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Abstract

Rarefied gas flows arise in a variety of physical situations where the molecular mean

free path becomes comparable to a characteristic length scale in the system. Such flows

occur in high-altitude atmospheric phenomena, vacuum technologies, and micro- and

nanoscale devices, where non-equilibrium effects become prominent and classical contin-

uum models, like the Euler or Navier–Stokes–Fourier equations, lose their validity. While

the Boltzmann equation offers a complete description of rarefied gas flows, its high dimen-

sional complexity makes it computationally prohibitive in many practical scenarios. An

efficient alternative is provided by extended hydrodynamic models that give a macroscopic

description of gas flows.

This thesis develops a meshfree numerical framework based on the method of fun-

damental solutions (MFS) for modeling rarefied gas flows in quasi-two dimensions. An

extended hydrodynamic model, which consists of the conservation laws closed with the

recently propounded coupled constitutive relations (CCR), is utilized. This model is

referred to as the CCR model and is adequate for describing moderately rarefied gas

flows. This thesis primarily uses the CCR model for its simplicity and later extends the

framework to the regularized 13-moment (R13) model, which is more accurate but more

complex than the CCR model.

The core of the work involves deriving the fundamental solutions of the linearized CCR

model using the Fourier transformation and implementing the obtained fundamental solu-

tions in the MFS framework. Some internal flow problems, including (monatomic) vapor

flows, temperature-induced flows and flow inside a lid-driven cavity, are investigated using

the developed CCR-MFS framework. The results obtained from the CCR-MFS frame-

work are validated against existing analytical or numerical benchmarks, demonstrating

the accuracy and robustness of the method. External flow of a monatomic rarefied gas

past circular and semicircular cylinders is also studied using the CCR model—with ar-

tificial boundary introduced to bypass Stokes’ paradox. Analytic solution is determined

for the circular case and is used to validate the results obtained from the MFS, followed

by a numerical investigation of the semi-circular case using the MFS. Additionally, the

CCR-MFS framework is employed to analyze evaporation/condensation from/on liquid



jets with circular and non-circular cross-sections. The study explores the effects of geomet-

ric deformation—represented using spherical harmonics—on the mass-flux and heat-flux

coefficients.

A generic methodology is proposed to derive the fundamental solutions for any lin-

ear moment system, including the R13 equations, without predefined Dirac-delta source

terms. The generic MFS approach is illustrated for the Stokes equations and extended

to the R13 model in two dimensions. The results are compared against an analytical

solution to confirm accuracy. The framework is further applied to thermally induced flow

between noncoaxial cylinders, where no analytical solution exists. The results obtained

from the generic MFS are compared against those from the finite element method, showing

comparable accuracy along with faster convergence and lower computational cost.

The thesis also investigates various parameters—such as the numbers of source and

collocation points, optimal placement of source points and the effective condition number—

that influence the performance of the MFS. The work paves the way for a unified and

efficient solver for extended hydrodynamic models applicable to a broad range of rarefied

gas flow problems.

xii



LIST OF PUBLICATIONS

List of Published/Communicated Research Papers from the Thesis

Journal publications:

1. Himanshi, Rana, A. S. and Gupta, V. K., 2023 Fundamental solutions of an

extended hydrodynamic model in two dimensions: Derivation, theory, and applica-

tions. Physical Review E (American Physical Society (APS)), 108, 015306 . DOI:

10.1103/PhysRevE.108.015306.

2. Himanshi, Rana, A. S. and Gupta, V. K., 2024 A viewpoint on thermally-induced

transport in rarefied gases through the method of fundamental solutions. Journal

of Computational and Theoretical Transport (Taylor & Francis), 53, 279–301. DOI:

10.1080/23324309.2024.2336050.

3. Himanshi, Rana, A. S. and Gupta, V. K., 2025 Exploring external rarefied gas

flows through the method of fundamental solutions. Physical Review E (American

Physical Society (APS)), 111, 015101. DOI: 10.1103/PhysRevE.111.015101.

4. Himanshi, Farkya, A., Rana, A. S. and Gupta, V. K., 2025 Evaporating jets and

phase transition in rarefied conditions. Physics of fluids (AIP Publishing), 37,

052008. DOI: 10.1063/5.0268832.

5. Himanshi, Theisen, L., Rana, A. S., Torrilhon, M. and Gupta, V. K. 2025 A

generalized fundamental solution technique for the regularized 13-moment system

in rarefied gas flows. (arXiv Preprint: https://arxiv.org/abs/2504.18261).

Publications in conference proceedings:

1. Himanshi, Rana, A. S. and Gupta, V. K., 2023 Thermally-induced rarefied gas

flows: An approach through the method of fundamental solutions. In the proceed-

ings of International Conference on Applied Mathematics and Mechanics (ICAMM

2023) (Accepted).

2. Himanshi, Rana, A. S. and Gupta, V. K., 2024 A meshless approach to study rar-

efied gas flows in lid-driven square cavities. In the proceedings of 33rd International

Symposium on Rarefied Gas Dynamics (RGD33) (Accepted).

https://doi.org/10.1103/PhysRevE.108.015306
https://doi.org/10.1080/23324309.2024.2336050
https://doi.org/10.1103/PhysRevE.111.015101
https://doi.org/10.1063/5.0268832
https://arxiv.org/abs/2504.18261


List of Published/Communicated Research Papers Apart from the Thesis

1. Farkya, A., Himanshi, Dwivedi, G. and Rana, A. S. 2025 A computational frame-

work for nonlinear multiphase flow in porous media using meshfree method: Nu-

merical experiments and applications. (Under Review).

xiv



TABLE OF CONTENTS

LIST OF FIGURES. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xix

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxxi

Chapter 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Flow regimes and kinetic description of rarefied gases . . . . . . . . . . . . . . . . . . . . 1

1.2 Numerical methodology and challenges. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3 Present work and organization of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.3.1 Present work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.3.2 Organization of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

Chapter 2 Extended hydrodynamic models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.1 Classic models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2 Extended hydrodynamic models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2.1 The CCR model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2.2 The R13 model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2.3 Boundary conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

Chapter 3 Method of fundamental solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.1 Classical MFS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.1.1 Factors affecting accuracy of the MFS. . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.2 Fundamental solutions of the 2D NSF equations . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.3 Derivation of the fundamental solutions of the CCR model. . . . . . . . . . . . . . . . 32

3.3.1 Example implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

Chapter 4 Application of the CCR-MFS framework for internal flow

problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39



4.1 Vapor flow confined between two coaxial cylinders . . . . . . . . . . . . . . . . . . . . . . . 39

4.1.1 Problem description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.1.2 Analytic solution of Onishi [77] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.1.3 Boundary conditions and implementation of the MFS . . . . . . . . . . . . . . 41

4.1.4 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.1.5 Location of singularities. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.2 Temperature-induced flow between two non-coaxial cylinders . . . . . . . . . . . . . . 52

4.2.1 Problem description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.2.2 Boundary conditions and implementation of the MFS . . . . . . . . . . . . . . 53

4.2.3 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.2.4 Choice of singularity points. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.3 Flows between coaxial circular and elliptic cylinders . . . . . . . . . . . . . . . . . . . . . 60

4.3.1 Problem statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.3.2 Boundary conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.3.3 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.4 Rarefied gas flow inside a lid-driven square cavity. . . . . . . . . . . . . . . . . . . . . . . . 72

4.4.1 Problem statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.4.2 Results for a single-sided lid-driven cavity . . . . . . . . . . . . . . . . . . . . . . . . 74

4.4.3 Results for the two-sided lid-driven cavity with top and bottom walls

moving in the same direction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.4.4 Results for the two-sided lid-driven cavity with top and bottom walls

moving in opposite directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

Chapter 5 Application of the CCR-MFS framework for external flow

problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.1 Stokes’ paradox. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.2 Flow past circular cylinder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.2.1 Problem description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.2.2 Boundary conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.2.3 Analytic solution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

xvi



5.2.4 Implementing the MFS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.2.5 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.2.6 Sensitivity of the results towards the location of singularities . . . . . . . . 102

5.3 Flow past semi-circular cylinder. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

5.3.1 Results in the case of horizontal flow. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

5.3.2 Results in the case of the vertical flow. . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

5.3.3 Drag force in the horizontal and vertical cases . . . . . . . . . . . . . . . . . . . . . 110

5.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

Chapter 6 Phase transition around liquid jets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

6.1 Problem description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

6.1.1 Boundary conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

6.1.2 Numerical implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

6.2 Analytic solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

6.3 Validation and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

6.4 Evaporation/condensation on noncircular cross-sections . . . . . . . . . . . . . . . . . . 121

6.5 Sensitivity analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

6.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

Chapter 7 Generalizing the MFS to higher-order moment systems . . . . . . . . 133

7.1 The technique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

7.2 Implementing generic MFS for Stokes’ equations . . . . . . . . . . . . . . . . . . . . . . . . 136

7.2.1 Fundamental solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

7.2.2 An example setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

7.2.3 Choice of the matrix M . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

7.3 Generic MFS for R13 equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

7.4 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

7.4.1 Problem description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

7.4.2 Validation with analytic solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

7.4.3 Choice of parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

7.4.4 Choice of the matrix M . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

xvii



7.5 Comparison with the FEM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

7.5.1 Problem description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

7.5.2 FEM for the R13 model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

7.5.3 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

7.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

Chapter 8 Summary and future directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

8.1 Summary and conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

8.2 Future scopes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

Appendices. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Appendix A Inverse Fourier transforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

Appendix B Fundamental solutions of the CCR model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

Appendix C Interplay between thermal stress and thermal creep . . . . . . . . . . . . . . . . . . 171

C.1 Problem statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

C.2 Results demonstrating thermal creep and thermal stress effects . . . . . . . . . . . . 172

Appendix D Analytic solution to the R13 equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

xviii



LIST OF FIGURES

3.1 Schematic of an arbitrarily shaped domain Ω having boundary Γ

discretized with boundary nodes, represented by blue symbols. The

red symbols denote the singularities or the source points kept on a

fictitious boundary Γ̃ outside of the domain. . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.2 Schematic of a flow past an object of an arbitrary shape depicting the

boundary discretization and the placement of singularities outside the

flow domain. The red and blue arrows at each boundary node depict

the normal (pointing toward the flow domain) and tangential directions

at that node, respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.1 Cross-sectional view of a rarefied vapor flow confined between two

coaxial cylinders. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.2 Schematic of the boundary nodes on the boundaries and singularity

points outside the flow domain for the problem illustrated in Fig. 4.1.

The red and blue arrows at each boundary node depict the normal

(pointing toward the flow domain) and tangential directions, respectively

at that node. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.3 Variation of the (scaled) temperature in the gap between the two

cylinders for different values of γ. The solid red, dashed blue, dotted

green and dot-dashed magenta lines denote the results obtained from

the MFS applied on the CCR model for γ = 0, 3, 7 and 11, respectively,

and the corresponding symbols (disks) indicate the analytic solution

from Eq. (4.5), which was obtained analytically for Kn ≈ 0 through

an asymptotic theory [100] performed on the linearized BGK model in



Ref. [77]. The other parameters are nb = 100, ns = 100, r1 = 1, r2 = 2,

s1 = 0.5, s2 = 4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.4 Same as Fig. 4.3 but for Kn = 0.1 and the symbols denoting the data

from Ref. [77] obtained using the linearized BGK model. . . . . . . . . . . . . 45

4.5 Variation of the (scaled) temperature in the gap between the two

cylinders for γ = 3 and γ = 7 at Kn = 0.1. Solid lines represent results

obtained from the MFS applied to the CCR model. Corresponding

symbols (disks) show data from Ref. [77] based on the linearized BGK

model. The dashed and dotted lines correspond to MFS solutions of the

NSF model with second-order and first-order slip and jump boundary

conditions, respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.6 Variation of the (scaled) radial heat flux with γ. The solid blue and

dashed red lines denote the results obtained from the MFS applied

on the CCR model for Kn = 0.1 and 0.2, respectively, and the

corresponding symbols (disks) indicate the data taken directly from

Ref. [77], which were obtained using the linearized BGK model. The

other parameters are the same as those for Fig. 4.3. . . . . . . . . . . . . . . . . . 48

4.7 Variation of the (scaled) radial velocity with γ. The dotted green

and solid blue lines denote the results obtained from the MFS applied

on the CCR model for Kn ≈ 0 and Kn = 0.1, respectively, and the

corresponding symbols (disks) indicate those from the linearized BGK

model (from Eq. (4.4) in the case of Kn ≈ 0 and directly from Ref. [77]

in the case of Kn = 0.1). The other parameters are the same as those

for Fig. 4.3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.8 The maximum absolute error ϵmax in the temperature and the effective

condition number κeff for the problem of flow between coaxial cylinders

plotted over the dilation parameter α for Kn ≈ 0 and nb = ns = 100. . 50

4.9 The effective condition number κeff (left) and the maximum absolute

error ϵmax in the temperature (right) varying with the dilation parameter

α for Kn ≈ 0 and different values of nb or ns. . . . . . . . . . . . . . . . . . . . . . . . . . 51

xx



4.10 Variation of the effective condition number κeff with respect to the

dilation parameter α for nb = ns = 100. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.11 Cross-sectional view of the flow of a rarefied gas confined between two

non-coaxial cylinders having different wall temperatures. . . . . . . . . . . . . . 52

4.12 Schematic of the boundary nodes on the boundaries and singularity

points outside the flow domain for the problem illustrated in Fig. 4.11.

The red and blue arrows at each boundary node depict the normal

(pointing toward the flow domain) and tangential directions at that

node, respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.13 Tangential velocity on the right halves of the inner and outer circles

associated with the respective cylinders plotted against the angle θ for

different values of the Knudsen number and for ∆τ = 1. The dashed

red, solid blue and dotted green lines denote the results obtained

from the MFS applied on the CCR model for Kn = 0.2, 0.1 and 0.04,

respectively, and the corresponding symbols (disks) indicate the data

from the linearized BGK model [5]. The other parameters are the same

as those for Fig. 4.3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.14 Velocity streamlines and temperature contours obtained from the MFS

applied on the CCR model at Kn = 0.1 and ∆τ = 1. The other

parameters are the same as those for Fig. 4.3. . . . . . . . . . . . . . . . . . . . . . . . . 56

4.15 Velocity streamlines and temperature contours obtained from the MFS

applied on the NSF equations with the second-order slip and jump

boundary conditions at Kn = 0.1 and ∆τ = 1. The other parameters

are the same as those for Fig. 4.3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.16 Drag force on the inner cylinder plotted against the Knudsen number

for ∆τ = 1. The solid and dashed lines denote the results obtained

from the MFS applied on the CCR and NSF models, respectively,

while the symbols indicate the data for the drag force obtained from

the linearized BGK model [5]. The other parameters are the same as

those for Fig. 4.3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

xxi



4.17 Variation of the effective condition number κeff with respect to the

dilation parameter α. The number of boundary nodes at either of the

actual boundaries and the number of singularity points at either of the

fictitious boundaries are 100 (i.e. nb = ns = 100). . . . . . . . . . . . . . . . . . . . . . 59

4.18 Cross-sectional view of the geometry of the problem. The shaded region

depicts the flow domain. The cylinders are concentric and coaxial with

the radius of the circular cylinder being smaller than both semi axes of

the elliptic cylinder. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.19 Schematic of the distribution of collocation points (or boundary nodes)

on the boundaries and source points outside the flow region for the

problem illustrated in Fig. 4.18. The blue and red arrows respectively

delineate the tangential and normal directions at each boundary node. 63

4.20 Tangential velocity of the gas on the inner (left panel) and outer (right

panel) cylinders with β = 1/5. The other parameters are r = 0.6,

a = 1.5, b = 1, rs = 0.3, as = 3, bs = 2, nb = ns = 70, Ti = 0 and

To = 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.21 Velocity streamlines and temperature contours obtained with the MFS

applied on the CCR model for Knudsen numbers (a) Kn = 0.02, (b)

Kn = 0.1 and (c) Kn = 0.2 and for β = 1/5. The other parameters are

the same as those in Fig. 4.20. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.22 Same as Fig. 4.21 but for β = 0.3197. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.23 Same as Fig. 4.21 but with the MFS applied on the NSF model.. . . . . . 67

4.24 Variation of the (scaled) temperature of the vapor with the radial

distance r between the two cylinders at θ = 0—for three different

values of the parameter γ, namely γ = 1 (red color), γ = 4 (green

color) γ = 8 (blue color), and for three different values of the Knudsen

number, namely Kn = 0.02 (solid lines), Kn = 0.1 (dashed lines) and

Kn = 0.2 (dotted lines). The other parameters are a = 1.5, b = 1,

rs = 0.3, as = 3, bs = 2, nb = ns = 70, Ti = 0. . . . . . . . . . . . . . . . . . . . . . . . . 69

xxii



4.25 Heat flow lines plotted over (scaled) temperature contours for (a) γ = 1

and (b) γ = 8 and Kn = 0.1. The other parameters are the same as

those in Fig. 4.24. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.26 Variation of the parameter γ with the angle θ for Kn = 0.02, 0.1 and

0.2. The other parameters are the same as those in Fig. 4.24. . . . . . . . . 71

4.27 Schematics of (a) single-sided lid-driven cavity, and two-sided lid-driven

cavities with top and bottom walls moving in the (b) same and (c)

opposite directions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.28 Schematic of the distribution of collocation points (or boundary nodes)

on the boundaries and source points outside the flow region for

the problem described in Sec. 4.4.1. The magenta and blue arrows

demonstrate the tangential and normal directions at each boundary

node, respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.29 Variation of vy along the horizontal centerline (i.e., for y = 0.5) of the

cavity (left panel) and variation of vx along the vertical centerline (i.e.,

for x = 0.5) of the cavity (right panel) for Kn = 0.08. The solid blue

curve represents the results for the MFS applied to the CCR model,

the dashed red curve represents the results for the MFS applied to the

NSF model, the green (square) and black (circle) symbols denote the

data from the DSMC method and R13 model, respectively, taken from

Ref. [85]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.30 Variation in vy along different horizontal lines y = 0.1, 0.4 and 0.8 inside

the cavity (left panel) and the variation of vx along different vertical

lines x = 0.1, 0.4 and 0.8 inside the cavity (right panel) obtained by

the MFS applied to the CCR model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.31 Velocity streamlines plotted over shear stress contours (left panel) and

heat flux lines plotted over temperature contours (right panel) for the

case when top wall is moving in the positive x-direction. . . . . . . . . . . . . . 76

4.32 Velocity streamlines plotted over shear stress contours (left panel) and

heat flux lines plotted over temperature contours (right panel) for

Kn = 0.08 obtained from the MFS applied to the NSF model. . . . . . . . . 77

xxiii



4.33 Velocity streamlines plotted over shear stress contours (left panel) and

heat flux lines plotted over temperature contours (right panel) for the

case when top and bottom walls are moving in same directions with

the same speeds. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.34 Velocity streamlines plotted over shear stress contours (left panel) and

heat flux lines plotted over temperature contours (right panel) for the

case when top and bottom walls are moving in opposite directions with

the same speeds. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.1 Schematic of Stokes flow past an infinite circular cylinder of radius R,

where the fluid is moving transversely to the axis of the cylinder. . . . . . 82

5.2 Cross-sectional view of the problem of a rarefied gas flow past an

infinitely long cylinder. The solid circle represents the periphery of the

cylinder while the dashed circle represents an artificial boundary far

away from the cylinder. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.3 Placement of the collocation points (black dots) on the actual and

artificial boundaries and singularities (black stars) outside of these

boundaries. The blue and red arrows at each boundary node denote

the unit tangent and normal vectors, respectively. . . . . . . . . . . . . . . . . . . . . 91

5.4 Speed of the gas varying with the radial position in different directions

for Kn = 0.1, 0.5 and 1. The solid lines represent the results obtained

from the MFS applied to the CCR model and the symbols represent

the analytic solutions. The other parameters are Nb1 = Ns1 = 50,

Nb2 = Ns2 = 100, R1 = 1, R2 = 10, R′
1 = 0.5 and R′

2 = 20. . . . . . . . . . . . . 93

5.5 Velocity streamlines over speed contours obtained from the MFS

applied on the CCR model for the Knudsen numbers Kn = 0.1, 0.5 and

1. The other parameters are the same as those for Fig. 5.4. . . . . . . . . . . . 94

5.6 Temperature along the left and right sides of the disk for Kn = 0.009,

0.1 and 0.5. Solid lines represent the results obtained from the MFS

applied to the CCR model and the triangles represent the analytic

solutions. The other parameters are the same as those for Fig. 5.4. . . . 95

xxiv



5.7 Heat-flux lines over temperature contours obtained from the MFS

applied to the CCR model for Knudsen numbers Kn = 0.009, 0.1 and

0.5. The other parameters are the same as those for Fig. 5.4. . . . . . . . . . 97

5.8 Heat-flux lines over temperature contours obtained from the MFS

applied to the NSF model for Knudsen numbers Kn = 0.009, 0.1 and

0.5. The other parameters are the same as those for Fig. 5.4. . . . . . . . . . 97

5.9 Temperature of the gas at r = 1 and ϑ = 0 scaled with Kn2 plotted

against the Knudsen number for different locations of the artificial

boundary. The left panel shows the results obtained with the CCR

model and the right panel shows the results obtained with the NSF

equations and the second-order accurate boundary conditions. . . . . . . . 98

5.10 Maximum speed of the gas on the disk plotted against the Knudsen

number for different locations of the artificial boundary. . . . . . . . . . . . . 99

5.11 Normalized drag on the cylinder plotted against the Knudsen number

for different locations of the artificial boundary. The dashed red, blue

and magenta lines represent the analytic solution of the CCR model

for R2 = 10, 20 and 30, respectively. The square (red), disk (blue) and

diamond (magenta) symbols represent the numerical solution of the

CCRmodel obtained with the MFS for R2 = 10, 20 and 30, respectively.

The solid orange, black and gray lines depict the normalized drag

obtained with the analytic expressions given in Refs. [79], [128] and

[37]. The green triangle symbol shows the normalized drag computed

with the nonlinear R26 equations in Ref. [37]. The other parameters

are the same as those for Fig. 5.4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

5.12 Effective condition number κeff (left panel) and absolute error ϵ in

speed (right panel) both plotted against the dilation parameter α in

the case when the total number of boundary nodes Nb is equal to the

total number of singularity points Ns (the case of square collocation

matrix) for Kn = 0.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

5.13 Effective condition number κeff (left panel) and absolute error ϵ in

speed (right panel) both plotted against the dilation parameter α in

xxv



the case when the total number of boundary nodes Nb is different

from the total number of singularity points Ns (the case of non-square

collocation matrix) for Kn = 0.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

5.14 Cross-sectional view of the horizontal and vertical flows past a semicircular

cylinder. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

5.15 Schematic representation for an arrangement of singularities (stars)

and boundary nodes (dots). The red and blue arrows represent the

normal and tangent vectors at each boundary node. . . . . . . . . . . . . . . . . . . 106

5.16 Velocity streamlines along with contour plots of the speed in the

background obtained with the MFS applied on the CCR model for

Kn = 0.1, 0.3 and 0.5. The other parameters are R1 = 1, R2 =

10, R′
1 = 0.1, R′

2 = 50, Nb1 = Ns1 = 200 and Nb2 = Ns2 = 400. . . . . . . . . 108

5.17 Heat-flux lines along with density plots of the temperature in the

background obtained with the MFS applied on the CCR model for

Kn = 0.1, 0.3 and 0.5. The other parameters are the same as those for

Fig. 5.16. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

5.18 Velocity streamlines along with contour plots of the speed in the

background obtained with the MFS applied on the CCR model for

Kn = 0.1, 0.3 and 0.5. The other parameters are the same as those for

Fig. 5.16. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

5.19 Heat-flux lines along with density plots of the temperature in the

background obtained with the MFS applied on the CCR model for

Kn = 0.1, 0.3 and 0.5. The other parameters are the same as those for

Fig. 5.16. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

5.20 Drag force on the semicircular disk plotted against the Knudsen number

in the horizontal and vertical cases. The other parameters are the same

as those for Fig. 5.16. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

6.1 Schematic representation of 2D cross-section of an evaporating liquid

jet immersed in its vapor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

xxvi



6.2 Boundary discretization depicting the boundary nodes and singularity

points placed outside of the domain along with the normal and tangent

vectors shown at each boundary node. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

6.3 The mass-flux coefficient c1 in the pressure-driven (T I = 0, ps = 1) case

(left) and in temperature-driven (T I = 1, ps = 0) case (middle); and

the heat-flux coefficient c2 for the temperature-driven (T I = 1, ps = 0)

case (right) as a function of Knudsen number with different values of

Θ. The middle panel also represents the heat-flux coefficient c2 in the

pressure-driven (T I = 0, ps = 1) case. The numerical results obtained

from the MFS using expressions (6.20) and (6.21) are represented by

symbols while the analytical results calculated using (6.13) and (6.15)

are shown with solid lines. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

6.4 Variation in the radial velocity (left panel) and temperature (right

panel) with the radial distance for the pressure-driven case (ps = 1

and T I = 0) at Kn = 0.1 for different values of Θ. Numerical results

obtained using the CCR-MFS framework are illustrated using symbols

(disks) and analytical solutions are represented by solid lines. . . . . . . . 120

6.5 Same as Fig. 6.4 but for the temperature-driven case (T I = 1 and

ps = 0). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

6.6 Shapes generated using equation (6.26) for set of parameters a0 = 0,

a1 = 0.01, a2 = 0.8, a3 = 0.01, a4 = 0.01 (left) and a0 = 0, a1 = 0.05,

a2 = 0.05, a3 = 0, a4 = 0.1 (right) with r0 = 0.5. The black (disk)

symbols denote the boundary nodes discretized over the interfacial

boundary whereas the red (star) symbols denote the chosen singularity

points in both the shapes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

6.7 The mass-flux coefficient c1 in the pressure-driven (T I = 0, ps = 1)

case (left) and in temperature-driven (T I = 1, ps = 0) case (middle);

and the heat-flux coefficient c2 for the temperature-driven (T I = 1,

ps = 0) case (right) as a function of Knudsen number for Θ = 1. The

xxvii



middle panel also represents the heat-flux coefficient c2 in the pressure-

driven (T I = 0, ps = 1) case. Results correspond to the circle and two

deformed shapes presented in Fig. 6.6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

6.8 Velocity streamlines over speed contours (left panel) and heat-flux

lines over temperature contours (right panel) in the pressure-driven

case (T I = 0 and ps = 1) for shape 1 at Kn = 0.1. . . . . . . . . . . . . . . . . . . . . 124

6.9 Velocity streamlines over speed contours (left panel) and heat-flux lines

over temperature contours (right panel) in the temperature-driven case

(T I = 1 and ps = 0) for shape 1 at Kn = 0.1. . . . . . . . . . . . . . . . . . . . . . . . . . 125

6.10 Same as Fig. 6.8 but for shape 2.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

6.11 Same as Fig. 6.9 but for shape 2.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

6.12 Absolute errors in the radial velocity and radial heat flux plotted

against the dilation parameter in the pressure-driven case for Kn = 0.1

and Ns = 45. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

6.13 Same as Fig. 6.12 but in the temperature-driven case. . . . . . . . . . . . . . . . . 128

6.14 Absolute errors in the radial velocity and radial heat flux plotted

over the number of singularity points in the pressure-driven case for

Kn = 0.1 and α = 0.4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

6.15 Same as Fig. 6.14 but in the temperature-driven case. . . . . . . . . . . . . . . . . 129

6.16 Absolute error ϵ in the radial velocity at the interface (represented

by the blue axis and curves) and the effective condition number κeff

(represented by the red axis and curves) varying with the dilation

parameter α for different number of boundary nodes and singularity

points. The solid, dashed and dot-dashed curves represent the cases

with Ns = 45, Nb = 60; Ns = 60, Nb = 80; and Ns = 90, Nb = 120,

respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

6.17 Variation in the effective condition number κeff with respect to the

dilation parameter α for different numbers of boundary and source

points in case of shape 1 (left panel) and shape 2 (right panel). . . . . . . . 131

xxviii



7.1 Schematic representation for discretization of boundary points (blue

disks) on the domain boundary and singularity points (red disks)

outside the problem domain. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

7.2 Stokes’ flow between two cylinders (left) and the placement of boundary

nodes and singularities in the MFS (right). . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

7.3 Schematic of the cross-section of rarefied gas confined between two

coaxial cylinders where the inner cylinder is rotating anticlockwise. . . . 145

7.4 Variation of the speed (left panel) and temperature (right panel) in

the gap between the two cylinders. The solid blue, red and black lines

denote the analytic results of the R13 model along ϑ = 0, π/4 and π/2,

respectively. The corresponding blue, red and black (triangle) symbols

denote the results obtained from the MFS for Kn = 0.5. . . . . . . . . . . . . . . 146

7.5 Variation in L2 error in velocity ϵL2 and effective condition number κeff

with respect to the dilation parameter α for different values of grid

spacing d and M = B(x)T. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

7.6 Variation in L2 error in velocity ϵL2 (left panel) and effective condition

number κeff (right panel) with respect to dilation parameter α for

M =
[
01×6 I6 09×6

]T
for Kn = 0.5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

7.7 Variation in L2 error in velocity ϵL2 (left panel) and effective condition

number κeff (right panel) with respect to dilation parameter α for

M =
[
I9 07×9

]T
for Kn = 0.5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

7.8 Series of finite element meshes Ti with decreasing mesh size hmax for

increasing i. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

7.9 Velocity streamlines overlaid on temperature contours for different

Knudsen numbers Kn = 0.05, 0.1, 0.2, 0.4 as predicted by the MFS. . . . 153

7.10 Speed of the gas between the two cylinders along y = x in the first

quadrant for different Knudsen numbers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

C.1 A cross-sectional view illustrating a rarefied gas contained between two

coaxial cylinders, the outer of which is circular and the inner of which

is elliptic. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

xxix



C.2 Temperature contours and velocity streamlines depicted in the first

quadrant for different values of the Knudsen number (Kn = 0.05, 0.1, 0.15,

and 0.2) for fixed β = 1/5, α0 = 0.3197 and Pr = 0.661. . . . . . . . . . . . . . . 173

C.3 Temperature comtours and velocity streamlines depicted in the first

quadrant for different values of the Knudsen number (Kn = 0.05, 0.1, 0.15

and 0.2) for fixed β = α0 = 0.3197 and Pr = 0.661. . . . . . . . . . . . . . . . . . . . 174

C.4 Temperature contours and velocity streamlines depicted in the first

quadrant for different values of the Knudsen number (Kn = 0.05, 0.1, 0.15,

and 0.2) for fixed β = α0 = 2/5 and Pr = 2/3.. . . . . . . . . . . . . . . . . . . . . . . . 175

C.5 Schematic for the depiction of the two type of flows induced due to

thermal creep and thermal stress effects. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

C.6 Variation in the normal component of heat flux on the outer (circular)

cylinder with θ in the first quadrant for Kn = 0.1. The other parameters

are β = 1/5, α0 = 0.3197 and Pr = 0.661. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

xxx



LIST OF TABLES

6.1 The values of the coefficients ωi appearing in the Onsager reciprocity

coefficients ηij in the boundary conditions (6.1) and (6.2) for different

values of Θ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

7.1 Comparison of the heat flow rate through the inner cylinder QΓ1 and

computation time for FEM (top) and MFS (bottom) for different mesh

refinements and source distances d using 8 CPU cores. . . . . . . . . . . . . . . . 155

8.1 Summary of problems studied, models used, and validation or model

limitations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161





Chapter 1

Introduction

Accurate modeling of rarefied gases in non-equilibrium presents significant challenges.

A gas is said to be rarefied when the mean free path of the gas molecules becomes com-

parable to a characteristic macroscopic length scale associated with the geometry of the

problem [1, 18, 59, 105]. The degree of rarefaction is quantified by a dimensionless pa-

rameter, known as the Knudsen number Kn, which is the ratio of the mean free path

λ of the gas and a characteristic length scale L in the problem. A gas is said to be in

equilibrium when the Knudsen number approaches zero, which typically occurs when the

mean free path is small compared to the characteristic length scale. In the equilibrium

(or very close to equilibrium), the classical fluid dynamic equations—such as the Euler

equations or the Navier–Stokes–Fourier (NSF) equations—are quite effective in describ-

ing gas flows. However, these classical equations fall short when the Knudsen number

becomes significant with the breakdown of the equilibrium assumptions. This breakdown

occurs if either the mean free path is large or physical length scale is small. For example,

in high-altitude aerospace applications, the mean free path measures in several meters,

making the Knudsen number large, as encountered during spacecraft re-entry. On the

other hand, in microscale devices like micro-electro-mechanical systems, the small size of

the system makes the macroscopic/characteristic length scale comparable to the mean

free path, again resulting in a high Knudsen number. In the following section, we classify

the gas flows based on the Knudsen number to highlight the different regimes.

1.1 Flow regimes and kinetic description of rarefied gases

Based on the Knudsen number, gas flows can be categorized into different regimes

[105, 117, 126]:

• Hydrodynamic regime (Kn ≲ 0.01): In this regime, gases are close to the

equilibrium and the classical continuum theories, namely the Euler equation or

Navier–Stokes–Fourier (NSF) equations, are quite effective in describing gas flows.



• Slip flow regime (0.01 ≲ Kn ≲ 0.1): For the flows in this regime, the NSF equa-

tions still remain valid, but they need to be supplemented with suitable boundary

conditions for temperature jump and velocity slip.

• Transition regime (0.1 ≲ Kn ≲ 1): Flows in this regime cannot be described by

the NSF equations because of strong non-equilibrium. Macroscopic descriptions

still remain feasible by employing an extended set of macroscopic equations, while

particle-based methods remain computationally very expensive.

• Kinetic regime (1 ≲ Kn ≲ 10): In this regime, non-equilibrium is so pronounced

that directly solving the Boltzmann equation or using particle-based methods, such

as direct simulation Monte Carlo (DSMC) method [13], becomes essential, despite

their computational cost.

• Free molecular flow regime (Kn ≳ 10): In this regime, gas molecules move in-

dependently without significant inter-molecular collisions. Consequently, the flow

is governed primarily by molecule-wall interactions and molecular dynamics simu-

lations are often employed for describing gas flows in this regime.

A gas outside the hydrodynamic regime is generally classified as rarefied [1, 105]. Rar-

efied gases exhibit several distinctive non-equilibrium effects, including velocity slip and

temperature jump [28, 102], Knudsen layers [102, 109], thermal creep (transpiration) and

thermal stress [99–101], non-homogeneity in pressure profile and unusual temperature dip

in the Poiseuille flow [75, 84, 110], cross effects where heat flows from a low-temperature

region to a high-temperature region [69, 85, 109]. While some of these effects, such as

velocity slip and temperature jump, can be described by the NSF equations with appro-

priate boundary conditions, other rarefaction effects require more refined models for an

accurate description.

It is widely recognized that kinetic theory is capable of describing rarefied gas flows

based on the statistical description of the gas. The fundamental equation in kinetic theory
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is the Boltzmann equation, which provides a comprehensive microscopic (or mesoscopic)

description of a gas for the entire range of the Knudsen number, from near-equilibrium

to strong non-equilibrium [19]. By tracking the evolution of the molecular velocity dis-

tribution function in a seven-dimensional phase space (three spatial dimensions, three

dimensions for the velocity and one dimension for time), the Boltzmann equation pro-

vides a complete statistical description of gas. However, this equation is challenging to

solve because of the presence of the Boltzmann collision operator on the right-hand-side

of the equation. The Boltzmann collision operator possesses a complex mathematical

structure that makes the Boltzmann equation a nonlinear integro-differential equation

which is computationally very expensive, particularly in the transition regime. Study

of gas flows in the transition regime is critical for wide applications, like microsensors,

spacecraft re-entry and high-vacuum systems. In the transition regime, gas molecules

are sparse enough to exhibit non-continuum effects, such as velocity slip, thermal creep,

etc., yet dense enough for frequent collisions. This makes the particle-based numerical

methods to be computationally expensive in the transition regime. To address compu-

tational challenges, kinetic models, like the well-known Bhatnagar–Gross–Krook (BGK)

model [11] (also referred to as the Boltzmann–Krook–Welander (BKW) kinetic model by

some authors [5, 77, 101]), ES-BGK model [46] and S-model [92] have been developed.

The BGK model substitutes the Boltzmann collision operator with an integral-free relax-

ation model and maintains some of the key features of the Boltzmann collision operator,

such as conservation laws and the H-theorem. However, the BGK model does not yield

the correct Prandtl number value for monatomic gases [20, 105]. Although other kinetic

models, such as the ES-BGK model [46] and S-model [92], yield the right Prandtl number

for monatomic gases, they exhibit non-realistic behavior in the transition regime [105].

Alternative ways to find approximate solutions of the Boltzmann equation are pro-

vided via kinetic theory through macroscopic equations. Macroscopic flow quantities like

the mass density, velocity and energy can be obtained by suitable averaging over the

velocity distribution function. These macroscopic quantities, obtained from the distri-

bution function, are governed by extended hydrodynamic equations which can be di-

rectly obtained from the Boltzmann equation. Two classical approaches in kinetic theory

which provide extended hydrodynamic equations from the Boltzmann equation are the

Chapman–Enskog expansion method [21, 34] and Grad’s moment method [36, 72].
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Chapman–Enskog expansion method [21, 34] involves an asymptotic expansion in

powers of the Knudsen number. In this approach, the velocity distribution function is

expanded around the equilibrium distribution function as a power series in the Knudsen

number. The expansion is then substituted into the Boltzmann equation and the coef-

ficients of each power of the Knudsen number are equated on both sides. This process

generates constitutive relations of increasing orders for the standard conservation laws of

fluid dynamics. At zeroth order, the method produces the Euler equations and at first

order, it gives the NSF equations. However, when extended to higher orders, the method

leads to the Burnett and super-Burnett equations, which turn out to be unstable for

time-dependent problems [14, 15, 120]. Even in steady problems, Burnett equations are

difficult to solve because they lack a full set of boundary conditions [105].

In contrast, Grad’s moment method extends the space of macroscopic variables by

including governing equations for higher-order moments of the distribution function, with

the system of the conservation laws. The method truncates the infinite set of coupled

moment equations at a specific level and closes them utilizing the Hilbert expansion of

the velocity distribution function in Hermite polynomials. The resulting finite set of

moment equations is linearly stable and is also capable of describing the Knudsen layers

if a relatively high number of moments are considered [91, 106]. Despite its usefulness,

Grad’s moment method does not offer clear guidance on how many, and which variables

are needed to accurately describe flows at a given Knudsen number. Although Grad

developed a theory for setting boundary conditions, very few solutions of boundary-value

problem have been reported in the literature. Furthermore, because moment equations

in Grad’s original formulation, known as the Grad 13-moment (G13) equations [36], are

hyperbolic in nature, simulations of shock structures often produce unphysical results,

like spurious subshocks [72, 123].

To address the limitations of both Chapman–Enskog expansion method and Grad’s

moment method, Struchtrup and Torrilhon [108] proposed the regularized 13-moment

(R13) equations, which are a regularized version of the original G13 equations, obtained by

employing a Chapman–Enskog expansion around a pseudo-equilibrium. Another method

which does not rely on Grad’s closure relations and does not directly utilize the results of

asymptotic expansions, was proposed in Refs. [104, 105] to obtain the R13 equations. This

approach, referred to as the order-of-magnitude approach, offers a systematic framework
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for deriving closed form of moment equations from the infinite system of moment equations

resulting from the Boltzmann equation. The method identifies the appropriate equations

within a desired order of accuracy in the Knudsen number through three key steps. First,

it determines the order of magnitude of the moments by employing a Chapman–Enskog-

like expansion on non-equilibrium moments. Second, it constructs an optimized moment

set by introducing new variables—formed through linear combinations of the original

moments—to minimize their number at each order. Third, it eliminates terms that are

of higher-order. The order-of-magnitude approach yields the Euler equations at zeroth

order and the NSF equations at first order. At second-order, equations reduce to original

G13 system, and at third-order, approximation leads to the R13 equations. This indicates

that the R13 system is optimal for describing processes with third-order accuracy in the

Knudsen number. The R13 equations avoid unphysical shocks, ensure smooth shock

structures, resolve Knudsen layers and are thermodynamically consistent, owing to which

they are quite effective in capturing rarefaction effects in the transition regime.

Building on the need for more robust and thermodynamically-consistent models for

higher Knudsen numbers, a novel Onsager-consistent approach [1, 95] was introduced

a few years back for deriving extended equations similar to the Burnett and Grad sys-

tems. In this method, rather than expanding the distribution function in a series based

on the Knudsen number (as in the Chapman–Enskog approach) or using Hermite poly-

nomials (as in Grad’s method), the distribution function was instead constructed using

the thermodynamic forces and fluxes. This Onsager-consistent approach led to the On-

sager 13-moment (O13) [95], Onsager-Burnett (OBurnett) [48, 96], extended-OBurnett

and super-OBurnett [127] equations, whose derivation is firmly rooted in the principles

of nonequilibrium thermodynamics and aims to better capture strong non-equilibrium ef-

fects in rarefied gases. While these Onsager-consistent models are promising alternatives

to the classical models (e.g. the NSF, G13, Burnett models), they are relatively new,

and a detailed investigation of their practical implementation and numerical properties is

beyond the scope of the present thesis.

