
DEPENDENCE AND UNCERTAINTY: A
COPULA-BASED FRAMEWORK

Ph.D. Thesis

By

SWAROOP GEORGY ZACHARIAH

DEPARTMENT OF MATHEMATICS
INDIAN INSTITUTE OF TECHNOLOGY INDORE

APRIL 2025



ii



DEPENDENCE AND UNCERTAINTY: A
COPULA-BASED FRAMEWORK

A THESIS

Submitted in partial fulfillment of the
requirements for the award of the degree

of

DOCTOR OF PHILOSOPHY

by

Swaroop Georgy Zachariah

DEPARTMENT OF MATHEMATICS
INDIAN INSTITUTE OF TECHNOLOGY INDORE

APRIL 2025



iv



INDIAN INSTITUTE OF TECHNOLOGY INDORE

I hereby certify that the work which is being presented in the thesis entitled

DEPENDENCE AND UNCERTAINTY: A COPULA-BASED FRAMEWORK

in the partial fulfilment of the requirements for the award of the degree of DOCTOR

OF PHILOSOPHY and submitted in the DEPARTMENT OF MATHEMATICS,

Indian Institute of Technology Indore, is an authentic record of my own work carried

out during the time period from December 2020 to April 2025 under the supervision of

Dr. Mohd. Arshad, Assistant Professor, Department of Mathematics, Indian Institute of

Technology Indore.

The matter presented in this thesis has not been submitted by me for the award of

any other degree of this or any other institute.

Signature of the student with date

(Swaroop Georgy Zachariah)

This is to certify that the above statement made by the candidate is correct to the

best of my knowledge.

Signature of Thesis Supervisor with date

(Dr. Mohd. Arshad)

Swaroop Georgy Zachariah has successfully given his Ph.D. Oral Examination

held on .................

Signature of Thesis Supervisor with date

(Dr. Mohd. Arshad)

02/07/2025

02/07/2025

02-07-2025

02-07-2025



vi



ACKNOWLEDGEMENTS

The Ph.D. journey is never an easy one—it is filled with many ups and downs. There

were countless moments that nearly broke me, but it was my unwavering faith in the

Almighty Lord that gave me the strength and confidence to persevere and complete this

journey. I am always deeply grateful to my Almighty Lord for His countless blessings and

boundless mercy throughout this path.

I am deeply grateful to my grandparents for their constant prayers and moral support.

During the difficult times of the COVID-19 pandemic, their financial support enabled me

to pay my academic fees, for which I will always remain thankful. I would also like to

express my heartfelt gratitude to my father, who has been a constant pillar of strength

and a source of confidence during challenging times. My mother’s prayers and unwavering

moral support gave me hope when it was most needed. A special thanks to my brother,

Thejus Geogy Zachariah, who has been the backbone of my confidence. I am sincerely

grateful for the efforts and support of my family, who ensured that I never gave up on my

dream.

I would like to express my sincere gratitude to my supervisor, Dr. Mohd. Arshad, for

his guidance and support throughout my research. He gave me the freedom to explore

topics aligned with my interests, while continuously encouraging me to step out of my

comfort zone and take on challenging research proble. His support, motivation, and

fatherly care ensured that I was shielded from the mental stress and frustrations that often

accompany a research career.

I am also thankful to my collaborator, Dr. Ashok Kumar Pathak, for introducing me

to the field of copula theory. His valuable insights and guidance helped me understand the

contemporary trends in this area, which significantly influenced the direction and depth

of my Ph.D. work. I am especially grateful to Dr. Alam Ali for his generous help and

guidance with the implementation of copula models in R. His technical support played an

important role in the empirical part of my thesis.

I would like to express my sincere gratitude to IIT Indore for providing financial

support through the GATE Teaching Assistantship (TA) fellowship, which enabled me to

pursue my doctoral research.

I would like to express my sincere gratitude to my PSPC members, Dr. Vijay Kumar

Sohani and Dr. Vinay Kumar Gupta, for their constant support, insightful suggestions,



and continuous motivation throughout my research journey. Their encouragement played

a vital role in shaping my academic progress. I am also deeply thankful to our Head of the

Mathematics Department, Dr. Sanjeev Singh, for his unwavering support and guidance.

My sincere appreciation extends to the former Head of the Mathematics Department, Prof.

Niraj Kumar Shukla, and the former DPGC of Mathematics, Prof. Sk. Safique Ahmad, for

their encouragement and valuable inputs. A special note of thanks goes to Prof. V. Antony

Vijesh, whose consistent encouragement towards pursuing statistical research has always

been a source of inspiration. His thoughtful advice and positive motivation have given

me energy and confidence in my work. I am immensely grateful to all the teaching and

non-teaching staff members of the Mathematics Department for their constant support,

care, and kindness throughout this academic journey. I would like to express my sincere

gratitude to all the faculty members who taught me during my Ph.D. coursework. Their

teachings have been immensely helpful and laid a strong foundation for my research.

I would also like to extend my heartfelt thanks to all members of our research group,

Statistical Modelling & Simulation Research Group, for their academic and emotional sup-

port. A special mention goes to Dr. Mojammel Haque Sarkar for his continuous guidance

and encouragement. The numerous late-night discussions with him were instrumental in

shaping Chapters 6 and 7 of my thesis and provided me with much-needed support during

the writing phase. I am thankful to Mushir Akthar for his moral support and his valuable

suggestions during paper drafting. His insightful discussions on machine learning have left

a meaningful impact on my research contributions. My sincere thanks to Shubham Alte,

who has been like a brother to me. His unwavering support, especially during critical times

like my open seminar, is truly admirable. His encouragement helped boost my confidence,

particularly in my presentation skills. His selfless acts and dedication will always be

remembered with deep appreciation. I would also like to thank Abishek Varshney for

bringing positivity and consistent moral support into my life. Furthermore, I extend my

gratitude to the MSc students of our group, Rahul Choudhary, Saurabh Maurya, Harsha

Jain, and Shivani Sharma, for their continuous encouragement and help. I would like to

acknowledge the alumni members of our research group Ishita Agrawal, Leela Krishna,

Akshay Tak, and Chetanya Sharma for their valuable support and suggestions.

I am grateful to Dhivya Prabhu K for his invaluable support. Whenever a mathematical

challenge arose during my research, he was always there like a guardian angel to guide

viii



me. His exceptional mathematical insight not only helped me overcome complex problems

but also enhanced my own mathematical skills. I believe he will one day be known as the

“Future Ramanujan”. More than a friend, he has been a philosopher and a constant source

of motivation. His advice has contributed not only to my academic development but also

to my personal growth. His role in my Ph.D. journey has been crucial and irreplaceable.

I would also like to express my heartfelt gratitude to Snehalata Sahoo for always being

a caring and supportive presence. Her help during the tough phases of my Ph.D. journey

will always be remembered with gratitude. My sincere thanks to Diksha, who consistently

looked after me whenever I was emotionally down. Her care and support were deeply

meaningful. I also express my gratitude to Debdeep Roy, who always brought positivity

and brotherly affection. He played a significant role in helping me understand chaos theory,

which was essential for Chapter 5 of my thesis, and also supported me with MATLAB

code implementations. I am also thankful to Rajni for her assistance in understanding

MATLAB codes, bifurcation theory, and chaos. Our discussions were fruitful and are

reflected in Chapter 5 of my work. I would like to express my sincere appreciation to

Aditya Sharma for his constant encouragement and support. I would like to acknowldege

Soham Ghosh for the support and encouragement.

I extend my heartfelt thanks to all the research scholar colleagues from Leelavati Lab,

Optimal Lab, and AMG Lab. A special mention to Shreyas S. R. for always motivating

me with his thoughtful suggestions and encouraging attitude. I would like to acknowledge

the following Ph.D. scholars for their valuable help in rectifying mathematical analysis

issues in my research work: Sajin Vincent A. W., Pinki Khatun, Navneet, Archit Agarwal,

Meghali, Sheetal Sanjay Wankhede, Md. Sajid, and Dr. Pranav Kumar

I would like to express my sincere gratitude to Dr. Rohan Chacko Jacob, Dr. Renil

Thomas, and my mother, Susan George, for their valuable help in clarifying medical

terminologies and concepts. Their guidance has been instrumental, and its impact is

clearly reflected in Chapter 7 of my thesis.

I would like to acknowledge Nimisha Ann Jose, Aneena M. S., and Ankitha C. S. for

their support and encouragement throughout my research.

I gratefully acknowledge Dr. K. K. Jose, M. C. Jose, and all the teachers at the

Department of Statistics, K. E. College, as well as the Department of Mathematics,

S. B. College, for laying a strong foundation in statistics and mathematics during my

ix



undergraduate and postgraduate studies. Their dedication and teaching played a vital

role in shaping my academic path.

I would also like to extend my sincere thanks to Dr. Abhijit Datta Banik, Associate

Professor, IIT Bhubaneswar, for his valuable support and motivation.

I am deeply thankful to Jibin V. Sunny, Ankit Meena, and Kunal Motghare for their

help in learning Monte Carlo simulation techniques and for guiding me in understanding

the intersection of statistics and astronomy during the Astrostatistics course.

I would like to acknowledge Kamaljeet Singh and Ronald Scaria for their valuable

support during my PhD coursework. Their assistance made a meaningful difference in my

academic progress.

I would like to express my sincere gratitude to my flatmates Vijay Jain, Shivukumar

Rakkasagi, Himanshu Kaushik, Deb Kumar Rath, and Deepak for being such wonderful

companions. Their unwavering support and encouragement have played a significant role

in helping me through the challenges of my PhD journey.

I would like to express my sincere gratitude to the Malayalee-Tamil community of

IIT Indore for their unwavering support, love, and care during my research journey. I

am especially thankful to Dr. Mohammed Ameen for his continuous encouragement and

care, which proved invaluable throughout my PhD. I would also like to thank Jithu Jose

Athalathil and Leon Noble for their constant support. My heartfelt thanks go to Navanit

A. V. — our discussions were instrumental in identifying financial crises, a key component

reflected in Chapter 5. I am also deeply grateful to Jerry Jones David for helping me

understand the basic concepts of entropy and its connection to thermodynamics; our

discussions were particularly insightful for Chapters 4 and 5.

I would like to express my sincere gratitude to Jyothi Justin and Justy Joseph for

their support during the PhD coursework and for guiding me in understanding how to

conduct effective research. Iam grateful to Aneesh Rajendran, Jerin Rajan, Sharath

Madhavan K, Aswin T, Vaibhav Sharma, and Bhawani Singh for their continuous support

and encouragement throughout my academic journey.

I would also like to extend my heartfelt appreciation to the following individuals for

their companionship and care throughout my PhD journey: Tinto T. D., Nasmi S. Anand,

Keerthi K., Aromal P., Jibin Jose, Parvathy Thankachy P., Dizna James, Thomas George

P., Anugrah Mathew Prasad, Anoop K. R., Harikrishnan R., Gokul M Pillai, Renveer AR,

x



Safwana Shirin K. M., Ardra T. M., Hiba K. P., Jayashree Parthiban and Ramamoorthy

Velayutham.

I express my deepest gratitude to Abra Mathew and Abin Philip for their love, support,

motivation, and genuine care that always uplifted my spirit.

Finally, I would like to express my heartfelt gratitude to Anlin Kurian, Varun Sam,

Dr. Alestin Mawrie, and Susan Sharma for their unwavering support, prayers, and for

instilling in me a deep faith in God. Their spiritual encouragement served as a powerful

source of strength during the most challenging moments of my PhD journey.

xi



xii



“Humble yourselves, therefore, under God’s mighty hand,
that he may lift you up in due time. Cast all your anxiety
on him because he cares for you.”

— 1 Peter 5:6–7





Dedication

To the cherished memory of

my grandmother, Lizy Zachariah,

whom I never had the privilege to meet,
yet whose statistical insight runs in my blood.

Her legacy continues through every step of this journey.

And to

my dear friend, Aashish Chandra P,

whose presence brought light and laughter.
Your absence is deeply felt, and your memory dearly held.

This thesis is dedicated to both of you, with love and gratitude.



ii



SYNOPSIS

In the era of machine learning and artificial intelligence, multivariate statistical analysis

has become an inevitable tool due to the increasing complexity and dimensionality of data

arising from diverse domains such as engineering, medicine, finance, and environmental

science. Unlike univariate techniques, multivariate analysis provides a comprehensive

framework to model, interpret, and infer the relationships among multiple random variables

simultaneously.

Two crucial aspects of multivariate analysis are (i) the marginal behaviour of each

component and (ii) the dependence structure among the variables. One of the main

challenges in multivariate statistical analysis lies in the flexible and accurate representation

of this dependence structure. Classical approaches, such as the multivariate normal

distribution, often rely on strict assumptions such as linearity, which seldom occurs in

reality. These limitations are particularly evident in the presence of non-linear relationships,

asymmetries, or tail dependencies.

To address these shortcomings, the theory of copulas has emerged as a powerful

tool, following the groundbreaking work of Sklar (1959). Sklar (1959) established the

fundamental result that for any p-dimensional joint cumulative distribution function (CDF)

H with marginal CDFs F1, . . . , Fp, there exists a copula C such that

H(x1, . . . , xp) = C(F1(x1), . . . , Fp(xp)), ∀(x1, . . . , xp) ∈ Rp
, (0.1)

where R = [−∞, ∞] denotes the set of extended real number line. When the marginals

are absolutely continuous, the copula C is unique; otherwise, it is uniquely determined by

the range of the marginal distributions. Conversely, given any univariate CDFs F1, . . . , Fp

and any copula C, the function H defined in Eq. (0.1) is a valid joint CDF with marginals

F1, . . . , Fp.



In a probabilistic sense, a copula is a multivariate distribution function with standard

uniform marginals, capturing the dependence structure independently of the marginal

behaviours. This separation allows for the construction of a wide class of multivariate

distributions by combining arbitrary marginals with a suitable dependence model.

Mathematically, a function C : Ip → I, where I = [0, 1], is called a p-dimensional

copula if it satisfies the following properties:

(i) For every u ∈ Ip, if any component of u is zero, then

C(u) = 0.

(ii) For every u ∈ Ip, and for a fixed i ∈ {1, 2, . . . , p}, if all components uj satisfy uj = 1

except ui (i.e., uj = 1 for all j ̸= i, j = 1, 2, . . . , p), then

C(u) = ui.

(iii) For any two vectors u1 = (u1,1, u1,2, . . . , u1,p) and u2 = (u2,1, u2,2, . . . , u2,p) in Ip, if

u1,i ≤ u2,i for all i ∈ {1, 2, . . . , p}, then

∆u2,p
u1,p

∆u2,p−1
u1,p−1 · · · ∆u2,1

u1,1C(u) ≥ 0,

where ∆ denotes the first-order difference operator. For more details, see Nelsen (2006),

Trivedi et al. (2007) and Durante and Sempi (2016), Hofert et al. (2018).

Although introduced in the 1950s, copulas gained widespread recognition only in the

early 2000s. While implicitly used earlier, their explicit application became prominent in the

21st century. The Gaussian copula, popular in finance, revealed critical limitations during

the 2008 Global Financial Crisis, notably underestimating tail dependence and portfolio

risks (Salmon, 2009; MacKenzie and Spears, 2012). This motivates the development of

more flexible copula families to model nonlinear and tail dependencies. Today, copulas

are essential tools in finance, insurance, medicine, engineering, and agriculture to model

complex dependence structures.

In statistical analysis, modelling systems that exhibit randomness inherently involve

uncertainty. As uncertainty increases, predictability decreases, and thus, information can

be viewed as a measure of uncertainty reduction. To quantify uncertainty, Shannon (1948)

introduced a fundamental concept known as entropy, initially defined for discrete random

variables. The Shannon entropy of a discrete random variable X with probability mass
iv



function (PMF) pj = P (X = xj), j = 1, 2, . . . , k, is given by

H(X) = −
k∑

j=1
pj log pj.

Shannon entropy has found widespread applications in machine learning, information

theory, reliability theory, physics, chemistry, finance, and the study of complex systems.

Numerous generalizations and extensions of Shannon entropy have been proposed in the

literature; see, for example, Rényi (1961), Varma (1966), Tsallis (1988), Rao et al. (2004),

Ubriaco (2009), and Xiong et al. (2019).

In the context of multivariate analysis, uncertainty arises from two main sources:

the marginal distributions of the variables and their underlying dependence structure.

Quantifying the dependence structure is essential, as it reveals complex relationships

among the components of a multivariate random vector. Copula functions offer a powerful

framework for modelling this dependence structure independently of the marginal distri-

butions, making copula-based information measures particularly important for modern

statistical modelling.

This thesis focuses on two key aspects of multivariate statistical analysis: the construc-

tion of new, flexible copula families and the development of new copula-based information

measures aimed at quantifying the uncertainty embedded in complex dependence struc-

tures. Copula misspecification can introduce substantial bias and lead to misleading

inference. Therefore, goodness-of-fit tests for copulas become an essential component of

model validation. Overall, this thesis contributes to the growing body of research by

constructing new, flexible copulas tailored to capture complex dependencies and by intro-

ducing copula-based information measures for more accurate quantification of uncertainty

in multivariate dependent datasets.

Motivation and Research Objectives

The primary motivation of this thesis stems from the need to develop flexible copula

models and associated information-theoretic tools for analyzing multivariate data exhibiting

complex dependence structures. The key research objectives of the thesis are outlined

below:
v



1. A wide variety of copula families are available in the literature. Among them, the

Farlie–Gumbel–Morgenstern (FGM) copula, introduced by Eyraud (1936), Mor-

genstern (1956), Gumbel (1960), and Farlie (1960), is well-known due to its simple

mathematical structure and ability to model both positive and negative dependence.

However, a major limitation of the FGM copula is its narrow dependence range. For

example, Spearman’s rank correlation coefficient, an important dependence measure

bounded between −1 and 1—is limited to the interval [−1/3, 1/3] under the FGM

family. To address this, various generalizations have been proposed in the literature,

primarily by introducing additional parameters. While such extensions improve the

dependence range, they often result in complex formulations and computational

challenges in parameter estimation. One of the principal objectives of this thesis is

to propose a new FGM-type copula that is mathematically simple, involves fewer

parameters, and possesses a broader dependence range across various dependence

measures.

2. The second objective focuses on the construction of flexible copulas. Existing

construction methods are typically confined to specific domains and often fail to

model data with intricate or tail-heavy dependence structures adequately. For

instance, the widely used FGM copula lacks tail dependence. This thesis aims

to develop a new method for constructing copula families with an emphasis on

improving tail and overall dependence characteristics.

3. Copula-based entropy is a measure of the uncertainty associated with the dependence

structure among random variables. Ma and Sun (2011) showed that the mutual

information (MI) of a multivariate random vector is equivalent to the negative of

its copula entropy (CE), defined as

ζ (c) = −
∫
Ip

c(u) log c(u) du, (0.2)

where c(u) is the copula density. MI is a fundamental information-theoretic quantity

with wide-ranging applications. However, this approach becomes inapplicable when

the underlying copula is not absolutely continuous. To address this, Sunoj and

Nair (2025) introduced cumulative copula entropy by replacing the density function

with the copula function itself, but their work is mainly restricted to the bivariate

case. Other copula-based information measures, such as the information generating
vi



function, inaccuracy measures, and Kullback–Leibler divergence, are discussed only

to a limited extent in the literature. This thesis aims to develop new copula-based

information measures using Shannon entropy and examine their applications in

multivariate statistical analysis.

4. In thermodynamics and statistical physics, when a system is in a non-equilibrium

state or exhibits strong interdependence among its components, non-additive en-

tropies provide a more appropriate framework for uncertainty quantification. Tsallis

(1988) introduced a non-additive entropy, now known as Tsallis entropy. Moti-

vated by this, another objective of this thesis is to develop a class of copula-based

information measures derived from Tsallis entropy.

5. Multivariate analysis plays a vital role in lifetime data analysis, particularly in the

context of reliability engineering, where component lifetimes may be interdependent.

Copula models are highly effective in such scenarios. In addition to the joint survival

function, three primary reliability functions are frequently employed: the joint

density function, the bivariate hazard rate function, and the bivariate mean residual

life (BMRL) function. While the hazard rate function provides the instantaneous

failure rate, the BMRL function offers insights into the expected remaining lifetime

of components that have survived up to a given time. Kulkarni and Rattihalli

(2002) proposed a nonparametric estimator for BMRL, which, however, suffers from

discontinuity and cannot be evaluated beyond the largest observed failure times,

resulting in significant bias at the extremes. This thesis aims to address these

limitations by developing a smooth, continuous nonparametric estimator for the

BMRL function.

6. The mean inactivity time function (MITF) has important applications in medical

research, forensic science, and reliability theory, particularly in contexts where the

exact time of failure or infection is of interest. Nair and Asha (2008) extended

this concept to the bivariate case, resulting in the bivariate mean inactivity time

function (BMITF). While parametric estimation methods for BMITF exist, they

rely heavily on knowledge of the underlying distribution, a condition that is rarely

met in practice. To the best of our knowledge, there is no nonparametric estimator

for BMITF available in the existing literature. Therefore, the final objective of this

thesis is to develop a new nonparametric estimator for the BMITF.
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Outline of the Dissertation

The dissertation is structured into four thematic parts, comprising a total of seven

chapters. The first part provides a comprehensive introduction, a review of the literature,

and the motivation behind the study. The second part focuses on the construction of new

copulas, discussed in Chapters 2 and 3. The third part is dedicated to the development of

copula-based information measures, covered in Chapters 4 and 5. The final part presents

applications in multivariate lifetime data analysis, with a focus on proposing nonparametric

estimators for two important functions in reliability theory such as the bivariate mean

residual life function and the bivariate mean inactivity time function, discussed in Chapters

6 and 7. A brief outline of each chapter is provided below.

Chapter 1 presents an introduction to the motivation behind this research, along with

a comprehensive overview of the development of copula theory, from the foundational work

of Sklar (1959) to recent advancements. It includes an extensive literature review covering

univariate to multivariate information measures, as well as copula-based information

measures. The chapter concludes with a discussion on bivariate reliability concepts, which

are crucial in bivariate lifetime data analysis.

Chapter 2 introduces a new bivariate symmetric copula that captures both positive

and negative dependence. The proposed copula is mathematically simple, exhibits a

wider dependence range than the FGM copula and its extensions, and does not possess

tail dependence. The maximum attainable value of Spearman’s Rho is approximately

[−0.5866, 0.5866], significantly improving over the [−1/3, 1/3] range of the FGM family. A

bivariate Rayleigh distribution is then constructed using this copula, and its statistical

properties are studied. The utility of the model is demonstrated through the analysis of a

real dataset.

Chapter 3 presents a method for constructing a new class of copulas based on the

probability generating function (PGF) of positive-integer-valued random variables. Several

known copulas are shown to be special cases of this new family. Dependence measures,

tail properties, and random generation algorithms are discussed. Concavity properties,

including Schur and quasi-concavity, are examined. Two generalized FGM-type copulas

derived from the geometric and discrete Mittag-Leffler PGFs are introduced, achieving

viii



improved ranges of Spearman’s Rho up to [−0.33, 0.4751] and [−0.33, 0.9573], respectively.

Real data applications are provided to illustrate practical utility.

Chapter 4 introduces the multivariate cumulative copula entropy (CCE) and ex-

plores its theoretical properties, including bounds and convergence. A cumulative copula

information-generating function is defined and evaluated for several well-known copula

families. A fractional generalization of CCE is also proposed. A nonparametric estimator

for CCE is developed using the empirical beta copula. Furthermore, a new copula-based

divergence measure is introduced via Kullback–Leibler divergence, and a corresponding

goodness-of-fit test is formulated. The practical effectiveness of the measure is demon-

strated through a copula selection procedure applied to real datasets.

Chapter 5 extends the framework from Chapter 4 by incorporating Tsallis entropy, a

non-additive entropy measure that allows greater flexibility in modelling uncertainty. The

cumulative copula Tsallis entropy is introduced, and its properties and bounds are derived.

A nonparametric version is developed and validated using simulated data from coupled

periodic and chaotic maps. The chapter also extends Kerridge’s inaccuracy measure and

KL divergence to the cumulative copula framework. Building on the relationship between

KL divergence and mutual information, a cumulative mutual information (CMI) measure

is proposed. A statistical test based on CMI is developed to assess mutual independence

among random variables. Finally, the use of CMI as an economic indicator is demonstrated

through analysis of real bivariate financial time series data.

Chapter 6 proposes a smooth nonparametric estimator for the bivariate mean residual

life (BMRL) function and establishes its consistency. The proposed estimator addresses

the limitations of the existing estimator by Kulkarni and Rattihalli (2002), particularly

near the extremes of the data range. Simulation studies compare the performance of both

estimators. The chapter concludes with the analysis of a bivariate warranty dataset, where

the BMRL function is computed under four proposed warranty policies, highlighting the

practical value of the estimator in warranty policy formulation.

Chapter 7 introduces a novel nonparametric estimator for the bivariate mean inactivity

time function (BMITF), a concept with applications in medical and forensic studies.

The asymptotic properties of the estimator, including bias, consistency, and asymptotic

normality, are established. The estimator’s performance is assessed through extensive
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simulation studies across various bivariate models. Finally, a real dataset related to pink

eye disease is analyzed demonstrating the practical applicability of the method.
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1
C h a p t e r

Introduction and Review of the
Literature

This chapter outlines various definitions and properties of copula theory and presents a

literature review, tracing the development of copulas from the foundational work of Sklar

(1959) to recent advancements that highlight their significance in multivariate dependence

modelling. This chapter also discusses an overview of various information measures used

to quantify uncertainty in stochastic systems, extending from univariate to multivariate

settings. The chapter concludes with a discussion on the foundational concepts of bivariate

reliability theory, which are crucial in the analysis of bivariate lifetime data.

1.1 Introduction

Many real-world phenomena involve complex relationships, and understanding the

dependencies between variables and the uncertainty in those dependencies is crucial across

diverse fields like finance, engineering, insurance, healthcare, and agriculture. In these

disciplines, multivariate data are commonly encountered, and probability distributions

play a key role in modelling such data. While the assumption of independence is often

made for simplicity, it is rarely valid in real-world scenarios.

For instance, studying cancer progression requires considering multiple covariates, such

as age, immune response, and tumour size, which are inherently dependent. Moreover,
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these covariates may follow different probability distributions; for example, tumour size

may follow a log-normal distribution, while age may follow a geometric distribution.

Hence, a flexible probabilistic framework is needed to accommodate different marginal

distributions while accurately modelling their joint probability law.

The multivariate Gaussian distribution is one of the most commonly used multivariate

distributions, with its marginals being univariate Gaussian distribution. However, it has

significant limitations for practical applications. In multivariate lifetime data, for example,

we often require multivariate extensions of various lifetime distributions, where marginal

distributions may differ. Moreover, the multivariate Gaussian distribution primarily models

linear dependencies and exhibits weak tail dependence, making it unsuitable for scenarios

with strong tail dependencies.

In literature, some attempts are made to construct multivariate distributions (see,

for example, Marshall and Olkin (1967), Clayton (1978), Olkin and Liu (2003) and

Mirhosseini et al. (2015). However, these distributions are constructed based on specific

properties and lack the flexibility to model a wide variety of multivariate datasets. To

address these limitations, copulas, introduced by Sklar (1959), provide a powerful tool

for constructing joint probability distributions. Copulas allow for modelling dependence

structures separately from marginal distributions, offering flexibility in capturing nonlinear

relationships and strong tail dependencies. They facilitate scale-free dependence modelling,

making them particularly well-suited for applications requiring robust multivariate analysis.

Although copulas were introduced in the late 1950s, their widespread utility didn’t

occur until the early 2000s. While some researchers implicitly used copulas in multivariate

analysis, their explicit application and recognition only became prominent in the 21st

century. The Gaussian copula, derived from the multivariate normal distribution, is a

common choice, particularly in finance. However, its limitations became strikingly clear

during the 2008 Global Financial Crisis. The misapplication of the Gaussian copula in risk

modelling led to a significant underestimation of dependencies between assets in diversified

portfolios. Critically, it failed to adequately capture increased tail dependence, resulting in

a severe underestimation of risk exposure (see Salmon (2009) and MacKenzie and Spears

(2012)). This gained significant attention among many researchers to develop more flexible

copula families capable of capturing nonlinear dependencies and strong tail dependence,

addressing the shortcomings of the Gaussian copula. Currently, copulas are widely used

2
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not just in finance but also in diverse fields like insurance, medicine, engineering, and

agriculture, wherever the modelling of complex dependencies is crucial. The following

section discusses a brief literature review of copulas, tracing their development from Sklar’s

foundational work to more recent advancements. This review will highlight how copulas

have become a powerful tool for dependence modelling.

1.2 Modelling Dependence with Copulas: A Literature Review

The word copula is a Latin word meaning “link” or “connection”. As its meaning

suggests, in probability and statistics, copulas are functions that link multivariate distri-

butions to their respective univariate marginal distributions. The theory of copulas can be

viewed as a multivariate extension of the well-known probability integral transformation

theorem, as stated below.

Theorem 1.2.1. Let X be an absolutely continuous random variable with cumulative
distribution function (CDF) F (·). Then, the transformed random variable U = F (X)

follows a standard uniform distribution, i.e., U ∼ U(0, 1).

Now, we take a look at the history behind the motivation of copula theory. In the

late 1950s, A. Sklar and B. Schweizer actively worked on probabilistic metric spaces.

They submitted their work Schweizer and Sklar (1958) to M.Fréchet, who accepted it

but posed a fundamental question: Is there a way to determine the relationship between

a multivariate distribution and its univariate marginals? Sklar (1959) addressed this

question by extending the probability integral transformation theorem, leading to what is

now known as Sklar’s Theorem, the foundation of copula theory. The theorem is formally

stated as follows.

Theorem 1.2.2 (Sklar’s Theorem). Let H be the joint CDF of a p-dimensional random
vector with marginal CDFs F1, F2, . . . , Fp. Then, there exists a function, called a copula,
C, such that

H(x1, x2, . . . , xp) = C(F1(x1), F2(x2), . . . , Fp(xp)), for every (x1, x2, . . . , xp) ∈ R̄, (1.1)

where R̄ is the extended real line [−∞, ∞]. If the marginal CDFs Fi for i = 1, 2, . . . , p are
absolutely continuous, then the copula C is uniquely determined. Otherwise, it is uniquely

3
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determined on the set range(F1) × range(F2) × · · · × range(Fp), where range(F ) denotes
the range of F . Conversely, if F1, F2, . . . , Fp are univariate CDFs and C is a copula
function, then the function H defined in Eq. (1.1) is a valid joint CDF corresponding to a
p-dimensional random vector with marginal CDFs F1, F2, . . . , Fp.

Sklar’s theorem can be proved in various approaches. Among these, the probabilistic

approach is an extension of the proof of the probability integral transformation. For more

details, we refer to the book of Durante and Sempi (2016).

Let H be the joint CDF of a random vector of dimension p, where each marginal CDF

is given by F1, F2, . . . , Fp. Then, the underlying copula can be obtained as

C(u1, u2, . . . , up) = H
(
F

[−1]
1 (u1), F

[−1]
2 (u2), . . . , F [−1]

p (up)
)

, (1.2)

where F
[−1]
i denotes the quasi-inverse of Fi and is defined by

F
[−1]
i (u) = sup {x : Fi(x) ≤ u} = inf {x : Fi(x) ≥ u} , i = 1, 2, . . . , p.

Now, we proceed to define the copula function. In a probabilistic sense, a copula function

is simply the joint CDF of a p-dimensional random vector, where each marginal component

follows a standard uniform distribution. That is,

C(u) = P (U1 ≤ u1, U2 ≤ u2, . . . , Up ≤ up),

where u = (u1, u2, . . . , up) and

P (Uj ≤ uj) = uj, for j ∈ {1, 2, . . . , p} and 0 ≤ uj ≤ 1.

Now, we present the formal definition of a p-dimensional copula. For convenience, let us

denote I = [0, 1].

Definition 1.2.3. A function C : Ip → I is called a p-dimensional copula if it satisfies
the following conditions:

(i) For every u ∈ Ip, if any component of u is zero, then C(u) = 0.

(ii) For every u ∈ Ip, and for a fixed i ∈ {1, 2, . . . , p}, if all components uj satisfy uj = 1

except ui (i.e., uj = 1 for all j ̸= i, j = 1, 2, . . . , p), then

C(u) = ui.

4
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(iii) For any two vectors u1 = (u1,1, u1,2, . . . , u1,p) and u2 = (u2,1, u2,2, . . . , u2,p) in Ip, if
u1,i ≤ u2,i for every i ∈ {1, 2, . . . , p}, then

∆u2,p
u1,p

∆u2,p−1
u1,p−1 · · · ∆u2,1

u1,1C(u) ≥ 0,

where ∆ represents the first-order difference operator.

Conditions (i) and (ii) are known as the boundary conditions, while condition (iii)

is referred to as the p-increasing property of a copula. For the special case of p = 2,

the 2-increasing property simplifies to

∆u2
u1∆v2

v1C(u, v) = C(u2, v2) − C(u1, v2) − C(u2, v1) + C(u1, v1) ≥ 0,

for all u1 ≤ u2 and v1 ≤ v2 with u1, u2, v1, v2 ∈ I. For more details one can refer to the

books of Nelsen (2006), Trivedi et al. (2007), Durante and Sempi (2016), Hofert et al.

(2018) and the survey paper of Schweizer (1991). Kim et al. (2011) and Segers et al. (2017)

showed that if a function f : Ip → I is infinitely differentiable on Ip, then f is p-increasing

if and only if
∂pf(u)

∂u1 ∂u2 . . . ∂up

≥ 0

for every u ∈ Ip.

Like Jordan’s decomposition theorem for distribution functions, any p-dimensional

copula C can be decomposed as

C(u) = A(u) + S(u),

where

A(u) =
∫ u1

0

∫ u2

0
· · ·

∫ up

0

∂pC(v1, v2, . . . , vp)
∂v1 ∂v2 . . . ∂vp

dv1 dv2 . . . dvp

is the absolutely continuous component of C, and

S(u) = C(u) − A(u)

is the singular component of C. A copula C is said to be absolutely continuous if S(u) = 0,

that is, C(u) = A(u) almost everywhere in Ip. Similarly, C is said to be singular if

A(u) = 0, that is, almost everywhere in Ip.
5
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Definition 1.2.4. Let C be a p-dimensional copula. If C is absolutely continuous, then
the copula density is defined as

c(u) = ∂pC(u1, u2, . . . , up)
∂u1 ∂u2 . . . ∂up

, (1.3)

for every u ∈ Ip.

It is worth noting that for every p-dimensional copula C, there exist many cases where

the copula density may not exist, at least for some values in Ip. For example, consider the

copula

C(u1, u2) = min{u1, u2},

which does not possess a copula density at the point u1 = u2.

Theorem 1.2.5. Let X = (X1, X2, . . . , Xp) be a p-dimensional random vector with joint
CDF H(x). Suppose that each marginal CDF Fi(xi) of Xi, for i = 1, 2, . . . , p, is continuous
and has a density function fi(xi). If H is absolutely continuous, then the joint density
function h(x) of X can be expressed as

h(x) = c (F1(x1), F2(x2), . . . , Fp(xp))
p∏

i=1
fi(xi), (1.4)

where c is the copula density corresponding to the random vector X.

From the above theorem, we can infer that the joint density function of a random vector

can be decomposed into two components: the marginal densities and the copula density

function, which is independent of the marginal distributions. This decomposition highlights

the importance of copulas in dependence modelling. Similar to Sklar’s theorem for joint

distribution functions, an alternative version exists for joint survival functions. The

theorem is stated below.

Theorem 1.2.6 (Sklar’s Theorem for Survival Functions). Let X = (X1, X2, . . . , Xp)

be a p-dimensional random vector with joint survival function H̄, where

H̄(x1, x2, . . . , xp) = P (X1 > x1, X2 > x2, . . . , Xp > xp).

For each component of X, the marginal survival function is defined by F̄i(xj) = P (Xi > xi),
i = 1, 2, . . . , p. Then, there exists a function, called the survival copula Ĉ, such that

H̄(x1, x2, . . . , xp) = Ĉ(F̄1(x1), F̄2(x2), . . . , F̄p(xp)), for all (x1, x2, . . . , xp) ∈ Rp. (1.5)
6
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If the marginal survival functions F̄i for i = 1, 2, . . . , p are absolutely continuous, then
the survival copula Ĉ is uniquely determined. Otherwise, it is uniquely determined on the
set range(F̄1) × range(F̄2) × · · · × range(F̄p). Conversely, if F̄1, F̄2, . . . , F̄p are univariate
survival functions and Ĉ is a survival copula, then the function H̄ defined in Eq. (1.5)
is a valid joint survival function corresponding to a p-dimensional random vector with
marginal survival functions F̄1, F̄2, . . . , F̄p.

Remark 1.2.7. Let X = (X1, X2, . . . , Xp) be a p-dimensional random vector whose
dependence structure is captured by the copula C. Let Ĉ be the corresponding survival
copula. Then, C and Ĉ satisfy the relation

Ĉ(u) =
∑

N⊆{1,...,p}
(−1)|N |C

(
(1 − u1)I(1∈N), . . . , (1 − up)I(p∈N)

)
, (1.6)

for every u ∈ Ip, where the summation extends over all 2p subsets of {1, . . . , p}, |N |

denotes the number of elements in N , and I(n ∈ N) is the indicator function of n ∈ N .
For p = 2, Eq. (1.6) simplifies to

Ĉ(u1, u2) = u1 + u2 − 1 + C(1 − u1, 1 − u2). (1.7)

Remark 1.2.8. Let U = (U1, U2, . . . , Up) be a p-dimensional random vector where each
component follows a standard uniform distribution. Let

C̄(u) = P (U1 > u1, U2 > u2, . . . , Up > up)

denote the joint survival function. Then, for every u = (u1, u2, . . . , up) ∈ Ip, the survival
copula satisfies

C̄(u) = Ĉ(1 − u1, 1 − u2, . . . , 1 − up). (1.8)

1.2.1 Properties

In this subsection, we present some important properties of copulas, which are discussed

in the following theorems. For proofs and further details, we refer to the books of Nelsen

(2006), Durante and Sempi (2016), and Hofert et al. (2018).

Theorem 1.2.9 (Bounds). For any p-dimensional copula C, the following inequality
holds:

W (u) ≤ C(u) ≤ M(u), (1.9)
7
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for every u ∈ Ip, where

W (u) = max {u1 + u2 + · · · + up − p + 1, 0} ,

M(u) = min{u1, u2, . . . , up}.

It is important to note that M(u) is a valid copula for any p, whereas W (u) is a valid copula

only when p = 2. These bounds are known as the Fréchet–Hoeffding bounds, where W (u)

is called the Fréchet–Hoeffding lower bound, and M(u) is called the Fréchet–Hoeffding
upper bound, sometimes also referred to as the minimum copula.

Theorem 1.2.10 (Uniform Continuity). Let C be a p-dimensional copula. Then, for
every two vectors u1, u2 ∈ Ip, we have

|C(u1) − C(u2)| ≤
p∑

i=1
|u2,i − u1,i| .

That is, C is uniformly continuous on Ip.

Theorem 1.2.11 (Convergence). Let {Cn : n ∈ N} be a sequence of copulas of the
same dimension. If Cn converges pointwise to a function C as n → ∞, then C is a valid
copula. Furthermore, if Cn converges to C pointwise as n → ∞, then Cn also converges to
C uniformly.

Theorem 1.2.12 (Rank Invariance Property). Let X = (X1, X2, . . . , Xp) be a contin-
uous p-dimensional random vector. For every j = 1, 2, . . . , p, let hj be a strictly increasing
function defined on the range of Xj. Then, the copula corresponding to X is identical to the
copula corresponding to the transformed random vector Y = (h1(X1), h2(X2), . . . , hp(Xp)).

Theorem 1.2.13 (Existence of Partial Derivatives). Let C be a p-dimensional copula.
Then, for almost every u ∈ Ip, the partial derivative ∂C(u)

∂ui
exists and satisfies ∂C(u)

∂ui
∈ I,

for every i = 1, 2, . . . , p.

Theorem 1.2.14 (Schweizer (1991)). Let X = (X1, X2) be a bivariate continuous random
vector with joint CDF H and copula C. Then

(a) If X1 is almost surely an increasing function of X2, then C(u1, u2) = M(u1, u2) =

min{u1, u2}.
(b) If X1 is almost surely a decreasing function of X2, then C(u1, u2) = W (u1, u2) =

max{u1 + u2 − 1, 0}.
(c) If X1 and X2 are independently distributed, then C(u1, u2) = u1u2.

8
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1.2.2 Compendium of Copulas

Here, we present some well-known bivariate and multivariate copulas from the litera-

ture.

Example 1.2.1 (Product Copula). Let X1, X2, . . . , Xp be p independent random vari-
ables. The copula corresponding to the independent case is called the product copula,
denoted by Π(u), and is given by

Π(u) =
p∏

i=1
ui = u1u2 . . . up. (1.10)

Example 1.2.2 (Gaussian Copula). Let X = (X1, X2, . . . , Xp) be a p-dimensional
random vector following a multivariate Gaussian distribution with zero mean vector and
correlation matrix ρ, i.e., X ∼ Np(0, ρ). The correlation matrix ρ = [ρi,j ] satisfies |ρi,j| < 1

for every i ̸= j and ρi,j = 1 if i = j. The copula associated with the multivariate Gaussian
random vector is called the Gaussian copula and is given by

C(u) = Φρ

(
Φ−1(u1), Φ−1(u2), . . . , Φ−1(up)

)
, (1.11)

where Φρ is the joint CDF of a standard multivariate Gaussian distribution with correlation
matrix ρ, and Φ−1 is the inverse CDF of the standard Gaussian distribution. Note that
the Gaussian copula, also referred to as the normal copula, allows for both positive and
negative dependence between variables. However, a key limitation of the Gaussian copula
is that it is useful only when the data exhibit linear dependence.

Example 1.2.3 (FGM Copula). Eyraud (1936), Morgenstern (1956), Gumbel (1960),
and Farlie (1960) introduced a bivariate family of distributions. The copula corresponding
to this bivariate distribution was later rediscovered and is now popularly known as the
FGM (Farlie-Gumbel-Morgenstern) copula, given by

C(u1, u2) = u1u2 + δ(u1 − u2
1)(u2 − u2

2), (1.12)

where δ ∈ [−1, 1] is the copula parameter. The FGM copula is widely used for modelling

bivariate data exhibiting both positive and negative dependence. However, it only captures

weak dependence, as it is limited to low values of Spearman’s Rho and Kendall’s Tau

correlation coefficients. Due to this limitation, many researchers have proposed FGM-type

copulas to improve the correlation coefficient. For references, see Huang and Kotz (1999),
9
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Bairamov and Kotz (2002), Bekrizadeh et al. (2015), and Chesneau (2022). A multivariate

extension of the FGM copula is also available in the literature; see Nelsen (2006) and

Nadarajah et al. (2017) for further details.

Example 1.2.4 (Marshall-Olkin Copula). Marshall and Olkin (1967) proposed a
bivariate exponential distribution, and the copula corresponding to this distribution is
known as the Marshall-Olkin copula. It is defined as

C(u1, u2) =


u1−α1

1 u2, if uα1
1 ≥ uα2

2 ,

u1u
1−α2
2 , if uα1

1 < uα2
2 ,

where α1, α2 ∈ [0, 1]. This copula is widely used in bivariate shock modelling.

In literature, a wide variety of copulas available. The review article of Nadarajah

et al. (2017) discussed most of the existing copulas in the literature. One of the popular

family of copulas is called Archimedean copula, which was discussed by Genest and

Mackay (1986). The copula is constructed via a function called Archimedean generator.

Archimedean generator is a function φ : I → (0, ∞) is convex strictly decreasing continuous

function with φ(1) = 0 and φ(0) ≤ ∞. Using Archimedean generator φ, one can construct

a family of the bivariate copula, called Archimedean copula, as

C(u1, u2) = φ(−1) [φ(u1) + φ(u2)] , ∀u1, u2 ∈ I, (1.13)

where the pseudo-inverse function, φ(−1), defined by

φ(−1) (s) =

 φ−1 (s) , if 0 ≤ s ≤ φ(0),

0, if φ(0) ≤ s ≤ ∞.
(1.14)

If the generator satisfies φ(0) = ∞, the Archimedean copula is called a strict Archimedean
copula; otherwise, it is referred to as a non-strict Archimedean copula. The Archimedean

copula can also be extended to higher dimensions in a similar manner (Nelsen, 2006,

p. 151). A total of 22 bivariate copulas belonging to this family are reported in the book

of Nelsen (2006). Some of the most popular copulas in this family are discussed below.

Example 1.2.5 (Clayton Copula). If the generator is given by

φ(z) = z−δ − 1
δ

, δ ∈ (−1, ∞) \ {0},

10
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then the corresponding copula is the Clayton copula, given by

C(u1, u2) =
(
max

{
u−δ

1 + u−δ
2 − 1, 0

})−1/δ
.

This copula was introduced by Clayton (1978).

Example 1.2.6 (Gumbel-Hougaard Copula). If the generator is given by

φ(z) = (− log z)δ, δ ≥ 1,

then the corresponding copula is the Gumbel-Hougaard copula, given by

C(u1, u2) = exp
{

−
(
(− ln u1)δ + (− ln u2)δ

)1/δ
}

.

This copula was introduced by Gumbel (1960) and Hougaard (1984).

Example 1.2.7 (Frank Copula). If the generator is given by

φ(z) = − log
(

e−δz − 1
e−δ − 1

)
, δ ∈ R,

then the corresponding copula is the Frank copula, given by

C(u1, u2) = −1
δ

ln
(

1 + (e−δu1 − 1)(e−δu2 − 1)
e−δ − 1

)
, δ ∈ R.

This copula was introduced by Frank (1979).

Now, we will discuss a characterization theorem for Archimedean copulas. For more

details, see Drouet Mari and Kotz (2001).

Theorem 1.2.15 (Characterization of Archimedean Copula). A bivariate copula C

is Archimedean if and only if there exists a function δ : (0, 1) → (0, ∞) satisfying

Cu1(u1, u2)
Cu2(u1, u2)

= δ(u1)
δ(u2)

, (1.15)

for every u1, u2 ∈ I, where Cui
(u1, u2) = ∂C(u1,u2)

∂ui
, for i = 1, 2. The generator of C (up to

a constant) is given by φ(z) =
∫ 1

z δ(t) dt.

11
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1.2.3 Random Number Generation

We now discuss how to generate random numbers from a given bivariate copula. The

following algorithm illustrates the procedure for generating random numbers from a given

copula C.

Step 1: Generate two independent random numbers, u1 and v, from the uniform distribution

on I.

Step 2: Determine u2 as the solution to the equation ∂C(u1,u2)
∂u1

= v.

Step 3: The generated sample from the copula is then given by (u1, u2).

This algorithm is called the conditional distribution method. To generate a random

sample from a bivariate distribution with marginal CDFs F1 and F2, we apply the inverse

transform method. Specifically, after obtaining (u1, u2) from the above algorithm, we

compute

xi = F −1
i (ui), i = 1, 2.

The resulting pair (x1, x2) follows the desired bivariate distribution with the specified

marginals and copula structure. The multivariate extension is discussed in Hofert et al.

(2018).

1.2.4 Dependence Measures

Copula functions have been widely used for modelling dependence between random

variables since they allow the separation of the dependence effect from the effects of the

marginal distributions. In literature, there are various measures of dependence are available

to measure the dependence structure captured by the copula. Some of the important

dependence measures were discussed in this subsection.

1.2.4.1 Measures of Association

Karl Pearson’s correlation coefficient is one of the most commonly used measures for

quantifying the dependence between two random variables. However, it fundamentally

assumes a linear relationship between the variables, an assumption that often does not

hold in real-world data. To address this limitation, rank-based correlation measures such

as Kendall’s Tau and Spearman’s Tau have gained prominence, particularly in the context

of copula-based dependence modelling (see Nelsen (2006), Hofert et al. (2018)). These
12
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measures are invariant under strictly monotonic transformations and depend only on the

ranks of the data, not their actual values.

Both Kendall’s Tau and Spearman’s rho range from −1 to 1, where negative values

indicate negative dependence and positive values indicate positive dependence. Beyond

these two, the literature also offers several other rank-based dependence measures, including

Gini’s Gamma coefficient, Spearman’s Footrule coefficient (see Nelsen (2006)), and Blest’s

measure of rank correlation (see Genest and Plante (2003)).

Let C(u1, u2) be the copula function associated with the random variables X1 and

X2. Several important measures of dependence can be expressed directly in terms of the

copula function, as discussed below.

• Spearman’s Rho

ρc = 12
∫ 1

0

∫ 1

0
C(u1, u2) du1 du2 − 3. (1.16)

• Kendall’s Tau

τc = 4
∫ 1

0

∫ 1

0
C(u1, u2) dC(u1, u2) − 1

= 1 − 4
∫ 1

0

∫ 1

0

∂

∂u1
C(u1, u2)

∂

∂u2
C(u1, u2) du1 du2. (1.17)

• Gini’s Gamma Coefficient

γc = 4
{∫ 1

0
C(u, 1 − u) du −

∫ 1

0
(u − C(u, u)) du

}
. (1.18)

• Spearman’s Footrule

ϕc = 6
∫ 1

0
C(u, u) du − 2. (1.19)

• Blest’s Measure of Rank Correlation

ηc = 24
∫ 1

0

∫ 1

0
(1 − u1) C(u1, u2) du1 du2 − 2. (1.20)

Theorem 1.2.16 (Nelsen (2006)). Let C be a bivariate Archimedean copula with generator
function φ(s). Then, Kendall’s Tau for C is given by

τC = 1 + 4
∫ 1

0

φ(s)
φ′(s)ds. (1.21)

Blomqvist’s medial correlation coefficient, proposed by Blomqvist (1950), is another

measure of association based on the median of two random variables. This measure is
13
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robust to outliers and skewed data. If C is a bivariate copula, then Blomqvist’s medial

correlation coefficient, denoted by βC , is defined as

βC = 4C
(1

2 ,
1
2

)
− 1. (1.22)

Like Kendall’s Tau and Spearman’s Rho, Blomqvist’s Beta has a range of [−1, 1], with

similar interpretations for positive and negative dependence.

It is worth noting that these rank-based correlations can be extended to higher

dimensions. Nelsen (2002) discussed the multivariate extension of Spearman’s Rho and

Kendall’s Tau. More recently, Bedő and Ong (2016) proposed two asymmetric versions of

Spearman’s Rho that generalize the bivariate case given in Eq. (1.16). Additionally, Úbeda-

Flores (2005) introduced multivariate versions of Spearman’s Footrule and Blomqvist’s

medial correlation coefficient, while Behboodian et al. (2007) provided the expression for

Gini’s Gamma coefficient in higher dimensions.

