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ABSTRACT

Brain signal analysis has a crucial role in the investigation of neuronal activity for diag-

nosis of neurological diseases and brain-computer interfaces (BCI) applications. The elec-

troencephalogram (EEG) and magnetoencephalogram (MEG) are the most efficient brain

signals that assist in the diagnosis of neurological diseases and also play an essential role

in all neurosurgery related to the brain. Furthermore, it is a valuable tool for clinicians

and researchers and has the potential to develop advanced BCIs and help in partial paraly-

sis rehabilitation. The clinicians visually study these brain signal recordings to determine

the manifestation of abnormalities in the brain. Hence adequate and accurate brain signal

analysis of these signals is always a major challenge for researchers. The complex and non-

stationary nature of EEG and MEG signals demands advanced signal analysis techniques

for proper interpretation and extraction of brain information. In this perspective, adaptive

nonstationary signal-processing algorithms like swarm decomposition (SWD) and iterative

filtering provide useful signal representation for EEG and MEG, enabling easy interpreta-

tion and feature extraction. Consequently, the primary focus of this thesis is to propose a

novel extension of the univariate SWD-based nonstationary signal-processing technique to

decompose multichannel signals for brain signal analysis, and to further apply these tech-

niques in the development of neurological disease detection and BCI frameworks.

In this thesis, we have proposed various signal processing techniques, including swarm

sparse decomposition method (SSDM), multivariate SSDM (MSSDM), enhanced SSDM

(ESSDM), and clustering SSDM (CSSDM) for robust nonstationary brain signal analysis.

These techniques adopt newly designed optimized sparse spectrum representation and fil-

ter banks for efficient extraction of components from multi-channel nonstationary signals

and time-frequency resolution improvement. Additionally, we have also developed a sleep

apnea disease detection framework and BCI frameworks based on these techniques, such

as cognitive visual object recognition using EEG and MEG signals, EEG-based motor im-

agery recognition, EEG-based imagined speech task detection, and EEG-based upper limb

movements detection. We have also designed and studied different feature techniques like

Riemann’s correlation-assisted fusion feature, low-dimensional joint time-frequency deep



feature, time-frequency graph spectral, fused time-frequency graph features along with

the decomposition method. The classification performance of proposed frameworks have

shown better results than the state-of-art methods.

Keywords: Swarm sparse decomposition method, Sparse spectrum, Electroencephalo-

gram, Magnetoencephalogram, Brain disease diagnosis, Brain-computer interface, and

Machine learning.
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Chapter 1

Introduction

This chapter provides a brief overview of the thesis, which includes objectives and key

contributions of the work. First, we discuss the need for brain signal processing, followed by

the motivation for using electroencephalogram (EEG) and magnetoencephalogram (MEG)

signals in neurological disease diagnosis and brain-computer interface (BCI) applications.

Next, we present an overview of nonstationary signal processing techniques and a related

key literature survey with its advantages and shortcomings. Additionally, we have dis-

cussed the swarm decomposition (SWD) technique with its applications. In the subsequent

sections, the objectives and contributions of the thesis are listed in an enumerated manner.

Finally, the organization of the thesis is outlined.

1.1 Brain signal processing

Brain signals capture the brainwave patterns information from the human brain, which

measures the both passive or active mental state [1]. Brain signals capture the informa-

tion that is processed by millions of neurons present in the brain which resemble neural

activities. Analyzing these brain signals helps in understanding and monitoring sensory

and motor activities. This brain signal analysis became a significant tool in the investiga-

1



CHAPTER 1. INTRODUCTION

tion of neuronal activities for diagnosing various neurological diseases and developing BCI

applications, ultimately enhancing patient care and treatment outcomes [2]. With the emerg-

ing technologies, brain signals are analysed using different signal modalities such as EEG,

MEG, functional magnetic resonance imaging (fMRI), and positron emission tomography

(PET). Among these signal modalities, the EEG and MEG are the most efficient brain sig-

nals to analyse brainwave patterns that assist in the diagnosis of neurological diseases and

also play an essential role in all neurosurgery related to the brain. EEG and MEG are the

most studied potential brain signals to measure brain activity because of their noninvasive

nature and ability to offer enhanced fine-grained analysis by identifying spatial, temporal,

and spectral components [3, 4]. EEG records electrical activity from electrodes placed on

the scalp by capturing voltage fluctuations from ionic currents, while MEG measures the

magnetic fields generated by electrical activity in the brain’s neurons. In fMRI and MRI

cases, it measures changes in blood flow and oxygen levels in the brain, while PET involves

injecting a tracer isotope that emits gamma rays, which are detected by a scanner. However,

PET and MRI-based applications are limited compared to EEG and MEG due to their low

temporal resolution and show inability to capture various mental activities and brain disor-

ders effectively [5, 6]. Therefore, it has become a valuable tool for clinicians and researchers

and has the potential to develop advanced BCIs and help in partial paralysis rehabilitation.

The clinicians visually study these brain signal recordings to determine the manifestation of

abnormalities in the brain. However, EEG and MEG suffer from artifacts, high complexity,

and variations introduced by different brain patterns among individuals, which may lead to

erroneous interpretations. This, coupled with numerous challenges such as signal quality,

the nonstationary nature of EEG and MEG signals, common artifacts, and feature dimen-

sionality, presents significant challenges for EEG and MEG-based diagnosis of neurological

diseases and the development of BCI systems. Therefore, adequate and accurate analysis
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of these signals remains a major challenge for researchers and it demands advanced signal

analysis techniques for proper interpretation and extraction of useful brain information.

1.2 Applicability of recorded EEG and MEG signals

EEG and MEG signals serve as effective tools for monitoring brain functional activities

associated with a wide range of pathological conditions. These non-invasive techniques are

highly effective in detecting neural changes linked to various neurological disorders, such

as sleep apnea, epilepsy, and other cognitive impairments. They also play a pivotal role in

BCI applications by enabling direct communication between the brain and external devices.

Extensive research has demonstrated the utility of EEG and MEG in assessing human mental

health, monitoring clinical conditions, and capturing complex cognitive activities such as

imagination, thought processes, and attention states. These tools provide insights into both

healthy and disordered brain functions, offering valuable applications in diagnosis, therapy,

and cognitive enhancement. A brief description of specific applications of EEG and MEG

signals studied in this thesis is provided below:

1.2.1 Clinical application

1.2.1.1 Sleep analysis in sleep apnea disorder

Sleep apnea is a severe sleep disorder which is characterized by recurring interruptions

in breathing during sleep [7]. It involves progressive disruptions of normal breathing pat-

terns through repeated episodes of apnea (complete pauses) or hypopnea (partial pauses)

throughout sleep. Sleep apnea affects 2–7% of the population and primarily causes dis-

rupted sleep, excessive daytime drowsiness, and cognitive difficulties in severe cases, it can

lead to serious chronic conditions such as cardiovascular disease, cerebrovascular issues,
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diabetes, hypertension, coronary heart disease, and stroke [8, 9, 10]. It is majorly catego-

rized as obstructive sleep apnea (OSA), central sleep apnea (CSA), and mixed sleep apnea

(MSA). Among these, OSA is the most common and severe. In most cases, OSA results

from physical airway blockages and is more severe than CSA, which is caused by brain

signal disruptions, and MSA, a combination of both. Thus, OSA is the primary focus for

diagnosis and treatment due to its significant impact on public health. The severity of sleep

apnea is assessed using the apnea-hypopnea index (AHI), which measures the combined

number of apneas and hypopneas per hour of sleep. An AHI < 5 is indicated as a controlled

OSA state. An AHI between 5 and 15 indicates OSA, while an AHI from 15 to 30 represents

moderate OSA. An AHI > 30 is indicative of severe OSA. Detecting OSA is challenging

due to the need for advanced clinical tools, trained professionals, and overnight monitor-

ing, which complicates early diagnosis and timely treatment. Overnight polysomnography

(PSG) is the primary assessment tool for diagnosing OSA which involves the recording

of multiple physiological signals such as EEG, electrocardiogram (ECG), electromyogram

(EMG), airflow, snoring, and oxygen saturation [11, 12]. However, PSG is expensive, time-

consuming, and intrusive, and does not provide suitability to patients due to disrupting nat-

ural sleep patterns while recording. This has led to a growing demand for cost-effective

and simpler diagnostic methods that can automate sleep apnea detection. Recent research

focuses on automated sleep apnea diagnosis using single modalities such as airflow, oxygen

saturation (SpO2), and photoplethysmography (PPG). These signals are easy to collect but

may lack precision, especially in certain medical scenarios involving patients with irregu-

lar breathing patterns [8, 9, 10, 13]. Among these modalities, EEG signals found effective

modality in sleep staging and apnea detection which provide accurate classification of sleep

states and apnea events. EEG offers distinct advantages in scenarios where other signals

may not work, such as during surgeries or in cases of irregular breathing. It captures brain
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activity and provides reliable information about sleep stages and related neural patterns,

which can help in accurately diagnosing sleep apnea and evaluating sleep quality.

1.2.2 Brain–computer interface and rehabilitation applications

1.2.2.1 Cognitive visual objects analysis

In visual object decoding and reconstruction, neural signals reveal how the human brain

processes and interprets natural visual stimuli [3]. These dynamic brain activities cover

the human perception of the visual world, which is influenced by the characteristics of ex-

ternal visual stimuli. Among other signal modalities, EEG and MEG are the most widely

used tools to study dynamic visual cognitive processes in the human brain [3, 4, 5, 14].

These tools facilitate a broad assessment of brain activity with millisecond-level time res-

olution and allow researchers to extract complex spatiotemporal dynamics non-invasively

in clinical practices. In visual object decoding, MEG and EEG visual stimulus activation

(VSA) patterns demonstrate the utmost discriminative cognitive analysis due to their mul-

tivariate oscillatory nature [3, 14]. However, high noise in the recorded EEG-MEG signals

and subject-specific variability make it extremely difficult to classify the subject’s cogni-

tive responses to different visual stimuli response. Also, in real-world environments, com-

plex visual object recognition faces significant challenges. These include channel selection,

smoothing, data reduction, indeterminate scalp regions, and the nonstationary nature of EEG

and MEG signals [3, 14]. These issues limit mutually informative features across channels

and consequently degrade the classification performance in visual object detection. There-

fore, robust multivariate visual analysis is required to decode visual neural patterns from

visual object stimuli, and further automated classification methods are needed to accurately

classify different visual object classes from the extracted neural patterns of EEG and MEG

signals.
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1.2.2.2 Imagined speech decoding

The imagined speech (IMS) involves imagery of speaking where individuals feel they

are generating speech without moving their articulatory movements [15, 16]. It is known

to be the most effective and direct communication interface for understanding thoughts.

Since speech is the primary means of interaction among humans, IMS becomes a natural

and instinctive process of brain communication. In the last few decades, IMS has devel-

oped as a common BCI paradigm because it allows for effective communication without

external stimuli and requires less training [17, 18, 19]. During the IMS, the brain waves

associated with the motor cortex, left superior temporal lobe (Wernicke’s area), and left

inferior frontal lobe (Broca’s area) show increased activation and exhibit more distinctive

brain patterns associated with motor imagery (MI) tasks. It is also an endogenous BCI

paradigm and established a new BCI communication channel for people who cannot speak

due to motor disabilities or neurological issues [19, 20]. Various health issues can lead to a

loss of verbal communication which is triggered by injuries or neurodegenerative conditions

that affect speech motor production, speech articulation, and language processing [20, 21].

Some neurodegenerative conditions such as stroke trauma and amyotrophic lateral sclerosis

(ALS) can lead to locked-in syndrome (LIS) where patients are unable to communicate due

to total motor control loss. Therefore, IMS-based BCI serves as an assistive technology

that offers a new way to communicate with these patients. Additionally, IMS-based BCI

technologies develop a bridge between the brain and the external world enabling a two-

way communication interface that reads signals from the brain and transforms them into the

desired cognitive tasks. This allows for a thought-to-speech interface to be developed so

that individuals unable to speak due to motor disabilities can utilize their brain signals for

communication without any physical movement. Several acquisition techniques have been

investigated both invasive and noninvasive to acquire brain signals produced during the
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speech imagining process. These techniques include MEG, fMRI, functional near-infrared

spectroscopy (fNIRS), electrocardiogram (ECOG), and EEG. In certain conditions, inva-

sive methods like ECOG offer higher classification accuracy than non-invasive ones (MEG,

fMRI, fNIRS, EEG) for IMS decoding but face limitations in classifying a wider range of

IMS classes for practical BCI applications [16, 18, 19, 20, 21, 22]. Among the mentioned

techniques for IMS recognition, EEG is the most widely used technique due to its high

temporal resolution, affordability, and portability. However, existing EEG-based IMS BCI

systems face challenges in real-life scenarios mainly because interpreting EEG signals is

difficult due to their low signal-to-noise ratio and nonstationary characteristics. IMS offers

a promising paradigm due to its intuitive nature and the potential for multiclass scalability

in feasible BCI applications.

1.2.2.3 Motor imagery BCI

MI involves the mental simulation of motor activities, which induces changes in activ-

ity within the corresponding motor cortex [23, 24]. In MI process, a person imagines a

specific movement and the motor cortex exhibits activity as if the movement were actu-

ally being performed even though no physical movement takes place. This brain activity

can be recorded and used to control biomechatronic devices. For example, imagining a

left-arm movement can generate signals that control the movement of the left arm in a full-

body exoskeleton. One of the major aspects of MI is that it activates brain areas similar to

those involved in the execution of the actual movement, including the sensory and motor

cortices [25, 26]. Additionally, the temporal characteristics of these activations are similar

to those observed during physical movement [27, 28]. Unlike other BCI paradigms like

steady-state visual evoked potentials (SSVEPs) or P300, MI does not require external stim-

uli or devices, which provides an advantage in terms of user comfort. An MI-based BCI
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(MI-BCI) enables the brain to communicate with and control external devices by capturing

and interpreting the brain signals generated during the mental imagining of a specific limb

movement such as the upper limb and lower. MI-BCI has gained significant importance

due to their wide-ranging applications in fields such as neurorehabilitation and neuropros-

thetics [29, 30, 31]. In neurorehabilitation, MI-BCI has proven beneficial for neurological

patients, especially stroke patients, who frequently experience long-term residual motor im-

pairments in their upper limbs. MI-BCI can help these patients to regain motor function in

their upper limbs, which is critical for performing daily tasks. MI-BCI systems have been

developed using various brain signal recording techniques, such as EEG, MEG, fMRI, and

near-infrared spectroscopy (NIRS) [25, 26, 29, 30, 31, 32, 33, 34]. Among these, EEG is

the most commonly used because it is non-invasive and portable. However, since EEG sig-

nals are complex and dynamic in nature, the system needs to extract specific MI patterns

and interpret these signals for BCI implementation. Another key challenge with MI-BCI is

that it requires more user training to generate associated MI brain patterns, and only a lim-

ited range of movements can be detected through EEG signals which makes MI-BCI more

challenging.

1.3 Nonstationary signal analysis techniques

Nonstationary signal analysis techniques are valuable tools for modeling and interpreta-

tion of the time-varying nature of real-life signals recorded in several areas, namely speech

synthesis, radar, telecommunication, and biomedicine [35], which are characterised by ex-

treme nonstationary nature. In biomedical applications, the primary motivation for studying

multicomponent nonstationary signals is to enhance signal denoising and component extrac-

tion from biomedical signals such as ECG [1], EMG [6], EEG [36], MEG [3]. It is observed

that the nonstationary biomedical signal that includes spectral content carries inherent time-
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varying characteristics of the analyzed signal, which introduces difficulty in analysing real

signals. Therefore, an effective decomposition method is required to identify and extract the

real-time biological signals that are characterised by extreme nonstationary nature.

In the literature, numerous nonstationary analysis techniques have been proposed to

adopt the efficient decomposition of nonstationary multicomponent signals. The majority

of such techniques comprise discrete Fourier transform (DFT) based filter bank methods

[37, 38] which are not well-suited for analyzing the temporal and spectral characteristics

of such signals. The short-time Fourier transform (STFT) [39] employs a moving window

approach for time-frequency (TF) representation, but it suffers from a trade-off between

time and frequency resolutions due to its fixed window design. To enhance time-frequency

representation (TFR) of nonstationary signals, wavelet transform (WT) was proposed which

overcomes the drawbacks of STFT. WT extracts signals into multiple oscillatory levels and

provides better TF resolution by preserving their transient characteristics [40]. However,

WT works on a multi-scale basis, it suffers from issues related to nonstationary signal anal-

ysis due to the predetermined filter bank structure and is also inefficient in determining

instantaneous amplitude (IA) and instantaneous frequency (IF) from the decomposed sub-

band signals. Furthermore, a novel method, empirical mode decomposition (EMD), was

proposed by Huang et al. [41] for the analysis of nonlinear and nonstationary signals. The

generated intrinsic mode functions (IMFs) are functions of the posterior meaning of phys-

ical signal to estimate IA and IF functions. However, the extracted IMFs suffer from a

mode mixing problem and cannot effectively reconstruct the actual monocomponent from

the signal.

Further, WT-based techniques have been developed, including the flexible analytic

wavelet transform (FAWT) [42], tunable-Q wavelet transform (TQWT) [43], and empiri-

cal wavelet transform (EWT) [44], wavelet packet transform (WPT) [45], contourlet trans-
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form [46], dual-tree complex wavelet transform (DTCWT) [47] along with its hybrid ver-

sions [44, 48, 49]. FAWT improves the traditional WT which offers a more flexible frame-

work for analyzing nonstationary signals and provides, better TF localization [42]. TQWT

adopts tunable quality factors to control adjustable bandwidths based on the oscillatory be-

havior of the signal [50]. This provides desirable decomposition performance and makes it

suitable for analyzing nonstationary signals with varying frequency content. EWT decom-

poses signals into narrow sub-bands through empirically designed signal adaptive wavelet

filter banks which provide more tailored analysis according to the signal’s inherent charac-

teristics [44, 48]. Similarly, the WPT offers improved signal decomposition with accurate

extraction of sub-bands by enabling flexible frequency band selection through customiz-

able wavelet filter banks [45]. Synchrosqueezed WT (SWT) [49] provides improved TFR

by combining WT with reallocation methods in the TF plane. These methods found better

suitability to analyse linear amplitude modulated (AM) and frequency modulated (FM) sig-

nals. However, these WT-based techniques have certain limitations such as analyzed signal

length, predefined filter banks, optimal window length, predefined set of basis functions,

and non-adaptive nature. Additionally, close frequency signal components are difficult to

differentiate due to the introduction of cross-terms [51].

Recent advancements in multi-scale adaptive decomposition, such as variational mode

decomposition (VMD) [52], Fourier-Bessel series expansion (FBSE) [53] and its variants

[36, 54, 55, 56], ensemble EMD [57], compact EMD [58], eigenvalue decomposition (EVD)

and its variants [51, 59, 60], adaptive Fourier decomposition [61], and singular spectrum

analysis (SSA) [62], have already proven their potential to analyze multi-component non-

stationary biomedical signals. These methods provide a useful investigation to analyze the

features, particularly the weak spectral characteristics in nonlinear and nonstationary sig-

nals. However, the majority of these methods have been demonstrated to be superior in
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addressing both mode mixing elimination and adaptive decomposition. Yet, the challenge

of tuning multiple preset parameters across a wide range severely restricts their potential

uses.

Recently, multivariate signal decomposition techniques have gained attention [63, 64,

65] for multivariate analysis of multichannel data. The developed multivariate analysis

methods consist of multivariate VMD [63], multivariate EMD [64], multivariate iterative

filtering [66], and multivariate EWT [65], which provide accurate estimations of the mutual

components shared among the channels.

Among them, the recently proposed technique, i.e., SWD [67], has received a lot of

attention for its efficiency in processing stationary and nonstationary signals. SWD is an it-

erative and data-driven decomposition method inspired by swarm intelligence. It is specially

designed by the extended concept of swarm filtering. Numerous experiments have revealed

its supremacy in resolving the problem of mode mixing [68, 69] over other state-of-the-art

methods [41, 70]. It has been proven to be the best decomposition method for synthetic

and natural signals [2, 67]. However, SWD method in the literature are limited by their

performance in terms of the trade-off between optimization of hyper-tuning and decompo-

sition performance [68, 71]. To ensure optimal SWD decomposition, it is imperative to

meticulously choose the accurate threshold settings for each signal prior to decomposition.

A few significant attempts in selecting SWD thresholds using metaheuristic optimization

algorithms have been explored for TF analysis [68, 71]. Additionally, the univariate SWD

decomposition method shows the limitation when dealing with the simultaneous processing

of multivariate signals from multiple channels [67]. Therefore, there is a need for improve-

ment related to individual threshold optimization in SWD to improve mode aliasing issues

and multi-channel processing capability.
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1.4 Motivation

In recent decades, nonstationary multicomponent signal analysis has played a significant

role in brain signal processing, particularly with EEG and MEG signals in neurocognitive

science [35, 72]. These signals are characterized by their complex and time-varying na-

ture. It requires advanced signal analysis techniques for effective denoising and component

extraction related to meaningful brain information. Although many nonstationary analysis

methods have been proposed, they introduced significant limitations such as predefined fil-

ter banks, optimal window length, and non-adaptive processing [44, 48, 68, 72]. Among

them, the recently introduced technique, SWD found better suitability to analyse nonsta-

tionary brain signals, however, it suffers from challenges related to pre-defined threshold

parameter selection, making it difficult to achieve satisfactory decomposition results with

the recommended settings [67]. Moreover, its limitations in univariate processing can result

in mutual information loss in multichannel data [65].

Therefore, there is a need to improve SWD-based nonstationary signal processing tech-

niques to decompose multichannel signals for improved brain signal analysis, and to further

apply these techniques in the development of automated neurological disease detection and

BCI frameworks. The proposed univariate SSDM (USSDM) and its novel extensions, mul-

tivariate SSDM (MSSDM), enhanced SSDM (ESSDM), and clustering SSDM (CSSDM),

are effective nonstationary techniques for robust analysis of nonstationary brain signals.

It extracts meaningful oscillatory modes from multichannel EEG and MEG signals and

computes significant features adaptively for improved classification of brain neurological

diseases and BCIs. The main motivations for the development of these signal processing

techniques and related automated classification frameworks are as follows:

Sleep apnea is a chronic sleep disorder that can severely impact the physical, mental,

and social well-being of patients, and in severe cases, it can lead to serious cardiovascular
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and psychological complications [10]. While sleep apnea is not typically curable, timely

treatment can help reduce its symptoms [8, 13]. Reliable automatic frameworks can assist

in the early diagnosis and treatment of sleep apnea, helping to prevent further complications.

BCI technologies provide an effective solution to patients with neuromuscular diseases

by providing an alternative communication path between the brain and external devices. MI

movement and IMS detection are widely used in the development of BCI frameworks and

demonstrate their effectiveness in various practical BCI applications [15, 17, 18, 19, 20]. MI

has developed a new intuitive paradigm in the BCI and has become an active rehabilitation

tool for the treatment of paralytic stroke patients [34, 73]. MI is a cognitive process in which

the subject imagines the motory action rather than performing the actual action, e.g., right-

hand or left-hand. In active rehabilitation training, MI-BCI constructs a direct information

transfer pathway, which converts EEG brain activity signals into MI commands to control

prosthesis instead of traditional brain and muscle control pathways [25, 26]. Also, MI-based

EEG has multi-class scalability, thus showing the possibility of building an extensible BCI

system.

Similarly, in the recent decade, IMS has developed advanced cognitive communication

tools, serving as an intuitive paradigm within BCI technology [15, 17]. Against imagi-

nation of control action like in MI-based BCI, IMS is a new intuitive paradigm that con-

ducts the internal pronunciation of words without any physical movement or audio out-

put. IMS exhibits scalability across multiple classes, indicating the potential for con-

structing a scalable BCI system. This paradigm is especially well-suited for constructing

communication systems because of its intuitive nature, making it particularly beneficial

for individuals facing physical challenges like apraxia and dysarthria. In these MI studies

[24, 25, 26, 28, 29, 30, 31, 32, 33] and IMS [15, 17, 18, 19, 20], EEG is widely utilized for

its ability to be recorded in a non-invasive manner and offer improved fine-grained analysis
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by identifying spectral, spatial, and temporal components underlying EEG signal. However,

in an MI and IMS-based BCI system, accurately recognizing discriminative neural patterns

from EEG signals and classifying them is challenging due to limited spatial resolution, intra-

channel interference, and the nonstationary and nonlinear nature of the signals. Thus, it is

challenging to develop a reliable EEG-based BCI recognition model.

Visual object decoding-based BCI has emerged as a transformative approach in cogni-

tive neuroscience which enables intuitive interaction with technology and enhances reha-

bilitation for individuals with visual processing deficits [74]. In this context, neural signals

represent how the human brain interprets natural visual stimuli [3]. Among various modal-

ities, EEG and MEG serve as key tools for studying dynamic visual cognition due to their

millisecond-level time resolution and non-invasive nature [3, 4, 5, 14]. However, high noise

levels in EEG and MEG signal recordings and significant subject-specific variability during

the visual cognitive decoding process make it difficult to decode visual activation patterns

and consequently make it challenging to classify cognitive responses to different visual stim-

uli. Moreover, real-world visual recognition is hindered by issues such as channel selection,

smoothing, data reduction, ambiguous scalp regions, and the nonstationary characteristics

of EEG and MEG signals, which limit the extraction of mutually informative features and

ultimately degrade classification performance [3, 14]. To overcome these challenges, robust

multivariate visual analysis and advanced automated classification methods are essential for

accurately decoding visual neural patterns from EEG and MEG signals.

1.5 Objectives

In this thesis, we aim to achieve the following objectives:

Objective 1: To propose the SSDM for robust nonstationary signal analysis and develop a
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sleep apnea detection framework from EEG signals

Objective 2: To propose MSSDM for multivariate signal analysis and develop a classifi-

cation framework for cognitive visual object analysis from multichannel EEG-MEG

signals

Objective 3: To propose an MSSDM-based joint TF analysis method and develop a frame-

work for IMS enhancement for the intuitive BCI application

Objective 4: To propose an ESSDM for optimal oscillatory mode extraction and to classify

multi-class MI movement for EEG-BCI framework

Objective 5: To propose CSSDM for automated recognition of upper limb movements

from non-homogeneous EEG signals for BCI application

1.6 Thesis contributions

The works present in this thesis focus on developing a novel extension of the univariate

SWD-based nonstationary signal-processing technique to decompose multichannel signals

for brain signal analysis, and to further apply these techniques in the development of

neurological disease detection and BCI frameworks. In this thesis, we will discuss four

different SWD-based decomposition methods along with five different frameworks that

have been proposed for the diagnosis of sleep apnea disease and BCI frameworks such as

cognitive visual object recognition, MI recognition, IMS task detection, and EEG-based

upper limb movements detection. The contributions of the thesis are as follows:

Contribution I:

15



CHAPTER 1. INTRODUCTION

A novel USSDM has been proposed based on the improved sparse Fourier transform

(SFT) spectrum estimation model and designed new swarm filter banks for efficient mode

extraction and TF improvement. The proposed SSDM method delivers optimal estimation

of boundary frequencies in the SFT spectrum, resulting in improved filter banks. The

performance of the proposed method has also been tested for the nonstationary AM and

FM signals with additive white Gaussian noise (AWGN) at different signal-to-noise ratio

(SNR) levels and compared with existing SWD and Hilbert-Huang transform (HHT)

methods. Further, an automated system of sleep apnea detection has been developed using

the proposed SSDM-based formulated new fusion feature and TFR image feature and

tested on convolutional neural network (CNN) and bidirectional long short-term memory

(BiLSTM) on the publicly available EEG database. The proposed SSDM method delivers

substantial improvement in TF analysis. Our developed sleep apnea detection model could

be a vital aid in clinical solutions.

Contribution II:

A new adaptive multivariate extension of SSDM i.e. MSSDM has been proposed to

explore the multivariate analysis of nonstationary EEG-MEG signals and further used to

improve the decoding accuracy of VSA pattern classification. This method decomposes

multichannel EEG and MEG data into multivariate oscillatory modes. These modes are

then grouped based on their mean frequency to obtain rhythms. Then new Riemann’s

correlation-assisted fusion feature (RCFF) has been computed from the features, namely,

Renyi’s entropy (RE), sparse entropy (SE), common spatial filter (CSF) on Teager energy

(CSPTE), and correntropy spectral density (CSD) from computed rhythms of EEG, MEG,

and combined EEG-MEG multichannel data. Five different machine learning are then

developed to classify cognitive visual objects using these novel MSSDM-RCFF features
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and improve the VSA pattern classification.

Contribution III:

A novel adaptive MSSDM has been proposed to reveal the multivariate joint oscillatory

structure of multichannel EEG signals and delivered channel-aligned oscillatory compo-

nents (CAOCs). Joint TF multivariate features are generated based on joint IF (JIF) and

joint IA (JIA) functions computed from the extracted CAOCs. The new low-dimensional

joint TF deep feature has been computed using four different pre-trained neural networks

(ELM, AlexNet, SqueezeNet, and ResNet), and further two feature mapping strategies have

been employed to generate the most discriminant features. This work also developed a

multichannel IMS task detection framework based on the MSSDM, joint TF deep features,

and a support vector machine (SVM) from cross-channel EEG signals for BCI application.

The proposed framework has been evaluated using an IMS-EEG dataset.

Contribution IV:

This work proposed a novel decomposition technique, namely, the ESSDM based on

selfish herd optimization (SHO), modified swarm filter bank, and SFT spectrum to solve

the issue of choice of uniform decomposition and threshold parameters in existing SWD. In

this approach, new fitness function criteria has been designed based on the Kullback–Leibler

divergence (KLD) distance from the spectral kurtosis of all modes to select threshold pa-

rameters that optimize decomposition effect, avoid excessive iterations, and provide fast

convergence with optimal modes. It also introduced a new subspace clustered-based fused

TF graph (FTFG) feature from TF information, which is computed from extracted optimal

modes using ESSDM. Furthermore, the performance of ESSDM has been tested by devel-

oping a multi-class MI electroencephalogram (MI-EEG) recognition model using obtained
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FTFG features and three computationally efficient classifiers and demonstrated an efficient

MI-EEG recognition model for feasible BCI application.

Contribution V:

In this work, the CSSDM is proposed to extract homogeneous spectral characteristics

across nonhomogeneous multichannel EEG data with significant channel selection for

efficient decomposition. CSSDM, a novel approach proposed to address the limitation of

processing nonhomogeneous signals, such as EEG, extends the capabilities of existing

SWD. CSSDM addresses issues in processing nonhomogeneous EEG signals in existing

SWD by clustering them into homogeneous sets with density-based spatial clustering

(DBSC) and CCA-assisted mutual information (CMI) criteria. This work also developed

an automated upper limb movement recognition framework based on the CCSDM method

using nonhomogeneous cross-channel EEG signals. Further, the TF graph spectral (TFGS)

features are formulated from extracted modes using CSSDM. The developed framework

has been validated and outperformed against baseline models. It demonstrated an efficient

upper limb BCI tool for patients with neuromuscular diseases.

1.7 Organization of the thesis

This thesis is organized into seven chapters. The title and short summary of the chapters

are structured as follows:

Chapter 1 (Introduction)

This chapter describes brain signal processing, applicability of recorded EEG and MEG

signals, and nonstationary signal processing methods. In the later part, the objectives, moti-

vations, contributions, and organization of the thesis are discussed.

Chapter 2 (SSDM method for robust nonstationary signal analysis with EEG-based
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sleep apnea detection)

This chapter has proposed the SSDM for robust nonstationary signal analysis. The

SSDM-based framework is developed for automatic sleep apnea detection using EEG sig-

nals.

Chapter 3 (Multivariate SSDM for multivariate signal analysis with cognitive visual

object detection from multichannel EEG-MEG signals)

This chapter has proposed MSSDM for multivariate signal analysis and developed a

classification framework for cognitive visual object analysis from multichannel EEG-MEG

signals.

Chapter 4 (Multivariate SSDM-based joint time-frequency analysis with improved

imagined speech decoding for intuitive BCI)

In this chapter, we have presented an MSSDM-based joint TF analysis method. The

introduced method is used to construct a framework for IMS enhancement for the intuitive

BCI application.

Chapter 5 (Enhanced SSDM with multi-class motor imagery-based EEG-BCI system)

This chapter has proposed an ESSDM for optimal oscillatory mode extraction from

synthetic and real signals. The ESSDM-based classification framework has been developed

to classify multi-class MI movements for the EEG-BCI framework.

Chapter 6 (Clustering SSDM with MI-EEG based upper limb movement recognition

for BCI application)

In this chapter, the CSSDM has been proposed to extract homogeneous spectral char-

acteristics across nonhomogeneous multichannel EEG data. This work also developed a

CSSDM-based automated upper limb movement recognition framework using nonhomoge-

neous cross-channel EEG signals.

Chapter 7 (Conclusions and future scope)
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This chapter provides a summary and findings of the thesis. This chapter also listed the

information of the future work.

The structure of the thesis is illustrated as follows:

Figure 1.1: The structure of the thesis.
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Chapter 2

SSDM Method for Robust Nonstationary

Signal Analysis with EEG-based Sleep

Apnea Detection

In this chapter, we present a novel USSDM for efficient mode extraction and TF im-

provement based on an improved SFT spectrum estimation model and specially designed

swarm filter banks. The designing of SSDM and its effectiveness over existing methods are

discussed in detail in this chapter. Furthermore, we have developed two frameworks to val-

idate the effectiveness of our proposed SSDM approach in detecting sleep apnea disorder.

The first framework focuses on enhancing sleep apnea detection using the newly formu-

lated fusion feature which is computed from oscillatory components (OCs) using SSDM

and employing a BiLSTM classifier for classification. In the second framework, we explore

the efficacy of the TFR image feature which is computed from various rhythms extracted

through SSDM-based OCs, and test them on multiple CNN models. The classification per-

formance of the proposed frameworks is illustrated in detail in later sections.
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2.1 Introduction

Over the last few decades, nonstationary multicomponent signal analysis in the TF do-

main has played a significant role in several areas, namely speech synthesis, biomedicine,

radar, telecommunication [35, 72]. The primary motivation for studying multicomponent

signals is to enhance signal denoising and component extraction from biomedical signals

such as ECG [1], EMG [6], EEG [36]. It is observed that the nonstationary signal that in-

cludes spectral content carries inherent time-varying characteristics of the analyzed signal,

which introduces difficulty to analyse real complex signals. Therefore an effective decom-

position method is required to identify and extract the real-time biological signals that are

characterised by extreme nonstationary nature. In the literature, numerous nonstationary

analysis methods have been proposed to adopt the efficient decomposition of nonstationary

multicomponent signals. The majority of such methods comprise of DFT-based filter bank

[37, 38], WT [40], FAWT [42], FBSE [53] and it’s variant [48, 55, 56], TQWT [43], EVD

and its variants [51, 59], EWT and its hybrid variants [44, 48]. Amongst these methods,

many are based on atomic decomposition and energy distribution on quadratic TFRs. These

methods found better suitability to analyse linear AM and FM signals. However, they have

certain limitations such as analyzed signal length, predefined filter banks, optimal window

length, predefined set of functions, and non-adaptive nature. Additionally, close frequency

signal components are difficult to differentiate due to the introduction of cross-terms [51].

Further, EMD [41] was introduced to analyze nonstationary signals. It decomposes a sig-

nal into its underlying OCs, known as IMFs. However, mode mixing remains an issue in

the extracted IMFs. To overcome this issue, the successive variants were introduced as an

ensemble EMD [57], multivariate EMD [64], and compact EMD [58], which have been

disclosed by a great deal of literature [57, 58, 64, 70]. Recently, the SWD technique [67]

has been introduced for processing stationary and nonstationary signals. It has proven to
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be highly effective in overcoming mode mixing issues and for processing real-time signals

[2, 68]. However, it suffers from pre-defined threshold selection, and it is difficult to obtain

satisfactory decomposition results with the recommended choice.

To resolve the aforementioned limitations, we hereby propose a new technique, SSDM

for signal decomposition and TF analysis. Benefiting from the merits of the SFT spectrum

and SWD, the proposed SSDM method adopts an effective scale-space-based approach for

boundary estimation and segmentation on the SFT spectrum to analyze nonstationary mul-

ticomponent signals into the OCs. It is inspired by recent applications in sparsity-based

biomedical signal processing problems [75, 76, 77, 78, 79, 80]. To promote the sparsity

more strongly, a new penalty function, i.e., fused least absolute shrinkage and selection

operation (fused-LASSO) based signal approximator function, was used to design a non-

convex SFT spectrum estimation [81, 82]. It leads to the new formulation of optimization

solutions to the SFT spectrum estimation and converges the SFT spectrum with compact and

real coefficients. The segmented SFT spectrum becomes spectral leakage-free and provides

better localization in the frequency domain with more sharp energy peaks.

To evaluate effectiveness, the proposed SSDM method has been tested on the nonsta-

tionary AM signals, nonstationary FM signals, and real EEG signals. Further, the proposed

method employed to classify sleep apnea disease from EEG signals. In the sleep apnea

classification work, we have used a publicly available database [85, 86]. The detection of

sleep apnea-hypopnea events is a complicated, time-consuming, and laborious process. In

the literature, several approaches have been reported for the diagnosis of sleep apnea events

based on different biomedical signals, including ECG, oxygen saturation (SpO2), photo-

plethysmogram (PPG), airflow signal, and nasal pressure signal, and achieved satisfactory

results [7, 87, 88]. However, despite advantages, it carries certain predominant limitations

such as lagging in multi-sleep states and stages, non-uniform deviation in the presence of
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Table 2.1: Summary of related work on sleep apnea detection techniques.

