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ABSTRACT

A wireless Sensor Network (WSN) is a self-configured ad hoc network comprising nodes

with built-in processing units, communication systems, and sensors. WSNs are deployed

in mostly outdoor terrains and play a crucial role in monitoring such terrains through their

sensing units and communication systems. Given the lack of accessibility in terrains that

WSNs are deployed, these often work under extreme resource constraints with respect to

energy, memory, and computational capabilities. WSN nodes mostly rely on alkaline bat-

teries for energy and it becomes imperative that these be frugally used so as to extend their

lifespan and in effect that of the WSN node.

In this thesis, we explore this aspect of WSN and make contributions towards preserving

the energy of the nodes whilst simultaneously getting useful work done. We specifically

look at the exercise of economically localising WSN nodes in vast deployments; and routing

of communication signals through these networks.

Localisation of WSN nodes implies establishing the precise location of specific nodes

within the network that have made interesting observations. This is non-trivial given the

resource intensive nature of global positioning systems which makes them inappropriate for

such resource constrained environments. We take two approaches to address this issue: the

first comprises a hybrid approach that combines the Angle of Arrival (AoA) and Received

Signal Strength Indicator (RSSI) of signals received at nodes of interest. The values of

AoA and RSSI enables in establishing the location of unknown nodes vis-a-vis nodes with

pre-determined locations.

The second approach to localisation comprises a machine learning-based method that

employs an improvised random forest (RF) algorithm combined with RSSI values to deter-

mine the precise location of the nodes of interest.

The other major energy intensive exercise that a WSN has to indulge in is communica-

tion of signals. We attempt to alleviate this through a novel routing approach that effectively

minimizes the energy expended in communication. The approach comprises a cluster-based

routing strategy that dynamically creates clusters of nodes and selects a cluster head for

effective funneling of signals from the nodes to the base station.



The proposed approaches for localisation and routing whilst preserving energy are rig-

orously tested and shown to be superior to existing state of the art approaches for the same.

Prototypes of each of the ideas are practically tested in real-world deployments and demon-

strated to be effective.
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Chapter 1

Introduction

A Wireless Sensor Network (WSN) comprises a network of spatially distributed sensor

nodes that monitor physical and/or environmental conditions like temperature, humidity,

noise, air quality, pressure, motion, and the like. Each node comprises several autonomous

sensors that collect data from the environment and transmit the same to a central loca-

tion (known as a base station) over a wireless ad-hoc network. The base station may pro-

cess/analyze the data and/or communicate the same over the Internet to a back end cloud

facilitating analysis and visualization of the same.

WSN is especially useful in scenarios where human access is difficult. The modus

operandi largely comprises dropping WSN nodes in regions of interest using drones or

other mechanisms and being able to subsequently monitor the region.

Use cases for WSN deployments include surveillance for floods and tsunamis, detec-

tion of forest fires early, advance detection of volcano eruptions; defense applications like

monitoring movements of the enemy, early assessment of their strategies, and so on. WSNs

are also useful in home environments for bolstering security and domestic services; in in-

dustrial set-ups for production monitoring; healthcare applications comprise monitoring of

vital parameters of patients. WSN networks broadly comprise the following components:
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CHAPTER 1. INTRODUCTION

sensor nodes, base stations, and a communication medium. There are a large number of

sensor nodes in a WSN deployment, and each node comprises several sensors whose types

are dictated by the kind of application that the WSN caters to (for example, a forest fire

detection WSN would comprise nodes with heat sensors, CO sensors, humidity sensors); a

data transmitting/receiving unit that transmits and receives data from other nodes; a power

source (usually one of more batteries); and a microcontroller that is responsible for the over-

all management of these components. The base-station is itself a sensor node but is a little

more energy liberal. These serve as a sink for data collection from the other nodes and or-

chestrate peripheral processing and analysis of data. Subsequently, based on requirements

of the application, the base-station connects with the Internet and transmits the data to the

back end cloud for more detailed analysis and inference.

An important limitation of WSN is that the energy sustaining the senor nodes is finite

and is derived from batteries. In most use cases these batteries, once exhausted, cannot be

replaced as the nodes are inaccessible to humans. It is imperative, therefore, that the energy

of batteries on the sensor nodes be preserved. Transmission and reception of signals by far

require the most energy on WSN nodes and hence low power communication and routing

protocols are adhered to in these environments. In addition to this, exercises like optimal

routing of communication signals; effective localisation of regions of interest; and intelli-

gent interventions like AI and machine learning; go a long way in promoting energy savings

and improving the longetivity of the network. In this thesis, we explore these approaches for

energy conservation and realize specific instances of the same with appropriate validations.

1.1 Motivation

Conserving energy is a primary concern in maintaining an effective wireless sensor net-

work. This is because of the intrinsic limitations of sensor nodes and the environment in

2
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which they are deployed. WSN networks are mostly deployed in remote, hazardous, and

inaccessible terrains where it is almost impossible to replace/replenish the batteries power-

ing the nodes. The following factors make conservation of energy in WSN deployments a

significant concern and the main motivation for the work of this thesis:

1. Compromised energy supply: Nodes in WSN deployments are commonly powered

by small batteries with a finite lifespan. Replacing or replenishing these batteries is

usually not possible after deployment, especially when this is done in challenging

terrains. It becomes imperative, therefore, that the nodes are utilised in a manner that

prolongs the life of the batteries.

2. Energy-intensive communication: Communication between the sensor nodes in a

WSN is by far the most energy-intensive task. The energy expended to transmit data

between nodes is proportional to the distance between them. To reduce energy con-

sumption in this respect, various routing techniques are employed that promote energy

savings. In our work, we utilize an energy-efficient clustering-based routing method

that helps increase the life of the network.

3. Unbalanced energy depletion: In WSN deployments, unbalanced workload is a major

cause for energy depletion in nodes. Certain nodes end up doing much more work than

others and die early. It is not uncommon, therefore, for a WSN to become ineffective

owing to the death of a few critical nodes even while a large number is available.

It becomes very important, therefore, to make the functionalities supported by WSN

nodes as lightweight as possible; to route messages over WSN deployments in a manner

that the communication overhead is minimized; and to balance the usage of nodes; all of

which effectively leads to prolonging the life of batteries and hence the nodes.

3



CHAPTER 1. INTRODUCTION

1.1.1 Thesis Contributions

Given the energy constraints within which WSN deployments need to work, we look at two

aspects that are critical to making WSN efficacious. These are:

• Localisation, and

• Routing

Localisation and routing are both essential for the proper functioning of WSN and mak-

ing them useful; and both are traditionally energy intensive activities.

Localisation is the exercise of identifying and establishing the location of a node of

interest, one that has made an interesting observation. In theory, localisation is trivial and is

done through the use of appropriate sensors, most commonly Global Position System (GPS)

sensitive sensors. In practice, this is not feasible as GPS sensors are energy intensive and

given the energy constrains of WSN nodes would exhaust one within hours if not minutes.

In this thesis, therefore, we present novel approaches of localiation of WSN nodes that are

light and energy efficient. These are briefly described as follows.

1.1.2 Preserving Energy in Localisation through simple computations

We propose a novel hybrid localisation method that can efficiently localise WSN nodes in

outdoor environments using simple computations of distances and angles between nodes.

The key contributions of this work are summarised as:

• Localisation of an unknown WSN node using just one other node through the use of

two factors: angle and distance from a known node.

• An iterative approach to localisation that makes it possible to cover a very large area.

4
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• An innovative and inexpensive approach to computing the angle of arrival is presented

in this work and used for validation wherein a stepper motor is customised to move

360 steps per revolution and is used for measuring the angle with an accuracy of 1�.

1.1.3 Preserving Energy in Localisation harnessing machine learning

models

This approach involves the use of conventional random forest methods and multi-iteration

for localisation of nodes. The approach is effective over expansive areas, where the number

of beacon nodes (nodes whose locations are known in advance and which provide reference

for further localisaion) is small. The main contribution of this work is as follows:

• A hybrid machine-learning method for outdoor localisation. The method helps lo-

calise the unknown nodes more efficiently.

• The proposed work uses a muli-iteration process, which localises unknown nodes

within the communication in each iteration, and then this newly localised node will

act as a beacon node. Due to the multi-iteration method, the extensive region can be

localised in a few iterations.

Routing is the other major aspect in WSN deployments that we explore in this thesis.

Routing implies the mapping of an appropriate path between nodes that signals take to reach

the base station. Routing involves perhaps the most energy intensive exercise, communica-

tion (transmission and reception) of signals, and is imperative that this be done in an energy

conservative manner. In this thesis, we make the following contribution towards energy

efficient routing.
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1.1.4 Preserving Energy via Cluster-based Routing

The routing is an energy-intensive process in Wireless Sensor Networks. We proposed a

Dynamic Cluster Head selection method, which can efficiently form the cluster and select

the cluster heads. Our main contributions in this direction are:

• The adaptive clustering is used, so the number of clusters can be changed anytime

based on the requirement.

• The method finds the optimal number of clusters with the help of a machine learning-

based approach (using the Silhouette method).

• The method changes the cluster head based on the remaining energy of the head. If

the remaining energy becomes less than some threshold, then the new node will work

as cluster head, and this threshold is also selected using the optimisation method.

• Dynamic clustering is used for forming the clusters; with the help of that, the method

can work efficiently with homogeneous, heterogeneous, as well as stable and movable

nodes.

1.2 Thesis Organisation

This thesis is divided into six chapters, with the first serving as the introduction. The thesis

is organised into chapters, as seen in the flow diagram below 1.1. Chapter 1 introduces the

wireless sensor network and its importance. It also highlights the need for energy manage-

ment to extend the life of the network.

The chapter 2 describes the technical work that is now being done in the field of wireless

sensor networks to improve localisation and routing, as well as their limits.
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Mathematics-based
Localisation

ML-based Localisation Clustering-based
Routing

Chapter 1
“Introduction”

Chapter 2
“Literature Review”

Chapter 3
“Preserving WSN

Energy in Localisation
using Mathematical

Model”

Chapter 4
“Preserving WSN

Energy in Localisation
using Machine

Learning Model”

Chapter 5
“Preserving WSN
Energy via Cluster

Based Routing”

Chapter 6
“Conclusion and Future

Research Directions”

Figure 1.1: Flow Graph depicts the organisation of the thesis.

Chapter 3 describes an energy-efficient outdoor localisation method based on a mathe-

matical approach. The chapter emphasises the relevance of outdoor localisation. In that

chapter, we attempt to achieve outdoor localisation by combining the Received Signal

Strength Indicator (RSSI) and Angle of Arrival (AoA) approaches. The simulation and

real-world experiments are carried out on different region sizes, adjusting the number of

beacon nodes, unknown nodes, and communication range.

In Chapter 4, we suggest an outdoor localisation method based on the improvised ran-

dom forest and iterative multi-iteration techniques. The method is evaluated on several

datasets and compared to current state-of-the-art methods.

Chapter 5 describes energy-efficient routing in WSNs. In this work, a new dynamic
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cluster head selection approach is described. Using grid search, the algorithm determines

the best clustering methodology. The various factors are used to form the clusters and pick

cluster heads, resulting in energy efficiency when relaying data from sensor nodes to the

base station.

In Chapter 6, we summarise the study described in this thesis and considered potential

future research possibilities.
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Chapter 2

Literature Review

In this chapter, we provide an exhaustive survey of current publications relating to the con-

tributions made in this thesis. This chapter provided a survey of several mathematics and

machine-learning strategies used for outdoor localisation and routing in wireless sensor net-

works. In section 2.1, we begin by reviewing the literature on existing localisation methods

that employ mathematical methodologies. Then, in section 2.2, we give a literature review

of different existing localisation approaches that leverage machine learning-based method-

ologies to achieve accurate outdoor localisation while also being more energy efficient. In

the second to last section, 2.3, we reviewed a literature review of existing Cluster head

selection algorithms in wireless sensor networks.

2.1 Mathematics-based Localisation

There is significant work done on localisation approaches for WSNs that are based on RSSI

and AoA. In this section, we discuss a few prominent endeavours.

The work described in [1] is closely related to ours. An RSSI and AoA-based method

is proposed in the paper for localising multiple unknown targets (unknown nodes). Differ-

ent from existing algorithms that rely on complex mathematical tools that do not always
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yield feasible solutions, a more straightforward approach was taken here: the paper utilises

available AoA measurements and transitions from Cartesian to Spherical coordinates which

allows the approximation of initially non-convex measurement models to linear ones. The

iterative methods first localise some unknown nodes with a localisation error; then, these

newly localised (with some localisation error) nodes help localise other unknown nodes.

The localisation error propagated from one localised to another in subsequent rounds is

known as accumulative error. Our proposed method works iteratively and considers the ac-

cumulative errors from the previous rounds (just like feasible solutions), representing the

clear idea of waste areas. Also, our proposed approach is able to localise multiple nodes per

iteration, leading to much fewer iterations. In addition to this, the work in [1] uses signals

for the calculation of AoA, which is susceptible to disturbance and interference adversely

affecting accuracy. To overcome this, we propose the use of a simple stepper motor-based

mechanism, which is the most effective in free space models [2] (without any obstructions)

for 2-dimensional spaces. We also study the effectiveness of our approach in different types

of terrains that include: sandy, long grassy, and sparse tree terrains; which is again some-

thing that the earlier approach does not look at.

In [3], the authors address the node localisability problem in a network where a few nodes

are localisable. The authors propose the concept of partially localisable networks by pre-

senting theoretical conditions for a node to be considered uniquely localisable. Using this,

localisable nodes are identified by dividing the network into redundantly rigid and recon-

nected components. The method uses 10% of the nodes as beacon nodes (BN), whereas

our proposed approach uses only 1% of nodes as BNs. In spite of this, we are able to lo-

calise nodes over an extensive area and with greater accuracy. In [4], the authors propose

an iterative multilateration method that localises the unknown node (UN) using trilatera-

tion (using three BNs) repetitively. The time difference of arrival (ToA) used for distance

10
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measures have several disadvantages and obstacles in crowded areas when compared with

RSSI-based methods [5]. The proposed method takes advantage of iterative multilateration

to a great extent through its ability to localise a UN using a single BN. In the work cited, a

UN node needs to be within the communication range of at least three BNs. The method,

therefore, requires a very large number of beacon nodes when the density of unknown nodes

is large, which is quite cost-ineffective when deployed in the real world. In [6], the authors

propose the sequential Monte Carlo localisation method and exploit the node’s mobility to

improve localisation accuracy and precision. The localisation accuracy is established for

three scenarios: when UNs are statice and BNs are movable; when UNs are moving and

BNs are stable; and when both UNs and BNs are moveable. The approach utilises range-

free methods for distance estimation. Our proposed work uses a range-based approach for

calculating the parameters, which is much more accurate than range-free methods. Further-

more, the above method evaluates the results based on simulations only and, even in these,

uses a high BN density, which is hardly possible in realistic deployments. In [7], the au-

thors address an important issue in trilateration wherein the latter marks a localisable graph

as non-localisable. The approach can appropriately localise UNs that are one hop away

from participating in the trilateration exercise. The method uses trilateration and three BNs

to determine the location. The method uses trilateration and requires at least three BNs to

get the location of every unknown node. [8] proposes a novel localisability algorithm (i.e.

Patch and Stitching) wherein the whole network is initially divided into small localisable

networks, and subsequently joined together to form a global localisable network. Using an

algebraic approach, the work proposes a subset of localisable network merging conditions

for 2D/3D networks. The method uses trilateration for node localisability and can localise

90% of the network with 5% of BNs. Our proposed method, on the other hand, takes a

hybrid approach for localisation, and in simulations is able to localise the whole network
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with only 1% of nodes acting as BNs. In [9], the authors work on the localisability of the

network to answer the following two questions: whether it possible to say that a node is lo-

calisable or not while using a network graph; how many nodes of the network are localisable

and whether these can be identified? The localisability method uses more nodes to localise

unknown nodes in the network, where the proposed method takes a hybrid approach and

is able to efficiently localise most nodes using a very small number of known nodes thus

producing significantly superior localisability results. [10] deals with localisation accura-

cies affected by outliers in range-based localisation methods. Earlier solutions, in general,

use triangle inequalities to deal with noisy data with outliers. The method proposed, on the

other hand, utilises a theoretical model based on graph embeddability and rigidity theory for

the same. The paper designs a bilateration generic cycles-based outlier detection algorithm

and tries to evaluate its effectiveness through simulations and practical deployments. The

method uses trilateration and cycles-based outlier detection. The detection method is inef-

fective for more extensive settings and likely fails to produce good results for larger outdoor

areas. The proposed method discards the outliers if they are out of the predefined region of

the network and is thus more robust.

In [11], a machine learning-based localisation approach for outdoor settings is proposed.

The approach employs virtual nodes to widen the dataset to address the issue of limited

training data. The method collects information from multiple access points and uses this

information to appropriately localise other unknown nodes. The approach is tested us-

ing simulations that vary parameters like the number of sensors and anchor nodes, radio

transmission power, and wireless signal quality. In [12], the ARBL algorithm for outdoor

localisation is proposed. This approach uses trilateration and reference node selection to de-

termine the locations of sensor nodes. A reference triangle through triangulation is formed

in this approach, and using this, the ranging inaccuracies are evaluated. The sensor node
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positions are based on these inaccuracies. Notably, the innovation in this work lies in select-

ing the optimal anchor node for the localisation process. The approaches in [11] and [12]

are relatively impracticable. The former is because it is pretty challenging to implement,

and the latter is because it requires at least three beacon nodes to localise an unknown node,

which is hard to get in outdoor environments. In [13], the AoA and RSSI differences-based

localisation method (ALRD) is proposed. In this method, the AoA is estimated by compar-

ing the RSSI values of beacon signals received by two perpendicularly oriented directional

antennas installed at the same place. Subsequently, two methods (maximum point minimum

diameter and maximum point minimum rectangle) are proposed to minimise the ALRD lo-

calisation error. In [14], the authors propose a simplified combination of the AoA and RSSI

methods. The calculations of the AoA require complex antenna arrays. The proposed ap-

proach (1AoA/nRSSI) uses the AoA values from only one anchor node in combination with

n RSSI values to estimate the location of an unknown node. The method is suitable for

shadowing environments and when more precise RSSI values are available.

