytical model [86] to develop a 

neuromorphic MCA-based model is validated via experimental results 

of Y2O3-based memristive systems. The nonlinear model describes the 

synaptic learning of Y2O3-based devices along with the detailed 

analytical model. The analytical model used for the study in this paper 

is represented by Equations (3), (4), and (5). The nature of the MCA to 
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be controlled by flux is expressed through the first term on the right-

hand side of the I-V relationship shown in Equation (3). 

𝐼(𝑡) = {
𝑏1𝑤𝑎1(ⅇ𝛼1𝑣𝑖(𝑡) − 1) + 𝜒(ⅇ𝛾𝑣𝑖(𝑡) − 1), 𝑣𝑖(𝑡) ≥ 0

𝑏2𝑤𝑎2(ⅇ𝛼2𝑣𝑖(𝑡) − 1) + 𝜒(ⅇ𝛾𝑣𝑖(𝑡) − 1), 𝑣𝑖(𝑡) < 0
                         

                                                                                                         (3) 

   The amount of impact of the state variable for positive and negative 

applied programming voltages on the device current is indicated by the 

parameters a1 and a2, respectively. The parameters, b1, and b2 sketch 

the slope of conductance in I-V characteristics. The hysteresis loop 

area controlling parameters are represented by α1 and α2, whereas the 

state variable is represented by w.     

              𝑓(𝑤) = log {

(1 + 𝑤)𝑝, 0 ≤ 𝑤 ≤ 0.1

(1.1)𝑝, 0.1 < 𝑤 ≤ 0.9

(2 − 𝑤)𝑝, 0.9 < 𝑤 ≤ 1
                             (4) 

 

  
𝑑𝑤

𝑑𝑡
= 𝐴 × 𝑣𝑖

𝑚(𝑡) × 𝑓(𝑤)                                  (5) 

The net electronic barrier of the MCA is depicted by the parameters χ 

and γ. The f(w) is the piecewise window function, as shown in 

Equation (4), making sure that the state variable is confined between 0 

and 1. Equation (5) shows the derivative of the state variable in the 

time domain, where ‘A’, and ‘m’ determine the impact of the input 

voltage on the state variable. The analytical model proposed here can 

be applied to either unipolar or bipolar systems. The value of p restricts 

the window function between 0 and 1. The developed MCA-based 

model shows various synaptic functionality such as learning and 

forgetting behaviour, and synaptic plasticity [90]. Furthermore, the 

design of the analytical model [86] is inspired by the experimentally 

fabricated crossbar architecture which has successfully captured 

various synaptic and RRAM characteristics. 

 4.3.2. COVID-19 Image Analysis  

 In this work, the sub-bands that are formed using TQWT-based image 

decomposition are used for deep feature extraction. Three major 

experiments are carried out in the current study, the first one is done to 
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identify the best level of image decomposition and to obtain the 

optimized values of Q, r, and J. Second experiment is performed to 

process the input images through MCA-based model with TQWT 

parameters at their optimized values of image decomposition for 

further diagnosis of COVID-19 with efficient image storage. In the 

third experiment, the proposed model is studied for image 

classification of two class chest X-ray image databases by considering 

the best CNN model, optimizer, and classifier as reported [21].  

  

Figure 4.5: Variation in (a) PSNR and (b) SSIM of images for different 

J levels. 
  

TABLE 4.1 

 INPUT AND OUTPUT IMAGES OBTAINED AFTER DECOMPOSITION USING OPTIMISED 
TQWT PARAMETERS  

Images Chest X-ray 

images 1 

Chest X-ray 

images 2 

CT scan MRI 

 

 

Input 

 

 

 

 

 

Reconstruct

ed 

Output 

 (Q = 4, r = 

3, and 

J= 2) 
 

 

 

 

Quality 

Measur

es 

PSNR = 50.4271 

dB 

SSIM= 0.9946 

PSNR = 47.3663 

dB 

SSIM= 0.9968 

PSNR =43.4716 

dB 

SSIM=0.9936 

PSNR = 42.4547 

dB 

SSIM= 0.9971 

Decomposition has been performed on images mentioned earlier at 

various values of TQWT parameters and is observed to obtain their 

optimum values. This method of decomposition is accomplished using 

a parallel operation of low-pass filtering and high-pass filtering, 

respectively [18]. The coefficient taken from sub-bands at their 
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optimized parameters is used for further reconstruction of output 

images. The filter banks applied for various levels of decompositions 

applied in this work are shown in Fig. 4.4. In Fig. 4.4 (a), (b), (c), and 

(d) show the magnitude vs frequency plots of TQWT filters for second, 

third, fourth, and fifth decomposition levels, respectively. For the J-

level decomposition, we require J+1 filters and each of those filters is 

represented by different colours in Fig. 4.4 for easy differentiation. The 

PSNR and SSIM values of the input and the decomposed image are 

observed at different values of Q, r, and J, and these values are 

tabulated in Table 4.2. The variation in the values of PSNR and SSIM 

can be observed pictorially in Fig. 4.5(a) and (b), respectively. It can 

be observed that as the decomposition level is increased, the PSNR and 

SSIM values decline since the degradation in the image quality 

increases with the increase in the decomposition level. The same is 

observed in the cases where Q is larger than 4, as seen in Table 4.2, 

which could be reasoned as the Q of wavelet changes that is used for 

image decomposition the compatibility of the wavelet with the 

corresponding image changes.   

TABLE 4.2 

OUTPUT IMAGES AFTER CLASSIFICATION USING MCA-BASED MODEL WITH CONFUSION 

MATRIX BASED PARAMETERS 
Chest X-

ray 

Ima

ges 

Small Dataset Large Dataset 

 ResNet50 AlexNet ResNet50 AlexNet 

 

 

COVID-

19 

Pos

itiv

e 
  

 

 

 

 

Normal / 

Hea

lthy 

 

 

 

 

 

 

Confusio

NTP 588 NTP 591 NTP 1608 NTP 1584 

NFP 8 NFP 5 NFP 78 NFP 102 
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n 

Ma

trix

-

bas

ed 

par

am

eter

s 

NFN 6 NFN 9 NFN 68 NFN 113 

NTN 590 NTN 587 NTN 1618 NTN 1573 

TABLE 4.3 

IMAGE CLASSIFICATION QUALITY MEASUREMENT PARAMETERS 
Chest X-

ray 

Images 

Small Dataset Large Dataset 

 ResNet50 AlexNet ResNet50 AlexNet 

 

 

Confusion 

Matrix 

 

 

 
 

Accuracy 

(%) 

98.82 98.82 95.67 93.62 

Precision 

(%) 

98.65 99.16 95.37 93.95 

Sensitivity 

(%) 

98.98 98.50 95.94 93.34 

Specificity 

(%) 

98.66 99.15 95.40 93.91 

 

 

 

 

        

 

Figure 4.6: Training and validation plots for CNN models deploying 

(a) ResNet50 for a small dataset, (b) AlexNet for a small dataset, 

(c) ResNet50 for a large dataset, and (d) AlexNet for a large 

dataset. 
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It can be observed that the parameter values Q = 4, r = 3, and J = 2 

produce the best results in terms of PSNR and SSIM. It might be 

because of the compatibility of the wavelet with a Q of 4 and r of 3 

with the corresponding image and the fact that lower decomposition 

level results in better-reconstructed image quality. Implementation of 

TQWT can also be understood easily by representing it in terms of low 

pass and high pass filters, Fig. 4.4 shows the filter bank to implement 

TQWT. In this study best level of decomposition is opted out of level-

2, -3, -4, and -5 based decomposition as shown in Table 4.1. The 

classification performance of COVID-19 from the chest X-ray images 

database is studied. It has been shown in earlier studies that ResNet50 

gives a better performance out of maxima, minima, average, and fusion 

operations [21]. There are two output classes in the classification: 

COVID-19 and normal. The input images are designated as chest X-

ray image 1, chest X-ray image 2, computed tomography (CT) scan, 

and magnetic resonance imaging (MRI), where chest X-ray image 1 is 

a COVID-19 image taken from the large dataset while chest X-ray 

image 2 is a normal image taken from the small dataset [13]. The CT 

scan and MRI images are taken from [53] and [54], respectively. These 

images are considered to observe if the optimum parameters of TQWT 

decomposition are different for different images. In Table 4.2 the input 

and output images which are decomposed using the optimized 

parameters of Q, r, and J are tabulated along with the corresponding 

quality measures. The range of the quality measures is different for 

different images due to the differences in the size and resolution of the 

images. These specific values of TQWT parameters have been utilized 

to decompose all the chest X-ray images from the datasets in the next 

stage of image classification. In this phase, each filter bank has a 

frequency coefficient represented by ‘ω’ in Fig. 4.3, and the optimized 

level of decomposed chest X-ray images sub-band (v) coefficients are 

fed as input voltages (v) to the MCA-based model as described earlier. 

The images retrieved from the MCA are then used to train the earlier 

mentioned CNN models. The parameters used for performance 
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evaluation in this application are accuracy, sensitivity, specificity, and 

precision [21], which are defined by equations (6), (7), (8), and (9), 

respectively. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑁𝑇𝑃 + 𝑁𝑇𝑁

𝑁𝑇𝑃 + 𝑁𝐹𝑃 + 𝑁𝑇𝑁 + 𝑁𝐹𝑁
          (6)  

𝑃𝑟ⅇ𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑁𝑇𝑃

𝑁𝐹𝑃 + 𝑁𝑇𝑃
                                       (7) 

𝑆ⅇ𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑁𝑇𝑃

𝑁𝐹𝑁 + 𝑁𝑇𝑃
                                  (8) 

𝑆𝑝ⅇ𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑁𝑇𝑁

𝑁𝐹𝑃 + 𝑁𝑇𝑁
                                    (9) 

   In the above equations, NTP, NTN, NFP, and NFN represent the 

number of true positives, the number of true negatives, the number of 

false positives, and the number of false negatives, respectively [13]. 

Fig. 4.6 shows the variation in accuracy with the number of iterations 

while training, to build the two CNN models. The training accuracies 

for both datasets have been plotted for small and large chest X-ray 

image datasets. The training accuracy, though low in the beginning has 

reached nearly 90% in very few iterations as the CNN model learns the 

features better with each iteration and improves its ability to classify 

the chest X-ray images. After a few more iterations the accuracy is 

always observed to be above 80%. 

 

Figure 4.7: ROC plot for small and large datasets for AlexNet and 

ResNet50 models. 
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While training the CNN model new data are added for validating the 

model. The accuracy versus iterations plot during the validation of the 

models is also shown in Fig. 4.6 (a) and (b) represent training and 

validation accuracy while building the CNN using the small dataset for 

ResNet50 and AlexNet models, respectively. Fig. 4.6 (c) and (d) show 

training and validation accuracy while building the CNN using the 

large dataset for ResNet50 and AlexNet models, respectively. The 

training and validation accuracy is better for a small dataset than the 

large dataset since the small dataset has fewer chest X-ray images to 

validate and test as compared to those for the large dataset. In the 

classification of COVID-19 chest X-ray images for small and large 

datasets, we have achieved a higher value of assessment parameters as 

compared to the reported results [53] by using TQWT-based 

decomposed chest X-ray images through the MCA-based model. The 

confusion matrices obtained after classifying the chest X-ray images 

from the two datasets using ResNet50 and AlexNet as COVID-19 or 

normal chest X-ray images. The size of the deep feature vector of the 

last fully connected layer depends on the type of pre-trained network. 

