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SYNOPSIS

Study on population dynamics has long been a subject of interest. Within the realm

of population ecology, significant focus is gathered by the dynamics exhibited by inter-

actions of predator and prey species. Understanding the complex behaviors that arise

in these systems is crucial for predicting and managing ecosystems. Continuous and

discrete-time models are indeed two commonly used mathematical frameworks in popu-

lation dynamics. While both types of models have their own applications and are used

in describing appropriate ecosystem dynamics. There has been an increasing recognition

that discrete-time models can provide a more appropriate and realistic representation of

certain ecological systems. Discrete-time models are particularly well-suited for popu-

lations with non-overlapping generations. Examples of such populations include annual

plants or insect species with one generation per year. One key feature of discrete-time

models is that they can capture complex and rich dynamics even in lower-dimensional

systems.

The study of population dynamics dates back to the year 1202 with Leonardo Fi-

bonacci, who introduced a recursive sequence to model rabbit population growth. Euler’s

Introduction in Analysin Infinitorum (1748) explored sequences and exponential func-

tions, implicitly introducing the idea of geometric growth. Later, in 1760, he applied

mathematical reasoning to demography in Recherches générales sur la mortalité et la

multiplication du genre humain, introducing the concept of geometric population growth

and offering early insights into single-species dynamics. Later, in 1798, Thomas Malthus

gave biological and socio-economic meaning to Euler’s mathematical ideas by proposing

that populations grow exponentially [1]. To incorporate environmental limitations, Pierre-

François Verhulst introduced the logistic model in the 1838. Between 1910 to 1926, Alfred

Lotka and Vito Volterra developed a model called the Lotka- Volterra model describing

interactions between prey and predator species, helped establish mathematical ecology as

an active area of research [2, 3].

Another important continuous-time model is the Rosenzweig-MacArthur (RM) model

(1963) [4] given by,
dx

dt
= rx

(
1− x

K

)
− axy

1 + aTx
,

dy

dt
= y

(
bax

1 + aTx
− d

)
,



where x and y represents the prey and predator population at time t, respectively, r is

the intrinsic growth rate of the prey, and K is the environmental carrying capacity of the

prey. The parameters a and T represent the predator’s attack rate and handling time,

respectively, while b is the efficiency with which predators convert consumed prey into

biomass, and d is the specific mortality rate. All parameters mentioned above and other

parameters appearing throughout the thesis are positive.

We define α = 1/T , h = 1/aT , and β = bα, which converts the above model into:

dx

dt
= rx

(
1− x

K

)
− αxy

h+ x
,

dy

dt
= y

(
βx

h+ x
− d

)
.

This transformed system will serve as the foundational model for our analysis throughout

chapters 2 and 3.

The continuous-time Rosenzweig–MacArthur (RM) model can exhibit either stable

coexistence or oscillatory behavior (limit cycles). To develop discrete-time counterparts

of such continuous-time population models, researchers have employed various discretiza-

tion techniques, with the forward Euler scheme being among the most commonly used.

Hadeler and Gerstmann [5] showed that although the discrete-time version of the RM

model retains the same number of equilibrium points as the continuous-time system, it

can display significantly more complex dynamics, including period-doubling and chaos.

Using the integral step size (δ) as a bifurcation parameter, several studies have reported

dynamical changes in their models as δ is varied [6]. In contrast, Liu and Cai [7] fixed

the step size at unity and instead investigated the effects of varying other parameters,

revealing rich dynamical phenomena such as period-doubling cascades, period bubbling,

quasiperiodicity, chaotic attractors, and multistability. Zhang and Wang [8] analyzed a

discrete-time predator–prey model—also derived via the forward Euler method—featuring

a weak Allee effect in the predator. They studied codimension-one bifurcations, Marotto’s

chaos, and the qualitative nature of fixed points under non-hyperbolic and degenerate

conditions.

The key guiding questions for this thesis are:

(i) What types of dynamical behaviors can arise in discrete-time unstructured preda-

tor–prey systems?
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(ii) How the stock pattern changes under the influence of species enrichment and har-

vesting?

(iii) How does varying dispersal affect stability and lead to the emergence of complex

dynamics in spatially structured predator-prey systems?

To address these questions rigorously, in Chapter 1, we provide a detailed overview of

the mathematical framework, theory, and tools that will be employed throughout the

thesis. We begin by describing the discretization processes in detail. We then determine

the fixed (or equilibrium) points of the system and present their associated stability

theorems. Following this, we discuss bifurcations, Lyapunov exponents, quasiperiodicity,

and chaotic dynamics in discrete-time models.

Chapter 2 presents a comprehensive analysis of dynamical behaviors of a discrete-time

system obtained by discretizing the revised continuous-time RM model using the Forward

Euler’s scheme. The model is given by:

xn+1 = xn + rxn

(
1− xn

K

)
− αxnyn

h+ xn

− q1e1xn,

yn+1 = yn +
βxnyn
h+ xn

−myn − q2e2yn,

with initial condition x0 = x(0) > 0 and y0 = y(0) > 0. Here, xn and yn are population size

of prey and predator species at any time n(n ∈ N), respectively. Further, e1 (q1) and e2

(q2) are harvesting efforts (catchability coefficients) of the prey and predator population,

respectively. The key findings of this chapter are as follows:

(i) The system exhibits a Neimark–Sacker bifurcation, which leads to complex dy-

namical behaviors such as quasiperiodicity, period-bubbling phenomena, periodic

windows, and chaotic dynamics.

(ii) Increasing the carrying capacity of the prey species, often referred to as species en-

richment, paradoxically destabilizes the system. This increase in carrying capacity

also leads to a decrease in the predator mean population, resulting in the paradox

of enrichment (Figure 0.0.1a).

(iii) Two distinct forms of bistability are identified: (a) coexistence of two different

periodic attractors and (b) co-stability of a periodic and a chaotic attractor.

(iv) Harvesting either species sufficiently suppresses chaotic dynamics and restores equi-

librium stability.
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(v) Increasing the mortality rate of predators under certain conditions could lead to

an increment in the mean population size of the predator, demonstrating a hydra

effect (Figure 0.0.1b).

(a) (b)

Figure 0.0.1: (a) Paradox of enrichment: mean predator population vs carrying ca-

pacity. (b) Hydra effect: mean predator population predator harvesting rate. Equilibrium

biomass in red color and mean predator population in blue color

In Chapter 3, we discretize the continuous-time RM model using the method of piece-

wise constant argument [9]. The model is given by:

xn+1 = xnexp

(
r
(
1− xn

K

)
− αyn

h+ xn

− q1e1

)
,

yn+1 = ynexp

(
βxn

h+ xn

−m− q2e2

)
,

where the parameters have same meaning as aforementioned. This discretization scheme

preserves the non-negativity of the solutions. We examine the dynamics through bifur-

cation diagram, phase portraits, Lyapunov exponent diagram, and isoperiodic diagram

to show the intricate behavior of the models. Unlike the previous model discussed in

Chapter 2, the current model exhibits a sequence of bifurcations in which the carrying

capacity first stabilizes and then destabilizes the coexisting equilibrium through a flip

bifurcation followed by a Neimark–Sacker bifurcation. The model can exhibit two, three,

and even four stable coexisting attractors, depending on the initial conditions exhibiting

multistability (Figure 0.0.2).

We also study the influence of harvesting on the dynamics in two-parameter space.

The effort e1e2− plane is divided into three main regions: the region of instability of

coexisting equilibrium, the region where stability the coexisting equilibrium occurs, and

xiv



the predator extinction region. Neimark-Sacker is generated by the separatrix of the region

of instability and the stability of the coexisting equilibrium. The predator extinction

curve separates the domain of a stable coexisting equilibrium from the region where

predators go extinct. Notably, organized periodic structures appear when varying both

(a) (b)

Figure 0.0.2: (a) Bifurcation diagram featuring multistability: two bifurcation curves

with different colors (red and blue). (b) Basin of attraction with quadruple attractors (see

black, magenta, yellow and green colored regions).

harvesting rates simultaneously. The analysis reveals an infinite array of periodic Arnold

tongues (Figure 0.0.3a) with period-adding sequences in non-periodic regions. Another

notable organized periodic structure observed in the chaotic regime is the shrimp structure

(popularized by J.A.C. Gallas [10]), characterized by a head and four tails (Figure 0.0.3b).

These structures exhibit self-similarity and display a period-doubling phenomenon, which

is part of a period-doubling cascade that ultimately leads to chaos.

In chapter 4, we examine the role of dispersal in two-patch predator-prey systems

and its impact on stability and species coexistence. Dispersal, a fundamental ecological

process, encompasses the movement of individuals, or organisms from one location to

another within an ecosystem or landscape. Incorporating spatial dynamics into population

models, particularly through the concept of dispersal, has become increasingly crucial

in the face of habitat fragmentation and climate-induced shifts in species distributions.
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(a) (b)

Figure 0.0.3: Maximum Lyapunov exponent diagram featuring (a) Arnold tongues

and (b) a shrimp structure.

Understanding these dispersal patterns is critical for predicting species’ responses to global

climatic change. In complex ecosystems, dispersal affects species coexistence, predator-

prey interactions, and the formation of spatial patterns. This influence has profound

implications for biodiversity conservation and ecosystem management.

Many studies have been dedicated to the exploration of logistic coupled maps in

terms of nonlinear dynamics. However, over time, these maps are used to understand

the population dynamics of the species living in different sites. A typical continuous-time

predator-prey model with two homogeneous patches can be proposed as:

ẋ = rx
(
1− x

K

)
− αxu

h+ x
+ d1(y − x),

u̇ = su
(
1− u

L

)
+

βxu

h+ x
+ d2(v − u),

ẏ = ry
(
1− y

K

)
− αyv

h+ y
+ d1(x− y),

v̇ = sv
(
1− v

L

)
+

βyv

h+ y
+ d2(u− v),

with initial population x(0) > 0, u(0) > 0, y(0) > 0 and v(0) > 0. The prey (and

predator) species, denoted by x (and u) and y (and v) represent population sizes in patch

1 and 2, respectively. We assume that the prey and predator in each patch evolve following
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a logistic growth rate. Therefore, the predator is generalist in nature. The carrying

capacity of the prey and predator species are denoted by r and s, respectively. The

dispersal rates of the prey and predator species between patches are denoted by d1 and

d2, respectively.

We discretize this continuous-time model using forward Euler’s scheme, hence, the

model in consideration is:

xn+1 = xn + rxn

(
1− xn

K

)
− αxnun

h+ xn

+ d1(yn − xn),

un+1 = un + sun

(
1− un

L

)
+

βxnun

h+ xn

+ d2(vn − un),

yn+1 = yn + ryn

(
1− yn

K

)
− αynvn

h+ yn
+ d1(xn − yn),

vn+1 = vn + svn

(
1− vn

L

)
+

βynvn
h+ yn

+ d2(un − vn),

with initial population x0 = x(0), u0 = u(0), y0 = y(0) and v0 = v(0). Some main results

of this chapter are:

(i) The stability zone with bifurcation curves is established by simultaneously varying

both prey and predator dispersal rates.

(ii) This work identifies scenarios where dispersal leads to catastrophic bifurcations,

causing sudden and irreversible shifts in population dynamics (Figure 0.0.4).

(iii) In our model, ten invariant closed curves emerge from the period-10 orbit with

dispersal. Such findings have profound implications for conservation biology, where

species dispersal is often manipulated through habitat corridors and controlled

relocation.

(iv) For the first time, we discover the bistability between the coexisting equilibrium

and a period-2 orbit in such a coupled population model.

(v) In the unstable zone, we find Arnold tongues and shrimp structures. This chap-

ter provides an in-depth exploration of the effect of dispersal on a discrete-time

predator-prey model.

Overall, the investigations in the thesis delve into intricate dynamical behaviors of

discrete-time predator-prey systems, focusing on the interplay between multistability,

chaos, bifurcations, and dispersal-induced phenomena. By employing mathematical mod-

eling, bifurcation analysis, and numerical simulations, the evolution of predator-prey dy-

namics under varying environmental and interaction constraints is thoroughly examined.
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(a) (b)

Figure 0.0.4: (a) Bifurcation diagram featuring a smooth flip bifurcation, where a

period-2 orbit transitions to two invariant closed curves. (b) Bifurcation diagram featur-

ing a non-smooth flip bifurcation. Here, the period-10 orbit gives birth to two invariant

closed curves.

The work also presents several ecological principles, including complex stock patterns,

species enrichment, and the hydra effect.
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CHAPTER 1

Introduction





Mathematical modeling is a powerful tool for analyzing real-life phenomena without

disturbing natural systems. Differential and difference equations are used for modeling

diverse processes across various disciplines, including physics, chemistry, biology, and

engineering. Combining the mathematical analysis with real-world data provides more

realistic results and insights without damaging the environment’s integrity. In the con-

text of biological and ecological phenomena, population models play an essential role as

they have many applications, as they help understand, predict, and manage population

dynamics in biological, ecological, and social systems. Here are some key areas where

population modeling is applied:

1. Ecology conversation: The population models help to predict the critical threshold

for species survival. These models help understand the interaction between the prey

and predator species and their effects on ecological stability. The prediction of the

species’ behavior in case of habitat or climate changes can be made by analyzing

the theoretical models. It helps with the precautions to take to avoid extinction or

ecological instability.

2. Epidemiology : Mathematical models in epidemiology are helpful for understand-

ing, forecasting, and predicting outbreaks and applying control measures. The

pioneering work in the field of infectious disease modeling is provided by R.M.

Anderson [17].

3. Fisheries management : Fish harvesting leads to over-exploitation of fish stocks.

The researchers developed fisheries management strategies that consider the in-

tricate dynamics of marine ecosystems. The term ”Maximum Sustainable Yield

(MSY)” was introduced in fisheries science to represent the largest yield that can

be sustainably harvested from a fish population, based on its growth in isolation

and modeled using logistic growth dynamics [18]. Several fisheries have adopted

this method to preserve the fishing stocks. The Gordon-Schaefer model is a widely

used bio-economic model in fisheries management that combines ecological and eco-

nomic principles to determine the optimal use of fishery resources. It is named after

H. Scott Gordon (1954) and Milton Schaefer (1957), who independently developed

the theoretical framework.

4. Marine protected areas : Population modeling helps design and Marine Protected

Areas evaluate MPAs to conserve marine biodiversity, protect endangered species,
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and ensure the sustainable use of marine resources. MPAs are designated regions

of oceans, seas, or coastal waters. These areas limit or regulate human activities,

such as fishing, tourism, and industrial exploitation, to prevent habitat degradation

and over-exploitation.

1.1 History of Population Models

In the early history of population modeling, Leonardo of Pisa, later nicknamed Fibonacci

in the 13th century, introduced a famous modeling problem in his arithmetic text Liber

Abaci (1202). The exercise involves a hypothetical rabbit population with a simplified

reproduction pattern. It begins with a single pair of immature rabbits (male and female)

at the start of a breeding season. After one season, this pair matures and, from then on,

produces one new pair of immature rabbits every season while remaining fertile indefi-

nitely. Each new pair follows the same cycle, maturing after one season and reproducing

each subsequent season.

Let Pn represent the number of rabbit pairs at the n-th reproductive stage, and nor-

malize the reproductive period to a time step of 1, the dynamics can be expressed as:

Pn+1 = Pn + Pt−1, n = 2, 3, . . . ,

with initial conditions P0 = 1 and P1 = 1. This recursive formula generates the sequence:

1, 1, 2, 3, 5, 8, 13, . . . , known today as the Fibonacci sequence, where each term is the sum

of the two preceding ones. This can be considered as the first population model. Another

notable figure in the history of population dynamics is Leonhard Euler, a prolific mathe-

matician and physicist. In 1748, he published the seminal treatise Introductio in Analysin

Infinitorum (Introduction to the Analysis of the Infinite), which laid the foundation for

modern mathematical analysis. Later, in 1760, Euler applied mathematical reasoning

to demography in his paper Recherches générales sur la mortalité et la multiplication du

genre humain, where he introduced the concept of geometric population growth, offering

early insights into single-species population dynamics.

1.2 Single species continuous-time model

Population models have long provided a framework to understand how species grow and

interact within ecosystems. Euler’s treatment of geometric growth involved the formu-

lation of mathematical expressions to describe how populations increase in size when
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resources are unlimited and reproduction occurs continuously. Euler’s work was revolu-

tionary as it demonstrated the mathematical principles underlying population growth,

influencing later scholars such as Thomas Malthus and Pierre-François Verhulst, who in-

corporated these ideas into more complex models. His contributions laid the groundwork

for quantitative approaches in demography, ecology, and resource management, high-

lighting the significance of mathematical modeling in understanding biological systems.

Early research, in the late 18th century, focused on single-species dynamics, beginning

with Thomas Malthus’s An Essay on the Principle of Population published in 1798 [1],

take on exponential growth that assumes populations grow without limits when resources

are abundant. Later, researchers interpreted the Malthusian model as described by the

differential equation:

dN

dt
= rN,

where N is the population size at time t and r is the per capita growth rate, assumed to

be constant. This model predicts unbounded exponential growth, leading to the solution

N(t) = N0e
rt, where N0 is the initial population size. However, Malthus also noted that

real populations rarely grow without limits, as resources are finite and environmental

factors impose constraints.

Recognizing these limitations, Pierre-François Verhulst [19] introduced the logistic

growth model in 1838, which incorporates the concept of carrying capacity, or the maxi-

mum population size that the environment can sustain. The logistic model is given by:

dN

dt
= rN

(
1− N

K

)
,

where K is the carrying capacity. This model captures the idea that as N approaches

K, the growth rate slows and eventually stabilizes, resulting in an S-shaped (sigmoidal)

growth curve. The logistic growth model became a cornerstone in population ecology, as

it reflects the self-limiting nature of population growth due to resource competition and

environmental constraints, providing a more realistic framework than the exponential

model for understanding population dynamics in isolated systems. In 1920, Raymond

Pearl and Lowell Reed rediscovered the logistic equation and initiated a vigorous campaign

to establish it as a fundamental ”law of nature” in population dynamics.

The Gompertz model, introduced by Benjamin Gompertz in 1825 [20], is a widely

recognized empirical model that analyses the mortality tables for describing the human
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age distribution. The Gompertz function operates on the assumption that the mortality

rate increases exponentially with age. As a result, the function represents the number of

individuals surviving to a given age as a function of age. It has found many applications,

particularly in modeling tumor growth.

1.3 Continuous-time predator-prey models

Following the foundational work on single-species models, researchers turned their atten-

tion to the interactions between multiple species, leading to the development of predator-

prey models. These models aim to capture the feedback dynamics that arise when one

species (the predator) depends on another species (the prey) for survival. Early mathemat-

ical formulations of prey-predator interactions were introduced in the early 20th century

by Alfred Lotka (an American biophysicist) and Vito Volterra (an Italian mathematician

and physicist), resulting in the well-known Lotka-Volterra model.

1.3.1 Lotka-Volterra model

The Lotka-Volterra (LV) model is a foundational framework to study population ecology,

describing the interactions between predator and prey species through a system of differen-

tial equations. This model was independently developed by Alfred Lotka in 1925 and Vito

Volterra in 1926. Lotka’s work on the model emerged from his research on chemical reac-

tions, where he noticed that predator-prey interactions could be described analogously to

reactant interactions. In his book Elements of Physical Biology (1925) [2], Lotka applied

these ideas to biological systems, presenting the model as a way to understand population

oscillations in predator-prey dynamics.

Volterra [3], meanwhile, came upon the equations after studying the biomass pattern

of fish populations in the Adriatic Sea. Volterra formulated a mathematical model to cap-

ture how predators and prey interact, showing that, under certain conditions, populations

of both species oscillate in regular cycles. The model is given by the system:

dx

dt
= αx− βxy,

dy

dt
= δxy − γy,

where x and y represent the prey and predator population, α and γ are the per capita

growth and death rates of prey and predators, respectively, and β and δ represent the

rates at which predators encounter prey and convert them into predator biomass.
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The Lotka-Volterra model provided a mathematical basis for understanding predator-

prey interactions and demonstrated how two populations could cyclically fluctuate without

external influences. Although the model makes simplifying assumptions—such as constant

rates and no resource limits—it has been pivotal in advancing ecological theory and has

inspired numerous extensions to study more complex and realistic ecological dynamics.

1.3.2 Logistic Lotka-Volterra model

The logistic Lotka-Volterra model is an adaptation of the traditional LV predator-prey

system that incorporates density-dependent limitations on prey growth. The model is

given by

dx

dt
= rx

(
1− x

K

)
− axy,

dy

dt
= baxy − dy,

where x(t) and y(t) denote the prey and predator populations at time t, respectively.

The prey population grows logistically with intrinsic growth rate r and carrying capacity

K, while a is the predation rate coefficient, b is the conversion efficiency of prey into

predator offspring, and d is the specific death rate of predators.

In contrast to the classical Lotka-Volterra model, which assumes exponential growth

of prey in the absence of predators, the logistic version accounts for limited resources by

introducing a carrying capacity. The classical LV model shows oscillatory behavior, specif-

ically closed orbits around a non-trivial interior equilibrium, while the logistic model can

exhibit damped oscillatory, or even non-oscillatory dynamics depending on parameters.

1.3.3 Rosenzweig-MacArthur model

The Rosenzweig-MacArthur (RM) model [4] is an extension of the classic Lotka-Volterra

predator-prey model, introduced by Michael L. Rosenzweig and Roy H. MacArthur in

the 1960s to address some limitations of the original model. The Lotka-Volterra model

assumes a linear functional response, meaning that predator consumption increases indefi-

nitely with prey density. However, in natural systems, predators often exhibit a saturating

or “Type II” functional response, where consumption rate plateaus as prey density in-

creases due to factors like handling time. The Rosenzweig-MacArthur model is presented

by the following system of equations:
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dx

dt
= rx

(
1− x

K

)
− axy

1 + aTx
,

dy

dt
= y

(
bax

1 + aTx
− d

)
,

where x represents the prey population, y represents the predator population, r is the

intrinsic growth rate of the prey, and K is the carrying capacity of the environment for

the prey. The parameters a and T represent the predator’s attack rate and handling time,

respectively, while b is the efficiency with which predators convert consumed prey into

offspring, and d is the predator’s mortality rate. Taking α = 1
T
, h = 1

aT
, and β = bα, the

model can be written as:

dx

dt
= rx

(
1− x

K

)
− αxy

h+ x
,

dy

dt
= y

(
βx

h+ x
− d

)
.

We will use this form of RM model throughout this thesis.

The Rosenzweig-MacArthur model introduced new ecological insights by predicting

conditions under which predator-prey systems could exhibit stable equilibrium, sustained

oscillations. This model has been influential in theoretical ecology, as it demonstrates the

complexity of predator-prey interactions and highlights the importance of incorporating

realistic functional responses into ecological models.

There are many other predator-prey models like the Leslie-Gower model (1960) [21]

and Beddington–DeAngelis model (1975) [22]. We can obtain other predator-prey models

by incorporating different functional responses, fear effect, Allee effect, hunting corpora-

tion and so on.

1.4 Single species discrete-time models

Discrete-time models are particularly well-suited for species with non-overlapping gener-

ations, where individuals from one generation do not coexist with those from the next.

Examples include many insects, such as certain species of moths and cicadas, as well

as annual plants that complete their life cycles within a single season. In these cases,

population changes occur in discrete steps, typically reflecting seasonal breeding.

Early work in the 1950s and 1960s recognized that continuous-time models, while

insightful, did not capture the step-wise changes often observed in species like insects,
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annual plants, and certain fish. The pioneering contributions of ecologists such as Robert

May in the 1970s popularized discrete-time approaches by highlighting their ability to

generate complex dynamics, including oscillations and chaos, in response to simple rules

in continuous-time model. May’s work,entitled Stability and Complexity in Model Ecosys-

tems (1973) [23], highlighted the power of discrete models in understanding population

dynamics. He [24] discussed the discrete-time logistic growth model:

xn+1 = rxn(1− xn), (1.4.1)

where xn is the population size at time step n. This foundational work spurred extensive

research on discrete ecological models, particularly for species with distinct generational

structures. In 1954, Bill Ricker [25], proposed another key model for populations with

non-overlapping generations, often used in fish and insect studies. The Ricker model

(1954, 1958) is given by:

xn+1 = xne
r(1−xn

K ),

where the exponential term allows for more variability, producing oscillations, and even

chaos at high growth rates. Together, these discrete-time models are essential for studying

the complex population dynamics.

The Beverton-Holt model is a fundamental discrete-time population model used in

ecology to describe the dynamics of a population with density-dependent regulation [26].

Originally introduced by Beverton and Holt (1957) in the context of fisheries, this model

provides insights into population regulation under limited resources. The model is given

by the recurrence relation

xn+1 =
R0xn

1 + xn/M
,

where xn represents the population size at time step n, R0 is the per-generation prolif-

eration rate, and M is a parameter related to resource availability. The model exhibits

a carrying capacity K = (R0 − 1)M , which represents the maximum sustainable pop-

ulation size in the environment. Unlike chaotic or oscillatory discrete-time models, the

Beverton-Holt model always converges to a stable equilibrium, making it particularly use-

ful for studying populations where overcompensation effects are minimal. Its application

extends beyond fisheries to various ecological and conservation studies where resource

constraints shape population growth.
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1.5 Discretization process

The discretization process in population modeling involves converting continuous-time

models into discrete-time formulations to solve the continuous differential equations using

difference equations. Discretization is commonly achieved by replacing the continuous-

time derivatives with finite difference approximations or by applying suitable discrete

analogs that preserve most of the behavior of the continuous model. Some discretization

methods are:

(i) Forward Euler’s scheme:

The Forward Euler’s scheme is one of the simplest and most widely used methods

for discretizing differential equations. Mathematically, the Forward Euler’s method

for a autonomous differential equation
dx

dt
= f(x) is expressed as:

xn+1 = xn +∆t · f(xn),

where xn is the state x at time t = tn and ∆t is the step size. This method is

computationally simple and easy to implement but can lead to numerical instability

if the time step ∆t is too large or if the system exhibits stiff behavior. Despite its

limitations, the Forward Euler’s scheme is widely used for its simplicity and as a

starting point for more advanced discretization techniques in solving differential

equations.

(ii) Method of Piecewise Constant Argument:

One way to discretize a continuous-time population model is by using the piecewise

constant argument method as introduced by Shah (1983). Consider the continuous-

time system given by the following equations:

dx

dt
= xf(x(t)),

The system can be rewritten as:

1

x(t)

dx(t)

dt
= f(x[t]),

where [t] denotes the integer part of t, meaning t ∈ [n, n+1) corresponds to [t] = n

for n = 0, 1, 2, . . .. Therefore, x(t) can be written as x(n) for t ∈ [n, n+ 1).

Under this formulation, the system is updated with constant rate functions over
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each time interval t ∈ [n, n+ 1). Thus, the system becomes:

1

x(t)

dx(t)

dt
= f(x(n)),

where f(x(n) is constant over the interval t ∈ [n, n+ 1).

We now integrate the system over the interval t ∈ [n, n+ 1). This results in:

ln(x(t))

∣∣∣∣∣
t

n

= f(x(n))(t− n),

which simplifies to: x(t) = x(n) exp (f(x(n))(t− n)) ,

By taking t → n+ 1, we obtain the discretized model:

x(n+ 1) = x(n) exp (f(x(n))) ,

which is the desired discretized model.

(iii) Non-Standard Finite Difference (NSFD) scheme:

The Non-Standard Finite Difference (NSFD) scheme is a method for discretizing

differential equations [27], to solve in a cost effective manner. Unlike standard

methods, which use simple linear approximations, NSFD introduces modifications

to account for the system’s nonlinearity and stability properties, ensuring more

accurate and feasible numerical solutions. These adjustments prevent issues like

negative populations and nonphysical oscillations, making NSFD especially useful

in modeling real-world systems. We begin with a continuous differential equation

describing the dynamics of the system, where the rate of change of the dependent

variable x(t) is given by a function f(x(t)),

dx

dt
= f(x(t)).

Here, we discretize the continuous equation using a standard finite difference method,

where the time derivative is approximated by the difference between the function

values at consecutive time steps.

dx(t)

dt
≈ x(t+ h)− x(t)

ϕ(h)
⇒ x(t+ h) = x(t) + ϕ(h)f(x(t))

with 0 < ϕ(h) < 1 and ϕ(h) → 0 as h → 0. We modify the function f(x(t)) in a

non-local representation to ensure more accurate and stable results in the numerical

solution. This avoids issues like negative values for variables that should always be

positive. We will show this process of NSFD through an example soon.
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1.6 Discrete-time models using discretization

1.6.1 Single species models

The well-known single species models discussed in section 1.4 can be obtained by dis-

cretizing the continuous-time logistic growth model, viz,

dN

dt
= rN

(
1− N

K

)
,

using different discretization schemes. Let f(N) = rN
(
1− N

K

)
.