Authors, year, and
reference

Methodology EEG database Feature Participants Validation tech-
niques

Performance (%)

Ahmed et al. (2016)
[83]

KNN MIT-BIH database Spectral en-
ergy in beta
band

05 Subject dependent,
leave-one out

Acc = 82.28%
SEN = 90.58%
SPE = 77.72%

Soha et al. (2016)
[84]

KNN St. Vincent’s Univer-
sity Hospital

Entropy 05 Subject dependent Acc = 87.64%
SEN = 89.02 %
SPE = 86.27%

Shahnaz et al. (2016)
[11]

KNN, SVM MIT-BIH database Delta band
power ratio

14 Subject dependent,
10-folds

Acc = 87.03%
SEN = 89.62 %
SPE = 84.43%

Bhattacharjee et al.
(2018) [12]

VMD-KNN MIT-BIH database Rician model-
ing

15 Subject independent,
leave-one out

Acc = 88.49%
SEN = 95.43%
SPE = 81.56%

Almuhammadi et al.
(2015) [9]

SVM, ANN, LDA and
Naive Bayes

MIT-BIH database Energy, vari-
ance

16 Subject dependent Acc = 97.14%
SEN = 97.01%
SPE = 97.26%

Tanvir et al. (2020)
[13]

Full connected CNN St. Vincent’s Univer-
sity Hospital

Temporal
variation

25 Subject dependent Acc = 88.22%
SEN = 85.52%
SPE = 88.97%

Taran et al. (2017)
[8]

PSO-LSSVM MIT-BIH database Hermite coef-
ficients

16 Subject dependent Acc = 98.82%
SEN = 98.66%
SPE = 99.03%

Mahmud et al.
(2021) [10]

VMD, full connected
CNN, BiLSTM

MIT-BIH database Multi-model
temporal

16 Subject-independent
cross-validation,
leave-one-out

Acc = 95.54%
SEN = 95.35%
SPE = 93.00%

Acc: Accuracy, SEN: Sensitivity, SPE: Specificity, KNN: K-nearest neighbors, SVM: Support vector machine, PSO: Particle swarm optimization, LDA:
Linear discriminant analysis, VMD: Variational mode decomposition, LSSVM: Least squares support vector machine, CNN: Convolutional neural
network, and BiLSTM: Bidirectional long short-term memory.

other abnormalities conditions like irregular breathing and heart variability [89]. Whereas

EEG analysis presented in the studies [8, 10, 11, 12, 83, 89] shows more distinguish sleep

apnea-hypopnea index with the severity in a patient coherence over the other signals. A

comprehensive review of sleep apnea detection and classification techniques based on EEG

signals is presented in Table 2.1. Comparing the other research work, it is notable that the

researchers have explored work based on the subject-dependent cross-validation approach

and feature complexity for sleep apnea detection. Even though these proposed methods

were delivered with improved classification accuracy, but method’s performance suffers

as the subject-dependent cross-validation approach is accommodated [8, 9]. In these ap-

proaches, the performance of methods was tested from the same subject in the training and

testing sets. Therefore, the objective of the proposed work is to overcome these issues and

improve performance related to an automated sleep apnea detection system on the EEG

data. The presented work highlights the main contributions in the following aspects:

1. SSDM: A new decomposition method has been proposed based on the improved SFT
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spectrum to modify SWD-related modes.

2. The proposed method has also been tested for the nonstationary AM and nonstation-

ary FM signals with AWGN at different signal-to-noise ratio (SNR) levels.

3. The new feature fusion (time, frequency, and TF domains) and TFR image features

have been explored, which give a multi-scale analysis of the EEG signals and im-

proved the accuracy of sleep apnea classification.

4. It compared a developed automated system of sleep apnea detection against the

current state-of-the-art methods with subject-independent cross-validation from the

cross-subject dataset.

2.2 Proposed methodology

The proposed SSDM method is an adaptive and highly efficient TF analysis method for

decomposing nonstationary multicomponent signals into a finite number of dominant OCs.

The block diagram of the proposed methodology of SSDM is shown in Fig. 2.1. It com-

prises all important steps performed to implement the proposed work, and their description

is given in the following sub-sections.

2.2.1 SFT spectrum coefficients generation and computation

First, the SFT method is applied to nonstationary multicomponent signals and various

spectrum coefficients are generated. The forward SFT and its adjoint operator can be imple-

mented in the frequency domain, and the SFT constraint is performed on the time domain

model. Then, the iteratively re-weighted least-square basis estimation is used to estimate

the SFT model.
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Figure 2.1: The systematic block diagram of the proposed SSDM method to obtain ESR.

Let the forward FT and its adjoint of signal x(n) can be expressed by,

x(n) =
N−1∑
m=0

c(m)e
j2πmn

N (2.1a)

c(m) =
1

N

N−1∑
n=0

x(n)e
−j2πmn

N , (2.1b)
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where, x is the time-space domain data, c denotes the corresponding FT coefficients, and x

represents the recovered data using the adjoint FT. In this SFT model, the extracted compo-

nent is independent at each frequency; thus, it can be estimated in parallel independently.

This work mainly concentrates on the reformulation of SFT in the TF domain. The SFT

coefficients cm of m-order are computed via the following Eqs. (2.2) and (2.3), respectively.

The SFT representation can be rewritten as [82],

x = LHc ⇔ c = Lx, (2.2)

where L and LH are the L1-norm of vector for FT and inverse FT (IFT) kernels.

To calculate L and LH , the iterative shrinkage algorithm [80][81] is used in Eq. (2.3). It

is used to get an optimized frequency-dependent SFT coefficients.

ψ(x) =
∥∥c− F−1 [LF [x]]

∥∥
1
+ µ ∥x∥1 (2.3)

Where F and F−1 represent the forward and IFT along the temporal axis. This model uses

a matrix inversion to update the model basis weights in each iteration and converge with an

optimized SFT spectrum basis. Here, it uses an iterative least square algorithm, and µ is the

penalty factor, which regulates the SFT model’s sparseness and the data misfit.

Even though the SFT can provide a high-resolution FT model, it is sensitive to spiky

and high-amplitude noise. In Eq. (2.3), the inappropriate penalty function µ, L1-norm of

the data misfit indicates the distribution of noise in the TF domain. However, the sparse

constraint is performed only along the slope or curvature direction, which cannot guarantee

the sparseness along the temporal direction. In addition, the computational burden increases

linearly with the increasing basis orders and the number of coefficients. In order to improve

the performance of SFT model estimation in Eq. (2.3) and hold its original high efficiency,

Tibshirani et al. [90] proposed an iterative fused-LASSO signal approximator based penalty

function in Eq. (2.4). Instead of the L1 term, Eq. (2.3) can be extended by adding an extra
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penalty term. This penalty function implemented in the time domain can guarantee the

robustness and sparseness of the proposed method. Therefore, the SFT spectrum is spectral

leakage-free and more localized in the frequency domain. The SFT coefficients c̃m of time

domain data x are computed as follows:

ψ(c̃m) =
∥∥cm − F−1 [LF [x]]

∥∥
1
+ λ1 ∥F [x]∥1+λ0

∥∥LF−1 [cm]
∥∥
1
, (2.4)

where λ0 and λ1 denote the penalty factors which regulate model’s sparsity and it is set as

0.01.

(a) (b)

Figure 2.2: Plots of (a) coefficients magnitude (|cm|) versus frequency (Hz) with sparse
spectrum estimation and (b) spectral analysis of FFT versus SFT coefficients after SGF
(averaging filter) in case multicomponent AM signal analysis.

Fig. 2.2 shows the obtained plot of magnitude of the SFT coefficient (|cm|) versus

frequency (Hz) using SFT spectrum technique corresponding to the multicomponent AM

signal. The red dotted lines denote boundaries detected (BD) via swarm filter bank (FB1-

FB5), and the thick blue line denotes a SFT spectrum of the signal. It is observed that

each basis function is represented by a band of frequencies in Fig. 2.2 (a). It is noted that,

as compared to the Fourier spectrum, the SFT spectrum provides a unique and compact

spectral representation with improved spectral resolution. Due to sparsity, more energy is

concentrated at the centre of SFT coefficients. Fig. 2.2 (a) shows the SFT coefficients
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against magnitude. Here are five SFT spectrum peaks in Fig. 2.2 (b), representing five

different monocomponents of AM nonstationary signals with 1000 samples. A signal can

be reconstructed by optimum peak estimation in the SFT spectrum and provide an accurate

grouping of the similar spectrum based on the range of SFT coefficients corresponding to

the monocomponent signal.

2.2.2 Spectrum smoothing

To remove the unwanted peaks due to noise and estimate the highest peak, the energy

spectrum must be filtered with a smoothing filter. The Savitzky-Golay filter (SGF) is care-

fully chosen and acts as a low-pass filter (LPF) to optimize decomposition performance

while selecting the height of peaks [91]. In the SGF, the threshold in peak selection (Pth) pa-

rameter controls the SWD performance and decides the number of component extractions.

To perform fine decomposition level, Pth is selected around 0.1. The other two parame-

ters, i.e., SGF length (SGFln) and the SGF degree (SGFd) are selected to achieve a specific

smoothing level of the SGF. It is experimentally chosen with values 15 and 2, respectively,

to improve the SWD efficiency and performance. The criteria for dominant frequency ωq
dom

estimation in each iteration can be derived from Eqs. (2.5) and (2.6).

ωq
dom = argω max

(
S

′

xk
(ω) > Pth

)
(2.5)

S
′

xk
(ω) = SGF (Sxk

(ω)) (2.6)

Where S denotes the FT of the discrete data sequence xk(n) at kth iteration, which will use

the SGF. S ′
xk
(ω) is the energy spectral density (ESD) of xk(n) after SGF.
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2.2.3 SWD-based SFT spectrum boundary estimation and band selec-

tion

In the close-frequency multicomponent signals, spectral estimation is complex due to the

overlapped nature of the SFT spectrum. The accurate number of multicomponent signals is

not reconstructed correctly. Therefore, the SFT coefficient separability problem is required

to be optimized with an appropriate selection of range of SFT coefficients, which can be

accurately mapped to the monocomponent signal. However, there is no specific criteria to

decide the best boundary condition for appropriate band selection with corresponding SFT

coefficients. Therefore, in this step, the SWD method is used to design an approach based on

adaptive sliding analysis window-based bandpass filtering for accurate boundary detection

while optimizing the swarm model’s parameters and responses.

In the swarm filtering process, the SFT spectrum is initially segmented into an approxi-

matedN number of fixed boundary segments. The border of each segment can be calculated

by considering the middle of two progressive local maxima, which is expressed by Eq. (2.7).

Wi =
Fci + Fci+1

2
, (2.7)

where Fci and Fci+1 are two frequencies and the N number of boundaries set is denoted by

i = 1, 2, ..., N − 1. The algorithmic execution steps are described in detail in the following

sub-sections.

2.2.3.1 Signal description

The iterative swarm filter is initially fed by the discrete sequence of the multicomponent

input signal, xk(n)= smulti(n)[67]. Where smulti(n), a nonstationary multicomponent signal

which is combined with a set of monocomponent smono, l(n), i.e.,
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smulti (n) =

|Ω|∑
l=1

smono, l (n) =

|Ω|∑
l=1

ωL (n− (l − 1)L) cos (ωln) , ∀l = 1, ..., |Ω| , (2.8)

where ωL(n) is a periodic Hanning window with length L and |Ω| is the cardinality of Ω.

|Ω| = {ωl =
2πl
16

radian; l = 1, 2, ..., 7} represents set of frequencies.

2.2.3.2 Initialization of swarm model parameters

Regarding the initial conditions of the swarm filter, the swarm hunting parameters δ (vir-

tual time interval) and M (swarm members) are preset to control swarm behavior. In each

iteration of Swf filtering, the swarm filter parameters δ and M are tuned to get an accurate

reconstruction of the OCs. The relationships between these swarm filter parameters and

each spectral content are estimated using a genetic algorithm, as given by the following

equation.

M(ω̂) =
⌊
33.46 ω̂−0.735 − 29.1

⌉
(2.9a)

δ(ω̂) = −1.5ω̂2 + 3.454 ω̂ − 0.01, (2.9b)

where ω̂ is the normalized frequency.

2.2.3.3 SWD-based spectrum sensing and estimation

In this step, iterative execution of the swarm filter is carried out to find OCs from the

residue of a multicomponent input signal. The OCs are extracted by selecting the frequency

band which possess the highest amplitude peak through the ESD. With each iteration, the

current extracted prominent OCs is subtracted from the rest of the input for further oscil-

latory modes processing. This process continues until the residual signal does not possess

any spectral content of sufficient observable energy. The extraction of dominant OCs is op-
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timized with the computation of the fitness function value for each swarm member through

the following steps;

I. Initialize each swarm member’s velocity vector Vi(n) and position vector Pi(n) with inte-

ger random values uniformly distributed. According to the swarm-prey hunting mechanism,

set the initial value of the prey Pi(0) with a symmetrical hunting position pattern with a ran-

dom integer value as follows:

pi (0) = pprey (0) + dcr ·
(
i− 1− M

2

)
, ∀i = 1, ....,M (2.10a)

vi (0) = 0, ∀i = 1, ...,M, (2.10b)

where M denotes the number of members.

II. Calculate the driving force F n
Dr, i and cohesive force F n

Coh, i as,

F n
Dr, i = pprey(n)− pi(n− 1) (2.11)

F n
Coh, i =

1

M − 1

M∑
j=1, j ̸=i

f(pi(n− 1)− pj(n− 1)) (2.12)

Where, F n
Dr, i is the attractive force which is induced by prey for members. F n

Coh, i is the

attractive/repulsive force that is induced among swarm members. f(d) is cohesion force

contribution of the jth member to the ith member at a distance d and it is set for function

f(d) with d= (4, 4). dcr is the minimal critical distance among members without affecting

individual performance by others and set dcr = 0.5, 1, and 2.

III. In this step, δ and M parameters are updated as per Eqs. (2.9a) and (2.9b). In every

iteration of swarm-prey hunting, each swarm member updates its current state velocity Vi(n)

and position Pi(n) which are shown in the following equations.
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vi(n) = vi(n− 1) + δ(F n
Dr, i + F n

Coh, i) (2.13a)

pi(n) = pi(n− 1) + δvi(n), (2.13b)

where δ controls swarm hunting flexibility in the time interval [0, 1].

IV. Calculate the best position of each member in the best local position vector and estimate

the fitness function value accordingly with the best global position and iterate for further

process.

V. The output y(n) of SWD is derived by summation of swarm member’s positions as,

y(n) = β
∑M

i=1
pi(n), (2.14)

where β is a weighted factor.

Here, the SWD output is measured with swarm member’s positions from the trajectory of the

swarm; instead, the mean value of the member’s positions is discarded [67]. In this adaptive

filter, the dominant oscillatory mode locates the spectral information of the analyzed signal.

The obtained sub-band signal possess centre frequencies.

VI. For each successive iteration, the following condition is used to select dominant OCs by

checking the energy of residual signal, as given below:

Xk+1(n) = Xk(n)−X
′

k(n), if S
′

xk
(ω) < Pth (2.15)

Where Xit+1(n) is the obtained residual signal, when the extracted filter signal X ′

k(n) is

subtracted from input signal Xk(n) at kth iteration. If the difference between consecutive

iterations is less than the Pth value 0.1, the iteration is stopped, else it repeats the process.

VII. Check convergence condition

The iterative algorithm SWD is stopped if it satisfies the convergence criteria for the
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residual signal which is indicated in Eq. (2.16).

argmin
δ, M

∑
k

{|Yδ, M (k)| − |X (k)|}2, (2.16)

wherein |Yδ,M(k)| and |X(k)| are the amplitude of FT of the output |Yδ,M(k)| and input

signal x(n).

The above steps are summarised in the pseudo-code of the SSDM method is illustrated

in Algorithm 2.1.

Algorithm 2.1 Pseudo code of SSDM method
Input: Nonstationary multicomponent signal x(n)
Output: Sub-bands decomposition after SSDM method
Initialization: Pth = 0.1; k= 0; M= 20; δ = 0.01; c = 0; j = 0
1. Apply SFT method to given input x(n) to compute coefficients.
2. To estimate the highest peak in the SFT spectrum, smooth the energy spectrum using the SGF as
per Eq. (2.6).
3. Calculate local maxima (L) from the obtained SFT spectrum coefficients (|cm|) using fixed bound-
ary estimation and segmentation of the signal x(n).
L = max (cm), as m=1, 2, 3, ..., N
4. Once maxima are obtained, segmentation of SFT spectrum using adaptive boundaries estimation
is performed in Eq. (2.7).
5. After the segmentation of the SFT spectrum, all bands are passed through an iterative swarm filter
bank.
yi(n) = SwF(xi(n), M , δ), i=1, 2, 3, ..., N ; SwF: Swarm filter
6. Iterative execution of swarm filter is carried out to find OCs.
7. Evaluate fitness function using Eq. (2.17).
8. For the reconstruction of the signal, inverse SFT is applied to each sub-band of the decomposed
signal.
9. Evaluate performance metric, error-to-signal ratio (ESR).

2.2.4 Performance measure

To validate the proposed SSDM method, performance metric-ESR is used to measure

the reconstruction efficiency of the algorithm, which is calculated in Eq. (2.17). The criteria

are to be chosen to select a small value that decides the accurate reconstruction.
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ESR =

∑
n

|Smono, l (n)− s̃mono, l (n)|∑
n

|smono,l (n)|2

2

, (2.17)

where, smono, l(n) and s̃mono, l(n) are the reference and extracted components, respec-

tively.

Table 2.2: The mathematical expression of synthesized test signals.

Test signals Model parameters

sI(n) =
M∑
l=1

sAM
multi, l(n) =

M∑
l=1

Al(1+aln) cos

(
2πfl
fs

n+ ϕl

)
(2.18)

sII(n) =
M∑
l=1

sAM
multi, l(n)+w(n) =

M∑
l=1

Al(1+aln) cos

(
2πfl
fs

n+ ϕl

)
+w(n) (2.19)

M = 5, fs = 20 KHz, A1 = 2, A2 = 1, A3 =
0.9, A4 = 3, A5 = 2.5, f1 = 100 Hz, f2 = 140
Hz, f3 = 190 Hz, f4 = 230 Hz, f5 = 270 Hz, ϕ1

= 0, ϕ2 = π, ϕ3 = 0, ϕ4 = π/2, ϕ5 = π/3, a1 =
0.0042, a2 = 0.0037, a3 = 0.0029, a4 = 0.0037,
a5 = 0.0033, w(n) represents AWGN, and n =
0, 1, 2, ..., 399.

sIII(n) =
M∑
l=1

sFM
multi, l+w(n) =

M∑
l=1

Al cos

((
2πfl
fs

(
1 +

βl
fs
n

))
n+ ϕl

)
(2.20)

sIV(n) =
M∑
l=1

sFM
multi, l+w(n) =

M∑
l=1

Al cos

((
2πfl
fs

(
1 +

βl
fs
n

))
n+ ϕl

)
+w(n) (2.21)

M = 3; fs = 20 KHz, f1 = 500 Hz, f2 = 1200
Hz, f3 = 2000 Hz, A1 = 3, A2 = 2, A3 = 1, ϕ1 =
0, ϕ2 = π, ϕ3 = 0, β1 = 4, β2 = 3, β3 = 3/2, w(n)
represents AWGN, and n = 0, 1, 2, ..., 1999.

2.3 Results and Discussions

To prove the efficacy of the proposed method over the existing HHT and SWD, we

have tested the synthetic nonstationary signals (AM and FM signals) and real EEG signals

of sleep apnea disorder. The performance of the proposed method has been evaluated by

measured values of ESR and TFR analysis. In this work, Hilbert spectral analysis (HSA)

has been employed for obtaining TFR [41]. The performance analysis is detailed in the

following sub-sections.

2.3.1 Example 1: AM nonstationary signal

In case-I, the synthetic AM signal sI(n) uses five constant close frequencies with am-

plitude variation, represented in Eq. (2.18). In this, we have adopted frequency bands
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[95-105 Hz], [135-145 Hz], [185-195 Hz], [225-235 Hz], and [265-275 Hz]. The detected

boundaries in the SFT spectrum and SSDM-based filter bank for multicomponent AM sig-

nals have been shown in Fig. 2.3. The red dotted lines denote boundaries detected in the

SFT spectrum of the signal and it shows that the boundaries are optimally detected in the

SFT spectrum. Fig. 2.3 show the detected spectrum sAM
mono, 1 (n), s

AM
mono, 2 (n), s

AM
mono, 3 (n),

sAM
mono, 4 (n), and sAM

mono, 5 (n) , which are corresponding to the original AM monocomponents.

The obtained TFRs of HHT, SWD and SSDM are shown in Fig. 2.4. In Fig. 2.4 (b), it

(a) (b)

Figure 2.3: Visual description of (a) detected boundaries in the SFT spectrum and (b) filter
bank (FB1-FB5) generated for sI(n) multicomponent signal.

(a) (b)

(c) (d)

Figure 2.4: Plots of sI(n): (a) TFR of input AM signal, (b) HHT-based TFR, (c) SWD-based
TFR, and (d) SSDM-based TFR.
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Table 2.3: Comparison of the ESR values computed for reconstructed monocomponent
signals of sI(n) using HHT, SWD, and SSDM methods.

Methods SSDM method SWD method HHT method
(Order = 185 and n = 399) (n = 399) (n = 399)

ESR1 (1st) 0.0947 0.1201 0.6210
ESR2 (2nd) 0.0830 0.1207 1.5402
ESR3 (3rd) 0.0791 0.1482 -
ESR4 (4th) 0.0296 0.0545 -
ESR5 (5th) 0.0872 0.1273 -
Note:’-’ indicates the blank ESR value due to non-constructed component.

shows that the TFR obtained by HHT is overlapped and non-distinguishable. The HHT fails

to decompose the signal into the original monocomponents due to the mode mixing issue.

We hardly find two monocomponents in the obtained TFR with overlapping nature. In Fig.

2.4 (c), it can be observed that SWD accurately replicates five monocomponents and shows

better ability to the mode mixing against the cost of the accurate selection of thresholds Pth

= 0.01 and StDth = 0.05. Whereas the proposed method demonstrates all five converged

components with five modes. The SSDM method optimally detects boundary frequencies

in the SFT domain. This is due to the fact that the SFT spectrum provides better frequency

resolution over FT. Here, it achieved the computational efficiency by optimizing threshold

value to Pth = 0.1 and StDth = 0.5. Table 2.3 indicates the performance of SSDM, SWD,

and HHT decomposition methods. The values of ESR for the SSDM method are the lowest

as compared to SWD and HHT methods. The value of ESR of every extracted component

for the SWD method is slightly inferior, whereas ESR for the HHT method was the highest.

The obtained ESR for the reconstructed monocomponent signals xc1, xc2, xc3, xc4 and xc5

using the SSDM is proved to be better than the SWD method. The values of ESR3, ESR4,

and ESR5 for HHT are kept blank because reconstructed components are not identifiable.

In case II, the synthetic AM signal sII(n) is added with uniformly distributed AWGN of

SNR (-10 dB to 30 dB), represented in Eq. (2.19). The intention behind this case is to vali-

date the effectiveness of the proposed SSDM method in the presence of noise interference.

Fig. 2.6 (b) shows that HHT-based TFR suffers from interference terms. Thus, no actual

reconstruction of the components is obtained. Fig. 2.6 (c) shows the extracted components

xc1, xc2, xc3, xc4, and xc5 in case of SWD method. SWD demonstrates effective five modes.
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Whereas the proposed SSDM method showed better decomposition with the reconstruction

of all five components with better ESR values. Due to optimum boundary estimation in

the SFT spectrum, the SSDM method can accurately recover all five sub-band components

in the obtained TFR, which is shown in Fig. 2.6 (d). The detected boundaries in the SFT

spectrum and filter bank using the proposed method are illustrated in Fig. 2.5. From Table

2.4, it is observed that SSDM performs accurate reconstruction of all components with the

obtained ESR1-ESR5 against the SWD and HHT. The values of ESR2, ESR3, ESR4, and

ESR5 for HHT are kept blank because reconstructed components are not identifiable.

(a) (b)

Figure 2.5: Visual description of (a) detected boundaries in the SFT spectrum and (b) filter
bank (FB1-FB5) generated for sII(n) multicomponent signal.

Table 2.4: Comparison of the ESR values computed for reconstructed monocomponent
signals of sII(n) using HHT, SWD, and SSDM methods.

Methods SSDM method SWD method HHT method
(Order = 185, n = 339) (n = 399) (n = 399)

SNR = 30 dB
ESR1 (1st) 0.0822 0.2105 1.498
ESR2 (2nd) 0.0837 0.3068 -
ESR3 (3rd) 0.0709 0.2233 -
ESR4 (4th) 0.0450 0.2700 -
ESR5 (5th) 0.0901 0.3598 -

SNR = -10 dB
ESR1 (1st) 0.0904 0.2075 1.845
ESR2 (2nd) 0.0953 0.1438 -
ESR3 (3rd) 0.0815 0.1513 -
ESR4 (4th) 0.0551 0.0588 -
ESR5 (5th) 0.0962 0.2039 -
Note:’-’ indicates the blank ESR value due to non-constructed component.
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(a) (b)

(c) (d)

Figure 2.6: Plots of sII(n): (a) TFR of input AM signal with AWGN (-10dB), (b) HHT-
based TFR, (c) SWD-based TFR, and (d) SSDM based TFR.

2.3.2 Example 2: FM nonstationary signal

In case III, the synthetic FM signal sIII(n) consists of three sinusoids with different

amplitudes and three linear variable frequencies, represented in Eq. (2.20). In this case, the

frequencies of the first, second, and third components of the signal sIII(n) vary from 500

Hz to 900 Hz, 1200 Hz to 1900 Hz, and 2000 Hz to 2600 Hz, respectively. The obtained

TFRs of HHT, SWD, and SSDM are shown in Fig. 2.8. It showed that the proposed method

reconstructs all sub-band components accurately. The obtained TFR of SSDM was found

better than the SWD and HHT methods. In the HHT case, the IF components are clearly

visible at low frequencies, but at high-frequency, IF components are hard to identify due

to poor visibility. Whereas, from Fig. 2.8 (c), it is observed that the TF resolution of

SWD is better than HHT but inferior to the SSDM method. In SWD, the two components

xc1 and xc2 are adequately recovered from obtained four OCs, but fail to decompose the

third component. Fig. 2.7 shows the construction of filter banks (FB1-FB3) and detected

frequency boundaries using the SSDM method. It shows the detected spectrum sFM
mono, 1 (n),
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sFM
mono, 2 (n), and sFM

mono, 3 (n) , which are corresponding to the original FM monocomponents.

Table 2.5 indicates the performance of SSDM, SWD, and HHT decomposition methods.

The values of ESR of the SWD method are slightly inferior in the case of 1st and 2nd

components as compared to the SSDM method. Other side, the values of ESR of the HHT

method were the highest and could decompose two components with poor ESR values. The

first component could not be decomposed in HHT, so it kept a blank value. Whereas the

proposed method outperformed the SWD and HHT and delivered the lowest ESR values.

(a) (b)

Figure 2.7: Visual description of (a) detected boundaries in the SFT spectrum and (b) filter
bank (FB1-FB3) generated for sIII(n) multicomponent signal.

Table 2.5: Comparison of the ESR values computed for reconstructed monocomponent
signals of sIII(n) using HHT, SWD, and SSDM methods.

Methods SSDM method SWD method HHT method
(Order = 185, n = 1999) (n = 1999) (n = 1999)

ESR1 (1st) 0.0932 0.1608 -
ESR2 (2nd) 0.1148 0.2802 2.8620
ESR3 (3rd) 0.1820 0.8620 6.3152
Note:’-’ indicates the blank ESR value due to non-constructed component.

In case IV, the synthetic FM signal sIV(n) is added with uniformly distributed AWGN

of SNR (-10 dB to 30 dB), represented in Eq. (2.21). The obtained TFR and Table 2.6

indicate that the HHT could not reconstruct the component clearly in the presence of noise

interference. In the SWD case, the obtained OCs modes are five and the reconstructed three

components are visible in Fig. 2.10 (c), respectively. However, it is affected by noise inter-

ference and produces 2nd and 3rd components distorted, which is shown in Fig. 2.10 (d). In

this case, the proposed SSDM method shows supremacy to decompose components accu-
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(a) (b)

(c) (d)

Figure 2.8: Plots of sIII(n): (a) TFR of input FM signal, (b) HHT-based TFR, (c) SWD-
based TFR, and (d) SSDM-based TFR.

rately over HHT and SWD methods. It reconstructed all three components with improved

TFR, which is shown in Fig. 2.10 (d).

(a) (b)

Figure 2.9: Visual description of (a) detected boundaries in the SFT spectrum and (b) filter
bank (FB1-FB3) generated for sIV(n) multicomponent signal.

2.3.3 Study on real EEG signals

The effectiveness of the proposed SSDM method has been tested for real EEG datasets

corresponding to patients having sleep apnea disorder. Our proposed framework in-
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(a) (b)

(c) (d)

Figure 2.10: Plots of sIV(n): (a) TFR of input FM signal with AWGN (-10dB), (b) HHT-
based TFR, (c) SWD-based TFR, and (d) SSDM based TFR.

Table 2.6: Comparison of the ESR values computed for reconstructed monocomponent
signals of sIV(n) using HHT, SWD, and SSDM methods.

Methods SSDM method SWD method HHT method
(Order=185, n = 1999) (n = 1999) (n = 1999)

SNR = 30 dB
ESR1 (1st) 0.1105 0.2084 8.6405
ESR2 (2nd) 0.1308 0.2960 -
ESR3 (3rd) 0.2130 0.8902 -

SNR = -10 dB
ESR1 (1st) 0.1580 0.1506 -
ESR2 (2nd) 0.2075 0.8345 -
ESR3 (3rd) 0.2410 0.3108 -
Note:’-’ indicates the blank ESR value due to non-constructed component.

cludes a machine learning approach for sleep apnea disorder classification using the

MIT-BIH polysomnographic database [85, 86], which is given at https://archive.

physionet.org/physiobank/database/slpdb/. It contains various physiolog-

ical signals such as EEG, electrooculogram (EOG), and EMG signals of 16 male subjects

(mean age 43) with a different apnea-hypopnea index (AHI). It has a sampling rate of 250
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Hz, and 30 seconds frame duration is annotated by an expert. Here, we have used specif-

ically all 14 patient’s EEG signals of the 10-second epochs with no overlap for C3/O1,

C4/A1, and O2/A1 cross channels. Table 2.7 shows the extracted number of apnea and

non-apnea epochs with EEG signals corresponding to every subject. The apnea labels are

considered based on all the annotated apnea-hypopnea events and were marked by experi-

enced sleep experts with two broad categories: apnea and non-apnea events (normal breath-

ing events). In our study, we have selected 4020 epochs of obstructive sleep apnea (OSA)

events and 3978 epochs of normal breathing events from the overnight sleep data of 14

patients for 80 hours of recording.

EEG signals are always contaminated by various artifacts such as muscle, corneo-

retinal-dipole, eyelid-related artifacts, and powerline interference. The frequencies with

the largest variations between sleep apnea and non-apnea instances occur below 40 Hz. In

the pre-processing, the EEG data is down-sampled to 128 Hz, and then the tenth-order But-

terworth band-pass filter (BPF) is used with a pass-band frequency of 2 Hz-45 Hz to remove

various artifacts. Also, a 60 Hz notch filter is employed to remove powerline interference.

In our study, 10-second segments without artifacts are considered for feature extraction and

analysis. The signals are segmented into non-overlapping segments of 10 seconds, and seg-

mentation gave rise to a new sleep apnea database of 12060 apnea sub-frames and 11934

non-apnea sub-frames with a fixed length. Further, different SSDM-based rhythms are ex-

tracted from sub-frame EEG data than the whole duration frame. The rhythms are computed

based on the mean frequency from the decomposed OCs [66]. Here, EEG epochs are chosen

for efficient mode selection based on a high data fidelity constraint with delta (δ: 0.1–4 Hz),

theta (θ: 4–8 Hz), and alpha (α: 8–13 Hz) rhythms. These bands show a better correlation

to sleep apnea discrimination. Figures 2.11 (a) and 2.11 (b) show the visual analysis of a

10-second epoch corresponding to two different classes, i.e., apnea and non-apnea subjects.

After pre-processing, these rhythms are processed for feature extraction.

In literature, several features are reported for the classification of apnea and non-apnea

states [8, 9, 10, 11, 12, 83, 92]. Here, we have adopted multiple domain feature parameters-

Hjorth (HJ: activity, mobility, complexity) [93], Higuchi and Katz’s fractal dimension mea-

sures (HFD) [94] in time domain, rational asymmetry (RASM) [95] in frequency domain
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Table 2.7: Extracted the number of apnea and non-apnea epochs from EEG signals corre-
sponding to every subject.

Subject
ID

01 02 03 04 14 16 32 37 48 59 60 61 66 67x Total epochs

Apnea
epochs

168 236 402 224 268 146 124 70 274 256 122 208 166 56 4020

Non-
apnea
epochs

162 232 398 219 265 138 119 68 271 251 120 208 166 52 3978

(a) (b)

Figure 2.11: Plots of (a) epoch corresponding to apnea patient and (b) epoch corresponding
to non-apnea subject.

and RE [96] in the TF domain. The features (HJ and HFD), RASM, and RE signify the

variability, amplitude, and complexity of apnea and control EEG epochs. Here, RASM

features were calculated from power values of frequency sub-bands. Whereas RE features

were calculated from the TFR of SSDM bands, specifically from the delta, theta, and al-

pha bands. These TFR-based RE features were computed from decomposed SSDM bands

incorporating information from both the time and frequency domains. These features are

selected based on the better exploration of EEG characteristics such as variability, shape,

complexity, and amplitude. It helps to obtain an optimal set of EEG features that accurately

discriminate apnea events.

From the SSDM method, 24 EEG features were calculated for four EEG rhythms (δ, θ,

α, and β) corresponding to three C3/O1, C4/A1, and O2/A1 cross channels, result in the

feature vector of dimension 72. Then, the best 26 features were selected among 72 features

using feature ranking based on the probabilistic (p)-values of the student t-test [66]. Sim-

ilarly, 24 features for SWD and 18 features for HHT were selected by considering criteria

(p< 0.05). The statistical analysis of the most significant features chosen using the student
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t-test for SSDM, SWD, and HHT methods, is presented in Table 2.8. The lowest p-values

indicate that the significant features generated from the SSDM method show better dis-

criminative features as compared to the features generated from SWD and HHT methods.

Here, features have been annotated with convention (EEG channel location-feature type-

EEG rhythm). In our work, we have presented two approaches for feature extraction. In the

first approach, feature level fusion is introduced, which is extracted from multiple domain

feature values for classification, inspired by Khateeb et al. work [95]. It is experimented

with in different combinations – individually and in a fusion way. The most significant fea-

ture combinations are selected iteratively with the better-concatenated result. In the second

approach, TFR as an image feature has been extracted from each decomposed EEG band.

Here, the decomposed band signal has been transformed into TFR using HSA [41]. These

TFR image features contain a total of 23868 samples for C3/O1, C4/A1, and O2/A1 cross

channels. Every channel contributes 7956 TFR features. A total of 11934 TFR features

belong to each class.

Table 2.8: The statistical analysis of most significant features chosen using student t-test for
SSDM, SWD, and HHT methods.

Feature
Proposed method SWD method HHT method

(Location-
feature-EEG
rhythm)

Apnea class
(mean±std)

Non-
apnea class
(mean±std)

p-value Apnea class
(mean±std)

Non-apnea
class
(mean±std)

p-value Apnea class
(mean±std)

Non-
apnea class
(mean±std)

p-value

C3/O1-RE-δ 10.41 ±9.41 6.20±6.09 9.31e-24 8.45±12.32 4.62±3.42 4.62e-18 12.36±12.14 7.72±8.79 2.42e-12
C4/A1-HJ-δ 8.79±7.99 6.51±6.41 9.77e-22 7.12±8.36 5.24±6.42 2.82e-16 10.46±9.30 6.94±5.90 4.31e-11
C4/A1-RE-δ 14.28± 13.08 9.14±8.84 3.37e-20 12.68±10.82 8.20±0.24 9.74e-16 10.08±12.61 8.64±10.37 3.79e-11
C3/O1-HJ-δ 15.12± 16.38 8.56±8.36 1.28e-18 16.45±14.77 9.45±10.38 7.83e-11 15.42±22.03 6.92±7.12 5.83e-10
C3/O1-RASM-δ 9.98±9.20 6.99±6.89 1.05e-18 13.45±12.09 7.28±8.64 4.13e-16 12.53±10.30 8.09±6.12 9.73e-10
O2/A1-RE-δ 13.98± 13.18 8.17±7.87 3.23e-18 11.65±15.14 7.38±8.52 3.65e-14 3.72±4.67 1.86±2.36 4.36e-12
C4/A1-HFD-δ 12.25± 10.95 7.12±6.92 4.07e-16 14.31±16.24 9.17±8.50 8.45e-13 27.40±30.86 18.93±16.17 1.77e-10
C4/A1-RASM-δ 9.24± 8.54 7.07± 6.97 1.06e-17 10.02±9.37 6.24±5.07 6.46e-12 6.34±5.39 3.57±2.97 3.02e-9
C3/O1-HFD-δ 14.65± 13.22 8.32±8.02 8.25e-16 22.14±28.02 12.93±11.28 3.16e-12 15.06±16.08 7.82±10.68 7.86e-8
O2/A1-HJ-δ 12.25± 11.23 7.91±7.71 2.19e-16 10.48±12.78 8.20±9.64 2.76e-11 26.36±28.78 19.24±18.08 6.81e-7
C4/A1-RE-θ 8.23± 7.63 5.91± 6.01 8.87e-16 14.75±16.91 8.25±8.15 3.19e-10 7.41±8.09 4.21±6.46 2.58e-7
C3/O1-RE-θ 4.24±3.74 3.12± 2.82 4.68e-15 9.41±11.60 5.65±4.18 1.54e-10 10.48±9.39 5.09±7.54 6.23e-6
C3/O1-RASM-θ 2.86± 2.06 3.43±3.23 5.15e-15 6.02±8.66 4.31±5.82 6.12e-9 36.16±42.21 17.48±14.57 5.37e-4
O2/A1-HFD-δ 2.98±2.18 0.49±0.39 7.40e-15 13.46±12.89 7.53±10.02 4.87e-8 7.43±8.63 5.69±3.02 2.38e-3
C4/A1-HJ-θ 3.02±3.32 0.51±0.53 7.67e-14 8.92±11.53 5.42±4.45 4.06e-6 13.28±11.46 8.06±10.19 1.45e-2
O2/A1-RASM-δ 12.23± 10.93 7.22± 7.02 1.08e-13 4.35±5.32 2.89±2.06 3.62e-5 2.85±3.54 1.57±1.78 1.08e-2
C3/O1-RE-α 6.25± 5.65 4.28±4.18 6.43e-12 24.04±28.26 16.12±15.20 3.79e-5 32.57±20.68 15.82±12.63 8.99e-2
C4/A1-RE-α 8.21± 7.67 5.10± 4.80 7.66e-12 36.14±50.31 19.34±15.26 8.24e-4 22.80±18.72 12.89±14.60 3.72e-2
C3/O1-HJ-θ 5.53± 4.73 3.76± 3.56 5.65e-11 13.88±12.72 9.60±8.52 9.26e-3 2.75±2.53 1.05±1.5 1.31e-1
C4/A1-RASM-θ 4.25±3.35 0.12±0.02 1.92e-11 8.63±9.27 5.87±6.08 8.22e-2 6.21±7.05 5.41±4.60 1.87e-1
C3/O1-HFD-θ 3.23± 2.55 1.78±1.48 2.67e-09 6.28±8.19 3.28±5.42 5.03e-2 1.74±1.03 0.92±1.56 1.05e-1
C4/A1-HJ-θ 4.58±3.68 4.29±4.09 6.44e-10 32.41±26.92 17.63±18.03 4.21e-2 24.21±20.75 15.08±18.26 9.38e-1
C3/O1-HJ-α 18.12±19.92 10.51±10.41 1.58e-07 15.75±13.54 10.93±13.79 8.75e-1 10.86±12.36 8.29±8.72 8.52e-1
C4/A1-HJ-α 24.12±32.35 13.55±15.25 4.03e-06 28.41±48.09 20.47±18.07 5.38e-1 5.79±4.92 3.21±4.07 2.86e-1
C4/A1-RASM-α 8.25± 6.75 5.67± 5.47 8.51e-05 12.28±15.83 9.91±11.62 8.17e-1 3.58±4.07 2.14±2.84 6.25e-1
C3/O1-HFD-α 3.86±2.46 0.93± 0.83 1.40e-05 4.63±4.72 3.29±5.03 1.43e-1 2.29±2.17 1.83±1.56 1.47e-1
std: Standard deviation.

