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Abstract
Department of Computer Science and Engineering

Bachelor of Technology

Sampling and Clustering of Phenotypic and Genotypic Soybean Dataset

Soybean forms an important cash crop for the Indian and French economy. It is the third
largest cultivated crop in India. In France, the amount of area being used for Soybean
farming is going up from 122,000 hectares in 2015 to about projected 200,000 hectares in
2020.

In the Indian context, we aim to develop a species of Soybean that is drought and heat
resistant (because of the erratic monsoons over this past decade) and in the French con-
text, we need to develop the species of Soybean that are resistant to flooding/too much
rainfall and extreme cold (because of increased frequency of arctic blasts happening
over the past many years). We break down our work in two parts. The first part deals
with the phenotypic data and finds correlations between different phenotypic factors.
Using this phenotypic data, we also cluster plants with similar phenotypic features to-
gether and then finally, take the best species out of each cluster. We have then also
applied pivotal sampling techniques to reduce the dimensionality of the data.

Basically, this project can be divided into the following parts:

• Correlations between several phenotypic factors

• Spectral clustering to cluster plants based on their phenotypic properties

• Sampling of the whole genome sequence of soybean to reduce the dimensionality
of the data using Pivotal Sampling

• Clustering of sampled whole genome sequences using Spectral Clustering

HTTP://IITI.AC.IN/
http://cse.iiti.ac.in/
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Study and clustering based on
Phenotypic data for Soybean
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Chapter 1

Introduction

1.1 About Phenotypic Data

A phenotype is the composite of an organism’s observable characteristics or traits, such
as its morphology, development, biochemical or physiological properties, behavior, and
products of behavior (such as a bird’s nest). In context of Soybean, we have been pro-
vided a phenotypic data set that has observable characteristics of many different species
of Soybean plant. We were given several properties mapped to a specific species. For eg,
early plant vigour, Hypocotyl color, stem determination, days to 50% flowering, flower
color, leaf shape, leaflet color, number of leaflets, seed yield per plant, 100 seed weight
and many more.

1.2 About some phenotypic properties of Soybean plant

• Early plant vigour: The strength of plant in its early days.

• Hypocotyl color: The part of the stem of an embryo plant beneath the stalks of the
seed leaves or cotyledons and directly above the root is Hypocotyl.

• Days to 50% flowering

• Flower Color

• Leaf Shape and color

• Number of Leaflets

• Pubescence: Fine short hair on plant stem - present or not. It’s color and density,
type (erect, semi-appressed etc) are other related properties.

• Plant height, Number of Primary and Secondary Branches.

• Lodging: the displacement of stems or roots from their vertical and proper place-
ment.
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• Pod color, Seeds per pod, Number of Pods per plant, Days to pod initiation

• Days to 80% maturity

• Seed coat color

• Hilum color: the scar on a seed marking the point of attachment to its seed vessel

• 100 seed weight (g)

• Seed yield per plant (g)

• Shattering Score: Estimated percent of pods open 2 weeks after harvest. All are
NaN in the given data.

1.3 Aims to achieve with the phenotypic data

• Finding correlation between different phenotypic factors. This will give us a very
good understanding about what factor is related to what other factor and how
strong is the correlation! Moreover, this can also help to understand what factors
can be dropped during clustering. For instance, if two of the parameters are highly
correlated then in that case, we can drop one of the parameters and that will be
fine because the features were strongly correlated and so taking measure of any
one of them will also enclose the information about the other within.

• Finding similarity between different species. This will give us a better under-
standing on how two species are close to each other depending on the phenotypic
factors. In order to find the similarity for the given data, application of a cluster-
ing algorithm was best suited. Find similarity based on phenotypic factors will
help us understand the best species based on yield, if all other phenotypic factors
are the same. So, before clustering, we dropped yield as a factor and so within
each cluster we can assume that all the species have more or less similar physical
properties and so now we can easily select the best yielding plant amongst them.
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Chapter 2

Literature Review

There has been a lot of research ongoing in the field of genomics and a lot of efforts are
being made to attain better accuracy to map the phenotypic and the genomic character-
istics. As in this part, we dealt only with the phenotypic data so the chapter discusses
literature pertaining to previously known methods of finding correlations among sev-
eral factors and about spectral clustering.

