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ABSTRACT

Saddle point problems (SPPs) have gained significant attention due to their diverse ap-

plications in computational science and engineering domains. This underscores the need

for their efficient and robust solution methods. However, round-off and truncation er-

rors in existing numerical approaches restrict solutions to approximations, raising critical

concerns about their accuracy, sensitivity and reliability. To overcome these challenges,

this thesis introduces preconditioned iterative methods for solving SPPs efficiently and

employs perturbation analysis to assess the sensitivity and stability of the computed so-

lutions. We specifically focus on two types of SPPs: the generalized saddle point problem

(GSPP) and the double saddle point problem (DSPP).

Firstly, this thesis focuses on the development of novel iterative methods and pre-

conditioners for DSPPs characterized by three-by-three block structures. Specifically, we

propose two classes of shift-splitting iterative methods along with corresponding precondi-

tioners tailored for DSPPs. A comprehensive convergence analysis is provided to establish

the theoretical foundations of these methods. Additionally, we conduct a spectral analysis

of the preconditioned matrices to better understand their efficiency and effectiveness. To

evaluate the efficiency of the proposed preconditioners, we apply them to DSPPs arising

from PDE-constrained optimization problems and Stokes equations.

Next, in this thesis, we address several fundamental questions: How sensitive is the

solution when structure-preserving perturbations are applied to the coefficient matrix of

GSPP or DSPP? Does a backward stable algorithm for solving the GSPP or DSPP also

exhibit strong backward stability? What is the nearest GSPP or DSPP for which the

approximate solution becomes the exact one?

To address these questions, in this thesis, we study structured backward errors (BEs)

and structured condition numbers (CNs) for the GSPP and DSPP. We derive struc-

tured BEs for the GSPP and DSPP by preserving key properties of the block matrices

of coefficient matrices, such as sparsity and linear structures (e.g., symmetric, Hermitian,

Toeplitz, and circulant) within the corresponding perturbation matrices. Through this

analysis, we demonstrate that a backward stable algorithm for solving an SPP may not

always exhibit strong backward stability. Since the sensitivity of individual solution com-

ponents in SPPs can vary significantly, we investigate partial normwise condition number

(NCN), mixed condition number (MCN), and componentwise condition number (CCN)

for both the GSPP and DSPP to evaluate the conditioning of each component indepen-

dently. Furthermore, we examine structured CNs for both GSPPs and DSPPs by applying



structure-preserving perturbations to the block matrices, thereby capturing the impact of

inherent structural properties on the stability of the solutions. We also introduce partial

unified CNs for DSPPs, which encompass traditional NCN, MCN, and CCN, and reveal

the sensitivity of individual components.

By leveraging the connection between SPPs and various least squares (LS) prob-

lems—such as weighted regularized least squares (WRLS) and equality-constrained in-

definite least squares (EILS) problems—we apply our developed frameworks for CNs and

BEs to derive explicit expressions for CNs and BEs in these contexts.

Finally, we extend our investigation to structured CNs for LS problems and the Moore-

Penrose inverse, particularly when the associated matrices are rank-deficient with specific

rank structures. To address this, we develop a general framework for computing the upper

bounds of the MCN and CCN for rank-deficient structured matrices. This framework sig-

nificantly improves the efficiency of calculating upper bounds for structured CNs, enabling

faster and more accurate computations.
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NOTATION

Symbols

R The set of real numbers

C The set of complex numbers

Rm×n The set of real matrices of size m× n

Cm×n The set of complex matrices of size m× n

HCn×n The set of all n× n Hermitian matrices

Sn The set of all real n× n symmetric matrices

SKRn×n The set of all real n× n skew-symmetric matrices

Cn The set of all n× n circulant matrices

Tm×n The set of all m× n Toeplitz matrices

ST n The set of all n× n symmetric-Toeplitz matrices

AT The transpose of A ∈ Fm×n, where F ∈ {R,C}
AH The conjugate transpose of A ∈ Cm×n

A−1 The inverse of A ∈ Fn×n, where F ∈ {R,C}
A† The Moore-Penrose inverse of A ∈ Fm×n, where F ∈ {R,C}
In The identity matrix of order n

I The identity matrix of appropriate dimension

0m×n The zeros matrix of size m× n

0 The zero matrix of appropriate dimension

eni The ith column of In

i The imaginary unit

1m×n The matrix of size m× n with all entries are equal to 1

1m The vector of size m with all entries are equal to 1

A⊗B Kronecker product of matrices A and B

A⊙B Hadamard product of matrices A and B

|A| := [|aij|] The absolute matrix of A ∈ Rm×n

|X| ≤ |Y | |xij| ≤ |yij| for X = [xij], Y = [yij] ∈ Rm×n

and 1 ≤ i ≤ m and 1 ≤ j ≤ n



rank(A) Rank of matrix A ∈ Fm×n, where F ∈ {R,C}
tr(A) Trace of the matrix A ∈ Fm×n, where F ∈ {R,C}
σ(A) Spectrum of matrix A ∈ Fm×n, where F ∈ {R,C}
λmax Maximum eigenvalue of any matrix A ∈ Rm×n with σ(A) real

λmin Minimum eigenvalue of any matrix A ∈ Rm×n with σ(A) real

ϑ(A) The spectral radius of A ∈ Fm×n, where F ∈ {R,C}
∥x∥2 :=

√∑n
i=1 |xi|2 The 2-norm of x ∈ Fn, where F ∈ {R,C}

∥x∥∞ := max
i

|xi| The infinity norm of x ∈ Fn, where F ∈ {R,C}

∥A∥max := max
i,j

|aij| The max norm of A ∈ Fm×n, where F ∈ {R,C}

∥A∥F :=
√
tr(AHA) The Frobenius norm of A ∈ Fm×n, where F ∈ {R,C}

∥A∥2 := max
∥x∥2=1

∥Ax∥2 The spectral norm of A ∈ Fm×n, where F ∈ {R,C}

∥A∥∞ = max
1≤i≤m

∑n
j=1 |aij| The infinity norm of A ∈ Fm×n, where F ∈ {R,C}

R(A) The real part of A ∈ Cm×n

I(A) The imaginary part of A ∈ Cm×n

A ≻ (⪰) 0 A is symmetric positive (semi)definite matrix

A ≻ B (A ⪰ B) A−B ≻ 0 (A−B ⪰ 0)

diag(A1, . . . , Ap) The block diagonal matrix with diagonal blocks A1, . . . , Ap

A(i, :) Returns ith row of the matrix A

A(:, j) Returns jth column of the matrix A

randn(m,n) Returns an m-by-n normally distributed random matrix

sprandn(m,n, µ) Returns a normally distributed m× n sparse random matrix

with µmn nonzero entries

sprand(m,n, µ) Creates a uniformly distributed m× n sparse random matrix

with µmn nonzero entries

toeplitz(x, y) Returns a Toeplitz matrix with x as its first column

and y as its first row, where x ∈ Cm and y ∈ Cn

tridiag(a, b, c) The tridiagonal matrix with diagonal entries b, subdiagonal

entries a, and superdiagonal entries c
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CHAPTER 1

Introduction

Numerical approximation methods serve as a cornerstone in science and engineering,

translating complex real-world problems into systems of linear equations. Consequently,

the ability to efficiently solve these systems serves as a linchpin of computational science,

driving advancements in fields ranging from physics and engineering to machine learning

and finance. A system of linear equations is generally defined as finding a solution x for

a given matrix A ∈ Cm×n and a vector b ∈ Cm, such that

Ax = b.

Of particular significance are cases where m and n are large, and A exhibits sparsity—a

structure that arises naturally in many real-world problems.

Linear systems frequently arise from differential equations and optimization problems

involving infinite degrees of freedom. Through appropriate discretization methods, these

continuous problems are transformed into algebraic systems with a finite number of de-

grees of freedom. To construct realistic numerical models, these discrete systems often

involve millions of variables, making their solution computationally demanding. A sub-

stantial portion of simulation time is dedicated to solving such large-scale linear systems.

The associated coefficient matrices are typically sparse, containing a small fraction of

nonzero elements, often exhibiting structured patterns. Efficient numerical linear algebra

algorithms are crucial for solving these systems with minimal computational cost and

memory usage. As scientific computing advances, the demand for robust solvers grows,

driving progress in numerical analysis, large-scale simulations, and data-driven applica-

tions.

Linear systems in saddle point form have received significant attention owing to their

extensive applications in partial differential equation (PDE)-constrained optimization

problems [115], computational fluid dynamics [34, 59], least squares estimation problems

[29, 30], liquid crystal director models [111], optimal control [110], Maxwell’s equations

[45], and so on. These systems often manifest in diverse forms, with their coefficient

matrices typically exhibiting two-by-two or three-by-three block structures and referred

to as saddle point problems (SPPs).



In the following, we explore two important classes of SPPs that have garnered con-

siderable attention in the literature.

Generalized saddle point problem (GSPP): The GSPP is represented by a two-by-

two block linear system of the form:

Mv :=

[
A BT

C D

][
u

p

]
=

[
f

g

]
=: b, (1.0.1)

A ∈ Cn×n, B, C ∈ Cm×n, D ∈ Cm×m; f ∈ Cn and g ∈ Cm are the known vectors;

u ∈ Cn and p ∈ Cm are the solution vectors. The block matrices A,B,C and D

satisfy some special structures, such as B = C, symmetric, Toeplitz, or have some other

linear structures [11, 26]. The GSPP in (1.0.1) encompasses several important cases: the

standard SPP (A = AT , B = C, D = DT ) and the real GSPP (A ∈ Rn×n, B,C ∈
Rm×n, D ∈ Rm×m, f ∈ Rn, and g ∈ Rm) [26].

The GSPP or its special cases originate from a wide range of applications. For exam-

ple: (i) The Karush-Kuhn-Tucker (KKT) system (A = AT , B = C, andD = 0) is one of

the simplest versions of (1.0.1) and arises from the KKT first-order optimality condition

[28] in constrained optimization problems [26, 129] given by

min
u

1

2
uTAu− fTu

subject to Bu = g.

(ii) The system (1.0.1) also comes from the finite element discretization of time-harmonic

eddy current models [9]. (iii) GSPPs emerge in the weighted regularized least squares

(WRLS) problem [24] arising from image restoration and reconstruction problems [106].

Double saddle point problem (DSPP): A general form of the DSPP, also known as

three-by-three block saddle point problem, can be written as:

Bw :=


A BT 0

F −D CT

0 G E



x

y

z

 =


f

g

h

 =: d, (1.0.2)

where A ∈ Rn×n, D ∈ Rm×m, E ∈ Rp×p, B, F ∈ Rm×n, and C, G ∈ Rp×m. The vectors

x ∈ Rn, y ∈ Rm, and z ∈ Rp are unknown, while f ∈ Rn, g ∈ Rm, and h ∈ Rp are known

vectors. Let l = n+m+ p and we refer B as the double saddle point matrix.

In many applications, DSPPs commonly arise with B = F or C = G. Additionally,

a special case of the DSPP frequently appears with D = 0 or E = 0, referred to as the

unregularized form, in various contexts.
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The structure and properties of SPPs in (1.0.1) and (1.0.2) make them a critical

focus in numerical linear algebra, particularly for developing efficient, robust, and scalable

solution methods tailored to their unique characteristics. However, a key challenge arises

from the indefinite nature or poor spectral properties of the coefficient matrices M and

B, which significantly complicates the task of numerically solving the systems (1.0.1) and

(1.0.2). Furthermore, the coefficient matrices are generally sparse and large; therefore,

iterative methods become superior to direct methods. The Krylov subspace method is

preferable among other iterative methods investigated widely in the literature due to their

minimal storage requirement and feasible implementation [139]. Slow convergence of the

Krylov subspace methods is a major drawback for a system of linear equations of large

dimensions. Moreover, the saddle point matrices M and B can be very sensitive, which

leads to a significant slowdown in the solution algorithm. Therefore, it is important to

develop novel, efficient, and robust preconditioners for the fast convergence of the Krylov

subspace method, which can handle the sensitivity of the problem (1.0.1).

Iterative methods for the classical GSPP are well-established, and over the years,

considerable attention has been devoted to developing its numerical solution techniques.

These include Uzawa methods [12, 158], Hermitian and skew-Hermitian splitting (HSS)-

type methods [10, 13], successive overrelaxation (SOR)-type methods [15, 64], null space

methods [65, 126], and shift-splitting (SS)-type strategies [37, 40, 124], etc. For a com-

prehensive survey of applications, algebraic properties, and iteration methods for GSPPs,

we refer to [11] and reference therein.

The DSPP (1.0.2) can be converted into the GSPP (1.0.1) by considering the following

partitions:

A =

[
A BT

F −D

]
, B =

î
0 C

ó
, C =

î
0 G

ó
and D = E, (1.0.3)

or

A = A, B =

[
B

0

]
, C =

[
F

0

]
and D =

[
−D CT

G E

]
. (1.0.4)

The first partitioning reveals that (1.0.2) possesses a double saddle point structure, as the

(1,1) block itself represents the coefficient matrix of an SPP. Consequently, the system

in (1.0.2) is also referred to as a DSPP. On the other hand, the second partitioning

demonstrates the same with (2,2) block having saddle point structure. However, the

properties of the submatrices in (1.0.3) and (1.0.4) are different from the standard two-

by-two block SPP. Notice that the leading block is not symmetric positive definite (SPD)

3



in the first partitioning. The second partitioning highlights that the (1, 2) block is rank

deficient and the (2, 2) block is indefinite. In contrast, in the standard SPP, (1, 2) block is

full row rank, and the (2, 2) block is generally symmetric positive semidefinite. Therefore,

the existing literature for solving the DSPPs (see [26]) may not be applied to solve (1.0.2)

directly and it is essential to develop new preconditioners for DSPPs that exploit the

specific structure of the double saddle point matrix B, which is sensitive in nature.

The invertibility conditions for the coefficient matrix in (1.0.2) with F = B and

G = C are analyzed in [20]. Furthermore, bounds on the eigenvalues of the double

saddle point matrix B are discussed in [33]. Recently, several iterative methods and

preconditioning techniques have been developed in recent times for solving DSPPs. Block

diagonal (BD) and inexact BD (IBD) preconditioners have been explored for various forms

of the DSPP (1.0.2) in [21, 33, 75]. Additionally, iterative methods and preconditioners

based on alternating positive semidefinite splitting (APSS) have been studied in [43, 125].

Moreover, SOR-type and Uzawa-type methods have been investigated in [74, 77, 76].

Recently, various studies have been done for SS-type preconditioner for the DSPP

(1.0.2) with F = B,G = C, D = 0, and E = 0; see [37, 92, 134, 156]. However,

these preconditioners have notable drawbacks, including inefficiency in performance. They

lack the ability to outperform state-of-the-art preconditioners, such as the widely used

BD-type preconditioners, and need further improvements. More importantly, SS-type

preconditioners remain largely unexplored for cases where D and E are nonzero or when

the diagonal block matrices are non-symmetric. Furthermore, the spectral distribution

of SS-type preconditioners has not been thoroughly studied. This thesis aims to bridge

these gaps, enhancing the effectiveness of SS-type preconditioners and unlocking their full

potential in solving DSPP efficiently.

When applying numerical or iterative methods to solve a problem, machine round-off

errors and truncation errors inevitably result in approximate solutions rather than exact

ones. This approximate nature raises several critical questions: Are these computed

solutions reliable? Are the numerical algorithms stable which are used to compute the

solution? For which problem the obtained approximate solution is exact? How does

a small change in the input data affect the output of the problem? Addressing these

questions is crucial, as neglecting them could lead to results that are meaningless or

irrelevant to the original problem.

In the realm of numerical analysis, perturbation theory is extensively used to examine

the quality of the computed solution using some numerical methods [73]. The concepts of
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condition number (CN) and backward error (BE) are the two most important tools since

they are widely employed in assessing the sensitivity and stability of an approximate so-

lution; see [73]. The CN measures how sensitive, in the worst-case scenario, a problem is

to a slight change in input data. On the other hand, the BE is used to find a nearly per-

turbed problem with minimal magnitude perturbations so that the approximate solution

becomes an actual solution of the perturbed problem. The minimal distance between the

original and perturbed problem is referred to as the BE. We can estimate the forward

error (difference between a computed solution and the exact solution) of an approximate

solution by combining the BE with the CN.

Most likely, for the first time, Rice [116] introduced the classical theory of CNs. In

accordance with [116], the normwise condition number (NCN), which has been extensively

considered in the literature, quantifies the input and output data errors using the norms.

A notable drawback associated with NCN lies in its inability to capture the inherent

structure of badly scaled or sparse input data. Consequently, even minor relative norm-

wise perturbations can have a disproportionate impact on entries that are small or zero,

thereby potentially compromising data sparsity. Consequently, the NCN occasionally

overestimates the true conditioning of the numerical solution. To address this challenge,

mixed condition number (MCN) and componentwise condition number (CCN) have seen

a growing interest in the literature [63, 118, 127]. The MCN measures the input perturba-

tions componentwise and the output error using norms, whereas the CCN measures both

the error in output data and the input perturbations componentwisely. The BE analysis

proposed by Wilkinson [143], has several key applications: for example, BEs are often

employed as a stopping criterion for iterative algorithms when solving a problem. For a

given problem, if the computed BE of an approximate solution is within the unit round-off

error, then the corresponding numerical algorithm is considered backward stable [73].

In many applications, the coefficient matrix blocks of systems (1.0.1) and (1.0.2)

exhibit linear structures, such as symmetric, Toeplitz, or symmetric-Toeplitz patterns

[32, 60, 124, 163]. This naturally raises an important question: How sensitive is the

solution when structure-preserving perturbations are applied to the coefficient matrix

of GSPP or DSPP? Moreover, a numerical algorithm is considered strongly backward

stable if the computed solution corresponds exactly to the solution of a nearby structure-

preserving problem [35, 36]. This leads to a fundamental inquiry: Does a backward stable

algorithm for solving (4.3.1) also exhibit strong backward stability? To address this

question, the notions of structured CN and BE are introduced specifically for problems
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with special structural properties, where both CN and BE are analyzed under structure-

preserving constraints imposed on the perturbation matrices.

Higham and Higham [72] explored the CN and BE analysis for approximate solutions

of linear systems involving both structured and unstructured matrices. Recently, the

investigation of structured BEs and CNs in SPPs has shown significant development. For

GSPPs, CNs and perturbation bounds have been examined in [100, 138, 147, 151, 153],

focusing on the solution v = [uT , pT ]T and its individual components u and p. However,

the sensitivity of each solution component can vary; hence, analyzing the sensitivity of the

individual solution components of v in (1.0.1) or w in (1.0.2) becomes crucial [38]. The

traditional CNs lack the ability to reveal the conditioning of a specific part of the solution.

Thus, it is crucial to evaluate their individual conditioning properties. Moreover, both

structured and unstructured CNs for DSPPs remain largely unexplored in the literature,

presenting an avenue for further research. To tackle this situation, in this thesis, we

investigate the structured NCN, MCN, and CCN of a linear function of the solution by

introducing a matrix L of the GSPP and DSPP. This kind of CN is referred to as partial

CN. Different choices of L provide the flexibility to determine the CNs of various solution

components of w. For example, by selecting L = Il, [In 0n×(l−n)], or [0 Im 0m×p], we

can determine the CN of w = [xT ,yT , zT ]T , x, or y, respectively.

On the other hand, many research has been conducted on both unstructured and

structured BE analysis for GSPP and DSPP [44, 129, 146, 162]. However, these stud-

ies often fail to preserve for the inherent sparsity patterns of the coefficient matrix in

SPPs. Moreover, the existing techniques are not applicable when the block matrices have

circulant, Toeplitz, or symmetric-Toeplitz structures and do not even provide structure-

preserving minimal perturbation matrices for which the BE is attained. Furthermore,

due to the special block structure of the double saddle point matrix, these investigations

do not provide exact structured BEs for the DSPP (1.0.2). Recently, structured BEs for

DSPP have been investigated in [95, 96, 98]. However, these studies do not preserve the

symmetric structures and sparsity pattern of the block matrices. This thesis explores the

structured BEs for GSPPs and DSPPs, focusing on preserving the sparsity pattern and

the inherent block structure of the coefficient matrices in the perturbation matrices.

The above-discussed linear systems consider the coefficient matrix as nonsingular.

Next, consider the problem of finding a solution x for the system of linear equations:

Ax = b, A ∈ Cm×n, b /∈ R(A); i.e., the system is inconsistent. In such cases, the

6



objective is to determine X that minimizes the residual in the least squares (LS) sense:

min
X∈Cn

∥AX− b∥2. (1)

This formulation seeks the best approximate solution and is known as the LS problem.

The unique minimum norm least square (MNLS) solution to the LS problem is given by

A†b, where A† denotes the Moore-Penrose (M-P) inverse of A.

Over the years, several generalizations of LS problems have been studied to address

challenges such as ill-conditioning or rank deficiency of the matrix A. Techniques like

Tikhonov regularization, WRLS, and indefinite least squares (ILS) have been developed

to stabilize solutions. These generalizations achieve stabilization by introducing regular-

ization terms or weighting matrices, effectively mitigating issues related to ill-posedness

and numerical instability. Recently, structured CNs of these problems, including the M-P

inverse, LS problem, WRLS problem, and Tikhonov regularization, have garnered sig-

nificant attention [50, 51, 152]. However, structured CNs for LS problems, where A is

rank-deficient and possesses special structures, such as low-rank patterns, remain largely

unexplored. Thus, the development of structured BEs for these problems requires further

refinement. In this thesis, we address the problem of structured CNs for the M-P inverse

and LS problems associated with rank-deficient matrices. Furthermore, leveraging the

intrinsic connection between LS problems and SPPs, we extend our developed framework

to analyze structured BEs and CNs for these classes of LS problems.

The outline of the of the thesis is as follows. In the remaining part of this chapter,

we discuss some applications that lead to GSPP and DSPP, key conceptual ideas that

are used throughout the thesis, and essential preliminaries. Additionally, an overview of

stationary iterative methods, Krylov subspace methods, and preconditioners are provided.

InChapter 2, we propose the parameterized enhanced shift-splitting (PESS) iterative

method and preconditioner for solving the equivalent nonsymmetric DSPP (1.0.2) with

F = B, G = C, D = 0, and E = 0, formulated as:

Au :=


A BT 0

−B 0 −CT

0 C 0



x

y

z

 =


f

−g
h

 =: d̂. (1.0.5)

The coefficient matrix A exhibits key properties essential for the convergence of the SS-

type iterative method. Specifically, A is semipositive real, satisfying uTAu ≥ 0 for all

u ∈ Rl, and positive semistable, with all eigenvalues having nonnegative real parts. We

also propose the local PESS (LPESS) preconditioner, a localized variant of the PESS
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preconditioner, enhanced with a relaxation mechanism. This chapter provides a compre-

hensive convergence analysis of the PESS iterative method and a spectral study of the

PESS and LPESS preconditioned matrices, including detailed spectral bounds to evaluate

their effectiveness.

In Chapter 3, building on the framework from Chapter 2, we proposed generalized

shift-splitting (GSS) preconditioners for the DSPP when F = B, G = C, and D = 0, in

the following form obtained by reordering (1.0.2):

B“w :=


A 0 BT

0 E C

−B −CT 0



x

z

y

 =


f

h

g

 . (1.0.6)

This formulation arises in applications such as PDE-constrained optimization problems

[115]. The GSS preconditioner accommodates both symmetric and nonsymmetric A and

E. To improve its efficiency, we introduced two relaxed versions, along with detailed

spectral analyses of the preconditioned matrices.

In Chapter 4, we analyze structured BEs for the GSPP (1.0.1) and DSPP (1.0.2)

under perturbations that respect sparsity and specific matrix structures, including sym-

metric, Hermitian, circulant, Toeplitz, and symmetric-Toeplitz. The minimal pertur-

bation matrices are constructed to preserve these structural properties. The developed

framework is applied to compute BEs for WRLS problems, supported by numerical exper-

iments that validate the findings and highlight their effectiveness in evaluating the strong

backward stability of numerical algorithms.

In Chapter 5, we explore unstructured and structured partial NCN, MCN, and CCN

for the GSPP (1.0.1) and the DSPP (1.0.2). A general framework is developed to measure

the structured CNs of individual components of the solution of the GSPP by preserving the

symmetric, Toeplitz, and more general linear structures of block matrices. Furthermore,

we introduce the concept of unified partial CNs for the DSPP, which incorporates the

traditional NCN, MCN, and CCN into a single framework. Sharp upper bounds for partial

CNs are provided, which are free from expensive Kronecker products. Applications of the

derived frameworks include:

• To derive structured CNs for the WRLS and Tikhonov regularization. These stud-

ies also retrieve some previous studies in the literature [101].

• By leveraging the relationship between DSPP and equality-constrained indefinite

least squares (EILS) problems, we derive partial CNs for the EILS problem.
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In Chapter 6, we analyze the structured MCN and CCN for the M-P inverse and

MNLS solutions of rank-structured matrices, including Cauchy-Vandermonde (CV) and

{1, 1}-quasiseparable (QS) matrices. A general framework is developed to efficiently com-

pute upper bounds for MCN and CCN of rank-deficient parameterized matrices, enabling

faster computation to estimate the structured CNs for CV and {1, 1}-QS matrices.

In Chapter 7, we provide a summary of the thesis and a few potential directions for

future research.

This thesis aims to address existing research gaps by achieving these objectives. By

doing so, it contributes to advancing knowledge in the field.

1.1. Applications Leading to the Saddle Point Problems

This section explores various applications that give rise to the GSPP and DSPP. These

problems commonly emerge in areas such as fluid dynamics, PDE-constrained optimiza-

tion, and finite element discretizations of PDEs.

1.1.1. Equality-Constrained Quadratic Programming Problems

One of the main application areas leading to SPPs is the equality-constrained convex

quadratic programming problems (EQPPs). Consider the following EQPP is defined by:

min
x∈Rn,z∈Rp

1

2
xTAx+ rTx+ qTz

subject to Bx+ CTz = b,

where A ∈ Rn×n, B ∈ Rm×n, C ∈ Rp×m, b ∈ Rm, r ∈ Rn, and q ∈ Rp. Let λ ∈ Rm be the

Lagrange multipliers, then the KKT [28] conditions applied to the following Lagrangian:

L(x, z,λ) = 1

2
xTAx+ rTx+ qTz + λT (Bx+ CTz − b),

yield:

∇xL(x, z,λ) = Ax+BTλ+ r = 0,

∇zL(x, z,λ) = q + Cλ = 0,

∇λL(x, z,λ) = Bx+ CTz − b = 0.
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The symbol ∇x represents the gradient operator with respect to the variable x. The above

equation leads to the following DSPP:
A BT 0

B 0 CT

0 C 0



x

λ

z

 =


−r
b

−q

 .
1.1.2. PDE-Constrained Optimization Problems

The Poisson control problem: Consider the distributed control problem defined by:

min
u,f

1
2
∥u− û∥2L2(Ω) +

ν
2
∥f∥2L2(Ω)

subject to −∆u = f in Ω,

u = g on ∂Ω,

(1.1.1)

where u is the state, and û is the desired state, f is the control, Ω = [0, 1] × [0, 1] is the

domain with the boundary ∂Ω, ∆ denotes the Laplacian operator in Rd, and 0 < ν ≪ 1

is the regularization parameter. By discretizing (1.1.1) using the Galerkin finite element

method and then applying Lagrange multiplier techniques, we obtain the following system:
βM 0 KT

0 M −M
−K M 0



u

f

λ

 =


0

b

−d

 , (1.1.2)

whereM ∈ Rn×n andK ∈ Rn×n are SPDmass matrix and discrete Laplacian, respectively.

Note that by setting A = νM , B = K, C = −M , and d = [0, bT , −dT ]T , (1.1.2) can be

expressed in the form of the DSPP (1.0.2), where n = m = p.

1.1.3. Augmented Systems in Least Squares Problems

Weighted and regularized least squares (WRLS) problems: Given K ∈ Rm×n

(m ≥ n), a SPD weight matrix W ∈ Rn×n and a vector f ∈ Rn, we consider the WRLS

problem [24] arising from image restoration and reconstruction problems [62, 106] of the

form:

min
y∈Rn

∥My − d̃∥22, (1.1.3)

where M =

[
W 1/2KT

√
λIm

]
∈ R(m+n)×m, d̃ =

[
W 1/2f

0

]
∈ Rm+n and λ > 0 is the regulariza-

tion parameter. Then, the minimization problem (1.1.3) can be expressed as the following
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augmented linear system:

M̂

[
r

y

]
:=

[
W−1 KT

K −λIm

][
r

y

]
=

[
f

0

]
, (1.1.4)

where r = W (f −KTy). The equivalent augmented system (1.1.4) possesses the GSPP of

the form (1.0.1) where A is symmetric and B = C as a Toeplitz (or symmetric-Toeplitz)

matrix.

Equality-constrained indefinite least squares (EILS) problems: The EILS prob-

lem is an extension of the famous linear least squares problem, having linear constraints

on unknown parameters. It can be expressed as follows:

min
y∈Rm

(b−My)TJ (b−My) subject to Cy = d, (1.1.5)

where M ∈ Rn×m(n ≥ m), C ∈ Rp×m, b ∈ Rn, d ∈ Rp and the signature matrix J given

by

J =

[
In1 0

0 −In2

]
, n1 + n2 = n. (1.1.6)

When rank(C) = p and yT (MTJM)y > 0 for all nonzero y ∈ null(C), the EILS problem

(1.1.5) has a unique solution. The solution of the EILS (1.1.5) problem also satisfies the

following the augmented system [137]:“Bλx
y

 :=


0 0 C

0 J M

CT MT 0



λ

x

y

 =


d

b

0

 , (1.1.7)

where x = Jr, r = b−My and λ = (CCT )−1CMTJr is the vector of Lagrange multipliers

[31]. Note that the system in (1.1.7) can be equivalently transformed into
J M 0

MT 0 CT

0 C 0



x

y

λ

 =


b

0

d

 =: d̂. (1.1.8)

1.1.4. Discretization of Equations from Physics

The Stokes equations: The (steady-state) Stokes problem, which models the flow of a

viscous fluid, is represented by the following system of PDEs:
−ν∆u+∇p = F in Ω,

∇ · u = 0 in Ω,

u = 0 on ∂Ω,

(1.1.9)
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where Ω ⊂ Rd (d = 2, 3) is the domain, µ is the viscosity, u : Ω → Rd the velocity field

and p : Ω → R is the pressure field, and F : Ω → Rd is a given body force. Here, ∇
denotes the gradient and ∇· is the divergence.

Discretization of the Stokes equation (1.1.9) using finite differences or finite elements

results in GSPP of the form (1.0.1), where u represents the discrete velocities and p the

discrete pressure.

Maxwell’s equations: Discretization of Maxwell’s equation in electromagnetics also

leads to SPPs. Consider the following time-harmonic Maxwell’s equations:
∆×∆× u− k2u+∇p = F in Ω,

∇ · u = 0 in Ω,

u× n = 0 on ∂Ω,

p = 0 on ∂Ω,

(1.1.10)

where Ω is a subset of R2 or R3 and ∆× denotes the curl Discretization using Nédéléc

finite elements for u and nodal elements for p results in a linear system of the form:[
A− kM BT

B 0

][
u

p

]
=

[
g

0

]
,

where A is the discrete curl-curl operator, B is the negative discrete divergence operator,

M is the finite element mass matrix, and g ∈ Rn represents the load vector associated

with F .

1.2. Iterative Methods and Preconditioning for Linear Systems

SPPs that arise from real-world applications are typically sparse (containing many

zero entries) and are of very large dimensions. Direct methods based on matrix factor-

izations, such as Gaussian elimination and QR decomposition, perform well for small

and medium-sized problems; however, for large problems, they start to struggle. More-

over, these decompositions may introduce a large amount of nonzero entries, which are

problematic because of high computational costs.

Iterative methods generate successive approximations that converge to the exact so-

lution. These methods are particularly useful for large systems where direct methods

are computationally expensive. Next, we give some overview of commonly used iterative

methods.
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1.2.1. Stationary Iterative Methods

Consider the linear system Aw = d, where we aim to compute a solution using iter-

ative methods. Stationary iterative methods, among the simplest, are based on splitting

the coefficient matrix A into two matrices such that A =M−N , whereM is nonsingular.

Then, the iterative method is defined as:

Mwk+1 = Nwk + d. (1.2.1)

The matrix M is chosen based on the specific splitting method employed. For instance,

in the Jacobi method, M corresponds to the diagonal part of A, while in the Gauss-

Seidel method, M is the lower triangular part of A. Other prominent stationary iterative

methods include the SOR and Richardson methods (refer to [122]). The convergence of

these types of methods depends upon the spectral radius of the iteration matrix T =

M−1N.

Lemma 1.2.1. [122] Any stationary iterative methods of the form (1.2.1) converges to

the unique solution of the linear system Aw = d for any initial guess w0 if and only if the

spectral radius of the iteration matrix T =M−1N is strictly less than one, i.e., ϑ(T ) < 1.

The main disadvantages of these types of iterative methods are slow convergence and

fixed storage cost at each iteration.

1.2.2. Krylov Subspace Methods

In this subsection, we discuss Krylov subspace methods for solving sparse linear sys-

tems of the form Aw = d, where A is nonsingular matrix and d is the right hand side

vector. The Krylov subspace iterative method is preferable among other iterative meth-

ods investigated widely in the literature due to their minimal storage requirement and

feasible implementation [139].

Letw0 be an initial guess vector and the initial residual vector defined as r0 = d−Aw0.

Then, Krylov subspace methods are the iterative solvers where kth approximate solution

satisfies the following:

wk ∈ w0 +Kk(A, r0), k = 1, 2, . . . , (1.2.2)

where Kk(A, r0) is the kth Krylov subspace generated by A and r0 and defined as

Kk(A, r0) := span
{
r0,Ar0, . . . ,Ak−1r0

}
.
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To make the iterate wk unique, the residual vector satisfies the condition rk = d−Awk ⊥
Lk, where Lk is called the constraint space. Based on the choices for the Lk, various classes
of Krylov subspace methods have been developed. For example:

• Lk = Kk(A, r0) gives orthogonal residual methods such as conjugate gradient (CG)

methods for SPD linear systems.

• Lk = AKk(A, r0) gives minimal residual (MINRES) method and generalized min-

imal residual (GMRES) method to solve symmetric and nonsymmetric linear sys-

tems, respectively.

1.2.3. Generalized Minimal Residual (GMRES) Method

The GMRES method is prominently one of the most useful Krylov subspace methods,

which was first discussed by Saad [122] for solving a linear system Aw = d, where B is

nonsingular. By selecting the constraint space Lk = AKk(A, r0), which is equivalent to

minimizing the norm of residual at each iteration, i.e., the approximate solution at kth

iteration satisfies

min
w∈w0+Kk(A,r0)

∥d−Awk∥2.

The GMRES uses the Arnoldi method to obtain an orthonormal basis for the Krylov

subspace Kk(A, r0).
The first vector in the Krylov subspace is r0, and the first orthonormal vector v1 =

r0/∥r0∥2. Next, we take Av1 and orthonormalize it against v1. After subsequent iterations,

we obtain vm+1 by othonormalize Avm against previous vectors. This gives the following

matrix relation:

AVm = Vm+1H̄m, (1.2.3)

where Vm ∈ Rn×m consist of vj as columns and H̄m ∈ R(m+1)×m is an upper Hessenberg

matrix. Since Vm is orthogonal, we have V T
mAVm = Hm, where Hm consist of first m rows

of H̄m.

In the mth step of the Krylov subspace method, the approximate solution is of the

form wm = w0 + Vmy. Then, the residual rm := d−Awm satisfies

∥rm∥2 = ∥d−Awm∥2 = ∥d−Aw0 −AVmy∥2 = ∥V T
m+1r0 − H̄my∥2 = ∥β0e1 − H̄my∥2.

Thus, y is chosen to minimizes = ∥β0e1 − H̄my∥2.
14



Algorithm 1.2.1 GMRES

Choose an initial guess vector w0, compute r0 = d−Aw0;

1 : β0 = ∥r0∥2; v1 := r0/β0;

2 : for j = 1, 2, . . . , do

3 : compute uj := Avj;
4 : for i = 1, 2, . . . , j, do

5 : hij := (uj, vj);

6 : uj := uj − hijvj;

7 : end for

8 : hj+1,j = ∥uj∥2;
9 : vj+1 = uj/hj+1,j;

10 : end for

11 : Define the (m+ 1)×m Hessenberg matrix H̄m = [hij];

12 : Compute the minimizer ym of ∥β0e1 − H̄my∥2 and form the solution

wm = w0 + Vmym.

1.2.4. Preconditioning

A major drawback of iterative solvers is their slow convergence and lack of robust-

ness, particularly when the coefficient matrix of the system is ill-conditioned. To accel-

erate the convergence speed and increase the robustness of the Krylov subspace methods

by applying suitable preconditioners. The term preconditioning refers to the method of

transforming the linear system Aw = d into an equivalent system that possesses more

favorable properties for iterative solution methods. A preconditioner is a nonsingular ma-

trix P that serves as a suitable approximation of A, designed to improve the convergence

properties of the chosen Krylov subspace method. When the preconditioner is multiplied

from the left side leads to the following left preconditioned system:

P−1Aw = P−1d.

Alternatively, a preconditioner can be applied from the right side as well, which leads:

AP−1u = d, u := Pw.

If a preconditioner is available as a factored form as P = P1P2, two-sided precondition-

ing leads to the following preconditioned system:

P−1
1 AP−1

2 u = P−1
1 d, u := P2w.
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When a Krylov subspace method, such as GMRES, is applied to the preconditioned

system, it is referred to as the preconditioned GMRES (PGMRES) method.

In general, a preconditioner aims to enhance the spectral properties of the precon-

ditioned matrix P−1A (or AP−1). For symmetric problems, the convergence rate of

Krylov subspace methods, such as CG and MINRES, is governed by the distribution of

eigenvalues or spectral condition numbers. In the case of nonsymmetric problems, the

situation becomes more complex, especially for methods like GMRES. However, when

the eigenvalues of the preconditioned matrix are clustered, the convergence rate of the

method improves significantly.

1.3. Preliminaries

This section provides fundamental definitions and key results that will be applied

throughout this thesis. For the matrix A = [a1,a2, . . . ,an] ∈ Cm×n, where ai ∈ Cm, i =

1, 2, . . . , n, the linear operator vec : Rm×n 7→ Rmn is defined by vec(A) := [aT1 ,a
T
2 , . . . ,a

T
n ]
T ∈

Cmn. The vec operator satisfies ∥vec(A)∥∞ = ∥A∥F . The sparsity pattern of a matrix

A = [aij] ∈ Cm×n is defined as ΘA := sgn(A) = [sgn(aij)]. where

sgn(aij) =

{
1, aij ̸= 0,

0, aij = 0.

The Hadamard product of A,B ∈ Cm×n is defined as A ⊙ B = [aijbij] ∈ Cm×n. For any

vector x ∈ Cm, Dx is the diagonal matrix defined as Dx := diag(x) ∈ Cm×m.

Definition 1.3.1. Let A = [aij] ∈ Cm×n and B = [bij] ∈ Cp×q. Then, the Kronecker

product of A and B is denoted by A⊗B and defined as follows:

A⊗B :=


a11B . . . a1nB
...

...

am1B . . . amnB

 ∈ Cmp×nq. (1.3.1)

The Kronecker product of matrices satisfies the following properties [66, 84]: For

A ∈ Cr×m, X ∈ Cm×n, B ∈ Cs×p, Y ∈ Cp×q, and Z ∈ Cn×p, we have
vec(XZY ) = (Y T ⊗X)vec(Z),

(X ⊗ Y )T = XT ⊗ Y T ,

|X ⊗ Y | = |X| ⊗ |Y |,
(A⊗B)(X ⊗ Y ) = AX ⊗BY.

(1.3.2)
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Definition 1.3.2. Let A ∈ Cm×n. The M-P inverse is the unique matrix Y ∈ Cn×m that

satisfies the following conditions:

(1) AY A = A, (2) Y AY = Y, (3) (AY )H = AY (4) (Y A)H = Y A. (1.3.3)

The M-P inverse of a matrix A ∈ Cm×n is always uniquely exist and denoted by A†.

Lemma 1.3.1. [133] Consider the system of linear equations Ax = b, where A ∈ Cm×n, b ∈
Cm. The following results hold:

(1) The linear system is consistent if and only if AA†b = b. Furthermore, when the

system is consistent, the solution with the minimum norm is given by A†b.

(2) The MNLS solutions of the LS problem min
x

∥Ax− b∥2 is given by A†b.

Definition 1.3.3. [117] Let x̃ be an approximate solution of the linear system Ax = b.

Then, the normwise unstructured BE, denoted by η(x̃), is defined as:

η(x̃) := min
(∆A,∆b)∈F

∥∥∥∥∥
[
∥∆A∥F
∥A∥F

∥∆b∥F
∥b∥F

]∥∥∥∥∥
2

,

where F =
{
(∆A, ∆b)

∣∣(A+∆A)x̃ = b+∆b
}
.

Rigal and Gaches [117] provided explicit expression for the BE defined above, which

is given by

η(x̃) =
∥b− Ax̃∥2√

∥A∥2F∥x̃∥22 + ∥b∥22
. (1.3.4)

When η(x̃) is sufficiently small, the approximate solution x̃ becomes the exact solution

to a slightly perturbed system, (A + ∆A)x̃ = b + ∆b, where both ∥∆A∥F and ∥∆b∥2
are relatively small. A numerical algorithm to solve a problem is backward stable if the

approximate solution of the problem is always the exact solution of a nearby problem [73].

For any matrix A = [aij] ∈ Rm×n, we set |A| := [|aij|], where |aij| denotes the absolute
value of aij. For two matrices A,B ∈ Rm×n, the notation |A| ≤ |B| represents |aij| ≤ |bij|
for all 1 ≤ i ≤ m and 1 ≤ j ≤ n. According to [51, 88], we define the following notations.

The componentwise distance between two vectors a and b in Rp is defined as:

d(a, b) =

∥∥∥∥a− b

b

∥∥∥∥
∞

= max
i=1,2,...,p

{
|ai − bi|

|bi|

}
. (1.3.5)

Let u ∈ Rp and η > 0, consider the sets: B1(u, η) = {x ∈ Rp : ∥x − u∥2 ≤ η∥u∥2} and

B2(u, η) = {x ∈ Rp : |xi − ui| ≤ η|ui|, i = 1, . . . , p}.
With the above conventions, next, we present the definitions of NCN, MCN, and CCN

for a mapping φ : Rp 7→ Rq as follows.
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Definition 1.3.4. [51, 63] Let φ : Rp 7→ Rq be a continuous mapping defined on an open

set Ωφ ⊆ Rp, and 0 ̸= u ∈ Ωφ such that φ(u) ̸= 0.

(i) The NCN of φ at u is defined by

K (φ, u) = lim
η→0

sup
x ̸=u

x∈B1(u,η)

∥φ(x)−φ(u)∥2/∥φ(u)∥2
∥x− u∥2/∥u∥2

.

(ii) The MCN of φ at u is defined by

M (φ, u) = lim
η→0

sup
x ̸=u

x∈B2(u,η)

∥φ(x)−φ(u)∥∞
∥φ(u)∥∞

1

d(x, u)
.

(iii) Let φ(u) = [φ(u)1, . . . ,φ(u)q]
T be such that φ(u)i ̸= 0 for i = 1, 2, . . . , q. Then,

the CCN of φ at u is defined by

C (φ, u) = lim
η→0

sup
x ̸=u

x∈B2(u,η)

d(φ(x),φ(u))

d(x, u)
.

Next, we present the definition of the Fréchet derivative, which serves as the foun-

dation for deriving expressions of the CNs.

Definition 1.3.5. [46] Let φ : Rp 7→ Rq be a mapping defined on an open set Ωφ ⊆ Rp.

Then φ is said to be Fréchet differentiable at u ∈ Ωφ if there exists a bounded linear

operator dφ : Rp 7→ Rq such that

lim
h→0

∥φ(u+ h)−φ(u)− dφh∥
∥h∥

= 0,

where ∥ · ∥ denotes any norm on Rp and Rq.

When φ is Fréchet differentiable at u, we denote the Fréchet derivative at u as

dφ(u). The next lemma gives closed-form expressions for the above three CNs when the

continuous mapping φ is Fréchet differentiable.

Lemma 1.3.2. [51, 63] Under the same hypothesis as in Definition 1.3.4, when φ is

Fréchet differentiable at u, we have

K (φ;u) =
∥dφ(u)∥2∥u∥2

∥φ(u)∥2
, M (φ;u) =

∥|dφ(u)||u|∥∞
∥φ(u)∥∞

, and C (φ;u) =

∥∥∥∥ |dφ(u)||u||φ(u)|

∥∥∥∥
∞
.
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CHAPTER 2

A Robust Parameterized Enhanced Shift-Splitting

Preconditioner for Double Saddle Point Problems∗

This chapter proposes a novel parameterized enhanced shift-splitting (PESS) pre-

conditioner to solve the DSPP by considering F = B, G = C, D = 0, and E = 0.

Additionally, we introduce a local PESS (LPESS) preconditioner by relaxing the PESS

preconditioner. Necessary and sufficient criteria are established for the convergence of the

proposed PESS iterative method for any initial guess. Furthermore, we meticulously in-

vestigate the spectral bounds of the PESS and LPESS preconditioned matrices. Moreover,

empirical investigations have been performed for the sensitivity analysis of the proposed

PESS preconditioner, which unveils its robustness. Numerical experiments are carried out

to demonstrate the enhanced efficiency and robustness of the proposed PESS and LPESS

preconditioners compared to the existing state-of-the-art preconditioners.

2.1. Background

We consider the DSPP of the following form [75]:

Au :=


A BT 0

−B 0 −CT

0 C 0



x

y

z

 =


f

−g
h

 =: d̂, (2.1.1)

where A ∈ Rn×n is a SPD matrix, B ∈ Rm×n and C ∈ Rp×m are the full row rank matrices.

Here, f ∈ Rn, g ∈ Rm and h ∈ Rp are known vectors. Under the stated assumptions on

block matrices A, B and C, A is nonsingular, which ensures the existence of a unique

solution for the system (2.1.1).

After an appropriate partitioning of the coefficient matrix A, the linear system (2.1.1)

can be recognized as a standard two-by-two SPP. Over the past few decades, significant

efforts have been devoted to developing numerical solution methods for standard SPPs

∗ S. S. Ahmad and P. Khatun, “A robust parameterized enhanced shift-splitting preconditioner for three-by-

three block saddle point problems.” Journal of Computational and Applied Mathematics, 459:116358, 2025.



[26]. However, due to the distinct properties of the submatrices, these methods cannot

be directly applied to solve the DSPP (2.1.1).

Recently, various effective preconditioners have been developed in the literature for

solving the DSPP (2.1.1). For instance, Huang and Ma [75] have studied the exact BD

and IBD preconditioners PBD and PIBD in the following forms:

PBD =


A 0 0

0 S 0

0 0 CS−1CT

 and PIBD =


Â 0 0

0 Ŝ 0

0 0 CŜ−1CT

 , (2.1.2)

where S = BA−1BT , Â and Ŝ are SPD approximations of A and S, respectively. Al-

though the spectrum of the preconditioned matrices P−1
BDA and P−1

IBDA have good clus-

tering properties, these preconditioners have certain shortcomings, such as they are time-

consuming, expensive, require an excessive number of iterations and CNs are very large.

For more details, see the paper [75]. Inspired by the HSS iteration method [13], Salkuyeh

et al. [125] split the coefficient matrix A and presented the APSS iteration method. They

proved the unconditional convergence of the iteration method and proposed the corre-

sponding APSS preconditioner to solve the system (2.1.1). Moreover, to improve the

effectiveness of the APSS preconditioner, many relaxed and modified versions of APSS

have been designed; see [43, 150, 89]. For instance, by relaxing the (1, 1) block and intro-

ducing a new parameter β > 0 in the APSS preconditioner, Chen and Ren [43] proposed

the following modified APSS (MAPSS) preconditioner:

PMAPSS =


A BT − 1

α
BTCT

−B αI −CT

0 C βI

 , (2.1.3)

where α > 0 and I stands for the identity matrix of the appropriate dimension. Motivated

by the work in [39] and by incorporating the ideas of shifting and the BD preconditioner,

the authors in [18] proposed two preconditioners along with their inexact variants. One

of these preconditioners is given by:

PSL =


A BT 0

−B CTC 0

0 C I

 . (2.1.4)

Three block preconditioners are developed by Xie and Li [148] for the system (2.1.1) with

the equivalent symmetric coefficient matrix. It is also demonstrated in [148] that the
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preconditioned matrices possess no more than three distinct eigenvalues. Huang [74] pro-

posed a variant of the Uzawa iterative method for the DSPP by introducing two variable

parameters. Additionally, Huang et al. [76] generalized the well-known Uzawa method to

solve the linear system (2.1.1) and propose the inexact Uzawa method. In addition to

the preconditioners discussed above, recent literature [1, 136, 19] have introduced several

other preconditioners to solve the DSPP (2.1.1).

The SS preconditioners were initially developed for a non-Hermitian system of linear

equations by Bai et al. [16] and later for two-by-two block SPPs [40, 124, 41]. Recently,

Cao [37] enhanced this idea and introduced the following SS preconditioner PSS and

relaxed SS (RSS) preconditioner PRSS for the DSPP (2.1.1):

PSS =
1

2


αI + A BT 0

−B αI −CT

0 C αI

 and PRSS =
1

2


A BT 0

−B αI −CT

0 C αI

 , (2.1.5)

where α > 0 and verified unconditionally convergence of the associated SS iterative

method. Wang and Zhang [134] generalized the SS preconditioner by introducing a new

parameter β > 0 in the (3, 3) block. By merging the lopsided and shift technique, a

lopsided SS preconditioner is presented by Zhang et al. [160]. Further, Yin et al. [156]

developed the following extensive generalized SS (EGSS) preconditioner:

PEGSS =
1

2


αP + A BT 0

−B βQ −CT

0 C γW

 (2.1.6)

for the DSPP (2.1.1), where α, β, γ > 0 and P,Q,W are SPD matrices and investigated

its convergent properties. By relaxing the (1, 1) block and eliminating the prefactor 1/2,

Liang and Zhu [92] have proposed relaxed and preconditioned generalized SS (RPGSS)

preconditioner

PRPGSS =


A BT 0

−B βQ −CT

0 C γW

 , (2.1.7)

where Q ∈ Rm×m and W ∈ Rp×p are SPD and β, γ > 0.

Despite exhibiting favorable performance of SS, RSS, and EGSS preconditioners, they

do not outperform BD and IBD preconditioners. Therefore, to improve the convergence

speed and efficiency of the preconditioners PSS,PRSS and PEGSS, this chapter presents

a PESS preconditioner by introducing a parameter s > 0 for DSPPs. As per the direct
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correlation between the rate of convergence in Krylov subspace iterative methods and the

spectral properties of the preconditioned matrix, we perform in-depth spectral distribution

of the PESS and LPESS preconditioned matrices. We summarize the main contributions

of this chapter as follows:

• We propose the PESS iterative method along with its associated PESS precon-

ditioner and its relaxed version known as the LPESS preconditioner to solve the

DSPP (2.1.1).

• General framework is given on necessary and sufficient criteria for the convergence

of the PESS iterative method. These investigations also encompass the uncondi-

tional convergence of other exiting SS preconditioners in the literature [37, 156].

• We have conducted a comprehensive analysis of the spectral distribution for the

PESS and LPESS preconditioned matrices. Our framework allows us to derive the

spectral distribution for the existing SS and EGSS preconditioned matrices.

• We empirically show that our proposed preconditioner significantly reduces the CN

of the ill-conditioned saddle point matrix A. Thereby establishing an efficiently

solvable, well-conditioned system.

• Numerical experiments show that the proposed PESS and LPESS preconditioners

outperform all the compared baseline preconditioners.

The structure of this chapter is as follows. In Section 2.2, we propose the PESS iterative

method and the associated PESS preconditioner. Section 2.3 is devoted to investigating

the convergence of the PESS iterative method. In Section 2.4, we investigate the spectral

distribution of the PESS preconditioned matrix. In Section 2.5, we present the LPESS

preconditioner. In Section 2.6, we discuss strategies for selecting the appropriate param-

eters for the proposed preconditioners. In Section 2.7, we conduct numerical experiments

to illustrate the computational efficiency and robustness of the proposed preconditioner.

In the end, a brief summary remark is provided in Section 2.8.

2.2. The Proposed Parameterized Enhanced Shift-Splitting (PESS)

Iterative Method and Preconditioner

In this section, we proposed a PESS iterative method and the corresponding PESS

preconditioner. Let s > 0 be a real number. Then, we split the matrix A in the form

A = (Σ + sA)− (Σ− (1− s)A) =: PPESS −QPESS, where (2.2.1)
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PPESS =


Λ1 + sA sBT 0

−sB Λ2 −sCT

0 sC Λ3

 ,

QPESS =


Λ1 − (1− s)A −(1− s)BT 0

(1− s)B Λ2 (1− s)CT

0 −(1− s)C Λ3

 ,
Σ = diag(Λ1,Λ2,Λ3) and Λ1,Λ2,Λ3 are SPD matrices. The matrix PPESS is nonsingular

for s > 0. The special matrix splitting (2.2.1) leads us to the subsequent iterative method

for solving the DSPP given in (2.1.1).

The PESS iterative method. Let s be a positive constant and let Λ1 ∈ Rn×n,Λ2 ∈
Rm×m, and Λ3 ∈ Rp×p be SPD matrices. For any initial guess u0 ∈ Rn+m+p and k =

0, 1, 2 . . . , until a specified termination criterion is fulfilled, we compute

uk+1 = T uk + c, (2.2.2)

where uk = [xTk , y
T
k , z

T
k ]
T , c = P−1

PESSd and T = P−1
PESSQPESS is called the iteration

matrix for the PESS iterative method.

Moreover, the matrix splitting (2.2.2) introduces a new preconditioner PPESS, iden-

tified as the PESS preconditioner. This preconditioner generalizes the previous work in

the literature; for example, refer to [37, 134, 156] for specific choices of Λ1,Λ2,Λ3 and s,

which are listed in Table 2.2.1.

Table 2.2.1: PPESS as a generalization of the above SS preconditioners for

different choices of Λ1,Λ2,Λ3 and s.

PPESS Λ1 Λ2 Λ3 s memo

PSS [37] 1
2
αI 1

2
αI 1

2
αI s = 1

2
α > 0

PGSS [134] 1
2
αI 1

2
αI 1

2
βI s = 1

2
α, β > 0

PEGSS [156] 1
2
αP 1

2
βQ 1

2
γW s = 1

2
P,Q,W are SPD

matrices and α, β, γ > 0

In the implementation of the PESS iterative method or the PESS preconditioner to

enhance the rate of convergence of the Krylov subspace iterative method like GMRES, at

each iterative step, we solve the following system of linear equations:

PPESSw = r, (2.2.3)
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where r = [rT1 , r
T
2 , r

T
3 ]
T ∈ Rn+m+p and w = [wT1 , w

T
2 , w

T
3 ]
T ∈ Rn+m+p. Specifying “X =

Λ2 + s2CTΛ−1
3 C and Ã = Λ1 + sA + s2BT “X−1B, then PPESS can be written in the

following way:

PPESS =


I sBT “X−1 0

0 I −sCTΛ−1
3

0 0 I



Ã 0 0

0 “X 0

0 0 Λ3




I 0 0

−s“X−1B I 0

0 sΛ−1
3 C I

 . (2.2.4)
The decomposition (2.2.4) leads us to the following Algorithm 2.2.1 to determine the

solution of the system (2.2.3). The implementation of Algorithm 2.2.1 requires to solve

Algorithm 2.2.1 Computation of w from PPESSw = r

1: Solve “Xv1 = r2 + sCTΛ−1
3 r3 to find v1;

2: Compute v = r1 − sBTv1;

3: Solve Ãw1 = v to find w1;

4: Solve “Xv2 = sBw1 to find v2;

5: Compute w2 = v1 + v2;

6: Solve Λ3w3 = r3 − sCw2 for w3.

two linear subsystems with coefficient matrices “X and Ã. Since Λ1,Λ2,Λ3, “X and Ã are

SPD and s > 0, we can apply the Cholesky factorization to solve these linear subsystems

exactly or inexactly by the preconditioned conjugate gradient method.

2.3. Convergence Analysis of the PESS Iterative Method

In this section, we investigate the convergence of the PESS iterative method (2.2.2).

To achieve this aim, the following definition and lemmas are crucial.

Definition 2.3.1. A matrix A is called positive stable if ℜ(λ) > 0 for all λ ∈ σ(A).

Lemma 2.3.1. [37] Let A ∈ Rn×n be a SPD matrix and let B ∈ Rm×n and C ∈ Rp×m be

full row rank matrices. Then, the saddle point matrix A is positive stable.

Lemma 2.3.2. Let A ∈ Rn×n be a SPD matrix and let B ∈ Rm×n and C ∈ Rp×m be full

row rank matrices. Then Σ−1A (or Σ− 1
2AΣ− 1

2 ) is positive stable.

24



Proof. Since Σ− 1
2 = diag(Λ

− 1
2

1 ,Λ
− 1

2
2 ,Λ

− 1
2

3 ), we obtain

Σ− 1
2AΣ− 1

2 =


Λ

− 1
2

1 AΛ
− 1

2
1 Λ

− 1
2

1 BTΛ
− 1

2
2 0

−Λ
− 1

2
2 BΛ

− 1
2

1 0 Λ
− 1

2
2 CTΛ

− 1
2

3

0 Λ
− 1

2
3 CΛ

− 1
2

2 0

 . (2.3.1)

Given that the matrices Λ1,Λ2 and Λ3 are SPD, then Λ
− 1

2
1 AΛ

− 1
2

1 is SPD. Furthermore, the

matrices Λ
− 1

2
2 BΛ

− 1
2

1 and Λ
− 1

2
3 CΛ

− 1
2

2 are of full row rank. Consequently, the block structure

of A and the matrix Σ− 1
2AΣ− 1

2 are identical. Then by Lemma 2.3.1, A is positive stable

implies that the matrix Σ− 1
2AΣ− 1

2 and consequently, Σ−1A is positive stable. ■

By Lemma 1.2.1, the stationary iterative method (2.2.2) converges to the exact so-

lution of the DSPP (2.1.1) for any initial guess vector if and only if |ϑ(T )| < 1, where

T is the iteration matrix. Now, we establish an if and only if condition that precisely

determines the convergence of the PESS iterative method.

Theorem 2.3.3. Let A ∈ Rn×n be a SPD matrix, and let B ∈ Rm×n and C ∈ Rp×m be

full row rank matrices with s > 0. Then, the PESS iterative method (2.2.2) converges to

the unique solution of the DSPP (2.1.1) if and only if

(2s− 1)|µ|2 + 2ℜ(µ) > 0, ∀µ ∈ σ(Σ− 1
2AΣ− 1

2 ). (2.3.2)

Proof. From (2.2.2), we have

T = P−1
PESSQPESS = (Σ + sA)−1(Σ− (1− s)A), (2.3.3)

where Σ = diag(Λ1,Λ2,Λ3). Given that Λ1,Λ2 and Λ3 are SPD, then

T = Σ− 1
2 (I + sΣ− 1

2AΣ− 1
2 )−1(I − (1− s)Σ− 1

2AΣ− 1
2 )Σ

1
2 . (2.3.4)

Thus, (2.3.4) shows that the iteration matrix T is similar to ‹T , where‹T = (I + sΣ− 1
2AΣ− 1

2 )−1(I − (1− s)Σ− 1
2AΣ− 1

2 ).

Let θ and µ be the eigenvalues of the matrices ‹T and Σ− 1
2AΣ− 1

2 , respectively. Then, it is

easy to show that

θ =
1− (1− s)µ

1 + sµ
.

Since Σ− 1
2AΣ− 1

2 is nonsingular then µ ̸= 0 and we have

|θ| = |1− (1− s)µ|
|1 + sµ|

=

 
(1− (1− s)ℜ(µ))2 + (1− s)2ℑ(µ)2

(1 + sℜ(µ))2 + s2ℑ(µ)2
. (2.3.5)
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From (2.3.5), it is clear that |θ| < 1 if and only if

(1− (1− s)ℜ(µ))2 + (1− s)2ℑ(µ)2 < (1 + sℜ(µ))2 + s2ℑ(µ)2.

This implies |θ| < 1 if and only if (2s−1)|µ|2+2ℜ(µ) > 0. Since, ϑ(T ) = ϑ(‹T ), the proof

is conclusive. ■

Using the condition in Theorem 2.3.3, next, we present two sufficient conditions that

ensure the convergence of the PESS iterative method. The first one is presented as follows.

Corollary 2.3.1. Let A ∈ Rn×n be a SPD matrix and let B ∈ Rm×n and C ∈ Rp×m be

full row rank matrices and if s ≥ 1
2
, then ϑ(T ) < 1, i.e., the PESS iterative method always

converges to the unique solution of the DSPP (2.1.1).

Proof. By Lemma 2.3.2, Σ− 1
2AΣ− 1

2 is positive stable, implies that ℜ(µ) > 0 and |µ| > 0.

Thus, the inequality (2.3.2) holds if s ≥ 1
2
. This completes the proof. ■

Remark 2.3.4. By applying Corollary 2.3.1, the unconditional convergence of the ex-

isting preconditioners, namely PSS, PGSS and PEGSS can be obtained from PPESS by

substituting s = 1/2.

Next, we present a stronger sufficient condition to Corollary 2.3.1 for the convergence

of the PESS iterative method.

Corollary 2.3.2. Let A ∈ Rn×n be a SPD matrix and let B ∈ Rm×n and C ∈ Rp×m be

full row rank matrices, if

s > max

®
1

2

Ç
1− λmin(Σ

− 1
2 (A+AT )Σ− 1

2 )

ϑ(Σ− 1
2AΣ− 1

2 )2

å
, 0

´
,

then the PESS iterative method is convergent for any initial guess.

Proof. Note that, as ℜ(µ) > 0, the condition in (2.3.2) holds if and only if 1
2
− ℜ(µ)

|µ|2 < s.

Let p be an eigenvector corresponding to µ, then we have

ℜ(µ) = pH(Σ− 1
2 (A+AT )Σ− 1

2 )p

2pHp
≥ 1

2
λmin(Σ

− 1
2 (A+AT )Σ− 1

2 ).

Since |µ| ≤ ϑ(Σ− 1
2AΣ− 1

2 ), we obtain the following:

1

2
− λmin(Σ

− 1
2 (A+AT )Σ− 1

2 )

2ϑ(Σ− 1
2AΣ− 1

2 )2
≥ 1

2
− ℜ(µ)

|µ|2
. (2.3.6)

If we apply s > 0, then we get the desired result from (2.3.6). ■
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The sufficient condition on Corollary 2.3.2 is difficult to find for large A due to the

involvement of computation of λmin(Σ
− 1

2 (A + AT )Σ− 1
2 ) and ϑ(Σ− 1

2AΣ− 1
2 )2. Thus, we

consider s ≥ 1
2
for practical implementation.

2.4. Spectral Distribution of the PESS Preconditioned Matrix

Solving the DSPP (2.1.1) is equivalent to solving the following preconditioned system

of linear equations:

P−1
PESSAu = P−1

PESSd, (2.4.1)

where PPESS serves as a preconditioner for the preconditioned GMRES (PGMRES)

method. Since preconditioned matrices with clustered spectrum frequently culminate in

rapid convergence for GMRES, see, for example, [26, 122], the spectral distribution of the

preconditioned matrix P−1
PESSA requires careful attention. As an immediate consequence

of Corollary 2.3.1, the following clustering property for the eigenvalues of P−1
PESSA can

be established.

Theorem 2.4.1. Let A ∈ Rn×n be a SPD matrix and let B ∈ Rm×n and C ∈ Rp×m are

full row rank matrices. Suppose that λ is an eigenvalue of the PESS preconditioned matrix

P−1
PESSA. Then, for s ≥ 1

2
, we have

|λ− 1| < 1,

i.e., the spectrum of P−1
PESSA entirely contained in a disk with centered at (1, 0) and

radius strictly smaller than 1.

Proof. Assume that λ and θ are the eigenvalues of the PESS preconditioned matrix

P−1
PESSA and the iteration matrix T , respectively. On the other hand, from the ma-

trix splitting (2.2.1), we have

P−1
PESSA = P−1

PESS(PPESS −QPESS) = I − T .