(i) Derivation of the Logistic Map: Euler’s method for numerical integration is given

by:

Nn+1 = Nn + h
df

dt
.

Substituting the logistic equation:

Nn+1 = Nn + h · rNn

(
1− Nn

K

)
.

Define the normalized population: xn = Nn/K. Thus, we rewrite Nn in terms of

xn: Nn = Kxn. Substituting this into the discrete equation:

Kxn+1 = Kxn + hrKxn(1− xn).

i.e., xn+1 = xn + hrxn(1− xn)

= xn(1 + hr)− hrx2
n

⇒ hr

1 + hr
xn+1 =

hr(1 + hr)

1 + hr
xn

(
1− hr

1 + hr
xn

)

Take
rh

1 + rh
xn = Xn, then we have,

Xn+1 = (1 + rh)Xn(1−Xn),

which is the standard logistic map: Xn+1 = aXn(1−Xn), with a = 1 + rh.

(ii) Derivation of the Ricker model : Following the approach of the method of piecewise

constant argument, the logistic growth equation is rewritten as:

1

N(t)

dN(t)

dt
= r

(
1− N([t])

K

)
,
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where [t] is the integer part of t, and t ∈ (0,∞). Then, [t] = n for t ∈ [n, n + 1).

Hence, N([t]) = x(n). The equation can be rewritten as:

1

N(t)

dN(t)

dt
= r

(
1− N(n)

K

)
.

Integrating the system on the intervals t ∈ [n, n+ 1) with n = 0, 1, 2, ..., we obtain

ln(N(t))|tn = r

(
1− N(n)

K

)
(t− n).

Note that, N(t) > 0, for positive initial population in continuous logistic map.

N(t) = N(n)er(1−N(n)/K)(t− n).

By taking t → n+ 1, we derive the discretized model,

Nn+1 = Nne
r(1−Nn/K).

We redefine as: xn = Nn/K.

Substituting this into the recurrence relation, we get the well-known Ricker model:

xn+1 = xne
r(1−xn).

(iii) Derivation of the Beverton-Holt Model : Applying the standard forward difference

approximation to logistic growth model, with h = 1 and non-local representation

of N2 as Nn+1Nn, we obtain,

Nn+1 −Nn = rNn − r
Nn+1Nn

K
.

Nn+1 =
(r + 1)Nn

1 + r
Nn

K

Before changing the notation, we introduce xn as a normalized form of Nn to

simplify the mathematical expressions and align with standard discrete-time pop-

ulation models. Defining R0 = (r + 1) and M =
K

r
, we obtain:

xn+1 =
R0xn

1 + xn/M
,

which is the Beverton-Holt model.
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1.6.2 Multi-species models

As we show in the last section, the independent single-species discrete-time models can be

derived from the continuous-time logistic growth model. One example of an independent

discrete-time multi-species model is the Nicholson-Bailey model, which serves as a stan-

dard model for host-parasitoid interactions. The Nicholson-Bailey model [28] is a classic

discrete-time predator-prey model developed by A. J. Nicholson and V. A. Bailey in the

1930s to describe host-parasitoid interactions. Unlike typical predator-prey models, which

focus on predators that consume multiple prey, the Nicholson-Bailey model specifically

addresses parasitoids, which lay eggs in or on host organisms, resulting in the death of

the host. The model describes population changes over generations, assuming that each

parasitoid targets one host and that host populations do not overlap across generations.

The model is defined by the equations:

Ht+1 = rHte
−aPt ,

Pt+1 = Ht

(
1− e−aPt

)
,

where Ht and Pt represent the host and parasitoid populations at time t, r is the reproduc-

tive rate of the host, and a is the searching efficiency of the parasitoid. The Nicholson-

Bailey model was groundbreaking in demonstrating how specific interactions, such as

host-parasitoid relationships, could lead to population oscillations. Hupfaker [29] exam-

ined the interactions between the six-spotted mite Eotetranychus sexmaculatus and the

predatory mite Typhlodromus occidentalis, offering empirical support for the Nicholson-

Bailey model.

We can obtain the multi-species discrete-time models by discretizing the continuous

models using the methods discussed in previous section 1.5. In particular, our thesis, we

will derive discrete-time models from Rosenzweig-MacArthur system using Euler’s and

method of piecewise constant argument in chapters 2 and 3, respectively.

1.7 Preliminary stability results

For any m-dimensional discrete-time model,

Xn+1 = F (Xn), X ∈ Rm,
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the fixed (or equilibrium) points are given by

Xn+1 = Xn=⇒F (Xn) = Xn.

The stability of the equilibrium points (X∗) is determined by the eigenvalues of the

Jacobian matrix

J(X∗) =
∂F

∂X
(X∗)

derived from the model. The following lemmas characterize the nature of stability of the

equilibria.

Lemma 1.1. [30] Consider a fixed point (x∗, y∗) of a discrete-time system. Let λ1 and

λ2 be the eigenvalues of the Jacobian matrix evaluated at this point. Then:

(I) The point (x∗, y∗) is locally asymptotically stable (a sink) if |λ1| < 1 and |λ2| < 1;

(II) It is unstable (a source) if |λ1| > 1 and |λ2| > 1;

(III) It is a saddle point (partially stable) if one eigenvalue lies inside the unit circle and

the other outside, i.e., either |λ1| > 1 and |λ2| < 1, or |λ1| < 1 and |λ2| > 1;

(IV) The point is non-hyperbolic if at least one eigenvalue has modulus exactly equal to

one, that is, |λ1| = 1 or |λ2| = 1.

Lemma 1.2. [30] Let the Jacobian matrix at the equilibrium point (x∗, y∗) have charac-

teristic polynomial given by C(λ) = λ2− aλ+ b, and let λ1 and λ2 be its eigenvalues (i.e.,

the roots of C(λ) = 0). Then:

(I) Both eigenvalues lie inside the unit circle, i.e., |λ1| < 1 and |λ2| < 1, if and only if

C(1) > 0, C(−1) < 0, and b < 1;

(II) Both eigenvalues lie outside the unit circle, i.e., |λ1| > 1 and |λ2| > 1, if and only

if C(1) > 0 and b > 1;

(III) The equilibrium is a saddle point (i.e., exactly one eigenvalue has modulus greater

than one) if and only if C(1) > 0 and C(−1) < 0;

(IV) Exactly one eigenvalue lies on the unit circle (with modulus one) while the other

does not if and only if C(1) > 0, C(−1) = 0, and a ̸= 0, 2;

(V) The eigenvalues are complex conjugates with modulus one if and only if C(1) > 0,

a2 − 4b < 0, and b = 1.
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1.8 Bifurcations in discrete-time models

Discrete-time models can exhibit complex dynamical phenomena through bifurcations,

where small changes in parameters lead to qualitative shifts in system behavior. Two

prominent types of bifurcations in these models are the flip bifurcation and the Neimark-

Sacker bifurcation. In a flip (or period-doubling) bifurcation, as a parameter crosses a

critical value, a stable fixed point becomes unstable, giving rise to a stable period-2 cycle.

The Neimark-Sacker bifurcation, on the other hand, occurs when a fixed point loses

stability and gives birth to an invariant closed curve, inducing quasiperiodic behavior.

These bifurcations are essential for understanding the onset of oscillatory and chaotic

dynamics in discrete-time models, providing insight into phenomena like predator-prey

cycles and the transition to complex ecological behaviors.

Lemma 1.3. [31] Consider a discrete-time system

Xn+1 = F (Xn), X ∈ Rm,

with a fixed point X∗. The system undergoes different types of bifurcations based on the

eigenvalues of the Jacobian matrix J(X∗) evaluated at X∗:

(i) Flip (Period-Doubling) Bifurcation: A flip bifurcation occurs when one eigen-

value of J(X∗) satisfies λ = −1. This results in the birth of a period-2 orbit from

the coexisting equilibrium.

(ii) Neimark-Sacker (Torus) Bifurcation: A Neimark-Sacker bifurcation occurs

when a complex conjugate pair of eigenvalues satisfies |λ1,2| = 1, λ1,2 = e±iθ, θ ̸=

0, π. This leads to the emergence of an invariant closed curve around the fixed point.

(iii) Saddle-Node (Fold) Bifurcation: A saddle-node bifurcation occurs when one

eigenvalue satisfies λ = 1. This results in the creation or annihilation of two fixed

points.

In the bifurcation diagram of the logistic map (1.4.1), a period-doubling bifurcation

marks the onset of increasingly complex dynamics as r is raised. For values of r < 3, the

system has a stable fixed point, but as r increases beyond the critical threshold r = 3,

this fixed point loses stability, giving rise to a stable period-2 cycle. As r continues to

increase, a series of period-doubling bifurcations occurs, with each successive bifurcation

introducing cycles of progressively higher periods (period-4, period-8, etc.). This cascade

16



continues until the system reaches a chaotic regime (Figure 1.8.1). As we have seen

earlier, logistic map is used to characterize single species dynamics. This route to chaos

via period-doubling is a universal phenomenon observed not only in population models

but also in many other nonlinear systems, illustrating how simple deterministic equations

can produce rich and intricate patterns of behavior.

Figure 1.8.1: Flip Bifurcation in logistic map xn+1 = rxn(1− xn) for 2.5 < r < 4.

To demonstrate a Neimark–Sacker bifurcation, a two-dimensional map is required. In

this thesis, we will discuss this bifurcation in detail across different chapters.

1.9 Chaos and its quantification

Strogatz [32] defines chaos as “Chaos is aperiodic long-term behavior in a determinis-

tic system that exhibits sensitive dependence on initial conditions.” “Aperiodic long-term

behavior” refers to trajectories that do not converge to fixed points, periodic cycles,

or invariant closed curves as time progresses toward infinity. The term “deterministic”

implies that the system evolves without any random inputs or noise affecting the dynam-

ics.“Sensitive dependence on initial conditions” means that nearby trajectories diverge

at an exponential rate, making long-term prediction practically impossible despite the

deterministic nature of the system. One classic example is the logistic map (1.4.1), where

chaos appears as the growth rate r increases beyond a critical threshold. The study of
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chaos in population models provides valuable insights into population stability, extinction

risks, and the resilience of ecosystems under varying environmental conditions.

The Lyapunov exponent is a key measure for identifying chaos in dynamical systems,

capturing the rate at which nearby trajectories diverge over time. In a one-dimensional

system, such as the logistic map, the Lyapunov exponent Λ quantifies the average expo-

nential rate of separation between two initially close points. If Λ > 0, trajectories diverge,

indicating chaotic behavior, while Λ < 0 suggests that trajectories converge, leading to

stable, predictable dynamics. In case of Λ = 0, the sytem shows quasiperiodic behavior

which is defined as follows:

Definition 1.4. [32]: Quasiperiodic motion is characterized by the presence of two or

more incommensurate frequencies. The motion never repeats but it is not chaotic—the

trajectory lies on a torus and is bounded.

In higher-dimensional systems, multiple Lyapunov exponents exist, corresponding to

each dimension of the phase space. The largest Lyapunov exponent typically determines

the system’s overall stability: a positive value signifies chaos, while all negative exponents

indicate convergence to a fixed point or a stable cycle. Calculating the full spectrum

of Lyapunov exponents allows for a more detailed understanding of complex systems,

revealing structures like strange attractors and quasiperiodic behavior. Lyapunov expo-

nents thus provide a quantitative tool to differentiate between order and chaos, making

them essential for analyzing stability and unpredictability.

Definition 1.5. [11]: Let f be a smooth map of the real line. The Lyapunov number

L(x1) of the orbit x1, x2, x3, . . . is defined as

L(x1) = lim
n→∞

(|f ′(x1)| · |f ′(x2)| · · · |f ′(xn)|)
1
n ,

if this limit exists. The Lyapunov exponent Λ(x1) is then given by

Λ(x1) = lim
n→∞

1

n
(ln |f ′(x1)|+ ln |f ′(x2)|+ · · ·+ ln |f ′(xn)|) ,

if this limit exists.

Note that Λ(x1) exists if and only if L(x1) exists and is nonzero, with lnL(x1) = Λ(x1).

For a map on Rm, each orbit has m Lyapunov numbers, which measure the rates of

separation from the current orbit point along m orthogonal directions.
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Figure 1.9.1: Evolution of initial infinitesimal disk into ellipse after n iterations in

two-dimensional maps.(Source: Figure5.1, page194 [11])

.

Definition 1.6. [11]: For m-dimensional maps, let f be a smooth map on Rm, let

Jn = Dfn(v0), and for k = 1, . . . ,m, let rkn represent the length of the k-th longest

orthogonal axis of the ellipsoid JnN (N is a unit circle in Rm) along an orbit with initial

point v0. The value rkn thus measures the rate of expansion or contraction near the orbit

of v0 over the first n iterations. The k-th Lyapunov number of v0 is then defined as

Lk = lim
n→∞

(rkn)
1
n ,

if this limit exists. The k-th Lyapunov exponent of v0 is Λk = lnLk. By definition, the

Lyapunov exponents are ordered such that Λ1 ≥ Λ2 ≥ · · · ≥ Λm, and correspondingly,

L1 ≥ L2 ≥ · · · ≥ Lm.

The Lyapunov exponent spectrum for a four-dimensional continuous and discrete-time

system is stated below.

Dynamics Lyapunov Exponent Spectrum

Fixed point Λ1 < 0,Λ2 < 0,Λ3 < 0,Λ4 < 0

Periodic cycle Λ1 = 0,Λ2 < 0,Λ3 < 0,Λ4 < 0

Quasiperiodic Λ1 = 0,Λ2 = 0,Λ3 < 0,Λ4 < 0

Chaos Λ1 > 0,Λ2 < 0,Λ3 < 0,Λ4 < 0

Table 1.9.1: Lyapunov Exponent Spectrum for different dynamical behaviors of a

continuous-time system [12].
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Dynamics Lyapunov Exponent Spectrum

Fixed point or periodic cycle Λ1 < 0,Λ2 < 0,Λ3 < 0,Λ4 < 0

Quasiperiodic Λ1 = 0,Λ2 < 0,Λ3 < 0,Λ4 < 0

Chaos Λ1 > 0,Λ2 < 0,Λ3 < 0,Λ4 < 0

Table 1.9.2: Lyapunov Exponent Spectrum for different dynamical behaviors of a

discrete-time system [13–16].

To find the Lyapunov exponents, the algorithm provided by Wolf et al. [33] is used in

this thesis.

1.10 Outline of the Thesis

This thesis consists of five chapters. Chapter 1 is the introduction containing the brief

history of population models and preliminaries required for the analysis done in rest of

the chapters. We discuss three discrete-time predator-prey models on rest of the chapters.

In chapter 2, we study a discrete-time version of the classical RM predator–prey model,

derived using the forward Euler’s method with unit step size. Our goal is to understand

how varying model parameters, such as prey carrying capacity and harvesting rates, influ-

ence coexisting equilibrium stability and long-term behavior. One of the main questions

we ask is: Does increase in nutrient supply of the prey always help the predator, or can

it make the system unstable? We find the conditions for which the system experiences a

Neimark-Sacker bifurcation. As the carrying capacity increases, the system goes through

a Neimark–Sacker bifurcation, leading to complex patterns such as quasiperiodic motion,

periodic windows, period-bubbling, and chaos. Next, we look at how different types of

long-term behaviors (like periodic or chaos) can coexist depending on the initial condition.

We also study the basins of attraction for different types of multistability. Finally, we vary

the harvesting rate of prey or predator independently and examine whether it makes the

system stable or induces new complex dynamics. We calculate the mean density under

the influence of harvesting and find the presence of hydra effects, the recently highlighted

paradoxical phenomena.

Chapter 3 investigates a discrete-time predator–prey system derived from the same

classical Rosenzweig–MacArthur model using the piecewise constant argument. This dis-

cretization scheme maintains the non-negativity of the solutions which was not the case in
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the discrete-time model in chapter 2. Also, increase carrying capacity in chapter 2 leads

to a Neimark-Sacker bifurcation, we would like to investigate that if this discretization

scheme can induce flip bifurcation at the coexisting equilibrium or whether increase in

carrying capacity can lead to stabilization of the coexisting equilibrium. These questions

motivate us to discretize the same model using the method of piecewise constant argu-

ment. The aim is to explore how variations in prey carrying capacity and harvesting

efforts influence the system’s dynamics. We focus on identifying and analyzing differ-

ent types of bifurcations at equilibrium, including complex behaviors such as periodicity,

quasiperiodicity, and chaos. The study also examines the emergence of multistability and

the structure of basins of attraction when multiple stable states coexist. Furthermore,

we explore the dynamics in two-parameter spaces involving prey and predator harvesting

rates, with special attention to the appearance of organized structures such as Arnold

tongues and shrimp-like patterns. Finally, we consider the ecological implications of

predator harvesting, including the possibility of counter-intuitive responses such as the

hydra effect.

Chapter 4 focuses on a discrete-time predator–prey model in a homogeneous two-

patch environment, incorporating the dispersal of both prey and predator species. The

model assumes that within each isolated patch, both the species have logistic growth

and the predation process is followed by the Holling type-II functional response. The

main objective is to study how prey and predator dispersal, considered independently

and jointly, affect the existence and stability of equilibria and the overall dynamics of the

system. We analyze various bifurcations and transitions that arise as dispersal rates are

varied. Particular attention is given to exploring periodic, and quasiperiodic as well as

complex spatial dynamics. A two-parameter space analysis is also conducted to examine

the effects of coupled dispersal rates on system behavior. Additionally, we investigate

the population stock patterns of both species, aiming to gain insights into the ecological

implications of movement in spatially structured environments.

In Chapter 5, we summarize all findings from all this thesis. Therein, we also outlines

potential avenues for future research, highlighting areas of interest from both mathemat-

ical and ecological dynamics perspectives.
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CHAPTER 2

A discretized Rosenzweig-MacArthur model with harvesting

using forward Euler’s scheme





2.1 Introduction

In this chapter ∗, we analyze a discretized model of the continuous-time Rosenzweig-

MacArthur predator-prey system with harvesting. One of the ways to discretize the

continuous system is using the forward Euler’s scheme with integral time step, say δ,

δ > 0. Several researchers such as Hadeler and Gerstmann [5], Salman et al. [34], Cheng

and Cao [35], Hu and Cao [36], Liu and Xiao [37], Rana and Kulsum [38], Ajaz et al. [6],

and reference therein have used this scheme for discretization and varied δ as a bifurcation

parameter. Hu and Cao [36] stated that changing the integral step size, δ,makes difference

in global and local stability of the corresponding discrete-time system. As a special case,

Liu and Cai [7] used a fixed integral step size (δ = 1) in their discrete model, which

exhibited complex dynamics such as invariant circles, superstable phenomena, period-

doubling cascades, and chaotic sets. An alternative discretization method, employing the

technique of piecewise constant arguments for differential equations, is presented by Din

[39], Ishaque et al. [40], Khan [41], and the references therein. In these discretized systems,

they demonstrated the non-negativity and uniform boundedness of solutions, as well as

the existence and uniqueness of positive steady states, which are challenging to prove using

Euler’s discretization method. Rech [42] compared two discrete-time predator-prey models

obtained from a same continuous-time system using the above two discretization schemes.

He observed that the stability region in two-parameter plane were somewhat similar over a

wide range of parameter space, showing chaos, quasiperiodicity, and periodicity. However,

the system obtained using Euler’s discretization offers a large domain of unbounded orbits

which ”escape” to infinity.

The increment of carrying capacity of prey species may lead to predator extinction.

This phenomenon is called as the paradox of enrichment [43–47]. Weide et al. [46] reported

that in a Nicholson-Bailey framework based discrete-time predator-prey model, increase in

carrying capacity destabilizes the system. Recently, Pattanayak et al. [47] observed that

increasing carrying capacity of the resource level species results in extinction of species at

* This chapter based on the following article: Rajni, Bapan Ghosh, Multistability, chaos and mean

population density in a discrete-time predator–prey system, Chaos, Solitons & Fractals, 162 (2022),

112497.
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higher trophic level (bottom-up effect). They showed that varying the carrying capacity

induced bistability into the system.

The effect of harvesting on the population dynamics models has been a matter of

great importance. It is necessary to find an ecologically stable method for harvesting

the maximum yield with minimum effort. The systems, including the harvesting factor,

show different kinds of bifurcations and complex behavior depending on the harvest rate

and strategies. In chaotic systems, increase in harvesting rate leads to the stability of the

stable equilibrium state (Liz and Ruiz-Herrera [48], and Weide et al. [46]). In a population

model incorporating age-specific harvesting, Neverova et al. [49] demonstrated that the

system exhibits different multistable states when adult individuals are harvested.

The chapter is divided into different sections as follows: In section 2.2, we discretize

the continuous-time model. The existence and stability of the fixed points of the system

is discussed in section 2.3. Section 2.4 deals with normal form analysis of bifurcations at

the coexisting equilibrium point of the model. The dynamics of the unharvested (varying

carrying capacity), prey harvested, and predator harvested system for fixed values of other

parameters are examined in section 2.5. In the last section 2.6, conclusion of the whole

analysis is presented.

2.2 Model Formulation

The continuous-time Rosenzweig-MacArthur (RM) model under harvesting is,

dx

dt
= rx

(
1− x

K

)
− αxy

h+ x
− q1e1x,

dy

dt
=

βxy

h+ x
−my − q2e2y.

(2.2.1)

Here, x and y are population densities of prey and predator species at any time t, with

initial population x(0) > 0 and y(0) > 0, respectively. The parameters have the same

meaning as mentioned in subsection 1.3.3. Further, e1 and e2 serve as harvesting efforts

with q1 and q2 as catchability coefficients of the prey and predator population, respectively.

This particular harvesting strategy is referred as constant-effort harvesting [50]. Interested

readers could learn how a constant-yield harvesting may destroy populations as revealed

by Huang et al. [50].

The first way that we use to discretize (2.2.1) by using forward Euler’s scheme with

integral step size as unity. May [24] and Alligood et al. [11] have explored the dynamics
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of the logistic map. However, one can construct a similar logistic map by discretizing the

logistic differential equation with Euler’s scheme. This motivates us to discrete the model

(2.2.1) by using the forward Euler scheme with an integral step size of one. If xn and yn

represent the population size of prey and predator species at time n then the discretized

model is given by

xn+1 = xn + rxn

(
1− xn

K

)
− αxnyn

h+ xn

− q1e1xn,

yn+1 = yn +
βxnyn
h+ xn

−myn − q2e2yn,

(2.2.2)

with initial condition x0 = x(0) and y0 = y(0). The system of difference equations (2.2.2)

can be written in mapping form as follows:x

y

 7−→

x+ rx
(
1− x

K

)
− αxy

h+x
− q1e1x

y + βxy
h+x

−my − q2e2y

 . (2.2.3)

We will be analyzing the different dynamics exhibited by the map (2.2.3) due varying

carrying capacity of prey population, and harvesting effort on both the species separately.

2.3 Fixed points and stability analysis

In this section, we find the fixed points of the map (2.2.3) and determine their stable

behavior. The fixed points of the map (2.2.3) are computed from

x+ rx
(
1− x

K

)
− αxy

h+ x
− q1e1x = x,

y +
βxy

h+ x
−my − q2e2y = y.

Clearly, E0 = (0, 0) is the trivial fixed point and Eb =
(
K(1− q1e1

r
), 0
)
is the boundary

fixed point of system (2.2.2). The coexisting fixed point can be obtained by solving

r
(
1− x

K

)
− αy

h+ x
− q1e1 = 0,

βx

h+ x
−m− q2e2 = 0.

The coexisting fixed point is E∗(x∗, y∗) =
(

h(m+q2e2)
β−m−q2e2

, βh(K(β−m−q2e2)(r−q1e1)−rh(m+q2e2))
Kα(β−m−q2e2)2

)
.

In the unharvested system, the coexisting equilibriumE∗
u(x

∗
u, y

∗
u) =

(
mh
β−m

, βhr(Kβ−mK−mh)
Kα(β−m)2

)
exists iff β > m and K > mh

(β−m)
.

When only prey is harvested (i.e., e2 = 0), E∗
e1
(x∗

e1
, y∗e1) =

(
hm
β−m

, βh(K(β−m)(r−q1e1)−rhm)
Kα(β−m)2

)
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exists iff 0 < e1 <
r(K(β−m)−mh)

K(β−m)q1
.

When only predator is harvested (i.e., e1 = 0),

E∗
e2
(x∗

e2
, y∗e2) =

 h(m+ q2e2)

β −m− q2e2
,
βh(Kr(β −m− q2e2)− rh(m+ q2e2))

Kα(β −m− q2e2)2


exists iff e2 <

K(β −m)−mh

q2(K + h)
.

The local stability of system (2.2.2) can be determined by eigenvalues of Jacobian matrix

J at the fixed points, where

J(x∗, y∗) =


1 + r

1−
2x∗

K

−
αhy∗

(h+ x∗)2
− q1e1 −

αx∗

h+ x∗

βhy∗

(h+ x∗)2
1 +

βx∗

h+ x∗ −m− q2e2

 . (2.3.1)

The characteristic polynomial of J(x∗, y∗) at the equilibrium is given by

C(λ) = λ2 − p(x∗, y∗)λ+ q(x∗, y∗), (2.3.2)

where

p(x∗, y∗) = 2 + r

1−
2x∗

K

−
αhy∗

(h+ x∗)2
+

βx∗

h+ x∗ −m− q1e1 − q2e2,

and

q(x∗, y∗) =

(
1 + r

(
1− 2x∗

K

)
− αhy∗

(h+ x∗)2
− q1e1

)(
1 +

βx∗

h+ x∗ −m− q2e2

)
+
αβhx∗y∗

(h+ x∗)3
.

Using Lemma 1.1 and 1.2 , we explore the following results:

2.3.1 Unharvested system

Proposition 2.1. In the unharvested system (2.2.2), i.e., when e1 = 0 and e2 = 0, then

(i) According to Lemma 1.2 (II), E0 is always unstable.

(ii) From Lemma 1.2 (I), Eb is locally asymptotically stable if 0 < r < 2 and K <

mh

β −m
. The coexisting equilibrium exists only when the second condition is violated,

i.e., when K >
mh

β −m
. Thus, non-existence of interior equilibrium leads to a

stability of the boundary equilibrium.
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(iii) E∗ is locally asymptotically stable (Lemma 1.2 (I)) if

hmr(m2 − 2β −m(2 + β))−K(β −m)(m2 − 4β −mr(2 + β)) < 0

and

m(1−m)(h+K) + βK(2m− β − 1) + hβ(1 +m) < 0.

2.3.2 Prey harvesting

Proposition 2.2. When only the prey is harvested, then using Lemma 1.1 (I) and 1.2

(I),

(i) E0 is locally asymptotically stable if 0 < q1e1 − 2 < r < q1e1 and 0 < m < 2.

The first condition represents prey extinction. Eb exists only when r > q1e1. The

stability of the system shifts to boundary equilibrium as employed effort is smaller

than
r

q1
.

(ii) Eb is locally asymptotically stable if
r − 2

q1
< e1 <

r

q1
and e1 >

1

q1

r −
mrh

K(β −m)

 .

The first condition implies the instability of trivial equilibrium. The coexisting equi-

librium comes into existence and disturbs the stability of Eb when second condition

is negated.

(iii) E∗
e1

is locally asymptotically stable if

hmr(m2 − 2β −m(2 + β))−K(β −m)(m2 − 4β −mr(2 + β))

−Kmq1e1(m
2 − 2m(1 + β) + β(2 + β)) < 0

and

(β −m)(Km(β −m+ 1)(q1e1 − r) + hmr(1−m) +Kβ) < 1.

2.3.3 Predator harvesting

Proposition 2.3. When only the predator is harvested,

(i) Lemma 1.2 (II) infers that E0 is always unstable.

(ii) Eb is locally asymptotically stable if 0 < r < 2 and e2 >
1

q2

 βK

h+K
−m

 which

is deduced from Lemma 1.2 (I). These conditions are for extinction of predator at

the coexisting equilibrium.
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(iii) Lemma 1.2 (I) concludes that E∗
e2

is locally asymptotically stable if

(m+ q2e2−β)(4β+ r(m+ q2e2)(Kβ+(h+K)(m+ q2e2− 2)))+4hβr(m+

q2e2) < 0

and

K(m+q2e2−β)(K(m+q2e2−1)−h(m+q2e2+1)+β)+2h(m+q2e2) < 0.

One of the bifurcations at the equilibrium point (K, 0) in the unharvested system is

the transcritical bifurcation when stability exchange happens between the boundary and

the coexisting fixed point at the bifurcation point K∗ = mh
β−m

. Similarly, a couple of tran-

scritical bifurcations could occur successively when prey species is harvested. However,

only one transcritical bifurcation is possible when the predator is exploited. Since, the

steady-state where both prey and predator coexist is more important from biological point

of view, we will consider the bifurcations at the coexisting equilibrium point in detail in

the next section.

