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ABSTRACT

Gearboxes, being essential elements in sectors such as manufacturing, transportation, and
power generation, are highly susceptible to failures, including gear cracks, misalignment,
and wear. Such faults can cause catastrophic system breakdowns, prolonged production
downtimes, and costly repairs. Early detection of these faults is crucial for preventing
system failures and ensuring smooth operation. Similarly, electromechanical (EM)
systems are widely used in industries for various applications. EM systems mostly have
an electric motor as a prime mover and a mechanical load, such as a rotor, gearbox,
pumps, etc., coupled. EM systems may have combined faults, i.e., faults in motors and
faults in loads. Diagnosing combined faults is challenging due to overlapping symptoms
and their compounded effects. Hence, advanced fault detection and classification methods
are necessary to improve the reliability of gearboxes and EM systems, optimize

maintenance scheduling, reduce downtime, and enhance productivity while cutting costs.

This thesis contributes to the field with three significant research developments. The first
work introduces an entropy-based feature extraction method for gearbox fault detection.
This approach leverages statistical characteristics, higher-order statistical features, and
modified entropy measures, including Renyi entropy, modified log-energy entropy, and
Shannon entropy, to detect gearbox faults. A hybrid classifier (HC) model combining
bidirectional long short-term memory (Bi-LSTM) and recurrent neural network (RNN),
optimized using the Opposition-based Artificial Hummingbird Crow Search Algorithm
(OAHCSA), is pro- posed. The outputs of the two classifiers are averaged to improve
accuracy, allowing effective fault detection at various frequency levels. The results
demonstrate exceptional performance and computational efficiency of the proposed
OAHCSA-HC model for gearbox fault diagnosis. This model significantly reduced
computational time, processing data at 3.30 seconds at 15 Hz, which is approximately 56%
faster than the previous CSA-HC model. It also displayed outstanding classification
accuracy, with an overall accuracy rate of 99.61% at 15 Hz, which was improved to
99.62% when statistical features were incorporated. The model also showed a high
specificity of 99.88%, precision of 99.79%, and sensitivity of 99.54% at 15 Hz, indicating
its ability to minimize false positives while accurately detecting faults. These findings
state the OAHCSA-HC model is an efficient, precise, and computationally advantageous

solution for gearbox fault diagnosis.
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The second contribution focuses on an enhanced entropy-based feature extraction
method, combining time-frequency domain, frequency-domain, and time-domain charac-
teristics with altered entropy measurements. A pre-processing approach called enhanced
complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN) is
used to minimize the noise in the obtained raw vibration signal. Data augmentation is
used to improve the feature set. Additionally, the combined classification model is applied
to the enhanced feature set in order to categorize the various gear crack levels. This hybrid
model combines enhanced deep belief network (IDBN) classifiers with Bi-LSTM. The
findings demonstrate that integrating Bi-LSTM with IDBN achieved an impressive
99.82% accuracy while maintaining a low computational time of 0.74 seconds. These
results demonstrate how well the proposed approach performs as a highly accurate and

efficient way to detect gear faults.

The third contribution presents the design of a modified LinkNet and DenseNet-based
fault classification model, MLiDNet, to diagnose combined faults in EM systems. The
signal preprocessing employs improved synchro-squeezing wavelet transform (ISSWT)
and entropy-based feature extraction, including norm, spectral, threshold, and wavelet
energy entropy. The extracted features are fed into the MLiDNet hybrid deep learning
classifier for accurate and early fault detection. The findings demonstrated that, when
trained on 90% of the data at a frequency of 30 Hz, MLiDNet produced exceptional
results. The results showed an accuracy of 99.79%, a precision of 99.68%, and an F-
measure of 99.37%. MLiDNet maintains efficiency at 2.57 seconds with 90% data and
achieves a low computational time of 1.54 seconds with 60% training data, in contrast to
other models with more pronounced increases in computational time as the training data
increases. In this way, the thesis offers data-driven and experimental methods for

classifying bevel gear and electromechanical system faults.

Keywords: Gearbox fault diagnosis, Combined Fault, combined classification model,
recur- rent neural network (RNN), deep belief network (DBN), bidirectional long short-

term memory (Bi-LSTM), data augmentation, deep learning.
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Chapter 1

Introduction and literature review

1.1 Introduction

Gears and electric motors are essential components in various industrial and automotive
systems, playing critical roles in transmitting power and motion. The seamless interaction
between these elements is crucial for the efficient operation of machinery, where any
faults can significantly impact performance and reliability. Gearboxes are key elements
in torque transmission and are susceptible to faults such as wear, pitting, and cracking,
which often manifest through changes in vibration and noise signals. Similarly, an
electromechanical (EM) system comprises mechanical and electrical parts, including belt
pulley drives, gearboxes, couplings, rotor-bearing systems, electric motors, and
generators. Electric motors are prone to electrical and mechanical faults such as bearing

wear, rotor imbalances, and winding failures, disrupting the system's operation.

Accurate fault detection and classification in these systems are vital to minimizing
downtime and maintenance costs while ensuring operational safety. This research focuses
on leveraging advanced signal processing techniques and deep learning (DL) machine
learning (ML) algorithms to diagnose gear faults and combined faults in EM systems,
offering a robust framework for improving the dependability of vital mechanical systems

and performing predictive maintenance [138][181].

1.2 Gear and Its Modes of Failure

A gear is a critical part of rotating machinery, and it has teeth that connect with other
toothed parts and transfer the torque. When two or more gears work together, they form
a gearbox. There are various types of gears used in mechanical systems, including spur
gears, helical gears, bevel gears, worm gears, rack and pinion gears, planetary gears, and
hypoid gears, each with unique characteristics and strengths suited for specific
applications. This research focuses on bevel gears, which are widely used in mechanical
systems such as differential drives, helicopter and aircraft power transmissions, floodgate
lift mechanisms, industrial plants, and marine propulsion systems. However, gears are
prone to wear, damage, and failure over time due to factors like high stress

concentration, material fatigue, misalignment, lubrication deficiencies, and overload
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conditions. These issues can lead to costly downtime, equipment malfunctions, and
potential safety hazards. The gear's operation produces the phenomena of modulation of
amplitude, frequency, or mixed modulation because the meshing frequency and its double
frequency signal of the vibration signal are modulated by the shaft frequency. Vibrations
are a type of dynamic non-stationary signal. The dynamic signal analysis method must be
applied in order to address the gear vibration signal. Nevertheless, precise matching with
sophisticated pattern recognition techniques is still required to be effective because of the

intricacy of the extracted signal's frequency and amplitude [1].

Despite their widespread use, gears are susceptible to wear, damage, and eventual
failure due to factors such as high-stress concentration, material fatigue, misalignment,
lubrication issues, and overload conditions. Such issues can lead to expensive downtime,
machinery malfunctions, and safety risks. As illustrated in Figure 1.2, gear faults can
manifest in various forms, including wear and cracks. Wear is a persistent issue observed
across numerous engineering fields and can result in significant financial and operational
losses. Studies suggest that the cost of abrasive wear alone can account for up to 1-4% of
a nation's gross national product. Additionally, wear is responsible for 55% of the loss of
material utility in industrial applications. Emphasizing the need for thorough wear fault

analysis in gear systems.

i ' \
\ ! {

Gear crack Pitting tooth

Figure 1. 1: Various types of gear faults [2]

Figure 1.1 shows the various types of gear faults. Previous research has focused on
diagnosing common gear faults such as missing teeth, chipped teeth, cracks at the root,

and face wear, particularly in spur gears [1-4]. However, limited research has focused on
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micron-level wear and the varying severity of crack faults in bevel gear fault analysis,
leaving this area largely unexplored. This research aims to address that gap by diagnosing
micron level wear and varying crack faults in bevel gears, offering insights into the early

detection and management of these issues to improve gear reliability and performance.

1.3 Machine Condition Monitoring

Machine CM is essential for maintaining industrial facilities' reliable and cost-effective
operation. It involves continuously tracking the performance of machines to detect faults
in their early stages, enabling corrective actions to be taken before any breakdowns or
catastrophic failures occur. Implementing continuous CM allows facilities to schedule
planned maintenance and repairs, improving operational efficiency and reducing environ-
mental impact. Various technologies have been integrated into these monitoring processes
to enhance CM systems' effectiveness, accuracy, and dependability [5]. Real-time data
acquisition and processing have become widely accepted in CM for their ability to detect
issues promptly. Choosing the right CM system is crucial for boosting machine
availability, optimizing performance, extending equipment lifespan, minimizing spare

parts inventory, and avoiding costly breakdown repairs.

In industrial settings, maintenance typically represents 15-40% of manufacturing
costs [6]. As a result, adopting an effective maintenance strategy is essential to reduce
these expenses. One practical approach is CBM, which is based on structural health
monitoring. CBM has become increasingly popular because it can prevent unnecessary
breakdowns by recommending maintenance actions only when required. By
implementing CBM, companies can significantly save time and cost, leading to more

efficient operations and reduced downtime.

Industrial machine monitoring uses a variety of methods to evaluate the state of the
machinery. These methods include visual and aural inspections, temperature monitoring,
wear debris analysis, vibration analysis, acoustic emission (AE) analysis, and noise
monitoring. Visual and aural inspections rely on skilled personnel who use their senses to
assess a machine's condition. However, these methods have limitations in detecting faults

at early stages, making them less effective for proactive monitoring [7].

Temperature monitoring, which wuses sensors including thermometers,
thermocouples, and thermal cameras, is essential for detecting excessive heat generation,

which is a major sign of possible problems [8]. This method is critical for detecting
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abnormal temperature fluctuations that may signal challenges within the machine. Wear
debris analysis is another traditional method used in CM. It focuses on examining the size
and level of contamination of wear particles in the lubricant, providing insight into the

condition of machine components and helping identify potential issues [9][10].

AE [11][12] monitoring detects stress waves generated by material deformation,
such as crack initiation or movement of dislocation. These stress waves typically fall
within the ultrasonic frequency range of 20 kHz to 1 MHz and can provide early

indications of structural issues within the machine.

Vibration monitoring is among the most popular methods for CM across various
industrial machines. It effectively detects faults such as gear and bearing faults,
misalignment, eccentric shafts, and improper clearances. Vibration analysis is utilized in
approximately 82% of fault diagnosis methods, making it a key approach for identifying

mechanical issues and ensuring operational reliability [13,14].

1.4 Vibration Analysis for Gearbox Fault Diagnosis

Gearbox failures can occur in various ways during operation, often marked by increased
noise and vibration as early warning signs before complete failure occurs. A gearbox's
complex and non-stationary vibration signal is made up of harmonics, fault transients,
noise, teeth meshing frequency, shaft frequency, and other elements under real-time
operating conditions [15,16]. The behavior of the gearbox vibration signal is influenced
by factors such as operating speed, load, gear tooth meshing, tooth surface condition, and
friction [17-20]. Furthermore, other components within the gearbox, such as bearings,
also impact the vibration signal. As a result, acquiring vibration signals and applying

appropriate signal processing techniques are critical for detecting gear faults.

Shipley [21] highlighted that one of the primary causes of gearbox failures is
localized or widespread faults in the gear teeth. Vibration analysis and signal processing
methods have proven effective in identifying gearbox faults under constant speed
conditions [22-26]. Vibration signals are typically captured using accelerometers
mounted on the gearbox bearing casing. Operating variables, such as speed fluctuations
and gear tooth meshing, contribute to modulations in the gearbox vibration signals,

which may mask
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fault-related modulations [27-29]. Therefore, signal processing techniques are essential

for analyzing gearbox vibration signals and detecting faults.

1.5 Signal Processing Techniques for Gear Fault Detection: An

Overview

Techniques for signal processing are crucial for identifying gear faults by analyzing
vibration signals generated during gearbox operation. Gearboxes produce non-stationary
vibration signals due to various dynamic factors in real-life conditions [30]. The three
main reasons why gears fail are (i) design errors, (ii) application errors, and (iii)
manufacturing errors. Improper gear geometry, incorrect material selection, poor quality,
lubrication, and other criteria can all lead to design problems. Problems with vibration,
mounting and installation, cooling, and maintenance are examples of application faults,
whereas manufacturing errors can be caused by mishandled machinery or issues with heat
treatment. Vibration measurement is highly effective, non-intrusive, and cost-efficient for
monitoring machine health during startups, shutdowns, and normal operations. These
signals typically contain a mixture of deterministic and random elements, with random
signals being either stationary or non-stationary and deterministic signals classified as
periodic or non-periodic. Using various signal processing techniques, such as wavelet
trans- form and frequency and time domain analysis, important information is extracted
from vibration signals to enable early fault diagnosis. While these methods are valuable
for identifying gear faults, each has its limitations, and selecting the appropriate technique

depends on the specific fault characteristics and operational conditions.

Local faults are the most harmful because, once initiated, they tend to evolve
quickly and generally have essential impacts on energy transmission. If not identified
soon, the most significant local faults can have drastic implications with teeth breakage,
pitting, and scoring. Vibration signals and acoustic emissions are status surveillance's
most prevalent waveform information. The waveform also includes information on
engine presence, partial release, and ultrasonic sounds. In literature, time and frequency
domain evaluation are the two main approaches used to evaluate stationary waveform

information.

1.5.1 Time Domain Analysis

In order to extract statistical features that offer important insights into the gear system's

state, time-domain analysis entails tracking the vibration signal throughout time. The
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metrics mean, standard deviation, skewness, kurtosis, energy ratio, and time synchronous
averaging (TSA) are examples of these statistical characteristics, which are referred to as
time-domain indicators. These indicators can provide details on the vibration signal's
amplitude and distribution, which may point to gear faults such as tooth wear or cracks.
However, this method's inability to record frequency-related data is a drawback. By
utilizing statistical features to detect gear cracks under various speed conditions, the im-
proved TSA approach enhances the signal-to-noise ratio (SNR) [31]. Furthermore, wind
turbine gearbox CM has employed RMS and peak vibration signal values, showing that
these indicators may accurately evaluate a gearbox's condition when applied
appropriately [32]. The impulsive nature of gear tooth spall faults has also been

successfully detected using a fault detection technique based on maximal kurtosis [33].

1.5.2 Frequency Domain Analysis

Frequency domain analysis is another key signal processing technique for detecting gear
faults, focusing on examining the frequency content of vibration signals to identify fault-
specific frequencies and their characteristics [34]. One of the most commonly used
methods in frequency domain analysis is the FFT, which converts a time-domain
vibration signal into the frequency domain. In a frequency domain plot, the y-axis
represents dis- placement, velocity, or acceleration amplitude, while the x-axis represents

the frequency. This graphic illustrates how the signal's amplitude varies with frequency.

In gear fault identification, the FFT 1is particularly useful for identifying
frequencies associated with gear faults, such as the gear meshing frequency and its
harmonics. The sidebands around the gear meshing frequency can also be analyzed using

it, as these could reveal the existence of wear, pitting, or cracks in the gear teeth [35].
1.5.3 Time-Frequency Domain Analysis

A method for analyzing signals with time-varying frequency content is time-frequency
domain analysis. It offers insights into how a signal's frequency content changes over time
by combining the best features of frequency domain and time domain studies. A time-
frequency plot provides a detailed representation of the signal, showcasing its com-
ponents within a specific frequency range and their sequences, causality, and frequency
variations over time in a single plot. This method is useful for examining non-stationary
signals, including those produced by gear failures. However, extracting meaningful in-

formation from these complex signals using traditional methods can be challenging.
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Advanced signal processing methods have been developed to address these challenges

and improve the accuracy of gear fault detection [35].

The wavelet transform is a common method for analyzing non-stationary data in terms of
time and frequency. It divides the signal into different frequency bands and provides in-
formation on the phase and amplitude of each component. Wavelet-based techniques have
been successfully applied to detect gear faults [36]. Advanced signal processing methods,
such as empirical mode decomposition (EMD), ensemble empirical mode decomposition
(EEMD), HHT, complete ensemble empirical mode decomposition with adaptive noise
(CEEMDAN), and adaptive filtering algorithms, are designed to enhance signal quality,
reduce noise, and improve the detection of fault-related features in the time-frequency
domain. However, these methods often rely on expert judgment to assess gearbox health.
Modern industrial applications increasingly adopt automated fault detection methods to
address this limitation. Integrating advanced signal processing techniques with ML
algorithms and DL models has significantly improved gear fault diagnosis in vibration
signals. These approaches enable automatic analysis and classification of gear faults,

yielding promising results.

1.6 Electromechanical Systems and Their Common Failures

Induction motors (IM) play a vital role in electromechanical (EM) systems, serving as
key components in industrial applications for converting electrical energy into
mechanical power. The electrical and mechanical components of an EM system are
depicted in Figure 1.2 [37,38]. A catastrophic breakdown of the entire system results from
the failure of any one of these parts, which shuts down manufacturing or industrial
operations [39-41]. In EM systems, early fault identification and monitoring are therefore
essential. Preventive and condition-based maintenance (CBM) can be scheduled during
planned outages thanks to this proactive approach, which reduces the possibility of
prolonged outages brought on by broad system failures [42—45]. Consequently, this
approach reduces maintenance expenses while increasing overall performance and
availability [46—48]. The two main types of faults in EM systems are mechanical and
electrical. Electrical faults in IM include insulation failures, rotor bar breakage, and stator
winding issues [49-51]. Conversely, mechanical faults include misalignments, rotor
imbalances, bearing failures, and faults with the gearboxes or belt and pulley systems.
This research focuses on the mechanical faults in IMs and coupled loads, where the IM

serves as the prime mover and connects to other mechanical components such as shafts,

30



bearing rotor systems, belt and pulley drives, and gearboxes. This section investigates
faults such as unbalanced loads in motors, bearing faults in motors, and unbalanced rotors
in mechanical loads. These specific faults are critical because they can significantly

impact on the longevity and functionality of the EM system.

Flexible coupling Ball Bearing

Shaft
Pulley (@ 50 mm)

Belt
AC Induction
Motor Magnetic Break Pulley (@ 125 mm)

Bevel Gearbox

Tri-axial accelerometer

Figure 1. 2: Schematic representation of Electromechanical system

1.6.1 Condition Monitoring of Combined Fault in EM System

This section provides a literature survey highlighting various techniques and
advancements in EM systems' condition monitoring (CM) and fault diagnosis.
Catastrophic failures in EMs can result from the malfunction of components such as the
stator, rotor, gearbox, or bearings. CM techniques have been developed to detect these
faults, including vibration signal monitoring, current signal monitoring, and noise signal

monitoring.

Mechanical faults such as misalignment, bowing, imbalanced rotors, and bearing
faults can be efficiently identified by vibration monitoring [52]. It can also be used to
detect electrically related issues, such as broken rotor bars, phase imbalances, and stator
winding faults [53][54]. Tri-axial accelerometers can be placed on machines in specific
locations to capture vibration signals for monitoring purposes. The fundamental principle
of vibration-based monitoring relies on mechanical components generating vibrations
during operation [55]. When faults occur, they alter system dynamics, leading to
noticeable deviations in vibration patterns. By applying suitable data analysis algorithms,
these variations can be detected, enabling an accurate assessment of the condition of EMs.

Machine current signature analysis (MCSA), another name for current monitoring, is
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frequently used to find electrically combined faults, including broken rotor bars and faults
with the stator windings [56]. MCSA can detect mechanically related faults in addition to
electrical ones [57][58]. Sensors such as current probes attached to the motor's supply
connections are used in MCSA to record current signals. The substantial changes in
current signals brought on by malfunctioning EM components provide the basis of the
current-based monitoring concept. As with vibration monitoring, these current variations
can be analyzed using appropriate data analysis methods to diagnose faults effectively.
The process of measuring and evaluating the noise spectrum is known as acoustic noise
monitoring [59]. The machine's iron surfaces are subject to Maxwell's stresses, which is
what makes the noise. Microphones and specialized devices like sound level meters are
often used as sensors for noise measurement. This method works especially well for

identifying faults in the stator structure and air-gap eccentricity.