Another pragmatic alternative offered by Rana et al. [88] is a model based on the cou-

pled constitutive relations (CCR), which couple stress and heat flux phenomenologically,

based on entropy-flux correction. The consequent model consisting of the mass, momen-

tum and energy balance equations closed with the coupled constitutive relations is referred
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to as the CCR model. Unlike the approaches in moment methods, which introduce ad-

ditional moment equations, the CCR model retains the governing equations only for the

equilibrium variables (mass, momentum and energy) while incorporating non-equilibrium

effects through the coupled constitutive relations. This coupling introduces terms which

account for rarefaction effects—including thermal stress, transpiration flows, the Knud-

sen paradox, and non-Fourier heat transfer—while maintaining a computationally efficient

formulation suitable for moderate rarefaction.

The CCR model inherently satisfies two key thermodynamic requirements: they main-

tain a valid entropy law with non-negative entropy production for all processes and guar-

antee linear stability. This distinguishes them fundamentally from other rarefied gas

models, such as the Burnett equations (which are unstable) or Grad-type moment sys-

tems (which produce unphysical subshocks). The CCR model offers a simpler alternative

to moment methods that require a large number of variables. In the linearized and steady

state, the CCR model reduces to the linearized G13 equations in the steady state as a

special case, and on taking the coupling coefficient as zero, the CCR model reduces to the

original NSF equations. Owing to its simplicity and viable features, the CCR model has

been applied successfully to some problems pertaining to rarefied gas flows [33, 68, 90].

While the CCR model is less accurate than R13 in strongly non-equilibrium flows and

does not resolve Knudsen layers, it effectively captures a wide range of rarefaction phe-

nomena in good agreement with kinetic theory and experiments that makes it a versatile

and practical choice to capture moderate rarefaction.

In this thesis, we shall primarily focus on exploring rarefied gas flows in the transi-

tion regime using the CCR model, due to its practical efficiency and relatively simpler

structure. This model effectively captures key non-equilibrium effects while maintaining

computational tractability. In the end, we shall extend the study to any general moment

system, including the R13 equations, which provides a more accurate representation of

rarefied gas flows at moderate Knudsen numbers.
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1.2 Numerical methodology and challenges

Theoretical advancement of extended hydrodynamic models provide powerful tools

for capturing rarefaction phenomena. However, practical application of extended hydro-

dynamic models demands numerical frameworks capable of handling inherent complex-

ities, like higher-order gradients, nonlinearity, coupling between/among equations, and

non-local boundary effects. Traditional mesh-based methods—such as the finite element

method (FEM) and the finite volume method (FVM)—face significant challenges in this

context. When the geometry includes moving curved boundaries, the mesh needs to

be updated frequently, which adds to the computational cost and can reduce accuracy.

Moreover, in low-speed external flows, the computational domain often needs to extend

far beyond the object to account for long-range molecular effects, making mesh generation

even more complex and resource-intensive [64].

These limitations are exacerbated by the coupled nature of extended hydrodynamic

models. For example, the R13 equations introduce additional governing equations for

stress and heat flux, and the CCR model modifies the constitutive relations for stress and

heat flux appearing in the system of the conservation laws. Solving such systems numer-

ically amplifies matrix sizes and risks numerical instability. Furthermore, implementing

the boundary conditions derived from kinetic theory (e.g., velocity slip, temperature jump

and beyond) often requires significant modifications in the traditional mesh-based solvers,

adding complexity to the simulations.

For Stokes flow (or for creeping flow), these numerical difficulties can sometimes be

mitigated by leveraging the linearity of the governing equations. In this scenario, the

Navier–Stokes equations reduce to the Stokes equations, which describe flow dominated

by viscous forces. A particularly effective method for solving Stokes flows relies on fun-

damental solutions, the so-called Stokeslet, which represents the velocity field due to a

point force in a viscous fluid. Originally derived by Lorentz [65] and later named by Han-

cock [41], the Stokeslet serves as a fundamental solution of the Stokes equations and pro-

vides a foundation for developing mesh-free and semi-analytical techniques. By utilizing

the fundamental solutions, it becomes possible to construct efficient numerical approaches

that avoid some of the key drawbacks of traditional discretization-based methods. The

method of fundamental solutions (MFS) introduced by Kupradze and Aleksidze [56] is a
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numerical approach, which has been employed widely for solving linear partial differential

equations (PDEs). The MFS is a meshfree method that yields remarkably good results

with a significantly less computational cost if the singularity points (also referred to as

the source points or singularities) are placed at proper locations. The meshfree feature of

the MFS is especially useful in the situations wherein changes in the shape of the domain

are needed, e.g., in shape optimization and in inverse problems. This is because the MFS

does not require creating a mesh over the entire domain, which itself could be a very

time-consuming and computationally-expensive task depending on the complexity of the

domain. In the MFS, an approximate solution of a (linear) boundary value problem is

expressed as a linear combination of Green’s functions, referred to as the fundamental

solutions, and the boundary conditions are satisfied at several locations on the boundary,

referred to as the boundary nodes or collocation points, aiming to determine the unknown

coefficients in the linear combination.

Apart from being time-efficient due to reduced spatial dimension in boundary dis-

cretization, the quality of being free from integrals makes the MFS peerless among other

meshfree methods (such as the boundary element method [16], finite point method [76],

diffuse element method [73], element-free Galerkin method [9]) that involve complex in-

tegrals. The MFS has proven to be an efficient executable numerical scheme in various

areas, such as thermoelasticity, electromagnetics, electrostatics, wave scattering, inverse

problems and fluid flow problems; see, e.g., Refs. [10, 31, 52, 62, 64, 129]. Moreover, the

MFS is also suitable for the analysis of problems involving shape optimization, moving

boundary and/or unknown boundary [3, 24, 32, 94, 129], since the problems of modeling

and satisfying boundary conditions are relatively simpler for them.

Several researchers have employed the MFS to solve the Helmholtz-, harmonic- and

biharmonic-type boundary value problems in two dimensions (2D) as well as in three

dimensions (3D), see, e.g., Refs. [66, 80]. For more complex boundary value problems,

the MFS works as a good numerical strategy if the fundamental solutions of the problem

are predefined. In the past few years, there has been a surge of interest in employing

the MFS to various models for rarefied gas flows, for instance to the NSF, G13, R13 and

CCR models [27, 64, 90], because the predefined fundamental solutions of the well-known

equations, such as the Laplace, Helmholtz and biharmonic equations, can be exploited to
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determine the fundamental solutions for the NSF, G13, R13 and CCR models. Never-

theless, to the best of the author’s knowledge, all the works on the MFS for rarefied gas

flows before this thesis have investigated the problems in 3D only. But, for quasi two-

dimensional flow problems, it is not really necessary to solve the full three-dimensional

problem as the flow profiles obtained in a cross section perpendicular to the transverse

direction remain the same in any cross section perpendicular to the transverse direction.

Thus, a quasi-two-dimensional study of a full three-dimensional problem (where one di-

mension in the problem is much larger than the other two) is enough to understand the

full three-dimensional problem. Unfortunately, the two-dimensional fundamental solu-

tions, which are the prerequisite of the MFS, for a model cannot be deduced directly from

its three-dimensional counterpart due to the fact that the associated Green’s functions

are entirely different in 2D and 3D.

Traditionally, the MFS relied on evaluating the unknown coefficients in the linear

combination of the fundamental solution, by satisfying the given boundary conditions.

However, drawing inspiration from the Stokeslet, Lockerby & Collyer [64] introduced

physically meaningful point forces and point heat sources in the momentum and energy

balance equations, respectively, that represent the strength of individual fundamental

solutions. These unknown source strengths are then determined using the underlying

boundary conditions. Lockerby & Collyer [64] derived the fundamental solutions for the

NSF, G13 and R13 equations (with point force and heat source) in 3D and demonstrated

the implementation of the MFS for the G13 equations [36]. As an extension, Claydon

et al. [27] introduced an additional (ad hoc) source term in the stress balance equation

of the R13 model to obtain the fundamental solutions of the R13 equations in 3D and

implemented the MFS for R13 model in spherical geometries. Apart from that, in order

to obtain the fundamental solution of the CCR model [88], Rana et al. [90] used a source

term in the mass balance equation in addition to the point force and point heat source

in momentum and energy balance equations, respectively, for investigating evaporation

effects in 3D. All these approaches required deriving fundamental solutions for specific

models by prescribing Dirac-delta source terms in some selected equations within the sys-

tem of governing equations and closure relations. While being effective, this methodology

makes it challenging to extend the MFS to new or more complex models, where the fun-

damental solutions are unknown and the choice of source terms is not straightforward.
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A general approach to compute the fundamental solutions for a large system without

predefined source terms also lacks in the literature.

1.3 Present work and organization of the thesis

1.3.1 Present work

The main objective of the thesis is to develop the MFS framework for monatomic

rarefied gas flow problems in 2D. Throughout the thesis, 2D refers to quasi-2D. The work

relies upon determining the two-dimensional fundamental solutions of the linearized CCR

model and to implement them in a numerical framework. A few illustrative internal and

external problems have been investigated to gauge the accuracy of the developed frame-

work. The thesis demonstrates the capability of the CCR-MFS framework to capture

rarefaction effects, including temperature jump, anti-Fourier effects, thermal stress and

thermal transpiration. Evaporation/condensation effects have also been studied for rar-

efied gas flows using the CCR model. An intriguing problem in 2D that does not arise

in 3D is Stokes’ paradox [58], which states the non-existence of a steady-state solution to

Stokes’ equations in 2D. The occurrence of Stokes’ paradox in rarefied gases also poses

mathematical challenges, which are addressed using the CCR-MFS framework for external

flow problems. The final goal is to make the MFS for rarefied gas flows independent of the

problem-specific fundamental solutions. For this purpose, a generic approach is presented

that systematically computes the fundamental solutions for any linear moment system

without predefined source terms. The proposed approach is demonstrated to determine

the fundamental solutions of the R13 equations in 2D. The computational efficiency and

accuracy of the MFS is also compared with the FEM for the thermally-induced flow be-

tween two non-coaxial cylinders to highlight the advantages of the MFS over traditional

meshing techniques. The remaining part of the thesis is organized as follows.

1.3.2 Organization of the thesis

Chapter 2 introduces the classical hydrodynamic models, namely the Euler and NSF

equations, which are effective near the equilibrium. This is followed by presenting two

extended hydrodynamic models—the CCR and R13 models—that are capable of captur-

ing non-equilibrium effects in rarefied monatomic gas flows. These models are reduced to
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their linear and dimensionless forms and the corresponding thermodynamically-admissible

boundary conditions for each model are also discussed in this chapter.

Chapter 3 introduces the MFS approach and presents an idea to extend it for rarefied

gas flows. As a preliminary step to develop the MFS framework for flows in quasi 2D,

the fundamental solutions of the linearized NSF equations in 2D are derived, followed by

a derivation of the fundamental solutions of the CCR model in 2D. The implementation

of the MFS for the CCR model is demonstrated with the example of flow past an object

of an arbitrary shape.

Chapter 4 investigates some illustrative internal flow problems in rarefied gases using

the MFS applied on the CCR model, including the problems of a vapor flow between two

coaxial circular cylinders, temperature-driven gas flow between two noncoaxial circular

cylinders having different wall temperatures, flow between coaxial circular and elliptic

cylinders, and flow inside a lid-driven cavity. The chapter also includes a sensitivity anal-

ysis to find an appropriate location of singularities. To examine the impact of geometry,

a monatomic rarefied gas flow between an elliptical outer cylinder coaxial with an inner

circular cylinder is also studied. The problems with purely temperature-driven gas flows

are discussed in detail to demonstrate an intriguing interplay between thermal creep and

thermal stress effects.

Chapter 5 presents external flow of a monatomic rarefied gas past circular and semi-

circular cylinders studied with the CCR model by introducing an artificial boundary to

bypass Stokes’ paradox. Analytic solution is determined for the circular case and is used

to validate the results obtained from the MFS, followed by numerical investigation of the

semi-circular cases using the MFS.

Chapter 6 investigates evaporation/condensation from/on a liquid jet having circular

and non-circular cross-sections using the CCR model. Analytic results for the circular

case are validated against those obtained from the MFS. The mass-flux and heat-flux

coefficients for pressure- and temperature-driven flows are analyzed for both partial and

complete phase changes. The impact of interface shape deformation on the mass-flux and

heat-flux coefficients is investigated using shapes generated via spherical harmonics. A

sensitivity analysis highlights the influence of placement of singularities on the accuracy

of the MFS.
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Chapter 7 presents a methodology to derive the fundamental solutions for a generic lin-

ear moment system without predefined Dirac-delta source terms in the governing and/or

closure equations. The method is illustrated first for the Stokes equations and then is

extended to the R13 equations in 2D.

Chapter 8 presents the final conclusions and outlook.
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Chapter 2

Extended hydrodynamic models

This chapter first introduces the classical hydrodynamic equations, namely the Euler

and NSF equations, which are effective in the equilibrium or near the equilibrium. This

is followed by two extended hydrodynamic models—the CCR and R13 models—that are

capable of capturing non-equilibrium effects in rarefied monatomic gas flows. Since the

goal of the thesis is to employ the MFS to these models, they are subsequently reduced to

their linear and dimensionless forms. The corresponding thermodynamically consistent

boundary conditions for these models are also discussed.

2.1 Classic models

For gases in the hydrodynamic regime, the continuum hypothesis holds and gas flows

can be accurately described using classical hydrodynamic models, like the Euler equations

or the NSF equations. These models are based on the fundamental conservation laws of

the mass, momentum and energy, which govern the macroscopic behavior of gases. Before

presenting these equations explicitly, we introduce a notational convention for clarity. All

symbols with tilde as an accent will henceforth denote dimensional quantities, while those

without any accent will represent dimensionless quantities. The governing conservation

equations for a compressible, viscous gas in the dimensional form are given by [55, 105]

∂ρ̃

∂t̃
+ ṽ · ∇̃ρ̃+ ρ̃ ∇̃ · ṽ = 0, (2.1)

ρ̃

(
∂ṽ

∂t̃
+ ṽ · ∇̃ṽ

)
+ ∇̃p̃+ ∇̃ · σ̃ = ρ̃F̃ , (2.2)

ρ̃c̃v

(
∂T̃

∂t̃
+ ṽ · ∇̃T̃

)
+ p̃ ∇̃ · ṽ + ∇̃ · q̃ + σ̃ : ∇̃ṽ = 0, (2.3)

where ρ̃, ṽ, T̃ , p̃, σ̃, q̃ are the density, velocity, temperature, pressure, stress tensor and

heat flux, respectively; t̃ is the time variable; F̃ is the external force per unit mass; and

the coefficient c̃v is the molar specific heat at constant volume, and for monatomic gases,

c̃v = 3R̃/2, with R̃ being the ideal gas constant. If the viscous stress and heat flux are

neglected, i.e. σ̃ = 0 and q̃ = 0, the NSF equations reduce to the Euler equations, which



read

∂ρ̃

∂t̃
+ ṽ · ∇̃ρ̃+ ρ̃ ∇̃ · ṽ = 0, (2.4)

ρ̃

(
∂ṽ

∂t̃
+ ṽ · ∇̃ṽ

)
+ ∇̃p̃ = ρ̃F̃ , (2.5)

ρ̃c̃v

(
∂T̃

∂t̃
+ ṽ · ∇̃T̃

)
+ p̃ ∇̃ · ṽ = 0. (2.6)

The Euler equations (2.4)–(2.6) represent the simplest form of the hydrodynamic equa-

tions, capturing compressible, inviscid fluid flow without the influence of viscosity and

heat conduction. These equations are particularly useful in high-speed aerodynamics and

gas dynamics, where viscous effects are often negligible.

It is important to note that the system of Eqs. (2.1)–(2.3) is not closed as such, owing

to the presence of the additional unknowns σ̃ and q̃, and requires constitutive relations

for these unknowns in order to close the system. In the NSF closure, the constitutive

relations for the stress and heat flux are given by

σ̃ = −2µ̃∇̃ṽ, (2.7)

q̃ = −κ̃∇̃θ̃, (2.8)

where µ̃ is the coefficient of the shear viscosity, κ̃R̃ is the coefficient of the thermal

conductivity, θ̃ = R̃T̃ is the temperature in energy units and the overline above a quantity

denotes its symmetric and tracefree part of the corresponding tensor. For a d-dimensional

vector ψ, the symmetric-tracefree part of the tensor ∇ψ is defined as [40]

∇ψ =
1

2

[
∇ψ + (∇ψ)T

]
− 1

d
(∇ ·ψ)I, (2.9)

where I is the identity tensor in d-dimensions. For three- and quasi-two-dimensional

problems, d = 3. The validity of the Euler and NSF equations is limited to flows with

very small Knudsen numbers. However, as the Knudsen number increases, the continuum

assumption underlying both the NSF and Euler equations breaks down. This necessitates

the use of more sophisticated extended hydrodynamic models, which are discussed in the

following sections.
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2.2 Extended hydrodynamic models

The inability of the Navier–Stokes–Fourier equations to capture rarefaction effects

motivates us to adopt the extended hydrodynamic models. These models go beyond

the classical continuum assumptions to account for non-equilibrium phenomena, such as

velocity slip, temperature jump and anti-Fourier heat flux, which are significant in the

slip and transition regimes. Although several extended hydrodynamic models have been

developed over the years, including the Burnett equations, super-Burnett equations, G13

equations, and their regularized forms like the R13 and R26 equations, we present the

CCR and R13 models in this section as we shall be using these two models to employ the

MFS in the present thesis.

2.2.1 The CCR model

An extended hydrodynamic model propounded by Rana et al. [88] provides an im-

proved set of closure relations, which are better than the NSF constitutive relations (2.7)–

(2.8) in general. This model includes the coupling between the stress and heat flux ap-

pearing in the conservation laws (2.1)–(2.3) via a coupling coefficient, and hence the

closure relations are known as the coupled constitutive relations (CCR). The constitutive

relations for closing the system of Eqs. (2.1)–(2.3) read [88]

σ̃ = −2µ̃

[
∇̃ṽ +

α0

p̃

{
∇̃q̃ − α1 q̃ ∇̃(ln θ̃)− α2 q̃ ∇̃(ln p̃)

}]
, (2.10)

q̃ = −κ̃
[
∇̃θ̃ +

α0

ρ̃

{
∇̃ · σ̃ − (1− α1) σ̃ · ∇̃(ln θ̃)− (1− α2) σ̃ · ∇̃(ln p̃)

}]
, (2.11)

where, α0 is referred to as the coupling coefficient since it induces the coupling between

constitutive relations for the stress and heat flux. Setting α0 = 0 in Eqs. (2.10) and (2.11)

removes the coupling between the constitutive relations (2.10) and (2.11) and reduces them

simply to the NSF constitutive relations. The coefficients α1 and α2 in Eqs. (2.10) and

(2.11) are typically determined from experimental or theoretical scenarios; nonetheless, for

Maxwell molecules, α1 = α2 = 0 [88]. Equations (2.1)–(2.3) along with the constitutive

relations (2.10) and (2.11) are referred to as the CCR model [88].

Linearized CCR model:

As we are interested in employing the MFS, which relies on the linearity of equations,

we shall be dealing with the linearized CCR model. For linearization, we choose the
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equilibrium state of the gas as the reference state wherein let the density and temperature

of the gas be ρ̃0 and T̃0, respectively, so that the pressure in the reference state be p̃0 =

ρ̃0θ̃0, where θ̃0 = R̃T̃0. The other quantities (velocity, stress tensor and heat flux) in the

reference state are zero. For linearization, we introduce small perturbations in the flow

variables from their values in the equilibrium state and, for convenience, we also make

all quantities dimensionless using the length scale L̃, time scale L̃/
√
θ̃0 and appropriate

combinations of the reference density ρ̃0 and reference temperature T̃0. The dimensionless

perturbations in the density, temperature, velocity, stress tensor and heat flux from their

values in the reference state are given by

ρ =
ρ̃− ρ̃0
ρ̃0

, T =
T̃ − T̃0

T̃0
, v =

ṽ√
θ̃0
, σ =

σ̃

ρ̃0θ̃0
and q =

q̃

ρ̃0θ̃
3/2
0

, (2.12)

respectively. Inserting these dimensionless perturbations in the CCR model [Eqs. (2.1)–

(2.3) closed with Eqs. (2.10)–(2.11)] and dropping all nonlinear terms in the dimensionless

perturbations, we get the linear-dimensionless CCR model, which reads

∂ρ

∂t
+∇ · v = 0, (2.13)

∂v

∂t
+∇p+∇ · σ = F , (2.14)

cv
∂T

∂t
+∇ · v +∇ · q = 0, (2.15)

σ = −2Kn
(
∇v + α0∇q

)
, (2.16)

q = −cpKn

Pr
(∇T + α0∇ · σ) , (2.17)

where t = t̃
√
θ̃0/L̃, ∇ ≡ (1/L̃)∇̃, p = ρ + T is the dimensionless perturbation in the

pressure p due to the linearization, cv = c̃v/R̃,

Kn =
µ̃0

ρ̃0
√
θ̃0L̃

and Pr = cp
µ̃0

κ̃0
(2.18)

are the Knudsen number and Prandtl number, respectively, with µ̃0 and κ̃0R̃ being the

coefficients of the shear viscosity and thermal conductivity, respectively, in the reference

state. In Eq. (2.18), cp = c̃p/R̃ with c̃p being the specific heat at constant pressure. For

monatomic gases, c̃p = 5R̃/2. It may be noted that while performing the linearization,

the external force F̃ has been assumed to be small (of the order of perturbed variables)
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and has been scaled with θ̃0/L, i.e. F = F̃L/θ̃0. Equations (2.13)–(2.17) are referred to

as the linear-dimensionless CCR model.

For all the problems considered in this thesis, there is no external force, i.e. F = 0

and the steady-state equations are obtained simply by setting all time-derivative terms

in Eqs. (2.13)–(2.17) to zero, i.e. by setting ∂(·)/∂t = 0. Consequently, the linear-

dimensionless CCR model in the steady state reduces to

∇ · v = 0,

∇p+∇ · σ = 0,

∇ · q = 0,

 (2.19)

with the closure (for a monatomic gas)

σ = −2Kn
(
∇v + α0∇q

)
,

q = −cpKn

Pr
(∇T + α0∇ · σ) .

 (2.20)

For α0 = 2/5, Eqs. (2.19)–(2.20) reduce to the linearized G13 equations in the steady

state. Further if coupling coefficient α0 = 0, the linear steady-state CCR model reduces

to the classical NSF equations, which are Eqs. (2.19) with closure

σ = −2Kn∇v,

q = −cpKn

Pr
∇T.

 (2.21)

2.2.2 The R13 model

Despite the notable improvements offered by the CCR model over the classical NSF

equations, its applicability remains limited in gas flows with relatively higher degree of

rarefaction or in situations involving strong non-equilibrium effects. A set of extended

hydrodynamic equations that can overcome the limitations of the CCR model is the

Regularized 13-Moment (R13) equations proposed by Struchtrup and Torrilhon in a series

of works [105, 108]. The R13 model incorporates additional higher-order contributions

while preserving the structure of the original 13-moment system.

The R13 equations involve gradients of higher-order tensors (than in the CCR model)

and therefore we begin by writing the full R13 equations in indicial (component-wise)

form for a better understanding. After performing linearization about the equilibrium

state and nondimensionalization, we recast the resulting system into vectorial/tensorial
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notation. The mass, momentum and energy conservation laws which are the evolution

equations for the density, velocity and internal energy, read

∂ρ̃

∂t̃
+ ṽl

∂ρ̃

∂x̃l
+ ρ̃

∂ṽl
∂x̃l

= 0, (2.22)

ρ̃

(
∂ṽi

∂t̃
+ ṽl

∂ṽi
∂x̃l

)
+
∂p̃

∂x̃i
+
∂σ̃ij
∂x̃j

= ρ̃F̃i, (2.23)

3

2
ρ̃

(
∂θ̃

∂t̃
+ ṽl

∂θ̃

∂x̃l

)
+ p̃

∂ṽi
∂x̃i

+ σ̃ij
∂ṽi
∂x̃j

+
∂q̃i
∂x̃i

= 0, (2.24)

and the evolution equations for the stress tensor and heat flux are given by [105, 117]

∂σ̃ij

∂t̃
+
∂σ̃ij ṽl
∂x̃l

+
4

5

∂q̃⟨i
∂x̃j⟩

+ 2p̃
∂ṽ⟨i
∂x̃j⟩

+ 2σ̃l⟨i
∂ṽj⟩
∂x̃l

+
∂m̃ijl

∂x̃l
= −ν̃σ̃ij, (2.25)

∂q̃i

∂t̃
+
∂q̃iṽl
∂x̃l

+ q̃l
∂ṽi
∂x̃l

−
(
5

2
p̃δij + σ̃ij

)
1

ρ̃

∂σ̃jl
∂x̃l

− σ̃ij
1

ρ̃

∂p̃

∂x̃j
+

5

2
p̃
∂θ̃

∂x̃i

+

(
6

5
δ⟨ij q̃l⟩ + m̃ijl

)
∂ṽj
∂x̃l

+
1

2

∂
(
7θ̃σ̃il + R̃il

)
∂x̃l

+
1

6

∂△̃
∂x̃l

δil = −2

3
ν̃q̃i, (2.26)

where ν̃ is the collision frequency and the right-hand sides of Eqs. (2.25) and (2.26) are

evaluated from the collision integral in the Boltzmann equation for Maxwell molecules.

The angular brackets denote the symmetric trace-free part of the tensor (equivalent to

overline notation in tensorial form). For instance, the symmetric trace-free part for a

rank-2 tensor Aij reads

A⟨ij⟩ = A(ij) −
1

3
Akkδij =

1

2
(Aij + Aji)−

1

3
Akkδij, (2.27)

and the symmetric trace-free part for a rank-2 tensor Bijk reads

B⟨ijk⟩ = B(ijk) −
1

5

(
B(ill)δjk +B(ljl)δik +B(llk)δij

)
, (2.28)

where

B(ijk) =
1

6
(Bijk +Bikj +Bjik +Bjki +Bkij +Bkji) . (2.29)

Furthermore, m̃ijl, R̃ij and △̃ are the higher-order moments which do not have any

physical meaning associated and fixing m̃ijl = R̃ij = △̃ = 0 reduces the Eqs. (2.25)

and (2.26) to the original G13 closure relations. The constitutive relations for m̃ijl, R̃ij

and △̃ read [105, 117]

m̃ijl = −2
p̃

ν̃
θ̃
∂(σ̃⟨ij/p̃)

∂x̃l⟩
+

20

15p̃
q̃⟨iσ̃jl⟩, (2.30)
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R̃ij = −24

5

p̃

ν̃
θ
∂(q̃⟨i/p̃)

∂x̃j⟩
+

192

75p̃
q̃⟨iq̃j⟩ +

20

7ρ̃
σ̃l⟨iσ̃j⟩l, (2.31)

△̃ = −12
p̃

ν̃
θ
∂(q̃l/p̃)

∂x̃l
+

56

5p̃
q̃lq̃l +

5

ρ̃
σ̃ijσ̃ij. (2.32)

Linearized steady-state R13 equations:

To nondimensionalize and linearize the equations, perturbations in flow variables from

their respective equilibrium states are considered (similarly to above Sec. 2.2.1). The

reference equilibrium density and temperature are ρ̃0 and θ̃0, whereas the velocity, stress

and heat flux vanish in the equilibrium state. Considering L̃ as the physical length scale,

the dimensionless position vector xi, temperature θ, pressure p and velocity vi read

xi =
x̃i

L̃
, θ =

θ̃

θ̃0
, p =

p̃

p̃0
, vi =

ṽi√
θ̃0
, (2.33)

respectively and other dimensionless quantities are

σij =
σ̃ij
p̃0
, qi =

q̃i

p̃0
√
θ̃0
, mijk =

m̃ijk

p̃0
√
θ̃0
, Rij =

R̃ij

p̃0θ̃0
, △ =

△̃
p̃0θ̃0

. (2.34)

Here, σij and Rij are symmetric trace-free second-order tensors, while mijk is a symmet-

ric trace-free third-order tensor. The resulting system of the linear, steady state and

dimensionless R13 equations read

∂vl
∂xl

= 0, (2.35)

∂p

∂xi
+
∂σij
∂xj

= 0, (2.36)

∂qi
∂xi

= 0, (2.37)

4

5

∂q⟨i
∂xj⟩

+ 2
∂v⟨i
∂xj⟩

+
∂mijl

∂xl
= − 1

Kn
σij, (2.38)

5

2

∂θ

∂xi
+
∂σil
∂x̃l

+
1

2

∂Ril

∂x̃l
+

1

3

∂△
∂xi

= − 2

3Kn
qi, (2.39)

closed with

mijl = −2Kn
∂σ⟨ij
∂xl⟩

, (2.40)

Rij = −24

5

∂q⟨i
∂xj⟩

, (2.41)

△ = −12Kn
∂ql
∂xl

, (2.42)
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where Kn =
√
θ̃0/(ν̃0L̃) is the Knudsen number. Recasting Eqs. (2.35)–(2.42) in vector

notation, we obtain

∇ · v = 0, (2.43)

∇p+∇ · σ = 0, (2.44)

∇ · q = 0, (2.45)

4

5
∇q + 2∇v +∇ ·m = − 1

Kn
σ, (2.46)

5

2
∇θ +∇ · σ +

1

2
∇ ·R+

1

6
∇△ = − 1

Kn

2

3
q, (2.47)

with the closure

R = −24

5
Kn∇q, (2.48)

m = −2Kn∇σ, (2.49)

△ = −12Kn∇ · q. (2.50)

Utilizing Eq. (2.45) in Eq. (2.50), we obtain △ = 0.

2.2.3 Boundary conditions

2.2.3.1 Boundary conditions for the CCR model

The thermodynamically-consistent boundary conditions complementing the linear

CCR model have been derived in Ref. [90]. For a three-dimensional problem, the boundary

conditions complementing the linear CCR model are given in Eqs. (4.2a), (4.2b), (4.3a)

and (4.3b) of Ref. [90]. Eqs. (4.2a) and (4.2b) of Ref. [90] are the boundary conditions on

the normal components of the mass and heat fluxes, respectively, while Eqs. (4.3a) and

(4.3b) of Ref. [90] are the boundary conditions on the shear stress—two conditions due

to two tangential directions in 3D. In this thesis, we only consider quasi-two-dimensional

problems (where one dimension in the problem is much larger than the other two). Since

for a quasi-two-dimensional flow in the x1x2-plane, the wall normal direction and one

tangential direction are in the x1x2-plane while the other tangential direction is along the

x3-direction, boundary condition (4.3b) of Ref. [90] is irrelevant in the present work and

the superscript ‘(1)’ can be dropped from the unit tangent vector t(1) in (4.3a) of Ref. [90]
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for simplicity. Consequently, the linear-dimensionless boundary conditions complement-

ing the linearized CCR model for a quasi two-dimensional flow read [90]

(v − vI) · n =− η11(p− psat + n · σ · n) + η12(T − T I + α0n · σ · n), (2.51)

q · n = η12(p− psat + n · σ · n)− (η22 + 2τ0)(T − T I + α0n · σ · n), (2.52)

t · σ · n =− ς(v − vI + α0q) · t, (2.53)

where n and t are the unit normal and tangent vectors, respectively. Furthermore, vI ,

T I and psat in boundary conditions (2.51)–(2.53) represent the velocity, temperature and

saturation pressure at the interface. Boundary conditions (2.51) and (2.52) determine the

evaporative mass flux and heat flux by the difference between the pressure and saturation

pressure, and the temperature difference across the interface, respectively, while Eq. (2.53)

governs the velocity slip at the boundary. In boundary conditions (2.51)–(2.53), ηij’s,

for i, j ∈ {1, 2} are the Onsager reciprocity coefficients, which from Sone’s asymptotic

kinetic theory [101] turn out to be

η11 = 0.9134

√
2

π

χ

2− χ

Θ

2−Θ
,

η12 = 0.3915

√
2

π

χ

2− χ

Θ

2−Θ
,

η22 = 0.1678

√
2

π

χ

2− χ

Θ

2−Θ
,


(2.54)

with χ being the accommodation coefficient which is unity (which also holds true for

the diffuse reflection boundary condition). The parameter Θ in the above coefficients

is the evaporation/condensation coefficient. For canonical boundaries and phase-change

boundaries, Θ = 0 and 1, respectively, are the largely accepted values of Θ in the literature.

The coefficients τ0 and ς, appearing in Eqs. (2.52) and (2.53), are the temperature-jump

and velocity-slip coefficients, which are given by [90]

τ0 = 0.8503

√
2

π
and ς = 0.8798

√
2

π
, (2.55)

respectively. It is important to note that the coefficients α0 in boundary conditions

(2.51)–(2.53) are actually the fitting parameters and could be different from the coupling

coefficient α0. Moreover, the coefficient α0 in each of boundary conditions (2.51)–(2.53)
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could also be different from each other. The only reason that the coefficients α0 in bound-

ary conditions (2.51)–(2.53) have been taken as the same as the coupling coefficient in the

CCR model because the boundary conditions obtained in this way are thermodynamically

consistent [88].

2.2.3.2 Boundary conditions for the R13 model

The boundary conditions for the R13 equations were derived in Ref. [38] and later

extended and refined in Refs. [83, 119] using the Maxwell’s accommodation model. Analo-

gously to Sec. 2.2.3.1, the boundary conditions for R13 equations in (quasi) 2D requires one

wall normal direction and one tangential direction. The thermodynamically admissible

linearized (dimensionless) boundary conditions for the R13 equations in 2D are [113, 118]

(v − vw) · n = ϵw
√

2

π

χ

2− χ
(p− pw + n · σ · n) , (2.56)

n · σ · t =
√

2

π

χ

2− χ

(
v − vw +

1

5
q + n ·m · n

)
· t, (2.57)

n ·R · t =
√

2

π

χ

2− χ

(
−(v − vw) + 11

5
q − n ·m · n

)
· t, (2.58)

q · n =

√
2

π

χ

2− χ

(
2(θ − θw) +

1

2
n · σ · n+

2

5
n ·R · n

)
, (2.59)

(n ·m · n) · n =

√
2

π

χ

2− χ

(
−2

5
(θ − θw) +

7

5
n · σ · n− 2

25
n ·R · n

)
, (2.60)

n ·
(
1

2
n ·m · n+ t ·m · t

)
=

√
2

π

χ

2− χ

(
1

2
n · σ · n+ t · σ · t

)
, (2.61)

where n and t are the unit normal and tangent vectors. In Eq. (2.56), ϵw is the veloc-

ity prescription coefficient used to implement artificial in- and outflow conditions with

interface pressure pw and velocity vw. This boundary condition (2.56) is reduced to the

standard boundary condition v · n = 0 for vw = 0 and ϵw = 0.
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Chapter 3

Method of fundamental solutions

The MFS is a meshless, boundary-type numerical technique widely used for solving lin-

ear partial differential equations, particularly in problems involving complex geometries

and/or complex boundary conditions. The core idea of the MFS is to represent the solu-

tion as a linear combination of fundamental solutions—analytic solutions to the governing

differential equation with singularities (or source points) located outside the physical do-

main. By enforcing the prescribed boundary conditions at discrete collocation points

on the boundary of the domain, the method transforms the problem into a system of

algebraic linear equations for the unknown source strengths.

In this chapter, we describe the basic procedure of the MFS for a general PDE and

factors affecting the accuracy of the MFS. We then derive the fundamental solutions for

the NSF equations and the CCR model in 2D in order to extend the MFS approach for

rarefied gas flows.

3.1 The approach

A brief basic working of the MFS is as follows. Let w : Rn → R be the solution to

the problem

Lw(x) = 0, x ∈ Ω,

Bw(x) = h(x), x ∈ Γ,

 (3.1)

where Ω is a connected and bounded domain in Rn (see Fig. 3.1), L is a linear partial

differential operator and B is the boundary operator. Let the fundamental solution (or

the Green’s function) of Eq. (3.1)1 be given by G(x,xs), which satisfies the equation

LG(x,xs) = δ(x,xs). (3.2)

Here δ is the Dirac-delta function and xs is the position vector of a source point. To

apply the MFS for solving the boundary value problem (3.1), a fictitious boundary ∂Ω̃ is

chosen on which Ns number of source points are placed, i.e. xs
i ∈ Γ̃, 1 ≤ i ≤ Ns. Owing



Ω

x j
b

xi
s

Γ

Γ


Boundary
point

Singularity
point

Figure 3.1: Schematic of an arbitrarily shaped domain Ω having boundary

Γ discretized with boundary nodes, represented by blue symbols. The red

symbols denote the singularities or the source points kept on a fictitious

boundary Γ̃ outside of the domain.

to the linearity of the problem, the approximated solution at any point x ∈ Ω is given by

w(x) =
Ns∑
i=1

ciG(x,x
s
i ). (3.3)

Here, ci’s are the constants to be determined by satisfying boundary condition (3.1)2 at Nb

boundary nodes (or collocation points) discretized over the entire boundary Γ. Therefore

for each boundary node xb
j ∈ Γ,

Bw(xb
j) = h(xb

j), where 1 ≤ j ≤ Nb. (3.4)

Plugging Eq. (3.3) in Eq. (3.4), we get a linear system of algebraic equations of order

Nb ×Ns, which is used to determine ci’s

Ns∑
i=1

ciG(x
b
j,x

s
i ) = h(xb

j), 1 ≤ j ≤ Nb, (3.5)

which leads to the following system
G(xb

1,x
s
1) G(xb

1,x
s
2) G(xb

1,x
s
3) . . . G(xb

1,x
s
Ns
)

G(xb
2,x

s
1) G(xb

2,x
s
2) G(xb

2,x
s
3) . . . G(xb

2,x
s
Ns
)

...
...

...
. . .

...

G(xb
Nb
,xs

1) G(xb
Nb
,xs

2) G(xb
Nb
,xs

3) . . . G(xb
Nb
,xs

Ns
)




c1

c2
...

cNs

 =


h(xb

1)

h(xb
2)

...

h(xb
Nb
)

 . (3.6)

System (3.6) is in the form MX = b where the matrix M is of the size Nb ×Ns and is

referred to as the collocation matrix. The coefficients cj’s can be calculated using a linear
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solver if M is a square non-singular matrix, and using the method of least squares if M

is rectangular. Once the coefficients cj’s are obtained, the solution at any arbitrary point

inside the domain Ω can be obtained from Eq. (3.3).

Now, instead of expressing the solution in terms of coefficients ci, one may equiva-

lently pose the problem in terms of unknown source strengths embedded in the governing

equation. Specifically, consider the modified fundamental solution G′(x,xs
i ) satisfying

LG′(x,xs
i ) = fi δ(x,x

s
i ), (3.7)

where fi is the unknown source strength at the source point xs
i . By the linearity of the

operator L, it follows that

G′(x,xs
i ) = fiG(x,x

s
i ), (3.8)

so that the approximate solution can be written as

w(x) =
Ns∑
i=1

G′(x,xs
i ) =

Ns∑
i=1

fiG(x,x
s
i ), (3.9)

which is mathematically identical to Eq. (3.3), but interprets the coefficients as strengths

of singularities introduced directly into the given equation. This formulation allows for

a physical interpretation of the unknowns as source terms and also provides a conve-

nient framework for generalizing the method to moment systems where the fundamental

solutions are derived from source-driven equations.

3.1.1 Factors affecting accuracy of the MFS

Accuracy of the MFS depends on several interrelated computational and geometrical

parameters. A key consideration is the choice of the number of boundary points and

source points. Using more boundary points than source points can improve stability but

may reduce accuracy, while using an equal number can increase accuracy but make the

system more sensitive to numerical errors. Furthermore, the numerical conditioning of the

MFS system matrix plays a pivotal role: exponential growth in the traditional condition

number (often exceeding 1010) can obscure solutions even with an optimal placement of

source points. These factors underscore the need for systematic strategies to balance

accuracy and stability of the MFS.

In the MFS, positioning of the singularity points has been a widely-discussed issue

in order to achieve accurate results [3, 23, 26, 122] due to the fact that the linear system
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resulting from the MFS can have an ill-conditioned coefficient matrix [3], and there is a

trade-off between the accuracy and well conditioning. For meshfree methods, including

the MFS, Alves [3] states, “In these methods a sort of uncertainty principle occurs—

we cannot get both accurate results and good conditioning—one of the two is lost.” To

address this issue in the MFS, recent studies have introduced the concept of the effective

condition number, which provides a more reliable indicator of numerical stability than the

traditional condition number [22, 30, 125]. An ill-conditioned matrix has a high condition

number. Thus the MFS can yield accurate results even with the collocation matrix having

a high condition number. This seems to be implausible intuitively; notwithstanding, it

should be noted that the traditional condition number is not adequate for measuring

the accuracy and stability of the resulting system since the condition number does not

take boundary data into account. For instance, while forming matrix system (3.6), the

boundary data h(xk) appear in the vector b and not in the collocation matrix M. Hence,

the (usual) condition number of the matrix M is not an adequate parameter to gauge

the sensitivity of the MFS toward the location of the source points.

A more accurate estimation of the sensitivity of the MFS toward the location of the

source points can be made by the effective condition number, which also takes the bound-

ary data into account (through the right-hand side vector). The concept of the effective

condition number has been used by many authors to determine an optimal location of the

singularity points by conjecturing a reciprocal relationship between the inaccuracy of the

MFS and the effective condition number [22, 30, 125].

