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Abstract

Rarefied gas flows arise in a variety of physical situations where the molecular mean
free path becomes comparable to a characteristic length scale in the system. Such flows
occur in high-altitude atmospheric phenomena, vacuum technologies, and micro- and
nanoscale devices, where non-equilibrium effects become prominent and classical contin-
uum models, like the Euler or Navier—Stokes—Fourier equations, lose their validity. While
the Boltzmann equation offers a complete description of rarefied gas flows, its high dimen-
sional complexity makes it computationally prohibitive in many practical scenarios. An
efficient alternative is provided by extended hydrodynamic models that give a macroscopic
description of gas flows.

This thesis develops a meshfree numerical framework based on the method of fun-
damental solutions (MFS) for modeling rarefied gas flows in quasi-two dimensions. An
extended hydrodynamic model, which consists of the conservation laws closed with the
recently propounded coupled constitutive relations (CCR), is utilized. This model is
referred to as the CCR model and is adequate for describing moderately rarefied gas
flows. This thesis primarily uses the CCR model for its simplicity and later extends the
framework to the regularized 13-moment (R13) model, which is more accurate but more
complex than the CCR model.

The core of the work involves deriving the fundamental solutions of the linearized CCR
model using the Fourier transformation and implementing the obtained fundamental solu-
tions in the MFS framework. Some internal flow problems, including (monatomic) vapor
flows, temperature-induced flows and flow inside a lid-driven cavity, are investigated using
the developed CCR-MFS framework. The results obtained from the CCR-MFS frame-
work are validated against existing analytical or numerical benchmarks, demonstrating
the accuracy and robustness of the method. External flow of a monatomic rarefied gas
past circular and semicircular cylinders is also studied using the CCR model—with ar-
tificial boundary introduced to bypass Stokes’ paradox. Analytic solution is determined
for the circular case and is used to validate the results obtained from the MF'S, followed
by a numerical investigation of the semi-circular case using the MFS. Additionally, the

CCR-MFS framework is employed to analyze evaporation/condensation from/on liquid



jets with circular and non-circular cross-sections. The study explores the effects of geomet-
ric deformation—represented using spherical harmonics—on the mass-flux and heat-flux
coefficients.

A generic methodology is proposed to derive the fundamental solutions for any lin-
ear moment system, including the R13 equations, without predefined Dirac-delta source
terms. The generic MF'S approach is illustrated for the Stokes equations and extended
to the R13 model in two dimensions. The results are compared against an analytical
solution to confirm accuracy. The framework is further applied to thermally induced flow
between noncoaxial cylinders, where no analytical solution exists. The results obtained
from the generic MF'S are compared against those from the finite element method, showing
comparable accuracy along with faster convergence and lower computational cost.

The thesis also investigates various parameters—such as the numbers of source and
collocation points, optimal placement of source points and the effective condition number—
that influence the performance of the MFS. The work paves the way for a unified and
efficient solver for extended hydrodynamic models applicable to a broad range of rarefied

gas flow problems.
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Chapter 1

Introduction

Accurate modeling of rarefied gases in non-equilibrium presents significant challenges.
A gas is said to be rarefied when the mean free path of the gas molecules becomes com-
parable to a characteristic macroscopic length scale associated with the geometry of the
problem [1, 18, 59, 105]. The degree of rarefaction is quantified by a dimensionless pa-
rameter, known as the Knudsen number Kn, which is the ratio of the mean free path
A of the gas and a characteristic length scale L in the problem. A gas is said to be in
equilibrium when the Knudsen number approaches zero, which typically occurs when the
mean free path is small compared to the characteristic length scale. In the equilibrium
(or very close to equilibrium), the classical fluid dynamic equations—such as the Euler
equations or the Navier—Stokes—Fourier (NSF) equations—are quite effective in describ-
ing gas flows. However, these classical equations fall short when the Knudsen number
becomes significant with the breakdown of the equilibrium assumptions. This breakdown
occurs if either the mean free path is large or physical length scale is small. For example,
in high-altitude aerospace applications, the mean free path measures in several meters,
making the Knudsen number large, as encountered during spacecraft re-entry. On the
other hand, in microscale devices like micro-electro-mechanical systems, the small size of
the system makes the macroscopic/characteristic length scale comparable to the mean
free path, again resulting in a high Knudsen number. In the following section, we classify

the gas flows based on the Knudsen number to highlight the different regimes.

1.1 Flow regimes and kinetic description of rarefied gases

Based on the Knudsen number, gas flows can be categorized into different regimes
[105, 117, 126]:

e Hydrodynamic regime (Kn < 0.01): In this regime, gases are close to the

equilibrium and the classical continuum theories, namely the Euler equation or

Navier—Stokes—Fourier (NSF) equations, are quite effective in describing gas flows.
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e Slip flow regime (0.01 < Kn < 0.1): For the flows in this regime, the NSF equa-
tions still remain valid, but they need to be supplemented with suitable boundary
conditions for temperature jump and velocity slip.

e Transition regime (0.1 < Kn < 1): Flows in this regime cannot be described by
the NSF equations because of strong non-equilibrium. Macroscopic descriptions
still remain feasible by employing an extended set of macroscopic equations, while
particle-based methods remain computationally very expensive.

e Kinetic regime (1 < Kn < 10): In this regime, non-equilibrium is so pronounced
that directly solving the Boltzmann equation or using particle-based methods, such
as direct simulation Monte Carlo (DSMC) method [13], becomes essential, despite
their computational cost.

e Free molecular flow regime (Kn 2> 10): In this regime, gas molecules move in-
dependently without significant inter-molecular collisions. Consequently, the flow
is governed primarily by molecule-wall interactions and molecular dynamics simu-

lations are often employed for describing gas flows in this regime.

A gas outside the hydrodynamic regime is generally classified as rarefied [1, 105]. Rar-
efied gases exhibit several distinctive non-equilibrium effects, including velocity slip and
temperature jump [28, 102], Knudsen layers [102, 109], thermal creep (transpiration) and
thermal stress [99-101], non-homogeneity in pressure profile and unusual temperature dip
in the Poiseuille flow [75, 84, 110], cross effects where heat flows from a low-temperature
region to a high-temperature region [69, 85, 109]. While some of these effects, such as
velocity slip and temperature jump, can be described by the NSF equations with appro-
priate boundary conditions, other rarefaction effects require more refined models for an
accurate description.

It is widely recognized that kinetic theory is capable of describing rarefied gas flows

based on the statistical description of the gas. The fundamental equation in kinetic theory
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is the Boltzmann equation, which provides a comprehensive microscopic (or mesoscopic)
description of a gas for the entire range of the Knudsen number, from near-equilibrium
to strong non-equilibrium [19]. By tracking the evolution of the molecular velocity dis-
tribution function in a seven-dimensional phase space (three spatial dimensions, three
dimensions for the velocity and one dimension for time), the Boltzmann equation pro-
vides a complete statistical description of gas. However, this equation is challenging to
solve because of the presence of the Boltzmann collision operator on the right-hand-side
of the equation. The Boltzmann collision operator possesses a complex mathematical
structure that makes the Boltzmann equation a nonlinear integro-differential equation
which is computationally very expensive, particularly in the transition regime. Study
of gas flows in the transition regime is critical for wide applications, like microsensors,
spacecraft re-entry and high-vacuum systems. In the transition regime, gas molecules
are sparse enough to exhibit non-continuum effects, such as velocity slip, thermal creep,
etc., yet dense enough for frequent collisions. This makes the particle-based numerical
methods to be computationally expensive in the transition regime. To address compu-
tational challenges, kinetic models, like the well-known Bhatnagar—Gross-Krook (BGK)
model [11] (also referred to as the Boltzmann-Krook—Welander (BKW) kinetic model by
some authors [5, 77, 101]), ES-BGK model [46] and S-model [92] have been developed.
The BGK model substitutes the Boltzmann collision operator with an integral-free relax-
ation model and maintains some of the key features of the Boltzmann collision operator,
such as conservation laws and the H-theorem. However, the BGK model does not yield
the correct Prandtl number value for monatomic gases [20, 105]. Although other kinetic
models, such as the ES-BGK model [46] and S-model [92], yield the right Prandtl number
for monatomic gases, they exhibit non-realistic behavior in the transition regime [105].
Alternative ways to find approximate solutions of the Boltzmann equation are pro-
vided via kinetic theory through macroscopic equations. Macroscopic flow quantities like
the mass density, velocity and energy can be obtained by suitable averaging over the
velocity distribution function. These macroscopic quantities, obtained from the distri-
bution function, are governed by extended hydrodynamic equations which can be di-
rectly obtained from the Boltzmann equation. Two classical approaches in kinetic theory
which provide extended hydrodynamic equations from the Boltzmann equation are the

Chapman—Enskog expansion method [21, 34] and Grad’s moment method [36, 72].
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Chapman—Enskog expansion method [21, 34] involves an asymptotic expansion in
powers of the Knudsen number. In this approach, the velocity distribution function is
expanded around the equilibrium distribution function as a power series in the Knudsen
number. The expansion is then substituted into the Boltzmann equation and the coef-
ficients of each power of the Knudsen number are equated on both sides. This process
generates constitutive relations of increasing orders for the standard conservation laws of
fluid dynamics. At zeroth order, the method produces the Euler equations and at first
order, it gives the NSF equations. However, when extended to higher orders, the method
leads to the Burnett and super-Burnett equations, which turn out to be unstable for
time-dependent problems [14, 15, 120]. Even in steady problems, Burnett equations are
difficult to solve because they lack a full set of boundary conditions [105].

In contrast, Grad’s moment method extends the space of macroscopic variables by
including governing equations for higher-order moments of the distribution function, with
the system of the conservation laws. The method truncates the infinite set of coupled
moment equations at a specific level and closes them utilizing the Hilbert expansion of
the velocity distribution function in Hermite polynomials. The resulting finite set of
moment equations is linearly stable and is also capable of describing the Knudsen layers
if a relatively high number of moments are considered [91, 106]. Despite its usefulness,
Grad’s moment method does not offer clear guidance on how many, and which variables
are needed to accurately describe flows at a given Knudsen number. Although Grad
developed a theory for setting boundary conditions, very few solutions of boundary-value
problem have been reported in the literature. Furthermore, because moment equations
in Grad’s original formulation, known as the Grad 13-moment (G13) equations [36], are
hyperbolic in nature, simulations of shock structures often produce unphysical results,
like spurious subshocks [72, 123].

To address the limitations of both Chapman—Enskog expansion method and Grad’s
moment method, Struchtrup and Torrilhon [108] proposed the regularized 13-moment
(R13) equations, which are a regularized version of the original G13 equations, obtained by
employing a Chapman—Enskog expansion around a pseudo-equilibrium. Another method
which does not rely on Grad’s closure relations and does not directly utilize the results of
asymptotic expansions, was proposed in Refs. [104, 105] to obtain the R13 equations. This

approach, referred to as the order-of-magnitude approach, offers a systematic framework
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for deriving closed form of moment equations from the infinite system of moment equations
resulting from the Boltzmann equation. The method identifies the appropriate equations
within a desired order of accuracy in the Knudsen number through three key steps. First,
it determines the order of magnitude of the moments by employing a Chapman—Enskog-
like expansion on non-equilibrium moments. Second, it constructs an optimized moment
set by introducing new variables—formed through linear combinations of the original
moments—to minimize their number at each order. Third, it eliminates terms that are
of higher-order. The order-of-magnitude approach yields the Euler equations at zeroth
order and the NSF equations at first order. At second-order, equations reduce to original
G13 system, and at third-order, approximation leads to the R13 equations. This indicates
that the R13 system is optimal for describing processes with third-order accuracy in the
Knudsen number. The R13 equations avoid unphysical shocks, ensure smooth shock
structures, resolve Knudsen layers and are thermodynamically consistent, owing to which
they are quite effective in capturing rarefaction effects in the transition regime.

Building on the need for more robust and thermodynamically-consistent models for
higher Knudsen numbers, a novel Onsager-consistent approach [1, 95] was introduced
a few years back for deriving extended equations similar to the Burnett and Grad sys-
tems. In this method, rather than expanding the distribution function in a series based
on the Knudsen number (as in the Chapman—Enskog approach) or using Hermite poly-
nomials (as in Grad’s method), the distribution function was instead constructed using
the thermodynamic forces and fluxes. This Onsager-consistent approach led to the On-
sager 13-moment (O13) [95], Onsager-Burnett (OBurnett) [48, 96], extended-OBurnett
and super-OBurnett [127] equations, whose derivation is firmly rooted in the principles
of nonequilibrium thermodynamics and aims to better capture strong non-equilibrium ef-
fects in rarefied gases. While these Onsager-consistent models are promising alternatives
to the classical models (e.g. the NSF, G13, Burnett models), they are relatively new,
and a detailed investigation of their practical implementation and numerical properties is
beyond the scope of the present thesis.

Another pragmatic alternative offered by Rana et al. [88] is a model based on the cou-
pled constitutive relations (CCR), which couple stress and heat flux phenomenologically,
based on entropy-flux correction. The consequent model consisting of the mass, momen-

tum and energy balance equations closed with the coupled constitutive relations is referred
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to as the CCR model. Unlike the approaches in moment methods, which introduce ad-
ditional moment equations, the CCR model retains the governing equations only for the
equilibrium variables (mass, momentum and energy) while incorporating non-equilibrium
effects through the coupled constitutive relations. This coupling introduces terms which
account, for rarefaction effects—including thermal stress, transpiration flows, the Knud-
sen paradox, and non-Fourier heat transfer—while maintaining a computationally efficient
formulation suitable for moderate rarefaction.

The CCR model inherently satisfies two key thermodynamic requirements: they main-
tain a valid entropy law with non-negative entropy production for all processes and guar-
antee linear stability. This distinguishes them fundamentally from other rarefied gas
models, such as the Burnett equations (which are unstable) or Grad-type moment sys-
tems (which produce unphysical subshocks). The CCR model offers a simpler alternative
to moment methods that require a large number of variables. In the linearized and steady
state, the CCR model reduces to the linearized G13 equations in the steady state as a
special case, and on taking the coupling coefficient as zero, the CCR model reduces to the
original NSF equations. Owing to its simplicity and viable features, the CCR model has
been applied successfully to some problems pertaining to rarefied gas flows [33, 68, 90].
While the CCR model is less accurate than R13 in strongly non-equilibrium flows and
does not resolve Knudsen layers, it effectively captures a wide range of rarefaction phe-
nomena in good agreement with kinetic theory and experiments that makes it a versatile
and practical choice to capture moderate rarefaction.

In this thesis, we shall primarily focus on exploring rarefied gas flows in the transi-
tion regime using the CCR model, due to its practical efficiency and relatively simpler
structure. This model effectively captures key non-equilibrium effects while maintaining
computational tractability. In the end, we shall extend the study to any general moment
system, including the R13 equations, which provides a more accurate representation of

rarefied gas flows at moderate Knudsen numbers.



1.2 Numerical methodology and challenges

Theoretical advancement of extended hydrodynamic models provide powerful tools
for capturing rarefaction phenomena. However, practical application of extended hydro-
dynamic models demands numerical frameworks capable of handling inherent complex-
ities, like higher-order gradients, nonlinearity, coupling between/among equations, and
non-local boundary effects. Traditional mesh-based methods—such as the finite element
method (FEM) and the finite volume method (FVM)—face significant challenges in this
context. When the geometry includes moving curved boundaries, the mesh needs to
be updated frequently, which adds to the computational cost and can reduce accuracy.
Moreover, in low-speed external flows, the computational domain often needs to extend
far beyond the object to account for long-range molecular effects, making mesh generation
even more complex and resource-intensive [64].

These limitations are exacerbated by the coupled nature of extended hydrodynamic
models. For example, the R13 equations introduce additional governing equations for
stress and heat flux, and the CCR model modifies the constitutive relations for stress and
heat flux appearing in the system of the conservation laws. Solving such systems numer-
ically amplifies matrix sizes and risks numerical instability. Furthermore, implementing
the boundary conditions derived from kinetic theory (e.g., velocity slip, temperature jump
and beyond) often requires significant modifications in the traditional mesh-based solvers,
adding complexity to the simulations.

For Stokes flow (or for creeping flow), these numerical difficulties can sometimes be
mitigated by leveraging the linearity of the governing equations. In this scenario, the
Navier—Stokes equations reduce to the Stokes equations, which describe flow dominated
by viscous forces. A particularly effective method for solving Stokes flows relies on fun-
damental solutions, the so-called Stokeslet, which represents the velocity field due to a
point force in a viscous fluid. Originally derived by Lorentz [65] and later named by Han-
cock [41], the Stokeslet serves as a fundamental solution of the Stokes equations and pro-
vides a foundation for developing mesh-free and semi-analytical techniques. By utilizing
the fundamental solutions, it becomes possible to construct efficient numerical approaches
that avoid some of the key drawbacks of traditional discretization-based methods. The

method of fundamental solutions (MFS) introduced by Kupradze and Aleksidze [56] is a
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numerical approach, which has been employed widely for solving linear partial differential
equations (PDEs). The MFS is a meshfree method that yields remarkably good results
with a significantly less computational cost if the singularity points (also referred to as
the source points or singularities) are placed at proper locations. The meshfree feature of
the MFS is especially useful in the situations wherein changes in the shape of the domain
are needed, e.g., in shape optimization and in inverse problems. This is because the MFS
does not require creating a mesh over the entire domain, which itself could be a very
time-consuming and computationally-expensive task depending on the complexity of the
domain. In the MFS, an approximate solution of a (linear) boundary value problem is
expressed as a linear combination of Green’s functions, referred to as the fundamental
solutions, and the boundary conditions are satisfied at several locations on the boundary,
referred to as the boundary nodes or collocation points, aiming to determine the unknown
coefficients in the linear combination.

Apart from being time-efficient due to reduced spatial dimension in boundary dis-
cretization, the quality of being free from integrals makes the MFS peerless among other
meshfree methods (such as the boundary element method [16], finite point method [76],
diffuse element method [73], element-free Galerkin method [9]) that involve complex in-
tegrals. The MFS has proven to be an efficient executable numerical scheme in various
areas, such as thermoelasticity, electromagnetics, electrostatics, wave scattering, inverse
problems and fluid flow problems; see, e.g., Refs. [10, 31, 52, 62, 64, 129]. Moreover, the
MF'S is also suitable for the analysis of problems involving shape optimization, moving
boundary and/or unknown boundary [3, 24, 32, 94, 129], since the problems of modeling
and satisfying boundary conditions are relatively simpler for them.

Several researchers have employed the MFS to solve the Helmholtz-, harmonic- and
biharmonic-type boundary value problems in two dimensions (2D) as well as in three
dimensions (3D), see, e.g., Refs. [66, 80]. For more complex boundary value problems,
the MFS works as a good numerical strategy if the fundamental solutions of the problem
are predefined. In the past few years, there has been a surge of interest in employing
the MFS to various models for rarefied gas flows, for instance to the NSF, G13, R13 and
CCR models [27, 64, 90], because the predefined fundamental solutions of the well-known

equations, such as the Laplace, Helmholtz and biharmonic equations, can be exploited to



determine the fundamental solutions for the NSF, G13, R13 and CCR models. Never-
theless, to the best of the author’s knowledge, all the works on the MFS for rarefied gas
flows before this thesis have investigated the problems in 3D only. But, for quasi two-
dimensional flow problems, it is not really necessary to solve the full three-dimensional
problem as the flow profiles obtained in a cross section perpendicular to the transverse
direction remain the same in any cross section perpendicular to the transverse direction.
Thus, a quasi-two-dimensional study of a full three-dimensional problem (where one di-
mension in the problem is much larger than the other two) is enough to understand the
full three-dimensional problem. Unfortunately, the two-dimensional fundamental solu-
tions, which are the prerequisite of the MF'S, for a model cannot be deduced directly from
its three-dimensional counterpart due to the fact that the associated Green’s functions
are entirely different in 2D and 3D.

Traditionally, the MFS relied on evaluating the unknown coefficients in the linear
combination of the fundamental solution, by satisfying the given boundary conditions.
However, drawing inspiration from the Stokeslet, Lockerby & Collyer [64] introduced
physically meaningful point forces and point heat sources in the momentum and energy
balance equations, respectively, that represent the strength of individual fundamental
solutions. These unknown source strengths are then determined using the underlying
boundary conditions. Lockerby & Collyer [64] derived the fundamental solutions for the
NSF, G13 and R13 equations (with point force and heat source) in 3D and demonstrated
the implementation of the MFS for the G13 equations [36]. As an extension, Claydon
et al. [27] introduced an additional (ad hoc) source term in the stress balance equation
of the R13 model to obtain the fundamental solutions of the R13 equations in 3D and
implemented the MFS for R13 model in spherical geometries. Apart from that, in order
to obtain the fundamental solution of the CCR model [88], Rana et al. [90] used a source
term in the mass balance equation in addition to the point force and point heat source
in momentum and energy balance equations, respectively, for investigating evaporation
effects in 3D. All these approaches required deriving fundamental solutions for specific
models by prescribing Dirac-delta source terms in some selected equations within the sys-
tem of governing equations and closure relations. While being effective, this methodology
makes it challenging to extend the MF'S to new or more complex models, where the fun-

damental solutions are unknown and the choice of source terms is not straightforward.
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A general approach to compute the fundamental solutions for a large system without

predefined source terms also lacks in the literature.

1.3 Present work and organization of the thesis

1.3.1 Present work

The main objective of the thesis is to develop the MFS framework for monatomic
rarefied gas flow problems in 2D. Throughout the thesis, 2D refers to quasi-2D. The work
relies upon determining the two-dimensional fundamental solutions of the linearized CCR
model and to implement them in a numerical framework. A few illustrative internal and
external problems have been investigated to gauge the accuracy of the developed frame-
work. The thesis demonstrates the capability of the CCR-MFS framework to capture
rarefaction effects, including temperature jump, anti-Fourier effects, thermal stress and
thermal transpiration. Evaporation/condensation effects have also been studied for rar-
efied gas flows using the CCR model. An intriguing problem in 2D that does not arise
in 3D is Stokes’ paradox [58], which states the non-existence of a steady-state solution to
Stokes’ equations in 2D. The occurrence of Stokes’ paradox in rarefied gases also poses
mathematical challenges, which are addressed using the CCR-MFS framework for external
flow problems. The final goal is to make the MF'S for rarefied gas flows independent of the
problem-specific fundamental solutions. For this purpose, a generic approach is presented
that systematically computes the fundamental solutions for any linear moment system
without predefined source terms. The proposed approach is demonstrated to determine
the fundamental solutions of the R13 equations in 2D. The computational efficiency and
accuracy of the MFS is also compared with the FEM for the thermally-induced flow be-
tween two non-coaxial cylinders to highlight the advantages of the MF'S over traditional

meshing techniques. The remaining part of the thesis is organized as follows.

1.3.2 Organization of the thesis

Chapter 2 introduces the classical hydrodynamic models, namely the Euler and NSF
equations, which are effective near the equilibrium. This is followed by presenting two
extended hydrodynamic models—the CCR and R13 models—that are capable of captur-

ing non-equilibrium effects in rarefied monatomic gas flows. These models are reduced to

10



their linear and dimensionless forms and the corresponding thermodynamically-admissible
boundary conditions for each model are also discussed in this chapter.

Chapter 3 introduces the MFS approach and presents an idea to extend it for rarefied
gas flows. As a preliminary step to develop the MFS framework for flows in quasi 2D,
the fundamental solutions of the linearized NSF equations in 2D are derived, followed by
a derivation of the fundamental solutions of the CCR model in 2D. The implementation
of the MF'S for the CCR model is demonstrated with the example of flow past an object
of an arbitrary shape.

Chapter 4 investigates some illustrative internal flow problems in rarefied gases using
the MFS applied on the CCR model, including the problems of a vapor flow between two
coaxial circular cylinders, temperature-driven gas flow between two noncoaxial circular
cylinders having different wall temperatures, flow between coaxial circular and elliptic
cylinders, and flow inside a lid-driven cavity. The chapter also includes a sensitivity anal-
ysis to find an appropriate location of singularities. To examine the impact of geometry,
a monatomic rarefied gas flow between an elliptical outer cylinder coaxial with an inner
circular cylinder is also studied. The problems with purely temperature-driven gas flows
are discussed in detail to demonstrate an intriguing interplay between thermal creep and
thermal stress effects.

Chapter 5 presents external flow of a monatomic rarefied gas past circular and semi-
circular cylinders studied with the CCR model by introducing an artificial boundary to
bypass Stokes” paradox. Analytic solution is determined for the circular case and is used
to validate the results obtained from the MFS, followed by numerical investigation of the
semi-circular cases using the MFS.

Chapter 6 investigates evaporation/condensation from/on a liquid jet having circular
and non-circular cross-sections using the CCR model. Analytic results for the circular
case are validated against those obtained from the MFS. The mass-flux and heat-flux
coefficients for pressure- and temperature-driven flows are analyzed for both partial and
complete phase changes. The impact of interface shape deformation on the mass-flux and
heat-flux coefficients is investigated using shapes generated via spherical harmonics. A
sensitivity analysis highlights the influence of placement of singularities on the accuracy

of the MFS.

11



Chapter 7 presents a methodology to derive the fundamental solutions for a generic lin-
ear moment system without predefined Dirac-delta source terms in the governing and/or
closure equations. The method is illustrated first for the Stokes equations and then is
extended to the R13 equations in 2D.

Chapter 8 presents the final conclusions and outlook.

12



Chapter 2

Extended hydrodynamic models

This chapter first introduces the classical hydrodynamic equations, namely the Euler
and NSF equations, which are effective in the equilibrium or near the equilibrium. This
is followed by two extended hydrodynamic models—the CCR and R13 models—that are
capable of capturing non-equilibrium effects in rarefied monatomic gas flows. Since the
goal of the thesis is to employ the MF'S to these models, they are subsequently reduced to
their linear and dimensionless forms. The corresponding thermodynamically consistent

boundary conditions for these models are also discussed.

2.1 Classic models

For gases in the hydrodynamic regime, the continuum hypothesis holds and gas flows
can be accurately described using classical hydrodynamic models, like the Euler equations
or the NSF equations. These models are based on the fundamental conservation laws of
the mass, momentum and energy, which govern the macroscopic behavior of gases. Before
presenting these equations explicitly, we introduce a notational convention for clarity. All
symbols with tilde as an accent will henceforth denote dimensional quantities, while those
without any accent will represent dimensionless quantities. The governing conservation

equations for a compressible, viscous gas in the dimensional form are given by [55, 105]

op - -
a—§+6-Vﬁ+/BV~6=0, (2.1)
_[(0v . o SR - T
pcv<§+v.VT>+pV~v+V-q+0':Vv:O, (2.3)

where p, v, T, p, o, q are the density, velocity, temperature, pressure, stress tensor and
heat flux, respectively; 7 is the time variable; F' is the external force per unit mass; and
the coefficient ¢, is the molar specific heat at constant volume, and for monatomic gases,
Cy = SR/ 2, with R being the ideal gas constant. If the viscous stress and heat flux are

neglected, i.e. & = 0 and q = 0, the NSF equations reduce to the Fuler equations, which



read

a—§+f:~6ﬁ+ﬁ?~f:=0, (2.4)
(00 ~ . =

T . .
ﬁéy(%+ﬁ-VT>+ﬁV-6:O. (2.6)

The Euler equations (2.4)—(2.6) represent the simplest form of the hydrodynamic equa-
tions, capturing compressible, inviscid fluid flow without the influence of viscosity and
heat conduction. These equations are particularly useful in high-speed aerodynamics and
gas dynamics, where viscous effects are often negligible.

It is important to note that the system of Egs. (2.1)—(2.3) is not closed as such, owing
to the presence of the additional unknowns o and q, and requires constitutive relations
for these unknowns in order to close the system. In the NSF closure, the constitutive

relations for the stress and heat flux are given by

—2iVD, (2.7)

c

G=—ivo, (2.8)

where i is the coefficient of the shear viscosity, <R is the coefficient of the thermal
conductivity, § = RT is the temperature in energy units and the overline above a quantity
denotes its symmetric and tracefree part of the corresponding tensor. For a d-dimensional

vector 1, the symmetric-tracefree part of the tensor V) is defined as [40]

=3[V (V)] - (VT (2.9

where I is the identity tensor in d-dimensions. For three- and quasi-two-dimensional
problems, d = 3. The validity of the Euler and NSF equations is limited to flows with
very small Knudsen numbers. However, as the Knudsen number increases, the continuum
assumption underlying both the NSF and Euler equations breaks down. This necessitates
the use of more sophisticated extended hydrodynamic models, which are discussed in the

following sections.
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2.2 Extended hydrodynamic models

The inability of the Navier-Stokes—Fourier equations to capture rarefaction effects
motivates us to adopt the extended hydrodynamic models. These models go beyond
the classical continuum assumptions to account for non-equilibrium phenomena, such as
velocity slip, temperature jump and anti-Fourier heat flux, which are significant in the
slip and transition regimes. Although several extended hydrodynamic models have been
developed over the years, including the Burnett equations, super-Burnett equations, G13
equations, and their regularized forms like the R13 and R26 equations, we present the
CCR and R13 models in this section as we shall be using these two models to employ the
MF'S in the present thesis.

2.2.1 The CCR model

An extended hydrodynamic model propounded by Rana et al. [88] provides an im-
proved set of closure relations, which are better than the NSF constitutive relations (2.7)—
(2.8) in general. This model includes the coupling between the stress and heat flux ap-
pearing in the conservation laws (2.1)—(2.3) via a coupling coefficient, and hence the
closure relations are known as the coupled constitutive relations (CCR). The constitutive

relations for closing the system of Egs. (2.1)—(2.3) read [8§]

&= -2 [%+%{6_q~—alq6(1né)—aQqunﬁ)H, (2.10)
q~:—/?;{65—1—%{64}—(1—041)6"6(1115)—(1—0@)6’~6(1ﬂ]§)”, (2.11)

where, g is referred to as the coupling coefficient since it induces the coupling between
constitutive relations for the stress and heat flux. Setting ap = 0 in Egs. (2.10) and (2.11)
removes the coupling between the constitutive relations (2.10) and (2.11) and reduces them
simply to the NSF constitutive relations. The coefficients oy and as in Egs. (2.10) and
(2.11) are typically determined from experimental or theoretical scenarios; nonetheless, for
Maxwell molecules, oy = as = 0 [88]. Equations (2.1)-(2.3) along with the constitutive
relations (2.10) and (2.11) are referred to as the CCR model [88].

Linearized CCR model:

As we are interested in employing the MFS, which relies on the linearity of equations,

we shall be dealing with the linearized CCR model. For linearization, we choose the
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equilibrium state of the gas as the reference state wherein let the density and temperature
of the gas be py and Ty, respectively, so that the pressure in the reference state be py =
,5050, where 9~0 = RT, o- The other quantities (velocity, stress tensor and heat flux) in the
reference state are zero. For linearization, we introduce small perturbations in the flow
variables from their values in the equilibrium state and, for convenience, we also make
all quantities dimensionless using the length scale L, time scale INJ/ \/5_0 and appropriate
combinations of the reference density g and reference temperature Ty. The dimensionless
perturbations in the density, temperature, velocity, stress tensor and heat flux from their

values in the reference state are given by

p— o T-T, _ ® _ & g
, V=—=, 0=—= and q= < 32
B Pobo Pob,

(2.12)

respectively. Inserting these dimensionless perturbations in the CCR model [Eqgs. (2.1)-
(2.3) closed with Egs. (2.10)—(2.11)] and dropping all nonlinear terms in the dimensionless

perturbations, we get the linear-dimensionless CCR model, which reads

dp
or v = 2.1
8t+v v =0, (2.13)
g—::—l—Vp—f—V-U:F, (2.14)
T
cva—+V-v+V-q:O, (2.15)
ot
o =—2Kn (Vv +ayVq), (2.16)
q= —C’gin (VT + ooV - o), (2.17)

where t = i\/0y/L, V = (1/L)V, p = p+ T is the dimensionless perturbation in the
pressure p due to the linearization, ¢, = ¢,/ R,
o flo
= —— and Pr=c¢ - (218)
poV/ 0oL "Ro

are the Knudsen number and Prandtl number, respectively, with fiy and %oR being the

Kn

coefficients of the shear viscosity and thermal conductivity, respectively, in the reference
state. In Eq. (2.18), ¢, = ¢,/ R with ¢, being the specific heat at constant pressure. For
monatomic gases, ¢, = 5R/ 2. It may be noted that while performing the linearization,

the external force F' has been assumed to be small (of the order of perturbed variables)
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and has been scaled with 6,/L, i.e. F = FL/6,. Equations (2.13)(2.17) are referred to
as the linear-dimensionless CCR model.

For all the problems considered in this thesis, there is no external force, i.e. FF = 0
and the steady-state equations are obtained simply by setting all time-derivative terms
in Eqgs. (2.13)-(2.17) to zero, i.e. by setting d(-)/0t = 0. Consequently, the linear-

dimensionless CCR model in the steady state reduces to

V. .v=0,
Vp+V.o=0, (2.19)
Vq:07

with the closure (for a monatomic gas)

o = —2Kn (Vo + 0 Vg).

¢ Kn (2.20)

Pr
For oy = 2/5, Egs. (2.19)-(2.20) reduce to the linearized G13 equations in the steady

q=— (VI +agV -0).

state. Further if coupling coefficient oy = 0, the linear steady-state CCR model reduces

to the classical NSF equations, which are Egs. (2.19) with closure

o= —2Knﬂ,
2.21
q= —CpKnVT. 220
Pr

2.2.2 The R13 model

Despite the notable improvements offered by the CCR model over the classical NSF
equations, its applicability remains limited in gas flows with relatively higher degree of
rarefaction or in situations involving strong non-equilibrium effects. A set of extended
hydrodynamic equations that can overcome the limitations of the CCR model is the
Regularized 13-Moment (R13) equations proposed by Struchtrup and Torrilhon in a series
of works [105, 108]. The R13 model incorporates additional higher-order contributions
while preserving the structure of the original 13-moment system.