EM faults have been found using a variety of CM approaches. Nevertheless, a lot
of these techniques are intrusive, intricate, expensive, and have a limited capacity to offer
thorough details regarding the working circumstances of EMs. Additionally, most
techniques are designed to detect specific faults, making them unsuitable for identifying
multiple types of faults using the same approach. Vibration and current signal-based CM
are the most widely used methods in the industry [60]. Kral et al. (2003) [61] highlighted
that vibration-based CBM is reliable for detecting bearing and other mechanical faults. Hu
etal. (2016) [62] studied the use of vibration signatures to detect multiple types of faults,
including misalignment and rotor eccentricities, in industrial-grade motors. Their findings
demonstrated the ability of vibration analysis to identify both mechanical and electrical
faults effectively, making it suitable for complex systems. Sharma et al. (2024) [63]
analyzed combined mechanical and electrical faults in EMs using vibration signatures.
The study validated that vibration analysis could capture fault interactions and provide a
comprehensive overview of system health, which traditional techniques often miss.
Allmark (2016) [64] investigated fault combinations in EMs, including rotor imbalances
and stator faults. Their research confirmed that vibration monitoring could effectively
isolate and identify simultaneous fault conditions, reducing downtime and maintenance

costs.

Based on these studies, vibration-based CM emerges as the most reliable and
versatile method for identifying combined faults in EM systems. It provides insights into
mechanical and electrical fault interactions and supports proactive maintenance

strategies, making it the best choice for CM in industrial applications.
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Vibration-based monitoring is preferred for EM fault diagnosis because it is non-
intrusive, reliable, and cost-effective. It offers high accuracy in signal analysis, effectively
represents machine conditions, excels at detecting and distinguishing mechanical faults,

and supports online monitoring for real-time fault detection.

1.6.2 Vibration Analysis for EM System Fault Diagnosis

Vibration is one of the most often observed characteristics in the CM of rotating
machinery. It is extensively used in industrial applications due to its sensitivity to machine
faults and ease of measurement. Vibration analysis plays a vital role in industries such as
material handling, aerospace, and power generation [65]. Faulty machine components,
such as damaged bearings or gears, generate specific vibration signals that can be
analyzed to identify the nature and severity of the fault. These signals vary depending on

the size, location, and type of damage present [66][67].

Vibration-based diagnostic methods are advantageous due to their cost-effective-
ness, straightforward implementation, and ability to provide detailed insights into damage
location and severity. For instance, rolling element bearings generate characteristic
vibration patterns when faults such as inner or outer race faults, ball faults, or cage issues
are present. These patterns can be effectively captured using accelerometers and

processed using advanced signal-processing techniques [68][69].

Even in the absence of significant faults, vibration is an inherent characteristic of
machine operation. Manufacturing imperfections, material properties, and operational
conditions contribute to baseline vibration levels. Some common sources of vibration
include localized faults such as indentations, pits, or scratches, as well as larger-scale issues
like raceway damage [70]. Advanced techniques in signal processing, such as denoising
and spectral analysis, can now identify important fault signatures even when there is back-

ground noise, enabling more accurate and reliable fault detection [71][72].
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1.6.3 Signal Processing Methods for EM System Combined Fault

Advanced signal processing methods are essential for detecting faults in EM
systems early, enabling effective monitoring and diagnosis before significant failures
occur [73]. These techniques, classified into invasive and non-invasive approaches, are
critical for accurately identifying faults in complex systems. Commonly used tools such
as discrete wavelet transform (DWT), Fast Fourier transform (FFT), Hilbert-Huang
transform (HHT), continuous wavelet transform (CWT), and wavelet packet transform
(WPT) pro- vide valuable insights by analyzing signals in time and frequency domains
[74].

Although these techniques are crucial for fault detection, they have drawbacks, such
as high computing requirements and vulnerability to non-stationary signals. These
challenges are addressed by the Synchro-squeezing wavelet transform (SSWT) signal
processing technique, which emphasizes instantaneous frequencies and improves time-
frequency representation. However, SSWT still encounters limitations in noisy
environments and computational complexity [62]. Despite these challenges, advanced
signal processing remains crucial in enhancing the precision and dependability of fault
detection in a variety of applications by deriving valuable information from intricate

vibration signals [75].

1.7. Artificial Intelligence in Combined Fault of

Electromechanical system

In recent years, sophisticated artificial intelligence (Al)-based methods have replaced
conventional methods for the CM and fault detection of rotating machinery. With the
progressive enhancement in automation, the expanding scale, and the growing complexity
of EM systems, these advancements bring significant operational benefits and introduce
numerous safety and reliability challenges. Addressing the complexity of modern EM

systems requires robust safety assurance, reliability assessment, and diagnostic strategies.

DL-based fault diagnosis algorithms have emerged as effective solutions by
leveraging advanced mathematical frameworks to process complex, high-dimensional
datasets. These algorithms enable hierarchical feature extraction, uncover latent patterns,
and enhance fault diagnosis performance, showcasing unique advantages in feature
engineering and pattern recognition. The development of deep neural networks (DNNs)
[76] facilitates the extraction of hidden data features and the mining of abstract

information. However, the "black box" nature of DNNs makes it challenging to interpret
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the extracted features, requiring domain expertise to map these features to specific fault
patterns. In the domain of data-driven fault diagnosis, Wan [77] proposed a diagnostic
model integrating nonlinear fluid learning and support vector machines (SVM), utilizing
time and frequency domain parameters using EM systems to build a feature space with
great dimensions. This model demonstrated fault diagnosis accuracy exceeding 95%.
Similarly, Li [78] introduced a combined approach combining short-time Fourier
transforms (STFT) and convolutional neural networks (CNNs) for fault pattern
recognition, enabling end-to-end intelligent diagnostics with improved performance as
fault types and datasets expand. Zhang et al. [79] developed a probabilistic generative
model, which utilized a deep confidence net- work constructed from stacked restricted

Boltzmann machines and achieved enhanced diagnostic accuracy.

CNNs are particularly prevalent among DL architectures due to their local
connectivity, weight-sharing mechanisms, and pooling operations, which collectively
reduce network complexity while improving robustness and generalization. The
integration of DL techniques has driven significant advancements in data-driven fault
diagnosis, offering innovative frameworks for diagnosing faults in complex EM systems
and enabling new paradigms in intelligent maintenance and predictive analytics. An ML
model is used by Han et al. [80] to offer a unique method for recognizing and categorizing
instant messaging errors. Additionally, the technique involves intentionally creating three
different kinds of problems and detecting them using an auto-tunable SVM technique
dependent on the rotation speed and motor stator current spectrum properties. The method
showed excellent sensitivity, resilience, and diagnostic accuracy, which qualified it for
use in industrial settings. Manarikkal et al. [81] use CWT and Al to identify and diagnose
stator winding faults in permanent magnet synchronous motors. They analyze CWTs
using a generalized Morse wavelet, focusing on inter-turn short circuit symptoms. They
also test automated classification using ML techniques, including multilayer perceptron,
SVM, and K-nearest neighbors (KNN). A probabilistic neural network (PNN), wavelet
trans- form (WT), and finite element analysis are used in a method by Liu et al. [82] to
detect broken rotor bar faults in IMs. To determine the rotor state, they look at the
amplitudes of the stator current signals. Numerical simulations are used to demonstrate the

effectiveness of this strategy.

Additionally, Shao et al. [83] suggested a CNN-based DL-based multi-fault
diagnostic method for sensor data analysis. The results demonstrate that the

recommended strategy outperforms the traditional method by a significant margin.
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Choudhary et al. [84] developed a vibroacoustic fusion technique for fault diagnosis in
rotating machine com- ponents by combining vibration and metric inputs with a multi-
input CNN. Additionally, the results demonstrate that it can accurately diagnose issues
with instant messaging systems and other rotating machinery. To diagnose IM faults, Sun
et al. [85] suggest a back-propagation neural network and a convolutional discriminative
feature learning technique. Their strategy, which uses an SVM classifier and a feed-
forward convolutional pooling architecture, significantly outperforms current techniques
in terms of performance. Using stator phase current data, El-Dalahmeh et al. [86] created
a method for continuous fault identification in permanent magnet synchronous motors.
Their method effectively detects faults in a variety of operating conditions by combining
CNN for fault classification, HHT for feature extraction, and variational mode
decomposition (VMD) for signal decomposition. The diagnostic method developed by
Song et al. [87] used a multi-scale feature fusion convolutional neural network
(MSFFCNN) to account for the multi-scale character of fault signals and the dependability
of fault detection for EMAs in complex operating environments. It is possible to efficiently
gather and learn fault-related information by using attention mechanism-based feature
fusion and the learning structure of multiple scales. This enhances the network's diagnostic
performance and identification capabilities. He et al. [88] have suggested that PV systems
with multi-fault coupling use a composite fault diagnosis schema based on multi-label
categorization. Additional useful features to properly distinguish between faults are
extracted from the pre-processed Current-Voltage (I-V) curves. Then, two different
diagnostic models are developed to diagnose compound faults: a basic residual network
multi-label learning (ML-SResNet) and K-NN multi-label learning (ML-KNN) combined
with random forest multi-label learning (ML-RFKNN).

1.7.1 Overview of Machine Learning and Deep Learning

Techniques for Gearbox and EM system Fault Analysis

The health status of spinning machinery has been diagnosed using machine learning
techniques. As a mechanical extension of pattern recognition theory, fault diagnosis
technologies aim to solve the problem of state classification in engineering systems and
operational equipment. Fault diagnosis systems need to be able to do three things: fault
identification, fault detection, and fault isolation (Xu et al., 2020a) [89]. Unlike traditional
diagnostic methods that heavily rely on human expertise for feature engineering, ML

techniques leverage algorithms to learn and generalize patterns from the data,
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significantly reducing dependency on manual intervention. However, ML models often
require well-structured and domain-specific features as inputs, which can limit their

performance in cases of noisy or complex datasets.

ML approaches have demonstrated remarkable potential in the area of diagnosing
and identifying faults, offering improved accuracy and efficiency over traditional
techniques. The most widely used algorithms include SVMs, decision tree (DT), RF, and
K-NN. These models are adept at identifying fault patterns by analyzing extracted features
from various signal domains, such as time, frequency, and time-frequency. Researchers
have successfully applied ML models to diagnose specific and combined faults in gearbox
fault detection. For example, Yang et al. [90] utilized an SVM-based approach to detect
gear tooth wear and misalignment, showcasing the algorithm's effectiveness in classifying
subtle fault signatures. Similarly, Wan et al. [91] employed RF classifiers to diagnose
gear and bearing faults, achieving high classification accuracy with minimal pre-

processing of vibration signals.

Despite their advantages, traditional ML models often struggle with high-
dimensional data and non-stationary signals, which are common in real-world fault
detection scenarios. Consequently, combined models have been suggested to combine
advanced signal processing techniques or domain expertise with machine learning
techniques. For example, Li et al. [92] showed how signal processing and machine
learning techniques can work together by combining wavelet transform with SVMs to

enhance the identification of transient gear faults.

Furthermore, three steps are involved in the intelligent fault detection approach
based on traditional machine learning: pattern recognition, artificial feature extraction,
and data collecting. Nevertheless, the upper limit of algorithm performance is low because
traditional ML techniques typically lack a deep architecture and are somewhat close. In
contrast to conventional machine learning techniques, the DL-based fault detection model
is a common end-to-end model capable of extracting data features during optimization
and has enhanced nonlinear mapping fitting capabilities. In traditional machine learning
methods, it makes up for the shortcomings of the extraction of features manually and

reduces the need for mechanism research and subjective assessment.
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Combined models are required in fault detection because they combine the
strengths of different methodologies to address the limitations of standalone approaches.
Traditional signal processing techniques are effective for feature extraction but struggle
with complex, non-linear relationships in fault data. ML methods can classify faults based
on extracted features but rely heavily on the quality and relevance of these features. DL
models, while powerful in automatic feature extraction and handling large datasets, can
be computationally intensive and may be overfitted with limited labeled data. Combined
models integrate these approaches, such as combining DL for feature extraction with ML
for classification, to leverage their complementary strengths. This integration improves
fault detection accuracy, especially in noisy environments or when handling combined
faults, overlapping signal characteristics, and imbalanced datasets. By uniting diverse
techniques, combined models provide a more robust, flexible, and scalable solution for

diagnosing faults in complex systems like gearboxes and EM systems.

It enhances the diagnosis's precision and intelligence to a certain degree. The
automatic and large-scale diagnosis of mechanical equipment faults is increasingly
feasible with its help. These days, the most often utilized deep learning techniques in
trouble- shooting include CNN, generative adversarial networks (GANSs), recurrent neural
networks (RNNs), stack auto-encoders (SAEs), and deep belief networks (DBNS). In the
area of fault diagnostics, DL models are also being used. In order to detect rolling bearing
faults, Gao et al. [93] used DBNs to extract the bearings' signal. According to
experiments, the rolling bearing faults detection model, which Niu et al. [94] presented and
was based on DBNs, had good fault detection capabilities and could correctly identify all
types of faults.

Zhao et al. [95] have suggested SAEs are an efficient DL technique. This technique
solved the gearbox fault detection fault by removing the need for human characteristics
by extracting essential features from the frequency domain data. Chen et al. [96] interacts
with a sparse auto-encoder and a denoising auto-encoder, proposed the stacked sparse
denoising auto-encoder diagnosis model, and applied the model to rolling bearing fault
detection. Liu et al. [97] combined RNN and autoencoders to realize the intelligent fault
detection of rolling bearings. Jiang al. [98] used RNN to realize the intelligent fault

detection of bearings under time-varying working conditions [99] [35].

Lin and Shih-Lin [100] investigated DenseNet and VMD for bearing fault

diagnosis. A motor fault diagnosis model is constructed using DenseNet; it has a
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straightforward structure and quick computation times. With a 92% VMD-DenseNet
prediction accuracy rate, the experimental findings demonstrate that the approach can
correctly identify four frequent motor faults. An enhanced NL-LinkNet network, called
NL-LinkNet-SSR, was presented by Jing Wang et al. [101] and specifically created for
fault detection activities. To increase the accuracy of the model and resilience in fault
identification, the suggested NL-LinkNet-SSR combines a SImAM attention module with

a Sobel edge detection module.

Overall, ML and DL have become a cornerstone of modern fault diagnosis, offering
scalable and intelligent solutions for gearboxes. With continued advancements in
algorithm design, data pre-processing, and feature engineering, ML and DL models are
poised to deliver even greater accuracy and robustness in diagnosing both gearbox faults

and combined faults in mechanical systems [4].

1.8 Conclusions

The reviewed literature shows that fault detection in gearboxes and EM systems has
gained significant importance due to their critical roles in power transmission and
industrial applications. Gearboxes and EM systems are subjected to various operational
stresses, making them prone to faults such as gear tooth wear, cracks, misalignment, pit-
ting, motor winding faults, rotor imbalances, and insulation degradation. Combined
faults, where multiple faults occur simultaneously, pose additional challenges due to the
complex interaction between fault mechanisms and overlapping signal characteristics

across interconnected components.

Vibration signal analysis has emerged as a reliable technique for early detection and
diagnosis of gearbox and EM system faults. The three main techniques for fault detection
are DL, ML, and signal processing based. Time-domain, frequency-domain, and time-
frequency-domain studies are employed in signal processing methods to detect essential
signals that point to gearbox and electromechanical system faults. These methods are
particularly effective in fault detection and classification, including those caused by motor

imbalances or gearbox wear.

ML techniques have shown significant potential in diagnosing gearbox and
combined faults in EM systems with minimal human intervention. These techniques use
algorithms such as SVMs, DT, and NN to enable precise fault classification based on

extracted features. It is crucial to customize solutions to particular fault scenarios and
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adjust them to the interconnected nature of gearboxes and EM systems because the
effectiveness of machine learning approaches depends on elements like feature relevance,

algorithm selection, and training data quality.

The DL technique facilitates automatic feature extraction and classification, which
advances fault detection. These models, such as RNN, LSTM, DBN, and CNN, can handle
complex datasets and identify patterns associated with combined faults in gearboxes and
EM systems. For instance, DL models can effectively detect overlapping characteristics
in vibration signals, enabling comprehensive fault diagnosis across EM systems. This
capability is particularly advantageous in scenarios where faults coexist in multiple

components, such as motors, gearboxes, and bearings.

In conclusion, integrating advanced signal processing techniques with ML and DL
approaches has paved the way for more accurate and robust fault detection systems,
particularly in gearboxes and EM systems. These advancements address challenges such
as combined faults, noisy environments, and data imbalance. Future developments in
sensor technology, data fusion, and combined diagnostic frameworks are expected to
further enhance the reliability and efficiency of fault detection across entire EM systems,

ensuring improved performance and reduced downtime in industrial applications.

1.9 Outcomes of the Literature Review

The literature on gearbox faults and combined fault detection in EM systems, including
their applications and failure modes, has been thoroughly examined. A comprehensive
review of various CM methods, explicitly focusing on Al techniques, has also been
conducted. The significance of such techniques in detecting various faults in gears is
presented in detail. Here are the key findings derived from the literature review. These
findings underscore the promising future of Al models in achieving more accurate,
efficient, and reliable detection of gearbox faults and combined faults in EM systems for

industrial applications.

e Despite the numerous techniques employed in fault detection for gearboxes,
challenges such as noise interference, data imbalance, and the complexity
of handling multiple fault types persist.

e EM systems often experience combined faults, where faults in both electric
(motor, power supply) and mechanical (bearings, gears) components occur

simultaneously. These combined faults pose significant challenges in
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detection due to overlapping symptoms and interdependent fault behaviors,
making it difficult to pinpoint the exact fault source.

e Traditional signal processing techniques such as FFT and wavelet
transforms are widely used. However, they struggle with noisy environments
and non-stationary signals. These methods can be ineffective when faulty
signatures are weak or buried in noise.

e Signal processing methods include wavelet transform, Fourier transform,
and spectral analysis. At the same time, widely used, they often struggle
with accurately extracting features in highly noisy environments or when
the data exhibits non-stationary behavior.

e For optimal performance, ML classifiers such as SVM, DT, and RF depend
heavily on accurately labeled and structured data. Their efficiency
significantly declines in noisy signals, data imbalance, or incomplete
datasets.

e Although more adept at feature extraction and handling noise, DL
techniques, such as RNNs, LSTMs, DBN, and CNNs, require substantial
computational resources and extensive labeled datasets for training, which
can limit their practicality in real-time applications with constrained
environments.

e Combined models that combine DL architecture offer a more robust
approach to detecting combined faults in EM systems. However, they face
challenges related to model complexity, increased risk of overfitting, and
the need for longer training times, especially when dealing with high-
dimensional data.

e A combined architecture that combines the LinkNet and DenseNet models
offers a more robust approach to fault detection by leveraging the strengths
of both networks. However, integrating these two architectures may
introduce challenges such as increased computational complexity, longer
training times, and the need for careful balancing to prevent overfitting,
especially when working with large, high-dimensional datasets.