Using the singular value decomposition, M (having dimensions Nb × Ns) can be

decomposed as M = UDV T, where U and V are Nb × Nb and Ns × Ns orthogonal

matrices and D is a Nb × Ns diagonal matrix containing the positive singular values in

descending order: σ1 ≥ σ2 ≥ σ3 ≥ · · · ≥ σr > 0, where r ≤ min(Nb, Ns). The traditional

condition number for the system is given by

κ =
σ1
σr
, (3.10)

where σ1 and σr represent the largest and smallest (non-zero) singular values of M,

respectively. Thus, the traditional condition number only depends on the matrix M and

not the right-hand-side vector b. On the other hand, the effective condition number is
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defined as [22, 125]

κeff =
∥b∥2

σr∥X∥2
, (3.11)

where ∥.∥2 represents the ℓ2-norm. The effective condition number κeff takes into ac-

count the right-hand-side vector b and provides a more accurate measure of stability than

the traditional condition number. Thus, we shall utilize κeff to justify the location for

singularity points in different problems considered in Chapters 4–7.

3.2 Fundamental solutions of the NSF equations in 2D

The fundamental solution to the Stokes equations (which are the linearized Navier–

Stokes equations in the steady-state) is referred to as the Stokeslet. To account for

the effects of energy transfer, which is particularly important in problems involving phase

change, one needs to consider the energy balance equation along with the classical Navier–

Stokes equations. The Navier–Stokes equations together with the energy balance equation

are referred to as the Navier–Stokes–Fourier (NSF) equations. To study the fundamental

solutions of the NSF equations, the concept of “thermal Stokeslet” was propounded by

Lockerby & Collyer [64]. The Stokeslet and thermal Stokeslet, however, do not incorporate

mass exchange in the case of closed boundary due to the Gauss divergence theorem.

Therefore, to address processes involving phase change, a new fundamental solution—

referred to as the “sourcelet”—was obtained in [90] by introducing a point mass source

in 3D. It should be noted that the Stokeslet and sourcelet in 2D are different from their

counterparts in 3D due to different Green’s functions associated with the equations that

are used for obtaining the fundamental solutions. To the best of the authors’ knowledge,

the sourcelet in 2D for phase-change processes does not exist in the literature. Therefore,

following the approaches of [64, 90], we derive the fundamental solutions of the NSF

equations in 2D in this section. Recall the NSF closure (2.21) [for closing conservation

laws (2.19)] in linearized steady state

σ = −2Kn∇v, (3.12)

q = −cpKn

Pr
∇T. (3.13)

The computation of fundamental solutions to the NSF equations in 2D for processes

involving phase change is as follows.
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Case 1: Stokeslet

The Stokeslet is obtained by introducing a point forcing term (given by the Dirac delta

function) on the right-hand side of the momentum balance equation and by assuming

the process to be isothermal conditions (i.e. by assuming a constant temperature) [64].

Assuming the point force to be of strength f , system (2.19) of the mass, momentum and

energy balance equations changes to

∇ · v = 0, (3.14)

∇p+∇ · σ = f δ(r), (3.15)

∇ · q = 0, (3.16)

while the NSF closure [Eqs. (3.12) and (3.13)] remains unaltered.

Since the temperature is assumed to be a constant, T being the (dimensionless) per-

turbation in the temperature from its equilibrium value vanishes and the constitutive

relation (3.13) readily yields q = 0. Inserting σ from the constitutive relation (3.12) in

Eq. (3.15), we obtain

∇p−Kn∆v = f δ(r). (3.17)

On taking the divergence of this equation and exploiting Eq. (3.14), we obtain

∆p = f ·∇δ(r). (3.18)

From the fundamental solution of Laplace equation in 2D, it turns out that

δ(r) = ∆

(
log r

2π

)
, (3.19)

which on substituting in Eq. (3.18) yields

p(r) =
f · r
2πr2

. (3.20)

Now, inserting the values of δ(r) and p from Eqs. (3.19) and (3.20) into Eq. (3.17), we

obtain

∆v =
1

Kn
f · (∇∇− I∆)

(
log r

2π

)
. (3.21)

This leads to

v =
1

Kn
f · (∇∇− I∆)γ(r), (3.22)
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where γ(r) = r2(log r)/(8π) is the fundamental solution of biharmonic equation [98]. On

simplification, Eq. (3.22) yields

v =
1

8πKn
f ·
[
2rr

r2
− (2 log r − 1)I

]
. (3.23)

Substituting the expression for v from Eq. (3.23) into constitutive relation (3.12), the

stress tensor turns out to be

σ = −f · r
2π

(
I

r2
− 2rr

r4

)
. (3.24)

Case 2: Thermal Stokeslet

The thermal Stokeslet is obtained when the energy balance equation in the system of

the NSF equations is subjected to a point heat source under the stationary and isobaric

conditions [64]. Assuming the point heat source to be of strength g, system (2.43)–(2.45)

of the mass, momentum and energy balance equations changes to

∇ · v = 0, (3.25)

∇p+∇ · σ = 0, (3.26)

∇ · q = g δ(r), (3.27)

while the NSF closure [Eqs. (3.12) and (3.13)] again remains unchanged. Under the

assumption of flow being stationary,

v = 0, (3.28)

using which the constitutive relation (3.12) gives

σ = 0. (3.29)

Moreover, under isobaric condition,

p = 0. (3.30)

Inserting q from the constitutive relation (3.13) into Eq. (3.27), we obtain

−cpKn

Pr
∆T = g δ(r). (3.31)
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Again, from the fundamental solution of Laplace equation in 2D, δ(r) is given by Eq. (3.19).

Therefore, using Eq. (3.19), we obtain

T = − g

2π

Pr

cpKn
log r. (3.32)

Substituting this in constitutive relation (3.13), we obtain

q =
g

2π

r

r2
. (3.33)

Case 3: Sourcelet

The sourcelet is obtained by introducing a point mass source on the right-hand side

of the mass balance equation in the system of the NSF equations under the isothermal

conditions [90]. The case needs to be considered for the phase change processes because

the mass of the vapor is not conserved due to phase change. Assuming the point mass

source to be of strength h, system (2.43)–(2.45) of the mass, momentum and energy

balance equations changes to

∇ · v = h δ(r), (3.34)

∇p+∇ · σ = 0, (3.35)

∇ · q = 0, (3.36)

while the NSF closure [Eqs. (3.12) and (3.13)] again remains unchanged.

Following [90], we solve this system with the help of the Fourier transformation. The

Fourier transformation of the function F (r) is defined as

F [F (r)] = F̂ (k) :=

∫
R2

F (r)eik·rdr (3.37)

and the corresponding inverse Fourier transformation defined as

F−1[F̂ (k)] = F (r) :=
1

(2π)2

∫
R2

F̂ (k)e−ik·rdk, (3.38)

where F̂ denotes the Fourier transform of F . Here, i is the imaginary unit and k is the

wavevector in the spatial-frequency domain. Taking the Fourier transforms of Eqs. (3.34),
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(3.35) and (3.12), we obtain

k · v̂ = ih, (3.39)

p̂k + σ̂ · k = 0, (3.40)

σ̂ = iKn
[
v̂k + kv̂ − (k · v̂)I

]
, (3.41)

respectively. Solving these equations, we obtain

v̂ = ih
k

k2
, σ̂ = −2Knh

(
kk

k2
− 1

2
I

)
and p̂ = Knh. (3.42)

Taking the inverse Fourier transforms of the quantities in Eq. (3.42), we obtain

v = ihF−1

(
k

k2

)
=

h

2π

r

r2
, (3.43)

σ = −2KnhF−1

(
kk

k2
− 1

2
I

)
=
h

π
Kn

(
2rr

r4
− I

r2

)
, (3.44)

p = 0. (3.45)

Similarly, taking the Fourier transforms of Eqs. (3.36) and (3.13), we obtain

k · q̂ = 0, (3.46)

q̂ = i
5

2

Kn

Pr
kT̂ , (3.47)

respectively. The inverse Fourier transforms of these equations readily lead to

q = 0 and T = 0. (3.48)

Combining the three cases we obtain the fundamental solutions for the NSF equations,

which read

v(r) =
f

8πKn
·
[
2rr

r2
− (2 ln r − 1)I

]
+

h r

2πr2
, (3.49)

p(r) =
f · r
2πr2

, (3.50)

σ(r) =
f · r + 2Knh

2π

[
2rr

r4
− I

r2

]
, (3.51)

T (r) = − Pr

cpKn

g ln r

2π
, (3.52)

q(r) =
g

2π

r

r2
. (3.53)
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3.3 Fundamental solutions of the CCR model

In this section, we derive the fundamental solutions of the CCR model in 2D from

scratch. The derivation is presented in the indicial notation for a better understanding.

For two-dimensional flows, let us say in the x1x2-plane, the field variables do not change

in the direction perpendicular to the plane of the flow, i.e. they do not change along the

x3-direction. As a result, the CCR model [Eqs. (2.19)–(2.20)] for a two-dimensional flow

in the x1x2-plane reduces to

∂vi
∂xi

= 0, (3.54)

∂p

∂xi
+
∂σij
∂xj

= 0, (3.55)

∂qi
∂xi

= 0, (3.56)

σij = −2Kn

[
1

2

(
∂vi
∂xj

+
∂vj
∂xi

)
− 1

3
δij
∂vℓ
∂xℓ

]
− 2α0Kn

[
1

2

(
∂qi
∂xj

+
∂qj
∂xi

)
− 1

3
δij
∂qℓ
∂xℓ

]
,

(3.57)

qi = −cpKn

Pr

(
∂T

∂xi
+ α0

∂σij
∂xj

)
, (3.58)

where the indices i, j and ℓ can take the values 1 and 2 only, δij is the Kronecker delta

and the Einstein summation applies over the repeated indices in a term. It may be noted

that Eq. (3.55) represents two equations: for i = 1 the momentum balance equation in

the x1-direction and for i = 2 the momentum balance equation in the x2-direction, and

that the momentum balance equation in the x3-direction is identically satisfied. It is

also worthwhile noting that σ11 + σ22 = 0 in view of Eqs. (3.54) and (3.56), which is

consistent with the fact that the stress tensor σ is tracefree because σ33 = 0 for two-

dimensional flows in the x1x2-plane. Thus, the CCR model for a two-dimensional flow in

the x1x2-plane [Eqs. (3.54) and (3.58)] essentially consists of the unknown field variables

v1, v2, p, T, σ11, σ12, q1, q2.

To derive the fundamental solutions, we add a Dirac delta forcing term of strength fi

(i ∈ {1, 2}) on the right-hand side of the momentum balance equation (3.55) to represent

a (vector) point force and a point heat source of strength g on the right-hand side of the

energy balance equation (3.56). Furthermore, to deal with phase-change effects at the
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liquid-vapor interface, a point mass source of strength h is also added on the right-hand

side of the mass balance equation (3.54). For determining the fundamental solutions of a

system of partial differential equations, it is customary to consider only one point source

at a time and then to superimpose the solutions obtained by taking each point source at

a time in order to incorporate the effects of all point sources; see, e.g., Refs. [64, 90] and

the fundamental solutions for the NSF equations in previous section. Nevertheless, we

take all three point sources f ≡ (f1, f2)
T, g and h simultaneously and solve the resulting

system of equations altogether. We have verified—shown in the Appendix B—that this

procedure also yields exactly the same solution as that obtained by superimposing the

solutions obtained by solving the systems separately with one point source at a time.

To determine the fundamental solutions of the CCR model in 2D, the mass, momen-

tum and energy balance equations (3.54)–(3.56) are written with the point source terms

on their right-hand sides. These equations read

∂vi
∂xi

= h δ(r), (3.59)

∂p

∂xi
+
∂σij
∂xj

= fi δ(r), (3.60)

∂qi
∂xi

= g δ(r), (3.61)

where r = (x1, x2)
T. Equations (3.59)–(3.61) are closed with the CCR (3.57) and (3.58).

We solve the system of Eqs. (3.59)–(3.61), (3.57) and (3.58) using the Fourier transforma-

tion [defined in Eqs. (3.37)]. Applying the Fourier transformation in Eqs. (3.59)–(3.61),

(3.57) and (3.58) and using the fact that F [δ(r)] = 1, we obtain (i, j, ℓ ∈ {1, 2})

kiv̂i = ih, (3.62)

kip̂+ kjσ̂ij = i fi, (3.63)

kiq̂i = i g, (3.64)

σ̂ij = iKn

[
kj(v̂i + α0q̂i) + ki(v̂j + α0q̂j)−

2

3
δijkℓ(v̂ℓ + α0q̂ℓ)

]
, (3.65)

q̂i = i
cpKn

Pr

(
kiT̂ + α0kjσ̂ij

)
, (3.66)
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where the variables with hat are the Fourier transforms of the corresponding field variables.

Using Eqs. (3.62) and (3.64), Eq. (3.65) simplifies to

σ̂ij = iKn
[
kj(v̂i + α0q̂i) + ki(v̂j + α0q̂j)

]
+

2

3
δijKn(h+ α0g). (3.67)

Multiplying the above equation with kj and kikj, we obtain

kjσ̂ij = iKn k2(v̂i + α0q̂i)−
1

3
Kn ki(h+ α0g), (3.68)

kikjσ̂ij = −4

3
Kn k2(h+ α0g), (3.69)

respectively, where kiki = |ki|2 = k2 has been used. Multiplying Eq. (3.66) with ki and

exploiting Eqs. (3.64) and (3.69), we obtain

T̂ =
Pr

cpKn

g

k2
+

4

3
α0Kn(h+ α0g). (3.70)

Again, multiplying Eq. (3.63) with ki and exploiting Eq. (3.69), we obtain

p̂ = i
kifi
k2

+
4

3
Kn(h+ α0g). (3.71)

Now, from Eqs. (3.63) and (3.71), one can easily write

kjσ̂ij = ifi − i
kikjfj
k2

− 4

3
kiKn(h+ α0g). (3.72)

Substituting the value of T̂ from Eq. (3.70) and the value of kjσ̂ij from Eq. (3.72) into

Eq. (3.66), we obtain

q̂i = i
kig

k2
− cpKn

Pr
α0fj

(
δij −

kikj
k2

)
. (3.73)

Now, from Eqs. (3.68), (3.72) and (3.73),

v̂i =
fj
Kn

(
δij
k2

− kikj
k4

)
+
cpKn

Pr
α2
0fj

(
δij −

kikj
k2

)
+ i

kih

k2
. (3.74)

Finally, using Eqs. (3.73) and (3.74) in Eq. (3.65), we obtain

σ̂ij = i fℓ

(
kjδiℓ + kiδjℓ

k2
− 2

kikjkℓ
k4

)
− 2Kn

(
kikj
k2

− δij
3

)
(h+ α0g). (3.75)

Applying the inverse Fourier transformation in Eqs. (3.70), (3.71) and (3.73)–(3.75) with

the help of the formulae derived in AppendixA, the field variables turn out to be

vi =
fj
Kn

(
xixj
4πr2

− 2 ln r − 1

8π
δij

)
+
cpKn

Pr
α2
0

fj
2π

(
2xixj
r4

− δij
r2

)
+

hxi
2πr2

, (3.76)

qi =
g

2π

xi
r2

− cpKn

Pr
α0
fj
2π

(
2xixj
r4

− δij
r2

)
, (3.77)
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p =
fixi
2πr2

, (3.78)

T =− Pr

cpKn

g ln r

2π
, (3.79)

σij =
fℓxℓ + 2Kn(h+ α0g)

2π

(
2xixj
r4

− δij
r2

)
, (3.80)

where r = |xi| and i, j, ℓ ∈ {1, 2}. The field variables in Eqs. (3.76)–(3.80) are the

fundamental solutions of the linearized CCR model in 2D. These fundamental solutions

in the vectorial/tensorial notation can be written as

v(r) =
f ·A(r)

8πKn
+

1

2π

cpKn

Pr
α2
0f ·B(r) +

h r

2πr2
, (3.81)

p(r) =
f · r
2πr2

, (3.82)

σ(r) =
f · r + 2Kn(h+ gα0)

2π
B(r), (3.83)

T (r) = − Pr

cpKn

g ln r

2π
, (3.84)

q(r) =
g

2π

r

r2
− 1

2π

cpKn

Pr
α0f ·B(r), (3.85)

where r = |r| and

A(r) =
2rr

r2
− (2 ln r − 1)I, (3.86)

B(r) =
2rr

r4
− I

r2
. (3.87)

Note that, in Eqs. (3.81)–(3.87),

f =

f1
f2

 , v(r) =

v1(r)
v2(r)

 , q(r) =

q1(r)
q2(r)

 ,

σ(r) =

σ11(r) σ12(r)

σ12(r) −σ11(r)

 , I =

1 0

0 1

 .


(3.88)

It is also worthwhile noticing that the fundamental solutions for the linearized NSF and

G13 equations in 2D can be obtained directly from Eqs. (3.81)–(3.85) by taking α0 = 0

and α0 = 2/5, respectively.
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3.3.1 Example implementation

To implement the fundamental solutions (3.81)–(3.85) in the MFS, we describe the

construction of a system of algebraic equations through the problem of a rarefied gas flow

past a complex geometry as depicted in Fig. 3.2. As an example, the geometry of the

object in Fig. 3.2 is mathematically defined in the parametric form as

(x, y) =

(
5

4
a cos θ,

1

4
a(5− cos 5θ) sin θ

)
(3.89)

with 0 ≤ θ ≤ 2π and a ≤ 1 being the scaling factor. As mentioned in Sec. 3.1.1, the

location of the singularity points is a major concern as the results obtained from the MFS

are highly sensitive toward the location of singularities [3, 23, 26]. There are two most

common ways of distributing singularities in the MFS. One way is to place the singularities

on a fictitious boundary of a very simple shape—irrespective of the shape of the object—

with just one parameter to control; for example, on a circle in the two-dimensional case

and on a sphere in the three-dimensional case, and the radius of the circle or sphere would

be the controlling parameter. Another way is to recreate a dilated (or shrunk) fictitious

boundary, which has the same shape as the boundary of the original object and to place

x j
b

xi
s

rij

n j

t j

Figure 3.2: Schematic of a flow past an object of an arbitrary shape depict-

ing the boundary discretization and the placement of singularities outside

the flow domain. The red and blue arrows at each boundary node depict

the normal (pointing toward the flow domain) and tangential directions at

that node, respectively.
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the singularities on this fictitious boundary [26, 61]—similarly to that shown in Fig. 3.2

as well. The latter is also easy if the original boundary of the object can be described

by a set of parametric equations having only a single controlling parameter, the dilation

factor. For illustration purposes, we have taken the fictitious boundary to be of the same

shape as the original boundary in Fig. 3.2.

Let Nb be the number of the discretized boundary nodes and Ns the number of singu-

larity points. The boundary nodes and the singularities are placed at equispaced angles

θ on the original and the fictitious boundary, respectively, and the distance between both

boundaries can be varied by changing the value of the dilation factor a. It may be noted

that singularities need not be placed at equispaced angles in principle; nonetheless, we

have done so for the sake of simplicity. Let xs
i and xb

j be the position vectors of the

ith singularity site and the jth boundary node, respectively. Then the position vector

from the ith singularity site to any position x in the domain is ri = x − xs
i and the

position vector from the ith singularity site to the jth boundary node is rij = xb
j − xs

i .

It is important to note that the subscripts ‘i’ and ‘j’ are now being used for denoting

the ith singularity site and jth boundary node and consequently, the repetition of indices

henceforth shall not imply the Einstein summation per se, unless stated otherwise (par-

ticularly, in Appendix A, wherein the Einstein summation does hold over the repeated

indices). Since the point sources f , g and h are to be put at each singularity site, there

are four degrees of freedom corresponding to each singularity point (two scalars g and h

from the point heat and mass sources, and two components f1 and f2 of the point force

vector f =
[
f1 f2

]T
). In total, we have 4×Ns unknowns, which are determined typically

by satisfying the boundary conditions at the boundary points. Once the location of the

singularity points is decided, the next step in the implementation of the MFS is super-

position of the fundamental solutions associated with each singularity site, which makes

sense because of the linearity of equations and gives the value of the field variables at

the jth boundary node. Superimposing the fundamental solutions (3.81)–(3.85) for each

singularity site, the field variables at the jth boundary node read

vj =
Ns∑
i=1

[
fi ·A(rij)

8πKn
+

1

2π

cpKn

Pr
α2
0fi ·B(rij) +

hi rij
2πr2ij

]
, (3.90)

pj =
Ns∑
i=1

fi · rij
2πr2ij

, (3.91)
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σj =
Ns∑
i=1

fi · rij + 2Kn (hi + gi α0)

2π
B(rij), (3.92)

Tj = −
Ns∑
i=1

Pr

cpKn

gi ln rij
2π

, (3.93)

qj =
Ns∑
i=1

[
gi
2π

rij
r2ij

− 1

2π

cpKn

Pr
α0fi ·B(rij)

]
, (3.94)

where rij = |rij|; fi =
[
f1 f2

]T
, gi and hi are the point force (vector), point heat source

and point mass source, respectively, applied on the ith singularity site; and

A(rij) =
2rijrij
r2ij

− (2 ln rij − 1)I, (3.95)

B(rij) =
2rijrij
r4ij

− I

r2ij
. (3.96)

This system is solved for the unknowns f1i, f2i, gi, hi, i ∈ {1, 2, 3, . . . , Ns} by employing

the boundary conditions at each boundary node. Once the unknowns f1i, f2i, gi, hi for

i ∈ {1, 2, 3, . . . , Ns} are found, the flow variables at any position x in the flow domain

can be determined simply by dropping the subscript ‘j’ everywhere in Eqs. (3.90)–(3.94).

Hence, the fundamental solutions of the CCR model in 2D at any point located by the

position vector x in the flow domain are given by

v =
Ns∑
i=1

[
fi ·A(ri)

8πKn
+

1

2π

cpKn

Pr
α2
0fi ·B(ri) +

hi ri
2πr2i

]
, (3.97)

p =
Ns∑
i=1

fi · ri
2πr2i

, (3.98)

σ =
Ns∑
i=1

fi · ri + 2Kn (hi + gi α0)

2π
B(ri), (3.99)

T = −
Ns∑
i=1

Pr

cpKn

gi ln ri
2π

, (3.100)

q =
Ns∑
i=1

[
gi
2π

ri
r2i

− 1

2π

cpKn

Pr
α0fi ·B(ri)

]
. (3.101)

The above procedure to evaluate flow variables works for any geometry and we have

implemented this in a numerical framework. We shall elaborate on the placement of

boundary nodes and source points, formation and solution of the system separately cor-

responding to the different problems in the following chapters.
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Chapter 4

Application of the CCR-MFS

framework for internal flow problems

In this chapter, we implement the fundamental solutions of the CCR model derived

in Sec. 3.3 by solving some internal flow problems. The CCR-MFS framework developed

for these problems is validated against benchmark solutions available in the literature.

4.1 Vapor flow confined between two coaxial cylinders

For the validation of the developed numerical framework, we revisit the problem of

a rarefied vapor flow confined between two concentric cylinders. The same problem was

investigated by Onishi [77] with the linearized BGK model and diffuse-reflection boundary

conditions.

4.1.1 Problem description

Let us consider a moderately rarefied vapor confined between the condensed phases of

two concentric infinitely long circular cylinders of radii R̃1 and R̃2, where R̃1 < R̃2. Owing

to the axial symmetry along the z̃-axis, it is sufficient to investigate the problem in 2D.

A cross-sectional (two-dimensional) view of the problem is illustrated in Fig. 4.1. For the

purpose of non-dimensionalization, we take the inner radius as the characteristic length

L̃, i.e. L̃ = R̃1. Consequently, the dimensionless radii of the inner and outer cylinders

are r1 = R̃1/L̃ = 1 and r2 = R̃2/L̃, respectively. The condensed phases of the vapor at

the inner and outer cylinders are assumed to be negligibly thin. These interfaces are not

treated as impermeable solid walls but rather as surfaces across which phase change can

occur. As a result, the standard no-penetration condition does not apply here. Instead,

evaporation and condensation boundary conditions (2.51)–(2.53) are imposed on these

interfaces. Let the temperatures of the inner and outer condensed phases be maintained

at uniform temperatures T̃0 and T̃s, respectively; see Fig. 4.1. The parameters P̃0 and P̃s

denote the saturation pressures corresponding to the temperatures T̃0 and T̃s, respectively,

of the condensed phases on the inner and outer walls. The difference between the actual



Figure 4.1: Cross-sectional view of a rarefied vapor flow confined between

two coaxial cylinders.

gas pressure in the vapor and the local saturation pressure at the wall determines the

evaporation/condensation, as specified by the boundary conditions (2.51)–(2.52). Again,

for the purpose of linearization and non-dimensionalization, we take the temperature at

the inner wall T̃0 as the reference temperature and the saturation pressure at the inner wall

P̃0 as the reference pressure. Thus, the dimensionless perturbations in the temperature

and saturation pressure at the inner wall vanish, and the dimensionless perturbations in

the temperature and saturation pressure at the outer wall read

τs =
T̃s − T̃0

T̃0
and ps =

P̃s − P̃0

P̃0

, (4.1)

respectively.

4.1.2 Analytic solution of Onishi [77]

Onishi [77] investigated the problem by employing an asymptotic theory [100]. Ac-

cording to this theory, a field variable h̃ of the gas can be written as

h̃ = h̃H + h̃K , (4.2)

where h̃H is referred to as the hydrodynamic part or the Hilbert part that describes the

flow behavior in the bulk of the flow domain and h̃K is referred to as the kinetic boundary

layer part or the Knudsen layer part that can be seen as a correction to the Hilbert part
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and is significant only in small layers near an interface. Both h̃H and h̃K for all field

variables are expanded in power series of the Knudsen number, and the contribution at

each power of the Knudsen number is then computed by means of the considered BGK

model and the diffuse-reflection boundary conditions.

The linearized CCR model is anyway not able to predict Knudsen layers. Therefore,

it makes sense to compare the results obtained from the MFS only with the Hilbert

part of the solution given in Ref. [77]. For the problem under consideration and for the

linearized BGK model with the diffuse-reflection boundary conditions, the Hilbert part

of the solution is indeed straightforward to determine by solving a set of simple ordinary

differential equations analytically. Denoting the radius ratio by ϱ = r2/r1 and the ratio

of ps to τs by γ = ps/τs, the analytic solution obtained from the linearized BGK model

with the diffuse-reflection boundary conditions for Kn ≈ 0 is given by

p = ps

(
1

r1
+

1

r2

)−1
1

r1
, (4.3)

vr =− ps
C0

(
1

r1
+

1

r2

)−1
1

r
, (4.4)

T = τs

[(
1− D0

C0

γ

)
ln r

ln ϱ
−
(
1− D0

C0

γ

)
ln r1
ln ϱ

]
+
D0

C0

γτs

(
1

r1
+

1

r2

)−1
1

r1
, (4.5)

qr =0, (4.6)

where C0 = 2.132039 and D0 = 0.4467494.

4.1.3 Boundary conditions and implementation of the MFS

We shall investigate the problem described above by means of the MFS applied on the

linearized CCR model. Recall that we have already determined the fundamental solutions

of the linearized CCR model and outlined the way to implement them in Sec. 3.3.1 for a

general two-dimensional object. The solution for the field variables at the jth boundary

node can directly be used from Eqs. (3.81)–(3.85) once the boundary nodes and singularity

points for the present problem have been decided.

Since the singularity sites are to be placed outside of the computational domain, we

assume the source points to be placed on two fictitious circular boundaries, one inside the

circle associated with the inner cylinder and the other outside the circle associated with

the outer cylinder, as shown in Fig. 4.2. Note that both fictitious boundaries are concentric
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Figure 4.2: Schematic of the boundary nodes on the boundaries and singu-

larity points outside the flow domain for the problem illustrated in Fig. 4.1.

The red and blue arrows at each boundary node depict the normal (point-

ing toward the flow domain) and tangential directions, respectively at that

node.

with the circles associated with the cylinders. Let the radii of the inner and outer fictitious

boundaries be S̃1 and S̃2, respectively. For simplicity, we consider ns equispaced source

points on each of the two fictitious boundaries and nb equispaced boundary nodes on each

of the actual boundaries (the boundaries of the inner and outer cylinders). As explained

in Sec. 3.3.1, we have four degrees of freedom corresponding to each source point, and

the total number of singularity points for the problem under consideration is Ns = 2ns.

Thus, there will be a total of 4 × Ns = 4 × 2ns unknowns in the problem. Accordingly,

the summations in Eqs. (3.81)–(3.85) will run from i = 1 to i = 2ns.

Boundary conditions at the jth boundary node are obtained from (2.51)–(2.53) by

replacing the flow variables and the normal and tangent vectors with their respective

values at the jth boundary node. Furthermore, since the walls of the cylinders are fixed,

vI = 0. Consequently, the boundary conditions at the jth boundary node read

vj · nj =− η11(pj − psat + nj · σj · nj) + η12(Tj − T I + α0nj · σj · nj), (4.7)

qj · nj = η12(pj − psat + nj · σj · nj)− (η22 + 2τ0)(Tj − T I + α0nj · σj · nj), (4.8)
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tj · σj · nj =− ς(vj + α0qj) · tj. (4.9)

The dimensionless perturbations in the saturation pressures at the inner and outer inter-

faces are psat = 0 and psat = ps, respectively, and the dimensionless perturbations in the

temperatures at the inner and outer interfaces are T I = 0 and T I = τs, respectively, which

need to be replaced in boundary conditions (4.7)–(4.9) accordingly. Note that boundary

conditions (4.7)–(4.9) are to be satisfied at Nb = 2nb boundary nodes. On substituting

the values of the field variables at the jth boundary node from Eqs. (3.90)–(3.94) into

boundary conditions (4.7)–(4.9), the resulting system of equations (associated with the

jth boundary node) can be written in a matrix form as

Ns∑
i=1

Mjiui = bj, (4.10)

for the unknown vector associated with the ith singularity ui = (f1i, f2i, gi, hi)
T. Here,

Mji’s are the coefficient matrices of dimensions 3× 4 and bj is the 3× 1 vector containing

the interface properties, such as ps and τs. We collect all such systems into a new system

MX = B, (4.11)

where X =
[
f11 f21 g1 h1 f12 f22 g2 h2 . . . f1Ns

f2Ns
gNs hNs

]T
is the vec-

tor containing all 4Ns unknowns, the matrix M—containing all the coefficients—has

dimension 3Nb × 4Ns (or 6nb × 8ns) and is referred to as the collocation matrix. We

have solved system (4.11) in the computer algebra software, Mathematica® using the

method of least squares. For the identification purpose, the first Ns singularity points

(i = 1, 2, . . . , ns) in our code belong to the inner fictitious boundary and the rest Ns

singularity points (i = ns + 1, ns + 2, . . . , 2ns) to the outer fictitious boundary. Similarly,

the first nb boundary nodes (j = 1, 2, . . . , nb) belong to the actual inner boundary and

the rest nb boundary nodes (j = nb + 1, nb + 2, . . . , 2nb) to the actual outer boundary.

4.1.4 Results and discussion

For numerical computations, we have taken nb = 100 boundary nodes on each of the

actual boundaries and ns = 100 singularity points on each of the fictitious boundaries.

The dimensionless radii of the original and fictitious boundaries are taken as r1 = 1,

r2 = 2, s1 = S̃1/R̃1 = 0.5 and s2 = S̃2/R̃2 = 4.
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Figure 4.3: Variation of the (scaled) temperature in the gap between the

two cylinders for different values of γ. The solid red, dashed blue, dotted

green and dot-dashed magenta lines denote the results obtained from the

MFS applied on the CCR model for γ = 0, 3, 7 and 11, respectively, and the

corresponding symbols (disks) indicate the analytic solution from Eq. (4.5),

which was obtained analytically for Kn ≈ 0 through an asymptotic theory

[100] performed on the linearized BGK model in Ref. [77]. The other pa-

rameters are nb = 100, ns = 100, r1 = 1, r2 = 2, s1 = 0.5, s2 = 4.

Figure 4.3 illustrates the variation of the (scaled) temperature of the vapor in the

radial direction for Kn ≈ 0 and for different values of the parameter γ (= ps/τs), wherein

τs = 4 is fixed and ps is being varied for varying γ. The (solid red, dashed blue, dotted

green and dot-dashed magenta) lines represent the results obtained from our numerical

framework based on the MFS while the symbols delineate the results from Eq. (4.5), which

was obtained analytically for Kn ≈ 0 through an asymptotic theory [100] performed on the

linearized BGK model in Ref. [77]. It is evident from the figure that the results obtained

with the MFS in the present work are in an excellent agreement with the analytic results

from the linearized BGK model for Kn ≈ 0.

Although not shown here for brevity, the results for the pressure and velocity from

the MFS are also in excellent agreement with the analytic results from Eqs. (4.3) and

(4.4) for Kn ≈ 0.
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It is also evident from Fig. 4.3 that the temperature increases on moving away from

the inner cylinder toward the outer cylinder for smaller values of γ (solid red and dashed

blue lines with corresponding symbols in the figure) and vice versa for larger values of γ

(dotted green and dot-dashed magenta lines with corresponding symbols in the figure).

This indicates the existence of a reverse temperature gradient after a critical value of γ.

Indeed, at this critical value of γ, the (scaled) temperature remains constant along the

radial direction. An expression for this critical value of γ from the asymptotic theory

[100] is given by [77]

γc =
C0

D0

[
1−Kn

C0

D0

(0.124226)

(
1

r1
− 1

r2

)
+O(Kn2)

]
. (4.12)

For Kn ≈ 0, the critical value of γ from the above expression is γc = C0/D0 ≈ 4.772337.

From the MFS presented here, the critical value of γ for Kn ≈ 0 turns out to be

γc ≈ 4.7723, which is also very close to that computed from the above expression. The

phenomenon of reverse temperature gradient can be understood from boundary condition

(4.8) as follows. There are two factors determining the normal heat flux component in

boundary condition (4.8) according to which the evaporation/condensation rate depends

on (i) the difference between the pressure and saturation pressure, and (ii) the temper-

ature difference between the temperatures of the gas (or vapor) and the interface. The

temperature gradient gets reversed when one dominates the other. To gauge the capabil-
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Figure 4.4: Same as Fig. 4.3 but for Kn = 0.1 and the symbols denoting

the data from Ref. [77] obtained using the linearized BGK model.
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ities of the developed method, we also study the problem for higher Knudsen numbers.

Figure 4.4 exhibits the variation of the (scaled) temperature of the vapor in the radial

direction for Kn = 0.1 and for different values of the parameter γ. The (solid red, dashed

blue, dotted green and dot-dashed magenta) lines again represent the results obtained

from our numerical framework based on the MFS but the symbols now denote the data

from the linearized BGK model taken directly from Ref. [77]. It is clear from the figure

that the results from the MFS are in good agreement with those from the linearized BGK

model even for Kn = 0.1; nonetheless, the quantitative differences in the results from

both methods are now noticeable.

To better contextualize the performance of the CCR-MFS framework, we now compare

it with the NSF model supplemented with velocity-slip and temperature-jump boundary

conditions. It is important to note that both approaches yield practically identical results

for Kn ≈ 0 as rarefaction effects are negligible, and the standard NSF equations remain

valid. However, as the Knudsen number increases, the differences between these models

become more pronounced. For instance, at Kn = 0.1, a clear distinction emerges. Fig-

ure 4.5 illustrates the variation of the (scaled) temperature in the gap between the two

cylinders for γ = 3 and γ = 7 at Kn = 0.1, wherein the temperature profiles predicted

by the NSF model with both first-order and higher-order slip and jump conditions are

presented alongside the results obtained from the CCR and BGK models. The classical

first-order velocity-slip and temperature-jump boundary conditions for the NSF model

are obtained by setting α0 = 0 in the boundary conditions (4.7)–(4.9). To incorporate

more refined corrections, we also implement the higher-order velocity slip and temperature

jump conditions by setting α0 = 1/2 in Eq. (4.7), α0 = 1/4 in Eq. (4.8), and α0 = 1/5

in Eq. (4.9). It can be observed that although the NSF model with higher-order slip

and jump conditions shows improved accuracy over the first-order conditions, noticeable

quantitative differences persist when compared to the results obtained from the CCR and

BGK models. This demonstrates that even with higher-order corrections, the NSF model

is limited in capturing certain rarefaction effects, whereas the CCR model provides better

quantitative agreement with kinetic theory across the parameter range considered.

In addition, Figs. 4.4 and 4.5 also show the existence of a reverse temperature gradient.

For Kn = 0.1, the critical value of γ, at which the phenomenon of reverse temperature
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Figure 4.5: Variation of the (scaled) temperature in the gap between the

two cylinders for γ = 3 and γ = 7 at Kn = 0.1. Solid lines represent results

obtained from the MFS applied to the CCR model. Corresponding symbols

(disks) show data from Ref. [77] based on the linearized BGK model. The

dashed and dotted lines correspond to MFS solutions of the NSF model

with second-order and first-order slip and jump boundary conditions, re-

spectively.

gradient occurs, is γc = 4.66247 from the MFS whereas its reported value from the

linearized BGK model in Ref. [77] is γc = 4.63087.

To have further insight on the reverse temperature gradient, the (scaled) radial heat

flux at the actual inner boundary (i.e. at r = 1) is plotted against γ in Fig. 4.6. The (solid

blue and dashed red) lines and symbols denote the results from the MFS in the present

work and the data from the linearized BGK model given in Ref. [77], respectively. It is

apparent from the figure that our results for the radial heat flux are also in good agreement

with the data from the linearized BGK model for a smaller value of the Knudsen number

(Kn = 0.1 in the figure); however, for a higher value of the Knudsen number (Kn = 0.2

in the figure), there is a noticeable mismatch between the results obtained from the MFS

and the data from the linearized BGK model given in Ref. [77]. The exact source of this

discrepancy is not entirely clear as per our current understanding. One possible reason

could be the truncation of the power series at first order in Ref. [77] , where neglected

higher-order terms might contribute significantly at larger Knudsen numbers. Another

47



0 1 2 3 4 5 6

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

Figure 4.6: Variation of the (scaled) radial heat flux with γ. The solid blue

and dashed red lines denote the results obtained from the MFS applied on

the CCR model for Kn = 0.1 and 0.2, respectively, and the corresponding

symbols (disks) indicate the data taken directly from Ref. [77], which were

obtained using the linearized BGK model. The other parameters are the

same as those for Fig. 4.3.

plausible explanation is the limitation of the CCR model itself, particularly its inability

to capture Knudsen layers that become increasingly prominent near boundaries at higher

Knudsen numbers. Figure 4.6 also shows that for each value of the Knudsen number,

there is a γ at which the radial heat flux changes its sign. This γ is indeed the same as

the γc described above, at which reversal of the temperature gradient takes place.

Through the plots of heat flux lines, although not shown here, it has been found that,

in the case of τs > 0, heat flows from the outer cylinder toward the inner cylinder for

γ < γc and vice versa for γ > γc . This makes sense in view of Figs. 4.3 and 4.4. The

direction of heat flow reverses in both cases when τs is taken to be negative or, in other

words, when the initial temperature of the inner cylinder is taken higher than that of the

outer cylinder.

Figure 4.7 displays the (scaled) radial velocity at r = 1, plotted against γ for Kn ≈ 0

and Kn = 0.1. The solid blue and dotted green lines are again the results from the MFS in

the present work while the symbols in the case of Kn ≈ 0 denote the results from Eq. (4.4)

and those in the case of Kn = 0.1 denote the data taken from Ref. [77]; nevertheless, in
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Figure 4.7: Variation of the (scaled) radial velocity with γ. The dotted

green and solid blue lines denote the results obtained from the MFS ap-

plied on the CCR model for Kn ≈ 0 and Kn = 0.1, respectively, and

the corresponding symbols (disks) indicate those from the linearized BGK

model (from Eq. (4.4) in the case of Kn ≈ 0 and directly from Ref. [77]

in the case of Kn = 0.1). The other parameters are the same as those for

Fig. 4.3.

both cases symbols denote the results from the linearized BGK model. The figure also

demonstrates a good agreement between the results from the method developed in the

present work and those from the linearized BGK model.

4.1.5 Location of singularities

As mentioned in Sec. 3.1.1, the collocation matrix associated with the linear system

resulting from the MFS could be ill-conditioned and there is a trade-off between the

accuracy and good conditioning. Therefore, it is important to determine an appropriate

location for the fictitious boundary in order to obtain the solutions with a desired accuracy.

Using the definition of the effective condition number, we first verify the inverse

relationship between the maximum error and the effective condition number. Let α > 1

be the dilation parameter that determines the separation between the actual boundary

(containing boundary nodes) and the fictitious boundary (containing singularities) such

that s1 = r1/α and s2 = α r2. A larger value of α corresponds to a larger gap between

the actual and fictitious boundaries.
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For the current problem, the maximum absolute error ϵmax in the temperature com-

puted with the MFS and with the analytic solution for Kn ≈ 0 along with the effective

condition number is plotted against the dilation parameter α in Fig. 4.8. The figure shows

that the inaccuracy of the MFS is roughly inversely proportional to the effective condi-

tion number. It is also evident from the figure that the maximum value of the effective

condition number is attained for α around 1.6, where the effective condition number is

of order 108 and the absolute error is minimum. It is worthwhile noting that the order

of the effective condition number remains 108 for higher values of α beyond α ≈ 1.6;

similarly, the order of the maximum absolute error remains 10−5 for higher values of α

beyond α ≈ 1.6. To further investigate the effect of the number of boundary nodes and

singularity points, Fig. 4.9 illustrates the variation in the effective condition number (left)

and the maximum absolute error in the temperature (right) with the dilation parameter

α. As depicted in the left panel of Fig. 4.9, it turns out that the value of α at which

the highest effective condition number is attained increases (decreases) with decrease (in-

crease) in the number of boundary nodes and singularities. Analogously, from the right

panel it is evident that the value of α at which the minimum error is attained increases

(decreases) with decrease (increase) in the number of boundary nodes and singularities.