1.2.4.2 Quadrant Dependence

Two random variables X1 and X2 are said to be positively quadrant dependent (PQD)

if

P (X1 ≤ x1)P (X2 ≤ x2) ≤ P (X1 ≤ x1, X2 ≤ x2), ∀x1, x2 ∈ R. (1.23)

Equivalently,

P (X1 > x1)P (X2 > x2) ≥ P (X1 > x1, X2 > x2), ∀x1, x2 ∈ R. (1.24)

Negative quadrant dependence (NQD) is defined by reversing the inequalities in Eqs. (1.23)

and (1.24). Quadrant dependence is an important concept in reliability studies, particularly

for modelling the failure time of two dependent components in a system (see Barlow and

Proschan (1975), Lai and Balakrishnan (2009)).

The concept of PQD can also be defined in terms of copulas. A bivariate copula C

exhibits the PQD property if

Π(u1, u2) ≤ C(u1, u2), ∀u1, u2 ∈ I, (1.25)

where Π(u1, u2) = u1u2 is the product copula.

Conversely, if

Π(u1, u2) ≥ C(u1, u2), ∀u1, u2 ∈ I, (1.26)

then the copula is said to have the NQD property.
14
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It is important to note that quadrant dependence for the random variables X1 and

X2 with underlying copula C is equivalent to the corresponding copula-based quadrant

dependence.

The notion of quadrant dependence can be extended to higher dimensions, where

it is referred to as orthant dependence. However, the equivalent conditions defined in

Eqs. (1.23) and (1.24) do not hold in the same way in higher dimensions. Similar to

quadrant dependence, orthant dependence can also be expressed in terms of copulas.

Let C be a p-dimensional copula, and let C̄ be the corresponding joint survival function

of C, as defined in Eq. (1.6), associated with a multivariate random vector X. Then, X is

said to be positively lower orthant dependent (PLOD) if

Π(u) ≤ C(u), ∀u ∈ Id. (1.27)

Similarly, X is said to be positively upper orthant dependent (PUOD) if
d∏

i=1
(1 − ui) ≤ C̄(u), ∀u ∈ Id. (1.28)

If the inequalities in Eqs. (1.27) and (1.28) are reversed, then X is said to be negatively

lower orthant dependent (NLOD) and negatively upper orthant dependent (NUOD),

respectively.

1.2.4.3 Total Positivity of Order 2 (TP2) Property

A bivariate function G(x, y) is said to be totally positive of order 2 (TP2) if

G(x1, y1)G(x2, y2) ≥ G(x1, y2)G(x2, y1), for every x1 < x2, y1 < y2 in R.

Holland and Wang (1987) provided a sufficient condition: if the first-order partial derivatives

of G(x, y) exist almost everywhere in R2 and are continuous, then G(x, y) satisfies the

TP2 property if

ζG(x, y) = ∂2 ln G(x, y)
∂x∂y

≥ 0, ∀(x, y) ∈ R2.

The TP2 property is one of the strongest dependence measures for a bivariate copula, as it

implies positive quadrant dependence (PQD), left-tail decreasing (LTD), and left-corner

set decreasing (LCSD) dependency properties.

Moreover, if a copula density c(u1, u2) satisfies the TP2 property, then the associated

copula C(u1, u2) exhibits stochastic increasing (SI) and right-tail increasing (RTI) proper-

ties in addition to LTD, LCSD, and PQD. A copula density with the TP2 property is also
15
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referred to as positive likelihood ratio dependent (PLRD). For more details, see Nelsen

(2006), Drouet Mari and Kotz (2001), Karlin (1968), and Joe (1997).

The notion of TP2 for higher dimensions can be defined similarly and is discussed in

Nelsen (2006).

1.2.4.4 Tail Dependence Coefficients

The tail dependence coefficients measure the level of dependence between random

variables in the upper-right and lower-left quadrants of I2. In terms of copulas, the upper

and lower tail dependence coefficients, denoted by λC
U and λC

L , respectively, are given by

λC
L = lim

u→0+

C(u, u)
u

, λC
U = 2 − lim

u→1−

1 − C(u, u)
1 − u

. (1.29)

It is known that 0 ≤ λC
L ≤ 1 and 0 ≤ λC

U ≤ 1. If λC
L ∈ (0, 1], the copula C(u1, u2) exhibits

lower tail dependence; if λC
L = 0, the copula has no lower tail dependence. A similar

interpretation holds for λC
U (see Nelsen (2006), p. 214).

Tail dependence coefficients play a crucial role in financial risk management, particularly

in modelling extreme co-movements of asset returns (see Cherubini et al. (2004), Salmon

(2009), and MacKenzie and Spears (2012)).

Recently, Pettere et al. (2018) generalized the concept of tail dependence to higher

dimensions. The following theorem characterizes the tail dependence of Archimedean

copulas using their generator function φ.

Theorem 1.2.17 (Nelsen (2006)). Let C be a bivariate Archimedean copula with generator
function φ. Then

λC
L = lim

u→∞

φ(−1)(2u)
φ(−1)(u) ,

λC
U = 2 − lim

u→0+

1 − φ(−1)(2u)
1 − φ(−1)(u) ,

where φ(−1)(·) denotes the pseudo-inverse of φ, as defined in Eq. (1.14).

1.2.5 Weighted Arithmetic and Geometric Mean of Copulas

Let C1, C2, . . . , Cn be n copulas of dimension p. The weighted arithmetic mean (WAM)

of these copulas is defined as

CΣ(u) =
n∑

i=1
αiCi(u), (1.30)

for every u ∈ Id, where the weights αi satisfy αi ∈ I and ∑n
i=1 αi = 1.
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It is straightforward to verify that the CΣ is a valid copula. In a similar way, we can

define weighted geometric mean (WGM) as

CΠ(u) =
n∏

i=1
Ci(u)αi , where αi ∈ I and

n∑
i=1

αi = 1. (1.31)

Cuadras (2009) proved that the WGM of two bivariate copulas may or may not be

a copula. Recently, Diaz and Cuadras (2022)) showed that the WGM of two extended

Gumbel-Barnett copulas is also a copula. Zhang et al. (2013) proved that the WGM of

two bivariate copulas C1 and C2 is a copula if C1 and C2 has TP2 property.

1.2.6 Convexity and Concavity Properties of Copulas

In this subsection, we discuss a certain family of copulas that exhibit convexity and

concavity properties.

Definition 1.2.18. A bivariate copula C is said to be convex if

C(αs1 + (1 − α)t1, αs2 + (1 − α)t2) ≤ αC(s1, s2) + (1 − α)C(t1, t2)

and is said to be concave if

C(αs1 + (1 − α)t1, αs2 + (1 − α)t2) ≥ αC(s1, s2) + (1 − α)C(t1, t2)

for every s1, s2, t1, t2 ∈ I and α ∈ [0, 1].

Durante et al. (2006) proved that the only bivariate copula that is convex is the

Fréchet–Hoeffding lower bound copula, given by

W (u1, u2) = max{u1 + u2 − 1, 0},

and the only bivariate copula that is concave is the Fréchet–Hoeffding upper bound copula,

given by

M(u1, u2) = min{u1, u2}.

Since the convexity and concavity conditions are too restrictive, it is necessary to introduce

weaker versions of these properties. The weaker versions of concavity for bivariate copulas

are called Schur-concavity and quasi-concavity. Schur-concavity is introduced in the

context of majorization ordering, whereas quasi-concavity arises in optimization theory.

Schur-concavity of a bivariate copula is defined as follows.
17
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Definition 1.2.19. A bivariate copula C is said to be Schur-concave if

C(u1, u2) ≤ C(αu1 + (1 − α)u2, (1 − α)u1 + αu2),

for every s, t ∈ I and α ∈ [0, 1].

If the inequality is reversed, the copula is said to be Schur-convex. Durante and

Sempi (2003) showed that the Fréchet–Hoeffding lower bound copula W is the only Schur-

convex copula. Moreover, Durante and Sempi (2003) provided an equivalent condition for

Schur-concavity, stated below.

Theorem 1.2.20 (Durante and Sempi (2003)). Let C be a continuously differentiable
bivariate copula. Then C is Schur-concave if and only if C is symmetric and

∂C(u1, u2)
∂u1

≤ ∂C(u1, u2)
∂u2

, whenever u2 ≤ u1, u1, u2 ∈ I.

Theorem 1.2.21 (Durante and Sempi (2003)). A bivariate copula C is Schur-concave if
and only if its corresponding survival copula Ĉ is Schur-concave.

Theorem 1.2.22 (Durante and Sempi (2003)). Every Archimedean copula is Schur-
concave.

Definition 1.2.23. A bivariate copula C is said to be quasi-concave if

min {C(s1, s2), C(t1, t2)} ≤ C(αs1 + (1 − α)t1, αs2 + (1 − α)t2),

for every s1, s2, t1, t2, α ∈ I.

If the inequality is reversed, the copula is said to be quasi-convex. Similar to the case

of Schur-convex copulas, Alvoni et al. (2007) and Alvoni and Papini (2007) proved that

W = max{u1, u2 − 1, 0} is the only quasi-convex copula. Moreover, Alvoni and Papini

(2007) also showed that if a bivariate copula C is quasi-concave, then it is Schur-concave if

and only if it is symmetric.

1.2.7 Statistical Inference for Copulas

So far, we have discussed the fundamental definitions, properties, and key theorems

of copula functions. Now, we turn our attention to their inferential aspects. Two crucial

aspects must be considered in statistical inference for copulas:
18
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1. Estimation of Copula Function Given a multivariate dataset, how can we

estimate the copula function? Either assuming a known copula function and

estimating the copula parameters or a nonparametric estimator for the copula

function?

2. Goodness-of-Fit Testing: Once a copula model is chosen, how can we assess

its adequacy in representing the dependence structure of the data? This includes

goodness-of-fit tests, which play a critical role in multivariate data analysis. A

special case of this problem is testing for mutual independence among random

variables, i.e., verifying whether the underlying copula is the product copula.

In this subsection, we address these questions and review the relevant literature

on copula estimation and goodness-of-fit testing. We begin by discussing estimation

methods, which are broadly classified into three categories: parametric, semi-parametric,

and nonparametric approaches. Below, we provide a brief review of these methods.

1.2.7.1 Parametric Methods for Estimating Copula Parameters

Let Xi = (Xi,1, Xi,2, . . . , Xi,k), for i = 1, 2, . . . , n, be a random sample of size n drawn

from a p-dimensional random vector X. Assume that the dependence structure among the

components of X is characterized by the absolutely continuous parametric copula C(·; δ)

and copula density c(·; δ), where δ is the copula parameter. Additionally, let the marginal

CDF and PDF of each component be denoted by Fi(·; θi) and fi(·; θi), respectively, where

θi ∈ Θ for i = 1, 2, . . . , p represents the marginal parameters.

The goal is to estimate the parameters (θ1, θ2, . . . , θp, δ) from the given data. Using

Theorem 1.2.5, the log-likelihood function can be expressed as

LL(θ1, θ2, . . . , θp, δ) =
n∑

i=1
log (c (F1(Xi,1; θ1), . . . , Fp(Xi,p; θp); δ)) +

n∑
i=1

p∑
j=1

log (fi(Xi,j; θj)) .

(1.32)

Applying the standard maximum likelihood estimation (MLE) procedure, the unknown

parameters are estimated by maximizing the log-likelihood function. The advantage of

this method is that it provides estimates for both the copula parameters and the marginal

parameters. However, it has two main drawbacks:

1. If the parametric assumptions on the marginal distributions are incorrect, the copula

parameter estimates may be biased.
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2. When the number of marginal parameters or components is large, estimating all

parameters simultaneously becomes computationally challenging.

To improve computational efficiency, the Inference Functions for Margins (IFM)
method is often used. This two-stage estimation procedure is outlined as follows:

1. First, estimate the marginal parameters by maximizing the likelihood function
n∑

i=1
log fi(Xi,j; θj)

for each j = 1, 2, . . . , p.

2. Let θ̂j be the MLE obtained from the above step. Then, estimate the copula

parameter δ by substituting these estimated marginal parameters into the CDF

and maximizing the likelihood function
n∑

i=1
log

(
c
(
F1(Xi,1; θ̂1), . . . , Fp(Xi,p; θ̂p); δ

))
.

Compared to the full MLE procedure, IFM is computationally more efficient. Although

it may have slightly lower efficiency, its performance is generally comparable (see Kim et al.

(2007) and Hofert et al. (2018)). However, similar to standard MLE, the IFM method also

suffers from bias if the marginal CDFs are misspecified.

In addition to classical MLE, Bayesian methods for copula parameter estimation have

also been explored in the literature. Some notable references on Bayesian estimation of

copulas include Shemyakin and Kniazev (2017), Ning and Shephard (2018), and Henderson

et al. (2021).

1.2.7.2 Semi-parametric Methods for Estimating Copula Parameters

As discussed earlier, if any of the marginal CDFs are misspecified in the parametric

approach, the copula parameter estimates may suffer from bias. To address this issue,

a semi-parametric approach estimates the marginal CDFs nonparametrically using the

empirical CDF given by

F̂n,j(x) = 1
n + 1

n∑
i=1

I(Xi,j ≤ x),

for each j = 1, 2, . . . , p and I(·) is the usual indicator function. These nonparametric

estimates are then substituted into the likelihood function, and the copula parameter δ is

estimated by maximizing the pseudo-likelihood function
n∑

i=1
log

(
c
(
F̂n,1(Xi,1), . . . , F̂n,p(Xi,p); δ

))
.
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This method is referred to as the maximum pseudo-likelihood method.

Another widely used semi-parametric approach is the method of moments. In this

method, copula parameters are estimated by equating sample measures of dependence,

such as Spearman’s rank correlation or Kendall’s Tau, to their corresponding population

values and solving for the parameters. Several authors discussed this approach for copula

parameter estimation (see Genest (1987), Genest and Rivest (1993), Genest and Favre

(2007), Yuan (2018), and Hofert et al. (2018)).

1.2.7.3 Nonparametric Estimation for Copula Functions

If the underlying copula is not specified correctly, subsequent data analysis may yield

incorrect results and misleading conclusions. To overcome the limitations of the parametric

approach, the literature discusses various nonparametric estimators for copula functions.

A common choice is the empirical copula, defined as follows.

Definition 1.2.24 (Empirical Copula). Let X1, X2, . . . , Xn be a random sample of size
n from a p-variate distribution, where Xi = (Xi,1, Xi,2, . . . , Xi,p)T . Let Ri,j be the rank of
the jth component in the ith observation Xi. Then, the empirical copula is defined as

Ĉn(u) = 1
n

n∑
i=1

p∏
j=1

I
(

Ri,j

n + 1 ≤ uj

)
, (1.33)

where I(·) is the usual indicator function.

It is important to note that the empirical copula is not a valid copula, as it may lack

the p-increasing property. However, it is asymptotically a valid copula. The concept of

empirical copulas was first introduced by Deheuvels (1979). The asymptotic validity of

the empirical copula is guaranteed by the following theorem.

Theorem 1.2.25 (Glivenko-Cantelli Theorem for Empirical Copulas). Let Ĉn be
the empirical copula, defined in Eq. (1.33), based on a random sample of size n from a
multivariate population with underlying copula C. Then, as n → ∞,

sup
u∈Ip

∣∣∣Ĉn(u) − C(u)
∣∣∣ → 0, a.s. (1.34)

For further details, see Deheuvels (1979), Kiefer (1961), Shorack and Wellner (2009),

and Janssen et al. (2012). The following theorem discusses the weak convergence of the
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empirical copula process. For more details, see Fermanian et al. (2004), Tsukahara (2005),

and Kojadinovic and Holmes (2009).

Theorem 1.2.26 (Weak Convergence of the Empirical Copula Process). Let C

be a p-dimensional copula. Let L∞(Ip) denote the Banach space of real-valued bounded
functions defined on Ip, equipped with the supremum norm. If C has continuous partial
derivatives for every u ∈ Id, then the empirical process

Zn(u) =
√

n (Cn(u) − C(u))

converges weakly in L∞(Ip) to the tight, centered Gaussian process

Z(u) = Γ(u) −
d∑

i=1
∂iC(u)Γ(ui),

where ∂iC(u) is the i-th partial derivative of C, ui = (1, . . . , 1, ui, 1, . . . , 1) with ui in the
i-th position, and Γ(u) is a tight, centered Gaussian process on Id with covariance function

Σ(u, v) = C(u ∧ v) − C(u)C(v),

where u ∧ v =
(

min(u1, v1), . . . , min(up, vp)
)
.

Since the empirical copula is not a valid copula and can be computationally challenging

for various operations, a better estimator is needed to overcome its limitations. To address

these issues, Sancetta and Satchell (2004) introduced Bernstein copulas using Bernstein

polynomials.

Recall that the Bernstein polynomial approximation for any continuous bounded

function g defined on Ip is given by

gB(x) =
k1∑

α1=0
· · ·

kp∑
αp=0

g

(
α1

k1
, . . . ,

αp

kp

) p∏
j=1

(
kj

αj

)
x

αj

j (1 − xj)kj−αj ,

where k = (k1, k2, . . . , kp) ∈ Np. It is important to note that as ki → ∞ for i = 1, 2, . . . , p,

we have

gB(x) → g(x) for every x ∈ Ip

(see (DeVore and Lorentz, 1993, p. 6)).

Using this approach, Sancetta and Satchell (2004) proposed the Bernstein copula,

defined by
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CB(u) =
k1∑

α1=0
· · ·

kp∑
αp=0

C

(
α1

k1
, . . . ,

αp

kp

) p∏
j=1

(
kj

αj

)
u

αj

j (1 − uj)kj−αj , (1.35)

where C is some valid p-dimensional copula and (k1, k2, . . . , kp) ∈ Np. Furthermore,

Sancetta and Satchell (2004) suggested a nonparametric estimator of the copula function

by replacing C in Eq. (1.35) with the empirical copula Ĉn, which is referred to as the

empirical Bernstein copula. Segers et al. (2017) showed that the empirical Bernstein copula

is a valid copula if and only if the sample size n is divisible by kj for j = 1, 2, . . . , p.

In particular, if k1 = k2 = · · · = kp = n, then the empirical Bernstein copula reduces

to the empirical beta copula, which is defined as follows.

Definition 1.2.27 (Empirical Beta Copula). Let X1, X2, . . . , Xn be a random sample
of size n from a p-variate distribution, where Xi = (Xi,1, Xi,2, . . . , Xi,p)T . Let Ri,j be the
rank of the jth component in the ith observation Xi. Then, the empirical copula is defined
as

Ĉβ
n (u) = 1

n

n∑
i=1

p∏
j=1

n∑
y=Ri,j

(
n

y

)
uy

j (1 − uj)n−y. (1.36)

The empirical beta copula provides a better estimate compared to the empirical copula

in terms of bias and variance (see Segers et al. (2017), Kojadinovic and Yi (2024)) and, in

many cases, even outperforms the empirical Bernstein copula. The analogues of Theorem

1.2.25 and Theorem 1.2.26 are discussed in Janssen et al. (2012) and Segers et al. (2017).

Apart from the empirical Bernstein copula, checkerboard copulas and sparse copulas

have also been studied in the literature as methods to smooth the empirical copula and

provide better approximations. For more details, we refer to the book of Durante and

Sempi (2016). Now, we extend our discussion to the next aspect of inference, namely,

goodness-of-fit tests for copulas.

1.2.7.4 Goodness-of-Fit Test for Copulas

Let X1, X2, . . . , Xn be a random sample of size n from a p-variate distribution with

underlying copula C ∈ CΘ, where CΘ = {Cθ : θ ∈ Θ} is a family of copula functions. We

aim to test the hypothesis

H0 : C ∈ CΘ.
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In the literature, most of the goodness-of-fit tests are based on the empirical copula process,

defined as

Cn =
√

n(Ĉn − C).

Two commonly used test procedures are the Cramér-von Mises (CVM) statistic and the

Kolmogorov–Smirnov (KS) statistic. The CVM statistic is given by

Sn =
∫
Ip
Cn(u)2 du,

while the KS statistic is defined as

Tn = sup
u∈Ip

|Cn(u)|.

Another useful approach for characterizing dependence is based on Kendall’s distri-

bution, which is defined as the distribution of the random variable W = C(U), where

U = (U1, U2, . . . , Up) is a random vector with joint CDF given by the copula function C.

For further details, see Genest and Rivest (1993) and Wang and Wells (2000).

Barbe et al. (1996) showed that the empirical distribution function

K̂n(w) = 1
n

n∑
i=1

1(Ŵi ≤ w), w ∈ I,

is a consistent estimator of the true Kendall distribution function K(w) = P (W ≤ w).

This reformulates the goodness-of-fit test for copulas as

H ′
0 : K ∈ KΘ = {Kθ : θ ∈ Θ}.

The empirical process associated with this approach is given by

Kn =
√

n(K̂n − K).

Using this, the test statistics analogous to CVM and KS are defined as

SK
n =

∫ 1

0
Kn(w)2 dw,

T K
n = sup

w∈I
|Kn(w)|.

All the aforementioned test statistics do not have closed-form expressions for their

limiting distributions under the null hypothesis. As a result, Monte Carlo methods are

employed to compute approximate p-values. The validity of these approaches is discussed

in Genest and Rémillard (2008).
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Apart from these, several bootstrap-based test procedures exist for goodness-of-fit

testing of copulas. For details on existing goodness-of-fit tests, one can refer to Panchenko

(2005), Genest et al. (2009), Kojadinovic et al. (2011).

A special case of the goodness-of-fit test focuses on empirical copula process-based tests

for independence, where the underlying copula is the product copula. The foundational idea

was introduced by Deheuvels (1979). The Cramér–von Mises and Kolmogorov–Smirnov

functionals are widely used for testing mutual independence among random variables.

Moreover, recent advancements using the Möbius decomposition of the empirical copula

process have been shown to improve the power of tests based on the Cramér–von Mises

statistic. For further details, we refer to Genest and Rémillard (2004), Genest et al. (2006),

Kojadinovic and Holmes (2009), Belalia et al. (2017), Herwartz and Maxand (2020), and

Nasri and Remillard (2024). We conclude this section by highlighting several applications

of copulas in the literature, showcasing their potential in modelling multivariate data

analysis across various disciplines.

1.2.8 Applications

Copula theory has numerous real-world applications, particularly in constructing joint

distributions using Sklar’s theorem by incorporating appropriate marginal distributions.

Several studies have focused on developing bivariate distributions using copulas. For

instance, Achcar et al. (2015) used the Farlie-Gumbel-Morgenstern (FGM) copula to

construct a bivariate generalized exponential distribution. Abd Elaal and Jarwan (2017)

derived a bivariate generalized exponential distribution from Plackett and FGM copula

functions, while Kundu and Gupta (2017) studied the bivariate Birnbaum-Saunders

distribution using the Gaussian copula. Additionally, El-Sherpieny et al. (2018) explored

a bivariate Weibull distribution based on the FGM copula, Mondal and Kundu (2020)

proposed a bivariate inverse Weibull distribution using the Marshall-Olkin copula, and

Almetwally and Muhammed (2020) developed a bivariate Fréchet distribution using the

FGM copula.

Beyond distributional modelling, copulas have broad applications in finance, engi-

neering, insurance, and medicine. In finance, Joe (1997) explored copula-based time

series models, while Chen and Fan (2006) studied semiparametric estimation methods

for such models, establishing their
√

n-consistency and asymptotic properties. Simard
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and Rémillard (2015) introduced a copula-based forecasting method for multivariate time

series.

In insurance, Cossette et al. (2013) analyzed a portfolio of dependent risks using the

FGM copula, assuming mixed Erlang-distributed marginals. Sarabia et al. (2018) derived

explicit formulas for the probability density function of collective risk in multivariate mixed

exponential distributions with Archimedean copula dependence. Marri and Moutanabbir

(2022) addressed risk aggregation and capital allocation in dependent risk scenarios,

modelling dependence using a mixed Bernstein copula. Recently, Blier-Wong et al. (2023)

introduced novel representations based on symmetric multivariate Bernoulli distributions

and order statistics, offering new insights into risk aggregation using FGM copulas.

For the last two decades, considerable efforts have been made to develop bivariate

reliability models using copulas. Georges et al. (2001) studied the use of survival copulas in

multivariate lifetime modelling. Kaishev et al. (2007) considered the problem for modelling

the joint reliability function in a competing risk model using copula-based approach.

Zhang and Lam (2016) developed efficient point estimators using copula approach for

engineering applications. Gupta (2016) studied the reliability properties of the FGM

family of bivariate distributions such as hazard rate components, hazard rate of the series

system and the regression mean residual life of a parallel system. Emura et al. (2017)

developed a joint frailty-copula model to study tumour progression and death, introducing

dependency structures within the joint frailty framework. Nair et al. (2018) considered the

bivariate survival copulas for modelling lifetime data. The authors provided the analogues

of reliability function that were expressed in terms of survival copula. Yongjin et al. (2018)

studied the reliability of a parallel system with dependent components and a cold standby

where the dependency was expressed in terms of copula functions. Recently, Sreelakshmi

(2018) introduced the notions of copula-based bivariate reliability concepts using the

dependence structure and provided some characterization results based on bivariate hazard

rate and bivariate mean residual life functions. Jia et al. (2018) formulated the efficiency of

reliability and safety analysis of safety-critical series and parallel systems with dependent

units using copula functions. Ebaid et al. (2020) proposed an FGM-type copula function

and apply that copula function to model the stress-strength reliability with dependent

stress and strength variables.
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Environmental applications also benefit from copula theory. For example, Latif and

Mustafa (2020) used vine copula constructions to analyze flood characteristics, such as

peak, volume, and duration, in the Kelantan River Basin, Malaysia. Similarly, Das et al.

(2020) utilized a copula-based approach to study drought characteristics in relation to

climate indices across the Himalayan states in India.

These examples illustrate the versatility of copula-based methods in capturing depen-

dencies across diverse fields, reinforcing their importance in multivariate data analysis.

1.3 Univariate and Multivariate Information Measures: A Liter-

ature Review

In multivariate data analysis, it is essential to consider not only the dependence

structure among the random variables in a multivariate random vector but also the

information content, i.e., the uncertainty associated with the dependence structure. Various

information measures have been discussed in the literature, ranging from univariate to

multivariate settings. However, the multivariate framework has been relatively less

explored.

This section provides a brief review of the literature on different information measures,

from univariate to multivariate contexts. We begin our discussion with Shannon entropy,

a fundamental measure for quantifying the uncertainty associated with a discrete random

variable.

1.3.1 Shannon Entropy

The concept of entropy was first introduced by Clausius (1850) in the context of the

second law of thermodynamics. Later, Boltzmann (1872) provided a statistical definition

of entropy by linking it to statistical mechanics. Shannon (1948) laid the mathematical

foundation of entropy within the framework of communication theory, and it is now widely

known as Shannon entropy.

In a probabilistic sense, Shannon entropy quantifies the uncertainty associated with

a discrete random variable. Let X be a discrete random variable with probability mass

function (PMF) pi = P (X = xi) for i = 1, 2, . . . , n. The Shannon entropy of X is defined
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as

H(X) = −
n∑

i=1
pi log pi.

Now, consider two discrete random variables X and Y with joint probability mass function

pi,j = P (X = xi, Y = yj), for i, j = 1, 2, . . . , n. The joint Shannon entropy, denoted by

H(X, Y ), is defined as

H(X, Y ) = −
n∑

i=1

n∑
j=1

pi,j log pi,j.

The conditional entropy of Y given X, denoted by H(Y | X), is defined as

H(Y | X) = −
n∑

i=1

n∑
j=1

pi,j log pj|i,

where pj|i = P (Y = yj | X = xi) is the conditional probability of Y = yj given X = xi.

Shannon entropy satisfies several fundamental properties, including:

1. Non-negativity: H(X) is always non-negative and equals zero if X is deterministic.

2. Symmetry: The joint entropy satisfies H(X, Y ) = H(Y, X).

3. Chain Rule: H(X, Y ) = H(X) + H(Y |X).

4. Accumulation: H(X, Y ) ≥ H(X).

Note that when X and Y are independent, the joint entropy satisfies H(X, Y ) = H(X) +

H(Y ), which is known as the additive rule.

Shannon entropy has applications in various fields, including machine learning, reli-

ability theory, physics, chemistry, finance, and complex systems. For a comprehensive

discussion on information theory, we refer to Cover (1999), Ash (2012) and Nair et al.

(2022). Additionally, the role of Shannon entropy in thermodynamics is explored in detail

in the book of Ben-Naim (2008).

The continuous counterpart of Shannon entropy is known as differential entropy (DE),

which is defined for an absolutely continuous random variable with probability density

function (PDF) f(·) as

D(X) = −
∫ ∞

−∞
f(x) log f(x)dx. (1.37)

However, Rao et al. (2004) pointed out certain limitations of DE. The main limitations

are discussed below:

1. Inconsistency: DE can take negative values for certain distributions. For example,

let X be a uniform random variable over (0, θ), θ > 0. If θ < 1, the differential
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entropy is negative; if θ = 1, the entropy is zero; and if θ > 1, the entropy becomes

positive. This inconsistency makes DE difficult to interpret in some cases.

2. Defined only for absolutely continuous distributions: DE is defined only for

distributions that have a density function. However, many real-world distributions

are of mixed type, incorporating both continuous and discrete components. DE is

not applicable in such cases.

3. Challenges in empirical estimation: Approximating DE using empirical dis-

tribution functions is computationally challenging, making it difficult to estimate

from observed data.

Considering these limitations, Rao et al. (2004) proposed an alternative measure called

cumulative residual entropy (CRE). Let F̄ (x) be the survival function of a non-negative

random variable X. Then, CRE is defined as

CR(X) = −
∫ ∞

0
F̄ (x) log F̄ (x)dx.

More generally, if X is any random variable (not necessarily non-negative), CRE can be

defined as

CR(X) = −
∫ ∞

0
P (|X| > x) log (P (|X| > x))dx.

This formulation extends the concept of differential entropy while ensuring its applicability

to both discrete and continuous random variables. An important advantage of CRE is

that it can be estimated directly from sample data, and various asymptotic properties can

be easily established.

On a similar line, Di Crescenzo and Longobardi (2009) introduced the cumulative
entropy (CE) by replacing the probability density function (PDF) f(x) in Eq. (1.37) with

the cumulative distribution function (CDF) F (x). This measure quantifies the uncertainty

in a system’s inactivity time.

1.3.2 Tsallis Entropy

In the context of thermodynamics, when a system is out of equilibrium or its component

states exhibit strong interdependence, non-additive entropy provides a more appropriate

measure for quantifying the uncertainty involved in the system. Tsallis (1988) proposed a

non-additive entropy, commonly known as Tsallis entropy. It is defined for an absolutely
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continuous random variable X with probability density function f(·) as

Tα(X) = −
∫ ∞

−∞
f(x) log[α](f(x)) dx, α ∈ A,

where A = (0, 1) ∪ (1, ∞) and the generalized logarithmic function is given by

log[α](r) = rα−1 − 1
α − 1 , r ≥ 0,

for every α ∈ A. It is to be noted that lim
α→1

log[α](r) = log(x). Consequently, log[α](·) can

be interpreted as a fractional generalization of the standard natural logarithm function.

As a result, Tsallis entropy reduces to Shannon entropy when α → 1. Recently, Rajesh

and Sunoj (2019) generalized the CRE and proposed cumulative residual Tsallis entropy

(CRTE), which is given by

T Rα(X) = −
∫ ∞

0
F̄ (x) log[α](F̄ (x)) dx, α ∈ A.

Similarly, Cal̀ı et al. (2017) proposed the cumulative Tsallis entropy (CTE), which general-

izes the CE introduced by Di Crescenzo and Longobardi (2009). Various applications of

Tsallis entropy and its variants have been discussed in the literature. For more details, we

recommend readers to refer to Cartwright (2014), De Albuquerque et al. (2004), Sparavigna

(2015), Singh et al. (2017), Mohamed et al. (2022), Toomaj and Atabay (2022), and the

references therein. Apart from Tsallis entropy, various generalizations of Shannon entropy

have been proposed in the literature. For more details, we refer to Rényi (1961), Varma

(1966), Di Crescenzo and Longobardi (2006), Mathai and Haubold (2007) and Psarrakos

and Toomaj (2017).

1.3.3 Fractional Order Entropy

Inspired by the concepts of fractional calculus, fractional variants of various informa-

tion measures have been proposed, extending several entropy measures existing in the

literature. The properties of fractional calculus allow these measures to capture long-range

dependencies and non-local effects in complex random systems (see Kayid and Shrahili

(2022) and Lopes and Machado (2020)).

One of the pioneering work on fractional order entropy by Ubriaco (2009) introduced

a generalization of Shannon entropy using fractional calculus. The fractional version of
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Shannon entropy is defined as

Hr(X) =
n∑

i=1
pi (− ln pi)r , r ∈ I. (1.38)

For r = 1, Hr(X) reduces to the standard Shannon entropy.

Xiong et al. (2019) extended this idea to generalizing CRE, which is defined as

CRr(X) =
∫ ∞

0
F̄ (x)

[
− log F̄ (x)

]r
dx, r ∈ I.

They demonstrated the application of fractional entropy in measuring uncertainty in

financial datasets, showing that fractional entropy provides deeper insights compared to

its classical counterpart. The fractional version of CE was further explored by Kayid and

Shrahili (2022). For additional work in this direction, see Jumarie (2012), Karci (2016),

Lopes and Machado (2020), Di Crescenzo et al. (2021), Foroghi et al. (2023) and Saha

and Kayal (2023).

1.3.4 Divergence Measure and Mutual Information

Kullback and Leibler (1951) introduced an information measure to quantify the

divergence between two probability distributions, widely known as Kullback-Leibler (KL)

divergence, sometimes referred to as relative entropy. Let X1 and X2 be two continuous

random variables with probability density functions (PDFs) f1(x) and f2(x), respectively.

The KL divergence between X1 and X2 is defined as

KL(f1∥f2) =
∫ ∞

−∞
f1(x) log

(
f1(x)
f2(x)

)
dx. (1.39)

Minimizing the KL divergence between an assumed distribution and an empirical distri-

bution is equivalent to maximizing the likelihood of the sample (see (Murphy, 2022, p.

208)).

Motivated by the work of Rao et al. (2004), Baratpour and Rad (2012) proposed an

alternative measure using the survival functions of non-negative random variables, called

the cumulative residual KL divergence (CRKL), defined as

CRKL(F̄1∥F̄2) =
∫ ∞

0
F̄1(x) log

(
F̄1(x)
F̄2(x)

)
dx − E(X1) + E(X2).

Baratpour and Rad (2012) also discussed the application of CRKL divergence in goodness-

of-fit testing for the exponential distribution. Similarly, Park and Kim (2014) proposed an

alternative KL divergence measure based on the cumulative distribution function (CDF)
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of the random variables. Furthermore, Mao et al. (2020) extended the CRKL divergence

using Tsallis entropy, defining the Tsallis residual KL divergence (TRKL) as

TRKL(F̄1∥F̄2) =
∫ ∞

0
F̄1(x) log[α]

(
F̄1(x)
F̄2(x)

)
dx − E(X1) + E(X2), α ∈ A.

This extension was applied in the financial sector to measure divergence in financial time

series data. Recently, Mehrali and Asadi (2021) explored the application of cumulative

KL divergence in estimation problems.

Another important measure in information sciences is mutual information (MI), which

quantifies the amount of information one random variable contains about another. Let

(X1, X2) be a bivariate continuous random vector with joint PDF f(x1, x2) and marginal

PDFs f1(x1) and f2(x2). The mutual information is defined as

MI(X1, X2) =
∫ ∞

−∞

∫ ∞

−∞
f(x1, x2) log

(
f(x1, x2)

f1(x1)f2(x2)

)
dx1dx2

=D(X1) − D(X1|X2).

Thus, MI quantifies the reduction in uncertainty of one random variable given the knowledge

of the other.

Joe (1987) extended this concept to higher dimensions for a multivariate random

vector X, defining the multivariate mutual information as

MI(X) =
∫
Rp

f(x) log
(

f(x)∏p
i=1 fi(xi)

)
dx. (1.40)

1.3.5 Inaccuracy Measures

Apart from entropy, several other information measures exist in information theory.

One such measure is the inaccuracy measure proposed by Kerridge (1961). In Eq. (1.39),

the KL divergence between two continuous random variables can be rewritten as

KL(f1∥f2) = −D(X1) + IN(f1∥f2),

where

IN(f1|f2) = −
∫ ∞

−∞
f1(x) log f2(x) dx

is the inaccuracy measure introduced by Kerridge (1961). The inaccuracy measure can

be interpreted as follows: If f1(x) is the true PDF of the data but, due to experimental

error, the experimenter assumes f2(x) as the PDF instead, then the average uncertainty
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in this incorrect assumption is quantified by IN(f1∥f2). The cumulative version of the

inaccuracy measure was introduced by Kumar and Taneja (2015), and recently, Raju et al.

(2024) generalized it using Tsallis entropy. For more details, we refer the book of Nair

et al. (2022).

1.3.6 Information-generating function

Recent research has focused on developing information-generating functions, which

can generate a number of useful uncertainty and divergence measures. Golomb (1966)

defined an information generating function by

SGX(s) =
n∑

i=1
(pi)s , s ≥ 1.

It may be observed that SGX(1) = 1 and the first derivative of SGX(s) at s = 1

corresponds to the negative of the Shannon entropy. Guiasu and Reischer (1985) discussed

the generating function for the relative entropy and showed that its first derivative at s = 1

gives a negative of the Kullback and Leibler divergence for two probability distributions.

Fisher information generating function and associated results are reported in Papaioannou

et al. (2007). The generating function and nonparametric estimator for the CRE are

reported in a recent work of Smitha et al. (2023). Recently, Saha and Kayal (2024)

defined the general weighted information and relative information generating functions

and discussed its mathematical properties.

1.3.7 Multivariate Information Measures

The multivariate extension of univariate information measures has been widely studied

in the literature. Nadarajah and Zografos (2005) derived expressions for the bivariate

differential entropy of various bivariate distributions. Ebrahimi et al. (2007) developed

information measures for the residual lifetime of a bivariate random vector.

Rajesh et al. (2009) introduced a vector-based bivariate residual entropy to quantify

the uncertainty in the remaining lifetime of a bivariate random vector. Further, Rajesh

et al. (2014) extended the bivariate version of dynamic cumulative residual entropy,

initially proposed by Asadi and Zohrevand (2007). In addition, Kundu and Kundu (2017)

generalized the cumulative entropy introduced by Di Crescenzo and Longobardi (2006) for

bivariate random vectors and discussed its dynamic version. More recently, Raju et al.
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(2020) proposed the bivariate cumulative residual Tsallis entropy (CRTE) and explored its

properties and applications.

1.3.8 Copula-Based Information Measures

In this subsection, we review the literature on copula-based information measures.

A natural question arises regarding the significance of copula-based dependence entropy.

It is worth noting that copula-based entropy measures the uncertainty involved in the

dependence structure among random variables. In multivariate data analysis, uncertainty

associated with a multivariate random variable can be decomposed into two components:

the uncertainty due to each marginal distribution and the uncertainty that arises from

the dependence structure among the random variables. Note that the copula captures the

dependence structure, making copula-based information measures relevant. The scope of

copula-based information measures in multivariate data analysis was first discussed by Ma

and Sun (2011). They showed that the MI of a multivariate random vector is equivalent

to the negative of the copula entropy, which is defined as

ζ (c) = −
∫
Ip

c(u) log c(u) du, (1.41)

where c(u) is the copula density. Using the results of Ma and Sun (2011), the MI of a

multivariate random vector X is independent of marginal distributions and depends only

on the dependence structure, which is measured by the underlying copula density. Copula

entropy has widespread applications across various fields, including science, engineering,

hydrology, and finance (see Zhao and Lin (2011), Hao and Singh (2015), Singh and

Zhang (2018)). However, when the underlying copula is not absolutely continuous, the

copula density does not exist, making the copula entropy proposed by Ma and Sun (2011)

inapplicable. Additionally, the copula entropy ζ(c) is always negative. Motivated by the

works of Rao et al. (2004) and Di Crescenzo and Longobardi (2009), Sunoj and Nair (2025)

replaced the copula density with the copula function and proposed the cumulative copula

entropy (CCE) which is given by

ξ (C) = −
∫ 1

0

∫ 1

0
C(u1, u2) log C(u1, u2) du1du2.

The copula-based inaccuracy measure was first proposed by Hosseini and Ahmadi

(2019). Let C1 and C2 be two p-dimensional copulas. The copula-based inaccuracy measure
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is defined as

I(C1 | C2) = −
∫
Ip

C1(u) log (C2(u)) du.

The results were further extended to co-copulas, and the dual of a copula in Hosseini and

Nooghabi (2021).

1.4 Bivariate Reliability Theory: Basic Concepts

In multivariate data analysis, it is common to encounter multivariate lifetime data,

which requires specialized modelling approaches. Copulas offer a flexible framework for

modelling the dependence structure among random variables and are instrumental in

constructing multivariate lifetime models. For a detailed discussion on the role of copulas

in bivariate reliability modelling, refer to Sreelakshmi (2018) and Nair et al. (2018). This

section introduces key concepts in bivariate reliability theory.

In lifetime data analysis, in addition to density and survival functions, the hazard

rate and mean residual life (MRL) function are essential tools to assess the reliability of a

component or system. The hazard rate quantifies the instantaneous failure rate at a given

time, while the MRL function represents the expected remaining lifetime given survival

up to that time point.

The MRL function is useful for characterizing lifetime distributions. A reversed

analogue of this function, referred to as the mean inactivity time (or reversed mean

residual life) function, is applicable in scenarios involving left-censored data. The reversed

hazard rate, defined as the ratio of the density function to the distribution function, is

relevant when the exact time of failure is observed. This concept has been studied in the

context of stochastic orderings by Keilson and Sumita (1982), Shaked and Shanthikumar

(2007), and further examined by Block et al. (1998), Chandra and Roy (2001), and

Finkelstein (2002).

Let X be a non-negative random variable. The mean inactivity time function is defined

as

r(x) = E(x − X | X ≤ x), x > 0,

and is sometimes referred to as the mean past lifetime. Various properties of this function

are discussed in Nanda et al. (2003). This measure is particularly useful for analyzing

left-censored data and has numerous applications in fields such as medicine, engineering,
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and forensic science (see Jayasinghe and Zeephongsekul (2013)). Now we will discuss the

extension of the univariate reliability measures to higher dimensions. We here discuss for

the bivariate case only and the multivariate extension is just a straightforward extension

only.

Bivariate Hazard Rate Function

The concept of the bivariate hazard rate was introduced by Basu (1971). Let (X1, X2)

be a non-negative bivariate random vector with joint probability density function f(x1, x2)

and joint survival function F̄ (x1, x2) = P (X1 > x1, X2 > x2). The bivariate hazard rate

function proposed by Basu (1971) is defined as

µ(x1, x2) = f(x1, x2)
F̄ (x1, x2)

, x1 > 0, x2 > 0.

Unlike the univariate case, the bivariate hazard rate function µ(x1, x2) introduced by

Basu (1971) does not characterize the underlying joint distribution (see Yang and Nachlas

(2001)). To overcome this limitation, Johnson and Kotz (1975) proposed the hazard

gradient approach, defining the bivariate hazard rate function as

(h1(x1, x2), h2(x1, x2)) =
(

−∂ ln F̄ (x1, x2)
∂x1

, −∂ ln F̄ (x1, x2)
∂x2

)
. (1.42)

Here, h1(x1, x2) denotes the conditional hazard rate of X1 given X2 > x2, while h2(x1, x2)

denotes that of X2 given X1 > x1. Notably, the bivariate hazard rate function defined by

Johnson and Kotz (1975) fully characterizes the joint distribution.

Bivariate Mean Residual Life Function

Arnold and Zahedi (1988) extended the univariate mean residual life function to

the multivariate setting and studied its characterization properties. The bivariate MRL

function is given by

(m1(x1, x2), m2(x1, x2)) =
(∫∞

x1
F̄ (t, x2) dt

F̄ (x1, x2)
,

∫∞
x2

F̄ (x1, t) dt

F̄ (x1, x2)

)
. (1.43)

When the joint density satisfies the total positivity of order two (TP2) property, it

follows that the hazard component h1(x1, x2) is decreasing in x2, and the MRL component

m1(x1, x2) is increasing in x2. For details, see Shaked (1975), Gupta and Akman (1995),

and Gupta (2016).
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Reversed Hazard Rate Components

A vector-based formulation of the reversed hazard rate was introduced by Roy (2002),

analogous to the hazard gradient definition of Johnson and Kotz (1975). Let F (x1, x2)

denote the joint cumulative distribution function. The bivariate reversed hazard rate

function is defined as

(l1(x1, x2), l2(x1, x2)) =
(

∂ ln F (x1, x2)
∂x1

,
∂ ln F (x1, x2)

∂x2

)
.

Bivariate Mean Inactivity Time Function

Nair and Asha (2008) provided the definition of the bivariate mean inactivity time

function and explored several of its properties. The function is defined as

(r1(x1, x2), r2(x1, x2)) =
(∫ x1

0 F (t, x2) dt

F (x1, x2)
,

∫ x2
0 F (x1, t) dt

F (x1, x2)

)
. (1.44)

1.5 Outline of the Dissertation

In Chapter 2, we introduce a new bivariate symmetric copula exhibiting both positive

and negative dependence. The proposed copula features a simple mathematical structure, a

wider dependence range than the FGM copula and its generalizations. The maximum range

of Spearman’s Rho for the proposed copula is [−0.5866, 0.5866], significantly improving

the dependence range of the FGM copula. Using this copula, we construct a new bivariate

Rayleigh distribution and study its statistical properties. A real dataset is analyzed to

illustrate the practical relevance of the proposed bivariate distribution.

In Chapter 3, we propose a method for constructing a new class of copulas using

the probability generating function (PGF) of a positive-integer-valued random variable.

Several existing copulas in the literature emerge as special cases of the proposed family.

We analyze dependence measures, tail dependence properties under PGF transformation,

and provide an algorithm for generating random samples from the PGF copula. The

bivariate concavity properties, including Schur concavity and quasi-concavity, are also

examined. Two new generalized FGM copulas, derived using PGFs of geometric and

discrete Mittag-Leffler distributions, improve Spearman’s Rho to (−0.3333, 0.4751) and

(−0.3333, 0.9573), respectively. Finally, we apply the proposed copulas to a real dataset to

illustrate their practical utility.
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In Chapter 4, we introduce multivariate cumulative copula entropy (CCE) and

explore its theoretical properties, including bounds, stochastic orders, and convergence

results. A cumulative copula information-generating function is defined and derived for

several well-known families of multivariate copulas. Additionally, we propose a fractional

generalization of multivariate CCE and investigate its characteristics. A nonparametric

estimator of CCE, based on the empirical beta copula, is developed. Furthermore, we

define a new copula-based divergence measure using the Kullback-Leibler (KL) divergence

and introduce a goodness-of-fit test derived from this measure. The practical relevance of

the proposed divergence measure is demonstrated through a copula selection procedure

applied to real data.

In Chapter 5, we extend the framework of Chapter 4 by incorporating Tsallis entropy,

a non-additive entropy that enhances flexibility in quantifying uncertainty. We introduce

cumulative copula Tsallis entropy, derive its properties and bounds, and demonstrate its

applicability through examples. A nonparametric version of the measure is developed and

validated using coupled periodic and chaotic maps. Additionally, we extend Kerridge’s

inaccuracy measure and KL divergence to the cumulative copula framework. Using the

relationship between KL divergence and mutual information, we propose a new cumulative

mutual information (CMI) measure, which overcomes the limitations of density-based

mutual information. We further introduce a test for assessing mutual independence among

random variables based on the CMI measure. Finally, we illustrate the potential of the

proposed CMI measure as an economic indicator through an analysis of real bivariate

financial time series data.

In Chapter 6 we propose a smooth nonparametric estimator for the bivariate mean

residual life function. We establish the consistency of the proposed estimator and assess its

finite-sample performance through extensive simulation studies, comparing it with existing

methods. Furthermore, the practical relevance of the estimator is demonstrated via an

application to a bivariate warranty dataset.

In Chapter 7 we introduce a novel nonparametric estimator for the bivariate mean

inactivity time function. The proposed estimator is shown to be asymptotically unbiased,

consistent, and asymptotically normally distributed. Its performance is examined through

simulation studies across various copula models. To illustrate real-world applicability,
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we analyze a dataset on pink eye disease, estimating the time since infection period for

infections in the left and right eyes.
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2
C h a p t e r

Exponentiated FGM Copula

This chapter introduces a new FGM-type copula, called the Exponentiated FGM copula.

It attains a maximum Spearman’s Rho of [−0.5866, 0.5866], exceeding the dependence

range of the classical FGM copula and its generalizations. A new bivariate Rayleigh

distribution is then constructed using this copula, and its key statistical properties are

examined.

2.1 Introduction

Copula plays a significant role in the field of statistics, finance, engineering and medical

sciences for modelling dependent data sets. If we have a family of copulas, we automatically

have a collection of multivariate distributions with whatever marginal distributions we

desire. This feature of the copula is useful in every branch of study where dependence

modelling and simulation are an integral part. In literature, a wide variety of copulas are

available; of them, Farlie-Gumbel-Morgenstern (FGM) copula received much attention

A part of this chapter has been published in the journal Statistics & Probability Letters, 206 (2024):

109988. DOI: 10.1016/j.spl.2023.109988

https://doi.org/10.1016/j.spl.2023.109988
https://doi.org/10.1016/j.spl.2023.109988
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due to its simple mathematical structure and exhibited positive and negative dependence

(see Eyraud (1936), Morgenstern (1956), Gumbel (1960) and Farlie (1960)).

In recent years, the FGM copula has been widely used across various disciplines due

to its mathematical simplicity and flexibility in modelling both positive and negative

dependence structures. For instance, Achcar et al. (2015) investigated a bivariate general-

ized exponential distribution using the FGM copula. Similarly, Abd Elaal and Jarwan

(2017) examined inference procedures for the bivariate generalized exponential distribution

based on the FGM copula. El-Sherpieny et al. (2018) constructed a bivariate Weibull

distribution using the FGM copula, while Almetwally and Muhammed (2020) recently

proposed a bivariate Fréchet distribution derived from the FGM copula.

In addition to the construction of new multivariate distributions, the FGM copula has

found significant applications in lifetime modelling. For example, Louzada et al. (2012)

applied the FGM copula to analyze Brazilian HIV data, and Gupta (2016) explored the

reliability characteristics of bivariate distributions with an FGM copula structure. Shih

and Emura (2019) studied generalized FGM copulas in the context of bivariate competing

risks models. More recently, Ghalibaf (2022) analyzed the stress-strength reliability of

the FGM bivariate family, highlighting its applications in medical sciences. Furthermore,

Blier-Wong et al. (2023) discussed the relevance of FGM copulas in actuarial science. For

a comprehensive discussion on the properties and applications of FGM copulas, we refer

the reader to Sriboonchitta and Kreinovich (2018).