Further, the obtained feature fusion and TFR have been tested with the pre-trained clas-
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sifier networks, namely CNN (AlexNet, ResNet50, VGG-16, ShallowNet, and LeNet) [97]

and BiLSTM [98], respectively. Figs. 2.12 (b) and 2.12 (c) illustrate the frameworks of

implemented CNN and BiLSTM classifiers, respectively. The selection of CNN for the

TFR feature is because of its proven potential for image classification, multi-object analy-

sis, and face detection [99]. The CNN is a robust classifier that employs a pooling kernel to

optimize the number of parameters and discriminate disturbed input data systematically. It

effectively aggregates interchannel and inter frequency-band information without downsam-

pling the feature map. All classifiers configuration is set 70% data for training the network

and 30% for testing the network. Similarly, BiLSTM has been employed to test feature

fusion. Reason to select BiLSTM to find its suitability to investigate features with appro-

priate model parameters and counteract the over-fitting problem with fewer hidden layers

[100][101]. Table 2.9 presents the architecture details of the CNN (AlexNet) and BiLSTM

models.

Table 2.9: Architectures of the CNN (Alexnet) and BiLSTM.

CNN (Alexnet) model BiLSTM model
Layer Number of fil-

ters
Size of fea-
ture map

Number
of
strides

Layer Memory
cell

Activation Parameters

Image input layer 227 ×227× 3 Batchnorm-0 4
1st CLs 96 11×11×96 [4 4] RNN-1 128 sigmoid 31824
RLU layer Batchnorm-1 380
BNL layer RNN-2 1008 sigmoid 54200
MPL layer 96 5 ×5× 96 [2 2] Batchnorm-2 300
2nd CLs 128 5 ×5× 128 [1 1] RNN-3 64 sigmoid 28420
RLU layer Batchnorm-3 260
BNL layer RNN-4 32 sigmoid 16380
MPL layer 128 3 ×3× 128 [2 2]
3rd CLs 384 3 ×3× 384 [1 1] Batchnorm-4 120
RLU layer Dense layer-1 8460
4th CLs 192 3 ×3× 192 [1 1] RNN-5 16 sigmoid 3820
RLU layer Batchnorm-5 70
5th CLs 128 3 ×3× 128 [1 1] Dense layer-2 280
RLU layer Dense layer-3 2 softmax 28
MPL layer 128 1 ×1× 128 [2 2]
1st fully connected layer 1 ×4096
DOL layer (50%)
2nd fully connected layer 1 ×4096
RLU layer 1 ×4096
DOL layer (50%) 1 ×4096
3rd fully connected layer 1 ×1000
Softmax layer 1 ×1000
Output layer 1 ×1000
RLU: Rectified linear unit, BNL: Batch normalization layer, MPL: Max-pooling layer, DOL: Dropout layer, CLs: Convolution
layers.

Table 2.10 shows the feature-specific classification performance which is obtained us-
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(a)

(b)

(c)

Figure 2.12: Schematic representation of (a) the proposed sleep apnea recognition model
based on the SSDM method, (b) CNN unit block, and (c) BiLSTM unit block.

ing the SSDM, SWD, and HHT methods. For cross-validation purposes, we have adopted

subject-independent analysis [10]. It employed leave-one-out cross-validation in which

training and testing data were considered from the cross-subject dataset. This process

was repeated for all subjects, and average results were reported. In order to evaluate the
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proposed method, four performance parameters were considered: accuracy (ACC), sensi-

tivity (SEN), specificity (SPE), and Fisher F1-score. Here, we have compared the pro-

posed SSDM-based frameworks (SSDM-FF-BiLSTM and SSDM-TFR-CNN) with SWD-

based frameworks (SWD-FF-BiLSTM and SWD-TFR-CNN) and HHT-based frameworks

(HHT-FF-BiLSTM and HHT-TFR-CNN ) for respective extracted features in the sleep ap-

nea recognition application. Table 2.10 demonstrates that the proposed SSDM-TFR-CNN

(AlexNet) and SSDM-FF-BiLSTM methods outperformed the existing methods, HHT and

SWD. The highest accuracy among all frameworks were 96.24% and 95.86% in the case

of TFR and feature fusion (HJ and RE) respectively. The SWD-FF-BiLSTM produced a

second-best accuracy score where the accuracy score was 94.36% in the case of feature

fusion (HFD, HJ, and RE). Whereas HHT-based frameworks, HHT-FF-BiLSTM and HHT-

TFR-CNN (AlexNet), reported the performance among the frameworks were 89.90% and

88.29% in the case of feature fusion (HFD, HJ, and RE) and TFR feature. The inferior

result reported was 86.40% in the case of HHT-FF-BiLSTM with the feature fusion (HFD

and HJ).

In the second approach, TFRs obtained from decomposed EEG bands of SSDM, SWD,

and HHT were fed to different existing CNN architecture models, namely CNN (AlexNet,

ResNet50, VGG-16, LeNet, and ShallowNet). Here, we have tested CNN architecture

with adaptive momentum (Adam) optimizer. Table 2.10 shows that the SSDM-TFR-CNN

(AlexNet) found the suitability to sleep apnea classification and deployed overall best clas-

sification accuracy of 96.24% comparatively. For SSDM-TFR-CNN (AlexNet), sensitivity,

specificity, and F1-score of 97.60%, 96.72%, and 0.9820 are obtained, respectively. Ad-

ditionally, SSDM-TFR-CNN (VGG16) and SSDM-TFR-CNN (ResNet) frameworks deliv-

ered better classification performance with an accuracy score of 96.08% and 94.26%, but it

shows slightly inferior performance as compared to the SSDM-TFR-CNN (AlexNet). The

SWD-TFR-CNN (VGG-16) delivered a better accuracy score of 93.89% over the HHT-

TFR-CNN (AlexNet), where the accuracy was reported at 88.29%. From this comprehen-

sive analysis, it must be noted that the TFR feature and feature fusion have a significant con-

tribution to the apnea classification problem. The obtained highest classification accuracies

using the proposed method for the classification of TFR images with CNN-Alexnet classi-
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fier (SSDM-TFR-CNN) and feature fusion (HJ and RE) with BiLSTM classifier (SSDM-

FF-BiLSTM) are 96.24% and 95.86%, respectively.

Table 2.10: Feature specific cross-validation performance obtained using the SSDM, SWD,
and HHT methods.

Feature Feature used Classifier
Proposed method SWD method HHT method

Type ACC
(%)

SEN
(%)

SPE
(%)

F1-
score

ACC
(%)

SEN
(%)

SPE
(%)

F1-
score

ACC
(%)

SEN
(%)

SPE
(%)

F1-
score

HFD BiLSTM 92.53 90.54 89.73 0.9425 91.67 89.72 87.51 0.9261 87.41 88.54 88.14 0.8491
Individual HJ BiLSTM 93.75 94.20 94.75 0.9613 91.85 92.16 92.76 0.9241 88.96 85.82 84.54 0.8690
feature RASM BiLSTM 92.60 89.45 92.73 0.9350 90.60 86.03 90.14 0.8980 87.20 85.68 83.21 0.8613

RE BiLSTM 94.20 95.12 95.50 0.9680 94.03 94.64 94.32 0.9406 89.70 90.38 90.59 0.8990
(HFD, RE) BiLSTM 93.42 93.65 92.44 0.9460 91.20 91.54 90.78 0.9420 88.45 89.39 89.78 0.9034
(HJ, RE) BiLSTM 95.86 96.50 95.90 0.9742 94.24 94.90 93.14 0.9512 89.83 90.41 90.67 0.9065

Fusion (RASM, RE) BiLSTM 93.05 94.07 94.14 0.9552 91.11 92.08 92.57 0.9286 89.05 88.02 86.67 0.8629
feature (HFD, HJ,

RE)
BiLSTM 94.72 95.63 95.40 0.9625 94.36 95.30 94.33 0.9580 89.90 91.67 90.89 0.9085

(HFD, HJ) BiLSTM 92.24 90.79 92.17 0.9406 90.27 90.86 89.72 0.9105 88.64 86.50 88.90 0.8752
(HFD, HJ,
RASM)

BiLSTM 92.52 91.12 93.84 0.9358 90.36 90.73 92.81 0.9276 86.40 85.25 86.92 0.8544

(HFD, HJ,
RASM, RE)

BiLSTM 93.40 94.78 93.41 0.9450 92.89 92.24 90.16 0.9315 89.23 90.07 89.55 0.8871

TFR CNN
(ResNet)

94.26 96.18 95.58 0.9674 92.82 92.90 91.86 0.9304 87.14 84.39 86.47 0.8650

TFR CNN
(AlexNet)

96.24 97.58 96.72 0.9820 93.24 93.85 90.54 0.9286 88.29 85.60 89.17 0.8979

TFR TFR CNN
(LeNet)

93.50 94.40 93.62 0.9382 91.30 92.32 90.49 0.9050 84.02 83.14 82.45 0.8460

feature TFR CNN
(VGG-16)

96.08 95.85 96.76 0.9645 93.89 93.71 91.50 0.9328 86.71 85.92 88.20 0.8701

TFR CNN
(Shal-
lowNet)

93.12 93.18 92.46 0.9350 90.86 90.59 89.75 0.9089 84.08 82.15 83.94 0.8389

Table 2.11 shows performance comparison of the proposed SSDM method with already

reported methods in the literature for the automated classification of sleep apnea disorder

using EEG signals. In our work, the comparison was made with the same EEG apnea

dataset [85]. The comparison is considered based on the subject-dependent cross-validation

approach and features complexity. In Table 2.11, the mentioned work in [11, 12, 13, 83, 84]

already achieved less classification accuracy as compared to the already reported work

[8, 9, 10]. Whereas the work mentioned in [8, 9] achieved the highest accuracy for sleep ap-

nea disorder classification at approximately 98%. But method’s performance suffers as the

subject-dependent approach is accommodated. On the other side, Mahmud et al. [10] have

employed subject-independent testing and validation scheme for extracted features using

VMD and BiLSTM and yielded average classification accuracy of 95.54% with 50% over-

lapping in the training set. In extension to this, our work delivers competent classification
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Table 2.11: Performance comparison with the methods available in the literature.

Authors, year, and reference Methodology
Classification performance

SEN (%) SPE (%) ACC (%)
Ahmed et al. (2016) [83] Temporal variation of spectral en-

ergy in beta band, KNN
90.58 77.72 82.28

Soha et al. (2016) [84] Entropy, KNN 89.02 86.27 87.64
Shahnaz et al. (2016) [11] Delta band power, KNN 89.62 84.43 87.03
Bhattacharjee et al. (2018)
[12]

Rician modeling, KNN 95.43 81.56 88.49

Almuhammadi et al. (2015)
[9]

IIR Butterworth BPF, (SVM, ANN,
LDA and Naive Bayes)

97.01 97.26 97.14

Tanvir et al. (2020) [13] Temporal variation, FCNN 85.52 88.97 88.22
Taran et al. (2017) [8] Hermite coefficients, PSO-LSSVM 98.66 99.03 98.82
Mahmud et al. (2021) [10] VMD, FCNN, BiLSTM 95.35 93.00 95.54
Proposed framework-1 SSDM-TFR-CNN (AlexNet) 97.58 96.72 96.24
Proposed framework-2 SSDM-FF-BiLSTM 96.50 95.90 95.86
IIR: Infinite impulse response, KNN: K-nearest neighbors, BPF: Band-pass filter, ANN: Artificial neural
network, VMD: Variational mode decomposition, FCNN: Fully convolutional neural network, PSO-LSSVM:
Particle swarm optimization-least squares SVM, and BiLSTM: Bidirectional long short-term memory.

Table 2.12: The most significant five feature fusion chosen using student t-test for SSDM,
SWD, and HHT methods.

Feature

Proposed method SWD method HHT method

Apnea
class
(mean±std)

Non-
apnea class
(mean±std)

p-value Apnea
class
(mean±std)

Non-
apnea class
(mean±std)

p-value Apnea
class
(mean±std)

Non-
apnea class
(mean±std)

p-value

(HJ, RE) 4.57± 5.02 2.53± 1.36 2.39e-21 6.48± 6.49 3.82±4.14 3.40e-18 4.59±3.50 2.18±2.45 2.91e-11
(HFD, HJ,
RE)

6.78± 8.60 4.60± 3.41 1.68e-18 9.60±8.52 4.98±4.23 5.21e-16 6.86±4.34 3.36±4.54 3.57e-10

RE 8.29±8.02 5.20±5.84 4.60e-15 7.58±6.09 4.72±3.60 4.20e-12 4.60±3.72 2.28±2.79 1.49e-9
HJ 5.12 ±5.45 3.68±3.36 1.54e-14 3.72±4.12 2.54±1.83 2.56e-10 4.68± 5.82 2.38± 1.06 2.65e-8
(HFD, HJ,
RASM, RE)

3.52±6.38 1.56±1.49 1.09e-10 4.58±4.03 2.71±1.97 2.10e-8 1.47±1.27 1.46±0.97 1.49e-6

std: Standard deviation.

results with subject-independent cross-validation over these presented works. The advan-

tage of our proposed work over these existing approaches is that we have used our proposed

SSDM for extracting TFR and feature fusion. It is tested with subject subject-independent

cross-validation scheme for effective apnea events discrimination.

In Table 2.11, the comparison shows that the proposed SSDM method-based classifica-

tion outperformed others and achieved the higher average classification accuracies on the

feature fusion and TFR feature separately with SSDM-FF-LSTM and SSDM-TFR-CNN

(Alexnet) classification frameworks are 95.86% and 96.24%, respectively. Here, we ar-
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gue that the proposed SSDM method provides more distinctive and significant features that

boost sleep apnea classification performance by enhancing interpretability and inter-channel

information. It deploys the most discriminate pattern of EEG variations for effective apnea

events discrimination. The statistical significance of the most significant five features ob-

tained from proposed SSDM, SWD, and HHT methods are shown in Table 2.12. It showed

that feature improvement is proven by performing a statistical t-test where a p-value of (<

0.05) is obtained for apnea classification. Here, we have measured the computational time

complexity to extract features (FF and TFR) by the SSDM method and classifier separately.

The average computation time taken for feature extraction and classification is 0.84 s and

0.273 s. The experimentation was performed in MATLAB R2021b with Intel(R) Core(TM)

i7-2600 CPU at 3.40 GHz. This computational time of feature extraction by the SSDM

method is solely considered based on the course iteration parameters of the filter bank (Pth

= 0.1, M = 20, and StDth = 0.5). Despite using subject-independent cross-validation, the

proposed SSDM method significantly delivers higher performance that verifies suitability

for practical applications, especially in the sleep apnea detection of EEG signals.

To highlight the limitation of the proposed work, we have identified many potential con-

founding factors that we have not attempted to consider in this study and further presented

future remedies. Firstly, even though the proposed framework showed suitability to diag-

nose sleep apnea over the existing approaches [10, 11, 12, 83, 92], here we have restricted

our study to binary classification to suspected OSA patients on a single publicly available

EEG database [85]. For clinical significance, detecting a higher number of sleep stages and

severity is crucial to understand the complexity associated with OSA problems dealing with

machines [7, 102, 103, 104]. Therefore, in future work, we can extend the proposed frame-

work to a sleep-related multi-classification model and accommodate the other public and

private sleep apnea-related databases with a subject-independent cross-validation approach.

The second potential confounding factor is finding the most discriminative features (handful

features) in place of the CNN model, which establishes an exact relation to sleep hypnotic

apnea event. This can reduce the CNN classifier training time and enhance practicability of

the automated medical system for diagnosis of the sleep-related disorders. From the litera-

ture [88, 105, 106], authors have used multi-model signals such as ECG, EMG, PPG, and
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EOG for OSA classification, and it achieved satisfactory results. In the present work, EEG

signals are solely used to diagnose apnea events which may cause deviations with other neu-

rological diseases and suffer the classification accuracy of sleep apnea. Therefore, we could

verify and enhance the performance of the developed sleep apnea method when applying

EEG signals together with other cross-signal modalities, which will be investigated in our

future work.

2.4 Summary

In this work, our proposed TF analysis method, SSDM, has demonstrated a noteworthy

improvement in the TF analysis of nonstationary signals. The contributions of this work

are motivated by SWD and fused-LASSO-based SFT spectrum estimation techniques for

decomposing nonstationary multicomponent signals into a finite number of OCs. The pro-

posed method has been applied to nonstationary multicomponent AM and FM signals and

real EEG signals and achieves improved TFR and signal decomposition over the other two

state-of-the-art methods, HHT and SWD. Further to test potential, the proposed method is

applied to EEG signals of sleep apnea detection and developed two novel feature schemes:

Fusion feature and TFR. Using these obtained features, the proposed SSDM-FF-LSTM and

SSDM-TFR-CNN classification frameworks are employed for sleep apnea detection and

tested with a subject-independent cross-validation approach.

In the SSDM-TFR-CNN framework, TFR images obtained by SSDM of apnea and non-

apnea classes are given to five pre-trained CNN models. The performance of five pre-

trained networks AlexNet, ResNet50, LeNet, SwallowNet, and VGG-16, are compared.

The results obtained through these networks show that AlexNet delivers the best results

with less training and testing time. From comparative results, the proposed framework

has reported the best classification performance with an accuracy of 96.24%, sensitivity of

97.60%, specificity of 96.72%, and F1-score of 0.9820.

In the SSDM-FF-LSTM framework, 72 multiple domain features are extracted from

decomposed SSDM bands of sleep apnea EEG signals. The most significant features are

computed with the student t-test and fed to the BiLSTM classifier. The SSDM-FF-LSTM
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framework employed the feature fusion (HJ and RE), which provided better results as com-

pared to all the feature combinations with accuracy, sensitivity, specificity, and F1-score

equal to 95.86%, 96.50%, 95.90%, and 0.9742, respectively. The obtained comparison

shows that the proposed SSDM method-based classification framework outperformed other

SWD-FF-LSTM and HHT-FF-LSTM frameworks. From this comprehensive analysis, it

must be noted that the TFR feature and feature fusion have a significant contribution to the

apnea classification problem. The obtained highest classification accuracies using proposed

methods for the classification of TFR images with CNN-Alexnet classifier (SSDM-TFR-

CNN) and feature fusion (HJ and RE) with BiLSTM classifier (SSDM-FF-BiLSTM) are

96.24% and 95.86% against the reported classification approaches for sleep apnea classi-

fication. Therefore, the proposed SSDM method can be a powerful tool for sleep apnea

investigation of EEG signals. In the future, we will further improve accuracy correspond-

ing to the sleep-related multi-classification model to determine the sleep apnea types and

severity based on different biopotential signals with EEG.
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Chapter 3

Multivariate SSDM for Multivariate

Signal Analysis with Cognitive Visual

Object Detection from Multichannel

EEG-MEG Signals

In this chapter, a novel adaptive MSSDM is proposed for the multivariate analysis of

nonstationary EEG-MEG signals. This method decomposes multichannel EEG and MEG

data into multivariate oscillatory modes which determine channel-aligned common modes

across all channels. Consequently, we conducted an ablation experiment to examine how

various elements of our proposed MSSDM approach impact the multivariate analysis of

nonstationary signals (EEG and MEG) and improve reconstruction performance. The de-

signing of MSSDM, along with its effectiveness tested on synthetic and real EEG-MEG

signals, is discussed in detail in this chapter. Furthermore, we developed classification

frameworks to validate the effectiveness of our proposed MSSDM approach in decoding

visual object categories for BCI applications. These frameworks focus on enhancing visual

object detection using newly formulated RCFF computed from rhythms derived from mul-

tivariate CAOCs of EEG, MEG, and combined EEG-MEG data. This approach not only

extracts strongly correlated class-specific multivariate information across multichannel data
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but also facilitates effective multivariate analysis of EEG-MEG signals for improved visual

object decoding. The classification performance of the proposed frameworks is explored in

the subsequent sections.

3.1 Introduction

Over the recent decades, substantial improvement in multivariate pattern analysis of

MEG and EEG has placed fundamental importance on recognition of visual objects through

neural activation patterns. To identify objects and object categories from brain responses,

MEG and EEG signals are recorded in response to visual stimuli i.e. images from different

categories are presented to the participants in experimental trials while their brain activities

are recorded [3]. Researchers have explored several experimental techniques for recog-

nizing visual objects, including EEG [5], MEG [14], ECOG, and fMRI [3, 14]. Among

these studies, MEG and EEG are the widely used techniques for visual recognition systems

because they can be non-invasive in nature and ability to offer enhanced fine-grained anal-

ysis by identifying spatial, temporal, and spectral components underlying object category

discrimination [3, 14].

In order to investigate the effectiveness of using EEG and MEG signals for visual recog-

nition, many research studies have been carried out and promising results have been reported

[3, 4, 5, 14]. Cichy et al. have introduced a feature i.e., peak latency time points (PLSP)

in [3] that is based on the 306-channel MEG of categorical representation of objects in

the human visual response. This study uses PLSP with linear discriminant analysis (LDA)

frameworks to identify spatial and temporal MEG components that best discriminate object

categories by obtaining a classification accuracy of 68.75% on subsets of brain responses.

Further, Cichy et al. [14] have extended the potential of the EEG and MEG multichannel

data combinable to multivariate analysis of visual object problems. This study demonstrated

that the extracted representational similarity analysis (RSA) features from combined MEG

and EEG signals enhance the co-relation between temporal dynamics and category infor-

mation in recognition of visual objects and deliver the highest classification performance

than in MEG and EEG signals alone. In recent works, [5] has introduced a visual ob-
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ject classification approach by adopting an informative representational dissimilarity matrix

(RDM) as novel self-similarity measures on a 306-channel MEG. It includes multivariate

analysis based on the RDM feature, which is computed on the 100 time points of the MEG

signal and tested using four different supervised classifiers namely, LDA, support vector

machine (SVM) with linear kernel, Gaussian Naı̈ve Bayes (GNB), and weighted robust

distance (WeiRD). This study also incorporates multivariate noise normalization in the pre-

processing stage for classification performance analysis. The study demonstrates the high-

est average accuracy across different classifiers: LDA (74.5%), SVM (74%), WeiRD (85%),

and GNB (75%). Furthermore, Kong et al. [4] have employed a shallow CNN network to

project visual activation response into a 74-channel EEG-based learned RDM feature and

achieved a classification accuracy of around 65.6% in a 5-class visual category. However, in

the above visual object classification approaches, the computed features from raw EEG or

MEG multichannel signals show strong dependency on the formulation of the classification

model, thus it may suffer in computing the most significant features with strong relevance

to the visual object category [3, 4, 5, 14].

In real-world environments, complex visual object recognition faces significant chal-

lenges, such as the selection of channels, smoothing and data reduction, the undeterminable

scalp regions, and the nonstationary nature of EEG and MEG signals, which limit mutu-

ally informative features across channels and consequently degrade the classification per-

formance of visual object detection. These mutual features show multivariate modulated

oscillations which correspond to the matching of the oscillatory component modes with

similar multiscale spectral content across multiple channels. Therefore, robust multivariate

visual analysis is urgently demanded to detect the most significant features with optimizing

channels and computational efficiency. In order to get improved fine-grained characteristics

of the temporal dynamics of visual neural activity, the primary motivation for this work to

study nonstationary multicomponent EEG-MEG signals is to enhance signal denoising and

separation of spectral components to compute multi-spectral features for improving multi-

variate analysis of visual objects. However, the relation that EEG-MEG in the context of

signal decomposition-based rhythm extraction for multivariate analysis has not been inves-

tigated.
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To resolve the aforementioned limitations, we have presented a novel extension of the

SSDM, termed as MSSDM, to classify VSA patterns based on multivariate EEG-MEG

multichannel signal data. In the proposed MSSDM, a mode alignment approach is used

to determine the orders of effective OC modes in multivariate EEG-MEG signals so that

the same frequency components across different channels can be extracted from different

OCs and can establish spectral correlation among the different channels. Using multivariate

swarm filtering and SFT spectrum, the MSSDM method employs an adaptive scale-space

approach to estimate spectral boundaries in the SFT to obtain aligned OCs across differ-

ent EEG-MEG channels. In addition, the approach utilizes a spectrum optimization tech-

nique, fused-Lasso for SFT spectrum estimation [81]. The multi-scale features obtained

from these effective OCs extract enhanced spectral dynamics of neural activity related to

the common or unique aspects of visual object representation. As per our understanding,

MSSDM decomposition-specific oscillatory rhythms-based multi-scale features have not

been attempted for the recognition of visual objects. The novelty of the present work is to

extract MSSDM-based multi-scale features from EEG-MEG signals and use a suitable clas-

sification model for the automated classification of visual objects. The key contributions of

the presented work are given as follows:

1. MSSDM: A new adaptive decomposition method has been proposed to explore the

multivariate analysis of nonstationary EEG-MEG signals to improve VSA classifica-

tion performance.

2. The proposed method has also been tested for synthetic signals and real EEG-MEG

signals.

3. The new RCFF features have been computed from the features, namely, RE, SE,

CSPTE, and CSD, which give a multi-scale analysis of EEG, MEG, and combined

EEG-MEG multichannel data and improved VSA classification.

4. It compared a developed automated system of visual object detection against the

current state-of-the-art methods with subject-independent cross-validation from the

cross-subject dataset.
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3.2 Multichannel dataset

In this study, we have evaluated our proposed technique on the publicly available human

EEG and MEG dataset [14] with responses to 92 images that were used as visual stimuli.

The dataset contains 74-electrode EEG and 306-electrode MEG responses from 16 subjects

(eight females with a mean age 23.87±4.5 years and eight males with a mean age 24.37±4.1

years) viewing each of 92 stimuli. In our work, we have employed five categories (12 images

per category), namely, human body (HB), human face (HF), animal body (AB), animal face

(AF), and inanimate objects (IO) from all 380-channel for further multivariate analysis.

Data were recorded at a sampling rate of 1000 Hz, and online filtering between 0.03 Hz and

330 Hz was applied. Fig. 3.1 illustrates the timing scheme of the paradigm that was used in

the study. Every trial extracts visual stimulus between -100 ms and +900 ms (around 1 s).

In total, each participant completed 2820 trials, including 30 trials of 94 visual objects.

3.3 Proposed methodology

The proposed MSSDM-based classification framework for visual object recognition us-

ing EEG and MEG multichannel signals is presented in Fig. 3.2 and detailed in the following

section.

Figure 3.1: The timing scheme of the experimental paradigm for the visual object database.
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Figure 3.2: Block diagram of the proposed approach for visual object recognition using the
MSSDM method.

3.3.1 Preprocessing

The preprocessing stage mainly comprises the implementation of filtering and segmen-

tation techniques. In filtering, it comprises two filters (smoothening LPF (30 Hz) and base-

line removal infinite impulse response (IIR) high-pass filter (HPF) (0.8 Hz)) which filter out

noise and artifacts from EEG and MEG signals. A Matlab MNE toolbox was initially used to

extract and clean EEG and MEG data from each participant. In segmentation, multichannel

EEG and MEG signal epochs of one-second duration are employed to decompose adaptive

OCs. During the segmentation process, the data samples were cut into epoch sizes of 1000

ms windows of time-locked post-stimulus responses. MEG and EEG signals are acquired

for 72 minutes using 380-channel at a sampling rate of 1000 Hz for each image. In our work,

we have considered the smallest epoch size of 30 among the 16 subjects’ epochs. Further,

the 30 considered epochs from the 380-channel of EEG and MEG are concatenated to con-

struct the raw pattern vectors separately as well as combined. Each vector contains 2220 (30

× 74) patterns, 9180 (30 × 306) patterns, and 10800 (30 × 380) patterns, which correlate

with EEG (74-channel), MEG (306-channel), and combined EEG-MEG (306-channel) for

each class.
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Figure 3.3 shows the TF analysis which is computed using USSDM and HSA [41] from

the visual stimuli responses of the three visual object categories: HB, HF, and AB from the

five different EEG channels [EEG005 (FC2), EEG042 (T8), EEG003 (FC1), EEG041 (T7),

and EEG036 (F4)] for subject 6. In the TF plots, the highest activation during the visual

cognitive tasks was observed in the 8-30 Hz rhythm with imagined stimulus response during

the timeframe (-100 to 900 ms) from the onset of imagination. These TF responses exhibit

discriminative neural activity patterns due to the cognitive imagination tasks (highlighted

in Fig. 3.3). From Fig. 3.3, it is demonstrated that the channel-wise approach is unable to

recover multivariate modulated oscillation characteristics or any meaningful mutual infor-

mation corresponding to the matching OCs with similar multiscale spectral content for vi-

sual object classes. On the other side, analyzing joint patterns with an appropriate selection

of similar channel characteristics exhibits significance in enhancing multivariate analysis

for cognitive visual objects. For instance, selecting channels (FC2, T8, FC1, T7), (FC2,

T8, FC1), and (FC2, T8, FC1, T7, F4) show significant to enhance mutual patterns for the

visual object classes HB, HF, and AB, respectively. The obtained significant multivariate

patterns for 3-class imagined data are demonstrated in Fig. 3.3. Thus, we can infer that, due

to the interdependent nature of the channels, raw MEG and EEG patterns may not be able

to distinguish class-specific mutual information. In order to strongly correlate mutual mul-

tivariate information across channels, the MSSDM method is used to get channel-aligned

multi-spectral features for the enhancement of multivariate analysis for visual objects.

3.3.2 Multivariate extension of swarm-sparse decomposition

The proposed MSSDM is a novel extension version of the SSDM method to decom-

pose multichannel nonstationary signals into channel-aligned common OCs across all chan-

nels. The proposed MSSDM delivers a set of common OCs that exhibits minimum collec-

tive bandwidth while fully reconstructing all input channels. With the exceptional ability

of noise suppression and adaptive decomposition, the proposed MSSDM method leads to

desirable properties such as prominent superiority in mode mixing, mode alignment, and

avoidance of extraneous mode selection [63, 64]. In MSSDM, we extend the optimiza-
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Figure 3.3: Channel-specific multivariate analysis from raw EEG channels [EEG005 (FC2),
EEG042 (T8), EEG003 (FC1), EEG041 (T7), and EEG036 (F4) for cognitive visual objects.
The highlighted yellow boxes in the plots demonstrate mutual patterns of the imagined
stimulus responses.

tion problem directly in the Lasso-based SFT domain through a multivariate swarm filter-

ing optimization approach and Bhattacharya distance [107] based on convergence criteria.

The proposed MSSDM method is efficient because it can generate multivariate modulated

oscillations from input data without requiring additional user-defined parameters, such as

threshold selection, filter order, or the number of iterations.

The mathematical formulation of the proposed multivariate SSDM model is presented

in the following section.

3.3.2.1 Multivariate extension of SSDM

In order to apply the concept of SWD to multichannel signals, it is necessary to extract

the common OC mode for each channel, which locates the common spectral information of

the analyzed signal. In MSSDM, the OCs are extracted by selecting the common frequency

band from multichannel signals which possess the highest amplitude peak through the ESD.
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Therefore, the prime task of MSSDM is to extract matched OCs from multichannel signals

so that the obtained JIF at each oscillatory level possesses common centre frequencies with

aligned compact bandwidth. This extension of SSDM delivers the most common multivari-

ate modulated oscillation in the multichannel data due to the following reasons: i) MSSDM

extracts common modes from multichannel data to accurately extract the original signal

with the least common minimum bandwidth. ii) Contrary to the univariate SWD approach,

the MSSDM adopts the mode-alignment property to obtain multivariate modulated oscil-

lations, which correspond to the matching of modes with similar frequency content across

multiple channels. Due to the mode alignment problem in the univariate SWD filtering

approach, it adopts channel-specific mode reconstruction with univariate modulated oscil-

lation which is invariant to the other channels and introduces difficulties in the multivariate

analysis. Therefore to extend the multivariate analysis to find matched oscillatory signals,

in MSSDM, we have adopted common boundary estimation in the obtained SFT spectrum

by computing the following mean spectrum magnitude ψ̂(s) of multivariate signals from N

number of channels:

ψ̂(s) =
1

N

N∑
n=1

(∥∥zn − F−1 [LF [zn]]
∥∥
1
+ µn ∥zn∥1

)
(3.1)

Where zn represents the FT spectrum of the individual channel. F and F−1 represent

the forward FT and IFT. L is the L1-norm of vector for FT kernel. Then adaptive SSDM-

based filter banks are formed by applying the boundary estimation technique to the obtained

mean spectrum. Further, the obtained common filter bank is applied to all channel data

to get aligned modes. These OCs are the narrow-band components that deliver common

frequency in every oscillatory level. In this work, the convergence criteria (defined in Eq.

2.16) is modified in the SSDM to design an improved filter bank. The modified Bhattacharya

distance (B) [107] based convergence criteria for the obtained residual signal is given as

follows:

B = − ln
d∑

k=1

√
(|yδ,M [k]|.|z[k]|)2 < 0.1 (3.2)
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Wherein |yδ,M [k]| and |z[k]| are the amplitude of FT of the output |yδ,M(k)| and input signal

z[k]. d is the number of extracted OCs.

The MSSDM-based decomposition result of MEG 4-channel (MEG0111-0114) multi-

variate signals corresponding to the AF visual object category is shown in Fig. 3.5. Through

the obtained common decomposed modes OC1-OC5, the proposed MSSDM method has

demonstrated its ability to detect common or joint OC modes which having the same spec-

tral content across the multiple channel data. The spectral analysis using Weltch power

spectral density (PSD), as shown in Fig. 3.4, illustrated the mode alignment of the selected

OCs with MSSDM filter banks. A similar spectral response found in the PSD plot clearly

demonstrates that OCs have consistently detected oscillations over multiple channels and

are properly aligned in cases of MEG signals. In contrast to multivariate decomposition,

a univariate decomposition will not align similar OC modes in the same numbers when

decomposing the multichannel signal separately [63].

Figure 3.4: Filter bank structure for MSSDM-based swarm filter bank of 4-channel EEG
and MEG signals with selected OCs.

The proposed MSSDM is detailed in Algorithm 3.1.

