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ABSTRACT

Calculating potential energy using density functional theory (DFT) is com-

putationally very expensive. The complexity escalates significantly when

determining the first-order derivative of energy with respect to cartesian

coordinates and the second-order derivatives of the energy with respect to

the external electric field, which is essential for predicting forces and po-

larizability in metallic nanoclusters. Since force calculations are essential

for running molecular simulations, such as molecular dynamics (MD) sim-

ulations, the use of DFT-based methods becomes impractical for studying

larger metallic nanoclusters. Empirical and semi-empirical methods are

widely used for modeling atomic systems. However, they often lack the ac-

curacy needed for complex systems, failing to capture intricate electronic

interactions.

We develop a machine learning (ML) framework that efficiently mod-

els energy and these derivatives while maintaining high accuracy. This

approach will facilitate the construction of an interatomic potential that

combines the precision of DFT with the computational efficiency of empir-

ical methods. In this thesis, we employ an artificial neural network (ANN)-

based method to construct the interatomic potential, capture the complex

relationships between atomic configurations, and predict the energy, forces

and polarizabilities of the metal nanoclusters. In this study, the ANN in-

teratomic potential is constructed for Ag-Pt nanoalloys. In ANN-based

interatomic potential, we use higher-order invariants like Power Spectrum

and Bispectrum, along with a modified atomic environment density, to de-

scribe the atomic environments. This study investigates the structural and

energetic properties of Ag-Pt nanoalloys and finds that the lowest energy

isomers exhibit a core-shell structure, with Pt atoms in the core and Ag

atoms on the surface, while also examining the probability of Pt atoms on

the surface at finite temperatures through MD trajectories. Additionally,

we investigate the adsorption of CO and O2 molecules on Ag-Pt nanoalloys

using DFT and find that Pt doping enhances the adsorption strength of



both molecules compared to pure Ag nanoclusters. Our results show that

Pt atoms on the surface have a greater impact on adsorption than those

in the core. Furthermore, our study also explores the response of gold

nanoclusters to electric fields by predicting isotropic and anisotropic po-

larizabilities using various ML methods. We find that ANN-based models

outperform Gaussian process regression and kernel ridge regression models,

offering superior accuracy in polarizability predictions. This study aims to

enhance the understanding of structure, dynamics and response to external

fields in metal nanoclusters, facilitating the design of effective nanocata-

lysts and materials through accurate modeling.
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Chapter 1

Introduction

1.1 Metal Nanoclusters

In recent years, nanomaterials have gained significant attention due to

their versatile applications across multiple disciplines, connecting various

branches of science and technology. This interdisciplinary field addresses

challenges ranging from fundamental scientific understanding to practical

applications [1]. Nanomaterials are characterized by structures typically

less than a few hundred nanometers in size. Nanomaterials possess unique

properties that differ from both atomic and bulk forms, and the proper-

ties often vary depending on size [2]. By precisely controlling the size of

nanoparticles, the properties can be fine-tuned. In nanomaterials, metal

nanoclusters are defined as clusters of metal atoms, typically ranging from

two to a few hundred atoms (see Figure 1.1) [3, 4]. Metal nanoclusters can

contain one or more types of metal atoms. Based on the number of different

types of metal atoms, metal nanoclusters are classified as single-component

and multi-component metal nanoclusters (nanoalloys) [3]. Metal nanoclus-

ters have attracted particular interest for their distinctive physical and

chemical properties. The properties of metal nanoclusters are influenced

by various factors, including their size, shape, and composition. The unique

properties of metal nanoclusters primarily arise from two factors: quantum

confinement effects [5] and high surface-to-volume ratio [6, 7]. Quantum
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Figure 1.1: Evolution of material structures: From single atom to bulk

across nanoscale dimensions.

confinement is a restriction on the motion of randomly moving electrons

present in a material to specific discrete energy levels rather than to a

continuum of energy bands. In bulk materials, atoms are closely packed,

resulting in continuous energy bands and valence electrons behaving like

a free electron gas. Due to the large size, the quantum confinement ef-

fects are negligible. However, in metal nanoclusters, these effects become

significant because the clusters are small enough for electronic states to

become discrete. As a result, the valence electrons no longer behave like

a free electron gas and directly influence the cluster’s properties. This

quantum size effect creates a gap between the HOMO and LUMO lev-

els, significantly affecting their optical, electronic, and chemical properties.

Additionally, the high surface-to-volume ratio becomes more significant in

smaller clusters due to the increased proportion of atoms located at the

surface. As the cluster size decreases, the number of surface atoms rises

relative to the total atom count, leading to a higher surface-to-volume ra-

tio compared to larger clusters, where the majority of atoms reside in the

bulk. This increased surface-to-volume ratio enhances the reactivity of the

metal nanoclusters. Together, these factors contribute to the distinctive

characteristics of metal nanoclusters, differentiating them from bulk mate-

rials. The unique properties of metal nanoclusters make them valuable in

applications like catalysis [8–11], storage [12], nanoelectronics [4, 12] and

biomedical applications [13].
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Figure 1.2: Geometrical shell-closing in icosahedral metal nanoclusters:

Magic number configurations with 13, 55, and 147 atoms, respectively.

1.1.1 Stability of Metal Nanoclusters

Certain sizes of metal nanoclusters, known as magic clusters, are particu-

larly stable due to electronic shell and atomic shell closing [14]. A closed-

shell metal nanocluster refers to a cluster where both the atomic and elec-

tronic shells are closed. It has a quasispherical shape with a small surface

area, making it more stable. The electronic structure follows a shell model,

where the electron count corresponds to stable configurations like those

in atoms (e.g., 2, 8, 18 electrons). This closed-shell configuration leads

to high thermodynamic and kinetic stability [15]. Closed-shell metal nan-

oclusters are stable due to both atomic and electronic shell closure. Atomic

shell closure [16] occurs in highly symmetrical and close-packed structures

like icosahedral (Ih) and octahedral (Oh) forms, which lower surface en-

ergy and strain. Clusters with magic numbers of atoms (e.g., 13, 38, 55,

147) exhibit this geometric stability, commonly seen in structures of noble

gases and metals like gold, silver or platinum (see Figure 1.2 [17]). Elec-

tronic shell closure is explained by models such as the spherical jellium

and ellipsoidal jellium models, where delocalized electrons fill energy levels

similar to atomic orbitals [18–20]. Clusters reaching certain electron con-

figurations (e.g., 2, 8, 18) achieve electronic stability, making closed-shell

nanoclusters thermodynamically favourable. Among all metal nanoclus-

ters, gold nanoclusters have gained significant interest due to their unique

physical and chemical properties [21]. Unlike bulk gold, which is inert due

to the relativistic effect, gold nanoclusters are highly reactive and exhibit

catalytic activity [22]. Gold nanocluster display a wide range of struc-
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tural forms [23–27], including planar [28], cage-like [29], pyramidal [30],

and amorphous core-shell structures [23, 26, 27, 31]. Gold nanoclusters ex-

hibit remarkable electronic, chemical, and optical properties, making them

highly valuable in nano-photonics and optoelectronics [32–35].

1.2 Metal Nanoalloys

In the case of multicomponent metal nanoclusters (called as nanoalloys),

the properties vary with respect to size and also composition [3]. The com-

bination of two or more noble metals leads to an enhancement of these

properties. Although the use of nanoalloys was first reported in the 19th

century with Michael Faraday’s study of optically active Au-Ag nanoparti-

cles [36], the underlying physics and chemistry were not well understood at

that time. With advancements in experimental techniques, such as spec-

troscopy, microscopy, and chemical analysis, alongside computational tech-

niques like quantum mechanical methods, contemporary research has made

significant progress. These approaches have enabled the exploration of the

diverse compositions of nanoalloys and the influence of their chemical or-

dering on their properties. Nanoalloys are classified into homotops and

composomers. Homotops are structures with the same composition but

varied arrangements, while composomers have the same atomic composi-

tion but differ in geometry. Nanoalloys are classified based on their mixing

patterns, geometric structures, and chemical ordering. The four main mix-

ing patterns in nanoalloys are core-shell, multi-shell, subcluster segregated,

and mixed nanoalloys. These are crucial for understanding and predicting

the physical and chemical properties of nanoalloys. In core-shell nanoalloys,

one type of atom occupies the core site, while a different type of atom is

found at the surface site, forming a distinct core-shell structure. Multi-shell

nanoalloys have multiple layers of alternating shells creating an onion-like

structure. Subcluster-segregated nanoalloys consist of distinct groups of

atoms called subclusters, made up of different elements. These subclus-

ters may either have some degree of mixing at their interface or have only
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Figure 1.3: Mixing pattern of the nanoalloys.

limited bonding between the different types of atoms. Mixed nanoalloys

can be either ordered or random in their atomic arrangement. In addi-

tion to these mixing patterns, nanoalloys can adopt various crystalline and

non-crystalline structures. Crystalline structures have a periodic atomic

arrangement with common forms including octahedra, truncated octahe-

dra, and dodecahedra. Non-crystalline structures lack periodicity but tend

to be more compact, like Ih or polyicosahedral shapes.

There are several factors that influence the structural and segregation

preferences of nanoalloys. 1) Atomic sizes, where the size of the atoms plays

a key role in determining their position in the nanoalloy. Smaller atoms

prefer to be located in the core of the nanocluster, while larger atoms are

often found at the surface. 2) Surface energy is another important fac-

tor in which atoms with lower surface energy tend to occupy the surface

of the nanoalloy, as this positioning minimizes the overall energy of the

system by reducing strain and maximizing stability. 3) Cohesive energy

affects segregation in nanoalloys, with atoms of similar cohesive energy ag-

gregating together, while large differences in cohesive energy lead to the

separation of elements into different regions. 4) Bond strength influences

the arrangement of atoms, where stronger bonds between different types

of atoms encourage mixing and uniform distribution, while weaker bonds

promote segregation, leading to phase separation. 5) Charge transfer af-

fects the electronic interactions within the alloy, influencing the stability
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and structure of the nanoalloy as atoms adjust to balance their charge

distribution. 6) Binding energy plays a significant role, with atoms that

have higher binding energy being more stable in the core, contributing to

the structural integrity of the cluster, while those with lower binding en-

ergy tend to occupy the surface, where they are less bound to neighboring

atoms. 7) Electronic and magnetic effects significantly impact the stability

and functionality of the nanoalloy. Additionally, experimental conditions

and synthesis methods can impact the mixing and ordering of nanoalloys.

These factors are important for determining the stability and reactivity

of nanoalloys, which directly impact their potential for various applica-

tions [37]. Among the extensively studied nanoalloys, Pt-based nanoalloys

have gained considerable interest due to their applications as heterogeneous

catalysts in important reactions like the oxidation of CO to CO2 [38, 39],

the hydrogenation of C=O, C=C, and N=O bonds, and the dehydrogena-

tion of C-H and N-H bonds for fuel production and the synthesis of valuable

chemicals [40]. Among the most extensively studied Pt-based nanoalloys

are combinations like Pt-Au [41–43], Pt-Rh [42], Pt-Cu [44], Pt-Co [42, 44],

Pt-Ni [44], and Pt-Ag [45–53], each offering unique catalytic properties that

make them essential in these processes.

1.2.1 Ag-Pt Nanoalloys

Among nanoalloys, Ag-Pt nanoalloys have gained significant attention in

catalysis due to their distinctive properties and potential applications. Sil-

ver and platinum create a broad miscibility gap, suggesting that alloying

between these metals in bulk form is unlikely [54, 55]. In Ag-Pt nanoalloys,

it has been found that silver and platinum are likely to form only core-shell

structures, where the core can consist of either metal depending on specific

reaction conditions [47, 56, 57]. The reactivity of Ag-Pt nanoalloys is highly

dependent on the structure and composition. Therefore, understanding

their atomic-level geometrical and electronic structures of Ag-Pt nanoal-

loys is essential for gaining deeper insights into their catalytic properties.
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In the last decade, the Ag-Pt nanoalloys have been the subject of numerous

theoretical and experimental investigations. The structure and electronic

properties of small-sized AgmPtn (n = 1–7) clusters have been extensively

studied using DFT [45]. For medium- to large-sized nanoalloys, studies on

13-atom Ag13−nPtn and 54-atom Ag54Pt1 clusters using Ih and (111) sur-

face slab models have shown that Pt tends to occupy core positions, with

increased Pt concentration leading to decreased cluster stability [46]. Stud-

ies on 55-atom Ag42Pt13 nanoalloys revealed an Ih structure, with Pt at

the core and Ag on the surface [47]. Global minimum searches for 33-atom

Ag20Pt13 -based nanoalloys showed that these clusters form dodecahedral

core-shell structures [48]. In this context, it has been established that the

alloying of Pt atoms in Ag nanoclusters increases stability and reactivity in

Ag-Pt nanoalloys. Therefore, it is important to understand their structure

and reactivity, particularly their interactions with gaseous molecules.

1.2.2 Adsorption of Small Gaseous Molecules

The adsorption of small gaseous molecules on metal nanoalloys is a key area

of interest, particularly in catalytic applications [3, 52, 58]. Due to the high

surface-to-volume ratio and unique electronic properties of nanoalloys, their

surface interactions with gases are significantly enhanced compared to bulk

materials. The structure and composition of the nanoalloy can influence the

adsorption properties, such as the strength and selectivity of the binding.

For example, in metal nanoalloys, the different metals on the surface can

create distinct active sites for molecule adsorption. One metal may attract

molecules more strongly, while the other metal influences the strength of the

binding. This tunability makes nanoalloys highly efficient for applications

like gas sensing, catalysis, and energy conversion, where selective adsorp-

tion and activation of small molecules are crucial [38, 39, 59]. In particular,

the alloying of Pt atoms in large-sized nanoalloys has increased stability

and reactivity. Additionally, the catalytic activity of such bimetallic nan-

oclusters shows selectivity in various chemical reactions. Their reactions
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with gaseous molecules like CO and O2 have been thoroughly studied with

the purpose of analyzing their role as nanocatalysts in CO oxidation reac-

tions [8, 38, 39, 52, 60–63]. Significant efforts have been made to develop

highly effective catalysts for removing toxic CO gas from automobile ex-

haust and hydrogen gases used in fuel cells [64], with a critical focus on the

adsorption and activation of CO and O2 molecules on catalytic surfaces.

Size-selected Ag-Pt nanoalloys used as catalysts for the CO to CO2 oxi-

dation reaction have shown remarkable activity [45, 52]. Apart from the

CO oxidation reaction, Ag–Pt nanoalloys have also proven effective in cat-

alyzing the electrooxidation of methanol [65, 66], the catalytic oxidation of

o-phenylenediamine by hydrogen peroxide [66], and the hydrogen evolution

reaction [67].

Given the extensive applications of metal nanoclusters or nanoalloys,

conducting detailed structural and geometrical analyses is important for

understanding their reactivity and stability. This can be achieved by ex-

ploring the potential energy surface (PES) to find the most stable structures

of metal nanoclusters. This enables the identification of stable structures of

metal nanoclusters, which is essential for designing more effective nanocat-

alysts.

1.3 Potential Energy Surface of Metal Nan-

oclusters

Understanding atomic interactions is fundamental to exploring the PES

for metal nanoclusters. These interactions govern how metal atoms bind,

how clusters form, and how chemical reactions occur on the nanoscale [68].

A precise and comprehensive depiction of atomic interactions is essential

not only for gaining insights into the properties of metal nanoclusters but

also for performing reliable molecular simulations. The reflection of atomic

interactions in metal nanoclusters is seen through the total energy of the

nanoclusters and the atomic forces. The structural configurations of a nan-
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Figure 1.4: Schematic presentation of the PES of metal nanoclusters.

ocluster with a given size and composition are determined by the stability

points, represented as the minima on its PES as shown in Figure 1.4. The

PES is a multidimensional surface denoted as E(r), which represents the

energy of a system as a function of the positions of its constituent atoms.

Here, E refers to the potential energy, and r represents the atomic posi-

tions, showing how the energy changes with different atomic arrangements.

For metal nanoclusters, the PES provides crucial insights for investigating

their structural stability, reactivity, and dynamic properties. The global

minimum on the PES corresponds to the most stable configuration, where

the system achieves its lowest potential energy, representing the optimal ar-

rangement of atoms. On the other hand, local minima represent metastable

states that are energetically higher than the global minimum but may still

play a significant role under specific thermodynamic or kinetic conditions.

Saddle points, also known as transition states, represent the energy bar-

riers along reaction pathways connecting different minima. These points

are fundamental for understanding the mechanisms and activation ener-

gies associated with structural transformations. The search for the lowest

minimum on the PES is usually known as the global optimization of the

PES. In order to explore the PES, accurate energy and atomic forces are

essential to get the stable structure of metal nanoclusters.

In practical cases, the potential energy is determined by the first

principle method or ab initio method. It can accurately describe the in-
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teractions between atoms by solving the Schrödinger equation, which is

fundamental in quantum mechanics for determining the wave function of

a particle. The solution of the Schrödinger equation provides the energy

for a given configuration of atoms. However, each electronic structure cal-

culation only provides the energy for a single, specific point on the mul-

tidimensional PES. For molecular simulations such as molecular dynamics

(MD) or Monte Carlo (MC) simulation, millions of such calculations have

to be performed, each corresponding to a different configuration of atomic

positions to explore the entire PES. This requirement poses a significant

computational challenge. The ab initio methods, such as Hartree-Fock

(HF) [69] and density functional theory (DFT) [70], are inherently com-

putationally expensive. The complexity arises from the need to solve the

Schrödinger equation to obtain the wave function and, subsequently, the

energy for each configuration. As the size of the system increases—whether

in terms of the number of atoms or electrons—the computational cost es-

calates rapidly. The time required for these calculations scales as the order

of O(N3
e )- O(N4

e ), where Ne is the number of electrons.

Moreover, the calculation of atomic forces adds more challenge to this

because forces are obtained by taking the first derivative of energy with re-

spect to atomic positions. Since energy calculations are already computa-

tionally intensive, determining the forces introduces even more complexity.

For PES generation, force calculations are required to run MD simulations

of metal nanoclusters. Therefore, to minimize computational expenses and

lengthy simulations over extended time scales, it is essential to adopt a

classical approach for the precise mapping of the PES of metal nanoclus-

ters. In this context, ab initio methods may be substituted with classical

or empirical methods. In classical methods, numerous functional forms

have been proposed to calculate the energy and forces of metal nanoclus-

ters. These include both semiempirical and empirical potentials. Different

empirical potentials are used to model metal nanoclusters ranging from

simple pairwise models like the Lennard-Jones [71] and Morse [72] poten-

tials to more advanced many-body potentials that better describe metallic
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bonding, such as the Gupta potential [73]. Other widely used empirical po-

tentials include the Murrell–Mottram potential [74], the embedded atom

method (EAM) [75, 76], the Finnis–Sinclair potential [77], ReaxFF [78, 79],

and force fields [80–82] have been developed. The central idea of classical

force fields is the decomposition of the total energy into low-dimensional

terms that represent bonding interactions. These force fields describe the

potential energy of a system as a combination of bonded interactions (such

as bond stretching, angle bending, and torsional rotations) and non-bonded

interactions (including van der Waals and electrostatic forces). These meth-

ods rely on fixed functional forms and depend heavily on the chosen param-

eters. The functional forms contain a limited number of parameters which

are fitted to ab initio or experimental data. Due to their fixed functional

form, these methods are insufficient to accurately capture the complex PES

of metal nanoclusters. Consequently, obtaining energy and force calcula-

tions for metal nanoclusters that match the accuracy of ab initio methods

remains a significant challenge.

1.4 Response Properties

Besides energy calculations, it is essential to understand how metal nan-

oclusters respond to external stimuli, such as electric or magnetic fields.

The properties of clusters with and without an external electric field dif-

fer. The interaction of metal nanoclusters with these fields defines their

response properties, which include polarization, charge redistribution, and

magnetic susceptibility. These properties are important for understanding

the behaviour of metal nanoclusters under applied fields. One of the key re-

sponse properties is molecular polarizability, which reflects how the electric

dipole moment of a molecule responds to an external electric field. Specif-

ically, polarizability represents the first-order response of the electronic

charge distribution to the external electric field. It plays a fundamental

role in various chemical phenomena, including electron scattering [83], elec-

tronegativity [84], and the concepts of chemical softness and hardness [85].
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It also plays a crucial role in IR [86] and Raman spectroscopy [87], respec-

tively. For example, a molecule is IR active if its dipole moment changes

during vibration, while it is Raman active if its polarizability changes dur-

ing the vibration [88]. Other response properties such as hyperpolarizabil-

ity, which is a second-order response to an electric field. These properties

are vital for second-harmonic generation spectroscopy [89] and play a key

role in evaluating materials for nonlinear optical applications [90]. These

spectroscopic characteristics offer valuable insights into the structural and

electronic properties of metal nanoclusters [91]. Additionally, chiroptical

properties constitute another category of response properties with a wide

range of applications in the pharmaceutical industry [92]. These molecular

attributes are critical for various applications where precise predictions of

response properties are necessary for material design and functionality.