Despite its advantages, including ease of construction and interpretability, the FGM

copula also exhibits certain limitations. One key issue lies in its restricted ability to model

strong dependence. For instance, Spearman’s Rho (ρc), a commonly used measure of

dependence for copulas, lies within the interval [−1, 1]. However, in the case of the FGM

copula, the range of values of Spearman’s Rho is very low, i.e., ρc ∈ [−0.33, 0.33] (see Farlie

(1960)). So, the FGM copula is unsuitable for modelling data with a high dependence

structure. Many researchers have attempted to propose an FGM-type copula for improving

the correlation coefficient. Huang and Kotz (1999) proposed two extended FGM copulas,

having ρc ∈ [−0.33, 0.375] and ρc ∈ [−0.33, 0.391] respectively. Bairamov and Kotz (2002)

also extended FGM copula with ρc ∈ [−0.48, 0.502]. Pathak and Vellaisamy (2016a)

proposed a new generalized FGM copula through order statistics with maximal range of ρC

is (−0.48, 0.53). Recently, Chesneau (2022) proposed a polynomial-sine copula exhibiting
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positive as well as negative dependence with ρc ∈ [−0.4927, 0.4927]. In most of these works,

the parameters are added to improve Spearman’s correlation coefficient range, resulting in

a mathematically complex structure and computationally more expensive for estimating

unknown parameters. To overcome these drawbacks, we propose a simple bivariate copula

without adding any parameters to existing copulas. The proposed copula improves the

dependence range of Spearman’s correlation of various FGM-type copulas reported in the

literature.

The main contributions of this chapter are summarised as follows:

• A new bivariate FGM-type copula with a simple and tractable mathematical

structure is proposed.

• Closed-form expressions for various measures of association, including Spearman’s

Rho and Kendall’s Tau, are derived and compared with those of existing FGM-type

copulas in the literature.

• The dependence properties of the proposed copula, such as quadrant dependence,

the TP2 property, and tail dependence, are discussed.

• A new bivariate Rayleigh distribution is constructed using the proposed copula, and

its statistical properties are explored. The applicability of the model is demonstrated

through analysis of a real dataset.

The chapter is organized as follows. In Section 2.2, we introduce a new bivariate

symmetric copula. Section 2.3 is dedicated to studying various dependency measures of the

proposed copula. In Section 2.4, a new bivariate Rayleigh distribution is derived from the

proposed copula, and expressions for the conditional distribution and product moments

are obtained. Additionally, a real dataset is analyzed to illustrate the application of the

proposed bivariate Rayleigh distribution.

2.2 New Bivariate Copula

In this section, we propose a new bivariate FGM-type copula, which is presented in

the following proposition.
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Proposition 2.2.1. Let α be a real number and let δ⋆(α) be defined as

δ⋆(α) =


1

α2 , if α ∈ (−∞, 2] \ {0}

1
2α

exp
{
1 − α

2

}
, if α > 2.

Then, the bivariate function

C(u, v; δ, α) = uv + δ
(
1 − eα(u−u2)

) (
1 − eα(v−v2)

)
, (u, v) ∈ I2, (2.1)

is a bivariate copula if |δ| ≤ δ⋆(α).

Proof. The bivariate function, defined in Eq. (2.1), satisfied the boundary conditions of a

bivariate copula. But we need to find the range of parameter δ for which this function is

a valid bivariate copula, i.e., the function in Eq. (2.1) satisfy the 2-increasing property.

Kim et al. (2011) proved that 2-increasing property in an absolutely continuous copula is

equivalent to the condition that copula density c(u, v; δ, α) is non-negative, i.e.,

c(u, v; δ, α) = ∂2C(u, v)
∂u∂v

= 1 + δα2g(u)g(v) ≥ 0, (2.2)

where g(t) = (1 − 2t) eα(t−t2), t ∈ I. Clearly, non-negativity of copula density in Eq. (2.2)

depends on the behaviour of function g(·) and the value of the parameter δ. For finding

the feasible range of δ, we will divide the domain I2 of (u, v) into four quadrants as:

R1 =
{

(u, v) ∈ I2 : 0 ≤ u ≤ 1
2 , 0 ≤ v ≤ 1

2

}
,

R2 =
{

(u, v) ∈ I2 : 1
2 < u ≤ 1, 0 ≤ v ≤ 1

2

}
,

R3 =
{

(u, v) ∈ I2 : 1
2 < u ≤ 1,

1
2 < v ≤ 1

}
,

R4 =
{

(u, v) ∈ I2 : 0 ≤ u ≤ 1
2 ,

1
2 < v ≤ 1

}
.

Since the sign of g(t) is positive if t ∈
(
0, 1

2

)
, and negative if t ∈

(
1
2 , 1

)
, it follows that

the product g(u)g(v) is positive on R1 ∪ R3 and negative on R2 ∪ R4. Thus, the copula

density c(u, v; δ, α) is non-negative if

δ ≥ −1
α2g(u)g(v) , (u, v) ∈ R1 ∪ R3,

and

δ ≤ −1
α2g(u)g(v) , (u, v) ∈ R2 ∪ R4.
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Therefore, the copula density c(u, v; δ, α) is non-negative if

−1
α2 sup

(u,v)∈R1∪R3

{g(u)g(v)} ≤ δ ≤ −1
α2 inf

(u,v)∈R2∪R4
{g(u)g(v)} . (2.3)

Since the behaviour of function g(·) depends on α ∈ R, we will consider the following three

cases:

Case I: When α = 0.

In this case, the copula density c(u, v; δ, 0) = 1, which is non-negative, and hence the

2-increasing property holds for arbitrary value of δ. Moreover, the proposed copula in Eq .

(2.1) reduces to the product copula. Note that the product copula is a well-known copula,

which corresponds to the independence of two random variables.

Case II: When α ≤ 2, α ̸= 0.

In this case, g(t) is a decreasing function on I with g(0) = 1, g
(

1
2

)
= 0 and g(1) = −1.

It follows that g(t) takes values in [0, 1] for t ∈
[
0, 1

2

]
, and takes values in [−1, 0) for

t ∈
(

1
2 , 1

]
. Thus, the product function g(u)g(v) is bounded above by 1 on R1 ∪ R3, and the

upper bound 1 is attended at (u, v) ∈ {(0, 0), (1, 1)}. Therefore, sup
(u,v)∈R1∪R3

{g(u)g(v)} = 1.

Further, for (u, v) ∈ R2, g(u) takes values in [−1, 0) and g(v) takes values in [0, 1]. This

implies that the product function g(u)g(v) is bounded below by −1 on R2, and the

lower bound −1 is attended at u = 1, v = 0. Similarly, for (u, v) ∈ R4, the product

function g(u)g(v) is bounded below by −1, which is attended at u = 0, v = 1. Therefore,

inf
(u,v)∈R2∪R4

{g(u)g(v)} = −1. Now, using these values in inequality (2.3), we get the feasible

range of the parameter δ as
−1
α2 ≤ δ ≤ 1

α2 . (2.4)

Case III: When α > 2.

Let r1 = 1
2 − 1√

2α
and let r2 = 1

2 + 1√
2α

. Clearly, 0 < r1 < 1
2 < r2 < 1. It can

be observed that g(t) increases on t ∈ [0, r1], decreases on t ∈ (r1, r2), and increases

on t ∈ [r2, 1]. Also, g(t) takes positive values on t ∈
[
0, 1

2

)
and negative values on

t ∈
(

1
2 , 1

]
, with g

(
1
2

)
= 0. Moreover, g(t) is maximum at t = r1 with maximum

value g(r1) =
√

2
α

exp
{

α
4 − 1

2

}
, and g(t) is minimum at t = r2 with minimum value

g(r2) = −
√

2
α

exp
{

α
4 − 1

2

}
. Since the functions g(u) and g(v) are positive on the quadrant

R1 and takes maximum at u = r1, v = r1, it follows that the product function g(u)g(v)
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has maximum value [g(r1)]2 = 2
α

exp
{

α
2 − 1

}
, on (u, v) ∈ R1. Since the functions g(u)

and g(v) are negative on R3 and takes minimum at u = r2, v = r2, it follows that the

product function g(u)g(v) is positive and has maximum value [g(r2)]2 = 2
α

exp
{

α
2 − 1

}
, on

(u, v) ∈ R3. Therefore, sup
(u,v)∈R1∪R3

{g(u)g(v)} = 2
α

exp
{

α
2 − 1

}
. Similarly, we have found

that the infimum of the product function g(u)g(v) on the quadrant R2 ∪ R4 is equal to

g(r1)g(r2) = − 2
α

exp
{

α
2 − 1

}
. Now, using these values in Eq. (2.3), we get the feasible

range of δ as

− 1
2α

exp
{

1 − α

2

}
≤ δ ≤ 1

2α
exp

{
1 − α

2

}
. (2.5)

Now, the result follows from Eq. (2.4) and Eq. (2.5).

Recall that our proposed copula reduced to the product copula when α = 0. Also, the

copula density c(u, v) = ∂2C(u, v)
∂u∂v

of the proposed copula is given by

c(u, v) = 1 + α2δ (1 − 2u) (1 − 2v) exp
{
α
(
u − u2 + v − v2

)}
, (u, v) ∈ I2, (2.6)

where α ∈ R and |δ| ≤ δ⋆(α). We refer to the proposed copula as the Exponentiated

FGM copula. The contour plots of the copula density are shown in Figure 2.1 for various

choices of the parameters δ and α.

(a) α = −3, δ = −0.1 (b) α = 2, δ = 0.2 (c) α = 3.8, δ = −0.3

Figure 2.1. Contour plots of copula density c(u, v) for various values of α

and δ.

2.3 Measures of Dependence

In this section, we derive several dependence measures for the Exponentiated FGM

copula. We begin by focusing on various measures of association that quantify the strength
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and direction of dependence between the two variables. These measures quantify the degree

of positive or negative dependence between the components of a bivariate distribution as

captured by the copula. Each measure takes values in the range [−1, 1], with negative

values indicating negative dependence and positive values indicating positive dependence.

The analytical expressions for these measures, expressed in terms of the copula function

C(u, v), are summarized in Table 2.1.

Table 2.1. Various measures of association in terms of copula function

Measure Expression

Spearman’s Rho ρc ρc = 12
∫ 1

0
∫ 1

0 C(u, v) du dv − 3

Gini’s Gamma γc γc = 4
{∫ 1

0 C(u, 1 − u) du −
∫ 1

0 (u − C(u, u)) du
}

Kendall’s Tau τc τc = 4
∫ 1

0
∫ 1

0
∂C(u,v)

∂u
· ∂C(u,v)

∂v
du dv − 1

Blest’s Measure ηc ηc = 24
∫ 1

0
∫ 1

0 (1 − u) C(u, v) du dv − 2

Spearman’s Footrule ϕc ϕc = 6
∫ 1

0 C(u, u) du − 2

Now, we will provide the expressions of the various measures of association for the

Exponentiated FGM copula function.

Proposition 2.3.1. For the copula defined in Eq. (2.1), the Spearman’s Rho ρC, and
Gini’s Gamma Coefficient γC are given by

ρC =


12δ

1 −
√

π

|α|
eα/4erfi


√

|α|
2


2

, if α < 0

12δ
[
1 −

√
π
α
eα/4erf

{√
α

2

}]2
, if α > 0,

γC =



8δ

1 − 2
√

π

|α|
eα/4erfi


√

|α|
2

+
√

π

2|α|
eα/2erfi


√

|α|
2


 , if α < 0

8δ
[
1 − 2

√
π
α
eα/4erf

{√
α

2

}
+
√

π
2α

eα/2erf
{√

α
2

}]
, if α > 0,
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where erf(t) = 2√
π

∫ t
0 e−z2

dz denotes the error function (see Abramowitz and Stegun
(1972)) and erfi(t) = 2√

π

∫ t
0 ez2

dz denotes the imaginary error function (see Marcinowski
and Sadowski (2020)).

Remark 2.3.2. It can be verified that the expressions of other measures of dependence
satisfied the following relation under the copula given in Eq. (2.1).

ηc = ρc = 3
2τc, and ϕc = 3

4γc.

Table 2.2 presents the numerical values of Spearman’s Rho and Gini’s Gamma co-

efficient of the new copula for different values of the copula parameter α. Since the

exponentiated FGM copula is symmetric, we have shown only the upper boundary val-

ues of the dependence measures in Table 2.2. The lower boundary value is the nega-

tive of upper boundary value. It is observed from the Table 2.2 that Spearman’s Rho

ρc ∈ [−0.5866, 0.5866] when α = 3.8, thereby extending the range of the dependence

measure Spearman’s Rho over the popular FGM copula and its various generalizations.

2.3.1 Comparison with FGM-type copulas

Here, we will compare the proposed copula in Eq. (2.1) with some FGM-type copulas,

which are reported below. The various measures of dependence are reported in Table 2.3.

1. The FGM copula (Eyraud (1936), Morgenstern (1956), Gumbel (1960), Farlie

(1960)) is given by

C(u, v) = uv [1 + θ(1 − u)(1 − v)] , −1 ≤ θ ≤ 1.

2. Huang and Kotz (1999) proposed two extended FGM copulas:

C(u, v) =uv
[
1 + θ

(
1 − uk

) (
1 − vk

)]
, k > 0, − min

{
1,

1
k2

}
≤ θ ≤ 1

k
, (2.7)

C(u, v) =uv [1 + θ (1 − u)q (1 − v)q] , q > 1, −1 ≤ θ ≤
(

q + 1
q − 1

)q−1

. (2.8)

3. Bairamov and Kotz (2002) proposed the following copula function:

C(u, v) =uv
(
1 + θ

[
(1 − uk)(1 − vk)

]q)
, k > 0, q ≥ 1,

− min

1,
1
k2

(
kq + 1

k(q − 1)

)2(q−1)
 ≤ θ ≤ 1

k

(
kq + 1

k(q − 1)

)q−1

.
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Table 2.2. Sperman’s Rho and Gini’s Gamma coefficient for various values

of α

α δ⋆(α) ρupper γupper α δ⋆(α) ρupper γupper

-3 0.1111 0.1899 0.1463 1.2 0.6944 0.4264 0.3473

-2.7 0.1372 0.2003 0.1547 1.5 0.4444 0.4544 0.3718

-2.4 0.1736 0.2113 0.1638 1.8 0.3086 0.4845 0.3984

-2.1 0.2268 0.2231 0.1736 2 0.25 0.506 0.4174

-1.8 0.3086 0.2358 0.1841 2.3 0.1871 0.5348 0.4434

-1.5 0.4444 0.2493 0.1954 2.6 0.1425 0.5561 0.4634

-1.2 0.6944 0.2638 0.2076 2.9 0.1099 0.571 0.4783

-0.9 1.2346 0.2794 0.2207 3.2 0.0858 0.5805 0.4888

-0.6 2.7778 0.2961 0.2349 3.5 0.0675 0.5855 0.4956

-0.3 11.1111 0.314 0.2502 3.8 0.0535 0.5866 0.4992

0 0 0 0 4.1 0.0427 0.5845 0.5002

0.3 11.1111 0.3541 0.2845 4.4 0.0342 0.5798 0.499

0.6 2.7778 0.3764 0.3038 4.7 0.0276 0.5729 0.4959

0.9 1.2346 0.4005 0.3247 5 0.0223 0.5643 0.4912

4. Bekrizadeh et al. (2015) has discussed the generalized FGM copula given by

C(u, v) =uv [1 + θ(1 − ua)(1 − va)]n ,

− min
{

1,
1

na2

}
≤ θ ≤ 1

na
, a > 0, n ≥ 1.

5. Pathak and Vellaisamy (2016a) have extended the copula proposed by Bairamov

and Kotz (2002) given by

C(u, v) = uv
[(

1 + θ
[
(1 − uk)(1 − vk)

]q)]n
, k > 0, q ≥ 1, n ∈ N,

− min

1,
1

n2k2

(
nkq + 1

nk(q − 1)

)2(q−1)
 ≤ θ ≤ 1

nk

(
nkq + 1

nk(q − 1)

)q−1

.

6. Chesneau (2022) proposed the polynomial-sine copula:

C(u, v) = uv + θ

π2ab
(sin(πu))a (sin(πu))b , θ ∈ [−1, 1], a, b ≥ 1.
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From Table 2.3, it is evident that the proposed copula exhibits a wider dependence

range in comparison to the FGM-type copulas. With just two parameters, the proposed

copula offers a broader range of dependencies, making it a more suitable choice for

modelling bivariate datasets characterized by stronger dependence structures than the

other FGM-type copulas.

In order to continue our discussion on dependence between random variables, there

are some more dependence properties available in the literature. For example, quadrant

dependence, totally positive of order 2 (TP2), and tail dependence coefficient. For more

detailed discussion on these properties, one can see Lehmann (1966), Barlow and Proschan

(1975), Drouet Mari and Kotz (2001), Nelsen (2006) and Lai and Balakrishnan (2009).

Now, we will discuss these dependence properties of Exponentiated FGM copula.

2.3.2 Quadrant Dependence

A copula C(u, v) is said to be positively (negatively) quadrant dependent if

C(u, v) ≥ (≤) uv, ∀(u, v) ∈ I2.

It can be verified that the quadrant dependence of the Exponentiated FGM copula defined

in Eq.(2.1) depends only on the copula parameter δ. The proof is straightforward, so

omitted. Thus, we have the following result.

Proposition 2.3.3. The Exponentiated FGM copula has positive (negative) quadrant
dependence if δ ≥ 0 (δ ≤ 0).

2.3.3 Totally Positive of Order 2 (TP2)

TP2 property is one of the strongest notion of dependence. If a copula density c(u, v)

possesses the property TP2, then the associated copula C(u, v) has stochastic increasing

properties (SI), right tail increasing properties (RTI), and positive quadrant dependence

(PQD).

Holland and Wang (1987) proved that the function g(x, y) has TP2 property if

ζg(x, y) = ∂2 ln g(x, y)
∂x∂y

≥ 0, ∀(x, y) ∈ R2.

Now, using the result of Holland and Wang (1987), we will prove the following result.
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Table 2.3. Maximal dependence range values of some FGM-type copulas

Copula
Dependency Measures

τC ρC γC ϕC ηC

Farlie (1960) (−0.2222, 0.222) (−0.3333, 0.3333) (−0.26667, 0.26667) (−0.2, 0.2) (−0.3333, 0.3333)

Huang and Kotz (1999) [Eq.(2.7)] (−0.2222, 0.25) (−0.3333, 0.375) (−0.26667, 0.3001) (−0.2, 0.2287) (−0.3333, 0.3542)

Huang and Kotz (1999) [Eq. (2.8)] (−0.2222, 0.2608) (−0.3333, 0.391) (−0.2667, 0.31761) (−0.2, 0.2401) (−0.2667, 0.3176)

Bairamov and Kotz (2002) (−0.32, 0.334) (−0.48, 0.502) (−0.4059, 0.4244) (−0.3047, 0.3204) (−0.4887, 0.4922)

Bekrizadeh et al. (2015) (−0.2821, 0.3398) (−0.4958, 0.4212) (−0.3938, 0.3404) (−0.2770, 0.2595) (−0.5046, 0.41022)

Pathak and Vellaisamy (2016a) (−0.3345, 0.3584) (−0.48, 0.5308) (−0.406, 0.4244) (−0.3047, 0.3433) (−0.4887, 0.5313)

Chesneau (2022) (−0.3285, 0.3285) (−0.4927, 0.4927) (−0.4052, 0.4052) (−0.3039, 0.3039) (−0.4927, 0.4927)

Exponentiated FGM Copula [Eq. (2.1)] (−0.3910, 0.3910) (−0.5866, 0.5866) (−0.5002, 0.5002) (−0.3752, 0.3752) (−0.5866, 0.5866)
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Proposition 2.3.4. The copula density of Exponentiated FGM copula defined in Eq. (2.6)
has TP2 property if δ ≥ 0 and α ≤ 2.

Proof. We have,

ζc(u, v) =∂2 ln c(u, v)
∂x∂y

=δα2 [2 − α(1 − 2u)2] [2 − α(1 − 2v)2] exp {α ((u − u2) + (v − v2))}
(1 + δα2 (1 − 2u) (1 − 2v) exp {α ((u − u2) + (v − v2))})2 ≥ 0,

for every δ ≥ 0 and α ≤ 2.

2.3.4 Tail Dependence Coefficients

Tail dependence coefficients quantify the dependence in the joint lower and upper tails

of the distribution. For a copula C(u, v), the lower and upper tail dependence coefficients

are defined as

λC
L = lim

u→0+

C(u, u)
u

, λC
U = lim

u→1−

1 − 2u + C(u, u)
1 − u

. (2.9)

These coefficients lie in [0, 1]. A copula has lower (upper) tail dependence if λC
L > 0

(λC
U > 0); otherwise, it exhibits tail independence. Now, we will prove the following result.

Proposition 2.3.5. The Exponentiated FGM copula defined in Eq. (2.1) has no tail
dependence.

Proof. Using Eq. (2.9), we have

λC
L = lim

u→0+

u2 + δ
(
1 − eα(u−u2)

)2

u

= δ lim
u→0+

1
u

(
1 −

∞∑
n=0

αnun(1 − u)n

n!

)2

= δ lim
u→0+

α2u(1 − u)2
( ∞∑

n=2

αn−1un−1(1 − u)n−1

n!

)2

= 0.
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λC
U = lim

u→1−

1 − 2u + u2 + δ
(
1 − eα(u−u2)

)2

1 − u

= lim
u→1−

(1 − u)2 + δ
(
1 −∑∞

n=0
αnun(1−u)n

n!

)2

(1 − u)

= δ lim
u→1−

α2u2(1 − u)
( ∞∑

n=2

αn−1un−1(1 − u)n−1

n!

)2

= 0.

In the next section, we will develop a bivariate Rayleigh distribution as an application of

the proposed Exponentiated FGM copula. We will study some statistical properties of new

bivariate Rayleigh distribution, and a real data analysis involving the new distribution is

also presented.

2.4 A New Bivariate Rayleigh distribution

Rayleigh distribution is one of the most popular models in medical sciences, engineering,

particle physics and economics. A random variable X follows Rayleigh distribution with

parameter λ, denoted by Rayleigh(λ), if its cumulative distribution function (CDF) is

given by F (x; λ) = 1 − e−x2/2λ2
, x > 0, λ > 0, and corresponding probability density

function (PDF) is given by f(x; λ) = x
λ2 e−x2/2λ2

, x > 0, λ > 0. Let X and Y be two

random variables having Rayleigh(λ1) and Rayleigh(λ2) distributions respectively, and

the dependence between X and Y is modelled by the Exponentiated FGM copula in Eq.

(2.1). Then, the joint distribution function of X and Y is given by

F (x, y; Θ) =
(

1 − e−x2/2λ2
1 − e−y2/2λ2

2 + e−(x2/2λ2
1+y2/2λ2

2)
)

+

δ

(
1 − e

α

(
e−x2/2λ2

1 −e−x2/λ2
1
))(

1 − e
α

(
e−y2/2λ2

2 −e−y2/λ2
2
))

, (2.10)

where x > 0, y > 0, λ1 > 0, λ2 > 0, α ∈ R, |δ| ≤ δ⋆(α) and Θ = (λ1, λ2, α, δ). A non-

negative random vector (X, Y ) is said to follow bivariate Rayleigh distribution with

parameters λ1, λ2, α and δ, if its joint CDF is given by Eq. (2.10) and is denoted by
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BRD(λ1, λ2, α, δ). The corresponding joint density function is given by

f(x, y; Θ) =
(

xy

λ2
1λ

2
2
e−(x2/2λ2

1+y2/2λ2
2)
) [

1 + δα2
(
2e−x2/2λ2

1 − 1
) (

2e−y2/2λ2
2 − 1

)
(
exp

{
α
(
e−x2/2λ2

1 − e−x2/λ2
1 + e−y2/2λ2

2 − e−y2/λ2
2
)})]

, (2.11)

where x > 0, y > 0, λ1 > 0, λ2 > 0, α ∈ R, |δ| ≤ δ⋆(α) and Θ = (λ1, λ2, α, δ). Surface plots

of joint CDF (2.10) and joint density function (2.11) of the BRD family are shown in

Figure 2.2. These figures are constructed using MATLAB R2021b. Now, we will provide

(a) (b)

Figure 2.2. Surface plots of F (x, y) and f(x, y) of the BRD distribution

for λ1 = 3, λ2 = 2, δ = 0.5, α = 3.8.

expressions for conditional distribution and product moments.

Proposition 2.4.1. Let (X, Y ) ∼ BRD(λ1, λ2, α, δ). Then

1. the conditional density function of X given Y = y is

f(x|y) =
(

x

λ2
1
e−x2/2λ2

1

) [
1 + δα2

(
2e−x2/2λ2

1 − 1
) (

2e−y2/2λ2
2 − 1

)
(

e
α

(
e−x2/2λ2

1 −e−x2/λ2
1 +e−y2/2λ2

2 −e−y2/λ2
2
))]

,

2. the conditional distribution function of X given Y = y is

F (x|y) =
(
1 − e−x2/2λ2

1
)

+ δα

(
e

α

(
e−x2/2λ2

1 −e−x2/λ2
1
)

− 1
)

(
2e−y2/2λ2

2 − 1
)(

e
α

(
e−y2/2λ2

2 −e−y2/λ2
2
))

,

where x > 0, y > 0, λ1 > 0, λ2 > 0, α ̸= 0, |δ| ≤ δ⋆(α) and Θ = (λ1, λ2, α, δ).
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Proposition 2.4.2. Let (X, Y ) ∼ BRD(λ1, λ2, α, δ). Then (r, s)-th order product mo-
ments can be expressed as

E(XrY s) = λr
1λ

s
22(r+s)/2Γ

(
1 + r

2

)
Γ
(

1 + s

2

)

+ δα2
( ∞∑

k=0
αk

k∑
t=0

(−1)t

λ2
1

(
k

t

)
Γ
(

r + 2
2

)

×

( 2λ2
1

k + t + 2

)(r+2)/2

− 1
2

(
λ2

1
k + t + 1

)(r+2)/2


×
( ∞∑

k=0
αk

k∑
t=0

(−1)t

λ2
2

(
k

t

)
Γ
(

s + 2
2

)

×

( 2λ2
2

k + t + 2

)(s+2)/2

− 1
2

(
λ2

2
k + t + 1

)(s+2)/2
 .

where Γ(t) denotes the well-known Gamma function.

2.4.1 Real Data Application

We consider the UEFA Champions League data set from 2004 to 2006, reported in

Meintanis (2007). In this data set, X and Y represent the time (in minutes) of the first

goal scored by Team-A and Team-B, respectively. The table is presented in Table 7.5 in the

Appendix section for reference. Before fitting the bivariate distribution, we first conduct

exploratory data analysis. The basic descriptive statistics and measures of dependence,

namely Pearson’s correlation, Spearman’s correlation, and Kendall’s Tau, are presented in

Table 2.4.

To check whether the marginal distributions of X and Y support the Rayleigh distri-

bution, we perform Kolmogorov-Smirnov (KS) one-sample test. The results of the KS test

suggest that X supports the Rayleigh distribution with parameter λ̂1 = 32.14599 (p-value

= 0.934 and statistic value of KS = 0.088515). Similarly, Y also supports Rayleigh distri-

bution with parameter λ̂2 = 28.172255 (p-value=0.07727 and KS statistic value=0.20968).

These results can be verified graphically using the Figure 2.3. Now, we fit the proposed

bivariate Rayleigh distribution, and the results are shown in Table 2.5. We compare the

new BRD model with Marshall Olkin’s bivariate exponential distribution (BMOED) by

Meintanis (2007), bivariate generalized exponential distribution (BGED) by Mirhosseini

et al. (2015), and bivariate generalized Rayleigh distribution (BGRD) proposed by Pathak
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Table 2.4. Descriptive statistics and measures of dependence of the UEFA

Champions League data.

Statistics X Y

Minimum 2.00 2.00

Maximum 82.00 85.00

1st Quantile 25.00 14.00

Mean 40.89 32.86

Median 41.00 28.00

3rd Quantile 54.00 48.00

Skewness 0.1712 0.5444

Kurtosis 2.1868 2.2825

Standard deviation 19.8641 22.5222

Pearson’s correlation 0.4698

Spearman’s rho 0.4075

Kendall’s tau 0.3111

(a) Fitted CDF plot of X (b) Fitted CDF plot of Y

Figure 2.3. Fitted CDF plots of the UEFA Champions League Football

data.

and Vellaisamy (2022). We use the log-likelihood (LL) function, Akaike Information

Criteria (AIC) and Bayesian Information Criteria (BIC) as the comparison criteria. The

formulas for AIC and BIC are given by

AIC = 2k − 2 ln L, and BIC = k ln n − 2 ln L,
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where k is the number parameters in the model, n is the sample size and L is the

maximum value of the likelihood function. From Table 2.5, it is clear that bivariate

Rayleigh distribution provides a better fit over BGED, BMOED and BGRD for the UEFA

champions league data set.

Table 2.5. ML estimates, LL, AIC, and BIC values for the bivarite distri-

butions using UEFA Champion’s League data set.

Bivariate Distribution ML Estimates LL AIC BIC

BGED α̂1 = 0.0244, α̂2 = 0.0304, θ̂ = 0.999 -340.5234 687.0468 691.8795

BMOED λ̂1 = 0.012, λ̂2 = 0.014, λ̂3 = 0.022 -339.006 684.012 688.8448

BGRD b̂1 = 0.000530, b̂2 = 0.000836, θ̂ = 0.40331 -331.879 664.589 672.6436

BRD λ̂1 = 33.39429, λ̂2 = 28.08949, δ̂ = 10.39829, α̂ = 0.2871858 -327.256 664.512 668.9557

2.5 Conclusion and Future Direction

This chapter proposes a new bivariate symmetric copula exhibiting positive and

negative dependence. The main features of the copula are: (i) it has a simple mathematical

structure, (ii) it has a wider dependence range when compared to FGM copula and its

generalizations, and (iii) there is no lower and upper tail dependence. Using the proposed

copula, we developed a new bivariate Rayleigh distribution (BRD) and discussed some

statistical properties. The proposed bivariate model provides a better fit for a real data set.

Since we considered only the symmetric version of the bivariate copula, the asymmetric

version is still an open problem for new researchers.
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3
C h a p t e r

A New Family of Copulas Based
on Probability Generating Func-
tions

This chapter introduces a new class of copulas constructed using the probability

generating function of a positive-integer-valued random variable. Expressions for various

dependence measures and concavity properties of the copula are examined, and an algorithm

for generating random numbers from the proposed copula is presented.

3.1 Introduction

In the last few decades, copulas have received significant attention for modelling

dependent data. However, many existing copulas in the literature are still not suitable for

capturing complex dependence structures. For instance, the Gaussian copula is limited

to modelling linear relationships and weak tail dependence. Therefore, it is necessary

to develop methodologies for constructing new families of copulas that are flexible in

modelling complex relationships.

A bivariate copula is a bivariate function C : I2 → I satisfying the following conditions:

C(u, 0) = C(0, u) = 0; C(u, 1) = u = C(1, u), ∀u ∈ I, (3.1)

A part of this chapter has been published in the journal Mathematica Slovaca, 74(4) (2024): 1039–1060.

DOI: 10.1515/ms-2024-0076

https://doi.org/10.1515/ms-2024-0076
https://doi.org/10.1515/ms-2024-0076
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and

C(u2, v2) + C(u1, v1) ≥ C(u1, v2) + C(u2, v1), u1 < u2, v1 < v2, u1, u2, v1, v2 ∈ I. (3.2)

As a consequence of the 2-increasing property, every bivariate copula C satisfies the

inequality

C(u2, v2) ≥ C(u1, v1), (3.3)

for every u1 < u2 and v1 < v2 in I.

From a practical point of view, proposing a new bivariate function that satisfies the

copula conditions is often a cumbersome task. One of the most popular techniques for

constructing a family of copulas is through the use of an Archimedean generator.

An Archimedean generator is a convex, strictly decreasing, and continuous function

φ : I → (0, ∞), satisfying φ(1) = 0 and φ(0) ≤ ∞. Using such a generator φ, one can

define a family of bivariate copulas, known as Archimedean copulas, by

C(u, v) = φ(−1) (φ(u) + φ(v)) , ∀u, v ∈ I,

where the pseudo-inverse φ(−1) is given by

φ(−1)(s) =


φ−1(s), if 0 ≤ s ≤ φ(0),

0, if φ(0) ≤ s < ∞.

For further details, one may refer to Drouet Mari and Kotz (2001), Nelsen (2006), Trivedi

et al. (2007), and Chamizo et al. (2021).

Most of the existing construction methods impose restrictive conditions that are often

difficult to verify or implement in practice. Therefore, a more feasible approach is to

construct new copula families by modifying existing ones, aiming to enhance dependence

properties relative to a baseline copula. This chapter is an attempt in that direction.

Various approaches are available in the literature for constructing new copulas from

existing ones. For references, see p. 95 of Nelsen (2006), Kim et al. (2011) and Morillas

(2005). Recently, Dolati et al. (2014) proposed a new class of copulas using the discrete

Mittag-Leffler distribution’s probability generating function (PGF). This motivates us to

generalise the idea of Dolati et al. (2014) to the arbitrary PGF of a positive integer-valued

random variable. This work is more general and generalizes several results of Dolati et al.

(2014). The main contributions of this chapter are summarized as follows.
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• A new class of copulas is proposed using the probability generating function of a

positive-integer-valued random variable.

• An algorithm for generating random numbers from the PGF copula is presented.

• Expressions for various dependence measures of the proposed copula family are

derived.

• A sufficient condition is established for the weighted geometric mean of the proposed

copula family to be a valid copula.

• Bivariate concavity properties, such as Schur concavity and quasi-concavity, associ-

ated with the PGF copula are investigated.

• Two new generalized FGM copulas are introduced using the PGFs of geometric and

discrete Mittag-Leffler distributions. The proposed copulas improve the Spearman’s

Rho of the classical FGM copula from −0.3333 to 0.4751 and 0.9573, respectively.

The chapter is organised as follows. In Section 3.2, we proposed a methodology

for constructing a new family of copulas from existing copulas by using the probability

generating functions as generators. In Section 3.3, we proposed an algorithm for generating

random numbers from the PGF copula. In Section 3.4, various measures of stochastic

dependence such as positive quadrant dependence, total positive of order 2 property, tail

dependence coefficients and some measures of association such as Kendall’s Tau, Spearman’s

Rho and Blomqvist’s Beta coefficients are studied. Weighted geometric mean of a PGF

copula is studied in Section 3.5. Schur concavity and quasi concavity properties associated

with copula are discussed in Section 3.6. Finally, in Section 3.7, two generalized FGM

copulas are proposed using PGFS of geometric and discrete Mittag-Leffler distributions.

3.2 New Class of Bivariate Copulas derived from Probability

Generating Functions

Let N be a positive integer-valued random variable (RV) with probability mass function

(PMF) given by Pn = P (N = n), n ∈ N (set of natural numbers), then PGF of N can be

defined as

γ(t) = E(tN) =
∞∑

n=1
tnPn, t ∈ I. (3.4)
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Note that γ(t) exists for all values of t ∈ I. If P1 = P (N = 1) > 0, and P0 = P (N = 0) = 0

(i.e., γ(0) = 0), then γ(t) is a strictly increasing function on I and γ−1(t), inverse of

γ, exists for every t ∈ I. Throughout this chapter, we assume that the support of N

maybe N or any finite or infinite subsets of N with P1 = P (N = 1) > 0 unless explicitly

stated otherwise. Some examples of PGFs for positive integer-valued random variables are

presented in Table 3.1. For further details on these PGFs, we refer to Harris (1948), Pillai

and Jayakumar (1995) and Johnson et al. (2005).

Table 3.1. PGFs of some positive integer-valued random variables

Distribution PGF Inverse PGF

Zero-Truncated Poisson γ(t) = eλt − 1
eλ − 1 , λ > 0 γ−1(t) = 1

λ
ln
[
1 + t(eλ − 1)

]
Geometric γ(t) = pt

1 − (1 − p)t , p ∈ (0, 1] γ−1(t) = t

(1 − t)p + t

Logarithmic γ(t) = ln(1 − µt)
ln(1 − µ) , µ ∈ (0, 1) γ−1(t) = 1 − (1 − µ)t

µ

Harris γ(t) =
(

δtk

1 − (1 − δ)tk

)1/k

, k > 0, δ ∈ (0, 1) γ−1(t) =
(

tk

δ + (1 − δ)tk

)1/k

Discrete Mittag-Leffler γ(t) = 1 − (1 − t)α, α ∈ (0, 1) γ−1(t) = 1 − (1 − t)1/α

Let (U1, V1), (U2, V2), . . . be a sequence of pairwise independent and identically dis-

tributed random pairs from (U, V ) with marginals are uniformily distributed over I = [0, 1].

Suppose that the joint distribution function (DF) of (U, V ), in fact copula, is denoted

by C(u, v). Let N be a positive integer-valued RV independent of (U1, V1), (U2, V2), . . .,

having PMF, Pn = P (N = n), n ∈ N and PGF γ defined in Eq. (3.4). Define

XN = max {U1, U2, . . . , UN} and YN = max {V1, V2, . . . , VN} .

The joint DF of (XN , YN) is given by

F (x, y) =
∞∑

n=1
P (XN ≤ x, YN ≤ y|N = n)Pn

=
∞∑

n=1
P (U1 ≤ x, . . . , Un ≤ x, V1 ≤ y, . . . , Vn ≤ y)Pn

=
∞∑

n=1
(P (U ≤ x, V ≤ y))n Pn

=
∞∑

n=1
(C(x, y))n Pn

=γ (C(x, y)) .
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Since limy→1 F (x, y) = γ (C(x, 1)) = γ(x) and limx→1 F (x, y) = γ (C(1, y)) = γ(y), it

follows that marginals of X and Y are γ(x) and γ(y). By Sklar’s theorem, there exists a

unique copula, denoted by Cγ(u, v) satisfying

F (x, y) = γ (C(x, y)) = Cγ(γ(x), γ(y)).

Therefore, the underlying copula corresponds to the joint distribution of X and Y is given

by

Cγ(u, v) = γ
(
C(γ−1(u), γ−1(v))

)
. (3.5)

We call Cγ(u, v) as the PGF copula of C(u, v) derived from γ. Following examples are

some existing class of copulas which are in fact the sub-families of PGF copula.

Example 3.2.1. Let Π(u, v) = uv denote the product copula, which corresponds to
independence of U and V . If γ(t) = eλt−1

eλ−1 (PGF of Zero-truncated Poisson), then

Πγ(u, v) = δ−1
(

exp
{

1
ln (1 + δ) (ln [1 + δu]) (ln [1 + δv])

}
− 1

)
.

This copula is well-known Frank copula with dependency parameter δ = eλ − 1.

Example 3.2.2. Let D be a degenerated RV with Pd = P (D = d) = 1 for some d ∈ N,
then γ(t) = td, for every t ∈ I. For any bivariate copula C(u, v), the PGF copula of
C(u, v) derived from the PGF of degenerated RV D is Cγ(u, v) =

[
C(u1/d, v1/d)

]d
(Nelsen

(2006)). Several authors used this copula to generalize the base copula C(u, v). For
example, if C(u, v) = uv (1 + θ(1 − u)(1 − v)) ; θ ∈ I, the well-known FGM copula, then
Cγ(u, v) =

[
(uv)1/d

(
1 + θ(1 − u1/d)(1 − v1/d)

)]d
and it was proposed by Bayramoglu and

Bayramoglu (2014). Pathak and Vellaisamy (2016b) proposed the copula Cγ(u, v) =

[uv (1 + θ(1 − uα)(1 − vα))]d by considering C(u, v) = uv
(
1 + θ(1 − udα)(1 − vdα)

)
as a

baseline copula.

Example 3.2.3. Consider the PGF of geometric distribution γ(t) = pt
1−(1−p)t and let

C(u, v), be any bivariate copula, then the corresponding PGF copula is

Cγ(u, v) =
pC

(
u

(1−u)p+u
, v

(1−v)p+v

)
1 − (1 − p)C

(
u

(1−u)p+u
, v

(1−v)p+v

) . (3.6)
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This copula was proposed by Marshall and Olkin (1997). If we replace C(u, v) in Eq. (3.6)
by product copula Π(u, v). Then the corresponding PGF copula is

Πγ(u, v) = uv

1 − (1 − p)(1 − u)(1 − v) .

This copula is popularly known as Ali-Mikhail-Haq (AMH) copula.

Example 3.2.4. Consider the PGF of discrete Mittag-Leffler distribution γ(t) = 1 − (1 −

t)α, α ∈ (0, 1), proposed by Pillai and Jayakumar (1995). Let C(u, v) be any bivariate
copula. Then Cγ(u, v) = 1−

(
1 − C

(
1 − (1 − u)1/α , 1 − (1 − v)1/α

))α
, which was proposed

by Dolati et al. (2014).

Example 3.2.5. If γ is any arbitrary PGF of a positive integer-valued RV and Π(u, v) = uv,
denotes the product copula, then Πγ(u, v) = γ (γ−1(u)γ−1(v)). This copula was proposed
by Alhadlaq and Alzaid (2020).

Proposition 3.2.1. Let ZN = min {U1, U2, . . . , UN} and WN = min {V1, V2, . . . , VN},
then survival copula of (Z, W ) is Ĉγ(u, v) = γ

(
Ĉ(γ−1(u), γ−1(v))

)
, where Ĉ(u, v) is the

survival copula of (U, V ).

Proof. The joint survival function S(z, w) of (ZN , WN) is given by

S(z, w) =
∞∑

n=1
P (ZN ≥ z, WN ≥ w|N = n)Pn

=
∞∑

n=1
(P (U ≥ z, V ≥ w))n Pn

=
∞∑

n=1

(
Ĉ(1 − z, 1 − w)

)n
Pn

=γ
(
Ĉ(1 − z, 1 − w)

)
.

It follows from Sklar’s theorem that there exists a survival copula Ĉγ(u, v) satisfying

S(z, w) = Ĉγ (γ(1 − z), γ(1 − w)). Then, the survival PGF copula can be written as

Ĉγ(u, v) = γ
(
Ĉ(γ−1(u), γ−1(v))

)
.

Remark 3.2.2. Consider the PGF of discrete Mittag-Leffler distribution γ(t) = 1−(1−t)α,
then Π̂γ(u, v) = u+v−uv

[
u−1/α + v−1/α − 1

]α
, α ∈ (0, 1). A concrete study on this copula

were reported by Mirhosseini et al. (2015), Pathak and Vellaisamy (2022), Pathak et al.
(2023), and Arshad et al. (2023).
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Proposition 3.2.3. The minimum copula is invariant under the PGF transformation.

Proof. Since γ−1 is strictly increasing and continuous function, it follows that for u, v ∈

I, u ≤ v if and only if γ−1(u) ≤ γ−1(v). Thus, for the Fréchet-Hoeffding upper

bound copula, M(u, v) = min {u, v}, we have Mγ(u, v) = γ (M(γ−1(u), γ−1(v))) =

γ (min(γ−1(u), γ−1(v))) = min {u, v} = M(u, v).

Remark 3.2.4. Consider the Fréchet-Hoeffding lower bound copula

W (u, v) = max {u + v − 1, 0}

and γ be any PGF, then the PGF copula W γ(u, v) need not be equal to W (u, v).

Proposition 3.2.5. The copula Cγ defined in Eq.(3.5) is an Archimedean copula if and
only if C is Archimedean. The generator φ (up to a constant) is given by

φ(γ−1(s)) =
∫ 1

γ−1(s)
δ(t)dt, (3.7)

where the function δ : (0, 1) → (0, ∞) satisfies the relation δ(u)Cv = δ(v)Cu, for every
u, v ∈ I with Cu = ∂C(u, v)

∂u
and Cv = ∂C(u, v)

∂v
.

Proof. A copula C is Archimedean if and only if there exists a function δ : (0, 1) → (0, ∞)

satisfying
Cu

Cv

= δ(u)
δ(v) , (3.8)

for every u, v ∈ I and the generator of C (upto a constant) is given by φ(s) =
∫ 1

s δ(t)dt (see

Drouet Mari and Kotz (2001)). Since γ is strictly increasing and differentiable function on

I, then dγ−1(t)
dt

= 1
γ′(γ−1(t)) , for every t ∈ I. Therefore,

Cγ
u

Cγ
v

= δ (γ−1(u)) (γ′(γ−1(u)))−1

δ (γ−1(v)) (γ′(γ−1(v)))−1 ,

where Cγ
u = ∂Cγ(u, v)

∂u
and Cγ

v = ∂Cγ(u, v)
∂v

. Thus, Cγ is Archimedean if and only if C is

Archimedean and the generator of Cγ is nothing but φ(γ−1(s)).

Following examples are some new class of Archimedean-PGF family of copulas with

generators.
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Example 3.2.6. Consider the Clayton copula, C(u, v) = [u−η + v−η − 1]−1/η, where
η ∈ (0, ∞). The Archimedean generator φ(t) corresponds to Clayton copula is φ(t) =

η−1 (t−η − 1) , t ∈ I. Then, PGF copula corresponds to Clayton copula derived from PGF
of geometric RV with parameter p, is given by

Cγ(u, v) =
p

([(
u

(1−u)p+u

)−η
+
(

v
(1−v)p+v

)−η
− 1

]−1/η
)

1 − (1 − p)
([(

u
(1−u)p+u

)−η
+
(

v
(1−u)p+v

)−η
− 1

]−1/η
)

and the Archimedean generator of this Clayton-PGF copula is

φ(t) = η−1
((

p2(1 − 2t) + t2p(1 − p) + t(1 + p)
(1 − t) pt + t2

)η

− 1
)

.

Example 3.2.7. The Gumbel-Barnett copula, a member of Archimedean family, is de-
fined as C(u, v) = uv exp {−ϕ ln u ln v}, ϕ ∈ (0, 1], with generator function φ(t) =

ln
(
2t−ϕ − 1

)
, t ∈ I. Then the PGF Gumbel-Barnett copula corresponds to the PGF

of logarithmic distribution with parameter µ ∈ (0, 1) is given by

Cγ(u, v) = 1
ln θ

[
ln
(

1 −
(

(1 − θu) (1 − θv)
µ

)
exp

{
−ϕ ln

(
1 − θu

µ

)
ln
(

1 − θv

µ

)})]
,

where θ = 1 − µ and the generator function is φ(t) = ln
(

2
(

1−(1−µ)t

µ

)−ϕ
− 1

)
, t ∈ I.

Example 3.2.8. If the Archimedean generator is φ(t) = ln
(

1−η(1−t)
t

)
, η ∈ [−1, 1), t ∈ I,

coreesponds to AMH copula. The AMH copula can be defined as C(u, v) = uv
1−η(1−u)(1−v) .

The discrete Mittag-Leffler AMH copula is

Cγ(u, v) = 1 −

1 −


(
1 − (1 − u)1/α

) (
1 − (1 − v)1/α

)
1 − η

(
1 −

(
1 − (1 − u)1/α

)) (
1 −

(
1 − (1 − v)1/α

))
α

,

where 0 < α < 1 and the corresponding generator is

φ(t) = ln
1 − η

(
1 −

(
1 − (1 − t)1/α

))
(
1 − (1 − t)1/α

)
 , t ∈ I.

Proposition 3.2.6. For every u, v ∈ I, the inequality Cγ(u, v) ≥ (C(u, v))µ holds, where
µ = E(N) denotes the expected value of the RV N .

Proof. Since ln(·) is a concave function, it follows from the Jensen’s inequality that

E
(
ln(tN)

)
≤ ln

(
E(tN)

)
. It implies that

µ ln(t) ≤ ln (γ(t)) . (3.9)
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Substituting t = C (γ−1(u), γ−1(v)) in Eq. (3.9), we have

µ ln(C
(
γ−1(u), γ−1(v)

)
) ≤ ln(Cγ(u, v)).

It is obvious that µ > 0 and using the fact that C(u, v) ≤ C (γ−1(u), γ−1(v)) (see Eq. 3.3),

we have

ln (γ(t)) ≥ µ ln (C(u, v)) . (3.10)

The result follows by exponentiating both sides of the Eq (3.10).

Definition 3.2.7. (Nelsen (2006)) Let C be a bivariate copula, then

1. C is said to be symmetric if C(u, v) = C(v, u), for every u, v ∈ I;
2. C is said to be associative if C (C(u, v), w) = C (u, C(v, w)), for every u, v, w ∈ I.

Proposition 3.2.8. The PGF copula Cγ is associative if and only if C is associative.

Proof. Assume Cγ is associative, it implies that

Cγ (Cγ(u, v), w) = Cγ (u, Cγ(v, w)) ,

for every u, v, w ∈ I. Since γ is a bijective function, it follows that

C
(
C
(
γ−1(u), γ−1(v)

)
, γ−1(w)

)
= C

(
γ−1(u), C

(
γ−1(v), γ−1(w)

))
.

Thus C is associative. In a similar argument, one can easily prove the converse part.

Remark 3.2.9. The PGF copula Cγ is symmetric if and only if C is symmetric. This
can be proved similar to the proof of Proposition 3.2.8.

Proposition 3.2.10. Let {γn : n ∈ N} be a sequence of PGFs of positive integer-valued
RVs converges uniformly to the PGF γ and C be any bivariate copula. Let Cγn and Cγ be
the PGF copulas of C derived from the PGFs γn and γ respectively. Then Cγn converges
uniformly to Cγ.

Proof. Since γ is a PGF, it follows that γ−1 is continuous and strictly increasing on I.

Therefore for every t ∈ I and for a given ζ > 0, there exists an η > 0 satisfying∣∣∣∣γ−1
(

t − η

2

)
− γ−1(t)

∣∣∣∣ <
ζ

2 and
∣∣∣∣γ−1

(
t + η

2

)
− γ−1(t)

∣∣∣∣ <
ζ

2 . (3.11)
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Given γn converges uniformly to γ, then for a given η > 0, there exists some n0 ∈ N such

that

|γn(t) − γ(t)| <
η

2 (3.12)

for every t ∈ I and for every n ≥ n0. It implies that∣∣∣∣γn

(
γ−1

(
t − η

2

))
−
(

t − η

2

)∣∣∣∣ <
η

2 and
∣∣∣∣γn

(
γ−1

(
t + η

2

))
−
(

t + η

2

)∣∣∣∣ <
η

2 ,

for every n ≥ n0. It follows that

γn

(
γ−1

(
t − η

2

))
< t < γn

(
γ−1

(
t + η

2

))
,

for every n ≥ n0. Since γ−1
n is strictly increasing function, it implies that

γ−1
(

t − η

2

)
< γ−1

n (t) < γ−1
(

t + η

2

)
, for every n ≥ n0.

Using Eq. (3.11), we have for every n ≥ n0,

γ−1
n (t) ∈

(
γ−1

(
t − η

2

)
, γ−1

(
t + η

2

))
⊂
(

γ−1 (t) − ζ

2 , γ−1 (t) + ζ

2

)
,

for every n ≥ n0. Therefore, we can conclude that∣∣∣γ−1
n (t) − γ−1(t)

∣∣∣ <
ζ

2 , for every n ≥ n0 and for all t ∈ I.