2.1 Study and Correlations of Phenotypic Properties of

Soybean

Correlation is simply the degree of association between two variables. The Pearson’s
correlation coefficient is the measure of the linear association between the two variable
for which it is being calculated. When the x variable is a random covariate to they vari-
able, that is, x and y vary together (continuous variables), we are more interested in
determining the strength of the linear relationship than in prediction, and the sample
correlation coefficient, rxy, is the statistics employed for this purpose. [1]

The Pearson (Product–Moment) correlation r was developed by Pearson (1896) and was
based on the work of others, including Galton (1888), who first introduced the con-
cept of correlation [2] [3]. As a matter of fact, correlation charts, also known as scatter
diagrams is one of the seven basic tools of statistical quality control.[4]. Although non-
linear relationships are fundamental to most physical and statistical phenomena, r is not
appropriate in these cases and may provide false results for non-linear relationships. In
such situations, you might need to perform data transformations in order to linearize
your variables first.

Correlation and covariance have a very vital role in performing clustering; correlation
is therefore taken as a measure for calculating the similarity between pairwise objects.
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Factor analysis, behavioural genetic models, structural equations models and other re-
lated methodologies use the correlation coefficient as the basic unit of data. [5]

There are a number of different correlation coefficients to handle the special charac-
teristics of such types of variables as dichotomies, and there are other measurements
of association for nominal and ordinal variables. Pearson’s correlation coefficient is the
covariance of the two variables divided by the product of their standard deviations. The
form of the definition involves a "product moment", that is, the mean (the first moment
about the origin) of the product of the mean-adjusted random variables; hence the mod-
ifier product-moment in the name.

The value of the Pearson’s correlation coefficient lie between -1 to 1. Correlations equal
to 1 or 1 correspond to data points lying exactly on a line (in the case of the sample
correlation), or to a bivariate distribution entirely supported on a line (in the case of
the population correlation). This means, that if the value of the correlation coefficient
is -1, the variables are highly negatively correlated, i.e if one increases other decreases
and if 1, then the variables are highly positively correlated i.e if one increases the other
decreases.

If two random variables x and y are statistically independent, their correlation coeffi-
cient is zero. However, the converse is not true; i.e., if r = 0, this does not necessarily
imply that x and y are statistically independent. The correlation coefficient is thus an
estimate of association between the variables and is valid only when the observations
are randomly drawn. Many statistical software packages include a program for such
calculation and the correlation coefficient r, is routinely printed out in connection with
other statistical parameters.

We will explain about how we have made used of this important statistical parame-
ter to draw out correlations between the phenotypic properties later.

2.2 Spectral Clustering

Clustering is one of the most widely used techniques for exploratory data analysis, with
applications ranging from statistics, computer science, biology to social sciences or psy-
chology. In virtually every scientific field dealing with empirical data, people attempt
to get a first impression on their data by trying to identify groups of “similar behavior”
in their data. Compared to the “traditional algorithms” such as k-means or single link-
age, spectral clustering has many fundamental advantages. Results obtained by spectral
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clustering often outperform the traditional approaches, spectral clustering is very sim-
ple to implement and can be solved efficiently by standard linear algebra methods. [6]

The spectral clustering method can basically be divided in three parts:

2.2.1 Constructing the similarity graph

Constructing the similarity graph for spectral clustering is not a trivial task, and little is
known on theoretical implications of the various constructions.

Thinking of a similarity function Before we move on to construct a similarity graph,
we need to define a similarity function on the data. As we are going to construct a
neighborhood graph later on, it is important for us to ensure that the local neighbor-
hoods induced by this similarity function make sense. That is why, we need to be sure
that points which are considered to be “very similar” by the similarity function are
also closely related in the application the data comes from. For example, to construct a
similarity function between text documents it makes sense to check whether documents
with a more similarity indeed belong to the same text category. The global “long-range”
behavior of the similarity function is not so important for spectral clustering — it does
not really matter whether two data points have similarity score 0.01 or 0.001, say, as we
will not connect those two points in the similarity graph anyway. Ultimately, the choice
of the similarity function depends on the domain the data comes from, and no general
advice can be given.