In [15], a fingerprint-based WSN localisation technique is proposed for indoor and out-

door use. The objective of this work is to enhance fault tolerance and system efficiency. A

precision of 5 m and 10 m was attained, respectively, in this technique for pedestrian and

driving tests using phones for evaluation. In [16], multiple indoor and outdoor localisation

approaches for WSN are analysed. The authors illustrate the applicability of Multidimen-

sional Scaling (MDS) approaches in modern technologies like WSN-IoT, cognitive radios,

and 5G networks. Centralised and distributed MDS techniques for indoor and outdoor lo-

calisation are discussed in the paper. In [17], a localisation technique for mobile nodes in

wireless sensor networks is proposed. The strategy targets short beaconing intervals and

localisation deviations stemming from radio propagation. It solves these issues through ge-

ometric least square curve fitting. In [18], a technique is proposed that employs curve fitting
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for wireless sensor networks and a range-based approach for outdoor localisation is pro-

posed. The techniques discussed in [15], [16], [17], and [18] are applicable in both indoor

and outdoor environments. However, their localisation processes were tested on limited

confines, potentially constraining their effectiveness in large areas.

For indoor localisation, [19] suggests a hybrid approach using particle swarm optimisa-

tion (PSO) and the global best local neighbourhood approach. This approach employs three

anchor nodes to locate an unknown node. It achieves a localisation inaccuracy of 0.44 m in

a simulated environment. RSSI values are used for distance estimation between nodes, and

the mean error varies with network size changes. In [20], a range-free localisation technique

is proposed using a fusion of Harris Hawks optimisation and area minimisation. The tech-

nique categorises neighbours into incoming and outgoing for heterogeneous wireless sensor

networks. It employs area minimisation to reduce the node’s predicted region. The tech-

nique is simulated for small areas in 2D and 3D environments. In [21], a heuristic approach

is introduced to tackle anisotropy-related challenges in WSN, which can lead to localisation

errors. The proposed range-free approach incorporates geometric constraints and hop-based

strategies to mitigate this problem. The techniques in [19], [20], and [21] are indoor locali-

sation strategies that pose challenges when applied to larger areas. Implementing these for

expansive spaces is arduous and mostly not feasible.

2.2 ML-based Localisation

[22] is an important contribution at localization wherein the radar location system is used

for determining the distance between access points and mobile terminals. The location is

calculated by triangulation using the RSSI values of received signals at multiple receiver

locations. The importance of this work stems from the fact that it is first contribution in the

direction of using RSSI values for localization.
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The use of machine learning in localization was first proposed in [23]. Here RSSI values

at sensor nodes are used with a kernel-based learning algorithm to define the basis function

which is used to localize other sensor nodes.

[24] propose a Support Vector Machine (SVM) algorithm which regards the localization

of nodes in a WSN as a regression problem. RSS values are used as inputs to train the

model. The position prediction model is developed in an offline manner using Support

Vector Regression (SVR).

An Artificial Neural Network (ANN) based localization algorithm is proposed in [25].

Here RSSI values between the grid sensors and anchor nodes are used as inputs to train

the neural network. ANN develops a mapping between the RSSI values and the locations

of the node. This approach is based on the assumption that all sensor nodes can directly

communicate with all anchor nodes.

Similarly, two groups of algorithms for localizing sensor nodes using RSSI values of

signals from anchor nodes are proposed in [26]. The first class of algorithms uses fuzzy

logic and genetic algorithms, while the second class uses neural networks with the RSSI

values.

The idea of using a lightweight SVR implementation is proposed in [27] wherein the

original problem of regression is split into 13 sub-problems. The algorithm progresses by

splitting the entire network into a series of sub-networks, such that each regression algorithm

(i.e. the sub-predictors of SVR) needs to process a small amount of data.

[28] propose a submarine detection solution for underwater surveillance systems that

locates randomly deployed nodes in space using anchor node location co-ordinates. Every

monitoring unit has a sensor node connected to a surface buoy with a cable and data is col-

lected using the buoys. The collected data is subsequently transmitted to the central control

unit after transmission. A decision tree classifier is finally used to identify submarines at the
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sites monitored.

[29] propose a novel and simple indoor positioning solution. The technique harnesses

an indoor visible light positioning system and a dual-function machine learning (ML) algo-

rithm.

Low-Power Wide-Area Network (LPWAN) technologies have lately emerged as a viable

alternative to scalable wireless connections in smart city applications. On a training dataset

collected in two different environments: indoors and outdoors, [30] investigate the use of

intelligent machine learning techniques such as support vector machines, spline models,

decision trees, and ensemble learning for RSSI-based ‘ranging’ in LoRa networks. An

appropriate ranging model is subsequently utilized to test the accuracy of the trilateration-

based localization and tracking endeavours.

[31] use finger-printing to train a neural network to develop a median accuracy (of about

16 m to 100 m) model for outdoor localization using the very little information available

over pre-5G base stations with active multi-beam antenna systems.

2.3 Cluster-based Routing

In recent decades, work in the cluster-based routing protocol has been pervasive. Re-

searchers have used various protocols to identify appropriate CHs through the use of pa-

rameters like RE, distance, node degree and CH Threshold. The main objective of all proto-

cols is to prolong the network lifetime by reducing overheads with efficient routing. In this

section, we discuss the related work in this area.

Low Energy Adaptive Clustering Hierarchy (LEACH) is the first cluster-based routing

protocol that works with homogeneous nodes and selects the CHs randomly. The method

works in setup and steady-state phases. All the non-CH nodes join the CH with the strongest

signal for cluster formation [32]. A progression of this is the LEACH-Centralised (LEACH-
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C) approach. Here, a centralised system (i.e. BS) is used for CH selection. Two parameters:

residual energy (RE) and distance of a node from the BS, are used for CH selection. Only

nodes with RE greater than average can participate in the CH selection exercise. The CH

selection process is entirely managed by the BS [33]. Both these approaches are meant for

a homogeneous network. In addition to this limitation, the CH selection process in LEACH

is mainly random, often leading to an ineffective selection. LEACH-C, on the other hand,

does not prescribe random selection of CH, but its clustering process totally depends on BS,

which is not desirable and runs the risk of falling into the ‘single point of failure’ trap.

The Stable Election Protocol (SEP) [34] assumes that all the nodes are stable and dis-

tributed randomly, and the positions of nodes are already known. A similar protocol, the

Energy-Aware Multi-hop Multi-path Hierarchical protocol (EAMMH) [35] uses multiple

hops to transmit data from the CH to the BS. This protocol works in three phases: setup, ini-

tialization and sleep-awake phase. The node transmits the data only if its residual energy is

greater than the threshold energy; otherwise, the node will be in sleep mode. An advanced

version of SEP, the Zonal-stable election protocol (Z-SEP) divides the nodes into zone 0

(only normal nodes), head zone 1 (half of the advanced nodes), and head zone 2 (half of

the advanced nodes). In Z-SEP, the nodes from zone 0 can directly transmit the data to BS,

but in head zone 1 and head zone 2, transmission is performed via CH. [36]. All three of

these approaches work on the realistic assumption that the network is heterogeneous. SEP

is a rather delicate protocol as it becomes vulnerable after the death of the first node whereas

Z-SEP mandates the rather unrealistic requirement of synchronization for maintaining the

sleep-awake mode.

The PBC-CP protocol [37] is used to select optimal cluster heads and transfer data from

the CH to the BS using energy-efficient paths. The main objective of the protocol is to re-

duce the energy use in the network. The use of a heuristic method on each round increases
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the algorithm’s complexity. In the Novel-LEACH-PSO approach [38], the particle swarm

optimization (PSO) method selects CHs on the basis of the residual energy of a node and

its distance from the CH. The CH distribution is non-uniform here, and there are no cri-

teria for managing the energy imbalance in the network. The TTDFP [39] uses multiple

parameters (like node connectivity, distance to the base station, and remaining energy) for

cluster head selection. It uses the remaining energy with relative distance for route selec-

tion and fuzzy logic for handling the uncertainties during these phases. This method mainly

covers the data aggregation problem in WSNs where multiple hops are required for data

transmission. In DFLBCHSA [40], a fuzzy algorithm-based method selects the optimal CH

using residual energy, mean distance, location and neighbour count. Here, GPS sensors

are used to detect the location of nodes, which significantly increases the energy expended.

The CLONALG-M [41] is a metaheuristic method and an advanced version of CLONALG,

enhancing the performance of rule-based clustering methods. It improves the performance

of fuzzy clustering algorithms and approximates the fuzzy output functions to the optimum.

This method performs well in comparison with other clustering methods based on genetic

algorithms. In HGWSFO [42], the authors propose a hybrid meta-heuristic technique based

on energy and distance. The algorithm works on the Grey Wolf Optimization (GWO) and

the Sunflower algorithm. The major concern with the GWO and Sunflower algorithms is

that they tend to fall into a local optimum trap and are slow to converge, respectively. In

the DRE-LEACH approach [43], a non-meta-heuristic technique is proposed for selecting

the CH using centrality, positions, and the residual energy of nodes. Finally, in NCHR [44],

the authors propose a non-meta-heuristic technique based on residual energy and distance

that can work with homogeneous or heterogeneous nodes. The method involves topologi-

cal changes to address cluster head failures and employs a distributed system, leading to a

significant increase in the computation load on individual nodes.
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Chapter 3

Preserving WSN Energy in Localisation

using Mathematical Model

3.1 Understanding the Problem

Wireless sensor networks (WSNs) consist of multiple sensor-equipped nodes designed to

monitor their surroundings and relay data to a base station (BS) using various ad-hoc net-

work methods. These sensors are especially useful in hazardous terrains where human pres-

ence is difficult. They detect anomalies and alert the BS. However, the limited energy supply

of WSNs is a significant concern, particularly in remote outdoor areas where nodes rely on

non-rechargeable batteries, making replacements impractical. Maximising battery life is

crucial, as it restricts the use of GPS for energy-intensive tasks like localisation. Localisa-

tion aims to determine the exact/approximate coordinates of nodes using mathematical or

machine learning algorithms.

For instance, in a project focused on early forest fire detection in the Melghat Tiger

Reserve, WSN nodes equipped with heat sensors are deployed via unmanned aerial vehi-

cles (UAVs) in inaccessible areas. While these nodes can detect fires and send alerts, they

struggle to accurately pinpoint the fire’s location over the 3,000 square kilometre reserve.
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Beyond forest fires, localisation has applications in detecting environmental hazards (such

as floods and volcanoes), healthcare (for patient tracking), agriculture (for soil and crop

monitoring), military operations (for surveillance), and enterprises (for asset tracking).

Localisation typically uses two types of nodes: beacon and unknown. The beacon nodes

are the nodes whose location is already known (using GPS or tagged a-priori at the time of

deployment), and unknown nodes are the nodes whose location is to be determined using

some algorithms in combination with the locations of neighbouring beacon nodes. How-

ever, these localisation algorithms often need help in large areas where multiple beacon

nodes may not be within range, requiring significant time for accurate localisation. Existing

techniques often work only for small areas, requiring nodes to be within communication

range. Additionally, many methods need at least two beacon nodes to estimate the position

of unknown nodes, a difficult requirement in vast regions.

3.2 The Proposed Method

The proposed approach for node localisation in wireless sensor networks (WSNs) is a sig-

nificant step forward and, to our knowledge, the first to address large-scale areas effectively.

Previous localisation methods have assumed that all nodes are within communication range

of each other, which is unrealistic for vast outdoor environments like forests or glaciers.

These regions often span thousands of square kilometres, while WSN nodes have a com-

munication range limited to 100 meters. Our proposed method can potentially work in such

areas.

Our method overcomes this critical limitation by starting with a more practical assump-

tion: only a few nodes (beacon nodes) locations need to be known initially. It is feasible, as

certain parts of large regions, particularly along the periphery, are typically accessible. The

known node’s coordinates are determined using external GPS devices. In contrast, the nodes
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that need localisation are often located deep within hostile, inaccessible areas. Examples in-

clude forests where the outer edges are reachable. Still, the inner core remains difficult to

access, and glaciers where the perimeter can be navigated are difficult to traverse, but deeper

regions are challenging to traverse. The proposed method follows these steps:

1. Randomly distribute the unknown nodes across the region.

2. Choose the deployment type for the beacon nodes and deploy them accordingly.

3. Determine the distance and angle between each unknown node and any beacon nodes

within the communication range and localise the unknown nodes.

4. Use the newly localised nodes from step 3 as additional beacon nodes in the next

iteration.

5. Repeat steps 3 and 4 until all unknown nodes are localised, except for a few outliers.

The proposed method employs a hybrid approach for localising unknown nodes. It com-

bines the Received Signal Strength Indicator (RSSI) for distance calculation between nodes

and the Angle of Arrival (AoA) technique for determining angles. This iterative, multi-step

process enhances localisation, making it particularly effective for large-scale areas. A de-

tailed explanation of the RSSI, AoA, and multi-iteration techniques is provided later in this

section.

3.2.1 RSSI and Distance calculation

The Received Signal Strength Indicator (RSSI) measures the power level of a received ra-

dio transmission. It estimates the strength of a wireless link, typically in dBm (decibel-

milliwatts), where a higher value indicates a stronger signal and better link quality. Besides

21



CHAPTER 3. PRESERVING WSN ENERGY IN LOCALISATION USING
MATHEMATICAL MODEL

detecting wireless interference, RSSI is crucial for estimating the distance between a wire-

less device and its connected access point. The RSSI value is determined using the following

equation 3.1:

RSSI(dBm) = 10 ⇤ log10 (Pr/P0) (3.1)

In this equation, Pr represents the received power level at the receiver. In difference, P0

is the reference power level, typically measured one meter from the transmitter. It’s im-

portant to note that distance, obstacles, and interference significantly affect the RSSI value.

As a result, the exact RSSI value fluctuates based on these conditions. Additionally, differ-

ent wireless technologies and manufacturers use varying reference values, influencing the

calculated RSSI.

The proposed approach also incorporates the path loss specific to different environmen-

tal conditions when calculating RSSI values. These environments include the free space

model (without obstructions), sandy terrain, long grassy terrain, and areas with sparse trees.

By using distinct equations to compute path loss for each type of terrain, the aim is to es-

tablish a correlation between these environments and their corresponding RSSI values:

Lp = E0 = PL0 + 10 ⇤ ↵ ⇤ log10 (Pr/P0) +X� (3.2)

E1 = 60.97 + 10 ⇤ 3.42 ⇤ log10 (Pr/P0) + 3.02 (3.3)

E2 = 59.42 + 10 ⇤ 2.56 ⇤ log10 (Pr/P0) + 3.84 (3.4)

E3 = 60.98 + 10 ⇤ 3.33 ⇤ log10 (Pr/P0) + 7.30 (3.5)

In this context, PL0 represents the path loss at a reference distance d0, measured in

dB, while ↵ is the path loss exponent, indicating how quickly path loss increases with the

logarithm of distance. X� is a normally distributed random variable with a mean of zero
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and standard deviation �. The path loss for sandy, long grassy, and sparse tree terrains are

denoted as E1, E2, and E3, respectively.

The proposed algorithm considers all the environments (E1, E2, and E3) and the free

space path transmission model for evaluating the RSSI values.

In localisation, RSSI values are measured using various hardware, and to determine the

location of a node, the algorithm needs to convert these values into distances. The distance

between an unknown node and a beacon node can be estimated by calculating RSSI over dif-

ferent terrains. These distance and angle measurements help pinpoint the unknown node’s

position. The distance, d, is derived from the RSSI value using the following equation:

d = 10(
Pm�RSSI

10⇤N ) (3.6)

Here, RSSI represents the signal strength received from the beacon node at the unknown

node. The measured power, Pm, is the RSSI value recorded at a distance of 1 meter from

the beacon node, while N is a constant ranging from 2 to 4, depending on environmental

conditions.

3.2.2 Angle of Arrival (AoA)

The Angle of Arrival (AoA) refers to the angle between a wave’s direction of propagation

and a reference direction, typically measured in degrees clockwise from North. When the

orientation is 0 (pointing North), the AoA is considered absolute; otherwise, it is relative.

AoA can be determined using radio waves, Bluetooth, RFID, or WiFi signals. Historically,

AoA was measured through radio waves by positioning four antennas in a square configu-

ration on each beacon node.

This enables Angle of Arrival (AoA) calculations [45] by adjusting the signal phases

across antennas. A rotating beacon is created by focusing maximum radiation from the an-
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tenna array using beamforming. This scanning phased array technique ensures constructive

interference of radio waves in a specific direction [46]. The demand for cost-effective indoor

localisation has recently driven the use of technologies like Bluetooth Low Energy (BLE)

and Radio Frequency Identification (RFID) for AoA computation. BLE determines AoA

through two methods: 1) Switched Beam Systems (SBS), which scan the azimuth plane to

detect the most vital signal direction, and 2) Adaptive Array Systems (AAS), which steer

beams in any direction by adjusting antenna weights [47]. In RFID-based systems, UHF

transponders and directional antenna arrays are used. Given the narrow bandwidth of RFID,

AoA becomes crucial in multi-path environments, where it isolates the strong line-of-sight

path to estimate the transponder’s position accurately by analysing phase differences be-

tween signals [48].

For simulation, the Equation 3.7 shows the calculation of AoA values between three points:

Angle = degrees(atan2(Ny � BNy, Nx � BNx)� atan2(UNy � BNy, UNx � BNx))

(3.7)

Here, UN , BN , and N represent the unknown node, beacon node, and pointer towards

the north axis, respectively. The two-argument arctangent function, atan2(y, x), computes

the angle in radians between the positive x-axis and the line connecting the origin to the

point (x, y) in the Cartesian plane, and the resulting angle is �⇡ < ✓  ⇡. Equation 3.7

outlines the method used to calculate the AoA during simulations. Typically, the AoA of

signals from at least two beacon nodes is needed to localise an unknown node. However,

the proposed approach overcomes this limitation by effectively localising an unknown node

using only a single beacon node. This is achieved by combining the RSSI value with the

AoA measurement. Figure 3.1 illustrates how the distance calculated from the RSSI value

is combined with the AoA to determine the location of the unknown node. The X and
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�

N

BN (Beacon Node)

UN (Unknown Node)

BN (0,0)

UN(d sin �, d cos �)

Computed using RSSI 
AoA

d 
�

Distance d

Figure 3.1: Position calculation of any unknown node using the beacon node.

Y coordinates of the unknown node are derived using simple trigonometry, as shown in

Equation 3.8.

