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ABSTRACT

The state variables are a set of variables that completely describe a system’s be-
havior, i.e., their temporal evolution results from the system dynamics. Thus, the
knowledge of the state variables is crucial to study the behavior of any dynamic
system. These variables are generally referred to as hidden (latent) states due to
the unavailability of any direct information. Mostly, the latent states are inferred
from the measurements (data) which are typically acquired from surveys, sensors,
etc. The received measurements inherently involve some degree of uncertainty (due
to imperfect sensors, mishandled data in surveys, or unknown measuring environ-
ments), giving an erroneous and unreliable knowledge of states. Such scenarios
oblige one to settle for the best feasible estimate, in some sense (e.g., minimum
mean square error), of the states. Estimation, or more broadly filtering (a recursive
process of estimation), facilitates a tool to determine the latent states of a dynami-
cal system from the available system information and noisy measurements. It finds
applications in numerous real-life problems—target tracking, biomedical, financial
prediction, weather forecasting, industrial diagnosis etc.

For linear filtering problems, the Kalman filter (KF) provides an optimal solu-
tion. However, its performance deteriorates for nonlinear filtering problems. Sub-
sequently, several nonlinear variants of the KF were reported in literature, referred
to as nonlinear Gaussian filters; these filters approximate all the probability den-
sity functions (PDFs) as Gaussian during the filtering process. They involve in-
tractable integrals which are numerically approximated during the filtering. Apart
from Gaussian filtering, there is another class of nonlinear filters, named particle
filtering, which is mostly beyond the scope of the contributions of this thesis.

Designing Gaussian filters is typically based on the assumption that the mea-
surements involve no irregularities other than the additive white Gaussian noises.
The practical measurements, however, can involve various irregularities. The focus
of this thesis is on maintaining filtering accuracy in the presence of measurement
irregularities. The thesis mainly focuses on two measurement irregularities: ran-
domly delayed measurements and intermittent measurement losses, while the range
of the measurement irregularities is relatively larger. In the case of random delays,
measurements received at any given time may contain information from previous
states. Conversely, intermittent measurement losses mean measurements are not
received at regular intervals. These irregularities are not addressed in the design of
the traditional Gaussian filters, leading to significant performance deterioration or
even complete failure when these issues are present individually or jointly.

In the context of the above discussions, the primary focus of this thesis involves:
i) redesigning the traditional Gaussian filters to handle the missing and delayed
measurements and ii) performing stochastic stability analysis for the developed filter.
In addition, this thesis also aims to improve the filtering accuracy by improving the
numerical approximation accuracy of the intractable integrals.

In the first contribution, this thesis introduces a modified version of the extended
Kalman filter to handle the missing measurements in systems that require fast and
easy implementation. Its performance is verified explicitly with individual sinusoids
identification problem.

Further, this thesis presents a new Gaussian filtering technique designed to man-
age large delays with fewer prerequisite probabilities. This method further eliminates



the necessity of setting an upper limit on delays, a requirement in current Gaussian
filtering extensions for delayed measurements. As a result, this approach enhances
filtering accuracy.

In another contribution, this thesis addresses a new kind of measurement ir-
regularity and subsequently, develops a Gaussian filter to handle it. Under this
irregularity, the actually received measurement contains the measurement from cur-
rent and past instants. Such an irregularity is likely to appear in systems wherein
different fractions of a measurement are acquired through individual sensors and are
superimposed subsequently to form a complete measurement.

To analyze the temporal behavior, the thesis analyzes the stochastic stability of
all the Gaussian filter evolved in the above discussed contributions. Subsequently,
it identifies the conditions for which the developed filters remain exponentially
bounded.

Finally, the thesis proposes an advanced version of Gaussian filtering that im-
proves the filtering accuracy by utilizing a more precise numerical approximation
technique.

The thesis validates the improved performance of all contributions, as discussed
above, in comparison to the existing Gaussian filtering counterparts. The compara-
tive analysis is based on root mean square error (RMSE) and computational time.

ii
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Chapter 1

Introduction

1.1 Background

The focus of this thesis is majorly on developing advanced estimation and filtering

algorithms. To understand the estimation and filtering, let us consider a typical

dynamical system. The dynamic behavior of a dynamical system is characterized

by its internal states. Many practical applications (some examples are discussed

later) require to characterize the dynamical behavior of the states, which requires

determining the internal states. However, the straightaway knowledge of the internal

states are often difficult in practical applications. In such cases, some related param-

eters, known as measurements, are measured. The measurements may be obtained

from sensor data, experiment data, etc. However, in any such case, the measurement

data is noisy. Consequently, the problem becomes determining the internal states of

the dynamical system from noisy measurements. The estimation algorithm provides

a computational tool for addressing this problem. Then, the filtering is simply a

recursive process of state estimation. As filtering is simply a broader sense of esti-

mation, hereafter, the thesis will commonly use the term ‘filtering’ to characterize

the sense of ‘estimation and filtering’.

A typical example of filtering includes radar data-based target tracking [1, 2].

The target’s dynamics such as the trajectory can be characterized by the axial po-

sitions of the target in the earth frame (axial velocities and accelerations may also

be considered as states to model the axial positions in time series), which may be

considered as the desired state. The noisy measurements may be the range and
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elevation angle in the radar’s frame. Then, the tracking problem becomes a compu-

tational problem of determining the axial positions (states) of the target from the

radar data (measurements). This is where we need the estimation algorithm. As

trajectory tracking requires updating the estimated axial positions of the target reg-

ularly, we require implementing the estimation algorithm recursively. As discussed

above, such a recursive process of estimation is called filtering. In the target tracking

applications, the filtering algorithms are often known as tracking algorithms.

The practical applications of the estimation and filtering algorithms extend much

beyond the above-discussed target-tracking application. These algorithms are widely

used in crucial engineering applications, such as space technologies, biomedical di-

agnosis and monitoring [3], industrial diagnosis and prognosis [4], weather fore-

casting [5] etc. Interestingly, the applications of these algorithms further extend

to non-engineering applications as well, which include financial modeling [6] and

pandemic modeling [7].

The filtering algorithms are designed to be implemented over the dynamical state

space model of the system. The dynamical state space model consists of the process

model and measurement model, which are briefly discussed below.

� Process model: It describes the evolution of states through time and also

includes a noise term incorporating the modeling errors.

xk = f(xk−1) + ηk, (1.1)

� Measurement model: It demonstrates the relationship between the measured

states and the measurements received. The errors in the measuring devices

are modeled using a noise process.

zk = h(xk) + νk, (1.2)

where xk∈Rn and zk∈Rq are state and measurement vectors, respectively, at kth

sampling instant, k ∈ {1, 2, ..., Ts}, with Ts representing the number of sampling

intervals. Moreover, f(·) : xk−1 → xk and h(·) : xk → zk are known functions. Since

the objective of this thesis is to address the nonlinear filtering problems, f(·) and
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CHAPTER 1. INTRODUCTION

h(·) represent nonlinear functions. Finally, ηk and νk represent the process and mea-

surement noises, respectively. Please note that the state-space model represented

through Eqs. (1.1) and (1.2) is considered to be input-free for the sake of simplicity

and the same is adopted throughout the thesis.

For the last several decades, the Bayesian filtering framework has been widely

used for the estimation and filtering problems. It provides a probabilistic solution,

which is described in the subsequent discussions.

1.1.1 Bayesian Filtering Framework: A Probabilistic Solu-

tion

Let us consider that we receive the sequence of noisy measurements z1:k={z1, z2, . . . ,
zk} corresponding to x1:k={x1,x2, . . . , xk} (Eqs. (1.1) and (1.2)); subsequently, the

problem of estimation is statistical inversion or to infer about xk based on the

measurements up to kth instant (i.e., z1:k). In Bayesian filtering, the problem is

reduced to computing the joint posterior distribution of all the states (including the

initial state x0) conditioned on the available measurements [8], i.e.,

p(x0:k|z1:k) =
p(z1:k|x0:k)p(x0:k)

p(z1:k)
, (1.3)

where p(z1:k|x0:k) is the likelihood, p(x0:k) is the a priori probability density function

(PDF), and p(z1:k) is given by

p(z1:k) =

∫
D
p(z1:k|x0:k)p(x0:k)dx0:k, (1.4)

with D signifying the domain of integration. It is worthwhile to note that the a

posteriori PDF computation in Eq. (1.3) becomes increasingly problematical as

time progresses. This is because of the ever-growing dimensionality of the PDF,

which causes increased computational burden; it becomes particularly challenging

in real-time applications, where an estimation is required immediately after the

measurement is received. This issue is circumvented by the following assumptions

[8, 9]: i) the states follow the Markov sequence and ii) the measurement at any

time step depends upon the state from the same time-step. Subsequently, one can
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settle for computing the filtering distribution p(xk|z1:k) because it encapsulates the

information of xk conveyed through z1:k, and it can be obtained by marginalizing

p(x0:k|z1:k) (Eq. (1.3)). Hereafter, we use the terms “prior PDF” and “posterior

PDF” to denote p(xk|z1:k−1) and p(xk|z1:k), respectively.
Taking into account the above-mentioned assumptions, the Bayesian filtering

framework computes the posterior PDF (new posterior PDF) p(xk|z1:k) in two steps

[1, 8, 10].

� Prediction update: This step describes the propagation of the state in time and

presents the belief about the state xk before the arrival of the current measure-

ments zk. Specifically, it computes the predictive distribution p(xk|z1:k−1) by

leveraging the evidence from tk−1 (i.e., the previous posterior PDF p(xk−1|z1:k−1))

as

p(xk|z1:k−1) =

∫
Rn

p(xk|xk−1)p(xk−1|z1:k−1)dxk−1. (1.5)

� Measurement update: Once the current measurement zk arrives, the prior PDF

p(xk|z1:k−1) is updated as

p(xk|z1:k) =
p(zk|xk)p(xk|z1:k−1)

p(zk|z1:k−1)
, (1.6)

where

p(zk|z1:k−1) =

∫
Rn

p(zk|xk)p(xk|z1:k−1)dxk. (1.7)

Eqs. (1.5) and (1.6) together provide the fundamental structure of Bayesian

estimation for the system governed by Eqs. (1.1) and (1.2) through recursive formula

(i.e., p(xk|z1:k−1) in the form of p(xk−1|z1:k−1)). Clearly, the solution provided by

the Bayesian filter is probabilistic in nature which aims to track the conditional

PDF of xk, and it does not provide a point estimate providing the best description

of the system’s state in some sense. Moreover, in general practical scenarios, the

multidimensional integrals of Eqs. (1.5) and (1.7) are intractable in nature [9, 11].

An exception involves the system being linear and the noises appearing in the system

follow zero mean Gaussian distribution; for such systems, an optimal solution is

provided by the Kalman filter (KF) [12], which provides a single decisive solution (a

point estimate). However, no such optimal solution exists for the nonlinear filtering
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problem.

Fortunately, the Gaussian assumption of the conditional density functions ren-

ders tractability to the Bayesian filter. Subsequently, the solution is simplified to

the calculation of the multidimensional integrals.

1.1.2 Gaussian Filter: An Approximate Solution to Bayesian

Filtering

As mentioned above, an approximate solution can be obtained through analytical

simplification of conditional PDFs; the conditional PDFs appearing in Eqs. (1.5)

and (1.7), i.e., p(xk|z1:k−1) and p(zk|z1:k−1), respectively, are assumed to follow

Gaussian distribution [8, 11]. More specifically,

p(xk|z1:k−1) ≈ N (x̂k|k−1,Pk|k−1)

p(zk|z1:k−1) ≈ N (ẑk|k−1,P
zz
k|k−1),

(1.8)

where N (., .) being the conventional representation for Gaussian density; x̂k|k−1

and Pk|k−1 representing respectively the estimate and covariance of the predictive

density while ẑk|k−1 andPzz
k|k−1 being the corresponding parameters for the predictive

measurement density. The assumptions (1.8) ensure the Gaussianity of posterior

PDF p(xk|z1:k) (Eq. (1.6)), i.e.,

p(xk|z1:k) ≈ N (x̂k|k,Pk|k), (1.9)

with x̂k|k and Pk|k being the estimate and covariance, respectively of the posterior

PDF.

The Gaussian distribution is one of the most popular density functions that

are used in many problems; it is amenable and contains the following distinctive

properties

� Many natural random phenomena can be approximated by Gaussian PDF by

means of the central limit theorem [10].

� The Gaussianity remains unaltered after linear transformation.
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Another main approximation in developing the Bayesian filter in the Gaussian do-

main is that the noises appearing in the system follow the zero-mean Gaussian

distribution [10, 13]. Specifically, ηk∼ N (0,Qk) and νk∼ N (0,Rk). Pursuing this,

the Gaussian filter is developed under the moment matching method of estimation

[9], and the functional recursion in the Bayesian filter is simplified to propagation

of mean and covariance of associated densities through the following steps

Time update

In this step, the filter makes a prediction about the state xk in time advance, i.e.,

before the arrival of the current measurement zk and using the available evidence

from tk−1 (x̂k−1|k−1). Specifically, it computes the mean of the predictive density

x̂k|k−1 and its covariance Pk|k−1. The computation of x̂k|k−1 is as follows [8]

x̂k|k−1 = E [xk|z1:k−1] = E [f(xk−1) + ηk−1|z1:k−1] , (1.10)

with E[.] representing the statistical expectation operator. As ηk has zero mean,

using the linearity property of the expectation operator, we can write

x̂k|k−1 = E [f(xk−1)|z1:k−1]

=

∫
Rn

f(xk−1)p(xk−1|z1:k−1)dxk−1

≈
∫
Rn

f(xk−1)N (x̂k−1|k−1,Pk−1|k−1)dxk−1. (1.11)

Likewise, the covariance is obtained as [9]

Pk|k−1 = E
[
(xk − x̂k|k−1)(xk − x̂k|k−1)

T |z1:k−1

]
=

∫
Rn

f(xk−1)(f(xk−1))
Tp(xk−1|z1:k−1)dxk−1 +Qk−1 − x̂k|k−1x̂

T
k|k−1

≈
∫
Rn

f(xk−1)(f(xk−1))
TN (x̂k−1|k−1,Pk−1|k−1)dxk−1 +Qk−1 − x̂k|k−1x̂

T
k|k−1.

(1.12)
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Measurement update

This step computes the mean of the posterior density and its error covariance, i.e.,

x̂k|k and Pk|k, respectively, as [11, 14]x̂k|k = x̂k|k−1 +K(zk − ẑk|k−1)

Pk|k = Pk|k−1 −KPzz
k|kK

T ,

(1.13)

where

ẑk|k−1 = E [(h(xk) + νk)|z1:k−1]

≈
∫
Rn

h(xk)N (x̂k|k−1,Pk|k−1)dxk (1.14)

and K is the Kalman gain, expressed as

K = Pxz
k|k−1(P

zz
k|k−1)

−1, (1.15)

with Pxz
k|k−1 and Pzz

k|k−1 denoting the state-measurement cross-covariance and covari-

ance, respectively, given as [15]

Pxz
k|k−1 = E

[
(xk − x̂k|k−1)(zk − ẑk|k−1)

T |z1:k−1

]
≈
∫
Rn

xk(h(xk))
TN (x̂k|k−1,Pk|k−1)dxk − x̂k|k−1ẑ

T
k|k−1 (1.16)

Pzz
k|k−1 = E

[
(zk − ẑk|k−1)(zk − ẑk|k−1)

T |z1:k−1

]
≈
∫
Rn

h(xk)(h(xk))
TN (x̂k|k−1,Pk|k−1)dxk − ẑk|k−1ẑ

T
k|k−1 +Rk. (1.17)

It should be noted that the integrands appearing in Eqs. (1.11), (1.12), (1.14),

(1.16), and (1.17) are in the form of nonlinear function × Gaussian weight, and cor-

responding integrals lack an analytical solution [11]. As discussed earlier, however,

an analytical solution is obtained by the KF if the functions are linear, alternatively

the integrands follow the form linear function × Gaussian weight. Motivated by

this, the extended Kalman filter (EKF) was developed, which first linearizes the
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nonlinear functions appearing in the system using a derivative-based approach [10],

and subsequently, follows the KF structure for recursive estimation. The EKF and

its extensions [16–18] are referred to as derivative-based approaches due to the in-

volvement of linearization step, which is the very reason incurring several drawbacks,

including inferior filtering accuracy and slow convergence, in these filters [11].

Thankfully, there exist some numerical integration methods that provide reason-

able approximate to these integrals; thus, implementation of different approaches

bring about different versions of Gaussian filters.

To discuss the numerical approximation approach, let us first consider the gen-

eralized expression of the above-discussed integrals as [9]

In(g(x)) =

∫
D
g(x)w(x)dx, (1.18)

with g(.) being an arbitrary nonlinear function and w(x) representing the known

weighting function, with w(x)≥0 for x∈D. The fundamental objective when nu-

merically approximating I(g) involves computing a collection of points ξi, i =

{1, 2, . . . , Nc} and associated weights wi such that

In(g(x)) ≈
Nc∑
i=1

wig(ξi) (1.19)

provides the approximated value. Please note that the numerical methods available

in the literature are defined only for the weighting function as standard normal

distribution, i.e., w(x) ∼ N (0n×1, In), where 0n×1 is an array of n zeros and In

being n-dimensional identity matrix. Let us denote the corresponding integral as

In0 (g(x)), i.e.,

In0 (g(x)) =

∫
Rn

g(x)N (0n×1, In)dx (1.20)

and following Eq. (1.19), its approximated value can be given as

In0 (g(x)) ≈
Nc∑
i=1

wig(ξi). (1.21)

It should be noted that the weighting functions appearing in Eqs. (1.11), (1.12),

(1.14), (1.16), and (1.17) do not follow standard normal distribution. Subsequently,
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we use the change of variable method to extend the numerical approximation tech-

nique for any arbitrary normally distributed weighting function w(x) ∼ N (µ,Σ),

given as [9]

In(g(x)) =

∫
Rn

g(x)N (µ,Σ)dx =
1√
πn

∫
Rn

g(
√
2Σx+ µ)N (0n×1, In)dx. (1.22)

1.1.3 Stochastic Stability Analysis of Gaussian Filters

In 1892, Lyapunov introduced his famous direct method in the theory of stability,

which laid the groundwork for understanding the behavior of dynamic systems. The

concept of stability refers to the system’s ability to maintain its state or trajectory in

the presence of small perturbations or changes in initial conditions or system param-

eters. Specifically, Lyapunov’s stability theory involves the analysis of trajectories

or solutions of a dynamic system over time.

For many differential equations (difference in discrete time) representing the

systems, the solutions can not be obtained easily, making the stability analysis

difficult. For such a system, Lyapunov introduced a function, widely known as

the Lyapunov’s function, to infer the stability of the systems without requiring the

knowledge of the solutions [19, 20]. The Lyapunov function was originally introduced

for the deterministic systems.

Exponential boundeness

Let V : Rn → R represents the Lyapunov function, then it holds the following

properties [21]

� It is strictly positive.

� The time derivative is non-positive, i.e., V̇(.) ≤ 0.

However, the treatment of stochastic processes can not be done in same the way as

that of the deterministic ones. The reason is that, while extending the Lyapunov

stability theory from the deterministic to stochastic systems, the following questions

arise

� How to come up with a suitable definition of stochastic stability?
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� What criteria must a Lyapunov function meet?

� What should replace the inequality V̇(.) ≤ 0 to obtain the stability assertion?

For stochastic processes, mainly three types of stability can be performed: sta-

bility in probability, moment stability, and almost sure stability [21]. In 1965, Bucy

identified that a stochastic Lyapunov function should possess the supermartingale

property. He also provided remarkably straightforward conditions for both stability

in probability and moment stability. Later, Has’minskii [22] explored almost sure

stability in the context of linear stochastic processes.

However, we consider the notion of moment stability to perform the stochastic

stability of the Gaussian filter. Specifically, we consider the concept of exponential

boundedness in mean square, which can be described through the following definition

[23]

Definition 1.1. Let us consider that ζk denotes a stochastic process and κ′ > 0, σ′

> 0, and 0 < θ < 1 are real numbers. Then, ζk is said to be exponentially bounded

in mean square if it satisfies

E
[
∥ζk∥2

]
≤ κ′E

[
∥ζ0∥2

]
θk + σ′ ∀k ∈ {1, 2, . . . }, (1.23)

where ∥·∥ represents the spectral norm for matrices and Euclidean norm for vectors.

In our stability analysis, we approach Eq. (1.23) in a different way. In this

regard, please refer to the subsequent discussion.

Remark 1.1. Let us consider that τ1 > 0, τ2 > 0, γ′ > 0, and 0 < ϕ < 1 denote

real numbers, and V(ζk) represents a scalar-valued stochastic process (stochastic

Lyapunov function), which satisfies

τ1 ∥ζk∥2 ≤ V(ζk) ≤ τ2 ∥ζk∥2 (1.24)

and

E [V(ζk)|ζk−1]− V(ζk−1) ≤ γ′ − ϕV(ζk−1) ≤ 0. (1.25)
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Then, the stochastic process ζk satisfies

E
[
∥ζk∥2

]
≤ τ2
τ1
E
[
∥ζ0∥2

]
(1− ϕ)k +

γ′

τ1

k−1∑
i=0

(1− ϕ)i. (1.26)

Proof. Let us consider Eq. (1.25), it implies that

E [V(ζk)|ζk−1] ≤ γ′ + (1− ϕ)V(ζk−1) (1.27)

Using the law of total expectations, we can write

E [V(ζk)|ζk−2] = E [E [V(ζk)|ζk−1] |ζk−2] . (1.28)

Applying Eq. (1.27), the above equation can be expressed as

E [V(ζk)|ζk−2] = γ′ + (1− ϕ)E [V(ζk−1)|ζk−2]

≤ γ′ + (1− ϕ)γ′ + (1− ϕ)2V(ζk−2). (1.29)

Similarly, extending the above expression conditioned to ζ0 and taking an expecta-

tion, we obtain

E [V(ζk)|ζ0] ≤ (1− ϕ)kE [V(ζ0)] + γ′
k−1∑
i=0

(1− ϕ)i. (1.30)

Subsequently, applying Eq. (1.24) deduces Eq. (1.26).

Let us recall Eq. (1.26), as
∑k−1

i=0 (1− ϕ)i ≤ ∑∞
i=0 (1− ϕ)i = 1/ϕ, it can be

rewritten as

E
[
∥ζk∥2

]
≤ τ2
τ1
E
[
∥ζ0∥2

]
(1− ϕ)k +

γ′

τ1ϕ
. (1.31)

We now compare the above expression with Eq. (1.23). We observe that with

τ2/τ1 = κ′, 1−ϕ = θ, and γ′/(τ1ϕ) = σ′, Eq. (1.31) is the same as Eq. (1.23). Thus,

we can say that the stochastic process ζk remains exponentially bounded in mean

square.

Remark 1.2. Definition 1.1 and Remark 1.1 collectively conclude that any stochas-

tic process remains bounded with an exponential envelope (i.e., satisfies Eq. (1.23))
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if it satisfies the two criteria given by Eqs. (1.24) and (1.25).

Stability of modified Gaussian filters

In this thesis, we introduce multiple modified versions of the Gaussian filter to ad-

dress various measurement irregularities. We extend our analysis to investigate the

stochastic stability of these filtering algorithms, a concept previously discussed for

an arbitrary stochastic process denoted as ζk. In the context of the filtering algo-

rithm, this amounts to checking whether the estimation error exhibits exponential

boundedness [24, 25]. In this thesis, we analyze the stochastic stability of different

restructured Gaussian filters by considering only the respective EKF-based struc-

tures. The reason is that the local linearization step involved in the EKF enables

us to perform the stability analysis conveniently. Conversely, other Gaussian filters

such as the UKF [26], CKF [9], CQKF [27], and GHF [28] propagate the non-

linearities of the systems, and these filters currently lack a rigorous mathematical

treatment in the existing literature. The following discussion provides a context of

our strategy for stability analysis of the Gaussian filter, which is performed later in

this thesis.

As discussed above, the stability of the EKF can be examined by analyzing the

behavior of the estimation error. Since the estimation error fundamentally follows a

stochastic process, we describe its dynamics through a stochastic difference equation;

thereby, characterizing it as a stochastic system. Subsequently, we employ Remark

1.2 as our criterion to establish the exponential boundedness of the estimation error.

This achievement, in turn, demonstrates the stochastic stability of the EKF, and

hence of corresponding Gaussian filter. To be more specific, Remark 1.2 is used to

identify conditions under which the estimation error of the EKF exhibits exponential

boundedness.

1.2 Motivation

As has been indicated in the beginning, the aim of this thesis is to address nonlinear

filtering, Gaussian filtering to be specific. The Gaussian filters are sub-optimal

yet they provide reasonable performance for many real-life problems. The various
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versions of the Gaussian filter enable us to make a trade-off between accuracy and

computational complexity [11].

An aspect of designing the Gaussian filtering is the assumption of receiving

clean measurements without irregularities, which is often violated in practice. The

practical measurements, stemming from various reasons, may involve irregularities:

random delays and frequent losses. In the former case, the measurement received at

any time instant may contain information about any of the previous states, while

the measurements are not received at intermittent intervals in the latter case. Since

the irregularities are not considered in the structures of the Gaussian filters, their

performance tend to deteriorate significantly or even fail completely in the individual

or joint presence of these irregularities [29]. Following which, we summarize the

motivations of the thesis as follows

� Gaussian filters require complete measurements for a smooth filtering per-

formance. In practice, however, one or more elements of the measurements

may be frequently missing [29]. The earlier developments in this directions

are mostly filter-specific, and thus find difficulty in addressing a wide class of

problems. The motivation of this thesis is to develop a generalized Gaussian

filtering algorithm to handle the partially missing measurements.

� The earlier developments are mainly designed to handle only one irregularity

at a time: either delayed measurements or missing measurements. In practice,

however, the simultaneous occurrence of these irregularities is possible. This

motivated us to develop an advanced Gaussian filter that can handle the jointly

occurring delayed and missing measurements.

� The existing methods for handling the delay require knowledge of a set of delay

probabilities, which are hardly available in practical systems. Moreover, the

methods arbitrarily assign the upper bound of the delay. The motivation of this

thesis is to develop an advanced Gaussian filter that serves as both reducing

the number of delay probability requirement and precisely characterizing the

maximum possible delay in the measurements.

� The existing Gaussian filters are sub-optimal, with the accuracy depending

on the accuracy of the underlying numerical approximation methods. This
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motivated the thesis to develop an advanced Gaussian filtering algorithm to

further improve the filtering accuracy by employing a more accurate numerical

approximation method.

� The literature witnesses a number of contributions to study the stability for

the linear Kalman filter, while there are only few contributions addressing the

stochastic stability of the Gaussian filters. This motivation of the thesis is to

prove the stochastic stability of the restructured Gaussian filters handling the

different irregularities.

1.3 Objective

Following the motivation discussed in the previous section, we sketch out the objec-

tives of the thesis as follows

� Design an advanced Gaussian filter to handle the intermittently missing mea-

surements.

� Modify the Gaussian filter to handle the simultaneous occurrence of delayed

and missing measurements.

� Introduce an advanced Gaussian filter that not only reduces the number of

delay probability requirements but also relaxes the ambiguous assignment of

the upper bound of the delay.

� Design a modified Gaussian filter to deal with stochastically composed current

and previous measurements.

� Introduce a more accurate version of the Gaussian filter.

� Prove the stochastic stability of different Gaussian filters proposed in this

thesis.

1.4 Approaches and Methods

Let us reiterate that this thesis is concerned with nonlinear filtering problem in

Gaussian domain, wherein we aim to develop new Gaussian filtering algorithms to
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handle various measurement irregularities and intractable integrals. In this regard,

we adopt the following strategies

� Inclusion of the measurement irregularity: The effect of the irregularity phe-

nomenon is incorporated by introducing a mathematical model.

� Modified Gaussian filter design: The author re-derives a few relevant param-

eters in the Gaussian filter according to the mathematical formulation. In

the case of new Gaussian filter design, the author employs a new numerical

approximation technique to handle the intractable integrals.

� Stability analysis: The author uses the criteria of checking the stochastic sta-

bility of general stochastic systems, and subsequently, extends it to prove the

stochastic stability of the different Gaussian filters for their EKF-based exten-

sions.

� Simulation: The simulation results are generated in MatLab, over a personal

computer configured with 32 GB RAM, i5-8400 processor with the clock speed

of 2.80 GHz.

� Validation: The author adopts the well-known root mean square error (RMSE)

as a metric to compare the performance of different developments.

1.5 Contribution

The main contributions of this thesis are provided below

� This thesis offers an extensive and advanced review of the Gaussian filtering

and various measurement irregularities.

� The conventional Gaussian filter is restructured to handle the missing mea-

surements.

� A modified Gaussian filter is proposed to handle the simultaneously occurring

delayed and missing measurements.
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� A novel nonlinear Gaussian filtering algorithm is formulated to manage de-

layed measurements while requiring minimal prior information about delay

probabilities.

� The traditional Gaussian filter is modified to deal with stochastically super-

imposed current and past measurements.

� The stochastic stability is studied for each of the above-mentioned Gaussian

filters.

� An advanced Gaussian filter is proposed to handle the intractable integrals

appearing during the filtering.
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1.6 Thesis Organization

The remaining part of the thesis is organized as follows. Chapter 2 reviews variants

of different Gaussian filters and discusses the missing and delayed measurements

phenomena. In Chapter 3, the extended Kalman filter is modified to handle the

missing measurements phenomenon, which is followed a generalized Gaussian filter

for missing measurements in Chapter 4. Chapter 5 proposes a Gaussian filter to

handle large delays by using single average delay information. In Chapter 6, a new

kind of delay irregularity is addressed. The simultaneous presence of the delayed and

missing measurements are handled using and advanced Gaussian filter in Chapter

7. The stochastic stability is analyzed in Chapter 8, followed by an new Gaussian

filter development in Chapter 9. Finally, Chapter 10 draws important conclusions

with the discussion on the possible future research directions.
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Chapter 2

Literature Review

In the previous chapter, we established the motivation behind this thesis: to develop

advanced filtering algorithms specifically tailored for discrete-time nonlinear systems

(DTNSs). Prevalent in engineering and science, DTNSs exhibit complex behaviors

that cannot be accurately modeled using linear techniques. The primary objective

is to improve the accuracy of filtering methods for such systems. To be specific, the

review mainly focuses on the computationally efficient Gaussian filtering, a widely-

recognized filtering algorithm for DTNSs.

This chapter further discusses various measurement irregularities in the net-

work control systems (NCSs) and the developments appearing in the literature to

handle them. Some predominantly occurring measurement irregularities are de-

layed measurement, intermittently missing measurements, non-Gaussian noise, and

cyber-attack. This thesis primarily emphasizes the challenges posed by delay and

missing measurements, it acknowledges the important issues of non-Gaussian noise

and cyber-attacks.

2.1 Evolution of Gaussian Filters

The Bayesian filtering solution provided by Eqs. (1.5) and (1.7) involve intractable

integrals that arise due to the non-linearities in practical systems. However, there

are some cases where these integrals tend to have analytical solutions. A few notable

examples include:

� Linear dynamical systems with additive white-Gaussian noise (AWGN): The
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state and state-to-measurement transitions are governed by linear relationships

and the process and measurement noises can be modeled by AWGNs. The well-

celebrated Kalman filter [12] provides an optimal solution for such a system.

� Benes type non-linearity: This type of non-linearity typically comprises an

exponential function of the state of the system. The optimal solution for such

filtering problems is given by the Benes filter [30].

Let us now reiterate that the practical systems mostly exhibit non-linear dynam-

ics, and the popular filtering technique, i.e., Kalman filter [12] has demonstrated

incompetency to handle it. Subsequently, some reasonable assumptions are made

to handle the non-linearities in the systems. These assumptions have led to the

development of two major classes of Gaussian filters, adopting individual strate-

gies to handle the non-linearities: one category employing approximant (linear) to

approximate the non-linearities (derivative-based) while another approximates the

intractable integrals using numerical integration techniques (sigma point-based).

Due to the involvement of the approximation step, these filters are also referred to

as approximate filters.

To be specific, the derivative-based Gaussian filtering techniques represent the

system non-linearity as the linear combination of some terms. On the other hand, as

discussed in the previous chapter, the sigma point-based Gaussian filters calculate

the approximated values of the intractable integrals through a collection of sample

points (sigma points) associated with corresponding weights. A range of sigma

point-based Gaussian filters has been documented in the literature, each employing

different numerical approximation techniques involving individual sigma points and

weights. Compared to their derivative-based counterparts, these sigma point-based

Gaussian filters surpass in terms of both accuracy and numerical stability.