2.4 Bifurcations analysis at coexisting equilibrium

In this section, we analyze Neimark-Sacker bifurcation of the unique positive equilibrium

of system (2.2.2). We will derive the normal form of the bifurcation and determine the first

Lyapunov coefficient [31]. We discuss the bifurcation occurring when prey harvesting (e2 =

0) is introduced to the system. Taking e1 as bifurcation parameter, we state the following

conditions for existence of the Neimark-Sacker bifurcation at the positive equilibrium of

the system. The characteristic polynomial at coexisting equilibrium subjected to prey

harvesting is

C(λ) = λ2 − p(x∗, y∗)λ+ q(x∗, y∗),

where x∗ =
hm

β −m
and y∗ =

βh(K(β −m)(r − q1e1)− rhm)

Kα(β −m)2
.

We can rewrite p(x∗, y∗) and q(x∗, y∗) as,

p(x∗, y∗) = 1 + Θ + θ − q1e1,

and

q(x∗, y∗) = (Θ− q1e1)(1 + θ) + ϑ,

where Θ = 1 + r

(
1− 2x∗

K

)
− αhy∗

(h+ x∗)2
, θ =

βx∗

h+ x∗ −m and ϑ =
αβhx∗y∗

(h+ x∗)3
.
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Now, the characteristic equation C(λ) = 0 has complex conjugate roots with modulus

one if the following conditions are satisfied (Lemma 1.2 (v)):

e1 =
1

q1

(
Θ− 1− ϑ

1 + θ

)
,

and

|1 + Θ + θ − q1e1| < 2.

Define

Ωe1
NS =

{
(r,K, α, β,m, q1, e1) : e1 =

1

q1

(
Θ− 1− ϑ

1 + θ

)
, |1 + Θ + θ − q1e1| < 2

}
.

The unique coexistence equilibrium of the system (2.2.2) with prey harvesting undergoes

a Neimark-Sacker bifurcation when the bifurcation parameter e1 varies in a small neigh-

borhood of the set Ωe1
NS. Choose parameters (r,K, α, β,m, q1, e1) arbitrarily from the set

Ωe1
NS. Taking ẽ1 as the bifurcation parameter, perturbing system (2.2.2) as follows:

X

Y

 7−→

X + rX

(
1− X

K

)
− αXY

h+X
− q1(e1 + ẽ1)X

Y +
βXY

h+X
−mY

 , (2.4.1)

where |ẽ1| ≪ 1 is a small perturbation in the bifurcation parameter.

Then Θ and ϑ become a function of ẽ1, since after perturbation

x∗(ẽ1) =
hm

β −m
and y∗(ẽ1) =

βh(K(β −m)(r − q1(e1 + ẽ1))− rhm)

Kα(β −m)2
.

Consider the transformation x = X − x∗(ẽ1), y = Y − y∗(ẽ1), where (x
∗, y∗) is the unique

positive equilibrium of the system (2.2.2) with e2 = 0, then the map (2.4.1) can be

expressed in the form: x

y

 7−→

a11 a12

a21 a22

x

y

+

f1(x, y)

g1(x, y)

 , (2.4.2)

where

f1(x, y) = a1x
2 + a2xy + a3y

2 + a4x
3 + a5x

2y + a6xy
2 + a7y

3 +O((|x|+ |y|)4),

g1(x, y) = b1x
2 + b2xy + b3y

2 + b4x
3 + b5x

2y + b6xy
2 + b7y

3 +O((|x|+ |y|)4),
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and

a11 = 1 + r − 2rx∗

K
− αhy∗

h+ x∗ − q1(e1 + ẽ1),

a12 = − αx∗

h+ x∗ , a21 =
βhy∗

(h+ x∗)
, a22 = 1 +

βx∗

h+ x∗ −m,

a1 = −2

(
r

K
− αhy∗

(h+ x∗)3

)
, a2 = − αh

(h+ x∗)2
, a4 = − 6αhy∗

(h+ x∗)4
, a5 =

2αh

(h+ x∗)3
,

b1 = − 2βhy∗

(h+ x∗)3
, b2 =

βh

(h+ x∗)2
, b4 =

6βhy∗

(h+ x∗)4
, b5 = − 2βh

(h+ x∗)3
and

a3 = a6 = a7 = b3 = b6 = b7 = 0.

The characteristic equation of the equilibrium (0, 0) of the linearized system is

λ2 − p(ẽ1)λ+ q(ẽ1) = 0, (2.4.3)

where

p(ẽ1) = 1 + Θ(ẽ1) + θ − q1(e1 + ẽ1)

and

q(ẽ1) = (Θ(ẽ1)− q1(e1 + ẽ1))(1 + θ) + ϑ(ẽ1).

Since (r,K, α, β,m, q1, e1) ∈ Ωe1
NS, the roots of equation (2.4.3) are complex conjugate

with modulus one if ẽ1 = 0. The roots λ1 and λ2 of equation (2.4.3) can be written as

λ1, λ2 =
p(ẽ1)

2
± i

2

√
4q(C)− p2(ẽ1).

Then

|λ1| = |λ2| =
√

q(ẽ1).(
d|λ1|
dẽ1

)
ẽ1=0

=

(
d|λ2|
dẽ1

)
ẽ1=0

=

(
d
√

q(ẽ1)

dẽ1

)
ẽ1=0

=
1

2
√

q(0)

[(
dΘ

dẽ1
− q1

)
(1 + θ) +

dϑ

dẽ1

]
ẽ1=0

=
1

2
√

q(0)

[(
−αh

(h+ x∗)2
dy∗(ẽ1)

dẽ1
− q1

)
(1 + θ) +

αβhx∗

(h+ x∗)3
dy∗(ẽ1)

dẽ1

]
ẽ1=0

=
−mq1(β −m+ 1)

2β

√
1 +m

(
−q1e1 + r + (m−1)(Kq1e1−(h+K)r))

Kβ
− 2hr

K(β−m)

).
Here, as we introduced perturbation parameter in the system (2.2.2), the coexisting fixed

point of the perturbed system is also function of ẽ1. On the other hand, Khan [51], and
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Yao and Li [52] have followed different approach by considering coexisting equilibrium

independent of the perturbation parameter. In our method, due to the complicated form

of the derivative of the modulus of the eigenvalues, it is difficult to determine its sign

analytically. We will check it in the examples provided soon enough.

Assuming that p(0) = 1+Θ(0) + θ− q1e1 ̸= 0,−1, and since (r,K, α, β,m, q1, e1) ∈ Ωe1
NS,

we have −2 < p(0) < 2. Then p(0) ̸= ±2,−1, 0 implies λm
1 , λ

m
2 ̸= 1,∀m = 1, 2, 3, 4 at

ẽ1 = 0. Hence when ẽ1 = 0 and if the following conditions are satisfied:

1 + Θ(0) + θ ̸= q1e1 and 1 + Θ(0) + θ ̸= q1e1 − 1, (2.4.4)

then roots of equation (2.4.3) do not lie on the real or imaginary axes of the unit circle

(i.e., they are not equal to ±1 or ±i).

To obtain the normal form of equation (2.4.2) at ẽ1 = 0, we take κ =
p(0)

2
and η =

1

2

√
4q(0)− p2(0). Consider the following transformation:

x

y

 =

0 a12

η κ− a11

u

v

 . (2.4.5)

The normal form of equation (2.4.2) using transformation (2.4.5) can be written as:

u

v

 7−→

κ −η

η κ

u

v

+

f2(u, v) +O((|u|+ |v|)4)

g2(u, v) +O((|u|+ |v|)4)

 , (2.4.6)

where

f2(u, v) =
a11 − κ

a12η
f1(a12v, ηu+ (κ− a11)v) +

1

η
g1(a12v, ηu+ (κ− a11)v)

g2(u, v) =
1

a12
f1(a12v, ηu+ (κ− a11)v).

Now, define the Lyapunov coefficient [31] as follows:

L =

([
−Re

(
(1− 2λ1)λ

2
2

1− λ1

τ20τ11

)
− 1

2
|τ11|2 − |τ02|2 +Re(λ2τ21)

])
ẽ1=0

,
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where

τ20 =
1

2
[f2uu − f2vv + 2g2uv + i(g2uu − g2vv − 2f2uv)],

τ11 =
1

4
[f2uu + f2vv + i(g2uu + g2vv)],

τ02 =
1

8
[f2uu − f2vv − 2g2uv + i(g2uu − g2vv + 2f2uv)],

τ21 =
1

16
[f2uuu + f2uvv + g2uuv + g2vvv + i(g2uuu + g2uvv − f2uuv − f2vvv)].

The following theorem is a result of the above analysis.

Theorem 2.4. [31] If L ̸= 0 then system (2.2.2) undergoes a Neimark-Sacker bifur-

cation about the unique positive equilibrium point (x∗, y∗) when the parameter e1 varies

in the neighborhood of Ωe1
NS. An attracting (respectively repelling) invariant closed curve

bifurcates from (x∗, y∗) if L < 0 (resp. L > 0).

Remark 2.5. By similar analysis, we can show that the unique positive equilibrium

of system (2.2.2) undergoes Neimark-Sacker bifurcation as parameter K is varied in the

unharvested system (e1 = 0 and e2 = 0), and e2 is varied in the predator harvested system

(e1 = 0).

We provide numerical examples to illustrate the occurrence of a Neimark-Sacker bi-

furcation at the interior fixed point when K, e1, or e2 are used as bifurcation parameters

in the unharvested system, prey harvested system, and predator harvested system, re-

spectively. The Lyapunov coefficient (L) as described in Theorem 2.4, is calculated using

Mathematica.

Example 2.6. Taking r = 5
2
, α = 4

5
, β = 1

2
, h = 1andm = 1

10
, the Neimark-Sacker

bifurcation occurs at K∗ = 8
7
in the unharvested system around the fixed point (x∗, y∗) =(

1
4
, 3125
1024

)
. The eigenvalues of the Jacobian matrix at the interior fixed point (x∗, y∗) are

λ1 =
59− i

√
615

64
, λ2 =

59 + i
√
615

64
.
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The modulus of λ1 and λ2 at the bifurcation point K∗ is exactly one. The transversality

condition is calculated as,

(
d|λ1,2|
dK̃

)
K̃=0

=
hmr(β +m(1−m+ β))

2(K∗)2β(β −m)

√
1 +

mr(1−m+β+
h(β+m(1−m+β))

K∗(m−β) )
β

=
49

60
= 0.81667.

We have calculated the derivative of the |λ1,2| using the same analysis as done with respect

to e1 earlier. The positive value of the derivative of modulus of eigenvalues implies the

instability of the system after going through Neimark-Sacker bifurcation. For K < K∗,

the eigenvalues will lie in the interior of the unit circle. As K > K∗, the eigenvalues will

escape from the unit circle. For instance if we take K = 10
7
> K∗ then eigenvalues are

λ1,2 =
79± i

√
1055

80

with |λ1,2| = 1.06771.

The Lyapunov coefficient

L = −1784999421559

82000000000
≈ −21.768286 < 0

which means that an attracting invariant curve bifurcates at the interior fixed point

(Figure 2.4.1a ).

Example 2.7. For the same parameter set as mentioned in Example 2.6 and taking K =

23
14
, the system exhibits nonequilibrium dynamics. When prey harvesting is introduced,

increasing the harvesting effort leads the system to stabilize at an equilibrium state via

a Neimark-Sacker bifurcation. We set catchability coefficient, q1 = 1, then a Neimark-

Sacker bifurcation occurs at e∗1 = 35
46
. The eigenvalues of the Jacobian matrix at the

positive fixed point (1
4
, 3125
1472

) are

λ1 =
87− i

√
895

92
and λ2 =

87 + i
√
895

92
,
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with |λ1| = |λ2| = 1. The system stabilizes for e1 > e∗1 because the transversality condition,(
d|λ1,2|
dẽ1

)
ẽ1=0

=
−mq1(β −m+ 1)

2β

√
1 +m

(
−q1e∗1 + r +

(m−1)(Kq1e∗1−(h+K)r))

Kβ
− 2hr

K(β−m)

)
= − 7

50
= −0.14,

is negative implying that the eigenvalues lie inside the unit circle after the bifurcation.

The invariant closed curve (Figure 2.4.1b ) is attracting since the Lyapunov coefficient is

L = −151308570108254

4253697265625
≈ −35.571072 < 0.

In Example 2.6 , the modulus of the eigenvalues expanded for increasing K more than the

critical value whereas under prey harvesting, the same are contracting leading to stability

of the fixed point.

Example 2.8. In the predator harvested system, taking the same values of the parameters

as in Example 2.7 and q2 = 1
10
, a quasiperiodic orbit (Figure 2.4.1c ) arises due to

Neimark-Sacker bifurcation for the critical harvest effort e∗2 =
2(149−5

√
743)

37
≈ 0.6870199 at

the positive fixed point

(x∗, y∗) =

(
67− 2

√
743

2(−15 +
√
743)

,
34225(22−

√
743)

732(−484 + 15
√
743)

)
≈ (0.50921523, 3.2544477).

It is difficult to calculate the exact eigenvalues of the Jacobian matrix at (x∗, y∗) and the

Lyapunov coefficient without approximation because of the complexity of the expression

to find exact value of the bifurcation point e∗2. The eigenvalues of the Jacobian matrix at

the positive fixed point are

λ1 = 0.903582661813367− i 0.42841378744185,

and λ2 = 0.903582661813367 + i 0.42841378744185

with |λ1,2| ≈ 1. For e2 > e∗2, the eigenvalues lie inside the unit circle as the derivative of

the modulus of the eigenvalues with respect to the perturbation parameter is negative.

To be precise, (
d|λ1,2|
dẽ2

)
ẽ2=0

= −0.301744.

The value of Lyapunov coefficient is L = −10.753104 which indicates that the quasiperi-

odic orbit is attracting in nature.

36



(a) (b) (c)

Figure 2.4.1: Phase portrait of the system with r = 5
2 , α = 4

5 , β = 1
2 , h = 1,m = 1

10

and (a) K = 8
7 in the unharvested system, (b) K = 23

14 , q1 = 1 and e1 = 35
46 in prey

harvested system, and (c) K = 23
14 , q2 = 0.1 and e2 = 0.6870199 in predator harvested

system. The red dot denotes the equilibrium point at the fixed parameter values. The

invariant closed curve is presented in black color.

2.5 Dynamics and ecological interpretations

In the previous section, we discussed the occurrence of a Neimark-Sacker bifurcation

when K, e1, or e2 were used as bifurcation parameters. In this section, we will analyze

the dynamical changes and complex phenomena occurring along with Neimark-Sacker

bifurcation by fixing other parameter values and varying either carrying capacity of prey,

harvesting effort on prey, or exploitation rate of predator separately. We will also provide

the ecological interpretations of the results obtained from the dynamic solutions.

2.5.1 Analyzing unharvested system

We discuss the changes in dynamics occurring as the carrying capacity K of the prey

population is varied.

Consider the parameter set r = 3.2, α = 0.5, β = 0.3, h = 2, andm = 0.2. The trivial

fixed point (0, 0) is always unstable. The boundary fixed point (K, 0) is also unstable since

r > 2. When K = 9.2, the coexisting steady state (4, 21.704) is stable. A bifurcation dia-

gram is shown for increasing K in Figure 2.5.1a for a fixed initial condition (4.87, 30.43).

The stable fixed point loses its stability leading to an invariant closed orbit as a result of

Neimark-Sacker bifurcation occurring at K = 104/11 ≈ 9.454. The eigenvalues of the cor-

responding Jacobian matrix of system (2.2.2) at the positive fixed point are 1
65
(61±i6

√
14)

if K = 9.454. This invariant closed curve doesn’t remain stable as K is increased further.

The quasiperiodic orbit loses its stability to periodic orbits several times for very narrow
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ranges ofK. The maximum Lyapunov exponent (MLE) diagram is shown in Figure 2.5.1b

. The system exhibits stable periodic solutions if the MLE is negative, quasiperiodic if it

is zero, and chaotic if it is positive. The algorithm used for finding maximum Lyapunov

exponents is based on the program provided in Wolf et al. [33]. We have written explicit

code in MATLAB to find the value of Lyapunov exponents. We have used 100000 iter-

ations in obtaining the Lyapunov exponents. Even if we considered more than 100000

iterations, the results derived from the MLE remains same. The system is periodic for

9.2 < K < 9.455 as MLE < 0, quasiperiodic for 9.455 < K < 10.1 as MLE = 0 and

chaotic for K ∈ (10.1, 10.2) as MLE > 0. The dynamics of the system becomes very com-

plex as K increases beyond 10.2. The quasiperiodic behavior continues, but in between,

periodic windows of different periods appear. The first periodic window is of period-29

which appears for K ∈ (10.01121, 10.01135). There is a period-adding sequence of period-

30, 31, 32, and so on, between the quasiperiodic region for K < 10.126. We have identified

the period-bubbling and periodic-doubling phenomena in Figure 2.5.1c. A complicated

sequence of periodic and quasiperiodic behavior is observed for K < 10.125. One of the

complicated sequences existing for K ∈ (10.1058, 10.1118) is: period-40 → quasiperiod-

icity → period-81 → quasiperiodicity → period-41 → quasiperiodicity → period-82 →

period-41→ period-83. Many such complex sequences are observed forK ∈ (9.46, 10.125).

The onset of chaos is around K ≈ 10.126. The identical complex sequences are present

with chaos and periodic windows. The periodic windows of period sequence-45, 90, 46, 91,

92 can be seen between chaotic regions when K ∈ (10.1284, 10.13484). These complicated

sequences of chaos and periodic windows vanish for K > 10.19938. The chaotic behavior

continues when 10.169938 < K < 10.2.

We have already plotted a bifurcation diagram in Figure 2.5.1a with initial condition

(4.87, 30.43). Now, we would like to examine the existence of multistability with increasing

K. For this purpose, we choose a different initial condition (1.83, 4.84). We draw the

bifurcation diagram using both the initial conditions in the same figure to distinguish

them. The bifurcation diagram for initial condition (4.87, 30.43) is shown in Figure 2.5.2a

in red color and the bifurcation diagram for (1.83, 4.84) in blue color. The blue bifurcation

diagram overshadows the red one where the dynamics are the same but the bifurcation

curves do not merge at many values of K. This non-merging of bifurcation curves clearly

indicates the presence of multistability. We detected the existence of multistability from
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K = 10.1 to K = 10.2 for different values of K. From the maximum Lyapunov exponent

plot in Figure 2.5.2b for both the initial conditions, we can observe that the red and blue

plot are also not overlapping at many values of K which confirms that both the initial

conditions have different dynamics for same value of K. A more clear visualization of

multistability is shown in Figure 2.5.2c by zooming the bifurcation diagram. Hence, the

system shows various multistable modes for K ∈ (10.11, 10.12) and (10.16, 10.175) but

has different dynamic modes. As an example we have provided a phase portrait for these

two initial conditions in Figure 2.5.2d for K = 10.1655 which shows that the coexistence

of period-53 and period-106. Further, we could verify the coexistence of periodicity and

chaos for K = 10.1711.

We would like to determine how the basin of attraction looks like for different values

of K especially when the system is multistable. We have plotted the basin of attraction

within the region [0, 14]× [0, 40]. We used step-size 0.01 along x− and y-axis to create a

meshgrid of 1400×4000 grid points (x0, y0). For each grid point (x0, y0), we have computed

a total of 100000 iterations and checked the periodicity after removing the transient part.

We checked which initial conditions exhibit cycle of same period and plotted those value of

initial conditions in a specific color. For the initial conditions which lead to non-periodic

attractors, we used the MLE to differentiate between quasiperiodic and chaotic behavior.

In Figure 2.5.3a , the system is monostable, and the coexisting fixed point is stable. As

shown in Figure 2.5.3b , a multistable state occurs at K = 10.1655, where two stable

periodic orbits of period-53 and period-106 coexist. Figure 2.5.3c shows multistability at

K = 10.1711 where a stable period-54 cycle and chaotic attractor coexist. Finally, the

system is attracted to a chaotic attractor at K = 10.2 and becomes monostable again as

shown in Figure 2.5.3d. The size and shape of the basin is same for all four values of K. In

Figure 2.5.4a and Figure 2.5.4b , we show more clearly the geometry of basins of attraction

by magnifying some portion of Figure 2.5.3b and Figure 2.5.3c respectively. The basins

have a very complicated structure as the set of initial conditions going to period-53 and

period-106 are collection of many disjoint sets in Figure 2.5.3b . The structure is even

more complicated in Figure 2.5.3c.
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(a) (b)

(c)

Figure 2.5.1: (a) Bifurcation diagram with predator population for varying K from

9.2 to 10.2, (b) Maximum Lyapunov exponents corresponding to K ∈ (9.2, 10.2), and (c)

magnification of the bifurcation diagram varying K from 10.05 to 10.2.

2.5.2 Prey harvesting

We incorporate prey harvesting into the system to study its influence on the dynamic

modes. We consider the different dynamic modes of the unharvested system with fixed

ecological parameters, and explore the variation in dynamics with harvesting effort on the

prey.

Let us consider the parameters as r = 3.2, K = 9.2, α = 0.5, β = 0.3, h = 2, andm =

0.2. For this parameter set, the unharvested system showed stable behaviour of the coex-

isting equilibrium. Without loss of generality, we set q1 = 1 and varying prey harvesting

effort e1 ≤ 1.8 so that the coexisting equilibrium exists. The predator population de-

creases with increase in effort as shown in the bifurcation diagram (Figure 2.5.5a). We

observed that the coexisting equilibrium maintains its stability under prey harvesting.
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(a) (b)

(c) (d)

(e)

Figure 2.5.2: (a) Bifurcation diagram with two different initial conditions: red

curve corresponding to initial condition (4.87, 30.43) and blue curve corresponding

to initial condition (1.83, 4.84), (b) Maximum Lyapunov exponents corresponding to

(4.87, 30.43) in red and (1.83, 4.84) in blue, (c) A part of the bifurcation diagram with

K ∈ (10.158, 10.179), and (d) Phase portraits of the two initial conditions atK = 10.1655

and (e) chaotic attractor for K = 10.2.

As effort is increased further beyond 1.8, the predator population goes extinct. The prey

population starts decreasing as e1 increased in (1.8, 3.2) and eventually dies out when

e1 = 3.2.

We now consider a different dynamics of the unexploited system with K = 10.1655.

We have already observed multistability for different initial conditions in this unharvested

system. Now, the coexisting equilibrium exists when e1 ≤ 1.94. For the initial condition

(1.83, 4.84), the unharvested system exhibits periodic behavior of period-106. The bifur-

cation diagrams in Figure 2.5.5b - 2.5.5d show that the predator population experiences
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(a) (b)

(c) (d)

Figure 2.5.3: Basin of attraction for different values of K (white region is for all the

initial conditions which lead to unbounded trajectories) (a) basin for equilibrium point

(red region), (b) basin of period-53 (magenta region) and period-106 (green region), (c)

basin of : period-54 (yellow region) and chaos (black region), and (d) chaos(black region).

periodic, chaotic and quasiperiodic oscillations for e1 ∈ (0, 0.223). Further increase in

effort stabilizes the system and predator population decreases. There are also many peri-

odic windows between chaotic and quasiperiodic regions as shown in Figure 2.5.5c . The

system exchanges dynamics between chaos and periodic windows for e1 ∈ (0, 0.0208). The
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(a) (b)

Figure 2.5.4: (a) zoomed part of the basin in Figure 2.5.3b , and (b) zoomed part

of the basin in Figure 2.5.3c .

chaotic region with periodic windows disappears leading to the birth of a quasiperiodic

orbit around e1 ≈ 0.0209. The dynamics again starts shifting between quasiperiodic orbit

and periodic windows in the interval (0.0209, 0.04). The quasiperiodic behavior continues

for a wide range of parameter value for e1 ∈ (0.04, 0.224). This orbit is destroyed around

e1 = 0.224 through a Neimark-Sacker bifurcation and the coexisting equilibrium becomes

stable for e1 > 0.224. The stable coexisting equilibrium decreases as e1 increases and

hence the predator population goes to extinction for e1 > 1.94. We plotted the magnifica-

tion of bifurcation diagram for 0 < e1 < 0.045 in Figure 2.5.5c to see more clearly how the

dynamics change from periodic to chaos and then to quasiperiodic. The system also ex-

hibits period-bubbling phenomenon for many intervals of e1 which can be concluded from

the magnified bifurcation diagram (Figure 2.5.5c ). Each intervals contains many period

bubbles. Figure 2.5.5e captures the period-bubbling in the interval (0.0162, 0.0172). The

maximum Lyapunov exponents (Figure 2.5.5d ) clearly state that the system continuously

jumps back and forth from chaos to periodic mode and then from periodic to quasiperiodic

mode in a very narrow range of e1 before stabilizing in the equilibrium state.
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The system also shows multistability for various values of effort. We analyze the be-

haviour exhibited by the two initial conditions (1.83, 4.84) and (4.2, 22.12) as the effort

is increased. These two initial conditions show periodic behaviour (period-106) in the

unharvested system. In Figure 2.5.6a , the bifurcation curves for the two initial condi-

tions (1.83, 4.84) and (4.2, 22.12) indicated in red and blue colour respectively, are plot-

ted. This figure also indicates the existence of multisabilities in the range (0.014, 0.015),

(0.01625, 0.01645) and (0.0175, 0.179). One of the multistabilities, we detected, between a

stable period-85 orbit and chaotic oscillations when e1 = 0.01465. The phase portrait (Fig-

ure 2.5.6b ) for e1 = 0.01465 shows that period-85 orbit and a multiband chaotic attractor

coexist. It can be seen from the maximum Lyapunov exponents in Figure 2.5.6c that the

dynamics for the two initial conditions are not the same for many values of e1 in the in-

terval (0.0145, 0.0179). In fact for other values of K such as K = 10.1711 and K = 10.2,

we can obtain similar kind of dynamics as e1 increases as shown for K = 10.1655. For

K = 10.1711, we take two initial conditions (4.52, 12.90) and (10.36, 4.83) which lead

to chaotic trajectories in the unharvested system. These again show multistability for

various values of e1 with chaos, periodicity, and quasiperiodicity existing in the similar

manner. Hence harvesting the prey leads to the stabilization of both population.

If we consider another initial condition (4.87, 30.43) which leads to a period-53 orbit

in the natural system then we notice similar kind of dynamics. It also marks its way to

stabilization through chaos, periodic windows, period-bubbling, and quasiperiodicity. The

only difference is that for e1 ∈ (0.12, 0.36), the system diverges and then stable coexisting

equilibrium appears( Figure 2.5.6d ). It diverges completely for e1 > 0.639. The initial

conditions play an important role in how the dynamics will appear as e1 increases.

2.5.3 Predator harvesting

Introducing predator harvesting to the system, we will analyze the impacts of predator

harvesting on both species. The different dynamic modes were obtained in the unharvested

system for K = 9.2, 10.1655, 10.1711, and 10.2. Now, the alteration occurring in the

dynamics with varying e2 will be concluded for each of the value of K. The value of q2 is

fixed to be 0.01.

When K = 9.2, the coexisting equilibrium can be obtained for e2 ≤ 4.6. The coexist-

ing equilibrium remains stable for e2 ≤ 2.66 and the trajectories diverge for e2 ∈ (2.66, 4.6)
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(a) (b)

(c) (d)

(e)

Figure 2.5.5: (a) Bifurcation diagram of predator population with e1 as bifurcation

parameter for K = 9.2 with initial condition (1.83, 4.84), (b) Bifurcation diagram of

predator population with bifurcation parameter e1 for K = 10.1655, (c) magnification

of bifurcation diagram in (b), (d) maximum Lyapunov exponents for e1 ∈ (0, 0.4), and

(e) period-bubbling phenomenon.

for the initial condition (1.83, 4.84). The predator population decreases with increase in

e2 while the prey population increases.

We focus on K = 10.1711 for showing the different complex dynamics arising with

increase in e2. The unharvested system displayed multistability with stable periodic and

chaotic behavior coexisting for different initial conditions. We can obtain the coexisting

equilibrium for e2 ≤ 5. The bifurcation diagram in Figure 2.5.7a reveals that the system

commences with chaotic behavior along with periodic windows (0 < e2 < 0.0664), then

45



(a) (b)

(c) (d)

Figure 2.5.6: (a) Bifurcation diagram with two different initial conditions: red

curve corresponding to initial condition (1.83, 4.84) and blue curve corresponding to

initial condition (4.2, 22.12), (b) phase portrait for coexistence of period-85 (blue color)

and chaotic attractor (red color), (c) maximum Lyapunov exponent corresponding to the

bifurcation curves in (a), and (d) Bifurcation diagram of predator population with e1 as

bifurcation parameter for K = 10.1655 with initial condition (4.87, 30.43).

exhibits quasiperiodic behavior with periodic windows (0.664 < e2 < 0.57525), and finally

achieves stability at equilibrium for e2 ∈ (0.57525, 2.86). The change in dynamics from

quasiperiodic orbit to stable equilibrium is a result of Neimark-Sacker bifurcation which

occurs around e2 = 0.57525. As we zoom in to have a clearer look at the dynamics between

e2 = 0 and 0.08 (Figure 2.5.7b ), a complex network of criss-cross period-bubbles, chaos,

quasiperiodic and periodic windows appears. The complex criss-cross period-bubbling

phenomenon is shown in Figure 2.5.7c . The maximum Lyapunov exponents, plotted in

Figure 2.5.7d , also confirm the complicated behaviour of trajectories with increase in

effort.