To calculate polarizability or other response properties, ab initio

methods are very accurate but computationally expensive, making them

best for smaller systems. On the other hand, semiempirical methods such

as AM1 [93] and PM3 [94] methods are computationally inexpensive but

less accurate.

To overcome the challenge of high computational cost, I am looking

for new ways to keep calculations accurate while making them faster. One

promising approach is using machine learning (ML), which aims to com-

bine the accuracy of ab initio methods with the efficiency of semiempirical

methods. In this thesis, I have used ML-based interatomic potential (IAP)

to predict energy and its derivatives of metal nanoclusters. In this context,

I have used ML to predict total energy, atomic force and polarizability for

metal nanoclusters.

1.5 Machine Learning

Throughout history, humans have been inspired to create machines with

human-like intelligence capable of automatically performing complex tasks.
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This aspiration has come closer to reality in the past decade, marked by

the rapid application of ML techniques and artificial intelligence systems

across diverse fields. The integration of ML in chemistry has led to sig-

nificant advancements in the field of science as a whole. By harnessing

the power of data-driven models and algorithms, valuable information can

be extracted from vast amounts of experimental and computational data.

This enables a deeper understanding of chemical phenomena and molec-

ular interactions. The utilization of ML techniques as IAP has garnered

considerable attention because these methods effectively overcome the dis-

cussed challenges in creating PES. Several challenges must be addressed

while developing IAP. 1) The accuracy of these potentials hinges on their

ability to predict the energy and forces of unknown atomic configurations,

closely matching reference values. 2) Additionally, the potential should be

efficient enough to enable long-time MD simulations by providing faster

calculations of energy and forces, in contrast to the time-consuming ab ini-

tio methods. 3) The potential must allow for the approximation of complex

functions with high accuracy even if it involves a non-physical functional

form. 4) Furthermore, it should be versatile enough to handle all types

of bonds—covalent, ionic, and metallic—facilitating bond formation and

breaking. 5) The potential should be applicable to systems of any size and

dimension and their construction should be automated. 6) It is also impor-

tant that analytic derivatives can be calculated easily, and there should be

a systematic approach for both constructing and improving PES [95]. ML

techniques are especially adept in tackling all these challenges.

As mentioned earlier, ML techniques do not rely on a fixed physical

relationship between input and output. Instead, they analyze data to iden-

tify patterns that describe interactions, such as how atoms interact within

a molecular system. Once trained, the ML model can predict outputs based

on these learned patterns. Figure 1.5 highlights the workflow of the ML

technique for constructing IAP. The process can be divided into four key

components:

1)Training Data: The process begins with generating an input dataset
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Figure 1.5: Flowchart depicting the ML model training process to predict

the output.

that consists of various atomic configurations, which serve as training data.

These datasets represent local atomic environments.

2) ML Algorithm: The training data feeds into the ML algorithm.

The algorithm learns patterns from the input data and adjusts its param-

eters iteratively during training.

3) Model: Once the ML algorithm has been trained, it creates a

model. The model is then validated using test data.

4) Prediction/Result: The trained model is used to make predictions.

In the case of metal nanoclusters, it can predict energy, forces, or other

response properties for metal nanoclusters.

The history of ML began in the 1940s when McCulloch and Pitts [96]

developed a mathematical model to understand neural activity in the hu-

man brain, marking the first concept of a neural network. This foundational

work laid the groundwork for applying neural networks to real-world prob-

lems. Rosenblatt’s introduction of the perceptron in 1958 was one of the

earliest neural network models and set the stage for subsequent develop-

ments [97]. This was followed in 1975 by Werbos’s creation of the multilayer

perceptron (MLP) [98]. In 1982, Hopfield introduced the Hopfield network,

a recurrent neural network used for associative memory, which was influen-
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tial in advancing neural network theory [99]. Quinlan introduced decision

trees in 1986 [100], and shortly after, Cortes and Vapnik developed support

vector machines (SVM) [101]. In 2024, John Hopfield and Geoffrey Hinton

were awarded the Nobel Prize in Physics for their foundational work.

As the field evolved, ensemble techniques like AdaBoost [102] and

Random Forests [103] enhanced the performance of weak learners by com-

bining them into stronger predictors. In parallel, kernel-based methods

and probabilistic models like Gaussian processes [104] and ridge regres-

sion [105] were introduced to model uncertainty in predictions. The field of

deep learning, a subfield of ML that focuses on training large-scale neural

networks, has expanded significantly in the last decade. convolutional neu-

ral networks (CNNs) [106], and recurrent neural networks (RNNs) [107]

have been successfully applied to image classification, time-series pre-

diction, and natural language processing. CNNs and graph neural net-

works (GNNs) [108] have gained popularity due to their ability to cap-

ture local chemical environments and structural patterns. Furthermore,

generative models—which learn the data distribution and can generate

new data instances—have become increasingly important. These include

Variational Autoencoders (VAEs) [109], Generative Adversarial Networks

(GANs) [110], and more recently, Diffusion Models [111]. VAEs have been

used for the inverse design of molecules and crystals by encoding and de-

coding structural features in latent space. GANs, though more complex

to train, have shown promise in generating synthetic data for underrepre-

sented systems.

In addition to choosing the model architecture, hyperparameter opti-

mization is essential for achieving reliable performance. Hyperparameters

were tuned manually and through trial-and-error to find the best perform-

ing values. These include learning rate, batch size, number of hidden layers,

activation functions, and dropout rate. Model parameters are tuned using

optimization algorithms that reduce the error between predicted and ac-

tual values by adjusting weights. Common methods include L-BFGS [112],

Kalman Filter [113], Levenberg–Marquardt [114], backpropagation [115],
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gradient descent [116], and the widely used Adam optimizer [117]. These

methods update weights step by step until the error becomes small enough.

Once optimized, the model can make accurate predictions on new data.

Training stability and generalization were improved through tech-

niques such as early stopping, dropout regularization, and cross-validation.

Where applicable, data augmentation and noise-injection were used to en-

hance model robustness, particularly in the low-data regime.

1.5.1 Neural Network Model

In recent decades, ML methods have become increasingly prominent in con-

structing the PES and predicting the response properties. Among these,

neural network (NN)-based techniques have emerged particularly effective,

demonstrating their ability to model highly non-linear problems. One of

the earliest NN-based PES models was introduced by Sumpter and Noid in

1992 [118]. A significant advancement in this field came with the work of

Behler and Parrinello, who proposed a general approach to construct the

PES [95, 119, 120]. They modelled the total energy as a sum of atomic

contributions, using element-specific atomic neural networks with atom-

centred symmetry function descriptors as inputs. This method was further

extended by Artrith et al. to incorporate long-range electrostatic inter-

actions [121]. In recent years, the field has advanced with the adoption

of deep neural network architectures, where the construction of invariant

representations is integrated into the model and optimized during training.

Notable examples of this include the deep tensor neural networks [122] and

SchNet models [123] developed by the Tkatchenko and Müller group, as

well as the deep potential molecular dynamics model by Zhang et al. [124].

Many neural network potentials have been developed using diverse archi-

tectures, including message-passing neural networks [125], graph neural

networks [126], and graph convolutional networks [127].

While NNs are the primary focus, kernel-based methods also offer

a compelling alternative for constructing PES [128, 129]. These meth-
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ods leverage various atomic descriptors, such as Coulomb Matrices [130],

Bag of Bonds [131], Histograms of Distances Angles and Dihedrals [132],

Faber–Christensen–Huang–von Lilienfeld [133], and smooth overlap of

atomic positions (SOAP) [134]. Kernel methods, such as Gaussian pro-

cesses [135], which utilize a Bayesian or probabilistic approach, and the

reproducing kernel Hilbert space (RKHS) method, which employs poly-

nomials as support functions, have been thoroughly studied in the liter-

ature [136, 137]. Like the Behler-Parrinello atomic neural networks [95],

the Gaussian approximation potentials developed by Bartók et al. [138]

decompose the total energy into a sum of atomic energies. These atomic

contributions are modelled using Gaussian process regression, employing

a squared exponential kernel function. In addition to neural network and

kernel-based methods, other interpolation and representation techniques

for PES construction are also widely utilized. These include modified

Shepard interpolation [139], interpolating moving least-squares [140–142],

and permutationally invariant polynomial [143]. These alternative meth-

ods provide diverse and complementary strategies for constructing accurate

and reliable PES.

Despite the growing interest in ML, significantly fewer studies have

concentrated using ML methods for molecular response properties such as

dipole moment [144–147], polarizability [148, 149], and hyperpolarizabil-

ity [150, 151]. These properties present a greater challenge for learning

due to their multiple coordinate-dependent components, which change in

a covariant manner when the system undergoes rotation. Recent advance-

ments in ML for response properties have focused on approaches that re-

spect the rotational symmetry of tensorial properties. For instance, Grisafi

and their colleagues introduced covariant kernels in kernel-based regres-

sion to preserve this symmetry [152, 153], while Christensen et al. applied

response operators directly to kernel functions to mimic the tensorial re-

sponse to electric fields [154]. Although traditional neural networks often

disrupt covariant symmetry due to their nonlinearity, specialized models

like symmetry-adapted regression have proven effective [152, 155]. These
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models have been successfully applied to various tasks, such as predicting

properties like dipole moment [147], polarizability [148] and Raman spec-

tra [156], highlighting the growing potential of ML in accurately modeling

complex tensorial properties.

The way in which the structures of metal nanoclusters or nanoalloys

influence their physicochemical properties is quite intriguing. Among these

properties, catalytic and electrical properties are particularly important

due to their relevance in technological applications. Metal nanocluster is

highly size-dependent, making it a challenging and fascinating topic, espe-

cially when considering the interplay between energetic, thermodynamic,

and dynamic effects in these clusters. ML methods provide an effective

way to tackle these challenges by accurately predicting properties and un-

covering structure-property relationships.

1.6 Objective of the Thesis

1. To predict the energy and its first-order derivatives (forces) by con-

structing the PES of Ag-Pt nanoalloys using an ANN-based IAP while

designing an IAP that is both computationally efficient and scalable

for accurate simulations.

2. To investigate the adsorption activation of small gas molecules, such

as CO and O2, on Ag-Pt nanoalloys. This study aims to provide

insights into the reactivity of CO and O2 on Ag-Pt nanoalloys in the

context of the CO oxidation reaction.

3. Developing machine learning models to predict the second-order

derivatives of energy with respect to the electric field (polarizabil-

ity) of gold nanoclusters.

1.7 Organization of the Thesis

• Chapter 1. Introduction:

The first chapter begins with an introduction to metal nanoclusters,
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emphasizing their stability, unique properties, and diverse applica-

tions. This is followed by a discussion on the stability and physic-

ochemical properties of metal nanoalloys, with a special focus on

Ag-Pt nanoalloys and their potential for catalytic and advanced ap-

plications. The chapter also explores the adsorption of small gaseous

molecules in these systems, providing insight into their reactivity.

Additionally, it addresses the construction of PES for metal nan-

oclusters, highlighting the challenges and limitations associated with

accurately modeling their complex energy landscapes. A section is

dedicated to the introduction of ML techniques, particularly neural

networks, showcasing their advantages in constructing PES and re-

sponse properties. Finally, the chapter outlines the objectives and

organization of the thesis, setting the foundation for subsequent dis-

cussions.

• Chapter 2. Theoretical Methodology: The second chapter pro-

vides an overview of the theoretical foundations underlying this the-

sis. It begins with a brief introduction to ab initio methods used to

generate data for the ANN model, including the basics of the DFT-

based approach. The chapter then introduces empirical potentials,

which provide simplified models for atomic interactions based on pa-

rameterized equations, followed by an in-depth discussion of ANN.

The application of ANN in constructing the PES of nanoclusters is

thoroughly examined, with a focus on the ANN architecture and the

calculations for energy and force. Following this, weight optimization

methodologies are discussed, including the global extended Kalman

filter (GEKF), which is used to optimize ANN weights for accurate

predictions of energy and force. The chapter then continues with

a discussion on the techniques used for exploring the PES, focusing

on MD simulations. I then discuss the input to the ANN, where I

utilize a descriptor function that incorporates both radial and an-

gular atomic environments. The angular environment is represented

using power spectrum and bispectrum-based functions, which are de-
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rived from the modeling of the atomic density function to accurately

capture the atomic surroundings. Additionally, the chapter covers

the theory and mathematical formulation of polarizability, including

isotropic polarizability (αiso) and anisotropy in polarizability (∆α).

• Chapter 3. Structure and Dynamics of Ag-Pt Nanoalloys:

In this chapter, I have predicted the energy and its first-order deriva-

tive with respect to cartesian coordinates (force) by constructing a

PES for Ag-Pt nanoalloys using an ANN model. Using ANN-based

interatomic potential, I systematically carried out structural and en-

ergetic analysis of Ag38−nPtn (n = 1 - 8) nanoalloys. I performed MD

simulations and global optimizations to search the global minimum

structures and investigate the effect of temperature on the struc-

tures of Ag-Pt nanoalloys. I found that the lowest energy isomers of

Ag38−nPtn nanoalloys are a core-shell structure in which the Pt atoms

occupy the core region while the Ag atoms are located in the surface

region. Furthermore, the probability of the presence of a Pt atom on

the surface sites in Ag38−nPtn nanoalloys has been calculated at finite

temperatures. I found that at 360K, at least one Pt atom moves from

the core to the surface region of the Ag38−nPtn nanoalloys, which may

serve as the reactive sites for the reactions to occur.

• Chapter 4. Small Gaseous Molecules Adsorption on Ag-Pt

Nanoalloys: In this chapter, ANN-based interatomic potential has

been constructed to examine the structural properties of 55-atom

Ih Ag-Pt nanoalloys. I conducted an MD simulation to find the

minimum energy isomers of Ag55−nPtn nanoalloys, where n= 0-14.

Additionally, I studied the adsorption of O2 and CO molecules on

Ag55−nPtn nanoalloys using the first-principles based DFT method.

The presence of Pt doping has been found to increase the adsorption

strength of O2 and CO on the Ag55−nPtn nanoalloys compared to the

pure Ag55 nanocluster. Our investigation suggests that the presence

of Pt atoms in the core of the nanoalloy has a relatively minor effect

on the adsorption of O2 and CO in comparison to Pt atoms present
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on the surface. The adsorption of O2 and CO on Ag41Pt14 nanoalloy,

in which one of the Pt atoms is present at the surface of the nanoalloy,

shows strongest adsorption among all the compositions of Ag55−nPtn

nanoalloys.

• Chapter 5. Prediction of Polarizability of Gold Nanocluster:

In this chapter, I have predicted the second-order energy derivative

with respect to the electric field using ML models. Specifically, I in-

vestigated the isotropic polarizability (αiso) and anisotropy in polar-

izability (∆α) of gold nanoclusters with various ML algorithms. Our

approach utilized high-order invariant descriptors based on spherical

harmonics integrated with ML models such as ANN, Gaussian pro-

cess regression (GPR), and kernel ridge regression (KRR). The ANN

models, enhanced with bispectrum and power spectrum descriptors,

showed superior predictive performance, with the global extended

Kalman filter (GEKF) optimizer outperforming the Adam optimizer

across multiple metrics. The validation of ANN weights against a

local minimum structure of gold nanoclusters confirmed the model’s

accuracy in predicting polarizabilities, with outcomes closely resem-

bling those obtained from DFT. These findings highlight the effective-

ness of ML in accurately predicting second-order energy derivatives

with respect to the electric field (polarizability) of gold nanoclusters,

with ANN-based models outperforming other ML models.

• Chapter 6. Conclusion and Future Scope: The last chapter of

the thesis includes the major findings of our results and the possible

future scope of the current research work.
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Chapter 2

Theoretical Methodology

2.1 Quantum Mechanical Methods

In quantum mechanical methods, it is often convenient to separate the

motions of the atomic nuclei and the electrons. This is achieved using

the Born-Oppenheimer (BO) approximation [157], which assumes that the

nuclei are much heavier and move much slower than the electrons. As a

result, the electronic wave function can be solved independently for fixed

nuclear positions, while the nuclear motion is treated separately. This ap-

proximation simplifies the Schrödinger equation and forms the basis for

many quantum mechanical methods used in electronic structure calcula-

tions. In quantum mechanics, the stationary states of atomic systems can

be described by the wave function (ψ). The wave function provides a com-

plete picture of the physical system, which depends on both the electronic

coordinates (r⃗) and the nuclear coordinates (R⃗). To determine the wave

function, it must be calculated at each spatial point r⃗ within the region

of interest, which involves the solution of the Schrödinger equation. When

focusing on stationary electronic states, the time-independent form of the

Schrödinger equation is expressed as:

(T̂ + V̂ )ψ(r⃗, R⃗) = Ê(R)ψ(r⃗, R⃗), (2.1)
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where T̂ is the kinetic energy operator, V̂ is the potential energy operator,

and Ê(R) represents the energy eigenvalue that may depend on the nuclear

coordinates R⃗. According to the BO approximation, the total wave function

ψ(r⃗, R⃗) is treated as a product of the electronic and nuclear wave functions,

and the Schrödinger equation is solved for the electronic degrees of freedom

while treating the nuclear positions as fixed. The equation for the total

Hamiltonian acting on the wave function is given by:

Ĥψ(r⃗; R⃗) = Ê(R)ψ(r⃗; R⃗) (2.2)

In atomic systems which involve multiple electrons and nuclei, rather

than a single-electron model, a many-body wave function is defined ψ(r⃗, R⃗),

which depends on the positions of all electrons and nuclei in the system.

ψ(r⃗, R⃗) = ψ(r1, r2, r3...., rN ;R1, R2, R3, ...RA) (2.3)

In this context, r1, r2, r3...., rN are the coordinates of the N electrons and

R1, R2, R3, ...RA are the coordinates of the A nuclei within the system.

Therefore, there are three types of coulombic interactions: (i) the repulsion

between nuclei, (ii) the repulsion between electron-electrons, and (iii) the

attraction between the nucleus and electrons. Thus, for a system consisting

of electrons and nuclei, the potential energy terms (V̂ = V̂ee + V̂nn + V̂ne)

in the Schrödinger equation can be expressed mathematically as:

Vee =
Ne∑
i

Ne∑
j

e2

4πϵ0|ri − rj|
(2.4)

Vnn =
Nn∑
A

Nn∑
B

ZAZBe
2

4πϵ0|RA −RB|
(2.5)

Vne =
Nn∑
A

Ne∑
i

− ZAe
2

4πϵ0|ri −RA|
(2.6)

and the kinetic energy term (T̂ = T̂e + T̂n ) is

= −
Ne∑
i

ℏ
2me

∇2
i −

Nn∑
A

ℏ
2MA

∇2
A (2.7)
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where MA and me are the mass of the nucleus and electrons, respectively.

ZA and e are charges of the nucleus and electrons, respectively. |RA −RB|

is the internuclear distance, |ri − RA| is the distance between the nucleus

and electron and |ri − rj| is the distance between electrons. Therefore,

the Hamiltonian operator can be written as the sum of the kinetic energy

operator(T̂ ) and the potential energy operator (V̂ ) of the given system:

(
−

Ne∑
i

ℏ
2me

∇2
i −

Nn∑
A

ℏ
2MA

∇2
A +

Nn∑
A

Nn∑
B

ZAZBe
2

4πϵ0|RA −RB|

+
Ne∑
i

Ne∑
j

e2

4πϵ0|ri − rj|
−

Nn∑
A

Ne∑
i

ZAe
2

4πϵ0|ri −RA|

)
ψ(r, R) = Eψ(r, R)

(2.8)

Due to the significant mass difference between the nucleus and the electron

(BO approximation), the positions of the nuclei can be considered fixed.

Hence, the kinetic energy of the nuclei can be neglected, and their potential

energy can be treated as constant. Therefore, only the electronic compo-

nent needs to be solved in the Schrödinger equation. Consequently, Eq.

2.8 simplifies to the following in atomic units:

(−
Ne∑
i

∇2
i

2
+

Ne∑
i

Ne∑
j

1

|ri − rj|
−

Nn∑
A

Ne∑
i

ZA

|ri −RA|
)ψe = Eψe (2.9)

An exact solution to the Schrödinger equation is unattainable for multi-

electron systems because of the inter-electronic repulsion term. Solving Eq.

2.9 is a challenging task, and simplifications are often required. The elec-

tronic Hamiltonian depends only on the spatial coordinates of the electron.