The subsequent discussion reviews numerous methods developed under the afore-

mentioned linearization-based and sigma point-based Gaussian filtering.

2.1.1 Linearization-based Gaussian Filters

The filters in this category, including the EKF and its variants, approximate the

nonlinear function with a linear one. Apart from the linearization process, these
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filters share the same structure as the Kalman filter. The author now provides a

moderately detailed discussion on these filters.

The EKF and its subsequent versions

Being developed in early 1960s, the EKF is arguably one of the earliest nonlinear

Gaussian filters and is continuing to be remarkably applicable in industrial and theo-

retical developments. It linearizes the system nonlinearities by taking the first-order

Jacobian around the latest estimates which are the previous and predicted esti-

mates respectively for the process and measurement models. Thereupon, it follows

the structure of the linear Kalman filter to calculate the estimate recursively. The

EKF is probably one of the most preferred filters in real-life estimation problems.

Operation and control in power systems [31], space exploration through low earth

orbit satellites [32], modeling and studying the epidemic spread [33], fault detec-

tion in battery banks [34], and industrial process monitoring are a few noticeable

practical examples employing the EKF.

The EKF is widely recognized as practical standard in nonlinear filtering theory

for systems with comprehensible models, such as navigation systems. However, it

also suffers from several drawbacks due to the involvement of linearization step. In

the first instance, it may become divergent if the initial estimation is significantly

mismatched from the true value or the model inaccurately imitates the actual sys-

tem. In addition, the negligence of the approximation errors results into underesti-

mated state-uncertainties, thrusting the EKF towards inconsistency. Moreover, the

requirement of model continuity and small sampling instants become problematic,

as the EKF involves the Jacobian calculation.

Despite its limitations, the EKF remains popular among practitioners due to its

straightforward implementation and low computational requirements. Additionally,

researchers have brought many technical advancements in the traditional EKF to

overcome its drawbacks, and the following discussion explores some major variants.

� Second-order EKF (SEKF) [17, 18, 35] and high-order EKF (HEKF) [36]: As

discussed earlier, the conventional EKF considers the Taylor series expansion

only up to the first order in approximating the system non-linearity. The

SEKF extends it by taking the second-order approximant and follows the
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EKF structure of filtering. Motivated by this, the HEKF further includes

the higher-order terms of the expansion for approximation. Consideration of

the second and higher-order terms results in more accurate approximation. As

a result, the EKF is surpassed in terms of accuracy by the SEKF and HEKF,

with the latter being superior.

� Invariant EKF (InEKF) [37, 38]: Some practical nonlinear systems demon-

strate symmetry or invariance and the EKF gives sub-optimal performance

for such applications. The InEKF incorporates the strengths of the EKF and

symmetry-preserving filters, extending the EKF to the Lie group (space re-

sembling the Euclidean space locally). It uses the geometrically transformed

state and output errors based on Lie group theory, reducing the dependency

on the estimated state. Thus, the InEKF outperforms the EKF for nonlinear

invariant systems.

� Iterated EKF (IEKF) [16, 39, 40]: In the update step of the EKF, the measure-

ment model is linearized only one time. The IEKF improves the linearization

accuracy by iteratively updating the center of the Taylor-series expansion,

leading to an improved estimation accuracy. However, the iterative step in-

creases the computational demand.

Despite the existence of multiple modified versions of the EKF, the derivative

computation remains a major concern. It further worsens as the degree of non-

linearity in the system increases. As previously discussed, the sigma points Gaussian

filtering averts the Jacobean calculation, and can partially alleviate the limitations

associated with the EKF and its advanced versions. In the subsequent discussion,

the author examines notable advancements related to sigma points (derivative-free)

Gaussian filtering.

2.1.2 Sigma Point-based Gaussian Filters

Unlike the EKF structure, the sigma point-based Gaussian filtering is free from the

linearization step and directly propagates the non-linearity of system. Consequently,

it faces intractable integrals during the filtering process, and requires numerical

integration techniques to calculate the approximate value. As discussed earlier,
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the numerical integration methods calculate a set of sample points (sigma points)

and corresponding weights. Subsequently, the numerically approximated value of

the integral is given as the weighted sum of the values of the nonlinear function

calculated at sigma points.

The use of individual numerical integration techniques has induced different

sigma point Gaussian filters. In the following discussion, the author reviews a range

of these filters and their variants.

Unscented Kalman filter (UKF) and its versions

The development of the UKF [26] was mainly motivated by the process of only

approximation of nonlinear function in the EKF, while statistical information on

states is also available. It offers an alternative to linearization. Unlike the EKF,

which relies on analytical linearization to handle non-linearity, the UKF employs

statistical linearization based on predefined rules. The driving intuition was that a

distribution represented by a small number of parameters can be more conveniently

approximated than approximating the nonlinear function. Following this, the pio-

neers sought a parameterization technique that could simultaneously capture the

parameters of the original distribution while exactly propagating them through the

nonlinear function. Thus, a discrete distribution is generated with the statisti-

cal parameters (mainly mean and covariance) remaining unchanged. The elements

(points) of the discrete distribution are also referred to as the sigma points and

can directly undergo nonlinear transformation. Subsequently, the desired statistical

parameters are obtained by calculating the corresponding parameters of the trans-

formed set. The complete exploitation of the nonlinearity immediately eliminates

the need for linearization that is not possible for non-differentiable functions.

Recognizing the superior performance to the EKF, the UKF gained significant

attention and was employed as an alternative to the EKF in many practical applica-

tions. These include grid integration and control [41], distant tracking of vessel [42],

continuous monitoring of respiratory rate [43], manipulation of an unmanned aerial

vehicle [44], and target tracking [45].

The filtering literature has witnessed several advancements in the UKF; the

discussion below summarizes some important developments of them.

25



2.1. EVOLUTION OF GAUSSIAN FILTERS

� Iterated UKF (IUKF) [46, 47]: As mentioned earlier, the inclusion of the itera-

tive step improved the performance of the conventional EKF (IEKF), inspiring

the inclusion of the same in the UKF. However, the iterative process in the

UKF differs slightly from that of the IEKF: termination criterion and step

length. Moreover, the most recent covariance matrix governs the generation

of a new set of sigma points at each iteration, making the set closer to the true

distribution at each step. As result, the IUKF outperforms the traditional

UKF.

� Transformed UKF (TUKF) [48]: The higher-dimensional problems (usually

greater than 3) become problematic for the UKF in term of numerical instabil-

ity. This is because of the loss of positive definiteness of the covariance matrix

which stems from the negative weight of the central sigma point (mean). To

circumvent the problem, a new set of sigma points is generated and embedded

into the traditional UKF leading to the development of the TUKF.

� Square-root UKF (SQUKF) [49]: The conventional UKF computes the square

root of the covariance matrix by applying the Cholesky factorization. It is only

possible when the covariance matrix is positive semi-definite, which is not al-

ways practically guaranteed and leads to implementation failure. The SQUKF

efficiently deals with this problem as it replaces the Cholesky decomposition

with QR decomposition technique, insuring the positive semi-definiteness of

the state covariance matrix.

Apart from the above, various practical applications celebrate other important

versions of the UKF. To name a few, [50] applies the scaled UKF for bearing-only

target tracking while [51] employs the similar for fault diagnosing in a offshore

windmill system. In other developments, the traffic flow monitoring and control

was performed using an incremental-based UKF [52], and [53] used hybrid UKF for

robotics manipulation.

Cubature Kalman filter (CKF) and its versions

A popular iteration of the sigma point technique is the Cubature Kalman Filter

(CKF) [9]. With slight variations from the UKF, the CKF selects sigma points

26



CHAPTER 2. LITERATURE REVIEW

based on the cubature rule. The core of the cubature rule involves transforma-

tion of the state from Cartesian to spherical-radial coordinate. Subsequently, the

resulting integral is factorized into spherical and radial integrals, with the former

and latter being approximated by the third-degree spherical and first-order Gauss

quadrature rules, respectively. Finally, the CKF combines these rules, resulting

into spherical-radial rule and extends it for Gaussian weights. Due to the superior

performance over the UKF, the CKF attracted various specialties, such as useful

remaining life prediction of Lithium-ion battery [54], monitoring and orientations of

a spacecraft [55], and dynamic state estimation in power systems [56].

This work was extended in [27] by considering the third-order Gauss-Laguerre

quadrature rule to approximate the radial integral, developing a new filter termed

as cubature-quadrature Kalman filter (CQKF). Taking the higher order gives an

increased number of sigma points which more accurately approximate the integrals,

however at slightly higher computational complexity. Although the higher-order

radial rule was used by CQKF, the high degree of spherical rule remained unexplored

until the developments in [57] and [58] exploited the high-degree spherical rules.

The former restructured the CKF and the latter modified the CQKF and referred

to them as higher-degree CKF (HDCKF) and higher-degree CQKF (HDCQKF),

respectively. The discussed filters are widely applied in target tracking [59], space

exploration[60], navigation [61] etc.

In addition, several modifications were incorporated in the CKF and CQKF,

introducing modified versions of these filters and applied to different applications.

Specifically, the square-root versions of the CKF [62], CQKF [63, 64], HDCKF [65],

transformed CQKF [66], and iterated CKF [67] are some notable examples.

Gauss-Hermite filter (GHF) and its versions

Gauss-Hermite quadrature rule is a suitable candidate for numerically approximat-

ing intractable integrals for a single dimension. In practice, however, dealing with

multi-dimensional systems is common. The Gauss-Hermite filter [28] implements

tensor product of single-dimensional sample points, which enables to approximate

multi-dimensional integrals. It should be mentioned that the sample size and sys-

tem dimension are exponentially related, becoming problematic in terms of compu-
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tational complexity for high dimensional systems, (usually n > 5).

Two popular versions of the GHF were proposed to ease the computational de-

mand: sparse-grid GHF (SGHF) [68] and adaptive sparse-grid GHF (ASGHF) [69],

with the former using the Smolyak rule and the latter employing adaptive-grid

method to reduce the number of quadrature points. The SGHF and ASGHF pe-

culiarly lessen the computational complexity without compromising the accuracy.

Unfortunately, the computational burden of the SGHF and ASGHF are still high

enough to restrict their applicability in high-dimensional system, despite the fact

that GHFs hold high-rank among the accurate Gaussian filters.

The Gaussian filters and their extensions are associated with certain drawbacks,

including: i) inconsistency in the set of nonlinear equations, ii) numerical solutions

that often result in undesirable negative weights and complex roots, and iii) cubature

points that may fall outside the support of the PDFs. These challenges make it

difficult to formulate general cubature rules that can be applied across different

dimensions and orders. Consequently, most cubature rules are specifically designed

for a given dimension and order. Recognizing these limitations has provided valuable

insights that have contributed to the development of new cubature rules with positive

weights in [70], known as the conjugate unscented transformation (CUT).

The CUT identifies non-product sigma or cubature points with positive weights,

capable of accurately integrating polynomial functions of a specified order with re-

spect to Gaussian and Uniform probability density functions. Its objective is to

achieve a rule with fewer points than the equivalent Gaussian quadrature product

rules. This approach extends the unscented transformation, providing higher-order

sigma points with positive weights for multivariate Gaussian. This method has been

applied for estimating the probability of conjunction between two space objects [71].

The proposed approach leverages the CUT with the principle of maximum entropy

to assess collision probability. The CUT points facilitate the efficient propagation

of statistical moments associated with each object’s orbital state, which are subse-

quently used to reconstruct the miss-distance probability density function through

the principle of maximum entropy. Similarly [72] represented the PDFs with or-

thogonal polynomial and designed an estimation algorithm under maximum entropy

framework.
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2.2 Nonlinear Filtering in the Presence of Various

Measurement Irregularities

The Gaussian filters discussed in the previous section are designed based on certain

ideal assumptions about measurements. Specifically, the filters assume that mea-

surements are received at each sampling instant and provide information about the

states from the exactly same moment, apart from the being disturbed by Gaussian

white noise. However, these assumptions are often not met in practical systems

involving network control system (NCS) or more broadly wireless sensor networks

(WSNs). The WSNs offer several advantages over the conventional wired systems:

distant monitoring in real-time with quick response, highly scalable, and economi-

cal [73–75]. However, the complex structure of WSNs poses many challenges; the

compromised data quality being among the major concerns which is considered in

this thesis.

As mentioned in Chapter 1 of this thesis, the practical measurements are fre-

quently corrupted by the some irregularities. These include missing measurements,

where an estimator does not receive measurements at random sampling instants; de-

layed measurements, which contain information about the state from past instants;

cyber-attacked measurements, intentionally altered or destroyed; and non-Gaussian

noise, where measurement errors deviate from a Gaussian distribution. Please note

that this thesis is specifically centered around the irregularities of delayed and miss-

ing measurements.

In what follows, the author presents a discussion on concerned measurement

irregularities: their inducing factors, developments to handle these irregularities,

etc.

2.2.1 Missing Measurements

During the filtering process in practical systems, there frequently arises a situation

where the required information to produce an estimate is not available for many

time instants, and referred to as missing measurement. The measurement might

be lost during any phase of the filtering: acquisition, propagation, and storage.
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Generally, the following two notions of missing measurements are widely recognized

in a wireless sensor network (WSN) [76]

� Damaged measurement: The sensor nodes in WSNs, typically deployed

in geographically distant and complex environments, are energy-constrained

due to being powered by battery. The acquired measurements are compressed

before propagation through wireless channels, which also involves eliminating

the measurements from some samples to reduce the number of data [77–79].

Moreover, the data are truncated and rounded. Such measurements can be

regarded as damaged with certain degree, and hence missing ones due to being

incompetent in providing any knowledge about quantity (state).

� Missing data entries: Regarding the most widely accepted definition, miss-

ing data typically refers to incomplete data entries. Specifically, if the entries

(data source) are null at one or multiple sampling instants, it is considered to

be the case of missing measurements.

The prevalent cause of missing measurements is their loss or damage during any

of the stages between acquisition to storage. Both human and non-human elements

contribute to measurement loss or damage. Human factors mainly include deceptive

business: sensor nodes are physically damaged [80] or their communication environ-

ment is compromised [81]. Moreover, the intentional use of compressive sensing by

the operator [82, 83] also causes missing measurements, as it involves frequent elim-

ination of data to extend both battery (energy) and sensor lifetimes. On the other

hand, non-human factors involve sensor-, communication channel-, storage-, and as-

sociated hardware-related issues, causing the frequent loss of measurements. In the

first instance, the sensors are mostly battery-driven with limited power; the sensors

operating at low power may drift toward instability and results into data loss [76].

In other reasons, time-sharing of sensors [84] and sensor malfunctions or temporal

failure [85, 86] are sensor-related problems causing the missing measurements.

The network-related problems also contribute to the missing measurement phe-

nomenon. For instance, the incompetent network and communication channels tend

to lose measurement data [87]. In addition, physical obstacles, radio interference,

and harsh environments such as desert and underwater [88–91] irregularly interrupt
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the propagation of measurements. Moreover, highly noisy and cluttered surround-

ings cause the actual measurements to be unidentifiable [92].

Extending the above-discussion, the problem of missing measurements is iden-

tified in many practical applications, including power systems [93, 94], biomedi-

cal [95], and space technology [96]. Subsequently, many developments appear in

the filtering literature to handle the problem of missing measurements in various

applications. For instance, researchers detected the phenomenon in a multi-sensor

system [97] and modified the traditional Kalman filter to handle it. In another

study, the phenomenon was addressed in a saturated system where only one sen-

sor propagates measurements within a sensor network [98]. A distributed filtering

strategy was subsequently proposed to minimize the upper bound of the estimation

error covariance matrix. Additionally, a sub-optimal filtering algorithm was devel-

oped for a jump Markov system under the influence of missing measurements [99],

utilizing the Kullback-Leibler average fusion scheme. Lost observations in a cyber-

physical system were discussed, leading to the development of an observer-based

controller [100] specifically designed to handle missing measurements. Similarly, re-

searchers employed the Kalman filter to estimate missing video frames (observations)

in a nuclear power plant [101]. In a subsequent development, multiple Kalman filters

were designed to efficiently estimate the state-of-charge for frequently missing volt-

age signals [102]. Overall, the problem of missing measurements has been explored

extensively across different applications, resulting in a variety of problem-specific

methods [103–107].

2.2.2 Delayed Measurements

Delay in measurements is another wide-spread irregularity in NSC/WSN. Under

this irregularity, the latest received measurement may belong to any of the previous

time instants, depending on the maximum possible delay extent. In other terms,

the measurement possibly contains the information about the past states, while the

required information is about the current state. Thus, this misleading information

severely affects the estimation accuracy. A WSN inherently involves a degree of

time-lag between the acquisition of a measurement (at sensor node) and its arrival

at the estimator. This delay, in general, is accumulation of individual delays at
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various stages of the WSN: nodal processing, queuing, transmission, and propagation

delays [108–110]. The system operators generally have the knowledge of these delays.

In addition to the above, there are other factors that introduce delay in measure-

ments: bandwidth limitations, highly noisy communication channels, packet drop,

and network topology [111, 112]. In numerous instances, the delay is identifiable,

and a straightforward solution involves adjusting the timing. However, especially

when lacking timestamps and clock access, the delay remains uncertain; this vari-

able and time-dependent delay is commonly referred to as random delay, which is

specifically addressed in this thesis.

Filtering with delayed measurement started getting attention in the last quarter

of the twentieth century [113, 114] and heightened in the starting of the twenty-first

century [115–117]. The Kalman filter-based methods were particularly proposed to

handle the delay in linear systems [118–120]. Importantly, the EKF and UKF for

one-step delayed measurements are extended in [121], which serves as the primary

starting point for the nonlinear Gaussian filtering with delayed measurements. Sub-

sequently, the UKF was modified for two-delay [122]. For the CKF and GHF, the

same methodology is further expanded in [123] and [124], respectively. A delay of

up to one sample interval is referred to as one-step delayed measurement in this

context. Later on, Singh et al. [125] improved upon the Gaussian filtering technique

to handle arbitrary delays. However, this approach requires the prior knowledge of

a great deal of delay probabilities, the majority of which are unknown or arbitrar-

ily assigned. In a different method, rather than ambiguously allocating the delay

probabilities, Esmzad et al. [126] adopted a likelihood-based technique, followed by

many Gaussian filter-based approaches to deal with estimation problem with delayed

measurements [127–130].

The author now provides a context on another important measurement irreg-

ularity, i.e., non-Gaussian noise, although it is beyond the scope of this thesis.

The non-Gaussian measurement noise frequently appears in many practical sys-

tems [131, 132]. The traditional Gaussian filters are incapable of handling non-

Gaussianity as these are designed under the minimum mean square error (MMSE)

criterion. For such systems, [133] proposed maximum correntropy Kalman filter

(MCKF) based maximum correntropy criterion, which was applied in fusion posi-
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Figure 2.1: Different types of delays inherently existing in a wireless sensor networks.

tioning [134] and navigation [135]. Similarly, Reference [136] employed the min-

imum error entropy criterion and developed a minimum error entropy Kalman

filter (MEEKF). The MEEKF handles non-Gaussianity more efficiently than the

MCKF and finds applications in many problems, including cyber-attacks [137] and

state-of-charge estimation [138]. In other developments, [139] and [140] tackle non-

Gaussianity by representing the state PDFs as a finite sum of weighted Gaussian

distribution, and propagating the uncertainty through nonlinear dynamics. The

weights of these PDFs are updated by solving the convex optimization problem to

satisfy the Chapman-Kolmogorov equation.

Based on the above discussion, the author now highlights the research gap in the

filtering literature and resulting objectives of the thesis as follows

� To ensure optimal filtering performance, Gaussian filters depend on having

complete measurements. However, in practical scenarios, it is common for one

or more measurement elements to be unavailable. Previous advancements in

this area primarily focused on specific filters, which limits their ability to tackle

a broader range of issues. This motivated to introduce a generalized Gaus-

sian filtering approach designed to address cases involving partially missing

measurements.

� Earlier methods were primarily designed to address only one issue at a time

i.e., either delayed measurements or missing measurements. However, in prac-

tical scenarios, both challenges can arise simultaneously. This prompted the
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development of an improved Gaussian filter capable of addressing delayed and

missing measurements simultaneously.

� Existing approaches for managing delays often require knowledge of specific

delay probabilities, which are rarely available in practical systems. Further-

more, these methods tend to arbitrarily assign an upper limit to the delay.

This inspired to propose an advanced Gaussian filter that both reduces the

dependency on delay probabilities and accurately defines the maximum possi-

ble delay in measurements.

� The existing Gaussian filters are suboptimal, as their accuracy is significantly

influenced by the precision of the underlying numerical approximation meth-

ods. This thesis is therefore motivated to develop an advanced Gaussian fil-

tering algorithm that enhances filtering accuracy through the adoption of a

more precise numerical approximation technique.”

2.3 Summary

The following discussion highlights the summary of this chapter.

� The optimality is satisfied only for the linear system with additive Gaussian

noise by the Kalman filter. In contrast, the nonlinear transformation of the

PDF in the nonlinear Gaussian filters makes them sub-optimal, with the scope

of accuracy improvement often involving increased computational burden.

� The employment of NCS/WSN in practical applications often introduces the

phenomena of the delayed and missing measurements. The conventional Gaus-

sian filters ignore the possibilities of these irregularities and degrade in their

presence.

� The existing methods are mostly developed for particular system dynamics;

the problem-specific nature precludes their applicability for other systems.

� The developments handling either delayed or missing measurements at a time

are available in abundance. However, the simultaneous presence of these ir-

regularities is also possible in practice.
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Chapter 3

Kalman-Based Multiple Sinusoids

Identification from Intermittently

Missing Measurements of the

Superimposed Signal

3.1 Introduction

The missing measurements phenomenon is a widespread measurement irregularity

in wireless sensor networks (WSNs). In the previous chapters, the author presented

a detailed discussion on the occurrence of this irregularity and the various causes

triggering it. This chapter addresses the missing measurement phenomenon in the

context of the sinusoidal identification problem, which can possibly arise in many

practical applications.

Importance of sinusoids is well understood to practitioners working in almost ev-

ery domain of science and technology. In many applications [141–146], a signal super-

imposed of several sinusoids is reported instead of a single sinusoid. Distorted signals

and harmonically superimposed signals appearing in power systems [143, 144], com-

munication systems [147], and sensor signals [148] are some notable practical exam-

ples. Analysis of distorted signals is crucial for fault detection [149] and performance

monitoring of communication channels [150]. Similarly, harmonic analysis is impor-

tant for power quality measurements [151], while the sensor signals are critical for
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many of the electronics devices [152–154]. In most of these applications [144–146],

the information is mostly available for the superimposed signal only. However, the

knowledge of individual sinusoids is required for many applications, which illustrates

the importance of identifying each sinusoid. Note that a sinusoid is fundamentally

characterized by amplitude and frequency. Subsequently, the sinusoid identification

problem reduces to amplitude and frequency estimation problem.

Earlier methods of amplitude and frequency estimation are based on maximum

likelihood [155, 156] and Fourier analysis [157–160], which are computationally de-

manding and less accurate [161]. Some of the modified techniques [161–163] are

suitable for offline estimation only. In the recent decades, the amplitude and fre-

quency estimation is tackled as stochastic estimation problem, or more broadly, a

stochastic filtering (recursive process of estimation) problem [143, 144]. The Kalman

filter [1], involving time update and measurement update, is a popular stochastic

filter, which is applicable to linear systems only. However, the superimposed signal

(composed of multiple sinusoids) is inherently nonlinear with respect to the ampli-

tude and frequency. Moreover, our problem essentially requires fast computation

as the sampling interval is small to appropriately characterize the high-frequency

sinusoids. For such a problem, the EKF [10] receives comparatively more attention

due to simple and fast implementation.

As discussed earlier, the problem of individual sinusoids identification from the

missing measurements of the superimposed signals is likely to be encountered in

many real-life problems. The nature of considered problem demands the developed

method to fulfill two criteria: i) it should be fast enough to tackle the presence of

high frequencies in the measurement and ii) it should consider the non-linearity of

the system. In our investigation, we found out the EKF to be a suitable candidate

among the existing filters. Motivated by this, in this chapter, we redesign the tra-

ditional EKF to address the problem of frequency and amplitude estimation from

intermittently missing measurements. In this regard, we reformulate the measure-

ment model, based on Bernoulli random variables, to incorporate the possibility

of missing measurements. Subsequently, we re-derive the traditional EKF for the

modified measurement model. It is worth mentioning that the time update step (of

estimation and filtering) [1] has no coherent relation with measurements (model).
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Thus, this step remains unchanged even when the measurements are missing. The

measurement update step [1], however, requires the estimate and error covariance

of measurement and the state-measurement cross-covariance; we re-derive these ex-

pressions for the modified measurement model. Furthermore, we derive a Kalman

gain expression to minimize the trace of the error covariance matrix for missing

measurements. We also derive the resulting expression of the posterior error covari-

ance. The simulation results reveal an improved performance of the modified EKF

compared with the conventional Gaussian filters in identifying the multiple sinusoids

from the intermittently missing measurements of the superimposed signal.

The main contributions of the chapter are as provided below.

� The chapter considers a widely appearing problem of individual sinusoids iden-

tification from intermittently missing measurements of the superimposed sig-

nal. The chapter attempts to solve this problem using nonlinear Kalman

filtering technique (particularly, EKF-based). While this problem has been

discussed in literature, the existing methodology fail under the environment

of missing measurements.

� The chapter proposes a modified measurement model that can incorporate the

possibility of missing measurements.

� The chapter introduces a new extension of EKF to handle the missing measure-

ments. This extended version of EKF is then used for addressing the problem

of individual sinusoids identification from intermittently missing measurements

of the superimposed signal.

� The improved performance of the proposed extension of EKF for sinusoids

identification is tested and compared with multiple ordinary Gaussian filters,

including the EKF, UKF, CKF, and CQKF, as well as with recent extensions

of Gaussian filters to handle missing measurements.

3.2 Problem Formulation

Consider Fig. 3.1 where multiple unknown sinusoids form a superimposed signal.

A noisy measurement of the superimposed signal, denoted as zk (k ∈ {1, 2, . . . , Ts})
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Figure 3.1: Block diagram of multiple sinusoids identification problem from inter-
mittently missing measurements of superimposed signal. The block diagram is pre-
sented for network/communication channel as the cause for missing measurements.

at kth sampling instant, is observed by the measurement system. zk is propagated

through a network before it is available for estimation. During the propagation,

some elements of zk are intermittently lost due to network fault, and a resulting

measurement, yk, is received. Our objective is to identify the unknown sinusoids

from the intermittently missing measurements of the superimposed signal, i.e., yk.

Alternatively, we aim to estimate the characterizing parameters, such as the am-

plitude and frequency, of each of the unknown sinusoids from yk. We choose the

popularly known EKF for this purpose. However, the traditionally designed EKF is

found to be inaccurate for missing measurements.

From the above discussion, our major goals are as follows:

� Redesign the traditional EKF for intermittently missing measurements.

� Apply the modified EKF to estimate the amplitude and frequency of each of

the unknown sinusoids from yk.

Let us consider that the superimposed signal z(t) is composed of Ns sinusoids.

Then, we can model z(t) as

z(t) =
Ns∑
j=1

aj [cos(2πfjt) + i sin(2πfjt)], (3.1)

where aj and fj (j ∈ {1, 2, . . . , Ns}) are the amplitude and frequency, respectively,

of the jth sinusoid. As aj and fj are our desired quantities, we formulate the state
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variable as x = [f1, f2, . . . , fNs , a1, a2, . . . , aNs ]
T . The amplitude and frequency do

not change with time ideally. However, there may be slight variations in practi-

cal scenarios. Therefore, we model the state dynamics with an additive noise to

incorporate such variations, i.e.,

xk = Ixk−1 + ηk. (3.2)

where k ∈ {1, 2, . . . , Ts} denotes a sampling instant, I is an identity matrix and ηk ∼
N (0,Qk) is the process noise, with N (., .) is standard representation of Gaussian

distribution.

Please note that Eq. (3.1) represents the continuous complex form of the su-

perimposed sinusoids (measurements), which is complex power measured at dif-

ferent nodes in power systems. The phasor measurement unit captures the time-

synchronized voltage and current phasor measurements and then calculates power

components i.e., active and reactive powers, based on these values. In filtering,

however, it required to process the discrete measurement values. Alternatively, the

power meters, i.e., wattmeter and varmeter provide the samples (discrete values)

of the real part (active power) and imaginary part (reactive power), respectively

of the complex power for filtering. Thus, the discrete measurement zk is obtained

by taking discrete-time samples of the real and imaginary parts individually of z(t)

calculated at the time-instants kT (zk = z(t)|t=kT ), where k and T denote the time-

instant and sampling interval, respectively. It is important that the selection of the

sampling interval is based on the Nyquist criterion to avoid the aliasing effect. In

practice, impacted by several factors such as instrumentation error, environmental

conditions, and electromagnetic inference, the sensors give erroneous measurement

(noisy measurement). The noisy measurement of z(t) at tk, i.e., zk, is modeled as

zk =

∑Ns

j=1 aj,k cos(2πfj,k(k)T )∑Ns

j=1 aj,k sin(2πfj,k(k)T )

+ νk. (3.3)

Furthermore, we model the intermittently missing measurement yk as

yk = βkzk =βk


∑Ns

j=1 aj,k cos(2πfj,k(k)T )∑Ns

j=1 aj,k sin(2πfj,k(k)T )

+ νk

 , (3.4)
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where βk= diag([α1
k, α

2
k, · · · , αq

k]), with α
i
k(i ∈ {1, 2, . . . , q}) being q Bernoulli ran-

dom variables with a known probability P(αi
k = 1) = E[αi

k] = ρik. α
i
k is independent

in k as well as i. q is the number of measurement elements, which is equal to two in

our case, and E[·] denotes the expectation and P(·) denotes the probability operator.

Note that βk is diagonal, i.e., βk = βT
k . We will frequently use the notation β2

k to

denote βkβ
T
k , and similarly, ρ2 and (βk − ρ)2.

Following this, our simplified problem is to estimate xk from the intermittently

missing measurements yk (Eq. (3.4)). The EKF, that we choose for this purpose,

is designed for non-missing measurements (Eq. (3.3)). Thus, another problem is

posed hereby as to modify the EKF for missing measurements.

3.3 Modified EKF for Missing Measurements and

Sinusoids Identification

This section derives the modified EKF for handling the missing measurements. Sub-

sequently, it applies the modified EKF for identifying the unknown sinusoids from

intermittently missing measurements of the superimposed signal.

The derivation of the modified EKF is based on the modified measurement model

(3.4), with no change in the state dynamics. As the measurement model is changed,

the filter parameters corresponding to measurement, such as the measurement esti-

mate, measurement error covariance, and state-measurement cross-covariance, need

to be re-derived.

Before proceeding further, we represent Eqs. (3.2) and (3.3) in terms of standard

state space model [10, 11], given as

xk = f(xk−1) + ηk. (3.5)

zk = h(xk) + νk. (3.6)

Please refer to Chapter 1 for a detailed discussion on the relevant notations.
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3.3.1 Modified EKF for Missing Measurements

The modified EKF involves two steps, time update and measurement update, which

are discussed in the sequel.

Time update

This step computes the prior estimate and covariance, i.e., x̂k|k−1 and Pk|k−1, similar

to the traditional EKF [1, 10]. Thus, we get

x̂k|k−1 = f(x̂k−1|k−1)

Pk|k−1 = Fk−1Pk−1|k−1F
T
k−1 +Qk,

(3.7)

where Fk−1 = ∂f(xk−1)/∂xk−1|xk−1=x̂k−1|k−1
represents the Jacobian matrix, while

x̂k−1|k−1 and Pk−1|k−1 are posterior estimate and error covariance, respectively, at

(k − 1)th instant.

Measurement update

This step computes the posterior update parameters, x̂k|k and Pk|k, which are based

on a Kalman gain, K, to minimize the trace of the error covariance Pk|k. The com-

putation of these quantities requires measurement estimate, ŷk|k−1, measurement

covariance, Pyy
k|k−1, and state-measurement cross-covariance, Pxy

k|k−1. In this section,

we initially derive ŷk|k−1, P
yy
k|k−1, and Pxy

k|k−1 for missing measurements, i.e., with

respect to Eq. (3.4). Then, we derive Pk|k and K (for missing measurements) so

that the traditionally used relation [1, 10]

x̂k|k = x̂k|k−1 +K(yk − ŷk|k−1) (3.8)

gives an estimate of xk to minimize the square error.

We derive ŷk|k−1, P
yy
k|k−1, and Pxy

k|k−1 for missing measurement yk (Eq. (3.4))

through the subsequent theorems.

