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Abstract

Social networking services have profoundly reshaped human interaction and infor-

mation exchange transcending geographical, cultural, and temporal boundaries. These

platforms empower users to both consume and produce content, expressing themselves

in diverse languages and modalities, referred to as multilingualism and multimodality,

respectively. This resulting surge in user-generated content, characterized by multi-

lingualism and multimodality, has introduced a significant challenge of information

overload, which hinders content discoverability and reachability. To mitigate these

challenges and manage content efficiently, this thesis investigates hashtag recommen-

dation and popularity prediction as effective solutions.

Hashtag recommendation is the process of assigning hashtags to uploaded con-

tent, thereby facilitating thematic organization of vast volumes of content. However,

existing methods overlook crucial aspects such as multilingualism and multimodal-

ity. In this thesis, we propose hashtag recommendation methods tailored for various

linguistic contexts and content modalities. These methods encompass monolingual

content, multilingual content, multimodal content comprising texts and images, and

micro-videos, acknowledging the diverse levels of user engagement they elicit.

We first address hashtag recommendation for monolingual content, leveraging

language-specific features to understand text and suggest pertinent hashtags. Ex-

isting retrieval-based approaches struggle with rapid information flow in social net-

works, while generation-based methods lack sufficient contextual understanding. To

meet this critical need for organized information in social networks, we propose a

retrieval-augmented diffusion-based sequence-to-sequence framework to recommend

hashtags. Furthermore, recognizing the subsequent growth of multilingual content,

we then propose a framework to recommend personalized and language-specific hash-

tags for multilingual content. However, the development of comparable approaches

is impeded for low-resource languages, due to limited data availability and significant

linguistic heterogeneity. To address these limitations, we propose a novel framework to

recommend hashtags for multilingual posts, explicitly considering linguistic diversity,
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intra-relatedness among language groups, and users’ topical and linguistic preferences.

The rise of multimodal content on social networks, integrating visual and textual

modalities, necessitates leveraging both modalities in hashtag recommendation to ef-

fectively capture user interests and their influence on content consumption. However,

existing methods, relying on single modalities, fail to capture these multimodal rela-

tionships and user preferences. To address this, we propose a novel method that mines

deep interactions between textual and visual modalities. We also incorporate users’

historical tagging behavior to yield personalized hashtags. Micro-videos, a dominant

and highly engaging form of user-generated content, present a further challenge for

hashtag recommendation due to their concise duration and high information density.

Existing approaches neglect users’ modality-specific tagging preferences and the col-

lective tagging behavior of similar users. Moreover, the cold-start user issue prevails in

hashtag recommendation systems. In view of the above, we introduce a hybrid filtering

method that leverages interrelationships among modalities and users to recommend

hashtags for existing users. We also propose an innovative social influence and content-

based solution to alleviate the cold-start user problem. Our findings demonstrate that

the proposed method recommends relevant hashtags for micro-videos posted by exist-

ing and cold-start users, thereby boosting content discoverability.

The pervasive nature of social networks has empowered users to disseminate their

perspectives and experiences across diverse topics through posts integrating multiple

modalities, such as texts and images, leading to a significant surge in multimodal

content. This growing prominence of multimodal content necessitates accurate esti-

mation of its popularity. However, predicting the popularity of such posts remains a

considerable challenge, as only a small fraction gains wider visibility, while the ma-

jority experience limited reachability. To address this critical gap, we introduce a

multifaceted framework for multimodal content popularity prediction. We derive vi-

sual demographic features, sentiment from hashtags and captions, and model intricate

relationships among images, texts, and hashtags to determine post popularity.

Keywords: Social Network Analysis, Multilingualism, Multimodality, Hashtag

Recommendation, Popularity Prediction, Information Retrieval, Data Mining
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Chapter 1

Introduction

Social Network Services (SNS) have fundamentally reshaped human interaction

and global communication by establishing unprecedented connectivity that transcends

geographical, cultural, and temporal boundaries. These platforms are dynamic, under-

going continuous evolution driven by the introduction of novel features, adaptations

to evolving user behaviors, and ongoing technological advancements. The pervasive

adoption of mobile devices and the increasing accessibility of Internet have fueled

the exponential growth of SNS since their inception, culminating in over 5.22 billion

users globally, representing 67.5% of the world’s population as of October 20241. This

dynamic environment supports a multitude of applications, from dissemination of in-

formation, formation of personal and professional networks, to the vast world of online

entertainment and content sharing, which forms the engine of SNS.

The ease with which users can now both consume and generate content, facili-

tated by technological advancements, has empowered users to express themselves and

engage with information through increasingly diverse combinations of texts, images,

audios, and videos. This democratization of content creation has transformed SNS into

dynamic ecosystems where users function as both producers and consumers of User-

Generated Content (UGC), which constitutes the vast majority of content on these

platforms and drives online discourse. Consequently, the UGC landscape exhibits

a substantial prevalence of multilingual content, a direct result of SNS increasingly

1https://www.demandsage.com/internet-user-statistics/
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supporting vernacular languages, thereby enabling global participation in the digital

sphere using native tongues. While enriching online communication, these intertwined

Figure 1.1: User-Generated Content

trends of multimodality and multilingualism nature of UGC, as shown in Figure 1.1

present considerable challenges for effective content management and analysis.

The sheer volume of diverse UGC, coupled with the constant stream of updates

inherent in SNS, precipitates significant information overload [1]. Users are inundated

with data beyond their processing capacity, resulting in cognitive overload, shortened

attention spans, and difficulty discerning relevant content. This consequently dimin-

ishes user experience, reduces platform engagement, and hinders users from finding the

content they seek. To effectively manage this overwhelming information landscape,

it is crucial to address the underlying limitations within current SNS functionalities.

The challenges hindering effective information management on SNS arise from two

key limitations. First, current functionalities lack robust mechanisms for categoriz-

ing multilingual and multimodal UGC. This leads to users being overwhelmed with

irrelevant content and struggling to discover pertinent communities, experiences, and

information. Second, there is a lack of precise methodologies for predicting content

reach across diverse modalities, consequently affecting the ability of content to reach

its desired audience, leading to the disproportionate amplification of content. This dis-
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torts the information ecosystem, prioritizing ephemeral content over content possessing

societal significance, thereby undermining SNS as equitable spaces for knowledge ex-

change and meaningful interaction. To address these critical limitations, this thesis,

entitled “Multilingual Multimodal Content Mining for Hashtag Recommendation and

Popularity Prediction in Social Networks”, focuses on two interconnected solutions.

First, it explores the development of automated hashtag recommendation systems.

These systems leverage linguistic and multimodal features of UGC to enhance content

categorization and searchability, thereby enabling content discovery and creator reach.

Second, the thesis investigates the creation of automated popularity prediction mod-

els. These models utilize multimodal signals to forecast engagement trends, aiming

to optimize content distribution and ensure equitable visibility for high-impact posts

while maintaining the overall quality of user feeds.

1.1 Hashtag Recommendation

Due to the massive influx of UGC, hashtag recommendation systems have become

crucial for enhancing content categorization on SNS. These systems facilitate the orga-

nization of vast volumes of UGC into manageable thematic groups through intelligent

assignment of relevant hashtags. Posts annotated with hashtags then appear in ded-

icated feeds, enabling users to discover and engage with content aligned with their

interests, even if they do not directly follow the content creator, thereby improving

content discoverability and facilitating participation in topical discussions and events.

A hashtag, defined as a keyword or phrase prefixed with octothorpe symbol (#)

serves as metadata and topic indicator, enabling efficient content categorization and

retrieval. Since its introduction by Chris Messina in 2007 [2] for keyword-based vir-

tual discussion groups, hashtags have become ubiquitous across major SNS platforms,

underscoring their fundamental role in modern digital communication. However, the

effectiveness of hashtags relies on users selecting relevant hashtags, a task complicated

by informal language, idiosyncratic behavior, and platform-specific characteristics.

Research indicates that a substantial proportion of UGC lacks hashtags or utilizes
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suboptimal hashtags [3, 4], underscoring the need for automated hashtag recommen-

dation systems that analyze content and user behavior to suggest relevant hashtags

during content creation.

Automated hashtag recommendation systems address information overload by al-

gorithmically suggesting relevant and impactful hashtags. By analyzing content and

context, these systems can resolve incompleteness, mitigate inconsistency, correct

spelling errors, map slang to standardized hashtags, and counteract lexical variability

and semantic ambiguity. This automation streamlines content categorization, thereby

reducing noise in feeds. Furthermore, by surfacing precise hashtags, these systems

improve content discoverability and reduce cognitive load for users. Notably, research

indicates that tweets with hashtags receive 12.6% more engagement than those with-

out [5], demonstrating the impact of effective tagging. These systems also amplify

high-quality content and further promote engagement.

The format of UGC on SNS plays a crucial role in shaping user interaction. Dif-

ferent content formats elicit varying levels of engagement within social media feeds.

Notably, short-form video demonstrates the highest engagement2, followed by images,

indicating a user preference for visually dynamic and concise content. Conversely, uni-

modal textual content exhibits comparatively lower engagement, suggesting a trend

towards shorter, visually-driven content consumption patterns. This can be attributed

to the fact that visuals are processed significantly faster than text [6]. Therefore, con-

sidering the diverse nature of UGC, which can be unimodal such as text or images

or multimodal such as combinations of text and images, or micro-videos, this thesis

examines four critical aspects that significantly influence the effectiveness of hashtag

recommendation systems: monolingual textual content, multilingual textual content,

multimodal content comprising texts and images, and micro-videos, as shown in Fig-

ure 1.1.

2https://sproutsocial.com/insights/types-of-social-media-content/
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1.1.1 Monolingual Content

SNS microblogging platforms, characterized by their brief and informal posts,

have significantly reshaped modern communication and culture. While information

on X rapidly disseminates across linguistic and geographical boundaries, English has

emerged as a dominant language, constituting approximately 53%3, of its total content.

This substantial prevalence underscores the importance of developing robust hashtag

recommendation methods specifically tailored for English text. Hashtags play a cru-

cial role in augmenting content discoverability, facilitating information filtering, and

contributing to the systematic organization of online conversations, thereby enhanc-

ing user experience and information retrieval efficacy. The inherent lack of predefined

organization or formatting in textual content, particularly the short-form text on X,

renders it unstructured. Unlike structured data with clear rows and columns, tex-

tual data exists as free-flowing sequences of words, where meaning and context are

embedded within the language itself. Consequently, extracting meaningful informa-

tion and automatically categorizing or tagging such content necessitates sophisticated

natural language processing techniques. Effective hashtag recommendation, therefore,

becomes a crucial tool for imposing a degree of structure onto this otherwise unstruc-

tured data. Focusing on monolingual English text allows for the development of more

precise and effective hashtag recommendation systems. By concentrating on a single

language, we can leverage language-specific linguistic features, patterns of expression,

and common vocabulary to better understand the nuances of the text and suggest per-

tinent hashtags. Recognizing the critical need for organized information to enhance

accessibility, we propose a novel three-stage framework to address this challenge of

intelligent hashtag recommendation. First, a retriever identifies potential candidate

hashtags from a vast collection of tweets annotated with hashtags. Next, a selector

refines these candidates by analyzing the input tweet, ensuring only the most relevant

hashtags are retained. Finally, a diffusion-based sequence-to-sequence encoder-decoder

generates informative hashtags by leveraging the refined set of candidate hashtags and

the original input tweet.
3https://semiocast.com/top-languages-on-twitter-stats/
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1.1.2 Multilingual Content

The proliferation of SNS has resulted in an exponential increase in multilingual

content, particularly with the integration of support for vernacular languages, en-

abling users from diverse linguistic backgrounds to express themselves on trending

topics. This surge is evident in nations with prevalent low-resource languages, exem-

plified by India, which constitutes the third largest consumer for X with an impressive

daily active user count of 22.1 million4. Despite statistics showing that just 55% of

posts are written in English, even though 99% of users have their devices set to En-

glish5, users tend to tweet in their regional languages when expressing their thoughts.

The support for vernacular languages, allowing users to converse in Indic languages,

has demonstrably transformed content dissemination and reachability. Research con-

ducted in 2019 on X shows that 51% of Indian users tweet in English and 49% in

other languages [7], with a growing trend of engaging with trending topics in native

tongues. According to the census of 2001 [8], India encompasses 1,635 rationalized

mother tongues, 234 identifiable mother tongues, and 22 major languages, presenting

a challenge in directly matching semantically related content across languages due to

script and morphological variations. While hashtags offer a potential solution for link-

ing thematically similar multilingual posts, their infrequent use limits their efficacy.

The overwhelming volume of event-related posts further complicates the retrieval of

pertinent information, especially for non-English content where relevant hashtags are

scarce. This poses challenges for local content creators, brands, language learners, and

researchers studying multilingualism. An automated multilingual hashtag recommen-

dation system is therefore crucial for enhancing content discoverability, facilitating

connections across linguistic communities, and supporting research endeavors. The

statistics on our collected dataset for posts in multiple low-resource Indic languages

indicate that up to 24.16% of the 3,107,866 posts have less than two hashtags [7],

underscoring the necessity and research merit of developing such a system. While

extensive research exists for hashtag recommendation leveraging textual content, re-

4https://backlinko.com/twitter-users#twitter-users
5https://techcrunch.com/2010/02/24/twitter-languages/
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searchers have primarily focused on high-resource languages, namely English [5, 9]

and Chinese [10, 11]. However, recommending hashtags for content generated in low-

resource Indic languages on SNS is mainly unexplored due to the unavailability of

substantial amount of written texts, audio recordings, or other digital resources, re-

sulting in noisy or incomplete data. Existing methods for high-resource languages

cannot be directly applied due to the specialized linguistic expertise required. In light

of the above, we devise an automatic hashtag recommendation system for orpheline

tweets posted in low-resource Indic languages dubbed as TAGALOG. We refine tweet

representations in line with user’s topical and linguistic preferences by devising novel

attention mechanisms. Our graph-based neural network mines users’ historical posting

behavior and language relatedness by linking tweets according to language families,

namely, Indo-Aryan and Dravidian. Results from Chapter 4 shows that recommended

hashtags can be used to identify the main content for specific topics regardless of the

language, thereby aiding regional language users on X to effectively retrieve content

and keep up to date with the latest information.

1.1.3 Multimodal Content

The continuously evolving landscape of SNS has fostered multimodal communica-

tion, wherein users integrate diverse data modes such as texts and images to exchange

information, offering complementary perspectives that enrich content understanding.

Multimodality is increasingly prevalent, with over a third of microblogs combining

textual and visual modalities [12, 13]. These modalities provide unique insights, as

text contextualizes images while images convey supplementary details. Photo-sharing

platforms such as Flickr and Instagram exemplify this trend, enabling users to share

photographs accompanied by textual descriptions and optional hashtags. These hash-

tags serve as valuable metadata facilitating tasks such as sentiment analysis [14],

information retrieval [15], and topic extraction [16]. By comprehending multimodal

information and user history, effective multimodal hashtag recommendation systems

can enhance SNS platform quality, user engagement, and browsing experiences. While

multimodal microblogs with hashtags are increasingly available on photograph sharing
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services, obtaining a comprehensive latent representation from the complementary yet

variably correlated visual and textual modalities necessitates effective information fu-

sion. However, the inherent limited interaction between modalities hinders capturing

their interrelations, complicating the learning of robust multimodal representations.

To enhance the discoverability of prevalent multimodal content, a substantial pro-

portion of which currently lacks effective hashtag annotations, we introduce a novel

multimodal personalized hashtag recommendation method. Our proposed method

captures associations between textual and visual modalities within microblogs and

incorporates user tagging preferences.

1.1.4 Micro-videos

Video content elicits the highest level of user engagement, evidenced by supe-

rior information retention, as individuals recall approximately 95% of a message when

viewing a video compared to just 10% when reading6. The rapid proliferation of micro-

videos or short-form videos, a prevalent form of UGC, has been observed across video-

sharing platforms such as TikTok , YouTube, and Instagram, with platform-specific

naming conventions including TikTok videos, Instagram Reels, and YouTube Shorts,

encapsulating substantial information within brief durations. These bite-sized clips

have varying time constraints, such as six seconds on Vine, 60 seconds on YouTube,

and a maximum of 90 seconds on Instagram7. The ease of creation and consumption

of these short-form video clips aligns with the diminishing attention span of contempo-

rary digital users. The consequent surge in micro-video data, exemplified by TikTok’s

substantial user base of 689 million monthly active users and daily viewership of over

a million videos [17], underscores the pressing need for effective content management

and retrieval solutions. Hashtags function as crucial metadata for organizing and

accessing this expanding corpus of micro-videos, facilitating efficient search and dis-

covery for specific topics, interests, or events. Despite their importance, a significant

6https://www.forbes.com/sites/yec/2017/07/13/how-to-incorporate-videointo-your-social-
media-strategy/

7https://www.demandsage.com/instagram-reel-statistics/
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proportion of users neglect to incorporate hashtags into their micro-videos. Empiri-

cal evidence shows that over 33 million hashtag-devoid micro-videos posted daily on

Instagram alone [18]. Given the escalating volume of micro-video data and the imper-

ative for efficient content retrieval, we develop an automated hashtag recommendation

system tailored for micro-videos that leverages content-based, collaborative filtering,

and user’s historical and tagging behavior to recommend hashtags. Moreover, we

devise a content-based and social influence method to recommend hashtags for micro-

videos posted by cold-start user. Chapter 6 shows that our proposed social influence

and content-based technique recommends both popular and content-relevant hashtags,

aiding cold-start users to gain visibility on SNS.

1.2 Popularity Prediction

Information overload intensifies competition for user attention, leading to a

“winner-take-all” [19] dynamic where only a small fraction of UGC captures the ma-

jority of user attention [20]. Consequently, a significant amount of UGC remains

unnoticed, hindering the reach of potentially valuable UGC to their intended audi-

ences. Popularity prediction has emerged as a crucial solution, aiming to forecast

the level of public engagement UGC will receive early in its lifecycle. The popularity

of UGC is operationalized through various metrics, including direct measures of user

interaction such as the number of likes, shares, and comments, as well as engagement

rate, audience growth rate, and view counts or watch time for video content. Forecast-

ing UGC popularity provides insights into user interests, altering user comprehension

and interaction with the digital world, and enabling content creators to optimize their

output for maximum impact. By identifying UGC likely to garner substantial at-

tention, platforms can enhance user experience by prioritizing engaging content and

facilitating the discovery of relevant information. This capability also allows for effi-

cient resource allocation in content delivery and identification of emerging trends by

analyzing popular content patterns. Beyond platform optimization, accurate popular-

ity prediction has broad applications, including enhancing recommender systems [21],
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online advertising campaigns [22], sentiment analysis [23], and digital marketing [24].

Given the increasing prevalence of multimodal content, where SNS users articulate

opinions and share experiences through posts comprising multiple modes of expres-

sion, understanding the impact of multimodality on popularity prediction is crucial.

On X, posts containing images receive 18% more clicks, 89% more likes, and 150%

more retweets compared to text-only posts8. Similarly, on Facebook, the inclusion

of images in posts leads to a 53% increase in likes and a 104% surge in comments.

Prevailing methods primarily center on the content itself, thereby overlooking infor-

mation encapsulated within alternative modalities. In this thesis, we propose a novel

method that leverages visual demographic features of faces in images and sentiment

derived from associated hashtags [25]. Moreover, we devise a hashtag-guided attention

mechanism that leverages hashtags as navigational cues to focus on the most pertinent

features of textual and visual modalities.

Both hashtag recommendation and popularity prediction represent critical tools in

navigating the complexities of the UGC landscape and fostering a more efficient and

rewarding experience for users. The key contributions of the thesis are as follows:

[1] We propose a retrieval augmented diffusion-based sequence-to-sequence frame-

work to recommend hashtags for monolingual posts related to disaster events.

We leverage the synergy of retrieval with the generative power of diffusion mod-

els to improve content categorization, thereby enhancing content retrieval and

information dissemination on social media.

[2] We devise a deep learning-based graph neural network to recommend hashtags

for UGC in low-resource Indic languages. Our approach refines post content

locally by attending to users’ topical interests and language usage styles. Glob-

ally, we construct a graph to model users’ long-term posting behavior and their

interactions with past content. Furthermore, our framework leverages linguistic

relatedness within Indo-Aryan and Dravidian language families by mining inter-

language correlations. This system aims to mitigate language barriers, enhance
8https://www.adweek.com/performance-marketing/twitter-images-study/
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organization and discoverability of multilingual content, and promote universal

content accessibility.

[3] We propose a hybrid deep neural network to address hashtag recommendation

for multimodal microblogs by jointly formulating the task as multi-label clas-

sification and sequence generation problems. The proposed model capitalizes

on the complementary strengths of both techniques. Furthermore, we leverage

users’ hashtagging behavior and preferences, derived from their historical posts

and associated hashtags, to recommend personalized hashtags.

[4] We present a novel hybrid filtering approach that leverages micro-video content,

users’ modality-specific tagging preferences, and community interests to facili-

tate context-aware, user-aware, and community-aware hashtag recommendation.

To this end, we construct a heterogeneous graph capturing user-modality inter-

actions, user-user interactions based on tagging patterns, and modality-modality

interactions to capture explicit and implicit collaborative signals. To address the

cold-start user problem, we propose a content-based filtering and social influ-

ence method that analyzes micro-video content and mimics tagging behavior of

popular users to recommend hashtags.

[5] We propose a deep neural network that leverages sentiment derived from hash-

tags, visual demographic information, and a novel hashtag-guided attention

mechanism to comprehensively forecast post popularity. The hashtag-guided

attention mechanism utilizes hashtags to direct the model’s focus toward con-

tent features most relevant to the intended audience and context.

[6] This thesis also contributes two novel text-based hashtag recommendation

datasets. The first, designated IndicHash, comprises posts in a diverse range

of low-resource Indic languages, specifically Bangla, Marathi, Gujarati, Telugu,

Tamil, Kannada, and Hindi, in addition to English. The second dataset, desig-

nated Text Dataset from Instagram (TINS), is a personalized dataset of English-

language posts collected from Instagram. These curated datasets serve as valu-
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able resources to facilitate further research in hashtag recommendation for Indic

regional languages and English.

The organization of this thesis is as follows. Chapter 2 presents a comprehensive

survey of related work. Chapter 3 details the proposed methodology for hashtag rec-

ommendation in monolingual text-based content. Chapter 4 develops a multilingual

hashtag recommender to address the complexities of multilingual text. Chapter 5

investigates hashtag recommendation for multimodal content, specifically texts and

images. Chapter 6 explores the unique challenges of hashtag recommendation for

micro-video content. Chapter 7 presents a novel framework for predicting the pop-

ularity of multimodal content. Finally, Chapter 8 concludes the thesis and outlines

directions for future research.
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Chapter 2

Literature Review

In this chapter, we first present the related work on hashtag recommendation and

then review literature on popularity prediction in social networks.

2.1 Hashtag Recommendation

In this section, we cover the substantial volume of research work in the domain of

hashtag recommendation categorized into content-based and personalized filtering.

2.1.1 Content-based Hashtag Recommendation

UGC [26] appears in a wide spectrum of formats across social media platforms

including textual data, visual media, and micro-videos. Content-based hashtag rec-

ommendation focuses on explicitly representing the core attributes of the content to

suggest relevant hashtags. This approach has been rigorously investigated across di-

verse content formats, such as texts [7, 27, 28, 29], images [30, 31, 32], multimodal

microblogs [33, 34], and micro-videos.

2.1.1.1 Text-centric Hashtag Recommendation

The textual content has dominated social media research. Hence, extensive re-

search has been carried out to study the problem of hashtag recommendation using

textual post content in monolingual and multilingual scenarios.
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2.1.1.1.1 Monolingual Text-centric Hashtag Recommendation Ding et

al. [35] merged topic model with translation model, positing that tweet content and

associated hashtags serve as parallel descriptions of the same topic. The authors em-

ployed a topic-specific word trigger to minimize linguistic differences between tweets

and hashtags. The authors first identify topics for each tweet and then generate can-

didate hashtags according to the learned topical translation model. Sedhai and Sun

et al. [36] presented a two-phase approach to suggest hashtags for hyperlinked tweets.

Their method involved gathering hashtags from similar tweets, the tweet’s domain,

named entities, and hyperlinked documents, subsequently using RankSVM to rank

and suggest the most relevant hashtags. Kumar et al. [28] proposed using word em-

beddings and external knowledge from Wikipedia and the Web to bridge the gap

between tweet content and hashtags. They retrieved semantically related keywords

using word2vec and integrated topical, lexical, semantic features of tweets, along with

user influence, employing Learning-to-rank to aggregate different hashtag generation

methods [28].

A common approach in hashtag recommendation involves directly extracting

keyphrases from the source text [37, 38, 39]. Zhang et al. [40] identified hashtags

as valuable keywords for extracting keyphrases from X. However, this method in-

herently limits hashtag generation to terms already present in the text, overlooking

the creative aspect of hashtag usage. Users can create novel hashtags owing to their

backgrounds, proficiency levels and linguistic styles, leading to suboptimal results.

The task of hashtag recommendation has been approached as both a classification

and a generation problem. Classification-based methods typically predefine a limited

set of candidate hashtags [41] and utilize a softmax layer for prediction. However,

this reliance on a fixed vocabulary is restrictive, particularly in dynamic environments

where new and relevant terms frequently emerge. The computational cost of contin-

uously updating these models renders them less practical for rapidly evolving social

media landscapes. In contrast, sequence generation approaches [9, 11, 42] enable the

creation of more diverse and expressive hashtags. By considering the sequential nature

of hashtags, these models can capture dependencies among them. While hashtags in

14



the output set might be correlated, they do not always follow a strict sequential order

akin to words in a sentence. Although classification treats hashtags as independent

categories, they can also be generated sequentially. To model sequential relationships

and implicit correlations among hashtags, we interpret hashtag recommendation as a

generation task to better reflect natural user behavior.

Addressing the limitations of existing monolingual hashtag recommendation meth-

ods, this thesis proposes a novel retrieval-augmented diffusion-based sequence-to-

sequence framework for monolingual content (refer to Chapter 3). By leveraging the

synergy of retrieval with the generative power of diffusion models, we aim to improve

content retrieval and the quality of recommended hashtags. Empirical evaluations

demonstrate the superior performance of our proposed method compared to state-of-

the-art approaches in terms of both hashtag quality and training efficiency.

2.1.1.1.2 Multilingual Text-centric Hashtag Recommendation The task of

suggesting hashtags for textual content can be posed using one of the traditional prob-

lems in Natural Language Processing (NLP), i.e., text categorization [43, 44, 45, 46].

As far as we are aware, although many works have been carried out for classifying

text in low-resource Indic languages [47, 48, 49], there is only one work that predicts

hashtags for multilingual content [50]. Low-resource languages (LRLs), also known

as “less studied, under-resourced, low density” languages are languages with limited

linguistic resources, such as textual material, language processing tools, grammar and

speech databases, dictionaries, and human competence [51]. These languages are fre-

quently spoken by small groups, lack standardized writing systems, and have a scarce

digital presence. Researchers in NLP distinguish LRLs based on the availability of

data and NLP tools. LRLs have a relatively small amount of data, i.e., text corpora,

parallel corpora, and lack language-specific tools such as spell checkers and grammar

checkers, and manually crafted linguistic resources for training NLP models. There

are a number of advantages to working with low-resource languages that have the

potential to impact the lives of people who speak these languages, the opportunity to

develop new NLP techniques that can be applied to other languages, and the chal-
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lenge of working with limited data. Efforts are being made by linguists, researchers,

and organizations to document languages, construct corpora, develop technology and

tools, and community-driven language revival campaigns for LRLs since LRLs offer

humongous benefits some of which are enlisted below.

Due to small corpora and unseen scripts, labeled data for diverse Indic languages

is sparse or nonexistent in real applications compared to high-resource languages such

as English and Chinese. To get beyond corpus restrictions inherent in low-resource

languages, Khemchandani et al. [52] proposed RelateLM to effectively customize lan-

guage models for low-resource languages. Since numerous Indic scripts descended

from Brahmi script, the authors take advantage of script relatedness through translit-

eration. RelateLM artificially translates relatively well-known language content into

low-resource language corpora using comparable sentence structures to get around

corpus limitations. Aggarwal et al. [53] performed zero-shot text classification for

Indic languages by leveraging lexical similarity. To this end, the authors performed

script conversion to Devanagari and divided words into sub-words to optimize the

vocabulary overlap among the related Indic languages datasets. Khatri et al. [54]

investigated the influence of sharing encoder-decoder parameters between related lan-

guages in Multilingual Neural Machine Translation. They developed a system trained

from the languages by grouping them based on language family i.e., Indo-Aryan group

to English and Dravidian group to English. Then, the authors convert the entire lan-

guage data to the same script, which helps the model learn better translation by

utilizing shared vocabulary. This approach obscures the underlying structural simi-

larities between languages. Language families are typically defined based on shared

ancestry and historical relationships between languages. Transliteration-based meth-

ods may not accurately capture these relationships between languages, as they focus

primarily on the surface features of languages which amounts to inaccurate results for

downstream tasks. Marreddy et al. [55] put forward a supervised approach to rebuild

graph called as Multi-Task Text GCN. This method utilizes a Graph AutoEncoder

(GAE) [56] to learn the latent word and sentence embeddings from a graph which is

employed to carry out Telugu text categorization for various downstream tasks. Zhang
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et al. [50] proposed a Twitter Heterogeneous Information Network (TwHIN-BERT) to

anticipate hashtags for multilingual content. The authors employ Approximate Near-

est Neighbor (ANN) search to identify pairs of socially appealing tweets. This method

falls short of capturing the user’s language and topical choices. Furthermore, it does

not take linguistic relatedness within language groups into account to address the

low-resource nature of numerous languages featured in the dataset.

Therefore, a quick assessment reveals that research has primarily focused on text-

only, image-only, or multimodal information posted in high-resource languages i.e.,

English, and Chinese. These studies do not consider recommending hashtags for

content posted in low-resource languages. To tackle this issue, we propose a novel

multilingual system i.e., TAGALOG, which extracts content-based, user-based, and

language-based features to recommend personalized and language-specific hashtags for

content created in low-resource Indic languages (refer to Chapter 4). Experimental

evaluations on the curated dataset from X demonstrate that the proposed model out-

performed recognized pre-trained language models and extant research, showing sig-

nificant improvements in F1-score. TAGALOG recommends hashtags that align with

the user’s interests and linguistic predilections, leading to a heightened level of tailored

and engaging user experience. Personalized and multilingual hashtag recommendation

systems for low-resource Indic languages can help to improve the discoverability and

relevance of content in these languages.

2.1.1.2 Image-centric Hashtag Recommendation

Convolutional Neural Networks (CNN) have exhibited good generalization power

in visual recognition applications. Sigurbjornsson et al. [57] developed a system to

recommend tags to users for photos by utilizing combined knowledge of the entire

Flickr community users. The authors first studied user tagging behavior, then im-

age content, and accordingly suggested potential tags for image annotation. Gong et

al. [58] leveraged the feature representations extracted from Deep Convolutional Neu-

ral Networks. The authors also made use of top-k ranking objectives to solve hashtag

suggestion in terms of multi-label classification. Gong et al. [59] investigated novel
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attention-based CNNs for performing hashtag recommendation to avoid hand-crafted

features. The proposed CNN architecture contained two attention channels, i.e., local

and global, to process the input microblog and select trigger words. This method

yielded superior performance compared to those considering only global or local in-

formation. Wu et al. [60] devised a neural network that captures correlations among

tags and photos. The authors applied an attention mechanism to retrieve valuable

information from images and suggest hashtags accordingly. The aforementioned sys-

tems utilize information from either texts or images for recommending tags. However,

text or image alone cannot capture the entire post information. Our approach aims to

suggest hashtags by utilizing various modalities together to provide richer contextual

information.

2.1.1.3 Multimodal Hashtag Recommendation

Social media data is primarily inclined to multimedia content. The enormous

amount of available information comprises both visual and textual modalities. Zhang

et al. [12] integrated visual and textual information for hashtag recommendation. The

authors used an alternative co-attention network in which tweet is used to obtain

visual attention. Then the obtained image representation is used to generate the

textual attention and later obtain a more informative post representation. When

tagging an image, a user considers both content and context of image. Rawat et

al. [61] devised a Deep Neural Network that leverages content and context of an

image to recommend tags to the user. The authors regarded hashtag recommendation

as a multi-label classification problem and used AlexNet to retrieve visual features

aggregated with ContextNet. Zhang et al. [5] used text and image to recommend

hashtags for posts on photo sharing services. The authors designed a co-attention

mechanism in which image and text co-guide each other, to obtain an informative

post representation. Since many users prefer to create a post with texts and images,

it is essential to find an effective way to incorporate both modalities. In this thesis,

we propose a hybrid deep neural network to automatically recommend hashtags for

multimodal unannotated social media content (refer to Chapter 5). Our proposed
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method predicts suitable hashtags for posts by mining information from textual and

visual modalities. We apply word-level attention on textual content to learn those

words in the text that are more closely related to hashtags followed by a parallel

co-attention mechanism to model deep interactions between the two modalities.

2.1.1.4 Micro video-centric Hashtag Recommendation

Unlike [62] who proposed a Guided Generative Model to generate hashtags from

multimodal inputs and guided signals from a Visual Language Model-based Hashtag

Retriever, we capture both individual and community interests to recommend hash-

tags for micro-videos. Cao et al. [4] obtained feature representations from micro-video

modalities and integrated them via a multi-view representation learning framework.

The regularized projections and hashtag embeddings are fed to a customized neural col-

laborative filtering framework to yield hashtags. Building on this, studies [63] further

incorporated sentiment analysis, integrating sentiment features, content features, and

semantic embeddings of hashtags using weighted concatenation. While these methods

are capable of recommending sentiment hashtags and utilize all three modalities of

micro-videos and employ sequential modeling, they primarily rely on concatenating

modality-specific features before projection into latent space. Mehta et al. [64] built

a heterogeneous graph connecting hashtags based on semantic co-occurrence, videos

based on shared hashtags, with direct links between videos and assigned hashtags.

They employed a Graph Convolutional Network (GCN)-based node update scheme to

generate micro-video embeddings for hashtag recommendation. Chen et al. [30] cre-

ated an image similarity graph to illustrate the relationship between posts, assuming

visually comparable images use similar hashtags. We extend this idea to micro-videos

and compute intramodality similarity, assuming that similar modalities in micro-videos

share similar hashtags.

Despite their effectiveness in analyzing micro-video content, content-based meth-

ods often overlook individual tagging behavior, the tagging patterns of like-minded

users, and the social context of popular and trending hashtags. This disregard limits

personalization and the ability to capture the dynamic nature of hashtag usage within
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social networks.

To address these limitations, this thesis presents a novel approach for micro-video

hashtag recommendation (refer to Chapter 6). Our method leverages micro-video

content, user’s modality-specific tagging preferences, and community interests to fa-

cilitate context-aware, user-aware, and community-aware hashtag recommendations.

Specifically, our approach explicitly models user’s modality-specific interest using a

GCN-based message passing strategy, thereby aligning recommendations with both

individual and community preferences.

2.1.2 Personalized Hashtag Recommendation

Personalized hashtag recommendation aims to tailor suggestions to individual

user preferences and behaviors, addressing the limitations of non-personalized meth-

ods [63, 65, 66, 67] that focus solely on content. Early personalized approaches lever-

aged user history. Van et al. [68] retrieved hashtags from the most similar past tweets

based on content and user features. Durand et al. [69] employed an open vocabulary

model, learning user characteristics from past images and hashtags to suggest user-

aware tags. Zhang et al. [5] also considered users’ historical tagging habits alongside

content-based attention mechanisms. However, relying solely on past content simi-

larity [5] overlooks the broader social network influence. To address this, Peng et

al. [70] introduced a neural memory network to model extensive user histories, incor-

porating a gating mechanism for unrelated hashtag usage. Jeong et al. [71] utilized

demographic data alongside content, while Padungkiatwattana et al. [72] proposed

PAC-MAN, integrating high-order user-hashtag relations with content-based BERT.

Other deep learning-based approaches aimed to handle the long-tail distribution of

hashtags. Li et al. [73] used external knowledge and a pairwise interactive embedding

network but averaged user representations across modalities, neglecting fine-grained

preferences. Liu et al. [74] used metadata to guide attention, but demographic reliance

can be inaccurate for idiosyncratic users. MISHON addressed this by modeling user-

user interactions to incorporate community preferences. Graph Neural Networks have

also been explored: Wei et al. [18] used GCNs to model user-micro-video-hashtag
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relationships but overlooked user-user interactions and modality-specific preferences.

Shuai et al. [75] modeled user interests at a topic level using topic and rating graphs.

In this thesis, we propose a personalized hashtag recommendation system tai-

lored for multilingual, multimodal, and micro-video content. For multilingual content

(Chapter 4), we capture users’ topical and linguistic preferences locally using attention

mechanisms and model long-term behavior globally with user interaction graphs. For

multimodal content (Chapter 5), our system leverages users’ historical hashtagging

behavior and preferences. For micro-videos (Chapter 6), we capture modality-specific

tagging preferences by linking users to the modalities of their past micro-videos. This

multi-faceted approach aims to provide effective personalized hashtag recommenda-

tions by considering individual preferences and the specific characteristics of different

content types.

2.2 Popularity Prediction

Popularity prediction of online content has attracted significant research interest,

with scholars proposing diverse methodologies. These methodologies leverage a variety

of techniques, datasets, model structures, and problem formulations i.e., either classi-

fication or regression. Kumar et al. [76] focused on predicting the popularity of news

articles, particularly their ability to attract user comments, offering the opportunity

for informed content modifications using various features extracted from article con-

tent. Lin et al. [77] devised a framework by stacking multiple regression models across

several layers, fostering synergies among diverse models to anticipate engagement of

posts on a platform similar to Flickr. Purba et al. [78] devised a novel approach for

predicting Instagram post engagement rates on a global dataset. It utilizes Support

Vector Regression (SVR) and incorporates features from hashtags, image analysis,

user history, and manual image assessment. Cao et al. [79] proposed CoupledGNN, a

novel graph neural network framework designed for predicting popularity with network

awareness on social platforms. This framework leverages two interconnected GNNs

to capture the propagation of influence. One GNN models the user activation status

21



within the network, while the other GNN models the dissemination of information it-

self. Mannepalli et al. [80] leveraged a Long Short-Term Memory (LSTM) network to

predict popularity by combining features extracted from text content, user data, time

series information, and user sentiment analysis. Furthermore, Self-Adaptive Rain Op-

timization (SA-RO) is employed to fine-tune LSTM weights, enhancing the prediction

accuracy. Tan et al. [81] leveraged transformers for time series feature extraction and

CatBoost for feature selection, enabling comprehensive multi-view feature extraction

and achieving superior prediction accuracy on the Social Media Prediction Dataset.

The effectiveness of these approaches depends on the selection and quality of fea-

tures used to represent the content. These models may not capture several other

modalities comprising the social media post, and their interrelationships might have

been overlooked. Prior studies have not employed hashtags used in a post as the main

feature in popularity prediction tasks. According to Zappavigna [82], hashtags have a

variety of uses on social media, with subject markers serving as the most important

ones. Hashtag efficiently defines the topic of the post and help the user to easily

identify if the post is related to them or not. Few researchers have also explored the

representation of hashtags in the form of graphs. Liu et al. [83] proposed a network

framework where hashtags serve as nodes. Each node is linked to a collection of tweets,

which themselves are comprised of individual words. To capture the inherent relation-

ships within this hierarchical, heterogeneous network, they introduce the Hashtag2Vec

embedding model. This model extends its embedding capability beyond hashtags to

encompass short social text elements by simultaneously considering relationships be-

tween hashtags themselves (hashtag-hashtag), hashtags and tweets (hashtag-tweet),

tweets and their constituent words (tweet-word), and finally, word-to-word relation-

ships within tweets. Liao et al. [84] proposed a multimodal framework that analyzes

hashtag network structure semantics, and topic modeling besides captions and images

to predict popular influencer posts in Taiwan. Chakrabarti et al. [85] addressed the

challenge of maximizing social media popularity by recommending context-relevant

hashtags. The proposed framework leveraged post keywords, user popularity, and

trending hashtags to recommend effective hashtags. However, these approaches focus
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on the structural and textual aspects of hashtags ignoring the sentiment information

embedded in them. Posts with positive or sentimental hashtags tend to perform better

than those with neutral or negative hashtags. This indicates that sentiment analysis

of hashtags can be employed to forecast which posts are more inclined to become viral.