Choosing the similarity graph The next choice one has to make concerns the type of the
graph one wants to use, such as the k-nearest neighbor or the ε-neighborhood graph.
The following figure illustrates the behavior of the different graphs:
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FIGURE 2.1: Different similarity graphs

In the ε-neighborhood graph, we can see that it is difficult to choose a useful param-
eter ε. With ε = 0.3 as in the figure, the points on the middle moon are already very
tightly connected, while the points in the Gaussian are barely connected. This problem
always occurs if we have data “on different scales”, that is the distances between data
points are different in different regions of the space.

The k-nearest neighbor graph, on the other hand, can connect points “on different
scales”. We can see that points in the low-density Gaussian are connected with points in
the high-density moon. This is a general property of k-nearest neighbor graphs which
can be very useful. We can also see that the k-nearest neighbor graph can break into sev-
eral disconnected components if there are high density regions which are reasonably far
away from each other. This is the case for the two moons in this example.

The mutual k-nearest neighbor graph has the property that it tends to connect points
within regions of constant density, but does not connect regions of different densities
with each other. So the mutual k-nearest neighbor graph can be considered as being “in
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between” the ε-neighborhood graph and the k-nearest neighbor graph. It is able to act
on different scales, but does not mix those scales with each other. Hence, the mutual
k-nearest neighbor graph seems particularly well-suited if we want to detect clusters of
different densities.

2.2.2 How to compute the eigenvectors?

Now, let k be the number of clusters that we have decided to make. To implement
spectral clustering in practice one has to compute the first k eigenvectors of a poten-
tially large graph Laplace matrix. Luckily, if we use the k-nearest neighbor graph or
the ε-neighborhood graph, then all those matrices are sparse. Efficient methods exist
to compute the first eigenvectors of sparse matrices, the most popular ones being the
power method or Krylov subspace methods such as the Lanczos method[7]. The speed
of convergence of those algorithms depends on the size of the eigengap (also called
spectral gap). The larger this eigengap is, the faster the algorithms computing the first
k eigenvectors converge.

Note that a general problem occurs if one of the eigenvalues under consideration has
multiplicity larger than one. For example, in the ideal situation of k disconnected clus-
ters, the eigenvalue 0 has multiplicity k. As we have seen, in this case the eigenspace
is spanned by the k cluster indicator vectors. But unfortunately, the vectors computed
by the numerical eigensolvers do not necessarily converge to those particular vectors.
Instead they just converge to some orthonormal basis of the eigenspace, and it usually
depends on implementation details to which basis exactly the algorithm converges.

2.2.3 The K-means step

K-means is the last step for the sprectral clustering algorithm. This step is used to take
out the final partition from the real-valued matrix of eigenvectors obtained in the step
above.

While it is somewhat arbitrary what clustering algorithm exactly one chooses in the
final step of spectral clustering, one can argue that at least the Euclidean distance be-
tween the points yi is a meaningful quantity to look at. We have seen that the Euclidean
distance between the points yi is related to the “commute distance” on the graph, and in
Nadler, Lafon, Coifman, and Kevrekidis (2006) [8] the authors show that the Euclidean
distances between the yi are also related to a more general “diffusion distance”.
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Chapter 3

Analysis of different phenotypic factors

3.1 Pearson Correlation Coefficients for Phenotypic Traits

• The Pearson correlation coefficient is just one of many types of correlation coeffi-
cients in the field of statistics.

• In order to determine how strong the relationship is between two variables, a for-
mula must be followed to produce what is referred to as the coefficient value.

• The coefficient value can range between -1.00 and 1.00. If the coefficient value is
in the negative range, then that means the relationship between the variables is
negatively correlated, or as one value increases, the other decreases. If the value
is in the positive range, then that means the relationship between the variables is
positively correlated, or both values increase or decrease together.