A support vector machine is used in the proposed work, as this 

classifier gives better performance than other reported classifiers for 

the application of image classification [21].  

   The true class is represented along the rows and the predicted class is 

represented along the columns. The first and fourth elements in the 

matrix give the NTP, NTN and the other elements, i.e., the second and 

third elements give the NFP, and NFN, respectively, as shown in Table 

4.3. The confusion matrix obtained after classifying the CXIs from the 

two datasets using ResNet50 and AlexNet as COVID or normal CXIs. 

The different parameters of evaluation have been calculated from the 

confusion matrix values that are accuracy, sensitivity, specificity, and 

precision can be observed in Table 4.4. The receiver operating 

characteristic (ROC) curve, indicating the performance of the 

classification models which shows the diagnostic capability of the 

proposed classifier, and the relation between clinical sensitivity and 
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specificity for every possible cut-off, is plotted for both datasets in Fig. 

4.7. To obtain the ROC curve, only the true positive rate (TPR) and 

false positive rate (FPR) are needed as a function of some classifier 

parameter. Classifiers that give curves closer to the top-left corner 

indicate better performance. It shows how many correct positive results 

occur among all positive samples available during the test. FPR, which 

is calculated by using the formula ‘FPR = 1-specificity’, is taken on the 

x-axis. The ROC curve is another appreciable way to visualize the 

performance of a classifier apart from the quality measurement 

parameters [91]. From Fig. 4.7, one can conveniently analyse that the 

small dataset has better ROC which indicates the capability of the 

classifier to distinguish clearly between two classes. It can be simply 

understood as a probability curve that informs how good the model is 

at differentiating the chest X-ray images with COVID-19 and without 

COVID-19. A good classification model is expected to have covered a 

large area under its ROC. This way, while comparing multiple models 

one can select a model by observing the corresponding ROC. In Table 

4.5 the performance of the proposed method with the methods 

available in the literature for diagnosis of COVID-19 from chest X-ray 

images databases is compared. It has been observed that accuracy, 

precision, specificity, and sensitivity values of 98.82%, 98.65%, 

98.66%, and 98.98%, respectively have been achieved for the 

classification of images in the small dataset using our proposed 

ResNet50. For AlexNet models, the corresponding values are 98.82%, 

99.16%, 99.15%, and 98.50% for the classification of images in the 

small dataset as shown in Table 4.5. For the small and large datasets, 

lower values of assessment parameters have been reported using other 

reported CNN models, as shown in Table 4.5 [43-47]. For the 

classification of images in the large dataset by using our utilized 

model, the values of accuracy, precision, specificity, and sensitivity are 

95.67%, 95.37%, 95.40%, and 95.94%, respectively by ResNet50, and 

93.62%, 93.95%, 93.91%, and 93.34%, respectively, by AlexNet, these 

are given in Table 4.5 [ 43, 44, 48-54]. 
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TABLE 4.4 

PERFORMANCE COMPARISON OF THE PROPOSED METHOD 

WITH OTHERS FOR IDENTIFICATION OF COVID-19 USING 

CHEST X-RAY IMAGE DATABASE 

Small Dataset 

Ref. Models Accura

cy 

(
%

) 

Precisi

o

n 
(

%

) 

Specifi

ci

ty 
%

) 

Sensitivit

y 

(%) 

[46] AlexNet 99.00 98.00 99.00 99.00 

[43] Covid-Net 93.30 98.90 - 91.00 

[47] Modified 

MobileNet 

95.00 99.00 - 96.00 

Our  ResNet50 98.82 98.65 98.66 98.98 

AlexNet 98.82 99.16 99.15 98.50 

Large Dataset 

Ref Models Accura

cy 

(

%

) 

Precisi

o

n 

(

%
) 

Specifi

ci

ty 

%

) 

Sensitivit

y 

(%) 

[44] COVID-Net 90.10 84.00 - 98.20 

DenseNet-201 91.75 94.24 78.00 - 

[48] ResNet50+SVM 95.38 - 93.47 97.29 

[49] ResNet-101 71.90 - 71.80 77.30 

[50] XCOVNet  98.44 99.29 - 99.48 

[51] Xception 91.00 92.00 - 87.00 

[52] ResNet-50 98.00 94.81 98.44 87.29 

[53] DenseNet-121 88.00 - 90.00 87.00 

[43] Modified ResNet 99.30 - - 99.10 

[54] XCOVNet  88.90 83.40 96.40 85.90 

Our  ResNet50 95.67 95.37 95.40 95.94 

AlexNet 93.62 93.95 93.91 93.34 

   It has been observed that the level of accuracy of the proposed 

methodology is 5.92% and 4.02% higher as achieved by others such as 

Covid-Net [92-95] and Modified MobileNet [96], respectively, for the 

classification of images in the small dataset by using both the CNN 

models. For large datasets, the proposed model using ResNet50 has 

achieved 33.06%, 8.71%, 7.61%, 6.18%, 5.13%, and 4.27% higher 

accuracy as compared to those obtained by using ResNet-101 [97, 98], 

DenseNet-121 [99-102], XCOVNet [103], COVID-Net [93], Xception 

[100], and DenseNet-201 [93], respectively. From the comparative 

analysis of our proposed work with reported literature for both the 

small and large datasets, it is evident that most of the performance 

matrices via conventional technology provide less values of accuracy, 

precision, specificity, and sensitivity. Although a CNN model [95] 

from the small dataset, and [92, 99, 101] from the large dataset give 

better accuracy and sensitivity as compared to those in the proposed 

work, however, commercially viable technologies for image 
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classification consume more operations in computation, area 

consumption, energy consumption and processing time which have a 

direct impact on the cost of the overall system since these are based on 

CMOS systems [46, 65]. These technological limitations can be 

overcome using the MCA as these reduce the total energy 

consumption, the number of operations in computation, area 

consumption, processing time, and power consumption compared to 

the conventional system [93] which will be helpful to circumvent Von 

Neumann bottleneck issues. As given in Table 4.6, Halawani et al and 

Khalid et al have demonstrated image processing and digital logic 

circuits with a reduced number of devices and operations in the MCA-

based model as compared to the conventional CMOS-based 

counterparts [13, 46]. A comparative analysis of compression for 

(512×512) image is performed using our MCA-based TQWT model 

and conventional CMOS-based models in which the values of various 

parameters are taken as in [13, 46]. Table 4.6 displays the achievement 

of better performances compared to the conventional CMOS-based 

models. Hence, our proposed approach makes the memristor-based 

solution very attractive for image processing applications. This 

components-based study is useful for circuitry design to the application 

of image classification via MCA model-based architecture [94]. 

   At the hardware level, an MCA will be specifically utilized to 

accelerate the construction of artificial neural networks. As compared 

with conventional computer processors [104], the data stored in an 

MCA are processed in a parallel manner, which increases the 

computational speed and fault tolerance simultaneously and 

significantly reduces the system power consumption [33]. In this work, 

the performance of the proposed method using an MCA-based model 

is compared with the reported deep learning model based on other 

conventional technology. Hence, it can be concluded that by using an 

MCA without compromising the performance in image processing and 



79 

 

 

 

classification high processing speed with savings in energy, power, 

area, and cost can be achieved. 

TABLE 4.5 
COMPARISON OF THE CONVENTIONAL DIGITAL CMOS-BASED 

COMPUTING WITH THE MCA-BASED IN-MEMORY 

COMPUTATION [13] 

Compression for (128×128) image [19] 

Parameters CMOS Memristor        Prominent 

Improveme

nt 

Number of 

Operation

s 

1282×4×5 1282×2 10 times 

Area 

(m2) 

327000 7864.2 5 orders of 
magnitude 

Processing 

Speed 

(s) 

 

19.2 

 

15 

 

1.28 times 

Energy 

Consumpt

ion (nJ) 

 

70.9080 

 

6.4398 

 

11 times 

 Full adder circuit by using 3-bit [20] 

Parameters CMOS Memristor        Prominent 

Improveme

nt 

Number of 

Transistor 

34 24 10 lesser 

transistors 

Processing 
Time (ps) 

 
75.3 

 
62.4 

 
14.84% 

Power 

Consumpt

ion (W) 

 

117.3 

 

53.08 

 

54.74% 

Our work on compression for (512×512) image 

Parameters CMOS MCA        Prominent 

Improveme

nt 

Number of 

Operation

s [19, 20] 

5123 + 

(5122×511) 

5122 1023 times 

Area 

(m2) [19] 

1585446.912 41943.04 37.8 times 

Energy 

Consumpt

ion (pJ) 
[19] 

 

1115.4 

 

1.484 

 

752 times 

Processing 

Time  

(s) [19, 20] 

0.15 0.06 2.5 times 

Power 

Consumpt

ion (mW) 
[19] 

 

7436 

 

24.733 

 

300 times 

This work explores the merits of employing TQWT and MCA based 

techniques for effective detection of the COVID-19 virus through chest 

X-ray images. Further, the highest values of peak signal to noise ratio 

and structural similarity index for chest X-ray image is 50.4271 dB and 

0.9946, respectively, for the optimized TQWT parameters, namely Q = 

4, r = 3, and J = 2. The utilized method can overcome the limitations 

of the CMOS-based technology and is feasible with less complexity, 
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processing speed, energy, power, and area consumption along with 

lower cost estimation as compared to current technology. This study is 

carried out to find the optimum values of parameters for the 

decomposition of chest X-ray images using a TQWT. By using the 

obtained optimum parameters, remarkable values of PSNR and SSIM 

are achieved. From the decomposed images, which are stored in the 

MCA, features are extracted using two different convolutional neural 

network models: ResNet50, and AlexNet. High average accuracy 

values of 98.82% and 94.64% are achieved by using the MCA-based 

model for small and large datasets containing 2193 and 5275 chest X-

ray images, respectively [13]. The image processing capability of the 

MCA-based model improves the operational efficiency of the neural 

network and reduces the energy consumption of the system as 

compared to other reported convolutional neural network models. In 

addition, the MCA model-based image processing technology can 

enhance the processing speed and accuracy along with the reduction in 

the number of operations, area, and energy consumption. This work 

can be further extended to identify different stages of coronavirus 

disease 2019 and to build an on-chip architecture based on an MCA. It 

can also be modified to diagnose other diseases like influenza and 

tuberculosis, from chest X-ray images, CT scans, and other imaging 

techniques. 

4.3.3. Pneumonia Detection using Chest X-ray Image Analysis 

The application of two CNN models, EfficientNet and NASNet in the 

classification of chest X-ray images that have been pre-processed using 

the TQWT. [70]. Wavelet transforms, which possess the ability to 

localize offer multiresolution features, have found extensive usage in 

several image processing applications, such as edge detection and 

image compression [13]. The TQWT parameters were optimized to 

obtain the decomposed images, which were then classified into the two 

classes of pneumonia and healthy chest x-ray images. This research 

marks the establishment of the application of TQWT in decomposing 

chest X-ray images for classification through the memristive model. 
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Traditional deep learning technologies are dependent on CMOS 

circuits, which are restricted by significant computational operations, 

area demands, energy consumption, processing time constraints, and 

power consumption requirements [66]. 