However, to describe an electron completely, it is necessary to specify its

spin. Therefore, approximation methods such as Hartree-Fock (HF) ensure

that the wave function follows the antisymmetry principle using a Slater

determinant. However, HF still treats electron-electron interactions in a

mean-field manner, neglecting electron correlation. The HF equation for

i = 1, 2, .., N electrons is given as:

fiϕi = ϵiϕi (2.10)
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where ϕi are spatial orbitals and the Lagrangian multipliers ϵi are the

eigenvalues of the Fock operator fi. The ϵi has the physical interpretation

of orbital energies. The fi is an effective one-electron operator of ith electron

given by:

fi = −1

2
∇2

i −
Nn∑
A

ZA

|ri −RA|
+ VHF(i) (2.11)

In Eq. 2.11 the first two terms are the kinetic energy and the potential

energy due to the electron-nucleus attraction. VHF (i) is the HF potential

which is the average repulsive potential experienced by the ith electron due

to the remaining N − 1 electrons. It is expressed as:

VHF (i) =
N∑
j

(Jj(i)−Kj(i)) (2.12)

where Jj is the coulomb operator and Kj is the exchange operator. As

previously discussed, the HF approximation describes the system using a

single Slater determinant. This simplification, however, fails to capture the

intricate interactions between electrons, which are especially important in

processes such as bond formation and bond breaking. While the HF method

provides a useful starting point for understanding electronic systems, its

inherent limitations arise from the neglect of electron correlation. However,

correlation effects play a crucial role in many systems of interest, and thus,

it becomes necessary to go beyond the HF approximation to achieve a

more accurate description. To overcome the limitations of the HF method,

two important approaches are Configuration Interaction (CI) and Coupled

Cluster (CC) methods. However, these methods still face challenges in

computational efficiency and scalability for larger systems. To address

these limitations and include correlation effects, the many-body problem

can be mapped onto an effective single-particle framework. DFT effectively

captures electron correlation, providing an accurate method for describing

electronic systems. A brief overview of DFT is provided in the next section,

and all electronic structure calculations in this work are performed using

DFT.
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2.1.1 Density Functional Theory

The foundation of the DFT was laid by Hohenberg and Kohn, who demon-

strated [70] that electron density can be treated as the fundamental variable

in place of the wavefunction for treating many-electron systems quantum

mechanically. In principle, the total energy can be expressed as a func-

tional of the electron density. The ground-state density can be determined

by finding the minimum of a total energy functional with respect to the

density, which is shown in the following form:

E[n(r)] = T [n(r)] + Vee[n(r)] + Vne[n(r)] (2.13)

where T [n(r)], Vee[n(r)] and Vne[n(r)], representing the kinetic energy,

electron-electron repulsion energy, and interaction energy of the electron

density with the external potential, respectively. The above energy expres-

sion can be divided into two parts: one that depends on the specific system,

such as the potential energy from the attraction between nuclei and elec-

trons, and another that is universal and remains the same regardless of the

number of electrons (Ne), the positions of the nuclei (RA), or their charges

(ZA). The system-independent components are grouped into a new term

called the Hohenberg-Kohn functional, FHK [n(r)] shown as:

FHK [n(r)] = T [n(r)] + Vee[n(r)] (2.14)

The functional FHK [n(r)] is the holy grail of DFT. If it were known exactly,

it would allow us to solve the Schrödinger equation, not just approximately

but exactly. The explicit form of both these functionals as the functional

of density is not known. However, it is possible to further decompose the

T [n(r)] and (Vee[n(r)]) into meaningful parts. The electron-electron repul-

sion, Vee[n(r)] is typically divided into two parts: the classical Coulomb

contribution, EH [n(r)], and the non-classical component, Encl[n(r)]. The

non-classical term accounts for effects such as self-interaction correction, ex-

change, and Coulomb correlation. Kohn and Sham introduced the concept
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of decomposition of the kinetic energy into a non-interacting and interact-

ing system. The exact expression of the non-interacting kinetic energy Ts

is derived from a set of N non-interacting occupied orbitals expressed as:

Ts[n(r)] = −
N∑
i=1

1

2
⟨ψi|∇2|ψi⟩ (2.15)

By introducing the decompose form of T [n(r)] and Vee[n(r)] the Eq. 2.13

can be reformulated as

E[n(r)] = Ts[n(r)] + Vne[n(r)] + EH [n(r)] + Exc[n(r)] (2.16)

In Eq. 2.16 the last term Exc[n(r)] is referred to as the exchange-correlation

energy functional, which can be written as:

Exc[n(r)] = (T [n(r)]− Ts[n(r)]) + (Vee[n(r)]− EH [n(r)]) (2.17)

Now, on applying the variational principle to minimize the total ground-

state energy, subject to the constraint that the orbitals are orthonormal

(< ψiψj >= δij). The resulting Schrodinger equation using the Kohn-

Sham approach is expressed as:

(
−∇2

2
+ vKS[n(r)]

)
ψi(r) = ϵiψi(r) (2.18)

vKS(r) = vext(n(r)) +

∫
n(r)

|ri − rj|
d3r + υxc (2.19)

Therefore, the density is obtained by summing the squared of the Kohn

Sham orbitals ψ exactly equals the ground state density of our real target

system of interacting electrons.

n(r) =
Ne∑
i

|ψi|2 (2.20)

In DFT, the exchange-correlation energy combines the residual kinetic en-

ergy and non-classical electrostatic interactions between electrons. This

energy is described by the exchange-correlation functional, which contains
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all unknown factors related to electron-electron interactions. While Kohn-

Sham DFT is exact in principle, the approximation arises when defining

an explicit form for the exchange-correlation functional.

2.1.2 Exchange-Correlation Functionals

There are several methods for calculating the exchange-correlation energy

Exc within DFT. The simplest method is the local density approximation

(LDA) [158, 159], where the exchange-correlation functional at each spatial

point is approximated by the value for a homogeneous electron gas:

Exc[n(r)] =

∫
ϵxc(n)n(r) d

3r + ELDA
c [n(r)] (2.21)

An improvement over LDA is the generalized gradient approximation

(GGA) [160, 161], which accounts for the gradient of the electron density in

the functional. This allows for a more accurate description of the exchange-

correlation energy by considering variations in the electron density:

Exc[n(r)] =

∫
ϵGGA
xc (n(r),∇rn(r)), d

3r (2.22)

Here, ϵGGA
xc is the exchange-correlation potential, which depends on both

the density n(r) and its gradient ∇rn(r). One of the most commonly used

GGA functionals is the Perdew-Burke-Ernzerhof (PBE) [160] functional.

The PBE functional refines the exchange-correlation energy by introduc-

ing additional terms derived from physical constraints and principles of

the uniform electron gas. The PBE functional is particularly effective for

metallic systems and has been validated in numerous studies, showing good

agreement with experimental data. Its selection is based on the need for

a reliable and computationally efficient method to describe the electron

exchange-correlation in the systems under study. A further refinement to

GGA is the meta-GGA, which improves accuracy by incorporating higher-

order derivatives of the density. However, the improvement from GGA to

meta-GGA is typically smaller than the gain achieved by moving from LDA

to GGA.
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The major advancement in DFT came with the introduction of hy-

brid functionals, which combine a fraction of the HF exchange energy with

the DFT exchange-correlation functional. One of the most successful and

widely used hybrid functionals is B3LYP [162, 163], which includes Becke’s

three-parameter exchange functional and the Lee–Yang–Parr (LYP) corre-

lation functional:

EB3LYP
xc = aEHF

x + (1− a)ELDA
x + bEB88

x + cELYP
c + (1− c)EVWN

c (2.23)

where a = 0.20, b = 0.72, and c = 0.81 are empirically derived parameters,

and EB88
x and EVWN

c are the Becke88 exchange functional (GGA) and the

Vosko-Wilk-Nusair (VWN) local spin density approximation to the corre-

lation functional, respectively. These parameters were optimized by fitting

to the experimental G1 dataset [164].

2.1.3 Basis Sets

The concept of one-electron wave functions, i.e., molecular orbitals (MOs),

lies at the core of all electronic structure theories. However, the exact func-

tional form of MOs is unknown, so electronic structure calculations rely on

linear combinations of known functions to represent these unknown MOs.

These known functions are referred to as basis functions and a set of them

forms a basis set [165]. The basic idea behind selecting an appropriate

function is that it should accurately represent the system’s physical prop-

erties and facilitate the straightforward calculation of the integrals involved

in the method. The minimal necessary functions for a given atom form a

minimal basis set. For hydrogen and helium, a single s-function suffices; for

first-row elements, two s-functions and one set of p-functions are required;

for second-row elements, three s-functions and two sets of p-functions form

a minimal basis set. Basis sets that use multiples of these functions are

termed double-zeta (DZ), triple-zeta (TZ), and quadruple-zeta (QZ), de-

pending on whether they include two, three, or four times as many functions

as the minimal set. The LANL2DZ basis set, widely used for heavy ele-

ments, incorporates an effective core potential for core electrons, reducing
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computational cost while providing a double-zeta description for valence

electrons.

In this study, I use two different basis sets to generate data for pre-

dicting the energy, force, and polarizability of metal nanoclusters. For

energy and force calculations, utilize the plane-wave basis set within the

VASP package [166–169], where electron orbitals are represented by plane

waves, and the full electron wave function is efficiently treated using the

Projector Augmented-Wave (PAW) [170] method. use the PBE [160] func-

tional within the GGA for accurate approximations of metallic clusters.

However, for polarizability calculations, I use the LANL2DZ [171] basis set

with the B3LYP [162, 163] functional in the Gaussian 09 [172] package.

2.2 Empirical Potentials

Empirical potentials are simplified mathematical models used to describe

interactions between atoms in an N-atom system. They approximate the

potential energy of a system using predefined mathematical functions.

However, their accuracy is constrained by their reliance on parametriza-

tion, which is typically derived from atomic experimental data. Empirical

potentials often represent the total energy of a system as a sum of contri-

butions from individual atomic interactions as shown in the following Eq.

2.24:

E =
N∑
i

V (zi) (2.24)

where

zi = {rij | j ∈ neighbors of i}.

Here, E represents the total energy of the N-atom system, and V (zi)

denotes the potential energy contribution from each atom i. Here, zi repre-

sents the atomic environment of the ith atom, where each rij corresponds to

the vector from the ith atom to the jth atom in its immediate vicinity. This
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neighbourhood is used to calculate the interaction energies in empirical po-

tential methods, which depend on the relative distances and configurations

between atoms. Some of the most commonly used empirical potentials are

pair potentials, three-body potentials, and many-body potentials.

Pair potential: Pair potentials inherently account for only two-body

interactions, meaning the total energy of a configuration can be expressed

as the sum of all two-body contributions.

E =
∑
i

∑
j>i

φ(ri, rj) (2.25)

where the function φ(ri, rj) is called a pairwise potential. For example,

Lenard-Jones’s potential [71], Morse’s potential [72], etc. It is important

to note that Lennard-Jones and Morse potentials can also be used as non-

local potentials. However, they are commonly applied with a cutoff radius

to account for the screening of interatomic interactions, which typically

makes them local in practice.

Three body potential: Three-body potentials take into account

interactions involving three bodies:

E =
∑
i

∑
j>i

φ(ri, rj) +
∑
i

∑
j ̸=i

∑
k ̸=i

P (ri, rj, rk). (2.26)

These potentials include the Tersoff [173] and Stillinger-Weber [174]

models. While two-body terms are often related to bond lengths, three-

body terms are typically associated with the angles between bonds.

Many-body potential: Many-body potentials capture the com-

plexity of atomic interactions by considering the simultaneous effects of

multiple atoms, unlike pair potentials that focus only on two-atom inter-

actions. This approach provides a more accurate depiction of complex

interactions within materials, particularly when an atom’s behaviour is sig-

nificantly influenced by its surrounding neighbours in a non-trivial manner.

For example, Gupta potential [73], EAM potential [75, 76], etc.
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The Gupta potential is a widely used many-body potential designed

to model the interactions between atoms in metallic systems, particularly

transition metals. It is generally expressed as the sum of two components: a

repulsive term and an attractive many-body term. The equation is written

as:

Etotal =
∑
i

∑
j ̸=i

A exp

(
−p
(
rij
r0

− 1

))
−

√√√√∑
j ̸=i

ξ2 exp

(
−2q

(
rij
r0

− 1

))
(2.27)

The Gupta potential is derived from the tight-binding model [175, 176],

where the system’s total energy includes a repulsive term dependent on

interatomic distances and an attractive term that accounts for many-body

interactions. The attractive component is often represented as a function

of the combined interactions between an atom and all its neighbours, high-

lighting the collective nature of metallic bonding. In this study, the Gupta

potential is used to generate an initial dataset for constructing the PES for

Ag-Pt nanoalloys.

2.3 Machine Learning Potential

ML-based potentials are a type of many-body IAP used in atomistic sim-

ulations. Unlike traditional potentials, which rely on an approximate rep-

resentation of physical atomic interactions, ML potentials take a different

approach. Rather than using fixed analytical functions, ML potentials aim

to learn the underlying patterns of atomic bonding and interactions from

data. This learning-based approach allows the potential to model com-

plex relationships between atomic configurations and their contributions

to the system’s energy. By capturing these patterns, ML potentials offer a

more flexible and accurate method for representing interatomic interactions

without relying solely on predefined energy contributions.

ML includes different ways of learning. One common approach is

supervised learning, where the goal is to create a model f that connects
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input values (features) xi with their corresponding outputs (targets) yi in

a dataset {(xi, yi)}Ni=1. Here, N represents the number of observations.

When the output values yi are linked to classes, this process is known as

a classification problem. Different ML algorithms, such as SVM [101], can

be employed to address classification problems.

Regression is another widely used form of supervised learning, where

the objective is to fit the inputs to a continuous function. Generally, in an

ML method, if x represents input features or independent variables and y

denotes the target or dependent variable, then the objective is to find an

optimal function (f ∗
x) that minimizes the expected loss, denoted as E[L],

f ∗
x = argmin

fx

E[L] = argmin
fx

1

N

N∑
i=1

L(ytargeti , f(xi)) (2.28)

where N represents the number of data points and ytargeti denotes the target

values corresponding to the input feature vector xi. A common choice of

loss function is a squared loss function given by

E[L] =
N∑
i=1

(ytargeti − f(xi))
2 (2.29)

In ML methods, the loss function is represented as

E(a) =
1

N
(ytargeti − f(xi, a))

2 (2.30)

where a represents weight parameters. I can minimize the expected loss

function by choosing the a for which E(a) is as small as possible. In this

work, I have used regression algorithms, specifically an artificial neural

network (ANN), to predict the energy, forces, and response properties of

metal nanoclusters.

2.3.1 Artificial Neural Network

ANN refers to a branch of artificial intelligence that takes inspiration from

the brain’s structure. These networks are computational models that mimic

the structure and organization of biological neural networks. They function
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similarly to how the human brain is organized. Just like the interconnected

neurons in the brain, ANNs consist of nodes (or neurons) that are inter-

connected across different layers shown in Figure 2.1. The artificial neuron

is the basic unit of an ANN. It works in three simple steps: multiplica-

tion, addition, and activation. First, each input is multiplied by a weight.

Then, all these weighted inputs are added together along with a bias value.

Finally, the result goes through an activation function, which introduces

non-linearity and determines the neuron’s output, which is expressed below

in Eq. 2.31

y = f

(
n∑

i=1

aixi + b

)
(2.31)

The activation function plays an important role in how an artificial

neuron processes information. For example, non-linear functions like the

sigmoid are used to introduce the necessary non-linearity into the network,

allowing it to learn complex patterns. The sigmoid function is defined as:

f(x) =
1

1 + e−x
(2.32)

Figure 2.1: Human brain and artificial neural network.

In ANN, the weight parameters (a) are adjusted during the train-

ing phase to reduce the discrepancy between predicted and actual outputs.

This optimization process is essential for enhancing the ML model’s perfor-

mance, as it significantly influences both the accuracy and generalization

of the model.
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For constructing the PES of metal nanoclusters, ANN predict energy

and force from atomic environments. ANN is especially useful when the

connection between input and output isn’t clear, as it learns this connec-

tion by adjusting the parameters. The number of parameters depends on

the complexity of the system. In our case, the energy of a nanocluster

depends on the positions of its atoms. A single-layer neural network can

establish a relationship between atomic positions and energy. However,

this network has limitations when it comes to handling structural trans-

formations such as translations and rotations. In these cases, even though

the positions of the atoms change, the overall energy of the system remains

the same, causing the network to struggle with accurate predictions. To

address this, interatomic distances are invariant to translation and rota-

tion and are used as inputs. This improves the model’s ability to predict

energy, but using only interatomic distances doesn’t capture the relative

arrangement of atoms. To overcome this, the interatomic distances within

a cutoff radius are summed to create a density around each atom, which

is then weighted by a Gaussian function. This representation allows the

ANN to learn more complex relationships between atomic configurations

and energy. To further improve the model, a second hidden layer is added

to capture more detailed features of the atomic density, following the ap-

proach proposed by Behler and Parrinello [95, 177]. This two-hidden-layer

neural network provides a more accurate representation of the PES, helping

to predict energy and forces with precision.

In this work, I used an ANN architecture to create the IAP. Our

network has an input layer with descriptor functions, two hidden layers

with neurons, and an output layer with a single neuron that gives the

energy value of an atom. So the network is as follows,

EN =

Hn2∑
m=1

a23m1 · f 2
m

[
b2m +

Hn1∑
j=1

a12jm · f 1
j

(
b1j +

input∑
k=1

a01kj ·G
µ
N,k

)]
(2.33)

In this Eq. 2.33, the input function Gµ
N,k contains the input coefficient

for the N th atom. a01kj, a
12
jm and a23m1 are weights connected to the input layer

with the first hidden layer, the first hidden layer connected to the second
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hidden layer, and the second hidden layer to the output layer, respectively.

Hn1 and Hn2 are the hidden layers. The bias weights for the first and

second hidden layers are represented by b1j and b2m, respectively. To make

the network’s output nonlinear, sigmoid functions (f 1
j and f 2

m ) are applied

to the output of the first and second hidden layers, respectively.

The network is built for each atom of the cluster, and the total energy

(Ecluster) of the cluster is obtained by summing up all the atomic energies

EN ,

Ecluster =
natoms∑
N=1

EN (2.34)

Furthermore, in accordance with our primary aim to obtain PES using

ANN, I calculated the force acting on the system by using the following

expression for the αth component (α = x, y, z) of the force in terms of the

derivative of energy with respect to the input descriptor:

Fα = −∂E
′
cluster

∂α
= −

natoms∑
N=1

∂E ′
N

∂α
= −

natoms∑
N=1

input∑
k=1

∂E ′
N

∂Gµ
N,k

(
∂Gµ

N,k

∂α

)
(2.35)

2.3.2 Weights Optimization Methods

The ML models are trained by optimizing the weights to reduce the error

between the predicted and actual outputs. Optimization techniques for

adjusting weights in ML models are typically classified into two categories:

first-order and second-order methods. First-order methods, such as gradi-

ent descent [116], backpropagation [115], and Adam [117], utilize the gra-

dient of the loss function concerning the weights to implement incremental

updates. These methods are typically more straightforward. Conversely,

second-order methods, including the quasi-Newton method [178], Kalman

filter [113], etc, consider the curvature of the loss function by employing

second-order derivatives (Hessian matrix), which can lead to faster con-

vergence but involve greater computational demands. The selection of an

optimization technique is contingent upon the specific needs of the task,
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including dataset size and model complexity. In this work, I utilized two

optimization techniques, Adam and the Global Extended Kalman Filter

(GEKF), to update the weights and improve the model’s efficiency.

2.3.2.1 Adam Optimization

Adam is a highly efficient optimization algorithm for gradient descent, par-

ticularly effective when dealing with large-scale problems involving vast

amounts of data or numerous parameters [117]. It requires less memory

compared to other methods and achieves efficient convergence. Adam com-

bines two well-known gradient descent techniques: momentum [179] and

root mean square propagation (RMSProp) [180].

The momentum method accelerates gradient descent by using an ex-

ponentially weighted average of past gradients, allowing faster convergence

towards minima. The method for updating the weights is

at+1 = at − αmt (2.36)

where mt is the moving average of gradients:

mt = βmt−1 + (1− β)

[
∂L

∂at

]
(2.37)

RMSProp is an adaptive algorithm that uses an exponential moving average

of squared gradients to adjust the learning rate, improving upon AdaGrad.

The weights are updated according to the following expression:

at+1 = at −
α√
vt + ϵ

∂L

∂at
(2.38)

where vt represents the moving average of squared gradients, which can be

expressed as:

vt = βvt−1 + (1− β)

[
∂L

∂at

]2
(2.39)

Adam combines the strengths of Momentum and RMSProp, control-

ling oscillations and ensuring large enough steps to avoid local minima.
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The Adam update rule uses bias-corrected estimates for momentum (mt)

and RMSProp (vt):

m̂t =
mt

1− βt
1

, v̂t =
vt

1− βt
2

(2.40)

The final updated weight in the Adam optimizer is calculated using the

following Eq. 2.41:

at+1 = at −
αm̂t√
v̂t + ϵ

(2.41)

where ϵ is a small constant to avoid division by zero, β1 = 0.9, β2 = 0.999,

and α = 0.001. In the present study, the Adam optimizer is taken from

PyTorch ML library [181] to optimize the weight parameters.