The R13 equations involve gradients of higher-order tensors (than in the CCR model)
and therefore we begin by writing the full R13 equations in indicial (component-wise)
form for a better understanding. After performing linearization about the equilibrium

state and nondimensionalization, we recast the resulting system into vectorial /tensorial
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notation. The mass, momentum and energy conservation laws which are the evolution
equations for the density, velocity and internal energy, read

op op
9Py 52l 520y, (2.22)

- 8171 - 8171 8p 86,] A F

p ( i la:&,) 07 | 0%; P, (2:23)
3_(00 _ 00 0y . Ob; g
S w TV 5 YU - 2.24

and the evolution equations for the stress tensor and heat flux are given by [105, 117]
00 | Dt 400 | 95 9% 4 95, 9% 4 O
ot o1y 501 0T ;) 01 01

04 , 04t ~a@i_(as )18@ _19p 500

~ _~5i' ~i' ~a~ ~— Uy~ FT~ - ~
ot 01 +qz8il 2p it i p O0x Ujp@:cj + 2p8xi
6 o5, 19 (79671 +Ru) 10A 2
20+ Ty | L 4 = 2, = 25, 2.26
+ (5 (i) +mﬂ) o T2 o7, 55,0 T T3v (2.26)

where 7 is the collision frequency and the right-hand sides of Egs. (2.25) and (2.26) are
evaluated from the collision integral in the Boltzmann equation for Maxwell molecules.
The angular brackets denote the symmetric trace-free part of the tensor (equivalent to
overline notation in tensorial form). For instance, the symmetric trace-free part for a

rank-2 tensor A;; reads
1 1 1
A<ij> = A(ij) — gAkk51J = 5 (AU + Aﬂ) — gAk‘k‘(Sija (2.27)

and the symmetric trace-free part for a rank-2 tensor B;;;, reads

1

Beijry = Brig) — ¢ (B + Bajn ik + Buikydis) » (2.28)
where
1
Biijr) = & (Bijk + Bikj + Bjor + Bjks + Brij + Biji) (2.29)

Furthermore, m,j, Rij and A are the higher-order moments which do not have any
physical meaning associated and fixing m;; = Rij = A = 0 reduces the Egs. (2.25)
and (2.26) to the original G13 closure relations. The constitutive relations for 7y, Ri;

and A read [105, 117]

8 p-0(Gu;/p) 20 _ _
o= ot s 2.30
Mgl v Oy + 15p 1930 (2.30)

18



24p0( Q/p) , 192 20

Rz“ = f — 010\, 2.31
J 517 01y 75~q D 7pal< i ( )

A (Ql/p) 5
A = — 9 i i 232
D 07, + 5~QlQl + pa 0% - ( )

Linearized steady-state R13 equations:

To nondimensionalize and linearize the equations, perturbations in flow variables from
their respective equilibrium states are considered (similarly to above Sec. 2.2.1). The
reference equilibrium density and temperature are pg and 6y, whereas the velocity, stress
and heat flux vanish in the equilibrium state. Considering L as the physical length scale,

the dimensionless position vector z;, temperature 6, pressure p and velocity v; read

Zi 0 P Ui
T, = =, 9:~_7 p==, Uy = = <233>
L 0 Po AR
respectively and other dimensionless quantities are
0ij i i R A
Oi5 = g, q; = ~q—~, mz-jk = jn—jli, Rij = ~_~j7 ANE - =. (234)
Po PoV bo PoV 0o Pobo Poto

Here, 0;; and R;; are symmetric trace-free second-order tensors, while m;;;, is a symmet-
ric trace-free third-order tensor. The resulting system of the linear, steady state and

dimensionless R13 equations read

2—2 =0, (2.35)

aaci * 83(;] =0, (2.36)

§§i =9 (2.37)

S gl S, .
500 Odoy 10R; 10A 2

S = e — 2.39
50z, " 91, 205, 301, 3Kn? (2.39)

closed with

(90'@“
= —2Kn—Y 2.40
m]l n axl> ) ( )
5= e 2.41
aQZ
A = —12Kn— 2.42
o (2.42)
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where Kn = \/%/(Dof)) is the Knudsen number. Recasting Egs. (2.35)—(2.42) in vector

notation, we obtain

V.v=0, (2.43)
Vp+V.o=0, (2.44)
V.qg=0, (2.45)
ilV_q+2W+V-m= —La, (2.46)

5) Kn
2V0+V-a+%V~R+%VA——é§q, (2.47)

with the closure

R= —%Knv_q, (2.48)
m = —2KnVao, (2.49)
A =—12KnV - q. (2.50)

Utilizing Eq. (2.45) in Eq. (2.50), we obtain A = 0.
2.2.3 Boundary conditions

2.2.3.1 Boundary conditions for the CCR model

The thermodynamically-consistent boundary conditions complementing the linear
CCR model have been derived in Ref. [90]. For a three-dimensional problem, the boundary
conditions complementing the linear CCR model are given in Eqgs. (4.2a), (4.2b), (4.3a)
and (4.3b) of Ref. [90]. Eqgs. (4.2a) and (4.2b) of Ref. [90] are the boundary conditions on
the normal components of the mass and heat fluxes, respectively, while Eqs. (4.3a) and
(4.3b) of Ref. [90] are the boundary conditions on the shear stress—two conditions due
to two tangential directions in 3D. In this thesis, we only consider quasi-two-dimensional
problems (where one dimension in the problem is much larger than the other two). Since
for a quasi-two-dimensional flow in the xjxo-plane, the wall normal direction and one
tangential direction are in the z12,-plane while the other tangential direction is along the
xg-direction, boundary condition (4.3b) of Ref. [90] is irrelevant in the present work and

the superscript ‘(1)” can be dropped from the unit tangent vector ) in (4.3a) of Ref. [90]
20



for simplicity. Consequently, the linear-dimensionless boundary conditions complement-

ing the linearized CCR model for a quasi two-dimensional flow read [90]

(v —UI) m=—n1(p—psas +M-0-1)+ (T — T+ agn - o - n), (2.51)
g n=mp— P +n-0-n)— (N2 +20)(T —T' +aon-o-n), (2.52)

t-o-n=—q¢v—v +ayq)-t, (2.53)

where n and t are the unit normal and tangent vectors, respectively. Furthermore, v!,
TT and pga in boundary conditions (2.51)—(2.53) represent the velocity, temperature and
saturation pressure at the interface. Boundary conditions (2.51) and (2.52) determine the
evaporative mass flux and heat flux by the difference between the pressure and saturation
pressure, and the temperature difference across the interface, respectively, while Eq. (2.53)
governs the velocity slip at the boundary. In boundary conditions (2.51)—(2.53), 7;;’s,
for i,j5 € {1,2} are the Onsager reciprocity coefficients, which from Sone’s asymptotic

kinetic theory [101] turn out to be

2 x 0 )
— 091344/ 2 X
G 093\/;2—X2—@’

2 x S}
=0.391 A = 2.54
e 0395\&2—;<2—@’ (2:54)

2 x S}
= 0.1678¢/ =X 7
122 \/;2—X2—®’,

with x being the accommodation coefficient which is unity (which also holds true for

the diffuse reflection boundary condition). The parameter © in the above coefficients
is the evaporation/condensation coefficient. For canonical boundaries and phase-change
boundaries, © = 0 and 1, respectively, are the largely accepted values of © in the literature.
The coefficients 7y and ¢, appearing in Eqs. (2.52) and (2.53), are the temperature-jump

and velocity-slip coefficients, which are given by [90]

2 2
T = 0.8503\/; and ¢ = 0.8798\/;, (2.55)

respectively. It is important to note that the coefficients g in boundary conditions
(2.51)—(2.53) are actually the fitting parameters and could be different from the coupling

coefficient a. Moreover, the coefficient aq in each of boundary conditions (2.51)—(2.53)

21



could also be different from each other. The only reason that the coefficients «g in bound-
ary conditions (2.51)—(2.53) have been taken as the same as the coupling coefficient in the
CCR model because the boundary conditions obtained in this way are thermodynamically

consistent [88].
2.2.3.2 Boundary conditions for the R13 model

The boundary conditions for the R13 equations were derived in Ref. [38] and later
extended and refined in Refs. [83, 119] using the Maxwell’s accommodation model. Analo-
gously to Sec. 2.2.3.1, the boundary conditions for R13 equations in (quasi) 2D requires one
wall normal direction and one tangential direction. The thermodynamically admissible

linearized (dimensionless) boundary conditions for the R13 equations in 2D are [113, 118]

(v—2") - n=¢" %ﬁ(p—pw+n~a~n), (2.56)
n'o“t:\/%ﬁ(ﬂ—vw+%q+n-m~n>~t, (2.57)
n-R-t= %%(—(v—vw)—l—%q—n-m-n)-t, (2.58)
q-n:\/gﬁ(2(8—9w)+%n~a~n+§n-R~n>, (2.59)
(n-m-n) n= %ﬁ(—%(9—9w)+gn-a-n—%n-R-n>, (2.60)

1 2 1
n'(ﬁn-m-nﬂ—t-m-t):\/;ﬁ(ﬁn-a-n—l—twrt), (2.61)

¥ is the veloc-

where n and ¢ are the unit normal and tangent vectors. In Eq. (2.56), €
ity prescription coefficient used to implement artificial in- and outflow conditions with
interface pressure p¥ and velocity vV. This boundary condition (2.56) is reduced to the

standard boundary condition v -n = 0 for ¥ =0 and €V = 0.
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Chapter 3

Method of fundamental solutions

The MFS is a meshless, boundary-type numerical technique widely used for solving lin-
ear partial differential equations, particularly in problems involving complex geometries
and/or complex boundary conditions. The core idea of the MFS is to represent the solu-
tion as a linear combination of fundamental solutions—analytic solutions to the governing
differential equation with singularities (or source points) located outside the physical do-
main. By enforcing the prescribed boundary conditions at discrete collocation points
on the boundary of the domain, the method transforms the problem into a system of
algebraic linear equations for the unknown source strengths.

In this chapter, we describe the basic procedure of the MFS for a general PDE and
factors affecting the accuracy of the MFS. We then derive the fundamental solutions for
the NSF equations and the CCR model in 2D in order to extend the MFS approach for

rarefied gas flows.

3.1 The approach

A brief basic working of the MFS is as follows. Let w : R — R be the solution to
the problem

(3.1)

where 2 is a connected and bounded domain in R" (see Fig. 3.1), £ is a linear partial
differential operator and B is the boundary operator. Let the fundamental solution (or

the Green’s function) of Eq. (3.1), be given by G(x, x®), which satisfies the equation
LG(x,x°) = 6(x,x*). (3.2)

Here ¢ is the Dirac-delta function and x® is the position vector of a source point. To
apply the MFS for solving the boundary value problem (3.1), a fictitious boundary oQ is

chosen on which Ny number of source points are placed, i.e. x; € [,1<i<N,. Owing
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Figure 3.1: Schematic of an arbitrarily shaped domain {2 having boundary
I' discretized with boundary nodes, represented by blue symbols. The red
symbols denote the singularities or the source points kept on a fictitious

boundary I' outside of the domain.

to the linearity of the problem, the approximated solution at any point @ € (2 is given by

N

w(x) = Z ¢;G(x, x). (3.3)

i=1
Here, ¢;’s are the constants to be determined by satisfying boundary condition (3.1), at IV,
boundary nodes (or collocation points) discretized over the entire boundary I'. Therefore

for each boundary node m;’ el

Bw(az?) = h(x!), where 1<j <N, (3.4)

J

Plugging Eq. (3.3) in Eq. (3.4), we get a linear system of algebraic equations of order

Ny x Ny, which is used to determine ¢;’s

N.s
Y aG(ah, @) = h(ah), 1<j<N, (3.5)

=1

which leads to the following system

_G(m?\flﬂ mi) G(m?\flﬂ m;) G(m?\flﬂ wg) tee G<$Z]7Vb> m?\fs)_ _CN.S_ _h‘<wl])\7b)_

System (3.6) is in the form MX = b where the matrix M is of the size N, x N, and is

referred to as the collocation matrix. The coefficients ¢;’s can be calculated using a linear
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solver if M is a square non-singular matrix, and using the method of least squares if M
is rectangular. Once the coefficients c¢;’s are obtained, the solution at any arbitrary point
inside the domain €2 can be obtained from Eq. (3.3).

Now, instead of expressing the solution in terms of coefficients ¢;, one may equiva-
lently pose the problem in terms of unknown source strengths embedded in the governing

equation. Specifically, consider the modified fundamental solution G'(x, xf) satisfying
LG (z, ) = [i6(z, @), (3.7)

where f; is the unknown source strength at the source point x;. By the linearity of the

operator L, it follows that
G'(z, x}) = fi G(z, x7), (3.8)

so that the approximate solution can be written as

w(x) = iG”(w,:cf) = iﬁ{?(:&mf), (3.9)

which is mathematically identical to Eq. (3.3), but interprets the coefficients as strengths
of singularities introduced directly into the given equation. This formulation allows for
a physical interpretation of the unknowns as source terms and also provides a conve-
nient framework for generalizing the method to moment systems where the fundamental

solutions are derived from source-driven equations.
3.1.1 Factors affecting accuracy of the MFS

Accuracy of the MFS depends on several interrelated computational and geometrical
parameters. A key consideration is the choice of the number of boundary points and
source points. Using more boundary points than source points can improve stability but
may reduce accuracy, while using an equal number can increase accuracy but make the
system more sensitive to numerical errors. Furthermore, the numerical conditioning of the
MF'S system matrix plays a pivotal role: exponential growth in the traditional condition
number (often exceeding 10'%) can obscure solutions even with an optimal placement of
source points. These factors underscore the need for systematic strategies to balance
accuracy and stability of the MFS.

In the MFS, positioning of the singularity points has been a widely-discussed issue

in order to achieve accurate results [3, 23, 26, 122] due to the fact that the linear system
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resulting from the MFS can have an ill-conditioned coefficient matrix [3], and there is a
trade-off between the accuracy and well conditioning. For meshfree methods, including
the MFS, Alves [3] states, “In these methods a sort of uncertainty principle occurs—
we cannot get both accurate results and good conditioning—one of the two is lost.” To
address this issue in the MFS, recent studies have introduced the concept of the effective
condition number, which provides a more reliable indicator of numerical stability than the
traditional condition number [22, 30, 125]. An ill-conditioned matrix has a high condition
number. Thus the MFS can yield accurate results even with the collocation matrix having
a high condition number. This seems to be implausible intuitively; notwithstanding, it
should be noted that the traditional condition number is not adequate for measuring
the accuracy and stability of the resulting system since the condition number does not
take boundary data into account. For instance, while forming matrix system (3.6), the
boundary data h(xy) appear in the vector b and not in the collocation matrix M. Hence,
the (usual) condition number of the matrix M is not an adequate parameter to gauge
the sensitivity of the MFS toward the location of the source points.

A more accurate estimation of the sensitivity of the MFS toward the location of the
source points can be made by the effective condition number, which also takes the bound-
ary data into account (through the right-hand side vector). The concept of the effective
condition number has been used by many authors to determine an optimal location of the
singularity points by conjecturing a reciprocal relationship between the inaccuracy of the
MFS and the effective condition number [22, 30, 125].

Using the singular value decomposition, M (having dimensions N, x N,) can be
decomposed as M = UDV'T, where U and V are N, x N, and N, x N, orthogonal
matrices and D is a N, x N, diagonal matrix containing the positive singular values in
descending order: o1 > 09 > 03 > -+ > 0, > 0, where r < min(N,, Ny). The traditional

condition number for the system is given by

K= —, (3.10)

where o7 and o, represent the largest and smallest (non-zero) singular values of M.,
respectively. Thus, the traditional condition number only depends on the matrix M and

not the right-hand-side vector b. On the other hand, the effective condition number is
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defined as [22, 125]

bl
RREAET

(3.11)
where ||.||o represents the ¢>norm. The effective condition number kg takes into ac-
count the right-hand-side vector b and provides a more accurate measure of stability than
the traditional condition number. Thus, we shall utilize rkeg to justify the location for

singularity points in different problems considered in Chapters 4-7.

3.2 Fundamental solutions of the NSF equations in 2D

The fundamental solution to the Stokes equations (which are the linearized Navier—
Stokes equations in the steady-state) is referred to as the Stokeslet. To account for
the effects of energy transfer, which is particularly important in problems involving phase
change, one needs to consider the energy balance equation along with the classical Navier—
Stokes equations. The Navier—Stokes equations together with the energy balance equation
are referred to as the Navier—Stokes—Fourier (NSF) equations. To study the fundamental
solutions of the NSF equations, the concept of “thermal Stokeslet” was propounded by
Lockerby & Collyer [64]. The Stokeslet and thermal Stokeslet, however, do not incorporate
mass exchange in the case of closed boundary due to the Gauss divergence theorem.
Therefore, to address processes involving phase change, a new fundamental solution—
referred to as the “sourcelet”—was obtained in [90] by introducing a point mass source
in 3D. It should be noted that the Stokeslet and sourcelet in 2D are different from their
counterparts in 3D due to different Green’s functions associated with the equations that
are used for obtaining the fundamental solutions. To the best of the authors’ knowledge,
the sourcelet in 2D for phase-change processes does not exist in the literature. Therefore,
following the approaches of [64, 90], we derive the fundamental solutions of the NSF
equations in 2D in this section. Recall the NSF closure (2.21) [for closing conservation

laws (2.19)] in linearized steady state

o = —2KnVw, (3.12)
cpKn
=— T. 1
q Pr v (3.13)

The computation of fundamental solutions to the NSF equations in 2D for processes

involving phase change is as follows.
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Case 1: Stokeslet

The Stokeslet is obtained by introducing a point forcing term (given by the Dirac delta
function) on the right-hand side of the momentum balance equation and by assuming
the process to be isothermal conditions (i.e. by assuming a constant temperature) [64].
Assuming the point force to be of strength f, system (2.19) of the mass, momentum and

energy balance equations changes to

V.ov=0, (3.14)
Vp+V.o=fir), (3.15)
V.qg=0, (3.16)

while the NSF closure [Egs. (3.12) and (3.13)] remains unaltered.

Since the temperature is assumed to be a constant, 7" being the (dimensionless) per-
turbation in the temperature from its equilibrium value vanishes and the constitutive
relation (3.13) readily yields ¢ = 0. Inserting o from the constitutive relation (3.12) in
Eq. (3.15), we obtain

Vp—KnAv = fé(r). (3.17)
On taking the divergence of this equation and exploiting Eq. (3.14), we obtain
Ap = f-Vi(r). (3.18)

From the fundamental solution of Laplace equation in 2D, it turns out that

S(r) = A (1°g7°) , (3.19)

27

which on substituting in Eq. (3.18) yields
f-r

Now, inserting the values of §(r) and p from Egs. (3.19) and (3.20) into Eq. (3.17), we

(3.20)

obtain
1 log r
Av—ﬁf-(VV—IA)( . ) (3.21)
This leads to
1
v = Ef (VV —IA)y(r), (3.22)
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where v(r) = r?(logr)/(87) is the fundamental solution of biharmonic equation [98]. On

simplification, Eq. (3.22) yields

- mKn 72

v . FTT — (2logr — 1)1} . (3.23)

Substituting the expression for v from Eq. (3.23) into constitutive relation (3.12), the

stress tensor turns out to be

C,:_f'r<£_27'_7'). (3.24)

Case 2: Thermal Stokeslet

The thermal Stokeslet is obtained when the energy balance equation in the system of
the NSF equations is subjected to a point heat source under the stationary and isobaric
conditions [64]. Assuming the point heat source to be of strength g, system (2.43)—(2.45)

of the mass, momentum and energy balance equations changes to

V.v=0, (3.25)
Vp+V-o=0, (3.26)
V.q=gd(r), (3.27)

while the NSF closure [Egs. (3.12) and (3.13)] again remains unchanged. Under the

assumption of flow being stationary,

v =0, (3.28)
using which the constitutive relation (3.12) gives

o=0. (3.29)
Moreover, under isobaric condition,

p=0. (3.30)

Inserting q from the constitutive relation (3.13) into Eq. (3.27), we obtain

B cpKn

AT = go(r). (3.31)

T
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Again, from the fundamental solution of Laplace equation in 2D, §(r) is given by Eq. (3.19).
Therefore, using Eq. (3.19), we obtain

T=-= log . (3.32)

q=-"—. (3.33)

Case 3: Sourcelet

The sourcelet is obtained by introducing a point mass source on the right-hand side
of the mass balance equation in the system of the NSF equations under the isothermal
conditions [90]. The case needs to be considered for the phase change processes because
the mass of the vapor is not conserved due to phase change. Assuming the point mass
source to be of strength h, system (2.43)—(2.45) of the mass, momentum and energy

balance equations changes to

V.-v="hir), (3.34)
Vp+V.-0=0, (3.35)
V-q=0, (3.36)

while the NSF closure [Egs. (3.12) and (3.13)] again remains unchanged.
Following [90], we solve this system with the help of the Fourier transformation. The

Fourier transformation of the function F(r) is defined as
FIF(r)] = (k) = / F(r)ei*rdr (3.37)
]RQ

and the corresponding inverse Fourier transformation defined as

FUE(k)] = F(r) := # /R QF(k:)e‘““"'dk:, (3.38)

where F' denotes the Fourier transform of F. Here, i is the imaginary unit and k is the

wavevector in the spatial-frequency domain. Taking the Fourier transforms of Eqgs. (3.34),
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(3.35) and (3.12), we obtain

k-o=ih,
pk+6-k=0,
6 = iKn[ok + ko — (k- 0)1],

respectively. Solving these equations, we obtain

k
Ea

o = —2Knh (@ — 1I) and p= Knh.

b=1h 73

Taking the inverse Fourier transforms of the quantities in Eq. (3.42), we obtain

k h r
_ -1 ) - - "
v =1hF <k2) 52

o = —2Knh F~! (@ - 11) _ I <2L'r - i) ,

k2 2 T rd 72

p=0.

Similarly, taking the Fourier transforms of Eqs. (3.36) and (3.13), we obtain

respectively. The inverse Fourier transforms of these equations readily lead to

gq=0 and T =0.

(3.39)
(3.40)

(3.41)

(3.42)

(3.43)

(3.44)

(3.45)

(3.46)

(3.47)

(3.48)

Combining the three cases we obtain the fundamental solutions for the NSF equations,

which read
f 2rr hr
= N—==-Clnr-1I|+-—
v(r) 87Kn | r2 @Inr—1)I) + 2mr?’
f-r
p(r) = 2772
(r) f-r+2Knh [2rr I
r)= - =
7 2 rd 2|’
Pr glInr
T(r) = —
(r) c,Kn 27’
gr
q(r) = 2
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(3.50)
(3.51)

(3.52)

(3.53)



3.3 Fundamental solutions of the CCR model

In this section, we derive the fundamental solutions of the CCR model in 2D from
scratch. The derivation is presented in the indicial notation for a better understanding.
For two-dimensional flows, let us say in the zyxo-plane, the field variables do not change
in the direction perpendicular to the plane of the flow, i.e. they do not change along the
xg-direction. As a result, the CCR model [Egs. (2.19)—(2.20)] for a two-dimensional flow

in the z;z9-plane reduces to

gz 0, (3.54)
g:i + ?9(;; — 0, (3.55)
gzii _ 0, (3.56)
oo =-akn g (5o + 5) ~ o] ~ 2o (2 + 52) - Goug]
(3.57)
)

where the indices ¢, 7 and ¢ can take the values 1 and 2 only, d;; is the Kronecker delta
and the Einstein summation applies over the repeated indices in a term. It may be noted
that Eq. (3.55) represents two equations: for ¢ = 1 the momentum balance equation in
the x;-direction and for ¢ = 2 the momentum balance equation in the xo-direction, and
that the momentum balance equation in the x3-direction is identically satisfied. It is
also worthwhile noting that oy + 092 = 0 in view of Eqs. (3.54) and (3.56), which is
consistent with the fact that the stress tensor o is tracefree because o33 = 0 for two-
dimensional flows in the z;xs-plane. Thus, the CCR model for a two-dimensional flow in
the x1zo-plane [Eqgs. (3.54) and (3.58)] essentially consists of the unknown field variables
v, V2, p, T', 011, 012, q1, Q2.

To derive the fundamental solutions, we add a Dirac delta forcing term of strength f;
(1 € {1,2}) on the right-hand side of the momentum balance equation (3.55) to represent
a (vector) point force and a point heat source of strength g on the right-hand side of the

energy balance equation (3.56). Furthermore, to deal with phase-change effects at the
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liquid-vapor interface, a point mass source of strength h is also added on the right-hand
side of the mass balance equation (3.54). For determining the fundamental solutions of a
system of partial differential equations, it is customary to consider only one point source
at a time and then to superimpose the solutions obtained by taking each point source at
a time in order to incorporate the effects of all point sources; see, e.g., Refs. [64, 90] and
the fundamental solutions for the NSF equations in previous section. Nevertheless, we
take all three point sources f = (f1, f2)7, g and h simultaneously and solve the resulting
system of equations altogether. We have verified—shown in the Appendix B—that this
procedure also yields exactly the same solution as that obtained by superimposing the
solutions obtained by solving the systems separately with one point source at a time.

To determine the fundamental solutions of the CCR model in 2D, the mass, momen-
tum and energy balance equations (3.54)—(3.56) are written with the point source terms

on their right-hand sides. These equations read

8vi .
5z = ho(r), (3.59)
8}? 80ij .
3o, T 5z, = fi6(r), (3.60)
Jy .
oz, go(r), (3.61)

where r = (21, 22)7. Equations (3.59)—(3.61) are closed with the CCR (3.57) and (3.58).
We solve the system of Egs. (3.59)—(3.61), (3.57) and (3.58) using the Fourier transforma-
tion [defined in Eqgs. (3.37)]. Applying the Fourier transformation in Egs. (3.59)—(3.61),
(3.57) and (3.58) and using the fact that F[d(r)] = 1, we obtain (4, j,¢ € {1,2})

kit = ih, (3.62)
kip + kjoi; =1 fi, (3.63)
kigi =19, (3.64)
. ) . . . . 2 N .
0;; =1Kn [kj(vi + apdi) + ki(0; + aogj) — géijkg(vg + apge) |, (3.65)
K “
in = I.lcli:)rn <l€zT —+ Oéok?jOA'Z'j) y (366)
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where the variables with hat are the Fourier transforms of the corresponding field variables.

Using Egs. (3.62) and (3.64), Eq. (3.65) simplifies to
6ij =1 Kn[k;(0; + aods) + ki(0; + aog;)] + ;%-Kn(h + apg). (3.67)
Multiplying the above equation with k; and £;k;, we obtain
k6 — i Kn k(01 + aodi) — %Kn k(h + ang), (3.68)
kikoi; = —%Kn k2(h + ag), (3.69)

respectively, where k;k; = |k;|> = k* has been used. Multiplying Eq. (3.66) with k; and
exploiting Eqgs. (3.64) and (3.69), we obtain

. Pr g 4
T= = 4+ —apKn(h . 3.70
oKuje T 3ooknlh o) (3.70)
Again, multiplying Eq. (3.63) with k; and exploiting Eq. (3.69), we obtain
p=1i kf + gKn(h + Q). (3.71)

Now, from Egs. (3.63) and (3.71), one can easily write

kik;f; 4

k—;f] — gkiKn(h + pg). (3.72)
Substituting the value of 7' from Eq. (3.70) and the value of k;6;; from Eq. (3.72) into

Eq. (3.66), we obtain

k:j&z-j = Ilfz —1

A . kzg c,Kn kik;
Now, from Egs. (3.68), (3.72) and (3.73),
V; = K_]n k‘_; - l{4] + pPI' (& j 51 — k‘2] +1 I{Q . (374)
Finally, using Egs. (3.73) and (3.74) in Eq. (3.65), we obtain
. ) Fjdi + Kidje kikiky kik; 6y
Gi; =1f ( J 3 2 k:i > — 2Kn( k:2] — ?) (h + ag). (3.75)

Applying the inverse Fourier transformation in Egs. (3.70), (3.71) and (3.73)—(3.75) with
the help of the formulae derived in Appendix A, the field variables turn out to be

fj Ty 2Inr — 1 cpKn 2 fj 2271‘&3]' (57;]' h&?z
;=2 - G ) + Bm—a2sd (2 T T 3.76
Y T Kn \ 42 8T i)t Pr 09y rd r? * 27?2 ( )
g X; cpKn fj 2£Cil'j 5@']’
p= J (2 D) 3.77
¢ 2m 12 Pr ao 2T r4 r2 ( )
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_ Jiwi

=52 (3.78)
T Pr glnr7 (3.79)
cp,Kn 27
fg(l?g -+ QKH(h + Ckog) 2(131‘.%]' 5@']’
0y = - -, (3.80)

where r = |z;| and 4,5,¢ € {1,2}. The field variables in Eqs. (3.76)—(3.80) are the
fundamental solutions of the linearized CCR model in 2D. These fundamental solutions

in the vectorial /tensorial notation can be written as

A 1 ¢K h
v(r) = —fSWK(rT) %Cﬁ)rnagf - B(r) + T;’ (3.81)
p(r) = ;—;; (3.82)
o) = LT F 2};2(11 9% gy, (3.83)
P 1
T(r) = —Cpéng 22T, (3.84)
atr) = L0 - L0 r B(r) (3.85)
where r = |r| and
A(r) = 2:—; —(2Inr—-1I, (3.86)
2 1
B(r) = % -5 (3.87)
Note that, in Egs. (3.81)—(3.87),
£ fi Cw(r) = vi(r)  glr) = @ (r) ’
f2 va(r) q2(r)
(3.89)
U(T) _ 0'11(7') 0'12<T') I — 1 0
0'12(7') —0'11<T') ’ 0 1

/

It is also worthwhile noticing that the fundamental solutions for the linearized NSF and
G13 equations in 2D can be obtained directly from Eqgs. (3.81)—(3.85) by taking ag = 0
and «y = 2/5, respectively.
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3.3.1 Example implementation

To implement the fundamental solutions (3.81)—(3.85) in the MFS, we describe the
construction of a system of algebraic equations through the problem of a rarefied gas flow
past a complex geometry as depicted in Fig. 3.2. As an example, the geometry of the

object in Fig. 3.2 is mathematically defined in the parametric form as

1
(x,y) = (Za cos @, Za(5 — cos 50) sin 9) (3.89)

with 0 < 0 < 27 and a < 1 being the scaling factor. As mentioned in Sec. 3.1.1, the
location of the singularity points is a major concern as the results obtained from the MFS
are highly sensitive toward the location of singularities [3, 23, 26]. There are two most
common ways of distributing singularities in the MF'S. One way is to place the singularities
on a fictitious boundary of a very simple shape—irrespective of the shape of the object—
with just one parameter to control; for example, on a circle in the two-dimensional case
and on a sphere in the three-dimensional case, and the radius of the circle or sphere would
be the controlling parameter. Another way is to recreate a dilated (or shrunk) fictitious

boundary, which has the same shape as the boundary of the original object and to place

Figure 3.2: Schematic of a flow past an object of an arbitrary shape depict-
ing the boundary discretization and the placement of singularities outside
the flow domain. The red and blue arrows at each boundary node depict
the normal (pointing toward the flow domain) and tangential directions at

that node, respectively.
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the singularities on this fictitious boundary [26, 61]—similarly to that shown in Fig. 3.2
as well. The latter is also easy if the original boundary of the object can be described
by a set of parametric equations having only a single controlling parameter, the dilation
factor. For illustration purposes, we have taken the fictitious boundary to be of the same
shape as the original boundary in Fig. 3.2.

Let N, be the number of the discretized boundary nodes and N, the number of singu-
larity points. The boundary nodes and the singularities are placed at equispaced angles
0 on the original and the fictitious boundary, respectively, and the distance between both
boundaries can be varied by changing the value of the dilation factor a. It may be noted
that singularities need not be placed at equispaced angles in principle; nonetheless, we
have done so for the sake of simplicity. Let x; and mé’ be the position vectors of the
ith singularity site and the j* boundary node, respectively. Then the position vector

from the i*® singularity site to any position « in the domain is 7; = = — x$ and the

b _
J

position vector from the i*" singularity site to the j* boundary node is r;; = x% — .
It is important to note that the subscripts 4’ and ‘j’ are now being used for denoting
the M singularity site and j*" boundary node and consequently, the repetition of indices
henceforth shall not imply the Einstein summation per se, unless stated otherwise (par-
ticularly, in Appendix A, wherein the Einstein summation does hold over the repeated
indices). Since the point sources f, g and h are to be put at each singularity site, there
are four degrees of freedom corresponding to each singularity point (two scalars g and h
from the point heat and mass sources, and two components f; and fy of the point force
vector f = [ fi fg}T). In total, we have 4 x Ny unknowns, which are determined typically
by satisfying the boundary conditions at the boundary points. Once the location of the
singularity points is decided, the next step in the implementation of the MFS is super-
position of the fundamental solutions associated with each singularity site, which makes
sense because of the linearity of equations and gives the value of the field variables at

the j'" boundary node. Superimposing the fundamental solutions (3.81)—-(3.85) for each

singularity site, the field variables at the j*" boundary node read

N,
2 fz . A(’l"ij) 1 CpKIl 2 hz rij
= (T .. B(r;; , 3.90
Yi ; [ 8mKn + 21 Pr %o (ry) + 271'7”,?]- ( )
N,
~ fi 7y
p; = Z 27TT-2J-]’ (391)
=1 z
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N,
~ fi-rij + 2Kn (h; i
szzf rij + 2Kn (hi + g, a0)

27‘( B(’I"Z‘j)7 (392)

i=1
N,
T=-y — 20 (3.93)

— c,Kn 27
=1

N g; Tij 1 cpKn
qj = Z - 9  5_ . OZ()fZ‘ . B(T‘ij) s (394)
i=1

where r;; = |ri;]; fi = [ f1i fQ}T, g; and h; are the point force (vector), point heat source
and point mass source, respectively, applied on the i*" singularity site; and

_2riri

ij
2']"1“7'1“ I
iJ iJ

This system is solved for the unknowns fi;, fo;, g, hi, @ € {1,2,3,..., Ns} by employing
the boundary conditions at each boundary node. Once the unknowns fi;, f2,, g:, h; for
i €{1,2,3,...,N,} are found, the flow variables at any position x in the flow domain
can be determined simply by dropping the subscript ‘j’ everywhere in Eqs. (3.90)—(3.94).
Hence, the fundamental solutions of the CCR model in 2D at any point located by the

position vector x in the flow domain are given by

[ s kE] o

p= ﬁ; ‘;T—;; (3.98)

o i oot 2K;(hi o) gy 599)
=1

i=1

The above procedure to evaluate flow variables works for any geometry and we have
implemented this in a numerical framework. We shall elaborate on the placement of
boundary nodes and source points, formation and solution of the system separately cor-
responding to the different problems in the following chapters.
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Chapter 4
Application of the CCR-MFS

framework for internal flow problems

In this chapter, we implement the fundamental solutions of the CCR model derived
in Sec. 3.3 by solving some internal flow problems. The CCR-MFS framework developed

for these problems is validated against benchmark solutions available in the literature.

4.1 Vapor flow confined between two coaxial cylinders

For the validation of the developed numerical framework, we revisit the problem of
a rarefied vapor flow confined between two concentric cylinders. The same problem was
investigated by Onishi [77] with the linearized BGK model and diffuse-reflection boundary

conditions.