Then, we get λ = 1− θ. Now, from Corollary 2.3.1, it holds that |θ| < 1 for s ≥ 1
2
. Hence,

it follows that, |λ− 1| < 1 for s ≥ 1
2
, which completes the proof. ■

27



Let (λ,p = [uT , vT , wT ]T ) be an eigenpair of the preconditioned matrix P−1
PESSA.

Then, we have Ap = λPPESSp, which can be written as
Au+BTv = λ(Λ1 + sA)u+ sλBTv, (2.4.2a)

−Bu− CTw = −sλBu+ λΛ2v − sλCTw, (2.4.2b)

Cv = sλCv + λΛ3w. (2.4.2c)

Remark 2.4.2. Notice that from (2.4.2a)-(2.4.2c), we get λ ̸= 1/s, otherwise , p =

[uT , vT , wT ]T = 0 ∈ Rn+m+p, which is impossible as p is an eigenvector.

Proposition 2.4.3. Let A ∈ Rn×n be a SPD matrix and let B ∈ Rm×n and C ∈ Rp×m

be full row rank matrices and s > 0. Let (λ,p = [uT , vT , wT ]T ) be an eigenpair of the

preconditioned matrix P−1
PESSA. Then, the following holds:

(1) u ̸= 0,

(2) when λ is real, λ > 0,

(3) ℜ(µ) > 0, where µ = λ/(1− sλ).

Proof. (1) Let u = 0. Then by (2.4.2a), we get (1−sλ)BTv = 0, which shows that v = 0,

as B has full row rank and λ ̸= 1/s. Furthermore, when combined with (2.4.2c) leads to

w = 0, as Λ3 is SPD. Combining the above facts, it follows that p = [uT , vT , wT ]T = 0,

which is impossible as p is an eigenvector. Hence, u ̸= 0.

(2) Let p = [uT , vT , wT ]T be an eigenvector corresponding to the real eigenvalue λ. Then,

we have P−1
PESSAp = λp, or Ap = λPPESS p. Consequently, λ can be written as

λ =
pTAp+ pTATp

2(pTPPESSp+ pTPT
PESSp)

=
uTAu

2(suTAu+ uTΛ1u+ vTΛ2v + wTΛ3w)
> 0.

The last inequality follows from the assumptions that A,Λ1,Λ2 and Λ3 are SPD matrices.

(3) The system of linear equations (2.4.2a)-(2.4.2c) can be reformulated as
Au+BTv = (λ/(1− sλ))Λ1u,

−Bu− CTw = (λ/(1− sλ))Λ2v,

Cv = (λ/(1− sλ))Λ3w.

(2.4.3)

The system of linear equations in (2.4.3) can also be expressed as Ap = µΣp, or Σ−1Ap =

µp, where µ = λ/(1 − sλ). By Lemma (2.3.2), we have Σ−1A is positive stable, which

implies ℜ(µ) > 0, hence the proof is completed. ■
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Remark 2.4.4. From Proposition 2.4.3, it follows that when λ is real, then µ > 0.

Furthermore, the values of λ lies in (0, 1/s) for all s > 0.

In the following theorem, we provide sharper bounds for real eigenvalues of the PESS

preconditioned matrix. Before that, we introduce the following notation:

ξmax := λmax(Λ
−1
1 A), ξmin := λmin(Λ

−1
1 A), ηmax := λmax(Λ

−1
2 BΛ−1

1 BT ), (2.4.4)

ηmin := λmin(Λ
−1
2 BΛ−1

1 BT ) and θmax := λmax(Λ
−1
2 CTΛ−1

3 C). (2.4.5)

Theorem 2.4.5. Let A ∈ Rn×n be a SPD matrix and let B ∈ Rm×n and C ∈ Rp×m be full

row rank matrices and s > 0. Suppose λ is a real eigenvalue of the preconditioned matrix

P−1
PESSA. Then

λ ∈
Å
0,

ξmax

1 + sξmax

ò
. (2.4.6)

Proof. Let p = [uT , vT , wT ]T be an eigenvector corresponding to the real eigenvalue λ.

Then, the system of linear equations in (2.4.2a)-(2.4.2c) are satisfied. First, we assume

that v = 0. Subsequently, (2.4.2a) and (2.4.2c) are simplified to

Au = λ(Λ1 + sA)u and λΛ3w = 0, (2.4.7)

respectively. The second equation in (2.4.7) gives w = 0, as Λ3 is SPD. Premultiplying

by uT to the first equation of (2.4.7), we get

λ =
uTAu

uTΛ1u+ suTAu
=

t

1 + st
,

where t =
uTAu

uTΛ1u
> 0. Now, for any nonzero vector u ∈ Rn, we have

λmin(Λ
− 1

2
1 AΛ

− 1
2

1 ) ≤ uTAu

uTΛ1u
=

(Λ
1
2
1 u)

TΛ
− 1

2
1 AΛ

− 1
2

1 Λ
1
2
1 u

(Λ
1
2
1 u)

TΛ
1
2
1 u

≤ λmax(Λ
− 1

2
1 AΛ

− 1
2

1 ). (2.4.8)

Since Λ
− 1

2
1 AΛ

− 1
2

1 is similar to Λ−1
1 A and the function f : R → R defined by

f(t) := t/(1 + st),

where s > 0, is monotonically increasing in t > 0, we obtain the following bound for λ :

ξmin

1 + sξmin

≤ λ ≤ ξmax

1 + sξmax

. (2.4.9)

Next, consider v ̸= 0 but Cv = 0. Then (2.4.2c) implies w = 0 and from (2.4.2b), we get

v = − 1

µ
Λ−1

2 Bu. (2.4.10)
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Substituting (2.4.10) in (2.4.2a) yields

Au = λ(Λ1 + sA)u+
(1− sλ)

µ
BTΛ−1

2 Bu. (2.4.11)

Premultiplying both sides of (2.4.11) by uT , we obtain

λuTAu = λ2uTΛ1u+ sλ2uTAu+ (1− sλ)2uTBTΛ−1
2 Bu, (2.4.12)

which is further equivalent to

λ2 − λ
2sq + t

s2q + st+ 1
+

q

s2q + st+ 1
= 0, (2.4.13)

where q =
uTBTΛ−1

2 Bu

uTΛ1u
. By solving (2.4.13), we obtain the following real solutions for λ:

λ± =
2sq + t±

√
t2 − 4q

2(s2q + st+ 1)
, (2.4.14)

where t2 − 4q ≥ 0. Consider the functions Φ1,Φ2 : R× R× R −→ R defined by

Φ1(t, q, s) =
2sq + t+

√
t2 − 4q

2(s2q + st+ 1)
,

Φ2(t, q, s) =
2sq + t−

√
t2 − 4q

2(s2q + st+ 1)
,

respectively, where t, s > 0, q ≥ 0 and t2 > 4q. Then Φ1 and Φ2 are strictly monotonically

increasing in the argument t > 0 and q ≥ 0, and decreasing in the argument q ≥ 0 and

t > 0, respectively. Now, using (2.4.8), (2.4.14) and monotonicity of the functions Φ1 and

Φ2, we get the following bounds:

λ+ = Φ1(t, q, s) < Φ1(λmax(Λ
−1
1 A), 0, s), (2.4.15)

Φ2(λmax(Λ
−1
1 A), 0, s) < λ− = Φ2(t, q, s). (2.4.16)

Combining (2.4.15) and (2.4.16), we get the following bounds for λ:

0 < λ± <
ξmax

1 + sξmax

. (2.4.17)

Next, consider the case Cv ̸= 0. Then from (2.4.2c), we get w = 1
µ
Λ−1

3 Cv. Substituting

the value of w in (2.4.2b), we obtain

(1− sλ)Bu+
(1− sλ)

µ
CTΛ−1

3 Cv = −λΛ2v. (2.4.18)

Now, we assume that

λ >
ξmax

1 + sξmax

. (2.4.19)
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By Remark 2.4.4, we get 1− sλ > 0 and the above assertion yields µ > ξmax. Hence, the

matrix µΛ1 − A is nonsingular and (2.4.2a) gives

u = (µΛ1 − A)−1BTv. (2.4.20)

Substituting (2.4.20) into (2.4.18), we obtain

(1− sλ)B (µΛ1 − A)−1BTv +
(1− sλ)

µ
CTΛ−1

3 Cv = −λΛ2v. (2.4.21)

Note that, v ̸= 0. Thus, premultiplying by vT on the both sides of (2.4.21) leads to the

following identity:

(1− sλ)vTB (µΛ1 − A)−1BTv + λvTΛ2v = −(1− sλ)

µ
vTCTΛ−1

3 Cv. (2.4.22)

On the other hand, µΛ1 − A ≻ Λ1(µ − λmax(Λ
−1A))I ≻ 0 and hence is a SPD ma-

trix. Consequently, the matrix B (µΛ1 − A)−1BT is also a SPD matrix and this implies

vTB (µΛ1 − A)−1BTv > 0 for all v ̸= 0. This leads to a contradiction to (2.4.22) as

vTCTΛ−1
3 Cv ≥ 0. Hence, the assumption (2.4.19) is not true and we get

λ ≤ ξmax

1 + sξmax

. (2.4.23)

Again, we have λ > 0 from (1) of Proposition 2.4.3. Combining the above together with

(2.4.9) and (2.4.17), we obtain the desired bounds in (2.4.6) for λ. Hence, the proof is

concluded. ■

Since the preconditioners PSS and PEGSS are special cases of the PESS precondi-

tioner, next, we obtain refined bounds for real eigenvalues of the SS and EGSS precondi-

tioned matrices from Theorem 2.4.5.

Corollary 2.4.1. Let PSS be defined as in (2.1.5) with α > 0 and let λ be an real

eigenvalue of the SS preconditioned matrix P−1
SSA. Then

λ ∈
Å
0,

2κmax

α + κmax

ò
, (2.4.24)

where κmax = λmax(A).

Proof. Since PSS is a special case of the PESS preconditioner PPESS for s = 1/2 as

discussed in Table 2.2.1, the bounds in (2.4.24) are obtained by substituting Λ1 = 1
2
αI

and s = 1/2 in Theorem 2.4.5. ■

In the next result, we discuss bounds for the real eigenvalues of the EGSS precondi-

tioned matrix P−1
EGSSA.
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Corollary 2.4.2. Let PEGSS be defined as in (2.1.6) with α > 0 and let λ be an real

eigenvalue of the EGSS preconditioned matrix P−1
EGSSA. Then

λ ∈
Å
0,

2κ̃max

α + κ̃max

ò
, (2.4.25)

where κ̃max = λmax(P
−1A).

Proof. Since PEGSS is a special case of the PESS preconditioner PPESS for s = 1/2 as

discussed in Table 2.2.1 and the bounds in (2.4.25) are obtained by substituting Λ1 =
1
2
αP

and s = 1/2 in Theorem 2.4.5. ■

The following result shows the bounds when λ is a non-real eigenvalue.

Theorem 2.4.6. Let A ∈ Rn×n be a SPD matrix and let B ∈ Rm×n and C ∈ Rp×m be full

row rank matrices. Let s > 0 and λ be a non-real eigenvalue of the preconditioned matrix

P−1
PESSA with ℑ(λ) ̸= 0. Suppose p = [uT , vT , wT ]T is the eigenvector corresponding to λ.

Then the following holds:

(1) If Cv = 0, then λ satisfies

ξmin

2 + sξmin

≤ |λ| ≤
…

ηmax

1 + sξmin + s2ηmax

.

(2) If Cv ̸= 0, then real and imaginary part of λ/(1− sλ) satisfies

ξmin ηmin

2 (ξ2max + ηmax + θmax)
≤ ℜ
Å

λ

1− sλ

ã
≤ ξmax

2
and

∣∣∣∣ℑÅ λ

1− sλ

ã∣∣∣∣ ≤√ηmax + θmax,

where ξmax, ξmin, ηmax, ηmin and θmax are defined as in (2.4.4) and (2.4.5).

Proof. (1) Let λ be an eigenvalue of P−1
PESSA with ℑ(λ) ̸= 0 and the corresponding

eigenvector is p = [uT , vT , wT ]T . Then, the system of linear equations in (2.4.2a)-(2.4.2c)

holds. We assert that, v ̸= 0, otherwise from (2.4.2a), we get Au = λ(Λ1 + sA)u,

which further implies (Λ1 + sA)−
1
2A(Λ1 + sA)−

1
2 ū = λū, where ū = (Λ1 + sA)

1
2u. Since

(Λ1+sA)
− 1

2A(Λ1+sA)
− 1

2 is a SPD matrix and by Lemma 2.4.3, u ̸= 0 and thus we have

ū ̸= 0. This implies λ is real, leading to a contradiction to ℑ(λ) ̸= 0.

Initially, we consider the case Cv = 0. The aforementioned discussion suggests that

Au ̸= λ(Λ1 + sA)u for any u ̸= 0. Consequently, (µΛ1 − A) is nonsingular. Again, since

Cv = 0, from (2.4.2c) and following a similar method as in (2.4.10)-(2.4.12), we obtain

quadratic equation (2.4.13) in λ, which has complex solutions:

λ±i =
2sq + t± i

√
4q − t2

2(s2q + st+ 1)
(2.4.26)
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for 4q > t2. From (2.4.26), we get

|λ±i|2 = q

s2q + st+ 1
. (2.4.27)

Now, consider the function Ψ1 : R× R× R −→ R defined by

Ψ1(t, q, s) =
q

s2q + st+ 1
,

where t, q, s > 0. Then Ψ1 is monotonically increasing in the argument q > 0 while

decreasing in the argument t > 0. Due to the fact that q ≤ λmax(Λ
−1
1 BTΛ−1

2 B) = ηmax,

we get the following bounds:

|λ±i|2 = Ψ1(t, q, s) ≤ Ψ1(ξmin, ηmax, s) =
ηmax

1 + sξmin + s2ηmax

. (2.4.28)

Again, considering the condition q > (t2/4), (2.4.27) adheres to the inequality (t/(2 +

st)) ≤ |λ±i|. Notably, the function Ψ2 : R −→ R defined by Ψ2(t) = t/(2 + st), where

t, s > 0, is monotonically increasing in the argument t > 0, we obtain the following bound:

|λ±i| = Ψ2(t) ≥ Ψ2(ξmin) =
ξmin

2 + sξmin

. (2.4.29)

Hence, combining (2.4.28) and (2.4.29), proof for the part (1) follows.

(2) Next, consider the case Cv ̸= 0, then (2.4.2c) yields w = 1
µ
Λ−1

3 Cv, where µ =

λ/(1− sλ). Substituting this in (2.4.2b), we get

Bu+
1

µ
CTΛ−1

3 Cv = −µΛ2v. (2.4.30)

On the other side, nonsingularity of (µΛ1 − A) and (2.4.2a) enables us the following

identity:

u = (µΛ1 − A)−1BTv. (2.4.31)

Putting (2.4.31) on (2.4.30), we get

B(µΛ1 − A)−1BTv +
1

µ
CTΛ−1

3 Cv = −µΛ2v. (2.4.32)

As v ̸= 0, premultiplying by vH on the both sides of (2.4.32) yields

vHB(µΛ1 − A)−1BTv +
1

µ
vHCTΛ−1

3 Cv = −µvHΛ2v. (2.4.33)

Consider the following eigenvalue decomposition of Λ
− 1

2
1 AΛ

− 1
2

1 :

Λ
− 1

2
1 AΛ

− 1
2

1 = VDV T ,
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where D = diag(θi) ∈ Rn×n, θi ∈ σ(Λ
− 1

2
1 AΛ

− 1
2

1 ) with θi > 0, for i = 1, 2, . . . , n, and

V ∈ Rn×n is an orthonormal matrix. Then, (2.4.33) can be rewritten as

vHBΛ
− 1

2
1 V (µI −D)−1V TΛ

− 1
2

1 BTv +
1

µ
vHCTΛ−1

3 Cv = −µvHΛ2v. (2.4.34)

Since (µI −D)−1 = Θ1 − iℑ(µ)Θ2, where i denotes the imaginary unit and

Θ1 = diag

Å ℜ(µ)− θi
(ℜ(µ)− θi)2 + ℑ(µ)2

ã
, Θ2 = diag

Å
1

(ℜ(µ)− θi)2 + ℑ(µ)2

ã
,

from (2.4.34) and the fact ℑ(µ) ̸= 0, we get

vHBΛ
− 1

2
1 VΘ1V

TΛ
− 1

2
1 BTv +

ℜ(µ)
|µ|2

vHCTΛ−1
3 Cv = −ℜ(µ)vHΛ2v, (2.4.35)

vHBΛ
− 1

2
1 VΘ2V

TΛ
− 1

2
1 BTv +

1

|µ|2
vHCTΛ−1

3 Cv = vHΛ2v. (2.4.36)

Observed that, 1
ℑ(µ)2

I ⪰ Θ2, then from (2.4.36), we obtain

1 ≤ 1

ℑ(µ)2

Å
vHBΛ−1

1 BTv

vHΛ2v
+
vHCTΛ−1

3 Cv

vHΛ2v

ã
.

Therefore, we get

|ℑ(µ)| ≤
√
ηmax + θmax. (2.4.37)

Furthermore, notice that Θ1 ⪰ (ℜ(µ)− ξmax)Θ2, then from (2.4.35), we deduce

−ℜ(µ) ≥ (ℜ(µ)− ξmax)
vHBΛ

− 1
2

1 VΘ2V
TΛ

− 1
2

1 BTv

vHΛ2v
+

ℜ(µ)
|µ|2

vHCTΛ−1
3 Cv

vHΛ2v
. (2.4.38)

Using (2.4.36) to (2.4.38), we get

2ℜ(µ) ≤ ξmax −
ξmax

|µ|2
vHCTΛ−1

3 Cv

vHΛ2v
≤ ξmax. (2.4.39)

Hence, (2.4.39) yields the following bound:

ℜ(µ) ≤ ξmax

2
. (2.4.40)

On the other side, from (2.4.35) and (2.4.36), we deduce that

2ℜ(µ) = vHBΛ
− 1

2
1 V (ℜ(µ)Θ2 −Θ1)V

TΛ
− 1

2
1 BTv

vHΛ2v
≥ ξmin

vHBΛ
− 1

2
1 V XV TΛ

− 1
2

1 BTv

vHΛ2v
,

(2.4.41)

where X = diag

Å
1

(ℜ(µ)− θi)2 + ℑ(µ)2

ã
.

Note that

1

(ℜ(µ)− θi)2 + ℑ(µ)2
≥ 1

max
i

(ℜ(µ)− θi)
2 + ℑ(µ)2

.
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Now, using Proposition 2.4.3 and (2.4.40), we get

−θi < ℜ(µ)− θi ≤
ξmax

2
− θi,

which further yields (ℜ(µ)− θi)
2 ≤ max

¶(
ξmax

2
− θi

)2
, θ2i
©
. Hence, we get

max
i

(ℜ(µ)− θi)
2 = max

i
{(ℜ(µ)− ξmin)

2, (ℜ(µ)− ξmax)
2}

≤ max
i

®Å
ξmax

2
− ξmin

ã2
, ξ2max

´
= ξ2max. (2.4.42)

Therefore, by (2.4.42) and from the bound in (2.4.37), we obtain

X ⪰ I

ξ2max + ηmax + θmax

. (2.4.43)

Combining (2.4.41) and (2.4.43) leads to the following bounds:

2ℜ(µ) ≥ ξmin

ξ2max + ηmax + θmax

vHBΛ−1
1 BTv

vHΛ2v
≥ ξminηmin

ξ2max + ηmax + θmax

. (2.4.44)

Hence, the proof of part (2) follows by merging the two inequalities of (2.4.37) and

(2.4.44). ■

Remark 2.4.7. From the bounds in (2) of Theorem 2.4.6, we obtain

1

|τ |2

Å
ξminηmin

2(ξ2max + ηmax + θmax)
+

1

s

ã
≤ 1

s
−ℜ(λ) ≤ 1

|τ |2

Å
ξmax

2
+

1

s

ã
and

|ℑ(λ)| ≤ 1

sτ τ̄

√
ηmax + θmax,

where τ = sµ + 1. Thus, the real and imaginary parts of the eigenvalues of the precondi-

tioned matrix P−1
PESSA cluster better as s grows. Therefore, the PESS preconditioner can

accelerate the rate of convergence of the Krylov subspace method, like GMRES.

Utilizing the established bounds in Theorem 2.4.6, we derive the subsequent estima-

tions for non-real eigenvalues of SS and EGSS preconditioned matrices.

Corollary 2.4.3. Let PSS be defined as in (2.1.5) with α > 0 and let λ be a non-real

eigenvalue of the SS preconditioned matrix P−1
SSA with ℑ(λ) ̸= 0 and p = [uT , vT , wT ]T

is the corresponding eigenvector. Then,

(1) If Cv = 0, λ satisfies

2κmin

2α + κmin

≤ |λ| ≤
 

4τmax

α2 + ακmin + τmax

.
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(2) If Cv ̸= 0, the real and imaginary part of λ/(2− λ) satisfies

κmin τmin

2α (κ2max + τmax + βmax)
≤ ℜ
Å

λ

2− λ

ã
≤ κmax

2α
and

∣∣∣∣ℑÅ λ

2− λ

ã∣∣∣∣ ≤ √
τmax + βmax

α
,

where κmin = λmin(A), τmax = λmax(BB
T ), τmin = λmin(BB

T ) and βmax = λmax(C
TC).

Proof. Since PSS is a special case of PPESS for s = 1/2 as discussed in Table 2.2.1,

then desired bounds will be obtained by setting Λ1 = Λ2 = Λ3 = 1
2
αI and s = 1/2 into

Theorem 2.4.6. ■

Corollary 2.4.4. Let PEGSS be defined as in (2.1.6) and let P,Q and W are SPD

matrices with α, β, γ > 0. Let λ be a non-real eigenvalue of the EGSS preconditioned

matrix P−1
EGSSA with ℑ(λ) ̸= 0 and p = [uT , vT , wT ]T is the corresponding eigenvector.

Then

(1) If Cv = 0, λ satisfies

2κ̃min

2α + κ̃min

≤ |λ| ≤
 

4τ̃max

αβ + βκ̃min + τ̃max

.

(2) If Cv ̸= 0, the real and imaginary part of λ/(2− λ) satisfies

κ̃min τ̃min

2
Ä
βκ̃2max + ατ̃max + (α2/γ)β̃max

ä ≤ ℜ
Å

λ

2− λ

ã
≤ κ̃max

2α
and

∣∣∣∣ℑÅ λ

2− λ

ã∣∣∣∣ ≤  1

αβ
τ̃max +

1

βγ
β̃max,

where κ̃min = λmin(P
−1A), τ̃max = λmax(Q

−1BP−1BT ), τ̃min = λmin(Q
−1BP−1BT ) and

β̃max = λmax(C
TC).

Proof. Since PEGSS is a special case of PPESS for s = 1/2 as discussed in Table 2.2.1,

then the desired bounds will be obtained by setting Λ1 = 1
2
αP, Λ2 = 1

2
βQ, Λ3 = 1

2
γW

and s = 1/2 in Theorem 2.4.6. ■

2.5. Local PESS (LPESS) Preconditioner

To enhance the efficiency of the PESS preconditioner, in this section, we propose a

relaxed version of the PESS preconditioner by incorporating the concept of RSS precon-

ditioner [37]. By omitting the term Λ1 from the (1, 1)-block of PPESS, we present the
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local PESS (LPESS) preconditioner, denoted as PLPESS, defined as follows:

PLPESS :=


sA sBT 0

−sB Λ2 −sCT

0 sC Λ3

 . (2.5.1)

The implementation of the LPESS preconditioner is similar to the Algorithm 2.2.1.

However, there is one modification in step 3, i.e., we need to solve a linear subsystem

(sA+ s2BT “X−1B)w1 = v instead of Ãw1 = v.

To illustrate the efficiency of the LPESS preconditioner, we study the spectral distri-

bution of the preconditioned matrix P−1
LPESSA. To achieve this, we consider the following

decomposition of the matrices A and PLPESS as follows:

A = LDU and PLPESS = L‹DU, (2.5.2)

where

L =


I 0 0

−BA−1 I 0

0 0 I

 , U =


I A−1BT 0

0 I 0

0 0 I

 ,

D =


A 0 0

0 Q −CT

0 C 0

 , ‹D =


sA 0 0

0 Λ2 + sQ −sCT

0 sC Λ3


and Q = BA−1BT . Using the decomposition in (2.5.2), we have

P−1
LPESSA = U−1

[
s−1I 0

0 M−1K

]
U, (2.5.3)

where M =

[
Λ2 + sQ −sCT

sC Λ3

]
and K =

[
Q −CT

C 0

]
. Since, P−1

LPESSA is similar to[
s−1I 0

0 M−1K

]
, P−1

LPESSA has eigenvalue 1/s with multiplicity n and the remaining

eigenvalues satisfies the generalized eigenvalue problem Kp = λMp.

Theorem 2.5.1. Let A ∈ Rn×n,Λ2 ∈ Rm×m and Λ3 ∈ Rp×p be SPD matrices and let

B ∈ Rm×n and C ∈ Rp×m be full row rank matrices. Assume that s > 0, then LPESS

preconditioned matrix P−1
LPESSA has n repeated eigenvalues equal to 1/s. The remaining

m+ p eigenvalues satisfies the following:
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(1) real eigenvalues located in the interval[
min

{ ϑmin

1 + sϑmin

,
θ̃min

ϑmax + sθ̃min

}
,

ϑmax

1 + sϑmax

]
.

(2) If λ is any non-real eigenvalue (i.e., ℑ(λ) ̸= 0), then

ϑmin

2 + sϑmin

≤ |λ| ≤

√
θ̃max

1 + sϑmin + s2θ̃max

and
1

s(1 + s
√
θ̃max)

≤ |λ− 1

s
| ≤ 2

s(2 + sϑmin)
,

where ϑmax := λmax(Λ
−1
2 Q), ϑmin := λmin(Λ

−1
2 Q) θ̃max := λmax(Λ

−1
3 CΛ−1

2 CT ) and θ̃min :=

λmin(Λ
−1
3 CΛ−1

2 CT ).

Proof. Observe that,

M−1K = F−1M̃−1‹KF , (2.5.4)

where F =

[
I 0

0 −I

]
, M̃ =

[
Λ2 + sQ sCT

−sC Λ3

]
and ‹K =

[
Q CT

−C 0

]
. Hence, M−1K is

similar to M̃−1‹K. Now, M̃−1‹K is in the form of the preconditioned matrix discussed in

[135]. Therefore, by applying the Corollary 4.1 and Theorem 4.3 of [135], we obtain the

desired bounds in (1) and (2). ■

2.6. The Strategy of Parameter Selection

It is worth noting that the efficiency of the proposed PESS preconditioner depends on

the selection of involved SPD matrices Λ1, Λ2, Λ3, and a positive real parameter s > 0. In

this section, motivated by [135, 79, 80], we discuss a practical way to choose the parameter

s and the SPD matrices for the effectiveness of the proposed preconditioners.

It is well acknowledged that the optimal parameter of the PESS iteration method is

obtained when ϑ(T ) is minimized [79]. For achieving this, similar to the approach in [80],

we first define a function φ(s) = ∥QPESS∥2F depending on the parameter s. Our aim is to

minimize φ(s). Then, after some straightforward calculations, we obtain

φ(s) = ∥QPESS∥2F = tr(QT
PESSQPESS)

= ∥Λ1∥2F + ∥Λ2∥2F + ∥Λ3∥2F + (s− 1)2∥A∥2F + 2(s− 1)tr(Λ1A)

+ 2(s− 1)2∥B∥2F ) + 2(s− 1)2∥C∥2F ).

Now we choose the parameter s and SPD matrices Λ1,Λ2 and Λ3 to make φ(s) as small

as possible. Since ∥A∥2F , ∥B∥2F , ∥C∥2F and tr(Λ1A) are positive, we can select s = 1, then
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φ(s) = ∥Λ1∥2F + ∥Λ2∥2F + ∥Λ3∥2F . Thus if we choose ∥Λ1∥F , ∥Λ2∥F , ∥Λ3∥F → 0, we have

φ(s) → 0 and consequently, QPESS → 0.

On the other hand, motivated by [144, 124], we discuss another strategy for choosing

the parameter s. Notice that in Algorithm 2.2.1, we need to solve two linear system

with coefficient matrices “X = Λ2 + s2CTΛ−1
3 C and Ã = Λ1 + sA + s2BT “XB. Similar to

[144, 124], we choose s and ∥Λ2∥2 as follows:

s =

 
∥Λ2∥2

∥CTΛ−1
3 C∥2

and ∥Λ2∥2 =
∥B∥42

4∥CTΛ−1
3 C∥2∥A∥22

, (2.6.1)

which balance the matrices Λ2 and CTΛ−1
3 C in “X and the matrices A and CTΛ−1

3 C in

Ã. In this case, we denote s by sest and ∥Λ2∥2 by βest. Numerical results are presented

in Section 2.7 to demonstrate the effectiveness of PPESS for the above choices of the

parameters.

In the sequel, we can rewrite the PESS preconditioner as PPESS = sP̃PESS, where

P̃PESS =


1
s
Λ1 + A BT 0

−B 1
s
Λ2 −CT

0 C 1
s
Λ3

 .
Since the prefactor s has not much effect on the performance of PESS preconditioner,

investigating the optimal parameters of PPESS and P̃PESS are equivalent. A general

criterion for a preconditioner to perform efficiently is that it should closely approximate

the coefficient matrix A [26]. Consequently, the difference P̃PESS −A =
1

s
Σ approaches

zero matrix as s tends to positive infinity for fixed Λ1,Λ2 and Λ3. Thus, the preconditioner

PESS shows enhance efficiency for large values of s. However, s can not be too large as the

coefficient matrix Ã of the linear subsystem in step 3 of Algorithm 2.2.1 becomes very-ill

conditioned. Similar investigations also hold for LPESS preconditioner. Nevertheless, in

Figure 2.7.9, we show the adaptability of the PESS and LPESS preconditioners by varying

the parameter s.

2.7. Numerical Experiments

In this section, we conduct a few numerical experiments to showcase the superiority

and efficiency of the proposed PESS and LPESS preconditioners over the existing precon-

ditioners to enhance the convergence speed of the Krylov subspace iterative method to

solve DSPPs. Our study involves a comparative analysis among the GMRES method and

the PGMRES method employing the proposed preconditioners PPESS and PLPESS and
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the existing baseline preconditioners PBD, PIBD, PMAPSS, PSL, PSS,PRSS, PEGSS

and PRPGSS. The numerical results are reported from the aspect of iteration counts

(abbreviated as “IT”) and elapsed CPU times in seconds (abbreviated as “CPU”). Each

subsystem involving “X and Ã featured in Algorithm 2.2.1 are precisely solved by ap-

plying the Cholesky factorization of the coefficient matrices. For all iterative method, the

initial guess vector is u0 = 0 ∈ Rn+m+p and the termination criterion is

RES :=
∥Auk+1 − d̂∥2

∥d̂∥2
< 10−6.

The vector d ∈ Rn+m+p is chosen so that the exact solution of the system (2.1.1) is

u∗ = [1, 1, . . . , 1]T ∈ Rn+m+p. All numerical tests are run in MATLAB (version R2023a)

on a Windows 11 operating system with Intel(R) Core(TM) i7-10700 CPU, 2.90GHz, 16

GB memory.

Example 2.7.1. Problem formulation: We consider the DSPP (2.1.1) taken from [75]

with

A =

[
I ⊗G+G⊗ I 0

0 I ⊗G+G⊗ I

]
∈ R2l2×2l2 , B =

î
I ⊗ F F ⊗ I

ó
∈ Rl2×2l2 , C =

E⊗F ∈ Rl2×l2 , whereG = 1
(l+1)2

tridiag(−1, 2,−1) ∈ Rl×l, F = 1
l+1

tridiag(0, 1,−1) ∈
Rl×l and E = diag(1, l+ 1, . . . , l2 − l+ 1) ∈ Rl×l. For this problem, the size of the matrix

A is 4l2.

Parameter selection: Following [75], selection of Â and Ŝ (SPD approximations of A

and S, respectively) for IBD preconditioner are done as follows:

Â = LLT , Ŝ = diag(BÂ−1BT ),

where L is the incomplete Cholesky factor of A produced by the Matlab function:

ichol(A, struct(‘type’, ‘ict’, ‘droptol’, 1e-8, ‘michol’, ‘off’)).

For the preconditioner PMAPSS, we take α = 4

»
tr(BBTCTC)

m
and β = 10−4 as in [43].

We consider the parameter choices for the preconditioners PSS,PRSS,PEGSS, PRPGSS,

PPESS and PLPESS in the following two cases.

• In Case I: α = 0.1 for PSS and PRSS; α = 0.1, β = 1, γ = 0.001 and P = I,Q =

I,W = I for PEGSS and PRPGSS; and Λ1 = I,Λ2 = I,Λ3 = 0.001I for PPESS

and PLPESS.
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• In Case II: α = 1 for PSS and PRSS; α = 1, β = 1, γ = 0.001 and P = A,Q =

I,W = CCT for PEGSS and PRPGSS; and Λ1 = A,Λ2 = I,Λ3 = 0.001CCT for

PPESS and PLPESS.

The parameter selection in Case II is made as in [156].

Table 2.7.1: Numerical results of GMRES, BD, IBD, MAPSS, SL, SS, RSS,

EGSS, RPGSS, PESS and LPESS PGMRES methods for Example 2.7.1.

method l 16 32 48 64 80 128

size(A) 1024 4096 9216 16384 25600 65536

GMRES

IT 865 3094 6542 −− −− −−

CPU 0.6607 101.7659 989.0242 2116.1245 3755.9251 8694.5762

RES 8.2852e− 07 9.9189e− 07 9.8389e− 07 1.0813e− 03 1.9862e− 03 0.0037

BD

IT 4 4 4 4 4 4

CPU 0.0611 2.3135 17.0971 105.4514 337.4322 1355.6953

RES 1.2728e− 13 1.7577e− 13 6.6653e− 13 6.0211e− 12 2.6610e− 12 6.4572e− 07

IBD

IT 22 22 21 21 21 27

CPU 0.0702 1.1711 9.9850 44.2197 141.1108 3064.8487

RES 4.0221e− 07 4.6059e− 07 9.1711e− 07 7.8518e− 07 6.8357e− 07 9.8667e− 07

MAPSS

IT 5 5 6 6 6 7

CPU 0.21299 1.2038 8.0537 36.5074 116.7495 514.1132

RES 4.6434e− 07 9.0780e− 07 3.8651e− 07 3.8350e− 07 4.3826e− 07 2.4983e− 07

SL

IT 6 6 5 5 5 4

CPU 0.19624 1.0819 6.3741 30.6976 102.0981 481.7656

RES 2.5612e− 08 7.4194e− 08 9.4761e− 08 3.7303e− 09 1.7982e− 09 6.1568e− 08

Case I

SS

IT 4 4 4 4 4 4

CPU 0.2415 1.3375 6.7059 33.6902 111.3118 439.1221

RES 7.7528e− 08 5.5120e− 08 4.5134e− 08 3.9157e− 08 3.5073e− 08 2.7836e− 08

RSS

IT 4 4 4 4 4 4

CPU 0.2776 1.0467 6.5207 32.4428 110.4587 432.6755

RES 8.0898e− 08 6.0033e− 08 4.9839e− 08 4.3510e− 08 3.9097e− 08 3.1111e− 08

EGSS

IT 4 4 4 4 4 4

CPU 0.3061 1.2771 6.9552 32.8960 119.7763 435.0198

RES 5.9583e− 10 4.4128e− 10 3.6626e− 10 3.2009e− 10 2.8807e− 10 1.9145e− 08

RPGSS

IT 4 4 4 4 4 3

CPU 0.2249 1.1312 7.0322 35.0140 130.2593 371.4522

RES 5.9497e− 10 4.4042e− 10 3.6494e− 10 3.1838e− 10 2.8603e− 10 9.9326e− 07

PESS†

IT 2 2 2 2 2 2

CPU 0.2285 0.9854 4.8795 23.3687 79.9355 283.8561

s = 12 RES 3.1630e− 07 2.3239e− 07 1.9486e− 07 1.7260e− 07 1.5754e− 07 1.3135e− 07

41



Table 2.7.1: Numerical results of GMRES, BD, IBD, MAPSS, SL, SS, RSS,

EGSS, RPGSS, PESS, and LPESS PGMRES methods for Example 2.7.1

(continued).

method l 16 32 48 64 80 128

LPESS†

IT 2 2 2 2 2 2

CPU 0.2834 0.7989 4.5599 21.1664 72.8376 268.3114

s = 12 RES 3.1180e− 07 2.2463e− 07 1.8481e− 07 1.6071e− 07 1.4411e− 07 1.1441e− 07

Case II

SS

IT 7 7 7 7 7 7

CPU 0.2780 1.6189 10.6707 54.4493 184.6025 703.1082

RES 6.7967e− 07 4.9738e− 07 4.1383e− 07 3.6189e− 07 3.2556e− 07 2.5956e− 07

RSS

IT 7 7 7 7 7 7

CPU 0.3248 1.4644 10.4985 52.4559 177.1895 690.1611

RES 5.2397e− 07 3.6832e− 07 2.7532e− 07 2.1869e− 07 1.8240e− 07 1.2720e− 07

EGSS

IT 5 5 4 4 4 4

CPU 0.2588 1.3792 6.7546 34.8358 118.2298 439.7907

RES 6.8491e− 08 1.5239e− 07 9.7099e− 07 6.3466e− 07 4.8159e− 07 4.1376e− 07

RPGSS

IT 4 4 4 4 4 3

CPU 0.2445 1.2987 8.1982 28.5129 104.9127 397.4766

RES 5.2642e− 08 1.1366e− 07 7.1116e− 08 8.2780e− 07 5.6396e− 07 2.5131e− 07

PESS†

IT 3 3 3 3 3 3

CPU 0.2971 1.1597 6.6682 31.2670 103.8616 371.1214

s = 12 RES 7.4100e− 08 7.4642e− 08 7.3327e− 08 6.9803e− 08 6.1920e− 08 4.0967e− 08

LPESS†

IT 3 3 3 3 3 3

CPU 0.2226 0.9905 6.1339 30.0975 98.6443 359.8141

s = 12 RES 1.1683e− 09 2.3215e− 09 3.1540e− 09 3.3907e− 09 3.0271e− 09 1.6141e− 09

Here † represents the proposed preconditioners. The boldface represents the top two results.

−− indicates that the iteration method does not converge within the prescribed IT.

Results for experimentally found optimal parameter: The optimal value (experi-

mentally) for s in the range [10, 20] is determined to be 12 for minimal CPU times. The

test problems generated for the values of l = 16, 32, 48, 64, 80, 128, and their numerical

results are reported in Table 2.7.1.

Results using parameters selection strategy in Section 2.6: To demonstrate the

effectiveness of the proposed preconditioners PESS and LPESS using the parameters

discussed in Section 2.6, we present the numerical results by choosing s = 1, Λ1 =

0.01I,Λ2 = 0.1I,Λ3 = 0.001I (denoted by PESS-I and LPESS-I) and s = sest, Λ1 = A,
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Table 2.7.2: Numerical results of PESS-I, LPESS-I, PESS-II and LPESS-II

PGMRES methods for Example 2.7.1.

method l 16 32 48 64 80 128

size(A) 1024 4096 9216 16384 25600 65536

PESS-I IT 2 2 2 2 2 2

(s = 1, Λ1 = 0.01I, CPU 0.2517 0.8373 4.6626 21.8133 77.9420 308.1418

Λ2 = 0.1I, Λ3 = 0.001I) RES 4.4970e− 07 3.8763e− 07 3.6261e− 07 3.4880e− 07 3.3983e− 07 7.7830e− 07

LPESS-I IT 2 2 2 2 2 2

(s = 1, Λ2 = 0.1I, CPU 0.3070 0.8184 4.7244 21.6534 82.3687 288.9701

Λ3 = 0.001I ) RES 3.1116e− 07 2.2410e− 07 1.8435e− 07 1.6030e− 07 1.4375e− 07 1.1441e− 07

PESS-II IT 3 3 3 3 3 3

(s = sest, Λ1 = A, CPU 0.2037 1.0533 5.8415 29.3914 104.9663 424.2004

Λ2 = βestI, Λ3 = 10−4CCT ) RES 2.2013e− 08 3.4850e− 08 4.3689e− 08 5.0705e− 08 5.8005e− 08 7.2906e− 08

LPESS-II IT 3 3 3 3 3 3

(s = sest, Λ2 = βestI, CPU 0.1922 1.0496 4.6314 24.2092 102.8465 389.1076

Λ3 = 10−4CCT ) RES 1.8126e− 09 1.0207e− 13 8.0620e− 15 9.1601e− 14 5.7292e− 13 1.1950e− 07

Λ2 = βestI and Λ3 = 10−4CTC (denoted by PESS-II and LPESS-II) for the proposed

preconditioner. These results are summarized in Table 2.7.2.

Convergence curves: Figure 2.7.1 illustrates convergence curves pertaining to precon-

ditioners BD, IBD, MAPSS, SL, SS, RSS, EGSS, RPGSS, PESS and LPESS (s = 12) for

Case II with l = 16, 32, 48, 64, 80 and 128. These curves depict the relationship between

the relative residue (RES) at each iteration step and IT counts.

Spectral distributions: To further illustrate the superiority of the PESS preconditioner,

spectral distributions of A and the preconditioned matrices P−1
BDA,P

−1
IBDA, P−1

MAPSSA,
P−1

SLA, P−1
SSA, P−1

RSSA, P−1
EGSSA, P−1

RPGSSA,P
−1
PESSA and P−1

LPESSA for the Case II

with l = 16 and s = 13 are displayed in Figure 2.7.2.

Spectral bounds: Furthermore, we draw the eigenvalue bounds of Theorems 2.4.1 and

2.4.5 for the PESS preconditioned matrix. The |λ−1| = 1 of Theorem 2.4.1 is drawn by the

green unit circle in Figure 2.7.3(a) and the points in blue color are the bounds of Theorem

2.4.5. To draw the eigenvalues bounds in Theorem 2.5.1 for LPESS preconditioned matrix,

we define the following circles:

C1 :=

λ ∈ C : |λ| =

√
θ̃max

1 + sϑmin + s2θ̃max

 , C2 :=

ß
λ ∈ C : |λ| = ϑmin

2 + sϑmin

™
,

C3 :=

ß
λ ∈ C :

∣∣∣∣λ− 1

s

∣∣∣∣ = ϑmin

2 + sϑmin

™
and C4 :=

®
λ ∈ C :

∣∣∣∣λ− 1

s

∣∣∣∣ = 1

s(1 + s
√
θ̃max)

´
.
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Figure 2.7.1: Convergence curves for IT versus RES of PGMRES meth-

ods employing BD, IBD, MAPSS, SL, SS, RSS, EGSS, RPGSS, PESS and

LPESS (s = 12) preconditioners in Case II for Example 2.7.1.

In Figure 2.7.3(b), C1 is in red color, C2 is in blue color, C3 is in black color and C4 is in

green color. Additionally, the eigenvalue bounds in Theorems 2.4.5, 2.4.6 and 2.5.1 are

also presented in Table 2.7.3.

CN analysis: To investigate the robustness of the proposed PESS preconditioner, we

measure the CN of the P−1
PESSA, which is for any nonsingular matrix A is defined by

κ(A) := ∥A−1∥2∥A∥2. In Figure 2.7.4, the influence of the parameter s on the CN of

P−1
PESSA for Case II with l = 32 is depicted. The parameter s is chosen from the interval

[5, 50] with step size one.

Discussions: The data presented in Tables 2.7.1 and 2.7.2 and Figures 2.7.1-2.7.4 allow

us to make the following noteworthy observations:

• From Table 2.7.1, it is observed that the GMRES has a very slow convergence speed.

In both Cases I and II, our proposed PESS and LPESS preconditioners outperform

all other compared existing preconditioners from the aspects of IT and CPU times.

For example, in Case I with l = 80, our proposed PESS preconditioner is 76%,

43%, 36%, 22%, 28%, 27%, 33% and 39% more efficient than the existing BD, IBD,
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Figure 2.7.2: Spectral distributions of A,P−1
BDA, P−1

IBDA, P−1
MAPSSA,

P−1
SLA, P−1

SSA, P−1
EGSSA, P−1

RPGSSA, P−1
PESSA and P−1

LPESSA for Case

II with l = 16 for Example 2.7.1.

MAPSS, SL, SS, RSS, EGSS and RPGSS preconditioner, respectively. Moreover,

LPESS preconditioners perform approximately 78%, 48%, 38%, 29%, 35%, 34%,

39% and 44% faster than BD, IBD, MAPSS, SL, SS, RSS, EGSS and RPGSS
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(a) P−1
PESSA with s = 13 (b) P−1

LPESSA with s = 13

Figure 2.7.3: Spectral bounds for P−1
PESSA and P−1

LPESSA for Case II with

l = 16 for Example 2.7.1.

Table 2.7.3: Spectral bounds for P−1
PESSA and P−1

LPESSA for case II with

l = 16 for Example 2.7.1.

Real eigenvalue λ Non-real eigenvalue λ

Bounds of Theorem 2.4.5 Bounds of Theorem 2.4.6

P−1
PESSA

contained in 0.0667 ≤ |λ| ≤ 0.0739

the interval 4.258× 10−5 ≤ ℜ(λ/(1− sλ)) ≤ 0.5

(0, 0.071429] |ℑ(λ/(1− sλ))| ≤ 31.6386

Bounds of Theorem 2.5.1 Bounds of Theorem 2.5.1

P−1
LPESSA

contained in 0.0285 ≤ |λ| ≤ 0.0769

the interval 1.8666× 10−4 ≤ |λ− 1
s
| ≤ 0.0438

(0.0416, 0.0769]

preconditioner, respectively. Similar patterns are noticed for l = 16, 32, 48, 64 and

128.

• Comparing the results of Tables 2.7.1 and 2.7.2, we observe that in both cases, PESS

and LPESS preconditioners outperform the existing baseline preconditioners and

IT are the same as in the experimentally found optimal parameters. This shows

that the parameter selection strategy in Section 2.6 is effective.

• In Figure 2.7.1, it is evident that the PESS and LPESS preconditioners have a

faster convergence speed than the other baseline preconditioners when applied to

the PGMRES method for all l = 16, 32, 48, 64, 80 and 128.
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Figure 2.7.4: Parameter s vs CN of the preconditioned matrix P−1
PESSA for

Case II with l = 32 for Example 2.7.1.

• According to Figure 2.7.2, the spectrum of P−1
PESSA and P−1

LESSA have better

clustering properties than the baseline preconditioned matrices, consequently im-

proves the computational efficiency of our proposed PESS and LPESS PGMRES

methods. Moreover, the real eigenvalues of P−1
PESSA are contained in the interval

(0, 0.071429] and for P−1
SSA and P−1

EGSSA are in (0, 1.9991] and (0, 1], respectively,

which are consistent with bounds of Theorem 2.4.5, Corollaries 2.3.1 and 2.3.2,

respectively. For non-real eigenvalues of P−1
PESSA, obtained bounds are consistent

with Theorem 2.4.6. Moreover, from Figure 2.7.3(b), we observe that eigenvalues

of P−1
LPESSA are contained in C2 ≤ λ ≤ C1 ∩ C4 ≤ λ ≤ C4, which shows the

consistency of the bounds in Theorem 2.5.1.

• For l = 32, the computed CNs of A,P−1
BDA, P−1

IBDA, P−1
MAPSSA and P−1

SLA are

5.4289e+04, 9.5567e+09, 9.5124e+09, 7.2548e+05 and 4.2852e+09, respectively,

which are very large. Whereas Figure 2.7.4 illustrates a decreasing trend in the

CN of P−1
PESSA (for instance, when s = 50, κ(P−1

PESSA) = 3.4221) with increasing

values of s. This observation highlights that P−1
PESSA emerges as well-conditioned,

consequently, the solution obtained by the proposed PESS PGMRES method is

more reliable and robust.

The above discussions affirm that the proposed PESS and LPESS preconditioners are

efficient, robust and better well-conditioned with respect to the baseline preconditioners.

Sensitivity analysis of the solution by employing the proposed PESS precon-

ditioner: To study the sensitivity of the solution obtained by employing the proposed
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Figure 2.7.5: Relationship of norm error of solution with increasing noise

percentage, employing proposed PPESS for Case II with s = 12 for l =

16, 32, 48, 64 and 80 for Example 2.7.1.

PESS PGMRES method to small perturbations on the input data matrices. In the follow-

ing, we consider the perturbed counterpart (A +∆A)ũ = d of the DSPP (2.1.1), where

the perturbation matrix ∆A has same structure as of A. We construct the perturbation

matrix ∆A by adding noise to the block matrices B and C of A as follows:

∆B = 10−4 ∗NP ∗ std(B). ∗ randn(m,n) and ∆C = 10−4 ∗NP ∗ std(C). ∗ randn(p,m),

where NP is the noise percentage and std(B) and std(C) are the standard deviation of

B and C, respectively. We perform the numerical test for l = 16, 32, 48, 64 and 80 for

Example 2.7.1 using the PESS PGMRES method (Case II, s = 12). The calculated norm

error ∥ũ− u∥2 among the solution of the perturbed system and the original system with

increasing NP from 5% to 40% with step size 5% are displayed in the Figure 2.7.5. We

noticed that with growing NP , the norm error of the solution remains consistently less

than 10−8, which demonstrates the robustness of the proposed PESS preconditioner and

the solution u is insensitive to small perturbation on A.

Example 2.7.2. Problem formulation: In this example, we consider the DSPP (2.1.1),

where block matrices A and B originate from the two dimensional Stokes equation namely

“leaky” lid-driven cavity problem [59], in a square domain Ξ = {(x, y) | 0 ≤ x ≤ 1, 0 ≤
y ≤ 1}, which is defined as follows:

−∆u+∇p = 0, in Ξ, (2.7.1)

∇ · u = 0, in Ξ.
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Table 2.7.4: Numerical results of GMRES, IBD, MAPSS, SL, SS, RSS,

EGSS, RPGSS, PESS, and LPESS PGMRES methods for Example 2.7.2.

method h 1/8 1/16 1/32 1/64 1/128

size(A) 288 1088 4224 16640 66048

GMRES

IT 158 548 2048 −− −−

CPU 0.2325 0.6960 124.7595 4545.5072 9396.6958

RES 8.0113e− 07 8.8023e− 07 9.0887e− 07 4.0481e− 06 8.3021e− 06

IBD

IT 34 35 25 23 21

CPU 0.0147 0.1166 1.9070 32.6213 1664.6991

RES 9.4111e− 07 6.9932e− 07 9.2544e− 07 9.3340e− 07 7.3550e− 07

MAPSS

IT 11 7 4 4 4

CPU 0.2061 0.3453 1.8717 26.6600 482.0390

RES 5.2642e− 08 1.1366e− 07 7.1116e− 08 8.2780e− 07 2.1189e− 09

SL

IT 6 6 5 5 4

CPU 0.2130 0.2929 1.8697 27.1124 516.3012

RES 6.6518e− 07 1.1953e− 08 9.5638e− 08 2.1528e− 11 2.9479e− 10

Case I

SS

IT 5 6 9 11 11

CPU 0.3047 0.4422 2.4279 51.5825 1245.2019

RES 4.5523e− 07 7.9331e− 07 2.5307e− 07 4.5327e− 07 9.8497e− 07

RSS

IT 4 4 5 5 6

CPU 0.2044 0.3436 1.6047 27.6128 720.4234

RES 3.4853e− 08 9.2155e− 07 1.7469e− 08 2.7261e− 07 3.2621e− 09

EGSS

IT 7 9 11 15 5

CPU 0.2389 0.4051 4.4353 52.7804 744.5983

RES 1.6861e− 07 4.0517e− 08 1.3223e− 07 1.774e− 07 9.1207e− 07

RPGSS

IT 4 4 4 5 5

CPU 0.2105 0.3883 2.2981 28.1748 544.8828

RES 2.8700e− 09 5.1131e− 08 3.3646e− 07 8.8663e− 09 1.4981e− 07

PESS†

IT 4 4 5 5 4

CPU 0.2068 0.3480 1.7633 25.2920 484.2796

s = 30 RES 2.3499e− 08 4.2761e− 07 2.1247e− 08 2.0987e− 07 4.3859e− 07

LPESS†

IT 3 3 4 3 4

CPU 0.1990 0.2578 1.4778 17.9730 457.7446

s = 30 RES 1.6606e− 07 8.3803e− 07 4.9289e− 10 5.2658e− 07 3.3191e− 08

Case II

SS

IT 29 38 60 52 55

CPU 0.2999 1.1144 13.4580 213.2381 4980.7387

RES 7.3560e− 07 9.5790e− 07 9.2515e− 07 9.6425e− 07 9.6948e− 07
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Table 2.7.4: Numerical results of GMRES, IBD, MAPSS, SL, SS, RSS,

EGSS, RPGSS, PESS, and LPESS PGMRES methods for Example 2.7.2

(continued).

method h 1/8 1/16 1/32 1/64 1/128

RSS

IT 12 13 14 12 12

CPU 0.3797 0.6019 3.4491 50.3476 1361.8902

RES 3.2456e− 07 5.3086e− 07 6.6600e− 07 4.2834e− 07 1.2733e− 07

EGSS

IT 9 9 9 7 4

CPU 0.2459 0.4180 2.4320 27.9359 419.1294

RES 7.9001e− 09 8.6623e− 09 7.4644e− 09 1.2457e− 07 7.6469e− 08

RPGSS

IT 6 7 7 5 4

CPU 0.2154 0.4096 1.8893 23.2802 423.0121

RES 5.2642e− 08 1.1366e− 07 7.1116e− 08 8.2780e− 07 2.1189e− 09

PESS†

IT 5 5 5 5 3

CPU 0.2091 0.4184 1.8118 25.8048 365.3128

s = 26 RES 2.3801e− 08 1.1965e− 08 8.4923e− 09 5.9356e− 08 4.2039e− 07

LPESS†

IT 4 5 5 5 3

CPU 0.2070 0.3662 1.5330 23.5997 359.1330

s = 26 RES 2.4250e− 07 8.6182e− 12 5.3930e− 11 8.1253e− 10 5.8345e− 07

Here † represents the proposed preconditioners. The boldface represents the top two results.

−− indicates that the iteration method does not converge within the prescribed IT.

A Dirichlet no-flow condition is applied on the side and bottom boundaries, and the

nonzero horizontal velocity on the lid is {y = 1;−1 ≤ x ≤ 1|ux = 1}. Here, u and p refer

to the velocity vector field and the pressure scalar field, respectively.

To generate the matrices A ∈ Rn×n andB ∈ Rm×n of the system (2.1.1), the discretiza-

tion task of the Stokes equation (2.7.1) is accomplished by the IFISS software developed by

Elman et al. [59]. Following [59] with grid parameters h = 1/8, 1/16, 1/32, 1/64, 1/128, we

get n = 2(1+1/h)2 and m = 1/h2. To make the system of equations in (2.1.1) not too ill-

conditioned and not too sparse, we construct the block matrix C =
î
Π randn(p,m− p)

ó
,

where Π = diag(1, 3, 5, . . . , 2p − 1) and p = m − 2. Additionally, to ensure the positive

definiteness of the matrix A, we add 0.001I with A.

In Table 2.7.4, we list numerical results produced using the GMRES method and

PGMRES method with the preconditioners PIBD,PMAPSS,PSL,PSS,PRSS, PEGSS,

PRPGSS, PPESS and PLPESS for different grid parameter values of h.
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Table 2.7.5: Numerical results of PESS-I, LPESS-I, PESS-II and LPESS-II

PGMRES methods for Example 2.7.2.

method h 1/8 1/16 1/32 1/64 1/128

size(A) 288 1088 4224 16640 66048

PESS-I IT 5 5 6 6 5

(s = 1, Λ1 = 0.001I, CPU 0.30867 0.46688 2.48254 46.52887 577.9420

Λ2 = 0.1I, Λ3 = 0.001I) RES 1.4125e− 08 1.3379e− 07 3.8821e− 08 2.6061e− 07 9.7383e− 07

LPESS-I IT 4 4 4 5 3

(s = 1, Λ2 = 0.1I, CPU 0.1829 0.3319 1.2774 19.1090 349.6728

Λ3 = 0.001I) RES 3.5507e− 09 3.4257e− 08 7.0375e− 07 2.3073e− 09 7.1453e− 07

PESS-II IT 3 4 4 4 4

(s = sest, Λ1 = A, CPU 0.1847 0.3954 1.3215 17.22840 485.0177

Λ2 = βestI, Λ3 = 10−4CCT ) RES 9.6100e− 07 5.6520e− 07 7.8750e− 08 3.9903e− 08 6.9694e− 09

LPESS-II IT 6 6 5 5 3

(s = sest, Λ2 = βestI, CPU 0.1656 0.3777 1.4341 19.0658 377.2001

Λ3 = 10−4CCT ) RES 2.5227e− 07 5.1622e− 07 4.8924e− 08 3.2751e− 08 7.9950e− 07
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Figure 2.7.6: Convergence curves for IT versus RES of the PGMRES meth-

ods by employing IBD, MAPSS, SL, SS, RSS, EGSS, RPGSS, PESS and

LPESS preconditioners in Case II for Example 2.7.2.

Parameter selection: Parameter choices for the proposed preconditioners are made in

two cases as in Example 2.7.1. However, in Case I, we take α = 0.01, β = 0.1, Λ1 = 0.01I
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Figure 2.7.7: Spectral distributions of A,P−1
IBDA, P−1

MAPSSA, P−1
SLA,

P−1
SSA, P−1

EGSSA, P−1
RPGSSA, P−1

PESSA and P−1
LPESSA for Case II with

h = 1/8.
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(a) P−1
PESSA with s = 26 (b) P−1

LPESSA with s = 26

Figure 2.7.8: Spectral bounds for P−1
PESSA and P−1

LPESSA for Case II with

h = 1/8 for Example 2.7.2.

and Λ2 = 0.1I. The parameter α in Case I is taken as in [37] and the parameters in Case II

are taken as in [156]. For the IBD preconditioner, the matrices Â and Ŝ and for MAPSS

preconditioner α and β are constructed as in Example 2.7.1.

Results for experimentally found optimal parameter: In the interval [10, 30], the

empirical optimal choice for s is found to be 30 for Case I and 26 for Case II. Table 2.7.4

shows that the GMRES method has a very slow convergence speed and also does not

converge for h = 1/64, 1/128 within 7000 iterations. The proposed preconditioners require

almost five times fewer iterations compared to the IBD preconditioner for convergence.

Moreover, in both cases, the PESS and LPESS preconditioners outperform the MAPSS,

SL, SS, RSS, EGSS and RPGSS preconditioners in terms of IT and CPU times. Notably,

for the PESS preconditioner, the IT remains constant in both cases, whereas for the SS

and EGSS preconditioners, the IT increases as the size of A increases. Furthermore, in

Case I with h = 1/64, our proposed LPESS preconditioner is approximately 45%, 33%,

34%, 65%, 35%, 66% and 36% more efficient than the existing IBD, MAPSS, SL, SS, RSS,

EGSS and RPGSS preconditioners, respectively. Similar patterns are observed for other

values of h.

Results using parameters selection strategy in Section 2.6: To demonstrate the

effectiveness of the proposed PESS and LPESS preconditioners using the parameters

discussed in Section 2.6, we present the numerical test results for PESS-I, LPESS-I, PESS-

II and LPESS-II in Table 2.7.5 as in Example 2.7.1. Comparing the results in Tables

2.7.4 and 2.7.5, we observe that the parameter selection strategy described in Section 2.6

is effective.
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Convergence curves: The convergence curves in Figure 2.7.6 demonstrate the rapid

convergence of the proposed PESS and LPESS PGMRES methods compared to the IBD,

MAPSS, SL, SS, RSS, EGSS and RPGSS in terms of RES versus IT counts.

Spectral distributions: Figure 2.7.7 illustrates the spectral distributions of the original

matrix A, and the preconditioned matrices P−1
IBDA, P

−1
MAPSSA, P

−1
SLA, P

−1
SSA,P

−1
RSSA,

P−1
EGSSA, P−1

PRGSSA, P−1
PESSA and P−1

LPESSA for Case II with h = 1/8. According to

Figure 2.7.7, eigenvalues of P−1
PESSA and P−1

LPESSA demonstrate a superior clustering

compared to the other preconditioned matrices, which leads to a favorable convergence

speed for the proposed PESS and LPESS PGMRES methods.

Spectral bounds: In Figure 2.7.8, we draw the spectral bounds of Theorems 2.4.1, 2.4.5

and 2.5.1 for PESS and LPESS preconditioned matrices. In Figure 2.7.8(a), |λ − 1| = 1

of Theorem 2.4.1 is drawn by the green unit circle, while the points in blue indicate the

bounds from Theorem 2.4.5. Moreover, we draw the circles C1 (in red), C2 (in blue), C3

(in black) and C4 (in green) in Figure 2.7.8(b). We can observe that the eigenvalues of

the preconditioned matrix P−1
LPESSA lie in the intersection of the annulus of the circles

C1 and C2, and the annulus of the circles C3 and C4. .
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Figure 2.7.9: Characteristic curves for IT of the proposed PESS (left) and

LPESS (right) PGMRES methods by varying s in the interval [1, 100] with

step size 1 with h = 1/16 in Case I for Example 2.7.2.

CN analysis: Furthermore, the system (2.1.1) exhibits ill-conditioning nature with

κ(A) = 5.0701e + 05. While for Case I with h = 1/16, κ(P−1
PESSA) = 1.3353 and

κ(P−1
LPESSA) = 1.2056, indicating that the proposed PESS and LPESS preconditioned

systems are well-conditioned, ensuring an efficient and robust solution.
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Relationship between s and convergence speed: In addition, to demonstrate the

relationship of the parameter s and the convergence speed of the PESS and LPESS pre-

conditioners, we plot graphs of IT counts by varying the parameters s in the interval

[1, 100] with step size one in Figure 2.7.9. We consider h = 1/16 and other choices for

Λ1,Λ2 and Λ3 as in Case I. Figure 2.7.9 shows that, with the increasing value of s, de-

creasing trend in the IT counts for both the PESS and LPESS preconditioner. Moreover,

for s > 22, using LPESS preconditioner, we can solve this DSPP only in 3 iterations.

2.8. Summary

In this chapter, we proposed the PESS iterative method and corresponding PESS

preconditioner and its relaxed variant LPESS preconditioner to solve the DSPP (2.1.1).

For the convergence of the proposed PESS iterative method, necessary and sufficient cri-

teria are derived. Moreover, we estimated the spectral bounds of the proposed PESS

and LPESS preconditioned matrices. This empowers us to derive spectral bounds for SS

and EGSS preconditioned matrices. Numerous experimental analyses are performed to

demonstrate the effectiveness of our proposed PESS and LPESS preconditioners. The key

observations are as follows: (i) the proposed PESS and LPESS preconditioners are found

to outperform the existing baseline preconditioners in terms of IT and CPU times. (ii)

The proposed preconditioners significantly reduces the CN of A, consequently showing

their proficiency in solving DSPPs. (iii) The proposed PESS and LPESS preconditioned

matrices have better clustered spectral distribution than the baseline preconditioned ma-

trices. (iv) Sensitivity analysis conducted by introducing different percentages of noise

on the system (2.1.1) showcases the robustness of the proposed PESS preconditioner.
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CHAPTER 3

A Class of Generalized Shift-Splitting Preconditioners for

Double Saddle Point Problems∗

In this chapter, we propose a generalized shift-splitting (GSS) preconditioner, along

with its two relaxed variants, to solve the DSPP by considering F = B, G = C, and

D = 0. The convergence of the associated GSS iterative method is analyzed, and sufficient

conditions for its convergence are established. Spectral analyses are performed to derive

sharp bounds for the eigenvalues of the preconditioned matrices. Numerical experiments

based on examples arising from the PDE-constrained optimization problems demonstrate

the effectiveness and robustness of the proposed preconditioners compared with existing

state-of-the-art preconditioners.

3.1. Background

Suppose n,m and p are given positive integers with n ≥ m ≥ p. Then, we consider

the DSPP in the following form [33]:

B“w :=


A 0 BT

0 E C

−B −CT 0



x

z

y

 =


p

q

r

 =: d̃, (3.1.1)

where A ∈ Rn×n, B ∈ Rm×n, C ∈ Rp×m and E ∈ Rp×p . Further, p ∈ Rn, q ∈ Rp

and r ∈ Rm are known vectors and x ∈ Rn, y ∈ Rm and z ∈ Rp are unknown vectors

to be determined. In this section, we consider that the matrices A and E can be both

symmetric or nonsymmetric.