XUN = dRSSI sin(AoA) (3.8)

YUN = dRSSI cos(AoA) (3.9)

3.2.3 Multi-iteration

The combination of RSSI and AoA values from a beacon node enables the accurate cal-

culation of the location of an unknown node within its communication range. This hybrid

approach allows precise localisation using just one beacon node [49]. Once an unknown

node is localised, it becomes a “new” beacon node. Then, the RSSI and AoA values from

this newly localised node are used to localise other unknown nodes within its range. This

iterative process continues until all nodes in the region of interest are localised or until no

unknown nodes remain within the range of any beacon node. Figure 3.2 illustrates the step-

by-step progression of the localisation process. In the multi-iteration process, unknown

nodes are initially localised (with some error) using beacon nodes. These newly localised

nodes then act as beacon nodes in subsequent iterations, continuing the localisation process.

However, the errors from initial localisations, combined with errors from previous itera-
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Initial Deployment Post 1st iteration Post (n-1)th iteration Post nth iteration

Unknown nodeBeacon node

Figure 3.2: localisation using multi-iteration approach.

tions, lead to an accumulation of localisation inaccuracies over time, as shown in Figure

3.3.

Since our method relies on both angle and distance to determine the location of an un-

known node using just one beacon, the initial localisation error remains small. The ability

to localise with a single beacon node accelerates the process and leads to faster network

convergence. The result is that most localisations happen during the initial iterations, and

the error is significantly minimised. Many localisation iterations would be inadequate as the

localisation errors accumulate with progressive iterations.

Initial Deployment Post 1st iteration Post (n-1)th iteration Post nth iteration

Unknown nodeInitial Beacon node Predicted Location 

Figure 3.3: Multi-iteration Process in WSN.
Note: The nodes with green and circles represent the initial beacon nodes and unknown
nodes, respectively. The green triangles represent the predicted location of a nearby un-
known node. In multi-iteration, some unknown nodes are localised in every iteration with
some error, and this will increase with the iteration round.

3.2.4 Network localisability

The WSN network can be represented as a distance graph G = (V, E), where V denotes

the WSN nodes and E consists of unweighted edges (i, j) in E connecting nodes i and j.
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A graph or network is considered localisable if each node has a unique location, and the

distance d(i, j) between any two nodes i and j satisfies specific conditions, such as being

within the communication range (CR) of the nodes. Network localisability is helpful for

applications like network deployment, routing, energy management, and mobility control

[50].

A successive localisability algorithm can assess whether a graph is localisable through iter-

ative localisation. Current methods often use trilateration and require four connected com-

ponents (K4) to verify localisability. In contrast, the proposed algorithm simplifies this by

using just one beacon node, which means only two connected components (K2) are needed

to determine the location of an unknown node. The essential condition for node localisabil-

ity is that the node, represented by vertex v, must be within one hop of a beacon node.

3.3 Evaluation

This section is dedicated to evaluating the effectiveness of the proposed localisation ap-

proach through experiments. The evaluation involves thoroughly validating the method in

a controlled environment using simulations. The results first assess the performance of

the proposed method in different scenarios, followed by a comparison with state-of-the-art

techniques.

3.3.1 Simulation Environment and parameters

The proposed protocol is implemented in Python language and tested on a Kaggle Kernel

using a system with an Intel Xeon CPU (Haswell family), 16 GB RAM, and four 2.30 GHz

CPUs. A GPU is used for computationally intensive tasks like converting RSSI values to

distance and performing Angle of Arrival calculations. Since these tasks involve large ma-

trices and can be processed independently, the GPU can efficiently handle them in parallel
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Table 3.1: Simulation Parameters

Parameters Values for small regions (R1) Values for extensive regions (R2)

Size of region 1000 ⇥ 1000, 2000 ⇥ 2000 5000 ⇥ 5000, 6000 ⇥ 6000,
to 4000 ⇥ 4000 and 7000 ⇥ 7000

IUN? 6000, 7000, and 8000 10000, 11000, 12000 to 15000
OBN

†
1, 1.5, 2.5, and 5 % 1, and 1.5 %

CR
‡

50, 75, and 100 m 75, and 100 m
EN

§
E0, E1, E2, and E3 E0, E1, E2, and E3

Note: Size of the region is measured in square metres, IUN? denotes the number of unknown
nodes initially deployed, OBN†

denotes the number of original beacon nodes (in percent of
the number of IUN), and CR‡

denotes the communication range of a node (in metres), and
EN§

denotes the effect of noise occurred due to various environmental factors like free space
(E0), sandy terrain (E1), long grassy (E2), and sparse tree (E3)

and increase the performance. The above Table 3.1 represents the parameters and their val-

ues used for evaluating the results throughout the section. The detailed description of the

parameters used in this section are as follows:

• Region of Interest (Rx): Experiments are conducted in various regions in square

shapes of different sizes. The regions of interest are categorised into two types: R1 for

smaller regions and R2 for larger ones. The specific sizes of R1 and R2 are mentioned

in Table 3.1. Testing with various region sizes helps us understand how the size of the

region affects our algorithm’s performance.

• Initial Unknown Nodes (IUN): IUNs are nodes with initially unknown coordinate

values that must be localised using the proposed approach. The number of IUN (Table

3.1) is varied extensively throughout the section, and it serves as a valuable metric for

assessing the effectiveness of the proposed approach.

• Original Beacon Nodes (OBN): A small number of Original Beacon Nodes (OBN)

with known locations are used. The number of OBNS is expressed as a percentage of
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Initial Unknown Nodes (IUN) and ranges between 1% and 5%. Testing with such a

small percentage of OBNs shows how effectively the method can localise a large area

with minimal known nodes. The OBNs are deployed in three ways: Equidistant De-

ployment on the Boundary (EDB), where they are evenly spaced along the boundary;

Random Deployment at the Boundary (RDB), where they are placed randomly on

the boundary; and Random Deployment (RD), where they are distributed randomly

throughout the region.

• Communication Range (CR): The communication range of a node represents the

distance travelled by the radio signal of the nodes. This range is important for deter-

mining the distance and angle of an unknown node relative to a known beacon node.

As a result, the CR plays a vital role in the effectiveness of the approach. We can

understand how well the method performs in a heterogeneous node deployment by

varying the CR and evaluating its impact. To better understand the effect of varying

the communication range on the localisation process, we experimented with different

values (as shown in Table 3.1) for both small and extensive regions.

• Environment Noise (Ex): Environment noise interrupts the smooth transmission of

radio signals between nodes, which makes it a critical factor in determining the ac-

curacy of node localisation. A noise value of 0 indicates a disturbance-free medium,

while higher values represent increasing levels of interference. Noise can arise from

obstacles like sand, tall grasses, and trees. In our simulations, we experiment with

different noise levels corresponding to surfaces with sand [Eq. 3.3], grass [Eq. 3.4],

and sparse trees [Eq. 3.5]. The impact of these factors on the localisation performance

is carefully evaluated.
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3.3.2 Simulation Results

We tested all possible parameter combinations from Table 3.1, using the following factors

to evaluate and understand the performance and effectiveness of the proposed localisation

method:

• Number of Iterations (NIT): This factor indicates how often the multi-iteration algo-

rithm runs to localise the network as effectively as possible. Once the NIT iterations

are completed, no additional nodes are localised. The NIT parameter is important, as

the fewer iterations speed up the whole localisation process.

• Unknown Nodes Remaining (UNR): The UNR shows the number of initial unknown

nodes that remain unlocalised at the completion of the localisation process. These

nodes remain unlocalised mainly due to not being in communication range to any

beacon node. The smaller the count of UNR, the better the algorithm.

• Localisation Error (LE): The localisation error represents the Euclidean distance be-

tween the position of actual and predicted values of the newly localised nodes, which

is calculated as:

Localisation Error (LE) =
q
(Xactual �Xpredicted)2 + (Yactual � Ypredicted)2

(3.10)

• Average localisation error (ALE): The ALE can be determined as:

Total Localisation Error (TLE) =
nX

i=1

LEi (3.11)

ALE =
TLE

(IUN � UNR)
(3.12)

• Localisation time (LT): This parameter represents the time (in seconds) required by
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the algorithm for localising the network up to a maximum extent. This parameter

provides valuable information about the algorithm because, in many applications, the

time beyond a particular limit is unacceptable for the localisation process.

3.3.2.1 Experimental environment

Experiments were conducted in simulated environments to assess the effectiveness of the

proposed localisation approach under different conditions. We varied the size of the Re-

gion of Interest (ROI) from 1000⇥1000 meters to 7000⇥7000 square meters. These large

outdoor areas help us determine if the approach works well in various sizes of outdoor

locations. We limited the simulation to this size range due to the increased time and com-

putation resources required to compute them. We measured localisation error (LE), the

number of iterations (NIT) needed, the number of nodes left unlocalised (UNR), and local-

isation time (LT) for different ROI sizes. Additionally, we tested the approach on various

terrains by introducing different environmental noises, such as E0, E1, E2, and E3. Where

E0 represents a perfectly smooth terrain for benchmarking, E1 denotes sandy terrain, E2

indicates grassy terrain, and E3 represents terrain with sparse trees. Each terrain includes

more noise than the previous one, interrupting the signal transmission between WSN nodes,

which helps in understanding how the signals are affected due to noise levels and affect the

localisation accuracy. The simulation is done like it simulates the real-world environment,

and initially, unknown nodes (IUN) whose location is to be calculated are deployed ran-

domly throughout the region of interest (ROI). The deployment of initial or original beacon

nodes (OBN) (nodes whose location is already known) are deployed in three manners: a)

Randomly throughout the ROI (RD), b) Equidistance along the boundary (EDB), and c)

Randomly on the boundary. The RD deployment type is used in the location where the

whole region is GPS accessible, and beacon noded can be deployed anywhere throughout
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the region. The EDB deployment type is helpful in regions where only the whole periphery

or boundary of the region is accessible for beacon node deployment. In RDB deployment,

beacon nodes are also positioned along the boundary but randomly, without equal spacing.

The tables [3.2-3.4] and [3.5-3.7] show the comparative results between three deployment

types for the beacon nodes on various comparative measurements like localisation error,

number of iterations, unknown nodes remaining, and localisation time. The results are cal-

culated for small and extensive regions and all four obstacle levels (environments). The

localisation results obtained with all the combinations are very large and cannot be included

here but can be accessible using the following url.
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3.3.2.2 Visualisation of the Localisation Process:

In this section, we visualise the localisation process in the simulation setup with a large

number of initially unlocalised nodes (IBN) and a small number of original beacon nodes

(OBN). Three visualisations are presented, each showing a different deployment scheme for

the OBNs, with parameters set as ROI as 3000 ⇥ 3000 m2, IUN as 4000, and OBN as 1%.

The visualisations depict the step-by-step localisation of unknown nodes over multiple iter-

ations, eventually localising most or all of the IUN nodes. Figure 3.4 shows the localisation

process with OBNs randomly deployed across the region. The OBNs (blue) are few, while

the unlocalised IBNs (red) change to green as they are localised in successive iterations.

(a) Iteration 0 (b) Iteration 1 (c) Iteration 2 (d) Iteration 3

(e) Iteration 4 (f) Iteration 5 (g) Iteration 6 (h) Iteration 7

Figure 3.4: Node Localisation: Random Deployment
Note: Node localisation for Random original beacon nodes (OBNs) deployment. Here, blue
nodes represent OBNs, while red and green nodes represent unlocalised and localised nodes
in that iteration, respectively.

Figure 3.5 shows the localisation process with beacon nodes placed evenly along the

boundary of the region of interest. In contrast, Figure 3.6 illustrates the process when OBNs

are randomly placed at the boundary. These visualisations are designed to give the reader a

clearer understanding of the process and its development.

The number of iterations required to localise the unknown nodes (UNs) depends on how

the original beacon nodes (OBNs) are deployed. Random deployment (RD) of OBNs across

the whole area typically requires fewer iterations than placing OBNs only on the boundaries
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(a) Iteration 0 (b) Iteration 1 (c) Iteration 2 (d) Iteration 3

(e) Iteration 4 (f) Iteration 5 (g) Iteration 6 (h) Iteration 7

(i) Iteration 8 (j) Iteration 9 (k) Iteration 10 (l) Iteration 11

(m) Iteration 12 (n) Iteration 13 (o) Iteration 14 (p) Iteration 15

Figure 3.5: Node Localisation: Equidistant Deployment on Boundary
Note: Node localisation for original beacon nodes (OBNs) deployment at boundary. Here,
blue nodes represent OBNs, while red and green nodes represent unlocalised and localised
nodes in that iteration, respectively.

(a) Iteration 0 (b) Iteration 1 (c) Iteration 2 (d) Iteration 3

(e) Iteration 4 (f) Iteration 5 (g) Iteration 6 (h) Iteration 7

Figure 3.6: Node Localisation: Random Deployment on Boundary
Note: Node localisation for original beacon nodes (OBNs) deployed randomly at the bound-
ary. Here, blue nodes represent initial beacon nodes, while red and green nodes represent
unlocalised and localised nodes in that iteration, respectively.

(EDB and RDB). This is because the OBNs are spread nearer to the unknown nodes in

random deployment (RD), which allows faster localisation in each iteration. Similarly, the

OBNs randomly placed on the boundary (RDB) also require fewer iterations than those
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arranged in a strict equidistant pattern (EDB).

In Figures 3.4, 3.5, and 3.6, the unknown nodes (IUNs) and OBNs are randomly de-

ployed within a 3000 ⇥ 3000 m2 area. The EDB deployment, shown in Figure 3.5, follows

a specific pattern, resulting in fewer unresolved nodes (UNRs, marked in red) than RDB.

However, in RDB, the localisation is irregular and can leave more unknown nodes (UNRs),

increasing the number of iterations required to fully localise the area.

3.3.2.3 Impact of varying the area of the region of interest

In this section and the subsequent ones, we explore how different characteristics of the

region of interest (ROI) affect the performance of the proposed localisation method. This

analysis is essential for establishing the method as a reliable solution across varying regions.

The first factor we examine is the size of the ROI. Figure 3.7 shows how variations in

the area of ROI impact the average localisation error (A-LE), the number of unresolved

nodes (UNR), the number of iterations (NITs) required to localise most nodes, and the total

localisation time (LT).

For a more precise understanding, we used two ROI sizes: smaller regions (R1) ranging

from 1000⇥1000 to 4000⇥4000 square meters, and larger regions (R2) from 5000⇥5000 to

7000⇥7000 square meters. Each experiment starts with 15,000 unknown nodes (IUN), and

1% of them (150 nodes) are beacon nodes (OBNs), deployed using three different types:

random deployment (RD), random boundary deployment (RDB), and equidistant boundary

deployment (EDB). To simulate real-world scenarios, we also tested different communica-

tion ranges (CR) for wireless sensor nodes: 50 m, 75 m, and 100 m for small regions (R1),

and 75 m and 100 m for extensive regions (R2). We excluded the 50 m range for large

regions due to the sparse node distribution in extensive regions, which makes 50 m too nar-

row for effective localisation. The effect of varying the ROI area on each factor is discussed
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(b) For extensive (R2) regions

Figure 3.7: Impact of varying area
Note: The plot labels represent the communication range and deployment type (like
50m EDB represents the EDB type of deployment with a 50m communication range of
a node).

• Average Localisation Error (A-LE): The average localisation error changes slightly as

the size of the ROI increases, ensuring that the proposed model works well for local-

isation in outdoor areas of any size with reliable accuracy. Interestingly, sometimes,

there is a slight reduction in error with larger ROIs, indicating the system performs

even better in extensive regions.

• Unknown Nodes Remaining (UNR): The number of unlocalised nodes is nearly zero

by the end of the localisation process for the smaller regions. However, for extensive

regions, the number increases sharply. This happens because, in extensive regions,

more unknown nodes remain outside the communication range of any beacon node.

• Number of Iterations (NITs): The number of iterations generally increases with the
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ROI size. However, in some cases (as shown in Figure 3.7), the NITs remain constant

beyond a specific area size. This occurs because, as the UNR increases in extensive

regions, the number of iterations doesn’t change, even though more nodes remain

unresolved.

• Localisation Time (LT): The time required to localise the whole network increases

with the size of ROI due to the higher number of iterations required. However, the

LT decreases when the communication range (CR) is larger because more nodes are

localised per iteration. In some cases, LT may also decrease with extensive area sizes,

probably due to more unknown nodes remaining (UNR), which reduces the total

number of nodes localised and, consequently, the time required.

3.3.2.4 Impact of varying the number of initial Unknown Nodes

In this section, we analyse how varying the number of Initial Unknown Nodes (IUNs) affects

key parameters like Average Localisation Error (A-LE), the number of Unknown Nodes

Remaining (UNR), the total number of iterations (NITs) needed to localise the entire region

of interest (ROI), and the localisation time (LT). Figure 3.8 depicts the effect of varying

IUNs on these parameters. We conduct experiments in two ROI sizes: a smaller region (R1)

of 3000 ⇥ 3000 square meters with 1.5% of the nodes being known beacon nodes (OBNs).

For example, when the IUN count is 6000, there are 90 OBNs. We tried with IUN numbers

6000, 7000, and 8000, with communication ranges of 50m, 75m, and 100m, to observe the

method’s behaviour as IUNs change.

Similarly, in the extensive region (R2) of 5000⇥ 5000 square meters, we maintain 1.5%

OBNs while experimenting with IUN counts between 10,000 and 15,000. Communication

ranges of 75m and 100m are used for this region, as 50m proves insufficient due to the

greater node distances in extensive areas.
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Figure 3.8: Impact of varying the initial unknown nodes
Note: The plot labels represent the communication range and deployment type (like
50m EDB represents the EDB type of deployment with a 50m communication range of
a node).

The following things can be concluded from varying the number of IUNs:

• Average Localisation Error (A-LE): The A-LE increases gradually as the number of

IUNs rises for small and extensive regions. This is anticipated since adding more

unknown nodes slightly reduces accuracy when the number of known beacon nodes

(OBNs) remains almost unchanged.

• Unknown Nodes Remaining (UNR): The number of unlocalised nodes (UNR) falls

sharply as the number of IUN increases. This is because a higher density of IUNs

within a fixed area means nodes are more closely deployed, making it easier for most

of them to communicate with beacon nodes, leaving fewer unlocalised at the end.

• Number of Iterations (NITs): The number of iterations remains stable for higher com-

munication ranges (75m and 100m). However, for lower ranges like 50m, the number

of iterations required decreases significantly as the number of IUN increases. This
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is because a higher node density helps nodes within smaller ranges connect more

efficiently and reduces the number of iterations required.

• Localisation Time (LT): The time needed to localise the entire network increases as

the number of IUNs and node density increases. This is due to the additional compu-

tations required to localise more nodes.