Based on the outcomes of the literature, the aims and objectives of the thesis work can be

derived and presented in the subsequent section.
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1.10 Objectives

This part presents the objectives and scope of the present work, with the objectives of
developing an advanced fault detection methodology for gearboxes and combined faults
using signal processing and ML techniques. The scope of the study may include the
identification and classification of different faults occurring in various types of gearboxes
under different operational conditions toward enhanced reliability and reduced down-

times.
Objectives of the works are as follows.

i.  To create a reliable wear fault detection technique for bevel gearboxes by
utilizing an optimized combined classifier and updated entropy-based feature
extraction.

ii. To create a deep learning combined model for automatic gear crack
identification based on an improved CEEMDAN model.

iii.  To design a modified combined architecture of LinkNet and DenseNet for

detecting combined faults in electromechanical systems.

1.11 Organization of the thesis

The thesis is organized into the following chapters:

Chapter 1: Introduces the research background and reviews existing literature on fault
detection using signal processing, ML, and combined DL methods. It identifies gaps in
cur- rent approaches and defines the objectives and scope of the thesis. The chapter

concludes with the organization of the thesis.

Chapter 2: Proposes a novel entropy-based feature extraction technique combined with
a hybrid classifier for detecting gearbox faults. Experimental validation and results
demonstrate the model's efficacy and robustness. Key findings are discussed to establish

their contribution to fault detection research.

Chapter 3: Focuses on CEEMDAN-based combined DL model for automated detection
of gear cracks. The methodology, experimental setup, and performance analysis are
detailed. The chapter highlights the model's superiority in handling complex fault

detection scenarios.
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Chapter 4: Focuses on developing a combined architecture that integrates LinkNet and
DenseNet to address combined faults in EM systems. Experimental results illustrate the
model's capability in multi-fault detection scenarios. The comparative analysis

emphasizes its performance improvements.

Chapter 5: Conclusions are made by summarizing the research contributions and
significant findings in fault detection. Limitations of the current work are acknowledged,
and future research directions are proposed to advance the field. Potential applications of

the proposed techniques are also discussed.
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Chapter 2
Gearbox Fault Detection Using Entropy-Based Feature
Extraction and Hybrid Classifier

This chapter suggests a novel combined DL-based method for classifying and detecting
gearbox faults, leveraging the strengths of advanced statistical and ML techniques. The
technique combines Shannon features, modified log-energy entropy, modified Renyi
entropy, statistical characteristics, and higher-order statistical features to extract diverse
and significant information from gearbox data. A strong DL architecture that combines
RNN and Bi-LSTM networks is used to detect and classify faults. This makes it possible
for the system to learn forward and backward temporal connections. An optimization
mechanism is introduced to improve the performance of the model further, where the
opposition- based artificial Hummingbird crow search algorithm (OAHCSA) is employed
to optimize the RNN weights. This combined approach ensures efficient parameter tuning
and improves the learning capability of the model, leading to more precise fault diagnosis.
By incorporating these advancements, the proposed methodology aims to provide a
comprehensive solution to gearbox fault diagnosis, addressing challenges associated with

feature extraction, classification accuracy, and computational efficiency.

2.1 Introduction

Gearbox fault diagnosis is a crucial process, as the gearbox plays a vital role in ensuring
vehicle performance, efficiency, and safety. It is responsible for transmitting power from
the engine to the wheels and controlling the vehicle's speed [102-103]. However, due to
the mechanical complexity and harsh operational conditions, gearboxes are prone to faults
such as gear wear, misalignment, bearing damage, and lubrication issues. Early and
accurate fault detection is essential to prevent severe damage, reduce downtime, and
minimize maintenance costs [ 104-108]. Traditional gearbox fault diagnosis methods often
involve time and frequency-domain signal analysis and vibration-based techniques.
Time- domain methods analyze raw data collected from sensors, whereas frequency-
domain methods use signal processing techniques like FFT to identify fault characteristics
based on spectral information [109]. While these methods can be effective for more
straight forward fault scenarios, they struggle to capture the intricate and non-linear

relationships in
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more complex fault patterns, particularly in modern gearboxes with advanced designs and
a wider range of potential failures. As such, there is a growing demand for more
sophisticated, intelligent systems capable of providing a higher level of fault diagnosis,

accuracy, and efficiency.

Significant progress has been made in the use of ML and DL approaches for
gearbox fault diagnostics in recent years. Existing approaches have included models such
as SVM, DT, random forest (RF), and CNN, which rely on data-driven learning from
large datasets of operational and fault-related signals [110-113]. In fault classification,
these techniques have demonstrated encouraging outcomes and tackle the issue of non-
linearity in fault patterns [114]. Because they can successfully address the drawbacks of
conventional techniques, like difficulty in handling non-linear patterns, reliance on
manual feature engineering, limited scalability, and sensitivity to noise, SAE has drawn
more interest since the emergence of unsupervised DL techniques [107]. In fault
detection, DL approaches such as CNN, stacking sparse autoencoder (SSAE), artificial
neural networks (ANN), and DBN outperform supervised learning (SL) [115]. However,
a large dataset is required for these strategies to be successful. Furthermore, the natural
evolution theory (the genetic algorithm) and the bionics theory (the ant colony algorithm)
are employed for fault identification in rotating machines. Kumar et al. (2019) [116]
investigated the effectiveness of wavelet-based parameters for fault identification using

PSVM and SVM. According to this study, PSVM is superior to SVM.

Recent studies have proposed combined techniques to address these challenges
more effectively. For instance, by capturing spatial and temporal connections, ML models
combined with DL architecture such as CNN and LSTM networks have demonstrated
considerable potential in increasing fault detection accuracy. Additionally, methods such
as extreme learning machines (ELM) and deep autoencoders have been used for fault
detection, where the autoencoders learn to reconstruct sensor data, and any deviation from
the expected reconstruction is interpreted as a fault. In order to improve model
performance and convergence, optimization methods like particle swarm optimization
(PSO) and genetic algorithms (GA) have occasionally been used to fine-tune model
parameters. These solutions, while effective, still face challenges in achieving optimal
performance under real-time conditions. Incorporating more advanced optimization
techniques, such as the OAHCSA, has been proposed to further enhance model
performance by efficiently optimizing the weight parameters of DL models, thereby
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addressing accuracy and computational efficiency concerns.

2.2 Proposed Methodology

This study provides a novel approach for classifying and detecting gearbox faults utilizing
a combined DL technique specifically designed to have minimal computational time. The
process involves several steps, such as pre-processing, feature extraction, and
classification with optimized training. First, the pre-processing is done by median filtering
(MF), in which the input is a signal. Subsequently, key features are extracted from the
processed data, including statistical measures, higher-order statistical (HOS) features,
modified Renyi entropy, and adjusted log-energy entropy [116]. These extracted features
are then fed into a hybrid classifier (HC) model, which combines the strengths of two
classifiers: the RNN and the Bi-LSTM. Optimizing the RNN's weight using the OAHCSA
algorithm enhances the hybrid model's performance. The final step involves utilizing the
model's predictions for effective fault detection. Figure 2.1 illustrates the architectural flow

of this proposed detection framework.

Input data
(Vibration signals)

Pre-processing
(Median Filtering) |

Feature Extraction

I I I I '
I
Statistical & Shannon Modified log- Modified Renyi | |
higher order entropy energy entropy entropy [
____________________________________ |
FIIIIIII S
Hybrid

[ Weight optimization ]

| Averaged | via OAHCSA

}

| Predicted classification outcome |

Figure 2. 1: Architectural diagram of proposed fault detection model.
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2.2.1 Pre-processing by Median Filtering

Data pre-processing is an essential initial step in data analysis that involves transforming
raw data into usable format for further exploration, modeling, and interpretation. Its
purpose is to prepare data for analysis by cleaning, transforming, and organizing it. The
proposed method makes use of MF as the technique for pre-processing. This approach
preserves the signal's most essential characteristics and remains noise-robust, which is
vital for classification tasks. In fault detection, keeping the edges of data and removing
impulsive noise is crucial; MF filtering is excellent [117-118]. Unlike Gaussian or mean
filtering, MF does not distort the signal as much, making it more appropriate for
preserving the integrity of features indicative of faults. By using the MF technique, the
input signal's quality has improved. This non-linear signal or image processing technique
is where every data point gets replaced by the median value of its neighbors. So, the noise
is diminished, and fine details and edges are retained. MF is very effective in reducing
noise without blurring the edges. Hence, MF is less sensitive to outliers. Application of
this technique ensures that input data accurately depicts fault conditions and consequently
makes the classifications more reliable. This filter reduces noise while keeping important
features, enhancing the accuracy of the fault detection model in capturing temporal
patterns and anomalies characterizing faults. This work denoises the input signal,
smoothed, and processed using the MF, as demonstrated in Equation (2.1). Usinga 3 X 3
pixel mask, the method achieves a balance between noise reduction and detail preservation
by assigning each pixel the median value of its 3 X 3 neighboring grids. The usage of this
filter size accomplishes effective noise suppression with the maintenance of critical

details. Equation (2.1) shows how effective this filtering process is,

2
2 1 O¢ YA
o = =~ .= 2.1

med T 4pp2(p) h+§—1 2 2.1)

In Equation (2.1), o.denotes the variance of the input noise power, hrepresents the size
of the MF mask, and F (h) is the noise density function. To ensure that the MF is applied
uniformly to the entire dataset, including edges, edge handling techniques such as edge
padding are used during the filtering process. These parameters guarantee efficient noise
reduction while maintaining the signal's essential characteristics. The filter's mask size
and noise density function enable it to vary according to changing noise density without
losing necessary signal features. Edge handling ensures smooth processing of areas close
to the boundary as artifacts frequently occur there, leading to a uniform reduction of noise

from the signal. Thus, raw vibration signals can be analyzed using the MF approach.
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The representation of healthy and faulty signals in the time domain, frequency domain
(FFT), and time-frequency (TF) domain are represented in Figure 2.2 and Figure 2.3.
These representations provide a baseline understanding of the signal characteristics before

applying the suggested feature extraction and classification techniques.
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Figure 2. 2: Time, frequency, and time—frequency domain representations of the healthy

signal
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Figure 2. 3: Time, frequency, and time—frequency domain representations of the faulty
signal

Figure 2.4 depicts the performance of median filtering in preprocessing against
the traditional approach for healthy signals. Figure 2.5 shows the same analysis for faulty
signals. The result depicts that median filtering works more effectively than the
conventional approach, which is done in the form of Gaussian filtering, low-pass
Butterworth filtering, and Wiener filtering for gearbox fault detection. A non-linear
filtering approach, median filtering is specifically better suited to eliminating impulse
noise without making severe compromises in the signal features [94-95]. Traditional
methods typically lack robust signal integrity: low-pass Butterworth filtering can
eliminate high-frequency details critical to fault information; Gaussian filtering tends to
blur significant high-frequency information; and even with its adaptability to noise
characteristics, Wiener filtering brings potential phase shift-induced damage to the signal

structure.

MF clearly shows superiority in terms of giving cleaner signal representations for
healthy and faulty conditions at all the frequencies considered for evaluation, namely 15
Hz, 20 Hz, 25 Hz, and 30 Hz [98]. This robustness improves the reliability of feature
extraction as important information is preserved for further analysis. Ultimately, median
filtering ends up being the best of all the pre-processing techniques incorporated, which
significantly improves the accuracy of combined DL models in fault classification. This
approach provides a sturdier basis for detecting gearbox failure, thus further enhancing

the overall dependability of the system.

51



Frequency =15 Hz

40 2 30 25
- -1 _ 2 2
[ ™ L ') 15
E E X e 8
g 10 @ ® 31
E-] - T 0 £
2o 2, 2 Eos
E .10 £ B0 <
Z g .
< <, 5
bl 20 a5
30 3
[] 05 1 15 2 [} 05 1 15 2 -300 o : 2 ~ 40 o5 : T 2
Sample Number 10° Sample Number <10* Sample Number 10t Sample Number et
60 3 50 3
2
o < —~ 40 2
K 2 B L
E E1 = -
-2 > E E
=1 3 =20 =1
2 So = o
= o0 = = B
g ] 2 £
£ 3 £ 0 =20
< < B =
29 2 E E
< 20 <4
-0 3
o 0s 1 15 2 ) 0s 1 15 2
Sample Number 10* Sample Number 10* -0 2
0 0.5 1 15 H 0 0.5 1 15 2
Sample Number Tl Sample Number «10°

Frequency = 25 Hz

60

Y
S

i

]
=

Amplitude (mis?)
Eof
=3

A
=

=60
o 0.5 1 1.5
Sample Number x4l
B0
60
o~
» 40
£
° 20
T
£
£
-20
<
-40
50

=
n

1 15
Sample Number

2
<10t

(a)

Amplitude (m/s?)
e

o

&

0 0.5 1 15 2

Amplitude (mis?)

s
=

»
=

R
=

Amplitude (m/s?)

s
=

i

0.5 1 15 2

3
2 ,' '
1
0
-
2
3
0 05 1 15 2

Sample Number x10* Sample Number 10t Sample Number x10%
Frequency = 30 Hz
5 80 4
0 60 3
N! "&! “3 2
£ g% E
'S [] o1
T T2 T
2 2 20
g1 3, 3
E E g
< 1 < <
b 20 2
20 -40 3
0 0.5 1 15 2 [] 0.5 1 15 2 0 0.5 1 15 2
Sample Number x10% Sample Number «10? Sample Number x10%

(b)

©

(d)

Figure 2. 4: Pre-processing analysis of median filtering over conventional methods for
healthy signals (a) Gaussian filtering (b) Low-pass Butterworth filtering (c) Wiener
filtering (d) Median filtering.

Table 2. 1: Quantitative analysis for healthy signal

Filter

SNR (dB)

MSE

Gaussian
Butterworth
Wiener

Median

15.2
18.5
20.1
234

0.025
0.018
0.014
0.010
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Table 2. 2: Quantitative analysis for faulty signal

Filter SNR (dB) MSE

Gaussian 16.7 0.021
Butterworth 19.4 0.016
Wiener 21.2 0.012
Median 24.8 0.008

The evaluation metrics, such as Signal-to-Noise Ratio (SNR) and Mean Squared Error
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(MSE) for the healthy and faulty signals are tabulated in Tables 2.1 and 2.2, respectively.
From the tables, the median filtering demonstrated the highest SNR of 23.4 dB for healthy
and 24.8 dB for faulty signals, and the lowest MSE of 0.010 for healthy and 0.008 for
faulty signals among all filters. These values quantitatively confirm the enhanced noise
suppression and better preservation of signal features of the proposed approach, which

are crucial for accurate fault detection.

2.3 Extraction of Features

Feature extraction is one of the essential processes, as it identifies features that are most
representative of the data while disregarding insignificant ones; therefore, it ensures
appropriate identification of the characteristic aspects of the data, which helps in analyzing
and classifying more effectively. Added to all this is the benefit of providing entropy-
based features that take cognizance of the measurement of complexity and the dynamics
of change within a nonlinear time series. Entropy is one of the most powerful tools to
understand non-linear behaviors. It has been extensively studied in the field of mechanical
fault diagnosis, especially for gearbox fault monitoring applications. A variety of entropy-
based methods, including sample entropy and permutation entropy, can be applied to non-
linear vibration signals to extract valuable information. However, conventional entropy
approaches suffer from instability and loss of critical feature information. Thus, to counter
such limitations, this work incorporates advanced feature extraction techniques such as a
combination of:

Shannon entropy: determines how much uncertainty and information are in a signal.
Improved log energy entropy: Provides higher signal sensitivity, promoting higher fault-
related features.

Improved Renyi entropy: It provides a more generalized framework to capture the
complexity of nonlinear signals.

Statistical features include mean, variance, skewness, and kurtosis measures, these
describe signal properties.

HOS Features: This leads to more profound insight into nonlinear and non-Gaussian
properties of signals.

The proposed method effectively eliminates the shortcomings of traditional entropy-
based approaches through advanced feature extraction techniques. Thus, the developing
features could increase the robustness and precision of fault detection for the effective

mechanical fault diagnosis platform.
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2.3.1 Shannon Entropy Features

A statistical indicator of information's unpredictability or uncertainty is Shannon's
entropy. It has its roots in information theory and is useful when addressing the complexity
and variability of a system or signal since it can be applied to the distribution of data
among input, output, and intermediate variables. Strategies such as edge padding in signal
processing allow for the application of a filter, say, an MF, homogeneously to the entire
dataset and the boundary regions. Such strategies are helpful in retaining the integrity of
the signal by keeping the desired features with efficient noise suppression. Shannon's
entropy plays a key role in data analysis regarding randomness and distribution
characteristics [119][120]. It is mathematically given as in Equation (2.2), where P(y:)
refers to the probability of a single event.

G(y) symbolizes the relationship or transformation applied to the probabilities to
calculate entropy, n represents the total number of distinct events, log;, denotes logarithm

to the base, which can be 2 (for bits).

fe’f = G(y) = LiLi[P(y) * logy(1/P(y))] (2.2)
The extracted Shannon’s entropy features are specified as feSE.

2.3.2 Improved Log Energy Entropy

Entropy quantifies a system's degree of randomness or information content, while log
energy entropy explicitly measures signal complexity, focusing on energy distribution
[121]. The traditional formula for calculating log energy entropy feSE is shown in
Equation (2.3). This metric evaluates the logarithmic distribution of signal energy and is
often applied to analyze signals with complex patterns. The log energy entropy
calculation in the proposed method is refined by incorporating a weighting mechanism.
Attributes with lower entropy values are assigned to higher weights, emphasizing their
significance and reducing the risk of losing critical information during aggregation. These
weighting factors are empirically derived from the data using the SoftMax function,
ensuring adaptability and relevance to the dataset. The enhanced log energy entropy is

represented in Equation (2.5).

fele(y) = — X3 (logz(P.3)))’ (2.3)

fele(y) = — ¥ (log,(P.(»)))” * we (2.4)
e~ E(v)

we = W (25)
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The extracted log energy entropy features are revealed by fe'e.

2.3.3 Improved Renyi Entropy

The Renyi entropy is used to measure diversity in ecology and statistics and plays an
essential role in quantum information, specifically in quantifying entanglement. It can be
explicitly calculated in the Heisenberg XY spinning chain model due to its relationship
with a subset of the modular group. In theoretical computer science, randomness
extractors are studied using min-entropy [121-132]. In mathematics, the Renyi entropy for
rank « is commonly represented by equations (2.6). However, due to its non-linear
dependence on the density matrix, a new augmented Renyi entropy model based on weight
is built, as shown in equation (2.7). Here, arepresents the rank parameter of the Renyi
entropy Ga«(y) represents the mathematical formulation of Renyi entropy, P: indicates the
probability of the ith event, ||P||s represents the B norm of the probability vector P. This
sensitivity is increased in the enhanced version, allowing for the detection of minute
changes in the signal that other entropy measures could overlook. It is helpful in locating

early faults that show slight entropy variances in the signal.

feRe = Go(y) = —log XL, Pf (2.6)
fe'®e = Go(y) = —log(ll P llp) * wei (2.7)
IPlly = (S, PFY 2.8)

The extracted improved Renyi entropy features are indicated by fe!Re.
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2.3.4 Higher-Order Statistics and Statistical Features

Statistical features and other higher-order attributes, such as kurtosis and moment, were
computed to analyze the data for gearbox fault detection. Such features are used to detect

the signal characteristics that may signify faults [122].