• To find correlation between x and y:

rxy =
∑n

i=1(xi − x)(yi − y)√
∑n

i=1(xi − x)2(yi − y)2

Where x and y are any two columns and i is the row number.
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TABLE 3.1: Pearson Correlation Coefficients for Numerical Phenotypic
Traits



3.2. Visualization of Correlation Matrix using Heat-map 13

3.2 Visualization of Correlation Matrix using Heat-map

FIGURE 3.1: Visualisation of Correlation Matrix using Heat Map
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3.3 Scatter Plots of Highly Correlated Features

FIGURE 3.2: Days to Pod Initiation vs 100 seed weight (g)

FIGURE 3.3: Number of seeds per plant vs Seed yield per plant (g)
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FIGURE 3.4: Days to pod initiation vs Days to 50% flowering

FIGURE 3.5: Number of node per plant vs Plant height
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Chapter 4

Clustering Species Based on their
Phenotypic Properties

4.1 Need for clustering

To get the best of all species with not so similar phenotypic factors we apply spectral
clustering on the phenotypic traits dataset. We clustered the species together based on
their phenotypic (observable physical) factors. So, when we take the best from each
cluster, we have a collection of species with different physical properties. And, so we
can have a best diverse set of species, for which, we will be requesting genetic data for
further analysis!

4.2 Approach

We first drop the features of number of seeds per plant and seed yield per plant (g) and
then cluster the species based on the other phenotypic factors. Then, we take the best
species from each cluster.
The data had a mixture of numeric and categorical data and so applying simpler tech-
niques like K-Means won’t serve the purpose. So, we modified our categorical data
using Hot Encoding and Label Encoding.

• Label Encoding: Category values like “bad”, “good”, “better”, “best” can logically
be assigned numeric values like 0, 1, 2, 3 respectively.

• Hot Encoding: Category values like “red”, “blue”, and “green” can be extracted
as several other features like “color_red”, “color_blue”, “color_green”. Then, nor-
malization using standard scalar.
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4.2.1 Calculating Optimal clusters for our use-case

We have used elbow method to calculate the optimal number of K.
For k = k_min to k = k_max, calculate sum of distortion in each cluster and plot it on a
graph of K vs Distortion:

J(c, µ) =
m

∑
i=1

n

∑
j=1

(x(i)j − µc(i),j)

There will be a point where the marginal reduction in distortion will become very
less on marginal increase in value of K. Here, we can conclude to be an optimal value of
K.
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FIGURE 4.1: Determination of Optimal Clusters using Elbow Method

Value of K Distortion Value Value of K Distortion value
10 4.359595 250 2.636826
30 3.724966 270 2.571894
50 3.491997 290 2.526217
70 3.342943 310 2.470833
90 3.227233 330 2.407244
110 3.135637 350 2.355372
130 3.035186 370 2.316924
150 2.955084 390 2.264052
170 2.887565 410 2.208787
190 2.819608 430 2.159514
210 2.759461 450 2.110721
230 2.687013 470 2.061156

TABLE 4.1: Variation of distortion with value of K
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4.3 Results from Spectral Clustering

Cluster_Id Cluster_Yield No_Of_Species Max_Yield Best_Species Avg_Yield
29 1781.88 374 20.74 CAT 2808 4.76438
16 99.94 21 16.82 CAT 530 4.7590
32 139.74 24 16.74 CAT 2875 5.8225
14 327.76 49 16.12 JSM 232 6.6889
5 370.8 61 16.02 RKS 54 6.0786
24 233.84 40 15.06 2006 M 5.846
27 93.08 18 13.96 JS 20-49 5.1711
33 147.84 31 11.74 CAT 818 4.7690
12 176.92 32 11.06 CAT 2383 5.52875
23 485.72 98 10.92 CAT 1733 4.9563
22 111.44 28 10.72 G 2130 3.98
3 466.08 94 10.58 CAT 1266 4.9582
6 185.96 44 10.56 JS 20-37 4.2263
28 96.94 23 10.48 JSM 302 4.2147
19 123.36 28 10.48 CAT 1705 4.4057
1 187.26 40 10.28 EC 33940 4.6815
21 178.92 42 10.26 8116-21 D 4.26
0 304.88 84 10.06 JS 93-37 3.6295
34 71.86 14 9.82 CAT 1502 5.1328
4 313.06 121 9.7 UPSM 1034 2.5872
20 68.74 16 9.56 EC 457464 4.296
2 202.12 44 9.42 JSM 152 4.5936
11 157.22 42 8.92 CAT 2162 3.7433
8 113.86 25 8.88 CAT 2117 B 4.5544
15 73.84 26 8.58 CAT 3379 2.84
13 92.44 25 8.14 JS 20-56 3.6976
9 136.64 33 7.9 CAT 1241 4.1406
18 144.26 56 7.62 CAT 2667 2.5760
25 58.782 13 7.54 CAT 164 4.5216
26 80.66 19 7.22 PCR 3229 4.2452
7 195.08 59 7 CAT 999 3.3064
10 95.6 39 6.18 UPSM 670 2.4512
30 32.66 10 5.78 CAT 1740 3.266
17 49.02 12 5.78 PS 1471 4.085
31 97.72 41 5.02 CAT 1410 2.383415