Figure 2.5.8a demonstrates the existence of multistability as the two bifurcation di-

agrams with different initial conditions don’t overlap each other for various values of e2.

We determine the specific type of multistabilities occurring at different values as e2 is

46



increased. One of these multistabilities exists when e2 = 0.00087 for which the initial

condition (1.83, 4.84) is attracted to a stable multi-band chaotic attractor while the other

initial condition (4.2, 22.12) moves on a period-54 orbit (Figure 2.5.8b ). Other multista-

bilities, which we detected, are for e2 = 0.0169 (period-50 and period-200) indicated in

Figure 2.5.8c and e2 = 0.04724 (chaos and period-170). The different behaviour of the two

initial conditions for same value of effort can also be comprehended from the maximum

Lyapunov exponents. The Lyapunov exponents are not same for many values of effort,

and hence solidify our claim of multistability. Consider the interval (0.0051, 0.0052) in

Figure 2.5.8d where the maximum Lyapunov exponents are not coinciding for many val-

ues of e2. As a particular case, the maximum Lyapunov exponents at e2 = 0.005126 for

initial conditions (1.83, 4.84) and (4.2, 22.12) are −0.07467982 (periodic) and 0.0035566

(chaos), respectively.

(a) (b)

(c) (d)

Figure 2.5.7: (a) Bifurcation diagram of the system in (y, e2) plane for 0 ≤ e2 ≤ 0.6,

(b) Bifurcation diagram of the system in (y, e2) plane for 0 ≤ e2 ≤ 0.08, (c) Complex

structure of periodic bubbles, (d) Maximum Lyapunov exponents with respect to the

bifurcation diagram in (a).

The increment of carrying capacity of prey species may lead to predator extinction.

This phenomenon is called as the paradox of enrichment [43–47]. Weide et al. [46] reported
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(a) (b)

(c) (d)

Figure 2.5.8: (a) Bifurcation diagram in (y, e2) plane with two different initial

conditions: red curve corresponding to initial condition (1.83, 4.84) and blue curve corre-

sponding to initial condition (4.2, 22.12), (b) phase portrait for coexistence of period-54

(blue colour) and multi-band chaotic attractor (red colour), (c) Phase portrait for coex-

istence of period-54 (blue colour) and period-200 (red colour) orbits, and (d) Maximum

Lyapunov exponent corresponding to the bifurcation curves in (e).

that in a Nicholson-Bailey framework based discrete-time predator-prey model, increase

in carrying capacity destabilizes the system. Recently, Pattanayak et al. [47] observed

that increasing carrying capacity of the resource level species results in extinction of

species at higher trophic level (bottom-up effect). They showed that varying the carrying

capacity induced bistability into the system. The ecological implications stemming from

an increase in carrying capacity are highly intriguing. The paradox of enrichment, as

described by Rosenzweig [43], Abrams and Roth [44], Wollrab et al. [45], Weide et al. [46],

and Pattanayak et al. [47] refers to the phenomenon where the increment in the carrying

capacity of prey species (i.e., increase in food supply to the predator) can lead to the

extinction of their predators.

The paradoxical phenomenon known as the ”hydra effect” describes the counter-

intuitive increase in a species’ population with an enhancement in its death rate. This

phenomenon has been noted to occur in continuous-time as well as discrete-time models
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[44,46,49,53–56]. Pal [57] showed that the positive density-dependent effects of predators,

such as grouping behavior or cooperation in trophic functions, exhibit a hydra effect within

the prey species. Conversely, the negative density-dependent effects of predators, such

as interference, manifest a hydra effect within the predator species. Legović et al. [58]

reported that harvesting of prey will lead to extinction of predator in continuous-time

model. To assess nonequilibrium dynamics over extended periods, the mean population

density is commonly used as a measure of the population level (Liz and Ruiz-Herrera

[48]and Sieber and Hilkar [53]). Using mean density, we answer the following questions:

(i) What are the ecological implications of increase in food supply to predator species?

(ii) What will be the effect of increasing mortality rate of the predator population?

First, let us define mean population density for the discrete-time models.

2.6 Mean population in a Discrete-time model

If the trajectories approach an equilibrium, then it is not difficult to determine the popula-

tion size over a long period of time. When the equilibrium is unstable (for nonequilibrium

dynamics), measuring the stock level is challenging. A time-averaged stock could be a

reasonable estimate to quantify the population level. We consider continuous and discrete

systems, and represent the formula to calculate the same for both systems.

First consider a continuous system,

dX

dt
= f(X),

where f : D ⊆ Rm → Rm. Let X(t) be the solution of the system with initial condition

X(0) = X0. Then, the mean value map ( [53,59]) is defined by

ϕ(X0) = lim
t→∞

1

t

∫ t

0

X(s) ds,

where X0 is a fixed initial condition, ϕ : M → Rm and M is the subset of initial conditions

for which the limit exists. In a similar manner, Liz and Ruiz-Herrera [48] proposed the

mean density for a discrete map

Xn+1 = f(Xn),

as

ϕ(X0) = lim
n→∞

1

n

n−1∑
i=0

Xi, provided the limit exists.
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Now, for system (5), we define

x((x0, y0)) = lim
n→∞

1

n

n−1∑
i=0

xi,

y((x0, y0)) = lim
n→∞

1

n

n−1∑
i=0

yi,

where x and y are the mean population densities of prey and predator species, respectively.

2.6.1 Paradox of enrichment

Many researchers have investigated the effects of increase in the carrying capacity of prey

(species enrichment) in various models. The paradox of enrichment in population models

was defined as the destabilization of the coexisting equilibrium resulting in birth of cyclic

dynamics. The extinction of predator population becomes more likely as carrying capacity

is increased sufficiently. The above phenomenon was first discussed by Rosenzweig [43].

The paradox of enrichment became more popular after Abrams [44] studied a continuous

tri-trophic food chain model. They shed some light on the response of food chains or

ecosystems to enrichment, which could lead to chaos. The key conclusion was that the

mean population density of the dominant species initially rises, but eventually decreases

as the carrying capacity increases beyond a certain threshold. The supply of additional

nutrient (enhancement of carrying capacity) to the bottom species, which influences a

food chain including the top species is known as bottom-up effect. Pattanayak et al. [47]

observed the bottom-up effect in the same model studied by Abrams [44] as the top

predator leads to extinction.

However, the discussion of the paradox of enrichment in discrete-time population mod-

els has rarely been reported. Very recently, Weide et al. [46] have studied a discrete-time

Nicholson-Bailey model, and they uncovered that the nonequilibrium dynamics arise due

to increase in carrying capacity. The limit cycles generated by Neimark-Sacker bifurca-

tion tend towards the axes in the phase portrait as the carrying capacity is increased,

which could result in extinction of the predator. They have described destabilization of

the equilibrium by quasiperiodic motion, and we further take the opportunity to estimate

mean density of population in the nonequilibrium dynamics of our model.

For the parameter set: r = 3.2, α = 0.5, β = 0.3, h = 2, andm = 0.2, we already

discussed the destabilizing effect of increasing the carrying capacity in the unharvested
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system. Now, we enhance carrying capacity K of the prey species in the system (2.2.2) to

capture the changes in mean population density. The main advantage of the RM model

is that we can obtain explicit form of the equilibrium biomass of the species. The equi-

librium prey biomass is independent of K whereas the equilibrium predator biomass is

dependent. The prey (respectively predator) equilibrium state remains constant (respec-

tively increases) with increase in carrying capacity. The mean prey (predator) density

coincides with prey (predator) equilibrium for K ≤ 9.454. It is expected that if more nu-

trients are provided to the prey population, it would enhance its own population size and

the sustainability of predator species is also anticipated. Both curve separate as the sys-

tem undergoes a Neimark-Sacker bifurcation for an intermediate carrying capacity. The

mean prey (respectively predator) density increases (respectively decreases) while prey

(respectively predator) equilibrium continue to remain constant (respectively increase)

with increment of nutrient supply to the prey species (Figure 2.6.1a -2.6.1b). The figures

are generated by making code in MATLAB using the theory mentioned above. Theoret-

ically, the value of number of iterations is very large as n → ∞ in the definition. From

computation point of view, we calculated 5000000 iterations to compute mean density

for a fixed parameter value. We have also examined the mean density value by taking

iterations more than 5000000 which gave the same results. Our results for discrete-time

framework for two species are in accordance with those of Abrams [44] as claimed for the

continuous tri-trophic system.

We already know that the system shows multistability for various values of K. It is

necessary and interesting to examine the effect of initial conditions in estimating mean

density. Figure 2.6.1a and Figure 2.6.1b are generated using a fixed initial condition

(1.83, 4.84). However, many other initial conditions demonstrate the same estimate. For

example, the initial conditions (1.83, 4.84) and (4.87, 30.43) showed chaotic and periodic

dynamics, respectively, for K = 10.1711, but mean density of the respective species is the

same for both of these initial conditions.

2.6.2 Mean population with prey harvesting

Next, we will examine the effects of prey harvesting on the mean population size of both

species. Legović et al. [58] asserted that harvesting only the prey population results in

the extinction of the predator in a continuous predator-prey system. In the systems they
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(a) (b)

Figure 2.6.1: Carrying capacity vs Mean density population (blue coloured) and

equilibrium state (red coloured) using initial condition (1.83, 4.84) (a) mean prey density

with prey equilibrium state, and (b) mean predator density with predator equilibrium

state.

studied, the yield from the prey species is a linear function of the harvesting effort, and

therefore, it does not exhibit a maximum. Harvesting towards the maximum yield causes

the extinction of predator population. Ghosh et al. [60] and Tromeur and Loeuille [61] also

revealed similar behavior in terms of yield and predator extinction while harvesting prey in

the continuous Rosenzweig-MacArthur model. We can obtain the coexisting equilibrium

explicitly from the system (6). The equilibrium prey biomass is independent of harvesting

effort e1, while equilibrium predator biomass is dependent on effort. As the harvesting

effort on prey population is increased, one might expect the reduction of both prey and

predator biomass.

However, it is already established [58, 60, 61] that equilibrium prey biomass is con-

stant as exploitation of prey species is increased . In our discrete-time model, we also

come across the constant equilibrium prey biomass with increase in harvesting effort. We

detect that the mean prey density decreases with increase in effort when nonequilibrium

dynamics exist in the system (Figure 2.6.2a). On the other hand, the mean predator den-

sity increases for relatively smaller effort and then decreases when the system is unstable

(Figure 2.6.2b). The increase in mean predator size when prey decreases for small efforts

seems very uncommon in theoretical ecology. This indicates a very complex stock pattern

in terms of mean population density between prey and predator while prey is harvested.

However, mean population densities of both the species decrease in some other interval

of prey harvesting effort which is more acceptable and evident in ecological systems. The
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system becomes stable after the occurrence of a Neimark-Sacker bifurcation and the mean

population densities coincide with the equilibrium densities of both the species under prey

harvesting.

We already reported that the mean prey density is a decreasing function of the har-

vesting effort e1 ∈ (0, 0.224). We now examine if the mean yield (q1e1x), produces a

maximum from the prey in nonequilibrium dynamics. In Figure 2.6.2a, the small section

in the upper left corner reveals that the yield is an increasing function of the harvesting

effort. Thus, the yield increases approximately linearly with prey exploitation and lacks

a maximum. Our results are consistent with those provided by [58,60,61] at equilibrium.

The multistable states do not affect the mean population densities of both species under

consideration, as also observed in the case of species enrichment.

(a) (b)

Figure 2.6.2: Prey harvesting effort vs mean population density (blue colored) and

equilibrium state (red colored) (a) mean prey density with prey equilibrium state for

K = 10.1655 with e1 vs yield (black colored) in the small subplot, and (b) mean predator

density with predator equilibrium state for K = 10.1655.

2.6.3 Hydra effect

The hydra effect, or hydra paradox, is inspired by the Greek myth of the “Lernaean

Hydra”, which grew two heads for every one that was cut off. Ecological systems can

display a hydra effect when an increase in the death rate of a particular species ultimately

leads to a growth in its population size. Mathematically, a species is considered to exhibit

a hydra effect, if there exist an initial condition x0 ∈ D ≥ 0 and mortality rates m1 < m2

so that ϕ(x0,m1) < ϕ(x0,m2), where ϕ is the mean value map [53]. Recalling the model

(2.2.2),

xn+1 = xn + rxn

(
1− xn

K

)
− αxnyn

h+xn
− q1e1,

yn+1 = yn +
βxnyn
h+xn

−myn − q2e2.
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Figure 2.6.3: The mythical creature Hydra. (Source:https://en.wikipedia.org/

wiki/File:Hydra.png)

We examine the effect of increase in exploitation of the predator in terms of mean

population densities. Typically, as the harvesting effort on the predator increases, the

prey population grows while the predator population declines. When the predator is

harvested, predator population decreases resulting in increase of prey population in a

Lotka-Volterra predator-prey model [58] and in a stable system [45]. On the contrary,

Sieber and Hilkar [53] and Ghosh et al. [60] reported that the time-averaged predator

density increases with increase in predator mortality when the Rosenzweig-MacArthur

model is in cyclic mode. Such an increase in mean (or stable) stock of the target species

is a paradoxical phenomenon called the hydra effect. The mean prey density increases

with increase in predator exploitation to decrease again as harvesting effort is increased

further (see Table 1 in [60]). A discrete-time Nicholson-Bailey model was analyzed by

Weide et al. [46] which also showed hydra effect in the targeted species.

In the model currently under consideration, the equilibrium prey biomass increases

with harvesting effort. However, the mean prey population decreases when the system

is unstable (Figure 2.6.4a). When system is stable, the equilibrium prey biomass and

mean prey density increase together as an outcome of Neimark-Sacker bifurcation as the

exploitation of predator increases. Figure 2.6.4b suggests that the equilibrium predator

density decreases with increase in predator exploitation. On the other hand, the mean

predator density increases with harvesting effort where the system exhibits nonequilib-

rium behaviour. Hence, the mean predator stock increases (hydra effect) but then the

stable stock decreases with increased effort. In continuous RM model, mean density of the
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harvested species increases only when unstable equilibrium biomass of the same species

increases. However, there is opposite relation between the mean predator density and the

equilibrium predator biomass when the system is unstable. When the system becomes

stable, the mean predator density merges with the equilibrium predator stock and de-

creases for further increment in harvesting effort on predator. The predator harvested

system behaves in agreement with the results of Legović et al. [58] and Wollrab et al. [45],

when it is in stable mode. The maximum sustainable yield can’t be achieved in the

nonequilibrium dynamics, but only when the system is stable. Stocks are not influenced

by changing the initial conditions.

(a) (b)

Figure 2.6.4: Predator harvesting effort vs Mean density population (blue coloured)

and equilibrium state (red coloured) (a) mean prey density with prey equilibrium state,

and (b) mean predator density with predator equilibrium state.

2.7 Conclusion

In this chapter, we applied the forward Euler’s scheme with a unit step size to dis-

cretize the continuous-time RM model. Conditions for the existence and stability of fixed

points are obtained for both unharvested and harvested systems. Using bifurcation theory,

we showed that the system undergoes a Neimark-Sacker bifurcation around the interior

equilibrium under carrying capacity (K), harvesting effort on prey (e1), and predator

exploitation rate (e2).

For further analysis, we examined dynamical changes in the unharvested system by

varying the prey’s carrying capacity. After a Neimark-Sacker bifurcation, the system ex-

hibited complex dynamics, including period-bubbling, quasiperiodicity, chaos, and high-

periodic windows. Notably, periodic solutions were embedded in quasiperiodic and chaotic
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windows (Figure 2.5.1c). Multistability was prevalent, with coexisting periodic cycles of

different periods and periodic-chaotic attractors. The basin of attraction, containing sev-

eral disjoint sets (see Figure 2.5.3b-2.5.4b), was plotted. The mean prey density increased

while mean predator stock declined in the non-equilibrium dynamics with increase in

prey nutrient quotient, ultimately leading to predator on the verge of extinction which is

a counter-intuitive phenomenon called the paradox of enrichment.

Next, we analyzed independent harvesting of prey and predator. Increasing prey har-

vesting effort led to system stabilization by eradicating chaotic, periodic, and quasiperi-

odic windows via a Neimark-Sacker bifurcation. Similar dynamics occurred when only the

predator was harvested.While Wikan and Kristensen [62] and Jiménez López and Liz [63]

observed harvesting-induced instability, we found that harvesting stabilizes the coexisting

equilibrium.

In the unstable regime, mean predator stock increased with prey harvesting but later

declined, aligning with equilibrium densities upon stabilization of the equilibrium point.

When predators were harvested, prey increased while predator density declined at the

stable state, as seen in continuous RM models [45, 58]. Our model exhibited the hy-

dra effect [46, 53, 60], where mean predator density increased despite declining unstable

equilibrium (Figure 2.6.4b), a feature not observed in continuous-time RM models. While

mean prey density declined in the unstable regime, stable prey biomass increased, whereas

predator stock declined with further exploitation.
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CHAPTER 3

A discretized Rosenzweig-MacArthur model with harvesting

using method of piecewise constant argument





3.1 Introduction

In this chapter ∗, we explore a discrete-time Rosenzweig-MacArthur (RM) model in-

corporating harvesting, demonstrating its complex dynamical behavior compared to the

continuous-time counterpart. Using the method of piecewise constant argument [9], we

discretize the continuous model and examine stability of fixed points under variations of

key parameters such as prey carrying capacity and harvesting efforts. We derive condi-

tions for the occurrence of a Neimark-Sacker bifurcation and explore how multistability

influences the system dynamics.

The method of piecewise constant arguments (semi-discrete method) for differen-

tial equations [9] serves as an alternative to the forward Euler’s scheme for discretiz-

ing continuous-time predator-prey models, ensuring non-negativity of solutions. Fang et

al. [64] demonstrated global attractivity in a discrete system with Beddington-DeAngelis

response. Din [39] established boundedness, equilibrium uniqueness, and bifurcations in

a Leslie-Gower model, while Din et al. [65] studied persistence and existence of equilib-

rium in a Nicholson-Bailey model. Recent works, Naik et al. [66] and Sharma et al. [67]

explored bifurcations, including codimension-1 and codimension-2 cases.

A key parameter in ecological dynamics is the carrying capacity of prey, influencing

system stability [44,47,68]. The paradox of enrichment [43] suggests that increasing prey

resources can drive predator extinction. Weide et al. [46] found that increasing carrying

capacity destabilizes discrete-time systems, while Pattanayak et al. [47] highlighted mul-

tistability due to resource augmentation. Rajni and Ghosh [68] demonstrated bistability,

where different initial conditions lead to distinct stable states. This work examines system

dynamics under fluctuating nutrient supply for prey.

Phase portraits and bifurcation diagrams are fundamental tools in analyzing non-

linear systems, but two-parameter bifurcation analysis provides deeper insights. Other

studies [42,69–72] revealed organized periodic structures like Arnold tongues and shrimp

structures. Li et al. [73] explored two-parameter bifurcation diagrams, demonstrating

resonant phenomena.

* This chapter based on the following article: Rajni, Bapan Ghosh, Arnold tongues, shrimp struc-

tures, multistability, and ecological paradoxes in a discrete-time predator-prey System, Chaos: An

Interdisciplinary Journal of Nonlinear Science, 34.12 (2024).
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Harvesting significantly impacts population models, requiring sustainable strategies

to balance yield and ecological stability. Increased harvesting can stabilize chaotic at-

tractors [46, 48]. Eskandari et al. [74] investigated harvesting-induced bifurcations, while

Neverova et al. [49] reported multistability under age-specific harvesting. The hydra effect,

where increased mortality counterintuitively boosts population levels, has been observed

in various models [44,54–56]. Pal [57] noted that predator grouping fosters a hydra effect

in prey, while interference induces the effect in predators.

This chapter is divided into six major sections. In the section 3.2, we formulate

discrete-time RM model incorporating independent harvesting of both predator and prey

species derived using the method of piecewise constant argument (semi-discrete scheme).

Moving to the section 3.3, we determine the equilibrium points and providing insights

into stability characteristics of those steady points of the system. In the section 3.4, we

employ the center manifold theorem and bifurcation theory to derive the normal forms

associated with flip and Neimark-Sacker bifurcations. The section 3.5 primarily focuses on

the dynamical effects and ecological implications of varying the carrying capacity (increase

in nutrient supply) of the prey species. Additionally, we conduct a bi-parameter analysis

of the system, exploring how simultaneous variations in prey and predator harvesting

efforts affect the system’s behavior in the section 3.6. Finally, in the section 3.7, we

provide the key findings and their significance in the broader context of the study.

3.2 Model formulation

We discretize the model (2.2.1) by using the method of piecewise constant argument [9].

System (2.2.1) can be written as,

1

x(t)

dx(t)

dt
= r

(
1− x([t])

K

)
− αy([t])

h+ x([t])
− q1e1,

1

y(t)

dy(t)

dt
=

βx([t])

h+ x([t])
−m− q2e2,

(3.2.1)

where [t] is the integer part of t, and t ∈ (0,∞). Then [t] = n, for t ∈ [n, n + 1). Hence,

(x([t]), y([t])) = (x(n), y(n)).

In view of the above, the system (3.2.1) could be written as

1

x(t)

dx(t)

dt
= r

(
1− x(n)

K

)
− αy(n)

h+ x(n)
− q1e1,
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1

y(t)

dy(t)

dt
=

βx(n)

h+ x(n)
−m− q2e2.

Now the RHS of the above systems is constant.

Integrating the system on the intervals t ∈ [n, n+ 1) with n = 0, 1, 2, ..., we obtain

ln(x(t))

∣∣∣∣t
n

=

(
r

(
1− x(n)

K

)
− αy(n)

h+ x(n)
− q1e1

)
(t− n),

ln(y(t))

∣∣∣∣t
n

=

(
βx(n)

h+ x(n)
−m− q2e2

)
(t− n).

which gives,

x(t) = x(n)exp

([
r

(
1− x(n)

K

)
− αy(n)

h+ x(n)
− q1e1

]
(t− n)

)
,

y(t) = y(n)exp

([
βx(n)

h+ x(n)
−m− q2e2

]
(t− n)

)
.

(3.2.2)

By taking t → n+ 1, we derive the discretized model,

x(n+ 1) = x(n)exp

(
r

(
1− x(n)

K

)
− αy(n)

h+ x(n)
− q1e1

)
,

y(n+ 1) = y(n)exp

(
βx(n)

h+ x(n)
−m− q2e2

)
.

Using the notation x(n) = xn and y(n) = yn, we obtain,

xn+1 = xnexp

(
r
(
1− xn

K

)
− αyn

h+ xn

− q1e1

)
,

yn+1 = ynexp

(
βxn

h+ xn

−m− q2e2

)
.

(3.2.3)

More details on this discretization is provided in many papers such as Hu et al. [75], Cui

et al. [76], Banerjee et al. [77], Garai et al. [78], and Han and Lei [79]. The discrete-time

system (3.2.3) will be analyzed for various dynamical changes and qualitative states of

the system in this paper.

The mapping form of system of difference equations (3.2.3) is as follows:x

y

 7−→

x exp
(
r
(
1− x

K

)
− αy

h+x
− q1e1

)
y exp

(
βx
h+x

−m− q2e2
)

 . (3.2.4)

We can clearly see that system (3.2.3) always has positive solution if we take initial

conditions positive. We will now discuss the stability of the equilibria of the system

(3.2.3) .
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3.3 Equilibrium points and their stability

Within this section, we identify the equilibrium points of the map (3.2.4) and analyze

their stability and instability behaviors. The equilibria of the system (3.2.3) are given by

x exp

(
r
(
1− x

K

)
− αy

h+ x
− q1e1

)
= x

y exp

(
βx

h+ x
−m− q2e2

)
= y

i.e.,

r
(
1− x

K

)
− αy

h+ x
− q1e1 = 0

βx

h+ x
−m− q2e2 = 0.

Clearly, E0 = (0, 0) is trivial equilibrium point of the system (3.2.3) which always exists.

The boundary equilibrium is EB =
(
K(1− q1e1

r
), 0
)
which exists if r > q1e1. The unique

coexisting equilibrium is

E∗ = (x∗, y∗) =

 h(m+ q2e2)

β −m− q2e2
,
hβ((m+ q2e2)(Kq1e1 − (h+K)r) +Kβ(r − q1e1))

Kα(β −m− q2e2)2

 .

For existence of positive equilibrium, following three conditions should be satisfied:

β −m > q2e2 andK >
(m+ q2e2)hr

(r − q1e1)(β −m− q2e2)
.

Therefore, the equilibrium points of system (3.2.3) are same as the equilibrium points

of continuous-time RM model. In the absence of harvesting of both the species, the

equilibrium points are (0, 0), (K, 0), and

 mh

β −m
,
hβr(Kβ −Km− hm)

αK(β −m)2

 .

Now we direct our focus on the local dynamic behavior of the system (3.2.3).

The Jacobian matrix system (3.2.3) at any arbitrary point is

J(x, y) =


(
1 + x

(
− r

K
+ αy

(h+x)2

))
er(1−

x
K
)− αy

h+x
−q1e1 −

αx

h+ x
er(1−

x
K )−

αy
h+x

−q1e1

βhy

(h+ x)2
e

βx
h+x

−m−q2e2 e
βx
h+x

−m−q2e2

 .
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The stability of the equilibria (0, 0) and
(
K(1− q1e1

r
), 0
)
, depends on the eigenvalues of

the matrices

J(0, 0) =

er−q1e1 0

0 e−m−q2e2


and

J
(
K(1− q1e1

r
), 0
)
=

1− r + q1e1
Kα(r−q1e1)

K−q1e1−(h+K)r

0 e
−m−q2e2+

Kβ(r−q1e1)
hr+K(r−q1e1)

 , respectively.

Examining the matrices obtained, we state the following propositions:

Proposition 3.1. The fixed point (0, 0) is always a saddle.

Proposition 3.2. The fixed point EB is locally asymptotically stable if 0 < r − q1e1 < 2

and K <
hr(m+ q2e2)

(r − q1e1)(β −m− q2e2)
.

One can note that when K <
hr(m+ q2e2)

(r − q1e1)(β −m− q2e2)
, the system has only two

fixed points viz trivial and boundary fixed points. The positive equilibrium comes into

existence when K >
hr(m+ q2e2)

(r − q1e1)(β −m− q2e2)
. Without harvesting efforts, the coexisting

equilibrium exists iff β > m and K >
hrm

r(β −m)
.

Hereafter, we discuss the stability of the interior equilibrium point. Consider the Jacobian

matrix of the system (3.2.3) evaluated at E∗ = (x∗, y∗) given by

V (x∗, y∗) =


(
1 + x∗

(
− r

K
+ αy∗

(h+x∗)2

))
−

αx∗

h+ x∗

βhy∗

(h+ x∗)2
1

 . (3.3.1)

The characteristic polynomial corresponding to the matrix (3.3.1) at (x∗, y∗) is given by,

C(Λ) = Λ2 − P(x∗, y∗)Λ +Q(x∗, y∗), (3.3.2)

where

P(x∗, y∗) = 2− rx∗

K
+ θ(x∗, y∗),

Q(x∗, y∗) = 1− rx∗

K
+ (1 + ϕ(x∗, y∗))θ(x∗, y∗),
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θ(x∗, y∗) :=
αx∗y∗

(h+ x∗)2
,

and

ϕ(x∗, y∗) :=
βh

h+ x∗.

This notation will be useful in the next section.

The following proposition states the stability conditions of the positive equilibrium of

system (3.2.3).

Proposition 3.3. The unique coexisting equilibrium point of system (3.2.3) is locally

asymptotically stable if

∣∣∣∣2 + x∗
(
− r

K
+

αy∗

(h+ x∗)2

)∣∣∣∣ < 2 + x∗
(
− r

K
+

αy∗

(h+ x∗)2

)
+

αβhx∗y∗

(h+ x∗)3
< 2.

The proposition mentioned above can be derived using the result from Luo [30],

Let (x∗, y∗) be a fixed point of the system (4). Then we say (x∗, y∗) is asymptotically

stable iff

|Trace(J(x∗, y∗))| < 1 + Det(J(x∗, y∗)) < 2.

Next, we turn our attention to the bifurcation analysis around the positive equilibrium

point of system (3.2.3) using bifurcation theory.