Kurtosis measures the "tailedness" of a probability distribution and measures the
amount of departure of the dataset from the normal distribution. High kurtosis values
usually indicate that the data contains extreme values or outliers and are generally
associated with sudden changes or impulsive events in the signal [123-125]. This property
is specifically helpful for detecting gearbox faults, as high kurtosis values in vibration
signals might indicate crack, wear, or misalignment faults. Lower kurtosis values indicate
lighter-tailed distributions with fewer outliers, often representing smoother or less erratic
signals. This metric is beneficial for fault detection since sudden energy spikes or
anomalies in the vibration data are strong indicators of irregularities in the gearbox system
[35]. Importance in gearbox diagnostics: Kurtosis [124] is helpful in identifying non-
normal distributions in vibration signals, thus aiding in identifying healthy and faulty
operation conditions. This feature makes the analysis sensitive to irregularities associated

with mechanical faults.
_ i, @=2)*/M

T (2.9)
According to Esmael et al. (2013) [125], in probability and statistics, this is the point

Kur

at which the random variable experiences probability dispersion. The mean value of the
specified integer power separates the mean from the random variable. Moments are
numerical measurements associated with the graph form of a function. Higher-order
moments can provide details about the variability and distribution shape, but the first
moment, the mean, represents the central tendency. Moments can be used to discover
deviations from normal operation in the behavior of the signal, which is helpful in fault
identification. Very often, such deviations represent anomalies caused by faults such as
misalignment, imbalance, or wear in the gear. Moments enable the system to detect signal
pattern changes that are not performing as they should, thereby allowing the early
classification of faults. Thus, variation in vibration signal works is a crucial characteristic

explaining moments in mechanical fault diagnosis.

The extracted higher and statistical-order features are denoted by fe* and feSt,

in that order. The extracted features feare indicated by Equation (2.10).

feSE _I_felle _I_felRe +feSt +feht —_ fe (2_10)
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The model can use the extracted features to distinguish fault conditions from
normal operating states. A combined classifier uses a combination of several algorithms
using the retrieved characteristics as an input to increase accuracy and robustness in
detecting faults. The integration further improves the system’s capability to identify and
classify gearbox faults, hence ensuring the reliable maintenance and operation of the
machinery. Combining the signal’s informational content with variabilities through
Shannon entropy, enhanced logarithmic energy entropy, better Renyi entropy, as well as
statistical measurements yields a comprehensive analysis that surpasses others with even
stronger and more trustworthy fault detection, hence assuring no easy swaying by such

mechanical mistakes or any kinds of deviation for the said system.

2.4 Hybrid Classifiers with Opposition-based Artificial
Hummingbird Crow Search Algorithm-Based Tuning

The RNN DL model is designed to retain sequential data and be used for prolonged periods
in a prediction, making it very useful and appropriate for time series predictiveness in
many applications. The size does not change with the magnification of the input signal.
However, Bi-LSTM networks capture more content by processing the data back and forth,
thus increasing the richness of information available for the algorithm. The method com-
bines an RNN with a Bi-LSTM to identify fault conditions in a gearbox. However, even
though prolonged training durations tend to work, overfitting circumstances often exist
where, eventually, the model commences understanding noise and spurious conditions
within the train data, over-generalizing worthwhile trends [74]. Eventually, the model
may degrade as far as performance is concerned with datasets not yet seen and miss faults
outside its training sets. It deals with all these by improving the RNN’s training process,
which the researcher conducts using this novel OAHCSA algorithm. Such an
improvement shall help decrease overfitting by not letting the model focus solely on
recognizing redundant patterns that do not lead to actual data relationships; this can

enhance its capabilities in better fault detection and classification.

2.4.1 Hybrid Classifiers

The RNN and Bi-LSTM are used to detect faults, and outcomes are achieved by averaging
the RNN and Bi-LSTM outputs. Bi-LSTM and RNN are combined to create the combined
classifier because of their complementing abilities to handle sequential input and capture
intricate temporal relationships. RNNs are suited for time-series analysis because they are

skilled at processing sequences and keeping hidden states that reflect information from
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previous time steps. However, due to shrinking gradients, RNNs might have trouble
handling long-term dependencies by themselves. In order to overcome this, Bi-LSTM
networks are constructed. These networks use bidirectional processing and gating
methods to efficiently manage long-term relationships and collect background
information from previous and upcoming time steps. The combined technique enhances
fault detection accuracy by leveraging the combined strengths of the RNN’s ability to
handle sequential data and the Bi-LSTM’s superior understanding of temporal

connections, resulting in a more comprehensive data analysis.

RNN: Neural network (NN) components make up an RNN [124] designed to analyze a
series of data DS™, with a time step index of t. The three steps of the RNN are input,
hidden state, and output. Here, Df‘zm u (t) refers to the input sequence, whereas M refers
to the input vector’s count at the time t, and the previous values of U(t) are represented
by the output vector, Df‘zm (). The concealed state U(t) is modeled in equation (2.11);
The ReLU and tanh get symbolized by fun, while the weight matrices are implied by
HW,V.

U(t) = fun.(H.DS™(t) + W.U(t — 1) (2.11)
The steps in RNN include:

Step 1:H, W, V, and bias functionsb, care initialized with 0’s.

Step 2: The SoftMax function is used to get the output’s normalized probability Y.

Step 3: Equations (2.12) to (2.15) are used to compute the forward pass. Here, a(t) is an
intermediate activation calculation at time, b represents a bias term added to the

activation, Q(t) denotes the raw output at time, ¢ represents another bias term used in the

output calculation, Y (t) signifies the predicted output at the time.

a(t) = b+ H.I(t) + WU(t — 1) (2.12)
U(t) = tanh. (a(t)) (2.13)
Q(t) =c+U(t).V (2.14)
Y (t) = soft max(Q(t)) (2.15)

Step 4: Equation (2.16) estimates the loss function. Here, y, ;- represents the actual label
(class label) for the output corresponding to the r'" class, g, , represents the predicted
probability of the output belonging to the r"class.
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Loss ==Y _. v, .109(gor) (2.16)

Bi-LSTM: A number of recurrent LSTM cells [126] are covered by the Bi-LSTM [126]
classifier. Each Bi-LSTM cell has input, output, and forget gates. Assuming that variables
Z and D are concealed, the cell state, (X;, D;_1,Z;_1) and (Z;, D;), designates refer to the
output/input layer. At the timet, forget output and input gates are signified as F¢, O, I;.
Bi-LSTM initially utilizes F; to arrange data that is modeled as in equation (2.17). Here,
X, represents the input data at a time, D,_; denotes the previous output or hidden state
from the previous time step, Z;_; symbolizes the previous cell state and F; signifies the

forget gate activation at a time.
Fe=0(ipXe + Lip +JzrZe—1 + Lzp) (2.17)

In equation (2.17), (Jzp, Lzr) and (J;, L;r) refer to weight along with bias limitation for

hidden state mapping as well as input to forget gate and refer to activation function c.

Bi-LSTM used the input gate by equations (2.18) to (2.20), where (Jz¢, Lz¢)and (Ji¢, Li¢)
Correspondingly, it refers to weight along with bias limitation for hidden state mapping
and input to the cell gate. (J4;, Lz;)and (J;;, L;;) entail weight along with bias for hidden
state mapping and input layers towardl,. I, indicates the input gate activation at the time,
o denotes the sigmoid activation function used for the gates, G, represents the candidate
cell state generated at time, J,L are weight matrices and bias terms, respectively,

associated with the various gates.

Gy = tanh(Ji¢Xe + Lig +Jz6Zt-1 + Lzc) (2.18)
Iy =o0(uXe + Ly +Jz1Ze—1 + Lzp) (2.19)
D, = F,D,_y + I,G, (2.20)
0¢ = 0(10Xe + Lio + Jz0Zt-1 + Lz0) (2.21)
Z; = O tanh(D;) (2.22)

Equation (2.21) indicates that the output gate provides the Bi-LSTM cell with a
concealed state, which is shown in equation (2.22), in which (J;0,Lz0) and (J;0,L;o)
refer to weight as well as a bias for hidden state mapping and input layer to O,
respectively. O, represents the output gate activation at the time; the results of the RNN

and Bi- LSTM are averaged to get the final output. The classifiers' parameter settings are

detailed in Table 2.3.
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Table 2. 3: Parameters of the classifiers

Models

Parameter values

Bi-LSTM

S-Net

R-Net

RNN

No of hidden units = 100

Learning rate = 0.01

Sequence Input Layer - 1

Bi-LSTM Layer - 1

Fully Connected Layer - 1

Softmax Layer - 1

Classification Layer - 1

Activation function = SoftMax

Optimizer = 'sgdm'-Stochastic gradient descent with
momentum.

Learning rate = 0.01

Convolution - 1

Fire module - 8

Activation - Relu

Max Pooling - 2

Global Average Pooling - 1

within Fire module:

Convolution - 2

Activation layer (Relu) — 2

Learning rate = 0.01

Convolution - 1

Max Pooling - 1

Activation — Relu

Learning rate = 0.01

Input Layer

LSTM Layer (100); 100 refers to the number of hidden
units

Fully Connected Layer (384); 384 refers to the number
of neurons in the next FC hidden layer

Softmax Layer

Classification Layer
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2.4.2 Opposition- Based Artificial Hummingbird Crow Search Algorithm
for Tuning Optimal Weights

Optimal fine-tuning of hyperparameters, including weights, batch size, and learning rate
in deep learning, is not definitively achievable. In practice, these parameters play a crucial
role in model performance, and improper tuning can lead to suboptimal results. A primary
focus of this combined classification model, RNN-Bi-LSTM, is the optimization of its
weights, using the algorithm known as OAHCSA to minimize those errors. The OAHCSA
algorithm dynamically adjusts its internal parameters during training to yield fewer
prediction errors and better detection performance. For gearbox fault detection, very fine-
tuning of complex parameters of DL models such as RNNs and Bi- LSTMs is required.
The proposed OAHCSA algorithm combines several optimization strategies to enhance
the combined model's functionality. OAHCSA combines various optimization
methodologies in order to improve the quality of the solutions and the effectiveness of the
search process. Integration of Opposition Learning and AHCSA pro- vides robust
optimization capabilities. Opposition Learning expands the searching space and avoids
getting trapped in the local minima by simultaneously searching for both existing and
opposite solutions. In this case, the crow search algorithm (CSA) [127] is modeled after
the social behavior of foraging by crows together with memory to find the best solutions
through cooperation. In contrast, the artificial Hummingbird algorithm (AHA)

[110] balances exploration with exploitation while replicating the adaptive foraging
patterns of hummingbirds. An efficient and comprehensive search process improves
accuracy and speed during model training for fault detection. It will ensure the creation
of a robust and accurate system that can provide reliable diagnostics and ensure good
operation of the system under consideration.

Objective function: The objective Obj, of the research is to minimize the errorer, as given
in equation (2.23). The weight W of RNN is selected using the OAHCSA approach.

Obj = min(er) (2.23)

The CSA is known for providing optimal solutions in various applications with
limited control parameters. While offering fast convergence, the algorithm can become
trapped in a local optimum. Although the algorithm efficiently finds a good solution, its
greedy nature may prevent it from reaching the best solution. The OAHCSA approach
combines the AHA concept proposed by Zhao et al. (2022) with CSA to address the
limitations of conventional CSA. Meanwhile, the developed OAHCSA model attains
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numerous advantages, such as faster convergence and intense global search with minimum
time (i.e., the solution obtained is trustworthy). Specific search space issues are believed

to be amenable to hybridized optimization strategies [132-136].

The original CSA is improved by the OAHCSA, which incorporates sophisticated
ways to get over its drawbacks, like becoming caught in local optima. After initializing
crow placements at random, OAHCSA uses opposition learning to investigate
complementary solutions, expanding the search space. Then, it employs dynamic
awareness probability (DAP) to balance exploration and exploitation. A high DAP value
results in AHA-based updates that refine positions using dynamic parameters. In contrast,
a low DAP value initiates exploration utilizing a formula that modifies crow positions
based on the locations of other crows. Crows adjust their memory in accordance with
fitness evaluations, which decide whether new postures are better than prior ones. This
combined approach reduces the likelihood of local minima and improves global search
and solution quality. It creates faster convergence and more reliable optimization by fusing

the benefits of CSA with the adaptive techniques of AHA and opposition learning.

The mathematical modeling of the OAHCSA model is described in a detailed way
as given below:
The CSA mimics the intelligent characteristics of a crow. The flock size is referred to
as M, and the i*" crow location iteration, it, inside the search, region-depicted as Z Litj =
(1,2...M;it = 1,2...1ity4y), in Which AL [Z{'t, Zét, .. .Zét]as well as it,,,, refers to
the maximal iteration count. At it, the crow i’s position and hidden crow location are
depicted byv“*. The finest position that crow i has so far managed to secure is thought
to be this one. Furthermore, opposition-based learning (OBL) is used to generate opposite
solutions in crow search. Considering that it; crowsjrequire arranging their hidden area,
v/ at it, crow i finds the crow j to shift to crow j hidden location. Here, there are two
steps.
Step 1: The Crow j is unaware of the crow ifollows it. Here, the crow i tries to find the
crowj hidden place, and equation (2.25) describes how the crow usually reaches its fresh
position. According to OAHCSA, DAP is calculated using equation (2.24), where NP;
states the current size of the population. If DAP <random count 7;. Then, the update of
CSA is performed based on AHA, as shown in equation (2.26); otherwise, a local search

will be performed as shown in equation (2.25).
NP;
DAP = AP,,;,, + (APyqx — APpin) ~p (2.24)
63



ZUH = 7% oy x 1 x (I = 28 (2.25)

2% = Z;0r (it) + a.D.(Z;(it) = Ziar (it) ) (2.26)
Conversely, whenever memory fitness (v)is less than the current fitness(Z), then a

random update will be done.

Step 2: Crow j finds that crow iis finding it. Crow j thus deceives crow i by moving to

several locations to get their meal. As in equation (2.27), states 1 and 2 are mentioned

jointly.

ZUit+1 {Zit + 1y X flEx (it =z oy > 7l

s . (2.27)
a random position Otherwise

Phase 1: Provide the constraint modifications and the problem.
Phase 2: The memories of crow and places should be assigned based on Eqns. (2.28) and

(2.29), in which drefers to the decision constraints count.

[z} zi .. Z}l]
2 2 2
Crows=|Z,1 Z; - Z,dl (2.28)
lzM zv . zM]
vi vl v}
_|v: v: ... V:
Memory =| . ; ! (2.29)
vM vl

Phase 3: Evaluate fitness function.

Phase 4: Construct a unique location. When a crow i wants to find a new location, it will
pick a single flock at random and follow it to find the food source that the crow v/ has
hidden. The unique position that crow i has attained and maintained is shown by equation
(2.29).

Phase 5: Verify whether additional positions are possible. The crow will update its
position if a new one can be found; otherwise, it will stay in the currently displayed zone.

Phase 6: Every time there is a new update of crow's, evaluate the fitness function.

Phase 7: Modify memory. In equation (2.30), the crow's memory update is depicted,

where f (vi’it) denotes the objective.

Shit+1 _ {Z”'t')fl f(z"t*)isbetterthanf (v4it) (2.30)
phit Otherwise
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Phase 8: Check the termination requirements. The optimal location is seen to be the
solution to the optimization issues, even though termination is gained.

Table 2. 4: Describes how the optimization algorithm’s parameter settings are set

Algorithm: Proposed OAHCSA model

Decide on M crows' location at random.

Generate OBL

Computing crow position
Assign every crow’s memory.
while it < itmax
fori=1:M
Choose row arbitrarily
Define DAP
if DAP <ry,
Update formula as per AHA in equation (2.26)

Else
Update formula
as per CSA in equation (2.25)
End if
end for
Calculate potential outcomes for current positions.
Get the crows' current location.
Modifying crow memory

end while

Table 2. 5: Parameters of the optimization algorithms

Algorithms Parameter values

AP =0.1; % Awareness probability

CSA
fl = 2; % Flight length (f1)
Mature age =3

LA Max strength = 3

max = 10
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mutation rate = 0.15
Max age =3
AP =0 .1; % Awareness probability

Proposed OAHCSA
fl =2; % Flight length

2.5 Experimental Setup and Data Acquisition

The experiment is conducted to capture vibration signals of a bevel gearbox using the
machine fault simulator (MFS) from Spectra Quest, as shown in Figure. 2.6. The dataset
used for experimentation is considered from the previous study [132]. The main parts of
the experiment test rig are a single-stage bevel gearbox, a magnetic brake, a belt and
pulley arrangement, a variable frequency drive (VFD), an AC motor, and a bearing
housing plate. A three-phase AC motor is connected to a shaft in the experimental test rig
that has a belt and pulley arrangement to a single-stage bevel gearbox through a flexible
coupling. A magnetic brake applies the load to the gearbox to generate the required test
torque, and the tri-axial accelerometer (PCB-Piezotronics 356A26 SN 225948,
Sensitivity: 5.13 mV /m/s?, y-axis 4.85 mV /m/s?, z-axis 4.87 mV /m/s?) is installed
to record the vibration signals on the single-stage bevel gearbox, as seen in Figure 2.7.
The accelerometer is connected to an OROS-OR34 data acquisition system (DAQ) to
collect vibration readings from the gearbox. A laptop running NV Gate software is linked
to the DAQ in order to evaluate the signals that have been recorded. This study selects
four motor speeds: 15 Hz, 20 Hz, 25 Hz, and 30 Hz. These speeds are chosen to cover a
range of operating conditions, with the maximum speed (30 Hz) based on the motor's
maximum rotational capacity. The speeds are regulated using a VFD. A mechanically
controllable magnetic brake is utilized to impart different loads on the gearbox's output
shaft. The brake has a load range of 0 to 5 Nm, and for this study, loads between 0 and 4
Nm are applied to capture signals under different speed and load conditions. In addition,
different faults exhibit distinct characteristics at various speeds and load conditions.
Therefore, a sufficient range of speeds that MFS can readily accomplish is considered to
provide exhaustive data sets. The model can recognize faults based on their distinct
fingerprints under various operating conditions because it was trained on a dataset with a
range of variables. Under operating conditions, the gearbox's 10-second vibration
signature is recorded with a sample frequency of 12.8 kHz, resolution of 1.5625 Hz, and

overlap of 20%.

The gearbox's technical specs are di6sglayed in Table 2.6. Table 2.7 Abrasive wear



fault severity levels in gears Abrasive wear are simulated using a laser cutting machine. A
fiber laser system doped with rare earth elements like erbium, ytterbium, and neodymium
that was purchased from Scantech Laser Pvt. makes up the experimental setup. Its 50 W
rated power output and Galvo scanner, which has a 0.2 mm spot diameter and a 287 mm
focal length, allow for two-way beam manipulation. Table 2.7 depicts the process
conditions and time duration to impose laser machine abrasive wear faults on the bevel
gear. The cutting depth was measured using the DEWS507 Optical Microscope from
Dewinter Optical Inc., and the obtained values were used in the calculation of abrasive
wear severity. Figure illustration of the bevel gear fault of the Abrasive wear is presented

as follows in Figure 2.8.
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Figure 2. 6: Experimental test setup.
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Tri-axial accelerometer

Figure 2. 7: Magnetic break and tri-axial accelerometer.

Table 2. 6: Technical specifications of the gearbox

Backlash tolerance (gear and pinion) 0.0254-0.127 mm
Pitch angle (pinion) 33°41"
Pitch diameter (gear) 42.8625 mm
Pressure angle (pinion and gear) 20°
Module (pinion and gear) 2 mm
Number of teeth (pinion) 18
Pitch diameter (pinion) 28.575 mm
Number of teeth (gear) 27
Material (pinion and gear) Forged steel
Pitch angle (gear) 56°19'
Gear ratio 1.5:1
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Table 2. 7: Different types of abrasive wear faults have different severity levels

Gears Fault Fault Image of fault
(Bevel) description Dimension g
0 Healthy Nil
1 Incipient 20 Micron
2 Slight 30 Micron
3 Moderate 40 Micron
4 Severe 50 Micron
(a) (b)
20 micron 30 micron
L J e X
(c) (d)
40 micron S0 micron
S S S . Y

Figure 2. 8: The severity of abrasive wear fault for (a) incipient, (b) slight, (c) moderate,
(d) severe.