The performance of the biological brain in terms of brain-inspired 

computing is modelled using memristive devices. In biological 

systems, neurons and synapses include dendrites positioned between 

pre-neurons and post-neurons via synapses [46]. Information is 

transferred to the synaptic terminal through the axon, which functions 

similarly to artificial memristive neurons [13]. This study uses an 

analytical model of a memristive device, featuring a structure with 

gallium zinc oxide (GZO) as the bottom electrode, aluminium (Al) as 

the top electrode, and Y2O3 as the resistive switching layer [66]. The 

memristive device-based model is activated by voltage (v) 

corresponding to pixel values VR1, VR2, ..., VRM, with a normalizing 

voltage VAvg. It generates spike events via the membrane, analogous to 

the soma of a neuron [66]. The concept of memristive biological 

neurons is inspired by the intricate structure and complex functioning 

of biological neurons found in the human brain. These artificial 

neurons mimic the way biological neurons process and transmit 

information, utilizing memristive devices to emulate synaptic 

behaviours such as learning and memory retention. Memristive 

biological neurons hold significant potential in the realm of artificial 

intelligence, particularly for tasks that require efficient and accurate 

image classification. By leveraging the unique properties of 

memristors, these neurons can process vast amounts of data swiftly and 

with high precision, thereby enhancing the performance of AI systems 

in recognizing and categorizing images [66]. A MCA-based model 

framework, characterized by lower power consumption compared to 

CMOS based systems, has the potential to scale these technological 

constraints [13]. When it comes to tasks like pattern processing, the 

memristive model shows better processing speed and energy efficiency 

than Von Neumann circuits especially when applied to neural networks 
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[66]. Extensive research has been conducted on utilizing memristive 

model for various applications, including neuromorphic computing 

particularly in neural network applications [46]. The MCA based 

model [86] can function as a vector matrix multiplication, that 

eliminates the necessity for transferring large amounts of neural 

weights data, making them highly compatible substitutes for CMOS 

based neural networks. To address the limitations of previous studies, 

this research aims to optimize the TQWT parameters for image 

decomposition and utilize the memristive model to conduct 

mathematical research on the 2D TQWT for further applications in 

image decomposition and classification [13]. The processed images are 

utilized for computational diagnosis and early disease detection of 

pneumonia and other infectious lung diseases via CNN models, which 

analyse chest X-ray images. Memristive model-based devices present 

an advantage in image processing due to their simultaneous storage 

and processing capabilities, non-volatile memory, and adaptability 

[46]. This offers the potential for the development of more efficient 

and intelligent systems in image processing applications with cost 

effectiveness. The key benefits of using memristive model in 

computational tasks include high density, low power consumption, and 

the ability to perform parallel computations, making them ideal for 

implementing neural networks [13] as shown in Fig. 4.8 (a) and (b). 

(a)  
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(b)  

Figure 4.8. (a) Overview frame of the proposed work (b) 

automated image classification for the diagnosis of pneumonia 

diseases, where inception residual block (IRB) is used in CNN 

Model. 

In this proposed study, pre-trained CNN models from MATLAB 

version R2021a are employed to automatically classify chest X-ray 

images for early detection of pneumonia as shown in Fig. 4.9. 

Classification experiments were conducted to demonstrate the 

performance improvement across various neural network input sets. 

For image decomposition simulation results indicate that the parameter 

values Q = 4, r = 3, and J = 2 produce the best output image quality 

due to the compatibility of the wavelet as shown in Fig. 4.4. The study 

utilizes the TQWT technique, where each filter bank is assigned a 

frequency coefficient represented by ‘ω’. The memristive model is fed 

with optimized levels of decomposed sub-band (v) coefficients from 

chest X-ray images as input voltages (v). The output images obtained 

from the memristive model are employed to train the CNN models. To 

evaluate the quality of both the input and decomposed reconstructed 

output images, authors assess them using the PSNR and SSIM at 

varying values of Q, r, and J, the results are summarized in Table 4.2. 

The TQWT technique is used each filter bank within the system has a 

frequency coefficient denoted as ‘ω’, and the optimized level of 

decomposed chest X-ray image sub-band (v) coefficients serves as 

input voltages (v) for the memristive model [46]. The resulting images 

from the memristive model are utilized for training the CNN models. 

The suggested approach utilizes a 30% training and 70% testing 

division of the dataset to assess the classification model, as outlined in 

Table 4.4.  
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Figure 4.9: Pneumonia Infected Chest X-ray Image (a) Image from 

Raw Dataset (b) Processed Image using Proposed Methodology 

 

Figure 4.10: Assessment parameter of classified results using CNN 

models for small dataset (SD) and large dataset (LD). 

Earlier studies conducted by Halawani et al. and Khalid et al. have 

showcased the efficiency of memristive model in image processing and 

digital logic circuits [13]. These models exhibit a decrease in device 

count and operations when compared to traditional CMOS-based 

models [29, 30]. To evaluate the compression effectiveness of the 

memristive model integrated with the TQWT model relative to 

traditional CMOS based models, the authors conducted an extensive 

analysis using a (512×512) image. The comparison involved 

employing parameter values derived from sources [66, 29, 30], as 

detailed in Table 4.4. The proposed EfficientNet exhibits remarkable 
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performance in classifying images within the small dataset, achieving 

Acc, Pre, Spe, and Sen values of 99.24%, 98.77%, 97.98%, and 

98.96%, respectively, as detailed in Table 4.4. 

Similarly, the NASNet models demonstrate commendable results in 

the small dataset, with corresponding values of 97.82%, 97.03%, 

98.66%, and 96.98% as shown in Fig. 4.10. In contrast, other reported 

CNN models, as shown in Table 4.4 [31, 78, 79], present lower 

assessment parameter values for both small and large datasets. For 

image classification in the large dataset, one employed EfficientNet 

model yields Acc, Pre, Spe, and Sen values of 93.84%, 95.72%, 

94.68%, and 93.24%, respectively.  

TABLE 4.6 

IMAGES RESULTING FROM INPUT AND OUTPUT DECOMPOSITION USING OPTIMIZED 
TQWT PARAMETERS 

 

The NASNet model achieves corresponding values of 91.31%, 

91.34%, 91.28%, and 91.34%, as outlined in Table 4.4 [78, 80, 81-83]. 

A comprehensive comparative analysis with existing literature 

highlights that conventional technologies consistently exhibit lower 

values in terms of Acc, Pre, Spe, and Sen for both small and large 

datasets. While some CNN models may demonstrate superior 

performance compared to our proposed method in terms of Acc and 

Sen, it is crucial to acknowledge that commercially viable image 
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classification technologies typically meet issues such as higher 

computational demands, increased area and energy consumption, and 

longer processing times due to their dependence on CMOS systems 

[29, 30]. 

However, these challenges can be effectively addressed by integrating 

memristive devices [66, 29-30]. By using memristive devices, one can 

reduce the problems linked with traditional CMOS based methods, 

leading to better and more efficient ways of classifying images, this is 

reflected in the comparative results presented in Table 4.8 in terms of 

PSNR and SSIM. Memristive model addresses these technological 

limitations by significantly reducing total energy consumption, 

computational operations, area consumption, processing time, and 

power consumption compared to conventional systems as shown in 

Table 4.5 [29, 30]. This not only helps overcome Von Neumann 

bottleneck issues but also presents a more cost-effective solution for 

image classification systems. It is noteworthy that EfficientNet 

demonstrated a particularly high Acc, especially for smaller datasets, 

as illustrated in Fig. 4.6 because of internal architecture compatibility 

with proposed classification. This superiority is attributed to the 

internal architecture compatibility of EfficientNet with proposed 

memristive model framework, facilitating effective image 

decomposition and classification [84, 85]. The Internet of Things (IoT) 

is rapidly expanding, with billions of interconnected devices 

generating and processing data [13]. However, limitations in 

communication bandwidth and device storage pose significant 

challenges. This is where memristive model framework step in, 

offering a revolutionary approach that not only gives higher processing 

speed but also significantly reduces the compression ratio needed for 

data transmission and image processing within IoT networks. The use 

of memristive model significantly speeds up the processing time 

compared to traditional digital systems, enabling rapid diagnosis. An 

MCA model is highly scalable, allowing for larger and more complex 

CNN models to be implemented [46]. The analogue nature of MCA 
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based model computations reduces energy consumption, making the 

technology suitable for deployment in resource constrained 

environments like portable diagnostic devices [13]. Future research 

could focus on improving the precision and robustness of memristive 

device-based model, developing more sophisticated CNN architectures 

tailored to pneumonia detection, and exploring the integration of this 

technology into clinical practice for broader use in medical diagnostics. 

4.3.4. MCA based Window Function as an Activation Function 

The development of Artificial Neural Networks (ANNs) has 

significantly advanced Machine Learning (ML). ANNs consist of 

layers of artificial neurons, inspired by biological neurons, connected 

by weights (w1, w2, and w3) and biases (b) as shown in Fig. 4.11. An 

essential component is the activation function, which introduces non-

linearity, allowing the network to learn complex patterns [23]. Input 

sequences X1, X2, and X3, and corresponding outputs Y illustrates 

weight initialization, output computation, error determination, and 

weight adjustment in an iterative process aiming to minimize error as 

shown in Table 4.7. 

 

Figure 4.11: Memristive device-based window function as activation 

function for artificial neural network. 

 
TABLE 4.7 

COMPARATIVE ANALYSIS OF THE SIGMOID ACTIVATION FUNCTION AND THE 
MEMRISTIVE MODEL-BASED WINDOW FUNCTION AS ACTIVATION FUNCTIONS 

Input Correct output Sigmoid correct 

output 

Memristive device-based 

activation 

function_correct 

output 
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{001} {0} 0.0102 0.00067592 

{011} {0} 0.0083 0.00062701 

{101} {1} 0.9932 0.9994 

{111} {1} 0.9917 0.9994 

Without it, the network’s output would be a linear combination of 

inputs, regardless of the number of layers. This work proposes a new 

activation function inspired by the Y2O3-memristive model as shown 

in equations (4), and (5). The piecewise window function f(w) shown 

in equation (4), ensures the state variable stays between 0 and 1. 

Equation (5) describes the time-domain derivative of the state variable, 

with ‘A’ and ‘m’ representing the influence of input voltage. This 

analytical model is applicable to both unipolar and bipolar systems, 

with ‘p’ limiting the window function to the 0 to 1 range. Training and 

testing were performed using both the sigmoid activation function as 

shown in equations (6) and the proposed function. 

The proposed activation function achieves an efficiency of 99.94% 

with a parameter value of ‘p’ set to 3, compared to 99.32% with the 

sigmoid function as shown in Table 4.7. MCA based window function 

[86] shown in equation (4) and (5) and sigmoid activation function 

[17] shown below in equation (10): 

Sigmoid function: 𝜑(𝑥) =  
1

1+𝑒 −𝑥                                   (10) 

   As an activation function used for pattern detection with higher 

accuracy, it demonstrates that the identification accuracy for 

pneumonia should be improved using a memristive device-based 

model. Due to the issue of vanishing gradients with the sigmoid 

activation function which can weaken training and cause gradients to 

vanish [6], the proposed memristive model-based window function 

aims to deliver more effective performance in deep networks.  