2.3.2.2 Global Extended Kalman Filter Optimization

GEKF is a non-linear second-order optimization method [23, 113]. The

key advantage of the GEKF compared to other algorithms is its fast and

reliable optimization capabilities. This is because it minimizes the error for

each data point independently and converges faster than other methods. In

this study, we employ the GEKF method to optimize the ANN weights. In

GEKF method, the weights (⃗at+1) are updated from the previous weights

(⃗at). This process requires the Kalman gain matrix (KG) and the error

vector (E⃗). The error vector represents the difference between the actual

output and the predicted value, which is calculated using the old weights in

ANN. The updated weights estimation has been calculated using Eq. 2.42

a⃗t+1 = a⃗t + (KG × E⃗) (2.42)

For energy and force prediction, the error vector (E⃗) comprises one

energy (Ecluster
DFT −Ecluster

ANN ) and 3N force component vector (FDFT
α −FANN

α )

of the data points of DFT and ANN. Hence, the dimension of the error

vector is 3N+1. Where KG is Kalman gain, which can be taken by the

Kalman filter equation,
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KG = λ−1
n

[
Po ·HT

λ−1
n (H · Po ·HT ) +R

]
(2.43)

where

λn = λo × λini + (1− λo) (2.44)

Here λn is a forgetting function which is used to prevent the weights from

getting trapped in a local minimum. In this work, I use λo and λini are ini-

tialized as 0.99 and 0.97, respectively. Hessian matrix (H) is the derivative

of the error vector with respect to each weight. For the update of weights

in each step, the Kalman filter uses the error covariance matrix of weights

(Pnew), which contains information on the direction of previous updates of

weights. The Po matrix is initialized as an identity matrix (I). The error

covariance matrix gets updated at every step (Po = Pnew) by using Eq.

2.45

Pnew = λ−1
n [(I −KG ·H)Po] +Q (2.45)

The step-by-step explanation of the GEKF process is expressed below:

Initialization: I initialized the ANN weights with random values,

also defined the process noise (Q) and the measurement noise covariance

(R), and initialized the error covariance matrix (Po). In this study, Q is set

to 0.000001, R to 0.2, and the initial Po value to 50.

First evaluation: Using the initial random weights, compute the total

energy and the 3N force components for the first reference point in the

dataset. Then, calculate the error vector (E⃗).

Kalman gain: Determine the Kalman gain matrix (KG) by utilizing the

H matrix and the initial error covariance matrix (Po).

Weight update: Finally, update the weight vector according to Eq. 2.42.

This approach allows for the simultaneous prediction of energy and

forces using an ANN with minimal error and high accuracy.
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2.4 Other ML Models

In this study, I have used additional ML models, including GPR and KRR,

along with ANN. GPR provides probabilistic predictions with uncertainty

estimates, which are useful for capturing complex patterns. KRR uses

the kernel trick to effectively model non-linear relationships. Together,

these models offer a flexible and interpretable approach for analyzing and

predicting.

2.4.1 Gaussian Process Regression

The GPR model is a supervised ML technique that adopts a probabilistic

approach to interpret data, functioning on a non-parametric basis [104]. It

is a stochastic process where every finite subset of its collection of random

variables has a multivariate normal distribution. That is to say, for an

index set X, a real-valued stochastic process {f(x), x ∈ X} is a Gaussian

process if, for any subset x = (x1, . . . , xn) ∈ X, f(x) has a joint Gaussian

distribution. It is then completely described by its mean function m and

its covariance function k.

f ∼ N (m(x), K(x, x′)) (2.46)

Where K(x, x′) is the covariance matrix with entries Ki,j = k(xi, x
′
j). In

other words, a Gaussian process can be understood as a multivariate Gaus-

sian distribution with an uncountably infinite number of random variables.

The mean function m can be any real-valued function, and it is often set

to zero by subtracting the mean from the data. The kernel function k can

be any valid kernel. Thus, a Gaussian process is often written as:

f(x) ∼ GP (m(x), k(x, x′)) (2.47)

To sample functions from the Gaussian process, I simply need to de-

fine the mean and covariance functions. The covariance function k models
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the joint variability of the Gaussian process random variables, returning

the modeled covariance between each pair of inputs. In other words, with

f and f ∗ representing the training and test outputs, respectively, I have

the following joint distribution:

 f
f ∗

 ∼ N

0,

K(X,X) K(X,X∗)

K(X∗, X) K(X∗, X∗)

 (2.48)

As I have seen, the specification of this covariance function, the kernel

function, implies a distribution over functions. By choosing a specific kernel

function it is possible to set prior information on this distribution. I can

sample function evaluations of a function drawn from a Gaussian process

at a finite but arbitrary set of points. Using the properties of Gaussian

processes, I can evaluate the posterior by conditioning the joint Gaussian

prior distribution on the observation:

(f ∗ | X∗, X, f) ∼ N
(
K(X∗, X)K(X,X)−1f, K(X∗, X∗)

−K(X∗, X)K(X,X)−1K(X,X∗). (2.49)

In the GPR model, I use the squared exponential kernel, also known

as the radial basis function (RBF) kernel [182] for its effectiveness in mod-

eling smooth and continuous functions.

KRBF(x, x
′) = exp

(
−∥x− x′∥2

2l2

)
(2.50)

2.4.2 Kernel Ridge Regression

KRR integrates ridge regression (linear least squares with L2-norm regular-

ization) with the kernel trick [105]. This allows it to learn a linear function

in the feature space defined by the chosen kernel. When non-linear kernels

are used, KRR effectively models a non-linear function in the original in-

put space. KRR model minimizes a loss function composed of two terms: a

residual error term and a regularization term. Given a dataset {(xi, yi)}Ni=1,
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where xi ∈ Rd are the input features and yi ∈ R are the target values, the

objective of KRR is to find a function f(x) that minimizes the following

cost function:

E(L) =
N∑
i=1

(yi − f(xi))
2 + λ∥f∥2H (2.51)

where:

• ∥f∥2H represents the norm of the function f in a RKHS method,

• λ > 0 is the regularization parameter that controls the trade-off be-

tween the fit to the data and the complexity of the model.

Using the representer theorem [183], the solution f(x) can be ex-

pressed as a linear combination of kernel functions:

f(x) =
N∑
i=1

αiK(x, xi), (2.52)

where K(x, xi) is a positive semi-definite kernel function that computes

the similarity between x and xi, and αi are the coefficients to be

learned. By substituting f(x) into the cost function and solving for

α = [α1, α2, . . . , αN ]
T , the following closed-form solution is obtained:

α = (K+ λI)−1y, (2.53)

where K is the kernel matrix with entries Kij = K(xi, xj), I is the identity

matrix, and y = [y1, y2, . . . , yN ]
T is the vector of target values. In this work,

I use the RBF kernel from Eq. 2.50. Once it α is computed, predictions

for a new data point xnew can be made as:

f(xnew) =
N∑
i=1

αiK(xnew, xi). (2.54)

2.5 Atomic Descriptor Function

The atomic descriptor function plays a crucial role in the accurate represen-

tation of an atom’s local environment within nanoclusters. In ML models

applied to molecular systems, this descriptor must be carefully designed to
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ensure that the atom’s local environment is captured in a manner that is

invariant to specific transformations. In particular, these functions must

satisfy the properties of translational, rotational, and permutational invari-

ance to ensure that the atomic interactions are represented consistently,

irrespective of their orientation or order within the nanocluster [120].

Translational invariance ensures that the descriptor function remains

unaffected by the overall position of the nanocluster in space. This is

critical as the position of the nanocluster relative to an arbitrary origin

has no physical relevance for its intrinsic properties, such as dipole mo-

ments or interaction energies. Similarly, rotational invariance ensures that

the descriptor function is independent of the cluster’s orientation in space.

Whether the nanocluster is rotated or remains in its original orientation,

the symmetry function produces the same result, allowing the model to

capture the true physical interactions between atoms without being misled

by extrinsic factors like molecular orientation. The third key requirement,

permutational invariance, ensures that the function is indifferent to the

ordering of atoms within the nanocluster. For example, if two atoms of

the same element switch positions in the atomic structure, the descrip-

tor function will produce identical results. This is particularly important

when dealing with metallic systems like gold, silver or platinum nanoclus-

ters, where multiple atoms of the same type may be present in symmetric

configurations.

By ensuring invariance to these transformations, symmetric descrip-

tor functions guarantee that each atomic environment is uniquely mapped,

meaning that identical local atomic environments will always yield the same

descriptor. This uniqueness is essential for neural network to correctly iden-

tify and learn the complex relationships between atomic configurations and

properties such as molecular dipole moments. Furthermore, the descriptor

function captures the structural equivalence between atomic environments,

ensuring that symmetrically equivalent configurations are treated as iden-

tical, thus preventing redundant or conflicting information from entering

the model. These descriptor functions serve as input to the ANN model
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to predict energies, forces or polarizabilities. The number of descriptors

must be sufficient to provide a complete representation of the atomic en-

vironment. If too few descriptors are used, the representation may lack

important details, while an excess of descriptors can lead to redundancy.

To select the optimal number of descriptors, it is essential to combine a

thorough understanding of the atomic system with iterative testing. This

process ensures that the chosen descriptors effectively capture the atomic

environment without being too sparse or redundant. Once the optimal

descriptors are identified, it is important that the number of descriptors

for each atom remains consistent across the entire system. This consis-

tency is necessary to maintain the correct dimensionality throughout the

neural network model, allowing for accurate predictions of energy, forces,

and polarizabilities. In this work, I utilized a descriptor function that in-

corporates both the radial and angular environments of an atom. For the

angular environment, I used power spectrum and bispectrum-based func-

tions to accurately depict the atomic environments.

2.5.1 Radial Descriptor Function

Radial descriptor functions are the two body functions which incorporate

the radial distribution in the environment around an atom. For each ith

atom, the function is expressed as a sum of Gaussian functions with varying

decay rates ε, depending on the distance rij between the ith and jth atoms

(see Eq. 2.55). These functions explore various regions up to a specified

cutoff radius, ensuring a smooth transition in interactions as atoms near or

far away from this cutoff radius.

Qi
rad =

∑
j ̸=i

e−εr2ijfc(rij). (2.55)

Where the cut-off function fc(rij) is,

fc(rij) =
1

2

[
cos

(
πrij
rc

+ 1

)]
. (2.56)
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Here rc is the cutoff radius, its value is chosen to be 8Å in accordance

with our previous studies [134, 177, 184, 185]. The hyperparameter ε used

in this study is listed in Table 2.1, which controls the width of the multiplied

Gaussian function as well as the decay of its tail portion. The number

and distribution of these parameters are finalized through a trial-and-error

process. Various sets of ε values are tested by performing neural network

prediction for energy and force. The prediction errors are then analyzed

to determine the optimal number of parameters. In this work, I use nine

different values of ε from Table 2.1 to produce nine radial functions by

employing Eq. 2.55

Table 2.1: Values of ε parameter

.

ε(Å−2) 0.005 0.015 0.0230 0.038 0.060 0.090 0.150 0.260 0.480

Radial functions alone don’t capture atomic movement at fixed inter-

atomic distances; additional functions are needed to describe the angular

positioning of atoms relative to each other. In this study, I use higher-

order invariants angular functions derived from atomic density modelled

by spherical harmonics.

2.5.2 Atomic Density Function

The atomic density function (ADF) serves as a key descriptor that accounts

for the local environment of each atom in the cluster. It is represented as

a sum of delta functions centred on neighbouring atoms.

ρi(r) =
∑
j ̸=i

δ(r− rij), (2.57)

The density can be represented as an expansion using spherical har-

monics Ylm(θ, ϕ), which serve as an orthonormal basis for L2 functions
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defined on the unit sphere, which is shown in Eq. 2.58

ρ(r̂) =
∑

δ(r̂− r̂ij) =
∞∑
l=0

l∑
m=−l

clmYlm(r̂ij) (2.58)

From Eq. 2.58, it indicates that radial information is completely

omitted from the density projection, as rij is not directly factored into the

calculation of atomic density. To address this, a factor is incorporated into

the delta function expansion to reflect the actual positions of the atoms

within a certain cut-off distance. The modified ADF is defined as follows:

ρi(r) =
∑
j ̸=i

e−ηr2ijδ(r− rij)fc(rij), (2.59)

Where the vector rij = ri − rj and its magnitude rij represent the distance

between the ith atom and the jth atom in its vicinity within a certain

range defined by the cut-off function (fc(rij)). In the above Eq. 2.59, the

parameter η modulates the width of the Gaussian function. The factor η

accounts for varying distances from the central atom. The hyperparameter

η are used in this study are listed in Table 2.2

Table 2.2: Values of η parameter

η(Å−2) 0.0028 0.0040 0.0110 0.028 0.059

The spherical harmonic coefficient cilm is obtained by the inner prod-

uct of Ylm with the ADF ρ(r̂), and it is given as:

cilm =
∑
j ̸=i

Y ∗
lm(r̂ij)e

−ηr2ijfc(rij). (2.60)

The coefficient cilm contains all the information about the ADF for atom

i. The ADF is represented by spherical harmonics coefficients cilm, which

describe the amplitude and phase of the atomic environment at a specific

frequency l and m. Since the spherical harmonics expansion is infinite, it

is truncated at a specific l value. This value is chosen by fitting the model

to minimize errors in predictions.

Power Spectrum : A descriptor that exhibits both rotational and

permutational invariance can be constructed from the coefficients cilm as a
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power spectrum. This power spectrum serves as a second-order invariant

descriptor for atomic environments, ensuring consistency under rotations

and permutations. For the ith atom, it can be expressed as follows:

Di
ang,PS,l =

4π

2l + 1

l∑
m=−l

(cilm)
∗cilm, (2.61)

In this study, l ranges from 0 to 9, and η is set to 5 (as shown in Table

2.2), resulting in 50 angular coefficients per atom. This power spectrum

function captures the angular information of the local atomic environment

surrounding the ith atom.

Bispectrum : In the power spectrum [134, 177], which is a second-

order invariant descriptor, can effectively capture an atomic environment,

but some information may be lost when Fourier modes are treated indepen-

dently. In this thesis, the present study explores the use of the third-order

invariant bispectrum [186, 187] to address this limitation in representing

the atomic environment with the power spectrum.

The bispectrum is obtained through the Fourier transform of the

triple correlation function [188], thereby incorporating the coupling of in-

formation between two frequencies (l1, l2) as depicted in Eq. 2.62:

Bi
ll1l2

=
l∑

m=−l

l1∑
m1=−l1

l2∑
m2=−l2

cilm
∗
C ll1l2

mm1m2
cil1m1

cil2m2
, (2.62)

where C ll1l2
mm1m2

represent the Clebsch Gordon coefficients. The phase cou-

pling between two frequencies (l1, l2) provides additional information com-

pared to independent frequency (l). To construct the bispectrum, the co-

efficient l ranges from |l1 − l2| to |l1 + l2| and the sum of these coefficients

(l, l1, l2) must be an even number. Maintaining m1 + m2 = m such that

Clebsch Gordon coefficients do not equal to zero. Hence, with increasing

values of l1 and l2, the calculation of the bispectrum becomes more complex

due to the expanding number of potential combinations for l,l1, and l2. I

present a solution by calculating the bicoherence [186, 189], a normalised
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Table 2.3: Possible combination of l, l1 and l2 for l1 max =4, l2 max = 4.

ll1l2 ll1l2 ll1l2 ll1l2 ll1l2

000 121 222 624 534

101 312 422 033 734

202 213 123 233 044

303 413 323 433 244

404 314 523 633 444

011 514 242 134 644

211 022 424 343 844

form of bispectrum, to evaluate the frequencies with correlated information:

Di
ang,BS,ll1l2

=

√
(Bi

ll1l2
)2

Di
l1
.Di

l2
.Di

l

. (2.63)

In our case, I employ Eqs. 2.62 and 2.63 and explored a range for l1,

l2 spanning from 0 to 4, while l varying from |l1 - l2| to |l1 + l2|. This

exploration yielded a total of 35 combinations representing distinct values

for l, l1 and l2 as outlined in Table 2.3. Subsequently, I selected the top 15

combinations per atom with a bicoherence range of 0.4 to 1.0, extracting 15

bispectrum coefficients. Therefore, these extracted coefficients are adequate

for describing complex atomic environments.

2.5.3 Descriptor for the Nanoalloys

The modeling of the atomic density is distinct for nanoalloy systems, pri-

marily due to the presence of two different metal atoms. In nanoalloys, the

interaction and arrangement of these different metal atoms lead to unique

atomic environments and bonding characteristics that differ with the neigh-

boring atoms. To effectively incorporate this effect into the ADF, I utilized

a bond-specific weighting factor ϑij for each pair of ith and jth atoms. This

weighting factor is defined as ϑij = eµij/mβ , following the methodology

briefly described in the recent works of Bulusu and co-workers [184]. By
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implementing this approach, I am able to account for the influence of dis-

tinct atomic interactions within the nanoalloy system. The weighted atomic

density can be written for nanoalloy systems as follows:

ρiNA(r) =
∑
j ̸=i

ϑije
−ηr2ijδ(r − rij)fc(rij), (2.64)

Hence, the weighted radial function for nanoalloys is written as:

Qi
rad =

∑
j ̸=i

ϑije
−εr2ijfc(rij). (2.65)

The parameter µij appearing in the exponential is the reduced mass

given by
mi×mj

mi+mj
, where mi and mj are the atomic masses of ith and jth

atoms, respectively. The parameter mβ represents the atomic mass of an

atom whose function is being calculated.

In Eq. 2.64, ρNA
i (r) represents the weighted atomic density at position

r around atom i. The summation runs over all atoms j except i. The factor

e−ηr2ij is a Gaussian function controlling the spatial spread of the atomic

density based on the interatomic distance rij. The function δ(r−rij) is the

Dirac delta function, which selects contributions exactly at distance rij. Fi-

nally, fc(rij) is a cutoff function that smoothly reduces contributions from

atoms beyond a certain distance to ensure locality. In Eq. 2.65, ε represent

the parameter controls the decay rate of the radial function with distance.

To accurately model the forces in nanoalloy systems, it is essential to ad-

dress the complexities introduced by their multi-component nature. The

weighted atomic density function and weighted radial function have been

employed to calculate the energy for nanoalloys. However, this method in-

troduces an undesired scaling of forces due to the bond-specific weighting,

complicating the neural network’s ability to converge on a global minimum

for the weights. To address this issue, the forces are modelled separately

from the previously calculated energy, ensuring more accurate force pre-

dictions. The schematic diagram illustrating this approach is presented in

Figure 2.2.
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Figure 2.2: Calculation of energy and force using ANN for nanoalloy sys-

tems.

I calculate the force acting on the system by using the following ex-

pression for the χth component (χ = x, y, z) of the force in terms of the

derivative of energy with respect to input descriptor for nanoalloys:

F i
χ = −∂E

′
cluster

∂χi

= −
atoms∑
N=1

∂E ′
N

∂χi

= −
atoms∑
N=1

M∑
k=1

∂E ′
N

∂Gµ
N,k

(
ωs ×

∂Gµ
N,k

∂χi

)
(2.66)

Here, E ′
cluster denotes the dummy energy of the cluster, which is de-

termined by putting the bond-specific weighting factor ϑij = 1 in Eqs.

2.64 and 2.65. Such modifications in descriptors are required for smooth

training of ANN without any numerical instability. In order to add the

characteristics of an element to the local environment of the atom, I used

an element-specific weighting factor (ωs) to modulate the gradients of the

descriptor with respect to the atomic coordinates. In Eq. 2.66, the weight-

ing factor ωs is defined as the ratio of the effective nuclear charge (Ze) of

the ith atom to the total effective nuclear charge of all chemical species
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present in the molecular system.

2.5.4 Molecular Dynamics Simulation

The PES of any system can be explored using MD simulations to study

its structural and dynamic properties. Since the 1980s, MD simulations

[190, 191] have proven to be an effective tool for simulating molecular sys-

tems over time. Understanding the behaviour of chemical systems under

realistic conditions requires accurate modeling of atomistic processes. Sim-

ulating these processes at finite temperatures provides valuable insights

into the interactions and transformations within the system. Therefore,

MD simulation techniques are crucial for tracking the dynamics of a chem-

ical system and for computing ensemble-averaged properties, such as free

energies, under different temperature and pressure conditions. The conven-

tional method for simulating a chemical system over time involves using MD

trajectories, where molecular positions are updated by following Newton’s

equations of motion.