Table 2. 8: Operating parameters of the laser machine

S. No abrzt;;’\fel (v)vfear Number of  Operating Cdliet;ltllig
fault passes power (W) (micron)
(A)  Incipient 10 30 20
(B)  Slight 15 40 30
(C) Moderate 15 50 40
(D)  Severe 70 50 50
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2.6 Results and Discussion

2.6.1 Simulation Procedure

All experiments and model implementations are conducted using MATLAB R2020b. DL
models and the OAHCSA are developed from scratch within this environment. This
strategy requires a processor with an 11th Gen Intel® Core™ i5-1135G7 @ 2.40 GHz
and 16.0 GB of RAM (15.7 GB useable), among other computational resources. The x64-
based processor and 64-bit operating system power the system, which is utilized for all
model training and evaluation tasks in this study. The same setup is employed for all
training and evaluation processes in the study. The dataset contains 25 samples of the
healthy class, while each fault class, namely incipient, slight, moderate, and severe,
includes 10 samples. These five fault classes, each with unique identification, will allow
us to categorize and recognize gearbox fault conditions. Table 2.8 displays training and
testing data distribution. which contains percentages for training and testing. The split for
60% of data to be used for training leaves 40% for testing. That 70% were assigned to
30% tests, while for the 80% training scheme, only 20% was allocated for testing. This
variation will produce an exhaustive assessment of the models under different fault
detection conditions and make it more robust in terms of performance.

Table 2. 9: Training and testing data

Training
Training data Testing data
percentage
60 780%9 520%9
70 910%9 390%9
80 1040%9 260%9

2.6.2 Performance Analysis

The effectiveness of the proposed model is evaluated using positive, negative, and neutral
criteria in relation to the prior model. False positive rates (FPR), false negative rates
(FNR), and false discovery rates (FDR) are compared against positive measures like
sensitivity, specificity, accuracy, and precision. Neutral metrics are also used, including
the F1 score, Matthew's correlation coefficient (MCC), and negative predictive value
(NPV). The values for false positive (FP), false negative (FN), true positive (TP), and true
negative (TN) are evaluated for each method. The performance of the OAHCSA-HC
method is compared with other approaches such as AHA-HC, CSA-HC, LA-HC, PRO-
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HC, deep LSTM, CNN-FFT, R-Net, and S-Net. Neural networks such as CNN-FFT [134]
learn patterns without storing input data, whereas LSTMs address the vanishing gradient
problem, and S-Net optimizes computing resources, as shown in Figures 2.10, 2.11, and
2.12. The high accuracy achieved at 15 Hz is 99.62%, with a precision of 99.79%, a
specificity of 99.87%, and a sensitivity of 99.54%. It has also got very low values for FNR
(0.45%), FDR (0.20%), and FPR (0.12%), indicating low misclassifications. Neutral
measures such as NPV of 99.87%, MCC of 99.56%, and F1-score of 99.66% further
confirm its superiority in performance. Figure 2.10 b depicts that OAHCSA-HC has made
significant headway with entropy-based feature extraction, which captures the feature
information, rather than a combined classifier combining multiple algorithms to improve
prediction accuracy. Convergence is improved, and local minimum is avoided with
OAHCSA optimization. Performance metrics, such as the all-in-one set, ensure reliability
in classification results while simultaneously reducing false positives and negatives.
Overall, architecture proves effective in modeling complex patterns, and it gets better

results than other algorithms for fault detection with respect to accuracy and reliability.
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Figure 2. 9: Comparison of classifiers for (a) Precision, (b) Accuracy, (c) Specificity, and (d)

Sensitivity at 15 Hz.
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Figure 2. 11: Comparison of classifiers for (a) MCC, (b) NPV, and (c) Fl-score at 15 Hz.

Three types of measurements, positive, negative, and neutral, were presented in
Tables 2.7-2.9 for operating frequencies of 20, 25, and 30 Hz, respectively. The
OAHCSA-HC method always produced better results than those from other methods,
yielding an accuracy level of 99.62% at 15 Hz with 80% training data. It showed a lower
FNR and FPR than R-Net, AHA-HC, CSA-HC, LA-HC, PRO-HC, deep LSTM, CNN-
FFT, and S-Net across the 80% training data. Besides, the method comes with high
specificity at 99.88% throughout the 20 Hz, 25 Hz, and 30 Hz frequencies. The improved
performance is attributed to enhancements in the modified log-energy entropy and Renyi
entropy features, which contribute to the superior effectiveness of the proposed

OAHCSA-based HC method over other compared techniques.
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Table 2. 10: Comparison of different classifiers at 20 Hz

AHA- CSA- LA- PRO- Deep CNN- OAHCSA-
Metrics R-Net S-Net
HC HC HC HC LSTM FFT HC
NPV 0971 0.965 0.967 0967 0942 0929 0.738 0.850 0.997

Sensitivity 0.880 0.856 0.862 0.856 0.785 0.723 0.736 0.846  0.986
MCC 0.840 0.808 0.822 0.813 0703 0.630 0936 0962  0.984
Precision  0-863 0.816 0.851 0.840 0.743 0.686 0713 0836  0.989
Fl-Score 0.867 0.843 0.855 0.844 0.758 0.698 0.064 0038  0.987
FPR 0.029 0.035 0.033 0033 0.058 0.071 0.720 0.840  0.003
FNR 0.120 0.144 0.138 0.144 0215 0277 0.657 0.802 0.014
Specificity 0971 0.965 0.967 0967 0942 0929 0264 0.154  0.997
FDR 0.137 0.166 0.149 0.160 0257 0314 0936 0962  0.011
Accuracy 0-885 0858 0869 0865 0769 0715 0287 0.164 0988

Table 2. 11: Comparison of different classifiers at 25 Hz

Deep CNN OAHC
AHA CSA- LA- PRO LST -FFT R- SA-
Metries  yc HC HC -HC M Net S-Net HC
0961 0.968 0.965 0.962 0.935 0.931 0.762 0.873 0.998
NPV
.. .. 0.827 0.859 0.846 0.835 0.741 0.716 0.753 0.857 0.990
Sensitivity
FPR 0.039 0.032 0.035 0.038 0.065 0.069 0942 0.967 0.002
.. 0.823 0.860 0.831 0.832 0.714 0.689 0.736 0.868 0.990
Precision
MCC 0.786 0.828 0.802 0.795 0.661 0.632 0.058 0.033 0.988
0.824 0.859 0.838 0.832 0.724 0.699 0.739 0.861 0.990
F1-Score
FNR 0.173 0.141 0.154 0.165 0.259 0.284 0.683 0.829 0.010
e .. 0961 0968 0965 0962 0935 0931 0247 0.143 0.998
Specificity
FDR 0.177 0.140 0.169 0.168 0.286 0.311 0942 0.967 0.010
0.846 0.877 0.858 0.855 0.742 0.723 0.264 0.132 0.992
Accuracy
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Table 2. 12: Comparison of different classifiers at 30 Hz

. AHA- CSA- LA- PRO- Deep CNN- OAHCSA-

Metrics HC HC HC HC LSTM FFT R-Net S-Net HC
NPV 0.962 0.965 0.969 0.968 0941 0.935 0.762 0.885 0.998
Sensitivity ~ 0.853 0.863 0.870 0.870 0.750 0.739 0.761 0.888 0.990
MCC 0.802 0.808 0.826 0.824 0.679 0.657 0.942 0.971 0.988
Precision 0.829 0.830 0.848 0.845 0.731 0.712 0.731 0.872 0.990
FPR 0.038 0.035 0.031 0.032 0.059 0.065 0.058 0.029 0.002
F1-Score 0.840 0.842 0.857 0.855 0.736 0.718 0.741 0.879 0.990
FNR 0.147 0.137 0.130 0.130 0.250 0.261 0.685 0.849 0.010
Specificity  0.962 0.965 0.969 0.968 0941 0.935 0.239 0.112 0.998
FDR 0.171 0.170 0.152 0.155 0.269 0.288 0.942 0.971 0.010

Accuracy 0.850 0.854 0.873 0.869 0.762 0.735 0.269 0.128 0.992

2.6.3 Ablation Study

Ablation research is done to evaluate the efficacy of the suggested approach, comparing
it with different features for various motor speeds. The results in Tables 2.10-2.13 show
that the OAHCSA-HC method outperformed other components, including traditional log
entropy, Renyi entropy, and the combined model without features. It also performed
better than the proposed model without statistical features and HC without optimization.
At a motor speed of 15 Hz, the OAHCSA-HC method achieved a high specificity rate of
99.88%. Similarly, it achieved a remarkable NPV of 99.87% and an increased sensitivity
01 99.54%, indicating its proficiency in accurately predicting negatives and capturing true
positives. The model also showed a high positive value for all motor operating

frequencies.

Additionally, the modified Renyi entropy and modified log-energy entropy approaches
produced helpful results for this investigation. The proposed method achieves superior rates
when compared with the model without statistical features. The model without statistical
features obtained a lower accuracy value of 88.84%, while the proposed OAHCSA-HC-
based model acquired the most remarkable accuracy of 99.61% values at 15 Hz. This
experimental result demonstrates the efficiency of statistical features in the proposed

model.
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Table 2. 13: Ablation study of OAHCSA-HC approach at 15 Hz

Model
Using Using HC
OAHCSA- without
Metrics Without conventional conventional without
HC statistical
optimization log entropy Renyi features
features
NPV 0.999 0.923 0.915 0.899 0.897 0971
Sensitivity 0.995 0.670 0.570 0.547 0.450 0.882
MCC 0.996 0.556 0.471 0.620 0.457  0.855
Precision 0.998 0.610 0.552 0.520 0.385 0.887
F1-Score 0.997 0.621 0.551 0.502 0.485 0.883
FPR 0.001 0.077 0.085 0.101 0.103  0.029
FNR 0.005 0.330 0.430 0.453 0.550 0.118
Specificity 0.999 0.923 0.915 0.899 0.897 0971
FDR 0.002 0.390 0.448 0.321 0.457 0.113
Accuracy 0.996 0.692 0.654 0.615 0.577  0.888
Table 2. 14: Ablation study of OAHCSA-HC approach at 20 Hz
Model
Using Using HC
OAHCSA- Without without
Metrics conventional conventional without
HC optimization statistical
log entropy Renyi features
features
NPV 0.997 0.939 0.933 0.922 0.825 0.968
Precision 0.989 0.838 0.551 0.669 0.311 0.864
Sensitivity 0.986 0.743 0.533 0.689 0.440 0.877
MCC 0.984 0.731 0.529 0.598 0.513  0.838
FPR 0.003 0.061 0.067 0.078 0.175  0.032
F1-Score 0.987 0.776 0.667 0.669 0.387  0.869
FNR 0.014 0.257 0.467 0.311 0.560 0.123
Specificity 0.997 0.939 0.933 0.922 0.825 0.968
FDR 0.011 0.162 0.449 0.331 0.696 0.136
Accuracy 0.988 0.788 0.731 0.692 0308 0.873
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Table 2. 15: Ablation study of OAHCSA-HC approach at 25 Hz

Model
Using Using HC

OAHCSA- Without without
Metrics conventional conventional without

HC optimization statistical

log entropy Renyi features
features
NPV 0.998 0.929 0.926 0.953 0.861  0.963
Sensitivity 0.990 0.592 0.614 0.750 0.408  0.855
MCC 0.988 0.523 0.628 0.840 0491 0.812
Precision  0.990 0.610 0.613 0.707 0.324  0.846
F1-Score  0.990 0.579 0.556 0.687 0310  0.848
FPR 0.002 0.071 0.074 0.047 0.139  0.037
FNR 0.010 0.408 0.386 0.250 0.592  0.145
Specificity 0.998 0.929 0.926 0.953 0.861  0.963
FDR 0.010 0.390 0.330 0.207 0.629  0.155
Accuracy 0.992 0.692 0.692 0.808 0385 0.854
Table 2. 16: Ablation study of OAHCSA-HC approach at 30 Hz
Model
Using Using HC

OAHCSA- Without without
Metrics conventional conventional without

HC optimization statistical

log entropy Renyi features
features

MCC 0.988 0.481 0.493 0.539 0.507 0.827
Sensitivity 0.990 0.563 0.510 0.583 0.583  0.866
FPR 0.002 0.080 0.073 0.078 0.064 0.033
Precision  0.990 0.577 0.475 0.667 0.461 0.855
F1-Score 0.990 0.531 0.809 0.600 0.531 0.859
Specificity 0.998 0.920 0.928 0.922 0.936 0.967
FNR 0.010 0.437 0.490 0.417 0.417 0.134
NPV 0.998 0.920 0.928 0.922 0.936 0.967
FDR 0.010 0.423 0.525 0.333 0.570  0.145
Accuracy 0.992 0.654 0.692 0.739 0.731  0.869
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2.6.4 Convergence Analysis

Convergence is a static point found in the sequence of solutions via iterations. It also
shows how many iterations are required to achieve minimum error (cost), which is close
to zero. Figure 2.12 illustrates the convergence of the OAHCSA-HC method over AHA-
HC, CSA-HC, LA-HC, and PRO-HC over various iterations. Because we optimized and
made advances in modified Renyi entropy and modified log energy entropy, OAHCSA-
HC proved less expensive than the other evaluated methods. Furthermore, from the 4™ to
the 25™, the OAHCSA-HC cost function is significantly lower. In this case, PRO-HC

showed the worst results at high costs.
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Figure 2. 12: Convergence Study of OAHCSA-HC over existing models.

2.6.5 Analysis of Computational Time

The analysis of computational time for frequencies such as 15 Hz, 20 Hz, 25 Hz,
and 30 Hz is presented in Table 2.16. The results demonstrate that HC, in conjunction
with the OAHCSA, regularly outperforms other models in terms of computing efficiency.
OAHCSA consistently shows the lowest computational time across all tested frequencies,
with times of 3.305 seconds at 15 Hz and below 4.15 seconds at higher frequencies. The
OAHCSA model achieves a time reduction of approximately 56% compared to the highest
time-consuming method, CSA-HC, which takes 10.52 seconds at 25 Hz. The outcomes
highlight how well the OAHCSA-HC model balances high fault detection accuracy with

minimal computational overhead. Because it strikes a compromise between
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high accuracy and quick computation times, the OAHCSA-HC model is a reliable option
for gearbox fault detection applications at various frequencies.

Table 2. 17: Computational time analysis

Computation time (seconds)

Models Frequency Frequency Frequency Frequency
=15 Hz =20 Hz =25Hz =30 Hz
AHA-HC 3.84 6.27 4.05 7.59
CSA-HC 5.74 4.39 10.52 4.37
LA-HC 6.36 4.98 5.12 4.26
PRO-HC 4.06 3.68 5.54 8.82
R-Net 4.76 4.36 4.39 5.22
S-Net 7.51 5.8 4.01 6.23
Deep LSTM 4.28 8.43 4.97 10.45
CNN-FFT 3.53 4.32 59 4.71
OAHCSA-HC 33 3.52 3.66 4.15

2.6.5 K-Fold Validation Analysis

One statistical technique for assessing the proficiency of ML models is K-fold validation.
It is frequently employed to evaluate how effectively a statistical analysis's findings
would transfer to another set of data. As part of the process, the dataset is separated into
'k' folds, or subsets. The goal of getting a more precise measurement of model prediction
performance leads to the requirement for k-fold validation. K-fold validation ensures that
every measurement from the original dataset has an equal chance of showing up in the
training and test sets, hence mitigating overfitting. The k-fold validation analysis of the
suggested OAHCSA-HC model over traditional techniques at different frequencies is
displayed in Table 2.17. At 15 Hz, OAHCSA-HC attains the highest level of precision of
99.2% with 4-fold validation, significantly surpassing the best conventional model, LA-
HC, which has an accuracy of 87.3%. At 20 Hz, OAHCSA-HC maintains its lead with an
accuracy of 98.8%, while LA-HC achieves 86.%. This trend continues at 25 Hz, where
OAHCSA-HC again outperforms with an accuracy of 98.9%, compared to LA-HC’s
85.9%. Lastly, at 30 Hz, OAHCSA-HC scores 98.9%, again surpassing LA-HC, which

records 86.8%. Its ability to maintain excellent accuracy at higher frequencies indicates
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the model's adaptability and promise for gearbox failure detection. The OAHCSA-HC
model performs noticeably better than conventional techniques across all evaluated
frequencies. Its strong k-fold validation accuracy scores indicate that it is a stable and

dependable option for gearbox fault detection that needs accurate control and stability.

Table 2. 18: Analysis of K-fold validation for suggested OAHCSA-HC model over
conventional methods at various frequencies

Frequency =15 Hz

Methods k-fold = 2 k-fold =3 k-fold = 4 k-fold =5
AHA-HC 0.816 0.814 0.861 0.822
CSA-HC 0.816 0.810 0.868 0.805
LA-HC 0.818 0.810 0.873 0.815
PRO-HC 0.809 0.814 0.870 0.826
S-Net 0.827 0.816 0.868 0.813
R-Net 0.812 0.814 0.865 0.809
Deep LSTM 0.732 0.735 0.732 0.725
CNN-FFT 0.720 0.732 0.724 0.736
OAHCSA-HC 0.983 0.984 0.992 0.982

Frequency = 20 Hz

AHA-HC 0.820 0.818 0.855 0.826
CSA-HC 0.808 0.815 0.860 0.815
LA-HC 0.817 0.816 0.860 0.818
PRO-HC 0.820 0.816 0.859 0.820
S-Net 0.808 0.813 0.845 0.818
R-Net 0.813 0.820 0.854 0.818
Deep LSTM 0.727 0.730 0.729 0.735
CNN-FFT 0.729 0.739 0.736 0.731
OAHCSA-HC 0.982 0.983 0.988 0.985

Frequency =25 Hz

AHA-HC 0.825 0.821 0.864 0.808
CSA-HC 0.816 0.814 0.862 0.818
LA-HC 0.816 0.821 0.859 0.825
PRO-HC 0.818 0.821 0.858 0.815
S-Net 0.820 0.821 0.856 0.804
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R-Net 0.816 0.811 0.853 0.815

Deep LSTM 0.736 0.735 0.728 0.728
CNN-FFT 0.733 0.734 0.732 0.732
OAHCSA-HC 0.984 0.983 0.989 0.984

Frequency = 30 Hz

AHA-HC 0.812 0.809 0.854 0.818
CSA-HC 0.815 0.817 0.855 0.810
LA-HC 0.824 0.822 0.860 0.815
PRO-HC 0.816 0.813 0.862 0.821
S-Net 0.809 0.809 0.857 0.815
R-Net 0.808 0.812 0.852 0.813
Deep LSTM 0.732 0.738 0.729 0.734
CNN-FFT 0.736 0.730 0.727 0.734
OAHCSA-HC 0.983 0.986 0.989 0.985

2.7 Conclusion

This chapter presents a three-stage technique for gearbox fault identification. First, the
raw input signal is processed using median filters, after which pertinent features are
extracted. Then, faults are detected through combined classifiers. The proposed
OAHCSA algorithm is used to fine-tune the hyperparameters of the RNN to enhance
accuracy. An excellent performance metric is achieved by averaging the outputs of the
RNN and Bi- LSTM models. The classification accuracy reaches 99.62%, while
specificity, sensitivity, and precision are 99.88%, 99.54%, and 99.79%, respectively.
Additionally, the model attains an Fl-score of 99.66%, demonstrating its robustness.
Moreover, compared to existing techniques such as deep LSTM, CNN-FFT, R-Net, S-
Net, AHA-HC, CSA-HC, LA-HC, and PRO-HC, the proposed approach gives better false
negatives and FPR. Furthermore, the OAHCSA-HC model's higher performance over
conventional techniques across a range of frequencies is confirmed by the k-fold
validation analysis. At 15 Hz, OAHCSA-HC achieves 99.2% accuracy with 4-fold
validation, which is much higher than LA-HC's 87.3%, demonstrating the model's

versatility and resilience in detecting gearbox faults.
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Chapter 3
Deep Hybrid Model for Automated Gear Crack
Detection Using Enhanced CEEMDAN

This chapter aims to develop an automated method for classifying and identifying gear
crack faults of varying severity. The proposed approach utilizes a multi-step methodology
that begins with pre-processing the acquired signal using an advanced complete ensemble
empirical mode decomposition with adaptive noise (CEEMDAN) algorithm. Numerous
features, including entropy-based and time and frequency-domain features, are extracted
from the previously processed signal. Data augmentation is applied before subjecting the
augmented features to a hybrid classifier model to improve the feature set further. This
model combines the Bi-LSTM and IDBN classifier, and the results are then processed
using a score-level fusion technique to produce a single output. The proposed system has
demonstrated high accuracy and efficiency, making it a viable option for accurately

detecting gear faults.