3.3.2.2 Ablation study of the SSDM algorithm

To verify mode alignment and denoising ability of MSSDM, we have conducted an ab-

lation experiment to examine how the various elements of our proposed MSSDM approach

affect the multivariate analysis of nonstationary signals (EEG and MEG). To demonstrate
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Figure 3.5: MSSDM decomposition of 4-channel MEG signal and selected OCs (OC1,
OC2, OC3, OC4, OC5, and OC6).

the significance of the elements of the proposed MSSDM, we have assessed the four ap-

proaches: (i) FT spectrum without SGF, (ii) FT spectrum with SGF, (iii) SFT spectrum

without SGF, and (iv) SFT spectrum with SGF. In this proposed ablation paradigm, the

synthetic signal x(n) has been designed for 3-channel multivariate signals. Each multivari-

ate channel signal consists of three nonstationary AM monocomponent signals of three

sinusoids with different frequencies and three linear variable amplitudes, which is con-

structed as, x(n) = [sc1(n); sc2(n); sc3(n)]. Here, sc1(n) =, sc2(n), and sc3(n) represent

the three channels and they are designed as, sc1(n) = s1(n) + s2(n) + s3(n) + w(n) =

1.2 cos(2πf1(1 + βn)n + π/2) + 2 cos(2πf2(1 + βn)n + π/4) + 1.4 cos(2πf3(1 +

βn)n) + w(n), sc2(n) = s2(n) + s3(n) + s4(n) + w(n) = 2 cos(2πf2(1 + βn)n +

π/4) + 1.4 cos(2πf3(1 + βn)n) + 3 cos(2πf4(1 + βn)n + π) + w(n), and sc3(n) =

s2(n) + s3(n) + s5(n) + w(n) = 2 cos(2πf2(1 + βn)n + π/4) + 1.4 cos(2πf3(1 +

βn)n) + 3 cos(2πf5(1 + βn)n + 1.8 cos(ω(1 + βn)n + π/2) + w(n). To inherit the

complexity of EEG signal characteristics, the test synthetic signal is designed with a selec-
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Algorithm 3.1 MSSDM iterative filtering for multichannel data
Input: Nonstationary multichannel or multivariate signal z(k)
Output: OCs yit(k) after MSSDM decomposition method
Initialization: Pth = 0.1; it= 0; M= 20; δ = 0.01; c = 0; j = 0
Repeat Smooth the energy spectrum of zit(k)
Compute SFT spectrum’s extremes for all channels Nc by Eq. (2.4)
Find the mean spectrum by Eq. (3.1)
Estimate common boundary detection in spectrums by Eq. (2.7)
it← it + 1
Until Nit < Nc ; Nc represent number of channels.
Repeat
Repeat
Smooth the energy spectrum of zit(k) using SGF filter by Eq. (2.6)
Estimate the spectral coefficient with the highest energy peak
Calculate swarm parameters M and δ by Eqs. (2.9a) and (2.9b), respectively
Repeat
yj ← SwF (zj(k),M, δ) ; SwF: Swarm filter
j ← j + 1
Bit+1(k)← Bit(k)
Until Bit < 0.1

yit(k)← yj(k)
zit+1(k)← zit(k)− yit(k)
it← it + 1, j = 0
y(k)← zit+1(k)

Until Eψ(zit+1)(ω) > Pth
it← it + 1
Until Nit < Nc
yit(k)← y(k)

tion of sinusoids in the frequency range [1-60 Hz]. The parameters are f1 = 10 Hz, f2 =

20 Hz, f3 = 30 Hz, f4 = 40 Hz, f5 = 50 Hz, and sampling frequency Fs is 1 kHz. The

signal-to-noise ratio of white Gaussian noise ω(n) is -10 dB. ω is discrete carrier angular

frequency and a is the modulation index.

In the ablation study, these approaches used to design the proposed MSSDM have been

evaluated using spectrum analysis, decomposition results, and reconstruction performance,

which are shown in Fig. 3.7, Fig. 3.6, and Table 3.1, respectively. Signal reconstruction

efficiency is evaluated using the performance metric, error to signal ratio (ESR). From spec-

trum analysis mentioned in Fig. 3.7 (e), it shows that, when compared to the other approach

versions, the proposed MSSDM, which combines SFT spectrum and SGF filter, performs

the improved frequency resolution and optimally detects boundary frequencies in the sparse

domain. From Figs. 3.7 (b), 3.7 (c), and 3.7 (d), it shows that the spectrum obtained is

overlapped and the obtained spectral boundaries are non-distinguishable, which introduces

66



CHAPTER 3. MULTIVARIATE SSDM FOR MULTIVARIATE SIGNAL ANALYSIS
WITH COGNITIVE VISUAL OBJECT DETECTION FROM MULTICHANNEL
EEG-MEG SIGNALS

Figure 3.6: Decomposition of multivariate of 3-channel synthetic signal with similar fre-
quency modes using MSSDM method in (a) FFT without SGF, (b) FFT with SGF, (c) SFT
without SGF, and (d) SFT with SGF approaches.
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Figure 3.7: Plots of (a) nonstationary multicomponent AM signal (sc1(n)) and correspond-
ing spectral analysis using (b) FFT without SGF, (c) FFT with SGF, (d) SFT without SGF,
and (e) SFT with SGF approaches.

difficulty to reconstruct channel-aligned components. The performance of our approach

suddenly declines when all two components (SFT and SGF) are taken away, demonstrat-

ing the significance of these parts, which is shown in Fig. 3.7 (b). Table 3.1 indicates the

performance comparison of the obtained ESR values of x(n) for AM reconstructed mono-

component signals s1(n), s2(n), s3(n), s4(n), and s5(n) using FT (without SGF), FT (with

SGF), SFT (without SGF), and SFT (with SGF) approaches. The lowest values of ESR of

every reconstructed monocomponent signal using the MSSDM method (SFT and SGF ap-

proach) prove the efficient reconstruction of components as compared to other approaches.

Whereas the reconstruction efficiency is poor in the case of other approaches as the value

of ESR was found inferior (highest). It is also demonstrated in Fig. 3.6 indicating the de-

composition performance of all approaches. It is quite easy to make an erroneous judgment

that the extracted modes from the proposed MSSDM (SFT and SGF) are channel-aligned
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in terms of their joint frequency content, which are shown in Fig. 3.6 (d). It is clear that

the extracted modes OC2 and OC3 from channels 1, 2, and 3, are aligned with common

time-varying frequency components, i.e. 20 Hz and 30 Hz which are locally present with

single-mode OC2 and OC3, respectively. Rest extracted components are locally associated

with respective modes of channels. The proposed method shows better ability to the mode

mixing with the use of SFT and SGF and demonstrates all five converged components with

five modes with the lowest ESR (shown in Fig. 3.6 (d)). Whereas other approaches show

inferior decomposition performance and extract components with non-alignment mode and

overlapping nature (shown in Figs. 3.6 (a), 3.6 (b), and 3.6 (c)). Overall, the above test

result demonstrates the effectiveness of MSSDM in separating effective multivariate mod-

ulated oscillations from multichannel data while verifying mode alignment. The above

descriptions highlight the relative significance of each element and their interdependence

in designing the proposed MSSDM method for multivariate analysis to get mutual features

across channels and attain the best classification performance for visual cognitive analysis.

Table 3.1: Comparison of the obtained ESR values of x(n) for AM reconstructed mono-
component signals s1(n), s2(n), s3(n), s4(n), and s5(n) using FT (without SGF), FT (with
SGF), SFT (without SGF), and SFT (with SGF) methods. Note: ’-’ indicates the blank ESR
value due to a non-used signal in the respective channel.

Channel Signal FT (with SGF) FT (without SGF) SFT (with SGF) SFT (without
SGF)

sc1 ESR (s1(n)) 0.3491 0.0915 0.0082 0.0078
ESR (s2(n)) 0.2960 0.1653 0.0219 0.0062
ESR (s3(n)) 0.0964 0.0948 0.0052 0.0058
ESR (s4(n)) − − − −
ESR (s5(n)) − − − −

sc2 ESR (s1(n)) − − − −
ESR (s2(n)) 0.1480 0.0931 0.0728 0.0058
ESR (s3(n)) 0.3150 0.1148 0.0254 0.0097
ESR (s4(n)) 0.1840 0.2910 0.1926 0.0284
ESR (s5(n)) − − − −

sc3 ESR (s1(n)) − − − −
ESR (s2(n)) 0.1548 0.1820 0.0352 0.0045
ESR (s3(n)) 0.0904 0.1285 0.0125 0.0097
ESR (s4(n)) − − − −
ESR (s5(n)) 0.3071 0.4028 0.0125 0.0096
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3.3.3 Feature extraction and selection

In literature, several features are reported for the classification of visual objects [3, 14,

108]. Here, we have adopted multiple domain feature parameters: RE [109], CSD [110], SE,

and CSPTE from the α-β rhythms of 1 s multichannel EEG-MEG epochs. These selected

features proved a strong exploration of spectral variability, amplitude, and complexity of

real signals [109, 110, 111]. To enhance feature selection, a novel fusion feature approach

is presented based on Riemann’s correlation [112] by finding the best-correlated features.

Among the employed features, the two newly proposed feature extraction techniques are

explained as follows:

3.3.3.1 Common spatial filter on Teager energy

In this feature, we have employed a multi-class CSPTE which is computed from

MSSDM modes yNc of total sample N with cth class. It is common to explore EEG signals

using CSP features, but CSP with Teager energy (TE) is a new feature approach to solving

multi-class visual categorization problems [111]. In our work, EEG-MEG variance in a

given beta frequency band can be determined by its TE. Several multi-class extensions of

the CSP technique are presented which include the pair-wise schemes (PW), one-versus-rest

scheme (OVR), intra-classifier specific CSP, and divide-and-conquer scheme [111]. Here

we have adopted the OVR approach using a binary CSP algorithm for multi-class problems.

Using the eigenvalue decomposition-based optimization method, the binary CSP algorithm

diagonalizes the TE vector values from the two covariance matrices simultaneously. A

multi-class CSP algorithm with a one-versus-rest scheme is used to compute the TE that

discriminates one class from the rest, then concatenate the features to form a feature vector

Fi = [f 1
i f

2
i f

3
i ...f

c
i ]

T . The extracted CSPTE feature (fi) is defined as,

fi = log

(
var(ωTync )∑2m
n=1 var(ω

Tync )

)
(3.3)

Where fi is the extracted binary class CSPTE feature in the selected band after the projec-

tion of spatial filters ω [113]. Yc =
{
y1c , y

2
c , y

3
c , ..., y

n
c , ..., y

N
c

}
are obtained nth rhythm-based

OCs of class (c = 1, 2, 3, 4, 5) of total sampleN . T indicates matrix transpose. In our work,
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pairing selection parameterm = 2 is used to formulate a significant feature subset of the spa-

tial filter.

3.3.3.2 Correntropy spectral density

CSD is a nonlinear correlation function capable of extracting multi-spectral domain

characteristics of nonstationary signals, which may be contaminated by noise [110]. The

feature F̃ (ω) is computed as,

F̃ (ω) =

f−1∑
q=−(f−1)

Pc(q)e
−jωq ≥ 0 (3.4)

where,
Pc(q) = E [k(yi(n), yi+1(n− q))] −(f − 1) ≤ q ≤ f − 1

Pc represents the cross-correntropy function of two computed rhythm-based OCs yi of size

n of ith channel. E is the expectation, m is the time-lag between spectral signal, f is sample

length, and k(.) is Gaussian kernel. The advantage of the CSD function is to improve the

spectral resolution of higher-order statistical moments present in multivariate signals with

few design parameters, thus potentially separating the highly correlated channel feature

data.

3.3.3.3 Rényi’s entropy

RE explores the mutual spectral variability information across two obtained rhythm-

based OCs yi of ith channel. It is given as follows [109]:

H∞(yi|yi+1)
def
= − log

∑
n

max((yi+1|yi)p(yi)) (3.5)

3.3.3.4 Sparse entropy

The SE feature is introduced to enhance the ability of the entropy feature to ex-

tract joint significant features using a sparse filter bank and an adaptive windowing tech-
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nique. Essentially, it is a multi-task filtering model that combines SFT spectrum opti-

mization with Lasso penalties (||U ||1, |U ||2, and ||ut − ut+1||1) and entropy feature vectors

H(t) = −
∑N

i=1 P (yi) · log2(P (yi)) computed from the obtained rhythm-based OCs yi of ith

channel to enhance the temporal characteristics of the features. The multi-class feature set

(Fi) is formulated as follows [114]:

Fi = argmin
F

1

2

T∑
t=1

||H(yi)ut − v||22 + β1||U ||1 + β2||U ||2 + β3

T∑
t=1

||ut − ut+1||1 (3.6)

Where penalty parameters (β1, β2, and β3) are set at 0.1. ut denotes the learned projec-

tion vector at the T th sliding window.

Figure 3.8: Plots of (i) raw multivariate MEG signals and (ii) their multivariate TFRs of
the α-β rhythms from three selected channels (FC3, T8, and F4 of subject 1) using pro-
posed MSSDM method for visual object classes (a) HB, (b) AB, (c) HF, (d) AF, and (e) IO,
respectively.
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3.4 Results and discussion

To prove the effectiveness of the proposed MSSDM-based visual object recog-

nition framework, we have tested SSDM-based features from the EEG signals (74-

channel), MEG signals (74-channel), MEG signals (308-channel), and combined EEG-

MEG signals (380-channel) of the visual stimulus of the MEGEEG92 Objects Dataset

[14], which is given at https://figshare.com/collections/MEGEEG92_

Objects_Dataset/4182587/1. The five different visual object classes namely, HB,

HF, AB, AF, and IO from the EEG-MEG dataset are classified using LDA and validated

using performance metrics such as ACC, SEN, SPE, and F1-score. LDA classifier has been

chosen based on its proven capability to investigate features with appropriate parameters and

counteract over-fitting problems with less computational complexity in VSA decoding ap-

plications [5]. To prove its potential against the existing methods [3, 4, 5, 14], the proposed

method has been tested for its mode-alignment property by aligning common frequency

scales across multiple EEG-MEG data. Also, we have compared the proposed method with

USSDM approach (channel-specific analysis), and direct rhythms (delta, theta, alpha, beta,

and gamma) analysis which is computed using a BPF [115] from raw EEG signals. In our

work, the 1 s epoch of multichannel data is decomposed using MSSDM into different OCs.

Further, rhythms: Delta (δ: 0.1–4 Hz), theta (θ: 4–8 Hz), alpha (α: 8–13 Hz), beta (β: 13-30

Hz), gamma (γ: 30-80 Hz), and combined alpha and beta (α-β: 8–30 Hz), are computed on

mean frequency from the decomposed MSSDM modes. In our work, features are extracted

from the combined α-β rhythms. α-β rhythm selection depends exclusively on experimen-

tation and delivers the highest performance. Figure 3.8 shows the multivariate TFRs of the

α-β rhythms from three selected channels (FC3, T8, and F4 of subject 1) using the pro-

posed MSSDM method for the 5-class visual object MEG data. It exhibited discriminative

temporal and spectral characteristics in the obtained α-β rhythms related to the different

visual object classes. In order to extract the most discriminative features from decomposed

OCs, a novel feature scheme has been implemented in which fusion features are computed

by finding the most correlated features from the normalized features (RE, SE, CSPTE, and

CSD) using Riemann’s correlation. The objective is to formulate the most significant VSA

features set by separating and eliminating non-discriminative features in subject-specific
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without compromising classification performance.

Table 3.2: Classification accuracy (in %) of combined (α-β) rhythms-based fusion features
computed from extracted OCs using MSSDM, USSDM, and BPF with Riemann’s correla-
tion analysis. Q denotes the correlation coefficient value. The best accuracy is marked in
boldface.

Subject MSSDM-FF-LDA MSSDM-FF-LDA MSSDM-FF-LDA) MSSDM-FF-LDA
Subject (74-channel EEG) (74-channel MEG) (306-channel MEG) (380-channel EEG-MEG)

Using MSSDM approach
Q→ > 0.4 > 0.5 > 0.6 > 0.7 > 0.8 > 0.9 > 0.4 > 0.5 > 0.6 > 0.7 > 0.8 > 0.9 > 0.4 > 0.5 > 0.6 > 0.7 > 0.8 > 0.9 > 0.4 > 0.5 > 0.6 > 0.7 > 0.8 > 0.9
Subject 1 61.84 63.35 63.98 64.56 63.84 65.41 67.35 70.00 74.02 75.75 72.77 67.98 71.95 78.73 82.05 88.34 77.73 72.59 76.68 79.69 83.49 90.25 82.85 77.39
Subject 2 69.78 72.55 73.24 74.92 71.78 70.27 72.55 75.41 76.76 84.12 78.17 73.04 77.43 80.50 85.17 89.13 83.48 77.98 82.60 85.86 89.95 92.81 89.00 83.16
Subject 3 68.03 70.69 71.33 72.99 70.03 68.57 70.69 73.45 77.70 79.47 76.28 71.25 77.82 78.44 82.96 81.25 83.65 76.09 81.42 83.63 87.63 86.61 89.20 81.12
Subject 4 63.25 65.70 66.29 72.87 65.25 63.88 65.70 68.26 72.18 73.86 71.06 66.38 72.35 72.90 77.09 84.12 75.88 70.88 75.67 77.72 81.41 84.09 80.90 75.57
Subject 5 66.96 69.60 75.38 74.89 68.96 67.54 69.60 72.33 78.87 78.28 75.13 70.16 76.60 77.23 84.18 89.98 80.20 74.94 80.16 82.35 86.42 89.13 85.53 79.88
Subject 6 62.53 64.95 65.57 72.07 64.53 63.15 64.95 67.52 71.40 80.04 70.25 65.60 71.53 72.07 76.26 82.01 75.04 70.07 74.81 76.88 81.56 80.12 79.98 74.69
Subject 7 69.37 72.07 71.28 72.89 71.37 69.87 72.07 74.88 77.60 82.38 77.72 72.60 79.35 79.97 82.89 90.02 83.00 77.52 83.01 85.25 85.03 90.24 81.23 82.65
Subject 8 62.11 64.56 63.89 67.25 64.11 65.96 64.56 67.12 69.55 76.27 69.81 68.56 71.05 71.64 74.30 78.21 74.55 73.19 74.36 76.41 75.48 83.42 79.48 78.05
Subject 9 64.08 66.56 68.54 66.83 66.08 67.96 66.56 69.18 74.64 76.78 71.93 70.60 73.23 75.24 81.20 79.18 76.84 75.41 75.13 80.24 82.51 80.12 81.90 80.38
Subject 10 64.78 67.32 66.61 76.12 66.78 68.70 63.43 65.93 72.52 80.18 72.70 71.37 69.76 71.71 78.91 85.71 77.66 76.22 71.59 76.48 80.17 83.04 82.78 81.26
Subject 11 70.12 72.83 73.11 70.47 72.12 74.22 68.62 71.28 79.63 83.85 78.55 77.12 75.51 77.57 85.25 88.91 83.87 82.35 77.46 82.68 81.56 87.96 89.43 87.81
Subject 12 62.19 64.60 64.90 67.52 68.19 64.21 60.87 63.28 70.67 82.54 74.30 66.70 66.97 68.82 76.89 89.99 79.31 71.25 68.71 73.39 82.13 87.29 84.59 75.94
Subject 13 64.27 66.78 67.05 76.61 66.27 68.17 62.92 65.38 73.03 76.91 72.14 70.82 69.22 71.13 82.44 89.66 77.07 75.64 71.02 75.83 78.43 89.21 82.14 80.64
Subject 14 64.21 66.75 67.03 68.57 66.21 64.83 62.90 65.35 73.00 74.67 72.11 67.33 69.15 71.10 79.41 81.24 77.00 71.94 70.99 75.80 81.98 80.25 82.11 76.66
Subject 15 60.56 62.90 66.99 65.82 62.56 61.25 59.27 61.57 72.98 72.69 68.13 63.62 65.22 67.00 72.18 84.98 72.76 67.96 66.89 71.41 81.28 87.15 77.57 72.43
Subject 16 62.78 65.20 65.76 64.28 64.78 63.41 61.43 63.80 71.62 73.25 70.54 65.86 66.87 69.45 79.90 86.71 75.34 70.36 68.58 74.00 84.92 90.97 80.31 74.99
Average ac-
curacy

64.99 67.53 68.25 70.54 67.24 66.71 65.84 68.42 74.32 78.25 73.22 69.31 72.13 73.72 79.26 86.05 78.34 74.02 74.94 78.60 81.37 86.42 83.06 78.91

Accuracy
(10-fold
CV)

64.19 66.98 68.93 68.36 66.41 60.71 66.50 67.05 70.25 77.58 71.54 67.92 71.24 67.08 74.56 84.36 77.37 67.36 75.69 77.03 78.95 84.98 82.54 72.81

Using USSDM approach
Subject 1 56.80 58.55 59.07 60.46 58.06 56.86 62.54 65.06 67.41 68.9 69.75 63.16 67.54 70.20 74.24 75.98 72.98 68.17 71.74 74.61 78.13 75.01 71.99 67.28
Subject 2 68.11 67.43 68.77 65.87 68.98 65.31 67.45 70.10 74.10 75.81 72.62 67.89 72.76 75.64 79.99 81.83 78.40 73.26 77.35 80.39 84.19 86.32 77.36 72.31
Subject 3 66.40 65.68 67.00 67.79 65.07 63.71 65.68 68.25 72.20 73.83 70.88 66.19 73.09 73.67 77.92 76.29 78.57 71.46 76.20 78.28 82.02 80.46 77.54 70.51
Subject 4 55.41 61.03 62.23 66.89 60.62 59.35 61.02 63.41 67.05 68.65 66.01 61.68 67.93 68.46 72.39 74.08 71.26 66.57 70.80 72.73 76.18 78.16 70.32 65.69
Subject 5 58.66 64.68 68.01 66.78 64.09 60.71 64.68 67.22 73.32 72.82 69.83 65.17 71.96 72.55 79.10 78.51 75.35 70.37 75.04 77.09 80.92 77.02 74.38 69.42
Subject 6 54.78 60.38 61.57 62.31 59.92 56.76 60.33 62.77 66.33 67.86 65.24 60.92 67.16 67.72 71.61 73.26 70.45 65.79 69.99 71.98 76.32 74.44 69.50 64.90
Subject 7 60.77 66.95 66.90 65.78 68.54 62.81 66.95 69.56 72.07 65.00 72.20 67.45 74.52 75.10 77.82 77.72 78.94 72.81 77.68 79.78 79.56 81.98 70.59 71.84
Subject 8 54.41 60.01 59.97 62.51 59.55 59.32 60.01 62.39 64.60 68.1 64.85 63.72 66.76 67.31 69.75 73.48 70.01 68.76 69.62 71.55 70.61 77.54 69.08 67.86
Subject 9 56.13 61.85 64.35 68.94 61.36 61.08 61.83 64.28 69.34 67.63 66.80 65.57 68.76 70.68 76.26 74.37 72.14 70.80 70.30 75.11 77.21 74.45 71.15 69.84
Subject 10 56.75 62.57 62.53 63.28 62.02 61.75 58.93 61.28 67.36 68.91 67.53 66.29 65.52 67.37 74.09 75.79 72.91 71.57 67.00 71.60 73.01 74.78 71.93 70.62
Subject 11 68.44 67.64 67.93 64.19 69.64 66.73 63.72 66.19 74.00 77.9 72.98 71.66 70.89 72.82 75.38 77.48 78.78 77.35 72.46 77.35 76.34 76.45 77.74 76.33
Subject 12 60.70 60.05 60.29 62.73 63.39 59.63 56.54 58.81 65.66 68.33 69.07 61.95 62.88 64.65 72.21 75.14 74.52 66.89 64.29 68.71 73.11 74.15 73.57 65.98
Subject 13 62.73 62.04 62.30 61.61 61.54 63.32 58.44 60.74 67.85 71.47 67.00 65.79 64.99 66.80 74.61 78.58 72.35 71.03 66.45 70.97 73.40 77.56 71.37 70.08
Subject 14 56.25 62.02 62.27 63.7 61.52 60.20 58.47 60.72 67.82 69.38 67.01 62.52 64.98 66.77 74.58 76.30 72.33 67.53 61.74 65.89 70.12 82.12 71.38 66.60
Subject 15 53.05 58.42 62.26 61.16 58.12 56.88 55.03 57.18 67.83 66.62 63.31 59.08 61.22 62.90 67.81 73.25 68.33 63.80 58.12 62.05 66.72 72.29 67.43 62.93
Subject 16 55.00 60.54 61.10 62.49 60.17 58.89 57.04 59.24 66.56 68.04 65.53 61.16 58.08 60.32 67.73 69.26 65.47 61.13 59.57 64.29 72.00 73.84 69.80 65.15
Average ac-
curacy

59.02 62.49 63.53 64.16 62.66 60.83 61.17 63.58 63.45 69.95 68.16 64.39 67.44 68.94 74.09 75.71 73.24 69.21 69.27 72.65 75.74 77.29 72.19 68.58

Accuracy
(10-fold
CV)

58.12 57.34 60.36 63.02 57.50 57.79 60.23 58.34 60.28 66.10 62.55 61.17 66.40 63.26 70.39 74.54 67.20 65.74 68.21 66.66 71.95 75.69 66.24 65.16

Using BPF approach
Subject 1 51.32 49.50 48.65 50.12 49.12 45.29 50.10 48.03 51.76 59.32 50.82 48.20 57.13 58.10 59.21 62.01 57.13 51.86 52.21 53.43 56.32 60.78 54.76 50.12
Subject 2 57.65 61.80 67.12 64.28 67.32 59.85 61.83 65.65 66.67 65.45 66.78 62.21 66.70 69.32 73.28 74.97 71.82 67.14 70.91 73.68 77.13 79.09 70.86 66.27
Subject 3 56.21 60.17 65.40 66.15 63.51 58.35 60.16 63.89 67.59 69.09 64.93 60.63 66.96 67.49 71.40 69.87 71.99 65.46 69.81 71.72 75.16 73.7 71.05 64.59
Subject 4 46.90 55.90 60.72 61.52 59.15 54.37 55.87 59.35 61.40 64.28 60.47 56.50 62.21 62.71 66.30 67.89 65.28 60.99 64.84 66.63 69.78 71.63 64.41 60.19
Subject 5 49.65 59.26 66.42 65.16 62.58 55.59 59.28 62.94 67.20 68.06 63.99 59.68 65.95 66.48 72.51 67.12 69.06 64.45 68.77 70.65 74.18 75.86 68.16 63.58
Subject 6 46.37 55.34 60.08 62.90 58.46 51.96 55.24 58.79 60.75 63.52 59.74 55.79 61.50 62.07 65.59 67.11 64.52 60.25 64.11 65.98 69.92 68.2 63.64 59.43
Subject 7 51.44 61.32 65.27 64.20 66.88 57.54 61.32 65.11 65.99 69.05 66.13 61.79 68.25 68.79 71.27 71.2 71.39 66.70 71.15 73.09 72.86 75.11 64.65 65.82
Subject 8 52.01 55.00 58.51 61.03 58.11 54.36 55.00 58.43 59.15 63.77 59.40 58.38 61.18 61.70 63.88 67.35 64.13 63.01 63.81 65.58 64.67 71.07 63.27 62.19
Subject 9 53.66 56.67 62.80 60.60 59.85 55.93 56.62 60.19 63.78 63.31 61.16 60.04 62.97 64.76 69.85 68.13 66.05 64.84 64.39 68.82 70.73 68.21 65.15 63.96
Subject 10 54.25 57.34 61.00 61.75 60.50 56.55 53.99 57.39 61.68 64.49 61.83 60.71 60.03 61.74 67.86 69.42 66.77 65.56 61.39 65.62 68.70 71.9 65.87 64.68
Subject 11 65.43 61.93 66.31 66.88 67.97 61.13 58.34 61.93 67.80 65.16 66.86 65.65 64.91 66.68 69.07 70.97 72.17 70.87 66.35 70.83 69.95 69.02 69.12 69.93
Subject 12 58.03 55.03 58.83 61.23 61.90 54.60 51.77 55.07 60.14 63.97 63.31 56.72 57.59 59.25 66.15 68.84 68.31 61.26 58.88 62.97 66.98 67.93 67.43 60.43
Subject 13 61.23 56.83 60.80 64.05 60.03 58.00 53.52 56.85 62.16 60.54 61.34 60.26 59.53 61.19 68.36 68.14 66.25 65.06 60.86 65.02 67.25 71.07 72.35 64.19
Subject 14 54.90 56.81 60.77 62.17 60.05 55.11 53.59 56.83 62.12 61.62 63.10 57.24 59.56 61.17 68.33 66.89 66.27 61.83 56.58 60.36 64.23 67.23 65.40 60.98
Subject 15 51.78 53.50 60.79 59.70 56.73 52.07 50.38 53.50 62.16 62.37 57.99 54.09 56.06 57.60 62.14 67.11 62.60 58.42 53.21 56.82 61.15 66.23 61.77 57.62
Subject 16 52.58 55.42 59.65 58.97 58.72 53.91 52.21 55.41 60.98 60.67 60.01 56.00 53.17 55.22 62.05 61.43 64.18 55.97 54.54 58.86 65.97 62.29 63.93 59.66
Average ac-
curacy

54.15 57.25 62.01 61.92 61.15 55.71 56.02 59.51 63.19 64.04 62.56 58.97 61.78 63.16 67.88 68.03 67.35 63.39 63.46 66.56 69.39 69.96 66.00 62.82

Accuracy
(10-fold
CV)

49.69 54.38 61.05 60.32 58.09 54.86 51.41 56.54 62.22 62.21 59.43 58.07 56.69 60.00 66.83 65.64 63.98 62.42 58.23 63.23 68.32 65.63 62.70 61.86

CV: Cross-validation.

Table 3.2 shows the classification accuracy achieved in the different channel schemes
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based on different Riemann’s correlation coefficient factors (Q) from computed rhythms

using MSSDM, USSDM, and BPF methods. Here FF features are formulated with a se-

lection of different correlation values (>0.4, >0.5, >0.6, >0.7, >0.8, and >0.9) and all

remaining features are eliminated. From Table 3.2, it is shown that FF features with a corre-

lation value (> 0.7) demonstrated the best classification results for five visual object classes

corresponding to four channel selection schemes: EEG (74), MEG (74), MEG (306), and

EEG-MEG (380). In the study, a subject-specific and cross-subject 10-fold cross-validation

scheme was conducted, along with a statistical t-test (p < 0.05). It employed leave-one-out

cross-validation in feature vectors from the cross-subject dataset considered in a training-

testing configuration of 80%-20%. This process was repeated for all subjects and average

results were reported. To test the computed FF features, different MSSDM-based classifi-

cation frameworks have been developed such as the MSSDM method with LDA (MSSDM-

FF-LDA) in with the USSDM method with LDA (USSDM-FF-LDA) and the BPF method

with LDA (BPF-FF-LDA) in four channel selection schemes. Table 3.3 shows the feature-

specific average classification performance, which is obtained from all 16 subjects using the

MSSDM, USSDM, and BPF methods. Here classification has been carried out over the 10

times repetition, and average accuracies were reported for four-channel selection schemes

of MEG and EEG sensor data.

As shown in Table 3.3, the proposed classification framework MSSDM-FF-LDA has

achieved the highest average accuracy of 86.42% among all frameworks in the case of

channel scheme of EEG-MEG (380-channel) with fusion feature (RE, CSPTE, SE, CSD).

The obtained sensitivity, specificity, and F1-score are 87.08%, 83.11%, and 84.89%, re-

spectively. The performance of MSSDM-SE-LDA slightly deteriorates in the SE feature

when using combined EEG-MEG channels. We have achieved approximately the same

average accuracy of 84.06%, sensitivity rate of 82.65%, specificity of 88.15%, and F1-

score of 80.50%. In contrast, MSSDM-RE-LDA reported relatively low performance with

77.90% for the RE features with combined EEG-MEG channels, respectively. It is noted

that the introduction of new features: SE, CSPTE feature, and FF with LDA, have delivered

the highest average accuracy for visual object classification in the case of the EEG-MEG

(380-channel) scheme. Fig. 3.9 presents an evaluation of classification accuracies by us-
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Figure 3.9: Plots of averaged classification accuracies of 5-class visual imagery for the 16
subjects from the (α-β) rhythm-based FF features using (a) MSSDM, (b) USSDM, and (c)
BPF approaches.

ing FF features obtained from the MSSDM, USSDM, and BPF in all 16 subject-specific

cases. In our analysis, we have computed the FF features based on Riemann’s correlation

index (Q) with a threshold value (Q > 0.7) from features (RE, SE, CSPTE, and CSD).

FF feature selection is intended to reduce the complexity of the feature while improving

performance. In the subject-specific, the MSSDM-FF-LDA framework demonstrated the

highest average accuracy (86.42%) within the EEG-MEG (380-channel) scheme. However,

the USSDM-FF-LDA and BPF-FF-LDA classification frameworks achieved comparatively

lower average accuracies of 77.29% and 69.96%, respectively. In 10-fold cross-validation,

the MSSDM-FF-LDA framework achieved the highest performance with an accuracy of

84.98%.

In the case of MEG or EEG data, the proposed classification frameworks show slightly

inferior performance than the combined EEG-MEG channel data. In MEG (306-channel)

scheme, performance is slightly improved with the proposed MSSDM-FF-LDA compar-

atively and delivered accuracy, sensitivity, specificity, and F1-score of values 83.05%,

85.80%, 83.04%, and 83.69%, respectively. Whereas the obtained lowest accuracy rates for
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USSDM-FF-LDA and BPF-FF-LDA classification frameworks are 75.71% and 68.34%, re-

spectively. Also, the performance of the LDA classifier with new features (SE and CSPTE)

in evaluating the proposed method is noteworthy as the obtained average accuracy rates are

80.98% and 81.97%, respectively. The sensitivity and specificity rates with the CSPTE fea-

ture are found higher for subjects 2, 11, 12, and 13 (only an average of 86.05% of VSA

classes are truly classified), but it maintains a high average F1-score (82.21%) for all these

subjects (shown in Table 3.3). For subjects (2-9,11-13), the LDA classifier with FF achieved

very good sensitivity rates (more than 85.80%) with high specificity rates.

In similar cases, MEG (74-channel) and EEG (74-channel) schemes, also provided good

sensitivity and specificity rates for most of the subjects. The highest average accuracy, sensi-

tivity, specificity rates, and F1-score for SE feature with LDA (MSSDM-SE-LDA) for MEG

(74-channel) scheme are 75.85%, 72.40%, 70.01%, and 69.49%, respectively. Whereas in

the case of EEG (74-channel), the performance of features computed from 74-channel EEG

signals falls significantly in evaluating the proposed method for all subjects, as the MSSDM-

SE-LDA framework achieved the lowest classification performance with average accuracy,

sensitivity, specificity rates, and F1-score for RE features are 69.65%, 66.38%, 65.91%,

and 66.859%, respectively. However, it is clear from Table 3.3 that the sensitivity of the

proposed method for EEG (74-channel) is comparatively less for all subjects. For those

subjects, visual object detection is difficult to detect using the obtained MSSDM features

because of non-discriminative overlapping multivariate modulated oscillations and highly

contaminated artifacts with a short visual stimulation response. Also, overall classification

performance using different feature schemes has been presented in Table 3.3 and Fig. 3.10.

In Table 3.4, we compare the proposed MSSDM method with existing methods for clas-

sifying visual objects using EEG signals and MEG signals already reported in the literature

[3, 4, 5, 14]. This table illustrates the accuracy of classification across subjects and the

statistical analysis based on the different experimental conditions of the proposed method.

In our work, the comparison was considered on the databases [3, 4, 5, 14] with the same

experimental conditions. For classifying visual objects, researchers have explored mostly

different machine learning or deep learning methods to compute different discriminative fea-

tures for raw EEG or MEG signals. The Classification method proposed by Cichy et al. [3]
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Table 3.3: Feature-specific average classification performance obtained from subject A01-
16. The best accuracy is marked in boldface.

Method Channel
CSD CSPTE RE SE FF

ACC
(%)

SEN
(%)

SEP
(%)

F1-
score

ACC
(%)

SEN
(%)

SEP
(%)

F1-
score

ACC
(%)

SEN
(%)

SEP
(%)

F1-
score

ACC
(%)

SEN
(%)

SEP
(%)

F1-
score

ACC
(%)

SEN
(%)

SEP
(%)

F1-
score

MSSDM EEG (74) 63.24 63.42 58.43 57.28 64.17 62.19 61.13 58.68 67.07 68.19 64.67 66.12 69.65 66.38 65.91 66.85 70.35 74.03 72.29 71.76
MEG (74) 69.31 77.01 68.85 68.03 74.40 75.42 73.56 71.14 71.31 69.28 65.72 70.04 75.85 72.40 70.01 69.49 78.25 79.06 77.87 80.28
MEG (306) 72.49 79.10 56.40 76.57 81.97 82.53 83.88 82.21 72.56 79.72 74.12 70.29 80.98 78.16 75.97 78.34 83.05 85.80 83.04 83.69
MEG-EEG
(380)

79.52 91.21 86.81 83.85 83.11 52.34 40.02 41.50 77.90 79.36 74.06 74.59 84.06 82.65 88.15 80.50 86.42 87.08 83.11 84.89

USSDM EEG (74) 59.34 55.09 56.08 57.28 54.43 55.63 55.87 51.89 54.43 57.15 55.40 58.43 60.97 63.49 60.51 59.92 64.16 65.12 62.46 63.01
MEG (74) 60.88 58.19 57.46 55.27 64.01 68.62 60.82 61.79 66.10 64.82 62.15 64.87 65.70 69.45 61.71 63.72 69.95 68.95 66.39 68.31
MEG (306) 64.70 67.43 65.32 64.92 71.23 68.71 69.32 68.30 70.51 75.51 70.06 67.57 73.57 72.51 68.68 70.99 75.71 73.12 72.37 74.21
MEG-EEG
(380)

70.85 93.75 45.41 43.12 71.61 61.16 57.47 49.45 69.24 54.27 42.83 44.41 75.77 70.12 67.47 69.45 77.29 73.68 79.89 76.84

BPF EEG (74) 50.38 57.30 57.48 55.79 33.01 43.18 34.70 35.44 53.28 50.84 44.31 51.36 52.36 49.30 51.69 50.68 61.92 59.66 55.50 57.58
MEG (74) 58.99 46.08 47.90 45.66 48.76 47.05 46.64 44.58 64.14 62.09 59.64 60.52 54.28 53.69 50.67 52.39 64.23 61.89 58.15 59.92
MEG (306) 64.09 58.59 60.48 58.22 65.92 63.73 61.78 61.58 65.51 66.03 62.73 64.06 61.77 60.58 59.71 60.86 68.34 64.58 61.22 64.42
MEG-EEG
(380)

63.52 58.19 57.65 56.10 64.93 60.22 60.80 60.05 64.63 59.15 60.60 59.02 67.63 64.63 61.18 64.63 69.96 66.29 63.89 69.66

Figure 3.10: Overall performance using different feature schemes.

achieved the lowest classification accuracy of 68.75% for 6-class visual objects using phase

locking tracking potential (PLTP) feature with SVM classifier from MEG (306-channel) sig-

nals. Similar work mentioned in [5] has delivered the 5-class performance of 74.5%, 74%,

85%, and 75% for LDA, SVM, GNB, and WeiRD-based supervised classification frame-

work with RDM features from 306-MEG channel scheme, respectively. In contrast, our

suggested MSSDM-FF-LDA framework using EEG 306-channel yields an enhanced aver-

age classification accuracy of 80.71%. Against the above approach, the classification model

proposed by Kong et al. [4] has achieved a competent accuracy of 65.60% using a CNN-

based machine learning approach. The mentioned studies have delivered poor classification

performance even though they have utilized a deep learning-based approach for classifica-

tion purposes. In comparison, our proposed MSSDM-FF-LDA framework achieves an im-

proved average classification accuracy of 69.36% on EEG 74-channel. However, the above
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Table 3.4: Performance comparison against state-of-the-art methods available in the litera-
ture.