4.3.5. Handwritten Digit Recognition using MCA based Model 

The MNIST dataset consists of handwritten digits from 0 to 9 as shown 

in Fig. 4.12. They act as the output classes during classification using 
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CNN. The handwritten digit recognition using memristive system is 

performed in MATLAB environment. Initially the training and testing 

data is read in the script, the training data has around 60000 images 

and the test data has around 10000 images in the form of 784 (28 × 28) 

row vectors of pixel values along with their labels. Next step is to 

separate the labels and pixel values from both train and test data, then 

the pixel values are normalized so that all of them are in the range of 0-

1. This is followed by reshaping all the row vectors into 28 × 28 

images that can used as inputs for the CNN. Before classifying them 

all the images are fed to the memristive crossbar array developed using 

the above discussed analytical model. The image pixel values are given 

as voltages, that storing the images in memristive devices reduces lot 

of area requirement and power consumption. For retrieving the pixel 

values the output current from the MCA based model is utilized. 

 

Figure 4.12: Integration of MCA and CNN for handwritten digit 

recognition based on dimensionality reduction in each stage 

In this work the recognition task is achieved by a 7-layer CNN 

comprising of 1 convolutional layer, 1 maxpooling layer, 2 fully 

connected layers, 1 dropout layer, 1 softmax layer and 1 classification 

layer. The block diagram of the model can be observed in Fig. 4.12. 

Convolution operation is used in the convolutional layer to extract 

information by dividing the numerical images into overlapping blocks. 

It can be interpreted as filtering the images using many parallel filters. 

In the first layer i.e., the convolutional layer the 28 × 28 image is 

filtered using 32 filters of size 3 × 3. The result of this filtering of each 

block by all the filters is a weighted sum of the pixel values for 32 
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channels. This weighted sum is fed as input to the nonlinear rectified 

linear unit (ReLU) activation function. Activation functions are 

necessary to prevent the network neurons from exploding or dying. 

The convolutional layer is succeeded by a maxpooling layer of pool 

size 3 × 3. Pooling layer is required to remove the redundant 

information and the size of the image [13]. The maxpooling layer 

considers all pixels from one channel generated by the convolutional 

layer and divides them into number of non-overlapping blocks. The 

output of this layer is reduced in size by combining the neighbouring 

pixels into a single pixel. It is followed by two fully connected layers 

of output size 64 and 10 respectively with a dropout layer of 

probability 10 between them. Dropout layer is needed to avert 

overfitting of the model. The last two layers of the CNN are the 

softmax layer and the classification layer which give the result of 

handwritten digit recognition.   

 

Figure 4.13: Confusion matrix-based output data for image 

classification of MNIST dataset 

As the number of iterations increased the loss went significantly low. 

An accuracy of 98.86% has been achieved for the handwritten digit 

recognition using memristive system. The confusion matrix for this 

classification can be observed in Fig 4.11. Using the MCA based 
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model has improved the efficiency of the classification. While 

preforming the same task without the MCA based model, on a CMOS 

device has resulted in an accuracy of 98.75%. 

4.4. Conclusion 

In this study, the authors explore the advantages of utilizing TQWT 

and memristive model-based approaches for the early detection of viral 

lung infections of pneumonia through the analysis of chest X-ray 

images. The proposed activation function outperforms the sigmoid, 

achieving an efficiency of 99.94% with a parameter value of ‘p’ set to 

3, compared to 99.32% for the sigmoid function. The researchers have 

identified optimized TQWT parameters, Q = 4, r = 3, and J = 2, which 

have produced the highest PSNR and SSIM index of 51.5671 dB and 

99.78%, respectively. The proposed approach demonstrates practicality 

through decreased complexity, processing speed, energy and area 

consumption, as well as reduced cost compared to existing technology, 

thereby overcoming the limitations associated with CMOS based 

technology. The study has determined the ideal parameter values for 

the TQWT-based decomposition of chest X-ray images, which are 

integrated with a MCA based model employed to store the coefficients 

of the decomposed images. Two different models of CNNs, 

EfficientNet and NASNet, have been utilized to extract features from 

the images and train the models, respectively, resulting in high Acc 

values of 99.24% for both small and large datasets comprising several 

chest X-ray images. The MCA based model can enhance the neural 

network efficiency, reduces energy consumption, increases processing 

speed, and improves accuracy of the system. This research can be 

further enhanced by designing an on-chip architecture based on MCA 

based model and identifying the various stages of lungs infection. The 

TQWT technique excels at identifying subtle early-stage texture 

variations in decomposed images, while the memristive model 

enhances feature extraction and classification accuracy. This combined 
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approach reduces false negatives by improving contrast resolution in 

challenging regions and enables efficient automated screening - a 

capability particularly valuable in resource-limited settings. Most 

importantly, by facilitating earlier and more reliable detection of 

conditions like pneumonia, our method supports timely clinical 

intervention and improved patient outcomes. The versatility of the 

method extends beyond its current application, as it can be designed to 

diagnose additional diseases such as tuberculosis and influenza through 

the analysis of chest X-ray images, CT scans, and other imaging 

modalities. 
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 Chapter 5  

MCA-Inspired Automated Glaucoma 

Detection from Fundus Images using 2D 

FBSE-EWT 

5.1. Introduction 

The evolution Ocular disorders affect over 2.2 billion people 

worldwide, with glaucoma emerging as a leading cause of blindness in 

India. Early detection of glaucoma is vital because it progressively 

damages the optic nerve due to high fluid pressure, resulting in vision 

impairment. This study presents an innovative approach to glaucoma 

detection and diagnosis known as the 2D FBSE-EWT, integrating a 

model based on a MCA [86]. The proposed method relies on deep 

learning and an ensemble EfficientNetb0-based technique to identify 

whether a fundus image is normal or shows signs of glaucoma. 

Compared to other CNNs models like ResNet50, AlexNet, and 

GoogleNet, EfficientNetb0 performs better, making it the best option 

for classifying glaucoma. Initially, researchers processed the dataset 

using an integrated model of MCA with 2D FBSE-EWT, and 

reconstructed images used for further classification. The assessment 

parameters of reconstructed output images revealed their high quality, 

as indicated by elevated values of PSNR = 26.2346 dB and SSIM = 

95.38%. The proposed method exhibits outstanding performance, 

achieving an accuracy of 94.15% using EfficientNetb0. Furthermore, 

the proposed methodology enhances accuracy and sensitivity by 

32.14% and 40.93%, respectively, compared to the unprocessed 

dataset. 

5.2. Proposed Methodology for Early Detection of 

Glaucoma 
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5.2.1. 2D FBSE-EWT Integration with MCA-based Model 

Glaucoma, primarily occurs due to an imbalance between fluid 

production and drainage, resulting in increased pressure on the optic 

nerve head (ONH) and subsequent damage. As a leading cause of 

blindness, glaucoma often manifests without early-stage symptoms. 

The condition is characterized by elevated fluid pressure within the 

optic nerve, resulting from a blockage in the eye’s drainage system, 

ultimately causing damage to the ONH [24]. Deterioration of the optic 

nerve can be detected through fundus images, leading to structural 

alterations in the optic nerve head and impacting vision. 

 

Figure 5.1: Fundus images of different class (a) Healthy (b) Glaucoma. 

It is crucial to prioritize early detection and diagnosis of glaucoma 

owing to its cause blindness in the absence of prompt intervention. 

Recently, biomedical imaging technique has emerged as a formidable 

tool for the non-invasive detection and diagnosis of a wide variety of 

human diseases [105]. The biomedical imaging field, stemming from 

the discovery of X-ray [23] has seen the development of diverse 

imaging models, including electromagnetic spectrum, radio, 

ultrasound, microscope, and others imaging techniques [106]. 

Moreover, eye diseases can be similarly detected early by employing 

biomedical imaging techniques, particularly fundus imaging [107]. 

Among the diseases that can be detected and diagnosed from fundus 

images, glaucoma detection and diagnosis is an active area of research 

due to the potential severity of the condition. Glaucoma can take 

different forms, the most common is primary open angle glaucoma, 

which gradually affects vision. There is also angle closure glaucoma, 
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where eye pressure suddenly spikes, requiring urgent attention [23]. 

Some individuals experience normal tension glaucoma, where eye 

pressure remains normal, but vision is still in danger. Secondary 

glaucoma and different types can result from various eye or body 

conditions, making it vital to pinpoint the specific type for the right 

treatment and the protection of your eyesight [23]. The proposed 

research aims to precisely categorize fundus images, as illustrated in 

Fig. 5.1, to detect signs of glaucoma or normal conditions, particularly 

in cases where the cup size varies. Early detection of glaucoma is 

paramount in preventing long-term vision loss [105]. 

In recent years, several automated machine-learning algorithms have 

been developed for glaucoma diagnosis using fundus images. 

Encompassing those different approaches have been explored, such as 

ANN [108], SVM [25], Gabor transform [109], Radon transform [26], 

wavelet-based decompositions [110], and DL techniques [5]. However, 

these methods employ various image preprocessing techniques, and 

classification algorithms using CNNs to detect glaucoma. Henceforth, 

DL ensemble EfficientNetb0 model using 2D FBSE-EWT with MCA 

based model has shown promising performance in glaucoma detection 

and diagnosis compared to traditional machine learning and DL 

algorithms [5]. Furthermore, the traditional methods have encountered 

several challenges in decomposing 2D signals, due to limitations such 

as interference, incompatibility with non-stationary signals, lack of 

adaptability, and limited scale coverage [23]. While the 2D FBSE-

EWT is adaptive in nature, it suffers from interference and redundancy 

issues in image spectrum segmentation. This section provided an 

overview of the related work in fundus image classification, 

emphasizing the predominant use of conventional methods that involve 

traditional machine learning algorithms.  
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Figure 5.2: Flow chart of proposed methodology for image 

classification. 

 
 

Figure 5.3: The overall structural outline of the proposed ensemble 

method for the classification of glaucoma and normal using fundus 

image dataset via CNNs. 

Effectively harnessing recent advancements in deep learning, 

particularly CNNs, has proven successful for early disease detection 

and diagnosis, though challenges such as limited datasets and model 

interpretability persist. In the following sections, authors present their 

proposed methodology as shown in Fig. 5.2 and Fig. 5.3 to address 

these challenges and further advance the field of fundus image 

classification. The field of fundus image classification, particularly in 

the context of accurate diagnosis and classification of ocular diseases, 
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has collected significant attention in recent years [25, 26, 108-110]. 

Researchers have explored various approaches and methodologies to 

tackle these challenges. CNNs have emerged as the preferred 

architecture for learning discriminative features directly from raw 

images [13, 111-115]. In this work, authors have introduced an 

integrated MCA-based model with 2D FBSE-EWT techniques via 

CNNs for the classification of fundus images, as depicted in Fig. 5.4. 

This provides an overview of ensemble method in the structural 

framework for classifying glaucoma and normal images using a fundus 

image dataset and CNNs for early detection and diagnosis of disease. 

This section provided an overview of the related work in fundus image 

classification, emphasizing the predominant use of conventional 

methods that involve traditional machine learning algorithms. 