Fi(t) = mi
∂2ri
∂t2

(2.67)

Where Fi denotes the force acting on the ith atom, m is the mass of the

atom, and ri signifies the atomic positions described in cartesian coordi-

nates. Hence, Newton’s equations of motion in terms of potential energy

(V (ri)) are

Fi(t) = −∂V (ri)

∂ri
(2.68)

Hence,

mi
∂2ri
∂t2

= −∂V (ri)

∂ri
(2.69)

In order to integrate the equations of motion, the MD simulations must

calculate the forces of all atoms at each time step. In this study, ANN

potential has been used to conduct the MD simulation at finite tempera-

tures. The Verlet algorithm [192] is used to update the positions (ri) and

velocities (v) at each time step (t), and the Anderson thermostat [190] is
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utilized to keep the temperature constant during the simulation. The sim-

ulations were performed at different temperatures to study the PES of the

nanoclusters.

MD trajectories were collected at varying temperatures and time

steps. After the various initial configurations, structures were sampled ev-

ery 1000 steps. These structures were then quenched using limited memory

Broyden–Fletcher–Goldfarb–Shanno (L-BFGS) local optimization [112] to

identify local minima on the PES, allowing for effective exploration of the

surface.

2.6 Polarizability

To study the response properties of metal nanoclusters in this work, I focus

on polarizability, which describes a material’s ability to become polarized

when exposed to an electric field. When a dielectric material is subjected

to an external electric field, the charge distribution within its atoms or

molecules is distorted, causing a displacement of charges (see Figure 2.3).

The positive charges (nuclei) tend to move in the direction of the field,

while the negative electrons are pushed in the opposite direction. When

the electric field is extremely strong, atoms can be ionized. However, equi-

librium is achieved for moderate field strengths. The electric field tends to

displace the nuclei and electrons in opposite directions, though their mu-

tual attraction still holds them together. As a result, the atom or molecule

develops an induced electric dipole moment that depends on the applied

field. For example, a neutral atom subjected to an electric field F⃗ acquires

an induced dipole moment µ⃗ that is roughly proportional to the field, This

can be expressed as:

µ⃗ = αF⃗ (2.70)

Here, α denotes the atomic polarizability, and the induced dipole aligns

with the direction of the electric field.
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Figure 2.3: Polarization of molecule in the presence of electric field.

2.6.1 Polarizability Formulation

The interaction of an external electromagnetic field with matter results in

the induction of dipole moment in the matter. The total dipole moment p⃗

can be expanded in a Taylor series in the power of external applied electric

field F⃗ as [193]:

pi = µi +
∑
j

αijFiFj +
∑
jk

βijkFiFjFk +
∑
jkl

γijklFiFjFkFl + · · · , (2.71)

where pi and Fi denote the ith (i = x, y, z) component of dipole moment

p⃗ and electric field F⃗ , respectively. In the above expression, µi is the ith

component of permanent dipole moment which may be absent for some

systems with special symmetry. On the other hand, the induced part of

the dipole moment characterized by αij is the linear polarizability, and

βijk and γijkl are second- and third-order hyperpolarizabilities. Note that

α, β, and γ are second-, third-, and fourth-rank tensors, respectively. In

the present work, I focus on the calculations of static (that is frequency

independent) polarizability only.

The interaction of the dipole moment with the external field in turn

leads to a change in the energy of the material. The change in energy can

also be expanded in powers of the applied electric field F⃗ . Restricting up

to second-order in the field, the change in energy is given by [193]:

∆E(F ) = −
∑
i

µiFi −
1

2

∑
i,j

αijFiFj. (2.72)

From Eq. 2.72, the static polarizability αij can be written in terms of the

second derivative of energy with respect to electric field strength along ith
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and jth axes:

αij =

[
∂2E

∂Fi∂Fj

]
F=0

, (2.73)

or from Eq. 2.71, it can be written as the first derivative of ith component

of induced dipole moment with respect to the electric field along jth axis:

αij =

[
∂pi
∂Fj

]
F=0

. (2.74)

The expression for polarizability in terms of the derivatives of energy forms

the foundation of the finite-field method. This method is successfully used

to calculate static polarizability using a ground-state DFT-based approach.

Notably, it does so without relying on the density functional perturbation

theory (DFPT) approach [194–198].

As mentioned before, polarizability is a tensorial quantity consisting

of nine components. In this thesis, I calculate two representative quantities

characterizing the linear response properties of a cluster dependent on the

nine components, namely, the average or isotropic polarizability (αiso) given

by:

αiso =
1

3
(αxx + αyy + αzz), (2.75)

and anisotropy in polarizability (∆α) defined as:

∆α =

{
1

2

(
(αxx−αyy)

2+(αyy−αzz)
2+(αzz−αxx)

2

)
+

(
6α2

xy+6α2
yz+6α2

zx

)}1/2

.

(2.76)

The αiso provides a measure of the average polarizability of a molecule,

while ∆α provides a measure of the anisotropy of the cluster’s electron den-

sity. Thus, both quantities are important in understanding how molecules

interact with electric fields.
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Chapter 3

Structure and Dynamics of

Ag-Pt Nanoalloys

3.1 Introduction

Noble metal nanoclusters, particularly those containing platinum, are

widely recognized for their superior catalytic properties in various chemical

reactions, including CO oxidation [38, 39] and hydrogenation [40]. How-

ever, the high cost and limited availability of platinum have necessitated

the development of more affordable bimetallic nanoclusters. Alloying plat-

inum with transition metals like silver not only reduces platinum usage but

also enhances catalytic performance through synergistic effects [41, 42, 44].

Ag-Pt nanoalloys have emerged as promising materials in catalysis due to

their unique combination of high efficiency and reduced reliance on pure

platinum [46, 50, 52]. The synergy between Ag and Pt atoms enhances

catalytic performance, making these nanoalloys cost-effective alternatives.

This has led to their extensive use in both catalysis and optoelectronics.

The catalytic activity of Ag-Pt nanoalloys is strongly influenced by their

size, composition, and atomic arrangement. By tailoring these factors, it is

possible to optimize their performance and achieve higher selectivity and

reactivity. The reactivity of Ag–Pt nanoalloys depends on their structure

and composition. It becomes important to determine their atomic-level
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geometrical and electronic structures to develop a better understanding of

their catalytic properties. In this chapter, I employ an ANN-based IAP

to construct the PES of Ag-Pt nanoalloys. A bond-specific spherical har-

monic descriptor is used as input to the ANN. Using this ANN-based IAP,

I investigate the structural characteristics of several medium-sized 38-atom

Ag-Pt nanoalloys and explore their temperature dependence. The choice of

38-atom clusters with a face-centred cubic (FCC) structure and truncated

octahedron (TO) geometry is driven by the fact that this cluster size rep-

resents a magic number configuration. Additionally, the high symmetry of

the TO geometry reduces the number of homotops and simplifies the study

of diffusion mechanisms.

3.2 Computational Details

Descriptor: The atomic environment descriptors consist of 59 inputs,

including 9 radial functions from Eq. (2.65) by varying the values of the

parameters ε in Table 2.1, and 50 power spectrum coefficients obtained

using Eqs. (2.60) and (2.61) for five different values of η (see Table 2.2),

with the maximum value of l = 10. All the above parameters are chosen

such that the optimal values of root mean square error in energy and force

can be obtained in the training process of ANN [134, 177, 184, 185].

Dataset generation: For training datasets for Ag38−nPtn nanoclus-

ters, I have used a variety of available configurations of bimetallic AgmPtn

clusters, with m ranging from 18 to 55 and n from 1 to 28, to fit the energy

and forces. In this way, I created 2000 different structures or data points

of various clusters using MD simulations with the Gupta potential [73] as

the IAP. Using these structures, I obtained the descriptors and trained the

ANN with the energy of an atom as the output. The force acting on an

atom was calculated by taking the derivative of the energy with respect to

the descriptors. After obtaining the first set of initial weights, I conducted

MD simulations at different temperatures to generate more data for the

Ag38−nPtn nanoalloys. After removing any correlations in the data points,
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I collected approximately 11,000 data points. I shuffled this dataset of

11,000 data points and then divided it into two sets: a training set con-

sisting of 10,200 structures and a testing set comprising the remaining 800

structures. I implemented a GEKF method to optimize the ANN weights.

DFT calculations: I used the VASP package [199] for all DFT-based

calculations (single-point energy and optimizations). For these calcula-

tions, I employed the PBE exchange-correlation functional [160] within the

GGA. The DFT-based calculations were performed using the PAW method

with pseudo-potentials, taking into account the scalar relativistic effects. A

gamma k-point (1× 1× 1) mesh was applied to sample the Brillouin zone.

The energy and force convergence was set to 10−4 and 10−3 respectively,

and the energy threshold was set to 260 eV. For the entire dataset, a box

length of 26× 26× 26 Å3 was used, with a vacuum dimension of 11 Å.

3.3 Results

3.3.1 Training and Testing of ANN Potential

The training phase uses a dataset of Ag-Pt nanoalloy configurations with

corresponding DFT energies and forces. During training, the weights are

iteratively updated, and after each iteration, the average root mean square

error (RMSE) for energy and force is calculated to validate the model.

Training stops when the RMSE on the testing set begins to increase. Fig-

ures 3.1.(a) and 3.1.(b) show the evolution of RMSE for energy and force

during the training and testing of the ANN potential. In our calcula-

tions, the training procedure is considered to be completed once the value

of RMSE in energy and force reaches 6 meV/atom and 125 (meV/Å)/atom,

respectively, for the testing data set. To check the accuracy of the ANN-

based results, the correlation plot between DFT energies (EDFT) and ANN

energies (EANN) of the test set is found to be linear and which can be seen

in Figure 3.2. The energy per atom (EANN) of various 38-atom nanoal-

loys with the corresponding results (EDFT) obtained through DFT-based
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(a)

(b)

Figure 3.1: RMSE in energy and force decay with the number of iterations

involved in the training and testing of data.

method. It is clearly evident that the two results match quite well, signi-

fying the level of accuracy of the ANN-based potential obtained for Ag-Pt
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Figure 3.2: Correlation plot between DFT and ANN energies of AgmPtn

clusters.

Figure 3.3: Comparison of x-component of force on Ag34Pt4 obtained em-

ploying DFT- and ANN-based methods.
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nanoalloys. To further assess the accuracy of the ANN fitting, in Figure

3.3, I compared the results for the x-component of force acting on Ag34Pt4

cluster obtained using DFT- and ANN-based methods. This Figure 3.3 elu-

cidates that the forces obtained by the ANN-based method are quite close

to the corresponding DFT-based results. Therefore, from the accuracy of

the results, it is natural to expect that the ANN-based method will yield

IAP for the 38-atom Ag-Pt nanoclusters with good accuracy.

3.3.2 Global Optimization of Ag38−nPtn Nanoalloys

I have used ANN-based IAPs to carry out MD simulations to explore the

PES of 38-atom Ag38−nPtn clusters. These simulations were carried out for

1.5 million time steps with a step size of 0.1 fs for different values of temper-

ature in the range of 100 - 600K for each composition of Ag38−nPtn (where

n = 1 - 8). Further, for each composition of the Ag38−nPtn nanoalloys, I

generated several trajectories starting from randomly chosen initial config-

urations. For each trajectory, I took the structure after every 5000 steps

and quenched it using the L-BFGS local optimization technique [112]. I col-

lected the top 50 lowest-energy isomers for each composition of Ag38−nPtn

nanoalloys predicted by ANN potential and re-optimized their geometries

with the DFT-based method. I found that the energy ordering predicted

using the ANN-based method is identical to that obtained with DFT. The

energies of the lowest-energy isomers predicted by ANN- and DFT-based

methods for each composition of Ag38−nPtn nanoalloys are tabulated in

Table 4.1. From this table, it can be seen that the two results for the en-

ergy are very close, and ANN-based numbers are slightly higher than those

obtained with DFT.

For completeness, I have shown in Figure 3.4 the geometric structure

of the lowest energy configurations of Ag38−nPtn nanoalloys obtained with

the ANN-based method. First of all, I note from this figure that the struc-

tural pattern of 38-atom Ag38−nPtn nanoalloys consists of 32 atoms located

on the surface region, and the remaining six atoms occupy the core region
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of the clusters. For Ag38−nPtn nanoalloys, the lowest isomers are found

to possess a core-shell structure. The core-shell structure is favoured for

Ag38−nPtn nanoalloys because of stronger Pt-Pt interactions in comparison

to Ag-Ag interactions and the greater surface energy of the Pt surface in

comparison to that of the Ag surface [15]. Due to these factors, Pt atoms

occupy the core region, and Ag atoms occupy the surface sites. Further, it

is observed that for n = 1 - 6, all the Pt atoms are located at the core region

of the Ag38−nPtn nanoalloys. On the other hand, for n = 7 and 8, the six

Pt atoms are located in the core regions, and the remaining Pt atoms (one

for n = 7 and two for n = 8) occupy the centre of the hexagonal faces form-

ing the surface of each structure. Having discussed the general structural

pattern of Ag38−nPtn nanoalloys, next I focus our attention on the geo-

metric characteristics of the individual nanoalloys. At this point, it should

be noted that except for Ag37Pt1 nanoalloy, the geometric structures of all

the other nanoalloys obtained with ANN- and DFT-based calculations are

identical.

Table 3.1: Energies of lowest energy isomers of Ag38−nPtn nanoalloys pre-

dicted by ANN- and DFT-based methods.

Composition ANN(eV) DFT(eV)

Ag37Pt1 -85.5405 -85.5716

Ag36Pt2 -88.7306 -89.0227

Ag35Pt3 -92.2483 -92.3998

Ag34Pt4 -95.6127 -95.9418

Ag33Pt5 -98.7986 -98.8902

Ag32Pt6 -101.7942 -102.0207

Ag31Pt7 -104.6887 -104.8421

Ag30Pt8 -108.3238 -107.9898

In the case of Ag37Pt1, the ANN potential predicts an amorphous

kind of structure as shown in Figure 3.4(b). On the other hand, DFT-

based calculations yielded a symmetric structure with Oh symmetry for

the lowest energy isomer, which is shown in Figure 3.4(c). For all other
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nanoalloys, the ANN-based potential predicts symmetric structures which

are identical to those obtained with DFT-based calculations. In all the

cases, the Pt atoms prefer to occupy the core position (see Figure 3.4).

The generic structure of the core regions in all these nanoalloys exhibits

an Oh-type symmetry except for Ag37Pt1 (see Figure 3.5). In the case of

Ag32Pt6, all six core sites of Oh-type symmetry are occupied by the Pt

atoms and all the 32 surface sites are fully occupied by the Ag atoms,

leading to the formation of a perfect core-shell structure.

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j)

Figure 3.4: Lowest energy isomers of (a) Ag38 (b) Ag37Pt1 (predicted with

ANN), (c) Ag37Pt1 (predicted with DFT), (d) Ag36Pt2, (e) Ag35Pt3, (f)

Ag34Pt4, (g) Ag33Pt5, (h) Ag32Pt6, (i) Ag31Pt7, and (j) Ag30Pt8. Grey and

blue balls represent Ag and Pt atoms, respectively.
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3.3.3 Energetic Analysis

I examine the relative stability of the different compositions of Ag38−nPtn

nanoalloys. For this, I calculate the excess energy (Eexe) and the second-

order energy difference (∆2E), for each of them [200–202]. The excess

energy, which is given in Eq. 3.1, has been used to investigate the relative

stabilities of the nanoalloys.

Figure 3.5: The geometry of the generic inner core of Ag38−nPtn nanoalloys,

where n = 2 - 8. Blue balls represent Ag/Pt atoms.

Eexe =
1

38
[E

Ag38−nPtn
tot − (38− n)

38
EAg

tot −
n

38
EPt

tot] (3.1)

where E
Ag38−nPtn
tot , EPt

tot, and E
Ag
tot are total energies of Ag38−nPtn, Ptn and

Agn system, respectively. The negative value Eexe indicates that the alloy

formation is energetically favourable and Eexe = 0.0 eV for pure Ag (n =

0) and pure Pt (n = 38). On the other hand, the second-order energy

difference is a measure of the stability of a cluster of a particular compo-

sition relative to its neighbours. The second-order energy difference for

Ag38−nPtn nanoalloys is determined by using the following expression:

∆2EAg38−nPtn = [E
Ag38−n−1Ptn+1

tot + E
Ag38−n+1Ptn−1

tot − 2E
Ag38−nPtn
tot ] (3.2)

A positive value ∆2E generally indicates a stable composition relative to

its neighbour. In Figure 3.6, I display the excess energy as a function of

the composition of nanoalloys. From this figure, it is evident that this

Ag32Pt6 is the most stable composition because it has the minimum value
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Figure 3.6: The excess energy plot with respect to the number of Pt atoms

in 38-atoms Ag38−nPtn nanoalloys.

Figure 3.7: Plot shows the second-order energy differences with respect to

the number of Pt atoms in 38 atoms Ag38−nPtn nanoalloys.
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of Eexe. Furthermore, in Figure 3.7, I depicted the ∆2E as a function of

the composition of nanoalloys. The maximum value for the ∆2E is also

observed for the Ag32Pt6 nanoalloy. Usually, a cluster with a high positive

value ∆2E has high stability relative to its neighbouring clusters. Thus,

from the point of view of excess energy and second-order energy difference,

I observed that this Ag32Pt6 is the most stable composition in comparison

to other isomers. This is also consistent with the fact that the Ag32Pt6

nanoalloy possesses a perfect core-shell-type structure, as discussed above

and shown in Figure 3.4.

3.3.4 Charge Transfer Analysis

The phenomenon of charge transfer plays a key role in determining the

chemical stability and reactivity of the nanoalloys. This phenomenon leads

to an uneven distribution of charges, which in turn may give rise to the

polarization of the nanoalloys. To estimate the charge distribution on Ag

and Pt atoms in Ag38−nPtn nanoalloys, I used Bader’s approach [203] to

partition the nanoalloy into atomic volumes by identifying the zero-flux

surfaces in the electron density field. This method calculates the Bader

charge (QB), which represents the total electron density confined within

each atom’s Bader volume. I determined the effective charge on each atom

using the Multiwfn tool [204], which allows for detailed charge analysis

based on the Bader partitioning scheme. From the QB values, I computed

the effective Bader charge (QB
eff) using the formula:

QB
eff = Zval −QB

where Zval is the number of valence electrons of the neutral atom. A positive

QB
eff indicates that the atom has lost electrons (cationic), while a negative

QB
eff indicates electron gain (anionic). This charge transfer behavior is at-

tributed to the electronegativity difference between Pt and Ag atoms. The

results of the average charge distributions on the Pt atoms in Ag38−nPtn

nanoalloys are compiled in Table 3.2. From this table, it can be seen that
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for all the nanoalloys, the Pt atoms residing in the core region carry a neg-

ative charge. On the other hand, for n = 7 and 8, the charge of the Pt

atom residing in the surface region is more (-0.202 e for n = 7 and -0.2515 e

for n = 8) than that of Pt atoms located in the core region. Therefore, for

Ag38−nPtn nanoalloys, the Pt atoms residing both in the core and surface

regions are anionic, whereas the Ag atoms acquire a cationic character.

Hence, the charge distribution shows that in Ag38−nPtn nanoalloys, the

charge transfer takes place from Ag to Pt as a Pt atom is more electroneg-

ative than an Ag atom.

The above results have an important bearing on the reactivity of these

nanoalloys towards the adsorption of CO and O2 molecules. In order to use

Ag-Pt nanoalloys as the catalyst of the CO oxidation reaction, it would be

more advantageous to have the Pt atoms, which are rich in negative charges,

be located in the surface region for greater exposure to the incoming gas

molecules involved in the concerned reaction. At elevated temperatures,

it is possible to bring out more Pt atoms on the surface to increase their

exposure to the impinging gas molecules. For this purpose, it is necessary

to get an idea of the temperature range at which Pt atoms are more likely

to be found in the surface region and estimate the probability of such

occurrences.

Table 3.2: Average charge distribution over Pt and Ag atoms on Ag38−nPtn

nanoalloys (where n = 1 - 8).

Composition charge on Pt(e) charge on Ag(e)

Ag37Pt1 -0.545720 0.02122

Ag36Pt2 -0.528483 0.02845

Ag35Pt3 -0.392453 0.03363

Ag34Pt4 -0.319539 0.03759

Ag33Pt5 -0.257644 0.03903

Ag32Pt6 -0.220839 0.04140

Ag31Pt7 -0.221869 0.05009

Ag30Pt8 -0.247435 0.05983
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3.3.5 Probability of Pt atom on the Surface at Finite

Temperature

The active sites play a vital role in heterogeneous catalysis, as the ad-

sorption of the gaseous molecules occurs at these locations on the surface.

Generally, all the sites are not equally active. The reactivity of any site

depends on the arrangement of atoms on the surface and their chemical

compositions. Knowing that the locations of Pt atoms on the surface may

turn out to be reactive, I calculate the probability of getting the structures

of Ag38−nPtn nanoalloys with at least one of the Pt atoms located on the

surface. For this purpose, I computed the ratio of the number of structures

for which at least one Pt atom is located on the surface to the total num-

ber of possible structures in the MD trajectories at a specific temperature.