4.1.1 Problem description

Let us consider a moderately rarefied vapor confined between the condensed phases of
two concentric infinitely long circular cylinders of radii Ry and R,, where Ry < Ry. Owing
to the axial symmetry along the zZ-axis, it is sufficient to investigate the problem in 2D.
A cross-sectional (two-dimensional) view of the problem is illustrated in Fig. 4.1. For the
purpose of non-dimensionalization, we take the inner radius as the characteristic length
L,ie. L = R;. Consequently, the dimensionless radii of the inner and outer cylinders
are 11 = Ry / L=1andry = Ry / L, respectively. The condensed phases of the vapor at
the inner and outer cylinders are assumed to be negligibly thin. These interfaces are not
treated as impermeable solid walls but rather as surfaces across which phase change can
occur. As a result, the standard no-penetration condition does not apply here. Instead,
evaporation and condensation boundary conditions (2.51)—(2.53) are imposed on these
interfaces. Let the temperatures of the inner and outer condensed phases be maintained
at uniform temperatures Ty and T3, respectively; see Fig. 4.1. The parameters Py and P,
denote the saturation pressures corresponding to the temperatures Ty and T, respectively,

of the condensed phases on the inner and outer walls. The difference between the actual



Figure 4.1: Cross-sectional view of a rarefied vapor flow confined between

two coaxial cylinders.

gas pressure in the vapor and the local saturation pressure at the wall determines the
evaporation/condensation, as specified by the boundary conditions (2.51)—(2.52). Again,
for the purpose of linearization and non-dimensionalization, we take the temperature at
the inner wall Ty as the reference temperature and the saturation pressure at the inner wall
Py as the reference pressure. Thus, the dimensionless perturbations in the temperature
and saturation pressure at the inner wall vanish, and the dimensionless perturbations in

the temperature and saturation pressure at the outer wall read

T, — T P, — P
ro=—"-" and p,=-—"2-2, (4.1)

respectively.
4.1.2 Analytic solution of Onishi [77]

Onishi [77] investigated the problem by employing an asymptotic theory [100]. Ac-

cording to this theory, a field variable & of the gas can be written as
h=hy+ hg, (4.2)

where hy is referred to as the hydrodynamic part or the Hilbert part that describes the
flow behavior in the bulk of the flow domain and &y is referred to as the kinetic boundary

layer part or the Knudsen layer part that can be seen as a correction to the Hilbert part
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and is significant only in small layers near an interface. Both hy and hy for all field
variables are expanded in power series of the Knudsen number, and the contribution at
each power of the Knudsen number is then computed by means of the considered BGK
model and the diffuse-reflection boundary conditions.

The linearized CCR model is anyway not able to predict Knudsen layers. Therefore,
it makes sense to compare the results obtained from the MFS only with the Hilbert
part of the solution given in Ref. [77]. For the problem under consideration and for the
linearized BGK model with the diffuse-reflection boundary conditions, the Hilbert part
of the solution is indeed straightforward to determine by solving a set of simple ordinary
differential equations analytically. Denoting the radius ratio by ¢ = ry/r; and the ratio
of ps to 75 by v = ps/7s, the analytic solution obtained from the linearized BGK model

with the diffuse-reflection boundary conditions for Kn =~ 0 is given by

p="ps <i+ i) _li, (4.3)

r1 ry (A1
-1
ps [ 1 1 1
y=—— | — 4+ — -, 4.4
! C() (7’1 + 1”2) r ( )
Dy \ Inr Dy \ Inr,] Dy 1 1\ '1

T =714 1—— — = [1 - — — YT | —+ — — 4.5
7 |:( Cofy) IDQ ( Co ) 1HQ:| +CO’YT (T1+T2) T1 ( )
qr :()7 (46)

where Cy = 2.132039 and Dy = 0.4467494.
4.1.3 Boundary conditions and implementation of the MFS

We shall investigate the problem described above by means of the MFS applied on the
linearized CCR model. Recall that we have already determined the fundamental solutions
of the linearized CCR model and outlined the way to implement them in Sec. 3.3.1 for a
general two-dimensional object. The solution for the field variables at the j*" boundary
node can directly be used from Egs. (3.81)—(3.85) once the boundary nodes and singularity
points for the present problem have been decided.

Since the singularity sites are to be placed outside of the computational domain, we
assume the source points to be placed on two fictitious circular boundaries, one inside the
circle associated with the inner cylinder and the other outside the circle associated with

the outer cylinder, as shown in Fig. 4.2. Note that both fictitious boundaries are concentric
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Figure 4.2: Schematic of the boundary nodes on the boundaries and singu-
larity points outside the flow domain for the problem illustrated in Fig. 4.1.
The red and blue arrows at each boundary node depict the normal (point-
ing toward the flow domain) and tangential directions, respectively at that

node.

with the circles associated with the cylinders. Let the radii of the inner and outer fictitious
boundaries be S; and Sy, respectively. For simplicity, we consider ns equispaced source
points on each of the two fictitious boundaries and n;, equispaced boundary nodes on each
of the actual boundaries (the boundaries of the inner and outer cylinders). As explained
in Sec.3.3.1, we have four degrees of freedom corresponding to each source point, and
the total number of singularity points for the problem under consideration is Ny, = 2n,.
Thus, there will be a total of 4 x N, = 4 x 2n, unknowns in the problem. Accordingly,
the summations in Eqs. (3.81)—(3.85) will run from i = 1 to i = 2n,.

Boundary conditions at the j™ boundary node are obtained from (2.51)—(2.53) by
replacing the flow variables and the normal and tangent vectors with their respective
values at the 7 boundary node. Furthermore, since the walls of the cylinders are fixed,

v! = 0. Consequently, the boundary conditions at the j* boundary node read

v Ny =—1(Dj — Peat + 15 - 05 - 1) + a1 — T + aon; - o - n;), (4.7)

q; -1y =1m12(p; — Psas + 1y 05 1) — (o2 + 270)(T; — T" + aom; - 05 - my),  (4.8)
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tj-aj-'nj :—§(’Uj+0é0qj)'tj. (49)

The dimensionless perturbations in the saturation pressures at the inner and outer inter-
faces are pg,y = 0 and pgx = ps, respectively, and the dimensionless perturbations in the
temperatures at the inner and outer interfaces are T/ = 0 and 77 = 7,, respectively, which
need to be replaced in boundary conditions (4.7)—(4.9) accordingly. Note that boundary
conditions (4.7)—(4.9) are to be satisfied at N, = 2n;, boundary nodes. On substituting
the values of the field variables at the j™ boundary node from Eqs. (3.90)-(3.94) into
boundary conditions (4.7)—(4.9), the resulting system of equations (associated with the

7 boundary node) can be written in a matrix form as
N
i=1

for the unknown vector associated with the i*® singularity w; = (f1;, f2;, 9, hi)T. Here,
M;;’s are the coefficient matrices of dimensions 3 x 4 and b, is the 3 x 1 vector containing

the interface properties, such as py and 7,. We collect all such systems into a new system

MX =B, (4.11)

.
where X = 1 fi, for g1 h fia foo 92 ha ... fin, fon, gn. hw,| i the vec-

tor containing all 4N, unknowns, the matrix M-—containing all the coefficients—has
dimension 3N, x 4N, (or 6n;, x 8n,) and is referred to as the collocation matrix. We
have solved system (4.11) in the computer algebra software, Mathematica® using the
method of least squares. For the identification purpose, the first N, singularity points
(1t = 1,2,...,n,) in our code belong to the inner fictitious boundary and the rest Nj
singularity points (i = ngs+ 1,ns+2,...,2n,) to the outer fictitious boundary. Similarly,
the first n, boundary nodes (j = 1,2,...,n;) belong to the actual inner boundary and

the rest n, boundary nodes (j = n, + 1,n5 + 2, ..., 2n;) to the actual outer boundary.
4.1.4 Results and discussion

For numerical computations, we have taken n, = 100 boundary nodes on each of the
actual boundaries and n, = 100 singularity points on each of the fictitious boundaries.
The dimensionless radii of the original and fictitious boundaries are taken as r; = 1,
ro =2, 8 = Sl/Rl = 0.5 and sy = SQ/RQ = 4.

43



Figure 4.3: Variation of the (scaled) temperature in the gap between the
two cylinders for different values of v. The solid red, dashed blue, dotted
green and dot-dashed magenta lines denote the results obtained from the
MF'S applied on the CCR model for v = 0, 3,7 and 11, respectively, and the
corresponding symbols (disks) indicate the analytic solution from Eq. (4.5),
which was obtained analytically for Kn ~ 0 through an asymptotic theory
[100] performed on the linearized BGK model in Ref. [77]. The other pa-

rameters are n, = 100, ny, = 100, r; = 1, 7o = 2, 57 = 0.5, so = 4.

Figure 4.3 illustrates the variation of the (scaled) temperature of the vapor in the
radial direction for Kn ~ 0 and for different values of the parameter v (= p;/7), wherein
Ts = 4 is fixed and p; is being varied for varying . The (solid red, dashed blue, dotted
green and dot-dashed magenta) lines represent the results obtained from our numerical
framework based on the MF'S while the symbols delineate the results from Eq. (4.5), which
was obtained analytically for Kn ~ 0 through an asymptotic theory [100] performed on the
linearized BGK model in Ref. [77]. It is evident from the figure that the results obtained
with the MFS in the present work are in an excellent agreement with the analytic results
from the linearized BGK model for Kn ~ 0.

Although not shown here for brevity, the results for the pressure and velocity from
the MFS are also in excellent agreement with the analytic results from Egs. (4.3) and

(4.4) for Kn ~ 0.
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It is also evident from Fig. 4.3 that the temperature increases on moving away from
the inner cylinder toward the outer cylinder for smaller values of v (solid red and dashed
blue lines with corresponding symbols in the figure) and vice versa for larger values of ~y
(dotted green and dot-dashed magenta lines with corresponding symbols in the figure).
This indicates the existence of a reverse temperature gradient after a critical value of ~.
Indeed, at this critical value of v, the (scaled) temperature remains constant along the
radial direction. An expression for this critical value of v from the asymptotic theory

[100] is given by [77]

= — |1 — Kn—(0.12422 —_— — K . 4.12
o= o 1= Kn G i226) (1 - ) o) (4.12)

For Kn ~ 0, the critical value of v from the above expression is v, = Cy/Dy =~ 4.772337.
From the MFS presented here, the critical value of v for Kn ~ 0 turns out to be
Y. & 4.7723, which is also very close to that computed from the above expression. The
phenomenon of reverse temperature gradient can be understood from boundary condition
(4.8) as follows. There are two factors determining the normal heat flux component in
boundary condition (4.8) according to which the evaporation/condensation rate depends
on (i) the difference between the pressure and saturation pressure, and (ii) the temper-
ature difference between the temperatures of the gas (or vapor) and the interface. The

temperature gradient gets reversed when one dominates the other. To gauge the capabil-

1.5t my=0]

Figure 4.4: Same as Fig. 4.3 but for Kn = 0.1 and the symbols denoting
the data from Ref. [77] obtained using the linearized BGK model.
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ities of the developed method, we also study the problem for higher Knudsen numbers.
Figure 4.4 exhibits the variation of the (scaled) temperature of the vapor in the radial
direction for Kn = 0.1 and for different values of the parameter v. The (solid red, dashed
blue, dotted green and dot-dashed magenta) lines again represent the results obtained
from our numerical framework based on the MFS but the symbols now denote the data
from the linearized BGK model taken directly from Ref. [77]. It is clear from the figure
that the results from the MFS are in good agreement with those from the linearized BGK
model even for Kn = 0.1; nonetheless, the quantitative differences in the results from
both methods are now noticeable.

To better contextualize the performance of the CCR-MFS framework, we now compare
it with the NSF model supplemented with velocity-slip and temperature-jump boundary
conditions. It is important to note that both approaches yield practically identical results
for Kn ~ 0 as rarefaction effects are negligible, and the standard NSF equations remain
valid. However, as the Knudsen number increases, the differences between these models
become more pronounced. For instance, at Kn = 0.1, a clear distinction emerges. Fig-
ure 4.5 illustrates the variation of the (scaled) temperature in the gap between the two
cylinders for v = 3 and v = 7 at Kn = 0.1, wherein the temperature profiles predicted
by the NSF model with both first-order and higher-order slip and jump conditions are
presented alongside the results obtained from the CCR and BGK models. The classical
first-order velocity-slip and temperature-jump boundary conditions for the NSF model
are obtained by setting apy = 0 in the boundary conditions (4.7)—(4.9). To incorporate
more refined corrections, we also implement the higher-order velocity slip and temperature
jump conditions by setting ap = 1/2 in Eq. (4.7), oy = 1/4 in Eq. (4.8), and ap = 1/5
in Eq. (4.9). It can be observed that although the NSF model with higher-order slip
and jump conditions shows improved accuracy over the first-order conditions, noticeable
quantitative differences persist when compared to the results obtained from the CCR and
BGK models. This demonstrates that even with higher-order corrections, the NSF model
is limited in capturing certain rarefaction effects, whereas the CCR model provides better
quantitative agreement with kinetic theory across the parameter range considered.

In addition, Figs. 4.4 and 4.5 also show the existence of a reverse temperature gradient.

For Kn = 0.1, the critical value of ~, at which the phenomenon of reverse temperature
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Figure 4.5: Variation of the (scaled) temperature in the gap between the
two cylinders for v = 3 and v = 7 at Kn = 0.1. Solid lines represent results
obtained from the MF'S applied to the CCR model. Corresponding symbols
(disks) show data from Ref. [77] based on the linearized BGK model. The
dashed and dotted lines correspond to MFS solutions of the NSF model
with second-order and first-order slip and jump boundary conditions, re-

spectively.

gradient occurs, is 7. = 4.66247 from the MFS whereas its reported value from the
linearized BGK model in Ref. [77] is 7. = 4.63087.

To have further insight on the reverse temperature gradient, the (scaled) radial heat
flux at the actual inner boundary (i.e. at r = 1) is plotted against « in Fig. 4.6. The (solid
blue and dashed red) lines and symbols denote the results from the MFS in the present
work and the data from the linearized BGK model given in Ref. [77], respectively. It is
apparent from the figure that our results for the radial heat flux are also in good agreement
with the data from the linearized BGK model for a smaller value of the Knudsen number
(Kn = 0.1 in the figure); however, for a higher value of the Knudsen number (Kn = 0.2
in the figure), there is a noticeable mismatch between the results obtained from the MFS
and the data from the linearized BGK model given in Ref. [77]. The exact source of this
discrepancy is not entirely clear as per our current understanding. One possible reason
could be the truncation of the power series at first order in Ref. [77] , where neglected

higher-order terms might contribute significantly at larger Knudsen numbers. Another
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Figure 4.6: Variation of the (scaled) radial heat flux with . The solid blue
and dashed red lines denote the results obtained from the MFS applied on
the CCR model for Kn = 0.1 and 0.2, respectively, and the corresponding
symbols (disks) indicate the data taken directly from Ref. [77], which were
obtained using the linearized BGK model. The other parameters are the

same as those for Fig. 4.3.

plausible explanation is the limitation of the CCR model itself, particularly its inability
to capture Knudsen layers that become increasingly prominent near boundaries at higher
Knudsen numbers. Figure 4.6 also shows that for each value of the Knudsen number,
there is a v at which the radial heat flux changes its sign. This ~ is indeed the same as
the 4. described above, at which reversal of the temperature gradient takes place.

Through the plots of heat flux lines, although not shown here, it has been found that,
in the case of 7, > 0, heat flows from the outer cylinder toward the inner cylinder for
v < 7. and vice versa for v > 7. . This makes sense in view of Figs. 4.3 and 4.4. The
direction of heat flow reverses in both cases when 75 is taken to be negative or, in other
words, when the initial temperature of the inner cylinder is taken higher than that of the
outer cylinder.

Figure 4.7 displays the (scaled) radial velocity at r = 1, plotted against  for Kn ~ 0
and Kn = 0.1. The solid blue and dotted green lines are again the results from the MF'S in
the present work while the symbols in the case of Kn ~ 0 denote the results from Eq. (4.4)

and those in the case of Kn = 0.1 denote the data taken from Ref. [77]; nevertheless, in
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Figure 4.7: Variation of the (scaled) radial velocity with v. The dotted
green and solid blue lines denote the results obtained from the MFS ap-
plied on the CCR model for Kn ~ 0 and Kn = 0.1, respectively, and
the corresponding symbols (disks) indicate those from the linearized BGK
model (from Eq. (4.4) in the case of Kn ~ 0 and directly from Ref. [77]
in the case of Kn = 0.1). The other parameters are the same as those for

Fig. 4.3.

both cases symbols denote the results from the linearized BGK model. The figure also
demonstrates a good agreement between the results from the method developed in the

present work and those from the linearized BGK model.
4.1.5 Location of singularities

As mentioned in Sec. 3.1.1, the collocation matrix associated with the linear system
resulting from the MFS could be ill-conditioned and there is a trade-off between the
accuracy and good conditioning. Therefore, it is important to determine an appropriate
location for the fictitious boundary in order to obtain the solutions with a desired accuracy.

Using the definition of the effective condition number, we first verify the inverse
relationship between the maximum error and the effective condition number. Let a@ > 1
be the dilation parameter that determines the separation between the actual boundary
(containing boundary nodes) and the fictitious boundary (containing singularities) such
that s; = ri/a and sy = ary. A larger value of a corresponds to a larger gap between

the actual and fictitious boundaries.
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For the current problem, the maximum absolute error €,,,, in the temperature com-
puted with the MFS and with the analytic solution for Kn ~ 0 along with the effective
condition number is plotted against the dilation parameter « in Fig. 4.8. The figure shows
that the inaccuracy of the MFS is roughly inversely proportional to the effective condi-
tion number. It is also evident from the figure that the maximum value of the effective
condition number is attained for o around 1.6, where the effective condition number is
of order 10® and the absolute error is minimum. It is worthwhile noting that the order
of the effective condition number remains 10® for higher values of a beyond o =~ 1.6;
similarly, the order of the maximum absolute error remains 107> for higher values of o
beyond a &~ 1.6. To further investigate the effect of the number of boundary nodes and
singularity points, Fig. 4.9 illustrates the variation in the effective condition number (left)
and the maximum absolute error in the temperature (right) with the dilation parameter
«. As depicted in the left panel of Fig. 4.9, it turns out that the value of a at which
the highest effective condition number is attained increases (decreases) with decrease (in-
crease) in the number of boundary nodes and singularities. Analogously, from the right
panel it is evident that the value of a at which the minimum error is attained increases
(decreases) with decrease (increase) in the number of boundary nodes and singularities.

Therefore, to save computational time, one can use smaller number of boundary nodes

107! 10’
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Figure 4.8: The maximum absolute error €., in the temperature and
the effective condition number kg for the problem of flow between coaxial
cylinders plotted over the dilation parameter o for Kn ~ 0 and n, = n, =

100.
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Figure 4.9: The effective condition number ke (left) and the maximum
absolute error €., in the temperature (right) varying with the dilation

parameter « for Kn ~ 0 and different values of n; or ng.
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Figure 4.10: Variation of the effective condition number k. with respect

to the dilation parameter « for n, = n, = 100.

and source points along with a bigger value of a. Choosing a > 2 appears sufficient to
achieve optimal accuracy for n, = ng = 100.

For higher Knudsen numbers, the variation in the effective condition number with
respect to the dilation parameter is illustrated in Fig. 4.10. It can be noticed from the
figure that the highest value of the effective condition number for a given Knudsen number
is attained at a value of o somewhere in between 1.8 and 2. Accordingly, the fictitious

boundaries have been safely placed at locations corresponding to a = 2.
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4.2 Temperature-induced flow between two non-coaxial cylin-

ders

In this section, we investigate the problem of flow induced by a temperature difference
in a rarefied gas confined between two non-coaxial cylinders via the CCR-MFS framework
developed in Sec. 3.3. The same problem was investigated numerically by Aoki, Sone and

Yano [5] with the linearized BGK model and the diffuse-reflection boundary conditions.
4.2.1 Problem description

Let us consider a rarefied monatomic gas confined between two infinitely long circular
cylinders of radii R, and R, (with R, < Rg) that are not coaxial. Again, owing to the
axial symmetry, it is sufficient to investigate the problem in 2D. Let the locations of both
cylinders be fixed according to the cross-sectional view portrayed in Fig. 4.11 so that the
centers of the circles associated with the outer and inner cylinders be at the origin and at
(0, —J), respectively. Furthermore, let the temperatures of the inner and outer cylinders

be kept fixed at T; = Ty and T, = Ty(1 + A7), respectively, with A7 being sufficiently

small in comparison to T so that the linear theory remains meaningful.

Figure 4.11: Cross-sectional view of the flow of a rarefied gas confined

between two non-coaxial cylinders having different wall temperatures.
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Figure 4.12: Schematic of the boundary nodes on the boundaries and singu-
larity points outside the flow domain for the problem illustrated in Fig. 4.11.
The red and blue arrows at each boundary node depict the normal (pointing

toward the flow domain) and tangential directions at that node, respectively.

For the purpose of non-dimensionalization, we again take the radius of the inner
cylinder as the characteristic length L, i.e. L = Ry. Consequently, the dimensionless radii
of the inner and outer cylinders are r; = Rl / L=1and o = Rg / l~}, respectively, and the
dimensionless distance between the centers of the cylinders is d = cZ/ L. Furthermore, for
the purpose of the linearization and non-dimensionalization, the equilibrium pressure of
the gas py is taken as the reference pressure and the temperature of the inner cylinder
T, as the reference temperature so that the dimensionless perturbations in temperatures
on the inner and outer walls are T;, = (Tz — Tl)/Tl =0and 7T, = (TO — Tz)/ﬂ = AT,

respectively.
4.2.2 Boundary conditions and implementation of the MFS

In order to place the singularity sites outside the computational domain, we again
assume the source points to be placed on two fictitious circular boundaries, one inside
the circle associated with the inner cylinder and the other outside the circle associated

with the outer cylinder, as shown in Fig. 4.12. The inner (outer) fictitious boundary
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is concentric with the circle associated with the inner (outer) cylinder. Let the radii
of the inner and outer fictitious boundaries be S; and Ss, respectively. Consequently,
the dimensionless radii of the inner and outer fictitious boundaries are s; = 51 / L and
So = S, / L. Similarly to the Sec. 4.1, we consider n, equispaced source points on each
of the two fictitious boundaries and n;, equispaced boundary nodes on each of the actual
boundaries (the boundaries of the inner and outer cylinders).

Since the walls of the cylinders are fixed for this problem as well, ¥/ = 0. Hence,
the boundary conditions (4.7)-(4.9) at the j*® boundary node hold true for the present
problem as well. However, since the present problem does not involve evaporation and
condensation, the evaporation/condensation coefficient © is zero for this problem. Con-
sequently, boundary conditions (4.7)—(4.9) for the problem under consideration further

reduce to

V;-Nn; = O, (413)
q; -n; = —270(7}—T1+060nj'0j'nj), (414)
tj-o;-n; = —(v; + fg;) - t;. (4.15)

Note that the coefficient o in boundary condition (4.15) has been changed to 8 = 1/5
(see, e.g., Refs. [105, 109, 110]) in order to have a fair comparison with the findings of
Ref. [5]. The interface temperature 77 in boundary condition (4.14) is 0 for the inner
cylinder and A7 for the outer cylinder.

The construction of the collocation matrix and the formation of system (4.11) for
the present problem is exactly similar to that demonstrated in Sec. 4.1.3. We have
again solved system (4.11) for the present problem analogously in the computer algebra

software, Mathematica® using the method of least squares to determine the unknowns
f117 f217gla hla f127 f227927 h27 s 7f1N57 fQNsagN57 th'

4.2.3 Results and discussion

We have computed the results numerically by taking the parameters as Ar = 1,
ny =mns = 100, ry =1, ro, =2, 51 = 0.5, d = 0.5 and s, = 4. Figure 4.13 illustrates the
variation of the tangential component of the (dimensionless) velocity on the right halves
of the inner (left panel) and outer (right panel) circles associated with the respective

cylinders with respect to the angle #, which is the angle measured from the negative
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Figure 4.13: Tangential velocity on the right halves of the inner and outer
circles associated with the respective cylinders plotted against the angle 6
for different values of the Knudsen number and for A7 = 1. The dashed
red, solid blue and dotted green lines denote the results obtained from the
MFS applied on the CCR model for Kn = 0.2,0.1 and 0.04, respectively,
and the corresponding symbols (disks) indicate the data from the linearized

BGK model [5]. The other parameters are the same as those for Fig. 4.3.

y-axis anticlockwise around the center of the inner circle as shown in Fig 4.12. the
(dashed red, solid blue and dotted green) lines represent the results obtained with the
MFS applied on the CCR model in the present work and the symbols denote the data
taken from Ref. [5], which were obtained using the linearized BGK model. The angle has
been taken in this way in order to maintain the geometrical similarity with Ref. [5]. The
unit tangential directions on the inner and outer circles are marked in Fig 4.12 with blue
arrows. Figure 4.13 shows that the tangential components of the velocity for both inner
and outer circles remain zero at # = 0 and € = 7 and that they attain the maximum values
somewhere in (0, 7/2). Furthermore, the value of 6 at which the maximum is attained also
shifts more toward # = 7/2 on increasing the value of the Knudsen number. Figure 4.13
evinces that the results from the MFS applied on the CCR model (lines) are in reasonably
good agreement with those from the linearized BGK model for small Knudsen numbers
(dotted green lines and symbols) and that the differences between the results from both
methods become more and more prominent with increasing Knudsen numbers (dashed

red and solid blue lines with corresponding symbols), where the present method starts
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Figure 4.14: Velocity streamlines and temperature contours obtained from
the MF'S applied on the CCR model at Kn = 0.1 and A7 = 1. The other

parameters are the same as those for Fig. 4.3.

overpredicting the results, though the trends from both methods remain qualitatively
similar to each other even for high Knudsen numbers. The reason for these quantitative
mismatches for large Knudsen numbers is attributed to the limitation of the CCR model
in capturing the Knudsen layers, which are more conspicuous near the boundaries for
large Knudsen numbers. The thickness of the Knudsen layers increases with increasing
the Knudsen number [106], which renders larger deviations in the tangential component
of the velocity near the inner and outer walls of the cylinders with increasing the Knudsen
number.

Figure 4.13, in other words, also reveals that at ¢ = 0 and § = 7 the flow can
happen only in the normal directions. This prompts us to draw streamlines of the flow in
Fig. 4.14. For explanatory purpose, we also display the temperature contours in Fig. 4.14.
The streamlines in Fig. 4.14 show that at the narrowest gap (at § = 0), the gas starts
moving from the outer (hotter) cylinder toward the inner (colder) cylinder due to the
largest temperature gradient at 6 = 0 and flows along the surface of the inner cylinder
on both halves until it reaches § = 7, at which it can flow only in the normal direction.
Therefore, at the widest gap (near § = 7), the gas flows from the inner cylinder toward
the outer cylinder and returns back from there toward the narrowest gap along the surface

of the outer cylinder (but in the opposite directions due to symmetry along the y-axis).
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Figure 4.15: Velocity streamlines and temperature contours obtained from
the MFS applied on the NSF equations with the second-order slip and jump
boundary conditions at Kn = 0.1 and A7 = 1. The other parameters are

the same as those for Fig. 4.3.

This renders two counter-directional circulating flows, one in the left half of the domain
and the other in the right half of the domain. The directions of the circulating flows
reverse on taking A7 < 0, i.e. when the inner cylinder is at a higher temperature than
the outer one. With the considered values of the Knudsen number, the directions of the
circulating flows apparently do not depend on the Knudsen number. The direction of the
streamlines obtained from the MFS applied on the CCR model in Fig. 4.14 is consistent
with that obtained using the linearized BGK model in Ref. [5].

In order to gain more insight into the process, we have also implemented the MFS
to the (linearized) NSF equations [by setting oy = 0 in Eqgs. (2.20), and (2.20),] with
the second-order slip and jump boundary conditions [105, 109, 110] [obtained by setting
ap = 1/4 in Eq. (4.14) and § = 1/5 in Eq. (4.15)], and plotted the streamlines obtained
with them in Fig. 4.15. From Figs. 4.14 and 4.15, it is evident that, in contrast to the CCR
model, the NSF equations even with the second-order slip and jump boundary conditions
predict streamlines in completely opposite and incorrect directions. This affirms the
inadequacy of the NSF equations in describing thermal-stress slip flows [101] accurately,
which—on the other hand—can be described reasonably well with the CCR model due

to the coupling between the stress and heat flux. The superposition of all the point force
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Figure 4.16: Drag force on the inner cylinder plotted against the Knudsen
number for A7 = 1. The solid and dashed lines denote the results obtained
from the MFS applied on the CCR and NSF models, respectively, while the
symbols indicate the data for the drag force obtained from the linearized

BGK model [5]. The other parameters are the same as those for Fig. 4.3.

vectors at the inner source points yields the total force F' acting on the inner cylinder,

ie.
N
F=> f, (4.16)
i=1
where 1 = 1,2, ..., N, refer to the points on the inner fictitious boundary. The projection

of the total force in the direction opposite to the streamwise direction is referred to as the

drag force (on the inner cylinder), which is given by

Fy=F-(-9) = —Zfi -9, (4.17)

where y represents the unit vector in the streamwise direction. Variation of the drag
force with the Knudsen number is illustrated in Fig. 4.16, which shows good agreement
between the results from the MFS applied on the CCR model (solid lines) and those
from the linearized BGK model (symbols) even for high Knudsen numbers (especially, for
Kn < 2).

This was actually not the case for tangential velocity displayed in Fig. 4.13, where
the differences between the results from the two models were noticeable for high Knudsen

numbers. This shows that the CCR model is capable of predicting the global quantities,
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Figure 4.17: Variation of the effective condition number k.g with respect
to the dilation parameter a. The number of boundary nodes at either of
the actual boundaries and the number of singularity points at either of the

fictitious boundaries are 100 (i.e. n, = n, = 100).

e.g., the drag force, quite accurately but is incapacitated of predicting the local quantities,
e.g., the velocity and temperature, for high Knudsen numbers due to its limitation of not
being able to predict Knudsen layers. On the contrary, the drag force obtained with the
NSF equations (depicted by the dashed line in Fig. 4.16) deviates significantly from the
drag force obtained with the linearized BGK model for Kn 2 0.2.

4.2.4 Choice of singularity points

Following the definition of the effective condition number (3.11) we plot the variation
of the effective condition number with respect to dilation parameter (as also done in
Sec 4.1.5) for different Knudsen numbers. It can be noticed from the Fig. 4.17 that the
highest value of the effective condition number for a given Knudsen number is again
attained at a value of o somewhere in between 1.8 and 2. From Fig. 4.17, although the
effective condition number decreases on increasing « after a certain value of «, we have not
encountered any significant change in the results on keeping the singularities farther (or
on taking bigger values of «). Therefore, it is apparently sufficient to just ensure a > 2
to attain an optimal accuracy in the case of n, = ny, = 100. Therefore, the fictitious

boundaries for this problem has safely been positioned at locations for which a = 2.
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4.3 Rarefied gas flows between coaxial circular and elliptic cylin-

ders

In this section, we aim to explore the effect of curvature of the geometry by considering
two coaxial cylinders with outer cylinder being elliptic and inner cylinder being circular,

instead of two circular cylinders as considered in Sec. 4.1.
4.3.1 Problem statement

We consider flows of a rarefied gas confined between two coaxial cylinders having
different temperatures. The inner cylinder is circular while the outer is elliptic. Let
the radius of the circular cylinder be 7 and the lengths of the semi-major and semi-
minor axes of the elliptic cylinder be a and 5, respectively, with 7 < b < . The cross-
sectional view of the geometry of the problem is exhibited in Fig. 4.18. Both cylinders are
assumed to be infinitely long along the z-axis. Owing to symmetry along the transverse
direction (i.e. along the Z-axis), it is again sufficient to study the quasi two-dimensional
representation of the problem in the zg-plane. For the purpose of non-dimensionalization,

we choose the length of the semi-minor axis b as the length scale L following [4], which

has been referred for qualitative comparison. Consequently, the dimensionless lengths

A?]

Figure 4.18: Cross-sectional view of the geometry of the problem. The
shaded region depicts the flow domain. The cylinders are concentric and
coaxial with the radius of the circular cylinder being smaller than both semi

axes of the elliptic cylinder.
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of the semi-major and semi-minor axes are a = a/ band b = 5/ L = 1, respectively,
and the dimensionless radius of the inner cylinder is » = 7/b. Furthermore, let the
temperatures of the inner and outer cylinders be T, and T), respectively. To make the
flow variables dimensionless, we take T} as the reference temperature. As also discussed
in Secs. 4.1 and 4.2, we shall be dealing with the linearized equations in this work. The
wall temperatures of the cylinders are also linearized around the reference temperature
T,. Consequently, the dimensionless perturbations in the temperatures (from the reference
temperature) on the inner and outer walls are T; = (j} —ﬂ)/ﬁ =0and T, = (TO —Tl)/ﬂ,

respectively. The two distinct problems considered in this set-up are as follows.

1. Thermally-induced flow: In this problem, we investigate the flow of rarefied gas
rendered purely due to the temperature difference between the walls of the two
cylinders. The problem was also investigated as a special case in Refs. [4] and [82]
using the DSMC method.

2. Phase-transition flow: We consider a moderately rarefied monatomic vapor con-
fined between negligibly thin condensed phases on the walls of the two cylinders
and investigate the phenomenon of evaporation/condensation of the vapor. The
condensed phases on the walls are assumed to be so thin that the temperatures
of the vapor in these phases are assumed to be the same as those of the respec-
tive cylinders. The phenomenon of evaporation/condensation is governed both by
the temperature difference between the phases near the walls and by the satu-
ration pressures of the condensed phases. Corresponding to the temperatures 7}
and T, of the inner and the outer cylinders, let the saturation pressures at the
inner and outer walls be p; and p,, respectively. Also, we take the saturation pres-
sure at the inner wall p; as the reference pressure corresponding to the reference
temperature T}. Consequently, the dimensionless perturbations in the saturation
pressures (from the reference pressure) on the inner and outer condensed phases
are p; = (p; — pi)/Di = 0 and p, = (Po — Pi)/Di, respectively. We denote the ratio
of p, to T, by v = po/To.

It is important to note that the two problems are completely independent of each other
and that the same notations used for the wall temperatures in the two problems should

not be confusing.
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4.3.2 Boundary conditions

The boundary conditions (2.51)—(2.53) in the case of problem 1 (requiring canonical
boundaries or © = 0) reduce to [42, 90]

g n=-27T-T,+ayn- o -n), (4.19)
t-o-n=—c(v+Bq) t (4.20)

where T, represents the (dimensionless) temperature on the wall, having values T; and T,
respectively for the inner and outer cylinders. Note that in boundary condition (4.20), a
new parameter 3 has been introduced in place of ag. The parameter [ is referred to as the
thermal-slip coefficient. The relevant works available in the literature based on the asymp-
totic analysis as well as on numerical experiments emphasize on the importance of bound-
ary condition (2.53) and of the coefficient (3, especially when dealing with temperature-
induced flows. For boundary conditions (2.51)—(2.53) to be thermodynamically-consistent,
the thermal-slip coefficient /3 is taken to be the same as the coupling coefficient o [90].
Nevertheless, some other values for the thermal-slip coefficient 5 also exist in the litera-
ture; see, e.g., Refs. [63, 86, 93]. Among the existing values of the thermal-slip coefficient
B, the commonly used value is 5 = 1/5 [105, 109, 110]. We shall also demonstrate the
effect of the thermal-slip coefficient by considering two values for it, namely 5 = 1/5 and
8= ap = 0.3197.

For problem 2 (requiring phase-change boundaries), the boundary conditions (2.51)—
(2.53) are used directly with © = 1.