Authors, year, and
reference

Methodology
Participants, stimulus,

Cross-validation
technique

Classification performance Significance
level

channels, classes ACC
(%)

SEN
(%)

SPE
(%)

F1-
score

Cichy et al. (2014)
[3]

PLTP, SVM 16, 100 to 1200 ms, MEG
306-channel, 6-class

NR 68.75 NR NR NR p < 0.05

Cichy et al. (2017)
[14]

Peak latency,
RSA, SVM

16, -100 to 900 ms,
EEG/MEG 380-channel,
5-class

Subject-
independent,
10-fold

≈ 75 NR NR NR NR

16, MEG 306-channel, 5-
class

Subject-
independent,
10-fold

≈ 74 NR NR NR NR

16, MEG 74-channel, 5-class Subject-
independent,
10-fold

≈ 72 NR NR NR NR

16, EEG 74-channel, 5-class Subject-
independent,
10-fold

≈ 68 NR NR NR NR

Guggenmos et al. RDM, LDA 16, 50 to 550 ms, MEG 306-
channel, 6-class

Pearson distance 74.5 NR NR NR p < 0.05

(2018) [5] RDM, SVM 16, 50 to 550 ms, MEG 306-
channel, 6-class

Pearson distance 74 NR NR NR p < 2-16

RDM, WeiRD 16, 50 to 550 ms, MEG 306-
channel, 6-class

Pearson distance 85 NR NR NR p < 2-16

RDM, GNB 16, 50 to 550 ms, MEG 306-
channel, 6-class

Pearson distance 75 NR NR NR p = 0.012

Kong et al. (2020)
[4]

RDMs, CNN 16, EEG 74-channel, 5-class Euclidean distance 65.60 NR NR NR

BPF

BPF-FF-LDA
(EEG 74-
channel)

16, -100 to 900 ms, 5-class Subject-
independent,
10-fold

61.92 59.66 55.50 57.58 p < 0.45

BPF-FF-LDA
(MEG 74-
channel)

16, -100 to 900 ms, 5-class Subject-
independent,
10-fold

64.23 61.89 58.15 59.92 p < 0.45

BPF-FF-LDA
(MEG 306-
channel)

16, -100 to 900 ms, 5-class Subject-
independent,
10-fold

68.34 64.58 61.22 64.42 p < 0.45

BPF-FF-LDA
(EEG/MEG 380-
channel)

16, -100 to 900 ms, 5-class Subject-
independent,
10-fold

69.96 66.29 63.89 69.66 p < 0.45

USSDM

USSDM-FF-
LDA (EEG
74-channel)

16, -100 to 900 ms, 5-class Subject-
independent,
10-fold

64.16 65.12 62.46 63.01 p < 0.05

USSDM-FF-
LDA (MEG
74-channel)

16, -100 to 900 ms, 5-class Subject-
independent,
10-fold

69.95 68.95 66.39 68.31 p < 0.05

USSDM-FF-
LDA (MEG
306-channel)

16, -100 to 900 ms, 5-class Subject-
independent,
10-fold

75.71 73.12 72.37 74.21 p < 0.05

USSDM-FF-
LDA (EEG/MEG
380-channel)

16, -100 to 900 ms, 5-class Subject-
independent,
10-fold

77.29 73.68 79.89 76.84 p < 0.05

Proposed
framework-1

MSSDM-FF-
LDA (EEG
74-channel)

16, -100 to 900 ms, 5-class Subject-
independent,
10-fold

70.35 74.03 72.29 71.76 p < 0.01

Proposed
framework-2

MSSDM-FF-
LDA (MEG
74-channel)

16, -100 to 900 ms, 5-class Subject-
independent,
10-fold

78.25 79.06 77.87 80.28 p < 0.01

Proposed
framework-3

MSSDM-FF-
LDA (MEG
306-channel)

16, -100 to 900 ms, 5-class Subject-
independent,
10-fold

86.05 85.80 83.04 84.79 p < 0.01

Proposed
framework-4

MSSDM-FF-
LDA (EEG/MEG
380-channel)

16, -100 to 900 ms, 5-class Subject-
independent,
10-fold

86.42 87.08 83.11 84.89 p < 0.01

Note: NR: Not reported, PLTP: Phase locking tracking potential.
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studies are limited to EEG-based visual cognitive analysis. On the other side, Cichy et al.

[14] have employed raw extracted features using RSA and SVM for different channel selec-

tion schemes i.e. EEG (74-channel), MEG (306-channel) and combined EEG-MEG (380-

channel) to improve visual object classification and yielded highest average classification

performance. In extension to this, our work delivers competent VSA classification results

when EEG and MEG channels are selected separately or combined EEG-MEG channels.

Additionally, we have compared the proposed method with the USSDM approach (channel-

specific analysis) and direct rhythms analysis which is computed using a BPF. [115]. The

comparative performance is demonstrated in the Table 3.4.

Overall, we state that the proposed MSSDM method provides more significant features

that enhance interpretability and inter-channel information that boosts the performance of

visual object classification. These obtained features deploy the most discriminate multivari-

ate modulation pattern of EEG-MEG data for effective visual object discrimination. Despite

using subject-independent cross-validation, the proposed MSSDM method significantly de-

livers higher performance that verifies suitability for practical applications, especially in the

visual object classification of EEG and MEG signals. The proposed MSSDM method effec-

tively captures homogeneous spectral characteristics in multichannel with channel-aligned

mode extraction and improves joint multivariate mutual features related to visual cogni-

tive analysis. However, it requires precise parameter tuning in the designed SFT spectrum

estimation and multivariate filter bank.

3.5 Summary

This work proposes an integrated approach using a novel multivariate SSDM and RCFF

feature for visual imagery multiclass decoding. A novel extension of SSDM is developed

for multivariate analysis of nonstationary multichannel EEG-MEG signals as well as per-

formance improvement. We have also used multivariate TFR for analysis of multichannel

EEG-MEG signals and enhanced underlying visual stimulus activation patterns for visual

object recognition. SFT spectrum-assisted MSSDM delivers an optimized OC mode with a

high spectral resolution, and thus could potentially exhibit highly correlated multi-spectral

80



CHAPTER 3. MULTIVARIATE SSDM FOR MULTIVARIATE SIGNAL ANALYSIS
WITH COGNITIVE VISUAL OBJECT DETECTION FROM MULTICHANNEL
EEG-MEG SIGNALS

modulation among all channels. It has been demonstrated that these novel fusion features

were very effective in distinguishing 5-class visual objects and improved classification per-

formance in a 1 s short-duration epoch. The performance of the method has been evalu-

ated using different visual object classification frameworks based on five classifiers with a

subject-independent 10-fold cross-validation approach.

The analysis results of the MEGEEG92 Objects Dataset demonstrate that the proposed

MSSDM-FF-LDA framework has shown distinguished performance and achieved average

recognition accuracy of 70.35%, 78.25%, 83.05%, and 86.42% for EEG (74-channel), MEG

(74-channel), MEG (306-channel), EEG-MEG (380-channel) respectively. Overall, it is

indicated that the proposed MSDDM method with combined EEG-MEG data can be a useful

tool for the analysis of visual objects instead of using EEG and MEG separately. As the

future unfolds, the prospective work involves the development of a methodology based on a

multivariate TF approach to enhance VSA classification performance with a broader range

of cognitive visual object classes.
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Chapter 4

Multivariate SSDM-based Joint

Time-Frequency Analysis with Improved

Imagined Speech Decoding for Intuitive

BCI

In this chapter, we present a novel MSSDM-based approach to reveal the multivariate

joint oscillatory features across multichannel EEG signals. The JTF multivariate features are

generated based on the JIF and JIA functions from the extracted CAOCs. The formulation

of these JTF multivariate features is detailed in this chapter. Additionally, we also designed

an end-to-end framework for imagined speech task detection for BCI applications that em-

ploys JTFDF from four pre-trained neural networks and an SVM classifier on cross-channel

IMS-EEG signals. This work also introduced a computationally efficient framework for

a feasible MI-EEG-based BCI model. The detailed evaluation of the proposed classifica-

tion framework on computed most discriminant JTFDF features using two feature mapping

strategies is given in later sections of the chapter.
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4.1 Introduction

In the recent decade, IMS has developed advanced cognitive communication tools, serv-

ing as an intuitive paradigm within BCI technology [15, 17]. Against imagination of control

action like in MI-based BCI, IMS is a new intuitive paradigm that conducts the internal pro-

nunciation of words without any physical movement or audio output. Additionally, IMS

exhibits scalability across multiple classes, indicating the potential for constructing a scal-

able BCI system. This paradigm is especially well-suited for constructing communication

systems because of its intuitive nature, making it particularly beneficial for individuals fac-

ing physical challenges like apraxia and dysarthria. Researchers have investigated several

experimental techniques for IMS that include EEG, MEG, and fMRI [19, 116]. In these

studies [15, 17, 18, 19, 20], EEG is widely utilized for its non-invasiveness and affordabil-

ity, offering improved fine-grained analysis by identifying spectral, spatial, and temporal

components underlying speech categories. Over the past few years, several studies have

been conducted to assess the potential of EEG to extract informative features for automated

IMS recognition systems. Dasalla et al. [15] have used a CSP feature to classify imagined

vowels from IMG-EEG signals. The obtained features have been classified using SVM and

the proposed system achieved a maximum accuracy of 78%. In the study [17], the use of

the discrete wavelet transform (DWT) and a random forest (RF) classifier was explored for

the classification of vowels and words during IMS and achieved 22.72% and 19.60% ac-

curacy for 5-vowel and 6-word classification, respectively. Garcı́a-Salinas et al. [18] have

employed a bag of features (BoF) approach for the detection of 5-class imagined words

and reported an accuracy of 68.9%. In further work, the two different feature connectivity

approaches, i.e., a covariance-based connectivity measure (CCM) and a maximum linear

cross-correlation-based connectivity measure (MCCM) have been utilized by Qureshi et al.

in [21] to determine the most significant features for the enhancement of IMS classifica-

tion performance. It explored phase-only data from EEG signals with four different chan-

nel selection strategies and achieved a maximum accuracy of 40.30% (CCM) and 87.90%

(MCCM) for 5-class using an extreme learning machine (ELM) classifier. In similar work,

Saha et al. [16] adopted a hybrid framework that combined LSTM and CNN networks to
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formulate concatenated deep features and delivered an accuracy of 83.42% in 2-class IMS

classification. Recent work by Cooney et al. in [20] delivered an IMS decoding performance

of 32.35% accuracy for 5-class imagined vowel classification using independent component

analysis with Hessian approximation. To recognize more IMS classes, Lee et al. [19] have

attempted to classify 13-class using CSP features and a shrinkage regularized linear discrim-

inant analysis (RLDA) classifier and achieved an average classification accuracy of 38.67%

(in Correto dataset) and 37.33% (in International BCI Competition dataset). Furthermore,

Lee et al. [22] attempted a Siamese neural network (SNN) encoder-based end-to-end classi-

fication framework using SVM and deep feature and delivered 31.40% accuracy for 6-class

EEG imagined word speech.

However, most of the above-demonstrated research studies in IMS recognition have pre-

dominantly extracted handcrafted features utilizing deep learning techniques from the mul-

tichannel EEG signals. Handcrafted approaches to feature extraction strongly rely on how

classification models are designed to extract mutual feature characteristics across multiple

EEG channels, thus introducing computational challenges for real-time deployable BCI sys-

tems. In addition, the majority of studies have primarily employed channel-specific analysis,

i.e., univariate approaches to extract features, and have not explored joint channel analysis

for mutual feature extraction across multivariate EEG data [65]. These methods suffer in

computing the most distinctive channel-aligned common features across multichannel EEG

signals with optimal multi-class scalability in the IMS, thus leading to inadequate classifi-

cation performance. Therefore, an adaptive multivariate signal analysis technique is needed

to extract the joint oscillatory features from cross-channel with optimizing channels and

computational efficiency.

Joint TF analysis (JTFA) methods have recently proven to be powerful tools for multi-

channel multivariate signal analysis. In particular, JTFA methods adopt JIF and bandwidth

to model the joint oscillatory structure of multichannel signals and give enhanced joint TF

localization. Numerous multivariate approaches have been developed for JTFA across vari-

ous real-time applications [63, 64, 65, 117], Recently, an adaptive and localized TFR-based

method has been implemented with the help of modified SWD [67] and SFT spectrum to

enhance TF localization for EEG signals. Although some of these existing JTFR methods
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have reported significant results in TF analysis, but they also introduce scope for improve-

ment due to cross-term interference and computational cost for the multi-channel multivari-

ate EEG signals. However, there have been very limited reported studies on IMS, and to

the best of our knowledge, JTFR-based techniques for multivariate IMS data have not been

studied.

In our proposed work, we have designed an end-to-end framework using the proposed

MSSDM (described in Chapter 3) to extract an ensemble of CAOCs from multichannel

IMS-EEG signals for IMS enhancement. The proposed MSSDM explores the joint oscilla-

tory structure of multichannel EEG signals and develops the joint TF plane for multivariate

IMS-EEG signals by computing JIF and JIA functions from signal adaptive scales. MSSDM

incorporates a mode alignment approach to estimate the orders of effective CAOCs modes

to establish spectral correlation in multivariate IMS-EEG signals by finding common fre-

quency components across channels. In MSSDM, an adaptive scale-space approach is em-

ployed by designing multivariate SwF banks and SFT spectrum optimization to deliver an

ensemble of CAOCs modes by estimating channel-aligned spectral boundaries across chan-

nels. To enhance spectrum estimation, a new sparse basis optimization model has been

designed by employing the fused-Lasso technique. This optimized SFT model offers effi-

cient spectral boundary estimation and ensures mode alignment, thus leading to improved

TF localization.

To automate feature extraction, we have introduced a robust JTFDF using different pre-

trained neural networks for efficient recognition of IMS. The multi-scale JTFDF features

are derived from MSSDM-based JTF images by employing a different deep architecture to

extract channel-aligned common JIF and JIA information present in the generated CAOCs.

To design an efficient and feasible IMS recognition model, we have investigated feature op-

timization by considering a few-layer deep neural network feature map architecture to avoid

time complexity and most discriminant features have been computed using two well-known

feature mapping techniques, CCA and HDC. Finally, the effectiveness of the developed

MSSDM-based classification models was assessed on the obtained JTFDF features using

SVM classifier [118] in 10-fold cross-validation on cross-subject analysis. The novelty of

this study is to present a novel MSSDM-based JTF analysis method and low-computational
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JTFDF feature for enhancement of the IMG-EEG recognition model, making it suitable for

feasible BCI applications. The key contributions are summarized as follows:

1. A novel adaptive MSSDM has been proposed to reveal the multivariate joint oscil-

latory structure of multichannel EEG signals and deliver CAOCs from cross-channel

IMS-EEG signals for IMS enhancement.

2. Joint TF images are generated based on JIF and JIA functions computed from the

extracted CAOCs.

3. The new low-dimensional JTFDF features have been computed using four different

pre-trained neural networks, and two feature mapping strategies (CCA and HDC)

have been employed to generate the most discriminant features for improved IMG-

EEG BCI classification.

4. The performance of the proposed MSSDM-based IMG-EEG classification framework

is compared with existing state-of-the-art methods with a cross-subject dataset.

4.2 Dataset and experimental paradigm used

In our work, we have assessed the performance of a proposed method on two publicly

available datasets for IMS. The first dataset, the Coretto dataset [17], consists of EEG sig-

nals for 15 subjects during IMS using 6-channel (C3, C4, P3, P4, F3, and F4) located in

Wernicke’s area, which is important for the analysis of imagined cognitive responses. The

dataset consists of 11 classes, including 6 Spanish words and 5 Spanish vowels. Here, we

have selected six Spanish words used to evaluate the proposed work: “arriba” (up), “abajo”

(down), “derecha” (right), “izquierda” (left), “adelante” (forward), and “atrás” (backward)

to control external devices intuitively. The second dataset, International BCI Competition

dataset [119] (Track 3) at (https://osf.io/pq7vb/), consisted of EEG signals for 15

subjects during IMS using 64-channel. The subjects were asked to imagine speaking 5 dif-

ferent commands: “Hello”, “Help me”, “Stop”, “Thank you”, and “Yes”. These commands

are considered useful for patients as they can be used to control various devices and systems.
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Figure 4.1 depicts the timing scheme of the recording paradigm utilized in this study. In our

experimentation, we have employed k-fold cross-validation with 25 trails and 46 trails ac-

cording to imagined word 6 and 5 classes from both datasets. During the pre-processing

stage, data acquisition was sampled at 1024 Hz and filtered out with a BPF with a pass-band

frequency range of 0.01 Hz to 80 Hz. To filter out artifacts, we have employed two filters:

an infinite impulse response HPF (0.8 Hz) and a low-pass smoothing filter (30 Hz). Further

in segmentation, 4 s windows are applied to generate time-locked post-stimulus epochs for

IMS analysis.

Figure 4.1: Experimental paradigm for IMS recording.

4.3 Proposed methodology

The objective of this study is to develop an automated MSSDM-based IMS recognition

system that can efficiently extract multivariate features across multichannel EEG signals to

classify IMG-EEG classes. Figure 4.2 depicts the proposed methodology framework with

detailed descriptions, followed by brief explanations of all involved methods in subsequent

subsections.

4.3.1 MSSDM-based multivariate time-frequency representation

Multichannel EEG signals are decomposed into CAOC using the MSSDM method (de-

scribed in Chapter 3). To analyze the CAOCs obtained from the MSSDM method in the TF

domain, we determine the multivariate TF coefficients. These coefficients are used to create

multivariate TF images by computing the JIA and JIF from the extracted CAOCs. The steps

involved in computing multivariate TF coefficients are briefly outlined in this section.
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Figure 4.2: Block diagram of the proposed approach for IMS recognition using MSSDM
method.

The set of CAOCs obtained after applying MSSDM corresponding to N -channel from

nonstationary signal y(t) can be expressed as follows:

y(t)=


y1,CAOC1(t) y1,CAOC2(t) · · · y1,CAOCQ

(t)

y2,CAOC1(t) y2,CAOC2(t) · · · y2,CAOCQ
(t)

...
...

. . .
...

yN,CAOC1(t) yN,CAOC2(t) · · · yN,CAOCQ
(t)

 (4.1)

where yn,CAOCq(t) is the qth CAOC corresponding to nth channel and Q is the number of

CAOCs. In order to obtain the IA and IF functions of a multichannel nonstationary signal

y(t), the Hilbert transform (HT) [41] has been applied to each of the extracted CAOCs

across each channel and its analytic signal representation is given as,

y+(k,CAOCQ)(t) = yk,CAOCQ
(t) + iH(yk,CAOCQ

(t)) (4.2)

where, H(·) is HT operator. The computed IA and IF of each extracted CAOC for y(t) for
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the corresponding individual channels is expressed by Eqs. (4.3) and (4.4), respectively.

Ak,CAOCQ
(t) =

√
(yk,CAOCQ

(t))2 + (H(yk,CAOCQ
(t)))2 (4.3)

Fk,CAOCQ
(t) =

d

dt
[ϕk,CAOCQ

(t)] (4.4)

The multivariate IA (A(t)) and IF (F (t)) for signal y(t) are given as,

A(t) =


A1,CAOC1(t) A1,CAOC2(t) · · · A1,CAOCQ

(t)

A2,CAOC1(t) A2,CAOC2(t) · · · A2,CAOCQ
(t)

...
...

. . .
...

AN,CAOC1(t) AN,CAOC2(t) · · · AN,CAOCQ
(t)

 (4.5)

F (t)=


F1,CAOC1(t) F1,CAOC2(t) · · · F1,CAOCQ

(t)

F2,CAOC1(t) F2,CAOC2(t) · · · F2,CAOCQ
(t)

...
...

. . .
...

FN,CAOC1(t) FN,CAOC2(t) · · · FN,CAOCQ
(t)

 (4.6)

It has been observed that optimized filter banks based on MSSDM result in CAOCs that

exhibit distinguished IFs at each oscillatory level and are well-separable with time instant.

To determine the JIA (Amulti
N (t)) and JIF Fmulti

N (t) for each oscillatory level, the IA and IF of

CAOCs across different N -channel are combined, which are computed as follows:

Amulti
N (t) =

√√√√ N∑
k=1

[(Ak,CAOCN
(t))2] (4.7)

Fmulti
N (t) =

∑N
k=1[Ak,CAOCN

(t)]2 Fk,CAOCN
(t)∑N

k=1[Ak,CAOCN
(t)]2

(4.8)

The computation of multivariate TF coefficients at each oscillatory level is given as follows:

TFmulti
N (A,F ) = Amulti

N (t) δ[F − Fmulti
N (t)] (4.9)

Lastly, multivariate TF images are formed by combining all computed joint oscillatory lev-
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els across N -channel, which is expressed as,

TFmulti(A,F ) = TFmulti
N (A,F ) (4.10)

The overall flow of JTFDF formulation is given in algorithm 4.1.

Algorithm 4.1 Computation of MSSDM-based JTFDF features from multichannel EEG
data
Input: Nonstationary multivariate or multichannel signal z(k)
Output: JTFDF features from CAOCs modes using MSSDM
// Estimation of common boundaries
Repeat
Optimise and generate SFT spectrums by Eq. (2.4)
Spectrum smoothing and selection using SGF by estimation highest ESD sit(k)
Obtain extremes of SFT spectrum across cross-channel Nc
Compute mean spectrum by Eq. (3.1)
Find spectral boundaries in channel-aligned mean spectrum by Eq. (2.7)
it← it + 1
Until Nit < Nc ; Nc - number of channels
// Apply multivariate swarm filter banks and extract CAOCs
Repeat
Repeat
Repeat
Smooth spectrum by estimation highest ESD zit(k)
Estimate spectral boundaries in the mean SFT spectrum
Select swarm filter parameters δ and M using GA by Eqs. (2.9a) and (2.9b), respectively
Repeat
yj+1← SwF (zj(k),M, δ) ; SwF: Swarm filter
j ← j + 1
Bit+1(k)← Bit(k)
Until Bit < 0.1
s
′

it(k)← yj(k)

zit+1(k)← zit(k)− s
′

it(k)
it← it + 1, j = 0
y0(k)← z

′

it(k)
Until FBzit < Pth ;Pth is set to 0.1
Cit ← Cit+1

Until Nit < Nc
Yit(k)←y0(k)
// Estimation of JTFDF features
Computation of IA and IF using HT by Eqs. (4.3 and 4.4), respectively
Determine the JIA and JIF across Q-channel by Eqs. (4.7 and 4.8), respectively
Find multivariate JTF coefficients by Nc by Eq. (4.9)
Apply deep neural network on JTF images to get JTFDF
Tit ← Tit+1

Until Tit < Maxtr ; Maxtr - maximum number of trails

To demonstrate the ability of the MSSDM method to identify and align common mode
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oscillations present in the multivariate signals cross-channel, IMS-EEG signals have been

tested. Figure 4.3 illustrates MSSDM-based channel-aligned decomposed CAOCs from

3-channel (F3, F4, and P3) IMG-EEG signals for the “Right” class (subject 2) in Correto

dataset. It is observed that the extracted oscillatory modes from channels F3, F4, and P3, are

strictly aligned with common time-varying frequency components and are locally present

with individual single-mode, shown in Fig. 4.3 (h). In addition, we have plotted MSSDM-

based swarm filter bank structures that were used to extract common or joint oscillatory

modes for different cross-channel signals. The use of Welch power spectral density (PSD) in

spectral analysis, as depicted in 4.3 (i), demonstrated the alignment of the selected CAOCs

with the MSSDM filter bank. The PSD plots have exhibited a similar spectral response,

indicating that the CAOCs detected oscillations across multiple channels consistently and

were aligned correctly across cross channels corresponding to the respective CAOCs. Thus,

we can state that the proposed MSSDM-JTFDF is an effective approach to extracting mul-

tivariate modulated oscillations across multichannel data while simultaneously confirming

mode alignment.

Figure 4.3: Plots of (a)-(f) raw EEG signals and their spectral analysis using FFT with SFT
coefficients, (g)-(h) MSSDM-based decomposed CAOCs and its combined visual interpre-
tation, and (i) MSSDM-based swarm filter bank structure of 3-channel (F3, F4, and P3)
IMG-EEG signals for the “Right” class (subject 2) in Correto dataset.
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4.3.2 Feature formulation and classification

In the realm of BCI applications, designing suitable features from multivariate signals

is an important stage for constructing an efficient IMG-EEG classification model. In our

study, a new feature approach has been introduced that employs CNN deep features and

feature mapping techniques to extract significant features from multivariate JTF images for

efficient IMS classification. Utilizing deep learning, it is proven higher accuracy and more

flexibility by automatically uncovering the underlying hidden patterns within different sets

of IMS class images. These JTFDF features are derived from the MSSDM-based JTF im-

ages in a categorical way using different pre-trained neural networks (NNs): ELM, ResNet,

AlexNet, and SqueezeNet, which enhance channel-aligned common JIA and JIF informa-

tion present in the obtained CAOCs. To extract deep learning features, CNN-estimated

filters were applied to process the JTF images of the size of 875 × 756 × 3 to learn the

feature attributes of the JTFR image and generated discriminative features to improve the

performance of multi-class classification. To understand how different pre-trained learning

models affect the complexity of computed features, we have selected four learning models

that model dense layer formulation in varied complexity [120, 121, 122, 123]. Figure 4.4

illustrates the architectural configuration for the extraction of deep features. The selection

of ELM [123], SqueezeNet [122], and AlexNet [121] is due to their shorter training dura-

tion and fewer dense layers, whereas ResNet [120] exhibits a comparatively very complex

dense layer. Table 4.1 lists the hyper-parameters of the used deep architecture. It is observed

that the used network delivers high-dimensional deep learning features that demonstrate in-

compatibility to a feasible BCI system. Therefore, it is necessary to map high-dimensional

deep learning feature space into low-dimensional deep learning feature space by mapping

the most correlated features among the class. Thus, the new low-dimensional JTFDF fea-

tures have been computed by the use of two feature mapping techniques (CCA and HDC) to

generate the most discriminant features for improved IMG-EEG BCI classification. Among

them, the HDC-based feature correlation method is new and was used first time for a feature

reduction approach. A detailed description of these feature-mapping techniques is provided

below.
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Figure 4.4: Proposed architecture for deep features extraction.

Table 4.1: Hyper-parameter configuration of four different models.

Model Network configuration
ResNet 2-D COV: 64@1×1×64 (1), 64@3×3×64 (3), 256@1×1×64 (4), 64@1×1×256 (3), 64@1×1×64 (2),

128@1×1×256 (2), 512@1×1×128 (4), 1024@1×1×256 (6), 2048@1×1×512 (3), filters number = 6, BN
with channels: 64 (7), 128 (8), 256 (16), 2-D MP: 3×3 (1), ReLU: 124

AlexNet 2-D COV: 96@11×11×3 (1), 128@5×5×48 (1), 384@3×3×256 (1), 192@3×3×192 (1), 128@3×3×192 (1),
filters number = 5, BN with channels: 5 (2), 2-D MP: 3×3 (3), ReLU: 5

SqueezeNet 2-D COV: 64@3×3×3 (1), 16@1×1×64 (1), 64@1×1×16 (2), 64@3×3×16 (2), 16@1×1×128 (1),
64@1×1×16 (2), 64@3×3×16 (2), 32@1×1×128 (1), 128@1×1×32 (2), 128@3×3×32 (2), 32@1×1×256
(1), 128@1×1×32 (3), 128@3×3×32 (2), 48@1×1×256, 192@1×1×48 (2),48@1×1×384 (1),192@1×1×48
(3), 64@1×1×384 (1), 256@1×1×64 (2), 256@3×3×64 (2), 256@1×1×64 (1), 256@3×3×64 (1),
1000@1×1×512 (1), 2-D MP: 3×3 (3), DC (2 inputs): 8, ReLU: 26

ELM 2-D COV: 384@3×3×256 (1), filters number = 3, BN with channels: 5 (1), 2-D MP: 5×5 (1), ReLU: 1
COV: Convolution, BN: Batch normalization, ReLU: Rectified linear activation function, MP: Max pooling, DC: Depth
concatenation.

4.3.2.1 Canonical correlation analysis

The CCA is an effective feature selection method to measure functional connectivity

in the deep features by employing maximally auto-correlated and mutually un-correlated

features from feature space of different classes [124]. To find the most correlated feature sets

[U, V ], CCA is used to determine the feature weight matrix wn for n-class by maximizing

the correlation between two feature sets x and y within the class by solving the following

optimization problem, which is given as follows:

max
(Wx,Wy)

ρ(U, V ) =
W T

x C
T
xyWy√

(W T
x CxxWx)(W T

y CyyWy)
(4.11)

Where [U, V ] represents the canonical pair for nth class. Cxx and Cyy indicate the autoco-

variance matrices of feature sets x and y. CT
xy is the cross-covariance matrix computed from

94



CHAPTER 4. MULTIVARIATE SSDM-BASED JOINT TIME-FREQUENCY
ANALYSIS WITH IMPROVED IMAGINED SPEECH DECODING FOR INTUITIVE
BCI

the feature sets x and y. Here we have considered canonical auto-correlation coefficient

ρ2 = [0 1] with respect to eigenvectors Wx and Wy for feature sets x and y.

4.3.2.2 Hellinger distance-based correlation

Hellinger distance-based similarity measure [125] is a new feature reduction approach to

measure the degree of similarity between two probability distributions, which is computed

from two different feature sets x and y within a given class. The Helinger distance H(x, y)

is given as,

H(x, y) =
√
1−

∑
(
√
p(x)− p(y) (4.12)

Where p(x) and p(y) represent the probability distributions of the feature sets x and y. In our

work, we considered different correlation factors (CF) in the range of 0.3 to 0.8 to compute

the feature space. After this step, both the CCA and HDC-based reduced features were fed

separately to the SVM classifier [118] to obtain IMS class recognition.

4.4 Results

To assess the efficacy of the proposed MSSDM-JTFDF, we have tested channel-aligned

multi-scale JTFDF features on a designed end-to-end classification model for the enhance-

ment of IMS based on IMS-EEG signals. The performance of IMS-EEG multi-class classi-

fication was investigated using two public datasets: the 6-class Coretto dataset [17] and the

5-class International BCI Competition dataset [119], focusing on word imagination speech.

To study the effectiveness of the proposed MSSDM-JTFDF, channel-aligned multi-scale

JTFDF features have been tested by designing an end-to-end classification framework for

IMS-EEG signals-based IMS enhancement. Under experimentation, IMS-EEG signals were

examined using various electrode configurations, including six electrodes (C3, C4, P3, P4,

F3, and F4) [17] and 64 electrodes [119], respectively. Each of these EEG signals was

analyzed within a 30-second window and further segmented into 4-second epochs with

imagined activation stimuli. Further, HT [41] was used to transform multivariate TF im-
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ages by computing multivariate TF coefficients from extracted CAOCs that were extracted

using MSSDM. To strongly correlate mutual multivariate information, we have explored

joint TF plots across every cross-channel and computed JTF images for each class. Figure

4.6 shows the decomposition results and their JTF analysis for 5-class IMS from 3-channel

EEG signals in the case of BCI Competition dataset. For each word imagination speech

class, the number of multivariate JTFR images generated is given in Table 4.2. Figure 4.5

demonstrates the obtained multivariate JTF images across all subjects based on extracted

MSSDM-based CAOCs modes for each word imagination speech class (Coretto dataset).

In response to word-imagination speech tasks, these plots exhibit JTF analysis for discrim-

inative brain activity patterns. Notably, in the JTF plots, the most pronounced activation

during the word imagination tasks was noted in the theta (θ: 4–8 Hz) and alpha (α: 8–13

Hz) rhythms, corresponding to imagined stimulus response within the time interval (0.5 s -

2.0 s) from the onset of imagination.

Table 4.2: Architecture of used pre-trained neural networks with obtained deep features.

Dataset Pre-train
classifica-
tion model

Size of in-
put layer

Number
of lay-
ers

Parameter
(in mil-
lions)

Trainable
parameter

Feature
dimension
obtained
from sin-
gle JTF
image

Number
of JTF
images
per class

Feature
space
size

Total
feature
size using
CCA
with CF
= 0.7

Total
feature
size using
HDC
with CF
= 0.7

Correto AlexNet 875x756x3 16 0.40 4096 2048 225 460800 276480 165888
DB ResNet-18 875x756x3 174 2.08 32768 16384 225 3686400 2211840 1327104

SqueezeNet 875x756x3 66 0.81 15360 7680 225 1728000 1036800 622080
ELM 875x756x3 9 0.14 2048 1024 225 230400 138240 82944

BCI AlexNet 875x756x3 16 0.58 4096 2048 360 737280 442368 265421
Competition ResNet-18 875x756x3 174 0.28 32768 16384 360 5898240 3538944 2123366
DB SqueezeNet 875x756x3 16 1.08 15360 7680 360 2764800 1658880 995328

ELM 875x756x3 9 0.29 2048 1024 360 368640 221184 132710

Further, we have computed JTFDF using different pre-trained neural networks, in-

cluding ELM, AlexNet, SqueezeNet, and ResNet. To assess the effectiveness of the

MSSDM-JTFDF features, experiments were carried out employing subject-independent

cross-validation analysis and a quadratic SVM classifier on both IMS-EEG datasets. For

the cross-subject dataset, leave-one-out cross-validation was conducted using a 70%-30%

split for training and testing data. This procedure was validated using k-fold validation

schemes, and the average outcome was reported, taking into account performance metrics

such as average accuracy (ACCavg) [126]. The performance study has evaluated perfor-

mance across three key aspects, and the findings are discussed below. The first part of
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Figure 4.5: The JTF representation of the IMS word 5-class data using proposed MSSDM
for 15 subjects (BCI Competition dataset). The highlighted yellow boxes in the plots
demonstrate similar imagined stimulus responses with extracted θ and α bands.

the simulation study is for the subject-wise classification performance of computed JTFDF

features on both datasets. In the second part of the simulation study, the performance of

feature complexity with the different dense networks are compared. In the third part of

the simulation study, analyze the effect of the selection of correlation factors in two differ-

ent feature mapping schemes. To investigate the JTFDF feature with four pre-trained neu-

ral network and two feature correlation techniques, we have formulated the eight different

MSSDM-based classification models, proposed model 1 (PM1): MSSDM-ELM-JTFDF-

CCA, proposed model 2 (PM2): MSSDM-AlexNet-JTFDF-CCA, proposed model 3 (PM3):

MSSDM-SqueezeNet-JTFDF-CCA, proposed model 4 (PM4): MSSDM-ResNet-JTFDF-

CCA, proposed model 5 (PM5): MSSDM-ELM-JTFDF-HDC, proposed model 6 (PM6):

MSSDM-AlexNet-JTFDF-HDC, proposed model 7 (PM7): MSSDM-SqueezeNet-JTFDF-

HDC, and proposed model 8 (PM8): MSSDM-ResNet-JTFDF-HDC.

Tables 4.3, 4.4, 4.5, and 4.6, demonstrate the subject-wise classification performance on

JTFDF features obtained from four different pre-trained neural networks (ELM, AlexNet,

SqueezeNet, and ResNet) using the SVM classifier on the Coretto dataset and BCI Com-
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Figure 4.6: Plots of: (i)-(iii) decomposed CAOCs from 3-channel EEG signals and (iv) their
JTF analysis for IMS classes (a) Hello, (b) Help me, (c) Stop, (d) Thank you, and (e) Yes,
respectively.

petition dataset, respectively. Here we have verified the performance by conducting k-fold

cross-validation across all subjects (see Fig. 4.10). The presented results show the obtained

average accuracies in 10-fold cross-validation across fifteen subjects with correlation factor

(CF > 0.7) and exhibit the efficient selection of DFs without compromising performance.

CF was calculated across the range of 0.3 to 0.8. However, the best classification results

along with reduced features (Rf), were achieved when CF was set to 0.7 for all proposed

models, which is shown in Fig. 4.9. In the Coretto dataset, our proposed model PM4 shows

an average accuracy of ACCavg = 60.80 ± 1.13% with reduced features (Rf > 45%) for the

6-class imagined word classification across all subjects. Whereas in the BCI Competition

dataset, the proposed model PM7 has delivered ACCavg = 59.10 ± 1.68% with Rf>46% for

the 5-class problem across all subjects. We have also compared four pre-trained neural net-
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Figure 4.7: Subject-wise evaluation of 10-fold classification accuracy performed by two
different feature correlation schemes, (a)-(c) HDC and (b)-(d) CCA based on Coretto dataset
and BCI Competition dataset, respectively. The error bars denote the standard deviation of
values < 1%.

Figure 4.8: Averaged confusion matrix of the classification across all subjects in (a) the
Coretto dataset and (b) the BCI Competition dataset.

work methods to determine how effective feature reduction is done with different proposed

models, which is shown in Fig. 4.7. In the Coretto dataset, it is found that the highest AC-

Cavg among all frameworks were PM1 (ACCavg = 48.07% and Rf > 36%), PM2 (ACCavg

= 50.74% and Rf > 42%), PM3 (ACCavg = 56.16% and Rf > 39%), and PM4 (ACCavg =

60.80% and Rf > 45%) in the case of deep feature using ELM, AlexNet, SqueezeNet, and

ResNet network, respectively. In the case of the CCA feature mapping scheme, the highest

accuracy was attained by PM4 (ACCavg = 60.80% and Rf > 45%). Whereas in the HDC
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Table 4.3: Average accuracy score (in %) obtained from reduced features (in %) for four
different pre-trained neural networks using CCA scheme and SVM classifier on the Correto
dataset.