TABLE 4.2: Results of spectral clustering on phenotypic data
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Part II

Sampling and clustering techniques
applied on Plant Genome
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Chapter 1

Introduction

1.1 About Genotypic Data

• Whole Genome Sequence (WGS) is the thread like chain of nucleotides; A (Ade-
nine), T (Thymine), G (Guanine), C (Cytosine) that make up an organism.

• Each WGS sequence is contained in a FASTA format file.

• A sequence contains approximately 16 billion characters as each sequence has
around 170 million records and length of each records is 90 chars.

1.2 Aims to achieve with the genotypic data

• The need to sample: We need to find similarities between sequences or make clus-
ters of species. Now, as in previous work spectral clustering was found to give
very good results for construction of phylogenetic trees. But, it is computationally
impossible to apply spectral clustering on such a huge data. And, so there is a need
to sample. With sampling we aim to reduce a sequence of 16 billion characters to
a few millions.

• Moreover, we also then aim to cluster the sampled genomic data and then com-
pare the clusters obtained from phenotypic data to that of the genotypic clusters.
However, since at this time we don’t have the corresponding genotypic data for
the phenotypic species we clustered and vice versa, so we just tested our clus-
tering algorithm with a few of other genotypic sequences and when we have the
corresponding ones we’ll also try to do the mappings.
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Chapter 2

Literature Review

Continuing the previous work, in this chapter we now deal with the genotypic data
only. There have been numerous methods and approaches to sample and cluster ge-
nomic sequence. We went through a lot of papers. And, when there was a point when
we were stuck on to how to assign the probabilities for pivotal sampling, we luckily hit
a goldmine with some really exciting works done in the field. We will briefly discuss
about them in this section.

2.1 Pivotal Sampling

The pivotal method is based on splitting the vector of inclusion probabilities into two
parts. Only two inclusion probabilities are modified, and the method consists of select-
ing two units that will be denoted by i and j.
If πi + πj > 1, then A = (1− πj)/(2− πi − πj),

π
(1)
k =


πk if k∈ U \

{
i, j
}

,

1 if k = i,

πi + πj − 1 if k = j

π
(2)
k =


πk if k∈ U \

{
i, j
}

,

πi + πj − 1 if k = i,

1 if k = j

On the other hand, if πi + πj < 1, then A = πi/(πi + πj),

π
(1)
k =


πk if k∈ U \

{
i, j
}

,

πi + πj if k = i,

0 if k = j
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π
(1)
k =


πk if k∈ U \

{
i, j
}

,

0 if k = i,

πi + πj if k = j

In the first case, a one is allocated to only one inclusion probability. In the second case,
a zero is allocated to only one inclusion probability. The problem is thus reduced to
a population of size N - 1. In at most N steps, a solution is obtained. This method is
interesting for its extreme simplicity, and it can be implemented by means of a strictly
sequential procedure, i.e. by a single scan through a data file.[9]

2.2 Spectral Clustering of genomic sequences

Clustering and sampling are very important techniques of unsupervised learning , and
these have been exhaustively researched. Thus, huge amount of information is avail-
able on these subjects. Hence, here we do not attempt to give a review of works done
in these fields, rather we only present literature regarding usage of SC and sampling
techniques in the field of plant genome.[10]

The problem of clustering data items into related groups based on similarity is an ex-
tremely common problem arising in a variety of disciplines and applications, and clus-
tering algorithms for various applications have been studied for decades. Such algo-
rithms depend upon the knowledge or acquisition of similarity information to relate
data items to each other, e.g. the affinity between points in Euclidean space. Spectral
techniques, which make use of information obtained from the eigenvectors and eigen-
values of a matrix, have attracted increasing research attention with respect to clustering
in recent times. [11]

Spectral Clustering can be performed in two ways; recursive and non-recursive. Bouaziz
[12] in 2012 used this method in a recursive way for genetic studies. However, we use a
common non-recursive way [13], [6] since it is simpler and cheaper . It also gives tight
and compact clusters.