Therefore, to save computational time, one can use smaller number of boundary nodes
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Figure 4.8: The maximum absolute error ϵmax in the temperature and

the effective condition number κeff for the problem of flow between coaxial

cylinders plotted over the dilation parameter α for Kn ≈ 0 and nb = ns =

100.
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Figure 4.9: The effective condition number κeff (left) and the maximum

absolute error ϵmax in the temperature (right) varying with the dilation

parameter α for Kn ≈ 0 and different values of nb or ns.
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Figure 4.10: Variation of the effective condition number κeff with respect

to the dilation parameter α for nb = ns = 100.

and source points along with a bigger value of α. Choosing α ≥ 2 appears sufficient to

achieve optimal accuracy for nb = ns = 100.

For higher Knudsen numbers, the variation in the effective condition number with

respect to the dilation parameter is illustrated in Fig. 4.10. It can be noticed from the

figure that the highest value of the effective condition number for a given Knudsen number

is attained at a value of α somewhere in between 1.8 and 2. Accordingly, the fictitious

boundaries have been safely placed at locations corresponding to α = 2.
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4.2 Temperature-induced flow between two non-coaxial cylin-

ders

In this section, we investigate the problem of flow induced by a temperature difference

in a rarefied gas confined between two non-coaxial cylinders via the CCR-MFS framework

developed in Sec. 3.3. The same problem was investigated numerically by Aoki, Sone and

Yano [5] with the linearized BGK model and the diffuse-reflection boundary conditions.

4.2.1 Problem description

Let us consider a rarefied monatomic gas confined between two infinitely long circular

cylinders of radii R̃1 and R̃2 (with R̃1 < R̃2) that are not coaxial. Again, owing to the

axial symmetry, it is sufficient to investigate the problem in 2D. Let the locations of both

cylinders be fixed according to the cross-sectional view portrayed in Fig. 4.11 so that the

centers of the circles associated with the outer and inner cylinders be at the origin and at

(0,−d̃), respectively. Furthermore, let the temperatures of the inner and outer cylinders

be kept fixed at T̃i = T̃0 and T̃o = T̃0(1 + ∆τ), respectively, with ∆τ being sufficiently

small in comparison to T̃0 so that the linear theory remains meaningful.

Figure 4.11: Cross-sectional view of the flow of a rarefied gas confined

between two non-coaxial cylinders having different wall temperatures.
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Figure 4.12: Schematic of the boundary nodes on the boundaries and singu-

larity points outside the flow domain for the problem illustrated in Fig. 4.11.

The red and blue arrows at each boundary node depict the normal (pointing

toward the flow domain) and tangential directions at that node, respectively.

For the purpose of non-dimensionalization, we again take the radius of the inner

cylinder as the characteristic length L̃, i.e. L̃ = R̃1. Consequently, the dimensionless radii

of the inner and outer cylinders are r1 = R̃1/L̃ = 1 and r2 = R̃2/L̃, respectively, and the

dimensionless distance between the centers of the cylinders is d = d̃/L̃. Furthermore, for

the purpose of the linearization and non-dimensionalization, the equilibrium pressure of

the gas p̃0 is taken as the reference pressure and the temperature of the inner cylinder

T̃i as the reference temperature so that the dimensionless perturbations in temperatures

on the inner and outer walls are Ti = (T̃i − T̃i)/T̃i = 0 and To = (T̃o − T̃i)/T̃i = ∆τ ,

respectively.

4.2.2 Boundary conditions and implementation of the MFS

In order to place the singularity sites outside the computational domain, we again

assume the source points to be placed on two fictitious circular boundaries, one inside

the circle associated with the inner cylinder and the other outside the circle associated

with the outer cylinder, as shown in Fig. 4.12. The inner (outer) fictitious boundary
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is concentric with the circle associated with the inner (outer) cylinder. Let the radii

of the inner and outer fictitious boundaries be S̃1 and S̃2, respectively. Consequently,

the dimensionless radii of the inner and outer fictitious boundaries are s1 = S̃1/L̃ and

s2 = S̃2/L̃. Similarly to the Sec. 4.1, we consider ns equispaced source points on each

of the two fictitious boundaries and nb equispaced boundary nodes on each of the actual

boundaries (the boundaries of the inner and outer cylinders).

Since the walls of the cylinders are fixed for this problem as well, vI = 0. Hence,

the boundary conditions (4.7)–(4.9) at the jth boundary node hold true for the present

problem as well. However, since the present problem does not involve evaporation and

condensation, the evaporation/condensation coefficient Θ is zero for this problem. Con-

sequently, boundary conditions (4.7)–(4.9) for the problem under consideration further

reduce to

vj · nj = 0, (4.13)

qj · nj = −2τ0(Tj − T I + α0nj · σj · nj), (4.14)

tj · σj · nj = −ς(vj + βqj) · tj. (4.15)

Note that the coefficient α0 in boundary condition (4.15) has been changed to β = 1/5

(see, e.g., Refs. [105, 109, 110]) in order to have a fair comparison with the findings of

Ref. [5]. The interface temperature T I in boundary condition (4.14) is 0 for the inner

cylinder and ∆τ for the outer cylinder.

The construction of the collocation matrix and the formation of system (4.11) for

the present problem is exactly similar to that demonstrated in Sec. 4.1.3. We have

again solved system (4.11) for the present problem analogously in the computer algebra

software, Mathematica® using the method of least squares to determine the unknowns

f11, f21, g1, h1, f12, f22, g2, h2, . . . , f1Ns
, f2Ns

, gNs , hNs .

4.2.3 Results and discussion

We have computed the results numerically by taking the parameters as ∆τ = 1,

nb = ns = 100, r1 = 1, r2 = 2, s1 = 0.5, d = 0.5 and s2 = 4. Figure 4.13 illustrates the

variation of the tangential component of the (dimensionless) velocity on the right halves

of the inner (left panel) and outer (right panel) circles associated with the respective

cylinders with respect to the angle θ, which is the angle measured from the negative
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Figure 4.13: Tangential velocity on the right halves of the inner and outer

circles associated with the respective cylinders plotted against the angle θ

for different values of the Knudsen number and for ∆τ = 1. The dashed

red, solid blue and dotted green lines denote the results obtained from the

MFS applied on the CCR model for Kn = 0.2, 0.1 and 0.04, respectively,

and the corresponding symbols (disks) indicate the data from the linearized

BGK model [5]. The other parameters are the same as those for Fig. 4.3.

y-axis anticlockwise around the center of the inner circle as shown in Fig 4.12. the

(dashed red, solid blue and dotted green) lines represent the results obtained with the

MFS applied on the CCR model in the present work and the symbols denote the data

taken from Ref. [5], which were obtained using the linearized BGK model. The angle has

been taken in this way in order to maintain the geometrical similarity with Ref. [5]. The

unit tangential directions on the inner and outer circles are marked in Fig 4.12 with blue

arrows. Figure 4.13 shows that the tangential components of the velocity for both inner

and outer circles remain zero at θ = 0 and θ = π and that they attain the maximum values

somewhere in (0, π/2). Furthermore, the value of θ at which the maximum is attained also

shifts more toward θ = π/2 on increasing the value of the Knudsen number. Figure 4.13

evinces that the results from the MFS applied on the CCR model (lines) are in reasonably

good agreement with those from the linearized BGK model for small Knudsen numbers

(dotted green lines and symbols) and that the differences between the results from both

methods become more and more prominent with increasing Knudsen numbers (dashed

red and solid blue lines with corresponding symbols), where the present method starts
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Figure 4.14: Velocity streamlines and temperature contours obtained from

the MFS applied on the CCR model at Kn = 0.1 and ∆τ = 1. The other

parameters are the same as those for Fig. 4.3.

overpredicting the results, though the trends from both methods remain qualitatively

similar to each other even for high Knudsen numbers. The reason for these quantitative

mismatches for large Knudsen numbers is attributed to the limitation of the CCR model

in capturing the Knudsen layers, which are more conspicuous near the boundaries for

large Knudsen numbers. The thickness of the Knudsen layers increases with increasing

the Knudsen number [106], which renders larger deviations in the tangential component

of the velocity near the inner and outer walls of the cylinders with increasing the Knudsen

number.

Figure 4.13, in other words, also reveals that at θ = 0 and θ = π the flow can

happen only in the normal directions. This prompts us to draw streamlines of the flow in

Fig. 4.14. For explanatory purpose, we also display the temperature contours in Fig. 4.14.

The streamlines in Fig. 4.14 show that at the narrowest gap (at θ = 0), the gas starts

moving from the outer (hotter) cylinder toward the inner (colder) cylinder due to the

largest temperature gradient at θ = 0 and flows along the surface of the inner cylinder

on both halves until it reaches θ = π, at which it can flow only in the normal direction.

Therefore, at the widest gap (near θ = π), the gas flows from the inner cylinder toward

the outer cylinder and returns back from there toward the narrowest gap along the surface

of the outer cylinder (but in the opposite directions due to symmetry along the y-axis).
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Figure 4.15: Velocity streamlines and temperature contours obtained from

the MFS applied on the NSF equations with the second-order slip and jump

boundary conditions at Kn = 0.1 and ∆τ = 1. The other parameters are

the same as those for Fig. 4.3.

This renders two counter-directional circulating flows, one in the left half of the domain

and the other in the right half of the domain. The directions of the circulating flows

reverse on taking ∆τ < 0, i.e. when the inner cylinder is at a higher temperature than

the outer one. With the considered values of the Knudsen number, the directions of the

circulating flows apparently do not depend on the Knudsen number. The direction of the

streamlines obtained from the MFS applied on the CCR model in Fig. 4.14 is consistent

with that obtained using the linearized BGK model in Ref. [5].

In order to gain more insight into the process, we have also implemented the MFS

to the (linearized) NSF equations [by setting α0 = 0 in Eqs. (2.20)1 and (2.20)2] with

the second-order slip and jump boundary conditions [105, 109, 110] [obtained by setting

α0 = 1/4 in Eq. (4.14) and β = 1/5 in Eq. (4.15)], and plotted the streamlines obtained

with them in Fig. 4.15. From Figs. 4.14 and 4.15, it is evident that, in contrast to the CCR

model, the NSF equations even with the second-order slip and jump boundary conditions

predict streamlines in completely opposite and incorrect directions. This affirms the

inadequacy of the NSF equations in describing thermal-stress slip flows [101] accurately,

which—on the other hand—can be described reasonably well with the CCR model due

to the coupling between the stress and heat flux. The superposition of all the point force
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Figure 4.16: Drag force on the inner cylinder plotted against the Knudsen

number for ∆τ = 1. The solid and dashed lines denote the results obtained

from the MFS applied on the CCR and NSF models, respectively, while the

symbols indicate the data for the drag force obtained from the linearized

BGK model [5]. The other parameters are the same as those for Fig. 4.3.

vectors at the inner source points yields the total force F acting on the inner cylinder,

i.e.

F =
Ns∑
i=1

fi, (4.16)

where i = 1, 2, . . . , Ns refer to the points on the inner fictitious boundary. The projection

of the total force in the direction opposite to the streamwise direction is referred to as the

drag force (on the inner cylinder), which is given by

Fd = F · (−ŷ) = −
Ns∑
i=1

fi · ŷ, (4.17)

where ŷ represents the unit vector in the streamwise direction. Variation of the drag

force with the Knudsen number is illustrated in Fig. 4.16, which shows good agreement

between the results from the MFS applied on the CCR model (solid lines) and those

from the linearized BGK model (symbols) even for high Knudsen numbers (especially, for

Kn ≲ 2).

This was actually not the case for tangential velocity displayed in Fig. 4.13, where

the differences between the results from the two models were noticeable for high Knudsen

numbers. This shows that the CCR model is capable of predicting the global quantities,
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Figure 4.17: Variation of the effective condition number κeff with respect

to the dilation parameter α. The number of boundary nodes at either of

the actual boundaries and the number of singularity points at either of the

fictitious boundaries are 100 (i.e. nb = ns = 100).

e.g., the drag force, quite accurately but is incapacitated of predicting the local quantities,

e.g., the velocity and temperature, for high Knudsen numbers due to its limitation of not

being able to predict Knudsen layers. On the contrary, the drag force obtained with the

NSF equations (depicted by the dashed line in Fig. 4.16) deviates significantly from the

drag force obtained with the linearized BGK model for Kn ≳ 0.2.

4.2.4 Choice of singularity points

Following the definition of the effective condition number (3.11) we plot the variation

of the effective condition number with respect to dilation parameter (as also done in

Sec 4.1.5) for different Knudsen numbers. It can be noticed from the Fig. 4.17 that the

highest value of the effective condition number for a given Knudsen number is again

attained at a value of α somewhere in between 1.8 and 2. From Fig. 4.17, although the

effective condition number decreases on increasing α after a certain value of α, we have not

encountered any significant change in the results on keeping the singularities farther (or

on taking bigger values of α). Therefore, it is apparently sufficient to just ensure α ≥ 2

to attain an optimal accuracy in the case of nb = ns = 100. Therefore, the fictitious

boundaries for this problem has safely been positioned at locations for which α = 2.
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4.3 Rarefied gas flows between coaxial circular and elliptic cylin-

ders

In this section, we aim to explore the effect of curvature of the geometry by considering

two coaxial cylinders with outer cylinder being elliptic and inner cylinder being circular,

instead of two circular cylinders as considered in Sec. 4.1.

4.3.1 Problem statement

We consider flows of a rarefied gas confined between two coaxial cylinders having

different temperatures. The inner cylinder is circular while the outer is elliptic. Let

the radius of the circular cylinder be r̃ and the lengths of the semi-major and semi-

minor axes of the elliptic cylinder be ã and b̃, respectively, with r̃ < b̃ < ã. The cross-

sectional view of the geometry of the problem is exhibited in Fig. 4.18. Both cylinders are

assumed to be infinitely long along the z̃-axis. Owing to symmetry along the transverse

direction (i.e. along the z̃-axis), it is again sufficient to study the quasi two-dimensional

representation of the problem in the x̃ỹ-plane. For the purpose of non-dimensionalization,

we choose the length of the semi-minor axis b̃ as the length scale L̃ following [4], which

has been referred for qualitative comparison. Consequently, the dimensionless lengths

Figure 4.18: Cross-sectional view of the geometry of the problem. The

shaded region depicts the flow domain. The cylinders are concentric and

coaxial with the radius of the circular cylinder being smaller than both semi

axes of the elliptic cylinder.
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of the semi-major and semi-minor axes are a = ã/b̃ and b = b̃/L̃ = 1, respectively,

and the dimensionless radius of the inner cylinder is r = r̃/b̃. Furthermore, let the

temperatures of the inner and outer cylinders be T̃i and T̃o, respectively. To make the

flow variables dimensionless, we take T̃i as the reference temperature. As also discussed

in Secs. 4.1 and 4.2, we shall be dealing with the linearized equations in this work. The

wall temperatures of the cylinders are also linearized around the reference temperature

T̃i. Consequently, the dimensionless perturbations in the temperatures (from the reference

temperature) on the inner and outer walls are Ti = (T̃i− T̃i)/T̃i = 0 and To = (T̃o− T̃i)/T̃i,

respectively. The two distinct problems considered in this set-up are as follows.

1. Thermally-induced flow: In this problem, we investigate the flow of rarefied gas

rendered purely due to the temperature difference between the walls of the two

cylinders. The problem was also investigated as a special case in Refs. [4] and [82]

using the DSMC method.

2. Phase-transition flow: We consider a moderately rarefied monatomic vapor con-

fined between negligibly thin condensed phases on the walls of the two cylinders

and investigate the phenomenon of evaporation/condensation of the vapor. The

condensed phases on the walls are assumed to be so thin that the temperatures

of the vapor in these phases are assumed to be the same as those of the respec-

tive cylinders. The phenomenon of evaporation/condensation is governed both by

the temperature difference between the phases near the walls and by the satu-

ration pressures of the condensed phases. Corresponding to the temperatures T̃i

and T̃o of the inner and the outer cylinders, let the saturation pressures at the

inner and outer walls be p̃i and p̃o, respectively. Also, we take the saturation pres-

sure at the inner wall p̃i as the reference pressure corresponding to the reference

temperature T̃i. Consequently, the dimensionless perturbations in the saturation

pressures (from the reference pressure) on the inner and outer condensed phases

are pi = (p̃i − p̃i)/p̃i = 0 and po = (p̃o − p̃i)/p̃i, respectively. We denote the ratio

of po to To by γ = po/To.

It is important to note that the two problems are completely independent of each other

and that the same notations used for the wall temperatures in the two problems should

not be confusing.
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4.3.2 Boundary conditions

The boundary conditions (2.51)–(2.53) in the case of problem 1 (requiring canonical

boundaries or Θ = 0) reduce to [42, 90]

v · n = 0, (4.18)

q · n = −2τ0(T − Tw + α0n · σ · n), (4.19)

t · σ · n = −ς(v + βq) · t. (4.20)

where Tw represents the (dimensionless) temperature on the wall, having values Ti and To

respectively for the inner and outer cylinders. Note that in boundary condition (4.20), a

new parameter β has been introduced in place of α0. The parameter β is referred to as the

thermal-slip coefficient. The relevant works available in the literature based on the asymp-

totic analysis as well as on numerical experiments emphasize on the importance of bound-

ary condition (2.53) and of the coefficient β, especially when dealing with temperature-

induced flows. For boundary conditions (2.51)–(2.53) to be thermodynamically-consistent,

the thermal-slip coefficient β is taken to be the same as the coupling coefficient α0 [90].

Nevertheless, some other values for the thermal-slip coefficient β also exist in the litera-

ture; see, e.g., Refs. [63, 86, 93]. Among the existing values of the thermal-slip coefficient

β, the commonly used value is β = 1/5 [105, 109, 110]. We shall also demonstrate the

effect of the thermal-slip coefficient by considering two values for it, namely β = 1/5 and

β = α0 = 0.3197.

For problem 2 (requiring phase-change boundaries), the boundary conditions (2.51)–

(2.53) are used directly with Θ = 1.

4.3.3 Results and discussion

In order to keep the source points outside the flow domain, we consider two fictitious

boundaries concentric with the actual boundaries of the cylinders: the first one in a

circular shape of radius r̃s shrunk inside the actual circular boundary (i.e., r̃s < r̃) and the

second one in an elliptic shape with semi-major axis ãs and semi-minor axis and b̃s, dilated

outside the actual elliptic boundary (i.e., ãs > ã and b̃s > b̃) as illustrated in Fig. 4.19.

For numerical computations in both problems, the (dimensionless) radius of the inner

cylinder has been fixed to r = 0.6, the (dimensionless) semi-major and semi-minor axes

of the outer cylinder to a = 1.5 and b = 1, respectively, the (dimensionless) radius of the
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Figure 4.19: Schematic of the distribution of collocation points (or boundary

nodes) on the boundaries and source points outside the flow region for

the problem illustrated in Fig. 4.18. The blue and red arrows respectively

delineate the tangential and normal directions at each boundary node.

inner fictitious boundary to rs = 0.3, and the (dimensionless) semi-major and semi-minor

axes of the outer fictitious boundary to as = 3 and bs = 2, respectively. Furthermore,

nb = 100 boundary nodes have been chosen on each of the two actual boundaries of

the cylinders and ns = 100 source points have been placed on each of the two fictitious

boundaries. Note that, with the length scale L̃ = b̃ used in the non-dimensionalization

of the equations, the x̃- and ỹ-axes are also scaled to x = x̃/L̃ and y = ỹ/L̃ in order to

present the results in the (dimensionless) xy-plane. Owing to the geometrical symmetry in

both the problems, we shall present the results only in the first quadrant of the xy-plane,

which can be replicated in the other three quadrants in a straightforward way.

4.3.3.1 Problem 1: Thermally-induced flow between coaxial circular and elliptic cylinders

As the flow in this problem is driven by temperature difference between the walls

of the cylinders, the dimensionless perturbations in temperatures of the inner and outer

cylinders are set to Ti = 0 and To = 1, respectively. Furthermore, to study the impact

of the thermal-slip coefficient, two values, namely β = 1/5 and β = α0 = 0.3197, of the

thermal-slip coefficient are considered.

Figure 4.20 illustrates the tangential component of the velocity on the inner and outer

cylinders across the first quadrant for β = 1/5. The figure shows that the tangential

velocity at both cylinders remains zero at θ = 0 (i.e. along the x-axis) as well as at

θ = π/2 (i.e. along the y-axis) for all Knudsen numbers and it increases on increasing
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Figure 4.20: Tangential velocity of the gas on the inner (left panel) and outer

(right panel) cylinders with β = 1/5. The other parameters are r = 0.6,

a = 1.5, b = 1, rs = 0.3, as = 3, bs = 2, nb = ns = 70, Ti = 0 and To = 1.

the Knudsen number for all 0 < θ < π/2 as non-equilibrium becomes stronger with the

increasing Knudsen number. The former observation, in other words, apprises that the

flow at θ = 0 (i.e. along the x-axis) and θ = π/2 (i.e. along the y-axis) can occur only in

the normal directions to the cylinders. This actuates us to draw the streamlines in order

to have further insights into the flow.

The streamlines along with the temperature contours are exhibited for Kn = 0.02,

0.1 and 0.2 in Fig. 4.21. Evidently, there is no flow in the tangential directions at θ = 0

and θ = π/2, which is consistent with the observation made from Fig. 4.20. Owing to the

most significant temperature gradient occurring at θ = π/2 (attributed to the narrowest

gap between the cylinders), the gas initiates movement from the outer (warmer) cylinder

toward the inner (cooler) cylinder along θ = π/2 in the negative y-direction. Subsequently,

it follows a path along the inner cylinder till it reaches to θ = 0, and from there it again

flows in the normal direction at θ = 0 toward the outer cylinder (due to the widest gap

between the cylinders). Once it reaches the outer cylinder at θ = 0, it has no other choice

but to flow along the outer cylinder from θ = 0 toward θ = π/2. This results in a counter-

clockwise circulating flow in the first quadrant that is symmetrically replicated in the

other three quadrants. This phenomenon holds true for all considered Knudsen numbers,

i.e. Kn = 0.02, 0.1 and 0.2. Such a circulating flow in this problem is a consequence

of thermal stress rendered by the difference in temperature gradients at θ = 0 and π/2.
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Figure 4.21: Velocity streamlines and temperature contours obtained with

the MFS applied on the CCR model for Knudsen numbers (a) Kn = 0.02,

(b) Kn = 0.1 and (c) Kn = 0.2 and for β = 1/5. The other parameters are

the same as those in Fig. 4.20.

65



0 0.3 0.6 0.9 1.2 1.5

0.0

0.2

0.4

0.6

0.8

1.0

(a)
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 0.3 0.6 0.9 1.2 1.5

0.0

0.2

0.4

0.6

0.8

1.0

(b)

0.4

0.5

0.6

0.7

0.8

0.9

0 0.3 0.6 0.9 1.2 1.5

0.0

0.2

0.4

0.6

0.8

1.0

(c)
0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

Figure 4.22: Same as Fig. 4.21 but for β = 0.3197.

The streamlines predicted by the MFS applied to the CCR model in the case of β = 1/5

align with those obtained in Refs. [4] and [82] using the DSMC method for Kn = 0.5 and

Kn = 0.02, respectively.
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Figure 4.23: Same as Fig. 4.21 but with the MFS applied on the NSF

model.

The thermal-slip coefficient β plays a significant role in anticipating the interplay

between thermal-creep and thermal-stress effects. To illustrate this, the streamlines in
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the case of β = α0 = 0.3197 are plotted along with temperature contours for Kn =

0.02, 0.1 and 0.2 in Fig. 4.22. For very small values of the Knudsen number (Kn =

0.02), two counter-rotating flows are generated—one rotating counterclockwise originates

along the outer cylinder while the other rotating clockwise along the inner cylinder; see

Fig. 4.22. The former is due to the flow driven by thermal stress, causing the gas to

move from the outer (hotter) cylinder toward the inner (colder) cylinder at θ = π/2.

The latter, on the other hand, is attributed to thermal creep causing the gas molecules

to move from the colder (inner) cylinder to the hotter (outer) cylinder at θ = π/2.

Evidently from Fig. 4.22, as the Knudsen number increases, the flow along the outer

cylinder intensifies whereas the flow along the inner cylinder diminishes. At sufficiently

high Knudsen numbers (Kn = 0.2), the flow along the inner cylinder ceases entirely, and

the counterclockwise flow along the outer cylinder extends across the entire quadrant

(see the bottom panel of Fig. 4.22). As mentioned above, the appearance of a secondary

circulating flow near the inner cylinder is due to the interplay between thermal-creep and

thermal-stress effects, which is attributed to the coefficient β. In the case of a small value

of the coefficient β (e.g., β = 1/5 which is smaller that β = 0.3197), the thermal stresses

still dominate the flow and a flow rendered by the thermal-creep is invisible for a small

value of β (as in Fig. 4.21). For large values of β, the thermal creep effects become more

pronounced. Even β = 0.3197 is not large enough to show the thermal creep effects for

large Knudsen numbers (bottom panel of Fig. 4.22). Nevertheless, the correct value of

the thermal-slip coefficient β is intricately tied to the gas-surface interaction that could

be better explored through molecular dynamics simulations, a task currently beyond the

scope of this work.

Another crucial remark in this study pertains to the limitations of the NSF equations

in accurately predicting thermal-stress slip flows, even with the second-order slip and jump

boundary conditions. To demonstrate the limitations of the NSF equations, we have also

employed the MFS to solve the linearized NSF equations (obtained by setting α0 = 0 in

Eqs. (2.20)1 and (2.20)2) along with the second-order slip and jump boundary conditions

(obtained by setting α0 = 1/4 and β = 1/5 in boundary conditions (4.19) and (4.20)).

Fig. 4.23 illustrates the streamlines plotted over the temperature contours obtained from

the NSF equations with the second-order slip and jump boundary conditions for Kn =

0.02, 0.1 and 0.2. It is evident from the figure that the streamlines from the NSF equations
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Figure 4.24: Variation of the (scaled) temperature of the vapor with the

radial distance r between the two cylinders at θ = 0—for three different

values of the parameter γ, namely γ = 1 (red color), γ = 4 (green color)

γ = 8 (blue color), and for three different values of the Knudsen number,

namely Kn = 0.02 (solid lines), Kn = 0.1 (dashed lines) and Kn = 0.2

(dotted lines). The other parameters are a = 1.5, b = 1, rs = 0.3, as = 3,

bs = 2, nb = ns = 70, Ti = 0.

are directed in completely reverse direction in contrast to those from the CCR model in

Figs. 4.21. Since the stream directions obtained from the CCR model are consistent with

those obtained from the DSMC method in Refs. [4] and [82], it is apparent that the

streamlines predicted by the NSF equations are incorrect even for Kn = 0.02. Thus, the

NSF equations are in general unsuitable for describing thermal-stress and thermal-creep

flows. A similar problem of thermally-induced flow between coaxial elliptic and circular

cylinders is investigated in Appendix C to further demonstrate the interplay between

thermal stress and thermal creep.

4.3.3.2 Problem 2: Evaporation/condensation between the condensed phases of a vapor

confined between coaxial circular and elliptic cylinders

For the problem of phase-transition flow, we have fixed To to To = 4, and we vary po

to change the parameter γ = po/To, where γ represents the characterization parameter

for phase change. Figure 4.24 displays the variation of the (scaled) temperature of the

vapor in the radial direction along θ = 0 for different values of the parameters γ and Kn.

The red, green and blue colored lines represent the temperature variation for γ = 1, 4 and
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Figure 4.25: Heat flow lines plotted over (scaled) temperature contours for

(a) γ = 1 and (b) γ = 8 and Kn = 0.1. The other parameters are the same

as those in Fig. 4.24.

8, respectively. Solid, dashed and dotted lines represent the temperature variation in the

cases when Kn = 0.02, 0.1 and 0.2, respectively. The figure shows that the temperature

of the vapor increases on moving away from the inner cylinder toward the outer cylinder

for smaller values of γ (for γ = 1 and 4 in the figure), and that it decreases on moving

away from the inner cylinder toward the outer cylinder for larger values of γ (γ = 8 in

the figure). This connotes the existence of a reverse temperature gradient after some

critical value of the parameter γ. The figure also suggests that the critical value of

the parameter γ at which the temperature gradient reverses should be slightly larger

than 4. This critical value is actually that value of γ at which there is no temperature

variation between the two cylinders. Before further discussion on the critical value of
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γ, let us demonstrate the phenomenon of temperature gradient reversal with the help

of temperature contours and heat flux lines. Figure 4.25 illustrates the heat flux lines

plotted over the temperature contours for Kn = 0.1 and for (a) γ = 1 (top panel) and (b)

γ = 8 (bottom panel). As depicted by the temperature contours in the case of γ = 1 (top

panel), the temperature of the vapor increases on moving from the inner cylinder toward

the outer cylinder and correspondingly, the heat flows from the outer cylinder toward the

inner cylinder. However, beyond the critical stage of γ is surpassed, the situation reverses,

as can be seen for γ = 8 (bottom panel). This phenomenon of temperature gradient

reversal can be explained using the boundary condition (2.51). The normal component

of the heat flux in boundary condition (2.51) consists of two parts which determine the

evaporation or condensation rate: first, the difference between the pressure and saturation

pressure and second, the difference between the temperatures of the vapor and interface.

The temperature gradient gets reversed when one dominates the other. For large values

of γ, the former dominates whereas for small values of γ, the latter dominates. Although

not shown here for brevity, the phenomenon of reversal of temperature gradient happens

analogously for Kn = 0.02 and 0.2 as well.

Owing to the asymmetry associated with the elliptic cylinder, the critical value of γ

also varies with θ. Therefore, for further investigation of the critical value of the parameter

γ (that determines the reversal of temperature gradient), we plot γ against the angle θ
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Figure 4.26: Variation of the parameter γ with the angle θ for Kn = 0.02, 0.1

and 0.2. The other parameters are the same as those in Fig. 4.24.
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for the Knudsen numbers Kn = 0.02, 0.1 and 0.2 in Fig. 4.26. The figure reveals that for

a fixed θ the critical value of γ in general decreases with the increasing Knudsen number,

which was not so obvious in Fig. 4.24. In the similar problem of rarefied vapor flow

between the condensed phases of two coaxial circular cylinders studied in Sec. 4.1 and

also in Ref. [77], an explicit expression for the critical value of γ depending on Knudsen

number was given. The critical value of γ for the present problem, however, not only

depends on the Knudsen number but also on the angle due to the asymmetry associated

with the elliptic cylinder. This is why we are unable to proffer an explicit expression for

the critical value of γ for the present problem.

4.4 Rarefied gas flow inside a lid-driven square cavity

4.4.1 Problem statement

A monatomic rarefied gas is considered to be contained inside an isothermal square

cavity having dimensionless length of the side as L = 1. Apart from the classical single

lid-driven cavity problem, we also consider two other problems of two-sided lid-driven

square cavities with top and bottom walls moving in the same and opposite directions.

The considered flow scenarios are as follows.

vw

L

x

y

vw

vw

L

vw

vw

L

Figure 4.27: Schematics of (a) single-sided lid-driven cavity, and two-sided

lid-driven cavities with top and bottom walls moving in the (b) same and

(c) opposite directions.

1. In the first scenario, the upper boundary (referred to as the lid) of the square

cavity is considered to be moving with a constant (dimensionless) velocity vw in
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Figure 4.28: Schematic of the distribution of collocation points (or boundary

nodes) on the boundaries and source points outside the flow region for the

problem described in Sec. 4.4.1. The magenta and blue arrows demonstrate

the tangential and normal directions at each boundary node, respectively.

the positive x-direction as shown in Fig. 4.27 (a). The other three boundaries are

considered to be stationary.

2. The second scenario consists of the movement of the top and bottom walls of the

square cavity. Both walls are considered to be moving in the positive x-direction

with the same velocity vw as shown in Fig. 4.27 (b). The left and right walls of

the cavity are assumed to be stationary.

3. In the third scenario, the top and bottom walls of the square cavity are considered

to be moving in opposite directions with the same speed as shown in Fig. 4.27 (c).

The boundary conditions (2.51)–(2.53) associated with the CCR model [(2.19)–(2.20)]

in this problem reduce to

v · n− vw · n = 0, (4.21)

q · n = −2τ0(T + α0n · σ · n), (4.22)

n · σ · t = −ς(v · t− vw · t+ α0q · t), (4.23)

where vw is the wall velocity, n and t are the unit normal and tangent vectors at the

boundary, respectively. Throughout this section, the values of coupling coefficient and

Prandtl number are fixed as α0 = 2/5 and Pr = 2/3, respectively, which correspond to
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the Maxwell molecules [88]. Implementation of the MFS for current problem involves the

placement of source points outside the flow domain on a circular fictitious boundary, a

schematic of which is illustrated in Fig. 4.28. The results have been obtained by fixing

an equal number of boundary nodes and source points, i.e., Nb = Ns = 200 and the

cavity region {(x, y) : 0 ≤ x ≤ 1, 0 ≤ y ≤ 1}. The fictitious circular boundary on which

the singularities or source points are placed is centered at (0.5, 0.5) with (dimensionless)

radius Rs = 2.

4.4.2 Results for a single-sided lid-driven cavity

The dimensionless velocity of the lid is fixed to (vx, vy) = (1, 0). To validate the

results obtained from the MFS applied to the CCR model, we illustrate the comparison

with the data taken from Ref. [85] for the results obtained from DSMC method and the

R13 equations. The left panel of Fig. 4.29 illustrates the variation of the (dimensionless)
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Figure 4.29: Variation of vy along the horizontal centerline (i.e., for y = 0.5)

of the cavity (left panel) and variation of vx along the vertical centerline

(i.e., for x = 0.5) of the cavity (right panel) for Kn = 0.08. The solid blue

curve represents the results for the MFS applied to the CCR model, the

dashed red curve represents the results for the MFS applied to the NSF

model, the green (square) and black (circle) symbols denote the data from

the DSMC method and R13 model, respectively, taken from Ref. [85].

vertical velocity along the x-direction at fixed y = 0.5, i.e., the variation of vy(x, 0.5)

along the horizontal centerline of the cavity for Kn = 0.08. Analogously, the right panel

of Fig. 4.29 depicts the variation of the (dimensionless) horizontal velocity vx(0.5, y) along

74



the vertical centerline of the cavity for Kn = 0.08. The solid blue curve represents the

results for the CCR model solved via the MFS whereas the green (square) and black

(circle) symbols denote the data from the DSMC method and the R13 model, respectively

taken from [85]. Furthermore, we investigate the results obtained from the MFS applied

to the NSF equations with second-order slip and jump boundary conditions [obtained

by setting α0 = 1/4 in Eq. (4.22) and α0 = 1/5 in Eq. (4.23)]. The dashed red curve

in Fig. 4.29 represents the results obtained from the MFS applied to the NSF model.

It is evident that there is a good agreement among the results from the NSF model,

CCR model, DSMC method and R13 model in both panels. The small inaccuracies near

corners, especially with the DSMC results are due to the incapability of the NSF and

CCR models to capture Knudsen layers, which are more pronounced near the boundaries.
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Figure 4.30: Variation in vy along different horizontal lines y = 0.1, 0.4

and 0.8 inside the cavity (left panel) and the variation of vx along different

vertical lines x = 0.1, 0.4 and 0.8 inside the cavity (right panel) obtained

by the MFS applied to the CCR model.

We also demonstrate the variation of vy and vx obtained from the MFS applied to the

CCR model along different lines inside the cavity. Fig. 4.30 illustrates the variation in the

vertical velocity vy along different horizontal lines y = 0.1, 0.4 and 0.8 inside the cavity

(left panel) and also the variation of the horizontal velocity vx along different vertical

lines x = 0.1, 0.4 and 0.8 inside the cavity (right panel). The increasing tendency of

horizontal velocity component vx with increase in y is due to the maximum horizontal

velocity at lid, whereas the wave-like nature of the vertical velocity component vy with
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variation in x is due to the formation of vortices which could be depicted via velocity

streamlines, which have been exhibited in Fig. 4.31. The left panel of Fig. 4.31 shows
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Figure 4.31: Velocity streamlines plotted over shear stress contours (left

panel) and heat flux lines plotted over temperature contours (right panel)

for the case when top wall is moving in the positive x-direction.

velocity streamlines over shear stress σxy contours for Kn = 0.08, indicating the clockwise

vortex structure driven by the moving lid. The contours represent the distribution of

shear stress σxy within the cavity induced due to velocity gradient. The right panel in

Fig. 4.31 depicts the heat flux lines plotted over the temperature contours for Kn = 0.08.

The second-order temperature-jump condition (4.22) causes cold and hot regions at the

left and right corners near the moving lid, respectively, as wall temperature is influenced

by stress. Moreover, the coupling between stress and heat flux (substituting Eq. (2.19)2

into Eq. (2.20)2), gives

q = −5Kn

2Pr
(∇T − α0∇p), (4.24)

highlighting that heat flux depends on both temperature and pressure gradients. This

relation introduces a competition between these gradients in determining the heat flow

direction. In the present scenario, the pressure gradient dominates over the temperature

gradient, leading to an anti-Fourier heat flow, as evidenced by the heat flux lines in

the right panel Fig. 4.31. This non-classical phenomenon, observed in microscale and

rarefied gas flows, occurs when heat flows from cooler to warmer regions, opposite to the

conventional Fourier law of heat conduction [2]. This phenomenon can be predicted well

by the CCR model due to the relation (4.24). However, as illustrated in the right panel

76



of Fig. 4.32, a clear limitation of the NSF model emerges when examining the heat flux

lines. Although the NSF model with second-order slip and jump boundary conditions is

able to reproduce the overall velocity field and streamlines reasonably well in the bulk

region, it fails to capture the anti-Fourier heat transfer phenomena observed in both the

CCR-MFS and DSMC simulations.
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Figure 4.32: Velocity streamlines plotted over shear stress contours (left

panel) and heat flux lines plotted over temperature contours (right panel)

for Kn = 0.08 obtained from the MFS applied to the NSF model.

We also note that although the bulk flow and centerline velocity profiles agree closely

with those in Ref. [85], significant differences appear in the temperature and heat-flux

contours. The tilting and asymmetry reported in Ref. [85] arises due to fully non-linear

equations, whereas the MFS framework employs the linearized CCR equations. The

omission of non-linear convective terms enforces strictly symmetric fields. Such symmetric

profiles are also seen in lid-driven cavity simulations for gas mixtures using linearized

equations [39].

4.4.3 Results for the two-sided lid-driven cavity with top and bottom walls

moving in the same direction

In this subsection, we showcase the flow characteristics when the top and bottom walls

are moving in the same direction with the same horizontal speed vx which is fixed as vx = 1

for computational purpose. The left panel in Fig. 4.33 shows the velocity streamlines

overlaid on the shear stress σxy contours for Kn = 0.1. The streamlines indicate the flow

pattern within the cavity, driven by the motion of the top and bottom walls. The flow
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Figure 4.33: Velocity streamlines plotted over shear stress contours (left

panel) and heat flux lines plotted over temperature contours (right panel)

for the case when top and bottom walls are moving in same directions with

the same speeds.

pattern reveals two primary vortices, each occupying the upper and lower halves of the

cavity, rotating in the same direction as the moving walls. The contours show that the

absolute shear stress is highest along the top and bottom walls. The negative/positive

scales of shear stress are due to positive/negative velocity gradients inside the cavity. The

heat flux lines plotted over the temperature contours for Kn = 0.1 are illustrated in the

right panel of Fig. 4.33. The temperature contours depict hot and cold regions near the

corners associated with both top and bottom walls. As evident from the right panel of

the figure, the heat flows from colder to hotter regions again depicting the anti-Fourier

effect produced due to pressure gradients inside the cavity.

4.4.4 Results for the two-sided lid-driven cavity with top and bottom walls

moving in opposite directions

In this case, the horizontal velocity is fixed at vx = 1 and vx = −1 for the top and

bottom walls, respectively, and the movement of walls leads to formation of a large vortex

covering the entire cavity. As evident from the left panel of Fig. 4.34, the absolute value

of shear stress is greatest near the corners of both top and bottom walls. In this scenario,

the hot and cold regions along the bottom walls are opposite as compared to the previous

case (Sec. 4.4.3). However, the heat flux lines again depict the anti-Fourier effect.
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Figure 4.34: Velocity streamlines plotted over shear stress contours (left

panel) and heat flux lines plotted over temperature contours (right panel)

for the case when top and bottom walls are moving in opposite directions

with the same speeds.