3.3.2.5 Impact of varying Deployment type

This section explores how various deployment strategies impact key aspects of our locali-

sation approach. We focus on three strategies: a) Equidistant Deployment at the Boundary

(EDB), the original beacon nodes (OBNs) are placed along the edges of the region at equal

distances from each other; b) Random Deployment (RD), the OBNs are scattered randomly

throughout the region of interest (ROI); and c) Randomly at the Boundary (RDB), where

the OBNs are placed along the boundary but randomly, without maintaining equal distances.

EDB and RDB are common in inhospitable terrains, where it is easier to establish node lo-

cations at the boundary using GPS or other means. RD is less common but can occur in

environments like forests where random points with limited GPS connectivity allow for

node deployment. These strategies were selected to cover a range of deployment possi-

bilities. Section 3.3.2.2 provides helpful visualisations of the localisation process for each

strategy.

The experiments to assess the impact of the deployment method were conducted in both

small (R1) and extensive (R2) regions. In the small region (R1), there were 8000 IUNs, with

1% (or 80) being OBNs placed. For the extensive region (R2), there were 15,000 IUNs, with

1% (or 150) as OBNs. The communication range for all nodes in both regions was set to 100

meters. Figure 3.9 illustrates how the localisation approach changes with different network

sizes and ROIs. The outcomes from the above experiments are as follows:
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Figure 3.9: Impact of varying deployment type

• Average Localisation Error (A-LE): The A-LE remains consistently low across all

three deployment types, even when we increased the size of the ROI for both small

and large regions, backing that the proposed approach is practical regardless of the

deployment type or the size of the area.

• Unknown Nodes Remaining (UNR): In the smaller ROIs, the number of unlocalised

nodes (UNR) remains almost near zero. However, when the ROI size increases with

the same number of IUNs, the density of the node decreases, which causes some IUSs

to be too far from beacon nodes to be localised. This leads to a sharp increase in UNR

as the ROI grows.

• Number of Iterations (NITs): The number of iterations increases proportionally to the

size of ROI. Because the localisation process typically starts at the edges and moves

inward in EDB and RDB deployments. In the RD strategy, fewer iterations are needed

because the presence of OBNs throughout the region allows localisation to progress

from multiple points, speeding up the process.
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• Localisation Time (LT): Similar to the NITs, the localisation time (LT) increases with

the size of the ROI. However, in the RD deployment, the time is much shorter since

localisation can coincide from various points across the region.

3.3.2.6 Impact of varying Terrain

In this section, we aim to find the effectiveness of the proposed method in different types

of terrain. We tried it in four different environments: open space (ENV1), sandy terrain

(ENV2), grassy terrain (ENV3), and terrain with sparse trees (ENV4). Simulations were

run for small (R1) and extensive regions (R2). In the R1 region, 8,000 unknown nodes

(IUN) were deployed, with 1% (i.e. 80) of them as original beacon nodes (OBN), with a

communication range (CR) of 75 meters. For the R2 regions, 15,000 IUNs were deployed,

with 1% (150) OBNs, keeping the CR at 75 meters. Results were recorded for all the terrain

types mentioned.
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Figure 3.10: Impact of varying the environments.

• Average Localisation Error (A-LE): Localisation error rises as obstacles (environ-

mental noise) increase, making it more difficult for the RSSI method to accurately
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estimate the distances.

• Unknown Nodes Remaining (UNR): The number of unknown nodes that remain un-

localised increases significantly as environmental noise becomes more intense due to

obstacles.

• Number of Iterations (NITs): Environmental noise weakens signal strength (e.g., a

signal reaching 75m in open space may only reach 25-30m in sparse trees). This

reduction in communication range (CR) requires more iterations.

• Localisation Time (LT): As environmental noise grows, the time to localise the net-

work also increases. More iterations (NITs) result in longer localisation time.

3.3.2.7 Impact of Accumulative Error

In this section, we aim to find how the cumulative localisation varies from one iteration

to another. We tried to test the impact for both R1 and R2 regions, ranging in size from

4000⇥4000 to 7000⇥7000 m2. The number of original beacon nodes (OBNs) was fixed at

1% of the initial unknown nodes (IUNs), with a communication range (CR) of 100 meters.

The extensive region size and CR were used to assess the impact of cumulative error better.

The results (Figure 3.11) indicate that while the cumulative error increases over iterations,

the rise is gradual and not very pronounced.

3.3.2.8 Node localisability

In WSN, localisation can become easier when there are many nodes in a network (dense net-

work). However, in extensive areas, ranging from 1000⇥1000 m2 to 7000⇥7000 m2 and

beyond, deploying a dense network is challenging. For such areas, it’s important to assess

node localisability before deployment. This helps estimate the minimum number of nodes
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Figure 3.11: Impact of Accumulative Error
Note: Effect of Accumulative Error with respect to the number of iterations. For R1 and
R2 regions, area sizes 4000 ⇥ 4000 m2 and 7000 ⇥ 7000 m2 are considered, respectively,
with CR of 100 m. Here EBD, RDB means the beacon nodes are deployed equidistance
and randomly on the boundary of the region. Where RD represents the beacon nodes are
deployed randomly throughout the region.

needed to cover the area, determine how many can be localised, and identify which nodes

are localisable. To establish this, we calculate the minimum number of nodes required to

localise at least 95% of the unknown nodes, with a communication range (CR) of 100 me-

ters. Simulations were run across areas of different sizes using three observing node (OBN)

deployment methods: Random (RD), Equidistant on the Boundary (EDB), and Randomly

on the Boundary (RDB). Table 3.8 summarises the minimum number of nodes needed for

network localisation.

The simulation results were obtained for environment E0, with no external interference,

while keeping the number of observing nodes (OBNs) fixed at 80 for the S1 region and

100 for the S2 region. The OBNs were kept constant to simplify the interpretation of the

results. The outcomes demonstrate that the proposed method performs effectively in both

regions, achieving a high percentage of node localisability.
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Table 3.8: Network localisability for various deployment and area sizes

EDB RD RDB
S† MNR‡ OBN§ PL¶ MNR‡ OBN§ PL¶ MNR‡ OBN§ PL¶

S1 2273 80 95.78% 1210 80 95.88% 1650 80 95.83%
S2 5551 80 95.99% 2951 80 97.44% 4627 80 96.64%
S3 6837 80 95.36% 4553 80 96.42% 5910 80 95.58%
S4 7050 80 95.12% 5732 80 95.76% 6307 80 95.43%
S5 8527 100 95.31% 6845 100 96.06% 7839 100 95.65%
S6 9786 100 95.05% 7918 100 96.03% 8798 100 95.55%
S7 11003 100 95.56% 9423 100 96.53% 10385 100 96.35%

Note: The above table shows the minimum number of nodes required to localise the net-
work. Here, RD, EDB, and RDB represent the deployment of OBN randomly, equidistant
on the boundary, and randomly on the boundary, respectively. The S†

and MNR‡
imply

the area of the network, and the minimum nodes (IUN ) required to localise the network,
respectively. OBN§

, PL¶
stand for the original beacon nodes deployed and percentage of

IUN localised, respectively.

3.3.3 Comparison with SOTA

In this section, we compare the localisation accuracy of the proposed method with well-

known techniques such as trilateration [7], Angle of Arrival (AoA) [13], and advanced

machine learning methods [49] like neural networks, random forest, and support vector

regression. The received signal strength is used in the trilateration (TL), random forest

(RF), neural network (NN), and support vector regression (SVR) methods. For the AoA

approach, two angles from different beacon nodes are used to localise an unknown node.

An iterative process was applied to generate the results. Table 3.9 presents the simulation

parameters used for comparison with state-of-the-art methods.

The experiments were conducted by varying the parameters listed in Table 3.9. Unlike

the proposed method, the other five techniques found it hard to localise the initial unknown

nodes (IUN) when the number of original beacon nodes (OBN) was limited to 1%, 1.5%,

and 2.5% of the total IUN, with communication ranges (CR) of 50 m and 75 m. In these
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Table 3.9: Simulation Parameters for comparison

Parameters Values for small regions (R1) Values for extensive regions (R2)

ROI 1000 ⇥ 1000, 2000 ⇥ 2000 5000 ⇥ 5000, 6000 ⇥ 6000,
to 4000 ⇥ 4000 m2 and 7000 ⇥ 7000 m2

IUN? 8000 15000
OBN

†
1, 1.5, 2.5, and 5 % 1, 1.5, 2.5, and 5 %

CR
‡

50, 75, and 100 m 75, and 100 m
EN

§
E0, E1, E2, and E3 E0, E1, E2, and E3

Note: The size of the region is measured in square metres, IUN? denotes the number of
unknown nodes initially deployed, OBN†

denotes the number of original beacon nodes (in
terms of percent of the number of IUNs), CR‡

denotes the communication range of a node
(in metres), and EN§

denotes the effect of noise due to environmental factors like free space
(E0), sandy terrain (E1), long grassy terrain (E2), and terrains with sparse trees (E3).

cases, the number of unknown nodes remaining (UNR) was significantly high because these

methods require at least two or more beacon nodes for localisation. The results were com-

pared on four parameters: average localisation error, average number of iterations, average

unknown nodes remaining, and average localisation time for both the R1 and R2 regions.

Evaluations were also conducted based on four different environments, like open space (E0),

sandy terrain (E1), grassy terrain (E2), and sparse tree terrain (E3).

3.3.3.1 Average Localisation Error

The average localisation error is an essential parameter for comparing different localisation

algorithms. In 2D space, it is calculated using the Euclidean distance between the actual and

predicted coordinates of the nodes. Tables 3.10 and 3.11 present the average localisation er-

ror for the R1 and R2 regions, respectively. The proposed method significantly outperforms

the five state-of-the-art methods. In the R1 region, 8,000 IUNs were deployed, with 5% of

them acting as OBNs, with a communication range (CR) of 100 meters. As noted earlier,

we can only compare with this higher percentage of OBNs because the existing methods
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struggled with fewer beacon nodes.

Table 3.10: Average Localisation Error (A-LE) for R1 Region when Beacon nodes randomly
deployed in Network

EN? Size† Proposed‡ RF§ NN¶ SVRk TL⇤⇤ AoA††

S1 0.0332 0.0359 0.0376 0.0407 0.4524 0.4691

E0 S2 0.0345 0.0366 0.0389 0.0414 0.5198 0.6026

S3 0.0383 0.0414 0.0427 0.0459 0.5130 0.5393

S4 0.0466 0.0498 0.0528 0.0569 0.5325 0.6256

S1 0.0470 0.0502 0.0532 0.0575 0.5918 0.7409

E1 S2 0.0485 0.0526 0.0550 0.0590 0.6527 0.7645

S3 0.0571 0.0615 0.0636 0.0689 0.6975 0.8405

S4 0.0609 0.0658 0.0689 0.0748 0.7026 0.7641

S1 0.1599 0.1734 0.1820 0.1989 0.8564 0.8645

E2 S2 0.1648 0.1789 0.1875 0.2060 0.9157 0.9972

S3 0.1733 0.1887 0.1972 0.2174 0.9356 1.0382

S4 0.1768 0.1922 0.2016 0.2213 0.9646 1.0567

S1 0.3240 0.3530 0.3700 0.4073 1.1580 1.2435

E3 S2 0.3566 0.3881 0.4075 0.4476 1.1709 1.3130

S3 0.3920 0.4272 0.4476 0.4919 1.3652 1.4929

S4 0.4341 0.4724 0.4960 0.5443 1.5772 1.5939

Note: EN?,and Size†
denotes the environmental noise and size of the network. Proposed‡

,
RF§

, NN¶
, SVRk

, TL⇤⇤
, AoA††

denotes proposed method, random forest, neural network,
support vector regression, trilateration, and angle of arrival, respectively.

Similarly, for R2 regions, 15000 IUNs are deployed in different regions of various sizes,

with the OBN constituting 5% of the total nodes and with a CR of 100 m. The proposed

method performs better than existing state-of-the-art methods for regions of all sizes and

environments.
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Table 3.11: Average Localisation Error (A-LE) for R2 Region when Beacon nodes randomly
deployed in Network

EN? Size† Proposed‡ RF§ NN¶ SVRk TL⇤⇤ AoA††

S5 0.0357 0.0430 0.0787 0.0487 0.5705 0.6606

E0 S6 0.0396 0.0481 0.0877 0.0536 0.5632 0.5918

S7 0.0482 0.0570 0.1052 0.0653 0.5846 0.6859

S5 0.0505 0.0599 0.1105 0.0672 0.7150 0.8366

E1 S6 0.0595 0.0694 0.1289 0.0778 0.7639 0.9193

S7 0.0635 0.0740 0.1375 0.0842 0.7696 0.8365

S5 0.1739 0.1939 0.3678 0.2218 1.0011 1.0897

E2 S6 0.1828 0.2043 0.3872 0.2339 1.0228 1.1344

S7 0.1865 0.2083 0.3948 0.2382 1.0546 1.1548

S5 0.3785 0.4171 0.7955 0.4759 1.2786 1.4331

E3 S6 0.4160 0.4586 0.8747 0.5226 1.4901 1.6289

S7 0.4607 0.5068 0.9675 0.5780 1.7209 1.7390

Note: EN?,and Size†
denotes the environmental noise and size of the network. Proposed‡

,
RF§

, NN¶
, SVRk

, TL⇤⇤
, AoA††

denotes proposed method, random forest, neural network,
support vector regression, trilateration, and angle of arrival, respectively.

3.3.3.2 Average Number of Iterations

This parameter represents the number of iterations needed to complete the localisation pro-

cess of the network. The smaller number of iterations signifies a more efficient algorithm.

This parameter is essential in real-world implementations because changing the topological

information of the beacon and unknown known nodes is difficult and crates an extra over-

head (in terms of energy) on the network. This parameter also helps to analyse the number

of nodes localised per round, which is a key parameter for node localisability.

Experiments were conducted using 8,000 IUNs, 5% of IUN as OBNs, with a communi-

cation range (CR) of 100 meters across four environments for R1. Similarly, for R2 regions,

15,000 IUNs were deployed, with 5% of IUNs being OBNs and a CR of 100 meters in all
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four environments. The experimental results clearly demonstrate that the proposed method

outperforms existing approaches in terms of iteration efficiency. While not all results are

included here, interested readers can access them through the following Link.

3.3.3.3 Average Unknown Nodes Remaining

The Average Unknown Nodes Remaining parameter shows the average number of initially

unknown nodes (IUNs) that remain unlocalised at the end of the localisation process. An

IUN may stay unlocalised if it falls outside the communication range of beacon nodes or

acts as an outlier within the network. A smaller number of unlocalised nodes indicates

better algorithm performance. Network density, defined as the number of IUNs deployed,

is inversely related to the number of unknown nodes remaining.

For R1 regions, the average number of unknown nodes was evaluated by deploying

8,000 IUNs, 5% of IUN as OBNs, with a communication range (CR) of 100 meters. Simi-

larly, for R2 regions, 15,000 IUNs were deployed, with 5% of IUNs as OBNs and a CR of

100 meters. These results, computed across four distinct simulation environments, consis-

tently show that the proposed method outperforms existing state-of-the-art approaches. For

a detailed breakdown of the quantitative results, please refer to the following URL.

3.3.3.4 Average Localisation Time

The average localisation time measures the duration required to localise all possible nodes

within the network. This parameter is crucial for estimating the time needed to execute

the algorithm in real-world scenarios such as forest fire detection or battlefield surveillance,

where timely localisation is crucial.

The average localisation time was calculated by deploying 8,000 IUNs across regions

ranging in size from 1000⇥1,000 to 4000⇥4,000 m2, with 5% of the IUNs being OBNs and
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a communication range of 100 meters. In extensive regions, ranging between 5000⇥5000

and 7000⇥7000 m2, 15000 IUNs were deployed. Across all environments, the proposed

method consistently outperforms state-of-the-art approaches. Interested readers can access

the detailed results from the URL.

3.4 Limitations

The localisation algorithms are very useful in critical situations where it is challenging to

detect the profound location of the object by human presence. The proposed localisation

approach can be suitable for the 2-dimensional environments where the obstacles are as

minimal as possible. For the practicability of the approach, we tried to calculate the Angle

of Arrival values using some mechanical solutions, where we used stepper motor and laser

light. This solution is not more accurate for the 3D environment where it is hard to penetrate

the objects using the light rays, and Received Signal Strength (RSSI) values also result

poorly.

3.5 Conclusion and Future Work

This work proposed a novel technique for identifying the location of nodes in a Wireless

Sensor Network (WSN) without the need for GPS and using the coordinates of only one

beacon node whose location is known in advance. The technique proposed comprises the

use of a hybrid combination of the angle of arrival (AoA) and received signal strength indi-

cator (RSSI) to identify the location of unknown nodes. This hybrid localisation approach

permeates through the entire region of interest, irrespective of its size, through an itera-

tive approach. Here, the initial beacon nodes localise unknown nodes, which in turn serve

as beacon nodes in the subsequent iteration. The uniqueness of our approach is that it is
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the first of its kind that only requires one beacon node to localise an unknown node. This

is made possible through the use of a combination of RSSI and AoA. Furthermore, our

approach overcomes the unrealistic assumption that all unknown nodes are within the com-

munication range of all beacon nodes to start with. This is made possible through adopting

an iterative approach to cover the entire region of interest. The effectiveness of the pro-

posed localisation approach was thoroughly validated through extensive simulation studies.

This was necessitated owing to the lack of access to a sufficiently large WSN deployment.

Subsequently, the real-world efficacy of the approach was validated through a prototypical

implementation.
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Chapter 4

Preserving WSN Energy in Localisation

using Machine-Learning Model

4.1 Understanding the Problem

Wireless Sensor Network (WSN) is an infrastructure-less, self-configured network of sensor

nodes that communicate with each other via radio signals. Each node in a WSN is laden

with sensors of various kinds, and these are often deployed in dangerous terrains that are

inaccessible to humans. The sensors on these nodes send back relevant sensed data via

an ad-hoc network of nodes that constitutes a WSN to a back-end cloud for analysis. Once

deployed in such terrains, a sensor node is on its own with limited energy and computational

resources and no means of replenishing these. The aim, therefore, is to minimise energy

expenditure and prolong the useful life of nodes. In such circumstances, the localisation

of sensor nodes in WSN is a crucial issue. This is because the usual localisation approach

in outdoor locations using Global Positioning Systems (GPS) is infeasible. GPS comprises

resource-intensive modules, and deploying these over WSN nodes significantly shortens the

latter’s life. In addition to this, the geographical locations in which such nodes are deployed

often do not facilitate the proper functioning of GPS modules. This is displayed in our
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project wherein we are deploying a WSN in a Tiger Reserve, which is a thickly forested

area, to detect forest fires. Although the WSN works well and warns of a fire effectively,

determining the location of the fire is non-trivial. GPS modules not only work here owing

to their heavy nature but also because of the thickly wooded environment that disrupts GPS

signals and makes them ineffective.