Li [14] in 2010 used SC for clustering gene sequences (which are a subset of WGSs)
where they construct ed the similarity matrix by Cosine Similarity. We use other basic
techniques like Alignment Score, Jukes Cantor and Pairwise Distance as these capture
the similarity between the genome sequences in a better way. Lawson [15] in 2012 used
advance techniques of constructing the similarity matrix as mentioned above.
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We have already discussed about papers that helped us in researching about applica-
tions of Spectral Clustering in Part 1. Here we have applied spectral clustering tech-
nique for clustering of genome sequence data. The points in the data used represent
nucleotide, considered as genome sequences. Whole genome sequence is made up of
billions of these genetic letters.
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Chapter 3

Pivotal Sampling based on Local Pattern
Histograms of Binary Images

3.1 Introduction to Pivotal Sampling

• Pivotal Sampling is a probability sampling technique to sample across the length
of sequence.

• Each of the unit in population has a assigned probability of getting selected in the
sample.

• In each iteration, either one unit will be sampled or will not be sampled depending
upon the probability value assigned to it, and probability of that sampled/non-
sampled will be updated.

• Thus, after each iteration, this procedure is repeated on the n 1 remaining units
and with updated probabilities.

3.2 How do we decide the probabilities?

• We were stuck at this point and then got a breakthrough as we came across a
paper[16] on Similarity Estimation based on Local Pattern Histograms of Binary
Images.

• It is a new method of feature extraction of DNA sequences represented by binary
images.
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• The proposed method had linear time complexity for the length of DNA sequences,
which is practical even when long sequences such as Whole Genome Sequences
(WGS) are compared.

• The method generated binary images for a genome sequence. In the paper, they
applied it on some mammalian species. So, we proceeded on to plan this for Soy-
bean genome. But, we needed to decide probability of sampling with this infor-
mation. And, this was again something to research on. We will elaborate more on
this later.

3.3 Generating a binary image from a genome sequence

• Firstly, we assign 2D numerical vectors on xy-plane, which are perpendicular or
in opposite directions to each other.

FIGURE 3.1: Three independent assignments of vectors on the xy-plane to
individual nucleotides. Four nucleotides A, T, G, and C are arranged coun-
terclockwise on the xy-plane “ATGC” (A), “ATCG” (B), and “AGTC” (C).

Assignment A is used throughout our work.

• For example, generating a binary image of sequence “ACATATG”

FIGURE 3.2: A. The primary graphical representation. B. The graphical
representation modified with weighting factors. C. The generated binary

image. Each grid represents an individual pixel of a binary image.

1Image Source: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4880953
2Image Source: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4880953
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• To extract potential information conveyed by individual nucleotides, we use weight-
ing factors, based on Markov Chain Model.

• A Markov chain is a stochastic model describing a sequence of possible events
in which the probability of each event depends only on the state attained in the
previous event.

• So, according to the second order Markov Chain, we define the probability that a
nucleotide z occurs after a pair of nucleotides xy is calculated using

P(z|xy) =
Nxyz

∑s∈[A,T,G,C] Nxys

where Nxyz and Nxys(z, s ∈ [A, T, G, C]) are the numbers of occurrence of triplets
xyz and xys till the analyzed point.

• To emphasize rare patterns that appear in genome sequences, we used self-information
I(E), the amount of information that is received when a certain event E occurs, as
the weighting factor.