3.1 Introduction

Gearboxes are crucial parts of many sectors because they distribute torque and power
among shafts in devices like hand drills, printing presses, and automobile machinery [134-
135]. Their primary function is to ensure efficient and smooth transmission of rotational
energy [136]. However, gear faults, including cracks, misalignment, wear, and tooth
damage, can emerge during operation, posing significant risks to the reliability and
efficiency of mechanical systems [137-138]. Gear cracks are especially concerning as
they tend to propagate, causing failures that lead to increased vibrations, reduced trans-
mission efficiency, and, ultimately, gearbox breakdowns [139-140]. Timely fault
detection is crucial for preventing catastrophic failures and minimizing downtime, making
detecting and analyzing gear faults an essential aspect of machinery maintenance [141].
Automated systems for fault identification offer significant advantages by quickly
analyzing data, thus enhancing the understanding of gearbox performance and enabling

timely interventions [142].

Numerous cutting-edge methods for identifying faults in rotating machinery have

been investigated in recent studies. With an 80.41% detection rate, Mohammed et al.
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[137] suggested an NN-based method for identifying gear-tooth cracks. Brito et al. [143]
presented a Depth-based Feature Importance technique using the Isolation Forest
algorithm. Because it doesn't require labeled data, it can be used in industrial settings
where there aren't many labeled datasets. Although this approach evaluates vibration
characteristics in both the frequency and temporal domains, its performance varies based
on the types of machinery and fault circumstances. In their study of tooth root crack faults
in spiral bevel gear pairs, Han et al. [136] determined the maximum force on the tooth's
roots and highlighted the importance of assembly faults. Although they did not address
crack localization, Jorani et al. [142] demonstrated exceptional early and accurate crack
identification by integrating Statistical Process Control Charts (SPCC) with vibration
analysis to identify tooth crack faults. Other techniques, like those introduced by Yu and
Liu [144] and Cheng et al. [139], have focused on unsupervised learning and analog
tachometer signals for improving fault detection. Still, challenges such as noise and signal

complexity persist.

Vibration-based, non-intrusive fault detection has become a key method for
monitoring gear systems. Fault detection employs various signal processing techniques,
including time-domain averaging, wavelet transform, and cepstrum estimation. However,
techniques such as EMD and VMD often struggle with mode mixing [145]. A more
advanced technique, CEEMDAN, has been developed to address these limitations,
offering enhanced noise reduction and signal decomposition [136]. Additionally,
researchers have investigated combining CEEMDAN with other techniques, such as time-
synchronous averaging and cross-correntropy-based feature extraction, to enhance fault
detection in noisy or non-Gaussian data [ 146-147]. Despite the success of DL models like
DBN in diagnosing faults from compressed signals, current methods still face challenges
in detecting subtle changes in vibration levels and accurately pinpointing fault locations.
Hybrid classifier techniques, which combine multiple approaches, have been shown to
improve prediction accuracy and reduce iteration requirements. However, significant re-
search gaps remain, such as the need for better feature interpretability, the handling of
residual noise, and improved classification accuracy for complex faults. The hybrid
detection model proposed in this study combines the IDBN and Bi-LSTM architecture,
trained using enhanced CEEMDAN signals, to address these challenges and improve

gearbox fault detection.
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3.2 Proposed Methodology

The following stages comprise the proposed approach for identifying gear cracks: (a) Data
acquisition, (b) Preprocessing, (c) Feature extraction and data augmentation, and (d)
Classification. As shown in Figure 3.1, the procedure starts with data collection and then
moves on to preprocessing, where the input vibration signal is broken down into IMFs
using the CEEMDAN algorithm. From the decomposed signal, characteristics such as

time-domain and frequency-domain attributes are subsequently retrieved.

Feature extraction

( Time domain features \

Min *RMS *Peak to peak
*Max *Variance +Crest factor

*Mean *Kurtosis *Skew

*Pulse indicator *Power *Form factor

(Standard deviation «pegk )
4 )

Frequency domain features
*Maximum of band power spectrum
*Sum of total band power
*Mean of band power spectrum
!Variance of band power )

A 4

Hybrid crack level classification model

The weight of
Bi-LSTM is
initialized

Figure 3. 1: Structure of the proposed methodology.
This research selects the CEEMDAN signal processing technique for signal de-

noising, as it offers distinct advantages over traditional filtering methods. The primary
objective of using CEEMDAN is to preserve the gear mesh frequencies' intrinsic proper-

ties, ensuring that these characteristics are maintained for better and more accurate gear
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crack fault detection. The method used by CEEMDAN is data-driven and particularly
effective for processing non-stationary signals. It effectively separates noise components
while extracting important signal components using filter banks, making it well-suited for
gear signal analysis. Previous studies have shown that CEEMDAN effectively detects
gear fault in real-world applications by evaluating non-stationary gear signals and
lowering gearbox noise without conventional processing filters. The role of pre-
processing in gear fault detection is crucial, as it significantly improves signal quality,
hence improving the efficacy of fault detection techniques. By their very nature, gear
signals are non-stationary, and CEEMDAN is particularly adept at handling these complex
signals due to its superior decomposition capabilities. In this research, an improved
CEEMDAN method is employed to process the input signal (Is), reducing its noise level
and ensuring that the critical features of the gear frequencies are preserved. EEMD has
traditionally been used due to its ability to reconstruct the original signal effectively while
performing spectral decomposition with minimal computational cost. However,
CEEMDAN offers improvements by decomposing intricate signals into their IMFs,
addressing the issue of mode mixing, and providing more stable and reliable results. The
residue rate, or the residual fraction of the signal, is computed following the extraction of
the IMFs using decomposition. The rate of residue is assessed for the signal, and this
process is described mathematically in Equation (3.1), which outlines how the residue rate

is quantified in this context.

Through EEMD IMK,, is acquired, and decomposition modes are denoted by IMKj,.
r =1, — IMF, (3.1)

The residual value obtained through the EEMD model often includes residual
noise, particularly pulse noise, which can manifest across multiple signal modes.
Moreover, EEMD filters according to the local extrema of the signal and interpolates
between them to accomplish signal decomposition. The harmonic information of the
signal is not specifically taken into account by this method, though, which may lead to a
less accurate separation of the signal's constituent parts. To address the abovementioned
limitations, the CEEMDAN method introduces a more robust solution that explicitly
considers the signal's harmonic information, resulting in a more precise separation of
signal components. It adds weight based on distance to the harmonic mean evaluation to
enhance the denoising capabilities of the decomposition process. This improvement

allows for more accurate separation of the signal components. The enhanced CEEMDAN

86



technique is capable of distinguishing between harmonic and oscillatory components
within the signal by utilizing these distance-based weights, which improves the
decomposition's precision and ensures that the harmonic information is effectively
captured.

The stages for the suggested improved CEEMDAN technique are as follows:

Step 1: The weighted harmonic mean is computed and deducted from the original signal
to determine the initial decomposition mode. Using Equation (3.2), the first

decomposition mode is obtained.

IMK, = I, — HM" [I] (3.2)

Where HM"™ represents the weighted harmonic mean, which may be calculated using

Equation (3.3). Here, £5 it denotes ensemble size and w; denotes distance from the mean

weight.

i wi
HMY[1,] = 225!
=1p¢

(3.3)

The distance between each element and the signal average is used to calculate the
separation from the average weight. This suggests that the element closest to the mean
will be given the most weight, whereas the element furthest from the mean will be given
the least amount. Additionally, weight is determined by taking the average of the signals,
and the absolute difference between each element is assessed. The calculation of distance
from mean weight is expressed in equation (3.4). Here, u denotes the mean of the signal

Is'mzls%u’wi >0,Yw; =1 (3.4)
Step 2: The first residue is assessed using Equation (3.5) at the first level (N = 1). N here

stands for modes.

T'l :IS_IMFl (3.5)

Step 3: The second mode can be expressed using Equation (3.7), and the second residue
can be calculated as the mean of local means using the decomposition of realizations as

in Equation (3.6). Here, M represents the local mean.

r, =1+ B1E,(Wy) (3.6)
IMF = rn—r,=r— M+ BE,(W))] (3.7

Step 4: Using Equation (3.8), Ey determine the N residue for each N = 3,...n here
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stands for the N* mode that EMD gained.

Ty = [M(n-1 + Bv—1En(W)]

Step 5: Evaluate N mode as in Equation (3.9).

IMFk == TN—I - T'N

Step 6: Go to step 4 for the further N.

(3.8)

(3.9)

Where Sy = eystd(ry) represents the variable needed to obtain a necessary SNR

between the additional noise and the residue. The preprocessed signal can, therefore, be

shown as IsPre.
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Figure 3. 2: Various degrees of Raw bevel-gear vibration signals for crack gear faults.

88



CEEMDAN-15 Hz

CEEMDAN-20 Hz

M

250 500 750 1000 1250 1500 1750 2000
Sample number
CEEMDAN-30 Hz

M

! b— bt

m

M

o

' b Yt

o neoeco0s 6 omonN o N neonin 8 od R°RRC°aR°Ra°3 505 505104HWB 238R
e fédelg ©¢ A L I:_ M7 g 056 © TS 6
AW SHNI
_.._azo Es_ ZAN EAWI guml AW gdmi 1euiBuO LAWI ZdWI EJWI SaWI t:__ 241 e%_._
——r———r————r— e A —
=]
1=
~N
o
n
~
A
o
o
n
-
o =
@ N
L S
o~
e 3 z
s E ~—~ Z
e 8 o
a =
w
g5 &
rS o
e
L=
n
<
n
~N
o
L . B0 5. P05 s 2
000 inow 505 505 noumN oW © NS HoM oI 4°gl°29 ] mooso.\_. ”W”!On. WMH HMMM
! NS NN S I MNeN gag 97 ! ! W1 1 94w 1 6c6 I
B ocz_ ﬁz_ nms_ ! 1 oqm SS6 [ 1euBuO Mt E:_ E:_ Sawl L3m1 ' e
L LETTIC-E T 84l LR

FEL ] 641

(d)

250 500 750 1000 1250 1500 1750 2000
Sample number

o

89

©
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Figure 3. 4: Preprocessed signals for improved CEEMDAN decomposition a) 15 Hz, b)
20 Hz, ¢) 25 Hz, and d) 30 Hz.

Furthermore, Figure 3.2, 3.3 and 3.4 shows the preprocessed and raw signals from
the conventional and enhanced CEEMDAN breakdown. The vibration shape of the signal
after it was extracted from the dataset is shown in Figure 3.2. Figure 3.3 shows the signal
following preprocessing using the conventional CEEMDAN method. Figure 3.4 displays
the preprocessed signal using the updated CEEMDAN technique signal. The original
signal is clearly broken down into nine IMFs when looking at Figures 3.3 and 3.4. The
signal's high-frequency components are captured by IMFs 1 through 3, with IMF1 having
excellent frequency components and amplitude values ranging from -5 to 5. Components
of intermediate frequency, represented by IMFs 4 and 5, with amplitudes ranging from -
2.5 to 2.5. IMF6's less-frequency ranges from -1.0 to 1.0, whereas IMFs 7 and 9's
extremely low-frequency components range. Compared to the existing method, the
proposed technique, which includes harmonic mean evaluation, generates comparable

IMFs but may offer advantages to reduce noise and feature extraction. A quantitative
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comparison between the raw and CEEMDAN-preprocessed signals highlights the
effectiveness of the decomposition method. The signal-to-noise ratio (SNR) improved
from approximately 9.8 dB in the raw signal to 13.6 dB after CEEMDAN processing,
indicating better noise suppression. Additionally, the energy concentration in the first
three intrinsic mode functions (IMF1-IMF3) increased from 48% to 72%, suggesting
improved capture of fault-relevant features. This enhancement directly contributed to a
rise in fault classification accuracy from 86.2% using raw features to 92.8% with
CEEMDAN-based features, demonstrating the practical benefit of the preprocessing
approach. This leads to a more effective separation of signal components, leading to

better signal quality and fault detection capabilities.

3.3 Feature Extraction: Overview of Time and Frequency

Domain Features and Entropy-Based Features

The critical and complex feature extraction process transforms the pre-processed
signal into relevant characters in gear fault classification. These features capture the
essential characteristics of the pre-processed signals, making them suitable for further
analysis and fault detection algorithms. The most pertinent qualities, such as spectral
proper- ties, are the only ones selected to guarantee the classification process's
effectiveness. The extracted features are vital for distinguishing between different gear
conditions and detecting faults accurately. The pre-processed signal can yield a large
number of features, including both frequency and time-domain traits. These features are
fed into machine learning and classification algorithms to ascertain the existence and
seriousness of problems. The features taken from the pre-processed signal are described

in the next section along with how they influence the gear fault detection procedure.

3.3.1 Time Domain Features

Table 3.1 lists statistical variables associated with signal processing as time domain
features. These features give insight into the signal's temporal fluctuations.

Table 3. 1: Features of the time domain

Measures Description Formulae

) It sel h iable with th )
Min t se ects the variable with the Min(x,)
minimum value.
It uses the set of variables'

Max maximum value. Max(x;)
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Mean

RMS

Variance

Pulse indicator

The mean of every variable set.

It specifies a signal's power or
intensity.

It calculates the variability or
scatter of data points with
respect to the mean.

It shows the actions to detect a
signal's pulses or spikes.

It determines the mean deviation

Standard deviation of each data point from the

Kurtosis

Power

Peak

Crest factor

Skew

Peak to Peak

factor Form

mean.
It gauges how often and how
severe outliers are in the data.

It specifies how much energy is
transformed in a certain amount
of time.

It determines the precise location
and magnitudes of the spikes or
pulses.

By dividing the signal's peak
amplitude, it is calculated by its
RMS rate.

It determines how much and in
which direction a distribution
deviates from symmetry.

It describes the precise
difference between a waveform's
maximum and minimum values.
It provides information that is
pertinent to a signal's relative
energy distribution.

Z?:l(xi - E)Z

n—1
n —
" _1zxi—x
Uy ( sd )
i=1
n

1§ 2
Pow =— ) x;
n

i=1

4

Peak = Max(|x;|)

_ Peak
" RMS

_ nXu(g—x)°
T (n—-1Dn-2)c3

Sk

ptp = Max(x;) — Min(x;)

RMS
F =
X

The time domain features that were extracted are shown as Tf.

3.3.2 Frequency Domain Features

The frequency domain describes how a signal’s energy is distributed across different
frequency bands within a given range. The FFT of the signal is first computed to extract
these features, followed by the analysis of the resulting power spectrum. This process

allows for identifying the signal's frequency components and their corresponding power
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levels. The signal's primary frequency domain characteristics that are retrieved are
parameters that quantify the energy present at various frequencies, helping to identify
distinct patterns that may indicate faults. These parameters shed light on the frequency
characteristics of the signal, which are essential for diagnosing issues in mechanical
systems such as gearboxes. Table 3.2 outlines the frequency domain features derived from
the FFT and their respective roles in fault detection.

Table 3. 2: Frequency domain features

Measures Description Formulae
Maximum band It indicates the maximum amplitude sMax = Max(S;)
power spectrum or power level in a given Where, S; represent the

frequency band. spectrum frequency.
Band power It provides data pertinent to e
spectrum Mean the main power rate trend within S = - Z S;
a chosen band. i=1
Band power It establishes how much power nL(S - §)2
Variation rates vary within a specific Svar = — a_1
frequency band.
The sum of the It calculates the total power 1t
overall band power of every frequency element Ssum = Z S;
in a chosen band. i=1

The frequency domain features that were extracted are shown as Ff.
3.3.3 Entropy-Based Features

The pre-processed signal's inherent uncertainty and unpredictability were measured by
extracting entropy features. Entropy provides a crucial understanding of the complexity
of the signal by quantifying the degree of disorder or information content in the data.
Among the several types of entropy, enhanced cross-correntropy, fuzzy entropy, and
Shannon entropy are frequently employed in gear fault detection. Shannon entropy, in
particular, evaluates the signal's average information content and gives a gauge of its level
of disorder or uncertainty. It is calculated using the formula provided in Equation (3.10)
[148] and helps understand the signal's informational complexity, which is crucial for
effective fault detection.

Here, Ry, indicates the signal occurring probability.

H = —X[Ry * log(Ry)] (3.10)
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Fuzzy entropy is described as taking into account data with uncertainty or fuzzy
boundaries [149]. Additionally, it measures the degrees of each member of a fuzzy data
collection. Every M sample time sequence is described using Equation (3.11), and for the
provided o, the series vector {Y°,i = 1....W — o + 1} is generated. Y;° refers to o
consecutive v values that start at the i*" point and spread out by removing the baseline,
as in Equation (3.12).

Y2 ={u@),u(@+1),...u(i+o0o—1)}—u(d (3.11)
up (i) = > X925 uli + ) (3.12)

The distance dis;; between Y;° and Y is then calculated; according to Equation

(3.13), this is the most significant difference of the pertinent elements.

dis?; = dis[Y,Y°] = Maa_c lu(i + k) —u,(i) — (u(G + k) —u,(j))| (3.13)

Using a fuzzy function A(dls w, g) for the provided w and g, determine a similar

ij

degree distance Dis;; between a given vector ¥ and Y;° in accordance with Equation

(3.14). In this case, the fuzzy or exponential value is represented by A(dis?;, w, g).

Dis?;(w, g) = A(dis?;,w, g) (3.14)
To evaluate the exponential function, use Equation (3.15).

. q (disiqj)m
A(dis;;,m, g) = exp(— T’) (3.15)

Moreover, the function ¢ is defined according to Equation (3.16). Similarly, generate

{X; 9*1} and obtain the function ¢9** according to Equation (3.17).
PU(m, g) = SI
P9 (m, g) = —Z (

Eventually, the fuzzy entropy parameter FuzzyEnt(q, m, g) of the series expressed as

Yie1jei Disq ) (3.16)

+1
py 12J e DI (3.17)

the deviation of the series' negative natural logarithm ¢? from ¢?*! is defined as in
Equation (3.18).
FuzzyEnt(q,m,g) = Allim [Ing9 (m,g) — Inp?*t (m, g)] (3.18)

Additionally, the statistics can be used to calculate the fuzzy entropy parameter for
finite datasets using Equation (3.19).