CCA-based feature selection: ACCavg (Rf)
ELM AlexNet SqueezeNet ResNet

CF→ 0.5 0.6 0.7 0.8 0.5 0.6 0.7 0.8 0.5 0.6 0.7 0.8 0.5 0.6 0.7 0.8
Subject 1 35.3

(18)
38.7
(27)

42.1
(39)

41.5
(40)

39.2
(22)

41.9
(30)

46.9
(43)

46.3
(44)

45.6
(28)

48.3
(36)

48.1
(40)

52.9
(44)

38.0
(20)

45.8
(34)

41.7
(33)

40.8
(35)

Subject 2 50.1
(25)

54.2
(38)

56.8
(40)

63.0
(49)

60.6
(36)

60.0
(43)

54.2
(52)

60.4
(54)

72.2
(47)

78.6
(58)

80.6
(43)

88.6
(48)

68.3
(43)

77.1
(46)

81.1
(44)

80.0
(45)

Subject 3 49.1
(25)

47.2
(37)

54.3
(43)

53.7
(48)

58.3
(34)

60.0
(50)

70.8
(46)

68.1
(69)

40.5
(16)

47.2
(33)

50.9
(36)

45.8
(40)

61.1
(37)

66.7
(52)

64.5
(50)

71.0
(52)

Subject 4 46.7
(23)

52.1
(35)

54.8
(39)

54.1
(46)

56.1
(33)

57.4
(40)

56.3
(54)

58.8
(58)

58.3
(35)

58.3
(37)

65.1
(41)

63.1
(45)

71.9
(49)

70.8
(50)

71.9
(47)

67.5
(48)

Subject 5 43.6
(26)

49.9
(39)

62.2
(50)

61.5
(51)

43.6
(26)

39.9
(29)

43.7
(31)

45.7
(37)

50.1
(33)

54.2
(40)

57.9
(41)

52.1
(47)

38.9
(22)

43.3
(29)

62.8
(45)

61.6
(47)

Subject 6 28.0
(14)

32.8
(21)

42.5
(25)

41.9
(27)

40.0
(26)

41.8
(30)

43.5
(34)

45.2
(38)

39.7
(26)

45.0
(29)

50.3
(36)

46.7
(41)

44.9
(31)

50.1
(34)

57.6
(43)

57.0
(44)

Subject 7 35.6
(18)

38.3
(27)

48.7
(38)

46.7
(35)

53.7
(36)

47.9
(36)

44.5
(38)

47.8
(44)

48.2
(30)

50.3
(35)

50.9
(39)

51.4
(46)

65.2
(47)

68.3
(53)

70.8
(59)

77.9
(61)

Subject 8 42.4
(21)

37.0
(32)

43.7
(37)

42.9
(41)

48.1
(27)

50.0
(45)

52.8
(50)

53.3
(60)

45.6
(24)

44.6
(35)

42.9
(35)

43.3
(41)

56.1
(35)

59.3
(50)

52.4
(45)

46.6
(47)

Subject 9 38.3
(19)

45.8
(29)

47.5
(35)

48.4
(37)

45.0
(26)

46.6
(30)

50.2
(53)

58.8
(56)

58.2
(39)

58.1
(37)

60.6
(36)

59.9
(41)

55.8
(37)

54.2
(33)

62.4
(38)

61.9
(40)

Subject 10 24.1
(12)

32.6
(18)

38.6
(33)

36.8
(23)

38.6
(27)

40.5
(26)

39.8
(38)

42.1
(37)

41.7
(30)

48.0
(30)

47.0
(40)

46.5
(46)

48.1
(36)

31.0
(12)

54.2
(47)

53.7
(50)

Subject 11 36.7
(18)

38.1
(28)

48.1
(33)

49.7
(36)

38.8
(20)

41.7
(31)

45.3
(39)

44.5
(39)

42.9
(25)

46.2
(32)

51.9
(41)

50.8
(47)

54.8
(36)

58.3
(44)

54.2
(43)

59.6
(46)

Subject 12 34.2
(17)

37.1
(26)

40.1
(32)

36.2
(33)

36.1
(19)

39.0
(27)

42.7
(44)

45.7
(44)

37.5
(20)

47.5
(32)

47.0
(43)

46.5
(50)

40.0
(33)

47.5
(32)

53.9
(50)

51.2
(53)

Subject 13 27.6
(14)

28.6
(21)

33.9
(25)

34.8
(27)

39.6
(26)

43.1
(35)

44.0
(43)

45.8
(46)

43.3
(30)

50.0
(38)

50.5
(44)

51.2
(51)

46.3
(33)

56.3
(44)

55.6
(49)

54.5
(52)

Subject 14 44.8
(22)

55.6
(34)

61.0
(40)

57.8
(44)

52.8
(30)

56.8
(35)

56.2
(31)

60.6
(54)

61.0
(39)

60.3
(34)

63.9
(34)

70.2
(39)

63.9
(42)

66.7
(41)

58.3
(42)

57.8
(31)

Subject 15 40.7
(20)

35.7
(31)

46.9
(36)

49.7
(40)

58.3
(38)

63.9
(46)

70.2
(48)

70.8
(51)

73.8
(53)

71.0
(49)

70.7
(43)

77.6
(50)

58.3
(38)

61.9
(40)

66.7
(41)

65.9
(42)

Average 38.5
(19)

41.6
(29)

48.1
(36)

47.9
(38)

47.3
(28)

48.7
(36)

50.7
(42)

52.9
(48)

50.6
(31)

53.8
(37)

56.2
(39)

56.5
(45)

54.8
(35)

57.1
(39)

60.8
(45)

60.3
(46)

feature mapping scheme, the PM7 model reported the best classification performance (AC-

Cavg = 54.68% and Rf > 37%) in the case of the SqueezeNet feature. The inferior result

was reported by PM5 (ACCavg = 48.07% and Rf > 36%) in the case of PM1 with the ELM

feature. In the case of BCI Competition dataset, computed deep features employing ELM,

AlexNet, SqueezeNet, and ResNet networks had the highest average accuracies across all

proposed models, with PM1 (ACCavg = 53.08% and Rf > 43%), PM2 (ACCavg = 56.47%

and Rf> 38%), PM7 (ACCavg = 59.07% and Rf> 46%), and PM4 (ACCavg = 57.75% and

Rf > 41%), respectively. Overall, the proposed models PM4-ResNet (ACCavg = 60.80%

and Rf > 45%) and PM7-SqueezeNet (ACCavg = 59.07% and Rf > 46%) demonstrated

superior performance with reduced features for classifying 5-class and 6-class IMG-EEG
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imagined signals in both datasets [17] and [119], respectively.

Figure 4.9: Cross-validation of average accuracy plotted against each CF value for four se-
lected deep features in case of (a) CCA with Coretto dataset, (b) HDC with Coretto dataset,
(c) CCA with BCI Competition dataset, and (d) HDC with BCI Competition dataset.

Further, we evaluate the proposed model’s performance and complexity with different

deep networks to determine its effectiveness with deep features. The used ELM model ex-

hibits comparatively shallow layers with less computation time compared to the other dense

classifier models, AlexNet, SqueezeNet, and ResNet. In the subsequent experiments, we

configure a few ELM layers (refer Table 4.2) in the proposed models PM1 and PM5, which

achieves more stable performance on both datasets according to Tables 4.3, 4.4, 4.5, and

4.6. In the Coretto dataset, even though ResNet has delivered the highest accuracy with

PM4 (ACCavg = 60.80% and Rf > 45%), the ELM shows significant performance by de-

livering competent performance PM1 (ACCavg = 48.07% and Rf > 36%) with fewer layer

configuration. Similarly, the PM1 model achieved the highest classification performance

(ACCavg = 53.10% and Rf > 43%) using the ELM feature in the BCI Competition dataset.

The experimental findings demonstrate that achieving accurate prediction of imagined word

speech with reasonably high accuracy (ACCavg) is possible using fewer dense layers on

the obtained JTFDF features by MSSDM, thereby reducing computational complexity. To

examine the potential selection of JTFDF features in the proposed classification models,
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Table 4.4: Average accuracy score (in %) obtained from reduced features (in %) for four
different pre-trained neural networks using HDC scheme and SVM classifier on the Correto
dataset.

Hellinger distance-based feature selection: ACCavg (Rf)
ELM AlexNet SqueezeNet ResNet

CF→ 0.5 0.6 0.7 0.8 0.5 0.6 0.7 0.8 0.5 0.6 0.7 0.8 0.5 0.6 0.7 0.8
Subject 1 32.3

(16)
38.2
(24)

38.9
(38)

40.8
(42)

37.0
(21)

39.6
(26)

44.3
(42)

40.8
(44)

0.6
(25)

44.2
(30)

46.2
(38)

48.1
(39)

35.5
(19)

42.8
(29)

38.9
(31)

51.9
(34)

Subject 2 45.8
(23)

46.5
(34)

47.5
(50)

47.1
(55)

57.2
(34)

56.7
(42)

51.2
(48)

52.1
(60)

64.6
(42)

64.9
(50)

65.9
(57)

64.2
(58)

63.9
(41)

72.0
(57)

75.7
(35)

72.6
(39)

Subject 3 44.9
(22)

42.0
(34)

48.3
(42)

46.9
(54)

55.1
(33)

56.7
(48)

66.9
(61)

62.3
(68)

46.2
(24)

53.2
(45)

54.9
(43)

55.4
(43)

57.1
(35)

62.3
(54)

60.3
(48)

64.2
(53)

Subject 4 42.7
(21)

50.5
(32)

58.7
(51)

57.6
(52)

53.0
(32)

54.2
(36)

53.1
(45)

55.5
(48)

52.2
(31)

58.3
(40)

61.1
(47)

61.7
(48)

71.0
(50)

66.2
(48)

69.4
(37)

74.0
(41)

Subject 5 39.8
(20)

42.4
(30)

45.8
(48)

42.6
(49)

41.2
(21)

37.3
(19)

41.3
(27)

43.1
(37)

44.8
(25)

47.5
(29)

48.7
(27)

48.2
(28)

36.3
(16)

40.5
(22)

38.9
(19)

53.1
(20)

Subject 6 25.6
(13)

31.8
(19)

39.3
(32)

39.2
(35)

37.8
(25)

39.0
(26)

44.0
(36)

42.7
(44)

45.5
(33)

45.1
(33)

47.5
(34)

45.2
(35)

41.9
(29)

45.8
(33)

50.8
(37)

49.0
(41)

Subject 7 32.5
(16)

37.1
(24)

41.8
(37)

42.7
(42)

50.7
(34)

44.8
(32)

58.1
(53)

56.5
(61)

51.4
(35)

50.9
(38)

49.8
(39)

50.3
(40)

60.9
(45)

62.5
(50)

64.7
(40)

65.3
(44)

Subject 8 38.8
(19)

35.9
(29)

39.5
(36)

43.2
(48)

45.5
(26)

46.7
(40)

49.9
(46)

48.1
(60)

40.8
(21)

38.9
(32)

46.8
(37)

48.6
(38)

52.4
(33)

54.2
(47)

47.9
(38)

53.0
(44)

Subject 9 35.1
(18)

44.5
(26)

45.6
(44)

47.3
(44)

42.5
(25)

43.5
(25)

52.7
(39)

55.6
(45)

52.1
(35)

38.2
(20)

47.8
(28)

47.2
(28)

52.1
(35)

49.5
(31)

57.0
(37)

65.4
(42)

Subject 10 22.0
(11)

31.6
(17)

34.9
(32)

33.7
(31)

36.5
(25)

37.8
(23)

37.6
(34)

36.1
(46)

37.3
(26)

40.5
(25)

47.0
(38)

48.9
(38)

45.0
(34)

28.3
(13)

48.8
(39)

50.6
(45)

Subject 11 35.0
(17)

37.0
(26)

43.5
(37)

45.4
(44)

36.6
(19)

39.4
(29)

41.9
(35)

40.1
(49)

38.3
(21)

40.0
(29)

44.3
(32)

46.0
(32)

51.2
(34)

53.3
(43)

49.5
(37)

50.2
(42)

Subject 12 31.2
(16)

41.0
(23)

43.3
(41)

42.5
(40)

34.1
(18)

36.8
(19)

39.5
(37)

40.2
(49)

33.5
(18)

34.8
(17)

46.4
(38)

43.5
(39)

46.7
(31)

44.4
(27)

50.4
(42)

49.0
(48)

Subject 13 25.2
(13)

26.2
(19)

33.6
(26)

38.8
(35)

37.4
(25)

39.7
(33)

44.9
(37)

40.3
(47)

38.8
(26)

44.1
(37)

44.8
(31)

43.0
(32)

43.3
(31)

52.6
(45)

52.0
(39)

55.4
(44)

Subject 14 40.9
(20)

50.8
(31)

54.2
(35)

52.9
(43)

49.9
(29)

53.7
(34)

57.0
(45)

54.3
(46)

54.6
(34)

50.6
(31)

53.1
(35)

50.9
(35)

59.7
(39)

62.3
(42)

54.5
(36)

52.6
(41)

Subject 15 37.3
(19)

32.7
(28)

40.6
(33)

45.4
(46)

55.1
(36)

60.3
(45)

64.9
(57)

61.9
(68)

63.0
(44)

65.2
(50)

68.8
(55)

62.2
(56)

54.5
(36)

57.9
(43)

62.3
(48)

60.6
(55)

Average 35.3
(17)

39.8
(26)

44.7
(38)

45.5
(43)

44.6
(27)

45.8
(31)

49.8
(42)

48.6
(51)

46.9
(29)

47.8
(34)

51.5
(39)

50.9
(39)

51.4
(34)

53.0
(38)

54.7
(37)

58.1
(42)

we have compared each of the models on feature selection to different CF values. Figure

4.9 (a)-(d) compares cross-validation classification accuracy using two feature correlation

schemes (CCA and HDC) with varying CFs (0.3 to 0.8) for two datasets. The figures show

that accuracy increases with higher CF values but also increases feature complexity. There-

fore, based on the experiment, a lower CF of 0.7 was selected to reduce feature complexity

without compromising the accuracy performance. Considering the performances depicted

in Tables 4.3, 4.4, 4.5, 4.6, and Fig. 4.9 (a)-(d), it is observed that among the proposed

model, the PM1-ELM (ACCavg = 48.07%, Rf > 36%, CF = 0.7) with CCA and PM5-

ELM (ACCavg = 50.18%, Rf > 45%, CF = 0.7) with HDC are found to be the best model

with reduced features for classifying IMG-EEG signals, which can yield the highest perfor-
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Table 4.5: Average accuracy score (in %) obtained from reduced features (in %) for four
different pre-trained neural networks using CCA scheme and SVM classifier on the BCI
Competition dataset.

Canonical correlation analysis-based feature selection: ACCavg (Rf)
ELM AlexNet SqueezeNet ResNet

CF→ 0.5 0.6 0.7 0.8 0.5 0.6 0.7 0.8 0.5 0.6 0.7 0.8 0.5 0.6 0.7 0.8
Subject 1 42.4

(21)
46.0
(32)

52.8
(46)

53.6
(49)

47.1
(26)

50.3
(36)

47.9
(41)

54.7
(46)

38.9
(34)

40.9
(27)

41.1
(30)

40.4
(35)

39.7
(32)

43.2
(29)

44.4
(33)

45.1
(39)

Subject 2 60.1
(30)

64.4
(45)

64.7
(49)

63.2
(50)

52.6
(43)

60.1
(40)

65.3
(36)

65.0
(38)

70.1
(40)

76.4
(44)

76.0
(34)

75.9
(40)

65.1
(41)

72.6
(40)

78.5
(40)

74.7
(46)

Subject 3 58.9
(29)

56.1
(44)

65.6
(41)

63.0
(45)

52.1
(41)

60.5
(47)

72.3
(34)

70.6
(48)

62.7
(33)

68.3
(42)

66.6
(33)

70.4
(38)

64.0
(35)

62.8
(36)

66.4
(32)

66.3
(38)

Subject 4 56.0
(28)

56.9
(42)

59.2
(42)

59.5
(43)

51.9
(33)

54.2
(41)

60.4
(29)

58.2
(32)

70.1
(42)

76.4
(41)

73.5
(29)

72.4
(34)

61.2
(44)

62.1
(43)

70.8
(45)

71.7
(53)

Subject 5 52.3
(26)

59.3
(39)

57.8
(44)

60.5
(39)

47.5
(21)

47.9
(28)

50.6
(23)

48.3
(29)

39.9
(14)

43.5
(23)

44.0
(34)

46.9
(40)

40.7
(26)

40.8
(21)

44.7
(34)

42.1
(40)

Subject 6 33.6
(17)

48.6
(25)

48.9
(34)

50.1
(35)

43.6
(27)

50.1
(27)

54.9
(26)

53.4
(28)

46.0
(29)

50.2
(27)

57.0
(40)

61.8
(47)

47.0
(30)

46.2
(23)

46.1
(33)

48.6
(39)

Subject 7 42.7
(21)

45.5
(32)

47.3
(45)

48.3
(49)

58.5
(37)

57.5
(44)

56.3
(30)

60.6
(42)

56.8
(45)

60.8
(55)

67.8
(39)

66.8
(46)

56.2
(41)

60.3
(50)

62.2
(42)

64.6
(48)

Subject 8 46.9
(23)

44.0
(35)

47.7
(44)

46.6
(46)

42.5
(29)

50.3
(51)

53.8
(36)

50.3
(46)

47.6
(34)

49.3
(50)

51.4
(29)

59.1
(30)

48.7
(35)

49.6
(46)

54.1
(32)

52.2
(36)

Subject 9 46.0
(23)

49.5
(35)

50.0
(49)

50.3
(52)

49.1
(26)

55.9
(41)

60.9
(46)

58.9
(51)

57.2
(34)

59.0
(44)

63.0
(44)

61.9
(45)

54.4
(35)

57.6
(45)

59.5
(46)

58.7
(52)

Subject 10 28.9
(14)

38.7
(22)

41.3
(39)

40.5
(43)

42.1
(28)

48.6
(32)

47.2
(44)

46.8
(38)

49.4
(35)

50.9
(34)

53.9
(47)

57.8
(48)

50.4
(36)

50.5
(33)

49.1
(42)

50.1
(47)

Subject 11 44.0
(22)

50.3
(33)

54.9
(50)

52.6
(55)

46.5
(25)

50.0
(33)

53.5
(49)

53.5
(54)

50.2
(28)

51.3
(34)

52.7
(44)

52.2
(44)

50.1
(35)

53.8
(36)

52.5
(43)

52.8
(49)

Subject 12 41.0
(20)

48.2
(31)

47.1
(48)

51.8
(53)

43.3
(23)

46.8
(29)

48.9
(50)

47.6
(55)

51.3
(31)

52.3
(35)

56.6
(54)

54.8
(55)

52.3
(32)

52.9
(35)

56.0
(50)

58.9
(57)

Subject 13 33.1
(17)

40.0
(25)

40.9
(40)

41.7
(44)

43.1
(27)

48.7
(36)

50.0
(51)

48.3
(56)

47.5
(31)

58.1
(43)

57.4
(52)

56.7
(53)

48.5
(32)

50.8
(39)

54.8
(49)

53.1
(56)

Subject 14 53.7
(27)

60.7
(40)

64.5
(39)

63.4
(43)

48.2
(31)

62.1
(42)

67.5
(43)

66.1
(47)

49.7
(33)

50.9
(35)

57.7
(29)

55.0
(29)

48.6
(34)

56.3
(37)

63.6
(45)

60.6
(51)

Subject 15 48.9
(24)

42.5
(37)

55.2
(42)

57.6
(48)

58.2
(39)

62.1
(39)

66.9
(40)

64.3
(42)

59.8
(35)

61.0
(36)

63.6
(46)

62.2
(47)

49.2
(37)

58.3
(42)

63.8
(47)

64.0
(52)

Average 45.9
(23)

48.4
(34)

49.1
(43)

50.6
(46)

48.8
(30)

54.0
(37)

56.5
(38)

56.1
(43)

54.5
(33)

57.8
(38)

58.6
(39)

59.5
(42)

53.1
(35)

55.4
(37)

57.8
(41)

57.4
(47)

mance in datasets [17] and [119], respectively. Furthermore, to extend the significance of the

proposed models, we have also conducted an additional study, which involved generating

a confusion matrix to classify IMG-EEG imagined word classes across all fifteen cross-

subjects, as illustrated in Fig. 4.8. Our findings indicate that PM1-ELM (in dataset [17]) is

more accurate at recognizing imagined word classes (Down and Right) than PM2-AlexNet

and PM3-QueezeNet, however, the other models (PM2-AlexNet and PM3-QueezeNet) are

more accurate at recognizing other classes (Up, Forward, and Backword). A similar case

was demonstrated with another dataset [119], shown in Fig. 4.8. The proposed MSSDM-

JTFDF models have exhibited distinct feature discriminability and significantly improved

classification performance across different imagined word recognition classes. Moreover,
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Table 4.6: Average accuracy score (in %) obtained from reduced features (in %) for four
different pre-trained neural networks using HDC scheme and SVM classifier on the BCI
Competition dataset.

Hellinger distance-based feature selection: ACCavg (Rf)
ELM AlexNet SqueezeNet ResNet

CF→ 0.5 0.6 0.7 0.8 0.5 0.6 0.7 0.8 0.5 0.6 0.7 0.8 0.5 0.6 0.7 0.8
Subject 1 35.4

(18)
45.2
(27)

49.1
(45)

48.8
(48)

42.4
(25)

45.3
(27)

43.1
(39)

48.8
(44)

41.4
(24)

51.9
(25)

57.1
(48)

54.9
(49)

34.5
(17)

41.7
(23)

45.3
(36)

50.3
(37)

Subject 2 50.2
(25)

59.8
(38)

63.5
(60)

62.1
(63)

55.5
(40)

58.8
(43)

60.2
(48)

64.2
(51)

65.7
(41)

71.4
(49)

78.0
(69)

77.2
(70)

62.1
(37)

66.4
(48)

69.3
(60)

70.1
(61)

Subject 3 49.1
(25)

50.9
(37)

61.2
(51)

60.0
(54)

58.0
(38)

62.8
(51)

65.0
(55)

64.1
(52)

56.8
(32)

62.9
(49)

68.4
(53)

70.3
(54)

55.6
(31)

56.5
(47)

59.6
(44)

59.2
(45)

Subject 4 46.7
(23)

50.2
(35)

55.1
(50)

56.0
(55)

55.4
(32)

58.0
(47)

60.2
(51)

62.4
(52)

53.0
(30)

63.0
(48)

70.2
(65)

72.1
(66)

45.9
(43)

54.4
(49)

58.2
(47)

57.4
(49)

Subject 5 43.6
(22)

50.1
(33)

55.7
(50)

55.6
(55)

42.3
(21)

43.1
(26)

46.3
(40)

45.6
(48)

45.5
(24)

55.7
(38)

63.1
(52)

64.4
(53)

33.7
(12)

42.4
(25)

54.7
(43)

54.3
(44)

Subject 6 28.1
(14)

40.8
(21)

45.5
(41)

46.1
(45)

38.8
(25)

45.1
(25)

48.9
(44)

47.5
(53)

36.1
(22)

52.0
(32)

57.0
(47)

61.2
(48)

38.9
(25)

45.6
(26)

50.1
(40)

54.6
(41)

Subject 7 35.6
(18)

40.5
(27)

45.2
(40)

44.5
(44)

49.6
(32)

51.8
(38)

52.9
(48)

54.1
(58)

46.2
(28)

49.3
(36)

48.4
(38)

50.9
(39)

49.6
(40)

55.3
(48)

60.4
(50)

57.3
(51)

Subject 8 38.5
(21)

42.9
(32)

44.4
(43)

43.9
(47)

46.7
(25)

47.4
(36)

48.5
(47)

52.1
(56)

41.5
(20)

44.2
(33)

44.8
(38)

45.3
(38)

44.4
(23)

53.9
(43)

53.6
(46)

55.1
(48)

Subject 9 40.5
(20)

44.7
(30)

46.5
(45)

46.2
(49)

43.7
(23)

44.2
(30)

53.4
(52)

62.8
(61)

50.1
(30)

52.6
(38)

53.9
(42)

53.5
(47)

56.2
(36)

59.2
(50)

63.3
(53)

62.6
(54)

Subject 10 25.4
(13)

35.0
(19)

38.4
(35)

36.9
(37)

37.9
(25)

38.4
(22)

42.3
(39)

45.0
(46)

42.4
(30)

40.8
(25)

44.8
(33)

45.7
(36)

39.9
(27)

45.1
(29)

46.9
(35)

52.5
(36)

Subject 11 38.7
(19)

40.3
(29)

51.0
(40)

47.9
(43)

41.9
(23)

39.5
(28)

48.2
(37)

47.6
(44)

39.0
(20)

48.2
(37)

52.9
(34)

53.5
(37)

49.4
(30)

50.2
(42)

52.6
(33)

54.9
(34)

Subject 12 36.1
(18)

42.5
(27)

46.9
(43)

46.1
(45)

39.9
(22)

40.9
(21)

49.6
(45)

48.8
(54)

34.1
(16)

44.4
(29)

54.3
(41)

53.9
(45)

41.9
(24)

43.2
(28)

50.3
(37)

48.2
(38)

Subject 13 29.1
(15)

36.9
(22)

39.6
(37)

41.1
(43)

39.7
(25)

46.5
(32)

46.7
(44)

49.5
(52)

39.4
(25)

46.7
(32)

52.8
(41)

53.1
(42)

42.1
(28)

51.1
(36)

56.0
(45)

58.4
(46)

Subject 14 44.8
(22)

47.5
(34)

59.4
(48)

61.2
(55)

52.9
(31)

61.4
(47)

60.8
(49)

65.5
(58)

50.5
(33)

54.9
(41)

64.9
(44)

62.0
(45)

58.1
(36)

60.6
(47)

62.5
(42)

65.9
(43)

Subject 15 45.6
(23)

50.3
(34)

52.0
(50)

53.0
(58)

61.0
(38)

67.2
(39)

69.3
(42)

60.3
(49)

61.0
(38)

64.5
(48)

72.4
(50)

72.2
(50)

50.9
(30)

52.3
(40)

56.7
(44)

55.1
(46)

Average 39.4
(20)

45.2
(29)

50.2
(45)

49.8
(49)

48.0
(28)

50.6
(34)

52.2
(45)

54.6
(52)

47.2
(28)

53.0
(37)

59.1
(46)

59.7
(48)

48.3
(29)

53.6
(39)

55.9
(44)

56.7
(45)

the classification rate for other classes was also improved to a certain extent in comparison to

existing work [18, 19]. Thus, these results reveal that the proposed MSSDM-based models

for IMS word class exhibited significantly higher performance as compared to the existing

approach [17, 18, 19, 126, 127] with reducing feature space, indicating the effectiveness of

the proposed framework for a feasible solution.

4.5 Discussions

The effectiveness of the proposed method was verified by comparing its performance

to state-of-the-art works on the same datasets. Our demonstrated results, shown in Ta-
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ble 4.7, were in line with the neural representation discovered in the previous works

[17, 18, 19, 126, 127] and have been tested with the same experimental paradigm, including

the number of channel selection and formulation of deep features of performing the same

imagined word classes in both datasets. To recognize imagined words in various IMG-EEG

datasets, several feature extraction approaches were combined with several machine learn-

ing approaches. Previous studies in IMS classification on the Correto dataset EEG signals

achieved the highest accuracy rates of 17.46% with DWT-based bands in 6-class (Coretto

et al. [17]), 18.89% with CNN deep feature in 5-word class (Cooney et al. [126]), 19.81%

with deep ConvNets and FBCSP in three-class [127], and 22.01% with the BoF approach

method (Garcı́a-Salinas et al. [18]) in the 5-class. For further improvement, Lee et al.

[19] have achieved accuracies of 38.67% (Correto dataset) and 37.33% (BCI Competition

dataset) by exploring IF and SE features with the SNN. However, compared to [19], our

MSSDM-based proposed PM1 and PM7 models have demonstrated improved classification

performance. The best accuracies were achieved with PM4-ResNet (ACCavg = 60.80%,

Rf > 45%, CF = 0.7) and PM7-SqueezeNet (ACCavg = 59.07%, Rf > 46%, CF = 0.7) on

the datasets [17] and [119], respectively. Whereas, some proposed models (PM5-ELM on

Figure 4.10: k-fold cross validation across all subjects in CCA approach on (a) the Coretto
dataset and (b) the BCI Competition dataset.

Correto dataset) could not discriminate between two imagery classes and delivered slightly

inferior results for Lee et al. [19] in BCI Competition dataset. This can be improved by in-

creasing the size of epochs in each trial with different word choices. Overall, our MSSDM-
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Figure 4.11: Comparison of improvement of averaged decoding accuracies (in %) during
imagination across all subjects.

Table 4.7: Performance comparison with the other state-of-the-art methods.

Dataset Authors and reference Methodology Accuracy (%) p-value
Correto Coretto et al. [17] DWT, RF DB 17.46 ± 0.75 < 0.01
dataset [17] Cooney et al. [126] CNN 18.89 ± 1.41 < 0.01

Schirrmeister et al. [127] Deep ConvNets, FBCSP 19.81 ± 2.10 < 0.01
Garcı́a-Salinas et al. [18] BoF 22.01 ± 2.33 < 0.01
Lee et al. [19] IF and SE features, SNN,

SVM
45.00 ± 3.13 < 0.01

Proposed method-1 MSSDM-ELM-JTFDF-CCA
(SVM)

48.09 ± 3.13 < 0.01

Proposed method-2 MSSDM-ResNet-JTFDF-
CCA (SVM)

60.80 ± 2.17 < 0.01

BCI Coretto et al. [17] DWT, RF 37.24 ± 6.24 < 0.01
Competi Cooney et al. [126] CNN 19.79 ± 1.45 < 0.01
tion Schirrmeister et al. [127] Deep ConvNets, FBCSP 20.06 ± 1.05 < 0.01
dataset
[119]

Garcı́a-Salinas et al. [18] BoF 23.26 ± 1.66 < 0.01

Lee et al. [19] IF and SE features, SNN,
SVM

48.10 ± 3.68 < 0.01

Proposed method-1 MSSDM-ELM-JTFDF-CCA
(SVM)

53.14 ± 3.68 < 0.01

Proposed method-2 MSSDM-SqueezeNet-
JTFDF-HDC (SVM)

59.07 ± 8.26 < 0.01

DWT: Discrete wavelet transform, RF: Random forest, FBCSP: Filter bank common spatial patterns, BoF:
Bag of features, ConvNets: Convolutional neural networks, IF: Instantaneous frequency, SE: Spectral
entropy, SNN: Siamese neural network.

JTFDF feature-based models showed a significant improvement over existing methods by

12.70% and 5.03% in the case of dense and shallow features, respectively, as validated by

statistical analysis (shown in Fig. 4.11).

Therefore, it is evident from this study that the proposed MSSDM method can be useful

to enhance multivariate channel-aligned common features from a few channels, leading
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to improved IMG-EEG imagined word multi-class classification performance. Also, our

results revealed that the MSSDM method generated multivariate JTF images that precisely

represented imagined word recognition, and reduced JTFDF features extracted from these

JTF images were perfectly suited for imagined multi-class classification. Thus, we can state

that the proposed MSSDM-JTFDF-based models deliver robust classification performance

despite a large number of classes, proving the feasibility of reducing deep features and

computational complexity for multi-class classification for feasible BCI systems.

4.6 Summary

In this study, we have proposed a novel MSSDM-JTFDF features-based classification

model for the automatic recognition of imagined word speech using multichannel IMS-

EEG signals. Our approach consists of (i) implementation of the MSSDM decomposition

method to extract an ensemble of CAOCs from multichannel IMS-EEG signals using im-

proved multivariate swarm filtering and SFT spectrum, (ii) construction of multivariate JTF

images using JIA and JIF functions, and (iii) formulation of JTF-based deep features us-

ing different pre-trained NN. In addition, we have proposed a feature reduction approach

using CCA and HDC to formulate reduced deep features from JTF images while reducing

computational complexity for multi-class classification. The study shows the efficacy of the

proposed method in accurately classifying IMS across 6-class and 5-class recognition tasks,

outperforming existing state-of-the-art approaches on both datasets. Moreover, the experi-

mental outcomes indicate that the proposed MSSDM-based models achieve more efficient

IMS classification, even with fewer JTFDF features and a limited number of EEG channels,

despite a large number of classes. In the future, we will extend our problem to the broader

range of IMS problem-based applications, optimize channels, and ultimately deploy our

solution to address practical clinical systems.
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Chapter 5

Enhanced SSDM with Multi-Class

Motor Imagery-based EEG-BCI System

This chapter presents a novel decomposition technique, ESSDM to solve uniform de-

composition and hyperparameter selection issues in the existing SWD method. The tech-

nique uses SHO, a modified SwF filter bank and SFT spectrum to improve hyperparameter

selection and decomposition performance. It adopts a newly designed fitness function cri-

teria based on KLD distance from spectral kurtosis for optimal mode extraction and fast

convergence. The designing of ESSDM and its effectiveness over existing methods with

synthetic and real EEG signals are discussed in detail in this chapter. Additionally, this

proposed method is then used to develop a framework for the automatic classification of

MI tasks from MI-EEG signals for BCI applications. The classification performance of the

MI-EEG recognition BCI framework is detailed in later sections.

5.1 Introduction

MI has developed a new intuitive paradigm in the BCI and has become an active re-

habilitation tool for the treatment of paralytic stroke patients [34, 73]. MI is a cognitive

process in which the subject imagines the motory action rather than performing the actual

action, e.g., right-hand or left-hand. In active rehabilitation training, MI-BCI constructs

a direct information transfer pathway, which converts EEG brain activity signals into MI
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commands to control prosthesis instead of traditional muscle control pathways [25, 26]. In

these studies [24, 25, 26, 28, 29, 30, 31, 32, 33], EEG has been widely used because of its

non-invasiveness and affordability, and it offers an improved fine-grained analysis by deter-

mining spectral, spatial, and temporal components underlying MI categories. Additionally,

MI-EEG has multi-class scalability, thus showing the possibility of building an extensible

BCI system. However, in an MI-BCI system, accurate recognition of MI actions from EEG

signals is difficult due to its limited spatial resolution, intra-channel interference, and non-

stationary and nonlinearity nature; thus, it is challenging to develop a reliable EEG-based

MI-BCI recognition model.

To examine the efficacy of using EEG signals, several studies have attempted to ex-

tract informative features for MI-EEG recognition systems in recent years. It majorly fo-

cuses on two categories. The first category is based on filtering-based feature extraction,

such as spatial filtering and its variants [23, 24, 29, 31, 32, 73], frequency-domain features

(e.g., PSD [128], Riemannian covariance [129], and RE [130]), TF methods like MEMD

[131], and WT [132]. In the second category, shallow learning and deep learning meth-

ods have been employed to estimate the MI-EEG tasks with promising results based on

EEG [24, 25, 28, 30, 34]. These approaches involve, spatial TF features with optimized

Deep&Wide (ORDW) [28], 3D-convolutional neural network (3D-CNN) [25], frequential

deep belief network (FDBN) [30], spatial filters based deep CNN [24], and multi-scale fu-

sion attention mechanism (MS-AMF) [26], demonstrating the high discriminability of the

feature for enhancement of MI-based actions. Among these approaches, the decomposi-

tion methods became crucial for MI recognition and gaining attention. However, the used

methods such as MEMD [133] or EWT [134] limit the performance of extracting spectral

characteristics and identifying MI state due to mode mixing issues. Whereas most of the

above-reported methods are constrained by their performance. Mostly derived handcrafted

features are based on shallow and deep learning methods. It strongly depends upon the for-

mulation of classification models to find mutual feature characteristics across multiple EEG

channels with optimal multi-class scalability and introduced computational complexity for

real-time deployable BCI systems.

Recent advancements in modern signal processing technologies utilizing multi-scale
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adaptive decomposition have already proved the potential to analyze MI-EEG signals. By

virtue of their ability to adaptively decompose an original signal into several components,

these methods, such as MIF [66], FBSE [53], and VMD [52], provide a useful investiga-

tion to analyze the features, particularly the weak spectral characteristics in nonlinear and

nonstationary signals. However, the majority of these methods have been demonstrated to

be superior in addressing both mode mixing elimination and adaptive decomposition. Yet,

the challenge of tuning multiple preset parameters across a wide range severely restricts

their potential uses. Among these approaches, SWD [67] has shown its effectiveness in

improving decomposition adaptability and addressing mode mixing issues when analyzing

nonstationary signals. However, the performance of SWD relies heavily on two predefined

tuning parameters: Pth and StDth. To ensure optimal SWD decomposition, it is imperative to

meticulously choose the accurate threshold settings for each signal prior to decomposition.

A few significant attempts in selecting SWD thresholds using metaheuristic optimization

algorithms have been explored for TF analysis [68, 71]. These approaches have deliber-

ately attempted in solving various complex optimization problems such as data-adaptive,

fast convergence, derivation-free mechanism, and local optima avoidance to a certain ex-

tent. Moreover, methods in this literature are limited by their performance in terms of the

trade-off between optimization of threshold parameters tuning and performance. Thus, there

is scope for improvement related to individual threshold optimization in MI action recog-

nition across MI-EEG channels to improve mode aliasing issues and deliver optimal mode

selection.

To address this issue, we propose a novel decomposition technique, namely, the ESSDM

based on SHO [135], modified SwF filter bank, and SFT spectrum to solve the issue of

choice of uniform decomposition and threshold parameters in existing SWD and, further it

is applied to enhance multi-class MI-EEG classification performance. ESSDM adopts im-

proved swarm filtering to automatically deliver optimal frequency bands in SFT spectrum

with appropriate threshold parameters to extract meaningful OCs of any MI-EEG signal and

improve TF localization. In this approach, new fitness function criteria is designed based

on the KLD distance [136] from the spectral kurtosis of all modes to select threshold pa-

rameters that optimize decomposition effect, avoid excessive iterations, and provide fast
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convergence with optimal modes. The selection of the SHO optimizer is due to a newly

evolved optimization technique which has proved its capability of solving many optimiza-

tion problems. With a newly designed fitness function, SHO conducts an optimization ap-

proach that mimics the natural hunting mechanism and hierarchical leadership structure

observed in herd hunting. SHO offers distinct advantages with its fast convergence, com-

putational efficiency, and the minimal risk of getting trapped in local minima. The fitness

function in SHO is formulated to signify the relationship between the SWD thresholds and

the overall best decomposition performance of similar signals. The experimental finding

reveals that the proposed approach offers a unified optimization in SWD threshold selection

for different similar signals, leading to accurate MI-EEG recognition. In order to automate

mutual features across multi-channel MI-EEG signals, we have introduced a new subspace

clustered-based FTFG feature from computed TF information. The multi-scale fused FTFG

features are automatically extracted from the ESSDM-based TF images in a categorical

way, which enhances channel-aligned common information present in the obtained OCs.