The DSPP (3.1.1) is frequently encountered in a wide range of scientific and computa-

tional disciplines. Notable areas of application include quadratic programming problems

[71], EILS problems [30], PDE-constrained optimization problem [115], and so on.

Owing to the broad applicability of the DSPP (3.1.1), this chapter primarily concen-

trates on its numerical solution. Nevertheless, for the large and sparse nature of the double

∗ S. S. Ahmad and P. Khatun, “A class of generalized shift-splitting preconditioners for double saddle point

problems.” Revision submitted in Applied Mathematics and Computation.



saddle point matrix B, iterative methods are generally preferred over direct approaches

[122]. In this chapter, we develop robust and efficient preconditioners to enhance the

convergence of Krylov subspace methods, such as GMRES, for solving the DSPP (3.1.1).

To leverage the full block structure of B, various preconditioners have been studied in

the literature to solve the DSPP (3.1.1). When E = 0 in (3.1.1), BD and block tridiagonal-

type preconditioners [1, 75], SS-type preconditioners [37], Uzawa methods [74, 76], etc.

have been explored. When E ̸= 0, BD preconditioners for the DSPP (3.1.1) have been

investigated in [33]. By splitting the coefficient matrix B as B = B1 +B2, where

B1 =


A 0 BT

0 0 0

−B 0 0

 and B2 =


0 0 0

0 E C

0 −CT 0

 . (3.1.2)

Benzi and Guo [23] proposed the dimensional spitting (DS) preconditioner PDS and a

relaxed dimensional factorization (RDF) preconditioner PRDF [27]. These are given as

follows:

PDS =
1

α


αI + A 0 BT

0 αI 0

−B 0 αI



αI 0 0

0 αI + E C

0 −CT αI

 , (3.1.3)

PRDF =
1

α


A 0 BT

0 αI 0

−B 0 αI



αI 0 0

0 E C

0 −CT αI

 . (3.1.4)

For more on DS-based preconditioners, refer to [70, 154].

For the DSPP (3.1.1) arising from PDE-constrained optimization problem, Rees et al.

[115] introduced BD preconditioner PE and constrained preconditioner PC. Later, a block

triangular (BT) preconditioner is developed in [114]. In [161], the authors introduced two

types of preconditioners for solving the DSPP: a block-counter-diagonal preconditioner,

denoted as PBCD, and a block-counter-tridiagonal preconditioner, denoted as PBCT. By

using different approximations of Schur complement, preconditioners in BD and BT for-

mats are constructed in [107, 108, 109]. For more research on solving DSPP in the context

of PDE-constrained optimization problems, refer to [61, 83, 104].

In recent years, several SS-type preconditioners have been developed for GSPP and

DSPP (2.1.1) with nonsymmetric coefficient matrix, demonstrating promising efficiency;

see, for example, [5, 37, 40, 41, 124]. However, despite their potential for high efficiency,

SS-type preconditioners have not yet been explored specifically for DSPP (3.1.1).
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Motivated by this gap, in this chapter, we introduce a generalized shift-splitting (GSS)

iterative method along with its associated GSS preconditioner for solving DSPP of the

form (3.1.1). Our approach extends the concept of SS to the coefficient matrix B, aim-

ing to enhance computational efficiency and convergence. Moreover, we derive sufficient

criteria for the convergence of the GSS iterative method. The main contributions of the

chapter are summarized as follows:

• A novel GSS iterative method and corresponding GSS preconditioner are intro-

duced by implementing the SS approach for the coefficient matrix B to solve DSPP

(3.1.1).

• Convergence analysis of the proposed GSS iterative method is carried out, yielding

sufficient conditions for its convergence.

• To further enhance the effectiveness of the GSS preconditioner, two relaxed vari-

ants, termed RGSS-I and RGSS-II are proposed, and the spectral bounds of the

RGSS-I and RGSS-II preconditioned matrices are thoroughly investigated.

• Finally, numerical experiments are conducted for the DSPP arising from the PDE-

constrained optimization problem to demonstrate the effectiveness of the proposed

preconditioners.

The outline of the rest of the chapter is as follows. Section 3.2 investigates the

solvability conditions of the DSPP (3.1.1) and properties of the coefficient matrix B. The

GSS iterative method and associated preconditioner are proposed in Section 3.3. Section

3.4 investigates the convergence criteria for the proposed GSS iterative method. Two

relaxed variants of the proposed GSS preconditioner are presented in Section 3.5, and the

spectral analyses of the corresponding preconditioned matrices are performed. Section 3.6

deals with the parameter selection strategy of the proposed preconditioners. Experimental

results, analyses and discussions of the proposed and existing preconditioners are discussed

in Section 3.7. At the end, Section 3.8 includes some concluding statements.

3.2. Solvability Conditions and Properties of the DSPP

In this section, we provide the solvability conditions on the block matrices A, B,

C and E for the system (3.1.1) and a few important properties of the matrix B. The

nonsymmetric coefficient matrix B possesses the following desirable properties, which are

crucial in the theoretical analysis of the iterative method and preconditioners designed to

solve DSPP (3.1.1). Before that, we define AH := A+AT

2
and EH := E+ET

2
.
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Proposition 3.2.1. Let A ∈ Rn×n and E ∈ Rp×p with AH and EH be positive semidefi-

nite. If B has full row rank, then

(i) B is semipositive real: uTBu ≥ 0 for all u ∈ Rn+p+m.

(ii) B is positive semistable: the real part of all eigenvalues of B is nonnegative.

Proof. (i) Let u = [xT , yT zT ]T ∈ Rn+p+m. Then uTBu = xTAx + yTEy. Therefore, we

have uTBu+uTBTu = 2(xTAHx+ yTEHy) and hence, uTBu = xTAHx+ yTEHy ≥ 0,

as AH and EH are positive semidefinite. Thus, B is semipositive real.

(ii) Let λ be an eigenvalue of B and u = [uT , vT , wT ]T ∈ Rn+p+m is the corresponding

eigenvector. Then u∗Bu = λ∥u∥2 and (u∗Bu)∗ = λ̄∥u∥2. Thus

R(λ) =
u∗(B+BT )u

2∥u∥2

=
R(u)T (B+BT )R(u)T + I(u)T (B+BT )I(u)T

2∥u∥2
.

Then, using (i), we have R(λ) ≥ 0. ■

Proposition 3.2.2. Let A ∈ Rn×n and E ∈ Rp×p be nonsingular matrices with AH and

EH positive definite. If B has full row rank, then the double saddle point matrix B is

nonsingular.

Proof. Let B has full row rank, and “w = [xT , zT ,yT ]T ∈ Rn+p+m be such that B“w = 0.

Then, we have 
Ax+BTy = 0,

Ez + Cy = 0,

−Bx− CTz = 0.

(3.2.1)

We first assert that x = 0. Then from the first equation in (3.2.1), we obtain BTy = 0.

Since, B has full row rank, this implies y = 0. Thus the second equation of (3.2.1) gives

z = 0 as E is nonsingular. This implies “w = 0. Next, we assert y = 0. Then, from the

first and second equation of (3.2.1), we find that x = 0 and z = 0, respectively, as A

and E are nonsingular. Hence, “w = 0. Now, we assume that x ̸= 0 and y ̸= 0. Then

multiplying by xT from the left side of the first equation of (3.2.1), we obtain

xTAx+ xTBTy = 0. (3.2.2)

Again, multiplying third equation of (3.2.1) by yT from the left, we get

−yTBx− yTCTz = 0. (3.2.3)
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Substituting (3.2.2) and Ez = −Cy on (3.2.3), we have xTAx+zTEz = 0, and therefore

it must be xTAx = 0 and zTEz = 0, as both the quantities are nonnegative. However,

xTAx = xTAHx = 0 and zTEz = zTEHz = 0, which implies x = 0 and z = 0, since

AH and EH are positive definite matrices. Thus, “w = 0, and hence, B is nonsingular. ■

Proposition 3.2.3. Let A ∈ Rn×n and E ∈ Rp×p with AH and EH positive definite

matrices. If B and C are of full row rank, then the matrix B is positive stable, i.e., λ > 0

for all λ ∈ σ(B).

Proof. Suppose λ is an eigenvalue of B and w = [uT , vT , wT ]T ∈ Rn+p+m is the corre-

sponding eigenvector. Then, we have Bw = λw, which leads to following three linear

system of equations: 
Au+BTw = λu,

Ev + Cw = λv,

−Bu− CTv = λw.

(3.2.4)

Premultiplying Bw = λw by wH , we get

λ∥w∥22 = uHAu+ vHEv + 2iℑ(uHBTw + vHCw). (3.2.5)

On the other hand, from wHBTw = λ̄∥w∥22, we get

λ̄∥w∥22 = uHATu+ vHETv − 2iℑ(uHBTw + vHCw). (3.2.6)

By adding (3.2.5) and (3.2.6), we obtain

(λ+ λ̄)∥w∥22 = uH(A+ AT )u+ vH(E + ET )v

= R(u)T (A+ AT )R(u) + I(u)T (A+ AT )I(u)

+R(v)T (E + ET )R(v) + I(v)T (E + ET )I(v). (3.2.7)

Therefore, from (3.2.7), we obtain

R(λ) =
R(u)TAHR(u) + I(u)TAHI(u) +R(v)TEHR(v) + I(v)TEHI(v)

∥w∥2
. (3.2.8)

Since AH and EH are positive definite matrices, from (3.2.8), we get R(λ) ≥ 0 and

R(λ) = 0 if and only if u = 0 and v = 0.

Next, we show that the vectors u and v can not be zero simultaneously. First, assume

that u = 0. From the first equation in (3.2.4), it follows that BTw = 0, which leads to

w = 0, as B has full row rank. Substituting u = 0 and w = 0 into the third equation

of (3.2.4) yields v = 0. As a result, we obtain w = 0, which contradicts the assumption
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that w is an eigenvector. Therefore, we conclude that u ̸= 0, which in turn implies that

R(λ) > 0. This completes the proof. ■

To ensure the properties stated in Propositions 3.2.2-3.2.3 are satisfied, throughout

the chapter, we assume that A and E are nonsingular matrices, where AH and EH are

SPD.

3.3. Proposed Generalized Shift-Splitting (GSS) Iterative Method

and Preconditioner

This section proposes a GSS iterative method to solve the DSPP. Let α, β, τ, ω be

positive real numbers and P ∈ Rn×n, Q ∈ Rp×p, and R ∈ Rm×m be SPD matrices, then

B admits the following matrix splitting:

B = (Θ + ωB)− (Θ− (1− ω)B) =: PGSS −NGSS, (3.3.1)

where

PGSS =


αP + ωA 0 ωBT

0 βQ+ ωE ωC

−ωB −ωCT τR

 , (3.3.2)

NGSS =


αP − (1− ω)A 0 (1− ω)BT

0 βQ− (1− ω)E (1− ω)C
−(1− ω)B −(1− ω)CT τR

 , (3.3.3)

and Θ =


αP 0 0

0 βQ 0

0 0 τR

 .
The special matrix splitting in equation (3.3.1) introduces a novel iteration scheme,

known as the GSS iterative method, for solving the DSPP.

Method 3.3.1. (GSS iterative method). Given the initial guess vector “w0 =
[
x0

T , z0
T ,y0

T
]T
,

positive real numbers α, β, τ and ω, and SPD matrices P ∈ Rn×n, Q ∈ Rp×p and R ∈
Rm×m, until the stopping criterion is satisfied, compute“wk+1 = G“wk + d, k = 0, 1, 2, . . . , (3.3.4)

where “wk =
[
xk

T , zk
T ,yk

T
]T ∈ Rn+p+m, G = P−1

GSSNGSS is the iteration matrix and

d = P−1
GSSd̃ ∈ Rn+p+m.
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The matrix splitting in (3.3.1) induces a preconditioner, denoted as PGSS, which

can be utilized to speed up the convergence rate of the Krylov subspace methods, like

GMRES. This preconditioner is referred to as the GSS preconditioner.

At each step of the GSS iterative method or GSS PGMRES method, we are required

to solve a system of linear equations in the following form:

PGSSz = r, (3.3.5)

where z = [zT1 , z
T
2 , z

T
3 ]
T ∈ Rn+p+m and r = [rT1 , r

T
2 , r

T
3 ]
T ∈ Rn+p+m. However, PGSS

admits the following decomposition:

PGSS =


I 0 0

0 I 0

−ωB(αP + ωA)−1 −ωCT (βQ+ ωE)−1 I



αP + ωA 0 0

0 βQ+ ωE 0

0 0 R̂


(3.3.6)

.


I 0 ω(αP + ωA)−1BT

0 I ω(βQ+ ωE)−1C

0 0 I

 ,
where R̂ = τR + ω2B(αP + ωA)−1BT + ω2CT (βQ + ωE)−1C. In the following, we

present the algorithmic implementations of the GSS preconditioner designed to accelerate

the GMRES method.

Algorithm 3.3.1 Solving PGSSz = r

Input: The matrices A ∈ Rn×n, B ∈ Rm×n, C ∈ Rp×m, E ∈ Rp×p, r ∈ Rn+p+m,

positive parameters α, β, τ,ω, SPD matrices P ∈ Rn×n, Q ∈ Rp×p and R ∈ Rm×m.

Output: Solution vector z = [zT1 , z
T
2 , z

T
3 ]
T ∈ Rn+p+m.

Steps:

1 : Solve (αP + ωA)t1 = r1 to find t1.

2 : Solve (βQ+ ωE)t2 = r2 to find t2.

3 : Solve R̂z3 = r3 + ωBt1 + ωC
T t2 to obtain z3.

4 : Solve (αP + ωA)z1 = r1 −BTz3 to find z1.

5 : Solve (βQ+ ωE)z2 = r2 − ωCz3 to obtain z2.

Remark 3.3.1. Algorithm 3.3.1 necessitates solving two linear subsystems having the

coefficient matrix (αP+ωA), two subsystems having the coefficient matrix (βQ+ωE), and

one subsystem with the coefficient matrix R̂. We can use LU factorization to solve them
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efficiently. Moreover, when A and E are SPD matrices, we have the flexibility to employ

exact solvers, such as Cholesky factorization, and inexact solvers, like the preconditioned

conjugate gradient method, to solve them efficiently. Nevertheless, to solve steps 1 and 4,

only one Cholesky or LU factorization of αP + ωA and to solve steps 2 and 5, only one

Cholesky or LU factorization of βQ+ ωE is needed to perform.

Remark 3.3.2. From Algorithm 3.3.1, observe that the most tedious task to implement

the GSS preconditioner is to solve the linear subsystem in step 3. To avoid the direct

construction of the matrices B(αP + ωA)−1BT and CT (βQ + ωE)−1C, we modify the

decomposition in (3.3.6) in the following way:

P̃GSS :=


I 0 0

0 I 0

−ωB(αP + ωA)−1 −ωCT (βQ+ ωE)−1 I



αP + ωA 0 0

0 βQ+ ωE 0

0 0 P̃ + Q̃



.


I 0 ω(αP + ωA)−1BT

0 I ω(βQ+ ωE)−1C

0 0 I

 , (3.3.7)

where P̃ and Q̃ are (efficient and economical) approximations of the matrices B(αP +

ωA)−1BT and CT (βQ+ωE)−1C, respectively. Then, the step 4 in Algorithm 3.3.1 changes

to the linear subsystem (P̃ + Q̃)z3 = r3 +ωBt1 +ωC
T t2. With suitably chosen P̃ and Q̃

(see for Example 1), this subsystem is much easier to implement than step 3 of Algorithm

3.3.1. We denote this inexact version of the GSS preconditioner as P̃GSS.

3.4. Convergence Analysis of the GSS Iterative Method

The purpose of this section is to investigate the convergence behavior of the proposed

GSS iterative method. To achieve this, the following result plays a crucial role.

Lemma 3.4.1. Let A ∈ Rn×n and E ∈ Rp×p with AH and EH positive definite matrices,

B ∈ Rm×n and C ∈ Rp×m be full row matrices. Then, the matrix Θ−1B is positive stable.

Proof. Since Θ is SPD, Θ−1B is similar to the matrix Θ− 1
2BΘ− 1

2 . By computation, we

find that the block structure of the matrix Θ− 1
2BΘ− 1

2 is identical to that of B. Therefore,

using Proposition 3.2.3, it follows that Θ− 1
2BΘ− 1

2 , and hence, Θ−1B is positive stable. ■

As noted in Lemma 1.2.1, a stationary iterative method in the form (3.3.4) converges

if and only if the iteration matrix has the spectral radius strictly less than one. The

following result discusses the convergence of the GSS iterative method (3.3.4).
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Theorem 3.4.2. Assume that A ∈ Rn×n and E ∈ Rp×p, where AH and EH are SPD

matrices, B ∈ Rm×n and C ∈ Rp×m are full row matrices. Let α, β, τ,ω > 0, P ∈
Rn×n, Q ∈ Rp×p and R ∈ Rm×m be positive definite matrices. Then, the GSS iterative

method converges to the unique solution of the DSPP (3.1.1) if

ω ≥ max

®
1

2
− λmin(Θ̃)

ϑ(Θ−1B)2
, 0

´
,

where Θ̃ =
Θ−1B+BTΘ−1

2
.

Proof. The iteration matrix of the GSS iterative method (3.3.4) is

G = P−1
GSSNGSS = (Θ + ωB)−1(Θ(1− ω)B) (3.4.1)

= (I + ωΘ−1B)−1(I − (1− ω)Θ−1B). (3.4.2)

Let λ be an eigenvalue of G. Then

(I + ωΘ−1B)−1
(
I − (1− ω)Θ−1B

)
x = λx, (3.4.3)

where x ∈ Rn+p+m is the corresponding eigenvector. From (3.4.3), we write

(I − (1− ω)Θ−1B)x = λ(I + ωΘ−1B)x (3.4.4)

=⇒ ((1− ω) + λω)Θ−1Bx = (1− λ)x. (3.4.5)

Note that λ ̸= 1, otherwise (3.4.5) reduces to Θ−1Bx = 0, which implies that x = 0.

On the other hand, (1 − ω) + λω ̸= 0, otherwise (1 − λ)x = 0. This gives x = 0, which

contradicts the assumption that x is an eigenvector. Therefore, from (3.4.5) we get

Θ−1Bx =
1− λ

(1− ω) + λω
x. (3.4.6)

Thus θ := 1−λ
(1−ω)+λω

is an eigenvalue of Θ−1B. Further, we can write

λ =
1− (1− ω)θ

1 + ωθ
.

Therefore, |λ| < 1 if and only if |1− (1− ω)θ| < |1 + ωθ|, i.e.,

(1− (1− ω)R(θ))2 + (1− ω)2ℑ(θ)2 < (1 + ωR(θ))2 + ω2ℑ(θ). (3.4.7)

Consequently, it follows from (3.4.7) that the iterative method (3.3.4) is convergent if

2R(θ) + (2ω − 1)|θ|2 > 0. (3.4.8)

By Lemma 3.4.1, we have R(θ) > 0, and this implies R(θ)
|θ|2 > 0. From (3.4.8), we get

ω > 1
2
− R(θ)

|θ|2 .
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Next, assume that w is the eigenvector corresponding to the eigenvalue θ. Then

Θ−1Bw = θw. Multiplying by wH from the left side, we have wHΘ−1Bw = θwHw, and

taking conjugate transpose gives wHBTΘ−1w = θ̄wHw. Hence,

R(θ) =
wH(Θ−1B +BTΘ−1)w

2wHw
≥ λmin(Θ̃).

Again |θ| ≤ ϑ(Θ) gives
1

2
− R(θ)

|θ|2
≤ 1

2
− λmin(Θ̃)

ϑ(Θ)2
. Since ω > 0, the GSS iterative method

is convergent if ω > max

®
1

2
− λmin(Θ̃)

ϑ(Θ)2
, 0

´
. ■

Remark 3.4.3. Note that if ω ≥ 1
2
, then the condition (3.4.7) holds. This shows that the

GSS iterative method (3.3.4) is convergent for any initial guess vector if ω ≥ 1
2
.

Notably, solving the DSPP (3.1.1) is same as to solve the preconditioned linear system

P−1
GSSB“w = P−1

GSSd̃. Hence, as an immediate consequence of Theorem 3.4.2 and Remark

3.4.3, we have the following results regarding the clustering properties of the spectrum of

the preconditioned matrix P−1
GSSB.

Theorem 3.4.4. Assume that A ∈ Rn×n, E ∈ Rp×p are nonsingular matrices with AH

and EH are positive definite, B ∈ Rm×n and C ∈ Rp×m are full row rank matrices. Let

PGSS be defined as in (3.3.2) and λ be an eigenvalue of the preconditioned matrix P−1
GSSB.

If ω ≥ 1/2, then λ satisfies the following:

|λ− 1| < 1,

i.e., all eigenvalues of the preconditioned matrix P−1
GSSB are entirely contained in a circle

centered at (1, 0) with radius strictly less one.

Proof. The proof follows immediately from the identity P−1
GSSB = P−1

GSS(PGSS−NGSS) =

I − G. ■

3.5. Two Relaxed Variants of GSS Preconditioner

To enhance efficiency, this section introduces two relaxed variants of the GSS precon-

ditioner. By removing αP from (1, 1) block and βQ from (2, 2) block of PGSS, we obtain

the following two relaxed GSS (RGSS) preconditioners:

PRGSS-I =


ωA 0 ωBT

0 βQ+ ωE ωC

−ωB −ωCT τR

 (3.5.1)
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and

PRGSS-II =


ωA 0 ωBT

0 ωE ωC

−ωB −ωCT τR

 . (3.5.2)

In the implementation, at each step of RGSS preconditioners in conjunction with

GMRES, we are required to solve the linear systems of the following forms:

PRGSS-Iw = r or PRGSS-IIw = r. (3.5.3)

Set R1 = τR+ωBA−1BT+ω2CT (βQ+ωE)−1C and R2 = τR+ωBA−1BT+ωCTE−1C,

then

PRGSS-I =


I 0 0

0 I 0

−BA−1 −ωCT (βQ+ ωE)−1 I



ωA 0 0

0 βQ+ ωE 0

0 0 R1

 (3.5.4)


I 0 A−1BT

0 I ω(βQ+ ωE)−1C

0 0 I

 ,

PRGSS-II =


I 0 0

0 I 0

−BA−1 −CTE−1 I



ωA 0 0

0 ωE 0

0 0 R2



I 0 A−1BT

0 I E−1C

0 0 I

 . (3.5.5)

By applying a similar methodology as in Algorithm 3.3.1, we derive Algorithms 3.5.1 and

?? for implementing the RGSS preconditioners.

Algorithm 3.5.1 Solving PRGSS-Iw = r

Input: The matrices A ∈ Rn×n, B ∈ Rm×n, C ∈ Rp×m, E ∈ Rp×p, r ∈ Rn+p+m,

positive parameters β, τ,ω, and SPD matrices Q ∈ Rp×p and R ∈ Rm×m.

Output: Solution vector w = [wT
1 ,w

T
2 ,w

T
3 ]
T ∈ Rn+p+m.

Steps:

1 : Solve At1 = r1/ω to find t1.

2 : Solve (βQ+ ωE)t2 = r2 to find t2.

3 : Solve R1w3 = r3 + ωBt1 + ωC
T t2 to obtain w3.

4 : Solve Aw1 =
1
ω
(r1 −BTw3) to find w1.

5 : Solve (βQ+ ωE)w2 = r2 − ωCw3 to obtain w2.

67



Algorithm 3.5.2 Solving PRGSS-IIw = r

Input: The matrices A ∈ Rn×n, B ∈ Rm×n, C ∈ Rp×m, E ∈ Rp×p, r ∈ Rn+p+m,

positive parameters τ,ω and the SPD matrix R ∈ Rm×m.

Output: Solution vector w = [wT
1 ,w

T
2 ,w

T
3 ]
T ∈ Rn+p+m.

Steps:

1 : Solve At1 = r1/ω to find t1.

2 : Solve Et2 = r2/ω to find t2.

3 : Solve R2w3 = r3 + ωBt1 + ωC
T t2 to obtain w3.

4 : Solve Aw1 =
1
ω
(r1 −BTw3) to find w1.

5 : Solve Ew2 =
1
ω
(r2 − ωCw3) to obtain w2.

Remark 3.5.1. A key challenge in implementing the RGSS-I and RGSS-II precondition-

ers lies in solving the linear subsystems associated with the coefficient matrices R1 and

R2, respectively. As noted in Remark 3.3.2, to avoid the direct computation BA−1BT and

CT (βQ + ωE)−1C in Algorithm 3.5.1, and BA−1BT and CTE−1C in Algorithm 3.5.2,

we can use approximate versions of these terms. Following a similar technique as in de-

composition (3.3.7), let P̃1, Q̃1 and Q̃2 be efficient and economical approximations of the

matrices BA−1BT , CT (βQ+ωE)−1C, and CTE−1C, respectively. With these approxima-

tions, step 4 in Algorithms 3.5.1 and 3.5.2 transforms into solving the linear subsystems

(P̃1 + Q̃1)z3 = r3 + ωBt1 + ωC
T t2 and (P̃1 + Q̃2)z3 = r3 + ωBt1 + ωC

T t2, respectively.

By appropriately selecting P̃1 Q̃1, and Q̃2 (see for Example 1), these subsystems become

significantly easier to implement compared to step 3 of Algorithms 3.5.1 and 3.5.2. The

resulting inexact preconditioners are denoted by P̃RGSS-I and P̃RGSS-II, respectively.

Next, we investigate the spectral properties of the preconditioned matrices P−1
RGSS-IB

and P−1
RGSS-IIB by considering A and E are SPD matrices.

Theorem 3.5.2. Assume that A and E are SPD matrices, B and C have full row

rank, and let Q and R be SPD matrices. Then, the preconditioned matrix P−1
RGSS-IB

has
1

ω
as the eigenvalue with multiplicity n. Further, let µ be an eigenvalue among

the remaining m + p eigenvalues with the corresponding eigenvector [uT , vT ]T such that

∥
√
βQ1/2uT ,

√
τR1/2vT ]T∥2 = 1. Then

(1) if ℑ( µ
1−ωµ

) ̸= 0, we have β∥Q1/2u∥22 = 1
2
= τ∥R1/2v∥22 and

R

Å
µ

1− ωµ

ã
=

1

2

Å
uHEu

βuHQu
+

vHSv

τvHRv

ã
.
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Thus, it satisfies the following bounds:{
1
2

Ä
λmin(Q

−1E)
β

+ λmin(R
−1S)

τ

ä
≤ R

Ä
µ

1−ωµ

ä
≤ 1

2

Ä
λmax(Q−1E)

β
+ λmax(R−1S)

τ

ä
,

|ℑ
Ä

µ
1−ωµ

ä
| ≤ σmax

Ä
1√
βτ
R− 1

2CQ− 1
2

ä
.

(3.5.6)

(2) If ℑ( µ
1−ωµ

) = 0, we have

µ

1− ωµ
=

uHEu+ vHSv

βuHQu+ τvHRv

and it holds that:

2min
¶
λmin(Q

−1E)
β

, λmin(R
−1S)

τ

©
≤ µ

1−ωµ
≤ max

¶
λmax(Q−1E)

β
, λmax(R−1S)

τ

©
. (3.5.7)

Proof. Let S = BA−1BT . Then, the matrix B and the preconditioner PRGSS-I admits the

following decompositions:

B = LEU and PRGSS-I = LẼU, (3.5.8)

where

L =


I 0 0

0 I 0

−BA−1 0 I

 ,E =


A 0 0

0 E C

0 −CT S

 , Ẽ =


ωA 0 0

0 ωE + βQ ωC

0 −ωCT S + τR

 ,

and U =


I 0 A−1BT

0 I 0

0 0 I

 .
Using decompositions in (3.5.8), we obtain

P−1
RGSS-IB = U−1Ẽ−1EU. (3.5.9)

Therefore, P−1
RGSS-IB is similar to Ẽ−1E, which is given by

Ẽ−1E =

[
ω−1I 0

0 M−1A

]
, (3.5.10)

where M =

[
ωE + βQ ωC

−ωCT ωS + τR

]
and A =

[
E C

−CT S

]
. Hence, P−1

RGSS-IB has an

eigenvalue
1

ω
with multiplicity at least n and while the remaining eigenvalues are those

of the preconditioned matrix M−1A. Consider I =

[
0 I

−I 0

]
∈ Rp+m, then M−1A =
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I (I−1MI)
−1

(I−1AI) I−1. Consequently, M−1A is similar to M̃−1‹A, where
M̃ := I−1MI =

[
ωE + βQ ωCT

−ωC ωS + τR

]
and‹A := I−1AI =

[
E CT

−C S

]
. (3.5.11)

Let µ be an eigenvalue of the matrix M̃−1‹A with the corresponding eigenvalue [uT , vT ]T .

Assert that µ = 1
ω
, then [

βQ 0

0 τR

][
u

v

]
= 0, (3.5.12)

which gives [uT , vT ]T = 0. This contradicts to the assumption that [uT , vT ]T is an eigen-

vector, and hence µ ̸= 1
ω
. Since, µ is an eigenvalue of M̃−1‹A, we have

µ

[
ωE + βQ ωCT

−ωC ωS + τR

][
u

v

]
=

[
E CT

−C S

][
u

v

]

=⇒ µ

1− ωµ

[
βQ 0

0 τR

][
u

v

]
=

[
E CT

−C S

][
u

v

]

=⇒ µ

1− ωµ

[√
βQ

1
2u

√
τR

1
2v

]
=

[
1√
β
Q− 1

2 0

0 1√
β
R− 1

2

][
E CT

−C S

][
1√
β
Q− 1

2 0

0 1√
τ
R− 1

2

][√
βQ

1
2u

√
τR

1
2v

]

=⇒ µ

1− ωµ

[
ũ

ṽ

]
=

[ ‹E C̃T

−C̃ S̃

][
ũ

ṽ

]
,

where ‹E = 1
β
Q− 1

2EQ− 1
2 , C̃ = 1√

βτ
R− 1

2CQ− 1
2 , S̃ = 1

τ
R− 1

2SR− 1
2 , ũ =

√
βQ

1
2u and

ṽ =
√
τR

1
2v. Since, ‹E and S̃ are SPD matrices and C̃ has full row rank, according

to Proposition 2.12 in [25], we have the desired bounds of (3.5.6) and (3.5.7). ■

Remark 3.5.3. The asymptotic behavior of the eigenvalue µ is analyzed according to

Theorem 3.5.2 when the iteration parameters β and τ approach zero from the positive

side. Let θ = µ
1−ωµ

, then this analysis is conducted in the following two cases:

• When ℑ(θ) ̸= 0, we have R(θ) → +∞ and |ℑ(θ)| → +∞ as β, τ → 0+. Then,

µ =

ï
1

ω
− 1 + ωR(θ)

(1 + ωR(θ))2 + ω2ℑ(θ)2

ò
+ i

ℑ(θ)
(1 + ωR(θ))2 + ω2ℑ(θ)2

→ 1

ω
as β, τ → 0+.

• When ℑ(θ) = 0, we have θ → +∞ as β, τ → 0+. Then,

µ =
θ

1 + ωθ
→ 1

ω
, as β, τ → 0+. (3.5.13)

The following theorem establishes the spectral properties for the RGSS-II precondi-

tioned matrix P−1
RGSS-IIB.
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Theorem 3.5.4. Assume that A and E are SPD matrices, B and C have full row rank,

and let R be an SPD matrix. Then the preconditioned matrix P−1
RGSS-IIB has the eigenvalue

1

ω
with multiplicity n + p. The remaining eigenvalues satisfy the generalized eigenvalue

problem (BA−1BT +CTE−1C+τR)x = λR2x, where R2 = τR+ωBA−1BT +ωCTE−1C.

Proof. From (3.5.5), we have

P−1
RGSS-IIB =


ω−1A 0 −A−1BTR−1

2

0 ω−1E −E−1CR−1
2

0 0 R2



A 0 BT

0 E C

0 0 X



=


ω−1I 0 ω−1ABT − A−1BTR−1

2 X

0 ω−1I ω−1EC − E−1CR−1
2 X

0 0 R−1
2 X

 , (3.5.14)

where X = BA−1BT + CTE−1C + τR. Thus, P−1
RGSS-IIB has the eigenvalue λ =

1

ω
with

multiplicity at least n + p, and the rest of eigenvalues satisfy the generalized eigenvalue

problem

(BA−1BT + CTE−1C + τR)x = λR2x.

Hence, the proof is completed. ■

Corollary 3.5.1. Suppose that the assumptions on Theorem 3.5.4 hold. Then, the eigen-

values of P−1
RGSS-IIB satisfy

λ ∈ [Λmin,Λmax], (3.5.15)

where

Λmin =
ηmin + ξmin + τ

ωηmax + ωξmax + τ
, Λmax =

ηmax + ξmax + τ

ωηmin + ωξmin + τ
,

ηmin = λmin(R
−1BA−1BT ), ηmax = λmax(R

−1BA−1BT ), ξmin = λmin(R
−1CTE−1C) and

ξmax = λmax(R
−1CTE−1C).

Proof. Premultiplying by xT of the generalized eigenvalue problem (BA−1BT+CTE−1C+

τR)x = λR2x, we obtain

λ =
xT (BA−1BT + CTE−1C + τR)x

xT (ωBA−1BT + ωCTE−1C + τR)x

=
(R1/2x)

T
R−1/2(BA−1BT + CTE−1C + τ)R−1/2(R1/2x)

(R1/2x)
T
R−1/2(ωBA−1BT + ωCTE−1C + τ)R−1/2(R1/2x)

. (3.5.16)
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Since R−1/2BA−1BTR−1/2 is similar to R−1BA−1BT and R−1/2CTA−1CR−1/2 is similar

to R−1CTA−1C, and λmin(X) ≤ θ ≤ λmax(X) for any θ ∈ σ(X), where X is SPD, the

proof follows from (3.5.16). ■

Next, we will examine the properties of the minimal polynomial of the preconditioned

matrix P−1
RGSS-IIB, which determines the dimension of the Krylov subspace.

Theorem 3.5.5. Assume that A ∈ Rn×n and E ∈ Rp×p with AH and EH are SPD

matrices, B ∈ Rm×n and C ∈ Rp×m are full row rank matrices. Then, the degree of the

minimal polynomial of the preconditioned matrix P−1
RGSS−IIB is at most m+1. Therefore,

the dimension of the Krylov subspace K(P−1
RGSS−IIB, d̃) is at most m+ 1.

Proof. From (3.5.14), we obtain

P−1
RGSS-IIB =


ω−1I 0 Σ1

0 ω−1I Σ2

0 0 Σ3

 , (3.5.17)

where Σ1 = ω−1ABT − A−1BTR−1
2 X, Σ2 = ω−1EC − E−1CR−1

2 X, Σ3 = R−1
2 X, and

X = BA−1BT + CTE−1C + R. Let µi, i = 1, 2, . . . ,m, be the eigenvalues of of Σ3. Then

they are also eigenvalues of the preconditioned matrix P−1
RGSS-IIB. Then the characteristic

polynomial of P−1
RGSS-IIB is given by

f(λ) =

Å
λ− 1

ω

ãn+p m∏
i=1

(λ− µi).

Consider the polynomial g(λ) = (λ− 1
ω
)
m∏
i=1

(λ− µi). Then

g(P−1
GSS-IIB) = (P−1

GSS-IIB− 1

ω
I)

m∏
i=1

(P−1
GSS-IIB− µiI)

=


0 0 Σ1

0 0 Σ2

0 0 Σ3 − ω−1I




n∏
i=1

(ω−1I − µiI) 0 Σ1

0
p∏
i=1

(ω−1I − µiI) Σ2

0 0
m∏
i=1

(Σ3 − µiI)

 . (3.5.18)

Given that Σ3 has the eigenvalues µi, i = 1, 2, . . . ,m, we obtain
m∏
i=1

(Σ3 − µiI) = 0. There-

fore, from (3.5.18), we obtain g(P−1
RGSS-IIB) = 0. Hence, by Cayley-Hamilton theorem,

the degree of the minimal polynomial of P−1
RGSS-IIB is at most m+ 1.
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As mentioned in [122], the degree of the minimal polynomial of a matrix and the di-

mension of the associated Krylov subspace are equal. Therefore, the Krylov subspace

K(P−1
RGSS-IIB, d̃) has dimension at most m+ 1. Hence, the proof follows. ■

Based on the property outlined in Theorem 3.5.5, when we use RPGSS-II precon-

ditioner, Krylov subspace methods like PGMRES require maximum m + 1 iterations to

solve the system (3.1.1).

3.6. Discussion on the Selection of Parameters

It is worth noting that proposed GSS, RGSS-I, and RGSS-II preconditioners involve

the parameters α, β, τ , and ω. As a general criterion for a preconditioner to perform

efficiently, it should be as close as possible to the coefficient matrix of the system [26], we

find the optimal choices for the proposed GSS preconditioner by minimizing ∥NGSS∥F =

∥PGSS −B∥F . First, we define the function φ by

φ(α, β, τ,ω) = ∥NGSS∥2F = tr(N T
GSSNGSS) > 0.

After some easy calculations, we obtain

φ(α, β, τ,ω) =α2∥P∥2F + β2∥Q∥2F + τ 2∥R∥2F + (1− ω)2∥A∥2F + (1− ω)2∥E∥2F

+ 2α(ω − 1)tr(PA) + 2β(ω − 1)tr(QE) + 2(1− ω)2∥B∥2F

+ 2(1− ω)2∥C∥2F .

Now we need to select the parameters α, β, τ and ω such that φ(α, β, τ,ω) is very small.

Since

lim
α, β, τ,ω→0+

φ(α, β, τ,ω) = (1−ω)2∥A∥2F +(1−ω)2∥E∥2F +2(1−ω)2∥B∥2F +2(1−ω)2∥C∥2F ,

we can select ω = 1 and α, β, τ, ω → 0+ such that φ(α, β, τ,ω) → 0+, and consequently,

NGSS → 0.

In the sequel, the GSS preconditioner is equivalently rewritten as: PGSS = ωP̃GSS,

where

P̃GSS =


α
ω
P + A 0 BT

0 β
ω
Q+ E C

−B −CT τ
ω
R


can be regarded as a scaled preconditioner. A preconditioner is considered efficient if it

closely approximates the coefficient matrix, and for given α, β, τ > 0, P̃GSS−B = 1
ω
Θ → 0

as ω → ∞. Similar studies apply to the RGSS-I and RGSS-II preconditioners as well.

73



The performance of the proposed preconditioners by varying the parameters is shown in

the numerical experiment section.

3.7. Numerical Experiments

To demonstrate the effectiveness and robustness of the proposed preconditioners GSS,

RGSS-I and RGSS-II over the existing ones within the Krylov subspace method to solve

the DSPP, in this section, we perform a few numerical experiments. We compare our

proposed GSS, RGSS-I and RGSS-II PGMRES methods (abbreviated as “GSS”, “RGSS-

I” and “‘RGSS-II”, respectively) with the GMRES method and PGMRES methods with

block diagonal [33], block preconditioner [83], dimension splitting [23], relaxed dimension

factorization [27], and shift-splitting [61] preconditioners (abbreviated as “BD”, “BP”

“DS”, “RDF”, and “SS”, respectively). Moreover, we have also compared proposed meth-

ods with BD preconditioner in conjunction with minimum residual method (MIRES) (ab-

breviated as “BD-MINRES”). The numerical results are presented in terms of iteration

counts (abbreviated as “IT”) and elapsed CPU time in seconds (abbreviated as “CPU”).

The initial guess vector is set to “w0 = 0 ∈ Rn+p+m for all iterative methods, and the

method terminates if

RES :=
∥B“wk+1 − d̃∥2

∥d̃∥2
< 10−6

or if the maximum number of iterations exceeds 5000. All the linear subsystems involved

in Algorithms 3.3.1, 3.5.1 and 3.5.2 are solved using the LU or Cholesky Factorization.

Numerical experiments are conducted in MATLAB R2024a on a Windows 11 system,

using an Intel(R) Core(TM) i7-10700 CPU at 2.90 GHz with 16 GB of memory.

Example 3.7.1. [33, 115] The Poisson control problem: We consider DSSP arising

from the distributed control problem (1.1.1). The MATLAB code downloaded from [113],

generates the linear system of the form (1.1.2) by using the following setup: parameters

in “set def setup.m” are selected as:

def setup.bc =‘dirichlet’, def setup.beta =1e−2, def setup.ob =1, def setup.type =‘dist2d’

and def setup.pow = 5, 6 and 7. For these selection of def setup.pow, size of the coefficient

matrix B is 2883, 11907 and 48378, respectively.

Parameter selection: For the DS preconditioner, we choose the parameter α (denoted

by αDS) as follow [23]:

αDS =

√
tr(ATA) + 2tr(BBT ) +

√
tr(ETE) + 2tr(CTC)

2(n+m+ p)
.
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Table 3.7.1: Experimental results of GMRES, BD, BD-MINRES, BP, DS,

RDF, SS, GSS, RGSS-I and RGSS-II PGMRES methods for Example 3.7.1

when ν = 0.1

Process def setup.pow = 5 def setup.pow = 6 def setup.pow = 7

size(B) 2883 11907 48378

GMRES
IT 579 2149 −−

CPU 2.9618 367.9274 −−

BD
IT 10 10 10

CPU 2.1418 40.6138 1512.0707

BD-MINRES
IT 9 8 8

CPU 1.5042 28.7551 1122.2980

BP
IT 3 3 3

CPU 0.7222 17.1404 555.3527

DS
IT 31 40 51

CPU 2.8514 54.3105 1706.9543

RDF
IT 6 6 8

CPU 0.8733 8.1585 302.9091

SS
IT 16 22 46

CPU 2.12460 45.9988 3985.6141

GSS IT 2 2 2

ωexp = 30 CPU 0.6909 7.3233 226.8625

RGSS-I IT 2 2 2

ωexp = 25 CPU 0.7796 7.72871 249.7657

RGSS-II IT 2 2 2

ωexp = 30 CPU 0.7946 6.8447 238.5576

−− signifies that the method does not converge within 5000 IT.

For the RDF preconditioner, the parameter α is selected from the interval (0, 1) with a

step size of 0.01. The optimal performance, in terms of minimal CPU times, is achieved

with smaller values of α as found in [27]. For the SS preconditioner, we take α = 0.01.

For the GSS, RGSS-I, and RGSS-II preconditioners parameters are selected as follows:

α = β = 0.01, τ = 0.001, P = A, Q = CCT , and R = I. The optimal parameter ω

(denoted by ωexp) is determined experimentally within the interval [2, 30] with step size

one, which yields minimal CPU times.

Numerical results: The numerical results for GMRES and various PGMRES methods

with β = 0.1 and 0.001 are presented in Tables 3.7.1 and 3.7.2. We observe that the
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Table 3.7.2: Experimental results of GMRES, BD, BD-MINRES, BP, DS,

RDF, SS, GSS, RGSS-I and RGSS-II PGMRES methods for Example 3.7.1

when ν = 0.001

Process def setup.pow = 5 def setup.pow = 6 def setup.pow = 7

size(B) 2883 11907 48378

GMRES
IT 919 2254 −−

CPU 5.8702 409.5427 −−

BD
IT 19 19 19

CPU 4.3498 84.9364 3034.4227

BD-MINRES
IT 9 8 8

CPU 1.5042 28.7551 1122.2980

BP
IT 3 3 3

CPU 0.7222 17.1404 555.3527

DS
IT 29 39 46

CPU 2.6072 47.8576 1603.9128

RDF
IT 14 11 8

CPU 1.4320 14.3846 324.8007

SS
IT 27 38 68

CPU 3.3960 79.7055 5481.9674

GSS IT 2 2 2

ωexp = 30 CPU 0.7159 7.4041 242.8123

RGSS-I IT 2 2 2

ωexp = 30 CPU 0.78675 7.6515 221.0918

RGSS-II IT 2 2 2

ωexp = 26 CPU 0.6828 6.9229 247.4777

−− signifies that the method does not converge within 5000 IT.

GMRES method exhibits a significantly slower convergence rate compared to all other

PGMRES methods, even does not converge within 5000 iterations when def setup.pow

= 7. On the other hand, we observe that our proposed preconditioners outperform all

the compared preconditioners in terms of both IT and CPU times. For the DS and SS

preconditioners, the IT increases as the size of B grows. Whereas the proposed GSS,

RGSS-I and RGSS-II preconditioners maintain a consistent IT regardless of matrix size.

Eigenvalue distributions: In order to better illustrate the superiority of the proposed

GSS, RGSS-I and RGSS-II preconditioners, the eigenvalue distribution ofB and precondi-

tioned matrices P−1
BDB, P−1

DSB, P−1
RDFB, P−1

SS B, P−1
GSSB, P−1

RGSS-IB and P−1
RGSS-IIB are
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Figure 3.7.1: Eigenvalue distributions of B, P−1
BDB, P−1

DSB, P−1
SS B,

P−1
GSSB, P−1

RGSS-IB and P−1
RGSS-IIB for def set.pow = 5 with β = 0.1 for

Example 3.7.1.

displayed in Figure 3.7.1. From Figure 3.7.1, we observe that the eigenvalues of the pre-

conditioned matrices P−1
GSSB, P−1

RGSS-IB, and P−1
RGSS-IIB have clustered better than the

coefficient matrix B, and preconditioned matrices P−1
BDB, P−1

DSB, P−1
RDFB and P−1

SS B.

This indicates enhanced computational efficiency, highlighting the superiority of the GSS,

RGSS-I, and RGSS-II preconditioners over existing methods.

Influence of the parameters α, β, τ,ω: To demonstrate the influence of the parameter

on the performance of the proposed preconditioners, we present graphs of IT counts

versus parameters for the GSS and RGSS-II preconditioners in Figure 3.7.2. For the GSS

preconditioner, we vary α = β from 0.01 to 1 with a step size of 0.01 and ω from 1 to 30

with a step size of one. For the RGSS-II preconditioner, we vary τ from 0.01 to 0.3 with

77



(a) By varying α = β within the interval

[0.01, 1] and ω within the range [1, 30] for

the GSS preconditioner

(b) By varying τ within the interval

[0.01, 0.3] and ω within the interval [1, 30]

for the RGSS-II preconditioner

Figure 3.7.2: Convergence curves of the GSS and RGSS-II RGMRES meth-

ods varying the parameters α, β, τ, ω for Example 3.7.1 with β = 0.1.

a step size of 0.01 and ω from 1 to 30 with a step size of one. We can draw the following

observation from Figure 3.7.2:

• For both preconditioners, IT exhibits minimal sensitivity to variations in the pa-

rameters.

• Although, for small values of ω, IT increases when α increase for GSS precondi-

tioner and τ increases for RGSS-II preconditioner. Nonetheless, as ω increases, IT

decreases, even as the magnitude of α and τ continue to grow.

Therefore, the proposed preconditioners achieve high efficiency when α, β and τ are kept

small and ω is large.

Condition number (CN) analysis: To evaluate the robustness of the proposed GSS,
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Figure 3.7.3: Relationship between CNs of the preconditioned matrices

P−1
GSS B,P

−1
RGSS-IB and P−1

RGSS-IIB varying the parameter ω in [1, 100] with

β = 0.1 for Example 3.7.1.

RGSS-I and RGSS-II preconditioners, we assess the CNs of the preconditioned matrices

78



P−1
GSS B,P

−1
RGSS-IB and P−1

RGSS-IIB. For any nonsingular matrix A, its CN is defined as

κ(A) := ∥A−1∥2∥A∥2. The CN of B is 3.6396e+05, which is comparatively large, making

the system (3.1.1) ill-conditioned to solve. In Figure 3.7.3, we depict the effect of the

parameter ω ranges from 1 to 100 with a step size one on the preconditioned matrices

P−1
GSS B,P

−1
RGSS-IB and P−1

RGSS-IIB for the case def setup.pow = 5. We observe that for

all values of ω, the CNs of the preconditioned matrices remain within the range [1, 1.5].

This indicates that the preconditioned systems are well-conditioned, demonstrating that

the GSS, RGSS-I, and RGSS-II preconditioners are robust and effective.

3.8. Summary

This chapter proposed three preconditioners, termed GSS, RGSS-I, and RGSS-II for

solving DSPPs arising from various applications. We provide a convergence analysis for

the GSS iterative method, demonstrating that the method converges for any initial guess

vector when the parameter ω ≥ 1/2. Moreover, spectral bounds for the preconditioned

matrices are derived. Additionally, we have shown that the RGSS-II preconditioner re-

quires at most m+ 1 iterations to solve the DSPP. Numerical experiments for the DSPP

arising from the PDE-constrained optimization problem are performed, which demon-

strate that the proposed preconditioners are efficient and outperform the existing state-

of-the-art preconditioners.
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CHAPTER 4

Sparsity Preserving Structured Backward Errors for Saddle

Point Problems ∗ †‡

In this chapter, we investigate the structured backward errors (BEs) of GSPPs and

DSPPs when the perturbation on the block matrices exploits the sparsity pattern as well

as symmetric, Hermitian, circulant, Toeplitz, and symmetric-Toeplitz structures. Fur-

thermore, we construct minimal perturbation matrices that preserve the sparsity pattern

and the aforementioned structures. The developed frameworks are applied to compute

BEs for the weighted regularized least squares (WRLS) problem. Finally, numerical ex-

periments are performed to validate our findings, showcasing the utility of the obtained

structured BEs in assessing the strong backward stability of numerical algorithms.

4.1. Structured Backward Errors for Generalized Saddle Point

Problems

In this section, we consider the GSPP of the following form:

Mv ≜

[
A BT

B D

][
u

p

]
=

[
f

g

]
≜ b, (4.1.1)

where A ∈ Cn×n, B ∈ Cm×n, D ∈ Cm×m, f ∈ Cn, and g ∈ Cm. In general, the block

matrices A,B and D are sparse [60]. Further, the block matrices in (4.1.1) can have

symmetric, Toeplitz, symmetric-Toeplitz, or circulant structures. For instance, in the

WRLS problem arising from image reconstruction [62] and image restoration with colored

noise [82]. Also, GSPP involving circulant or Toeplitz block matrices often arise during

the discretization of elasticity problems using finite difference scheme [32].

∗ S. S. Ahmad and P. Khatun, “ Structured backward errors for special classes of saddle point problems with

applications.” Linear Algebra and its Applications, 13: 90-112, 2025.
† S. S. Ahmad and P. Khatun, “Structured backward error analysis for double saddle point problems.” Under

Review.
‡ S. S. Ahmad and P. Khatun, “Structured backward errors of sparse generalized saddle point problems with

Hermitian block matrices.” Revision submitted in Electronic Transaction on Numerical Analysis.



In recent times, a number of numerical algorithms have been developed to find the

efficient solution of the GSPP (4.1.1) with circulant, Toeplitz, or symmetric-Toeplitz block

matrices; see [17, 32, 157, 163]. However, the computed solution may still contain some

errors and can potentially lead to insignificant results. Therefore, it is crucial to assess

how closely the computed solution approximates the solution of the original problem.

This prompts a natural inquiry: can an approximate solution obtained using a numerical

algorithm serve as the exact solution to a nearly perturbed problem? The concept of

BE is used to determine the minimal distance between the perturbed problem and the

original problem. However, the perturbed coefficient matrix does not necessarily retain

the special block structure of (4.1.1). This raises an interesting question: Does preserving

the special structure of the block matrices in the perturbation matrix lead to a smaller

BE? That is, are the numerical algorithms for solving the GSPP strongly backward stable

or not? So far, significant research has been done in this direction, and structured BE

has been extensively considered in [44, 97, 102, 129, 146, 162], where the perturbation

matrix ∆M preserve the only block structure of M and perturbation on block matrices

A or D preserve the symmetric structures. However, it is noteworthy to mention a few

drawbacks of the aforementioned studies:

• The block matrices of M in (4.1.1) are often sparse in many applications, making

it essential to maintain their sparsity pattern in the perturbation matrices. The

existing studies do not consider and preserve the sparsity pattern of the coefficient

matrix M. By preserving the sparsity pattern of the original matrices, structured

BEs have been studied in the literature; see, for example, [2, 3, 159].

• Existing techniques are not applicable when the block matrices A, B and D in

GSPP (4.1.1) have circulant, Toeplitz, or symmetric-Toeplitz structures.

• Moreover, the research available in the literature for structured BE analysis for

(4.1.1) does not provide the explicit formulae for the minimal perturbation matrices

for which structured BE is attained and preserves the inherent matrix structure.

This section addresses the aforementioned challenges by investigating structured BEs

for the GSPP (4.1.1) by preserving both the inherent block structure and sparsity in the

perturbation matrices under three scenarios. First, we consider the case where n = m

and the block matrices A, B, and D are circulant. Second, we consider A, B, and D are

Toeplitz matrices. Third, we analyze the case when n = m, B is symmetric-Toeplitz, and

A, D ∈ Cn×n. The following are the main contributions of this section:
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• We investigate the structured BEs for the GSPP (4.1.1) when the block matrices

A,B and D possesses circulant, Toeplitz, and symmetric-Toeplitz structure with

or without preserving the sparsity pattern.

• We develop frameworks that give the minimal perturbation matrices that retain

the circulant, Toeplitz, or symmetric-Toeplitz structures, as well as the sparsity

pattern of the original matrices.

• We provide an application of our obtained results in finding the structured BEs

for the WRLS problem when the coefficient matrix exhibits Toeplitz or symmetric-

Toeplitz structure.

• Lastly, numerical experiments are performed to test the backward stability and

strong backward stability of numerical algorithms to solve GSPP (4.1.1).

This section is organized as follows. In Subsection 4.1.1, we discuss preliminary defini-

tions and results. In Subsections 4.1.2-4.1.4, structured BEs for circulant, Toeplitz, and

symmetric-Toeplitz matrices are derived, respectively. Moreover, in Subsection 4.1.5, we

discuss the unstructured BE for the GSPP (4.1.1) by only preserving the sparsity pat-

tern. In Subsection 4.1.6, we provide an application of our developed theories in the

WRLS problem.

4.1.1. Preliminaries

Let w := [w1, w2, w3, w4, w5]
T , where wi are nonnegative real numbers for i = 1, 2, . . . , 5,

with the convention that w−1
i = 0, whenever wi = 0. For any w, we define∣∣∣∣∣∣∣∣∣îM b

ó∣∣∣∣∣∣∣∣∣
w,F

=
∥∥∥ îw1∥A∥F , w2∥B∥F , w3∥D∥F , w4∥f∥2, w5∥g∥2

ó ∥∥∥
2
.

Note that wi = 0 implies that the corresponding block matrix has no perturbation. Next,

we recall the definitions of circulant, Toeplitz, and symmetric-Toeplitz matrices.

Definition 4.1.1. A matrix C ∈ Cn×n is called a circulant matrix if for any vector

c = [c1, c2, . . . , cn]
T ∈ Cn, it has the following form:

Cr(c) := C =



c1 cn cn−1 · · · c2

c2 c1 cn · · · c3
...

. . .
. . .

. . .
...

cn−1 cn−2

. . .
. . . cn

cn cn−1 · · · c2 c1


. (4.1.2)
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We denote the generator vector for the circulant matrix C as

vecC(C) := [c1, c2, . . . , cn]
T ∈ Cn.

Definition 4.1.2. A matrix T = [tij] ∈ Cm×n is called a Toeplitz matrix if for any vector

vecT (T ) := [t−m+1, t−m+2, . . . , t−1, t0, t1, . . . , tn−1]
T ∈ Cn+m−1,

we have tij = tj−i, for all 1 ≤ i ≤ m and 1 ≤ j ≤ n.

We denote vecT (T ) as the generator vector for the Toeplitz matrix T. Also, for any

vector t ∈ Cm+n−1 corresponding generated Toeplitz matrix is denoted by T (t).

Remark 4.1.1. The Toeplitz matrix T is known as a symmetric-Toeplitz matrix when

n = m and t−m+1 = tn−1, . . . , t−1 = t1. In this context, we employ the notation

vecST (T ) := [t0, . . . , tn−1]
T ∈ Cn

to denote its generator vector. Also, for any vector t ∈ Cn, the corresponding symmetric-

Toeplitz matrix is symbolized as ST (t).

Let ṽ = [ũT , p̃T ]T be an approximate solution of the GSPP (4.1.1). Using the formula

(1.3.4), the unstructured BE for the GSPP (4.3.1), denoted by η(ṽ), is expressed as:

η(ṽ) =
∥b−Mṽ∥2√

∥M∥2F∥ṽ∥22 + ∥b∥22
. (4.1.3)

Throughout the section, we assume that the coefficient matrix M in (4.1.1) is non-

singular. If the block matrices A,B, and D have circulant (or Toeplitz) structure, we

identify (4.1.1) as circulant (or Toeplitz) structured GSPP. Moreover, we call (4.1.1) as

symmetric-Toeplitz structured GSPP when B ∈ ST n and A,D ∈ Cn×n.

We denote

∆M :=

[
∆A ∆BT

∆B ∆D

]
and ∆b :=

[
∆f

∆g

]
.

Next, we define normwise structured BE for the GSPP (4.1.1).

Definition 4.1.3. Let ṽ = [ũT , p̃T ]T be an approximate solution of the GSPP (4.1.1).

Then, the normwise structured BEs are defined as follows:

ηSi(ũ, p̃) = minÜ
∆A,∆B,

∆D,∆f,∆g

ê
∈Si

∣∣∣∣∣∣∣∣∣î∆M ∆b
ó∣∣∣∣∣∣∣∣∣

w,F
, for i = 1, 2, 3,
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where

S1 =

{(
∆A,∆B,

∆D,∆f,∆g

)∣∣∣∣
[
A+∆A (B +∆B)T

B +∆B D +∆D

][
ũ

p̃

]
=

[
f +∆f

g +∆g

]
,

∆A,∆B,∆C ∈ Cn, ∆f,∆g ∈ Cn

}
, (4.1.4)

S2 =

{(
∆A,∆B,

∆D,∆f,∆g

)∣∣∣∣
[
A+∆A (B +∆B)T

B +∆B D +∆D

][
ũ

p̃

]
=

[
f +∆f

g +∆g

]
,

∆A ∈ Tn×n, ∆B ∈ Tm×n, ∆D ∈ Tm×m, ∆f ∈ Cn,∆g ∈ Cm

}
, (4.1.5)

and

S3 =

{(
∆A,∆B,

∆D,∆f,∆g

)∣∣∣∣
[
A+∆A (B +∆B)T

B +∆B D +∆D

][
ũ

p̃

]
=

[
f +∆f

g +∆g

]
,

∆B ∈ ST n, ∆A,∆D ∈ Cn×n, ∆f,∆g ∈ Cn

}
. (4.1.6)

In the following, we state the problem of finding structure-preserving minimal pertur-

bation matrices for which the structured BE is attained.

Problem 4.1.2. Find out the minimal perturbation matrices ∆̂A, ∆̂B, ∆̂D, ”∆f and”∆g
in Si such that

ηSi(ũ, p̃) =
∣∣∣∣∣∣∣∣∣î‘∆M ”∆dó∣∣∣∣∣∣∣∣∣

w,F
, for i = 1, 2, 3,

where ‘∆M :=

[
∆̂A ∆̂B

T

∆̂B ∆̂D

]
and ”∆b :=

[”∆f”∆g].
Remark 4.1.3. Our main focus is studying perturbations with the same sparsity pattern

as the original matrices. To achieve this, we replace the perturbation matrices ∆A,∆B

and ∆D by ∆A⊙ΘA,∆B⊙ΘB and ∆D⊙ΘD, respectively, where the sparsity pattern

of a matrix A ∈ Cm×n is defined as ΘA := sgn(A) = [sgn(aij)]. In this context, we

denote the structured BEs by ηSi
sps(ũ, p̃), i = 1, 2, 3. Further, the minimal perturbation

matrices are denoted by ∆̂Asps, ∆̂Bsps, ∆̂Dsps, ”∆f sps, and ”∆gsps. Note that, if M ∈
Cn (or Tm×n, or ST n), then ΘM ∈ Cn (or Tm×n, or ST n).

4.1.2. Structured BEs for Circulant Structured GSPPs

In this subsection, we consider n = m and derive explicit formulae for the structured

BEs ηS1
sps(ũ, p̃) and ηS1(ũ, p̃), by preserving the circulant structure to the perturbation
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matrices. Moreover, we provide minimal perturbation matrices to the Problem (4.1.2).

In order to obtain structured BEs formulae, we derive the following lemma.

Lemma 4.1.4. Let A,B,M ∈ Cn with generator vectors vecC(A) = [a1, . . . , an]
T ∈

Cn, vecC(B) = [b1, . . . , bn]
T ∈ Cn, and vecC(M) = [m1, . . . ,mn]

T ∈ Cn, respectively.

Suppose x = [x1, . . . , xn]
T ∈ Cn and y = [y1, . . . , yn]

T ∈ Cn. Then

(A ⊙ ΘM)x = Cr (x)Dc(M)vecC(A ⊙ ΘM) and

(B ⊙ ΘM)Ty = HyDc(M)vecC(B ⊙ ΘM),

where c(M) := vecC(ΘM) and Hy ∈ Cn×n has the following form:

Hy =



y1 y2 · · · yn−1 yn

y2 y3 · · · yn y1
... . .

.
. .
.

. .
. ...

yn−1 . .
.
. .
.
yn−3 yn−2

yn y1 · · · yn−2 yn−1


. (4.1.7)

Proof. Since ijth entry of A⊙ΘM is (A⊙ΘM)ij = aij sgn(mij), we get A ⊙ ΘM ∈ Cn,
and

vecC(A ⊙ ΘM) =


a1sgn(m1)

...

ansgn(mn)

 .
Now, expanding (A ⊙ ΘM)x, we get the following:

(A ⊙ ΘM)x =


a1 sgn(m1)x1 + an sgn(mn)x2 + · · ·+ a2 sgn(m2)xn

a2 sgn(m2)x1 + a1 sgn(m1)x2 + · · ·+ a3 sgn(m3)xn
...

...
...

...

an sgn(mn)x1 + an−1 sgn(mn−1)x2 + · · ·+ a1 sgn(m1)xn

 .
Since (sgn(mi))

2 = sgn(mi), rearrangement of the above gives

(A ⊙ ΘM )x =



x1 sgn(m1) xn sgn(m2) xn−1 sgn(m3) · · · x2 sgn(mn)

x2 sgn(m1) x1 sgn(m2) xn sgn(m3) · · · x3 sgn(mn)
...

. . .
. . .

. . .
...

xn−1 sgn(m1) xn−2 sgn(m2) · · ·
. . . xn sgn(mn)

xn sgn(m1) xn−1 sgn(m2) · · · x2 sgn(mn−1) x1 sgn(mn)





a1sgn(m1)

a2sgn(m2)
...
...

ansgn(mn)


.

Hence, the above can be expressed as

(A ⊙ ΘM)x = Cr(x)Dc(M)vecC(A ⊙ ΘM).
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Similarly, expanding (B ⊙ ΘM)Ty, we can obtain

(B ⊙ ΘM)Ty = HyDc(M)vecC(B ⊙ ΘM),

where Hy is given by (4.1.7). ■

For a better understanding of Lemma 4.1.4, we consider the following example.

Example 4.1.1. Consider

A =


5 7 3

3 5 7

7 3 5

 ∈ C3 and M =


3 0 9

9 3 0

0 9 3

 ∈ C3.

Then, ΘM =


1 0 1

1 1 0

0 1 1

 , vecC(ΘM) =


1

1

0

 , and we get

(A ⊙ ΘM)x =

Ü
5 7 3

3 5 7

7 3 5

⊙


1 0 1

1 1 0

0 1 1


ê

x1

x2

x3

 . (4.1.8)

Then (4.1.8) can be rearranged in the following form:

(A ⊙ ΘM)x =


x1 x3 x2

x2 x1 x3

x3 x2 x1



1 0 0

0 1 0

0 0 0



5

3

0

 . (4.1.9)

The above equation can be written as: (A ⊙ ΘM)x = Cr(x)Dc(M)vecC(A⊙ΘM).

Next, we present the main result of this section concerning the structured BE for cir-

culant structured GSPP while preserving the sparsity pattern. Before that, we introduce

the following notation:

Dc(A) = diag(vecC(ΘA)), Dc(B) = diag(vecC(ΘB)), (4.1.10)

Dc(D) = diag(vecC(ΘD)), and Da = diag(a), (4.1.11)

where a = [
√
n, . . . ,

√
n]T ∈ Rn.