In other words, we can say γ−1
n converges uniformly to γ−1. Since every bivariate copula

satisfies Lipchitz condition (see Nelsen (2006), Theorem 2.24), we have

|C(γ−1
n (u), γ−1

n (v)) − C(γ−1(u), γ−1(v))| <|γ−1
n (u) − γ−1(u)| + |γ−1

n (v) − γ−1(v)|

<
ζ

2 + ζ

2 = ζ,

for every n ≥ n0 and for all u, v ∈ I. γn converges uniformly to γ, then {γn : n ∈ N} is an

equi-continuous family of functions (see Rudin (1976), Theorem 7.24), i.e.,

|γn(t2) − γn(t1)| <
η

2 (3.13)

for all n ∈ N, whenever |t2 − t1| < ζ with t1, t2 ∈ I. Substitute t1 = C (γ−1(u), γ−1(v)) and

t2 = C (γ−1
n (u), γ−1

n (v)) in Eq. (3.13) and t = C (γ−1(u), γ−1(v)) in Eq. (3.12), we have∣∣∣γn

(
C
(
γ−1

n (u), γ−1
n (v)

))
− γn

(
C
(
γ−1(u), γ−1(v)

))∣∣∣ <
η

2 ,

and ∣∣∣γn

(
C
(
γ−1(u), γ−1(v)

))
− γ

(
C
(
γ−1(u), γ−1(v)

))∣∣∣ <
η

2 ,
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for every n ≥ n0. Thus,

|Cγn(u, v) − Cγ(u, v)| =
∣∣∣γn

(
C
(
γ−1

n (u), γ−1
n (v)

))
− γ

(
C
(
γ−1(u), γ−1(v)

))∣∣∣
≤
∣∣∣γn

(
C
(
γ−1

n (u), γ−1
n (v)

))
− γn

(
C
(
γ−1(u), γ−1(v)

))∣∣∣
+
∣∣∣γn

(
C
(
γ−1(u), γ−1(v)

))
− γ

(
C
(
γ−1(u), γ−1(v)

))∣∣∣
<

η

2 + η

2 = η, for every n ≥ n0 and for every u, v ∈ I.

Thus, Cγn converges uniformly to Cγ.

Definition 3.2.11. (Nelsen (2006)) Let C1 and C2 be any two bivariate copulas, then C1

is said to be smaller than C2, denoted by C1 ≺ C2, if C1(u, v) ≤ C2(u, v) for all u, v ∈ I.

Proposition 3.2.12. Let Cγ
1 (u, v) and Cγ

2 (u, v) be PGF copulas of C1(u, v) and C2(u, v)

respectively derived from the PGF γ. Then, Cγ
1 ≺ Cγ

2 if and only if C1 ≺ C2.

The proof is straightforward, so omitted.

3.3 Random Number Generation

In this section, we present an algorithm for generating random numbers from the PGF

copula. The algorithm is as follows:

Step 1: Generate a RV N from the distribution with PGF γ(·).

Step 2: Generate N independent random samples (u1, v1), (u2, v2), . . . , (uN , vN ) from the

baseline copula C(u, v).

Step 3: Set x = max{u1, u2, . . . , uN} and y = max{v1, v2, . . . , vN}.

Step 4: Set u = γ(x) and v = γ(y). Finally the desired sample is (u, v).

Following examples are new class of PGF copulas derived from well known copulas. We

generate 1000 random numbers from the PGF copula and is depicted in scatterplot. We

use R-software (version 3.6.3) for random number generation. We use copula package in

R for generating random numbers from the baseline copula.

Example 3.3.1. Consider the Gumbel-Hougaard copula

C(u, v) = exp
{

−
[
(− ln u)ϕ + (− ln v)ϕ

]1/ϕ
}

,

ϕ ≥ 1. Then the Geometric-Gumbel-Hougaard copula derived from geometric PGF is given
by
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Cγ(u, v) =
p

(
exp

{
−
[(

− ln
(

u
(1−u)p+u

))ϕ
+
(
− ln

(
v

(1−v)p+v

))ϕ
]1/ϕ

})

1 − (1 − p)
(

exp
{

−
[(

− ln
(

u
(1−u)p+u

))ϕ
+
(
− ln

(
v

(1−v)p+v

))ϕ
]1/ϕ

}) ,

for ϕ ≥ 1 and p ∈ (0, 1].

Figure 3.1. Random numbers from Geometric-Gumbel-Hougaard copula

with different parameters

Example 3.3.2. Marshall and Olkin (1967) proposed a bivariate copula, defined by

C(u, v) =

 u1−αv, if uα ≥ vβ,

uv1−β, if uα < vβ

for 0 ≤ α, β ≤ 1. Then the Logarithmic-Marshall-Olkin copula derived from the PGF of
logarithmic distribution is given by

Cγ(u, v) =

 (ln θ)−1 ln
(
1 − µα−1 (1 − θu)1−α (1 − θv)

)
, if uα ≥ vβ,

(ln θ)−1 ln
(
1 − µβ−1 (1 − θu) (1 − θv)1−β

)
, if uα < vβ,

for α, β ∈ [0, 1], µ ∈ (0, 1) and θ = 1 − µ.

In the following section, we will discuss some important dependence measures of the

PGF copula.
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Figure 3.2. Random numbers from Logarithmic-Marshall-Olkin copula

with different parameters

3.4 Stochastic Dependence

Copula functions are widely used in modelling dependent data sets. In literature, there

are various measures of dependence are available to measure the dependence structure

captured by the copula. Some of the important dependence measures were discussed here.

3.4.1 Measures of Association

Let C(u, v) be a bivariate copula. Then the Kendall’s Tau and Spearman’s Rho in

terms of copula, denoted by τC and ρC , can be defined as

τC =1 − 4
∫ 1

0

∫ 1

0

∂

∂u
{C(u, v)} ∂

∂v
{C(u, v)} dudv, (3.14)

and

ρC =12
∫ 1

0

∫ 1

0
C(u, v)dudv − 3. (3.15)

Using the expressions in Eq. (3.14) and Eq. (3.15), the Kendall’s Tau and Spearman’s

Rho for the PGF copula in Eq.(3.5) can be defined as

τCγ =1 − 4
∫ 1

0

∫ 1

0

∂

∂u
{γ (C(u, v))} ∂

∂v
{γ (C(u, v))} dudv,
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and

ρCγ =12
∫ 1

0

∫ 1

0
γ (C(u, v)) γ′(u)γ′(v)dudv − 3. (3.16)

Remark 3.4.1. Let C be an Archimedean bivariate copula with Archimedean generator
φ(s), then Kendall’s Tau for C will be τC = 1 + 4

∫ 1
0

φ(s)
φ′(s)ds. As a consequence of

Proposition 3.2.5, Kendall’s Tau for the PGF copula Cγ derived from the PGF γ is
τCγ = 1 + 4

∫ 1
0

φ(γ−1(s))
φ′(γ−1(s))ds.

Proposition 3.4.2. Let Cγ(u, v) be the PGF copula of a bivariate copula C(u, v) derived
from PGF γ. Then,

max
{
1 − [γ′(1)]2 (τC − 1), −1

}
≤ τCγ ≤ 1 − [γ′(0)]2 (τC − 1). (3.17)

Proof. Since γ′′(t) ≥ 0, for all t ∈ I, it follows that γ′ is an increasing function. Hence,

γ′(0) ≤ γ′(t) ≤ γ′(1), for all t ∈ I. (3.18)

Substituting t = C(u, v) into Eq. (3.18), we obtain

[γ′(0)]2 ≤ [γ′ (C(u, v))]2 ≤ [γ′(1)]2 .

Since 0 < ∂
∂u

C(u, v) < 1 and 0 < ∂
∂v

C(u, v) < 1, multiplying both sides of the above

inequality by

4 ∂

∂u
C(u, v) ∂

∂v
C(u, v),

and integrating over the unit square I2, and using Eq. (3.14), we obtain the inequality (3.17).

It is important to note that γ′(0) always exists, whereas γ′(1) may not exist in general.

To provide a tight lower bound, we consider

max
{
1 − [γ′(1)]2 (τC − 1), −1

}
,

since the expression [γ′(1)]2 (τC + 1) − 1 can potentially be less than −1.

Blomqvist’s medial correlation coefficient, proposed by Blomqvist (1950), is a measure

of association based on the medians of the two RVs. If C is a bivariate copula, then

Blomqvist’s Medial correlation coefficient, denoted by βC , can be defined as

βC = 4C
(1

2 ,
1
2

)
− 1.
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Like Kendall’s Tau and Spearman’s Rho, the range of Blomqvist’s Beta is also [−1, 1], and

similar interpretation can be made for positive and negative values of βC . The Blomqvist’s

Beta coefficient for the PGF copula is given by

βCγ = 4γ
(

C
(

γ−1
(1

2

)
, γ−1

(1
2

)))
− 1.

Following examples will provide the Blomqvist’s Medial correlation coefficient of some

well-known families of copulas.

Example 3.4.1. The Blomqvist’s Beta for product copula, Π(u, v) = uv, is zero. Then
the product PGF copula derived from the PGF of Harris distribution γ(t) =

(
δtk

1−(1−δ)tk

)1/k
;

k > 0, δ ∈ (0, 1) is given by

βCγ =
[(

1 − 2k
) (

δ(1 − 2k) − 2
)

+ 1
]−1/k

.

Example 3.4.2. Consider the Galambos (1975) copula

C(u, v) = uv exp
{[

(1 − u)−θ + (1 − v)−θ
]−1/θ

}
,

where θ > 0. Then βC = exp
{
2− 1

θ
−1
}

−1. Hence, Blomqvist’s Medial correlation coefficient
for the PGF copula corresponds to the PGF γ(t) = 1 − (1 − t)α ; α ∈ (0, 1) is given by

βCγ = 3 − 4
(

1 −
[
1 − 2− 1

α

]2
exp

{
2− 1

θ
− 1

α

})α

.

Example 3.4.3. Consider the Cuadras and Augé (1981) copula

C(u, v) = (uv)1−θ (min {u, v})θ ; θ ∈ [0, 1].

Then βC = 2θ − 1. It follows that the Blomqvist’s Beta of the PGF copula for the PGF
pt

1−(1−p)t is

βCγ = (1 + p)θ−2 (3p + 1) − 1
1 − (1 − p) (1 + p)θ−2 .

3.4.2 Positive Quadrant Dependence

A bivariate copula is said to have the positively quadrant dependent (PQD) property

if uv ≤ C(u, v) for all u, v ∈ [0, 1]. Conversely, if uv ≥ C(u, v) for all u, v ∈ [0, 1], the

copula is said to exhibit negatively quadrant dependent (NQD) behavior. The following

lemma will be useful in establishing the PQD property of the PGF copula.
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Lemma 3.4.3. Let γ be a PGF of some positive integer-valued RV N . Then

γ(a)γ(b) ≤ γ(ab), for every a, b ∈ I.

Proof. Let Ω denote the support of N . First, we will prove that the result is true for the

cardinality of Ω is finite. Without loss of generality, we assume Ω = {1, 2, 3, . . . , K}, where

K ∈ N. Since a ∈ I, it follows that (ax − ay) ≥ 0 for x ≥ y and (ax − ay) ≤ 0 for x < y,

x, y ∈ N. This implies that for a, b ∈ I, the product term (ax − ay) (by − bx) ≤ 0 for all

x, y ∈ I. Therefore,

1
2

K∑
x=1

K∑
y=1

(ax − ay) (by − bx) PyPx =1
2

K∑
x=1

 K∑
y=1

[axby − (ab)x − (ab)y + aybx] Py

Px

=1
2

K∑
x=1

[axγ(b) − (ab)x − γ(ab) + γ(a)bx] Px

=1
2 [2γ(a)γ(b) − 2γ(ab)]

=γ(a)γ(b) − γ(ab).

Clearly, γ(a)γ(b) − γ(ab) ≤ 0 for a, b ∈ I. The result is also valid for infinite case by letting

K → ∞.

Corollary 3.4.4. Let γ−1 be the inverse of the PGF γ, then

γ−1(ab) ≤ γ−1(a)γ−1(b), for all a, b ∈ I.

Proposition 3.4.5. If the bivariate copula C has bivariate PQD copula, then corresponding
PGF copula Cγ generated from the PGF γ also has PQD property.

Proof. Since C has PQD, then by definition C(u, v) ≥ uv for all u, v ∈ I. It follows that

C
(
γ−1(u), γ−1(v)

)
≥ γ−1(u)γ−1(v).

Using Lemma 3.4.3, we obtain

γ
(
C
(
γ−1(u), γ−1(v)

))
≥ γ

(
γ−1(u)γ−1(v)

)
≥ uv,

for all u, v ∈ I. Hence, Cγ has positive quadrant dependence property.

Remark 3.4.6. If C has NQD, then it is not necessary that the corresponding PGF
copula Cγ has NQD property. For instance, take γ(t) = 1 − (1 − t)0.8, t ∈ I and C(u, v) =

uv(1 − 0.7(1 − u)(1 − v)), Farlie-Gumbel-Morgenstern (FGM) copula. It is well-known
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result that the given FGM copula has NQD (see Drouet Mari and Kotz (2001), p.119), but
Cγ(0.1, 0.9) = 0.09101 ≰ 0.09.

3.4.3 Total Positive of Order 2 (TP2) Property

A bivariate function G(x, y) is said to be totally positive of order 2 (TP2) if

G(x1, y1)G(x2, y2) ≥ G(x2, y1)G(x1, y2), for every x1 < x2 and y1 < y2.

The TP2 property is one of the strongest forms of dependence. If a bivariate copula

possesses the TP2 property, it implies positively quadrant dependence (PQD), left tail

decreasing (LTD), and left corner set decreasing (LCSD) dependence.

Lemma 3.4.7. Let p, q, r, s ∈ I with r ≤ min {p, q} ≤ max {p, q} ≤ s. If pq ≤ rs, then
γ(p)γ(q) ≤ γ(r)γ(s).

Proof. Without loss of generality, assume min {p, q} = p and max {p, q} = q, then pq ≤ rs

implies that (pq)x ≤ (rs)x for every x > 0. Then,

(pq)x − (qr)x ≤ (rs)x − (qr)x ≤ qx [sx − qx] .

It follows that

px − rx ≤ sx − qx,

for every x > 0 and pq ≤ rs. Therefore, if pq ≤ rs then, px + qx ≤ rx + sx, for all x > 0.

Let γ(t), t ∈ I be the PGF of the positive integer-valued RV N . Let Ω be the support of N .

First we will show the result is true for the finite support of N , i.e. Ω = {1, 2, 3, . . . , K},

where K is a fixed natural number.

γ(p)γ(q) =
(

K∑
x=1

pxPx

) K∑
y=1

qyPy


=pqP1

(
P1 + [p + q] P2 +

[
p2 + q2

]
P3 + · · · +

[
pK−1 + qK−1

]
PK

)
+

p2q2P2
(
P2 + [p + q] P3 +

[
p3 + q3

]
P4 + · · ·

[
pK−1 + qK−1

]
PK

)
+

...

+ pK−1qK−1PK−1 (PK−1 + [p + q] PK) + pKqKPKPK
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≤rsP1
(
P1 + [r + s] P2 +

[
r2 + s2

]
P3 + · · · +

[
rK−1 + sK−1

]
PK

)
+

r2s2P2
(
P2 + [r + s] P3 +

[
r3 + s3

]
P4 + · · ·

[
rK−1 + sK−1

]
PK

)
+

...

+ rK−1sK−1PK−1 (PK−1 + [r + s] PK) + rKsKPKPK

=γ(r)γ(s).

Letting K → ∞, the conclusion holds true even in the infinite case.

Proposition 3.4.8. Let C be a bivariate copula. If C has TP2 property, then the
corresponding PGF copula Cγ derived from PGF γ also has TP2 property.

Proof. If the bivariate copula C has TP2 property, then

C(u1, v1)C(u2, v2) ≥ C(u1, v2)C(u2, v1),

for every u1 < u2 and v1 < v2 with u1, u2, v1, v2 ∈ I. Substitute p = C(u1, v2), q = C(u2, v1),

r = C(u1, v1) and s = C(u2, v2) in Lemma 3.4.7, the result immediately follows.

3.4.4 Tail Dependence Coefficients

Tail dependence coefficients quantify the association between the tails of two RVs. For

a bivariate copula C, the lower and upper tail dependence coefficients are defined as

λC
L = lim

u→0+

C(u, u)
u

, λC
U = 2 − lim

u→1−

1 − C(u, u)
1 − u

. (3.19)

It holds that 0 ≤ λC
L , λC

U ≤ 1 (see (Nelsen, 2006, p. 214)). A value of zero indicates tail

independence, while a positive value suggests tail dependence.

Proposition 3.4.9. The lower tail dependence coefficient is invariant under the PGF
transformation (i.e., λCγ

L = λC
L). Similarly, if γ′(1) exist, then the upper tail dependence

coefficient is invariant under the PGF transformation.
76



A New Family of Copulas Based on Probability Generating Functions Chapter 3

Proof. By definition,

λCγ

L = lim
u→0+

γ (C(γ−1(u), γ−1(u)))
u

= lim
u→0+

γ (C(u, u))
γ(u)

= lim
u→0+

γ′ (C(u, u))
γ′(u) lim

u→0+

d

du
{C(u, u)}

= lim
u→0+

γ′ (C(u, u))
γ′(u) lim

u→0+

C(u, u)
u

,

Now, the result follows from the fact that lim
u→0+

γ′ (C(u, u))
γ′(u) = 1, as γ′(0) is finite, and

lim
u→0+

C(u, u)
u

= λC
L . Further, assume that γ′(1) exists, we have

λCγ

U =2 − lim
u→1−

1 − γ (C(γ−1(u), γ−1(v)
1 − u

=2 − lim
u→1−

1 − γ (C(u, v))
1 − γ(u)

=2 − lim
u→1−

γ′ (C(u, v))
γ′(u) lim

u→1−

d

du
{C(u, u)}

=2 − lim
u→1−

γ′ (C(u, v))
γ′(u) lim

u→1−

1 − C(u, u)
1 − u

=λC
U ,

where the last equality holds by using the fact that lim
u→1−

γ′ (C(u, u))
γ′(u) = 1.

Remark 3.4.10. If γ′(1) does not exist, then the upper tail dependence coefficient of
the transformed copula Cγ may differ from that of the original copula C. For instance,
consider the PGF γ(t) = 1 − (1 − t)α, with 0 < α < 1. In this case, as shown by Dolati
et al. (2014), we have

λCγ

U = 2 −
(
2 − λC

U

)α
.

This example illustrates that even when the baseline copula exhibits no or weak upper tail
dependence, an appropriate PGF transformation can yield a new copula with enhanced
upper tail dependence.
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Example 3.4.4. Consider the Marshall-Olkin copula, defined by

C(u, v) =

 u1−pvq, if up ≥ vq

upv1−q, if up ≤ vq,

where p, q ∈ (0, 1). It is easy to show that λC
L = 0 and λC

U = min {p, q} . The lower and
upper tail coefficients are of Marshall-Olkin PGF copula derived from the PGF of discrete
Mittag-Leffler distribution are λCγ

L = 0 and λCγ

U = 2 − (2 − min {p, q})α, respectively.

Example 3.4.5. Consider the Polynomial-Sine copula, proposed by Chesneau (2022),
defined by,

C(u, v) = uv + θ sin(πu) sin(πv),

where θ ∈
[
− 1

π2 , 1
π2

]
. Clearly, λC

L = 0 and λC
U = 0. The lower and upper tail dependence

coefficients of Polynomial-Sine PGF copula derived from the PGF γ(t) = 1 − (1 − t)α are
λCγ

L = 0 and λCγ

U = 2 − 2α, respectively.

3.5 Weighted Geometric Mean

Let C1 and C2 be two bivariate copulas. The weighted geometric mean of C1 and C2

can be defined as

C(u, v) = [C1(u, v)]θ[C2(u, v)]1−θ, θ ∈ I. (3.20)

Cuadras (2009) proved that weighted geometric mean of two bivariate copulas may or

may not be a copula. Zhang et al. (2013) proved that the weighted geometric mean

of two bivariate copulas C1 and C2 is a copula if C1 and C2 has TP2 property. Now

using Proposition 3.4.8 and the result of Zhang et al. (2013), we will state the following

proposition without proof.

Proposition 3.5.1. Let Cγ1
1 and Cγ2

2 be the PGF copulas of two bivariate copulas C1 and
C2 derived from the PGFs γ1 and γ2 respectively. Then the weighted geometric mean of
Cγ1

1 and Cγ2
2

C = [Cγ1
1 ]θ[Cγ2

2 ]1−θ, θ ∈ I,

is a copula if C1 and C2 have TP2 property.
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3.6 Concavity Property

In this section, we will discuss Schur-concavity and quasi-concavity property of a copula.

Schur-concavity and quasi-concavity of a bivariate copula can be defined as follows.

Definition 3.6.1. A bivariate copula C is said to be Schur-concave if

C(s, t) ≤ C(αs + (1 − α)t, αt + (1 − α)s),

for every s, t, α ∈ I.

Definition 3.6.2. A bivariate copula C is said to be quasi-concave if

min {C(s1, s2), C(t1, t2)} ≤ C(αs1 + (1 − α)t1, αs2 + (1 − α)t2),

for every s1, s2, t1, t2, α ∈ I.

Proposition 3.6.3. Let C be a bivariate copula.

1. If C is Schur-concave, then the PGF copula Cγ is Schur-concave.
2. If C is quasi-concave then Cγ is quasi-concave.

Proof.

1. First we prove that γ−1 is concave. Since γ′′(t) ≥ 0, for all t ∈ I, (i.e. γ is convex).

It follows that

γ(αs + (1 − α)t) ≤ αγ(s) + (1 − α)γ(t),

for any s, t, α ∈ I. Let p = γ−1(αs + (1 − α)t) and q = αγ−1(s) + (1 − α)γ−1(t). It

is obvious that p, q ∈ I. Now consider

γ(p) =αs + (1 − α)t

=αγ
(
γ−1(s)

)
+ (1 − α)γ

(
γ−1(t)

)
≥γ

(
αγ−1(s) + (1 − α)γ−1(t)

)
=γ(q).

Since γ is a bijective and strictly increasing function, it follows that γ(p) ≥ γ(q) if

and only if p ≥ q. Therefore,

γ−1(αs + (1 − α)t) ≥ αγ−1(s) + (1 − α)γ−1(t),
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for every s, t, α ∈ I. Hence γ−1 is concave. Assume that C is Schur-concave. By

definition and using inequality (3.3), we have

C
(
γ−1(s), γ−1(t)

)
≤C

(
αγ−1(s) + (1 − α)γ−1(t), αγ−1(t) + (1 − α)γ−1(s)

)
≤C

(
γ−1 (αs + (1 − α)t) , γ−1 (αt + (1 − α)s)

)
.

Since γ is strictly increasing, it follows that

Cγ(s, t) ≤ Cγ(αs + (1 − α)t, αt + (1 − α)s),

for every s, t, α ∈ I. Hence Cγ is Schur-concave.

2. Assume that C is quasi-concave. Using inequality (3.3) and concavity property of

γ−1, for every s1, s2, t1, t2, α ∈ [0, 1], we have

min
{
C
(
γ−1(s1), γ−1(s2)

)
, C

(
γ−1(t1), γ−1(t2)

)}
≤ C

(
αγ−1(s1) + (1 − α) γ−1(s2), αγ−1(t1) + (1 − α) γ−1(t2)

)
≤ C

(
γ−1 (αs1 + (1 − α) t1) , γ−1 (αs2 + (1 − α) t2)

)
.

It follows that

min {Cγ(s1, s2), Cγ(t1, t2)} ≤ Cγ(αs1 + (1 − α)t1, αs2 + (1 − α)t2).

3.7 A New Class of PGF-FGM Copulas

Farlie-Gumbel-Morgenstern (FGM) copula is one of the popular copula and widely

used in the literature for constructing bivariate distributions. The FGM copula is defined

as

C(u, v) = uv [1 + θ (1 − u) (1 − v)] , θ ∈ [−1, 1].

The FGM copula is commonly used to model datasets exhibiting both positive and negative

dependence, facilitated by an appropriate choice of the parameter θ. However, a limitation

arises from its relatively narrow dependence range, specifically with Spearman’s Rho (ρ)

confined within [−0.33, 0.33]. In response to this limitation, various researchers have

endeavored to enhance the dependence range of the FGM copula. In this section, we will

generalize the FGM copula by using PGF of some positive-integer valued RVs. We consider
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the PGF’s of geometric and Discrete Mittag-Leffler distributions. We also compute the

Spearman’s Rho for both copulas for analyzing the dependence performance.

3.7.1 Geometric-FGM Copula

Using the PGF of Geometric distribution, the PGF copula is given by

Cγ(u, v) =
p
(

u
(1−u)p+u

) (
v

(1−v)p+v

) [
1 + θ

(
(1−u)p

(1−u)p+u

) (
(1−v)p

(1−v)p+v

)]
1 − (1 − p)

(
u

(1−u)p+u

) (
v

(1−v)p+v

) [
1 + θ

(
(1−u)p

(1−u)p+u

) (
(1−v)p

(1−v)p+v

)] , (3.21)

where θ ∈ [−1, 1], p ∈ (0, 1). It is easy to verify that Cγ reduces to FGM copula, when

p = 1. Using Eq. (3.16), the Spearman’s Rho for the Geometric-FGM copula defined in

Eq. (3.21) is given by

12
∫ 1

0

∫ 1

0

p3 [uv (1 + θ(1 − u)(1 − v))]
(1 − (1 − p) [uv (1 + θ(1 − u)(1 − v))]) (1 − (1 − p)u)2 (1 − (1 − p)v)2 dudv − 3

Since the above integral is complicated in nature, so the explicit expression for the

Spearman’s Rho is difficult to obtain. Therefore, we use numerical integration technique

to evaluate the above integral. We use integral2() function in MATLAB (R2023b) to

compute the Spearman’s Rho for various values of the parameters p and θ. The results are

given in Table 3.2. It is observed from Table 3.2 that Geometric-FGM copula improved

the dependence range of Spearman’s Rho by (−0.33333, 0.475118). Moveover, the contour

plots of the Geometric-FGM copula for various values of the parameters are shown in Fig.

3.3.

Table 3.2. Spearman’s ρCγ of the Geometric-FGM copula in Eq. (3.21)

for various values of p and θ.

θ →

↓ p
-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

0.1 0.343081 0.355567 0.368202 0.380989 0.393933 0.407037 0.420306 0.433744 0.447355 0.461145 0.47512

0.2 0.232094 0.254112 0.276415 0.299009 0.321903 0.345102 0.368616 0.392452 0.416619 0.441125 0.465981

0.3 0.13582 0.16584 0.196221 0.22697 0.258096 0.289608 0.321513 0.353822 0.386543 0.419686 0.453261

0.4 0.050158 0.087141 0.124511 0.162277 0.200445 0.239023 0.278018 0.31744 0.357296 0.397594 0.438345

0.5 -0.02728 0.015889 0.059433 0.103359 0.147674 0.192383 0.237492 0.283008 0.328937 0.375286 0.422061

0.6 -0.09806 -0.04933 -0.00026 0.049156 0.098913 0.149019 0.199477 0.250294 0.301472 0.353016 0.404931

0.7 -0.16332 -0.10952 -0.05545 -0.0011 0.053529 0.108438 0.163631 0.219111 0.27488 0.33094 0.387295

0.8 -0.22387 -0.16544 -0.10681 -0.04798 0.011042 0.070264 0.129685 0.189306 0.249129 0.309155 0.369386

0.9 -0.28037 -0.21767 -0.15485 -0.09194 -0.02892 0.034198 0.097422 0.16075 0.224183 0.287719 0.351361

1 -0.33333 -0.26667 -0.2 -0.13333 -0.06667 0 0.066667 0.133333 0.2 0.266667 0.333333
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(a) p = 0.1, θ = 0.9 (b) p = 0.2, θ = −0.8 (c) p = 0.7, θ = 0.5

Figure 3.3. Contour plots of the Geometric-FGM copula for various values

of p and θ

3.7.2 Discrete Mittag-Leffler-FGM Copula

We further propose one more generalization of FGM copula using the PGF of discrete

Mittag-Leffler distribution. The proposed copula is defined as

Cγ(u, v) = 1 −
(
1 −

(
1 − (1 − u)1/α

) (
1 − (1 − v)1/α

) [
1 + θ (1 − u − v + uv)1/α

])α
,

(3.22)

where θ ∈ [−1, 1] and α ∈ (0, 1). When α → 1, Discrete Mittag-Leffler-FGM copula

reduces to FGM copula. The Spearman’s Rho for the discrete Mittag-Leffler-FGM copula

can be obtained by evaluating the following integral

12
∫ 1

0

∫ 1

0
1−
(
1 −

(
1 − (1 − u)1/α

) (
1 − (1 − v)1/α

) [
1 + θ (1 − u − v + uv)1/α

])α
du dv−3.

As the above integral is not in explicit form, we use numerical integration technique to

compute the Spearman’s Rho for various values of α and θ. The computed values are

presented in Table 3.3. It is observed from Table 3.3 that the discrete Mittag-Leffler-FGM

copula improved the range of Spearman’s Rho by (−0.33333, 0.95734). Further, the contour

plots of the proposed copula for various values of the parameters are shown in Fig. 3.4.

3.7.3 Data Analysis

In this subsection, we analyze a real data set to illustrate the practical applicability

of PGF copula. We use maximum likelihood (ML) estimation method for estimating the

unknown parameters. The R software (version: 4.3.2) is used for numerical computations

and data analysis purpose. Here, we consider UEFA Champion’s League data set first

reported in Meintanis (2007). In this data set, X and Y represents the time (in minutes) of
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Table 3.3. Spearman’s ρCγ of the Discrete Mittag-Leffler-FGM copula in

Eq. (3.22) for various values of α and θ.

θ →

↓ α
-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

0.1 0.948074 0.948967 0.949868 0.950776 0.95169 0.952613 0.953542 0.954479 0.955425 0.956378 0.957334

0.2 0.831057 0.835698 0.840373 0.845084 0.84983 0.854614 0.859435 0.864294 0.773357 0.874133 0.879113

0.3 0.685005 0.695777 0.706624 0.717547 0.728547 0.739626 0.750787 0.762029 0.773357 0.78477 0.796273

0.4 0.528052 0.546391 0.564844 0.583411 0.602096 0.6209 0.639827 0.658878 0.678056 0.697364 0.716805

0.5 0.369742 0.396351 0.423099 0.449989 0.477024 0.504207 0.53154 0.559027 0.58667 0.614473 0.642439

0.6 0.215077 0.250169 0.28541 0.320803 0.356351 0.392056 0.427921 0.463949 0.500144 0.536509 0.573046

0.7 0.066602 0.110087 0.153713 0.19748 0.241391 0.285449 0.329656 0.374015 0.418529 0.463199 0.508029

0.8 -0.0745 -0.02289 0.028823 0.080653 0.132597 0.184657 0.236833 0.28913 0.341548 0.394089 0.446755

0.9 -0.20781 -0.14846 -0.08904 -0.02956 0.029981 0.089592 0.14927 0.209016 0.268831 0.328715 0.388671

1 -0.33333 -0.26667 -0.2 -0.13333 -0.06667 0 0.066667 0.133333 0.2 0.266667 0.333333

(a) α = 0.1, θ = 0.9 (b) α = 0.3, θ = −0.8 (c) α = 0.6, θ = 0.5

Figure 3.4. Contour plots of the discrete Mittag-Leffler-FGM copula for

various values of α and θ

the first goal scored by any team and home team, respectively. We fit Weibull distribution

for both marginals, i.e., X and Y follows Weibull distribution with parameters a1, b1 and

a2, b2, with DFs

G1(x) = 1 − e−(x/b1)a1 ; x > 0; a1 > 0, b1 > 0 and G2(y) = 1 − e−(y/b2)a2 ; y > 0; a2 > 0, b2 > 0.

We perform Kolmogorov-Smirnov (KS) one sample test for the goodness of fit test. KS test

suggests that X supports Weibull distribution with parameter â1 = 2.120, b̂1 = 45.938 (p-

value=0.8042, KS statistic value=0.10555). Similary Y also supports Weibull distribution

with parameter â2 = 1.421, b̂2 = 36.052 (p-value=0.9602, KS statistic value=0.8042). We

now fit the bivariate FGM distribution, bivariate Geometric-FGM and bivariate discrete

Mittag-Leffler-FGM distribution with marginal distributions are Weibull distribution. Now
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we fitted these bivariate distributions for UEFA Champion’s League data using maximum

likelihood procedure. We use log-likelihood (LL), Akaike Information Criterion (AIC),

and Bayesian Information Criterion (BIC) for the purpose of model selection. Parameter

estimates, LL, AIC, and BIC values are tabulated in Table 3.4. We also compare these

bivariate models with the bivariate generalized exponential distribution by Mirhosseini

et al. (2015), bivariate linear exponential distribution by Pathak and Vellaisamy (2022),

bivariate Weibull-linear exponential by Arshad et al. (2023). From Table 3.4, it is clear that

discrete Mittag-Leffler FGM Weibull is more appropriate for modelling UEFA champion’s

league data.

Table 3.4. ML estimates, LL, AIC, and BIC values for the bivarite distri-

butions using UEFA champion’s league data set.

Bivariate Distribution ML Estimates LL AIC BIC

Discrete Mittag-Leffler-FGM Weibull â1 = 2.0713, b̂1 = 45.5798, â2 = 1.4124, b̂2 = 36.2686, θ̂ = 0.0546, α̂ = 0.5539 -320.5838 653.8331 662.8331

FGM Weibull â1 = 2.11, b̂1 = 46.233, â2 = 1.43, b̂2 = 36.206, θ̂ = 0.977 -323.3560 656.7120 664.7670

Bivariate Linear Exponential â1 = 0.00001, b̂1 = 0.00079, â2 = 0.00311, b̂2 = 0.00092, θ̂ = 0.75905 –323.7027 657.4054 665.4599

Geometric-FGM Weibull â1 = 2.037, b̂1 = 45.5518, â2 = 1.4158, b̂2 = 36.2230, θ̂ = 0.01634 p̂ = 0.1049 -322.8890 657.7180 667.4435

Bivariate Weibull-Linear Exponential â = 0.0017845, b̂ = 0.0007325, ĉ = 0.0055796, d̂ = 1.3609911, θ̂ = 0.6679616 –326.7092 663.4180 671.4731

Bivariate Generalized Exponential α̂1 = 0.0244, α̂2 = 0.0304, θ̂ = 0.999 -340.5234 687.0468 691.8795

3.8 Conclusion and Future Direction

A method to generalize the copula using PGF of a positive integer-valued RV is

proposed. Several copulas in the literature are the sub-family of the proposed copula. An

algorithm for generating random numbers from the PGF copula is discussed. Various

dependence measures of the PGF copula are discussed. Further using this method, two

generalized FGM copulas using PGFs of geometric and discrete Mittag-Leffler distribution

are proposed. The improved dependence range of these two copulas are (−0.33333, 0.475118)

and (−0.33333, 0.957339) respectively. A real data is analyzed to show the practical

applicability of PGF copula. It is important to note that our focus on generalizing the

FGM copula does not limit the applications of this approach; any bivariate copula can be

utilized to propose a family of copulas, with improved dependence ranges. Moreover, while

this study has concentrated on the bivariate case, the method can naturally be extended

to the multivariate setting.
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4
C h a p t e r

Copula-Based Information Mea-
sures Using Shannon Entropy

This chapter introduces various copula-based information measures, such as entropy, the

information generating function, and a Kullback–Leibler divergence, based on Shannon

entropy. A consistent nonparametric estimator based on the empirical beta copula is also

discussed. Finally, the application of the proposed copula-based divergence measure in

goodness-of-fit testing and a copula selection criterion is demonstrated.

4.1 Introduction

Entropy is a fundamental concept in information theory with wide-ranging applications

across disciplines such as statistical mechanics, machine learning, finance, insurance, physics,

chemistry, and reliability. The formulation and generalization of various entropy measures

have recently gained significant interest from both theoretical and applied perspectives.

The origins of entropy date back to the seminal work of Shannon (1948), who introduced

it to quantify uncertainty in information systems.

In Chapter 1, we reviewed the development of entropy, tracing its evolution from

Shannon’s foundational work to recent multivariate extensions.In multivariate data analysis,

uncertainty can be decomposed into two components: (i) the uncertainty contributed by

the marginal distributions of individual variables, and (ii) the uncertainty arising from the
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dependence structure among the variables. Copulas have emerged as essential tools for

modelling and quantifying such dependence structures, making copula-based information

measures highly relevant.

The role of copula-based information measures in multivariate data analysis was first

explored by Ma and Sun (2011), who showed that the mutual information (MI) of a

multivariate random vector is equal to the negative of the copula entropy, defined as

ζ(c) = −
∫
Ip

c(u) log c(u) du, (4.1)

where c(u) denotes the copula density. Consequently, MI of a multivariate random vector

X is entirely determined by the dependence structure, captured by the copula, and is

independent of the marginal distributions. Furthermore, when the marginals of X are

identical, the differential entropy coincides with the copula entropy ζ(c).

Copula entropy has been successfully applied in various domains, including image

processing, financial engineering, and hydrology (see Zhao and Lin (2011), Hao and Singh

(2015), Singh and Zhang (2018)).

However, copula entropy has certain limitations. Notably, it is always non-positive,

and its definition requires the existence of the copula density, which may not hold in

many cases. These challenges motivate the development of the multivariate cumulative

copula entropy (CCE), extending the bivariate version proposed by Sunoj and Nair

(2025). The proposed measure addresses the limitations of copula entropy and offers a

more flexible and robust framework for quantifying the uncertainty associated with the

dependence structure in multivariate data.

The primary objective of this chapter is to study copula-based multivariate information

measures using Shannon entropy. The main contributions of the chapter are summarized

below:

• A multivariate cumulative copula entropy (CCE) is proposed and its mathematical

properties are discussed, including bounds, stochastic orders, and convergence

results. It is shown that the CCE of the weighted arithmetic mean of copulas always

exceeds the weighted arithmetic mean of the individual CCEs.

• A cumulative copula information-generating function (CCIGF) is introduced. It is

showed that the first derivative of the CCIGF at s = 1 yields the negative of the

CCE.
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• A fractional extension of the CCE is proposed and its properties are explored.

• A nonparametric estimator of the proposed CCE is developed using the empirical

beta copula, and its convergence behavior is examined.

• A Kullback-Leibler-based cumulative copula divergence is introduced, which is

effective in copula selection problems. Its application is demonstrated using real

medical data. In addition, a goodness-of-fit test based on the proposed divergence

measure is discussed.

The chapter is organized as follows. In Section 4.2, we discuss the mathematical

properties of the multivariate CCE and provide illustrative examples. Section 4.3 introduces

the CCIGF and explores its key properties. In Section 4.4, we present a fractional extension

of the CCE. Section 4.5 is dedicated to the development of a nonparametric estimator based

on the empirical beta copula. In Section 4.6, we propose a new divergence measure between

two copulas, based on the Kullback–Leibler divergence, and develop a corresponding

goodness-of-fit test for copula models using the proposed divergence. Section 4.7 presents

a Monte Carlo simulation study to evaluate the 95th percentile and the power of the

proposed test across various copula models. Furthermore, a real dataset is analyzed to

illustrate the copula selection criteria based on the proposed divergence measure. Finally,

conclusions and future research directions are provided in Section 4.8.

4.2 Multivariate Cumulative Copula Entropy

In this section, we propose a p-dimensional CCE, which extends the bivariate CCE

proposed by Sunoj and Nair (2025). Let C(u) be a p-dimensional copula, then p-dimensional

CCE is defined as

ξ (C) = −
∫
Ip

C(u) log(C(u))du,

where u = (u1, u2, . . . , up). Since f(x) = −x log(x) is non-negative and bounded by e−1

on I, it follows that 0 ≤ ξ(C) ≤ e−1. Now we consider some examples of the multivariate

CCE of some well-known multivariate copulas.

Example 4.2.1. Consider the product copula Π(u) = u1u2 . . . up, which corresponds to
the independence of random variables. Then, the p-dimensional CCE is given by

ξ (Π) = p

2p+1 ,
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which is a decreasing function of p ≥ 2. This implies that the uncertainty in a system of
independent components decreases with an increase in a number of components.

Example 4.2.2. Consider the minimum copula M(u) = min{u1, u2, . . . , up}, then

ξ(M) = −
∫ 1

0

∫ 1

0
· · ·

∫ 1

0
min{u1, u2, . . . , up} log (min{u1, u2, . . . , up}) du1du2 . . . dup. (4.2)

We can solve the above integral using the concept of order statistics. Let U1, U2, . . . , Up

be a random sample of sample size p from uniform distribution over I and let U(1) =

min{U1, U2, . . . , Up}. The probability density function corresponds to U(1) is given by

fU(1)(u) =


p(1 − u)p−1 if u ∈ I,

0 otherwise.
(4.3)

Now, the integral in Eq. (4.2) can be viewed as E(−U(1) log
(
U(1)

)
, which is given by

ξ(M) =E(−U(1) log
(
U(1)

)
= −

∫ 1

0
u log(u)p(1 − u)p−1du

= − p
p−1∑
x=0

(
p − 1

x

)
(−1)x

∫ 1

0
ux+1 log(u)du

=p
p−1∑
x=0

(
p − 1

x

)
(−1)x

(x + 2)2 .

Example 4.2.3. Consider the p−variate version of Cuadras-Augé copula, proposed by
Cuadras (2009), is given by

C(u) = u(1)

p∏
i=2

u

∏i−1
j=1(1−αij)

(i) , (4.4)

where u(1) ≤ u(2) · · · ≤ u(p) and αij ∈ I. Let θ1 = 1, θi = ∏i−1
j=1(1 − αij), and k(i) =

k(i − 1) + θi + 1 with k(1) = 2, for i = 2, 3, . . . , p. The CCE corresponds to Cuadras-Augé
copula is given by

ξ(C) = −
∫ 1

0

∫ 1

0
· · ·

∫ 1

0

p∏
i=1

uθi

(i) log
( p∏

i=1
uθi

(i)

)
du1du2 . . . dup

= − p!
∫ 1

0

∫ up

0

∫ up−1

0
· · ·

∫ u2

0

p∏
i=1

uθi
i log

( p∏
i=1

uθi
i

)
du1du2 . . . dup

=p!
p∑

j=1
θjIj,
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where for every j = 1, 2, 3 . . . , p,

Ij = −
∫ 1

0

∫ up

0

∫ up−1

0
· · ·

∫ u2

0
u1u

θ2
2 uθ3

3 . . . uθp
p log(uj)du1du2 . . . dup

= 1∏p
i=1 p(i)

 p∑
i=j

1
k(j)

 .

In literature, there exist several dependence measures for quantifying the dependence

ability captured by the copula. One of the popular measures is Spearman’s correlation.

For bivariate case Spearman’s Rho for the copula C is defined as

ρ2(C) = 12
∫ 1

0

∫ 1

0
C(u1, u2)du1du2 − 3.

Due to the lack of symmetry, the concordance measures in the multivariate case, Spearman’s

Rho can be defined in two ways,

ρ−
p (C) =n(p)

[
2p
∫
Ip

C(u)du − 1
]

(4.5)

and

ρ+
p (C) =n(p)

[
2p
∫
Ip

Π(u)dC(u) − 1
]

,

where n(p) = p + 1
2p − p − 1 (for more details see Schmid et al. (2010) and Bedő and Ong

(2016)). Using the multivariate version of Spearman’s ρ−
p (C), we have the following

theorem.

Theorem 4.2.1. For every p-dimensional copula,

ξ(C) ≤ −Bp(C) log (Bp(C)) ,

where Bp(C) = 2−p

[
ρ−

p (C)
n(p) + 1

]
and ρ−

p (C) is the multivariate version of Spearman’s

correlation defined in Eq. (4.5).

Proof. Using log-sum inequality, we have∫
Ip

C(u) log (C(u)) du ≥
[∫

Ip
C(u)du

] [
log

(∫
Ip C(u)du∫

Ip du

)]

=Bp(C) log (Bp(C)) .

The theorem follows by multiplying both sides by −1.
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Definition 4.2.2. Let C1(u), C2(u), . . . , Cm(u) be m copulas of same dimension. Then,
the weighted arithmetic mean of m copulas is defined as

CΣ(u) =
m∑

i=1
αiCi(u),

where αi ∈ I, i = 1, 2, . . . , m with
m∑

i=1
αi = 1.

Note that the weighted arithmetic mean of m copulas of the same dimension is always a

valid copula.

Theorem 4.2.3. The weighted arithmetic mean of the CCE of m copulas of the same
dimension never exceeds the CCE of the weighted arithmetic mean of m copulas.

Proof. Let C1, C2, . . . Cm be m copulas and CΣ(u) = ∑m
i=1 αiCi(u) be the arithmetic mean

of m copulas, where αi ∈ I, i = 1, 2, . . . , m and ∑m
i=1 αi = 1. Since f(x) = −x log(x) is

concave on I, it follows that for every αi ∈ I, i = 1, 2, . . . , m, with ∑m
i=1 αi = 1, we have

f

(
m∑

i=1
αixi

)
≥

m∑
i=1

αif(xi), (4.6)

for every xi ∈ I. Substituting xi = Ci(u) and integrating over Ip, the result immediately

follows.

Theorem 4.2.4. Let {Cn : n ∈ N} be a sequence of copulas of the same dimension that
converges point-wise to C, then ξ(Cn) converges uniformly to ξ(C).

Proof. The sequence of copula {Cn : n ∈ N} converges point-wise to the copula C implies

that Cn converges uniformly to C (see Theorem 1.7.6 of Durante and Sempi (2016)). It

follows that for a given δ > 0, there exists n0 ∈ N such that

|Cn(u) − C(u)| < δ, for every n ≥ n0 and for every u ∈ Ip. (4.7)

Since f(x) = −x log(x) is uniformly continuous on I, it implies that for a given ε > 0,

there exists a δ > 0 such that

|f(x1) − f(x2)| < ε, (4.8)

whenever |x1 − x2| < δ. Substituting x1 = Cn(u) and x2 = C(u) in Eq.(4.8) and using Eq.

(4.7), we obtain

lim
n→∞

−Cn(u) log(Cn(u)) = −C(u) log(C(u)).
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Since −Cn(u) log (Cn(u)) is bounded on Ip, using bounded convergence theorem, we have

lim
n→∞

ξ(Cn) = lim
n→∞

∫
Ip

−Cn(u) log (Cn(u)) du

=
∫
Ip

lim
n→∞

−Cn(u) log (Cn(u)) du

=ξ(C).

Definition 4.2.5. (Nelsen (2006)) Let C1(u) and C2(u) be two p-dimensional copulas.
Then, C1 is said to be less positive lower orthant dependent (PLOD) than C2, denoted by
C1

PLOD
≺ C2, if

C1(u) ≤ C2(u) for all u ∈ Ip.

Next, we show that PLOD ordering does not necessarily imply the corresponding CCE

ordering through a counterexample by considering

C1(u1, u2) =
(

1 +
[(

u−1
1 − 1

)2
+
(
u−1

2 − 1
)2
]0.5

)−1

and C2(u1, u2) = min{u1, u2}. It is a well-known result that C1
PLOD

≺ C2. But, ξ(C1) =

0.2790 and ξ(C2) = 0.2777.

4.3 Cumulative Copula Information Generating Function

In this section, we introduce a generating function for CCE and study its important

properties. Let C(u) be a p-dimensional copula, then we define the cumulative copula

information generating function (CCIGF) as follows.

Definition 4.3.1. Let C(u) be a p-dimensional copula, then CCIGF, defined as

GC(s) =
∫
Ip

[C(u)]s du, s > 0. (4.9)

It is easy to show that the first derivative of GC(s) at s = 1 reduces to −ξ(C).

So, we call GC(s) as a cumulative copula information generating function. Moreover,

GC(1) = Bp(C) = 2−p

[
ρ−

p (C)
n(p) + 1

]
.

The following are examples of of some well-known copulas available in the literature.
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Example 4.3.1. Consider the Marshall-Olkin copula defined by

C(u1, u2) = u1−α1
1 u1−α2

2 min{uα1
1 , uα2

2 }, α1, α2 ∈ I.

Then the CCIGF corresponds to Marshall-Olkin copula is given by

GC(s) =
∫ 1

0

∫ 1

0

(
u1−α1

1 u1−α2
2 min{uα1

1 , uα2
2 }

)s
du1du2

=
∫ 1

0

∫ u
α2/α1
2

0
us

1u
(1−α2)s
2 du1du2 +

∫ 1

0

∫ u
α1/α2
1

0
us

2u
(1−α1)s
1 du2du1

= 1
(s + 1)

[
α1 + α2

(α1 + α2)(s + 1) − α1α2s

]
.

Example 4.3.2. Consider the FGM copula C(u1, u2) = u1u2 (1 + θ(1 − u1)(1 − u2)) ,

where θ ∈ I. The CCIGF of FGM copula is given by

GC(s) =
∫ 1

0

∫ 1

0
(u1u2 [1 + θ(1 − u1)(1 − u2))]s du1du2

=
∞∑

x=0

(
s + x − 1

x

)
θx
∫ 1

0

∫ 1

0
us

1(1 − u1)xus
2(1 − u2)xdu1du2

=
∞∑

x=0

(
s + x − 1

x

)
θx [β(s + 1, x + 1)]2 .

Example 4.3.3. The CCIGF corresponds to the product copula is given by

GΠ(s) =
∫ 1

0

∫ 1

0
· · ·

∫ 1

0
(u1u2 . . . up)s du1du2 . . . up.

=(s + 1)−p.

Example 4.3.4. The CCIGF of the Cuadras-Augé copula is given by

GC(s) =
∫ 1

0

∫ 1

0
· · ·

∫ 1

0

p∏
i=1

usθi

(i) 1(u(1) ≤ u(2) · · · ≤ u(p)) du1du2 . . . dup

=p!
∫ 1

0

∫ up

0

∫ uk−1

0
· · ·

∫ u2

0

p∏
i=1

usθi
i du1du2 . . . dup

=p!
p∏

i=1
[q(i)]−1,

where q(i) = αis + 1 + q(i − 1) with q(1) = s + 1, u(1) ≤ u(2) · · · ≤ u(p), and θ1 = 1,
θi = ∏i−1

j=1(1 − αij), αij ∈ I, for every i = 2, 3, . . . , p.

Using the definition of multivariate Spearman’s Rho defined in Eq. (4.5), we have the

following theorem.
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Theorem 4.3.2. For any p-dimensional copula C, the following inequality holds.

GC(s)


≥ [Bp(C)]s , if s > 1

≤ [Bp(C)]s , if 0 ≤ s ≤ 1.