Many researchers have stated that using the attention mechanism as a part of the

popularity prediction model can significantly enhance performance. As many models

use images and texts as primary features to predict the popularity score, the attention

mechanism can help represent these features in a better way. Xu et al. [86] proposed

a regression model to predict popularity where they used an attention layer at the

top of the model and showed a significant improvement when compared to models

without attention. Lin et al. [87] utilized a self-attention mechanism to fuse semantic

and numeric features effectively for social media popularity prediction, outperforming

other methods. Bansal et al. [88] devised a word-level parallel co-attention mechanism

to derive an enriched representation of multimodal social media posts by capturing

the mutual influence of text and image on each other. Wang et al. [89] presented a

novel multimodal popularity prediction model grounded in hierarchical fusion, where

extracted features encompass visual elements, textual content, along with attributes

extracted from both modalities. The model innovatively integrates three integration

stages namely, early integration, representation integration, and modality integration

- culminating in a fully fused vector inputted into an XGBoost regression model for

effectively estimating the virality of posts. However, extant approaches prioritize local

features, neglecting a holistic understanding of the content’s multimodal nature.

To overcome this limitation, we propose a novel multimodal deep learning model

with a novel hashtag-guided attention mechanism (refer to Chapter 7). This method

incorporates diverse feature types, encompassing content characteristics, sentiment

analysis, hashtag information, and user demographics. The proposed model uses trans-

fer learning, deep learning, attention mechanism, and graph neural networks to learn

fine-grained representations of these features and then feed these enhanced feature

representations into a unified framework to estimate the post popularity.
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Chapter 3

Hashtag Recommendation for

Monolingual Content

3.1 Introduction

This chapter focuses on hashtag recommendation for monolingual textual con-

tent as a crucial first step within the broader scope of this thesis. Recognizing the

complexities inherent in diverse languages and content formats, establishing robust

techniques for a prevalent language such as English provides a necessary bedrock for

subsequent research. Given that English constitutes a substantial proportion of con-

tent on platforms such as X, it represents a critical domain for developing effective

hashtag recommendation systems that enhance content discoverability and thematic

organization within the extensive landscape of UGC.

Hashtags serve as vital metadata for structuring short textual posts prevalent on

microblogging platforms. By introducing a degree of organization, they facilitate effi-

cient information filtering and retrieval, significantly improving user experience. How-

ever, recommending appropriate hashtags even within the confines of a single language

such as English presents distinct challenges that necessitate sophisticated methodolo-

gies. Accurately capturing semantic clues embedded within brief and informal posts

requires deep contextual understanding, requiring systems to discern subtle meanings,

figurative language, and domain-specific terminology. Moreover, recommendation sys-

tems must effectively address the considerable linguistic variability inherent even in
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monolingual communication, encompassing diverse vocabulary, syntax, slang, abbre-

viations, and stylistic variations. Furthermore, the sheer volume of daily posts creates

information overload, underscoring the necessity of intelligent hashtag recommenda-

tion for filtering relevant content and maximizing its visibility.

Addressing these multifaceted complexities is paramount for enhancing informa-

tion access and user engagement on SNS. The effective application of hashtags within

monolingual text is not without these inherent challenges, necessitating the develop-

ment of robust hashtag recommendation systems. Understanding these complexities

is particularly critical in various application scenarios, one salient example being crisis

communication, specifically concerning disaster events. During disasters, people in-

creasingly rely on social media for updates, assistance, and vital information sharing

[90, 91]. However, this valuable resource remains underutilized due to the sheer volume

of information, making it difficult to identify critical updates [92]. Monolingual text-

based posts, such as English tweets, play a critical role in disseminating real-time up-

dates, coordinating relief efforts, and providing situational awareness. In this context,

accurate and consistent hashtagging is paramount. It facilitates the rapid identifica-

tion and dissemination of crucial information to emergency responders. Furthermore,

it keeps the affected public informed about the evolving situation, evacuation routes,

and available resources. Finally, it enables the aggregation and analysis of on-the-

ground reports to assess damage and identify areas needing immediate assistance.

Therefore, this chapter analyzes the intricacies involved in monolingual text-based

hashtag recommendation and introduces a novel three-stage framework specifically

designed to generate relevant and informative hashtags for English textual content,

thereby laying the groundwork for the subsequent exploration of multilingual and

multimodal contexts central to this thesis.

It was found that FEMA’s initial damage estimates for Hurricane Harvey over-

looked nearly half of the relevant online data [93], resulting in a significant under-

estimation of the total cost. This instance highlights the potential consequences of

overlooking online information and the need for tools to effectively filter and utilize

it. Hashtags are vital for organizing and disseminating critical information on social
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networks during disasters. They facilitate effective communication and coordination

among emergency responders, government agencies, and the public, improving real-

time situational awareness. Accurately tagged tweets identify the disaster’s nature,

location, affected areas, severity, and specific needs of those on the ground. However,

approximately half of disaster-related tweets lack informative hashtags [93], hinder-

ing effective response. Therefore, automated hashtag recommendation systems are

essential for optimizing information accessibility, efficient filtering of critical updates,

improving disaster response, efficient resource allocation, and mitigation efforts.

Recommending hashtags for disaster-related tweets presents unique challenges.

The information landscape during disasters is highly dynamic and noisy, with new

needs and challenges constantly emerging. Existing retrieval-based and generation-

based methods struggle to keep pace with rapidly changing environment. Retrieval-

based methods [4, 18, 7], relying on fixed hashtag lists, cannot keep pace with the

rapidly changing information. Generation-based methods [42, 11], though better at

understanding new information, may produce inaccurate hashtags without additional

guidance. Therefore, disaster-related tweets necessitate a system that can accurately

capture evolving needs and challenges faced by affected communities as the situation

unfolds, effectively filter and process information from social media data containing

informal language and misspellings, and generate hashtags that not only reflect the

current situation but also anticipate future needs. Retrieval-Augmented Generation

(RAG) techniques provide an effective solution by capitalizing on retrieval and gen-

eration approaches. This enables RAG models to leverage existing knowledge while

adapting to new information, crucial for hashtag recommendation in disaster scenarios.

Existing hashtag generation methods, predominantly based on encoder-decoder

frameworks with Recurrent Neural Network (RNN) [9, 94] or transformers [11, 95]

struggle to perform effectively in disaster scenarios. Though tweets have a character

limit, RNNs, while capable of capturing sequential information, struggle with long-

range dependencies, hindering their ability to process the full context of a tweet.

Transformers, while robust, generate generic or repetitive hashtags when faced with

the noisy and informal language usage, spelling, and grammar mistakes by users com-
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mon in disaster situations. Consequently, these methods fail to generate hashtags

that accurately reflect the dynamic nature of needs during a disaster, hindering ef-

fective communication and response efforts. Inaccurate and irrelevant hashtags can

lead to misdirection of resources and delay critical assistance. Diffusion models, which

learn to reverse a progressive noising process, have successfully generated high-quality

synthetic data across multiple domains [96, 97]. This success extends to various Nat-

ural Language Processing (NLP) tasks such as unconditional [98] and controlled text

generation [99]. However, their application to sequence-to-sequence (seq2seq) text

generation, particularly for hashtag recommendation in disaster scenarios, remains

largely unexplored. Inspired by their potential, we propose the use of diffusion models

to recommend hashtags for disaster-related tweets.

To address these challenges, we propose retrieval Augmented encoder-decoder with

diffuSion for SequentIal hashtaG recommeNdation in disastER events (ASSIGNER).

The retriever identifies candidate hashtags by searching a large tweet-hashtag corpus

for similar tweets and associated hashtags. By comparing the input tweet to retrieved

tweets and hashtags, the selector narrows down this collection ensuring that the gener-

ator receives the most pertinent hashtags. Our novel diffusion-based generator lever-

ages this refined set and input tweet to generate informative hashtags. It utilizes an

encoder-decoder architecture, where the continuous diffusion framework is integrated

within the seq2seq generation process. Further, we incorporate self-conditioning and

an adaptive non-linear noise scheduler for improved performance. Extensive evalu-

ations on a dataset of disaster-related tweets demonstrate enhanced performance in

hashtag generation, achieving superior results in both hashtag quality and training

time compared to existing state-of-the-art approaches. Ablation studies confirm the

benefits of self-conditioning and the adaptive non-linear noise schedule, highlighting

their complementary nature in seq2seq settings.

Our key contributions can be summarized as enlisted below.

• We propose a retrieval augmented diffusion-based seq2seq framework to recom-

mend hashtags for disaster-related tweets. We leverage the synergy of retrieval

with the generative power of diffusion models to improve communication and
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response effectiveness during crises.

• As far as we know, this work presents the first application of diffusion models

to hashtag recommendation in disaster scenarios. We adapt the continuous

text diffusion model to generate hashtags sequentially using an encoder-decoder

transformer architecture.

• We leverage retrieved hashtags from similar tweets to provide contextual infor-

mation and guide the generation of relevant hashtags for disaster-related tweets.

• Our newly proposed adaptive non-linear noise scheduler significantly improves

the quality of generated hashtags by allowing for finer-grained control over the

generation process.

• Experiments show that the proposed model performs competitively compared to

existing methods in generating high-quality and informative hashtags for tweets

about disaster events.

The subsequent sections of this chapter are structured as follows. Section 3.2 details

the proposed novel methodology for generating hashtags for monolingual content. Fol-

lowing this, Section 3.3 presents the experimental setup and a comprehensive analysis

of the obtained results. Finally, Section 3.4 concludes this work.

3.2 Methodology

To improve the relevance of generated hashtags, we incorporate a retrieval mecha-

nism in our framework that leverages existing knowledge from a curated hashtag-tweet

corpus. This module is composed of retriever and selector.

3.2.0.1 Retriever

The retriever module identifies relevant hashtag-tweet pairs from a knowledge

database by utilizing the embedding of the input tweet. This approach, inspired

by [100], leverages the observation that semantically similar tweets often share similar
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hashtags, reflecting common usage patterns. We construct a knowledge base D com-

posed of tweet-hashtag pairs (di, Hi) where di represents a tweet and Hi represents its

corresponding set of hashtags. For a new input tweet dq, the retriever F compares its

embedding with the embedding of every other tweet in the corpus. It then retrieves

the top-N most semantically similar tweet-hashtag combinations with corresponding

similarity scores.

(d1, H1, s(dq, d1)), ..., (dN , HN , s(dq, dN)) = F(dq|D) (3.1)

where, s(dq, di) denotes the similarity between the query tweet dq and the ith retrieved

tweet di and each Hi contains a set of hashtags {hi1, . . . , hi|Hi|}. This retrieval process

provides a candidate pool of potentially relevant hashtags based on similar tweets in

the knowledge base.

3.2.0.2 Selector

The selector module refines hashtag recommendations by filtering out low-quality

and less prevalent hashtags from retrieved pairs. We leverage two key indicators of

hashtag prominence to refine the selection process: the semantic relatedness between

the input tweet and the retrieved tweet, and the relevance of retrieved hashtags to the

input tweet. This multifaceted selection process ensures that chosen hashtags are not

only semantically relevant but also reflect popular and widely used terms. The selector

is trained using a dataset comprising positive and hard negative samples. Each hashtag

in a tweet is considered a positive sample (h+). To construct hard negative samples

(h−), we employ a BERT-inspired perturbation strategy, where labeled hashtags are

modified without altering their semantic meaning. This involves randomly selecting

a word within the hashtag to replace it with a synonym, delete it, swap it with an

adjacent word, or insert a synonym after it. The resulting training dataset consists of

tuples (di, h
+
i , h

−
i ), where i = 1, . . . , N . The training of the selector module involves
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minimizing a contrastive loss function, defined as follows:

LC = − log e
sim(Edi

,E
h+
i
)/τ∑L

j=1(e
sim(Edi

,E
h+
j
)/τ

+ e
sim(Edi

,E
h−
j
)/τ

)
(3.2)

where, sim represents cosine similarity, Ed denotes the embedding of d, L is the mini-

batch size, and τ is a temperature hyperparameter.

3.2.1 Diffusion

This section describes the core diffusion model employed for hashtag generation.

3.2.1.1 Input Encoding

Given an input tweet dq and top-p hashtags {h̃1, . . . , h̃p} selected by the selector

module, we concatenate these hashtags to the input tweet:

d̃q = h̃1 ⊕ · · · ⊕ h̃p ⊕ dq (3.3)

where, ⊕ denotes the concatenation operation. This concatenated input d̃q is then fed

into BART encoder to obtain its contextualized representation xe.

xe = BARTenc(d̃q) (3.4)

This embedding (xe) captures information from relevant hashtags and the input tweet,

providing richer context for the diffusion model.

3.2.1.2 Forward Diffusion Process

Our approach involves a forward process that gradually introduces noise into the

target output sequence yw
l
i=1, where l represents its maximum length. This noise

diffusion process is independent of the input sequence xe. We first represent the

output sequence yw using an embedding function fφ(.) which maps individual word

tokens yiw to continuous embeddings fφ(y
i
w) ∈ Rm, where m is the embedding di-
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mension and φ represents parameters of f(.). The overall output sequence embed-

ding is obtained by concatenating individual token embeddings and is denoted as

fφ(yw) ∈ Rl×m. The forward process begins by applying a Markovian transition

parameterized by qφ(v0|yw) = N(v0; fφ(yw), γ0I) is added. The forward process is

augmented by qφ(v0|yw), which incrementally introduces diffusion to the continuous

features of v0. At each time step t, we apply the diffusion distribution q(vt|vt−1) to

generate noisier samples. Finally, the original output sequence yw is converted into vT

which closely resembles random noise drawn from a standard Gaussian distribution.

3.2.1.3 Reverse Process

When reversing the noise injection, diffusion models synthesize data points by

progressively drawing samples from the noise-reducing distribution pθ parameterized

by θ. This process transforms noisy samples vt into progressively clearer samples

vt−1. In seq2seq setting, the noise reduction distribution depends on the input rep-

resentation xe which is augmented with selected hashtag embeddings, represented as

pθ = pθ(vt−1|vt, xe). When the reverse process reaches T = 0, the generated output v̂0

is mapped to its closest word in the embedding space. This mapping is achieved using

a rounding distribution p̂φ(yw|v̂0), ultimately producing the final sequence of hashtags.

3.2.1.3.1 Self-Conditioning Through a series of iterative refinements, the re-

verse process transforms a noisy representation into the final output sequence. At

each iteration t, the function v0θ(vt, xe, t) takes the current noisy sample vt and the in-

put embedding xe to predict a less noisy version of the output, gradually revealing the

true sequence. This process inherently discards some information from the previous

prediction v̂0t . To address this information loss, Bit-Diffusion [101] introduced a self-

conditioning technique that incorporates previous sequence predictions as additional

input to the denoising function, formulating it as vθ0(vt, v̂0t , xe, t). Self-conditioning al-

lows the denoising function to refine previous sequence predictions instead of entirely

generating new ones. A study [102] has shown that self-conditioning enables text

diffusion models to perform better. To integrate self-conditioning technique, we con-
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catenate sequence features v̂t0 from previous predictions with noisier sequence features

vt, increasing the decoder input dimension to l × 2m. To improve training efficiency,

we adopt a strategy where, with 70% probability, v0θ(vt, v̂t0, xe, t) is trained with the

input v̂t0 set to 0. Alternatively, v̂t0 is initially approximated using v0θ(vt, 0, xe, t), and

this estimate is then employed for self-conditioning during training, thus bypassing

the need for backpropagation through initial forward pass.

3.2.1.3.2 Denoising with Encoder-Decoder Framework For v0θ(vt, xe, t), we

use the encoder for modeling the input sequence xe and the decoder for handling

the noisy output sequence vt, augmented with time step embeddings. This encoder-

decoder structure provides computational efficiency during generation by allowing

the encoder to process the input sequence xe just a single time during the entire

reverse procedure, which may require numerous iterations to produce high-quality

output. Our denoising function (v0θ) produces samples at the sequence level throughout

both training and generation phases, consistent with non-autoregressive approaches

to natural language generation. The decoder utilizes an attention mechanism that

can attend to all positions within the output sequence at once. This differs from

causal attention, which is restricted to attending only to preceding positions. By

having access to the full context of the output sequence, the decoder can generate

more informed predictions.

3.2.1.4 Adaptive Sigmoid-based Non-Linear Noise Scheduler

We put forward a novel approach for adjusting noise non-linearly at the token level

during training in diffusion models. This dynamic adjustment modulates the difficulty

of the denoising process for the predicted output sequence, focusing on challenging

tokens and thereby improving overall performance. Here, v0θ represents the predicted

output sequence at timestep 0 so that it increases sigmoidally with respect to timestep

t. This aims to create a smooth progression of difficulty in denoising, making it

easier at the start and end, facilitating initial stability and fine-grained refinement,

respectively. This refined control over the noise injection process helps in generating
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high-quality hashtags. Recognizing that different token positions within a sequence

hold varying levels of semantic and syntactic importance, we propose individual noise

schedules for each token. This is motivated by the observation that inherent properties

of token embeddings vary significantly across different positions.

We estimate the complexity of denoising process by examining the training loss at

each time step (t) and token position (i).

Li
t = Eqφ(xe, yw, vt, v0)

∣∣vθ0(vt, v̂0t , xe, t)
i − vi0

∣∣2 (3.5)

We utilize βi
t ∈ [0, 1] to regulate the noise intensity at each step. βi

t variable metic-

ulously determines the noise level at each time step t for each token position i. To

achieve an adaptive noise schedule for each token position i, we employ a mapping

βi = Φi(Li), which connects Li
t and βi

t using a sigmoid function.

βi
t = Φi(Li

t) =
1

1 + exp(−ai(Li
t − bi))

(3.6)

where, *βi
t is the noise level at time step t for token position i, *Li

t is the denoising loss

at time step t for token position i. *ai and bi are learnable parameters that control the

shape of the sigmoid for token position i. This function provides a smooth and flexible

way to modify the noise intensity according to the observed complexity of denoising at

each token position. We begin by initializing a noise schedule (using a standard cosine

schedule) and tracking the loss, Li
t, at each step. This data is then used to establish

the mapping function, Φi, which is updated periodically throughout training. In an

ideal scenario, the training loss would consistently increase with each time step (t).

This is because a larger t indicates a higher level of noise in the input characteristics

(vt) provided to denoising function. Nonetheless, given that total number of time steps

(T ) is typically very large, we end up with a highly detailed discretization of βi. This

fine granularity, combined with variations in empirical loss estimation, can lead to

inconsistencies where the training loss does not strictly increase with each successive

time step.

To address this and achieve a smoother mapping function (Φi), we employ a coarser
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discretization (s) for both βi and Li. This strategy helps to smooth out minor fluctu-

ations in the observed loss and ensures a more stable and reliable mapping.

Li
s =

1

K

s×(K+1)∑
t=s×K

Li
t, β

i
s =

1

K

s×(K+1)∑
t=s×K

βi
t , s =

⌊
t

K

⌋
(3.7)

where K represents the stride to uniformly downsample t and b·c denotes the floor

function. Using the learned sigmoid mapping βi
s = Φi(Li

s), we can derive an updated

Algorithm 3.1 Adaptive Sigmoid Noise Schedule
1: Input: Losses Li

t and noise schedules βi
t accumulated over each diffusion iteration

t and sequence index i.
2: if Step counter % Update interval == 0 then
3: for each sequence index i do
4: Fit the sigmoid function Φi(Li

t) =
1

1+exp(−ai(Li
t−bi))

by minimizing the error
between βi

t and Φi(Li
t), updating parameters ai and bi.

5: Generate new loss values Li,new
t sampled at uniform intervals between the

minimum and maximum observed losses, mint(Li
t) and maxt(Li

t).
6: Compute the updated noise schedule βi,new

t = Φi(Li,new
t ).

7: end for
8: end if
9: Return: Noise schedule βi,new

t for each diffusion iteration t and sequence index i.

discretized noise schedule βi,new
t by βi,new

t = Φi(Li,new
t ) where Li,new

t ’s are evenly taken

ranging from the minimum to maximum recorded values. Throughout the training

process, we dynamically adjust βi by repeating this procedure with each training

update. This iterative process ensures that the noise schedule remains aligned with the

evolving complexity of the denoising task. Algorithm 3.1 presents the pseudo-code for

configuring adaptive sigmoid noise schedule during the training process. The learnable

parameters (ai and bi) allow the sigmoid to adapt to different loss distributions and

token positions.

3.2.1.5 Training Objective

The model parameters θ and φ are learned through a variational approximation for

the data likelihood to reduce the difference between the learned denoising distribution
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pθ(vt−1|vt, xe) and the true posterior ditribution q(vt−1|vt, v0) from the forward process.

LV B = Eq[ log
q(vT |v0)p(vT )
pθ(v0|v1, xe)

+
T∑
t=2

log q(vt−1|v0, vt)pθ(vt−1|vt, xe)

pθ(v0|v1, xe)
+ log qφ(v0|yw)

p̃φ(yw|v0)
]

(3.8)

Since q(vt−1|vt, v0) has a Gaussian distribution, we parameterize the denoising distribu-

tion inside the Gaussian distribution family pθ(vt−1|vt, xe) = N (vt−1; µ̃θ(vt, xe, t), γ̃tI)

where

µ̃θ(vt, xe, t) =

√
β̄t−1γt
1− β̄t

vθ0(vt, xe, t) +

√
βt(1− β̄t−1)

1− β̄t

vt (3.9)

v0θ(vt, xe, t) denotes the function that predicts the output representation at each iter-

ation of the reverse pass. Under the Gaussian noise assumption, the objective can be

expressed more concisely as:

Lsimple = Eqφ(v0,xe,yw)

[
T∑
t=2

Eq(vt|v0)
∥∥vθ0(vt, xe, t)− v0

∥∥2
+ ‖µ̃(vT , v0)‖2 +

∥∥vθ0(v1, xe, 1)− fφ(yw)
∥∥2 − log p̃φ(yw|v0)

]
(3.10)

where, q(vt|v0) = N
(
vt;
√

β̄tv0, (1− βt)I
)
for efficient sampling of vt during training,

and µT (v0) =
√

β̄Tv0 and the denoising function v0θ(vt, xe, t), which is modeled using a

transformer network with separate components for encoding the input and generating

the output. During training, the distribution used for drawing samples qφ includes

learnable parameters from token representation model. We utilize the reparameteri-

zation trick [103] to enable backpropagation through these parameters.

3.2.1.6 Inference

Given an input tweet dq and the output from the retriever

{(d1, H1, s(dq, d1)), . . . , (dN , HN , s(dq, dN))}, the selector aggregates retrieved

hashtags into a set {h1, . . . , hM}, where M is the number of unique hashtags. For

each hashtag hm, the selector C computes relevance score between the input tweet
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and each unique hashtag.

r(dq, hm) = (C)(dq, hm) (3.11)

Here, r(dq, hm) denotes relevance score between the input tweet dq and hashtag hm,

as computed by the selector C. Lastly, we calculate the average similarity between

tweets for each hashtag and incorporate the semantic relatedness between the tweet

and the hashtag.

ρi =

(
1

ni

ni∑
j=1

s(dq, dj)

)
+ r(dq, hi) (3.12)

Here, ni is the frequency of hashtag hi in retrieved tweets, s(dq, dj) denotes the simi-

larity score between dq and jth retrieved tweet containing hi, and hi is obtained from

the retriever. We then rank hashtags in descending order according to final scores ρi
and select top-p hashtags {h̃1, . . . , h̃p}. Since we do not have ground-truth hashtags

for the test tweet, only the reverse step of the diffusion process is performed. Starting

from random noise vT , the model iteratively denoises samples to obtain v0. This de-

noised output is then passed through the rounding distribution to obtain the predicted

hashtag sequence:

ŷw = p̂φ(yw|v0) (3.13)

Finally, the decoder of BART model generates final hashtag recommendations based

on predicted sequence ŷw and the input embedding xe.

Hashtags = BARTdec(ŷw, xe) (3.14)

3.3 Experimental Evaluations

This section details the experimental configurations followed by a presentation and

analysis of results obtained.

3.3.1 Experimental Setup

37



Table 3.1: Statistics of the dataset. ht denotes number of hashtags per tweet.

#Tweets # Hashtags #Avg. ht #Max. ht #Min. ht

26,665 12,230 2 23 1

3.3.1.1 Dataset

This study uses a disaster-related tweet dataset, originally presented by [93], to

investigate hashtag recommendation. The dataset contains tweets during Harvey,

Irma, Maria, Mexico earthquake, Chiapas earthquake, and California wildfire crawled

using Twitter streaming API and tweets sourced from publicly available datasets [104,

105, 106] To ensure data quality, [93] implemented a rigorous filtering process removing

uninformative, non-English, and duplicate tweets that contained a total of 67,288

tweets spanning a total of 37 types of disasters. We further removed tweets with

invalid links and taken down from X. The final dataset used in our study contains

26,665 tweets, 12,230 unique hashtags with an average of 2 hashtags per tweet as

depicted in Table 3.1. The dataset and code for ASSIGNER has been made publicly

available1.

3.3.1.1.1 Disaster Type Distribution To evaluate potential biases in our

dataset, we provide a detailed breakdown of the distribution of tweets across different

disaster categories. Table 3.2 presents the number and percentage of tweets associ-

ated with each disaster type. As shown in Table 3.2, the dataset exhibits a diverse

representation of disaster types, with floods being the most prevalent (29.64%), fol-

lowed by hurricanes (16.44%) and earthquakes (10.80%). Conversely, disasters such as

tornadoes (2.35%), typhoons (2.42%), and viruses (1.25%) are less represented. This

imbalance reflects the frequency and visibility of disasters in social media discourse,

where high-impact events such as floods and hurricanes naturally generate more en-

gagement. While this skew mirrors real-world attention patterns, it may limit the

model’s generalizability to less frequent disasters. Further, we discuss implications of

this imbalance in the limitations section.
1https://github.com/abcd3007/ASSIGNER
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Table 3.2: Dataset distribution by number of tweets and percentage of total tweets
for each disaster type.

Disaster Number of Tweets (in %)

Tornado 627 2.35
Hurricane 4386 16.44
Fire 1567 5.87
Earthquake 2882 10.8
Flood 7904 29.64
Haze 1830 6.86
Typhoon 645 2.42
Virus 332 1.25
MERS 735 2.76
Cyclone 2486 9.32
Tsunami 1861 6.98
Explosion 1410 5.56

3.3.1.2 Compared Methods

The performance of our proposed model is evaluated against extant hashtag recom-

mendation methods. These include sequence generation models such as AMNN [94],

SEGTRM [11], and HashTation [95]; keyphrase extraction methods such as LSTM-

MTL [93]; retrieval-augmented generation methods such as RIGHT [107]; and diffusion

models including Diffuseq [108] and SeqDiffuSeq [109].

[1] AMNN [94] employed a seq2seq encoder-decoder architecture with CNN for vi-

sual and Bi-LSTM for textual feature extraction from multimodal microblogs.

An attention mechanism identifies salient information, and a GRU-based de-

coder generates the hashtag sequence.

[2] SEGTRM [11] proposed a model for microblog hashtag generation that operates

in three phases. The encoder processes the input text using segment tokens and

various attention mechanisms. A segment-selector block identifies important

segments based on semantic similarity, while the decoder generates hashtags

sequentially using selected segmental representations. The model efficiently de-

termines the number of hashtags required and learns to generate hashtags based

on post content.
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[3] HashTation [95] The authors propose a multi-component framework for hash-

tag recommendation and tweet classification, with four main modules namely,

Hashtag Generator, Tweet Attention Module (TAM), Entity Attention Module

(EAM), and Tweet Classifier. It begins with Hashtag Generator using self-

attention mechanism to create hashtags of an input tweet. TAM is combined

with a cross-document attention network to capture latent topics in relevant

tweets within a collection and thus improve hashtag generation. EAM employs

a graph attention network to extract and utilize semantic information at the

entity level, thereby constructing an entity graph from named entities present in

tweets. The Tweet Classifier then utilizes a transformer-based encoder equipped

with a classification head to classify tweets.

[4] LSTM-MTL [93] developed a joint-layer LSTM trained using Multi-Task Learn-

ing (LSTM-MTL) to recommend hashtags for disaster-related tweets. The au-

thors incorporate features capturing informal writing and identify relevant hash-

tags based on disaster name, location, and situational awareness. The model’s

variant, utilizing ELMo embeddings, Parts of Speech (POS) tags, and CNN-

encoded phonetic features, achieves the best overall performance.

[5] RIGHT [107] proposed a mainstream hashtag recommendation framework com-

prising a retriever, selector, and generator. The retriever employs sparse (BM25)

and dense (SimCSE) retrieval techniques to identify relevant tweet-hashtag pairs.

The selector utilizes a contrastive learning approach with three features (hashtag

similarity, frequency, and positive/negative samples) to filter non-mainstream

hashtags. The generator combines the input tweet with selected hashtags and

employs a generative model fine-tuned with cross-entropy loss to recommend

final set of hashtags, ranked by similarity and frequency.

[6] Diffuseq [108] a diffusion-based model for conditional text generation adapted

for seq2seq tasks. The model employs a partial noising strategy, injecting noise

only into the target sequence during the forward process. In the reverse pro-

cess, a transformer architecture predicts the mean and standard deviation of the
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distribution at each step to denoise the target sequence. The training objective

is designed as a variational lower bound with regularization terms. The model

also utilizes importance sampling to address training inefficiencies. During in-

ference, sequences are generated by sampling from a learned diffusion process

and employing Minimum Bayes Risk (MBR) decoding for quality enhancement.

[7] SeqDiffuseq [109] proposed a diffusion-based model for seq2seq language gener-

ation. In the forward process, the target output sequence is transformed into

random noise. The reverse process utilizes a denoising function, conditioned on

the input sequence, to iteratively reconstruct the sequence. The model employs

an encoder-decoder transformer architecture and incorporates self-conditioning

to improve text quality. It also features an adaptive noise schedule that ad-

justs the denoising difficulty at each token position and time step, enhancing

generation performance.

3.3.1.3 Evaluation Metrics

To evaluate the quality and diversity of generated hashtags, we employed four met-

rics namely, BERTScore, dist.1, ROUGE-1, and BLEU. BERTScore [110] assesses the

semantic similarity with ground-truth hashtags, ROUGE-1 [111] quantifies unigram

overlap, BLEU [112] determines the precision of generated hashtag sequences, and dis-

tinct uni-gram (dist. 1) measures the diversity of words within generated sequences.

Higher scores of dist. 1 indicate less repetition. We utilize the official ROUGE script2

(version 0.3.1) for calculating ROUGE scores.

• BERTScore: BERTScore leverages pre-trained contextual embeddings from

Bidirectional Encoder Representations from Transformers (BERT) [113] to as-

sess the semantic similarity between generated and reference hashtag sequences.

It computes a similarity score by comparing contextualized representations of

2https://pypi.org/project/pyrouge/
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corresponding tokens in both sequences.

BERTScore(G,R) =
1

|G|
∑
g∈G

max
r∈R

cos(c, r) (3.15)

Here, G represents the generated hashtag sequence, R denotes the reference

hashtag sequence, g and r are contextualized embeddings of each hashtag in G

and R, respectively, and cos(g, r) denotes the cosine similarity between embed-

dings g and r.

• Distance-1 (dist. 1): This metric assesses the similarity between two sequences

based on the minimum number of edits required to make them identical.

Distance− 1(G,R) = minimum number of edits(G→ R) (3.16)

High values of Distance-1 implies high diversity.

• BLEU: Bilingual Evaluation Understudy (BLEU) measures the precision of n-

gram matches between generated and reference hashtag sequences. It calculates

the overlap of n-grams of varying lengths (typically 1 to 4) and combines them

with a brevity penalty to discourage overly short generations.

BLEU(G,R) = BP · exp

(
N∑

n=1

wn log pn

)
(3.17)

Here, BP represents the brevity penalty that penalizes generated sequences that

are shorter than the reference sequence. The variable N denotes the maximum

n-gram order considered in the calculation, typically set to 4. The n-gram pre-

cision accounting for length differences is represented by pn. BP is calculated

as follows:

BP =

1, if c > r

e1−(r/c), otherwise
(3.18)

where, c and r represent the number of tokens in the generated and ground-truth
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sequences, respectively.

• ROUGE-L (Longest Common Subsequence) measures the longest common sub-

sequence of words between the generated and reference hashtag sequences. It

focuses on recall, assessing the extent to which the generated sequence covers

the reference sequence.

ROUGE − L(G,R) =
LCS(G,R)

|R|
(3.19)

Here, LCS(G,R) is the length of the longest common subsequence between se-

quences G and R. |R| is the length of actual sequence i.e., ground-truth hashtags

(R). We utilize ROUGE-1 to assess the similarity between the generated hash-

tag sequence and ground-truth sequence by measuring the overlap of unigrams.

This metric is widely used for sequence generation tasks and can identify relevant

hashtags even if they are not identical to the ground-truth, which is crucial in

hashtag recommendation where multiple hashtags can contribute to conveying

the overall topic. Additionally, we examine n-gram overlaps between generated

and ground-truth hashtags to evaluate the model’s ability to identify and utilize

salient information from text for hashtag generation.

3.3.1.4 Implementation Details

The proposed model, ASSIGNER was implemented using the PyTorch framework.

It employs a 6-layered encoder-decoder transformer with Gaussian Error Linear Units

(GeLU) activation functions. The model utilizes a diffusion-based approach with 200

iterative steps, where noise is incrementally added and then removed. We employed

AdamW optimizer with a learning rate of 10e-4, incorporating a warm-up period of

500 steps followed by a linear decay. The model was trained for 15 epochs with a batch

size of 64. The dataset was split into 75% for training, 15% for validation, and 10%

for testing, with tweets truncated to a maximum length of 128 tokens. A threshold

of 0.7 was used in the selector module. All hyperparameters were optimized based on

the validation data. To ensure reproducibility, we set a random seed of 101.

43



Table 3.3: Effectiveness comparison results of ASSIGNER with existing methods for
hashtag recommendation (top-2). The best result is highlighted in bold, while the
second-best is underlined.

Methods BERTScore dist. 1 ROUGE-1 BLEU

Sequence Generation

AMNN 0.359 0.892 0.001 0.002
SEGTRM 0.255 0.777 0.001 0.002
HashTation 0.246 0.514 0.001 0.001

Keyphrase Extraction

LSTM-MTL 0.355 0.700 0.001 0.001

Retrieval-Augmented Generation

RIGHT 0.389 0.877 0.003 0.001

Diffusion

Diffuseq 0.344 0.799 0.014 0.012
SeqDiffuseq 0.235 0.522 0.003 0.001

ASSIGNER 0.458 0.987 0.008 0.011

3.3.2 Experimental Results

To analyze our proposed model, we conducted quantitative analysis, ablation stud-

ies, and qualitative case studies detailed below.

3.3.2.0.1 Quantitative Analysis Table 3.3 demonstrates that ASSIGNER sig-

nificantly outperforms established methods across all assessment criteria. ASSIGNER

outperforms AMNN by incorporating a retrieval mechanism to focus on relevant can-

didate hashtags and diffusion-based encoder-decoder architecture (BART) to capture

linguistic characteristics of disaster-related tweets. Unlike AMNN, which relies on

RNN-based encoder-decoder (BiLSTM-GRU) with softmax layer and produces generic

hashtags, ASSIGNER leverages the strength of transformer and diffusion model in cap-

turing complex data distributions, allowing it to grasp the dynamic nature of disaster-

related language, leading to accurate hashtag recommendation. While SEGTRM uses

segment selection to identify important parts of text, ASSIGNER’s retrieval and se-

lector components provide a more focused set of candidate hashtags. Additionally,

the diffusion-based generator in ASSIGNER generates diverse and creative hashtags

compared to SEGTRM’s transformer decoder. ASSIGNER surpasses LSTM-MTL by

moving beyond keyphrase extraction and utilizing a generation-based approach. This
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(a) BERTScore (b) dist. 1

Figure 3.1: Effectiveness comparison curves. The proposed method significantly out-
performs compared methods.

allows ASSIGNER to generate novel hashtags not limited to those present in text,

unlike LSTM-MTL, which extracts keyphrases directly. While RIGHT incorporates a

retrieval mechanism, ASSIGNER further enhances this with a diffusion-based genera-

tor and adaptive sigmoid noise scheduling. This allows ASSIGNER to generate diverse

and relevant hashtags compared to RIGHT, which relies on a standard generative

model. ASSIGNER builds upon DiffuSeq and SeqDiffuSeq to improve hashtag gener-

ation. It incorporates an encoder-decoder architecture (BART), self-conditioning, and

adaptive sigmoid noise scheduling for enhanced efficiency and performance compared

to DiffuSeq’s encoder-only framework. Additionally, ASSIGNER extends SeqDiffuSeq

by adding a retrieval and selection mechanism to focus on relevant candidate hashtags

besides adaptive sigmoid noise scheduling algorithm. This combined approach leads

to more accurate and diverse hashtag generation.

3.3.2.1 Visualisation of Quantitative Results

To enhance the readability of our experimental results, Figure 3.1 presents a com-

parative analysis of hashtag recommendation models’ performance across varying rec-

ommendation set sizes (top − h), ranging from 1 to 9. As depicted in Figure 3.1(a),

ASSIGNER consistently achieves the highest BERTScore values across all top−h set-

tings, indicating superior semantic similarity between its generated and ground-truth

hashtags. The observed stability of ASSIGNER’s BERTScore, even with increasing

recommendation set sizes, demonstrates its robustness. In contrast, AMNN, RIGHT,

SeqDiffuseq, LSTM-MTL, HashTation, and SEGTRM, exhibit lower BERTScore val-
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Table 3.4: Effect of individual component ablation on hashtag generation perfor-
mance of ASSIGNER. The best result is highlighted in bold, while the second-best is
underlined. Here, w/o refers to without.

Methods BERTScore dist. 1 ROUGE-1 BLEU

w/o Self-conditioning 0.145 0.310 0.003 0.003
w/o RAG 0.421 0.987 0.003 0.003
w/o Noise Scheduling 0.412 0.783 0.020 0.030
w/o Diffusion 0.409 0.844 0.002 0.002
w/o Selector 0.416 0.974 0.003 0.002

ASSIGNER 0.458 0.987 0.008 0.011

ues, highlighting their limitations in capturing semantic relevance. Figure 3.1(b)

further illustrates ASSIGNER’s superior performance in terms of hashtag diversity,

achieving dist. 1 scores close to 1.0 across all top−h values. While AMNN and RIGHT

show relatively better diversity compared to other state-of-the-art (SOTA) methods,

their scores remain significantly lower than that of ASSIGNER. SeqDiffuseq, LSTM-

MTL, HashTation, and SEGTRM exhibit substantially lower dist. 1 scores, indicating

limited diversity. Thus, the graphical representation in Figure 3.1 visually confirms

ASSIGNER’s competitive advantage in both semantic similarity and hashtag diver-

sity. The consistent and significant gaps in both BERTScore and dist. 1 between

ASSIGNER and existing methods underscore the efficacy of our proposed approach.

3.3.2.2 Ablation Studies

• w/o Self-conditioning: Our ablation study highlights the crucial role of self-

conditioning in ASSIGNER. Removing it drastically reduces performance across

all metrics (BERTScore: 0.4581 to 0.1446, dist.1: 0.9872 to 0.3096, ROUGE-

1: 0.0078 to 0.0028, BLEU: 0.0113 to 0.0029) as evident from Table 3.4. This

decline is attributed to information loss inherent in standard diffusion process

where each denoising step relies solely on the current noisy input, neglecting

refined information from previous predictions. Self-conditioning mitigates this

by incorporating the previous prediction into the denoising function, allowing

the model to refine its estimations and generate contextually relevant hashtags

that capture the evolving event-specific language prevalent in disaster-related
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tweets.

• w/o RA: To assess the impact of Retrieval Augmentation (RA) mechanism

in ASSIGNER, we conducted an ablation study where RA was removed. We

replaced the retriever (which selects relevant candidate hashtags), with a ran-

dom selection of top-k hashtags from the training dataset. This modification

resulted in a noticeable performance drop across all metrics (BERTScore: 0.458

to 0.421, ROUGE-1: 0.008 to 0.003, BLEU: 0.011 to 0.003) as evident in 3.4.

This result highlights the crucial role of RA in providing the diffusion-based

encoder-decoder framework with a focused set of relevant candidate hashtags.

By leveraging information from similar tweets and their associated hashtags, RA

effectively guides the generator towards more informative and accurate hashtag

recommendations. These retrieved hashtags serve as guiding signals and a start-

ing point for generating final hashtags, ultimately enhancing their quality and

effectiveness.