There are mainly two types of solutions for detecting the approximate location of the

nodes: a) range-free[51], and b) range-based[52] localisation. Unlike the previous solu-

tion (in Chapter 3), both these localisation schemes work on the premise that there are

specific nodes in the network whose correct locations are known. Such nodes are called

beacon nodes, and based on these, the locations of the other nodes are computed. In realis-

tic scenarios, like our project on forest fires, beacon nodes are usually deployed in parts of

the terrain that are more accessible (for example, the periphery of the forested area in our

project), where a GPS device can be used to determine the correct location. In most cases,

such beacon nodes are few and far between and must be utilised effectively to localise most

remaining nodes. In range-free localisation, the approach utilises simple data like the ‘num-

ber of hops’ between the beacon nodes and the node being localised to get a rough idea of

the location of the node. The important point is that no additional hardware is utilised at any

of the nodes to facilitate range-free localisation. The advantage of this approach is its sim-

plicity and cost-effectiveness. The downside, however, is the low accuracy of localisation.

A few examples of approaches employing range-free localisation are Centroid [53], DV-hop

[54], and APIT [55]. Range-based localisation, on the other hand, requires additional hard-

ware for transmitting and receiving signals at each node. In a WSN network, this hardware

is already available at each node, and hence, range-based localisation becomes convenient.

Range-based localisation involves an assessment of the signals received at unknown nodes

from beacon nodes, and the strength, angle, and arrival time of such signals are utilised to
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Figure 4.1: Localization using RSSI

assess the position of the node. Range-based localisation is much more accurate than the

range-free approach and is more commonly employed for localisation. The angle of Arrival

[56], Time of Arrival [57], and Received Signal Strength Indicator (RSSI) [58] are popular

approaches that utilise range-based localisation techniques.

In this work, we utilise a range-based technique, more specifically, the Received Signal

Strength Indicator (RSSI) technique, for localisation. The RSSI is a measure of the power

present in a received radio signal, which can be used to estimate the distance between the

transmitter and receiver. A high-level depiction of the use of RSSI for localisation is shown

in Figure 4.1. Beacon nodes whose locations are known in advance to transmit signals that

are received by the node to be localised. The strength of the received signals from different

beacon nodes is analysed using various algorithms. Based on this, the position of the node

is determined.

4.2 The Proposed Method

The method proposed in this work is meant for localisation of unknown nodes, without the

use of a GPS device, in a WSN that is spread over a large area. ‘Large area’ here implies

that most nodes in the WSN are not within the communication range of most other nodes

owing to the large size of the area of interest. It is important to specify this as most existing

localisation techniques work on the assumption that each node in the WSN is within the
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communication range of every other node.

In this large area, we assume that the locations of a few sensor nodes called beacon

nodes, are known in advance. These beacon nodes are located at the periphery of the area

of interest. This is a realistic assumption as the sensor nodes at the periphery of the WSN

are usually accessible and within the reach and range of a GPS device. The sensor nodes

located deep within the area of interest are usually not accessible by a GPS device because

of a hostile geographical terrain and/or the presence of disrupting structures like trees, and

tall buildings. It is these nodes that need to be localised.

This work proposes a hybrid approach to localise such sensor nodes that comprise

a Machine Learning (ML) approach combined with a more conventional multilateration

approach. The ML algorithm harnessed here is a random forest, and it localises a large

number of unknown nodes by analysing the RSSI values of communication signals received

at the unknown nodes from one or more beacon nodes. Subsequently, these newly localised

unknown nodes now serve as the ‘new’ beacon nodes and are used to localise nodes deeper

inside the area using multilateration. The multilateration approach is usually harnessed for

more than one iteration until all unknown nodes are localised. Figure 4.2 is a high-level

depiction of the steps followed for localisation.

Figure 4.2: Proposed hybrid localisation approach

We now discuss the proposed approach, comprising localisation using RSSI in general,

analysis of RSSI using an ML algorithm (random forest), and the use of multilateration with
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RSSI for localisation, in more detail.

4.2.0.1 Localisation using RSSI

Localisation through RSSI values comprises sending low-power signals from the transmitter

at an beacon node (a node whose location is known) and receiving the signal using a receiver

at an unknown node. The strength of the signal as received at the unknown node is assessed

and analysed, and conclusions are drawn on the position of the unknown node relative to

the beacon node that sends the signal. Usually, signals sent from multiple beacon nodes

are received and analysed at the unknown node, and more accurate localisation is achieved.

The intensity of signals received at the unknown node decreases with increasing distance

from the transmitting beacon node i.e., an unknown node close to the beacon node receives

a strong signal, while a distant unknown node receives a weak signal.

Equation 4.1 is Frii’s Free Space Transmission Equation [59] and shows that the received

signal strength decreases quadratically with distance from the transmitter.

Pr =
PtGtGr�2

4⇡d2
(4.1)

Where Pr represents the power of a signal as received at an unknown node, Pt shows the

power of a signal as transmitted at the beacon node. Gt and Gr represent the gain of the

transmitter at the beacon node and the receiver’s gain at the unknown node. d and � show

the distance between the beacon and the unknown node and the wavelength of the signal,

respectively.

The power of the signal received at the unknown node is roughly interpreted as the Received

Signal Strength Indicator (RSSI) value after incorporating factors specific to the communi-

cation technology in use. The RSSI values for signals received at unknown nodes from the

various beacon nodes are collected and stored in a database. A matrix template for RSSI
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values obtained at each node from every other node in the region of interest is shown in

the matrix in Equation 4.2. Most of these RSSI values are assigned values of �200 db,

indicating that the receiving node is beyond the communication range of the sending node.

R =

2

6666664

RSSI11 RSSI12 . . . RSSI1k

RSSI21 RSSI22 . . . RSSI2k
...

...
...

...

RSSIn1 RSSIn2 . . . RSSInk

3

7777775
(4.2)

The RSSI values so collected are subsequently analysed by an ML algorithm (random forest

in this case) and a multilateration technique for localisation.

4.2.1 Localisation using Machine Learning

The Machine Learning (ML) approach to localisation involves training an algorithm with

data on a large number of sensor nodes. The data comprises the RSSI values of signals

received at each node and the relative location of the node. The algorithm is trained in such

a manner that it is able to accurately localise a node that receives relevant signals from at

least three beacon nodes (beacon nodes, as mentioned earlier, are nodes whose locations are

known). The larger the number of beacon nodes, the better the accuracy of localisation. The

algorithm is trained in an ‘off-line’ manner such that it is trained before it is put to use for

localising sensor nodes.

A large number of ML algorithms can be employed for localisation. We assessed several

algorithms and, based on experiments, chose to use random forest in our work as it gave

the best localisation accuracy. A comparison of the localisation accuracies of the ML algo-

rithms that we experimented with is shown in Section 4.3, which discusses the experiments

conducted.

Random forest [60] is an ensemble technique that can perform both regression and classi-
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fication tasks [61]. A random forest comprises several decision trees, which are tree-like

structures that divide a dataset based on the decisions taken at each node. The decision

point or split value at a node is determined as one that provides the maximum information

gain. Intuitively, a large information gain implies splitting the data in a manner that the data

subsets formed as a result of splitting are more homogeneous i.e. datapoints in each subset

formed are closer to each other in terms of attribute values. The decision tree establishes the

best split amongst its variables with the intent of maximising information gain. This pro-

cess of splitting begins at the root, and each node applies its own split function to the new

input. This is repeated recursively until a terminal node is reached. A detailed discussion

on forming a decision tree is beyond the scope of this work. The interested reader is pointed

to [62]. Once trained, a decision tree is able to provide an appropriate value to a new data

point. The random forest comprises several such decision trees as shown in Figure 4.3 and

an average of the value assigned by each decision tree is assigned to the new point.

Figure 4.3: A generic random forest
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4.2.1.1 Data for the Random Forest

The first step in localisation using the random forest algorithm is the collection of data for

training the model. The training entails teaching the model to correctly map RSSI values of

signals received at a node with the 2D coordinates expressing the location of the node. The

2D coordinates of the nodes constitute the output of the random forest model. The input

data consists of the RSSI values at the unknown nodes from various beacon nodes. At each

unknown node Ni, we represent the RSSI value of the signal received from beacon node

Aj as RSSIij . The input data and output of the model are in the formats shown in matrices

4.2 and 4.3, respectively, for k unknown sensor nodes and n beacon nodes.

O =

2

4 x1 x2 . . . xn

y1 y2 . . . yn

3

5 (4.3)

In the matrix 4.2, the input data RSSInk corresponds to the RSSI value of the signal re-

ceived at the nth sensor node from the kth beacon node; whereas in the matrix 4.3, (xn, yn)

represent the coordinates of the nth sensor node.

Each input data point comprises the set of RSSI values of signals received at an unknown

node from all the beacon nodes. These constitute the features of the data point. Row i of

the matrix in Equation 4.2 corresponds to the RSSI values of signals received at sensor node

i from all the beacon nodes. In case a signal from an beacon node cannot reach a node

owing to a large distance between them, the corresponding RSSI value is set to �200 db.

The output data comprises the coordinates of each of the unknown nodes. The training part

involves the creation of a random forest and this requires labelled data for a large number

of unknown nodes and corresponding beacon nodes. Depending on availability, this train-

ing data is procured from actual deployments, from standard datasets comprising mapped

RSSI values and 2D coordinates, or the data is artificially generated using Frii’s Free Space
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Transmission Equation [59] shown in Equation 4.1. In our experiments, we use artificially

generated data for lack of access to an extensive deployment and the unavailability of stan-

dard datasets.

4.2.1.2 Data Preprocessing

Prior to creation of the random forest, the data collected goes through a quick step of pre-

processing. Here a new parameter called � is considered for each unknown node. The �

parameter indicates the number of beacon nodes for which the RSSI value at the node is not

�200 db. In other words, the � parameter provides information on the number of beacon

nodes whose signals reach the particular sensor node. For example, � = 4 indicates that the

sensor node is within the communication range of 4 beacon nodes.

Only data points whose � � 3 are considered for the creation of the random forest. Those

with smaller values are removed from consideration. This is because at least 3 legitimate

RSSI values are required for accurate localisation with random forest.

4.2.1.3 Creation of the Random Forest

To create a random forest, small bootstrap samples from the input data with � � 3 are taken,

and a decision tree is developed with each sample. A small subset of the RSSI values at a

node is considered for each tree. From this small subset of RSSI values, one RSSI value is

randomly selected for the root node of the decision tree. A split point of this RSSI value is

so selected that it gives the best improvement in terms of variance. For brevity, we do not

dwell into the procedure for variance calculation and the interested reader is pointed to the

following resource [62].

Based on the ‘best’ split point of the feature, the data is divided into two or more parts

and these form the child nodes of the root. At each child node, again, a feature value (in
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this case, RSSI value) is randomly chosen from the small sample, and the best-split point

for this feature value further divides the data. This is continued until a certain number of

iterations or until the data is exhausted, whichever comes first. The decision tree so created

is combined with a larger random forest that comprises all such decision trees created.

The number of decision trees created in the random forest, called the n-estimator, is an

important parameter that impacts the performance of the model. We experimented with

using n-estimator values of 1000, 2000, and 3000. We got the best results with 2000 decision

trees and used this value for further computations.

4.2.1.4 Testing Phase

Of the legitimate RSSI data with values of � � 3, 90% was allocated for training the model

whereas 10% was kept aside for testing the efficacy. To test the model as well as use it with

our real world implementation, the test point is made to go through each of the 2000 decision

trees in the random forest. As the test data point moves through each tree and converges at

a node in the tree, the x - y coordinates of the data point at the node are allocated as the

coordinates of the test point. This is repeated for all 2000 decision trees, and finally, an

average of all the 2000 x and y coordinates is computed and allocated to the test point.

4.2.2 Localisation through Multilateration

Multilateration [63] is a localisation technique popularly used to localise vehicles in a GPS

system. Multilateration depends on the relation between the distance of nodes and their

relative location coordinates. To localise one node using multilateration, at least three

nodes with known locations (beacon nodes in our case) within the communication range of

the unknown node are required. The distance between an beacon node and the unknown is

calculated using Frii’s Free Space Transmission Equation [59] shown in Equation 4.1 that
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relates the received signal strength value at the unknown node with the distance from the

beacon node from which the signal was sent. This distance (which is not the exact distance

but a computed approximate distance) is calculated between all the beacon nodes within

the communication range of the unknown node and the unknown node. The calculated

distance, along with the 2D coordinates of the beacon nodes, are together employed in the

Least Squares Method [64]. Figure 4.4 is a high-level depiction of the localisation process

in multilateration.

Equation 4.4 shows the expression that needs to be minimised to compute the loca-

Figure 4.4: High-level depiction of multilateration

tion of the unknown node. d̃i is the distance between the unknown node and the ith

beacon node as computed. The bar above d indicates that the value of the distance is

not necessarily exact and is diluted by channel noise, obstacles, and other shadowing effects.

Minimize " =|
MX

i=1

q
(xi � x)2 + (yi � y)2 � d̄i

2 (4.4)

M denotes the number of beacon nodes within the communication range of the unknown

node. M needs to be at least 3 for proper localisation. The square of the computed distance
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between the unknown node and the beacon node is computed as follows:

(xi � x)2 + (yi � y)2 = d̃i
2

8i = 1, . . . ,M

(xi � x)2 � (xj � x)2 + (yi � y)2 � (yj � y)2

= d̃i
2 � d̃j

2

8i = 1, . . . ,M ; i 6= j

2x (xj � xi) + 2y (yj � yi)

=
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2
⌘
�

�
x2
j � x2

i

�
�

�
y2j � y2i

�

8i = 1, . . . ,M ; i 6= j

Expressing the equation in the form of a matrix:
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The form of the above equation is A.x̄ = b̄. Using this, the location of the unknown

node can be computed by minimising kA.x̄ � b̄k2. Using the Least Squares equation, the

solution to the equation becomes x̂ =
�
ATA

��1
AT b̃.

4.2.3 The Hybrid Approach to Localisation

We take a hybrid approach to localisation owing to limitations in the ML approach and

the multilateration approach. The ML approach is effective in accurately localising a large

number of sensor nodes harnessing the locations of just a few beacon nodes. However, the
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ML approach’s limitation is that it needs to be trained in advance and can only be employed

for one iteration. It cannot be easily trained with the locations of the newly localised nodes

and thus cannot be used for further iterations. The ML approach, therefore, is useful when

all the unknown nodes are within the communication range of at least 3 beacon nodes. This

is usually possible indoors and is seldom the case with large outdoor locations.

Figure 4.5: Hybrid localisation comprising ML and multilateration

The multilateration approach to localisation, on the other hand, can be readily employed

for multiple iterations. Multiple iterations imply that the unknown nodes localised in an

iteration become the new beacon nodes for subsequent iterations. The iterations continue

until the entire area is covered. This is useful but has the drawback that localisations through

multilateration are not very precise and this imprecision increases at every iteration. A very

large number of iterations of multilateration localisation is therefore not advised.

The hybrid approach proposed in this work takes the best of both approaches. One

iteration of ML localisation is first conducted. This results in significant number of unknown

nodes getting accurately localised. These newly localised nodes become the new beacon

nodes for subsequent localisations using multilateration. Combining the two approaches

enables the coverage of most of the outdoor regions of interest. Figure 4.5 pictorially depicts
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the hybrid approach proposed in this work. Algorithm 4.1 is a systematic description of the

approach.

Algorithm 4.1 Hybrid localisation
Preconditions:

1: Beacon nodes: A
2: Unlocalised Sensor nodes: S
3: function LOCALISATION(A, S)
4: RANDOM FOREST Localisation
5: SRF  nodes localised by random forest
6: S  S � SRF

7: A A [ SRF

8: while num(S) � 0 do
9: MULTILATERATION Localisation

10: SM  nodes localised by Multilateration
11: S  S � SM

12: A A [ SM

13: end while
14: end function

4.3 Evaluation

In this section, we experimentally assess the working of the random forest algorithm and the

multilateration approach to localisation separately first and subsequently as a hybrid com-

bination. We first create a simulated environment to comprehensively validate the approach

and subsequently demonstrate its efficacy on a real-world set-up.

4.3.1 Dataset and Simulated Environment

To demonstrate the effectiveness of the proposed localisation approach, we create a sim-

ulated environment and a synthetic dataset. We need to synthesize the data as standard

datasets for localisation over large areas do not exist. Also, we do not have access to real-

world deployments of this scale.
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We consider a 130⇥130m2 region. A dataset was synthesised with beacon nodes (nodes

whose locations are known in advance) and sensor nodes (unknown nodes that need to be

localised) deployed within this region. A total of 12, 321 sensor nodes were created whose

positions are along a 1 ⇥ 1 m2 grid starting from a position of 10 m from the periphery of

the region of interest and extending to a distance of 110 m. This is done along both the

horizontal and vertical axes. 8 beacon nodes, whose locations are known, are placed at the

periphery of the region of interest. This is a realistic scenario as nodes along the peripheries

of real-world regions of interest are accessible, and their locations can be determined. The

locations of the beacon nodes are as follows: (0,0), (60,0), (130,0), (0,60), (0,130), (60,130),

(130,60), and (130,130). Each beacon node has a defined range to communicate with other

sensor nodes.

Table 4.1 shows the number of sensor nodes that are within the range of communication

Table 4.1: Sensor nodes within communication range of beacon nodes

Number of Sensor nodes Neighbouring Beacon nodes

4666 2
3914 3
3622 1
119 0

Note: The above table shows the number of unknown nodes within the communication
range of 3 and more, exact 2, exact 1, and none of the unknown nodes.

of different numbers of beacon nodes. For instance, 3914 out of 12321 sensor nodes are

within the communication range of three beacon nodes. Each sensor node has an RSSI

value associated with it based on their respective locations and distance from the beacon

nodes. The RSSI value, as explained earlier, is the strength of signals received at a sensor

node from various beacon nodes. The RSSI values for our synthetic dataset are computed

using Frii’s Free Space Transmission Equation [59] shown in Equation 4.1. Table 4.2 shows
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the (x, y) coordinates and RSSI values at sensor nodes that form a part of the synthesised

dataset. The uppermost row of the table shows the coordinates of the 8 beacon nodes, and

below each beacon node’s coordinates are the corresponding RSSI values at the various

sensor nodes. In this table, several nodes have an RSSI value of �200. This indicates that

the sensor node is not within the range of communication of the respective beacon node.