Theorem 4.1.5. Let ṽ = [ũT , p̃T ]T be the approximate solution of the circulant structured

GSPP (4.1.1), i.e., A,B,D ∈ Cn, and w4, w5 ̸= 0. Then, we have

ηS1
sps(ũ, p̃) =

∥∥XH
Cr(XCrXH

Cr)
−1rb

∥∥
2
, (4.1.12)
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where XCr ∈ C2n×5n is given by

XCr =

[
1
w1
Cr(ũ)Dc(A)D

−1
a

1
w2
Hp̃Dc(B)D

−1
a 0 − 1

w4
In 0

0 1
w2
Cr(ũ)Dc(B)D

−1
a

1
w3
Cr(p̃)Dc(D)D

−1
a 0 − 1

w5
In

]
,

rb = [rTf , r
T
g ]
T , rf = f − Aũ−BT p̃, and rg = g −Bũ−Dp̃.

Furthermore, the minimum norm perturbations to the Problem 4.1.2 are given by

∆̂Asps = Cr

Å
1

w1

D−1
a

î
In 0n×4n

ó
XH

Cr(XCrXH
Cr)

−1rb

ã
, (4.1.13)

∆̂Bsps = Cr

Å
1

w2

D−1
a

î
0n×n In 0n×3n

ó
XH

Cr(XCrXH
Cr)

−1rb

ã
, (4.1.14)

∆̂Dsps = Cr

Å
1

w3

D−1
a

î
0n×2n In 0n×2n

ó
XH

Cr(XCrXH
Cr)

−1rb

ã
, (4.1.15)”∆f sps = 1

w4

î
0n×3n In 0n×n

ó
XH

Cr(XCrXH
Cr)

−1rb, and (4.1.16)”∆gsps = 1

w5

î
0n×4n In

ó
XH

Cr(XCrXH
Cr)

−1rb. (4.1.17)

Proof. Let ṽ = [ũT , p̃T ]T be an approximate solution of the circulant structured GSPP of

the form (4.1.1). We need to construct sparsity preserving perturbations ∆A, ∆B, ∆D ∈
Cn, and perturbations ∆f ∈ Cn and ∆g ∈ Cn. By Definition 4.1.3, ∆A, ∆B, ∆D, ∆f,

and ∆g satisfy

∆Aũ+∆BT p̃−∆f = rf (4.1.18)

and ∆Bũ+∆Dp̃−∆g = rg. (4.1.19)

To maintain the sparsity pattern of A,B and D on the perturbation matrices, we replace

∆A, ∆B and ∆D by ∆A⊙ΘA, ∆B⊙ΘB and ∆D⊙ΘD, respectively. Consequently,

from (4.1.18) and (4.1.19), we get

w−1
1 w1(∆A⊙ΘA)ũ+ w−1

2 w2(∆B⊙ΘB)
T p̃− w−1

4 w4∆f = rf , (4.1.20)

and w−1
2 w2(∆B⊙ΘB)ũ+ w−1

3 w3(∆D⊙ΘD)p̃− w−1
5 w5∆g = rg. (4.1.21)

Applying Lemma 4.1.4 in (4.1.20), we obtain

w−1
1 Cr (ũ)Dc(A)w1vecC(∆A ⊙ ΘA)

+ w−1
2 Hp̃Dc(B)w2vecC(∆B ⊙ ΘB)− w−1

4 w4∆f = rf . (4.1.22)
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Multiplying and dividing by Da in (4.1.22), we get

w−1
1 Cr(ũ)Dc(A)D

−1
a Daw1vecC(∆A ⊙ ΘA)

+ w−1
2 Hp̃Dc(B)D

−1
a Daw2vecC(∆B ⊙ ΘB)− w−1

4 w4∆f = rf . (4.1.23)

We can reformulate (4.1.23) as follows:

X1∆E = rf , (4.1.24)

where

X1 =
î
w−1

1 Cr(ũ)Dc(A)D
−1
a w−1

2 Hp̃Dc(B)D
−1
a 0 −w−1

4 In 0
ó
∈ Cn×5n

and

∆E =



w1DavecC(∆A ⊙ ΘA)

w2DavecC(∆B ⊙ ΘB)

w3DavecC(∆D ⊙ ΘD)

w4∆f

w5∆g


∈ C5n. (4.1.25)

Here, the matrix Da satisfy ∥DavecC(A)∥2 = ∥A∥F , for any A ∈ Cn.
Similarly, applying Lemma 4.1.4 to (4.1.21), we obtain

w−1
2 Cr(ũ)Dc(B)w2vecC(∆B ⊙ ΘB)

+ w−1
3 Cr (p̃)Dc(D)w3vecC(∆D ⊙ ΘD)− w−1

5 w5∆g = rg. (4.1.26)

Thus, we can reformulate (4.1.26) as follows:

X2∆E = rg, (4.1.27)

where X2 =
î
0 w−1

2 Cr(ũ)Dc(B)D
−1
a w−1

3 Cr (p̃)Dc(D)D
−1
a 0 −w−1

5 In
ó
∈ Cn×5n.

By combining (4.1.24) and (4.1.27), we get the following equivalent linear system of

(4.1.18)–(4.1.19):

XCr∆E ≜

[
X1

X2

]
∆E = rb, (4.1.28)

where XCr =

[
X1

X2

]
∈ C2n×5n. Clearly, for w4, w5 ̸= 0, the matrix XCr has full row rank.

Consequently, the linear system (4.1.28) is consistent, and X †
Cr = XH

Cr(XCrXH
Cr)

−1, and by

Lemma 1.3.1, the minimum norm solution of the system is given by

∆Emin := X †
Crrb = XH

Cr(XCrXH
Cr)

−1rb. (4.1.29)
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Next, the minimization problem in Definition 4.1.3 is equivalently written as

[ηS1
sps(ũ, p̃)]

2 = min
{
w2

1∥∆A⊙ΘA∥2F + w2
2∥∆B⊙ΘB∥2F + w3

3∥∆D⊙ΘD∥2F

+ w2
4∥∆f∥22 + w2

5∥∆g∥22

∣∣∣∣∣
(

∆A⊙ΘA,∆B⊙ΘB,

∆D⊙ΘD,∆f,∆g

)
∈ S1

}

= min

{
∥∆E∥22

∣∣∣XCr∆E = rb

}
= ∥∆Emin∥22. (4.1.30)

Hence, using (4.1.29) and (4.1.30), the structured BE is given by

ηS1
sps(ũ, p̃) =

∥∥XH
Cr(XCrXH

Cr)
−1rb

∥∥
2
.

From (4.1.25), we get w1DavecC(∆A⊙ΘA) =
î
In 0n×4n

ó
∆E . Thus, the minimal pertur-

bation ∆̂Asps is given by

∆̂Asps = Cr

Å
1

w1

D−1
a

î
In 0n×4n

ó
∆Emin

ã
.

Similarly, we can obtain other minimal perturbations. Hence, the proof is completed. ■

In the following corollary, we present an explicit formula for the structured BE

ηS1(ũ, p̃) for the circulant structured GSPP (4.1.1) without maintaining the sparsity

pattern in the perturbation matrices.

Corollary 4.1.1. Let ṽ = [ũT , p̃T ]T be the approximate solution of the circulant struc-

tured GSPP, i.e., A,B,D ∈ Cn, and w4, w5 ̸= 0. Then, we have

ηS1(ũ, p̃) =
∥∥∥“XH

Cr(“XCr
“XH
Cr)

−1rb

∥∥∥
2
, (4.1.31)

where“XCr =

[
1
w1
Cr (ũ)D−1

a
1
w2
Hp̃D

−1
a 0 − 1

w4
In 0

0 1
w2
Cr (ũ)D−1

a
1
w3
Cr (p̃)D−1

a 0 − 1
w5
In

]
. (4.1.32)

Proof. Since we are not maintaining the sparsity pattern to the perturbation matrices,

we consider ΘA = ΘB = ΘD = 1n×n. Then ∆A⊙ΘA = ∆A, ∆B⊙ΘB = ∆B and

∆C ⊙ΘC = ∆C. Also, vecC(ΘA) = vecC(ΘB) = vecC(ΘC) = 1n. Consequently, the proof

is completed using the formula stated in Theorem 4.1.5. ■

The minimal perturbations ∆̂A, ∆̂B, ∆̂D, ”∆f, and”∆g to the Problem 4.1.2 are given

by formulae (4.1.13)-(4.1.17) with XCr = “XCr.
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4.1.3. Structured BEs for Toeplitz Structured GSPPs

This subsection focuses on the derivation of compact formulae for the structured

BEs ηS2
sps(ũ, p̃) and η

S2(ũ, p̃) for Toeplitz structured GSPPs with and without preserving

sparsity pattern, respectively. In addition, the minimal perturbations are provided for

the Problem 4.1.2 for which the structured BEs are obtained. To accomplish this, we first

derive the following lemma.

Lemma 4.1.6. Let A,B,M ∈ Tm×n with generator vectors

vecT (A) = [a−m+1, . . . , a−1, a0, a1 . . . , an−1]
T∈ Cn+m−1,

vecT (B) = [b−m+1, . . . , b−1, b0, b1 . . . , bn−1]
T∈ Cn+m−1 and

vecT (M) = [m−m+1, . . . ,m−1,m0,m1 . . . ,mn−1]
T∈ Cn+m−1,

respectively. Suppose x = [x1, . . . , xn]
T ∈ Cn and y = [y1, . . . , ym]

T ∈ Cm. Then

(A ⊙ ΘM)x = KxDt(M)vecT (A ⊙ ΘM) and

(B ⊙ ΘM)Ty = GyDt(M)vecT (B ⊙ ΘM),

where t(M) = vecT (ΘM),

Kx =



0 · · · · · · 0

mthterm
↑

x1 · · · · · · · · · xn−1 xn
... · · · 0 x1 x2 · · · · · · xn−1 xn 0
... . .

.
. .
.
. .
.

. .
.

. .
.

. .
. ...

0 . .
.
. .
.

. .
.
. .
.

. .
. ...

x1 x2 · · · xn−1 xn 0 · · · · · · 0


∈ Cm×(m+n−1),

Gy =



ym ym−1 · · · y1 0 · · · · · · · · · 0

0 ym ym−1 · · · y1 0 · · · · · · 0

0 0
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . .

. . .
. . .

...

0 · · · 0 ym ym−1 · · · y1 0

0 · · · · · · · · · 0 ym

↓
nthterm

ym−1 · · · y1


∈ Cn×(m+n−1).

Proof. The proof proceeds in a similar manner to the proof of Lemma 4.1.4. ■
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In the following theorem, we derive the explicit formula for the structured BE ηS2
sps(ũ, p̃).

Prior to that, we introduce the following notation:

Dt(A) = diag(vecT (ΘA)), Dt(B) = diag(vecT (ΘB)), (4.1.33)

Dt(D) = diag(vecT (ΘD)) and Dtmn = diag(tmn), (4.1.34)

where tmn = [1,
√
2, . . . ,

√
m− 1,

√
min{m,n},

√
n− 1, . . . ,

√
2, 1]T ∈ Rm+n−1.When n =

m, we write tmn = tn (or tm).

Theorem 4.1.7. Let ṽ = [ũT , p̃T ]T be the approximate solution of the Toeplitz structured

GSPP (4.1.1), i.e., A ∈ Tn×n, B ∈ Tm×n, D ∈ Tm×m, and w4, w5 ̸= 0. Then, we have

ηS2
sps(ũ, p̃) =

∥∥XH
T (XT XH

T )−1rb
∥∥
2
, (4.1.35)

where XT ∈ C(n+m)×(4n+4m−3) is given by

XT =

[
1
w1
KũDt(A)D

−1
tn

1
w2
Gp̃Dt(B)D

−1
tmn

0 − 1
w4
In 0

0 1
w2
KũDt(B)D

−1
tmn

1
w3
Kp̃Dt(D)D

−1
tm 0 − 1

w5
Im

]
,

rb =
î
rTf , rTg

óT
, rf = f − Aũ−BT p̃, and rg = g −Bũ−Dp̃.

Furthermore, the minimal perturbations to the Problem 4.1.2 are given by

∆̂Asps = T
Å

1

w1
D−1

tn

î
I2n−1 0(2n−1)×(2n+4m−2)

ó
XH

T (XT XH
T )−1rb

ã
, (4.1.36)

∆̂Bsps = T
Å

1

w2
D−1

tmn

î
0(m+n−1)×(2n−1) Im+n−1 0(m+n−1)×(3m+n−1)

ó
XH

T (XT XH
T )−1rb

ã
, (4.1.37)‘∆Dsps = T

Å
1

w3
D−1

tm

î
0(2m−1)×(3n+3m−2) I2m−1 0(2m−1)×(n+m)

ó
XH

T (XT XH
T )−1rb

ã
, (4.1.38)”∆fsps =

1

w4

î
0n×(3n+3m−3) In 0n×m

ó
XH

T (XT XH
T )−1rb, and (4.1.39)”∆gsps =

1

w5

î
0m×(4n+3m−3) Im

ó
XH

T (XT XH
T )−1rb. (4.1.40)

Proof. We need to construct perturbation matrices ∆A ∈ Tn×n,∆B ∈ Tm×n,∆D ∈ Tm×m

(which preserves the sparsity pattern of the original matrices), ∆f ∈ Cn and ∆g ∈ Cm

for the approximate solution ṽ = [ũT , p̃T ]T . By Definition 4.1.3, ∆A,∆B,∆D,∆f, and

∆g satisfy

∆Aũ+∆BT p̃−∆f = rf ,

∆Bũ+∆Dp̃−∆g = rg.
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Following the proof method of Theorem 4.1.5 and using Lemma 4.1.6, we obtain rb =

XT ∆E , where

∆E =



w1DtnvecT (∆A ⊙ ΘA)

w2DtmnvecT (∆B ⊙ ΘB)

w3DtmvecT (∆D ⊙ ΘD)

w4∆f

w5∆g


∈ C4n+4m−3. (4.1.41)

Hence, an analogous way to proof of Theorem 4.1.5, we get

ηS2
sps(ũ, p̃) =

∥∥XH
T (XT XH

T )−1rb
∥∥
2
.

From (4.1.41), we get w1DtnvecT (∆A ⊙ ΘA) =
î
I2n−1 0(2n−1)×(2n+4m−2)

ó
∆E . Therefore,

the minimal perturbation matrix ∆̂Asps, which preserve the sparsity pattern of A is given

by

∆̂Asps =
1

w1

D−1
tn

î
I2n−1 0(2n−1)×(2n+4m−2)

ó
∆Emin.

Similarly, we can obtain the minimal perturbations ∆̂Bsps, ∆̂Dsps,”∆f sps and ”∆gsps.
Hence, the proof is completed. ■

The next corollary presents a formula for ηS2(ũ, p̃) without considering the sparsity

pattern in the input matrices.

Corollary 4.1.2. Let ṽ = [ũT , p̃T ]T be the approximate solution of the Toeplitz structured

GSPP (4.1.1), i.e., A ∈ Tn×n, B ∈ Tm×n, D ∈ Tn, and w4, w5 ̸= 0. Then, we have

ηS2(ũ, p̃) =
∥∥∥“XH

T (“XT “XH
T )−1rb

∥∥∥
2
, (4.1.42)

where “XT ∈ C(n+m)×(4n+4m−3) is given by“XT =

[
1
w1
KũD

−1
tn

1
w2
Gp̃D

−1
tmn

0 − 1
w4
In 0

0 1
w2
KũD

−1
tmn

1
w3
Kp̃D

−1
tm 0 − 1

w5
Im

]
. (4.1.43)

Proof. Since the sparsity pattern of the perturbation matrices is not taken care of, we

consider ΘA = 1n×n, ΘB = 1m×n and ΘD = 1m×m. Then ∆A⊙ΘA = ∆A, ∆B⊙ΘB =

∆B, and ∆D⊙ΘD = ∆D. Also, vecT (ΘA) = 12n−1, vecT (ΘB) = 1m+n−1 and vecT (ΘD) =

12m−1. As a result, the proof follows using the formula stated in Theorem 4.1.7. ■

Note that the minimal perturbations ∆̂A, ∆̂B, ∆̂D,”∆f, and”∆g to the Problem 4.1.2

are given by formulae (4.1.36)-(4.1.40) with XT = “XT .
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4.1.4. Structured BEs Symmetric-Toeplitz Structured GSPPs

In this subsection, we derive concise formulae for the structured BE ηS3
sps(ũ, p̃) and

ηS3(ũ, p̃) for symmetric-Toeplitz structured GSPPs with and without preserving the spar-

sity pattern, respectively. Since the (1, 2) block matrix B is symmetric, thus the case

n = m follows. In many applications, such as the WRLS problem, the block matrices A

and D do not follow any particular structure, in this subsection, we focus on the struc-

tured BE when the perturbation matrix ∆B follows symmetric-Toeplitz structure of B.

To find the structured BE, we present the following lemmas that are crucial in establishing

our main results.

Lemma 4.1.8. Let A,M ∈ ST n with generator vectors vecST (A) = [a0, a1 . . . , an−1]
T ∈

Cn and vecST (M) = [m0,m1 . . . ,mn−1]
T ∈ Cn, respectively. Suppose x = [x1, . . . , xn]

T ∈
Cn, then

(A ⊙ ΘM)x = IxDs(M)vecST (A ⊙ ΘM),

where s(M) = vecST (ΘM) and Ix ∈ Cn×n is given by

Ix =



x1 · · · · · · xn−1 xn

x2 · · · · · · xn 0
... . .

.
. .
. ...

... xn 0 · · ·
...

xn 0 · · · · · · 0


+



0 · · · · · · 0

0 x1 0 · · · 0
...

...
. . .

. . .
...

... xn−2 · · · x1 0

0 xn−1 · · · · · · x1


. (4.1.44)

Proof. The proof proceeds in a similar manner to the proof of Lemma 4.1.4. ■

Lemma 4.1.9. Let A,B,M ∈ Cm×n be three matrices. Suppose that x = [x1, . . . , xn]
T ∈

Cn and y = [y1, . . . , ym]
T ∈ Cm. Then, (A ⊙ ΘM)x = Mm

x Dvec(ΘM )vec(A ⊙ ΘM) and

(B⊙ΘM)Ty = Nn
yDvec(ΘM )vec(B ⊙ ΘM), where Mm

x = xT ⊗ Im ∈ Cm×mn and Nn
y =

In ⊗ yT ∈ Cn×mn.

Proof. The proof proceeds in a similar method to the proof of Lemma 4.1.4. ■

Next, we derive concrete formulae for ηS3
sps(ũ, p̃) and ηS3(ũ, p̃), which are the main

result of this subsection. Before proceeding, we introduce the following notations:

Ds(A) = diag(vecST (ΘA)), Ds(B) = diag(vecST (Θb)), (4.1.45)

Ds(D) = diag(vecST (ΘD)) and Ds = diag(s), (4.1.46)

where s = [
√
n,
√

2(n− 1),
√
2(n− 2), . . . ,

√
2]T ∈ Rn.
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Theorem 4.1.10. Let ṽ = [ũT , p̃T ]T be an approximate solution of the symmetric-

Toeplitz structured GSPP (4.1.1), i.e., B ∈ ST n, A,D ∈ Cn×n, and w4, w5 ̸= 0. Then, we

have

ηS3
sps(ũ, p̃) =

∥∥ZH
ST (ZST ZH

ST )
−1rb

∥∥
2
, (4.1.47)

where ZST ∈ C2n×l is given by

ZST =

[
1
w1
Mn

ũDvec(ΘA)
1
w2
Ip̃Ds(B)D

−1
s 0 − 1

w4
In 0

0 1
w2
IũDs(B)D

−1
s

1
w3
Mn

p̃Dvec(ΘD) 0 − 1
w5
In

]
, (4.1.48)

rb = [rTf , rTg ]
T , rf = f − Aũ−Bp̃, rg = g −Bũ−Dp̃, and l = 2n2 + 3n.

Furthermore, the minimal perturbations to the Problem 4.1.2 are given by

vec(∆̂Asps) =
1

w1

î
In2 0n2×(n2+3n)

ó
ZH

ST (ZST ZH
ST )

−1rb, (4.1.49)

∆̂Bsps = ST
Å

1

w2

D−1
s

î
0n×n2 In 0n×(2n2+2n)

ó
ZH

ST (ZST ZH
ST )

−1rb

ã
, (4.1.50)

vec(∆̂Dsps) =
1

w3

î
0n2×(n2+n) In2 0n2×(n2+2n)

ó
ZH

ST (ZST ZH
ST )

−1rb, (4.1.51)”∆f sps = 1

w4

î
0n×(2n2+n) In 0n×(2n2+n)

ó
ZH

ST (ZST ZH
ST )

−1rb, and (4.1.52)”∆gsps = 1

w5

î
0n×(2n2+2n) In

ó
ZH

ST (ZST ZH
ST )

−1rb. (4.1.53)

Proof. For an approximate solution ṽ = [ũT , p̃T ]T , we require to construct sparsity pre-

serving perturbation matrices ∆B ∈ ST n,∆A,∆D ∈ Cn×n, and perturbations ∆f ∈ Cn

and ∆g ∈ Cn. By Definition 4.1.3, we have

∆Aũ+∆BT p̃−∆f = rf , (4.1.54)

∆Bũ+∆Dp̃−∆g = rg, (4.1.55)

where ∆B ∈ ST n, and ∆A,∆D ∈ Cn×n.

Following the proof method of Theorem 4.1.5 and using Lemmas 4.1.8 and 4.1.9, we obtain

rb = ZST ∆E , where

∆E =



w1Dsvec(∆A ⊙ ΘA)

w2DsvecST (∆B ⊙ ΘB)

w3Dsvec(∆D ⊙ ΘD)

w4∆f

w5∆g


∈ Cl. (4.1.56)

Hence, following an analogous way to proof of Theorem 4.1.5, we get the desired

structured BE and perturbation matrices. ■
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Next, we present the formula for ηS3(ũ, p̃) without preserving the sparsity pattern.

Corollary 4.1.3. Let ṽ = [ũT , p̃T ]T be an approximate solution of the symmetric-Toeplitz

structured GSPP (4.1.1), i.e., B ∈ ST n, A,D ∈ Cn×n, and w4, w5 ̸= 0. Then, we have

ηS3(ũ, p̃) =
∥∥∥“ZH

ST (“ZST “ZH
ST )

−1rb

∥∥∥
2
, (4.1.57)

where “ZST =

[
1
w1
Mn

ũ
1
w2
Ip̃D

−1
s 0 − 1

w4
In 0

0 1
w2
IũD

−1
s

1
w3
Mn

p̃ 0 − 1
w5
In

]
. (4.1.58)

Proof. Because we are not considering the sparsity pattern in the perturbation matrices,

taking ΘA = ΘB = ΘD = 1n×n in the Theorem 4.1.10 yields the desired result. ■

The minimal perturbation matrices ∆̂A, ∆̂B, ∆̂D,”∆f, and ”∆g to the Problem 4.1.2

are given by formulae (4.1.49)-(4.1.53) with ZST = “ZST .

Remark 4.1.11. Applying our framework developed in this subsection and Subsections

4.1.2 and 4.1.3, we can obtain the structured BEs for the GSPP (4.1.1) when the block

matrices possess only symmetric structure or Hankel structure (which is symmetric as

well).

4.1.5. Unstructured BEs with Preserving Sparsity Pattern

In this section, we address the scenario where A, B, and D in (4.1.1) are unstructured.

Although the previous studies such as [146, 44, 162] have explored the BEs for the GSPP

(4.1.1), their investigations do not take into account the sparsity pattern of the block

matrices. Consequently, in this scenario, first, we define the unstructured BE as follows:

η(ũ, p̃) := minÜ
∆A,∆B,∆D,

∆f,∆g

ê
∈S0

∣∣∣∣∣∣∣∣∣î∆M ∆b
ó∣∣∣∣∣∣∣∣∣

w,F
(4.1.59)

where

S0 =

{(
∆A,∆B,∆C,

∆f,∆g

)∣∣∣∣
[
A+∆A (B +∆B)T

B +∆B D +∆D

][
ũ

p̃

]
=

[
f +∆f

g +∆g

]}
.

The following result gives the formula for the unstructured BE of the GSPPs (4.1.1)

when the sparsity pattern in the perturbation matrices is preserved, and in this case, we

denote it by ηsps(ũ, p̃).
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Theorem 4.1.12. Let ṽ = [ũT , p̃T ]T be an approximate solution of the GSPP (4.1.1)

with A ∈ Cn×n, B ∈ Cm×n, D ∈ Cm×m, and w4, w5 ̸= 0. Then, we have

ηsps(ũ, p̃) =
∥∥NH(NNH)−1rb

∥∥
2
,

where N ∈ C(m+n)×k is given by

N =

[
1
w1
Mn

ũDvec(ΘA)
1
w2
Nn

p̃Dvec(ΘB) 0 − 1
w4
In 0

0 1
w2
Mm

ũ Dvec(ΘB)
1
w3
Nm

p̃ Dvec(ΘD) 0 − 1
w5
Im

]
(4.1.60)

and k = n2 +m2 +mn+ n+m.

Proof. The proof follows similarly to the proof method of Theorem 4.1.10. ■

The next corollary presents the BE formula when the sparsity is not considered.

Corollary 4.1.4. Let ṽ = [ũT , p̃T ]T be an approximate solution of the GSPP (4.1.1)

with A ∈ Cn×n, B ∈ Cm×n and D ∈ Cm×m, and w4, w5 ̸= 0. Then, we have

η(ũ, p̃) =
∥∥∥“NH(“N “NH)−1rb

∥∥∥
2
,

where “N ∈ C(m+n)×l is given by“N =

[
1
w1
Mn

ũ
1
w2
Nn

p̃ 0 − 1
w4
In 0

0 1
w2
Mm

ũ
1
w3
Nm

p̃ 0 − 1
w5
Im

]
. (4.1.61)

Proof. The proof is followed by taking ΘA = 1m×m, ΘB = 1m×n and ΘD = 1n×n in the

expression of ηsps(ũ, p̃), presented in Theorem 4.1.12. ■

Note that when w4 or w5 are zero, the desired BE is achieved if N and “N have full

row rank. Nevertheless, in [90, 146], formulas for BEs with no special structure on block

matrices are discussed, the following example illustrates that our BE can be smaller than

theirs.

Example 4.1.2. Consider the GSPP (4.1.1), where A = I4, B =

[
2 1 3 1

−1 2 1 1

]
∈ R2×4,

D = 0, f = [−1, 0, 2, 3]T , and g = 0. We take the approximate solution [ũT , p̃T ]T =

[−1.495, 1.505, 1.505, 1.505, 1.005,−0.495]T . Then, employing the formula provided in [90]

with θ = 1, the computed BE is 0.0410. Since, the (1,1) block in [90] has no perturbation,

by considering w1 = 0 in Corollary 4.1.4 (with w2 = w4 = 1, w3 = w5 = 0), the BE is

0.0288. This comparison highlights that our computed BE using Corollary 4.1.4 and [90]

are of the same order, illustrating the reliability of our obtained BE.
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4.1.6. Application to Derive the Structured BEs for the WRLS Problems

In this subsection, we present an application of our developed theory in deriving the

structured BE for the WRLS problem (1.1.3). The minimization problem (1.1.3) can be

reformulated as the following GSPP:

M̂

[
r

z

]
≜

[
W−1 KT

K −λIm

][
r

z

]
=

[
f

0

]
, (4.1.62)

where K is a Toeplitz or symmetric-Toeplitz matrix.

Since the weighting matrix W and the regularization matrix −λIm are not allowed to

be perturbed, we consider (1, 1) block and (2, 2) block has no perturbation. Let [r̃T , z̃T ]T

be the approximate solution of (4.1.62), i.e., z̃ be an approximate solution of the WRLS

problem. Then, we define structured BE for the WRLS problem as follows:

ζ(z̃) := min
(∆K,∆B)∈Sls

∥∥∥î[w2∥∆K∥F , w4∥∆f∥2
ó∥∥∥

2
, (4.1.63)

where

S ls :=

{
(∆K,∆f) :

[
W−1 (K +∆K)T

K +∆K −λIm

][
r̃

z̃

]
=

[
f +∆f

0

]
, ∆K ∈ {Tm×n,ST n}

}
.

Before proceeding, we define Xls ∈ R(n+m)×(2n+m−1) and Zls ∈ R2n×2n as follows:

Xls =

[
1
w2
Gz̃Dt(K)D

−1
tmn

− 1
w4
In

1
w2
Kr̃Dt(K)D

−1
tmn

0

]
and Zls =

[
1
w2
Iz̃Dt(K)D

−1
s − 1

w4
In

1
w2
Ir̃Dt(K)D

−1
s 0

]
,

where t(K) = vecT (ΘK), r̃f = f −W−1r̃−KT z̃, and r̃g = λz̃ −K r̃.

Theorem 4.1.13. Let z̃ be an approximate solution of the WRLS problem (1.1.3) with

K ∈ {Tm×n,ST n}. Let r̃d = [r̃Tf , r̃Tg ]
T , then

1. when K ∈ Tm×n and rank(Xls) = rank ([Xls r̃d]) , we have

ζ(z̃) =
∥∥∥X †

lsr̃d

∥∥∥
2
, (4.1.64)

2. when K ∈ ST n and rank(Zls) = rank ([Zls r̃d]) , we have

ζ(z̃) =
∥∥∥Z†

lsr̃d

∥∥∥
2
. (4.1.65)

Proof. First, we considerK ∈ Tm×n. Since,W and −λIm are not required to be perturbed,

we take w1 = 0 and w3 = 0. Following the proof method of Theorem 4.1.7, we obtain that

(∆K,∆B) ∈ S ls, ∆K ∈ Tm×n if and only if

Xls∆Els = r̃d, (4.1.66)
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where ∆Els =

[
w2DtmnvecT (∆K ⊙ ΘK)

w4∆B

]
. Thus, when rank(Xls) = rank ([Xls r̃d]) , the

minimum norm solution of (4.1.66) is ∆E lsmin = X †
lsr̃d. Hence, the structured BE ζ(z̃) in

(4.1.64) is attained. Similarly, for K ∈ ST n (n = m), we can derive the structured BE

given in (4.1.65). ■

Note that we can similarly obtain the structured BE for the WRLS when K is circu-

lant.

4.2. Structured Backward Errors of Generalized Saddle Point

Problems with Hermitian Block Matrices

In this section, we derive the structured BE for a class of GSPP by preserving the

Hermitian and sparsity structures of the block matrices. Additionally, we construct the

minimal backward perturbation matrices for which the structured BE is achieved. Our

analysis further explores the structured BE when the sparsity structure is not preserved.

We consider the GSPP of the following form:

M0v ≜

[
A BH

B D

][
u

p

]
=

[
q

r

]
≜ f , (4.2.1)

where A ∈ Cn×n, B, C ∈ Cm×n, D ∈ Cm×m, q ∈ Cn and r ∈ Cm. We investigate the

structured BE for the GSPP (4.2.1) when A ∈ Cn×n is Hermitian, B ∈ Cm×n, and

D ∈ Cm×m by preserving the the sparsity of M0.

4.2.1. Basic Definitions and Lemmas

We use Sn, SKRn×n and HCn×n represent the set of all n×n real symmetric matrices,

real skew-symmetric matrices and Hermitian matrices, respectively. ForX ∈ Cn×m,R(X)

and I(X) represent the real part and imaginary part of X, respectively. Given a positive

weight vector σ = [α1, α2, α3, β1, β2]
T . Then, the corresponding weighted Frobenius norms

are defined as follows:∣∣∣∣∣∣∣∣∣î∆M0 ∆f
ó∣∣∣∣∣∣∣∣∣

σ,F
=

∥∥∥ îα1∥∆A∥F , α2∥∆B∥F , α3∥∆D∥F , β1∥∆q∥2, β2∥∆r∥2
ó∥∥∥

2
.

Following the next definition, we introduce the concept of structured BE for the GSPP

(4.2.1). Throughout the section, we assume that the coefficient matrix M0 in (4.2.1) is

nonsingular.
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Definition 4.2.1. Assume that ṽ = [ũT , p̃T ]T is a computed solution of the GSPP (4.2.1).

Then, the normwise structured BEs ηG(ũ, p̃), is defined as follows:

ηG(ũ, p̃) = minÜ
∆A,∆B,

∆D,∆q,∆r

ê
∈G

∣∣∣∣∣∣∣∣∣î∆M0 ∆f
ó∣∣∣∣∣∣∣∣∣

σ,F
,

where

G =

{(
∆A,∆B,

∆D,∆q,∆r

)∣∣∣∣
[
A+∆A (B +∆B)H

B +∆B D +∆D

][
ũ

p̃

]
=

[
q +∆q

r +∆r

]
,

∆A ∈ HCn×n,∆B ∈ Cm×n,∆D ∈ Cm×m, ∆q ∈ Cn,∆r ∈ Cm

}
. (4.2.2)

By choosing α1 = 1
∥A∥F

, α2 = 1
∥B∥F

, α3 = 1
∥D∥F

, β1 = 1
∥q∥2 , and β2 = 1

∥r∥2 , we obtain

relative structured BEs for the GSPP (4.2.1).

Remark 4.2.1. The minimal backward perturbations for the structured BEs are denoted

by ∆̂Asps, ∆̂Bsps, ∆̂Dsps, ”∆qsps, ”∆rsps. Therefore, the following holds:

ηGi(ũ, p̃) = ησ1(∆̂Asps, ∆̂Bsps, ∆̂Dsps,”∆qsps,”∆rsps).
The structured BE by preserving sparsity pattern is denoted as ηG

sps(u,p).

Next, we define ΘM0 :=

[
ΘA ΘT

B

ΘB ΘD

]
and discuss some important definitions and lem-

mas.

Definition 4.2.2. Let Z ∈ Sm, then we define its generator vector by

vecS(Z) := [zT1 , z
T
2 , . . . ,z

T
m]

T ∈ R
m(m+1)

2 ,

where z1 = [z11, z21, . . . , zm1]
T ∈ Rm, z2 = [z22, z32, . . . , zm2]

T ∈ Rm−1, . . . ,zm−1 =

[z(m−1)(m−1), zm(m−1)]
T ∈ R2, and zm = [zmm] ∈ R.

Definition 4.2.3. Let Z ∈ SKRm×m, then we define its generator vector by

vecSK(Z) := [zT1 , z
T
2 , . . . ,z

T
m−1]

T ∈ R
m(m−1)

2 ,

where z1 = [z21, . . . , zm1]
T ∈ Rm−1, z2 = [z32, . . . , zm2]

T ∈ Rm−2, . . . , and zm−1 =

[z(m−1)(m−1)]
T ∈ R.
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Lemma 4.2.2. Let M ∈ Sm. Then vec(M) = Jm
S vecS(M), where

Jm
S =

î
J (1)
S J (2)

S · · · J (m)
S

ó
∈ Rm2×m(m+1)

2

and J (i)
S ∈ Rm×(m−i+1) are defined by

J (1)
S =



em1 em2 em3 · · · emm−1 emm

0 em1 0 · · · · · · 0

0 0 em1 · · · · · · 0
...

...
...

. . .
...

0 0 0 · · · em1 0

0 0 0 · · · 0 em1


, J (2)

S =



0 0 · · · · · · 0

em2 em3 · · · · · · emm

0 em2 0 · · · 0

0 0 em2 · · · 0
...

...
. . .

. . .
...

0 · · · · · · 0 em2


, . . . , J (m)

S =



0

0

0
...

0

emm


.

Lemma 4.2.3. Let M ∈ SKRm×m. Then vec(M) = Jm
SKvecSK(M), where

Jm
SK =

î
J (1)
SK J (2)

SK · · · J (m−1)
SK

ó
∈ Rm2×m(m−1)

2

and J (i)
SK ∈ Rm×(m−i) are defined by

J (1)
SK =



em2 em3 · · · emm−1 emm

−em1 0 · · · · · · 0

0 −em1 · · · · · · 0
...

...
. . .

...

0 0 · · · −em1 0

0 0 · · · 0 −em1


, J (2)

SK =



0 · · · · · · 0

em3 · · · · · · emm

−em2 0 · · · 0

0 −em2 · · · 0
...

. . .
. . .

...

· · · · · · 0 −em2


, . . . , J (m−1)

SK =



0

0

0
...

emm

−emm−1


.

Next, we introduce a key lemma that is essential for computing structured BE while

preserving sparsity.

Lemma 4.2.4. Assume M ∈ Rm×m and X ∈ HCn×n. Then, the following holds:

1. When M ∈ Sm. Then, we have

vec(M ⊙ΘX) = Jm
S ΦXvecS(M ⊙ΘX), (4.2.3)

where ΦX = diag(vecS(ΘX)).

2. When M ∈ SKRm×m. Then, we have

vec(M ⊙ΘX) = Jm
SKΨXvecSK(M ⊙ΘX), (4.2.4)

where ΨX = diag([ΘX(1, 2 : n), ΘX(2, 3 : n), . . . , ΘX(n− 1 : n)]T ).
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Proof. Let M ∈ Sm and X ∈ HCn×n. By definition of the matrix ΘX , we have ΘX ∈ Sm
and consequently, M ⊙ΘX ∈ Sm. Then

vec(M ⊙ΘX) = Jm
S vecS(M ⊙ΘX)

= Jm
S ΦXvecS(M ⊙ΘX).

Hence, (4.2.3) follows. Similarly, we can prove (4.2.4) when M ∈ SKRm×m. ■

Remark 4.2.5. When M,X ∈ Cm×n, we have vec(M ⊙ ΘX) = ΣXvec(M ⊙ ΘX), where

ΣX = diag(vec(ΘX)).

4.2.2. Computation of Structured BEs

In this subsection, we compute the closed-form expressions for the structured BEs

ηG
sps(ũ, p̃) by preserving the sparsity of the coefficient matrix and the Hermitian structure

of the matrix A. The following lemma plays a crucial role in the computation of the

structured BE.

Lemma 4.2.6. Consider the following GSPP:[
A+∆A (B +∆B)H

B +∆B D +∆D

][
u

p

]
=

[
q +∆q

r +∆r

]
. (4.2.5)

Then (4.2.5) can be reformulated as the following system of linear equations:{
R(∆A)R(u)− I(∆A)I(u) +R(∆B)TR(p) + I(∆B)TI(p)−R(∆q) = R(Q),

R(∆A)I(u) + I(∆A)R(u) +R(∆B)TI(p)− I(∆B)TR(p)− I(∆q) = I(Q),

(4.2.6)

and{
R(∆B)R(u)− I(∆B)I(u) +R(∆D)R(p)− I(∆D)I(p)−R(∆r) = R(R),

R(∆B)I(u) + I(∆B)R(u) +R(∆D)I(p) + I(∆D)R(p)− I(∆r) = I(R),
(4.2.7)

where

Q = q − Au−BHp and R = r −Bu−Dp. (4.2.8)

Proof. The GSPP (4.2.5) can be equivalently rewritten as follows:

∆Au+∆BHp−∆q = q − Au−BHp, (4.2.9)

∆Bu+∆Dp−∆r = r −Bu−Dp. (4.2.10)

Now separating the real and imaginary parts from (4.2.9) and (4.2.10), the proof follows.

■

102



Prior to stating the main theorem of this section, we construct the following matrices:

Let DSn ∈ R
n(n+1)

2
×n(n+1)

2 and DSKn ∈ R
n(n−1)

2
×n(n−1)

2 are the diagonal matrices with

DSn(j, j) :=

{
1, for j = (2n−(i−2))(i−1)

2
+ 1, i = 1, 2, . . . , n,

√
2, otherwise,

and

DSKn(j, j) :=
√
2, for j = 1, 2, . . . ,

n(n− 1)

2
.

Further, set

N1 := J n
S ΦAD

−1
Sn

∈ Rn2×n(n+1)
2 and N2 := J n

SKΨAD
−1
SKn

∈ Rn2×n(n−1)
2 . (4.2.11)

Let s = n2 + 2mn+ 2m2, X1 ∈ R2n×s and X2 ∈ R2m×s be defined as follows:

X1 := [“X1 02n×2m2 ] and X2 := [02m×n2 “X2],

where“X1 =

α−1
1 (R(ũ)T ⊗ In)N1 −α−1

1 (I(ũ)T ⊗ In)N2 α−1
2 (In ⊗R(p̃)T )ΣB α−1

2 (In ⊗ I(p̃)T )ΣB

α−1
1 (I(ũ)T ⊗ In)N1 α−1

1 (R(ũ)T ⊗ In)N2 α−1
2 (In ⊗ I(p̃)T )ΣB −α−1

2 (In ⊗R(p̃)T )ΣB


and“X2 =

α−1
2 (R(ũ)T ⊗ Im)ΣB −α−1

2 (I(ũ)T ⊗ Im)ΣB α−1
3 (R(p̃)T ⊗ Im)ΣD −α−1

3 (I(p̃)T ⊗ Im)ΣD

α−1
2 (I(ũ)T ⊗ Im)ΣB α−1

2 (R(ũ)T ⊗ Im)ΣB α−1
3 (I(p̃)T ⊗ Im)ΣD α−1

3 (R(p̃)T ⊗ Im)ΣD

 .

Set

∆Y :=



α1DS,nvecS(R(∆A⊙ΘA))

α1DSKnvecSK(I(∆A⊙ΘA))

α2vec(R(∆B ⊙ΘB))

α2vec(I(∆B ⊙ΘB))

α3vec(R(∆D ⊙ΘD))

α3vec(I(∆D ⊙ΘD))


∈ Rs and ∆Z :=


β1R(∆q)

β1I(∆q)

β2R(∆r)

β2I(∆r)

 ∈ R2(n+m).

(4.2.12)

Note that

α2
1∥A∥2F = α2

1∥R(A)∥2F + α2
1∥I(A)∥2F

= ∥α1DSnvecS(R(∆A))∥22 + ∥α1DSKnvecSK(I(∆A))∥22 (4.2.13)

=

∥∥∥∥∥
[
α1DSnvecS(R(∆A))

α1DSKnvecSK(I(∆A))

]∥∥∥∥∥
2

2

.

In the next theorem, we present a compact expression for the structured BE ηG
sps(ũ, p̃).
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Theorem 4.2.7. Assume that A ∈ HCn×n, B ∈ Cm×n, D ∈ Cm×m and ṽ = [ũT , p̃T ]T

is a computed solution of the GSPP (4.2.1). Then, the structured BE ηG1
sps(ũ, p̃) with

preserving sparsity is given by

ηG
sps(ũ, p̃) =

∥∥∥∥∥∥∥∥∥∥∥
[
X1 I1

X2 I2

]T Ñ[
X1 I1

X2 I2

][
X1 I1

X2 I2

]Té−1


R(Q)

I(Q)

R(R)

I(R)



∥∥∥∥∥∥∥∥∥∥∥
2

, (4.2.14)

where Q = q−Au−BHp, R = r−Bu−Dp, I1 =
î
−β−1

1 I2n 02n×2m

ó
∈ R2n×2(n+m) and

I2 =
î
02m×2n −β−1

2 I2m
ó
∈ R2m×2(n+m).

Proof. Let ṽ = [ũT , p̃T ]T be a computed solution of the GSPP (4.2.1) with A ∈ HCn×n.

Then, we need to find the perturbations ∆q ∈ Cn, ∆r ∈ Cm and sparsity preserving

perturbation matrices ∆A ∈ HCn×n, ∆B ∈ Cm×n and ∆D ∈ Cm×m so that (4.2.2)

holds. Therefore, we replace ∆A, ∆B and ∆D with ∆A⊙ΘA, ∆B ⊙ΘB and ∆D⊙ΘD,

respectively, such the following holds:

[
A+ (∆A⊙ΘA) (B + (∆B ⊙ΘB))

H

B + (∆B ⊙ΘB) D + (∆D ⊙ΘD)

][
ũ

p̃

]
=

[
q +∆q

r +∆r

]
. (4.2.15)

Then using Lemma 4.2.6, we have


R(∆A⊙ΘA)R(ũ)− I(∆A⊙ΘA)I(ũ) +R(∆B ⊙ΘB)

TR(p̃)

+I(∆B ⊙ΘB)
TI(p̃)−R(∆q) = R(Q),

R(∆A⊙ΘA)I(ũ) + I(∆A⊙ΘA)R(ũ) +R(∆B ⊙ΘB)
TI(p̃)

−I(∆B ⊙ΘB)
TR(p̃)− I(∆q) = I(Q),

(4.2.16)

and


R(∆B ⊙ΘB)R(ũ)− I(∆B ⊙ΘB)I(ũ) +R(∆D ⊙ΘD)R(p̃)

−I(∆D ⊙ΘD)I(p̃)−R(∆r) = R(R),

R(∆B ⊙ΘB)I(ũ) + I(∆B ⊙ΘB)R(u) +R(∆D ⊙ΘD)I(p̃)

+I(∆D ⊙ΘD)R(p̃)− I(∆r) = I(R).

(4.2.17)
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Now, using the properties of the vec operator and Kronecker product on (4.2.16), we

obtain
(R(ũ)T ⊗ In)vec(R(∆A⊙ΘA))− (I(ũ)T ⊗ In)vec(I(∆A⊙ΘA))

+(In ⊗R(p̃)T )vec(R(∆B ⊙ΘB))− (In ⊗ I(p̃)T )vec(I(∆B ⊙ΘB))−R(∆q) = R(Q),

(I(ũ)T ⊗ In)vec(R(∆A⊙ΘA)) + (R(ũ)T ⊗ In)vec(I(∆A⊙ΘA)

+(In ⊗ I(p̃)T )vec(R(∆B ⊙ΘB))− (In ⊗R(p̃)T )vec(I(∆B ⊙ΘB))− I(∆q) = I(Q).

(4.2.18)

As ∆A ∈ HCn×n, we have R(∆A) ∈ Sn and I(∆A) ∈ SKRn×n. Further, we have

∆A⊙ΘA ∈ HCn×n, R(∆A⊙ΘA) ∈ Sn and I(∆A⊙ΘA) ∈ SKRn×n. Hence, using Lemma

4.2.4 on (4.2.18), we get
(R(ũ)T ⊗ In)J n

S ΦAvecS(R(∆A⊙ΘA))− (I(ũ)T ⊗ In)J n
SKΨAvecSK(I(∆A⊙ΘA))

+(In ⊗R(p̃)T )ΣBvec(R(∆B ⊙ΘB))− (In ⊗ I(p̃)T )ΣBvec(I(∆B ⊙ΘB))−R(∆q) = R(Q),

(I(ũ)T ⊗ In)J n
S ΦAvecS(R(∆A⊙ΘA)) + (R(ũ)T ⊗ In)J n

SKΨAvecSK(I(∆A⊙ΘA)

+(In ⊗ I(p̃)T )ΣBvec(R(∆B ⊙ΘB))− (In ⊗R(p̃)T )ΣBvec(I(∆B ⊙ΘB))− I(∆q) = I(Q).

(4.2.19)

Then, (4.2.19) can be reformulate as

X1∆Y +
î
−α−1

4 I2n 02m
ó
∆Z =

[
R(Q)

I(Q)

]
. (4.2.20)

In a similar manner, from (4.2.17), we can deduce the following:

X2∆Y +
î
02n −α−1

5 I2m
ó
∆Z =

[
R(R)

I(R)

]
. (4.2.21)

Therefore, combining (4.2.20) and (4.2.21), we get

[
X1

X2

]
∆Y +

[
I1

I2

]
∆Z =


R(Q)

I(Q)

R(R)

I(R)

⇐⇒

[
X1 I1

X2 I2

][
∆Y
∆Z

]
=


R(Q)

I(Q)

R(R)

I(R)

 . (4.2.22)

Since, the matrix

[
X1 I1

X2 I2

]
has full row rank, then

[
X1 I1

X2 I2

]
=

[
X1 I1

X2 I2

]T Ñ[
X1 I1

X2 I2

][
X1 I1

X2 I2

]Té−1
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and the consistency condition in Lemma 1.3.1 is fulfilled and the minimal norm solution

of (4.2.22) is given by

[
∆Y
∆Z

]
min

=

[
X1 I1

X2 I2

]T Ñ[
X1 I1

X2 I2

][
X1 I1

X2 I2

]Té−1


R(Q)

I(Q)

R(R)

I(R)

 .

According to the Definition 4.2.1, we have

ηG1
sps(ũ, p̃) = minÜ

∆A⊙ A,∆B ⊙B,

∆D ⊙D,∆q,∆r

ê
∈G1

∣∣∣∣∣∣∣∣∣î∆M0 ⊙ΘM0 ∆d
ó∣∣∣∣∣∣∣∣∣

σ1,F

= minÜ
∆A⊙ A,∆B ⊙B,

∆D ⊙ΘD,∆q,∆r

ê
∈G1

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥



α1vec(R(∆A⊙ΘA))

α1vec(I(∆A⊙ΘA))

α2vec(R(∆B ⊙ΘB))

α2vec(I(∆B ⊙ΘB))

α3vec(R(∆D ⊙ΘD))

α3vec(I(∆D ⊙ΘD))

β1R(∆q)

β1I(∆q)

β2R(∆r)

β2I(∆r)



∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥
2

= minÜ
∆A⊙ A,∆B ⊙B,

∆D ⊙ΘD,∆q,∆r

ê
∈G1

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥



α1DSnvecS(R(∆A⊙ΘA))

α1DSKnvecSK(I(∆A⊙ΘA))

α2vec(R(∆B ⊙ΘB))

α2vec(I(∆B ⊙ΘB))

α3vec(R(∆D ⊙ΘD))

α3vec(I(∆D ⊙ΘD))

β1R(∆q)

β1I(∆q)

β2R(∆r)

β2I(∆r)



∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥
2
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= min


∥∥∥∥∥
[
∆Y
∆Z

]∥∥∥∥∥
2

∣∣∣∣∣
[
X1 I1

X2 I2

][
∆Y
∆Z

]
=


R(Q)

I(Q)

R(R)

I(R)




=

∥∥∥∥∥∥
[
∆Y
∆Z

]
min

∥∥∥∥∥∥
2

. (4.2.23)

Hence, the proof is completed. ■

Remark 4.2.8. Using (4.2.12) and (4.2.23), the minimal perturbation matrix ∆̂Asps is

given by

∆̂Asps = R(∆̂Asps) + iI(∆̂Asps),

where

vecS(R(∆̂Asps)) = α−1
1 D−1

Sn

î
In1 0n1×(l−n1)

ó[∆Y
∆Z

]
sps

,

vecSK(I(∆̂Asps)) = α−1
1 D−1

SKn

î
0n2×n1 In2 0n2×(l−n2)

ó[∆Y
∆Z

]
sps

,

n1 =
n(n+1)

2
, n2 =

n(n−1)
2

, and l = s + 2(m + n). Similarly, minimal perturbation matrix

∆̂Bsps, ∆̂Dsps, ”∆rsps and ”∆qsps are given by

vec(∆̂Bsps) = α−1
2

î
0nm×n2 Inm iInm 0nm×(l−n2−2nm)

ó[∆Y
∆Z

]
sps

,

vec(∆̂Dsps) = α−1
3

î
0m2×(n2+2nm) Im2 iIm2 0m2×2(m+n)

ó[∆Y
∆Z

]
sps

,

”∆qsps = β−1
1

î
0n×(l−2(n+m)) In iIn 0n×2m

ó[∆Y
∆Z

]
sps

,

and ”∆rsps = β−1
2

î
0m×(l−2m) Im iIm

ó[∆Y
∆Z

]
sps

.

Next, we derive the structured BE when the sparsity structure of the coefficient matrix

M0 is not preserved.
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Corollary 4.2.1. Assume that A ∈ HCn×n, B ∈ Cm×n and D ∈ Cm×m and ṽ = [ũT , p̃T ]T

is a computed solution of the GSPP (4.2.1). Then, the structured BE ηG1(ũ, p̃) without

preserving sparsity is given by

ηG1(ũ, p̃) =

∥∥∥∥∥∥∥∥∥∥∥
[
Y1 I1

Y2 I2

]T Ñ[
Y1 I1

Y2 I2

][
Y1 I1

Y2 I2

]Té−1


R(Q)

I(Q)

R(R)

I(R)



∥∥∥∥∥∥∥∥∥∥∥
2

,

where

Y1 = [“Y1 02n×2m2 ], Y2 = [02m2×n2 “Y2],

“Y1 =

α−1
1 (R(ũ)T ⊗ In)J n

S D−1
Sn

−α−1
1 (I(ũ)T ⊗ In)J n

SKD−1
SKn

α−1
2 (In ⊗R(p̃)T ) α−1

2 (In ⊗ I(p̃)T )

α−1
1 (I(ũ)T ⊗ In)J n

S D−1
Sn

α−1
1 (R(ũ)T ⊗ In)J n

SKD−1
SKn

α−1
2 (In ⊗ I(p̃)T ) −α−1

2 (In ⊗R(p̃)T )

 ,

and“Y2 =

[
α−1
2 (R(ũ)T ⊗ Im) −α−1

2 (I(ũ)T ⊗ Im) α−1
3 (R(p̃)T ⊗ Im) −α−1

3 (I(p̃)T ⊗ Im)

α−1
2 (I(ũ)T ⊗ Im) α−1

2 (R(ũ)T ⊗ Im) α−1
3 (I(p̃)T ⊗ Im) α−1

3 (R(p̃)T ⊗ Im)

]
.

Proof. As we are not preserving the sparsity structure of A, B and D, by setting ΘA =

1n×n, ΘB = 1m×n and ΘD = 1m×m, the proof proceeds accordingly. ■

In the following, we derive the structured BE for the GSPP (4.2.1) when A ∈ HCn×n

and D = 0m×m.

Corollary 4.2.2. Assume that A ∈ HCn×n, B ∈ Cm×n and D = 0m×m and ṽ = [ũT , p̃T ]T

is a computed solution of the GSPP (4.2.1). Then, the structured BE ηG1
sps(ũ, p̃) with

preserving sparsity is given by

ηG1
sps(ũ, p̃) =

∥∥∥∥∥∥∥∥∥∥∥
[“X1 I1

Z I2

]T Ñ[“X1 I1

Z I2

][“X1 I1

Z I2

]Té−1


R(Q)

I(Q)

R(R̂)

I(R̂)



∥∥∥∥∥∥∥∥∥∥∥
2

, (4.2.24)

whereR̂ = r −Bũ, Z = [02m2×n2 Ẑ],

Ẑ =

[
α−1
2 (R(ũ)T ⊗ Im)ΣB −α−1

2 (I(ũ)T ⊗ Im)ΣB

α−1
2 (I(ũ)T ⊗ Im)ΣB α−1

2 (R(ũ)T ⊗ Im)ΣB

]
.

Proof. The proof follows by taking α3 → 0 and D = 0m×m in Theorem 4.2.7. ■
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4.3. Structured Backward Errors for Double Saddle Point Prob-

lems

In this section, we consider the following general form of the DSPP:

Bw :=


A BT 0

F −D CT

0 G E



x

y

z

 =


f

g

h

 =: d, (4.3.1)

where A ∈ Rn×n, D ∈ Rm×m, E ∈ Rp×p, B,F ∈ Rm×n, C,G ∈ Rp×m, x, f ∈ Rn, y, g ∈ Rm

and z, h ∈ Rp.

This section answers the fundamental question raised in Chapter 1: Whether a back-

ward stable algorithm for solving (4.3.1) exhibits strong backward stability or not to

the DSPP? The notion of structured BE facilitates us in addressing the aforementioned

question, where we study the BE by preserving the inherent structure of the coefficient

matrix.

The DSPP of the form (4.3.1) can be converted into a GSPP [11]. Considerable

research effort has been devoted to structured BEs for the GSSP in the past years; see

[44, 146, 97, 162, 102]. Nevertheless, due to the special block structure of B, these

investigations do not provide exact structured BEs for the DSPP (4.3.1). Recently, Lv

and Zheng [96] have investigated the structured BE of (4.3.1), when A = AT , D = 0 and

E = 0. Further, Lv [95] studied the structured BEs of the equivalent form of the DSPP

(4.3.1) given by “B“w :=


A 0 BT

0 E C

−B −CT D



x

z

y

 =


f

h

−g

 , (4.3.2)

with B = F, C = G, A and E are non-symmetric, and D is symmetric. When D = 0 and

E = 0, computable expressions for the structured BEs are obtained in [98] in three the

cases: first, AT = A,B ̸= F and C = G; second, AT = A,B = F and C ̸= G; and third,

AT = A,B ̸= F and C ̸= G. However, these studies lack the following investigations:

(a) the coefficient matrix B in (4.3.1) is generally sparse, and the existing studies do

not preserve the sparsity pattern to the perturbation matrices, (b) existing research does

not provide explicit formulae for the minimal perturbation matrices that preserve the

inherent structures of original matrices for which an approximate solution becomes the

exact solution of a nearly perturbed DSPP.
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To address the aforementioned drawbacks, in this section, we investigate the struc-

tured BEs by preserving the sparsity in three cases: (i) AT = A, B = F, DT = D, C = G

and ET = E; (ii) AT = A, B ̸= F, DT = D, C = G and ET = E; (iii) AT ̸= A, B = F,

DT = D, C ̸= G and ET = E. The main contributions of this section are as follows:

• We investigate the structured BEs when the perturbation matrices preserve the

structures mentioned in the cases (i), (ii) and (iii) as well as preserve the sparsity

patterns of the block matrices of the coefficient matrix B.

• We derive explicit formulae for the minimal perturbation matrices for which the

structured BE is attained. These perturbation matrices preserve the inherent struc-

tures of the original matrices as well as their sparsity pattern.

• Numerical experiments are performed to validate our theoretical findings, to test

the backward stability and strong backward stability of numerical algorithms for

solving the DSPPs.

The organization of this section is as follows. In Subsection 4.3.1, we present basic def-

initions and preliminary results. In Subsections 4.3.2, 4.3.3 and 4.3.4, we derive explicit

formulae for the structured BEs corresponding to cases (i), (ii) and (iii), respectively.

4.3.1. Preliminaries

In this subsection, we introduce the definitions of structured BEs for the three cases

(i)-(iii). Furthermore, we establish two pivotal lemmas essential for deriving structured

BEs. Throughout the section, we assume that B is nonsingular. Let ‹w = [x̃T , ỹT , z̃T ]T be

an approximate solution of the DSPP (4.3.1). Using the formula (1.3.4), the unstructured

BE for the DSPP (4.3.1), denoted by η(‹w), is expressed as:

η(‹w) =
∥d−B‹w∥2√

∥B∥2F∥‹w∥22 + ∥d∥22
. (4.3.3)

Let α := [θ1, θ2, . . . , θ10]
T , where θi are nonnegative real numbers for i = 1, 2, . . . , 10,

with the convention that θ−1
i = 0, whenever θi = 0. We define∣∣∣∣∣∣∣∣∣î∆B ∆d

ó∣∣∣∣∣∣∣∣∣
α,F

=
∥∥∥[θ1∥∆A∥F , θ2∥∆B∥F , θ3∥∆F∥F , θ4∥∆D∥F , θ5∥∆C∥F ,

θ6∥∆G∥F , θ7∥∆E∥F , θ8∥∆f∥2, θ9∥∆g∥2, θ10∥∆h∥2
]∥∥∥

2

Next, we define structured BE for an approximate solution of the DSPP (4.3.1).
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Definition 4.3.1. Let ‹w = [x̃T , ỹT , z̃T ]T be an approximate solution of the DSPP (4.3.1).

Then, we define the structured BEs, denoted by ηSi(x̃, ỹ, z̃), i = 1, 2, 3, for the cases (i)-

(iii) as follows:

ηS1(x̃, ỹ, z̃) = min
∆A,∆B,∆C,

∆D,∆E,∆f,

∆g,∆h

∈ S1

∣∣∣∣∣∣∣∣∣î∆B ∆d
ó∣∣∣∣∣∣∣∣∣

α1,F
,

ηS2(x̃, ỹ, z̃) = min
∆A,∆B,∆C,

∆D,∆E,∆F,

∆f,∆g,∆h

∈ S2

∣∣∣∣∣∣∣∣∣î∆B ∆d
ó∣∣∣∣∣∣∣∣∣

α2,F
,

and

ηS3(x̃, ỹ, z̃) = min
∆A,∆B,∆C,

∆D,∆E,∆G,

∆f,∆g,∆h

∈ S3

∣∣∣∣∣∣∣∣∣î∆B ∆d
ó∣∣∣∣∣∣∣∣∣

α3,F
,

respectively, where α1 := α with θ3 = 0 and θ6 = 0; α2 := α with θ6 = 0; α3 := α with

θ3 = 0;

S1 =

{Ü ∆A,∆B,∆C,

∆D,∆E,∆f,

∆g,∆h

ê ∣∣∣∣∣

A+∆A (B +∆B)T 0

B +∆B −(D +∆D) (C +∆C)T

0 C +∆C (E +∆E)T



x̃

ỹ

z̃

 =


f +∆f

g +∆g

h+∆h

 ,
∆A ∈ Sn,∆D ∈ Sm,∆E ∈ Sp,∆B ∈ Rm×n,∆C ∈ Rp×m,

∆f ∈ Rn,∆g ∈ Rm,∆h ∈ Rp

}
. (4.3.4)

S2 =

{Ü ∆A,∆B,∆C,

∆D,∆E,∆F,

∆f,∆g,∆h

ê ∣∣∣∣∣

A+∆A (B +∆B)T 0

F +∆F −(D +∆D) (C +∆C)T

0 C +∆C (E +∆E)T



x̃

ỹ

z̃

 =


f +∆f

g +∆g

h+∆h

 ,
∆A ∈ Sn,∆D ∈ Sm,∆E ∈ Sp,∆B,∆F ∈ Rm×n,∆C ∈ Rp×m,

∆f ∈ Rn,∆g ∈ Rm,∆h ∈ Rp

}
, (4.3.5)
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and

S3 =

{Ü ∆A,∆B,∆C,

∆D,∆E,∆G,

∆f,∆g,∆h

ê ∣∣∣∣∣

A+∆A (B +∆B)T 0

B +∆B −(D +∆D) (C +∆C)T

0 G+∆G (E +∆E)T



x̃

ỹ

z̃

 =


f +∆f

g +∆g

h+∆h

 ,
∆A ∈ Rn×n,∆D ∈ Sm,∆E ∈ Sp,∆B ∈ Rm×n,∆C,∆G ∈ Rp×m,

∆f ∈ Rn,∆g ∈ Rm,∆h ∈ Rp

}
. (4.3.6)

Next, we state the problem of finding structure-preserving minimal perturbation ma-

trices for which the structured BE is attained.

Problem 4.3.1. Find out the minimal perturbation matrices ∆̂A, ∆̂B, ∆̂C, ∆̂D, ∆̂E,

∆̂F , ∆̂G, ”∆f, ”∆g, and ”∆h such that

ηSi(x̃, ỹ, z̃) =
∣∣∣∣∣∣∣∣∣î‘∆B ”∆d

ó∣∣∣∣∣∣∣∣∣
αi,F

, i = 1, 2, 3,

where∣∣∣∣∣∣∣∣∣î‘∆B ”∆d
ó∣∣∣∣∣∣∣∣∣

α,F
=
∥∥∥[θ1∥∆̂A∥F , θ2∥∆̂B∥F , θ3∥∆̂F∥F , θ4∥∆̂D∥F , θ5∥∆̂C∥F ,

θ6∥∆̂G∥F , θ7∥∆̂E∥F , θ8∥”∆f∥2, θ9∥”∆g∥2, θ10∥”∆h∥2]∥∥∥
2
.

Remark 4.3.2. When θi = 0 for any given i (i = 1, 2, . . . , 10), it indicates that the

corresponding block matrix has no perturbation.

Remark 4.3.3. To preserve sparsity pattern of the block matrices, we substitute the per-

turbation matrices ∆A, ∆B, ∆C, ∆D, ∆E, ∆F, and ∆G by ∆A ⊙ ΘA, ∆B ⊙ ΘB,

∆C ⊙ ΘC , ∆D ⊙ ΘD, ∆E ⊙ ΘE, ∆F ⊙ ΘF and ∆G ⊙ ΘG, respectively. Within this

framework, we denote the structured BEs as ηSi
sps(x̃, ỹ, z̃), i = 1, 2, 3. Moreover, the min-

imal perturbation matrices are denoted by ∆̂Asps, ∆̂Bsps, ∆̂Csps, ∆̂Dsps, ∆̂Esps, ∆̂F sps,

∆̂Gsps, ”∆f sps, ”∆gsps, and ”∆hsps.
When the structured BEs ηSi(x̃, ỹ, z̃) and ηSi

sps(x̃, ỹ, z̃) are around an order of unit

round-off error, then the approximate solution ‹w = [x̃T , ỹT , z̃T ]T becomes an actual

solution of nearly perturbed structure-preserving DSPP of the form (4.3.1). Thus, the

corresponding algorithm is referred to as strongly backward stable. We set µ = n(n+1)
2

,

σ = m(m+1)
2

and τ = p(p+1)
2

. To obtain the structured BEs formulae, the following lemmas

play a pivotal role.
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Lemma 4.3.4. Let A,H ∈ Sn with generator vectors vecS(A) = [aT1 ,a
T
2 . . . ,a

T
n ]
T and

vecS(H) = [hT1 ,h
T
2 . . . ,h

T
n ]
T , respectively. Suppose x = [x1, . . . , xn]

T ∈ Rn, then

(A ⊙ ΘH)x = KxΦHvecS(A ⊙ ΘH),

where ΦH = diag(vecS(ΘH)), Kx =
î
K1
x K2

x · · · Kn
x

ó
∈ Rn×µ and Ki

x ∈ Rn×(n−i+1) are

given by

K1
x =



x1 x2 · · · · · · xn

0 x1 0 · · · 0

0 0 x1 · · · 0
...