Effectively harnessing recent advancements in deep learning, 

particularly CNNs, has proven successful for early disease detection 

and diagnosis, though challenges such as limited datasets and model 

interpretability persist. In the following sections, authors present their 

proposed methodology as shown in Fig. 5.2 and Fig. 5.3 to address 

these challenges and further advance the field of fundus image 

classification. The field of fundus image classification, particularly in 

the context of accurate diagnosis and classification of ocular diseases, 

has collected significant attention in recent years [25, 26, 108-110]. 

Researchers have explored various approaches and methodologies to 

tackle these challenges. CNNs have emerged as the preferred 

architecture for learning discriminative features directly from raw 

images [13, 114, 115]. In this work, authors have introduced an 

integrated MCA-based model with 2D FBSE-EWT techniques via 

CNNs for the classification of fundus images, as depicted in Fig. 5.4. 

This provides an overview of ensemble method in the structural 

framework for classifying glaucoma and normal images using a fundus 

image dataset and CNNs for early detection and diagnosis of disease. 
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The proposed methodology, as depicted in Fig. 5.4, involves a 

sequence of steps. Initially, datasets are processed through a 2D FBSE-

EWT and MCA-based model. The utility of 2D FBSE-EWT extends 

beyond physics and engineering into fields like signal and image 

processing. In medical imaging, and signal processing applications, 

where non-stationary data is common, 2D FBSE-EWT allows for 

effective analysis and reconstruction. The only shortcoming of using 

2D-FBSE-EWT is computational time due to implementation FBSE 

spectrum instead of Fourier transform. But due to ongoing 

advancements in numerical methods and computing technology, 2D 

FBSE-EWT remains a crucial tool for solving problems, ensuring its 

enduring relevance in both research and practical applications. The 

output image is subsequently processed to improve the quality of the 

reconstructed output image through the optimization of its brightness 

effects. Subsequently, the reconstructed output images are used for 

further biomedical image classification using CNN models for the 

detection and diagnosis of glaucoma at the early stage, as illustrated in 

Fig. 5.4. 

TABLE 5.1: PHYSICAL SIGNIFICANCE AND VALUES OF 

PARAMETERS FOR MCA-BASED MODEL [19] 

Parameters Values for Y2O3 Physical Representation 
b1 1.59 × 10−3 Fitting parameters of 

experimental data 
b2 − 6.2 × 10−4 Fitting parameters of 

experimental data 
a1 1.2 State variable degrees influence 

under positive bias 
a2 0.3 State variable degrees influence 

under negative bias 
α1 0.60 Area controlling parameters of 

Hysteresis loop under 

positive bias 
α2 -0.68 Area controlling parameters of 

Hysteresis loop under 

negative bias 
ϰ 1 × 10−11 Magnitude of ideal diode 

behavior 
γ 1 Diode characteristics like the 

ideality factor and thermal 

voltage 
A 5 × 10−4 Control the window function’s 

impact 
m 5 Control the input’s impact on 

the state variable. 
p 0 < p ⩽ 10; 

p = 2 
Window function bounding 

parameter between 0 and 

1 



99 

 

 

 

The MCA-based model is analogous to the human brain, providing 

excellent downscaling capabilities at the nanoscale level. This allows 

for efficient image processing [116] with ultrahigh switching speed, 

high-density storage, and longer operation cyclability [117]. A key 

mechanism for learning in the human brain is the ability to change 

synaptic weight, and a neuromorphic MCA-based model can be used 

to replicate this capability for image and speech recognition patterns 

[118]. MCA-based model are particularly well-suited for in-memory 

computing and implementation of computing systems like CNNs due 

to their non-volatile, power-efficient, and nanoscale-sized nature [119]. 

Experimental findings from Y2O3-based MCA model are used to 

validate the analytical model that has been proposed [120] to create a 

neuromorphic MCA-based model. In addition to the complex 

analytical model [86], the synaptic learning of Y2O3-based devices 

[120] is also described in the nonlinear model. Equations (1), (2), and 

(3) represent the analytical framework for the research presented in this 

paper. The first term on the right side of the I-V relationship in 

Equation (1) represents the flux-controlled nature, and the second term 

shows ideal diode behaviour, respectively. 

𝐼(𝑡) = {
𝑏1𝑤𝑎1(ⅇ𝛼1𝑣𝑖(𝑡) − 1) + 𝜒(ⅇ𝛾𝑣𝑖(𝑡) − 1), 𝑣𝑖(𝑡) ≥ 0

𝑏2𝑤𝑎2(ⅇ𝛼2𝑣𝑖(𝑡) − 1) + 𝜒(ⅇ𝛾𝑣𝑖(𝑡) − 1), 𝑣𝑖(𝑡) < 0
      (1) 

The physical significance of parameters used in MCA-based model are 

described as b1 and b2 are experimental fitting parameters. a1 and a2 

represent degrees of influence of the state variable under positive and 

negative bias, respectively. α1 and α2 denoted the hysteresis loop area 

controlling parameters under positive and negative bias, respectively. χ 

is the magnitude of ideal diode behaviour and γ is the diode parameter 

like thermal voltage and ideality factor, as explained in Table 5.1. 

                      𝑓(𝑤) = log {

(1 + 𝑤)𝑝, 0 ≤ 𝑤 ≤ 0.1

(1.1)𝑝, 0.1 < 𝑤 ≤ 0.9

(2 − 𝑤)𝑝, 0.9 < 𝑤 ≤ 1
                  (2) 

 

    
𝑑𝑤

𝑑𝑡
= 𝐴 × 𝑣𝑖

𝑚(𝑡) × 𝑓(𝑤)                                  (3) 
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The MCA-based model that was developed demonstrates a range of 

synaptic functions such as learning, forgetting, and synaptic plasticity. 

The design of the analytical model [114] is based on the memristive 

device that was experimentally developed and has been successful in 

emulating various RRAM and synaptic characteristics. 

5.3. Results and Discussions  

5.3.1. 2D FBSE-EWT Image Decomposition Techniques   

In this work, an advanced approach is proposed using FBSE-based 

spectrum instead of FT based spectrum for improved segmentation and 

boundary identification [112, 113]. The method introduces a 2D 

FBSE-EWT with MCA-based model, incorporating multi-frequency 

scales for boundary detection. The proposed methods are then applied 

to fundus image decomposition and classification for glaucoma disease 

detection and diagnosis. As illustrated in Fig. 5.4 (a) and (b), 2D 

FBSE-EWT is particularly well-suited for non-stationary signals as it 

employs non-stationary Bessel functions as a basis set represented as 

Bessel 0 and Bessel 1 of order 0 and order 1, respectively. Unlike the 

FT, FBSE exclusively represents real signals with positive frequencies 

as shown in Fig. 5.4 (a) and (b), simplifying the application of filter-

based decomposition techniques and reducing distortion. Furthermore, 

2D FBSE-EWT generates unique coefficients of the same length as the 

original signal, providing twice the frequency resolution compared to 

FT. These unique characteristics make 2D FBSE-EWT a compact 

representation option for wide-band signals, capitalizing on the non-

stationary characteristics and amplitude modulation of Bessel 

functions, which can be advantageous for various applications [23, 24, 

105]. 

Deep learning technologies currently rely on CMOS circuits, which 

suffer from drawbacks such as high computation operations, area 

consumption, energy consumption, processing time, and power 

consumption [46] compared to the MCA-based model. To overcome 
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these limitations, MCA-based model offers a promising solution by 

significantly reducing power consumption compared to conventional 

CMOS-based systems [13]. The adoption of MCA-based model has 

gained power in image processing domains, including pattern 

recognition and edge detection, due to its advantages as mentioned 

above. 

 

 

Figure 5.4: Plot of basis functions using (a) sin and cosine for the 

Fourier transform representation (b) Bessel functions of order-zero and 

order-one for FBSE. 

The datasets (rim-one r1, rim-one r2, and rim-one r3) employed in this 

work for glaucoma detection comprise 325 fundus images in the 

glaucoma class and 458 fundus images in the normal class [23]. In 

addition, augmentation techniques are also employed to further 

improve the accuracy. The 2D FBSE-EWT method enhances the 
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analysis of non-stationary signals by using non-stationary Bessel  

functions as its foundation.     

 

 

Figure 5.5: Image assessment quality parameter in terms of (a) PSNR 

for output images and enhances output images, and (b) SSIM for 

output images and enhances images 

2D FBSE-EWT stands out because it customizes its coefficients based 

on the signal’s length, giving it double the frequency detail compared 

to FT. This is useful for handling wide-band signals effectively. In 

image processing, FT has drawbacks like wider bandwidth, slower 

processing, and lower resolution. On the other hand, 2D FBSE-EWT, 

with its unique coefficients, offers a narrower bandwidth, faster 

processing, and higher resolution. MCA-based model has emerged as a 
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promising technology for image classification tasks due to their unique 

properties and benefits. A memristor is a two-terminal passive 

electronic device that exhibits a resistance change in response to the 

applied voltage. When integrated into crossbar arrays, MCA can store 

and process large amounts of data in a highly parallel and energy-

efficient manner. Here is a comprehensive explanation of the 

utilization of MCA-based models in image classification, covering all 

the benefits associated with memristors, parallel processing. MCA-

based model enables massive parallelism in image classification tasks 

as shown in Fig. 5.5. 

In this study, authors have concentrated on an integrated approach 

combining 2D FBSE-EWT and MCA-based models to enhance the 

quality of reconstructed output images (O). During the reconstruction 

phase, one optimized each pixel by boosting its quality by a factor of 

1.65 times its original value, resulting in an improved quality of 

enhanced image (E). To assess the quality of both images, ‘O’ and ‘E,’ 

one can employed PSNR in decibels (dB) and the SSIM in percentage 

(%). In Table 4.2, authors analysed images at various stages, ranging 

from normal to glaucoma, to evaluate the impact of the proposed 

model, this analysis included early moderate, and deep stages of 

fundus images. These findings confirm that the enhancement at each 

disease stage results in higher-quality images, facilitating the early 

detection of the disease. The measured values of PSNR were 26.2346 

dB, and SSIM was 95.38%, representing the highest performance 

within the normal and deep classes of fundus images, as detailed in 

Table 5.2. 

In Table 5.3, highlights the contrast between proposed approach and 

various previously reported technologies for fundus image 

enhancement, which tend to yield lower PSNR and SSIM values, 

indicative of image quality. In contrast to these earlier approaches, one 

has opted not to employ filters, GAN and generators, as seen in other 

reported technologies [117, 118, 119, 120-125]. The proposed 

integrated model, combining 2D FBSE-EWT and MCA-based model, 
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provides an efficient means for early disease detection and diagnosis. 

Significantly, this proposed technology surpasses the performance of 

other reported methods, as evidenced in Table 5.3. 

5.3.2. Image Classification using CNN with MCA based Model   

Physical significance of each memristor within the crossbar array can 

represent a connection weight or synaptic strength between two 

neurons. The parallel architecture allows for simultaneous 

computations on the multiple data points, resulting in significantly 

faster processing times compared to traditional sequential computing 

architectures. Integration of MCA-based model provides high device 

density, allowing for the integration of many memristors in a small 

physical footprint. High density is crucial in image classification, 

where huge datasets and CNN models require a significant number of 

connections [114, 126-130]. The compactness of the crossbar array 

leads to reduced interconnect lengths and minimized signal 

propagation delays, enabling efficient and rapid data processing. Low 

power consumption in memristors is inherent non-volatile properties, 

meaning they retain their resistance state even after the power is 

removed. This characteristic eliminates the need for constant power 

supply to maintain data integrity, resulting in lower power 

consumption compared to volatile memory technologies. By 

leveraging this feature, MCA-based model can achieve energy-

efficient image classification, making them suitable for resource 

constrained applications. 