• w/o Noise Scheduling: As shown in Table 3.4, removing the adaptive sig-

moid noise scheduler from diffusion pipeline significantly hinders performance

(BERTScore: drops from 0.458 from 0.412, dist. 1 from 0.9872 to 0.783). This

underscores the importance of a well-designed noise scheduling for guiding the

diffusion process towards meaningful outputs. By applying this scheduler at

the token level, ASSIGNER achieves two key advantages namely, contextual

adaptation, enabling the model to adjust noise based on each token’s specific

context, crucial in dynamic disaster situations, and enhanced learning that cap-

tures complex inter-token dependencies to recommend pertinent hashtags. This

precise control over noise introduction and reduction empowers effective learn-

ing and generation of contextually relevant hashtags, supporting information

dissemination during critical events.

• w/o Diffusion These ablation results underscore the significant contribution

of the diffusion-based encoder-decoder framework to ASSIGNER’s strong per-

formance. Removing this component and replacing it with a standard encoder-
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decoder framework leads to a substantial drop in performance across all metrics

(BERTScore: 0.458 to 0.409, dist.1: 0.987 to 0.844, ROUGE-1: 0.008 to 0.002,

BLEU: 0.011 to 0.002) as can be seen in Table 3.4. This decline is attributed

to limitations of standard encoder-decoder models in capturing the complex

and dynamic language characteristic of disaster-related tweets. These models

tend to produce generic hashtag recommendations due to their reliance on max-

imizing training data likelihood. In contrast, the diffusion-based generator in

ASSIGNER leverages a gradual noising process, enabling it to explore a wider

range of possibilities and generate diverse and informative hashtags. This ap-

proach is well-suited for capturing the evolving and informal language used in

disaster situations, where new terms and expressions may emerge rapidly, lead-

ing to improved performance.

• w/o Selector In this ablated variant, the selector is omitted and we directly

choose top-p retrieved hashtags. Removing the selector leads to a significant de-

crease in performance across all metrics. BERTScore drops from 0.458 to 0.416,

dist.1 from 0.987 to 0.974, ROUGE-1 from 0.008 to 0.003, and BLEU from 0.011

to 0.002, as can be seen in 3.4. This decline highlights that the selector plays a

vital role in refining candidate hashtags identified by the retriever. By analyzing

how closely the input tweet matches the retrieved tweet and hashtags in terms of

meaning, the selector ensures that only the most relevant hashtags are passed to

the diffusion-based generator. This filtering step is essential, as simply relying on

top-p hashtags from the retriever, based on similarity to the input tweet, proves

insufficient for generating accurate and informative hashtag recommendations.

The selector thus acts as a quality control mechanism, guiding the generator

towards optimal hashtag selection and improving overall performance.

3.3.2.3 Performance Comparison with Noise Scheduling Algorithms

To investigate the impact of different noise scheduling algorithms on performance

of ASSIGNER in recommending hashtags for disaster-related tweets, we conducted
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Table 3.5: Performance comparison of ASSIGNER with various noise scheduling algo-
rithms for disaster-related hashtag recommendation, showing optimal results with the
token-level adaptive sigmoid scheduler. The best result is highlighted in bold, while
the second-best is underlined.

Noise Scheduler BERTScore dist. 1 ROUGE-1 BLEU

Gaussian 0.167 0.302 0.001 0.001
Adaptive Linear 0.414 0.846 0.007 0.010
Adaptive Quadratic 0.202 0.565 0.002 0.002
Adaptive Cubic 0.171 0.427 0.001 0.0004
Adaptive Fibonacci 0.383 0.733 0.004 0.002
Adaptive Cosine 0.210 0.405 0.005 0.006
Adaptive Exponential 0.310 0.602 0.012 0.014

Adaptive Sigmoid 0.458 0.987 0.008 0.011

experiments with various schedulers. As demonstrated in Table 3.5, the token-level

adaptive sigmoid scheduler achieves the highest BERTScore (0.4581), dist. 1 (0.9872),

ROUGE-1, and BLEU scores. This scheduler outperforms others, including token-level

adaptive (Fibonacci, exponential) and non-adaptive Gaussian scheduler. The success

of the token-level adaptive sigmoid scheduler is attributed to its precise and dynamic

noise control, which is crucial for disaster-related hashtags where keyword relevance

can fluctuate rapidly. The sigmoid curve introduces noise gradually to each token,

promoting exploration of hashtag spaces, and then reduces it sharply for fine-grained

refinement. This dynamic approach enhances contextual sensitivity by adjusting noise

based on specific context of each token within the input tweet and generated sequence.

Furthermore, the sigmoid curve, combined with token-level adaptation, allows the

model to effectively learn intricate inter-token relationships, crucial for generating

pertinent hashtags.

3.3.2.4 Qualitative Analysis

This section presents a qualitative evaluation of the performance of our proposed

method i.e., ASSIGNER and contrasts it with well-established extant methods. Fig-

ure 3.2 presents a qualitative comparison of generated hashtags for an example tweet

from the test dataset, alongside ground-truth hashtags and hashtags generated by

various methods. As illustrated in Figure 3.2, ASSIGNER demonstrates a superior

ability to suggest relevant hashtags for the given tweet. Notably, ASSIGNER is the
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Figure 3.2: Example of a tweet from test dataset depicting hashtags recommended by
various methods. Generated hashtags that match user-assigned hashtags are marked
with green, while relevant but non-matching hashtags are marked with blue, and
irrelevant predictions are marked with red.

only model that correctly identifies two ground-truth hashtags: #KeralaFloodRelief

and #KeralaRains. While DiffuSeq also generates #KeralaFloodRelief, ASSIGNER is

unique in its ability to simultaneously identify both of these crucial hashtags. More-

over, ASSIGNER effectively captures general terms such as #flood, #medical, and

#relief and specific terms such as #Kerala and #NGO, which are relevant to the

given tweet. In contrast, other methods exhibit varying degrees of success, but none

achieve the same level of accuracy as ASSIGNER. HashTation primarily focuses on

generic terms such as #flood, #food, and #aid, lacking the specificity of ASSIGNER.

SeqDiffuSeq incorrectly predicts hashtags such as #cyclone and #wildfire, which are

not relevant to Kerala floods. AMNN and LSTM-MTL incorrectly predict hashtags

#cyclone #quake, respectively. These errors highlight the difficulty other methods

have in capturing the specific context of the input tweet. The enhanced performance

of ASSIGNER can be attributed to the effective integration of retrieval augmenta-

tion with a diffusion-based encoder-decoder framework. The retriever module pro-
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vides valuable context to the diffusion-based generator by identifying similar tweets

and their corresponding hashtags. The selector module further refines these retrieved

hashtags, ensuring that only the most relevant candidates are passed to the gener-

ator. Furthermore, ASSIGNER’s self-conditioning mechanism and adaptive sigmoid

noise scheduler contribute to generating high-quality hashtag sequences by exploring

a broader spectrum of possibilities. Overall, the qualitative analysis demonstrates AS-

SIGNER’s ability in leveraging existing knowledge, capturing contextual information,

and generating diverse hashtag sequences, significantly outperforming other methods.

3.4 Conclusion

This chapter introduces ASSIGNER, a novel retrieval-augmented encoder-decoder

with diffusion for sequential hashtag recommendation in disaster events. ASSIGNER

extends continuous text diffusion model to generate hashtags sequentially and a re-

trieval mechanism that leverages existing knowledge from semantically similar tweets

and hashtags. This approach addresses the limitations of existing methods by captur-

ing both semantic relationships among hashtags and contextual information embedded

in tweets. Furthermore, a novel adaptive sigmoid noise scheduler is proposed to im-

prove the quality of generated hashtags. Experimental results validate the capability

of ASSIGNER in generating relevant and informative hashtags for disaster-related

tweets, with the potential to improve information dissemination and response efforts

during crises.
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Chapter 4

Hashtag Recommendation for Multilingual

Content

4.1 Introduction

The pervasive influence of platforms such as X on contemporary discourse is ev-

ident in the rapid cross-lingual and cross-geographical dissemination of information.

The increasing engagement with regionally specific content, particularly in nations

with substantial low-resource language user bases such as India, underscores this trend.

The platform’s support for vernacular languages has empowered users to express them-

selves in their native tongues, leading to a transformation in content dissemination

and reach. While the platform’s support for vernacular languages facilitates broader

expression, connecting semantically related multilingual content remains challenging

due to linguistic variations.

Hashtags offer a potential solution to bridge these linguistic divides by serving as

common semantic anchors. However, the infrequent or suboptimal use of hashtags,

particularly in low-resource language content, limits their efficacy in cross-lingual con-

tent discovery. Furthermore, the sheer volume of event-related posts on SNS platforms

can overwhelm users seeking relevant information. This challenge is amplified for non-

English content, where the scarcity of relevant hashtags makes it difficult to filter and

retrieve pertinent discussions. This information gap impacts various stakeholders, in-

cluding local content creators seeking broader reach, brands aiming to engage with
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regional audiences, language learners looking for authentic content, and researchers

studying multilingualism and language contact. An effective automated multilingual

hashtag recommendation system is therefore crucial for enhancing content discov-

erability and fostering connections across linguistic communities. An analysis of our

curated dataset of low-resource Indic language posts revealed that a significant propor-

tion of posts upto 24.16% contain fewer than two hashtags, underscoring the pressing

need for developing such a system.

Prior research has explored hashtag recommendation for various content modal-

ities, including textual [11, 28, 29], visual [114, 115, 116], and multimodal con-

tent [117, 118, 119, 120]. Some studies have focused on personalized hashtag sug-

gestions by incorporating content, user characteristics, and metadata [18, 72]. Despite

considerable attention to text-based hashtag recommendation, the primary focus has

been on high-resource languages such as English [5, 9] and Chinese [10, 11, 121].

Recommending hashtags for content in low-resource Indic languages on SNS remains

largely underexplored. Indic languages are categorized as low-resource due to the lim-

ited availability of written texts, audio recordings, and other digital resources, resulting

in noisy or incomplete datasets. The direct application of existing high-resource lan-

guage hashtag recommendation methods to low-resource scenarios is challenging due

to the specialized linguistic knowledge or native speaker expertise required for these

languages.

For instance, Zhang et al. [5] utilized a parallel co-attention mechanism to model

interplay between visual and textual modalities of a post. The authors also considered

the similarity between the current post and a user’s past posts to infer their tagging

behavior and suggest relevant hashtags. However, relying on historical post similarity

might overlook evolving user interests or changes in posting habits, potentially leading

to suboptimal recommendations. Jeong et al. [71] proposed a hashtag recommenda-

tion approach based on post content and user demographics, computing the similarity

between these feature sets. A potential limitation of solely relying on demographic

data is the failure to capture individual user preferences that may deviate from broader

demographic trends. These unique, individual patterns in user behavior can be cru-
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Figure 4.1: Tweets of a user

cial for accurate recommendation and can reveal insights beyond what demographic

or profile data alone can provide. Zhang et al. [50] constructed a bipartite graph of

tweets and users to identify socially similar tweets for multilingual hashtag prediction.

Nevertheless, TwHIN-BERT does not adequately account for users’ specific interests

and language usage patterns. The content creator’s context, including their interests,

preferences, expertise, language choice, and communication style, offers valuable infor-

mation about the post. An illustrative example from X is seen in Fig. 4.1 where a user

employs similar hashtags across thematically distinct tweets, revealing his underlying

interests. In the first tweet, the user wishes Happy Flowers Day and annotates it with

#phooldei. Phooldei is a festival of flowers and springtime celebrated in Uttarakhand.

According to tweet content, he assigned #flowers, #Uttarakhand and #nature. In the

second tweet, he emphasizes living in the present through lines of a Hindi Bollywood

song. According to the tweet content, he annotates #present, #moment, and #songs

to his tweet. The tweet has no relation with flowers, yet he assigns #flowers and

#nature to the second tweet, reflecting his interest in topics, i.e., nature and flowers.

Mining information from a user’s posting history can therefore provide insights into

their personal preferences and posting patterns, leading to a richer understanding of

their content engagement. Furthermore, users often develop idiosyncratic language

patterns on X, characterized by their unique vocabulary, punctuation, and emoji us-

age, influenced by their personality and communication style. Capturing these highly

individual linguistic traits is essential for a comprehensive understanding of language
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use variations among users.

Additionally, the user from Fig. 4.1 demonstrates a tendency to recommend hash-

tags in the same language as the post (Hindi). He transliterates #फूलदेई, to its English

equivalent #phooldei. This emphasizes that user tends to take language into consid-

eration when posting tweets and annotating hashtags. In contrast, TwHIN-BERT

does not explicitly model users’ linguistic preferences or the relationships between

languages. Language relatedness, referring to the similarities between languages in

terms of grammar and vocabulary, can be particularly useful in low-resource settings

by leveraging shared linguistic features. Modeling these relationships within language

families can help overcome data scarcity by leveraging shared knowledge and resources.

This approach is particularly valuable in multilingual settings, where users speak mul-

tiple languages within the same language family.

In this chapter, we devise an automatic hashtag recommendation system for orphe-

line tweets in low-resource Indic languages dubbed as TAGALOG. It leverages tweet

content, language relatedness, and user preferences to suggest topic-relevant, person-

alized and language-aware hashtags. We refine tweet representations using language-

guided and user-guided attention mechanisms to capture language usage style and

user interests. We employ a graph neural network to model the relatedness between

languages from different families namely, Indo-Aryan and Dravidian and user posting

behavior. The recommended hashtags effectively identify the core content across lan-

guages, aiding regional language users in retrieving relevant information and staying

informed.

Below are the key highlights of our contributions.

[1] We devise a deep learning-based graph neural network to suggest semantically

related, personalized, and language-specific hashtags for tweets posted in low-

resource Indic languages.

[2] We not only capture the distinct topical and linguistic inclinations of individual

users on a local scale but also their long-term behavior and global interests.

[3] On a local scale, we refine the content of tweets by devising a novel way of
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attending to users’ topical interests and language usage style.

[4] Globally, we construct a graph to model users’ interactions with tweets by con-

sidering their historical tweets and capturing the long-term posting behavior.

[5] We also leverage relatedness among languages belonging to the same language

family. The framework can mine correlation among languages of the same family

group, i.e., Indo-Aryan and Dravidian.

[6] We have constructed a new text-based hashtag recommendation dataset con-

taining tweets in Indic languages called Indic Hash. The collected tweet samples

span various low-resource languages: Bangla, Marathi, Gujarati, Telugu, Tamil,

Kannada, and Hindi besides English. Our curated dataset can be a primary

resource to recommend hashtags for tweets posted in Indic regional languages.

[7] Our experimental findings show that the proposed hashtag recommendation

model performs well in a low-resource environment with a minimal amount of

labeled data.

The remainder of this chapter is organized as follows. We define the problem in

Section 4.2. Section 4.3 elucidates the novel approach to recommend hashtags for

multilingual content. Subsequently, Section 4.4 describes the experimental framework

and offers a thorough analysis of the findings. Lastly, Section 4.5 summarizes this

work and presents concluding thoughts.

4.2 Problem Definition

Let us consider a dataset with a tweet set T = {ti}|T |
i=1, a set of users

U = {uj}|U |
j=1, a set of hashtags H = {hk}|H|

k=1 and a set of languages L =

{IA(Hindi,Gujarati,Marathi, Bangla),

D(Kannada, Tamil, Telugu), English}. Here, |T |, |U |, |H| denotes the cardinality of

the tweet set, user set, and hashtag set. IA and D refer to Indo-Aryan and Dravidian

family groups.
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Given a user u ∈ U who uploads a tweet t written in language l ∈ L, we aim to recom-

mend a personalized and language-specific set of hashtags RH ⊂ H that are relevant

to users’ posting and language usage behavior.

Our objective is to develop a customized hashtag recommendation model for tweets

in low-resource Indic languages that can automatically recommend hashtags from H

to a new tweet t uploaded by a user u.

Given a tweet written in l by a user u, we intend to learn a function f(.) that can

capture his topical and linguistic preferences.

tu, tl = f(UGA(t, u), LGA(t, l)) (4.1)

Here, UGA refers to the user-guided attention and LGA refers to the language-guided

attention mechanisms that yield latent user and language representations denoted by

tu and tl. Hashtags are a potent tool for self-expression because they allow users to

succinctly and rapidly communicate their interests, thoughts, feelings, and views on a

certain topic. To address the variances in hashtag labels that result from how individ-

uals express themselves and their unique language usage style, we devise two attention

mechanisms to fine-tune user and language representations. To further enhance tweet

representation, we aim to learn a function g(.) to model various types of interactions.

t′u, t
′ = g(tu, t) (4.2)

Here, t′u, t′ denote the enhanced user and tweet representation derived from the graph,

and g(.) resembles a graph neural network. We employ a graph neural network to

model tweet-tweet interactions based on language relatedness and user-tweet interac-

tions. We construct a heterogeneous graph G = (V,E) such that V = (U, T ) where

V is the set of nodes comprising users and tweets, and E is the set of edges. Each

edge e ∈ E is based on either the relatedness of the language in which the tweet is

written with tweets published in other languages within the same language group or

whether the user created that tweet in the past. Hashtag recommendations can then
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Figure 4.2: Overall architecture of TAGALOG

be formulated as given in Equation 4.3.

RH = HASH −REC(t′u, tl) (4.3)

Here, HASH−REC refers to the hashtag recommender that resembles a deep neural

network. It takes enhanced tweet representation derived from the graph denoted by t′u

and language-guided tweet representation i.e., tl to recommend a reasonable collection

of hashtags denoted by RH. We posit that TAGALOG encodes not only the user’s

topical and linguistic preferences but also relatedness among languages of a family

group pertaining to the language in which a tweet is written. The following sections

provide more information on the UGA, LGA, f(.), g(.), and HASH −REC.

4.3 Methodology

In this section, we present a detailed overview of our proposed approach. Fig. 4.2

showcases the overview of our innovative polyglot hashtag recommender. We propose

a deep neural network based on graphs to recommend hashtags for tweets posted

in multiple Indic languages. Our system receives a tweet as input, together with

information on the language used in the tweet and the user who posted it. The

proposed system first retrieves features from a tweet’s textual modality to obtain its

low-dimensional feature vector representation. Then we use attention techniques to

mimic how language and user affect the representation of a tweet. We create a graph to

capture the correlation between tweets and the interaction between tweets and users.

59



The node embeddings which are modified in response to information dissemination

and neighborhood aggregation are fed into the hashtag recommendation module. After

assessing the plausibility of each hashtag, this module yields a sorted list of hashtags

for polyglot tweets. As demonstrated in Fig. 4.2, our proposed framework comprises

four components: (a) feature extraction; (b) feature refinement; (c) feature interaction,

and (d) hashtag recommendation. Each component is discussed in profundity below.

4.3.1 Feature Extraction

In this section, we elucidate the textual, linguistic, and user feature retrieval from

tweets.

4.3.1.0.1 Textual Feature Retrieval We encode tweets written in various

resource-scarce Indic languages using Multilingual Bidirectional Encoder Representa-

tions from Transformers [122], abbreviated as the mBERT model. Wikipedia articles

written in 104 different languages serve as the training data for the multilingual vari-

ant of BERT. Since mBERT shares a common input space at the sub-word level, this

pre-trained neural language model is utilized to generate context-aware embeddings of

tweets posted in different languages. The input tweet t is enclosed within two special

tokens, class (CLS) and separator (SEP) to signal its start and endpoints. We pass

the raw tweet through mBERT’s tokenizer to produce the corresponding set of tokens

as shown in Equation 4.4.

M = mBERT_Tokenizer([CLS] + t+ [SEP ]) (4.4)

Here, M represents the created collection of tokens. The number of tokens in the

sequence denoted by S is capped at 50. We shorten or lengthen the token sequence

derived from the tweet to S if it is greater or lesser than S to construct a uniform-sized

token sequence for all tweets. Then, we encode tokens using an mBERT encoder to
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generate token representations according to Equation 4.5.

Tf = mBERT (M) (4.5)

The derived textual feature matrix is denoted by Tf ∈ RS×D, where S = 50 denotes

the number of tokens derived from the tweet, and D= 768 denotes the embedding

size for every token. The textual feature matrix of the encoded tweet is passed to the

feature refinement module.

4.3.1.0.2 Language Feature Retrieval Social media language is often informal,

abbreviated, and contains hashtags, emojis, and other elements that are specific to

these platforms. By learning language embeddings from a large corpus of social media

data, we can better capture these unique linguistic characteristics and represent them

in a way that captures their meaning. Language embeddings are vector representa-

tions of words or phrases that are learned through training on large amounts of text

data. It consists of two steps namely language identification, and language embedding

generation.

4.3.1.0.2.1 Language Identification We used the langdetect1 library to

identify the language in which tweet t is published. About 50 languages can be recog-

nized by this package, which is a direct transfer of Google’s language-detection library

from Java to Python. Nakatani Shuyo created the software at Cybozu Laboratories,

Inc. We determine the language used to write the tweet t as depicted in Equation 4.6.

l = langdetect(t) (4.6)

Here, l is the language identified for tweet t.

4.3.1.0.2.2 Language Embedding Generation Language embeddings are

used for tweet representation because they enable us to capture the meaning and

1https://pypi.org/project/langdetect/
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context of words used in tweets. They capture the semantic and syntactic relationships

between words, which allows us to understand the meaning of individual words and the

overall context. Using language embeddings to represent tweets allows us to capture

the nuances of language used on social media platforms. After identifying the language

in which the tweet was written, we generate the feature vector for language using the

Keras embedding layer2 as discussed in Equation below.

lf = Embedding(l) (4.7)

Here, lf ∈ RD refers to a feature vector to represent language, with a dimensionality

(D) of 768.

4.3.1.0.3 User Feature Retrieval User embeddings can be useful in deriving

post features because they capture information about the users who created the posts.

In many cases, the user who creates a post can provide important contextual infor-

mation about the post, such as the user’s interests, preferences, or expertise. By

incorporating this information into post features, models can improve their ability to

understand and analyze posts. This can help the model make personalized recom-

mendations that are more relevant to the user’s interests. The publisher of the tweet

t is expressed as u. We encode u into a low-dimensional embedding vector (uf ) by

employing the Keras embedding layer as demonstrated by the following Equation.

uf = Embedding(u) (4.8)

Here, uf ∈ RD refers to a feature vector to represent the user, with a dimensionality

of 768. Users’ hidden features, such as preferences, may theoretically be captured by

user embeddings and used to direct how the tweet representation is learned.

2https://keras.io/api/layers/core_layers/embedding/
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4.3.2 Feature Refinement

The cornerstones of the feature refinement module comprising our proposed model

are language-guided and user-guided attention mechanisms that successfully capture

the topical and linguistic inclinations of individual users at a local level to enrich the

tweet representation. We discuss these two mechanisms below.

4.3.2.1 Language-guided Attention Mechanism

We devise a novel language-specific attention block that selectively attends to

language-oriented information in the tweet and filters out unnecessary information

thus, enriching its representation. For the tweet embedding obtained using the

mBERT encoder, we denote it as Tf = {es}Ss=1. We use an attention technique to

identify key terms, then aggregate the acquired word representations to create a com-

prehensive representation of the tweet’s textual content with respect to the linguistic

preferences of the user. To this end, we feed the token-based embedding matrix Tf

through a dense layer to create its hidden representation, as illustrated in the equation

below.

hl = tanh(TfWl + bl) (4.9)

Here, hl = {hl
s}Ss=1, where hl

s is the hidden representation of es. We then determine

how closely the token’s latent representation (hl
s) resembles the language embedding

vector (lf ) and run the outcome through a softmax algorithm to generate attention

scores (αs) using the formula presented in Equation 4.10.

α = softmax(hllf ) (4.10)

Here, α = {αs}Ss=1, where αs designates a word’s significance with respect to language.

The language-guided tweet representation is then derived by computing the weighted

sum of token embeddings with attention scores αs serving as weights as presented

below.

tl =
S∑

s=1

αshl
s (4.11)
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Here, tl represents the language-guided tweet representation.

4.3.2.2 User-guided Attention Mechanism

Users tend to express their interest in the semantic attributes of a tweet’s text.

Thus, exploring users’ attention to words appearing in tweets towards recommending

hashtags is crucial. By using user-guided attention, the model can capture the user’s

unique perspectives, which can provide additional context and improve the accuracy

of post features. We utilize a user-guided attention mechanism for identifying salient

words and combining their corresponding representations to obtain a comprehensive

representation of the tweet’s textual content with respect to the user. To achieve this,

we first process the mBERT-based token embedding matrix (Tf ) using MultiLayer

Perceptron (MLP) to derive hu as illustrated in the subsequent equation.

hu = tanh(TfWu + bu) (4.12)

Here, hu = {hu
s}Ss=1, where hu

s serves as the covert way of representing es. We first

calculate how comparable hu
s and uf are, then run the resulting through a softmax

function to produce normalized weight βs as demonstrated below.

β = softmax(huuf ) (4.13)

Here, β = {βs}Ss=1, where βs signifies the relevance of a term with respect to a user.

The user-guided tweet representation is determined by summing the weighted word

annotations i.e., βs. as shown.

tu =
S∑

s=1

βshl
s (4.14)

Here, tu denotes the user-guided tweet representation. The obtained representations

are forwarded to the feature interaction component.
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4.3.3 Feature Interaction

The feature interaction module employs a graph neural network to capture global

interests by analyzing long-term user behavior and preferences, in addition to tweet

correlation. It comprises two major stages namely, graph construction and feature

encoding. We discuss these two stages in detail below.

4.3.3.1 Graph Construction

Algorithm 4.1 Graph Construction
Input: T : Tweets

U :Users
Output: G(V,E): User Tweet Graph
function get_graph(T, U)
1: V = T ∪ U
2: E = []  
3: for (t1, t2) ∈ T × T do  
4: sim_score = cos_sim(t1, t2)  
5: if langdetect(t1) and (langdetect(t2) = `bn′ or langdetect(t2) = `hi′ or

langdetect(t2) = `mr′ or langdetect(t2) = `gu′) then          
6: E = E ∪ (t1, t2, sim_score)  
7: else if langdetect(t1) and (langdetect(t2) = `kn′ or langdetect(t2) = `te′ or

langdetect(t2) = `ta′) then          
8: E = E ∪ (t1, t2, sim_score)
9: else if langdetect(t1) = `en′ then          

10: E = E ∪ (t1, t2, sim_score)
11: end if 
12: end for 
13: for t ∈ T do
14: u = get_user(t)
15: E = E ∪ (t, u, 1)
16: end for
17: G = (V,E)
18: return G

To mine the correlation between tweets and the interaction between tweets and

users, we create an undirected heterogeneous graph as illustrated in Algorithm 4.1.

Here, G = (V,E) is the resultant user-tweet graph, and V and E denote the collection

of vertices and edges between them, respectively. We construct a graph with two dif-

ferent kinds of nodes, as shown in Line 1 of Algorithm 4.1. The total number of nodes
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in the graph is I where I = |T |+ |U | and E ⊂ V × V is a set of relationships among

nodes to model tweet-tweet correlations and user-tweet interactions. The edges con-

structed based on tweet-tweet correlations are weighted, whereas those corresponding

to user-tweet interactions are unweighted. First, we compute the pairwise similarity

between tweets appearing in the tweet set T, as depicted in Line 4. We then assign

an edge between tweets of related language families corresponding to the language in

which the tweet under consideration is written, as shown in Lines 5-8, corresponding

to the Indo-Aryan and Dravidian family groups. The tweets not falling under these

two groups imply they are written in English, as shown in Lines 9-10. The edge weight

is the similarity score between mBERT-based embeddings of a tweet with tweets writ-

ten in related languages comprising the language group. Grouping posts concerning

their language family, like Indo-Aryan and Dravidian, can help in recommendations

by personalizing content and recommendations based on the user’s linguistic and cul-

tural background. Language families are a collection of languages that share the same

ancestor. Languages in the same family often share similar grammatical structures,

vocabulary, and cultural contexts. By grouping posts based on a language family, we

identify posts that are likely to be relevant and exciting to users with a particular

linguistic background. For example, suppose a user writes tweets in a language from

the Indo-Aryan family. In that case, we can group posts that are written in languages

from this family, such as Bangla (Bn), Hindi (Hi), Marathi (Mr), and Gujarati (Gu),

and recommend hashtags to the user. Similarly, suppose a user uses a language from

the Dravidian family. In that case, we can group posts that are written in languages

from this family, such as Kannada (Kn), Telugu (Te), and Tamil (Ta), and recommend

them to the user. By personalizing recommendations in this way, we can increase the

relevance and engagement of content for users. Furthermore, as depicted in Lines

13-16, for every tweet, we retrieve its corresponding user. We then create an edge

to connect the user to his uploaded tweets. By capturing the user-tweet relationship

through edge creation, tweet representations can be enriched with the contextual infor-

mation of the associated user, such as the user’s topical interests and historical posting

patterns. Incorporating the user context allows for more contextualized and person-
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Figure 4.3: Graph AutoEncoder

alized tweet representations. It considers the relationship between the user and his

tweets, allowing for a more nuanced understanding of their behavior and motivations.

Unlike similarity-based analysis [5] that overlook the unique context and significance

of individual posts, treating them as isolated entities, the edge-based approach explic-

itly models the relationship between a user and his tweets within the graph structure,

thus enabling a comprehensive analysis of interdependencies and interactions between

users and their tweeted content. The edge connecting a user to their tweets indicates

the range and diversity of their topical interests. We utilize this edge information to

identify patterns and recommend accurate hashtags.

4.3.3.2 Graph Feature Encoding

Our primary goal is to create and train a model to learn tweet and user embeddings

given an input graph G in order to perform hashtag recommendations. GAE is a type

of unsupervised learning model used for graph representation learning. GAE can

capture complex, non-linear relationships between nodes in a graph, which cannot be

easily captured by traditional graph embedding techniques such as DeepWalk [123] or

node2vec [124]. GAE preserves the structural properties of nodes even when the data

is noisy. GAE can be used for hashtag recommendation, where the input data consists

of both user-tweet interaction data and tweet features represented as a graph. This

allows for a more comprehensive recommendation system that takes into account both

user behavior and tweet attributes. The proposed GAE pipeline is shown in Fig. 4.3.

Let G = (V,E) represent a graph with N nodes and A be its adjacency matrix. Let F

be the feature matrix with N rows, where each row represents the feature vector of a
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vertex. The goal of GAE is to acquire a reduced-dimensional latent representation Z

that encompasses the structural and semantic information of the graph. The adjacency

and feature matrices, when combined (AF ), are the encoder’s input. Graph Sample

and Aggregate (GraphSAGE) [125] can be used as the encoder in the GAE by adapting

it to aggregate information from the entire graph. GraphSAGE is a neural network

that is designed to learn node embeddings by compiling information from its immediate

surroundings. The input for the GraphSAGE encoder is Fv which is the feature vector

that node v is initialized with, and N(v) is the set of neighboring nodes of node v in

the graph. The tweet node is initialized by employing word level attention [126] over

the textual feature matrix of tweet t since tweets contain noisy user-generated text.

User nodes are initialized with a feature vector obtained as depicted in Section 4.3.2.2.

Generally, hk
v is the embedding vector of node v at the kth layer of the GraphSAGE

encoder and NL is the number of layers in the encoder. We adopt the mean aggregator

in GraphSAGE as evident in Equation 4.15.

hk
v = GraphSAGEmean(h

k−1
v , A) ∀k ∈ [1, NL] (4.15)

The updated feature matrix Z is obtained from the last layer as shown in Equa-

tion 4.16.

Z = hNL
v (4.16)

Here, Z consists of the updated user representation (t′u) and text feature (t′). The de-

coder maps this latent representation back to the original graph structure. It consists

of a sigmoid activation function as shown in Equation 4.17.

Â = sigmoid(Z.ZT ) (4.17)

Here, Â is the reconstructed adjacency matrix.
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4.3.4 Hashtag Recommendation

By considering both the user and the language used in a tweet, we can better

capture the user’s intent, perspective, language usage style, and the meaning of the

words they use. To this end, we derive the overall tweet representation by concate-

nating the updated tweet embedding obtained from GAE and language-guided tweet

representation as shown below.

tf = concat(t′u, tl) (4.18)

Here, tf is the overall tweet representation. The hashtag recommendation module

receives tf as input and outputs a reasonable set of hashtags Rh as given in Equa-

tion 4.19.

Rh = HASH −REC(tf ) (4.19)

The hashtag suggestion task is structured as a multilabel classification problem. Given

that a tweet can belong to numerous classes simultaneously, this formulation procedure

can assist in forecasting labels for non-exclusive classes. A pool of preconfigured hash-

tags H is employed to assign suitable hashtags to the multilingual tweet as exhibited

in Equation 4.20.

ypred = softmax(Dense(units = |H|)(tf )) (4.20)

Here, the symbol ypred ∈ R|H| refers to the softmax probabilities of the supplied

hashtags, |H| is the cardinality of the set of hashtags. These probabilities are used to

rank hashtags and generate the final set of predicted hashtags (RH).

RH = argsort(ypred) (4.21)

The objective loss function for training TAGALOG can be seen in Equation 4.22.

L = LGAE + LHR (4.22)
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Here, L is the overall loss function, LGAE is the reconstruction loss of GAE, and LHR

is the loss function for the hashtag recommendation module. The loss function (LGAE)

is described in Equation 4.23.

LGAE = ||A− Â||2 (4.23)

Here, A and Â represent the actual and reconstructed adjacency matrices, and ‖.‖

denotes the squared norm. The objective of LGAE is to reduce the difference between

the predicted and actual adjacency matrices across the entire training dataset, with

the purpose of achieving better reconstruction accuracy. The optimization problem is

solved by minimizing LGAE with respect to the parameters of the encoder and decoder

(θe and θd) using a gradient-based optimization algorithm. Through this process, GAE

learns a compressed representation of the input graph. The training loss function for

the hashtag recommendation module is described in Equation 4.24.

LHR =
1

|M |
∑

(t,G)∈M

∑
g∈G

−log(P (g|t)) (4.24)

Here, the current tweet is represented by t, the related ground-truth hashtag set is

indicated by G, and the softmax probability that the ground-truth hashtag g will be

used for the tweet t is given by P (g|t), and variable M represents the training set of

multilingual tweets.

4.4 Experimental Evaluations

In the ensuing subsections, we go over the experimental settings followed by ex-

perimental findings to validate the viability of our proposed framework.

4.4.1 Experimental Setup

Here, we present our curated dataset on which experiments were performed. Next,

we go into state-of-the-art approaches and existing models for comparison, followed
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by the criteria employed for evaluation.

4.4.1.1 Dataset

In our opinion, we have curated the first large-scale multilingual low-resource In-

dic tweets dataset dubbed as IndicHash. This dataset is designed for the task of

recommending hashtags for tweets posted in multiple low-resource Indic languages.

We create an exhaustive dataset from tweets published by Indian users covering seven

low-resource languages besides English. Regional language tweets have increased sig-

nificantly on Twitter. This served as our inspiration to broaden the endeavor to Indic

languages. We chose a total of seven different Indic languages namely Bangla, Hindi,

Kannada, Gujarati, Tamil, Telugu, and Kannada. This decision was primarily moti-

vated by the widespread usage of these Indic languages across various regions of India.

We now elucidate the techniques used to gather and process the independent tweets

followed by a description of the dataset’s specifications.

4.4.1.1.1 Data Collection We gathered nearly equal numbers of posts for each

keyword and a similar amount of keywords for each category. We first curated a

generic list of categories namely technology, business, education, environment, gad-

gets, sports, festivals, people’s movement, politics, cricket, entertainment, movies,

music, news, culture, food, military, career, fashion, fitness, gaming, nature, weather,

emotions, pets, hobbies, astrology, and crisis. The total number of keywords consid-

ered for data collection is 213. For example, keywords under the education category:

education, ed-tech, ParikshaPeCharcha, teacher, learning, school, university, newedu-

cationpoilcy, students, and exams. Likewise, under the category of people’s movements

which is a hot topic on Twitter, we included keywords such as StudentLivesMatter,

ShaheenBagh, FarmersProtest, KisaanAndolan, metoo, BlackLivesMatter, pride, fem-

inism, NeverAgain, and EnoughIsEnough. We used Scraper for SNS abbreviated as

snscrape3 to download tweets. We scraped attributes like user IDs, and hashtags, and

retrieve the relevant tweets using keywords as a search query. We gathered user tweet
3https://github.com/JustAnotherArchivist/snscrape
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Characteristic Original Pre-processed Final

No.of tweets 31,07,866 10,65,848 81,944
No. of users 4,78,120 1,36,348 17,660
No. of keywords 213 213 205
No. of hashtags 9,17,833 45,535 37,151
No. of tweets/keyword 14,591 5,004 400
Average no. of hashtags/tweet 5 8 8
Average no. of tweets/user 7 8 5

Table 4.1: IndicHash dataset statistics

data in a variety of languages since people use hashtags regardless of their language

of origin. The dataset collection comprises a total of 31,07,866 tweets, and 9,17,833

hashtags posted by 4,78,120 users for a total of 8 languages. The average number of

tweets per keyword and tweets per user in the collected dataset amounts to 14,591

and 7 whereas the average number of hashtags per tweet is 5.

4.4.1.1.2 Data Pre-processing The subsequent measures were adopted to ensure

a high-quality input for our model. We removed tweets that contain less than three

words. The acquired data was noisy due to Twitter’s quick and erratic nature. The

data was sanitized by deleting duplicate posts with null values. The pre-processed data

underwent several modifications, including the removal of links, conversion of text to

lowercase, and exclusion of all non-alphanumeric characters except space and full stop.

Hashtags were also collected from these pre-processed posts. Post information such

as the content of the original post, hashtags used, and the user id of the user who

created that tweet was extracted. To balance the dataset, we randomly sampled an

equal number of tweets from each language. The final dataset collection comprises

a total of 81,944 tweets, 17,660 users, and 37,151 hashtags. Table 4.1 provides a

summary of the dataset’s statistics.

4.4.1.2 Compared Methods

In order to assess the efficacy of the suggested model, we conducted a comparative

analysis against prior research endeavors in the domain of hashtag recommendation
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as well as established language models based on transformer architecture.

4.4.1.2.1 Existing Research Works To evaluate the efficiency of the proposed

model, we contrast our approach with the recent research works on hashtag recom-

mendation.

[1] AMNN [94] generated hashtags by developing a sequence-to-sequence en-

coder–decoder framework. The encoder retrieves visual and textual embeddings

individually which are then subjected to an attention technique. The attended

visual and textual features upon concatenation are fed into GRU, which gener-

ates hashtags sequentially according to softmax probabilities.

[2] TwHIN-BERT [50] developed the Twitter Heterogeneous Information Network

which is a polyglot language model that frames the objective of predicting hash-

tags as a problem of multi-class classification. It is trained with a vast volume of

tweets and rich social interactions in order to emulate the brief and noisy nature

of user-generated content.

[3] SEGTRM [11] introduced a transformer-based model which produces hashtags

in a sequential manner. SEGTRM consists of three steps: a hashtag generator,

a segments-selector, and an encoder. The encoder removes extraneous data

at various granularities within text, segments, and tokens in order to derive

global textual representations. The segments-selector selects many segments

and reorganizes them into a novel sequence to serve as an input to the decoder,

enabling end-to-end hashtag construction. To predict hashtags in terms of both

quality and quantity concurrently, the authors employ a sequential decoding

algorithm.

4.4.1.2.2 Existing Models We discuss various transformer-based models against

which we compare the performance of our devised framework. To derive features

of tweets in our dataset, we investigated different transformer-based models. These

models can be perfectly tailored for classification tasks after being trained on general
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tasks. [113] introduced BERT, a transformer-based approach for pre-training NLP

models and learn contextual representations during pre-training. It is a deep bidirec-

tional and flexible model that can be fine-tuned by appending a few output layers.

Consequently, BERT serves as the underlying architecture for all fundamental models.

[1] mBERT: Devlin et al. [122] devised mBERT, which stands for multilingual

BERT. It is a transformer-based model trained on and usable with 104 lan-

guages with Wikipedia (2.5B words) with 110 thousand shared word-piece vo-

cabulary using a masked language modeling (MLM) objective. The input is

transformed into vectors with BERT’s capability of bidirectionally training the

language model which captures a deeper context and flow of the language.

[2] mBERT with Transliteration: We used IndicTrans4 package released by

AI4Bharat to transliterate the text of tweets. We employ transliteration (script

conversion) for Indic languages since it helps in reducing the lexical gap among

different Indic languages. After transliteration, we obtain embeddings for

transliterated tweets using mBERT which in turn are employed to recommend

suitable hashtags.