...
. . .

. . .
...

0 · · · · · · 0 x1


, K2

x =



0 0 · · · · · · 0

x2 x3 · · · · · · xn

0 x2 0 · · · 0

0 0 x2 · · · 0
...

...
. . .

. . .
...

0 · · · · · · 0 x2


, . . . , Kn

x =



0

0
...

0

xn


.

Proof. The proof follows similary to the proof of Lemma 4.1.4. ■

4.3.2. Derivation of Structured BEs for Case (i)

In this subsection, we discuss the structured BEs for the DSPP (4.3.1) for the case

(i), i.e., A ∈ Sn, D ∈ Sm, E ∈ Sp, B = F and C = G, and perturbation matrices belongs

to set S1. Prior to that, we construct the diagonal matrix DSn ∈ Rµ×µ, where{
DSn(k, k) = 1, for k = (2n−(i−2))(i−1)

2
+ 1, i = 1, 2, . . . , n,

DSn(k, k) =
√
2, otherwise.

The matrix DSn has the property, ∥A∥F = ∥DSnvecS(A)∥2. Further, we introduce the

following notation:

ΦA = diag(vecS(ΘA)), ΦB = diag(vec(ΘB)), ΦC = diag(vec(ΘC)), (4.3.7)

ΦD = diag(vecS(ΘD)), ΦE = diag(vecS(ΘE)), (4.3.8)

and

I =


− 1
θ8
In 0 0

0 − 1
θ9
Im 0

0 0 − 1
θ10
Ip

 .
Theorem 4.3.5. Let [x̃T , ỹT , z̃T ]T be an approximate solution of the DSPP (4.3.1) with

A ∈ Sn, D ∈ Sm, E ∈ Sp, and θ8, θ9, θ10 ̸= 0. Then, we have

ηS1
sps(x̃, ỹ, z̃) =

∥∥J T
S1(JS1J T

S1)
−1Rd

∥∥
2
, (4.3.9)
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where JS1 = [‹JS1 I] ∈ R(n+m+p)×l and ‹JS1 is given by

‹JS1 =


1
θ1
Kx̃ΦAD

−1
Sn

1
θ2
Nn

ỹ ΦB 0 0 0

0 1
θ2
Mm

x̃ ΦB − 1
θ4
KỹΦDD−1

Sm

1
θ5
Nm

z̃ ΦC 0

0 0 0 1
θ5
Mp

ỹΦC
1
θ7
Kz̃ΦED

−1
Sp

 ,

Rf = f−Ax̃−BT ỹ, Rg = g−Bx̃+Dỹ−CT z̃, Rh = h−Cỹ−Ez̃, Rd = [RT
f , R

T
g , R

T
h ]
T ,

and l = µ+ σ + τ +mn+mp+m+ n+ p.

The minimal perturbation matrices for the Problem 4.3.1 are given by the following gen-

erating vectors:

vecS(∆̂Asps) = θ−1
1 D−1

Sn

î
Iµ 0

ó
J T

S1(JS1J T
S1)

−1Rd,

vec(∆̂Bsps) = θ−1
2

î
0 Imn 0

ó
J T

S1(JS1J T
S1)

−1Rd,

vec(∆̂Csps) = θ−1
5

î
0 Imp 0

ó
J T

S1(JS1J T
S1)

−1Rd,

vecS(∆̂Dsps) = θ−1
4 D−1

Sm

î
0 Iσ 0

ó
J T

S1(JS1J T
S1)

−1Rd,

vecS(∆̂Esps) = θ−1
7 D−1

Sp

î
0 Iτ 0

ó
J T

S1(JS1J T
S1)

−1Rd,”∆f sps = θ−1
8

î
0 In 0

ó
J T

S1(JS1J T
S1)

−1Rd,”∆gsps = θ−1
9

î
0 Im 0

ó
J T

S1(JS1J T
S1)

−1Rd, and”∆hsps = θ−1
10

î
0 Ip

ó
J T

S1(JS1J T
S1)

−1Rd.

Proof. For the approximate solution [x̃T , ỹT , z̃T ]T , we need to construct perturbation

matrices ∆A ∈ Sn, ∆B ∈ Rm×n, ∆D ∈ Sm, ∆C ∈ Rp×m, ∆E ∈ Sp, which maintain the

sparsity pattern of A,B,C,D, E, respectively, and the perturbations ∆f ∈ Rn, ∆g ∈ Rm,

and ∆h ∈ Rp. By (4.3.4),

Ü
∆A,∆B,∆C,

∆D,∆E,∆f,

∆g,∆h

ê
∈ S1 if and only if ∆A,∆B,∆C,∆D,

∆E,∆f, ∆g and ∆h satisfy

∆Ax̃+∆BT ỹ −∆f = Rf ,

∆Bx̃−∆Dỹ +∆CT z̃ −∆g = Rg,

∆Cỹ +∆Ez̃ −∆h = Rh,

 (4.3.10)

and ∆A ∈ Sn, ∆D ∈ Sm, ∆E ∈ Sp. To maintain the sparsity pattern of A,B,C,D and E

to the perturbation matrices, we replace ∆A,∆B,∆C,∆D, and ∆E by ∆A⊙ΘA,∆B⊙ΘB,
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∆C ⊙ΘC ,∆D⊙ΘD, and ∆E⊙ΘE, respectively. Thus (4.3.10) can be equivalently re-

formulated as:

θ−1
1 θ1(∆A⊙ΘA)x̃+ θ−1

2 θ2(∆B⊙ΘB)
T ỹ − θ−1

8 θ8∆f = Rf , (4.3.11)

θ−1
2 θ2(∆B⊙ΘB)x̃− θ−1

4 θ4(∆D⊙ΘD)ỹ

+ θ−1
5 θ5(∆C ⊙ΘC)

T z̃ − θ−1
9 θ9∆g = Rg, (4.3.12)

θ−1
5 θ5(∆C ⊙ΘC)x̃+ θ−1

7 θ7(∆E⊙ΘE)
T z̃ − θ−1

10 θ10∆h = Rh. (4.3.13)

Using Lemma 4.3.4 in (4.3.11), we get

θ−1
1 Kx̃ΦAθ1vecS(A⊙ΘA) + θ−1

2 Nn
ỹΦBθ2vec(B ⊙ΘB)− θ−1

8 θ8∆f = Rf . (4.3.14)

Further, (4.3.14) can be expressed as

θ−1
1 Kx̃ΦAD

−1
Sn
DSnθ1vecS(A⊙ΘA) + θ−1

2 Nn
ỹΦBθ2vec(B ⊙ΘB)− θ−1

8 θ8∆f = Rf . (4.3.15)

Equivalently, (4.3.15) can be written as follows:

J 1
S1∆X = Rf , (4.3.16)

where J 1
S1 =

î
θ−1
1 Kx̃ΦAD

−1
Sn

θ−1
2 Nn

ỹΦB 0 0 0 −θ−1
8 In 0 0

ó
∈ Rn×l and

∆X =[θ1DSnvecS(∆A⊙ΘA)
T , θ2vec(∆B ⊙ΘB)

T , θ4DSmvecS(∆D ⊙ΘD)
T , (4.3.17)

θ5vec(∆C ⊙ΘC)
T , θ7DSpvecS(∆E ⊙ΘE)

T , θ8∆f
T , θ9∆g

T , θ10∆h
T ]T ∈ Rl.

Similarly, using Lemma 4.3.4 to (4.3.12) and (4.3.13), we obtain

J 2
S1∆X = Rg and J 3

S1∆X = Rh, (4.3.18)

where J 2
S1 ∈ Rm×l and J 3

S1 ∈ Rp×l are given by

J 2
S1 =

î
0 θ−1

2 Mm
x̃ ΦB −θ−1

4 KỹΦDD
−1
Sm

θ−1
5 Nm

z̃ ΦC 0 0 −θ−1
9 Im 0

ó
and

J 3
S1 =

î
0 0 0 θ−1

5 Mp
ỹΦC θ−1

7 Kz̃D
−1
Sp
ΦE 0 0 −θ−1

10 Ip
ó
,

respectively. Combining (4.3.16) and (4.3.18), we obtain the following equivalent system

JS1∆X = Rd. (4.3.19)

Clearly, for θ8, θ9, θ10 ̸= 0, JS1 has full row rank. Therefore, by Lemma 1.3.1, the minimum

norm solution of (4.3.19) is given by

∆Xmin = J †
S1Rd = J T

S1(JS1J T
S1)

−1Rd. (4.3.20)
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On the other hand, the minimization problem in Definition 4.3.1 can be reformulated as:

[ηS1
sps(x̃, ỹ, z̃)]

2 = min

{
θ21∥∆A⊙ΘA∥2F + θ22∥∆B⊙ΘB∥2F + θ24∥∆D⊙ΘD∥2F + θ25∥∆C ⊙ΘC∥2F

+ θ27∥∆E⊙ΘE∥2F + θ28∥∆f∥22 + θ29∥∆g∥22 + θ210∥∆h∥22
∣∣∣Ü

∆A⊙ΘA,∆B⊙ΘB,∆C ⊙ΘC ,

∆D⊙ΘD,∆E⊙ΘE,∆f,

∆g,∆h

ê
∈ S1

}

= min

{
θ21∥DSnvecS(∆A⊙ΘA)∥22 + θ22∥vec(∆B ⊙ΘB)∥22

+ θ24∥DSmvecS(∆D ⊙ΘD)∥22 + θ25∥vec(∆C ⊙ΘC)∥22

+ θ27∥DSpvecS(∆E⊙ΘE)∥22 + θ28∥∆f∥22 + θ29∥∆g∥22 + θ210∥∆h∥22
∣∣∣

JS1∆X = Rd

}
(4.3.21)

= min
{
∥∆X∥22

∣∣∣JS1∆X = Rd

}
= ∥∆Xmin∥22. (4.3.22)

Consequently, substituting (4.3.20) into (4.3.21), we obtain

ηS1
sps(x̃, ỹ, z̃) =

∥∥J T
S1(JS1J T

S1)
−1Rd

∥∥
2
.

From (4.3.17), we have θ1DSnvecS(∆A ⊙ ΘA) =
î
Iµ 0

ó
∆X. Therefore, the generat-

ing vector for the minimal perturbation matrix ∆̂Asps which also preserves the sparsity

pattern is given by

vecS(∆̂Asps) = θ−1
1 D−1

Sn

î
Iµ 0

ó
∆Xmin.

Similarly, the generating vectors for other minimal perturbation matrices can be obtained.

Hence, the proof is completed. ■ The following result gives the structured BE without

preserving sparsity.

Corollary 4.3.1. Suppose the approximate solution of the DSPP (4.3.1) with A ∈ Sn,
D ∈ Sm, E ∈ Sp, and θ8, θ9, θ10 ̸= 0 is [x̃T , ỹT , z̃T ]T . Then, we have

ηS1(x̃, ỹ, z̃) =
∥∥∥“J T

S1(
“JS1
“J T
S1)

−1Rd

∥∥∥
2
, (4.3.23)

where “JS1 ∈ R(n+m+p)×l is given by“JS1 =


1
θ1
Kx̃D

−1
Sn

1
θ2
Nn

ỹ 0 0 0 − 1
θ8
In 0 0

0 1
θ2
Mm

x̃ − 1
θ4
KỹD

−1
Sm

1
θ5
Nm

z̃ 0 0 − 1
θ9
Im 0

0 0 0 1
θ5
Mp

ỹ
1
θ7
Kz̃D

−1
Sp

0 0 − 1
θ10

Ip

 .
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Proof. Since we are not preserving the sparsity pattern, the proof follows by considering

ΘA = 1n×n, ΘB = 1m×n, ΘD = 1m×m, ΘC = 1p×m, and ΘE = 1p×p in Theorem 4.3.5. ■

Remark 4.3.6. The structure-preserving minimal perturbation matrices ∆̂A, ∆̂B, ∆̂C,

∆̂D, ∆̂E, ”∆f, ”∆g, and ”∆h, for which ηS1(x̃, ỹ, z̃) is attained are given by formulae

presented in Theorem 4.3.5 with JS1 = “JS1 .

In the next result, we present the formula of structured BE when D = 0 and E = 0.

Corollary 4.3.2. Suppose [x̃T , ỹT , z̃T ]T is an approximate solution of the DSPP (4.3.1)

with A ∈ Sn, D = 0, E = 0, and θ8, θ9, θ10 ̸= 0. Then, we have

ηS1
sps(x̃, ỹ, z̃) =

∥∥∥‹J T
S1(
‹JS1
‹J T
S1)

−1Rd

∥∥∥
2
, (4.3.24)

where ‹JS1 ∈ R(n+m+p)×l is given by

‹JS1 =


1
θ1
Kx̃ΦAD

−1
Sn

1
θ2
Nn

ỹ ΦB 0 − 1
θ8
In 0 0

0 1
θ2
Mm

x̃ ΦB
1
θ5
Nm

z̃ ΦC 0 − 1
θ9
Im 0

0 0 1
θ5
Mp

ỹΦC 0 0 − 1
θ10

Ip

 ,

Rf = f−Ax−BTy, Rg = g−Bx−CTz, Rh = h−Cy, and l = µ+mn+mp+m+n+p.

Proof. Since D = 0 and E = 0, the proof follows by considering θ4 = θ7 = 0. ■

Remark 4.3.7. When D = 0 and E = 0, Lv and Zheng [96] derive the structured BE

for the DSPP (4.3.1). However, their investigations do not take into account the sparsity

pattern of the coefficient matrices.

4.3.3. Derivation of Structured BEs for Case (ii)

In this subsection, we derive explicit formulae for the structured BEs for the DSPP

for the case (ii), i.e., A ∈ Sn, B ̸= F, D ∈ Sm, C = G and E ∈ Sp. We use the Lemmas

4.3.4, 4.1.9 and 1.3.1, and apply a similar methodology used in Section 4.3.2 to derive the

formulae for the structured BEs. In the next result, we present computable formulae for

the structured BE ηS2
sps(x̃, ỹ, z̃) by preserving sparsity pattern of the original matrices to

the perturbation matrices. Before proceeding, we set the following notation:

ΦF = diag(vec(ΘF )),

ΦA,ΦBΦC ,ΦD and ΦE are same as defined in Subsection 4.3.2.
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Theorem 4.3.8. Let [x̃T , ỹT , z̃T ]T be an approximate solution of the DSPP (4.3.1) with

A ∈ Sn, B ̸= F, D ∈ Sm, C = G, E ∈ Sp and θ8, θ9, θ10 ̸= 0. Then, we have

ηS2
sps(x̃, ỹ, z̃) =

∥∥J T
S2(JS2J T

S2)
−1Rd

∥∥
2
, (4.3.25)

where JS2 = [‹JS2 I] ∈ R(n+m+p)×l and ‹JS2 is given by

‹JS2 =


1
θ1
Kx̃ΦAD

−1
Sn

1
θ2
Nn

ỹ ΦB 0 0 0 0

0 0 1
θ3
Mm

x̃ ΦF − 1
θ4
KỹΦDD−1

Sm

1
θ5
Nm

z̃ ΦC 0

0 0 0 0 1
θ5
Mp

ỹΦC
1
θ7
Kz̃ΦED

−1
Sp

 ,

Rf = f−Ax̃−BT ỹ, Rg = g−F x̃+Dỹ−CT z̃, Rh = h−Cỹ−Ez̃, Rd = [RT
f , R

T
g , R

T
h ]
T ,

and l = µ+ σ + τ + 2mn+mp+m+ n+ p.

Proof. Given that [x̃T , ỹT , z̃T ]T is an approximate solution of the DSPP (4.3.1) for the case

(ii). Now, we are required to construct perturbation matrices ∆A ∈ Sn, ∆B,∆F ∈ Rm×n,

∆D ∈ Sm,∆C ∈ Rp×m,∆E ∈ Sp, which maintain the sparsity pattern of A,B, F, C,D,E,

respectively, and the perturbations ∆f ∈ Rn, ∆g ∈ Rm and ∆h ∈ Rp. Using (4.3.5),Ü
∆A,∆B,∆C,

∆D,∆E,∆F,

∆f,∆g,∆h

ê
∈ S2 if and only if ∆A,∆B,∆C,∆D,∆E, ∆F, ∆f,∆g and ∆h

satisfy the following equations:

∆Ax̃+∆BT ỹ −∆f = Rf ,

∆F x̃−∆Dỹ +∆CT z̃ −∆g = Rg,

∆Cỹ +∆Ez̃ −∆h = Rh,

 (4.3.26)

and ∆A ∈ Sn,∆D ∈ Sm, ∆E ∈ Sp.
By following a similar the proof methodology of Theorem 4.3.5 and applying Lemma 4.3.4,

we get:

J 1
S2∆X = Rf , J 2

S2∆X = Rg and J 3
S2∆X = Rh, (4.3.27)

where

J 1
S2 =

î
θ−1
1 Kx̃ΦAD

−1
Sn

θ−1
2 Nn

ỹΦB 0 0 0 0 −θ−1
8 In 0 0

ó
∈ Rn×l,

J 2
S2 =

î
0 0 θ−1

3 Mm
x̃ ΦF −θ−1

4 KỹΦCD
−1
Sm

θ−1
5 Nm

ỹ ΦD 0 0 −θ−1
9 Im 0

ó
∈ Rm×l,

J 3
S2 =

î
0 0 0 0 θ−1

5 Mp
ỹΦD θ−1

7 Kz̃ΦED
−1
Sp

0 0 −θ−1
10 Ip
ó
∈ Rp×l,
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and ∆X = [θ1DSnvecS(∆A⊙ΘA)
T , θ2vec(∆B⊙ΘB)

T , θ3vec(∆F⊙ΘF )
T , θ4DSmvecS(∆D⊙

ΘD)
T , θ5vec(∆C ⊙ ΘC)

T , θ7DSpvecS(∆E ⊙ ΘE)
T , θ8∆f

T , θ9∆g
T , θ10∆h

T ]T ∈ Rl. Com-

bining the three equations in (4.3.27), we obtain

JS2∆X = Rd. (4.3.28)

Since, JS2 has full row rank for θ8, θ9, θ10 ̸= 0. Therefore, (4.3.28) is consistent and by

Lemma 1.3.1, its minimum norm solution is given by

∆Xmin = J T
S2(JS2J T

S2)
−1Rd. (4.3.29)

Now, applying a similar argument to the proof method of Theorem 4.3.5, the required

structured BE is

ηS2
sps(x̃, ỹ, z̃) = ∥∆Xmin∥2 =

∥∥J T
S2(JS2J T

S2)
−1Rd

∥∥
2
.

Hence, the proof is completed. ■

Remark 4.3.9. The minimal perturbation matrices ∆̂Asps, ∆̂Csps, ∆̂Dsps, ∆̂Esps, ”∆f sps,”∆gsps and ”∆hsps for the Problem 4.3.1 can be computed using the formulae provided in

Theorem 4.3.5 by replacing JS1 with JS2 . The generating vectors for the minimal pertur-

bation matrices ∆̂Bsps and ∆̂F sps are given by

vec(∆̂Bsps) =
1

θ2

î
0µ Imn 0l−µ−mn

ó
J T

S2(JS2J T
S2)

−1Rd,

vec(∆̂F sps) =
1

θ3

î
0µ+mn Imn 0l−µ−2mn

ó
J T

S2(JS2J T
S2)

−1Rd.

The following result gives structured BE while the sparsity pattern is not preserved.

Corollary 4.3.3. Let [x̃T , ỹT , z̃T ]T be an approximate solution of the DSPP (4.3.1) with

A ∈ Sn, D ∈ Sm, E ∈ Sp, and θ8, θ9, θ10 ̸= 0. Then, we have

ηS2(x̃, ỹ, z̃) =
∥∥∥“J T

S2(
“JS2
“J T
S2)

−1Rd

∥∥∥
2
, (4.3.30)

where “JS2 ∈ R(n+m+p)×l is given by“JS2 =


1
θ1
Mn

x̃
1
θ2
Nn

ỹ 0 0 0 0 − 1
θ8
In 0 0

0 0 1
θ3
Mm

x̃ − 1
θ4
KỹD

−1
Sm

1
θ5
Nm

z̃ 0 0 − 1
θ9
Im 0

0 0 0 0 1
θ5
Mp

ỹ
1
θ7
Kz̃D

−1
Sp

0 0 − 1
θ10

Ip

 .

Proof. The proof proceeds by choosing ΘA = 1n×n, ΘB = ΘF = 1m×n, ΘD = 1m×m,

ΘC = 1p×m, and ΘE = 1p×p in the expression of the structured BE presented in Theorem

4.3.8. ■
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Remark 4.3.10. Similar to Corollary 4.3.2, we can compute the structured BE for the

case (ii) with D = 0 and E = 0. This specific instance of structured BE has also been

addressed in [98]. However, our investigation additionally ensures the preservation of the

sparsity pattern.

4.3.4. Derivation of Structured BEs for Case (iii)

This subsection deals with the structured BE of the DSPP for the case (iii), i.e.,

A ̸= AT , D ∈ Sm, E ∈ Sp, B = F, and C ̸= G. Using a similar technique as in Section

4.3.2, in the following theorem, we present the computable formula of the structured BE

when sparsity pattern of the original matrices are preserved in the perturbation matrices.

Before continuing, we define ΦG = diag(vec(ΘG)), along with ΦA, ΦB, ΦC , ΦD and ΦE as

defined in Subsection 4.3.2.

Theorem 4.3.11. Let [x̃T , ỹT , z̃T ]T be an approximate solution of the DSPP (4.3.1) with

C ∈ Sm, E ∈ Sp, and θ8, θ9, θ10 ̸= 0, B = F and C ̸= G. Then, we have

ηS3
sps(x̃, ỹ, z̃) =

∥∥J T
S3(JS3J T

S3)
−1Rd

∥∥
2
, (4.3.31)

where JS3 = [‹JS3 I] ∈ R(n+m+p)×l, ‹JS3 is given by

‹JS3 =


1
θ1
Mn

x̃ΦA
1
θ2
Nn

ỹ ΦB 0 0 0 0

0 1
θ2
Mm

x̃ ΦB − 1
θ4
KỹΦDD−1

Sm

1
θ5
Nm

z̃ ΦC 0 0

0 0 0 0 1
θ6
Mp

ỹΦG
1
θ7
Kz̃ΦED

−1
Sp

 ,

Rf = f−Ax̃−BT ỹ, Rg = g−Bx̃+Dỹ−CT z̃, Rh = h−Gỹ−Ez̃, Rd = [RT
f , R

T
g , R

T
h ]
T ,

and l = n2 + σ + τ +mn+ 2mp+m+ n+ p.

Proof. The proof follows by using a similar proof methodology of Theorem 4.3.5. ■

Remark 4.3.12. The minimal perturbation matrices ∆̂Bsps, ∆̂Dsps, ∆̂Esps,”∆f sps,”∆gsps
and ”∆hsps can be computed using the formulae provided in Theorem 4.3.5 with JS1 = JS3 .

The generating vector for the minimal perturbation matrices ∆̂Asps, ∆̂Csps and ∆̂Gsps

are given by

vec(∆̂Asps) =
1

θ1

î
In2 0l−n2

ó
J T

S3(JS3J T
S3)

−1Rd.

vec(∆̂Csps) =
1

θ5

î
0n2+m+mn Imp 0τ+mp+n+m+p

ó
J T

S3(JS3J T
S3)

−1Rd,

vec(∆̂Gsps) =
1

θ6

î
0n2+m+mn+mp Imp 0τ+n+m+p

ó
J T

S3(JS3J T
S3)

−1Rd.
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By taking ΘA = 1n×n, ΘB = 1m×n, ΘD = 1m×m, ΘC = ΘG = 1p×m, and ΘE = 1p×p

in the BE expression provided in Theorem 4.3.11, we obtain the structured BE when the

sparsity pattern is not considered.

Remark 4.3.13. The structured BE for the DSPP (4.3.1) when A ∈ Sn, D ∈ Sm, E ∈ Sp,
B ̸= F, C ̸= G, or, A ̸= AT , D ∈ Sm, E ∈ Sp, B ̸= F, C ̸= G can be derived in a similar

technique used in this section and in Subsections 4.3.2 and 4.3.3. As the derivation process

is similar, we have not studied them here in detail.

4.4. Numerical Experiments

In this section, we conduct a few numerical experiments to validate the findings of this

chapter. All numerical experiments are conducted on MATLAB R2023b on an Intel(R)

Core(TM) i7-10700 CPU , 2.90GHz, 16 GB. We denote‘∆Msps =

[
∆̂Asps ∆̂B

T

sps

∆̂Bsps ∆̂Dsps

]
and ”∆bsps =

[”∆f sps”∆gsps] .
Example 4.4.1. Consider the circulant structured GSPP (4.1.1), where the circulant

block matrices A,B,D ∈ C3 and f, g ∈ R3 are given by

A =


1.02 0 5.3

5.3 1.02 0

0 5.3 1.02

 , B =


−12.78 6.38 0

0 −12.78 6.38

6.38 0 −12.78

 ,

D =


59 1 0

0 59 1

1 0 59

 , f =


78.01

2

10

 , and g =

56

3

1

 .
Let ṽ = [ũT , p̃T ]T be an approximate solution of the GSPP, where ũ = [−0.85, 6.04, 11.91]T ,

p̃ = [0.11, 0.026, 2.69]T and ∥Mṽ − b∥2 = 0.2147.

By applying formula (4.1.3), the computed unstructured BE η(ṽ) is 1.44790× 10−04.

Again, using the formula outlined in Theorem 4.1.5, we obtained the structured BE with

preserving the sparsity pattern is ηS1
sps(ũ, p̃) = 5.5541. In this case, the minimal perturba-

tion matrices, which preserve the sparsity pattern as well as the circulant structure, are

given by

∆̂Asps =


0.00517 0 0.00026

0.00026 0.00517 0

0 0.00026 0.00517

 , ∆̂Bsps =


−0.01439 0.00684 0

0 −0.01439 0.00684

0.00684 0 −0.01439

 ,
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∆̂Dsps =


−0.00133 −0.00205 0

0 −0.00133 −0.00205

−0.00205 0 −0.00133

 , ”∆f sps =  0.01799

0.05670

−0.02749



and ”∆gsps = −0.03242

0.00764

0.00616

 .
Moreover, without preserving the sparsity pattern, the structured BE is ηS1(ũ, p̃) =

0.78540. Further, in this case, the minimal perturbation matrices for which ηS1(ũ, p̃) is

attained and preserve circulant structure are given by

∆̂A =


0.00665 −0.00595 0.00188

0.00188 0.00665 −0.00595

−0.00595 0.00188 0.00665

 , ∆̂B =


−0.01636 0.00691 0.00246

0.00246 −0.01636 0.00691

0.00691 0.00246 −0.01636

 ,

∆̂D =


−0.00021 0 0.00014

0.00014 −0.00021 0

0 0.00014 −0.00021

 , ”∆f = 10−7 ×


0.96212

1.41279

−3.01440



and ”∆g = −0.00053

−0.00002

0.00079

 .
We can observe that, in both the cases

(M+ ‘∆Msps)ṽ = b+”∆bsps and (M+ ‘∆M)ṽ = b+”∆b,

i.e., ṽ is the exact solution of the above circulant structured GSPP.

Example 4.4.2. Consider a Toeplitz structured GSPP where the coefficient matrices are

given by:

A =


10−6 0 103 0

108 10−6 0 103

10 108 10−6 0

0 10 108 10−6

 , B =


10−5 107 0 0

105 10−5 107 0

0 105 10−5 107

0 0 105 10−5

 ,

D =


0 108 −60 0

−0.5 0 108 −60

0 −0.5 0 108

0 0 −0.5 0

 , f =


108

0

103

0

 and g =


10−8

0

0

0

 .
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The approximate solution of the GSPP, computed using Gaussian elimination with partial

pivoting (GEP) is ṽ = [ũT , p̃T ]T , where

ũ =


6.0278× 103

−1.0000× 104

9.8995× 10−3

−9.9000× 107

 and p̃ =


−5.0378× 104

1.0000× 103

−8.8995× 10−2

9.9000× 106

 .
We choose w1 = 1/∥A∥F , w2 = 1/∥B∥F , w3 = 1/∥D∥F , w4 = 1/∥f∥2, and w5 = 1/∥g∥2.
Using the formula in (4.1.3), the unstructured BE is η(ṽ) = 6.2617 × 10−18. However,

the obtained structured BEs using Theorem 4.1.10 and Corollary 4.1.3 are ηS2(ũ, p̃) =

2.1761 × 10−9 and ηS2
sps(ũ, p̃) = 4.3070 × 10−5, respectively. We can observe that the

η(ṽ) in the order of O(10−18), whereas the structured BEs are significantly larger. This

demonstrates that the GEP for solving this tested Toeplitz structured GSPP is backward

stable but not strongly backward stable. That is, the computed approximate solution

does not satisfy a nearby (sparsity preserving) Toeplitz structured GSPP.

Example 4.4.3. Consider the Toeplitz structured GSPP (4.1.1) with block matrices

A = toeplitz(a1,a2) ∈ Tn×n, B = toeplitz(b1, b2) ∈ Tn×n, D = toeplitz(c1, c2) ∈ Tn×n,

where a1 = sprand(n, 1, 0.4), a2 = randn(n, 1), b1 = sprand(n, 1, 0.1), b2 = randn(n, 1),

c1 = sprand(n, 1, 0.1) and c2 = randn(n, 1) so that a1(1) = a2(1), b1(1) = b2(1) and

c1(1) = c2(1). Moreover, we choose f = randn(n, 1) and g = randn(n, 1). We choose the

parameters wi = 1, for i = 1, 2, . . . , 5.

8 20 40 60 80 100

n

10
-18

10
-16

10
-14

10
-12

10
-10

B
E

unstructured without sparsity

structured without sparsity

structured with sparsity

unstructured with sparsity

Figure 4.4.1: Different structured and unstructured BEs for n = 8 : 4 : 100.

We apply the GMRES method [123] with the initial guess vector zero and toler-

ance 10−7. Let ṽ = [ũT , p̃T ]T be the computed solution of the GSPP. For n = 8 :
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4 : 100 in Figure 4.4.1, we plot the unstructured BE η(ṽ) using the formula (4.1.3)

(denoted as ‘unstructured without sparsity’), structured BE ηS2
sps(ũ, p̃) (denoted as

‘structured with sparsity’) using Theorem 4.1.7, ηS2(ũ, p̃) (denoted as ‘structured

without sparsity’) using Corollary 4.1.2 and ηsps(ũ, p̃) (denoted as ‘unstructured

without sparsity’) using Theorem 4.1.12. From Figure 4.4.1, it can be observed that,

for all values of n, the unstructured BE η(ṽ) around of order O(10−16) and all other BEs

ηsps(ũ, p̃), η
S2
sps(ũ, p̃), and η

S2(ũ, p̃) are around of O(10−13) or less than that, which are

very small. Therefore, the approximate solution computed using GMRES method for

each generated Toeplitz structured GSPP effectively solves a nearby perturbed unstruc-

tured linear system as well as a nearby perturbed (sparsity preserving) Toeplitz structured

GSPP.

Table 4.4.1: Unstructured and structured BEs for different values of n for

Example 4.4.4.

n η(ṽ) ηsps(ũ, p̃) ηS3(ũ, p̃) ηS3
sps(ũ, p̃)

8 1.5522e− 16 5.1676e− 16 1.3612e− 15 4.0978e− 15

16 7.9177e− 16 2.6522e− 15 1.1505e− 15 8.3191e− 15

32 4.2992e− 15 1.1547e− 13 1.3009e− 13 6.2542e− 13

64 8.4321e− 16 4.8161e− 14 1.2379e− 13 4.2252e− 13

128 1.7815e− 15 3.4069e− 14 1.5579e− 13 6.1305e− 13

Example 4.4.4. In this example, we consider the symmetric-Toeplitz structured GSPP

(4.1.1) with the block matrices A = In, B = [bij] ∈ ST n, where bij = 1√
2π
e−

(i−j)2

2 ,

i, j = 1, . . . , n, D = −µIn, f = randn(n, 1) ∈ Rn, and g = 0 ∈ Rn. We choose µ = 0.01.

To solve the GSPP, we use the CNAGSOR preconditioned GMRES (PGMRES) method

[157]. We choose w1 = 1/∥A∥F , w2 = 1/∥B∥F , w3 = 1/∥D∥F , w4 = 1/∥f∥2, and w5 = 0.

For the computed approximate solution ṽ = [ũT , p̃T ]T , we compute the unstructured BE

η(ṽ) using the formula (4.1.3), structured BE ηS3
sps(ũ, p̃) using Theorem 4.1.10, and the

structured BE without preserving sparsity ηS3(ũ, p̃) using Corollary 4.1.3. The computed

values are reported in Table 4.4.1.

We observe that the structured BEs ηS3
sps(ũ, p̃) and ηS3(ũ, p̃) are all most all cases

remains one or two order larger than the unstructured ones and remains within an order

of O(10−13). Hence, we can conclude that the approximate solution ṽ obtained using

the CNAGSOR PGMRES method for the tested GSPPs serves as an exact solution to
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a nearly perturbed symmetric-Toeplitz structured GSPP, while preserving the sparsity

pattern of the original problem.

Next, we carry out several numerical experiments to test the strong backward stability

of numerical algorithms for solving the DSPP. We consider θ1 = 1
∥A∥F

, θ2 = 1
∥B∥F

, θ3 =
1

∥F∥F
, θ4 =

1
∥D∥F

, θ5 =
1

∥C∥F
, θ6 =

1
∥G∥2 , θ7 =

1
∥E∥2 , θ8 =

1
∥f∥2 , θ9 =

1
∥g∥2 and θ10 =

1
∥h∥2 .

Example 4.4.5. To test the strong backward stability of the GEP, we consider the DSPP

(4.3.1) with

A = GPG(1 : 3, 1 : 3) ∈ S3, B = D =


0 0 1

0 1 0

104 0 0

 ∈ R3×3, C =


1 −2 1

−2 6 0

1 0 0

 ∈ R3×3,

E = GPG(4 : 6, 4 : 6) ∈ S3, f =


108

10

0

 ∈ R3 and g = h =


10−8

0

0

 ∈ R3,

where G = 106 × diag(1, 5, 10, 50, 100, 500) and P = [pij] ∈ R6×6, pij =
(i+ j − 1)!

(i− 1)!(j − 1)!
.

The approximate solution ‹w = [x̃T , ỹT , z̃T ]T of this DSPP is obtained using the GEP,

where

x̃ = 10−05 ×


60.0120

−8.0016

1.0002

 , ỹ =


6.0012

2.0004

−2.0004

 and z̃ = 10−13 ×


−1.7109

0.8556

−0.0475

 .
We compute the unstructured BE η(‹w), structured BEs ηS1

sps(x̃, ỹ, z̃) and ηS1(x̃, ỹ, z̃)

using the formulae given in (4.3.3), Theorem 4.3.5 and Corollary 4.3.1, respectively. The

obtained BEs are given by

η(‹w) =6.9314× 10−27, ηS1
sps(x̃, ỹ, z̃) = 5.4649× 10−06, (4.4.1)

and ηS1(x̃, ỹ, z̃) = 4.7907× 10−06.

From (4.4.1), we can observe that η(‹w) of O(10−27) indicates that GEP is backward

stable for solving this DSPP. On the other side ηS1
sps(x̃, ỹ, z̃) and ηS1(x̃, ỹ, z̃) is much

smaller than η(‹w) implies that GEP for solving this DSPP is not strongly backward

stable. This shows that a backward stable iterative algorithm for solving the DSPP may

not be strongly backward stable.
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Example 4.4.6. In this example, we perform a comparison among our obtained struc-

tured BEs and the structured BE considered in [98]. For this, we consider the DSPP

(4.3.1) with

A =


0.0968 0 −0.2438 −0.2823

0 0 1.1180 −1.1611

−0.2438 1.1180 1.6014 −0.8693

−0.2823 −1.1611 −0.8693 −0.4914

 , B =

 0 0 0.7090 0

1.9046 0.0928 −0.0430 0.0508

 ,

F =

−0.2592 0 0.2543 0.1248

0.0876 1.1375 0 0.0766

 , C = 02×2, D =

 0 1.8070

1.0365 −1.5516

 and E = 02×2.

Here, n = 4,m = 2 and p = 2. Further, we consider the right-hand side vector d =

[fT , gT , hT ]T ∈ R8, where

f =


−1.1251

−1.9000

−0.4320

−1.1422

 , g =
[
−0.5516

1.8738

]
and h =

[
0.4982

0.8347

]
.

The computed solution using the the MATLAB ‘blackshash’ command is ‹w = [x̃T , ỹT , z̃T ]T ,

where

x̃ =


−1.6927

−1.5778

1.9746

3.5598

 , ỹ =

[
1.2180

0.2757

]
and z̃ =

[
0.3571

−1.8683

]
.

The computed solution ‹w has residue ∥B‹w−d∥ = 1.4864× 10−15. The unstructured BE

computed using the formula (4.3.3) is 5.2700×10−17, structured BE using the Theorem 3.2

of [98] is 4.1137×10−16, structured BE with sparsity using Theorem 4.3.8 is 2.7992×10−16

and the structured BE without sparsity using Corollary 4.3.3 is 2.5525×10−16.We observe

that all the computed BEs are in unit round-off error and the structured BEs are only

one order larger than the unstructured ones. Furthermore, the structured BEs derived

in our work and those obtained in the reference [98] exhibit uniform order. This shows

the reliability of our derived structured BEs formulae. One notable advantage of our

derived formulae lies in our ability to preserve the sparsity pattern within the perturbation

matrices.
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Example 4.4.7. To test the strong backward stability of the GMRES method, in this

example, we consider the DSPP (4.3.1) [75] with the block matrices

A =

[
I ⊗ Z + Z ⊗ I 0

0 I ⊗ Z + Z ⊗ I

]
∈ R2r2×2r2 , B =

î
I ⊗H H ⊗ I

ó
∈ Rr2×2r2 ,

D = G ⊗ H ∈ Rr2×r2 and C = E = 0r2×r2 , where Z = 1
(r+1)2

tridiag(−1, 2,−1) ∈
Rr×r, H = 1

r+1
tridiag(0, 1,−1) ∈ Rr×r and G = diag(1, r+1, . . . , r2−r+1) ∈ Rr×r. For

this problem, the dimension of B is 4r2.We use GMRES method to solve this DSPP with

termination criteria ∥Bwk−d∥2
∥d∥2 < tol, where wk is solution at each iterate and tol = 10−13

and the initial guess vector zero. We compute the structured and unstructured BEs for

the solution at the final iteration. The computed BEs for different values of r are listed

in Table 4.4.2.

Table 4.4.2: Values of structured and unstructured BEs of the approximate

solution obtained using GMRES for Example 4.4.7.

r ∥Bwk−d∥2
∥d∥2 η(w̃) ηS1(x̃, ỹ, z̃) ηS1

sps(x̃, ỹ, z̃)

4 1.0593e-15 4.1823e-17 1.3757e-16 4.9831e-16

6 2.4960e-14 5.3825e-16 1.8436e-15 7.3871e-15

8 2.0868e-14 3.0086e-16 9.6476e-16 5.4875e-15

10 3.2981e-14 3.4862e-16 1.3781e-15 9.1775e-15

From Table 4.4.2, we observe that unstructured BE η(‹w), structured BE with pre-

serving sparsity ηS1
sps(x̃, ỹ, z̃) and structured BE ηS1(x̃, ỹ, z̃) are all around order of unit

round-off error. Using our obtained structured BEs, we successfully demonstrate that the

GMRES method for solving this DSPP exhibits strong backward stability.

4.5. Summary

In this chapter, we investigated the structured BEs for circulant, Toeplitz, symmetric-

Toeplitz, and Hermitian structured GSPPs with and without preserving the sparsity pat-

tern of block matrices. Moreover, we study structured BEs for DSPP in three cases when

the diagonal block matrices preserve symmetric structure. Additionally, we provide mini-

mal perturbation matrices for which an approximate solution becomes the exact solution

of a nearly perturbed GSPP or DSPP, which preserves their inherent block structure and

sparsity pattern. Furthermore, unstructured BE is obtained when the block matrices of
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the GSPP only preserve the sparsity pattern. Our obtained results are used to derive

structured BE for WRLS problems with Toeplitz or symmetric-Toeplitz coefficient ma-

trices. Numerical experiments are performed to validate our theoretical findings and to

examine the backward stability and the strong backward stability of numerical algorithms

to solve structured GSPPs and DSPPs.
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CHAPTER 5

Partial Condition Numbers for Saddle Point Problems∗†

This chapter addresses structured normwise condition number (NCN), mixed condi-

tion number (MCN), and componentwise condition number (CCN) for a linear function

of the solution (or the partial NCN, MCN, and CCN) of the GSPP and DSPP. Firstly,

we present a general framework that enables us to measure the structured CNs of the in-

dividual components of the solution of the GSPP. Then, we derive their explicit formulae

when the input matrices have symmetric, Toeplitz, or some general linear structures. In

addition, compact formulae for the unstructured CNs are obtained, which recover previ-

ous results on CNs for GSPPs for specific choices of the linear function. Moreover, we

investigate unstructured partial unified CN and structured partial NCN, MCN, and CCN

for DSPPs. Furthermore, applications of the derived structured CNs are provided to de-

termine the structured CNs for the WRLS problems, Tikhonov regularization problems

and EILS problems, which retrieves some previous studies in the literature.

5.1. Partial Condition Numbers for the Generalized Saddle Point

Problem

In this section, we consider the following GSPP:

Mz :=

[
A BT

C D

][
x

y

]
=

[
f

g

]
=: b, (5.1.1)

where A ∈ Rn×n, B, C ∈ Rm×n, D ∈ Rn×n, x, f ∈ Rn, and y, g ∈ Rm. The block matrices

A,B,C and D satisfy some special structures, such as B = C, symmetric, Toeplitz, or

have some other linear structures [26]. Recently, a large amount of efficient iteration

methods have been proposed to solve the linear system (5.1.1), such as inexact Uzawa

schemes [12], Krylov subspace methods [119], and so on.

∗ S. S. Ahmad and P. Khatun, “Structured condition numbers for a linear function of the solution of the

generalized saddle point problems.” Electronic Transactions on Numerical Analysis, 60:471-500, 2024.
† S. S. Ahmad and P. Khatun, “Partial condition numbers for double saddle point problems.” Under Revision

in Numerical Algorithms.



Perturbation analysis and CNs for the GSPP (5.1.1) have been widely studied in the

literature. A brief review of the literature work of the CNs for the GSPP (5.1.1) is as

follows. Wang and Liu [138] have analyzed the NCN for the solution z = [xT , yT ]T for the

KKT system, i.e., the GSPP (5.1.1) with A = AT , B = C and D = 0. In [147], authors

have discussed perturbation bounds for the GSPP when B = C, and D = 0, and have

derived closed formulae for the NCN, MCN, and CCN of the solutions z = [xT , yT ]T and

the individual solution components x and y. The NCN and perturbation bounds have

been investigated in [151] for the solution z = [xT , yT ]T of the GSPP (5.1.1), with the

conditions B = C and D ̸= 0. Later, Meng and Li [100] studied the MCN and CCN for

z = [xT , yT ]T . Additionally, they explored the NCN, MCN, and CCN for the individual

solution components x and y. Recently, new perturbation bounds have been derived for

the GSPP (5.1.1) under the condition B ̸= C, without imposing any special structure on

A and D [153].

In many applications, blocks of the coefficient matrix M of the system (5.1.1) exhibit

linear structures (for example, symmetric, Toeplitz or symmetric-Toeplitz) [32, 60, 124,

163]. Therefore, it is reasonable to ask: how sensitive is the solution when structure-

preserving perturbations are introduced to the coefficient matrix of GSPPs? To address

the aforementioned query, we explore the notion of structured CNs by restricting pertur-

bations that preserve the structures inherent in the block matrices of M.

Furthermore, in many instances, x and y represent two distinct physical entities;

for example, in the Stokes equation, x denotes the velocity vector, and y signifies the

scalar pressure field [60]. Therefore, it is important to assess their individual conditioning

properties. The traditional CNs lack the ability to reveal the conditioning of a specific

part of the solution. To tackle this situation, CN of a linear function of the solution has

been investigated in the literature. This is referred to as the partial CN. In this study,

we propose a general framework for assessing the conditioning of x, y, z = [xT , yT ]T and

each component of z. In the proposed general framework, we consider the structured CNs

of a linear function L[xT , yT ]T of the solution to GSPP (5.1.1), where L ∈ Rk×(m+n). The

matrix L serves as a pivotal tool for the purpose of selecting solution components. For

example, (i) L = Im+n gives the CNs for [xT , yT ]T , (ii) L =
î
In 0

ó
gives the CNs for x,

and (iii) L =
î
0 Im

ó
gives the CNs for y.

The key contributions of this section are summarized as follows:
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• We study the NCN, MCN, and CCN for the linear function L[xT , yT ]T , which in

turn provides a general framework, enabling us to derive CNs for the solutions

[xT , yT ]T , x, y, and each component of [xT , yT ]T .

• We investigate partial unstructured CNs by considering B = C and then the struc-

tured CNs when the (1,1) block A is symmetric and (1,2) block B is Toeplitz, and

derive their closed form expressions. Moreover, explicit formulae for unstructured

CNs are also derived. For appropriate choices of L, we have shown that our derived

unstructured CNs formulae generalize the results given in literature [100, 151].

• By considering linear structure on the block matrices A and D with B ̸= C, we

provide compact formulae of the structured partial NCN, MCN, and CCN for the

GSPP (5.1.1).

• Utilizing the structured CNs formulae, we derive the structured CNs for the WRLS

problem and generalize some of the previous structured CNs formulae for the

Tikhonov regularization problem. This shows the generic nature of our obtained

results.

• Numerical experiments demonstrate that the obtained structured CNs offer sharper

bounds to the actual relative errors than their unstructured counterparts.

The organization of this section is as follows. Subsection 5.1.1 discusses notation and

preliminary results about CNs. In Subsections 5.1.2-5.1.4, we investigate unstructured

and structured partial NCN, MCN, and CCN for the GSPP. Furthermore, an application

of our obtained structured CNs is provided in Subsection 5.1.5 for WRLS problems and

Tikhonov regularization problems. In Subsection 5.1.6, numerical experiments are carried

out to demonstrate the effectiveness of the proposed structured CNs. Subsection 5.1.7

presents some concluding remarks.

5.1.1. Preliminaries

In this subsection, we define some notation and review some well-known results, which

play a crucial role in constructing the main findings of this section.

Following [51, 88], the entrywise division of any two vectors x = [xi] ∈ Rn and

y = [yi] ∈ Rn is defined as x
y
:=
î
xi
yi

ó
, where xi/0 = 0 whenever xi = 0 and infinity

otherwise.

Throughout this section, we assume that A and M are nonsingular. We know that

if A is nonsingular, then M is nonsingular if and only if its Schur complement S =
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D − CA−1BT is nonsingular [8] and its inverse is expressed as follows:

M−1 =

[
A−1 + A−1BTS−1CA−1 −A−1BTS−1

−S−1CA−1 S−1

]
. (5.1.2)

First, consider the case when B = C, i.e., the following GSPP:

M

[
x

y

]
:=

[
A BT

B D

][
x

y

]
=

[
f

g

]
:= b, (5.1.3)

and let ∆A, ∆B,∆D,∆f and ∆g be the perturbations in A,B,D, f and C, respectively.

Then, we have the following perturbed problem of (5.1.3):

(M+∆M)

[
x+∆x

y +∆y

]
=

[
A+∆A (B +∆B)T

B +∆B D +∆D

][
x+∆x

y +∆y

]
=

[
f +∆f

g +∆g

]
, (5.1.4)

which has the unique solution

[
x+∆x

y +∆y

]
when ∥M−1∥2∥∆M∥2 < 1. Now, from (5.1.4)

omitting the higher order term, we obtain[
∆x

∆y

]
≈ M−1

[
∆f

∆g

]
−M−1

[
∆A ∆BT

∆B ∆D

][
x

y

]
. (5.1.5)

Using the properties Kronecker product and vec operation in (1.3.2), we have the

following important lemma.

Lemma 5.1.1. Let

[
x

y

]
and

[
x+∆x

y +∆y

]
be the unique solutions of the GSPP (5.1.3) and

(5.1.4), respectively. Then, we have the following perturbation expression:

[
∆x

∆y

]
≈ −M−1

î
R −Im+n

ó
vec(∆A)

vec(∆B)

vec(∆D)

∆f

∆g


,

where

R =

[
xT ⊗ In In ⊗ yT 0

0 xT ⊗ Im yT ⊗ Im

]
. (5.1.6)

Proof. The proof follows from (5.1.5) and using the properties in (1.3.2). ■
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Denote H =

[
A 0

B D

]
and ∆H =

[
∆A 0

∆B ∆D

]
. Xu and Li [151] investigated unstruc-

tured NCN and Meng and Li [100] studied unstructured MCN and NCN for the solution

[xT , yT ]T to the GSPP (5.1.1) when B = C, which are given as follows:

K u([xT , yT ]T ) := lim
η→0

sup

ß∥[∆xT , ∆yT ]T∥2
η∥[xT , yT ]T∥2

:
∥∥∥î∆H ∆d

ó∥∥∥
F
≤ η

∥∥∥îH d
ó∥∥∥

F

™
(5.1.7)

=

∥∥∥M−1
î
R −Im+n

ó∥∥∥
2

∥∥∥îH d
ó∥∥∥

F

∥[xT , yT ]T∥2
,

M u([xT , yT ]T ) := lim
η→0

sup

ß∥[∆xT , ∆yT ]T∥∞
η∥[xT , yT ]T∥∞

∣∣∣î∆H ∆d
ó∣∣∣ ≤ η

∣∣∣îH d
ó∣∣∣™ (5.1.8)

=

∥∥∥∥∥∥∥∥|M
−1R|


vec(|A|)
vec(|B|)
vec(|D|)

+ |M−1|

[
|f |
|g|

]∥∥∥∥∥∥∥∥
∞

∥[xT , yT ]T∥∞
,

and

C u([xT , yT ]T ) := lim
η→0

sup

ß
1

η

∥∥∥∥ [∆xT , ∆yT ]T[xT , yT ]T

∥∥∥∥
∞

:
∣∣∣î∆H ∆d

ó∣∣∣ ≤ η
∣∣∣îH d

ó∣∣∣™ (5.1.9)

=

∥∥∥∥∥D†
[xT , yT ]T

|M−1R|


vec(|A|)
vec(|B|)
vec(|D|)

+D†
[xT , yT ]T

|M−1|

[
|f |
|g|

]∥∥∥∥∥
∞

,

where R is defined as in (5.1.6).

In the next subsection, we discuss the unstructured partial CNs for the GSPP (5.1.3).

5.1.2. Partial CNs for the GSPP when B = C

In this subsection, we consider the unstructured NCN, MCN, and CCN for the linear

function L[xT , yT ]T , where L ∈ Rk×(m+n) when B = C, and derive their explicit formulae.

Throughout the section, we assume [xT , yT ]T ̸= 0 for MCN and xi ̸= 0 (i = 1, . . . ,m)

and yi ̸= 0 (i = 1, . . . , n) for CCN. In the following, we define unstructured partial NCN,

MCN, and CCN.
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Definition 5.1.1. Let [xT , yT ]T and
î
(x+∆x)T , (y +∆y)T

óT
be the unique solutions of

GSPPs (5.1.3) and (5.1.4), respectively, and L ∈ Rk×(m+n). Then we define the unstruc-

tured partial NCN, MCN, and CCN, respectively, as follows:

K (L[xT , yT ]T ) := lim
η→0

sup

ß∥L[∆xT , ∆yT ]T∥2
η∥L[xT , yT ]T∥2

:
∥∥∥î∆H ∆d

ó∥∥∥
F
≤ η

∥∥∥îH d
ó∥∥∥

F

™
,

M (L[xT , yT ]T ) := lim
η→0

sup

ß∥L[∆xT , ∆yT ]T∥∞
η∥L[xT , yT ]T∥∞

:
∣∣∣î∆H ∆d

ó∣∣∣ ≤ η
∣∣∣îH d

ó∣∣∣™ , and

C (L[xT , yT ]T ) := lim
η→0

sup

ß
1

η

∥∥∥∥L[∆xT , ∆yT ]TL[xT , yT ]T

∥∥∥∥
∞

:
∣∣∣î∆H ∆d

ó∣∣∣ ≤ η
∣∣∣îH d

ó∣∣∣™ .
Note that when L = Im+n, the above definition reduces to (5.1.7)–(5.1.9). For using

Lemma 6.2.1, we construct the mapping ψ : Rm2+mn+n2 × Rm+n 7→ Rm+n by

ψ([ΩT , fT , gT ]T ) := L

[
x

y

]
= LM−1

[
f

g

]
, (5.1.10)

where ΩT = [vec(A)T , vec(B)T , vec(D)T ]T .

The following result is crucial for finding the CNs formulae.

Proposition 5.1.2. Let ΩT = [vec(A)T , vec(B)T , vec(D)T ]T . Then, for the map ψ de-

fined in (5.1.10), we have K (L[xT , yT ]T ) = K (ψ, [ΩT , fT , gT ]T ), M (L[xT , yT ]T ) =

M (ψ, [ΩT , fT , gT ]T ), and C (L[xT , yT ]T ) = C (ψ, [ΩT , fT , gT ]T ).

Proof. Let ∆ΩT = [vec(∆A)T , vec(∆B)T , vec(∆D)T ]T . Then, from (5.1.10), we obtain

ψ
(
[(ΩT +∆ΩT ), fT +∆fT , gT +∆gT ]T

)
−ψ

(
[ΩT , fT , gT ]T

)
= L

[
x+∆x

y +∆y

]
− L

[
x

y

]
= L

[
∆x

∆y

]
. (5.1.11)

Now, in Definition 5.1.1, substituting (5.1.11) and ψ
(
[ΩT , fT , gT ]T

)
= L
î
xT , yT

óT
, and

consequently from Definition 4.1.1, the proof follows. ■

Since the Fréchet derivative of ψ (denoted by dψ) has a pivotal role in estimating

the CNs in Definition 5.1.1, it is essential to derive simple expressions for dψ. By applying

Lemma 5.1.1, we obtain the following results for dψ.

Lemma 5.1.3. The map ψ defined above is continuous and Fréchet differentiable at

[ΩT , fT , gT ]T and its Fréchet derivative at [ΩT , fT , gT ]T is given by

dψ([ΩT , fT , gT ]T ) = −LM−1
î
R −Im+n

ó
.
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Proof. Since M−1 is continuous in its elements, the linear map ψ is also continuous. Let

∆ΩT = [vec(∆A)T , vec(∆B)T , vec(∆D)T ]T . Then

ψ
(
[(ΩT +∆ΩT ), fT +∆fT , gT +∆gT ]T

)
−ψ

(
[ΩT , fT , gT ]T

)
= L

[
∆x

∆y

]
.

Hence, the rest of the proof follows from the Lemma 5.1.1. ■

Applying Lemma 5.1.3, we obtain the following closed formulae for the unstructured

CNs for the linear function L[xT , yT ]T .

Theorem 5.1.4. Let [xT , yT ]T be the unique solution of the GSPP (5.1.3). Then the

unstructured partial NCN, MCN, and CCN, respectively, are given by

K (L[xT , yT ]T ) =

∥∥∥LM−1
î
R −Im+n

ó∥∥∥
2

∥∥∥îH d
ó∥∥∥

F

∥L[xT , yT ]T∥2
,

M (L[xT , yT ]T ) =

∥∥∥∥∥∥∥∥|LM
−1R|


vec(|A|)
vec(|B|)
vec(|D|)

+ |LM−1|

[
|f |
|g|

]∥∥∥∥∥∥∥∥
∞

∥L[xT , yT ]T∥∞
, and

C (L[xT , yT ]T ) =

∥∥∥∥∥D†
L[xT , yT ]T

|LM−1R|


vec(|A|)
vec(|B|)
vec(|D|)

+D†
L[xT , yT ]T

|LM−1|

[
|f |
|g|

]∥∥∥∥∥
∞

.

Proof. Let ΩT = [vec(A)T , vec(B)T , vec(D)T ]T . Then, from Proposition 5.1.2 and applying

the NCN formula of Lemma 1.3.2 for the map ψ, we obtain

K (L[xT , yT ]T ) = K (ψ, [ΩT , fT , gT ]T ) =

∥∥∥dψ (ΩT , fT , gT ]T
) ∥∥∥

2

∥∥[ΩT , fT , gT ]T
∥∥
2

∥ψ (ΩT , fT , gT ]T )∥2
.

(5.1.12)

Now, substituting the Fréchet derivative expression of ψ at [ΩT , fT , gT ]T provided in

Lemma 5.1.3 in (5.1.12), we get

K (L[xT , yT ]T ) =

∥∥∥LM−1
î
R −Im+n

ó ∥∥∥
2

∥∥∥îH d
ó∥∥∥

F

∥L[xT , yT ]T∥2
.

Similarly, applying the MCN formula provided in Lemma 1.3.2 for ψ, we get

M (L[xT , yT ]T ) = M (ψ, [ΩT , fT , gT ]T ) =

∥∥|dψ ([ΩT , fT , gT ]T
)
|
∣∣[ΩT , fT , gT ]T

∣∣∥∥
∞

∥ψ ([ΩT , fT , gT ]T )∥∞
.

(5.1.13)
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Substituting the Fréchet derivative expression provided in Lemma 5.1.3 in (5.1.13), we

obtain

M (L[xT , yT ]T ) =

∥∥∥∣∣∣LM−1
î
R −Im+n

ó ∣∣∣ ∣∣[ΩT , fT , gT ]T
∣∣∥∥∥

∞
∥L[xT , yT ]T∥∞

=

∥∥∥∥∥|LM−1R|


vec(|A|)
vec(|B|)
vec(|D|)

+ |LM−1|

[
|f |
|g|

]∥∥∥∥∥
∞∥∥∥L[xT , yT ]T∥∥∥

∞

.

Similarly, the rest of the proof follows. ■

Remark 5.1.5. If we consider L = Im+n, then the formulae of K (L[xT , yT ]T ), M (L[xT , yT ]T )

and C (L[xT , yT ]T ) reduces to unstructured CNs K u([xT , yT ]T ), M u([xT , yT ]T ) and C u([xT , yT ]T )

given in (5.1.7)–(5.1.9), respectively. Moreover, if we choose L =
î
In 0

ó
and L =î

0 Im
ó
, and after some easy calculations, we can recover the unstructured CNs formulae

of [100] for x and y, respectively.

5.1.3. Structured Partial CNs when A is Symmetric and B = C is Toeplitz

In this subsection, we consider the structured partial NCN, MCN, and CCN of the

GSPP (5.1.3) with A = AT and B = C ∈ Rn×m is a Toeplitz matrix. We denote Sn and

Tn×m as set of all n× n symmetric matrices and n×m Toeplitz matrices, respectively.

As dim(Tn×m) = m+ n− 1, consider the basis {Ji}m−1
i=−n+1 for Tn×m defined as

Ji =

{
T ([(enn−i)

T , 0]T ) for i = −n+ 1, . . . ,−1, 0,

T ([0, (emi )
T ]T ) for i = 1, . . . ,m− 1.

Moreover, construct the diagonal matrix DTnm ∈ R(m+n−1)×(m+n−1) with DTnm(j, j) = aj,

where

a = [1,
√
2, . . . ,

√
n− 1,

»
min{m,n},

√
m− 1, . . . ,

√
2, 1]T ∈ Rm+n−1

such that ∥T∥F = ∥DTnmvecT (T )∥2.

Lemma 5.1.6. Let T ∈ Tn×m, then vec(T ) = ΦTnmvecT (T ), where

ΦTnm =
î
vec(J−n+1), . . . , vec(Jm−1)

ó
∈ Rmn×(m+n−1).
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Proof. Assume that vecT (T ) = [t−n+1, . . . t0, . . . , tm−1]
T , then

T =
m−1∑

i=−n+1

tiJi ⇐⇒ vec(T ) = ΦTnmvecT (T ).

Hence, the proof follows. ■

Let A ∈ Sn, then A = AT . Moreover, we have dim(Sn) = n(n+1)
2

=: p. We denote the

generator vector for A as

vecS(A) := [a11, . . . , a1n, a22, . . . , a2n, . . . , a(n−1)(n−1), a(n−1)n, ann]
T ∈ Rp.

Consider the basis
{
Snij
}
for Sn defined as

Snij =

{
eni (e

n
j )
T + (enj e

n
i )
T for i ̸= j,

eni (e
n
i )
T for i = j,

where 1 ≤ i ≤ j ≤ n. Then, we have the following immediate result for vec-structure of

A.

Lemma 5.1.7. Let A ∈ Sn, then vec(A) = ΦSn vecS(A), where ΦSn ∈ Rn2×p is given by

ΦSn =
î
vec(Sn11) · · · vec(Sn1n) vec(Sn22) · · · vec(Sn2n) · · · vec(Sn(n−1)n) vec(Snnn)

ó
.

Proof. The proof follows by using the similar proof method of Lemma 5.1.6. ■

We construct the diagonal matrix DSn ∈ Rp×p, where{
DSn(j, j) = 1 for j = (2n−(i−2))(i−1)

2
+ 1, i = 1, 2, . . . , n,

DSn(j, j) =
√
2 for otherwise.

This matrix satisfies the property ∥A∥F = ∥DSnvecS(A)∥2.
Consider the set

E =

{
H =

[
A 0

B D

]
: A ∈ Sn, B ∈ Tm×n, D ∈ Rm×m

}
,

and let ∆H =

[
∆A 0

∆B ∆D

]
∈ E , i.e., ∆A ∈ Sn, ∆B ∈ Tm×n, and ∆D ∈ Rm×m.

Next, we define the structured CNs for the solution of the GSPP (5.1.3).

Definition 5.1.2. Let [xT , yT ]T and
î
(x+∆x)T , (y +∆y)T

óT
be the unique solutions of

GSPPs (5.1.3) and (5.1.4), respectively, with the structure E and L ∈ Rk×(m+n). Then,
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the structured partial NCN, MCN, and CCN are defined as follows:

K (L[xT , yT ]T ; E) := lim
η→0

sup

{
∥L[∆xT , ∆yT ]T∥2
η∥L[xT , yT ]T∥2

:
∥∥∥î∆H ∆b

ó∥∥∥
F
≤ η

∥∥∥îH d
ó∥∥∥

F
,∆H ∈ E

}
,

M (L[xT , yT ]T ; E) := lim
η→0

sup

{
∥L[∆xT , ∆yT ]T∥∞
η∥L[xT , yT ]T∥∞

:
∣∣∣î∆H ∆b

ó∣∣∣ ≤ η
∣∣∣îH b

ó∣∣∣ ,∆H ∈ E

}
,

C (L[xT , yT ]T ; E) := lim
η→0

sup

{
1

η

∥∥∥∥L[∆xT , ∆yT ]TL[xT , yT ]T

∥∥∥∥
∞

:
∣∣∣î∆H ∆b

ó∣∣∣ ≤ η
∣∣∣îH b

ó∣∣∣ ,∆H ∈ E

}
.

To find the structured CNs formulae by employing Lemma 1.3.2, we define the fol-

lowing mapping

ζ : Rl × Rn × Rm 7→ Rm+n by (5.1.14)

ζ
(
[DEw

T , fT , gT ]T
)
= L

[
x

y

]
= LM−1

[
f

g

]
,

where l = p+m2 +m+ n− 1, w =


vecS(A)

vecT (B)

vec(D)

 and DE =


DSn 0 0

0 DTmn 0

0 0 Im2

 .
In the next lemma, we provide Fréchet derivative of the map ζ at

î
DEw

T , fT , gT
óT
.