Proof. For every s ∈ I (s > 1), f(x) = xs is concave (convex) on x ∈ I. Using Jensens’s

inequality and using the definition of multivariate Spearman’s Rho defined in Eq. (4.5),

the theorem immediately follows.

The following theorem discusses the ordering property of the CCIGF. The proof is

straightforward, so it is omitted here.

Theorem 4.3.3. Let C1 and C2 be two copula of same dimension, then if C1
PLOD

≺ C2,
then GC1(s) ≤ GC2(s), for every s > 0.

The following theorem is due to Theorem 4.3.3, which provides a tight bound for every

CCIGF.

Theorem 4.3.4. For any p-dimensional copula C,

( p∏
i=1

(s + i)
)−1

≤ GC(s) ≤ pβ(s + 1, p),

where β(q1, q2) is the standard Beta function and s > 0.

Proof. From Eq. (4.9), we have

GC(s) =
∫
Ip

[C(u)]s du

≥
∫
Ip

[W (u)]s du

=
∫ 1

0

∫ 1

0
· · ·

∫ 1

0︸ ︷︷ ︸
p times

(
max

{ p∑
i=1

ui − p + 1, 0
})s

du1du2 . . . dup

=
( p∏

i=1
(s + i)

)−1

.
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Similarly, using the upper bound of every copula, we have

GC(s) ≤
∫
Ip

[M(u)]s du

=
∫ 1

0

∫ 1

0
· · ·

∫ 1

0︸ ︷︷ ︸
p times

(min {u1, u2, . . . , up})s du1du2 . . . dup

=p
∫ 1

0
us(1 − u)p−1du

=pβ(s + 1, p).

Definition 4.3.5. Let C1, C2, . . . , Cm be m copulas of the same dimension. The weighted
geometric mean of m copulas is defined as

CΠ(u) = C1(u)α1C2(u)α2 . . . Cm(u)αm ,

where αi ∈ I for i = 1, 2, . . . , m with
m∑

i=1
αi = 1.

Remark 4.3.6. The weighted geometric mean of copulas may not always be a valid copula.
However, it can be a valid copula under certain conditions. For further details, one may
refer to Cuadras (2009) and Zhang et al. (2013).

Theorem 4.3.7. The CCIGF of the weighted geometric mean of m copulas never exceeds
the weighted geometric mean of m copulas.

Proof. Let C1, C2, . . . , Cm be m copulas, and CΠ(u) = C1(u)α1C2(u)α2 . . . Cm(u)αm be the

weighted geometric mean (WGM) of m copulas, where αi ∈ I for i = 1, 2, . . . , m and
m∑

i=1
αi = 1. Let GCΠ(s) and GCi

(s); i = 1, 2, . . . , m be CCIGF of CΠ(u) and Ci(u); i =

1, 2, . . . , m. The CCIGF of the WGM of m copulas is given by

GC(s) =
∫
Ip

[C(u)]s du

=
∫
Ip

[C1(u)α1C2(u)α2 . . . .Cm(u)αm ]s du

Using Hölder’s inequality on m integrals (see Kufner et al. (1977) and Finner (1992)), we

have

GCΠ(s) ≤
(∫

Ip
[C1(u)]s du

)α1 (∫
Ip

[C2(u)]s du
)α2

. . .
(∫

Ip
[Cm(u)]s du

)αm

=
m∏

i=1
(GC1(s))αi .
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The proofs of the following theorems are similar to the proofs given in Section 4.2, so we

left them out here.

Theorem 4.3.8. Let C1, C2, . . . Cm be m copulas and CΣ(u) =
m∑

i=1
αiCi(u) be the arithmetic

mean of m copulas, where αi ∈ I, i = 1, 2, . . . , m and
m∑

i=1
αi = 1. Let GCΣ(s) and

GCi
(s); i = 1, 2, . . . , m be the CCIGF of CΣ and Ci; i = 1, 2, . . . , m. Then

GCΣ(s)


≤

m∑
i=1

αiGCi
(s), if s > 1

≥
m∑

i=1
αiGCi

(s), if 0 ≤ s ≤ 1.

Theorem 4.3.9. Let {Cn : n ∈ N} be a sequence of copulas of the same dimension that
converges point-wise to C, then GCn(s) converges uniformly to GC(s), for every s > 0.

4.4 Fractional Multivariate Cumulative Copula Entropy

In this section, we generalize the concept of multivariate CCE using fractional calculus.

Using the Riemann-Liouville fractional derivative, Ubriaco (2009) proposed the fractional

Shannon entropy, which is given in Eq. (1.38). Xiong et al. (2019) and Kayid and Shrahili

(2022) further extended the concept to propose the fractional version of cumulative residual

entropy and cumulative entropy, respectively. To the best of our knowledge, no prior work

has addressed the fractional version of copula entropy, even in the context of bivariate

cases.

Definition 4.4.1. Let C(u) be a p-dimensional copula, then fractional cumulative copula
entropy (FCCE) can be defined as

ξ[r](C) =
∫
Ip

C(u) (− log(C(u))r du, 0 ≤ r ≤ 1. (4.10)

For r = 1, FCCE reduces to CCE. Following are examples of FCCE of some well-known

bivariate and multivariate copulas.
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Example 4.4.1. The fractional CCE of Fréchet-Hoeffding lower bound copula is given by

ξ[r](W ) =
∫ 1

0

∫ 1

0
max{u1 + u2 − 1, 0} [− log (max{u1 + u2 − 1, 0})]r du1du2

=
∫ 1

0

∫ 1

1−u2
(u1 + u2 − 1) [− log (u1 + u2 − 1)]r du1du2

=
∫ 1

0

∫ u2

0
u1[− log(u1)]rdu1du2.

Using the transformation t = − log(u1), we get ξ[r](W ) = Γ(r + 1) (2−r−1 − 3−r−1) .

Example 4.4.2. Consider the bivariate Cuadras-Augé copula given by

C(u1, u2) = (min{u1, u2})1−α (u1u2)α , α ∈ I2.

Then the FCCE corresponds to Cuadras-Augé copula is

ξ[r](C) =
∫ 1

0

∫ 1

0
(min{u1, u2})1−α (u1u2)α

[
− log

(
(min{u1, u2})1−α (u1u2)α

)]r
du1du2

=2!
∫ 1

0

∫ u2

0
u1u

α
2 [− log (u1u

α
2 )]r du1du2

=2!
∫ ∞

O

∫ 1

e
− t

α+1
e−2ttru−α

2 du2dt (Using the transformation t = − log(u1).)

=2!Γ(r + 1)
1 − α

[
1

2r+1 −
(

α + 1
α + 3

)r+1]
.

Example 4.4.3. The FCCE corresponds to the p−dimensional product copula is

ξ[r](Π) =
∫ 1

0

∫ 1

0
· · ·

∫ 1

0
u1u2 . . . up [− log (u1u2 . . . up)]r du1du2 . . . dup

=
∫ 1

0

∫ 1

0
· · ·

∫ 1

0

∫ ∞

− log(u2u3...up)

e−2ttr

u2u3 . . . up

du1du2 . . . dup

=
∫ ∞

0

∫ 1

e−t

∫ u−1
2

e−tu−1
2

· · ·
∫ u−1

2 ...u−1
p

e−tu−1
2 ...u−1

p

e−2ttr

u2u3 . . . up

dupdup−1 . . . dt

=Γ(r + p)
2r+p

.
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Example 4.4.4. The FCCE corresponds to the minimum copula is

ξ[r](M) =
∫ 1

0

∫ 1

0
· · ·

∫ 1

0
min {u1, u2, . . . , up} [− log (min {u1, u2, . . . , up})]r du1du2 . . . dup

=p
∫ 1

0
u [− log(u)]r (1 − u)p−1

=p
p−1∑
x=0

(
p − 1

x

)
(−1)x

∫ 1

0
ux+1 [− log(u)]r du

=p
p−1∑
x=0

(
p − 1

x

)
(−1)x

∫ ∞

0
tre−(x+2)tdt

=p
p−1∑
x=0

(
p − 1

x

)
(−1)x Γ(r + 1)

(x + 2)r+2 .

In the following theorem, we obtain an upper bound for FCCE in terms of CCE.

Theorem 4.4.2. Let C(u) be a p-dimensional copula, then (ξ(C))r ≥ ξ[r](C), for every
0 ≤ r ≤ 1.

Proof. For fixed r ∈ I, the function f(x) = xr is concave on x ∈ I. Using Jensen’s

inequality on concave function, we have

(ξ(C))r =
(

−
∫
Ip

C(u) log(C(u))du
)r

≥
∫
Ip

(−C(u) log(C(u)))r du

≥
∫
Ip

C(u) (− log(C(u)))r du

=ξ[r](C).

The proofs of the following theorems are similar to the proofs given in Section 4.2, so we

omitted them.

Theorem 4.4.3. The weighted arithmetic mean of the FCCE of m copulas of the same
dimension is always less than or equal to the FCCE of the weighted arithmetic mean of m

copulas.

Theorem 4.4.4. Let {Cn; n ∈ N} be a sequence of copulas of the same dimension that
converges point-wise to C. Then, lim

n→∞
ξ[r](Cn) = ξ[r](C), for every r ∈ I.
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4.5 Empirical Beta Cumulative Copula Entropy

In this section, we will develop a nonparametric estimator of CCE and its generating

function using empirical beta copula. Sunoj and Nair (2025) proposed an empirical CCE

for the bivariate case. However, computationally evaluating the empirical CCE is a time-

consuming task for higher dimensional cases. Moreover, the empirical copula is not even a

valid copula. Segers et al. (2017) proposed empirical beta copula given by

ĈN(u) = 1
N

N∑
i=1

p∏
j=1

N∑
y=Ri,j

(
N

y

)
uy

j (1 − uj)N−y,

where Ri,j is the rank of the ith observation of the jth component Xi,j . It is to be noted that

an empirical beta copula is a valid copula when there are no ties in the data. Moreover,

the empirical beta copula is a particular case of empirical Bernstein copula, introduced by

Sancetta and Satchell (2004), when all Bernstein polynomials have degrees equal to the

sample size N . In case of ties, we need to break the ties at random, then the empirical

beta copula will become a valid copula. Furthermore, the empirical beta copula provides

a better estimate compared to the empirical copula in terms of bias and variance (see

Segers et al. (2017), Kojadinovic and Yi (2024)). Using the definition of the empirical

beta copula, we can define the empirical beta CCE, which is given below.

Definition 4.5.1. Let Xj, j = 1, 2, . . . , N be a random sample of size N from a continuous
p-variate distribution, then the empirical beta CCE can be defined as

ξ(ĈN) = −
∫
Ip

ĈN(u) log
(
ĈN(u)

)
du. (4.11)

Analogous to empirical CCE defined in Eq. (4.11), we can define the fractional version

of empirical beta CCE and empirical beta CCIGF.

Definition 4.5.2. The fractional empirical beta CCE corresponds to the N random samples
given by

ξ[r](ĈN) =
∫
Ip

ĈN(u)
[
− log

(
ĈN(u)

)]r
du, r ∈ I.

Definition 4.5.3. For every N random sample, the empirical beta can be defined as

GĈN
(s) =

∫
Ip

[
ĈN(u)

]s
, s > 0.
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The following theorem asserts that the fractional empirical beta CCE and the empirical

beta are always consistent estimators for the FCCE and its information-generating function.

Theorem 4.5.4. The fractional empirical beta CCE and empirical beta converges to FCCE,
and empirical beta CCIGF converges to CCIGF almost surely. That is

1. ξ[r](ĈN) a.s.−→ ξ[r](C), as N → ∞ and for every r ∈ I,
2. GĈN

(s) a.s.−→ GC(s), as N → ∞ and for every s > 0.

Proof. We prove only the first part of the theorem, second part is similar and are therefore

omitted. Let Xj, for j = 1, 2, . . . , N , represent N random samples from a continuous

p-variate distribution with underlying copula C. Let CN be an empirical copula obtained

from the sample. Then, the Glivenco-Cantelli theorem on empirical copula states that

sup
u∈Ip

|CN(u) − C(u)| a.s.−→ 0, (4.12)

as N → ∞. For more details, one could refer Kiefer (1961), Shorack and Wellner (2009),

Janssen et al. (2012) and González-Barrios and Hoyos-Argüelles (2021). Segers et al. (2017)

showed that for any p−dimensional copula C,

sup
u∈Ip

∣∣∣CN(u) − ĈN(u)
∣∣∣ ≤ p

( log N

N

)1/2

+ N−1/2 + N−1

 a.s.−→ 0, (4.13)

as N → ∞. Using Eq.(4.12) and Eq.(4.13), we have

sup
u∈Ip

∣∣∣ĈN(u) − C(u)
∣∣∣ a.s.−→ 0,

as N → ∞. Since we f(x) = −x log(x) is continuous on I, it follows that

lim
N→∞

sup
u∈Ip

∣∣∣−ĈN(u) log(CN(u)) + C(u) log(C(u))
∣∣∣ = 0,

almost surely as N → ∞. Since the CCE is always bounded, using the dominated

convergence theorem, the result immediately follows.

Now, we will illustrate the consistency property of the fractional empirical beta CCE and

empirical beta CCIGF by considering various bivariate and trivariate copulas available in

the literature. We consider the following multivariate copulas for the illustration purpose:

1. Product Copula: Π(u) = Πp
i=1ui.

2. Clayton Copula: C(u) = max {∑p
i=1 uα

i − p + 1, 0}−1/α , α ∈ [−1, ∞) \ {0}.

3. Gumbel-Hougaard Copula: C(u) = exp
{

−
(∑p

i=1(− log(ui))ϕ
)1/ϕ

}
, ϕ ≥ 1.
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4. Frank Copula: C(u) = −θ−1 log
(

1 +
∏p

i=1 e−θui−1

e−θ − 1

)
, θ ∈ R \ {0}.

5. Joe Copula: C(u) = 1 −
(
1 −

[
1 − (1 − u1)θ

]
· · ·

[
1 − (1 − up)θ

])1/θ
, where θ ≥ 1.

6. Normal copula: C(u) = Φρ (ϕ(u1), ϕ(u2), . . . , ϕ(up)) , where Φρ(·) is the CDF of

multivariate normal distribution with zero mean and correlation matrix ρ = [ρij]

with each |ρij| < 1 and ρij = ρji for i ̸= j = 1, 2, 3, . . . , p.

We generated 1000 random samples from the copula and computed the fractional

empirical beta CCE and empirical beta CCIGF, comparing them with the actual values.

Since no closed-form expression can be obtained for the empirical CCE, we evaluate the

integrals numerically using the adaptIntegrate function in the cubature package of

R (version 4.2.2). Figures 4.1 and 4.2 illustrate the consistency of the nonparametric

estimates of the fractional CCE for the Clayton, Gumbel–Hougaard, and Gaussian copulas

in both bivariate and trivariate cases. These figures demonstrate that the shape of the

fractional CCE varies with the copula dimension. Figures 4.3 and 4.4 show the consistency

between the empirical beta CCIGF and the corresponding theoretical values for various

values of s in both bivariate and trivariate settings. The following theorem provides a

bound for the empirical information-generating function.

The following theorem will provide a bound for the empirical information-generating

function.

Theorem 4.5.5. For any p-dimensional copula C,

GĈN
(s)


≥

N−1
N∑

i=1

p∏
j=1

N∑
y=Ri,j

β(y + 1, N − y + 1)
s

, if s > 1

≤

N−1
N∑

i=1

p∏
j=1

N∑
y=Ri,j

β(y + 1, N − y + 1)
s

, if 0 ≤ s ≤ 1.

Proof. Consider the integral,
∫
Ip

ĈN(u)du =
∫ 1

0

∫ 1

0
· · ·

∫ 1

0

1
N

N∑
i=1

p∏
j=1

N∑
y=Ri,j

(
N

y

)
uy

j (1 − uj)N−ydu1du2 . . . up

=
N∑

i=1

p∏
j=1

N∑
y=Ri,j

β(y + 1, N − y + 1).

The proof now follows from Theorem 4.3.2.
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(a) Clayton copula with pa-

rameter α = 0.6

(b) Gumbel-Hougaard copula

with parameter ϕ = 2

(c) Gaussian copula with pa-

rameters ρ1 = 0.2, ρ2 = 0.6

Figure 4.1. The fractional empirical beta CCE and theoretical fractional

CCE of various bivariate copulas.

(a) Clayton copula with pa-

rameter α = 0.6

(b) Gumbel-Hougaard copula

with parameter ϕ = 2

(c) Normal copula with param-

eters ρ1 = 0.2, ρ2 = 0.6, ρ3 =

0.9

Figure 4.2. The fractional empirical beta CCE and theoretical fractional

CCE of various trivariate copulas.

4.6 Cumulative Copula Kullback-Leibler Divergence and its Ap-

plication

In this section, we propose a new divergence measure between copulas based on the

Kullback-Leibler divergence proposed by Kullback and Leibler (1951). Kullback and

Leibler (1951) proposed a discrimination measure between two random variables X and
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(a) Product copula (b) Frank copula with param-

eter θ = 8

(c) Joe copula with parameter

θ = 1.5

Figure 4.3. The empirical beta and theoretical CCIGF of various bivariate

copulas.

(a) Product copula (b) Frank copula with param-

eter θ = 8

(c) Joe copula with parameter

θ = 1.5

Figure 4.4. The empirical beta and theoretical CCIGF of various trivariate

copulas.

Y , having PDF f(x) and g(x) respectively, defined as

KL(f ||g) =
∫ ∞

−∞
f(x) log

(
f(x)
g(x)

)
dx. (4.14)

This measure is also known as relative entropy. Let c1(·) and c2(·) be the underlying copula

density corresponds to random vectors X and Y, respectively. Assume that the each

component of X and Y are identically distributed, then the Kullback-Leibler divergence
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between two random vectors is

KL(f ||g) =
∫
Rp

f(x) log
(

f(x)
g(x)

)
dx =

∫
Ip

c1(u) log
(

c1(u)
c2(u)

)
du. (4.15)

Thus, the Kullback-Leibler divergence between two random vectors can be expressed in

terms of copula density under certain conditions. The main limitation of this divergence

measure is the existence of copula density. In many situations copula density need not

exist, this motivated us to propose a new divergence measure in terms of cumulative copula

which measure the divergence between two copulas. Baratpour and Rad (2012) proposed

a new divergence measure based on the survival function of two non-negative random

variables. Let F̄ (x) and Ḡ(x) be the survival functions of X and Y , respectively. Then,

the cumulative residual Kullback-Leibler (CRKL) divergence of X and Y is given by

CRKL(F ||G) =
∫ ∞

0
F̄ (x) log

(
F̄ (x)
Ḡ(x)

)
dx − [E(X) − E(Y )] .

Baratpour and Rad (2012) used this measure for the goodness of fit test for exponential

distribution. Inspired by the work of Baratpour and Rad (2012), we propose a new

divergence measure between two copulas of the same dimension.

Definition 4.6.1. Let C1(u) and C2(u) be two copulas of the same dimension, then the
cumulative copula Kullback-Leibler (CCKL) divergence of C1(u) and C2(u) is defined as

CCKL(C1||C2) =
∫
Ip

C1(u) log
(

C1(u)
C2(u)

)
du −

[
ρ−

p (C1) − ρ−
p (C2)

2pn(p)

]
. (4.16)

The following theorem confirms the proposed CCKL divergence, a well-defined diver-

gence measure, between two copulas.

Theorem 4.6.2. CCKL(C1||C2) ≥ 0 and equality holds if and only if C1(u) = C2(u), ∀u ∈

Ip.

Proof. Using the inequality x log
(

x

y

)
≥ x − y for every non-negative x and y and by

definition of the multivariate version of Spearman’s Rho, we have
∫
Ip

C1(u) log
(

C1(u)
C2(u)

)
du −

[
ρ−

p (C1) − ρ−
p (C2)

2pn(p)

]
≥
∫
Ip

C1(u) − C2(u)du −
[

ρ−
p (C1) − ρ−

p (C2)
2pn(p)

]

≥0.

103



Chapter 4 Copula-Based Information Measures Using Shannon Entropy

It is straight forward that if C1(u) = C2(u) then CCKL(C1||C2) = 0. Conversely, suppose

that CCKL(C1||C2) = 0, it follows that

0 =
∫
Ip

C1(u) log
(

C1(u)
C2(u)

)
du −

[
ρ−

p (C1) − ρ−
p (C2)

2pn(p)

]

=
∫
Ip

C1(u) log
(

C1(u)
C2(u)

)
− [C1(u) − C2(u)] du

=
∫
Ip

[
C2(u)
C1(u) − log

(
C2(u)
C1(u)

)
− 1

]
C1(u)du.

It is easy to verify that g(z) = z − log(z) − 1 is non-negative for every z ≥ 0 and g(z) = 0

if and only if z = 1. It follows that C1(u) = C2(u), for every u ∈ Ip.

Now, we will consider the CCKL divergence of some well-known copulas.

Example 4.6.1. Consider the Fréchet-Hoeffding lower bound copula W (u1, u2) = max{u1+

u2 − 1, 0} and the product copula Π(u1, u2) = u1u2. It is obvious that ρ−
2 (W ) = −1 and

ρ−
2 (Π) = 0. Moreover,

∫ 1

0

∫ 1

0
max{u1 + u2 − 1, 0} log

(
max{u1 + u2 − 1, 0}

u1u2

)
du1du2 = 1

36 ,

and n(2) = 3 (using Eq. 4.16). It follows that the CCKL divergence between the Fréchet-
Hoeffding lower bound copula and product copula is 1

36 + 1
12 = 1

9 .

Example 4.6.2. Consider the bivariate product copula Π(u1, u2) = u1u2 and the Gumbel-
Barnett copula

C(u1, u2) = u1u2 exp{−θ log(u1) log(u2)}, θ ∈ I.

Since ρ−
2 (C) = −12

(
θ−1e4/θEi (−4/θ)

)
− 3 (see Yela and Cuevas (2018)), where Ei(·) is

the usual exponential integral function. Consider the integral
∫ 1

0

∫ 1

0
u1u2 log

(
u1u2

u1u2 exp{−θ log(u1) log(u2)}

)
du1du2 = θ

16 .

Therefore, the CCKL divergence between the product copula and the Gumbel-Barnett copula
is given by

CCKL(Π||C) = θ

16 −
12
(
θ−1e4/θEi (−4/θ)

)
− 3

22n(2) = θ

16 −
(

θ−1e4/θEi (−4/θ) + 1
4

)
, θ ∈ I.
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Example 4.6.3. Consider the p−dimensional product copula Π(u) = u1u2 . . . up and the
minimum copula M(u) = min{u1, u2, . . . , up}. We have ρ−

p (Π) = 0 and ρ−
p (M) is

ρ−
p (M) =n(p)

[
2p
∫
Ip

M(u)du − 1
]

=n(p)
[
2p
∫ 1

0
pu(1 − u)p−1du − 1

]
(using Eq. (4.3))

=n(p) [2pβ(2, p) − 1] ,

where β(p, q) is the usual beta function. Moreover,

∫
Ip

Π(u) log
(

Π(u)
M(u)

)
du =

∫ 1

0

∫ 1

0
· · ·

∫ 1

0
u1u2 . . . up log

(
u1u2 . . . up

min{u1, u2, . . . , up}

)
du1du2 . . . dup

=p!
∫ 1

0

∫ u1

0

∫ u2

0
· · ·

∫ up−1

0
u1u2 . . . up log (u2u3 . . . up) du1du2 . . . dup

=
p∑

i=2
Ji,

where for each i = 2, 3, · · · , p, Ji = p!
∫ 1

0
∫ up

0
∫ up−1

0 · · ·
∫ u2

0 u1u2 . . . up log (ui) du1du2 . . . dup =

−2−p−1∑p
n=i n−1. Then the CCKL divergence between the product copula and minimum

copula is given by

CCKL(Π||M) =
∫
Ip

Π(u) log
(

Π(u)
M(u)

)
du −

[
ρ−

p (Π) − ρ−
p (M)

2pn(p)

]
.

=
p∑

i=2
Ji + β(2, p) − 2−p.

Example 4.6.4. Consider the p-dimensional Cuadras-Augé copula defined in Eq. (4.4)
and the minimum copula. The multivariate Spearman’s Rho of Cuadras-Augé copula is
given by

ρ−
p (C) =n(p)

[
2p
∫
Ip

p∏
i=1

uθi

(i)du − 1
]

=n(p)
[

2p∏p
i k(i) − 1

]
,
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where u(1) ≤ u(2) · · · ≤ u(p), θ1 = 1, θi = ∏i−1
j=1(1 − αij), and k(i) = k(i − 1) + θi + 1 with

k(1) = 2, for i = 2, 3, . . . , p. Furthermore,

∫
Ip

C(u) log
(

C(u)
M(u)

)
du =

∫ 1

0

∫ 1

0
· · ·

∫ 1

0
u(1)u

θ2
(2) . . . u

θp

(p) log
u(1)u

θ2
(2) . . . u

θp

(p)

u(1)

 du1du2 . . . dup

=p!
p∑

j=2

∫ 1

0

∫ up

0

∫ uk−1

0
· · ·

∫ u2

0
u1u

θ2
2 . . . uθp

p log
(
u

θj

j

)
du1du2 . . . dup

= − p!
p∑

j=2
θjIj,

where Ij = 1∏p
i=1 k(i)

 p∑
i=j

1
k(j)

 for every j = 2, 3, . . . , p. The CCKL divergence between

the Cuadras-Augé copula and the minimum copula is given by

CCKL(C||M) = −p!
p∑

j=2
θjIj − 1∏p

i k(i) + β(2, p).

In the literature, several bootstrapping test procedures exist for the goodness-of-fit

test for copulas (see Panchenko (2005), Genest et al. (2009), and Kojadinovic et al. (2011)).

In the following subsection, we propose a goodness-of-fit test procedure for copulas based

on the cumulative copula Kullback-Leibler divergence as an application.

A Goodness of fit test for copula

Let {Cθ : θ ∈ Θ} be a family of copula functions. We want to test the hypothesis

H0 : C = Cθ, vs HA : C ̸= Cθ.

Now, using the definition of CCKL divergence between two copulas, the above hypothesis

is equivalent to the hypothesis

H0 : CCKL(C||Cθ) = 0, vs HA : CCKL(C||Cθ) > 0.

The CCKL divergence between C and Cθ is given by

CCKL(C||Cθ) =
∫
Ip

C(u) log
(

C(u)
Cθ(u)

)
du −

[
ρ−

p (C) − ρ−
p (Cθ)

2pn(p)

]

=
∫
Ip

C(u) log
(

C(u)
Cθ(u)

)
− C(u) + Cθ(u) du

= − ξ(C) −
∫
Ip

C(u) log (Cθ(u)) du −
∫
Ip

C(u)du +
∫
Ip

Cθ(u)du.
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Let X1, X2, . . . , XN be a random sample of size N from a p-variate distribution with

underlying copula C. We approximate the copula C by empirical beta copula ĈN which

yields the following test statistic

TN = −ξ(ĈN) −
∫
Ip

ĈN(u) log (Cθ(u)) du −
∫
Ip

ĈN(u)du +
∫
Ip

Cθ(u)du. (4.17)

Theorem 4.6.3. The test statistic based on CCKL given in Eq. (4.17) is consistent for
the goodness of fit test for copula.

Proof. Using theorem 4.5.4, we showed that ξ(ĈN) is a consistent estimator for ξ(Cθ)

under H0. It implies that TN
P−→ 0 under H0. Moreover, since ĈN is also a valid copula and

by theorem 4.6.2, we have CCKL(ĈN ||C) > 0, under HA. Consequently, P (TN > 0) = 1

as N → ∞ under HA. Therefore, the test based on the test statistic TN is a consistent

test.

We reject the null hypothesis H0 at significance level α if TN ≥ TN,1−α, where TN,1−α is the

100(1−α)th percentile of TN under H0. The distribution of TN under H0 can’t be obtained

analytically, so the Monte Carlo simulation method will be used to determine the value

of TN,1−α. Since computing the test statistic TN in Eq. (4.17) is often time-consuming,

especially for large values of N , we need to approximate TN by its sample counterpart.

Note that the right-hand side (RHS) of Eq. (4.17) can be expressed as

E [CN(U) log (CN(U)) − CN(U) log (Cθ(U)) − CN(U) + Cθ(U)] ,

where U1, U2, . . . , Up are k independently and identically distributed random variables from

a uniform distribution over I and U = (U1, U2, . . . , Up). We approximate the expectation

by the sample mean, which yields the approximate value of the test statistic TN given by

TN = 1
N

N∑
i=1

[
ĈN(ei) log

(
ĈN(ei)

)
− ĈN(ei) log

(
Ĉθ(ei)

)
− ĈN(ei) + Cθ(ei)

]
, (4.18)

where ei = (ei,1, ei,2, . . . , ei,p), with ei,j = Ri,j

N+1 , and Ri,j is the rank of the i-th observation

of the j-th component Xi,j for i = 1, 2, . . . , N and j = 1, 2, . . . , p. The following algorithm

will provide an estimated p-value and 100(1 − α)th percentile of TN for the proposed test

based on the statistic TN .

1. Estimate the copula parameter θ from the given data of size N . We can use any

consistent estimator θ̂N of the copula parameter θ.

2. Compute the value of the test statistic TN given in the Eq. (4.18).
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3. Generate M random samples of size N from the copula with copula parameter θ̂N ,

estimate θ by the same consistent estimator used in Step 1, and calculate the test

statistic for each random sample.

4. Let TN(1) , TN(2) , . . . , TN(M) be the ordered values of the computated test statistic TN

in Step 3. Then the estimated 100(1 − α)th percentile value of TN is TN[(1−α)M)] ,

where [·] denotes greatest integer function.

5. The estimated p-value associated with the observed test statistic TN can be computed

by
1

M

M∑
j=1

1
{
r : TN(r) ≥ TN

}
.

4.7 Simulation Study and Data Analysis

In this section, an extensive simulation study is conducted to estimate the 95th

percentile of the test statistic TN for various sample sizes under different copula models.

The simulation study is performed using R software (version 4.2.2). For the simulation

study, we generated 10, 000 samples of size N = 100, 150, 200 and 250 from different

copulas.

First, we estimate the 95th percentile of TN based on sample sizes N = 100, 150, 200

and 250 under Clayton, Frank, Gumbel-Hougaarad, Joe, Normal, and product copulas.

The estimated 95th percentile of the statistic TN for the bivariate and trivariate versions

of the considered copulas are reported in Table 4.1 and Table 4.2, respectively.

To calculate size and power, we generated 10, 000 samples of size N = 100, 150, 200

and 250 from the specific copula and estimated the size and power of the test based on

whether or not the original data came from the assumed copula family under the null

hypothesis. It is to be noted that in each bootstrapping sample, we assume that the

copula parameters are known in advance, so we are not estimating the copula parameters.

Tables [4.3, 4.4, 4.5] show the size and power of the test for some bivariate copula models

and Tables [4.6, 4.7, 4.8] shows that size and power (in percentage) of the test for some

trivariate copula models. Note that the size of the proposed test is given in bold format,

and the copula model parameter values are mentioned in brackets next to each copula

model.
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Table 4.1. Estimated values of the 95th percentile of TN for various bivariate copula models

Model Parameter
Sample Size

100 150 200 250

Clayton α = 0.5 1.4062 × 10−3 9.9775 × 10−4 7.4645 × 10−4 5.9598 × 10−4

α = 2 7.5188 × 10−4 4.8142 × 10−4 3.5280 × 10−4 2.8429 × 10−4

α = 6 3.8466 × 10−4 2.2941 × 10−4 1.6636 × 10−4 1.2723 × 10−4

Frank θ = 3 1.3110 × 10−3 8.9599 × 10−4 7.1967 × 10−4 5.7994 × 10−4

θ = 5 1.05197 × 10−3 7.0819 × 10−4 5.2954 × 10−4 4.3991 × 10−4

θ = 14 4.9869 × 10−4 3.3738 × 10−4 2.5221 × 10−4 2.0387 × 10−4

Gumbel-Hougaarad ϕ = 1.5 1.3802 × 10−3 9.6353 × 10−4 7.3333 × 10−4 5.8284 × 10−4

ϕ = 2 1.0113 × 10−3 7.0783 × 10−4 5.3709 × 10−4 4.2715 × 10−4

ϕ = 4 5.0686 × 10−4 3.2607 × 10−4 2.3746 × 10−4 1.1916 × 10−4

Joe θ = 1.5 1.6839 × 10−3 1.1841 × 10−3 9.2153 × 10−4 7.4284 × 10−4

θ = 3 1.1915 × 10−3 8.5074 × 10−4 6.4118 × 10−4 5.2301 × 10−4

θ = 7 7.0373 × 10−4 4.8555 × 10−4 3.6759 × 10−4 3.0002 × 10−4

Normal ρ = 0.4 1.4116 × 10−3 9.3985 × 10−4 7.2460 × 10−4 5.7744 × 10−4

ρ = 0.7 8.7301 × 10−4 5.9016 × 10−4 4.4601 × 10−4 3.5730 × 10−4

ρ = 0.9 4.6217 × 10−4 3.0072 × 10−4 2.2217 × 10−4 1.7607 × 10−4

Product 2.0239 × 10−3 1.3582 × 10−3 1.0457 × 10−3 8.3575 × 10−4
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Table 4.2. Estimated values of the 95th percentile of TN for various trivariate copula models

Model Parameter
Sample Size

100 150 200 250

Clayton α = 0.5 2.7319 × 10−3 1.8752 × 10−3 1.3945 × 10−3 1.11761 × 10−3

α = 2 1.5505 × 10−3 9.9921 × 10−4 7.2811 × 10−4 5.5819 × 10−4

α = 6 8.3354 × 10−4 4.8876 × 10−4 3.4780 × 10−4 2.6978 × 10−4

Frank θ = 3 2.3452 × 10−3 1.6175 × 10−3 1.2467 × 10−3 9.9976 × 10−4

θ = 5 1.9130 × 10−3 1.3126 × 10−3 9.7085 × 10−4 8.0744 × 10−4

θ = 14 1.0311 × 10−3 6.7041 × 10−4 5.0303 × 10−4 4.0423 × 10−4

Gumbel-Hougaarad ϕ = 1.5 2.5235 × 10−3 1.7071 × 10−3 1.2952 × 10−3 1.0597 × 10−3

ϕ = 2 1.9748 × 10−3 1.31551 × 10−3 1.0025 × 10−3 8.0576 × 10−4

ϕ = 4 1.0649 × 10−3 6.8730 × 10−4 5.0277 × 10−4 3.898 × 10−4

Joe θ = 1.5 2.9452 × 10−3 2.0107 × 10−3 1.5395 × 10−3 1.2463 × 10−3

θ = 3 2.23767 × 10−3 1.5386 × 10−3 1.1609 × 10−3 9.3941 × 10−4

θ = 7 1.4641 × 10−3 9.5634 × 10−4 7.3481 × 10−4 5.9205 × 10−4

Normal ρ = (0.1, 0.2, 0.3) 2.7463 × 10−3 1.9346 × 10−3 1.4515 × 10−3 1.1740 × 10−3

ρ = (0.4, 0.5, 0.6) 2.1174 × 10−3 1.4448 × 10−3 1.0955 × 10−3 9.0260 × 10−4

ρ = (0.7, 0.8, 0.9) 1.2762 × 10−3 8.1735 × 10−4 6.2295 × 10−4 4.6812 × 10−4

Product 3.066207 × 10−3 2.1759 × 10−3 1.6934 × 10−3 1.3827 × 10−3
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Table 4.3. Percentage of rejection of H0 for different bivariate copula

models

Copula under H0 True Copula
Sample Size

100 150 200 250

Clayton(0.5) Clayton(0.5) 4.88 5.14 5.17 4.81

Frank(3) 26.57 48.59 65.42 79.61

Gumbel-Hougaarad(1.5) 33.28 57.34 80.06 88.67

Joe(1.5) 57.9 80.54 91.82 97.15

Normal(0.4) 11.2 16.73 23.33 32.4

Product 93.64 99.12 99.92 99.98

Frank(3) Clayton(0.5) 41.21 61.87 75.95 85.6

Frank(3) 4.79 5.13 4.92 5.27

Gumbel-Hougaarad(1.5) 7.29 8.62 8.83 10.43

Joe(1.5) 59.96 76.14 85.77 92.41

Normal(0.4) 13.26 17.33 23.11 31.43

Product 99.4 99.97 100 100

Gumbel-Hougaarad(1.5) Clayton(0.5) 41.33 64.49 80.4 88.88

Frank(3) 4.92 5.31 6.4 7.35

Gumbel-Hougaarad(1.5) 5.97 5.16 4.94 4.85

Joe(1.5) 52.02 67.91 80.61 88.18

Normal(0.4) 11.43 14.56 19.2 22.15

Product 99.33 99.97 100 100

Joe(1.5) Clayton(0.5) 56.79 75.55 87.98 94.56

Frank(3) 44.82 65.32 80.01 97.79

Gumbel-Hougaarad(1.5) 40.41 58.22 71.96 83.04

Joe(1.5) 5.23 4.96 4.83 5.28

Normal(0.4) 28.41 44.37 57.38 69.64

Product 71.68 88.85 95.67 98.74

Normal(0.4) Clayton(0.5) 14.3 21.6 30.74 36.78

Frank(3) 6.06 9.91 13.54 17.09

Gumbel-Hougaarad(1.5) 8.01 12.14 15.39 19.71

Joe(1.5) 38.97 52.23 66.78 77.47

Normal(0.4) 4.98 5.24 5.03 4.88

Product 78.87 92.72 97.72 99.42

Product Clayton(0.5) 91.28 98.32 99.76 99.97

Frank(3) 62.98 99.03 99.93 100

Gumbel-Hougaarad(1.5) 98.82 99.97 99.99 100

Joe(1.5) 66.39 85.64 95.2 98.62

Normal(0.4) 100 100 100 100

Product 5.2 4.99 5.15 5.97
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Table 4.4. Percentage of rejection of H0 for different bivariate copula

models

Copula under H0 True Copula
Sample Size

100 150 200 250

Clayton(2) Clayton(2) 5.11 4.93 5.26 4.99

Frank(5) 94.81 99.69 99.98 100

Gumbel-Hougaarad(2) 95.81 99.71 100 100

Joe(3) 99.95 100 100 100

Normal(0.7) 70.81 90.19 97.62 99.19

Product 100 100 100 100

Frank(5) Clayton(2) 97.47 99.75 100 100

Frank(5) 81.9 93.07 97.92 99.37

Gumbel-Hougaarad(2) 7.36 10.96 13.2 16.56

Joe(3) 31.61 50.13 65.91 81.25

Normal(0.7) 10.56 21.08 32.08 41.89

Product 100 100 100 100

Gumbel-Hougaarad(2) Clayton(2) 88.47 98.88 99.99 100

Frank(5) 7.41 10.77 14.74 17.88

Gumbel-Hougaarad(2) 5.13 5.22 4.83 5.31

Joe(3) 26.32 33.49 50.9 63.7

Normal(0.7) 5.08 8.9 13.72 19.2

Product 100 100 100 100

Joe(3) Clayton(2) 99.85 100 100 100

Frank(5) 19.76 33.25 49.75 60.54

Gumbel(2) 18.55 30.27 41.27 52.6

Joe(3) 4.77 5.15 5.03 5.11

Normal(0.7) 52.83 77.45 90.72 96.14

Product 100 100 100 100

Normal(0.7) Clayton(2) 47.17 79.79 93.54 97.98

Frank(5) 26.08 37.19 48.03 56.66

Gumbel(2) 19.49 25.64 29.65 38.99

Joe(3) 68.4 89.71 96.63 99.05

Normal(0.7) 5.17 5.19 4.97 5.08

Product 100 100 100 100

Product Clayton(2) 100 100 100 100

Frank(5) 100 100 100 100

Gumbel-Hougaarad(2) 100 100 100 100

Joe(3) 100 100 100 100

Normal(0.7) 94.77 99.28 99.95 100

Product 4.97 5.06 4.84 5.21
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Table 4.5. Percentage of rejection of H0 for different bivariate copula

models

Copula under H0 True Copula
Sample Size

100 150 200 250

Clayton(6) Clayton(6) 5.15 5.06 4.91 4.88

Frank(14) 97.61 99.32 100 100

Gumbel-Hougaarad(4) 99.5 100 100 100

Joe(7) 100 100 100 100

Normal(0.9) 97.57 99.89 100 100

Product 100 100 100 100

Frank(14) Clayton(6) 100 100 100 100

Frank(14) 5.02 5.21 4.93 4.87

Gumbel-Hougaarad(4) 16.87 29.17 43.47 59.96

Joe(7) 59.16 78.61 88.58 95.55

Normal(0.9) 59.16 78.61 88.58 95.55

Product 100 100 100 100

Gumbel-Hougaarad(4) Clayton(6) 86.12 97.8 99.62 99.99

Frank(14) 10.32 21.95 33.57 47.88

Gumbel-Hougaarad(4) 4.96 5.22 5.19 4.86

Joe(7) 57.88 78.57 89.43 95.86

Normal(0.9) 6.77 8.67 11.28 17.07

Product 100 100 100 100

Joe(7) Clayton(6) 100 100 100 100

Frank(14) 20.86 46.27 67.1 82.65

Gumbel-Hougaarad(4) 32.6 65.06 83.02 92.35

Joe(7) 5.04 5.02 4.94 4.91

Normal(0.9) 69.29 93.75 99 99.82

Product 100 100 100 100

Normal(0.9) Clayton(6) 21.01 87.3 99.82 99.98

Frank(14) 25.58 49.7 73.12 87.86

Gumbel-Hougaarad(4) 10.73 15.08 21.73 29.03

Joe(7) 82.06 97.5 99.7 99.99

Normal(0.9) 5.13 4.85 4.93 5.19

Product 100 100 100 100

Product Clayton(6) 100 100 100 100

Frank(14) 100 100 100 100

Gumbel-Hougaarad(4) 100 100 100 100

Joe(7) 100 100 100 100

Normal(0.9) 100 100 100 100

Product 5.09 5.04 4.99 5.12
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Table 4.6. Percentage of rejection of H0 for different trivariate copula

models

Copula under H0 True Copula
Sample Size

100 150 200 250

Clayton(0.5) Clayton(0.5) 4.78 4.83 5.1 4.89

Frank(3) 41 70.7 88.65 96.03

Gumbel-Hougaarad(1.5) 50.46 78.26 92.66 97.55

Joe(1.5) 83.41 96.77 99.45 99.94

Normal(0.1, 0.2, 0.3) 62.8 80.15 91.54 96.94

Product 99.79 99.99 100 100

Frank(3) Clayton(0.5) 63.19 86.03 94.62 98.14

Frank(3) 4.94 4.91 5.09 5.05

Gumbel-Hougaarad(1.5) 8.73 9.85 10.46 13.83

Joe(1.5) 81.9 93.07 97.92 99.37

Normal(0.1, 0.2, 0.3) 89.47 97.95 99.6 99.93

Product 100 100 100 100

Gumbel-Hougaarad(1.5) Clayton(0.5) 57.05 82.82 94.97 98.33

Frank(3) 4.85 4.96 5.48 6.83

Gumbel-Hougaarad(1.5) 5.14 5.21 4.89 4.96

Joe(1.5) 74.33 89.29 95.52 98.31

Normal(0.1, 0.2, 0.3) 88.47 97.21 99.55 99.93

Product 99.4 99.99 100 100

Joe(1.5) Clayton(0.5) 79.73 93.73 98.63 99.77

Frank(3) 68.91 88.06 95.55 98.69

Gumbel-Hougaarad(1.5) 66.71 84.56 92.61 97.17

Joe(1.5) 4.99 4.83 5.18 4.91

Normal(0.1, 0.2, 0.3) 17.47 23.55 36.72 49.04

Product 93.09 99.17 99.92 99.98

Normal(0.1, 0.2, 0.3) Clayton(0.5) 59.44 80.12 89.17 95.21

Frank(3) 83.75 96.26 99.3 99.85

Gumbel-Hougaarad(1.5) 82.16 96.06 99.18 99.8

Joe(1.5) 16.99 27.04 39.63 55.51

Normal(0.1, 0.2, 0.3) 5.19 4.95 5.12 5.08

Product 80.13 93.05 97.41 99.47

Product Clayton(0.5) 99.45 99.97 100 100

Frank(3) 80.61 100 100 100

Gumbel-Hougaarad(1.5) 100 100 100 100

Joe(1.5) 83.41 96.77 99.45 99.97

Normal(0.1, 0.2, 0.3) 75.22 91.04 96.68 98.86

Product 4.98 5.09 4.99 4.93
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Table 4.7. Percentage of rejection of H0 for different trivariate copula

models

Copula under H0 True Copula
Sample Size

100 150 200 250

Clayton(2) Clayton(2) 5.03 4.98 4.91 4.99

Frank(5) 94.81 99.69 99.98 100

Gumbel-Hougaarad(2) 99.38 99.99 100 100

Joe(3) 100 100 100 100

Normal(0.4, 0.5, 0.6) 99.96 100 100 100

Product 100 100 100 100

Frank(5) Clayton(2) 99.88 100 100 100

Frank(5) 5.11 5.17 4.84 5.15

Gumbel-Hougaarad(2) 9.52 14.29 21.34 30.71

Joe(3) 49.63 77.6 90.36 97.24

Normal(0.4, 0.5, 0.6) 62.34 79.4 90.48 96.36

Product 100 100 100 100

Gumbel-Hougaarad(2) Clayton(2) 97.33 99.86 100 100

Frank(5) 9.25 11.76 18.89 25.86

Gumbel-Hougaarad(2) 4.97 4.87 4.91 4.93

Joe(3) 39.86 58.63 72.5 85.18

Normal(0.4, 0.5, 0.6) 63.75 83.55 94.43 98.73

Product 100 100 100 100

Joe(3) Clayton(2) 100 100 100 100

Frank(5) 29.85 51.43 70.19 83.57

Gumbel-Hougaarad(2) 28.93 49.53 64.89 77.01

Joe(3) 5.01 5.18 4.96 5.11

Normal(0.4, 0.5, 0.6) 81.11 97.16 99.7 99.98

Product 100 100 100 100

Normal(0.4, 0.5, 0.6) Clayton(2) 99.61 100 100 100

Frank(5) 43.56 72.26 89.59 94.96

Gumbel-Hougaarad(2) 53.71 81.1 93.52 97.99

Joe(3) 87.08 98.83 99.93 99.99

Normal(0.4, 0.5, 0.6) 5.02 5.19 4.81 5.29

Product 100 100 100 100

Product Clayton(2) 100 100 100 100

Frank(5) 100 100 100 100

Gumbel-Hougaarad(2) 100 100 100 100

Joe(3) 100 100 100 100

Normal(0.4, 0.5, 0.6) 100 100 100 100

Product 4.97 5.11 4.85 5.04
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Table 4.8. Percentage of rejection of H0 for different trivariate copula

models

Copula under H0 True Copula
Sample Size

100 150 200 250

Clayton(6) Clayton(6) 4.99 4.93 4.89 5.01

Frank(14) 99.71 100 100 100

Gumbel(4) 99.98 100 100 100

Joe(7) 100 100 100 100

Normal(0.7, 0.8, 0.9) 100 100 100 100

Product 100 100 100 100

Frank(14) Clayton(6) 100 100 100 100

Frank(14) 5.23 4.97 4.86 5.09

Gumbel-Hougaarad(4) 21.68 40.24 61.75 78.87

Joe(7) 90.55 97.01 99.51 99.98

Normal(0.7, 0.8, 0.9) 97.87 99.82 100 100

Product 100 100 100 100

Gumbel-Hougaarad(4) Clayton(6) 84.46 99.9 100 100

Frank(14) 14.19 31.04 50.42 67.88

Gumbel-Hougaarad(4) 5.34 4.95 4.9 5.02

Joe(7) 73.51 92.36 97.86 99.6

Normal(0.7, 0.8, 0.9) 86.57 98.19 99.85 100

Product 100 100 100 100

Joe(7) Clayton(6) 100 100 100 100

Frank(14) 31.14 64.39 84.83 94.35

Gumbel-Hougaarad(4) 54.3 86.37 95.85 98.94

Joe(7) 4.95 5.28 5.05 4.98

Normal(0.7, 0.8, 0.9) 88.43 99.16 99.93 99.99

Product 100 100 100 100

Normal(0.7, 0.8, 0.9) Clayton(6) 99.97 100 100 100

Frank(14) 94.31 99.46 100 100

Gumbel-Hougaarad(4) 60.5 95.81 99.77 100

Joe(7) 98.1 99.98 100 100

Normal(0.7, 0.8, 0.9) 4.76 5.32 5.24 4.89

Product 100 100 100 100

Product Clayton(6) 100 100 100 100

Frank(14) 100 100 100 100

Gumbel-Hougaarad(4) 100 100 100 100

Joe(7) 100 100 100 100

Normal(0.7, 0.8, 0.9) 100 100 100 100

Product 5.04 4.89 4.99 5.08
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It is observed that as the dimension of the copula increases, the power of the proposed

test also increases in most cases. In order to continue our discussion, in the following

subsection, we use the proposed test for the copula selection problem in a real data set.

4.7.1 Selection of an Appropriate Copula for “Pima Indians Diabetes” Data

In this subsection, we analyze a real dataset to demonstrate the practical utility of the

copula selection problem. We consider the “Pima Indians Diabetes” data. The US National

Institute of Diabetes and Digestive and Kidney Diseases collected diabetes data from

women aged 21 and above, who were of Pima Indian descent and lived around Phoenix,

Arizona. The data is freely available in the R software within the pdp package. We consider

the variables “glucose”, “pressure”, and “mass” from the dataset, which represent plasma

glucose concentration, diastolic blood pressure (mm Hg), and body mass index, respectively.

All missing values were removed, resulting in a trivariate dataset with 724 entries. The

copulas considered in this study include Clayton, Frank, Gumbel-Hougaarad, Joe, Normal

and product copula. The marginal CDF are estimated by empirical distribution, and

copula parameters are estimated using the maximum pseudo-likelihood (MPL) estimation

method. We use our proposed method for the goodness of fit test, and the p-values of the

proposed test are estimated for each copula model. We use the copula having the least

CCKL divergence defined in Eq. (4.16) between the empirical beta copula is considered

as the model selection criteria. We generated 1000 random samples of size N = 724 for

estimating the p-values. The MPL estimates of the copula parameters, CCKL value and

p-values are reported in Table 4.9. From Table 4.9, Frank copula has the least CCKL

divergence between empirical beta copula with p-value= 0.448. It follows that Frank

copula can be considered as an appropriate choice for modelling the given dataset.