[3] IndicBERT: Kakwani et al. [127] introduced an ALBERT-based multilingual

model featured in AI4Bharat’s IndicNLPSuite. This model was trained on a

massive corpus containing over 9 billion tokens in 12 major Indian languages.

IndicBERT is capable of extracting sentence and word embeddings.

[4] XLMR: Conneau et al. [128] proposed the multilingual RoBERTa variant called

XLM-RoBERTa which is used to carry out various NLP tasks. It has been pre-

trained on an enormous amount of multilingual data with 100 languages using

MLM objective. More intriguingly, cross-lingual instruction on a big scale has

a major positive impact on languages with few resources. Sentencepiece tok-

enization is used by XLM-RoBERTa on raw text without any performance loss.

Since it uses the same training program as the RobERTa model, the moniker

“Roberta” was incorporated.
4https://ai4bharat.org/indic-trans
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[5] DistilmBERT: Sanh et al. [129] developed a condensed adaptation of mBERT

with the objective of reducing its size, cost, processing time, and computational

load. It contains a reduced number of parameters, up to 40% less than Bert-

base-uncased, and it guarantees a faster runtime of 60% while maintaining 97%

of the original performance. Furthermore, it is trained on Wikipedia texts in 102

distinct languages. There are 134M parameters in all. DistilmBERT is typically

twice as quick as mBERTbase.

4.4.1.3 Evaluation Metrics

To evaluate the performance of our suggested hashtag recommendation system, we

use assessment criteria from the literature on multi-label classification. The standard

evaluation metrics for analyzing the performance of hashtag recommendation methods

are Hit rate, Precision, Recall, and F1-score. These metrics are computed by compar-

ing predicted hashtags and ground-truth hashtags for each tweet. We describe each

evaluation metric below. The occurrence of at least one common hashtag (GH ∩RH)

between the set of recommended hashtags (RH) and ground-truth hashtags (GH)

accounts for the hit-rate metric when dealing with hashtag recommendation systems.

Hit rate is described in the following equation.

Hitrate(HR) = min(|GH ∩RH|, 1) (4.25)

The division of the number of hashtags that are present in the set of both ground-truth

and recommended hashtags by the cardinality of the set of recommended hashtags

yields precision. The following is the formula for precision.

Precision(P ) = |GH ∩RH|/|RH| (4.26)

Recall is the ratio between the number of hashtags shared between ground-truth and

recommended hashtags set with the quantity of ground-truth hashtags. The recall is
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Technique Hit rate Precision Recall F1-score

AMNN [94] 0.489 0.195 0.210 0.202
SEGTRM [11] 0.520 0.211 0.228 0.219
TwHIN-BERT [50] 0.600 0.179 0.194 0.187
TAGALOG 0.824 0.334 0.366 0.349

Table 4.2: Effectiveness comparison results with existing research works

computed as given in Equation 4.27.

Recall(R) = |GH ∩RH|/|GH| (4.27)

To compute F1-score, we derive the harmonic average of precision and recall measures

as shown in Equation 4.28.

F1− score(F1) = 2 ∗ P ∗R/(P +R) (4.28)

The outcome of each evaluation metric is denoted as HR@K, P@K, R@K, and F1@K,

where K denotes the number of recommended hashtags. Note that larger values imply

better performance.

4.4.2 Experimental Results

In this segment, we present an exposition of the empirical findings resulting from

the comparison of the proposed framework to state-of-the-art approaches and extant

models, analyzing performance enhancement, and examination of visual representa-

tions of recommendations.

4.4.2.1 Effectiveness Comparisons

We begin by outlining TAGALOG’s overall benefits, particularly its superiority

in outperforming the previous research works and various transformer-based models.

We regard the top-K hashtags as the recommended ones, with K being 8, since the

mean number of hashtags per tweet is 8. As can be seen in Table 4.2, the performance
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Technique Hit rate Precision Recall F1-score

mBERT [122] 0.757 0.261 0.286 0.273
mBERT with transliteration 0.715 0.240 0.263 0.251
IndicBERT [127] 0.637 0.213 0.229 0.221
XLMR [128] 0.655 0.200 0.221 0.210
DistilmBERT [129] 0.549 0.147 0.159 0.153
TAGALOG 0.824 0.334 0.366 0.349

Table 4.3: Effectiveness comparison results with pre-trained models

gain achieved by TAGALOG is 33.5%, 13.9%, 15.6%, and 14.7% over AMNN, 30.4%,

12.3%, 13.8%, and 13.0% over SEGTRM, 22.4%, 15.5%, and 17.2%, and 16.2% over

TwHIN-BERT in terms of hit-rate, precision, recall, and F1-score respectively. The

improvement in performance achieved by TAGALOG over AMNN is due to the supe-

riority of mBERT over LSTM [130]. The bidirectional and multilingual nature of the

BERT-based feature extractor helps to capture the multilingual context in a better

way. Further, TAGALOG considers language and user characteristics when creating

the tweet representation to recommend high-quality hashtags in contrast to content-

based information used by AMNN. The reason behind performance enhancement over

SEGTRM is that SEGTRM filters text at different granularities, whereas TAGALOG

adopts language-guided and user-guided attention mechanisms to filter content with

respect to the user’s topical and linguistic interests. The remarkable improvement

of TAGALOG over TwHIN-BERT is due to modeling user preferences besides user

interaction with tweets and language relatedness through graph construction.

Table 4.3 shows the performance comparison of TAGALOG with extant

transformer-based models. The performance gain achieved by TAGALOG is 6.7%,

7.3%, 8.0%, and 7.6% over mBERT without transliteration, 10.9%, 9.4%, 10.3%, and

9.8% over mBERT with transliteration, 18.7%, 12.1%, 13.7%, and 12.8% over In-

dicBERT, 16.9%, 13.4%, 14.5%, and 13.9% over XLMR, 27.5%, 18.7%, 20.7%, and

19.6% over DistilmBERT in terms of four performance measures. The reasons be-

hind this gap are the incorporation of a novel language-guided attention mechanism

in addition to user-guided attention, the construction of a user-tweet graph to cap-

ture interactions among tweets belonging to languages of the same family, and user-
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Mechanism Hit rate Precision Recall F1-score

TAGALOGNA 0.784 0.285 0.313 0.299
TAGALOGLGA 0.783 0.292 0.321 0.306
TAGALOGUGA 0.824 0.330 0.361 0.345
TAGALOGUGA+LGA 0.824 0.334 0.366 0.349

Table 4.4: Performance of TAGALOG with different attention techniques

tweet interaction to enrich user and tweet embeddings. These procedures help in

constructing an effective tweet representation which in turn recommends high-quality

and relevant hashtags for tweets posted in low-resource Indic languages.

4.4.2.2 Performance Gain Analysis

We analyze the performance pickup of the suggested approach in this section.

Following a performance comparison with various model components, we examine

how TAGALOG performs using various attention techniques.

4.4.2.2.1 Attention Techniques We discuss how TAGALOG performs with di-

verse attention strategies in this part. The variants of TAGALOG that use no at-

tention, language-guided attention, user-guided attention, and user-guided along with

language-guided attention are TAGALOGNA, TAGALOGLGA, TAGALOGUGA, and

TAGALOGUGA+LGA respectively. Here, TAGALOGUGA+LGA refers to our devised

system. Table 4.4 illustrates the performance obtained on eliminating attention mech-

anisms that comprise the feature refinement module. Here, UGA and LGA refer to

user-guided attention and language-guided attention mechanisms. The performance

difference when TAGALOG is implemented without any attention mechanism is 5.0%

in terms of the F1-score. To derive the overall tweet representation in the case of

the no-attention model, we compute the average of mBERT-based token embeddings.

The performance of TAGALOG is the lowest in the absence of any attention mech-

anism. The drop in the F1-score on eliminating UGA from TAGALOG, termed as

TAGALOGLGA, is 4.3%, while the difference in excluding LGA from TAGALOG, ab-

breviated as TAGALOGUGA, is 0.4%. UGA helps to learn the context in which a user

78



Technique Hit rate Precision Recall F1-score

TAGALOGFI 0.784 0.285 0.313 0.299
TAGALOGFR 0.806 0.314 0.342 0.328
TAGALOGFR+FI 0.824 0.334 0.366 0.349

Table 4.5: Performance comparison of TAGALOG with different components

created a post and LGA assists in learning the user’s language choice and usage style.

UGA is typically used to improve the relevance and usefulness of tweets for individual

users and to enhance the overall user experience, while LGA focuses on modeling id-

iosyncratic language behavior. The above-mentioned performance gap demonstrates

the significance of language-guided and user-guided attention techniques.

4.4.2.2.2 Model Component Analysis We conduct model component analy-

sis to emphasize the significance of various components constituting the proposed

model. Below, we put forth the performance of Feature Refinement (FR) and Fea-

ture Interaction (FI) components comprising TAGALOG. We eliminate the feature

refinement component to stress its pertinence. The resultant model is referred to as

TAGALOGFI . Similarly, the model obtained on the exclusion of feature interaction

from TAGALOG is referred to as TAGALOGFR. We use acronyms TAGALOGFR+FI

and TAGALOG in tandem since TAGALOGFR+FI is the model we have developed.

Table 4.5 shows the performance of TAGALOG on eliminating its different compo-

nents. The performance gap in terms of evaluation metrics on the exclusion of FR is

4.0%, 4.9%, 5.3%, and 5.0% respectively, while that on the exclusion of FI is 1.8%,

2.0%, 2.4%, and 2.1%, which demonstrates the significance of these components. Ad-

ditionally, the performance of the proposed model which includes both FR and FI

beats the performance of individual components. This implies these components com-

plement each other when recommending hashtags. FR captures local topical and lin-

guistic interests of individual users through UGA and LGA, while FI captures global

interests by analyzing the long-term behavior and preferences of the user besides tweet

correlation based on language relatedness. Overall, the experimental results show that

each component contributes positively to TAGALOG’s performance.
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4.4.2.3 Qualitative Analysis

We conduct qualitative investigations to demonstrate how effective our framework

is. We show user-created tweets together with hashtags proposed by different mod-

(a) Post 1 (b) Post 2

Figure 4.4: Example posts showing hashtags recommended by different methods

els. For sample tweets chosen from test data, accurate hashtags are shown in green,

pertinent in blue, and erroneous in red. The hashtags that models recommend and
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are consistent with hashtags that reflect the actual situation are considered accurate.

On the other hand, pertinent hashtags do not belong to the category of ground-truth

hashtags but are compatible with the tweet’s content.

The tweet given in Fig. 4.4(a) is in context with the Punjab elections held in

2022, written in Bangla. As can be seen, the user assigns a few hashtags to the

tweet in his native language. It indicates that these hashtags used are wildly trending

about Punjab elections among Bangla Twitter users. The user assigns #congress and

#bjp not only in English but also in Bangla. Besides assigning hashtags in English,

users tend to assign topics of their interests with hashtags in their native language.

Users are more inclined to adopt hashtags in their native language to connect with

others who share their cultural background or interests. Hashtags in different lan-

guages can also promote diversity and inclusivity on social media platforms, allowing

users to find content and connect with others from a broader range of backgrounds

and perspectives. Hashtags recommended in Bangla indicate the ability of our model

in recommending language-specific topical hashtags. This implies our model recom-

mends multilingual hashtags and learns the user’s language usage style by adopting

his linguistic behavior. The hashtag #punjab is directly related to the event of the

Punjab Elections; #pmmodi and #rahulgandhi are prominent political figures and

therefore deemed pertinent. TAGALOG recommends seven accurate and three perti-

nent hashtags. DESIGN recommends four accurate, five pertinent, and one erroneous

hashtag. SEGTRM recommends three accurate and six pertinent hashtags. AMNN

recommends one accurate, five pertinent, and one erroneous hashtag. TwHIN-BERT

recommends one accurate, four pertinent, and five erroneous hashtags. Our model

recommends the highest number of accurate hashtags indicating that mining users’

posting and linguistic behavior help suggest plausible hashtags.

The tweet in Fig. 4.4(b) is written in Gujarati in the context of the global event,

the Russia-Ukraine war. TAGALOG recommends seven accurate and three pertinent

hashtags; DESIGN recommends five accurate, four pertinent, and one erroneous hash-

tag; SEGTRM recommends three accurate, one pertinent, and one erroneous hashtag;

AMNN recommends two accurate, one pertinent, and two erroneous hashtags, TwHIN-
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BERT recommends two accurate, one pertinent, and seven erroneous hashtags. The

example posts demonstrate how, by suggesting customized hashtags based on users’

thematic and linguistic preferences, TAGALOG surpasses earlier research methods.

4.5 Conclusion

In this chapter, we have tackled hashtag recommendations to facilitate multilingual

content retrieval and break through language barriers inherent in social media plat-

forms. The proposed polyglot model, TAGALOG, can recommend personalized and

language-specific hashtags for online content generated in various low-resource Indic

languages. The system proposed in this study comprises feature extraction, refine-

ment, and interaction modules. We first extract content-based, linguistic, and user-

based features using a transformer and deep learning-based models. We then employ

language-guided and user-guided attention mechanisms to fine-tune tweet representa-

tion in line with users’ linguistic and topical preferences. In the feature interaction

module, we connect the historical tweets of a particular user to mine his posting be-

havior. Furthermore, we group tweets written in various languages concerning their

families, i.e., Indo-Aryan and Dravidian, to capture their interrelatedness. Extensive

experiments conducted on the curated Twitter dataset reveal that our proposed model

is superior in performance to language models that have been trained and state-of-

the-art methods.
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Chapter 5

Hashtag Recommendation for Multimodal

Content

5.1 Introduction

The dynamic nature of SNS fosters diverse modes of communication and infor-

mation sharing. As a result, SNS users share microblogs that consist of texts and

images, occasionally elucidated with hashtags. Platforms such as Instagram, boasting

a substantial user base of one billion [131] and a daily upload of approximately 95

million photos, exemplify the widespread creation of such multimodal UGC. While

the presence of even a single hashtag has been shown to boost user participation by

12.6% [132], a considerable volume of this content remains unannotated due to user re-

luctance. This under-tagging underscores the imperative need for automated hashtag

recommendation processes to suggest relevant hashtags for social media posts. Given

the prevalence of multimodal content, leveraging the complementary information from

both textual and visual sources is crucial for enhancing hashtag recommendation ac-

curacy, a capability lacking in existing unimodal approaches focused solely on text

[28, 133] or image [58, 59].

Consider examples in Figure 5.1 to illustrate the importance of multimodal in-

formation. In the first post (Figure 5.1(a)), the user’s philosophical reflection on a

sunset is evident through Richie Norton’s quote, leading to the hashtag #positive-

quotes, which is derivable from the text. Conversely, hashtags such as #sunset and
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(a) Post 1 (b) Post 2

Figure 5.1: Example posts from Instagram

#autumn are directly related to the visual content and cannot be solely inferred from

the text. This demonstrates that text and images convey distinct yet complemen-

tary information about a post, highlighting the necessity of learning features that

capture information across multiple modalities. Furthermore, hashtags offer valuable

insights into users’ interests, and individual tagging habits significantly influence con-

tent consumption and discovery. As seen in Figure 5.1, different users posting distinct

content might still employ the same hashtags (#sunset), indicating shared interests.

Conversely, users with different interests might tag similar content with different hash-

tags (#positivequotes in Figure 5.1(a) and hashtags #frippisland, #frippislandresort

in Figure 5.1(b)). This underscores the limitations of purely content-based hashtag

recommendation methods, which often fail to capture these crucial user-specific in-

terests. Consequently, these methods may not be directly suitable for personalized

hashtag recommendation. Therefore, to address these limitations and contribute to

the overarching goal of this thesis, this chapter proposes a novel multimodal person-

alized hashtag recommendation system.

Numerous approaches have been put forward to formulate hashtag recommenda-

tion task. Most of the prior works employing Deep Learning techniques have mod-

eled hashtag recommendation as a multiclass classification problem [5] while others

have considered it as a sequence generation problem [94, 65]. Classification-based ap-

proaches for hashtag recommendation suggest hashtags from a pre-defined list with a

limited categories of hashtags. These approaches do not consider the interrelationship

among hashtags. Word by word sequence generation considers the sequential nature
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of hashtags, thus capturing the dependencies among generated hashtags. Sequence

generation approaches perform better on sparse and infrequent hashtags. In sequence

generation[9, 94], the following hashtag to be generated highly depends on the preced-

ing hashtag as hashtags are considered as an ordered sequence. Sequence generation

can model the interdependencies among words present in a sentence. The output of

hashtag recommendation is a set of hashtags that may be correlated but may not

follow a strict order as exhibited by words present in a sentence. Classification-based

approaches treat hashtags to be recommended as independent categories. While hash-

tags can be viewed as predetermined categories, they can also be generated sequen-

tially, similar to how words in natural language sentences are generated. Intending to

model the sequential relationship among hashtags and investigate the implicit corre-

lation among them, we interpret hashtag recommendation as a sequence generation

problem. To this end, we employ a novel personalized sequence generation framework

based on an encoder-decoder architecture that can generate correlated and personal-

ized hashtags for social media posts. Recommended hashtags are generated in the form

of a sequence where previously generated hashtags are trusted to be relevant and used

for generating the following most relevant hashtag. The sequence generation-based

framework fully exploits the multimodal information of microblog posts and models

correlations between hashtags, multimodal post content, and users’ historical posts.

Traditional methods for hashtag recommendation majorly formulate it as a clas-

sification problem which neglects correlations among hashtags. Few works model

hashtag recommendation as Sequence Generation. In Sequence Generation, recom-

mended hashtags are supposed to be ordered as words in the sentence. However,

the output of hashtag recommendation is a set of hashtags that may be correlated

but may not follow a strict order as exhibited by words present in a sentence. The

recommended candidate hashtags may not exhibit any ordered sequence yet match

ground truth hashtags. The existing works formulate hashtag recommendation either

in terms of Multi-Label Classification (MLC) or Sequence Generation (SG). None of

the existing works formulate this task from both perspectives. To the best of our

knowledge, we are the first to propose a unified hybrid model that casts the task of

85



hashtag recommendation to both MLC and SG. We propose an integral model that

encodes different aspects of hashtag recommendation in a coherent encoder-decoder

framework. The two strategies play a mutually complementary role in recommending

personalized hashtags to multimodal content. The proposed model capitalizes on ben-

efits of both approaches to suggest better and relevant hashtags to users in contrast

to hashtags predicted by individual approaches of MLC and SG.

In this chapter, we propose a hybrid deep neural network for multimodal person-

alized hashtag recommendation system that can automatically recommend hashtags

to unannotated social media content. We consider textual and visual modalities avail-

able in social media posts to improve hashtag recommendation. The proposed hybrid

Deep Neural Network uses two different formulation procedures i.e., classification and

generation. Since both approaches captures different key aspects of social media posts,

we capitalize hashtags predicted from both approaches to recommend more relevant

hashtags. Our method recommends suitable and correlated hashtags for text-only,

image-only, and multimodal social media posts. Our proposed approach takes users’

preferences and tagging behavior into account to recommend personalized hashtags.

Further, we employ word-level and parallel co-attention mechanisms. The word-level

attention captures the importance of different words in the text, and parallel co-at-

tention learns the mutual influence of one modality on the other. Parallel co-attention

jointly models the text-image inter-relationship to enrich the contextual information.

Our contributions are summarized as follows:

• We propose a hybrid Deep Neural Network to address the problem of hashtag

recommendation by jointly formulating it as MLC and SG problems. To the best

of our knowledge, we are the first to propose a hybrid model that capitalizes on

benefits of both MLC and SG techniques, boosting the performance of hashtag

recommendation. These two strategies play a mutually complementary role in

recommending personalized hashtags to multimodal social media posts.

• We devise a novel personalized generative framework to suggest personalized and

correlated hashtags for multimodal social media posts. Our system recommends
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hashtags based on the user’s hashtagging behavior and preferences derived from

his historical posts and associated hashtags.

• Our proposed method predicts suitable hashtags for posts by mining information

from textual and visual modalities. We apply word-level attention on textual

content to learn those words in the text that are more closely related to hash-

tags followed by a parallel co-attention mechanism to model deep interactions

between the two modalities.

• We have constructed a new dataset named TINS (Text dataset from INSta-

gram), consisting of 23,868 posts associated with at least one hashtag crawled

from Instagram. This dataset can be used to carry out text-based hashtag rec-

ommendation research. Extensive experimental results on three datasets show

that our proposed method surpasses current state-of-the-art methods by incor-

porating information from textual and visual modalities and the user’s hash-

tagging behavior. Furthermore, our model beats other baselines in image-based

and text-based hashtag recommendations when only image or text information

is provided.

The structure of the remainder of this chapter is as follows. Section 5.2 formally

defines the problem under investigation. The proposed methodology is then detailed

in Section 5.3. Subsequently, Section 5.4 presents and discusses the experimental

evaluations conducted. Finally, Section 5.5 offers concluding remarks and a summary

of this work.

5.2 Problem Definition

In this section we present the problem definition and formulation.

Problem 1 (Hashtag Recommendation) Suppose there is a social media dataset with

a post set P = {pi}Ni=1, a hashtag set H = {hg
j}Jj=1, and a user set U = {uk}Kk=1, in

which the post pi ∈ P composed of the image (I) and the text (T ), is created by a

user uk ∈ U with some hashtags hg
j ∈ H.

87



Given a test post (pi) created by a user (uk), we aim to automatically recommend

a set of hashtags Rh = {rhr}Rr=1, such that set of recommended hashtags Rh for the

given post pi match to ground truth hashtag set Gh = {ghg}Gg=1.

Here, N denotes the number of posts in the dataset, J is the number of unique

hashtags, K denotes the number of users, i, j, k are used to index the post, hashtag,

and user, respectively. For a post pi, R denotes the number of recommended hash-

tags, G denotes the number of ground-truth hashtags, and r, g are used to index the

recommended hashtag, and ground-truth hashtag respectively.

Problem 1 is the hashtag recommendation for a social media post. In this problem,

we automatically recommend a good quality of hashtags that can be used by social

media users to annotate their content. Good quality of hashtags increase audience

engagement [134] and help to search, and categorize social media posts. We can model

hashtag recommendation using multi-label classification or sequence generation. We

discuss these two problems below.

Problem 1.1 (Hashtag Recommendation using Multi-Label Classification) To tackle

the task of hashtag recommendation, we formulate it as a multi-label classification

problem. Assume that there is a post set P = {pi}Ni=1, user set U = {uk}Kk=1 and a

predefined set of candidate hashtags H = {hg
j}Jj=1, where N denotes the cardinality

of set P,K denotes the cardinality of set U and J denotes the cardinality of set H.

Given a test post pi such that pi ∈ P , the goal of multi-label classification is to

recommend a plausible set of hashtags Rh = {rhr}Rr=1 that the creator of the test post

pi is likely to assign to (pi) from the pool of predefined hashtags (H).

Social media posts generally contain multiple hashtags pointing towards specific

portions of associated texts and images. The hashtags are the various class labels

to which a post belongs. The membership of a post in these classes is not mutu-

ally exclusive as the post usually belongs to several classes simultaneously. We can

formulate hashtag recommendation as a multi-label classification problem and assign

multiple hashtags to a post. To this end, we solve hashtag recommendation in terms

of multi-label classification to recommend a plausible set of hashtags for a given post

(pi).
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Problem 1.2 (Hashtag Recommendation using Sequence Generation) Though we have

formulated our problem as multi-label classification, another efficient way to address

this problem is to model it as a sequence generation problem. Suppose there is a social

media dataset as discussed in Problem 1.1.

Given a test post (pi), our goal is to output hashtags Rh = {rhr}Rr=1 represented

by a sequence of words, which a user (uk) can annotate to post (pi).

Here, Rh denotes the set of hashtags recommended for a post pi. Hashtags for so-

cial media posts are often strongly correlated with each other. It is essential to capture

the underlying structure among hashtags based on their semantics. Due to the limited

data to learn from, classification-based approaches suffers from data sparsity problem.

The generation of hashtags in a word-by-word manner enables the internal structure

of hashtags to be exploited, thus capturing the semantic dependencies among them.

We solve hashtag recommendation as a sequence generation problem to recommend

semantically related hashtags for a post (pi). We propose a hybrid model that inte-

grates the multi-label classification-based and sequence generation-based approaches

to take their combined advantages into account.

Problem 2 (Feature Learning from Posts) Social media users create multimodal posts

containing different facets such as texts and images. Each facet is highly informative

in providing hashtags to the user-created post. A large number of posts containing

such facets are generated that cannot be directly utilized by hashtag recommendation

methods. We are required to derive a good set of features that can serve as input

to hashtag recommendation methods. We examine different approaches to model the

intrinsic multi-modality of social media posts and extract the fundamental features

that can be leveraged to propose a good quality of hashtags. We define the feature

extraction problem below.

Given a post set P and a post pi ∈ P , we aim to extract meaningful numerical rep-

resentations from the post’s textual modality denoted as pti, and post’s visual modality

denoted as pvi .

Firstly, for the visual modality of ith post pi represented as pvi , our goal is to obtain

a visual feature matrix V ={vy}Yy=1, where, vy corresponds to the visual feature vector
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of the yth region of the image, and vy ∈ RD, where D is the embedding size. Secondly,

for the textual modality pti appearing as a sequence of words Wi = {wx
i }Wx=1, our goal is

to embed the words present in pti into low dimensional real-valued vectors and obtain

a text feature matrix T = {ex}Xx=1.Here, W represents the number of words appearing

in the textual modality pti, ex corresponds to the text feature vector of the word wx
i ,

and ex ∈ RD, where D is the embedding size and X represents the length of token

sequence obtained after passing Wi to the text encoder.

Since raw texts and images cannot be used directly, they need to be converted

into appropriate embeddings. To obtain text and image distributed representations,

we segment the multimodal social media posts into their constituent modalities. We

employ attention mechanisms to distill the significant parts of textual and visual in-

formation present in the post and jointly model the retrieved information conducive

to hashtag recommendation.

Problem 3 (Personalised Hashtag Recommendation) Suppose there is a social media

dataset with a post set P = {pi}Ni=1, a hashtag setH = {hg
j}Jj=1, a user set U = {uk}Kk=1

and for a post pi created by user (uk), the historical post sequence of user (uk) is

denoted as HP = {hpl}Ll=1.

Given the historical posts of a user (uk) denoted as HP = {hpl}Ll=1, our goal is to

recommend hashtags for the new, i.e., ith post created by user (uk) based on the user’s

preferences.

Social media users have a unique pattern of assigning hashtags to their created

posts. For making personalized recommendation, it is useful if the suggested hashtags

reflect the users’ preferences. Analysis of users’ preferences, which helps obtain a

deeper insight into their interests, requires the implicit modeling of the user’s tagging

behavior. To achieve this goal, we attempt to recommend relevant hashtags for a new

post (pl+1) posted by a user (uk) based on the user’s tagging patterns and vocabulary

choices, which are extracted from the user’s history. We recursively access l historical

posts HP = {hpl}Ll=1 of a user with the current post content (pi) to make personalized

hashtag recommendation.
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Figure 5.2: Overall architecture of DESIGN

5.3 Methodology

In this section, we present our proposed methodology. Figure 5.2 depicts the overall

architecture of our proposed hashtag recommendation system. The proposed system

first retrieves the coherent features from visual and textual modalities to obtain a

joint feature vector representation of a social media post. User habits are learned

and integrated with joint features to get a post feature vector influenced by user’s

tagging behavior. Hashtags are predicted from post features using different hashtag

prediction methods namely, MLC and SG. The predicted hashtags are then effectively

sampled and ranked to recommend a relevant set of hashtags for social media posts.

We perform the following four steps to automatically recommend a set of hashtags

for the social media posts: (a) feature mining; (b) user preference mining; (c) hashtag

prediction; and (d) candidate hashtag recommendation.

5.3.1 Feature Mining

The feature mining module is shown in Figure 5.3. It comprises three submodules:

(a) feature extraction, (b) feature interaction, and (c) feature fusion. We first extract

visual and textual features from social media posts. The distributed representations of

the constituent texts and images are co-attended to model their interaction to obtain a

richer contextual representation of the post. We describe the details of each submodule

in the following sections.
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Figure 5.3: Feature mining module

5.3.1.1 Feature Extraction

As a post usually contains textual and visual content, it is essential to extract

the features from these contents. In the following sections, we will discuss visual and

textual feature extraction.

5.3.1.1.1 Visual Feature Extraction Image content is one of the vital modali-

ties prevalent in social media posts. It is therefore essential to retrieve the features that

capture the essence of the visual content. We use different transfer learning models

that have exhibited exceptional performance in visual recognition tasks to derive useful

information from posts’ visual content. We experimented with two different Convolu-

tional Neural Networks (CNN) to extract visual features, namely VGG-16 [135] and

ResNet-50 [136]. Image content is one of the vital modalities prevalent in social media

posts. In order to retrieve the features that capture the essence of the visual content,

we use different transfer learning models that have exhibited exceptional performance

in visual recognition tasks. We experimented with two different CNN to extract visual

features, namely VGG-16 and ResNet-50. First, we rescale the input image to dimen-

sions 224× 224. An image can be represented as a 3D matrix consisting of 3 primary

color channels, i.e., red, green, and blue. An image of height h and width w is denoted

as I where I ∈ Rh×w×3. Here, R represents the set of real numbers. We adopt widely

used Convolutional Neural Network-based models (i.e., VGG-16 and Resnet-50). We

first pass the input image I to CNN to derive the visual features of an image as given

in Equation 5.1.

If = CNN(I) (5.1)
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The image feature vectors thus obtained are stacked horizontally to form the visual

feature matrix V , given by Equation 5.2.

V = Reshape(If ) (5.2)

Here, V ∈ RY×512, Y = 7 × 7 = 49 in case of VGG-16, V ∈ RY×2048 in case of

ResNet-50 and Y = 7× 7 = 49 represents the number of regions in the image. Since

the spatial features describe the image precisely, we divide an image into 7×7 regions

to construct a 512-dimensional feature vector for each region in case of VGG-16 in

contrast to the 2048 dimensional regional feature vector in case of ResNet-50.

Finally, we use a dense layer to transform the visual feature matrix V that we

have obtained from one of the above-mentioned CNN to a matrix having the same

embedding size as the text feature matrix T which is shown in Equation 5.3.

V = Dense(units = D)(V ) (5.3)

Here, V ∈ RY×D, Y = 49 and D = 768. We explain the textual feature extraction in

the next section.

5.3.1.1.2 Textual feature extraction Text is an integral part of social media

posts. To extract the features from textual content embedded in a social media post,

we employ a transformer-based Deep Learning model, BERT. Bidirectional Encoder

Representations from Transformers or BERT in short, captures the bidirectional con-

text of the input. This nature of BERT is attributed to the fact that it reads all

the input words simultaneously. BERT is a context-aware model which focuses on

the surrounding words before generating the embeddings. Unlike word2vec, which is

context-independent and does not consider homonyms, BERT is context-dependent

and takes homonyms into account. For example, “fair” could refer to some event

related to entertainment, or “fair” could refer to impartial behavior. Based on their

usage, the words are represented by different vectors.

BERT is pre-trained on extensive unlabeled data from Wikipedia and Book Corpus
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using two unsupervised methods i.e., Masked Language Modelling (MLM) and Next

Sentence Prediction (NSP) [113]. In MLM, 15% of the words in each word sequence

are substituted with a [MASK] token before being fed into BERT. The model tries

to generate a prediction for the masked word by comprehending the context of sur-

rounding words. For NSP, BERT is fed with pairs of sentences and learns to predict

whether the second sentence in the pair follows the first sentence.

The transformer is made up of attention-based components: encoder and decoder.

The encoder reads the input sentence to generate an abstract continuous vector rep-

resentation, and the decoder uses the generated representation to predict the output.

BERT is built upon the transformer architecture. Since BERT is a language represen-

tation model for generating word embeddings, it employs stacked layers of transformer

encoder to represent each input token. Given a sequence of W words Wi={wx
i }Wx=1

representing the textual modality (pti) of the post (pi), our model begins with inserting

two unique tokens in each post’s textual content, a class [CLS] token at the beginning

and a separator [SEP] token at the end. These tokens are used to mark the beginning

and end of the sentence, respectively. Next, we use BERT’s tokenizer to generate a

set of integer-based tokens B as shown in Equation 5.4.

B = BERT_Tokenizer(W ) (5.4)

In our case, we restrict the maximum length of the token sequence to X. For sequences

with a length greater than X, we perform truncation; otherwise, we insert empty

tokens to perform padding. Finally, we employ BERT to construct the embedding

vector for each token, which captures its syntax and semantics. BERT receives a

sequence of tokens that moves up the stack. Each layer employs self-attention and

routes its output through a feed-forward network before passing it to the next encoder.

We feed B into the BERT model, as given in Equation 5.5, which in turn generates a

768-dimensional vector for each token.

T = BERT (B) (5.5)
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Here, T = {ex}Xx=1 , T ∈ RX×D is the textual feature matrix and ex is the BERT

embedding for a token. mBERT has been pretrained on 104 different languages with

MLM objective. Since we have social media posts written in diverse languages, we use

the Multilingual BERT model to generate embeddings for the tokens obtained from

text appearing in the posts. For our task, we use the base version of Multilingual

BERT having 12 encoder layers, with each layer having 12 self-attention heads.

5.3.1.2 Feature Interaction

We apply different feature interaction mechanisms on features extracted from vi-

sual and textual modalities. To perform interaction, we use attention techniques.

John Robert Anderson defined attention as a process that allows humans to concen-

trate more on a certain piece of information to derive conclusions [137]. Similarly,

neural networks perform better by focusing more on relevant parts of the input. At-

tention refers to concentrating specifically on certain vital parts of data and generating

feature vectors based on these specific parts. In the following sections, we will present

how we first apply word-level attention to enrich the textual representation of the

post. We also employ parallel co-attention to model the interaction between visual

and textual features. At last, we integrate these two attention mechanisms to perform

word-level and parallel co-attention.

5.3.1.2.1 Word-level Attention A social media post contains multiple words.

Various words appearing in the post’s textual content vary in importance when pro-

viding information about the post. The basic intuition behind the word-level attention

mechanism is that words constituting the post contribute differentially to its semantics.

The importance of words depends heavily on context, i.e., the same word may be dif-

ferentially important in some other context. Attention offers insight into which words

deliver essential information for generating relevant hashtags, resulting in improved

performance. The word-level attention allows the model to pay varying degrees of

attention to individual words by assigning them different weights. We employ a word-

level attention mechanism to model the post’s textual content [138, 139]. The words

95



appearing in the post are first encoded into low-dimensional vectors using the encoder.

Then a word-level attention mechanism is used to retrieve the words that contribute

significantly to the meaning of the post. Given the sequence of different words de-

noted as Wi = {wx
i }Wx=1, representing the textual content of the post pti denoted as (pti),

we use BERT, a pre-trained transformer-based model to derive word embeddings by

merging input from both left and right sides for each word besides including the con-

textual information. We employ an attention mechanism to extract important words

and aggregate the obtained word representations to derive an overall representation of

textual content of the post. Specifically, we first feed the token annotation ex through

MLP to get hx as a hidden representation of ex as shown in Equation 5.6.

hx = tanh(Wex + bw) (5.6)

Here, hx as a hidden representation of ex. We compute the importance of word αx as

shown in Equation 5.7.

αx = softmax((hx)Tuw) (5.7)

Here, αx indicates the importance of a word. First, we compute the similarity of hx

with uw and pass the product through a softmax function to obtain normalized weight

αx. After that, we compute the textual post vector as follows:

t =
X∑

x=1

αxex (5.8)

Here, t denotes the textual post vector which is computed as a weighted sum of the

word annotations based on the weights αx.

5.3.1.2.2 Parallel Co-Attention Description of a single social media post exists

in multiple modalities, e.g., texts contain natural language words, images have visual

signals, and objects of different attributes such as size, color, and position. Since these

modalities describe the same content from different perspectives, they exhibit varying

degrees of correlation at specific levels. We need to focus on multimodal information
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fusion when obtaining a latent representation of the post (pi). Learning multimodal

representations involves integrating information from multiple data sources comprising

the post.

The various modalities constituting the post barely interact with one another. As

a result, interrelation among different modalities cannot be addressed. To comprehend

how modalities interact, the two must be combined so that the resultant vector can

convey joint reasoning across the visual and textual modalities. Algorithm 5.1 shows

Algorithm 5.1 Parallel Co-Attention
Input: T : Text feature matrix

V : Image Feature Matrix
Output: t̃: Text feature vector

ṽ: Image feature vector
function Para_Co-Attention(T, V )

1: C ← tanh(TW bV
T )

2: F t ← tanh(WtT
T
+ (WvV

T )CT )
3: at ← softmax(Wht

TF t + bht)
4: t̃←

∑X
i=1 a

t
iti

5: F v ← tanh(WvV
T + (WtT

T )C)
6: av ← softmax(Whv

TF v + bhv)
7: ṽ ←

∑Y
i=1 a

v
i vi

8: return t̃, ṽ

the parallel co-attention mechanism that attends to image and text simultaneously.

We model their association based on similarity between visual and textual features

computed for all combinations of image and text locations. Line 1 shows how to

compute the affinity matrix. Given an image feature matrix V ∈ RY×D, and the text

feature matrix T ∈ RX×D, the affinity matrix C ∈ RX×Y is calculated as given in

Line 1, where Wb ∈ RD×D denotes the correlation matrix to be learned. To capture

the correlations between text and image features, we transfer the image and text

feature space into each other. The affinity matrix C maps text-based attention to

image-based attention (vice versa for CT ). We can define the new text feature matrix

(F t ∈ RD×X) as given in Line 2. Here, the visual feature matrix V is multiplied by CT

and then integrated into the textual features, and Wt,Wv ∈ RD×D are the parameters.

The image features guide the attention learning of text. Similarly, we compute the
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new visual feature matrix (F v ∈ RD×Y ) as given in Line 5. Here, Wt,Wv ∈ RD×D,

T ∈ RX×D, V ∈ RY×D, C ∈ RX×Y .

Next, we use the new feature matrices to compute the attention weights as shown

in Lines 3 and 6 where, Wht,Whv ∈ RD and bht, bhv ∈ R are the parameters. The

dimensions of the resultant attention weights are given as at ∈ R1×X and av ∈ R1×Y .

The global text and image feature vectors are calculated as the weighted sum of the

textual and visual feature vectors respectively with the above attention weights as

shown in Lines 4 and 7. Here, t̃ ∈ RD, ṽ ∈ RD, ati and avi represent the attention

weights corresponding to a certain word and an image region, respectively. The cor-

relation between the two can help filter out noisy data and provide richer semantic

representation as it focuses only on relevant multimodal features.

5.3.1.2.3 Word-level and Parallel Co-Attention Different modalities depict

the intrinsic content of the social media post from different angles. In order to learn

the importance of different words representing the textual content of a post (pi), we

apply word-level attention to associated text i.e., pti which is shown in Equation 5.9.

t = Word-level(pti) (5.9)

Next, we use the Repeat_Vector function to transform the text feature vector t into

a matrix T ′ as follows:

T ′ = Repeat_V ector(t) (5.10)

Finally, we employ the parallel co-attention mechanism as given in Equation 5.11 to

model the interrelationship between textual and visual modalities.

t̃, ṽ = Para_Co− Attention(T ′, V ) (5.11)

The two feature matrices T ′ and V obtained from textual and visual modalities are

co-attended together to obtain the global feature representation of texts and images

comprising the social media post.
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5.3.1.3 Feature Fusion

The adopted fusion strategy considers the interaction among different modalities.

The content-based post feature vector representation (p̃) of the social media post is

obtained as shown in Equation 5.12.

p̃ = ṽ + t̃ (5.12)

Here, p̃ denotes the content-based post feature vector representation. The global image

feature vector ṽ and the global text feature vector t̃ are summed together to obtain p̃.

This representation is then passed to the user preference mining module to generate

plausible hashtags.

5.3.2 User Preference Mining

Social media users engage in diverse tagging practices. Users tend to create posts

comprising texts, images and sometimes assign hashtags to their posts. Distinct users

interpret the same hashtag in different ways. For hashtag recommender systems to

suggest user-aware hashtags, it is critical for these systems to understand the user

behavior and interaction with hashtags. These interactions act as clues for learning

users’ tagging preferences and provide crucial information for tailoring personalized

hashtag suggestions. However, modeling user preferences in hashtag recommender

systems has received minimal attention. We aim to identify the users’ tagging pattern

on their created posts as described in the following sections. We first randomly choose

some posts from the current user’s posting history. Then, we use these historical posts

to learn and relate the tagging habits with the current post to be tagged.