Lemma 5.1.8. The mapping ζ defined in (5.1.14) is continuously Fréchet differentiable

at
î
DEw

T , fT , gT
óT

and the Fréchet derivative is given by

dζ
(
[DEw

T , fT , gT ]T
)
= −LM−1

î
RΦED

−1
E −Im+n

ó
,

where ΦE =


ΦSn 0 0

0 ΦTmn 0

0 0 Im2

 .
Proof. The continuity of the linear map ζ follows from the continuity of M−1. For the

second part, let ∆w =


vecS(∆A)

vecT (∆B)

vec(∆D)

 and consider

ζ
(
[DE(w

T +∆wT ), fT +∆fT , gT +∆gT ]
)
− ζ

(
[DEw

T , fT , gT ]T
)
= L

[
∆x

∆y

]
. (5.1.15)
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Then from Lemma 1.3.2, we obtain

[
∆x

∆y

]
≈ −M−1

î
R −Im+n

ó
vec(∆A)

vec(∆B)

vec(∆D)

∆f

∆g



= −M−1
î
R −Im+n

óΦSn 0 0

0 ΦTmn 0

0 0 Im2+m+n




vecS(∆A)

vecT (∆B)

vec(∆D)

∆f

∆g



= −M−1
î
RΦE −Im+n

óD−1
E DE∆w

∆f

∆g



= −M−1
î
RΦED

−1
E −Im+n

óDE∆w

∆f

∆g

 . (5.1.16)

Combining (5.1.16) and (5.1.15), the Fréchet derivative of ζ at


DEw

f

g

 is

dζ
(
[DEw

T , fT , gT ]T
)
= −LM−1

î
RΦED

−1
E −Im+n

ó
.

Hence, the proof follows. ■

Using the Lemma 5.1.8 and Lemma 1.3.2, we next derive the compact formulae for

the structured CNs defined in Definition 5.1.2.
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Theorem 5.1.9. Let [xT , yT ]T be the unique solution of the GSPP (5.1.3) with the struc-

ture E. Then, the structured partial NCN, MCN, and CCN, respectively, are given by

K (L
î
xT , yT

óT
; E) =

∥∥∥LM−1
î
RΦED

−1
E −Im+n

ó ∥∥∥
2

∥∥∥îH b
ó∥∥∥

F

∥L[xT , yT ]T∥2
,

M (L
î
xT , yT

óT
; E) =

∥∥∥∥∥|LM−1RΦE |


vecS(|A|)
vecT (|B|)
vec(|D|)

+ |LM−1|

[
|f |
|g|

]∥∥∥∥∥
∞∥∥∥L[xT , yT ]T∥∥∥

∞

, and

C (L
î
xT , yT

óT
; E) =

∥∥∥∥∥∥∥∥D
†
L[xT ,yT ]T

|LM−1RΦE |


vecS(|A|)
vecT (|B|)
vec(|D|)

+D†
L[xT ,yT ]T

|LM−1|

[
|f |
|g|

]∥∥∥∥∥∥∥∥
∞

.

Proof. Let wT = [vecTS (A), vecT (B)T , vec(D)T ]T . Following the proof method of Proposi-

tion 5.1.2, we have

K (L
î
xT , yT

óT
; E) = K (ζ, [DEw

T , fT , gT ]T ),

M (L
î
xT , yT

óT
; E) = M (ζ, [DEw

T , fT , gT ]T ),

and C (L
î
xT , yT

óT
; E) = C (ζ, [DEw

T , fT , gT ]T ).

Applying the NCN formula given in Lemma 1.3.2 for the map ζ, we obtain

K (L[xT , yT ]T ; E) =

∥∥∥dζ ([DEw
T , fT , gT ]T

) ∥∥∥
2

∥∥∥∥∥∥∥∥

DEw

f

g


∥∥∥∥∥∥∥∥
2

∥ζ ([DEwT , fT , gT ]T )∥2
. (5.1.17)

Now, substituting Fréchet derivative of ζ provided in Lemma 5.1.3 in (5.1.17), we have

K (L[xT , yT ]T ; E) =

∥∥∥LM−1
î
RΦED

−1
E −Im+n

ó ∥∥∥
2

∥∥∥îH b
ó∥∥∥

F

∥L[xT , yT ]T∥2
.

Similarly, applying the MCN formula provided in Lemma 1.3.2 for ζ, we get

M (L[xT , yT ]T ; E) =

∥∥∥∥∥∥∥∥|dζ
(
[DEw

T , fT , gT ]T
)
|

∣∣∣∣∣∣∣∣

DEw

f

g


∣∣∣∣∣∣∣∣
∥∥∥∥∥∥∥∥
∞

∥ζ ([DEwT , fT , gT ]T )∥∞
. (5.1.18)
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Now, using Lemma 5.1.8 in (5.1.18), we obtain

M (L[xT , yT ]T ; E) =

∥∥∥∥∥∥∥∥
∣∣∣LM−1

î
RΦED

−1
E −Im+n

ó ∣∣∣ ∣∣∣∣∣∣∣∣

DEw

f

g


∣∣∣∣∣∣∣∣
∥∥∥∥∥∥∥∥
∞

∥L[xT , yT ]T∥∞

=

∥∥∥∥∥|LM−1RΦED
−1
E ||DEw|+ |LM−1|

[
|f |
|g|

]∥∥∥∥∥
∞

∥L[xT , yT ]T∥∞

=

∥∥∥∥∥|LM−1RΦE |


vecS(|A|)
vecT (|B|)
vec(|D|)

+ |LM−1|

[
|f |
|g|

]∥∥∥∥∥
∞∥∥∥L[xT , yT ]T∥∥∥

∞

.

In an analogous method, we get

C (L[xT , yT ]T ; E) =

∥∥∥∥∥∥∥∥D
†
L[xT ,yT ]T

|dζ
(
[DEw

T , fT , gT ]T
)
|

∣∣∣∣∣∣∣∣

DEw

f

g


∣∣∣∣∣∣∣∣
∥∥∥∥∥∥∥∥
∞

=

∥∥∥∥∥∥∥∥D
†
L[xT ,yT ]T

L|M−1RΦE |


vecS(|A|)
vecT (|B|)
vec(|D|)

+D†
L[xT ,yT ]T

|LM−1|

[
|f |
|g|

]∥∥∥∥∥∥∥∥
∞

.

Hence, the proof is completed. ■

Remark 5.1.10. Note that the structured MCN and CCN formulae presented in Theorem

5.1.9 involve computing the inverse of the matrix M ∈ R(m+n)×(m+n), while the structured

NCN formula involves computing the inverse of both matrices M and DE ∈ Rl×l. How-

ever, DE is a diagonal matrix. Therefore, its inverse can be computed using only O(l)

operations. On the other hand, to avoid computing M−1 explicitly, motivated by [87], we

adopt the following procedure. Notably, the computation of M−1 is coming in the following

form:

LM−1
î
RΦED

−1
E −Im+n

ó
or LM−1RΦE , or LM−1.

Thus, first, we solve the system MX = Y, where Y =
î
RΦED

−1
E −Im+n

ó
or RΦE and

then compute LX. The system MX = Y can be solved efficiently by LU decomposition.

To compute LM−1, we can solve L = XM. It is worth noting that we only need to perform

the LU decomposition once for all cases; this makes the procedure efficient and reliable.
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Remark 5.1.11. The Toeplitz matrix B is symmetric-Toeplitz (a special case of Toeplitz

matrix) if n = m and b−n+1 = bn−1, . . . , b−1 = b1, where

vecT (B) = [b−n+1, . . . , b1, b0, . . . , bn−1]
T .

In this case, the basis for the set of symmetric-Toeplitz matrices is defined as
¶‹Ji©n

i=1
,

where ‹J1 = T ([(enn)
T , 0]T ) and‹Ji+1 = T ([(enn−i)
T , (e

(n−1)
i )T ]T ), for i = 1, . . . , n− 1.

Hence, the structured CNs for the GSPP (5.1.1) when A is symmetric, B is symmetric-

Toeplitz is given by the formulae as in Theorem 5.1.9, with

ΦTmn =
î
vec(‹J1), . . . , vec(‹Jn)ó ∈ Rn2×n

and DTmn ∈ Rn×n with DTmn(j, j) = âj, where

â = [
√
n,
»

2(n− 1),
»
2(n− 2), . . . ,

√
2]T ∈ Rn.

Next, we compare the structured CNs with the unstructured ones given in (5.1.7)–

(5.1.9).

Theorem 5.1.12. With the above notation, when L = Im+n, we have the following rela-

tions:

K ([xT , yT ]T ; E) ≤ K u([xT , yT ]T ), M ([xT , yT ]T ; E) ≤ M u([xT , yT ]T )

and C ([xT , yT ]T ; E) ≤ C u([xT , yT ]T ).

Proof. Since L = Im+n, for the NCN, using the properties of the spectral norm, we obtain

∥∥∥M−1
î
RΦED

−1
E −Im+n

ó ∥∥∥
2
≤
∥∥∥M−1

î
R −Im+n

ó ∥∥∥
2

∥∥∥∥∥
[
ΦED

−1
E 0

0 Im+n

]∥∥∥∥∥
2

=
∥∥∥M−1

î
R −Im+n

ó ∥∥∥
2
.

The last equality is obtained by using the fact that ∥ΦED
−1
E ∥2 = 1. Hence, the first claim

is achieved.
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Since ΦE has at most one nonzero entry in each row, we obtain

|M−1RΦE |


vecS(|A|)
vecT (|B|)
vec(|D|)

 ≤ |M−1R||ΦE |


vecS(|A|)
vecT (|B|)
vec(|D|)



= |M−1R|


|ΦSn|vecS(|A|)
|ΦTmn |vecT (|B|)

vec(|D|)



= |M−1R|


|ΦSnvecS(A)|
|ΦTmnvecT (B)|

vec(|D|)



= |M−1R|


vec(|A|)
vec(|B|)
vec(|D|)

 .
Therefore, from Theorem 5.1.4, we obtain

M ([xT , yT ]T ; E) ≤

∥∥∥∥∥∥∥∥|M
−1R|


vec(|A|)
vec(|B|)
vec(|D|)

+ |M−1|

[
|f |
|g|

]∥∥∥∥∥∥∥∥
∞

∥[xT , yT ]T∥∞
= M u([xT , yT ]T )

and

C ([xT , yT ]T ; E) ≤

∥∥∥∥∥D†
[xT , yT ]T

|M−1R|


vec(|A|)
vec(|B|)
vec(|D|)

+D†
[xT , yT ]T

|M−1|

[
|f |
|g|

]∥∥∥∥∥
∞

= C u([xT , yT ]T ).

Hence, the proof is completed. ■

5.1.4. Structured Partial CNs when A and D have Linear Structures

In this subsection, we consider L1 ⊆ Rn×n and L2 ⊆ Rm×m are two distinct linear

subspaces containing different classes of structured matrices. Suppose that the dim(L1) =

p and dim(L2) = s and the corresponding bases are {Ei}pi=1 and {Fi}si=1, respectively. Let

A ∈ L1 and D ∈ L2. Then there are unique vectors

vecL1(A) = [a1, a2, . . . , ap]
T ∈ Rp and vecL2(D) = [d1, d2, . . . , ds]

T ∈ Rs
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such that

A =

p∑
i=1

aiEi and D =
s∑
i=1

diFi. (5.1.19)

Subsequently, we obtain the following for the vec-structure of the matrices A and D.

Lemma 5.1.13. Let A ∈ L1 and D ∈ L2, then vec(A) = ΦL1vecL1(A) and vec(D) =

ΦL2vecL2(D), where

ΦL1 =
î
vec(E1) vec(E2) · · · vec(Ep)

ó
∈ Rn2×p

and ΦL2 =
î
vec(F1) vec(F2) · · · vec(Fs)

ó
∈ Rm2×s.

Proof. Assume that vecL1(A) = [a1, a2, . . . , ap]
T ∈ Rp, then from (5.1.19), we obtain

vec(A) =

p∑
i=1

aivec(Ei) = ΦL1vecL1(A).

Similarly, we can obtain vec(D) = ΦL2vecL2(D). ■

The matrices ΦL1 and ΦL2 contains the information about the structures of A and D

consisting with the linear subspaces L1 and L2, respectively. For unstructured matrices,

ΦL1 = In2 and ΦL2 = Im2 . On the other hand, there exist diagonal matrices DL1 ∈ Rp×p

and DL2 ∈ Rs×s with the diagonal entries DLj
(i, i) = ∥ΦLj

(:, i)∥2, for j = 1, 2, such that

∥A∥F = ∥DL1a∥2 and ∥D∥F = ∥DL2d∥2. (5.1.20)

To perform structured perturbation analysis, we restrict the perturbation ∆A on A

and ∆D on D to the linear subspaces L1 and L2, respectively. Then, there are unique

vectors vecL1(∆A) ∈ Rp and vecL2(∆D) ∈ Rs such that

vec(∆A) = ΦL1vecL1(∆A) and vec(∆D) = ΦL2vecL1(∆D). (5.1.21)

Now, consider the following set:

L =

{
M =

[
A BT

C D

]
: A ∈ L1, B, C ∈ Rm×n, D ∈ L2

}
. (5.1.22)

Consider the perturbations ∆A, ∆B, ∆C, ∆D, ∆f, and ∆g on the matrices A, B, C, D,

f, and g, respectively. Then, the perturbed counterpart of the system (5.1.1)

(M+∆M)

[
x+∆x

y +∆y

]
=

[
A+∆A (B +∆B)T

C +∆C D +∆D

][
x+∆x

y +∆y

]
=

[
f +∆f

g +∆g

]
(5.1.23)

has a unique solution

[
x+∆x

y +∆y

]
when ∥M∥2 ∥∆M∥2 < 1. Consequently, neglecting

higher-order terms, we can rewrite (5.1.23) as
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M

[
∆x

∆y

]
=

[
A BT

C D

][
∆x

∆y

]
≈

[
∆f

∆g

]
−

[
∆A ∆BT

∆C ∆D

][
x

y

]
. (5.1.24)

Using the properties of the Kronecker product mentioned in (1.3.2), we have the

following lemma.

Lemma 5.1.14. Let [xT , yT ]T and [(x+∆x)T , (y+∆y)T ]T be the unique solutions of the

GSPP (5.1.1) and (5.1.23), respectively, with structure L. Then, we have the following

perturbation expression

[
∆x

∆y

]
≈ −M−1

î
H −Im+n

ó


vec(∆A)

vec(∆B)

vec(∆C)

vec(∆D)

∆f

∆g


, (5.1.25)

where

H =

[
xT ⊗ In In ⊗ yT 0 0

0 0 xT ⊗ Im yT ⊗ Im

]
. (5.1.26)

Next, we define the structured partial NCN, MCN, and CCN for the solution of the

GSPP (5.1.1) with the structure L.

Definition 5.1.3. Let [xT , yT ]T and [(x+∆x)T , (y +∆y)T ]T be the unique solutions of

GSPPs (5.1.1) and (5.1.23), respectively, with the structure L. Suppose L ∈ Rk×(m+n),

then the structured partial NCN, MCN, and CCN, respectively, are defined as follows:

K (L[xT , yT ]T ; L)

:= lim
η→0

sup

®∥∥L[∆xT , ∆yT ]T∥∥
2

η ∥L[xT , yT ]T∥2
:
∥∥∥î∆M ∆d

ó∥∥∥
F
≤ η

∥∥∥îM d
ó∥∥∥

F
, ∆M ∈ L

´
,

M (L[xT , yT ]T ; L)

:= lim
η→0

sup

®∥∥L[∆xT , ∆yT ]T∥∥∞
η ∥L[xT , yT ]T∥∞

:
∣∣∣î∆M ∆d

ó∣∣∣ ≤ η
∣∣∣îM d

ó∣∣∣ , ∆M ∈ L
´
,

C (L[xT , yT ]T ; L)

::= lim
η→0

sup

ß
1

η

∥∥∥∥L[∆xT , ∆yT ]TL[xT , yT ]T

∥∥∥∥
∞

:
∣∣∣î∆M ∆d

ó∣∣∣ ≤ η
∣∣∣îM d

ó∣∣∣ , ∆M ∈ L
™
.
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The main objective of this section is to develop explicit formulae for the structured

CNs defined above. To accomplish these, let v be a vector in Rp+2mn+s defined as

v =
î
vecTL1

(A), vec(B)T , vec(C)T , vecTL2
(D)
óT
. (5.1.27)

To apply the Lemma 1.3.2, we define the mapping

Υ : Rp+2mn+s × Rn × Rm 7→ Rk by (5.1.28)

Υ
(
[DLv

T , fT , gT ]T
)
= L

[
x

y

]
= LM−1

[
f

g

]
,

where

DL =


DL1 0 0

0 I2mn 0

0 0 DL2

 (5.1.29)

such that ∥M∥F = ∥DLv∥2.
In the following lemma, we present explicit formulations of dΥ.

Lemma 5.1.15. The mapping Υ defined in (5.1.28) is continuously Fréchet differentiable

at [DLv
T , fT , gT ]T and the Fréchet derivative is given by

dΥ
(
[DLv

T , fT , gT ]T
)
= −LM−1

î
HΦLDL −Im+n

ó
, (5.1.30)

where ΦL =


ΦL1 0 0

0 I2mn 0

0 0 ΦL2

 , H and DL are defined as in (5.1.26) and (5.1.29),

respectively.

Proof. The proof follows in a similar way to the proof method of Lemma 5.1.8. ■

We now present compact formulae of the structured partial NCN, MCN, and CCN

introduced in Definition 4.1.1. We use the Lemmas 1.3.2 and 5.1.15 to prove the following

theorem.
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Theorem 5.1.16. The structured partial NCN, MCN, and CCN of the GSPP (5.1.1) with

the structure L, respectively, are given by

K (L[xT , yT ]T ; L) =

∥∥∥LM−1
î
HΦLD

−1
L −Im+n

ó ∥∥∥
2

∥∥∥îM d
ó∥∥∥

F

∥L[xT , yT ]T∥2
,

M (L[xT , yT ]T ; L) =

∥∥∥∥∥|LM−1HΦL|


vecL1(|A|)
vec(|B|)
vec(|C|)
vecL2(|D|)

+ |LM−1|

[
|f |
|g|

]∥∥∥∥∥
∞

∥∥∥L[xT , yT ]T∥∥∥
∞

, and

C (L[xT , yT ]T ; L) =

∥∥∥∥∥D†
L[xT ,yT ]T

|LM−1HΦL|


vecL1(|A|)
vec(|B|)
vec(|C|)
vecL2(|D|)

+D†
L[xT ,yT ]T

|LM−1|

[
|f |
|g|

]∥∥∥∥∥
∞

.

Proof. Similar to the proof method of Proposition 5.1.2, we have

K (L[xT , yT ]T ; L) = K (Υ,
î
DLv

T , fT , gT
óT
),

M (L[xT , yT ]T ; L) = M (Υ,
î
DLv

T , fT , gT
óT
),

and C (L[xT , yT ]T ; L) = C (Υ,
î
DLv

T , fT , gT
óT
).

Using Lemma 5.1.15 and NCN formula provided in Lemma 1.3.2, we have

K (L[xT , yT ]T ;L) =

∥∥∥dΥ ([DLv
T , fT , gT ]T

) ∥∥∥
2

∥∥∥∥∥∥∥∥

DLv

f

g


∥∥∥∥∥∥∥∥
2

∥Υ([DLvT , fT , gT ]T )∥2

=

∥∥∥LM−1
î
HΦLD

−1
L −Im+n

ó ∥∥∥
2

∥∥∥îM d
ó∥∥∥

F

∥L[xT , yT ]T∥2
.

For structured MCN, again using Lemmas 1.3.2 and 5.1.15, we obtain

M (L[xT , yT ]T ;L) =

∥∥∥∥∥∥∥∥|dΥ
(
[DLv

T , fT , gT ]T
)
|

∣∣∣∣∣∣∣∣

DLv

f

g


∣∣∣∣∣∣∣∣
∥∥∥∥∥∥∥∥
∞

∥Υ([DLvT , fT , gT ]T )∥∞
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=

∥∥∥∥∥∥∥∥
∣∣∣LM−1

î
HΦLD

−1
L −Im+n

ó ∣∣∣ ∣∣∣∣∣∣∣∣

DLv

f

g


∣∣∣∣∣∣∣∣
∥∥∥∥∥∥∥∥
∞

∥L[xT , yT ]T∥∞

=

∥∥∥∥∥|LM−1HΦL|


vecL1(|A|)
vec(|B|)
vec(|C|)
vecL2(|D|)

+ |LM−1|

[
|f |
|g|

]∥∥∥∥∥
∞

∥∥∥L[xT , yT ]T∥∥∥
∞

.

Similarly, the rest of the proof follows. ■

Remark 5.1.17. To compute the inverses of M and DL, one can follow a similar pro-

cedure as discussed in Remark 5.1.10.

Remark 5.1.18. Considering L = Im+n,
î
Im 0

ó
and
î
0 In

ó
in Theorem 5.1.16, we ob-

tain the structured NCN, MCN, and CCN for the solution [xT , yT ]T , x and y, respectively.

Remark 5.1.19. For A ∈ Sn and D ∈ Sm, set

ΦS =


ΦSn 0 0

0 I2mn 0

0 0 ΦSm

 and DS =


DSn 0 0

0 I2mn 0

0 0 DSm

 ,
where ΦSm ,ΦSn ,DSm and DSn are defined as in Subsection 5.1.3. Then, the structured

partial NCN, MCN, and CCN when L1 = Sn and L2 = Sm are obtained by substituting

ΦL = ΦS , DL = DS , vecL1(A) = vecSn(A) and vecL2(D) = vecSm(D) in Theorem 5.1.16.

Next, consider the linear system Mz = b, where M ∈ Rl×l being any nonsingular

matrix and b ∈ Rl. Then, this system can be partitioned as GSPP (5.1.1) by setting

l = m+ n. Let ∆M ∈ Rl×l and ∆b ∈ Rl, then the perturbed system is given by

(M+∆M)(z +∆z) = (b+∆b).

Skeel [127] and Rohn [118] propose the following formulae for the unstructured MCN

and CCN for the solution of the above linear system:›M (z) := lim
η→0

sup

ß∥∆z∥∞
η∥z∥∞

: |∆M| ≤ η|M|, |∆b| ≤ η|b|
™

=
∥|M−1||M||z|+ |M−1||b|∥∞

∥z∥∞
, (5.1.31)
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‹C (z) := lim
η→0

sup

ß
1

η

∥∥∥∥∆zz
∥∥∥∥
∞

: |∆M| ≤ η|M|, |∆b| ≤ η|b|
™

=

∥∥∥∥ |M−1||M||z|+ |M−1||b|
|z|

∥∥∥∥
∞
. (5.1.32)

Remark 5.1.20. Considering ΦSm = Im2 and ΦSn = In2 on the formula of K ([xT , yT ]T ;L),
we obtain the unstructured NCN for Mz = b, where M ∈ Rl×l, b ∈ Rl and l = (m+ n),

which is given by›K (z) := lim
η→0

sup

{
∥∆z∥2
η∥z∥2

:
∥∥∥î∆M ∆b

ó∥∥∥
F
≤ η

∥∥∥îM d
ó∥∥∥

F

}

=

∥∥∥M−1
î
H −Im+n

ó ∥∥∥
2

∥∥∥îM d
ó∥∥∥

F

∥z∥2
.

The following theorem compares the structured NCN, MCN, and CCN obtained in

Theorem 5.1.16 and the unstructured counterparts defined above.

Theorem 5.1.21. Let z = [xT , yT ]T and L = Im+n. Then, for the GSPP (5.1.1) with the

structure L, following relations holds:

K ([xT , yT ]T ; L) ≤ ›K ([xT , yT ]T ), M ([xT , yT ]T ; L) ≤ ›M ([xT , yT ]T )

and C ([xT , yT ]T ; L) ≤ ‹C ([xT , yT ]T ).

Proof. Since ∥ΦLD
−1
L ∥2 = 1, the proof follows similar to the proof method of Theorem

5.1.12. Hence, from Theorem 5.1.16 and Remark 5.1.20, we have K ([xT , yT ]T ; L) ≤›K ([xT , yT ]T ). Now, using the property that the matrices ΦLi
, i = 1, 2, have at most one

nonzero entry in each row [86], and similar to Theorem 5.1.12, we obtain |ΦL1vecL1(A)| =
|ΦL1|vecL1(|A|) and |ΦL2vecL2(D)| = |ΦL2|vecL2(|D|). Then

|M−1HΦL|


vecL1(|A|)
vec(|B|)
vec(|C|)
vecL2(|D|)

+ |M−1|

[
|f |
|g|

]
≤ |M−1||H|


vec(|A|)
vec(|B|)
vec(|C|)
vec(|D|)

+ |M−1|

[
|f |
|g|

]

≤ |M−1|

[
|xT | ⊗ Im Im ⊗ |yT | 0 0

0 0 |xT | ⊗ In |yT | ⊗ In

]
vec(|A|)
vec(|B|)
vec(|C|)
vec(|D|)

+ |M−1|

[
|f |
|g|

]

= |M−1||M|

[
|x|
|y|

]
+ |M−1|

[
|f |
|g|

]
.
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Consequently, by Theorem 5.1.16, we have

M ([xT , yT ]T ; L) ≤

∥∥∥∥∥|M−1||M|

[
|x|
|y|

]
+ |M−1|

[
|f |
|g|

]∥∥∥∥∥
∞

∥[xT , yT ]T∥∞
, (5.1.33)

C ([xT , yT ]T ; L) ≤

∥∥∥∥∥∥∥∥∥∥∥
|M−1||M|

[
|x|
|y|

]
+ |M−1|

[
|f |
|g|

]
|
î
xT , yT

óT
|

∥∥∥∥∥∥∥∥∥∥∥
∞

. (5.1.34)

Now, considering l = m + n, z = [xT , yT ]T and b = [fT , gT ]T in (5.1.31) and (5.1.32),

and from above, we obtain the following relations:

M ([xT , yT ]T ; L) ≤ ›M ([xT , yT ]T ) and C ([xT , yT ]T ; L) ≤ ‹C ([xT , yT ]T ).

Hence, the proof follows. ■

5.1.5. Application to WRLS Problems

Consider the WRLS problem (1.1.3) with K = QT and let r = W (f −Qy), then the

minimization problem (1.1.3) can be expressed as the following augmented linear system:

M̂

[
r

y

]
:=

[
W−1 Q

QT −λIm

][
r

y

]
=

[
f

0

]
. (5.1.35)

Identifying A = W−1, B = QT , D = −λIm, x = r, and g = 0, we can see that the

augmented system (5.1.35) is in the form of the GSPP (5.1.3). Therefore, finding the

CNs of the WRLS problem (1.1.3) is equivalent to the CNs of the GSPP (5.1.3) for y

with g = 0. This accomplish by Theorem 5.1.4. Before that, we reformulate (5.1.2) (with

B = C) as

M−1 =

[
M N

K S−1

]
, (5.1.36)

where M = A−1 + A−1BTS−1BA−1, N = −A−1BTS−1, K = −S−1BA−1 and S =

D −BA−1BT .

Theorem 5.1.22. Let y be the unique solution of the problem (1.1.3) and r = W (f−Qy).
Then, the structured NCN, MCN, and CCN for y, respectively, are given by

K rls(y; E) =
∥X∥2

∥∥∥îM̂ d
ó∥∥∥

F

∥y∥2
, M rls(y; E) = ∥Ny∥∞

∥y∥∞
, and C rls(y; E) =

∥∥D†
yNy

∥∥
∞ ,
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where

X =
î
(rT ⊗ ‹K)ΦSmD

−1
Sm

(K ⊗ yT + rT ⊗ S̃−1)ΦTnmD
−1
E yT ⊗ S̃−1 −‹K −S̃−1

ó
,

Ny = |(rT ⊗ ‹K)ΦSm|vecS(|A|) + |((K ⊗ yT ) + (rT ⊗ S̃−1))ΦTnm |vecT (|QT |)

+ |S̃−1||D||y|+ |K||f |, ‹K = −S̃−1QTW, and S̃ = −(λIn +QTWQ).

Proof. Let L =
î
0 Im

ó
∈ Rm×(m+n), A = W−1, B = QT , D = −λIm, x = r, and g = 0.

Then from Theorem 5.1.4, we have

LM−1
î
RΦED

−1
E −Im+n

ó
=
î‹K S̃−1

ó î
R −Im+n

ó[ΦED
−1
E 0

0 Im+n

]
=
î
(rT ⊗K)ΦSnD

−1
Sn

(‹K ⊗ yT + rT ⊗ S̃−1)ΦTmnD
−1
Tmn

yT ⊗ S̃−1 −‹K −S̃−1
ó
.

Hence, the expression for K rls(y; E) is obtained from Theorem 5.1.4. The rest of the

proof follows in a similar manner. ■

Since, in most cases of the WRLS problem, the weighted matrixW and regularization

matrix D = −λIm has no perturbation, we consider ∆A = 0 and ∆D = 0. Moreover,

as g = 0, we assume ∆g = 0. Then, perturbation expansion in Lemma 5.1.1 can be

reformulated as

[
∆x

∆y

]
= −M−1

[
In ⊗ yT −In
xT ⊗ Im 0

][
vec(∆B)

∆f

]

= −

[
Rrls −

[
M

K

]][
vec(∆B)

∆f

]
, (5.1.37)

where

Rrls =

[
M ⊗ yT + xT ⊗N

K ⊗ yT + xT ⊗ S−1

]
.

Now, applying a similar method to Subsection 5.1.3, we obtain the following expressions

for the NCN, MCN, and CCN for L[xT , yT ]T when B = C and g = 0.
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Theorem 5.1.23. Let ∆B ∈ Tm×n and with the above notations, structured partial NCN,

MCN, and CCN for the GSPP (5.1.3), respectively, are given by

”K (L[xT , yT ]T ) := lim
η→0

sup

{
∥L[∆xT , ∆yT ]T∥2
η∥L[xT , yT ]T∥2

:
∥∥∥î∆B ∆f

ó∥∥∥
F
≤ η

∥∥∥îB f
ó∥∥∥

F

}

=

∥∥∥∥∥L
[
RrlsΦTmnD

−1
Tmn

−

[
M

K

]]∥∥∥∥∥
2

∥∥∥îB f
ó∥∥∥

F

∥L[xT , yT ]T∥2
,”M (L[xT , yT ]T ) := lim

η→0
sup

{
∥L[∆xT , ∆yT ]T∥∞
η∥L[xT , yT ]T∥∞

:
∣∣∣î∆B ∆f

ó∣∣∣ ≤ η
∣∣∣îB f

ó∣∣∣}
=

∥∥∥∥∥∥|LRrlsΦTmn|vecT (|B|) +

∣∣∣∣∣∣L
[
M

K

]∣∣∣∣∣∣ |f |
∥∥∥∥∥∥
∞

∥L[xT , yT ]T∥∞
,“C (L[xT , yT ]T ) := lim

η→0
sup

{
1

η

∥∥∥∥L[∆xT , ∆yT ]TL[xT , yT ]T

∥∥∥∥
∞

:
∣∣∣î∆B ∆f

ó∣∣∣ ≤ η
∣∣∣îB f

ó∣∣∣}
=

∥∥∥∥∥∥D†
L[xT , yT ]T

|LRrlsΦTmn |vecT (|B|) +D†
L[xT , yT ]T

∣∣∣∣∣∣L
[
M

K

]∣∣∣∣∣∣ |f |
∥∥∥∥∥∥
∞

.

Proof. For applying Lemma 1.3.2, we define

ζ̂ : Rm+n−1 × Rn 7→ Rm+n by

ζ̂
(
[DTmnvecT (B)T , fT ]T

)
= L

[
x

y

]
= LM−1

[
f

0

]
.

Then, the map ζ̂ is continuously Fréchet differentiable at [DTmnvecT (B)T , fT ]T with

dζ̂
(
[DTmnvecT (B)T , fT ]T

)
= −L

[
RrlsΦTmnD

−1
Tmn

−

[
M

K

]]
.

The rest of the proof follows similarly to Theorem 5.1.9. ■

Using the above result, we can derive the following structured CNs for the problem

(1.1.3), when the weighted matrix and regularization matrix have no perturbation.
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Corollary 5.1.1. The structured NCN, MCN, and CCN for the solution y of the WRLS

problem (1.1.3), respectively, are given by”K rls(y) =

∥∥∥î(‹K ⊗ yT + rT ⊗ S̃−1)ΦTnmD
−1
Tnm

−‹Kó∥∥∥
2

∥∥∥îQ f
ó∥∥∥

F

∥y∥2
,”M rls(y) =

∥∥∥|(‹K ⊗ yT + rT ⊗ S̃−1)ΦTnm |vecT (|QT |) + |‹K||f |
∥∥∥
∞

∥y∥∞
,“C rls(y) = ∥D†

y|(‹K ⊗ yT + rT ⊗ S̃−1)ΦTmn |vecT (|QT |) +D†
y|‹K||f |∥∞,

where ‹K = S̃−1QTW and S̃ = −(λIm +QTWQ).

Proof. Substituting L =
î
0 Im

ó
∈ Rm×(m+n), B = QT , A = W−1, D = −λIm and

x = W (f −Qy) in Theorem 5.1.23, the proof follows. ■

Remark 5.1.24. We consider the Tikhonov regularization problem

min
w∈Rm

{
∥BTw − f∥22 + λ∥Rw∥22

}
,

where R is the regularization matrix and λ > 0 regularization parameter. Let w be the

unique solution of the Tikhonov regularization problem. Then, substituting L =
î
0 Im

ó
∈

Rm×(m+n), A = In, D = −λRTR, x = (f − BTw) and y = w, in Theorem 5.1.23, we can

recover the structured NCN, MCN, and CCN formulae discussed in [101] for Toeplitz

structure.

5.1.6. Numerical Experiments

In order to check the reliability of the proposed structured CNs, we perform several

numerical experiments in this section. We construct the perturbations to the input data

as follows:

∆A = 10−q ·∆A1 ⊙ A, ∆B = 10−q ·∆B1 ⊙B, ∆C = 10−q ·∆C1 ⊙ C, (5.1.38)

∆D = 10−q ·∆D1 ⊙D, ∆f = 10−q ·∆f1 ⊙ f, and ∆g = 10−q ·∆g1 ⊙ g, (5.1.39)

where ∆A1 ∈ Rn×n,∆B1,∆C1 ∈ Rm×n and ∆D1 ∈ Rm×m are the random matrices,

preserving the structures of original matrices. Suppose that [xT , yT ]T and [x̃T , ỹT ]T are

the unique solutions of the original GSPP and the perturbed GSPP, respectively. To

estimate an upper bound for the forward error in the solution, the normwise, mixed, and
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componentwise relative errors in L[xT , yT ]T , respectively, are defined by:

relk =
∥L[x̃T , ỹT ]T − L[xT , yT ]T∥2

∥L[xT , yT ]T∥2
, relm =

∥L[x̃T , ỹT ]T − L[xT , yT ]T∥∞
∥L[xT , yT ]T∥∞

,

and relc =

∥∥∥∥L[x̃T , ỹT ]T − L[xT , yT ]T

L[xT , yT ]T

∥∥∥∥
∞
.

The following quantities

η1 · K (L[xT , yT ]T ), η2 · M (L[xT , yT ]T ), η2 · C(L[xT , yT ]T ) and

η1 · K (L[xT , yT ]T ;S), η2 · M (L[xT , yT ]T ;S), η2 · C (L[xT , yT ]T ;S),

where S = {E ,L}, are the estimated upper bounds of relk, relm, and relc obtained by the

CNs in unstructured and structured cases, respectively. Here, the quantities η1 and η2

are defined as [94]:

η1 =



∥∥∥∥ï∆H ∆d
ò∥∥∥∥

F∥∥∥∥ïH d
ò∥∥∥∥

F

, when S = E ,
∥∥∥∥ï∆M ∆d

ò∥∥∥∥
F∥∥∥∥ïM d

ò∥∥∥∥
F

, when S = L,

and η2 = min{η :
∣∣∣î∆M ∆d

ó∣∣∣ ≤ η
∣∣∣îM d

ó∣∣∣}. We choose the matrix L as Im+n,î
In 0

ó
, and

î
0 Im

ó
, so that the CNs for [xT , yT ]T , x and y, respectively, are obtained.

Example 5.1.1. In this example, we consider the GSPP (5.1.3) arising from the WRLS

problem [24]. Here m = n and the Toeplitz matrix B is given as follows:

B = [bij] ∈ Tn×n with bij =
1√
2πσ

e−
(i−j)2

2σ2 ,

A ∈ Rn×n is set to be a positive diagonal random matrix, and D = −νIn (ν > 0). The

right hand side vector is taken as d = randn(2n, 1) ∈ R2n.

We select σ = 2 and ν = 0.001 as in [10]. We set q = 8 and construct perturbation

matrices as in (5.1.38)-(5.1.39) with ∆B1 ∈ T n×m and ∆A1 =
1
2
(Â+ ÂT ), Â is a random

matrix. In all cases, we observed η1 ≈ O(10−9) and η2 ≈ O(10−8). The numerical results

for structured and unstructured NCN, MCN, and CCN, and the exact relative errors are

reported in Tables 5.1.1-5.1.3 for different values of n. We use Theorem 5.1.9 and Remark

5.1.11 to compute the structured CNs and Theorem 5.1.4 to compute unstructured CNs.

The results presented in Tables 5.1.1-5.1.3 reveal that the structured NCN, MCN, and

CCN are much smaller than the unstructured ones for all values n. Specifically, for large

matrices (with dimensions of M taken up to 400), the structured CNs are approximately
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Table 5.1.1: Comparison of unstructured and structured NCN, MCN, and

CCN with their corresponding relative errors when L = I2n for Example

5.1.1.

n = m relk K ([xT , yT ]T ) K ([xT , yT ]T ; E) relm M ([xT , yT ]T ) M ([xT , yT ]T ; E) relc C ([xT , yT ]T ) C ([xT , yT ]T ; E)

50 4.1808e-07 2.8177e+04 2.4798e+04 4.6643e-07 1.4438e+03 5.3588e+02 3.3769e-05 5.7501e+04 2.0978e+04

100 2.4188e-07 4.8911e+03 4.6982e+03 2.5583e-07 1.4305e+02 4.1253e+01 1.4497e-05 1.1440e+04 2.4661e+03

150 5.3749e-07 1.9378e+04 1.7985e+04 6.1184e-07 5.5108e+02 1.3986e+02 2.4998e-04 3.6099e+05 8.1050e+04

200 7.5206e-07 3.2373e+04 9.4706e+03 8.8297e-07 1.0386e+03 4.5302e+02 9.7741e-05 2.0373e+05 4.4730e+04

Table 5.1.2: Comparison of unstructured and structured NCN, MCN, and

CCN with their corresponding relative errors when L =
î
In 0

ó
for Example

5.1.1.

n = m relk K ([xT , yT ]T ) K ([xT , yT ]T ; E) relm M ([xT , yT ]T ) M ([xT , yT ]T ; E) relc C ([xT , yT ]T ) C ([xT , yT ]T ; E)

50 3.8496e-07 2.7536e+04 2.4281e+04 4.1735e-07 1.2042e+03 4.6611e+02 3.2289e-06 1.0158e+04 3.1020e+03

100 3.0293e-07 7.0491e+03 6.7372e+03 3.7151e-07 2.7486e+02 7.2328e+01 6.2591e-06 6.5226e+03 1.2953e+03

150 7.2376e-07 2.7944e+04 2.5692e+04 8.4422e-07 7.5098e+02 2.0082e+02 6.3056e-05 3.6099e+05 8.1050e+04

200 8.0141e-07 3.6034e+04 3.2041e+04 7.4664e-07 1.0283e+03 4.1526e+02 9.7741e-05 2.0067e+05 4.4730e+04

Table 5.1.3: Comparison of unstructured and structured NCN, MCN, and

CCN with their corresponding relative errors when L =
î
0 In

ó
for Example

5.1.1.

n = m relk K ([xT , yT ]T ) K ([xT , yT ]T ; E) relm M ([xT , yT ]T ) M ([xT , yT ]T ; E) relc C ([xT , yT ]T ) C ([xT , yT ]T ; E)

50 4.2087e-07 2.8235e+04 7.2137e+03 4.6643e-07 1.4438e+03 5.3588e+02 3.3769e-05 5.7501e+04 2.0978e+04

100 2.3999e-07 4.8471e+03 1.1173e+03 2.5583e-07 1.4305e+02 4.1253e+01 1.4497e-05 1.1440e+04 2.4661e+03

150 5.2664e-07 1.8878e+04 5.6962e+03 6.1184e-07 5.5108e+02 1.3986e+02 2.4998e-04 9.0978e+04 3.1977e+04

200 7.4779e-07 3.2089e+04 9.2643e+03 8.8297e-07 1.0386e+03 4.5302e+02 5.4363e-05 2.0373e+05 3.4820e+04

an order of magnitude smaller than unstructured ones, showcasing the superiority of

proposed structured CNs.

Example 5.1.2. In this example, we consider the GSPP arising from the discretization

of the following Stokes equation by upwind scheme [14]:
−µ∆u+∇p = f̃ , in Ω,

∇ · u = g̃ in Ω,

u = 0, on ∂Ω,∫
Ω
p(x)dx = 0,

(5.1.40)
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where Ω = (0, 1)× (0, 1) ∈ R2, ∂Ω is the boundary of Ω, µ is the viscosity parameter, ∆

is the Laplace operator, ∇ represents the gradient, ∇· is the divergence, u is the velocity

vector, and p is the scalar function representing the pressure. By discretizing (5.1.40), we

obtain the GSPP (5.1.1) with

A =

[
Ir ⊗ T + T ⊗ Ir 0

0 Ir ⊗ T + T ⊗ Ir

]
∈ R2r2×2r2 , BT =

[
Ir ⊗G

G⊗ Ir

]
∈ R2r2×r2 ,

C = −B, and D = 0, where

T =
µ

h2
tridiag(−1, 2,−1) ∈ Rr×r and G =

1

h
tridiag(−1, 1, 0) ∈ Rr×r.

Note that, for this test problem µ = 0.1, n = 2r2 andm = r2, and we choose b = [fT , gT ]T

so that the exact solution is z = [1, 1, . . . , 1]T ∈ Rm+n. To avoid making A too sparse, we

add X = 0.5(X1 +XT
1 ) to A, where X1 = sprandn(m,n, 0.1).

Table 5.1.4: Comparison of unstructured and structured NCN, MCN, and

CCN with their corresponding relative errors when L = Im+n for Example

5.1.2.

r relk ›K (z) K ([xT , yT ]T ; L) relm ›M (z) M ([xT , yT ]T ; L) relc ‹C (z) C ([xT , yT ]T ; L)

3 4.6396e-08 1.0866e+02 1.0325e+02 9.2530e-08 1.0315e+02 8.3160e+01 9.2530e-08 1.0315e+02 8.3160e+01

4 1.0295e-07 1.2567e+03 1.1946e+03 4.0283e-07 1.1158e+03 8.9754e+02 4.0283e-07 1.1158e+03 8.9754e+02

5 1.3490e-07 1.1905e+03 1.1256e+03 5.3926e-07 1.2062e+03 9.4423e+02 5.3926e-07 1.2062e+03 9.4423e+02

6 1.1442e-07 1.4744e+03 1.3738e+03 3.8692e-07 1.1110e+03 8.5833e+02 3.8692e-07 1.1110e+03 8.5833e+02

7 1.4617e-07 2.5853e+03 2.5366e+03 5.2901e-07 1.1384e+03 9.1026e+02 5.2901e-07 1.1384e+03 8.1026e+02

8 5.1493e-08 2.6605e+03 2.1679e+03 2.0993e-07 1.0634e+03 8.8527e+02 2.0993e-07 1.0634e+03 8.8527e+02

9 7.7302e-08 1.2791e+03 1.0043e+03 2.5382e-07 1.0339e+03 8.2775e+02 2.5382e-07 1.0339e+03 8.2775e+02

10 1.2621e-07 1.5807e+04 1.5205e+04 4.5006e-07 1.0406e+04 8.3004e+03 4.5006e-07 1.0406e+04 8.3004e+03

The perturbations in the input data constructed as in (5.1.38)-(5.1.39) with q = 8,

∆A1 = 1
2
(Â + ÂT ), where Â ∈ Rn×n is random matrix. The numerical result for the

structured and unstructured NCN, MCN, and CCN with L = Im+n are presented in

Table 5.1.4 for r = 3, 4, . . . , 10. Since the block matrix A is symmetric, we compute the

structured NCN, MCN and CCN using Theorem 5.1.16 and Remark 5.1.19 with D = 0.

Unstructured CNs are computed using (5.1.31), (5.1.32), and Remark 5.1.20. We observed

η1 ≈ O(10−9) and η2 ≈ O(10−8) in all cases. Results reported in Table 5.1.4 demonstrate

that for all values of r, structured MCN and CCN are almost one order smaller than the

unstructured MCN and CCN. Moreover, the estimated upper bounds of the relative error
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of the solution produced by the structured CNs are sharper than those obtained by the

unstructured CNs irrespective of the increasing size of M (taken up to 300).

5.1.7. Summary

In this section, by considering structure-preserving perturbations on the block ma-

trices, we have investigated structured partial NCN, MCN, and CCN for the GSPP. We

derive compact formulae of structured partial CNs in two cases. First, when B = C

is Toeplitz and A is symmetric. Second, when B ̸= C and the matrices A and D pos-

sess linear structures. Furthermore, we have obtained unstructured CNs’ formulae for

B = C, which generalizes the previous results on CNs of GSPP when L is Im+n,
î
In 0

ó
and
î
0 Im

ó
. Additionally, the relations between structured and unstructured CNs are

obtained. It is found that the structured CNs are always smaller than their unstructured

counterparts. An application of obtained structured CNs formulae is provided to find the

structured CNs for WRLS problems, and they are also used to retrieve some prior found

results for Tikhonov regularization problems. Numerical experiments are performed to

validate the theoretical findings pertaining to proposed structured CNs. Moreover, empir-

ical investigations indicate that the proposed structured MCN and CCN give much more

accurate error estimations to the solution of GSPPs compared to unstructured CNs.

5.2. Partial Condition Numbers for Double Saddle Point Prob-

lems

This section presents a unified framework for investigating the partial CN for the

solution of DSPPs and provides closed-form expressions for it. This unified framework

encompasses the well-known partial NCN, MCN and CCN as special cases. Furthermore,

we derive sharp upper bounds for the partial NCN, MCN, and CCN, which are compu-

tationally efficient and free of expensive Kronecker products. By applying perturbations

that preserve the structure of the block matrices of the DSPPs, we analyze the structured

partial NCN, MCN and CCN when the block matrices exhibit linear structures. By lever-

aging the relationship between DSPP and EILS problems, we recover the partial CNs for

the EILS problem. Numerical results confirm the sharpness of the derived upper bounds

and demonstrate their effectiveness in estimating the partial CNs.
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5.2.1. Background

We consider the following linear system with the double saddle point structure:

Bw = d, (5.2.1)

where

B =


A BT 0

B −D CT

0 C E

 ; w =


x

y

z

 ; d =


f

g

h

 ; (5.2.2)

A ∈ Rn×n, B ∈ Rm×n, C ∈ Rp×m, D ∈ Rm×m, E ∈ Rp×p, b ∈ Rl and l = n + m + p.

Conditions on the invertability for the matrix B have been studied in [20, 69]. To ensure

a unique solution to (5.2.1), throughout the section, we assume that B is nonsingular.

Perturbation analysis and CNs for standard SPPs have been extensively studied in

the literature; see [100, 147, 151]. However, these studies do not take advantage of the

three-by-three block structure of the coefficient matrix B. Furthermore, they do not

provide sensitivity analysis for the individual solution components x, y, and z, or for

each component of w. For the first time, this class of CN was investigated in [38] for the

system of linear equations and later extensively studied for various problems in recent

years, for instance, in linear least squares (LS) problems [6], weighted LS problems [55],

the indefinite LS problems [87, 137], total LS problems [7], and GSPPs [4].

In recent years, the structured CNs of various problems have been studied, empha-

sizing the preservation of the linear structure of the original matrices in the perturbation

matrices, such as linear systems [120, 121], linear LS problems [50], GSPPs [4]. The block

matrices A, D, and E often exhibit particular linear structures in various applications;

see [111, 115]. This makes it compelling to explore the structured partial CNs for the

DSPP (5.2.1) by preserving the linear structures of the diagonal block matrices to their

corresponding perturbation matrices.

In this section, we consider the CN of the linear function L[xT ,yT , zT ]T of the solution

w = [xT ,yT , zT ]T , where L ∈ Rk×l (k ≤ l) or the partial CN of the solution w =

[xT ,yT , zT ]T of the DSPP (5.2.1). Furthermore, our investigation presents a general

framework that encompasses well-known CNs, such as NCN, MCN, and CCN, as special

cases.

The key contributions of the section are highlighted as follows:
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• In this work, we explore a general form of partial CN, referred to as partial uni-

fied CN, which has a versatile nature and provides a comprehensive framework

encompassing the NCN, MCN, and CCN of the solution of the DSPP.

• By considering structure-preserving perturbations on A, D, and E, when they

retain some linear structures, we derive structured partial CNs for the DSPP.

• By exploring the connection between DSPPs and EILS problems, we demonstrate

that our derived CN formula can be used to recover the partial CNs for the EILS

problem.

• Numerical experiments demonstrate that the derived upper bounds provide sharp

estimates of the partial CNs. Furthermore, the partial CNs offer precise estimates

of the relative forward error in the solution.

The structure of the rest of the section is as follows. Subsection 5.2.2 introduces a

few notations, basic definitions, and preliminaries. Subsection 5.2.3 presents a unified

framework partial CN of the solution of the DSPP (5.2.1). Subsection 5.2.4 focuses on

the investigation of structured partial CNs for the DSPP. In Subsection 5.2.5, we discuss

the partial CNs for EILS problems. Subsection 5.2.6 consists of some numerical examples.

Subsection 5.2.7 includes the concluding statements.

5.2.2. Preliminaries

Following [149], for any vector z ∈ Rn, we define

z‡ = [z‡1, z
‡
2, . . . , z

‡
n]
T , (5.2.3)

where

z‡i =

{
1
zi
, zi ̸= 0,

1, zi = 0.
(5.2.4)

Moreover, the entrywise division of two vectors z, w ∈ Rn is defined as follows:

z

w
= Dw‡z.

Note that, for z, w ∈ Rn,
z

w
= w‡ ⊙ z. For given matrices A1, A2, . . . , An, we use

vec(X) := [vec(A1)
T , vec(A2)

T , . . . , vec(An)
T ]T ,

where X = (A1, A2, . . . , An).

Next, we introduce the concept of the general CNs, referred to as the unified CN.
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Definition 5.2.1. [87] Let Υ : Rp 7→ Rq be a continuous mapping defined on an open set

ΩΥ ⊆ Rp. Then, the unified CN of Υ at v ∈ ΩΥ is defined by

KΥ(v) = lim
ϵ→0

sup
0<∥χ‡⊙∆v∥τ≤ϵ

∥∥ξ‡ ⊙ (Υ(v +∆v)−Υ(v))
∥∥
γ

∥χ‡ ⊙∆v∥τ
, (5.2.5)

where ξ ∈ Rq, χ ∈ Rp are the parameters such that if some entry of χ is zero, then the

corresponding entry of ∆v must be zero, and ∥ · ∥τ and ∥ · ∥γ are two vector norms defined

on Rp and Rq, respectively.

Note that, Definition 5.2.1 leads to the following bound:∥∥ξ‡ ⊙ (Υ(v +∆v)−Υ(v))
∥∥
γ
≤ KΥ(v)∥χ‡ ⊙∆v∥τ +O(∥χ‡ ⊙∆v∥2τ ). (5.2.6)

Therefore, the forward error in the solution can be estimated using CNs.

Remark 5.2.1. The unified CN described in Definition 5.2.1 represents a broad general-

ization of various well-known CNs that have been explored in the literature. For example:

• NCN: Consider τ = γ = 2, χ = ∥v∥21p ∈ Rp with v ̸= 0 and ξ = ∥Υ(v)∥21q ∈ Rq

with Υ(v) ̸= 0, then we obtain the NCN, denoted by K
(2)
Υ (v).

• MCN: Consider τ = γ = ∞, χ = v ̸= 0, ξ = ∥Υ(v)∥∞1q ∈ Rq with Υ(v) ̸= 0,

then we obtain the MCN, denoted by K∞
mix,Υ(v).

• CCN: Consider τ = γ = ∞, χ = v ̸= 0, and ξ = Υ(v) ∈ Rq with Υ(v) ̸= 0, then

we obtain the CCN, denoted by K∞
com,Υ(v).

Next, we present a key result that is essential for the following sections. To derive

this, let H = (A,B,C,D,E) and we set

vec(H) = [vec(A)T , vec(B)T , vec(C)T , vec(D)T , vec(E)T ]T .

Consider ∆A,∆B,∆C,∆D,∆E and ∆d are the perturbations on A,B,C,D,E and d,

respectively. Further, we denote

∆B =


∆A ∆BT 0

∆B −∆D ∆CT

0 ∆C ∆E

 ,
and assume that ∥∆B∥2 ≤ ϵ∥B∥2 and ∥∆d∥2 ≤ ϵ∥d∥2. Then, we have the following

perturbed DSSP:
A+∆A (B +∆B)T 0

B +∆B −(D +∆C) (C +∆C)T

0 C +∆C E +∆E



x+∆x

y +∆y

z +∆z

 =


f +∆f

g +∆g

h+∆h

 , (5.2.7)
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which has the unique solution


x+∆x

y +∆y

z +∆z

 when ∥B−1∥2∥∆B∥2 < 1.

Consequently, we obtain the following important result.

Lemma 5.2.2. Suppose [xT ,yT , zT ]T and [(x + ∆x)T , (y + ∆y)T , (z + ∆z)T ]T are the

unique solutions of the original DSPP (5.2.1) and perturbed DSPP (5.2.7), respectively.

Then, the first-order perturbation expression of
î
∆xT ,∆yT ,∆zT

óT
is given by


∆x

∆y

∆z

 = −B−1
î
G −Il

ó[vec(∆H)

∆b

]
+O(ϵ2), (5.2.8)

where

G =


xT ⊗ In In ⊗ yT 0 0 0

0 xT ⊗ Im Im ⊗ zT −yT ⊗ Im 0

0 0 yT ⊗ Ip 0 zT ⊗ Ip

 ∈ Rl×s,

vec(∆H) = [vec(∆A)T , vec(∆B)T , vec(∆C)T , vec(∆D)T , vec(∆E)T ]T ,

and s = (n2 +m2 + p2 + nm+mp).

Proof. Combining (5.2.1) and (5.2.7), we obtain


A BT 0

B −D CT

0 C E



∆x

∆y

∆z

 =


∆f

∆g

∆h

−


∆Ax+∆BTy

∆Bx−∆Dy +∆CTz

∆Cy +∆Ez

+O(ϵ2). (5.2.9)

Thus, the proof follows by applying the vec operator and utilizing the properties of the

Kronecker product on (5.2.9). ■

5.2.3. Partial Unified CNs for the DSPP

This section primarily focuses on developing a unified framework for the partial CN

for the solution w = [xT ,yT , zT ]T of the DSPP (5.2.1). As special cases, we also derive

the compact formulae and computationally efficient upper bounds for the partial NCN,

MCN, and CCN.
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To derive the partial unified CN of the DSPP (5.2.1), we define the following mapping:

φ :Rn×n × Rm×n × Rp×m × Rm×m × Rp×p × Rl → Rk

φ(H,d) = L


x

y

z

 = LB−1d, (5.2.10)

where L ∈ Rk×l(k ≤ l). Following the Definition 5.2.1, we now define the partial unified

CN for the DSPP using the mapping φ as follows.

Definition 5.2.2. Suppose w = [xT ,yT , zT ]T is the unique solution of the DSPP (5.2.1)

and L ∈ Rk×l. Consider the map φ defined as in (5.2.10). Then, the partial unified CN

of w = [xT ,yT , zT ]T with respect to (w.r.t.) L is defined as follows:

Kφ(H,d;L) := lim
ϵ→0

sup
0<∥vec(Ψ‡⊙∆H,χ‡⊙∆d)∥

τ
≤ϵ

∥∥∥ξ‡L ⊙ (φ(H+∆H,d+∆d)−φ(H,d))
∥∥∥
γ

∥vec (Ψ‡ ⊙∆H,χ‡ ⊙∆d)∥τ
,

where ξL ∈ Rk, Ψ = (ΨA,ΨB,ΨC ,ΨD,ΨE), ΨA ∈ Rn×n, ΨB ∈ Rm×n, ΨC ∈ Rp×m,

ΨD ∈ Rm×m, ΨE ∈ Rp×p and χ ∈ Rl are the parameters with the assumptions that if some

entries of Ψ and χ are zero, then the corresponding entry of ∆H and ∆d, respectively,

must be zero.

Remark 5.2.3. In the context of Remark 5.2.1, to obtain the partial NCN, we consider

ξL = ∥L[xT ,yT , zT ]T∥21l, for the partial MCN, we consider ξL = ∥L[xT ,yT , zT ]T∥∞1l,

and for partial CCN, we consider ξL = L[xT ,yT , zT ]T .

In the following theorem, we provide a compact and closed-form expression for the

partial unified CN.

Theorem 5.2.4. Suppose w = [xT ,yT , zT ]T is the unique solution of the DSPP (5.2.1)

and L ∈ Rk×l. Then, the partial unified CN of w = [xT ,yT , zT ]T w.r.t. L is given by

Kφ(H,d;L) =

∥∥∥∥∥Dξ‡L
LB−1

î
G −Il

ó[Dvec(Ψ) 0

0 Dχ

]∥∥∥∥∥
τ,γ

, (5.2.11)

where ∥ · ∥τ,γ is the matrix norm induced by vector norms ∥ · ∥τ and ∥ · ∥γ.
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Proof. From the definition of the mapping φ in (5.2.10) and Lemma 5.2.2, we get

φ(H+∆H,d+∆d)−φ(H,d) = L


x+∆x

y +∆y

z +∆z

− L


x

y

z



= L


∆x

∆y

∆z


= −LB−1

î
G −Il

ó[vec(∆H)

∆d

]
+O(ϵ2). (5.2.12)

By considering the requirement on Ψ and χ, we have[
vec(∆H)

∆d

]
=

[
Dvec(Ψ) 0

0 Dχ

][
vec(Ψ‡ ⊙∆H)

χ‡ ⊙∆d

]
. (5.2.13)

Substituting (5.2.13) into (5.2.12) and from Definition 5.2.2, we obtain

Kφ(H,d;L) = sup
∥vec(Ψ‡⊙∆H,χ‡⊙∆d)∥

τ
̸=0

∥∥∥∥∥Dξ‡L
LB−1

î
G −Il

ó[Dvec(Ψ) 0

0 Dχ

][
vec(Ψ‡ ⊙∆H)

χ‡ ⊙∆d

]∥∥∥∥∥
γ

∥vec (Ψ‡ ⊙∆H,χ‡ ⊙∆d)∥τ

=

∥∥∥∥∥Dξ‡L
LB−1

î
G −Il

ó[Dvec(Ψ) 0

0 Dχ

]∥∥∥∥∥
τ,γ

. (5.2.14)

Hence, the proof is completed. ■

Next, we derive various partial CNs by considering specific norms. In the following

result, we focus on when τ = γ = 2.

Theorem 5.2.5. Consider τ = γ = 2 and assuming that Ψ, χ and ξL are positive real

numbers, then the partial CN has the following forms:

K(2)
φ (H,d;L) =

∥∥∥LB−1
î
ΨG −χIl

ó∥∥∥
2

ξL
and (5.2.15)

K̂(2)
φ (H,d;L) =

∥∥LB−1(Ψ2J + χ2Il)(B
−1)TLT

∥∥1/2
2

ξL
, (5.2.16)

where J ∈ Rl×l is given by

J =


(∥x∥22 + ∥y∥22)In xyT 0

yxT (∥x∥22 + ∥y∥22 + ∥z∥22)Im yzT

0 zyT (∥y∥22 + ∥z∥22)Ip

 .
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Proof. Since τ = γ = 2 and Ψ, χ and ξL are positive real numbers, from Theorem 5.2.4,

we obtain

K
(2)
1,φ(H,d;L) =

∥∥∥LB−1
î
ΨG −χIl

ó∥∥∥
2

ξL
. (5.2.17)

Using the property that, for Z ∈ Rm×n, ∥Z∥2 = ∥ZZT∥1/22 , we have∥∥∥LB−1
î
ΨG −χIl

ó∥∥∥
2
=
∥∥LB−1(Ψ2GGT + χ2Il)(B

−1)TLT
∥∥1/2
2

=
∥∥LB−1(Ψ2J + χ2Il)(B

−1)TLT
∥∥1/2
2
. (5.2.18)

Hence, the proof follows by substituting (5.2.18) into (5.2.17). ■

Remark 5.2.6. Notably, the equivalent expression of K̂
(2)
φ (H,d;L) in (5.2.16) is free of

computationally expensive Kronecker products. Moreover, the matrices in (5.2.16) and

(5.2.15) have dimensions k × k and k × (l + s) respectively. Hence, the expression in

(5.2.16) significantly reduces the storage requirements.

Remark 5.2.7. The partial CN in Theorem 5.2.5 is a simplified version of the partial

NCN for the solution of the DSPP (5.2.1). The NCN for w = [xT ,yT , zT ]T ,x,y and z

can be obtained by considering

L = Il,
î
In 0n×(m+p)

ó
,
î
0m×n Im 0m×p

ó
and

î
0p×(n+m) Ip

ó
,

respectively, in Theorem 5.2.5.

In the next result, we provide an easily computable upper bound for the partial CN

K
(2)
φ (H,d;L).

Corollary 5.2.1. Under the assumption of Theorem 5.2.5, we have following upper bound:

K
(2)
1,φ(H,d;L) ≤ K

(2),u
1,φ (H,d;L) :=

∥LB−1∥2
ξL

Ä
Ψ∥J ∥1/22 + χ

ä
. (5.2.19)

Proof. Using the properties of the spectral norm that for the matrices X and Y of appro-

priate sizes,
∥∥∥îX Y

ó∥∥∥
2
≤ ∥X∥2 + ∥Y ∥2 and ∥XY ∥2 ≤ ∥X∥2∥Y ∥2, and from (5.2.15), we

obtain ∥∥∥LB−1
î
ΨG −χIl

ó∥∥∥
2
≤ Ψ∥LB−1G∥2 + χ∥LB−1∥2

≤ Ψ∥LB−1∥2∥G∥2 + χ∥LB−1∥2

= Ψ∥LB−1∥2∥J ∥1/22 + χ∥LB−1∥2. (5.2.20)

Hence, the proof follows from (5.2.15) and (5.2.20). ■
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In the following theorem, we investigate the partial CN for the DSPP when τ = γ =

∞, from which we derive the partial MCN and CCN.

Theorem 5.2.8. When τ = γ = ∞, the partial CN is given as follows:

K∞
φ (H,d;L) =

∥∥∥∥∥|Dξ‡L
|
∣∣∣LB−1

î
G −Il

ó∣∣∣ [vec(|Ψ|)
|χ|

]∥∥∥∥∥
∞

. (5.2.21)

Moreover, we consider Ψ = H, χ = d. Then, if we set ξL = ∥L[xT ,yT , zT ]T∥∞1l, the

partial MCN is given by

K∞
mix,φ(H,d;L) =

∥∥∥∥∥∣∣∣LB−1
î
G −Il

ó∣∣∣ [vec(|H|)
|d|

]∥∥∥∥∥
∞

∥L[xT ,yT , zT ]T∥∞
(5.2.22)

and if we set ξL = L[xT ,yT , zT ]T , the partial CCN is given by

K∞
com,φ(H,d;L) =

∥∥∥∥∥∥∥∥∥∥∥

∣∣∣LB−1
î
G −Il

ó∣∣∣ [vec(|H|)
|d|

]
|L[xT ,yT , zT ]T |

∥∥∥∥∥∥∥∥∥∥∥
∞

. (5.2.23)

Proof. Consider τ = γ = ∞, then from Theorem 5.2.4, we have

K∞
φ (H,d;L) =

∥∥∥∥∥Dξ‡L
LB−1

î
G −Il

ó[Dvec(Ψ) 0

0 Dχ

]∥∥∥∥∥
∞

=

∥∥∥∥∥|Dξ‡L
|
∣∣∣B−1

î
G −Il

ó∣∣∣ [|Dvec(Ψ)| 0

0 |Dχ|

]∥∥∥∥∥
∞

=

∥∥∥∥∥|Dξ‡L
|
∣∣∣B−1

î
G −Il

ó∣∣∣ [|Dvec(Ψ)| 0

0 |Dχ|

]
1s+l

∥∥∥∥∥
∞

=

∥∥∥∥∥|Dξ‡L
|
∣∣∣B−1

î
G −Il

ó∣∣∣ [vec(|Ψ|)
|χ|

]∥∥∥∥∥
∞

.