4.5 Summary

In this chapter, the CCR-MFS framework has been applied to a few internal rarefied

gas flow problems to assess its accuracy and demonstrate its potential. The framework

has been tested for flow between coaxial circular cylinders, non-coaxial circular cylinders,

coaxial circular and elliptic cylinders, and lid-driven square cavities. For coaxial circu-

lar cylinders, the results obtained from the CCR-MFS framework have shown excellent

agreement with analytic solutions based on the linearized BGK model from the literature,

particularly for low Knudsen numbers. The framework has successfully captured key flow

features like reversal of temperature gradient. In the non-coaxial configuration involving

thermally-induced flow, the CCR-MFS framework accurately captured the primary flow

characteristics and key global quantities, including circulation patterns and drag, while

minor discrepancies observed at higher Knudsen numbers are attributed to Knudsen layer

effects not captured with the CCR model.

The framework has also been used to investigate flows between coaxial circular and

elliptic cylinders, under both temperature-driven and evaporation/condensation condi-

tions. It has accurately captured circulation patterns and demonstrated the effect of

geometry on thermal-stress-slip flows. For lid-driven cavity flows, the results obtained

from the CCR-MFS framework have matched well with DSMC and R13 data in the bulk
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region, with noticeable differences near walls due to the limitations of the CCR model in

capturing Knudsen layers. Importantly, the framework has captured non-classical effects

such as anti-Fourier heat transfer. A sensitivity analysis on the location of source points

has also been carried out to ensure numerical stability and accuracy.
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Chapter 5

Application of the CCR-MFS

framework for external flow

problems

While the Stokes equations (a simplified version of the Navier–Stokes–Fourier equations)

are effective in modeling slow and steady liquid flow past a sphere, they fail to yield a

non-trivial solution to the problem of slow and steady liquid flow past an infinitely long

cylinder (a two-dimensional problem essentially); this is referred to as Stokes’ paradox.

The paradox also arises when studying these problems for gases. In this chapter, we

present a way to obtain meaningful solutions for two-dimensional flows of rarefied gases

around objects by circumventing Stokes’ paradox. To this end, we adopt the CCR model

and determine its analytic solution for the problem and compare it with a numerical

solution based on the MFS. Apart from addressing the problem of flow past a circular

cylinder, we aim to showcase the capabilities of the MFS to predict the flow past other

objects in two dimensions for which analytic solutions either do not exist or are difficult

to determine. For that, we investigate the problem of rarefied gas flow past an infinitely

long semicircular cylinder.

5.1 Stokes’ paradox

Fluid flow around stationary objects, especially spheres and cylinders, is a classic

problem in fluid dynamics. Early research on low-speed viscous flows (often, referred

to as low-Reynolds-number flows) of incompressible fluids was pioneered by Sir George

Gabriel Stokes in the 19th century. He postulated that at low velocities, the inertial forces

become negligible with the pressure forces predominantly balanced by the viscous forces

alone and, for such flows, the Navier–Stokes equations in turn boil down to the celebrated

Stokes equations. In the honor of Sir Stokes, such a flow is referred to as a Stokes flow



Figure 5.1: Schematic of Stokes flow past an infinite circular cylinder of

radius R, where the fluid is moving transversely to the axis of the cylinder.

(or creeping flow). Stokes flows are often encountered in nature, e.g., in swimming of

microorganisms and sperms, and also in industries dealing with paints, polymers, etc.

Stokes was successful in describing slow and steady flow of a viscous fluid past a sphere

mathematically through the Stokes equations. However, when attempting to describe a

slow and steady flow of a viscous fluid past an infinite cylinder (which is essentially a

quasi-two-dimensional flow) using the Stokes equations [103], he encountered difficulties

in satisfying the boundary conditions at the cylinder surface and in the fluid at infinity

simultaneously. That led him to suggest the potential absence of a solution for the steady-

state fluid flow past an infinite cylinder—a notion later coined as Stokes’ paradox.

To explain the paradox mathematically, we consider a viscous fluid moving slowly

and steadily past an infinitely long right-circular cylinder of radius R in the direction

transverse to the axis of the cylinder as shown in Fig. 5.1. Let the flow domain be

denoted by Ω and the boundary of the disk by ∂Ω and let the far-field velocity of the

fluid be (v0, 0, 0) in the Cartesian coordinate system. Owing to the symmetry around the

axis of the cylinder, the problem essentially reduces to a (quasi-)two-dimensional problem

or, equivalently, to the problem of fluid flow past a circular disk of radius R. The Stokes

equations for the problem read

∇ · v = 0 and ∇p− µ∆v = 0 in Ω, (5.1)
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where v, p and µ are the velocity, pressure and viscosity, respectively, of the fluid. The

no-slip boundary condition on the surface of the cylinder reads

v = 0 on ∂Ω (5.2)

and the far-field boundary condition reads

lim
|x|→∞

vx = v0. (5.3)

Eliminating the pressure p from the Stokes equations (5.1) and introducing the stream

function ψ(x, y)—which is related to the components of the velocity via the relations

vx =
∂ψ

∂y
and vy = −∂ψ

∂x
, (5.4)

the Stokes equations (5.1) reduce to the biharmonic equation

∆2ψ = 0 in Ω, (5.5)

and the no-slip boundary condition (5.2) reduces to

∂ψ

∂x
=
∂ψ

∂y
= 0 on ∂Ω. (5.6)

For determining ψ, it is convenient to transform the equations from the Cartesian coor-

dinate system (x, y) to the polar coordinate system (r, θ) so that x = r cos θ, y = r sin θ,

ψ(x, y) ≡ ψ(r, θ), which is related to the components of the velocity in the polar coordi-

nates via the relations

vr = r−1∂ψ

∂θ
and vθ = −∂ψ

∂r
. (5.7)

In the polar coordinates, the no-slip boundary condition (5.6) changes to

∂ψ

∂r
=
∂ψ

∂θ
= 0 at r = R and ∀ θ ∈ [0, 2π) (5.8)

and the far-field condition (5.3) changes to

lim
r→∞

1

r

∂ψ

∂θ
= v0 cos θ and lim

r→∞

∂ψ

∂r
= v0 sin θ. (5.9)

The far-field conditions (5.9) require that the stream function be of the form ψ =

f(r) sin θ [58, 112, 121]. Inserting this form of ψ in (the polar form of) the biharmonic

equation (5.5), its solution reads [67, 112]

ψ(r, θ) =

(
Ar +

B

r
+ Cr3 +Dr ln r

)
sin θ, (5.10)
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where A,B,C,D are constants that need to be determined using boundary conditions

(5.8) and (5.9). Both conditions in boundary condition (5.9) imply that C = D = 0 and

A = v0. Consequently, there remains only one constant B with which two conditions in

boundary conditions (5.8) are to be fulfilled, a scenario that is impossible unless v0 = 0.

This shows the nonexistence of solution to the Stokes equations for a steady flow past

an infinite circular cylinder whereas such flows do exist physically—this is the essence of

Stokes’ paradox. The paradox arises not only in the case of flow past a circular cylinder,

but also for an unbounded flow past any two-dimensional object of any shape [97].

Another important consequence of Stokes’ paradox is that the drag force on the cylin-

der in the aforementioned problem turns out to be infinite [70], which is unreasonable

physically. Numerous endeavors have been dedicated to addressing Stokes’ paradox and

to determine the correct drag force on an infinitely long cylinder immersed in a viscous

fluid moving transversely to the axis of the cylinder [51, 53, 54, 57, 78, 81, 115]. Oseen [78],

in 1910, propounded an improvement to the Stokes equations by considering inertia effects

at large distances and proposed the Oseen equations by adding convective acceleration

terms to the Stokes equations. Oseen equations not only resolved Stokes’ paradox but

also led to an improved approximation of the drag force on a sphere immersed in a slow

viscous flow. Subsequent contributions by Lamb [57], Bairstow et al. [6] and Tomotika

and Aoi [115], refined the drag coefficient approximations for the cylinder using the Os-

een equations. Further attempts to advance Oseen’s ideas sparked the birth of a novel

domain in applied mathematics known as the method of matched asymptotic expansions.

Originally, Kaplun [50] and Kaplun and Lagerstrom [51] executed the method of matched

asymptotic expansions to obtain a new drag coefficient for flow past a circular cylinder.

Further, Proudman and Pearson [81] used the method of matched asymptotic expansions

for flows past cylinder and sphere, and they came up with a novel drag result for sphere.

Later, Kida and Take [54], through asymptotic expansions, provided expressions for the

drag coefficient at different orders of approximation for low-Reynolds-number flow past

a cylinder. Their results on the drag coefficient agreed well with experimental measure-

ments at low Reynolds numbers. Recently, Khalili and Liu [53] studied the problem of

flow past a cylinder with the lattice-Boltzmann method and their simulation results on

the drag coefficient led them to propose a slight correction to the expression for the drag

coefficient obtained at the first order of approximation by Kida & Take [54].
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In this chapter, we revisit the problem of fluid flow past a cylinder but with fluid

being a rarefied gas instead of a viscous liquid. The reason for taking this problem

is threefold: (i) the classic fluid dynamics models, e.g. the Navier–Stokes–Fourier (NSF)

equations (or Stokes equations for that matter), are incapable of capturing many intriguing

rarefaction effects pertinent to rarefied gases, and hence better models (typically more

involved than the Stokes equations, which are somewhat easy to handle) are needed for

modeling rarefied gas flows, (ii) the occurrence of Stokes’ paradox in rarefied gases too

poses mathematical challenges, and (iii) the problem leads to a method whose usefulness is

noteworthy especially for problems for which an analytic solution either does not exist or

is very difficult to obtain. Despite the presence of sufficient literature on two-dimensional

unbounded flows in continuum fluid dynamics, there has been comparatively less attention

towards rarefied gas flows past objects, particularly in two dimensions. To the best of the

authors’ knowledge, the first study on Stokes’ paradox in rarefied gas flows was presented

by Cercignani [17], wherein he showed that, despite the fact that the Boltzmann equation

is the most accurate model for investigating rarefied gases, the linearized Boltzmann

equation—similarly to the Stokes equations—does not give bounded solutions for the flow

past an axisymmetric body. To circumvent Stokes’ paradox, he proposed an inner-outer

expansion of the Boltzmann equation. Yamamoto & Sera [128] investigated rarefied gas

flow past a circular cylinder at low Mach numbers by dividing the flow into two regions:

(i) the kinetic region (flow domain near the cylinder) modeling and (ii) near continuum

region (flow domain outside the kinetic region). They handled the kinetic region with

the simultaneous integral equations derived from the linearized Bhatnagar–Gross–Krook

model and the continuum region with the Oseen–Stokes equation. Their result on the

drag on the cylinder matched reasonably well with those available in previous studies for

a wide range of the Knudsen number. Utilizing the advancements of moment methods in

kinetic theory, Gu et al. [37] recently investigated non-equilibrium effects on flow past a

circular cylinder. In this chapter, we investigate and validate slow flow of a monatomic

rarefied gas past an infinitely long right-circular cylinder using the CCR model solved

with the MFS.
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5.2 Flow past a circular cylinder

5.2.1 Problem description

We consider a steady low-speed flow of a rarefied monatomic gas past an infinitely

long right-circular cylinder having radius R̃1. We assume that the cylinder is isothermal

(having uniform temperature T̃0, which is the same as the far-field ambient temperature

of the gas) with a large solid-to-gas thermal conductivity ratio. Let the circular cross

section of the cylinder be in the x̃ỹ-plane, the axis of the cylinder be coinciding with the

z̃-axis and the flow be approaching the cylinder from the negative x̃-direction toward the

positive x̃-direction. As aforementioned, owing to the axial symmetry of the cylinder, the

problem is quasi-two-dimensional, i.e. it is sufficient to study the problem for a circular

disk of the same radius instead of studying the problem for the infinitely long cylinder.

A two-dimensional cross-sectional view of the problem is depicted in Fig. 5.2 wherein the

center of the disk is assumed to be fixed at the origin of the coordinate system. The radius

of the disk is taken as the characteristic length scale L̃ for non-dimensionalization so that

Figure 5.2: Cross-sectional view of the problem of a rarefied gas flow past

an infinitely long cylinder. The solid circle represents the periphery of the

cylinder while the dashed circle represents an artificial boundary far away

from the cylinder.
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the dimensionless radius of the disk is R1 = R̃1/L̃ = 1. To circumvent Stokes’ paradox

and hence the non-existence of a solution to the problem, we assume an artificial circular

boundary of radius R̃2 (where R̃2 ≫ R̃1) outside the disk. The radius of the artificial

boundary is taken to be sufficiently large in comparison to the radius of the disk so that

the artificial boundary has insignificant effects on the problem under consideration.

5.2.2 Boundary conditions

From Sec. 2.2.3.1, the boundary conditions complementing the linear CCR model in

two dimensions are

(v − vw) · n = 0, (5.11)

q · n = −2τ0(T − Tw + α0n · σ · n), (5.12)

t · σ · n = −ς(v − vw + α0 q) · t, (5.13)

where n and t are the unit normal and tangent vectors, respectively; and vw and Tw are

dimensionless perturbations in the velocity and temperature of the boundary wall.

To circumvent Stokes’ paradox, an artificial boundary in the flow domain has been

introduced. To ensure that there is no disturbance to the flow due to this artificial

boundary, the boundary conditions at the artificial boundary are taken as

vx = v0, vy = 0 and T = 0. (5.14)

5.2.3 Analytic solution

As mentioned above, flow past an infinitely long right circular cylinder is indeed a

quasi-two-dimensional problem when the fluid flow is in the normal direction of the axis

of the cylinder. In this case, there is no change in the flow variables in the axial direction

of the cylinder. To tackle the problem, it is convenient to work in a cylindrical coordinate

system (r, ϑ, z), wherein the z-axis coincides with the axis of the cylinder. Owing to the

axial symmetry, the flow variables do not change along the z-direction.

In this cylindrical coordinate system, the linear steady-state CCR model (Eqs. (2.19)

and (2.20)) can be written as follows. The mass, momentum and energy balance equations

(2.19) in the cylindrical coordinate system read

∂vr
∂r

+
1

r

∂vϑ
∂ϑ

+
vr
r

= 0, (5.15)

87



∂p

∂r
+
∂σrr
∂r

+
1

r

∂σrϑ
∂ϑ

+
σrr − σϑϑ

r
= 0, (5.16a)

1

r

∂p

∂ϑ
+
∂σrϑ
∂r

+
1

r

∂σϑϑ
∂ϑ

+
2σrϑ
r

= 0, (5.16b)

∂qr
∂r

+
1

r

∂qϑ
∂ϑ

+
qr
r

= 0, (5.17)

where Eq. (5.15) is the mass balance equation (2.19)1, Eqs. (5.16a) and (5.16b) are the

momentum balance equation (2.19)2 in the r- and ϑ-directions, respectively, and Eq. (5.17)

is the energy balance equation (2.19)3. It may be noted that the momentum balance

equation in the z-direction is trivially satisfied, owing to the fact that there is no change

in flow variables with respect to the z-coordinate. The closure relations (2.20) in the

cylindrical coordinate system read

σrr = −2Kn
∂vr
∂r

− 2Knα0
∂qr
∂r

, (5.18a)

σrϑ = −Kn

(
∂vϑ
∂r

+
1

r

∂vr
∂ϑ

− vϑ
r

)
− α0Kn

(
∂qϑ
∂r

+
1

r

∂qr
∂ϑ

− qϑ
r

)
, (5.18b)

σϑϑ = −2Kn

(
1

r

∂vϑ
∂ϑ

+
vr
r

)
− 2α0Kn

(
1

r

∂qϑ
∂ϑ

+
qr
r

)
, (5.18c)

qr = −cpKn

Pr

[
∂T

∂r
+ α0

(
∂σrr
∂r

+
1

r

∂σrϑ
∂ϑ

+
σrr − σϑϑ

r

)]
, (5.19a)

qϑ = −cpKn

Pr

[
1

r

∂T

∂ϑ
+ α0

(
∂σrϑ
∂r

+
1

r

∂σϑϑ
∂ϑ

+
2σrϑ
r

)]
. (5.19b)

To determine an analytic solution of the CCR model (5.15)–(5.19b) (in quasi-two dimen-

sions), we convert the partial differential equations (5.15)–(5.19b) into ordinary differ-

ential equations using symmetry ansatz, which is inspired by the solution of the Stokes

equations. This approach has also been utilized in determining analytic solutions of the

regularized 13-moment (R13) and regularized 26-moment (R26) equations in the linearized

state for the problems of flow past a sphere and a cylinder [87, 116, 124]. In symmetry

ansatz, the radial dependency of the variables is separated and the angular dependency

of the variables is expressed using the sine and cosine functions. For this purpose, the

vector and tensor components having an odd number of indices in ϑ are selected to be

proportional to sinϑ whereas the scalars and tensor components with an even number

of indices in ϑ are made proportional to cosϑ [116]. Furthermore, since the problem is

quasi-two-dimensional, the dependency in z-coordinate of the variables is automatically

eliminated. With these symmetry ansatz, the solutions for the vectors v and q are of the
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form

v(r, ϑ) =


a(r) cosϑ

b(r) sinϑ

0

 and q(r, ϑ) =


α(r) cosϑ

β(r) sinϑ

0

 , (5.20)

the solutions for the scalars p and T are of the form

p(r, ϑ) = c(r) cosϑ and T (r, ϑ) = d(r) cosϑ, (5.21)

and the solution for σ is of the form

σ(r, ϑ) =


γ(r) cosϑ κ(r) sinϑ 0

κ(r) sinϑ ω(r) cosϑ 0

0 0 σzz

 , (5.22)

where a(r), b(r), α(r), β(r), c(r), d(r), γ(r), κ(r) and ω(r) are the unknown functions

that need to be determined, and σzz = −
[
γ(r) + ω(r)

]
cosϑ as σ is a symmetric and

tracefree tensor of rank 2. Insertion of ansatz (5.20)–(5.22) in Eqs. (5.15)–(5.19b) leads

to a system of ordinary differential equations in the unknowns a(r), b(r), α(r), β(r), c(r),

d(r), γ(r), κ(r) and ω(r) that is solved to determine these unknowns. Substituting the

obtained values of the unknowns in ansatz (5.20)–(5.22), we get the following solution for

the field variables.

vr(r, ϑ) =
(
c3 −

c4
r2

+ c5r
2 + c6 ln r

)
cosϑ, (5.23)

vϑ(r, ϑ) =
(
−c3 −

c4
r2

− 3c5r
2 − c6 − c6 ln r

)
sinϑ, (5.24)

qr(r, ϑ) =
(c1
r2

+ c2

)
cosϑ, (5.25)

qϑ(r, ϑ) =
(c1
r2

− c2

)
sinϑ, (5.26)

p(r, ϑ) = Kn

(
8rc5 −

2c6
r

)
cosϑ, (5.27)

σrr(r, ϑ) = Kn

(
4α0c1
r3

− 4c4
r3

− 4rc5 −
2c6
r

)
cosϑ, (5.28)

σrϑ(r, ϑ) = Kn

(
4α0c1
r3

− 4c4
r3

+ 4rc5

)
sinϑ, (5.29)

σϑϑ(r, ϑ) = Kn

(
−4α0c1
r3

+
4c4
r3

+ 4rc5 +
2c6
r

)
cosϑ, (5.30)

T (r, ϑ) =

[
Pr

cpKn

(c1
r
− rc2

)
+Knα0

(
8rc5 −

2c6
r

)]
cosϑ. (5.31)
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The constants c1, c2, c3, c4, c5 and c6 in the above solution are determined using boundary

conditions (5.11)–(5.14). However, it is crucial to acknowledge that without the presence

of the outer artificial wall or, in other words, without imposing the specified boundary con-

ditions (5.14), determining the six constants c1, c2, c3, c4, c5 and c6 uniquely through three

boundary conditions (5.11)–(5.13) is impracticable. Moreover, for solutions to converge in

the far-field (as r → ∞), it becomes necessary that c2 = c5 = c6 = 0. Additionally, if the

boundary conditions (5.11)–(5.13) are imposed, it follows that the remaining constants

c1, c3, and c4 also become zero, resulting in an overall zero solution. This scenario illus-

trates the occurrence of Stokes’ paradox with the CCR model as well, and thereby affirms

the necessity of employing an artificial boundary to circumvent this paradox. There-

fore, the constants c1, c2, . . . , c6 are determined using boundary conditions (5.11)–(5.14).

The obtained flow variables—when required—can be converted back into the Cartesian

coordinate system using the transformation
x̂

ŷ

ẑ

 =


cosϑ − sinϑ 0

sinϑ cosϑ 0

0 0 1



r̂

ϑ̂

ẑ

 , (5.32)

where x̂, ŷ, ẑ denote the unit vectors in the Cartesian coordinate system and r̂, ϑ̂, ẑ are

the unit vectors in the polar coordinate system. For instance, the velocity is given by

v =
[
vx vy 0

]T
=
[
vr cosϑ− vϑ sinϑ vr sinϑ+ vϑ cosϑ 0

]T
. (5.33)

5.2.4 Implementing the MFS

In the present problem, we do not deal with evaporation/condensation problems, so

it is not necessary to include a sourcing term in the mass balance equation and hence

the fundamental solutions with point force heat source are utilized from Sec. 3.3. The

fundamental solutions of the CCR model in 2D read

v(r) =
1

8πKn
f ·
[
2rr

r2
− (2 ln r − 1)I

]
+
cpKn

2πPr
α2
0f ·

(
2rr

r4
− I

r2

)
, (5.34)

p(r) =
f · r
2πr2

, (5.35)

σ(r) =
2Kn g α0 + f · r

2π

(
2rr

r4
− I

r2

)
, (5.36)

T (r) = − Pr g

2πKn cp
ln r, (5.37)
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q(r) =
g

2π

r

r2
− cpKn

2π Pr
α0f ·

(
2rr

r4
− I

r2

)
, (5.38)

where r = |r|.

As discussed in Sec. 5.1, the mathematical origin of Stokes’ paradox lies in the loga-

rithmic dependence of the solution of the Stokes equations. This logarithmic dependence

is also seen in the fundamental solutions of the CCR model (see Eqs. (5.34) and (5.37)),

due to which the solution diverges in the far field. To circumvent this difficulty, we em-

ploy the MFS on a bounded domain by introducing an artificial outer boundary which

is far enough from the original circular disk. To place the singularity points outside the

computational domain, we assume that the source points are located on two circles—one

inside the actual periphery of the disk and the other outside of the artificial boundary.

The circles on which the singularity points are placed will henceforth be referred to as

the fictitious boundaries. An illustration depicting the boundary nodes on the periphery

of the disk and on the artificial boundary, and the location of source points on the fic-

titious boundaries is presented in Fig. 5.3. We consider a total of Ns source points, out

of which Ns1 points lie on the inner fictitious boundary having dimensionless radius R′
1
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Figure 5.3: Placement of the collocation points (black dots) on the ac-

tual and artificial boundaries and singularities (black stars) outside of these

boundaries. The blue and red arrows at each boundary node denote the

unit tangent and normal vectors, respectively.
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and Ns2 points on the outer fictitious boundary having dimensionless radius R′
2 (where

R′
1 < R1 and R′

2 > R2). Furthermore, we place Nb1 boundary nodes on the actual pe-

riphery of the disk and Nb2 boundary nodes on the artificial boundary accounting for a

total of Nb boundary points. Corresponding to the ith singularity (i = 1, 2, 3, . . . , Ns),

there are three unknowns, namely f1i , f2i and gi, where f1i and f2i are the components of

the point force fi applied on the ith singularity, i.e. fi =
[
f1i f2i

]T
, and gi is the point

heat source applied on the ith singularity. Thus, there are a total of 3 × Ns unknowns,

which are to be computed using the boundary conditions at both the actual and artifi-

cial boundaries. This means that three boundary conditions need to be applied at each

boundary node, which leads to a set of 3 × Nb linear algebraic equations that are to be

solved for 3 × Ns unknowns. The boundary conditions (5.11)–(5.13) are evaluated for

the jth boundary node on the actual periphery of the disk (for j = 1, 2, . . . , Nb1), while

the boundary conditions (5.14) are evaluated for the jth boundary node on the artificial

boundary (for j = 1, 2, . . . , Nb2). Using the boundary conditions, we obtain a system of

3Nb1 +3Nb2 = 3Nb linear equations in 3Ns unknowns, namely f11 , f21 , g1, f12 , f22 , g2,. . . ,

f1Ns
, f2Ns

, gNs . This system can be written in a matrix form as

MU = b, (5.39)

where U is the column vector containing all the unknowns, i.e. U =
[
f11 f21 g1 f12 f22

g2 . . . f1Ns
f2Ns

gNs

]T
; M is the corresponding collocation matrix and b is the column

vector containing only the wall properties, e.g., v0. We have solved the system using the

method of least squares in Mathematica. Since the MFS may lead to a bad-conditioned

collocation matrix, it is favorable to use the method of least squares even if the collocation

matrix is square [26].

5.2.5 Results and discussion

For numerical computations, we fix the dimensionless radius of the artificial bound-

ary to R2 = 10 and the dimensionless radii of the inner and outer fictitious boundaries to

R′
1 = 0.5 and R′

2 = 20, respectively, the number of boundary nodes on the actual periph-

ery of the disk to Nb1 = 50 and the number of boundary nodes on the artificial boundary

to Nb2 = 100. For simplicity, we fix the number of singularity points on the inner ficti-

tious boundary to be equal to the number of inner boundary nodes, i.e. Ns1 = Nb1 = 50,

and the number of singularity points on the outer fictitious boundary to be equal to the
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number of boundary nodes on the outer artificial boundary, i.e. Ns2 = Nb2 = 100 so as

to make the collocation matrix (having dimensions 3Nb × 3Ns) square. Notwithstand-

ing, the results obtained with a rectangular collocation matrix do not differ significantly

from those obtained with a square collocation matrix in the present work since we have

used the method of least squares for solving the formed system of equations numerically.

Furthermore, the (dimensionless) approaching velocity (in the x-direction) of the gas far

away from the cylinder has been fixed to v0 = 1.

In order to validate our code, we first plot the (dimensionless) speed of the gas against

the radial position (as one moves away from the cylinder) for the angles ϑ = 0, π/4 and

π/2 in Fig. 5.4.

From left to right, the panels in the figure depict the speed of the gas for Kn = 0.1, 0.5

and 1. The solid lines in the figure delineate the results obtained from the MFS applied on

the CCR model while the symbols display the results obtained from the analytic solution

of the CCR model obtained in Sec. 5.2.3. An excellent agreement of the results from

the MFS with the analytic results—evident in the figure—validates our numerical code.

The figure reveals that the speed of the gas starts increasing for all values of ϑ as one

moves away from the disk. For ϑ = 0, the speed keeps on increasing with r all the way

till the artificial boundary. On the other hand, for |ϑ| > 0 (blue and red colors in the

figure), the speed of the gas starts increasing as one moves away from the disk; the speed
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Figure 5.4: Speed of the gas varying with the radial position in different

directions for Kn = 0.1, 0.5 and 1. The solid lines represent the results

obtained from the MFS applied to the CCR model and the symbols rep-

resent the analytic solutions. The other parameters are Nb1 = Ns1 = 50,

Nb2 = Ns2 = 100, R1 = 1, R2 = 10, R′
1 = 0.5 and R′

2 = 20.
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Figure 5.5: Velocity streamlines over speed contours obtained from the MFS

applied on the CCR model for the Knudsen numbers Kn = 0.1, 0.5 and 1.

The other parameters are the same as those for Fig. 5.4.

even surpasses its inlet value due to the accelerated flow occurring due to the production

of pressure gradient around the disk; after attaining a maximum at a point somewhere

in between the periphery of the disk and the artificial boundary the speed slows down

on moving further away from the disk to match the fixed speed (through the boundary

condition) on the artificial boundary. The figure also shows that for |ϑ| > 0 (blue and red

colors in the figure), the speed of the gas on the disk increases with the Knudsen number

due to increasing slip velocity with the Knudsen number.

In order to have a better idea about the speed and velocity profiles around the disk,

the streamlines and speed contours obtained from the MFS for Kn = 0.1, 0.5 and 1 are

exhibited in Fig. 5.5. While the streamlines in Fig. 5.5 are qualitatively alike, the speed

contours reveal the quantitative differences for different Knudsen numbers. The speed

contours in Fig. 5.5, similarly to Fig. 5.4, also show that the speed of the gas at any point

in the domain increases with increasing the Knudsen number in general. Particularly, it

is clearly visible from the speed contours in a close proximity of the disk. Moreover, for

|ϑ| = π/2, Fig. 5.5—similarly to that shown by red lines in Fig. 5.4—shows that the point

at which the speed surpasses its inlet value of v0 = 1 becomes closer and closer to the

disk with increasing the Knudsen number.

It is well established theoretically as well as experimentally that rarefied gases, when

flowing around an object, manifest temperature polarization near the boundary of the

object, even in the absence of any external temperature difference [7, 85, 111, 116, 124].

Temperature polarization in rarefied gas flows past solid objects is a phenomenon where a
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Figure 5.6: Temperature along the left and right sides of the disk for Kn =

0.009, 0.1 and 0.5. Solid lines represent the results obtained from the MFS

applied to the CCR model and the triangles represent the analytic solutions.

The other parameters are the same as those for Fig. 5.4.

solid object—such as a cylinder or sphere—develops a non-uniform temperature distribu-

tion on its surface, even if the object itself is maintained at a constant temperature, when

it is placed in a steady flow of rarefied gas. In other words, because of rarefaction effects,

some regions of the object may become slightly warmer or cooler compared to other re-

gions, despite the entire surface being isothermal in terms of boundary conditions. The

underlying reason for temperature polarization is the non-equilibrium nature of molecu-

lar interactions at the gas–surface interface when the gas is rarefied. The incoming and

reflected molecules transfer energy differently at various points on the surface depending

on the flow direction and rarefaction level. To check for the temperature polarization

effect in the problem under consideration, we plot the (dimensionless) temperature of the

gas at different points along the x-axis in Fig. 5.6, which illustrates the temperature on

the left and right sides of the disk (i.e. along ϑ = π and ϑ = 0, respectively) for different

values of the Knudsen number Kn = 0.009, 0.1 and 0.5. Since the induced tempera-

ture is very small, the temperature has been scaled up by its order while depicting it in

Fig. 5.6. The solid lines and symbols again denote the results obtained from the MFS

applied on the CCR model and from the analytic solution, respectively, and they again

turn out to be in an admirable agreement. The figure shows the presence of temperature

polarization. Nonetheless, for small Knudsen number Kn = 0.009 that corresponds to the

hydrodynamic regime (the left most panel in the figure), the magnitude of temperature

polarization is very small (of the order of 10−7) with minute cold and hot regions near
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the disk boundary at ϑ = π and ϑ = 0, respectively. However, as the Knudsen number

increases (see the middle and right panels of the figure), the magnitude of temperature

polarization increases and, moreover, temperature reversal can also be seen from the mid-

dle and right panels of the figure for Kn = 0.1 and Kn = 0.5. The temperature reversal

for higher Knudsen numbers has also been seen in rarefied gas flows around spheres [116].

To get deeper insights of temperature polarization and temperature reversal, we plot the

temperature contours and heat-flux lines in Fig. 5.7. The figure shows that the heat-flux

lines in all panels are starting from the right side of the disk and going toward the left

side of the disk for all Knudsen numbers. However, the temperature on the right side of

the disk is higher than that on the left side only for very small Knudsen numbers (e.g. for

Kn = 0.009 in the left most panel of Fig. 5.7), i.e. when the flow is in the hydrodynamic

regime. In this regime, Fourier’s law remains valid and hence the heat flows from hot to

cold regions. For large Knudsen numbers (e.g., for Kn = 0.1 and 0.5 in the middle and

right panels of Fig. 5.7), the temperature on the left side of the disk is higher than that

on the right side due to temperature reversal and heat interestingly seems to be flowing

from cold to hot regions, which is an anti-Fourier effect and is common to stress-driven

rarefied gas flows; see, e.g., Refs. [39, 85, 87, 88, 116]. As no temperature difference is

applied externally in such problems, minuscule temperature differences are rendered by

stress gradients. In other words, stress gradients in such problems dominate the tem-

perature gradients and since Fourier’s law depends only on the temperature gradient,

anti-Fourier effect cannot be described by the NSF equations. On the other hand, the

inherent coupling of the heat flux with stress gradient in the constitutive relations for the

CCR model enables it to capture the anti-Fourier effect. To corroborate the inability of

the NSF model in capturing the above findings, we have also applied the MFS to the NSF

model (by setting α0 = 0 in the CCR model) and displayed the temperature contours and

heat-flux lines obtained from the MFS applied to the NSF model in Fig. 5.8. It turns out

that the NSF model with the first-order temperature-jump boundary condition does not

show temperature polarization at all (not shown here explicitly). With the second-order

temperature jump boundary condition, the NSF model does show temperature polariza-

tion, yet reversal of temperature does not appear in order to respect imposed Fourier’s

law adherent to the NSF equations, which is clearly discernible in Fig. 5.8 that has been

made using the second-order velocity-slip and temperature-jump boundary conditions.
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Figure 5.7: Heat-flux lines over temperature contours obtained from the

MFS applied to the CCR model for Knudsen numbers Kn = 0.009, 0.1 and

0.5. The other parameters are the same as those for Fig. 5.4.

Figure 5.8: Heat-flux lines over temperature contours obtained from the

MFS applied to the NSF model for Knudsen numbers Kn = 0.009, 0.1 and

0.5. The other parameters are the same as those for Fig. 5.4.

Furthermore, by comparing Figs. 5.7 and 5.8, it is evident that the NSF model does not

show the temperature reversal.

As also mentioned above, Fig. 5.6 and the color bars in Figs. 5.7 and 5.8 show that

the magnitude of the temperature generated near the left and right sides of the disk

increases with the increasing the Knudsen number. Indeed, the temperature polarization

and temperature reversal are second-order effects with respect to the Knudsen number.

Hence, the generated temperature is actually of O(Kn2). In order to illustrate this, we

plot the temperature of the gas at r = 1 and ϑ = 0 scaled with Kn2 against the Knudsen

number for different locations of the artificial boundary in Fig. 5.9. The left panel of

the figure displays the results obtained with the CCR model and the right panel exhibits

the results obtained with the NSF equations and the second-order accurate boundary
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Figure 5.9: Temperature of the gas at r = 1 and ϑ = 0 scaled with Kn2

plotted against the Knudsen number for different locations of the artificial

boundary. The left panel shows the results obtained with the CCR model

and the right panel shows the results obtained with the NSF equations and

the second-order accurate boundary conditions.

conditions. The figure shows that T/Kn2 indeed has a common scale for all Knudsen

numbers. The left panel of Fig. 5.9 again reveals the presence of a critical Knudsen number

at which T/Kn2 changes its sign. This critical Knudsen number, which is Kn ≈ 0.0094115,

in the left panel of the figure demarcates the point of temperature reversal. Evidently

from the right panel, the NSF equations even with the second-order boundary conditions

do not show the temperature reversal. Fig. 5.9 further shows that while the temperature

profiles are qualitatively similar for all locations of the artificial boundary, quantitative

differences are conspicuously present. Indeed, the figure exhibits decreasing magnitudes

of the temperature with increasing values of R2. It is interesting, however, to note that

irrespective of the location of the artificial boundary, the critical Knudsen number for the

temperature reversal remains fixed as evident from the left panel of Fig. 5.9.

In order to check the dependence of other flow variables on the location of the artificial

boundary, we also plot the maximum speed of the gas vmax = max{|v|} on the disk (i.e.

the speed of the gas at r = 1 and ϑ = π/2 or ϑ = 3π/2) for different locations of the

artificial boundary in Fig. 5.10. Similarly to Fig. 5.9, Fig. 5.10 shows that the maximum

speed (i.e. the speed at r = 1 and ϑ = π/2 or ϑ = 3π/2) of the gas is also reduced

as the distance between the artificial boundary and the actual boundary increases. It

turns out (although not shown here) that the magnitudes of the other flow variables

also decrease with the increasing gap between the artificial and actual boundaries in
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Figure 5.10: Maximum speed of the gas on the disk plotted against the

Knudsen number for different locations of the artificial boundary.

general. Thus, the location of the artificial boundary or the distance at which the far-

field conditions are applied does influence the results quantitatively. But, as we could not

find any theoretical/numerical/experimental data on the flow variables for this problem

in the literature, it is difficult to say which location of the artificial boundary gives the

best results. Nevertheless, data on the drag force on the cylinder are available in the

literature, which gives us a chance to compute the drag force on the cylinder with the

demonstrated method and to compare it with the existing results in order to decide for

an appropriate location of the artificial boundary. Therefore, we compute the drag force

acting on the disk analytically as well as numerically through the MFS.

The analytic expression for the net force F (A) acting on disk is given by the integration

of the normal component of the pressure tensor P (= σ + pI) over the periphery of the

disk, i.e.

F (A) =

∫
P · n ds = R1

∫ 2π

0

(P · n) dϑ, (5.40)

where n is the normal vector to the boundary and ds is the length of the arc that subtends

angle dϑ on the center of the disk. The drag force on the disk is given by the projection

of the net force in the upstream direction, i.e. by

F
(A)
d = −F (A) · x̂, (5.41)

where x̂ denotes the unit vector in the downstream direction. On simplification the

(analytic) drag force turns out to be

F
(A)
d = 4πKnc6, (5.42)
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where the value of the c6 is evaluated from the boundary conditions and hence changes

with the values of the parameters Kn and α0. In order to calculate the net force acting

on the disk through the MFS, all the point force vectors acting on the singularity points

lying on the inner fictitious boundary inside the disk are superimposed, i.e.

F (MFS) =

Ns1∑
i=1

f (i). (5.43)

The drag force on the disk is again given by the projection of the net force in the upstream

direction, i.e. by

F
(MFS)
d = −

Ns1∑
i=1

f (i) · x̂ = −
Ns1∑
i=1

f
(i)
1 . (5.44)

For illustrative purpose, it is convenient to compare the normalized drag, defined by the

drag force normalized with the Stokes drag (drag force in the limit Kn → 0). In the

following, we shall investigate the effect of the location of the artificial boundary on the

normalized drag. But, prior to this, Ref. [37] must be acknowledged wherein the authors

performed a thorough study of the drag coefficient for the problem of flow past a circular

cylinder and gave analytic expressions for the drag coefficient valid in the continuum, slip

and transition regime.

In addition, they also computed the drag coefficient for the problem through the

nonlinear R26 equations. The drag coefficient on dividing by its value in the limit Kn → 0

is exactly the same as the normalized drag. This gives us an opportunity to compare

the normalized drag obtained in the present work with that obtained using the results

presented in Ref. [37]. Figure 5.11 illustrates the variation in the normalized drag with

the Knudsen number on changing the location of the artificial boundary. The dashed

red, blue and magenta lines in the figure depict the analytic solution of the CCR model

for R2 = 10, 20 and 30, respectively, while the square (red), disk (blue) and diamond

(magenta) symbols denote the solution obtained from the MFS applied on the CCR

model for R2 = 10, 20 and 30, respectively. The solid orange, black and gray lines in

the figure delineate the normalized drag obtained with the analytic expressions given in

Refs. [79], [128] and [37] at the Reynolds number Re = 0.5. The green triangle symbol

depicts the normalized drag computed directly from the data on the drag coefficient

that have been obtained with the nonlinear R26 equation in Ref. [37]. The figure shows

that the normalized drag obtained numerically with the MFS applied on the CCR model
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Figure 5.11: Normalized drag on the cylinder plotted against the Knudsen

number for different locations of the artificial boundary. The dashed red,

blue and magenta lines represent the analytic solution of the CCR model

for R2 = 10, 20 and 30, respectively. The square (red), disk (blue) and

diamond (magenta) symbols represent the numerical solution of the CCR

model obtained with the MFS for R2 = 10, 20 and 30, respectively. The

solid orange, black and gray lines depict the normalized drag obtained with

the analytic expressions given in Refs. [79], [128] and [37]. The green tri-

angle symbol shows the normalized drag computed with the nonlinear R26

equations in Ref. [37]. The other parameters are the same as those for

Fig. 5.4.

is in an excellent agreement with that obtained with the analytic solution of the CCR

model, irrespective of the location of the artificial boundary, which is no surprise as

both (analytic and numerical) methods use a common location of the artificial boundary.

Notwithstanding, these results do validate the correctness of our MFS-based numerical

framework one more time in spite of the fact that the location of the artificial boundary

does affect the results. The figure also reveals that while the normalized drag obtained

from the CCR model in the present work is in qualitatively good agreement with the

normalized drag obtained from other methods existing in the literature, quantitative

differences are certainly there. Consequently, it is hard to tell a universal location of the
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artificial boundary (or, in other words, a fixed value of R2) that can lead to the best

results for all quantities. However, as the normalized drag predicted by the CCR model

for R2 = 10 is generally close to that predicted by [128] and to the R26 data taken from

Ref. [37], we take R2 = 10 throughout the chapter.

Although we have presented the results for somewhat large Knudsen numbers and the

normalized drag—being a global quantity—also turned out to be agreeing well with that

obtained with other models, it is important to note that the flow profiles predicted by the

CCR model are accurate only in the bulk and only for relatively small Knudsen numbers

(Kn ≲ 0.2) and that the flow profiles predicted by the CCR model near the boundary of

the cylinder may differ from the actual kinetic data, especially for large Knudsen numbers.