To this end, I performed the MD simulations for 1 million time steps at

four different temperatures: 300K, 320K, 340K, and 360K. As the melting

temperature for pure Ag38 is 375K (obtained using classical MD simula-

tions), [205] all the MD calculations are performed at temperatures below

375K.

Table 3.3: Probability of surface Pt atom in Ag38−nPtn( for n=1-8) at finite

temperature.

Composition 300(K) 320(K) 340(K) 360(K) PB(360K)

Ag37Pt1 0 0 0 15.0 0

Ag36Pt2 0 0 0 58.8 0

Ag35Pt3 0 0 65.7 87.0 96.4

Ag34Pt4 0 0 67.0 83.2 85.8

Ag33Pt5 0 0 74.7 82.5 98.3

Ag32Pt6 0 0 0 98.3 99.0

Ag31Pt7 100 100 100 100 100

Ag30Pt8 100 100 100 100 100

As shown in Table 3.3, at 300K, for each composition of Ag38−nPtn

(n = 1 - 6) nanoalloys, the probability of finding a Pt atom on the surface
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is zero. On the other hand, for Ag31Pt7 and Ag30Pt8 nanoalloys, I find that

the six Pt atoms are always located in the core regions, and the remaining

Pt atoms occupy the surface sites. From the results presented in Table 3.3,

I infer that in the temperature range of 300K to 360K, at least one Pt atom

will certainly be found on the surface sites of Ag-Pt nanoalloys. At 340K,

the probability is greater than 60% for Ag35Pt3,Ag34Pt4 and Ag33Pt5 and

at 360K, it is greater than 80% for Ag35Pt3, Ag34Pt4, Ag33Pt5 and Ag32Pt6.

For the sake of completeness, in Table 3.3, I also presented a more

traditional method to compute probabilities using the Boltzmann factor at

360 K. I employed the following method to calculate Boltzmann probabil-

ities. The global minimum structure for each composition is used as the

initial structure for MD simulations. After removing 30% initial steps, I ex-

tracted one structure in every 1000 steps of the MD trajectory to create an

ensemble of 700 structures. In the ensemble, I selected the structure with

the lowest energy, Eref , as the reference structure. The probability of ith

isomer in the ensemble is given by Pi =
e
(Ei−Eref )/KT∑
e
(Ei−Eref )/KT . I have also shown

the total energies of the MD trajectory for the ensemble of 700 structures

for Ag35Pt3,Ag34Pt4 and Ag33Pt5 in Figures 3.8, 3.9, and 3.10 respectively,

obtained both at 340K and 360K. At 340K, for all the compositions except

Ag31Pt7 and Ag30Pt8, the reference structure is the structure with all Pt

atoms residing in the core. Hence, the Boltzmann probability for all the

compositions favours structures with all Pt atoms in the core. This is also

evident from Figures 3.8 (a), 3.9 (a), and 3.10 (a), in which I can clearly

see that the total energies of structures with core Pt atoms are generally

lower in energies in comparison to structures with at least one Pt atom on

the surface by more than 2 eV. Here, it should be noted that the cumula-

tive Boltzmann probability, PB =
∑
Pi, is the sum of probabilities of all

the isomers in which at least one Pt atom is on the surface of the cluster.

Therefore, at 340K, PB values can be considered zero for all practical pur-

poses and are not shown explicitly in Table 3.3. At 360K, the total energies

in Figures 3.8 (b), 3.9 (b), and 3.10 (b) correspond mostly to structures

70



(a)

(b)

Figure 3.8: MD trajectories of Ag35Pt3 at (a) T=340K and (b) T=360K.
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(a)

(b)

Figure 3.9: MD trajectories of Ag34Pt4 at (a) T=340K and (b) T=360K.
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(a)

(b)

Figure 3.10: MD trajectories of Ag33Pt5 at (a) T=340K and (b) T=360K.

73



with at least one Pt atom on the surface. In Table 3.3, at 360K, the PB

values calculated for Ag35Pt3,Ag34Pt4 and Ag33Pt5 favour structures with

one or more than one Pt atom on the surface. From this study, I can con-

clude that at 360K, the probability of structures with at least one surface

Pt atom is in good agreement with cumulative Boltzmann probabilities.

3.4 Summary

In summary of this work, an ANN-based IAP has been constructed for

Ag-Pt nanoalloys. The resulting ANN potential accurately fits both the

energies and the forces obtained using DFT for Ag-Pt nanoalloys. Using

ANN-based IAP, MD simulations and global optimizations of Ag38−nPtn

(where n = 1–8) nanoalloys have been performed. It is found that the low-

est energy isomers obtained are the core-shell structures, with Ag atoms

occupying the surface sites and Pt atoms occupying the core locations. It

has also studied the relative stability of Ag38−nPtn nanoalloys by investigat-

ing the excess energy and second-order energy difference calculations. It is

found that the composition Ag32Pt6 is a more favourable isomer compared

to the other isomers. By examining the charge distribution in Ag38−nPtn

nanoalloys, it has been shown that the Pt atoms carry a negative charge,

whereas the Ag atoms carry a positive charge. The charge transfer that

occurs from the surface Ag atoms to the core Pt atoms provides further

stability to the nanoalloys. It is well known that the locations of Pt atoms

in the clusters are generally reactive and responsible for the reactivity of

nanoalloys. Keeping this in mind, the probability of finding Pt atoms at

the surface sites at finite temperatures has been calculated. It is found that

for all the isomers of Ag38−nPtn nanoalloys, at least one Pt atom is certain

to be found at the surface sites of nanoalloys at a temperature above 360K.
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Chapter 4

Small Molecules Adsorption

on Ag-Pt Nanoalloys

4.1 Introduction

In Chapter 3, an ANN-based IAP was developed to fit the PES of medium-

sized Ag-Pt nanoalloys. It was observed that in the lowest energy isomers of

38-atom Ag-Pt nanoalloys, Pt atoms tend to occupy core positions, while

Ag atoms prefer surface sites. These surface sites are crucial in hetero-

geneous catalysis, as they serve as active locations for the adsorption of

gaseous molecules. The atomic arrangement and chemical composition of

the surface influences the reactivity of these sites. It has been established

that Pt-based nanoalloys enhance their stability and reactivity, exhibit-

ing selective catalytic activity in various chemical reactions [8, 61, 206].

Their interaction with gases like CO and O2 has been widely studied to

evaluate their effectiveness as nanocatalysts, particularly for CO oxidation

reactions. This reaction plays a vital role in environmental protection by

helping to remove harmful CO emissions from automobile exhausts and

hydrogen gases used in fuel cells [207–209]. The key step in this process

involves the adsorption and activation of these molecules on the catalyst’s

surface. Ag-Pt nanoalloys, a subclass of Pt-based systems, are investigated

as high-potential catalysts for CO oxidation and oxygen reduction reac-
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tions (ORR) due to their distinct structural and electronic properties. Ad-

sorption and activation of O2 are crucial steps for enabling environmentally

sustainable and industrially significant reactions like CO oxidation. Studies

have highlighted the structural stability, catalytic activity, and selectivity

of Ag-Pt nanoalloys, which are closely tied to their structural arrangement

and surface phenomena. These properties make them highly promising for

diverse catalytic applications [45, 46, 50, 52].

In this chapter, I employ an ANN-based method to construct a PES

for the 55-atom Mackay Ih structure of Ag-Pt nanoalloys. Specifically, I

modeled different compositions of Ag55−nPtn , where n ranges from 0 to 14.

This approach has enabled the identification of the global minimum struc-

ture of the nanoalloys using MD simulations. Additionally, the adsorption

of O2 and CO molecules on Ag55−nPtn nanoalloys has been systematically

analyzed using DFT methods.

4.2 Computational Details

The dataset is a crucial component in generating PES. The ANN-based

method was employed to fit the dataset using descriptor functions. As

discussed in Chapter 2, the input functions for the network are generated

by modifying the values of ε in Eqs. 2.65 and η in Eqs. 2.64, respectively.

By taking the radial distribution of the surrounding atom, I use nine radial

functions by employing Eq. 2.65. For the angular environment, I use fifty

power spectrum coefficients, resulting in 59 input descriptors for each atom

in the ANN. I curated the dataset, producing around 10,980 structures

of AgmPtn nanoalloys, ranging from 23 to 78 Ag atoms and 1 to 51 Pt

atoms. The dataset was split into 9900 training and 1080 testing data

points. I used a GEKF optimization method [177] to optimize the ANN

weights. In the training of the ANN potential, I determined both the

energy and forces for our reference dataset using the DFT in VASP package

[199]. The DFT calculations are carried out using the PAW method with

pseudo potential and scalar relativistic effects. I used the PBE exchange-
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Figure 4.1: Distribution of the fitted data from the DFT method. The red

line represents the mean of the data.

correlation functional [160] within the GGA. A gamma k-point (1× 1× 1)

mesh has been used to sample the Brillouin zone. The energy and force

convergence parameter was set to 10−4 eV and 10−3 eV/Å, and the cutoff

energy is set to 260 eV. A box length of 26 × 26 × 26 Å3 is used for the

complete dataset, with a vacuum dimension of 11 Å.

4.3 Results

4.3.1 Fitting of PES using ANN-based Potential

ANN has been trained to minimize the error of energy and the force on each

atom calculated using ANN and DFT. The training was conducted in an

iterative manner, and the RMSE for energy and forces on the test dataset

was calculated and is shown in Fig 4.2(a) and 4.2(b), respectively. The

RMSE values for energy and forces on the test dataset are found to be 7.5

meV/atom and 133 (meV/Å)/atom, respectively. To further evaluate the

accuracy of the ANN fitting, I have also plotted the correlation between

DFT energies and ANN energies in Figure 4.3. This linear correlation

78



of DFT and ANN energies indicates that the ANN-based method is in

agreement with the DFT method. I depicted the absolute error per atom

(in eV/atom) for all the clusters in the test set in Figure 4.4. The mean

of the absolute error is 0.009 eV/atom, and the maximum absolute error is

close to 0.088 eV/atom. It is important here to note that absolute errors

greater than 0.04 eV/atom arise mainly due to large-size clusters. This is

because the number of large-sized clusters in the training data set is very

small in comparison to medium-sized clusters, as shown in Figure 4.1.
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(a)

(b)

Figure 4.2: RMSE in (a) energy and (b) force decay with the number of

iterations involved in the training and testing data.
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Figure 4.3: The correlation plot between DFT energies and ANN energies

for AgmPtn clusters.

Figure 4.4: Plot showing the absolute error for AgmPtn clusters.
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Figure 4.5: Correlation plot of total energies of between ANN and DFT

based method for Ag55− nPtn nanoalloys (n = 0–14).

4.3.2 Global Optimization of Ag-Pt Nanoalloys using

ANN-based Potential

In this study, I employ the ANN-based potential for Ag-Pt nanoalloys to

perform MD simulations to investigate the PES of Ag55−nPtn for n = 1–14.

These simulations ran for a total of 1.5 million time steps with a step size

of 0.1 fs for a range of temperatures from 100 to 700 K. Several trajectories

have been constructed by running the simulations using different random

initial configurations. For each simulation, the structure for every 5000

MD steps has been quenched using the L-BFGS local optimization method

[112].

A 55-atom Ag55−nPtn nanoalloys are core-shell structures that adopt

Ih shape in their lowest energy isomers, as shown in Figure 4.6. Fur-

thermore, to check the stability of the lowest energy isomers at elevated

temperatures, MD simulations are performed for a range of temperatures

from 100 to 950 K, starting from the lowest energy isomer for all the com-
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positions. It has been observed that the lowest-energy isomers are the

dominant isomers even at elevated temperatures for all the compositions.

The energies obtained using the ANN potential for the core-shell Ih struc-

tures Ag55−nPtn are identical to those obtained using the DFT method, as

shown in Figure 4.5. According to the ANN-based structure of AgmPtn

nanoalloys, the Pt atoms are found to primarily favour core positions in

the lowest energy isomers of Ag55−nPtn nanoalloys with n = 1–14. This

preference is due to the fact that the metal atoms with greater cohesive

energy in bulk tend to form strong bonds with each other and occupy core

positions. To check this, I calculated the cohesive energy per atom (Ecoh)

for a pure Mn nanocluster using the following Eq. 4.1,

Ecoh = Et(M)− Et(Mn)

n
(4.1)

where, Et(M) and Et(Mn) are the total energies of the metal atom and Mn

nanocluster, respectively. From Eq. 4.1, the cohesive energy per atom of

Pt55 is 4.88 eV, and that of Ag55 is 2.18 eV. In the case of n = 1, i.e.,

Ag54Pt1 structure, the Pt atom is found to be located at the centre of the

core position while for n = 2 to 13 in Ag55−nPtn nanoalloys, Pt atoms are

found to occupy various available core sites. However, for n= 14, since

all the core sites are occupied by 13 Pt atoms, the 14th Pt atom is forced

to occupy a site that is located at the surface. The total energies of the

lowest energy isomer of Ag55−nPtn nanoalloys are shown in Table 4.1. In

Ag41Pt14, the surface Pt atom occupies the top of the vertex site in the

lowest energy isomer, which is shown in Figure 4.6 (o).

4.3.3 Assessment of the Relative Stability of

Ag55−nPtn Nanoalloys

(1) Excess energy: In order to conduct a comparative assessment of

the relative stability of various compositions of Ag55−nPtn nanoalloys, I

calculated the excess energy [210] (Eexe) which is given by following Eq.

4.2,
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o)

Figure 4.6: Lowest energy isomers of Ag55−nPtn nanoalloys, where n =

0-14. Grey and blue represent Ag and Pt atoms, respectively.
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Eexe = EAgPt
total −

(55− n)

55
EAg
total −

n

55
EPt
total (4.2)

In this Eq. 4.2, EAgPt
total is the total energy of Ag55−nPtn composition,

while EAg
total and EPt

total are the total energies of Ag55 and Pt55 nanoclusters,

respectively. The variation of Eexe with the number of Pt atoms is shown

in Figure 4.7. The presence of negative values in the excess energy im-

plies favourable alloying for all the compositions, and it reveals that the

Ag42Pt13 emerges as the most stable composition among all compositions of

Ag55−nPtn nanoalloys, where n = 0-14. It is interesting to note that Eexe of

Ag41Pt14 is only 0.1 eV higher in comparison to that of Ag42Pt13, whereas

Eexe’s of all the other compositions are greater than 0.2 eV in comparison

to the most stable composition. From Figure 4.7, I observed an interest-

Table 4.1: Total energies of Ag55−nPtn nanoalloys where n= 0-14 predicted

by ANN potential and DFT based method

System ANN(eV) DFT(eV)

Ag55 -124.472 -124.418

Ag54Pt1 -128.339 -128.041

Ag53Pt2 -131.732 -131.291

Ag52Pt3 -135.106 -134.701

Ag51Pt4 -138.340 -137.986

Ag50Pt5 -141.606 -141.428

Ag49Pt6 -144.545 -144.533

Ag48Pt7 -147.899 -147.753

Ag47Pt8 -151.357 -150.959

Ag46Pt9 -154.874 -154.415

Ag45Pt10 -158.460 -158.504

Ag44Pt11 -161.323 -160.958

Ag43Pt12 -164.228 -163.934

Ag42Pt13 -167.261 -167.032

Ag41Pt14 -169.991 -169.770
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ing trend in excess energies as I move from Ag55 to Ag41Pt14, the excess

energy required to replace a single Ag atom from the core by a Pt atom

is roughly -1.1 eV. This is the difference in excess energies while I move

from Ag55 to Ag54Pt1. The difference in excess energies is roughly -0.6 eV

for every additional replacement of Ag atom by a Pt atom upto Ag46Pt9.

Beyond Ag46Pt9, there is almost negligible change in excess energies. So,

it is very favourable to substitute a central Ag atom with a Pt atom. It is

favourable to substitute the next 9 Ag atoms in the core with Pt atoms,

but only marginally favourable (or unfavourable) for further substitutions.

I observed a similar trend in the flattening of excess energy close to the min-

imum value that has already been reported in the literature [46, 200, 210].

Such a trend may be attributed to the fact that as the size of the Pt core

increases, the cohesion between the Pt atoms (which is greater than those

of Ag atoms) gets saturated due to the newly added Pt atom moving away

from a central core. Due to the reduction of the cohesion, additional Pt

atoms move to surface sites, thereby reducing the excess energy.

(2) Composition-based stability: There is another way to check

the stability of various compositions of Ag55−nPtn nanoalloys by calcu-

lating the energy difference between Edist and EGM of Ag55, which gives

the energy required to distort the GM of Ag55 from Ag-Pt nanoalloy. For

Edist, consider the global minimum of every composition, replace all the Pt

atoms with Ag atoms, and do a single-point energy calculation. A large

positive value would indicate a large strain associated with a substitu-

tion (unfavourable), and a small positive value would indicate little strain

(favourable). The difference in energy is positive for all the Pt-substituted

nanoalloys, as tabulated in Table 4.2. However, I observed that the energy

difference is 0.45 eV, which indicates strain for the formation of Ag54Pt1

and reaches a maximum of 0.56 eV to replace all core Pt atoms with Ag

atoms in the case of Ag42Pt13.

(3) Interaction energy: Another stability descriptor that can

be considered to assess the relative stability of various compositions of

Ag55−nPtn nanoalloys is the interaction energy (Eint). Eint is defined as
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Figure 4.7: Plot of excess energy for Ag55−nPtn nanoalloys with number of

Pt atoms.

the stabilization energy of Ag55−nPtn nanoalloys with respect to distorted

core and distorted shell [211]. The structures of the distorted core and

distorted shell are considered to be the same as the structures in the opti-

mized Ag55−nPtn nanoalloys. Eint for core-shell Ag55−nPtn nanoalloys can

be calculated by the following Eq. 4.3,

Eint = Etotal(Ag55−nPtn)− Edis(core)− Edis(shell) (4.3)

where Etotal(Ag55−nPtn) is total energy of core-shell Ag55−nPtn structure

while, Edis(core) and Edis(shell) are energies of distorted core and distorted

shell structures of the Ag55−nPtn nanoalloys, respectively. A negative Eint

indicates that the formation of the core-shell structure is favourable in com-

parison to the distorted core and distorted shell structures. The variation

of Eint with the number of atoms of Pt is shown in Figure 4.8. From this

figure, it is evident that core-shell structure is favoured for all the com-
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Table 4.2: The energy difference between Edist and EGM with respect to

Pt-substituted nanoalloy.

Cluster Edist − EGM

Ag54Pt1 0.4527

Ag53Pt2 0.4798

Ag52Pt3 0.5027

Ag51Pt4 0.5120

Ag50Pt5 0.5190

Ag49Pt6 0.5287

Ag48Pt7 0.5237

Ag47Pt8 0.5376

Ag46Pt9 0.5427

Ag45Pt10 0.5528

Ag44Pt11 0.5587

Ag43Pt12 0.5619

Ag42Pt13 0.5636

Ag41Pt14 0.5667

positions, which is akin to the trend obtained for Eexe. It also reveals

that Ag42Pt13 nanoalloy is most stable and is closely followed by Ag41Pt14

nanoalloy, which is 0.1 eV higher in energy in comparison to Ag42Pt13

nanoalloy.

The following conclusion can be drawn from MD simulations and

energetic analysis of all the compositions of Ag55−nPtn nanoalloys. For all

the composition the core-shell Ih structures are dominant both at 0 K and

also at elevated temperatures upto 950 K. Using the energy descriptors

such as Eexe and Eint it is evident that Ag42Pt13 and Ag41Pt14 nanoalloys

are the most stable compositions.

In the following sections, I will investigate the adsorption and ac-

tivation characteristics of O2 and CO molecules on core-shell Ag55−nPtn

nanoalloys with n ranging from 0 to 14.
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Figure 4.8: Plot of interaction energy for Ag55−nPtn nanoalloys with num-

ber of Pt atoms.

4.3.4 Adsorption and Activation of O2

To investigate the adsorption of O2 onto Ag-Pt nanoalloys, first I consider

the most stable structures of various different compositions of Ag55−nPtn

nanoalloys, as shown in Figure 4.6, and place an O2 molecule at several

possible nonequivalent sites of each nanoalloy, as shown in Figure 4.9. The

Ih structure showcases a total of 20 identical triangular facets on its external

surface, and each facet possesses two distinctive sites, namely the vertex

and the edge. These facets offer seven potential adsorption sites (see Figure

4.9(b): T1 (atop the vertex), T2 (atop the edge), B1 (between a vertex and

an edge), B2 (between two edges), H1 (within the hollow region defined by

one vertex and two edges), H2 (within the hollow region defined by three

edges), and H3 (where an O2 molecule rotates by a small angle from its

orientation at the H1 site, coordinating with one vertex and two edges, see

Figure 4.10).
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Figure 4.9: One of the 20 identical triangular facets on its external surface

of core-shell structure for preferential adsorption sites.