4.3.3 Results and discussion

In order to keep the source points outside the flow domain, we consider two fictitious
boundaries concentric with the actual boundaries of the cylinders: the first one in a
circular shape of radius 75 shrunk inside the actual circular boundary (i.e., 7y < 7) and the
second one in an elliptic shape with semi-major axis as and semi-minor axis and BS, dilated
outside the actual elliptic boundary (i.e., as > @ and by > I;) as illustrated in Fig. 4.19.
For numerical computations in both problems, the (dimensionless) radius of the inner
cylinder has been fixed to r = 0.6, the (dimensionless) semi-major and semi-minor axes

of the outer cylinder to a = 1.5 and b = 1, respectively, the (dimensionless) radius of the
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Figure 4.19: Schematic of the distribution of collocation points (or boundary
nodes) on the boundaries and source points outside the flow region for
the problem illustrated in Fig. 4.18. The blue and red arrows respectively

delineate the tangential and normal directions at each boundary node.

inner fictitious boundary to ry = 0.3, and the (dimensionless) semi-major and semi-minor
axes of the outer fictitious boundary to ay, = 3 and b, = 2, respectively. Furthermore,
ny = 100 boundary nodes have been chosen on each of the two actual boundaries of
the cylinders and ny, = 100 source points have been placed on each of the two fictitious
boundaries. Note that, with the length scale L = b used in the non-dimensionalization
of the equations, the #- and §-axes are also scaled to = #/L and y = /L in order to
present the results in the (dimensionless) zy-plane. Owing to the geometrical symmetry in
both the problems, we shall present the results only in the first quadrant of the zy-plane,

which can be replicated in the other three quadrants in a straightforward way.

4.8.3.1 Problem 1: Thermally-induced flow between coazial circular and elliptic cylinders

As the flow in this problem is driven by temperature difference between the walls
of the cylinders, the dimensionless perturbations in temperatures of the inner and outer
cylinders are set to T; = 0 and T, = 1, respectively. Furthermore, to study the impact
of the thermal-slip coefficient, two values, namely 5 = 1/5 and 5 = ay = 0.3197, of the
thermal-slip coefficient are considered.

Figure 4.20 illustrates the tangential component of the velocity on the inner and outer
cylinders across the first quadrant for § = 1/5. The figure shows that the tangential
velocity at both cylinders remains zero at § = 0 (i.e. along the x-axis) as well as at

0 = m/2 (i.e. along the y-axis) for all Knudsen numbers and it increases on increasing
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Figure 4.20: Tangential velocity of the gas on the inner (left panel) and outer
(right panel) cylinders with 5 = 1/5. The other parameters are r = 0.6,
a=15b=1,r,=03,as=3,bs=2,n,=n,=70,T; =0and T, = 1.

the Knudsen number for all 0 < § < /2 as non-equilibrium becomes stronger with the
increasing Knudsen number. The former observation, in other words, apprises that the
flow at # = 0 (i.e. along the z-axis) and § = 7/2 (i.e. along the y-axis) can occur only in
the normal directions to the cylinders. This actuates us to draw the streamlines in order
to have further insights into the flow.

The streamlines along with the temperature contours are exhibited for Kn = 0.02,
0.1 and 0.2 in Fig. 4.21. Evidently, there is no flow in the tangential directions at § = 0
and 0 = w/2, which is consistent with the observation made from Fig. 4.20. Owing to the
most significant temperature gradient occurring at § = 7/2 (attributed to the narrowest
gap between the cylinders), the gas initiates movement from the outer (warmer) cylinder
toward the inner (cooler) cylinder along 6 = 7/2 in the negative y-direction. Subsequently,
it follows a path along the inner cylinder till it reaches to = 0, and from there it again
flows in the normal direction at §# = 0 toward the outer cylinder (due to the widest gap
between the cylinders). Once it reaches the outer cylinder at § = 0, it has no other choice
but to flow along the outer cylinder from 6 = 0 toward # = 7/2. This results in a counter-
clockwise circulating flow in the first quadrant that is symmetrically replicated in the
other three quadrants. This phenomenon holds true for all considered Knudsen numbers,
ie. Kn = 0.02, 0.1 and 0.2. Such a circulating flow in this problem is a consequence

of thermal stress rendered by the difference in temperature gradients at # = 0 and /2.
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Figure 4.21: Velocity streamlines and temperature contours obtained with
the MFS applied on the CCR model for Knudsen numbers (a) Kn = 0.02,
(b) Kn = 0.1 and (¢) Kn = 0.2 and for § = 1/5. The other parameters are
the same as those in Fig. 4.20.
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Figure 4.22: Same as Fig. 4.21 but for f = 0.3197.

The streamlines predicted by the MFS applied to the CCR model in the case of § =1/5
align with those obtained in Refs. [4] and [82] using the DSMC method for Kn = 0.5 and
Kn = 0.02, respectively.
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Figure 4.23: Same as Fig. 4.21 but with the MFS applied on the NSF

model.

The thermal-slip coefficient § plays a significant role in anticipating the interplay

between thermal-creep and thermal-stress effects. To illustrate this, the streamlines in
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the case of f = a9 = 0.3197 are plotted along with temperature contours for Kn =
0.02, 0.1 and 0.2 in Fig. 4.22. For very small values of the Knudsen number (Kn =
0.02), two counter-rotating flows are generated—one rotating counterclockwise originates
along the outer cylinder while the other rotating clockwise along the inner cylinder; see
Fig. 4.22. The former is due to the flow driven by thermal stress, causing the gas to
move from the outer (hotter) cylinder toward the inner (colder) cylinder at 0 = 7/2.
The latter, on the other hand, is attributed to thermal creep causing the gas molecules
to move from the colder (inner) cylinder to the hotter (outer) cylinder at 6 = 7/2.
Evidently from Fig. 4.22, as the Knudsen number increases, the flow along the outer
cylinder intensifies whereas the flow along the inner cylinder diminishes. At sufficiently
high Knudsen numbers (Kn = 0.2), the flow along the inner cylinder ceases entirely, and
the counterclockwise flow along the outer cylinder extends across the entire quadrant
(see the bottom panel of Fig. 4.22). As mentioned above, the appearance of a secondary
circulating flow near the inner cylinder is due to the interplay between thermal-creep and
thermal-stress effects, which is attributed to the coefficient 8. In the case of a small value
of the coefficient 8 (e.g., f = 1/5 which is smaller that 8 = 0.3197), the thermal stresses
still dominate the flow and a flow rendered by the thermal-creep is invisible for a small
value of 5 (as in Fig. 4.21). For large values of 3, the thermal creep effects become more
pronounced. Even f = 0.3197 is not large enough to show the thermal creep effects for
large Knudsen numbers (bottom panel of Fig. 4.22). Nevertheless, the correct value of
the thermal-slip coefficient § is intricately tied to the gas-surface interaction that could
be better explored through molecular dynamics simulations, a task currently beyond the
scope of this work.

Another crucial remark in this study pertains to the limitations of the NSF equations
in accurately predicting thermal-stress slip flows, even with the second-order slip and jump
boundary conditions. To demonstrate the limitations of the NSF equations, we have also
employed the MFS to solve the linearized NSF equations (obtained by setting oy = 0 in
Eqgs. (2.20), and (2.20),) along with the second-order slip and jump boundary conditions
(obtained by setting ap = 1/4 and § = 1/5 in boundary conditions (4.19) and (4.20)).
Fig. 4.23 illustrates the streamlines plotted over the temperature contours obtained from
the NSF equations with the second-order slip and jump boundary conditions for Kn =

0.02, 0.1 and 0.2. It is evident from the figure that the streamlines from the NSF equations
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Figure 4.24: Variation of the (scaled) temperature of the vapor with the
radial distance r between the two cylinders at § = 0—for three different
values of the parameter v, namely v = 1 (red color), v = 4 (green color)
~v = 8 (blue color), and for three different values of the Knudsen number,
namely Kn = 0.02 (solid lines), Kn = 0.1 (dashed lines) and Kn = 0.2
(dotted lines). The other parameters are a = 1.5, b = 1, ry = 0.3, a5 = 3,
by =2, ny, =n,="70,T;, =0.

are directed in completely reverse direction in contrast to those from the CCR model in
Figs. 4.21. Since the stream directions obtained from the CCR model are consistent with
those obtained from the DSMC method in Refs. [4] and [82], it is apparent that the
streamlines predicted by the NSF equations are incorrect even for Kn = 0.02. Thus, the
NSF equations are in general unsuitable for describing thermal-stress and thermal-creep
flows. A similar problem of thermally-induced flow between coaxial elliptic and circular
cylinders is investigated in Appendix C to further demonstrate the interplay between

thermal stress and thermal creep.

4.8.8.2  Problem 2: Evaporation/condensation between the condensed phases of a vapor

confined between coaxial circular and elliptic cylinders

For the problem of phase-transition flow, we have fixed T, to T, = 4, and we vary p,
to change the parameter v = p,/T,, where 7 represents the characterization parameter
for phase change. Figure 4.24 displays the variation of the (scaled) temperature of the
vapor in the radial direction along # = 0 for different values of the parameters v and Kn.

The red, green and blue colored lines represent the temperature variation for v = 1, 4 and
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Figure 4.25: Heat flow lines plotted over (scaled) temperature contours for
(a) vy =1 and (b) v = 8 and Kn = 0.1. The other parameters are the same
as those in Fig. 4.24.

8, respectively. Solid, dashed and dotted lines represent the temperature variation in the
cases when Kn = 0.02,0.1 and 0.2, respectively. The figure shows that the temperature
of the vapor increases on moving away from the inner cylinder toward the outer cylinder
for smaller values of v (for v = 1 and 4 in the figure), and that it decreases on moving
away from the inner cylinder toward the outer cylinder for larger values of v (y = 8 in
the figure). This connotes the existence of a reverse temperature gradient after some
critical value of the parameter v. The figure also suggests that the critical value of
the parameter v at which the temperature gradient reverses should be slightly larger
than 4. This critical value is actually that value of v at which there is no temperature

variation between the two cylinders. Before further discussion on the critical value of
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v, let us demonstrate the phenomenon of temperature gradient reversal with the help
of temperature contours and heat flux lines. Figure 4.25 illustrates the heat flux lines
plotted over the temperature contours for Kn = 0.1 and for (a) v = 1 (top panel) and (b)
v = 8 (bottom panel). As depicted by the temperature contours in the case of 7 = 1 (top
panel), the temperature of the vapor increases on moving from the inner cylinder toward
the outer cylinder and correspondingly, the heat flows from the outer cylinder toward the
inner cylinder. However, beyond the critical stage of 7 is surpassed, the situation reverses,
as can be seen for v = 8 (bottom panel). This phenomenon of temperature gradient
reversal can be explained using the boundary condition (2.51). The normal component
of the heat flux in boundary condition (2.51) consists of two parts which determine the
evaporation or condensation rate: first, the difference between the pressure and saturation
pressure and second, the difference between the temperatures of the vapor and interface.
The temperature gradient gets reversed when one dominates the other. For large values
of v, the former dominates whereas for small values of v, the latter dominates. Although
not shown here for brevity, the phenomenon of reversal of temperature gradient happens
analogously for Kn = 0.02 and 0.2 as well.

Owing to the asymmetry associated with the elliptic cylinder, the critical value of ~
also varies with 6. Therefore, for further investigation of the critical value of the parameter

v (that determines the reversal of temperature gradient), we plot v against the angle 6

4.4]
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Figure 4.26: Variation of the parameter v with the angle 6 for Kn = 0.02,0.1

and 0.2. The other parameters are the same as those in Fig. 4.24.
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for the Knudsen numbers Kn = 0.02,0.1 and 0.2 in Fig. 4.26. The figure reveals that for
a fixed # the critical value of v in general decreases with the increasing Knudsen number,
which was not so obvious in Fig. 4.24. In the similar problem of rarefied vapor flow
between the condensed phases of two coaxial circular cylinders studied in Sec. 4.1 and
also in Ref. [77], an explicit expression for the critical value of 7 depending on Knudsen
number was given. The critical value of v for the present problem, however, not only
depends on the Knudsen number but also on the angle due to the asymmetry associated
with the elliptic cylinder. This is why we are unable to proffer an explicit expression for

the critical value of v for the present problem.

4.4 Rarefied gas flow inside a lid-driven square cavity

4.4.1 Problem statement

A monatomic rarefied gas is considered to be contained inside an isothermal square
cavity having dimensionless length of the side as L = 1. Apart from the classical single
lid-driven cavity problem, we also consider two other problems of two-sided lid-driven
square cavities with top and bottom walls moving in the same and opposite directions.

The considered flow scenarios are as follows.

Uy Uy Uy

\
A

Uy L

Figure 4.27: Schematics of (a) single-sided lid-driven cavity, and two-sided
lid-driven cavities with top and bottom walls moving in the (b) same and

(c) opposite directions.

1. In the first scenario, the upper boundary (referred to as the lid) of the square

cavity is considered to be moving with a constant (dimensionless) velocity v,, in
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Figure 4.28: Schematic of the distribution of collocation points (or boundary
nodes) on the boundaries and source points outside the flow region for the
problem described in Sec. 4.4.1. The magenta and blue arrows demonstrate

the tangential and normal directions at each boundary node, respectively.

the positive z-direction as shown in Fig. 4.27 (a). The other three boundaries are
considered to be stationary.

2. The second scenario consists of the movement of the top and bottom walls of the
square cavity. Both walls are considered to be moving in the positive z-direction
with the same velocity v,, as shown in Fig. 4.27 (b). The left and right walls of
the cavity are assumed to be stationary.

3. In the third scenario, the top and bottom walls of the square cavity are considered

to be moving in opposite directions with the same speed as shown in Fig. 4.27 (c).

The boundary conditions (2.51)—(2.53) associated with the CCR model [(2.19)—(2.20)]

in this problem reduce to

V- — v, -n =0, (4.21)
g-n=-227T+omn-o-n), (4.22)
n-o-t=—gv-t—uv,-t+wq-t), (4.23)

where v,, is the wall velocity, n and t are the unit normal and tangent vectors at the
boundary, respectively. Throughout this section, the values of coupling coefficient and

Prandtl number are fixed as ag = 2/5 and Pr = 2/3, respectively, which correspond to

73



the Maxwell molecules [88]. Implementation of the MF'S for current problem involves the
placement of source points outside the flow domain on a circular fictitious boundary, a
schematic of which is illustrated in Fig. 4.28. The results have been obtained by fixing
an equal number of boundary nodes and source points, i.e., N, = N; = 200 and the
cavity region {(z,y) : 0 < x < 1,0 <y < 1}. The fictitious circular boundary on which
the singularities or source points are placed is centered at (0.5,0.5) with (dimensionless)

radius R, = 2.
4.4.2 Results for a single-sided lid-driven cavity

The dimensionless velocity of the lid is fixed to (v,,v,) = (1,0). To validate the
results obtained from the MFS applied to the CCR model, we illustrate the comparison
with the data taken from Ref. [85] for the results obtained from DSMC method and the

R13 equations. The left panel of Fig. 4.29 illustrates the variation of the (dimensionless)
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Figure 4.29: Variation of v, along the horizontal centerline (i.e., for y = 0.5)
of the cavity (left panel) and variation of v, along the vertical centerline
(i.e., for x = 0.5) of the cavity (right panel) for Kn = 0.08. The solid blue
curve represents the results for the MFS applied to the CCR model, the
dashed red curve represents the results for the MFS applied to the NSF
model, the green (square) and black (circle) symbols denote the data from

the DSMC method and R13 model, respectively, taken from Ref. [85].

vertical velocity along the z-direction at fixed y = 0.5, i.e., the variation of v,(z,0.5)
along the horizontal centerline of the cavity for Kn = 0.08. Analogously, the right panel

of Fig. 4.29 depicts the variation of the (dimensionless) horizontal velocity v, (0.5, y) along
74



the vertical centerline of the cavity for Kn = 0.08. The solid blue curve represents the
results for the CCR model solved via the MFS whereas the green (square) and black
(circle) symbols denote the data from the DSMC method and the R13 model, respectively
taken from [85]. Furthermore, we investigate the results obtained from the MFS applied
to the NSF equations with second-order slip and jump boundary conditions [obtained
by setting ag = 1/4 in Eq. (4.22) and ap = 1/5 in Eq. (4.23)]. The dashed red curve
in Fig. 4.29 represents the results obtained from the MFS applied to the NSF model.
It is evident that there is a good agreement among the results from the NSF model,
CCR model, DSMC method and R13 model in both panels. The small inaccuracies near
corners, especially with the DSMC results are due to the incapability of the NSF and

CCR models to capture Knudsen layers, which are more pronounced near the boundaries.
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Figure 4.30: Variation in v, along different horizontal lines y = 0.1,0.4
and 0.8 inside the cavity (left panel) and the variation of v, along different
vertical lines x = 0.1,0.4 and 0.8 inside the cavity (right panel) obtained
by the MFS applied to the CCR model.

We also demonstrate the variation of v, and v, obtained from the MF'S applied to the
CCR model along different lines inside the cavity. Fig. 4.30 illustrates the variation in the
vertical velocity v, along different horizontal lines y = 0.1,0.4 and 0.8 inside the cavity
(left panel) and also the variation of the horizontal velocity v, along different vertical
lines x = 0.1,0.4 and 0.8 inside the cavity (right panel). The increasing tendency of
horizontal velocity component v, with increase in y is due to the maximum horizontal

velocity at lid, whereas the wave-like nature of the vertical velocity component v, with
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variation in z is due to the formation of vortices which could be depicted via velocity

streamlines, which have been exhibited in Fig. 4.31. The left panel of Fig. 4.31 shows
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Figure 4.31: Velocity streamlines plotted over shear stress contours (left

panel) and heat flux lines plotted over temperature contours (right panel)

for the case when top wall is moving in the positive z-direction.

velocity streamlines over shear stress o,, contours for Kn = 0.08, indicating the clockwise
vortex structure driven by the moving lid. The contours represent the distribution of
shear stress 0., within the cavity induced due to velocity gradient. The right panel in
Fig. 4.31 depicts the heat flux lines plotted over the temperature contours for Kn = 0.08.
The second-order temperature-jump condition (4.22) causes cold and hot regions at the
left and right corners near the moving lid, respectively, as wall temperature is influenced
by stress. Moreover, the coupling between stress and heat flux (substituting Eq. (2.19),
into Eq. (2.20),), gives

5Kn
q= 55 (VT —aVp), (4.24)

highlighting that heat flux depends on both temperature and pressure gradients. This
relation introduces a competition between these gradients in determining the heat flow
direction. In the present scenario, the pressure gradient dominates over the temperature
gradient, leading to an anti-Fourier heat flow, as evidenced by the heat flux lines in
the right panel Fig. 4.31. This non-classical phenomenon, observed in microscale and
rarefied gas flows, occurs when heat flows from cooler to warmer regions, opposite to the
conventional Fourier law of heat conduction [2]. This phenomenon can be predicted well

by the CCR model due to the relation (4.24). However, as illustrated in the right panel
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of Fig. 4.32, a clear limitation of the NSF model emerges when examining the heat flux
lines. Although the NSF model with second-order slip and jump boundary conditions is
able to reproduce the overall velocity field and streamlines reasonably well in the bulk
region, it fails to capture the anti-Fourier heat transfer phenomena observed in both the

CCR-MFS and DSMC simulations.
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Figure 4.32: Velocity streamlines plotted over shear stress contours (left
panel) and heat flux lines plotted over temperature contours (right panel)

for Kn = 0.08 obtained from the MFS applied to the NSF model.

We also note that although the bulk flow and centerline velocity profiles agree closely
with those in Ref. [85], significant differences appear in the temperature and heat-flux
contours. The tilting and asymmetry reported in Ref. [85] arises due to fully non-linear
equations, whereas the MFS framework employs the linearized CCR equations. The
omission of non-linear convective terms enforces strictly symmetric fields. Such symmetric
profiles are also seen in lid-driven cavity simulations for gas mixtures using linearized

equations [39].

4.4.3 Results for the two-sided lid-driven cavity with top and bottom walls

moving in the same direction

In this subsection, we showcase the flow characteristics when the top and bottom walls
are moving in the same direction with the same horizontal speed v, which is fixed as v, = 1
for computational purpose. The left panel in Fig. 4.33 shows the velocity streamlines
overlaid on the shear stress o, contours for Kn = 0.1. The streamlines indicate the flow

pattern within the cavity, driven by the motion of the top and bottom walls. The flow
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Figure 4.33: Velocity streamlines plotted over shear stress contours (left
panel) and heat flux lines plotted over temperature contours (right panel)
for the case when top and bottom walls are moving in same directions with

the same speeds.

pattern reveals two primary vortices, each occupying the upper and lower halves of the
cavity, rotating in the same direction as the moving walls. The contours show that the
absolute shear stress is highest along the top and bottom walls. The negative/positive
scales of shear stress are due to positive/negative velocity gradients inside the cavity. The
heat flux lines plotted over the temperature contours for Kn = 0.1 are illustrated in the
right panel of Fig. 4.33. The temperature contours depict hot and cold regions near the
corners associated with both top and bottom walls. As evident from the right panel of
the figure, the heat flows from colder to hotter regions again depicting the anti-Fourier

effect produced due to pressure gradients inside the cavity.

4.4.4 Results for the two-sided lid-driven cavity with top and bottom walls

moving in opposite directions

In this case, the horizontal velocity is fixed at v, = 1 and v, = —1 for the top and
bottom walls, respectively, and the movement of walls leads to formation of a large vortex
covering the entire cavity. As evident from the left panel of Fig. 4.34, the absolute value
of shear stress is greatest near the corners of both top and bottom walls. In this scenario,
the hot and cold regions along the bottom walls are opposite as compared to the previous

case (Sec. 4.4.3). However, the heat flux lines again depict the anti-Fourier effect.
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Figure 4.34: Velocity streamlines plotted over shear stress contours (left

panel) and heat flux lines plotted over temperature contours (right panel)
for the case when top and bottom walls are moving in opposite directions

with the same speeds.

4.5 Summary

In this chapter, the CCR-MF'S framework has been applied to a few internal rarefied
gas flow problems to assess its accuracy and demonstrate its potential. The framework
has been tested for flow between coaxial circular cylinders, non-coaxial circular cylinders,
coaxial circular and elliptic cylinders, and lid-driven square cavities. For coaxial circu-
lar cylinders, the results obtained from the CCR-MFS framework have shown excellent
agreement with analytic solutions based on the linearized BGK model from the literature,
particularly for low Knudsen numbers. The framework has successfully captured key flow
features like reversal of temperature gradient. In the non-coaxial configuration involving
thermally-induced flow, the CCR-MFS framework accurately captured the primary flow
characteristics and key global quantities, including circulation patterns and drag, while
minor discrepancies observed at higher Knudsen numbers are attributed to Knudsen layer
effects not captured with the CCR model.

The framework has also been used to investigate flows between coaxial circular and
elliptic cylinders, under both temperature-driven and evaporation/condensation condi-
tions. It has accurately captured circulation patterns and demonstrated the effect of
geometry on thermal-stress-slip flows. For lid-driven cavity flows, the results obtained

from the CCR-MFS framework have matched well with DSMC and R13 data in the bulk
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region, with noticeable differences near walls due to the limitations of the CCR model in
capturing Knudsen layers. Importantly, the framework has captured non-classical effects
such as anti-Fourier heat transfer. A sensitivity analysis on the location of source points

has also been carried out to ensure numerical stability and accuracy.
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Chapter 5
Application of the CCR-MFS
framework for external flow

problems

While the Stokes equations (a simplified version of the Navier—Stokes—Fourier equations)
are effective in modeling slow and steady liquid flow past a sphere, they fail to yield a
non-trivial solution to the problem of slow and steady liquid flow past an infinitely long
cylinder (a two-dimensional problem essentially); this is referred to as Stokes’ paradox.
The paradox also arises when studying these problems for gases. In this chapter, we
present a way to obtain meaningful solutions for two-dimensional flows of rarefied gases
around objects by circumventing Stokes’ paradox. To this end, we adopt the CCR model
and determine its analytic solution for the problem and compare it with a numerical
solution based on the MFS. Apart from addressing the problem of flow past a circular
cylinder, we aim to showcase the capabilities of the MFS to predict the flow past other
objects in two dimensions for which analytic solutions either do not exist or are difficult
to determine. For that, we investigate the problem of rarefied gas flow past an infinitely

long semicircular cylinder.

5.1 Stokes’ paradox

Fluid flow around stationary objects, especially spheres and cylinders, is a classic
problem in fluid dynamics. Early research on low-speed viscous flows (often, referred
to as low-Reynolds-number flows) of incompressible fluids was pioneered by Sir George
Gabriel Stokes in the 19th century. He postulated that at low velocities, the inertial forces
become negligible with the pressure forces predominantly balanced by the viscous forces
alone and, for such flows, the Navier—Stokes equations in turn boil down to the celebrated

Stokes equations. In the honor of Sir Stokes, such a flow is referred to as a Stokes flow



Figure 5.1: Schematic of Stokes flow past an infinite circular cylinder of

radius R, where the fluid is moving transversely to the axis of the cylinder.

(or creeping flow). Stokes flows are often encountered in nature, e.g., in swimming of
microorganisms and sperms, and also in industries dealing with paints, polymers, etc.

Stokes was successful in describing slow and steady flow of a viscous fluid past a sphere
mathematically through the Stokes equations. However, when attempting to describe a
slow and steady flow of a viscous fluid past an infinite cylinder (which is essentially a
quasi-two-dimensional flow) using the Stokes equations [103], he encountered difficulties
in satisfying the boundary conditions at the cylinder surface and in the fluid at infinity
simultaneously. That led him to suggest the potential absence of a solution for the steady-
state fluid flow past an infinite cylinder—a notion later coined as Stokes’ paradox.

To explain the paradox mathematically, we consider a viscous fluid moving slowly
and steadily past an infinitely long right-circular cylinder of radius R in the direction
transverse to the axis of the cylinder as shown in Fig. 5.1. Let the flow domain be
denoted by €2 and the boundary of the disk by 0€2 and let the far-field velocity of the
fluid be (vg, 0,0) in the Cartesian coordinate system. Owing to the symmetry around the
axis of the cylinder, the problem essentially reduces to a (quasi-)two-dimensional problem
or, equivalently, to the problem of fluid flow past a circular disk of radius R. The Stokes

equations for the problem read

V-v=0 and Vp—pAv=0 in Q, (5.1)
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where v, p and p are the velocity, pressure and viscosity, respectively, of the fluid. The

no-slip boundary condition on the surface of the cylinder reads
v=0 on 0N (5.2)
and the far-field boundary condition reads

lim v, = vy. (5.3)

|z|—o0
Eliminating the pressure p from the Stokes equations (5.1) and introducing the stream

function ¢ (x, y)—which is related to the components of the velocity via the relations

Y P
Uy = (9_y and v, = ~ 9 (5.4)
the Stokes equations (5.1) reduce to the biharmonic equation
A% =0 in (5.5)
and the no-slip boundary condition (5.2) reduces to
oy oY
—=—=0 o02. 5.6
or Oy on (56)

For determining ), it is convenient to transform the equations from the Cartesian coor-
dinate system (x,y) to the polar coordinate system (r,6) so that x = rcos6, y = rsin6,
W(x,y) = (r,0), which is related to the components of the velocity in the polar coordi-

nates via the relations

0 oy
_ 127 - __r
U= and vy 5 (5.7)
In the polar coordinates, the no-slip boundary condition (5.6) changes to
oY oy
E—%—O at r=R and V 6€]0,27) (5.8)
and the far-field condition (5.3) changes to
. 10 .0 :
Tlirgo ;a—qg =1pcosf and rlg?o a—qf = v sin 6. (5.9)

The far-field conditions (5.9) require that the stream function be of the form ¢ =
f(r)sin@ [58, 112, 121]. Inserting this form of ¥ in (the polar form of) the biharmonic
equation (5.5), its solution reads [67, 112]

P(r,0) = (Ar + = +Cr® + Drln r) sin 6, (5.10)
r
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where A, B,C, D are constants that need to be determined using boundary conditions
(5.8) and (5.9). Both conditions in boundary condition (5.9) imply that C'= D = 0 and
A = vy. Consequently, there remains only one constant B with which two conditions in
boundary conditions (5.8) are to be fulfilled, a scenario that is impossible unless vy = 0.
This shows the nonexistence of solution to the Stokes equations for a steady flow past
an infinite circular cylinder whereas such flows do exist physically—this is the essence of
Stokes’ paradox. The paradox arises not only in the case of flow past a circular cylinder,
but also for an unbounded flow past any two-dimensional object of any shape [97].
Another important consequence of Stokes’ paradox is that the drag force on the cylin-
der in the aforementioned problem turns out to be infinite [70], which is unreasonable
physically. Numerous endeavors have been dedicated to addressing Stokes” paradox and
to determine the correct drag force on an infinitely long cylinder immersed in a viscous
fluid moving transversely to the axis of the cylinder [51, 53, 54, 57, 78, 81, 115]. Oseen [78],
in 1910, propounded an improvement to the Stokes equations by considering inertia effects
at large distances and proposed the Oseen equations by adding convective acceleration
terms to the Stokes equations. Oseen equations not only resolved Stokes’ paradox but
also led to an improved approximation of the drag force on a sphere immersed in a slow
viscous flow. Subsequent contributions by Lamb [57], Bairstow et al. [6] and Tomotika
and Aoi [115], refined the drag coefficient approximations for the cylinder using the Os-
een equations. Further attempts to advance Oseen’s ideas sparked the birth of a novel
domain in applied mathematics known as the method of matched asymptotic expansions.
Originally, Kaplun [50] and Kaplun and Lagerstrom [51] executed the method of matched
asymptotic expansions to obtain a new drag coefficient for flow past a circular cylinder.
Further, Proudman and Pearson [81] used the method of matched asymptotic expansions
for flows past cylinder and sphere, and they came up with a novel drag result for sphere.
Later, Kida and Take [54], through asymptotic expansions, provided expressions for the
drag coefficient at different orders of approximation for low-Reynolds-number flow past
a cylinder. Their results on the drag coefficient agreed well with experimental measure-
ments at low Reynolds numbers. Recently, Khalili and Liu [53] studied the problem of
flow past a cylinder with the lattice-Boltzmann method and their simulation results on
the drag coefficient led them to propose a slight correction to the expression for the drag

coefficient obtained at the first order of approximation by Kida & Take [54].
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In this chapter, we revisit the problem of fluid flow past a cylinder but with fluid
being a rarefied gas instead of a viscous liquid. The reason for taking this problem
is threefold: (i) the classic fluid dynamics models, e.g. the Navier-Stokes-Fourier (NSF)
equations (or Stokes equations for that matter), are incapable of capturing many intriguing
rarefaction effects pertinent to rarefied gases, and hence better models (typically more
involved than the Stokes equations, which are somewhat easy to handle) are needed for
modeling rarefied gas flows, (ii) the occurrence of Stokes’ paradox in rarefied gases too
poses mathematical challenges, and (iii) the problem leads to a method whose usefulness is
noteworthy especially for problems for which an analytic solution either does not exist or
is very difficult to obtain. Despite the presence of sufficient literature on two-dimensional
unbounded flows in continuum fluid dynamics, there has been comparatively less attention
towards rarefied gas flows past objects, particularly in two dimensions. To the best of the
authors’ knowledge, the first study on Stokes’ paradox in rarefied gas flows was presented
by Cercignani [17], wherein he showed that, despite the fact that the Boltzmann equation
is the most accurate model for investigating rarefied gases, the linearized Boltzmann
equation—similarly to the Stokes equations—does not give bounded solutions for the flow
past an axisymmetric body. To circumvent Stokes’ paradox, he proposed an inner-outer
expansion of the Boltzmann equation. Yamamoto & Sera [128] investigated rarefied gas
flow past a circular cylinder at low Mach numbers by dividing the flow into two regions:
(i) the kinetic region (flow domain near the cylinder) modeling and (ii) near continuum
region (flow domain outside the kinetic region). They handled the kinetic region with
the simultaneous integral equations derived from the linearized Bhatnagar—Gross—Krook
model and the continuum region with the Oseen—Stokes equation. Their result on the
drag on the cylinder matched reasonably well with those available in previous studies for
a wide range of the Knudsen number. Utilizing the advancements of moment methods in
kinetic theory, Gu et al. [37] recently investigated non-equilibrium effects on flow past a
circular cylinder. In this chapter, we investigate and validate slow flow of a monatomic
rarefied gas past an infinitely long right-circular cylinder using the CCR model solved
with the MFS.
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5.2 Flow past a circular cylinder

5.2.1 Problem description

We consider a steady low-speed flow of a rarefied monatomic gas past an infinitely
long right-circular cylinder having radius R;. We assume that the cylinder is isothermal
(having uniform temperature Ty, which is the same as the far-field ambient temperature
of the gas) with a large solid-to-gas thermal conductivity ratio. Let the circular cross
section of the cylinder be in the Zy-plane, the axis of the cylinder be coinciding with the
Z-axis and the flow be approaching the cylinder from the negative Z-direction toward the
positive Z-direction. As aforementioned, owing to the axial symmetry of the cylinder, the
problem is quasi-two-dimensional, i.e. it is sufficient to study the problem for a circular
disk of the same radius instead of studying the problem for the infinitely long cylinder.
A two-dimensional cross-sectional view of the problem is depicted in Fig. 5.2 wherein the
center of the disk is assumed to be fixed at the origin of the coordinate system. The radius

of the disk is taken as the characteristic length scale L for non-dimensionalization so that

Ay

i&z

Figure 5.2: Cross-sectional view of the problem of a rarefied gas flow past
an infinitely long cylinder. The solid circle represents the periphery of the
cylinder while the dashed circle represents an artificial boundary far away

from the cylinder.
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the dimensionless radius of the disk is R; = Rl / L = 1. To circumvent Stokes’ paradox
and hence the non-existence of a solution to the problem, we assume an artificial circular
boundary of radius Rg (where f%g > Rl) outside the disk. The radius of the artificial
boundary is taken to be sufficiently large in comparison to the radius of the disk so that

the artificial boundary has insignificant effects on the problem under consideration.
5.2.2 Boundary conditions

From Sec. 2.2.3.1, the boundary conditions complementing the linear CCR model in

two dimensions are

(0—v) m=0, (5.11)
q.n:—2T0(T—Tw+Oé0n'O"n), (512)
t.a-.n:—g<’v—’vw—|—060q)'t, (513)

where n and t are the unit normal and tangent vectors, respectively; and v,, and T,, are
dimensionless perturbations in the velocity and temperature of the boundary wall.

To circumvent Stokes’ paradox, an artificial boundary in the flow domain has been
introduced. To ensure that there is no disturbance to the flow due to this artificial

boundary, the boundary conditions at the artificial boundary are taken as
vy =7y, v, =0 and T =0. (5.14)

5.2.3 Analytic solution

As mentioned above, flow past an infinitely long right circular cylinder is indeed a
quasi-two-dimensional problem when the fluid flow is in the normal direction of the axis
of the cylinder. In this case, there is no change in the flow variables in the axial direction
of the cylinder. To tackle the problem, it is convenient to work in a cylindrical coordinate
system (7,7, z), wherein the z-axis coincides with the axis of the cylinder. Owing to the
axial symmetry, the flow variables do not change along the z-direction.