5.3.2.1 Post Sampling

To improve user experience in hashtag recommendation systems, we attempt to

model users’ preferences from their historical posts and associated hashtags. The main

idea is to learn about users’ interests and model their tagging behavior by mining
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information from previous posts. Post sampling is employed to select prior posts of

users to learn their tagging behavior and hashtags usage style. We randomly sample

L historical posts for each user to understand their tagging patterns. Since users may

have created a limited number of posts, we limit L to a reasonably small value.

5.3.2.2 Hashtag Pattern Modeling

Social media users may spontaneously assign hashtags to their created posts; there-

fore, attaching hashtags to the user-generated content is a social behavior. It is chal-

lenging to automatically generate hashtags for social media content because the asso-

ciated hashtags are related to user preference besides exhibiting relation to the content

of the social media post. Motivated by the intuition that user tagging behavior should

impact the recommendations, in this work, we attempt to model users’ interests by

incorporating information from their historical posts.

Our proposed method suggests hashtags based on the current post’s content and

users’ tagging behavior. It considers the historical posts of the given user to learn user

preferences and accordingly assign hashtags to his newly created posts. For modeling

user behavior, we apply the techniques mentioned above to extract features from the

given user’s historical posts and then compare the current post pi to his historical

posts hpl. Finally, the influence vector ũ is estimated by taking the weighted sum of

the hashtags in the database, where the similarities between the posts determine the

weights. Algorithm 5.2 shows the procedure for modeling user tagging behavior. Line

1 presents the equation to extract the post feature vector p̃ for ith post pi. Lines 4-15

reveal the equations for obtaining hashtag attention and post similarity matrix for L

historical posts. Line 5 presents the equation to extract features for the lth historical

post hpl. Line 8 shows the equation to obtain hashtag embedding ge of the particular

hashtag hg contained in the hashtag set of the lth historical post i.e., hphgl . BERT

is used to embed the hashtags into low dimensional real-valued vectors. The hashtag

embeddings ge are stacked together to obtain a matrix of hashtag embeddings denoted

by Gl for all hashtags appearing in the lth historical post hpl as depicted in Line 9.

Line 11 indicates the hashtag attention mechanism adopted to generate a hashtag
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Algorithm 5.2 Modeling User Tagging Behavior
Input: HP : Set of historical posts

pi: Test post of user uk ∈ U
Output: ũ: Influence vector of user uk ∈ U
function getInfluenceVector(pi,HP)
p̃← FeatureExtraction(pi)
S ← []
G̃← []
for hpl ∈ HP do

h̃pl ← FeatureExtraction(hpl)
Gl ← []
for hg ∈ hphgl do

ge ← Embedding(hg)
Gl.append(ge)

end for
g̃l ← Attention(Gl)
G̃.append(g̃l)
sl ← tanh(p� hpfl )
S.append(sl)

end for
as ← softmax(W T

s ST + bs)
ũ←

∑L
l=1 a

s
l g̃

l

return ũ

attention vector g̃l which converts each hashtag set Gl into a single hashtag influence

vector g̃l. The attention mechanism mentioned in Line 11 can be summarised as given

in Equations 5.13-5.15.

Hg = tanh(WgG
l) (5.13)

ag = softmax(W T
hgH

g + bhg) (5.14)

g̃l =

Ng∑
k=1

(agkg
l
k); k = 1, 2, . . . , Ng (5.15)

Here, Ng is the fixed length of hashtag sequence, D = 768, Wg ∈ RD×D, Hg ∈

RD×Ng ,Whg ∈ RD and g̃l ∈ RD ; l ∈ [1, 2, . . . , L]. The hashtag attention vectors

g̃l are stacked together to obtain the hashtag attention matrix G̃, as depicted in Line

12. Here, G̃ ∈ RL×D represents the hashtag attention matrix for L historical posts,

g̃l ∈ RD indicates the hashtag attention vector corresponding to lth historical post
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hpl. The equation in Line 13 is used to compute the similarity vector sl by measuring

the similarity of lth historical post feature vector h̃pl with the current post feature

vector p̃. Historical post features are neither pre-trained nor independently trained.

Instead, they are trained with the current post features. The similarity vectors sl are

stacked together to obtain the similarity matrix S as shown in Line 14. We use the

similarity matrix S to compute the attention weights denoted by as for each historical

post hpl as shown in Line 16. Here, W s ∈ RD and bs ∈ R are parameters, as ∈ RL.

Line 17 shows the computation of the influence vector ũ. Here, ũ is calculated by

taking the weighted sum of attention weights of historical post denoted by asl with the

hashtag embedding vector g̃l corresponding to lth historical post hpl. The hashtags are

assigned weights on the basis of similarities between historical posts and the current

post. The final feature vector q is obtained by concatenating these two feature vectors

as follows.

q = p̃⊕ ũ (5.16)

where, ⊕ represents the concatenation operator, p̃ ∈ RD and ũ ∈ RD. The final feature

vector q is then fed in the hashtag prediction module to recommend quality hashtags

by considering the post’s content and the user’s tagging behavior. In the following

section, we will go through the hashtag prediction module in detail.

5.3.3 Hashtag Prediction

This section discusses MLC and SG techniques to predict hashtags for the post pi.

5.3.3.1 Multi-label Classification

We generate hashtags for the post pi by formulating the hashtag recommendation

task as a MLC problem. As a social media post can belong to several classes simul-

taneously, this technique helps to predict the mutually non-exclusive class labels. It

assigns hashtags to the post from a pool of predefined hashtags H = {hg
j}Jj=1 where J

is the cardinality of set H. Given the final feature vector q, we first use dense layer of

size J and then a softmax activation function to obtain softmax scores of hashtags as
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shown in Equation 5.17.

ypred = (softmax(Dense(units = J))(q)) (5.17)

Here, ypred ∈ RJ represents the softmax scores of the predefined hashtags, J is the

total number of hashtags in our dataset. We then sort the hashtags based on these

scores to get the final set of predicted hashtags as given in Equation 5.18.

RhMLC = argsort(ypred) (5.18)

Here, argsort is used to get the corresponding indices of softmax scores sorted in

descending order, and RhMLC denotes the hashtags predicted when hashtag recom-

mendation is modeled as a Multi-Label Classification problem. The training objective

loss function is given in Equation 5.19.

J =
1

|Z|
∑

(pi,Ghi)∈Z

∑
gh∈Ghi

−log(Prob(gh|pi)) (5.19)

Here, Z (Z ⊂ P ) denotes the training post set, pi and Ghi represent the current

post and corresponding hashtag set, and Prob(gh|pi) is the probability of choosing

hashtag gh for the post pi.

5.3.3.2 Sequence Generation

We adopt an encoder decoder-based model to formulate hashtag recommendation

tasks in terms of sequence generation. The encoder extracts the visual, textual fea-

tures and user features from a social media post. We then obtain its hybrid vector

representation as mentioned in Equation 5.16. In this section, we first explain the

decoder, then we highlight the procedure for hashtag generation and training of the

SG framework. GRU is employed to model interrelationships between hashtags and

multimodal data. The update gate is determines how much of previous state infor-

mation to retain in the current state. In contrast, the reset gate limits the extent to
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which previous hidden state information can be neglected. GRU makes use of these

two gates to generate the next hidden state ht conditioned on the previous hidden

state ht−1. We now discuss the hashtag generation procedure. Given a social media

post pi comprising image and text, the hybrid encoder in our proposed model first

retrieves textual and visual feature vectors separately. The distributed feature vector

representations are combined with a word-level and parallel co-attention mechanism.

This representation is then combined with information mined from user’s historical

posts to obtain the overall post feature vector representation.

xt = Embedding(hginpt ) (5.20)

Here, xt is the embedding of hashtag obtained at time step t. This embedding along

with the post feature vector is fed into the GRU network to generate a hidden state

vector ht as follows:

ht = GRU(xt) (5.21)

Subsequenlt, we calculate probabilities of each hashtag at time step t by employing a

dense layer and a softmax function as shown in Equation 5.22.

yt = softmax(W T
h ht + bh) (5.22)

Finally, we employ greedy search to get the predicted hashtag hgpredt as follows:

hgpredt = argmax(yt) (5.23)

Since there is a possibility that the output hashtags may repeat, we filter out the

redundant hashtags at each step. RhSG = {hgpredi }Ng

i=1 is the final set of hashtags

generated by the sequence generation technique.

In general, SG models utilize the previous time step’s output hgpredt−1 as the model’s

input at the current time step t. This is a typical approach in language models

that output a single word at a particular point of time, where the current word is
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dictated by the ones preceding it. During the early phases of training, the model’s

predictions are extremely poor. A series of incorrect predictions updates the model’s

hidden states, and the model finds it challenging to learn from this. This technique

may result in slower convergence and model instability. Hence, we employ teacher

forcing, an approach used to boost the model’s learning capabilities. Teacher forcing

is a strategy used for training recurrent neural networks in a fast and effective way by

feeding the actual output at the current time step ghi
t as input to the next time step

hginpt+1 as shown in Equation 5.24, in place of the current output hgpredt produced by

the network.

hginpt+1 = ghi
t (5.24)

When we employ teacher forcing, the model learns the statistical features quickly and

predicts the correct sequence. Unlike the training procedure, we cannot access the

ground truth hashtags during testing. Hence, the hashtag predicted at timestep t is

fed as the input to the GRU unit in the next timestep, as shown in Equation 5.25.

hginpt+1 = hgpredt (5.25)

Note that we use two special tokens [START] and [END]. These tokens signal the

beginning and end of the hashtag sequence respectively. Our framework employs

greedy search to recommend the sequence of relevant hashtags. The greedy search

decoder generates the hashtag sequence by selectively choosing the most probable

hashtags. Hashtags are ranked based on decreasing order of probabilities. At time

step t, the greedy search algorithm selects the most probable hashtag. It is desirable

to output the most probable hashtag at every step when adopting the generation

framework for the recommendation task. This decoding technique suggests plausible

hashtags for a given social media post. The training objective loss function is shown

in Equation 5.26.

J = −
c∑

t=1

log(Prob(ght|q, gh1, . . . , ght−1; θ)) (5.26)
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Figure 5.4: Candidate hashtag recommendation module

Here, gh{1,...,t} ∈ Ghi, where Ghi corresponds to the ground-truth hashtag set for

the current post pi, ght denotes the ground-truth hashtag at time step t, q is the

vector representation of the current post pi, and θ denotes all the parameters of the

SG component. The hashtags predicted by MLC and SG models are aggregated to

recommend high-quality hashtags.

5.3.4 Candidate Hashtag Recommendation

To capitalize on the hashtag prediction techniques mentioned above, we devise a

candidate hashtag recommendation module that will suggest relevant hashtags for the

given social media post pi. The candidate hashtag recommendation module is shown

in Figure 5.4. It consists of 3 components: sampler, ensemble module, and evaluator.

5.3.4.1 Sampler

This component effectively samples the hashtags from MLC and SG models’ pre-

dictions. We leverage the validation set for this procedure. Given the inputs from

the validation set, the hashtags predicted by both MLC(RhMLC) and SG(RhSG) are

fed into the sampler. It samples s1 hashtags from MLC and s2 hashtags from SG as

follows:

RhS
MLC = {Rhs

MLC}s1s=1 (5.27)

RhS
SG = {Rhs

SG}s2s=1 (5.28)

where, s1, s2 ∈ {1, 2, . . . , 20}. The sampled hashtags are then fed into the ensemble

module.
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5.3.4.2 Ensemble Module

In the ensemble module, we aggregate the sampled hashtags which are provided

by the sampler. The aggregation procedure is as follows: Firstly, we compute the

intersection between hashtags sampled from both the procedures to retrieve common

hashtags as given in Equation 5.29.

Rhi = RhS
MLC ∩RhS

SG (5.29)

Here, Rhi represents the obtained set. We then obtain the unique hashtags from MLC

set as shown in Equation 5.30.

RhU
MLC = RhS

MLC −RhS
SG (5.30)

Here, RhU
MLC refers to those hashtags that are exclusively present in MLC but not in

SG. Similarly, we obtain the unique hashtags from SG as shown in Equation 5.31.

RhU
SG = RhS

SG −RhS
MLC (5.31)

Here, RhU
SG refers to those hashtags that are exclusively present in SG but not in

MLC. Lastly, we compute the union of three sets as follows:

Rhu = Rhi ∪RhU
MLC ∪RhU

SG (5.32)

Here, Rhu denotes the combined set. From the combined set (Rhu) we recommend

top-K hashtags as given in Equation 5.33.

Rhr = Rhu[1, 2, . . . , K] (5.33)

These hashtags (Rhr) are then fed into the evaluator.
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5.3.4.3 Evaluator

Given the ground truth hashtags(Gh) from the validation set and the hashtags

generated by the ensemble module (Rhr), we compute the F1-score as shown in Equa-

tion 5.34.

score = F1-score(Gh,Rhr) (5.34)

We keep track of the maximum F1-score generated for the validation set and the

corresponding values for s1 and s2. This is explained in the following algorithm.

Algorithm 5.3 shows the procedure to sample the number of hashtags from MLC and

Algorithm 5.3 Hashtag Sampling Algorithm
Input: score: F1-score generated by the evaluator

s1, s2: Number of hashtags sampled by the
sampler
maxF1: maximum F1-score recorded, which
is initialised to 0

Output: maxF1, bestS1, bestS2
function HashtagSampling(score, s1, s2,maxF1)
1: if score>maxF1 then
2: maxF1← score
3: bestS1← s1
4: bestS2← s2
5: end if
6: return maxF1, bestS1, bestS2

SG strategies i.e., s1 and s2 that yield the highest F1-score. Here, bestS1, bestS2

represent the values of s1 and s2 corresponding to the highest F1-score recorded.

This procedure continues until all possible combinations of s1 and s2 are exhausted.

The task of obtaining values for bestS1 and bestS2 in order to maximise the F1-

score can be thought of as a state space search problem, where the set of states is given

by {(s1, s2) : 1 ≤ s1, s2 ≤ 20}. One simple technique would be to choose a value at

random, however this method is inefficient. We computed our algorithm’s efficacy,

which can be defined as the ratio of the number of states with an F1 score smaller

than bestF1 to the total number of possible states. We experimented with the above

mentioned datasets and the algorithm achieved an efficiency of 98.25%, 91.3125% and
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99.75% on MMP-INS, T-INS and HARRISON respectively. This justifies the relevance

and effectiveness of the hashtag sampling algorithm. Finally, to recommend hashtags

for the query post pi, we sample bestS1 and bestS2 hashtags from the predictions of

MLC and SG models, respectively as shown in Equations 5.35 and 5.36.

RhFinal
MLC = {Rhs

MLC}bestS1s=1 (5.35)

RhFinal
SG = {Rhs

SG}bestS2s=1 (5.36)

These hashtags are fed into the ensemble module to generate candidate hashtag rec-

ommendation as follows:

Rhpred = Ensemble_Module(RhFinal
MLC , RhFinal

SG ) (5.37)

where, Rhpred represents the recommended hashtags. The recommended hashtags

capture not only the multimodal aspects of the current post but also the preferences

of the user who created that post.

5.4 Experimental Evaluations

In this section, we first describe the experimental settings and then present the

experimental results to show the effectiveness of our method.

5.4.1 Experimental Setup

In this section, we present the different datasets on which experiments have been

carried out. Subsequently, we discuss the baseline methods for comparison followed

by evaluation metrics.

5.4.1.1 Datasets

We perform hashtag recommendation on three different datasets, namely MMP-

INS, HARRISON, and T-INS. MMP-INS is a multimodal personalized dataset from
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Instagram. HARRISON is a publicly available benchmark dataset for image-based

hashtag recommendation. T-INS is a text-based dataset that we have crawled from

Instagram. We discuss these datasets in detail below.

5.4.1.1.1 MMP-INS In this chapter, we use Multi-Modal Personalised INSta-

gram dataset abbreviated as MMP-INS. This dataset was originally presented by

Zhang et al. [5]. We have used a subset of the dataset after applying different pre-

processing techniques. To pre-process the original dataset, we performed lemma-

tization on the hashtags appearing in the crawled posts. Next, we remove the low-

frequency hashtags. The final dataset for the usage of our experiments contains 20,790

posts. There are a total of 3,636 unique hashtags, with an average of 6.95 hashtags

per post. The minimum number of hashtags associated with a post is one whereas the

maximum number of hashtags related to any post is 30. The dataset contains 3,153

unique users where a user has an average of 6.59 posts.

5.4.1.1.2 HARRISON HARRISON is a popular benchmark dataset for image-

based hashtag recommendation. This dataset was created by Park et al. [115] in the

year 2016 to recommend hashtags for Instagram photos. The raw dataset comprises

57,383 images and a mean of 4.5 hashtags per image. To pre-process the raw dataset,

we first drop the low-frequency hashtags followed by removal of posts without hash-

tags. The final dataset for the usage in our experiments contains 36,428 images and

an average number of 4.64 hashtags per image. The minimum number of hashtags as-

sociated with an image in HARRISON dataset is one, whereas the maximum number

of hashtags for an image is 10.

5.4.1.1.3 TINS TINS is a novel dataset that we have created by crawling public

posts from Instagram. We randomly selected 1,649 users and crawled an average of 15

posts per user. The collected dataset is cleaned to carry out the experiments. First,

we lemmatize hashtags appearing in the crawled posts. Then, we remove the posts

that do not contain any hashtags and retain the text-only portion of the collected

posts. The resultant dataset contains 23,868 posts with only text and at least one
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hashtag. It has 1,597 users, with an average of 14.94 posts per user and 9,780 unique

hashtags with an average number of 12.13 hashtags per post. The minimum number of

hashtags associated with a post in the resulting dataset is one whereas the maximum

number of hashtags for a post is 149.

5.4.1.2 Compared Methods

To evaluate the effectiveness of the proposed model, we compare our method with

the following methods for hashtag recommendation.

• Attention based Multimodal Neural Network(AMNN) [94]: The authors convert

the hashtag recommendation task to a sequence generation problem. They adopt

a sequence to sequence architecture with a softmax mechanism. The hybrid

encoder decouples the feature extraction process of multimodal microblogs by

separately retrieving the visual and textual features using CNN and BiLSTM.

The attention mechanism is applied independently to visual and textual features

to learn the most important parts of texts and images. These features are

concatenated to obtain the overall post representation. GRU, which functions

as a decoder, receives the combined representation of the post and generates the

hashtag sequence based on the probability scores of hashtags.

• Image Attention (ImgAtt) [140]: ImgAtt was initially formulated for visual ques-

tion answering. It uses a Stacked Attention Network (SAN) which comprises two

attention layers that generate the visual attention distribution to pinpoint the

most indicative regions to infer the answer. The first attention layer focuses on

the portion of the image most relevant to the question. The second attention

layer uses the fine-grained query vector representation obtained from the first

attention layer to attend to the most relevant portions of image that correspond

to the answer. Since it comprises both textual and visual modalities, this model

can be easily adapted to recommend hashtags for multimodal social media posts.

• Co-Attention (CoA) [12]: Co-Attention is one of hashtag recommendation meth-

ods for multimodal posts. It converts the hashtag suggestion task into a multi-
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label classification problem. The co-attention network generates text attention

and image attention sequentially. Since it lays more emphasis on the textual in-

formation contained in the post, this method first computes text-guided visual

attention. It uses the obtained representation to generate image-guided tex-

tual attention. This feature representation is passed into a single-layer softmax

classifier to predict the hashtags.

• Memory Augmented Co-attention Model (MACoN) [5]: MACoN is a recent

multimodal hashtag recommendation method. It adopts a parallel co-attention

mechanism to extract textual and visual features from multimodal posts simulta-

neously. Since this method considers both image and text as equally important

for tagging in the social media platforms, it generates the textual and visual

attention co-guided by each other. It also learns the user’s tagging habits to

make personalized recommendation.

• Triplet-Attention Graph Networks for Hashtag Recommendation (TAGNet) [30]:

The authors construct a visual similarity graph considering that images that are

similar are annotated with similar hashtags. The node features are computed

using textual and user features to enhance the performance of hashtag recom-

mendation. Triplet attention module is employed to incorporate the mutual

influence of textual,visual and user features on each other. Aggregated graph

convolution rule is used to disseminate information over the graph for predicting

hashtags.

5.4.1.3 Evaluation Metrics

Hashtag recommendation methods have been designed to suggest a good quality

of hashtags for a user’s post. To measure the effectiveness of these methods, we

need to evaluate their performance. The parameters widely employed for assessing

the performance of hashtag recommendation systems are hit rate, precision, recall,

and F1-score. Hence, we have used these four evaluation metrics in this chapter.

Let Rh denote the set of recommended hashtags, Gh represent the set of ground-
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truth hashtags, and Ch represents the set of common hashtags between the top-K

recommended hashtags(Rh) and ground-truth hashtags (Gh), i.e., Ch = Rh ∩Gh.

5.4.2 Experimental Results

We evaluate the proposed method by comparing its performance to the existing

methods on different datasets, analyzing performance gain, visualizing the recom-

mendation, analyzing the computation time of different models and identifying the

sensitivity of various parameters.

5.4.2.1 Effectiveness Comparisons

We compare the performance of the proposed method with the existing methods

on different datasets.

5.4.2.1.1 Performance on MMP-INS dataset To validate the effectiveness of

our proposed model in hashtag recommendation task, we carry out its comparison

with existing methods. Following the prior research in this line, we analyze the per-

formance of various methods in terms of hit rate, precision, recall, and F1-score. The

comparison results with existing methods on the MMP-INS dataset are presented in

Table 5.1. Both CoA and ImgAtt consider the textual and visual modalities. Yet

CoA yields superior performance as compared to ImgAtt. The poor performance

of ImgAtt is ascribed to the fact that it was specifically designed to infer answers

for text-based queries about an image instead of hashtag recommendation and that

it does not implement a co-attention mechanism. Table 5.1 shows that our model

outperforms the previous state-of-the-art approaches on the mentioned dataset signif-

icantly. As can be seen from Table 5.1, DESIGN achieves an absolute improvement

of 42.5%, 20.4%, 25.8%, and 22.8% in terms of accuracy, precision, recall, and F1-

score, respectively, over AMNN. The performance improvement is because our model

considers the user’s historical posts, hashtagging history, and multimodal informa-

tion. In contrast, AMNN considers only the multimodal information of the microblog.

DESIGN comprises a novel personalized generative framework to generate the hash-
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Technique Hit rate Precision Recall F1-score

AMNN 0.226 0.063 0.062 0.062
ImgAtt 0.286 0.074 0.074 0.074
CoA 0.411 0.122 0.125 0.124
MACoN 0.541 0.185 0.206 0.195
TAGNet 0.575 0.190 0.224 0.205
DESIGN 0.651 0.266 0.320 0.291

Table 5.1: Effectiveness comparison results on MMP-INS dataset

tag sequence, significantly boosting hashtag recommendation performance.DESIGN

also employs classification based formulation of hashtag recommendation.In addition

to that, DESIGN employs a word level attention on textual modality followed by

a parallel co-attention on visual and textual modalities as opposed to self attention

mechanisms employed by AMNN on textual and visual features. The improvement of

DESIGN is 36.5%, 19.2%, 24.6%, 21.6% over ImgAtt, 23.9% 14.4%, 19.5% and 16.7%

over CoA in terms of hit rate, precision, recall and F1-score respectively. Further,

our model achieves an improvement of 11.0%, 8.1%, 11.4% ,9.6% in terms of hit rate,

precision, recall and F1-score respectively over the MACoN model. Both DESIGN and

MACoN have been designed to maximize the ability to correctly match the hashtags

that users may assign to posts based on their tagging behavior. DESIGN achieves an

improvement of 7.6%, 7.6%, 9.7% and 8.5% over TAGNet in terms of hit rate, preci-

sion, recall and F1-score respectively over the MACoN model. TAGNet considers the

userid only as the user feature whereas DESIGN mines user tagging behavior from a

user’s historical posts to recommend personalised hashtags for a new post created by

the user. From Table 5.1, we can see that our proposed model, i.e., DESIGN performs

substantially better than MACoN and TAGNet. The reasons for the improvement

in performance are robust heterogeneous features, various attention mechanisms, and

different approaches of MLC and SG. We determine the robust features using state-of-

the-art textual and visual feature extractors. We employ two attention mechanisms.

Firstly, we apply the word-level attention on text to effectively extract the important

features from textual modality followed by a parallel co-attention mechanism to learn

the joint feature representations of the visual and textual modalities in which the two
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(a) Hit rate (b) F1-score

Figure 5.5: Effectiveness comparison curves on MMP-INS dataset

modalities co-guide each other. Besides that, we also model the user’s tagging behav-

ior to learn his preferences. Our model incorporates both MLC and SG techniques

that complement each other and predict good quality of hashtags.

Figure 5.5 shows the performance comparison of hashtag recommendation models

in terms of hit rate and F1-score on MMP-INS. The x-axis indicates the number of

hashtags recommended by different methods, and the y-axis represents the hit rate

and F1-score, respectively. The number of recommended hashtags lie in the range of 1

to 9. As the number of recommended hashtags increases, hit rate increases. DESIGN

model’s curves are always the highest in all metrics compared to the existing models,

suggesting that our proposed model outperforms other models even when the number

of recommended hashtags vary. Furthermore, the gaps in hit rate and F1-score curves

are all widening. The significant improvements in all four metrics over the existing

methods demonstrate our proposed model’s competitive advantage and efficacy.

5.4.2.1.2 Performance on HARRISON dataset In this section, we show the

performance of different models on the publicly available HARRISON dataset. As

HARRISON is an image-only dataset, when performing the experiments of MACoN,

CoA, and ImgAtt on this dataset, we pad a special token to account for the missing

text. We consider top-K hashtags to be recommended, where K = 5, as the average

number of hashtags per image is 4.64. The comparison results of different methods on
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Technique Hit rate Precision Recall F1-score

AMNN 0.125 0.027 0.035 0.030
ImgAtt 0.517 0.135 0.186 0.157
CoA 0.570 0.146 0.205 0.171
MACoN 0.605 0.160 0.223 0.186
TAGNet 0.612 0.161 0.225 0.187
DESIGN 0.634 0.179 0.247 0.208

Table 5.2: Effectiveness comparison results on HARRISON dataset

HARRISON dataset are shown in Table 5.2. As can be seen in Table 5.2, our proposed

model achieves better performance than the existing models on the image-only dataset.

DESIGN shows an absolute improvement of 50.9%, 15.2%, 21.2%, 17.7% over AMNN,

11.7%, 4.4%, 6.1% and 5.1% over ImgAtt, 6.5%, 3.3%, 4.2% and 3.7% over CoA,

3.0%, 1.9%, 2.4%, 2.2% over MACoN and 3.6%, 1.7%, 1.4%, 1.6% over TAGNet in

terms of hit rate, precision, recall and F1-score respectively. The results show that our

model outperforms existing methods on the dataset containing only images. One of the

reasons for the improvement of DESIGN is that it formulates hashtag recommendation

in terms of MLC and SG. DESIGN makes use of an effective visual feature extractor

to capture information embedded in images, classification-based and generation-based

approaches that assist in recommending relevant and correlated hashtags.

5.4.2.1.3 Performance on T-INS Dataset To validate the effectiveness of our

proposed model on text-only hashtag recommendation, we compare it with different

hashtag recommendation methods on the Text dataset from INStagram termed as

T-INS. It can be observed from the given Table 5.3 that DESIGN outperforms the ex-

isting methods while recommending hashtags solely based on the text. All the results

shown in Table 5.3 are at top-K. Here, the value of K is 12 as the average number

of hashtags per image is 12.13. The proposed model shows a relative improvement

of 50.3%, 27.9%, 29.0%, 28.6% over AMNN, 8.9%, 5.5%, 8.1%, 6.7% over ImgAtt,

5.3%, 2.4%, 3.0%, 2.7% over CoA, 1.0%, 1.5%,2.3% 1.9% over MACoN in terms of hit

rate, precision, recall, and F1-score respectively. The results indicate the competitive

advantage of our proposed model in text-based hashtag recommendation. The factors
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Methods Hit rate Precision Recall F1-score

AMNN 0.172 0.056 0.078 0.065
ImgAtt 0.586 0.280 0.288 0.284
CoA 0.622 0.311 0.338 0.324
MACoN 0.664 0.320 0.346 0.332
DESIGN 0.675 0.335 0.368 0.351

Table 5.3: Effectiveness comparison results on T-INS dataset

responsible for DESIGN’s high performance in making text-only hashtag recommen-

dation are the word-level attention and sequence generation technique. When applied

to the textual modality, word-level attention retrieves the significant words appear-

ing in the post’s textual content. The semantically relevant hashtags yielded by SG

are further complemented by hashtags predicted from MLC, resulting in DESIGN

predicting better hashtags.

5.4.2.2 Performance Gain Analysis

In this section, we analyze the performance gain of the proposed method. We first

examine the performance of DESIGN with different modality combinations followed

by different attention mechanisms.

5.4.2.2.1 Modality Combinations In this section, we analyze the performance

of DESIGN with different modality combinations. We aim to recommend hashtags

for social media posts by incorporating multiple modalities. The importance of each

modality varies a lot. To distinguish the effect of different modalities in our suggested

multi-modal approach, we conducted a micro-level study by taking different modality

combinations. The inputs to our presented framework are threefold, i.e., images (i),

texts (t), and user features (u). The performance comparison of different modality

combinations is shown in Table 5.4.

In Table 5.4, DESIGN (t+i+u) represents our proposed DESIGN model. To

demonstrate the usability of text input, we remove it while retaining image and user

features. The resulting model is denoted as DESIGN (i+u). Similarly, DESIGN (t+u)
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Methods Hit rate Precision Recall F1-score

DESIGN (t+i) 0.459 0.138 0.155 0.146
DESIGN (t+u) 0.518 0.206 0.220 0.213
DESIGN (i+u) 0.540 0.187 0.205 0.196
DESIGN (t+i+u) 0.651 0.266 0.320 0.291

Table 5.4: Performance of DESIGN with different modality combinations

takes text and user features as input. DESIGN (t+u) beats DESIGN (i+u) in terms

of precision, recall and F1-score by 1.9%, 1.5% and 1.7% respectively. This can be

attributed to the fact that we have adopted word-level attention on the textual modal-

ity, which effectively encodes the important information from the textual content of

the post. Our proposed DESIGN framework comprising textual, visual modalities,

and user preferences outperforms all the variants in terms of all performance metrics.

DESIGN shows an improvement of 13.3%, 6.0%, 10.0%, 7.8% over DESIGN (t+u) and

11.1%, 7.9%, 11.5% and 9.5% over DESIGN (i+u) in terms of hit rate, precision, recall

and F1-score respectively. Substantial improvement of DESIGN over its variants lies

in utilizing the multimodal information contained in the post and incorporating user’s

tagging behavior. The performance of the overall system improves by incorporating

diverse modalities. The obtained results demonstrate the efficacy of our proposed

multimodal approach, particularly in utilizing disparate modalities.

5.4.2.2.2 Attention Mechanisms In this section, we present the experimen-

tal analysis of the proposed model with different attention mechanisms. DESIGN-

WAPCO, DESIGN-PCO, and DESIGN-WA are the variants of our proposed model

by employing word-level and parallel co-attention, parallel co-attention, and word-

level attention respectively. As DESIGN-WAPCO is our proposed model, we use

terms DESIGN-WAPCO and DESIGN interchangeably.

• DESIGN-WA: DESIGN-WA refers to the implementation of DESIGN with

word-level attention applied to the textual content of social media posts. This

variant applies attention to the word embeddings obtained from the transformer-

based BERT model to identify the essential words in the posts’ textual modal-
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Methods Hit rate Precision Recall F1-score

DESIGN-WA 0.541 0.205 0.225 0.215
DESIGN-PCO 0.628 0.238 0.281 0.258
DESIGN-WAPCO 0.651 0.266 0.320 0.291

Table 5.5: Performance of DESIGN with different attention mechanisms

ity. Since, DESIGN-WA only models the interaction among words in the tex-

tual modality, it yields a hit rate of 54.14%, 20.54% precision, 22.50% recall,

21.48% F1-score, which are significantly lower than DESIGN-PCO and DE-

SIGN-WAPCO.

• DESIGN-PCO: DESIGN-PCO refers to implementing DESIGN with a par-

allel co-attention (PCO) mechanism. This mechanism learns not only the im-

portance of different feature vectors in both modalities but also the influence

of one modality on the other. It computes the similarity between visual and

textual features for all combinations of image regions and text portions in order

to attend to the image and text simultaneously. DESIGN model based on this

attention mechanism achieves a hit rate of 62.80%, 23.75% precision, 28.11%

recall, and F1-score of 25.75%.

• DESIGN-WAPCO: DESIGN-WAPCO refers to the implementation of DE-

SIGN with a Word-level and Parallel Co-Attention mechanism. First, we apply

word-level attention to the textual content of the posts. Then, we employ parallel

co-attention on visual and textual modalities to model the interaction between

the two. WAPCO captures the interaction of different words in the textual

modality. Along with that, it models the interaction between textual and visual

modalities. Our model utilizes the co-attended feature representation of social

media posts to perform hashtag recommendation. Table 5.5 presents the perfor-

mance comparison of DESIGN (or DESIGN-WAPCO) with different attention

mechanisms.

DESIGN-WAPCO achieves an improvement of 10.9%, 6.1%, 9.5%, 7.6% over

DESIGN-WA, 2.3%, 2.9%, 3.9%, and 3.3% over DESIGN-PCO in terms of hit rate,
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precision, recall, and F1-score respectively. This improvement is due to the effective-

ness of WAPCO mechanism. It not only captures important information within the

textual modality but also models the interaction among the textual and visual modal-

ities to learn the joint representation of social media posts. This representation is used

for recommending relevant hashtags for social media posts.

(a) Historical posts

(b) Current post

Figure 5.6: Example post depicting hashtags recommended by different methods

5.4.2.3 Qualitative Analysis

The common evaluation protocol in hashtag recommendation methods is to assess

effectiveness by accurately predicting hashtags. In this section, we present a qualitative

analysis to assess how different methods recommend hashtags. To this end, we show a

social media post as an example to investigate the hashtags recommended by different
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models. In Figure 5.6, we first show the user’s historical posts together with text and

hashtags given by the user for each historical post. The current post of that user along

with hashtags recommended by different methods is shown below the user’s historical

posts. The example post has been selected from the test data, with green indicating the

correct hashtags, blue signifying the relevant hashtags, and red indicating the hashtags

that are neither relevant nor correct. Here, correct refers to the recommended hashtags

that match the ground-truth hashtags, and relevant refers to those that are coherent

with the post’s content but not listed in ground-truth hashtags. The blue-colored

hashtags demonstrate that DESIGN can identify some good hashtags, although these

hashtags are not listed as ground-truth hashtags for that post.

As can be seen in Figure 5.6, DESIGN recommends content-based hashtags i.e.,

#catsofinstagram, #art, and #handmade. These hashtags are related to the current

post’s content. We can see hashtags #marthasvineyard, #handmade, and #moscow

appear in the predictions made by DESIGN and ground-truth hashtags. These hash-

tags help to visualize the capability of DESIGN in making personalized recommenda-

tions. The hashtags #marthasvineyard and #moscow are not related to the content

of the current post. We can observe that these hashtags appear in both the historical

posts of that user. These hashtags have been assigned to the current post, signal-

ing that our model can recommend hashtags according to the tagging behavior and

vocabulary choices of the user who has created the post. Similarly, we can see that

hashtags #wood, #training, and #art have been assigned to the current post. These

hashtags also appear in the second historical post. Hashtag #limitededition is rec-

ommended by SG component of DESIGN. It might be interpreted as relevant since

the post shows some handmade articles which might be a limited creation. Hashtag

#puppy can be considered relevant because the current post shows some handmade

cats and #puppy could refer to the related pet category i.e., puppy. Similarly, hashtag

#doxie which is predicted by MLC component of DESIGN, might be related to a dog.

The number of green hashtags in DESIGN is higher than its components i.e., MLC

and SG. MLC shows seven green hashtags and SG shows six green hashtags. More-

over, #weloveatl recommended by SG component is incorrect since it does not exhibit
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relevance with the content or the user’s tagging behavior. MACoN recommends three

green-colored hashtags (hashtags which appear in ground-truth hashtags) i.e., #cat-

sofinstagram, #dog, #moscow, CoA recommends two correct hashtags #dog, and

#catsofinstagram and ImgAtt recommends only one correct hashtag #dog. We can

see that DESIGN recommends a higher number of correct hashtags compared to the

existing methods.

5.4.2.4 Model Component Analysis

In this section, we discuss the different components of our proposed model. We

first show two key components of DESIGN namely, MLC and SG. The experiments

in this section have been conducted on MMP-INS dataset.

5.4.2.4.1 Multi-Label Classification and Sequence Generation DESIGN

has two significant components namely, MLC and SG. Table 5.6 shows the perfor-

mance of different components (modules) MLC, SG with DESIGN.

Multi-Label Classification (MLC): Multi-Label Classification is an extension

of multiclass classification. In multiclass classification, the data sample can exclusively

belong to one class. In contrast, there is no restriction on how many classes the data

sample can be assigned to in multi-label classification. We formulate hashtag recom-

mendation as MLC. The encoder comprises feature mining and user preference mining

submodules. The decoder is a fully connected layer followed by softmax activation.

Sequence Generation (SG): To model interdependencies among hashtags, we

attempt to solve hashtag recommendation in terms of sequence generation. We de-

ploy a neural network based on encoder-decoder architecture. The encoder comprises

feature mining and user preference mining submodules. The decoder consists of GRU

units that generate hashtags for the social media posts in a sequence. We can observe

from Table 5.6 that SG shows an improvement of 1.9%, 3.9%, and 2.8% over MLC

in precision, recall, and F1-score, respectively. MLC treats hashtags as independent

categories. It neglects the semantic relationship between hashtags. Hashtags for a

particular piece of content are usually strongly correlated with each other. GRU units
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Module Hit rate Precision Recall F1-score

MLC 0.600 0.219 0.244 0.231
SG 0.594 0.238 0.283 0.258
DESIGN 0.651 0.266 0.320 0.291

Table 5.6: Performance Comparison of Modules

in the decoder section of SG predict hashtags in the form of a sequence. It can be

seen from Table 5.6 that DESIGN achieves better performance than MLC and SG.

DESIGN shows an improvement of 4.8%, 4.7%, 7.6%, 6.0% over MLC and 5.7%, 2.8%,

3.7% and 3.2% over SG in terms of hit rate, precision, recall and F1-score respectively.

This improvement is due to the integration of different recommended hashtags that

complement each other. MLC recommends hashtags from a predefined set of classes,

whereas SG recommends a semantically correlated sequence of hashtags.

5.5 Conclusion

In this chapter, we present a hybrid deep neural network for multimodal person-

alized hashtag recommendation. Our method is built upon encoder-decoder architec-

ture. The encoder’s feature mining module extracts features from visual and textual

modalities. We employ a word-level and parallel co-attention mechanism to coherently

learn textual and visual features in order to obtain a richer post representation. User

preference mining module utilizes users’ historical posts to learn their tagging behav-

ior and models its influence in assigning hashtags to a newly created post. The hybrid

decoder consists of two neural networks that simulate the task as MLC and Sequence

SG paradigms. We design a hybrid module to capitalize on the hashtags predicted

by MLC and SG in order to recommend a final plausible set of hashtags. The set of

recommended hashtags not only captures the contextual information from the post’s

content but also follows the user’s tagging behaviour. Experiments are conducted on

multiple social media datasets containing visual, textual, and user information. Ex-

perimental results show that the proposed method achieves superior performance to

existing methods.
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Chapter 6

Hashtag Recommendation for

Micro-videos

6.1 Introduction

This chapter addresses the critical research problem of automated hashtag recom-

mendation, specifically tailored for micro-video content. In micro-videos, which are

characterized by their short duration and ease of consumption, the challenge of ef-

fective content management and retrieval is particularly pronounced due to the sheer

volume of daily uploads. For instance, Instagram alone sees approximately 95 million

photos and videos posted daily1. Hashtags [141] serve as vital metadata for categoriz-

ing and accessing these micro-videos, facilitating efficient search and user discovery.

However, a substantial portion of micro-videos, estimated at 65% [4], remains un-

tagged, significantly impeding information access. This research aims to contribute

to the field by investigating novel approaches for automated hashtag recommendation

that account for the specific characteristics of micro-video content and user interac-

tion patterns. Addressing this gap has significant implications for enhancing content

discoverability, improving user experience, and optimizing platform efficiency within

the dynamic landscape of short-form video.