TABLE 5.2: COMPARATIVE ANALYSIS OF RECONSTRUCTED FUNDUS 

IMAGE QUALITY 
Technology PSNR (dB) SSIM 

(%) 

Ref. 

Wiener Filter + CLAHE 20.50 0.3164  

[128] Average Filter + CLAHE 20.96 0.4890 

Gaussian Filter + CLAHE 20.61 0.2095 

GAN 20.94 0.7990 [124] 

WGAN 20.83 0.7874 

WIN5-RB 22.70 0.5600 [118] 

Cycle-GAN 21.94 0.8774 [117] 

U-net generator 23.37 0.8941 [119] 



105 

 

 

 

4×4 U-Net 18.80 0.4400 [125] 

2D FBSE-EWT + MCA Model  26.23 0.9021 Our Work 

TABLE 5.3: IMPROVED ASSESSMENT PERSENTAGE WITH BRIGHTNESS 
EFFECT  

Image PSNR Improved  
(in %) 

SSIM Improved (in 
%) 

Normal 34.00 27.72 

Early 17.94 2.11 

Moderate 8.00 3.08 

Deep 15.17 19.79 

Glaucoma 27.36 0.71 

High speed MCA-based model offers fast read and write operations 

due to the inherent properties of memristors. Table 5.3 illustrates the 

enhanced quality of the reconstructed output image in terms of a 

percentage. The most substantial enhancement is evident in the normal 

class when compared to the other classes, namely early, moderate, 

deep, and glaucoma. This can be attributed to the fact that the images 

texture aligns well with the proposed methodology for decomposition 

and enhancement techniques. However, it is worth noting that 

enhancements are also noticeable in each class of images, underscoring 

the effectiveness of the proposed techniques in improving all 

categories of fundus images for the early detection of disease. Fig. 5.5 

(a) and (b) depict a graphical representation of the measurement of 

image assessment parameters. This graphical presentation aids in 

comprehending the impact of varying brightness levels on the 

reconstructed images across five distinct image classes: normal, early, 

moderate, deep, and glaucoma. 

The resistance states of the memristors can be rapidly read to retrieve 

stored weights, and the resistive changes can be efficiently 

programmed to update synaptic strengths during the training process. 

The combination of parallel processing and high-speed operations 

contributes to accelerated image classification tasks, enabling real-time 

performance. MCA-based model is highly scalable, allowing for the 

construction of large-scale neural network models. As the demand for 

more complex and accurate image classification systems increases, the 

ability to scale up the computational capacity becomes crucial. The 
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images retrieved from the MCA-based model are then used to train the 

CNN models. The parameters used for performance evaluation in this 

application are accuracy, sensitivity, specificity, and precision [23], 

which are defined by equations (4), (5), (6), and (7), respectively. 

In the equations (4), (5), (6), and (7), NTP, NTN, NFP, and NFN 

represent the number of true positives, the number of true negatives, 

the number of false positives, and the number of false negatives, 

respectively. Fault tolerance of MCA-based model exhibit fault-

tolerant behaviour due to their distributed computing nature. The 

parallel processing and distributed storage of information across the 

MCA-based model make it strong to individual memristor failures. 

Even if a few memristors within the array become faulty, the overall 

performance of the system remains relatively unaffected, ensuring 

robust and reliable image classification. 

The utilization of MCA-based model in image classification offers 

numerous benefits, including parallel processing, dense integration, 

low power consumption, high speed, scalability, adaptability, and fault 

tolerance. These advantages make proposed MCA-based model, a 

promising technology for efficient and high-performance image 

classification systems, opening new possibilities for advancements in 

the field of artificial intelligence and machine learning. The conducted 

comparative analysis of glaucoma detection image classification 

results using EfficientNetb0 against other reported findings, as detailed 

in Table 5.3. 

These results outperformed the reported ones, primarily due to the 

utilization of a complete dataset processed through the proposed 

integrated model combining 2D FBSE-EWT and MCA-based model. 

The evaluation involved additional classifiers, including ResNet 18, 

ResNet 50, and AlexNet, as illustrated in Fig. 5.6, with EfficientNetb0 

emerging as the top-performing model due to its compatibility with the 

internal architecture of processed images in proposed methodology. 

The attempted image classification on the unprocessed dataset, one 

observed significantly lower accuracy compared to the processed data, 
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with an improvement of 32.14% in accuracy and 40.93% in sensitivity, 

as demonstrated in Table 5.4. 

 

Figure 5.6: Image classification using CNN and memristor model.  

 

Figure 5.7: Image classification comparison of processed and unprocessed 

image. 

TABLE 5.4: COMPARATIVE ANALYSIS OF CLASSIFICATION 

PERFORMANCE WITH PROCESSED IMAGES 
Methodology Accuracy 

(%) 

Precisi

o

n 

(

%

) 

Sensitivit

y 

(%) 

Specificit

y 

(%) 

Ref. 

ResNet50 82.77 - 86.6 77.91  

[23] MLP Classifier 75.73 - 83.73 54.34 

Higher order 
Spectra 

(HOS) 

91.00 - - -  

[126] 

PCA-FFT 80.00 - 73.00 85.00 [127] 
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HOS Cumulant 

Features 

92.60 - 100 92.00 [105] 

EfficientNetb0 94.15 93.30 95.13 93.17 Our 

Work 

TABLE 5.5: CALCULATION OF IMPROVED ASSESSMENT 
PARAMETERS BY USING 2D FBSE-EWT AND MCA-BASED MODEL 

Model EfficientNetb0 

 
Parameters 

With 2D 
FBSE-EWT + 
MCA Model 

Without 2D 
FBSE-EWT + 
MCA Model 

Improved 
Quality 

(%) 

Accuracy (%) 94.15 71.25 32.14 

Precision (%) 93.30 72.97 27.86 

Sensitivity (%) 95.13 67.50 40.93 

Specificity (%) 93.17 75.00 24.23 

This enhancement resulting from the application of 2D FBSE-EWT 

and MCA-based model to the processed dataset, can be visually 

understood through the graphical representation in Fig. 5.7 and 5.8. As 

depicted in Table 5.5, the MCA-based model showcases its 

effectiveness by demonstrating reduced power and energy 

consumption, minimal area prerequisites, decreased computational 

complexity, and elevated processing speed. This enhancement 

resulting from the application of 2D FBSE-EWT and MCA-based 

model to the processed dataset, can be visually understood through the 

graphical representation in Fig. 5.7 and 5.8. As depicted in Table 5.6, 

the MCA-based model showcases its effectiveness by demonstrating 

reduced power and energy consumption, minimal area prerequisites, 

decreased computational complexity, and elevated processing speed. 

These factors collectively play a pivotal role in driving down the 

overall cost of the devices. Adaptability and learning of the MCA-

based model offer inherent adaptability and learning capabilities. The 

resistance changes in memristors can be dynamically adjusted to adapt 

new patterns or update synaptic strengths during the learning process 

as compared to conventional methodology [128, 129]. This 

adaptability allows the MCA-based model to continuously improve its 

classification accuracy over time by leveraging the principles of 

synaptic plasticity and efficient learning algorithms in the healthcare 

domain. 
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Figure 5.8: Image classification comparison of processed and 

unprocessed dataset. 
 

TABLE 5.6: COMPARISON OF DIGITAL CMOS WITH MCA-BASED MODEL FOR 

COMPUTATION OF (256×256) IMAGE BASED DATASET 

Parameters CMOS MCA Model Prominent 

Improvement 

Number of 

Operations 

[11, 32] 

256
3

 + 

(256
2

×255) 

256
2

 3 × 511 times 

Area(m
2

) [32] 495452.16 10485.76 3 × 47.2 times 

Energy 

Consumption 

(pJ) [32] 

1115.4 12.88 3 × 752 times 

Processing Speed 

(s) [11, 32] 

0.15 0.06 3 × 2.5 times 

Power 

Consumption 

(mW) [11] 

7436 24.733 3 × 300 times 

5.4. Conclusion 

This study introduces an innovative approach to glaucoma detection 

and diagnosis by harnessing the power of 2D FBSE-EWT and 

integrating the MCA-based model. The proposed method combines 

deep learning with an ensemble technique based on EfficientNetb0, 

distinguishing between normal fundus images and those exhibiting 

glaucoma symptoms. In this context, EfficientNetb0 emerges as the 

optimal choice among CNN models, surpassing ResNet50, AlexNet, 

and GoogleNet. The evaluation of the reconstructed output images 

highlights their exceptional quality, evident by significant increase in 

PSNR and SSIM values, reaching 26.2346 dB and 95.38 %, 

respectively. The proposed methodology has demonstrated outstanding 
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performance, achieving an impressive accuracy rate of 94.15% when 

employing EfficientNetb0. Furthermore, a comparative analysis 

between the dataset processed using the proposed methodology in this 

work with the unprocessed dataset for image classification, reveals 

substantial improvements, with accuracy and sensitivity increasing by 

32.14% and 40.93%, respectively, in the processed dataset’s image 

classification. Further, the results obtained through the proposed 

methodology outperforms other reported findings for glaucoma 

detection and diagnosis, employing the MCA-based model in 

conjunction with 2D FBSE-EWT. The MCA-based model 

demonstrates its efficacy through several key advantages, including 

reduced power and energy consumption, minimal area requirements, 

lower computational complexity, and enhanced processing speed. 

These benefits turn into cost savings for the overall devices. 

Consequently, the proposed methodology holds substantial promise for 

application in the healthcare domain, particularly in the early 

identification of diseases. 
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Chapter 6  

MCA Model for Early Detection of Various 

Soybean Diseases Through Leaf Image 

Analysis 

6.1. Introduction 

Inorganic the early detection of diseases in soybean crops is a critical 

area of research due to its significant impact on agricultural 

productivity and economic stability [131-134]. Soybean is a vital crop 

globally, serving as a key source of protein and oil. However, it is 

susceptible to a range of diseases that can drastically reduce yield and 

quality, leading to substantial economic losses for farmers and the 

agricultural industry [135]. Traditional methods of disease detection 

often rely on manual inspection, which is time-consuming, labour-

intensive, and prone to human error. Furthermore, these methods 

typically identify diseases only after visible symptoms appear, by 

which time the infection may have already spread extensively. 

Research in the domain of early detection of multiple classes of 

soybean diseases aims to develop advanced, automated systems that 

can identify diseases at their inception, enabling timely intervention 

and treatment. Such systems utilize cutting-edge technologies like 

machine learning, computer vision, and memristive models to analyse 

leaf images and detect subtle signs of disease that are not easily 

observable by the naked eye [13]. By accurately classifying various 

diseases at an early stage, these systems can help mitigate the spread of 

infections, enhance crop management practices, and improve complete 

production yield.  