Table 4.2: A small segment of the synthetic dataset

X Y (0,0) (60,0) (130,0) (0,60) (0,130) (60,130) (130,60) (130,130)

33 114 -200.0 -200.0 -200.0 -200.0 -69.3 -67.9 -200.0 -200.0
86 112 -200.0 -200.0 -200.0 -200.0 -200.0 -68.0 -200.0 -71.5
90 38 -200.0 -71.7 -72.8 -200.0 -200.0 -200.0 -71.2 -200.0
59 14 -200.0 -60.9 -200.0 -200.0 -200.0 -200.0 -200.0 -200.0
... ... ... ... ... ... ... ... ... ...

108 57 -200.0 -200.0 -200.0 -200.0 -200.0 -200.0 -64.9 -200.0
35 96 -200.0 -200.0 -200.0 -72.0 -71.8 -70.5 -200.0 -200.0

Note: The table shows the X and Y coordinate values of the unknown nodes (in X & Y
columns). The rest of the columns show the measured RSSI values of this unknown node
with respect to other beacon nodes placed on positions from (0, 0), (60, 0) to (130, 130).

4.3.2 Machine Learning (Random Forest) Localisation

We choose random forest as the ML algorithm for the first localisation iteration. Of the

total of 3914 sensor nodes that are within the communication range of 3 beacon nodes (you

may recall that for localisation, a node needs to be receiving signals from at least 3 beacon

nodes), 90% of the nodes or 3523 nodes are set aside for training of the random forest and

10%, or 391 is used for testing.
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4.3.2.1 Localisation accuracy

Figure 4.6 shows an overlap between the actual locations of the 391 test sensor nodes that

are localised. The red triangles in the figure denote the actual locations of the nodes, and

the blue squares denote the predicted locations. The figure indicates the precision of the

random forest localisation as almost all the blue squares are hidden behind red triangles,

implying almost perfect localisation.

Table 4.3 shows the localisation results of the random forest algorithm for 10 randomly

Figure 4.6: Overlap of predicted and actual locations of sensor nodes

selected data points. In this table (Xactual, Yactual) are the actual coordinates of the data-

points; (Xpred, Ypred) are the predicted coordinates using random forest localisation; and

Deviation indicates the distance between the actual and predicted locations. Table 4.4 fur-

ther dwells into the precision of random forest localisation and shows the results of comput-

ing the average, minimum, and maximum change between the actual and predicted locations
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Table 4.3: X-Y coordinates, actual vs predicted by random forest

Xpred Ypred Xactual Yactual Deviation (m)

22.97 16.13 23.0 16.0 0.13
108.99 19.93 109.0 20.0 0.07
13.85 34.11 14.0 34.0 0.18
86.88 23.99 87.0 24.0 0.17
34.15 93.00 34.0 93.0 0.15

102.75 97.84 103.0 98.0 0.29
109.76 98.82 110.0 99.0 0.30
15.79 35.01 16.0 35.0 0.21
16.02 31.90 16.0 32.0 0.10
28.73 85.33 29.0 85.0 0.42

Note: The table shows the predicted position of x and y coordinates in Xpred and Ypred.
The Xactual and Yactual shows the actual positions of X and Y coordinates, and deviation
shows the Euclidean distance between actual and predicted data points.

for all the test sensor nodes. Equations 4.5, 4.6, and 4.7 respectively show the approach to

computing these values.

Table 4.4: Deviation of predicted locations from actual values

Compound of X and Y Deviation (m)

Average Compound value 0.20
Minimum Compund value 0.07

Maximum Compound value 0.30

Average =
1

Datapoints

DatapointsX

i=1

(Distancei) (4.5)

Minimum = MIN (Distance) (4.6)

Maximum = MAX (Distance) (4.7)
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4.3.2.2 Varying size of ‘region of interest’

We study the variation of the localisation accuracy of the random forest model by changing

the size of the simulated area in Figure 4.7. It is seen that as the size of the simulated area

increases, keeping the number of beacon nodes and the range of communication between

the beacon nodes and the sensor nodes fixed; the localisation accuracy declines sharply.

This is along expected lines and shows the impact that the size of the region within which

localisation is done has on localisation accuracy. As the size of the region increases, it

is imperative to increase the number of beacon nodes to maintain an acceptable level of

localisation accuracy. This is vindicated in the following subsection where we experiment

with increasing the number of beacon nodes.

Figure 4.7: Localisation accuracy vs size of ‘region of interest’

4.3.2.3 Varying number of beacon nodes

In Figure 4.8, we study the result of changing the number of beacon nodes in a fixed-size

simulated area. An increase in the number of beacon nodes, with the range of communi-
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cation between the beacon and the sensor nodes and the size of the simulated area (region

of interest) fixed, results in a steady improvement in localisation accuracy. The number of

beacon nodes becomes especially important for good localisation accuracy as we deal with

larger regions of interest.

Figure 4.8: Localisation accuracy vs number of beacon nodes

4.3.2.4 Comparison with other ML algorithms

We compare the localisation performance of random forests with other known machine

learning algorithms on our simulated dataset.

Table 4.5, shows the localisation accuracy of the algorithm. The Error Margin, ↵ in the

table provides an indication of the margin of error in localisation in the following manner:

a datapoint (Xactual, Xactual) is considered to be correctly predicted with an error margin

↵ if for the point, both the following are true:

Xactual ⇤ ↵ > |(Xpred�Xactual)| (4.8)
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Table 4.5: localisation accuracies of various ML algorithms

Algorithms Error Margin (↵= 0.05) ↵= 0.03 ↵= 0.01

Neural Network 29.9% 14.0% 10.2%
SVR 15.0% 10.2% 8.1%

Decision Tree 80.3% 63.1% 24.5%
Random forest 96.9% 92% 80.0%

XGBoost 97.18% 92% 63.9%

Y actual ⇤ ↵ > |(Y pred� Y actual)| (4.9)

If both equations 4.8 and 4.9 are true, then we consider that point to be a close point. For

example 391 data points were considered as test points out of 3914 and ↵ is set to be 0.05

for which we got 379 close points out of 391 data points, so accuracy is calculated as:

Accuracy = Number of close points*100/Total test points

= (379/391) ⇤ 100

= 96.9%

The results clearly indicate the superiority of random forest in accurate localisation and

vindicate our choice. XGBoost [65] does perform a little better when the margin of error

permitted is large. However, the performance of XGBoost rapidly deteriorates with smaller

permitted margins of error.

4.3.3 Multilateration Localisation

The other major localisation approach employed in this work is multilateration, as discussed

earlier. Multilateration utilises the Least Squares Error technique to accurately localise

nodes with distances computed from RSSI values. The advantage of the multilateration ap-

proach, in contrast to the ML localisation, is that it can be used for multiple iterations. This

entails starting with a set of initial beacon nodes and using these to localise unknown sensor
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nodes in the first iteration; the newly localised sensor nodes now become the new beacon

nodes for the next iteration, localising further unknown nodes with this new set of beacon

nodes; continuing this for multiple iterations. In this way, localisation is done over large

‘regions of interest’.

The downside of localisation with multilateration, however, is the inferior localisation accu-

racy as the iterations progress. The first iteration usually returns results that are acceptable

and accurate. This deteriorates because the error in localisation at earlier iteration propa-

gates through subsequent iterations. To explain this with an example: say an unknown node

at coordinates (3, 4) is localised during the first multilateraion iteration as (3.4, 4.2). This

node now becomes an beacon node for the subsequent iteration, and its already erroneous

location further increases the error in subsequent localisations.

4.3.3.1 Localisation over iterations

We conducted experiments to understand the extent of deterioration in localisation accuracy

as the iterations of localisation with multilateration progress. To conduct this experiment,

we use a 50⇥50 m2 sized simulation environment with 8 beacon nodes positioned respec-

tively at (0, 0), (25, 0), (50, 0), (25, 50), (50, 50), (0, 25), (0, 50), and (50, 25). The sensor

nodes localised in the first iteration become the new beacon nodes for the next iteration

and localise more sensor nodes. In this way, the nodes over the entire region of interest

are localised in three iterations. Tables 4.6, 4.7, and 4.8 respectively show the localisation

of sensor nodes after one, two, and three iterations of multilateration. (Xactual, Yactual)

are the actual coordinates of the nodes localised and (Xpred, Ypred) are the coordinate val-

ues computed using multilateration. Deviation indicates the distance between the actual

locations of the sensor nodes and the locations predicted by multilaterion. The deviation

values in the three tables indicate a trend towards deteriorating localisation accuracy as the
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iterations progress.

Table 4.6: X-Y coordinates, actual vs predicted by first iteration of multilateration

Xpred Ypred Xactual Yactual Deviation (m)

10.36 13.36 11 14 0.90
14.24 11.30 15 12 1.03
35.76 12.21 35 13 1.09
37.61 12.30 37 13 0.92
9.60 9.60 10 10 0.56

11.25 35.75 12 35 1.06
13.36 39.63 14 39 0.89
38.94 10.06 39 10 0.08
9.27 39.49 10 39 0.87

36.78 36.78 36 36 1.10

Note: The table shows the predicted position of x and y coordinates in Xpred and Ypred.
The Xactual and Yactual shows the actual positions of X and Y coordinates, and deviation
shows the Euclidean distance between actual and predicted data points.

Table 4.7: X-Y coordinates, actual vs predicted by second iteration of multilateration

Xpred Ypred Xactual Yactual Deviation (m)

26.72 12.44 27 15 2.57
24.67 12.12 25 11 1.16
16.21 29.60 18 30 1.83
10.06 27.98 10 29 1.02
14.62 26.97 14 28 1.20
17.18 14.31 17 16 1.69
21.00 35.20 22 35 1.01
23.09 34.31 24 34 0.93
31.06 12.01 31 10 2.01
25.29 11.77 25 11 0.82

Note: The table shows the predicted position of x and y coordinates in Xpred and Ypred.
The Xactual and Yactual shows the actual positions of X and Y coordinates, and deviation
shows the Euclidean distance between actual and predicted data points.
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Table 4.8: X-Y coordinates, actual vs predicted by third iteration of multilateration

Xpred Ypred Xactual Yactual Deviation (m)

30.99 34.61 32 35 1.08
32.97 32.94 34 33 1.03
32.01 36.07 33 37 1.35
33.99 34.85 35 35 1.02
31.14 34.24 33 35 2.00
34.57 36.46 35 36 0.62
37.01 34.75 38 34 1.24
38.03 34.64 39 33 1.90
35.99 35.17 37 34 1.54
31.11 36.0 31 39 3.00

Note: The table shows the predicted position of x and y coordinates in Xpred and Ypred.
The Xactual and Yactual shows the actual positions of X and Y coordinates, and deviation
shows the Euclidean distance between actual and predicted data points.

4.3.3.2 Comparison of multilateration and random forest

As stated earlier, localisation with multilateration has an advantage over random forest and

other ML algorithms in terms of ease of conducting multiple iterations. The accuracy of

localisation with multilateration, however, is inferior to that of random forest. We compare

the localisation accuracy of multilateration and random forest in Table 4.9. The superiority

of random forests in terms of localisation is clear from these results.

4.3.4 The Hybrid Localisation Approach

In this work, we combine the localisation potential of random forest localisation and mul-

tilateration localisation seeking to harness the strengths of both. Random forest is utilised

in the first iteration and it localises a large number of sensor nodes with a high degree of

accuracy. These newly localised sensor nodes serve as the beacon nodes for the subsequent

iterations of localisation which is done using multilateration. As discussed earlier, it is diffi-

cult to harness random forest for more than one iteration as it needs to be trained in advance
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Table 4.9: Comparison of localisation by random forest and multilateration

Xactual Yactual XR YR XM YM

23 16 22.9 16.1 22.01 18.9
109 20 108.9 19.9 109.1 19.8
14 34 13.8 34.1 13.8 33.8
16 35 15.7 35.0 16.0 35.0
87 24 86.9 23.9 88.8 21.7
27 50 27.6 49.3 26.4 49.7
104 99 104.1 99.1 103.8 98.9
97 16 97.0 15.9 97.0 16.2
28 41 28.0 41.0 27.8 40.5
102 88 101.1 88.3 101.9 88.0

Note: In the table (Xactual, Yactual) are the actual coordinates of a random set of nodes;
(XR, YR) are the coordinates computed by the random forest algorithm; and (XM, YM) are
the coordinates computed by multilateration for the same nodes.

in an ‘offline’ manner. Table 4.10 is a segment of a larger table that shows the number

of beacon nodes that sensor nodes are in the neighbourhood (neighbourhood implies being

within the communication range). This is after the first iteration of the random forest is

completed. It is interesting to compare Table 4.10 with Table 4.1 that shows the number

of beacon nodes in the neighbourhood of unknown sensor nodes before localisation by ran-

dom forest. The effect of the random forest algorithm is that in just one iteration, it makes

subsequent multilateration iterations very effective by creating a large number of beacon

nodes.

We observe in Table 4.10 that all the remaining sensor nodes are within the communica-

tion range of at least 12 beacon nodes. This significantly bolsters the localisation accuracy

of the subsequent multilateration iteration. Table 4.11 shows the localisation results for 10

random sensor nodes in terms of the predicted coordinates (Xpred, Ypred) and actual co-

ordinates (Xactual, Yactual). The Deviation column shows the distance between the actual

locations of the nodes and the locations predicted by the hybrid approach. The results indi-
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Table 4.10: Beacon nodes in the neighbourhood of sensor nodes

Number of Sensor nodes Neighbouring Beacon nodes

705 75
309 73
292 74
287 91
202 103
... ...
3 122
20 12
2 13
2 14
2 12

cate acceptable localisation with small deviations from actual locations owing to the initial

boost provided to multilateration in terms of a large number of beacon nodes provided by

random forest. The hybrid approach, therefore, is seen to be quite useful for localisation of

nodes in large outdoor spaces.

Table 4.11: X-Y coordinates, actual vs predicted by hybrid approach

Xpred Ypred Xactual Yactual Deviation (m)

86.01 47.70 86 48 0.30
68.02 31.26 68 32 0.74
75.06 98.07 75 98 0.09
95.40 73.73 95 74 0.48
77.80 69.20 78 70 0.82
39.90 71.40 39 72 1.08
49.00 75.26 48 76 1.24
56.94 78.91 57 79 0.10
63.81 19.54 64 20 0.49

109.80 47.60 110 48 0.44
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4.4 Limitations

The proposed method uses a muli-iteration approach for localising the nodes in an extensive

outdoor environment. The approach first localises a few unknown nodes with the help of

some beacon nodes with some localisation error. In the subsequent iterations, these newly

localised nodes will act as the beacon nodes and help localise other unknown nodes. The

primary concern of the proposed work is that the model needs help understanding or show-

ing the effect of the localisation inaccuracies from the previous rounds. If the model runs

for a smaller region and is not considered, the accumulative errors for a few rounds won’t

affect the model’s effectiveness. However, if the large region is considered for localisation,

this error will drastically affect the model’s performance.

4.5 Conclusion and Future Work

In this work, we proposed a hybrid technique for localisation of nodes in a Wireless Sensor

Network (WSN) without the use of GPS. The major contribution of our approach is that it

overcomes the simplifying assumption that every node in the WSN deployment is within the

communication range of every other node. Our hybrid approach combines the capability of

random forest, a Machine Learning (ML) algorithm, with a more conventional multilatera-

tion algorithm. The random forest algorithm is trained in advance and is able to accurately

localise a large number of unknown nodes using just a small number of beacon nodes (nodes

whose locations are known in advance). It is difficult to train random forest ‘on the go’ and

hence it cannot be used for subsequent iterations. The nodes localised by random forest,

however, are utilised as new beacon nodes and employed for localisation of the remaining

nodes by the multilateration approach. Multilateration is not as accurate as ML algorithms

but can be repeated several time and hence is effective in covering a large deployments. In
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spite of being a little compromised in terms of accuracy of localisation, multilateration does

a fairly decent job within the hybrid set-up owing to the initial boost provided by random

forest wherein a large number of beacon nodes are created.
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Chapter 5

Preserving WSN Energy via Cluster

Based Routing

5.1 Understanding the Problem

The primary objective of WSN is to collect the data from various dispersed nodes through-

out the region and transmit the data to the base station. Data collection and transmission is

the most energy-intensive task, draining the energy level of external resources drastically.

The transmission energy required to transmit the data from various nodes to the base station

is directly proportional to the distance between them. Therefore, it is important to drag the

transmission distance between them to a minimum via the appropriate routing. Three types

of routing are used in the WSN: a) flat routing, b) location-based routing, and c) cluster-

based routing.

In flat routing, each node transmits the data to the one transmission (hop) away nodes in the

network, also known as flooding. This approach is simple and forthright but unnecessarily

consumes too much energy and congests the network, making it unsuitable for networks

with larger area sizes or nodes. The location-based routing invents various optimal paths

through different mechanisms between the source and destination nodes. Such a type of
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routing is suitable when the source and destination move frequently. Suppose the transmis-

sion occurs between the same source and destination. In that case, the method follows the

same path for data transmission, leading to an unbalanced network with the nodes on the

path getting exhausted and less energy remaining. In contrast, other nodes remain with high

energy [66]. The cluster-based routing initially forms the clusters based on the locations of

the nodes. Then, it selects one node from each cluster as its head (known as cluster head),

which is responsible for collecting the data from all the other cluster nodes and transmitting

it to the base station. This approach significantly lessens the communication overhead if the

heads are appropriately selected.

5.2 The Proposed Method

This section describes the proposed approach for determining the optimal cluster. The ap-

proach helps save energy, which prolongs the network’s lifespan. The model uses several

hyperparameters, which help determine the optimal clusters and cluster heads. The grid

search method is used to find the value of the optimal parameter. The grid search method

exhaustively explores all the possible combinations of the hyperparameters and selects the

best result. This identifies the best combination of hyperparameters and ‘locks’ them for

further uses. The proposed method works as follows:

1. The optimal number of clusters is selected using the Silhouette method.

2. Initial clustering is performed. In the beginning, the initial energy level of all the

nodes is almost the same, so only spatial information is used for the clustering.

3. One node in each cluster is selected as cluster head (based on some parameters).

4. Nodes start the data transmission to their heads, and heads aggregate all the data and
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transmit it to the base station. The data transmission through the cluster head process

is continuous till the energy level of the nodes in any of the clusters remains less than

a particular threshold.