Theorem 3.1. Measurement estimate for Eq. (3.4) is

ŷk|k−1 = ρkh(x̂k|k−1). (3.9)
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Proof. The measurement estimate is ŷk|k−1 = E[yk] = E [βk(h(xk) + νk)]. Here, βk

represents the missing measurements status and is independent of νk and h(xk).

Thus,

ŷk|k−1 = E [βk]E [h(xk) + νk] . (3.10)

The first-order Taylor series expansion of h(xk) around x̂k|k−1 gives

h(xk) = h(x̂k|k−1) +Hkek|k−1, (3.11)

where Hk=∂h(xk)/∂xk|xk=x̂k|k−1
is Jacobian matrix and ek|k−1 = xk − x̂k|k−1. Fur-

thermore, E[βk] = ρk, E[νk] = 0, and E[h(xk)] = h(x̂k|k−1) (as E[ek|k−1] = 0 in Eq.

(3.11)). Subsequently, Eq. (3.10) simplifies to Eq. (3.9).

Theorem 3.2. Measurement error covariance for Eq. (3.4) can be given as

Pyy
k|k−1 = ρkHkPk|k−1H

T
k + ρkRk + (ρk − ρ2

k)h(x̂k|k−1)h(x̂k|k−1)
T . (3.12)

Proof. The measurement error covariance is given as

Pyy
k|k−1 = E

[
(yk − ŷk|k−1)(yk − ŷk|k−1)

T
]
. (3.13)

For yk and ŷk|k−1 given in Eqs. (3.4) and (3.9), respectively, we get

yk − ŷk|k−1 =βk(h(xk)− h(x̂k|k−1)) + βkνk + (βk − ρk)h(x̂k|k−1).

Substituting h(xk)− h(x̂k|k−1) from Eq. (3.11), we obtain

yk − ŷk|k−1 = βk

(
Hkek|k−1 + νk

)︸ ︷︷ ︸
S1

+(βk − ρk)h(x̂k|k−1)︸ ︷︷ ︸
S2

. (3.14)

Substituting yk − ŷk|k−1 into Eq. (3.13), we can write

Pyy
k|k−1 =

2∑
i=1

2∑
j=1

E[SiS
T
j ]. (3.15)

We now compute E[SiS
T
j ] ∀(i, j)∈{1, 2}. In this regard, for S1 given in Eq.
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(3.14), we get

E[S1S
T
1 ] =E

[
β2
k

](
HkE

[
ek|k−1e

T
k|k−1

]
HT

k + E[νkν
T
k ] +HkE[ek|k−1]E[νT

k ]

+ E[νk]E[eTk|k−1]H
T
k

)
.

Please note that E[β2
k] = E [βk] = ρk, E[ek|k−1e

T
k|k−1] = Pk|k−1, E[νk] = 0, and

E[νkν
T
k ] = Rk. Hence, we obtain

E[S1S
T
1 ] = ρk

(
HkPk|k−1H

T
k +Rk

)
. (3.16)

Similarly, for S1 and S2 given in Eq. (3.14), we can write

E[S1S
T
2 ] = E [βk]

(
HkE[ek|k−1] + E[νk]

)
h(x̂k|k−1)

TE [(βk − ρk)] .

Substituting E[ek|k−1]=0 and E[νk]=0, we get E[S1S
T
2 ] = 0. Moreover, applying the

joint estimation property, we obtain

E[S2S
T
1 ] = E[S1S

T
2 ] = 0. (3.17)

Similarly, for S2 given in Eq. (3.14), we obtain E[S2S
T
2 ]=E[(βk − ρk)

2]h(x̂k|k−1)

h(x̂k|k−1)
T . Subsequently, applying binomial expansion of (βk −ρk)

2 and substitut-

ing E[β2
k] = E[βk] = ρk, we get

E[S2S
T
2 ] = (ρk − ρ2

k)h(x̂k|k−1)h(x̂k|k−1)
T . (3.18)

Substituting E[SiS
T
j ] ∀(i, j) ∈ {1, 2} (in sequence) from Eqs. (3.16), (3.17), and

(3.18) into Eq. (3.15), we obtain Eq. (5.7).

Theorem 3.3. The cross-covariance between the state xk and the modified mea-

surement yk can be obtained as

Pxy
k|k−1 = Pk|k−1H

T
k ρk. (3.19)

.
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Proof. Please note that Pxy
k|k−1 = E

[
(xk − x̂k|k−1)(yk − ŷk|k−1)

T
]
. Substituting xk −

x̂k|k−1=ek|k−1 and yk − ŷk|k−1 from Eq. (3.14), and simplifying further, we get

Pxy
k|k−1 =E

[
(ek|k−1)(βkHkek|k−1)

T
]
+ E

[
(ek|k−1)(βkνk)

T
]

+ E
[
(ek|k−1)((βk − ρk)h(x̂k|k−1))

T
]
.

As E[ek|k−1] = 0, the last two terms are zero. Subsequently, the independency of βk

and ek|k−1 gives

Pxy
k|k−1 = E

[
(ek|k−1)(ek|k−1)

T
]
HT

kE
[
βT
k

]
.

Substituting E[(ek|k−1)(ek|k−1)
T ] = Pk|k−1 and E[βT

k ] = ρk, P
xy
k|k−1 is obtained in the

form of Eq. (5.14).

We now compute K and Pk|k for the modified measurement model (3.4). It

should be mentioned that K must minimize the trace of Pk|k [1, 10].

Theorem 3.4. Pk|k and K for the modified measurement model, Eq. (3.4), can be

given as

Pk|k = (I−KρkHk)Pk|k−1, (3.20)

K = Pxy
k|k−1

(
Pyy

k|k−1

)−1

. (3.21)

Proof. Please note that ek|k = xk−x̂k|k. Substituting x̂k|k from Eq. (3.8), we get

ek|k = xk − x̂k|k−1 −K(yk − ŷk|k−1). (3.22)

Using Eq. (3.14), we get

ek|k = ek|k−1 −KβkHkek|k−1︸ ︷︷ ︸
M1

−Kβkνk −K(βk − ρk)h(x̂k|k−1)︸ ︷︷ ︸
M2

. (3.23)

As Pk|k = E[ek|keTk|k], we can write

Pk|k =
2∑

i=1

2∑
j=1

E[MiM
T
j ]. (3.24)

We now compute E[MiM
T
j ] ∀(i, j) ∈ {1, 2}. In this regard, expanding E[M1M

T
1 ]
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after substituting M1 from Eq. (3.23), and simplifying further, we get

E[M1M
T
1 ] = Pk|k−1 −Pk|k−1H

T
k ρkK

T −KρkHkPk|k−1 +KρkHkPk|k−1H
T
kK

T .

(3.25)

Similarly, for M1 and M2 given in Eq. (3.23), we can write

E[M1M
T
2 ] =E [(I−KβkHk)]E[ek|k−1]E

[(
−Kβkνk −K(βk − ρk)h(x̂k|k−1)

)T]
.

Please note that E[ek|k−1]=0, i.e., E[M1M
T
2 ] = 0, which also concludes

E[M2M
T
1 ] = E[M1M

T
2 ] = 0. (3.26)

Furthermore, for M2 given in Eq. (3.23), expanding E[M2M
T
2 ] and substituting

E[νT
k ] = 0, we get

E[M2M
T
2 ] = KρkRkK

T +K(ρk − ρ2
k)h(x̂k|k−1)h(x̂k|k−1)

TKT . (3.27)

Let us now substitute E[MiM
T
j ] ∀(i, j)∈{1, 2} from Eqs. (3.25), (3.26), and

(3.27) into Eq. (3.24). Subsequently, we get

Pk|k =Pk|k−1 −KρkHkPk|k−1 −Pk|k−1H
T
k ρkK

T +K
(
ρkHkPk|k−1H

T
k

+ ρkRk + (ρk − ρ2
k)h(x̂k|k−1)h(x̂k|k−1)

T
)
KT .

(3.28)

In terms of Pyy
k|k−1 and Pxy

k|k−1 expressions, derived through Theorems 3.2 and 3.3,

respectively, we can write

Pk|k =Pk|k−1−K(Pxy
k|k−1)

T −Pxy
k|k−1K

T +KPyy
k|k−1K

T . (3.29)

As discussed previously, the Kalman gain K minimizes the trace of Pk|k, i.e.,

∂ Tr[Pk|k]/∂K = 0. Thus,

∂ Tr[Pk|k−1]

∂K
−
∂ Tr[K(Pxy

k|k−1)
T ]

∂K
−
∂ Tr

[
Pxy

k|k−1K
T
]

∂K
+
∂ Tr[KPyy

k|k−1K
T ]

∂K
= 0.
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Algorithm 3.1 Pseudo code for implementing the modified EKF

Require: Qk, Rk, N , ρ, T .
Ensure: x̂k|k = [f̂1, f̂2, . . . , f̂Ns , â1, â2, . . . âNs ]

T .
1: Initialisation: k = 1, x̂0|0, P0|0.
2: while k≤N do
3: Compute the prior estimate, x̂k|k−1, using Eq. (3.7)
4: Compute the prior covariance, Pk|k−1, using Eq. (3.7).
5: Compute the measurement estimate, ŷk|k−1, using Eq. (3.9).
6: Compute the measurement error covariance, Pyy

k|k−1, using Eq. (5.7).

7: Compute the cross-covariance, Pxy
k|k−1, using Eq. (5.14).

8: Kalman gain: K = Pxy
k|k−1(P

yy
k|k−1)

−1.

9: Updated estimate: x̂k|k = x̂k|k−1 +K
(
yk − ŷk|k−1

)
.

10: Updated covariance: Pk|k = (I−KρkHk)Pk|k−1.
11: k=k+1.
12: end while
13: return x̂k|k (∀k ∈ {1, 2, · · · , N})

After solving this equation, we get K (that minimizes the trace of Pk|k) same as

Eq. (3.21). Substituting this K into Eq. (3.29), we get Pk|k in the form of Eq.

(3.20).

3.3.2 Identification of the Sinusoids Using the Modified EKF

In Section 3.2, we have reduced the identification problem of multiple sinusoids to

a frequency and amplitude estimation problem. The state space model for this esti-

mation problem is formulated through Eqs. (3.2) and (3.4), for the case of missing

measurements. We can apply the modified EKF, derived in the previous section,

for general state space model (Eqs. (3.5) and (3.6)), over Eqs. (3.2) and (3.4). The

resulting posterior estimate, i.e., x̂k|k = [f̂1,k, f̂2,k, . . . , f̂Ns,k, â1,k, â2,k, . . . âNs,k]
T ,

gives the desired estimates of amplitude and frequency at time tk. The estimated

amplitude and frequency can be used to characterize the individual sinusoids. The

pseudo code for implementing the modified EKF is provided in Algorithm 3.1.

3.4 Simulation and Results

In this section, we implement the modified EKF for identifying multiple sinusoids

from intermittently missing noisy measurements of the superimposed signal. In

this regard, we consider that the measurement signal is an electrical current signal,
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Figure 3.2: Ideal measurements and actually received measurements with intermit-
tent missing measurements possibility for the real part of the superimposed signal.
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Figure 3.3: RMSE plots of the proposed EKF M and the competitive filters for
missing measurements probability of 0.1 (ρ = 0.9).

formed by the superposition of three different current signals. Throughout this sec-

tion, we abbreviate the modified EKF as EKF M. The performance of the EKF M is
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compared with ordinary Gaussian filters, i.e, EKF, UKF, CKF, and CQKF as well

as with recent developments to handle missing measurements in different systems

[97, 102, 106]. We abbreviate the methods in [97] as RDF, [102] as RFM, and [106]

as KFM in this section. Our performance analysis will be restricted for missing

measurements probability up to 0.6 (0.4 ≤ ρ ≤ 0.98). Alternatively, we will con-

sider that not more than 60% of the measurements are missing. The performance

analysis is based on root mean square error (RMSE), which is broadly accepted in

the literature [164].

3.4.1 True Data Simulation

We simulate the true data of frequency and amplitude of the three sinusoids using

Eq. (3.2), which is represented by Eq. (3.5) in a generalized form. In this regard, we

initialize the state (consisting of the frequencies and amplitudes) as x0 = [200 800

1000 2 3 5 ]T and use the process noise covariance as Q = diag([τ 2f τ
2
f τ

2
f τ

2
a τ

2
a τ

2
a ]),

where τf = 0.1 and τa = 0.0125. Similarly, the true measurement data is generated

by propagating the true states through Eq. (3.3), which is represented by Eq.

(3.6) in a generalized form. We assign the measurement noise covariance as R =

diag([0.09 0.09]) and consider different values for missing measurement probability

(ρm = 1 − ρ) for the analysis. Samples of the ideal measurement (expected to be

received if no measurement is missing) and the corresponding missing measurements

(with intermittent measurements missing) are shown in Fig. 3.2 over 50 time-steps,

considering ρ = 0.8 (missing measurements probability 0.2). For the filtering and

analysis purpose, the true states and measurements are generated over 800 time-

steps, considering a sampling interval of 0.25 ms.

3.4.2 RMSE Analysis of the EKF M and Competitive Fil-

ters

For the filtering purpose, the initial estimate and covariance of the state are taken

as x̂0|0 = [205 785 990 4 2 3 ]T and P0|0 = diag([25 40 20 4 1 4]), respectively. We

compute the RMSE at each time-step by implementing 500 Monte-Carlo runs. The

RMSE plots of the EKF M and the ordinary Gaussian filters, such as the EKF, UKF,
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Figure 3.4: RMSE plots of the proposed EKF M and the competitive filters for
missing measurements probability of 0.2 (ρ = 0.8).

CKF, and CQKF are shown in Figs. 3.3 and 3.4 for missing measurements proba-

bilities 0.1 and 0.2, respectively. The figures show a significantly reduced RMSE for

the proposed EKF M compared with the competitive filters. It concludes a signif-

icantly improved estimation accuracy of the proposed EKF M compared with the

competitive filters, in identifying the multiple sinusoids from missing measurements

of the superimposed signal.
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3.4.3 Sinusoids Identification from the Estimated States

As discussed earlier, a sinusoid is fundamentally characterized by its amplitude

and frequency, and that is the reason why we formulated our multiple sinusoids

identification problem as an amplitude and frequency estimation problem. In this

subsection, we construct (identify) the unknown sinusoids from the estimated am-

plitude and frequency. In this regard, we obtain the amplitude and frequency of

each sinusoid by averaging their respective estimates over the last 300 time-steps,

which is expectedly the converged region. Subsequently, we plot the three sinusoids

(forming the superimposed signal) in Fig. 3.5 for missing measurements probabil-

ity of 0.2. We compare the identified sinusoids with the respective true sinusoids.

The amplitude and frequency of the true sinusoids are obtained by averaging their

respective true values over the last 300 time-steps. The figure illuminates that the

sinusoids identified using the proposed EKF M closely characterize the true sinu-

soids. On the other hand, the sinusoids identified using the competitive filters are

significantly mismatched with the true sinusoids.

3.4.4 Performance Analysis with Different Time Series

To further validate the performance, the proposed and other filters are tested with

different time series as

� Case-1: x0 = [1000 2500 1500 2 1 7]T , P0 = diag[5 2 5 2 12 5], x̂0|0∼
0.9N (x0,P0), Qk = diag[0.24 0.24 0.24 0.015 0.015 0.015], and Rk = diag

[0.9 0.9].

� Case-2: x0 = [50 50 50 240 240 240]T , P0 = diag[2 5 2 10 8 7], x̂0|0∼
0.8N (x0,P0), Qk = diag[0.01 0.01 0.01 0.16 0.16 0.16], and Rk=diag[2 2].

For the above-mentioned cases, the three sinusoids were identified using the proposed

method and competitive methods considering the missing measurement probabilities

of 0.2. Figs. 3.6 and 3.7 compare the sinusoids identified by different filters for Case-

1 and Case-2, respectively. It can be observed the proposed method i.e., identifies

the sinusoids more closely compared to other filters.
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Figure 3.5: Plots of the true sinusoids forming the superimposed signal and the
sinusoids identified from the measurements of the superimposed signal using the
proposed EKF M and the ordinary Gaussian filters for missing measurements prob-
ability of 0.2.

3.4.5 Performance Analysis with Varying Missing Measure-

ments Probability

To analyze the performance of the proposed EKF M and the competitive filters for

varying missing measurements probability, the author plots the average RMSE (ob-

tained over 800 time-steps) against the missing measurements probability in Fig. 3.8.

We restrict our analysis for missing measurements probability up to 0.6. The figure

demonstrates an increasing average RMSE as the missing measurements probability

increases. Thus, we can conclude that the performance of the proposed EKF M

and the ordinary Gaussian filters deteriorate as more measurements are missing,

which is an expected response. However, the average RMSE obtained by the pro-

posed EKF M is notably reduced compared with the ordinary Gaussian filters. This
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Figure 3.6: Case-1: Sinusoids identified by all filters at missing measurement prob-
ability of 0.2.

reflects that, although the accuracy deteriorates, the frequency and amplitude es-

timation using the EKF M is successful even if up to 60% of measurements are

missing.

3.4.6 Computational Time Analysis

It should be mentioned that the practical applications of the superimposed signals

(formed by the superimposition of multiple sinusoids) are usually on high frequency,

e.g., the telecommunication systems are commonly operated in the range of sev-

eral kHz to MHz frequency. Therefore, the sampling interval should be sufficiently

small to characterize the high-frequency signals, e.g., sampling interval in our sim-

ulation environment is taken as 0.25 ms. Due to the small sampling interval, in

general, the computational time of the filters become crucial. Thankfully, the or-

dinary EKF is considerably fast for practical applications. Table 3.1 compares the
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Figure 3.7: Case-2: Sinusoids identified by all filters at missing measurement prob-
ability of 0.2.

Table 3.1: Relative computational time comparison of the proposed and the com-
petitive filters.

Filters EKF UKF CKF CQKF RFM RDF KFM EKF M

Computational time 1 4.47 4.92 11.43 2.41 2.65 1.65 1.14

relative computational time of the proposed method and the competitive filters. It

can be observed that the computational time of the EKF and EKF M are compa-

rable, while the computational demands of other considered filters are considerably

high. Thus, we expect that the computational time of the proposed EKF M is small

enough for practical applications.
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Figure 3.8: Plots of mean RMSEs against varying missing measurements probability.

3.4.7 EKF M for General Estimation and Filtering Prob-

lems

Although the core interest of this chapter is limited to the multiple sinusoids identi-

fication problem, the proposed EKF M is applicable to any practical estimation and

filtering problem. It can potentially improve the accuracy of general estimation and

filtering problems with missing measurements. Therefore, this development can be

useful for various other domains, such as target tracking [2], industrial diagnosis and

prognosis [4], and biomedical modeling [165], commonly witnessing the estimation
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and filtering problems.

3.5 Summary

The signals appearing in real-life problems often witness the signals which are super-

imposed of multiple sinusoids, e.g., distorted and harmonically superimposed signals

appearing in power systems. In many of such cases, the succeeding analysis requires

to identify the individual sinusoids from noisy measurements of the superimposed

signal. For example, we can consider the harmonic power flow analysis problem in

electrical power system [143, 144] and distortion analysis problem in communication

signals [147]. The sinusoids are characterized by frequency and amplitude. There-

fore, the sinusoids identification problem is simplified as frequency and amplitude

estimation problem. The prominently used estimators for this purpose, such as the

EKF, require the measurements to be available at every sampling instant. However,

the measurements are frequently missing in practical sinusoids identification prob-

lems due to various reasons, such as network fault and high signal-to-noise ratio

(please see the introduction section for a detailed discussion including other possible

reasons). In this chapter, we designed a robust estimator, abbreviated as EKF M,

to deal with the missing measurements in the sinusoids identification problems. The

simulation results reveal a significantly close identification of the unknown sinusoids

using the proposed method in the presence of the missing measurements. It should

be mentioned that the sinusoids identified by the ordinary Gaussian filters and the

existing filters for the missing measurements (References [97, 102, 106]) are poorly

matched with the true sinusoids in the same missing measurements environment.

Further comparison of the modified and the ordinary Gaussian filters in terms of

the RMSE reveals a significantly enhanced accuracy for the proposed method. Fur-

thermore, the computational time of the modified EKF is merely 1.14 times the

ordinary EKF, which should not be a worry for practical applications. Thus, the

proposed method may be a recommended estimator for multiple sinusoids identifi-

cation problems in the presence of missing measurements. On a different note, the

modified EKF is a general estimation and filtering algorithm, not restricted to the

sinusoids estimation problem only. Therefore, the contribution of this chapter can
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benefit other domains as well, involving the estimation and filtering applications,

such as target tracking and biomedical modeling.
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Chapter 4

Generalized Gaussian Filtering

with Sporadically Missing

Measurements

4.1 Introduction

The work in this chapter is motivated from the last one which considered the prob-

lem of missing measurements and restructured the conventional EKF to handle it.

It is well-known that the EKF suffers from the curse of dimensionality in terms of

numerical instability and poor estimation accuracy due to involvement of Jacobean

calculation [9, 11, 15]. Moreover, the performance may degrade as the system non-

linearities increase. These reasons may restrict the applicability of the EKF-based

handling of the missing measurements (method proposed in the previous chapter)

for complex systems. Therefore, with the aim to address the missing measurements

phenomenon in a wide-range of practical applications, in this chapter, we propose a

generalized Gaussian filtering algorithm to handle the missing measurements phe-

nomenon. Unlike the EKF M (proposed in the last chapter), this method uses the

last available measurement for the filtering if the measurement is lost at any time-

step.

In this work, we propose an advanced Gaussian filter for handling missing mea-

surements wherein one or more elements of the measurement vector may not be

received by the estimator. We first introduce a stochastic measurement model that
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incorporates the missing measurement possibility using the Bernoulli random vari-

able (BRV). Following this, the measurement related parameters, i.e., measurement

estimate, covariance, and cross-covariance are rederived for the modified measure-

ment model. For the simulation validation, we employed the CKF-, CQKF-, and

GHF-based extensions of the proposed Gaussian filtering. The simulation results

show the improved accuracy of the proposed Gaussian filter in the presence of the

intermittently missing measurements.

Summarizing the discussion, the main contributions of this chapter can be de-

scribed as follows:

� Formation of a modified measurement model that incorporates the missing

possibility of individual measurement element;

� Adaptation of the Gaussian filtering for the modified measurement model;

� Validation of the improved performance for the proposed Gaussian filter for the

CKF-, CKQF-, and GHF-based extensions of the proposed Gaussian filtering

methodology.

4.2 Problem Formulation

Our first objective is to present a measurement model that incorporates the missing

measurement possibilities. In this regard, let us recall the standard state-space

model for nonlinear dynamical systems from Chapter 1 (with all notations being

exactly the same)

xk = f(xk−1) + ηk. (4.1)

zk = h(xk) + νk. (4.2)

To include the missing measurement possibility in the measurement model, we

introduce a matrix with the main diagonal containing the BRVs, denoted by βi
k

i∈{1, 2, · · · , q} (q denoting the dimension of the measurement vector). It should

be noted that βi
k attains either 0 or 1, with βi

k = 1 representing the corresponding

element of the measurement is lost, while βi
k = 0 denotes that the measurement

is received. Moreover, our modified measurement model propagates the last mea-
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surement (i.e., zk−1) in case the measurement is received with the lost information.

Following the discussion, we model the actual measurement (denoted as yk) as

yk =


1− β1

k 0 · · · 0

0 1− β2
k · · · 0

...
...

. . .
...

0 0 · · · 1− βq
k

 zk +


β1
k 0 · · · 0

0 β2
k · · · 0

...
...

. . .
...

0 0 · · · βq
k

 zk−1. (4.3)

We consider the case where the missing measurement probability is known. Specifi-

cally, P(βi
k = 1) = E[βi

k] = µi
k, with P(·) and E[·] respectively being the probability

and expectation operators, denotes the missing measurement probability. It should

be stressed that the traditional Gaussian filter is designed with respect to the state

space model represented by Eqs. (4.1) and (4.2). Since the measurement model is

modified now, the new problem is posed as designing the Gaussian filtering for the

new state space model represented by Eqs. (4.1) and (4.3).

4.3 Gaussian Filtering for Missing Measurements

This section presents the restructured Gaussian filtering for missing measurements.

The proposed method re-derives the measurement related parameters: measurement

estimate, covariance, and cross-covariance. To this end, let us denote the measure-

ment estimate, covariance, and cross-covariance for the hypothetical true measure-

ment zk by ẑk|k−1, P
zz
k|k−1, and Pxz

k|k−1, respectively. Moreover, ŷk|k−1, P
yy
k|k−1, and

Pxy
k|k−1 are the corresponding parameters for the modified measurement model (Eq.

(4.3)).

Before proceeding further, let us define βk = diag([β1
k , β

2
k , · · · , βq

k]); thus, we can

simplify Eq. (4.3) as

yk = (I− βk)zk + βkzk−1. (4.4)

with I being an identity matrix of appropriate dimension.

Remark 4.1. βk and zk signify different physical events; thus, βk and zk will be

statistically independent.

We now present three theorems that derive the relevant measurement parameters
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for the modified measurement model (4.3).

Theorem 4.1. The measurement estimate for the modified measurement model

(4.3) can be obtained as

ŷk|k−1 = (I− µk)ẑk|k−1 + µkẑk−1|k−1, (4.5)

with µk = diag([µ1
k, µ

2
k, · · · , µq

k]).

Proof. Let us use Eq. (4.4) to substitute yk in ŷk|k−1 = E[yk]. Subsequently,

applying Remark 4.1, we get

ŷk|k−1 = E[(I− βk)]E[zk] + E[βk]E[zk−1]. (4.6)

Substituting E[βk] = µk, E[zk] = ẑk|k−1, and E[zk−1] = ẑk−1|k−1, the above equation

is reduced to Eq. (5.6).

Theorem 4.2. The covariance Pyy
k|k−1 for the modified measurement model (4.4) is

obtained as

Pyy
k|k−1 =

1∑
j=0

(I(1− j)− µk)P
zz
k−j|k−1

+ µk(I− µk)(ẑk|k−1 − ẑk−1|k−1)(ẑk|k−1 − ẑk−1|k−1)
T .

(4.7)

Proof. From Eqs. (4.4) and (5.6), we obtain

yk − ŷk|k−1 =(I− βk)(zk − ẑk|k−1)︸ ︷︷ ︸
∆1

+βk(zk−1 − ẑk−1|k−1)︸ ︷︷ ︸
∆2

+ (µk − βk)(ẑk|k−1 − ẑk−1|k−1)︸ ︷︷ ︸
∆3

.
(4.8)

Substituting yk − ŷk|k−1 from above equation into Pyy
k|k−1 = E[(yk − ŷk|k−1)(yk −

ŷk|k−1)
T ] gives

Pyy
k|k−1 =

3∑
i=1

3∑
j=1

E[∆i∆
T
j ]. (4.9)

We now calculate E[∆i∆
T
j ] ((i, j)∈{1, 2}) individually.
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Remark 4.2. For yk − ŷk|k−1 expressed in Eq. (4.8) and applying Remark 4.1, it

can be easily concluded that E[∆i∆
T
j ]i ̸=j = 0.

Following Remark 4.2, we calculate E[∆i∆
T
j ]i=j as follows

E[∆1∆
T
1 ] = E[(I− βk)

2]E[(zk − ẑk|k−1)(zk − ẑk|k−1)
T ]

E[∆2∆
T
2 ] = E[β2

k]E[(zk−1 − ẑk−1|k−1)(zk−1 − ẑk−1|k−1)
T ]

E[∆3∆
T
3 ] = E[(µk − βk)

2](ẑk|k−1 − ẑk−1|k−1)(ẑk|k−1 − ẑk−1|k−1)
T .

(4.10)

Let us now substitute E[β2
k] = E[βk] = µk, E[(zk − ẑk|k−1)(zk − ẑk|k−1)

T ] = Pzz
k|k−1,

and E[(βk−µk)
2] = µk(I−µk). Subsequently, substituting the resulting expression

in Eq. (4.9) as well as applying Remark 4.2, Pyy
k|k−1 can be expressed as given in Eq.

(4.7).

Theorem 4.3. The cross-covariance for yk can be obtained as

Pxy
k|k−1 = (I− µk)P

xz
k|k−1 + µkP

xz
k−1|k−1. (4.11)

Proof. Substituting yk − ŷk|k−1 from Eq. (4.8) into Pxy
k|k−1 = E[ek|k−1(yk − ŷk|k−1)

T ]

(where ek|k−1 = xk − x̂k|k−1), we can write

Pxy
k|k−1 = E[ek|k−1(∆1 +∆2 +∆3)

T ]. (4.12)

Substituting ∆1 and ∆2 from Eq. (4.8), we can write

E[ek|k−1∆
T
1 ]=E[I− βk]E[ek|k−1(zk − ẑk|k−1)

T ]

E[ek|k−1∆
T
2 ]=E[βk]E[ek|k−1(zk−1−ẑk−1|k−1)

T ].

(4.13)

Let us first substitute E[ek|k−1(zk − ẑk|k−1)
T ] = Pxz

k|k−1 and E[βk] = µk in above

equation, and subsequently, substitute the resulting expression in Eq. (4.12). More-

over, Remark 4.1 concludes E[ek|k−1∆
T
3 ] = 0. Following the discussion, Eq. (4.13)

easily deduces Eq. (4.11).

The unknown missing measurement probability is often closely approximated

from the system’s historic behavior, training data analysis, etc. Moreover, the true
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value is usually small and thus, its deviation from the approximated value is also

usually not very large. Consequently, the unknown missing measurement probability

is concerning only in limited problems and the proposed method can efficiently

handle a wide range of practical problems.

Remark 4.3. The algorithm for the proposed Gaussian filter has steps similar to

those of traditional Gaussian filter (see, e.g., [15]), except the parameters ŷk|k−1,

Pyy
k|k−1, and Pxy

k|k−1 replace ẑk|k−1, P
zz
k|k−1, and Pxz

k|k−1, respectively in the conventional

Gaussian filtering algorithm.

Remark 4.4. It is apparent from Eqs. (5.6), (4.7), and (4.11) that the proposed

Gaussian filtering algorithm requires to store the measurement vector, measurement

estimate, covariance, and cross-covariance from time tk−1. It leads to a marginally

increased storage requirement compared to the traditional Gaussian filtering algo-

rithm.

4.4 Simulation Results

This section compares the performance of the proposed and conventional Gaussian

filters in presence of the missing measurements. For this purpose, we choose the

CKF, CQKF, and GHF and their extensions under the proposed Gaussian filtering

framework represented by CKFS, CQKFS, and GHFS, respectively. It should be

noted that the missing measurements possibility in not very large in general; thus,

we restricted the analysis considering that not more than 20 measurements are

missing (i.e., µi
k = 0.2). The commonly accepted root mean square error (RMSE)

criteria is selected as the performance metric. The simulation was carried out for

200 time-steps and validated with 200 Monte-Carlo runs.

4.4.1 Problem 1: Individual Signal Identification

Here, we consider the individual sinusoids identification problem from the missing

measurements of the superimposed signal. As the amplitude and frequency are the

characterizing parameters, the modified problem is to estimate the amplitude and

frequency of the individual sinusoids. Assuming that the superimposed signal is
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constructed by three sinusoids, the state dynamics follows [15]

xk = Ixk−1 + ηk. (4.14)

zk =

∑3
j=1 aj,k cos(2πfj,k(k)T )∑3
j=1 aj,k sin(2πfj,k(k)T )

+ νk, (4.15)

where aj,k and fj,k denote the amplitude and frequency, respectively of the jth sin-

susoid.

The dynamics of the states are generated considering x0=[200 800 1000 2 2 2]T .

The filter initialization is done by choosing x̂0|0 ∼ N (x0,P0), where P0 = diag

([10 35 25 0.05 0.05 0.05]). Moreover, the noise covariances are chosen as Qk = diag

([0.01 0.01 0.01 0.04 0.04 0.04]) and Rk = diag([0.1 0.1]). The results are generated

considering sampling interval T = 0.25 ms. We consider the performance metric as

combined RMSE (CRMSE) [15]. The CRMSE for amplitude is obtained as

ACRMSEk =

√
MSEk(a1) + MSEk(a2) + MSEk(a3)

3
, (4.16)

where ACRMSEk represents the amplitude’s CRMSE with MSEk(aj) (j = {1, 2, 3})
being the MSE of the jth amplitude. Similarly, we calculate the frequency’s CRMSE

(FCRMSE) as well. The CRMSEs are plotted for missing measurement probabilities

of 0.1 and 0.2 in Fig. 4.1. The plots conclude reduced RMSEs for the CKFS,

CQKFS, and GHFS compared with their conventional counterparts. It infers the

superior performance of the proposed Gaussian filter in the presence of missing

measurements phenomenon. Moreover, the relative computational times for the

CKF, CQKF, GHF, CKFS, CQKFS, and GHFS are obtained as 1, 1.76, 1.49, 1.19,

1.96, and 1.67, respectively.