Finally, the performance of ESSDM-based classification performance has been evaluated

using obtained FTFG features and using three computationally efficient classifiers, namely,

ELM [123], compact CNN (CNet) [137], and capsule neural network (CapsNet) [138]. The

novelty of this study is to propose an efficient ESSDM for optimal mode extraction and

TF analysis method, and extract optimized FTFG features in order to enhance the MI-EEG

recognition model for feasible BCI application. The key contributions of the presented work

are given as follows.

1. A new ESSDM is proposed to enhance the optimization efficiency and accuracy of

SWD to improve mode aliasing issues and deliver optimal mode selection in specific

channels for MI-EEG classification enhancement.

2. Significant SHO optimizer and new fitness function criteria have been designed based

on the KLD distance from the spectral kurtosis of all modes to select threshold param-

eters that optimize the decomposition effect, avoid excessive iterations, and provide

fast convergence with optimal modes.

3. FTFG features were derived from computed TF information to find mutual spectral
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information across channels for improved MI-EEG BCI classification.

4. The proposed ESSDM-based MI-EEG classification framework not only outperforms

existing works in the specific-subject classification but also seamlessly adapts to

cross-subject classification on two well-known MI-EEG datasets.

5.2 Dataset and experimental paradigm

In our study, we have tested the performance of a proposed method on two public

datasets for MI-EEG signals. Details of these datasets were described as follows.

Dataset 1: This used dataset IVa is from BCI competition III [139], involving five subjects

(”aa,” ”al,” ”av,” ”aw,” and ”ay”) performing MI tasks (right-hand or right-foot movement).

EEG data from 118 electrodes were processed using BPF for filtering noise and artifacts

with a pass-band frequency range [0.05 Hz to 200 Hz]. A sampling frequency of 250 Hz

was used in the experimental setup for recording. Each subject has completed 280 trials, and

the duration of an imagined stimulus segment that ranged from 500 to 2500 milliseconds

was used to conduct the analysis.

Dataset 2: The BCI IV-2a dataset [140] involves 4 MI classes, including left-hand, right-

hand, foot, and tongue movements, and it consists of data from 9 subjects. The data were

recorded at a sampling rate of 250 Hz using 22 Ag/AgCl electrodes. Each subject con-

tributed two sessions, each comprising 288 trials, resulting in an average of 72 trials per

class. Through the MI stimulus analysis, we have considered the data segment from 2 sec-

onds to 6 seconds into each trial. To preprocess the EEG signals, a filter bank with BPFs

ranging from 8 Hz to 30 Hz was applied to all recorded channels. Additionally, a notch

filter at 50 Hz was applied to the EEG signals. The trial of the experimental deployment

paradigm is demonstrated in Fig. 5.2.

5.3 Proposed methodology

The objective of this study is to develop an automated ESSDM-based MI recognition

system using EEG. Fig. 5.1 shows the proposed framework for MI-EEG recognition using
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the ESSDM method and all the methods involved are briefly explained in the subsequent

sub-sections.

Figure 5.1: Block diagram of the proposed framework for MI-EEG recognition using
ESSDM method.

Figure 5.2: Experimental paradigm for MI-EEG recording.
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5.3.1 Enhanced sparse swarm decomposition method

The proposed ESSDM is a novel enhanced extension of the SWD method [67] to decom-

pose multichannel nonstationary signals into optimal OCs and improve TF analysis of non-

stationary signals. The execution of the proposed ESSDM method comprises of formulation

of a new SFT spectrum, design of an iterative swarm filtering method with modification of

convergence criteria, and adoption of SHO with a new fitness function for optimal threshold

parameter tuning that converge channel-specific optimal OCs for efficient decomposition.

The motivation behind the adoption of SHO is described as follows.

SWD demonstrates superior performance in addressing mode mixing and extracting

weak features from multicomponent signals. However, being a data-driven method, SWD’s

varied coefficients can lead to diverse decomposition outcomes, not necessarily optimized

for the selection of modes related to MI-EEG separation and detection. The key issues arise

from setting the Pth and StdTh, which significantly impact the decomposition performance.

To understand the effect of selecting these threshold values on decomposition performance,

we conducted a study on the mode reconstruction capability of existing SWD using a

synthetic multicomponent AM signal. The synthetic AM signal uses five constant close

frequencies with amplitude variation, represented in Eq. (2.18). Inappropriate selection

of threshold parameters can result in either over-decomposition or under-decomposition,

which is demonstrated in Fig. 5.3. In Fig. 5.3 (a), the threshold setting at Pth = 0.1 and

StDth = 0.1 lead to the over-decomposition results. In this, OC4 and OC5 deliver the same

spectral characteristic of signal details but require extra computation to obtain these two

components. Conversely, the under-decomposition result occurs in the same input signals

when Pth = 0.5 and StDth = 0.5, which is shown in Fig. 5.3 (a). It produces a mode-mixing

issue by decomposing different significant components in the single mode, thereby sacrific-

ing significant spectral detail. In fact, setting lower thresholds in SWD yields more modes

and sophisticated decomposition, but it does not guarantee better results and leads to higher

computational costs. The existing recommended threshold values (Pth = 0.1 and StDth =

0.1) may not be practical for all scenarios, especially in analyze the multi-spectral OCs re-

lated to MI-EEG conditions. To address this issue, the proposed ESSDM method employs
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Figure 5.3: Plots of (a) SWD-based decomposed OCs with different threshold parameter
selection and (b) obtained TFRs using HSA.

SHO and an appropriate optimization fitness criterion to determine suitable thresholds for

separation and extraction from diverse MI-EEG multicomponent signals. The steps of the

proposed SSDM to extract optimal modes from multicomponent non-stationary signal x(n)

comprise three steps. Initially, SHO is designed to select the optimal threshold value from

the selectable threshold range using new fitness criteria. Further, the SFT spectrum estima-

tion model is applied to get an optimized spectrum. The detailed description of the SFT

model is described in Section 2.2.1. Each obtained threshold parameter value based on the

SHO is used to design a USSDM-based filter bank and extract the optimal OCs from the

obtained SFT spectrum. A mathematical expression derived to obtain the decomposed OCs

using SSDM is given in Section 2.2.3. The SHO with a new fitness function for optimal
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threshold parameter tuning is given in detail in the next section.

5.3.2 Adoption of SHO for optimal threshold parameter tuning

The SHO is a biologically-inspired and population-based optimization approach with

a higher capability for global optimization in comparison [135] and its parameter initial-

ization values of SHO for Pth and StDth are illustrated in Table 5.1. The algorithm of

the proposed ESSDM method is given in Algorithm 5.1. At first, SHO is performed to

calculate the optimal threshold value (Pth, StdTh) of SSDM to avoid over-decomposition

or under-decomposition modes. SHO is responsible for searching this value from the se-

lectable threshold range to determine the optimal threshold setting. In the second phase,

new fitness criteria, KLD distance from spectral kurtosis (SK) of all modes, have been em-

ployed to avoid excessive iterations and provide fast convergence with optimized modes. To

quantify the relationship between the decomposition performance and the threshold setting,

a fitness function, f(Pth,StdTh), is designed as follows:

Table 5.1: Parameters initialization SHO optimizer for threshold parameter tuning

Parameter Experimental
value

Population size (N ) 20 (max)
Size of herd (H) and predator (P ) 20
Dimensionality (D) 30
Maximum iterations 14 (maximum)
Objective function (f ) @Ackley
Search space lower bound (xd) 0.001
Search space upper bound (xu) 0.1
Exploration rate 0.1-0.5
Repulsion strength (α) 0.5-2.0
Attraction strength (β) 0.5-2.0

f(Pth,StdTh) =
|DKLD (xit, xit−1)|+Mit∑L

it = 1 |DKLD (xit, xit−1)|
(5.1)

f(Pth,StdTh) =

∣∣∣DKLD

(
P (xit) ln

P(xit)
P(xit−1)

)∣∣∣+ SKMit
SKRit∑L

it = 1

∣∣∣DKLD

(
P (xit) ln

P(xit)
P(xit−1)

)∣∣∣ < 0.05 (5.2)
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Mit =
1

N

N−1∑
n = 1

|X(n, f)|4

(|X(n, f)|2))2

+SKit DKLD < 0.1

−SKit DKLD > 0.1

(5.3)

xj =
k−1∑
j=1

DOMj (5.4)

Where L denotes the number of iterations in every herd-pray optimization, DOM is the

obtained dominant OCs, xit is the reconstructed original signal having (k-1) OCs of the

itth sample length. The term DKLD(xit, xit−1) calculates the spectral distance by finding

spectral entropy using criteria, KLD between adjacent OCs and converge the process when

it has minimum optimal value (< 0.05). Mit represents the ratio of spectral kurtosis between

(K-1) modes and residual of extracted signal. In SWD, the last OC represents the residual

of decomposition; thus, only the first (N -1) OCs are used for the analysis of the fitness

function. In this fitness function, the selection of the lowest DKLD value indicates that

the extracted OCs are closer to the original signal and signifies less probability of under-

decomposition condition. Whereas Mit controls the over-decomposition conditionally (in

Eq. 5.3) by adding term±SKit and reduces excessive iterations with fast convergence. Thus,

with a newly designed fitness function, SHO is able to correlate between different threshold

settings and decomposition performance, and extract optimal OCs with the selection of

unique threshold values for any signal.

5.3.3 Comparison with existing other methods

To demonstrate the effectiveness of the ESSDM method in identifying optimal mode,

synthetic multicomponent AM signals with additive uniformly distributed AWGN of SNR

(-10 dB) were demonstrated and compared with decomposition results of EMD, quasi-VMD

(Q-VMD), SWD, which are shown in Fig. 5.5. In Fig. 5.5 (b), it shows that the TFR ob-

tained by HHT is overlapped and non-distinguishable. The EMD fails to decompose the

signal into the original monocomponents due to the mode mixing issue. We hardly find

three monocomponents (OC1, OC2, and OC3) reconstructed properly in the obtained plot

with overlapping nature. To justify the advantage in mitigating mode mixing, Q-VMD (k =
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Figure 5.4: Plots of (a)-(b) convergence curves, and (c) fitness values for each iteration
showing the best selection of threshold parameters (Pth = 0.18 and StdTh = 0.15) for optimal
mode extraction using ESSDM.

5, α = 2000) is applied, and the result is presented in Fig. 5.5 (c). The first two components,

OC1 and OC2, are reconstructed properly, but noise interference distorts the OC3, OC4, and

OC5 components. However, even when many k and α -related factors are used, it is still

difficult to obtain a satisfactory result. In the case of SWD, it accurately replicates five

monocomponents and shows better ability to the mode mixing against the cost of the selec-

tion of lowest threshold values (Pth = 0.01, StdTh = 0.01) with computational complexity.

But it also delivers insignificant results with the selection of improper threshold parameters

(Pth = 0.03 and Stdth = 0.05) and delivers few OCs modes accurately, as shown in Fig. 5.5

(d). In case of Q-VMD, ESR for OC1 and OC3 is greatly improved but demonstrated poor in

OC3, OC4, and OC5, which is shown in Fig. 5.5 (c). On the contrary, the proposed ESSDM

demonstrates all five converged components with five modes. Due to SHO-based converge
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criteria and modified swarm filter bank, ESSDM optimally detects boundary frequencies in

the sparse domain and delivers optimal OCs. It achieved computational efficiency by op-

timizing threshold value to Pth = 0.02 and Stdth = 0.3 with fewer average iterations (8 –

10). Table 5.2 indicates the performance of SSDM, SWD, and HHT decomposition meth-

ods. The values of ESR and MSE for the ESSDM method are the lowest as compared to

the SWD and EMD methods. The value of the ESR of every extracted component for the

SWD method is slightly inferior, whereas the ESR for the EMD method was the highest.

The obtained ESR for the reconstructed monocomponent signals OC1, OC2, OC3, OC4, and

OC5 using the ESSDM is proved to be better than the non-optimized SWD method.

Table 5.2: Assessment of ESR and MSE metrics for AM reconstructed monocomponent
signals 1st, 2nd, 3rd, 4th, and 5th using EMD, SWD, Q-VMD, and proposed ESSDM method.
(Note: ’-’ represents missing values for non-constructed components).

Methods Proposed ESSDM SWD EMD Q-VMD
ESR1 (1st) 0.0001 1.0725 0.0216 0.0010
ESR2 (2nd) 0.0879 0.0104 0.2190 0.0558
ESR3 (3rd) 0.0266 0.0017 0.3553 0.2502
ESR4 (4th) 0.0007 0.0010 - 1.7405
ESR5 (5th) 0.0028 0.0010 - 0.0491
MSE1 (1st) 0.0043 0.0618 0.0594 0.0016
MSE2 (2nd) 0.0115 0.0031 0.0676 0.0115
MSE3 (3rd) 0.0116 0.0024 0.0808 0.1094
MSE4 (4th) 0.0006 0.0009 - 0.0836
MSE5 (5th) 0.0091 0.0012 - 0.0947

5.3.4 Feature formulation and classification

For an efficient and feasible MI-EEG classification model, extracting suitable features

from multichannel signals is a crucial task in developing BCI applications. In our work, we

have introduced a new feature approach that employs FTFG features, which were derived

from computed channel-specific TF images. To extract the FTFG feature, the TF images

were processed by applying a graph spectral filter to learn the feature attributes of the TF

image of the size of 875×756×3 and generate the sparse adjacency matrix. In order to find

the most discriminative FTFG features across cross-channel, a k-means algorithm-based

sub-space clustering approach is employed to find similarity between nodes among inter-
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Figure 5.5: Plots of (a) nonstationary AM input signal and decomposition results using (b)
EMD, (c) Q-VMD, (d) SWD, and (e) proposed ESSDM method.

channel graphs with respect to directly connected and indirectly connected nodes. In order

to understand how different computed sub-space clustered features affect the performance

complexity, we have tested against the performance parameter: Normalized Dunn index

(NDI). By selecting the highest NDI > 0.5, the proposed FTFG feature shows significance
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for the performance enhancement of MI-EEG class recognition. Fig. 5.6 illustrates the

extracted FTFG features for four different MI-EEG classes. These obtained features are

further fed to three different low computational classifiers: ELM [123], CNet [97], and

CapsNet [138]. In this work, ELM, CNet, and CapsNet were specifically selected due to

their shorter training times and fewer layer requirements. Algorithm 5.1 outlines the FTFG

feature formulation flow.

Figure 5.6: The extracted FTFG features based adjacency matrix from TF image for four
MI-EEG classes.

5.3.5 Evaluating classifier metrics and validation scheme

In order to validate the performance of the proposed method, we have conducted

specific-subject and cross-subject validation by employing leave-one-out cross-validation

using 80%-20% training and testing data configuration. This process was validated with k-

fold validation schemes, and the average result was reported by considering the performance

metrics, average accuracy (ACCavg) and Cohen’s kappa coefficient [141]. The kappa (k) is

a robust measure of classification performance by evaluating by correctness of the accuracy
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Algorithm 5.1 Computation of ESSDM-based FTFG features
Input: Nonstationary multichannel MI-EEG signal s(k)
Output: FTFG features from ESSDM-based optimal OC modes
Initialization: it = 0, c = 0, k = 0,Maxtr = 0,memberA = 30

Repeat
// Apply SHO optimization
Repeat
Initialize threshold parameters as population A = {H,P}
Calculate H and P movement
Compute best survival value SV of each individual (ai)
SV = [Pth, StdTh] = SVai =

f(ai)−fbest
fbest−fworst

// Apply modified swarm filter bank and extract optimal OCs
Repeat
Repeat
Compute SFT spectrum by Eq. (2.4)
Smooth spectrum by estimating highest ESD sit(k) by Eq. (2.7)
Find spectral boundaries on the obtained SFT spectrum
Select appropriate swarm filter parameters δ and M Eq. (2.9a) and Eq. 2.9b), respectively
Repeat
yj+1← SwF (sj(k),M, δ) ; SwF: Swarm filter
j ← j + 1
Bit+1(k)← Bit(k)
Until Bit < 0.1
s
′

it(k)← yj(k)

sit+1(k)← sit(k)− s
′

it(k)
it← it + 1, j = 0
y0(k)← s

′

it(k)

Until E
′

sit
(ω) < Pth

Cit ← Cit+1

Until Nit < Nc
Yit(k)←y0(k)
Calculate fitness function f(Pth,StdTh) by (5.2)
Recalculate survival value of each individual with restoration phase
Until fit < fit-1
// Estimation of FTFG features
Computation of IF and IA using HT
Compute adjacency matrix V using un-directional graph from TF image
Generate K-cluster using sub-space clustering
Compute distance function between cluster pair Vi and Vj using normalized Dunn index

NDI =

{
max( mini̸=j{dinter(Vi,Vj)}

maxi̸=j{dintera(Vi,Vj)} ) , if (Vi ∼= Vj) > 0.5

0 ,Otherwise

Select K-cluster using NDI to get FTFG feature
Tit ← Tit+1

Until Tit < Maxtr ; Maxtr - maximum number of trails

Notations: B: Bhattacharya distance, M : Number of swarm members, δ: Virtual time interval, Pth: Spectrum
peak threshold selection, Nc: Number of channels, it: Iteration.
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level, which is expressed as follows:

k =
Ao − Ar

1− Ar

(5.5)

Ar =
x1 × y1 + x2 × y2 + ...+ xc × yc

n× n
(5.6)

Where Ao and Ar represent the accuracy and the model’s random classification rate. x1,

..., xc signify the actual samples in each MI class, while y1, y2, ..., yc represent the samples

predicted by the model. c corresponds to the number of MI classes and n = x1+x2+ ...+xc

is the total sample count. We employ p-values from Wilcoxon signed-rank test to assess the

statistical significance of ESSDM-based classification models against other baseline models

[23, 24, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 73, 142]: p > 0.05 implies no statistical

difference, p < 0.05 indicates statistical difference, and p < 0.01 suggests high statistical

significance.

5.4 Results and discussions

In order to study the effectiveness of the proposed ESSDM-JTFDF, channel-aligned

multi-scale fused JTFDF features have been tested by designing an end-to-end classifica-

tion framework for MI-EEG signals-based motory imaginary enhancement. We have in-

vestigated the multi-class classification performance on two public datasets with the 4-class

in BCI IV-2a [140] and the 2-class in BCI III-4a [139] during MI imagination actions. In

our experiment, MI-EEG signals from different electrode configurations were taken into

consideration, including 22 electrodes and 118 electrodes, respectively. The 30 s analysing

window of each of these EEG signals was selected and further segmented into 10-second

epochs with considered imagined activation stimulus. The ESSDM method is used to ex-

tract the optimal OC modes from the multichannel MI-EEG signals. Then channel-specific

TF coefficients are computed from these extracted OCs to transform TF images using HSA

[41]. These TF images explore the TF analysis for discriminative neural activity patterns

due to the MI imagination tasks. In the TF plots, the highest activation during the MI tasks

was observed in the alpha (α: 8 – 13 Hz) and beta (β: 13 – 30 Hz) rhythms with imag-
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Figure 5.7: Averaged confusion matrix across all subjects using (a) ESSDM-FTFG-ELM,
(b) ESSDM-FTFG-CNet, and (c) ESSDM-FTFG-CapsNet on the BCI IV-2a dataset.

ined stimulus response during the time frame (0.5 - 2.5 s) after the visual onset of imag-

ination. The performance study has been carried out in three significant aspects, whose

results are discussed in the following sections. Firstly, classification accuracy and visual-

ization of the specific-subject benchmark performance are presented. In the second phase,

cross-subject benchmarks were used to assess the classification performance of obtained

ESSDM-based-fused features across the two datasets. The third phase of the simulation

study determines how subspace clustering-based feature dimensionality enhances classi-

fication performance. To investigate the novel FTFG feature, we have formulated three

different ESSDM-based classification frameworks, proposed model 1: SSDM-FTFG-ELM,

proposed model 2: ESSDM-FTFG-CNet, and proposed model 3: ESSDM-FTFG-CapsNet.

To compare with the proposed models, the classification results of non-optimised SWD are

also carried out and validated with 10-fold cross-validation.
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Figure 5.8: The classification performance of cross-subject benchmarks (ACCavg, kappa)
on the BCI IV-2a and III-4a datasets.

Figure 5.9: Average accuracy obtained in specific-subject (a) bi-class and (b) multi-class on
IV-2a, and cross-subject (c) and (d) for IV-2a and III-4a, respectively.

5.4.1 Performance comparison with specific-subject benchmarks

To verify the effectiveness of the ESSDM-based fused feature, we have carried out sev-

eral comparative experiments using the proposed ESSDM and non-optimised SWD method
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Figure 5.10: The effect of a sub-clustered factor in (a) bi-class specific-subject and (b)
cross-subject performance on the IV-2a dataset.

on the BCI IV-2a and III-4a datasets and also compared with some specific-subject bench-

mark baseline models. In Table 5.3, the maximum average accuracy is marked in bold

font. Table 5.3 demonstrates the classification performance (ACCavg, kappa, and p-values)

following 10-fold cross-validation for proposed ESSDM and SWD with the state-of-the-art

models on the BCI IV-2a dataset (four classes). The following baseline models were utilized

for performance comparison: sparse filter band common spatial pattern (SFBCSP) [23],

compact convolutional recurrent neural network (SCCRNN) [27], ORDW [28], metric-

based spatial filtering transformer (MSFT) [73], CNN-long short-term memory (CNN-

LSTM) [27], Global [142], and MS-AMF [26]. For a more reasonable method analysis,

these four types of imagination classes are first paired for bi-classification. In the bi-class

scenario, classification results between the two mental tasks are evaluated for nine subjects

in six pairs: left-hand versus right-hand (LH-RH), right-hand versus feet (RH-F), right-

hand versus tongue (RH-T), left-hand versus feet (LH-F), left-hand versus tongue (LH-T),

and feet versus tongue (F-T). Significant differences between the results are evaluated by

Wilcoxon signed-rank test. According to the classification of six pairs, results show that

the proposed classification framework ESSDM-FTFG-CapsNet has the highest average ac-

curacy with 91.8% (k = 0.88, p = 0.02) among all methods, and it is 4.5% higher than

SWD-FTFG-CapsNet (p = 0.05). It indicates that fused features extracted by ESSDM have

a significant contribution to the classification results, and these results are consistent with
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10-fold cross-validation. There is no significant difference between the results of ESSDM-

FTFG-ELM (ACCavg = 90.6, k = 0.85, p = 0.02) and SWD-FTFG-CapsNet (ACCavg =

87.2%, k = 0.82, p = 0.04). In the context of specific-subject longitudinal classification,

certain subjects have exhibited enhanced individual performance. Specifically, subject A07

demonstrated an improvement from 82% to 92.8%, A08 improved from 85% to 88.6%, A09

showed an improvement from 83% to 91.9%, whereas A05 decreased from 91.8% to 83.0%,

and A03 decreased from 97% to 91.6%.

For multi-class scenarios, the classification performance of four-task MI-EEG has been

tested on BCI IV-2a and BCI III-4a datasets, as shown in Table 5.3. Classification results

of the proposed FTFG features under different feature clustered combinations are analyzed,

and the best results are reported. It is found that the highest average accuracy of ESSDM-

FTFG-CapsNet and ESSDM-FTFG-ELM are 85.8% (k = 0.84, p = 0.01) and 84.6% (k

= 0.82, p = 0.02), respectively. ESSDM-FTFG-CNet model reported the average perfor-

mance was (ACCavg = 82.7%, k = 0.79, p = 0.01). Whereas in the case of SWD based

scheme, the highest accuracy was attained by SWD-FTFG-CapsNet (ACCavg = 82.3, k =

0.78, p = 0.03). The inferior result was reported by SWD-FTFG-CNet (ACCavg = 79.82%,

k = 0.75, p = 0.05), when compared to the best baseline model MSFT-MLP [73] which

had the highest reported ACCavg = 86.1%. The Wilcoxon significance reveals a significant

difference (p = 0.009) between the proposed method and non-optimized SWD, which in-

dicating that the computed FTFG features exhibit significant TF characteristics which are

most relevant to brain motory actions. Compared to individual subjects, the ESSDM-FTFG-

CapsNet model has the highest accuracy and kappa for subjects A01, A02, A04, A06, and

A09. Especially for A06, the accuracy has been improved by at least 15.5% compared with

the best baseline models [73], indicating the presence of subject-specific sensitivities. For

subjects A03 and A07, the classification accuracy obtained by ESSDM-FTFG-CapsNet is

significantly lower than the best baseline model at 7.8% and 6.5%, respectively, probably

because their EEG signals are covered by artifacts and noises, resulting in ESSDM-FTFG-

CapsNet could not extract significant spectral characteristics. In terms of average accuracy,

ESSDM-FTFG-CapsNet achieves the highest accuracy of 85.8% and kappa of 0.84 with

fewer layers, which is better than the baseline models. Especially, the average accuracy
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is 12.1% higher than the ORDW [28] with optimal subject-specific network parameters

and slightly deteriorated with the MSFT [73] model. ESSDM-FTFG-CapsNet does not

change any threshold parameters when testing all subjects. As compared to baseline models

[24, 27, 28], the proposed ESSDM method-based frameworks show significant classifica-

tion performance due to two reasons. First, the derived fused feature across channels shows

the most discriminative feature that exhibits a specific TF band involved in MI. Second,

it is less computationally efficient due to the use of low-dense ELM, CNet, and CapsNet

classifier-based framework in contrast to existing deep learning-based approaches used in

baseline models [24, 27, 28], especially with the model MSFT-MLP [73]. Furthermore, to

evaluate the performance of the proposed models, we have carried out an additional study

that involved plotting a confusion matrix to classify MI-EEG classes across all nine specific

subjects, which is shown in Fig. 5.7. We observed that the proposed model ESSDM-FTFG-

CapsNet in the dataset [139, 140] is advantageous in recognizing MI-EEG classes (feet and

tongue) more accurately than the ESSDM-FTFG-ELM and ESSDM -FTFG-CNet, whereas

the other models (ESSDM-FTFG-ELM and ESSDM-FTFG-CNet) have greater accuracy in

recognizing other classes (right-hand and left-hand). These findings indicate the classifica-

tion rate for other classes was also improved due to the enhanced FTFG features to a certain

extent in comparison to prior works [24, 27, 28].

5.4.2 Performance comparison with cross-subject benchmarks

To thoroughly validate, the proposed ESSDM method has been tested for cross-subject

scenarios. The cross-subject validation was utilized with every trained specific-subject fea-

ture vector in the cross with different subjects’ test features employing a 10-fold cross-

validation approach. Table 5.4 and Fig. 5.8 exhibit the cross-subject classification perfor-

mance on the BCI IV-2a and III-4a datasets. It can be observed that the classification per-

formance of the ESSDM model composed of multi-channel features is significantly higher

than that of the non-optimized SWD-based model, including baseline models only using the

novel fused ESSDM-FTFG features. The results show that all cross-subject results exceed

classification performance of 88.04% for IV-2a, with the exception of cross-subjects 4 and 6

(lowest ACCavg = 71.2%) and 98.12% for III-4a with the exception of cross-subject 5 and 2
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Table 5.3: Average accuracy score (in %) and kappa (k) in both MI-EEG labeled scenarios
on the BCI IV-2a dataset. The best individual values are marked in bold. Notation NR
denotes non-reported values.

Method Subjects Average

A01 A02 A03 A04 A05 A06 A07 A08 A09

Bi-class scenario
SFBCSP [23] 98.8(NR) 97.8(NR) 97.0(NR) 94.7(NR) 91.8(NR) 90.6(NR) 67.9(NR) 63.5(NR) 58.4(NR) 84.5(NR)
Expert-CNN [24] 91.6(NR) 90.8(NR) 92.3(NR) 86.5(NR) 87.8(NR) 88.8(NR) 78.4(NR) 80.4(NR) 68.4(NR) 85.0(NR)
SCCRNN [27] 95.0(NR) 85.0(NR) 95.0(NR) 85.0(NR) 89.0(NR) 78.0(NR) 74.0(NR) 85.0(NR) 79.0(NR) 85.0(NR)
ORDW [28] 96.0(0.92) 93.5(0.87) 97.2(0.94) 89.4(0.79) 91.5(0.83) 81.2(0.62) 82.0(0.64) 79.0(0.58) 83.0(0.66) 88.0(0.76)
SWD-FTFG-ELM 81.9(0.77) 83.8(0.78) 93.8(0.81) 74.0(0.69) 75.4(0.70) 78.0(0.73) 86.3(0.81) 85.4(0.84) 92.6(0.87) 83.6(0.79)
SWD-FTFG-CNet 82.1(0.78) 80.1(0.74) 83.5(0.78) 69.9(0.65) 77.4(0.72) 71.4(0.66) 85.5(0.80) 83.7(0.88) 89.5(0.87) 81.4(0.77)
SWD-FTFG-CapsNet 88.6(0.84) 89.9(0.85) 91.9(0.87) 82.9(0.78) 75.5(0.70) 80.6(0.75) 88.4(0.83) 82.4(0.87) 86.2(0.81) 87.2(0.82)
Proposed-1 (ESSDM-FTFG-ELM) 86.2(0.80) 86.6(0.81) 89.7(0.85) 91.0(0.87) 80.6(0.77) 87.4(0.81) 91.3(0.90) 85.3(0.87) 93.6(0.89) 90.6(0.85)
Proposed-2 (ESSDM-FTFG-CNet) 87.2(0.81) 84.6(0.79) 85.9(0.81) 84.6(0.80) 79.5(0.76) 87.7(0.82) 90.2(0.86) 84.8(0.79) 90.3(0.86) 86.1(0.81)
Proposed-3 (ESSDM-FTFG-CapsNet) 96.7(0.90) 91.8(0.87) 91.6(0.87) 91.8(0.87) 83.0(0.80) 89.1(0.87) 92.8(0.91) 88.6(0.94) 91.9(0.87) 91.8(0.88)

Multi-class scenario
NCSP [29] 79.2(NR) 52.1(NR) 83.3(NR) 62.2(NR) 54.5(NR) 39.2(NR) 83.3(NR) 82.6(NR) 66.7(NR) 67.0(NR)
FDBN [30] 71.1(NR) 55.6(NR) 76.9(NR) 65.6(NR) 69.1(NR) 65.0(NR) 71.7(NR) 92.4(NR) 82.4(NR) 72.2(NR)
FB-CSP [31] 76.0(NR) 56.5(NR) 81.3(NR) 61.0(NR) 55.0(NR) 45.3(NR) 82.8(NR) 81.3(NR) 70.8(NR) 67.8(NR)
CM-CNN [32] 87.5(NR) 65.3(NR) 90.3(NR) 66.7(NR) 62.5(NR) 45.5(NR) 89.6(NR) 83.3(NR) 79.5(NR) 74.5(NR)
FB-CSP-SVM [32] 82.3(NR) 60.4(NR) 83.0(NR) 72.6(NR) 60.7(NR) 44.1(NR) 86.1(NR) 77.1(NR) 75.0(NR) 71.2(NR)
1D-AX-LSTM [33] 75.1(NR) 71.4(NR) 72.2(NR) 72.9(NR) 82.6(NR) 69.6(NR) 89.0(NR) 80.3(NR) 75.1(NR) 76.5(NR)
DFB-CSP [24] 84.9(NR) 66.4(NR) 84.7(NR) 81.4(NR) 79.2(NR) 70.7(NR) 86.1(NR) 83.8(NR) 83.0(NR) 80.0(NR)
3D-CNN multibranch [25] 77.4(NR) 60.1(NR) 82.9(NR) 72.3(NR) 75.8(NR) 69.0(NR) 76.0(NR) 76.9(NR) 84.7(NR) 75.0(NR)
MS-AMF [26] 88.3(NR) 65.7(NR) 92.0(NR) 77.7(NR) 60.9(NR) 63.7(NR) 88.2(NR) 93.2(NR) 89.5(NR) 79.9(NR)
CD-LOSS [34] 91.3(NR) 71.6(NR) 92.3(NR) 78.4(NR) 80.1(NR) 61.6(NR) 92.6(NR) 90.3(NR) 78.4(NR) 81.9(NR)
CNN-LSTM [27] NR(0.87) NR(0.90) NR(0.83) NR(0.95) NR(0.85) NR(0.77) NR(0.66) NR(0.78) NR(0.54) NR(0.79)
Global [142] 86.7(0.82) 77.1(0.69) 80.9(0.74) 88.4(0.84) 88.6(0.84) 66.5(0.54) 56.0(0.41) 71.0(0.61) 55.9(0.40) 74.6(0.64)
ORDW [28] 89.8(0.86) 79.8(0.73) 85.2(0.8) 83.9(0.79) 80.1(0.79) 54.1(0.39) 60.1(0.47) 60.5(0.47) 70.2(0.6) 73.7(0.66)
MSFT-MLP [73] 86.7(NR) 85.0(NR) 96.7(NR) 83.3(NR) 68.3(NR) 70.0(NR) 98.3(NR) 98.3(NR) 88.3(NR) 86.1(NR)
SWD-FTFG-ELM 78.3(0.73) 80.2(0.75) 82.1(0.77) 72.2(0.67) 73.6(0.69) 76.1(0.71) 84.2(0.79) 90.8(0.86) 87.0(0.82) 80.5(0.78)
SWD-FTFG-CNet 80.1(0.76) 78.1(0.73) 81.4(0.76) 68.2(0.63) 75.6(0.71) 70.3(0.65) 84.2(0.79) 91.7(0.87) 88.1(0.83) 79.8(0.75)
SWD-FTFG-CapsNet 84.8(0.80) 86.0(0.81) 87.9(0.83) 79.3(0.74) 72.2(0.67) 77.2(0.72) 92.3(0.87) 88.5(0.83) 82.5(0.77) 82.3(0.78)
Proposed-1 (ESSDM-FTFG-ELM) 82.5(0.78) 84.1(0.79) 87.1(0.83) 88.3(0.84) 78.2(0.74) 81.1(0.76) 94.7(0.90) 91.2(0.86) 89.6(0.85) 84.6(0.82)
Proposed-2 (ESSDM-FTFG-CNet) 83.4(0.78) 82.2(0.77) 83.4(0.79) 82.2(0.78) 77.2(0.73) 81.3(0.76) 84.0(0.80) 79.6(0.74) 85.4(0.81) 82.7(0.79)
Proposed-3 (ESSDM-FTFG-CapsNet) 92.5(0.88) 89.1(0.84) 88.9(0.84) 89.1(0.85) 80.6(0.76) 85.5(0.80) 91.8(0.87) 91.3(0.86) 87.9(0.84) 85.8(0.84)
SFBCSP: Sparse filter band common spatial pattern, SCCRNN: Compact convolutional recurrent neural network, ORDW: Optimized Deep&Wide, MSFT: Metric-based spatial
filtering transformer, CNN-LSTM: Convolutional neural network-long short-term memory, MS-AMF: Multi-scale fusion attention mechanism, 3D-CNN: 3D-convolutional
neural network, CSSBP: Common spatial-spectral boosting pattern, CSSSP: Common sparse spectral-spatial pattern, FB-CSP: Sparse filter band common spatial pattern, CM-
CNN: Channel mixing CNN, DFBCSP: Discriminative filter bank common spatial pattern, FDBN: Frequential deep belief network, 1D-AX: One dimension-aggregate approxim-
ation, SWD: Swarm decomposition, CD-LOSS: Central distance loss.

(lowest ACCavg = 72.5%). In comparison to baseline models tested on the IV-2a dataset, in-

cluding ORDW [28], MS-AMF [26], 3D-CNN [25], common spatial-spectral boosting pat-

tern (CSSBP) [128], SFBCSP [23], common sparse spectral-spatial pattern (CSSSP) [128],

and non-optimized SWD, the average classification accuracy improved by 3.84% (k = 0.65),

8.14% (p = 0.04), 13.03% (p = 0.0034), 13.24% (p = 0.003), 15.44% (p > 0.05), 22.04%

(> 0.05), and 8.96% (k = 0.785, p = 0.03), respectively (shown in Fig. 5.11).

The proposed ESSDM-FTFG-CapsNet model achieves a classification accuracy of

88.04% (k = 0.84, p = 0.02) and 98.12% (k = 0.927, p = 0.01) in IV-2a and III-4a, re-

spectively. Compared with other baseline models, the classification accuracy is improved

by 12.09% (in IV-2a) and 7.62% (in III-4a) at most and 3.84% (in IV-2a) and 5.12% (in

III-4a) at least. In the kappa measure, results are improved by 4.96% at most and 2.90%

at least. In the Wilcoxon results, the results of ESSDM-FTFG-CapsNet were (p = 0.014,

very significant), and no significant change (p > 0.05) in classification accuracy for baseline

130



CHAPTER 5. ENHANCED SSDM WITH MULTI-CLASS MOTOR IMAGERY-BASED
EEG-BCI SYSTEM

Table 5.4: Cross-subject classification accuracy in cross-subject scenario on the BCI IV-2a
and III-4a datasets.