4.8 Conclusion and Future Direction

In this chapter, we introduce multivariate cumulative copula entropy (CCE) and study

its various mathematical properties. Furthermore, we propose the cumulative copula

information generating function (CCIGF) and explore its properties. Using fractional

calculus, we also introduce a fractional version of the multivariate cumulative copula

entropy. We proved that the CCE of the weighted arithmetic mean of copulas always

exceeds the weighted arithmetic mean of the CCE of copulas. The results are valid for the
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Table 4.9. MPL estimates of the copula, CCKL divergence and p-values

of the proposed test

Copula Estimate CCKL p-value

Clayton 0.23907 5.9516 × 10−4 0.029

Frank 1.37762 2.4595 × 10−4 0.488

Gumbel-Hougaarad 1.15423 5.2801 × 10−4 0.036

Joe 1.19773 1.4895 × 10−3 0

Normal 0.22994, 0.22644, 0.28999 3.7083 × 10−4 0.13

Product 1.4921 × 10−3 0

CCIGF and fractional cumulative copula entropy (FCCE). We showed that positive lower

orthant dependent (PLOD) ordering for two copulas never implies entropy ordering by a

counter-example and provides conditions for the entropy ordering of two copulas. The

results are valid for FCCE. However, in the case of CCIGF, PLOD ordering preserves

the ordering of corresponding CCIGF. We also showed that the CCIGF of the weighted

geometric mean of copulas never exceeds the weighted geometric mean of the CCIGF

of copulas. We provide a nonparametric estimate of the FCCE and CCIGF using the

empirical beta copula. We showed that the proposed nonparametric estimate converges

almost surely to the true FCCE and CCIGF, theoretically and numerically. We define

a new divergence measure between two copulas using the Kullback-Leibler divergence.

Furthermore, using the proposed divergence measure, a goodness-of-fit test procedure is

proposed for copulas. A copula selection procedure is discussed through the “Pima Indians

Diabetes” dataset to illustrate the applications of the new divergence measure. Since this

chapter discusses copula-based information measures using Shannon entropy, and various

entropy variants are available in the literature, the work can be naturally extended in that

direction as a potential avenue for future research.
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5
C h a p t e r

Copula-Based Information Mea-
sures Using Tsallis Entropy

This chapter introduces non-additive copula-based information measures using Tsallis

entropy, offering enhanced flexibility for quantifying uncertainty. A cumulative copula

Tsallis entropy is proposed, along with its properties and bounds. A nonparametric version

is developed and validated using coupled periodic and chaotic maps. Kerridge’s inaccuracy

measure and Kullback–Leibler (KL) divergence are extended to the cumulative copula

framework. Using the relationship between KL divergence and mutual information, a new

cumulative mutual information (CMI) measure is proposed. A test procedure for mutual

independence is formulated based on CMI. The effectiveness of the proposed CMI measure

is demonstrated using real bivariate financial time series data.

5.1 Introduction

In the context of thermodynamics, when a system is out of equilibrium or its component

states exhibit strong interdependence, non-additive entropy provides a more appropriate

measure for quantifying the uncertainty involved in the system. Tsallis (1988) proposed a

non-additive entropy and can be defined for an absolutely continuous random variable X

with PDF f(·) as

Tα(X) = −
∫ ∞

−∞
f(x) log[α](f(x)) dx, α ∈ A,
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where A = (0, 1) ∪ (1, ∞) and log[α](r) = rα−1−1
α−1 , r ≥ 0, for every α ∈ A. It is noteworthy

that limα→1 log[α](r) = log(r), implying that log[α](·) serves as a fractional generalization

of the natural logarithm. Consequently, Tsallis entropy reduces to Shannon entropy as

α → 1. Cal̀ı et al. (2017) introduced the cumulative Tsallis entropy (CTE), extending the

cumulative entropy (CE) defined by Di Crescenzo and Longobardi (2009). Rajesh and

Sunoj (2019) further generalized the cumulative residual entropy (CRE) to propose the

cumulative residual Tsallis entropy (CRTE), defined as

T Rα(X) = −
∫ ∞

0
F̄ (x) log[α](F̄ (x)) dx, α ∈ A.

Raju et al. (2020) and Raju et al. (2023) subsequently extended both CTE and CRTE

to the bivariate setting. Several applications of Tsallis entropy and its variants have

been explored in the literature; for comprehensive discussions, see Cartwright (2014),

De Albuquerque et al. (2004), Sparavigna (2015), Singh et al. (2017), Mohamed et al.

(2022), Toomaj and Atabay (2022), among others. Additionally, Mao et al. (2020) extended

the cumulative residual Kullback–Leibler divergence using Tsallis entropy, highlighting its

relevance in finance. Recently, Raju et al. (2024) generalized the cumulative inaccuracy

measure introduced by Kumar and Taneja (2015) within the Tsallis entropy framework.

In multivariate data analysis, quantifying the uncertainty in the dependence structure

is essential, and copula-based information measures play a pivotal role in this context.

However, the existing literature on such measures remains relatively limited. Chapter 4

explored copula-based information measures derived from Shannon entropy. Motivated

by the importance of Tsallis entropy, this chapter focuses on measuring the uncertainty

associated with the dependence structure of multivariate random variables using Tsallis

entropy. The chapter further highlights the practical relevance of copula-based information

measures through illustrative applications. The main contributions of this chapter are as

follows:

• Copula-based information measures are proposed using Tsallis entropy, referred to

as cumulative copula Tsallis entropy (CCTE).

• The validity of the proposed CCTE is illustrated in the context of Rulkov maps

within chaos and bifurcation theory.

• A non-parametric estimator for CCTE is introduced, and its almost sure convergence

is established.
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• A new inaccuracy measure for copulas is introduced, with an exploration of its

mathematical properties. This measure extends the work of Hosseini and Nooghabi

(2021).

• Inspired by Mao et al. (2020), a cumulative copula Tsallis divergence is proposed,

derived from cumulative Tsallis divergence.

• To address cases where existing mutual information may not be well-defined, a

mutual information measure called Cumulative Mutual Information (CMI) is in-

troduced as an alternative, relying on the relationship between KL divergence and

mutual information.

• Two specific applications of the proposed mutual information measure are presented:

1. Testing the independence of several random variables.

2. Analyzing multivariate financial time series, where the proposed MI serves as

an economic indicator.

The remaining structure of this chapter is organized into three main parts. In

Section 5.2, we introduce the cumulative copula Tsallis entropy, examine its mathematical

properties, and provide examples using well-known copulas. Section 5.3 presents a non-

parametric estimator for the proposed dependence entropy, provides a theoretical proof

of its almost sure convergence, and validates the results using Monte Carlo simulations.

Section 5.4 discusses the validation of the proposed dependence entropy by applying it

to Rulkov maps. The second part of the chapter, starting with Section 5.5, introduces a

copula-based inaccuracy measure and explores related inequalities and ordering properties.

Section 5.6 presents a newly developed cumulative copula divergence based on the Tsallis

divergence, highlighting its properties and introducing a new mutual information measure.

The final part of the chapter discusses the applications of the proposed mutual information

measure. Section 5.7 is divided into two subsections. Subsection 5.7.1 proposes a new

testing procedure for the mutual independence among the components of a multivariate

random variable. The proposed test is compared with existing procedures based on

Cramér-von Mises and Kolmogorov-Smirnov distance measures. The proposed test is

applied to real data to demonstrate its practical utility. Subsection 5.7.2 illustrates the

use of the proposed mutual information measure as an economic indicator in analyzing

multivariate financial time series. The chapter concludes in Section 5.8 with a summary of

the findings and a discussion of potential directions for future research.
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5.2 Cumulative Copula Tsallis Entropy

In this section, we propose the cumulative copula Tsallis entropy (CCTE), defined as

follows

ξα(C) = −
∫
Ip

C(u) log[α](C(u)) du, α ∈ A, (5.1)

where log[α](r) = rα−1−1
α−1 and A = (0, 1)∪ (1, ∞). It is easy to show that for any α ∈ A, the

function h(r) = −r log[α](r) is bounded by 0 ≤ h(r) ≤ αα/1−α for every r ∈ I. It follows

that 0 ≤ ξα(C) ≤ α1/1−α ≤ 1, for every α ∈ A. Moreover,

lim
α→1

ξα(C) = −
∫
Ip

C(u) log (C(u)) du = ξ(C).

In the following subsection, we present typical examples of the CCTE for various

well-known bivariate and multivariate copulas.

5.2.1 Examples

Example 5.2.1. For any bivariate copula, the Fréchet-Hoeffding lower bound copula,
defined as

W (u1, u2) = max{u1 + u2 − 1, 0},

provides the lower bound for every bivariate copula. The CCTE corresponding to the
Fréchet-Hoeffding lower bound copula is given by

ξα(W ) = −
∫ 1

0

∫ 1

0
max{u1 + u2 − 1, 0} log[α]

(
max{u1 + u2 − 1, 0}

)
du1 du2

= 1
α − 1

∫ 1

0

∫ u1

0

(
u2 − uα

2

)
du2 du1

= α + 4
6(α + 1)(α + 2) .

Example 5.2.2. Consider the Marshall–Olkin copula defined by

C(u1, u2) = u1−β1
1 u1−β2

2 min{uβ1
1 , uβ2

2 }, β1, β2 ∈ I.
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Then the CCTE for the Marshall-Olkin copula is given by

ξα(C) = 1
α − 1

[ ∫ 1

0

∫ u
β2/β1
2

0

(
u1u

1−β2
2 −

(
u1u

1−β2
2

)α)
du1 du2

+
∫ 1

0

∫ u
β1/β2
1

0

(
u1−β1

1 u2 −
(
u1−β1

1 u2
)α)

du2 du1

]

= (β1 + β2) (ω(1) − ω(α))
α2 − 1 ,

where ω(x) = 1
(x+1)(β1+β2)−xβ1β2

.

Example 5.2.3. The underlying copula corresponding to the mutual independence of
random variables is the product copula, defined as

Π(u) = u1u2 . . . up.

The CCTE for the product copula is given by

ξα(Π) = 1
α − 1

∫ 1

0

∫ 1

0
· · ·

∫ 1

0

(
u1u2 . . . up − (u1u2 · · · up)α

)
du1 du2 . . . dup

= (α + 1)p − 2p

2p(α2 − 1)(α + 1)p−1 .

Example 5.2.4. For any p-dimensional copula, the Fréchet-Hoeffding upper bound copula,
defined as

M(u) = min{u1, u2, . . . , up},

provides the upper bound for every p-dimensional copula. The CCTE corresponding to the
Fréchet-Hoeffding upper bound copula is given by

ξα(M) = 1
α − 1

∫ 1

0

∫ 1

0
· · ·

∫ 1

0
min{u1, u2, . . . , up} − (min{u1, u2, . . . , up})α du1 du2 . . . dup

= p

α − 1

∫ 1

0

(
u − uα

)
(1 − u)p−1 du

= p

α − 1 (β(2, p) − β(α + 1, p)) ,

where β(q1, q2) is the well-known beta function. Note that the transformation of the above
multiple integrals into a single integral uses the concept of order statistics. The multiple in-
tegral in the above equation can be expressed as E

(
U[1]−Uα

[1]

)
, where U1, U2, . . . , Up is a ran-

dom sample of size p from the uniform distribution over I, and U[1] = min{U1, U2, . . . , Up}.

Next, we explore several inequalities associated with the CCTE, which establishes the

bounds for the measure.
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5.2.2 Inequalities

Theorem 5.2.1. For every p-dimensional copula C with ξα(C), the following inequalities
hold:

ξα(C)


≥ ξ(C), if α ∈ (0, 1),

≤ ξ(C), if α ∈ (1, ∞).

Proof. For any r ≥ 0, it holds that 1 − r ≤ − log(r). Consequently, for any r ∈ I,

−r log[α](r) = r (1 − rα−1)
α − 1


≥ −r log(r), if α ∈ (0, 1),

≤ −r log(r), if α ∈ (1, ∞).

The result follows by substituting r = C(u) and integrating over Ip.

Theorem 5.2.2. Let ξα(C) be the CCTE of a copula C, then

ξα(C)


≥ ξ2(C), if α ∈ (0, 2] \ {1},

≤ ξ2(C), if α ∈ (2, ∞).

Proof. For α ∈ (0, 2] \ {1}, the function

g(r) = − log[α](r) + log[2](r) = 1 − rα−1

α − 1 − 1 + r

attains its minimum at r = 1. For α ∈ (2, ∞), g(r) attains its maximum at r = 1. Thus,

g(r) ≥ 0 if α ∈ (0, 2] \ {1} and g(r) ≤ 0 if α ∈ (2, ∞). Substituting r = C(u) and

integrating over Ip, the result follows.

Let C(u) be a p-dimensional copula. The multivariate version of Spearman’s correlation

can be defined as

ρ−
p (C) =n(p)

(
2p
∫
Ip

C(u)du − 1
)

, (5.2)

where n(p) = p + 1
2p − p − 1. For more details, we refer to Schmid et al. (2010) and Bedő and

Ong (2016)). The following theorem provides the relation between multivariate Spearman’s

correlation coefficient and CCTE.

Theorem 5.2.3. Let C be a p-dimensional copula with multivariate Spearman’s correlation
coefficient ρ−

p (C). Then for any α ∈ A,

ξα(C) ≤ gp(C) log[α] (gd(C)) ,

124



Copula-Based Information Measures Using Tsallis Entropy Chapter 5

where gp(C) =
(
ρ−

p (C) + n(p)
)

n(p)−12−p.

Proof. For any α ∈ A, h(r) = −r log[α](r) = r − rα

α − 1 is concave for r ∈ I. The result

follows, using Jensen’s inequality on the concave function.

Now, we will focus on the CCTE of the weighted arithmetic mean (WAM) of copulas. It

is important to note that the WAM of copulas with the same dimension is also a copula.

The following theorem shows the uncertainty involved in the WAM of copulas.

Theorem 5.2.4. Let C1, C2, . . . , Cm be m copulas of dimension p with corresponding
CCTE values ξα(C1), ξα(C2), . . . , ξα(Cm). Define CΣ(u) = ∑m

j=1 ljCj(u) as the WAM of
these copulas, where lj ∈ I for j = 1, 2, . . . , m and ∑m

j=1 lj = 1. Let ξα(CΣ) denote the
CCTE of CΣ. Then the following inequality holds

m∑
j=1

lj ξα(Cj) ≤ ξα(CΣ).

Proof. The function h(r) = −r log[α](r) is concave, which implies that

m∑
j=1

ljh(rj) ≤ h

 m∑
j=1

ljrj

 ,

for every rj ∈ I. The result follows by substituting rj = Cj(u) and integrating over Ip.

Let C1(u) and C2(u) be two p-dimensional copulas. Then, C1 is less positive lower

orthant dependent (PLOD) than C2, denoted by C1
PLOD

≺ C2, if C1(u) ≤ C2(u) for

every u ∈ Ip. Now, we will show that PLOD ordering does not necessarily imply the

corresponding CCTE ordering through a counterexample by considering

C1(u1, u2) =
(

1 +
[
(u−1

1 − 1)2 + (u−1
2 − 1)2

]0.5
)−1

,

and

C2(u1, u2) = min{u1, u2}.

The difference ξα(C1) − ξα(C2) is shown in Figure 5.1, which illustrates that the inequality

is not preserved for PLOD ordering.

In the following subsection, we establish the uniform convergence property of CCTE.
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Figure 5.1. ξα(C1) − ξα(C2) for different values of α

5.2.3 Uniform Convergence

Theorem 5.2.5. Let {CN} be a sequence of p-dimensional copulas with CCTE ξα(CN),
and let C be a p-dimensional copula with CCTE ξα(C). If CN converges uniformly to C,
then ξα(CN) converges uniformly to ξα(C) for all α ∈ A.

Proof. The function h(r) = −r log[α](r) is bounded and uniformly continuous on I. Thus,

for any δ > 0, there exists η > 0 such that for any r1, r2 ∈ I satisfying |r1 − r2| < η, we

have

|h(r1) − h(r2)| < δ. (5.3)

Substituting r1 = CN(u) and r2 = C(u) in Eq. (5.3), it follows that

|h (CN(u)) − h (C(u))| < δ, (5.4)

whenever

|CN(u) − C(u)| < η.

If CN converges uniformly to C, then for any η > 0, there exists a natural number m ≥ N

such that

|CN(u) − C(u)| < η, (5.5)

for every u ∈ Ip. Using Eq. (5.4) and Eq. (5.5), and applying the bounded convergence

theorem, the result follows.
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5.3 Empirical Cumulative Copula Tsallis Entropy

In this section, we use the empirical copula to propose a non-parametric estimator for

CCTE. A non-parametric estimate of CCE based on the empirical copula was introduced

by Sunoj and Nair (2025). Let Xj = (Xj,1, Xj,2, . . . , Xj,p) ; j = 1, 2, . . . , n be a random

sample of size n from a multivariate population. Based on these samples, the empirical

copula Ĉn can be used to estimate the underlying copula, defined as

Ĉn (u) = 1
n

n∑
j=1

p∏
k=1

I
(

Rj,k

n + 1 ≤ uk

)
, (5.6)

where Rj,k is the rank of the k-th component of the j-th observation Xj,k, and I(·) denotes

the indicator function (see Deheuvels (1979), Nelsen (2006), Panchenko (2005), and

Durante and Sempi (2016)). Now, using the definition of empirical copula, we define the

empirical CCTE as

ξα(Ĉn) = −
∫
Ip

Ĉn(u) log[α]

(
Ĉn(u)

)
du, α ∈ A. (5.7)

The following theorem provides the upper bound for the empirical CCTE.

Theorem 5.3.1. Let Ĉn be the empirical copula based on the random sample X1, X2 . . . , Xn

from a multivariate distribution of dimension p. Let ξα(Ĉn) be the empirical CCTE defined
in Eq. (5.7). Then, for any α ∈ A,

ξα(Ĉn) ≤ − 1
n

R log[α] (R) ,

where R =

 1
n

n∑
j=1

p∏
k=1

(
1 − Rj,k

n + 1

) .

Proof. By Jensen’s inequality, we have

ξα(Ĉn) ≤ 1
α − 1

{∫
Ip

Ĉn(u) du −
(∫

Ip
Ĉn(u) du

)α}

= 1
α − 1


∫
Ip

1
n

n∑
j=1

p∏
k=1

I
(

Rj,k

n + 1 ≤ uk

)
du −

∫
Ip

1
n

n∑
j=1

p∏
k=1

I
(

Rj,k

n + 1 ≤ uk

)
du

α
= 1

α − 1

 1
n

n∑
j=1

p∏
k=1

(
1 − Rj,k

n + 1

)
−

 1
n

n∑
j=1

p∏
k=1

(
1 − Rj,k

n + 1

)α
= − 1

n
R log[α] (R) .
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We now focus on the consistency of the proposed non-parametric estimator. The following

theorem asserts the convergence of the empirical CCTE.

Theorem 5.3.2. The empirical CCTE converges almost surely to the true CCTE. Specifi-
cally, for any α ∈ A, as n → ∞, we have

ξ̂α(Cn) → ξα(C) a.s.

Proof. By the Glivenko-Cantelli theorem for empirical copulas, we have that as n → ∞,

sup
u∈Ip

|Cn(u) − C(u)| → 0, a.s. (5.8)

For further details, see Deheuvels (1979), Kiefer (1961), Shorack and Wellner (2009), and

Janssen et al. (2012). Using the continuous mapping theorem of almost sure convergence,

along with the bounded convergence theorem, the result follows.

Now, we illustrate this theorem through a simulation study for various copulas,

specifically considering the following:

- Clayton copula:

C(u) = max
{ p∑

i=1
uθ

i − p + 1, 0
}−1/θ

, θ ∈ [−1, ∞) \ {0}.

- Gumbel-Hougaard copula:

C(u) = exp

−
( p∑

i=1
(− log(ui))θ

)1/θ
 , θ ≥ 1.

- Frank copula:

C(u) = −1
θ

log
(

1 +
∏p

i=1 e−θui − 1
e−θ − 1

)
, θ ∈ R \ {0}.

We generated 1,000 random numbers from each of the copulas mentioned above and

computed the empirical CCTE, comparing these estimates with the actual values. Due

to the absence of a closed-form expression for the empirical CCTE, we evaluated the

integrals numerically using the adaptIntegrate function from the cubature package in

R (version 4.2.2). Figures 5.2 and 5.3 illustrate the convergence of the non-parametric

estimate of CCTE for the Clayton copula, Gumbel-Hougaard copula, and Frank copula in

both bivariate and trivariate cases. From these figures, it is evident that the shape of the

CCTE varies with the dimension of the copula.
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(a) Clayton copula with pa-

rameter θ = 1.5

(b) Gumbel-Hougaard copula

with parameter θ = 2

(c) Frank copula with param-

eters θ = 2.5

Figure 5.2. The empirical CCTE and theoretical CCE of various bivariate

copulas.

(a) Clayton copula with pa-

rameter θ = 1.5

(b) Gumbel-Hougaard copula

with parameter θ = 2

(c) Frank copula with param-

eters θ = 2.5

Figure 5.3. The empirical CCTE and theoretical CCE of various trivariate

copulas.

5.4 Validity of Cumulative Copula Tsallis Entropy with Chaotic

Theory

Here, we validate our entropy measure using chaotic theory. We consider the identical

Rulkov maps given by the system of equations:

xn+1 = β

1 + x2
n

+ δ + γ(yn − xn), yn+1 = β

1 + y2
n

+ δ + γ(xn − yn).
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where γ is the coupling parameter. For more details, refer to Rulkov (2001) and Bashkirtseva

and Pisarchik (2019). It has been shown that for β = 4.1, γ = 0.131 specific values of

δ = 2, 0.2, −0.8, −2, −2.5, the coupled map exhibits periodicity of 1, 2, 4, and two chaotic

sequences, respectively.

We perform numerical simulations on the Rulkov maps and consider the first 2000

observations with initial values x0 = 0.1 and y0 = 0.5. We plot the bifurcation diagram

with respect to yn, which is presented in Figure 5.4, for verification purposes. Using

the empirical copula, we calculate the empirical CCTE. As per the theory, for periodic

cases, the dependence entropy tends to be lower. Even as the period increases, the CCTE

increases, while in chaotic cases, the CCTE remains higher than in the periodic cases.

The results are shown in Figure 5.5, where we observe that the CCTE increases with the

periodicity and is greater in the chaotic case than in the periodic case.

Figure 5.4. Bifurcation diagram of identical Rulkov maps
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Figure 5.5. CCTE of identical Rulkov maps

5.5 Cumulative Copula Tsallis Inaccuracy Measure

Apart from entropy, several information measures for uncertainty are available in the

literature. In this section, we introduce a new measure known as the cumulative copula

Tsallis inaccuracy (CCTI) measure, which generalizes the inaccuracy measure proposed by

Hosseini and Ahmadi (2019). Let C1(u) and C2(u) be two copulas of the same dimension

p. If an experimenter uses C2 to model the dependence structure among random variables

instead of the true copula C1, the copula-based inaccuracy measure quantifies the error

introduced by this incorrect assumption is well-known as misspecification in literature.

This incorrect assumption may be due to experimental error or wrong observations, or

maybe both. Let C1 be the true copula, and suppose the experimenter uses C2 instead of

C1. Then, the CCTI measure corresponds to the copula C1 and C2 is defined as

Iα(C1|C2) = −
∫
Ip

C1(u) log[α] (C2(u)) du. (5.9)

Note that lim
α→1

Iα(C1|C2) = I(C1|C2) (copula-based inaccuracy measure proposed by

Hosseini and Ahmadi (2019)), and when C1 = C2 = C then Iα(C1|C2) = ξα(C). Thus, the

proposed inaccuracy measure can be viewed as a generalization of the inaccuracy measure

proposed by Hosseini and Ahmadi (2019), and the parameter α will give flexibility in
131



Chapter 5 Copula-Based Information Measures Using Tsallis Entropy

quantifying the uncertainty involved in the experimental error. We will now go through a

few examples based on commonly used copula in the literature.

Example 5.5.1. The CCTI measure corresponding to the Fréchet-Hoeffding lower bound
copula W (u1, u2) and the product copula Π(u1, u2) is given by

Iα(W |Π) = 1
6(α − 1) + β(α, α + 2) + (α + 1)β(α, 2) − 1

α(α2 − 1) .

The Fréchet-Hoeffding lower bound copula is used for modelling strongly negatively depen-
dent bivariate data. Thus, the above inaccuracy measure quantifies the uncertainty involved
in incorrectly assuming independence when the data exhibits strong negative dependence.

Example 5.5.2. Consider the FGM copula given by:

C(u1, u2) = u1u2 (1 + θ(1 − u1)(1 − u2)) ,

where θ ∈ [−1, 1]. The CCTI measure corresponding to the FGM copula and the product
copula is given by

Iα(C|Π) = θ + 9
36(α − 1) − 1

(α2 − 1)(α + 1) − θ β(α + 1, 2)
α − 1 .

Example 5.5.3. The CCTI measure corresponding to the Fréchet-Hoeffding upper bound
copula M(u1, u2) and the product copula is given by

Iα(M |Π) = 1
(p + 1)(α − 1) + p!

(α2 − 1)∏p
j=2(jα + 1) .

The Fréchet-Hoeffding upper bound copula is used for modelling strongly positively dependent
data. The above inaccuracy measure quantifies the uncertainty involved in incorrectly
assuming independence when the data exhibits strong positive dependence.

Example 5.5.4. The p-variate Cuadras-Augé copula, proposed by Cuadras (2009), is
given by

C(u) =
p∏

i=1
uγi

[i], (5.10)

where γ1, γ2, . . . , γp are copula parameters such that C(u) in Eq. (5.10) is a valid copula,
and u[1], u[2], . . . , u[p] are the ordered values of u1, u2, . . . , up in ascending order. For more
details, see Nadarajah et al. (2017) and Cuadras (2009). The CCTI measure corresponding
to the Cuadras-Augé copula and the product copula is given by

Iα(Π|C) = 1
2p(α − 1) − 1

α − 1

p∏
j=1

1(∑j
i=1 δ(i) + j

) ,
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where δ(i) satisfies the recurrence relation δ(i) = δ(i − 1) + (α − 1)γi + 2 for i = 2, . . . , p

with δ(1) = θ1(α − 1) + 2.

We now discuss some mathematical properties of the CCTI measure. Similar to

Theorem 5.2.1 and 5.2.2, we have the following result. The proof is similar to the proof of

Theorem 5.2.1 and 5.2.2, so we omitted.

Theorem 5.5.1. Let C1 and C2 be two copulas of the same dimension. Let Iα(C1|C2) be
the inaccuracy measure by incorrect use of C2, instead of C1. Then

Iα(C1|C2)


≥ I(C1|C2), if α ∈ (0, 1),

≤ I(C1|C2), if α ∈ (1, ∞).

Theorem 5.5.2. Let Iα(C1|C2) be the CCTI measure with respect to the copulas C1 and
C2 of the same dimension d, then the following inequalities hold.

Iα(C1|C2)


≥ I2(C1|C2), if α ∈ (0, 2] \ {1},

≤ I2(C1|C2), if α ∈ (2, ∞).

Theorem 5.5.3. Let C1, C2, . . . , Cm be m p-dimensional WGM copulas, and let CΣ(u) =∑m
j=1 ljCj(u) be the WAM of these copulas, where lj ∈ I for j = 1, 2, . . . , m with ∑m

j=1 lj = 1.
Let C be any p-dimensional copula, then

Iα

(
C|CΣ

)
≤ ∑m

j=1 ljIα(C|Cj), if α ∈ (0, 2] \ {1},

≥ ∑m
j=1 ljIα(C|Cj), if α ∈ (2, ∞).

Proof. Since the function − log[α](y) = 1−yα−1

α−1 is convex (concave) in y ≥ 0 if α ∈ (0, 2]\{1}

(α ∈ (2, ∞)), it follows that for fixed x ∈ I,

−x log[α] (z)


≤ ∑m

j=1 lj
(
−x log[α](yj)

)
, if α ∈ (0, 2] \ {1},

≥ ∑m
j=1 lj

(
−x log[α](yj)

)
, if α ∈ (2, ∞),

where z = ∑m
j=1 ljyj and y1, y2, . . . , ym ∈ I. Substituting x = C(u) and yj = Cj(u) for

every j = 1, 2, . . . , m, and integrating over Ip, we obtain the required result.

Now, we will discuss the inaccuracy measure related to the weighted geometric mean

(WGM) of copulas. Let C1, C2, . . . , Cm represent m p-dimensional copulas. The WGM of
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these copulas is defined as:

CΠ(u) =
m∏

j=1
Cj(u)qj , (5.11)

where qj ∈ I for j = 1, 2, . . . , m, and ∑m
j=1 qj = 1. It is important to note that CΠ(u)

defined in Eq. (5.11) is not always a valid copula. However, under specific conditions, it

can satisfy the requirements of a copula. For more details, see Cuadras (2009), Zhang

et al. (2013) and Diaz and Cuadras (2022).

The following theorem provides an upper bound for the inaccuracy measure associated

with the WGM of copulas.

Theorem 5.5.4. Let CΠ(u) = ∏m
j=1 Cj(u)qj be the WGM of m copulas of dimension p

defined in Eq. (5.11), and let C be any p-dimensional copula. Then

Iα

(
CΠ|C

)
≤

m∏
j=1

[Iα (Cj|C)]qj .

Proof. Let g : Ip → R+ be a function. For any t ̸= 0, we have∫
Ip

g(u)
[
CΠ(u)

]t
du =

∫
Ip

m∏
j=1

g(u)qj

[
Cj(u)qjt

]
du.

By applying the generalized Hölder’s inequality (see Kufner et al. (1977), Finner (1992)),

we obtain ∫
Ip

g(u)
[
CΠ(u)

]t
du ≤

m∏
j=1

(∫
Ip

g(u) [Cj(u)]t du
)qj

. (5.12)

The CCTI measure associated with CΠ and C is given by

Iα

(
CΠ|C

)
=
∫
Ip

CΠ(u) log[α] (C(u) du.

Substituting g(u) = log[α] (C(u) and t = 1 into inequality (5.12), we obtain

Iα

(
CΠ|C

)
≤

m∏
j=1

(∫
Ip

1 − Cα−1(u)
α − 1 · Cj(u)du

)qj

=
m∏

j=1
(Iα (Cj|C))qj .

This completes the proof.

Now, we will discuss some results for CCTI based on the PLOD property of copulas.

Theorem 5.5.5. Let C1
PLOD

≺ C2. Then, for any α ∈ A, the inequality Iα(C1|C2) ≤

Iα(C2|C1) holds.
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Proof. By the assumption C1
PLOD

≺ C2, for any α ∈ A, we have

Iα(C1|C2) − Iα(C2|C1) =
∫
Ip

C1(u)
(
1 − Cα−1

2 (u)
)

α − 1 −
C2(u)

(
1 − Cα−1

1 (u)
)

α − 1 du

≤
∫
Ip

C1(u)
(

Cα−1
1 (u) − Cα−1

2 (u)
α − 1

)
du ≤ 0.

Theorem 5.5.6. Let C1 and C2 and C3 be three p-dimensional copulas. If C1
PLOD

≺ C2,
then for any α ∈ A, the following triangle inequalities hold.

1. Iα(C3|C1) + Iα(C1|C2) ≥ Iα(C3|C2)

2. Iα(C1|C2) + Iα(C2|C3) ≥ Iα(C1|C3).

Proof. We will prove the part (a) of the theorem. The proof of the part (b) is similar to

that of the first part and is therefore omitted. Under the assumption of C1
PLOD

≺ C2, we

have

Iα(C3|C1) + Iα(C1|C2) =
∫
Ip

C1(u) log[α] (C2(u)) − C3(u) log[α] (C1(u)) du

=
∫
Ip

C3(u)
(
1 − Cα−1

1 (u)
)

α − 1 −
C1(u)

(
1 − Cα−1

2 (u)
)

α − 1 du

≥
∫
Ip

(C3(u) + C1(u)
(

1 − Cα−1
2 (u)

α − 1

)
du

≥
∫
Ip

C3(u)
(

1 − Cα−1
2 (u)

α − 1

)
du = Iα(C3|C2).

The proofs of the following theorem is similar to the proof of Theorem 5.5.6, so we left out

here.

Theorem 5.5.7. Let C1, C2, and C3 be three copulas of same dimension. Then for any
α ∈ A, we have

1. If C1
PLOD

≺ C2, then Iα(C1|C3) ≤ Iα(C2|C3) and Iα(C3|C2) ≤ Iα(C3|C1).
2. If C1

PLOD
≺ C2 and C1

PLOD
≺ C3, then Iα(C1|C3) ≤ Iα(C2|C3) ≤ Iα(C2|C1).

3. If C1
PLOD

≺ C3 and C2
PLOD

≺ C3, then Iα(C1|C3) ≤ Iα(C1|C2) ≤ Iα(C3|C1).
4. If C1

PLOD
≺ C2

PLOD
≺ C3, then

max {Iα(C2|C1), Iα(C3|C2)} ≤ Iα(C3|C2) and min {Iα(C1|C2), Iα(C2|C3)} ≥ Iα(C1|C3).
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5.6 Cumulative Copula Tsallis Divergence and Mutual Informa-

tion

In this section, we propose a new divergence measure between two copulas based on

Tsallis divergence, along with a new mutual information (MI) measure derived from the

cumulative copula. The concept of divergence plays a crucial role in the field of statistics,

particularly in statistical inference.

Let X1 and X2 be two multivariate random variables with identical marginals but with

underlying copulas that are not necessarily the same. Let f1(·) and f2(·) denote the joint

PDF of X1 and X2 and, c1 and c2 denote the underlying copula densities corresponding

to X1 and X2, respectively. Then, the KL divergence between X1 and X2 is equivalent

to the KL divergence between the two copula densities, as discussed in Ghosh and Sunoj

(2024). That is,

KL(f1||f2) =
∫
Ip

c1(u) log
(

c1(u)
c2(u)

)
du.

As outlined in the introduction, the above copula density divergence may not be suitable in

certain cases. In Chapter 4, we discuss the cumulative copula Kullback-Leibler divergence.

Motivated by the works of Mao et al. (2020), we now propose the following divergence

measure between two copulas based on Tsallis divergence:

∆α(C1||C2) =
∫
Ip

C1(u) log[α]

(
C1(u)
C2(u)

)
du −

[
ρ−

p (C1) − ρ−
p (C2)

2pn(p)

]
, (5.13)

where α ∈ A. We refer to ∆α(C1||C2) as the cumulative copula Tsallis divergence (CCTD).

It is straightforward to show that

lim
α→1

∆α(C1||C2) = CCKL(C1||C2),

where CCKL(C1||C2) is the CCKL divergence between two copulas defined in Eq. (4.16).

Moreover, when α = 2, CCTD reduces to

∆2(C1||C2) =
∫
Ip

(C1(u) − C2(u))2

C2(u) du,

which we call as the χ2 divergence between two copulas, C1 and C2. We denote it as

χ2(C1||C2). The χ2 divergence between two copula densities is discussed in Ghosh and

Sunoj (2024). As the copula density may not exist in certain cases, the proposed measure
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can be considered as an alternative. The following theorem shows that CCTD is always

non-negative and zero whenever C1 = C2 almost surely.

Theorem 5.6.1. Let ∆α(C1||C2) be the CCTD between two copulas C1 and C2, then for
any α ∈ A, ∆α(C1||C2) is always non-negative, and ∆α(C1||C2) = 0 whenever C1 = C2

almost surely.

Proof. By definition, we have

∆α(C1||C2) =
∫
Ip

C1(u) log[α]

(
C1(u)
C2(u)

)
du −

[
ρ−

p (C1) − ρ−
p (C2)

2pn(p)

]

=
∫
Ip

C1(u) log[α]

(
C1(u)
C2(u)

)
− C1(u) + C2(u) du

=
∫
Ip

C1(u)fα

(
C2(u)
C1(u)

)
du,

where fα(r) = r1−α − 1
α − 1 + r − 1. Using elementary calculus, one can easily show that for

any α ∈ A, the function fα(r) is always non-negative for every r ≥ 0 and f(r) attains its

minimum at r = 1. It follows that C1(u)fα

(
C2(u)
C1(u)

)
is always non-negative and equal to

zero if and only if C1(u) = C2(u) for every u ∈ Ip, which concludes the proof.

Now, we will discuss a few mathematical properties associated with the proposed divergence

measure. The following theorem discusses how CCTD relates to CCKLD and χ2 divergence.

Theorem 5.6.2. Let C1 and C2 be two copulas of the same dimension, then the following
inequalities hold.

1. ∆α(C1||C2)


≥ ∆(C1||C2), if α ∈ (0, 1),

≤ ∆(C1||C2), if α ∈ (1, ∞).

2. ∆α(C1||C2)


≥ χ2(C1||C2), if α ∈ (0, 2] \ {1},

≤ χ2(C1||C2), if α ∈ (2, ∞).

Theorem 5.6.3. Let CΣ(u) = ∑m
j=1 ljCj(u) represent the WAM of m copulas, C1, C2, . . . , Cm,

of the dimension p, where lj ∈ I for j = 1, 2, . . . , m, satisfying ∑m
j=1 lj = 1. Let C be any

p-dimensional copula, then for any α ∈ A, we have

1. ∆α

(
C||CΣ

)
≤ ∑m

j=1 lj∆α (C||Cj)

2. ∆α

(
CΣ||C

)
≤ ∑m

j=1 lj∆α (Cj||C) .
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Proof of 1. For any fixed α ∈ A, the function fα(r) = r1−α − 1
α − 1 + r − 1 is a convex

function for every x ≥ 0. It follows that for every xj ≥ 0, j = 1, 2, . . . , m, we have

fα

(∑m
j=1 ljrj

)
≤ ∑m

j=1 fα(ljrj). Substituting rj = C2(u)
C1(u) and using the definition of

CCTD, we obtain

∆α

(
C||CΣ

)
=
∫
Ip

C(u)fα

(
CΣ(u)
C(u)

)
du

≤
p∑

j=1

∫
Ip

C(u)fα

(
Cj(u)
C(u)

)
du

=
m∑

j=1
lj∆α (C||Cj) .

Proof of 2. For any α ∈ A, we define the function gα(r) = k1−αrα − r

α − 1 + r − k, where

k ≥ 0 is fixed. It is easy to show that the gα(r) is a convex function for every x ≥ 0 for

fixed k ≥ 0. Now, substituting k = C2(u) and r = C1(u) and the similar argument of the

proof of part (a), we obtain the required result.

Now, we will discuss the ordering property of CCTD based on the PLOD ordering of

copula.

Theorem 5.6.4. If C1
PLOD

≺ C2, then ∆α(C1||C2)


≥ ∆α(C2||C1), if α ∈

(
0, 1

2 ,
]

≤ ∆α(C2||C1), if α ∈
(

1
2 , ∞

)
\ {1}.

Proof. For every fixed α ∈ A, define the function hα : I → R as

hα(r) = r log[α](r) − log[α]

(1
r

)
− 2r + 2, r ∈ I.

It is easy to show that hα(r) is an increasing (decreasing) function in r ∈ I if α ∈(
0, 1

2

] (
α ∈

(
1
2 , ∞

)
\ {1}

)
. It follows that for every r ∈ I, we have

hα(r)


≥ 0, if α ∈

(
0, 1

2

]
,

≤ 0, if α ∈
(

1
2 , ∞

)
\ {1}.

(5.14)

Note that if C1
PLOD

≺ C2, then ∆α(C1||C2) − ∆α(C2||C1) =
∫
Ip C2(u)hα

(
C1(u)
C2(u)

)
du. Now,

the result follows from inequality (5.14).

Analogous to Theorem 5.5.6, we also have triangle inequality for CCTD.
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Theorem 5.6.5. Let C1 and C2 and C3 be three p-dimensional copulas.

1. If C1(u) ≤ min{C2(u), C3(u)} for every u ∈ Ip, then ∆α(C3||C1) + ∆α(C1||C2) ≥

∆α(C3||C2)

2. If C1
PLOD

≺ C2
PLOD

≺ C3, then ∆α(C1||C2) + ∆α(C2||C3) ≤ ∆α(C1||C3).

Proof. We will prove the first part of the theorem. Since the second part of the proof is

similar to the first part, so we left out here. Assume that C1(u) ≤ min{C2(u), C3(u)} for

every u ∈ Ip. Now consider

∆α(C3||C1) + ∆α(C1||C2) − ∆α(C3||C2) =
∫
Ip

C3(u) log[α]

(
C3(u)
C1(u)

)
+ C1(u) log[α]

(
C1(u)
C2(u)

)

− C3(u) log[α]

(
C3(u)
C2(u)

)
du

=
∫
Ip

(
Cα

3 (u) − Cα
1 (u)

α − 1

)[
1

Cα−1
1 (u)

− 1
Cα−1

2 (u)

]
du

≥ 0.

Now, we proceed to discuss the mutual information (MI) of a multivariate random vector.

Let X1 and X2 be two continuous random variables with joint PDF f(x1, x2) and marginal

PDFs f1(x1) and f2(x2), respectively. The MI between X1 and X2 is defined as

MI(X1, X2) =
∫ ∞

−∞

∫ ∞

−∞
f(x1, x2) log

(
f(x1, x2)

f1(x1)f2(x2)

)
dx1dx2.

Note that MI(X1, X2) is equivalent to the KL divergence between the joint PDF of

(X1, X2) and the product of the marginal PDFs of X1 and X2. For further details, we refer

readers to Cover (1999), Ash (2012), and Murphy (2022).

Joe (1987) extended the notion of mutual information to higher dimensions. Let X be

a d-variate continuous random variable with joint PDF f(·) and marginal CDFs (PDFs)

Fi(·) (fi(·)), i = 1, 2, . . . , p, where the marginals need not be identical. Let c(·) denote

the copula density corresponding to X. By Sklar’s theorem, the joint PDF f(x) can be

expressed as

f(x) = c (F1(x1), F2(x2), . . . , Fp(xp))
p∏

j=1
fj(xj),

where x ∈ Rp. It follows that the MI corresponding to X is given by

MI(X) =
∫
Ip

c(u) log (c(u)) du.
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The relationship between MI and copula entropy has been discussed independently by

Blumentritt and Schmid (2012) and Ma and Sun (2011). However, the term “copula

entropy” was first introduced in Ma and Sun (2011).

If the underlying copula is not absolutely continuous (e.g., the minimum copula),

the copula density does not exist, and estimating MI non-parametrically in such cases

becomes challenging. Using the relationship between KL divergence and MI, and based on

the proposed cumulative copula Tsallis divergence (CCTD), we introduce an alternative

MI measure called cumulative mutual information (CMI) of order α. Let C1 denote the

underlying copula of a multivariate random vector X, and let Π(u) = ∏p
j=1 uj represent

the product copula. For any α ∈ A, the CMI of order α is defined as

µα(C) = ∆α(C∥Π) =
∫
Ip

C(u) log[α]

(
C(u)
Π(u)

)
du −

ρ−
p (C)

2pn(p) ,

where ρ−
p (·) is the multivariate Spearman’s correlation. In the limiting case as α → 1, we

have

µ(C) =
∫
Ip

C(u) log
(

C(u)
Π(u)

)
du −

ρ−
p (C)

2pn(p) .

This limiting case is referred to as cumulative mutual information. The proposed CMI

provides an alternative to existing correlation measures. The existing correlation measures,

such as Pearson’s correlation, are limited to linear relationships, while Spearman’s and

Kendall’s correlations capture monotonic relationships but are primarily suited for bivariate

cases. The proposed measure, on the other hand, quantifies deviations from independence

to stronger dependence in any dimension, making it a robust candidate for dependency

analysis in multivariate contexts. The application of CMI of order α is illustrated in the

subsequent section. We conclude this section by presenting a few examples of the proposed

CCTD and CMI for well-known copulas.

Example 5.6.1. The CCTD measure between the FGM copula

C(u1, u2) = u1u2 (1 + θ(1 − u1)(1 − u2))

and Fréchet-Hoeffding upper bound copula M(u1, u2) = min{u1, u2} is

∆α(C||M) = 2
α − 1

∞∑
t=0

(
α + t − 1

t

)
θt

[
β(α + 1, t + 1)
(t + 1)(t + 2) − β(α + 1, 2t + 1)

(t + 1)

+β(α + 1, 2t + 2)
(t + 2)(t + 2)

]
− α(θ + 9)

36(α − 1) + 1
3 .
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Example 5.6.2. The CCTD of the Gumbel-Barnett copula

C(u1, u2) = u1u2 exp{−ϕ log(u1) log(u2)}, θ ∈ I,

then

∆α(C||Π) = µα(C) = −
e

4
(α−1)ϕ Ei

(
−4

ϕ(α−1)

)
ϕ

+
αe

4
(α−1)ϕ Ei

(
−4
ϕ

)
(α − 1)ϕ + 1

4 .

We use the results of Yela and Cuevas (2018) for computing the above intergals and Ei(·)

is the well-known exponential integral function.

Example 5.6.3. The CCTD between the p−variate product copula and the p-variate
Fréchet-Hoeffding upper bound copula is

∆α(Π||M) = p!
2(α − 1)∏p−1

j=1(j(α + 1) + 2)
− α

2p(α − 1) + 1
p + 1 .

Example 5.6.4. The CCTD of the Cuadras-Augé copula C(u) = ∏p
i=1 uγi

[i] is given by

∆α(C||Π) = µα(C) = d!
(α − 1)

[
1∏p

i=1 ω1(i)
− α∏p

i=1 ω2(i)

]
+ 1

2p
,

where ω1(i) and ω2(i) satisfies the recurrence relation given by

ω1(i) =ω1(i − 1) + (θi − 1)α + 1,

ω2(i) =ω2(i − 1) + θi + 1,

for i = 2, 3, . . . , p with ω1(1) = (θ1 − 1)α + 1 and ω2(1) = θ1 + 1

5.7 Application

Here, we explore the applications of the proposed mutual information measure in two

different areas: testing for the mutual independence of continuous random variables and

its relevance in the finance sector as an economic indicator.

5.7.1 Test for the Mutual Independence of Continuous Random Variables

In multivariate data analysis, the assumption of mutual independence is frequently

encountered. For such cases, Pearson’s correlation test is commonly used under the

assumption of bivariate normality. Non-parametric tests, such as Spearman’s and Kendall’s

correlation tests, are often used when the relationship between variables is monotonic.
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However, these tests are primarily designed to test the pairwise correlation for specific

types of relationships and are often misused as tests for independence.

Current research focused on empirical copula process-based tests for independence.

The foundational idea was introduced by Deheuvels (1979). The Cramér-von Mises and

Kolmogorov-Smirnov functionals are widely used for testing mutual independence among

random variables. For further details, we recommend Deheuvels (1979), Genest and

Rémillard (2004), Genest et al. (2006), Kojadinovic and Holmes (2009), Belalia et al.

(2017), Herwartz and Maxand (2020), and Nasri and Remillard (2024).

Further, we propose using the CMI measure as a test statistic for testing the mutual

independence among continuous random variables. We also compare the power of the

proposed test with existing independence tests based on the Cramér-von Mises and

Kolmogorov-Smirnov statistics. To illustrate its practicality, we apply our test to a real

dataset.

Let X = (X1, X2, . . . , Xp) be a p-variate continuous random vector with an underlying

copula C. The copula C can be approximated by the empirical copula Ĉn, based on n

random samples X1, X2, . . . , Xn, as defined in Eq. (5.6). To measure dependence, we

consider the non-parametric cumulative mutual information (CMI). For mathematical

simplicity, we take α = 2, yielding

µ2(Ĉn) =
∫
Ip

Ĉn(u) log[2]

(
Ĉn(u)
Π(u)

)
du −

ρ−
p (Ĉn)

2pn(p)

=
∫
Ip

(
Ĉn(u) − Π(u)

)2

Π(u) du

= 1
n2

n∑
i=1

n∑
j=1

p∏
k=1

[
− log

(
max

{
Ri,k

n + 1 ,
Rj,k

n + 1

})]
− 2

n

n∑
i=1

p∏
k=1

[
1 − Ri,k

n + 1

]
+ 1

2p
,

(5.15)

where Ri,k represents the rank of the k-th component of the i-th observation.

Let X1, X2, . . . , Xn be n random samples from a common multivariate population. We

aim to test the null hypothesis H0 that the components of the multivariate population are

mutually independent, i.e., the underlying copula is the product copula Π(u) = ∏p
k=1 uk.

Using the definition of non-parametric CMI from Eq. (5.15), we propose the following test
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statistic

χ2
div(n) = nµ2(Ĉn) = 1

n

n∑
i=1

n∑
j=1

p∏
k=1

[
− log

(
max

{
Ri,k

n + 1 ,
Rj,k

n + 1

})]
− 2

n∑
i=1

p∏
k=1

[
1 − Ri,k

n + 1

]
+ n

2p
.

(5.16)

Since we set α = 2, we call this the χ2 divergence test for mutual independence, and denote

the test statistic by χ2
div(n), where n is the sample size.

To study the asymptotic behavior of the proposed test under H0, the following lemma,

discussed in Fermanian et al. (2004), Tsukahara (2005), and Kojadinovic and Holmes

(2009) is useful.

Lemma 5.7.1. Let C be a p-dimensional copula. Let L∞(Ip) denote the Banach space of
real-valued bounded functions defined on Ip, equipped with the supremum norm. If C has
continuous partial derivatives for every u ∈ Ip, then the empirical process

Zn(u) =
√

n
(
Ĉn(u) − C(u)

)
converges weakly in L∞(Ip) to the tight centered Gaussian process

Z(u) = Γ(u) −
p∑

i=1
∂iC(u)Γ(ui),

where ∂iC(u) is the i-th partial derivative of C, ui = (1, . . . , 1, ui, 1, . . . , 1) with ui in the
i-th position, and Γ(u) is a tight centered Gaussian process on Ip with covariance function

Σ(u, v) = C(u ∧ v) − C(u)C(v),

where u ∧ v =
(

min(u1, v1), . . . , min(up, vp)
)
.

Using the Lemma 5.7.1 and the application of the continuous mapping theorem, we

have the following theorem.

Theorem 5.7.2. Let X1, X2, . . . , Xn be n random samples from a multivariate population.
Then, under the null hypothesis of mutual independence, the test statistic χ2

div(n) (as given
in Eq. (5.16)) converges in distribution to∫

Ip

Z2(u)
Π(u) du,

where
Z(u) = Γ (u) −

p∑
i=1

Γ(ui)
p∏

j=1
j ̸=i

Π(uj),
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is a tight centered Gaussian process with ui = (1, . . . , 1, ui, 1, . . . , 1) represents the vector
with the i-th component equal to ui and all other components equal to 1 for i = 1, 2, . . . , d.
The process Γ(u) is a tight centered Gaussian process on Ip with covariance function

Σ(u, v) = E [Γ(u)Γ(v)] = Π(u ∧ v) − Π(u)Πv),

where u ∧ v = (min(u1, v1), . . . , min(up, vd)).

Now, we will discuss the computation of p-values of the proposed test. Since the the

distribution of the proposed test statistic χ2
div(n) based on n random samples is complex in

nature, even in the asymptotic case, we employ the bootstrapping procedure to compute

the approximate p-values. The validity of the proposed approach is discussed in Genest

and Rémillard (2008). Let X1, X2, . . . , Xn be n random samples from a multivariate

population. Let D = (X1, X2, . . . , Xn)′ be the data matrix. Then the procedure for

computing the p-values is discussed as follows.