3.4 Bifurcation analysis

3.4.1 Neimark-Sacker bifurcation

We study the Neimark-Sacker (N-S) bifurcation of the system (3.2.3) around the positive

fixed point by taking the carrying capacity of the prey population as bifurcation parame-

ter. The similar bifurcation analysis of normal form of the Neimark-Sacker bifurcation in

discrete-time systems can be found in Hu et al. [36], Salman et al. [34], Din [39], Khan [51],

and Ajaz et al. [6].

Consider the characteristic polynomial (3.3.2) from the section 3.3. The equation C(λ) =

0 will possess two complex conjugate roots with a modulus of unity if the conditions

mentioned below are satisfied:

K =
rx∗

(1 + ϕ)θ
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and ∣∣∣∣∣∣2− rx∗

K
+ θ

∣∣∣∣∣∣ < 2.

Choose the parameters (r,K, α, h, β,m, q1, e1, q2, e2) from the set

ΩNS =

(r,K, α, h, β,m, q1, e1, q2, e2) : K =
rx∗

(1 + ϕ)θ
,

∣∣∣∣∣∣2− rx∗

K
+ θ

∣∣∣∣∣∣ < 2

 .

An invariant closed curve bifurcates around the unique coexisting equilibrium of the

system when parameters vary in a small neighborhood of ΩNS. The system (3.2.3) with

parameters (r,K, α, h, β,m, q1, e1, q2, e2) becomes

X

Y

 7−→

X er(1−
X
K )−

αY
h+X

−q1e1

Y e
βX
h+X

−m−q2e2

 . (3.4.1)

The perturbation of equation (3.4.1) by taking K̃ as bifurcation parameter can be written

as follows: X

Y

 7−→

X e
r
(
1− X

(K+K̃)

)
− αY

h+X
−q1e1

Y e
βX
h+X

−m−q2e2

 , (3.4.2)

where |K̃| ≪ 1 is a small perturbation parameter. Introducing the transformations x =

X − x∗(K̃) and y = Y − y∗(K̃), where (x∗, y∗) is positive equilibrium of system (3.2.3),

we using Taylor’s expansion about (x∗, y∗), the map (3.4.2) can be expressed as,

x

y

 7−→

ρ11 ρ12

ρ21 ρ22

x

y

+

F1(x, y)

G1(x, y)

 , (3.4.3)

where

F1(x, y) = ρ1x
2ρ2xy + ρ3y

2 + ρ4x
3 + ρ5x

2y + ρ6xy
2 + ρ7y

3 +O((|x|+ |y|)4),

G1(x, y) = σ1x
2 + σ2xy + σ3y

2 + σ4x
3 + σ5x

2y + σ6xy
2 + σ7y

3 +O((|x|+ |y|)4),
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and

ρ11 =
(h+ x∗)2((K + K̃)− rx∗) + αx∗y∗

(K + K̃)(h+ x∗)2
,

ρ12 = −
αx∗

h+ x∗, ρ21 =
βhy∗

(h+ x∗)2
, ρ22 = 1,

ρ1 = −
r2x∗

(K + K̃)2
−

αy∗(2h(h+ x∗) + αx∗y∗)

(h+ x∗)4
+

2r((h+ x∗)2 + αx∗y∗))

(K + K̃)(h+ x∗)2
,

ρ2 =
(h+ x∗)(−h(K + K̃) + hrx∗ + rx∗2)− (K + K̃)αx∗y∗

(K + K̃)(h+ x∗)3
, ρ3 =

α2x∗

(h+ x∗)2
,

ρ4 = −
1

(K + K̃)3(h+ x∗)6)
[(−6(K + K̃)3x∗(h+ x∗)2y∗α + 6(K + K̃)3(h+ x∗)3y∗α−

6(K + K̃)2x∗(h+ x∗)y∗α(r(h+ x∗)2 − (K + K̃)y∗α)+

x∗(r(h+ x∗)2 − (K + K̃)y∗α)3 − 3(K + K̃)(r(h+ x∗)3−

(K + K̃)(h+ x∗)y∗α)2)]

ρ5 =
α

(K + K̃)2(h+ x∗)5
[(−(h+ x∗)2(−2h(K + K̃)((K + K̃) + hr) + hr(−2(K + K̃) + hr)

x∗ + 2hr2x∗2 + r2x∗3) + 2(K + K̃)(h+ x∗)(h(−(K + K̃) + rx∗)+

x∗((K + K̃) + rx∗))y∗α− (K + K̃)2x∗y∗
2

α2)]

ρ6 =
α2(−(h+ x∗)(h(−(K + K̃) + rx∗) + x∗((K + K̃) + rx∗)) + (K + K̃)x∗y∗α)

(K + K̃)(h+ x∗)4
,

ρ7 = −
α3x∗

(h+ x∗)3
, σ1 =

hβy∗(−2(h+ x∗) + hβ)

(h+ x∗)4
,

σ2 =
hβ

(h+ x∗)2
, σ4 =

hβy∗(6(h+ x∗)2 − 6hβ(h+ x∗) + h2β2)

(h+ x∗)6
,

σ5 =
hβ(−2(h+ x∗) + hβ)

(h+ x∗)4
, and σ3 = σ6 = σ7 = 0.
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The characteristic equation of the linearized system with perturbation K̃ of the system

(3.4.3) can be written as,

Λ2 − P(K̃)−Q(K̃) = 0, (3.4.4)

where

P(K̃) = 2− rx∗

K + K̃
+ θ(K̃),

Q(K̃) = 1− rx∗

K + K̃
+ (1 + ϕ)θ(K̃)

and

θ(K̃) =
αx∗y∗(K̃)

(h+ x∗)2

The roots of the characteristic equation are complex conjugate with modulus unit as the

parameters lie in the neighborhood of the set ΩNS given by

Λ1,Λ2 =
P(K̃)

2
± i

2

√
4Q(K̃)− P2(K̃).

Then

|Λ1| = |Λ2| =
√

Q(K̃).

Also, (
d|Λ1|
dK̃

)
K̃=0

=

(
d|Λ2|
dK̃

)
K̃=0

=

d

√
Q(K̃)

dK̃


K̃=0

. (3.4.5)

We have

d

√
Q(K̃)

dK̃
=

1

2

√
Q(K̃)

dQ(K̃)

dK̃

=
1

2

√
Q(K̃)

 rx∗

(K + K̃)2
+ (1 + θ)

dϕ

dK̃
+ ϕ

dθ

dK̃


=

1

2

√
Q(K̃)

 rx∗

(K + K̃)2
+ ϕ

dθ

dK̃


=

1

2

√
Q(K̃)

 rx∗

(K + K̃)2
+

h2(m+ q2e2)rβ
2x∗

(h+ x∗)2(K + K̃)2(m+ q2e2 − β)2

 .
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Hence, from equation (3.4.5),

(
d|Λ1|
dK̃

)
K̃=0

=

(
d|Λ2|
dK̃

)
K̃=0

=
1

2
√

Q(0)

rx∗

K2
+

h2(m+ q2e2)rβ
2x∗

(h+ x∗)2K2(m+ q2e2 − β)2

 .

It is difficult to analyze the sign of transversality condition analytically for the above

expression. We will calculate the value of transversality condition for some fixed parameter

set in the example provided in later of this section.

Assume that P(0) = 2 −
rx∗

K
+ θ(0) ̸= 0,−1, and since (r,K∗, α, h, β,m, q1, e1, q2, e2) ∈

ΩNS, we can conclude that −2 < P(0) < 2. Then P(0) ̸= ±2,−1, 0 implies Λm
1 ,Λ

m
2 ̸=

1 ∀m = 1, 2, 3, 4 at K̃ = 0. When K̃ = 0 and if the following conditions are satisfied:

2−
rx∗

K
+ θ(0) ̸= 0 and 2−

rx∗

K
+ θ(0) ̸= −1, (3.4.6)

the solutions of equation (3.4.4) do not lie on the real or imaginary axes of the unit circle

(i.e., they are not equal to ±1 or ±i).

The normal form of equation (12) at K̃ = 0 is obtained by taking κ =
P(0)

2
and η =

1

2

√
4Q(0)− P2(0). Consider the following transformation:x

y

 =

0 ρ12

η κ− ρ11

µ

ν

 . (3.4.7)

The normal form of equation (3.4.3) using transformation (3.4.7) can be written as:µ

ν

 7−→

κ −η

η κ

µ

ν

+

F2(µ, ν) + (O)((|µ|+ |ν|)4)

G2(µ, ν) +O((|µ|+ |ν|)4)

 , (3.4.8)

where

F2(µ, ν) =
ρ11 − κ

ρ12η
F1(ρ12ν,ηµ+ (κ− ρ11)ν) +

1

η
G1(ρ12ν,ηµ+ (κ− ρ11)ν)

G2(µ, ν) =
1

ρ12
F1(ρ12ν,ηµ+ (κ− ρ11)ν).

Now, the Lyapunov coefficient [31] can be defined as follows:

L =

([
−Re

(
(1− 2Λ1)Λ

2
2

1− Λ1

τ20τ11

)
− 1

2
|τ11|2 − |τ02|2 +Re(Λ2τ21)

])
K̃=0

,
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where

τ20 =
1

2
[F2µµ −F2νν + 2G2µν + i(G2µµ − G2νν − 2F2µν)],

τ11 =
1

4
[F2µµ + F2νν + i(G2µµ + G2νν)],

τ02 =
1

8
[F2µµ −F2νν − 2G2µν + i(G2µµ − G2νν + 2F2µν)],

τ21 =
1

16
[F2µµµ + F2µνν + G2µµν + G2ννν + i(G2µµµ + G2µνν −F2µµν −F2ννν)].

Utilizing the analysis provided above, we present the subsequent theorem.

Theorem 3.4. [31] When L ̸= 0, the system (2) experiences a Neimark-Sacker bifurca-

tion around the singular positive equilibrium point (x∗, y∗) as the parameter K undergoes

variation within the vicinity of ΩNS. In cases where L < 0 (respectively, L > 0), an at-

tracting (or repelling) closed curve that is invariant undergoes bifurcation from the point

(x∗, y∗).

Example 3.5. Setting r =
5

2
, α =

9

10
, β =

7

10
, h = 4, and m =

2

10
, the Neimark-Sacker

bifurcation occurs at the equilibrium point (x∗, y∗) =

8

5
,
98

9

 at K∗ =
16

3
in the un-

harvested system. At the positive equilibrium (x∗, y∗), the eigenvalues of the Jacobian

matrix are

λ1 =
7− i

√
15

8
, λ2 =

7 + i
√
15

8
.

Here, |λ1| = |λ2| = 1, at the bifurcation point K∗. The value of transversality condition

is calculated as, (
d|Λ1,2|
dK̃

)
K̃=0

=
9

64
= 0.81667.

A positive derivative value of the absolute eigenvalue signifies the system’s instability

subsequent to the Neimark-Sacker bifurcation. When K < K∗, the eigenvalues will reside

within the interior of the unit circle. As K > K∗, the eigenvalues will escape from the

unit circle. The Lyapunov coefficient

L =
295893

14049280
≈ 0.02106108

which means that a repelling invariant curve bifurcates at the interior equilibrium point.
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3.4.2 Period-doubling bifurcation

In this subsection, we deal with the period-doubling bifurcation of the system (3.2.3)

around the positive equilibrium point as the carrying capacity of the prey species is

varied. If the Jacobian matrix at the coexisting equilibrium point (x∗, y∗) has one of the

eigenvalues is −1 (say λ1) and other one is not equal to ±1 (say λ2).The period-doubling

bifurcation emerges when the parameters undergo slight variations within a small vicinity

of

ΩPD = {(r,K, α, h, β,m, q1, e1, q2, e2) :
8x∗

K
+

(
2− rx∗

K
+ θ

)2

> 4(1 + θ + θϕ),

K =
(2 + r)x∗

4 + 2θ + θϕ
} .

The above set is derived using the characteristic polynomial of the Jacobian matrix at

coexisting equilibrium and θ(x∗, y∗) and ϕ(x∗, y∗) have same meaning as taken in eq

(3.4.4). Consider K̂ as bifurcation parameter, then system (3.2.3 ) becomes

xn+1 = xnexp

(
r

(
1− xn

(K + K̂)

)
− αyn

h+ xn

− q1e1

)
,

yn+1 = ynexp

(
βxn

h+ xn

−m− q2e2

)
,

(3.4.9)

where |K̂| ≪ 1. Let un = xn − x∗ and vn = yn − y∗. Using this transformation, we

transformed the coexisting equilibrium (x∗, y∗) to origin. By Taylor’s expansion around

(0, 0), we get

un+1 = Γ11un + Γ12vn + Γ13u
2
n + Γ14unvn + Γ15v

2
n

+ γ01unK̂ + γ02u
2
nK̂ + γ03v

2
nK̂ + γ04v

2
nK̂,

vn+1 = Γ21un + Γ22vn + Γ23u
2
n + Γ24unvn + Γ25v

2
n,

(3.4.10)
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where

Γ11 =
(h+ x∗)2(K − rx∗) + αKx∗y∗

K(h+ x∗)2
,

Γ12 = −
αx∗

h+ x∗, Γ21 =
βhy∗

(h+ x∗)2
, Γ22 = 1,

Γ13 =
1

2

r2x∗

K2
+

αy∗(2h(h+ x∗) + αx∗y∗)

(h+ x∗)4
−

2r((h+ x∗)2 + αx∗y∗))

K(h+ x∗)2

 ,

Γ14 =
(h+ x∗)(−hK + hrx∗ + rx∗2)−Kαx∗y∗

K(h+ x∗)3
,

Γ15 =
α2x∗

(h+ x∗)2
,

γ01 =
rx∗ ((h+ x∗)2(2K − rx∗) +Kx∗y∗α)

K3(h+ x∗)2
,

γ02 =
r

2K4(h+ x∗)4

(
(h+ x∗)4(2K2 − 4Krx∗ + r2x∗2)+

2Kx∗(h+ x∗)(x∗(K − rx∗) + h(2K − rx∗)y∗α +K2α2x∗2y∗
2

)
)
,

γ03 = −
rαx∗2

K2(h+ x∗)
, γ04 =

rα2x∗2

2K2(h+ x∗)2
,

Γ23 =
hβy∗(−2(h+ x∗) + hβ)

(h+ x∗)4
, Γ24 =

hβ

(h+ x∗)2
, Γ25 = 0.

Constructing the invertible matrix T

T =

 Γ12 Γ12

−1− Γ11 λ2 − Γ11


and use the transformationun

vn

 =

 Γ12 Γ12

−1− Γ11 λ2 − Γ11

Xn

Yn

 .

From (3.4.10 ), we getXn+1

Yn+1

 =

−1 0

0 λ2

Xn

Yn

+

Φ1(un, vn, K̂)

Φ2(un, vn, K̂)

 , (3.4.11)
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where

ϕ1(un, vn, K̂) =
Γ13(λ2 − Γ11)− Γ12Γ23

Γ12(1 + λ2)
u2
n +

Γ14(λ2 − Γ11)− Γ12Γ24

Γ12(1 + λ2)
unvn+

Γ15(λ2 − Γ11)− Γ12Γ25

Γ12(1 + λ2)
v2n +

γ01(λ2 − Γ11)

Γ12(1 + λ2)
unK̂ +

γ03(λ2 − Γ11)

Γ12(1 + λ2)
vnK̂+

γ02(λ2 − Γ11)

Γ12(1 + λ2)
u2
nK̂ +

γ04(λ2 − Γ11)

Γ12(1 + λ2)
v2nK̂,

ϕ2(un, vn, K̂) =
Γ13(1 + Γ11) + Γ12Γ23

Γ12(1 + λ2)
u2
n +

Γ14(1 + Γ11) + Γ12Γ24

Γ12(1 + λ2)
unvn+

Γ15(1 + Γ11) + Γ12Γ25

Γ12(1 + λ2)
v2n +

γ01(1 + Γ11)

Γ12(1 + λ2)
unK̂ +

γ03(1 + Γ11)

Γ12(1 + λ2)
vnK̂+

γ02(1 + Γ11)

Γ12(1 + λ2)
u2
nK̂ +

γ04(1 + Γ11)

Γ12(1 + λ2)
v2nK̂,

u2
n = Γ2

12(X
2
n + 2XnYn + Y 2

n )

unvn = (−Γ12 − Γ12Γ11)X
2
n + (Γ12λ2 − Γ12Γ11 − Γ12(1 + Γ11))XnYn + Γ12(λ2 − Γ11)Y

2
n ,

unK̂ = Γ12XnK̂ + Γ12YnK̂,

u2
nK̂ = Γ2

12(X
2
nK̂ + 2XnYnk̂ + Y 2

n K̂).

Hence, there exists a center manifold Mc(0, 0) of the map (3.4.11 ) about (0, 0) in a small

neighborhood of K̂ (using center manifold theorem that is represented as:

Mc(0, 0) = {(Xn, Yn) : Yn = c0X
2+ c1XK̂+ c2K̂

2+O((|Xn|+ |K̂|)3)},

where

c0 =
(1 + Γ11)

3 Γ15 − Γ3
12Γ23 − (1 + Γ11) Γ

2
12 (Γ13 − Γ24) + (1 + Γ11)

2 Γ12 (Γ14 + Γ25)

Γ12(1 + λ2)(2 + λ2)

c1 =
(1 + Γ11)(−γ01Γ12 + γ03(1 + Γ11))

Γ12(1 + λ2)2
, c2 = 0.

Then, we derive map (3.4.11 ) restricted to the center manifold Mc(0, 0) as follows:

F(x̃n) = −x̃n + d1x̃
2
n + d2x̃nK̂ + d3x̃

2
nK̂ + d4x̃nK̂

2 + d5x̃
3
n +O((|x̃n|+ |K̂|)4) (3.4.12)

72



where

d1 =
1

1 + λ2

(−Γ12(Γ13(Γ11 − λ2) + Γ12Γ23) + (1 + Γ11)(Γ14(Γ11 − λ2) + Γ12Γ24))

−
(1 + Γ11)

2(Γ15(Γ11 − λ2) + Γ12Γ25)

Γ12(1 + λ2)
, d2 =

(Γ11 − λ2)(−γ01Γ12 + γ03(1 + Γ11))

Γ12(1 + λ2)
,

d3 = −
1

Γ12(1 + λ2)

(
γ02Γ

2
12(Γ11 − λ2) + γ04(Γ11 − λ2)(1 + Γ11)

2 + c0γ01Γ12(Γ11 − λ2)− c0γ03(Γ11 − λ2)
2+

2c1Γ
2
12(Γ11Γ13 + Γ12Γ23 − Γ13λ2) + c1Γ12(1 + 2Γ11 − λ2)(Γ11Γ14 + Γ12Γ24 − Γ14λ2)+

2c1(1 + Γ11)(Γ11 − λ2)(Γ11Γ15 + Γ12Γ25 − Γ15λ2)) ,

d4 =
c1(λ2 − Γ11)(γ01Γ12 + γ03(λ2 − Γ11))

Γ12(1 + λ2)
,

d5 = c0

 − 2Γ12(Γ11Γ13 + Γ12Γ23 − Γ13λ2))

1 + λ2

+
(1 + 2Γ11 − λ2)(Γ11Γ14 + Γ12Γ24 − Γ14λ2)

1 + λ2

+

2(1 + Γ11)(Γ11 − λ2)(Γ11Γ15 + Γ12Γ25 − Γ15λ2)

Γ12(1 + λ2)

 .

For map (3.4.12 ) to show occurrence of period-doubling bifurcation, the following two

discriminatory quantities α1 and α2 are non-zero:

α1 =

 ∂2F

∂x̃n∂K̂
+

1

2

∂F

∂K̂

∂2F
∂x̃2

n

∣∣∣∣∣
(0,0)

= d2

and

α2 =

1

6

∂3F
∂x̃3

n

+

1

2

∂2F
∂x̃2

n

2
∣∣∣∣∣

(0,0)

= d21 + d5.

From above analysis and the theorem in Kuznetsov [31] and Guckenheimer [80], we have

the theorem as follows:

Theorem 3.6. If α2 ̸= 0, then the map (3.4.9) undergoes a Period-doubling bifurcation

about the unique positive equilibrium point (x∗, y∗) when the parameter K̂ varies slightly

in the vicinity of ΩPD. If α2 > 0 (resp. α2 < 0), then an attracting (resp. repelling)

period-2 orbit bifurcates from (x∗, y∗).
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Example 3.7. Setting r = 4, α =
6

10
, β =

5

10
, h = 20, and m =

1

10
, the period-doubling

bifurcation occurs at the equilibrium (x∗, y∗) =

5,
6250

93

 at K∗ =
310

37
in the unhar-

vested system. The eigenvalues of the Jacobian matrix at (x∗, y∗) are −1 and
29

31
. After

the normal form analysis, we obtain

α2 =
19259

888671875
> 0.

Hence, using Theorem 3.6, an attracting period-2 orbit bifurcates at bifurcation point K∗

indicating the occurrence of period-doubling bifurcation.

3.5 Dynamical behavior without harvesting

We analyze the unharvested system (e1 = e2 = 0) by varying the carrying capacity of

prey species, and we report the dynamical changes in the system. We show the existence

of period-doubling (or flip) and Neimark-Sacker bifurcations, and we make an order in

which those bifurcations occur.

3.5.1 Existence and order of the bifurcations

First we discuss the existence of only one of the bifurcations with respect to K. Con-

sidering r = 2.5, α = 0.9, β = 0.7, h = 4, and m = 0.2, the coexisting equilibrium for

K = 16
3

is
(
8
5
, 98

9

)
. The eigenvalues of the Jacobian matrix of the system 3.2.3 at the

coexisting equilibrium are
1

8
(7± i

√
15) which are unity in absolute value. From the nor-

mal form analysis done in Section 3.4 , we obtain the value of the Lyapunov coefficient

L = 0.02106108. Hence, a stable invariant closed orbit bifurcates for increasing K through

K = 16
3
(Theorem 3.4 ). This validates the presence of Neimark-Sacker bifurcation.

Next, we input the values of parameter as r = 4, α = 0.6, β = 0.5, h = 20, andm =

0.1 in the unharvested system. The eigenvalues of the Jacobian matrix at coexisting

equilibrium (5, 6250
93

) corresponding to K = 310
37

are −1 and 29
31
. Therefore, the system

experiences a period-doubling (or flip) bifurcation under the considered parameter set.

Now, one might ask the question: can flip and Neimark-Sacker bifurcations occur for

the same parameter set while varying K? If yes, then which bifurcation will occur first

74



followed by the other one? Further, one might be interested to investigate the successive

change of dynamic modes while K is varied.

To address the above questions, we consider the first parameter set. When K is

significantly small, the trivial and boundary equilibria exist which are unstable. The

coexisting equilibrium exists at K = 1.6 and it is in unstable mode for K < 1.87. The

coexisting equilibrium becomes stable for K > 1.87 and maintains its stability for K < 16
3
.

Figure 3.5.1a shows that the system destabilizes through a Neimark-Sacker bifurcation

at K = 16
3
. A stable quasiperiodic orbit exists which loses its stability giving rise to a

series of periodic windows and period-bubbling phenomenon as K is varied. The system

finally settles in chaotic mode through the route of quasiperiodicity. This complicated

behaviour is also evident from the maximum Lyapunov exponents plotted with respect

to K in Figure 3.5.1b . The positive value of maximum Lyapunov exponent validates the

existence of chaotic behaviour, negative values imply periodicity, and quasiperiodicity is

exhibited if its value is zero. We plotted the real part of the eigenvalues of the Jacobian

matrix at the coexisting equilibrium in Figure 3.5.1c for K ≤ 40. The red and blue curve

represents the real part of the two corresponding eigenvalues. We can observe that the

real part of both eigenvalues is different for K < 3.27, but both are less than unity. As K

increases further the eigenvalues become complex and the real part of both eigenvalues

is the same. The real part of eigenvalues increases and remains greater than unity with

increase in K after the emergence of Neimark-Sacker bifurcation at K = 160
7
. There is

no possibility of the eigenvalues to be -1 which indicates the presence of flip bifurcation.

Consequently, there is no flip bifurcation for further increase in K.

In case of the second parameter set, only the trivial and boundary equilibria exist for

K < 5.1, but both of those are unstable. The coexisting equilibrium exists for K > 5.1

which is also unstable as the system exhibits stable chaotic behaviour. The coexisting

equilibrium becomes stable via a flip bifurcation at K = 310
37

(Figure 3.5.2a- 3.5.2b). The

system is in stable mode for K > 310
37

and remains stable for K ∈ (310
37
, 160

7
). The Jacobian

matrix has eigenvalues 1
80
(79±i

√
159) with absolute value unity corresponding toK = 160

7
.

The stable coexisting equilibrium loses its stability to an invariant closed orbit due to the

Neimark-Sacker bifurcation. This bifurcation causes chaotic behaviour via quasiperiodic-

ity. The instance of emergence of Neimark-Sacker bifurcation after the flip bifurcation is
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shown in bifurcation diagrams (Figure 3.5.2c- 3.5.2d ). The complex behaviour can also

be examined using maximum Lyapunov exponents as shown in Figure 3.5.2e .

We considered different parameter sets which lead to either a Neimark-Sacker bifur-

cation, or both a flip followed by Neimark-Sacker bifurcation. Another question that may

be asked whether it is possible to exhibit only a flip bifurcation for a certain parameter

set. We checked many parameter sets, but didn’t find any such situation which could

lead to only flip bifurcation without any Neimark-Sacker bifurcation. We also couldn’t

find any parameter configuration where Neimark-Sacker bifurcation occurs followed by

flip bifurcation of the coexisting equilibrium. One might be interested to investigate this

in other population models.

(a) (b)

(c)

Figure 3.5.1: (a) Bifurcation diagram with varying K for the first parameter values:

r = 2.5, α = 0.9, β = 0.7, h = 4, andm = 0.2. (b) Corresponding maximum Lyapunov

exponents. (c) Real part of the eigenvalues corresponding to Jacobian matrix at coex-

isting equilibrium for 2 ≤ K ≤ 40.

3.5.2 Multistability

If more than one attractors exist for different initial conditions for the fixed values of the

parameters, the system is said to be multistable. Multistability can be of different types,

viz, periodic-periodic, periodic-chaotic, periodic-quasiperiodic, chaotic-quasiperiodic, and
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(a) (b)

(c) (d)

(e)

Figure 3.5.2: Existence of flip bifurcation with respect to K and fixing other param-

eter values as: r = 4, α = 0.6, β = 0.5, h = 20, andm = 0.1, (a) for predator population

and (b) for prey population. Emergence of both the period-doubling and Neimark-Sacker

bifurcation by varying K (c) for predator population and (d) for prey population. (e)

Maximum Lyapunov exponents corresponding to K.

many more. System (4) exhibits different multistable stable modes for various values

of K for the second parameter set. We plotted red bifurcation diagram by first taking

the initial condition (2.8, 134.13), and then using the initial condition (2.8, 130.4) in blue
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color in the same figure window (Figure 3.5.3a ). The two initial conditions show different

dynamical behavior. The red and blue curves in the Figure 3.5.3a are not overlapping for

some values K which shows that the initial conditions are attracted to different attractors

for the same value of K. We also obtained the different maximum Lyapunov exponents

for these two initial conditions (Figure 3.5.3b ). It is clear from the MLE curves also that

the dynamics behaviour of the system don’t match for various values of K. It is possible

to have more than two attractors for the values of K where the red and blue bifurcation

curve are not coinciding. We will determine the different stable coexisting attractors for

different initial conditions using phase portraits and basins of attraction.

(a) (b)

Figure 3.5.3: (a) Bifurcation diagram of predator population by varying K and

using the initial conditions (2.8, 134.13) in blue and (2.8, 130.4) in red. (b) Maximum

Lyapunov exponent for 38 ≤ K ≤ 42 using the initial conditions (2.8, 134.13) in blue

and (2.8, 130.4) in red.

Two attractors: (periodic-periodic): When two attractors coexist for two dif-

ferent initial conditions, we say that the system is bistable. We observed that the system

exhibits periodic-periodic bistability for K = 38.186 where period-20 and period-41 co-

exist for different initial conditions. Similar kind of periodic-periodic multistability can

be observed for K = 38.244 (period-82 and period-100), K = 39.019 (period-21 and

period-84), and K = 40.039 (period-43 and period-231). Figure 3.5.4a shows the basins

of attraction for K = 38.186 with period-41 (green region) and period-20 (magenta re-

gion). The initial conditions converging to period-100 cycles are represented by black

color while period-82 are indicating by yellow color for K = 38.244 (Figure 3.5.4b ).