Numerous methods have been proposed for micro-video hashtag recommendation

that leverage features such as content [4, 62, 117, 118], sentiment [63], user metadata
1https://www.marketingscoop.com/blog/how-many-posts-are-posted-on-instagram-per-day/

125



[74] and user history [18, 73]. Li et al. [73] derived features from a user’s historical

micro-videos and hashtags and combined them using average pooling to generate a user

representation. However, this approach treats all micro-videos and hashtags equally,

obscuring users’ tagging preferences for specific modalities. We et al. [18] constructed

a heterogenous graph comprising users, hashtags, and micro-videos. Each user is con-

nected to hashtags they used and micro-videos they uploaded, creating a rich network

of interactions. Although user-to-micro-video and user-to-hashtag edges capture the

overall theme of a micro-video and provide information about user’s general interests,

they lack the granularity and contextual understanding necessary to capture a user’s

fine-grained preferences. These edges inform us about the user’s interests but not

necessarily how they prefer to express themselves and engage with those interests.

These approaches fail to account for the interplay between user preferences and the

specific modalities within each micro-video. Users upload micro-videos that reflect

their interests, and their assigned hashtags provide valuable clues about their specific

focus within those micro-videos. A user may be interested in the visual appeal of one

micro-video, while the same user may be drawn to soundtrack or narrative elements

in another micro-video. Furthermore, hashtag usage patterns can vary. When tag-

ging, some users consistently emphasize visual elements, while others might switch

between acoustic and textual elements depending on what appeals them in the micro-

video. Challenge 1: How to capture user’s modality-specific tagging preferences on

micro-videos?

Existing collaborative filtering approaches [142, 143, 144] for hashtag recommen-

dation rely on features such as shared topics [145], hashtag usage [143], time [146],

and social network information such as followers [147] and mentions [145] to find

like-minded users for a given user and provide recommendations. While effective for

established users, these methods struggle with cold-start users who lack historical data

and social connections. Content-based methods offer a partial solution by analysing

the content of the micro-video. While valuable for understanding the topical relevance

of hashtags, content-based methods struggle to capture the dynamic social trends and

community preferences crucial for effective hashtag recommendation. This is espe-

126



cially true on fast-paced platforms where popular hashtags and user interests evolve

rapidly, potentially leading to recommendations that lack social resonance and en-

gagement. Hashtags, however are not mere content descriptors, they also serve as

tools for boosting social engagement and content visibility [148]. Studies have shown

that tweets with hashtags receive twice the level of engagement than those without

[5]. Moreover, hashtags used by popular users tend to be popular and impactful [28].

As such, cold-start users, seeking recognition and community integration, are natu-

rally inclined to adopt hashtags used by popular and influential users. Challenge 2:

How to recommend context-aware and popular hashtags for micro-videos posted by

cold-start users, thus increasing their visibility and reach?

Prior research studies have leveraged user metadata [74] and historical information

[18, 73] to recommend personalized hashtags for micro-videos. Although Wei et al.

[18] emphasized personal preferences of a user by modeling user to hashtag and user

to micro-video interaction, it neglects the user-to-user interactions within the broader

social network. These interactions reveal community trends, hashtag usage dynamics

within specific communities and aid in identifying like-minded users. Incorporating

the behavior of similar users enhances personalization beyond past behavior, enabling

the discovery of relevant hashtags that users might not have explicitly engaged with

but are likely to find relevant. Prior research has demonstrated that visually similar

images often share common hashtags [30]. Extending this principle to micro-videos,

we recognize that micro-videos with similar visual characteristics, music genres, or tex-

tual content are likely to appeal to the same audience and thus can be assigned similar

hashtags, even if the overall themes differ. Capturing similarities within each modality

(visual, acoustic, and textual) can uncover valuable connections between micro-videos,

leading to refined hashtag recommendations. User-user interactions capture explicit

collaborative signals, such as shared interests and preferences based on past hashtag

usage. Meanwhile, modality-modality interactions can reveal implicit collaborative

signals, suggesting underlying connections and themes across different content types.

Existing hashtag recommenders for micro-videos based on content and personalisa-

tion, despite their effectiveness, underutilize user-to-user interactions and modality to
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modality, limiting their ability to capture the rich social dynamics and content similar-

ity that shape hashtag usage and influence recommendations. Challenge 3: How to

incorporate user-user and modality-modality interactions to further enhance hashtag

recommendations for micro-videos?

In response to the above mentioned challenges, we propose a hybrid filtering graph-

based deep neural network for MIcro-video haSHtag recommendatiON, i.e., MIS-

HON. To tackle Challenge 1, we construct a heterogeneous graph comprising micro-

video modalities and users as nodes. We connect the user to the constituent modalities

of his historical micro-videos which enables to capture fine-grained modality-specific

preferences that align with each user’s unique taste and creative expression. The node

representations are refined by leveraging the message passing strategy. The enriched

micro-video representation thus derived is utilized to recommend pertinent hashtags

for micro-videos. To tackle Challenge 2, we introduce a hybrid system that inte-

grates content analysis with social influence. By emulating tagging patterns of pop-

ular users while maintaining relevance to the user’s content, our approach empowers

recommends popular hashtags to cold-start users aiding them to expand their network

and engagement within the community. To tackle Challenge 3, we capture user-user

interactions based on shared hashtags, and modality-modality interactions based on

modality similarity. Furthermore, experiments conducted on three real-world datasets

show the encouraging performance of our proposed framework. Our proposed model

can recommend relevant hashtags and has a significant gain in performance.

We present the notable contributions of our work below.

• We present a novel hybrid filtering approach that leverages micro-video con-

tent, user’s modality-specific tagging preferences and community interests to

facilitate context-aware, user-aware as well as community-aware hashtag recom-

mendations.

• We model users’ modality-specific tagging preferences by linking them to the

constituent modalities of their previously tagged micro-videos, enabling more

personalized hashtag recommendations.
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• We tackle the cold-start user problem with a hybrid approach, combining the

strengths of content-based filtering and social influence. This strategy analyzes

micro-video content and observes popular user hashtag trends, generating initial

recommendations that exhibit topical relevance with community engagement

potential.

• We construct a heterogeneous graph encompassing user-to-user and modality-

to-modality interactions to capture explicit and implicit collaborative signals.

• Extensive experiments performed on three real-world datasets demonstrate the

competitive advantage of the proposed framework against the state-of-the-art

methods, as demonstrated through quantitative metrics and qualitative analysis.

The remainder of the chapter is organized as follows. Section 6.2 defines our problem

setting and formulation. In Section 6.3, we present our technique. Section 6.4 then

shows the experimental evaluations. Finally, in Section 6.5, we conclude our work.

6.2 Problem Definition

Consider a social media dataset D with the following attributes: a micro-video set

M = {mvi}|M |
i=1, a hashtag set H = {hgj}|H|

j=1, and a user set U = {uk}|U |
k=1. Given a

micro-video post (mvi) uploaded by a user (uk), we seek to automatically recommend

a collection of hashtags R = {rhr}|R|
r=1 that is credible and corresponds to the set of

ground-truth hashtags G = {ghg}|G|
g=1.

Here, |.| stands for the cardinality of a set. The variables i, j, and k serve as indices

for the micro-video post, hashtag, and user correspondingly, while r and g function as

indices for the recommended and ground-truth hashtags. Hashtag recommendation

for an existing user and the cold-start user is defined as follows.

Problem 1 (Hashtag Recommendation for an Existing User) Given a new micro-

video post (mvL+1), where mvL+1 ∈ M created by a user (uk) who posted L micro-

videos in the past, we intend to suggest appropriate hashtags for the new micro-video

post (mvL+1) automatically by using collaborative signals and user’s modality-specific
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Figure 6.1: Visual representation of problem definition

preferences. Hashtags function as abstract labels that represent the information con-

tained in each modality. Given an existing user, we aim to recommend a plausible

set of hashtags for a new micro-video posted by that user. To this end, we model the

user’s modality-specific tagging preferences (Challenge 1) along with user to user and

modality to modality interactions thereby, capturing explicit and implicit collabora-

tive signals (Challenge 3).

Problem 2 (Hashtag Recommendation for a Cold-start User) Given a target micro-

video post (mvi) created by a cold-start user (u|U |+1), our aim is to automatically

recommend a relevant set of hashtags for the micro-video posted by that user.

Here, we solve the cold-start problem inherent in hashtag recommendation systems

by recommending appropriate hashtags for a new micro-video (mvi) created by a

cold-start user (u|U |+1). To this end, we devise a social influence and content-based

technique to recommend contextually relevant as well as popular hashtags, thereby

empowering them to broaden their network and content visibility (Challenge 2).

The above-mentioned problems have been pictorially depicted in Figure 6.1.

6.3 Methodology

In this section, we elucidate our proposed approach. We propose an integrated

model that incorporates micro-videos and users to tackle the task of micro-video hash-

tag recommendation. We begin with a high-level overview of our system as shown in

Figure 6.2 before delving into its components. The input to our system is a micro-video

post and the corresponding user who created that micro-video post. The micro-video

post is divided into its constituent modalities. The modality-specific features of the

micro-video are extracted through respective feature extractors. We then employ an

130



attention mechanism on the modality-specific features to find information that is most

apt to recommend hashtags. We enhance micro-video representation by constructing

an interaction graph that comprises four types of nodes and seven types of edges to

capture modality-to-modality, user-to-user, and user-to-modality interactions. The

Figure 6.2: Overall architecture of MISHON

initial node embeddings are updated based on information propagation and neighbor-

hood aggregation. The overall representation thus obtained, is fed into the hashtag

recommendation module as input. After taking into account the likelihood of each

hashtag, the hashtag suggestion module produces a sorted list of “top-K” hashtags.

As demonstrated in Figure 6.2, our proposed framework comprises three components:

(a) feature mining (b) feature refinement, and (c) hashtag recommendation. Below,

we go through each component in further detail.

6.3.1 Feature Mining

This section describes the feature mining module that is made up of two submod-

ules: (a) feature extraction and (b) attention modeling. We first extract features of

modalities constituting the micro-video. We endeavor to enrich modality-specific rep-

resentations followed by an attention mechanism to filter out noisy information. We

describe the details of each submodule below.
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6.3.1.1 Feature Extraction

In this, we elaborate on details of feature extraction from modalities constituting

the micro-video. We first segment every micro-video into visual, acoustic, and textual

modalities denoted by mvvi , mvai , and mvti respectively. We then retrieve features

corresponding to each modality.

Visual Feature Extraction: Micro-videos are only a few seconds long. Due to

the concise nature of micro-videos, a limited number of keyframes can effectively

encapsulate the entirety of the visual content. To extract the micro-video frames, we

use FFmpeg2 and extract 12 frames for each micro-video at equally spaced intervals.

We employ Vision Transformer [149] to derive visual attributes for every frame of the

micro-video. Vision Transformer, abbreviated as ViT, is a variant of the language-

based transformer model that takes an image as an input, uses the image structure

to learn meaningful embeddings, and performs image classification. We employ the

basic Vision Transformer architecture with a 16 × 16 input patch size for the frame

feature extraction of every micro-video. We rescale every frame to meet the model’s

requirements for input size. ViT creates a grid of square patches to split the frame.

The channels of all pixels in a patch are concatenated, and the patch is then linearly

projected to the chosen input dimension, flattening each patch into a single vector.

Since transformers do not take into account the input element’s structure, therefore

we give each patch learnable position embeddings so the model can pick up on the

image’s structure. There are 12 attention modules in total. It is important to note

that ViT does not contain any convolutional layers.

Given a sequence of frames representing the visual modality mvvi of the micro-

video mvi, we employ the pretrained ViT to extract frame features. We regard the

penultimate layer of ViT to obtain visual features.

mvvf = V iT (mvvi ) (6.1)

Here, mvvf ∈ RNf×D represents the resultant visual feature matrix, where Nf = 12

2https://www.ffmpeg.org/
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stands for the number of frames and D = 768 for the concealed size of each frame.

Acoustic Feature Extraction: The acoustic modality, as a crucial supplement to

the visual modality, is especially effective when the visual content is too diversified or

conveys inadequate information. To capture the acoustic characteristics, we separate

the audio channel from the video and subsequently divide it into equidistant segments

of uniform duration using FFmpeg. Following that, we employ wav2vec2.0 [150] to ex-

tract features for each audio clip. Wav2vec2.0, a self-supervised speech representation

model, aims to capture essential characteristics of unprocessed audio files by harness-

ing the strength of transformers and contrastive learning. This method is comparable

to the masked language modeling used in Bidirectional Encoder Representation from

Transformer, abbreviated as BERT [113]. Wav2vec2.0 can obtain high-level contex-

tual representation and learn basic units for less labeled data. There are two stages to

wav2vec2.0 training procedure: in the first stage, the model is trained on hundreds of

unlabelled data, and in the second stage, it is fine-tuned on a small dataset for certain

tasks. The wav2vec2.0 model has the following components: convolutional layers that

turn the raw waveform input into latent representation (Z); transformer layers that

produce contextualized representation (C) and linear projection produces the output

(Y ). Wav2vec2.0 uses a multilayer CNN to extract latent audio representations of 25

ms each from raw audio data. For feature extraction and selection, the representa-

tions are contained in a quantizer and a transformer. Gumbel and K-means are used to

quantify data. Every 20 ms, the wav2vec2.0 toolkit extracts a 768-dimensional feature

vector from the voice stream for a certain encoder layer. Each layer produces a new

representation, which can vary in suitability for a job than a preceding or succeeding

layer. We convert the raw audio from .mp3 to .wav format to satisfy the model’s input

requirements, and the sampling rate is preserved at 16,000 Hz. We employ the base

version of the wav2vec2.0 model that is pre-trained on 960 hours of unlabelled speech

from the LibriSpeech [151] corpus. Given the acoustic modality of the micro-video

denoted by mvai , we apply wav2vec2.0 to extract acoustic features.

mvaf = Wav2vec2.0(mvai ) (6.2)
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Here, mvaf represents the resultant acoustic feature matrix where mvaf ∈ R299×D and

D = 768 represents the embedding size. We chose to extract acoustic features from

the penultimate layer. We obtain a 768-dimensional feature vector for the entire audio

segment of a given micro-video.

Textual Feature Extraction: Textual descriptions play a pivotal role in providing

information about the micro-video post from a different perspective. Textual modal-

ity has established its importance for hashtag recommendation as demonstrated by

previous works [28, 152, 153, 154]. The text encoder generates final text representa-

tions from the natural language sentence i.e., a textual description of the micro-video

post. For the text encoder, we employ a Transformer-based model i.e., BERT. For the

textual modality of micro-video denoted by mvti which comprises a word sequence, we

add two tokens: class (CLS) and separator (SEP) that mark the start and end of the

input text, respectively. We generate the corresponding set of tokens T using BERT

tokenizer.

T = BERT_Tokenizer(mvti) (6.3)

We set a 30-token cap on the length of the token sequence S. For textual descriptions

less than S, we apply padding, otherwise, we perform truncation to make all textual

descriptions of uniform size. Finally, we create token-based embeddings using BERT,

as depicted in Equation 6.4.

mvtf = BERT (T ) (6.4)

The final textual feature matrix mvtf ∈ RS×D, where S = 30 denotes the maximum

length of the associated text for the micro-video post, and D = 768 denotes the

embedding size.

6.3.1.2 Attention Modeling

Hashtags are typically used to emphasize significant information in micro-videos.

As a result, eliminating noisy information and determining the importance of each unit

constituting the modality-specific representation is critical in the hashtag suggestion

task. Due to the effectiveness of attention mechanism [155], we apply it individually
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on every modality as given in Equation 6.5.

mvminitial = Attention(mvmf ) (6.5)

The enriched modality-specific feature vector in this instance, mvminitial, was acquired

via an attention method. The modality-specific embedding can be thought of as a

sequence of feature vectors as shown in Equation 6.6.

mvmf = {mvmx }Xx=1 (6.6)

where X denotes the number of units in every modality. We feed each unit mvmx to

MLP to get hm
x as a hidden representation of mvmx , as shown in Equation 6.7. By

assigning an attention weight to every unit in each modality, we explicitly represent

its varied relevance. To create an enriched representation of the constituent modality,

we extract key units in each medium and combine the resultant unit representations.

hm
x = tanh(Wmvmx + bw) (6.7)

Here, hm
x is the concealed representation of mvmx . We compute each unit’s relevance

(αx) as shown in Equation 6.8.

αx = softmax
(
(hm

x )
T uw

)
(6.8)

In this case, αx symbolizes the importance of a unit while uw denotes the context vec-

tor. To obtain the standardized coefficient (αx), we initially calculate the resemblance

between hm
x and the contextual vector (uw). We subsequently subject the result to a

softmax function for normalization. The enriched modality-specific feature vector is

then calculated, as shown in Equation 6.9.

mvminitial =
X∑

x=1

αxhm
x (6.9)
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Here, mvminitial denotes the enriched modality-specific feature vector which is obtained

by aggregating annotations using the coefficients αx. Further, the user-to-modality

and user-to-user interactions can help obtain a better micro-video representation. To

facilitate the learning of these interactions, we employ a graph neural network to refine

modality-specific and user representations.

6.3.2 Feature Refinement

In this section, we elaborate on the feature refinement module. It consists of three

steps namely: (1) graph construction; (2) information propagation and neighborhood

aggregation; and (3) micro-video representation. We discuss these steps below.

6.3.2.1 Graph Construction

We construct an undirected graph G = (N,E) as illustrated in Figure 6.3, where

N and E denote the collection of vertices and edges, respectively. The total number

of nodes in the graph is I where I = 3M + U and E ⊂ I × I is a set of relationships

containing their interdependencies. We further elaborate on graph construction in the

following sections. Node Settings: We construct a graph with four different kinds of

nodes as shown below.

N = V ∪ A ∪ T ∪ U (6.10)

Specifically, N comprises four different types of entities: V , A, T , and U , where V ,

A, and T represent the set of visual, acoustic, and textual modalities constituting

the micro-videos contained in the micro-video set (M), and U represents the set of

corresponding users. The micro-video (mv) is represented by three nodes v, a, t corre-

sponding to three modalities, initialized with mvvinitial,mvainitial,mvtinitial respectively.

The user who created micro-video is considered the fourth type of node in the graph.

The user id is transformed into a fixed-size vector representation uinitial ∈ RD, which

is randomly initialized and refined throughout the training.

Edge Generation: When two nodes ni and nj interact, an edge eij = (ni, nj) ∈ E

is formed to link two nodes in the network. To exploit dependency amongst different
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(a) MISHON graph

(b) Existing user: User-user interaction
based on tag similarity

(c) Cold start user: User-user interaction
based on popularity

Figure 6.3: Graph construction in MISHON

kinds of nodes, we consider homogeneous and heterogenous edges. To differentiate

them, we use distinct edge weighting strategies.

(i) Homogeneous Edges: These edges connect the same type of nodes. There

are four types of interactions: video-to-video, audio-to-audio, text-to-text referred to

as modality-modality edges, and user-user edges. We create weighted edges to link

two nodes in the graph and set a threshold to filter out low-weighted edges. We

discuss edge construction criteria for modeling modality-to-modality and user-to-user

interaction below.

• Modality-Modality Edges: We create edges to connect nodes from the same

modality of different micro-videos as shown in Figure 6.3. Given the modality-

specific feature representations of two micro-videos denoted by (mvmf )i and
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(mvmf )j, where m = {v, a, t} is the modality indicator for micro-video (mv),

the edge weight e(mi,mj) is assigned as shown in Figure 6.11.

sim(mi,mj) = cs
((

mvmf
)
i
,
(
mvmf

)
j

)
(6.11)

Here, sim(mi,mj) refers to the similarity score between the same modality of

different micro-videos, cs((mvmf )i, (mvmf )j) is the cosine similarity value between

mth modality-specific feature representations of ith and jth micro-videos. We

create intramodality edges as exhibited in Figure 6.12.

e(mi,mj) =

sim(mi,mj), if sim(mi,mj) ≥ θ

0, if sim(mi,mj) < θ

(6.12)

Here, e(mi,mj) refers to the weight assigned to edges connecting the same

modality of different micro-videos denoted by mi and mj and θ refers to the

threshold. We use cosine similarity value to assign weight to the edge between

two nodes of the same modality. We assume that if two nodes have higher sim-

ilarity, they contain rich information. To this end, we set threshold θ to 0.5 to

filter out edges with low semantic similarity.

• User-User Edges: Under user-to-user interaction, we first discuss the correla-

tion of an existing user followed by a cold-start user with other users on that

micro-video sharing platform.

Existing User: The user who has already posted micro-videos on the video-

sharing platform is considered an existing user. We model co-occurrence rela-

tionships among existing users based on common historical hashtags as depicted

in Figure 6.3. The historical hashtag set of an existing user comprises all hash-

tags used by him/her in previously posted micro-videos. We take collaborative

filtering into account which assumes that users who have had similar interests

in the past will have similar interests in the future. Users with similar interests

tend to assign similar hashtags to their micro-videos since hashtags reflect user
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preferences from different granularities. The tagging behavior of each user is

hidden in user co-occurrence relationships. We compute the similarity among

users as illustrated below.

sim(ui, uj) = |Hi ∩Hj|/|Hi ∪Hj| (6.13)

Here, sim(ui, uj) is the similarity score of two users, ∩, ∪, and |.| denotes in-

tersection, union operators, and set cardinality. Hi and Hj where Hi ⊂ H and

Hj ⊂ H is the set of historical hashtags of user ui and user uj respectively.

The numerator in Equation 6.13 denotes the number of common hashtags of

two different users for their uploaded micro-videos and the denominator denotes

the total number of hashtags contained in the set of their historical hashtags.

The interaction modeling between two users is carried out as depicted in Equa-

tion 6.14.

e(ui, uj) =

sim(ui, uj), if sim(ui, uj) ≥ γ

0, if sim(ui, uj) < γ

(6.14)

Here, e(ui, uj) denotes the weight assigned to the edge connecting two different

users i.e., ui and uj. We assign an edge weight to model the degree of relatedness

of users. We also assign a threshold γ to filter out edges with a low weight. Here,

the threshold γ is set to 0.5.

Cold-start User: Users who are new to the system and lack any historical

and social network information are called cold-start users. The user’s historical

interactions contain his interests based on which recommendations can be made.

However, such interactions are often sparse, leading to cold-start user problems

where a user has no historical posts and hashtags. Owing to the unavailability

of user history on posted micro-videos and hashtags used, we employ a social

influence technique to model the interaction of cold-start users with other users

on that platform. People having high popularity are conceived as influential

and more credible. The hashtagging patterns of influential users are mimicked

by other users to garner social attention. We devise Algorithm 6.1 to construct
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user-user edges and associate cold-start users with popular users as shown in

Figure 6.3, assuming that cold-start users tend to utilize hashtags as used by

the most popular users to increase their content’s visibility and garner attention

from other users on that platform. To determine a user’s popularity, we compute

the engagement rate (Line 2), which is the ratio of the total number of likes on

the user’s profile to his total number of followers. For a cold-start user, we set

this value to 0. We then sort these users based on their engagement rate (Line

4), and only the top 10% (Line 5, 6) are considered popular. Here, argsort()

returns the corresponding users with engagement rates sorted in descending

order. Edges are constructed between popular users and cold-start user (Lines

8-13). The final set of obtained edges is denoted by (Euser) as shown in Line 14.

Algorithm 6.1 Addressing cold-start user problem
Input: U : List of users

α: Popular user selection ratio
Metadata of user ui ∈ U :

Number of likes (li)
Number of followers (fi)

Output: User-user edges (Euser)

1: for i = 1 to |U | do
2: Eri = li/fi
3: end for
4: users_sorted = argsort(Er)
5: top_p = α ∗ |U |
6: popular_users = users_sorted[1 . . . top_p]
7: Euser = []
8: for pui ∈ popular_users do
9: for ui ∈ U do

10: Euser.append(pui, ui)
11: Euser.append(ui, pui)
12: end for
13: end for
14: return Euser

(ii) Heterogeneous Edges: These edges connect different types of nodes. To inter-

change high-level semantic information among users and micro-video modalities, we

model interactions among them. User-to-modality edges are drawn between users and
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constituent modalities of their uploaded micro-videos. An edge exists between user

node ui and modality node mi, where m = {v, a, t} if the modality mi constituting

the micro-video mvi was posted by user ui. All edges are undirected with weights as-

signed to one for convenience. To explicitly model the user’s preference in modalities

of his created micro-video, we construct the following edges: u-v, u-t, and u-a. We

represent the interaction between the user and constituent modalities of his uploaded

micro-video as e(ui,mi) if mi ∈ mvi and mvi is a micro-video created by user ui. Here,

m is the modality indicator of micro-video mvi.

6.3.2.2 Information Propagation and Neighborhood Aggregation

We leverage GraphSAGE [125], a powerful graph neural network technique, to

refine the representations of micro-video modalities and users. GraphSAGE operates

on the principle that nodes in the same neighborhood should have similar embeddings.

It achieves this by iteratively aggregating and transforming feature information from

neighboring nodes. In our model, we initialize modality-specific nodes with their

respective feature representations and user nodes randomly. By applying GraphSAGE,

we can capture contextual information and semantic relationships between micro-

videos based on the similarity of their modalities, leading to more informative and

contextually aware embeddings. This approach enhances the performance of hashtag

recommendation by enabling the model to capture cross-modality relationships and

nuanced user preferences. The method for refining node embeddings is described in

Algorithm 6.2. The input consists of the whole graph, G = (N,E), where N represents

the set of all nodes and E represents the set of edges connecting these nodes.

[1] Initialization (Line 1):The initial node representations h0
n are set to their cor-

responding input feature vectors denoted by xn,∀n ∈ N . Here xn consists of

visual features mvvinitial, acoustic features mvainitial, textual features mvtinitial, and

user features uinitial.

[2] Iteration over j (Line 2): The algorithm performs J iterations of message pass-

ing and node update. Here j denotes the current step and hj denotes a node’s
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Algorithm 6.2 Feature refinement
Input: G(N,E): Graph

xn,∀n ∈ N : Input features
K: Depth
W j,∀j ∈ {1, . . . , J}: Weight matrices
σ: Non-linearity
MEANj, ∀j ∈ {1, . . . , J}: Aggregator function
F : n→ 2N : Neighborhood function

Output: zn,∀n ∈ N : Vector representations
1: h0

n ← xn,∀n ∈ N
2: for j = 1 to J do
3: for n ∈ N do
4: hj

n ← σ(W j.({hj−1
n } ∪MEANj({hj−1

n′ ,∀n′ ∈ F (n)})))
5: end for
6: hj

n ← hj
n/||hj

n||2,∀n ∈ N
7: end for
8: zn ← hJ

n,∀n ∈ N
9: return zn

representation at jth step. The parameter J regulates the method’s neighbor-

hood depth considered during the refinement process. A higher J allows the

algorithm to incorporate information from more distant nodes in the graph.

[3] Message Passing and Aggregation (Line 4): Each node n aggregates information

from its neighbors n′ defined by the neighborhood function F (n) using an aggre-

gation function (MEAN in our case). This can be mathematically represented

as:

mj−1
n = AGGREGATE({hj−1

n′ ,∀n′ ∈ F (n)}) = 1

|F (n)|
∑

n′∈F (n)

hj−1
n′ (6.15)

where mj−1
n is the aggregated message from the neighborhood of node n at layer

j − 1, AGGREGATE is the aggregation function (MEAN), which computes

the average of the representations of all neighbors of node `n′ at the previous

iteration.

[4] Node Update (Line 4): The node’s representation is then updated by combin-

ing its previous representation hj−1
n with the aggregated message mj−1

n using a
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learnable transformation. This is mathematically expressed as:

hj
n ← σ(W j · [hj−1

n ||mj−1
n ]) (6.16)

Here, hj
n is the updated representation of node n at layer j, || denotes con-

catenation, W j is the weight matrix at layer j, σ is the non-linear activation

function.

[5] Final Representations (Line 8): The final node representations zn are obtained

from the last iteration J .

These refined node representations are then utilized for subsequent hashtag recom-

mendation tasks.

zn = {mvvfinal,mvafinal,mvtfinal, ufinal} (6.17)

Here, mvvfinal,mvafinal,mvtfinal, ufinal denotes the refined visual modality, acoustic

modality, textual modality, and user feature vectors respectively.

6.3.2.3 Micro-video Representation

In the proposed framework, we jointly consider the modality-specific and user

representations to investigate the impact that different modalities and users have on

the overall micro-video representation. The content-based micro-video representation

(mvfinal) is obtained by concatenating modality-specific representations.

mvfinal = concat(mvvfinal,mvafinal,mvtfinal) (6.18)

We employed the concatenation operator since it helps to preserve the features in

every modality. Subsequently, we concatenate the derived content-based micro-video

embedding with user embedding to obtain the overall enriched micro-video represen-

tation as shown in Eqaution 6.19.

mvoverall = concat(mvfinal, ufinal) (6.19)
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Here, mvoverall is the derived micro-video representation. The hashtag recommenda-

tion module then uses this representation to anticipate hashtags for the given micro-

video.

6.3.3 Hashtag Recommendation

The hashtag recommendation module takes the features extracted from the feature

refinement module as input and yields a reasonable set of hashtag recommendations

for a micro-video. Using the comprehensive feature vector (mvoverall) as input, we

employ a dense layer of size |H| followed by a softmax activation function to derive

softmax scores for hashtags, as depicted in Equation 6.20.

ypred = softmax
(
Dense

(
units = |H|

)(
mvoverall

))
(6.20)

Here, softmax probabilities of specified hashtags are represented by ypred ∈ R|H|. The

final collection of anticipated hashtags is then obtained by using argsort() that sorts

hashtags according to softmax scores in descending order, as given in Equation 6.21.

R = argsort(ypred) (6.21)

Here, R denotes the recommended hashtags. The training objective loss function is

given in Equation 6.22.

J =
1

|Z|
∑

(mvi,Gi)∈Z

∑
g∈Gi

−log
(
P
(
g|mvi

))
(6.22)

Here, J is the loss function, Z(Z ⊂ M) denotes the training set of micro-videos,

mvi represents the current micro-video, Gi denotes the corresponding ground-truth

hashtag set, and P (g|mvi) is the likelihood of selecting ground-truth hashtag (g) for

the micro-video (mvi).
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Table 6.1: Statistics of different datasets

Datasets Micro-videos Hashtags Users Ah Amv

TMALL [156] 13140 3354 839 44.24 15.66
INSVIDEO [73] 30083 19930 2847 195.69 10.56
YFCC [157] 16611 16354 1455 138.80 11.41

6.4 Experimental Evaluations

To demonstrate the efficiency of our methodology, we first provide a description of

the experimental conditions in this section, followed by the experimental findings.

6.4.1 Experimental Setup

In this section, we showcase various datasets utilized for conducting experiments.

Afterward, we delve into distinct approaches employed for comparison, followed by

evaluation metrics.

6.4.1.1 Datasets

We assess our devised framework on three real-world micro-video datasets namely,

TMALL [156], INSVIDEO [73], and YFCC [157]. We customized each dataset to

match our needs for the task of hashtag recommendation for micro-videos. First, we

conducted lemmatization on hashtags and later removed the low-frequency hashtags,

i.e., hashtags appearing less than 50 times. Next, we removed those micro-videos that

lacked any modality or hashtags. Further, we retain users who have posted at least

four micro-video postings. Table 6.1 contains statistical information for all datasets

after pre-processing. In Table 6.1, Amv denotes the average number of micro-videos

per user, and Ah denotes the average number of hashtags per micro-video. TMALL,

INSVIDEO, and YFCC datasets were collected from Vine3, Instagram, and Flickr4

platforms, respectively. Below, we go over these datasets in further detail.

3https://vine.co/
4https://www.flickr.com/
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• TMALL: Chen et al. [156] created this dataset for micro-video popularity pre-

diction. Initially, there were 1.6 million video postings in the crawled dataset,

including 3,03,242 distinct micro-videos with a combined runtime of 499.8 hours.

After carrying out pre-processing steps, the dataset used in our research con-

tained 13,140 micro-video posts and 3,354 distinct hashtags. The minimum,

average, and maximum hashtag count per post is 4, 44.64, and 1,424, respec-

tively. The dataset includes 839 unique individuals, each posting an average of

15.66 micro-videos. For every micro-video, the complete user profile and associ-

ated metadata are also available.

• INSVIDEO: Li et al. [73] created INSVIDEO dataset to advocate hashtags for

micro-videos. The authors crawled micro-videos from Instagram with associated

descriptions and hashtags. The crawled dataset contained 3,34,826 micro-videos

and 9,170 users. The dataset used by [73] contains 2,13,847 micro-videos, 15,751

hashtags, and 6,786 users. Following pre-processing, the dataset contains 30,083

micro-video postings from 2,847 users, with a mean of 10.56 posts per user. The

dataset contains micro-video posts with a range of hashtag counts, including a

minimum of 4, an average of 13.4, and a maximum of 1,494.

• YFCC: The Yahoo Flickr Creative Commons 100M, dubbed as YFCC100M [157]

dataset is a comprehensive publicly accessible multimodal dataset tht contains

nearly 99.2 million photos and 0.8 million micro-videos from Flickr. To per-

form the task of micro-video hashtag recommendation, we crawled micro-videos,

user profiles, and annotated hashtags. Finally, the collected dataset contained

1,34,992 micro-videos, 8,126 users, and 23,054 hashtags. Following data clean-

ing methods, the dataset used in our studies included 16,611 micro-videos and

16,354 unique hashtags, 1,455 unique users, and an average of 11.41 micro-videos

per user. The micro-videos in the resulting dataset has a minimum of 4 and an

average of 138.8 linked hashtags.
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6.4.1.2 Compared Methods

In this section, we outline the prevailing models that recommend hashtags for

micro-videos.

• Memory Augmented Co-attention (MACON) [5]: MACON employs a mutually

co-directed attention mechanism that learns from both text and images to im-

prove hashtag suggestions for multimodal microblogs. Additionally, it tailors

hashtag recommendations to individual users by analyzing their past posting

behavior. We used the implementation provided by the authors.

• User-Video Co-Attention Network (UVCAN) [158]: UVCAN was originally de-

veloped for personalized micro-video recommendation. UVCAN lays more em-

phasis on the user’s hidden preference to obtain micro-video and user representa-

tion. UVCAN uses stacked attention techniques to learn multimodal information

from both the user and micro-video. We have adapted for micro-video hashtag

recommendation.

• Attention-based Multimodal Neural Network (AMNN) [94]: AMNN utilizes an

encoder-decoder architecture with softmax for hashtag generation. The encoder

uses CNN and Bi-LSTM to extract features from texts and images constituting

multimodal microblogs followed by an attention mechanism on the constituent

modalities. The attended visual and textual features upon concatenation are

fed into GRU to generate hashtags sequentially based on probability scores.

• Dual Graph Neural Network (DualGNN) [159]: The two main modules that con-

stitute DualGNN are single-modal and multimodal representation learning. The

single-modal representation learning module uses the user-micro-video graph in

each modality to identify unimodal user proclivities. In contrast, the multimodal

representation learning module shows how the user weighs various modalities

and infers the multimodal user preference. The ranking of the pertinent micro-

videos for users is then done using a prediction mechanism. Originally designed
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for micro-video recommendation, we adapted this system to recommend hash-

tags for micro-videos.

• Learning the User’s Deeper Preferences (LUDP) [160]: A user-item interaction

graph, an item-item modal similarity network, and a user preference graph for

each modality are the three components that make up LUDP. Through the

user-item interactions matrix, the authors construct a bipartite graph of users

and items. The authors leverage modal information to propagate and aggregate

item ID embeddings on the similarity network in order to generate modal sim-

ilarity graphs and collect structural information about items. The multi-modal

attributes are combined to represent the user’s choice for the modal in the user

preference graph, which is built based on the user’s prior engagement with the

item. These newly discovered user and item representations are combined with

representations found through collaborative signals on the bipartite network to

provide multimodal recommendations. We adapt LUDP to carry out hashtag

recommendations for micro-videos.

• Hashtag-guided Tweet Classification (HashTation) [95]: It is a two-stage frame-

work for low-resource tweet classification using hashtag guidance. It features

a transformer-based hashtag generator with two attention modules: one cap-

tures topical context from tweets, the other extracts entity insights from a co-

occurrence graph. This enables encoding of both post-level and entity-level

information, generating meaningful hashtags via latent topic embeddings and

graph entity encoding. Beam search is used for sequential hashtag generation.

We focus solely on the hashtag generator for comparison.

• Segments Selective Transformer (SEGTRM) [11]: SEGTRM is a transformer-

based model that generates hashtags sequentially. It uses an encoder to remove

extraneous data at text, segments, and token levels and a segments selector to

reorganize segments. It employs a sequential decoding algorithm for hashtag

prediction.
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6.4.1.3 Evaluation Metrics

To gauge the capability of our devised hashtag recommendation system, we use

assessment criteria from the literature on multi-label classification. The standard

evaluation metrics for analyzing how well hashtag recommendation systems perform

are hit rate, precision, recall, and F1-score. These metrics are computed by comparing

predicted hashtags and ground-truth hashtags for each micro-video post. Note that

larger values indicate better performance.

6.4.1.4 Implementation Details

For all the datasets, we partitioned them into a 70:10:20 ratio for training, val-

idation, and testing, respectively. The model was trained for 20 epochs, and the

evaluation was conducted using the top 5 recommendations. The Adam optimizer

was employed for parameter updates, and the batch size was set to 32. A dropout

rate of 0.5 was incorporated to mitigate overfitting. Regarding parameters in MIS-

HON, we set the popular user selection ratio (α) to 0.1, thresholds for homogeneous

edge filtration γ and θ to 0.5 each, and GraphSAGE aggregator function to mean.

Tags occurring less than 50 times were removed from the dataset during preprocess-

ing. The experiments were conducted on a Linux Server equipped with an Intel(R)

Xeon(R) Silver 4215R CPU @ 3.20 GHz, 256 GB RAM, and a 16-GB NVIDIA Tesla

T4 GPU. Additionally, the Conda environment management system was used for code

execution.

6.4.2 Experimental Results

In this section, we outline the performance of our devised framework. We initially

evaluate the performance of our proposed model against state-of-the-art methods on

multiple datasets to determine its efficacy. Next, we analyze the performance gain,

and performance of cold-start users, determine the sensitivity of various parameters,

visualize the recommendations, and analyze the computational time. Note that K

denotes the number of suggested hashtags and that the findings in this section are
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Table 6.2: Effectiveness comparison results on TMALL dataset

Methods Hit rate Precision Recall F1-score

MACON [5] 0.458 0.156 0.291 0.202
UVCAN [158] 0.586 0.165 0.355 0.225
AMNN [94] 0.374 0.127 0.268 0.172
DUALGNN [159] 0.707 0.257 0.505 0.340
SEGTRM [11] 0.303 0.097 0.221 0.135
LUDP [160] 0.644 0.212 0.432 0.284
HashTation [95] 0.214 0.055 0.110 0.071
MISHON 0.753 0.283 0.563 0.376

expressed at K = 5.

6.4.2.1 Quantitative Analysis

We undergo rigorous experiments on several datasets to highlight that our sug-

gested model is superior to state-of-the-art methods.