In this cylindrical coordinate system, the linear steady-state CCR model (Egs. (2.19)
and (2.20)) can be written as follows. The mass, momentum and energy balance equations

(2.19) in the cylindrical coordinate system read

ov, 10vy v,
ar +;%+?—0, (5.15)
87




ap do T 1 0 Ory Oprr — 099

ar ' or oo r =0 (5-16a)
10p  Oopg 10099 2009
r oY or r 00 + r =0, (5.16b)
dg-  190q9  q,
Bt AT A Nl
8r+r819+7" 0, (5:17)

where Eq. (5.15) is the mass balance equation (2.19);, Egs. (5.16a) and (5.16b) are the
momentum balance equation (2.19), in the - and ¥-directions, respectively, and Eq. (5.17)
is the energy balance equation (2.19);. It may be noted that the momentum balance
equation in the z-direction is trivially satisfied, owing to the fact that there is no change
in flow variables with respect to the z-coordinate. The closure relations (2.20) in the

cylindrical coordinate system read

vy g,

01y = —2KnS" — 2Knag 5. (5.184)
ovg = —Kn (% + %gﬁ; - %’9) — apKn (% + %?93; - %) , (5.18h)
099 = —2Kn (%% n %) — 20pKn (%% v %) : (5.18¢)
g = —C’gin [g—f + ag (ag’”’” %a;;” 4 2 - UM)} , (5.192)
49 = —C”Plin {%g—g + (8;:9 + %aggﬁ + 2‘;”)} . (5.19b)

To determine an analytic solution of the CCR model (5.15)—(5.19b) (in quasi-two dimen-
sions), we convert the partial differential equations (5.15)—(5.19b) into ordinary differ-
ential equations using symmetry ansatz, which is inspired by the solution of the Stokes
equations. This approach has also been utilized in determining analytic solutions of the
regularized 13-moment (R13) and regularized 26-moment (R26) equations in the linearized
state for the problems of flow past a sphere and a cylinder [87, 116, 124]. In symmetry
ansatz, the radial dependency of the variables is separated and the angular dependency
of the variables is expressed using the sine and cosine functions. For this purpose, the
vector and tensor components having an odd number of indices in ¢ are selected to be
proportional to sin¢ whereas the scalars and tensor components with an even number
of indices in ¥ are made proportional to cos® [116]. Furthermore, since the problem is
quasi-two-dimensional, the dependency in z-coordinate of the variables is automatically

eliminated. With these symmetry ansatz, the solutions for the vectors v and q are of the
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form

a(r) cos? a(r) cosd
v(r,9) = | b(r) sind | and q(r,9) = | B(r) sind | , (5.20)
0 0

the solutions for the scalars p and 1" are of the form
p(r,¥) =c(r)cos? and T(r,d) = d(r)cosd, (5.21)

and the solution for o is of the form
v(r) cos?d  k(r)sind 0
o(r,9) = |k(r) sind w(r) cosd 0 |, (5.22)
0 0 02z

where a(r), b(r), a(r), B(r), c(r), d(r), v(r), x(r) and w(r) are the unknown functions
that need to be determined, and 0., = —[v(r) + w(r)] cos?¥ as o is a symmetric and
tracefree tensor of rank 2. Insertion of ansatz (5.20)—(5.22) in Eqs. (5.15)—(5.19b) leads
to a system of ordinary differential equations in the unknowns a(r), b(r), a(r), 5(r), c(r),
d(r), v(r), (r) and w(r) that is solved to determine these unknowns. Substituting the
obtained values of the unknowns in ansatz (5.20)—(5.22), we get the following solution for

the field variables.

v (1r,9) = (03 — % + csr® 4 cgIn r) cos ¥, (5.23)
vy(r,¥) = (—03 — % —3cs1? — 6 — cgIn r) sin ¥, (5.24)
¢ (r,9) = <;—; + 02> cos v, (5.25)
qo(r, ) = (7% — CQ) sin 4, (5.26)
p(r,d) = Kn <8rc5 - ?) cos v, (5.27)
o (r,9) = Kn <46;261 — % — 4dres — %) cos v, (5.28)
or(r,¥) = Kn <4i201 _ % + 4rc5) sin 4, (5.29)
ogg(r,9) = Kn <_42061 n % + 4res + ?) cos v, (5.30)
T(r,9) = LPPIEH (Cr—l - rcg) + Knay (87“05 - %)} cos V. (5.31)
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The constants ¢y, ¢, c3, ¢4, ¢5 and cg in the above solution are determined using boundary
conditions (5.11)—(5.14). However, it is crucial to acknowledge that without the presence
of the outer artificial wall or, in other words, without imposing the specified boundary con-
ditions (5.14), determining the six constants ¢, ¢a, ¢3, ¢4, ¢5 and ¢g uniquely through three
boundary conditions (5.11)—(5.13) is impracticable. Moreover, for solutions to converge in
the far-field (as r — o00), it becomes necessary that ¢, = ¢5 = ¢g = 0. Additionally, if the
boundary conditions (5.11)—(5.13) are imposed, it follows that the remaining constants
c1,c3, and ¢4 also become zero, resulting in an overall zero solution. This scenario illus-
trates the occurrence of Stokes” paradox with the CCR model as well, and thereby affirms
the necessity of employing an artificial boundary to circumvent this paradox. There-
fore, the constants ¢y, ca, . .., ¢ are determined using boundary conditions (5.11)—(5.14).
The obtained flow variables—when required—can be converted back into the Cartesian

coordinate system using the transformation

T cos?? —sind Of |7
g = |sind cos?d 0| |91, (5.32)
Z 0 0 1| |2

where Z, 7, 2 denote the unit vectors in the Cartesian coordinate system and 7,4, Z are

the unit vectors in the polar coordinate system. For instance, the velocity is given by

T T
v = [vx vy O] = [vTcosﬁ—vﬂsmﬂ vpsind +wvgcosty 0] - (5.33)

5.2.4 Implementing the MFS

In the present problem, we do not deal with evaporation/condensation problems, so
it is not necessary to include a sourcing term in the mass balance equation and hence
the fundamental solutions with point force heat source are utilized from Sec. 3.3. The

fundamental solutions of the CCR model in 2D read

w(r) = 8W1an . {2:2'” ~ 2lnr— 1)1} + ;ﬁ‘;ag . (27'f—4"° - %) | (5.34)
p(r) = % (5.35)
a(’r‘)zangO;(:—f.r (2:«_7%)’ (5.36)
T(r)= _273;—5%1“ T, (5.37)
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_gr gl e (1
a(r) = 27 12 ZWPrQOf <7’4 r2 )’ (5-38)

where r = |r|.

As discussed in Sec. 5.1, the mathematical origin of Stokes” paradox lies in the loga-
rithmic dependence of the solution of the Stokes equations. This logarithmic dependence
is also seen in the fundamental solutions of the CCR model (see Eqgs. (5.34) and (5.37)),
due to which the solution diverges in the far field. To circumvent this difficulty, we em-
ploy the MFS on a bounded domain by introducing an artificial outer boundary which
is far enough from the original circular disk. To place the singularity points outside the
computational domain, we assume that the source points are located on two circles—one
inside the actual periphery of the disk and the other outside of the artificial boundary.
The circles on which the singularity points are placed will henceforth be referred to as
the fictitious boundaries. An illustration depicting the boundary nodes on the periphery
of the disk and on the artificial boundary, and the location of source points on the fic-
titious boundaries is presented in Fig. 5.3. We consider a total of Ny source points, out

of which N, points lie on the inner fictitious boundary having dimensionless radius R}
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Figure 5.3: Placement of the collocation points (black dots) on the ac-
tual and artificial boundaries and singularities (black stars) outside of these
boundaries. The blue and red arrows at each boundary node denote the

unit tangent and normal vectors, respectively.
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and Ny, points on the outer fictitious boundary having dimensionless radius R (where
R} < Ry and R}, > Ry). Furthermore, we place NNV,, boundary nodes on the actual pe-
riphery of the disk and N, boundary nodes on the artificial boundary accounting for a
total of N, boundary points. Corresponding to the i*" singularity (i = 1,2,3,..., N,),
there are three unknowns, namely f,, fo, and g;, where f;, and fs, are the components of
the point force f; applied on the i*! singularity, i.e. f; = [ f1, fQi]T, and g; is the point
heat source applied on the i*" singularity. Thus, there are a total of 3 x N, unknowns,
which are to be computed using the boundary conditions at both the actual and artifi-
cial boundaries. This means that three boundary conditions need to be applied at each
boundary node, which leads to a set of 3 x N, linear algebraic equations that are to be
solved for 3 x Ny unknowns. The boundary conditions (5.11)—(5.13) are evaluated for
the j*® boundary node on the actual periphery of the disk (for j = 1,2,..., Ny, ), while
the boundary conditions (5.14) are evaluated for the j® boundary node on the artificial
boundary (for j = 1,2,...,Ny,). Using the boundary conditions, we obtain a system of
3Ny, + 3Ny, = 3N, linear equations in 3N, unknowns, namely fi,, fa,, 91, f10, f2u5 G2, - -,

Jin.> fon,> 9n,- This system can be written in a matrix form as
MU =b, (5.39)

where U is the column vector containing all the unknowns, i.e. U = [ fi, for 91 fi, fou
g2 - fin, Jon, gNS]T; M is the corresponding collocation matrix and b is the column
vector containing only the wall properties, e.g., vo. We have solved the system using the
method of least squares in Mathematica. Since the MFS may lead to a bad-conditioned
collocation matrix, it is favorable to use the method of least squares even if the collocation

matrix is square [26].
5.2.5 Results and discussion

For numerical computations, we fix the dimensionless radius of the artificial bound-
ary to Ry = 10 and the dimensionless radii of the inner and outer fictitious boundaries to
R} = 0.5 and R}, = 20, respectively, the number of boundary nodes on the actual periph-
ery of the disk to Ny, = 50 and the number of boundary nodes on the artificial boundary
to N, = 100. For simplicity, we fix the number of singularity points on the inner ficti-
tious boundary to be equal to the number of inner boundary nodes, i.e. Ny, = N, = 50,

and the number of singularity points on the outer fictitious boundary to be equal to the
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number of boundary nodes on the outer artificial boundary, i.e. Ny, = N, = 100 so as
to make the collocation matrix (having dimensions 3N, x 3N;) square. Notwithstand-
ing, the results obtained with a rectangular collocation matrix do not differ significantly
from those obtained with a square collocation matrix in the present work since we have
used the method of least squares for solving the formed system of equations numerically.
Furthermore, the (dimensionless) approaching velocity (in the x-direction) of the gas far
away from the cylinder has been fixed to vy = 1.

In order to validate our code, we first plot the (dimensionless) speed of the gas against
the radial position (as one moves away from the cylinder) for the angles ¥ = 0, 7/4 and
/2 in Fig. 5.4.

From left to right, the panels in the figure depict the speed of the gas for Kn = 0.1, 0.5
and 1. The solid lines in the figure delineate the results obtained from the MFS applied on
the CCR model while the symbols display the results obtained from the analytic solution
of the CCR model obtained in Sec. 5.2.3. An excellent agreement of the results from
the MFS with the analytic results—evident in the figure—validates our numerical code.
The figure reveals that the speed of the gas starts increasing for all values of ¥ as one
moves away from the disk. For 9 = 0, the speed keeps on increasing with r all the way
till the artificial boundary. On the other hand, for |J| > 0 (blue and red colors in the

figure), the speed of the gas starts increasing as one moves away from the disk; the speed

Kn=0.1 Kn=05 1.2{{Kn=1
[0} 1280 L]

1.2

1.0

1.0 L0
0.8
0.8 0.8
[v] 0.6 |v] 0.6 v 06
0.4 0.4 0.4
0.2 0.2 0.2
0.0 0.0 0.0
1 2 4 6 8 10 1 2 4 6 8 10 1 2 4 6 8 10
r T r

Figure 5.4: Speed of the gas varying with the radial position in different
directions for Kn = 0.1, 0.5 and 1. The solid lines represent the results
obtained from the MFS applied to the CCR model and the symbols rep-
resent the analytic solutions. The other parameters are N, = Ny, = 50,

Ny, = N,, =100, Ry = 1, Ry = 10, R, = 0.5 and R} = 20.
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Figure 5.5: Velocity streamlines over speed contours obtained from the MFS
applied on the CCR model for the Knudsen numbers Kn = 0.1, 0.5 and 1.

The other parameters are the same as those for Fig. 5.4.

even surpasses its inlet value due to the accelerated flow occurring due to the production
of pressure gradient around the disk; after attaining a maximum at a point somewhere
in between the periphery of the disk and the artificial boundary the speed slows down
on moving further away from the disk to match the fixed speed (through the boundary
condition) on the artificial boundary. The figure also shows that for || > 0 (blue and red
colors in the figure), the speed of the gas on the disk increases with the Knudsen number
due to increasing slip velocity with the Knudsen number.

In order to have a better idea about the speed and velocity profiles around the disk,
the streamlines and speed contours obtained from the MFS for Kn = 0.1, 0.5 and 1 are
exhibited in Fig. 5.5. While the streamlines in Fig. 5.5 are qualitatively alike, the speed
contours reveal the quantitative differences for different Knudsen numbers. The speed
contours in Fig. 5.5, similarly to Fig. 5.4, also show that the speed of the gas at any point
in the domain increases with increasing the Knudsen number in general. Particularly, it
is clearly visible from the speed contours in a close proximity of the disk. Moreover, for
|¥| = /2, Fig. 5.5—similarly to that shown by red lines in Fig. 5.4—shows that the point
at which the speed surpasses its inlet value of vy = 1 becomes closer and closer to the
disk with increasing the Knudsen number.

It is well established theoretically as well as experimentally that rarefied gases, when
flowing around an object, manifest temperature polarization near the boundary of the
object, even in the absence of any external temperature difference [7, 85, 111, 116, 124].

Temperature polarization in rarefied gas flows past solid objects is a phenomenon where a
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Figure 5.6: Temperature along the left and right sides of the disk for Kn =
0.009, 0.1 and 0.5. Solid lines represent the results obtained from the MFS
applied to the CCR model and the triangles represent the analytic solutions.

The other parameters are the same as those for Fig. 5.4.

solid object—such as a cylinder or sphere—develops a non-uniform temperature distribu-
tion on its surface, even if the object itself is maintained at a constant temperature, when
it is placed in a steady flow of rarefied gas. In other words, because of rarefaction effects,
some regions of the object may become slightly warmer or cooler compared to other re-
gions, despite the entire surface being isothermal in terms of boundary conditions. The
underlying reason for temperature polarization is the non-equilibrium nature of molecu-
lar interactions at the gas—surface interface when the gas is rarefied. The incoming and
reflected molecules transfer energy differently at various points on the surface depending
on the flow direction and rarefaction level. To check for the temperature polarization
effect in the problem under consideration, we plot the (dimensionless) temperature of the
gas at different points along the z-axis in Fig. 5.6, which illustrates the temperature on
the left and right sides of the disk (i.e. along 9 = 7w and ¥ = 0, respectively) for different
values of the Knudsen number Kn = 0.009, 0.1 and 0.5. Since the induced tempera-
ture is very small, the temperature has been scaled up by its order while depicting it in
Fig. 5.6. The solid lines and symbols again denote the results obtained from the MFS
applied on the CCR model and from the analytic solution, respectively, and they again
turn out to be in an admirable agreement. The figure shows the presence of temperature
polarization. Nonetheless, for small Knudsen number Kn = 0.009 that corresponds to the
hydrodynamic regime (the left most panel in the figure), the magnitude of temperature

polarization is very small (of the order of 1077) with minute cold and hot regions near
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the disk boundary at ¥ = 7w and ¥ = 0, respectively. However, as the Knudsen number
increases (see the middle and right panels of the figure), the magnitude of temperature
polarization increases and, moreover, temperature reversal can also be seen from the mid-
dle and right panels of the figure for Kn = 0.1 and Kn = 0.5. The temperature reversal
for higher Knudsen numbers has also been seen in rarefied gas flows around spheres [116].
To get deeper insights of temperature polarization and temperature reversal, we plot the
temperature contours and heat-flux lines in Fig. 5.7. The figure shows that the heat-flux
lines in all panels are starting from the right side of the disk and going toward the left
side of the disk for all Knudsen numbers. However, the temperature on the right side of
the disk is higher than that on the left side only for very small Knudsen numbers (e.g. for
Kn = 0.009 in the left most panel of Fig. 5.7), i.e. when the flow is in the hydrodynamic
regime. In this regime, Fourier’s law remains valid and hence the heat flows from hot to
cold regions. For large Knudsen numbers (e.g., for Kn = 0.1 and 0.5 in the middle and
right panels of Fig. 5.7), the temperature on the left side of the disk is higher than that
on the right side due to temperature reversal and heat interestingly seems to be flowing
from cold to hot regions, which is an anti-Fourier effect and is common to stress-driven
rarefied gas flows; see, e.g., Refs. [39, 85, 87, 88, 116]. As no temperature difference is
applied externally in such problems, minuscule temperature differences are rendered by
stress gradients. In other words, stress gradients in such problems dominate the tem-
perature gradients and since Fourier’s law depends only on the temperature gradient,
anti-Fourier effect cannot be described by the NSF equations. On the other hand, the
inherent coupling of the heat flux with stress gradient in the constitutive relations for the
CCR model enables it to capture the anti-Fourier effect. To corroborate the inability of
the NSF model in capturing the above findings, we have also applied the MFS to the NSF
model (by setting cy = 0 in the CCR model) and displayed the temperature contours and
heat-flux lines obtained from the MFS applied to the NSF model in Fig. 5.8. It turns out
that the NSF model with the first-order temperature-jump boundary condition does not
show temperature polarization at all (not shown here explicitly). With the second-order
temperature jump boundary condition, the NSF model does show temperature polariza-
tion, yet reversal of temperature does not appear in order to respect imposed Fourier’s
law adherent to the NSF equations, which is clearly discernible in Fig. 5.8 that has been

made using the second-order velocity-slip and temperature-jump boundary conditions.
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Figure 5.7: Heat-flux lines over temperature contours obtained from the
MF'S applied to the CCR model for Knudsen numbers Kn = 0.009, 0.1 and

0.5. The other parameters are the same as those for Fig. 5.4.

Figure 5.8: Heat-flux lines over temperature contours obtained from the

MF'S applied to the NSF model for Knudsen numbers Kn = 0.009, 0.1 and

0.5. The other parameters are the same as those for Fig. 5.4.

Furthermore, by comparing Figs. 5.7 and 5.8, it is evident that the NSF model does not
show the temperature reversal.

As also mentioned above, Fig. 5.6 and the color bars in Figs. 5.7 and 5.8 show that
the magnitude of the temperature generated near the left and right sides of the disk
increases with the increasing the Knudsen number. Indeed, the temperature polarization
and temperature reversal are second-order effects with respect to the Knudsen number.
Hence, the generated temperature is actually of O(Kn?). In order to illustrate this, we
plot the temperature of the gas at r = 1 and ¥ = 0 scaled with Kn? against the Knudsen
number for different locations of the artificial boundary in Fig. 5.9. The left panel of
the figure displays the results obtained with the CCR model and the right panel exhibits

the results obtained with the NSF equations and the second-order accurate boundary
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Figure 5.9: Temperature of the gas at » = 1 and ¥ = 0 scaled with Kn?
plotted against the Knudsen number for different locations of the artificial
boundary. The left panel shows the results obtained with the CCR model
and the right panel shows the results obtained with the NSF equations and

the second-order accurate boundary conditions.

conditions. The figure shows that 7//Kn? indeed has a common scale for all Knudsen
numbers. The left panel of Fig. 5.9 again reveals the presence of a critical Knudsen number
at which 7/Kn? changes its sign. This critical Knudsen number, which is Kn ~ 0.0094115,
in the left panel of the figure demarcates the point of temperature reversal. Evidently
from the right panel, the NSF equations even with the second-order boundary conditions
do not show the temperature reversal. Fig. 5.9 further shows that while the temperature
profiles are qualitatively similar for all locations of the artificial boundary, quantitative
differences are conspicuously present. Indeed, the figure exhibits decreasing magnitudes
of the temperature with increasing values of Ry. It is interesting, however, to note that
irrespective of the location of the artificial boundary, the critical Knudsen number for the
temperature reversal remains fixed as evident from the left panel of Fig. 5.9.

In order to check the dependence of other flow variables on the location of the artificial
boundary, we also plot the maximum speed of the gas vy, = max{|v|} on the disk (i.e.
the speed of the gas at r = 1 and ¥ = 7/2 or ¥ = 37/2) for different locations of the
artificial boundary in Fig. 5.10. Similarly to Fig. 5.9, Fig. 5.10 shows that the maximum
speed (i.e. the speed at r = 1 and ¥ = 7/2 or ¥ = 37/2) of the gas is also reduced
as the distance between the artificial boundary and the actual boundary increases. It
turns out (although not shown here) that the magnitudes of the other flow variables

also decrease with the increasing gap between the artificial and actual boundaries in
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Figure 5.10: Maximum speed of the gas on the disk plotted against the

Knudsen number for different locations of the artificial boundary.

general. Thus, the location of the artificial boundary or the distance at which the far-
field conditions are applied does influence the results quantitatively. But, as we could not
find any theoretical /numerical/experimental data on the flow variables for this problem
in the literature, it is difficult to say which location of the artificial boundary gives the
best results. Nevertheless, data on the drag force on the cylinder are available in the
literature, which gives us a chance to compute the drag force on the cylinder with the
demonstrated method and to compare it with the existing results in order to decide for
an appropriate location of the artificial boundary. Therefore, we compute the drag force
acting on the disk analytically as well as numerically through the MF'S.

The analytic expression for the net force F'® acting on disk is given by the integration
of the normal component of the pressure tensor P(= o + pI) over the periphery of the

disk, i.e.
2w
F®) :/P-ndS:R1/ (P -n)dv, (5.40)
0

where n is the normal vector to the boundary and ds is the length of the arc that subtends
angle d on the center of the disk. The drag force on the disk is given by the projection

of the net force in the upstream direction, i.e. by
FN = —FW . g, (5.41)

where & denotes the unit vector in the downstream direction. On simplification the

(analytic) drag force turns out to be

F™ = 47Kneg, (5.42)
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where the value of the c¢g is evaluated from the boundary conditions and hence changes
with the values of the parameters Kn and ag. In order to calculate the net force acting
on the disk through the MFS, all the point force vectors acting on the singularity points

lying on the inner fictitious boundary inside the disk are superimposed, i.e.

N,

FOMES) =" ), (5.43)
=1

The drag force on the disk is again given by the projection of the net force in the upstream

direction, i.e. by

Ny, Ny,

FMPS — S p0 g = 5 f0) (5.44)

i=1 i=1
For illustrative purpose, it is convenient to compare the normalized drag, defined by the
drag force normalized with the Stokes drag (drag force in the limit Kn — 0). In the
following, we shall investigate the effect of the location of the artificial boundary on the
normalized drag. But, prior to this, Ref. [37] must be acknowledged wherein the authors
performed a thorough study of the drag coefficient for the problem of flow past a circular
cylinder and gave analytic expressions for the drag coefficient valid in the continuum, slip
and transition regime.

In addition, they also computed the drag coefficient for the problem through the
nonlinear R26 equations. The drag coefficient on dividing by its value in the limit Kn — 0
is exactly the same as the normalized drag. This gives us an opportunity to compare
the normalized drag obtained in the present work with that obtained using the results
presented in Ref. [37]. Figure 5.11 illustrates the variation in the normalized drag with
the Knudsen number on changing the location of the artificial boundary. The dashed
red, blue and magenta lines in the figure depict the analytic solution of the CCR model
for Ry = 10, 20 and 30, respectively, while the square (red), disk (blue) and diamond
(magenta) symbols denote the solution obtained from the MFS applied on the CCR
model for Ry = 10, 20 and 30, respectively. The solid orange, black and gray lines in
the figure delineate the normalized drag obtained with the analytic expressions given in
Refs. [79], [128] and [37] at the Reynolds number Re = 0.5. The green triangle symbol
depicts the normalized drag computed directly from the data on the drag coefficient
that have been obtained with the nonlinear R26 equation in Ref. [37]. The figure shows

that the normalized drag obtained numerically with the MF'S applied on the CCR model
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Figure 5.11: Normalized drag on the cylinder plotted against the Knudsen
number for different locations of the artificial boundary. The dashed red,
blue and magenta lines represent the analytic solution of the CCR model
for Ry = 10, 20 and 30, respectively. The square (red), disk (blue) and
diamond (magenta) symbols represent the numerical solution of the CCR
model obtained with the MFS for R, = 10, 20 and 30, respectively. The
solid orange, black and gray lines depict the normalized drag obtained with
the analytic expressions given in Refs. [79], [128] and [37]. The green tri-
angle symbol shows the normalized drag computed with the nonlinear R26
equations in Ref. [37]. The other parameters are the same as those for

Fig. 5.4.

is in an excellent agreement with that obtained with the analytic solution of the CCR
model, irrespective of the location of the artificial boundary, which is no surprise as
both (analytic and numerical) methods use a common location of the artificial boundary.
Notwithstanding, these results do validate the correctness of our MFS-based numerical
framework one more time in spite of the fact that the location of the artificial boundary
does affect the results. The figure also reveals that while the normalized drag obtained
from the CCR model in the present work is in qualitatively good agreement with the
normalized drag obtained from other methods existing in the literature, quantitative

differences are certainly there. Consequently, it is hard to tell a universal location of the
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artificial boundary (or, in other words, a fixed value of R») that can lead to the best
results for all quantities. However, as the normalized drag predicted by the CCR model
for Ry = 10 is generally close to that predicted by [128] and to the R26 data taken from
Ref. [37], we take Ry = 10 throughout the chapter.

Although we have presented the results for somewhat large Knudsen numbers and the
normalized drag—Dbeing a global quantity—also turned out to be agreeing well with that
obtained with other models, it is important to note that the flow profiles predicted by the
CCR model are accurate only in the bulk and only for relatively small Knudsen numbers
(Kn < 0.2) and that the flow profiles predicted by the CCR model near the boundary of
the cylinder may differ from the actual kinetic data, especially for large Knudsen numbers.
The reason for this is that Knudsen layers become more and more prominent near the
boundary of the disk with the increasing the Knudsen number and the CCR model cannot
describe them. This is a limitation of the CCR model and better continuum models,
e.g. the R13 or R26 equations, are needed to obtain an accurate flow description near
the boundary of the disk. The R13 and R26 equations can be expected to give correct
flow profiles for the Knudsen number up to 0.5 and 1, respectively. Notwithstanding,
the fundamental solutions of the R13 equations in two dimensions will be explored in
chapter 7 and the fundamental solutions of the R26 equations are not available in any

dimensions at present, and exploring them is beyond the scope of the present work.

5.2.6 Sensitivity of the results towards the location of singularities

We investigate the relationship between the effective condition number and absolute
error in the speed for the case of flow past circular cylinder—aiming to get an appropriate
location for the placement of singularity points.

We define the absolute error ¢ in the speed of the flow by € = [speedypg —speed, iy ticl
and introduce a dilation parameter o > 1, which relates the radii of the inner and outer
fictitious boundaries (containing singularities) to the radii of the inner and outer actual
boundaries via the relations R} = Ry/a and R}, = aR. In what follows, we examine the
changes in the effective condition number kg and in the absolute error € on changing the

dilation parameter for different numbers of the boundary and source points in the cases

when the total number of boundary points are the same as the total number of singularity
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points (i.e. N, = N;) and when the total number of boundary points are different from
the total number of singularity points (i.e. N, # Ny).

Figure 5.12 illustrates the effective condition number (left panel) and absolute error in
the speed (right panel) both plotted against the dilation parameter in the first case when
the total number of boundary points is the same as the total number of the singularity
points (i.e. N, = Nj) for different values of the number of boundary nodes (or singularity
points)—specifically, for N, = Ny = 120, 150 and 180. The left panel of the figure
shows that, for small a (close to 1), the effective condition number is relatively small
(of O(10°)), and it increases rapidly with increasing the dilation parameter but peaks
for a values somewhere in between a =~ 1.5 and a ~ 2 for all the considered numbers
of boundary (or singularity) points, attaining maximum values of O(10'?). For a 2 2,
the effective condition number tends to stabilize a bit and starts to decrease slightly with
increasing the dilation parameter. The right panel of Fig. 5.12 shows that, for small «
(close to 1), the absolute error in the speed is relatively large (of O(1072)), and it decreases
sharply with increasing the dilation parameter but bottoms out for « values somewhere in
between o ~ 1.9 and « ~ 2.7 for all the considered numbers of boundary (or singularity)
points, attaining values of O(107%). For even larger values of the dilation parameter, the
error remains at O(107'%) and no significant improvement in the accuracy is achieved on
increasing the dilation parameter further.

Figure 5.13 also displays the effective condition number (left panel) and absolute error
in the speed (right panel) both plotted against the dilation parameter but in the second
case when the total number of boundary points is different from the total number of
singularity points (i.e. N, # Ng). We have considered three combinations of the numbers
of boundary nodes and singularity points, namely (i) NV, = 120 and N, = 90, (ii) IV, = 150
and N, = 120, and (iii) IV, = 180 and N, = 150. Similarly to the left panel in Fig. 5.12,
the effective condition number is relatively small (of O(10%)-O(10°)) for the dilation
parameter close to 1, and increases sharply with increasing o but peaks for a values
somewhere in between o =~ 1.7 and a &~ 2.2 for all the considered numbers of boundary
and singularity points, attaining maximum values of O(10'?). Similarly to the right panel
in Fig. 5.12, the absolute error in the speed is relatively large (of O(1073)) for the dilation
parameter close to 1, and it decreases sharply with increasing the dilation parameter

but bottoms out for « values somewhere in between a ~ 2.1 and o ~ 3 for all the
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Figure 5.12: Effective condition number kg (left panel) and absolute error
€ in speed (right panel) both plotted against the dilation parameter a in
the case when the total number of boundary nodes NNV, is equal to the total

number of singularity points Ny (the case of square collocation matrix) for

Kn =0.1.
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Figure 5.13: Effective condition number ko (left panel) and absolute error
€ in speed (right panel) both plotted against the dilation parameter « in
the case when the total number of boundary nodes N, is different from the
total number of singularity points Ny (the case of non-square collocation

matrix) for Kn = 0.1.

considered combinations of the numbers of boundary and singularity points, attaining
values of O(107'%). For even larger values of the dilation parameter, the error remains
at O(1071%) with a slightly increasing trend and hence no significant improvement in the

accuracy is achieved on increasing the dilation parameter further.
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Both Figs. 5.12 and 5.13 exhibit an inverse relationship between the effective condi-
tion number and absolute error, which is concurrent with the findings of Refs. [22, 125].
Noticing the trends in the effective condition number and absolute error, we choose
N, = N, = 150 as it ensures a sufficiently high number of boundary nodes and sin-
gularities in order to achieve a high effective condition number and better accuracy along
with computational efficiency. Additionally, the choice of o = 2 balances the trade-off

between achieving a high condition number and minimizing the error.

5.3 Flow past semi-circular cylinder

The numerical framework developed in the present work can be employed to investi-
gate other quasi-two-dimensional flow problems as well. In particular, the expediency of
the method is notable for problems wherein either an analytic solution cannot be found
or is arduous to find.

To showcase the capabilities of the method, we now consider a problem, where the
radial symmetry is absent. We consider the problem of rarefied gas flow past an infinitely
long semicircular cylinder in its transverse direction. The problem is still quasi-two-
dimensional but flow behavior changes according to the orientation of the cylinder. To
setup the orientation of the cylinder and the flow direction, let an infinitely long semicir-

cular cylinder of radius R; be placed in such a way that its axis is along the Z-direction

Ay Ay

Y&
Y&

Figure 5.14: Cross-sectional view of the horizontal and vertical flows past

a semicircular cylinder.
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and its semicircular base is in the upper half of the Zg-plane with the midpoint of the
diameter of the semicircular base being fixed at the origin of the Cartesian coordinate
system (Z, 7, Z) as shown in Fig. 5.14. Two cases are considered: (i) a rarefied monatomic
gas approaching the cylinder from the negative Z-direction; we refer to this case as the
case of horizontal flow or simply the horizontal case, and (ii) a rarefied monatomic gas
approaching the cylinder from the positive y-direction; we refer to this case as the case
of vertical flow or simply the vertical case analogously. A schematic exhibiting the cross-
sectional view of both cases has also been shown in Fig. 5.14. Furthermore, it is assumed
that the temperature at the surface of the cylinder is the same as the far-field ambient
temperature of the gas Ty. Needless to say, we shall solve the problem in the zy-plane
or equivalently in the ri-plane, where ¥ = 7 cos? and y = 7sinv, for the semi-circular
disk. The radius of the disk R; is taken as the characteristic length scale L for non-
dimensionalization so that = &/Ry, y = §/Ry, r = /Ry, and the dimensionless radius
of the disk R; = R, / L = 1. To circumvent Stokes’ paradox, we—similarly to the problem
in Sec. 5.2 place an artificial circular boundary of radius R, centered at (0,0) suffi-

ciently far from the semicircular disk. The dimensionless radius of the artificial boundary

*
*
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Figure 5.15: Schematic representation for an arrangement of singularities
(stars) and boundary nodes (dots). The red and blue arrows represent the

normal and tangent vectors at each boundary node.
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is Ry = Ry / L, where Ry > R;. Furthermore, for implementation of the MFS, we also
introduce two fictitious boundaries, one inside the semicircular disk and other outside the
artificial circular boundary, on which the source points are to be placed. Let the inner
fictitious boundary be a circle of radius R’l centered at (0,0.5) and the outer fictitious
boundary be a circle of radius R} centered at (0,0). The dimensionless radii of the inner
and outer fictitious boundaries are R} = R,/L and R, = R,/L. An illustration exhibit-
ing the boundary nodes on the semicircular disk and on the artificial boundary, and the
location of source points on the fictitious boundaries is shown in Fig. 5.15. Once the
singularities are placed, the rest of the procedure of implementing the MFS remains the
same as explained in previous chapters.

The horizontal and vertical flow cases are covered by changing the boundary condi-
tions on the artificial boundary. For the horizontal case, the boundary conditions on the

artificial boundary are

vy =19, vy, =0 and T =0, (5.45)
while for the vertical case, the boundary conditions on the artificial boundary are

v, =0, v,=-vy and T =0. (5.46)

The boundary conditions on the actual periphery of the disk remain the same as boundary
conditions (5.11)—(5.13).

In numerical computations, vy is taken as unity, the number of boundary nodes on the
actual periphery of the disk is taken as Ny, = 200 and that on the artificial boundary is
taken as IV, = 400, and the number of singularity points on the inner and outer fictitious
boundaries are taken as Ny, = 200 and Ny, = 400, respectively. The dimensionless radius
of the semicircular disk is R; = 1 and the dimensionless radius of the artificial boundary
is taken as Ry = 10. Although the dependence of the results on the location of the
artificial boundary cannot be neglected, the validation of the results done using Ry = 10
in Sec. 5.2.5 suggests the sufficiency for fixing Ry to 10 to get adequate qualitative results
for the current problem as well. The dimensionless radii of the inner and outer fictitious
boundaries are taken as R} = 0.1 and R}, = 50, respectively. In the case of a circular
cylinder, we had the advantage of having an analytic solution, allowing us to validate our

results even with relatively lesser number of boundary nodes and singularity points (V,, =
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Figure 5.16: Velocity streamlines along with contour plots of the speed
in the background obtained with the MFS applied on the CCR model for
Kn = 0.1, 0.3 and 0.5. The other parameters are R; = 1, Ry = 10, R} = 0.1,
R, =50, Ny, = N, =200 and N,, = N,, = 400.