5. Secondary clustering is performed. Now, some of the nodes in the network have less

remaining energy, so they are restricted from participating in the cluster formation

process to avoid uncertainty. The secondary clustering includes remaining energy

with the spatial information of nodes.

6. Data transmission and secondary cluster head selection processes are continuous until

all nodes in the cluster exhaust their energies beyond a set threshold.
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Condition 1: RE > CH_Threshold for any members
Condition 2: RE < CH_Threshold for all nodes
Condition 3: All nodes dead

Z*: Some nodes are still alive, but they can not become
the CH due to exhibiting RE < CH_Threshold

Z*

Figure 5.1: Flow Diagram: Proposed Cluster Head Selection method
Note: The proposed cluster head (CH) selection protocol initialises nodes randomly
throughout the network, forms dynamic clusters and selects optimal CHs using a weighted
objective function. The weights are updated using the Grid-search method. For initialis-
ing grid parameters, the method uses clustering algorithms, RE (residual energy), distance
to the BS (DBS), distance to centroid (DC), Connectivity (Cn), and cluster head threshold
(CHThreshold). The Silhouette method is used to find the optimal number of clusters in the
proposed method. The CHs transmit the data until the RE reaches a certain threshold.
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There are several hyperparameters used for finding the optimal results, which include: a)

The clustering algorithms (for both initial and secondary clustering), b) weights assigned for

four cluster head selection parameters (residual energy, distance from node to base station

and centroid of cluster, and node connectivity), c) threshold of residual energy for changing

the cluster heads.

5.2.1 Determining the optimal cluster numbers

This approach transmits data from each node to its cluster head (CH) and from there

to the base station (BS). The careful formation of clusters is essential to minimize the

overall energy consumption during data transmission. The first step in cluster formation

is determining the optimal number of clusters, denoted as K throughout the chapter.

However, selecting the optimal number of clusters is a complex task with no definitive

solution. The two most widely used techniques for this are the Elbow Method [67] and the

Silhouette Method [68], both of which assess the Cohesion and Separation factors among

nodes. Cohesion refers to the compactness within a cluster, while separation represents the

distance between nodes in different clusters. High cohesion and separation values are key

indicators of well-formed clusters.

5.2.1.1 Elbow method

The Elbow Method considers a range of candidate values for the number of clusters (K) by

applying the K-Means algorithm to form clusters for each K value. Then, it calculates the

average distance between each node and the centroid of its allotted cluster. This process is

repeated for all possible K values, and the results are plotted, as shown in Figure 5.2 (a).

The optimal K is identified when the average distance sharply decreases and starts to level
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off, creating a curve resembling a hand’s ‘elbow’ (as the name of the method). In Figure

5.2 (a), the optimal K is denoted as ↵3. While effective for smaller K values, the Elbow

Method becomes less reliable as K increases. Larger K values lead to smaller clusters,

causing the average distance to flatten and approach zero, making it difficult to determine

the optimal K.

5.2.1.2 Silhouette method

The Silhouette method for identifying the optimal number of clusters is harnessed to over-

come this limitation of the Elbow method. The Silhouette method considers the distance

of a node from all the other nodes within its cluster (similar to the Elbow method). This is

loosely termed as cohesion. In addition, the Silhouette method also uses the distance of each

node from all the nodes in the neighbouring clusters. Here, a set of possible cluster numbers

(K) is also chosen, and clustering is performed using K-means for each of these K values.

The average distance of each node i from all other nodes in its cluster is computed as ai,

and the average distance of i from all nodes in its closest neighbouring cluster is computed

as bi. Using ai and bi, a Silhouette co-efficient for node i, si is computed following Equa-

tion 5.1. A value of si close to +1 indicates high cohesion and high separation, whereas a

value close to �1 indicates low cohesion and separation and is undesirable. The average of

all Silhouette coefficients provides the score and is plotted against the number of clusters

K. The value of K that corresponds to the Silhouette score closest to +1 is chosen as the

optimal value of K. In Figure 5.2 (b), the optimal value of K is ↵8.

Silhouette coefficient (i) =
(bi � ai)

max (ai, bi)
(5.1)

5.2.2 Initial Clustering

Once the optimal number of clusters, k, is chosen, the first round of clustering is initiated,

with the spatial location of the WSN nodes serving as the basis for cluster formation. We

comprehensively explore various clustering algorithms to identify the most suitable one.

This exploration follows a grid-search approach and tuning other appropriate hyperparame-
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Figure 5.2: Optimal number of cluster selection methods
Note: Graphs for determining the optimal number of clusters. a) The Elbow method selects
the point where the distance value starts decreasing rapidly. b) The Silhouette method
selects the point with the highest silhouette score.

ters, allowing us to identify the best clustering algorithm for the task.

5.2.3 Cluster Head Selection

Once the K clusters are formed, a cluster head (CH) is selected within each cluster based

on the following four essential parameters to ensure the most suitable CHs:

• Residual Energy (RE): RE is the most critical parameter in selecting a CH. Nodes

with higher RE will likely stay longer, providing extended network operation.

• Distance from Cluster Centroid (DC): This parameter determines the distance be-

tween the node and the centroid of the respective cluster. The CH should be near

the cluster centroid, as most nodes are typically close. This minimizes transmission

energy, improving overall energy efficiency.

• Distance from Base Station (DBS): This shows the distance from a node to the base

station (BS). A CH situated closer to the BS will consume less energy when transmit-

ting data, as all communication with the base station occurs via the CH.

• Connectivity (Cn): Connectivity directs to the number of nodes for which the candi-

date node is the closest neighbour. A cluster head with high connectivity will transmit
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DC = ( (XC � Xnode)2, (YC � Ynode)2)

Initial Clustering or Cluster1: Initial energy of all 
nodes are high, so Cluster1 are formed with spatial 
information only.

Residual energy or RE: Remaining energy of a node 
at the end of each round. The RE is critical while 
selecting any cluster head. 

Distance to the cluster centroid or DC: 
Determines the distance between the individual 
node to its particular cluster centroid. This 
parameter helps to reduce energy consumption 
between other nodes and cluster head.

Distance to the Base station or DBS: 
Determines the distance between an individual 
node to the Base Station. This parameter helps to 
reduce the energy consumption between the cluster 
head and base station. 

DBS = ( (XBS � Xnode)2, (YBS � Ynode)2)
Connectivity or Cn: This represents the number of 
nodes connected to a node. It helps to find the 
most connected node within the cluster. If the 
most connected node becomes cluster head, 
then average transmission power (from nodes to 
cluster head) is automatically reduced.

Cluster head threshold or CH_Threshold: Decide which RE any node can remain the cluster head. If a node 
can become a cluster head till death, some nodes die very early, affecting the network’s lifetime. It also 
helps to avoid re-clustering overhead after each round.

Secondary Clustering or Cluster2: Process of 
forming the re-clustering. In this, the node’s 
energy is also considered along with spatial 
information at the time of clustering. This 
parameter helps avoid frequent re-clustering and 
improves the network’s lifetime.

Figure 5.3: Parameters used for clustering and cluster head selection.

data more efficiently, helping in a longer network lifetime.

These four factors are weighted and combined to calculate each node’s ”Cluster Head Po-

tential” (CHP) score. The node with the highest CHP is selected as the cluster head. The

formula for calculating the CHP is illustrated in Equation 5.2:

CHP =
REw1 ⇤ Cnw2

Dw3
C ⇤D

w4
BS

(5.2)

The w1, w2, w3, and w4 are weights of hyperparameters systematically optimised alongside

other variables using grid search. The optimal values for these weights are determined and

executed. For a more profound understanding of each factor, refer to the box in Figure 5.3.

5.2.4 Secondary clustering

The Cluster-head selection is performed whenever the energy level of the current cluster

head drops below the predefined residual energy (RE) threshold. This process continues

until no nodes in the cluster exceed the threshold. At that point, a new clustering of the nodes
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is initiated. This secondary clustering process is similar to the initial clustering except that

in addition to the spatial parameter, the residual energy of the nodes is also considered for

the clustering. Various clustering algorithms are evaluated during this phase, with the most

effective one being selected based on its combination with other hyperparameters within

a chosen small sub-space. The newly formed clusters again go through the same iterative

process of CH selection. When the energy level of all the nodes in a cluster drops below the

RE threshold, the re-clustering is performed. The re-clustering process is performed until

all the node’s RE falls below the RE threshold. After that, the nodes transmit their data to

the BS directly through some random path until they have some remaining energy.

a b c d

Figure 5.4: Secondary routing
Note: The figure shows the working of secondary clustering (Cluster2): a) The big cir-
cles represent nodes with residual energy (RE) more than the cluster head threshold
(CH Threshold) implying that they can potentially become cluster heads. The small cir-
cles represent nodes with RE less than CH Threshold. b) Clusters are formed only taking
into account nodes with RE greater than CH Threshold, and from these, a cluster head
(CH) is selected for each cluster. The big circle with an outer line represents the CH. c) The
remaining alive nodes try to join the clusters. d) All alive nodes join clusters whose CH they
are nearest to.

5.2.5 Residual energy threshold

An important hyperparameter that significantly impacts the lifetime of the WSN network

is the Residual Energy (RE) threshold. This threshold defines the minimum percentage of

residual energy required for a node to maintain its position as a cluster head (CH). If a CH’s
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RE drops below this threshold relative to its initial energy, it can no longer act as a CH. The

optimal RE threshold is established through a comprehensive analysis of various threshold

values in combination with other factors and hyperparameters, ultimately identifying the

most effective value for network performance.

5.2.6 Energy model for data transmission

In the proposed work, the energy model used is similar to the LEACH protocol [32]. The

energy required for transmitting and receiving the data packets from source to destination

and the energy used for aggregation by the CHs. The energy required for receiving (eq.

5.3), aggregating (eq. 5.4) and transmitting (eq. 5.5) data is defined as:

Erx(l) = lEelec (5.3)

Eag(l) = lEda (5.4)

Etr(l) =

8
><

>:

·Eelec + l · ✏fs · d2, d  d0

·Eelec + l · ✏mp · d4, d > d0

(5.5)

Here, let d represent the distance between any two nodes, with d0 signifying the reference

distance where communication occurs seamlessly. The energies required for processing l

bits of data are denoted as Erx(l) for receiving, Eag(l) for aggregating, and Etx(l) for trans-

mitting. Communication relies on free space when the distance between devices is below

the threshold (characterized by d2 power loss). However, the multipath fading model is used

if the distance exceeds this threshold, resulting in d4 power loss. The energy consumed by

electronic components, Eelec, is shaped by modulation techniques, signal spreading, and

digital coding, while amplifier energy consumption varies based on distance, described by

✏fs · d2 for free space or ✏mp · d4 for multipath techniques. The reference distance d0 is

calculated as
q

✏fs
✏mp

, where ✏fs and ✏mp represent the energy metrics for the free space and
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multipath models, respectively [69].

Base Station

Cluster 1

Cluster 2

Cluster 3

Cluster 4Cluster 5

Cluster 6

Figure 5.5: Clustering-based routing
Note: The proposed protocol follows both direct and cluster head (CH) communication. If
the distance from the node to BS is nearer than CH (such nodes are represented using green
colour in each cluster), the protocol follows direct communication; In other cases, protocol
follows communication through CH.

5.3 Evaluation

This section compromises the comprehensive evaluation of the proposed data transmission

approach to expand the WSN network’s lifespan. The section includes the simulation as-

sessment for both homogeneous (the WSN nodes having the same capability) and hetero-

geneous (the WSN nodes having different capabilities in terms of initial energy, computa-

tion power, communication range, etc.) nodes. The proposed approach is compared with

our combination of the methods and the different state-of-the-art methods. The proposed

method outperforms simulation results concerning the state-of-the-art methods compared to

different parameters. Later, to check the practicability of the proposed method, real-world

prototypical deployment is also carried out with the help of a small number of nodes.
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5.3.1 Simulation Environment and parameters

The proposed approach and the compared state-of-the-art methods are implemented in

Python programming language. The Google Colab platform is used to execute the pro-

grams. The platform uses Intel(R) Xeon(R) CPU, the Haswell CPU family, 12 GB RAM,

and two CPUs with a Frequency of 2.30 GHz. The table 5.1 demonstrated the values of

various parameters used in the experiments.

Table 5.1: Simulation Parameters

Parameters Values

Data packet size 4000 bits
Eelec

? 50 nJ/bit
EDA

†
5 nJ/bit/signal

✏fs
‡ 10pJ/bit/m2

✏mp
§ 0.0013pJ/bit/m4

d0 87m

Note: Eelec denotes the energy used for transmitting and receiving 1 bit of data, EDA

denotes the energy used for data aggregation, ✏fs denotes the energy used for calculating
the received power in an unobstructed line-of-sight, ✏mp denotes the energy dissipated by
the amplifier for multipath, and d0 is

q
✏fs
✏mp

[69].

5.3.1.1 Hyper-parameters Selection

This section explored all the combinations of hyperparameters using grid search and com-

puted the simulation results. The optimal parameters are chosen for further computation

with state-of-the-art methods based on the simulation results. The initial results are com-

puted on the region of 100⇥100 m2, with 100 nodes having 0.5 Joule initial energy, ran-

domly placed throughout the region. The base station BS is situated in the centre of the

region (i.e. at (50,50)). The five clustering methods (Kmeans [70], Fuzzy C-Means [71],

Agglomerative [72], Gaussian Mixture Model [72], and Self-organising map [73]) are ex-
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plored for both initial and secondary clustering. Figure 5.6 shows the values of all the hy-

perparameters on which the grid search method explored for the results. An extensive Grid

KMeansInitial Clustering

Residual Energy 4 5 6 7 8 9 10

0 1 2 3 4 5

Distance from centroid

Distance from Base Station

Connectivity

Secondary Clustering

Cluster Head Threshold 2.5%

AGG SOM FCM GMM

KMeans AGG SOM FCM GMM

5% 10% 15% 20% 25%

Parameters

Weights

Figure 5.6: Tuning parameters and Weights
Note: Tuning values of different parameters are shown in this figure. The grid search method
uses all the combinations of these parameters, executes the proposed approach, and evalu-
ates the results.

Search was conducted, systematically exploring every possible combination of clustering

algorithms, weights assigned to CH (Cluster Head) selection criteria, and threshold energy

percentages. This comprehensive approach aimed to capture the effect of each combination

on the network’s lifetime. With two stages of clustering and five algorithmic options per

stage, 25 unique combinations of clustering methods were evaluated. Table 5.2 presents the

network performance for each of these 25 configurations, highlighting the impact of differ-

ent clustering strategies on the network’s longevity. The results are computed based on eight

different parameters like: a) The number of transmission rounds at which one-fourth (25%)

of the nodes become inactive, b) the number of transmission rounds at which half (50%)

of the nodes become inactive, c) the number of transmission rounds at which three-fourth

(75%) of the nodes become inactive, d) the number of transmission rounds at all (100%)

of the nodes become inactive, e) The number of data packets transmitted throughout the
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transmission process, f) distance travelled by the data packets (in meters), g) the number

of hops, and f) the number of cluster heads changed. All combination results (initial and

secondary clustering) are shown in Table 5.2, and the best result is highlighted in bold. In

Table 5.2: Performances of the clustering algorithm’s combinations

protocol 25%? 50%? 75%? 100%? DPT † DT ‡(in m) Hops

1 KMeans KMeans 988 1187 1306 3076 81946 2023506 112221
2 FCM FCM 987 1139 1194 3079 84632 1779372 105271
3 GMM GMM 988 1160 1280 3085 84780 2086696 109583
4 AGG AGG 1041 1189 1472 3061 84407 2667696 103896
5 SOM SOM 988 1187 1306 3076 81946 2023506 112221
6 KMeans FCM 1078 1221 1345 3086 78410 2235971 112983
7 FCM KMeans 977 1115 1203 3083 84919 1799206 106899
8 KMeans AGG 1020 1233 1381 3079 81877 2312429 114101
9 AGG KMeans 930 1101 1447 3059 85621 2208149 103525
10 FCM AGG 958 1088 1338 3077 88676 1861678 109964
11 AGG FCM 1003 1204 1392 3072 83932 2388230 101406
12 KMeans GMM 976 1085 1247 3083 84698 1923743 105117
13 GMM KMeans 1011 1144 1249 3069 84354 1888125 107273
14 KMeans SOM 1085 1243 1322 3088 79116 2254810 114788
15 SOM KMeans 740 1122 1565 3079 89366 1865606 101278
16 FCM SOM 1015 1112 1239 3088 86278 1910295 107738
17 SOM FCM 828 1055 1289 3081 86999 1987222 101120
18 FCM GMM 482 705 990 2774 79622 1989558 103453
19 GMM FCM 935 1419 1508 2756 82668 2029349 104524
20 SOM GMM 1196 1760 2257 3050 112742 1559751 105721
21 GMM AGG 1369 1970 2576 2980 142980 1685813 107837
22 SOM AGG 1079 1590 2013 3010 158030 1834176 104461
23 GMM SOM 963 1402 1775 3013 158480 1489400 113950
24 AGG GMM 1301 1742 2151 3030 95791 1383659 103991
25 AGG GMM 957 1520 2000 3035 124402 1430227 101305

Note: 25%?, 50%?, 75%? and 100%? denotes the number of rounds completed until the
death of 25, 50, 75 and 100 percent of nodes. DPT † denotes the number of data packet
travelled, DT ‡ denotes distance travelled by all packets during communication (in meters).

total, the proposed algorithm was executed 226,800 times in the test simulation to determine

and finalise the following optimal hyper-parameter values and clustering options for further
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experiments:

• K-means is selected as the best option for initial clustering.

• Self-Organizing Map (SOM) is the most effective for secondary clustering.

• The best weight for Residual Energy in the Cluster Head (CH) selection is 8.

• The best weight for distance from the centroid is 1.

• The best weight for distance from the Base Station (BS) is 1.

• The best weight for node connectivity is 2.

• The optimal threshold percentage for energy is 5%.

These parameters are also tested across different region sizes and found that the optimal

values remained almost the same as for a 100x100 m² area. Variations in parameter weights

for a few sizes led to minimal changes in performance, with less than a 1.5% difference in

the number of rounds completed (when all the nodes become inactive). Therefore, it’s clear

that investing resources into finding new optimal weights for different region sizes is largely

unnecessary.