4.4.2 Problem 2: Sinusoidal Growth Model

In this example, the author considers the problem of estimating the heading position

of an autonomous robot. the state space model follows [29]

xk = 2 cos(xk−1) + ηk. (4.17)
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Figure 4.1: Problem 2: CRMSE comparison for different Gaussian filters and their
respective extensions under the proposed Gaussian filtering framework for missing
measurements probabilities of 0.1 and 0.2.

zk =
√
1 + xkxT

k + νk. (4.18)

The different parameters are selected as follows. x0 = [1 1]T , P0 = Qk = I,

x̂0|0 ∼ 0.8N (x0,P0), and Rk = 0.25. Fig. 4.2 compares the RMSEs obtained by

different filters with µi
k chosen as 0.1 and 0.2. For this problem as well, reduced

RMSEs are obtained by the proposed Gaussian filter. Thus, the improved filtering

accuracy is achieved by implementing the proposed Gaussian filter in the presence

of missing measurements. We observed the relative computational times for the

CKF, CQKF, GHF, CKFS, CQKFS, and GHFS as 1, 2.29, 3.85, 1.04, 2.31, and

4.05, respectively.
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Figure 4.2: Problem 2: RMSE comparison for different Gaussian filters and their
respective extensions under the proposed Gaussian filtering framework for missing
measurements probabilities of 0.1 and 0.2.

4.5 Summary

The filtering accuracy largely depends upon the received measurements. The pres-

ence of unreliable communication channels and sensors in networked control systems

often result in intermittently missing measurements. Ignoring the irregularity may

lead to inferior filtering performance. In this chapter, we proposed an advanced

Gaussian filtering methodology to handle the frequently missing measurements. In

the first step, a modified measurement model is proposed, taking into account the

possibility of partially missing measurements. Following this, the parameters per-

tinent to the measurement model are rederived; thus, the proposed Gaussian filter
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is constituted. We considered the CKF-, CQKF-, and GHF-based extensions under

the proposed methodology for simulation. The simulation results of two numeri-

cal examples illustrate that an improved filtering accuracy is achieved at slightly

increased computational cost.

The impact of the sporadically missing measurements on the conventional filters

may vary with problems. For example, the conventional filters diverge for the first

simulation problem while they converge for the second simulation problem. However,

in all cases, the extensions of the conventional filters under the proposed filtering

methodology is expected to outperform their existing counterparts.
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Chapter 5

Poisson-Gaussian Filtering for

Randomly Delayed Measurements

5.1 Introduction

As discussed in the previous chapters, in conventional adjustment, Gaussian fil-

ters are tailored for non-delayed measurements. Specifically, an estimator receives

a measurement at time tk that must contain information about the state from the

same time-step. This assumption is often violated in practical applications involving

wireless sensor network (WSN), where network-induced delay causes the measure-

ment from the past instant to be received at current tk. In Chapter 2, the author

comprehensively discussed factors responsible for delay induction in the system. the

delayed measurements carry misleading information about the states and the Gaus-

sian filtering, designed for non-delayed measurements, provides unreliable estimates.

The Gaussian filtering literature with delayed measurements mainly starts from

[121], which extends the EKF and UKF for one-step delayed measurements. The

same methodology is further extended for the CKF and GHF in [124] and [166],

respectively. Here, one-step delayed measurement implies the delay of up to one

sampling interval. Later, Singh et al. [125] redesigned the Gaussian filtering to han-

dle arbitrary large delays conditioned to the assumption that the prior information

about delay probabilities are known. In the subsequent development, Esmzad et

al. [126] eased up this requirement by using a likelihood based method to calculate

the delay probabilities. Developments in [125] and [126] ambiguously assign the
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upper bound of delay if not exactly known. Such an ambiguous selection may pose

adverse effect on filtering: an underestimated upper bound causes frequent mea-

surement losses and ignore to assign a probability (weight) to some of the delayed

measurements that are possible to arrive, severely harming the estimation accuracy;

an overestimated upper bound assigns some probabilities (weights) to excessively

delayed measurements at the cost of the probabilities of lesser delayed measure-

ments that are possible to arrive, which again harms the accuracy. Nevertheless,

an overestimated upper bound unnecessarily increases the computational demand

as well.

The above discussion concludes that the existing delayed Gaussian filters [121,

124–126, 166] may be inappropriate selection for a wide class of practical systems

mainly due to two reasons: i) improper selection of the unknown delay probabilities

and ii) ambiguous selection of the upper bound of the delay.

In this chapter, we develop an advanced Gaussian filtering method to preclude

the two major drawbacks of the existing delay filters, as mentioned above. Moreover,

the proposed method is a suitable choice wherein it is difficult to achieve the time-

stamping in measurements (e.g., [167]). The proposed method requires the average

delay information, which requires lesser assumption in delay probabilities. It should

be noted that the Poisson distribution is the maximum entropy distribution for any

arbitrary PDF subject to constraint as average value [168]. It also concludes that

using the Poisson random variable results into more accurate system model. Thus,

designed with a more accurate measurement model, the proposed filter demonstrates

and improved accuracy as compared to [125] which uses a set of Bernoulli random

variables to model the delay and other existing delay filters. It also requires lesser

assumption about the delays than [125].

In designing of the proposed filter, we first reformulate the measurement model

for incorporating delay possibilities using Poisson distribution. Subsequently, we

re-derive the traditional Gaussian filtering method for the modified measurement

model, which requires re-deriving the traditional expressions of the measurement es-

timate, measurement covariance, and the state-measurement cross-covariance. The

proposed method is applicable to any of the existing Gaussian filters, such as the

EKF, UKF, CKF, and GHF. We adopt the CKF-based design for validating the
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improved accuracy of the proposed method.

5.2 Problem formulation

Let us recall the state-space model presented in Chapter 1, given as

xk = f(xk−1) + ηk. (5.1)

zk = h(xk) + νk. (5.2)

For a detailed discussion on the notations, please refer to Chapter 1.

It should be mentioned that the above state-space model represents a non-delayed

system. Thus, the non-delayed measurement zk misinforms about the state and can

significantly deteriorate the filtering accuracy for the traditional Gaussian filters.

As discussed earlier, the existing Gaussian filters for delay are limited by two major

drawbacks [123, 125, 126]: requirement on a range of delay probabilities and am-

biguous selection of the upper bound of delay. The identified limitations primarily

stem from an inadequate delay modeling strategy. Specifically, these developments

employ a number of Bernoulli random variables (BRVs) to incorporate the delay

possibilities, with these number linearly increasing with the delay extent. There-

fore, addressing these issues requires modifying the delay modeling approach and

a corresponding redesign of the conventional filtering methodology. An important

feature of the Poisson random variable is that it can model multiple delays with sin-

gle statistical parameters. Moreover, it precludes the need of fixing the maximum

delay.

Following the above discussion, our initial objective is to reformulate the mea-

surement model (5.2) to incorporate the delay possibilities. As the average delay

information is available, we choose Poisson distribution-based remodeling of (5.2).

In this regard, let us denote Θ as Poisson random variable with its parameter λ

being the average delay. Please note that the Poisson distribution is a discrete dis-

tribution function, taking values from {0, 1, . . . }. At any time tk, Θ = d represents

a d-step delayed measurement. Moreover, if P(Θ) represents the probability mass
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Average delay
information(λ)

Poisson random
variable generator Θ

Θ → α
transformation

α

i-
delayzkNoisy measuring

device
State→measurement

transformation
xk yk= zk−i

Figure 5.1: Schematic diagram of the delay occurrences considering that the average
delay information is known. As the average delay information is known, Poisson
distribution features the delay characteristics.

function of Θ, the probability of d-step delay follows

P (Θ = d) =
e−λλd

d !
. (5.3)

To model the ith-delayed measurement, we further introduce a k-dimensional array

α with its (i + 1)th-element being one and the remaining elements being zero. For

example, i = 0 (no-delay) gives α = {1, 0, 0, . . . , 0} and i = 2 (two-delay) gives

α = {0, 0, 1, 0, . . . , 0}. The array α is governed by Θ. In particular, Θ = j infers

that αi+1 = 1 for i = j and αi+1 = 0 ∀i ̸= j, which leads to j-step delay. Then, the

delayed measurement at tk, denoted as yk, is modeled as

yk =
k−1∑
i=0

αi+1zk−i. (5.4)

Please note that Θ = j, inferring αi+1 = 1 for i = j and αi+1 = 0 ∀i ̸= j, leads

to j-step delay and gives yk = zk−j. In view of this, we also deduce

P (αi+1 = 1) = E[αi+1] = P (Θ = j) = λja =
e−λλj

j !
. (5.5)

We refer to Fig. 5.1 for block diagram representing the process of receiving and

modeling the delayed measurements.

Remark 5.1. In Eq. (5.3), Θ can be greater than k − 1, particularly in first one

or two steps for fairly large average delay (e.g., λ ≥ 1). This situation theoretically

demands measurements from negative time-steps, which is unfeasible. Therefore, to

avoid this problem, we choose the delay as min(Θ, k − 1), with min(.) representing
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the minimum operator.

Remark 5.2. Remark 5.1 also concludes the increased probability of occurrence for

k − 1. It is relatable to the truncated Poisson distribution for small values of λ in

some measure. However, for large average values (e.g., λ ≥ 5), the approximation

no longer remains valid, obliging one to choose the truncated Poisson distribution.

Thankfully, the range of average value considered for comparison (i.e., 0.5 ≤ λ ≤
1.5) is small enough that efficiently imitates the practical delays that include large

ones; thus, it precludes the use of the truncated Poisson distribution in this case.

It is worth mentioning that the dynamical state space model of the delayed

system is represented by Eqs. (5.1) and (5.4). Thus, our revised problem is to

redesign the traditional Gaussian filtering method for the dynamical state space

model represented by Eqs. (5.1) and (5.4).

5.3 Modified Gaussian filter for randomly delayed

measurements

In this section, we introduce an advanced Gaussian filtering method for handling

the delayed measurements. As conclusive from the traditional Gaussian filtering

algorithm provided in [11, 15], any irregularity in the measurements influences only

three expressions, including the measurement estimate ẑk|k−1, measurement covari-

ance Pzz
k|k−1, and the state-measurement cross-covariance Pxz

k|k−1. Thus, in order to

develop the proposed filtering algorithm, we re-derive the three expressions for the

delayed measurement yk through the three subsequent theorems.

Theorem 5.1. The measurement estimate ŷk|k−1, for the delayed measurement yk

is given as

ŷk|k−1 =
k−1∑
i=0

λiaẑk−i|k−1. (5.6)

Proof. For yk given in Eq. (5.4), we obtain

ŷk|k−1 = E[yk] = E
[ k−1∑

i=0

αi+1zk−i

]
.
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It is worth mentioning that αi+1 governs the delay extent, while zk−i governs the

measurement value, which are statistically independent. Thus, we can write

ŷk|k−1 =
k−1∑
i=0

E[αi+1]E[zk−i].

Substituting E[αi+1] from Eq. (5.5), we obtain Eq. (5.6).

Theorem 5.2. The measurement error covariance for the delayed measurement yk

can be given as

Pyy
k|k−1 =

k−1∑
i=0

λiaP
zz
k−i|k−1 +

k−1∑
i=0

λia
(
1− λia

)
ẑk−i|k−1ẑ

T
k−i|k−1. (5.7)

Proof. For yk and ŷk|k−1 given through Eqs. (5.4) and (5.6), respectively, we get

yk − ŷk|k−1 =
k−1∑
i=0

αi+1(zk−i − ẑk−i|k−1)︸ ︷︷ ︸
M1

+
k−1∑
i=0

(αi+1 − λia)ẑk−i|k−1︸ ︷︷ ︸
M2

.
(5.8)

Thus, Pyy
k|k−1 = E[(yk − ŷk|k−1)(yk − ŷk|k−1)

T ] can be expressed as

Pyy
k|k−1=E

[
M1M

T
1

]
+E

[
M1M

T
2

]
+E

[
M2M

T
1

]
+E

[
M2M

T
2

]
. (5.9)

As αi+1 and zk−i are independent, for M1 given in Eq. (5.8), we obtain

E
[
M1M

T
1

]
=

k−1∑
i=0

E
[
α2

i+1

]
E
[(
zk−i− ẑk−i|k−1

)
(zk−i− ẑk−i|k−1)

T

]
.

Please note that E[(zk−i − ẑk−i|k−1)(zk−i − ẑk−i|k−1)
T ] = Pzz

k−i|k−1, with E[α2
i+1] =

E[αi+1] from Eq. (5.5), we get

E
[
M1M

T
1

]
=

k−1∑
i=0

λiaP
zz
k−i|k−1. (5.10)

Similarly, for M1 and M2 defined in Eq. (5.8), we have

E
[
M1M

T
2

]
=E
[ k−1∑

i=0

αi+1

(
zk−i − ẑk−i|k−1

) k−1∑
i=0

(
αi+1 − λia

)
ẑTk−i|k−1

]
.
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This equation can be rewritten as

E
[
M1M

T
2

]
=

k−1∑
s=0

k−1∑
t=0

E
[
αs+1

(
αt+1 − λta

)
zk−sẑ

T
k−t|k−1 −αs+1×

(
αt+1 − λta

)
ẑk−s|k−1ẑ

T
k−t|k−1

]
.

As E[zk−s] = ẑk−s|k−1, we get

E
[
M1M

T
2

]
= 0, (5.11)

which also concludes that

E
[
M2M

T
1

]
= 0. (5.12)

Finally, for M2 given in Eq. (5.8), we can write

E
[
M2M

T
2

]
=

k−1∑
i=0

E
[(
αi+1 − λia

)2]
ẑk−i|k−1ẑ

T
k−i|k−1.

Taking Binomial expansion, and substituting E[α2
i+1] = E[αi+1] from Eq. (5.5), we

obtain

E
[
M2M

T
2

]
=

k−1∑
i=0

λia
(
1− λia

)
ẑk−i|k−1ẑ

T
k−i|k−1. (5.13)

Finally, substituting E[M1M
T
1 ], E[M1M

T
2 ], E[M2M

T
1 ], and E[M2M

T
2 ] from Eqs.

(5.10), (5.11), (5.12), and (5.13), respectively into Eq. (5.9), we obtain Pyy
k|k−1 as

given in Eq. (5.7).

Theorem 5.3. The state-measurement cross-covariance for the delayed measure-

ment yk can be obtained as

Pxy
k|k−1 =

k−1∑
i=0

λiaP
xz
k−i|k−1. (5.14)

Proof. Substituting yk − ŷk|k−1 from Eq. (5.8) in Pxy
k|k−1 = E[(xk − x̂k|k−1)(yk −

ŷk|k−1)
T ], we get

Pxy
k|k−1 = E[(xk − x̂k|k−1)(M1 +M2)

T ]. (5.15)
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For M1 given in Eq. (5.8), we get

E
[
(xk − x̂k|k−1)M

T
1

]
= E

[
(xk − x̂k|k−1)

k−1∑
i=0

αi+1(zk−i − ẑk−i|k−1)
T

]
.

Following the previous discussion, αi+1 is independent of xk and zk. Thus, substi-

tuting E[αi+1] from Eq. (5.5), we get

E
[
(xk − x̂k|k−1)M

T
1

]
=

k−1∑
i=0

λiaP
xz
k−i|k−1. (5.16)

Similarly, for M2 given in Eq. (5.8), we obtain

E
[
(xk − x̂k|k−1)M

T
2

]
=E
[ (

xk − x̂k|k−1

) k−1∑
i=0

(
αi+1 − λia

)
ẑTk−i|k−1

]
.

Recalling that αi+1 and xk are statistically independent, we expand the above ex-

pression and substitute E[xk] = x̂k|k−1 and the value of E[αi+1] from Eq. (5.5) in

the resulting expression. Subsequently, we get

E[(xk − x̂k|k−1)M
T
2 ] = 0. (5.17)

We now substitute E[(xk− x̂k|k−1)M
T
1 ] and E[(xk− x̂k|k−1)M

T
2 ] from Eqs. (5.16) and

(5.17), respectively into Eq. (5.15) and obtain Pxy
k|k−1 as expressed in Eq. (5.14).

To this end, we reiterate that the proposed Gaussian filtering method re-derives

the measurement parameters for delayed measurement yk. Subsequently, the tra-

ditional measurement parameters ẑk|k−1, P
zz
k|k−1, and Pxz

k|k−1, are replaced by the

modified measurement parameters ŷk|k−1, P
yy
k|k−1, and Pxy

k|k−1, respectively for de-

veloping the proposed filtering algorithm. The pseudo code for implementing the

proposed filtering algorithm for handling the delayed measurements is provided in

Algorithm 5.1.
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Algorithm 5.1 Pseudo code for implementing the proposed Gaussian filtering al-
gorithm

Input: Qk, Rk, Ns, λ, and filter-specific sigma points and weights.
Output: x̂k|k ∀k ∈ {1, 2, . . . , Ns}.
1: Initialisation: x̂0|0, P0|0, and k = 1.
2: while k ≤ Ns do
3: Compute x̂k|k−1 and Pk|k (References [11] and [15]).
4: Compute ẑk|k−1, P

zz
k|k−1, and Pxz

k|k−1 (References [11] and [15]).
5: Compute ŷk|k−1, P

yy
k|k−1, and Pxy

k|k−1 (Eqs. (5.6), (5.7), and (5.14), respec-

tively).
6: Compute the Kalman gain as K = Pxy

k|k−1(P
yy
k|k−1)

−1.

7: Compute the desired posterior estimate as x̂k|k = x̂k|k−1 +K(yk − ŷk|k−1).

8: Compute the posterior error covariance as Pk|k = Pk|k−1 −KPyy
k|k−1K

T .
9: return x̂k|k
10: k = k + 1
11: end while

5.4 Simulation and results

In this section, we implement the proposed filtering technique for the CKF-based

formulation, which is abbreviated as CKF RD PD. We compare its performance

with the traditional CKF [9] and three state-of-art delayed filtering algorithms ab-

breviated as CKF 1D [124], CKF RD [125], and MLCKF [126] under the CKF-based

formulations. Unless it is specified, we implement the CKF 1D, CKF RD, and ML-

CKF by assigning their delay-probability parameter (presumed unknown delay prob-

ability) as 0.2. Moreover, we consider the maximum possible delay as four sampling

intervals in implementing the CKF RD and MLCKF. As mentioned in [123, 124],

the delays are usually not arbitrarily large. Therefore, we restrict the performance

analysis for the average delay λ = 1.5 (instantaneous delays may be significantly

higher). We use Poisson random variable Θ and the non-delayed measurement zk

(obtained through Eqs. (5.1) and (5.2)) ∀k ∈ {1, 2, . . . , Ns} for generating the sim-

ulated dataset of the delayed measurements yk ∀k ∈ {1, 2, . . . , Ns} using Eq. (5.4).

Our performance analysis is based on root mean square error (RMSE), obtained

between the true and estimated states for various Monte-Carlo simulations. In this

regard, we perform the simulation over 200 time-steps and implement 200 Monte-

Carlo simulations for computing the RMSEs.
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5.4.1 Problem 1

This problem is about identifying multiple sinusoids from noisy measurements of

a signal formed by superimposition of all sinusoids [15, 125]. For the simulation,

we particularly consider that three sinusoids are forming the superimposed signal.

Please note that a sinusoid is fundamentally characterized by amplitude and fre-

quency. Therefore, we characterize the three unknown sinusoids with the state

variable xk = [f1,k f2,k f3,k a1,k a2,k a3,k]
T , where ai,k and fi,k ∀i ∈ {1, 2, 3} repre-

sent the amplitude and frequency, respectively of the ith sinusoid. Subsequently, the

state-space model follows Eqs. (4.14) and (4.15).

We define two different scenarios with different sets of initial frequencies and

amplitudes, given as Scenario-1: x0 = [1000 2500 1500 2 1 7]T and Scenario-2:

x0 = [200 1000 1200 3 4 5]T . Please note that the different sets of amplitudes and

frequencies infer that different sets of sinusoids are forming the superimposed signal.

The initial estimate for filtering is taken as x̂0|0 ∼ N (x0,P0), with P0 = diag

([10 2 5 0.2 0.12 0.5]). The noise covariances are Qk = diag ([τ 2f τ
2
f τ

2
f τ

2
a τ

2
a τ

2
a ]) and

Rk = diag([0.09 0.09]), with τf = 0.14 and τa = 0.05. The RMSEs are computed

by combining all amplitudes or frequencies together [15].

Figs. 5.2 and 5.3 show the mean RMSE plots of the amplitude and frequency

for varying average delay. The figures conclude a reduced RMSE of the proposed

CKF RD PD, which further concludes an improved accuracy of the proposed method.

The figures also show that the RMSE increases with the increasing delay possibili-

ties, which is well expected. Moreover, as the average delay increases, the RMSEs of

the existing filters increase faster, which concludes that the accuracy of the existing

filters deteriorates faster for the increasing delay. The relative computational times

of CKF, CKF 1D, CKF RD, MLCKF, CKF RD PD are observed as 1, 1.21, 1.19,

3.07, 1.512, respectively.
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Figure 5.2: Problem 1, Scenario-1: Mean RMSEs obtained for the proposed and the
existing filters for varying average delay (λ).
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Figure 5.3: Problem 1, Scenario-2: Mean RMSEs obtained for the proposed and the
existing filters for varying average delay (λ).

5.4.2 Problem 2

We adopt the second problem from Reference [126], which follows the following state

space model

xk = 0.5xk−1 +
25xk−1

(1 + x2
k−1) + 8 cos(1.2(k − 1))

+ ηk. (5.18)

zk =
x2
k

20
+ νk. (5.19)

We choose x0 = 2, and evaluate the performance for two scenarios of noise covari-

ances, given as, Scenario-1: Qk = 5 and Rk = 1 and Scenario-2: Qk = 2 and
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Figure 5.4: Problem 2: Mean RMSEs obtained for the proposed and the existing
filters for varying average delay (λ).

Rk = 0.5. The filter is initialized with x̂0|0 = 6 and P0|0 = 5.

The mean RMSEs of existing delay filters and the proposed CKF RD PD are

compared in Fig. 5.4. It can be observed that the mean RMSEs for the CKF RD PD

are notably reduced, which concludes the improved accuracy of the proposed method.

The relative computational times are obtained similar to Problem 1.

5.4.3 Extended comparison for varying delay probabilities

and mismatched model

The accuracy of the existing delay filters broadly depends on the preassigned delay

probabilities. Thus, we further extend the comparative analysis for varying delay

probabilities of the existing delay filters in Table 7.2 for Problems 1 and 2. The table

concludes that the average RMSEs of the existing delay filters are consistently higher

than the proposed CKF RD PD for all delay probabilities. It further concludes that

the proposed filter outperforms the existing delay filters for all variations in the

preassigned delay probabilities.
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Figure 5.5: Problem 1, Scenario-1: Performance analysis with mismatched delay
model.

We further extend the analysis to the scenario wherein the delay model mis-

matches with the proposed one (5.4). In this context, we generate the data yk

through the model proposed in Reference [125] considering only Problem 1, Scenario-

1 as the test system to keep it brief. Subsequently, we compare the mean RMSE for

the amplitude in Fig. 5.5. The figure concludes an improved filtering performance

of the proposed method even if the measurement model is mismatched. Please note

that CKF 1D and MLCKF completely fail for higher delay probabilities.

5.5 Summary

This chapter develops an advanced Gaussian filtering technique for handling de-

layed measurements. The proposed method reformulates the traditional measure-

ment model using the Poisson distribution and considering that the average delay

information is known. Subsequently, it re-derives the traditional expressions of the

measurement estimate, measurement covariance, and the state-measurement cross-

covariance, which are influenced by the delayed measurements.

The proposed method celebrates two major advantages over the existing delay

filters: i) it requires the generally known average delay information instead of the

usually unknown delay-probabilities and ii) it precludes the ambiguous selection of

the upper bound of the delay. The proposed method is a general extension of the

Gaussian filtering method, which is applicable to any of the existing Gaussian filters,
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such as the EKF, UKF, and CKF. We use the CKF-based formulation for validating

the improved accuracy of the proposed method for delayed measurements. The

computational time of the proposed method is marginally increased in comparison

to some of the existing filters.
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Chapter 6

Gaussian Filtering with

Stochastically Composed Current

and Past Measurements

6.1 Introduction

As discussed in the previous chapter, the delayed measurements phenomenon inher-

ently appears in many practical systems. The existing delay filters, such as [121–

126], address the delay scenario with the measurements completely belonging to any

of the previous time instants. Specifically, the complete measurement is received by

a single sensor node. In many practical systems, however, the measurements are ac-

quired in fractions at different geographical locations [169, 170]. Subsequently, these

fractions are transmitted through individual communication channels to a data pro-

cessing center and superimposed to form the complete measurement for filtering.

The unreliable channels frequently cause one or more fractions of measurement to

reach the estimator with delay. Consequently, the available measurement may con-

tain some fractions from past instants. More specifically, the inaccurately received

measurement is stochastically composed of the current and past hypothetically true

measurements. To the best of the author’s knowledge, this irregularity is being

addressed for the first time in the filtering literature.
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6.1.1 The Proposed Measurement Irregularity

As discussed earlier, this chapter is concerned with a new kind of delayed measure-

ment irregularity, which is, to the best of the authors’ knowledge, yet not addressed

in the filtering literature. Under this irregularity, the inaccurately received measure-

ment yk (at tk) is stochastically composed of the current and past true measurements

(hypothetical measurements that would have been received under the non-existence

of the concerned irregularity), the hypothetical true measurement at tk is denoted

as zk.

The above mentioned irregularity appears when the measurement is generated

and propagated through the following sequence of events: i) zk is observed into

pieces using multiple sources (e.g., with p number of sources, it may be observed

Φ1zk, Φ2zk, . . . , Φpzk with 0 ≤ Φj ≤ 1 ∀j∈{1, 2, . . . , p} and
∑p

j=0Φj = 1), ii) the

measurement pieces Φ1zk, Φ2zk, . . . , Φpzk are independently propagated through

asynchronously time-delayed channels, and iii) data received from all channels (mea-

surement pieces) are superimposed to eventually obtain the measurement. Due to

the asynchronously time-delayed propagations, Φ1zk, Φ2zk, . . . , Φpzk get distributed

over the current and future sampling instants. For example, if the maximum propa-

gation delay is one sampling interval, then, each of Φ1zk, Φ2zk, . . . , Φpzk reaches at

either of tk and tk+1, depending on their respective propagation delays. In this case,

at tk, the estimator receives some measurement pieces from tk−1 (for delayed chan-

nels) and the remaining pieces from tk (for non-delayed channels). Alternatively, yk

is superimposed of αk,1zk−1 and αk,0zk, with the constants αk,1 and αk,0 being un-

known as the propagation delays of various channels are unknown and time-varying.

Generalizing this discussion for larger propagation delays, it can be stated that yk

is composed of αk,Nd
zk−Nd

, αk,Nd−1zk−Nd+1, . . . , αk,0zk with Nd representing the

maximum delay in any propagation channel, and the coefficients αk,Nd
, αk,Nd−1, . . . ,

αk,0 remaining unknown. Summarily, the inaccurately received yk is stochastically

composed of the current and past true measurements (zk, zk−1, . . . , zk−Nd
).

Let us discuss below two practical examples, where the measurements are ob-

served into pieces, and different pieces are propagated with asynchronous delays,

causing the concerned irregularity.
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� Example 1 (from engineering domain): In power system state estimation [169],

multiple power meters, located at peripheral branches, are installed to observe

a power flow measurement into pieces. The power meter readings are indepen-

dently transmitted through asynchronously delayed communication channels.

� Example 2 (from non-engineering domain): Let us consider the problem of es-

timating the model compartmental populations of COVID-19 pandemic model

in a country [171, 172]. The measurements, in this case, may be the day-to-

day infections, deaths, and vaccinations. Such data are generally revealed

by the country’s central agencies after superimposing the piece-wise received

data from multiple local institutions. However, the local institutions’ response

times are asynchronous, resulting into asynchronous delays in receiving the

pieces of the desired information.

6.1.2 An Overview of the Proposed Method

In this chapter, the author introduces an advanced Gaussian filtering technique to

handle the concerned measurement irregularity, giving an inaccurate measurement

that is stochastically composed of the current and past true measurements. In this

regard, the author reformulates the measurement model to incorporate the possibil-

ity of the concerned irregularity. Subsequently, the author re-derives the traditional

Gaussian filtering technique for the modified measurement model, resulting into the

proposed filtering method. The proposed filtering method is named as Gaussian

filtering with stochastically composed measurements (GFSCM). Interestingly, the

proposed GFSCM is a general extension of Gaussian filtering, which is applicable

to any of the existing Gaussian filters, such as the EKF, CKF, and GHF. The

simulation validates the improved accuracy of GFSCM for two nonlinear filtering

problems.

Let us now summarize the above discussion by highlighting the primary contri-

butions of the chapter as follows

� Addressing a new kind of delayed measurement irregularity, with the actual

measurement being stochastic composition of non-delayed and delayed mea-

surements.
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� Formation of a new measurement model incorporating the concerned irregu-

larity.

� Designing a generalized Gaussian filter according to the newly formed mea-

surement model.

� Validating an improved filtering performance of the proposed filter over the

traditional Gaussian filters and popular existing works to handle the delayed

measurements.

6.2 Problem formulation

Let us recall Eqs. (1.1) and (1.2) from Chapter 1 the nonlinear dynamical system

with state space model given as

xk = f(xk−1) + ηk. (6.1)

zk = h(xk) + νk. (6.2)

Please note that zk is the hypothetical true measurement, which would have been

observed if there was no irregularity. Recalling the previous discussion, inaccurately

received measurement is yk, which is stochastically composed of zk, zk−1, . . . , zk−Nd
.

Please note that Nd is practitioners’ choice with freedom to choose any large value.

As discussed previously, the delays in propagation channels are unknown, which

causes uncertainty in the measurement pieces being received at tk from tk, tk−1,

. . . , tk−Nd
. Therefore, the author randomly generates a set of coefficients as αk,j∼

N (α̂j, Paj) ∀j∈{0, 1, . . . , Nd}, characterizing the proportions of measurements con-

tributed from the sampling instants tk−j ∀j∈{0, 1, . . . , Nd}. Please note that the

parameters α̂j and Paj can be derived from the attributes and past records of the

propagation channels, relating to the asynchronous delays.

Based on the stochastically generated coefficients αk,j (∀j∈ {0, 1, . . . , Nd}), yk

could be stochastically modeled as

yk =

Nd∑
j=0

αk,jzk−j =

Nd∑
j=0

αk,j(h(xk−j) + νk−j). (6.3)
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Figure 6.1: Block diagram for receiving the irregular measurement yk as stochastic
combination of the current and past hypothetical true measurements. This block
diagram considers the following: i) three sources are used for observing the mea-
surements into three independent pieces and ii) a propagation channel (PC) can be
maximum of one-step delayed, i.e., the delay simply means to one-step delay.

Please refer to Fig. 6.1 for the process to generate and model the received measure-

ment yk.

To this end, the objective is to estimate the unknown states xk ∀k∈{1, 2, . . . }
as the inaccurate measurement yk is sequentially received ∀k∈{1, 2, . . . }. Please

note that the actually received measurement yk is already modeled in terms of the

hypothetical true measurements zk−j ∀j∈{0, 1, . . . , Nd} in Eq. (6.3). Therefore,

accomplishing the objective requires re-deriving the traditional Gaussian filtering

methodology for the state space model characterized by Eqs. (6.1) and (6.3).

Remark 6.1. Generalizing Fig. 6.1 for Nd-delay and p sources, the coefficients

αk,j ∀j∈{0, 1, . . . , Nd} are obtained as the summation of random combinations of

Φj (j∈{0, 1, . . . , p}). Furthermore, the random combination at a particular instant

results from the delay occurrences in different channels from the same instant. As

the delay occurrences are considered to be independently and identically distributed,

the resulting coefficients αk,j tend to be normally distributed following the central

limit theorem [173].

6.3 Filtering with stochastically composed cur-

rent and past measurements

In this section, the author derives the proposed GFSCM for the inaccurately re-

ceived measurement that is stochastically composed of the current and past true

measurements. Recalling the problem formulation, the proposed GFSCM can be
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designed by re-deriving the traditional Gaussian filtering methodology for the mod-

ified measurement model, given in Eq. (6.3). Let us reiterate the inference that

any variation in the measurements (e.g., due to the concerned irregularity) influ-

ences only three expressions of the Gaussian filtering: the measurement estimate,

measurement covariance, and state-measurement cross-covariance. Therefore, the

re-derivation of traditional Gaussian filtering requires to re-derive only these three

expressions.