Three attractors (periodic-periodic-periodic): Any system is tristable if three

different attractors coexist with three initial conditions. These attractors can be periodic,
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(a) (b)

Figure 3.5.4: (a) Basin of attraction for K = 38.186: period-20 (magenta colored

region) and period-41 (green colored region). (b) Basin of attraction for K = 38.244:

period-82 (yellow colored region) and period-100 (black colored region).

quasiperiodic, chaotic, or any combination of those. In our system, we come across

three stable periodic cycles such as period-43, 66, and 231 orbits for K = 40.039. In

Figure 3.5.5a- 3.5.5b , the black region is made up of the initial conditions which lead to

period-43 cycle, period-66 behavior is exhibited by the initial conditions shown in cyan

color, and red region contains the initial conditions converging to period-231 cycle. In the

zoomed part as shown in Figure 3.5.5b , we observe that the initial conditions leading to

period-66 and period-231 cycles are very densely spread and its difficult to separate the

values of (x0, y0) for either of the periodic cycles.

Four attractors (periodic-periodic-quasiperiodic-chaotic): The more inter-

esting kind of multistability is exhibited when a quasiperiodic, chaotic attractors, and

periodic-orbits coexist. For K = 40.02, the initial conditions (2.8, 134.13) converges to

a quasiperiodic attractor, the initial condition (10, 26.125) leads to a chaotic attractor,

a stable period-44 cycle is observed when the initial condition is set to (3, 2.02) and the

initial condition (3.48, 23.83) exhibits a stable period-132 orbit. We also calculated the

maximum Lyapunov exponent for both initial conditions to be sure of the behavior of

the system. We used 50 million iterations to quantify the maximum Lyapunov exponent.
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(a) (b)

Figure 3.5.5: (a) Basin of attraction for period-43 (black region), 66 (cyan region),

and 231 (red region) orbits respectively when K = 40.039. (b) Enlarged part of basin of

attraction for K = 40.039.

The values of maximum Lyapunov exponent for (2.8, 134.13), (10, 26.125), (3, 2.02), and

(3.48, 23.83) are 0.00000009 (quasiperiodic), 0.01007792(chaotic), −0.01452989 (period-

44), and −0.00397646 (period-132), respectively. Figure 3.5.6 shows the four coexisting

attractors: quasiperiodic attractor in blue, chaotic attractor in red, green dots represents

period-44 orbit, and black dots made up the period-132 orbit. We can see that the blues

is the closed orbit and hence we say that it is quasiperiodic.

Next, we take a region of initial conditions in x0y0-plane and draw the basin of at-

traction for K = 40.02. We plotted the basin of attraction by differentiating between

periodic and non-periodic behavior and further, dividing the non-periodic behavior into

chaotic and quasiperiodic mode using maximum Lyapunov exponents using MATLAB.

For the dividing the periodic and non-periodic behavior, we took a grid consisting of

0.1 ≤ x0 ≤ 20 and 20 ≤ y0 ≤ 30 and calculated the period and maximum Lyapunov

exponent at each value of the grid by moving a distance of 0.01 in both horizontal and

vertical direction. Figure 3.5.7a comprises of the basin of attraction for the quadru-

ple [72, 81] attractors: quasiperiodic (magenta), chaotic (black), period-44 (yellow), and

period-132 (green). The magnification of the basin of attraction is represented by the
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Figure 3.5.6: For K = 40.02, stable quasiperiodic (blue colored), chaotic (red col-

ored), period-44 (green colored) and period-132 (black colored) attractors coexisting for

different initial conditions.

Figure 3.5.7b. We have thoroughly examined the dynamical modes of the system when

nutrient supply (carrying capacity) of the prey species is varied till now. In the next

subsection, we will study the change in overall stocks of the predator and prey population

when the prey species is enriched.

(a) (b)

Figure 3.5.7: (a) Basin of attraction for the quadruple attractors: quasiperiodic

(magenta), chaotic (black), period-44 (yellow), and period-132 (green) for K = 40.02.

(b) Magnified part of basin of attraction in (a).
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3.6 Dynamical behavior with harvesting

Harvesting (of fishes) and culling (of pest) are two common practices in fishery and crop-

ping systems, respectively. Both the human induced activities reduce the abundance of the

target species, and hence the stocks of the other species of ecosystems also get changed. In

fishery, industries employ efforts to catch predatory fishes because of their higher economic

values, and catches some prey fish as a bycatch. Often two different fishery industries

exert effort on two different tropic levels following independent effort policy. We here

study the impacts of independent harvesting of predator and prey species in the context

of stability and stock pattern. Generally, the ecological parameters (r,K, α, h, β, andm)

are inherent, and we should not vary those in a mathematical model. However, we are

free to regulate efforts e1 and e2 as these are the control parameters induced by human

activity directly. Immediately, we are interested in exploring the effect on the structure

of (in)stability zones of the coexisting equilibrium under harvesting of both the species in

the e1e2-plane, and soon after we estimate population abundance under harvesting.

3.6.1 Stability region

Our main aim is to analyze the dynamical behavior of the system in the bi-parameter

space, i.e., e1e2-plane. We define the region in e1e2-plane where both species can have

stable coexistence or unstable mode. This is a specialist predator-prey system, therefore,

the predator gets extinct first then the prey do so. Under harvesting, the coexistence

equilibrium (x∗, y∗) can be calculated from the Section 3.3. We set the parameter values

as r = 2.5, K = 20, α = 0.9, β = 0.7, h = 4, m = 0.2, q1 = 0.1, and q2 = 0.01. We

determine the positive equilibrium point for the aforementioned parameter set given by

(x∗, y∗) =

(
4 (e2 + 20)

(50− e2)
,
280(1150 + e1(e2 − 50)− 30e2)

9(e2 − 50)2

)
.

When prey is harvested only then extinction of predator happens at e1 = 23. Similarly,

when only predator is harvested the predator extincts at e2 = 115
3
. Hence, the region of

interest to investigate (in)stability will be

R :=

(e1, e2) : 0 ≤ e1 ≤ 23, 0 ≤ e2 ≤
115

3

 .

We obtain the predator extinction curve at equilibrium by plotting

F (e1, e2) := 280(1150 + e1(e2 − 50)− 30e2) = 0.
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Note that F (0, 0) > 0. Hence the prey and predator must coexist in the absence of

harvesting. The coexistence region is bounded by e1-axis, e2-axis and the curve F (e1, e2) =

0. The predator extinction region must lie above the extinction curve.

The coexistence region can be further divided into two parts by stability and instability

behaviors of the coexisting equilibrium. We extract the stability region by calculating the

eigenvalues (λ) of the Jacobian matrix (3.3.1) at the coexisting equilibrium. We find

that Neimark-Sacker bifurcation occurs (for |λ| = 1) producing a bifurcation curve which

leads to the blue curve. The gray region below the blue curve in the Figure 3.6.1 shows

the values of e1 and e2 for which the equilibrium is in unstable mode (|λ| > 1). The

increase in any of the harvesting effort leads to stabilization of the coexisting equilibrium

via a Neimark-Sacker bifurcation. The yellow region represents stability zone where the

coexisting equilibrium is stable (|λ| < 1). The coexisting equilibrium loses its stability

again via a flip bifurcation (black curve) where one of the eigenvalues is −1. The green

zone is the region of instability of coexisting equilibrium. We will analyze explicitly the

dynamic modes present in the green region later section when effect of predator harvesting

on mean population size is discussed.

Figure 3.6.1: The Neimark-Sacker bifurcation curve (blue) and predator extinction

curve (red) in e1e2−plane.
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3.6.2 Two-parameter space analysis

Arnold tongues and Period-adding sequence

Now in unstable regions (gray), we quantify whether the system experiences either mode:

a periodic with period more than 1, quasiperiodic, or chaotic. The maximum Lyapunov ex-

ponent (MLE) is an useful measure to distinguish between periodic (MLE< 0), quasiperi-

odic (MLE= 0), and chaotic (MLE> 0) behavior of the system. For plotting the maximum

Lyapunov exponents, we calculated the MLE for all (e1, e2) ∈ [0, 8] × [0, 25]. These ex-

ponents are calculated for each value of (e1, e2) in the parameter space divided into a

mesh-grid of 25000× 8000 equidistant points. Figure 3.6.2a shows the values of MLE for

different values of e1 and e2 revealing three topologically nonequivalent dynamical behav-

ior. The color map indicates the range of obtained MLEs. The parameter values which

are colored light-dark yellow leads to periodic behavior, black ones indicate quasiperiodic

dynamics, and the green-blue ones demonstrate chaotic motion.

We further classify the periodic behavior by finding the period of the trajectories for

different values of e1 and e2. Figure 3.6.2b depicts the isoperiodic diagram with varying

both harvesting rates simultaneously. The white region represents non-periodic behaviour

(quasiperiodic or chaotic) while the colored region is for periodic windows engulfed in

the quasiperiodic and chaotic regions. The red region on the upper right corner of the

Figure 3.6.2b shows the stable region which is separated from the unstable region of

coexisting equilibrium (or period-1) by Neimark-Sacker bifurcation curve in e1e2-plane.

The colored regions (apart from the red one) are the values of (e1, e2) for which the system

exhibits periodic behaviour. The periodic regime with period-26, 27, 28, 29, 30, 31, 32, 33,

34, and so on are clearly marked using different colors in the isoperiodic diagram. These

periodic structures collide with each other which correspond to occurrence of phase-locking

(or frequency locking) phenomenon in the quasiperiodic regime. When two frequencies

interact nonlinearly (or commensurate) and the ratio of the two is a rational number

then we say that the frequencies are phase-locked [14]. This occurrence of phase-locking

leads to formation of organized periodic structures called Arnold tongues. These Arnold

tongues are similar to structures observed in circle maps [14], and these are associated

with rotation numbers 1/26, 1/27, 1/28, 1/29, 1/30, 1/31, 1/32, 1/33, 1/34, and so

on. An infinite collection of periodic structures is organized in a period-adding sequence,

84



where the period increases by one as e2 decreases. The head of the Arnold tongues lies

in the chaotic region while the V-shaped tail is immersed in the quasiperiodic regime.

Self-similarity is observed in these organized periodic structures.

(a) (b)

Figure 3.6.2: (a) Maximum Lyapunov exponent diagram in e1e2-plane for 0 ≤ e1 ≤ 8

and 0 ≤ e2 ≤ 25. The values of MLE for associated color represented in the colorbar.

(b) Isoperiodic diagram for e1e2-plane for 0 ≤ e1 ≤ 8 and 0 ≤ e2 ≤ 25. The colored

structures represent the periodic regime while the white region can be either quasiperiodic

or chaotic. The colored tongues with rotation number 1/p are labeled by p. The black

colored tongues correspond to other rotation number tongues.

Between two adjacent tongues with rotation numbers p/r and q/s, there is a tongue

with rotation number (p+q)/(r+s). Here for example, a tongue of rotation number 2/53

is present between tongues of rotation numbers 1/26 and 1/27, 2/55 rotation numbered

tongue between tongues with rotation number 1/27 and 1/28, and so on. There is an

infinite sequence of such alignment of these tongues. Also, there are infinite number of

such two Arnold tongues with different rotation numbers where the similar kind of layout

exists. One of those sequence is,

1

26
,
2

53
,
1

27
,
2

55
,
1

28
,
2

57
,
1

29
, ...
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which can be written in a sequence {ak} as follows,

ak =
2

k + 51
, with k = 1, 2, 3, ... .

This is a small part of the Farey tree that consists of rational numbers between 0 and 1.

(a) (b)

Figure 3.6.3: (a) Magnification of Figure 3.6.2b : MLE diagram. (b) The colored

part represent the Arnold tongues of rotation number as marked in the picture. The

gray part represents the Arnold tongue with other rotation numbers.

We now magnify some part of Figure 3.6.2b to visualize different organized periodic

structures. Figure 3.6.3a (respectively Figure 3.6.3b ) are an enlargement of Figure 3.6.2a

(respectively Figure 3.6.2b ) for 2.3 ≤ e1 ≤ 3.2 and 12 ≤ e2 ≤ 17. The largest tongue be-

tween the period-26 and period-27 tongues corresponds to period-53, between the period-

27 and period-28 tongues to period-55, and so forth. The pattern is repeated and we

obtain a Fibonacci-like sequence {bk}∞k=1 = {26, 27, 53, 80, 133, 213, ...} generated with

decreasing e1 in e1e2−plane. The interesting fact is that the ratio of consecutive terms(
bk+1

bk

)
of the sequence tends to ϕ = 1+

√
5

2
≈ 1.61803, called the Golden ratio (or Golden

mean).

Shrimp Structures

Other important periodic structures are Shrimp structures which are engulfed in the

chaotic region. From the maximum Lyapunov exponent diagram, we observed that the
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head of the Arnold tongues is embedded in the chaotic region while the tail is immersed in

the quasiperiodic region. Another important periodic structure submerged in the chaotic

regime is a shrimp-like structure with a head and four tails named shrimp structure [82]. A

magnification of a part of Figure 3.6.2b is shown in Figure 3.6.4b . The head of the shrimp

structure colored orange corresponds values of (e1, e2) which exhibit period-84 orbits. As

we move towards tail of the structure, the period-84 × 2 (period-168) oscillations are

observed. This is a part of the period-bubbling cascade leading to chaos.

(a) (b)

Figure 3.6.4: (a) Magnification of Figure 3.6.2a . (b) Magnification of Figure 3.6.2b

. The colored part represent the Shrimp structure. The gray part represents the other

periodic orbits.

3.6.3 Paradox of enrichment

We can write the model (3.2.3), without harvesting as

xn+1 = xnexp

(
r
(
1− xn

K

)
− αyn

h+ xn

)
,

yn+1 = ynexp

(
βxn

h+ xn

−m

)
.

(3.6.1)

The increase in K (increasing nutrient supply) to prey species should have a positive

impact on prey population size. The overall predator population is also expected to be

benefited by the prey enrichment. By computing mean population size of both species, we
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shall verify that this increase in population size with carrying capacity is in well agreement

or any counter-intuitive situations arise.

The mean population size with species enrichment are illustrated in Figure 3.6.5a

- 3.6.5c corresponding to the parameter set r = 4, α = 0.6, β = 0.5, h = 20, andm = 0.1.

The red curve represents the coexisting equilibrium and the black one corresponds the

mean population size. We know from the previous subsection 3.5.1, for the considered

parameter set the system undergoes a flip bifurcation which stabilizes the coexisting

equilibrium. As K is increased further, the system exhibits a Neimark-Sacker bifurcation

contributing to emergence of non-equilibrium dynamics. The mean population of the prey

species rises in the non-equilibrium state prior to flip bifurcation occurring for K = 310
37
,

then the mean population matches with the stable coexisting equilibrium. The prey

component of the stable coexisting equilibrium is independent of the carrying capacity,

hence the prey stocks remain constant when the system exhibits stable equilibrium state.

Further, the mean prey stocks increase with species enrichment as the system exhibits

non-equilibrium dynamics with occurrence of the Neimark-Sacker bifurcation for K ≤ 160
7

(Figure 3.6.5a ). In the equilibrium states, the mean predator population increases with

species enrichment. When the equilibrium becomes unstable followed by the Neimark-

Sacker bifurcation, the average predator population shows a significant decrease for a

small interval (27, 36) of K (Figure 3.6.5b). This decrease in the predator population

with prey enrichment is called as paradox of enrichment [44, 46]. The rate of decrease

in the mean predator population is not significant as the nutrient supply to prey species

is increased further. We found that the mean population values lie between 111.43 and

109.67 when K ∈ (200, 500). The mean stocks show a sudden jump with a discontinuity

towards zero for K > 513. We can conclude from Figure 3.6.5c that the decrease in mean

predator population is not smooth. Due to positivity of the map (3.2.3), as proved in

section 3.2, the predator population never goes extinct but its is on the verge of extinction.

Hence, paradox of enrichment is very evidently present in our system.

We can check the mean population for the other parameter set which produced dif-

ferent bifurcation and dynamics. We found that similar kind of changes in both prey and

predator population were observed in the second parameter set r = 2.5, α = 0.9, β =

0.7, h = 4, andm = 0.2 (Figure 3.6.5d - 3.6.5f ). We have plotted all these figures in
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MATLAB using 5 million iterations. We also obtained the same values of the mean

population with 50 million iterations.

(a) (b)

(c) (d)

(e) (f)

Figure 3.6.5: For parameter values r = 4, α = 0.6, β = 0.5, h = 20, andm =

0.1: (a) mean prey population for 5.1 < K < 45, (b) mean predator population for

5.1 < K < 45, and (c) mean predator population for 500 < K < 540. For parameter

values r = 2.5, α = 0.9, β = 0.7, h = 4, andm = 0.2: (d) mean prey population for

1.6 < K < 20, (e) mean predator population for 1.6 < K < 20, and (f) mean predator

population for 175 < K < 182.
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3.6.4 Hydra effect

Recalling the model (3.2.3),

xn+1 = xnexp

(
r
(
1− xn

K

)
− αyn

h+ xn

− q1e1

)
,

yn+1 = ynexp

(
βxn

h+ xn

−m− q2e2

)
.

(3.6.2)

We examine the effect on the population stocks by inducing constant prey harvesting

effort while increasing predator harvest rate. The coexisting equilibrium exists for e2 ≤

38.3333 in the absence of prey harvesting (i.e., e1 = 0). Using the eigenvalues approach,

the positive equilibrium is unstable for e2 ∈ (0, 28.7142). The system exhibits complex

phenomenon such as periodic windows,period-doubling, period-bubbling, quasiperiodicity,

and chaos when the coexisting equilibrium is unstable as show in the bifurcation diagram

Figure 3.6.6a. A Neimark-Sacker bifurcation leads to the stabilization of the coexisting

equilibrium at e2 = 28.7142. Consequently, predator harvesting stabilizes the coexisting

equilibrium for e2 ∈ (28.7142, 33.2218). The coexisting equilibrium again loses stability

via a flip bifurcation at e2 = 33.2218. We will discuss the dynamics of the system for

e2 ∈ (33.2218, 38.3333) in detail soon after in the same subsection.

The red curve in Figure 3.6.6a represents the coexisting equilibrium. When the system

is stable, we can clearly interpret the decreasing behaviour of the predator population.

However understanding the population stock is difficult from Figure 3.6.6a for unsta-

ble mode. Now, we estimate the mean stock for e2 ∈ (0, 28.7142). We calculated the

mean and equilibrium population size of both species with increasing predator harvest-

ing. In a Lotka-Volterra predator-prey model the predator population decreases while

prey population increases when predator exploitation is increased ( [83]). In our model,

the equilibrium prey size (red colored) increases (Figure 3.6.6b ) which is in well agree-

ment with the result of Legović et al. [83]. However, the equilibrium predator population

(blue colored) shows a paradoxical behaviour. From Figure 3.6.7a, mean prey population

maintains opposite relation in terms of increment and decrement with predator popula-

tion size. The most important result in our discrete-time model is that the mean prey

population size decreases in a small interval of effort.
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(a) (b)

Figure 3.6.6: (a) Bifurcation diagram for the predator (blue colored) and the preda-

tor part of coexisting equilibrium (red colored) with varying predator harvesting rate.

(b) Coexisting prey (red color) and predator (blue color) equilibrium with varying e2.

Ecologically, it is expected that the population of any species must decline with in-

crease in their exploitation rate. Contrary to this, many models show a positive response

on the targeted species when they are culled or removed. This paradoxical behaviour is

known as hydra effect [46, 53]. The black colored curve in Figure. 3.6.7b represents the

mean predator population with varying predator harvesting effort. When the harvest-

ing rate is relatively low, the mean stocks are somewhat decreasing while the equilib-

rium is increasing. The mean predator population starts showing positive growth around

e2 = 17.57. Between the lines L1 (e2 = 22.06) and L2 (e2 = 27.69), the mean predator pop-

ulation and equilibrium stocks both show a prominent increase leading to the conclusion

that the discrete-time system (3.2.3) exhibits the hydra effect. The equilibrium popula-

tion in the unstable states is monotonically decreasing while mean population keeps on

increasing with increment of harvesting effort in the narrow interval (L2, L3). In the unsta-

ble mode, the mean population is always less than the equilibrium size. The stock pattern

is very complex with increment in exploitation rate of the predator in non-equilibrium

states.

The coexisting equilibrium becomes unstable again in courtesy of a flip bifurcation

with predator get on the verge of extinction while prey population exists in the unstable

mode (Figure 3.6.7c ). Although the coexisting equilibrium exists but the dynamics are

driven by fluctuation mode in the green region shown in the Figure 3.6.1 in the previous

chapter (3.6.1). However, there is sudden jump in predator size after destabilization of the

coexisting equilibrium leading to extinction of the predator population (Figure 3.6.7d).

For e2 > 33.2, the coexisting equilibrium becomes unstable and predator population
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extincts while the prey population is existing in the unstable mode. If we fix e1 = 10,

there is a very smooth decrement of the predator population to extinction as shown

in Figure 3.6.7e . The coexisting equilibrium decreases continuously and tend to zero

maintaining the stable mode.

(a) (b)

(c) (d)

(e)

Figure 3.6.7: (a) Mean population size of prey (red color) and predator (blue color)

with e2. (b) Predator population size : mean population in blue color and predator part

of the coexisting equilibrium in red color with varying e2. (c) Bifurcation diagram for the

prey (red colored) with varying predator harvesting rate. (d) Bifurcation diagram for the

predator (blue colored). (e) Bifurcation diagram for the predator (blue colored) and the

predator part of coexisting equilibrium (red colored) with varying predator harvesting

rate when e1 = 10.
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3.7 Conclusion

This study investigated the dynamical behavior of a discrete-time RM model derived using

the method of piecewise constant argument. Unlike the Euler-discretized RM model [68],

which does not guarantee positivity, our formulation ensures positive populations. We

analyzed the stability of equilibrium points and examined Neimark-Sacker and flip bi-

furcations under variations in carrying capacity (K). In one scenario, Neimark-Sacker

bifurcation destabilized the coexisting equilibrium without flip bifurcation, whereas in

an another case, both bifurcations occurred, stabilizing the equilibrium before eventual

destabilization. Unlike the continuous RM model, where stability loss leads to a unique

limit cycle, our discrete model exhibited periodicity, quasiperiodicity, and chaos. Multi-

stability was evident, featuring coexisting periodic and chaotic attractors with intricate

basins of attraction.

The system also demonstrated the paradox of enrichment, where increased K caused

sudden predator extinction (Figure 3.6.5b). Under two-parameter harvesting analysis, we

identified stability, instability, and extinction regions. The Neimark-Sacker bifurcation

curve delineated stability loss, while the predator extinction curve marked population

collapse. The unstable regime displayed organized periodic structures, including Arnold

tongues (Figure 3.6.2b) and shrimp structures (Figure 3.6.4b), revealing a period-adding

sequence and self-similar patterns.

Examining predator harvesting effects, we observed the hydra effect, where mean

predator density initially increased with harvesting before declining (Figure. 3.6.7b). Un-

like the continuous RM model, where prey biomass remains constant, our discrete model

exhibited declining mean prey density under harvesting. Increased harvesting eventually

led to predator extinction, though prey culling smoothed this decline.
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CHAPTER 4

A Discrete-time predator-prey model with dispersal in a

two-patch environment





4.1 Introduction

In this chapter ∗, we investigate a discrte-time predator-prey model in two patch environ-

ment incorporating both prey and predator dispersal. The coupled maps play a vital role

in the nonlinear dynamics [84–91]. The use of coupled map is widespread in neurophys-

iology [13, 92], nonlinear oscillator systems [93, 94], and population models [95, 96]. In a

coupling of three discrete-time quadratic maps, Rech [93] showed that the quasiperiodic

behavior is obtained from a chaotic attractor by virtue of a Neimark-Sacker bifurcation as

the coupling parameter increases. Their coupled system also showed hyperchaos with an

increase in coupling strength. Rech [97] and Kuznetsov et al. [13] have also reported the

existence of hyperchaos in the bidirectional coupling of two chaotic Lorenz systems and

two coupled Chialvo maps, respectively. Bashkirtseva et al. [94] showed that in coupled

discrete-time logistic maps, the increase in coupling leads to the coexistence of periodic,

quasiperiodic, and chaotic attractors.

The coupling of predator-prey models is used to feature dispersal factors in population

models. Many researchers have studied the continuous [98–101] as well as discrete-time

[102–104] predator-prey models in a two-patch environment with dispersal. The effect

of including dispersal in various well-established predator-prey models such as Lotka-

Volterra model [98] and Rosenzweig-MacArthur model [96, 98, 99, 105–107] have been

explored thoroughly. Kang et al. [99] formulated a Rosenzweig-MacArthur predator-prey

model in a two-patch environment with the dispersal of only the predator species. They

showed that dispersal can have both stabilizing and destabilizing effects in the system.

While considering both prey and predator dispersal in a Rosenzweig-MacArthur model

distributed over discrete patches, Kon et al. [96] reported that the positive equilibrium of

the system can be stabilized or destabilized by the non-diffusive population dispersal on

a non-regular network. The coupled logistic maps show quasiperiodic behavior through

a Neimark-Sacker bifurcation [85, 95]. Al-Kaff et al. [104] observed the emergence of

transcritical, period-doubling, and Neimark-Sacker bifurcations that arise from coexisting

positive fixed points in a discrete-time predator-prey model based on logistic maps.

* This chapter based on the following article: Rajni, Bapan Ghosh, Dispersal induced catastrophic

bifurcations, Arnold tongues, shrimp structures, and stock patterns in an ecological system, Chaos:

An Interdisciplinary Journal of Nonlinear Science, 34.12 (2024).
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In ecological systems, the path to chaos often progresses through quasi-periodic behav-

ior, with frequency-locking leading to chaotic dynamics [14]. Structured regions between

quasi-periodic and chaotic states, such as Arnold tongues and shrimp-like structures,

have been observed in many coupled systems [13, 95, 97, 108, 109]. These organized pe-

riodic structures result in complex patterns and period-adding sequences in parameter

spaces.

In this regard, we realize that a patchy model can be formulated from the clas-

sical predator-prey models coupled in a two-patch environment. We consider a four-

dimensional system with prey and predator moving from one patch to another. The

growth rate of both populations follows the logistic map. The predator-prey interaction

in an isolated patch is defined by a Holling type-II functional response. We explore the

answer to the following points:

(i) As previously shown in the literature that coupling can both stabilize and destabi-

lize the predator-prey system [99], does our system also have the same property?

(ii) Rech et al. [108] showed that by decreasing the coupling factor, a flip bifurcation

occurs first, followed by a Neimark-Sacker, which transforms both fixed points to

limit cycles in pairs of coupled maps. A key question is if a similar sequence of

bifurcations occurs and how these bifurcations contribute to the stabilization or

destabilization of our spatial population model.

(iii) Takashina et al. [110], Ujjwal et al. [89], and Ghosh et al. [111] show alternate

stable states in continuous-time patchy models. We are interested in examining

multiple stable modes in our discrete-time model.

(iv) How the periodic, quasiperiodic, and chaotic regimes exist in the two-parameter

space when both dispersal rates are varied simultaneously?

(v) Many studies highlight the hydra effect due to species mortality in the uncoupled

systems using the mean population [43,44,47,59,68]. Vortkamp et al. [112] showed

that the dispersal can have positive and negative effects on the net population

size in a heterogeneous environment. In a heterogeneous environment, Bajeux et

al. [105] found that the hydra effect occurs and yield could be enhanced in RM

model, whereas Doanh et al. [113], in the Lotka-Volterra model, showed that the

total catch could be enhanced due to connectivity. We are interested to know if

the dispersal-induced hydra effects could occur in our homogeneous environment.
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This chapter comprises six distinct sections. Section 4.2 focuses on model formula-

tion, with the significance and interpretation of all the model parameters. Section 4.3

is dedicated to the exploration of the existence and stability of the equilibrium points.

In section 4.4, we investigate the dynamic behavior arising from varying dispersal rates

individually. In particular, we deal with different bifurcations, chaos, and bistability. We

vary both prey and predator dispersal rates simultaneously in section 4.5 to explore the

possibility of the existence of organized periodic structures such as Arnold tongues and

shrimp structures. Section 4.6 discusses the ecological implications of these dynamical

changes via mean population. Section 4.7 encompasses a comprehensive and insightful

discussion of our results.

4.2 Model formulation

In this study, we explore the dynamics of a predator-prey model in a patchy environment,

aiming to understand the impact of varying dispersal rates on system stability. Many re-

searchers have investigated dynamical changes in a continuous-time predator-prey model

that incorporates dispersal within a two-patch environment [99,100,103,114–117]. Patchy

models based on the frameworks of the Lotka–Volterra and Rosenzweig–MacArthur mod-

els are investigated by Cressman et al. [98]. A typical continuous-time model with two

patches can be proposed as:

ẋ = rx
(
1− x

K

)
− αxu

h+ x
+ d1(y − x),

u̇ = su
(
1− u

L

)
+

βxu

h+ x
+ d2(v − u),

ẏ = ry
(
1− y

K

)
− αyv

h+ y
+ d1(x− y),

v̇ = sv
(
1− v

L

)
+

βyv

h+ y
+ d2(u− v),

(4.2.1)

with initial population x(0) > 0, u(0) > 0, y(0) > 0 and v(0) > 0. The prey (and

predator) species, denoted by x (and u) and y (and v) represent population densities in

patch 1 and 2, respectively. We assume that the prey and predator in each patch evolve

following a logistic growth rate. Therefore, the predator is generalist in nature. The

intrinsic growth rates of the prey and predator species are denoted by r and s, respectively;

while K and L represent the carrying capacities of the prey and predator species. The

predation coefficient is denoted by α, and the conversion coefficient of prey biomass to
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predator biomass is given by β = αc. Here, c serves as an amplification factor reflecting

the efficiency of biomass conversion. The half-saturation constant is denoted by h, a

parameter that influences the functional response in the Holling type-II interaction. All

the ecological parameters (r, s,K, L, α, β, and h) are positive.