Rest of the proof followings considering Ψ = H, χ = d, and ξL = ∥L[xT ,yT , zT ]T∥∞1l

(or ξL = L[xT ,yT , zT ]T ). ■

Remark 5.2.9. The MCN and CCN for w = [xT ,yT , zT ]T ,x,y and z can be obtained

by considering

L = Il,
î
In 0n×(m+p)

ó
,
î
0m×n Im 0m×p

ó
and

î
0p×(n+m) Ip

ó
,

respectively, in (5.2.22) and (5.2.23) of Theorem 5.2.8.
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In the following result, we provide sharp upper bounds for the partial MCN and CCN

obtained in Theorem 5.2.8.

Corollary 5.2.2. Assume that the conditions in Theorem 5.2.8 hold. Then

K∞
mix,φ(H,d;L) ≤ K∞,u

mix,φ(H,d;L) :=
∥|LB−1| (|H|+ |d|)∥∞
∥L[xT ,yT , zT ]T∥∞

and

K∞
com,φ(H,d;L) ≤ K∞,u

com,φ(H,d;L) :=

∥∥∥∥ |LB−1| (|H|+ |d|)
L[xT ,yT , zT ]T

∥∥∥∥
∞
,

where H =


|A||x|+ |BT ||y|

|B||x|+ |DT ||y|+ |CT ||z|
|C||y|+ |E||z|

 .
Proof. Utilizing the properties of Kronecker product in (1.3.2), we have

∣∣∣LB−1
î
G −Il

ó∣∣∣ [vec(|H|)
|d|

]
≤ |LB−1|

î
|G| Il

ó[vec(|H|)
|d|

]
= |LB−1|(|G|vec(|H|) + |d|)

= |LB−1|

Ü
(|x|T ⊗ In)vec(|A|) + (In ⊗ |y|T )vec(|B|)

(|x|T ⊗ Im)vec(|B|) + (Im ⊗ |z|T )vec(|C|) + (|y|T ⊗ Im)vec(|D|)
(|y|T ⊗ Ip)vec(|C|) + (|z|T ⊗ Ip)vec(|E|)

+ |d|

ê
= |LB−1|

Ü∣∣∣∣∣∣∣∣


|A||x|+ |BT ||y|
|B||x|+ |DT ||y|+ |CT ||z|

|C||y|+ |E||z|


∣∣∣∣∣∣∣∣+ |d|

ê
. (5.2.24)

From (5.2.24) and the expressions of partial MCN and CCN in Theorem 5.2.8, we get

K∞
mix,φ(H,d;L) ≤ K∞,u

mix,φ(H,d;L) and K∞
com,φ(H,d;L) ≤ K∞,u

com,φ(H,d;L).

Hence, the proof follows. ■

5.2.4. Structured Partial CNs

Consider three subspaces S1 ⊆ Rn×n, S2 ⊆ Rm×m and S3 ⊆ Rp×p consisting of three

distinct linear structured matrices, such as symmetric and Toeplitz. Suppose that the

corresponding dimensions of the linear subspaces are s, r and q, respectively. Let A ∈ S1,
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D ∈ S2 and E ∈ S3, then according to [72, 86, 120], there exist unique generating vectors

a ∈ Rs, d ∈ Rr and e ∈ Rq such that

vec(A) = ΦS1a, vec(D) = ΦS2d and vec(E) = ΦS3e, (5.2.25)

where ΦS1 ∈ Rn2×s, ΦS2 ∈ Rm2×r and ΦS3 ∈ Rm2×q. These matrices are fixed for each

specific structure and encapsulate the information corresponding to the linear structure

of their respective subspaces.

Let vecS(H) = [aT , vec(B)T , vec(C)T ,dT , eT ]T . Then the structured partial CN for

solution w = [xT ,yT , zT ]T of the DSPP (5.2.1) w.r.t. L is given by

KS
φ(H,d;L) := lim

ϵ→0
sup

0<∥vec(Ψ‡⊙∆H,χ‡⊙∆d)∥
τ
≤ϵ

∆A∈ S1,∆D∈ S2,∆E∈ S3

∥∥∥ξ‡L ⊙ (φ(H+∆H,d+∆d)−φ(H,d))
∥∥∥
γ

∥vec (Ψ‡ ⊙∆H,χ‡ ⊙∆d)∥τ
,

(5.2.26)

where ξL ∈ Rk, Ψ = (ΨA,ΨB,ΨC ,ΨD,ΨE), ΨA ∈ S1, ΨB ∈ Rm×n, ΨC ∈ Rp×m, ΨD ∈ S2,

ΨE ∈ S3 and χ ∈ Rl.

Since the matrices ∆A,ΨA ∈ S1, ∆C,ΨD ∈ S2 and ∆E,ΨE ∈ S3, as in (5.2.25), we

have

vec(∆A) = ΦS1∆a, vec(ΨA) = ΦS1ψA, vec(∆C) = ΦS2∆d, (5.2.27)

vec(ΨD) = ΦS2ψD, vec(∆E) = ΦS3∆e, and vec(ΨE) = ΦS3ψE, (5.2.28)

where ∆a, ∆d, ∆e, ψD, ψA and ψE are the unique generating vectors of ∆A, ∆C, ∆E,

ΨA, ΨD and ΨE, respectively. Note that, Ψ‡
A ∈ S1, Ψ

‡
D ∈ S2 and Ψ‡

E ∈ S3, consequently,

we obtain

vec(Ψ‡
A ⊙∆A) = ΦS1(ψ

‡
A ⊙∆a), vec(Ψ‡

D ⊙∆C) = ΦS2(ψ
‡
D ⊙∆d) (5.2.29)

and vec(Ψ‡
E ⊙∆E) = ΦS3(ψ

‡
E ⊙∆e). (5.2.30)

Subsequently, we obtain the following result.

Lemma 5.2.10. Let ∆A,ΨA ∈ S1, ∆C,ΨD ∈ S2, ∆E,ΨE ∈ S3, B,ΨB ∈ Rm×n, C,ΨC ∈
Rp×m, and b,χ ∈ Rl. Then, we have[

vec(Ψ‡ ⊙H)

χ‡ ⊙∆b

]
=

[
ΦS 0

0 Il

][
vecS(Ψ

‡ ⊙H)

χ‡ ⊙∆b

]
, (5.2.31)

where vecS(Ψ
‡⊙H) = [(ψ‡

A⊙∆a)T , (Ψ‡
B⊙vec(∆B))T , (Ψ‡

C⊙vec(∆C))T , (ψ‡
D⊙∆d)T , (ψ‡

D⊙
∆e)T ]T and
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ΦS =


ΦS1 0 0 0

0 Imn+mp 0 0

0 0 ΦS2 0

0 0 0 ΦS3

 .

Proof. The proof follows using identities in (5.2.29) and (5.2.30). ■

In the following theorem, we present closed-form expressions for the structured partial

CN by considering τ = γ = 2.

Theorem 5.2.11. Let A ∈ S1, D ∈ S2, E ∈ S3 and L ∈ Rk×l. Suppose that w =

[xT ,yT , zT ]T is the unique solution of DSPP (5.2.1). Then the structured partial CN of

w = [xT ,yT , zT ]T w.r.t. L is given by

K(2),S
φ (H,d;L) =

∥∥∥∥∥Dξ‡L
LB−1

î
G −Il

ó[Dvec(Ψ)ΦSD
−1
S 0

0 Dχ

]∥∥∥∥∥
2

,

where

DS =


Du1 0 0 0

0 Imn+mp 0 0

0 0 Du2 0

0 0 0 Du3

 ,

u1 = [∥ΦS1(:, 1)∥2, . . . , ∥ΦS1(:, s)∥2]T , u2 = [∥ΦS2(:, 1)∥2, . . . , ∥ΦS2(:, k)∥2]T ,

and u3 = [∥ΦS3(:, 1)∥2, . . . , ∥ΦS3(:, q)∥2]T .

Proof. Taking τ = γ = 2 in (5.2.26), and using (5.2.13) and (5.2.12), we obtain

K(2),S
φ (H,d;L) = sup

∥vec(Ψ‡⊙∆H,χ‡⊙∆d)∥
2
̸=0

∆A∈ S1,∆D∈ S2,∆E∈ S3

∥∥∥∥∥Dξ‡L
LB−1

î
G −Il

ó[Dvec(Ψ) 0

0 Dχ

][
vec(Ψ‡ ⊙∆H)

χ‡ ⊙∆d

]∥∥∥∥∥
2

∥vec (Ψ‡ ⊙∆H,χ‡ ⊙∆d)∥2
.

Substituting (5.2.31) into the above equation yields

K(2),S
φ (H,d;L) = sup∥∥∥∥∥∥∥∥

ΦS 0

0 Il


vecS(Ψ‡ ⊙∆H)

χ‡ ⊙∆d


∥∥∥∥∥∥∥∥
2

̸=0,

∆A∈ S1,∆D∈ S2,∆E∈ S3

∥∥∥∥∥∥Dξ‡L
LB−1

î
G −Il

óDvec(Ψ)ΦS 0

0 Dχ

vecS(Ψ‡ ⊙∆H)

χ‡ ⊙∆d

∥∥∥∥∥∥
2∥∥∥∥∥∥

ΦS 0

0 Il

vecS(Ψ‡ ⊙∆H)

χ‡ ⊙∆d

∥∥∥∥∥∥
2

.

(5.2.32)
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Utilizing the fact that the matrices ΦSi for i = 1, 2, 3, are column orthogonal [86], we get

ΦT
SiΦSi = D2

ui
, where Dui

for i = 1, 2, 3, are the diagonal matrices. Then∥∥∥∥∥
[
ΦS 0

0 Il

][
vecS(Ψ

‡ ⊙∆H)

χ‡ ⊙∆d

]∥∥∥∥∥
2

=

∥∥∥∥∥∥
[
vecS(Ψ

‡ ⊙∆H)

χ‡ ⊙∆d

]T [
ΦT

SΦS 0

0 Il

][
vecS(Ψ

‡ ⊙∆H)

χ‡ ⊙∆d

]∥∥∥∥∥∥
1/2

2

=

∥∥∥∥∥
[
DS 0

0 Il

][
vecS(Ψ

‡ ⊙∆H)

χ‡ ⊙∆d

]∥∥∥∥∥
2

. (5.2.33)

Observe that[
ΦS 0

0 Il

][
vecS(Ψ

‡ ⊙∆H)

χ‡ ⊙∆d

]
=

[
ΦSD

−1
S 0

0 Il

][
DS 0

0 Il

][
vecS(Ψ

‡ ⊙∆H)

χ‡ ⊙∆d

]
. (5.2.34)

Therefore, substituting (5.2.33) and (5.2.34) in (5.2.32), we obtain

K(2),S
φ (H,d;L) = sup∥∥∥∥∥∥∥

DSvecS(Ψ
‡ ⊙∆H)

χ‡ ⊙∆d


∥∥∥∥∥∥∥
2

̸=0

∆A∈ S1,∆D∈ S2,∆E∈ S3

∥∥∥∥∥∥Dξ‡L
LB−1

î
G −Il

óDvec(Ψ)ΦSD
−1
S 0

0 Dχ

DSvecS(Ψ
‡ ⊙∆H)

χ‡ ⊙∆d

∥∥∥∥∥∥
2∥∥∥∥∥∥

DSvecS(Ψ
‡ ⊙∆H)

χ‡ ⊙∆d

∥∥∥∥∥∥
2

=

∥∥∥∥∥∥Dξ‡L
LB−1

[
G −Il

]Dvec(Ψ)ΦSD
−1
S 0

0 Dχ

∥∥∥∥∥∥
2

.

Hence, the proof is completed. ■

Next, we consider τ = γ = ∞, and derive the structured partial MCN and CCN for

the DSPP.

Theorem 5.2.12. Let A ∈ S1, D ∈ S2, E ∈ S3 and L ∈ Rk×l. Suppose that w =

[xT ,yT , zT ]T is the unique solution of DSPP (5.2.1). When τ = γ = ∞, the structured

partial CN of the solution w = [xT ,yT , zT ]T w.r.t. L is given as follows:

K∞, S
φ (H,d;L) =

∥∥∥∥∥∥|Dξ‡L
|

∣∣∣∣∣∣LB−1
î
G −Il

ó[ΦS 0

0 Il

]∣∣∣∣∣∣
[
vecS(|Ψ|)

|χ|

]∥∥∥∥∥∥
∞

. (5.2.35)

Moreover, we consider Ψ = H and χ = d. Then, if we set ξL = ∥L[xT ,yT , zT ]T∥∞1l, the

structured partial MCN is given by

K∞, S
mix,φ(H,d;L) =

∥∥∥∥∥∥
∣∣∣∣∣∣LB−1

î
G −Il

ó[ΦS 0

0 Il

]∣∣∣∣∣∣
[
vecS(|H|)

|d|

]∥∥∥∥∥∥
∞

∥L[xT ,yT , zT ]T∥∞
(5.2.36)
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and if we set ξL = L[xT ,yT , zT ]T , the structured partial CCN is given by

K∞, S
com,φ(H,d;L) =

∥∥∥∥∥∥∥∥∥∥∥∥

∣∣∣∣∣∣LB−1
î
G −Il

ó[ΦS 0

0 Il

]∣∣∣∣∣∣
[
vecS(|H|)

|d|

]
|L[xT ,yT , zT ]T |

∥∥∥∥∥∥∥∥∥∥∥∥
∞

. (5.2.37)

Proof. By construction of the matrices ΦS1 , ΦS2 and ΦS3 , they have at most one nonzero

element in each row. Thus, we get∥∥∥∥∥
[
vec(Ψ‡ ⊙∆H)

χ‡ ⊙∆d

]∥∥∥∥∥
∞

=

∥∥∥∥∥
[
ΦS 0

0 Il

][
vecS(Ψ

‡ ⊙∆H)

χ‡ ⊙∆d

]∥∥∥∥∥
∞

=

∥∥∥∥∥
[
vecS(Ψ

‡ ⊙∆H)

χ‡ ⊙∆d

]∥∥∥∥∥
∞

.

(5.2.38)

By considering τ = γ = ∞ on (5.2.26) and using (5.2.38), (5.2.13) and (5.2.12), we obtain

K∞,S
φ (H,d;L) = sup

∥vec(Ψ‡⊙∆H,χ‡⊙∆d)∥∞ ̸=0

∆A∈ S1,∆D∈ S2,∆E∈ S3

∥∥∥∥∥Dξ‡L
LB−1

î
G −Il

ó[ΦS 0

0 Il

][
vecS(∆H)

∆d

]∥∥∥∥∥
∞

∥vec (Ψ‡ ⊙∆H,χ‡ ⊙∆d)∥∞

= sup∥∥∥∥∥∥∥∥
vecS(Ψ‡ ⊙∆H)

χ‡ ⊙∆d


∥∥∥∥∥∥∥∥
∞

̸=0

∆A∈ S1,∆D∈ S2,∆E∈ S3

∥∥∥∥∥Dξ‡L
LB−1

î
G −Il

ó[ΦSDvecS(Ψ) 0

0 Dχ

][
vecS(Ψ

‡ ⊙∆H)

χ‡ ⊙∆d

]∥∥∥∥∥
∞∥∥∥∥∥

[
vecS(Ψ

‡ ⊙∆H)

χ‡ ⊙∆d

]∥∥∥∥∥
∞

=

∥∥∥∥∥Dξ‡L
LB−1

î
G −Il

ó[ΦS 0

0 Il

][
DvecS(Ψ) 0

0 Dχ

]∥∥∥∥∥
∞

=

∥∥∥∥∥∥|Dξ‡L
|

∣∣∣∣∣∣LB−1
î
G −Il

ó[ΦS 0

0 Il

]∣∣∣∣∣∣
[
vecS(|Ψ|)

|χ|

]∥∥∥∥∥∥
∞

.

The rest of the proof follows by considering Ψ = H, χ = d, and ξL = ∥L[xT ,yT , zT ]T∥∞1l

(or ξL = L[xT ,yT , zT ]T ). ■

5.2.5. Deduction of Partial CNs for the EILS Problem

The EILS problem is an extension of the famous linear least squares problem, having

linear constraints on unknown parameters. We consider the EILS problems given (1.1.5).
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The solution of the EILS problem also satisfies the following the augmented system [137]:“Bλx
y

 :=


0 0 C

0 J M

CT MT 0



λ

x

y

 =


d

b

0

 , (5.2.39)

where x = Jr, r = b−My and λ = (CCT )−1CMTJr is the vector of Lagrange multipliers

[31]. Note that the system in (5.2.39) can be equivalently transformed into
J M 0

MT 0 CT

0 C 0



x

y

λ

 =


b

0

d

 =: d. (5.2.40)

Observe that, the above system is in the form of DSPP (5.2.1) with A = J, B = MT ,

d = [bT ,0, dT ]T and z = λ. Therefore, the task of assessing the conditioning of the EILS

problem (1.1.5) can be achieved by determining the CNs for the solution y of DSPP

(5.2.40).

Generally the signature matrix J has no perturbation and as D = 0, E = 0 and g = 0,

we consider ∆A = 0, ∆D = 0, ∆E = 0 and ∆g = 0 in (5.2.7). Then, the perturbation

expression in (5.2.8) reduces to


∆x

∆z

∆y

 = −B−1
î
Ĝ −In+p

óvec(∆B
T )

vec(∆C)

∆f

∆h

+O(ϵ2), (5.2.41)

where

Ĝ =


yT ⊗ In 0

Im ⊗ xT Im ⊗ zT

0 yT ⊗ Ip

 ∈ Rl×ŝ, (5.2.42)

ŝ = m(n+ p).

Let “H = (BT , C), ∆“H = (∆BT ,∆C), d̂ = [fT , hT ]T and ∆d̂ = [∆f̂T ,∆ĥT ]T . We

define the following mapping:

φ̃ :Rm×n × Rp×m × Rn+p → Rk

φ̃(“H, d̂) = L


x

y

z

 = LB−1d̂, (5.2.43)
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where L ∈ Rk×l. Using a similar method to the Theorem 5.2.4, we have the following

result.

Theorem 5.2.13. Assume that [xT ,yT , zT ]T is the unique solution of the DSPP (5.2.1)

with D = 0, E = 0, g = 0 and L ∈ Rk×l. Then the partial unified CN of [xT ,yT , zT ]T

w.r.t. L is given by

K‹φ(“H, d̂;L) := lim
ϵ→0

sup
0<∥vec(“Ψ⊙∆“H, χ̂⊙∆d̂)∥

τ
≤ϵ

∥∥∥ξ‡L ⊙
Ä
φ̃(“H+∆“H, d̂+∆d̂)− φ̃(“H, d̂)ä∥∥∥

γ∥∥∥vec ÄΨ̂‡ ⊙∆“H, χ̂‡ ⊙∆d̂
ä∥∥∥

τ

,

=

∥∥∥∥∥Dξ‡L
LB−1

î
Ĝ −In+p

ó[Dvec(“Ψ) 0

0 Dχ̂

]∥∥∥∥∥
τ,γ

,

where Ψ̂ = (ΨBT ,ΨC), ΨBT ∈ Rn×m,ΨC ∈ Rp×m and χ̂ ∈ Rn+p.

Remark 5.2.14. Taking L = [0k×n L1 0k×p], L1 ∈ Rk×m, A = J in Theorem 5.2.13,

and since B = Σ“BΣ−1, where

Σ =


0 In 0

0 0 Im

Ip 0 0

 , (5.2.44)

using the formula for the inverse of “B given in [93], we obtain

K‹φ(“H,b;L) = ∥∥∥∥∥Dξ‡L
L1

î
Ξ Λ −(QMQ)†MJ BM

ó[Dvec(“Ψ) 0

0 Dχ̂

]∥∥∥∥∥
τ,γ

, (5.2.45)

where Ξ = yT⊗(QMQ)†MJ−(QMQ)†⊗xT , Λ = yT⊗BM−(QMQ)†⊗zT ,M =MJMT ,

Q = Im−C†C and BM = (Im−QMQ)†. Note that the partial CN expression is the same

as derived in [137].

5.2.6. Numerical Experiments

In this part, we present some numerical examples to verify the reliability of the derived

partial NCN, MCN, and CCN and their upper bounds for the DSPP. Additionally, we

demonstrate their effectiveness in providing tight upper bounds for the relative forward

error for the solution of the DSPP. We construct the entrywise perturbation as follows:

∆A = 10−s · randn(n, n)⊙ A, ∆B = 10−s · randn(m,n)⊙B,

∆C = 10−s · randn(p,m)⊙ C, ∆D = 10−s · randn(m,m)⊙D,

∆E = 10−s · randn(p, p)⊙ E, and ∆d = 10−s · randn(l, 1)⊙ d.
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Let w = [xT ,yT , zT ]T and ‹w = [x̃T , ỹT , z̃]T be the unique solutions of the original DSPP

and the perturbed DSPP, respectively. To estimate an upper bound for the forward error

in the solution, their normwise, mixed, and componentwise relative forward errors are

defined as follows:

rk =
∥L‹w − Lw∥2

∥Lw∥2
, rm =

∥L‹w − Lw∥∞
∥Lw∥∞

and rc =

∥∥∥∥L‹w − Lw

Lw

∥∥∥∥
∞
,

respectively. Define the following quantities:

ϵ1 =

∥∥∥î∆B ∆d
ó∥∥∥

F∥∥∥îB d
ó∥∥∥

F

and ϵ2 = min {ϵ : |∆B| ≤ ϵ |B| , |∆d| ≤ ϵ |d|} . (5.2.46)

Thus from (5.2.6), ϵ1K
(2)
φ (H,d;L), ϵ2K

∞
mix,φ(H,d;L) and ϵ2K

∞
com,φ(H,d;L) can be em-

ployed to estimate the relative forward errors rk, rm and rc, respectively. We select the

matrix L as

L0 = Il, Ln =
î
In 0n×(m+p)

ó
, Lm =

î
0m×n Im 0m×p

ó
and Lp =

î
0p×(n+m) Ip

ó
to obtain the CNs for w, x, y and z, respectively.

Example 5.2.1. We consider the DSPP (5.2.1) taken from [75] with

A =

[
Iq ⊗ J + J ⊗ Iq 0

0 Iq ⊗ J + J ⊗ Iq

]
∈ R2q2×2q2 ,

B =
î
Iq ⊗ Z Z ⊗ Iq

ó
∈ Rq2×2q2 , and C = Y ⊗ Z ∈ Rq2×q2 ,

where J = 1
(q+1)2

tridiag(−1, 2,−1) ∈ Rq×q, Z = 1
q+1

tridiag(0, 1,−1) ∈ Rq×q and

Y = diag(1, q + 1, . . . , q2 − q + 1) ∈ Rq×q. Further, we take D = Im and E = Ip.

Here, the dimension of the coefficient matrix B of the DSPP is l = 4q2. We take d =

randn(l, 1) ∈ Rl. Further, we consider Ψ = ∥B∥F and χ = ∥d∥2. We use Theorems 5.2.5,

5.2.8 to compute partial CNs and Corollaries 5.2.1 and 5.2.2 for their upper bounds. The

numerical results for different choices for L and q = 4 : 2 : 16 are presented in Tables

5.2.1-5.2.4.

The results in Tables 5.2.1-5.2.4 show that the upper bounds of the NCN, MCN

and CCN provide very sharp estimates of the exact NCN, MCN and CCN, respectively.

Additionally, it is observed that both the MCN and CCN, along with their upper bounds,

are at most two orders of magnitude larger than the actual relative forward errors, offering

more accurate estimates compared to the NCN and its upper bounds. These numerical
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Table 5.2.1: Comparison of the NCN, MCN, and CCN, and their upper

bounds, with the corresponding relative errors for L = L0 for Example

5.2.1.

q rk ϵ1K
(2)
φ (H,b;L0) ϵ1K

(2),u
φ (H,b;L0) rm ϵ2K

∞
mix,φ(H,b;L0) ϵ2K

∞,u
mix,φ(H,b;L0) rc ϵ2K

∞
com,φ(H,b;L0) ϵ2K

∞,u
com,φ(H,b;L0)

4 1.1882e− 08 5.1234e− 06 6.3888e− 06 1.9907e− 08 3.5552e− 07 3.8637e− 07 2.1532e− 07 6.9184e− 06 8.6300e− 06

6 2.0426e− 08 8.2886e− 06 1.6984e− 05 2.3603e− 08 3.9780e− 07 4.0885e− 07 3.7248e− 07 1.2135e− 05 1.2490e− 05

8 3.1951e− 08 1.9154e− 05 3.6586e− 05 4.1045e− 08 4.9025e− 07 4.9808e− 07 8.3715e− 06 1.3746e− 04 1.3964e− 04

10 2.9187e− 08 5.5170e− 05 1.1519e− 04 4.2771e− 08 1.2319e− 06 1.2706e− 06 1.8721e− 07 1.9213e− 05 2.1515e− 05

12 2.3289e− 08 9.4616e− 05 1.7034e− 04 2.9289e− 08 1.0722e− 06 1.0798e− 06 4.5669e− 07 3.5850e− 05 3.8136e− 05

14 3.9431e− 08 1.6571e− 04 3.3889e− 04 3.9739e− 08 1.2469e− 06 1.2747e− 06 6.0883e− 07 3.1225e− 05 3.5558e− 05

16 3.9038e− 08 2.7496e− 04 5.6909e− 04 3.9932e− 08 1.8001e− 06 1.8356e− 06 4.2789e− 06 1.7386e− 04 1.8883e− 04

Table 5.2.2: Comparison of the NCN, MCN, and CCN, and their upper

bounds, with the corresponding relative errors for L = Ln for Example

5.2.1.

q rk ϵ1K
(2)
φ (H,b;Ln) ϵ1K

(2),u
φ (H,b;Ln) rm ϵ2K

∞
mix,φ(H,b;Ln) ϵ2K

∞,u
mix,φ(H,b;Ln) rc ϵ2K

∞
com,φ(H,b;Ln) ϵ2K

∞,u
com,φ(H,b;Ln)

4 2.3210e− 08 1.7899e− 06 2.2325e− 06 4.4418e− 08 3.9328e− 07 3.9952e− 07 6.1112e− 08 7.7010e− 07 7.9196e− 07

6 2.2133e− 08 2.6980e− 06 7.6732e− 06 4.2425e− 08 8.8875e− 07 9.5134e− 07 5.3918e− 08 5.8823e− 06 7.3855e− 06

8 3.8470e− 08 4.8135e− 06 1.5701e− 05 8.7676e− 08 1.4710e− 06 1.5322e− 06 5.7409e− 07 5.8895e− 05 7.0437e− 05

10 2.9894e− 08 9.6923e− 06 3.1204e− 05 5.9374e− 08 2.0857e− 06 2.1065e− 06 2.7350e− 07 9.5571e− 05 1.0598e− 04

12 3.3113e− 08 3.6464e− 05 4.9737e− 05 5.6822e− 08 3.0914e− 06 3.0928e− 06 4.5080e− 07 9.3747e− 06 9.4743e− 06

14 8.0906e− 08 2.4824e− 05 7.6132e− 05 1.5910e− 07 3.3988e− 06 3.4220e− 06 8.4585e− 07 2.5939e− 05 2.9725e− 05

16 4.4663e− 08 3.5262e− 05 8.8133e− 05 8.0314e− 08 4.7189e− 06 4.7301e− 06 4.5566e− 07 3.7542e− 05 3.9779e− 05

Table 5.2.3: Comparison of the NCN, MCN, and CCN, and their upper

bounds, with the corresponding relative errors for L = Lm for Example

5.2.1.

q rk ϵ1K
(2)
φ (H,b;Lm) ϵ1K

(2),u
φ (H,b;Lm) rm ϵ2K

∞
mix,φ(H,b;Lm) ϵ2K

∞,u
mix,φ(H,b;Lm) rc ϵ2K

∞
com,φ(H,b;Lm) ϵ2K

∞,u
com,φ(H,b;Lm)

4 1.4640e− 08 4.1828e− 06 8.1301e− 06 1.7030e− 08 3.2527e− 07 3.6699e− 07 6.3575e− 08 1.6374e− 06 1.7734e− 06

6 3.8057e− 08 3.4032e− 05 5.4748e− 05 3.9292e− 08 8.5355e− 07 1.0120e− 06 6.8320e− 08 2.2698e− 06 2.3143e− 06

8 6.2425e− 08 1.1653e− 04 1.7568e− 04 5.3397e− 08 1.9931e− 06 2.1774e− 06 3.0610e− 07 1.3012e− 05 1.3193e− 05

10 4.7836e− 08 1.5526e− 04 3.3655e− 04 5.1330e− 08 1.8322e− 06 2.2332e− 06 5.0917e− 07 2.8394e− 05 2.8957e− 05

12 3.7645e− 08 9.3405e− 05 4.7395e− 04 3.6702e− 08 1.1129e− 06 1.4824e− 06 7.7646e− 08 7.9413e− 06 8.8422e− 06

14 7.7970e− 08 1.6058e− 04 9.2172e− 04 5.7666e− 08 1.7296e− 06 2.1704e− 06 2.9851e− 06 7.6483e− 05 7.9562e− 05

16 4.7259e− 08 4.3435e− 04 1.5265e− 03 6.6721e− 08 2.2484e− 06 2.8853e− 06 2.9895e− 07 5.8651e− 05 6.0528e− 05

results highlight the effectiveness of the proposed CNs and their corresponding upper

bounds.

Example 5.2.2. We consider the DSPP (5.2.1) with the block matrices given by

A = diag((2ZZT + Σ1), Σ2, Σ3) ∈ Rn×n, B =
î
N −I2q̃ I2q̃

ó
∈ Rm×n,

D = toeplitz(d) ∈ Rm×m, C =M, and E = toeplitz(e) ∈ Rp×p,
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Table 5.2.4: Comparison of the NCN, MCN, and CCN, and their upper

bounds, with the corresponding relative errors for L = Lp for Example

5.2.1.

q rk ϵ1K
(2)
φ (H,b;Lp) ϵ1K

(2),u
φ (H,b;Lp) rm ϵ2K

∞
mix,φ(H,b;Lp) ϵ2K

∞,u
mix,φ(H,b;Lp) rc ϵ2K

∞
com,φ(H,b;Lp) ϵ2K

∞,u
com,φ(H,b;Lp)

4 7.9587e− 09 3.2626e− 06 5.0845e− 06 9.2868e− 09 2.7450e− 07 2.8678e− 07 6.4428e− 08 5.9782e− 07 6.2833e− 07

6 1.3913e− 08 9.6919e− 06 1.1609e− 05 1.8364e− 08 4.4130e− 07 4.4401e− 07 4.1485e− 08 1.1621e− 06 1.1751e− 06

8 2.1543e− 08 2.5173e− 05 4.6780e− 05 2.7719e− 08 7.9552e− 07 8.4231e− 07 4.9306e− 08 4.2242e− 06 4.4848e− 06

10 3.2132e− 08 5.7696e− 05 1.1250e− 04 4.3437e− 08 1.0618e− 06 1.1161e− 06 8.3724e− 08 4.1932e− 06 4.3258e− 06

12 1.6735e− 08 8.7652e− 05 1.4248e− 04 3.1936e− 08 1.0011e− 06 1.0138e− 06 6.2623e− 08 2.5824e− 06 2.5860e− 06

14 2.0065e− 08 1.5497e− 04 1.9181e− 04 2.2200e− 08 1.0421e− 06 1.0457e− 06 7.7378e− 08 4.1703e− 06 4.1741e− 06

16 1.0902e− 08 2.4487e− 04 3.5342e− 04 1.5817e− 08 1.6369e− 06 1.6456e− 06 1.0229e− 07 3.4527e− 06 3.4614e− 06

where Z = [zij] ∈ Rq̂×q̂ with zij = e−2((i/3)2+(j/3)2), Σ1 = Iq̂, and Σk = diag(d
(k)
j ) ∈

R2q̃×2q̃, k = 2, 3, are diagonal matrices with

d
(2)
j =

{
1, for 1 ≤ j ≤ q̃,

10−5(j − q̃)2, for q̃ + 1 ≤ j ≤ 2q̃,

d
(3)
j = 10−5(j + q̃)2 for 1 ≤ j ≤ 2q̃, where q̃ = q2 and q̂ = q(q + 1). Further, N =[“N ⊗ Iq

Iq ⊗ “N] ∈ R2q̃×q̂, “N = tridiag(0, 2,−1) ∈ Rq×(q+1), M =
î
M̂ ⊗ Iq Iq ⊗ M̂

ó
∈ Rq̂×2q̃,

M̂ =



q + 1 − q−1
q

q−2
q

. . . (−1)q−1

q

− q−1
q

2q + 1
. . .

. . .
...

q−2
q

. . .
. . .

. . . q−2
q

...
. . .

. . .
. . . − q−1

q

(−1)q−1

q

... q−2
q

− q−1
q

q2 + 1

0 0 . . . 0 1


∈ R(q+1)×q,

d = randn(m, 1) ∈ Rm, and e = randn(p, 1) ∈ Rp. Moreover, we get l = 8q2 + 2q. The

vector d ∈ Rl is chosen as in Example 5.2.1.

The structured partial NCN is calculated using Theorem 5.2.11, while the structured

partial MCN and CCN are computed from Theorem 5.2.12. Numerical results for various

choices of L and q = 2, 3, 4 are summarized in Table 5.2.5. We observed for all choices of L,

K∞,S
mix,φ(H,d;L) and K∞,S

comp,φ(H,d;L) are almost one order smaller than the K∞
mix,φ(H,d;L)

and K∞
comp,φ(H,d;L), respectively.
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Table 5.2.5: Comparison of the partial NCN, MCN, and CCN with their

structured counterparts for Example 5.2.2.

L q K
(2)
φ (H,d;L) K

(2),S
φ (H,d;L) K∞

mix,φ(H,d;L) K∞,S
mix,φ(H,d;L) K∞

com,φ(H,d;L) K∞,S
com,φ(H,d;L)

L0

2 9.0961e+ 03 8.9842e+ 03 1.1174e+ 02 9.2003e+ 01 1.0211e+ 03 7.8013e+ 02

3 1.0996e+ 04 8.6963e+ 03 1.1735e+ 02 9.1218e+ 01 1.2372e+ 04 9.5905e+ 03

4 2.6066e+ 04 1.9983e+ 04 3.5456e+ 02 2.6052e+ 02 2.5284e+ 05 6.7124e+ 04

Ln

2 9.1011e+ 03 8.9891e+ 03 1.1174e+ 02 9.2003e+ 01 2.9170e+ 02 2.1175e+ 02

3 1.0972e+ 04 8.6781e+ 03 1.1735e+ 02 9.1218e+ 01 1.2372e+ 04 9.5905e+ 03

4 2.6371e+ 04 2.0138e+ 04 3.5456e+ 02 2.6052e+ 02 2.7573e+ 04 1.8454e+ 04

Lm

2 8.4606e+ 03 8.3300e+ 03 1.5279e+ 02 1.1486e+ 02 2.5276e+ 02 1.5433e+ 02

3 1.8511e+ 04 1.4614e+ 04 2.2517e+ 02 1.6131e+ 02 9.9621e+ 02 5.3614e+ 02

4 3.2837e+ 04 2.7473e+ 04 8.9167e+ 02 5.8061e+02 2.5284e+ 05 6.7124e+ 04

Lp

2 1.1952e+ 04 1.1786e+ 04 2.1568e+ 02 1.6042e+ 02 1.0211e+ 03 7.8013e+ 02

3 9.4332e+ 03 7.4505e+ 03 1.2141e+ 02 8.3080e+ 01 1.1802e+ 04 8.2273e+ 03

4 1.8803e+ 04 1.5754e+ 04 7.0206e+ 02 4.8744e+ 02 7.4731e+ 03 4.8946e+ 03

5.2.7. Summary

This section introduced a unified framework for investigating the partial CN for the

solution of the DSPP. We derived compact formulas for the partial unified CN, and by

considering specific norms, we obtained the partial NCN, MCN, and CCN for the solution

of the DSSP. Additionally, sharp upper bounds for the partial CNs that are free from

Kronecker products are provided. Moreover, we compute structured partial NCN, MCN,

and CCN by introducing perturbations that maintain the structure of the block matrices

of the coefficient matrix. Using our theoretical findings and by leveraging the relationship

between the EILS problems and the DSPP, we recovered previously established results for

the EILS problems. Experimental results demonstrated that the derived upper bounds

for the partial CNs provide tight estimates of the actual partial CNs. Furthermore, the

proposed partial CNs and their upper bounds provide sharp error estimation for the

solution, highlighting their effectiveness and reliability.
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CHAPTER 6

Condition Numbers for Moore-Penrose Inverse and Least

Square Problem∗

This chapter addresses and analyzes structured MCN and CCN for the Moore-Penrose

(M-P) inverse and the minimum norm least squares (MNLS) solution of least squares

(LS) problem involving rank-structured matrices, which include the Cauchy-Vandermonde

(CV) matrices and {1, 1}-Quasiseparable (QS) matrices. A general framework has been

developed to compute the upper bounds for MCN and CCN of rank deficient parameter-

ized matrices. This framework leads to faster computation of upper bounds for structured

MCN and CCN for CV and {1, 1}-QS matrices. Furthermore, comparisons of obtained

upper bounds are investigated theoretically and experimentally. In addition, the struc-

tured effective CNs for the M-P inverse and the MNLS solution of {1, 1}-QS matrices are

presented. Numerical tests reveal the reliability of the proposed upper bounds as well as

demonstrate that the structured effective CNs can be substantially smaller compared to

the unstructured CNs.

6.1. Background

The M-P inverse holds a pivotal position in matrix computation, offering a generaliza-

tion of the standard inverse for rectangular or rank deficient matrices. The M-P inverse

finds its practical significance in solving the linear LS problem. The M-P inverse and

the LS problem have various applications in digital image restoration and reconstruction

[48, 47], Gauss–Markov model [112], and so on. The literature on CNs for the M-P inverse

[53] and LS problems [145] is quite rich. The normwise CN for the M-P inverse and the LS

problem is investigated in [67, 99, 53], while MCN and CCN are considered in [51, 50]. For

structured matrices, structured CNs for the M-P inverse and the LS problem have been

investigated in [152, 50], which involves the preservation of the inherent matrix structure

within the perturbation matrices.

∗ S. S. Ahmad and P. Khatun, “ Condition numbers for the Moore-Penrose inverse and the least squares problem

involving rank-structured matrices.” Linear and Multilinear Algebra, 4:1-37, 2024.



In the past few years, many fast algorithms have been developed for various problems

involving rank-structured matrices, such as computing eigenvalues and singular values

[132, 155], solving linear systems [131] and LS problems [78], and computing the M-P

inverse [42]. The QS [58], Cauchy [78], and CV [78] matrices are popular examples of rank-

structured matrices that arise in many applications, such as in boundary value problem

[68, 85], acoustic and electromagnetic scattering theory [49], interpolation problems [105],

rational models of regression and E-optimal design [81], and so on.

One of the striking properties of the rank-structured matrices is that they can be

parameterized by O(m+ n) parameters rather than mn entries. Based on this property,

many fast algorithms with lower computational costs have been developed [131, 130].

Plenty of works involving rank-structured matrices have been done in recent years to

investigate the structured CNs for eigenvalue problems [56, 52], the solution of a linear

system having a single as well as multiple right-hand sides [57, 103], the Sylvester matrix

equation [54], and so on, by considering perturbations on the parameters. Based on

the above discussions, it is more sensible to investigate structured CNs by addressing

perturbations on the parameters rather than directly on the matrix entries and to identify

which set of parameters will be more suited for the development of fast algorithms. Thus,

the forgoing discussion motivates us to consider perturbations on parameters instead of

directly on entries in this chapter.

In [145], authors have presented general parameterized QS representation and Givens-

vector (GV) representation for the rectangularm×n (m ≥ n) {1, 1}-QS matrices (a special

case of QS matrices), which are natural extensions of the square matrix case discussed

in [56, 57, 130]. Then, the authors studied the structured MCN for the LS problems

when the coefficient matrix is a full column rank m × n {1, 1}-QS matrices. However,

the above investigations do not address the rank deficient case. Furthermore, the MCN

and CCN for the M-P inverse of rank deficient rank-structured matrices still need to be

explored in the literature. Nevertheless, when dealing with rank deficient matrices, a

prominent challenge in analyzing the CNs arises from the fact that even slight changes

to the matrix can yield enormous variations in the computed M-P inverse. In light of

this, normwise CNs for rank deficient unstructured matrices have been considered in

[140, 142], and for structured matrices in [152] under the assumptions: R(∆M) ⊂ R(M)

and R(∆MT ) ⊂ R(MT ), on the perturbation matrix ∆M inM, where R(M) denotes the

range of M. Whereas, in [141], upper bounds are investigated for CCN for unstructured

matrices under the above assumptions.
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This chapter’s central aim is to study the structured MCN and CCN for the M-P

inverse and the LS problem when dealing with rank deficient rank-structured matrices.

This investigation adheres to the rank-preserving constraint, denoted as rank(M+∆M) =

rank(M), which encompasses a broader class of perturbation matrices than those con-

strained by R(∆M) ⊂ R(M) and R(∆MT ) ⊂ R(MT ). This perspective expands the

horizons of our study and offers valuable insights into structured CNs for this class of

matrices.

The following highlights the main contributions of this chapter:

• The MCN and CCN for two problems, the M-P inverse and the MNLS solution of

the LS problem, involving rank deficient CV and {1, 1}-QS matrices are considered

under the broader rank condition, i.e., rank(M +∆M) = rank(M).

• By considering matrix entries to be differentiable functions of a set of real param-

eters, we develop a general framework to compute the upper bounds of the MCN

and CCN of the M-P inverse and LS problem for rank deficient parameterized ma-

trices. In addition, exact expressions in the full column rank case of the MCN and

CCN are also obtained.

• For the CV and {1, 1}-QS matrices, compact upper bounds are obtained for struc-

tured MCN and CCN. Two important parameter representations for {1, 1}-QS

matrices are considered: the QS representation and GV representation.

• For {1, 1}-QS matrices, structured effective CNs are proposed and shown that they

can reliably estimate the actual conditioning of these matrices.

• Numerical experiments are reported to demonstrate that structured CNs are sig-

nificantly smaller compared to unstructured CNs and align consistently with the

theoretical results.

The remaining part of this chapter is structured as follows. Section 6.2 provides a

few notations and preliminary results. In Section 6.3, for the M-P inverse and the MNLS

solution, we develop expressions of upper bounds for MCN and CCN for a general class

of parameterized matrices. These frameworks are utilized in Sections 6.4 and 6.5 to

derive the bounds for structured MCN and CCN for CV and {1, 1}-QS matrices. Further,

Section 6.5 studies comparison results between different structured and unstructured CNs.

In Section 6.6, numerical experiments are performed to illustrate our findings. Section

6.7 ends with conclusions and a line of future research.
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6.2. Preliminaries

For M ∈ Rm×n, set EM := Im −MM † and FM := In −M †M. We denote Emn
ij =

emi (e
n
j )
T as the matrix with ij-element is 1 and zero elsewhere. For matricesM,N ∈ Rm×n,

we define M/N as (M/N)ij = n‡
ijmij, where for any a ∈ R, a‡ = 1

a
when a ̸= 0, otherwise

a‡ = 1. The notation i = 1 : n indicates that i takes the values 1, 2, . . . , n. For any a ∈ R,
sign(a) := a

|a| for a ̸= 0 and sign(a) := 0 for a = 0, and sign(M) := [sign(mij)].

Next, we discuss some important properties of the M-P inverse, which will be crucial

for our main finding results. The following lemma states that for a full column rank

matrices M, its M-P inverse is a continuous function of its data entries.

Lemma 6.2.1. [133] Let M ∈ Rm×n with full column rank and {Ej} be a collection of

real m × n matrices satisfying lim
j→0

Ej = 0. Then, (M + Ej) has full column rank when j

is small enough and lim
j→0

(M + Ej)
† =M †.

However, M does not share the above property when it is singular or rank deficient.

Small perturbation ∆M onM can produce the computed M-P inverse far from the actual

one. To tackle this situation, perturbation theory for the M-P inverse has been studied

in certain specific constraints. Next, we recall the definition of ‘acute’ perturbation [128].

Definition 6.2.1. An acute perturbation M̃ = M + ∆M ∈ Rm×n of M ∈ Rm×n is a

perturbed matrix for which ∥MM † − M̃M̃ †∥2 < 1 and ∥M †M − M̃ †M̃∥2 < 1.

Proposition 6.2.2 provides an if and only if condition for the continuity of M † of any

matrix M ∈ Rm×n.

Proposition 6.2.2. Let M ∈ Rm×n. Consider the set

S1(M) =
{
∆M ∈ Rm×n : ∥M †∥2∥∆M∥2 < 1

}
.

Then, lim
∆M→0

(M +∆M)† = M † if and only if rank(M +∆M) = rank(M), where ∆M ∈
S1(M).

Proof. For ∆M ∈ S1(M), we have ∥M †∥2∥∆M∥2 < 1. Then M + ∆M is an acute

perturbation of M if and only if rank(M + ∆M) = rank(M) [91, Lemma 1]. Since

on the set of acute perturbations ofM, its M-P inverseM † is a continuous function about

M [128, Page 140]. Therefore, it follows that M † is continuous on the set S1(M) if and

only if rank(M +∆M) = rank(M). Hence, the proof is completed. ■

Remark 6.2.3. When M has full column rank (or row rank), from Lemma 6.2.1, the

rank condition in Proposition 6.2.2 holds trivially.
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6.3. MCN and CCN for General Parameterized Matrices

In this part, initially, we define structured MCN and CCN for the M-P inverse and

the unique MNLS solution for a general class of parameterized matrices. Suppose that

each entry of M ∈ Rm×n is a differentiable function of a set of real parameters Ψ =

[ψ1, ψ2, . . . , ψp]
T ∈ Rp and write the matrix as M(Ψ). We employ this notation for the

rest of the chapter. Due to the fact that a number of important classes of matrices can be

parameterized by a collection of parameters, it is reasonable to consider perturbations on

the parameters rather than directly on their entries. Let ∆Ψ ∈ Rp be the perturbation on

the parameters set Ψ ∈ Rp, we consider the admissible perturbation in the matrix M(Ψ)

as M(Ψ +∆Ψ)−M(Ψ) = ∆M(Ψ). For maintaining the continuity property for M †(Ψ),

according to the Proposition 6.2.2, we restrict the perturbation on Ψ to the following set

S(Ψ) :=
{
∆Ψ ∈ Rp : rank(M(Ψ)) = rank(M(Ψ +∆Ψ)) = r, ∥M †(Ψ)∥2∥∆M(Ψ)∥2 < 1

}
.

Next, we provide an example to show that S(Ψ) is nonempty.

Example 6.3.1. Consider the parameter set

Ψ = [{2, 4}, {1}, {−3, 1}, {5, 2, 6}, {1, 3}, {2}, {3, 1}]T ∈ R13

of a {1, 1}-QS matrix given as in (6.5.1) and using the formula provided in Definition

6.5.1, we have

M(Ψ) =


5 3 2

−6 2 3

−12 4 6

 . (6.3.1)

Taking ∆Ψ = [{0, 0}, {0}, {0, 0}, {µ, 0, 0}, {µ, 0}, {0}, {0, 0}]T ∈ R13, we get

M(Ψ +∆Ψ) =


5 + µ 3 + 3µ 2 + 2µ

−6 2 3

−12 4 6

 .
Here, ∥M †(Ψ)∥2 = 0.1812 and ∥∆M †(Ψ)∥2 =

√
14|µ|. Clearly, rank(M(Ψ)) = rank(M(Ψ+

∆Ψ)) and ∥M †(Ψ)∥2∥∆M(Ψ)∥2 < 1, whenever |µ| < 1.4747. Thus, S(Ψ) contains all per-

turbations ∆Ψ such that |µ| < 1.4747.

6.3.1. M-P Inverse of General Parameterized Matrices

We introduce structured MCN and CCN in Definition 6.3.1 for a general class of

parameterized matrices for its M-P inverse. We provide general expressions for the upper

bounds of these CNs in Theorem 6.3.2. Also, we present exact formulae for these CNs in

Theorem 6.3.5 for full column rank matrices.
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Definition 6.3.1. Let M(Ψ) ∈ Rm×n, rank(M(Ψ)) = r ≤ min {m,n}. Then, we define

structured MCN and CCN for M †(Ψ) as follows:

M †(M(Ψ)
)
:= lim

ϵ→0
sup

ß∥M †(Ψ +∆Ψ)−M †(Ψ)∥max

ϵ∥M †∥max

: ∥∆Ψ/Ψ∥∞ ≤ ϵ,∆Ψ ∈ S(Ψ)

™
,

C †(M(Ψ)
)
:= lim

ϵ→0
sup

ß
1

ϵ

∥∥∥∥M †(Ψ +∆Ψ)−M †(Ψ)

M †

∥∥∥∥
max

: ∥∆Ψ/Ψ∥∞ ≤ ϵ,∆Ψ ∈ S(Ψ)

™
.

To formulate the general expressions for the upper bounds of the CNs outlined in

Definition 6.3.1, we present the following perturbation expression for M †(Ψ).

Lemma 6.3.1. Let M(Ψ) ∈ Rm×n and rank(M(Ψ)) = r. Suppose ∆Ψ ∈ S(Ψ) is the

perturbation on the parameter set Ψ. Then

M †(Ψ +∆Ψ)−M †(Ψ) =

p∑
k=1

(
−M †∂M(Ψ)

∂ψk
M † +M †M †T

(∂M(Ψ)

∂ψk

)T
EM

+ FM

(∂M(Ψ)

∂ψk

)T
M †TM †

)
∆ψk +O(∥∆Ψ∥2∞).

Proof. Given that the elements ofM(Ψ) are differentiable functions of Ψ = [ψ1, ψ2, ..., ψp]
T ,

using matrix differentiation, for an infinitesimal change in M(Ψ), we get

∆M(Ψ) =M(Ψ +∆Ψ)−M(Ψ) =

p∑
k=1

∂M(Ψ)

∂ψk
∆ψk + O(∥∆Ψ∥2∞), (6.3.2)

where ∆Ψ = [∆ψ1, . . . ,∆ψp]
T . Since ∆Ψ ∈ S(Ψ), using the perturbation expression for

the M-P inverse [128], we obtain

∆M †(Ψ) =M †(Ψ +∆Ψ)−M †(Ψ) = −M †∆M(Ψ)M † +M †M †T (∆M(Ψ))TEM

+ FM(∆M(Ψ))TM †TM † + O(∥∆Ψ∥2∞). (6.3.3)

Putting (6.3.2) in (6.3.3), we get

∆M †(Ψ) = −M †
( p∑
k=1

∂M(Ψ)

∂ψk
∆ψk

)
M † +M †M †T

( p∑
k=1

∂M(Ψ)

∂ψk
∆ψk

)T
EM

+ FM

( p∑
k=1

∂M(Ψ)

∂ψk
∆ψk

)T
M †TM † + O(∥∆Ψ∥2∞).

Hence, the desired expression is obtained. ■

In Theorem 6.3.2, for M †(Ψ), we derive general expressions for upper bounds of the

proposed CNs when rank(M(Ψ)) = r.
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Theorem 6.3.2. For M(Ψ) ∈ Rm×n with rank(M(Ψ)) = r, we have

M †(M(Ψ)
)
≤ ∥X †

Ψ∥max

∥M †∥max

=: ›M †(M(Ψ)
)

and C †(M(Ψ)
)
≤
∥∥∥X †

Ψ

M †

∥∥∥
max

=: ‹C †(M(Ψ)
)
,

where

X †
Ψ =

p∑
k=1

(∣∣∣M †∂M(Ψ)

∂ψk
M †
∣∣∣+ ∣∣∣M †M †T

(∂M(Ψ)

∂ψk

)T
EM

∣∣∣+ ∣∣∣FM

(∂M(Ψ)

∂ψk

)T
M †TM †

∣∣∣)|ψk|.
Proof. From Lemma 6.3.1 and using the properties of absolute values, we have

∣∣∣M †(Ψ +∆Ψ)−M †(Ψ)
∣∣∣ ≤ p∑

k=1

(∣∣∣M †∂M(Ψ)

∂ψk
M †
∣∣∣+∣∣∣M †M †T

(∂M(Ψ)

∂ψk

)T
EM

∣∣∣
+
∣∣∣FM

(∂M(Ψ)

∂ψk

)T
M †TM †

∣∣∣)|∆ψk| +O(∥∆Ψ∥2∞).

Now, by Definition 6.3.1, ∥∆Ψ/Ψ∥∞ ≤ ϵ implies that |∆ψk| ≤ ϵ |ψk| for all k = 1, 2, . . . , p,

and using the properties of the max norm, we find that

∥M †(Ψ +∆Ψ)−M †(Ψ)∥max ≤ ϵ
∥∥∥ p∑
k=1

(∣∣∣M †∂M(Ψ)

∂ψk
M †
∣∣∣+∣∣∣M †M †T

(∂M(Ψ)

∂ψk

)T
EM

∣∣∣
+
∣∣∣FM

(∂M(Ψ)

∂ψk

)T
M †TM †

∣∣∣)|ψk|∥∥∥
max

+O(ϵ2).

Then, if we take ϵ → 0, and from Definition 6.3.1, we get the desired result of the first

claim.

In a similar manner, we obtain the second part of the claim. ■

In the next corollary, we obtain bounds for the CNs for M † in the unstructured case.

Corollary 6.3.1. Suppose M ∈ Rm×n with rank(M) = r. Then›M †(M) =
1

∥M †∥max

∥∥∥|M †||M ||M †|+ |M †M †T ||MT ||EM |+ |FM ||MT ||M †TM †|
∥∥∥
max

,‹C †(M) =
∥∥∥ 1

M †

(
|M †||M ||M †|+ |M †M †T ||MT ||EM |+ |FM ||MT ||M †TM †|

)∥∥∥
max

.

Proof. For any M= [mij] ∈ Rm×n and any two column vectors a and b, we have

∂M

∂mij

= emi (e
n
j )
T and (6.3.4)

|abT | = |a||bT |. (6.3.5)
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By considering the parameters as the entries of M itself, i.e., Ψ = [{mij}m,ni,j=1]
T ∈ Rmn,

and using (6.3.4), the sum expression in Theorem 6.3.2 can be written as:

m∑
i=1

n∑
j=1

(∣∣∣M † ∂M

∂mij

M †
∣∣∣+ ∣∣∣M †M †T

( ∂M
∂mij

)T
EM

∣∣∣+ ∣∣∣FM

( ∂M
∂mij

)T
M †TM †

∣∣∣)|mij|

=
m∑
i=1

n∑
j=1

(∣∣∣M †emi (e
n
j )
TM †

∣∣∣+ ∣∣∣M †M †T enj (e
m
i )

TEM |+
∣∣∣FMe

n
j (e

m
i )

TM †TM †
∣∣∣)|mij|.

(6.3.6)

Again, using (6.3.5), we can write (6.3.6) as

m∑
i=1

n∑
j=1

(
|M †(:, i)||mij||M †(j, :)|+ |M †M †T (:, j)||mij||EM(i, :)|

+ |FM(:, j)||mij||M †TM †(i, :)|
)

= |M †||M ||M †|+ |M †M †T ||MT ||EM |+ |FM ||MT ||M †TM †|. (6.3.7)

The desired upper bounds will be obtained by substituting (6.3.7) in Theorem 6.3.2. ■

Next, we estimate the bounds for CNs under the constraints R(∆M(Ψ)) ⊆ R(M(Ψ))

and R(∆MT (Ψ)) ⊆ R(MT (Ψ)).

Proposition 6.3.3. LetM(Ψ) ∈ Rm×n be such that rank(M(Ψ)) = r. Suppose that ∆Ψ ∈
Rp is the perturbation on the parameter set Ψ satisfying the conditions, ∥M †∥2∥∆M(Ψ)∥2 <
1, R(∆M(Ψ)) ⊆ R(M(Ψ)) and R(∆MT (Ψ)) ⊆ R(MT (Ψ)). Then

M †(Ψ +∆Ψ)−M †(Ψ) = −
p∑

k=1

M †∂M(Ψ)

∂ψk
M †∆ψk +O(∥∆Ψ∥2∞).

Furthermore, ›M †(M(Ψ)
)
=

∥
∑p

k=1 |M † ∂M(Ψ)
∂ψk

M †||∆ψk|∥max

∥M †∥max

,‹C †(M(Ψ)
)
=
∥∥∥ 1

M †

p∑
k=1

|M †∂M(Ψ)

∂ψk
M †||∆ψk|

∥∥∥
max

.

Proof. If M(Ψ),∆M(Ψ) ∈ Rm×n satisfies the assumptions R(∆M(Ψ)) ⊆ R(M(Ψ)) and

R(∆MT (Ψ)) ⊆ R(MT (Ψ)). Then

M(Ψ)M †(Ψ)∆M(Ψ) = ∆M(Ψ) and MT (Ψ)M †(Ψ)
T
∆MT (Ψ) = ∆MT (Ψ). (6.3.8)

In addition, if ∥M †(Ψ)∥2∥∆M(Ψ)∥2 < 1 holds, it is shown in [22] that

M †(Ψ +∆Ψ) = (In +M †(Ψ)∆M(Ψ))−1M †(Ψ). (6.3.9)
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Now, (6.3.8) implies ∆MT (Ψ)EM = 0 and FM∆MT (Ψ) = 0. Again, (6.3.9) implies that

rank(M(Ψ+∆Ψ)) = rank(M(Ψ)). Therefore, ∆Ψ ∈ S(Ψ). Hence, from Lemma 6.3.1, we

get the desired expression.

The proof of the second part is a direct consequence of the derived perturbation

expansion and the proof technique employed in Theorem 6.3.2. ■

Remark 6.3.4. Using Proposition 6.3.3, and in an analogous approach to Corollary 6.3.1,

we can recover the bounds for unstructured CNs obtained in [141].

For the matrices with full column rank, the next theorem provides exact expressions

of CNs for M †(Ψ), introduced in Definition 6.3.1.

Theorem 6.3.5. For M(Ψ) ∈ Rm×n with full column rank, we have

M †(M(Ψ)) =
∥X̂ †

Ψ∥max

∥M †∥max

and C †(M(Ψ)) =

∥∥∥∥∥ X̂ †
Ψ

M †

∥∥∥∥∥
max

,

where

X̂ †
Ψ =

p∑
k=1

∣∣∣M †∂M(Ψ)

∂ψk
M † − (MTM)−1

(∂M(Ψ)

∂ψk

)T
EM

∣∣∣|ψk|.
Proof. SinceM(Ψ) is of full column rank matrix, we have FM = 0. Now, applying Remark

6.2.3 on Lemma 6.3.1, we get following perturbation expression for M †(Ψ)

∆M †(Ψ) =M †(Ψ +∆Ψ)−M †(Ψ) =

p∑
k=1

(
−M †∂M(Ψ)

∂ψk
M † + (MTM)−1

(∂M(Ψ)

∂ψk

)T
EM

)
∆ψk +O(∥∆Ψ∥2∞). (6.3.10)

By employing a similar proof technique as in Theorem 6.3.2, and considering the given

condition ∥∆Ψ/Ψ∥∞ ≤ ϵ, we can establish the following bound:

M †(M(Ψ)) ≤

∥∥∥∑p
k=1

∣∣∣M † ∂M(Ψ)
∂ψk

M † − (MTM)−1
(
∂M(Ψ)
∂ψk

)T
EM

∣∣∣|ψk|∥∥∥
max

∥M †∥max

. (6.3.11)

On the other hand, from Lemma 6.2.1 and Remark 6.2.3, it follows that we can consider

arbitrary perturbation ∆Ψ ∈ Rp on the parameter set Ψ. Choose

∆ψk = −ϵ sign(Mk)lq sign(ψk)ψk, (6.3.12)

where Mk = M † ∂M(Ψ)
∂ψk

M † − (MTM)−1
(
∂M(Ψ)
∂ψk

)T
EM , for k = 1 : p, (Mk)lq denotes the

lq-th entry of the matrix Mk, and the indices l and q are such that∥∥∥ p∑
k=1

|Mk||ψk|
∥∥∥
max

=
( p∑
k=1

|Mk||ψk|
)
lq
.
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The upper bound in (6.3.11) is obtained by inserting the values of (6.3.12) in the pertur-

bation expression (6.3.10) and from the Definition 6.3.1. Therefore, the proof of the first

claim is concluded.

The second part of the claim can be obtained in a similar approach. ■

6.3.2. MNLS Solution for General Parameterized Coefficient Matrices

Let us consider the LS problem for the parameterized matrix M(Ψ) ∈ Rm×n

min
z∈Rn

∥M(Ψ)z − b∥2 (6.3.13)

with rank(M(Ψ)) = r and b ∈ Rm. When M(Ψ) is rank deficient, the unique MNLS

solution is provided by x =M(Ψ)†b.Moreover, in this situation, x is not even a continuous

function of the data, and small changes in M(Ψ) can produce large changes to x. This

happens as a consequence of the behavior of the M-P inverse for any rank deficient matrix.

Thus, according to Proposition 6.2.2, we consider the perturbation ∆Ψ ∈ S(Ψ) for the

parameters, and then the perturbed problem

min
z∈Rn

∥M(Ψ +∆Ψ)z − (b+∆b)∥2

has the MNLS solution x̃ =M(Ψ +∆Ψ)†(b+∆b). Consider ∆x = x̃− x.
In Definition 6.3.2, for the MNLS solution x, we introduce its structured MCN and

CCN.

Definition 6.3.2. Let M(Ψ) ∈ Rm×n with rank(M(Ψ)) = r and b ∈ Rm. Then, we define

structured MCN and CCN of x as follows:

M †(M(Ψ), b) := lim
ϵ→0

sup

ß∥∆x∥∞
ϵ∥x∥∞

: ∥∆Ψ/Ψ∥∞ ≤ ϵ, ∥∆b/b∥∞ ≤ ϵ, ∆Ψ ∈ S(Ψ),∆b ∈ Rm

™
,

C †(M(Ψ), b) := lim
ϵ→0

sup

ß
1

ϵ

∥∥∥∥∆xx
∥∥∥∥
∞

: ∥∆Ψ/Ψ∥∞ ≤ ϵ, ∥∆b/b∥∞ ≤ ϵ, ∆Ψ ∈ S(Ψ),∆b ∈ Rm

™
.

Our main objective of this section is to find general expressions of bounds for the

CNs introduced in Definition 6.3.2, and the following lemma provides the perturbation

expansion for the MNLS solution.
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Lemma 6.3.6. Let M(Ψ) ∈ Rm×n with rank(M(Ψ)) = r and b ∈ Rm. Suppose ∆Ψ ∈
S(Ψ) and ∆b ∈ Rm, and set r := b−M(Ψ)x. Then

∆x =

p∑
k=1

Å
−M †∂M(Ψ)

∂ψk
x+M †M †T

(∂M(Ψ)

∂ψk

)T
r+ FM

(∂M(Ψ)

∂ψk

)T
M †Tx

ã
∆ψk

+
m∑
i=1

M †emi ∆bi +O(∥[∆Ψ,∆b]∥2∞).

Proof. Since ∆x =M †(Ψ+∆Ψ)(b+∆b)−M †(Ψ)b and ∆Ψ ∈ S(Ψ), using Lemma 6.3.1,

we get

∆x =

(
p∑

k=1

(
−M †∂M(Ψ)

∂ψk
M † +M †M †T

(∂M(Ψ)

∂ψk

)T
EM + FM

(∂M(Ψ)

∂ψk

)T
M †TM †

)
∆ψk

+M †(Ψ)

)
(b+∆b)−M †(Ψ)b+O(∥∆Ψ∥2∞) (6.3.14)

=

p∑
k=1

(
−M †∂M(Ψ)

∂ψk
x+M †M †T

(∂M(Ψ)

∂ψk

)T
r+ FM

(∂M(Ψ)

∂ψk

)T
M †Tx

)
∆ψk

+M †(Ψ)∆b+ O(∥[∆Ψ,∆b]∥2∞). (6.3.15)

On the other hand, for the perturbation ∆b in b, we can write ∆b =
∑m

i=1 e
m
i ∆bi. There-

fore, from (6.3.15), we get

∆x =

p∑
k=1

(
−M †∂M(Ψ)

∂ψk
x+M †M †T

(∂M(Ψ)

∂ψk

)T
r+ FM

(∂M(Ψ)

∂ψk

)T
M †Tx

)
∆ψk

+M †
m∑
i=1

emi ∆bi + O(∥[∆Ψ,∆b]∥2∞),

and hence, the desired result is obtained. ■

In Theorem 6.3.7, we provide general expressions for the upper bounds of M †(M(Ψ), b)

and C †(M(Ψ), b).