6.2. Database and Proposed Methodology 
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The importance of this research extends beyond individual farms, as it 

contributes to global food security and sustainable agricultural 

practices [136]. With the increasing global population and the demand 

for higher food production, innovative solutions for early disease 

detection are essential. This research not only provides immediate 

benefits to soybean farmers but also sets a precedent for the application 

of advanced technologies in agriculture, paving the way for smarter 

and more efficient farming practices [137]. Soybean ranks as the fifth 

most cultivated crop in India, playing a vital role in food security, 

animal feed, and edible oil production. It significantly contributes to 

farmers agricultural income and the national economy. With growing 

demand driven by population growth and shifting dietary preferences, 

timely interventions, cost reduction, and quality improvements are 

essential for sustaining and enhancing production. 

A memristive model-based framework, characterized by lower power 

consumption compared to CMOS based systems, has the potential to 

scale these technological constraints. When it comes to tasks like 

pattern processing, the memristive model shows better processing 

speed and energy efficiency than Von Neumann circuits especially 

when applied to neural networks [134]. Extensive research has been 

conducted on utilizing memristor based architectures for various 

applications, including neuromorphic computing particularly in neural 

network applications. The memristive model can function as a vector 

matrix multiplication, that eliminates the necessity for transferring 

large amounts of neural weights data, making them highly compatible 

substitutes for CMOS based neural networks [46]. To address the 

limitations of previous studies, this research aims to utilized WPT for 

image decomposition and utilize the memristive model to conduct 

mathematical research for further applications in image decomposition 

and classification as shown in Fig. 6.1. The processed images are 

utilized for computational diagnosis and early disease detection of 

soybean crop for multiclass.  MCA inspired system has an advantage 

in image processing due to their simultaneous storage and processing 
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capabilities, non-volatile memory, and adaptability [86]. This offers 

the potential for the development of more efficient and intelligent 

systems in image processing applications with cost effectiveness. The 

key benefits of using MCA inspired system in computational tasks 

include high density, low power consumption, and the ability to 

perform parallel computations, making them ideal for implementing 

neural networks. The dataset was collected from soybean fields in 

Simrol, Indore, Madhya Pradesh, and subsequently verified by a 

pathologist at ICAR Bhopal. The gathered image dataset was 

processed for image decomposition using WPT, with the resulting 

coefficients handled by a graph theory-inspired system. The 

reconstructed images were then compiled as a processed dataset, 

considered as a synthetic dataset for further analysis in image 

classification using a CNN model [13, 138-147]. During the 

classification process, faulty images were identified, and image 

augmentation techniques were applied to enhance the device’s 

accuracy. 

6.3. Results and Discussions 

   In this proposed work, a graph theory-inspired system combined with 

the WPT for image decomposition and pre-trained CNN models has 

been utilized to diagnose multiclass soybean leaf diseases and other 

infectious conditions [141]. The study focuses on a multiclass dataset 

comprising 11 distinct categories of soybean leaf images, as detailed in 

Table 6.1.  

These categories include downy mildew, sudden death syndrome, 

powdery mildew, target leaf spot, bacterial pustule, anthracnose, 

rhizoctonia aerial blight, frogeye leaf spot, yellow mosaic virus, 

soybean mosaic virus, and healthy leaves [135]. The images were 

collected from fields and verified by scientists from CSIR-ICAR 

Bhopal. Leveraging image processing techniques and machine learning 

algorithms, healthy soybean leaf images are used for diagnosing these 

diseases, as illustrated in Fig. 6.1. Numerous models have been 



114 

 

 

 

proposed globally to utilize soybean leaf images for the early-stage 

detection of multiclass diseases [139]. 

TABLE 6.1: DATASET DETAILS OF MULTIPLE CLASS 

Different Class of 

Soybean Leaf 

Suggested Dataset Improved Dataset 

Downy Mildew 94 818 

Sudden Death 

Syndrome 

93 647 

Powdery Mildew 103 1027 

Target Leaf Spot 113 419 

Bacterial Pustule 92 532 

Anthracnose 111 418 

Rhizoctonia Aerial 

Blight 

92 1027 

Frogeye Leaf Spot 213 61 

Yellow Mosaic 

Virus 

82 82 

Soybean Mosaic 

Virus 

86 86 

Healthy 983 893 

 

In image processing, our proposed work utilizes WPT for image pre-

processing, which is a more generalized approach compared to the 

traditional wavelet transform.  

 

Figure 6.1 Automated classification of soybean leaf images for 

diagnosing multiple crop diseases. 

While the wavelet transform provides flexible time-frequency 

resolution, it has limitations, particularly in the high-frequency 
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domain, where it exhibits low-frequency resolution, making it difficult 

to distinguish between signals with closely spaced high-frequency 

components. Wavelet packets extend the traditional wavelet bases by 

forming linear combinations of standard wavelet functions. These 

extended bases inherit properties like orthonormality and time-

frequency localization from their associated wavelet functions. The 

wave decomposition vectors generated through this image 

decomposition technique can be used as input signals in the graph 

theory-based model for image compression and encryption. 

6.3.1. Techniques for image decomposition using WPT via MCA 

model 

During acquisition, compression, and transmission processes, images 

often become contaminated by noise, leading to distortion and loss of 

information [59-61]. Wavelet analysis has become a preferred method 

for decomposition in various applications due to its use of different 

basis functions through distinct mother wavelets [42, 43, 148]. The 

analytical model discussed here offers advantages over conventional 

application-specific integrated circuit (ASIC) technologies, particularly 

in storing compressed images with lower power consumption and in a 

more compact area [5]. The proposed graph theory-based model is 

integrated with the WPT to develop an image compression algorithm. 

In this approach, the decomposed image coefficients obtained from the 

wavelet packet transform are stored in the graph theory model by 

mapping the coefficient values to appropriate voltage levels. As 

illustrated in Fig. 6.2, these mapped voltages are applied to the 

crossbar array along the rows, and the column currents are collected to 

reconstruct the images. The collected values are subsequently used to 

carry out the inverse wavelet transform operation. Following this, an 

analytical framework is employed to develop a computational strategy 

based on memristive systems, aimed at efficiently storing the 
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decomposed images. The various images of multiclass soybean leaves 

targeted for early disease detection in the proposed work. 

The memristive model is comparable to the human brain, featuring a 

3D structure that offers exceptional downscaling capabilities at the 

nanoscale. This enables efficient image processing with ultra-fast 

switching speeds, high-density storage, and extended operational 

cycles [74, 75]. A key aspect of learning in the human brain is the 

ability to adjust synaptic weights, a capability that can be replicated in 

a neuromorphic memristive model for pattern recognition in both 

images and speech [74]. Memristor-based systems are particularly 

well-suited for in-memory computing and the development of 

computing architectures for applications using memristor-based neural 

networks. These systems offer benefits such as non-volatility, power 

efficiency, and nanoscale dimensions, all of which contribute to lower 

device costs [5, 134]. The model being utilized incorporates 

experimental findings from memristive systems, which are employed 

to validate the analytical model [74] to create a neuromorphic 

memristive model. In addition to the complex analytical model, the 

synaptic learning of Y2O3-based devices is also described in the 

nonlinear model. Equations (1), represent the analytical framework for 

the research presented in this proposed methodology. The memristive 

device have flux controlled nature is represented by the first term on 

the right side of the I-V relationship in equation (1). 

𝐼(𝑡) = {
𝑏1𝑤𝑎1(ⅇ𝛼1𝑣𝑖(𝑡) − 1) + 𝜒(ⅇ𝛾𝑣𝑖(𝑡) − 1), 𝑣𝑖(𝑡) ≥ 0

𝑏2𝑤𝑎2(ⅇ𝛼2𝑣𝑖(𝑡) − 1) + 𝜒(ⅇ𝛾𝑣𝑖(𝑡) − 1), 𝑣𝑖(𝑡) < 0
                  (1) 

The physical significance of parameters used in memristive model are 

described as, b1 and b2 are experimental fitting parameters. a1 and a2 

represent degrees of influence of the state variable under positive and 

negative bias, respectively. α1 and α2 denoted the hysteresis loop area 

controlling parameters under positive and negative bias, respectively. χ 

is the magnitude of ideal diode behaviour and γ is the diode parameter 

like thermal voltage and ideality factor. The memristive model that 

was developed demonstrates a range of synaptic functions such as 
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learning, forgetting, and synaptic plasticity. The analytical model is 

crafted upon the crossbar architecture, which has been experimentally 

devised and proven effective in mimicking diverse RRAM and 

synaptic characteristics [74, 134]. In this proposed study, pre-trained 

CNN models from MATLAB version R2021a are employed to 

automatically classify early detection of disease in soybean crops. 

 

Figure 6.2. Automated multiclass classification for the early detection 

of soybean diseases. 

To assess the quality of both the input and decomposed reconstructed 

output images, image augmentation techniques are employed to 

enhance the accuracy of classifying 11 distinct classes of soybean leaf 

images, thereby improving the overall performance of the 

classification model, as illustrated in the confusion matrix in Fig. 6.2.  

6.3.2. Multiclass Soybean Leaf disease detection using CNN 

The resulting images from the memristive model are utilized for 

training the CNN models. Performance assessment in this context 

relies on accuracy (Acc), precision (Pre) [77], sensitivity (Sen), and 

specificity (Spe), defined by equations (2), (3), (4), and (5), 
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respectively, as shown in Table 6.2. The equations utilize NTP, NTN, 

NFP, and NFN to represent the counts of true positives, true negatives, 

false positives, and false negatives, respectively, for two distinct 

classes. 

                  𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑁𝑇𝑃+𝑁𝑇𝑁

𝑁𝑇𝑃+𝑁𝐹𝑃+𝑁𝑇𝑁+𝑁𝐹𝑁
                        (2) 

𝑃𝑟ⅇ𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑁𝑇𝑃

𝑁𝐹𝑃+𝑁𝑇𝑃
                                        (3) 

𝑆ⅇ𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑁𝑇𝑃

𝑁𝐹𝑁+𝑁𝑇𝑃
                                   (4) 

𝑆𝑝ⅇ𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑁𝑇𝑁

𝑁𝐹𝑃+𝑁𝑇𝑁
                                    (5) 

The suggested approach utilizes a 30% training and 70% testing 

division of the dataset to assess the classification model. Earlier studies 

conducted by Halawani et al. and Khalid et al. have showcased the 

efficiency of memristive model in image processing and digital logic 

circuits. These models exhibit a decrease in device count and 

operations when compared to traditional CMOS-based models [29, 

30]. To evaluate the compression effectiveness of the memristive 

model integrated with the WPT model relative to traditional CMOS 

based models, the authors conducted an extensive analysis using a 

(512×512) image. The comparison involved employing parameter 

values derived from sources [29, 30, 134], as detailed in Table 6.3. The 

proposed AlexNet exhibits remarkable performance in classifying 

images within the small dataset, achieving Acc, Pre, Spe, and Sen 

values of 94.30%, 99.66%, 100.00%, and 99.65%, respectively, as 

detailed in Table 6.2. 