1. Convert the data matrix D = [X1, X2, . . . , Xn] to the rank matrix R = [Rik], where

Ri,k is the rank of the k-th component of the i-th observation (i.e., Xi). If ties

occur, break them randomly.

2. Calculate the test statistic χ2
div(n) using the formula

χ2
div(n) = 1

n

n∑
i=1

n∑
j=1

p∏
k=1

[
− log

(
max

{
Ri,k

n + 1 ,
Rj,k

n + 1

})]
− 2

n∑
i=1

p∏
k=1

[
1 − Ri,k

n + 1

]
+ n

2p
.

3. Generate B random samples of size n from the product copula. For each random

sample, compute the test statistic χ2
div(nb), b = 1, 2, . . . , B.

4. Arrange the computed bootstrap test statistics in ascending order

χ2
div(n(1)) ≤ χ2

div(n(2)) ≤ · · · ≤ χ2
div(n(B)).

5. Estimate the p-value associated with the observed test statistic χ2
div(n) as:

p-value = 1
B

B∑
b=1

I
{
χ2

div(n(b)) ≥ χ2
div(n)

}
,

where I{·} is the indicator function.

Now, we conduct the simulation study to evaluate the performance of the proposed model.

We generate 10, 000 samples of various sizes and compute the power of the proposed test

with the alternative copula such as Clayton, FGM, Frank, Normal and Student t of various
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Kendall’s Tau. We compare our results with Cramér-von Mises (CVM) statistics, which

are given by

Sn = n

3p
− 1

2p−1

n∑
i=1

p∏
k=1

(
1 −

(
Ri,k

n + 12

)2)
+ 1

n

n∑
i=1

n∑
j=1

p∏
k=1

(
1 − max

{
Ri,k

n + 1 ,
Rj,k

n + 1

})

and Kolmogorov-Smirnov (KS) statistics given by

Kn =
√

nsup
u∈Ip

|Ĉn(u) − C(u)|.

Note that the explicit statistic of Kn is often challenging, and we approximate it by its

sample counterparts. The results are presented in Table 5.1.

From Table 5.1, it is clear that the proposed test rejection power is superior when

the alternative copula is Clayton compared to other tests. The results show a significant

improvement over CVM and KS tests. The proposed test also performs better for the

Student’s t copula across various Kendall’s τ . For the remaining copulas, the power of

the proposed test is comparable, making it a strong candidate for testing the mutual

independence of random variables.

We now apply our test to a real dataset. This dataset comprises 249 observations of

the volatility-adjusted log returns (VALR) of two banks, Citigroup and Bank of America,

for the year 2012. The “Banks” dataset is freely accessible in the R software within

the gofCopula package. The scatterplot of the data is presented in Figure 5.6. From

Figure 5.6, it is evident that there is a strong positive dependence between the VALR of

the two banks. The proposed test supports this observation, yielding a test statistic of

12.089 and a p-value approximately equal to zero.

5.7.2 Application in Financial Time Series

In this subsection, we present our proposed CMI as an economic indicator. We consider

the daily price returns of Crude Oil and the S&P 500 index during the period from January

2, 2005, to December 31, 2022. The plots of daily data and daily returns are shown in

Figures 5.7 and 5.8, respectively.

The data for Crude Oil was obtained from the Federal Reserve Economic Data (FRED),

and the data for the S&P 500 index was sourced from Yahoo Finance. We compute the

proposed CMI using an overlapping sliding time window of 200 data points, with a shift

size of 100 points. This approach reveals the evolution of the series over time and identifies

any mutual information between the daily price returns of WTI Crude Oil and the S&P
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Figure 5.6. Scatterplot of volatility-adjusted log returns of Citigroup and

Bank of America.

Figure 5.7. Daily data of Crude Oil and S&P 500 index.

500 index. The contour plot of the proposed CMI for different values of α is shown in

Figure 5.9.

During the period from 2005 to 2022, several significant financial events occurred:

• The global economic recession from 2008 to 2009 and slow recovery impacted crude

oil prices from 2010 to 2012.
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Figure 5.8. Daily returns of Crude Oil and S&P 500 index.

Figure 5.9. Contour plot of the proposed CMI for different values of α.

• The oil price crash occurred between 2015 and 2016.

• The COVID-19 pandemic caused significant financial disruptions in 2020.

For more details, we refer to Lyu et al. (2021), Stocker et al. (2018), and news articles

during these financial crisis periods. The proposed CMI measure effectively captures the

financial crises, as evident from the results. For higher values of α, the CMI increases,

further supporting its potential as an economic indicator for financial crises.
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Table 5.1. Power comparison of tests for different true copulas, Kendall’s τ , and sample sizes n.

True Copula Test
τ = −0.2 τ = −0.1 τ = 0 τ = 0.1 τ = 0.2

n = 50 n = 100 n = 150 n = 50 n = 100 n = 150 n = 50 n = 100 n = 150 n = 50 n = 100 n = 150 n = 50 n = 100 n = 150

Clayton

CVM Test 0.5394 0.8427 0.8603 0.1694 0.2984 0.4341 0.0370 0.0490 0.0518 0.1476 0.2776 0.4098 0.4984 0.8104 0.9386

KS Test 0.1143 0.4531 0.4779 0.0267 0.0860 0.1663 0.0494 0.0487 0.0477 0.1743 0.2813 0.3779 0.4892 0.4926 0.8991

Proposed Test 0.7065 0.9624 0.9692 0.2184 0.4250 0.5923 0.0580 0.0513 0.0492 0.2142 0.3952 0.5572 0.6491 0.8148 0.9838

FGM

CVM Test 0.5443 0.8344 0.8483 0.1646 0.2901 0.4383 0.0537 0.0471 0.0502 0.1646 0.3033 0.4387 0.5248 0.8501 0.9542

KS Test 0.1387 0.7562 0.5187 0.0298 0.0947 0.1969 0.0511 0.0516 0.0489 0.0298 0.3155 0.4282 0.5263 0.8080 0.9196

Proposed Test 0.5336 0.9187 0.8290 0.1669 0.2820 0.3958 0.0585 0.0486 0.0513 0.1292 0.2478 0.3523 0.4313 0.7740 0.9151

Frank

CVM Test 0.5220 0.8267 0.8386 0.1675 0.2978 0.4336 0.0499 0.0512 0.0512 0.1646 0.3038 0.4375 0.5170 0.8350 0.9489

KS Test 0.1359 0.8080 0.5107 0.0270 0.0984 0.1955 0.0514 0.0590 0.0483 0.2015 0.3217 0.4281 0.5231 0.7977 0.9223

Proposed Test 0.5078 0.7740 0.8092 0.1673 0.2973 0.3893 0.0545 0.0612 0.0499 0.1347 0.2571 0.3596 0.4375 0.7667 0.9178

Normal

CVM Test 0.5086 0.8052 0.8187 0.1570 0.2731 0.4037 0.0621 0.0492 0.0511 0.1586 0.2824 0.4066 0.4897 0.8012 0.9312

KS Test 0.1083 0.4287 0.4258 0.0234 0.0790 0.1586 0.0624 0.0481 0.0486 0.1858 0.2884 0.3790 0.4727 0.7321 0.8739

Proposed Test 0.5105 0.7985 0.8111 0.1649 0.2799 0.3814 0.0550 0.0465 0.0541 0.1311 0.2556 0.3604 0.4434 0.7638 0.9106

Student’s t

CVM Test 0.4987 0.7885 0.8036 0.1805 0.2937 0.4305 0.0580 0.0521 0.0478 0.1772 0.3050 0.4260 0.4958 0.7927 0.9261

KS Test 0.1126 0.4318 0.4378 0.0292 0.0863 0.1743 0.0610 0.0528 0.0498 0.2093 0.3063 0.3926 0.4926 0.7600 0.8825

Proposed Test 0.4960 0.7638 0.7878 0.1930 0.3026 0.4087 0.0590 0.0492 0.0501 0.1909 0.3527 0.4785 0.4976 0.7947 0.9279
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5.8 Conclusion and Future Direction

In this chapter, we introduced a new non-additive dependence entropy called the

cumulative copula Tsallis entropy. We discussed its mathematical properties, including

bounds, copula ordering, and uniform convergence results. Using the empirical copula,

we proposed a non-parametric estimator for the entropy and established its theoretical

convergence as well as its convergence through Monte Carlo simulations.

To validate the utility of the proposed entropy in quantifying uncertainty in depen-

dence structures, we examined Rulkov maps. Our findings indicate that the proposed

entropy increases with periodicity and reaches its maximum in chaotic cases. To address

the uncertainty arising from incorrect copula assumptions, we proposed a copula-based

Kerridge inaccuracy measure, studied its properties (including triangular inequalities),

and demonstrated its generalization of the results presented in Hosseini and Nooghabi

(2021). These concepts were illustrated using well-known copulas.

Furthermore, we introduced cumulative copula divergence using Tsallis divergence.

Based on this, a new mutual information measure, termed cumulative mutual information,

was proposed by leveraging its relationship with Kullback-Leibler divergence. This approach

overcomes limitations in the existing copula density-based mutual information. The

utility of this mutual information measure was demonstrated in two important statistical

applications:

• Hypothesis testing, specifically for mutual independence among random variables.

• Finance, as an economic indicator for multivariate time series, providing a robust

alternative to traditional correlation measures.

While our study focused on Tsallis entropy, the proposed methodology can be extended to

other entropies, such as Rényi entropy. Moreover, recent advancements using the Möbius

decomposition of the empirical copula process have been shown to improve the power of

tests based on the Cramér-von Mises statistic. For further details, see Deheuvels (1979),

Genest and Rémillard (2004), and Kojadinovic and Holmes (2009). Incorporating similar

techniques into our proposed test could significantly enhance its power, making it an

interesting direction for future research.
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6
C h a p t e r

Smooth Estimation of Bivariate
Mean Residual Life Function

This chapter presents a smooth estimation procedure for the bivariate residual life function.

An extensive simulation study is conducted to evaluate the performance of the proposed

estimator and illustrate its applicability using bivariate warranty data.

6.1 Introduction

In the automobile industry, warranty policy design primarily considers two key factors:

the age and the usage of the vehicle. Excessive usage beyond the expected limit can

significantly contribute to vehicle failure. Additionally, as the vehicle ages, its reliability

tends to decline. Therefore, in formulating effective warranty policies, manufacturers must

determine both the age limit and the usage limit of the product, which together define the

expiration criteria for warranty claims. In many practical situations, the age and usage of

the product exhibit a high degree of dependence.

Several approaches have been proposed in the literature to model and analyze bivariate

warranty data. One notable method involves treating usage as a random function of

product age, enabling the estimation of product reliability as a basis for developing

warranty policies. This methodology is commonly referred to as the conditional approach.
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For further details on this line of research, we refer the reader to Lawless et al. (1995),

Ahn et al. (1998), and Duchesne and Lawless (2000).

An alternative approach assumes a bivariate lifetime distribution for the product’s

age and usage, allowing for the estimation of bivariate reliability. For instance, Jung and

Bai (2007) modelled the joint distribution using a bivariate Weibull distribution with a

Gumbel-Hougaard copula to capture the dependence structure. Similarly, Wu (2014) and

Anderson et al. (2017) employed copula functions to estimate bivariate reliability. Yuan

(2018) proposed a generalized moment estimator for the bivariate Weibull distribution and

demonstrated its applicability in the analysis of bivariate warranty data. More recently,

Gupta and Bhattacharya (2022) introduced a nonparametric estimation procedure for

bivariate reliability based on kernel estimation, with a focus on censored bivariate warranty

data.

In order to measure the reliability of a product, in addition to the joint survival

function, three reliability measures are commonly used: the joint density function, the

bivariate hazard rate function, and the bivariate mean residual life (BMRL) function. The

bivariate hazard rate function evaluates the instantaneous failure rate, whereas the BMRL

function provides information about the average remaining lifetime of a product, given

that both its age and usage have survived beyond some time t.

The BMRL measure plays a crucial role in formulating warranty policies, as it offers

insight into the remaining life of a product and the duration for which it is expected

to operate without failure. Let X1 and X2 represent the age and usage of a product,

respectively. Then the BMRL function (m1(x1, x2), m2(x1, x2)) is defined by the vector

(m1(x1, x2), m2(x1, x2)) =
(∫∞

x1
F̄ (t, x2) dt

F̄ (x1, x2)
,

∫∞
x2

F̄ (x1, t) dt

F̄ (x1, x2)

)
, (6.1)

where F̄ (x1, x2) denotes the joint survival function of age and usage. It is to be noted that

the concept of the BMRL function was introduced by Arnold and Zahedi (1988).

One approach to estimating the BMRL function is the parametric method, which

involves assuming a specific bivariate lifetime distribution. However, if the assumed

distribution does not reflect the true underlying distribution, it may lead to significant

bias in the estimates. This, in turn, can result in inaccurate warranty claims and potential

financial losses for the manufacturers. Therefore, it is essential to consider nonparametric
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approaches for estimating the BMRL function, which offer greater flexibility and robustness

without relying on strict distributional assumptions.

Kulkarni and Rattihalli (2002) proposed a nonparametric estimator for the BMRL

function using the bivariate empirical survival function. Let (X1i, X2i), i = 1, 2, . . . , n be

a bivariate random sample of size n with joint survival function F̄ (x1, x2). The empirical

survival function for F̄ (x1, x2) based on the sample is given by

Rn(x1, x2) =
∑n

i=1 I(X1i > x1, X2i > x2)
n

, (6.2)

where I(E) denotes the indicator function, which takes value 1 if E holds; takes value 0,

otherwise.

Using the definition in Eq. (6.2), Kulkarni and Rattihalli (2002) proposed the following

nonparametric estimator for the BMRL function

m̂r(x1, x2) =



∑n
i=1(Xji − xj) I(X1i > x1, X2i > x2)∑n

i=1 I(X1i > x1, X2i > x2)
, if X1[n] > x1 and X2[n] > x2,

0, otherwise,

(6.3)

where Xr[n] = max{Xr1, Xr2, . . . , Xrn} for r = 1, 2. We call this estimator as natural

nonparametric estimator. It is important to note that a key limitation of the above

estimator is that m̂r(x1, x2) becomes undefined if ∑n
i=1 I(X1i > x1, X2i > x2) = 0, i.e.,

when there are no observations such that both X1i > x1 and X2i > x2. This may lead

to significant bias in the estimation. Furthermore, for an absolutely continuous joint

survival function, the BMRL function is always continuous; however, the aforementioned

nonparametric estimator is not continuous. These limitations motivate us to propose a

smooth estimator for the BMRL function.

In recent years, considerable efforts have been made to propose smooth estimators.

Using Bernstein polynomials, Leblanc (2012) proposed a smooth nonparametric estimator

of the distribution function by smoothing the empirical distribution. Along similar lines,

Babu and Chaubey (2006) extended the idea to the multivariate case. However, a key

limitation of these methods is that the support of the random vector is restricted to

the unit hypercube. To overcome this limitation, Chaubey and Sen (1996) introduced a

smooth estimator for univariate survival and density functions of non-negative random

variables using Poisson weights.
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Let Sn(x) = 1
n

∑n
i=1 I(Xi > x) denote the empirical survival function based on a

random sample {X1, X2, . . . , Xn} of size n. Let p(k; µ) = e−µµk

k! denote the probability

mass function of a Poisson random variable with rate parameter µ. Then, the smooth

estimator is given by

Sp
n(x) =

∞∑
k=0

p(k; xµn) Sn

(
k

µn

)
, x > 0,

where µn is chosen such that µn → ∞ and µn/n → 0 as n → ∞. In practice, Chaubey and

Sen (1996) suggested taking µn = n
max{X1,X2,...,Xn} . Then, the smooth estimator reduces to

Sp
n(x) =

n∑
k=0

p(k; xµn) Sn

(
k

µn

)
, x > 0. (6.4)

The authors also studied the asymptotic properties of the smooth estimator and

showed that, like the empirical estimator, the smooth estimator is a consistent estimator

of the true survival function. Using the smooth survival estimator in Eq. (6.4), Chaubey

and Sen (1999) further proposed a smooth estimator for the univariate mean residual life

(MRL) function m(x) = E(X − x | X > x) for a non-negative random variable, given by

m̂p(x) =
(1/µn)∑n

k=0 Q(k; xµn) Sn

(
k

µn

)
∑n

k=0 p(k; xµn) Sn

(
k

µn

) , x > 0, (6.5)

where Q(k; xµn) = ∑k
r=0 pxµn(r) denotes the cumulative distribution function (CDF) of a

Poisson random variable with rate parameter xµn. Unlike the natural estimator of the

MRL based on the empirical survival function, the smooth estimator allows estimation of

m(x) beyond the largest observed value in the sample. The method was further extended

to accommodate censored samples in Chaubey and Sen (2008).

Motivated by the work of Chaubey and Sen (1999), we extend the idea to higher

dimensions. The main contributions of this chapter are summarized below:

• A smooth estimator for the bivariate mean residual life (BMRL) function is proposed,

and it is shown that the estimator is consistent.

• An extensive simulation study is conducted for various bivariate distributions

to compare the performance of the proposed smooth estimator with the natural

estimator of Kulkarni and Rattihalli (2002).

• A real bivariate warranty dataset is analyzed, and the mean residual life of product

age under various warranty policies is discussed.
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The remainder of the chapter is organized as follows. In Section 6.2, a new smooth

estimator for BRML is proposed, and its asymptotic properties are discussed. Section 6.3

presents a simulation study comparing the performance of the proposed estimator with

the estimator of Kulkarni and Rattihalli (2002) under different sample sizes and bivariate

distributions. Section 6.4 analyzes a real bivariate warranty dataset on traction motors

and estimates the mean residual life under various warranty limits. Finally, the chapter is

concluded in Section 6.5.

6.2 Smooth Estimator of Bivariate Mean Residual Life Function

Chaubey and Sen (2002) proposed a smooth estimator for the multivariate survival

function by smoothing the empirical joint survival function. For the sake of convenience,

we consider the bivariate case only. Let (X1i, X2i), i = 1, 2, . . . , n be a bivariate random

sample of size n with joint survival function F̄ (x1, x2). Let Rn(x1, x2) be the bivariate

empirical survival function as defined in Eq. (6.2). Then, the smooth estimator for the

joint survival function, as proposed by Chaubey and Sen (2002), is given by

Rp
n(x1, x2) =

∞∑
j=0

∞∑
k=0

p(j; x1µ1n) p(k; x2µ2n) Rn

(
j

µ1n

,
k

µ2n

)
, x1 > 0, x2 > 0, (6.6)

where µrn → ∞ and µrn/n → 0 as n → ∞ for r = 1, 2. The authors proved that

Rp
n(x1, x2) is a consistent estimator of the true survival function, provided that the survival

function F̄ (x1, x2) is absolutely continuous. As suggested by Chaubey and Sen (1996) in

the univariate case, Chaubey and Sen (2002) also recommended, for practical purposes,

choosing µrn = n
Xr[n]

, where Xr[n] = max{Xr1, Xr2, . . . , Xrn} for r = 1, 2. Now, by plugging

Rp
n(x1, x2) into Eq. (6.1), we obtain the smooth estimators for the Bivariate Mean Residual

Life (BMRL) functions, given by

m̂p
1(x1, x2) =

(1/µ1n)∑n
j=0

∑n
k=0 Q(j; x1µ1n) p(k; x2µ2n) Rn

(
j

µ1n
, k

µ2n

)
∑n

j=0
∑n

k=0 p(j; x1µ1n) p(k; x2µ2n) Rn

(
j

µ1n
, k

µ2n

) , x1 > 0, x2 > 0,

(6.7)

m̂p
2(x1, x2) =

(1/µ2n)∑n
j=0

∑n
k=0 p(j; x1µ1n) Q(k; x2µ2n) Rn

(
j

µ1n
, k

µ2n

)
∑n

j=0
∑n

k=0 p(j; x1µ1n) p(k; x2µ2n) Rn

(
j

µ1n
, k

µ2n

) , x1 > 0, x2 > 0,

(6.8)
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where Q(k; xrµrn) = ∑k
t=0 p(t; xrµrn) denotes the CDF of a Poisson random variable with

rate parameter xrµrn, for r = 1, 2. It is important to note that the proposed smooth

estimator is capable of estimating mr(x1, x2), for r = 1, 2, beyond the largest order

statistic of either component. Moreover, it is a continuous function. Thus, the proposed

estimator overcomes the limitations of the natural estimator proposed by Kulkarni and

Rattihalli (2002). In the following proposition, we will show that the proposed estimator

is a consistent estimator. Before that, we first present a lemma that will be useful in the

proof.

Lemma 6.2.1 (Hille’s Theorem). Let {Hn(z; θ)} be a sequence of distribution functions
defined on Rp, where θ ∈ Rp is the parameter vector. Let Zn = (Z1n, Z2n, . . . , Zpn) be a
random vector with multivariate CDF Hn(z; θ) such that:

(i) E(Zn) = θ,
(ii) For every fixed θ ∈ Rp,

max {Var(Z1n), Var(Z2n), . . . , Var(Zpn)} → 0 as n → ∞,

(iii) Hn(z; θ) is a continuous function of θ.

Then, for any bounded function g : Rp → R, define

gHn(θ) =
∫
Rp

g(z) dHn(z; θ).

The following hold:

(i) gHn(θ) → g(θ) for every θ in any compact subset of Rp.
(ii) The convergence is uniform over any subset on which g(·) is uniformly continuous.

(iii) If g(·) is monotone, then the convergence holds uniformly over the entire space Rp.

For more details and proof of Lemma 6.2.1, we refer to Feller (1991), Chaubey and

Sen (1996) and Chaubey and Sen (2002). In the following proposition, we assume that

µrn, r = 1, 2, are non-stochastic parameters such that µrn → ∞ and µrn

n
→ 0 as n → ∞.

Proposition 6.2.2. Let (X1, X2) be an absolutely continuous bivariate random vector
with joint survival function F̄ (x1, x2). Assume that mr(x1, x2) < ∞ for every (x1, x2) ∈

R2
+ = [0, ∞)2 and for every r = 1, 2. Let J ⊂ R2

+ be a compact set such that F̄ (x1, x2) > 0
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for all (x1, x2) ∈ J . Then, for every r = 1, 2,

sup
(x1,x2)∈J

|m̂p
r(x1, x2) − mr(x1, x2)| a.s.−−→ 0 as n → ∞.

Proof. Under the assumption that µrn for r = 1, 2 is non-stochastic, the smooth estimator

for the BMRL function can be written as

m̂p
1(x1, x2) =

(1/µ1n)∑∞
j=0

∑∞
k=0 Q(j; x1µ1n) p(k; x2µ2n) Rn

(
j

µ1n
, k

µ2n

)
∑∞

j=0
∑∞

k=0 p(j; x1µ1n) p(k; x2µ2n) Rn

(
j

µ1n
, k

µ2n

) ,

m̂p
2(x1, x2) =

(1/µ2n)∑∞
j=0

∑∞
k=0 p(j; x1µ1n) Q(k; x2µ2n) Rn

(
j

µ1n
, k

µ2n

)
∑∞

j=0
∑∞

k=0 p(j; x1µ1n) p(k; x2µ2n) Rn

(
j

µ1n
, k

µ2n

) .

Let us now consider the numerator of m̂p
1(x1, x2), denoted by N̂p

1 (x1, x2), which can be

expressed as

N̂p
1 (x1, x2) = 1

µ1n

∞∑
j=0

∞∑
k=0

p(k; x2µ2n) Rn

(
j

µ1n

,
k

µ2n

) j∑
u=0

p(u; x1µ1n)

=
∞∑

j=0

∞∑
k=0

p(j; x1µ1n) p(k; x2µ2n) Zp
1n

(
j

µ1n

,
k

µ2n

)
,

where

Zp
1n

(
j

µ1n

,
k

µ2n

)
= 1

µ1n

∞∑
s=j

Rn

(
s

µ1n

,
k

µ2n

)
.

Let Z1n(x1, x2) =
∫∞

x1
Rn(u, x2) du. Then, we can establish the following inequality:

1
µ1n

∞∑
s=j+1

Rn

(
s

µ1n

,
k

µ2n

)
≤ Z1n

(
j

µ1n

,
k

µ2n

)
≤ 1

µ1n

∞∑
s=j

Rn

(
s

µ1n

,
k

µ2n

)
,

or equivalently,

Zp
1n

(
j

µ1n

,
k

µ2n

)
− 1

µ1n

Rn

(
j

µ1n

,
k

µ2n

)
≤ Z1n

(
j

µ1n

,
k

µ2n

)
≤ Zp

1n

(
j

µ1n

,
k

µ2n

)
. (6.9)

It follows from (6.9) that

sup
(x1,x2)∈J

∣∣∣∣∣Zp
1n

(
j

µ1n

,
k

µ2n

)
− Z1n

(
j

µ1n

,
k

µ2n

)∣∣∣∣∣ a.s.−−→ 0 as n → ∞.

This implies that

sup
(x1,x2)∈J

∣∣∣∣∣∣
∞∑

j=0

∞∑
k=0

p(j; x1µ1n) p(k; x2µ2n)
(
Zp

1n

(
j

µ1n
, k

µ2n

)
− Z1n

(
j

µ1n
, k

µ2n

))∣∣∣∣∣∣ a.s.−−→ 0.

Under the assumption m1(x1, x2) < ∞, it follows that Z1n(x1, x2) is bounded almost

surely over J . Also, Z1n(x1, x2) is non-decreasing and continuous in x1. Let Hn be the
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joint CDF defined in Lemma 6.2.1 which places mass p(j; x1µ1n) p(k; x2µ2n) at the point(
j

µ1n
, k

µ2n

)
. Then, applying Lemma 6.2.1, we obtain

∞∑
j=0

∞∑
k=0

p(j; x1µ1n) p(k; x2µ2n) Z1n

(
j

µ1n
, k

µ2n

)
→ Z1n(x1, x2).

From Lemma A.1 of Kulkarni and Rattihalli (2002),

sup
(x1,x2)∈J

∣∣∣∣Z1n(x1, x2) −
∫ ∞

x1
F̄ (t, x2) dt

∣∣∣∣ a.s.−−→ 0.

Also, by Chaubey and Sen (2002),

sup
(x1,x2)∈R2

+

|Rp
n(x1, x2) − Rn(x1, x2)| = O(n−3/4(log n)1+α) a.s.−−→ 0,

for a suitable choice of α > 0. Further, Lemma A.2 of Kulkarni and Rattihalli (2002) gives

sup
(x1,x2)∈R2

+

∣∣∣Rn(x1, x2) − F̄ (x1, x2)
∣∣∣ a.s.−−→ 0.

Combining the above results, we conclude that

sup
(x1,x2)∈R2

+

∣∣∣Rp
n(x1, x2) − F̄ (x1, x2)

∣∣∣ a.s.−−→ 0.

Since both the numerator and denominator of m̂p
1(x1, x2) are consistent estimators of

the corresponding components of m1(x1, x2), we conclude that m̂p
1(x1, x2) is a consistent

estimator of m1(x1, x2). A similar argument establishes the consistency of m̂p
2(x1, x2) for

m2(x1, x2).

6.3 Simulation Study

In this section, we compare the proposed smooth estimator with the natural nonpara-

metric estimator. We consider two bivariate distributions with exponential marginals

having means 2 and 3, respectively. The dependence structures are modelled using the

Clayton copula and the Gumbel–Hougaard copula. The corresponding survival function of

the bivariate Clayton–exponential distribution is given by

F̄ (x1, x2; δ) =
[
ex1δ/2 + ex2δ/3 − 1

]−1/δ
, x1 > 0, x2 > 0, δ > 0,
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and similarly, the survival function of the bivariate Gumbel–Hougaard exponential distri-

bution is given by

F̄ (x1, x2; ϕ) = exp

−
[(

x1

2

)1/ϕ

+
(

x2

3

)1/ϕ
]ϕ
 , x1 > 0, x2 > 0, ϕ ≥ 1.

We evaluate the performance of the proposed smooth estimator by computing the

bias and mean square error (MSE) for various sample sizes. Furthermore, we assess

the improvement over the natural nonparametric estimator using the relative percentage

absolute bias improvement (RPABI) and the relative percentage mean square improvement

(RPMSI).

Let B0 and BU denote the bias of the natural nonparametric estimator and the

proposed smooth estimator, respectively. Then RPABI is defined as

RPABI = 100
(

|B0| − |BU |
|B0|

)
%.

Similarly, let M0 and ME denote the MSE of the natural nonparametric and the

proposed estimator, respectively. Then RPMSI is defined as

RPMSI = 100
(

M0 − ME

M0

)
%.

Positive values of RPABI and RPMSI indicate an improvement by the proposed

estimator, while negative values imply better performance by the natural nonparametric

estimator. Each experiment is repeated 1,000 times, and the results are summarized in

Table 6.1, Table 6.2, Table 6.3, and Table 6.4.

It has been observed that, in most cases, the proposed estimator outperforms the

natural nonparametric estimator. Although, in a few instances, the natural nonparametric

estimator performs better, the improvements are relatively small.

In the case of the bivariate Clayton exponential distribution, the maximum percentage

improvements in RPMSI (RPABI) of the proposed estimator m̂p
1(x1, x2) over the natural

estimator are observed to be up to 56% (31%), 53% (28%), and 51% (26%) for sample

sizes of 50, 75, and 100, respectively. Similarly, the improvements for m̂p
2(x1, x2) are up to

43% (24%), 37% (19%), and 33% (15%) for the same sample sizes.

In the case of the bivariate Gumbel-Hougaard exponential distribution, the maximum

improvements in RPMSI (RPABI) of m̂p
1(x1, x2) over the natural estimator are up to 31%

(14%), 28% (13%), and 19% (11%) for sample sizes of 50, 75, and 100, respectively. For
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m̂p
2(x1, x2), the corresponding improvements are up to 29% (13%), 22% (10%), and 17%

(7%).

Moreover, the proposed estimator exhibits significant improvement near the largest

order statistic of each component, highlighting its practical relevance and effectiveness in

real-life applications.

6.4 Real Data Application

In this section, we apply the proposed smooth estimator to predict the BMRL function

for a bivariate warranty dataset. The data, obtained from Eliashberg et al. (1997), consist

of 40 observations recording the maintenance history of locomotive traction motors. Each

observation provides the time since the inception of service (age, in days) and the miles

accumulated (usage, in miles) by a traction motor before it failed and was returned to the

maintenance depot. To facilitate efficient analysis, we rescale the data by dividing the age

by 100, denoted by X1, and the usage by 10, 000, denoted by X2. Consequently, age is

expressed in units of 100 days and usage in units of 10, 000 miles. Before proceeding to

estimate the BMRL function, we first examine the boxplots of the dataset to identify any

potential outliers, as shown in Figure 6.4. From the figure, it is evident that outliers are

present, which could introduce significant bias into the estimator. Therefore, we omitted

three extreme data points. The revised dataset, used for subsequent analysis, is provided

in Table 7.6 in the appendix for reference.

We then conduct an exploratory data analysis. Table 6.5 presents the basic descriptive

statistics along with three dependence measures for the bivariate warranty data. The high

correlation observed between age and usage underscores the importance of conducting a

bivariate analysis.

We now proceed to estimate the BMRL function using the proposed smooth estimator.

The surface and contour plots of m̂p
1(x1, x2) and m̂p

2(x1, x2) are displayed in Figures 6.2

and 6.3, respectively. Next, we estimate m1(x1, x2), which represents the average remaining

life of the traction motor given that it has already survived up to time x1 and the usage

has exceeded x2 (per 10,000 miles).

This estimator not only provides insight into the overall lifetime of the traction

motor but also offers valuable information about the expected remaining life, making it
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Table 6.1. Bias, MSE, RPABI, and RPMSI for m̂p
1(x1, x2) of bivariate

Clayton exponential distribution

δ x1 x2

Sample Size

n = 50 n = 75 n = 100

Bias MSE RPABI (%) RPMSI (%) Bias MSE RPABI (%) RPMSI (%) Bias MSE RPABI (%) RPMSI (%)

2

0.3 2.2 -0.211716 0.241153 6.02 12.42 -0.227235 0.160125 6.81 11.97 -0.237471 0.143919 5.73 11.03

0.6 2.4 -0.267230 0.286770 10.13 17.75 -0.292748 0.203881 10.51 18.01 -0.308431 0.191825 8.87 16.72

0.9 2.6 -0.287151 0.319688 13.27 22.89 -0.315974 0.229786 11.78 20.85 -0.335047 0.218136 9.94 18.10

1.2 2.8 -0.286325 0.343746 14.01 24.57 -0.312844 0.243031 12.29 21.71 -0.335977 0.229294 9.89 18.57

1.5 3 -0.273459 0.364694 13.27 23.60 -0.294964 0.252299 12.69 23.86 -0.323500 0.234774 10.37 19.25

1.8 3.2 -0.253793 0.387111 14.51 26.74 -0.269671 0.263021 13.79 24.15 -0.302922 0.239877 11.86 21.72

2.1 3.4 -0.230732 0.413952 15.82 30.22 -0.241559 0.278585 13.71 24.38 -0.276948 0.247780 12.43 23.13

2.4 3.6 -0.207017 0.447353 18.09 33.27 -0.213252 0.302113 13.73 25.44 -0.248086 0.260405 13.66 25.80

2.7 3.8 -0.185035 0.489684 19.68 36.64 -0.185784 0.336423 14.81 26.84 -0.218782 0.279340 13.17 26.14

3 4 -0.166900 0.543982 21.17 39.51 -0.159474 0.383968 18.67 35.97 -0.191385 0.306928 14.64 28.77

3.3 4.2 -0.154432 0.613076 21.08 42.77 -0.134859 0.447337 20.21 38.36 -0.167958 0.345584 14.66 30.56

3.6 4.4 -0.149049 0.698193 23.59 45.31 -0.113006 0.529263 22.28 43.93 -0.149785 0.396735 15.82 30.60

3.9 4.6 -0.151810 0.798588 25.87 48.26 -0.095337 0.631667 21.57 42.66 -0.136950 0.462021 19.47 37.20

4.2 4.8 -0.163524 0.912213 29.14 54.06 -0.083401 0.753996 25.66 49.94 -0.128721 0.544565 23.31 50.70

4.5 5.0 -0.184551 1.036389 31.03 55.69 -0.078791 0.893248 27.41 52.72 -0.124637 0.648669 25.87 55.04

3

0.3 2.2 -0.155963 0.217263 4.84 8.37 -0.169146 0.135389 3.64 6.08 -0.171846 0.117632 2.53 5.03

0.6 2.4 -0.194457 0.249395 8.15 13.00 -0.218514 0.164174 7.40 12.02 -0.228278 0.148534 7.76 13.41

0.9 2.6 -0.199641 0.271907 11.10 18.68 -0.229199 0.180011 10.07 17.80 -0.244640 0.164097 8.57 15.43

1.2 2.8 -0.183820 0.288310 12.54 20.73 -0.213597 0.186814 11.48 19.46 -0.234471 0.168280 10.22 18.73

1.5 3 -0.156340 0.304498 11.52 19.44 -0.183211 0.192689 12.15 22.47 -0.209888 0.169139 11.10 20.63

1.8 3.2 -0.123563 0.324880 13.86 24.30 -0.146187 0.202536 13.55 23.44 -0.177545 0.171882 11.87 21.98

2.1 3.4 -0.089817 0.351819 13.39 24.28 -0.108048 0.218937 13.73 22.63 -0.141430 0.179817 11.87 22.48

2.4 3.6 -0.058313 0.386286 14.36 26.32 -0.072122 0.243770 13.95 25.23 -0.104821 0.194595 12.99 22.80

2.7 3.8 -0.031467 0.429101 16.63 30.17 -0.039884 0.278661 13.87 25.35 -0.070500 0.216765 13.27 23.85

3 4 -0.011122 0.481777 18.58 35.69 -0.011842 0.325005 16.85 32.43 -0.040824 0.246844 14.05 24.92

3.3 4.2 0.001321 0.546149 19.46 37.56 0.011622 0.383970 16.98 31.74 -0.017610 0.285529 13.65 25.98

3.6 4.4 0.004961 0.623399 19.53 37.42 0.030019 0.456758 19.02 37.83 -0.001743 0.333324 14.36 26.55

3.9 4.6 -0.000679 0.713480 22.61 42.49 0.042835 0.544919 20.43 40.87 0.007162 0.391451 15.61 29.02

4.2 4.8 -0.015895 0.815372 26.12 48.71 0.049493 0.649470 22.80 47.17 0.010406 0.462493 19.69 37.98

4.5 5.0 -0.040743 0.927482 29.29 53.44 0.049169 0.769500 24.70 48.95 0.009108 0.549686 21.16 41.45

4

0.3 2.2 -0.115406 0.202327 2.21 4.20 -0.124391 0.121021 0.60 2.06 -0.122753 0.102442 1.57 3.49

0.6 2.4 -0.140173 0.227411 4.11 6.98 -0.160233 0.141090 3.84 7.99 -0.166052 0.122778 4.46 8.22

0.9 2.6 -0.134954 0.246295 6.73 11.15 -0.163014 0.152874 8.50 15.37 -0.175504 0.133584 7.33 12.99

1.2 2.8 -0.109508 0.261929 9.59 15.28 -0.140739 0.159146 10.09 16.68 -0.159144 0.136809 9.02 16.78

1.5 3 -0.072979 0.279620 9.49 14.09 -0.103728 0.166568 10.73 19.30 -0.127907 0.138723 9.73 17.16

1.8 3.2 -0.032384 0.303119 10.90 17.41 -0.060597 0.179231 10.95 17.45 -0.089310 0.144025 10.10 17.39

2.1 3.4 0.007085 0.333875 11.44 18.70 -0.017809 0.199094 10.80 17.52 -0.048536 0.155591 11.71 19.39

2.4 3.6 0.041625 0.371691 12.48 22.98 0.020546 0.227164 11.31 19.22 -0.009627 0.174420 11.29 18.27

2.7 3.8 0.068664 0.416164 13.88 26.71 0.052621 0.264139 11.38 20.01 0.024391 0.200149 11.10 19.21

3 4 0.086645 0.467858 15.04 30.43 0.077949 0.310652 13.89 25.97 0.051340 0.232015 12.27 21.86

3.3 4.2 0.094777 0.528220 15.58 30.84 0.096570 0.367181 14.64 28.46 0.069927 0.269523 12.17 20.96

3.6 4.4 0.092927 0.598763 16.93 32.20 0.108705 0.434306 15.72 31.80 0.079960 0.312856 11.57 19.91

3.9 4.6 0.081411 0.680361 19.57 38.53 0.114695 0.513326 18.34 37.08 0.082483 0.363821 12.70 23.05

4.2 4.8 0.060624 0.773139 22.92 44.65 0.114780 0.605881 21.24 45.33 -0.949050 1.847955 13.19 26.63

4.5 5 0.030934 0.876545 27.52 51.42 0.108787 0.712477 22.82 46.90 0.072212 0.501744 20.25 38.64
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Table 6.2. Bias, MSE, RPABI, and RPMSI for m̂p
2(x1, x2) of bivariate

Clayton exponential distribution

δ x1 x2

Sample Size

n = 50 n = 75 n = 100

Bias MSE RPABI (%) RPMSI (%) Bias MSE RPABI (%) RPMSI (%) Bias MSE RPABI (%) RPMSI (%)

2

0.3 2.2 0.027690 0.339503 7.05 10.98 0.043336 0.266124 5.79 9.24 0.002716 0.174212 5.31 9.30

0.6 2.4 -0.006259 0.379764 9.85 15.75 0.011546 0.295384 5.95 7.85 -0.033401 0.192249 7.26 13.78

0.9 2.6 -0.041698 0.432573 10.34 17.18 -0.014123 0.337033 6.06 10.13 -0.065077 0.216704 6.85 14.64

1.2 2.8 -0.087969 0.498858 10.45 19.54 -0.044905 0.387607 7.39 12.57 -0.102630 0.251592 9.81 17.83

1.5 3 -0.147917 0.583772 12.15 23.34 -0.086594 0.448039 9.25 17.12 -0.151202 0.300095 11.86 20.98

1.8 3.2 -0.221280 0.692266 14.93 27.74 -0.141883 0.524117 11.06 20.58 -0.213731 0.365520 12.34 22.53

2.1 3.4 -0.307019 0.830577 14.83 29.16 -0.211927 0.624416 11.62 22.02 -0.291462 0.453536 13.19 24.35

2.4 3.6 -0.404421 1.008187 16.77 31.59 -0.297235 0.757281 12.05 22.59 -0.384196 0.572138 13.56 24.95

2.7 3.8 -0.513446 1.237994 16.75 33.00 -0.397684 0.932053 14.98 28.13 -0.491008 0.732186 14.63 27.30

3 4 -0.634831 1.536362 17.79 37.70 -0.512469 1.161856 14.84 27.78 -0.610922 0.947110 13.89 26.64

3.3 4.2 -0.769710 1.922018 21.20 41.04 -0.640587 1.462697 16.46 31.95 -0.743145 1.230650 12.50 24.22

3.6 4.4 -0.918799 2.414150 22.04 43.70 -0.781503 1.850599 17.62 33.88 -0.887237 1.596912 12.03 23.64

3.9 4.6 -1.082286 3.028680 22.78 43.50 -0.935344 2.340861 17.95 35.19 -1.043353 2.063195 11.34 23.83

4.2 4.8 -1.260613 3.774622 23.84 43.80 -1.102793 2.950738 19.27 37.40 -1.211881 2.650739 14.84 29.97

4.5 5.0 -1.454553 4.657337 23.71 42.90 -1.284981 3.699594 18.82 37.05 -1.392695 3.381540 15.44 32.58

3

0.3 2.2 0.053557 0.340903 6.43 10.94 0.068877 0.266865 5.25 7.40 0.023973 0.174071 4.84 9.36

0.6 2.4 0.044791 0.377761 7.32 12.92 0.060679 0.294966 4.76 7.22 0.009181 0.188452 5.58 10.96

0.9 2.6 0.040747 0.425048 8.30 14.39 0.064648 0.332836 5.84 8.50 0.006322 0.207861 5.98 11.00

1.2 2.8 0.029286 0.481045 8.12 14.68 0.067396 0.376915 5.01 7.43 0.002433 0.233778 6.17 10.73

1.5 3 0.003612 0.546623 9.60 17.77 0.059225 0.425617 6.41 10.36 -0.012272 0.266346 7.32 13.03

1.8 3.2 -0.039273 0.624267 10.79 20.10 0.034237 0.480918 6.18 11.10 -0.044125 0.306096 9.24 16.86

2.1 3.4 -0.100583 0.719716 12.51 24.57 -0.011033 0.548087 8.55 15.15 -0.096617 0.357123 10.83 19.10

2.4 3.6 -0.180876 0.843053 14.12 26.55 -0.078576 0.634487 9.52 16.87 -0.171125 0.427715 13.00 22.85

2.7 3.8 -0.280475 1.008845 15.63 29.59 -0.169059 0.751272 12.66 23.92 -0.267630 0.530313 13.21 25.73

3 4 -0.399797 1.235729 17.50 33.80 -0.281839 0.915016 13.56 25.19 -0.385389 0.680794 13.79 26.21

3.3 4.2 -0.539249 1.545136 20.02 38.01 -0.415386 1.145951 17.07 30.73 -0.523432 0.896460 13.55 25.59

3.6 4.4 -0.698663 1.960177 19.74 39.46 -0.568093 1.464289 16.99 32.87 -0.680927 1.195491 14.55 26.76

3.9 4.6 -0.877300 2.504130 20.08 41.19 -0.738874 1.888377 15.88 32.22 -0.857237 1.598977 13.38 26.65

4.2 4.8 -1.074718 3.197846 22.71 43.35 -0.927247 2.437711 17.36 33.32 -1.051383 2.131532 13.17 27.18

4.5 5.0 -1.290982 4.057778 22.17 42.30 -1.133025 3.135493 16.66 32.22 -1.261527 2.817930 13.98 27.91

4

0.3 2.2 0.069639 0.349318 4.55 7.83 0.087714 0.269285 3.24 4.74 0.038318 0.175201 4.85 8.99

0.6 2.4 0.074993 0.386395 5.78 8.89 0.091349 0.296763 4.49 5.94 0.034315 0.188998 5.51 11.19

0.9 2.6 0.089886 0.435133 4.07 6.28 0.110411 0.334471 3.67 4.29 0.046044 0.208518 4.27 7.40

1.2 2.8 0.101534 0.493025 4.32 8.23 0.132939 0.380592 3.98 4.28 0.062089 0.234546 2.88 4.69

1.5 3 0.100545 0.557846 4.86 9.03 0.147339 0.432012 3.29 2.79 0.070250 0.265719 4.33 7.63

1.8 3.2 0.080977 0.628563 6.90 13.25 0.144831 0.486741 3.48 3.69 0.061098 0.299589 4.64 7.41

2.1 3.4 0.038985 0.707749 8.98 17.37 0.119113 0.545416 6.79 10.73 0.028447 0.336968 6.33 12.59

2.4 3.6 -0.027837 0.803742 11.39 20.35 0.066001 0.612236 7.24 11.37 -0.031177 0.384116 8.79 16.24

2.7 3.8 -0.120653 0.931611 14.12 27.39 -0.016445 0.697786 10.40 17.17 -0.119093 0.453406 11.27 21.41

3 4 -0.239734 1.112167 16.64 31.45 -0.127922 0.820543 10.95 20.32 -0.235027 0.562657 12.60 24.65

3.3 4.2 -0.384630 1.369572 19.36 38.23 -0.266383 1.004522 14.44 25.91 -0.377693 0.732969 13.53 25.53

3.6 4.4 -0.553943 1.729817 18.65 37.67 -0.429025 1.274869 16.02 30.49 -0.545471 0.987011 14.14 25.57

3.9 4.6 -0.745585 2.219940 20.35 42.34 -0.613258 1.654609 15.25 30.38 -0.736681 1.349626 13.41 26.90

4.2 4.8 -0.957745 2.866569 21.43 42.44 -0.817140 2.165592 16.45 32.13 -0.949050 1.847955 13.19 26.63

4.5 5 -1.189347 3.692897 21.05 41.40 -1.039135 2.830693 15.44 29.30 -1.179236 2.508275 14.88 29.46
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Table 6.3. Bias, MSE, RPABI, and RPMSI for m̂p
1(x1, x2) of bivariate

Gumbel- Hougaard exponential distribution

δ x1 x2

Sample Size

n = 50 n = 75 n = 100

Bias MSE RPABI (%) RPMSI (%) Bias MSE RPABI (%) RPMSI (%) Bias MSE RPABI (%) RPMSI (%)

2

0.3 2.2 0.158151 0.222036 3.75 9.24 0.146411 0.160135 1.67 3.25 0.126949 0.120051 0.79 1.99

0.6 2.4 0.219598 0.271859 2.04 4.19 0.204316 0.194696 -0.59 -1.48 0.179755 0.150465 0.91 1.71

0.9 2.6 0.254899 0.317721 0.13 0.27 0.236536 0.226524 -1.20 -1.58 0.205855 0.174165 0.16 0.70

1.2 2.8 0.271865 0.357328 1.04 4.60 0.251201 0.255164 -2.72 -2.95 0.215312 0.191290 -2.66 -5.02

1.5 3 0.275946 0.392093 -0.59 3.36 0.254799 0.281240 -1.30 -0.49 0.214746 0.205966 -0.46 -1.39

1.8 3.2 0.271053 0.424878 1.26 5.28 0.251246 0.305949 0.34 1.64 0.207947 0.220509 -1.48 -1.31

2.1 3.4 0.260131 0.457728 1.53 5.87 0.242679 0.331005 -0.08 0.42 0.197458 0.236361 -0.48 -1.55

2.4 3.6 0.245162 0.491886 1.40 3.75 0.230525 0.357848 1.54 2.52 0.184330 0.254371 1.44 1.14

2.7 3.8 0.227163 0.529176 2.31 6.77 0.215861 0.387357 3.55 7.27 0.168520 0.274363 3.59 4.40

3 4 0.206625 0.572718 2.43 5.87 0.199536 0.420741 4.18 9.27 0.150081 0.296138 3.77 5.25

3.3 4.2 0.183983 0.626213 5.80 12.25 0.181942 0.459966 4.46 10.77 0.129536 0.320466 4.69 7.08

3.6 4.4 0.159660 0.692530 9.03 21.14 0.162811 0.506724 6.63 13.05 0.107467 0.348700 7.11 13.42

3.9 4.6 0.133700 0.772726 10.16 25.85 0.141463 0.561600 8.54 17.57 0.084456 0.382597 7.99 14.81

4.2 4.8 0.105565 0.866027 12.63 29.96 0.117205 0.624171 12.36 23.37 0.061281 0.424238 7.35 15.94

4.5 5 0.074324 0.970567 14.40 31.00 0.089640 0.693604 13.46 27.67 0.038793 0.475668 10.62 19.55

3

0.3 2.2 0.062260 0.181340 4.42 10.21 0.059805 0.126952 5.24 9.04 0.044923 0.094001 3.65 6.04

0.6 2.4 0.119698 0.213938 2.90 6.00 0.109881 0.147665 1.92 5.20 0.089897 0.110756 2.55 3.89

0.9 2.6 0.162654 0.249633 1.74 3.66 0.146534 0.171512 -0.73 -1.00 0.120188 0.128448 0.30 0.95

1.2 2.8 0.188830 0.283540 -0.28 -1.67 0.167127 0.194354 -2.43 -4.54 0.134257 0.144006 -0.85 -2.18

1.5 3 0.200671 0.315159 -2.38 -6.48 0.174609 0.215540 -4.05 -7.08 0.136312 0.156802 -2.33 -4.73

1.8 3.2 0.201490 0.345751 -1.80 -3.16 0.172678 0.236065 -2.63 -7.49 0.130006 0.168229 -2.67 -6.20

2.1 3.4 0.194351 0.376440 -1.28 -1.11 0.164572 0.256772 0.32 -2.18 0.118213 0.180177 -1.31 -3.98

2.4 3.6 0.181684 0.408297 -1.33 -2.30 0.152469 0.278560 -0.53 -4.84 0.103240 0.193930 0.42 -2.51

2.7 3.8 0.165147 0.442866 -0.76 -2.10 0.137271 0.302954 1.61 -2.66 0.086221 0.210015 2.70 4.02

3 4 0.145609 0.482201 3.21 4.52 0.119646 0.331858 4.40 6.09 0.067485 0.228366 4.33 4.53

3.3 4.2 0.123364 0.528648 6.05 6.85 0.100640 0.366737 4.09 5.85 0.047178 0.249236 6.16 7.81

3.6 4.4 0.098588 0.584860 6.14 10.31 0.081123 0.407904 4.48 6.80 0.025504 0.273658 7.53 11.05

3.9 4.6 0.071679 0.653671 9.24 21.21 0.061255 0.454933 8.41 12.12 0.002804 0.303018 7.28 11.03

4.2 4.8 0.043173 0.737159 10.43 21.72 0.040562 0.507654 8.17 12.86 -0.020301 0.338933 7.13 11.60