Theorem 6.3.7. Let M(Ψ) ∈ Rm×n be a matrix having rank(M(Ψ)) = r and b ∈ Rm.

Then,

M †(M(Ψ), b) ≤ ∥X ls
Ψ ∥∞

∥x∥∞
=: ›M †(M(Ψ), b),

C †(M(Ψ), b) ≤
∥∥∥Dx‡X ls

Ψ

∥∥∥
∞

=: ‹C †(M(Ψ), b),

where

X ls
Ψ =

p∑
k=1

(∣∣∣M †∂M(Ψ)

∂ψk
x
∣∣∣+ ∣∣∣M †M †T

(∂M(Ψ)

∂ψk

)T
r
∣∣∣+ ∣∣∣FM

(∂M(Ψ)

∂ψk

)T
M †Tx

∣∣∣)|ψk|+ |M †||b|
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and Dx‡ = diag(x‡).

Proof. From Lemma 6.3.6 and utilizing the properties of absolute values, we obtain

|∆x| ≤
p∑

k=1

(∣∣∣M †∂M(Ψ)

∂ψk
x
∣∣∣+ ∣∣∣M †M †T

(∂M(Ψ)

∂ψk

)T
r
∣∣∣+ ∣∣∣FM

(∂M(Ψ)

∂ψk

)T
M †Tx

∣∣∣)|∆ψk|
+

m∑
i=1

|M †||∆bi|+O(∥[∆Ψ,∆b]∞∥2). (6.3.16)

Now, by Definition 6.3.2, ∥∆Ψ/Ψ∥∞ ≤ ϵ and ∥∆b/b∥∞ ≤ ϵ implies that for k = 1 : p,

|∆ψk| ≤ ϵ |ψk|, and for i = 1 : m, |∆bi| ≤ ϵ|bi|, respectively. Taking infinity norm in

(6.3.16), we deduced that

∥∆x∥∞ ≤ ϵ
∥∥∥ p∑
k=1

(∣∣∣M †∂M(Ψ)

∂ψk
x
∣∣∣+ ∣∣∣M †M †T

(∂M(Ψ)

∂ψk

)T
r

+
∣∣∣FM

(∂M(Ψ)

∂ψk

)T
M †Tx

∣∣∣)|ψk|+ |M †||b|
∥∥∥
∞
+ O(ϵ2). (6.3.17)

Then, if we take ϵ→ 0 in (6.3.17) and from Definition 6.3.2, we attain the desired result

of the first assertion. The second assertion follows in a similar manner, as we can express∥∥∆x
x

∥∥
∞ = ∥Dx‡∆x∥∞ . ■

Next, we discuss the bounds of the CNs for the MNLS solution of the LS problem

(6.3.13) corresponding to unstructured matrices.

Corollary 6.3.2. For M ∈ Rm×n having rank(M) = r and b ∈ Rm, we have›M †(M, b) :=

∥∥∥|M †||M ||x|+ |M †M †T ||MT ||r|+ |FM ||MT ||M †Tx|+ |M †||b|
∥∥∥
∞

∥x∥∞
,‹C †(M, b) :=

∥∥∥Dx‡

(
|M †||M ||x|+ |M †M †T ||MT ||r|+ |FM ||MT ||M †Tx|+ |M †||b|

)∥∥∥
∞
.

Proof. The proof follows in an analogous way to the Corollary 6.3.1 by considering Ψ =

[{mij}m,ni,j=1]
T ∈ Rmn in Theorem 6.3.7 and using (6.3.4) and (6.3.5). ■

The next theorem offers explicit formulae of structured CNs for the unique LS solution

x =M †(Ψ)b for full column rank matrices.

Theorem 6.3.8. For M(Ψ) ∈ Rm×n having full column rank and b ∈ Rm, we get

M †(M(Ψ), b
)
=

∥X̂ ls
Ψ ∥∞

∥x∥∞
and C †(M(Ψ), b

)
=
∥∥∥Dx‡X̂ ls

Ψ

∥∥∥
∞
,

where

X̂ ls
Ψ =

p∑
k=1

∣∣∣M †∂M(Ψ)

∂ψk
x− (MTM)−1

(∂M(Ψ)

∂ψk

)T
r
∣∣∣|ψk| + |M †||b|. (6.3.18)
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Proof. In Lemma 6.3.6, using the fact that for any full column rank matrix FM = 0, we

have

∆x =

p∑
k=1

Å
−M †∂M(Ψ)

∂ψk
x+M †M †T

(∂M(Ψ)

∂ψk

)T
r

ã
∆ψk+

m∑
i=1

M †emi ∆bi+O(∥[∆ψ,∆b]∥2∞).

(6.3.19)

Now, by applying the proof method used in Theorem 6.3.5 and considering the given

conditions ∥∆Ψ/Ψ∥∞ ≤ ϵ and ∥∆b/b∥∞ ≤ ϵ, we obtain

M †(M(Ψ), b) ≤

∥∥∥∑p
k=1

∣∣∣M † ∂M(Ψ)
∂ψk

x− (MTM)−1
(
∂M(Ψ)
∂ψk

)T
r
∣∣∣|ψk|+ |M †||b|

∥∥∥
∞

∥x∥∞
. (6.3.20)

From Lemma 6.2.1 and Remark 6.2.3, we can choose the perturbation ∆Ψ on the param-

eters set Ψ arbitrarily from Rp. Consider the following perturbations

∆b = ϵΘM†Θb b,

whereΘM† andΘb are the diagonal matrices having diagonal entriesΘM†(i, i) = sign(M †(l, i)),

and Θb(i, i) = sign(bi) for i = 1 : m, respectively, and

∆ψk = −ϵ sign(Mx,k)l sign(ψk)ψk,

where Mx,k :=M † ∂M(Ψ)
∂ψk

x− (MTM)−1
Ä
∂M(Ψ)
∂ψk

äT
r and l is the index so that∥∥∥ p∑

k=1

|Mx,k||ψk|+ |M †||b|
∥∥∥
∞

=
( p∑
k=1

|Mx,k||ψk|+ |M †||b|
)
l
.

The upper bound in (6.3.20) will be attained by substituting these perturbations in

(6.3.19) and from Definition 6.3.2, and hence the desired expression is attained. Analo-

gously, we can obtain the expression for the CCN. ■

Remark 6.3.9. The formula for the MCN M †(M(Ψ), b) in Theorem 6.3.8 is also pre-

sented in [145]. However, our approach to proving the theorem differs slightly. Interested

readers may also refer to the proof method in [145].

6.4. CNs for Cauchy-Vandermonde (CV) Matrices

In this section, we start by reviewing the definition of CV matrices. Subsequently, we

provide the derivative expressions for the matrix with respect to its parameter set. These

expressions play a pivotal role in the derivation of computationally feasible upper bounds

for the structured CNs of the M-P inverse and the solution of the LS problem for a rank

deficient CV matrix given in Theorems 6.4.2 and 6.4.5, respectively. Explicit formulations
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for these CNs are also provided in the Theorems 6.4.3 and 6.4.6, respectively, when the

matrix has full column rank.

Definition 6.4.1. [78] A matrix M ∈ Rm×n is classified as a CV matrix if it satisfies the

following conditions: for c = [c1, c2, . . . , cm]
T ∈ Rm and d = [d1, d2, . . . , dl]

T ∈ Rl, where

ci ̸= dj for i = 1 : m and j = 1 : l, with 0 ≤ l ≤ n, the matrix M can be represented as

follows:

M =


1

c1−d1
1

c1−d2 · · · 1
c1−dl

1 c1 c21 · · · cn−l−1
1

1
c2−d1

1
c2−d2 · · · 1

c2−dl
1 c2 c22 · · · cn−l−1

2

...
...

...
...

...
...

...
...

...
1

cm−d1
1

cm−d2 · · · 1
cm−dl

1 cm c2m · · · cn−l−1
m

 . (6.4.1)

M becomes the Vandermonde matrix when l = 0, and the Cauchy matrix when l = n.

For a CV matrix of the form (6.4.1), ΨCV := [{ci}mi=1, {di}li=1]
T ∈ Rm+l represents its

parameter set. We use the notation M(ΨCV) to refer a CV matrix parameterized by ΨCV.

For the M-P inverse and the MNLS solution involving the CV matrix, our objective

is to estimate the structured CNs. Lemma 6.4.1 accomplishes our claim. Before that,

we will construct the following matrices. For any positive integers p, q and any vector

y = [y1, y2, . . . , yp]
T ∈ Rp, define the matrices

Qpq
y,i :=

î
1, . . . ,1, y,1, . . . ,1

ó
∈ Rp×q,

for i = 1 : q, with the i-th column is y and 1 ∈ Rp have all entries equal to 1. Also, set

M1 :=
î
−M(ΨCV)(:, 1 : l) 0 M(ΨCV)(:, l + 2 : n)

ó
∈ Rm×n (6.4.2)

and M2 :=
î
M(ΨCV)(:, 1 : l) 0

ó
∈ Rm×n. (6.4.3)

The following lemma presents the derivative expressions of a CV matrix for the pa-

rameters in ΨCV.

Lemma 6.4.1. Suppose M(ΨCV) ∈ Rm×n having rank r, represented by a set of real

parameter ΨCV =
[
{ci}mi=1, {di}li=1

]T ∈ Rm+l, where ci ̸= dj, i = 1 : m and j = 1 : l. Then,

each entry of M(ΨCV) is a differentiable function of ΨCV, and

1. ∂M(ΨCV)
∂ci

= emi (M1 ⊙ (Qnm
c′i,i

)T )(i, :) for i = 1 : m,

2. ∂M(ΨCV)
∂dj

= (M2 ⊙Qmn
d′
j ,j
)(:, j)(enj )

T for j = 1 : l,
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where

c′i :=
[ 1

ci − d1
,

1

ci − d2
, . . . ,

1

ci − dl
, 1,

1

ci
,
2

ci
, . . . ,

(n− l − 1)

ci

]T
∈ Rn,

d′
j :=

[ 1

c1 − dj
,

1

c2 − dj
, . . . ,

1

cm − dj

]T
∈ Rm,

for i = 1 : m and j = 1 : l.

Proof. By observing that, when ci ̸= dj, where i = 1 : m and j = 1 : l, partial derivatives

corresponding to the parameters {ci}mi=1 will be

∂M(ΨCV)

∂ci
=



0 · · · 0 0 0 0 · · · 0
...

...
...

...
...

...

0 · · · 0 0 0 0 · · · 0

−1
(ci−d1)2 · · · −1

(ci−dl)2
0 1 2ci · · · (n− l − 1)cn−l−2

i

0 · · · 0 0 0 0 · · · 0
...

...
...

...
...

...

0 · · · 0 0 0 0 · · · 0


.

Now, on the right-hand side of the above, using Hadamard product with the matrix

(Qnm
c′i,i

)T , we get

∂M(ΨCV)

∂ci
=
(
emi
î
−M(ΨCV)(i, 1 : l) 0 M(ΨCV)(i, l + 2 : n)

ó)
⊙ (Qnm

c′i,i
)T

=
(
emi M1(i, :)

)
⊙ (Qnm

c′i,i
)T = emi (M1 ⊙ (Qnm

c′i,i
)T )(i, :).

Hence, proof of the first statement follows.

In a similar argument, we can prove the second part of the statement. ■

For the structured CNs, computationally feasible upper bounds are provided in the

following theorem for M †(ΨCV) addressed in Definition 6.3.1.

Theorem 6.4.2. Suppose M(ΨCV) ∈ Rm×n with rank(M(ΨCV)) = r. Then›M †(M(ΨCV)) =
∥X †

CV∥max

∥M †∥max

and ‹C †(M(ΨCV)) =

∥∥∥∥∥X †
CV
M †

∥∥∥∥∥
max

,

where

X †
CV =|M †||Dc||(M1 ⊙Q)M †|+ |M †M †T (M1 ⊙Q)T ||Dc||EM |

+ |FM(M1 ⊙Q)T ||Dc||M †TM †|+ |M †(M2 ⊙M2)||Dd′ ||M †|

+ |M †M †T ||Dd′||(M2 ⊙M2)
TEM |+ |FM ||Dd′ ||(M2 ⊙M2)

TM †TM †|,
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d′ = [d1, . . . , dl, 0, . . . , 0]
T ∈ Rn, Q = [c′1, c

′
2, . . . , c

′
m]

T ∈ Rm×n and M1,M2 as defined in

(6.4.2) and (6.4.3), respectively.

Proof. For deriving the desired expressions for ›M †(M(ΨCV)) and ‹C †(M(ΨCV)), we cal-

culate the contribution of each parameter subset to the expressions outlined in Theorem

6.3.2. For the parameters {ci}li=1, using (1) of Lemma 6.4.1, we get:

Ec : =
m∑
i=1

(∣∣∣M †∂M(ΨCV)

∂ci
M †
∣∣∣+ ∣∣∣M †TM †

(∂M(ΨCV)

∂ci

)T
EM

∣∣∣
+
∣∣∣FM

(∂M(ΨCV)

∂ci

)T
M †TM †

∣∣∣)|ci|
=

m∑
i=1

(∣∣∣M †emi ((Qnm
c′i,i

)T ⊙M1)(i, :)M
†
∣∣∣+ ∣∣∣M †M †T

(
emi ((Qnm

c′i,i
)T ⊙M1)(i, :)

)T
EM

∣∣∣
+
∣∣∣FM

(
emi ((Qnm

c′i,i
)T ⊙M1)(i, :)

)T
M †TM †

∣∣∣)|ci|. (6.4.4)

Using (6.3.5) in (6.4.4), we get

Ec =
m∑
i=1

(
|M †(:, i)||ci||((Qnm

c′i,i
)T ⊙M1)(i, :)M

†|+ |M †M †T (Qnm
c′i,i

)T ⊙M1)
T )T (i, :)||ci||EM(i, :)|

+ |FM(Qnm
c′i,i

)T ⊙M1)
T (i, :)||ci||M †TM †(i, :)|

)
= |M †||Dc||(M1 ⊙Q)M †|+ |M †M †T (M1 ⊙Q)T ||Dc||EM |+ |FM(M1 ⊙Q)T ||Dc||M †TM †|.

Analogously, for the parameters {di}li=1, using (2) of Lemma 6.4.1, we have

Ed :=
l∑

i=1

(∣∣∣M †∂M(ΨCV)

∂di
M †
∣∣∣+ ∣∣∣M †TM †

(∂M(ΨCV)

∂di

)T
EM

∣∣∣
+
∣∣∣FM

(∂M(ΨCV)

∂di

)T
M †TM †

∣∣∣)|di|
= |M †(M2 ⊙M2)||Dd′ ||M †|+ |M †M †T ||Dd′||(M2 ⊙M2)

TEM |

+ |FM ||Dd′||(M2 ⊙M2)
TM †TM †|.

Applying Theorem 6.3.2 yields›M †(M(ΨCV)) =
∥Ed + Ec∥max

∥M †∥max

and ‹C †(M(ΨCV)) =
∥∥∥Ed + Ec

M †

∥∥∥
max

.

Hence, the proof is completed. ■

We now employ Theorem 6.3.5 to deduce the explicit formulations for structured CNs

of M †(ΨCV) by considering M(Ψ) has full column rank, which is presented next.
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Theorem 6.4.3. Suppose M(ΨCV) ∈ Rm×n has full column rank. Then,

M †(M(ΨCV)) =
∥X̂ †

CV∥max

∥M †∥max

and C †(M(ΨCV)) =

∥∥∥∥∥X̂ †
CV
M †

∥∥∥∥∥
max

,

where

X̂ †
CV =

m∑
i=1

∣∣∣M †Emm
ii (M1 ⊙Q)M † − (MTM)−1(Emm

ii (M1 ⊙Q))TEM

∣∣∣|ci|
+

l∑
i=1

∣∣∣M †(M2 ⊙M2)E
nn
jj M

† − (MTM)−1((M2 ⊙M2)E
nn
jj )

TEM

∣∣∣|di|,
Emn
ij = emi (e

n
j )
T and Q is as defined in Theorem 6.4.2.

Proof. To employ the expressions given in Theorem 6.3.5, we need to compute the con-

tribution for each subset of parameters in an analogous method to the proof of Theorem

6.4.2. For the parameters {ci}mi=1, using (1) of Lemma 6.4.1, we have

E ′
c :=

m∑
i=1

∣∣∣M †∂M(ΨCV)

∂ci
M † − (MTM)−1

(∂M(ΨCV)

∂ci

)T
EM

∣∣∣|ci|
=

m∑
i=1

∣∣∣M †
(
emi (M1 ⊙ (Qnm

c′i,i
)T )(i, :)

)
M † − (MTM)−1

(
emi (M1 ⊙ (Qnm

c′i,i
)T )(i, :)

)T
EM

∣∣∣|ci|
=

m∑
i=1

∣∣∣M †Emm
ii (M1 ⊙Q)M † − (MTM)−1(Emm

ii (M1 ⊙Q))TEM

∣∣∣|ci|.
Similarly, for the parameters {di}li=1, using (2) of Lemma 6.4.1, we get

E ′
d : =

l∑
i=1

∣∣∣M †∂M(ΨCV)

∂di
M † − (MTM)−1

(∂M(ΨCV)

∂di

)T
EM

∣∣∣|di|
=

l∑
i=1

∣∣∣M †(M2 ⊙M2)E
nn
jj M

† − (MTM)−1((M2 ⊙M2)E
nn
jj )

TEM

∣∣∣|di|.
From Theorem 6.3.5, we have

M †(M(ΨCV)) =
∥E ′

c + E ′
d∥max

∥M †∥max

and C †(M(ΨCV)) =
∥∥∥E ′

c + E ′
d

M †

∥∥∥
max

,

and hence, our proof is completed. ■

Remark 6.4.4. If we consider l = 0 or l = n in the preceding results, we can calculate

the structured CNs for the M-P inverse Vandermonde and Cauchy matrices, respectively.

Next, we consider the LS problem (6.3.13) corresponding to a rank deficient CV ma-

trix. Using the expressions given in Theorem 6.3.7, we deduce upper bounds for structured

CNs of x, presented next.
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Theorem 6.4.5. Suppose M(ΨCV) ∈ Rm×n with rank r and b ∈ Rm. Set r := b −
M(ΨCV)x. Then,›M †(M(ΨCV), b

)
=

∥X ls
CV∥∞

∥x∥∞
and ‹C †(M(ΨCV, b)

)
=
∥∥∥Dx‡X ls

CV

∥∥∥
∞
,

where

X ls
CV =|M †||b|+ |M †||Dc||(M1 ⊙Q)x|+ |M †M †T (M1 ⊙Q)T ||Dc||r|

+ |FM(M1 ⊙Q)T ||Dc||M †Tx|+ |M †(M2 ⊙M2)||Dd′ ||x|

+ |M †M †T ||Dd′||M2 ⊙M2)
T r|+ |FM ||Dd′ ||(M2 ⊙M2)

TM †Tx|.

Proof. By evaluating in an analogous method to the proof of Theorem 6.4.2, for each

subset of parameters using the expressions given in Theorem 6.3.7, the proof is followed.

Hence, we omit it here. ■

The structured CNs to the LS problem (6.3.13) corresponding to a full column rank

CV matrix are stated next.

Theorem 6.4.6. Let M(ΨCV) ∈ Rm×n and b ∈ Rm. Set r := b−Mx. Then,

M †(M(ΨCV), b) =
∥X̂ ls

CV∥∞
∥x∥∞

and C †(M(ΨCV), b) =
∥∥∥Dx‡X̂ ls

CV

∥∥∥
∞
,

where

X̂ ls
CV =

m∑
i=1

∣∣∣M †Emm
ii (M1 ⊙Q)x− (MTM)−1(Emm

ii (M1 ⊙Q))T r
∣∣∣|ci|

+
l∑

i=1

∣∣∣M †(M2 ⊙M2)E
nn
jj x− (MTM)−1((M2 ⊙M2)E

nn
jj )

T r+ |M †||b|.

Proof. Since the proof follows in an analogous method to the proof of Theorem 6.4.3, by

finding the contribution of each parameter set in the expressions of Theorem 6.3.8. ■

6.5. Quasiseparable (QS) Matrices

The outset of this section begins with a quick introduction to QS matrices, which

is a specific type of rank-structured matrices. Specifically, CNs are investigated for two

important representations known as QS representation [58] and GV representation [58].

Upper bounds for the CNs of the M-P inverse and the MNLS solution are obtained

corresponding to QS representation in Subsection 6.5.1 and for the GV representation in

Subsection 6.5.2. The relationship between different CNs is also investigated in Subsection

6.5.3.
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For the first time, QS matrices were investigated in [58]. In this work, we focus solely

on considering {1, 1}-QS matrices, which is a special case of QS matrices. Let M be

in Rn×n. If every submatrix of M completely contained in the strictly lower triangular

(resp., upper triangular) part is of rank at most 1 (resp., 1), and there is at least one

of these submatrices has rank equal to 1 (resp., 1), then M is called a {1, 1}-QS matrix.

Equivalently, we can write:

max
i

rank(M(i+ 1 : n, 1 : i)) = 1 and max
i

rank(M(1 : i, i+ 1 : n)) = 1.

6.5.1. CNs Corresponding to QS Representation

In [58], the notion of QS representation was proposed for {1, 1}-QS matrices. In this

subsection, we first recall this representation and then discuss the structured MCN and

CCN.

Definition 6.5.1. A matrix M ∈ Rn×n is classified to be a {1, 1}-QS matrix if it can be

parameterized by the following set of 7n− 8 real parameters,

ΨQS =
[
{ai}ni=2, {ei}n−1

i=2 , {bi}n−1
i=1 , {di}ni=1, {fi}n−1

i=1 , {gi}n−1
i=2 , {hi}ni=2

]T
∈ R7n−8, (6.5.1)

as follows,

M =



d1 f1h2 f1g2h3 · · · f1g2 · · ·gn−1hn

a2b1 d2 f2h3 · · · f2g3 · · ·gn−1hn

a3e2b1 a3b2 d3 · · · f3g4 · · ·gn−1hn

a4e3e2b1 a4e3b2 a4b3 · · · f4g5 · · ·gn−1hn
...

...
...

. . .
...

anen−1 . . . e2b1 anen−1 . . . e3b2 anen−1 . . . e4b3 · · · dn


.

The set of real parameters ΨQS as in (6.5.1) is called QS representation of M. We use

the notation M(ΨQS) to refer a {1, 1}-QS matrix parameterized by the set ΨQS. For the

rest part, we set M(ΨQS) := LM +DM +UM , where LM and UM denote the strictly lower

and upper triangular part of M(ΨQS), respectively, and DM denotes the diagonal part of

M(ΨQS).

In Lemma 6.5.1, we recall the derivative expressions of a {1, 1}-QS matrix M(ΨQS)

for the parameters in ΨQS provided in Definition 6.5.1, which are useful to obtain the

desired upper bounds for CNs. These results are discussed in [56].

Lemma 6.5.1. Let M(ΨQS) ∈ Rn×n be a {1, 1}-QS matrix. Then M(ΨQS) has entries

that are differentiable functions of ΨQS defined as in (6.5.1), and
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1.
∂M(ΨQS)
∂di

= eni (e
n
i )
T , for i = 1 : n.

2. ai
∂M(ΨQS)

∂ai
= eni LM(i, :), for i = 2 : n.

3. ei
∂M(ΨQS)

∂ei
=

[
0 0

M(ΨQS)(i+ 1 : n, 1 : i− 1) 0

]
:= Fi, for i = 2 : n− 1.

4. bi
∂M(ΨQS)
∂bi

= LM(:, i)(eni )
T , for i = 1 : n− 1.

5. gi
∂M(ΨQS)

∂gi
=

[
0 M(ΨQS)(1 : i− 1, i+ 1 : n)

0 0

]
:= Gi, for i = 2 : n− 1.

6. fi
∂M(ΨQS)

∂f i
= eni UM(i, :), for i = 1 : n− 1.

7. hi
∂M(ΨQS)
∂hi

= UM(i, :)(eni )
T , for i = 2 : n.

Next, we use the derivative expressions given in Lemma 6.5.1 and Theorem 6.3.2 to

compute the bounds of the structured CNs for M †(ΨQS).

Theorem 6.5.2. For M(ΨQS) ∈ Rn×n with rank(M(ΨQS)) = r, we have›M †(M(ΨQS)) =
∥X †

QS∥max

∥M †∥max

and ‹C †(M(ΨQS)) =
∥∥∥X †

QS

M †

∥∥∥
max

,

where

X †
QS := |M †||DM ||M †|+ |M †M †T ||DM ||EM |+ |FM ||DM ||M †TM †|+ |M †||LMM †|

+ |M †M †TLTM ||EM |+ |FMLTM ||M †TM †|+ |M †LM ||M †|+ |M †M †T ||LTMEM |

+ |FM ||LTMM †TM †|+ |M †||UMM
†|+ |M †M †TUT

M ||EM |+ |FMUT
M ||M †TM †|

+ |M †UM ||M †|+ |M †M †T ||UT
MEM |+ |FM ||UT

MM
†TM †|

+
n−1∑
i=2

(
|M †FiM

†|+ |M †M †TFT
i EM |+ |FMFT

i M
†TM †|

)
+

n−1∑
j=2

(
|M †GjM †|+ |M †M †TGTj EM |+ |FMGTj M †TM †|

)
,

Fi, and Gi defined as in Lemma 6.5.1.

Proof. The proof of the above assertions involves determining the contribution of each

subset of parameters to the expressions provided in Theorem 6.3.2. Using (1) of Lemma

6.5.1 for the parameters {di}ni=1, we have:

Ed :=
n∑
i=1

(
|M †∂M(ΨQS)

∂di
M †||di|+ |M †M †T

(∂M(ΨQS)

∂di

)T
EM ||di|

+ |FM

(∂M(ΨQS)

∂di

)T
M †TM †||di|

)
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=
n∑
i=1

(
|M †eni (e

n
i )
TM †||di|+ |M †M †T eni (e

n
i )
TEM ||di|+ |FMe

n
i (e

n
i )
TM †TM †||di|

)
.

(6.5.2)

Using (6.3.5) in (6.5.2), we deduce

Ed =
n∑
i=1

(
|M †(:, i)||di||M †(i, :)|+ |M †M †T (:, i)||di||EM(i, :)|+ |FM(:, i)||di||M †TM †(i, :)|

)
= |M †||DM ||M †|+ |M †M †T ||DM ||EM |+ |FM ||DM ||M †TM †|.

Similarly, for {ai}ni=2 and using (2) of Lemma 6.5.1, we get:

Ea :=
n∑
i=2

(
|M †∂M(ΨQS)

∂ai
M †||ai|+ |M †M †T

(∂M(ΨQS)

∂ai

)T
EM ||ai|

+ |FM

(∂M(ΨQS)

∂ai

)T
M †TM †||ai|

)
= |M †||LMM †|+ |M †M †TLTM ||EM |+ |FMLTM ||M †TM †|.

For the parameters {bi}n−1
i=1 and using (4) of Lemma 6.5.1, we deduce:

Eb : =
n∑
i=2

(
|M †∂M(ΨQS)

∂bi
M †||bi|+ |M †M †T

(∂M(ΨQS)

∂bi

)T
EM ||bi|

+ |FM

(∂M(ΨQS)

∂bi

)T
M †TM †||bi|

)
= |M †LM ||M †|+ |M †M †T ||LTMEM |+ |FM ||LTMM †TM †|.

For the parameters {ei}n−1
i=2 , using (3) of Lemma 6.5.1, we have:

Ee :=
n−1∑
i=2

(
|M †∂M(ΨQS)

∂ei
M †||ei|+ |M †M †T

(∂M(ΨQS)

∂ei

)T
EM ||ei|

+ |F
(∂M(ΨQS)

∂ei

)T
M †TM †||ei|

)
=

n−1∑
i=2

(
|M †FiM

†|+ |M †M †TFT
i EM |+ |FMFT

i M
†TM †|

)
.

In a similar approach, for the parameters {fi}n−1
i=1 , {gi}n−1

i=2 and {hi}n−1
i=2 , we get:

Ef :=
n−1∑
i=1

(
|M †∂M(ΨQS)

∂f i
M †||fi|+ |M †M †T

(∂M(ΨQS)

∂f i

)T
EM ||fi|

+ |FM

(∂M(ΨQS)

∂f i

)T
M †TM †||fi|

)
= |M †||UMM

†|+ |M †M †TUT
M ||EM |+ |FMUT

M ||M †TM †|.
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Eh :=
n∑
i=2

(
|M †∂M(ΨQS)

∂hi
M †||hi|+ |M †M †T

(∂M(ΨQS)

∂hi

)T
EM ||hi|

+ |FM

(∂M(ΨQS)

∂hi

)T
M †TM †||hi|

)
= |M †UM ||M †|+ |M †||M †TUT

MEM |+ |FM ||UT
MM

†TM †|.

Eg :=
n−1∑
i=2

(
|M †∂M(ΨQS)

∂gi
M †||gi|+ |M †M †T

(∂M(ΨQS)

∂gi

)T
EM ||gi|

+ |FM

(∂M(ΨQS)

∂gi

)T
M †TM †||gi|

)
=

n−1∑
i=2

(
|M †GiM †|+ |M †M †TGTi EM |+ |FMGTi M †TM †|

)
.

Now, it is straightforward from Theorem 6.3.2 that

X †
QS = Ed + Ea + Eb + Ee + Ef + Eg + Eh,

and hence, the proof is completed. ■

Remark 6.5.3. WhenM(ΨQS) is a n×n nonsingular {1, 1}-QS matrix, we have EM = 0.

Then, using the expressions in Theorem 6.3.5, and an analogous way to Theorem 6.5.2,

exact formulae of the structured CNs can be deduced for the inversion of M(ΨQS).

For any {1, 1}-QS matrix M(ΨQS), it is worth noting that there exist infinitely many

QS representations, as indicated by Dopico and Pomés [57]. The next result demonstrates

that ›M †(M(ΨQS)) and ‹C †((ΨQS)) are independent of the QS representation used.

Proposition 6.5.4. For any two representations ΨQS and Ψ′
QS of a {1, 1}-QS matrix

M ∈ Rm×n, we get›M †(M(ΨQS)) = ›M †(M(Ψ′
QS)) and ‹C †(M(ΨQS)) = ‹C †(M(Ψ′

QS)).

Proof. Observe that the formulae given by the Theorem 6.5.2 only depend on the entries

of M, M †, EM and FM , but not on the specific selection of the parameter set; hence, the

proof follows. ■

We provide upper bounds on the structured CNs of the MNLS solution of the LS

problem (6.3.13) corresponding to {1, 1}-QS matrices in the next theorem.
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Theorem 6.5.5. Let M(ΨQS) ∈ Rn×n be such that rank(M(ΨQS)) = r and b ∈ Rn. Set

r := b−M(ΨQS)x. Then›M †(M(ΨQS), b) =
∥X ls

QS∥∞
∥x∥∞

and ‹C †(M(ΨQS), b) =

∥∥∥∥∥X ls
QS

x

∥∥∥∥∥
∞

,

where

X ls
QS : = |M †||b|+ |M †||DM ||x|+ |M †M †T ||DM ||r|+ |FM ||DM ||M †Tx|+ |M †||LMx|

+ |M †M †TLTM ||r|+ |FMLTM ||M †Tx|+ |M †LM ||x|+ |M †M †T ||LTMr|

+ |FM ||LTM |M †Tx|+ |M †||UMx|+ |M †M †TUT
M ||r|+ |FMUT

M ||M †Tx|

+ |M †UM ||x|+ |M †M †T ||UT
Mr|+ |FM ||UT

MM
†Tx|

+
n−1∑
i=2

(
|M †Fix|+ |M †M †TFT

i r|+ |FMFT
i M

†Tx|
)

+
n−1∑
j=2

(
|M †Gjx|+ |M †M †TGTj r|+ |FMGTj M †Tx|

)
.

Proof. The statement can be easily verified using a similar justification to that of the

proof of the Theorem 6.5.2 and using the Theorem 6.3.7. Hence, we omit the proof. ■

Remark 6.5.6. By consideringM(ΨQS) nonsingular, for the linear systemM(ΨQS)x = b,

using the expression in Theorem 6.3.8 and r = 0, we can obtain following expression for

the structured MCN of x :

M †(M(ΨQS), b
)
=

1

∥x∥∞

∥∥∥|M−1||b|+ |M−1||DM ||x|+ |M−1||LMx|+ |M−1LM ||x|

+ |M−1||UMx|+ |M−1UM ||x|+
n−1∑
i=2

|M−1Fix|+
n−1∑
j=2

|M−1Gjx|
∥∥∥
max

.

This result is the same as obtained by Dopico and Pomés [57].

6.5.2. CNs Corresponding to GV Representation

The GV representation, proposed initially in [130], is another essential representation

for {1, 1}-QS matrices. This representation is used to enhance the stability of fast algo-

rithms. In this subsection, we first review the GV representation together with its minor

variant called GV representation through tangent.
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Definition 6.5.2. [130] Any M ∈ Rn×n is classified to be a {1, 1}-QS matrix if it can be

represented by the parameter set

ΨGV
QS =

[
{pi, qi}n−1

i=2 , {ui}n−1
i=1 , {di}ni=1, {vi}n−1

i=1 , {ri, si}n−1
i=2

]T
∈ R7n−10, (6.5.3)

satisfying the following properties,

1. {pi, qi} is a cosine-sine pair with p2i + q2i = 1, for every i ∈ {2 : n− 1},
2. {ui}n−1

i=1 , {di}ni=1, and {vi}n−1
i=1 are independent parameters,

3. {ri, si} is a cosine-sine pair with r2i + s2i = 1, for every i ∈ {2 : n− 1},

as follows:

M =



d1 v1r2 v1s2r3 . . . v1s2 . . . sn−2rn−1 v1s2 . . . sn−1

p2u1 d2 v2r3 . . . v2s3 . . . sn−2rn−1 v2s3 . . . sn−1

p3q2u1 p3u2 d3 . . . v3s4 . . . sn−2rn−1 v3s4 . . . sn−1

...
...

...
. . .

...
...

pn−1qn−2 . . . q2u1 pn−1qn−2 . . . q3u2 pn−1qn−2 . . . q4u3 · · · dn−1 vn−1

qn−1 . . . q2u1 qn−1 . . . q3u2 qn−1 . . . q4u3 · · · un−1 dn


.

Note that the ΨGV
QS is a special case of ΨQS by considering {ai, ei}n−1

i=2 = {pi, qi}n−1
i=2 ,

{bi}n−1
i=1 = {ui}n−1

i=1 , {di}ni=1 = {di}ni=1, {fi}n−1
i=1 = {vi}n−1

i=1 , {gi,hi}n−1
i=2 = {si, ri}n−1

i=2 , and

an = hn = 1 with additional conditions on the parameters. Since the parameters pi and

qi are dependent, arbitrary perturbation to ΨGV
QS will destroy the cosine-sine pairs and the

same is true for ri and si. Thus, it will be more sensible to restrict the perturbation that

preserves the cosine-sine pair. Consequently, Dopico and Pomés [57] introduced a new

representation called GV representation through tangent using their tangents.

Definition 6.5.3. For the GV representation ΨGV
QS as in (6.5.3), the GV representation

through tangent is defined as

ΨGV =
[
{ti}n−1

i=2 , {ui}n−1
i=1 , {di}ni=1, {vi}n−1

i=1 , {wi}n−1
i=2

]T ∈ R5n−6, (6.5.4)

where pi =
1√
1+t2i

, qi =
ti√
1+t2i

and ri =
1√
1+w2

i

, si =
wi√
1+w2

i

, for i = 2 : n− 1.

We employ the notation M(ΨGV) to refer a {1, 1}-QS matrix parameterized by the

set ΨGV . The derivative expressions corresponding to the parameters in the representation

ΨGV are revisited in the next lemma:

Lemma 6.5.7. [56] Let M(ΨGV) ∈ Rn×n having rank(M(ΨGV)) = r. Then each entry of

M(ΨGV) is differentiable functions of the elements in ΨGV , and
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1. ti
∂M(ΨGV )

∂ti
=


0 0

−q2iM(ΨGV)(i, 1 : i− 1) 0

p2iM(ΨGV)(i+ 1 : n, 1 : i− 1) 0

 := Ki, for i = 2 : n− 1.

2. wi
∂M(ΨGV )

∂wi
=

[
0 −s2iM(ΨGV)(1 : i− 1, i) r2iM(ΨGV)(1 : i− 1, i+ 1 : n)

0 0 0

]
:= Li,

for i = 2 : n− 1.

Note: Partial derivative expressions corresponding to the parameters {ui}n−1
i=1 , {di}ni=1

and {vi}n−1
i=1 are same as the expression for the parameters {bi}n−1

i=1 , {di}ni=1 and {fi}n−1
i=1 ,

respectively, given in the Lemma 6.5.1.

In Theorem 6.5.8, we discuss computationally feasible upper bounds for the structured

CNs introduced in Definition 6.3.1 corresponding to the representation ΨGV .

Theorem 6.5.8. Let M(ΨGV) ∈ Rn×n with rank(M(ΨGV)) = r, then›M †(M(ΨGV)
)
=

∥X †
GV∥max

∥M †∥max

and ‹C †(M(ΨGV)
)
=
∥∥∥X †

GV

M †

∥∥∥
max

,

where

X †
GV : = |M †||DM ||M †|+ |M †M †T ||DM ||EM |+ |FM ||DM ||M †TM †|+ |M †LM ||M †|

+ |M †M †T ||LTMEM |+ |FM ||LTMM †TM †|+ |M †||UMM
†|+ |M †M †TUT

M ||EM |

+ |FMUT
M ||M †TM †|+

n−1∑
i=2

(
|M †KiM

†|+ |M †M †TKT
i EM |+ |FMKT

i M
†TM †|

)
+

n−1∑
j=2

(
|M †LjM †|+ |M †M †TLTj EM |+ |FMLTjM †TM †|

)
,

Ki and Li are defined as in Lemma 6.5.7.

The bounds of the structured CNs for x with respect to the representation ΨGV are

given in the next theorem.

Theorem 6.5.9. Let M(ΨGV) ∈ Rn×n with rank(M(ΨGV)) = r. Set r := b −M(ΨGV)x,

then ›M †(M(ΨGV), b
)
=

∥X ls
GV∥∞

∥x∥∞
and ‹C (M(ΨGV), b

)
=

∥∥∥∥∥X ls
GV

x

∥∥∥∥∥
∞

,
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where

X ls
GV : = |M †||DM ||x|+ |M †M †T ||DM ||r|+ |FM ||DM ||M †Tx|+ |M †LM ||x|

+ |M †M †T ||LTMr|+ |FM ||LTMM †Tx|+ |M †||UMx|+ |M †M †TUT
M ||r|

+ |FMUT
M ||M †Tx|+

n∑
i=2

(
|M †Kix|+ |M †M †TKT

i r|+ |FMKT
i M

†Tx|
)

+
n∑
i=2

(
|M †Lix|+ |M †M †TLTi r|+ |FMLTi M †Tx|

)
+ |M †||b|,

Ki and Li are defined as in Lemma 6.5.7.

The proof of Theorems 6.5.8 and 6.5.9 follows by using the similar proof technique of

Theorem 6.5.2.

6.5.3. Comparisons Between Different CNs for {1, 1}-QS Matrices

We compare structured and unstructured CNs for the M-P inverse in Proposition

6.5.10 and the MNLS solution in Proposition 6.5.11 for {1, 1}-QS matrix. For unstructured

CNs, we use the expressions given in Corollary 6.3.1 and Corollary 6.3.2. The next result

describes that structured CNs for the parameter set ΨQS are smaller than unstructured

ones for the M-P inverse up to an order of n.

Proposition 6.5.10. Let M(ΨQS) ∈ Rn×n be such that rank(M(ΨQS)) = r, then we get

the following relations›M † (M(ΨQS)) ≤ n ›M †(M) and ‹C † (M(ΨQS)) ≤ n ‹C †(M).

Proof. Using the properties of absolute values and Theorem 6.5.2, we have:

X †
QS ≤ |M †||DM ||M †|+ |M †M †T ||DM ||EM |+ |FM ||DM ||M †TM †|

+ 2|M †||LM ||M †|+ 2|M †M †T ||LTM ||EM |+ 2|FM ||LTM ||M †TM †|

+ 2|M †||UM ||M †|+ 2|M †M †T ||UT
M ||EM |+ 2|FM ||UT

M ||M †TM †|

+
n−1∑
i=2

(
|M †||Fi||M †|+ |M †M †T ||FT

i ||EM |+ |FM ||FT
i ||M †TM †|

)
+

n−1∑
i=2

(
|M †||Gi||M †|+ |M †M †T ||GTi ||EM |+ |FM ||GTi ||M †TM †|

)
.

Using |Fi| ≤ |LM | and |Gi| ≤ |UM |, we get

X †
QS ≤ n

(
|M †||M ||M †|+ |M †M †T ||MT ||EM |+ |FM ||MT ||M †TM †|

)
.
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Therefore, the desired relations are obtained from Theorem 6.5.2 and Corollary 6.3.1. ■

A similar type of result also holds for the LS problem, which is given next. We remove

the proof since it is analogous to Proposition 6.5.10.

Proposition 6.5.11. Let M(ΨQS) ∈ Rn×n be as in Proposition 6.5.10 and b ∈ Rm. Then,

we get the following relations›M †(M(ΨQS), b) ≤ n ›M †(M, b) and ‹C †(M(ΨQS), b) ≤ n ‹C †(M, b).

Next result discuss about the relationship between the ›M †(M(ΨQS)) with ›M †(M(ΨGV))

and ‹C †(M(ΨQS)) with ‹C †(M(ΨGV)).

Proposition 6.5.12. For the representations ΨQS and ΨGV of a {1, 1}-QS matrix M ∈
Rn×n with rank(M) = r, following holds:›M †(M(ΨGV)) ≤ ›M †(M(ΨQS)) and ‹C †(M(ΨGV)) ≤ ‹C †(M(ΨQS)).

Proof. The proof will be followed by observing that

Ki =


0 0

−q2iM(i, 1 : i− 1) 0

p2iM(i+ 1 : n, 1 : i− 1) 0



= −q2i


0 0

Ms(i, 1 : i− 1) 0

0 0

+ p2i


0 0

0 0

M(i+ 1 : n, 1 : i− 1) 0


= −q2i emi LM(i, :) + p2i Fi.

Now, using the properties |pi|2 ≤ 1 and |qi|2 ≤ 1, and (6.3.5), we obtain

n−1∑
i=2

(
|M †KiM

†|+ |M †M †TKT
i EM |+ |FMKT

i M
†TM †|

)
≤ |M †||LMM †|+ |M †M †TLTM ||EM |

+ |FMLTM ||M †TM †|+
n−1∑
i=2

(
|M †FiM

†|+ |M †M †TFT
i EM |+ |FMFT

i M
†TM †|

)
.

Similarly, we can write Li = −s2i UM(:, i)(eni )
T + r2i Gi. Therefore, using |si|2 ≤ 1 and

|ri|2 ≤ 1, and (6.3.5), we get

n−1∑
i=2

(
|M †LiM †|+ |M †M †TLTi EM |+ |FMLTi M †TM †|

)
≤ |M †UM ||M †|+ |M †M †T ||UT

MEM |

+ |FM ||UT
MM

†TM †|+
n−1∑
i=2

(
|M †GiM †|+ |M †M †TGTi EM |+ |FMGTi M †TM †|

)
.
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Hence, we get the desired relations from the above two inequalities, expressions from the

Theorems 6.5.2 and 6.5.8. ■

Proposition 6.5.13 provides the relationship between CNs for LS problem (6.3.13) for

any {1, 1}-QS matrix corresponding to the parameter sets ΨQS and ΨGV .

Proposition 6.5.13. For the representations ΨQS and ΨGV of a {1, 1}-QS matrix M ∈
Rn×n having rank r and b ∈ Rn, following holds:›M †(M(ΨGV), b) ≤ ›M †(M(ΨQS), b) and ‹C †(M(ΨGV), b) ≤ ‹C †(M(ΨQS), b).

6.5.4. The Structured Effective CNs

The expressions in Theorems 6.5.2 and 6.5.5 can be computationally very expensive

for large matrices due to the involvement of two sums. The effective CN for {1, 1}-QS

matrices was initially considered in [56, 57] for eigenvalue problem and linear system

to reduce the computation complexity. In a similar fashion to avoid such problems,

we propose in Definition 6.5.4, structured effective CNs ›M †
f (M(ΨQS)) and ‹C †

f (M(ΨQS)),

which have similar contribution as ›M †(M(ΨQS)) and ‹C †(M(ΨQS)), respectively.

Definition 6.5.4. Let M(ΨQS) ∈ Rn×n having rank(M(ΨQS)) = r. Then for M †(ΨQS),

we define structured effective MCN and CCN as›M †
f (M(ΨQS)) :=

∥X †
f,QS∥max

∥M †∥max

and ‹C †
f (M(ΨQS)) :=

∥∥∥∥∥X
†
f,QS

M †

∥∥∥∥∥
max

,

where

X †
f,QS : = |M †||DM ||M †|+ |M †M †T ||DM ||EM |+ |FM ||DM ||M †TM †|+ |M †||LMM †|

+ |M †M †TLTM ||EM |+ |FMLTM ||M †TM †|+ |M †LM ||M †|+ |M †M †T ||LTMEM |

+ |FM ||LTMM †TM †|+ |M †||UMM
†|+ |M †M †TUT

M ||EM |+ |FMUT
M ||M †TM †|

+ |M †UM ||M †|+ |M †M †T ||UT
MEM |+ |FM ||UT

MM
†TM †|.

The following theorem demonstrates that the contribution of the sum terms in the

expression of ›M †(M(ΨQS)) and ‹C †(M(ΨQS)) are negligible and reliably estimated up to

a multiple n.

Theorem 6.5.14. Under the same hypothesis as in Definition 6.5.4, following relations

holds ›M †
f (M(ΨQS)) ≤ ›M †(M(ΨQS)) ≤ (n− 1) ›M †

f (M(ΨQS)),‹C †
f (M(ΨQS)) ≤ ‹C †(M(ΨQS)) ≤ (n− 1) ‹C †

f (M(ΨQS)).
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Proof. The inequalities on the left side are trivial. For inequalities on the right side, we

set[
0 0

M(ΨQS)(i+ 1 : n, 1 : i− 1) 0

]
=

[
0

LM(i+ 1 : n, :)

]
+

[
0 0

0 −LM(i+ 1 : n, i : n)

]
.

By using the above, we get(
|M †FiM

†|+ |M †M †TFT
i EM |+ |FMFT

i M
†TM †|

)
≤ |M †||LMM †|+ |M †M †TLTM ||EM |

+ |FMLTM ||M †TM †|+ |M †LM ||M †|+ |M †M †T ||LTMEM |+ |FM ||LTM |M †TM †|.

Again,[
0 M(ΨQS)(1 : i− 1, i+ 1 : n)

0 0

]
=
î
0 UM(:, i+ 1 : n)

ó
+

[
0 0

0 −UM(i : n, i+ 1 : n)

]
.

By using the above, we get(
|M †GiM †|+ |M †M †TGTi EM |+ |FMGTi M †TM †|

)
≤ |M †||UMM

†|+ |M †M †TUT
M ||EM |

+ |FMUT
M ||M †TM †|+ |M †UM ||M †|+ |M †M †T ||UT

MEM |+ |FM ||UT
MM

†TM †|.

Hence, the desired result is straightforward from Definition 6.5.4. ■

Next, similarly to the Definition 6.5.4, we define structured effective CNs for the

MNLS solution.

Definition 6.5.5. Let M(ΨQS) ∈ Rn×n having rank(M(ΨQS)) = r and b ∈ Rm. Then, for

the MNLS solution x, we define structured effective MCN and CCN as follows:›M †
f (M(ΨQS), b) :=

∥X ls
f,QS∥∞
∥x∥∞

, ‹C †(M(ΨQS), b) :=

∥∥∥∥∥X ls
f,QS

x

∥∥∥∥∥
∞

,

where

X ls
f,QS : = |M †||DM ||x|+ |M †M †T ||DM ||r|+ |FM ||DM ||M †Tx|+ |M †||LMx|

+ |M †M †TLTM ||r|+ |FMLTM ||M †Tx|+ |M †LM ||x|+ |M †M †T ||LTMr|

+ |FM ||LTMM †Tx|+ |M †||UMx|+ |M †M †TUT
M ||r|+ |FMUT

M ||M †Tx|

+ |M †UM ||x|+ |M †M †T ||UT
Mr|+ |FM ||UT

MM
†Tx|+ |M †||b|.

Similar results also hold for the MNLS solution as discussed in Theorem 6.5.14.

205



6.6. Numerical Experiments

We reported a few numerical experiments in this section to illustrate the theoretical

findings covered in Sections 6.4 and 6.5, respectively. For all numerical computations, we

have used MATLAB R2022b.

Example 6.6.1. [155] Let M ∈ R12×20 be a CV matrix as in Definition 6.5.1 with the

parameter set ΨCV = [{ci}12i=1, {di}8i=1]
T ∈ R20, where{

ci =
i
20
, i = 1 : 12,

dj =
j+4
50
, j = 1 : 8.

(6.6.1)

For the MNLS solution, we generate a random vector b ∈ R12 in MATLAB by the com-

mand randn. The computed results for the bounds of structured and unstructured CNs

are listed in Table 6.6.1. We observed that the bounds for the structured CNs are less

than the order of 3 or 4 compared to the unstructured case.

Table 6.6.1: Comparison between upper bounds of structured and unstruc-

tured CNs for M †(ΨCV) and M
†(ΨCV, b) for Example 6.6.1.›M †(M) ›M †(M(ΨCV)) ‹C †(M) ‹C †(M(ΨCV)) ›M †(M, b) ›M †(M(ΨCV), b) ‹C †(M, b) ‹C †(M(ΨCV), b)

1.1568e+ 05 8.5419e+ 01 5.3826e+ 07 3.3542e+ 04 1.8008e+ 05 8.9389e+ 01 3.6180e+ 05 1.7959e+ 02

Example 6.6.2. We consider several {1, 1}-QS matrices of different orders. In fact, we

choose n = 5, n = 7 and n = 10. We generate the random vectors a,b, e,d, f ,g, and h

by the command randn in MATLAB. After generating these vectors, we take following

scaling

a = a ∗ 10k, e = e ∗ 10k, h = h ∗ 10k,

where k ∈ {−1,−2, 0, 1, 2, 3} to get unbalanced lower and upper right corner.

In Table 6.6.2, we compare ›M †
f (M(ΨQS)) and ‹C †

f (M(ΨQS)) with ›M †(M) and ‹C †(M),

respectively, for the M-P inverse with different values of n. For the MNLS solution, we

generate a random vector b ∈ Rn for each choice of n. The computed bounds for the CNs

are listed in Table 6.6.2. These results demonstrate the reliability of proposed CNs.

Example 6.6.3. In this example, we compare structured MCN and CCN with respect to

QS representation and GV representation through tangent, structured effective CNs with

their unstructured ones for M-P inverse and MNLS solution. On account of these, we

generate the random vectors t ∈ Rn−2, u ∈ Rn−1, v ∈ Rn−1, w ∈ Rn−1 in MATLAB by the
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Table 6.6.2: Comparison between the upper bounds of unstructured, struc-

tured CNs and structured effective CNs for the M-P inverse and the MNLS

solution of {1, 1}-QS matrices for Example 6.6.2.

n ›M †(M) ›M †
f (M(ΨQS)) ‹C †(M) ‹C †

f (M(ΨQS)) ›M †(M, b) ›M †
f (M(ΨQS), b) ‹C †(M, b) ‹C †

f (M(ΨQS), b)

5 1.4330e+04 2 2.1690e+12 910 9.333e+04 3.0030 1.1910e+05 4.5451

7 5.9139e+03 3.0246 9.2340e+08 74.2974 6.5311e+04 4.6655 2.0255e+ 04 6.7386

10 7.3293e+04 2.0101 1.5858e+10 94.0499 6.3988e+04 1.0127 2.5381e+05 11.1271

comand randn for the parameter set ΨGV . We set d = 0 ∈ Rn and rescale the vector v as

v(1) = 0 and v(n− 1) = 102. Then, we compute the {1, 1}-QS matrix M as in Definition

6.5.2. For different values of n, we generate 100 rank deficient {1, 1}-QS matrices. We use

the formulae provided in Theorem 6.5.8 to compute the upper bounds ›M †(M(ΨGV)) and‹C †(M(ΨGV)). Again, we use the formulae for ›M †
f (M(ΨQS)) and ‹C †

f (M(ΨQS)) presented as

in Definition 6.5.4, and for ›M †(M(ΨQS)) and ‹C †(M(ΨQS)) presented as in Theorem 6.5.2.

For the upper bounds of unstructured CNs, we consider the formulae given in Corollary

6.3.1. We computed the above values for 100 randomly generated {1, 1}-QS matrices for

n = 30, 40, 50 and 60. In Table 6.6.3, average values of each upper bound of the CNs for

the M-P inverse of these {1, 1}-QS matrices are listed.

Table 6.6.3: Comparison between upper bounds of unstructured, structured

CNs and structured effective CNs for the M-P inverse of {1, 1}-QS matrices

for Example 6.6.3.

mean n ›M †(M) ›M †(M(ΨGV)) ›M †(M(ΨQS)) ›M †
f (M(ΨQS)) ‹C †(M) ‹C †(M(ΨGV)) ‹C †(M(ΨQS)) ‹C †

f (M(ΨQS))

30 1.0667e+ 02 7.4873e+ 01 1.2388e+ 02 8.9215e+ 01 2.3780e+ 05 1.2730e+ 04 2.2102e+ 04 1.5815e+ 04

40 1.1429e+ 02 7.4757e+ 01 1.2356e+ 02 8.9427e+ 01 6.1267e+ 08 1.4452e+ 05 2.3753e+ 05 1.7285e+ 05

50 1.6711e+ 02 1.0323e+ 02 1.7182e+ 02 1.2296e+ 02 6.9215e+ 06 1.6133e+ 05 3.2430e+ 05 2.1980e+ 05

60 3.2135e+ 02 1.8140e+ 02 2.9452e+ 02 2.1359e+ 02 2.7856e+ 07 3.0500e+ 05 5.2242e+ 05 3.9791e+ 05

Next, we generate a random vector b ∈ Rn, for each value of n, and upper bounds

for the structured CNs with respect to QS representation and GV representation through

tangent, structured effective CNs and unstructured CNs for the MNLS solution are listed

in Table 6.6.4.

The computed results in Tables 6.6.3 and 6.6.4 show the consistency of Propositions

6.5.10–6.5.13 and Theorem 6.5.14. We can observe that the upper bounds of CNs for GV

representation through tangent give more reliable bounds compared to the other CNs.
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Table 6.6.4: Comparison between upper bounds of unstructured, structured

CNs and structured effective CNs for the MNLS solution for {1, 1}-QS ma-

trices for Example 6.6.3.

mean n ›M †(M, b) ›M †(M(ΨGV), b) ›M †(M(ΨQS), b) ›M †
f (M(ΨQS), b) ‹C †(M, b) ‹C †(M(ΨGV), b) ‹C †(M(ΨQS), b) ‹C †

f (M(ΨQS), b)

30 1.1278e+ 02 7.8851e+ 01 2.6113e+ 02 9.4414e+ 01 4.6667e+ 03 1.7445e+ 03 2.2102e+ 04 2.1646e+ 03

40 1.1990e+ 02 7.7823e+ 01 2.4226e+ 02 9.3005e+ 01 7.3841e+ 03 4.1774e+ 03 2.3753e+ 05 5.2069e+ 03

50 1.6512e+ 02 1.0080e+ 02 3.2184e+ 02 1.2072e+ 02 9.2143e+ 03 4.2351e+ 03 3.2430e+ 05 5.3584e+ 03

60 3.3149e+ 02 1.8715e+ 02 7.6179e+ 02 2.2120e+ 02 7.0839e+ 04 5.9482e+ 04 5.2242e+ 05 7.2054e+ 04

Table 6.6.5: Comparison between upper bounds of unstructured, structured

CNs and structured effective CNs for the M-P inverse of {1, 1}-QS matrices

for Example 6.6.4.

mean n ›M †(M) ›M †(M(ΨGV)) ›M †(M(ΨQS)) ›M †
f (M(ΨQS)) ‹C †(M) ‹C †(M(ΨGV)) ‹C †(M(ΨQS)) ‹C †

f (M(ΨQS))

100 4.3964e+ 02 3.6260e+ 02 5.3677e+ 02 3.9861e+ 02 4.5243e+ 07 2.4837e+ 04 3.6640e+ 04 2.7217e+ 04

150 4.1692e+ 01 3.6846e+ 01 5.2059e+ 01 4.3613e+ 01 1.0494e+ 09 7.5769e+ 06 1.1606e+ 07 9.2937e+ 06

200 3.3461e+ 02 1.9504e+ 02 2.9550e+ 02 2.4237e+ 02 1.5109e+ 07 1.0192e+ 05 1.9086e+ 06 1.4250e+ 05

250 2.1300e+ 02 1.3904e+ 02 2.1856e+ 02 1.5019e+ 02 4.8391e+ 08 2.4495e+ 06 4.1373e+ 06 3.1253e+ 06

300 2.0939e+ 02 9.8454e+ 01 1.6871e+ 02 1.1458e+ 02 1.1827e+ 09 1.6759e+ 06 1.7875e+ 07 1.7776e+ 06

Table 6.6.6: Comparison between upper bounds of unstructured, structured

CNs and structured effective CNs for the MNLS solution for {1, 1}-QS ma-

trices for Example 6.6.4.

mean n ›M †(M, b) ›M †(M(ΨGV), b) ›M †(M(ΨQS), b) ›M †
f (M(ΨQS), b) ‹C †(M, b) ‹C †(M(ΨGV), b) ‹C †(M(ΨQS), b) ‹C †

f (M(ΨQS), b)

100 4.3739e+ 02 3.6376e+ 02 2.0884e+ 02 4.0061e+ 02 6.1525e+ 03 4.8648e+ 02 2.5191e+ 03 5.4354e+ 03

150 4.7556e+ 01 4.3981e+ 01 7.0553e+ 01 5.1641e+ 01 5.3904e+ 03 3.3664e+ 02 1.2982e+ 03 3.8831e+ 02

200 3.4402e+ 02 2.0275e+ 02 1.0998e+ 02 2.5110e+ 02 1.4342e+ 04 5.3603e+ 03 1.1052e+ 04 6.5164e+ 03

250 1.0986e+ 02 1.0489e+ 02 1.8630e+ 02 1.1328e+ 02 8.4676e+ 04 5.1797e+ 03 1.0935e+ 04 6.0154e+ 03

300 2.1839e+ 02 1.0345e+ 02 2.6652e+ 02 1.2097e+ 02 3.4116e+ 03 1.4340e+ 03 6.5971e+ 03 1.7712e+ 03

Example 6.6.4. In this example, we consider {1, 1}-QS matrices of different orders. To

construct the {1, 1}-QS matrices using the formula given in Definition 6.5.2, we gener-

ate the random vectors t ∈ Rn−2, u ∈ Rn−1, v ∈ Rn−1, w ∈ Rn−1 as in Example 6.6.3.

Moreover, we generate d = randn(n) ∈ Rn and set d(1) = 0. Further, we rescale v by

setting v(1) = 0 and v(n − 1) = 1. For MNLS solution, we choose b = randn(n) ∈ RN .

For different values of n, the computed upper bounds structured CNs with respect to
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QS representation and GV representation through tangent, structured effective CNs, and

unstructured CNs are reported in Tables 6.6.5 and 6.6.6. These results confirm that our

proposed bounds are reliable for large matrices, and structured ones are much sharper

and smaller than unstructured ones.

6.7. Summary

For the M-P inverse and the MNLS solution, we investigated structured MCN and

CCN corresponding to a class of parameterized matrices, with each entry as a differentiable

function of some real parameters. This framework has been used to derive the upper

bounds of structured CNs for CV and {1, 1}-QS matrices. QS representation and the

GV representation through tangent are considered for {1, 1}-QS matrices to investigate

their structured CNs. It is proved that upper bounds for the structured CNs for GV

representation through tangent are always smaller than the QS representation. Numerical

examples demonstrate that the proposed structured effective CNs are significantly smaller

in most cases.
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CHAPTER 7

Conclusions and Scope for Future Work

Conclusion

This thesis focuses on developing efficient iterative methods, preconditioners, struc-

tured BEs, and structured CNs for GSPP, DSPP, and LS problems. It addresses key

challenges such as slow convergence, scalability, and robustness while incorporating spar-

sity and structure-preserving perturbations. The following provides an overview of the

major contributions discussed in each chapter:

Chapter 1 highlighted key applications of SPPs and provided a review of iterative

methods, including Krylov subspace methods, GMRES, and preconditioners. It also

presents essential preliminary results to support the subsequent chapters.

In Chapter 2, we proposed the PESS iterative method, corresponding PESS precon-

ditioner, and its relaxed variant LPESS preconditioner to solve the DSPP (2.1.1). For the

convergence of the proposed PESS iterative method, necessary and sufficient criteria are

derived. Moreover, we estimated the spectral bounds of the proposed PESS and LPESS

preconditioned matrices. This empowers us to derive spectral bounds for existing SS and

EGSS preconditioned matrices. Extensive experiments validate the effectiveness of the

proposed PESS and LPESS preconditioners. Key findings include superior performance

over existing preconditioners in terms of IT and CPU time, a significant reduction in the

CN of A, and improved spectral clustering compared to baseline preconditioners.

In Chapter 3, we developed the GSS preconditioner and its relaxed variants for solving

the DSPP (1.0.6), addressing cases where the diagonal block matrices are both symmetric

and nonsymmetric. We analyzed the spectral properties of each preconditioned matrix and

demonstrated empirically that our proposed preconditioner outperforms existing state-of-

the-art preconditioners, resulting in a well-conditioned system for computing the robust

solution of the DSPP.

In Chapter 4, we investigated the structured BEs for circulant, Toeplitz, symmetric-

Toeplitz, and Hermitian structured GSPPs with and without preserving the sparsity pat-

tern of block matrices. Moreover, we studied structured BEs for DSPP in three cases

when the diagonal block matrices preserve symmetric structure. Additionally, we derived



minimal perturbation matrices for which an approximate solution becomes the exact solu-

tion of a nearly perturbed GSPP or DSPP, which preserves their inherent block structure

and sparsity pattern. Our obtained results are used to derive structured BE for WRLS

problems with Toeplitz or symmetric-Toeplitz coefficient matrices. We have used the ob-

tained structured BEs formulae to show that a backward stable algorithm may not always

exhibit strong backward stability for solving the SPPs.

Chapter 5 investigated both unstructured and structured partial NCN, MCN, and

CCN for the solution of GSPPs and DSPPs by analyzing structure-preserving perturba-

tions on block matrices. Furthermore, we introduced the concept of partial unified CN

for DSPPs, providing a general framework that encompasses traditional NCN, MCN, and

CCN. Additionally, we derived compact formulas and specific upper bounds free of Kro-

necker products. Finally, leveraging our theoretical findings and the connections between

the WRLS problem and GSPP, as well as the EILS problem and DSPP, we established

their corresponding CNs.

In Chapter 6, we explore structured MCN and CCN for the M-P inverse and MNLS

solution of LS problems involving rank-structured matrices, including CV and {1, 1}-
QS matrices. A comprehensive framework is developed to establish the upper bounds

for the structured CNs of CV and {1, 1}-QS matrices. We consider both QS and GV

representations through tangent for {1, 1}-QS matrices to examine their structured CNs.

Both the theoretical and numerical results show that the upper bounds for structured

CNs in the GV representation are smaller than those in the QS representation.

Future Scope

Building on the findings of this thesis, several promising research directions emerge,

raising important questions for further exploration. For instance, can we develop a

strongly backward stable algorithm for solving SPP, i.e., the computed solution satisfies

a slightly perturbed SPP? Can SS-type preconditioners improve the efficiency of solv-

ing DSPPs arising from liquid crystal director modeling? Additionally, how can effective

preconditioners for GSPPs with Toeplitz structures enhance numerical performance? An-

other key area of study involves developing iterative methods and preconditioners for SPPs

with multiple right-hand sides, prompting the question: what are the structured BEs and

CNs for such problems? Addressing these questions will deepen our understanding and

advance computational techniques in this field.
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