To this end, let us denote as ẑk|k−1, P
zz
k|k−1, and Pxz

k|k−1 the measurement estimate,

measurement covariance, and state-measurement cross-covariance, respectively for

the hypothetical true measurement zk. Let us similarly denote ŷk|k−1, P
yy
k|k−1, and

Pxy
k|k−1 as the corresponding parameters for the inaccurately received measurement

yk. Please note that ẑk|k−1, P
zz
k|k−1, and Pxz

k|k−1 are simply the corresponding expres-

sions of the traditional Gaussian filtering. However, deriving the proposed GFSCM

to derive ŷk|k−1, P
yy
k|k−1, and Pxy

k|k−1. Subsequently, the proposed GFSCM can be

designed by replacing ẑk|k−1, P
zz
k|k−1, and Pxz

k|k−1 with ŷk|k−1, P
yy
k|k−1, and Pxy

k|k−1,

respectively in the traditional Gaussian filtering methodology. The subsequent the-

orems derive ŷk|k−1, P
yy
k|k−1, and Pxy

k|k−1.

Theorem 6.1. The measurement estimate ŷk|k−1 for the inaccurately received mea-

surement yk (Eq. (6.3)) can be given as

ŷk|k−1 =

Nd∑
j=0

α̂j ẑk−j|k−1, (6.4)

Proof. For yk given in Eq. (6.3), we get

ŷk|k−1 = E[yk] = E

[
Nd∑
j=0

αk,jzk−j

]
.

Please note that zk−j and αk,j are statistically independent, as they depict measure-

ment readings and propagation delays, respectively, which are independent events.

Subsequently, we simplify the above equation as

ŷk|k−1 =

Nd∑
j=0

E [αk,j]E [zk−j] .

94



CHAPTER 6. GAUSSIAN FILTERING WITH STOCHASTICALLY
COMPOSED CURRENT AND PAST MEASUREMENTS

As E[αk,j] = α̂j, this equation deduces to Eq. (6.4).

Theorem 6.2. The measurement error covariance Pyy
k|k−1 for yk can be obtained as

Pyy
k|k−1 =

Nd∑
j=0

(
(Pαj

+ α̂j
2)Pzz

k−j|k−1 + Pαj
ẑk−j|k−1ẑ

T
k−j|k−1

)
. (6.5)

Proof. For yk and ŷk|k−1 given by Eqs. (6.3) and (6.4), respectively, we get

yk − ŷk|k−1 =

Nd∑
j=0

αk,j

(
zk−j − ẑk−j|k−1

)
︸ ︷︷ ︸

∆1

+

Nd∑
j=0

(αk,j − α̂j) ẑk−j|k−1︸ ︷︷ ︸
∆2

.
(6.6)

Thus, Pyy
k|k−1 = E[(yk − ŷk|k−1)(yk − ŷk|k−1)

T ] can be expressed as

Pyy
k|k−1 = E

[
∆1∆

T
1

]
+ E

[
∆1∆

T
2

]
+ E

[
∆2∆

T
1

]
+ E

[
∆2∆

T
2

]
. (6.7)

In the following analysis, we calculate each term of the right side separately and

aggregate them to obtain the expression of Pyy
k|k−1.

As αk,j and zk−j are statistically independent, for ∆1 given in Eq. (6.6), we can

write

E
[
∆1∆

T
1

]
=

Nd∑
j=0

E
[
α2
k,j

]
E
[ (

zk−j − ẑk−j|k−1

) (
zk−j − ẑk−j|k−1

)T ]
.

Please note that E[α2
k,j] = (Pαj

+α̂j
2) and E[(zk−j − ẑk−j|k−1)(zk−j − ẑk−j|k−1)

T ] =

Pzz
k−j|k−1. Thus, we get

E
[
∆1∆

T
1

]
=

Nd∑
j=0

(Pαj
+ α̂j

2)Pzz
k−j|k−1. (6.8)

Similarly, for ∆1 and ∆2 given in Eq. (6.6), we have

E
[
∆1∆

T
2

]
=E
[ Nd∑

j=0

αk,j

(
zk−j − ẑk−j|k−1

) Nd∑
j=0

(αk,j − α̂j) ẑ
T
k−j|k−1

]
,
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which can be rewritten as

E
[
∆1∆

T
2

]
=

Nd∑
t=0

Nd∑
u=0

E
[
αk,t (αk,u − α̂u) zk−tẑ

T
k−u|k−1 − αk,t (αk,u−α̂u) ẑk−t|k−1ẑ

T
k−u|k−1

]
.

As E[zk−t] = ẑk−t|k−1, we obtain

E
[
∆1∆

T
2

]
= 0, (6.9)

which further concludes

E
[
∆2∆

T
1

]
= 0. (6.10)

Finally, for ∆2 given in Eq. (6.6), we can write

E
[
∆2∆

T
2

]
=

Nd∑
j=0

E
[
(αk,j − α̂j)

2] ẑk−j|k−1ẑ
T
k−j|k−1.

Applying the Binomial expansion, and subsequently, substituting E[α2
k,j] = (Pαj

+

α̂j
2), we get

E
[
∆2∆

T
2

]
=

Nd∑
j=0

Pαj
ẑk−j|k−1ẑ

T
k−j|k−1. (6.11)

Substituting E[∆1∆
T
1 ] =

∑Nd

j=0(Pαj
+ α̂j

2)Pzz
k−j|k−1, E[∆1∆

T
2 ] = 0, E[∆2∆

T
1 ] = 0,

and E[∆2∆
T
2 ]=

∑Nd

j=0 Pαj
ẑk−j|k−1ẑ

T
k−j|k−1 from Eqs. (6.8), (6.9), (6.10), and (6.11),

respectively into Eq. (6.7), Pyy
k|k−1 can be expressed in the form of Eq. (6.5).

Theorem 6.3. The cross-covariance Pxy
k|k−1 for the inaccurately received measure-

ment yk (Eq. (6.3)) is obtained as

Pxy
k|k−1 =

Nd∑
j=0

α̂jP
xz
k−j|k−1. (6.12)

Proof. Note that Pxy
k|k−1 = E[ek|k−1(yk − ŷk|k−1)

T ], with ek|k−1 = xk − x̂k|k−1. With

yk − ŷk|k−1 given in Eq. (6.6), we get

Pxy
k|k−1 = E

[
ek|k−1∆

T
1

]
+ E

[
ek|k−1∆

T
2

]
. (6.13)
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For ∆1 defined in Eq. (6.6), we can express

E
[
ek|k−1∆

T
1

]
= E

[
ek|k−1

Nd∑
j=0

αk,j

(
zk−j − ẑk−j|k−1

)T ]
.

As discussed previously, αk,j is independent of xk and zk. Thus, substituting E[αk,j]

= α̂j, we conclude

E
[
ek|k−1∆

T
1

]
=

Nd∑
j=0

α̂jP
xz
k−j|k−1. (6.14)

Similarly, for ∆2 given in Eq. (6.6), we can write

E
[
ek|k−1∆

T
2

]
= E

[
ek|k−1

Nd∑
j=0

(αk,j − α̂j) ẑ
T
k−j|k−1

]
.

Expanding the above equation and substituting E[αk,j] = α̂j, we get

E
[
ek|k−1∆

T
2

]
= 0. (6.15)

Substituting E[ek|k−1∆
T
1 ] =

∑Nd

j=0 α̂jP
xz
k−j|k−1 and E[ek|k−1∆

T
2 ] = 0 from Eqs. (6.14)

and (6.15), respectively into Eq. (6.13), we obtain Pxy
k|k−1 in the form of Eq. (6.12).

From the above derivations, we get ŷk|k−1, P
yy
k|k−1, and Pxy

k|k−1, corresponding

to the inaccurately received measurement yk. Subsequently, the proposed GFSCM

is designed by replacing ẑk|k−1, P
zz
k|k−1, and Pxz

k|k−1 with ŷk|k−1, P
yy
k|k−1 and Pxy

k|k−1,

respectively in the traditional Gaussian filtering methodology. As the modeling of

yk (Eq. (6.3)) considers the errors caused due to the concerned irregularity, the

proposed GFSCM addresses the concerned irregularity during the filtering. We

provide a pseudo code for implementing the proposed GFSCM in Algorithm 6.1.

In this section, the author validates the improved accuracy of the proposed GF-

SCM for two simulation problems. The abbreviations CKF S, CQKF S, and GHF S

represent respectively the CKF-, CQKF-, and GHF-based formulations of the pro-

posed GFSCM. The author also performs the comparison with the existing works

MLCKF [126], CKF GD RD [174], CKF GD [175], and CKF DM [29]. As discussed
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Algorithm 6.1 Pseudo code for implementing the proposed GFSCM

Input: Qk, Rk, Ns, α̂j, Paj , Nd, and filter-specific points and weights for approxi-
mating intractable integrals.

Output: x̂k|k ∀k∈{1, 2, . . . , Ns}.
1: Initialisation: x̂0|0, P0|0, and k = 1.
2: while k ≤ Ns do
3: Compute the predicted estimate and covariance of xk: x̂k|k−1 and Pk|k−1

(Reference [15]).
4: Compute the estimate and covariance for the hypothetical true measurement

zk: ẑk|k−1 and Pzz
k|k−1 (Reference [15]).

5: Compute the state-measurement cross-covariance: Pxz
k|k−1 (Reference [15]).

6: Compute the estimate and covariance for the received measurement yk:
ŷk|k−1 and Pyy

k|k−1 (Eqs. (6.4) and (6.5), respectively).

7: Compute the cross-covariance between xk and yk: P
xy
k|k−1 (Eq. (6.12)).

8: Compute the Kalman gain as K = Pxy
k|k−1(P

yy
k|k−1)

−1.

9: Compute the desired posterior estimate as x̂k|k = x̂k|k−1 +K(yk − ŷk|k−1).

10: Compute the posterior error covariance as Pk|k = Pk|k−1 −KPyy
k|k−1K

T .
11: return x̂k|k
12: k = k + 1
13: end while

in [121, 124], the propagation delays are mostly small. Thus, the simulation con-

siders that the propagation delay does not exceed five sampling intervals, ensuring

that Nd ≤ 5. The performance analysis is based on the widely accepted root mean

square error (RMSE) [15]. Please note that the measurement yk contains the past

information and it is available to the practitioner for filtering (instead of zk); thus,

all filters in the simulation section are compared considering the measurement being

yk.

6.3.1 Problem 1: Individual Sinusoids Identification

This example considers individual sinusoids identification problem from the mea-

surements of the superimposed signal [15, 125], considering that three sinuoids con-

stitute the superimposed signal. The sinusoid identification is identical to estimation

of corresponding amplitudes and frequencies. Please refer to the state-space model

represented by Eqs. (4.14) and (4.15) for this problem.

The initial true state considered as x0 = [200 1000 2000 5 4 3]T , while the initial

estimate is generated from 0.9N (x0,P0), where P0 = diag([20 20 20 0.5 0.5 0.5])

being the initial covariance. The simulation is performed over 200 time-steps for 300
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Figure 6.2: Problem 1: Mean RMSE comparison between the proposed and tra-
ditional Gaussian filters at different noisy environments considering zk−1 and zk−2

collectively compose 20% of yk.

Monte-Carlo runs by selecting T = 0.25 ms. The simulation is based on the assump-

tion that yk is composed of zk, zk−1, and zk−2 with the corresponding coefficients

α0 ∼ N (0.8, 0.01), α1 ∼ N (0.1, 0.0004), and α2 ∼ N (0.1, 0.0004).

Performance analysis for varying noises

For the implementation purpose, we assign Qk = diag([sf sf sf sa sa sa]) and Rk =

diag([τr τr]) and form three different noise scenarios (with ηk ∼ N (0, Qk) and νk ∼
N (0, Rk)) as: i) Case-1: sf = 0.08, sa = 0.005, and τr = 0.09, ii) Case-2: sf = 0.16,

sa = 0.01, and τr = 0.18, and iii) Case-3: sf = 0.24, sa = 0.015, and τr = 0.27. We

obtain the RMSEs of amplitude at every time-instant as the average of RMSEs of the

three amplitudes (corresponding to three sinusoids). The same approach is followed

for obtaining the RMSEs of frequency as well at every time-instant. Finally, we
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Figure 6.3: Sinusoids identification by different filters considering zk−1 and zk−2

collectively compose 20% of yk and the noise environment as Case-1.

determine the mean of RMSEs of frequencies and amplitudes across all time instants,

which will be referred to as mean RMSEs. Fig. 6.2 compares the mean RMSEs of

the CKF, CQKF, and GHF with their counterparts CKF S, CQKF S, and GHF S

under the proposed filtering methodology and MLCKF, CKF GD, CKF GD RD,

and CKF DM. It can be observed that, in all cases, the CKF S, CQKF S, and

GHF S give reduced mean RMSEs in comparison to all competitive filters. Thus,

it can be concluded that the proposed Gaussian filtering method outperforms the

traditional Gaussian filtering method an the existing delay filters in the presence of

stochastically linearly combined measurements.

Sinusoid identification

We consider 2-delay scenario and the first noise scenario (i.e., Nd = 2 and Case-1) to

analyze the performance based on identifying the unknown sinusoids. Fig. 6.3 illus-

100



CHAPTER 6. GAUSSIAN FILTERING WITH STOCHASTICALLY
COMPOSED CURRENT AND PAST MEASUREMENTS

trates the two sinusoids identified by the CKF S. Please note that the performance

of the CQKF S and GHF S are qualitatively superior to the CKF S and therefore

the sinusoids identified by these filters are eliminated for brevity. It is clear from

Fig. 6.3 that the sinusoids identified by the CKF S closely match the respective true

sinusoids while other filters failed. It further validates the satisfactory estimation

using the proposed Gaussian filtering method.

6.3.2 Problem 2: Compartmental Population Estimation

for COVID-19 Pandemic Model from Real Data

In this problem, we estimate the compartmental populations for the popularly known

susceptible-infected-recovered (SIR) pandemic model [171] of Covid-19. The estima-

tion is performed using the real-data (measurements) obtained between 17 January

2021 and 26 April 2021 for Delhi, the capital of India. The state equation for the

SIR-based Covid-19 pandemic model is [171]


Sk

Ik

Rk

 =


−κsiSk−1Ik−1 + κrsRk−1

κsiSk−1Ik−1 − κirIk−1

κirIk−1 − κsiRk−1

+ ηk, (6.16)

where Sk, Ik, and Rk represent the populations of susceptible, infected, and recov-

ered, respectively, while κsi, κir, and κrs denote susceptible-to-infected, infected-

to-recovered, and recovered-to-susceptible rates, respectively. Subsequently, for the

state variable xk = [Sk Ik Rk]
T , the measurement equation is given as [171]

zk =

0 1 0

0 0 1

xk + νk. (6.17)

The true states of the considered city having 32 million population (contemporane-

ous) is generated by assigning x0 = [S0 200 1]T , where S0 denotes the remaining

population after excluding the infected and recovered ones. For simulation purpose,

we assign κsi = 1.5, κir = 0.16, κrs = 0.001 [176]. Moreover, the initial estimate

is taken as x̂0|0 ∼ 0.9N (x0,P0), with P0 = diag([1000 1000 100]). The simula-

tion is performed over 100 days for 300 Monte-Carlo runs, with sampling interval
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Figure 6.4: Problem 2: Mean RMSEs of the proposed and traditional Gaussian filters
at different noisy environments considering zk−1 and zk−2 collectively compose 20%
of yk.

of one day. Moreover, the coefficients α0, α1, and α2 are assumed to have the same

statistics as described in Problem 1.

Please note that the primary objective of any pandemic model realization in-

cludes devising a plan for the susceptible population. Thus, we present the results

only for susceptible compartment considering Qk = kηdiag([1000 50 5]) and Rk =

kνdiag([1000 80]), forming different noise environments (with ηk ∼ N (0, Qk) and

νk ∼ N (0, Rk)) as: i) Case-1: kη = 1, kν = 1, ii) Case-2: kη = 2, kν = 2, and iii)

Case-3: kη = 4, kν = 4.

Fig. 6.4 (scaled version shows the CKF S, CQKF S, and GHF S) compares the

mean RMSEs of susceptible population estimated using the considered Gaussian

filters (CKF, CQKF, and GHF) and their extensions under the proposed method

(CKF S, CQKF S, and GHF S) for different noisy environments. The figure con-

cludes that the CKF S, CQKF S, and GHF S give reduced mean RMSEs com-

pared with the corresponding competitive filters. Conclusively, the proposed filter-

ing method outperforms the traditional Gaussian filtering method.

6.3.3 Performance Analysis Against Varying Measurement

Delays

We extend the performance analysis by varying the maximum delay (i.e., Nd) in

measurements. As discussed in the beginning of this section, the practical delays are

predominantly small. Therefore, we consider three delay scenarios, choosing Nd as
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Figure 6.5: Problem 1, Case-1: Mean RMSEs comparison between the proposed
and competitive Gaussian filters at different delay scenarios. The hypothetical true
measurements zk−Nd

with Nd = (1, 3, 5) are assumed to compose 20% of yk.

1, 3, and 5. Moreover, the coefficients are selected as α0 = 0.8 and αj = (1−α0)/Nd,

where j = (1, 2, . . . , Nd). We compare the mean RMSEs of different filters through

Figs. 6.5 and 6.6 for the two problems. It is clear from the figures that, for all

delay cases, the CKF S, CQKF S, and GHF S give reduced mean RMSEs compared

with all considered filters. It infers the improved filtering accuracy of the proposed

GFSCM when the actual measurement is received as a stochastic combination of

the current and past true measurements.

6.3.4 Computational Time Analysis

We compared the relative computational times of all the filters for 2-delay, Case-1

scenario for Problem 1, considering the reference computational time of the CKF as 1

(ratio of computational time of the given filter to that of the CKF). We observed the
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Figure 6.6: Problem 2, Case-1: Mean RMSEs comparison between the proposed
and competitive Gaussian filters at different delay scenarios. The hypothetical true
measurements zk−Nd

with Nd = (1, 3, 5) are assumed to compose 20% of yk.

relative computational times of the CKF, CQKF, GHF, CKF S, CQKF S, GHF S,

MLCKF, CKF DM, CKF GD, and CKF GD RD as 1, 1.625, 1.904, 1.031, 1.922,

2.167, 3.456, 1.103, 1.153, and 1.358, respectively. It is noteworthy to mention that

the performance of all the filters are qualitatively similar for both other delay cases

and Problem 2; we have omitted these comparison for brevity.

6.4 Summary

The practical measurements are often generated in pieces. The measurement pieces

are commonly asynchronously propagated before their superimposition (to obtain

the desired measurement). In such cases, the estimator receives an inaccurate

measurement as stochastic composition of the current and past hypothetical true

measurements. The practical examples include power system state estimation and

Covid-19 pandemic model realizations (discussed in detail in the second section).

This chapter re-derives the traditional Gaussian filtering method for filtering with

the stochastically composed current and past true measurements. The resulting

filtering method is named as GFSCM in its abbreviated form. In developing the

proposed GFSCM, the author introduces a modified measurement model, consid-

ering that the inaccurately received measurement is stochastically composed of the

current and past true measurements. Subsequently, the traditional Gaussian filtering

method is re-derived for the modified measurement model. The improved accuracy
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of the proposed GFSCM is validated for two simulation problems. Interestingly, the

accuracy is increased without a significant deviation in the computational demand.

The future work extension of this work may be to consider more irregularities in the

measurement data and system models.
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Chapter 7

Gaussian Filtering for

Simultaneously Occurring Delayed

and Missing Measurements

7.1 Introduction

The previous chapters have thoroughly examined the issues of delayed and missing

measurements, including the factors causing these irregularities, their incorporation

into the measurement model, and various solutions to handle them. To address

the limitations of existing methods and narrow research gaps, the author has pro-

posed several extensions of Gaussian filters to handle these irregularities individually

(through Chapters 3 to 6). It is important to note that the techniques reviewed so

far in the thesis (e.g., [81]-[93] for missing measurements and [112]-[123] for delayed

measurements) and the methods proposed in Chapters 3 to 6 are specifically de-

signed to handle either delayed or missing measurements. However, as discussed

in Chapter 2, these irregularities can occur simultaneously in wireless sensor net-

works (WSNs) since the factors triggering them may occur at different stages: from

measurement acquisition at sensors to their arrival at the estimator [177, 178].

The literature [177–182] on filtering with simultaneously occurring delayed and

missing measurements witnesses some developments for different classes of systems.

For example, [177] considered this problem in coupled neural networks and devel-

oped an estimation method. Similarly, [179] develops a filtering algorithm for the
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delayed and missing measurements. In this regard, it introduces separate stochastic

models for incorporating the delay and missing measurements possibilities. Subse-

quently, it introduces a Ricatti-like equation for designing Kalman filtering method.

However, [179] restricts the delay up to one sampling interval, wherein the prac-

tical delays can often be larger. Furthermore, [178] introduced unbiased finite

impulse response-based filtering approach for finite-horizon case, considering the

presence of delayed and missing measurements. However, it assumes that the delay

is time-stamped, while delays without time-stamping are observed in many prac-

tical systems [167, 183]. Finally, [180] introduces three new designs of robust

linear Kalman filtering for handling the simultaneously occurring delayed and miss-

ing measurements. However, in every design, it restricts the delay as one sampling

interval, which can lead to poor accuracy if the real measurement delay is higher.

Moreover, [179] and [180] rely on the augmented state-space approaches, which

may increase the computational complexity significantly.

Although the above-discussed filtering methods [177–182] can handle the simul-

taneously occurring delayed and missing measurements, they have two broad lim-

itations: i) they are designed for linear dynamical systems, ii) they fail to handle

delays of more than one sampling interval without time-stamping. For the nonlin-

ear dynamical systems, [126] is a popular development to handle the simultaneously

occurring delays larger than one sampling instant and missing measurements. It

integrates a likelihood-based technique with the nonlinear Gaussian filtering frame-

work for handling the simultaneously occurring delayed and missing measurements.

However, [126] uses an augmented state transition equation, with the size of the

system growing by a factor of Nd, where Nd the maximum number of delays. More-

over, the use of Gaussian mixture withNd components as a likelihood function causes

computational issues with large number of components in the likelihood function.

Indeed, the increased size of the covariance matrices itself can present significant

computational issues in multidimensional integration involved.

In this chapter, we develop a new extension of Gaussian filtering to handle the

simultaneously occurring delayed and missing measurements for nonlinear dynam-

ical systems. In this regard, we reformulate the measurement model using a set

of Bernoulli random variables to incorporate the possibilities of delayed and miss-
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ing measurements. Subsequently, we re-derive the Gaussian filtering method for

the modified measurement model. It should be mentioned that we modify only the

measurement model. Consequently, in the redesigned Gaussian filtering, only the fil-

tering parameters related to the measurements, such as the measurement estimate,

the measurement covariance, and the state-measurement cross-covariance, are re-

derived. It is worth mentioning that our contribution is on developing a generalized

Gaussian filtering methodology for the problem of delayed as well as missing mea-

surements. Thus, it can be used for extending any of the existing Gaussian filters,

such as the EKF, the UKF, and the CKF, for handling the simultaneous occurrence

of delayed and missing measurements. We test the performance of the proposed

method under CKF-based formulation due to its popularity for high accuracy at a

low computational cost. The performance analysis reveals an improved accuracy for

the proposed method compared to the traditional Gaussian filtering method and its

extensions in presence of delayed and missing measurements.

In view of the above discussion, we highlight the main contributions of the chap-

ter as follows:

� We introduce a stochastically formulated measurement model that incorpo-

rates the possibility of simultaneously occurring delayed and missing measure-

ments.

� We redesign the traditional Gaussian filtering for the modified measurement

model to handle the simultaneous occurrences of the delayed and missing mea-

surements.

� We consider arbitrarily large delays without time-stamping for nonlinear sys-

tems, whereas the existing filters such as those reported in [179, 180] (without

time-stamping) and [178] (with time-stamping) address the delayed measure-

ments only for linear systems. Moreover, our algorithm, in contrast to [126],

avoids computationally expensive state augmentation and instead relies on an-

alytical expressions for the necessary conditional moments (which are additive

in the number of maximum delays).

� We validate the performance of the proposed Gaussian filtering methodology

by two comprehensive simulation examples.
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7.2 Problem Formulation

Our problem is to develop an advanced Gaussian filtering methodology to handle

the simultaneous occurrence of delayed and missing measurements. The standard

representation of the state-space model in a lenient environment (Eqs. (1.1) and (1.2)

in Chapter 1) is as follows

xk = f(xk−1) + ηk. (7.1)

zk = h(xk) + νk. (7.2)

Following our problem statement, we need to reformulate the measurement model

(Eq. (7.2)) to address the simultaneous occurrence of randomly delayed and ran-

domly missing measurements. Our reformulation of the measurement model is based

on two sets of Bernoulli random variables, denoted by β and Θ: β corresponds to

the missing measurements and Θ corresponds to the delayed measurements.

The measurements are generally received from multiple sources, and they all

may not be missing at the same time. Thus, we consider that the measurement

at any sampling instant may be partly missing, i.e., specific elements of the mea-

surement may be missing at any particular instant. Thus, we define a matrix of

Bernoulli random variables, βk= diag[(β1
k , β

2
k , . . . , β

q
k)] with β

i
k ∀i ∈ {1, 2, . . . , q} be-

ing q equiprobable Bernoulli random variables and E[βk]=ρk= diag[(ρ1k, ρ
2
k, . . . , ρ

q
k)].

It should be mentioned that βi
k is either 0 or 1, with βi

k = 0 representing that the

ith element of the received measurement yk, denoted as yk(i), is missing.

For modeling the delay portion, we restrict the maximum delay to Nd. Nd is the

practitioner’s choice and it can be assigned with a fairly large value if the expected

delay is large. Therefore, our model and the proposed filtering technique should not

be deemed to be restricted to small delays. We define Nd+1 equiprobable Bernoulli

random variables: one for each of the current and the Nd possible delayed instants.

At kth instant, we denote them as Θj
k ∀j∈{1, 2, . . . , Nd + 1} with P(Θj

k = 1) =

E[Θj
k] = ϕd. Note that Θj+1

k corresponds to jth delayed instant. We assign Θ0
k = 0,
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and model the actual measurement as

yk =βk

[
(1−Θ0

k)Θ
1
kzk + (1−Θ0

k)(1−Θ1
k)Θ

2
kzk−1 + . . .

+ (1−Θ0
k)(1−Θ1

k) . . . (1−ΘNd
k )ΘNd+1

k zk−Nd

]
,

(7.3)

where yk is the actual received measurement due to the delay and missing possi-

bilities. The coefficients of zk−m ∀m∈{1, 2, . . . , Nd} govern the delay extent. For

example, if the measurement is one time-step delayed, i.e., yk = zk−1, then co-

efficient of zk−1, i.e., (1 − Θ0
k)(1 − Θ1

k)Θ
2
k takes the value one, while the random

variables associated with zk−m ∀m ̸= 1 remain zero. At the same time, βk regulates

the missing measurement possibility. The diagonal elements of βk are Bernoulli

random variables, which take the values zero or one. The value one ensures that

the measurement is received, while the value zero indicates that the measurement

is lost.

To this end, let us simplify the notation for the coefficients of zk−m as

Λk(m, j) =

( m∏
j=0

(1−Θj
k)

)
Θ

(m+1)
k , (7.4)

so that the received measurement is m-step delayed if Λk(m, j) = 1, which means

Θm+1
k = 1 and Θj

k = 0 ∀j ≤ m. Subsequently, Eq. (7.3) can be represented as

yk =βk [Λk(0, j)zk + Λk(1, j)zk−1 + · · ·+ Λk(Nd, j)zk−Nd
] . (7.5)

Thus, the measurement model can be finally given as

yk = βk

Nd∑
m=0

Λk(m, j)zk−m, (7.6)

where yk is the actual received measurement due to delay and missing possibilities.

At this end, zk may be considered as an ideal measurement that might have been

received in the lenient environment. A pictorial diagram representing the sequence

to be followed to get yk from z1, z2, . . . , zk is shown in Fig. 7.1.

It is assumed that βi
k and Θj

k are independent random variables ∀{k, i, j}. Fur-
thermore, βj

k and Θj
k are independent of βi

k and Θi
k, respectively for j ̸=i. Our
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Figure 7.1: Pictorial diagram representing the sequence to be followed to obtain
the received measurement yk from the ideal z1, z2, . . . , zk that would have been
received in the lenient environment.

objective in the next section is to redesign the Gaussian filtering method for the

state-space model represented by Eqs. (7.1) and (7.2) so that the possibilities of

delayed and missing measurements are incorporated.

The above discussions emphasize the importance of the measurement model (7.6)

for developing the proposed filtering algorithm. As mentioned in the previous sec-

tion, some of the existing filters, such as [121, 123–125] and [184], also formulated

similar measurement models. However, the models in [121, 123–125] characterize

the delay possibilities only, while the same in [184] characterizes only the miss-

ing measurement possibility. Moreover, [121, 123, 124] characterize only limited

and small delays. Thus, they fail to characterize the general practical scenarios of

the simultaneously occurring delayed and missing measurements. Our measurement

model in Eq. (7.6) efficiently characterizes the simultaneously occurring delayed

and missing measurement possibilities. It considers any large delays and completely

missing measurements unlike [121, 123–125] and [184], respectively.

7.3 Modified Gaussian Filtering for Delayed and

Missing Measurements

The traditional Gaussian filtering is designed with respect to the measurement z,

modeled in Eq. (7.2). In this section, we derive the necessary modifications to

the algorithm to deal with the modified measurement y, modeled in Eq. (7.6). As

the measurement model is changed, we re-derive all the related expressions in the

traditional Gaussian filtering to propose the advanced Gaussian filtering for y. The
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traditional Gaussian filtering uses only three such expressions, namely the measure-

ment estimate ẑ, measurement error covariance Pzz, and the cross covariance Pxz,

derived for z. We re-derive all the measurement related expressions in the Gaussian

filtering algorithm for the modified measurement model above. On a different note,

it should be mentioned that the state dynamics remains unaffected from the simul-

taneous occurrence of the delayed and missing measurements. Therefore, the time

update step of the proposed filtering technique remains the same as the traditional

Gaussian filtering [11, 15].

We now re-derive the measurement-related parameters through the subsequent

discussions.

Theorem 7.1. For yk given in Eq. (7.6), the measurement estimate is

ŷk|k−1 =

Nd∑
m=0

ρk(1− ϕd)
mϕdẑk−m|k−1, (7.7)

where E [zk−m] = ẑk−m|k−1.

Proof. Let us substitute the expression of yk from Eq. (7.6) in ŷk|k−1 = E[yk]. Thus,

we get

ŷk|k−1 = E[yk] = E

[
βk

(
Nd∑
m=0

Λk(m, j)zk−m

)]
. (7.8)

As the missing and delay occurrences are mutually independent events, βk and

Λk(m, j) are statistically independent. Moreover, βk and Λk(m, j) are independent

of the measurement value zk also. Thus, we simplify the above equation as

ŷk|k−1 = E [βk]

Nd∑
m=0

E [Λk(m, j)]E [zk−m]. (7.9)

Following our previous notations E [zk−m] = ẑk−m|k−1 and recalling the previous

discussion, we get

E [Λk(m, j)] = E
[( m∏

j=0

(1−Θj
k)

)
Θ

(m+1)
k

]
= (1− ϕd)

mϕd. (7.10)

Substituting E [zk−m], E [βk], and E [Λk(m, j)] in Eq. (7.9), we get the expression of

ŷk|k−1 as given in Eq. (7.7).
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Theorem 7.2. The covariance Pyy
k|k−1 for the modified measurement model yk is

obtained as

Pyy
k|k−1 =

Nd∑
m=0

ρk(1− ϕd)
mϕdP

zz
k−m|k−1 +

Nd∑
m=0

(ρk(1− ϕd)
mϕd

− (ρk(1− ϕd)
mϕd)

2)ẑk−m|k−1ẑ
T
k−m|k−1.

(7.11)

Proof. The measurement error covariance is

Pyy
k|k−1 = E

[(
yk − ŷk|k−1

) (
yk − ŷk|k−1

)T]
. (7.12)

From Eqs. (7.6) and (7.7), we get

yk − ŷk|k−1 =

Nd∑
m=0

βkΛk(m, j)zk−m −
Nd∑
m=0

ρk(1− ϕd)
mϕdẑk−m|k−1, (7.13)

which can be re-written as

yk − ŷk|k−1 =

Nd∑
m=0

βkΛk(m, j)(zk−m − ẑk−m|k−1)︸ ︷︷ ︸
∆1

+

Nd∑
m=0

(βkΛk(m, j)− ρk(1− ϕd)
mϕd) ẑk−m|k−1︸ ︷︷ ︸

∆2

.