• Performance on TMALL Dataset: We assess the effectiveness of the proposed

approach MISHON in comparison to its existing competitors. Table 6.2 high-

lights the experimental findings of our suggested technique against baselines on

the TMALL dataset. We can observe from Table 6.2 that MISHON outperforms

the compared methods on the TMALL dataset. The relative improvement of our

model in terms of hit rate, precision, recall, and F1-score is 37.9%, 15.6%, 29.5%,

20.4% over AMNN, and 29.5%, 12.7%, 27.2%, 17.4% over MACON. The per-

formance improvement over AMNN is due to taking user correlations and users’

interactions with constituent modalities of posted micro-videos whereas AMNN

solely considers the content information embedded in the post’s multiple modal-

ities. The reason behind the performance gain over MACON is that MISHON

employs GraphSAGE to learn enriched embeddings of micro-video modalities

and users whereas MACON relies on encoder-decoder architecture coupled with

a parallel co-attention mechanism. The relative improvement of MISHON is

16.7%, 11.8%, 20.8%, 15.1% over UVCAN, 10.9%, 7.1%, 13.1%, and 9.2% over

LUDP, and 4.6%, 2.6%, 5.8%, 3.6% over DualGNN in terms of hit rate, pre-

cision, recall, and F1-score respectively. UVCAN does not take the acoustic
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modality into consideration. MISHON performs better than UVCAN due to

the incorporation of three modalities constituting the micro-video. Although

we mine collaborative information of the user and modality-specific embeddings

similar to DualGNN, MISHON achieves better performance. This is due to the

inclusion of modality feature similarity, user correlations, and user interactions

with constituent modalities of posted micro-videos. Unlike LUDP which creates

three separate subgraphs, we create one graph containing four types of nodes

and seven types of edges to enrich modality-specific representations based on

semantic similarity, the user representations based on similar tagging behavior,

user-to-modality interactions, and derive the embedding of the micro-video. The

relative improvement of MISHON is 54.5%, 22.9%, 45.4%, and 31.0% over Hash-

Tation, and 45.0%, 18.6%, 34.2%, and 24.1% over SEGTRM in accuracy, preci-

sion, recall, and F1-score, respectively. This superior performance is attributed

to MISHON’s multifaceted approach, which adopts a hybrid filtering and GNNs

to capture intricate user-user interactions and user to modality preferences, along

with explicit handling of cold-start scenarios. Both HashTation and SEGTRM,

while effective in leveraging contextual information through transformer-based

generators with attention mechanisms, might not be as adept at modeling user

preferences for different micro-video modalities and the complex web of user-

user interactions that can significantly influence hashtag recommendations for

micro-videos. These limitations highlight the strengths of MISHON’s design, al-

lowing it to generate more accurate and personalized hashtag recommendations,

particularly in scenarios involving new users or complex interaction patterns.

The performance comparison of hashtag recommendation models in terms of hit

rate and F1-score for a variable number of hashtags on the TMALL dataset is

shown in Figure 6.4. Hit rate and F1-score are plotted on the y-axis against

the number of hashtags recommended on the x-axis. The count of suggested

hashtags is between 1 and 9. Our proposed model beats state-of-the-art models

despite having a variable amount of suggested hashtags since its curves are con-

sistently the highest across all performance criteria. The improvements in each
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(a) Hit rate (b) F1-score

Figure 6.4: Effectiveness comparison curves on TMALL dataset

Table 6.3: Effectiveness comparison results on INSVIDEO dataset

Methods Hit rate Precision Recall F1-score

MACON [5] 0.569 0.348 0.099 0.154
UVCAN [158] 0.747 0.407 0.132 0.200
AMNN [94] 0.536 0.420 0.143 0.213
DUALGNN [159] 0.920 0.726 0.260 0.382
SEGTRM [11] 0.511 0.400 0.133 0.200
LUDP [160] 0.925 0.710 0.253 0.373
HashTation [95] 0.669 0.423 0.110 0.173
MISHON 0.941 0.764 0.280 0.410

of the four evaluation measures over extant methods demonstrate the capability

and competitive advantage of our suggested model.

• Performance on INSVIDEO Dataset: To investigate the generalizability of

MISHON in recommending hashtags for micro-videos on different platforms,

we experimented using the INSVIDEO dataset. Table 6.3 shows the perfor-

mance of our model against several other hashtag recommendation systems

on INSVIDEO. Our model consistently outperforms AMNN by 40.5%, 34.4%,

13.7%, and 19.7%; MACON by 37.2%, 41.6%, 18.1%, and 25.6%; UVCAN by

19.4%, 35.7%, 14.8%, and 21.0%; LUDP by 1.6%, 5.4%, 2.7%, 3.7%; DualGNN

by 2.1%, 3.8%, 2.0%, and 2.8%; HashTation by 27.2%, 34.1%, 17.0%, and 23.7%;

and SEGTRM by 43.0%, 36.4%, 14.7%, and 21.0% in terms of hit rate, precision,

recall and F1-score respectively. We tend to see the same performance regime
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Table 6.4: Effectiveness comparison results on YFCC dataset

Methods Hit rate Precision Recall F1-score

MACON [5] 0.465 0.218 0.164 0.187
UVCAN [158] 0.543 0.188 0.176 0.182
AMNN [94] 0.527 0.330 0.284 0.305
DUALGNN [159] 0.745 0.401 0.354 0.376
SEGTRM [11] 0.450 0.282 0.249 0.264
LUDP [160] 0.464 0.213 0.171 0.190
HashTation [95] 0.240 0.125 0.117 0.119
MISHON 0.801 0.471 0.413 0.441

on the INSVIDEO dataset as observed in the case of the TMALL dataset.

• Performance on YFCC Dataset: We compare MISHON with other methods

on YFCC dataset to illustrate its efficacy in micro-video hashtag recommen-

dation. The performance of the suggested model is superior to that of state-

of-the-art methods, as shown in Table 6.4. In terms of hit rate, precision, re-

call, and F1-score, MISHON exhibits relative improvements of 27.4%, 14.1%,

12.9%, and 13.6% over AMNN; 33.6%, 25.3%, 24.9%, and 25.4% over MA-

CON; 25.8%, 28.3%, 23.7%, and 25.9% over UVCAN; 33.7%, 25.8%, 24.2%,

and 25.1% over LUDP; and 5.6%, 7.0%, 5.9%, and 6.5% over DualGNN; 56.1%,

34.6%, 29.6%, and 32.2% over HashTation; and 35.1%, 18.9%, 16.4%, and 17.7%

over SEGTRM. Our model, MISHON generally maintains relative performance

improvements across three datasets when compared to other approaches. The

results demonstrate the superiority and effectiveness of our proposed method

for recommending high-quality hashtags regardless of the platform taken into

consideration.

6.4.2.2 Ablation Studies

In this section, we conduct ablation experiments to assess the effectiveness of the

feature refinement module, user, and attention mechanism. All experiments conducted

in this section have been executed utilizing the TMALL dataset procured from Vine

platform. We compare our model with five variations:

• w/o FRM: This variant represents the MISHON model without the Feature
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Table 6.5: Ablation studies

Methods Hit rate Precision Recall F1-score

MISHON w/o FRM 0.464 0.156 0.303 0.207
MISHON+FRM (w/o Homo. Edges) 0.714 0.272 0.513 0.353
MISHON+FRM (w/o Hetero. Edges) 0.657 0.247 0.457 0.320
MISHON w/o User 0.467 0.158 0.310 0.210
MISHON w/o Attention 0.721 0.270 0.527 0.357
MISHON (Ours) 0.753 0.283 0.563 0.376

Refinement Module (FRM). In the absence of FRM, we directly utilize the

modality-specific embeddings of the micro-video and its corresponding user, con-

catenating them to generate hashtag recommendations.

The FRM itself encompasses graph construction, incorporating both homoge-

neous and heterogeneous edges, followed by information propagation to refine

the feature representations.

– w/o Homo. Edges: This ablation within the FRM removes homogeneous

edges, which connect similar modalities across different micro-videos and

establish connections between users.

– w/o Hetero. Edges: This ablation within the FRM removes heteroge-

neous edges, which link users to the modalities of their uploaded micro-

videos.

• w/o User: The MISHON model without User

• w/o Attention: In this variant, we remove attention mechanism from MIS-

HON. Here, we compute the average of the extracted modality-specific features

and assign them as initial node embeddings.

6.4.2.2.1 Ablation on Feature Refinement: Table 6.5 demonstrates the sub-

stantial performance degradation incurred when FRM is ablated from MISHON. We

observe a significant drop of 28.9%, 12.7%, 26.0%, and 16.9% in hit rate, precision,

recall, and F1-score, respectively. This ablation study underscores the critical role of

FRM in enhancing recommendation performance. The FRM first constructs a hetero-
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geneous graph where nodes represent users, micro-videos, and their constituent modal-

ities. The graph incorporates four nodes, homogeneous and heterogeneous edges. Sub-

sequently, GraphSAGE propagates information across this graph structure. Through

multiple layers of graph convolution, node embeddings are iteratively refined by aggre-

gating information from neighboring nodes, capturing both local structural patterns

and feature distributions. This process yields enriched modality-specific and user rep-

resentations, which are then integrated to form a more comprehensive micro-video

representation. The superior performance of the MISHON over this variant is a tes-

tament to the efficacy of these refined node embeddings derived from FRM.

6.4.2.2.2 Ablation on Homogeneous Edges Our empirical analysis under-

scores the critical role of homogeneous edges in the MISHON model , thus illustrating

their ability in tackling Challenge 3. Excluding these edges resulted in a substantial

drop in performance: 9.6% in accuracy, 3.6% in precision, 10.6% in recall, and 5.6% in

F1-score. Intramodality edges enable the model to discern relationships between con-

tent sharing similar formats (visual, audio, or textual) across different micro-videos.

Removing these edges deprives the model of valuable insights into how micro-videos

interrelate based on their inherent content modalities. User-User edges encapsulate

collaborative filtering principles, implying that users with overlapping past tag usage

likely share future interests. Eliminating these edges hampers the model’s capacity to

personalize recommendations by leveraging user preferences and community behavior.

This performance degradation highlights that shared modalities play a pivotal role in

capturing the core ideas and topics of micro-videos, aligning with the essence of hash-

tag descriptions. Our findings empirically support the hypothesis that users sharing

common historical hashtags exhibit similarity, and micro-videos with similar latent

modality representations are more likely to be associated with comparable hashtags.

6.4.2.2.3 Ablation on Heterogeneous Edges We observed a significant per-

formance degradation when heterogeneous edges were removed from the MISHON

model, thus illustrating its ability in tackling Challenge 1. Specifically, we saw a
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decrease of 3.9% in hit rate, 1.1% in precision, 5.0% in recall, and 2.3% in F1-score.

This underscores the critical role these edges play in capturing the nuanced relation-

ship between users and the content they produce. Heterogeneous edges, which con-

nect users to the specific modalities (video, audio, text) of their previously uploaded

micro-videos, serve several key functions. First, they encode each user’s unique content

creation style, providing insights into individual preferences and patterns in modality

utilization. This personalized understanding allows the model to tailor hashtag rec-

ommendations that resonate with each user’s creative tendencies. Second, these edges

establish strong, direct connections between users and the content they’ve created,

facilitating the model’s ability to trace a user’s history and preferences when making

recommendations. Furthermore, they enable indirect associations, allowing the model

to infer potential interests even for content the user hasn’t directly created. Removing

these edges disrupts the flow of information within the graph structure, hindering the

model’s capacity to learn complex user-item relationships. Additionally, it weakens

the model’s ability to leverage collaborative filtering, not only based on tag similarities

but also on content creation choices. Consequently, the model struggles to retrieve

relevant items and make personalized recommendations, leading to a drop in hit rate,

recall, and precision.

6.4.2.2.4 Ablation on User Modeling Removing user significantly impacts the

performance showing a drop of 28.6%, 12.5%, 25.3%, and 16.6% in accuracy, precision,

recall, and F1-score as shown in Table 6.5, emphasizing the value of modeling user

preferences and interactions. This is because it not only removes a node type but also

disrupts crucial edge types, fundamentally altering the graph structure and hindering

the model’s ability to capture user preferences, collaborative signals, and content-

user relationships. The loss of user-user edges limits the model’s ability to leverage

collaborative filtering, while the removal of user-modality edges disrupts the flow of in-

formation between users and content. Additionally, the absence of user nodes removes

a critical contextual layer for understanding hashtag usage and making personalized

recommendations.
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Table 6.6: Performance comparison on cold-start users

Technique Hit rate Precision Recall F1-score
MISHON (C) 0.460 0.161 0.315 0.213
MISHON (SC) 0.741 0.280 0.550 0.371

6.4.2.2.5 Ablation on Attention Mechanism As can be seen from Table 6.5,

excluding attention mechanism from MISHON leads to a decrease of 3.2%, 1.3%, 3.6%,

and 1.9% in hit rate, precision, recall, and F1-score respectively. The attention mecha-

nism adaptively weights information from different modalities, focusing on key details

relevant to hashtag recommendation. Hashtags highlight important aspects of micro-

videos, and the attention mechanism helps identify critical units in each modality for

accurate hashtag suggestions. Since varied modalities have different representations,

it is crucial to assign differential weights to the information contained in the con-

stituent modalities. This underscores the significance of using attention mechanisms

in learning important information from each modality to obtain the overall micro-video

representation.

6.4.2.3 Performance Analysis on Cold-Start Users

In this section, we discuss how the performance of variants of MISHON differ in

recommending hashtags for micro-videos posted by cold-start users, impact of number

of historical posts for cold-start users, and popular user selection ratio.

6.4.2.3.1 Filtering Approaches for Cold-start Users Table 6.6 illustrates the

capability of of MISHON in tackling Challenge 2, i.e., recommending hashtags for

micro-videos posted on the Vine platform by cold-start users i.e., the TMALL dataset.

Here, MISHON (C) utilizes only the micro-video content and MISHON (SC) employs

the social influence technique besides content features to recommend hashtags for

micro-videos posted by cold-start users. The performance gain of MISHON (SC) over

MISHON (C) is 28.1%, 11.9%, 23.5%, and 15.8% in hit rate, precision, recall, and

F1-score respectively. We speculate the performance improvement is due to modeling
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Table 6.7: Sensitivity analysis of popular user selection ratio (α)

α Hit rate Precision Recall F1-score
0.1 0.741 0.280 0.548 0.371
0.3 0.736 0.278 0.532 0.365
0.5 0.734 0.276 0.530 0.363
0.7 0.732 0.275 0.527 0.361

the influence of popular users on cold-start users. Users tend to follow hashtags used

by the most popular users to gain social attention. We simulate the impact of social

influence by applying GraphSAGE. MISHON (SC) employs the engagement rate of

users for user-user edge construction. After information propagation and neighbor-

hood aggregation, we can infer embeddings for cold-start users.

6.4.2.3.2 Popular User Selection Ratio We run experiments to select the op-

timal ratio of popular users (α). To get their content discovered on the platform and

expand their audience, we assume that users tend to follow more well-known users.

To this end, we first find the most popular users. Then we try to determine hashtags

used by the most popular users that can be recommended to cold-start users. Popular

users can be considered highly influential people and their hashtags are also adopted

by other users to expand their social network, gain attention, and content visibility.

Since hashtags are abstract labels to indicate topics, using popular hashtags related to

that topic helps the micro-videos created by cold-start users to be included under those

categories. This usually results in gaining new followers and better reachability. To

determine the association between users with varied engagement rates and cold-start

users, this supposition is taken into account. In accordance with this supposition, we

run experiments to find the optimal popular-user selection ratio ranging from 0.1 to

0.7. As can be seen from Table 6.7, the variations in the performance metrics (hit

rate, precision, recall, and F1-score) are minimal and could be within the margin of

error. This consistency suggests that the choice of α does not significantly impact the

performance of the hashtag recommendation system for cold-start users. However, the

best F1-score was obtained when α was set to 0.1. As we increase α, the represen-
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tations of users tend to be general rather than specific and inclined toward popular

users. A selection ratio of 0.1 for popular users might be more realistic for many online

platforms. In practice, only a small percentage of users tend to be extremely popular.

This aligns with real-world usage patterns on social media platforms. We aim to build

a recommendation system that performs well across different platforms or domains;

a conservative selection of popular users (0.1) may provide a better generalization to

various contexts than higher α values. This aligns with realistic usage patterns and

provides stability and consistency in results.

6.4.2.4 Qualitative Analysis

To visually depict the quality of hashtags suggested by several methods, we present

a micro-video post sourced from Vine platform in Figure 6.5. This example post has

been chosen from test data, with correct, relevant, and incorrect hashtags shown in

green, blue, and red respectively. The recommended hashtags matching ground-truth

hashtags are called correct, relevant hashtags are consistent with the micro-video con-

tent but not specified in the set of ground-truth hashtags, and incorrect hashtags are

neither correct nor relevant. As can be seen in Figure 6.5, our model recommends the

highest number of correct hashtags as opposed to four, four, three, one, and one hash-

tags recommended by DualGNN, LUDP, UVCAN, MACON, and AMNN respectively.

MISHON recommends #vine and #footballvines which are logical recommendations

since this post is related to football and is uploaded on Vine. Furthermore, our model

recommends #comedy, which is deemed relevant because it has been derived from the

acoustic modality of the micro-video shown in the example post. This justifies the

importance of mining information from constituent modalities of micro-videos. Fur-

ther,we observed that user has previously used hashtags such as #vineturkiye, #run,

#omg , #6secondcover, #revined, #edits,#nba, #basketball. We can see that MIS-

HON also recommends #omg and related hashtags such as #Vine, #footballvines

which are versy similar to user’s historical hashtag: #vineturkiye and #revined. This

further emphasizes that MISHON takes user’s histoircal tagging pattern into account

to recommend personalised hashtags. Further, we observed that most similar users to
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Figure 6.5: Example post showing hashtags recommended by different methods

this user employed hashtags such as #football, #TheZone, #Vine, #omg , #comedy,

and MISHON is also recommending these hashtags for the micro-video uploaded by

the user. This highlights that MISHON also considers community preferences by cap-

turing user-user interactions. The higher the quality of hashtags recommended, the

more likely users are to assign hashtags to micro-videos, thus enriching the user expe-

rience. As a result of better hashtag recommendations by our proposed model, more

people will enter hashtag channels they actually enjoy and spend more time viewing

hashtag-specific micro-videos.

Further, if the same micro-video was posted by a cold-start user lacking any histor-
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ical and social network information, we have two variants of MISHON. Here, MISHON

(SC) employs social influence and content features to recommend hashtags for micro-

videos posted by cold-start users and MISHON (C) employs only content features.

MISHON (SC) recommends more correct and relevant hashtags than MISHON (C),

such as #funny, #freestyle, #r4r, #revine, and #bestvines. This demonstrates that

MISHON’s hybrid approach of using both content and social influence is effective in

recommending relevant hashtags for micro-videos posted by cold-start users. MISHON

(SC) analyzes the micro-video’s content and leverages the tagging patterns of influen-

tial users on the platform. This helps cold-start users tap into trending hashtags and

gain exposure to a wider audience.

6.5 Conclusion

This study aims to recommend pertinent hashtags for micro-videos while also al-

leviating the cold-start user problem. We propose effective hybrid filtering for micro-

video hashtag recommendation based on Deep Learning and GNN. The proposed

framework comprises three components: feature mining; feature refinement; and hash-

tag recommendation. The feature mining module attentively derives features from

modalities constituting micro-videos. In the feature refinement module, we construct

a graph using the constituent modalities of micro-videos and corresponding users as

nodes. The edges are built to simulate modality-to-modality, user-to-user, and user-

to-modality interactions. The user representation is derived by inductively modeling

the hashtag preferences of like-minded users. The constructed graph enables learning

of high-quality node embeddings based on information propagation and neighborhood

aggregation. We run comprehensive experiments on three real-world datasets com-

prising users’ posted micro-videos with accompanying hashtags. We also alleviate the

cold-start user problem by proposing a social influence and content-based technique

to yield hashtags for micro-videos posted by them. Our proposed approach demon-

strates superior performance compared to the existing methods both empirically and

qualitatively.
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Chapter 7

Popularity Prediction of Multimodal

Content

7.1 Introduction

This chapter focuses on the critical task of predicting the popularity of content

integrating multiple modalities. Given the increasing prevalence and demonstrated

enhanced engagement rates of multimodal posts, understanding and accurately fore-

casting their popularity is paramount. This capability allows platforms to optimize the

dissemination of diverse content formats [161] and enables the refinement of targeted

advertising strategies that leverage the distinct features of various modalities [22, 162].

By analyzing patterns of public attention across combinations of texts and images, we

aim to yield valuable insights into user behavior and preferences within these rich

media environments, ultimately advancing areas such as recommender systems for

multimodal content [21, 163] and digital marketing strategies tailored to multimodal

trends [24].

Unveiling Hashtag-guided Attention Mechanism: Existing approaches

to multimodal popularity prediction employ attention mechanisms [86], includ-

ing self-attention [87, 164], hierarchical attention [165], and cross-modal attention

[166, 167, 168, 169]), to dynamically assess the significance of features across textual

and visual modalities. However, these methodologies frequently neglect the crucial

contextual information embedded within hashtags [141]. These hashtag annotations,
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Figure 7.1: Example social media post

prefixed with “#”, function as salient semantic indicators, revealing the content cre-

ator’s intended meaning and desired audience interpretation. Hashtags are instru-

mental in the online dissemination of events and topics, condensing complex ideas

into concise labels and interlinking content at a granular level. The omission of this

valuable contextual layer can impede the performance of popularity prediction models,

given the demonstrable influence of hashtags on post engagement. Research indicates

that posts including hashtags achieve double the engagement of those without [5].

Consider the example post in Figure 7.1. Current attention mechanisms might an-

alyze visual elements of a selfie such as facial expressions, background details, and

colors. However, these mechanisms overlook the contextual cues provided by hash-

tags such as #chasefield, #summer, #azdbacks, and #arizona, which specify location,

season, and team affiliation, respectively. These hashtags guide the interpretation of

visual features, highlighting the team jersey as a key element signifying user affiliation.

Consequently, the integration of hashtag context is vital for developing more effective

popularity prediction models within the dynamic social media landscape.

Leveraging Visual Demographics: Prior research on social media popular-

ity prediction has incorporated demographic information through metadata [170] and

user profiles. However, these methods are constrained by the incomplete or inaccu-

rate metadata and outdated or intentionally misleading information in user profiles.

Furthermore, the exclusive reliance on explicit user data can raise significant privacy
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concerns. In contrast, the direct extraction of demographic attributes from visual

cues, particularly facial features, presents an underexplored avenue. The findings of

Bakshi et al. [171], which demonstrated a 38% higher likelihood of likes and a 32%

higher likelihood of comments for Instagram photos containing faces among a dataset

of 1.1 million images, underscore the power of facial cues in capturing attention and

conveying emotions that directly impact a post’s popularity. Therefore, we aim to in-

vestigate the untapped potential of visual demographic analysis to enhance popularity

prediction models for multimodal social media posts.

Harnessing Sentiment from Hashtags: Existing methodologies [172, 173, 174]

predominantly focus on extracting sentiment from the textual content of social media

posts, thereby overlooking the valuable sentiment information encoded within hash-

tags. Beyond conveying topical information, hashtags also reveal user sentiment [63]

and audience perception, both of which can significantly influence a post’s popularity.

While previous studies have utilized structural [84, 175] and topical information [78, 84]

from hashtags for multimodal popularity prediction, the impact of hashtag sentiment

remains largely unexamined. As exemplified in Figure 7.1, alongside content-related

hashtags such as #baseball, #diamondbacks, and #arizona, users employ hashtags

such as #smile, #funtimes, and #goodtimes to express their sentiment. The sentiment

conveyed through hashtags reflect the audience’s collective emotional response to the

content, providing valuable insights into prevailing trends and ongoing conversations.

Given that emotional intensity within topics tends to drive greater engagement, and

hashtags encapsulate sentiments potentially absent from captions, the underutiliza-

tion of hashtag sentiment analysis represents a significant research gap. Addressing

this gap offers an opportunity to develop more comprehensive and accurate popularity

prediction methods by integrating the sentimental insights embedded within hashtags.

To bridge these identified research gaps, we propose NARRATOR, a Sentiment

and hAshtag-aware deep neuRal netwoRk for multimodAl posT pOpularity pRedic-

tion. NARRATOR presents a novel hashtag-guided attention mechanism that enables

the model to dynamically weight the significance of different features in images and

texts, informed by contextual cues provided by hashtags. This facilitates a more
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holistic understanding of the interplay between content and its surrounding context.

Furthermore, NARRATOR leverages visual cues within images to gain demographic

insights, discerning fine-grained details such as age, gender, race, and emotions directly

from faces. Moreover, NARRATOR explicitly incorporates sentiments extracted from

hashtags, capturing the subtle emotional undertones that resonate with audiences and

further refining our ability to predict post popularity. By combining these innovations-

hashtag-guided attention, leveraging visual demographics, and analysing sentiment of

hashtags, NARRATOR provides a deeper understanding of user engagement and emo-

tional response, improving the performance of popularity forecasts.

Our major contributions are enlisted below.

• We propose a deep neural network that leverages sentiment from hashtags, visual

demographic information, and employs a hashtag-guided attention mechanism

to forecast post popularity comprehensively besides content-based features and

sentiment from text.

• We devise a novel hashtag-guided attention mechanism that uses hashtags to

guide the model’s focus on content features most relevant to the intended audi-

ence and context.

• Our work pioneers the use of visual demographic information for popularity pre-

diction. We leverage visual demographics to identify engagement trends within

specific audience contexts.

• We derive sentiment information embedded in hashtags to decipher the emo-

tional appeal of a post and understand how it amplifies user engagement.

• Extensive experiments conducted on two real-world datasets demonstrate the su-

perior performance of our proposed method over existing state-of-the-art meth-

ods both empirically and qualitatively.

The rest of the chapter is structured as follows. Section 7.2 formally defines the

problem under investigation. We elaborate on our methodology in Section 7.3. The
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evaluations of experiments are then covered in Section 7.4. Section 7.5 presents the

concluding remarks of our research.

7.2 Problem Definition

Suppose there are P multimodal social media posts. Let pi denote the ith multi-

modal post such that pi = {pti, pvi , pdi , phi , pmi }. Here, pti = {wx
i }Xx=1 denotes the textual

modality of the post, X denotes the length of the post caption and wx denotes xth

word appearing in pi. Furthermore, pvi and phi denote the visual and hashtag modality

of the post such that phi = {hj
i}Hj=1. Here, hi is the set of hashtags associated with

post pi, j is used to index a hashtag in set hi, H is the cardinality of hashtag set (hi)

assigned to (pi). The symbol pdi represents the demographic information such as age,

gender, race, and emotion on the faces of people appearing in images and pmi denotes

metadata of pi and the user (ui) who created it which contains followers count, fol-

lowing count, post count, hashtag count, and caption length. We specify our problem

using the notations discussed above.

Given a multimodal social media post (pi), our aim is to train a function f(.) that

allows us to forecast its popularity score.

ŷi = f(pi) (7.1)

Here, ŷi represents the predicted popularity score for the post pi. We frame the

popularity prediction task as a regression problem. Our objective is to learn the

enriched feature representation of (pi) and predict its popularity score.

7.3 Methodology

We introduce our novel methodological approach within this section. Figure 7.2

illustrates the architecture of our proposed framework for the popularity prediction of

multimodal posts. We analyze varied features that significantly influence the popu-

larity prediction of social media content. First, we investigate the textual features of

167



Figure 7.2: System architecture of NARRATOR

captions followed by visual features derived from images of social media posts. Addi-

tionally, we examine demographic information from the faces of people appearing in

images accompanying social media posts. Then, several social features based on user

and post metadata are explored. We leverage content-based and sentiment-based in-

formation from hashtags and post captions to effectively capture the rich information

embedded in these posts. We derive topical and structural information from hashtags

annotated to these posts. We also learn the mutual influence of hashtags on visual

and textual modalities by devising a novel hashtag-guided attention mechanism. These

features are then passed to several dense layers to predict the popularity score. Our
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proposed framework entails a three-step process for accurately predicting the popu-

larity score of social media posts: (1) feature extraction, (2) feature interaction, and

(3) feature fusion for popularity prediction. These steps are discussed in detail below.

7.3.1 Feature Extraction

Here, we discuss the feature retrieval procedure for multimodal posts.

7.3.1.1 Textual Feature Extraction

Social media posts inherently rely on user-provided captions for context. To extract

a textual feature representation from these captions, we leverage a transformer-based

model, BERT [113]. Limited by its context-agnostic approach, word2vec [176] cannot

effectively handle homonyms. BERT, on the other hand, prioritizes the words sur-

rounding a target word during the embedding creation process. This enables BERT

to capture the nuances of language and generate more semantically rich representa-

tions.

For the textual modality of social media post (pti) which comprises a word sequence

denoted by pti = {wx
i }Wx=1, we add two tokens: class (CLS) and separator (SEP) to

indicate the beginning and end of the input text respectively. Here, W is the number

of words appearing in the post caption. We generate the corresponding set of tokens

T using the BERT tokenizer as given in Equation 7.2.

T = BERT_Tokenizer(pti) (7.2)

We process the text sequence, denoted by T , through BERT as defined in Equation 7.3.

This process yields a 768-dimensional vector representation for each token within the

sequence.

B = BERT (T ) (7.3)

Here, B = {ex}Mx=1 is a matrix that encodes the textual features extracted from the

post caption using BERT. This matrix comprises M rows, where M represents the
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fixed length of the token sequence. Each row ex contains the 768-dimensional BERT

embedding for a corresponding token within the sequence (where x denotes the token

index ranging from 1 to M). For textual descriptions less than M , we apply padding,

otherwise, we perform truncation to make all textual descriptions of uniform size.

Further, we use LSTM to model the sequential relationship among words. The LSTM

unit outputs a hidden state txi for the current word wx
i by taking the embedding of the

current word derived from BERT i.e., exi and the hidden state of the preceding time

step tx−1
i as inputs as shown in Equation 7.4.

txi = LSTM(exi , t
x−1
i ) (7.4)

Here txi ∈ RD, x = 1, 2, . . . ,M , and D=768. For the sake of conciseness, we skip the

specific LSTM formulae. We stack hidden state feature vectors for each word derived

from LSTM to generate textual feature matrix E as given in Equation 7.5.

E = {txi }Mx=1 (7.5)

Here, E ∈ RM×D is the textual feature matrix, and M = 15 denotes the maximum

length of the associated text for the post. The dimension of each txi is RD where

D = 768 denotes the embedding dimension.

7.3.1.2 Visual Feature Extraction

The image of the social media post plays a pivotal role in predicting the post’s

popularity. Deep learning approaches for extracting visual information have pro-

gressed remarkably in recent years. To extract visual features of the post, we employ

VGG19 [135] model. VGG19 classifies 1.2 million images from the ImageNet [177]

database into 1000 categories during its training process. We extracted visual fea-

tures using the output of the final pooling layer of VGG19. We create several feature

vectors for a picture by retaining the regional feature vectors. The feature matrix for
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an image (V ) can be expressed as exhibited in Equation 7.6.

V = {vki }Kk=1 (7.6)

Here vki ∈ RN , k = 1, 2, . . . , K with N = 512 which denotes the size of regional feature

vector. We retainK = 7×7 = 49 regional feature vectors for each image since the final

pooling layer of VGG-19 is a 7× 7× 512 tensor for 7× 7 regions, each of which is rep-

resented by a 512-dimensional vector. Following the feature extraction stage, a fully

connected (FC) layer is employed to project each regional feature vector into a new vec-

tor space. This transformation ensures that the dimensionality of the resulting image

feature vectors aligns with the dimensionality of the text feature vectors, facilitating

their subsequent concatenation and joint processing within the model architecture.

The mathematical formulation for this transformation is presented in Equation 7.7.

I = {vki }Kk=1 (7.7)

Here, I is the visual feature matrix where I ∈ RK×D and vki ∈ RD where D = 768 is

the embedding dimension for each regional feature vector.

7.3.1.3 Demographic Feature Extraction

We used DeepFace [178], a compact framework for identifying faces and analyzing

characteristics namely age, gender, race, and emotion from faces of people appearing

in images associated with the uploaded post. The VGG-Face model was used to

investigate DeepFace. In DeepFace, 101 nodes are present for predicting the age

between 0 to 100 years of the person present in the image. The race model predicts

six different races namely Black, White, Asian, Middle Eastern, Indian, and Latino.

The emotion on the users’ faces is computed as one of the seven categories i.e., fear,

sadness, happiness, anger, disgust, surprise, and neutral. The gender of the user

is defined as male or female. Race, emotion, and gender were present as integral

values. At last, we derive the demographic feature vector by concatenating gender,
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Figure 7.3: Posts depicting demographic features

age, emotion, and race as given in Equation 7.8.

fd
i = {g, a, e, r} (7.8)

Here, fd
i denotes the derived demographic feature vector that has a dimension of 116

and g, a, e, r represents gender, age, emotion, and race. Figure 7.3 shows four Flickr

posts where we used a DeepFace model to analyze facial features and infer emotions

and demographics. The first Flickr post shows an Asian woman with long hair who

appears to be in her early thirties, smiling and happy. The second post shows an early

middle-aged white man playing guitar and is sad. The third post shows a man with

eyes frowning and trying to silence; hence, the inferred emotion from facial expression

is fear. The fourth post is a man who is in his late thirties, inferred ethnicity is black,

and emotion is sad because of his furrowed brows, downturned mouth, and dimly lit

surroundings.

7.3.1.4 Hashtag Feature Extraction

In social media, hashtags serve as useful subject labels and search tools. Rather

than attractive titles or pictures, trendy hashtags are the reason behind some social

media posts getting a lot of attention. Hashtags encapsulate important information
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that should be incorporated in social media post representation. However, conveying

textual or topical information is just as crucial as providing the hashtag network’s

structural components. Hence, we define the hashtag feature as a combination of

topic embeddings and node embeddings that represent the content of the hashtag and

the graphical structure between hashtags respectively. For the extraction of topic em-

beddings (Xh), we used the BERTopic [179]. BERTopic is a topic modeling technique

that builds topic representations using the transformers framework and c-TFIDF.

BERTopic first uses sentence transformers to produce a number of document embed-

dings. Next, it uses HDBSCAN [180] for document clustering and UMAP [181] for

embedding dimension reduction. In order to determine the relevance of each word

inside each subject, we compute the class-based Term Frequency Inverse Document

Frequency (TF-IDF) for every cluster (topic). The average of all document embed-

dings inside a given subject is used to determine the topic embedding for a particular

topic.

For the structure embedding, we constructed a graph-like network where we used

hashtags as nodes of the network, and edges between two hashtags are created based

on co-occurrence. We assign weights to the edge as the number of times the two

hashtags appear in a single post. Further, we calculated structure embeddings V̄h for

each node using GraphSAGE [125]. GraphSAGE is used for inductive representation

learning on huge graphs. When creating low-dimensional vector representations of

nodes, GraphSAGE is particularly helpful for graphs that include a wealth of node

attribute data. The structural embedding of a post denoted by V̄h is determined

only if there are at least two hashtags present in the post and taking the average

of node embeddings of hashtags appearing in the post. On the other hand, a zero-

vector is allocated as the structural embedding if a post is devoid of any hashtags.

We then concatenate the topic and structure embedding to derive the overall hashtag

representation for the post as shown in Equation 7.9.

fh
i = {Xh ⊕ V̄h} (7.9)
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Here, fh
i is the resultant hashtag feature vector post pi, Xh is the topic embedding

and V̄h is the average hashtag node embedding.

7.3.1.5 Sentiment Feature Extraction

We embed each post caption into a 5-dimensional vector using Stanford’s CoreNLP

Sentiment Analysis tool1. The scale for sentiment values ranges from zero to four which

represents the likelihood that the sentence is extremely negative, negative, neutral,

positive, or very positive. This tool was created by the Stanford NLP group as a

module of the Stanford CoreNLP toolset [182]. Java is used to power Stanford’s

CoreNLP. Unlike Vader [183] and TextBLob which look at the sentiment of individual

words, Stanford CoreNLP output the sentiment values based on the entire sentence

structure resulting in improved performance. We derive the sentiment features from

the post caption as shown in Equation 7.10.

st = Stanford CoreNLP (pti) (7.10)

Here, st denotes the sentiment feature vector derived from the textual modality of the

post (pti). We additionally treat hashtags as sentences and construct a 5-dimensional

vector from the hashtag modality (phi ) of the multimodal social media post using

Stanford CoreNLP.

sh = Stanford CoreNLP (phi ) (7.11)

Here, sh denotes the hashtag-based sentiment feature vector having a dimension of 5.

The overall sentiment feature vector for the post (pi) is derived by concatenating the

text-based and hashtag-based sentiment feature vectors as illustrated below.

f st
i = concat(st, sh) (7.12)

Here, f st
i is the resultant sentiment feature vector for the post (pi) having a dimension

of 10, st and sh denote the text-based and hashtag-based sentiment feature vectors,

1https://stanfordnlp.github.io/CoreNLP/
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respectively.

7.3.1.6 Social Feature Extraction

The multimodal post’s popularity is influenced by both its content and the user

who posted it in terms of social media presence [184]. We have categorized social

features into two categories i.e., user metadata and post metadata. We discuss these

two below.

[1] User Metadata: The number of prior posts a user has made and their activity

on the platform are both strongly connected with the popularity of their most

recent post. Therefore, we have taken some user-centric features which are as

follows:

(a) User Id: A unique integer defining the user on the platform uniquely.

(b) Average Views: It is obtained by computing the sum of all views over all

the posts posted by the user in the past divided by the number of his

previously uploaded posts.

(c) Group Count: Total number of groups the user has joined on that platform.

(d) Average Member Count: Average number of members in the group that

the user joined.

[2] Post Metadata: The textual information associated with a post significantly

influences the post’s popularity. A post with a large title may not get huge

popularity or a post with a large number of hashtags will appear more frequently

so that it may gain more popularity. The post metadata consists of:

(a) Tag Count: The number of hashtags a person used in their post.

(b) Title Length: Word count of the caption of the post.

(c) Description Length: Length of the description of the post

(d) Tagged People: It is defined by a binary number 0 if people are not tagged

in the post else 1.
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(e) Comment Count: The number of comments received by a post from other

users.

[3] Time: Beyond user and content characteristics, predicting post popularity ne-

cessitates incorporating temporal features. Research suggests a diurnal cycle in

social media activity, with weekends experiencing increased user engagement.

Consequently, posts uploaded during these high-activity periods are tend to

garner more views and interactions. To account for this temporal influence, we

leverage the following time-based features:

(a) Post Day: This categorical feature denotes the day of the week on which a

post is uploaded. We employ one-hot encoding to represent the post-day

as a 7-dimensional vector.

(b) Post Month: This categorical feature indicates the month in which a post

is uploaded. Similar to post-day, one-hot encoding is used to represent the

post-month as a 12-dimensional vector.

(c) Post Time: This categorical feature captures the time of day during which a

post is uploaded. We divide the day into four distinct time segments (morn-

ing, afternoon, evening, and night), each encompassing six hours. One-hot

encoding is then applied to represent the post time as a 4-dimensional

vector.

(d) Post Duration: This numerical feature represents the number of days an

image remains posted on Flickr.

By incorporating these temporal features, our model can learn how time-related trends

impact post popularity, potentially leading to more accurate predictions. The social

feature vector (f s
i ) is obtained using the user ID, average views, group count, average

member count, tag count, title length, description length, tagged people, comment

count, and temporal data.
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7.3.2 Feature Interaction

The feature interaction module sheds light on how hashtags interact with textual

and visual modalities by devising a novel hashtag-guided attention mechanism. At

its core, this mechanism utilizes hashtags as guiding signals to focus the attention of

the predictive model on relevant features within the content. By considering hashtags

associated with the content, the model can better understand the context in which the

content is shared, leading to more accurate predictions. It allows the model to adapt its

focus dynamically, making it suitable for a wide range of content types and social media

platforms. Algorithm 7.1 shows how our devised hashtag-guided attention mechanism

leverages hashtags to guide attention toward relevant text and image features. The

use of hashtag embeddings and attention weights provides insights into the factors

influencing content popularity, making the model more interpretable for users and

content creators. By doing so, it aims to improve the prediction of social media post

popularity. Lines 1-6 show how to compute the intermediate representation of text

and image based on hashtags. We apply transformations on text and image feature

matrices using learnable parameters to capture their interactions with hashtags. Here,

Yt ∈ RD×A and Yi ∈ RD×A are the intermediate representation of the text and image

feature matrix based on hashtags, respectively, A is the number of attention units set

to 768, U t ∈ RM×A, V t ∈ RL×A, U i ∈ RK×A, V i ∈ RL×A are learnable parameters.

The hashtags associated with the post are embedded into a continuous vector space

representation by using BERT.