Dataset
Cross-
subject

Threshold
parameters

Fused
features

Cluster
size

NDI

Enhanced SSDM Non-optimized SWD

ELM CNet CapsNet ELM CNet CapsNet

ACCavg K ACCavg K ACCavg K ACCavg K ACCavg K ACCavg K
(in %) (in %) (in %) (in %) (in %) (in %)

BCI
IV-2a

A01/A06 f (Pth = 0.391,
StdTh = 0.523)

800 7 0.587 74.51 0.739 80.34 0.808 85.34 0.832 74.45 0.706 75.82 0.758 78.40 0.780

A02/A05 f(Pth = 0.246,
StdTh = 0.527)

835 8 0.315 76.29 0.770 76.89 0.759 85.91 0.834 73.82 0.724 76.10 0.761 78.69 0.770

A03/A05 f (Pth = 0.332,
StdTh = 0.397)

811 7 0.524 77.61 0.785 78.77 0.774 82.32 0.813 73.96 0.784 76.01 0.760 79.05 0.795

A04/A03 f (Pth = 0.284,
StdTh = 0.418)

831 8 0.475 73.95 0.734 81.23 0.820 85.60 0.828 76.52 0.747 76.37 0.764 78.87 0.795

A05/A03 f (Pth = 0.365,
StdTh = 0.532)

815 6 0.624 79.03 0.798 80.11 0.810 81.81 0.804 75.67 0.770 75.45 0.755 78.91 0.775

A06/A09 f (Pth = 0.309,
StdTh = 0.465)

818 9 0.457 69.27 0.701 82.08 0.817 85.38 0.832 73.11 0.760 74.98 0.750 78.01 0.792

A07/A09 f (Pth = 0.220,
StdTh = 0.545)

841 8 0.636 74.89 0.758 78.65 0.774 85.72 0.830 75.89 0.759 75.62 0.756 78.47 0.780

A08/A09 f (Pth = 0.475,
StdTh = 0.468)

894 8 0.563 75.18 0.744 81.01 0.824 81.54 0.802 73.33 0.753 75.09 0.751 78.57 0.797

A09/A07 f (Pth = 0.344,
StdTh = 0.449)

836 6 0.336 85.31 0.862 79.92 0.781 86.86 0.843 75.99 0.768 75.55 0.756 79.14 0.785

Average 76.22 0.766 82.89 0.796 88.04 0.842 74.75 0.752 75.67 0.757 79.00 0.785

BCI
III-4a

B01/B04 f (Pth = 0.327,
StdTh = 0.328)

2302 6 0.698 91.56 0.889 94.81 0.915 96.58 0.937 81.76 0.796 88.65 0.865 90.62 0.882

B02/B03 f (Pth = 0.415,
StdTh = 0.564)

2319 9 0.312 80.31 0.814 87.45 0.836 89.83 0.886 78.59 0.769 81.56 0.812 85.73 0.803

B03/B05 f (Pth = 0.487,
StdTh = 0.571)

2307 7 0.596 87.09 0.867 91.99 0.893 92.89 0.881 80.57 0.767 87.73 0.823 88.46 0.846

B04/B02 f (Pth = 0.482,
StdTh = 0.368)

2321 8 0.409 83.02 0.813 88.57 0.853 93.55 0.924 79.98 0.772 82.14 0.804 87.28 0.828

B05/B01 f (Pth = 0.258,
StdTh = 0.542)

2343 7 0.688 90.18 0.874 89.9 0.853 97.86 0.947 82.14 0.784 90.37 0.852 92.59 0.885

Average 86.43 0.850 90.54 0.87 94.12 0.915 80.60 0.776 86.09 0.831 88.93 0.848
K: Cohen’s kappa

models [28, 73]. These findings confirm that the proposed ESSDM method offers significant

advantages over other baseline models in cross-subject scenarios.

5.4.3 Interpretability of the learned relevant fused features represen-

tations versus classification performance

In this section, we investigate the performance of novel FTFG features with varying di-

mensionality and evaluate the relationship between the number of cluster data subsets and

classification accuracy and time cost in different datasets. To address the impracticality of

using high-dimensional features in a BCI system, it is needed to cluster most correlated fea-

tures across channels to a lower-dimensional space. To assess the results of the clustering of

fused features, we averaged the normalized Dunn index (NDI) with a range [0 – 1]. Higher

NDI value exhibits the efficient selection of fused FTFG features without compromising
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Figure 5.11: Performance comparison with the proposed method with the benchmark base-
line models.

performance and produces the best classification results. Figure 5.9 shows heatmaps for

classification performance on fused FTFG features obtained from different NDI values with

models (ELM, CNet, and CapsNet) on the datasets (BCI IV-2a and III-4a). These heatmaps

report the grid search classification results with the different subspace cluster values on the

x-axis and the model type on the y-axis. Here, we showed that the feature dimensional-

ity increased (NDI > 0.5), and the mean classification accuracies changed significantly in

all models. Obviously ESSDM model yielded relatively higher classification accuracies

compared with the other competing approaches. In order to understand how clustering of

features enhances BCI recognition performance, we plotted the number of data subsets (k)

corresponding to the NDI values against classification accuracy and time complexity for bi-

class (specific-subject) and multi-class (cross-subject) scenarios on datasets IV-2a and III-

4a, as displayed in Fig. 5.9. The computation time cost is obtained on MATLAB-R2022b

on a desktop computer with a Core (TM) i7-2600 CPU and 16 GB RAM. In dataset IV-2a,

when we increase the number of clusters index from 5 to 9, computation time increases,

and the average accuracy for different bi-class tasks decreases slightly. For instance, MI

tasks RH-LH and F-T have demonstrated average accuracy reductions to 7.4% and 8.9%,

respectively (shown in Fig. 5.10 (a)). However, as we continue decreasing subsets, the ac-

curacy improves significantly until it levels out at the 6-subspace cluster index and delivers
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the highest average accuracy. Further, it deteriorates performance. In dataset IV-2a, com-

putation time decreases from 4.6 s to 1.28 s as we decrease the cluster index from 11 to 5,

and accuracy rises from 82.37% to 91.8% (NDI = 0.67). In the cross-subject case, accuracy

sees a notable increase up to 6 subsets, but then it remains constant and even decreases after

6 subsets, which is shown in Fig. 5.10 (b). Hence, dataset IV-2a works best with 6 sub-

sets in our experimentation, while dataset III-4a benefits most from 9 subsets. The further

study compares the performance of optimized and non-optimized FTFG features formula-

tion after and before the proposed ESSDM method in the specific-subject scenario, which

is shown in Table 5.4. This study compares the accuracy of ESSDM and non-optimized

SWD with different optimizing parameters (threshold parameter, cluster size, and NDI) and

the comparison results are presented in Table 5.4. The NDI was also computed between 0.3

and 0.7, but NDI > 0.6 has produced the best classification results in terms of ACCavg and

kappa with optimized FTFG features for all proposed models. Note that the dimensionality

of the feature vector for each model was determined according to the training performance.

Table 5.3 shows that the FTFG feature obtained using the ESSDM considerably improves

the classification accuracy. After enhanced features, the multi-class accuracy performance

of these models in IV-2a is improved by 2.7% (k = 0.88, p = 0.02, subject A01), 4.1% (k

= 0.84, p = 0.01, subject A02), 5.8% (k = 0.85, p = 0.01, subject A04), and 15.6% (k =

0.80, p = 0.01, subject A06). Similarly, in III-4a, improvement were observed by 3.2% (k

= 0.92, p = 0.01, subject B01), 4.6% (k = 0.94, p = 0.01, subject B05). Moreover, the

classification performance for subjects who performed poorly in the baseline models was

significantly improved. When we looked more closely at the results in Table 5.4, we dis-

covered that ESSDM-FTFG features, specifically subjects A06, A07, and A08, significantly

improved the classification accuracy of the subjects with weak accuracies in baseline mod-

els in IV-2a. Even the statistical analysis (Wilcoxon signed rank tests) proved that ESSDM

achieved significant improvement in classification performance with enhanced features at (p

< 0.02) optimum level for almost all the subjects could even exceed 94.12%. Based on the

experimental outcomes, it is clearly stated that MI-EEG actions can be predicted with rea-

sonably high ACCavg with fewer layer networks and FTFG features by ESSDM, thereby

reducing the computational burden and significantly enhancing the classification perfor-
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mance for different MI-EEG recognition classes. Figure 5.11 summarises the comparative

analysis of the proposed ESSDM-based model with state-of-the-art baseline models. In

overall, the proposed model ESSDM-FTFG-CNET achieved the highest performance and

demonstrated effective models with enhanced features for classifying bi-class and multi-

class MI-EEG signals in both datasets [139, 140], respectively. Moreover, the classification

rate for other classes was also improved to a certain extent in comparison to existing baseline

models [24, 27, 28]. The table shows that the average accuracies were higher in specific-

subject tests (3.8% in bi-class MI tasks and 3.84% in multi-class MI tasks) and cross-subject

(ACCavg = 12.1%) than the benchmark baseline models, which proves that the proposed

EESDM can greatly improve MI-EEG decoding performance, indicating the effectiveness

for a feasible BCI solution.

5.5 Summary

In this study, the ESSDM and FTFG features-based classification models have been pro-

posed for automatic recognition of MI classes from multichannel MI-EEG signals. To solve

the threshold problem, ESSDM has adopted a novel nature-inspired meta-heuristic opti-

mization algorithm-SHO, to select the optimal SWD thresholds and improve mode aliasing

issues in signal specific. The newly designed fitness function enhances threshold param-

eter tuning that optimizes the decomposition effect, avoids excessive iterations, and offers

optimal modes with fast convergence that provide more insight information from the MI-

EEG signals. Thus, benefiting from the merits of SFT spectrum, modified swarm filter bank

and SHO, ESSDM offers a valuable approach for feature extraction from multicomponent

modulation signal, especially in the case of nonstationary multichannel MI-EEG signals.

Experimentally, it is proved that this evolutionary method holds potential for the analysis

and synthesis of various biomedical nonstationary signals. The results of the study demon-

strate the effectiveness of the proposed methodology in classifying MI in 4-class and 2-class

recognition problems and achieved higher classification accuracy than baseline models on

two public datasets, namely, BCI IV-2a and BCI IV-3a. Additionally, the Wilcoxon statis-

tical significance tests reveal that utilizing sub-clustered FTFG features (p < 0.01) with a

134



CHAPTER 5. ENHANCED SSDM WITH MULTI-CLASS MOTOR IMAGERY-BASED
EEG-BCI SYSTEM

limited number of EEG channels, the proposed ESSDM-based models deliver more effi-

cient MI-EEG classification despite having a large number of channels in BCI IV-2a. These

findings are significant and demonstrate the potential tool for MI-EEG recognition as an

intuitive BCI for real-world use. In future, we will extend this problem to more classes

of MI problems with optimizing channels and threshold improvement in cross-modalities

intended to deploy for feasible clinical solutions.
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Chapter 6

Clustering SSDM with MI-EEG based

Upper Limb Movement Recognition for

BCI Application

This chapter introduces the CSSDM to improve upper limb movement recognition in

BCI systems using MI-EEG data. CSSDM addresses issues in processing nonhomogeneous

EEG signals in existing SWD by clustering them into homogeneous sets with DBSC and

CMI criteria. It integrates SFT spectrum estimation and modified swarm filters to enhance

TF analysis and extract optimal OCs. The designing of the CSSDM is explained in this

chapter. This chapter also presents an automated upper limb movement recognition BCI

framework using novel TFGS features and classifiers (SAViT and ConvNet (AlexNet)) to

validate the performance of CSSDM on the BNCI Horizon 7-class database. These frame-

works enhance classification by utilizing optimal channels and rhythm-specific analysis and

deliver improved accuracy and efficient feature generalization across channels. The classi-

fication performance of the proposed frameworks is illustrated in detail in later sections of

this chapter.
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6.1 Introduction

MI-assisted BCI offers an effective rehabilitation technique for people with neuro-

muscular diseases to restore or replace impaired communication or motor function [143,

144]. In past research, MI-EEG has been explored over the other modalities for the restora-

tion of upper limb movement execution (ME) due to its efficacy in fine-grained analysis and

exhibits stronger spectral and amplitude correlation during the execution of upper limb ME,

thus leads to decode ME significantly during movement imagination [145].

6.1.1 Existing baseline approaches

Over the past decade, numerous signal processing and BCI algorithms-based method-

ologies have been proposed for automatic upper limb ME recognition using the MI-EEG

signals [117, 127, 143, 144, 145, 146, 147, 148]. It primarily contributes to two major

approaches. The first approach deals with feature extraction based on spatial and spec-

tral filtering, encompassing methods such as theoretic CSP features [143], optimal neu-

ronal components (ONC) [146], minimum distance to mean (MDM) [147], Riemannian

distance (RD) [147], critical features (CF) [148], source power comodulation (SPoC) [146],

and multi-class filter bank task-related component analysis (mFBTRCA) [145]. The sec-

ond approach involves shallow learning and deep learning-based classification frameworks:

Shallow CNN (ConvNet) [127], deep ConvNet [127], 10-layer one-dimensional ConvNet

[148], EEGWaveNet [144], multiscale ConvNet, (LDA) [143], and tangent space linear

discriminant analysis (TSLDA) [147]. Most studies [127, 144, 148] employ all channels

and demonstrate limited performance for deployable BCI systems due to subject-specific

analysis and lack of mutual feature generalization across-channel. Secondly, it ignores the

significance of the cognitive neural effects of brain regions with the selection of appropriate

channel localization that is highly correlated to upper limb MI tasks. Therefore, it is crucial

to design BCI as an optimal solution with minimal channels and enhance mutual feature

characteristics for efficient upper limb MI task classification performance.

To address these problems, the novel decomposition method namely, the CSSDM has

been proposed to efficiently select channels in the most relevant cortical regions of the
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MI tasks and improve homogeneous spectral characteristics across-channel with optimal

mode extraction. Further, the TFGS features are computed from the decomposed modes

using CSSDM and classify the 7-class upper limb MI-EEG tasks with a self-attention vi-

sion transformer (SAViT) [149] and ConvNet (AlexNet) [97] classifiers. The developed

CSSDM-based classification frameworks have shown significant improvement in classify-

ing 7-class upper limb MI tasks on the database [150].

6.2 Proposed methodology

The objective of this study is to develop an automated ESSDM-based MI recognition

system using MI-EEG signals. The block diagram of the proposed automated CSSDM-

based classification system using MI-EEG signals is shown in Fig. 6.1. The description of

the proposed framework using the CSSDM method, the dataset used, and all the methods

involved are briefly explained in the following sub-section.

Figure 6.1: Block diagram of the proposed automated CSSDM-based upper-limb movement
recognition from MI-EEG sensors data. OCk denotes the oscillatory component.
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6.2.1 Dataset used

In this work, we have used the upper limb movement BNCI Horizon dataset

(001–2017) [150], which is openly available at https://bnci-horizon-2020.eu/

database/data-sets. The dataset included upper limb movement EEG data from 15

subjects, who performed seven types of MI tasks: Elbow extension (EE), elbow flexion

(EF), hand close (HC), hand open (HO), forearm supination (FS), forearm pronation (FP),

and rest. The data were acquired using a 61-channel EEG with 72 trials per class. EEG sig-

nals were recorded from 61 channels across frontal, central, parietal, and temporal regions

based on the international 10–20 system. For preprocessing, we applied an 8th-order Butter-

worth bandpass filter with a pass-band from 0.01 Hz to 80 Hz to remove noise and sampled

at a rate of 512 Hz. A notch filter at 50 Hz was used to suppress power line interference.

6.2.2 Clustering sparse swarm decomposition method

The CSSDM is proposed to address the limitation of processing nonhomogeneous sig-

nals from a large number of channels and extract homogeneous modes. It consists of a

DBSC-based clustering technique, optimized spectrum estimation, and the design of an it-

erative swarm filtering method. The unique advantage of CSSDM is to extract homogeneous

spectral characteristics across nonhomogeneous multichannel EEG data with homogeneous

channel selection for efficient decomposition. The proposed CSSDM is explained by the

following stages:

Stage 1: For a given non-homogeneous MI-EEG n-channel signal s(n), the DBSC-

based clustering technique is applied to extract unique optimum sample points (OSPs) from

homogeneous channel data. In this channel clustering technique, the CMI measure is used

to obtain the set of OSPs across CLk homogeneous cluster. A mathematical expression to

obtain CMI is given in Eq. (6.1). These obtained OSPs of homogeneous EEG clusters show

better stationary characteristics and contribute homogeneous spectral information across all

channel clusters. The DBSC-based clustering technique along with designed CMI criteria

is explained in Section 6.2.2.1.

Stage 2: The SFT spectrum estimation model is then applied to each obtained OSP to
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get an optimized spectrum ψ(c̃f ). The detailed description of the SFT model is described in

Section 2.2.1 of Chapter 2.

Stage 3: The SFT spectrum of each OSP is considered to extract the decomposed op-

timal modes Yq using a swarm filter bank. A mathematical expression for obtaining the

decomposed modes using SSDM is provided in Section 2.2.3 of Chapter 2. The detail of

clustering SSDM is given in Algorithm 6.1.

6.2.2.1 DBSC algorithm with CMI measure

The designed DBSC algorithm with CMI measure determines a small number of ho-

mogeneous cluster sets of unique canonical pairs from non-homogeneous EEG channels

and delivers OSPs with optimal channel selection and less iterations [151]. It finds mini-

mum distance relation between two canonical data set pairs adaptively against the threshold

parameters criteria: Circle centred at each point with a radius (Epr) and minimal OSPs

(OSPmin). In our work, DBSC-CMI segments the non-homogeneous EEG time series into

homogenous clusters and extracts OSPs according to a CMI measure. CMI finds the degree

of similarity between two homogeneous clusters (u and v) that represent the same spectral

characteristics by computing FT spectra, which is given as follows:

ΩCMI(U, V ) =

∑r
h=1

∑s
l=1 k

(u,v)
(h,l) log

k.k
(u,v)
(h,l)

kuhk
v
l√

(
∑r

h=1 k
u
hlogkuh

k
)(
∑v

l=1 logkvl
k
)

(6.1)

Where k is the OSP points in a single EEG channel of size N . U = (U1, U2, U3, ..., Ur) and

V = (V1, V2, V3, ..., Vs) represent the two channels with different length r and s, respectively.

k x
h

and k y
l

represent the number of sample points in the clusters h and l, respectively. k (u,v)
(h,l)

is the number of intersected OSPs in the channel clusters Uh and Vl. In contrast to the raw

EEG signals, the OSPs of each channel cluster form the homogeneous EEG cluster, which

exhibits better stationary characteristics patterns specific to the MI-EEG classes.
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6.2.3 Feature formulation and classification

In our work, a new feature namely, the TFGS feature has been derived from computed

CSSDM modes-based TF image using HSA [41]. To obtain the TFGS features, the TF

images of size 875 × 756 × 3 have been processed using the graph spectral filter (Gf =∑Q
n=1 gn ⟨fg, ϕn⟩ϕn) to extract the Q feature attributes and generate the sparse adjacency

matrix. Gf is derived from TF coefficients (gn)
Q
n=1 and unidirectional computed graph

signal fg. ϕQ
n=1 is an orthonormal basis. With optimal clustering channel, the proposed

TFGS features show its significance by exhibiting discriminative neural activity patterns

related to 7-class upper limb MI-EEG tasks, which is demonstrated in Fig. 6.2.

Figure 6.2: The extracted TFGS features from TF images for (a) EE, (b) EF, (c) HC, (d)
HO, (e) FS, (f) FP, and (g) rest MI-EEG classes.

Further TFGS features were fed to two classifiers: SAViT and ConvNet (AlexNet). Con-

vNet (AlexNet) was selected due to its proven ability for spatial feature modeling. Whereas
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SAViT was chosen because of its efficient sequence layer modeling and minimal training

time compared to hierarchical transformer designs such as swin SViT and vision transformer

Lite (ViT-Lite) [152].

6.3 Results and Discussions

To test the effectiveness of CSSDM-TFGS features, the experiments were conducted us-

ing the subject-independent 10-fold cross-validation analysis. To address the challenges of

upper limb MI task classification, this study involves two major aspects: (i) Firstly, it anal-

yses the effect of optimal cluster-based channel selection on classification performance. (ii)

Secondly, it investigates the significance of features complexity using CSSDM bands based

on (theta (θ: 4–8 Hz), alpha (α: 8–13 Hz), and beta (β: 13–35 Hz)) rhythms selection with

distinct cortical regions. Using SAViT and ConvNet (AlexNet) classifiers, two classification

models, CSSDM-TFGS-SAViT and CSSDM-TFGS-ConvNet, are developed and compared

to baseline models [143, 144, 146, 147, 148] on performance metrics namely, ACC, SEN,

SPE, and Cohen’s kappa coefficient (kp).

Table 6.1: The obtained classification performance (in %) for different optimal channel
selection of cross-subject on the BNCI Horizon 7-class database.

Optimal
channel

Feature
samples

Cluster
CSSDM-TFGS-SAViT CSSDM-TFGS-ConvNet

ACC (%) SEN (%) SPE (%) Kappa ACC (%) SEN (%) SPE (%) Kappa
4 5096 3 40.61 42.71 41.64 0.417 38.12 38.65 39.02 0.382
8 10192 6 49.02 50.62 50.46 0.503 47.69 45.94 47.13 0.481

14 20384 8 39.85 44.23 43.77 0.447 43.57 42.25 40.21 0.447
21 26754 11 40.94 45.61 44.79 0.423 42.71 39.94 38.03 0.419
28 35672 13 39.89 41.13 41.18 0.408 42.04 41.35 39.51 0.424
35 44590 17 44.76 45.84 45.30 0.451 40.02 41.10 36.67 0.401
48 61152 19 39.88 46.66 46.34 0.471 41.34 39.56 40.09 0.393
54 68796 21 43.17 49.34 48.54 0.489 39.01 38.21 37.82 0.409
61 77714 23 43.53 47.38 47.42 0.478 40.70 40.62 39.35 0.404

6.3.1 Effect of optimal clustering channel-based features

Table 6.1 shows the cross-subject classification performance of the upper limb MI-EEG

class on obtained TFGS features for optimal cluster-wise channel selection. Features are

chosen based on the lowest student’s t-test-based p-value (p < 0.05). It shows that the
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Algorithm 6.1 Computation of CSSDM-based TFGS features
Input: Non-homogeneous MI-EEG n-channel signal s(n)
Initialize : Iteration it = 0; Channel N = 61; Cluster k with different class labels;
Cluster sample points minPts = 0; Radius Epr = 0.

// Stage 1: Apply DBSC for homogeneous channel clustering to get OSPs
while Ni ̸= 0
pi = Ni; minEpr = 0 ; Assign current channel.
for k in 0: (minPts - 1) do
minEpr = (pi)Max; Assign maximum sample points of N .
minClusterId = 0; Assign initial cluster identifier (id).
if |Epr(pi)| ≥ MinPts then
if minEpr ≥ CMI then ; Apply CMI criteria.
minEpr = Epr(pi) ; Get intersected OSPs by finding neighbourhood Epr.
minClusterId = pi
end
CLk = minEpr; Generate homogeneous cluster CLk with OSPs.
end

// Design modified swarm filter bank and find optimal OCs.
// Stage 2: Computation of SFT spectrum and spectral boundary estimation (refer Section 2.2.1)
while k ̸= 0
Compute SFT spectrum ck = ψ(c̃f ) on each OSP from cluster CLk.

ωqdom = argωmax
(
E

′

ck
(ω) > Pth

)
; Where E(.) is energy of dominant spectrum ω. The Pth is set as 0.1.

Find spectral boundaries Bi on the obtained SFT spectrum.
Bi =

Fck + Fck+1

2 ; i = 1, 2, ...,M − 1. Where Fck and Fck+1 represent two successive center ω.
while ω̂i ̸= 0
// Stage 3: Designing of SwF filter bank (refer Section 2.2.3)
Compute swarm filter parameters δ(ω̂) and M(ω̂) to get the desired filter response
δ(ω̂) = −1.5ω̂2 + 3.454
M(ω̂) =

⌊
33.46 ω̂−0.735 − 29.1

⌉
Compute driving force (FDr) and cohesive (FCoh) force.
FnDr, i = pprey(n)− pi(n− 1)

FnCoh, i =
1

M−1

M∑
j=1, j ̸=i

f(pi(n− 1)− pj(n− 1))

Find position Pi(n) and velocity Vi(n) with respect to every swarm M . δ = 0.1 decides the swarm-pray
mobility.
pi(n) = pi(n− 1) + δVi(n)
vi(n) = vi(n− 1) + δ(FnDr, i + FnCoh, i)
Apply BD-based convergence criteria to get significant OCs.

CBD = − ln
d∑
q=1

√(
|yqδ,M (n)|.|xq(n)|

)2
; d is number of OCs.

Where |x(n)| and |yδ,M (n)| are amplitude of the FT of the extracted OCs signal ck(n) and Yδ,M (n).
Find residual CLk(n) = CLk(n)− CL

′

k(n)
Extract q modes Yqδ,M = H

∑n
i=1 pi(n); H is scaling factor.

// Stage 3: Estimation of TFGS feature
Compute IA and IF using HSA [41] from each obtained mode m.
Find TFGS feature from graph adjacency matrix of TF image.
Output: The extracted TFGS features from the CSSDM modes.
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proposed CSSDM-TFGS-SAViT model has delivered highest classification accuracy ACC

= 49.02 ± 0.61% (SEN = 50.6%, SPE = 50.46%, kp = 0.503, and p < 0.05) with optimal

channel selection (cluster = 6 and features = 10) without compromising performance. It

also shows better discriminative mutual characteristics across all MI-EEG classes for all

obtained features and outperformed in all models against all maximal 61-channel selection,

which is shown in confusion matrix plots (Fig. 6.4).

Figure 6.3: Performance comparison of proposed CSSDM-based models for optimal chan-
nel selection in (a) all rhythms and (b) rhythm-specific.

The second model, CSSDM-TFGS-ConvNet has performed slightly deteriorate perfor-

mance with selected clusters are ACC = 47.69 ± 0.45% (SEN = 45.94%, SPE = 47.13%, kp

= 0.4815, and p < 0.08). Figure 6.3 compares accuracy versus optimal channel selection

with clusters. Even when the number of channels is reduced from 61 to 8, the proposed

models have attained the highest accuracy against the baseline models.

Table 6.2: The cross-subject performance (in %) of obtained features from θ, α, and β
rhythms with distinct cortical regions on on the BNCI Horizon 7-class database.

Rhythm
Cortical
region

Feature
samples

Channel
CSSDM-TFGS-SAViT CSSDM-TFGS-ConvNet

ACC (%) SEN (%) SPE (%) Kappa ACC (%) SEN (%) SPE (%) Kappa

Theta
Full placement 12868 14 38.23 39.03 38.57 0.393 36.72 37.10 34.58 0.359
FL, PL, OL lobes 11009 10 39.46 41.76 38.06 0.409 38.60 37.29 37.84 0.390
FL, CL, OL lobes 8200 9 40.92 40.72 41.35 0.412 39.45 40.16 40.57 0.389

Alpha
Full placement 10740 11 44.15 42.45 41.69 0.451 43.23 44.02 41.08 0.430
FL, PL, OL lobes 7254 8 44.69 44.99 46.03 0.445 44.02 41.98 42.76 0.437
FL, CL, OL lobes 6328 6 46.31 45.61 44.11 0.463 45.19 46.64 44.03 0.454

Beta
Full placement 10090 12 32.17 32.97 30.14 0.339 29.97 28.59 30.80 0.305
FL, PL, OL lobes 9740 10 31.54 33.84 34.34 0.306 28.56 29.97 30.96 0.294
FL, CL, OL lobes 7902 9 36.59 38.72 36.99 0.381 38.03 36.50 35.99 0.391

Theta
and
Alpha

Full placement 16860 9 43.12 42.9 42.61 0.458 40.15 42.27 40.95 0.408
FL, PL, OL lobes 12542 8 43.96 45.26 46.68 0.435 42.80 45.89 44.03 0.446
FL, CL, OL lobes 10380 7 48.68 50.98 49.11 0.491 47.69 48.51 46.71 0.483
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6.3.2 Effect of rhythm-based features

To investigate the significance of the feature complexity using rhythms (θ, α, and β)

from CSSDM bands, statistical analysis is conducted on distinct cortical regions namely,

frontal lobe (FL), central lobe (CL), parietal lobe (PL), and occipital lobe (OL). Table 6.2

shows that the CSSDM-based features computed from (θ, α, and β) rhythms with optimal

clustering provide a significant contribution for the recognition of 7-class upper limb MI-

EEG signals. The table indicates that the optimal cluster selection consistently retains most

of the significant channels on the FL, CL, and OL lobes. Compared with other brain regions,

the FL and CL lobes significantly contribute to the classification of MI tasks and delivered

the highest performance (channel = 8, ACC = 48.68 ± 1.09%) in CSSDM-TFGS-SAViT

model with cortical regions (FL, CL, and OL) in the rhythms (θ and α). When combining

FL and CL lobes channels from optimal clustering (k = 7), the accuracy is improved from

42% to 49% and 40% to 48% in the case of CSSDM-TFGS-SAViT and CSSDM-TFGS-

ConvNet, respectively. Similarly, combining the channels of the FL, PL, and OL lobes in α

rhythm has shown significant accuracy improvement from 38% to 44% (p < 0.01). Whereas

β rhythm-based features (p > 0.05) have not performed significantly.

Figure 6.4: The obtained confusion matrix using (a) CSSDM-TFGS-SAViT and (b)
CSSDM-TFGS-ConvNet models across all subjects.

The performance comparison in Table 6.3 reveals that the proposed CSSDM-based mod-

els deliver the highest classification performance despite a large number of classes, proving

suitability for practical BCI systems. The proposed CSSDM method effectively captures

homogeneous spectral characteristics in multichannel with optimal mode extraction and

improves TF analysis. However, it requires precise parameter tuning in the designed DBSC

scheme.
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Table 6.3: Performance comparison with the existing baseline models.

Reference Methodology Channel
used

Cross-
validation

Accuracy
(mean±std)

p-value

Grosse-Wentrup et al. [143] Theoretic CSP, LDA 60 NA 23.13±5.51 < 0.0037
Dähne et al. [146] SpoC, Ridge 58 10-fold 22.07±4.97 < 0.0006
Barachant et al. [147] MDM, RD 22 30-fold 25.50±7.00 < 0.0032
Barachant et al. [147] TSLDA 22 30-fold 27.12±6.31 < 0.0053
Schirrmeister et al. [127] Shallow ConvNet 22 NA 25.90±6.45 < 0.1258
Schirrmeister et al. [127] Deep ConvNet 22 NA 35.29±7.40 < 0.1287
Thuwajit et al. [144] Multiscale ConvNet, EEG-

WaveNet
60 10-fold 20.27±5.69 < 0.0005

Mattioli et al. [148] CF, HopeFullNet 64 NA 33.77±7.70 < 0.0835
Jia et al. [145] mFBTRCA 60 10-fold 41.93±0.78 NA
Proposed method 1 CSSDM-TFGS-SAViT 8 10-fold 49.02±0.61 < 0.05
Proposed method 2 CSSDM-TFGS-ConvNet 9 10-fold 47.69±0.14 < 0.08
Note: std: Standard deviation, NA: Not available

6.4 Summary

In this work, we have proposed a CSSDM-based classification framework for the im-

provement of automatic recognition of multi-class upper limb MI-EEG tasks. The CSSDM

adopts the DBSC algorithm, modified swarm filtering and SFT spectrum to solve non-

homogeneous EEG decomposition issues in the existing SWD method and improves ho-

mogeneous spectral characteristics across channels with optimal mode extraction and TF

analysis. The proposed CSSDM-based classification frameworks are validated and out-

performed against baseline models. The presented analysis of TFGS features complexity

on the optimal channel and rhythm selection demonstrates a significant role in upper limb

MI-EEG classification and proved to be an efficient upper limb BCI tool for patients with

neuromuscular diseases. In the future, it would be interesting to extend CSSDM to analyze

multichannel signals of diverse MI-EEG motory actions for different BCI applications.
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Chapter 7

Conclusions and future scope

The EEG and MEG are found to be the most useful brain signals that assist in the di-

agnosis of neurological diseases and BCI applications. This thesis focuses on the devel-

opment of a novel extension of the univariate SWD-based nonstationary signal-processing

techniques to decompose multichannel signals for brain signal analysis. We have developed

new signal processing techniques, including SSDM, MSSDM, ESSDM, and CSSDM for

robust nonstationary brain signal analysis. These techniques adopt newly designed opti-

mized SFT spectrum representation and filter banks for efficient extraction of components

from multi-channel nonstationary signals and time-frequency improvement. The proposed

SSDM-based methods are then used to design different frameworks for automatic diagnosis

of neurological disease detection and BCI frameworks. The developed frameworks include

cognitive visual object recognition using EEG and MEG signals, EEG-based motor im-

agery recognition, EEG-based imagined speech task detection, and EEG-based upper limb

movements detection. The proposed frameworks have delivered the highest classification

performance as compared with other state-of-the-art approaches presented for neurological

disease detection and BCI frameworks. We have presented five objectives in Chapter 1, and

the findings of each objective are consolidated and presented in this chapter. Additionally,

this chapter includes a separate section highlights potential directions for future research for

this thesis.
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7.1 Conclusions

In Chapter 2, we proposed a novel univariate SSDM which is an extension of SWD.

It adopts improved SFT spectrum estimation model and designed swarm filter banks. The

proposed SSDM method delivers substantial improvements in time-frequency analysis and

mode extraction from nonstationary signals compared to two existing methods, namely

SWD and HHT. Using SSDM, we have also designed an automated framework for the sleep

apnea detection system using newly formulated features (FF and TFR) and classifiers (CNN

and BiLSTM) on a polysomnographic EEG database. The automated sleep apnea detection

system outperformed state-of-the-art approaches in subject-independent cross-validation on

a cross-subject dataset.

In Chapter 3, a new adaptive MSSDM has been proposed for multivariate analysis of

nonstationary EEG-MEG signals, which is an extension of the univariate SSDM method.

The MSSDM method effectively captures homogeneous spectral characteristics in multi-

channel with channel-aligned mode extraction and improves common multivariate mutual

patterns related to visual objects. In addition, we have compared the proposed method with

the univariate SSDM approach and direct rhythms analysis which is computed using a BPF.

The MSSDM has been then used for decoding different visual object categories for BCI

applications. The proposed framework has outperformed other existing methods in the lit-

erature through subject-independent analysis.

In Chapter 4, we presented a novel MSSDM-based approach to extract multivariate joint

oscillatory features from multichannel EEG signals. JTF multivariate features are generated

using the JIF and JIA functions from extracted CAOCs. We developed an imagined speech

task detection framework that utilizes JTFDF features from four pre-trained neural networks

and an SVM classifier for cross-channel IMS-EEG signals in BCI applications. Two feature

mapping strategies (CCA and HDC) were employed to generate the most discriminative

features. The proposed framework has better classification performance than other existing

methods using a cross-subject dataset.

In Chapter 5, a novel decomposition technique ESSDM has been proposed to solve

uniform decomposition and hyperparameter selection issues in the existing SWD method.
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Using SHO with a KLD-based fitness function, a modified SwF filter bank, and an SFT spec-

trum, the ESSDM enhances hyperparameter selection and decomposition performance. In

this work, a new FTFG feature has been designed using the subspace clustering technique.

Additionally, this method is then used to develop a framework for the automatic classi-

fication of motor imagery tasks from MI-EEG signals for BCI applications. The proposed

framework not only outperforms existing works in the specific-subject classification but also

seamlessly adapts to cross-subject classification on two well-known MI-EEG datasets.

In Chapter 6, CSSDM is introduced to improve upper limb movement recognition in BCI

systems using MI-EEG data. CSSDM addresses issues in processing nonhomogeneous EEG

signals in existing SWD by clustering them into homogeneous channel sets with DBSC and

CCA-assisted CMI criteria and delivering optimal oscillatory components. The CSSDM

has been then used for an automated upper limb movement recognition BCI framework

using novel TFGS features and classifiers (SAViT and ConvNet (AlexNet)) on the BNCI

Horizon 7-class database. The proposed frameworks demonstrate superior classification

performance compared to all existing methods in the literature.

7.2 Future directions

The accurate analysis of brain signals using EEG and MEG for diagnosing neurological

diseases and BCI is an emerging research field that has the potential to transform clinical

practices and offer deeper insights into these neurological conditions. Although our current

solutions have shown promising results and practical applications, there is still a significant

need to enhance existing methodologies to overcome certain issues. A few of the future

directions are as follows:

• The proposed concept can be further explored for developing signal analysis methods

for signal decomposition, time-frequency representation, and feature extraction for

various applications.

• The proposed methods in this thesis have been studied on small clinical datasets. In

the future, the performance of these methods can be validated on larger and diverse
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EEG datasets with varying sampling rates to develop more robust, generalized, and

accurate models that enhance decision-making in real-time clinical applications.

• In multichannel analysis, MSSDM has been explored primarily for EEG and MEG

modalities which limit its application scope. Therefore, it is necessary to extend the

MSSDM technique to other multichannel physiological signals, such as EOG and

EMG for effective analysis and wider practical applications.

• In our proposed neurological disease detection and BCI frameworks, we developed

classification model using EEG signals. To enhance feasibility, it is needed to inves-

tigate multimodal frameworks that combine EEG with other physiological signals to

enhance BCI performance and accuracy of disease detection.

• The performance of the proposed methods such as SSDM, MSSDM, ESSDM and

CSSDM solely depends on the preprocessing of EEG signals. Even though a pre-

processing filter has already been applied in our work there is a need to develop new

preprocessing techniques for EEG signals to further reduce noise and eliminate arti-

facts for more accurate performance in real-time signal classification.

• Due to the iterative nature of the SSDM approach, its application is limited. There-

fore, there is scope to reduce the computational complexity of the SSDM method

through other optimization approaches.

• Explore ESSDM and CSSDM methods for improved channel selection and homoge-

neous signal processing across a broader range of biomedical applications.

• Novel features can be proposed based on developed signal processing algorithms for

efficient representation of the nonstationary signals.

• Although the hybrid feature selection method has partially addressed the dimension-

ality issue, further research is needed to identify the most significant features using

more robust feature learning methodologies.

• In the future, deploy the developed frameworks on dedicated hardware for real-time
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applications including portable medical devices to ensure accurate disease diagnosis

in remote areas.
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