TABLE 6.2 
 IMAGE CLASSIFICATION USING EFFICIENTNET MODELS 

CNN Model EFFICIENTNET 

Assessment 

Percenta

ge (%) 

Unprocessed  Processed 

Accuracy 

(Acc) 
70.42 94.30 

Precision 

(Pre) 
65.93 99.66 

Sensitivity 

(Sen) 
41.96 100.00 

Specificity 

(Spe) 
89.24 99.65 

 

TABLE 6.3 
EVALUATING THE EFFECTIVENESS OF THE PROPOSED 

METHOD IN IDENTIFYING DISEASE THROUGH THE 

COMPARISON OF ITS PERFORMANCE WITH OTHER 
EXISTING METHODS USING MULTICLASS IMAGE 
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DATABASE 

Small Dataset 

Ref. Acc (%) Pre (%) Recall 

(%

) 

F1-

sco

re 

Shrivastava Hooda et 

al. [136] 

60.24 58 60.35 59.7 

Dandawate et al. [137] 93.79 -- -- -- 

Kaur et al. [138] 68.9 70 71 70.53 

Simonyan and 

Zisserman [139] 

89 86 79 78 

Gharge et al. [140] 70-100 -- -- -- 

Szegedy et al. [141] 39 44 35 35 

Huang et al. [142] 98.14 54 48 49 

Chollet et al. [143] 59 74 54 52 

LeCun et al. [144] 48 65 45 35 

He et al. [145] 79 69 75 74 

Karlekar et al. [146] 98.14 97 97 97 

Sukhvir et al. [147] 77-79.9 -- -- -- 

Proposed Work 94.30 99.69 100.00 99.84 

 

TABLE 6.4 

CMOS AND MEMRISTIVE COMPUTATIONAL COMPARISON 

 

Parameters 

 

CMOS 

Memristive 

model 

Prominent 

Improvem

ent for ‘N’ 

Number of 

Image 

Number of 

Operations 
[23, 24] 

5123 + 

(5122

×511) 

5122 (N ×1023) times 

Area 

(m2) [24] 

1585446.9
12 

41943.04 (N × 37.8) times 

Energy 

Consumption 

(pJ) [24] 

 

1115.4 

 

1.484 

 

(N × 752) times 

Processing Time 

(s) [23, 24] 
0.15 0.06 (N × 2.5) times 

In contrast, other reported CNN models, as shown in Table 6.3 [13, 31, 

78], present lower assessment parameter values for multiclass datasets. 

A comprehensive comparative analysis with existing literature 

highlights that conventional technologies consistently exhibit lower 

values in terms of Acc, Pre, Spe, and Sen for both small and large 

datasets [8, 34, 42, 59, 60, 61, 80, 86, 89, 146, 147-151]. While some 

CNN models may demonstrate superior performance compared to our 

proposed method in terms of Acc and Sen, it is crucial to acknowledge 

that commercially viable image classification technologies typically 

meet issues such as higher computational demands, increased area and 

energy consumption, and longer processing times due to their 

dependence on CMOS systems [29, 30]. 
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6.3.3 Mobile Applications 
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Figure 6.3: IoT enabled Mobile application for early detection of 

disease. 

However, these challenges can be effectively addressed by integrating 

memristive systems [29, 30, 134]. By using memristive systems, one 

can reduce the problems linked with traditional CMOS based methods, 

leading to better and more efficient ways of classifying images. This is 

reflected in the comparative results presented in Table 6.4. Memristive 

model addresses these technological limitations by significantly 

reducing total energy consumption, computational operations, area 

consumption, processing time, and power consumption compared to 

conventional systems as shown in Table 6.4 [29, 30]. This not only 

helps overcome Von Neumann bottleneck issues but also presents a 

more cost-effective solution for image classification systems. It is 

noteworthy that AlexNet demonstrated a particularly high Acc, 

especially for smaller datasets, as illustrated in Fig. 6.3 because of 

internal architecture compatibility with proposed classification. This 

superiority is attributed to the internal architecture compatibility of 

AlexNet with proposed memristive model framework, facilitating 

effective image decomposition and classification [146, 147].  

The Internet of Things (IoT) is expanding rapidly, with billions of 

interconnected devices generating and processing vast amounts of data, 

as illustrated in Table 6.4 [43, 57, 58, 148, 149, 150, 151]. However, 

limitations in communication bandwidth and storage present 

significant challenges. The MCA based model framework addresses 

these issues by offering a revolutionary solution that not only increases 

processing speed but also significantly reduces the compression ratio 

required for data transmission and image processing within IoT 

networks [152-154]. MCA based models dramatically accelerate 

processing times compared to traditional digital systems, enabling 

faster diagnoses while also being highly scalable, allowing for the 

implementation of larger and more complex CNN models. Their 

analogy nature reduces energy consumption, making them ideal for 
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resource-constrained environments like portable diagnostic devices. 

Future research could focus on improving the precision and robustness 

of MCA based model, developing more advanced CNN architectures 

for disease detection, and exploring the integration of this technology 

into clinical practice for broader use in medical diagnostics [21, 47]. 

6.4. Conclusion 

Early detection of multiclass diseases in soybean crops is essential for 

enhancing yields and minimizing economic losses. This study 

introduces an innovative approach that combines a graph theory-based 

model with machine learning to analyse leaf images for early disease 

identification. By leveraging the unique capabilities of graph theory for 

efficient data processing, the system incorporates a piecewise window 

function to maintain stability and accuracy in state variables during 

training. High-resolution images of soybean leaves undergo 

preprocessing before being input into a CNN specifically designed to 

classify multiple diseases. The graph theory-based model improves 

CNN performance by optimizing the learning process and addressing 

challenges like vanishing gradients. Experimental results indicate that 

the system can accurately classify various soybean leaf diseases with a 

94.3% accuracy rate. This approach highlights the potential of graph 

theory models in agricultural applications, providing a robust, scalable 

solution for real-time disease monitoring and supporting sustainable 

farming practices. Future research will focus on integrating this model 

with IoT devices for continuous field monitoring and refining 

classification algorithms further. 
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 Chapter 7  

Conclusion and Future Scope 

7.1. Conclusions 

This thesis has focused on the utilization of developed Y₂O₃-based 

MCA using a DIBS system-based model for image processing. 

Experimental results obtained from the fabricated MCA device were 

validated with an analytical MCA-based model, showing a strong 

agreement with the experimental data, and forming a robust foundation 

for applications in biomedical imaging. One of the primary 

applications of the validated MCA model was in biomedical image 

processing, specifically for computed tomography (CT) and magnetic 

resonance imaging (MRI) analysis. Using a two-dimensional image 

decomposition technique, we employed various levels of 

decomposition and thresholds to assess reconstructed image quality 

based on metrics like PSNR, SSIM, and MSE. Results demonstrated 

effective data compression, with MRI and CT scans achieving 

compression ratios of 21.01% and 47.81% using Haar wavelets and 

18.82% and 46.05% with biorthogonal wavelets. Analyzing image 

brightness further enhanced image quality, showing a 103.72% 

improvement for CT scans and an 18.59% increase for MRI images 

using Haar wavelets. These findings support the MCA-based model as 

a valuable tool for biomedical image compression, enabling reduced 

computational time and storage requirements. In response to the 

COVID-19 pandemic, this work applied the MCA model to a two-

dimensional TQWT for processing chest X-ray images from two 

datasets to enable rapid, cost-effective COVID-19 detection. TQWT 

achieved optimal PSNR and SSIM values with a Q of 4, r of 3, and J 

of 2. The processed images were then classified using ResNet50 and 

AlexNet CNNs, achieving average accuracies of 98.82% and 94.64% 

on smaller and larger datasets, respectively, outperforming 
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conventional deep learning approaches. This MCA model-based 

approach demonstrated substantial benefits over CMOS technology in 

accuracy, power efficiency, area savings, and cost-effectiveness for 

COVID-19 detection. The study further applied the MCA model to 

detect lung diseases like pneumonia using chest X-ray datasets. By 

employing the TQWT and MCA-based model, this work achieved an 

average classification accuracy of 99.24% with the EfficientNet CNN, 

marking an advancement in efficiency and accuracy over traditional 

methods. Additionally, a novel Y₂O₃-MCA-based activation function 

showed a classification efficiency of 99.94%, surpassing the 

conventional sigmoid function and optimizing deep learning 

applications. Other applications explored in this thesis include digit 

recognition and glaucoma detection. For digit recognition, a CNN with 

ReLU activation was used on the MNIST dataset, demonstrating 

efficient feature extraction and storage capabilities using the 

memristive system. In glaucoma detection, the MCA model, integrated 

with 2D FBSE-EWT and the EfficientNet CNN, achieved a PSNR of 

26.23 dB and an SSIM of 95.38%, reaching a glaucoma classification 

accuracy of 94.15%. The model’s capabilities were also extended to 

agriculture, classifying soybean leaf diseases with a 94.3% accuracy, 

supporting real-time, scalable, and sustainable solutions for 

agricultural disease monitoring.  

The Y₂O₃-based MCA model offers a versatile and high-performance 

approach to applications in biomedical imaging, disease diagnosis, and 

agricultural analysis. Its capabilities in image compression, 

classification accuracy, and energy efficiency underscore the potential 

of memristive systems for addressing complex challenges in cost-

sensitive and data-intensive fields. Future research directions will 

explore integrating the MCA model with IoT technologies for 

continuous monitoring in healthcare and agriculture, allowing real-time 

data acquisition and processing. Further enhancements will focus on 

refining classification algorithms for improved accuracy and 

robustness, making the system adaptable to broader applications in 
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machine learning and deep learning. 

7.2. Future Scope 

Advancements in Face Recognition and Biometric Systems: The 

memristive model’s inherent capabilities in parallel computing and 

energy efficiency present significant potential to enhance face 

recognition and other biometric systems. Integrating memristive 

technology in these applications could enable faster, more efficient 

data processing while reducing power consumption, thereby improving 

the accuracy and reliability of pattern recognition tasks. 

 

 

Figure 7.1: Illustrates the design of a memristor-based neural network, 

applicable across diverse areas such as biometrics, face detection, and 

human activity recognition. 

Development of Edge Devices for Real-Time Processing: Future 

research could focus on embedding memristive models into edge 

devices designed for real-time image processing in biometric and 

healthcare systems. With the increasing demand for low-power and 

high-speed data processing in these domains, memristive edge devices 

could deliver high efficiency and responsiveness, making them 

valuable for on-site, immediate diagnostics and identification. 

Enhanced Security in Biometric Systems: Leveraging the adaptable 

and non-volatile properties of memristive devices, future studies could 

explore enhanced security features within biometric systems. This 
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approach could significantly strengthen data integrity, ensuring more 

reliable and faster authentication processes, which is increasingly 

crucial in security-focused applications. 

Optimization for Broader Medical Imaging Applications: The 

memristive model’s methodology can be extended to various medical 

imaging tasks, such as early cancer detection. Applying the model to 

cancer diagnostics could aid in early-stage detection, which is vital for 

improving treatment outcomes, thus broadening the scope and impact 

of memristive models in healthcare. 

Agricultural Disease Monitoring with Mobile Applications: Further 

enhancement in real-time monitoring and classification of plant 

diseases can revolutionize precision farming. Future work could focus 

on deploying the memristive model in mobile applications for 

agricultural disease diagnosis, allowing for more accurate and timely 

disease detection. This advancement could directly contribute to 

sustainable farming practices by optimizing crop yields and reducing 

losses due to undetected plant diseases 
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