FuzzyEnt(q,m, g, M) = In$? (m, g) — ln$?* (m, 9) (3.19)

Cross-correntropy is a measure of similarity between two arbitrary variables, which
can be used to assess their correlation more broadly. The standard cross-correntropy [150]

is computed by evaluating the joint distribution between two signals, capturing both linear
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and nonlinear dependencies. Equation (3.15) represents the conventional cross-
correntropy in its mathematical form, which quantifies the similarity between the two
signals, making it a valuable feature for detecting faults by identifying patterns of interest
in the signal. The improved cross-correntropy enhances this method by refining the
measure for better accuracy in fault detection. Here, L and D represent variables in

arbitrary and nto the collection of samples that were discussed via (L;, D).
Corr(L, D) = %1, Gy (L; — D) (3.20)
G,(L; — D;) is a Gaussian kernel and is expressed in Equation (3.21). Here, ais

used to preserve the breadth of the kernel parameters.

) (3.21)

The Gaussian kernel in conventional cross-correntropy is typically employed to

llL;—D;lI*
202

Go(L; — D;) = exp(—
capture similarities at a global level. However, this approach tends to diminish the
significance of local patterns by smoothing out smaller, localized information in the data.
Exponential kernels are used in the improved cross-correntropy method to overcome this
limitation. Exponential kernels are highly sensitive to local similarities, enabling them to
highlight the relationships between samples that are in close proximity, thereby preserving
local patterns. Additionally, to improve separability, class-dependent feature weights
[151] are included between different classes to improve interpretability and reduce noise.
Each feature is given one of these features weights according to how crucial it is to the
classification procedure, ensuring that more relevant features receive higher emphasis,
ultimately improving the overall accuracy of fault detection. The steps below describe
how to extract features from the enhanced cross-correntropy approach.

Step 1: Calculate feature weights that vary by class. The following approach is

utilized to calculate the feature weight, which depends on the class.

Algorithm: Class-dependent feature weights approach

Given the decomposed signal I'"® ¢ R™*™and the labels Z € {1,2,...L}

where L are the classes.

Compute 8 forall L: f = Uniqueclass

Y Uniqueclass
Forl = 1: Ldo
Class samples Ls « {Y|X = [}/ Select samples belonging to

the current classc.

Class weight Lw « %Z?zl Ls; // Compute the weight of each
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sample for the current class.

End for
Computing feature weight: « = Y!_, B * Lw

Return

Step 2: Use the class-dependent feature weight and exponential kernel to estimate
cross-correntropy, as shown in equation (3.22). K, represent exponential kernel, L;
represent samples, and D; represent labels, and nrepresents samples mentioned via

(L, DO,

Corr(L, D) = =¥y Ko (L — D;) (3.22)

Equation (3.23) is used to calculate the exponential kernel. Here, arepresent feature
weight.

Ko(L; = D;) = exp(— alL; — D;l) (3.23)

Next, the entire entropy-based characteristics can be shown as Efeat =
[H, FuzzyEnt(o,w, g, W), Corr(L, D)]. Consequently, the features that were taken from
the frequency and time domain and enhanced entropy features are shown as Fgy; =

[Tf, Ff, EFeat] .

3.3.4 Hybrid Model for Identifying Gear Crack Faults

The enhanced feature set is then fed into the combined approach to precisely determine
the gear crack levels following feature augmentation. As shown in Figure 3.3, the model
aims to reduce computational time by combining Bi-LSTM and IDBN. After initializing
the weights of the Bi-LSTM, the IDBN model uses the Swish and Mish activation
functions for better classification performance. Unlike traditional activation functions
such as sigmoid and ReLU, which suffer from vanishing gradients, the Swi-Mish function
combines Swish and Mish to help maintain smoother gradient flow and mitigate the
vanishing gradient issue. The Swish function ensures smooth curve transitions, while the
Mish function is approximately zero-centered, facilitating effective weight updates. These
features make Swi-Mish more suitable for backpropagation, improving network
efficiency. The predictions produced by combining the scores from the two classifiers
using a score-level fusion method increase the accuracy and robustness of categorization.

The final output categorizes the gear crack into five levels.
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Figure 3. 5: An illustration of the crack-level categorization model.

3.4 BI-LSTM

This research uses the Bi-LSTM [152] to categorize various gear crack levels

efficiently. The following Equations (3.24-3.28) are used to implement the LSTM. Here,

fr and cr represent forget and cell state gate, i, and o, denote input and output gate, sig

represents the function of the sigmoid.

fr = Stig(WrFaug + Wrhe_q + ¥5)

ip = sig(WiFpyug + wihy_1 +v;)

or = 5ig(WoFyug + Wohr_1 +7,)

Cr = frCrq + FAugSig(WcFAug + wehy_q + Vc)
h, = o, tanh(c,)

(3.24)
(3.25)
(3.26)
(3.27)
(3.28)

where h, andwrepresent a hidden state and weight factor, y represents bias term,

h,-_1 shows a hidden layer (HL) in the previous statistic, tanhdenoted tangent hyperbolic,
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and c¢,_; represent the prior state cell.

The LSTM model only processes the past input values, ignoring future information.
This restriction is addressed by using the Bi-LSTM method, as displayed in Figure 3.5,
which consists of two separate hidden layers: the secret layers that are forward and
backward. In ascending order, the forward hidden layer processes the data (from the past
to the present). In contrast, in descending order, the reverse hidden layer processes the
input (from the future to the past), as Equations describes. (3.29) and (3.30). Using a
bidirectional strategy, Bi-LSTM can record past and future contextual information,

improving the model's predictive accuracy.

Y = tanh(wl Fugg, +wiy ‘R + v (3.29)
hp® = tanh(wg™® Fuug, + win “he2T +v7"%) (3.30)
ug

The result is finally obtained by merging the forward and backward hidden layers, as
shown in Equation (3.31).
Y = wi R+ whydptvd 4y, (3.31)
Consequently, the intermediate scores are produced by the Bi-LSTM model output

shown as BOU%t,

801“

Figure 3. 6: The flow of the proposed model.
3.5 Improved DBN

DBN, consisting of a restricted Boltzmann machine (RBM) with two layers hid-
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den and visible, typically requires extensive labeled data for weight initialization, leading
to high computational costs and long training times. To address the issue, DBN weights
are initialized using the features learned from the Bi-LSTM, which capture essential
details about the dispersion of the data, enhancing DBN’s capacity to extrapolate to
unknown data and accelerate convergence. The three buried layers of the enhanced DBN
each contain 100, 50, and 25 neurons and are initialized with Bi-LSTM weights, enabling
faster learning and enhanced noise resilience. This approach leads to more efficient and
robust signal classification.
Egy(w,h) = = XiZiwi by — Xj_1 b dj — XiZ Y=g hjuimy (3.32)
The upgraded DBN seeks to identify a stable state with the fewest energy errors. The
probability distribution that separates the hidden and visible layers is explained by

Equation (3.33).

1

Esume E9y(wh)

r(u,h) = (3.33)

Where E,,,refers to the whole energy of every layer, apparent and hidden; By
guaranteeing effective learning and reducing training errors, this energy function is
essential to model optimization.

An overview of energy for each visible and concealed layer is assessed as a
proportional function to guarantee a normalized distribution. Then, Equations (3.34) and
(3.35) determine the probability distribution of the visible and hidden parameters. These
equations allow for modeling the relationships between the hidden and visible layers,

facilitating efficient learning by optimizing the weights and biases based on the energy

function.

1
T =110 = (3.34)
r(hy = 1|u) = ! (3.35)

1+exp(—dj-XiL  uim; )

In order for the network to capture intricate correlations between input and output,
in output, using an activation function, non-linearity is introduced into DBN. Despite their
widespread use, classic activation functions like sigmoid and ReLU suffer from the
vanishing gradient issue. When gradients propagate across the layers during training, they
get progressively smaller, which hinders convergence and makes weight updates more
difficult. Many call this problem the "non-zero-centered problem," which is addressed by
utilizing the hybrid Swi-Mish activation function (S-MAF), blending the Mish and Swish
functions. While the Mish function is roughly zero-centered and helps to enhance weight

updates by limiting gradients that are too large in one direction, the smooth curve offers
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a Swish function that permits flow during backpropagation. Consequently, the S-MAF
improves network efficiency, provides smoother transitions, and mitigates the vanishing
gradient issue. Equation (3.36) provides a mathematical expression for the S-MAF.

Swi — Mish(y) = Max[Swish(y), Mish(y)] (3.36)

Where Swish(y) = y.sigmoid (y) =y and Mish(y) = y.tanh[In(1 + e?)].

"1+eY
The Swi-Mish activation function derivative is then expressed using Equation (3.37).
Swi — Mish'(y) = Max[Swish'(y), Mish'(y)] (3.37)
Swish'(y) = Swish(y) + sigmoid(y)[1 — Swish(y)]Mish'(y)
= tanh[Softplus(y) + y * sec h? [Softplus(y) = Softplus’ (y)]]
Softplus’(y) = sigmoid(y) Softplus(y) = In[1 + e*] (3.38)
As a result, the intermediate scores are produced by the IDBN model and can be shown

as DO% . The Swi-Mish activation function with IDBN is shown in Figure 3.7.

Input Hidden Layers Output
Layer Layer

%
N\

//

The weight of Bi- Swi-Mish
LSTM is initialized activation function
in these three layers is proposed

®

o X N

Figure 3. 7: Swi-Mish activation function with IDBN.

3.5.1 Score Level Fusion
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In this study, score level fusion [153] is used to combine the outputs from IDBN and Bi-
LSTM. After separately training the models with the training dataset to determine
individual class scores, they are assessed using the same data, denoted as B9« and DOout
for Bi-LSTM and IDBN, respectively. These scores, representing the estimated
probabilities for each class, are normalized using Min-Max normalization to mitigate the
impact of score magnitude, as shown in Equation (3.36). After that, a sum rule method is
utilized to fuse the normalized scores, where the scores from both models are summed for
each data point, as represented in Equation (3.39).

shorm = mail(s?;ir;(fi;)(si) (339

Additionally, the sum rule-based fusion strategy is used to normalize scores in

accordance with Equation (3.40).

SFuse — lffil SNorm (340)

As aresult, the score-fused method provides five labels for the different levels of gear

crack detection output.

3.6 Data Acquisition and Experimental Analysis

This study conducted multiple experiments using a Spectra Quest MFS to collect
vibration signals, as shown in Figure 3.8 and Figure 3.9. The dataset used for
experimentation is considered from the previous study [154]. The experiments were
performed under var- ying rotational speeds and torque. The key components of the test rig
included a magnetic brake, an A-bearing housing plate, a belt and pulley system, and an
AC induction motor. Additionally, the magnetic brake provided the necessary test torque,
while a variable frequency drive (VFD) regulated the motor speed. The system includes
a 1-horsepower, 2850 rpm AC motor, flexible coupling, a gearbox, ball bearings, and a
magnetic brake. Motion is transmitted through a 19 mm shaft, with a belt pulley driving
the gearbox. A tri-axial accelerometer (PCB-Piezotronics 356A26, S/N: 355339) is
mounted on the gear- box to capture vibration data, connected to an OROS-OR34 DAQ
system, and analyzed via NV Gate software. Vibration signals were recorded at torques
from 0 to 4 Nm and speeds such as 15 Hz, 20 Hz, 25 Hz, and 30 Hz, with both healthy

and faulty gears acceleration readings recorded at 12.8 kHz sampling over three axes.

In this research, the bevel gearbox is given in Table 3.3. A total of five pinion gears were
examined, comprising four faulty gears: incipient crack, moderate crack, small crack,

severe crack, and one healthy gear. Figure 3.10 shows the several gear conditions that were
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looked at. A CNC and wire EDM were used to introduce the crack faults. A Dewinter

Optical Inc. optical microscope (model DEWS507) was used to measure the crack length.

Tachometer Display

| Motor controller I
Laptop

Bearing housing

[T ol ka
B

&
v

‘ Magnetic Brake |+
Tri-axial accelerometer

Figure 3. 9: Electromechanical elements analytical test rig.
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Figure 3. 10: Gear health:(a) Healthy (b) A 0.25 mm crack-length gear, (c) a 0.50 mm
crack-length gear; (d) a 0.75 mm crack-length gear, and (e) a 1.00 mm crack-length gear.

Table 3. 3: Gearbox Description

Specification of Gearbox Pinion Gear

Pitch diameter 28.576 mm 42.8626 mm
Module 2 mm 2 mm

angle Pressure 20° 20°

Material Forged steel Forged steel
Number of teeth 18 27

Pitch angle 33°42' 56°18'
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3.7 Results and Discussion

3.7.1 Simulation Procedure

The proposed methodology in this research was simulated using Python 3.7, with an Intel

Core i7 CPU@ 2.90 GHz and 16 GB of RAM (15.7 GB usable).

3.7.2 Performance Evaluation

Its accuracy and computation time are investigated to evaluate the proposed method's
effectiveness. The trade-off between calculation time and accuracy is balanced to have
the best learning rate. Below is a thorough explanation of the computation time and

accuracy.

3.7.3 Evaluation of Learning Rate Vs Accuracy

Table 3.4 shows how accuracy and learning rate are correlated. A hyperparameter known
as the learning rate regulates the model parameters during training. The suggested model
is evaluated with 0.1, 0.05, 0.01, and 0.001 rates. The model's accuracy at a frequency of
30 Hz is roughly 99.8% when learning at a rate of 0.001, 93.6% at a rate of 0.1, 93.8% at
a rate of 0.01, and 93.8% at a rate of 0.05. A learning rate of 0.001 yields the maximum
accuracy. While lesser learning rates employ smaller steps, greater learning rates produce
larger steps. Instability during training could result from the approach to overshooting the
loss function's minimum due to unreasonably high learning rates.

Table 3. 4: Learning Rate vs. Accuracy Analysis

Different Learning Rate

‘S’I‘)’::gt(iﬁgz) 01 0.01 0.05 0.001
Accuracy of performance with varying learning rates

15 0.9368 0.9410 0.9418 0.9965

20 0.9372 0.9393 0.9405 0.9982

25 0.9380 0.9389 0.9393 0.9948

30 0.9368 0.9380 0.9386 0.9982
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3.7.4 Evaluation of Rate of Learning Vs Computational Time

The correlation between calculation time and learning rate is depicted in Figure 3.11.
Conversion speed and accuracy must be matched to find the optimal learning rate. The
model successfully converges at the ideal learning rate, preventing issues like
overshooting or less-than-perfect solutions. The model is evaluated at learning rates of
0.1, 0.05, 0.01, and 0.001. Longer calculation times correlate with higher learning
rates. Using 0.001 as the learning rate, the computational time at a frequency of 15 Hz is
roughly 1 second, 3.5 seconds for 0.1, 3.48 seconds for 0.01, and 2.25 seconds for 0.05.
The best option for better performance is a learning rate of 0.001, which takes the least

amount of computational time.
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Figure 3. 11: Evaluation of Learning Rate Vs. Computational Time.

3.7.5 Confusion Matrix Evaluation on Proposed Method

The Bi-LSTM-IDBN model's confusion matrices for the various frequency ranges are
shown in Figure 3.12. The confusion matrix compares the actual and predicted targets,
with values inside each rectangle representing the prediction outcomes. The classification
includes five distinct classes: healthy, SLC (crack small), IC (incipient crack), MC
(moderate crack), and SRC (severe crack). The four key classification conditions, TP, FP,
TN, and FN are displayed. Diagonal values represent correct predictions, while off-

diagonal areas reflect incorrect predictions.
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Figure 3. 12: Confusion matrix for proposed approach a)l5 Hz, b) 20 Hz, c¢) 25 Hz, and
d) 30 Hz.

3.7.6 Comparative Analysis

To successfully determine the various gear crack levels, the suggested strategy was
contrasted with current approaches in terms of accuracy, precision, and F-measure. It was
also evaluated against the latest technologies, such as OWPD and feed-forward neural
networks (FFNN). Other classifiers, including deep convolutional neural networks
(DCNN), SVM, Bi-GRU, RNN, Bi-LSTM-IDBN, and RF, were also contrasted with the
Bi-LSTM-IDBN model.
3.7.7 Analysis of Precision, Accuracy, and F-Measure

In order to assess the suggested technique's efficacy, we change the percentage of
training data between 60%, 70%, 80%, and 90% while maintaining a constant learning
rate of 0.001. The improved CEEMDAN methodology contrasts the performance with
traditional methods for identifying gear crack faults using accuracy, precision, and F-

measure. Furthermore, a comparison is made between the proposed model and existing
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classifiers. The analysis's findings, which are displayed in Figures 3.13(a) through
3.13(d), demonstrate that the recommended approach performs better than the others in

precisely detecting gear crack faults at different levels.

The model must have strong F-measure scores to accurately identify the various
gear crack levels. By exhibiting better precision values, the proposed method
outperformed traditional techniques. In particular, the proposed reached a high f-measure
of 100% at 30 Hz and a training percentage of 90%. In contrast, other models such as D-
Net at 96.13%, M-Net at 95.70%, RF at 97.42%, SVM at 96.99%, RNN at 98.28%, Bi-
GRU at 96.13%, Bi-LSTM at 96.13%, and DCNN at 95.27% recorded lower precision
scores. These results show how adaptable and versatile the suggested model is, effectively

detecting various gear crack levels through the use of a mixed classification technique.
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Figure 3. 13(a): Evaluation of proposed methods in comparison to traditional techniques for 15
Hz, a) Accuracy, b) F-measure, and c) Precision.
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108



1.0 1.0
0.8 0.8
[
g 5
g 0.6 g 0.6
8 = D-Net [ BI-GRU ‘E’ (B8 D-Net [N BI-GRU
< [ M-Net [ Bi-LSTM (e [ M-Net [ Bi-LSTM
] RF =1 DCNN u- [ RF 1 DCNN
92 B3 svM 1 Bi-LSTM-IDBN 0.2 =3 SVM [ Bi-LSTM-IDBN
C— RNN ] RNN
0.0 L Ll LA L L Ll L L) 0.0
60 70 80 90 60 70 80 90
Training data (%) Training data (%)
(a) (b)

kit

c
:% 0.6
8 EED D-Net [N BI-GRU
a > [ M-Net [ Bi-LSTM
= RF [ DCNN
0:2 Em SVM [ Bi-LSTM-IDBN
[ RNN
0.0
60 70 80 90
Training data (%)
(©

Figure 3.13(d): Evaluation of proposed method in comparison to traditional techniques
for 30 Hz: a) Accuracy, b) F-measure, and c) Precision.

3.7.8 Computation Time Analysis

As illustrated in Figure 3.14, the computational time analysis of the suggested technique
was contrasted with those of other methods for identifying various levels of gear cracks
based on the existing methods. The model should reduce computation time to determine
gear crack levels precisely. Compared to conventional approaches, the Bi-LSTM-IDBN
approach showed noticeably faster computation times. This model reduced the
computation time to 0.993 seconds at 20 Hz, which was quicker than other models,
which took 6.52 seconds for D-Net, 5.63 seconds for M-Net, 1.378 seconds for RF, 7.813
seconds for Bi-GRU, 3.623 seconds for Bi-LSTM, 5.688 seconds for SVM, 1.593 seconds
for RNN, and 2.121 seconds for DCNN. Furthermore, the proposed outperformed all
other techniques, recording a low computational time of 1.155 seconds at 25 Hz. As a
result, in every frequency range, the proposed (Bi-LSTM-IDBN) technique continuously
outperforms in terms of computing efficiency. According to experimental data, this
approach allows for more accurate gear crack detection than other approaches and saves

computational time.
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Figure 3. 14: Computational time comparison between traditional and proposed
approaches for (a) 15 Hz, (b) 20 Hz, (c) 25 Hz, and (d) 30 Hz.