The reason for this is that Knudsen layers become more and more prominent near the

boundary of the disk with the increasing the Knudsen number and the CCR model cannot

describe them. This is a limitation of the CCR model and better continuum models,

e.g. the R13 or R26 equations, are needed to obtain an accurate flow description near

the boundary of the disk. The R13 and R26 equations can be expected to give correct

flow profiles for the Knudsen number up to 0.5 and 1, respectively. Notwithstanding,

the fundamental solutions of the R13 equations in two dimensions will be explored in

chapter 7 and the fundamental solutions of the R26 equations are not available in any

dimensions at present, and exploring them is beyond the scope of the present work.

5.2.6 Sensitivity of the results towards the location of singularities

We investigate the relationship between the effective condition number and absolute

error in the speed for the case of flow past circular cylinder—aiming to get an appropriate

location for the placement of singularity points.

We define the absolute error ϵ in the speed of the flow by ϵ = |speedMFS−speedanalytic|

and introduce a dilation parameter α > 1, which relates the radii of the inner and outer

fictitious boundaries (containing singularities) to the radii of the inner and outer actual

boundaries via the relations R′
1 = R1/α and R′

2 = αR2. In what follows, we examine the

changes in the effective condition number κeff and in the absolute error ϵ on changing the

dilation parameter for different numbers of the boundary and source points in the cases

when the total number of boundary points are the same as the total number of singularity
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points (i.e. Nb = Ns) and when the total number of boundary points are different from

the total number of singularity points (i.e. Nb ̸= Ns).

Figure 5.12 illustrates the effective condition number (left panel) and absolute error in

the speed (right panel) both plotted against the dilation parameter in the first case when

the total number of boundary points is the same as the total number of the singularity

points (i.e. Nb = Ns) for different values of the number of boundary nodes (or singularity

points)—specifically, for Nb = Ns = 120, 150 and 180. The left panel of the figure

shows that, for small α (close to 1), the effective condition number is relatively small

(of O(105)), and it increases rapidly with increasing the dilation parameter but peaks

for α values somewhere in between α ≈ 1.5 and α ≈ 2 for all the considered numbers

of boundary (or singularity) points, attaining maximum values of O(1012). For α ≳ 2,

the effective condition number tends to stabilize a bit and starts to decrease slightly with

increasing the dilation parameter. The right panel of Fig. 5.12 shows that, for small α

(close to 1), the absolute error in the speed is relatively large (ofO(10−3)), and it decreases

sharply with increasing the dilation parameter but bottoms out for α values somewhere in

between α ≈ 1.9 and α ≈ 2.7 for all the considered numbers of boundary (or singularity)

points, attaining values of O(10−15). For even larger values of the dilation parameter, the

error remains at O(10−15) and no significant improvement in the accuracy is achieved on

increasing the dilation parameter further.

Figure 5.13 also displays the effective condition number (left panel) and absolute error

in the speed (right panel) both plotted against the dilation parameter but in the second

case when the total number of boundary points is different from the total number of

singularity points (i.e. Nb ̸= Ns). We have considered three combinations of the numbers

of boundary nodes and singularity points, namely (i) Nb = 120 and Ns = 90, (ii) Nb = 150

and Ns = 120, and (iii) Nb = 180 and Ns = 150. Similarly to the left panel in Fig. 5.12,

the effective condition number is relatively small (of O(103)–O(106)) for the dilation

parameter close to 1, and increases sharply with increasing α but peaks for α values

somewhere in between α ≈ 1.7 and α ≈ 2.2 for all the considered numbers of boundary

and singularity points, attaining maximum values of O(1012). Similarly to the right panel

in Fig. 5.12, the absolute error in the speed is relatively large (of O(10−3)) for the dilation

parameter close to 1, and it decreases sharply with increasing the dilation parameter

but bottoms out for α values somewhere in between α ≈ 2.1 and α ≈ 3 for all the
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Figure 5.12: Effective condition number κeff (left panel) and absolute error

ϵ in speed (right panel) both plotted against the dilation parameter α in

the case when the total number of boundary nodes Nb is equal to the total

number of singularity points Ns (the case of square collocation matrix) for

Kn = 0.1.
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Figure 5.13: Effective condition number κeff (left panel) and absolute error

ϵ in speed (right panel) both plotted against the dilation parameter α in

the case when the total number of boundary nodes Nb is different from the

total number of singularity points Ns (the case of non-square collocation

matrix) for Kn = 0.1.

considered combinations of the numbers of boundary and singularity points, attaining

values of O(10−15). For even larger values of the dilation parameter, the error remains

at O(10−15) with a slightly increasing trend and hence no significant improvement in the

accuracy is achieved on increasing the dilation parameter further.
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Both Figs. 5.12 and 5.13 exhibit an inverse relationship between the effective condi-

tion number and absolute error, which is concurrent with the findings of Refs. [22, 125].

Noticing the trends in the effective condition number and absolute error, we choose

Nb = Ns = 150 as it ensures a sufficiently high number of boundary nodes and sin-

gularities in order to achieve a high effective condition number and better accuracy along

with computational efficiency. Additionally, the choice of α = 2 balances the trade-off

between achieving a high condition number and minimizing the error.

5.3 Flow past semi-circular cylinder

The numerical framework developed in the present work can be employed to investi-

gate other quasi-two-dimensional flow problems as well. In particular, the expediency of

the method is notable for problems wherein either an analytic solution cannot be found

or is arduous to find.

To showcase the capabilities of the method, we now consider a problem, where the

radial symmetry is absent. We consider the problem of rarefied gas flow past an infinitely

long semicircular cylinder in its transverse direction. The problem is still quasi-two-

dimensional but flow behavior changes according to the orientation of the cylinder. To

setup the orientation of the cylinder and the flow direction, let an infinitely long semicir-

cular cylinder of radius R̃1 be placed in such a way that its axis is along the z̃-direction

Figure 5.14: Cross-sectional view of the horizontal and vertical flows past

a semicircular cylinder.
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and its semicircular base is in the upper half of the x̃ỹ-plane with the midpoint of the

diameter of the semicircular base being fixed at the origin of the Cartesian coordinate

system (x̃, ỹ, z̃) as shown in Fig. 5.14. Two cases are considered: (i) a rarefied monatomic

gas approaching the cylinder from the negative x̃-direction; we refer to this case as the

case of horizontal flow or simply the horizontal case, and (ii) a rarefied monatomic gas

approaching the cylinder from the positive ỹ-direction; we refer to this case as the case

of vertical flow or simply the vertical case analogously. A schematic exhibiting the cross-

sectional view of both cases has also been shown in Fig. 5.14. Furthermore, it is assumed

that the temperature at the surface of the cylinder is the same as the far-field ambient

temperature of the gas T̃0. Needless to say, we shall solve the problem in the x̃ỹ-plane

or equivalently in the r̃ϑ-plane, where x̃ = r̃ cosϑ and ỹ = r̃ sinϑ, for the semi-circular

disk. The radius of the disk R̃1 is taken as the characteristic length scale L̃ for non-

dimensionalization so that x = x̃/R̃1, y = ỹ/R̃1, r = r̃/R̃1, and the dimensionless radius

of the disk R1 = R̃1/L̃ = 1. To circumvent Stokes’ paradox, we—similarly to the problem

in Sec. 5.2—place an artificial circular boundary of radius R̃2 centered at (0, 0) suffi-

ciently far from the semicircular disk. The dimensionless radius of the artificial boundary
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Figure 5.15: Schematic representation for an arrangement of singularities

(stars) and boundary nodes (dots). The red and blue arrows represent the

normal and tangent vectors at each boundary node.
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is R2 = R̃2/L̃, where R2 > R1. Furthermore, for implementation of the MFS, we also

introduce two fictitious boundaries, one inside the semicircular disk and other outside the

artificial circular boundary, on which the source points are to be placed. Let the inner

fictitious boundary be a circle of radius R̃′
1 centered at (0, 0.5) and the outer fictitious

boundary be a circle of radius R̃′
2 centered at (0, 0). The dimensionless radii of the inner

and outer fictitious boundaries are R′
1 = R̃′

1/L̃ and R′
2 = R̃′

2/L̃. An illustration exhibit-

ing the boundary nodes on the semicircular disk and on the artificial boundary, and the

location of source points on the fictitious boundaries is shown in Fig. 5.15. Once the

singularities are placed, the rest of the procedure of implementing the MFS remains the

same as explained in previous chapters.

The horizontal and vertical flow cases are covered by changing the boundary condi-

tions on the artificial boundary. For the horizontal case, the boundary conditions on the

artificial boundary are

vx = v0, vy = 0 and T = 0, (5.45)

while for the vertical case, the boundary conditions on the artificial boundary are

vx = 0, vy = −v0 and T = 0. (5.46)

The boundary conditions on the actual periphery of the disk remain the same as boundary

conditions (5.11)–(5.13).

In numerical computations, v0 is taken as unity, the number of boundary nodes on the

actual periphery of the disk is taken as Nb1 = 200 and that on the artificial boundary is

taken as Nb2 = 400, and the number of singularity points on the inner and outer fictitious

boundaries are taken as Ns1 = 200 and Ns2 = 400, respectively. The dimensionless radius

of the semicircular disk is R1 = 1 and the dimensionless radius of the artificial boundary

is taken as R2 = 10. Although the dependence of the results on the location of the

artificial boundary cannot be neglected, the validation of the results done using R2 = 10

in Sec. 5.2.5 suggests the sufficiency for fixing R2 to 10 to get adequate qualitative results

for the current problem as well. The dimensionless radii of the inner and outer fictitious

boundaries are taken as R′
1 = 0.1 and R′

2 = 50, respectively. In the case of a circular

cylinder, we had the advantage of having an analytic solution, allowing us to validate our

results even with relatively lesser number of boundary nodes and singularity points (Nb1 =
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Figure 5.16: Velocity streamlines along with contour plots of the speed

in the background obtained with the MFS applied on the CCR model for

Kn = 0.1, 0.3 and 0.5. The other parameters are R1 = 1, R2 = 10, R′
1 = 0.1,

R′
2 = 50, Nb1 = Ns1 = 200 and Nb2 = Ns2 = 400.

Ns1 = 50 and Nb2 = Ns2 = 100). However, when dealing with the case of semicircular

cylinder, we have taken a relatively larger number of boundary nodes and singularities.

This decision is based on the studies from the existing literature [26, 32], which suggest

that more boundary nodes and singularity points in the method of fundamental solution

lead to improved accuracy. Furthermore, as neither it is easy to obtain an analytic solution

for the present problem nor we could find any experimental or theoretical study in the

existing literature, our focus in these problems remains only on the qualitative analysis

of the results.

5.3.1 Results in the case of horizontal flow

Figure 5.16 illustrates the velocity streamlines around the semicircular disk along

with contour plots of the speed in the background for Kn = 0.1, 0.3 and 0.5 in the case

of horizontal flow, i.e. when the flow is along the x-direction. Analogously to problem

of flow past a circular cylinder demonstrated in Sec. 5.2.5, the streamlines in Fig. 5.16

are qualitatively alike for the considered Knudsen numbers. Nonetheless, contour plots of

the speed do depict quantitative differences in the speed of the gas for different Knudsen

numbers that are prominently discernible in the close proximity of the disk. It is evident

from the colors of the contour plots near the disk that the speed of the gas on the disk

increases with the Knudsen number due to increase in the slip velocity with the increasing

Knudsen number. Apparently, it is true even for any point in the domain that the speed

of the gas at this point increases with increasing the Knudsen number.
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Figure 5.17: Heat-flux lines along with density plots of the temperature

in the background obtained with the MFS applied on the CCR model for

Kn = 0.1, 0.3 and 0.5. The other parameters are the same as those for

Fig. 5.16.

Interestingly, the effects of asymmetry in the shape of the object are revealed when the

variation of temperature of the gas is explored. In order to explore the asymmetry effects,

we plot in Fig. 5.17 the heat-flux lines superposed on density plots of the temperature

for Kn = 0.1, 0.3 and 0.5. The figure reveals the existence of temperature polarization

near the disk for all Knudsen numbers—with hot region (denoted by red color) on the

left side of the curved portion of the disk and cold region (denoted by blue color) on the

right side due to compression (expansion) of the gas on the left (right) side. In addition, a

minute (but opposite in sign) temperature polarization also occurs below the flat portion

of the disk and is conspicuous for small Knudsen numbers (for Kn = 0.1 in the figure) but

diminishes as the Knudsen number increases. This double polarization could be attributed

to the presence of corners in the geometry or to the asymmetry present in the geometry.

As the Knudsen number increases, the strength of temperature polarization on the curved

portion of the disk increases and hence it takes over the minute temperature polarization

below the flat portion of the disk, and the latter fades away gradually as the Knudsen

number increases. The heat-flux lines in Fig. 5.17 indicate the flow of heat from cold to

hot regions, depicting anti-Fourier effect that again cannot be captured with the classical

models of fluid dynamics.

5.3.2 Results in the case of the vertical flow

Figure 5.18 exhibits the velocity streamlines around the semicircular disk along with

contour plots of the speed in the background for Kn = 0.1, 0.3 and 0.5 in the case of

109



Figure 5.18: Velocity streamlines along with contour plots of the speed

in the background obtained with the MFS applied on the CCR model for

Kn = 0.1, 0.3 and 0.5. The other parameters are the same as those for

Fig. 5.16.

vertical flow, i.e. when the flow is along the negative y-direction. The figure presents

flow separation and formation of circulation zones after the flow crosses the disk. The

figure shows that the flow separation starts reducing slightly with increasing the Knudsen

number. Flow separation and an analogous outcome—reduction in the size of circulation

zone with decreasing Reynolds number—have also been reported by [74] for a creeping

(or low-Reynolds-number) flow past a semicircular cylinder. Thus, owing to the inverse

relationship between the Reynolds and the Knudsen numbers, the qualitative nature of

the flow predicted by the CCR model in the present work is justified. Contour plots of

the speed in Fig. 5.18 again depict that the speed of the gas around the disk increases

with increase in the Knudsen number.

Figure 5.19 illustrates the heat-flux lines superposed over density plots of the tem-

perature for Kn = 0.1, 0.3 and 0.5 in the case of vertical flow. Temperature polarization

again occurs in this case but it is symmetric about the y-axis in this case, creating hot and

cold regions on the top and bottom of the disk, respectively. The strength of temperature

polarization increases with increase in the Knudsen number. The heat-flux lines are also

symmetric about the y-axis for all Knudsen numbers and show the heat flowing from cold

to hot regions, illustrating the anti-Fourier effect in the present case as well.

5.3.3 Drag force in the horizontal and vertical cases

To the best of our knowledge, an analytic expression or any experimental result for

the drag force exerted on the semicircular disk in this problem does not exist in the
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Figure 5.19: Heat-flux lines along with density plots of the temperature

in the background obtained with the MFS applied on the CCR model for

Kn = 0.1, 0.3 and 0.5. The other parameters are the same as those for

Fig. 5.16.

literature. Therefore, we directly present the drag force predicted by the CCR model

through the MFS in Fig. 5.20 for the horizontal and vertical cases. The drag force in the

horizontal case has been obtained by taking the projection of the net force in the negative

x-direction (similarly to that in the problem of flow past a circular cylinder in Sec. 5.2.5).

The variation of the drag force with the Knudsen number in horizontal case is illustrated

in Fig. 5.20 by the solid (black) line. For the vertical case, the drag force is determined

by projecting the net force in the positive y-direction and its variation with Knudsen

number is shown in Fig. 5.20 by the dashed (blue) line. Similarly to the drag force on the
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Figure 5.20: Drag force on the semicircular disk plotted against the Knudsen

number in the horizontal and vertical cases. The other parameters are the

same as those for Fig. 5.16.
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circular cylinder obtained in Sec. 5.2.5, Fig. 5.20 shows that the drag force increases with

increasing the Knudsen number in both horizontal and vertical cases. However, unlike

the case of a circular cylinder where the dependence of the drag force on the Knudsen

number was apparent through Eq. (5.42), an expression revealing dependence of the drag

force on the Knudsen number in the case of a semicircular cylinder is lacking at present.

5.4 Summary

In this chapter, the slow transverse-directional flows of a rarefied monatomic gas

past both circular and semicircular cylinders have been investigated using the CCR-MFS

framework. To overcome the challenges imposed by Stokes’ paradox in two-dimensional

external flows, the computational domain has been restricted artificially by introducing an

external boundary sufficiently far from the disk. Appropriate boundary conditions have

been imposed on the artificial boundary to preserve the physical character of the flow,

which has allowed us to derive a meaningful analytic solution for the flow past a circular

cylinder. It is however important to note that the solutions obtained—both numeri-

cal and analytic—are dependent on the location of the artificial boundary. Eliminating

this dependency entirely would require removing the artificial boundary and addressing

Stokes’ paradox by alternate means, such as incorporating convective terms (e.g., via an

Oseen-type correction) in the CCR model. Nevertheless, deriving and implementing the

corresponding fundamental solutions for such an approach remains a subject for future

work. The numerical results for physical quantities, including velocity, temperature, and

drag force, obtained from the MFS applied to the CCR model, have shown excellent

agreement with the analytic solutions of the CCR model. Moreover, the values of the

normalized drag compare favorably well with those reported in existing literature.

The CCR-MFS framework has successfully captured rarefaction effects such as tem-

perature polarization and anti-Fourier heat transfer that classical continuum models fail

to resolve. To further demonstrate the capabilities of the developed framework, the flow

past a semicircular disk has also been investigated to showcase the capability of the frame-

work for describing flow past non-simple geometries. A sensitivity analysis based on the

effective condition number has also been conducted to determine the sufficient number of

boundary and source points required for achieving high accuracy.
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Chapter 6

Phase transition around liquid jets

Previous studies based on the extended hydrodynamic models (the R13, R26 and CCR

models) have examined complete evaporation or condensation in spherical droplets and

planar geometries [12, 87, 89, 90, 107]. However, they do not address partial phase-

change scenarios. In this chapter, we present the thermodynamically admissible evapora-

tion/condensation boundary conditions for the CCR model in both partial and complete

evaporation scenarios. We employ the MFS on the CCR model to study phase transition

processes in evaporating liquid jets. Here, we refer to the jet as a long stream whose one

axis is significantly larger than the other two. We consider liquid jets with circular and

non-circular cross sections. The numerical results for a circular cross-section are validated

with analytical solutions, and the framework is extended to deformed shapes using spher-

ical harmonic perturbations. An error analysis is included to demonstrate the accuracy

and convergence of the method.

Vapor

Liquid

Far field

Interface

R

b

r


p

s

T
I

p

∞

T

∞

Figure 6.1: Schematic representation of 2D cross-section of an evaporating

liquid jet immersed in its vapor.



6.1 Problem description

We consider the 2D cross-section of a circular cylindrical liquid jet having radius of

interface boundary R̃b. The jet is assumed to be evaporating and immersed in its vapor.

The schematic of the problem is illustrated in Fig. 6.1. An analytic solution of this

problem can be obtained from the CCR model. The liquid-vapor interface in the problem

has been assumed to be infinitely thin to avoid coexisting phases of significant width. It

has also been assumed that far away from the jet (i.e., for r̃ → ∞), the vapor reaches the

equilibrium. Consequently, the far-field temperature T̃∞ and the far-field pressure p̃∞ are

nothing but the equilibrium temperature T̃e and the equilibrium pressure p̃e, respectively.

6.1.1 Boundary conditions

Recall the thermodynamically admissible boundary conditions (2.51)–(2.53) discussed

in Chapter 2(
v − vI

)
· n = −η11(p− ps + n · σ · n) + η12

(
T − T I + α0n · σ · n

)
, (6.1)

q · n = η12(p− ps + n · σ · n)− (η22 + 2τ0)
(
T − T I + α0n · σ · n

)
, (6.2)

t · σ · n = −ς
(
v − vI + α0q

)
· t, (6.3)

where ps denotes the saturation pressure and T I denotes the temperature at the interface.

For the problem under consideration, the interface is assumed to be stationary, i.e., vI = 0.

Further, the general form of Onsager reciprocity coefficients ηij’s mentioned in (2.54),

under the assumption of full accommodation (i.e. χ = 1), turns out to be

η11 = ω1

√
2

π

Θ

2−Θ
, η12 = ω2

√
2

π

Θ

2−Θ
and η22 = ω3

√
2

π

Θ

2−Θ
, (6.4)

with Θ being the evaporation/condensation coefficient. The values of coefficients ω1, ω2

and ω3 vary with the values of evaporation/condensation coefficient Θ. In Ref. [90], as well

as in Chapter 4, Θ = 1 was fixed for full evaporation/condensation case, corresponding

to which ω1 = 0.9134, ω2 = 0.3915 and ω3 = 0.1678. However, the values of coefficients

ω1, ω2 and ω3 in the thermodynamically-admissible boundary conditions of the CCRmodel

corresponding to partial evaporation/condensation cases are lacking in the literature. In

Ref. [49], the temperature- and pressure-jump coefficients have been computed using the S-

kinetic model for the linearized Boltzmann equation. Therefore, we utilize the coefficients
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given in Ref. [49] to obtain the values of ω1, ω2 and ω3 in the boundary condition of the

CCR model. Boundary conditions (6.1) and (6.2) can be expressed as a linear system p− ps + n · σ · n

T − T I + α0n · σ · n

 =

−η11 η12

η12 −η22 − 2τ0

−1 v · n

q · n

 . (6.5)

The comparison with Eqs. (75) and (76) of Ref. [49] is performed by selecting the values

of ϵ
(u)
p , ϵ

(T )
p , and ϵ

(T )
T from Table II in Ref. [49], which allows us to determine ω1, ω2, and

ω3. It is important to note that in Ref. [49], the term corresponding to n ·σ ·n is absent

because they consider an infinite condensed surface, whereas in our case, this term appears

on the left-hand side of Eq. (6.5). The obtained values of ω1, ω2, and ω3 are presented

in Table 6.1 for different values of Θ. These values are also consistent with the values

from Ref. [90] in the special case of full evaporation/condensation (Θ = 1), showing a fair

comparison.

Θ ω1 ω2 ω3

0.1 0.9977 0.4291 0.1882

0.2 0.9897 0.4249 0.1842

0.4 0.9769 0.4190 0.1805

0.6 0.9610 0.4120 0.1771

0.8 0.9406 0.4032 0.1732

1 0.9134 0.3915 0.1678

Table 6.1: The values of the coefficients ωi appearing in the Onsager reci-

procity coefficients ηij in the boundary conditions (6.1) and (6.2) for differ-

ent values of Θ.

6.1.2 Numerical implementation

In the present problem, we depict the placement of Nb equispaced boundary nodes on

the circular boundary (having dimensionless radius Rb) and Ns equispaced source points

placed on a concentric circle of dimensionless radius Rs lying inside the liquid, a schematic

of which is displayed in Fig. 6.2. There are 4×Ns number of unknowns associated with the

ith singularity point, namely hi, f1i , f2i and gi which are calculated by satisfying boundary

conditions (6.1)–(6.3) at every jth boundary node.
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Figure 6.2: Boundary discretization depicting the boundary nodes and sin-

gularity points placed outside of the domain along with the normal and

tangent vectors shown at each boundary node.

6.2 Analytic solution

In this section, the analytic solution for the problem of evaporation from a 2D cross-

section of a cylindrical evaporating jet, as detailed in Sec. 6.1, is presented. Owing to

the symmetry, it is indeed easy to solve the CCR equations for the problem analytically

by transforming the equations to the polar coordinates (as done in Eqs. (5.15)–(5.19b)

in Sec. 5.2.3). As a result of symmetry there is no variation along the azimuthal angle ϑ

and hence vϑ = σrϑ = qϑ = 0. The mass, momentum and energy balance equations thus

reduce to

∂vr
∂r

+
vr
r

= 0, (6.6)

∂p

∂r
+
∂σrr
∂r

+
2σrr
r

= 0, (6.7a)

∂qr
∂r

+
qr
r

= 0, (6.8)

and the closure relations reduce to

σrr = −2Kn
∂vr
∂r

− 2Knα0
∂qr
∂r

, (6.9)

qr = −cpKn

Pr

[
∂T

∂r
+ α0

(
∂σrr
∂r

+
2σrr
r

)]
. (6.10)
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It is now straightforward to obtain the analytic solution of the Eqs. (6.6)–(6.10) This

analytic solution will serve as the reference solution for analyzing errors in the solution

obtained through the MFS. The analytic solutions of the CCR equations for the problem

under consideration are as follows

vr =
c1
r
, σrr =

2Kn

r2
(c1 + α0c2), T = −2c2Pr

5Kn
log r, qr =

c2
r
, (6.11)

p = vϑ = σrϑ = qϑ = 0, (6.12)

where the subscripts ‘r’ and ‘ϑ’ on the field variables denote their radial and angular

components, respectively, and the integration constants c1 and c2 are to be calculated using

boundary conditions (6.1) and (6.2). Note that boundary condition (6.3) is identically

satisfied with solution (6.11). Moreover, two additional integration constants appear in

the analytic expressions for pressure and temperature. Those constants are set to zero

based on the far-field equilibrium conditions. However, due to the logarithmic behavior

of temperature, enforcing an exact T∞ = 0 condition—as done for three dimensions in

Ref. [89]—is not feasible in the present formulation in 2D.

It is customary to determine the integration constants c1 and c2 for the problem

in two different cases: (i) the pressure-driven case wherein there is no difference in the

liquid temperature and the far-field temperature, and the evaporation is entirely due

to the pressure difference between the saturation and far-field pressures (i.e., ps = 1

and T I = 0) and (ii) the temperature-driven case wherein there is no difference in the

saturation and far-field pressures, and the evaporation is solely driven by the difference in

the liquid temperature and the far-field temperature (i.e., ps = 0 and T I = 1); see, e.g.,

Refs. [87, 89, 90]. Applying boundary conditions (6.1) and (6.2) at r = Rb, the integration

constants c1 and c2 in the pressure-driven case turn out to be

cp1 = −
2
√
2πRbΘ

(
A3(15α0

2Kn2 − 2R2
b logRb) +

√
πω1(Θ− 2) (A4 − 8R2

b τ0 logRb)
)

4Rb logRb

(
4KnΘA2 +Rb(Θ− 2)(

√
2π ω3Θ− 2πτ0(Θ− 2))

)
+ 15A1Kn(Θ− 2)

,

(6.13)

cp2 =
30πKnRbΘ

(
4A2α0Kn +

√
2πRb ω2(Θ− 2)

)
4Rb logRb

(
4KnΘA2 +Rb(Θ− 2)(

√
2π ω3Θ− 2πτ0(Θ− 2))

)
+ 15A1Kn(Θ− 2)

,

(6.14)
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while in the temperature-driven case, they turn out to be

cT1 = cp2, (6.15)

cT2 = −
30πKnRb

(
4KnΘA2 +Rb(Θ− 2)

(√
2π ω3Θ− 2πτ0(Θ− 2)

))
4Rb logRb

(
4A2KnΘ +Rb(Θ− 2)(

√
2π ω3Θ− 2πτ0(Θ− 2))

)
+ 15A1Kn(Θ− 2)

,

(6.16)

where

A1 = π(Θ− 2)
(
4α0

2Kn τ0 +Rb

)
− 2

√
2πKnΘ (α0 (α0 ω3 − 2ω2) + ω1) , (6.17)

A2 =
√
2πτ0 ω1(Θ− 2) +

(
ω2
2 − ω1ω3

)
Θ, (6.18)

A3 = 2
√
2
(
ω2
2 − ω1ω3

)
Θ, A4 = 15Kn

(
4α0

2Kn τ0 +Rb

)
, (6.19)

and the superscripts ‘p’ and ‘T ’ on the integration constants c1 and c2 have been used

for denoting their values in the pressure- and temperature-driven cases, respectively. It is

evident from (6.15) that the Onsager reciprocity relations hold true due to the microscopic

reversibility of the evaporation and condensation processes. Physically, these integration

constants c1 and c2 represent the mass-flux and heat-flux coefficients, respectively. The

mass-flux and heat-flux coefficients can also be obtained by the MFS utilizing the un-

knowns corresponding to point mass and point heat sources corresponding to the all the

singularity points. These coefficients are related to the unknown point mass and heat

sources included as Dirac-delta sourcing terms in the mass balance and energy balance

equations (2.19)1 and (2.19)3, respectively. Therefore, the combined effects of all mass

and heat sources determine the mass and heat fluxes in different scenarios using the MFS.

These coefficients have also been obtained for the spherical droplet case using the three-

dimensional CCR model in Ref. [90]. The mass-and heat-flux coefficients obtained from

the MFS read

cMFS
1 =

1

2π

∫ 2π

0

v · n dϑ =
1

2π

Ns∑
i=1

hi, (6.20)

cMFS
2 =

1

2π

∫ 2π

0

q · n dϑ =
1

2π

Ns∑
i=1

gi. (6.21)
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6.3 Validation and discussion

The numerical results are obtained with the MFS parameters asNs = 60, Rb = 0.5 and

Rs = 0.4Rb. The choice for Ns and Rs will be justified later in Sec. 6.5. Throughout this

section, the solid lines represent the results obtained from the analytic solution whereas

the symbols (disks) denote the results obtained using the MFS. In order to validate the

results obtained from the MFS with those from the analytic solution, we first compare

the mass-and heat-flux coefficients.

Figure 6.3 shows the mass-flux and heat-flux coefficients (c1 and c2, respectively)

plotted against the Knudsen number (Kn) for the pressure- and temperature-driven cases.

The variations are depicted for different values of the evaporation/condensation coefficient

Θ. An excellent agreement is evident between the results obtained from the MFS and

analytic solution in all the scenarios. The mass-flux coefficient for the pressure-driven case

is presented in the left panel of Fig. 6.3. For very small values of the Knudsen number

Kn ≲ 0.001, the values of the mass-flux coefficient cp1 remain constant for all values of

10-4 0.001 0.010 0.100 1

0.5

1.0

1.5

2.0

10-4 0.001 0.010 0.100 1

-1.4

-1.2

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

10-4 0.001 0.010 0.100 1

0

1

2

3

4

Figure 6.3: The mass-flux coefficient c1 in the pressure-driven (T I = 0,

ps = 1) case (left) and in temperature-driven (T I = 1, ps = 0) case (middle);

and the heat-flux coefficient c2 for the temperature-driven (T I = 1, ps = 0)

case (right) as a function of Knudsen number with different values of Θ.

The middle panel also represents the heat-flux coefficient c2 in the pressure-

driven (T I = 0, ps = 1) case. The numerical results obtained from the MFS

using expressions (6.20) and (6.21) are represented by symbols while the

analytical results calculated using (6.13) and (6.15) are shown with solid

lines.
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Θ. However, beyond Kn ≳ 0.01, the values of cp1 decrease as Kn increases for all larger

of evaporation/condensation coefficient (Θ = 1, 0.6, 0.4). Middle panel of Fig. 6.3 shows

the heat-flux coefficient in the pressure-driven case cp2 (or the mass-flux coefficient in the

temperature-driven case cT1 ) and Right panel of Fig. 6.3 shows the variation in heat-

flux coefficient cT2 in the temperature-driven case. It is evident from the pressure-driven

scenario (left and middle panels) that cp1 > 0 and cp2 < 0 indicating the evaporation at

the interface as mass flows from liquid to vapor and heat flows from vapor to liquid. On

the other hand, from the temperature-driven scenario (middle and right panels), cT1 < 0

and cT2 > 0 which indicate the condensation at the interface as the mass flows from vapor

to liquid and heat flows from liquid to vapor. To further understand this phenomenon

of evaporation/condensation at the interface, we plot the radial velocity and temperature

varying around the liquid jet in the Figs. 6.4 and 6.5, for the pressure- and temperature-

driven cases, respectively.

The left and right panels of Fig. 6.4 depict the variation of the radial velocity vr

and temperature T , respectively, with the radial distance in the pressure-driven case for

Kn = 0.1. As depicted in the left panel of the figure, the radial velocity decreases with the

increase in radial distance, due to the relation vr = c1/r [in (6.11))]and cp1 > 0. Moreover
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Figure 6.4: Variation in the radial velocity (left panel) and temperature

(right panel) with the radial distance for the pressure-driven case (ps = 1

and T I = 0) at Kn = 0.1 for different values of Θ. Numerical results ob-

tained using the CCR-MFS framework are illustrated using symbols (disks)

and analytical solutions are represented by solid lines.
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Figure 6.5: Same as Fig. 6.4 but for the temperature-driven case (T I = 1

and ps = 0).

the right panel of the figure indicates the temperature at the interface (r = 0.5) is lower

in comparison to the temperature of the surrounding vapor. This leads the heat to flow

from vapor toward the liquid (as also indicated by cp2 < 0 in Fig. 6.3) and in turn causing

evaporation at the interface. The left and right panels of Fig. 6.5 depict the variation

of the radial velocity vr and temperature T , respectively, with radial distance in the

temperature-driven case for Kn = 0.1. In this case, the left panel of the figure indicates

a negative radial velocity, which is due to cT1 < 0 from Fig. 6.3. As evident from the

right panel of the figure, the temperature on the interface is higher than the surrounding

vapor leading the heat to flow from liquid toward the vapor (as also indicated by cT2 > 0

in Fig. 6.3) and in turn causing condensation at the interface. In both pressure- and

temperature-driven scenarios, the magnitudes of the flow variables vr and T are higher

for larger values of the evaporation/condensation coefficient Θ. However, the temperature

in the temperature-driven case is not significantly sensitive toward Θ.

6.4 Evaporation/condensation on noncircular cross-sections

In the present section, we utilize spherical harmonics to generate jets with non-circular

cross-sections. Spherical harmonics are mathematical functions defined on the surface of a

sphere [45] which describe smooth deformations of spherical surfaces, useful for modeling

deformed droplets.. To study the effects of evaporation and condensation at an interface

with complex geometry, spherical harmonics offer a practical framework for introducing
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controlled perturbations or deformations to a circular cross-section. Spherical harmonics

are defined as Y m
ℓ (θ, φ) [71]:

Y m
ℓ (θ, φ) =

√
(2ℓ+ 1)

4π

(ℓ−m)!

(ℓ+m)!
Pm
ℓ (cos θ) eimφ, (6.22)

where Pm
ℓ (x) are the associated Legendre polynomials of degree ℓ and order m , θ ∈ [0, π]

is the polar angle, and φ ∈ [0, 2π] is the azimuthal angle.

Any surface coordinate that is a function of θ and φ is defined as

r(θ, φ) =
L∑

ℓ=0

ℓ∑
m=−ℓ

amℓ Y
m
ℓ (θ, φ), (6.23)

where amℓ are the harmonic coefficients that determine the contribution of each spherical

harmonic mode. For modeling the surface of a droplet, the radial distance r is defined as

a perturbation of a perfect sphere with radius r0

r(θ, φ) = r0

(
1 +

L∑
ℓ=0

ℓ∑
m=−ℓ

amℓ Re(Y m
ℓ (θ, φ))

)
. (6.24)

For a cylindrical geometry, Y m
ℓ (θ, φ) depends only on θ and becomes independent of φ as

m = 0. This makes the spherical harmonics axisymmetric and reduces them to Legendre

polynomials

Y 0
ℓ (θ) =

√
(2ℓ+ 1)

4π
P 0
ℓ (cos θ). (6.25)

With this, Eq. (6.24) reduces to

r(θ) = r0

(
1 +

L∑
ℓ=0

a0ℓ Y
0
ℓ (θ)

)
. (6.26)

In the present work, we use harmonics up to L = 4 (ℓ = 0, 1, 2, 3, 4) and for the sake

of simplicity, we drop the superscript “0” and adopt the notation aℓ instead of a0ℓ to

describe the parameters in the considered examples. We consider two set of parameters

(a) a0 = 0, a1 = 0.01, a2 = 0.8, a3 = 0.01, a4 = 0.01 for shape 1 and (b) a0 = 0,

a1 = 0.05, a2 = 0.05, a3 = 0, a4 = 0.1 for shape 2. A two-dimensional cross-section

for the corresponding deformed non-circular jet is illustrated in Fig. 6.6. Both jets are

considered to be surrounded by their own vapors with an infinitely thin separating liquid-

vapor interface. The rest far-field equilibrium assumptions are analogous to those in the

circular case. For the sake of MFS implementation, the boundary nodes are discretized

at equispaced angular distances. A fictitious boundary containing singularity points is
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Figure 6.6: Shapes generated using equation (6.26) for set of parameters

a0 = 0, a1 = 0.01, a2 = 0.8, a3 = 0.01, a4 = 0.01 (left) and a0 = 0,

a1 = 0.05, a2 = 0.05, a3 = 0, a4 = 0.1 (right) with r0 = 0.5. The black (disk)

symbols denote the boundary nodes discretized over the interfacial bound-

ary whereas the red (star) symbols denote the chosen singularity points in

both the shapes.

chosen to be in the same shape as the cross section, shrunk inside the actual boundary

of both jets. A dilation parameter α is used to decide the location of fictitious boundary

inside the original boundary, such that as0 = a0/α, as1 = a1/α, as2 = a2/α, as3 = a3/α,

as4 = a4/α are the shape parameters.

The left and middle panels of Fig. 6.7 illustrate the variation in the mass-and heat-

flux coefficients in the pressure-driven case for the circular and non-circular cross sections.

The (solid) red, (dot-dashed) black and (dashed) blue curves represent the results for

the circle, shape 1 and shape 2, respectivey. The results are presented as a function

of Kn for complete evaporation by taking Θ = 1. In shape 2, which retains symmetry

in both x- and y-directions, the mass-flux and heat-flux coefficients cp1 and cp2 in the

pressure-driven case show slight deviations from those of the circular shape. However,

in shape 1, the asymmetric deformation leads to significant deviation, especially in the

mass-flux coefficient. Since the heat-flux coefficient for the pressure-driven case is equal

to the the mass-flux coefficient in the temperature-driven case, the right panel of Fig. 6.7

demonstrates the variation in heat-flux coefficient for the temperature-driven case. In this

case also, the deformity in shape 1 leads to significant deviation in comparison to shape

2 and circular case.
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Figure 6.7: The mass-flux coefficient c1 in the pressure-driven (T I = 0,

ps = 1) case (left) and in temperature-driven (T I = 1, ps = 0) case (middle);

and the heat-flux coefficient c2 for the temperature-driven (T I = 1, ps = 0)

case (right) as a function of Knudsen number for Θ = 1. The middle panel

also represents the heat-flux coefficient c2 in the pressure-driven (T I = 0,

ps = 1) case. Results correspond to the circle and two deformed shapes

presented in Fig. 6.6.
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Figure 6.8: Velocity streamlines over speed contours (left panel) and heat-

flux lines over temperature contours (right panel) in the pressure-driven

case (T I = 0 and ps = 1) for shape 1 at Kn = 0.1.

Figures 6.8 to 6.11 show the flow and heat profiles around the jets with non-circular

cross-sections having shapes depicted in Fig. 6.6. The left panel of Fig. 6.8 illustrates the

streamlines plotted over speed contours around the interface with shape 1 (left panel in

Fig. 6.6) for the pressure-driven case (T I = 0 and ps = 1). The flow pattern exhibits
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Figure 6.9: Velocity streamlines over speed contours (left panel) and heat-

flux lines over temperature contours (right panel) in the temperature-driven

case (T I = 1 and ps = 0) for shape 1 at Kn = 0.1.

symmetric behavior around the interface, with higher speeds observed near the interface.

The magnitude of velocity decreases as we move away from the interface. The right panel

of Fig. 6.8 illustrates the heat-flux lines superimposed over temperature contours for the

same shape. Due to the existence of a negative pressure gradient in this case, the heat

flows from vapor to the liquid interface as shown by the direction of the heat-flux lines,

leading to evaporation at the interface.
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Figure 6.10: Same as Fig. 6.8 but for shape 2.

Figure 6.9 depicts analogous velocity streamlines plotted over speed contours (left

panel) and heat-flux lines plotted over temperature contours (right panel) for shape 1, but
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Figure 6.11: Same as Fig. 6.9 but for shape 2.

in the temperature-driven case (ps = 0 and T I = 1). The streamlines again demonstrate

symmetric behavior around the jet with higher speeds observed near the interface but with

a direction opposite to the pressure-driven case. In this scenario, the negative temperature

gradients around the jet lead the heat to flow outward from hotter to colder regions, which

in turn leads to condensation at the interface.

Figures 6.10 and 6.11 illustrate the flow and heat profiles for shape 2 (left panel in

Fig. 6.6) in the pressure-driven and temperature-driven cases, respectively. The direction

of the streamlines and heat-flux lines in both the pressure-driven and temperature-driven

cases are analogous to those obtained for shape 1. The similar behavior again indicates

the evaporation(condensation) in the pressure(temperature)-driven case.