In the literature survey, I found that O2 is more likely to prefer ad-

sorption at the bridge and hollow sites of 55-atom Ih structure. [206, 212].

Hence, to reduce the computational requirements, our focus is directed

towards O2 adsorption at the bridge or hollow sites only. To character-

ize the interaction between O2 and Ag55−nPtn nanoalloys, I employed the

adsorption energy Eads, which is determined by using the Eq. 4.4 below,

Eads = [E(cluster + O2)− E(cluster)− E(O2)] (4.4)

where E(cluster+O2), E(cluster), and E(O2) correspond to the energies of

the cluster-O2 complexes, bare isomers of Ag55−nPtn, and the isolated O2

molecule, respectively. It is important to mention that a higher negative

value of Eads calculated using Eq. 4.4 indicates a stronger interaction be-

tween the cluster and O2 molecule.

The adsorption energies of O2 and CO on the nanoalloy surfaces were

calculated using DFT as implemented in the VASP package [199]. The

PAW method [160] was employed to describe the interaction between core

and valence electrons. The exchange-correlation energy was treated within

the GGA using the Perdew–Burke–Ernzerhof PBE functional. A plane-

wave energy cutoff of 400 eV was used for the expansion of the wavefunc-

tions. Electronic self-consistency was achieved with an energy convergence
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threshold of 1 × 10−5 eV. Structural relaxations were performed until the

forces on all atoms were less than 0.01 eV/Å. A Gamma-point (1× 1× 1)

k-point mesh was applied to sample the Brillouin zone.

Figure 4.10: (a) H2, (b) H3, and (c) H3’ adsorption sites of O2 on the

external surface of the core-shell structure.

Furthermore the adsorption of O2 on Ag55−nPtn nanoalloys, five

nonequivalent bridge sites namely B1 and B2 and hollow sites H1, H2 and

H3 are considered. For all these sites, the O2 adsorption energies have been

calculated by using Eq. 4.4 and the corresponding values are compiled in

Table 4.3. The values highlighted in bold indicate the preferred adsorption

sites for O2. In this table, I also tabulate the O-O bond lengths of the

adsorbed O2. It is noted that for all compositions of Ag55−nPtn nanoalloys,

except for the Ag41Pt14 nanoalloy, hollow sites H2 or H3 are preferred as

their energies are lower in comparison to other sites. From Table 4.3, it

is apparent that from n = 0 to n = 5 in Ag55−nPtn nanoalloys, the most

preferable site for O2 adsorption is the hollow site (H2), as shown in Fig-

ure 4.11(a) to Figure 4.11(f) . In the case of n = 0, a 55-atom pure Ag

nanocluster (Ag55), and for Ag54Pt1, the adsorption energy of O2 on the

H2 site is -0.30 and -0.33 eV, respectively. For this site, it is observed that

O-O bond length undergoes an elongation of 0.15 Å in comparison to the

bond length of the free O2 molecule (dO–O = 1.23 Å). As I increased the

alloying proportion of Pt atom in Ag55−nPtn nanoalloys, i.e., as I go from

n = 2 to 5, the most favoured site for the O2 adsorption continues to be

the H2 site. However, for n = 6 to 13 on the Ag55−nPtn nanoalloys, the

maximum adsorption energies for O2 are found to be at the H3 site, as

91



(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o)

Figure 4.11: Most preferred O2 adsorption configuration on Ag55−nPtn

nanoalloys, where n varies from 0 to 14. Ag, Pt, and O atoms are symbol-

ized by grey, blue, and red balls, respectively.
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Table 4.3: Adsorption energy, bond length of the O2 molecule and charges

of the preferred sites for Ag55−nPtn −O2 nanoalloy-O2 complexes.

Cluster Eads(eV) dO-O(Å) Charges(e)

Ag55 -0.30 (H2) 1.38 -0.026

Ag54Pt1 -0.33 (H2) 1.38 -0.028

Ag53Pt2 -0.33 (H2) 1.37 -0.031

Ag52Pt3 -0.34 (H2) 1.38 -0.029

Ag51Pt4 -0.34 (H2) 1.35 -0.027

Ag50Pt5 -0.30 (H2) 1.38 -0.024

Ag49Pt6 -0.27 (H3) 1.38 -0.027

Ag48Pt7 -0.36 (H3) 1.41 -0.030

Ag47Pt8 -0.34 (H3) 1.41 -0.029

Ag46Pt9 -0.35 (H3) 1.40 -0.031

Ag45Pt10 -0.31 (H3) 1.41 -0.029

Ag44Pt11 -0.29 (H3) 1.39 -0.028

Ag43Pt12 -0.36 (H3) 1.39 -0.028

Ag42Pt13 -0.41 (H3) 1.40 -0.027

Ag41Pt14 -1.02 (B1) 1.36 -0.318

depicted in Figure 4.11(g) to 4.11(n). For n = 6, i.e., Ag49Pt6 nanoalloy,

the adsorption energy of O2 is -0.27 eV at the preferred H3 site shows weak

adsorption when compared to other highly adsorbed structures. In the case

of nanoalloys such as Ag48Pt7, Ag47Pt8, Ag46Pt9, Ag45Pt10, Ag44Pt11 and

Ag43Pt12, the adsorption energies of -0.36, -0.34, -0.35, -0.30, -0.29 and

-0.36 eV, respectively. In all of these cases, the bond length of O2 is nearly

1.4 Å. Furthermore, in the case of the Ag42Pt13 nanoalloy, it has been found

that the adsorption of O2 is equally prominent at both the H1 and H3 sites,

resulting in identical adsorption energy of approximately -0.41 eV for both

of these sites. In this composition, a new conformer identical to the one at

the H3 site can be obtained by rotating the O2 molecule on the adsorbed

H3 site by 180 degrees, which I named as H3
′
. The adsorption energies of

both H3 and H3
′
are found to be the same.
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It is important to note that adsorption of O2 is favourable on the

hollow sites in which core Pt atoms are directly bonded with surface Ag

atoms that are involved in forming the hollow sites on the facets. So, I

considered only those facets in which the core Pt atom is directly bonded

to Ag atoms that form the hollow site on the surface and ignore all other

facets. In the case of Ag54Pt1 and Ag42Pt13, the hollow sites on all 20

facets are chemically equivalent. In the case of Ag53Pt2, the 2
nd Pt atom is

directly bonded to Ag atoms on the surface that forms the H2 hollow site,

leading to 5 chemically equivalent facets. For Ag52Pt3, I got 10 facets that

are chemically equivalent, in which core Pt atoms are directly bonded to Ag

atoms on the surface hollow. For compositions from Ag51Pt4 to Ag43Pt12

I got chemically non-equivalent facets when the core Pt atoms are directly

bonded to surface Ag atoms. I found that the adsorption of O2 is favourable

on the hollow sites, in which the magnitude of charges is maximum. To

begin with, I calculated the charges on individual atoms on the cluster

using Bader charge analysis [203]. In order to find the most favourable

hollow site for adsorption of O2, I sum the charges on the Ag atoms that

form the hollow site in which the core Pt atom is directly bonded. Finally, I

chose the hollow site that has the maximum value of the summed charges. I

tabulate the summed charges for the most favourable hollow sites for every

composition in Table 4.3

From the above discussion, it can be concluded that by alloying Pt in

a bare Ag55 nanocluster, there is no substantial change in the adsorption

energy of O2 on Ag55−nPtn nanoalloys. On the bare Ag55 nanocluster, the

adsorption energy for O2 is -0.30 eV, and this value is -0.41 eV in the

case of the Ag42Pt13 nanoalloy. To enhance the role of Pt, it would be

more advantageous if the Pt atom were located at the surface site of Ag-Pt

nanoalloys. As discussed above, for Ag42Pt13, the Pt atoms have exhausted

all the thirteen core sites. Hence, the 14th Pt can only be accommodated

at the surface sites instead of going to core sites. I have investigated the

adsorption of O2 on the most stable Ag41Pt14 nanoalloy in which the 13

Pt atoms are present in the core region and one Pt atom is located on the
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surface site. Furthermore, the most favourable position for this 14th Pt

atom on the surface is the vertex site. In this case, I find that the B1 site is

favoured for the O2 molecule adsorption, as shown in Figure 4.11(o). The

adsorption energy of O2 on the B1 site is -1.02 eV, whereas at the H1 site,

it is -0.86 eV. On the other hand, the adsorption of O2 is weakest at the

H2 site. The O-O bond length at the B1 site is 1.36 Å, while the Pt-O and

Ag-O bond lengths are 1.95 Å and 2.28 Å, respectively. From these results,

it can be concluded that the Pt atom present on the surface of the core-

shell Ag41Pt14 structure exhibits stronger adsorption of the O2 molecule in

comparison to the Pt atom present in the core. The sum of charges of only

those atoms which are involved in a particular adsorption site (H2, H3 or

B1) is tabulated in Table 4.3 for all the compositions. These findings reveal

that the sum of charges on site B1 in Ag41Pt14, which is the preferred site

for O2 adsorption then the sum of charges at the H2/H3 sites of Ag55−nPtn

with n = 1–13. Therefore, I expected comparatively more charge transfer

between Ag41Pt14 and O2 molecule, resulting in stronger adsorption of O2

molecule on this nanoalloy.

4.3.4.1 d-band Center Calculation

The stronger adsorption of O2 on Ag41Pt14 in comparison to all other com-

positions considered in this study can be further understood in terms of

the electronic structure of bare Ag-Pt nanoalloys. It has been shown that

the centre of the d-band relative to Fermi energy plays an important role

in the reactivity of these nanoalloys. The increase in adsorption energy of

the nanoalloys can be directly correlated to the shift in the d-band centre

to higher energies. The d-band centre(the first moment of d-DOS distribu-

tion) developed by Nørskov and co-workers [213] is given by the following

Eq. 4.5,

Ed =

∫∞
−∞(E − EHOMO) Pd(E) dE∫∞

−∞ Pd(E) dE
(4.5)

where Ed is the d-band centre, the energy of HOMO of nanoalloy is denoted

by EHOMO, and the partial density of states (PDOS) of d-orbitals in the
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Table 4.4: d-band center value for all compositions of Ag55−nPtn nanoalloys

with n = 1-14.

Cluster d-band center (Ed)

Ag54Pt1 -4.223

Ag53Pt2 -3.769

Ag52Pt3 -3.787

Ag51Pt4 -3.734

Ag50Pt5 -3.725

Ag49Pt6 -3.681

Ag48Pt7 -3.677

Ag47Pt8 -3.628

Ag46Pt9 -3.607

Ag45Pt10 -3.543

Ag44Pt11 -3.531

Ag43Pt12 -3.462

Ag42Pt13 -3.445

Ag41Pt14 -3.343

nanoalloy is denoted by Pd(E). Using the above formula, I have calculated

the Ed for all the compositions considered in this study and values of Ed are

tabulated in Table 4.4. From Table 4.4, it is evident that Ed values shift to

higher energies as I increase the number of Pt atoms. It is also evident that

in Ag41Pt14, where the 14
th Pt atom occupies the surface site of nanoalloy,

the Ed value is closest to the Fermi energy and therefore is more reactive

to O2 molecule in comparison to nanoalloys in which Pt atoms are present

in the core sites.

4.3.4.2 Charge Transfer Analysis

To understand the mechanism of O2 activation on Ag-Pt nanoalloys, I

consider the transfer of charge between the nanoalloy and the O2 molecule.

By employing Bader charge analysis [203], I have assessed the charges on

chemisorbed O2 within the nanoalloy-O2 complex, as presented in Table
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4.5 along with O-O bond distance (dO-O). From Table 4.5, I found that the

charge transfer from Ag55−nPtn to O2 molecule results in an elongation of

bond length of O2 molecule (1.36 - 1.40 Å) as compared to that of free O2

molecule (1.23 Å). It is also evident that the charge transferred onto the O2

molecule is proportional to the elongation of bond length of O2 molecule.

I showed this by using a correlation plot in Figure 4.12 between the charge

on the O2 molecule and the elongation of bond length of O2 molecule with

correlation coefficient, R2 = 0.78.

Table 4.5: Total Charge on O2 and the bond length in Ag55−nPtnO2

Complex.

Cluster Total charge on O2(e) dO-O(Å)

Ag55 -0.78 1.38

Ag54Pt1 -0.78 1.38

Ag53Pt2 -0.73 1.37

Ag52Pt3 -0.77 1.38

Ag51Pt4 -0.66 1.35

Ag50Pt5 -0.76 1.38

Ag49Pt6 -0.76 1.38

Ag48Pt7 -0.83 1.41

Ag47Pt8 -0.83 1.41

Ag46Pt9 -0.79 1.40

Ag45Pt10 -0.80 1.41

Ag44Pt11 -0.76 1.39

Ag43Pt12 -0.75 1.39

Ag42Pt13 -0.80 1.40

Ag41Pt14 -0.60 1.36

For all the compositions, I observed from Table 4.5 that the charge

accumulation on chemisorbed O2 resulting in elongation of its bond lengths

(1.36 - 1.40 Å) as compared to that of free O2 molecule (1.23 Å). From Table

4.5, it is also evident that the elongation of bond-length of O2 molecule is

proportional to the charge transferred onto the O2 molecule.
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Figure 4.12: Plot shows a correlation between charges on O2 with respect

to the bond length of O2.

4.3.4.3 Adsorption of Multiple O2 Molecules on Ag41Pt14

Nanoalloy

Furthermore, I studied the adsorption of a second O2 molecule onto the

surface of Ag41Pt14 nanoalloy in the presence of an already adsorbed O2

molecule. The presence of the first adsorbed O2 molecule can influence the

adsorption of the second O2 molecule depending on the surface coverage and

available adsorption sites. In this context, I have already determined the

most stable adsorption site for a single O2 molecule on Ag41Pt14, and this

specific site remains constant as I proceed to identify the optimal adsorption

site for the next O2 molecule. I searched all possible sites for the adsorption

of the second O2 molecule and found that the adsorption of the second

O2 molecule is preferred at the bridge position on the same surface Pt

atom but non-adjacent to the first O2 as is shown in Figure 4.13. This

preference is attributed to the higher negative charge of the surface Pt

atom in comparison to the surface Ag atoms. The adsorption energy of

the second O2 is found to be -0.85 eV, and the bond length of both O2
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molecules is 1.33 Å. I observed a slight reduction in the bond length of the

first O2 molecule, indicating a strengthening of the Pt-O2 interaction.

Figure 4.13: The most favourable adsorption site for second O2 molecule

on Ag41Pt14 nanoalloy.

4.3.5 Adsorption of CO on Ag-Pt Nanoalloys

I have also investigated the adsorption of CO molecule onto Ag55−nPtn

nanoalloys, where n = 0–14. In the literature survey, it was found that the

CO prefers to get adsorbed in the top vertex (T1) site only. It should be

noted that placing a CO molecule, in which carbon atoms bind with the

metal atom at the T1 site of the nanoalloy, leads to a stable configuration for

all the compositions considered in this study. The corresponding adsorption

energy is the highest at this site, as illustrated in Table 4.6. From Table

4.6, the adsorption energy of CO is minimum (-0.46 eV) for pure Ag55

nanocluster and the C-O bond length is 1.15 Å. As I increase the alloying

percentage of the Pt atom in the Ag nanocluster, the adsorption energy

increases. In the case of Ag54Pt1, the adsorption energy of CO is found

to be -0.47 eV, which is only a slight increment in adsorption energy than

pure Ag nanocluster. It is because in Ag54Pt1, the Pt atom is positioned

in the centre of the core and not directly coordinated with the surface Ag

atoms.

From n= = 2–13, the T1 site, in which the surface Ag atom is directly

bonded to the core Pt atom, exhibits maximum adsorption energy in com-
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Table 4.6: The adsorption energy and bond length of the CO molecule on

preferred sites of Ag55−nPtn nanoalloys where n = 0-14.

Cluster Eads (eV) dC−O(Å)

Ag55 -0.46 1.15

Ag54Pt1 -0.47 1.15

Ag53Pt2 -0.55 1.15

Ag52Pt3 -0.54 1.15

Ag51Pt4 -0.53 1.15

Ag50Pt5 -0.53 1.15

Ag49Pt6 -0.51 1.15

Ag48Pt7 -0.52 1.15

Ag47Pt8 -0.52 1.15

Ag46Pt9 -0.53 1.15

Ag45Pt10 -0.54 1.15

Ag44Pt11 -0.55 1.15

Ag43Pt12 -0.56 1.15

Ag42Pt13 -0.58 1.15

Ag41Pt14 -2.48 1.17
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

(k) (l) (m) (n) (o)

Figure 4.14: Most preferred CO adsorption configuration on Ag55−nPtn

nanoalloys, where n varies from 0 to 14. Ag, Pt, C and O atoms are

symbolized by grey, blue, brown, and red balls, respectively.

parison to other T1 sites where surface Ag atoms are directly bonded to

core Ag atoms. The Ag42Pt13 nanoalloy, which has a perfect core-shell

structure, is most favourable for CO adsorption among all other Ag55−nPtn

nanoalloys in which Pt atoms are in the core. For n = 14, i.e., Ag41Pt14,

the CO adsorption is strongest (with adsorption energy = -2.48 eV) among

all the other compositions because CO adsorbs strongly to the surface Pt

atom in comparison to the surface Ag atom, as shown in Figure 4.14(o).

This is also evident from the elongation of the bond length of chemisorbed

CO (1.17 Å) in comparison to the bond length of bare CO molecules (1.14

Å). The CO adsorbed lowest energy isomers of Ag55−nPtn nanoalloys are
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shown in Figure 4.14.

4.4 Summary

In this work, I have used ANN-based IAP to predict both energy and

forces by fitting the DFT data for Ag-Pt nanoalloys. I have used ANN-

based potential to carry out global optimization for 55 atom core-shell Ag-

Pt nanoalloys. It is found that the lowest energy structure of Ag55−nPtn

(where n= 0–14) nanoalloys are the core-shell structure in which Pt atoms

occupy the core site and Ag atoms occupy the surface sites. However, for

Ag41Pt14 nanoalloy, all the core sites are occupied by Pt atoms; hence, the

14th Pt atom is located at the vertex site on the surface of the core-shell

structure. I have studied the relative stability of Ag55−nPtn nanoalloys by

using excess energy and interaction energy calculation. I have found that

the Ih Ag42Pt13 with core-shell structure is relatively most stable isomer

among various Ag55−nPtn nanoalloys. I have investigated the adsorption

of O2 and CO molecules on core-shell Ag55−nPtn nanoalloys using DFT

calculation. I have found that hollow sites are the preferred sites for O2

adsorption in Ag55−nPtn clusters for n = 0–13. However, for Ag41Pt14,

where the Pt atom is located on the surface of the core-shell structure,

the adsorption of O2 is the strongest at the bridge site. By examining the

charge transfer between nanoalloys and O2 molecules, I found the charge

accumulation on O2, which is responsible for the activation of the bond

length of O2 molecule. In the case of the CO adsorption study, I find

that the adsorption of CO is higher on the top vertex site in Ag55−nPtn

nanoalloys. However, Ag41Pt14 has the strongest adsorption and activation

among all the other compositions. This study will help us to understand the

reactivity of small gas molecules such as O2 and CO on Ag-Pt nanoalloys

towards CO oxidation reaction, which will be the focus of our study in the

future. .
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Chapter 5

Prediction of the Polarizability

for Gold Nanoclusters

5.1 Introduction

In the previous chapters, I employed an ANN-based IAP to fit the PES of

Ag-Pt nanoalloys, allowing us to accurately predict both the energy and its

first-order derivative with respect to cartesian coordinates. We also stud-

ied the adsorption and activation of gas molecules on Ag-Pt nanoalloys

understanding their catalytic properties. This chapter transitions to calcu-

lating static polarizability using ML methods to understand the physical

properties of nanoclusters. The polarizability of metal nanoclusters holds

significant importance as it directly characterizes their linear response to

an external electromagnetic field, which in turn influences several of their

physical and chemical properties. These unique properties make gold nan-

oclusters highly valuable for applications in optoelectronics, nanocataly-

sis, and medical fields. [91]. Nanoclusters made of gold atoms occupy a

prime place in the field of atomic and molecular clusters due to their rich

and interesting electronic, chemical, and optical properties. For instance,

the optical response properties of gold nanoclusters play a crucial role in

nano-photonic and optoelectronic applications [32, 34, 35]. Despite the

importance of these properties, only a few studies have explored the pre-
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diction of response properties, such as polarizability or dipole moments, of

various materials and organic molecules using ML methods. These inves-

tigations have employed a range of traditional ML models to predict the

electric response properties [147, 152, 156, 214–216]. In this study, I pro-

pose to employ a spherical harmonic descriptor with ANN to predict both

the isotropic polarizability (αiso) and anisotropy in polarizability (∆α) of

gold nanoclusters describing their local atomic environment. The descrip-

tor employed in the present work encompasses a Gaussian radial function

and an angular function as a power spectrum or bispectrum function, pro-

viding a thorough representation of the local environment. Additionally, I

extend the application of this descriptor to include GPR and KRR-based

ML algorithms for polarizability calculations. It has been found that the

ANN model with higher-order invariants like bispectrum is highly efficient

in predicting polarizability (both isotropic and anisotropic) as compared to

other ML models.