Ns, = 50 and Ny, = N, = 100). However, when dealing with the case of semicircular
cylinder, we have taken a relatively larger number of boundary nodes and singularities.
This decision is based on the studies from the existing literature [26, 32|, which suggest
that more boundary nodes and singularity points in the method of fundamental solution
lead to improved accuracy. Furthermore, as neither it is easy to obtain an analytic solution
for the present problem nor we could find any experimental or theoretical study in the
existing literature, our focus in these problems remains only on the qualitative analysis

of the results.
5.3.1 Results in the case of horizontal flow

Figure 5.16 illustrates the velocity streamlines around the semicircular disk along
with contour plots of the speed in the background for Kn = 0.1, 0.3 and 0.5 in the case
of horizontal flow, i.e. when the flow is along the z-direction. Analogously to problem
of flow past a circular cylinder demonstrated in Sec. 5.2.5, the streamlines in Fig. 5.16
are qualitatively alike for the considered Knudsen numbers. Nonetheless, contour plots of
the speed do depict quantitative differences in the speed of the gas for different Knudsen
numbers that are prominently discernible in the close proximity of the disk. It is evident
from the colors of the contour plots near the disk that the speed of the gas on the disk
increases with the Knudsen number due to increase in the slip velocity with the increasing
Knudsen number. Apparently, it is true even for any point in the domain that the speed

of the gas at this point increases with increasing the Knudsen number.
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Figure 5.17: Heat-flux lines along with density plots of the temperature
in the background obtained with the MFS applied on the CCR model for

Kn = 0.1, 0.3 and 0.5. The other parameters are the same as those for

Fig. 5.16.

Interestingly, the effects of asymmetry in the shape of the object are revealed when the
variation of temperature of the gas is explored. In order to explore the asymmetry effects,
we plot in Fig. 5.17 the heat-flux lines superposed on density plots of the temperature
for Kn = 0.1, 0.3 and 0.5. The figure reveals the existence of temperature polarization
near the disk for all Knudsen numbers—with hot region (denoted by red color) on the
left side of the curved portion of the disk and cold region (denoted by blue color) on the
right side due to compression (expansion) of the gas on the left (right) side. In addition, a
minute (but opposite in sign) temperature polarization also occurs below the flat portion
of the disk and is conspicuous for small Knudsen numbers (for Kn = 0.1 in the figure) but
diminishes as the Knudsen number increases. This double polarization could be attributed
to the presence of corners in the geometry or to the asymmetry present in the geometry.
As the Knudsen number increases, the strength of temperature polarization on the curved
portion of the disk increases and hence it takes over the minute temperature polarization
below the flat portion of the disk, and the latter fades away gradually as the Knudsen
number increases. The heat-flux lines in Fig. 5.17 indicate the flow of heat from cold to
hot regions, depicting anti-Fourier effect that again cannot be captured with the classical

models of fluid dynamics.
5.3.2 Results in the case of the vertical flow

Figure 5.18 exhibits the velocity streamlines around the semicircular disk along with

contour plots of the speed in the background for Kn = 0.1, 0.3 and 0.5 in the case of
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Figure 5.18: Velocity streamlines along with contour plots of the speed
in the background obtained with the MFS applied on the CCR model for
Kn = 0.1, 0.3 and 0.5. The other parameters are the same as those for

Fig. 5.16.

vertical flow, i.e. when the flow is along the negative y-direction. The figure presents
flow separation and formation of circulation zones after the flow crosses the disk. The
figure shows that the flow separation starts reducing slightly with increasing the Knudsen
number. Flow separation and an analogous outcome—reduction in the size of circulation
zone with decreasing Reynolds number—have also been reported by [74] for a creeping
(or low-Reynolds-number) flow past a semicircular cylinder. Thus, owing to the inverse
relationship between the Reynolds and the Knudsen numbers, the qualitative nature of
the flow predicted by the CCR model in the present work is justified. Contour plots of
the speed in Fig. 5.18 again depict that the speed of the gas around the disk increases
with increase in the Knudsen number.

Figure 5.19 illustrates the heat-flux lines superposed over density plots of the tem-
perature for Kn = 0.1, 0.3 and 0.5 in the case of vertical flow. Temperature polarization
again occurs in this case but it is symmetric about the y-axis in this case, creating hot and
cold regions on the top and bottom of the disk, respectively. The strength of temperature
polarization increases with increase in the Knudsen number. The heat-flux lines are also
symmetric about the y-axis for all Knudsen numbers and show the heat flowing from cold

to hot regions, illustrating the anti-Fourier effect in the present case as well.

5.3.3 Drag force in the horizontal and vertical cases

To the best of our knowledge, an analytic expression or any experimental result for

the drag force exerted on the semicircular disk in this problem does not exist in the
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Figure 5.19: Heat-flux lines along with density plots of the temperature

in the background obtained with the MFS applied on the CCR model for
Kn = 0.1, 0.3 and 0.5. The other parameters are the same as those for

Fig. 5.16.

literature. Therefore, we directly present the drag force predicted by the CCR model
through the MFS in Fig. 5.20 for the horizontal and vertical cases. The drag force in the
horizontal case has been obtained by taking the projection of the net force in the negative
a-direction (similarly to that in the problem of flow past a circular cylinder in Sec. 5.2.5).
The variation of the drag force with the Knudsen number in horizontal case is illustrated
in Fig. 5.20 by the solid (black) line. For the vertical case, the drag force is determined
by projecting the net force in the positive y-direction and its variation with Knudsen

number is shown in Fig. 5.20 by the dashed (blue) line. Similarly to the drag force on the

3.0f — Horizontalcase 74

----- Vertical case /]

1.5/

Drag force

0.0 i B N
0.01 0.05 0.10 050 1
Kn

Figure 5.20: Drag force on the semicircular disk plotted against the Knudsen
number in the horizontal and vertical cases. The other parameters are the

same as those for Fig. 5.16.
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circular cylinder obtained in Sec. 5.2.5, Fig. 5.20 shows that the drag force increases with
increasing the Knudsen number in both horizontal and vertical cases. However, unlike
the case of a circular cylinder where the dependence of the drag force on the Knudsen
number was apparent through Eq. (5.42), an expression revealing dependence of the drag

force on the Knudsen number in the case of a semicircular cylinder is lacking at present.

5.4 Summary

In this chapter, the slow transverse-directional flows of a rarefied monatomic gas
past both circular and semicircular cylinders have been investigated using the CCR-MFS
framework. To overcome the challenges imposed by Stokes’ paradox in two-dimensional
external flows, the computational domain has been restricted artificially by introducing an
external boundary sufficiently far from the disk. Appropriate boundary conditions have
been imposed on the artificial boundary to preserve the physical character of the flow,
which has allowed us to derive a meaningful analytic solution for the flow past a circular
cylinder. It is however important to note that the solutions obtained—both numeri-
cal and analytic—are dependent on the location of the artificial boundary. Eliminating
this dependency entirely would require removing the artificial boundary and addressing
Stokes’ paradox by alternate means, such as incorporating convective terms (e.g., via an
Oseen-type correction) in the CCR model. Nevertheless, deriving and implementing the
corresponding fundamental solutions for such an approach remains a subject for future
work. The numerical results for physical quantities, including velocity, temperature, and
drag force, obtained from the MFS applied to the CCR model, have shown excellent
agreement with the analytic solutions of the CCR model. Moreover, the values of the
normalized drag compare favorably well with those reported in existing literature.

The CCR-MFS framework has successfully captured rarefaction effects such as tem-
perature polarization and anti-Fourier heat transfer that classical continuum models fail
to resolve. To further demonstrate the capabilities of the developed framework, the flow
past a semicircular disk has also been investigated to showcase the capability of the frame-
work for describing flow past non-simple geometries. A sensitivity analysis based on the
effective condition number has also been conducted to determine the sufficient number of

boundary and source points required for achieving high accuracy.
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Chapter 6

Phase transition around liquid jets

Previous studies based on the extended hydrodynamic models (the R13, R26 and CCR
models) have examined complete evaporation or condensation in spherical droplets and
planar geometries [12, 87, 89, 90, 107]. However, they do not address partial phase-
change scenarios. In this chapter, we present the thermodynamically admissible evapora-
tion/condensation boundary conditions for the CCR model in both partial and complete
evaporation scenarios. We employ the MFS on the CCR model to study phase transition
processes in evaporating liquid jets. Here, we refer to the jet as a long stream whose one
axis is significantly larger than the other two. We consider liquid jets with circular and
non-circular cross sections. The numerical results for a circular cross-section are validated
with analytical solutions, and the framework is extended to deformed shapes using spher-
ical harmonic perturbations. An error analysis is included to demonstrate the accuracy

and convergence of the method.
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Figure 6.1: Schematic representation of 2D cross-section of an evaporating

liquid jet immersed in its vapor.



6.1 Problem description

We consider the 2D cross-section of a circular cylindrical liquid jet having radius of
interface boundary R,. The jet is assumed to be evaporating and immersed in its vapor.
The schematic of the problem is illustrated in Fig. 6.1. An analytic solution of this
problem can be obtained from the CCR model. The liquid-vapor interface in the problem
has been assumed to be infinitely thin to avoid coexisting phases of significant width. It
has also been assumed that far away from the jet (i.e., for 7 — 00), the vapor reaches the
equilibrium. Consequently, the far-field temperature Th, and the far-field pressure poo are

nothing but the equilibrium temperature T, and the equilibrium pressure p,, respectively.
6.1.1 Boundary conditions

Recall the thermodynamically admissible boundary conditions (2.51)—(2.53) discussed
in Chapter 2

('v—'vl)~n:—nll(p—ps+n‘a~n)+7712(T—Tl+a0n~a~n), (6.1)
q'nzmg(p—ps—l—n~0'~n)—(7722—1—27'0) (T—TI+Oéon~0'~n), (6.2)

t-o-n=—(v-—v +aq)-t, (6.3)

where p, denotes the saturation pressure and 77 denotes the temperature at the interface.
For the problem under consideration, the interface is assumed to be stationary, i.e., v/ = 0.
Further, the general form of Omnsager reciprocity coefficients 7;;’s mentioned in (2.54),

under the assumption of full accommodation (i.e. x = 1), turns out to be

2 0O 2 0O 2 0O
7711—w1\/;m, 7712—w2\/;m and Uzz—wz\/;m7 (6-4)

with © being the evaporation/condensation coefficient. The values of coefficients wy, wy
and ws vary with the values of evaporation/condensation coefficient ©. In Ref. [90], as well
as in Chapter 4, © = 1 was fixed for full evaporation/condensation case, corresponding
to which w; = 0.9134, w, = 0.3915 and w3 = 0.1678. However, the values of coefficients
w1, wo and ws in the thermodynamically-admissible boundary conditions of the CCR model
corresponding to partial evaporation/condensation cases are lacking in the literature. In
Ref. [49], the temperature- and pressure-jump coefficients have been computed using the S-

kinetic model for the linearized Boltzmann equation. Therefore, we utilize the coefficients
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given in Ref. [49] to obtain the values of w;,ws and ws in the boundary condition of the

CCR model. Boundary conditions (6.1) and (6.2) can be expressed as a linear system

-1

p_ps+n0'n _ _7711 7712 v-n ‘ (65)
T—Tf—i-ozgn-a-n M2  —Ta2 — 279 an

The comparison with Eqs. (75) and (76) of Ref. [49] is performed by selecting the values
of 61(3“), el(;T), and e(TT) from Table II in Ref. [49], which allows us to determine wy,ws, and
ws. It is important to note that in Ref. [49], the term corresponding to n - o - n is absent
because they consider an infinite condensed surface, whereas in our case, this term appears
on the left-hand side of Eq. (6.5). The obtained values of wy,ws, and ws are presented

in Table 6.1 for different values of ©. These values are also consistent with the values

from Ref. [90] in the special case of full evaporation/condensation (© = 1), showing a fair

comparison.

S} w1 Wa w3

0.1 0.9977 0.4291 0.1882

0.2 0.9897 0.4249 0.1842

0.4 0.9769 0.4190 0.1805

0.6 0.9610 0.4120 0.1771

0.8 0.9406 0.4032 0.1732
1 0.9134 0.3915 0.1678

Table 6.1: The values of the coefficients w; appearing in the Onsager reci-
procity coefficients 7;; in the boundary conditions (6.1) and (6.2) for differ-

ent values of ©.

6.1.2 Numerical implementation

In the present problem, we depict the placement of N, equispaced boundary nodes on
the circular boundary (having dimensionless radius R;) and N, equispaced source points
placed on a concentric circle of dimensionless radius R, lying inside the liquid, a schematic
of which is displayed in Fig. 6.2. There are 4 x Ny number of unknowns associated with the
i*h singularity point, namely h;, f1,, fo, and g; which are calculated by satisfying boundary

conditions (6.1)—(6.3) at every j™ boundary node.
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Figure 6.2: Boundary discretization depicting the boundary nodes and sin-
gularity points placed outside of the domain along with the normal and

tangent vectors shown at each boundary node.

6.2 Analytic solution

In this section, the analytic solution for the problem of evaporation from a 2D cross-
section of a cylindrical evaporating jet, as detailed in Sec. 6.1, is presented. Owing to
the symmetry, it is indeed easy to solve the CCR equations for the problem analytically
by transforming the equations to the polar coordinates (as done in Eqs. (5.15)—(5.19b)
in Sec. 5.2.3). As a result of symmetry there is no variation along the azimuthal angle ¥

and hence vy = 0,9 = g9 = 0. The mass, momentum and energy balance equations thus

reduce to
ov, v,
L — 6.6
or r ’ (6.6)
op 0o, 20,
et =0 6.7
or + or + r ’ (6.72)
o qr
Eup— 6.8
or + r ’ (6.8)
and the closure relations reduce to
v, dq,
= —2K — 2K , 6.9
7 n or fo or (6:9)
c,Kn [OT 00, 20,
= — —_— ) 1
4 Pr {8T+a0<87‘ + r (6.10)



It is now straightforward to obtain the analytic solution of the Egs. (6.6)—(6.10) This
analytic solution will serve as the reference solution for analyzing errors in the solution
obtained through the MFS. The analytic solutions of the CCR equations for the problem

under consideration are as follows

c 2Kn 2coPr c
Uy = 71, O = —5 (a1 + apcz), T=— 512(11 logr, q,= ?2, (6.11)
P=Uy =09 =qy =0, (6.12)

where the subscripts ‘r’ and 9" on the field variables denote their radial and angular
components, respectively, and the integration constants ¢; and ¢, are to be calculated using
boundary conditions (6.1) and (6.2). Note that boundary condition (6.3) is identically
satisfied with solution (6.11). Moreover, two additional integration constants appear in
the analytic expressions for pressure and temperature. Those constants are set to zero
based on the far-field equilibrium conditions. However, due to the logarithmic behavior
of temperature, enforcing an exact T,, = 0 condition—as done for three dimensions in
Ref. [89]—is not feasible in the present formulation in 2D.

It is customary to determine the integration constants c¢; and cy for the problem
in two different cases: (i) the pressure-driven case wherein there is no difference in the
liquid temperature and the far-field temperature, and the evaporation is entirely due
to the pressure difference between the saturation and far-field pressures (i.e., p; = 1
and T = 0) and (ii) the temperature-driven case wherein there is no difference in the
saturation and far-field pressures, and the evaporation is solely driven by the difference in
the liquid temperature and the far-field temperature (i.e., p, = 0 and T = 1); see, e.g.,
Refs. [87, 89, 90]. Applying boundary conditions (6.1) and (6.2) at r = R,, the integration

constants ¢; and ¢y in the pressure-driven case turn out to be

2\/§7TR[, C) (A3(15 C(02 Kn2 — QRE IOg Rb) + ﬁwl(@ — 2) (A4 — 8R§ T0 10g Rb>)
4Ry log Ry (4Kn©As + Ry(0© — 2)(V2m w3 © — 2779(0 — 2))) 4 154, Kn(O — 2)’
(6.13)

2 30mKn Ry, © (44200Kn + V27 Ry w» (O — 2))
> 4Rylog Ry (4Kn©A, + Ry(© — 2)(v21 w3 © — 2779(0 — 2))) + 154, Kn(0 — 2)’
(6.14)
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while in the temperature-driven case, they turn out to be

cf =d, (6.15)
T 30mKn Ry, (4Kn©A; + Ry(© — 2) (V21 w3 © — 2775(0 — 2)))

4Ry log Ry, (4A:Kn © + Ry(6 — 2)(V2m w3 © — 2775(O — 2))) + 154, Kn(0 — 2)
(6.16)

where
A =7(0 = 2) (4ap°Kn 7o + Ry) — 2v21Kn O (0 (ap w3 — 2ws) + wy), (6.17)
AQ =V 27'('7'0 w1(6 - 2) -+ (wg - wlwg) @, (618)
Az = 2V/2 (w% — UJ1W3) O, A,=15Kn (40402Kn To + Rb) , (6.19)

and the superscripts ‘p’ and ‘1" on the integration constants c¢; and ¢y have been used
for denoting their values in the pressure- and temperature-driven cases, respectively. It is
evident from (6.15) that the Onsager reciprocity relations hold true due to the microscopic
reversibility of the evaporation and condensation processes. Physically, these integration
constants ¢; and ¢, represent the mass-flux and heat-flux coefficients, respectively. The
mass-flux and heat-flux coefficients can also be obtained by the MFS utilizing the un-
knowns corresponding to point mass and point heat sources corresponding to the all the
singularity points. These coefficients are related to the unknown point mass and heat
sources included as Dirac-delta sourcing terms in the mass balance and energy balance
equations (2.19); and (2.19),, respectively. Therefore, the combined effects of all mass
and heat sources determine the mass and heat fluxes in different scenarios using the MF'S.
These coefficients have also been obtained for the spherical droplet case using the three-
dimensional CCR model in Ref. [90]. The mass-and heat-flux coefficients obtained from

the MFS read

1 27 1 Ns
1 [ 1 &
AFS = %/0 g nd)=— ;gi. (6.21)



6.3 Validation and discussion

The numerical results are obtained with the MF'S parameters as Ny, = 60, R, = 0.5 and
R, = 0.4R,. The choice for Ny and R, will be justified later in Sec. 6.5. Throughout this
section, the solid lines represent the results obtained from the analytic solution whereas
the symbols (disks) denote the results obtained using the MFS. In order to validate the
results obtained from the MFS with those from the analytic solution, we first compare
the mass-and heat-flux coefficients.

Figure 6.3 shows the mass-flux and heat-flux coefficients (c¢; and cq, respectively)
plotted against the Knudsen number (Kn) for the pressure- and temperature-driven cases.
The variations are depicted for different values of the evaporation/condensation coefficient
O. An excellent agreement is evident between the results obtained from the MFS and
analytic solution in all the scenarios. The mass-flux coefficient for the pressure-driven case
is presented in the left panel of Fig. 6.3. For very small values of the Knudsen number

Kn < 0.001, the values of the mass-flux coefficient ¢] remain constant for all values of

mJ=1

W Y=06
W Y=04
_1.4% W J=0.1
1074 0.001 0.010 0.100 1 104 0.001  0.010  0.100 1 104 0.001 0.010 0.100 1
Kn Kn Kn

Figure 6.3: The mass-flux coefficient ¢; in the pressure-driven (T! = 0,
ps = 1) case (left) and in temperature-driven (77 = 1, p, = 0) case (middle);
and the heat-flux coefficient ¢, for the temperature-driven (77 = 1, p, = 0)
case (right) as a function of Knudsen number with different values of ©.
The middle panel also represents the heat-flux coefficient ¢y in the pressure-
driven (T' = 0, ps = 1) case. The numerical results obtained from the MFS
using expressions (6.20) and (6.21) are represented by symbols while the
analytical results calculated using (6.13) and (6.15) are shown with solid

lines.
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©. However, beyond Kn = 0.01, the values of ¢] decrease as Kn increases for all larger
of evaporation/condensation coefficient (© = 1,0.6,0.4). Middle panel of Fig. 6.3 shows
the heat-flux coefficient in the pressure-driven case i (or the mass-flux coefficient in the
temperature-driven case c¢I') and Right panel of Fig. 6.3 shows the variation in heat-
flux coefficient ¢l in the temperature-driven case. It is evident from the pressure-driven
scenario (left and middle panels) that ¢/ > 0 and ¢ < 0 indicating the evaporation at
the interface as mass flows from liquid to vapor and heat flows from vapor to liquid. On
the other hand, from the temperature-driven scenario (middle and right panels), ¢! < 0
and ¢ > 0 which indicate the condensation at the interface as the mass flows from vapor
to liquid and heat flows from liquid to vapor. To further understand this phenomenon
of evaporation/condensation at the interface, we plot the radial velocity and temperature
varying around the liquid jet in the Figs. 6.4 and 6.5, for the pressure- and temperature-
driven cases, respectively.

The left and right panels of Fig. 6.4 depict the variation of the radial velocity v,
and temperature T', respectively, with the radial distance in the pressure-driven case for
Kn = 0.1. As depicted in the left panel of the figure, the radial velocity decreases with the

increase in radial distance, due to the relation v, = ¢1/r [in (6.11))]and ¢} > 0. Moreover
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Figure 6.4: Variation in the radial velocity (left panel) and temperature

(right panel) with the radial distance for the pressure-driven case (ps = 1

and T! = 0) at Kn = 0.1 for different values of ©. Numerical results ob-

tained using the CCR-MFS framework are illustrated using symbols (disks)

and analytical solutions are represented by solid lines.
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Figure 6.5: Same as Fig. 6.4 but for the temperature-driven case (71 = 1
and ps = 0).

the right panel of the figure indicates the temperature at the interface (r = 0.5) is lower
in comparison to the temperature of the surrounding vapor. This leads the heat to flow
from vapor toward the liquid (as also indicated by ¢5 < 0 in Fig. 6.3) and in turn causing
evaporation at the interface. The left and right panels of Fig. 6.5 depict the variation
of the radial velocity v, and temperature T, respectively, with radial distance in the
temperature-driven case for Kn = 0.1. In this case, the left panel of the figure indicates
a negative radial velocity, which is due to ¢!’ < 0 from Fig. 6.3. As evident from the
right panel of the figure, the temperature on the interface is higher than the surrounding
vapor leading the heat to flow from liquid toward the vapor (as also indicated by ci > 0
in Fig. 6.3) and in turn causing condensation at the interface. In both pressure- and
temperature-driven scenarios, the magnitudes of the flow variables v, and T are higher

for larger values of the evaporation/condensation coefficient ©. However, the temperature

in the temperature-driven case is not significantly sensitive toward ©.

6.4 Evaporation/condensation on noncircular cross-sections

In the present section, we utilize spherical harmonics to generate jets with non-circular
cross-sections. Spherical harmonics are mathematical functions defined on the surface of a
sphere [45] which describe smooth deformations of spherical surfaces, useful for modeling
deformed droplets.. To study the effects of evaporation and condensation at an interface

with complex geometry, spherical harmonics offer a practical framework for introducing
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controlled perturbations or deformations to a circular cross-section. Spherical harmonics

are defined as Y,"(0, ¢) [71]:

Y/ (0, ) = \/<2E4j; D Eﬁ ; Zi: P;™(cos ) €™, (6.22)

where P}"(z) are the associated Legendre polynomials of degree ¢ and order m , 6 € [0, 7]
is the polar angle, and ¢ € [0, 27] is the azimuthal angle.

Any surface coordinate that is a function of # and ¢ is defined as

r(9790) = Z Z azn Yvém(eﬂp)? (623>

{=0 m=—¢
where a}' are the harmonic coefficients that determine the contribution of each spherical
harmonic mode. For modeling the surface of a droplet, the radial distance r is defined as

a perturbation of a perfect sphere with radius rg

(6, ) = ro (1 +Y > ay Re(ﬂm(9,<p))> . (6.24)

=0 m=—¢
For a cylindrical geometry, Y;"(6, ¢) depends only on 6 and becomes independent of ¢ as
m = (0. This makes the spherical harmonics axisymmetric and reduces them to Legendre

polynomials

YO(0) = (%4; Y p0(cos ). (6.25)

With this, Eq. (6.24) reduces to

r(0) = ro (1 + Z a) Y;)(e)> : (6.26)
=0

In the present work, we use harmonics up to L = 4 (¢ = 0,1,2,3,4) and for the sake
of simplicity, we drop the superscript “0” and adopt the notation a, instead of a} to
describe the parameters in the considered examples. We consider two set of parameters
(a) ap = 0, a; = 0.01, az = 0.8, ag = 0.01, a4 = 0.01 for shape 1 and (b) ag = 0,
a; = 0.05, ap = 0.05, a3 = 0, ay = 0.1 for shape 2. A two-dimensional cross-section
for the corresponding deformed non-circular jet is illustrated in Fig. 6.6. Both jets are
considered to be surrounded by their own vapors with an infinitely thin separating liquid-
vapor interface. The rest far-field equilibrium assumptions are analogous to those in the
circular case. For the sake of MFS implementation, the boundary nodes are discretized

at equispaced angular distances. A fictitious boundary containing singularity points is
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Shape 1

Figure 6.6: Shapes generated using equation (6.26) for set of parameters
ag = 0, a; = 0.01, ap = 0.8, a3 = 0.01, agy = 0.01 (left) and a9 = 0,
a; = 0.05, ag = 0.05, a3 = 0, ay = 0.1 (right) with 7o = 0.5. The black (disk)
symbols denote the boundary nodes discretized over the interfacial bound-
ary whereas the red (star) symbols denote the chosen singularity points in

both the shapes.

chosen to be in the same shape as the cross section, shrunk inside the actual boundary
of both jets. A dilation parameter « is used to decide the location of fictitious boundary
inside the original boundary, such that asy = ag/@, a1 = a1/a, asy = as/a, ass = az/a,
asy = ay/a are the shape parameters.

The left and middle panels of Fig. 6.7 illustrate the variation in the mass-and heat-
flux coefficients in the pressure-driven case for the circular and non-circular cross sections.
The (solid) red, (dot-dashed) black and (dashed) blue curves represent the results for
the circle, shape 1 and shape 2, respectivey. The results are presented as a function
of Kn for complete evaporation by taking © = 1. In shape 2, which retains symmetry
in both z- and y-directions, the mass-flux and heat-flux coefficients ¢} and ¢ in the
pressure-driven case show slight deviations from those of the circular shape. However,
in shape 1, the asymmetric deformation leads to significant deviation, especially in the
mass-flux coefficient. Since the heat-flux coefficient for the pressure-driven case is equal
to the the mass-flux coefficient in the temperature-driven case, the right panel of Fig. 6.7
demonstrates the variation in heat-flux coefficient for the temperature-driven case. In this
case also, the deformity in shape 1 leads to significant deviation in comparison to shape

2 and circular case.

123



= Circle

25 B (>~ N A S = Shape 1 o

. .
47 eeen Shape 2 . Y,

Circle o = Circle “ 1
------ Shape 1 +=+=1= Shape 1

----- Shape 2 N ===== Shape 2 K
1.0 i or: . . . .

1074 0.001 0.010 0.100 1 104 0.001 0.010 0.100 1 1074 0.001 0.010 0.100 1
Kn Kn Kn

Figure 6.7: The mass-flux coefficient ¢; in the pressure-driven (T! = 0,
ps = 1) case (left) and in temperature-driven (77 = 1, p, = 0) case (middle);
and the heat-flux coefficient ¢, for the temperature-driven (77 = 1, p, = 0)
case (right) as a function of Knudsen number for © = 1. The middle panel
also represents the heat-flux coefficient ¢, in the pressure-driven (77 = 0,
ps = 1) case. Results correspond to the circle and two deformed shapes

presented in Fig. 6.6.
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Figure 6.8: Velocity streamlines over speed contours (left panel) and heat-
flux lines over temperature contours (right panel) in the pressure-driven

case (T = 0 and p, = 1) for shape 1 at Kn = 0.1.

Figures 6.8 to 6.11 show the flow and heat profiles around the jets with non-circular
cross-sections having shapes depicted in Fig. 6.6. The left panel of Fig. 6.8 illustrates the
streamlines plotted over speed contours around the interface with shape 1 (left panel in

Fig. 6.6) for the pressure-driven case (77 = 0 and p, = 1). The flow pattern exhibits
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Figure 6.9: Velocity streamlines over speed contours (left panel) and heat-
flux lines over temperature contours (right panel) in the temperature-driven

case (T! =1 and p, = 0) for shape 1 at Kn = 0.1.

symmetric behavior around the interface, with higher speeds observed near the interface.
The magnitude of velocity decreases as we move away from the interface. The right panel
of Fig. 6.8 illustrates the heat-flux lines superimposed over temperature contours for the
same shape. Due to the existence of a negative pressure gradient in this case, the heat
flows from vapor to the liquid interface as shown by the direction of the heat-flux lines,

leading to evaporation at the interface.
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Figure 6.10: Same as Fig. 6.8 but for shape 2.

Figure 6.9 depicts analogous velocity streamlines plotted over speed contours (left

panel) and heat-flux lines plotted over temperature contours (right panel) for shape 1, but
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Figure 6.11: Same as Fig. 6.9 but for shape 2.

in the temperature-driven case (p, = 0 and T? = 1). The streamlines again demonstrate
symmetric behavior around the jet with higher speeds observed near the interface but with
a direction opposite to the pressure-driven case. In this scenario, the negative temperature
gradients around the jet lead the heat to flow outward from hotter to colder regions, which
in turn leads to condensation at the interface.

Figures 6.10 and 6.11 illustrate the flow and heat profiles for shape 2 (left panel in
Fig. 6.6) in the pressure-driven and temperature-driven cases, respectively. The direction
of the streamlines and heat-flux lines in both the pressure-driven and temperature-driven
cases are analogous to those obtained for shape 1. The similar behavior again indicates

the evaporation(condensation) in the pressure(temperature)-driven case.

6.5 Sensitivity analysis

The error analysis is aimed to study the effects of the positioning of the fictitious
boundary, the numbers of the singularity and boundary points, the effective condition
number and the shape of the collocation matrix on the error. For numerical tests, we
have computed the absolute error in the radial velocity and the radial heat flux obtained
with the MF'S from its corresponding analytic solution (in Sec.6.2) at the interface. We
shall analyze the error in two specific cases for the circular interface, namely the pressure-
and temperature-driven cases, for which the analytic solution (including the values of

the integration constants) is entirely known. For the shape of the collocation matrix,
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there can only be two possibilities—it can either be square or rectangular depending on
what the numbers N, and N, are. The collocation matrix is of size 3N, x 4N, because
there are four unknowns corresponding to each singularity point, but only three boundary
conditions to use at a boundary node. The collocation matrix can still be made square in
two ways: (i) by choosing IV, and Ny appropriately so that 3NV, = 4N, and (ii) by splitting
one (or more) boundary condition(s) properly so that the number of boundary conditions
equals the number of unknowns for a singularity point. To have an additional boundary
condition in the latter case, the sourcelet part of the velocity boundary condition (6.1) in

the present work can be extracted. We split the velocity at the 5 node as

v; = vj(-l) + 'v](?), (6.27)
where
B =1 1 5Kn
v = ; (mﬁ Jry) + ki 'K(Tij)) (6.28)
N s
,U](?) _ Z #7 (6.29)
=1 T

(2)

and the sourcelet part of velocity v;™ is responsible for evaporation /condensation effects,

owing to which we can use two boundary conditions

v, -n; =0, (6.30)

’Uj(-2) . nj = —7711<pj — Ps + nj . O'j . nj) + M2 (7} — TI + ozonj . O'j . nj) . (631)

in order to have four boundary conditions at each boundary node. Now, on taking N, =
N, the collocation matrix is a square matrix of size 4Ny X 4N,. In summary, we have

considered the following three cases throughout our analysis.

Case 1: The collocation matrix is made square by choosing the values of N, and N, in
such a way that 3NV, = 4V;.

Case 2: The collocation matrix is made square by splitting boundary condition (6.1) into
two new boundary conditions [which at the j*® boundary node are (6.30) and
(6.31)], and taking N, = N;.

Case 3: The values of N, and Ny are such that the collocation matrix is rectangular and
we do not try to make it square. In this case, the numerical solution is obtained

using the method of least squares.
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In cases 1 and 2, N, varies with Ny, meaning that once one is chosen, the other is
determined by the constraints 3N, = 4N, (for Case 1) or N, = Ny (for Case 2). In case 3,
where the collocation matrix remains rectangular, N, and N, can be chosen more flexibly,
provided that 3N, > 4N, to ensure an overdetermined system. We exclude cases where
3N, < 4Ny, as this would lead to an underdetermined system with more unknowns than
equations. For case 3, we have taken N, = 65 in all our computations. For determining the
location of singularities, we use a parameter o which relates the radius of the boundary to
that of the fictitious boundary via Ry = aR,. A smaller value of the parameter « implies

a greater distance between the actual and fictitious boundaries.
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Figure 6.12: Absolute errors in the radial velocity and radial heat flux
plotted against the dilation parameter in the pressure-driven case for Kn =

0.1 and N, = 45.
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Figure 6.13: Same as Fig. 6.12 but in the temperature-driven case.
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Figures 6.12-6.14 illustrate the absolute errors in the radial velocity radial heat flux
in different cases. Figures 6.12 and 6.13 exhibit the change in the error on varying the
dilation parameter in the pressure- and temperature-driven cases, respectively for the
evaporation/condensation coefficient © = 1. It is evident from Figs. 6.12 and 6.13 that
the error in both the quantities remains negligible for a < 0.5. However, the error starts
increasing with increasing o beyond this. This means that, beyond a certain position of
the fictitious boundary, the error in the solution becomes larger and larger as the fictitious
boundary is placed closer and closer to the actual boundary. This feature remains the
same even for different Knudsen numbers (we have checked it for different values of the

Knudsen number ranging from 0.1 to 1).
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Figure 6.14: Absolute errors in the radial velocity and radial heat flux

plotted over the number of singularity points in the pressure-driven case for

Kn=0.1 and o = 0.4.
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Figures 6.14 and 6.15 display the change in the error on varying the number of the
singularity points placed on a circle of radius Ry = 0.2, i.e. for a = 0.4 in the pressure- and
temperature-driven cases, respectively. As expected, Figs. 6.14 and 6.15 also confirm that
an increase in the number of singularity points leads to more accuracy. From Figs. 6.12—
6.15, it is evident that the overall behavior in the errors remains analogous for all three
considered cases. The computational time of our simulations depends primarily on the
number of singularity points N, used in the MFS. However, it remains independent of the
dilation parameter «, which determines the location of singularities, as well as the choice
of a square or rectangular collocation matrix. Each of the calculations presented was
computed in less than or around 1-2 seconds on a single 2.10 GHz Intel Core i7 processor
using Mathematica®.