(7.14)

From Eqs. (7.12) and (7.14), we can write

Pyy
k|k−1 = E[∆1∆

T
1 ] + E[∆1∆

T
2 ] + E[∆2∆

T
1 ] + E[∆2∆

T
2 ]. (7.15)

We can now compute every expectation term individually for ∆1 and ∆2 defined

in Eq. (7.14) and add them to obtain Pyy
k|k−1. In this regard, for ∆1 given in Eq.

(7.14), we get

E[∆1∆
T
1 ] =

Nd∑
m=0

E
[
β2
k

]
E
[
Λ2

k(m, j)
]
E
[
(zk−m − ẑk−m|k−1)(zk−m − ẑk−m|k−1)

T
]
.

Following previous discussions, E[β2
k] = E[βk] = ρk, E[Λ2

k(m, j)] = E[(Λk(m, j))] =
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(1 − ϕd)
mϕd, and E[(zk−m − ẑk−m|k−1)(zk−m − ẑk−m|k−1)

T ] = Pzz
k−m|k−1, the above

equation can be simplified as

E[∆1∆
T
1 ] =

Nd∑
m=0

ρk(1− ϕd)
mϕdP

zz
k−m|k−1. (7.16)

Similarly, for ∆1 and ∆2 given in Eq. (7.14), we can write

E[∆1∆
T
2 ] =E

[(
Nd∑
s=0

βkΛk(s, j)(zk−s − ẑk−s|k−1)

)

×
(

Nd∑
u=0

(βkΛk(u, j)− ρk(1− ϕd)
uϕd) ẑk−u|k−1

)T ]
.

After further simplification, we get

E[∆1∆
T
2 ] =

Nd∑
s=0

Nd∑
u=0

E
[
βkΛk(s, j)

(
βkΛk(u, j)− ρk(1− ϕd)

uϕd

)T
zk−sẑ

T
k−u|k−1

− βkΛk(s, j) (βkΛk(u, j)− ρk(1− ϕd)
uϕd)

T ẑk−s|k−1ẑ
T
k−u|k−1

]
.

After substituting all the expectation terms from previous discussions and consid-

ering that E[zk−s] = ẑk−s|k−1, we get

E[∆1∆
T
2 ] = 0. (7.17)

This also leads to

E[∆2∆
T
1 ] = 0. (7.18)

Finally, for ∆2 given in Eq. (7.14), we have

E[∆2∆
T
2 ] = E

[ Nd∑
m=0

(
βkΛk(m, j)− ρk(1− ϕd)

mϕd

)2
ẑk−m|k−1ẑ

T
k−m|k−1

]
.

Applying binomial expansion and simplifying further, we get

E[∆2∆
T
2 ] =

Nd∑
m=0

(
E[β2

k]E[Λ2
k(m, j)] + (ρkϕd(1− ϕd)

m)2

− 2E[βk]E[Λk(m, j)]ρk(1− ϕd)
mϕd

)
ẑk−m|k−1ẑ

T
k−m|k−1.

115



7.3. MODIFIED GAUSSIAN FILTERING FOR DELAYED AND
MISSING MEASUREMENTS

Substituting E[β2
k] = ρk and E [Λ2

k(m, j)] = (1− ϕd)
mϕd, we obtain

E[∆2∆
T
2 ] =

Nd∑
m=0

(
ρk(1− ϕd)

mϕd − (ρk(1− ϕd)
mϕd)

2)ẑk−m|k−1ẑ
T
k−m|k−1. (7.19)

We now substitute E[∆1∆
T
1 ], E[∆1∆

T
2 ], E[∆2∆

T
1 ], and E[∆2∆

T
2 ] from Eqs. (7.16),

(7.17), (7.18), and (7.19), respectively, in Eq. (7.15) to obtain Pyy
k|k−1 as expressed

in Eq. (7.11).

Theorem 7.3. The state-measurement cross-covariance Pxy
k|k−1 for yk can be given

as

Pxy
k|k−1 =

Nd∑
m=0

ϕd(1− ϕd)
mPxz

k−m|k−1ρk. (7.20)

Proof. Substituting yk − ŷk|k−1 from Eq. (7.14) into expression Pxy
k|k−1 = E[(xk −

x̂k|k−1)(yk − ŷk|k−1)
T ], we get

Pxy
k|k−1 = E

[
(xk − x̂k|k−1)∆

T
1

]
+ E

[
(xk − x̂k|k−1)∆

T
2

]
. (7.21)

For ∆1 given in Eq. (7.14), we can write

E
[
(xk − x̂k|k−1)∆

T
1

]
=

Nd∑
m=0

(
E[βk]E[Λk(m, j)]E

[
(xk − x̂k|k−1)(zk−m − ẑk−m|k−1)

T
])
.

(7.22)

Substituting E[βk] and E[Λk(m, j)], we obtain

E
[
(xk − x̂k|k−1)∆

T
1

]
=

Nd∑
m=0

(1− ϕd)
mϕdP

xz
k−m|k−1ρk. (7.23)

Similarly, for ∆2 given in Eq. (7.14), we get

E
[
(xk − x̂k|k−1)∆

T
2

]
=

Nd∑
m=0

E [(βkΛk(m, j)− ρk(1− ϕd)
mϕd)]

× E
[
(xk − x̂k|k−1)ẑ

T
k−m|k−1

]
.

(7.24)

As βk and Λk(m, j) are independent, E [βkΛk(m, j)] = E [βk]E [Λk(m, j)] = ρk(1−
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ϕd)
mϕd. Thus, we can write

E [(βkΛk(m, j)− ρk(1− ϕd)
mϕd)] = 0. (7.25)

Substituting this into Eq. (7.24), we get

E
[
(xk − x̂k|k−1)∆

T
2

]
= 0. (7.26)

Substituting E
[
(xk − x̂k|k−1)∆

T
1

]
and E

[
(xk − x̂k|k−1)∆

T
2

]
from Eqs. (7.23) and

(7.26), respectively, into Eq. (7.21), it is deduced to Eq. (7.20).

As discussed at the beginning of this section, the proposed filtering method modi-

fies the traditional Gaussian filtering by re-deriving the expressions of measurement

estimate, measurement covariance, and state-measurement cross-covariance (Eqs.

(7.7), (7.11), and (7.20), respectively). Please follow [11, 15] for a detailed discus-

sion on the traditional Gaussian filtering. The proposed filtering algorithm also

follows the same filtering strategy by replacing the expressions of ẑk|k−1, P
zz
k|k−1,

and Pxz
k|k−1 with the re-derived expressions of ŷk|k−1, P

yy
k|k−1, and Pxy

k|k−1, respec-

tively. We provide the pseudo-code for implementing the proposed filtering method

in Algorithm 7.1.

In advancing the traditional Gaussian filtering for handling various measurement

irregularities, such as the delayed and missing measurements, the major difficulty

appears in incorporating those irregularities through mathematical models. The

problem becomes yet more challenging if the irregularities are uncertain to appear

at any particular sampling instant, as considered in this chapter. We handled this

problem by mathematically characterizing such irregularities, particularly the de-

layed and missing measurements, by formulating a stochastic model, as in Eq. (7.6).

Remark 7.1. Our measurement model utilizes a sequence of Bernoulli random vari-

ables to characterize the possibility of a measurement coming from various possible

past instants. A future research problem may be to introduce a more convenient

model by reducing the required number of random variables.

Remark 7.2. Our filter design strategy concludes that handling the measurement ir-

regularities becomes convenient if an efficient mathematical model for characterizing

117
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Algorithm 7.1 Pseudo-code for extending the sigma-point based Gaussian filters
under the proposed filtering technique

Input: Qk, Rk, Ts, ρ, ϕd, filter-specific sigma points, and weights.
Output: x̂k|k.

1: Initialisation: x̂0|0, P̂0|0, k = 1.
2: while k≤Ts do
3: Compute the predicted estimate and covariance of xk: x̂k|k−1 and P̂k|k−1 (see,

e.g., References [11, 15]).
4: Compute the estimate and covariance of the ideal measurement (zk): ẑk|k−1,

Pzz
k|k−1 (see, e.g., References [11, 15]).

5: Compute the cross-covariance between state and ideal measurement zk:
Pxz

k|k−1 (see, e.g., References [11, 15]).
6: Compute the estimate and covariance of the received measurement yk: ŷk|k−1

(Eq. (7.7)) and Pyy
k|k−1 (Eq. (7.11)).

7: Compute the cross-covariance between xk and received measurements yk:
Pxy

k|k−1 (Eq. (7.20)).

8: Kalman gain: K = Pxy
k|k−1(P

yy
k|k−1)

−1.

9: Updated estimate: x̂k|k = x̂k|k−1 +K(yk − ŷk|k−1).

10: Updated covariance: P̂k|k = P̂k|k−1 −KPyy
k|k−1K

T .
11: return x̂k|k
12: end while

the concerned irregularities is formulated.

Remark 7.3. The proposed method fetches some information, such as the measure-

ment estimate, measurement covariance, and state-measurement cross-covariance,

from past instants, which causes additional storage capacity requirement. Similar

additional storage requirements also occur in existing delay filters, e.g., see [15].

Remark 7.4. The proposed filtering methodology simplifies to the traditional Gaus-

sian filtering methodology for zero probabilities of delay and missing measurements

(ρi = ϕd = 1) and Nd = 0, if we use the convention 00 = 1.

7.4 Simulation Results

In real-life problems, the measurement systems (including the measuring devices

and the supplementary units) are usually designed to efficiently capture the mea-

surements. Therefore, they may not be expected to miss many measurements. Sub-

sequently, the missing measurement probability is usually small. Thus, we consider

the missing measurement probability up to 0.2 for the simulation, which means
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around 20% of the measurements are missing. On the other hand, the delay inher-

ently appears in the measurements. Therefore, we consider a sufficiently large range

of the delay probability (0.1 ≤ 1−ϕd ≤ 0.9). Moreover, it should be mentioned that

the practical measurement systems are designed for small delays. Hence, we restrict

the maximum possible delay to one to three time-steps (denoted as 1-delay, 2-delay,

and 3-delay scenarios, respectively). The simulation is performed for 500 time-steps

and the RMSEs are obtained by implementing 300 Monte-Carlo simulations.

For the performance analysis, we considered three popular and advanced Gaus-

sian filters, namely, the CKF [9], CQKF [27], and GHF [28]. With their extensions

under the modified filtering method, which are abbreviated as MDCKF, MDCQKF,

and MDGHF, respectively. We use the root mean square error (RMSE) as our per-

formance metrics. Please note that we will frequently use the notation ρm = 1 − ρ

to denote the missing measurements probability.

We compare the MDCKF with the following filters: i) traditional CKF [9], ii) the

CKF-based formulation of [125], which extends the Gaussian filtering technique for

arbitrary delays, iii) [184], wherein the EKF is modified for missing measurements,

and iv) the CKF-based formulation of [126], which considers simultaneously occur-

ring delay and missing measurements. We abbreviate the CKF-based formulations

of [125], and [126] as CKF RD, and MLCKF, respectively, while the EKF-based for-

mulation of [184] is abbreviated as MEKF. Please note that we use the EKF-based

design of [184] unlike the CKF-based designs for other filters, as [184] is particularly

designed for the EKF and becomes inapplicable to other filters.

7.4.1 Problem 1: Individual Sinusoids Identification

In this simulation problem, we consider an identification problem of individual si-

nusoids from the measurements of multiple superimposed sinusoids [11, 15]. Si-

nusoids identification is equivalent to estimating their amplitudes and frequencies

from the measurements of the superimposed signal. We consider that the superim-

posed signal consists of three sinusoids. Thus, the state vector is formed as xk =

[f1,k f2,k f3,k a1,k a2,k a3,k]
T . Subsequently, the state-space model follows Eqs. (4.14)

and (4.15) (plese refer to Chapter 4 for a detailed discussion).

The initial true and estimated states are taken as x0 = [200 800 1000 2 3 5]T
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Figure 7.2: Problem 1, 1-delay scenario: Mean RMSE plots of all filters for varying
delay probabilities, considering the missing measurement probability ρm as 0.1 and
0.2.

and x̂0|0 = [205 785 990 4 2 3]T , respectively, while the initial covariance is taken

as P0|0 = diag([25 50 20 4 1 4]). The noise covariances are taken as Qk =

diag([0.01 0.01 0.04 0.25 0.25 0.25]) and Rk = diag([0.9 0.9]). We obtain the

RMSEs for the amplitude and frequency by taking the square root of the average of

the mean square errors of the three amplitudes and frequencies, respectively, con-

sidering sampling interval as 0.25 ms. Please refer to Eq. (4.16) and associated

discussion in Chapter 4.

We plot the mean RMSE (obtained over the time-steps) for varying delay prob-

abilities in Figs. 7.2 and 7.3 for 1-delay and 2-delay, respectively. The mean RMSE

plots show a reduced RMSE for the proposed MDCKF compared to the ordinary

CKF and considered delay and missing filters. It concludes that the proposed filter-

ing method has improved accuracy compared to these filters. The relative compu-
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Figure 7.3: Problem 1, 2-delay scenario: Mean RMSE plots of all filters for varying
delay probabilities, considering the missing measurement probability ρm as 0.1 and
0.2.

tational times for the MEKF, CKF, CKF RD, MLCKF, and MDCKF are observed

as 1, 1.56, 1.69, 3.24, and 1.72, respectively.

7.4.2 Problem 2: Sinusoidal Growth Model

In this problem, we consider a two-dimensional system following sinusoidal dynam-

ics [15, 29]. The author has already discussed the system in Section 4.4.2, Chapter

4, and the state-space model is given by Eqs. (4.17) and (4.18).

The true data of the state and measurement are generated by considering the

initial state as x0 = [0.1 0.1]T . The filter is initialized with the initial estimate x̂0|0

= 0.9x0 and P0|0 = 7I2. The noise covariances are assigned as Qk = 0.1I2 and Rk

= 0.1.

Figs. 7.4 and 7.5 show the mean RMSE plots for varying delay probability under
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Figure 7.4: Problem 2, 1-delay scenario: Mean RMSE plots of all filters for varying
delay probabilities, considering the missing measurement probability ρm as 0.1 and
0.2.

different scenarios formed by changing the maximum delay possibility and the miss-

ing measurements probability. The mean RMSE plots show a reduced RMSE for the

MDCKF compared to the ordinary CKF, CKF RD, MEKF, and MLCKF, which

concludes that the proposed filtering method outperforms the ordinary Gaussian

filtering as well as the existing filters for handling the delay and missing measure-

ments. The relative computational times of the CKF, MEKF, CKF RD, MLCKF,

and MDCKF are obtained as 1, 2.86, 3.01, 5.78, and 3.04, respectively. It con-

cludes that the computational time of the proposed method is marginally increased

in comparison to some of the existing filters, while it remains marginally lower than

others.
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Table 7.1: Problem 1, 3-delay scenario: Average RMSEs obtained by MDCQKF,
MDGHF, and their counterparts for different delay probabilities.

States Filters
ρm = 0.1 ρm = 0.2

0.2 0.5 0.8 0.2 0.5 0.8

Amplitude

CQKF 8.78 10.24 10.54 9.52 10.33 10.51

MDCQKF 5.55 7.36 8.70 6.10 7.61 9.10

GHF 7.25 8.57 9.57 7.36 8.82 9.96

MDGHF 5.01 5.48 6.79 4.15 5.06 6.62

Frequency

CQKF 11.70 17.10 18.55 13.89 18.34 18.09

MDCQKF 3.78 5.92 8.71 4.40 6.61 9.02

GHF 9.27 13.60 18.66 10.60 12.86 17.57

MDGHF 3.46 5.89 8.20 4.49 6.69 8.41

Table 7.2: Problem 2, 3-delay scenario: Average RMSEs obtained by MDCQKF,
MDGHF, and their counterparts for different delay probabilities.

States Filters
ρm = 0.1 ρm = 0.2

0.2 0.5 0.8 0.2 0.5 0.8

State-1

CQKF 1.65 1.44 1.62 1.73 1.47 1.54

MDCQKF 1.59 1.33 1.36 1.59 1.34 1.36

GHF 1.74 1.67 2.17 1.89 1.69 2.24

MDGHF 1.68 1.36 1.35 1.69 1.36 1.37

State-2

CQKF 1.56 1.50 1.47 1.58 1.52 1.46

MDCQKF 1.56 1.43 1.33 1.56 1.43 1.33

GHF 1.75 1.84 2.04 1.85 1.90 2.07

MDGHF 1.67 1.49 1.33 1.65 1.48 1.34

Table 7.3: Problem 1, three-delay scenario: Relative computational time comparison
of MDCQKF, MDGHF, and their counterparts for 0.3 delay probability.

ρm
Filters

CQKF MDCQKF GHF MDGHF

0.1 1 1.091 0.812 1.083
0.2 1 1.1 0.813 0.908
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Figure 7.5: Problem 2, 2-delay scenario: Mean RMSE plots of all filters for varying
delay probabilities, considering the missing measurement probability ρm as 0.1 and
0.2.

7.4.3 Performance Validation for Other Gaussian Filters

To compare the estimation accuracy of the proposed method and the ordinary Gaus-

sian filtering method, we present the mean RMSEs of CKF-based plots only in

Figs. 7.2 to 7.5. However, we further extend the comparative analysis for the other

advanced and popular Gaussian filters, such as the CQKF [27] and GHF [28], in

Tables 7.1 and 7.2. The tables present the mean RMSEs obtained using the CQKF,

GHF, MDCQKF, and MDGHF for various delay and missing measurement proba-

bilities. From the tables, we conclude that RMSE is reduced for the MDCQKF and

MDGHF compared with their traditional counterparts CQKF and GHF, respec-

tively. It is worth mentioning that the results for 2-delay scenarios are qualitatively

very similar and are omitted for brevity. The computational times remain similar
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for the proposed and the existing Gaussian filtering methods (Table 7.3).

7.5 Summary

The chapter introduces a new extension of Gaussian filtering to efficiently handle the

simultaneously occurring delayed and missing measurements. The proposed method

reformulates the measurement model stochastically to introduce the possibility of

simultaneously occurring delayed and missing measurements. Subsequently, the pro-

posed filtering method is designed by re-deriving the traditional Gaussian filtering

method for the modified measurement model. We compare the proposed filter with

the CKF and three well-known filters which handle the delay and missing measure-

ments individually or simultaneously. The performance of the proposed method is

validated for two simulation problems. We also studied the exponential stability

of the proposed method for its EKF-based design. It is worth mentioning that the

computational time of the proposed method remains similar to traditional Gaussian

filtering.
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Chapter 8

Stochastic Stability Analysis of

Gaussian Filters with

Measurement Irregularities

8.1 Introduction

The Gaussian filters [9, 10, 26, 27] have been applied in a range of practical applica-

tions due to improved performance over the traditional Kalman filter (KF), which

is designed only for linear systems [12]. The extended Kalman filter (EKF) and

unscented Kalman filter (UKF) have witnessed extensive use particularly in indus-

tries [34, 53, 185] due to their simpler implementation, lower computational cost,

and reasonable accuracy.

However, implementing the Gaussian filters in real-time applications poses chal-

lenges in assessing its performance because the true state (xk) is inaccessible. While

offline simulations can offer some insights into filter performance, precise mathemat-

ical models are not always available. The Gaussian filters face two main sources of

estimation error [11, 15, 186]: initialization error and stochastic errors from pro-

cess and measurement noise. Initially, the dominant error is due to incorrect ini-

tialization, requiring time for the estimated state to approximately align with the

true state. Once the initial error converges, noise-induced errors persist and con-

tribute to the estimation error. Therefore, it is crucial to evaluate the Gaussian

filter’s performance online by measuring the convergence rate and persistent error
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bounds in real systems. Such an analysis tool would be beneficial for many safety or

performance-critical systems, including aircraft health management systems [187].

Other safety-critical applications includes autonomous vehicles and aerospace sys-

tems [188], wherein maintaining the stochastic stability of Gaussian filters can pre-

vent catastrophic failures by providing reliable state estimates.

Reinforcing the discussion, the author further highlights below the importance

of examining the stochastic stability of Gaussian filters.

� It helps understanding and managing estimation errors, ensuring they remain

within acceptable bounds over time, which is vital for the filter’s reliability in

real-world applications.

� It ensures the filter performs well under various noise conditions and uncer-

tainties, which is crucial for designing robust systems.

� It advances the theoretical foundation of filtering techniques, facilitating the

development of more advanced and efficient algorithms.

The literature witness some developments analyzing the error behavior for var-

ious Gaussian filters. For instance, [189–191] studied the stability properties for

the EKF; they shown that the EKF remains bounded if the initial estimation error

and noise covariances small enough. In other developments, [192] and [24] identified

the conditions for the boundedness of the UKF and CKF, respectively. These stud-

ies [24, 189–192] are carried out considering the measurement model to be free of any

measurement irregularities. It should be noted that the presence of irregularities,

e.g., delayed and missing measurements can significantly harm the estimation accu-

racy (error behavior), as discussed in the previous chapters. Therefore, the studies

in [24, 189–192] may no longer be effective in their presence (irregularity). Proba-

bly, [193] and [194] are within very few studies, exploring the stability properties of

the EKF and UKF, respectively, in the presence of missing measurements.

The scarce mathematical treatment of the Gaussian filters in the presence of

irregularities has motivated the author to carry out stochastic stability analysis

of various Gaussian filters handling delayed and missing measurements (discussed

through Chapter 3 to Chapter 7). However, for simplicity reasons, in this chapter,
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the author only presents the stability results for the modified Gaussian filter dis-

cussed in Chapter 6. Moreover, the author would like to mention that the approach

(discussed in the later part of this chapter) applies to other Gaussian filters (for

delay and missing measurements). Specifically, the same approach can be followed

to study the stochastic stability for modified Gaussian filters, EKF M (Chapter 3),

CKFM (Chapter 4), CKF RD PD (Chapter 5), and MDCKF (Chapter 7).

In this chapter, the author considers the Gaussian filter proposed in Chapter 6

(abbreviated as GFSCM) for stability analysis; the GFSCM is designed to handle

the irregularity in which the received measurement is stochastically composed of

both current and past measurements. The author studies the stochastic stability

of the EKF-based formulation of the GFSCM, abbreviated as EKF S. Please note

that stochastic stability of the GFSCM can also be studied through other Gaussian

filters such as the CKF, CQKF, and GHF. However, these filters directly propa-

gate the nonlinearities of the system, which poses severe challenges. On the other

hand, the involvement of linearization step in the EKF simplifies the analysis to

that of a linear system that can be performed more conveniently. The notion of

stability is chosen as ‘exponentially bounded’, requiring that the estimation error is

exponentially bounded in mean square if a set of presumptions are fulfilled.

8.1.1 Preparatory Operations

To establish the stochastic stability analysis for the GFSCM, the author recalls

relevant models and parameters from previous chapters and performs some notation

simplifications.

Retrieval of System Model and GFSCM Parameters

Let us first retrieve the following: i) standard state-space model (Eqs. (1.1) and (1.2)),

ii) irregular measurement yk from Chapter 6 (Eq. (6.3)), and iii) parameters of the

GFSCM derived through Theorems 6.1, 6.2, and 6.3, orderly given as follows

� State-space model:

xk = f(xk−1) + ηk. (8.1)

zk = h(xk) + νk. (8.2)
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� The GFSCM-related parameters:

yk =

Nd∑
j=0

αk,jzk−j =

Nd∑
j=0

αk,j(h(xk−j) + νk−j). (8.3)

ŷk|k−1 =

Nd∑
j=0

α̂j ẑk−j|k−1, (8.4)

Pyy
k|k−1 =

Nd∑
j=0

(
(Pαj

+ α̂j
2)Pzz

k−j|k−1 + Pαj
ẑk−j|k−1ẑ

T
k−j|k−1

)
. (8.5)

Pxy
k|k−1 =

Nd∑
j=0

α̂jP
xz
k−j|k−1. (8.6)

K = Pxy
k|k−1(P

yy
k|k−1)

−1. (8.7)

x̂k|k = x̂k|k−1 +K(yk − ŷk|k−1). (8.8)

Pk|k = Pk|k−1 −KPyy
k|k−1K

T . (8.9)

Retrieval of Stability-Related Definitions

Let us recall Definition 1.1 (Chapter 1) which defines exponential boundedness, as

E
[
∥ζk∥2

]
≤ κ′E

[
∥ζ0∥2

]
θk + σ′ ∀k ∈ {1, 2, . . . }. (8.10)

Please refer to Chapter 1 for a detailed discussion on notations. Moreover, let us

revisit the criteria given in Remark 1.1 (Chapter 1), which is the standard results

available to infer the exponential stability in the mean square for a stochastic process

(notations definitions are the same as given in Chapter 1).

τ1 ∥ζk∥2 ≤ V(ζk) ≤ τ2 ∥ζk∥2 (8.11)

E [V(ζk)|ζk−1]− V(ζk−1) ≤ γ′ − ϕV(ζk−1) ≤ 0. (8.12)

As discussed in Chapter 1, the stochastic process ζk satisfies exponential bound-

edness (Eq. (8.10)) if it fulfills Eqs. (8.11) and (8.12). The author uses the same

approach to prove the stochastic stability of the GFSCM by considering the stochas-
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tic process as the estimation error, which is expressed as

ek|k = xk − x̂k|k. (8.13)

Specifically, to prove the stability of the GFSCM, it is required to prove that ek|k

remains exponentially bounded (follows Eq. (8.10)) by first satisfying Eqs. (8.11)

and (8.12).

Notations Simplification

For a convenient readability, let us simplify the notations x̂k|k−1, ek|k−1, Pk|k−1,

ẑk|k−1, P
zz
k|k−1, P

xz
k|k−1, ŷk|k−1, P

yy
k|k−1, P

xy
k|k−1, x̂k|k, ek|k, and Pk|k as x̃k, ẽk, P̃k, z̃k,

P̃
zz

k , P̃
xz

k , ỹk, P̃
yy

k , P̃
xy

k , x̂k, êk, and P̂k, respectively.

8.1.2 Stochastic modeling of the estimation error

of EKF S

Recalling the ordinary EKF parameters from [10],

x̃k=f(x̂k−1)

P̃k=Fk−1P̂k−1F
T
k−1 +Qk,

(8.14)

where Fk represents the Jacobian of f(xk) computed for xk = x̂k. Similarly [10],



z̃k=h(x̃k), P̃
zz

k =HkP̃kH
T
k +Rk, P̃

xz

k =P̃kH
T
k

K = P̃
xz

k (P̃
zz

k )−1

x̂k=x̃k +K (zk − z̃k)

P̂k=P̃k −KP̃
zz

k KT ,

(8.15)

where Hk is the Jacobian matrix of h(xk) at x̃k, while K represents the Kalman

gain.

Before proceeding to the modeling of êk, let us consider the following Taylor

131



8.1. INTRODUCTION

series expansions f(xk)=f(x̂k) + Fkêk +Ψf (xk, x̂k)

h(xk)=h(x̃k) +Hkẽk +Ψh(xk, x̃k),

(8.16)

where Ψf (xk, x̂k) and Ψh(xk, x̃k) represent the corresponding remainder terms.

To model êk = xk−x̂k, let us now substitute xk = f(xk−1)+ηk and x̃k = f(x̂k−1)

from Eqs. (8.1) and (8.14), respectively into ẽk = xk−x̃k. Subsequently, substituting

f(xk−1)=f(x̂k−1) + Fk−1êk−1 + Ψf (xk−1, x̂k−1) using Eq. (8.16) in the resulting

expression, we get

ẽk=Fk−1êk−1 +Ψf (xk−1, x̂k−1) + ηk. (8.17)

Similar to Eq. (8.15), we can express x̂k in terms of yk giving êk = xk − x̃k −
K(yk − ỹk). Subsequently, substituting xk = f(xk−1) + ηk, yk =

∑Nd

j=0 αk,jzk−j,

ỹk=
∑Nd

j=0 α̂j ẑk−j|k−1, and x̃k = f(x̂k−1) from Eqs. (8.1), (8.3), (8.4), and (8.14),

respectively, we get

êk=f(xk−1)− f(x̂k−1) + ηk −K

( Nd∑
j=0

(αk,jzk−j − α̂j z̃k−j)

)
. (8.18)

We substitute zk−j = h(xk−j)+νk−j (extending Eq. (8.2)), z̃k−j = h(x̃k−j) (extend-

ing Eq. (8.15)), and f(xk−1)− f(x̂k−1)=Fk−1êk−1 + Ψf (xk−1, x̂k−1) (extending Eq.

(8.16)). Thus, we get

êk=Fk−1êk−1 +Ψf (xk−1, x̂k−1) + ηk −K

Nd∑
j=0

[αk,j (h(xk−j) + νk−j)− α̂jh(x̃k−j)] .

(8.19)

Let now apply the following steps: i) add and subtract
∑Nd

j=0 α̂jHk−j ẽk−j on the

right side of the above equation and ii) expand h(xk−j) = h(x̃k−j) + Hk−j ẽk−j +

Ψh(xk−j, x̃k−j) using Eq. (8.16). Subsequently, we obtain

êk=Fk−1êk−1 +Ψf (xk−1, x̂k−1) + ηk −K

Nd∑
j=0

[
(αk,j − α̂j) (h(x̃k−j)

+Hk−j ẽk−j) + αk,jΨ
h(xk−j, x̃k−j) + α̂jHk−j ẽk−j + αk,jνk−j

]
.

(8.20)
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After expanding ẽk−j=Fk−j−1êk−j−1+Ψf (xk−j−1, x̂k−j−1) +ηk−j using Eq. (8.17),

the above equation can be arranged as

êk=jkêk−1 + ik +mk + nk, (8.21)

where

jk = (I− α̂0KHk)Fk−1

ik = ηk −K
∑Nd

j=0 (αk,jνk−j + α̂jHk−jηk−j)

mk =Ψf (xk−1, x̂k−1)−K
∑Nd

j=0

[
αk,jΨ

h(xk−j, x̃k−j) + α̂jHk−jΨ
f (xk−j−1, x̂k−j−1)

]
nk = −K

∑Nd

j=0

[
(αk,j − α̂j) (h(x̃k−j) +Hk−j ẽk−j) +

∑Nd

j=1 α̂jHk−jFk−j−1êk−j−1

]
.

(8.22)

8.1.3 Stability results

Recalling the previous discussion, to prove the stability of EKF S, we need to prove

that there exists a scalar-valued stochastic process V (êk) corresponding to êk given

in (8.21), which satisfies Eqs. (8.11) and (8.12). To derive the stochastic stability

results, we consider the noise processes ηk and νk to have an upper bound, instead

of treating them as Gaussian random variables (the same as [189]). Subsequently,

we adopt the following assumptions from the literature [189, 195]

� The system, noise, and filter parameters satisfy the following bounds:

∥ηk∥ ≤ η, ∥νk∥ ≤ v, ∥Fk∥ ≤ a, ∥Hk∥ ≤ c

∥Ψf (xk−1, x̂k−1)∥ ≤ c1∥êk−1∥2

∥Ψh(xk, x̃k)∥ ≤ c2∥ẽk∥2

ρ1I ≤ P̂k ≤ P̃k ≤ ρ2I

∥êk−1∥ ≤ ∥ẽk∥ ≤ ϵ, ∥h(x̃k)∥ ≤ h

qI ≤ Qk ≤ q′I and rI ≤ Rk ≤ r′I,

(8.23)

with η, ν, a, c, c1, c2, ρ1, ρ2, ϵ, h, q, q
′, r, and r′ representing positive real

numbers.
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� Fk is non-singular ∀k ≥ 0.

Before proceeding further, we prove the following lemmas, which will be finally

used in proving the stability.

Lemma 8.1. Let us assume that the bounds presented in Eq. (8.23) hold true,

then the Kalman gain satisfies

∥K∥ ≤ Φ(Paj , α̂j)ρ2c

r
, (8.24)

where Φ(Paj , α̂j) =
∑Nd

j=0 α̂j/(
∑Nd

j=0(Paj + α̂j
2)).