• Let P(E) be the probability that event E occurs, I(E) is defined as I(E) = log2P(E) in
bit units. A trajectory for each genome sequence in a 2D plane is drawn as follows:

Ri =
i

∑
k=1

wkVk

where Ri is the coordinate of the ith point on the trajectory, Vk is the vector as-
signed to the kth nucleotide of the genome sequence, and wk is the corresponding
weighting factor I(E).



32 Chapter 3. Pivotal Sampling based on Local Pattern Histograms of Binary Images

3.3.1 Graphical Representation of few Mammalian Mitochondrial Genomes

without Weights

FIGURE 3.3: Graphical Representation of few Mammalian Mitochondrial
Genomes without Weights

3Image Source: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4880953
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3.3.2 Graphical Representation of few Mammalian Mitochondrial Genomes

with Weights

FIGURE 3.4: Graphical Representation of few Mammalian Mitochondrial
Genomes with Weights

4Image Source: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4880953
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3.4 Our Approach

We use the fact that the segments with higer weights contribute more in the shape of
the curve than those with the lower weights. Also, adding the weighing factors really
helped in highlighting the difference between closely related species as evident from
the figures above.

So, in order to sample, we design our approach in a way that the segments which have
more weight in the curve have higher probability of selection. This is explained in a
logical manner below:

• First pass: we compute the total weight of all the nucleotides in a sequence.

• Then, in the second pass, compute the individual weight of the nucleotide and
normalize by dividing with total weight. Let us call this as Pi.

• Note that sum of all Pi will be 1. We will multiply each Pi by the number of sam-
ples we need to select as in pivotal sampling. (In pivotal sampling, the sum of
probabilities of all Pi should be equal to the number of samples we need to select)

• Then, we simply perform pivotal sampling (algorithm already discussed) over the
data to get the sampled sequence.

3.5 Results

• We successfully sampled 20 sequences with 16 billion characters in each sequence
to reduce it to 1 million characters each.

• That is, it was a reduction from 16 x 109 to 106 nucleotides per sequence. We can
adjust the number of samples we need to select just by changing the multiplication
factor as suggested in the approach above.

• Now, with the sampled data, spectral clustering which was practically impossible
on the original data can be easily applied on the sampled data.
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Chapter 4

Application of Spectral Clustering on
the Sampled Genomic Data

4.1 Need for clustering

• In previous work, we have sampled the number of characters in the sequence, i.e.,
sampled a sequence of a few billions to millions.

• Now, in order to find species similar based on their genomic data, we move on to
clustering for the rescue.

• With clustering, we can then compare clusters obtained from phenotypic data to
those obtained from genotypic data.

• This way we can make useful correlations between genotypic properties and phe-
notypic properties and map specific physical properties with specific records in
the genomic data.

• However, right now since we don’t have corresponding genotypic data for the
species of whose phenotypic we worked, all what we could do at the moment in
this part was to prepare the clustering algo and test it on few samples, and then
when in future we have the corresponding genomic data, apply the same on it.

4.2 Our Approach

• Challenges: The non-numerical nature of data, the huge size of every sequence
and the non-availability of data of genotypic sequences for the same species as of
phenotypic were the major challenges.

• We have 106 character in the each sampled sequence and we represent each char-
acter as vectors on xy-plane, which are perpendicular or in opposite directions to
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each other. In our case, we assigned (1, 0), (−1, 0), (0,−1) and (0, 1) to A, T, G and
C respectively.

• Distance Matrix: We use Manhattan distance for calculating distance matrix. We
take distance of one sequence to other and create N ∗ N matrix.

Wij =
K

∑
k=0

(|xik − xjk|+|yik − yjk|)

where xik, yik is a kth point in space corresponding to the ith sequence.

W =


W11 W12 ..... W1n

. . . .

. . . .

. . . .
Wn1 Wn2 ..... Wnn



D =


D11 0 0 0

0 D22 0 0
0 0 .... 0
0 0 0 Dnn


L = D−W

where D is Diagonal Degree Matrix i.e all the diagonal elements represents degree
of the i(th) node in the graph, W is the weight matrix i.e weight between ith and
jth node, L is the Laplacian Matrix.

All we have to do now is to calculate the eigen vectors uj of L. Now, we can
simply proceed to run the final step of spectral clustering. We run K-means on the
first k eigenvectors.