5.2 Computational Details

Descriptors: The atomic environment descriptors consist of 9 radial func-

tions given by Eq. 2.55 and 15 bispectrum coefficients as given in Eq. 2.62

and 2.63. As discussed in Chapter 2, the parameters l1 and l2 vary from 0

to 4, while l ranges from |l1 − l2| to |l1 + l2|. This results in a total of 35

possible combinations, from which 15 coefficients are selected based on a

bicoherence value ranging from 0.4 to 1.0. The clm coefficient is provided

in Eq. 2.60.

When utilizing the power spectrum coefficients, the atomic environ-

ment descriptors consist of 9 radial functions (Eq. 2.55) and 50 power

spectrum coefficients (Eq. 2.61). For the ANN model, each of the two

hidden layers contains 30 neurons, leading to an output layer with two

nodes. The first output corresponds to αiso, and the second corresponds

to ∆α, as shown in Figure 5.1. Weights were optimized using both GEKF

[113, 217, 218] and Adam optimizers [117]. I denote Adam optimizer as
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Figure 5.1: ANN architecture for polarizabilities prediction.

ANN-Adam and GEKF as ANN-Kalman in the remainder of the chapter.

In addition to ANN, the GPR [219] and KRR [105] models were imple-

mented with the Adam optimizer using the scikit-learn library [220]. In the

present work, the polarizability of gold nanoclusters has been estimated by

different metrics such as RMSE (Eq. 5.1), mean absolute error (MAE) (Eq.

5.2), mean squared error (MSE) (Eq. 5.3), and mean absolute percentage

error (MAPE) (Eq. 5.4). These metrics provide valuable insights into the

accuracy and performance of ML models.

RMSE =

√√√√ 1

N

N∑
i=1

(αExact
isoi

− αPred
isoi

)2. (5.1)

MAE =
1

N

N∑
i=1

∣∣(αExact
isoi

− αPred
isoi

)
∣∣ . (5.2)
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1

N
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− αPred
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)2. (5.3)

MAPE =
1

N

N∑
i=1

∣∣∣∣(αExact
isoi

− αPred
isoi

)

αExact
isoi

∣∣∣∣ . (5.4)

Training dataset: The training dataset comprises αiso and ∆α cal-

culated using DFT for 1540 diverse configurations of gold nanoclusters with

the number of atoms ranging from 17 to 50. The values of αiso and ∆α

in the dataset are scaled to a range from 0 to 1. Figure 5.2 illustrates the
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distribution of data points in the dataset according to their polarizability

values. Any data points above 0.8Å3 in both αiso and ∆α are considered

(a)

(b)

Figure 5.2: Distribution of polarizability data from the DFT method: (a)

isotropic (αiso) and (b) anisotropy in polarizability (∆α). The blue line

represents the mean, and the red dashed line indicates the median.

outliers and are thus excluded from the datasets.

I evaluated different train/test splits 70:30, 80:20, and 90:10 to deter-

mine the best ratio for training and testing. Since ANN models typically

require a large amount of training data for optimal performance, I ulti-

mately chose the 90:10 split. The corresponding performances for each split
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are presented in Table 5.1. The 80:20 split yielded the lowest mean squared

error (MSE) of polarizability per atom, with values of 0.7× 10−5 Å3/atom

for αiso and 2.1 × 10−5 Å3/atom for ∆α, using the ANN model optimized

with GEKF. However, the 90:10 split produced comparable results with

only a minimal difference in performance. The 70:30 split resulted in a

higher MSE, likely due to the smaller training dataset size.

Table 5.1: MSE per atom for αiso and ∆α using ANN with GEKF optimizer

across different training and testing data splits.

Training: Testing MSE of polarizability per atom

αiso (Å3/atom) ∆α (Å3/atom)

90 :10 2.10 ×10−5 3.20 ×10−5

80 :20 0.70 ×10−5 2.10×10−5

70 :30 1.11 ×10−4 1.32×10−4

All DFT calculations are done using the Gaussian 09 [172] package.

In this calculation, B3LYP functional [163] is used to treat the exchange

and correlation of electrons. The B3LYP functional, a hybrid functional in

DFT, combines the Becke three-parameter exchange functional with exact

HF exchange and the Lee-Yang-Parr correlation functional. The LANL2DZ

basis set [171] is widely used to deal with 19 valence electrons per Au, and

the remaining core electron is considered using effective core potential with

relativistic correction.

5.3 Results

In this section, I discuss the prediction of polarizabilities, αiso and ∆α,

for gold nanoclusters using ANN, GPR, and KRR models. Firstly, using

ANN, I estimate the prediction of αiso and ∆α by considering the bis-

pectrum descriptor as input to ANN. Two different weight optimization

methods, ANN-Kalman and ANN-Adam, have been used to train ANN.

Four different performance metrics, MAE, MSE, RMSE, and MAPE, are
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(a)

(b)

Figure 5.3: MSE of polarizability per atom with the number of iterations

involved in the training and testing dataset. (a) isotropic (αiso) and (b)

anisotropy in polarizability (∆α).

108



considered to calculate the error per atom in predicting αiso and ∆α using

ANN.

5.3.1 Prediction of Polarizability using ANN

In the ANN model using bispectrum, the values of performance metrics for

ANN-Kalman and ANN-Adam are tabulated in Table 5.2. From Table 5.2,

it is clearly evident that ANN-Kalman outperforms the ANN-Adam using

all the considered performance metrics. This is because ANN-Kalman,

being a second-order method, is generally more accurate than ANN-Adam,

which is a first-order method.

(a)

(b)

Figure 5.4: Comparison of DFT and ANN results using bispectrum descrip-

tors and two different optimization schemes (Kalman and Adam) for the

test dataset: (a) isotropic (αiso) and (b) anisotropy in polarizability(∆α).
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(a)

(b)

Figure 5.5: Comparison of DFT and ANN results using power spectrum

descriptors and two different optimization schemes (Kalman and Adam)

for the test dataset: (a) isotropic (αiso) and (b) anisotropy in polarizability

(∆α).

Table 5.2: The average errors per atom of different metrics of ANN using

bispectrum descriptors in the prediction of polarizabilities (Å3/atom).

ANN MAE MSE RMSE MAPE

Kalman 6.7 ×10−4 2.6 ×10−5 3.8×10−4 2.1×10−3

Adam 8.0×10−3 3.8×10−4 1.9×10−2 6.5×10−2

In Figure 5.3, I have plotted learning curves to show the MSE per

atom for both αiso (Å
3/atom) and ∆α (Å3/atom) over the iterations of the

ANN-Kalman model. From Table 5.2, it is also evident that MSE shows
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the lowest error in comparison to other metrics. Hence, I used MSE as a

performance metric to calculate the error using different ML models in the

present study.

Figure 5.4 presents correlation plots showcasing αiso in 5.4 (a) and ∆α

in 5.4 (b) for gold nanoclusters using the test dataset. These plots indicate

that the accuracy of the ANN model using both optimizers is very close to

that of the DFT method. From Figure 5.4 (a), the R2 coefficient values for

both ANN-Kalman and ANN-Adam in predicting αiso are 0.99. This indi-

cates a strong correlation between the predicted values and the DFT-based

values for αiso. In Figure 5.4 (b), the R2 coefficient values for ANN-Kalman

and ANN-Adam are 0.94 and 0.85, respectively, for ∆α. This indicates a

noticeable deviation in the correlation between the ANN model and the

DFT. This deviation is more pronounced in the ANN-Adam compared to

the ANN-Kalman, indicating that the ANN-Kalman is a better model for

predicting αiso and ∆α.

I also employ an ANN-Kalman and ANN-Adam utilizing the power

spectrum as input to ANN to predict αiso and ∆α. Upon observation, I

note that the average MSE of polarizability per atom of ANN-Kalman is

Figure 5.6: Comparison of performance of two ANN models utilizing

Kalman and Adam optimizer for bispectrum and power spectrum descrip-

tors.
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6.7×10−5 (Å3/atom), significantly lower than that of ANN-Adam, which

stands at 4.13×10−4 (Å3/atom). I plot the correlation between DFT and

both ANN-Kalman and ANN-Adam for both αiso and ∆α in Figure 5.5

(a) and (b), respectively. For αiso, the R
2 coefficient values are 0.99 for

ANN-Kalman and 0.95 for ANN-Adam. For ∆α, the R2 coefficient values

are 0.92 for ANN-Kalman and 0.71 for ANN-Adam. These results suggest

that the performance of ANN-Kalman is superior to ANN-Adam by using

a power spectrum descriptor as well. When comparing the performance of

the ANN model using bispectrum and power spectrum descriptors, a gain

in MSE is evident with the bispectrum descriptors. This suggests that

the ANN-Kalman model performs better when incorporating bispectrum

descriptors as input in comparison to the power spectrum, as depicted in

Figure 5.6.

5.3.2 Prediction of Polarizability using GPR and

KRR

The performance of the GPR model is evaluated using bispectrum descrip-

tors as input to assess polarizabilities. The GPR model exhibits a higher

MSE of polarizability per atom of 5.6×10−4 (Å3/atom) compared to the

ANN-based model. Figure 5.7 (a) and 5.7 (b) depict the correlation be-

tween DFT data and predicted data for αiso and ∆α of the GPR model.

The R2 coefficient value for the GPR model in predicting αiso is found to

be 0.99, indicating a strong correlation between the predicted values and

DFT. This suggests that the GPR model is highly accurate in estimating

αiso values. However, for ∆α, the R2 coefficient value is slightly lower at

0.86, indicating a slightly weaker correlation with the DFT.
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(a)

(b)

Figure 5.7: Comparison of DFT and GPR results using bispectrum de-

scriptors for the test dataset: (a) isotropic (αiso) and (b) anisotropy in

polarizability (∆α).
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(a)

(b)

Figure 5.8: Comparison of DFT and KRR results using bispectrum de-

scriptors for the test dataset: (a) isotropic (αiso) and (b) anisotropy in

polarizability (∆α).
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Figure 5.9: Comparison of the MSE and MAPE for all three ML models.

Similar to the GPR and ANN models, I employ the KRR model

with bispectrum descriptors as input to assess the polarizabilities. Despite

achieving satisfactory training performance based on metrics, its accuracy

in predicting polarizabilities is limited, with a relatively high MSE of po-

larizability per atom of 1.7×10−3 (Å3/atom), especially when compared to

ANN and GPR-based models. Figure 5.8 (a) and 5.8 (b) show the corre-

lation between DFT data and the predicted data for αiso and ∆α of the

KRR model, respectively. The R2 coefficient for the KRR model is 0.94 for

αiso and 0.64 for ∆α, indicating a moderate level of correlation between the

KRR and DFT-based polarizabilities. This suggests that while the KRR

model may exhibit satisfactory training performance, its predictive capa-

bilities for polarizabilities are limited compared to other models, such as

ANN and GPR.

I conducted a comparison of MSE and MAPE from Eq. 5.3 and

5.4 for all the considered models. While calculating the MAPE and MSE

errors, I considered three consecutive iterations for all the models. The

average value of error and its standard derivation have been calculated and

shown in Figure 5.9. The standard derivation of all the considered models
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is within the limit. From Figure 5.9, the ANN model emerged as the best,

with minimal error, followed by the GPR and KRR models. Thus, after a

thorough comparison, I can conclude that the ANN model excels above the

others, solidifying its position as the best-performing model in this analysis.

5.3.3 Validation of ANN-Kalman Model with Differ-

ent sizes of the Gold Nanoclusters:

5.3.3.1 With Local Minimum Structures :

I used the local minimum structures of gold nanoclusters of Au17, Au22,

Au23, Au24, Au25, Au26, Au27, Au28 and Au34 [23], as shown in Figure

5.10, to test the predictive capability of the ANN-Kalman model. For the

given gold nanoclusters, the αiso and ∆α values obtained using the DFT

and ANN with bispectrum descriptors are illustrated in Figure 5.11. From

Figure 5.11 (a) and (b), it is evident that there is a strong agreement be-

tween the αiso and ∆α values predicted by the ANN and those obtained

through the DFT-based method. This consistency demonstrates the relia-

bility and accuracy of the ANN-Kalman model in replicating DFT results.

I also utilize the ANN with the power spectrum descriptors for αiso and

∆α, which are shown in Figure 5.12 (a) and (b), respectively. The results

closely resemble the polarizabilities (both αiso and ∆α) for gold nanoclus-

ters obtained through the DFT-based method.

5.3.3.2 With Smaller and Larger Clusters beyond Training

Data:

Building on the successful validation with local minimum structures, I fur-

ther assessed the reliability of the ANN-Kalman model by testing its pre-

dictive capability for clusters that are smaller and larger than those not

included in the training dataset. Specifically, I focused on small clusters

(Au10, Au13, Au15, and Au16) and larger clusters (Au38, Au42, Au55, Au58,

Au64, and Au70). The MSE of polarizability per atom for αiso on the testing
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(a) Au17 (b) Au22 (c) Au23 (d) Au24

(e) Au25 (f) Au26 (g) Au27 (h) Au28 (i) Au34

Figure 5.10: Local minimum structure of different sizes of gold nanoclus-

ters.

data is 2.1×10−5 (Å3/atom), and for ∆α, it is 3.3 ×10−5 (Å3/atom). The

squared error of polarizability per atom for the given clusters, for both αiso

and ∆α, is given in Table 5.3. From this table, it is evident that the squared

errors (SE) for clusters ranging from Au10 to Au16 and large clusters from

Au38-Au58 are relatively close to or slightly higher than the testing MSE

values indicating the consistent performance of the ANN-Kalman model.

However, for clusters such as Au64 and Au70, the squared errors exceed the

testing MSE. The increase in error for these clusters is due to the lack of

atomic environment representation in the training data.

So, it can be concluded that the ANN model is an efficient and accu-

rate alternative to DFT that provides significant computational advantages

without compromising precision.
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(a)

(b)

Figure 5.11: Comparison of DFT and ANN predicted polarizabilities of

different sizes of gold nanoclusters using bispectrum: (a) isotropic (αiso)

and (b) anisotropy in polarizability (∆α).

5.4 Summary

In the summary of this work, our study has demonstrated the efficiency and

accuracy of ML models, specifically ANN, GPR and KRR, in predicting

both isotropic polarizability and anisotropy in polarizability of gold nan-

oclusters. The ANN models, incorporating bispectrum and power spec-

trum descriptors, demonstrated superior performance, with the GEKF
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(a)

(b)

Figure 5.12: Comparison of DFT and ANN predicted polarizabilities of

different sizes of the gold nanoclusters using power spectrum descriptor:

(a) isotropic (αiso) and (b) anisotropy in polarizability (∆α).

outperforming the Adam optimizer across various performance metrics.

Furthermore, when compared to DFT data, the ANN models showed a

strong agreement, especially concerning isotropic polarizabilities, indicat-

ing their high accuracy. Similarly, GPR models showcased commendable

performance in predicting isotropic polarizabilities, albeit with noticeable

discrepancies in anisotropic predictions compared to DFT-based methods.

Conversely, KRRmodels exhibited limited accuracy, particularly in the pre-
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Table 5.3: MSE of testing data and SE per atom of αiso and ∆α for various

clusters using the ANN-Kalman model.

Cluster SE of αiso (Å3/atom) SE of∆α (Å3/atom)

Testing MSE 2.1×10−5 3.2×10−5

Au10 8.8×10−5 9.9 ×10−6

Au13 2.4×10−4 1.5×10−3

Au15 1.0×10−6 1.3×10−4

Au16 8.4×10−5 1.0×10−4

Au38 3.6×10−5 1.0×10−6

Au42 3.2×10−5 2.0×10−6

Au55 2.5×10−5 1.6×10−5

Au58 2.3 ×10−5 4.4×10−5

Au64 2.2 ×10−3 7.7×10−3

Au70 4.4×10−3 9.9 ×10−3

diction of anisotropy in polarizability, reinforcing the superiority of ANN

and GPR models. The validation of ANN weights against a local minimum

structure of gold nanoclusters confirmed the model’s accuracy in predict-

ing polarizabilities, with outcomes closely resembling those obtained from

DFT.
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Chapter 6

Conclusion and Future

Perspective

6.1 Conclusion

This chapter presents a concise overview of the thesis to develop a ro-

bust and efficient ML framework for modeling the energy and its deriva-

tives for metal nanoclusters. Specifically, the research focuses on leveraging

ANN to accurately capture the intricate interactions between atomic con-

figurations, enabling the precise prediction of energy, forces, and response

properties. This work aims to address the computational challenges asso-

ciated with traditional DFT methods, which become increasingly imprac-

tical for studying larger metallic nanoclusters due to their high resource

demands and complexity, particularly when calculating first- and second-

order derivatives. By employing a data-driven approach that integrates

high-quality DFT data with ANN modeling, the thesis seeks to enhance

the understanding of the structural, dynamic, and electronic properties of

metal nanoclusters.

The major findings are summarized as follows:

1. The ANN potentials developed in this study have shown a remark-

able ability to accurately predict energy and its derivatives. By effec-

122



tively capturing the complex interactions between atoms, these po-

tentials operate with high precision while significantly reducing com-

putational costs. The time required for accurate energy and force

calculations using ANN is much faster than DFT, which typically

takes hours. This efficiency not only accelerates simulations but also

opens avenues for exploring larger systems and longer timescales in

MD simulations.

2. The proposed approach for metal nanoalloys is ’transferable’ because

its parameters are based on interatomic distances, effective nuclear

charges, and the reduced mass of the bonds within the system. This

flexibility allows it to be applied to various chemical systems.

3. Our geometric analysis shows that the most stable isomers of Ag-Pt

nanoalloys have a core-shell structure. In these structures, platinum

atoms prefer to stay in the core, while silver atoms are on the surface.

This study helps to understand the arrangement of atoms in these

nanoalloys and how it affects their catalytic efficiency. By optimizing

this structure, I can potentially develop more effective catalysts for

industrial use.

4. By studying how Ag-Pt nanoalloys interact with small gas molecules

like O2 and CO, I gained insights into how these molecules are ad-

sorbed. Our results show that the Pt atoms in the core have a lim-

ited effect on the adsorption of these gases, while Pt atoms located

on the surface have a much greater influence. This emphasizes the

importance of the surface composition and structure in determining

catalytic activity, indicating potential ways to improve catalyst de-

signs.

5. By incorporating bispectrum coefficients as inputs to the ANN, I suc-

cessfully fitted the second-order derivatives with respect to the elec-

tric field, enabling the calculation of polarizability for gold nanoclus-

ters. This demonstrates the ANN’s capacity to predict higher-order

derivatives based on local atomic environments, further establishing

its versatility in capturing complex material properties. This capa-
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bility is essential for understanding the responses of materials under

varying external fields.

6. In our study of different ML models for predicting isotropic and

anisotropic polarizability, the ANN performed better than the other

models, showing strong reliability and accuracy in its predictions.

This success highlights how effective ANNs can be in modeling com-

plex material properties and their potential use in energy-related ap-

plications.

6.2 Future Aspects of this Work

The work that can be taken forward from this thesis can be summarized

as:

1. It’s important to explore ways to build accurate ANN potentials that

rely on fewer data points. Since ANN potentials depend heavily on

the amount of data used to train them, reducing data requirements

without losing accuracy could make them more practical and efficient

to use.

2. The method for creating the training dataset can be modified by uti-

lizing DFT data obtained from different functionals. This adjustment

can enhance the accuracy of the fitted energy, thereby improving the

PES.

3. The ANN-based method developed here for Ag-Pt nanoalloys can be

applied to other bimetallic or multi-metallic systems, such as Au-Pt

or Pd-Pt, enabling broader exploration of nanoalloys with tunable

catalytic properties.

4. The present study focuses on the adsorption of CO and O2 on Ag-

Pt nanoalloys and will now extend to the complete CO oxidation

reaction to further investigate the catalytic mechanisms and optimize

the performance of Ag-Pt nanoalloys.

5. ML methods can be employed to study catalysis by analyzing reac-

tions such as the reduction of carbon dioxide using Ag-Pt nanoalloys,
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leading to improved catalyst design and performance.

6. Expanding the model to include third and higher-order derivatives

with respect to external fields could yield insights into complex re-

sponse properties, such as hyperpolarizability, enhancing the under-

standing of materials behaviour under diverse external conditions.

7. The ANN method could be advanced by creating more sophisticated

approaches that adjust the number of hidden layers and neurons

based on real-time analysis. This would help the networks better

adapt to complex problems and reduce the chances of overfitting and

underfitting.
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