Proof. Let us consider the expression ofK from Eq. (8.15) (given for zk). Extending

this expression for yk, we obtain K = P̃
xy

k (P̃
yy

k )−1, with P̃
yy

k and P̃
xy

k given in

Eqs. (8.5) and (8.6), respectively. Then, applying the norm operator and using

its property[195], we get ∥K∥ ≤ ∥P̃xy

k ∥∥(P̃yy

k )−1∥. To this end, let us re-write

P̃
yy

k and P̃
xy

k (in Eqs. (8.5) and (8.6), respectively) by substituting z̃k−j=h(x̃k−j),

P̃
zz

k−j=Hk−jP̃k−jH
T
k−j +Rk−j, and P̃

xz

k−j = P̃k−jH
T
k−j by extending Eq. (8.15). For

the modified P̃
yy

k and P̃
xy

k expressions, the inequality ∥K∥ ≤ ∥P̃xy

k ∥∥(P̃yy

k )−1∥ can

be re-written as

∥K∥ ≤
∥∥∥∥ Nd∑

j=0

(
α̂jP̃k−jH

T
k−j

)∥∥∥∥× ∥(Σs)
−1∥, (8.25)

where

Σs =

Nd∑
j=0

(Paj + α̂j
2)(Hk−j P̃k−jH

T
k−j +Rk−j) +

Nd∑
j=0

Pajh(x̃k−j)h(x̃k−j)
T . (8.26)

Please note the following for the above equation: i) P̃k−j is positive definite (from

Eq. (8.23)), concluding Hk−jP̃k−jH
T
k−j to be positive semidefinite, as Hk−j∈Rq×n

can be singular (q = n) or have nontrivial null space (q ̸= n), ii) The resultant

of h(x̃k−j)h(x̃k−j)
T is positive semidefinite, as it represents the multiplication of a

real vector with its conjugate transpose, and iii) R̃k−j is positive definite (from Eq.

(8.23)). These observations collectively conclude that Σs is also a positive definite.

Please note that the spectral norm is given as the largest singular value for a ma-

trix, i.e., ∥·∥ = Ωl(·), with Ωl(·) representing the largest singular value. Being a
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positive definite matrix, Σs further satisfies ∥(Σs)
−1∥ = Ωl((Σs)

−1) = (Ωs(Σs))
−1

= (λs(Σs))
−1, where Ωs(·) and λs(·) represent the smallest singular value and the

smallest eigenvalue, respectively. Following the discussion, we can now use the

Rayleigh-Ritz characterization [196] for computing λs(Σs), which follows the in-

equality given as

λs(Σs)≥min
∥χ∥=1

(
χT

Nd∑
j=0

(Paj+α̂
2
j )Hk−jP̃k−jH

T
k−jχ

)
+min
∥χ∥=1

(
χT

Nd∑
j=0

(Paj+α̂
2
j )Rk−jχ

)

+ min
∥χ∥=1

(
χT

Nd∑
j=0

Pajh(x̃k−j)h(x̃k−j)
Tχ

)
,

(8.27)

with χ being a non-zero vector with an appropriate dimension and min(·) denot-

ing the minimum function. The positive semi-definiteness of Hk−jP̃k−jH
T
k−j and

h(x̃k−j)h(x̃k−j)
T (as discussed earlier) conclude that the first and third terms of

the above expression, representing a quadratic form, become zero. We calculate

the second term by applying the bound rI ≤ Rk (from Eq. (8.23)), which gives

λs(Σs) ≥
∑Nd

j=0(Paj + α̂j
2)r. Subsequently, taking its inverse and from the previous

discussion, we obtain

Ωl((Σs)
−1) = (λs(Σs))

−1 ≤ 1∑Nd

j=0(Paj + α̂j
2)r

. (8.28)

Let us now recall Eq. (8.25) and do the following substitutions: i) apply the inequal-

ities Pk ≤ ρ2I and ∥Hk∥ ≤ c (Eq. (8.23)) to get
∑Nd

j=0∥α̂jP̃k−jH
T
k−j∥ ≤∑Nd

j=0 α̂jρ2c

and ii) As ∥(Σs)
−1∥ = Ωl((Σs)

−1), substitute the inequality of Ωl((Σs)
−1) from Eq.

(8.28). Subsequently, Eq. (8.25) deduces the bound of K as given in Eq. (8.24).

Lemma 8.2. For jk defined in Eq. (8.22), there exists 0 < γ < 1, satisfying the

inequality

jkP̂
−1

k jk ≤ (1− γ)P̂
−1

k−1. (8.29)

Proof. Substituting êk = xk − x̃k −K(yk − ỹk) into P̂k = E[êkêTk ], we get

P̂k = P̃k − P̃
xy

k KT −K(P̃
xy

k )T +KP̃
yy

k KT . (8.30)
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Substituting P̃
yy

k (Pyy
k|k−1)=

∑Nd

j=0((Pαj
+α̂j

2)P̃
zz

k−j + Pαj
z̃k−j z̃

T
k−j) and P̃

xy

k (Pxy
k|k−1) =∑Nd

j=0 α̂jP̃
xz

k−j from Eqs. (8.5) and (8.6), respectively, we get

P̂k=P̃k −
Nd∑
j=0

α̂jP̃
xz

k−jK
T −K

Nd∑
j=0

α̂j(P̃
xz

k−j)
T

+K

Nd∑
j=0

(
(Pαj

+ α̂j
2)P̃

zz

k−j + Pαj
z̃k−j z̃

T
k−j

)
KT .

(8.31)

Expanding z̃k−j=h(x̃k−j), P̃
zz

k−j=Hk−jP̃k−jH
T
k−j+Rk−j, and P̃

xz

k−j = P̃k−jH
T
k−j from

Eq. (8.15), we obtain

P̂k=P̃k −
Nd∑
j=0

α̂jP̃k−jH
T
k−jK

T −K

Nd∑
j=0

α̂jHk−jP̃k−j +K

Nd∑
j=0

[
(Pαj

+ α̂j
2)

×
(
Hk−jP̃k−jH

T
k−j +Rk−j

)
+ Pαj

h(x̃k−j)h
T (x̃k−j)

]
KT .

(8.32)

After adding and subtracting
∑Nd

j=1 P̃k−j on the right side of the above equation, it

can be arranged as

P̂k=

Nd∑
j=0

(I− α̂jKHk−j) P̃k−j (I− α̂jKHk−j)
T +K

Nd∑
j=0

[
(Pαj

+ α̂j
2)

×
(
Hk−jP̃k−jH

T
k−j +Rk−j

)
+ Pαj

h(x̃k−j)h
T (x̃k−j)

]
KT −

Nd∑
j=1

P̃k−j.

(8.33)

As discussed previously, Hk−jP̃k−jH
T
k−j and h(x̃k−j)h(x̃k−j)

T are positive semidefi-

nite, while P̃k−j and Rk−j are positive definite due to being diagonal matrices with

positive diagonal elements. Thus, it follows [195]

K

Nd∑
j=0

[
(Pαj

+ α̂j
2)
(
Hk−jP̃k−jH

T
k−j +Rk−j

)
+Pαj

h(x̃k−j)h
T (x̃k−j)

]
KT ≥ 0 (8.34)

and
Nd∑
j=1

(I− α̂jKHk−j) P̃k−j (I− α̂jKHk−j)
T ≥ 0, (8.35)
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which further concludes that

P̂k ≥ (I− α̂0KHk) P̃k (I− α̂0KHk)
T −

Nd∑
j=1

P̃k−j. (8.36)

Substituting P̃k = Fk−1P̂k−1F
T
k−1+Qk from Eq. (8.14) and −∑Nd

j=1 P̃k−j ≥ −Ndρ2I

from the bounds of P̃k (Eq. (8.23)), the above inequality can be expressed as

P̂k≥ (I− α̂0KHk)Fk−1P̂k−1

{
I+ P̂

−1

k−1F
−1
k−1

[
Qk −Ndρ2 (I− α̂0KHk)

−1

× (I− α̂0KHk)
−T ]F−T

k−1

}
FT

k−1 (I− α̂0KHk)
T .

(8.37)

Multiplying F−1
k−1(I− α̂0KHk)

−1 and (I− α̂0KHk)
−TF−T

k−1 on the both sides of the

above inequality gives

F−1
k−1(I− α̂0KHk)

−1P̂k(I− α̂0KHk)
−TF−T

k−1≥P̂k−1

{
I+ P̂

−1

k−1F
−1
k−1

×
[
Qk −Ndρ2 (I− α̂0KHk)

−1 (I− α̂0KHk)
−T ]F−T

k−1

}
.

(8.38)

We now use the bounds of P̂k, Fk, and Qk from inequality (8.23), and subsequently,

apply the inverse operator. Thus, we obtain

FT
k−1

(
I− α̂0KHk

)T
P̂

−1

k

(
I− α̂0KHk

)
Fk−1≤

(
1 +

1

ρ2a2
(q − δ21Ndρ2)

)−1
P̂

−1

k−1, (8.39)

where δ1 = Ωl((I− α̂0KHk)
−1). With q/(δ21Ndρ2) > 1, the following holds

0 <

(
1 +

q − δ21Ndρ2
ρ2a2

)−1

< 1. (8.40)

Let us now define γ = (q − δ21Ndρ2)/(ρ2a
2 + q − δ21Ndρ2), concluding

0 < 1− γ =

(
1 +

q − δ21Ndρ2
ρ2a2

)−1

< 1. (8.41)

For the above-defined 1 − γ and jk given in Eq. (8.22), Eq. (8.39) deduces Eq.

(8.29).

We now prove the exponential stability of the EKF S using the results of the

two preceding lemmas. Recalling the previous discussions, the exponential stability
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of EKF S requires that its estimation error, i.e., êk given in Eq. (8.21), remains

exponentially bounded in mean square. We prove the boundedness of êk in the

subsequent theorem.

Theorem 8.1. Considering that the inequalities given in Eq. (8.23) hold true, for

the ordinary EKF parameters given through Eqs. (8.14) and (8.15), êk given in Eq.

(8.21) approximately remains exponentially bounded in mean square, i.e.,

E
[
∥êk∥2

]
≤ κ′E

[
∥ê0∥2

]
θk + σ′ ∀k ∈ {1, 2, . . . }. (8.42)

Proof. As stated earlier, the exponential boundedness of êk requires that there exists

a scalar-valued stochastic process V(êk), satisfying Eqs. (8.11) and (8.12). We

choose V(êk) = êTk P̂
−1

k êk, which is rewritten by substituting êk=jkêk−1+ik+mk+nk

from Eq. (8.21) as

V(êk)=êTk−1j
T
k P̂

−1

k jkêk−1 +mT
k P̂

−1

k (2jkêk−1 +mk) + 2iTk P̂
−1

k

× (jkêk−1 +mk + nk) + iTk P̂
−1

k ik + 2nT
k P̂

−1

k (jkêk−1 +mk) + nT
k P̂

−1

k nk.

(8.43)

As V(êk) is scalar, which follows V(êk) = ∥V(êk)∥. Subsequently, applying the

norm-operator and using its property, the bounds for individual terms (comprising

vectors and matrices) on right side of the above equation are obtained as



∥mT
k P̂

−1

k (2jkêk−1 +mk)∥≤g1

∥iTk P̂
−1

k ik∥≤g2

∥2nT
k P̂

−1

k (jkêk−1 +mk)∥ ≤ g3

∥nT
k P̂

−1

k nk∥ ≤ g4,

(8.44)

where g1, g2, g3, and g4 are constants, which can be obtained in terms of η, ν, c1,

c2, a, c, ρ1, ρ2, ϵ
′, h, q, q′, r, r′, α̂j, and Paj .

Let us now adopt the following steps

� Extending Lemma 8.2 gives êTk−1j
T
k P̂

−1

k jkêk−1 ≤ (1− γ)V (êk−1).

� Substitute g1, g2, g3, g4, and êTk−1j
T
k P̂

−1

k jkêk−1 from the above discussion, and
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subsequently take the expectation operator.

� The expression of ik defined in Eq. (8.22) concludes that E[2iTk P̂
−1

k (jkêk +

mk + nk)] = 0, as ik comprises mean-zero noise terms ηk and νk .

From the above discussion, we can rewrite Eq. (8.43) as

E[V(êk)|êk−1]− V(êk−1)≤g1 + g2 + g3 + g4 − γV(êk−1). (8.45)

Defining g1 + g2 + g3 + g4 = ρ, and subsequently choosing g1, g2, g3, and g4 such

that V(êk−1)≥ρ/γ satisfies, the above equation further (approximately) satisfies Eq.

(8.12) (the second criterion).

Let us now consider the inequality of the error covariance matrix P̂k presented

in Eq. (8.23). We first apply the inverse operator and then multiply êTk and êk.

Subsequently, we get
1

ρ2
∥êk∥2 ≤ V(êk) ≤

1

ρ1
∥êk∥2. (8.46)

Please note that with 1/ρ2 = ϕ1 and 1/ρ1 = ϕ2, the above equation is the same as

Eq. (8.11) (the first criterion).

It can be observed that Eqs. (8.45) and (8.46) collectively satisfy the two nec-

essary conditions of stability presented through Eqs. (8.11) and (8.12). Thus, we

can conclude that, for the bounds presented in Eq. (8.23), the estimation error of

the EKF S remains exponentially bounded in the mean square, which concludes the

stability of EKF S.

8.2 Summary

This chapter studied the stochastic stability of the modified Gaussian filter for

stochastically composed current and past measurements (GFSCM). The EKF-based

(EKF S) formulation of the GFSCM was considered to for this purpose. The author

proved that the estimation error of the EKF S remains exponentially bounded in

mean square, if the system, filter, and noise parameters are bounded by a set of

predefined conditions. Firstly, a dynamic model of the estimation error was formu-

lated, and subsequently, it was shown to follow exponential boundedness for some
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conditions.

It is worth mentioning that the author has also carried out stability analysis

for other Gaussian filters developed in the thesis. The stability analysis for these

filters also follow steps similar to those presented in this chapter, although various

expressions and bounds are different from the ones presented in this chapter. The

reason is that the measurement models for these filters differ as they incorporate

irregularities of different forms. Therefore, the discussions on these filters were

eliminated from this thesis for brevity.
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Chapter 9

Gaussian Kernel Quadrature

Kalman Filter

9.1 Introduction

The solutions to practical nonlinear filtering problems are divided into two broad

categories: Gaussian filters [11, 15] and particle filters (PF) [197, 198]. In general,

the Gaussian filters are computationally efficient and fast but less accurate [15].

However, the particle filters are computationally inefficient and slow but are more

accurate [15]. Similar to various variants of the Gaussian filters [9, 10, 27, 28, 49,

62, 64, 68, 69] (discussed in Chapter 2), some popular versions of the PF appear in

the filtering literature [197, 199–201].

The particle filters’ computational inefficacy is mostly intolerable and the Gaus-

sian filters become a common choice for practical applications. However, the current

technological era of computational devices is witnessing remarkable developments

and offering low-cost efficient computational devices. Subsequently, the computa-

tional capacity is often excessive for the general Gaussian filters [9, 26–28, 57, 61, 69],

though inadequate for the particle filters. Thus, the practitioners may be benefited

if an advanced Gaussian filter is developed, which can utilize the excessive com-

putational capacity to improve the accuracy. Alternatively, an advanced Gaussian

filter is desired that can provide a trade-off between the general Gaussian filters and

particle filters in terms of the computational demand and accuracy. An inadequate

trade-off is currently achieved by a class of Gaussian filters itself, named quadra-
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ture rule based filters [11, 15], such as the quadrature Kalman filter (QKF) [28],

sparse-grid quadrature Kalman filter (SQKF) [68], and adaptive sparse-grid quadra-

ture Kalman filter (ASQKF) [69]. Their computational demand is higher than the

general Gaussian filters, such as the EKF [10], UKF [26], CKF [9], and their exten-

sions [9, 26–28, 57, 61, 69], although they improve the accuracy considerably. On the

other hand, their computational burden is usually lesser than the particle filters, but

the accuracy is also relatively poorer. Thus, improving the quadrature rule-based

filters’ accuracy without increasing the computational burden can provide an even

better trade-off.

The Gaussian filters, including the quadrature rule based filters, witness in-

tractable integrals. These integrals are numerically approximated using determinis-

tic sets of sample points and weights [11, 15]. Different Gaussian filters, as mentioned

previously [9, 26–28], apply different numerical approximation methods. Subse-

quently, their accuracy and computational cost depend on the accuracy and com-

putational cost of corresponding numerical approximation methods. For general

Gaussian filters, such as the UKF, CKF and their extensions, the numerical approx-

imation is mostly based on unscented transformation [26] and spherical-cubature

rules [9, 27, 57]. These methods are computationally efficient but give poor accuracy.

Subsequently, the corresponding Gaussian filters are computationally efficient but

offer poor accuracy. On the other hand, the quadrature rule based filters, such as the

QKF, SQKF, ASQKF, etc., utilize univariate Gauss-Hermite quadrature rule [202]

for numerical approximation, which is highly accurate. Moreover, they apply an

additional methodology to extend the univariate quadrature rule in multivariate

domain, which increases the computational burden for higher dimensional systems.

The QKF utilizes the product rule for multivariate extension of the univariate

quadrature rule. It results in an exponentially increasing computational burden

with the increasing system dimension. The SQKF replaced the product rule with

the Smolyak rule [203], which reduces the computational burden though it remains

higher than the general Gaussian filters. The ASQKF further reduces the com-

putational burden by replacing the product rule and Smolyak rule with an adap-

tive sparse-grid method [204]. However, it ambiguously fixes some filter parame-

ters based on the system models. Another extension of the QKF, named multiple
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QKF [205, 206], applied state partitioning to reduce the computational burden.

However, it ignored the inter-state correlation, which harms accuracy.

As discussed above, the existing quadrature rule-based filters apply the univariate

Gauss-Hermite quadrature rule for numerical approximation. However, Karvonen

et al. [207] recently introduced a relatively advanced quadrature rule, named the

Gaussian kernel quadrature rule. They proved that the numerical approximation

for this advanced quadrature rule exponentially converges with the increasing num-

ber of quadrature points. Subsequently, it outperforms the ordinary Gauss-Hermite

quadrature rule. They also proved that the numerical stability of the sample points

and weights of this advanced quadrature rule is better than the ordinary Gauss-

Hermite quadrature rule. To this end, it should be mentioned that the quadrature

rules, including the Gaussian kernel quadrature rule, are accurate for a relatively

higher-order of polynomials compared to the other numerical approximation tech-

niques used in the filtering literature. Therefore, the Gaussian kernel quadrature

rule outperforms the Gauss-Hermite quadrature rule as well as the other numerical

approximation techniques used in the filtering literature. With this motivation, this

chapter develops a new quadrature rule based filter, named Gaussian kernel quadra-

ture Kalman filter (GKQKF), which replaces the univariate Gauss-Hermite quadra-

ture rule with the Gaussian kernel quadrature rule [207]. The proposed GKQKF

outperforms the existing Gaussian filters, such as the UKF, CKF, and QKF.

It should be mentioned that the Gaussian kernel quadrature rule is univariate and

the GKQKF requires an additional methodology for extending the univariate rule in

multivariate domain. Interestingly, any of the previously mentioned methodologies,

such as the product rule, Smolyak rule and adaptive sparse-grid method, can be

used for this purpose. This chapter explicitly implements the product rule as it

is analytically convenient and easy to understand. However, a practitioner may

choose to implement the Smolyak rule and adaptive sparse-grid method to reduce the

computational burden. The proposed GKQKF is implemented for three simulation

problems and the results are compared with the existing Gaussian filters, such as

the UKF, CKF, CQKF, HDCKF, and QKF. The simulation results validate the

improved accuracy of the proposed GKQKF.

From the above discussion, the contributions of this chapter can be summarized
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as follows.

� It integrates the newly introduced Gaussian kernel quadrature rule in the

traditional Gaussian filtering structure.

� The Gaussian kernel quadrature rule is originally univariate. The chapter ex-

tends the univariate quadrature rule for multivariate systems using the product

rule.

� Finally, it develops a new Bayesian approximation filtering technique for mul-

tivariate systems under the Gaussian filtering design methodology.

9.2 Gaussian Kernel Quadrature Kalman Filter

The GKQKF is a development under the quadrature rule based filtering to improve

the estimation accuracy without harming the computational demand, as compared

to its existing quadrature filter counterparts. Recalling the previous discussions,

the quadrature rule based filters follow the Gaussian filtering strategy. Please refer

to [11, 15] for a detailed discussion on the Gaussian filtering strategy. It should

be mentioned that [15] and [11] review the existing Gaussian filters that are de-

veloped by embedding various numerical approximation methods in the Gaussian

filtering methodology. This chapter develops a new Gaussian filter, the GKQKF,

by embedding a new numerical approximation method, named the Gaussian ker-

nel quadrature rule, in the same Gaussian filtering methodology. Alternatively, we

can say that the GKQKF introduces new sets of deterministic quadrature points

and associated weights for numerically approximating the intractable integrals that

appear during the filtering. The Gaussian kernel quadrature rule is more accurate

than the numerical approximation methods used by the existing Gaussian filters.

Following the discussion in the previous section, the accuracy of a Gaussian filter is

commanded by the numerical approximation accuracy. Therefore, from the above

discussion, it is conclusive that the accuracy of the proposed GKQKF should be

improved in comparison to the existing Gaussian filters.

As discussed in Chapter 1 (Section 1.1.2), the Gaussian filtering is an analyt-

ical simplification of the Bayesian framework, where the PDFs are approximated
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as Gaussian. Subsequently, they are characterized by their respective mean and

covariance. The computation of mean and covariance involves intractable integrals

of a general form (Eq. (1.22)), given as

In(g(x)) =

∫
Rn

g(x)N (µ,Σ)dx. (9.1)

where x is a Gaussian random variable with mean µ and covariance Σ, g : Rn → Rn

is a general nonlinear function,N denotes the Gaussian distribution and In : H → H

represents the Gaussian weighted integration of g(x) for some functional space H.

In the later parts of this chapter, the notation In : H → H will be used in a broader

sense and accordingly the functional space H may be considered to be changing.

For example, In(x) will denote In(x) =
∫
Rn x N (x;µ,Σ)dx. Similar representation

may be used for univariate cases, such as for x ∈ R that leads to I1 : R → R. Some

more related notations will be introduced wherever required.

Recalling the discussion that the Gaussian kernel quadrature rule is univariate

though the desired intractable integral In(g(x)) (Eq. (9.1)) is multivariate. This

chapter implements the product rule for extending the univariate quadrature rule

in multivariate domain. The remaining part of this section initially introduces the

GKQKF’s numerical approximation strategy (for approximating In(g(x))) with re-

spect to standard Gaussian, i.e., N (x;0n×1, In), where In denotes unity matrix.

Subsequently, In(g(x)) is simplified as

In0 (g(x)) =

∫
Rn

g(x)N (x;0n×1, In)dx. (9.2)

The same numerical approximation strategy can be easily extended for the general

Gaussian, i.e., N (x;µ,Σ) (discussed in latter part of this section).

As the Gaussian kernel quadrature rule is univariate, it approximates a simplified

form of In0 (g(x)) for n = 1, given as

I10 (f(x)) =
1√
2π

∫
R
f(x)e−

x2

2 dx, (9.3)

where x ∈ R as a univariate random variable.

This section initially introduces the Gaussian kernel quadrature rule for approx-
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imating I10 (g(x)) (Eq. (9.3)). Then, it discusses the product rule for extending the

same approximation technique for In0 (g(x)) (Eq. (9.2)). Finally, it extends the same

approximation strategy for the desired multivariate integral In(g(x)) (Eq. (9.1)).

The Gaussian kernel quadrature rule extends the Gauss-Hermite quadrature

points and weights itself to generate the new sets of univariate quadrature points and

weights. Therefore, explicit knowledge of generating the Gauss-Hermite quadrature

points and weights is a prerequisite for the Gaussian kernel quadrature rule. Thus,

this chapter first introduces the Gauss-Hermite quadrature rule and then proceeds

to the Gaussian kernel quadrature rule.

9.2.1 Univariate Gauss-Hermite Quadrature Rule for Ap-

proximating I10(g(x))

Let us denote Q̄1(I10 ) as a univariate quadrature rule that approximates the uni-

variate intractable integral I10 (g(x)). Let us consider that Q̄1(I10 ) generates Nc

number of univariate quadrature points and associated weights, denoted as ξ =

{ξ1, ξ2, · · · , ξNc} and ω = {ω1, ω2, · · · , ωNc}, respectively, i.e.,

I10 (g(x)) ≈ Q̄1(I10 ) :=
Nc∑
j=0

ωjf(ξj). (9.4)

It should be mentioned that different quadrature rules generate different sets of ξ

and ω. In the later parts of this chapter, the notations of ξ and ω will be modified

with appropriate superscripts for representing different quadrature rules.

Definition 9.1. The quadrature rule Q̄1(I10 ) for approximating I10 (g(x)) is referred

to as Gauss-Hermite quadrature rule if the univariate quadrature points ξGH =

{ξGH
1 , ξGH

2 , · · · , ξGH
Nc

} are roots of the Hermite polynomials [208, 209]. Subsequently,

the weights ωGH = {ωGH
1 , ωGH

2 , · · · , ωGH
Nc

} may be obtained by solving moment equa-

tions (discussed in the latter part of this section).

The direct computation of Hermite polynomials’ roots, i.e., the univariate Gauss-

Hermite quadrature points, is computationally challenging. Therefore, some approx-

imated techniques are developed and commonly used in the filtering literature to
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compute ξGH = {ξGH
1 , ξGH

2 , · · · , ξGH
Nc

} and ωGH = {ωGH
1 , ωGH

2 , · · · , ωGH
Nc

}. Two pop-
ular methods are the moment matching method [68] and Golub’s method [28, 69].

9.2.2 Univariate Gaussian Kernel Quadrature Rule for Ap-

proximating I10(g(x))

This quadrature rule is based on the Gaussian Kernel.

Definition 9.2. For given x ∈ R and y ∈ R, the Gaussian kernel κ(x, y) is defined

as

κ(x, y) := e−(x−y)2/2σ2

, (9.5)

where σ > 0 is called kernel bandwidth.

Definition 9.3. For a given set of quadrature points ξGK = {ξGK
1 , ξGK

2 , · · · , ξGK
Nc

},
the quadrature rule Q̄1(I10 ) for approximating I10 (g(x)), i.e.,

I10 (g(x)) =
1√
2π

∫
R
g(x)e−

x2

2 dx ≈
Nc∑
j=0

ωGK
j f(ξGK

j ), (9.6)

is called Gaussian kernel quadrature rule if the weights ωGK = {ωGK
1 , ωGK

2 , · · · , ωGK
Nc

}
are obtained from the Gaussian kernel κ(x, y) by solving the linear relation

κωGK = κI , (9.7)

where κ and κI denote [κ]ij := κ(ξGK
i , ξGK

j ) and [κI ]i :=
∫
R κ(ξ

GK
i , ξGK)dI10 (ξ

GK),

respectively, ∀i∈ {1, 2, · · · , Nc} and j∈{1, 2, · · · , Nc}.

The proposed GKQKF computes the univariate Gaussian kernel quadrature

points ξGK = {ξGK
1 , ξGK

2 , · · · , ξGK
Nc

} as a scaled form of the univariate Gauss-

Hermite quadrature points ξGH = {ξGH
1 , ξGH

2 , · · · , ξGH
Nc

}. Any moment matching

and Galub’s methods can be used for computing ξGH= {ξGH
1 , ξGH

2 , · · · , ξGH
Nc

}. The
specific selection of ξGK in terms of ξGH , i.e., the selection of the specific scal-

ing factor, is discussed in the later part of this section. It will be shown that

ωGK = {ωGK
1 , ωGK

2 , · · · , ωGK
Nc

}, to be obtained as solutions of Eq. (9.7), can also be

derived in terms of ωGH = {ωGH
1 , ωGH

2 , · · · , ωGH
Nc

}. Before proceeding to the specific
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selection and derivation of ξGK and ωGK in terms of ξGH and ωGH , respectively,

let us define a few mathematical parameters and quantities.

Definition 9.4. Let us define a Gaussian probability measure µα with zero mean

and variance 1/2α2, i.e.,

dµα(x) :=
α√
π
e−α2x2

dx. (9.8)

Definition 9.5. The ithorder probabilistic Hermite polynomials are defined as [208,

209]

Hi(x) := (−1)iex
2/2 d

i

dxi
e−x2/2. (9.9)

Let us define the following variables: ε = 1√
2σ
, β =

(
1 +

(
2ε
α

)2)1/4
and δ2 =

α2

2
(β2 − 1).

The general form of the Gaussian kernel quadrature rule is defined with respect

to the Gaussian measure dµα(x) with mean zero and covariance 1/2α2. It should

be mentioned that our desired integral I10 (g(x)) is concerned with zero mean and

unity covariance, which is satisfied for α = 1/
√
2. From Eqs. (9.6) and (9.8), we

can conclude that µ1/
√
2(x) = I10 (x) for α = 1/

√
2. Thus, in the remaining part of

this chapter, the use of µα(x) will be avoided to overcome the unnecessary burden

of a new variable. However, the parameter α will be used to abide by the original

structure of the Gaussian kernel quadrature rule. To understand the significance of

α, it becomes necessary to define dµα(x) even as it is not useful for the remaining

parts of this chapter.

Our derivation of weights ωGK = {ωGK
1 , ωGK

2 , . . . , ωGK
Nc

} is based on eigenvalues

and eigenfunctions of the Gaussian kernel κ(x, y) (Eq. (9.5)). If λαi and φα
i (x)

denote the ith eigenvalue and eigenfunction of κ(x, y), respectively, then [208]


λαi =

√
α2

α2 + δ2 + ε2

(
ε2

α2 + δ2 + ε2

)i

φα
i (x) =

√
β

i!
e−δ2x2

Hi(
√
2αβx).

(9.10)

Before proceeding forward to derive ωGK = {ωGK
1 , ωGK

2 , · · · , ωGK
Nc

}, let us extend
our analysis on φα

i (x) further.
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Proposition 9.1. The eigenfunctions of κ(x, y), i.e., φα
i (x) ∀i∈{1, 2, · · · }, satisfy

I10 (φ
α
2l+1(x)) = 0

I10 (φ
α
2l(x)) =

√
β

1 + 2δ2

√
(2l)!

2ll!

(
2α2β2

1 + 2δ2
− 1

)l

.
(9.11)

The notation l is used to pick the odd and even values of i, i.e., φα
2l+1(x) and φ

α
2l(x)

represent the odd and even order eigenfunctions of κ(x, y), respectively. Please note

that φα
2l+1(x) and φ

α
2l(x) are determined from φα

i (x) ∀i∈ {1, 2, · · · } (Eq. (9.10)) for

i = 2l + 1 and i = 2l, respectively.

Proof. For I10 (g(x)), Hi(x), and φ
α
i (x) given in Eqs. (9.6), (9.9), and (9.10), respec-

tively, we get

I10 (φ
α
2l+1(x)) =

1√
2π

×
∫
R

(√
β

(2l + 1)!
e−δ2x2

H2l+1(
√
2αβx)e−

x2

2

)
dx.

It should be mentioned that the Hermite polynomials, Hi(x)∀i∈ {1, 2, · · · , }, are
odd functions for all odd i. Thus, the above equation gives I10 (φ

α
2l+1(x)) = 0. It

proves that the first part of Eq. (9.11) holds true.

To prove the second part of Eq. (9.11), i.e., to derive I10 (φ
α
2l(x)), let us represent

Hi(x) for even i, such as i = 2l, in explicit form of Hermite polynomials, given as

H2l(x) =
(2l)!

2l

l∑
j=0

(−1)l−j

(2j)!(l − j)!
(
√
2x)2j. (9.12)

From Eq. (9.10), the even order eigenfunction, i.e., φα
2l(x) can be expressed as

φα
2l(x) =

√
β

(2l)!
e−δ2x2

H2l(2αβx). (9.13)

Let us expand the above equation by substituting H2l(2αβx) from Eq. (9.12). Sub-

sequently, substituting the expanded φα
2l(x) in I

1
0 (φ

α
2l(x)) = 1/

√
2π
∫
R φ

α
2l(x)e

−x2/2dx

(obtained from Eq. (9.3)), we can write

I10 (φ
α
2l(x)) =

√
β

(2l)!

(2l)!

2l

l∑
j=0

(
(−1)l−j(2αβ)2j

(2j)!(l − j)!

1√
2π

∫
R
x2je−(δ2+ 1

2
)x2

dx

)
. (9.14)
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Applying the Gaussian moment formula in the integral part of the above equation,

we obtain [207]

1√
2π

∫
R
x2je−(δ2+ 1

2
)x2

dx =
(2j)!

2jj!(1 + 2δ2)j+1/2
. (9.15)

Substituting this into Eq. (9.14), after some rearrangements, we get

I10 (φ
α
2l(x)) =

√
β

1 + 2δ2

√
(2l)!

2l

l∑
j=0

(
(−1)l−j

j!(l − j)!