Another important parameter that indicates the right choice of the location of singu-

larities is the effective condition number for a linear system. Figure 6.16 demonstrates the

Lol E {1012
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1103
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Figure 6.16: Absolute error € in the radial velocity at the interface (repre-
sented by the blue axis and curves) and the effective condition number £g
(represented by the red axis and curves) varying with the dilation parameter
« for different number of boundary nodes and singularity points. The solid,
dashed and dot-dashed curves represent the cases with Ny, = 45, N, = 60;
Ns =60, N, = 80; and Ny = 90, N, = 120, respectively.

error in radial velocity (denoted by €) in the pressure-driven case and effective condition
number Kog, plotted simultaneously against the dilation parameter o for Kn = 0.1. The

collocation matrix has been constructed as described in case 1 with square 3N, x 4N,
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system. The blue solid, dashed and dot-dashed lines represent the variation in error with
respect to a for Ny = 45, N, = 60; N, = 60, N, = 80; and Ny = 90, N, = 120; respectively
whereas the red solid, dashed and dot-dashed lines represent the variation in effective
condition number for Ny = 45, N, = 60; N, = 60, N, = 80; and N, = 90, N, = 120, re-
spectively. The link between o and N becomes clear from the figure as fictitious boundary
can be shifted towards the actual boundary while maintaining roughly the same accuracy
by increasing the numbers of the collocation and singularity points. In other words, it is
feasible to use less numbers of boundary nodes and source points when choosing a smaller
value of a for computational efficiency in the case of a circular interface. This link between
the number of source and boundary points as depicted in Fig. 6.16 is not universally true
for all problems. Nevertheless, the interesting aspect is to note the inverse relation of
effective condition number with accuracy as it helps determine an optimal location for
singularities for the problems where the analytic solution is not known. To discuss the
choice of location of singularities for deformed interfaces (shape 1 and shape 2), we plot
the effective condition number kg varying with the dilation parameter « for shape 1 (left
panel) and shape 2 (right panel) in Fig. 6.17. It is evident from the figure that the highest
value of effective condition number is achieved somewhere in between 0.6 < o < 0.8 for
all the considered values of Ny, N, for both the shapes. Moreover, considering a greater
number of boundary and singularity points yields higher values of k.g. The computational
time for both considered shapes with Ny = 180, N, = 240 is approximately 20 seconds,
which is higher than that for Ny = 120, N, = 180 (~9 seconds) and Ny = 90, N, = 120

1013 ... N, =90, N = 120 e . 1013 ... N, =90, N, = 120 P \
—— N,=120, N, = 180 ) — N,=120, N, = 180 ’ k
10M N, = 180, Nj = 240 10t L N, = 180, N, = 240
w0 ST 10°
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107 107
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Figure 6.17: Variation in the effective condition number k.g with respect
to the dilation parameter « for different numbers of boundary and source

points in case of shape 1 (left panel) and shape 2 (right panel).
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(~5 seconds). Nevertheless, we fix Ny = 180, NV, = 240 with o = 0.7 to ensure accurate

results for the problems with deformed interface (shape 1 and shape 2).

6.6 Summary

In this chapter, the evaporation and condensation phenomena have been investigated
around liquid jets with both circular and non-circular cross-sections. The thermodynam-
ically admissible boundary conditions for the CCR model in both complete and partial
evaporation/condensation scenarios have been presented and implemented. By exploiting
the symmetry inherent in the circular configuration, analytic solutions have been ob-
tained for the circular case, and the results from the MFS have been validated against
these solutions. Across the cases—including both pressure-driven and temperature-driven
evaporation/condensation cases—an excellent agreement has been observed between the
analytic and numerical results.

The numerical framework has been further extended to non-circular jets for investi-
gating the effect of the shape of the interface by introducing controlled deformations via
spherical harmonics. The results have shown that for nearly symmetric, mildly deformed-
circular jets, mass and energy fluxes remain comparable to those of corresponding to the
circular jet. However, significant asymmetry in the interface shape has been observed to
cause notable deviations in the mass-flux and heat-flux coefficients. The velocity stream-
lines and heat-flux lines have further clarified how these deformations influence local flow
and transport fields. A comprehensive sensitivity analysis has also been conducted to
assess the influence of the placement of source points, the number of source and boundary

points, and the matrix structure on numerical accuracy and computational cost.
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Chapter 7
Generalizing the MFS to

higher-order moment systems

As mentioned in Sec. 1.2, all previous works on the MFS for rarefied gas flows [27, 64,
90], and also Chapters 3 to 6 of this thesis required deriving fundamental solutions for
specific models by prescribing Dirac-delta source terms in selected governing equations
within the system and/or in the closure relations. While effective, this methodology typ-
ically makes it challenging to extend the MFS for new or more complex models, where
the fundamental solutions are unknown and the choice of source terms is not straightfor-
ward. To address the limitations posed by fixing the source terms manually, we propose a
generic approach that allows for the computation of fundamental solutions for any large
system of equations without the need to predefine specific Dirac-delta source terms. The
generic MFS approach relies on two steps. The first step involves identifying the funda-
mental solutions of the system. This process is similar to Hormander’s method [8, 47]
and employs Fourier transformation in combination with partial fraction decomposition
to derive expressions for the fundamental solutions. The second step is determining the

source strengths using the boundary conditions for the problem under consideration.

7.1 The technique

This section introduces a general technique to determine and implement the funda-
mental solutions for any linear first-order system of partial differential equations. We
consider a linearized system of N € N partial differential equations in (two-dimensional)

Cartesian coordinates, expressed as
ADoU + AY9,U + PU = Sé(r), (7.1)

where U : Q — RY is the variable vector field, A®) A® ¢ RVN*N are constant advection
matrices and P € RY*Y is the constant reaction matrix, § € R¥ is a constant forcing

vector (including source terms) and d(r) is the Dirac delta. To determine the fundamental



solution of the system, we define the Fourier transform F(k) of a function F(r) as
F(F(r)) = F(k) = / F(r)e ™ " dr, (7.2)
RQ
where 1 is the imaginary unit, k = (k,, k,) € R? is the wave vector in the spatial-frequency
domain. The corresponding inverse Fourier transformed counterpart is defined as

FE0) = Flr) = s [ Fe e . (7.3)

Applying Fourier transformation on Eq. (7.1) we obtain

Ak)U = (ik,A® + ik, AY + P)U = 85, (7.4)
wherein the inverse of the matrix A € RV*Y can be written as
1 1
Ak ' = ———— A(k) = —A(k). )
k)" = S AR = S AR (75)

Here, the determinant det(A(k)) = s(k) is identified as the symbol [35] of the partial
differential operator and the matrix A is the adjugate matrix, which contains the cofac-
tor expansions of the original matrix. Since both adjugate matrix and symbol contain
polynomial terms in k, and k,, they can be easily inverted using the Fourier inverse

transformation. Using the fact that
A(V)A(V) = s(V)Iy, (7.6)

where [y is the N x N identity matrix, one can conclude

A

s(k)U = A(k)S) — s(V)[U] = .A[]4]S. (7.7)

This crucial step makes this approach commendable. Finding the fundamental solution
corresponding to only the symbol operator leads us to the fundamental solution for the

complete system. The fundamental solution for the full system is given by
U(r) = A(V)[®](r)S, (7.8)

where ® is the two-dimensional fundamental solution associated with the symbol s(V) of

the PDE, i.e.
s(V)[®] = 4. (7.9)

It is straightforward to calculate ® if the symbol turns out to be a differential operator

with a known fundamental solution. Furthermore, if the symbol can be factorized into
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Figure 7.1: Schematic representation for discretization of boundary points
(blue disks) on the domain boundary and singularity points (red disks)

outside the problem domain.

Laplace, polyharmonic and Helmholtz operators, the fundamental solution ® can be cal-
culated using partial fraction decomposition along with inverse Fourier transforms of the
known factor operators. It is important to note that a fundamental solution ® is not
unique. Different solutions can be obtained by adding the homogeneous solutions, which
correspond to the null space of the operator. This non-uniqueness plays a crucial role in
constructing tailored solutions for specific boundary conditions and physical scenarios.
After finding the fundamental solution for the complete system, the MFS involves
the discretization of the domain boundary into boundary nodes and placement of the
singularity or source points on some fictitious boundary outside the problem domain.
We demonstrate this by considering an arbitrary domain €2 having boundary I" as shown
in Fig. 7.1. The boundary I' is discretized into N, equispaced boundary points having
position vectors :c?-; j =1,...,N,. Outside the domain €, a fictitious boundary T is

considered with source points x;; j = 1,..., Ns. The relative position of the ith source

b

point with respect to j™ boundary node is denoted by r;; = x; — x;. The boundary

conditions for the problem are written in the form
B(@")U(a") - g(a’), (7.10)

where B(z%) € RPV is a matrix depending on the normal and tangent vectors n and ¢
associated with any point x® lying on the boundary I' and g(x*) € R? is the corresponding

right-hand-side vector. The numerical solution obtained by the MFS is the superposition
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of the obtained fundamental solutions, i.e.
N
Uwrs(z) = Y A(x — a;)8;, (7.11)
i=1

where Uyps(@) denotes the solution at any point & € Q, 2(r) = A(V)[®](r) and
S; € RY contains the unknown source strengths corresponding to i'! source point 3. The
unknown strengths are then calculated by solving a linear system formed on applying the

boundary conditions at each boundary node. The linear system reads

Ns
B(z)U(x}) = B(}) Y Az} —x)S; =g(x}), j=12,.... N, (7.12)
i=1
The overall linear system is MX = G, where M is the pN, x NN, collocation matrix,
X € RMs is the vector containing the unknown source strengths S; corresponding to
i = 1,2,..., N, singularities and G € RP™ contains the right-hand-side vectors g(w;’)
for j = 1,2,..., Ny. Since the matrix M is generally non-square, it is possible to have
many equations (V) with comparatively fewer boundary conditions (p). The choice of
the number of boundary and singularity points (N, and Ny, respectively) significantly
influences the structure and solvability of the system. To facilitate a square system,
we introduce a decomposition S = M u, and choose N, = N, so that the number of
boundary conditions imposed at each boundary node matches the number of unknown
source strengths associated with each singularity point. This shall be discussed further in

detail in the subsequent sections.

7.2 Implementing generic MF'S for Stokes’ equations

We show the implementation of generic MFS via an example of the Stokes equations

(in two dimensions) which read

V.v=0, (7.13)
Vp+V.o=0, (7.14)
o=-Vov. (7.15)



7.2.1 Fundamental solutions

Rewriting these equations as in the form of Eq. (7.1), the unknowns are U = [p Uy Uy

T .
Ozz Oy ayy} , and the matrices are

01 0000 00 1 000
1 0 0100 00 0 010
00 0010 10 0 001
Al = AW = : (7.16)
0 2 0000 00 -2 000
00 12000 02 0 000
0 —3 0 0 0 0] 00 2 00 0]

and P = diag(0,0,0,1,1,1). On taking the Fourier transformation of the rewritten

system, we obtain the matrix

[0 ik, ik, 0 0 0]
ik, 0 0 ik, ik, 0
ik, 0 0 0 ik, ik,
Alk) = - . , (7.17)
0 e lk,) 10 0
0 k0 10
0 —l(k,) E 0 0 1

for which the symbol turns out to be
s(k) = 1(lcQ + k2)? = L (7.18)
20 Y 2 '

where k = /kZ + k2. In order to find the fundamental solution ¢ associated with the
above symbol (such that s(V)[¢] = §), we utilize the definition (7.2) and (7.3) for the
Biharmonic equation A%¢ = § whose fundamental solution in two dimensions is given

by [25]

r?(lnr —1)

o=——%—" (7.19)

where r = /22 + y?. This fundamental solution ¢ corresponds to the fundamental solu-
tion associated with the symbol for Stokes’ equations and F~*(1/k%) = ¢. Applying the

Fourier transformation [defined by Eq. (7.2)] to the Biharmonic equation A?¢ = 4, we
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obtain

. . ~ 1
(-2 —-k)Yo=k'o=1 = ¢= o (7.20)
Taking inverse Fourier transformation,
1 r?(Inr —1)
=2 )=p=—" 21
4 (k‘4) ¢ 81 (721)

Utilizing the above inverse Fourier transformation and the fundamental solution ¢, we

thus obtain the complete fundamental solution for U

~ Ak 2
o=2®g_ 2 Ars — U=24v)4s. (7.22)
s(k) k
where the adjugate matrix in operator form reads
_ , s, -
a 20 20, —12A —8,0,A —12A
20 —o? 0,0, 0,02 9 — 020, ~0,0?
Ady
AV = > 0,0, -2 —929, 0,(9% — 8;) 020, 7
GAQE-®) o 0, Y@ ao-o) o
BADD, D020 00202 00,0 -3) 2R 00,08 )
la@o) o 020, wor ool-o%, 3040

(7.23)

where A = 8£+8§ represents the Laplacian operator. Applying the adjugate matrix (7.23)
to the fundamental solution ¢, we obtain the matrix containing basis functions used to

approximate the overall solution via superposition, i.e.

) @ Y z?—y? 2wy vor? ]
272 2712 2mrd mrd 274
x _ r2log(r?)—r? Ty z(x?—y?) 2x%y N x(x?—y?)
2mr? 4mr? 2mr? 2mrd rd 2mrd
y zy _ r?log(r?)+a?—y? y(z®—y?) 22y y(y>—a?)
272 27?2 47r? 2mrd mrd 2mrd
mStOkes(T) - 2_,2 2_,2 22 4 2,2, .4 2,2 4 2,24 |’
z?—y z(z?—y?) y(z?—y?) 2 —6x%y° +y day(z?—y?) _zt 62y’ +y
2mrd 2mrd 2mrd 2770 16 2776
zy 2%y zy? 2zy(z®—y?) _xt-62?y?tyt 2ay(z?—y?)
mrd mré Trd 716 6 6
Po?_alaP—y?) WP—e?)  _ateetPayt dn@P—)  otmoeleyt
L 27rd 2mrd 2mrd 2776 r6 2776 J

where RAgiokes(1) = 24(V)[¢]. Now it remains to decide the entries of the vector S which
decides the Dirac-delta sourcing terms. This choice will be discussed with an example

setup in the following subsection.
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Figure 7.2: Stokes’ flow between two cylinders (left) and the placement of
boundary nodes and singularities in the MFS (right).

7.2.2 An example setup

Let us consider the flow of a monatomic gas past an infinitely long circular cylinder
with radius R;. To make the computational domain bounded, an outer cylinder with a
larger radius Ry (Ry > Ry) is considered, serving as an artificial inflow /outflow boundary.
Owing to the axial symmetry, the problem can be investigated in two dimensions. A
cross-sectional view of problem is depicted in the left panel of Fig. 7.2, where the flow

domain is given by
Q={(z,y) eR*| R} <2” +y" < R}, (7.25)

with 'y = {(z,y) € R? | 2 +y* = R}} and 'y = {(,y) € R? | 22+y* = R%} denoting the
inner and outer boundaries, respectively. The inner cylinder is assumed to be impermeable

with standard slip condition given by
v-n‘rl =0 and n-a-t}Fl :—Cv-t|rl, (7.26)

where n = (n,,n,) and t = (¢,,t,) are the unit normal and tangent vectors on the inner
boundary I'y and ¢ € R is the velocity-slip coefficient. The outer cylinder enforces in- and

out-flow boundary conditions, leading to

v- n|F2 = Vo Ny and v-t|. = —von, (7.27)

Iy Ty’
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where vg € R is the horizontal velocity. The boundary condition matrix constructed
using (7.26) and (7.27) for the unknown solution vector U = [p Uy Uy Ogp Ogy O'yy]T is

given by

-
0 ny ny 0 0 0
s if (Bb € Fl,

0 (ty Cty ngty ngty +nyty nyty,

B(z") =< . (7.28)

0 ng ny 00 0

, if x° € Ts.
\ 0 t, t, 000
The right-hand-side vector is given by
-
0
, if €Ty,
0
g(x’) =< - (7.29)
Vo My
. ifxb ey,
{ —Up Ny

where x® represents the position of a point on the boundary of the cylinders. In order to
implement the MFS for the current setup, a total of NV, boundary nodes are chosen on
the boundaries T'y and I'. Two concentric circular fictitious boundaries T'; (inside I'y)
and f‘g (outside I'y) are considered on which N, singularity points are placed as shown in

the right panel of Fig. 7.2. The overall solution obtained from the MFS is then given by

N
U(iD) = Z 2[Stokes(m - wls)sz (730)
=1

To find the unknown source strengths in S;, we split S = M u, where M is a fixed matrix

and p contains the deciding source strengths parameters.
7.2.3 Choice of the matrix M

The main task in the MFS is to calculate the unknown source strengths using the
boundary conditions. For the classical Stokeslet approach, where a point force vector is

included in the momentum balance equation, the corresponding matrix M is given by

T

0010000
M = , (7.31)
001000
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and p = [ul ug} T represents the point force associated with the singularity. Alternatively,
one may introduce source terms into any of the Eqgs. (7.13)—(7.15), for instance, setting
M = Ig, where I is the 6 x 6 identity matrix, corresponds to Dirac delta source terms
in all governing equations. Nevertheless, while working with large and complex system
of linear partial differential equation, it is not trivial to choose the non-zero entries in
the vector S as the choice significantly affects the results. We propose the choice of the
matrix M to be dependent of the boundary conditions by fixing M (x®) = B(z®)T, which

yields the boundary condition

B(wb>2[8tokesB(wb>Ty’ = g(wb>’ (732>

for any boundary point x’.

This choice of M is advantageous as it gives a symmetric
structure to the overall system and keeps the number of source parameters in p equal
to the number of boundary conditions at each node and yields a square system when
the number of boundary nodes and source points are the same (N, = N;). The sys-
tem (7.32) is evaluated at each boundary node for determining the source parameters in

p corresponding to each singularity point. This results in a large linear system

N
B(x!) > Usiokes(rij)B(@)) pi = g(a}), j=1,2,....Ny(= N,), (7.33)
=1

b_
J

where r;; = 7 —x; is the relative distance and p; denotes the vector containing unknown
source parameters corresponding to i*" singularity point. The complete linear system
can be denoted by LA = G, where L is the 2N, x 2N, collocation matrix and the
unknown source strength vector is A = [Nll M1, M2, M2y - KN, uNSJT. After
calculating the unknown parameters in p, one can approximate any flow variable by
using the superposition U () = SN, Agiokes (1) B(x;) Tp?, where 7; = & — &} for any
vector x in the computational flow domain. For instance, the xz-component of velocity v,

can be calculated—using the second row of RAgiores given in (7.24)—as

N 7
2 o 2.2 2, (22 Hq

_ z; _riRlogri=1)  ayy, wmi(xi-yy) 227y wi(xi-yy) B T 4

Uz Z [271'7‘12 4mr? 2mr? 2mrd wr} 2mrd <wl) il <73 )
i=1 a2
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7.3 Generic MFS for R13 equations

Expressing the R13 equations (2.43)—(2.49) in the form (7.1), the unknown vector is
U — [p Vg Vy Ozz Ozy Oyy 0 qx Qy Myxx Maay Myyx Myyy Ryy Ra:y Ryy ]T. Applylng Fourier tranSfOI"—
mation on the resulting system (7.1) as done in Sec. 7.2.1, the symbol for R13 system

turns out to be

s(k) = y(k*)2(E* + M) (k2 + M) (K> 4 \s), (7.35)
where
3087Kn® 3 5 5
_ Ny = _ 2 — . 7.36
K 160 ! 2Kn?’ 2 9Kn?’ 3 6Kn? ( )

These three constants A, Ao and A3 represent the three Knudsen layers*. This symbol in

the operator form reads
S(A) = V(A (A = M) (A = X)(A = Xg), (7.37)

where A = 02 + 9;. Utilizing Egs. (7.4) and (7.5) gives an idea to compute the main

fundamental solution ® corresponding to the symbol. In Fourier transformed coordinates,

1

U= (k23 (k2 + M) (k2 + ) (k2 + As)

A(k)S. (7.38)

It is convenient to get the inverse Fourier transform of U if 1 /s(k) is expressed in its

partial fraction form:

s(k) v

The constants a;s can be computed in a straightforward way, and hence Eq. (7.38) becomes

RIS S A T E W

(7.39)

1 1 |: (03] (05) Q3 Qg (673 (673 :|

[ L3 Kn®  132Kn® | 8356 Kn'’ 8Kn'
TN - - 3
v 1 25(k2)3  25(k2)2 625k2 17 (k2 4 52)
5832 Kn'? 236196 Kn'"
+ S = | AK)S. (7.40)
625 (K + 52m) 10625 (k2 + 52)

* Knudsen layers are thin boundary regions in rarefied gas flows where non-equilibrium effects dominate
due to gas-surface interactions. The constants \/%, \/3/727 and v/5/3 correspond to eigenvalues
governing exponential decay rates of Knudsen layer modes in the R13 equations. Three eigenvalues
align with the prediction of three Knudsen layers by the R13 model [85, 105, 117]
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In order to compute the complete fundamental solution ®, it is easier to use the inverse
Fourier transforms of the partial fraction terms using the preknown fundamental solutions
of polyharmonic or Helmholtz operators [25]. For any polyharmonic equation having the
fundamental solution ¢,, which satisfies A"¢,, = 9, its Fourier transformation is obtained

by using the property F (OF/0x;) = ik;, which yields

A A R —1)?
(-1D)"k"p, =6=1 = ¢, = (an) (7.41)

Analogously, for a Helmholtz equation having the fundamental solution ), which satisfies

(A — X)) = 4, the Fourier transformation yields
(7.42)

Utilizing Eq. (7.41) and the preknown fundamental solutions for polyharmonic opera-

tors [25], one can obtain

o1 (%) _ g = _IZ%TT, (7.43)

F-1 (%) =y = W’ (7.44)
4 _

7 () = v

Using fundamental solution v, for Helmholtz equation, and Eq. (7.42), we get

1 ( 1 ) _ _yy — VA (7.46)

k2 4+ )\ 2

Here, K denotes the modified Bessel function of the second kind of order zero. Since
inverse Fourier transformation is linear, the fundamental solution ® is

4178 Kn"logr  33Kn®r’(logr —1)  9Kn®r*(logr — 3/2)

®(r) =
6257 507 8007
216 KntKy (\/32)  AKnUK ((/35) 118098 Kn'"K, (42 .
6257 17n 106257 |

Taking the inverse Fourier transform in Eq. (7.38), we obtain the fundamental solution
for the R13 equations as

U(r) = %A(V)[cms — g ya(r) Mp. (7.48)

The matrix RAr3 incorporates all fundamental solutions that contribute to approxi-

mating the complete numerical solution of any given problem. In the R13 system, different
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choices of the matrix M allow for varying degrees of freedom. The choice can be made
independent of the specific problem by setting M (x?) = B(x®)T. Here B(x%) € R6*1¢
boundary conditions matrix is constructed using boundary conditions (2.56)—(2.61). With
this choice (as also discussed in Sec. 7.2.3), the unknown source strengths corresponding

to the " singularity p; € RS is calculated by solving the linear system
Ns
B(z))>  Unis(ryj)B(a) " wi = g(x)), j=12,...,N(= N,). (7.49)
i=1

This linear system can be expressed as LA = G, where L is the 6N, x 6N, collocation
matrix (due to 6 boundary conditions associated with each boundary node and 6 source
strengths associated with each singularity). Further, A € R is the unknown vector
(containing source strengths ;) and ,G € R is the right-hand-side vector containing
boundary properties g(a:é’) The numerical solution approximated by the MFS at any

point @ in the domain is determined by

Uz) = Z Aris(x — ) B(x?) . (7.50)

7.4 Results and discussion

To validate our code for the generic MF'S for the R13 equations, we compare the results
obtained from the MFS with an analytical solution for a rarefied gas flow confined between
two coaxial cylinders. Additionally, we examine the influence of various parameters on

the accuracy of the numerical method.
7.4.1 Problem description

We consider the flow of a rarefied monatomic gas around a rotating, infinitely long
circular cylinder, with the flow domain bounded by a coaxial outer circular cylinder. The
dimensionless radii of the inner and outer cylinders are Ry = 1 and Ry = 2, respectively,
with the inner and outer boundaries denoted by I'y and I's, respectively, as depicted
in Fig 7.3. The outer cylinder serves as an inflow and outflow boundary, with normal

component of velocity v" - n}m = von,|. and tangential component v" - t|F2 = —vgny‘FQ

Ir,

in the boundary conditions (2.56)—(2.61). To introduce additional complexity, the inner
cylinder is assumed to be rotating with a tangential velocity, given by v" - t|r1 = —01.

The temperatures of the inner and outer cylinders are fixed at %, = 6; = 1 and

I,
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Figure 7.3: Schematic of the cross-section of rarefied gas confined between

two coaxial cylinders where the inner cylinder is rotating anticlockwise.

0W|F2 = 0, = 2, respectively. The velocity prescription coefficient at inner cylinder is

Ew‘rl = 1075, while that on outer cylinder is €¥|. = 1. Furthermore, we fix vg = v; = 1

I'>
and pW|F1 = p‘”’rz = 0.

7.4.2 Validation with analytic solution

The details for obtaining the analytic solution to this problem are provided in Appen-
dix D. To validate the code, we plot the speed of gas varying with radial gap between the
two cylinders along different directions in the left panel of Fig. 7.4. The solid blue, red
and black lines indicate the results obtained from the analytic solution of the R13 model
for the azimuthal angles ¥ = 0,7/4 and /2, respectively, whereas the symbols (triangles)
represent the corresponding results obtained from the MF'S for Kn = 0.5. The right panel
of Fig. 7.4 illustrates the variation in temperature with respect to the radial gap along
different angles. We observe an excellent agreement between the results obtained from the
MF'S and those from the analytic solution for both speed and temperature. The complete
source code for the generic MFS and the analytical solution for the R13 equations has
been made publicly accessible’ [44]. For a better analysis, we measure the accuracy of the
generic MFS in the following subsection using the standard relative error in the L? norm

||fMFS - fexact||L2(Q)
€12 =

) 7.51
erxact HL2 (Q) ( )

T https://github.com/himanshikhungar/R13_MFS
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Figure 7.4: Variation of the speed (left panel) and temperature (right panel)
in the gap between the two cylinders. The solid blue, red and black lines
denote the analytic results of the R13 model along ¥ = 0,7/4 and 7/2,
respectively. The corresponding blue, red and black (triangle) symbols de-
note the results obtained from the MFS for Kn = 0.5.

where fyrs denotes the numerical solution obtained with the MFS and foxaet denotes the

corresponding analytic solution.
7.4.3 Choice of parameters

The accuracy of the MFS solution is highly dependent on key parameters, namely
the numbers of boundary and source points, and the location of source points outside the
computational domain. To systematically analyze the error and justify the choice of these
parameters, we define a grid spacing parameter d, which determines the distance between
two consecutive boundary points. A smaller d results in a higher number of boundary
points and vice versa. Given the grid spacing parameter d, the number of boundary points
placed on the circumference of a circle of radius R is computed as N, = [2nR/d], where
|-| denotes the floor function. As previously mentioned, we set the number of boundary
points equal to the number of source points to construct a square linear system using the
relation M = B(z)T.

To determine an appropriate placement of source points, we introduce the dilation
parameter « = R;/Rs, = Rs,/Ry where Ry, and R, denote the radii of the inner and
outer fictitious boundaries on which source points are placed. A larger « corresponds to
source points being positioned farther from the boundary and vice versa. To evaluate

the accuracy of the MFS, we compute the L? error in velocity €72 for different values

146



Kn=0.1 Kn=0.3 Kn=0.5

10-1}
1074

g2 1077F
10-10}

10—13 L

1013 L
1010
Keff

107 L

104 L

w

1.1 1.5 2 2.5 3 11 1.5 2 2.5
- d=0.1 4 d=0.07 <% d=0.05

Figure 7.5: Variation in L? error in velocity €;2 and effective condition

number k. with respect to the dilation parameter « for different values of

grid spacing d and M = B(z)".

of d and . The top panels in Fig. 7.5 illustrate the variation in e;2 with respect to «
for grid spacings d € {0.1,0.07,0.05} and Knudsen numbers Kn € {0.1,0.3,0.5}. For a
higher Knudsen number Kn = 0.5 (rightmost top panel), fewer boundary points (d = 0.1)
provide good accuracy when « is sufficiently large, meaning the source points are placed
sufficiently far from the boundary. In contrast, for d = 0.07 and d = 0.05, accurate results
are achieved for v 2 1.7 and « 2 1.5, respectively. This suggests that for computational
efficiency, a smaller number of boundary points with more distant source points can be
a viable choice. However, for lower Knudsen numbers (Kn = 0.1 and 0.3, leftmost and
middle top panels), the accuracy depends more sensitively on the choice of boundary and
source points. The error is minimized only within a narrow range of «, particularly for
Kn = 0.1, indicating that source points should neither be too close nor too far from the
boundary for an optimum accuracy.

The accuracy of the numerical solution depends strongly on the Knudsen number,
which makes it challenging to determine where the source points should be placed, es-
pecially in the absence of an analytic solution. The effective condition number provides

a reliable indicator of the accuracy of the solution. The bottom panel in Fig. 7.5 shows
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how the effective condition number k.g varies with the dilation parameter « for three
values of the grid spacing d € {0.1,0.07,0.05} and Knudsen numbers Kn € {0.1,0.3,0.5}.
A comparison with the corresponding top panel, which displays the error €;2, reveals an
approximate inverse proportionality between k. and the error: in general, lower errors
are associated with higher values of k.. However, the value of a corresponding to the
minimum error does not always align precisely with the peak in kg, indicating that the
relationship is not strictly proportional. This observation suggests that the source point
placement should be chosen to strike a balance—achieving sufficiently high k.g while also
minimizing the numerical error. Based on this reasoning, we select « = 1.5 and d = 0.05

for our computations.
7.4.4 Choice of the matrix M

Previous studies on the MFS for rarefied gas flows formulated the fundamental so-
lutions by imposing only a few degrees of freedom as Dirac-delta source terms in some
governing equations and/or in some closure relations. Ref. [27] derived the fundamental
solutions for the R13 equations by including sourcing terms in the momentum, energy
and stress balance equations in three dimensions. This choice ensured that the number of
boundary conditions matched the number of unknown sources associated with each sin-
gularity. The corresponding 2D fundamental solutions for the R13 equations, including
similar source terms, can be obtained from the general matrix g3 containing the full
set of fundamental solutions. Setting M = [OMG I ngﬁ]T, leads to the parameter
u = [ul fo 3 M4 M5 MG]T with six degrees of freedom. In this scenario, the linear

system formed by implementing boundary conditions at each boundary node reads

N,
B(z))> Unis(riy)Mp; = g(x}), j=12,... N, (7.52)

i=1
While this approach was effective for the specific problem considered in [27], this particular
choice may not always yield accurate results. To illustrate this, Fig. 7.6 shows the variation
in the L? error in velocity (left panel) and the effective condition number kg (right panel)
as functions of the dilation parameter o for Kn = 0.5. As evident from the left panel of
Fig. 7.6, the error remains large at all the locations of the source points, and the effective
condition number does not exhibit any structured behavior. Although not shown here, the

errors remain high for all the considered Knudsen number values as well. This suggests
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Figure 7.6: Variation in L? error in velocity €2 (left panel) and effective

condition number kg (right panel) with respect to dilation parameter « for

M = [leﬁ ]6 ngﬁ]T for Kn = 0.5.
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Figure 7.7: Variation in L? error in velocity €72 (left panel) and effective
condition number keg (right panel) with respect to dilation parameter « for

M = [19 O7><9:|T for Kn = 0.5.

that the choice with six degrees of freedom does not perform well for the present problem.
A more suitable choice for the current study is to set M = [Ig 07X9]T, which introduces
nine degrees of freedom corresponding to mass, momentum, energy, stress, and heat
balance equations. In this case, the collocation matrix £ has dimensions 6N, x9N, and the
corresponding linear system can be solved using the method of least squares. Figure 7.7
illustrates the variation in L? error in velocity (left panel) and effective condition number
(right panel) with the dilation parameter o for Kn = 0.5. The behavior of both €2 and
ket closely resemble with those observed for M = B(x)" in Fig. 7.5. Although not shown
here, the resemblance exists for Kn = 0.1 and 0.3 as well. The comparison indicates that

this choice of M = [Ig 07X9}T is more appropriate than M = [le6 I ngﬁ]T for the
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present problem. However, this choice of M cannot be guaranteed to work well for other

problems.

7.5 Comparison with the FEM

After validating the generic MFS framework for the R13 equations with an analytic
solution, we now consider a problem for which an analytic solution is unknown. The
results are therefore compared to the results obtained from the FEM. Furthermore, we
observe the key differences and advantages of the MFS over FEM.

The FEM simulations presented in this chapter have been performed Dr. Lambert
Theisen as part of our collaborative research effort [43]. These results are included with

permission to ensure completeness in the comparison of the proposed meshless framework.

7.5.1 Problem description

In this scenario, a monatomic rarefied gas is considered to be confined between two
noncoaxial infinitely long cylinders. The circular cross-sections of the inner and outer
cylinders have radii Ry = 1 and Ry = 2, respectively and centers at (0, —0.25) and
(0,0), respectively. The boundaries are again denoted by I'; and T's, respectively. The

(dimensionless) temperatures on the inner and outer cylinders are fixed at HW‘Fl =0, =1
and HW‘FQ = 6y = 2, respectively. Both the cylinders are assumed to be stationary
(vW|Fl = UW}FQ = 0) with the velocity prescription coefficient ew‘rl = eW|F2 = 0 in

the boundary conditions (2.56)—(2.61). The flow is induced purely by the temperature

difference.

7.5.2 FEM for the R13 model

In the FEM (see, e.g., [29] for an introduction focusing on flow equations), the equa-
tions are not solved pointwise for all € (2, but in an integral sense (weakly) on a trian-
gulation Ty, of 2 into finite elements T € T, (triangles in our case). Here, h € R denotes
the maximum diameter of the elements. In contrast to the first-order system (7.1), we do
not solve for all moments but restrict ourselves to the three balance laws (2.43), (2.44),
and (2.45), complemented by the two additional Eqgs. (2.46) and (2.47). The higher-order
moments (2.48), (2.49), and (2.50) are directly inserted into these five equations, resulting
in a field vector V = [p Uy Uy Ogz Ozy Oyy 0 Gy qy}T.
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Figure 7.8: Series of finite element meshes 7; with decreasing mesh size hAyax

for increasing i.

To obtain the weak formulation, we multiply each equation by corresponding test
functions W = (¢p,,...), integrate over €2, and apply integration by parts. This pro-
cedure lowers the order of differentiation and allows incorporating the boundary condi-
tions (2.56)—(2.61). In the Galerkin approach, the test functions are chosen from the
same finite element space as the solution. An example is the weak formulation of the

mass balance (2.43), where testing with ¢, : 2 — R and integrating by parts yields

/(V-v)gopdac:—/'v-V<ppdac+/vngopdl
Q Q r
:—/v.prda:—i—/(ve(((p—pW)—l—ann)—l—v:f) wpdl, (7.53)
Q r

A reordering of terms for the unknowns and test functions leads to

[o-Veades [exoramad=- [@-emea @50
Q I I

which has to hold for all ¢, € W. Repeating these steps for all equations leads to a well-
posed system [60, 113]. Finally, we discretize all functions in V' and W by approximating
them in the finite element space, i.e. as a linear combination of basis functions ¢, ; with

coefficients ¢;, such that, for example,

Np

pa) =Y pitpa(). (7.55)

i=1
We use stabilized first-order Lagrange elements, which are piecewise linear and globally
continuous on the mesh. Inserting the ansatz (7.55) into the weak equations and evalu-

ating the integrals via numerical quadrature, we obtain a linear system of equations:

Ahmh = bh, (756)
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where A;, € RV*Y is a sparse system matrix, x;, € R contains the degrees of freedom of
the solution (i.e. the vectors of coefficients {c*7i}£\;*1), and b, € RY is the right-hand side
vector. The sparsity of A results from the local support of the basis functions, i.e. ¢, ;
is non-zero only on a small subset of elements 7.