4.5 5 0.013381 0.835593 12.51 23.46 0.018283 0.566551 10.82 18.79 -0.042893 0.383526 10.36 18.99

4

0.3 2.2 0.019533 0.169077 6.43 12.39 0.020676 0.116938 3.72 8.48 0.009128 0.086687 4.36 8.71

0.6 2.4 0.066482 0.193109 4.95 9.31 0.060079 0.131688 2.35 4.06 0.042382 0.097342 3.92 5.43

0.9 2.6 0.113345 0.223844 1.80 3.86 0.099745 0.151691 1.01 1.61 0.075211 0.111234 1.86 2.39

1.2 2.8 0.150303 0.258073 -2.35 -5.48 0.129746 0.173709 -2.24 -5.53 0.098116 0.126268 -0.80 -3.07

1.5 3 0.174258 0.293198 -5.12 -12.41 0.147409 0.195296 -3.93 -11.23 0.109398 0.140378 -1.44 -5.70

1.8 3.2 0.185750 0.327734 -4.67 -11.14 0.153953 0.216184 -4.12 -11.45 0.110927 0.153170 -1.04 -5.42

2.1 3.4 0.186891 0.360884 -2.46 -7.59 0.152053 0.237067 -2.05 -9.46 0.105313 0.166086 -3.47 -10.26

2.4 3.6 0.180021 0.392986 -1.36 -5.86 0.144110 0.258855 -0.69 -7.30 0.095030 0.180321 0.80 -1.69

2.7 3.8 0.167240 0.425954 0.90 -1.63 0.116448 0.310023 3.50 0.18 0.081497 0.195926 2.47 2.42

3 4 0.150295 0.462901 2.77 0.44 0.099277 0.341668 3.97 2.91 0.065316 0.212985 4.69 6.79

3.3 4.2 0.130408 0.506915 3.38 1.76 0.099277 0.341668 3.97 2.91 0.047105 0.232206 5.31 6.49

3.6 4.4 0.108291 0.560293 6.58 12.26 0.081078 0.378196 6.25 7.48 0.027687 0.254645 7.20 9.90

3.9 4.6 0.084421 0.625069 6.84 10.42 0.062257 0.419587 6.47 9.04 0.007831 0.281390 7.46 10.70

4.2 4.8 0.059150 0.703449 9.95 22.80 0.042913 0.466044 8.78 12.26 -0.011880 0.313633 9.64 14.18

4.5 5 0.032518 0.796945 12.31 27.04 0.022918 0.518497 10.21 14.87 -0.030992 0.353268 11.14 20.55
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Table 6.4. Bias, MSE, RPABI, and RPMSI for m̂p
2(x1, x2) of bivariate

Gumbel- Hougaard exponential distribution

δ x1 x2

Sample Size

n = 50 n = 75 n = 100

Bias MSE RPABI (%) RPMSI (%) Bias MSE RPABI (%) RPMSI (%) Bias MSE RPABI (%) RPMSI (%)

2

0.3 2.2 0.190931 0.401987 1.41 2.09 0.148623 0.272468 0.01 -1.99 0.101261 0.197627 1.75 0.75

0.6 2.4 0.227707 0.473442 1.16 0.14 0.183314 0.317498 -0.97 -4.58 0.131021 0.231962 2.19 0.99

0.9 2.6 0.253769 0.551616 -0.23 -1.19 0.207810 0.370142 -0.92 -2.44 0.150330 0.269560 1.10 1.09

1.2 2.8 0.274275 0.638233 0.79 1.11 0.227381 0.432076 -1.87 -2.29 0.165928 0.311691 0.01 -0.68

1.5 3 0.292269 0.734467 1.74 2.48 0.246036 0.503696 -0.39 1.19 0.182315 0.360542 0.78 0.62

1.8 3.2 0.309738 0.840950 2.90 5.25 0.266314 0.584941 -0.08 0.31 0.201635 0.417825 1.69 2.50

2.1 3.4 0.328177 0.959332 2.06 5.57 0.290075 0.677393 0.80 0.74 0.224999 0.485570 1.05 2.41

2.4 3.6 0.348574 1.092282 2.25 5.73 0.318628 0.783833 1.47 1.88 0.252848 0.566737 0.17 1.82

2.7 3.8 0.371259 1.243376 1.59 5.51 0.352490 0.907417 2.80 5.96 0.285188 0.663436 2.54 4.02

3 4 0.396036 1.418305 3.70 7.85 0.391618 1.052031 2.00 4.74 0.321980 0.776229 3.04 4.65

3.3 4.2 0.422495 1.625569 5.53 11.93 0.435515 1.223184 3.86 8.42 0.363208 0.905419 3.03 6.40

3.6 4.4 0.450157 1.875405 7.41 15.03 0.483239 1.427256 5.61 12.26 0.408665 1.052083 3.53 8.70

3.9 4.6 0.478299 2.177356 8.63 21.02 0.533553 1.669262 7.32 19.43 0.458127 1.219127 4.43 9.77

4.2 4.8 0.505846 2.537525 11.02 26.42 0.585023 1.950815 9.07 21.04 0.511761 1.413283 5.22 11.66

4.5 5.0 0.531571 2.957788 13.01 28.94 0.636141 2.271095 9.82 22.29 0.570139 1.645708 6.66 17.28

3

0.3 2.2 0.169721 0.390291 0.04 -1.69 0.134073 0.263593 1.84 1.00 0.085015 0.185977 0.54 -0.27

0.6 2.4 0.207683 0.450245 -1.35 -5.27 0.165046 0.299397 -0.05 -2.55 0.109769 0.210744 0.46 -1.31

0.9 2.6 0.235715 0.516840 0.07 -4.37 0.187494 0.340172 -1.04 -5.61 0.125139 0.238016 1.23 -0.59

1.2 2.8 0.252969 0.587645 -1.01 -5.53 0.199914 0.384264 -1.45 -6.71 0.131210 0.267149 0.58 -1.09

1.5 3 0.261850 0.663373 -1.44 -8.14 0.205074 0.432605 -1.27 -7.16 0.131869 0.298999 0.54 -1.08

1.8 3.2 0.265000 0.745626 1.29 -1.79 0.206691 0.486527 -0.36 -4.90 0.130546 0.334472 -0.00 -0.81

2.1 3.4 0.264790 0.835728 1.40 1.13 0.208202 0.547289 0.97 -1.81 0.130292 0.374857 1.26 0.05

2.4 3.6 0.263402 0.934842 1.91 2.12 0.211982 0.616609 -0.36 -4.14 0.133679 0.421779 1.73 0.22

2.7 3.8 0.262738 1.045047 0.71 -0.64 0.218850 0.696640 0.97 -1.40 0.141885 0.476854 1.93 3.28

3 4 0.263893 1.170509 1.32 1.49 0.229074 0.790024 2.09 3.90 0.154906 0.541222 1.76 3.02

3.3 4.2 0.266849 1.317443 2.21 3.27 0.243439 0.900013 0.42 -0.18 0.172341 0.616085 2.93 3.33

3.6 4.4 0.270962 1.493697 3.12 7.60 0.262968 1.030167 0.49 -0.22 0.193978 0.703329 3.09 6.41

3.9 4.6 0.275754 1.708942 5.06 17.26 0.287975 1.184390 4.60 8.39 0.219993 0.805027 3.65 7.42

4.2 4.8 0.281140 1.973223 6.22 18.33 0.317572 1.366843 5.64 10.61 0.251083 0.924350 3.34 7.78

4.5 5.0 0.287061 2.293876 9.07 21.90 0.350055 1.581773 8.15 18.18 0.288372 1.068279 7.12 14.41

4

0.3 0.157155 0.385500 2.48 1.99 1.99 0.122621 0.259609 1.52 0.03 0.076010 0.183517 2.53 4.07

0.6 2.4 0.193197 0.439139 0.68 -2.27 0.151313 0.291393 -0.48 -5.43 0.097189 0.204110 0.39 -0.68

0.9 2.6 0.228434 0.503071 -2.24 -6.85 0.180000 0.330434 -0.88 -5.38 0.118156 0.228960 0.11 -2.35

1.2 2.8 0.254954 0.573396 -4.24 -14.23 0.200612 0.372867 -3.11 -10.45 0.131780 0.256262 -0.90 -3.89

1.5 3 0.270293 0.648476 -5.11 -16.39 0.210998 0.417070 -2.12 -12.37 0.136919 0.285044 -0.34 -5.06

1.8 3.2 0.275190 0.727598 -2.95 -11.60 0.212770 0.463656 -1.65 -10.20 0.135520 0.315596 0.65 -3.40

2.1 3.4 0.271845 0.810343 -0.49 -7.11 0.209186 0.514596 -0.55 -8.39 0.130592 0.349774 -0.46 -4.63

2.4 3.6 0.262805 0.897570 0.46 -4.41 0.203284 0.572578 -0.90 -7.37 0.125348 0.389400 2.09 0.68

2.7 3.8 0.250568 0.992353 1.85 -0.90 0.197112 0.640162 -0.03 -4.37 0.121809 0.435021 3.43 4.13

3 4 0.237316 1.100191 1.89 -0.47 0.192202 0.718807 1.27 -1.94 0.120788 0.486860 3.15 5.34

3.3 4.2 0.224475 1.228052 1.22 0.56 0.189949 0.809342 2.59 1.84 0.122962 0.545673 2.98 3.73

3.6 4.4 0.212595 1.382993 3.86 11.32 0.191447 0.913335 2.70 4.19 0.129150 0.612933 2.85 5.62

3.9 4.6 0.201742 1.572417 3.71 9.72 0.197222 1.033216 3.47 5.44 0.140052 0.690910 3.25 5.77

4.2 4.8 0.191815 1.805157 7.01 21.70 0.207157 1.172116 6.21 11.70 0.156265 0.783299 5.59 10.36

4.5 5 0.182337 2.089925 9.18 26.94 0.220630 1.334259 7.83 16.59 0.178338 0.896651 7.52 18.96
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(a) Boxplot of X1 (b) Boxplot of X2

Figure 6.1. Surface plots of the functions m̂p
1(x1, x2) and m̂p

2(x1, x2).

Table 6.5. Descriptive statistics and measures of dependence of the bivari-

ate warranty data.

Statistics X1 X2

Minimum 0.090 0.0095

Maximum 5.710 2.6433

1st Quantile 0.590 0.2041

Mean 1.894 0.9261

Median 1.640 0.8607

3rd Quantile 2.610 1.3827

Skewness 0.7183 0.6635

Kurtosis 2.81 2.5948

Variance 2.0349 0.5572

Pearson’s correlation 0.9298

Spearman’s rho 0.9568

Kendall’s tau 0.8422

more informative than simply computing the survival probability. Such information is

particularly useful for manufacturers, as it enables them to design warranty policies such
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as offering a first free maintenance service—that are cost-effective and tailored to the

motor’s actual usage without incurring significant losses.

Let A and U denote the age and usage limits, respectively, for the bivariate warranty.

We consider four warranty policies: the first based on the first quartile, the second based

on the median, the third based on the mean, and the fourth representing a one-year or

12,000 miles warranty.

Additionally, we estimate the reliability using the smooth estimator defined in Eq. (6.6).

The corresponding results are presented in Table 6.6. Note that the warranty limits shown

in square brackets are expressed in terms of days and miles, as the original data have been

rescaled. Based on the constraints associated with the manufacturer’s maintenance policy,

an optimal warranty strategy can be designed by considering both the expected remaining

life of the motor and the cost constraints involved in offering the first free maintenance

service.

6.5 Conclusion and Future Direction

We propose a smooth estimator for the bivariate mean residual life (BMRL) function

by smoothing the natural nonparametric estimator introduced by Kulkarni and Rattihalli

(2002). The proposed smooth estimator extends the work of Chaubey and Sen (1999) from

the univariate to the bivariate setup. We establish the uniform consistency property of the

proposed estimator and compare its efficiency with that of Kulkarni and Rattihalli (2002)

through Monte Carlo simulation experiments. The results indicate that the proposed

estimator outperforms the natural nonparametric estimator in most cases, while in some

cases, the performances are slightly better than the proposed estimator. Moreover, the

estimator shows significant improvement over the natural estimator when analyzing the

remaining life beyond the maximum observed values in the bivariate data. Finally, we

conduct an extensive data analysis using bivariate warranty data, formulating four warranty

policies based on (i) the first quartile, (ii) the median, (iii) the mean, and (iv) a one-year

or 12,000-mile warranty. We also compute the BMRL function based on these limits.

Given the remaining life and cost constraints, future work could extend this study into an

optimization framework, which remains an open problem in this direction.
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(a) Surface plot of m̂p
1(x1, x2) (b) Surface plot of m̂p

2(x1, x2)

Figure 6.2. Surface plots of the functions m̂p
1(x1, x2) and m̂p

2(x1, x2).
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Figure 6.3. Contour plots of the functions m̂p
1(x1, x2) and m̂p

2(x1, x2).
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Table 6.6. Estimates of reliability and bivariate mean residual life functions for various bivariate warranty limits

based on the warranty data

Bivariate Warranty Limits (A, W ) Reliability Rp
n(A, W ) m̂p

1(A, W ) m̂p
2(A, W )

(0.6, 0.2) [60 days, 2,000 miles] 0.7066 2.0162 [201.62 days] 1.0973 [10,973 miles]

(1.6, 0.86) [160 days, 8,600 miles] 0.4388 1.7272 [172.72 days] 0.8136 [8,136 miles]

(1.9, 0.9) [190 days, 9,000 miles] 0.3934 1.5963 [159.63 days] 0.8260 [8,260 miles]

(3.65, 1.2) [365 days, 12,000 miles] 0.1343 1.0923 [109.23 days] 0.9073 [9,073 miles]
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7
C h a p t e r

Nonparametric Estimation of a
Bivariate Mean Inactivity Time
Function

This chapter presents a nonparametric estimation procedure for estimating the bivariate

mean inactivity time function. The asymptotic properties such as bias, consistency and

asymptotic normality are established. A Monte Carlo simulation study is conducted to

evaluate the performance of the estimator and discuss its application in medical sciences.

7.1 Introduction

In lifetime data analysis, researchers are mainly using two classes of measures. The

first includes the survival probability function and the mean residual life function. The

second comprises the failure probability function and the mean inactivity time function

(MITF), also known as the mean past time function. The MITF plays a vital role when

the exact failure time of a unit is of interest. It tells us the average amount of time a

system has been non-functional, given that it was found to have failed at a specific time.

For example, in medical science, consider a scenario where an individual is infected with a

contagious disease such as the HIV virus. The exact time of infection may not be known;

however, the individual becomes aware of their condition only upon testing positive at a

later date. In such cases, it becomes crucial for healthcare professionals to estimate the

incubation period to assess the severity of the patient’s health condition. Direct testing
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methods to determine the incubation period are often costly and time-consuming. In such

situations, the MITF serves as a useful alternative by offering an estimate of the incubation

period based on retrospective data collected from patients with similar medical conditions,

as recorded in hospital databases. Hence, MITF provides critical information for clinical

decision-making, especially when direct measurements of infection time are unavailable

or impractical. The concept is also valuable in forensic science for estimating the time of

death, among other applications. Importantly, the utility of MITF extends beyond these

disciplines into various other fields. For a detailed discussion on the applications of MITF,

we refer to Jayasinghe and Zeephongsekul (2013) and the references therein.

Let X represent the lifetime of a system. Given that the system has already failed

at some time x, the MITF is defined as E(x − X | X ≤ x), which quantifies the average

duration of inactivity prior to time x. Nanda et al. (2003) explored various properties of

the MITF and established several characterization theorems based on stochastic ordering.

The concept of MITF has been extended to higher dimensions by Nair and Asha (2008).

For a bivariate non-negative random vector (X1, X2) with joint cumulative distribution

function (CDF) F (x1, x2), the bivariate mean inactivity time function (BMITF) is defined

by the vector

(r1(x1, x2), r2(x1, x2)) = E (x1 − X1, x2 − X2 | X1 ≤ x1, X2 ≤ x2) . (7.1)

This concept is particularly useful in medical sciences, where the incubation period of

a disease may depend on multiple covariates. For instance, individuals with diabetes

often exhibit elevated cholesterol levels. Incorporating such covariate information can

lead to more efficient and accurate prediction of the incubation period for diabetes. In

many real-world scenarios, the primary study variable and covariates are highly dependent,

which underscores the relevance of MITF in higher dimensions.

Now, the problem of estimation arises. If the joint CDF F (x1, x2) is known in

advance, one can estimate the BMITF using a parametric approach. However, incorrect

assumptions about F may lead to significant bias and misleading conclusions. This

highlights the importance of nonparametric estimation procedures, which do not rely

on strict distributional assumptions. Jayasinghe and Zeephongsekul (2013) proposed a

nonparametric smooth estimator for the univariate MITF and discussed its applications

in reliability engineering and medical sciences. Kulkarni and Rattihalli (2002) proposed
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a nonparametric estimator for the bivariate mean residual life function, which was later

extended to right-censored observations by Efromovich (2025). However, to the best

of our knowledge, no work has addressed the nonparametric estimation of the BMITF.

Considering the practical relevance of BMITF, this chapter proposes a novel nonparametric

estimator of BMITF. The main contributions of this chapter are summarized as follows:

• A nonparametric estimator of the bivariate mean inactivity time function is proposed.

• The expression for the bias of the proposed estimator is derived, and its consistency

and asymptotic normality properties are established.

• The performance of the proposed estimator is evaluated through Monte Carlo

simulations under various bivariate copula models and different values of Kendall’s

tau.

• The proposed estimator is applied to pink eye disease data to estimate the BMITF

of the two infected eyes.

The rest of the chapter is organized as follows. In Section 7.2, the smooth estimator is

proposed, and various asymptotic properties such as bias, consistency, and normality are

studied. Section 7.3 presents a detailed simulation study under different copula models to

evaluate the performance of the proposed estimator. In Section 7.4, an application to pink

eye disease data is discussed. Finally, the conclusion and future research directions are

provided in Section 7.5.

7.2 Nonparametric estimator for bivariate mean inactivity time

function

Let (X1, X2) be a non-negative bivariate random vector with joint CDF F (x1, x2).

Throughout this chapter, we assume that (X1, X2) possesses finite first-order moments.

Note that the bivariate mean inactivity time function (BMITF) given in Eq. (1.44) can

also be written as

(r1(x1, x2), r2(x1, x2)) =
(∫ x1

0 F (t, x2) dt

F (x1, x2)
,

∫ x2
0 F (x1, t) dt

F (x1, x2)

)
.

Let (X1i, X2i), for i = 1, 2, . . . , n, be n independent copies of the random vector

(X1, X2). The natural non-parametric estimator of the joint CDF based on this random
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sample is the bivariate empirical CDF, defined as

F̂n(x1, x2) = 1
n

n∑
i=1

I(X1i ≤ x1, X2i ≤ x2), (7.2)

where I(·) denotes the indicator function.

Substituting the empirical CDF F̂n(x1, x2) into the expression for the BMITF yields

the following non-parametric estimators:


r̂1(x1, x2) =

∑n
i=1(x1 − X1i)I(X1i ≤ x1, X2i ≤ x2)∑n

i=1 I(X1i ≤ x1, X2i ≤ x2)
,

r̂2(x1, x2) =
∑n

i=1(x2 − X2i)I(X1i ≤ x1, X2i ≤ x2)∑n
i=1 I(X1i ≤ x1, X2i ≤ x2)

.

(7.3)

The estimators in Eq. (7.3) are defined when ∑n
i=1 I(X1i ≤ x1, X2i ≤ x2) > 0, and are

set to zero otherwise. In the following theorem, we derive the expressions for the bias of

the proposed estimators.

Theorem 7.2.1. Let (X1, X2) be a bivariate non-negative random vector having joint
CDF F (x1, x2) with BMITF (r1(x1, x2), r2(x1, x2)). Let (r̂1(x1, x2), r̂1(x1, x2)) be the non-
parametric estimator of the BMITF defined in Eq. (7.3) based on the random sample
(X1i, X2i); i = 1, 2, . . . , n. Then, for j = 1, 2, the bias of r̂j(x1, x2) is given by

E[r̂j(x1, x2)] − rj(x1, x2) = −rj(x1, x2) (1 − F (x1, x2))n . (7.4)

Proof. Let Λp denote the collection of all subsets of {1, 2, . . . , n} with cardinality p. For

each element λp ∈ Λp, define the event

Fλp = {(X1i ≤ x1, X2i ≤ x2) for all i ∈ λp such that either X1i > x1, or X2i > x2 for all i ̸∈ λp} .

Note that {Fλp ; λp ∈ Λp} forms a class of disjoint events for all p. It is clear that the

P
(⋃n

p=1
⋃

λp∈Λp
Fλp

)
is the probability that at least one observation in the sample satisfies

(X1i ≤ x1, X2i ≤ x2). This can be expressed as

P

 n⋃
p=1

⋃
λp∈Λp

Fλp

 = 1 − P (No observation failed at (x1, x2)) = 1 − (1 − F (x1, x2))n .
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Now consider the expectation

E[r̂1(x1, x2)] = E
[∑n

i=1(x1 − X1i)I(X1i ≤ x1, X2i ≤ x2)∑n
i=1 I(X1i ≤ x1, X2i ≤ x2)

]

= E
[
E
{∑n

i=1(x1 − X1i)I(X1i ≤ x1, X2i ≤ x2)∑n
i=1 I(X1i ≤ x1, X2i ≤ x2)

∣∣∣∣∣Fλp

}]

=
n∑

p=1

∑
λp∈Λp

∑
k∈λp

1
p
E
[
x1 − X1k

∣∣∣Fλp

]
P (Fλp)

= r1(x1, x2)
n∑

p=1

∑
λp∈Λp

P (Fλp)

= r1(x1, x2) · P

 n⋃
p=1

⋃
λp∈Λp

Fλp


= r1(x1, x2) (1 − (1 − F (x1, x2))n) .

It follows that, for j = 1, 2, the bias of r̂j(x1, x2) is given by

E[r̂j(x1, x2)] − rj(x1, x2) = −rj(x1, x2) (1 − F (x1, x2))n .

From, Eq. (7.4), we can conclude that as n → ∞, the proposed estimator is asymptotically

unbiased. Now, we will establish the consistency property of the proposed estimator.

Before that, we need a few definitions which are useful for proving the theorem. For more

details on these definitions, we refer to Pollard (1984) and Van der Vaart and Wellner

(1996).

Definition 7.2.2 (Vapnik–Chervonenkis Class). Let F be a collection of subsets
of a set Ω. A finite subset W = {ω1, ω2, . . . , ωp} of Ω is said to be shattered by F if
for every subset W ′ of W , there exists a set A ∈ F such that A ∩ W = W ′. Then, the
Vapnik–Chervonenkis dimension (VC-dimension) of F is defined as

D(F) = max {p ∈ N : there exists W ⊂ Ω with |W | = p such that W is shattered by F} .

If D(F) < ∞, we say that F is a VC-class.

Definition 7.2.3 (Graph of a function). Let Ω ⊆ Rp and let g : Ω → R be a real-valued
function defined on Ω. Then, the graph of the function g, denoted by G, is defined as

G = {(u, x) ∈ Ω × R : 0 ≤ x ≤ g(u) or g(u) ≤ x ≤ 0} .

175



Chapter 7 Nonparametric Estimation of a Bivariate Mean Inactivity Time Function

The concept of VC class and the graph of a function play a pivotal role in empirical

process theory. Let g be any measurable function with respect to a probability measure P ,

and let Pn denote the empirical probability measure based on a random sample. Let F

be a class of measurable functions g with the assumption that there exists a measurable

function G satisfying
∫
Rp GdP < ∞ such that |g| ≤ G. Often, G is chosen as the pointwise

supremum of all g ∈ F . If the graphs of the functions in F form a VC class, then the

convergence

sup
g∈F

∣∣∣∣ ∫
Rp

g dPn −
∫
Rp

g dP
∣∣∣∣ a.s.−−→ 0 as n → ∞.

holds with probability one. For more details, refer to Corollary 17, Theorem 24, and the

Approximation Lemma in Pollard (1984).

Theorem 7.2.4. Let J be any compact set of R2
+ = [0, ∞) × [0, ∞). Then, for j = 1, 2,

sup
(x1,x2)∈J

|r̂j(x1, x2) − rj(x1, x2)| a.s.−−→ 0 as n → ∞.

Proof. Let us denote

N1(x1, x2) =
∫ x1

0
F (t, x2) dt = E ((x1 − X1)I(X1 ≤ x1, X2 ≤ x2)) = r1(x1, x2)F (x1, x2),

and its empirical counterpart,

N̂1(x1, x2) = 1
n

n∑
i=1

(x1 − X1i)I(X1i ≤ x1, X2i ≤ x2) = r̂1(x1, x2)F̂n(x1, x2).

For each fixed (x1, x2) ∈ R2
+, define a measurable function on R2

+ as

g(x1,x2)(t1, t2) = (x1 − t1)I(t1 ≤ x1, t2 ≤ x2).

Then,

N1(x1, x2) =
∫
R2

+

g(x1,x2)(t1, t2) dF (t1, t2), N̂1(x1, x2) =
∫
R2

+

g(x1,x2)(t1, t2) dF̂n(t1, t2).

(7.5)

Let F = {g(x1,x2) : (x1, x2) ∈ R2
+} denote the class of such measurable functions. For each

g(x1,x2) ∈ F , its graph is defined as

Hg(x1,x2) = {(t1, t2, r) : 0 ≤ r ≤ g(x1,x2)(t1, t2), (t1, t2) ∈ R2
+}

= {(t1, t2, r) : 0 ≤ r ≤ x1 − t1, t1 ≤ x1, t2 ≤ x2, x1, x2 ≥ 0}.
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Thus, the class of graphs can be written as

{Hg(x1,x2) : (x1, x2) ∈ R2
+} = {Ex1 : x1 ≥ 0} × {[0, x2] : x2 ≥ 0},

where

Ex1 = {(t1, r) : 0 ≤ r ≤ x1 − t1, t1 ≤ x1}.

According to Corollary 17, Theorem 24, and the Approximation Lemma from Pollard

(1984), a sufficient condition for the uniform consistency of N̂1(x1, x2) is that the class

{Hg(x1,x2)} forms a VC-class. It is known that {[0, x2] : x2 ≥ 0} is a VC-class. Hence, it

remains to show that {Ex1 : x1 ≥ 0} is also a VC-class. Suppose x1a ̸= x1b are two distinct

non-negative numbers. Then there exist two points (t1a, t2a) and (t1b, t2b) such that:

1. (t1a, t2a) ∈ Ex1a and (t1a, t2a) /∈ Ex1b
,

2. (t1b, t2b) ∈ Ex1b
and (t1b, t2b) /∈ Ex1a .

Without loss of generality, assume t1a ≤ t1b, and define the set

W ′ = {(t1a, t2a), (t1b, t2b)}.

From (a), we have

x1b − t1a ≤ t2a ≤ x1a − t1a,

and from (b),

x1a − t1b ≤ t2b ≤ x1b − t1b.

This leads to a contradiction as we assume x1a ̸= x1b, and thus no two-point subset of R2
+

can be shattered by {Ex1}. Hence, {Ex1} is a VC-class. It follows that {Hg(x1,x2)} is also a

VC-class. Therefore, we can conclude that

sup
(x1,x2)∈J

∣∣∣N̂1(x1, x2) − N1(x1, x2)
∣∣∣ a.s.−−→ 0 as n → ∞. (7.6)

By the Glivenko–Cantelli theorem (see Sen and Singer (1993), p. 187),

sup
(x1,x2)∈J

∣∣∣F̂n(x1, x2) − F (x1, x2)
∣∣∣ a.s.−−→ 0 as n → ∞. (7.7)

Combining (7.6) and (7.7), and applying the continuous mapping theorem, we obtain

sup
(x1,x2)∈J

|r̂1(x1, x2) − r1(x1, x2)| a.s.−−→ 0 as n → ∞.

The result follows similarly for the other component r2(x1, x2).
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Now, we discuss the asymptotic normality of the proposed estimator. To establish

this property, we impose an additional assumption that the second-order moments of

(X1, X2) exist and are finite. We use the following theorem, which is popularly known as

multivariate delta method which is stated below. For more details, we refer to Lehmann

and Casella (2006).

Lemma 7.2.5 (Multivariate Delta Method). Let µn be an estimator of the parameter
vector µ ∈ Rp such that

√
n(µn − µ)

converges to p-variate Gaussian distribution with zero mean vector and covariance matrix
Σ, as n → ∞. Suppose h : Rp → Rq is a continuously differentiable function at µ, and let
M denote the Jacobian matrix of h evaluated at µ defined by

M = ∂h
∂µ

∣∣∣∣∣
µ

.

Then,
√

n(h(µn) − h(µ))

converges to q-variate Gaussian distribution with zero mean vector and covariance matrix
MΣM ′ as n → ∞.

Theorem 7.2.6. For every (x1, x2) ∈ R2
+ such that F (x1, x2) > 0,

√
n (r̂1(x1, x2) − r1(x1, x2), r̂2(x1, x2) − r2(x1, x2))

converges in distribution to a bivariate Gaussian distribution with zero mean vector and
covariance matrix MΣM ′, where Σ = [σij] is defined as

σij = Cov ((xi − Xi)I(X1 ≤ x1, X2 ≤ x2), (xj − Xj)I(X1 ≤ x1, X2 ≤ x2)) , i, j = 1, 2,

σi3 = ri(x1, x2)F (x1, x2) [1 − F (x1, x2)] , i = 1, 2,

σ33 = F (x1, x2) [1 − F (x1, x2)] ,

and the matrix M is given by

M =


1

F (x1,x2) 0 − r1(x1,x2)
F (x1,x2)

0 1
F (x1,x2) − r2(x1,x2)

F (x1,x2)

 .
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Proof. Let us define the following functions for fixed (x1, x2) ∈ R2
+ such that F (x1, x2) > 0.

Denote

gx1,x2(t1, t2) =
(
g1,(x1,x2)(t1, t2), g2,(x1,x2)(t1, t2), g3,(x1,x2)(t1, t2)

)
for every t1, t2 ∈ R2

+, defined by

g1,(x1,x2)(t1, t2) = (x1 − t1)I(t1 ≤ x1, t2 ≤ x2),

g2,(x1,x2)(t1, t2) = (x2 − t2)I(t1 ≤ x1, t2 ≤ x2),

g3,(x1,x2)(t1, t2) = I(t1 ≤ x1, t2 ≤ x2).

The expected value of g(x1,x2)(X1, X2) is given by the vector µ = (µ1, µ2, µ3), where

µ1 = E[g1,(x1,x2)(X1, X2)] = r1(x1, x2)F (x1, x2),

µ2 = E[g2,(x1,x2)(X1, X2)] = r2(x1, x2)F (x1, x2),

µ3 = E[g3,(x1,x2)(X1, X2)] = F (x1, x2).

The covariance matrix of g(x1,x2)(X1, X2) is Σ.

Let (X1i, X2i), for i = 1, 2, . . . , n, be a random sample of size n. Define the statistics

S̄(x1,x2) =
(
S̄1,(x1,x2), S̄2,(x1,x2), S̄3,(x1,x2)

)
,

where

S̄j,(x1,x2) = 1
n

n∑
i=1

Sj,(x1,x2)(X1i, X2i), j = 1, 2, 3.

By the multivariate central limit theorem,

√
n
(
S̄(x1,x2) − µ

)
follows a trivariate Gaussian distribution with zero mean vector and covariance matrix Σ

as n → ∞.

Consider the transformation defined by

h(y1, y2, y3) = (h1(y1, y2, y3), h2(y1, y2, y3)) =
(

y1

y3
,
y2

y3

)
.

It is straightforward to show that this transformation is continuously differentiable, and

the corresponding Jacobian matrix of h evaluated at µ is M . By applying the multivariate

delta method, the result follows.
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7.3 Simulation Study

In this section, we evaluate the performance of the proposed estimator through a

Monte Carlo simulation study. Different copula models with various levels of Kendall’s

τ are considered to assess the estimator’s performance across a range of dependence

structures, from low to high. The marginal distributions are assumed to follow exponential

distributions with mean 1 for each component. Each experiment is repeated over 2,000

simulations, and the average bias and mean squared error (MSE) for both components of

the BMITF estimator are computed at various values of (x1, x2). The results are presented

in Table 7.1, Table 7.2, and Table 7.3.

It is observed from the tables that as the sample size increases, both the bias and

the MSE decrease. Furthermore, the bias tends to zero with increasing sample size. The

proposed estimator is also computationally efficient, producing estimates in most cases in

a few minutes, even for large samples, making it both time-efficient and practically feasible.

In the next section, we demonstrate the practical utility of the proposed estimator using a

real dataset.

7.4 Application to Pink Eye Disease Data

In this section, we apply our proposed estimator to estimate the BMITF for pink eye

disease data. The dataset, originally presented in Sankaran et al. (2012), is provided in

the Appendix for reference. It consists of 40 observations, each representing the time (in

weeks) at which an individual developed an infection in both the left and right eyes during

a one-year follow-up study.

Pink eye disease, also known as conjunctivitis, is an infection that causes inflammation

and redness in the transparent membrane lining the eyelids and covering the white part of

the eyeball. The condition may result from bacterial or viral infections or allergic reactions

to foreign substances. It can affect individuals across all age groups and typically resolves

within one to two weeks.

Since pink eye is a contagious disease, transmitted through direct or indirect contact

with an infected individual, understanding the incubation period is crucial. This knowledge

aids in determining appropriate isolation durations for individuals who have been in contact
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Table 7.1. Bias and mean squared error of the proposed nonparametric estimator of BMITF for different copula

models with Kendall’s τ = 0.25.

Copula (x1, x2)

Sample Size

n = 25 n = 50 n = 100

r̂1(x1x2) r̂2(x1x2) r̂1(x1x2) r̂2(x1x2) r̂1(x1x2) r̂2(x1x2)

Bias MSE Bias MSE Bias MSE Bias MSE Bias MSE Bias MSE

Gumbel

(0.3, 0.6) -0.002844 0.002661 -0.004592 0.010969 -0.000845 0.001096 -0.000884 0.004161 0.000197 0.000489 0.001085 0.001786

(0.7, 0.4) -0.001440 0.009158 0.000499 0.003040 0.000868 0.003728 -0.000564 0.001313 -0.001039 0.001690 0.000586 0.000621

(1.1, 0.8) 0.003756 0.009135 -0.000625 0.004938 0.000363 0.004442 -0.000724 0.002338 -0.000395 0.002180 -0.000228 0.001171

(0.9, 1.2) -0.002644 0.006016 0.002823 0.009404 -0.002961 0.002677 -0.000867 0.004568 0.000557 0.001472 0.002071 0.002247

(1.3, 1.5) 0.002663 0.008550 0.000200 0.010241 -0.000858 0.004136 0.000934 0.005358 -0.000780 0.002037 -0.000815 0.002680

Frank (0.3, 0.6) -0.001070 0.002509 -0.002840 0.009613 0.000628 0.001001 -0.002682 0.003555 0.000617 0.000467 -0.000927 0.001720

(0.7, 0.4) -0.000743 0.008012 -0.001341 0.002695 -0.000122 0.003709 -0.000116 0.001196 0.001235 0.001758 -0.000326 0.000597

(1.1, 0.8) 0.002417 0.008310 0.001325 0.004874 -0.001806 0.004233 0.000216 0.002339 -0.001096 0.002107 -0.000197 0.001137

(0.9, 1.2) 0.000373 0.005618 0.001463 0.009432 0.000556 0.002690 -0.000067 0.004352 -0.000123 0.001253 -0.000728 0.002145

(1.3, 1.5) -0.000565 0.008375 0.000161 0.010726 0.001651 0.004175 -0.000507 0.004977 -0.001943 0.002101 0.000530 0.002652

Joe (0.3, 0.6) -0.001967 0.002910 -0.008198 0.011111 -0.000270 0.001089 0.002909 0.004342 -0.000113 0.000511 0.000207 0.002102

(0.7, 0.4) -0.001712 0.009173 0.000241 0.003073 0.001071 0.003923 0.001275 0.001291 0.000494 0.001964 -0.000692 0.000618

(1.1, 0.8) -0.000343 0.009009 0.002271 0.004824 -0.002835 0.004385 -0.001198 0.002303 -0.000876 0.002035 0.000651 0.001142

(0.9, 1.2) 0.002455 0.005660 -0.002295 0.009932 0.001591 0.002619 -0.000764 0.004777 0.000309 0.001414 -0.002331 0.002273

(1.3, 1.5) 0.001457 0.008322 -0.000540 0.010306 0.000961 0.004075 -0.003249 0.005195 -0.000471 0.002016 0.000447 0.002520

Normal (0.3, 0.6) 0.000153 0.002548 -0.000504 0.009987 0.000934 0.001034 0.000671 0.004028 0.000177 0.000451 -0.000272 0.001839

(0.7, 0.4) -0.002971 0.008841 -0.000890 0.002823 -0.000810 0.003937 0.000150 0.001280 0.000581 0.001849 0.000586 0.000658

(1.1, 0.8) -0.001447 0.009280 -0.001009 0.005047 0.001127 0.004409 -0.000298 0.002377 -0.000241 0.002191 0.000396 0.001131

(0.9, 1.2) 0.002578 0.005591 -0.003101 0.010104 -0.000358 0.002707 0.000985 0.004453 0.001098 0.001381 -0.000695 0.002339

(1.3, 1.5) 0.000049 0.008422 0.002022 0.010574 0.000591 0.003895 -0.001468 0.005399 -0.000893 0.002061 0.001236 0.002845
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Table 7.2. Bias and mean squared error of the proposed nonparametric estimator of BMITF for different copula

models with Kendall’s τ = 0.5.

Copula (x1, x2)

Sample Size

n = 25 n = 50 n = 100

r̂1(x1x2) r̂2(x1x2) r̂1(x1x2) r̂2(x1x2) r̂1(x1x2) r̂2(x1x2)

Bias MSE Bias MSE Bias MSE Bias MSE Bias MSE Bias MSE

Gumbel

(0.3, 0.6) -0.000155 0.001794 -0.001219 0.007433 0.000660 0.000751 0.000208 0.002766 -0.000124 0.000360 0.000718 0.001297

(0.7, 0.4) 0.001702 0.005792 0.000712 0.002115 0.000165 0.002808 0.000197 0.001054 -0.000640 0.001312 0.000280 0.000478

(1.1, 0.8) 0.001188 0.007453 0.001643 0.004193 0.001501 0.003608 0.000471 0.002169 -0.000090 0.001708 -0.000936 0.000970

(0.9, 1.2) 0.000062 0.005343 0.002878 0.008116 -0.001661 0.002373 0.000144 0.003721 0.000710 0.001214 0.001127 0.001776

(1.3, 1.5) 0.001694 0.007618 -0.000355 0.009093 -0.000722 0.003737 0.000791 0.004489 0.000042 0.001859 -0.000237 0.002344

Frank (0.3, 0.6) -0.000165 0.001651 -0.000664 0.005674 0.000863 0.000733 -0.000058 0.002323 0.000620 0.000350 0.000255 0.001163

(0.7, 0.4) -0.000695 0.005255 -0.000450 0.002095 0.000984 0.002535 0.000525 0.000968 0.001038 0.001213 -0.000129 0.000473

(1.1, 0.8) 0.001450 0.006346 0.001220 0.004161 -0.001234 0.003203 -0.000373 0.001921 -0.000743 0.001704 0.000261 0.001007

(0.9, 1.2) 0.000828 0.004874 0.000423 0.007438 0.000361 0.002305 -0.000539 0.003369 -0.000273 0.001105 -0.000905 0.001758

(1.3, 1.5) 0.000063 0.007376 -0.000474 0.008971 0.001791 0.003696 0.000841 0.004201 -0.001934 0.001856 -0.000527 0.002257

Joe (0.3, 0.6) -0.000639 0.001935 0.000166 0.006902 -0.000445 0.000866 0.000132 0.003223 -0.000040 0.000375 -0.000561 0.001439

(0.7, 0.4) -0.002298 0.006236 0.000408 0.002329 0.000458 0.002875 0.000514 0.001005 0.000072 0.001371 -0.000379 0.000497

(1.1, 0.8) -0.002306 0.007084 0.001303 0.003852 -0.001240 0.003596 -0.000524 0.002071 -0.000202 0.001642 -0.000077 0.000977

(0.9, 1.2) 0.000272 0.004766 0.000075 0.007493 0.000998 0.002264 -0.000305 0.003586 0.001427 0.001161 -0.001603 0.001838

(1.3, 1.5) 0.001799 0.007303 -0.000006 0.008836 -0.001166 0.003653 -0.004444 0.004554 -0.000038 0.001839 -0.000304 0.002185

Normal (0.3, 0.6) 0.001569 0.001717 0.002300 0.005964 0.000769 0.000745 -0.000102 0.002719 0.000403 0.000353 -0.000485 0.001287

(0.7, 0.4) 0.000478 0.005544 -0.000896 0.002105 0.000343 0.002777 0.000347 0.000974 0.000721 0.001274 0.000193 0.000493

(1.1, 0.8) -0.000618 0.007381 0.000759 0.004307 -0.000095 0.003485 -0.000490 0.001993 -0.000253 0.001681 -0.000209 0.000983

(0.9, 1.2) 0.000521 0.004986 -0.002061 0.008169 0.000362 0.002425 0.002463 0.003647 0.001292 0.001191 -0.001003 0.001921

(1.3, 1.5) 0.000087 0.007260 0.000668 0.009180 0.000348 0.003655 -0.001009 0.004535 -0.000631 0.001904 0.001037 0.002427
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Table 7.3. Bias and mean squared error of the proposed nonparametric estimator of BMITF for different copula

models with Kendall’s τ = 0.75.

Copula (x1, x2)

Sample Size

n = 25 n = 50 n = 100

r̂1(x1x2) r̂2(x1x2) r̂1(x1x2) r̂2(x1x2) r̂1(x1x2) r̂2(x1x2)

Bias MSE Bias MSE Bias MSE Bias MSE Bias MSE Bias MSE

Gumbel

(0.3, 0.6) 0.000196 0.001332 0.000032 0.003925 0.000693 0.000658 0.000672 0.001675 0.000354 0.000300 0.000246 0.000793

(0.7, 0.4) 0.000503 0.003743 -0.000905 0.001766 0.001966 0.001843 0.000826 0.000912 0.000142 0.000882 0.000335 0.000427

(1.1, 0.8) -0.000167 0.005513 0.000538 0.003844 0.001579 0.002747 0.000427 0.001902 -0.000450 0.001284 -0.000429 0.000910

(0.9, 1.2) 0.001845 0.004669 0.002309 0.006058 -0.001449 0.002163 -0.001092 0.002932 0.000624 0.001086 0.001084 0.001417

(1.3, 1.5) 0.001439 0.007006 0.001380 0.007673 -0.000640 0.003554 -0.000165 0.003924 -0.000183 0.001745 -0.000331 0.002009

Frank (0.3, 0.6) -0.000064 0.001353 -0.000574 0.003028 0.000666 0.000636 0.000089 0.001428 0.000706 0.000301 0.000864 0.000666

(0.7, 0.4) -0.000193 0.003304 -0.000527 0.001788 0.000679 0.001554 0.000696 0.000861 0.001262 0.000759 0.000279 0.000409

(1.1, 0.8) 0.001861 0.004863 0.001610 0.003865 -0.000503 0.002462 -0.000256 0.001761 -0.000216 0.001286 -0.000481 0.000920

(0.9, 1.2) 0.000632 0.004615 0.000429 0.005962 -0.000039 0.002122 -0.000686 0.002769 -0.000624 0.001049 -0.001620 0.001366

(1.3, 1.5) 0.000720 0.006877 0.001340 0.007841 0.002153 0.003564 0.001225 0.003865 -0.002074 0.001761 -0.001228 0.002005

Joe (0.3, 0.6) -0.001375 0.001408 -0.001771 0.004187 -0.000586 0.000639 0.000424 0.001818 0.000870 0.000295 -0.000161 0.000884

(0.7, 0.4) -0.001720 0.003942 -0.000722 0.001768 0.000974 0.001909 0.001228 0.000867 0.000502 0.000894 0.000013 0.000418

(1.1, 0.8) -0.000067 0.005325 0.001702 0.003729 0.000100 0.002473 -0.000070 0.001810 0.000069 0.001182 -0.000168 0.000925

(0.9, 1.2) 0.000926 0.004281 0.002332 0.005478 0.000020 0.002156 -0.001038 0.002744 -0.000097 0.001041 -0.000823 0.001398

(1.3, 1.5) 0.000722 0.007291 0.000734 0.007800 -0.002702 0.003659 -0.004127 0.004153 -0.000604 0.001769 -0.000890 0.001955

Normal (0.3, 0.6) 0.000908 0.001342 0.002871 0.003333 -0.000004 0.000618 0.000303 0.001567 0.000074 0.000311 -0.000269 0.000785

(0.7, 0.4) 0.000132 0.003461 -0.000772 0.001721 -0.000452 0.001809 -0.000090 0.000844 0.000347 0.000847 0.000499 0.000420

(1.1, 0.8) 0.000403 0.005634 0.000914 0.003857 -0.000595 0.002537 -0.000483 0.001870 -0.000347 0.001278 -0.000912 0.000884

(0.9, 1.2) -0.000830 0.004576 -0.001322 0.006087 0.001231 0.002181 0.001647 0.002954 0.000698 0.001110 -0.000771 0.001579

(1.3, 1.5) 0.000576 0.006680 0.001018 0.007676 0.000109 0.003375 -0.000219 0.003947 0.000629 0.001779 0.001746 0.002063
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with infected persons, thereby helping to prevent further spread. Moreover, the incubation

period varies depending on the underlying cause (e.g., viral, bacterial, or allergic), which

in turn helps in implementing suitable treatment strategies.

As the BMITF provides provides insights into the time since infection for both the

left and right eyes, our objective here is to estimate the BMITF for a dataset associated

with pink eye disease using the proposed nonparametric estimator. Note that the time
since infection refers to the duration from the exact time of exposure to the present time.

Let X1 and X2 represent the exact times (measured in weeks) at which an individual

contracted pink eye in the left and right eyes, respectively, within a one-year period. Before

estimating the BMITF, we first perform an exploratory data analysis. The summary

statistics and various correlation measures of the dataset are presented in Table 7.4. Next,

we estimate the time since infection for both the left and right eyes for different values of

(x1, x2). The corresponding surface plots and contour plots of the estimators are shown in

Figure 7.1 and Figure 7.2.

Table 7.4. Descriptive statistics of infection times for left eye (X1) and

right eye (X2).

Statistics Left Eye (X1) Right Eye (X2)

Minimum 1.00 2.00

Maximum 31.00 28.00

1st Quartile 9.75 9.00

Mean 12.90 13.07

Median 12.50 14.00

3rd Quartile 16.00 16.00

Skewness 0.5966 0.1864

Kurtosis 4.2146 3.1790

Variance 36.74 30.62

Correlation Measures Value

Pearson’s Correlation 0.9298

Spearman’s Rho 0.9568

Kendall’s Tau 0.8422
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(a) Surface plot of r̂1(x1, x2)
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(b) Contour plot of r̂1(x1, x2)

Figure 7.1. Surface plot and contour plot of r̂1(x1, x2).
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(a) Surface plot of r̂2(x1, x2)
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(b) Contour plot of r̂2(x1, x2)

Figure 7.2. Surace plot and contour plot of r̂2(x1, x2).
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7.5 Conclusion and Future Direction

In this chapter, we proposed a nonparametric estimator for estimating the bivariate

mean inactivity time function (BMITF) as introduced by Nair and Asha (2008). We

established that the proposed estimator is asymptotically biased, consistent, and asymp-

totically normally distributed. The performance of the estimator was evaluated through a

simulation study under various copula models exhibiting low to high dependence structures.

The results indicate that the proposed estimator performs well across both weak and

strong dependence scenarios. Furthermore, the bias and mean squared error (MSE) of the

estimator decrease as the sample size increases. To demonstrate its practical applicability,

we applied the estimator to a real dataset involving pink eye disease to estimate the time

since infection period in the left and right eyes. Recent developments in the literature

suggest various smoothing techniques, such as kernel-based estimators, to refine empirical

estimators. A promising direction for future research would be to extend the proposed

estimator using such smoothing techniques to enhance its performance and interpretability.
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Appendix

Table 7.5. First goal times for Team-A (X) and Team-B (Y ) of the UEFA

Champions League football data reported in Meintanis (2007)

Sl. No. X Y Sl. No. X Y

1 26 20 20 34 34

2 63 18 21 53 39

3 19 19 22 54 7

4 66 85 23 51 28

5 20 27 24 44 31

6 49 49 25 64 15

7 8 8 26 26 48

8 26 0 27 16 46

9 60 39 28 11 3

10 82 48 29 25 14

11 72 72 30 45 55

12 66 22 31 36 49

13 16 41 32 24 30

14 41 3 33 44 36

15 11 40 34 2 1

16 26 33 35 27 47

17 49 42 36 28 6

18 42 52 37 2 2

19 36 52



Appendix

Table 7.6. Scaled bivariate warranty data without outliers reported in

Eliashberg et al. (1997)

No. Age Usage No. Age Useage No. Age Usage No. Age Usage

1 1.66 0.9766 11 1.64 0.5992 21 0.31 0.1974 31 0.27 0.0095

2 0.35 0.2041 12 1.45 0.5932 22 0.65 0.203 32 4.02 1.26

3 2.49 1.2392 13 3.1 1.3827 23 2.61 1.2532 33 1.4 0.8607

4 1.97 0.9889 14 1.4 0.7553 24 0.13 0.0796 34 0.09 0.0105

5 0.27 0.0974 15 2.49 2.5014 25 3.16 1.4796 35 2.09 1.2302

6 0.41 0.1994 16 5.71 2.538 26 2.61 1.5062 36 0.48 0.0447

7 0.59 0.2128 17 4.9 2.6433 27 3.92 2.0688 37 1.66 0.9766

8 0.75 0.2158 18 3.4 1.6494 28 3.97 1.8688

9 2.53 1.1817 19 1.6 0.7162 29 0.48 0.3099

10 3.25 1.421 20 1.28 0.5922 30 0.01 0.1983
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Appendix

Table 7.7. Infection duration (in Weeks) of left and right eyes for 40

Patients reported in Sankaran et al. (2012)

Patient No. Left Eye Right Eye Patient No. Left Eye Right Eye

1 19 13 21 15 16

2 12 16 22 13 15

3 16 8 23 3 9

4 18 19 24 1 4

5 14 16 25 11 18

6 4 16 26 9 7

7 11 15 27 16 12

8 2 6 28 28 15

9 12 16 29 12 18

10 13 9 30 10 20

11 8 14 31 12 15

12 7 2 32 31 12

13 10 17 33 15 10

14 15 16 34 13 9

15 5 3 35 14 28

16 9 6 36 15 12

17 18 13 37 16 6

18 22 16 38 17 25

19 11 8 39 11 11

20 9 14 40 19 18
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