4.3 Results

Since, we were not having the corresponding genotypic data for the species of whose
phenotypic data we worked in the first part, we couldn’t really proceed with compar-
ing the phenotypic and genotypic data. We just applied clustering on these 20 sampled
sequences just to be sure about the convergence of the algorithm in lesser time. So,
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Species Name Cluster Id Species Name Cluster Id
1-SRA-FASTA 0 11-SRA-FASTA 2
2-SRA-FASTA 2 12-SRA-FASTA 3
3-SRA-FASTA 2 13-SRA-FASTA 0
4-SRA-FASTA 0 14-SRA-FASTA 2
5-SRA-FASTA 1 15-SRA-FASTA 1
6-SRA-FASTA 1 16-SRA-FASTA 2
7-SRA-FASTA 1 17-SRA-FASTA 0
8-SRA-FASTA 4 18-SRA-FASTA 0
9-SRA-FASTA 2 19-SRA-FASTA 2
10-SRA-FASTA 3 20-SRA-FASTA 2
1-SRA-FASTA 0 11-SRA-FASTA 2
2-SRA-FASTA 2 12-SRA-FASTA 3

this way, for number of iterations = 300, k = 4, n = 20, d (number of features) = 106 we
were able to do it in around 2 hours. This time can be further adjusted by changing the
number of iterations. Once, we have the corresponding genotypic data for the pheno-
typic species we worked on, we can apply this technique on them and then move on to
compare the results obtained from genotypic and phenotypic data. Thus, we may then
proceed to map the phenotypic traits with specific genotypic patterns.
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Part III

Conclusions and Future Work
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Conclusions and Future Work

The objectives of this project were to

• Find correlations between several phenotypic factors for soybean.

• Clustering similar species based on their phenotypic factors and find the best in
each cluster based on yield

• Pivotal sampling of the genomic sequence so that clustering of species based on
their genomic sequences becomes less expensive

• Application of Spectral clustering on the sampled genomic data

In this project, we have achieved great feat in achieving all of the above four objectives
and in the way. Not only did we learn a lot of new things in the process, but we also
have established one really good, logical and intuitive method to sample the genomic
data. We started with establishing correlations between several phenotypic factors. We
made use of the pearson correlation coefficient and made scatter plots and heat maps
for better visualization of the results.

We then proceeded on to do the clustering for the phenotypic data and the results
achieved were really impressive. We also did a weighted sorting in the clusters to find
out the best species in each cluster and as such our work could be of great use to people
who may wish to find the best species having a set of physical properties.

We then had a meeting with Dr. Ratnaparakhe from the India Institute of Soybean
Research, Indore and he was really impressed with the results. He told that the work
will be indeed of great help to them to understand the traits better and also help the
concerned to research more about species that perform better in particular areas.

To sample the data, we were at a dead end for a while. But, then we came across a
published work, where a great work was completed on to perform similarity estima-
tion between DNA sequences based on local pattern histograms. From that work, we
learned that we can also quantitatively extract features out of DNA sequences based on
a probabilistic model. We took this good from this paper to break the rock and then used
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it to compute the selection probability in the pivotal sampling algorithm. The whole ap-
proach is quite intuitive and logical. Imagine a curve made of a few segments and you
remove a few smaller segments. The overall figure the curve is drawing won’t lose
significantly because we removed just a few smaller segments and the larger segments
which contribute to the majority of the curve are there as it is. So, we actually sampled a
sequences of 16 billion characters to a few millions to make clustering computationally
practical.

Then, we applied spectral clustering on the samples to get clusters. However, since
we were not having the corresponding genotypic data for the phenotypic we clus-
tered before, we couldn’t map the genotypic clusters to the phenotypic clusters and
thus couldn’t proceed on to map specific phenotypic properties with the genotypic se-
quences.

So, in future, once we have the corresponding genotypic data for the phenotypic species
we clustered or vice versa, then we will try to draw those similarities.

We can also proceed to write a paper titled, ”A Quantitative Approach to Pivotal Sam-
pling of Genomic Data” as the kind of probability assignment we used is unprecedent
and is complete logical. We didn’t find a paper that uses this way to sample and so what
we achieved is definitely something new.
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