6.5 Sensitivity analysis

The error analysis is aimed to study the effects of the positioning of the fictitious

boundary, the numbers of the singularity and boundary points, the effective condition

number and the shape of the collocation matrix on the error. For numerical tests, we

have computed the absolute error in the radial velocity and the radial heat flux obtained

with the MFS from its corresponding analytic solution (in Sec. 6.2) at the interface. We

shall analyze the error in two specific cases for the circular interface, namely the pressure-

and temperature-driven cases, for which the analytic solution (including the values of

the integration constants) is entirely known. For the shape of the collocation matrix,
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there can only be two possibilities—it can either be square or rectangular depending on

what the numbers Nb and Ns are. The collocation matrix is of size 3Nb × 4Ns because

there are four unknowns corresponding to each singularity point, but only three boundary

conditions to use at a boundary node. The collocation matrix can still be made square in

two ways: (i) by choosing Nb and Ns appropriately so that 3Nb = 4Ns and (ii) by splitting

one (or more) boundary condition(s) properly so that the number of boundary conditions

equals the number of unknowns for a singularity point. To have an additional boundary

condition in the latter case, the sourcelet part of the velocity boundary condition (6.1) in

the present work can be extracted. We split the velocity at the jth node as

vj = v
(1)
j + v

(2)
j , (6.27)

where

v
(1)
j =

Ns∑
i=1

(
1

8πKn
fi · J(rij) +

1

4π

5Kn

Pr
α2
0fi ·K(rij)

)
(6.28)

v
(2)
j =

Ns∑
i=1

hirij
2πr2ij

, (6.29)

and the sourcelet part of velocity v
(2)
j is responsible for evaporation/condensation effects,

owing to which we can use two boundary conditions

v
(1)
j · nj = 0, (6.30)

v
(2)
j · nj = −η11(pj − ps + nj · σj · nj) + η12

(
Tj − T I + α0nj · σj · nj

)
. (6.31)

in order to have four boundary conditions at each boundary node. Now, on taking Nb =

Ns, the collocation matrix is a square matrix of size 4Ns × 4Ns. In summary, we have

considered the following three cases throughout our analysis.

Case 1: The collocation matrix is made square by choosing the values of Nb and Ns in

such a way that 3Nb = 4Ns.

Case 2: The collocation matrix is made square by splitting boundary condition (6.1) into

two new boundary conditions [which at the jth boundary node are (6.30) and

(6.31)], and taking Nb = Ns.

Case 3: The values of Nb and Ns are such that the collocation matrix is rectangular and

we do not try to make it square. In this case, the numerical solution is obtained

using the method of least squares.
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In cases 1 and 2, Nb varies with Ns, meaning that once one is chosen, the other is

determined by the constraints 3Nb = 4Ns (for Case 1) or Nb = Ns (for Case 2). In case 3,

where the collocation matrix remains rectangular, Nb and Ns can be chosen more flexibly,

provided that 3Nb > 4Ns to ensure an overdetermined system. We exclude cases where

3Nb < 4Ns, as this would lead to an underdetermined system with more unknowns than

equations. For case 3, we have taken Nb = 65 in all our computations. For determining the

location of singularities, we use a parameter α which relates the radius of the boundary to

that of the fictitious boundary via Rs = αRb. A smaller value of the parameter α implies

a greater distance between the actual and fictitious boundaries.
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Figure 6.12: Absolute errors in the radial velocity and radial heat flux

plotted against the dilation parameter in the pressure-driven case for Kn =

0.1 and Ns = 45.
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Figure 6.13: Same as Fig. 6.12 but in the temperature-driven case.
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Figures 6.12–6.14 illustrate the absolute errors in the radial velocity radial heat flux

in different cases. Figures 6.12 and 6.13 exhibit the change in the error on varying the

dilation parameter in the pressure- and temperature-driven cases, respectively for the

evaporation/condensation coefficient Θ = 1. It is evident from Figs. 6.12 and 6.13 that

the error in both the quantities remains negligible for α ≲ 0.5. However, the error starts

increasing with increasing α beyond this. This means that, beyond a certain position of

the fictitious boundary, the error in the solution becomes larger and larger as the fictitious

boundary is placed closer and closer to the actual boundary. This feature remains the

same even for different Knudsen numbers (we have checked it for different values of the

Knudsen number ranging from 0.1 to 1).
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Figure 6.14: Absolute errors in the radial velocity and radial heat flux

plotted over the number of singularity points in the pressure-driven case for

Kn = 0.1 and α = 0.4.
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Figure 6.15: Same as Fig. 6.14 but in the temperature-driven case.
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Figures 6.14 and 6.15 display the change in the error on varying the number of the

singularity points placed on a circle of radius Rs = 0.2, i.e. for α = 0.4 in the pressure- and

temperature-driven cases, respectively. As expected, Figs. 6.14 and 6.15 also confirm that

an increase in the number of singularity points leads to more accuracy. From Figs. 6.12–

6.15, it is evident that the overall behavior in the errors remains analogous for all three

considered cases. The computational time of our simulations depends primarily on the

number of singularity points Ns used in the MFS. However, it remains independent of the

dilation parameter α, which determines the location of singularities, as well as the choice

of a square or rectangular collocation matrix. Each of the calculations presented was

computed in less than or around 1–2 seconds on a single 2.10 GHz Intel Core i7 processor

using Mathematica®.

Another important parameter that indicates the right choice of the location of singu-

larities is the effective condition number for a linear system. Figure 6.16 demonstrates the
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Figure 6.16: Absolute error ϵ in the radial velocity at the interface (repre-

sented by the blue axis and curves) and the effective condition number κeff

(represented by the red axis and curves) varying with the dilation parameter

α for different number of boundary nodes and singularity points. The solid,

dashed and dot-dashed curves represent the cases with Ns = 45, Nb = 60;

Ns = 60, Nb = 80; and Ns = 90, Nb = 120, respectively.

error in radial velocity (denoted by ϵ) in the pressure-driven case and effective condition

number κeff, plotted simultaneously against the dilation parameter α for Kn = 0.1. The

collocation matrix has been constructed as described in case 1 with square 3Nb × 4Ns
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system. The blue solid, dashed and dot-dashed lines represent the variation in error with

respect to α for Ns = 45, Nb = 60; Ns = 60, Nb = 80; and Ns = 90, Nb = 120; respectively

whereas the red solid, dashed and dot-dashed lines represent the variation in effective

condition number for Ns = 45, Nb = 60; Ns = 60, Nb = 80; and Ns = 90, Nb = 120, re-

spectively. The link between α and Ns becomes clear from the figure as fictitious boundary

can be shifted towards the actual boundary while maintaining roughly the same accuracy

by increasing the numbers of the collocation and singularity points. In other words, it is

feasible to use less numbers of boundary nodes and source points when choosing a smaller

value of α for computational efficiency in the case of a circular interface. This link between

the number of source and boundary points as depicted in Fig. 6.16 is not universally true

for all problems. Nevertheless, the interesting aspect is to note the inverse relation of

effective condition number with accuracy as it helps determine an optimal location for

singularities for the problems where the analytic solution is not known. To discuss the

choice of location of singularities for deformed interfaces (shape 1 and shape 2), we plot

the effective condition number κeff varying with the dilation parameter α for shape 1 (left

panel) and shape 2 (right panel) in Fig. 6.17. It is evident from the figure that the highest

value of effective condition number is achieved somewhere in between 0.6 ≲ α ≲ 0.8 for

all the considered values of Ns, Nb for both the shapes. Moreover, considering a greater

number of boundary and singularity points yields higher values of κeff. The computational

time for both considered shapes with Ns = 180, Nb = 240 is approximately 20 seconds,

which is higher than that for Ns = 120, Nb = 180 (∼ 9 seconds) and Ns = 90, Nb = 120
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Figure 6.17: Variation in the effective condition number κeff with respect

to the dilation parameter α for different numbers of boundary and source

points in case of shape 1 (left panel) and shape 2 (right panel).
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(∼5 seconds). Nevertheless, we fix Ns = 180, Nb = 240 with α = 0.7 to ensure accurate

results for the problems with deformed interface (shape 1 and shape 2).

6.6 Summary

In this chapter, the evaporation and condensation phenomena have been investigated

around liquid jets with both circular and non-circular cross-sections. The thermodynam-

ically admissible boundary conditions for the CCR model in both complete and partial

evaporation/condensation scenarios have been presented and implemented. By exploiting

the symmetry inherent in the circular configuration, analytic solutions have been ob-

tained for the circular case, and the results from the MFS have been validated against

these solutions. Across the cases—including both pressure-driven and temperature-driven

evaporation/condensation cases—an excellent agreement has been observed between the

analytic and numerical results.

The numerical framework has been further extended to non-circular jets for investi-

gating the effect of the shape of the interface by introducing controlled deformations via

spherical harmonics. The results have shown that for nearly symmetric, mildly deformed-

circular jets, mass and energy fluxes remain comparable to those of corresponding to the

circular jet. However, significant asymmetry in the interface shape has been observed to

cause notable deviations in the mass-flux and heat-flux coefficients. The velocity stream-

lines and heat-flux lines have further clarified how these deformations influence local flow

and transport fields. A comprehensive sensitivity analysis has also been conducted to

assess the influence of the placement of source points, the number of source and boundary

points, and the matrix structure on numerical accuracy and computational cost.
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Chapter 7

Generalizing the MFS to

higher-order moment systems

As mentioned in Sec. 1.2, all previous works on the MFS for rarefied gas flows [27, 64,

90], and also Chapters 3 to 6 of this thesis required deriving fundamental solutions for

specific models by prescribing Dirac-delta source terms in selected governing equations

within the system and/or in the closure relations. While effective, this methodology typ-

ically makes it challenging to extend the MFS for new or more complex models, where

the fundamental solutions are unknown and the choice of source terms is not straightfor-

ward. To address the limitations posed by fixing the source terms manually, we propose a

generic approach that allows for the computation of fundamental solutions for any large

system of equations without the need to predefine specific Dirac-delta source terms. The

generic MFS approach relies on two steps. The first step involves identifying the funda-

mental solutions of the system. This process is similar to Hörmander’s method [8, 47]

and employs Fourier transformation in combination with partial fraction decomposition

to derive expressions for the fundamental solutions. The second step is determining the

source strengths using the boundary conditions for the problem under consideration.

7.1 The technique

This section introduces a general technique to determine and implement the funda-

mental solutions for any linear first-order system of partial differential equations. We

consider a linearized system of N ∈ N partial differential equations in (two-dimensional)

Cartesian coordinates, expressed as

A(x)∂xU +A(y)∂yU + PU = Sδ(r), (7.1)

where U : Ω → RN is the variable vector field, A(x),A(y) ∈ RN×N are constant advection

matrices and P ∈ RN×N is the constant reaction matrix, S ∈ RN is a constant forcing

vector (including source terms) and δ(r) is the Dirac delta. To determine the fundamental



solution of the system, we define the Fourier transform F̂ (k) of a function F (r) as

F
(
F (r)

)
= F̂ (k) :=

∫
R2

F (r) e−ik·r dr, (7.2)

where i is the imaginary unit, k = (kx, ky) ∈ R2 is the wave vector in the spatial-frequency

domain. The corresponding inverse Fourier transformed counterpart is defined as

F−1
(
F̂ (k)

)
= F (r) :=

1

(2π)2

∫
R2

F̂ (k) eik·r dk. (7.3)

Applying Fourier transformation on Eq. (7.1) we obtain

A(k)Û := (ikxA
(x) + ikyA

(y) + P )Û = Sδ̂, (7.4)

wherein the inverse of the matrix A ∈ RN×N can be written as

A(k)−1 =
1

det(A(k))
A(k) =

1

s(k)
A(k). (7.5)

Here, the determinant det(A(k)) = s(k) is identified as the symbol [35] of the partial

differential operator and the matrix A is the adjugate matrix, which contains the cofac-

tor expansions of the original matrix. Since both adjugate matrix and symbol contain

polynomial terms in kx and ky, they can be easily inverted using the Fourier inverse

transformation. Using the fact that

A(∇)A(∇) = s(∇)IN , (7.6)

where IN is the N ×N identity matrix, one can conclude

s(k)Û = A(k)Sδ̂ ⇐⇒ s(∇)[U ] = A[δ]S. (7.7)

This crucial step makes this approach commendable. Finding the fundamental solution

corresponding to only the symbol operator leads us to the fundamental solution for the

complete system. The fundamental solution for the full system is given by

U(r) = A(∇)[Φ](r)S, (7.8)

where Φ is the two-dimensional fundamental solution associated with the symbol s(∇) of

the PDE, i.e.

s(∇)[Φ] = δ. (7.9)

It is straightforward to calculate Φ if the symbol turns out to be a differential operator

with a known fundamental solution. Furthermore, if the symbol can be factorized into
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Figure 7.1: Schematic representation for discretization of boundary points

(blue disks) on the domain boundary and singularity points (red disks)

outside the problem domain.

Laplace, polyharmonic and Helmholtz operators, the fundamental solution Φ can be cal-

culated using partial fraction decomposition along with inverse Fourier transforms of the

known factor operators. It is important to note that a fundamental solution Φ is not

unique. Different solutions can be obtained by adding the homogeneous solutions, which

correspond to the null space of the operator. This non-uniqueness plays a crucial role in

constructing tailored solutions for specific boundary conditions and physical scenarios.

After finding the fundamental solution for the complete system, the MFS involves

the discretization of the domain boundary into boundary nodes and placement of the

singularity or source points on some fictitious boundary outside the problem domain.

We demonstrate this by considering an arbitrary domain Ω having boundary Γ as shown

in Fig. 7.1. The boundary Γ is discretized into Nb equispaced boundary points having

position vectors xb
j; j = 1, . . . , Nb. Outside the domain Ω, a fictitious boundary Γ̃ is

considered with source points xs
i ; j = 1, . . . , Ns. The relative position of the ith source

point with respect to jth boundary node is denoted by rij = xb
j − xs

i . The boundary

conditions for the problem are written in the form

B(xb)U (xb) = g(xb), (7.10)

where B(xb) ∈ Rp×N is a matrix depending on the normal and tangent vectors n and t

associated with any point xb lying on the boundary Γ and g(xb) ∈ Rp is the corresponding

right-hand-side vector. The numerical solution obtained by the MFS is the superposition
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of the obtained fundamental solutions, i.e.

UMFS(x) =
Ns∑
i=1

A(x− xs
i )Si, (7.11)

where UMFS(x) denotes the solution at any point x ∈ Ω, A(r) ≡ A(∇)[Φ](r) and

Si ∈ RN contains the unknown source strengths corresponding to ith source point xs
i . The

unknown strengths are then calculated by solving a linear system formed on applying the

boundary conditions at each boundary node. The linear system reads

B(xb
j)U(xb

j) = B(xb
j)

Ns∑
i=1

A(xb
j − xs

i )Si = g(x
b
j), j = 1, 2, . . . , Nb. (7.12)

The overall linear system is MX = G, where M is the pNb ×NNs collocation matrix,

X ∈ RNNs is the vector containing the unknown source strengths Si corresponding to

i = 1, 2, . . . , Ns singularities and G ∈ RpNb contains the right-hand-side vectors g(xb
j)

for j = 1, 2, . . . , Nb. Since the matrix M is generally non-square, it is possible to have

many equations (N) with comparatively fewer boundary conditions (p). The choice of

the number of boundary and singularity points (Nb and Ns, respectively) significantly

influences the structure and solvability of the system. To facilitate a square system,

we introduce a decomposition S = Mµ, and choose Nb = Ns, so that the number of

boundary conditions imposed at each boundary node matches the number of unknown

source strengths associated with each singularity point. This shall be discussed further in

detail in the subsequent sections.

7.2 Implementing generic MFS for Stokes’ equations

We show the implementation of generic MFS via an example of the Stokes equations

(in two dimensions) which read

∇ · v = 0, (7.13)

∇p+∇ · σ = 0, (7.14)

σ = −∇v. (7.15)
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7.2.1 Fundamental solutions

Rewriting these equations as in the form of Eq. (7.1), the unknowns are U =
[
p vx vy

σxx σxy σyy
]T
, and the matrices are

A(x) =



0 1 0 0 0 0

1 0 0 1 0 0

0 0 0 0 1 0

0 2
3

0 0 0 0

0 0 1
2

0 0 0

0 −1
3

0 0 0 0


, A(y) =



0 0 1 0 0 0

0 0 0 0 1 0

1 0 0 0 0 1

0 0 −1
3

0 0 0

0 1
2

0 0 0 0

0 0 2
3

0 0 0


, (7.16)

and P = diag(0, 0, 0, 1, 1, 1). On taking the Fourier transformation of the rewritten

system, we obtain the matrix

A(k) =



0 ikx iky 0 0 0

ikx 0 0 ikx iky 0

iky 0 0 0 ikx iky

0 2ikx
3

−1
3
(iky) 1 0 0

0 iky
2

ikx
2

0 1 0

0 −1
3
(ikx)

2iky
3

0 0 1


, (7.17)

for which the symbol turns out to be

s(k) =
1

2
(k2x + k2y)

2 =
1

2
k4, (7.18)

where k =
√
k2x + k2y. In order to find the fundamental solution ϕ associated with the

above symbol (such that s(∇)[ϕ] = δ), we utilize the definition (7.2) and (7.3) for the

Biharmonic equation ∆2ϕ = δ whose fundamental solution in two dimensions is given

by [25]

ϕ =
r2 (ln r − 1)

8π
, (7.19)

where r =
√
x2 + y2. This fundamental solution ϕ corresponds to the fundamental solu-

tion associated with the symbol for Stokes’ equations and F−1(1/k4) = ϕ. Applying the

Fourier transformation [defined by Eq. (7.2)] to the Biharmonic equation ∆2ϕ = δ, we
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obtain

(−k2x − k2y)
2ϕ̂ = k4ϕ̂ = 1 =⇒ ϕ̂ =

1

k4
. (7.20)

Taking inverse Fourier transformation,

F−1

(
1

k4

)
= ϕ =

r2 (ln r − 1)

8π
. (7.21)

Utilizing the above inverse Fourier transformation and the fundamental solution ϕ, we

thus obtain the complete fundamental solution for U

Û =
A(k)

s(k)
S =

2

k4
A(k)S =⇒ U = 2A(∇)[ϕ]S, (7.22)

where the adjugate matrix in operator form reads

A(∇) =



∆2

3
∆∂x
2

∆∂y
2

−1
2
∂2x∆ −∂x∂y∆ −1

2
∂2y∆

∆∂x
2

−∂2y ∂x∂y ∂x∂
2
y ∂3y − ∂2x∂y −∂x∂2y

∆∂y
2

∂x∂y −∂2x −∂2x∂y ∂x(∂
2
x − ∂2y) ∂2x∂y

−1
6
∆
(
2∂2x − ∂2y

)
∂x∂

2
y −∂2x∂y 1

2

(
∂4x + ∂4y

)
∂x∂y(∂

2
x − ∂2y) ∂2x∂

2
y

−1
2
∆∂x∂y −1

2
∂y(∂

2
x − ∂2y)

1
2
∂x(∂

2
x − ∂2y)

1
2
∂x∂y(∂

2
x − ∂2y) 2∂2x∂

2
y −1

2
∂x∂y(∂

2
x − ∂2y)

1
6
∆
(
∂2x − 2∂2y

)
−∂x∂2y ∂2x∂y ∂2x∂

2
y ∂x∂

3
y − ∂3x∂y

1
2

(
∂4x + ∂4y

)


,

(7.23)

where ∆ ≡ ∂2x+∂
2
y represents the Laplacian operator. Applying the adjugate matrix (7.23)

to the fundamental solution ϕ, we obtain the matrix containing basis functions used to

approximate the overall solution via superposition, i.e.

AStokes(r) =



0 x
2πr2

y
2πr2

x2−y2

2πr4
2xy
πr4

y2−x2

2πr4

x
2πr2

− r2 log(r2)−r2

4πr2
xy

2πr2
x(x2−y2)

2πr4
2x2y
πr4

−x(x2−y2)
2πr4

y
2πr2

xy
2πr2

− r2 log(r2)+x2−y2

4πr2
y(x2−y2)

2πr4
2xy2

πr4
y(y2−x2)

2πr4

x2−y2

2πr4
x(x2−y2)

2πr4
y(x2−y2)

2πr4
x4−6x2y2+y4

2πr6
4xy(x2−y2)

πr6
−x4−6x2y2+y4

2πr6

xy
πr4

x2y
πr4

xy2

πr4
2xy(x2−y2)

πr6
−x4−6x2y2+y4

πr6
−2xy(x2−y2)

πr6

y2−x2

2πr4
−x(x2−y2)

2πr4
y(y2−x2)

2πr4
−x4−6x2y2+y4

2πr6
−4xy(x2−y2)

πr6
x4−6x2y2+y4

2πr6


,

(7.24)

where AStokes(r) ≡ 2A(∇)[ϕ]. Now it remains to decide the entries of the vector S which

decides the Dirac-delta sourcing terms. This choice will be discussed with an example

setup in the following subsection.
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Figure 7.2: Stokes’ flow between two cylinders (left) and the placement of

boundary nodes and singularities in the MFS (right).

7.2.2 An example setup

Let us consider the flow of a monatomic gas past an infinitely long circular cylinder

with radius R1. To make the computational domain bounded, an outer cylinder with a

larger radius R2 (R2 > R1) is considered, serving as an artificial inflow/outflow boundary.

Owing to the axial symmetry, the problem can be investigated in two dimensions. A

cross-sectional view of problem is depicted in the left panel of Fig. 7.2, where the flow

domain is given by

Ω = {(x, y) ∈ R2 | R2
1 ≤ x2 + y2 ≤ R2

2}, (7.25)

with Γ1 = {(x, y) ∈ R2 | x2+y2 = R2
1} and Γ2 = {(x, y) ∈ R2 | x2+y2 = R2

2} denoting the

inner and outer boundaries, respectively. The inner cylinder is assumed to be impermeable

with standard slip condition given by

v · n
∣∣
Γ1

= 0 and n · σ · t
∣∣
Γ1

= −ζv · t
∣∣
Γ1
, (7.26)

where n = (nx, ny) and t = (tx, ty) are the unit normal and tangent vectors on the inner

boundary Γ1 and ζ ∈ R is the velocity-slip coefficient. The outer cylinder enforces in- and

out-flow boundary conditions, leading to

v · n
∣∣
Γ2

= v0 nx

∣∣
Γ2

and v · t
∣∣
Γ2

= −v0 ny

∣∣
Γ2
, (7.27)
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where v0 ∈ R is the horizontal velocity. The boundary condition matrix constructed

using (7.26) and (7.27) for the unknown solution vector U =
[
p vx vy σxx σxy σyy

]T
is

given by

B(xb) =



0 nx ny 0 0 0

0 ζtx ζty nxtx nxty + nytx nyty

 , if xb ∈ Γ1,

0 nx ny 0 0 0

0 tx ty 0 0 0

 , if xb ∈ Γ2.

(7.28)

The right-hand-side vector is given by

g(xb) =



0
0

 , if xb ∈ Γ1,

 v0 nx

−v0 ny

 , if xb ∈ Γ2,

(7.29)

where xb represents the position of a point on the boundary of the cylinders. In order to

implement the MFS for the current setup, a total of Nb boundary nodes are chosen on

the boundaries Γ1 and Γ2. Two concentric circular fictitious boundaries Γ̃1 (inside Γ1)

and Γ̃2 (outside Γ2) are considered on which Ns singularity points are placed as shown in

the right panel of Fig. 7.2. The overall solution obtained from the MFS is then given by

U(x) =
Ns∑
i=1

AStokes(x− xs
i )Si. (7.30)

To find the unknown source strengths in Si, we split S =Mµ, whereM is a fixed matrix

and µ contains the deciding source strengths parameters.

7.2.3 Choice of the matrix M

The main task in the MFS is to calculate the unknown source strengths using the

boundary conditions. For the classical Stokeslet approach, where a point force vector is

included in the momentum balance equation, the corresponding matrix M is given by

M =

0 1 0 0 0 0

0 0 1 0 0 0

T

, (7.31)
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and µ =
[
µ1 µ2

]T
represents the point force associated with the singularity. Alternatively,

one may introduce source terms into any of the Eqs. (7.13)–(7.15), for instance, setting

M = I6, where I6 is the 6 × 6 identity matrix, corresponds to Dirac delta source terms

in all governing equations. Nevertheless, while working with large and complex system

of linear partial differential equation, it is not trivial to choose the non-zero entries in

the vector S as the choice significantly affects the results. We propose the choice of the

matrixM to be dependent of the boundary conditions by fixingM (xb) = B(xb)T, which

yields the boundary condition

B(xb)AStokesB(xb)Tµ = g(xb), (7.32)

for any boundary point xb. This choice of M is advantageous as it gives a symmetric

structure to the overall system and keeps the number of source parameters in µ equal

to the number of boundary conditions at each node and yields a square system when

the number of boundary nodes and source points are the same (Nb = Ns). The sys-

tem (7.32) is evaluated at each boundary node for determining the source parameters in

µ corresponding to each singularity point. This results in a large linear system

B(xb
j)

Ns∑
i=1

AStokes(rij)B(xb
i)

Tµi = g(x
b
j), j = 1, 2, . . . , Nb(= Ns), (7.33)

where rij = x
b
j−xs

i is the relative distance and µi denotes the vector containing unknown

source parameters corresponding to ith singularity point. The complete linear system

can be denoted by LΛ = G, where L is the 2Nb × 2Ns collocation matrix and the

unknown source strength vector is Λ =
[
µ11 µ12 µ21 µ22 . . . µNs1

µNs2

]T
. After

calculating the unknown parameters in µ, one can approximate any flow variable by

using the superposition U(x) =
∑Ns

i=1 AStokes(ri)B(xi)
Tµi, where ri = x − xs

i for any

vector x in the computational flow domain. For instance, the x-component of velocity vx

can be calculated—using the second row of AStokes given in (7.24)—as

vx =
Ns∑
i=1

[
xi

2πr2i
− r2i (2 log ri−1)

4πr2i

xiyi
2πr2i

xi(x
2
i−y2i )

2πr4i

2x2
i yi

πr4i
−xi(x

2
i−y2i )

2πr4i

]
B(xb

i)
T

µi
1

µi
2

 . (7.34)
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7.3 Generic MFS for R13 equations

Expressing the R13 equations (2.43)–(2.49) in the form (7.1), the unknown vector is

U = [ p vx vy σxx σxy σyy θ qx qy mxxx mxxy myyx myyy Rxx Rxy Ryy ]T. Applying Fourier transfor-

mation on the resulting system (7.1) as done in Sec. 7.2.1, the symbol for R13 system

turns out to be

s(k) = γ(k2)3(k2 + λ1)(k
2 + λ2)(k

2 + λ3), (7.35)

where

γ =
3087Kn8

160
, λ1 =

3

2Kn2 , λ2 =
5

9Kn2 , λ3 =
5

6Kn2 . (7.36)

These three constants λ1, λ2 and λ3 represent the three Knudsen layers∗. This symbol in

the operator form reads

s(∆) = γ(∆)3(∆− λ1)(∆− λ2)(∆− λ3), (7.37)

where ∆ ≡ ∂2x + ∂2y . Utilizing Eqs. (7.4) and (7.5) gives an idea to compute the main

fundamental solution Φ corresponding to the symbol. In Fourier transformed coordinates,

Û =
1

γ(k2)3(k2 + λ1)(k2 + λ2)(k2 + λ3)
A(k)S. (7.38)

It is convenient to get the inverse Fourier transform of Û if 1/s(k) is expressed in its

partial fraction form:

1

s(k)
=

1

γ

[
α1

(k2)3
+

α2

(k2)2
+
α3

k2
+

α4

k2 + λ1
+

α5

k2 + λ2
+

α6

k2 + λ3

]
. (7.39)

The constants αis can be computed in a straightforward way, and hence Eq. (7.38) becomes

Û =
1

γ

[
36Kn6

25(k2)3
− 132Kn8

25(k2)2
+

8356Kn10

625k2
− 8Kn10

17
(
k2 + 3

2Kn2

)
+

5832Kn10

625
(
k2 + 5

6Kn2

) − 236196Kn10

10625
(
k2 + 5

9Kn2

)]A(k)S. (7.40)

∗ Knudsen layers are thin boundary regions in rarefied gas flows where non-equilibrium effects dominate

due to gas-surface interactions. The constants
√
5/6,

√
3/2, and

√
5/3 correspond to eigenvalues

governing exponential decay rates of Knudsen layer modes in the R13 equations. Three eigenvalues

align with the prediction of three Knudsen layers by the R13 model [85, 105, 117]
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In order to compute the complete fundamental solution Φ, it is easier to use the inverse

Fourier transforms of the partial fraction terms using the preknown fundamental solutions

of polyharmonic or Helmholtz operators [25]. For any polyharmonic equation having the

fundamental solution ϕn which satisfies ∆nϕn = δ, its Fourier transformation is obtained

by using the property F (∂F/∂xi) = iki, which yields

(−1)nk2nϕ̂n = δ̂ = 1 =⇒ ϕ̂n =
(−1)n

k2n
. (7.41)

Analogously, for a Helmholtz equation having the fundamental solution ψλ which satisfies

(∆− λ)ψλ = δ, the Fourier transformation yields

(−k2 − λ)ψ̂λ = δ̂ = 1 =⇒ ψ̂λ = − 1

k2 + λ
. (7.42)

Utilizing Eq. (7.41) and the preknown fundamental solutions for polyharmonic opera-

tors [25], one can obtain

F−1

(
1

k2

)
= −ϕ1 = − log r

2π
, (7.43)

F−1

(
1

k4

)
= ϕ2 =

r2(log r − 1)

8π
, (7.44)

F−1

(
1

k6

)
= −ϕ3 = −r

4(log r − 3/2)

128π
. (7.45)

Using fundamental solution ψλ for Helmholtz equation, and Eq. (7.42), we get

F−1

(
1

k2 + λ

)
= −ψλ = −K0(

√
λr)

2π
. (7.46)

Here, K0 denotes the modified Bessel function of the second kind of order zero. Since

inverse Fourier transformation is linear, the fundamental solution Φ is

Φ(r) = −4178Kn10 log r

625π
− 33Kn8 r2(log r − 1)

50π
− 9Kn6 r4(log r − 3/2)

800π

+
2916Kn10K0

(√
5
6

r
Kn

)
625π

−
4Kn10K0

(√
3
2

r
Kn

)
17π

−
118098Kn10K0

(√
5
3

r
Kn

)
10625π

. (7.47)

Taking the inverse Fourier transform in Eq. (7.38), we obtain the fundamental solution

for the R13 equations as

U(r) =
1

γ
A(∇)[Φ]S = AR13(r)Mµ. (7.48)

The matrix AR13 incorporates all fundamental solutions that contribute to approxi-

mating the complete numerical solution of any given problem. In the R13 system, different
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choices of the matrix M allow for varying degrees of freedom. The choice can be made

independent of the specific problem by setting M (xb) = B(xb)T. Here B(xb) ∈ R6×16

boundary conditions matrix is constructed using boundary conditions (2.56)–(2.61). With

this choice (as also discussed in Sec. 7.2.3), the unknown source strengths corresponding

to the ith singularity µi ∈ R6 is calculated by solving the linear system

B(xb
j)

Ns∑
i=1

AR13(rij)B(xb
i)

Tµi = g(x
b
j), j = 1, 2, . . . , Nb(= Ns). (7.49)

This linear system can be expressed as LΛ = G, where L is the 6Nb × 6Nb collocation

matrix (due to 6 boundary conditions associated with each boundary node and 6 source

strengths associated with each singularity). Further, Λ ∈ R6Nb is the unknown vector

(containing source strengths µi) and ,G ∈ R6Nb is the right-hand-side vector containing

boundary properties g(xb
j). The numerical solution approximated by the MFS at any

point x in the domain is determined by

U(x) =
Ns∑
i=1

AR13(x− xs
i )B(xb

i)
Tµi. (7.50)

7.4 Results and discussion

To validate our code for the generic MFS for the R13 equations, we compare the results

obtained from the MFS with an analytical solution for a rarefied gas flow confined between

two coaxial cylinders. Additionally, we examine the influence of various parameters on

the accuracy of the numerical method.

7.4.1 Problem description

We consider the flow of a rarefied monatomic gas around a rotating, infinitely long

circular cylinder, with the flow domain bounded by a coaxial outer circular cylinder. The

dimensionless radii of the inner and outer cylinders are R1 = 1 and R2 = 2, respectively,

with the inner and outer boundaries denoted by Γ1 and Γ2, respectively, as depicted

in Fig 7.3. The outer cylinder serves as an inflow and outflow boundary, with normal

component of velocity vw ·n
∣∣
Γ2

= v0nx

∣∣
Γ2

and tangential component vw · t
∣∣
Γ2

= −v0ny

∣∣
Γ2

in the boundary conditions (2.56)–(2.61). To introduce additional complexity, the inner

cylinder is assumed to be rotating with a tangential velocity, given by vw · t
∣∣
Γ1

= −v1.

The temperatures of the inner and outer cylinders are fixed at θw
∣∣
Γ1

= θ1 = 1 and
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Figure 7.3: Schematic of the cross-section of rarefied gas confined between

two coaxial cylinders where the inner cylinder is rotating anticlockwise.

θw
∣∣
Γ2

= θ2 = 2, respectively. The velocity prescription coefficient at inner cylinder is

ϵw
∣∣
Γ1

= 10−5, while that on outer cylinder is ϵw
∣∣
Γ2

= 1. Furthermore, we fix v0 = v1 = 1

and pw
∣∣
Γ1

= pw
∣∣
Γ2

= 0.

7.4.2 Validation with analytic solution

The details for obtaining the analytic solution to this problem are provided in Appen-

dix D. To validate the code, we plot the speed of gas varying with radial gap between the

two cylinders along different directions in the left panel of Fig. 7.4. The solid blue, red

and black lines indicate the results obtained from the analytic solution of the R13 model

for the azimuthal angles ϑ = 0, π/4 and π/2, respectively, whereas the symbols (triangles)

represent the corresponding results obtained from the MFS for Kn = 0.5. The right panel

of Fig. 7.4 illustrates the variation in temperature with respect to the radial gap along

different angles. We observe an excellent agreement between the results obtained from the

MFS and those from the analytic solution for both speed and temperature. The complete

source code for the generic MFS and the analytical solution for the R13 equations has

been made publicly accessible† [44]. For a better analysis, we measure the accuracy of the

generic MFS in the following subsection using the standard relative error in the L2 norm

ϵL2 =
∥fMFS − fexact∥L2(Ω)

∥fexact∥L2(Ω)

, (7.51)

† https://github.com/himanshikhungar/R13 MFS
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Figure 7.4: Variation of the speed (left panel) and temperature (right panel)

in the gap between the two cylinders. The solid blue, red and black lines

denote the analytic results of the R13 model along ϑ = 0, π/4 and π/2,

respectively. The corresponding blue, red and black (triangle) symbols de-

note the results obtained from the MFS for Kn = 0.5.

where fMFS denotes the numerical solution obtained with the MFS and fexact denotes the

corresponding analytic solution.

7.4.3 Choice of parameters

The accuracy of the MFS solution is highly dependent on key parameters, namely

the numbers of boundary and source points, and the location of source points outside the

computational domain. To systematically analyze the error and justify the choice of these

parameters, we define a grid spacing parameter d, which determines the distance between

two consecutive boundary points. A smaller d results in a higher number of boundary

points and vice versa. Given the grid spacing parameter d, the number of boundary points

placed on the circumference of a circle of radius R is computed as Nb = ⌊2πR/d⌋, where

⌊·⌋ denotes the floor function. As previously mentioned, we set the number of boundary

points equal to the number of source points to construct a square linear system using the

relation M = B(x)T.

To determine an appropriate placement of source points, we introduce the dilation

parameter α = R1/Rs1 = Rs2/R2 where Rs1 and Rs2 denote the radii of the inner and

outer fictitious boundaries on which source points are placed. A larger α corresponds to

source points being positioned farther from the boundary and vice versa. To evaluate

the accuracy of the MFS, we compute the L2 error in velocity ϵL2 for different values
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Figure 7.5: Variation in L2 error in velocity ϵL2 and effective condition

number κeff with respect to the dilation parameter α for different values of

grid spacing d and M = B(x)T.

of d and α. The top panels in Fig. 7.5 illustrate the variation in ϵL2 with respect to α

for grid spacings d ∈ {0.1, 0.07, 0.05} and Knudsen numbers Kn ∈ {0.1, 0.3, 0.5}. For a

higher Knudsen number Kn = 0.5 (rightmost top panel), fewer boundary points (d = 0.1)

provide good accuracy when α is sufficiently large, meaning the source points are placed

sufficiently far from the boundary. In contrast, for d = 0.07 and d = 0.05, accurate results

are achieved for α ≳ 1.7 and α ≳ 1.5, respectively. This suggests that for computational

efficiency, a smaller number of boundary points with more distant source points can be

a viable choice. However, for lower Knudsen numbers (Kn = 0.1 and 0.3, leftmost and

middle top panels), the accuracy depends more sensitively on the choice of boundary and

source points. The error is minimized only within a narrow range of α, particularly for

Kn = 0.1, indicating that source points should neither be too close nor too far from the

boundary for an optimum accuracy.

The accuracy of the numerical solution depends strongly on the Knudsen number,

which makes it challenging to determine where the source points should be placed, es-

pecially in the absence of an analytic solution. The effective condition number provides

a reliable indicator of the accuracy of the solution. The bottom panel in Fig. 7.5 shows
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how the effective condition number κeff varies with the dilation parameter α for three

values of the grid spacing d ∈ {0.1, 0.07, 0.05} and Knudsen numbers Kn ∈ {0.1, 0.3, 0.5}.

A comparison with the corresponding top panel, which displays the error ϵL2 , reveals an

approximate inverse proportionality between κeff and the error: in general, lower errors

are associated with higher values of κeff. However, the value of α corresponding to the

minimum error does not always align precisely with the peak in κeff, indicating that the

relationship is not strictly proportional. This observation suggests that the source point

placement should be chosen to strike a balance—achieving sufficiently high κeff while also

minimizing the numerical error. Based on this reasoning, we select α = 1.5 and d = 0.05

for our computations.

7.4.4 Choice of the matrix M

Previous studies on the MFS for rarefied gas flows formulated the fundamental so-

lutions by imposing only a few degrees of freedom as Dirac-delta source terms in some

governing equations and/or in some closure relations. Ref. [27] derived the fundamental

solutions for the R13 equations by including sourcing terms in the momentum, energy

and stress balance equations in three dimensions. This choice ensured that the number of

boundary conditions matched the number of unknown sources associated with each sin-

gularity. The corresponding 2D fundamental solutions for the R13 equations, including

similar source terms, can be obtained from the general matrix AR13 containing the full

set of fundamental solutions. Setting M =
[
01×6 I6 09×6

]T
, leads to the parameter

µ =
[
µ1 µ2 µ3 µ4 µ5 µ6

]T
with six degrees of freedom. In this scenario, the linear

system formed by implementing boundary conditions at each boundary node reads

B(xb
j)

Ns∑
i=1

AR13(rij)Mµi = g(x
b
j), j = 1, 2, . . . , Nb. (7.52)

While this approach was effective for the specific problem considered in [27], this particular

choice may not always yield accurate results. To illustrate this, Fig. 7.6 shows the variation

in the L2 error in velocity (left panel) and the effective condition number κeff (right panel)

as functions of the dilation parameter α for Kn = 0.5. As evident from the left panel of

Fig. 7.6, the error remains large at all the locations of the source points, and the effective

condition number does not exhibit any structured behavior. Although not shown here, the

errors remain high for all the considered Knudsen number values as well. This suggests
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Figure 7.6: Variation in L2 error in velocity ϵL2 (left panel) and effective

condition number κeff (right panel) with respect to dilation parameter α for

M =
[
01×6 I6 09×6

]T
for Kn = 0.5.
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Figure 7.7: Variation in L2 error in velocity ϵL2 (left panel) and effective

condition number κeff (right panel) with respect to dilation parameter α for

M =
[
I9 07×9

]T
for Kn = 0.5.

that the choice with six degrees of freedom does not perform well for the present problem.

A more suitable choice for the current study is to set M =
[
I9 07×9

]T
, which introduces

nine degrees of freedom corresponding to mass, momentum, energy, stress, and heat

balance equations. In this case, the collocation matrixL has dimensions 6Nb×9Ns and the

corresponding linear system can be solved using the method of least squares. Figure 7.7

illustrates the variation in L2 error in velocity (left panel) and effective condition number

(right panel) with the dilation parameter α for Kn = 0.5. The behavior of both ϵL2 and

κeff closely resemble with those observed forM = B(x)T in Fig. 7.5. Although not shown

here, the resemblance exists for Kn = 0.1 and 0.3 as well. The comparison indicates that

this choice of M =
[
I9 07×9

]T
is more appropriate than M =

[
01×6 I6 09×6

]T
for the
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present problem. However, this choice ofM cannot be guaranteed to work well for other

problems.

7.5 Comparison with the FEM

After validating the generic MFS framework for the R13 equations with an analytic

solution, we now consider a problem for which an analytic solution is unknown. The

results are therefore compared to the results obtained from the FEM. Furthermore, we

observe the key differences and advantages of the MFS over FEM.

The FEM simulations presented in this chapter have been performed Dr. Lambert

Theisen as part of our collaborative research effort [43]. These results are included with

permission to ensure completeness in the comparison of the proposed meshless framework.

7.5.1 Problem description

In this scenario, a monatomic rarefied gas is considered to be confined between two

noncoaxial infinitely long cylinders. The circular cross-sections of the inner and outer

cylinders have radii R1 = 1 and R2 = 2, respectively and centers at (0,−0.25) and

(0, 0), respectively. The boundaries are again denoted by Γ1 and Γ2, respectively. The

(dimensionless) temperatures on the inner and outer cylinders are fixed at θw
∣∣
Γ1

= θ1 = 1

and θw
∣∣
Γ2

= θ2 = 2, respectively. Both the cylinders are assumed to be stationary

(vw
∣∣
Γ1

= vw
∣∣
Γ2

= 0) with the velocity prescription coefficient ϵw
∣∣
Γ1

= ϵw
∣∣
Γ2

= 0 in

the boundary conditions (2.56)–(2.61). The flow is induced purely by the temperature

difference.