(
2α2β2

1 + 2δ2

)j
)
. (9.16)

Following the representation
(
l
j

)
= l!/(j!(l − j)!), we further simplify the above

equation as

I10 (φ
α
2l(x)) =

√
β

1 + 2δ2

√
(2l)!

2ll!

l∑
j=0

(
l

j

)(
2α2β2

1 + 2δ2

)j

(−1)l−j.

Finally, applying the Binomial theorem to the summands in the above equation, we

obtain I10 (φ
α
2l(x)) in the form of Eq. (9.11). It concludes that the second part of Eq.

(9.11) also holds true.

We can now derive the Gaussian kernel quadrature points and weights.

Proposition 9.2. The univariate Gaussian kernel quadrature points and weights,

i.e., ξGK = {ξGK
1 , ξGK

2 , · · · , ξGK
Nc

} and ωGK = {ωGK
1 , ωGK

2 , · · · , ωGK
Nc

}, as func-

tions of the univariate Gauss-Hermite quadrature points and weights, i.e., ξGH =

{ξGH
1 , ξGH

2 , · · · , ξGH
Nc

} and ωGH = {ωGH
1 , ωGH

2 , · · · , ωGH
Nc

}, can be given as

ξGK
j =

1√
2αβ

ξGH
j (9.17)

and

ωGK
j =

√
1

1 + 2δ2
ωGH
j eδ

2(ξGK
j )2

⌊(Nc−1)/2⌋∑
l=0

1

2ll!

(
2α2β2

1 + 2δ2
− 1

)l

H2l(ξ
GH
j )

 , (9.18)

where j∈{1, 2, · · · , Nc}.

Proof. Recalling the Definition 9.3, the weights ωGK = {ωGK
1 , ωGK

2 , · · · , ωGK
Nc

} are
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solutions of Eq. (9.7), which gives

ωGK = (κ)−1κI . (9.19)

It should be mentioned that κ and κI can be represented in terms of the Gaussian

kernel κ(ξGK
i , ξGK

j ). Moreover, as κ is defined in terms of Gaussian kernels, it is of

full rank and inherently invertible, given that the quadrature points are distinct. It

should be mentioned that if two or more quadrature points are overlapping, then we

can replace them with a single quadrature point that has a weight same as the sum

of the weights of all overlapping quadrature points. Thus, the distinct behavior of

the quadrature points is maintained and the invertibility of κ remains ensured. As

κ is invertible, Eq. (9.19) is always defined.

Following the discussions in [207], the eigendecomposition of κ(ξGK
i , ξGK

j ) gives

κ(ξGK
i , ξGK

j ) =
∞∑
i=0

λαi φ
α
i (ξ

GK
i )φα

i (ξ
GK
j ). (9.20)

To derive the Gaussian kernel quadrature rule for Nc number of univariate quadra-

ture points, i.e., ξGK = {ξGK
1 , ξGK

2 , · · · , ξGK
Nc

} and ωGK = {ωGK
1 , ωGK

2 , · · · , ωGK
Nc

},
we truncate the summation in Eq. (9.20) up to Nc terms. At this end, let us define

Nc-dimensional ψ, φ̄ and Λ such that ψij = φα
j−1(ξ

GK
i ), φ̄i = I10 (φ

α
i−1) and Λii = λαi

(Λij = 0 ∀ i̸=j) ∀i∈{1, 2, · · · , Nc} and j∈{1, 2, · · · , Nc}. Subsequently, recalling the

definitions of κ and κI , we can write κ = (ψΛψT ) and κI = ψΛφ̄. Substituting κ

and κI in Eq. (9.19), we get

ωGK = (ψΛψT )−1ψΛφ̄ = (ψT )−1φ̄. (9.21)

We can represent ψ in terms of a matrix V and a diagonal matrix E, as ψ =
√
βE−1V , where Eii = e(δξ

GK
i )2 and

Vij =
1√

(j − 1)!
Hj−1(

√
2αβξGK

i ).
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Substituting ψ =
√
βE−1V in Eq. (9.21), we get

ωGK =
1√
β
E(V −1)T φ̄. (9.22)

Consider that the Gaussian kernel quadrature points ξGK = {ξGK
1 , ξGK

2 , · · · , ξGK
Nc

}
are obtained by scaling the conventional Gauss-Hermite quadrature points ξGH =

{ξGH
1 , ξGH

2 , · · · , ξGH
Nc

}, as
ξGK
j =

1√
2αβ

ξGH
j . (9.23)

At this end, let us adopt the following statements directly from [207].

� Let us denote ξ = {ξ1, ξ2, · · · , ξNc} and ω = {ω1, ω2, · · · , ωNc} as sets of uni-

variate points and weights, respectively for a quadrature rule Q̄1(I), where

I represents a Gaussian weighted integration, such as I10 . Let us consider

O0(x), O1(x), · · · , ONc−1(x) are L2(V )-orthogonal polynomials and ϱij =∑Nc−1
l=0 Ol(ξi)Ol(ξj). Then, ϱ is a diagonal matrix and ωi = 1/ϱii.

� For a specific selection of ξGK = {ξGK
1 , ξGK

2 , · · · , ξGK
Nc

}, as in Eq. (9.23),

the matrix V is a Vandermonde matrix of normalized Hermite polynomials.

Moreover, V V T is the matrix ϱ in the above statement with the polynomials

O0(x), O1(x), · · · , ONc−1(x) replaced by Hermite polynomials H0(x), H1(x),

· · · , HNc−1(x).

In conclusion to these statements, we can write

(V V T )−1 = ωGH =⇒ (V T )−1 = ωGHV,

where ωGH is a diagonal matrix with ωGH
ii = ωGH

i . Substituting (V T )−1 in Eq.

(9.22), we get

ωGK =
1√
β
EωGHV φ̄.

It should be mentioned that E and ωGH are diagonal matrices. Thus, the ith-element

of ωGK , i.e., ωGK
i , can be given as

ωGK
i =

1√
β
Eiiω

GH
ii

Nc∑
j=1

Vijφ̄j.
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From the definition of E, ωGH , V , and φ̄, we get

ωGK
i =

1√
β
e(δξ

GK
i )2ωGH

i

[
Nc−1∑
j=0

1√
j!
Hj(

√
2αβξGK

i )I10 (φ
α
j (ξ

GK
i ))

]
.

From Eq. (9.23), we can substitute
√
2αβξGK

i = ξGH
i . Moreover, from Proposition

9.1, I10 (φ
α
j (ξ

GK
i )) is nonzero only if j is even. Thus, considering only even j and

substituting I10 (φ
α
j (ξ

GK
i )) for even j from Eq. (9.11), we get

ωGK
i =

1√
β
e(δξ

GK
i )2ωGH

i

⌊(Nc−1/2)⌋∑
l=0

1√
(2l)!

H2l(ξ
GH
i )

[√
β

1 + 2δ2

√
(2l)!

2ll!

(
2α2β2

1 + 2δ2
− 1

)l
]
.

Simplifying further, we can express ωGK
i in the form of Eq. (9.18). Please note that

ωGK
i is derived for ξGK

i given in Eq. (9.23), which is same as Eq. (9.17).

We can substitute ξi = ξGK
i and ωi = ωGK

i in Eq. (9.6) to approximate the

desired univariate integral I10 (g(x)) using the univariate Gaussian kernel quadrature

rule. As discussed in [207], the univariate Gaussian kernel quadrature rule is de-

fined for all values of kernel bandwidth σ. However, a very large σ may lead to

numerical ill-conditioning. Moreover, [207] stated, without giving any proof, that

ωGK
i approaches to ωGH

i for large σ. In consequence of this discussion, a small value

of σ is recommended for all practical implementations of the proposed GKQKF. To

this end, it should be mentioned that [207] studied the improved accuracy of the

univariate Gaussian kernel quadrature rule for σ up to 4.

From Eqs. (9.17) and (9.18), it is conclusive that ξGK = {ξGK
1 , ξGK

2 , · · · , ξGK
Nc

}
and ωGK = {ωGK

1 , ωGK
2 , · · · , ωGK

Nc
} are scaled versions of the traditionally used

ξGH = {ξGH
1 , ξGH

2 , · · · , ξGH
Nc

} and ωGH = {ωGH
1 , ωGH

2 , · · · , ωGH
Nc

}, respectively. How-
ever, as discussed in the introduction section, ξGK and ωGK provide better accuracy

and numerical stability than ξGH and ωGH .

9.2.3 Multivariate Extension of Gaussian Kernel Quadra-

ture Rule

The Gaussian kernel quadrature rule is univariate and cannot be used for approx-

imating the desired multivariate integral In0 (g(x)) (Eq. (9.2)). However, several
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methodologies are available in the literature to extend a univariate quadrature rule

for approximating multivariate integrals. Some of the popular methods among

them are the product rule [28], Smolyak rule [68, 203], and adaptive sparse-grid

method [69] in the order of decreasing computational burden. This chapter adopts

the product rule due to its simple structure, even though it is computationally most

inefficient. Nevertheless, the practitioners may choose to replace it with the Smolyak

rule or adaptive sparse-grid method to reduce the computational burden.

With ξGK
i and ωGK

i (∀i∈ {1, 2, · · · , Nc}) being the univariate Gaussian kernel

quadrature points and weights, respectively, the product rule approximates In0 (g(x))

as

In0 (g(x)) ≈
Ns1∑
i1=1

· · ·
Ns1∑
in=1

f
([
ξGK
i1

, · · · , ξGK
in

]T)
ωGK
i1

· · ·ωGK
in .

Subsequently, the multivariate integral In(g(x)) for general Gaussian N (x;µ,Σ)

can be approximated as

In(g(x)) ≈
Ns1∑
i1=1

· · ·
Ns1∑
in=1

f
(
x̂+ S

[
ξGK
i1

, · · · , ξGK
in

]T )
ωGK
i1

· · ·ωGK
in ,

where SST = Σ.

We can now denote the ith multivariate Gaussian kernel quadrature points and

weights as ξGK
i =

[
ξGK
i1

, ξGK
i2

, · · · , ξGK
in

]T
and ωGK

i = ωGK
i1

ωGK
i2

· · ·ωGK
in , respectively,

where i1, i2, · · · , in∈{1, 2, · · · , Nc} and i∈{1, 2, · · · , (Nc)
n}. Subsequently, a simpli-

fied representation for approximating In(g(x)) can be given as

In(g(x)) ≈
Ns∑
j=1

ωGK
j f

(
µ+ SξGK

j

)
, (9.24)

where Ngk = (Nc)
n is the number of multivariate quadrature points. It should

be mentioned that the multivariate quadrature rules are accurate for polynomials

xl11 x
l2
2 · · ·xlnn with 0 < lj < Nc ∀j∈{1, 2, · · · , n}.

We can integrate the numerical approximation strategy of Eq. (9.24) with the

Gaussian filtering strategy to formulate the filtering algorithm of the proposed

GKQKF. It should be mentioned that it follows the same filtering structure [11, 15]
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used for the generalized quadrature rule based filtering. However, it replaces the

traditional quadrature points and weights by ξGK and ωGK , respectively. A pseudo-

code for generating ξGK and ωGK is given in Algorithm 9.1. The pseudo-code con-

siders the Golub’s method of generating the univariate Gauss-Hermite univariate

quadrature points and weights, i.e., ξGH and ωGH .

Algorithm 9.1 Pseudo-code for computing ξGK
i and ωGK

i

Input: Number of univariate quadrature points and system dimension: Nc and n
Output: ξGK and WGK

1: Formulate Ξ as Ξj,j = 0 ∀j∈{1, 2, · · · , Nc} and Ξi,i+1 =
√
i/2 ∀i∈ {1, 2, · · · , Nc−

1}.
2: Determine eigenvalues and eigenvectors of Ξ: Ψi and (υi)1 ∀ i∈{1, 2, · · · , Nc}.
3: Determine ξGH

i =
√
2Ψi and ω

GH
i = (υi)

2
1 ∀i∈{1, 2, · · · , Nc}.

4: Determine ξGK
i and ωGK

i using Eqs. (9.17) and (9.18), respectively.
5: Determine the multivariate Gaussian kernel quadrature points and weights

as ξGK
i =

[
ξGK
i1

, ξGK
i2

, · · · , ξGK
in

]T
and ωGK

i = ωGK
i1

ωGK
i2

· · ·ωGK
in , where

ij∈{1, 2, · · · , Ns1} ∀ j∈{1, 2, · · · , n} and i∈{1, 2, · · · , (Nc)
n}.

6: return
7: ξGK

i and ωGK
i ∀i∈{1, 2, · · · , (Nc)

n}.

Remark 9.1. The GKQKF is developed under the quadrature rule based filtering,

which is the most accurate class of Gaussian filters.

Remark 9.2. For an n-dimensional system, the proposed GKQKF requires (Nc)
n

number of multivariate quadrature points, the same as the QKF.

Remark 9.3. The proposed GKQKF uses the product rule, leading to exponentially

increasing computational cost with increasing dimension.

Remark 9.4. Although the computational burden of the proposed GKQKF increases

with the increasing dimension, it remains similar to the QKF. Moreover, it can be

further reduced and achieved similar to the other computationally efficient quadrature

filters, such as the SQKF and ASQKF, by replacing the product rule with the Smolyak

rule and adaptive sparse-grid method, respectively.

Remark 9.5. In the current era of efficient computing devices, the computational

burden of the quadrature rule based filters is becoming tolerable for a wide range

of practical problems. Subsequently, their demand is rising due to the high accu-

racy, specifically for crucial applications (e.g., defense systems). Thus, the proposed
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GKQKF is a potential solution for the practical scenarios where high accuracy is

demanded and high computing power is available.

The following discussion compares the GKQKF with the other existing Gaussian

filters.

� The CKF, probably the most popular Gaussian filter, uses the third-degree

spherical-cubature rule of numerical approximation, which is accurate for up

to third-order polynomials only. On the other hand, the quadrature rule based

filters, such as the proposed GKQKF, use quadrature rules of numerical ap-

proximation that are accurate for higher-order polynomials. Thus, the quadra-

ture rule based filters, including the proposed GKQKF, outperform the CKF.

� The higher-order variants of the CKF, such as the CQKF and HDCKF, use

relatively advanced numerical approximation techniques, which are accurate

for comparatively higher-order polynomials. However, their accuracy has been

observed to be saturating as the order of polynomials increases. Subsequently,

they have been reported in literature [11, 15] to underperform the quadrature

rule based filters, such as the QKF. Consequently, they underperform the

proposed GKQKF as well.

� As discussed in the introduction section, the Gaussian kernel quadrature rule,

used by the proposed GKQKF, is more accurate than the ordinary Gauss-

Hermite quadrature rule, used by the QKF. Therefore, the proposed GKQKF

outperforms the QKF. Moreover, the existing variants of the QKF, such as

the SQKF and ASQKF, improve only the computational demand without

improving the accuracy. Consequently, the proposed GKQKF outperforms

these variants as well.

� The computational demand of the GKQKF is higher than the CKF and its

variants, such as the CQKF and HDCQKF. Therefore, the GKQKF is expected

to replace the CKF and its variants if high accuracy is essential and a high

computational budget is available. Such examples frequently appear in defense

applications and clinical biomedical tools.
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� The computational demand of the proposed GKQKF is similar to the QKF.

However, it is higher than various variants of the QKF, such as the SQKF

and ASQKF. It should be mentioned that the SQKF and ASQKF reduce

the computational demand by replacing the product rule with other compu-

tationally efficient methods of extending the univariate quadrature rules in

multivariate domain, such as the Smolyak rule [203] and the adaptive sparse-

grid method [69]. Thankfully, these rules can be applied with the proposed

GKQKF also to reduce its computational demand.

Summarizing the above discussions, the proposed GKQKF outperforms the exist-

ing quadrature rule-based filters, as it utilizes univariate Gaussian kernel quadrature

rule, which is more accurate than its counterparts used in the existing quadrature

rule based filters. As the quadrature rule based filters are most accurate Gaussian

filters, we can further state that the proposed GKQKF outperforms all the existing

Gaussian filters. The increased computational burden of the proposed GKQKF in

comparison to the UKF and CKF may not be of major concern, as the efficacy of

the computational tools has increased manyfold since the development of the UKF

and CKF. Thus, the proposed GKQKF can be the most appropriate choice for a

wide range of the practical applications. We observe a widespread literature, includ-

ing [59, 60], utilizing the quadrature rule based filters in practical applications. The

proposed GKQKF can straightforwardly replace the existing quadrature rule based

Gaussian filters in these applications.

Although the quadrature rule based Gaussian filters outperform other existing

Gaussian filters, they didn’t initially attract a huge research. However, the practi-

tioners often prefer them over the other Gaussian filters due to their improved ac-

curacy. In the beginning, their high computational demand was anticipated as the

possible reason for the lack of interest from the researchers. However, the growth

of the literature is still slow, irrespective of huge improvement in the efficacy of the

contemporary computational devices, which are good enough even for implementing

the computationally highly demanding particle filters. In this regard, we believe

the non-triviality of the quadrature rules as the reasons for the lack of interest from

the researchers. This chapter takes this challenge and introduces a new quadrature

rule, i.e., the Gaussian kernel quadrature rule. We describe the Gaussian kernel
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quadrature rule in a simplified way, making the implementation convenient for the

practitioners.

9.3 Simulation and Results

In this section, we simulate a numerical integral approximation problem and two

real-life nonlinear filtering problems. The numerical integral approximation problem

validates the improved numerical approximation accuracy of the Gaussian Kernel

quadrature rule compared to the other numerical approximation methods used by

the popular Gaussian filters, such as the UKF, CKF, CQKF, HDCKF, and QKF.

On the other hand, the real-life filtering problems validate the improved accuracy

of the proposed GKQKF compared to the existing popular Gaussian filters, such

as the UKF, CKF, CQKF, HDCKF, and QKF. The UKF is implemented with its

parameter κ = 1 for the two nonlinear filtering problems. The QKF and GKQKF

are implemented with 6-point univariate quadrature rules.

The generation of the univariate quadrature points and weights for the proposed

GKQKF requires several parameters, such as σ, α, β, ϵ, and δ. Following the

discussion towards the end of Section 9.2.2, we can conveniently consider σ up to

4, although the proposed GKQKF is applicable for any value of σ. Following the

same, the simulation is performed for σ = 1. Moreover, from the discussion in

Section 9.2.2, we must choose α = 1/
√
2, as the proposed GKQKF is concerned

with the Gaussian distribution. Subsequently, the other required parameters can

be obtained as ε = 1√
2σ
, β =

(
1 +

(
2ε
α

)2)1/4
and δ2 = α2

2
(β2 − 1), as discussed in

Section 9.2.2. The filtering problems’ analysis is based on root mean square error

(RMSE).

9.3.1 Problem 1: Numerical Approximation of Intractable

Integral

The integral considered for the numerical approximation is

I(g) =

∫
Rn

cos (||x||2)N (x;0n×1, In)dx, (9.25)
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where ||x||2 denotes the second norm of x∈Rn. The simulation is performed for

n = 4 and n = 6. The exact solutions of the integral for n = 4 and n = 6 are I(g) =

0.5
(
1− 2

√
2Dw(1/

√
2)
)
and I(g) = −3Dw(1/

√
2)/(2

√
2), respectively, where Dw

denotes the Dawson function given as Dw(x) := e−x2
∫ x
0 ey

2
dy. Subsequently, I(g) is

approximately equal to -0.224778459007077 and -0.543583844255307 for n = 4 and

n = 6, respectively. These values will be considered as true values for validation.

Let us consider the following abbreviations and notations for different numerical

approximation methods. UTκ denotes the unscented transformation rule with the

parameter κ, which is used by the UKF. SC represents the third-degree spherical

cubature rule used by the CKF. CQ stands for the cubature quadrature rule used

by the CQKF. HSC represents the higher-degree spherical cubature rule used by the

HDCKF. GHQNc denotes Nc-point Gauss-Hermite quadrature rule supported by the

product rule, as the QKF uses it. Finally, GKQNc denotes the Nc-point Gaussian

kernel quadrature rule supported by the product rule, as the proposed GKQKF uses

it.

The approximated values of I(f) and % errors obtained for different numerical

approximation techniques are provided in Table 9.1 for n = 4 and n = 6. The

table concludes that the error is lowest for the Gaussian kernel quadrature rule.

Subsequently, the resulting filter GKQKF is expected to outperform all the existing

Gaussian filters, such as the UKF, CKF, and QKF.

9.3.2 Problem 2: Sinusoidal Growth Model

The dynamic state space model for this filtering problem follows the state-space

model presented by Eqs. (4.17) and (4.18) in Chapter 4.

The simulation is performed for n = 2. The initial true and estimated states are

taken as x0 = [1, 2]T and x̂0|0 = [3, 4]T , respectively. The initial error covariance

is considered as P0|0 = In. The simulation is performed for two problem scenarios,

defined by varying the noises, as

� Scenario 1: Qij = 0.5 ∀ i = j and 0.05 otherwise and R = 1.

� Scenario 2: Qij = 2.5 ∀ i = j and 0.25 otherwise and R = 5.
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Table 9.1: I(f) with n = {4, 6}: Numerically approximated values and % error
obtained from different numerical approximation techniques used in the filtering
literature.

Rules
n = 4 n = 6

Approximated value % Error Approximated value % Error

UT1 -0.293818301165733 30.714616 -0.611058914949911 12.413001
UT2 -0.179937153166595 19.949111 -0.463522346094386 14.728454
UT3 -0.074039276633274 67.061222 -0.326661664400297 39.905928
SC -0.416146836547142 85.136439 -0.769905729749893 41.635138
CQ -0.227952368853859 -1.412016 -0.549220926370814 -1.037021
HSC -0.179937153166595 19.949111 -0.463522346094386 14.728454
GHQ3 -0.203505307617691 9.464052 -0.516177282395964 5.041827
GHQ4 -0.226372242270946 0.709046 -0.545713521963565 0.391784
GHQ5 -0.224687273190453 0.040566 -0.543459260335630 0.022918
GHQ6 -0.224782686910015 0.001881 -0.543589707702025 0.001078
GKQ3 -0.209138184525495 6.958084 -0.522984078045846 3.789620
GKQ4 -0.225640090592589 0.383324 -0.544760796005950 0.216517
GKQ5 -0.224746811029037 0.014079 -0.543539604404307 0.008138
GKQ6 -0.224779238737018 0.000346 -0.543584954470293 0.000204

It should be mentioned that the noise covariances are simply increased five times in

the second scenario.

Figs. 9.1 and 9.2 show the RMSE plots for the two scenarios obtained for 200

Monte-Carlo simulations. The RMSE plots are shown for the proposed GKQKF

and the popular Gaussian filters, such as the UKF, CKF, CQKF, HDCKF, and

QKF. The figures conclude that the RMSE is the lowest for the proposed GKQKF.

It further concludes that the accuracy of the proposed GKQKF is highest among all

the Gaussian filters. The relative computational times of the UKF, CKF, CQKF,

HDCKF, QKF, and GKQKF are obtained as 1.07, 1, 1.67, 1.94, 6.26, and 6.01,

respectively. Thus, the computational time of the proposed GKQKF is observed

similar to the QKF. It concludes that the accuracy of the quadrature rule based

filtering could be improved without increasing the computational cost.

9.4 Summary

This chapter introduces an advanced nonlinear Gaussian filter, named as GKQKF in

its abbreviated form, to improve the accuracy. The proposed GKQKF utilizes uni-

variate Gaussian kernel quadrature rule of numerical approximation in the Gaussian
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Figure 9.1: Problem 2: Comparison of RMSE plots of the proposed GKQKF with
the UKF, CKF, CQKF, HDCKF, and QKF for Scenario 1.
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Figure 9.2: Problem 2: Comparison of RMSE plots of the proposed GKQKF with
the UKF, CKF, CQKF, HDCKF, and QKF for Scenario 2.

filtering structure. The Gaussian kernel quadrature rule is relatively more accurate

than the traditionally used numerical approximation methods in the filtering liter-

ature, which is the reason for the improved accuracy of the proposed GKQKF. In

dealing with multivariate systems, the proposed GFQKF utilizes product rule for

extending the univariate Gaussian kernel quadrature rule into multivariate domain.

The improved accuracy of the proposed GFQKF is validated through simulation

results in comparison to various existing Gaussian filters such as the UKF, CKF,

CQKF, HDCKF, and QKF.

The Gaussian filtering literature, interestingly, consist of a variety of alterna-

tives, which can be used in different practical applications. For example, the UKF

and CKF are computationally efficient alternatives. Moreover, if the available com-

putational budget is slightly higher, we can use the CQKF and HDCKF to further

improve the accuracy. Furthermore, if a high accuracy is demanded and large com-

putational budget is available, the quadrature rule based filters, such as the QKF

and the proposed GKQKF, can be preferred. As the proposed GKQKF outper-
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forms the QKF, it may be probably the most likely choice for accomplishing the

high accuracy demands.

The recent decades have witnessed significant developments in efficient compu-

tational tools. Consequently, in the recent years, the quadrature rule based filters

broadly replaced their computationally efficient counterparts, such as the UKF,

CKF, and others, in practical applications. As the proposed GKQKF outperforms

even the existing quadrature rule based filters, it can broadly replace the existing

Gaussian filters if sufficient computational budget is available. Nevertheless, for

lower dimensional systems, the computational demand of the proposed GKQKF is

as small as its computationally efficient counterparts.
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Chapter 10

Conclusions and Future Works

The Kalman filter and its nonlinear variants, the Gaussian filter, are extensively

used mathematical tools in various fields, including target tracking, power systems,

financial modeling, and biomedical diagnosis. Despite their widespread use, there is

a notable absence in the literature of a robust filtering method capable of accurately

estimating the dynamic state of systems in diverse practical environments. This

limitation is primarily due to the significant performance degradation of existing

Gaussian filters when faced with irregularities such as delayed and missing measure-

ments. Although the various Gaussian filters are reasonably accurate, their effec-

tiveness are greatly reduced in the presence of these irregularities. While there are

some extensions of nonlinear Gaussian filters that can insignificantly address these

irregularities, they are typically inadequate for dealing with real-world problems.

Following this, the key motivation of this thesis is to develop advanced filtering al-

gorithms capable of dealing with irregularities of delayed and missing measurements.

10.1 Performance gain of the proposed methods

in terms of accuracy and computational de-

mand

The author now summarizes the performance gain of various methods discussed

through Chapters 3 to 9 by presenting the relative accuracy and relative computa-
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tional demand. These metrics are defined as follows

Relative accuracy =
Mean RMSE of the proposed filter

Mean RMSE of the filter

Relative computational times (Tr) =
Computational time of the filter

Computational time of the proposed filter

Table 10.1: Chapter 3: Relative accuracy and computational time comparison of
the proposed method (EKF M) and the competitive filters. The proposed EKF M
is considered as reference.

Filters EKF M EKF UKF CKF CQKF RFM RDF KFM

Relative accuracy 1 0.15 0.15 0.16 0.21 0.24 0.26 0.3
Tr 1 0.87 3.92 4.31 10.02 2.11 2.32 1.44

Table 10.2: Chapter 4: Relative accuracy and computational time comparison
between the traditional Gaussian filters and their extensions under the proposed
method. The CKF-based extension of the proposed method i.e., CKFS is considered
as the reference.

Filters CKF CKFS CQKF CQKFS GHF GHFS

Relative accuracy 0.69 1 0.84 1.06 0.84 1.10
Tr 0.96 1 2.20 2.22 3.70 2.93

Table 10.3: Chapter 5: Relative accuracy and computational time comparison
between the proposed CKF RD PD and competitive filters CKF 1D, CKF RD, and
MLCKF. The proposed method CKF RD PD is considered as the reference.

Filters CKF RD PD CKF 1D CKF RD MLCKF

Relative accuracy 1 0.72 0.53 0.85
Tr 1 0.8 0.79 2.04

10.2 Conclusions

� A comprehensive discussion on delayed and missing measurements was pre-

sented. The discussion covered reasons triggering these irregularities and a

detailed literature review on the existing developments to handle these irreg-

ularities.
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Table 10.4: Chapter 6: Relative accuracy and computational time comparison
between the traditional Gaussian filters CKF, CQKF, and GHF and their extensions
under the proposed methodology. The CKF-based extension of the proposed method
i.e., CKF S is considered as the reference.

Filters CKF S CKF CQKF S CQKF GHF S GHF

Relative accuracy 1 0.79 1.04 0.8 1.04 0.81
Tr 1 0.97 1.87 1.58 2.10 1.84

Table 10.5: Chapter 7: Relative accuracy and computational time comparison
between the proposed MDCKF and competitive filters CKF, MEKF, CKF RD, and
MLCKF. The proposed method MDCKF is considered as the reference.

Filters MDCKF CKF MEKF CKF RD MLCKF

Relative accuracy 1 0.3 0.15 0.54 0.4
Tr 1 0.3 0.94 0.99 1.90

Table 10.6: Chapter 9: Relative accuracy and computational time comparison
between the existing Gaussian filters and proposed Gaussian filter GKQKF. The
GKQKF is considered as reference.

Filters GKQKF UKF CKF CQKF HDCKF QKF

Relative accuracy 1 0.02 0.004 0.26 0.19 0.04
Tr 1 0.17 0.16 0.28 0.32 1.04

� The issue of missing measurements was addressed for systems with small mea-

surement processing time. To achieve this, the extended Kalman filter was re-

structured using a modified measurement model that accounted for potential

missing measurements. The effectiveness of the newly developed method was

evaluated on individual sinusoids identification problem (Table 10.1), which

also included high-frequency sinusoids.

� To address a wider class of problems, a generalized Gaussian filtering was de-

veloped. It modeled the missing measurement possibilities by using Bernoulli

random variables and subsequently, re-derived the typical measurement model.

Then, a new filtering method is designed by re-deriving the traditional Gaus-

sian filtering method for the reformulated measurement model. The newly

developed method used the last available measurement if the measurement at

any time-step was lost. The performance was validated by considering the

CKF-, CQKF-, and GHF-based extensions of the proposed method (Table
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10.2).

� To reduce the number of delay probabilities requirement and relax an am-

biguous selection of the delay’s upper bound, a generalized Gaussian filter

(CKF RD PD) was presented. The CKF RD PD used Poisson random vari-

able to incorporate the possibilities of delays in the measurement model. The

CKF RD PD demonstrate improved performance over the existing delay filters

(Table 10.3).

� A new irregularity was identified and subsequently, a generalized Gaussian

filter (GFSCM) was proposed to address the concerned irregularity. Under this

irregularity, the actual measurement was stochastically composed of present

and previous measurements. Table 10.4 summarizes the efficacy of the GFSCM

to handle the concerned irregularity.

� The simultaneous presence of delayed and missing measurements was ad-

dressed. Such measurement irregularity was dealt with by incorporating the

possibilities of jointly occurring delayed and missing measurements into a

modified measurement model, through different sets of Bernoulli random vari-

ables. Subsequently, the Gaussian filter was re-derived for the new measure-

ment model. Table 10.5 concludes the improved performance of the proposed

method over traditional Gaussian filters.

� The stochastic stability of all the developed filters was analyzed. However, for

the sake of brevity, this thesis only presented the stochastic stability results

for the GFSCM, considering the EKF-based formulation.

� An advanced Gaussian filter (GKQKF), which used a more accurate quadra-

ture rule for numerically approximating the intractable integrals, was pro-

posed. The GKQKF shown improved estimation accuracy over the existing

quadrature-rule based Gaussian filtering counterparts (Table 10.6).
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10.3 Future Works

Based on the contributions of the thesis, the following discussions highlight some

possible future research directions

� The contributions in Chapters 3 and 4 addressed the missing measurement

phenomenon with known probability. A future extension of these contributions

may be about addressing the missing measurements with unknown or time-

varying probabilities.

� The contribution in Chapter 5 for handling the delayed measurements consid-

ers that the average delay probability is known, which can be extended for

unknown average delay.

� Chapter 6 address a new kind of irregularity which stems from the delay oc-

currence in different channels. This can possibly be extended to consider the

missing measurements phenomenon as well.

� Chapter 7 addressed the simultaneous presence of delayed and missing mea-

surements. This contribution can be extended for addressing more measure-

ment irregularities such as cyber-attack.

� For performing stochastic stability analysis, various system, noise, and filter-

related bounds were assumed in Chapter 8. A possible study is performing

the same with less assumptions.

� Chapter 9 presented a more accurate version of the Gaussian filter (GKQKF),

using a more accurate numerical integration method to approximate intractable

integrals. The GKQKF can be further re-derived to handle different measure-

ment irregularities.
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algorithms using one-step randomly delayed observations,” Applied Mathemat-

ics and Computation, vol. 190, no. 2, pp. 1375–1393, 2007.

184



REFERENCES

[122] A. Hermoso-Carazo and J. Linares-Pérez, “Unscented filtering algorithm us-
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