H = BERT (phi ) (7.13)

Here, H ∈ RL×D is the resultant hashtag feature matrix, L=60 based on the maximum

number of hashtags associated with a post. To have a feature matrix of uniform dimen-

sions across different posts in the data, we padded zeros for posts having a tag count

of less than 60. We employ BERT because one hashtag can have different meanings in

different posts. For example, #rock can be used to refer to stones and in other posts,

the same hashtag can refer to music rock band. Therefore, it is important to capture
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Algorithm 7.1 Hashtag-guided attention
Input: E: Text feature matrix

V : Image Feature Matrix
H: Hashtag Feature Matrix

Output: c̃: Updated Content Feature Vector
function Hashtag-guided Attention(T, V,H)
1: for t = 1 to M do
2: Yt[t] = tanh(E[t]× Ut +H × V [t])
3: end for
4: for i = 1 to K do
5: Yi[i] = tanh(V [i]× Ui +H × V [i])
6: end for
7: for t = 1 to M do
8: αt[t] = softmax(Yt[t]×Wt)
9: end for

10: for i = 1 to K do
11: αi[i] = softmax(Yi[i]×Wi)
12: end for
13: for j = 1 to D do
14: t̃[j] =

∑
t(E[t][j]× αt[t])

15: end for
16: for j = 1 to D do
17: ĩ[j] =

∑
i(V [i][j]× αi[i])

18: end for
19: c̃ = ĩ+ t̃ return c̃

the context in which a particular hashtag is being used. BERT-based embeddings

of hashtags capture their semantic relationships, allowing the model to understand

their contextual meanings. By introducing learnable parameters associated with the

transformation of text/image features, the model can adaptively learn how to combine

these features with hashtag features to derive meaningful representations. This allows

the model to adapt to the specific characteristics of the content and the nuances of

hashtag usage patterns. The resulting intermediate representations encapsulate not

only the inherent characteristics of the text/image features but also their contextual

relevance concerning the associated hashtags. This semantic enrichment enhances the

model’s ability to understand the underlying themes, topics, and sentiments expressed

in the content, thereby improving the quality of feature representations. These inter-

mediate representations Yt and Yi signify how text and image features are influenced
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by associated hashtags. We apply the hyperbolic tangent (tanh) activation function to

a combination of text feature matrix (E) and hashtag feature matrix (H) represented

by Yt. Similarly, for image features, we apply tanh to a combination of image feature

matrix (I) and hashtag feature matrix (H) which is denoted by Yi. The intuition here

is to capture the interaction between text and hashtags (Yt), and image and hashtags

(Yi). Lines 7-12 compute the attention weights for text and image features. Here, αt

and αi denote attention weights for text modality and image modality, respectively.

Here, W t ∈ RA×D, W i ∈ RA×D are learnable parameters. These weights represent the

importance of different features based on the associated hashtags. The idea is that

certain hashtags may be more relevant to either text or image content, affecting their

contribution to the overall content vector. Then, we compute the attended modality

representations. Here, t̃ ∈ RD and ĩ ∈ RD denotes the attended text feature vector and

attended image feature vector, respectively. In Lines 13-15, we take the weighted sum

of text feature matrix (E) with the attention weights αt to get an attended text repre-

sentation t̃. This step emphasizes the text features that align with relevant hashtags.

Similarly, in Lines 16-18, we multiply the image feature matrix I with the attention

weights αi to get an attended image feature vector representation (̃i). Here, the focus

is on image features associated with specific hashtags. Line 20 computes the hashtag-

guided content feature vector by taking the sum of the attended text feature vector t̃

and the attended image feature vector ĩ. Here, c̃ ∈ RD represents the comprehensive

feature vector derived from hashtag guidance. This updated feature vector represents

a comprehensive view of the content, incorporating information from both text and

image modalities, with attention focused on the relevant features guided by hashtags.

By leveraging hashtags as guiding signals, the algorithm enhances the model’s ability

to capture contextually relevant features, ultimately improving the performance of the

model in predicting popularity.

7.3.3 Feature Fusion

In this section, we delve into the details of feature fusion, a critical step in con-

structing a unified representation of multimodal social media posts and ultimately
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predicting their popularity within the proposed framework followed by the theoretical

background for feature fusion. The feature fusion component is structured in a grid-

like manner, with layers arranged horizontally. Each layer corresponds to a stage in

the data processing conducted by the CNN. During the feature extraction stage, we

extract demographic, sentiment, hashtag, and social context features from each post

denoted by fd
i , f

st
i , fh

i , f
s
i , respectively. Conv1D refers to a one-dimensional convolu-

tional layer, a common building block in CNNs for processing sequential data. Each

layer has a box with parameters such as the filter size, number of filters, and activa-

tion function (ReLU). These parameters define how the layer performs its operations

on the data. Dropout layers randomly set a fraction of activations to zero during

training. This helps prevent the network from overfitting to the training data. After

the convolutional layers, there are “Flatten” layers. These layers flatten the data from

a multi-dimensional representation into a one-dimensional vector suitable for feeding

into a fully connected layer.

Following the extraction of social features, we concatenate them into a single fea-

ture vector with a dimensionality of 85. To address potential issues of high dimen-

sionality and redundancy within this feature space, we employ Principal Component

Analysis (PCA) [185]. PCA is a widely recognized method for reducing dimensionality,

wherein the data is projected into a lower-dimensional space to maximize the retained

variance. All feature vectors thus obtained are passed to an individual network con-

sisting of three CNN layers. The output of all CNNs along with the hashtag-guided

content feature vector is fed into a fusion network. The fusion network is composed

of a merged layer and a series of several Fully Connected (FC) layers termed Cas-

cade Feed-Forward Network (CFFN). The output of all CNN networks along with

the hashtag-guided content feature vector are concatenated in the merged layer. The

merged layer’s concatenated output serves as the input for the CFFN. Ultimately, the

output of CFFN is summed together at the final node, which gives the popularity

score for the specific social media post. Mean Squared Error (MSE) is then calculated

using both the ground truth and forecasted popularity scores. The computed error

is backpropagated and weights are updated accordingly. For each iteration, output
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vectors for the social feature, demographic feature, hashtag, and sentiment feature are

calculated as illustrated in Equations 7.14, 7.15, 7.16, 7.17.

Si = Conv1Ds3(Conv1Ds2(Conv1Ds1(f
s
i ))) (7.14)

Di = Conv1Df3(Conv1Df2(Conv1Df1(f
d
i ))) (7.15)

Hi = Conv1Dh3(Conv1Dh2(Conv1Dh1(f
h
i ))) (7.16)

Sti = Conv1Dst3(Conv1Dst2(Conv1Dst1(f
st
i ))) (7.17)

where i = 1, 2, . . . , N . Here, Si,Di, Hi, and Sti denote the social, demographic, hash-

tag, and sentiment feature vectors obtained after passing through CNN layers. Fur-

ther, we have flattened Si, Di, Hi, and Sti and concatenated these feature vectors along

with the hashtag-guided content feature vector (c̃) and denote the final merged vector

as Mi where

Mi = [Si, Fi, Hi, Sti, Ci] (7.18)

Here, Mi denotes the concatenated feature vector which has a size of 27104.

7.3.4 Popularity Prediction

We employ a Deep Feedforward Neural Network as illustrated in Figure 7.4, con-

sisting of 12 fully connected layers (denoted by N) with decreasing sizes (13552, 6776,

3388, 1694, 847, 424, 212, 106, 53, 27, 13, 1) to forecast the popularity score. Each

hidden layer is followed by a ReLU activation function and a dropout [186] layer with

a rate of 0.2. The output layer utilizes a linear activation function to directly predict

the continuous star count.
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Figure 7.4: Deep feedforward neural network for popularity score prediction

The final popularity score can be calculated as given in Equation 7.19.

Ŷi = DNN(Mi) (7.19)

Here, Ŷi and Yi are predicted and ground-truth popularity score of post pi, and,

DNN is the Deep Feedforward Neural Network. The training objective is defined in

Equation 7.20.

MSE(θ) = min
θ

 1

2|P |

|∑
i=1

P |(Ŷi − Yi)
2

 (7.20)

Here, |P | is the number of posts in the training data and θ represent the NARRATOR’s

parameters. These are trained via back-propagation by maximizing MSE cost function

after being set with random values between -1 and 1.
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7.4 Experimental Evaluations

Following a detailed account of the experimental setup, this section presents a

comprehensive analysis of the data obtained from the experiments. This analysis will

provide valuable insights into the effectiveness of our proposed approach.

7.4.1 Experimental Setup

This section details the datasets used in the study and the adopted preprocess-

ing procedures. We next go through several comparison techniques, which are then

followed by evaluation metrics.

7.4.1.1 Datasets

In this section, we cover various datasets on which experiments were conducted,

followed by strategies for dataset preprocessing.

• SMP: The Social Media Prediction (SMP) [187] is a real-world dataset provided

by ACM Multimedia Grand Challenge in 2019. Initially, the raw data collec-

tion consisted of about 432K posts that were gathered from 135 distinct users’

personal Flickr albums. In the dataset, each post has a unique picture ID that

identifies the image and a user ID that identifies the person who uploaded it, the

date the post was created, how many comments it received, how many hashtags

were used, whether any users were tagged in the image, number of words in the

title and the image caption. User-centric information such as the average view

count, average member count, and group count were also collected as part of the

data. Each image has a label that reflects its popularity based on the number

of log-normalized views.

• TPIC: TPIC2017 [188] is a social media dataset for temporal popularity pre-

diction that contains 680K photos and accompanying photo-sharing records on

Flickr over a three-year period. The TPIC2017 dataset is diverse, containing

photos, user data, and time information.
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7.4.1.1.1 Dataset Preprocessing We preprocess the input data to convert it into

an appropriate format to extract coherent features and accurately predict the popular-

ity of multimodal posts. We apply several adaptations and normalization techniques

to these datasets. To this end, we have taken all posts that contain hashtags, titles,

and faces in the image. This left us with a total of 21,000 samples in the SMP dataset

and 11,000 samples in the TPIC dataset. For our experiments, 80% of the posts were

utilized for training, 10% for validation, and 10% for testing.

7.4.1.2 Compared Methods

In this part, we discuss various state-of-the-art methods for assessing the effective-

ness of the suggested framework.

[1] Leveraging Hashtag Networks for Multimodal Popularity Prediction of Insta-

gram Posts (HashPop): Liao et al. [84] has predominantly used hashtags as a

separate modality to gauge the popularity of a specific post. The authors have

constructed a graph-like hashtag network where hashtags used in the post serve

as nodes of the graph. Edges are created between hashtags if many hashtags

appear in a single post. This combined vector is then represented as a hashtag

feature. In addition, authors used InceptionV3 to obtain image embedding, and

sentence transformer to obtain caption embedding for the post along with addi-

tional metadata. The overall post-representation is obtained by concatenating

these obtained features. The output from the last layer is utilized to calculate

the popularity score in a dense layer once this composite representation has been

passed through.

[2] Multimodal Deep Learning Framework for Image Popularity Prediction on Social

Media (VSCNN): Abousaleh et al. [170] chose social metadata, post metadata,

and time metadata as primary components for predicting post popularity. Low-

level, high-level, and Deep Learning-based visual attributes are extracted from

the image that constitutes a given post. Furthermore, after feature extraction,

the authors employed CNNs on visual and social metadata features indepen-
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dently to learn their high-level representations. At the output layer, shared

multimodal properties are learned and the popularity score is determined. To

this end, the output of two separate CNN networks is then integrated into a

shared network which is made up of one merge layer and two dense layers to

predict the popularity of a post.

[3] Multimodal Deep Learning for Social Media Popularity Prediction With Atten-

tion Mechanism (MMAtt): Xu et al. [86] provided an attention mechanism for

forecasting post popularity. The authors retrieved four distinct features namely

categorical, numerical, visual, and textual. The categorical feature consists of

category, subcategory, and path alias of post embeddings which were obtained

and passed to individual dense layers, the output of which was further passed

to the common dense layer. The numerical information contains the number of

followers, the date the post was created, and the location. The authors applied

ResNet50 to extract visual features which were later sent to a dense layer. The

textual features contain the title and hashtags of the post, and embeddings of

both were obtained using word2vec and were passed to two-layer LSTM and

individual dense layers. The output of all dense layers was concatenated and

transferred to a single dense layer, after which an attention layer was utilized to

compute a popularity score.

[4] Social Media Popularity Prediction: A Multiple Feature Fusion Approach with

Deep Neural Networks (FuseDNN): Ding et al. [189] retrieved visual, textual,

user, temporal, and geographical location features. In visual features, the au-

thors retrieved ResNet-101 characteristics, an intrinsic popularity score, and an

aesthetics score from the post’s provided image. Tag count, title length, and

title embedding using BERT are all included in text features. While the time

component contains the post duration and the location information provides ge-

ographic coordinates, user data includes the count of followers, followings, and

posts. The remaining entities were concatenated and passed to a different dense

layer. The ResNet-101 and BERT embeddings were passed to separate dense
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layers. To forecast the popularity score, the output from all three dense lay-

ers was combined and transferred to three dense layers to yield the predicted

popularity score.

[5] Predicting Tweet Engagement with Graph Neural Networks (TweetGage):

Arazzi et al. [175] developed a novel Graph Neural Network framework for pre-

dicting user engagement on social media. TweetGage leverages a graph-based

model based on hashtag relationships, capturing semantic connections beyond

individual post features.

[6] Gradient Boost Tree Network based on Extensive Feature Analysis for Popu-

larity Prediction of Social Posts (MFTM): Hsu et al. [190] presented a multi-

modality feature mining framework for social media popularity prediction. It

leverages identity-related user features alongside traditional modalities (text and

image) to achieve significant performance improvements, suggesting a stronger

influence of identity compared to other user metadata. LightGBM and TabNet

are employed to capture complex relationships within the enriched feature set.

[7] Enhanced CatBoost with Stacking Features for Social Media Prediction (ECSF):

Mao et al. [191] proposed a novel social post popularity prediction approach

utilizing enriched post and user features. ECSF employs innovative stacking

features to capture higher-order interactions between text and image features,

potentially leading to a more comprehensive understanding of the underlying

factors that influence social media post popularity. ECSF’s effectiveness is sub-

stantiated by its state-of-the-art performance on the SMP challenge dataset,

surpassing prior methods that primarily relied on extracting lower-order fea-

tures.

7.4.1.3 Evaluation Metrics

In this study, we adopted Mean Squared Error (MSE) and Mean Absolute Error

(MAE) as primary metrics to quantify the prediction accuracy of our model.

186



• MSE: To determine the mean of the squared sum of prediction errors, MSE is

frequently used. Each prediction error represents the discrepancy between a data

point’s actual value and the value estimated by a regression model. It is simpler

to determine the gradient of MSE since it has straightforward mathematical fea-

tures. Due to its computational simplicity, smooth differentiability, and greater

optimization amenability, MSE is typically supplied as the default measure for

the majority of predictive models. A serious flaw with MSE is that it squares

large prediction errors, which strongly penalizes them. Due to the quadratic

accumulation of each MSE error, the overall error is significantly influenced by

outliers in data. This demonstrates that MSE undervalues the model’s perfor-

mance because of its high sensitivity to outliers and the disproportionate weight

assigned to their effects, MSE undervalues the model’s performance in this case.

When outliers are present in the data, only then the disadvantage of MSE be-

comes obvious, making MAE an adequate replacement. MSE is defined as given

in Equation 7.21.

MSE =
1

|N |

N∑
i=1

(yi − ŷi)
2 (7.21)

Here, N denotes the total number of posts, ŷi denotes the predicted popularity

score, and yi denotes the actual popularity score of the ith multimodal post (pi).

• MAE: MAE is a straightforward metric typically used to assess the precision

of a regression model. It calculates the mean absolute value of each prediction

mistake made by the model overall test set samples. Unlike metrics sensitive to

outliers, MAE assigns equal weight to all prediction errors. This characteristic

ensures that larger deviations from the actual values contribute linearly to the

overall error score. However, MAE focuses solely on the absolute magnitude of

the error, without considering the direction of the discrepancy (overprediction

or underprediction). Consequently, MAE provides an objective measure of the

model’s overall performance in terms of absolute prediction error, but it doesn’t

necessarily indicate whether the model consistently overestimates or underesti-

mates the target variable. By employing the absolute value of the prediction
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Table 7.1: Effectiveness comparison results on different datasets

Methods TPIC SMP

MSE MAE MSE MAE

FuseDNN, Ding et al.’19 2.716 1.318 4.831 1.707
MMAtt, Xu et al.’20 2.367 1.170 4.447 1.617
VSCNN, Abousaleh et al.’20 1.711 1.015 5.023 1.732
HashPop, Liao et al.’22 3.200 1.435 6.262 1.946
TweetGage, Arazziet al.’23 2.132 1.145 4.211 1.566
MFTM, Hsu et al.’23 5.264 1.946 6.815 2.097
ECSF, Mao et al.’23 5.115 1.911 6.783 2.072
NARRATOR 1.196 0.854 2.022 0.972
MSE: Mean Squared Error, MAE: Mean Average Error

error rather than its squared value, MAE becomes more resilient to outliers

than MSE because it does not penalize significant errors as heavily as MSE.

Therefore, MAE has both benefits and drawbacks. While it helps in managing

outliers, it does not penalize significant forecasting errors. MAE is described in

Equation 7.22.

MAE =
1

|N |

N∑
i=1

|yi − ŷi| (7.22)

Here, N denotes the total number of posts, ŷi denotes the predicted popularity score,

and yi denotes the actual popularity score of the ith multimodal post (pi).

7.4.2 Experimental Results

The experimental results for the proposed and current state-of-the-art approaches

on various datasets, ablation investigations, visualization of predictions from both

existing and proposed methods, statistical analysis, ranking of important features,

implementation details, and limitations are all covered in this section.

7.4.2.1 Effectiveness Comparison

To assess the performance of our suggested technique on various datasets, we

compare it to the existing methods on TPIC and SMP datasets. The performance

comparison using the aforementioned datasets is given in Table 7.1. It is evident from
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Table 7.1 that NARRATOR performs noticeably better than state-of-the-art meth-

ods. NARRATOR beats HashPop with a 62.625% improvement in MSE and 40.487%

in MAE on the TPIC dataset and 67.709% improvement in MSE and 50.051% in

MAE on the SMP dataset. The authors in HashPop have focused more on using

the hashtag network besides content-based and metadata information. Our proposed

model which consists of demographic and sentiment information embedded in cap-

tions and hashtags along with hashtag-guided attention content features beats Hash-

Pop. NARRATOR beats VSCNN with a relative improvement of 30.099% in terms

of MSE and 15.862% in terms of MAE on the TPIC dataset and 59.745% in MSE

and 78.189% in MAE on the SMP Dataset. VSCNN predicted popularity based on

social and visual features whereas in our model we have incorporated four additional

features namely demographic information, hashtag, textual, sentiment of caption, and

hashtags besides a hashtag-guided attention mechanism employed on content-based

features. NARRATOR beats MMAtt with a relative improvement of 49.471% in MSE

and 27.008% in MAE on the TPIC dataset and 54.531% in MSE and 39.888% in MAE

on the SMP dataset. While authors incorporated an attention mechanism within their

model, NARRATOR achieves demonstrably stronger performance. This improvement

can be attributed to our implementation of a hashtag-guided attention mechanism

that models the influence of hashtags on linguistic and visual features. Our attention

mechanism produces superior results because the hashtags are very closely related to

the title and the image associated with the post, which in turn boosts the model’s

performance significantly. The proposed model beats FuseDNN exhibiting a relative

improvement of 55.964% and 35.204% in MSE and MAE on the TPIC dataset and

58.145% improvement in MSE and 43.057% in MAE on the SMP dataset. NARRA-

TOR surpasses TweetGage exhibiting a relative improvement of 43.092% and 25.415%

in terms of MSE and MAE on the TPIC dataset and 51.982% improvement in terms

of MSE and 37.931% in terms of MAE on the SMP dataset. Unlike TweetGage which

captures relationships among posts based on common hashtags, we employ the topical,

structural, semantic, and sentiment information from hashtags besides image, caption,

and demographics. The proposed model beats MFTM exhibiting a relative improve-

189



Figure 7.5: Effectiveness comparison curves on TPIC dataset

ment of 77.279% and 56.115% in terms of MSE and MAE on the TPIC dataset and

70.330% improvement in terms of MSE and 53.648% in terms of MAE on the SMP

dataset. After feature extraction, MFTM employs an ensemble of TabNet and Light-

GBM which are Machine Learning models to predict post popularity whereas NAR-

RATOR employs a hashtag-guided attention mechanism on content features and a a

deep neural network to forecast the post popularity. NARRATOR surpasses ECSF

by a relative improvement of 76.617% in MSE and 55.311% in MAE on the TPIC

dataset and 70.190% improvement in MSE and 53.088% in MAE on the SMP dataset.

ECSF relies on feature stacking and a CatBoost model for prediction, which limits its

ability to capture complex relationships between features. NARRATOR’s deep neu-

ral network with a hashtag-guided attention mechanism overcomes this limitation by

learning more intricate feature interactions. As illustrated in Figure 7.5 and Figure 7.6,

NARRATOR demonstrates superior performance compared to all four baseline mod-

els on both datasets. This is evident in the consistently lower MSE and MAE values

achieved by NARRATOR. Notably, on the TPIC dataset, NARRATOR achieves the

lowest MSE of 1.196 and the lowest MAE of 0.854. Similarly, on the SMP dataset,

NARRATOR outperforms other models with an MSE of 2.022 and an MAE of 0.972.

These results suggest that NARRATOR effectively captures the underlying factors

influencing social media post popularity across different datasets. This implies that

our derived features, such as sentiments, demographics, and hashtags, are essential

for determining how popular social media posts are. The fact that hashtags influence
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Figure 7.6: Performance comparison curves on SMP dataset

Table 7.2: Feature ablation study

Variant TPIC SMP

MSE MAE MSE MAE

NARRATOR w/o (Sentiment from Hashtags+ Demographics) 1.387 0.912 2.367 1.084
NARRATOR w/o Sentiment from Hashtags 1.372 0.872 2.346 1.092
NARRATOR w/o Demographics 1.238 0.897 2.465 1.131
NARRATOR 1.196 0.854 2.022 0.972
MSE: Mean Squared Error, MAE: Mean Average Error

both textual and visual content features and enrich the overall representation of the

posts in predicting post popularity on social network platforms is another important

result.

7.4.2.2 Ablation Studies

In this section, we discuss the model’s performance by analyzing feature combina-

tions, and the effectiveness of different attention mechanisms on the performance of

the proposed model.

7.4.2.2.1 Feature Ablation We investigate the role of our two novel features-

visual demographics and sentiment extracted from hashtags in enhancing popularity

prediction. Table 7.2 demonstrates that the complete NARRATORmodel, incorporat-

ing both novel features- visual demographics and sentiment extracted from hashtags,

achieves superior performance compared to ablated versions. The complete model
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achieves the lowest MSE and MAE values across both TPIC and SMP datasets, high-

lighting the significant contribution of these features to accurate popularity prediction.

This degradation is particularly pronounced when both features are removed simul-

taneously, resulting in an absolute increase of 13.77% and 6.36% in MSE and MAE

on TPIC, and 14.58% and 10.33% on SMP, respectively. Removing demographics

and sentiment features from hashtags affects the model’s ability to understand the

target audience and the emotional tone of the post, both of which could be relevant

for popularity. The exclusion of visual demographics leads to an absolute increase of

3.39%, 4.79% in MSE and MAE on TPIC and 17.97% and 14.06% in MSE and MAE

on SMP dataset, respectively. This highlights the importance of understanding the

target audience. Visual demographics provide insights into the age group, gender, and

other visual cues that may resonate with specific user segments, enabling the model

to better predict post appeal. The exclusion of sentiments from hashtags leads to

an absolute increase of 12.83%, 2.06% in MSE and MAE on TPIC and 13.81% and

10.99% in MSE and MAE on SMP dataset, respectively. This emphasizes the role

of emotional tone in driving post popularity. Hashtags often encapsulate the senti-

ment or theme associated with a post. By incorporating hashtag sentiment, the model

can gauge the emotional appeal of the content, which is a key factor influencing user

engagement and sharing behavior. In essence, visual demographics help the model un-

derstand who the content might appeal to, while hashtag sentiment helps understand

how the content might make the audience feel. By integrating both, NARRATOR

gains a more comprehensive understanding of the factors driving popularity, enabling

it to make more accurate predictions. This underscores the synergistic effect of com-

bining visual demographics and hashtag sentiment for understanding and predicting

multimodal post popularity.

7.4.2.2.2 Attention Mechanisms To demonstrate the significance of the novel

hashtag-guided attention mechanism, we compare its performance with various at-

tention mechanisms discussed below. Table 7.3 showcases the performance of NAR-

RATOR with different attention mechanisms. Here, the variants that use no at-
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Table 7.3: Effectiveness of attention mechanisms

Attention Technique TPIC SMP

MSE MAE MSE MAE

NARRATORNA 1.510 0.917 3.715 1.417
NARRATORSA 1.567 0.944 3.474 1.445
NARRATORCA 1.486 0.916 2.904 1.218
NARRATORPA 1.389 0.905 3.367 1.359
NARRATORHGA 1.196 0.854 2.022 0.972
MSE: Mean Squared Error, MAE: Mean Average Error

tention, self-attention, cross-attention, parallel co-attention, and hashtag-guided at-

tention are NARRATORNA, NARRATORSA, NARRATORCA, NARRATORPA,

NARRATORHGA respectively. The performance difference when NARRATOR is

implemented without any attention mechanism is 23.68% and 9.53% in MSE and

MAE on the TPIC dataset and 41.80% and 32.73% on the SMP dataset compared

to hashtag-guided attention. The performance of NARRATOR is the lowest in the

absence of any attention mechanism. Compared to self-attention, hashtag-guided at-

tention shows and absolute improvement of 23.68%, 9.53% in MSE and MAE on

TPIC dataset and 41.80% and 32.73% on SMP dataset. The superior performance of

hashtag-guided attention over self-attention indicates that solely modeling intra-modal

relationships (within text or image) is less effective than incorporating the semantic

context provided by hashtags. Compared to cross-attention, hashtag-guided attention

shows and absolute improvement of 19.52%, 6.77% in MSE and MAE on TPIC dataset

and 30.37% and 20.20% on SMP dataset. While cross-attention improves performance

by modeling inter-modal interactions (between text and image), hashtag-guided at-

tention further refines this by leveraging the contextual cues embedded in hashtags,

leading to a better understanding of content. Our hashtag-guided attention mech-

anism outperforms parallel co-attention, demonstrating an absolute improvement of

13.89% and 56.35% on TPIC and 39.95% and 39.81% on SMP in terms of MSE and

MAE metrics, respectively. Unlike the parallel co-attention mechanism that solely

focuses on the relationship between text and image features, the proposed hashtag-

guided attention mechanism introduces a crucial element: the influence of hashtags

on both modalities. The superior performance of hashtag-guided attention compared
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(a) Post 1 (b) Post 2

Figure 7.7: Posts depicting popularity scores predicted by different methods

to parallel co-attention emphasizes the value of explicitly incorporating hashtag se-

mantics into the attention mechanism. Hashtags provide a bridge between textual

and visual content, allowing the model to focus on the most relevant aspects of both

modalities for popularity prediction.

7.4.2.3 Qualitative Analysis

Predicting the popularity score of the given post is a common evaluation protocol

in popularity prediction tasks. This section presents a qualitative evaluation aimed

at understanding how accurately our proposed model predicts the popularity of so-

cial media posts. Example posts with accompanying captions, images, and associated

hashtags are illustrated. We also display the ground-truth popularity scores and pop-

ularity scores predicted by state-of-the-art methods. These example posts have been

chosen randomly from test data. As can be seen in Figure 7.7(a), our proposed model

predicts a popularity score that is very close to the ground-truth popularity score.

The caption of the first example post i.e., “Holi festival in Madrid”, bears a striking

resemblance to the accompanying image, which depicts a girl celebrating the festival.
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Hashtags such as #holi and #spain indicate a cultural celebration happening outside

its traditional location (India), #india and #bollywood suggest the post might target

the Indian diaspora or Bollywood fans in Spain. The model focuses on visual features

in the image related to the Holi celebration (colors, people celebrating). Textual fea-

tures in the caption (“Holi festival”) are analyzed alongside hashtags such as #india to

understand the cultural significance. Hashtags such as #spain and #bollymadrid help

identify a potential audience interested in Indian culture or Bollywood within Spain.

By considering these contextual cues from hashtags, the model refines its understand-

ing of the post’s content and target audience. This validates our hypothesis that

modeling the interaction between the title and image under the influence of hashtags

via a hashtag-guided attention mechanism effectively captured the relevant aspects for

predicting engagement and considerably enhanced the model’s performance. Further-

more, our experimental results show that sentiments are related to post popularity.

The hashtags #holi and #india are directly related to the post caption as Holi is

the festival of colors that celebrates spring and the triumph of good over evil in In-

dia and is associated with joy, love, and new beginnings. Hashtag “#bollymadrid”

combines Bollywood with Madrid, suggesting a fusion of Indian and Spanish culture,

which can be seen as positive. Overall, the post promotes a positive and inclusive

sentiment about cultural exchange. The positive mood communicated by captions

and hashtags aids the model in anticipating better outcomes. Further, as illustrated

in Figure 7.7(b), the ground-truth popularity score for the post is 1.6. Our model’s

prediction closely approximates this value, achieving a score of 1.580. Overall, this

research helps to visualize our model’s ability to estimate post popularity accurately

by leveraging innovative features.

7.4.2.4 Feature Ranking and Importance

To assess the importance of derived features, we independently ranked the per-

formance of each feature in terms of MSE and MAE, with rank 1 indicating optimal

performance. Following that, by aggregating the preliminary ranks acquired for each

parameter, the resulting average rank was used as a comprehensive assessment of over-
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Table 7.4: Feature ranking and importance

Feature TPIC SMP

MSE/MAE Rank MSE/ MAE Rank

w/o Sentiment (Text) 1.362(5)/0.867(6) 5.5 2.367(5)/ 1.084(6) 5.5
w/o Sentiment (Hashtags) 4.51.372(4)/0.872(5) 4.5 2.346(6)/ 1.092(5) 5.5
w/o Hashtags 2.553(1) / 1.251(1) 1 2.458(4) / 1.125(4) 4
w/o Demographics 1.238(6) / 0.897(4) 5 2.465(3) /1.131(3) 3
w/o Social 2.166(2) / 1.093(2) 2 2.897(2)/1.267(1) 1.5
w/o Content 1.435(3) / 0.908(3) 3 3.021(1)/1.228(2) 1.5
MSE: Mean Squared Error, MAE: Mean Average Error

all performance. Table 7.4 highlights the significance of both established and newly

introduced features in predicting post popularity. While certain features such as social

information and hashtags consistently rank high across both datasets, showcasing their

fundamental role in capturing engagement and contextual information, respectively,

the impact of other features such as sentiment and visual demographics appears to be

more nuanced and context-dependent. The relatively lower individual ranks of derived

features such as sentiments from hashtags and visual demographics might not fully

reflect their true value. Their strength lies in their synergistic contribution to the over-

all model, capturing subtle nuances and previously overlooked aspects of popularity

dynamics. In particular, they address specific gaps in prior research, offering a more

comprehensive understanding of the factors influencing post popularity. Furthermore,

the importance of features can vary depending on the specific platform and its user

base. While some features might be universally influential, others might play a more

significant role in specific contexts or for particular types of posts. Our analysis un-

derscores the complex and multifaceted nature of popularity prediction, highlighting

the need for a holistic approach that considers a diverse range of features and their

interactions.

7.4.2.5 Implementation Details

The experiments leveraged a high-performance computing environment featuring a

Linux server architecture. The server’s processing power included an Intel(R) Xeon(R)

Silver 4215R CPU operating at 3.20 GHz, complemented by 256 GB of RAM and a
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dedicated NVIDIA Tesla T4 GPU with 16 GB of memory. This configuration facili-

tated efficient model training and experimentation. To achieve optimal model perfor-

mance, a rigorous hyperparameter tuning process was conducted. The learning rate

was meticulously set to 0.0001, ensuring convergence without excessive learning speed.

A batch size of 20 was chosen to strike a balance between computational efficiency

and gradient estimation accuracy. The Adam optimizer, renowned for its adaptive

learning rate capabilities, was employed to facilitate efficient optimization. Training

proceeded for a maximum of 30 epochs, incorporating an early stopping mechanism

with a patience of 5 epochs to prevent overfitting. Additionally, a dropout rate of

0.2 was strategically applied after each layer within the model architecture to further

mitigate overfitting tendencies. To ensure a level playing field for performance eval-

uation, the embedding dimension (D) was consistently set to 768 for all comparative

methods employed in the study. Before feeding image data into the VGG-19 network,

all image samples underwent a standardized pre-processing step. This step involved

rescaling each image to a uniform size of 224 x 224 pixels. This normalization ensured

consistent image representation and facilitated network training. In Deep Feed For-

ward Network, we employ a series of 12 fully connected layers of size 13552, 6776, and

so on till size 1.

7.5 Conclusion

In this chapter, we propose a novel paradigm for forecasting the popularity of

social media posts by leveraging multimodal characteristics. Our approach leverages

a multifaceted feature extraction process, capturing content-based information from

both text and visuals, sentiment-oriented information from hashtags and text, user de-

mographics, and social network data, along with topical and structural characteristics

derived from hashtags. We propose a novel hashtag-guided attention mechanism that

captures the influence of hashtags on both visual and textual content. This mechanism

facilitates the model in learning the relative importance of different image regions and

text segments based on their association with hashtags, leading to a more nuanced
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understanding of how hashtags shape user engagement. To demonstrate the efficacy

of our proposed method, we undertake quantitative and qualitative comparisons in

addition to ablation and statistical investigations. Our method achieves significant

performance improvements compared to existing state-of-the-art approaches, as eval-

uated on two real-world datasets. This finding suggests the potential effectiveness of

our proposed method for predicting the popularity of multimodal posts.
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Chapter 8

Conclusion and Future Work

In this chapter, we first present key findings of thesis, followed by a discussion of

prospective directions for future research.

8.1 Summary of the Thesis

In this thesis, we addressed problems of content discoverability and reachability by

devising automated methods for hashtag recommendation and popularity prediction

in social networks. We analyzed prominent modalities of UGC, namely monolin-

gual content, multilingual content, multimodal content comprising textual and visual

modalities, and micro-videos. A brief summary of all the proposed solutions is pre-

sented in the following subsections.

8.1.1 Hashtag Recommendation for Monolingual Content

We introduce a novel retrieval-augmented diffusion-based sequence-to-sequence

framework for monolingual text-based hashtag recommendation. This work pioneers

the application of diffusion models to this task, strategically integrating the contextual

awareness inherent in information retrieval with the generative capabilities of diffu-

sion models. Employing an encoder-decoder transformer architecture, our framework

leverages retrieved hashtags from semantically similar posts to contextually guide the

sequential generation of relevant hashtags. The newly proposed adaptive non-linear
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noise scheduler significantly enhances the quality of generated hashtags by providing

fine-grained control over token-level diffusion process, effectively capturing dynamic

nature of language. The diffusion-based generative approach overcomes the limitations

of traditional encoder-decoder models that relies on maximum likelihood estimation to

produce generic hashtags. By reversing a gradual noising process, our method explores

a broader spectrum of hashtag possibilities, yielding more diverse and contextually ap-

propriate recommendations. Furthermore, the integration of self-conditioning within

the generator optimizes the utilization of previously predicted sequence information,

leading to improved coherence. Empirical evaluations demonstrate the superior per-

formance of our proposed framework against state-of-the-art methods in both hashtag

quality and training efficiency.

8.1.2 Hashtag Recommendation for Multilingual Content

In Chapter 4, we develop a novel hashtag recommendation method to enhance con-

tent discoverability and bridge language barriers for content in low-resource languages

on social networks. Our method enriches tweet representations by leveraging the user’s

topical and linguistic preferences, historical posting behavior, and language related-

ness, yielding pertinent hashtag suggestions. Experimental results, derived from a

curated dataset from X, demonstrate the efficacy of TAGALOG. It significantly out-

performs recognized pre-trained language models and existing research, with average

F1-score improvements of 12.3% and 12.8%, respectively. These substantial improve-

ments underscore its ability to recommend hashtags that resonate with individual

user interests and linguistic inclinations, leading to a more tailored and engaging user

experience. These findings effectively validate the potential of personalized and multi-

lingual hashtag recommendation systems in facilitating multilingual content retrieval

and improving the discoverability and relevance of content within low-resource lan-

guage communities.
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8.1.3 Hashtag Recommendation for Multimodal Content

In Chapter 5, we propose a hybrid deep neural network to recommend personalized

and relevant hashtags for multimodal microblogs devoid of hashtags. We formulate

hashtag recommendation through both classification and generation paradigms, effec-

tively leveraging image, text, and user hashtagging behavior as crucial modalities. By

learning intricate connections between information embedded within these modalities

and analyzing user interests, DESIGN recommends pertinent hashtags. The archi-

tecture incorporates a word-level attention mechanism to identify significant textual

segments and a parallel co-attention mechanism to bridge the semantic gap between vi-

sual and textual data through mutual representation learning. Notably, our proposed

method demonstrates superior performance over existing approaches both quantita-

tively and qualitatively. Extensive evaluations on HARRISON, T-INS, and MMP-INS

datasets underscores the efficacy of DESIGN for image-based, text-based, and multi-

modal hashtag recommendation.

8.1.4 Hashtag Recommendation for Micro-videos

In Chapter 6, we devise an automated system to recommend hashtags for micro-

videos, a prevalent form of user-generated content requiring efficient organization.

We develop a hybrid filtering approach that considers micro-video content, individual

preferences, and shared interests of like-minded users. To this end, we construct a

heterogeneous graph that models users’ modality-specific tagging behavior by linking

them to constituent modalities of their past micro-videos. This graph also incorporates

user-to-user and modality-to-modality interactions to leverage explicit and implicit

collaborative filtering signals. Extensive experiments across three real-world datasets

demonstrate MISHON’s comparative F1-score enhancement of 3.6%, 2.8%, and 6.5%,

respectively, highlighting its robustness. Moreover, to address the cold-start user

problem, we introduce a social influence and content-based solution. This technique

recommends meaningful hashtags for cold-start users by modeling their interaction

with influential users and popular tagging trends, thus overcoming initial data scarcity.
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This solution exhibits a substantial relative F1-score improvement of 15.8% over a

content-only approach, underscoring its effectiveness in expanding new users’ network

and content visibility.

8.1.5 Popularity Prediction of Multimodal Content

We develop a sentiment and hashtag-aware attentive deep neural network for mul-

timodal post popularity prediction, dubbed NARRATOR. It captures content infor-

mation from textual and visual modalities, sentiment information from hashtags and

captions, visual demographic features from faces, and social network data. Addi-

tionally, we incorporate topical and structural characteristics derived from hashtags,

enabling a comprehensive analysis of factors influencing post popularity. A key con-

tribution is a novel hashtag-guided attention mechanism. This mechanism models

hashtag influence on visual and textual modalities, learning the importance of image

regions and text segments related to hashtags. Experimental results on two real-world

datasets demonstrate NARRATOR’s significant quantitative and qualitative outper-

formance of existing methods.

8.2 Future Work

Building upon the contributions of this thesis, we now present a few promising

directions for subsequent research.

[1] To recommend hashtags for monolingual content, we devised a retrieval aug-

mented framework with a diffusion-based generator, comprising a retriever for

candidate identification, a selector for relevance filtering, and a generator for

informative hashtag creation. To further enhance the framework’s capabilities,

future work will focus on refining the selector module’s ability to capture linguis-

tic landscape of social media with greater accuracy, particularly in the face of

vocabulary, syntactic, and semantic variations. We will also focus on optimizing

the retriever’s efficiency to ensure scalability.

202



[2] Our proposed method focuses on Indo-Aryan and Dravidian language families

and is limited to investigating intra-family language relatedness. Future re-

search will broaden this scope to include the Austroasiatic and Tibeto-Burman

language groups, and investigating inter-family relationships. Furthermore, re-

searchers can leverage data augmentation techniques to enhance training dataset

and develop models capable of discerning hashtag usage patterns across the di-

verse cultural and linguistic landscape of the Indian subcontinent.

[3] To recommend personalized hashtags for multimodal content, we interpret the

task from both classification and generation perspectives. Future efforts will

explore enhancing the model’s ability to recommend a wider range of relevant

hashtags, including those with limited frequency, by incorporating keyword ex-

traction techniques to generate supplementary keyword-based suggestions.

[4] MISHON currently considers the static content of micro-videos when recom-

mending hashtags. Nevertheless, micro-videos exhibit topicality and tempo-

ral sensitivity, implying that the relevance of hashtags associated with a given

micro-video can evolve over time. In subsequent research, we intend to har-

ness the temporal dimension inherent in micro-videos to yield recommendations

that are more temporally aligned and pertinent. To further enhance MISHON,

we envisage the incorporation of a broader spectrum of user-centric contextual

information such as user profiles and geographical location data.

[5] We predict popularity of multimodal content using visual demographic features,

hashtag sentiment, and the interplay between texts, images, and hashtags. Fu-

ture work will focus on enhancing the robustness of visual demographic features

against challenging imaging conditions such as resolution, lighting, noise, occlu-

sions through advanced feature enhancement techniques. Additionally, to im-

prove performance across diverse contexts, we will incorporate culturally varied

datasets and devise adaptive modeling approaches to address cultural disparities

and platform-specific trends.
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