However, particularly for thermally induced flows as discussed in Sec. 7.5.1, a fine and
locally refined mesh is required to accurately capture the characteristic flow features. For
the test case, we generated a sequence of meshes {7,...,7T;} with decreasing maximal
radii hpayx. The first four of these meshes are shown schematically in Fig. 7.8 and illustrate

the essential requirement of local refinement near the boundaries. For full reproducibility,

the FEM source code along with all metadata is publicly available at [114].

7.5.3 Results and discussion

In this problem, the gas flow is entirely driven by the temperature difference between
the two cylinders without any external effect or gravity under consideration. To gain
insight into the velocity and temperature profiles, we visualize the velocity streamlines
superimposed on temperature contours for different Knudsen numbers Kn = 0.05,0.1,0.2
and 0.4 in Fig. 7.9, as predicted by the MFS. The parameters for the MFS are fixed at
a = 1.5 and d = 0.07 for these computations. These streamline plots reveal the intricate
interplay between thermal stress and thermal transpiration effects, which arise due to the
stress and heat flux evolution equations in the R13 model. For small Kn = 0.05, two
counter-rotating circulation zones emerge: one in the left half and the other in the right
half of the annular region. As Kn increases to 0.1, two additional vortices begin to form
near the outer cylinder which indicate a shift in the flow structure. With a further increase
in the Knudsen number to Kn = 0.2, the newly formed vortices near the outer cylinder
intensify, while the inner vortices diminishes in strength. For even larger Kn = 0.4, the
small inner vortices disappear completely, restoring a two-vortex system similar to that
at Kn = 0.05, but with the flow directions reversed. This transformation in flow behavior
highlights the competition between thermal stress and thermal transpiration effects, which
govern rarefied gas flows under temperature gradients.

To compare the results from MFS with those from FEM, we use three finest FEM
meshes: Mesh 1 (75, coarsest), Mesh 2 (7g, finer than Mesh 1), and Mesh 3 (77, finest).

Figure 7.10 illustrates the speed of gas |v| along the line y = z in the first quadrant
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Figure 7.9: Velocity streamlines overlaid on temperature contours for dif-

ferent Knudsen numbers Kn = 0.05,0.1,0.2,0.4 as predicted by the MFS.

(or equivalently along ¥ = 7/4, as shown over Fig. 7.9) measured from the center of
the outer cylinder for different Knudsen numbers Kn = 0.05,0.1,0.2 and 0.4. For small
Knudsen numbers (Kn = 0.05 and 0.1), the choice of FEM mesh significantly affects the
results. Meshes 1 and 2 are not refined enough to capture the gas speed accurately due to
the small scale (O(107°)), as shown by the green dashed (Mesh 1) and cyan dot-dashed
(Mesh 2) lines in the top panels of Fig. 7.10. For larger Knudsen numbers (Kn = 0.2
and 0.4), the discrepancy between the three FEM meshes is significantly reduced and for
Kn = 0.4, the results are nearly identical. A reason for this behavior is that the magnitude

of the velocity gets smaller with decreasing Knudsen number, which requires a finer mesh
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Figure 7.10: Speed of the gas between the two cylinders along y = x in the

first quadrant for different Knudsen numbers.

to resolve the flow features in the FEM. In contrast, the MFS (solid red lines) exhibits
stable convergence regardless of the Knudsen number or the grid spacing parameter. The
speed of the gas for Kn = 0.1 and 0.2 is zero at x = 1.37 and x = 0.46, respectively.
These points correspond to the highlighted red dots in the streamline plot Fig. 7.9, at
which the transition between the vortices along the inner and outer cylinder takes place
for Kn = 0.1 and 0.2.

Additionally, we calculate the heat flow rate through the inner cylinder defined as

Qr, = /F q-ndl. (7.57)

Table 7.1 depicts the values of Qr, obtained by considering different meshes for the FEM
and different grid spacing (or number of boundary and singularity points) for different
Knudsen numbers Kn = 0.05,0.1,0.2,0.4. We also calculate the time taken by the FEM

and MFS to calculate Qr, using different FEM meshes and grid spacing d for the MFS
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Table 7.1: Comparison of the heat flow rate through the inner cylinder Qr,

and computation time for FEM (top) and MFS (bottom) for different mesh

refinements and source distances d using 8 CPU cores.

FEM
Kn Mesh 1 Mesh 2 Mesh 3
Qr, Time Qr, Time Qr, Time
0.05 | 1.5276481 5s 1.5276241 29s 1.5276212 185s
0.1 2.4815209 5s 2.4815120 30s 2.4815119 185s
0.2 3.5116585 bs 3.5116914 29s 3.5117014 187s
0.4 4.1411597 5s 4.1412806 30s 4.1413130 191s
MFS
Kn | d=0.15(N,=124) | d=0.1(N,=187) | d=0.07 (N, = 268)
Qr, Time Q@r, Time @r, Time
0.05 | 1.5276979 17s 1.5276204 28s 1.5276204 49s
0.1 2.4815252 16s 2.4815121 27s 2.4815121 50s
0.2 3.5117115 16s 3.5117048 28s 3.5117048 51s
0.4 4.1413392 16s 4.1413240 30s 4.1413240 52s

using 8 CPU cores. As the FEM mesh is refined from Mesh 1 to Mesh 3, the values of

Qr, converge, albeit with significantly increased computational time—reaching up to 191

seconds for Mesh 3. However, the MFS achieves the accuracy up to 7 significant digits

with significantly lower computational cost. For instance, in the finest FEM mesh (Mesh

3), the computation time reaches up to 191 seconds, while the most refined MFS case

with d = 0.07 having N, = Ny = 268 achieves a higher precision in less than a third of the

time (approximately 52 seconds). Additionally, even the coarser MF'S configurations (e.g.,

with d = 0.15) yield accurate results with computation times as low as 16-17 seconds.
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It has also been noticed that, when the grid spacing is reduced to d = 0.07, the MFS
attains convergence in (Jp, values up to 10 decimal digits. This highlights the MF'S as not
only a computationally efficient alternative to mesh-based solvers like FEM, but also a
powerful method for achieving rapid convergence with high numerical accuracy in rarefied

flow simulations.

7.6 Summary

In this chapter, a generic methodology has been developed for computing fundamen-
tal solutions of any linear moment system without prescribing Dirac-delta source terms
in specific governing or closure equations. This approach had been designed to overcome
the limitations of previous implementations of the MFS, which relied on problem-specific
formulations and varying choices of Dirac-delta sources. The proposed methodology uti-
lizes the Fourier transformation combined with partial-fraction decomposition to obtain
the fundamental solutions corresponding to given linear system. This strategy has been
firstly demonstrated for the Stokes equations in two dimensions and subsequently ex-
tended to the more complex R13 equations. Validation against an analytic solution for
the R13 model in the case of rarefied gas flow between coaxial cylinders has confirmed the
accuracy of the proposed framework. The influence of numerical parameters—including
grid spacing and dilation parameter—has been systematically analyzed through error es-
timates and effective condition number. Furthermore, the framework has been applied to
a thermally induced flow between two noncoaxial circular cylinders, a problem for which
no analytic solution exists. To assess the accuracy of our method, we compare the re-
sults with those obtained using the FEM, a widely trusted numerical approach known
for its ability to handle complex geometries with high precision. Results obtained using
the MFS have shown excellent agreement with those from the FEM. The MFS achieves
comparable or higher accuracy while being significantly more computationally efficient.
The mesh-free nature of the MF'S has proven particularly beneficial for capturing complex
flow features in thermally-driven configurations and for enabling rapid convergence even

in simulations involving intricate geometries.
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Chapter 8

Summary and future directions

8.1 Summary and conclusions

A meshless numerical framework based on the MFS has been developed to study
rarefied gas flows—especially in quasi-two-dimensional scenarios. The work relies upon
determining the fundamental solutions of the linearized CCR and R13 models in 2D and
the implementation of the determined fundamental solutions in the MFS. To gauge the
accuracy of the numerical framework, different internal and external flow problems have
been investigated. The long-standing Stokes’ paradox in the context of external flows has
been addressed using the CCR-MFS framework. To extend the applicability of the MFS
beyond problem-specific fundamental solutions, a generic approach has been proposed to
systematically compute fundamental solutions for any linear moment system. The main

findings and contributions of the thesis are summarized below.

e The fundamental solutions of the CCR model in 2D have been determined by
exploiting the fundamental solutions of some well-known partial differential equa-
tions, e.g., the Laplace and biharmonic equations. It has turned out that the
fundamental solutions of the linearized NSF and G13 equations in 2D can also be
recovered from the derived fundamental solutions of the CCR model.

e The capability of the developed CCR-MFS framework has been assessed by com-
paring its results with analytic and benchmark solutions for some internal flow
problems. One of these problems involves evaporating (or condensing) vapor flow
between two coaxial cylinders, where our results show strong agreement with those
obtained from the linearized BGK model in Ref. [77], particularly at small Knud-
sen numbers. Additionally, two temperature-driven rarefied gas flow problems have
been studied: one between two non-coaxial circular cylinders and another between
a circular cylinder and an elliptical cylinder, having different temperatures. The re-

sults for these problems have been compared with those reported in Refs. [4, 5, 82].



The CCR-MFS results show good agreement with the linearized BGK model for lo-
cal flow fields at small Knudsen numbers, but differences become noticeable as the
Knudsen number increases, despite similar overall trends. However, global quanti-
ties like drag force are captured accurately even at large Knudsen numbers. The
thermal-slip coefficient is also found to significantly influence velocity profiles due
to interplay between thermal creep and thermal stress. Furthermore, the lid-driven
cavity problem in the context of rarefied gases has also been investigated for both
single- and two-sided lid-driven configurations.

The CCR-MFS framework has also been utilized to obtain solutions for external rar-
efied gas flows around circular and semi-circular cylinders by circumventing Stokes’
paradox. To address the limitations imposed by Stokes’ paradox in studying flow
past two-dimensional objects, the domain has been made “bounded” artificially by
introducing an artificial boundary in the flow domain far from the disk. This has
allowed us to obtain a meaningful analytic solution for the flow past a circular disk
and to use it to validate our numerical framework. The normalized drag over the
circular disk obtained from the CCR-MFS framework has agreed quite well with
the analytic solution and reasonably well even with the results on the normalized
drag available in the literature [37, 79, 128]. It is, however, worth mentioning that
the results depend on the placement of the artificial boundary, which poses a lim-
itation and points to the need for including convective terms in the CCR model
(like Oseen’s correction to the Stokes equations).

The MFS has been utilized to study evaporation/condensation from/on liquid jets
using the CCR model. Both circular and non-circular jet interfaces have been
considered to evaluate the mass-and heat-flux coefficients under pressure- and
temperature-driven conditions for partial and complete phase change. The influ-
ence of shape deformation from circular to non-circular interface has been examined
using spherical harmonics.

A general framework has been developed for deriving the fundamental solutions of
linear moment systems and for their implementation in the MFS. This approach
eliminates the need for predefined Dirac-delta source terms in the governing equa-
tions and/or in the constitutive relations. The proposed approach has first been

demonstrated for the Stokes equations and then been extended to the R13 equations
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in two dimensions. The derived fundamental solutions of the R13 equations have
been implemented successfully in the MFS solver and validated against analytic
solutions to confirm their accuracy. To further assess its performance, we have ap-
plied the generic MFS for R13 equations to the problem of thermally-induced flow
between two noncoaxial cylinders and compared the results with those obtained
from the FEM. We have found that the MFS has not only captured rarefaction
effects accurately but also demonstrated computational efficiency.

e Numerical performance of the MFS is significantly influenced by the location of
source points, grid spacing and the effective condition number. Sensitivity and
error analysis has been illustrated for some of the considered problems to identify
optimal choices for the location of singularities in achieving high accuracy.

e Rarefaction effects, such as thermal creep, temperature polarization, and anti-

Fourier heat transfer have been accurately captured for the considered problems.

8.2 Future scopes

The present work opens up several promising avenues for future exploration:

e The developed MF'S framework, currently formulated for monatomic gases, can be
extended to polyatomic gases and gas mixtures to enhance its applicability to more
realistic scenarios.

e For external flows, the current reliance on artificial boundaries to bypass Stokes’
paradox may be avoided by incorporating convective terms into the CCR model,
similarly to Oseen’s correction [78] to the Stokes equations. This would result
in physically more accurate modeling, although it necessitates deriving and im-
plementing the fundamental solutions for the CCR model with convective terms
included.

e An important direction for future work is the extension of the MFS to unsteady
problems involving moving interfaces. This would allow the modeling of dynamic
interface phenomenon such as time-dependent evaporation/condensation using the
unsteady CCR model.

e Flow around evaporating jets studied in this thesis can be generalized to multiphase

flow problems by coupling gas and liquid phases. The internal motion within the
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liquid jet can be modeled using the Stokes equations, while the surrounding gas
can be treated using either the CCR or R13 model.

The generic MF'S framework developed here can be extended to three-dimensional
configurations in a straightforward way. Moreover, it can be utilized to determine
and implement the fundamental solutions for better but involved models—such as
the R26 equations—in both 2D and 3D.

The general methodology developed for constructing fundamental solutions of large
linear systems can be applied to other meshless numerical methods such as the
boundary element method.

The MFS approach needs to be enhanced to handle inhomogeneous and nonlinear
systems in rarefied gas flows, possibly using iterative schemes, like Picard iteration.
The approach also has potential to extend it for more complex moment models and

kinetic models.

160



Table 8.1: Summary of problems studied, models used, and validation or

model limitations.

Problem description Framework Validation / Compar- | Notes
Used ison
Phase-transition flow be- | CCR-MFS Validated against BGK | CCR outperforms NSF in
tween coaxial cylinders solution accuracy
Thermally-induced flow be- | CCR-MFS Compared with BGK | CCR-MFS overpredicts lo-
tween non-coaxial circular model cal fields but accurately cap-
cylinders tures global quantities
Thermally-induced flow be- | CCR-MFS CCR-MFS correctly pre-
tween coaxial elliptic and dicts flow profile; NSF fails
circular cylinders
Lid-driven cavity (single and | CCR-MFS Compared with DSMC | CCR-MFS captures anti-
dual wall motion) and R13 Fourier heat flux effects
Flow past a circular cylinder | CCR-MFS Validated against ana- | Artificial boundary used to
lytic solution handle Stokes’ paradox
Flow past a semicircular | CCR-MFS CCR-MFS predicts temper-
cylinder ature polarization and anti-
Fourier effects
Evaporation/condensation CCR-MFS Validated against ana- | Both partial and complete
from circular jet lytic solution evaporation/condensation
boundary conditions imple-
mented
Evaporation/condensation CCR-MFS Geometry effects on flux

from deformed jet

studied using spherical har-

monics

Phase-transition flow be-
tween coaxial cylinders with

inner rotating cylinder

Generic MFS for
R13

Validated against ana-

lytic R13 solution

Source strengths obtained
by system matrix using

boundary conditions

Thermally-induced flow be-
tween non-coaxial circular

cylinders

Generic MFS for
R13

Compared with FEM re-

sults

MF'S shown to be more effi-
cient than FEM
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Appendix A

Inverse Fourier transforms

We use the fundamental solutions of some well-known equations, such as the Laplace and
biharmonic equations, from the literature [22, 80, 98] to find the inverse Fourier transforms
of the terms on the right-hand sides of Egs. (3.70), (3.71) and (3.73)—(3.75). Note that
the Einstein summation holds over the repeated indices in this appendix and the indices
can take values 1 and 2 only. The fundamental solution of the Laplace equation (with a

point source of unit strength)

D¢
2, _
Vg = 927 i(r) (A.1)
in 2D is given by
Inr
0= o (A.2)

where r = |z]|.
Applying the Fourier transformation [defined by Eq. (3.37)] to the Laplace equation
(A.1), we obtain

o -1
(-1)*k’p=1 = o¢= 3 (A.3)
Hence, the inverse Fourier transform of 1/k? is
1 ~ Inr
) = P ) = — A4
7 () =70 =5 (A4
Also, by definition (3.38), the inverse Fourier transform of 1/k? is given by
1 1 1 .
N5 )=m3 | e dk. A
d (k) P Jos B2 (A5)
Therefore, from Eqgs. (A.4) and (A.5), we have
1 1 _. 1
= etkrgp = T (A.6)

(2m)?% Jpo K2 21



Now, taking the partial derivative with respect to z; on both sides in (A.6), we obtain

—— | e '"""dk=———= AT
(2m)? Jgo k2" 27 12 (A7)
which, in turn, gives
k; 1x;
Flis)=-75 A8
<k:2 ) 2712 (A.8)
Moreover, taking the partial derivative with respect to z; on both sides in (A.7), we obtain
-1 kik; ik 1 (6;; 2w
— . rdk = —— | =2 - —- A9
(27)? /Rz g2 27 (7"2 r >’ (A.9)
which, in turn, gives
kik; Loz, 1 0
FH 2L ) ==L, — Y A.10
( k2 ) T ord * 27 12 ( )
The fundamental solution of the biharmonic equation (with a point source of unit strength)
lopl0)
G S A1l
o (A1)
in 2D is given by
2
1
p=""" (A.12)

8

Following similar steps as for the Laplace equation above, we obtain

f1<1):r21m~ (A13)

k4 8t
1 [ K .zi(2lnr + 1)
1 7 7
[ kik; (2Inr+1) T
1 v _ ]
r (?) = s, - o (A.15)
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Appendix B

Fundamental solutions of the CCR model

Now, we derive the fundamental solutions (previously derived in Sec. 3.3) via alternate

approach of considering three different cases by incorporating the sourcing terms sepa-

rately in the mass balance, momentum balance and the energy balance equation. In the

first case, a sourcing term is considered in the momentum balance equation, which is a

point force vector f;. The balance equations (2.19) in indicial notations read

8%
al’i B 07
8}9 80'7;]' .
(%ci + axj N fz 5(""),
Jg .
0xi N 07

where 7 = (x1,22)7. The constitutive relations (2.20) read

1 (%i
Uij = — 2KH |:§ ( -+

aZL‘j
_ Kn (0T
%= Pr (9:172 “

ov; 1. Ou 1 ([ 0g;
ax) g%—w] 200Rn {5 (axj

6017
0 8.1']‘ ’

9q; 1. Oq
B W N
* &ri) 3" &ztj

(B.4)

(B.5)

Applying the Fourier transformation in Eqs. (B.1)-(B.3), (B.4) and (B.5) and using the
fact that F[o(r)] = 1, we obtain (7, 7,¢ € {1,2})

kip + kjoi =1 fi,

kz(jz - 07

. ) . . . . 2 . .
0i; = 1Kn|k;j(0; + aoGi) + ki(0; + aogy) — §5ijke(ve + aode) |,



c, Kn
¢ = i+
Pr

<k51T + Oé()k’jé'm’) s (Bl())

where the variables with hat are the Fourier transforms of the corresponding field variables.

Using Eqgs. (B.6) and (B.8), Eq. (B.9) simplifies to
6ij =iKn[k;(0; + aods) + ki(0; + aog;)] (B.11)
Multiplying the above equation with k; and £;k;, we obtain
k6 = i Knk*(9; + cody), (B.12)
kik;joi; = 0, (B.13)

respectively, where k;k; = |k;|> = k* has been used. Multiplying Eq. (B.10) with &;
utilizing Eqs. (B.8) and (B.13), we obtain

~

T =0. (B.14)

Again, multiplying Eq. (B.7) with k; and utilizing Eq. (B.13), we obtain

- ki
p=i-5 (B.15)
Now, from Egs. (B.7) and (B.15), one can easily write

]{52

Substituting the value of 7' from Eq. (B.14) and the value of k;6;; from Eq. (B.16) into
Eq. (B.10), we obtain

cpKn

. kik;
G =="p, o f; ((51" — k_;) : (B.17)

Now, from Egs. (B.12), (B.16) and (B.17),

“ f (51 ]{?zk ¢, Kn 2 k’lk’
v; = K—]n F — ]{j4J + Z:)P—I‘O[O j 6¢j — k‘; . (B18>
Finally, using Eqgs. (B.17) and (B.18) in Eq. (B.9), we obtain
e (ki + Kby Kikjky
045 = ﬂf[ < J ]{j2 - 2 k‘i ) . (B19>
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Applying the inverse Fourier transformation in Eqgs. (B.14), (B.15) and (B.17)—(B.19)
with the help of the formulae derived in [42], the field variables turn out to be

b= (5 - ety ) g aknggh (2 0y ]
b ZfWih Case I (B.20)
T =0,

/

where r = |x;| and i, 7, ¢ € {1,2}. In the second case, a sourcing term is considered in the

energy balance equation i.e. balance equations read

(%i .

5. = (B.21)
8]7 ﬁaij

— = B.22
c%i * an 0’ ( )

dq; .

9. go(r). (B.23)

Applying the Fourier transformation in Eqgs. (B.21)-(B.23), (B.4) and (B.5) in this case,

we obtain

kip + kjoi; =0, (B.25)
kidi = 1g. (B.26)

Using Egs. (B.24) and (B.26), Eq. (B.9) simplifies to
. . . . . A 2
Uz‘j =1Kn [kj(vl- + Oé()qi) + ki(Uj + Oéoqj')] + géinnaog. (B27)
Multiplying the above equation with k; and £;k;, we obtain
. 1
kjGi; = 1 Knk*(0; + aod;) — gKn kiaog, (B.28)

4
k:ik:j&ij = —gKIl k2aog. (B29)
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Multiplying Eq. (B.10) with k; and exploiting Eqs. (B.26) and (B.29), we obtain

= + -Knogg. (B.30)
Again, multiplying Eq. (B.7) with k; and exploiting Eq. (B.29), we obtain
4
D= gKnaog. (B.31)
Now, from Egs. (B.7) and (B.31), one can easily write
R 4
kjaij = —gkiKnOéog. (B32)

Substituting the value of 7' from Eq. (B.30) and the value of k;6;; from Eq. (B.32) into
Eq. (B.10), we obtain

N kig

4% =175 (B.33)
Now, from Egs. (B.28), (B.32) and (B.33),
Finally, using Eqgs. (B.33) and (B.34) in Eq. (B.9), we obtain

Applying the inverse Fourier transformation in Egs. (B.30), (B.31) and (B.33)—(B.35)
with the help of the formulae derived in Appendix A, the field variables turn out to be

3\

V; = O,
— 9 z

4G = 3753

p =0, Case I1 (B.36)
___ Pr glnr

T T ¢Kn 27

. 2Knoog (2wim; iy
Tij = Ton rd r2 ) )
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In the third case, a sourcing term is considered in the mass balance equation i.e. balance
equations read

g:; = ho(r), (B.37)
gfi + ?9:;]] 0, (B.38)
gff; — 0. (B.39)
Applying the Fourier transformation in Eqgs. (B.37)—(B.39), (B.4) and (B.5) in this case,
we obtain
kit =1 h, (B.40)
kip + k;jo,; =0, (B.41)
k:g; = 0. (B.42)
Using Egs. (B.40) and (B.42), Eq. (3.65) simplifies to
6ij =1 Kn[k;(0; + aod) + ki(d; + aog;)] + ;d,-anh. (B.43)
Multiplying the above equation with k; and k;k;, we obtain
k;6i; = i Kn k*(9; + and;) — %Kn kih, (B.44)
kik;6i; = —%Kn kh. (B.45)
Multiplying Eq. (B.10) with k; and exploiting Egs. (B.42) and (B.45), we obtain
T = %aoKnh. (B.46)
Again, multiplying Eq. (B.7) with k; and exploiting Eq. (B.45), we obtain
p= %Knh. (B.47)
Now, from Egs. (B.7) and (B.47), one can easily write
ki = —%k‘iKnh. (B.48)

Substituting the value of 7' from Eq. (B.46) and the value of k;6;; from Eq. (B.48) into
Eq. (B.10), we obtain

(B.49)



Now, from Egs. (B.44), (B.48) and (B.49),

. kib
b =i (B.50)
Finally, using Eqs. (B.49) and (B.50) in Eq. (B.9), we obtain
. kik; 0

Applying the inverse Fourier transformation in Eqs. (B.46), (B.47) and (B.49)—(B.51)
with the help of the formulae derived in Appendix A, the field variables turn out to be

Vi = 2};?2’ \

¢ =0,

p =0, > Case II1 (B.52)
T =0,

o =% (%_4% - f,—g) )

Combining the three cases (B.20)—(B.52), we obtain the fundamental solutions (3.81)—
(3.85).
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Appendix C

Interplay between thermal stress and thermal creep

In order to investigate the dynamic interplay observed between thermal stress and thermal
creep observed in problem 1 of Sec. 4.3, we consider a similar problem where inner cylinder

is elliptic and the outer cylinder is circular.

C.1 Problem statement

We consider a rarefied gas confined between a circular cylinder and an elliptical cylin-
der, both of which are coaxial along the z axis. Let the outer cylinder be circular with
radius 7 and the inner cylinder be elliptic with the semi-major and semi-minor axes hav-

ing lengths @ and b, respectively where b < @ < 7. Figure C.1 exhibits a cross-sectional

%%z':

Figure C.1: A cross-sectional view illustrating a rarefied gas contained be-
tween two coaxial cylinders, the outer of which is circular and the inner of

which is elliptic.



view of the problem. The radius 7 of the outer circular cylinder is used as the character-
istic length scale L for non-dimensionalization purposes. Thus, the dimensionless radius
of the outer cylinder is r = 7/ L = 1 and the dimensionless lengths of the semi-major
and semi-minor axes are a = a/7 and b = l~)/ 7, respectively. A temperature gradient is
induced in the gas by making the wall of outer cylinder to be hotter than that of inner
cylinder. Let T} and T, denote the temperatures of the (inner) elliptic and (outer) circular
cylinders, respectively, with T, < Ty. We consider T; to be the reference temperature for
non-dimesionalization, wherefore the dimensionless perturbations in the temperatures of
the outer and inner cylinders are Ty = (T} — T1)/Ty = 0 and Ty = (T, — 1) /T, respec-
tively. Analogous to problem 1 of Sec. 4.3, the boundary conditions for this problem are

again (4.18)—(4.20).

C.2 Results demonstrating thermal creep and thermal stress

effects

The dimensionless radius of the outer cylinder is » = 1 and the lengths of the semi-
major and semi-minor axes of the outer cylinder are fixed at a = 0.75 and b = 0.5,
for computational purpose. The locations of the fictitious boundaries are fixed by fixing
parameters ry = 2, a, = 0.375 and b, = 0.25. The number of boundary points on each
of the original boundaries is taken as n, = 150 and the number of source points on each
of the fictitious boundaries is fixed as ny = 150. The dimensionless temperatures on the
elliptic and circular walls are taken as 77 = 0 and T, = 1, respectively.

In the first case, we set the thermal-slip coefficient to § = 1/5, along with parameters
ag = 0.3197 and Pr = 0.661. For Knudsen numbers Kn = 0.05,0.1,0.15, and 0.2, the
velocity streamlines superimposed on the temperature contours are shown in Fig. C.2.
Only one form of flow, namely thermal-stress slip flow, is visible at very low values of
the Knudsen number (Kn = 0.05) (top left panel). The effects of thermal stress arise
from temperature gradients within the gas bulk, resulting in thermal-stress slip flow that
anticipates the migration of gas from hotter to cooler regions near the wall. Owing
to the narrowest gap between the cylinders at § = 0 (where the angle 6 is measured
from the positive Z-axis anticlockwise around the origin), the normal component of heat

flux is highest due to the most substantial temperature gradient between the cylinders.
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Figure C.2: Temperature contours and velocity streamlines depicted in
the first quadrant for different values of the Knudsen number (Kn =

0.05,0.1,0.15, and 0.2) for fixed 5 = 1/5, ap = 0.3197 and Pr = 0.661.

However, at §# = m/2, the normal component of heat flux is lowest due to the smallest
temperature gradient between the cylinders. The gas therefore moves from hotter to
colder regions along the boundaries resulting in a clockwise circulating flow in the first
quadrant and symmetrically in the other three quadrants. However, with increasing values
of the Knudsen number, an additional counterclockwise circulation zone begins to emerge
along the inner cylinder which intensifies gradually for Kn = 0.1,0.15 and 0.2. This
phenomenon is attributed to the thermal creep effect which is a boundary effect, causing
the gas to flow along the inner cylinder from a comparatively cooler to a hotter location
as a result of the tangential temperature gradient. We shall explain the mechanism of the

above two types of flows after illustrating the results for other values of 5.
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Figure C.3: Temperature comtours and velocity streamlines depicted in
the first quadrant for different values of the Knudsen number (Kn =

0.05,0.1,0.15 and 0.2) for fixed f = ap = 0.3197 and Pr = 0.661.

Now, we demonstrate the impact of the thermal-slip coefficient by adopting a larger
value of 3, specifically § = ap = 0.3197, along with Pr = 0.661. The velocity stream-
lines over the temperature contours are presented in Fig. C.3 for Knudsen numbers
Kn = 0.05,0.1,0.15 and 0.2. It is apparent that thermal creep flow prevails over thermal-
stress slip flow for all values of the Knudsen number that are taken into consideration.
Furthermore, the effects of thermal creep get stronger and the effects of thermal stress
are diminished as the Knudsen number rises.

To confirm the findings about the competition between thermal stress and thermal
creep, we also present results for the case of Maxwell molecules, where oy = 2/5 and
Pr = 2/3. Assuming a thermal-slip coefficient of 5 = ay = 2/5, we depict the velocity

streamlines over the temperature contours in Fig. C.4. As the value of £ in this case
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Figure C.4: Temperature contours and velocity streamlines depicted in
the first quadrant for different values of the Knudsen number (Kn =

0.05,0.1,0.15, and 0.2) for fixed 5 = oy = 2/5 and Pr = 2/3.

is greater than the previous value § = 0.3197, a notable prediction is a further increase
in thermal creep. Although there is only a slight expansion in the region influenced by
thermal creep flow, a close comparison of Fig. C.4 with Fig. C.3 reveals a diminishing
trend in thermal-stress slip flow for larger values of 3.

We now give a brief description of the two types of slip flows that result from the
velocity-slip boundary condition (4.20) and from the coupling between the stress and
heat flux in (2.20),. Thermal stress is addressed by the second term on the right-hand
side of (2.20),, whereas thermal creep is dealt with by the second term on the right-hand
side of (4.20). Thermal-stress slip flow occurs when a tangential gradient is produced

in the normal component of heat flux. Figure C.5 presents an illustrative diagram of
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Figure C.5: Schematic for the depiction of the two type of flows induced

due to thermal creep and thermal stress effects.

the temperature variation. The pink-colored region represents the region with high tem-
perature while the blue color represents the region with low temperature. The bold red
arrows represent the normal heat flux components at the outer cylinder in various direc-
tions, with the largest and smallest values at § = 0 and 6 = 7/2, respectively. For a
better idea about the variation of the normal component of the heat flux, we illustrate its
variation with 6 at Kn = 0.1 along with 8 = 1/5, ap = 0.3197 and Pr = 0.661 in Fig. C.6.

The induced tangential gradient is attributed to the thermal-stress slip flows. For a more

0.365
0.345
0.32?
0.305

0.28}

T N

Figure C.6: Variation in the normal component of heat flux on the outer
(circular) cylinder with 6 in the first quadrant for Kn = 0.1. The other
parameters are § = 1/5, ap = 0.3197 and Pr = 0.661.
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comprehensive understanding of thermal-stress slip flows, additional information can be
found in Ref. [101].

The second kind of flow is the thermal creep flow that is a boundary effect initiated
by a temperature gradient in the tangential direction across the boundary, prompting the
gas to migrate from colder to hotter regions. Although the temperatures on the walls of
the cylinders are fixed to be uniform, the temperature-jump condition (2.52) creates a
temperature difference close to the wall in the tangential direction. As observed in the
temperature contours of Fig. C.5, a tangential temperature gradient is evident along the
walls of the inner cylinder. Owing to this, the thermal creep flow induces along the inner

cylinder from colder to hotter region.
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Appendix D
Analytic solution to the R13 equations

To determine an analytic solution of the R13 equations for the problem of flow around a
rotating cylinder, we substitute Eqgs. (2.48) and (2.49) in Egs. (2.46) and (2.47), trans-
forming the resulting system of equations (2.43)—(2.47) into the cylindrical coordinates
(r,9,z). The choice of the cylindrical coordinates is natural, as the flow variables ex-
hibit axial symmetry, making them invariant along the z-direction. This approach has
been previously employed to derive analytic solutions of the regularized 13-moment (R13)
and regularized 26-moment (R26) equations in the linearized state for the problems of
flow past a stationary cylinder or sphere [87, 116, 124]. The symmetry ansatz used in
these studies assumes that the radial and angular dependencies of the variables can be
separated, with angular dependencies being expressed using sine and cosine functions.
Specifically, the vector and tensor components having an odd number of indices in ¥ are
selected to be proportional to sin? whereas the scalars and tensor components with an
even number of indices in ¢ are made proportional to cos® [116]. Furthermore, since the
problem is quasi-two-dimensional, the dependency in the z-coordinate of the variables
is automatically eliminated. However, in the present problem, the rotation of the inner
cylinder introduces an additional radial dependency. To account for this, extra functions
dependent only on r are included. Following the symmetry ansatz, the solution for the

vectors v and q take the forms

ao(r) + a(r) cosd ap(r) + a(r) cosd

v(r,9) = | bo(r) —b(r) sind |, and q(r,¥) = | By(r) — B(r) sindd | , (D.1)

(aw]
(@]



that for the scalars 6 and p should take the form
O(r,9) = co(r) + c(r)cos¥, and p(r,9) = do(r) + d(r) cos v, (D.2)
and that for o should take the form
Yo(r) +v(r) cos?d  Ko(r) + k(r) sind 0
a(r,9) = |ko(r) + k(r) sind  —(wo(r) +w(r) cosd) 0 |, (D.3)
0 0 Ozz
where ag(r), a(r), bo(r), b(r), ao(r), alr), Bo(r), B(r), co(r), c(r), do(r), d(r) vo(r), ¥(r),
ko(T), K(r), wo(r) and w(r) are the unknown functions that need to be determined, and
Ore = —0Opr — 099 = —(Y0(r) —wo(r) + (7(r) —w(r)) cos ) as o is a symmetric and trace-
free tensor. Insertion of ansatz (D.1)—(D.3) in the R13 equations and separation of the
radial and angular dependency leads to a system of 18 ordinary differential equations
in the 18 unknowns. The analytic solutions obtained using these ODEs consist of a
bulk contribution—comprising logarithmic and polynomial terms in r and 1/r—and the
Knudsen layer contributions, which involve modified Bessel functions of the first and
second kinds. The R13 equations predict three Knudsen layers, characterized by the
eigenvalues \; = v/5/(3Kn), \s = v/5/(v/6Kn) and A3 = v/3/(v/2Kn). The bulk solution
introduces twelve integration constants ¢; (¢ = 1,2,...,12) while the Knudsen layer part
yields another twelve constants: C/ (i = 1,2,...,6) for the modified Bessel functions of
the first kind and C¥ (i = 1,2,...,6) for the modified Bessel functions of the second kind.
These constants are determined by enforcing boundary conditions at the inner and outer

cylinders.
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