Apart from the reaction term (predation), the system is also coupled due to dispersal.

The dispersal rates of the prey and predator species between patches are denoted by d1(>

0) and d2(> 0), respectively. These dispersal rates capture the movement of individuals

between patches and play a crucial role in determining the spatial dynamics in ecological

systems. The patches can be homogeneous or heterogeneous. Researches have studied

both types of patches. Aly et al. [118], Mchich et al. [119], and Kon et al. [96] analyzed

homogeneous patchy environments, while studies related to heterogeneous patches can

be found in the works of Kuang et al. [120], Poggiale [121], Kang et al. [122], Sun et

al. [123], and Choi et al. [124]. Some researchers also focused on comparing the results

by considering both the cases of homogeneous and heterogeneous patchy habitats [125].

We made assumptions on homogeneity of both patches, meaning that within a given

patch, ecological conditions such as resource availability, habitat quality, and climatic

factors are assumed to be same. While this simplification may not fully capture the

complexity of real-world ecosystems, it provides a tractable framework for studying the

influence of spatial structure on population dynamics. The main focus of this model lies

in investigating the stability of the system when dispersal rates vary. The dispersal rate

of prey (and predator) between patches is equal.

The dynamics exhibited by discrete models, particularly in lower dimensional systems,

surpass the complexity and richness observed in their continuous-time counterparts. No-

tably, discrete systems excel in describing intricate patterns and chaotic behaviors inherent

in nonlinear dynamics, underscoring their suitability for capturing the intricate nature of

ecological processes. Erm et al. [126] investigated a logistic map, which is the discretized

form (using the forward Euler’s scheme with a unit step size) of the continuous-time logis-

tic equation. We formulate a discretized version of the continuous-time ecological system

(4.2.1) as follows:

xn+1 = xn + rxn

(
1− xn

K

)
− αxnun

h+ xn

+ d1(yn − xn),

un+1 = un + sun

(
1− un

L

)
+

βxnun

h+ xn

+ d2(vn − un),

(4.2.2)

100



yn+1 = yn + ryn

(
1− yn

K

)
− αynvn

h+ yn
+ d1(xn − yn),

vn+1 = vn + svn

(
1− vn

L

)
+

βynvn
h+ yn

+ d2(un − vn),

with initial population x0 > 0, u0 > 0, y0 > 0 and v0 > 0.

We now delve into the further analysis of system (4.2.2). In the next section, we

discuss the existence and stability of the equilibrium points of the system.

4.3 Existence and stability of the equilibria

In this section, we find the equilibrium points of the model (4.2.2). First, the conditions

for the existence of equilibrium points are derived and then we delve into the stability of

these points.

4.3.1 Existence of the equilibria

The equilibrium points of system (4.2.2) can be obtained by solving the following system

of algebraic equations:

rx
(
1− x

K

)
− αxu

h+ x
+ d1(y − x) = 0,

su
(
1− u

L

)
+

βxu

h+ x
+ d2(v − u) = 0,

ry
(
1− y

K

)
− αyv

h+ y
+ d1(x− y) = 0,

sv
(
1− v

L

)
+

βyv

h+ y
+ d2(u− v) = 0.

(4.3.1)

Clearly, the trivial equilibrium (0, 0, 0, 0) is a solution of the system of equations in eq

(4.3.1). Similarly, the boundary equilibria are (K, 0, K, 0) and (0, L, 0, L). The trivial and

boundary equilibria always exist.

Let (xc, uc, yc, vc) be a coexisting equilibrium of the system. We assume the dispersal

rates to be zero (d1 = d2 = 0) as the equilibrium points depend on neither d1 nor

d2. The equilibrium points are same when d1 and d2 are non-zero. It is difficult to

find the form of positive equilibrium analytically in terms of parameters but by doing

some mathematical analysis we find the conditions for existence of positive equilibrium.

Consider the predator-prey dynamics in patch 1 to see the existence of positive equilibrium

(xc, uc) in patch 1. Since the system is homogeneous, similar analysis can be applied to

patch 2 for (yc, vc). To show the existence of positive equilibrium, we find the prey and
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predator nullclines from the equations:

r
(
1− x

K

)
− αu

h+ x
= 0, (4.3.2a)

s
(
1− u

L

)
+

βx

h+ x
= 0. (4.3.2b)

From equations (4.3.2a) and (4.3.2b), we get

u =
r

αK
(K − x)(h+ x) =: F (x). (4.3.3a)

u =
L

s

s+
βx

h+ x

 =: G(x). (4.3.3b)

The intersection of the two nullclines in eq (4.3.3a) and (4.3.3b) in the first quadrant will

give the coexisting equilibrium points of the system (4.2.2). To find the intersection of

the nullclines, we find the positive root of the polynomial F (x)−G(x),

r

αK
(K − x)(h+ x)−

L

s

s+
βx

h+ x

 = 0

On simplification, a polynomial of degree three is obtained as

Ax3 +Bx2 + Cx+D = 0,

where A = rs, B = 2hrs−Krs, C = 2hKrs−h2rs−KLsα−KLαβ, and D = −h2Krs+

hKLsα.

This suggests that there are at most three positive equilibria. Here, max(F (x)) =
r

Kα
(K + h)2 at x =

K − h

2
. Clearly, G(x) is a monotonically increasing function as

G′(x) > 0. Moreover, G(x) → L+
Lβ

s
as x → ∞. Also, x → −h is an asymptote of G(x).

The zeroes of F (x) are −h and K whereas G(x) has only one zero at − sh

β + h
which

lies in the interval (−h,K). As −h < − sh

β + s
, F (0) =

rh

α
, and G(0) = L. Based on this

analysis, we can present sufficient conditions for the existence of no, one, two, and three

equilibria as follows:

(i) If L >
r

4α
(K + h)2, then there exists no positive equilibrium of the system within

the patch as the functions F (x) and G(x) will not intersect in the first quadrant

(Figure 4.3.1a).

102



(ii) If L <
rh

α
and G(x) < F (x) in

(
0,

K − h

2

)
then the isolated system has unique

positive equilibrium. This follows from the fact that the functions F (x) and

G(x) will intersect at exactly one point in the first quadrant as mentioned in Fig-

ure 4.3.1b.

(iii) If
rh

α
< L <

r

4α
(K+h)2 and G

(
K − h

2

)
<

r

4α
(K+h)2, then there exist two pos-

itive equilibrium of the system because The functions F (x) and G(x) will intersect

at two points in the first quadrant as shown in Figure 4.3.1c.

(iv) If L <
rh

α
, G(x) > F (x) for a small interval of (0,

K − h

2
), and G

(
K − h

2

)
<

r

4α
(K + h)2, then the system has three positive equilibrium. Since, the functions

F (x) and G(x) will intersect at three points in the first quadrant (Figure 4.3.1d).

Hence, our system can have no, one, two, or three positive equilibria. In the similar

we can get the conditions for existence of (yc, vc) for the isolated patch 2. Thus, the

coupled system can have at most three positive equilibrium.

4.3.2 Stability of equilibria

It is worth noting that the coexisting equilibrium within the system remains independent

of the values of d1 and d2. We examine if dispersal rates affect the ecological interactions

between prey and predator in our model. In particular, we are interested to explore the

impacts of dispersal on the stability of coexisting equilibrium. To determine stability of a

coexisting equilibrium, we analyze the eigenvalues of the Jacobian matrix of the linearised

version of system (4.2.2). The Jacobian matrix at any equilibrium, say, (x∗, u∗, y∗, v∗) is

given by,

J(x∗, u∗, y∗, v∗) =


Γ11 − d1 Γ12 d1 0

Γ21 Γ22 − d2 0 d2

d1 0 Γ33 − d1 Γ34

0 d2 Γ43 Γ44 − d2

 (4.3.4)

where

Γ11 = 1 + r

(
1− 2x∗

K

)
− αu∗h

(h+ x∗)2
, Γ12 = − αx∗

h+ x∗ ,

Γ21 =
βhu∗

(h+ x∗)2
, Γ22 = 1 + s

(
1− 2u∗

L

)
+

βx∗

h+ x∗ ,
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(a) (b)

(c) (d)

Figure 4.3.1: The intersection of nontrivial prey nullcline (red solid line) and the

nontrivial predator nullcline (blue solid line). (a) No positive equilibrium exists. (b) E∗ is

the positive equilibrium point (green solid dot). (c) E∗
1 and E∗

2 are the positive equilibria.

(d) E∗
1 , E

∗
2 , and E∗

3 are the positive equilibria. The dashed black line represents the

maximum of F (x).
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Γ33 = 1 + r

(
1− 2y∗

K

)
− αv∗h

(h+ y∗)2
, Γ34 = − αy∗

h+ y∗
,

Γ43 =
βhv∗

(h+ y∗)2
, and Γ44 = 1 + s

(
1− 2v∗

L

)
+

βy∗

h+ y∗
.

If the absolute values of the eigenvalues of J(x∗, u∗, y∗, v∗) are less than unity then

the equilibrium (x∗, u∗, y∗, v∗) is asymptotically stable.

Since x∗ = y∗ and u∗ = v∗, we have

Γ11 = Γ33,Γ12 = Γ34,Γ21 = Γ43, andΓ22 = Γ44.

Hence the matrix (4.3.4) can be expressed as,

J =

J1 J2

J2 J1

 ,

where

J1 =

Γ11 − d1 Γ12

Γ21 Γ22 − d2

 and J2 =

d1 0

0 d2

 .

The characteristic polynomial can be written as,

det(J − λI4) = det(J1 + J2 − λI2).det(J1 − J2 − λI2), (4.3.5)

where

J1 + J2 =

Γ11 Γ12

Γ21 Γ22

 and J1 − J2 =

Γ11 − 2d1 Γ12

Γ21 Γ22 − 2d2

 .

I4 and I2 are identity matrix of order 4 and 2, respectively.

For det(J1 + J2 − λI2) = 0, the characteristic polynomial is

C1(λ) := λ2 − (Γ11 + Γ22)λ+ Γ11Γ22 − Γ12Γ21, (4.3.6)

and the same for det(J1 − J2 − λI2) = 0 is

C2(λ) := λ2 − (Γ11 + Γ22 − 2d1 − 2d2)λ+ (Γ11 − 2d1)(Γ22 − 2d2)− Γ12Γ21. (4.3.7)

In the isolated patch (d1 = d2 = 0), C1(λ) and C2(λ) are the same. Since, only C2(λ)

depends on d1 and d2, we focus on introducing dispersal to the system to see its stabilizing

or destabilizing effect on the coexisting equilibrium.

Theorem 4.1. If the coexisting equilibrium of the system (4.2.2) is unstable (or saddle)

in the isolated patch then it remains unstable (or saddle) in the non-isolated patch.
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Proof. At least one of the eigenvalues of the matrix J lies outside the unit circle if the

coexisting equilibrium of the system (4.2.2) is unstable in the isolated patches. Hence we

can say that

|λi| > 1 for i = 1, 2, 3, 4.

By introducing dispersal, and using identity (4.3.5), we can state that at least two eigen-

values obtained from C1(λ) = 0 still remain outside the unit circle. Thus, the system

(4.2.2) remains unstable in non-isolated patches as well. Similar argument can be made

if the coexisting equilibrium is a saddle in the isolated patch.

If the coexisting equilibrium is stable in the isolated patches, then all eigenvalues of

J are such that,

|λi| < 1 for i = 1, 2, 3, 4.

We now verify whether dispersal can cause instability into the system.

Theorem 4.2. In the absence of dispersal rate of prey (or respectively predator) while in-

creasing only the dispersal rate of predator (or respectively prey) destabilizes the coexisting

equilibrium of the system (4.2.2).

Proof. Given the eigenvalue expression

λ± =
1

2

(
− 2d1 − 2d2 + Γ11 + Γ22

±
√
4Γ12Γ21 + (2d1 − 2d2 − Γ11 + Γ22)2

)
and setting d2 = 0, the expression simplifies to

λ± =
1

2

(
−2d1 + Γ11 + Γ22 ±

√
4Γ12Γ21 + (2d1 − Γ11 + Γ22)2

)
.

The equation

4Γ12Γ21 + (2d1 − Γ11 + Γ22)
2 = 0

has roots
Γ11 − Γ22

2
±
√

|Γ12Γ21|. The function ω(d1) := 4Γ12Γ21 + (2d1 − Γ11 + Γ22)
2

increases for d1 >
Γ11 − Γ22

2
+
√

|Γ12Γ21|. Also,

λ− =
1

2

(
−2d1 + Γ11 + Γ22 −

√
4Γ12Γ21 + (2d1 − Γ11 + Γ22)2

)
<

1

2
(−2d1 + Γ11 + Γ22).
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Hence, if d1 > max

Γ11 − Γ22

2
+
√

|Γ12Γ21|,
2 + Γ11 + Γ22

2

 then |λ−| > 1 which desta-

bilizes the coupled system. It is noteworthy that this is only a sufficient condition for the

eigenvalues to move out of the unit circle.

Similarly we can show that one of the sufficient condition for destabilization of the coex-

isting equilibrium when d1 = 0 is d2 > max

Γ11 − Γ22

2
−
√
|Γ12Γ21|,

2 + Γ11 + Γ22

2

.

If the eigenvalue λ± passes the unit circle, a bifurcation occurs. Let’s now state

necessary conditions for occurrence of various bifurcations. Based on the roots of the

characteristic polynomial (4.3.6), the following conditions can be stated:

Case I: The roots are real if

γ := 4Γ12Γ21 + (2d1 − 2d2 − Γ11 + Γ22)
2 ≥ 0. (4.3.8)

When the eigenvalues are real then λ− ≤ λ+. If both eigenvalues lie inside the unit circle

without dispersal then with dispersal, λ− will achieve −1 first. Hence, dispersal moves

the eigenvalue λ− out of the unit circle through negative real axis. Thus stability curve

is determined by λ− = −1, i.e.,

−2d1 − 2d2 + Γ11 + Γ22 −
√

4Γ12Γ21 + (2d1 − 2d2 − Γ11 + Γ22)2 = −2.

From the above expression, we define

ϕ := −
√
4Γ12Γ21 + (2d1 − 2d2 − Γ11 + Γ22)2 = −2 + 2d1 + 2d2 − Γ11 − Γ22.

Case II: The eigenvalues are complex conjugate if

γ := 4Γ12Γ21 + (2d1 − 2d2 − Γ11 + Γ22)
2 < 0. (4.3.9)

The complex eigenvalues has absolute value one, i.e., |λ±| = 1, from this condition, we

define

ξ := 2d1Γ22 + 2d2Γ11 − 4d1d2 = Γ11Γ22 − Γ12Γ21 − 1. (4.3.10)

We now examine whether under some parameter set, all the necessary conditions,

which are stated above, for existence of bifurcations are possible. Taking the parameter

set: r = 2, K = 1, s = 1, L = 5, α = 8
10
, β = 6

10
, andh = 5, we plot the stability threshold

(bifurcation curves) in d1d2-plane in Figure 4.3.2. The red line is the curve γ = 0. The

yellow part represents the region where roots of the characteristic polynomial are complex
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while roots are real in the gray regions. When the roots are complex and exactly one in

absolute value, we get the black curve in the yellow region which is the Neimark-Sacker

bifurcation curve (ξ = 0). Similarly when the roots are real and one of roots is exactly

-1 then we get the magenta curve (ϕ = 0) in gray region which is the representation of a

flip bifurcation. The coexisting equilibrium is stable in the area bounded by the magenta

branches of ϕ = 0 and ξ = 0. Hence, dispersal causes instability of the coexisting

equilibrium when the absolute value of λ± crosses unity to lie outside the unit circle via

the magenta and the black curve.

Figure 4.3.2: Bifurcation curves in the d1d2-plane: bifurcations occur on the black

colored curve in the yellow region and magenta colored curve in the gray region.

4.4 Dynamical behavior

In the previous section, we described the stability region of the coexisting equilibrium and

the threshold curve where some possible bifurcation could happen. We explore if the local

bifurcation structure is similar on a same bifurcation curve. Further, we investigate the

dynamics of the system away from the threshold curve. In this section, we perform nu-

merical simulations to analyze the dynamical behavior of our model in the two parameter

space.

4.4.1 Dispersal and bifurcation

We aim to observe various bifurcations, both periodic and non-periodic behavior, the

route to chaos, and other complex dynamical changes in the system. We assume the

parameters as r = 2, K = 1, s = 1, L = 5, α = 0.8, β = 0.6, and h = 5. Then, the unique
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coexisting equilibrium is (0.620592, 5.331242, 0.620592, 5.331242). We individually vary

each of the dispersal rates to examine the following three situations:

(i) If the coexisting equilibrium in isolated patches is stable, then we vary either prey

or predator dispersal rate to see the changes in the coupled system.

(ii) If the coexisting equilibrium of the coupled system due to either prey or predator

dispersal is stable then we note the impact of varying dispersal rate of either species.

(iii) If the coexisting equilibrium is unstable due to coupling of either of the species,

then we examine the impact of the dispersal of other species.

In order to investigate the above cases, we fix the values of d2 and then vary prey dispersal

rate along lines L1 and L2 (Figure 4.4.1a). Similarly, predator dispersal rate along the

lines S1 and S2 (Figure 4.4.1b), by fixing the dispersal rate of prey.

(a) (b)

Figure 4.4.1: (a) L1 and L2 represent the lines d2 = 0.45 and d2 = 0.564, re-

spectively, in d1d2−plane. (b) S1 and S2 represent the lines d1 = 0.29 and d1 = 0.51,

respectively, in d1d2−plane.

4.4.1.1 Flip bifurcation

We vary prey and predator dispersal rate individually to see if similar kind of bifurcation

is observed in both scenarios.

Prey dispersal

The unique coexisting equilibrium remains stable when coupled with a fixed predator
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dispersal rate in the interval [0, 0.36) with no prey dispersal. To explore the local dynamics

around this equilibrium, we iterate the system with an initial condition (0.5, 4.85, 0.5, 5).

First, we focus on varying the prey dispersal rate while keeping the predator dispersal

rate at zero. The stability of the coexisting equilibrium persists as long as d1 remains below

the critical value of 0.44532. An intriguing transformation occurs at d1 = d∗1 = 0.44532,

leading to a flip-bifurcation. This event smoothly gives rise to a stable period-2 orbit.

The period-2 orbit retains its stability for all values of d1 < 0.64. The transition from

period-1 to period-2 orbit is a non-catastrophic event (Figure 4.4.2a).

As we further explore the system’s dynamics, an additional bifurcation materializes

as d1 surpasses the threshold d1 = d̂1 = 0.64. The transition that takes place leads

to generation of two stable closed invariant curve. Consequently, the system exhibits

quasiperiodic behavior. A powerful tool to characterize the periodic, quasiperiodic and

chaotic behavior is calculating Lyapunov exponents. For a four-dimensional system, we

have four Lyapunov exponents, say, Λ1, Λ2, Λ3, and Λ4. In a continuous-time system

[12], the Lyapunov spectrum for different dynamical behavior is given in Table 1.9.1.

The Lyapunov exponent spectrum for a four-dimensional discrete-time system [13–16] is

provided in Table 1.9.2.

The transitions from fixed point → periodicity → limit cycle which makes the dy-

namics quasiperiodic can be confirmed by analyzing the Lyapunov exponent in the Fig-

ure 4.4.2b using Table 1.9.2. We clearly observe that Λ1 < 0, Λ2 < 0 for d1 < d̂1, and Λ1

settling at zero after the Neimark-Sacker bifurcation in the neighborhood of d1 = d̂1. The

graphs for Λ1 and Λ2 in red and blue color respectively overlap for d1 < 0.65 and separate

when system exhibits quasiperiodic behavior. Λ3 and Λ4 are always negative. These ob-

servations shed light on the intricate and fascinating dynamical changes occurring within

the system as we manipulate the parameter d1.

We observe the similar behavior if d2 is fixed at any other value in the interval (0, 0.36)

while prey dispersal rate is varied as in Figure 4.4.2a.

Predator dispersal

Keeping d1 fixed in the interval (0, 0.1), the variation in predator dispersal rate leads to the

similar scenarios as shown by varying prey dispersal rate. For d1 ∈ (0.1, 0.318), we discuss

some of the different kind of dynamical behavior obtained by varying d2. With d1 = 0.29,

we plotted the bifurcation diagram in Figure 4.4.2c along the line S1 (Figure 4.4.1b).
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The Lyapunov exponents (Λ1 and Λ2) presented to categorize the dynamics (including

quasiperiodicity) in Figure 4.4.2d, other Lyapunov exponents are negative. Varying the

predator dispersal rate, the coexisting equilibrium initially loses stability through a flip bi-

furcation where a stable period-2 orbit emerges with a sudden jump for d2 = 0.552. Thus,

a non-smooth transition of the state, i.e., a catastrophic transition [31] occurs in our

system. However, when we varied prey dispersal rate, the transition of period-doubling

bifurcation is smooth which we didn’t observe in case of predator dispersal variation.

The ecological impact of such smooth and non-smooth transition is discussed in a sub-

sequent section. As the dispersal rate further increases, the system transitions back to a

quasiperiodic state when the period-2 orbits become unstable, leading to the formation

of two stable closed invariant curves. These two curves lose their stability and a stable

period-10 orbit emerges which remains stable for 0.622 < d2 < 0.684. This period-10 orbit

gives birth to ten closed invariant curves as d2 is increased further (Figure 4.4.2e). Even-

tually, when d2 = 0.69, a quasiperiodic torus is observed (Figure 4.4.2f) with Lyapunov

exponents: Λ1 = Λ2 = 0 and Λ3, Λ4 < 0.

4.4.1.2 Neimark-Sacker bifurcation

In the last subsection, we encountered a Neimark-Sacker bifurcation with destabilization

of the period-2 orbit. For a fixed d2 ∈ (0.36, 0.494), varying d1 leads to a Neimark-

Sacker bifurcation with a smooth transition. Fixing d2 = 0.45, we plotted the bifurcation

diagram by varying d1 in Figure 4.4.3a along the line L1 (Figure 4.4.1a). The coexisting

equilibrium is stable when prey dispersal rate d1 < 0.416. If d1 approaches 0.416, the

eigenvalues of the Jacobian matrix at the positive equilibrium are complex and tend to

unity in absolute value. This implies the existence of a Neimark-Sacker bifurcation, and

the coexisting equilibrium loses its stability to an invariant closed curve when d1 crosses

0.416. This behavior of transitioning from stable period-1 orbit (coexisting equilibrium)

to quasiperiodicity is also reflected in the Figure 4.4.3b in terms of Lyapunov exponents

(Λ1 and Λ2). Here, Λ3 and Λ4 are negative.

By fixing a value of d1 in the interval (0.318, 0.446) while varying d2, a Neimark-Sacker

bifurcation occurs causing an instability of the coexisting equilibrium to give birth to a

stable invariant closed curve. We examined that the structure of the local bifurcation for

predator dispersal is the same as prey dispersal in Figure 4.4.3a.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.4.2: (a) Flip bifurcation diagram with predator species as prey dispersal

rate varies in the absence of predator dispersal. (b) The Lyapunov exponents with respect

to bifurcation diagram in (a). (c) Bifurcation diagram with prey species as predator

dispersal rate varies when d1 = 0.29. (d) The corresponding Lyapunov exponents to

bifurcation diagram in (c). (e) zoomed part of the bifurcation diagram in (c). (f) Phase

portrait of the torus structure in xyu-plane for d2 = 0.69.

4.4.1.3 Flip bifurcation followed by Neimark-Sacker bifurcation

Till now, we observed the occurrence of either flip or Neimark-sacker bifurcation at the

coexisting equilibrium while varying prey (or predator) dispersal rate when the system

was at stable mode. Further, we observed that it destabilizes the equilibrium. Now, we
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(a) (b)

Figure 4.4.3: (a) With fixed d2 = 0.45, Neimark-Sacker bifurcation diagram with

prey species as prey dispersal rate varies. (b) The Lyapunov exponents with respect to

varying prey dispersal rate.

consider a destabilized system, i.e., fixing d2 (or d1) such that the coexisting equilibrium

is unstable and vary d1 (or d2) to see if it can stabilize the dynamics.

Prey dispersal

For fixed d2 ∈ (0.494, 0.571), the coexisting equilibrium in the coupled system is unstable

with no prey dispersal. For instance fixing d2 = 0.564 and increasing d1 along the line

L2 (Figure 4.4.1a), the system shows dynamics as shown in Figure 4.4.4a. The period-

2 orbit is stable for 0 < d1 < 0.3191, as d1 = 0.3191 the system shows a non-smooth

transition to stability of coexisting equilibrium by catastrophic period-halving. Hence,

dispersal can stabilize the coexisting equilibrium. At d1 = 0.3212, the coexisting equi-

librium loses its stability smoothly to a closed invariant curve which remains stable for

d1 ∈ (0.3212, 0.3612). When d1 crosses through 0.3612, the quasiperiodic orbit disap-

pears and a period-2 orbit becomes stable via a catastrophic event, beyond d1 = 0.38

a quasiperiodicity appears in the system smoothly. We also see a periodic window of

period-6 in a narrow interval, i.e., 0.4694 < d1 < 0.4732. The Lyapunov exponents are

shown in Figure 4.4.4b (Λ3, Λ4 < 0). The Λ1 and Λ2 graphs merge when the behavior is

periodic.

Predator dispersal

When the predator dispersal rate is zero then the system exhibit non-equilibrium states

for 0.446 < d1 < 0.526. Fixing d1 = 0.51, increase in predator dispersal along the line S2

(Figure 4.4.1b), leads to stabilization of coexisting equilibrium via a period-halving with

a smooth transition at d2 = 0.342. The positive equilibrium is stable before losing its
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stability to a closed invariant curve at d2 = 0.374 as shown in figure Figure 4.4.4c and

corresponding Lyapunov exponents in Figure 4.4.4d.

(a) (b)

(c) (d)

Figure 4.4.4: (a) Bifurcation diagram with prey species as prey dispersal rate varies

when d2 = 0.564. (b) The corresponding maximum Lyapunov exponents to bifurcation

diagram in (a). (c)Bifurcation diagram with prey species as predator dispersal rate varies

when d1 = 0.51. (d) The corresponding maximum Lyapunov exponents to bifurcation

diagram in (c).

4.4.1.4 Existence of chaos

Thus far, our exploration has revealed that when predator or prey dispersal is varied

separately, it induces quasiperiodicity into the system. Chaotic behavior has not yet

emerged in the system.

The bifurcation diagram and Lyapunov exponents for d2 = 0.47 are represented in

Figure 4.4.5a and Figure 4.4.5b - 4.4.5c, respectively. The stable equilibrium undergoes

a Neimark-Sacker bifurcation as d1 increases, leading to quasiperiodicity. Upon closer

examination, it becomes apparent that elevating the prey dispersal rate induces chaotic

behavior in the system. The maximum Lyapunov exponent (Λ1) for the given fixed values

of d1 = 0.611 and d2 = 0.47 registers a value of 0.043145 and Λ4 <Λ3 <Λ2 < 0, providing
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confirmation of the chaotic dynamics observed in the system. The phase portrait is

depicted in Figure 4.4.5d.

(a) (b)

(c) (d)

Figure 4.4.5: (a) Bifurcation diagram with predator species as prey dispersal rate

varies when d2 = 0.47. (b) The corresponding maximum Lyapunov exponents with

respect to varying prey dispersal rate. (c) The chaotic attractor plotted in the (x, u)-

plane.

4.4.2 Dispersal and Bistability

In this subsection, we explore the multistable states, aiming to unravel the diverse dynam-

ics that may emerge from the same ecological set up. Upon altering the initial condition,

different attractors coexist for the same set of parameter values. We will explore two cases

when d2 = 0.47 and d2 = 0.564 while varying prey dispersal rates. We observe following

types of multistabilities:

(i) Stable coexisting equilibrium and period-2 orbit:

For d2 = 0.564, we observed the complicated dynamical behavior while varying

d1. For the initial condition (0.5, 4.85, 0.52, 5), the bifurcation diagram is shown

in Figure 4.4.4a. If we change the initial condition to (0.7, 6.3, 0.4, 3.6), different

dynamical behavior is exhibited by the system. In Figure 4.4.6a, we have plotted
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bifurcation diagram for 0.31 < d1 < 0.36, for these two different initial conditions.