5.3.1.2 Impact of Varying Nodes

The results are computed with varying the number of nodes (75, 125, 175 and 225) for six

area sizes (50⇥50, 100⇥100, 150⇥150, 200⇥200, 250⇥250, 300⇥300 m2) for verifying

the efficacy of the proposed method in various node deployment and area sizes. The results

are computed for both homogeneous and heterogeneous (with 10% of nodes with 5% extra

energy) nodes. The weights of the hyperparameters are taken from the subsection 5.3.1.1.

The following conclusions are drawn from the above experiments:
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• The number of rounds that nodes remain alive increases as the number of deployed

nodes increases, mainly due to the formation of more efficient clusters as the number

of nodes increases.

• The number of rounds decreases as the network size increases, as larger areas lead to

sparser node deployment.

• As more nodes are deployed, the number of data packets transmitted, distance trav-

elled, and hop count all increase.

• Generally, these metrics also rise with increasing network size. However, in some

cases, unexpected decreases occur due to the randomness of node deployment, which

are considered anomalies.

5.3.2 Comparison with State-of-the-art methods

The proposed method is compared with two well-known homogeneous cluster head se-

lection methods, LEACH [32] and LEACH-C [33], and three well-known heterogeneous

methods, SEP [34], EAMMH [35], and Z-SEP [36]. The proposed approach to extending

the lifetime of a WSN network is evaluated and compared with existing methods based on

the following five key factors: a) Number of transmission rounds before a percentage of

nodes die: A higher value indicates a more extended network lifetime and is desirable, b)

Average distance per round (in meters) that data packets travel to reach the base station

(BS): A shorter distance is preferable because it reflects a more compact and efficient net-

work, c) Number of data packets transmitted: A higher number signifies greater network

efficiency, which is desirable in networking, d) Frequency of clustering and Cluster Head

(CH) changes: Fewer changes in cluster heads make the network more stable, e) Number

of hops for data to reach the base station: As the distance travelled, fewer hops are better,
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indicating efficient data routing. The later subsections show a detailed comparison based on

each of the parameters.

5.3.2.1 Number of transmission rounds

This criterion measures the number of transmission rounds until a certain percentage of

sensor nodes exhaust their energy. A higher value is desirable, as it represents a higher

lifespan of the sensor nodes. The number of rounds is calculated for four cases: when

25%, 50%, 75%, and 100% of nodes die. Figures 5.7 and 5.8 illustrate the percentage of

node deaths for homogeneous and heterogeneous approaches, respectively. The network’s

performance is ultimately evaluated based on the number of rounds after which all (100%)

nodes die or the network stops functioning. Figure 5.7 clearly shows that the proposed
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Figure 5.7: Homogeneous Protocols: Number of Rounds at percent of nodes died

method outperforms the two well-known homogeneous cluster head selection methods for

initial energy levels 0.5, 1.0, 1.5, and 2.0 J for the area sizes from 50⇥50 to 300times300
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Figure 5.8: Heterogeneous Protocols: Number of Rounds at percent of nodes died

m2. Similarly, Figure 5.8 represents that, the proposed method surpasses the heterogeneous

methods like SEP, EAMMH, and Z-SEP with an significant margin.

5.3.2.2 Average distance per Round

This criterion assesses the total distance (in meters) travelled by all the data packets. The

total distance is then divided by the number of rounds for each protocol and calculated using

Equation. 5.6.

=

Pn
i=1 (Dist(node, CH) +Dist(CH,BS))

n
(5.6)

Here, n shows the number of transmission rounds, Dist(node, CH) is the distance (in me-

ters) between the node and the Cluster Head, and Dist(CH, BS) is the distance (in meters)

between the Cluster Head and the Base Station. A smaller average distance is preferable, as

97



CHAPTER 5. PRESERVING WSN ENERGY VIA CLUSTER BASED ROUTING

it reflects the efficiency of the approach. The proposed method optimises transmission by

considering both direct communication and routing through the Cluster Head (CH), mini-

mizing unnecessary transmissions and extending the lifespan of the network. Figures 5.9

and 5.10 illustrate the average distance (in meters) travelled by data packets per round for

homogeneous and heterogeneous protocols, respectively. Figures 5.9 (a)-(d) and 5.10 (a)-(d)

0

600

1200

1800

A
ve

ra
ge

 d
is

ta
nc

e 
pe

r r
ou

nd

Kmeans_SOM

Network Size in Meter2

50
x5

0

10
0x

10
0

15
0x

15
0

20
0x

20
0

25
0x

25
0

30
0x

30
0

LEACH_C LEACH

(a) Initial Energy 0.5J

0

600

1200

1800

2400

Av
er

ag
e 

di
st

an
ce

 p
er

 ro
un

d Kmeans_SOM LEACH LEACH_C

Network Size in Meter2

50
x5
0

10
0x
10

0

15
0x
15

0

20
0x
20

0

25
0x
25

0

30
0x
30

0

(b) Initial Energy 1.0J

0

600

1200

1800

A
ve

ra
ge

 d
is

ta
nc

e 
pe

r r
ou

nd

Kmeans_SOM

Network Size in Meter2

50
x5

0

10
0x

10
0

15
0x

15
0

20
0x

20
0

25
0x

25
0

30
0x

30
0

LEACH_C LEACH

(c) Initial Energy 1.5J

0

600

1200

1800

A
ve

ra
ge

 d
is

ta
nc

e 
pe

r r
ou

nd

Kmeans_SOM

Network Size in Meter2

50
x5

0

10
0x

10
0

15
0x

15
0

20
0x

20
0

25
0x

25
0

30
0x

30
0

LEACH_C LEACH

(d) Initial Energy 2.0J

Figure 5.9: Homogeneous Protocols: Average Distance per Round

present the results for homogeneous and heterogeneous protocols with initial sensor node

energies of 0.5 J, 1.0 J, 1.5 J, and 2.0 J, respectively. The results clearly demonstrate that

the proposed approach (KMeans SOM) outperforms existing methods to reduce the average

distance travelled by packets per round.
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Figure 5.10: Heterogeneous Protocols: Average Distance per Round

5.3.2.3 number of data packets transmitted

This criterion evaluates the number of data packets transmitted throughout the transmission

process. Each approach transmits data packets of 4000 bits. The number of transmitted
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packets reflects the network’s sensing capability—networks transmitting more packets will

likely capture more information about the phenomenon. The total number of packets trans-

mitted is calculated using Equation 5.7.

=
nX

i=1

(PTi(node, CH) || PTi(node,BS)) (5.7)

Here, PT(node, CH) demonstrates the number of data packets transmitted from a node to

the respective cluster head, and PT(node, BS) exhibits the number of data packets transmit-

ted from the node to the base station. Figures 5.11 and 5.12 show the count of data packets

transmitted for homogeneous and heterogeneous protocols, respectively. Figures 5.11 (a)-
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Figure 5.11: Homogeneous Protocols: Number of Data Packets sent

(d) present results for homogeneous protocols, while Figures 5.12 (a)-(d) show results for

heterogeneous protocols, with initial sensor node energies of 0.5 J, 1.0 J, 1.5 J, and 2.0 J, re-

spectively. The results demonstrate that the proposed KMeans SOM protocol outperforms

existing methods like LEACH and LEACH-C regarding the number of data packets trans-

mitted to the base station.

The proposed KMeans SOM approach performs well compared to SEP and EAMMH but

falls slightly short in a few cases compared to Z-SEP. It is likely because Z-SEP’s node

distribution is not random—around 90% of nodes are concentrated near the base station,

and transmission energy is proportional to the distance from the base station. These factors

likely enable Z-SEP to transmit more packets in specific scenarios.
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Figure 5.12: Heterogeneous Protocols: Number of Data Packets sent

5.3.2.4 Frequency of cluster formation

The frequency of clustering during transmission is an important factor. Frequent clustering

is undesirable in real-world scenarios due to the high energy and computational costs in-

volved in performing them. Figures 5.13 and 5.14 display the number of clusters formed for

homogeneous and heterogeneous protocols, respectively. Homogeneous protocols (such as
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Figure 5.13: Homogeneous Protocols: Number of times clustering process initiated

LEACH and LEACH-C) and heterogeneous protocols (like SEP, EAMMH, and Z-SEP) re-

quire new clusters to form after every transmission round, which is impractical in real-world

applications. These protocols select new Cluster Heads (CHs) based on certain parameters,

and nodes join the nearest CH based on Euclidean Distance. In difference, the proposed

approach only performs clustering when the residual energy of all nodes in a cluster falls

below a specified threshold (RE threshold).
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Figure 5.14: Heterogeneous Protocols: Number of times clustering process initiated

5.3.2.5 Frequency of change of cluster heads

Most of the cluster-based approaches route data through the cluster heads to the base station

and often require changing the cluster heads after each transmission round. In contrast, the

proposed approach changes the cluster heads only when the residual energy of the current

cluster head falls below a threshold. Equation 5.8 outlines the parameter used to calculate

the number of cluster heads.

=
nX

i=1

(CHi \ CHi�1) (5.8)

Where, CHi and CHi-1 represent the set of cluster heads in the current and previous rounds,

respectively. The frequency of CH changes is calculated as the sum of the differences in the

current and previous rounds. Requiring a change in cluster heads after every transmission

round, as many existing approaches do, is impractical and energy-intensive. Figures 5.15

and 5.16 illustrate the number of CH changes for homogeneous and heterogeneous proto-

cols, respectively. In Figure 5.15 (a)-(d), we compare the number of cluster head changes
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Figure 5.15: Homogeneous Protocols: Number of Cluster Heads Changed

for homogeneous protocols throughout the transmission process with initial energy values
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of 0.5 J, 1.0 J, 1.5 J, and 2.0 J. While LEACH and LEACH-C change cluster heads after ev-

ery transmission round, the proposed KMEANS SOM approach only changes them based

on residual energy. This results in a significant difference between KMEANS SOM and the

existing protocols. Figures 5.16 (a)-(d) compare the proposed approach with existing ones
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Figure 5.16: Heterogeneous Protocols: Number of Cluster Heads Changed

regarding cluster head changes in heterogeneous networks with initial node energies of 0.5

J, 1.0 J, 1.5 J, and 2.0 J. While protocols like SEP, EAMMH, and Z-SEP change cluster

heads after every transmission round, the proposed KMEANS SOM changes cluster heads

based on residual energy, not after each round.

5.3.2.6 Number of Hops

The number of hops is another essential parameter for the comparison of the proposed ap-

proach with the existing approaches. The energy used to transmit packets generally in-

creases with the distance covered. The distance covered by data packets may or may not be

in exact conformance with hop counts, but hop counts do give a fair idea of the same and,

consequently, energy expended. For example, consider two nodes: one near the base station

and one farther away. If both nodes transmit data over two hops, the distance covered in

each hop will differ. Although hop counts alone may not fully reflect the distance in com-

plex scenarios, they still offer valuable insights in simpler networks. The number of hops

can be calculated as:

=
nX

i=1

kX

j=1

Ri

0

B@nodej

8
><

>:

count = 1, if direct communication

count = c+ 1, communication via CH

1

CA (5.9)
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Here, Ri represents the ith round. In each round i, the number of hops is calculated for all k

nodes that are still alive. The parameter counts one hop for nodes that communicate directly

and c + 1 hops (where c is the number of intermediate CHs) for nodes that communicate

through the Cluster Head (CH).
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Figure 5.17: Homogeneous Protocols: Number of Hops

Figures 5.17 (a)-(d) show the number of hops by homogeneous protocols during the

complete transmission process for an initial energy of 0.5 J, 1.0 J, 1.5 J, and 2.0 J, respec-

tively.
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Figure 5.18: Heterogeneous Protocols: Number of Hops

Figures 5.18 (a)-(d) show the number of hops by heterogeneous protocols during the

complete transmission process for an initial energy of 0.5 J, 1.0 J, 1.5 J, and 2.0 J, respec-

tively.

5.3.2.7 Performance Gain

This section evaluates the performance gain of the proposed method compared to existing

methods based on above mentioned parameters for both homogeneous and heterogeneous
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methods. The performance gain obtained from different sizes of the region of interest is

normalised and summarised in Table 5.3. The gain of the proposed approach is normalised

to one and compared with the existing methods as: Table 5.3 compares the performance

Table 5.3: Performance Gain

Homogeneous Heterogeneous
Parameter LEACH LEACH-C Proposed? SEP EAMMH Z-SEP Proposed?

R
§ 0.3313 0.4091 1 0.5388 0.4577 0.5691 1

ADpR
†

0.3951 0.5717 1 0.9839 0.5338 0.8403 1
DPT † 0.3584 0.3901 1 0.8490 0.7988 0.7988 1
Hops

¶
0.3932 0.6783 1 0.9520 0.5909 0.7718 1

FoCF
†

0.1038 0.0147 1 0.0106 0.0084 0.0087 1
FoCCH

‡
0.0107 0.0002 1 0.0067 0.0079 0.0063 1

Note: R§ denotes the number of rounds completed until all the nodes die; ADpR
†

denotes
the average distance covered per round; DPT † denotes the number of data packets trans-
mitted; FoCF

⇤
denotes the frequency of cluster formation; FoCCH

‡
denotes the frequency

of change of cluster heads; and Hops
¶

denotes the number of hops.

of algorithms across different factors. For R
§ , ADpR

†
, DPT †, and Hops

¶
, higher

values indicate better performance. Conversely, for FoCF
⇤

and FoCCH
‡
, lower values

are preferable (with performance measured as the reciprocal of the actual values). The

normalization process has been structured to set the proposed method’s parameter value to

1, with corresponding values for other methods adjusted proportionally.

5.4 Limitations

Routing through cluster heads is currently the most effective approach, as packets can be

directed along the best paths via these heads. However, after several transmission rounds,

the energy of cluster heads decreases, and they can no longer serve in this role. This necessi-

tates a new cluster head selection, which is time-consuming and energy-intensive. Without
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software-defined networking (SDN) for updates, manual node updates become an unman-

ageable task. Additionally, the grid-search method used for optimisation is thorough and

time-consuming but ultimately identifies the most optimal values.

5.5 Conclusion and Future Work

This chapter introduces a novel way to save the wireless sensor nodes (WSNs) energy using

routing via cluster heads. The proposed technique works effectively with homogeneous and

heterogeneous nodes, improving the lifespan of the network. It involves forming clusters

and routing data through the cluster head. An exhaustive search was conducted to select the

best clustering algorithms and hyper-parameters for choosing cluster heads. The approach

was validated to be more effective than existing methods for extending network life and was

successfully tested through a real-world prototype implementation. In the future, machine

learning will replace grid-search for hyper-parameter tuning.
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Wireless sensor network nodes are mostly run with batteries which are finite sources of

energy; thus preserving energy is the primary requirement of such networks. This is es-

pecially true when the network is deployed in an outdoor and inaccessible terrain where

battery replenishment is challenging.

In this thesis, we explore the exercise of localisation and energy-efficient routing in

WSN which are widely believed to be the most energy-intensive tasks. Localisation com-

prises establishing the location of unknown nodes “UN” using a minimal number of beacon

nodes “BN” (whose locations are known in advance). Localisation is performed using two

approaches both of which are easily practicable in the real world: the first performs lo-

calisation utilising the RSSI values (for distance measurements) and the AoA (for angle

measurements) between the BN and UN. The method is effective in finding the location of

UNs in an iterative manner and works well for large outdoor locations. The method was

compared with a large number of settings and also with other methods, and was found to

outperform state-of-the-art methods on every comparison parameter. The primary goal was

to localise the network efficiently using a small number of beacon nodes, and our proposed

method was able to achieve this.
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Similarly, the other localisation approach comprises the use of a machine learning-based

algorithm, Random Forest (RF), in combination with a multi-iteration localisation approach.

The RSSI dataset to support this endeavor was first created within our Institute premises

and was used to train the model. Not only is the proposed approach easy to implement

and flexible, it also outperforms state-of-the-art methods and is able to localise the nodes

more efficiently. The effectiveness of the proposed work was also tested in a real-world

environment thus validating its efficacy. The primary motive of this approach is to perform

the localisation in large outdoor locations where energy becomes the primary constraint.

Routing is the process of transmitting data from source to destination through an opti-

mal path. There are quite a few methods for routing, but clustering-based routing is widely

considered the most efficient of these. In this thesis, a dynamic cluster head-based routing

approach was proposed for energy-efficient data transfer between nodes to the base sta-

tion via the cluster heads. The method follows two types of cluster formation wherein the

primary clusters are formed based on the location of the nodes, and secondary clustering

is done based on both the location and the remaining energy of the nodes. After forming

clusters, the cluster heads are selected using parameters like energy remaining, distances,

and connectivity within the network. The weights of these parameters and the clustering

algorithm are selected through an exhaustive grid search over various potential weights

and algorithms. The main objective of the algorithm is to form a routing algorithm that

can increase the lifespan of the network. The proposed method was found to successfully

outperform state-of-the-art methods in simulation as well as in real-world prototypical de-

ployments across settings.

An innovative set-up that we put together in our localisation efforts comprises a stepper

motor bound with a laser for Angle of Arrival (AoA) calculations. The set-up was quite

effective in 2-dimensional environments that did not have physical interferences.
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Some future directions of the research that we contemplate comprise machine learning-

based localisation; due to the high cost and variable size of the regions, there are a few

datasets available for outdoor localisation. In the future, some publicly available datasets

will be required so the machine learning models can be better trained on them, increasing

the prediction accuracy and making it more flexible to work in extensive regions. The new

datasets can be made using the existing WiFi infrastructure and can be easily collected in any

publicly available place. The localisation accuracy can be further improved by collecting

the temporal dataset, which helps in analysing the signal behaviour in different times. New

range measurement algorithms can be incorporated for localisation and routing algorithms

because previous methods consume comparatively more energy. In the proposed cluster-

based routing approach, optimal weights are selected with the help of an exhaustive search

method (i.e., Grid search), which is an extensive search method that searches for the optimal

values after running the algorithm for every combination. If the nodes themselves do the

whole process, then it consumes lots of energy. Instead of the Grid search method, in future,

another heuristic method (like Simulated Annealing (SA) or Tabu Search (TS)) can be used,

which can save the searching time and consume fewer resources for optimal parameter

selection. The cluster formation process can also be improved by using other parameters

than distance measures (like distance to base station and centroid), which change rapidly

when we try to perform it with nodes that change their positions dynamically.

There are a few applications in which our proposed methods of localisation and routing

can be used. The localisation can be used for localising the fire or flood in large outdoor

environments like a forest, and it can also be used for monitoring the movements of troops

on the battlefield. The routing can be widely used in mobile ad-hoc networks.
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