7.5.2 FEM for the R13 model

In the FEM (see, e.g., [29] for an introduction focusing on flow equations), the equa-

tions are not solved pointwise for all x ∈ Ω, but in an integral sense (weakly) on a trian-

gulation Th of Ω into finite elements τ ∈ Th (triangles in our case). Here, h ∈ R denotes

the maximum diameter of the elements. In contrast to the first-order system (7.1), we do

not solve for all moments but restrict ourselves to the three balance laws (2.43), (2.44),

and (2.45), complemented by the two additional Eqs. (2.46) and (2.47). The higher-order

moments (2.48), (2.49), and (2.50) are directly inserted into these five equations, resulting

in a field vector V =
[
p vx vy σxx σxy σyy θ qx qy

]T
.
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(a) T1 (hmax ≈ 0.932). (b) T2 (hmax ≈ 0.47). (c) T3 (hmax ≈ 0.281). (d) T4 (hmax ≈ 0.16).

Figure 7.8: Series of finite element meshes Ti with decreasing mesh size hmax

for increasing i.

To obtain the weak formulation, we multiply each equation by corresponding test

functions W = (φp, . . . ), integrate over Ω, and apply integration by parts. This pro-

cedure lowers the order of differentiation and allows incorporating the boundary condi-

tions (2.56)–(2.61). In the Galerkin approach, the test functions are chosen from the

same finite element space as the solution. An example is the weak formulation of the

mass balance (2.43), where testing with φp : Ω → R and integrating by parts yields∫
Ω

(∇ · v)φp dx = −
∫
Ω

v ·∇φp dx+

∫
Γ

vnφp dl

= −
∫
Ω

v ·∇φp dx+

∫
Γ

(ϵwχ̃ ((p− pw) + σnn) + vwn )φp dl, (7.53)

A reordering of terms for the unknowns and test functions leads to∫
Ω

v ·∇φp dx+

∫
Γ

ϵwχ̃ (p+ σnn)φp dl = −
∫
Γ

(vwn − ϵwpw)φp dl, (7.54)

which has to hold for all φp ∈ W . Repeating these steps for all equations leads to a well-

posed system [60, 113]. Finally, we discretize all functions in V and W by approximating

them in the finite element space, i.e. as a linear combination of basis functions ϕ⋆,i with

coefficients ci, such that, for example,

p(x) =

Np∑
i=1

cp,iϕp,i(x). (7.55)

We use stabilized first-order Lagrange elements, which are piecewise linear and globally

continuous on the mesh. Inserting the ansatz (7.55) into the weak equations and evalu-

ating the integrals via numerical quadrature, we obtain a linear system of equations:

Ahxh = bh, (7.56)
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where Ah ∈ RN×N is a sparse system matrix, xh ∈ RN contains the degrees of freedom of

the solution (i.e. the vectors of coefficients {c⋆,i}N⋆

i=1), and bh ∈ RN is the right-hand side

vector. The sparsity of Ah results from the local support of the basis functions, i.e. ϕ⋆,i

is non-zero only on a small subset of elements τ .

However, particularly for thermally induced flows as discussed in Sec. 7.5.1, a fine and

locally refined mesh is required to accurately capture the characteristic flow features. For

the test case, we generated a sequence of meshes {T1, . . . , T7} with decreasing maximal

radii hmax. The first four of these meshes are shown schematically in Fig. 7.8 and illustrate

the essential requirement of local refinement near the boundaries. For full reproducibility,

the FEM source code along with all metadata is publicly available at [114].

7.5.3 Results and discussion

In this problem, the gas flow is entirely driven by the temperature difference between

the two cylinders without any external effect or gravity under consideration. To gain

insight into the velocity and temperature profiles, we visualize the velocity streamlines

superimposed on temperature contours for different Knudsen numbers Kn = 0.05, 0.1, 0.2

and 0.4 in Fig. 7.9, as predicted by the MFS. The parameters for the MFS are fixed at

α = 1.5 and d = 0.07 for these computations. These streamline plots reveal the intricate

interplay between thermal stress and thermal transpiration effects, which arise due to the

stress and heat flux evolution equations in the R13 model. For small Kn = 0.05, two

counter-rotating circulation zones emerge: one in the left half and the other in the right

half of the annular region. As Kn increases to 0.1, two additional vortices begin to form

near the outer cylinder which indicate a shift in the flow structure. With a further increase

in the Knudsen number to Kn = 0.2, the newly formed vortices near the outer cylinder

intensify, while the inner vortices diminishes in strength. For even larger Kn = 0.4, the

small inner vortices disappear completely, restoring a two-vortex system similar to that

at Kn = 0.05, but with the flow directions reversed. This transformation in flow behavior

highlights the competition between thermal stress and thermal transpiration effects, which

govern rarefied gas flows under temperature gradients.

To compare the results from MFS with those from FEM, we use three finest FEM

meshes: Mesh 1 (T5, coarsest), Mesh 2 (T6, finer than Mesh 1), and Mesh 3 (T7, finest).

Figure 7.10 illustrates the speed of gas |v| along the line y = x in the first quadrant
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Figure 7.9: Velocity streamlines overlaid on temperature contours for dif-

ferent Knudsen numbers Kn = 0.05, 0.1, 0.2, 0.4 as predicted by the MFS.

(or equivalently along ϑ = π/4, as shown over Fig. 7.9) measured from the center of

the outer cylinder for different Knudsen numbers Kn = 0.05, 0.1, 0.2 and 0.4. For small

Knudsen numbers (Kn = 0.05 and 0.1), the choice of FEM mesh significantly affects the

results. Meshes 1 and 2 are not refined enough to capture the gas speed accurately due to

the small scale (O(10−5)), as shown by the green dashed (Mesh 1) and cyan dot-dashed

(Mesh 2) lines in the top panels of Fig. 7.10. For larger Knudsen numbers (Kn = 0.2

and 0.4), the discrepancy between the three FEM meshes is significantly reduced and for

Kn = 0.4, the results are nearly identical. A reason for this behavior is that the magnitude

of the velocity gets smaller with decreasing Knudsen number, which requires a finer mesh
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Figure 7.10: Speed of the gas between the two cylinders along y = x in the

first quadrant for different Knudsen numbers.

to resolve the flow features in the FEM. In contrast, the MFS (solid red lines) exhibits

stable convergence regardless of the Knudsen number or the grid spacing parameter. The

speed of the gas for Kn = 0.1 and 0.2 is zero at x = 1.37 and x = 0.46, respectively.

These points correspond to the highlighted red dots in the streamline plot Fig. 7.9, at

which the transition between the vortices along the inner and outer cylinder takes place

for Kn = 0.1 and 0.2.

Additionally, we calculate the heat flow rate through the inner cylinder defined as

QΓ1 =

∫
Γ1

q · n dl. (7.57)

Table 7.1 depicts the values of QΓ1 obtained by considering different meshes for the FEM

and different grid spacing (or number of boundary and singularity points) for different

Knudsen numbers Kn = 0.05, 0.1, 0.2, 0.4. We also calculate the time taken by the FEM

and MFS to calculate QΓ1 using different FEM meshes and grid spacing d for the MFS
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Table 7.1: Comparison of the heat flow rate through the inner cylinder QΓ1

and computation time for FEM (top) and MFS (bottom) for different mesh

refinements and source distances d using 8 CPU cores.

FEM

Kn Mesh 1 Mesh 2 Mesh 3

QΓ1 Time QΓ1 Time QΓ1 Time

0.05 1.5276481 5s 1.5276241 29s 1.5276212 185s

0.1 2.4815209 5s 2.4815120 30s 2.4815119 185s

0.2 3.5116585 5s 3.5116914 29s 3.5117014 187s

0.4 4.1411597 5s 4.1412806 30s 4.1413130 191s

MFS

Kn d = 0.15 (Nb = 124) d = 0.1 (Nb = 187) d = 0.07 (Nb = 268)

QΓ1 Time QΓ1 Time QΓ1 Time

0.05 1.5276979 17s 1.5276204 28s 1.5276204 49s

0.1 2.4815252 16s 2.4815121 27s 2.4815121 50s

0.2 3.5117115 16s 3.5117048 28s 3.5117048 51s

0.4 4.1413392 16s 4.1413240 30s 4.1413240 52s

using 8 CPU cores. As the FEM mesh is refined from Mesh 1 to Mesh 3, the values of

QΓ1 converge, albeit with significantly increased computational time—reaching up to 191

seconds for Mesh 3. However, the MFS achieves the accuracy up to 7 significant digits

with significantly lower computational cost. For instance, in the finest FEM mesh (Mesh

3), the computation time reaches up to 191 seconds, while the most refined MFS case

with d = 0.07 having Nb = Ns = 268 achieves a higher precision in less than a third of the

time (approximately 52 seconds). Additionally, even the coarser MFS configurations (e.g.,

with d = 0.15) yield accurate results with computation times as low as 16–17 seconds.
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It has also been noticed that, when the grid spacing is reduced to d = 0.07, the MFS

attains convergence in QΓ1 values up to 10 decimal digits. This highlights the MFS as not

only a computationally efficient alternative to mesh-based solvers like FEM, but also a

powerful method for achieving rapid convergence with high numerical accuracy in rarefied

flow simulations.

7.6 Summary

In this chapter, a generic methodology has been developed for computing fundamen-

tal solutions of any linear moment system without prescribing Dirac-delta source terms

in specific governing or closure equations. This approach had been designed to overcome

the limitations of previous implementations of the MFS, which relied on problem-specific

formulations and varying choices of Dirac-delta sources. The proposed methodology uti-

lizes the Fourier transformation combined with partial-fraction decomposition to obtain

the fundamental solutions corresponding to given linear system. This strategy has been

firstly demonstrated for the Stokes equations in two dimensions and subsequently ex-

tended to the more complex R13 equations. Validation against an analytic solution for

the R13 model in the case of rarefied gas flow between coaxial cylinders has confirmed the

accuracy of the proposed framework. The influence of numerical parameters—including

grid spacing and dilation parameter—has been systematically analyzed through error es-

timates and effective condition number. Furthermore, the framework has been applied to

a thermally induced flow between two noncoaxial circular cylinders, a problem for which

no analytic solution exists. To assess the accuracy of our method, we compare the re-

sults with those obtained using the FEM, a widely trusted numerical approach known

for its ability to handle complex geometries with high precision. Results obtained using

the MFS have shown excellent agreement with those from the FEM. The MFS achieves

comparable or higher accuracy while being significantly more computationally efficient.

The mesh-free nature of the MFS has proven particularly beneficial for capturing complex

flow features in thermally-driven configurations and for enabling rapid convergence even

in simulations involving intricate geometries.
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Chapter 8

Summary and future directions

8.1 Summary and conclusions

A meshless numerical framework based on the MFS has been developed to study

rarefied gas flows—especially in quasi-two-dimensional scenarios. The work relies upon

determining the fundamental solutions of the linearized CCR and R13 models in 2D and

the implementation of the determined fundamental solutions in the MFS. To gauge the

accuracy of the numerical framework, different internal and external flow problems have

been investigated. The long-standing Stokes’ paradox in the context of external flows has

been addressed using the CCR-MFS framework. To extend the applicability of the MFS

beyond problem-specific fundamental solutions, a generic approach has been proposed to

systematically compute fundamental solutions for any linear moment system. The main

findings and contributions of the thesis are summarized below.

• The fundamental solutions of the CCR model in 2D have been determined by

exploiting the fundamental solutions of some well-known partial differential equa-

tions, e.g., the Laplace and biharmonic equations. It has turned out that the

fundamental solutions of the linearized NSF and G13 equations in 2D can also be

recovered from the derived fundamental solutions of the CCR model.

• The capability of the developed CCR-MFS framework has been assessed by com-

paring its results with analytic and benchmark solutions for some internal flow

problems. One of these problems involves evaporating (or condensing) vapor flow

between two coaxial cylinders, where our results show strong agreement with those

obtained from the linearized BGK model in Ref. [77], particularly at small Knud-

sen numbers. Additionally, two temperature-driven rarefied gas flow problems have

been studied: one between two non-coaxial circular cylinders and another between

a circular cylinder and an elliptical cylinder, having different temperatures. The re-

sults for these problems have been compared with those reported in Refs. [4, 5, 82].



The CCR-MFS results show good agreement with the linearized BGK model for lo-

cal flow fields at small Knudsen numbers, but differences become noticeable as the

Knudsen number increases, despite similar overall trends. However, global quanti-

ties like drag force are captured accurately even at large Knudsen numbers. The

thermal-slip coefficient is also found to significantly influence velocity profiles due

to interplay between thermal creep and thermal stress. Furthermore, the lid-driven

cavity problem in the context of rarefied gases has also been investigated for both

single- and two-sided lid-driven configurations.

• The CCR-MFS framework has also been utilized to obtain solutions for external rar-

efied gas flows around circular and semi-circular cylinders by circumventing Stokes’

paradox. To address the limitations imposed by Stokes’ paradox in studying flow

past two-dimensional objects, the domain has been made “bounded” artificially by

introducing an artificial boundary in the flow domain far from the disk. This has

allowed us to obtain a meaningful analytic solution for the flow past a circular disk

and to use it to validate our numerical framework. The normalized drag over the

circular disk obtained from the CCR-MFS framework has agreed quite well with

the analytic solution and reasonably well even with the results on the normalized

drag available in the literature [37, 79, 128]. It is, however, worth mentioning that

the results depend on the placement of the artificial boundary, which poses a lim-

itation and points to the need for including convective terms in the CCR model

(like Oseen’s correction to the Stokes equations).

• The MFS has been utilized to study evaporation/condensation from/on liquid jets

using the CCR model. Both circular and non-circular jet interfaces have been

considered to evaluate the mass-and heat-flux coefficients under pressure- and

temperature-driven conditions for partial and complete phase change. The influ-

ence of shape deformation from circular to non-circular interface has been examined

using spherical harmonics.

• A general framework has been developed for deriving the fundamental solutions of

linear moment systems and for their implementation in the MFS. This approach

eliminates the need for predefined Dirac-delta source terms in the governing equa-

tions and/or in the constitutive relations. The proposed approach has first been

demonstrated for the Stokes equations and then been extended to the R13 equations
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in two dimensions. The derived fundamental solutions of the R13 equations have

been implemented successfully in the MFS solver and validated against analytic

solutions to confirm their accuracy. To further assess its performance, we have ap-

plied the generic MFS for R13 equations to the problem of thermally-induced flow

between two noncoaxial cylinders and compared the results with those obtained

from the FEM. We have found that the MFS has not only captured rarefaction

effects accurately but also demonstrated computational efficiency.

• Numerical performance of the MFS is significantly influenced by the location of

source points, grid spacing and the effective condition number. Sensitivity and

error analysis has been illustrated for some of the considered problems to identify

optimal choices for the location of singularities in achieving high accuracy.

• Rarefaction effects, such as thermal creep, temperature polarization, and anti-

Fourier heat transfer have been accurately captured for the considered problems.

8.2 Future scopes

The present work opens up several promising avenues for future exploration:

• The developed MFS framework, currently formulated for monatomic gases, can be

extended to polyatomic gases and gas mixtures to enhance its applicability to more

realistic scenarios.

• For external flows, the current reliance on artificial boundaries to bypass Stokes’

paradox may be avoided by incorporating convective terms into the CCR model,

similarly to Oseen’s correction [78] to the Stokes equations. This would result

in physically more accurate modeling, although it necessitates deriving and im-

plementing the fundamental solutions for the CCR model with convective terms

included.

• An important direction for future work is the extension of the MFS to unsteady

problems involving moving interfaces. This would allow the modeling of dynamic

interface phenomenon such as time-dependent evaporation/condensation using the

unsteady CCR model.

• Flow around evaporating jets studied in this thesis can be generalized to multiphase

flow problems by coupling gas and liquid phases. The internal motion within the
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liquid jet can be modeled using the Stokes equations, while the surrounding gas

can be treated using either the CCR or R13 model.

• The generic MFS framework developed here can be extended to three-dimensional

configurations in a straightforward way. Moreover, it can be utilized to determine

and implement the fundamental solutions for better but involved models—such as

the R26 equations—in both 2D and 3D.

• The general methodology developed for constructing fundamental solutions of large

linear systems can be applied to other meshless numerical methods such as the

boundary element method.

• The MFS approach needs to be enhanced to handle inhomogeneous and nonlinear

systems in rarefied gas flows, possibly using iterative schemes, like Picard iteration.

The approach also has potential to extend it for more complex moment models and

kinetic models.
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Table 8.1: Summary of problems studied, models used, and validation or

model limitations.

Problem description Framework

Used

Validation / Compar-

ison

Notes

Phase-transition flow be-

tween coaxial cylinders

CCR-MFS Validated against BGK

solution

CCR outperforms NSF in

accuracy

Thermally-induced flow be-

tween non-coaxial circular

cylinders

CCR-MFS Compared with BGK

model

CCR-MFS overpredicts lo-

cal fields but accurately cap-

tures global quantities

Thermally-induced flow be-

tween coaxial elliptic and

circular cylinders

CCR-MFS CCR-MFS correctly pre-

dicts flow profile; NSF fails

Lid-driven cavity (single and

dual wall motion)

CCR-MFS Compared with DSMC

and R13

CCR-MFS captures anti-

Fourier heat flux effects

Flow past a circular cylinder CCR-MFS Validated against ana-

lytic solution

Artificial boundary used to

handle Stokes’ paradox

Flow past a semicircular

cylinder

CCR-MFS CCR-MFS predicts temper-

ature polarization and anti-

Fourier effects

Evaporation/condensation

from circular jet

CCR-MFS Validated against ana-

lytic solution

Both partial and complete

evaporation/condensation

boundary conditions imple-

mented

Evaporation/condensation

from deformed jet

CCR-MFS Geometry effects on flux

studied using spherical har-

monics

Phase-transition flow be-

tween coaxial cylinders with

inner rotating cylinder

Generic MFS for

R13

Validated against ana-

lytic R13 solution

Source strengths obtained

by system matrix using

boundary conditions

Thermally-induced flow be-

tween non-coaxial circular

cylinders

Generic MFS for

R13

Compared with FEM re-

sults

MFS shown to be more effi-

cient than FEM
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Appendix A

Inverse Fourier transforms

We use the fundamental solutions of some well-known equations, such as the Laplace and

biharmonic equations, from the literature [22, 80, 98] to find the inverse Fourier transforms

of the terms on the right-hand sides of Eqs. (3.70), (3.71) and (3.73)–(3.75). Note that

the Einstein summation holds over the repeated indices in this appendix and the indices

can take values 1 and 2 only. The fundamental solution of the Laplace equation (with a

point source of unit strength)

∇2ϕ ≡ ∂2ϕ

∂x2i
= δ(r) (A.1)

in 2D is given by

ϕ =
ln r

2π
(A.2)

where r = |xi|.

Applying the Fourier transformation [defined by Eq. (3.37)] to the Laplace equation

(A.1), we obtain

(−i)2k2ϕ̂ = 1 =⇒ ϕ̂ = − 1

k2
. (A.3)

Hence, the inverse Fourier transform of 1/k2 is

F−1

(
1

k2

)
= F−1(ϕ̂) = − ln r

2π
. (A.4)

Also, by definition (3.38), the inverse Fourier transform of 1/k2 is given by

F−1

(
1

k2

)
=

1

(2π)2

∫
R2

1

k2
e−ik·r dk. (A.5)

Therefore, from Eqs. (A.4) and (A.5), we have

1

(2π)2

∫
R2

1

k2
e−ik·r dk = − ln r

2π
. (A.6)



Now, taking the partial derivative with respect to xi on both sides in (A.6), we obtain

− i

(2π)2

∫
R2

ki
k2

e−ik·r dk = − 1

2π

xi
r2

(A.7)

which, in turn, gives

F−1

(
ki
k2

)
= − ixi

2πr2
. (A.8)

Moreover, taking the partial derivative with respect to xj on both sides in (A.7), we obtain

−1

(2π)2

∫
R2

kikj
k2

e−ik·r dk = − 1

2π

(
δij
r2

− 2xixj
r4

)
, (A.9)

which, in turn, gives

F−1

(
kikj
k2

)
= − 1

π

xixj
r4

+
1

2π

δij
r2
. (A.10)

The fundamental solution of the biharmonic equation (with a point source of unit strength)

∂4ϕ

∂2xi ∂2xj
= δ(r) (A.11)

in 2D is given by

ϕ =
r2 ln r

8π
. (A.12)

Following similar steps as for the Laplace equation above, we obtain

F−1

(
1

k4

)
=
r2 ln r

8π
, (A.13)

F−1

(
ki
k4

)
= i

xi(2 ln r + 1)

8π
, (A.14)

F−1

(
kikj
k4

)
= −(2 ln r + 1)

8π
δij −

xixj
4πr2

. (A.15)
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Appendix B

Fundamental solutions of the CCR model

Now, we derive the fundamental solutions (previously derived in Sec. 3.3) via alternate

approach of considering three different cases by incorporating the sourcing terms sepa-

rately in the mass balance, momentum balance and the energy balance equation. In the

first case, a sourcing term is considered in the momentum balance equation, which is a

point force vector fi. The balance equations (2.19) in indicial notations read

∂vi
∂xi

= 0, (B.1)

∂p

∂xi
+
∂σij
∂xj

= fi δ(r), (B.2)

∂qi
∂xi

= 0, (B.3)

where r = (x1, x2)
T. The constitutive relations (2.20) read

σij =− 2Kn

[
1

2

(
∂vi
∂xj

+
∂vj
∂xi

)
− 1

3
δij
∂vℓ
∂xℓ

]
− 2α0Kn

[
1

2

(
∂qi
∂xj

+
∂qj
∂xi

)
− 1

3
δij
∂qℓ
∂xℓ

]
.

(B.4)

qi =− cpKn

Pr

(
∂T

∂xi
+ α0

∂σij
∂xj

)
. (B.5)

Applying the Fourier transformation in Eqs. (B.1)–(B.3), (B.4) and (B.5) and using the

fact that F [δ(r)] = 1, we obtain (i, j, ℓ ∈ {1, 2})

kiv̂i = 0, (B.6)

kip̂+ kjσ̂ij = i fi, (B.7)

kiq̂i = 0, (B.8)

σ̂ij = iKn

[
kj(v̂i + α0q̂i) + ki(v̂j + α0q̂j)−

2

3
δijkℓ(v̂ℓ + α0q̂ℓ)

]
, (B.9)



q̂i = i
cpKn

Pr

(
kiT̂ + α0kjσ̂ij

)
, (B.10)

where the variables with hat are the Fourier transforms of the corresponding field variables.

Using Eqs. (B.6) and (B.8), Eq. (B.9) simplifies to

σ̂ij = iKn
[
kj(v̂i + α0q̂i) + ki(v̂j + α0q̂j)

]
. (B.11)

Multiplying the above equation with kj and kikj, we obtain

kjσ̂ij = iKn k2(v̂i + α0q̂i), (B.12)

kikjσ̂ij = 0, (B.13)

respectively, where kiki = |ki|2 = k2 has been used. Multiplying Eq. (B.10) with ki

utilizing Eqs. (B.8) and (B.13), we obtain

T̂ = 0. (B.14)

Again, multiplying Eq. (B.7) with ki and utilizing Eq. (B.13), we obtain

p̂ = i
kifi
k2

. (B.15)

Now, from Eqs. (B.7) and (B.15), one can easily write

kjσ̂ij = ifi − i
kikjfj
k2

. (B.16)

Substituting the value of T̂ from Eq. (B.14) and the value of kjσ̂ij from Eq. (B.16) into

Eq. (B.10), we obtain

q̂i = −cpKn

Pr
α0fj

(
δij −

kikj
k2

)
. (B.17)

Now, from Eqs. (B.12), (B.16) and (B.17),

v̂i =
fj
Kn

(
δij
k2

− kikj
k4

)
+
cpKn

Pr
α2
0fj

(
δij −

kikj
k2

)
. (B.18)

Finally, using Eqs. (B.17) and (B.18) in Eq. (B.9), we obtain

σ̂ij = i fℓ

(
kjδiℓ + kiδjℓ

k2
− 2

kikjkℓ
k4

)
. (B.19)
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Applying the inverse Fourier transformation in Eqs. (B.14), (B.15) and (B.17)–(B.19)

with the help of the formulae derived in [42], the field variables turn out to be

vi =
fj
Kn

( xixj

4πr2
− 2 ln r−1

8π
δij
)
+ cpKn

Pr
α2
0
fj
2π

(
2xixj

r4
− δij

r2

)
,

qi = − cpKn

Pr
α0

fj
2π

(
2xixj

r4
− δij

r2

)
,

p = fixi

2πr2
,

T = 0,

σij = fℓxℓ

2π

(
2xixj

r4
− δij

r2

)
,



Case I (B.20)

where r = |xi| and i, j, ℓ ∈ {1, 2}. In the second case, a sourcing term is considered in the

energy balance equation i.e. balance equations read

∂vi
∂xi

= 0, (B.21)

∂p

∂xi
+
∂σij
∂xj

= 0, (B.22)

∂qi
∂xi

= g δ(r). (B.23)

Applying the Fourier transformation in Eqs. (B.21)–(B.23), (B.4) and (B.5) in this case,

we obtain

kiv̂i = 0, (B.24)

kip̂+ kjσ̂ij = 0, (B.25)

kiq̂i = i g. (B.26)

Using Eqs. (B.24) and (B.26), Eq. (B.9) simplifies to

σ̂ij = iKn
[
kj(v̂i + α0q̂i) + ki(v̂j + α0q̂j)

]
+

2

3
δijKnα0g. (B.27)

Multiplying the above equation with kj and kikj, we obtain

kjσ̂ij = iKn k2(v̂i + α0q̂i)−
1

3
Kn kiα0g, (B.28)

kikjσ̂ij = −4

3
Kn k2α0g. (B.29)
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Multiplying Eq. (B.10) with ki and exploiting Eqs. (B.26) and (B.29), we obtain

T̂ =
Pr

cpKn

g

k2
+

4

3
Knα2

0g. (B.30)

Again, multiplying Eq. (B.7) with ki and exploiting Eq. (B.29), we obtain

p̂ =
4

3
Knα0g. (B.31)

Now, from Eqs. (B.7) and (B.31), one can easily write

kjσ̂ij = −4

3
kiKnα0g. (B.32)

Substituting the value of T̂ from Eq. (B.30) and the value of kjσ̂ij from Eq. (B.32) into

Eq. (B.10), we obtain

q̂i = i
kig

k2
. (B.33)

Now, from Eqs. (B.28), (B.32) and (B.33),

v̂i =0. (B.34)

Finally, using Eqs. (B.33) and (B.34) in Eq. (B.9), we obtain

σ̂ij = −2Kn

(
kikj
k2

− δij
3

)
α0g. (B.35)

Applying the inverse Fourier transformation in Eqs. (B.30), (B.31) and (B.33)–(B.35)

with the help of the formulae derived in Appendix A, the field variables turn out to be

vi = 0,

qi = g
2π

xi

r2
,

p = 0,

T = − Pr
cpKn

g ln r
2π

,

σij = 2Knα0g
2π

(
2xixj

r4
− δij

r2

)
.



Case II (B.36)
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In the third case, a sourcing term is considered in the mass balance equation i.e. balance

equations read

∂vi
∂xi

= h δ(r), (B.37)

∂p

∂xi
+
∂σij
∂xj

= 0, (B.38)

∂qi
∂xi

= 0. (B.39)

Applying the Fourier transformation in Eqs. (B.37)–(B.39), (B.4) and (B.5) in this case,

we obtain

kiv̂i = ih, (B.40)

kip̂+ kjσ̂ij = 0, (B.41)

kiq̂i = 0. (B.42)

Using Eqs. (B.40) and (B.42), Eq. (3.65) simplifies to

σ̂ij = iKn
[
kj(v̂i + α0q̂i) + ki(v̂j + α0q̂j)

]
+

2

3
δijKnh. (B.43)

Multiplying the above equation with kj and kikj, we obtain

kjσ̂ij = iKn k2(v̂i + α0q̂i)−
1

3
Kn kih, (B.44)

kikjσ̂ij = −4

3
Kn k2h. (B.45)

Multiplying Eq. (B.10) with ki and exploiting Eqs. (B.42) and (B.45), we obtain

T̂ =
4

3
α0Knh. (B.46)

Again, multiplying Eq. (B.7) with ki and exploiting Eq. (B.45), we obtain

p̂ =
4

3
Knh. (B.47)

Now, from Eqs. (B.7) and (B.47), one can easily write

kjσ̂ij = −4

3
kiKnh. (B.48)

Substituting the value of T̂ from Eq. (B.46) and the value of kjσ̂ij from Eq. (B.48) into

Eq. (B.10), we obtain

q̂i = 0. (B.49)
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Now, from Eqs. (B.44), (B.48) and (B.49),

v̂i =i
kih

k2
. (B.50)

Finally, using Eqs. (B.49) and (B.50) in Eq. (B.9), we obtain

σ̂ij = −2Kn

(
kikj
k2

− δij
3

)
h. (B.51)

Applying the inverse Fourier transformation in Eqs. (B.46), (B.47) and (B.49)–(B.51)

with the help of the formulae derived in Appendix A, the field variables turn out to be

vi = hxi

2πr2
,

qi = 0,

p = 0,

T = 0,

σij = 2Knh
2π

(
2xixj

r4
− δij

r2

)
.



Case III (B.52)

Combining the three cases (B.20)–(B.52), we obtain the fundamental solutions (3.81)–

(3.85).
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Appendix C

Interplay between thermal stress and thermal creep

In order to investigate the dynamic interplay observed between thermal stress and thermal

creep observed in problem 1 of Sec. 4.3, we consider a similar problem where inner cylinder

is elliptic and the outer cylinder is circular.

C.1 Problem statement

We consider a rarefied gas confined between a circular cylinder and an elliptical cylin-

der, both of which are coaxial along the z̃ axis. Let the outer cylinder be circular with

radius r̃ and the inner cylinder be elliptic with the semi-major and semi-minor axes hav-

ing lengths ã and b̃, respectively where b̃ < ã < r̃. Figure C.1 exhibits a cross-sectional

Figure C.1: A cross-sectional view illustrating a rarefied gas contained be-

tween two coaxial cylinders, the outer of which is circular and the inner of

which is elliptic.



view of the problem. The radius r̃ of the outer circular cylinder is used as the character-

istic length scale L̃ for non-dimensionalization purposes. Thus, the dimensionless radius

of the outer cylinder is r = r̃/L̃ = 1 and the dimensionless lengths of the semi-major

and semi-minor axes are a = ã/r̃ and b = b̃/r̃, respectively. A temperature gradient is

induced in the gas by making the wall of outer cylinder to be hotter than that of inner

cylinder. Let T̃1 and T̃2 denote the temperatures of the (inner) elliptic and (outer) circular

cylinders, respectively, with T̃1 < T̃2. We consider T̃1 to be the reference temperature for

non-dimesionalization, wherefore the dimensionless perturbations in the temperatures of

the outer and inner cylinders are T1 = (T̃1 − T̃1)/T̃1 = 0 and T2 = (T̃2 − T̃1)/T̃1, respec-

tively. Analogous to problem 1 of Sec. 4.3, the boundary conditions for this problem are

again (4.18)–(4.20).

C.2 Results demonstrating thermal creep and thermal stress

effects

The dimensionless radius of the outer cylinder is r = 1 and the lengths of the semi-

major and semi-minor axes of the outer cylinder are fixed at a = 0.75 and b = 0.5,

for computational purpose. The locations of the fictitious boundaries are fixed by fixing

parameters rs = 2, as = 0.375 and bs = 0.25. The number of boundary points on each

of the original boundaries is taken as nb = 150 and the number of source points on each

of the fictitious boundaries is fixed as ns = 150. The dimensionless temperatures on the

elliptic and circular walls are taken as T1 = 0 and T2 = 1, respectively.

In the first case, we set the thermal-slip coefficient to β = 1/5, along with parameters

α0 = 0.3197 and Pr = 0.661. For Knudsen numbers Kn = 0.05, 0.1, 0.15, and 0.2, the

velocity streamlines superimposed on the temperature contours are shown in Fig. C.2.

Only one form of flow, namely thermal-stress slip flow, is visible at very low values of

the Knudsen number (Kn = 0.05) (top left panel). The effects of thermal stress arise

from temperature gradients within the gas bulk, resulting in thermal-stress slip flow that

anticipates the migration of gas from hotter to cooler regions near the wall. Owing

to the narrowest gap between the cylinders at θ = 0 (where the angle θ is measured

from the positive x̃-axis anticlockwise around the origin), the normal component of heat

flux is highest due to the most substantial temperature gradient between the cylinders.
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Figure C.2: Temperature contours and velocity streamlines depicted in

the first quadrant for different values of the Knudsen number (Kn =

0.05, 0.1, 0.15, and 0.2) for fixed β = 1/5, α0 = 0.3197 and Pr = 0.661.

However, at θ = π/2, the normal component of heat flux is lowest due to the smallest

temperature gradient between the cylinders. The gas therefore moves from hotter to

colder regions along the boundaries resulting in a clockwise circulating flow in the first

quadrant and symmetrically in the other three quadrants. However, with increasing values

of the Knudsen number, an additional counterclockwise circulation zone begins to emerge

along the inner cylinder which intensifies gradually for Kn = 0.1, 0.15 and 0.2. This

phenomenon is attributed to the thermal creep effect which is a boundary effect, causing

the gas to flow along the inner cylinder from a comparatively cooler to a hotter location

as a result of the tangential temperature gradient. We shall explain the mechanism of the

above two types of flows after illustrating the results for other values of β.

173



0 0.25 0.5 0.75 1.

0

0.25

0.5

0.75

1.

0.3

0.4

0.5

0.6

0.7

0.8

0 0.25 0.5 0.75 1.

0

0.25

0.5

0.75

1.

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0 0.25 0.5 0.75 1.

0

0.25

0.5

0.75

1.

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0 0.25 0.5 0.75 1.

0

0.25

0.5

0.75

1.

0.50

0.55

0.60

0.65

0.70

0.75

Figure C.3: Temperature comtours and velocity streamlines depicted in

the first quadrant for different values of the Knudsen number (Kn =

0.05, 0.1, 0.15 and 0.2) for fixed β = α0 = 0.3197 and Pr = 0.661.

Now, we demonstrate the impact of the thermal-slip coefficient by adopting a larger

value of β, specifically β = α0 = 0.3197, along with Pr = 0.661. The velocity stream-

lines over the temperature contours are presented in Fig. C.3 for Knudsen numbers

Kn = 0.05, 0.1, 0.15 and 0.2. It is apparent that thermal creep flow prevails over thermal-

stress slip flow for all values of the Knudsen number that are taken into consideration.

Furthermore, the effects of thermal creep get stronger and the effects of thermal stress

are diminished as the Knudsen number rises.

To confirm the findings about the competition between thermal stress and thermal

creep, we also present results for the case of Maxwell molecules, where α0 = 2/5 and

Pr = 2/3. Assuming a thermal-slip coefficient of β = α0 = 2/5, we depict the velocity

streamlines over the temperature contours in Fig. C.4. As the value of β in this case

174



0 0.25 0.5 0.75 1.

0

0.25

0.5

0.75

1.

0.3

0.4

0.5

0.6

0.7

0.8

0 0.25 0.5 0.75 1.

0

0.25

0.5

0.75

1.

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0 0.25 0.5 0.75 1.

0

0.25

0.5

0.75

1.

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0 0.25 0.5 0.75 1.

0

0.25

0.5

0.75

1.

0.50

0.55

0.60

0.65

0.70

0.75

Figure C.4: Temperature contours and velocity streamlines depicted in

the first quadrant for different values of the Knudsen number (Kn =

0.05, 0.1, 0.15, and 0.2) for fixed β = α0 = 2/5 and Pr = 2/3.

is greater than the previous value β = 0.3197, a notable prediction is a further increase

in thermal creep. Although there is only a slight expansion in the region influenced by

thermal creep flow, a close comparison of Fig. C.4 with Fig. C.3 reveals a diminishing

trend in thermal-stress slip flow for larger values of β.

We now give a brief description of the two types of slip flows that result from the

velocity-slip boundary condition (4.20) and from the coupling between the stress and

heat flux in (2.20)1. Thermal stress is addressed by the second term on the right-hand

side of (2.20)1, whereas thermal creep is dealt with by the second term on the right-hand

side of (4.20). Thermal-stress slip flow occurs when a tangential gradient is produced

in the normal component of heat flux. Figure C.5 presents an illustrative diagram of
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Figure C.5: Schematic for the depiction of the two type of flows induced

due to thermal creep and thermal stress effects.

the temperature variation. The pink-colored region represents the region with high tem-

perature while the blue color represents the region with low temperature. The bold red

arrows represent the normal heat flux components at the outer cylinder in various direc-

tions, with the largest and smallest values at θ = 0 and θ = π/2, respectively. For a

better idea about the variation of the normal component of the heat flux, we illustrate its

variation with θ at Kn = 0.1 along with β = 1/5, α0 = 0.3197 and Pr = 0.661 in Fig. C.6.

The induced tangential gradient is attributed to the thermal-stress slip flows. For a more

0
π

4

π

2

0.28

0.30

0.32

0.34

0.36

Figure C.6: Variation in the normal component of heat flux on the outer

(circular) cylinder with θ in the first quadrant for Kn = 0.1. The other

parameters are β = 1/5, α0 = 0.3197 and Pr = 0.661.
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comprehensive understanding of thermal-stress slip flows, additional information can be

found in Ref. [101].

The second kind of flow is the thermal creep flow that is a boundary effect initiated

by a temperature gradient in the tangential direction across the boundary, prompting the

gas to migrate from colder to hotter regions. Although the temperatures on the walls of

the cylinders are fixed to be uniform, the temperature-jump condition (2.52) creates a

temperature difference close to the wall in the tangential direction. As observed in the

temperature contours of Fig. C.5, a tangential temperature gradient is evident along the

walls of the inner cylinder. Owing to this, the thermal creep flow induces along the inner

cylinder from colder to hotter region.
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Appendix D

Analytic solution to the R13 equations

To determine an analytic solution of the R13 equations for the problem of flow around a

rotating cylinder, we substitute Eqs. (2.48) and (2.49) in Eqs. (2.46) and (2.47), trans-

forming the resulting system of equations (2.43)–(2.47) into the cylindrical coordinates

(r, ϑ, z). The choice of the cylindrical coordinates is natural, as the flow variables ex-

hibit axial symmetry, making them invariant along the z-direction. This approach has

been previously employed to derive analytic solutions of the regularized 13-moment (R13)

and regularized 26-moment (R26) equations in the linearized state for the problems of

flow past a stationary cylinder or sphere [87, 116, 124]. The symmetry ansatz used in

these studies assumes that the radial and angular dependencies of the variables can be

separated, with angular dependencies being expressed using sine and cosine functions.

Specifically, the vector and tensor components having an odd number of indices in ϑ are

selected to be proportional to sinϑ whereas the scalars and tensor components with an

even number of indices in ϑ are made proportional to cosϑ [116]. Furthermore, since the

problem is quasi-two-dimensional, the dependency in the z-coordinate of the variables

is automatically eliminated. However, in the present problem, the rotation of the inner

cylinder introduces an additional radial dependency. To account for this, extra functions

dependent only on r are included. Following the symmetry ansatz, the solution for the

vectors v and q take the forms

v(r, ϑ) =


a0(r) + a(r) cosϑ

b0(r)− b(r) sinϑ

0

 , and q(r, ϑ) =


α0(r) + α(r) cosϑ

β0(r)− β(r) sinϑ

0

 , (D.1)



that for the scalars θ and p should take the form

θ(r, ϑ) = c0(r) + c(r) cosϑ, and p(r, ϑ) = d0(r) + d(r) cosϑ, (D.2)

and that for σ should take the form

σ(r, ϑ) =


γ0(r) + γ(r) cosϑ κ0(r) + κ(r) sinϑ 0

κ0(r) + κ(r) sinϑ −(ω0(r) + ω(r) cosϑ) 0

0 0 σzz

 , (D.3)

where a0(r), a(r), b0(r), b(r), α0(r), α(r), β0(r), β(r), c0(r), c(r), d0(r), d(r) γ0(r), γ(r),

κ0(r), κ(r), ω0(r) and ω(r) are the unknown functions that need to be determined, and

σzz = −σrr − σϑϑ = −(γ0(r)−ω0(r) + (γ(r)− ω(r)) cosϑ) as σ is a symmetric and trace-

free tensor. Insertion of ansatz (D.1)–(D.3) in the R13 equations and separation of the

radial and angular dependency leads to a system of 18 ordinary differential equations

in the 18 unknowns. The analytic solutions obtained using these ODEs consist of a

bulk contribution—comprising logarithmic and polynomial terms in r and 1/r—and the

Knudsen layer contributions, which involve modified Bessel functions of the first and

second kinds. The R13 equations predict three Knudsen layers, characterized by the

eigenvalues λ1 =
√
5/(3Kn), λ2 =

√
5/(

√
6Kn) and λ3 =

√
3/(

√
2Kn). The bulk solution

introduces twelve integration constants ci (i = 1, 2, . . . , 12) while the Knudsen layer part

yields another twelve constants: CI
i (i = 1, 2, . . . , 6) for the modified Bessel functions of

the first kind and CK
i (i = 1, 2, . . . , 6) for the modified Bessel functions of the second kind.

These constants are determined by enforcing boundary conditions at the inner and outer

cylinders.
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