The non-overlapping nature of the two bifurcation diagrams, particularly within

a significant range of prey dispersal rates, indicates the presence of more than

one attractor. Consequently, the system demonstrates bistability. When 0.3192 <

d1 < 0.3212, the coexisting equilibrium is stable (small blue colored) for the first

initial condition while period-2 orbit (red colored) is stable for the second initial

condition. Existence of fixed point and period-2 multistability is rare in ecological

models. In this sense, it is a new contribution. This bistability occurs due to the

spatial coupling.

(ii) Stable period-2 orbit and an invariant closed curve:

We also observe that a period-2 orbit and a quasiperiodic orbit coexist for the initial

conditions (0.7, 6.3, 0.4, 3.6) and (0.5, 4.85, 0.5, 5), respectively, for d1 ∈ (0.3212, 0.36).

The Lyapunov exponents for these two initial conditions are plotted in Figure 4.4.6b.

The difference in the dynamical behavior is clear from the Lyapunov curves: (0.7, 6.3, 0.4, 3.6)

in blue (Λ1) and magenta (Λ2) color while (0.5, 4.85, 0.5, 5) in red (Λ1) and green

(Λ2) color.

(iii) Stable period-27 and chaotic attractor:

In the last subsection 4.4.1, we plotted the bifurcation diagram varying prey disper-

sal with d2 = 0.47, using the initial condition (0.5, 4.85, 0.52, 5) and observed that

the system undergoes a Neimark-Sacker bifurcation where the transition to chaotic

behavior is reached through quasiperiodicity. Now, we plotted another bifurcation

diagrams using the initial conditions (0.5, 5, 0.52, 5) and (0.5, 4.85, 0.52, 5) in blue

and red color, respectively in Figure 4.4.6c. Also the Lyapunov exponents for these

two initial conditions don’t coincide (Figure 4.4.6d). We chose d1 = 0.611 to plot a

phase portrait in the (x, u)-plane where the initial conditions (0.5, 5, 0.52, 5) leads

to a chaotic behavior (blue color) and (0.5, 4.85, 0.52, 5) lands on a stable period-27

orbit (red color) in Figure 4.4.6e.

The basin of attraction for a two dimensional system is relatively easier to plot [68].

However, it is a bit challenging to draw for a system of three dimension but the basin

is still much visible. The basin of attraction for a four dimensional system is plotted

by keeping initial conditions for two state variables fixed and varying initial conditions

for the other two state variables as demonstrated in Brugnago et al. [127]. However, we
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(a) (b)

(c) (d)

(e)

Figure 4.4.6: (a) Bifurcation diagram with varying d1 and d2 = 0.564 using initial

conditions (0.5, 4.85, 0.52, 5) in blue color and (0.7, 6.3, 0.4, 3.6) in red color. (b) The

maximum Lyapunov exponents for two different initial conditions for d2 = 0.564. (c)

Bifurcation diagram with two different initial conditions for d2 = 0.47. (d) The Lyapunov

exponents for two initial conditions. (e) Two different attractors for different initial

conditions: chaotic attractor (blue) and period-27 (red).
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employ the technique used by Gabrick et al. [128], where we fix only initial condition for

one state variable and vary initial condition the other three. For plotting the basins of

attraction of the three bistabilities mentioned above, we vary x0, y0 between 0.1 to 0.3,

u0 is varied from 0.4 to 0.6, and fix v0 = 0.5. These basins of attraction are shown in

Figure 4.4.7.

(a) (b) (c)

Figure 4.4.7: Basin of attraction for bistability of (a) period-1 and period-2 attrac-

tor, (b) an invariant closed curve and period-2 attractor, and (c) period-27 and chaotic

attractor.

4.5 Bi-parameter space analysis

In previous section, we observed various bifurcations while varying either prey or predator

dispersal rate individually. We examined that increase in dispersal rate can lead to both

stabilization and destabilization of the coexisting equilibrium. We obtained period-2 and

period-10 orbits till now but there is a need to examine the occurrence of other periodic or-

bits and intrigue complex dynamics in the two-parameter (d1d2−plane) space. Therefore,

we shall explore the impact of varying both prey and predator rates simultaneously.

4.5.1 Existence of positive solution

To gain insights into the dynamics of the system in the d1d2 − plane, we conduct an

extensive two-parameter analysis, ranging from 0 to 0.8 for both d1 and d2, keeping the

other parameters fixed. Such coupled maps could produce negative solutions too [92,129].

For each combination of these dispersal rates (d1, d2), we examine whether our system

exhibited a positive or negative solution. In Figure 4.5.1a, the yellow region indicate

parameter combinations where the predator and prey can coexist in both patches. The

green region signifies parameter combinations where the trajectories are divergent.
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4.5.2 Maximum Lyapunov exponent and isoperiodic diagrams

Continuing our ecological exploration, we delve deeper into the positive solution region of

our predator-prey model within the parameter space. To investigate the dynamics within

this region, we turn our attention to the maximum Lyapunov exponents diagram. This

diagram offers a distinction between periodic, chaotic, and quasiperiodic behavior. The

transition from periodic to quasiperiodic behavior outlines the Neimark-Sacker bifurcation

curve. The color map in the Figure 4.5.1b serves as a visual guide, representing the

spectrum of maximum Lyapunov exponent values we’ve obtained. In this map, parameter

values shaded in a gradient from light to dark yellow correspond to periodic behavior.

Parameter values colored black indicate quasiperiodic dynamics. Meanwhile, the green

and blue regions on the map signify chaotic motion. The white region is for the prey

extinction in both patches.

Furthermore, we construct an isoperiodic diagram within the same positive solution

region. In Figure 4.5.1c, red region indicates the stability of coexisting equilibrium. The

cyan region represented periodic-2 orbits, implying that the transition from period-1 to

period-2 region represent the flip-bifurcation curve. Black areas denoted various other

periodic orbits. The gray region in the isoperiodic diagram marked non-periodic behavior,

which could be further divided into quasiperiodic and chaotic regions, aligning with the

observations in the maximum Lyapunov exponent diagram Figure 4.5.1b.

4.5.3 Organized periodic structures

In our in-depth analysis of the maximum Lyapunov exponents and isoperiodic diagrams, a

compelling pattern emerges, revealing a fundamental and intrinsic route to chaos through

quasiperiodicity in our model. The maximum Lyapunov exponents and isoperiodic dia-

gram show the presence of organized periodic structures. These periodic structures collide,

corresponding to the occurrence of phase-locking (or frequency locking) phenomena in the

quasiperiodic regime. When two frequencies interact non-linearly (or commensurate) and

the ratio of the two is a rational number, we say that the frequencies are phase-locked [14].

This occurrence of phase-locking leads to the formation of organized periodic structures

called Arnold tongues. The head of the Arnold tongues lies in the chaotic region, while the

V-shaped tail is immersed in the quasiperiodic regime. The periodic regime with periods

10, 16, 22, 26, 54, 62 and so on are clearly marked using different colors in the isoperiodic
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(a) (b)

(c)

Figure 4.5.1: (a)Existence of positive solution in the d1d2-plane: yellow region

where both population exist and green region is where the solution is divergent. (b)

Maximum Lyapunov exponent diagram in d1d2-plane for 0 ≤ d1, d2 ≤ 0.8. The values

of maximum Lyapunov exponent for associated color represented in the colorbar. (c)

Isoperiodic diagram for d1d2-plane. The different colors represent the periodic and non-

periodic regions as mentioned in the colorbar.

diagram. These Arnold tongues are similar to structures observed in circle maps and are

associated with rotation numbers 1/10, 1/16, 1/22, 1/26, 1/54, 1/62 and so on. To further

explore and highlight these intricate structures, we zoom in on the maximum Lyapunov

exponents and isoperiodic diagrams (on the green square in Figure 4.5.2). We observe col-

ored regions representing various periodic behavior of different periods, with the period-2

regions in cyan color. Prominently, we identified the period-10 Arnold tongues in the

system indicated by magenta color. We also notice the Arnold tongues with period-

16, 22, 26, 54 and 62 in various colors denoted in the color in the figure.
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Figure 4.5.2: Magnification of Figure 4.5.1c: isoperiodic diagram for 0.226 ≤ d1 ≤

0.4 and 0.58 ≤ d2 ≤ 0.72.

4.5.4 Arnold tongues and shrimp structures

So far, we were unable to detect the presence of shrimp structures but we were curious to

see if those exist in our model. In order to achieve our goal, we take another parameter

set: r = 2.16, s = 0.5, K = 35, L = 20, α = 0.62, β = 0.43, and h = 5. We obtain similar

kind of smooth and non-smooth transition when bifurcations occur as observed in the

previous parameter set. The bifurcation curves for flip and Neimark-Sacker bifurcation

are alike to Figure 4.4.1a-4.4.1b.

We plot the maximum Lyapunov exponents and isoperiodic diagram in the d1d2-plane.

Figure 4.5.3a shows the values of maximum Lyapunov exponent for different values of

d1 and d2, revealing three topologically nonequivalent dynamical behaviors with different

color maps: plane colored cyan leads to stable periodic behavior, the region black indicates

quasiperiodic dynamics, and the magenta zone demonstrates chaotic motion.

We further classify the periodic behavior by finding the period of the trajectories for

different values of d1 and d2. Figure 4.5.3b depicts the isoperiodic diagram with varying

both dispersal rates simultaneously. The white region represents divergent behavior, while

the colored region is for periodic and non-periodic regions. The maroon region in the
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lower left corner shows the stable region, which is separated from the unstable region of

coexisting equilibrium (or period-1) by Neimark-Sacker and flip bifurcation curves in the

d1d2-plane. The dark green colored region represents the stable period-2 orbits. The light

pink color indicates non-periodic behavior which, in the maximum Lyapunov exponents

diagram, can be distinguished as the quasiperiodic and chaotic regions. The other periodic

region is represented in black.

Next, we magnify the maximum Lyapunov exponents and isoperiodic diagram for

0.86 ≤ d1 ≤ 0.915 and 0 ≤ d2 ≤ 0.45. The periodic regions are cyan colored in Fig-

ure 4.5.3c. We distinguish between the periods in Figure 4.5.3d. The periodic regime

with periods 10, 11, 12, 13, 14, 15, 16, and so on are clearly marked using different colors in

the isoperiodic diagram. There is a collection of infinite periodic structures arranged in a

period-adding sequence. Self-similarity is observed in these organized periodic structures.

Although the bifurcation structures are similar for both parameter sets but the orienta-

tion of Arnold tongues for the previous set is along d2 (Figure 4.5.2) while in case of new

parameter set its along d1 (Figure 4.5.3d).

The red rectangle in the isoperiodic diagram (Figure 4.5.4a) shows the presence

of another important periodic structure submerged in the chaotic regime, known as a

shrimp-like structure with a head and four tails. The Figure 4.5.4b shows the maxi-

mum Lyapunov exponents diagram and Figure 4.5.4c depicts the isoperiodic diagram for

0.911 ≤ d1 ≤ 0.913 and 0.245 ≤ d2 ≤ 0.262. The head of the shrimp structure, colored

green, corresponds to values of (d1, d2) which exhibit period-94 orbits. As we move to-

wards the tail of the structure, period-94 x 2 (period-188) oscillations are observed. This

is part of the period-bubbling cascade leading to chaos. Similarly, the yellow part is the

periodic orbit of period-46 which is doubled to period-92 in blue color, and the doubled

again to period-184 in magenta color as a part of the period-doubling cascade. The light

pink region is the non-periodic behavior while gray represents the other periodic orbits.

4.6 Ecological implications

We have discussed many complex dynamics and bifurcations where both smooth and

non-smooth transitions occur. One might ask: what is the significance of such type of

bifurcations and catastrophic events in the ecological scenario? In cases where trajectories

approach equilibrium, determining population size over an extended period is relatively
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(a) (b)

(c) (d)

Figure 4.5.3: (a) Maximum Lyapunov exponent diagram in d1d2-plane (b) Isope-

riodic diagram for 0 ≤ d1 ≤ 1 and 0 ≤ d2 ≤ 1. (c) Magnification of Figure 4.5.3a (d)

Magnification of Figure 4.5.3b for 0.86 ≤ d1 ≤ 0.915 and 0 ≤ d2 ≤ 0.45. In the color map,

div stands for divergent solutions. OP and NP represent the other periodic orbits and

non-periodic behavior, respectively. The initial condition used is (22.5, 34.08, 22.5, 27.52).

straightforward. On the other hand, dealing with unstable equilibria in non-equilibrium

dynamics, assessing population levels becomes challenging. One viable approach is to

estimate a time-averaged (mean) stock, which is accepted to be a reasonable measure for

quantifying population levels. We already know the formulae for mean population in the
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(a)

(b) (c)

Figure 4.5.4: (a) Isoperiodic diagram for 0.911 ≤ d1 ≤ 0.9115 and 0.245 ≤ d2 ≤

0.262. (b) MLE diagram and (c) isoperiodic diagram of magnification of red box in

Figure 4.5.4a for 0.911052 ≤ d1 ≤ 0.9115 and 0.259696 ≤ d2 ≤ 0.26068. In the color bar,

OP and NP represent the other periodic orbits and non-periodic behavior, respectively.

The initial condition used is (22.5, 34.08, 22.5, 27.52).

discrete systems (section 2.6). We analyze the change in population stocks when prey or

predator dispersal rate is varied. We will use the first parameter values r = 2, s = 1, K =

1, L = 5, α = 0.8, β = 0.6, h = 5. From now on, prey and predator population indicates

prey and predator species in one of the patch, respectively. The change in stock size for

either species is in both the patches are the same.

Varying prey dispersal rate:

First, we vary the prey dispersal rate to observe the overall change in the population

of both species. We consider three cases: d2 = 0, d2 = 0.45, and d2 = 0.564, which

have a complete dynamical analysis provided in the Figure 4.4.2a, Figure 4.4.3a, and

Figure 4.4.4a. For fixed d2 = 0, the coexisting equilibrium is stable for d1 ∈ [0, 0.4432) as

shown in Figure 4.6.1a. A smooth decrease in the mean population is observed after a flip

bifurcation occurs at d1 = 0.44532. Subsequently, at d1 = B1, another bifurcation converts
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a period-2 orbit into quasiperiodicity, continuing the population decline. However, a small

increase in population size is noted when d1 exceeds 0.7. Similarly, for fixed d2 = 0.45,

the equilibrium state shows a constant stable population, but a smooth decrease in mean

stocks is observed after a Neimark-Sacker bifurcation at d1 = 0.416 (Figure 4.6.1b). In

this case, no increase in population size is observed.

The case for fixed d2 = 0.564 is more complex, showing a couple of non-smooth

transitions. Figure 4.6.1c captures all the changes in the mean population stocks. The

coexisting equilibrium is unstable for d1 in the interval [0, 0.3191). Within this range,

the mean prey population decreases while the mean predator population increases. The

coexisting equilibrium becomes stable through a flip bifurcation over a very narrow range,

but then immediately loses stability to an invariant closed curve, maintaining the same

mean population behavior. At d1 = B2, more dynamic changes occur in the system, yet

the mean prey population continues to decrease while the mean predator population con-

tinues to increase. However, as the prey dispersal rate increases further, both populations

decrease simultaneously beyond d1 = 0.38 onward. After d1 = B3, there is a decrease in

mean predator population while prey population continues to decrease.

(a) (b)

(c)

Figure 4.6.1: Mean prey and predator density with varying d1 with initial condition

(0.5, 4.85, 0.52, 5) for (a) d2 = 0, (b) d2 = 0.45, and (c) d2 = 0.564.
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Varying predator dispersal rate:

Next, we vary the predator dispersal rate for the three scenarios: d1 = 0, d1 = 0.29, and

d1 = 0.51 as discussed in the Figure 4.4.4c and Figure 4.4.2c (subsection 4.4.1). For d1 = 0,

both species are stable at the coexisting equilibrium for d2 in the interval [0, 0.493). After a

flip bifurcation, both mean populations decrease smoothly for d2 < 0.675. Following d2 =

B4, the mean prey population increases while the mean predator population continues

to decrease as shown in Figure 4.6.2a. A similar behavior is observed for d1 = 0.29

(Figure 4.6.2b). However, the key difference is that in this case, the transition at the

flip bifurcation (d1 = 0.552) is catastrophic, resulting in a sudden decrease rather than a

smooth one. After d2 = B5, there is a significant increase in the mean prey population

while the predator population continues to decrease.

For d1 = 0.51, the system exhibits non-equilibrium states for 0 < d2 < 0.342, during

which both mean populations increase (Figure 4.6.2c). The coexisting equilibrium be-

comes stable due to a flip bifurcation at d2 = 0.342, transitioning smoothly and causing

the mean population to remain constant at the equilibrium value. As the system shows

non-equilibrium behavior for d2 > 0.374, due to the occurrence of a Neimark-Sacker

bifurcation, both mean populations decrease smoothly.

4.7 Conclusion

In this chapter, we investigated the possible dynamics of a predator-prey model in a patchy

environment, considering both prey and predator dispersal rates to assess their impact

on stability. We observed that the system could exhibit no, one, two, or three positive

equilibrium points. The equilibrium points of the system remained unchanged regardless

of dispersal rates due to the homogeneous patch coupling. However, the dynamic behavior

of the system significantly affected with dispersal rates. If the equilibrium point is unstable

in the isolated patch, then it remains unstable with coupling as well. The stable coexisting

equilibrium point loses stability via a flip or Neimark-Sacker bifurcation. The bifurcation

curves and stability zone are shown in the d1d2-plane (Figure 4.4.1a- 4.4.1b).

We assume that there is a unique coexisting equilibrium and then individually vary

the dispersal rate of prey and predators. We examined three scenarios:

(1) Stable coexisting equilibrium in isolated patches: When varying the prey

dispersal rate (d1) while keeping the predator dispersal rate (d2) at zero, we found that
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(a) (b)

(c)

Figure 4.6.2: Mean prey and predator population with varying d2 with initial con-

dition (0.5, 4.85, 0.52, 5) for (a) d1 = 0, (b) d1 = 0.29, and (c) d1 = 0.51.

the equilibrium remained stable up to a critical value, at which a flip bifurcation occurred

via a smooth transition, leading to a stable period-2 orbit. Further increase of dispersal

rate resulted in quasiperiodic behavior with two stable closed invariant curves. A similar

behavior is exhibited when d2 is varied, keeping d1 zero.

(2) Stable equilibrium in the coupled system: When the prey dispersal rate was

fixed at some non-zero value, and the predator dispersal rate varied, we observed that

the transition to a period-2 orbit was non-smooth, leading to two stable invariant closed

curves and then a transition to a stable period-10 orbit, followed by quasiperiodicity with

ten closed invariant curves. When predator dispersal is fixed, and prey dispersal is varied,

we also observed that the unique equilibrium could lose its stability via a Neimark-Sacker

bifurcation, leading to a smooth transition from a stable period-1 orbit to quasiperiodicity.

(3) Unstable equilibrium due to species coupling: When prey dispersal rate is

varied, keeping d2 fixed, we noted that the system dynamics initially in stable period-

2 orbits lead to a stable coexisting equilibrium via a catastrophic period-halving phe-

nomenon, and subsequent transitions leading to quasiperiodicity and periodic windows

(Figure 4.4.4a). For predator dispersal, with a fixed prey dispersal rate, increasing the
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predator dispersal rate led to the stabilization of the coexisting equilibrium via a smooth

period-halving transitions, with the positive equilibrium losing its stability and iterations

settled to a closed invariant curve (Figure 4.4.4c).

We investigated multistable states, uncovering diverse dynamics by altering initial

conditions while keeping parameters constant. The different multistable states observed

are: (i) stable coexisting equilibrium and period-2 orbits, (ii) stable period-2 orbits with

invariant closed curves, and (iii) period-27 orbits and chaotic behavior. The co-stability

of coexisting equilibrium and period-2 orbit is a novel result.

To further explore the dynamics in the two-parameter (d1, d2) plane, we conducted

a comprehensive analysis by varying both dispersal rates simultaneously. We focused

on two main perspectives: the maximum Lyapunov exponent and isoperiodic diagram.

The maximum Lyapunov exponents diagram characterized periodic, quasiperiodic, and

chaotic behaviors while the isoperiodic diagram highlighted stability regions for coexisting

equilibria and various periodic orbits. Our analysis revealed significant patterns, such as

Arnold tongues, which indicate phase-locking phenomena and illustrate transitions from

periodic to quasiperiodic and chaotic behaviors. Within these Arnold tongues, we iden-

tified periodic regimes with distinct periods like 10, 16, 22, 26, 54, and 62(Figure 4.5.2).

Further exploration with a different parameter set showed similar bifurcation patterns but

with a shifted orientation of Arnold tongues (Figure 4.5.3d). Additionally, we discovered

shrimp structures (Figure 4.5.4c) characterized by a head and multiple tails representing

period-doubling cascades leading to chaos.

We examined the pattern of mean prey and predator populations in coupled patches

by varying their dispersal rates in the non-equilibrium states. The mean population can

increase or decrease with the influence of dispersal. Due the catastrophic bifurcation,

there can be a sudden jump in the mean population (Figure 4.6.1c and Figure 4.6.2b).

This drop in the mean population can be harmful from conversation viewpoint.
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CHAPTER 5

Summary and future directions





5.1 Summary

In this thesis, we analyzed discrete-time predator–prey models and explored their dynam-

ical behaviors. The main findings from each chapter are summarized below.

Chapter 2 examined a discrete-time system obtained from the continuous-time Rosen-

zweig–MacArthur (RM) model through the forward Euler’s scheme with a unit integral

step size. The main results presented in this chapter were:

(i) The system experienced a Neimark-Sacker bifurcation, resulting in complex behav-

iors such as quasiperiodicity, periodic doubling, period windows, and chaos.

(ii) Two types of bistability such as periodic–periodic and periodic–chaotic were ob-

served.

(iii) Under sufficient prey (or predator) harvesting, the chaotic behavior eradicates lead-

ing to the stabilization of the coexisting equilibrium.

(iv) Species enrichment leads to paradox of enrichment.

(v) The increase in predator mortality rate may enhance the predator stocks.

Chapter 3 investigated a discrete-time system derived from the same continuous-time

RM model using the piecewise constant argument. By analyzing the effects of increasing

carrying capacity and harvesting efforts, we identified complex phenomena, including

periodic orbits, quasiperiodicity, period-bubbling, period-doubling, and chaos. The main

results of this chapter were:

(i) An increase in the carrying capacity of the prey species can result in both the

stabilization and destabilization of the coexisting equilibrium.

(ii) The model’s multistable states were characterized by bistable, tristable, and quadru-

ple attractors.

(iii) In the two-parameter effort plane, Arnold tongues and shrimp-like structures were

observed within the quasiperiodic and chaotic regions.

(iv) The phenomena of paradox of enrichment and hydra effect are evident in the model.

Chapter 4 analyzed a discrete-time patchy model with dispersal. The effects of prey

and predator dispersal were examined in relation to the stability of the coexisting equi-

librium point. This chapter uncovered the following results:

(i) Increases in dispersal rates could both stabilize and destabilize the coexisting equi-

librium.
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(ii) The stability transitions caused by bifurcations were found to be either smooth or

non-smooth.

(iii) A period-10 orbit gave rise to ten closed invariant curves, leading to quasiperiod-

icity.

(iv) We detected three types of bistability: (a) between coexisting equilibrium and a

period-2 orbit, (b) between period-2 orbit with an invariant closed curve, and (c)

between a period-27 orbit with a chaotic attractor.

(v) There was prominent existence of Arnold tongues and shrimp structures in the

dispersal parameter plane.

This thesis investigated discrete-time predator–prey models derived from the Rosen-

zweig–MacArthur system, focusing on the effects of prey enrichment, harvesting, and

species dispersal. Using bifurcation theory and numerical simulations, we analyze the

emergence of complex dynamics, including Neimark-Sacker bifurcations, multistability,

quasiperiodicity, and chaos. We explore how varying ecological parameters influence sys-

tem stability and reveal structured patterns in parameter spaces, such as Arnold tongues

and shrimp-like regions. Key ecological phenomena, including the paradox of enrichment

and the hydra effect, are examined in both single- and two-patch environment. The find-

ings provide insights into how ecological and spatial factors shape population dynamics

in discrete-time systems.

5.2 Future directions

Based on our knowledge, experiences, and challenges faced in this thesis, we further

propose some possible future directions as follows:

(i) As discussed in Chapters 2 and 3, alternative discretization techniques such as non-

standard finite difference scheme may capture different dynamical properties and

lead to new insights into the system’s behavior. Investigating how these schemes

influence stability, bifurcations, and complex dynamics in the spatial predator-

prey model could enhance our understanding of discretization effects in ecological

modeling.

(ii) In Chapter 4 , we focused on the dynamics of the coupled system assuming a single

coexisting equilibrium in the isolated patch. However, when the isolated patch

admits three coexisting equilibria, it would be valuable to investigate how coupling
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influences the stability and dynamics of each equilibrium. A comparative study of

the stability regions of these equilibria in the coupled system could provide deeper

insights into the effects of dispersal and the emergence of complex behaviors in

spatially structured populations.

(iii) Another promising avenue for future investigation is the incorporation of hetero-

geneous dispersal mechanisms into the spatial model. While our current work as-

sumes homogeneous dispersal across patches, real-world ecological systems often ex-

hibit varying dispersal rates due to habitat preferences, environmental gradients, or

species-specific traits. Introducing asymmetric dispersal, density-dependent move-

ment, or stochasticity in dispersal patterns could lead to richer dynamical out-

comes, including noise-induced transitions, novel bifurcation structures, or altered

persistence and extinction thresholds. Exploring these elements would significantly

advance our understanding of how realistic dispersal patterns shape spatial popu-

lation dynamics and ecosystem resilience.

(iv) A further direction worth pursuing is the development and analysis of fractional

discrete-time predator-prey model. Investigating how discrete-time fractional-order

dynamics interact could reveal new forms of multistability, transient chaos, and

complex bifurcation structures. Such models may also offer better agreement with

empirical data, providing a more accurate framework for understanding population

dynamics in ecosystems.
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bottom-up and top-down control in food webs with alternative energy pathways.

Ecology Letters, 15(9):935–946, 2012.

[46] Vinicius Weide, Maria C. Varriale, and Frank M. Hilker. Hydra effect and para-

dox of enrichment in discrete-time predator-prey models. Mathematical Biosciences,

310:120–127, 2019.

[47] Debarghya Pattanayak, ArindamMishra, Syamal K. Dana, and Nandadulal Bairagi.

Bistability in a tri-trophic food chain model: Basin stability perspective. Chaos: An

Interdisciplinary Journal of Nonlinear Science, 31(7):073124, 2021.

[48] Eduardo Liz and Alfonso Ruiz-Herrera. The hydra effect, bubbles, and chaos in a

simple discrete population model with constant effort harvesting. Journal of Math-

ematical Biology, 65(5):997–1016, 2012.

[49] G.P. Neverova, A.I. Abakumov, I.P. Yarovenko, and E. Ya Frisman. Mode change

in the dynamics of exploited limited population with age structure. Nonlinear Dy-

namics, 94(2):827–844, 2018.

138



[50] Jicai Huang, Yijun Gong, and Shigui Ruan. Bifurcation analysis in a predator-prey

model with constant-yield predator harvesting. Discrete Contin. Dyn. Syst., Ser. B,

18(8):2101–2121, 2013.

[51] Abdul Qadeer Khan. Bifurcations of a two-dimensional discrete-time predator–prey

model. Advances in Difference Equations, 2019(1):1–23, 2019.

[52] Wenbo Yao and Xianyi Li. Complicate bifurcation behaviors of a discrete predator–

prey model with group defense and nonlinear harvesting in prey. Applicable Analysis,

pages 1–16, 2022.

[53] Michael Sieber and Frank M. Hilker. The hydra effect in predator–prey models.

Journal of Mathematical Biology, 64:341–360, 2012.

[54] Eduardo Liz. Effects of strength and timing of harvest on seasonal population mod-

els: Stability switches and catastrophic shifts. Theoretical Ecology, 10(2):235–244,

2017.

[55] Debprasad Pal, Bapan Ghosh, and T. K. Kar. Hydra effects in stable food chain

models. Biosystems, 185:104018, 2019.

[56] Prabir Das Adhikary, Saikat Mukherjee, and Bapan Ghosh. Bifurcations and hydra

effects in Bazykin’s predator–prey model. Theoretical Population Biology, 140:44–

53, 2021.

[57] Saheb Pal. Understanding the hydra effect in predator-dependent functional re-

sponse models. Discrete and Continuous Dynamical Systems-B, 29(1):174–197,

2024.
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yield and species extinction in ecosystems. Ecological Modelling, 221(12):1569–1574,

2010.

[84] H. Kook, F.H. Ling, and George Schmidt. Universal behavior of coupled nonlinear

systems. Physical Review A, 43(6):2700, 1991.
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