3.7.9 Ablation Analysis of Proposed Method

Comprehensive ablation research was carried out to evaluate the impact of specific
characteristics on the Bi-LSTM-IDBN model's performance for gear crack diagnosis. The
comparison of models using traditional CEEMDAN, cross-correntropy, and DBN with
Bi-LSTM-IDBN is summarized in Table 3.5. At 15Hz, the suggested method achieves an
accuracy of 99.65%, outperforming the conventional CEEMDAN with 98.28%, cross-
correntropy with 98.45%, and DBN with 98.62%. Additionally, the precision of Bi-
LSTM-IDBN is 99.57%, significantly higher than the precision of the other models:
CEEMDAN with 96.13%, cross-correntropy with 96.56%, and DBN with 96.99%. These
results show the effectiveness of the Bi-LSTM-IDBN technique powered by the
CEEMDAN algorithm for increased feature extraction, combined classification, and

signal decomposition.
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Table 3. 5: Evaluation of ablation at 15 Hz, 20 Hz, 25 Hz, and 30 Hz using the proposed
method with existing techniques

Combining traditional Traditional
Proposed Model C.EEN[DAN corr:ll::(s)-py in Bi_LSTM_
Metrics with the pro- - gy gy IDBN with
posed method IDBN existing DBN
Frequency = 15 Hz
Specificity 0.9988 0.9902 0.9912 0.9923
Sensitivity 0.9871 0.9530 0.9573 0.9616
Accuracy 0.9964 0.9827 0.9846 0.9861
F-measure 0.9913 0.9571 0.9614 0.9657
Precision 0.9956 0.9612 0.9655 0.9698
FDR 0.0041 0.0385 0.0342 0.0301
FNR 0.0128 0.0466 0.0423 0.0384
MCC 0.9892 0.9464 0.9517 0.9571
FPR 0.0011 0.0097 0.0084 0.0074
NPV 0.9966 0.9880 0.9888 0.9902
Frequency =20 Hz
FDR 0 0.0385 0.0427 0.0326
Specificity 1 0.9902 0.9891 0.9903
Sensitivity 0.9913 0.9530 0.9488 0.9526
FNR 0.0084 0.0467 0.0512 0.0446
F-measure 0.9956 0.9571 0.9528 0.9456
Precision 1 0.9611 0.9578 0.9613
Accuracy 0.9981 0.9827 0.9810 0.9722
FPR 0 0.0095 0.0108 0.0097
NPV 0.9977 0.9880 0.9872 0.9788
MCC 0.9945 0.9464 0.9410 0.9588

Frequency =25 Hz
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Precision 0.9913 0.9655 0.9572 0.9614

Sensitivity 0.9828 0.9573 0.9488 0.9530
NPV 0.9956 0.9892 0.9870 0.9880
F-measure 0.9870 0.9616 0.9528 0.9573
Specificity 0.9979 0.9913 0.9891 0.9902
Accuracy 0.9947 0.9846 0.9810 0.9829
FPR 0.0022 0.0087 0.0108 0.0097
MCC 0.9838 0.9518 0.9410 0.9466
FDR 0.0086 0.0344 0.0428 0.0387
FNR 0.0171 0.0426 0.0511 0.0469

Frequency = 30 Hz

Specificity 1 0.9904 0.9588 0.9882
NPV 0.9977 0.9880 0.9653 0.9861
Sensitivity 0.9913 0.9530 0.9357 0.9445
FPR 0 0.0097 0.0097 0.0116
F-measure 0.9956 0.9571 0.9657 0.9488
FDR 0 0.0385 0.036854 0.0471
Accuracy 0.9981 0.9829 0.9557 0.9792
MCC 0.9945 0.9466 0.9255 0.9359
Precision 1 0.9612 0.9689 0.9528
FNR 0.0086 0.0469 0.0487 0.0552

3.7.10 Comparison of Existing Methods

Table 3.6 provides an explanation of the backpropagation FFNN and compares the up-
graded CEEMDAN study with OWPD. Furthermore, the model must generate more
accurate accuracy ratings in order to identify gear cracks at various levels. The accuracy
of the upgraded CEEMDAN approach is 99.82% in this case, while the accuracy of the
backpropagation FFNN and OWPD is lower at 80.65% and 98.33%, respectively.
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Table 3.6: Evaluation of improved CEEMDAN compared to OWPD and backpropagation
FFNN.

Backpropagation
FFNN for gear fault OWPD Froposed
work
detection
Signal Vibration Vibration Vibration
Optimizer or Gradient Decent Cat Boost Gradient Decent
learning strategy Algorithm
Test instance 200 (50 X 4), 12,500 3200 X 1500 75 X 2000 samples
and sample rate  sample/s samples
Defect Crack defects 1 mm, Different crack Crack defects 0.25
conditions 2 mm, and 3 mm lengths (0, 5 mm, mm, 0.5 mm, 0.75
10 mm and 15 mm, and I mm
mm)
Operation 600, 700, 800, 900, 600, 15,20, 25, 30 Hz
conditions 100 rpm 0%, 25%, 900,1200,1500 0,1,2,3,4 Nm loads
50%, 75%, 100% loads  rpm
Accuracy 80.65% 98.33% 99.82%

3.8 Conclusion

This chapter presented a new approach for detecting gearbox faults. The first step in the
procedure was gathering data, which was then preprocessed by breaking down the input
signal using an improved CEEMDAN algorithm. Features based on time, frequency, and
entropy were recovered from the decomposed signal. Data augmentation was used to
create random samples based on the feature's minimum and maximum values to enhance
the feature set even more. Bi-LSTM and IDBN classifiers were combined to create a
hybrid crack-level classification model fed these improved features. A Bi-LSTM weight
was assigned to the first three layers of DBN to enhance classification performance. The
classifier scores were then fused at the score level to divide crack levels into five groups.

With an accuracy of 99.21% and 100%, the Bi-LSTM-IDBN strategy continuously beat
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traditional techniques, according to the data. With a 90% training percentage and
outstanding performance, especially at higher frequencies, this method proved to be an

excellent solution for accurately and efficiently detecting gear cracks.
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Chapter 4
Hybrid Architecture Based on Modified LinkNet and
DenseNet for Integrated Fault Detection in

Electromechanical Systems

In EM systems, commonly utilized across various industrial applications, an electric motor
serves as the prime mover, typically coupled with a mechanical load such as a gearbox,
rotor, or pump. Effective condition monitoring (CM) is essential for these systems, and
vibration monitoring has proven to be a reliable method for fault identification. However,
EM systems can experience combined faults involving simultaneous motor and load
issues. Diagnosing these combined faults presents a significant challenge due to the
fault's compounding consequences and overlapping symptoms. This issue is resolved by
suggesting a modified LinkNet and DenseNet (MLiDNet) categorization of the fault
model. This model incorporates combined DL classifiers, entropy-based feature
extraction, and sophisticated signal processing techniques. Signal pre-processing is done
with the ISSWT, and feature extraction focuses on entropy-based properties such as norm,
enhanced spectral, threshold, and wavelet energy entropy. Efficient fault classification is
the goal of the combined DL classifier, MLiDNet. With a precision of 99.68%, an F-
measure of 99.37%, and an incredible accuracy of 99.78%, the suggested approach
requires less computing time than current methods. These results show that the Modified
LinkNet and DenseNet (MLiDNet) model holds strong potential as an effective solution

for accurately detecting combined faults in EM systems.

4.1 Introduction

Belt pulley drives, gearboxes, couplings, rotor-bearing systems, electric motors or
generators, and other mechanical and electrical components form an EM system
[155,156]. Industrial or manufacturing processes may be stopped by catastrophic
breakdowns caused by the failure of any of these components [157—158]. Consequently,
early fault detection and continuous monitoring in EM systems are critical to prevent
widespread system failures. This proactive approach allows for scheduling preventive and
CBM during downtime, significantly reducing the risk of extended operational

disruptions [160-163]. Such strategies enhance system performance and availability
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while minimizing maintenance costs [164, 165]. Vibration measurements, in particular,
play a vital role in diagnosing issues within gear systems, ensuring their reliability and
safety. Usually, eddy current measurements, vibration, and acoustic emissions are used to
diagnose gear faults. DL-based fault detection methods have recently gained popularity

and successfully diagnosed faults in rotating machinery [166, 167].

Faults in EM systems can generally be classified into electrical and mechanical
categories. Electrical issues in IM include insulation failures, rotor bar breakage, and stator
winding issues [168—170]. Conversely, mechanical faults include rotor imbalances,
misalignments, gearbox or belt-pulley faults, and bearing failures. Since the IM is the
primary driver related to mechanical parts, including shafts, bearings, rotor systems, and
gearboxes, this study specifically focuses on mechanical failures in IMs and their coupled
loads. However, these methods frequently need rather big and well-balanced training
datasets, which are challenging to acquire in real-world applications, in order to provide
significant results [171]. This study focuses on faults such as imbalanced rotors in
mechanical loads, bearing faults, and unbalanced loads in motors. These faults are crucial
because they can significantly affect the longevity and performance of EM systems.
Methods including noise monitoring, current signal analysis, and vibration monitoring are
employed to find these issues; vibration monitoring is particularly valued due to its ability

to identify mechanical faults.

Advanced signal processing techniques are crucial for identifying possible faults
in electromechanical systems, and they play a major role in early fault detection [172, 173].
These methods, which can be non-invasive or invasive, are essential for finding errors
before they cause system breakdowns. Common tools include FFT, CWT, DWT, HHT,
and WPT [174]. These methods have drawbacks despite their significance, including high
computing cost and vulnerability to non-stationary signals. By concentrating on the
instantaneous frequencies of signals, the SSWT enhances time-frequency representation;
nonetheless, it still faces challenges in noisy environments and with high computing
complexity [175]. To address these challenges, the improved SSWT was developed. By
improving noise reduction and offering superior time-frequency decomposition for more
precise fault identification, ISSWT emerges as a more reliable and effective substitute for
conventional SSWT techniques, which are computationally demanding and susceptible

to noise.
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4.2 Proposed Methodology

This research presents a reliable proposed fault detection model for detecting
coupled failures in EM systems, especially those involving IM and rotor systems. Five
essential procedures make up the method for effectively classifying and detecting faults
in these kinds of systems. The suggested structure is shown in Figure 4.1. The data-
collecting portion of the model begins with experiments using an MFS to capture
vibration data. Following data collection, the signal is decomposed using the ISSWT
method during pre-processing. This sophisticated pre-processing method enhances its
quality and makes fault identification easier by dissecting the input signal into its

constituent parts.

Data Acquisition
(Vibration signals)

Pre-processing

Feature Extraction
Threshold Norm Entropy
Entropy
Wavelet Energy Improved
Entropy L Spectral Entropy

P

Feature Selection
[ Chi-square test ]
-

Fault Detection

| MLinkNet A—{ DenseNet l

Output
0 — HL 1 (Healthy motor coupled with healthy rotor)
1 —FL 2 (Healthy motor coupled with unbalanced rotor)
2 - FL 3 (Unbalanced fault in motor coupled with healthy rotor)
3 - FL 4 (Unbalanced fault in motor coupled with unbalanced rotor)
4 — FL 5 (Bearing fault in motor coupled with healthy rotor)

5 — FL 6 (Bearing fault in motor coupled with unbalanced rotor)

Figure 4. 1: The suggested MLiDNet model for fault detection.
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Following pre-processing, the signal's essential properties are captured using
feature extraction. Features are extracted, including wavelet energy entropy, threshold
entropy, enhanced SE, and norm entropy. The Chi-Square (CS) test is then used for feature
selection to identify the most relevant aspects and significantly impact fault identification.
Finally, a combined technique incorporating dense net (D-Net) and MLink Net, the
MLiDNet approach, is used to carry out fault detection. The benefits of both DL

architectures are used in this combined model to categorize EM faults accurately.

4.2.1. Pre-processing: Improved Synchro-Squeezing  Wavelet

Transform Technique

In signal processing, pre-processing is crucial because the quality and data's
applicability are enhanced prior to additional evaluation. The input signal x is
appropriately prepared in the proposed fault detection system for EM systems thanks to
pre-processing. The input signal is divided into frequency components using signal
decomposition, usually using ISSWT. By adding a de-noising phase prior to applying the
CWT, ISSWT improves on the traditional SSWT [175]. In contrast to SSWT, which
applies CWT directly, ISSWT enhances the level of time-frequency decomposition
quality by removing noise via threshold-based de-noising. The current SSWT is sensitive
to noise, which affects the precision of fault identification by distorting the time-frequency
representation of the signal. ISSWT solves this challenge by enhancing fault detection

accuracy and decomposition reliability by offering a more precise representation.

In order to eliminate unwanted noise, the input signal (x) data is subjected to
threshold-based de-noising during the pre-processing stage. The signal is subsequently
denoised and split into time-frequency components using CWT. This is followed by
realigning the wavelet coefficients' energy using the synchro-squeezing transformation.
In the SSWT, synchro-squeezing improves the signal's time-frequency localization by
moving data from the frequency-scale level to the time plane, as shown in equation (4.1).
The map provides a definition of this function. (B, ¢) = (B, w(c, B)), where B stands for
time, ¢ for scale, and w for frequency. A better understanding of the signal's properties is
made possible by the improved time-frequency representation made possible by ISSWT,

which helps the MLiDNet model detect faults better.
-3

Tss(we, B) = (Aw)~! ch:lw(ck,B)—walsAw/Z Wss(Ck'B)Ckz (4c)k 4.1)

A denoised signal's CWT can be shown as wgs(cy, B) in Equation (4.1), which
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discretized the variable frequency w and the variable scale cy. In particular, the frequency
bins were represented by discrete values w,, at which the synchro-squeezed transform
Tss(w, B) was evaluated. With Aw signifying the bin size, these bins were specified by
the intervals wy_1/; — Adw/2towg,q1/, + Aw/2. Likewise, the scale values Ac were
calculated using ¢, — ¢,_; = (4c)a. The contributions from these discrete bins were then
added up to calculate the synchro-squeezed transform Tgs(w, B).

Equation (4.2) provides a mathematical illustration of how to apply the denoising

threshold in ISSWT to eliminate undesired element noise in the signal input x.

( __r . _
u*xxqg+4 a1 Xa < A

I B
Denoised signal, x; = Sign(xd)-m * g |2 |xgl < 2 4.2)
u*xd—/1+2;ﬁ;xd > A
. . 1L,B>0
In Equation (4.2), a and Bare the variable elements where a = 0;8 = 0 and B €

_[x(®-22
(0,4). u represent the control element, which is formulated byu =1 —e [ A ] and 4

represent the threshold, which is determined using Equation (4.3), where o =

median(x(t))
0.6745

A=0y2In(N) (4.3)

Once the input signal has been de-noised x, the signal denoised x; subsequently

travels through the CWT process, as illustrated in Equations (4.4) and (4.5).

wss(ci B) = [ x3(6).c™V2p (Z2) de (4.4)
Py = Wss(cu, B) = —.c /% (cp). e (4.5)

The outputs of the signal decomposition from the existing SSWT and the proposed
ISSWT at 10 Hz, 20 Hz, and 30 Hz are compared for dataset 1 in Figure 4.2. These signals
are used as input for processing by both ISSWT and SSWT. The results of applying the
traditional SSWT to the signals sample at 10 Hz, 20 Hz, and 30 Hz are shown in Figure
4.2 (a). These images depict the signal's time-frequency obtained via SSWT. The presence
of noise and less distinct frequency components is observed, indicating the limitations of
SSWT in handling noise effectively. At 10 Hz, 20 Hz, and 30 Hz, the output of the
proposed method employed on the same sample signals is displayed in Figure 4.2(b). The
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proposed output displays a more precise frequency and signal temporal representation
than the current output. By effectively removing noise, the ISSWT produces a signal with
greater accuracy and more identifiable frequency components. The ISSWT applies to the

CWT after a threshold-based reduction of the noise phase.
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Figure 4. 2: Signal analysis of the following: (a) healthy vibration signal, (b) SSWT
output, and (c) recommended ISSWT output for dataset 1.

ISSWT produces an improved output compared to the existing method, which
uses CWT straight to signal noise because the de-noising step eliminates unnecessary
noise from the input signal. Figure 4.3 shows more distinct element frequencies due to
the improved clarity of time-frequency representation. Because of this, ISSWT improves
fault identification accuracy and simplifies the understanding of signal properties.
Essential features are retained when noise is eliminated from the denoised signal,
resulting in more accurate time-frequency decomposition. The quality of the analysis of
time and frequencies was raised by effectively eliminating noise; pre-processing with the
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suggested method significantly improves fault identification reliability and accuracy in
the suggested electromechanical system diagnosis model. The signal pre-processed is

generated from the input signal x by the proposed method is shown as p,.
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Figure 4. 3: Analysis of the following signals: (a) faulty vibrational signal, (b) SSWT
output, and (c) suggested output for dataset 1.

Figure 4.4 compares the outputs of the proposed and the conventional methods for
dataset 2 for breakdown signal at 30 Hz, 35 Hz, 40 Hz, 45 Hz, and 50 Hz. Both the
proposed and current processes use these signals as input. Figure 4.4 (a) displays the
result of the conventional method utilized for the signal sample at 30 Hz, 35 Hz, 40 Hz,
45 Hz, and 50 Hz. SSWT's challenges in effectively handling noise are highlighted by
the reported presence of noise and less discernible frequency components. The output of
the suggested approach employed on the same signal test at 10 Hz, 20 Hz, and 30 Hz is
shown in Figure 4.4 (b). Compared to the current method, the output of the suggested
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methodology more clearly displays the time-frequency of the signals. The ISSWT
generates more frequency elements and enhances signal quality by efficiently

eliminating noise. The proposed approach incorporates a threshold-based noise reduction

stage prior to applying the CWT.
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Figure 4. 4: Analysis of (a) the healthy vibrating signal, (b) the output of the SSWT, and
(c) the output of the proposed technique for dataset 2.

As a result, ISSWT improves fault diagnosis reliability and facilitates
understanding of the signal properties in Figure 4.5. When noise is eliminated from the
denoised signal, key properties are retained, improving the time-frequency
decomposition's accuracy. The proposed fault detection model's accuracy and
dependability are generally significantly increased by pre-processing with ISSWT, which

successfully eliminates noise and raises the bar for time-frequency analysis.
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Figure 4. 5: Analysis of the following signals: (a) faulty vibrating signal, (b) SSWT result,
and (c) output from the proposed technique for dataset 2.

Table 4. 1 (a): Quantitative Analysis of signals for dataset 1

Faulty

H.ealthy H.ealthy Signal F.aulty
Frequency Method Signal Signal SNR Signal

SNR (dB) MSE (dB) MSE
10 Hz CWT 18.9 0.018 18.5 0.019
10 Hz SSWT 20.2 0.015 19.9 0.016
10 Hz ISSWT 23.1 0.009 22.8 0.01
20 Hz CWT 19.7 0.016 19.2 0.017
20 Hz SSWT 215 0.013 21.1 0.014
20 Hz ISSWT 242 0.008 23.9 0.009
30 Hz CWT 20.4 0.014 20 0.015
30 Hz SSWT 22.5 0.011 22.2 0.012
30Hz ISSWT 253 0.007 25 0.007
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Table 4. 1 (b): Quantitative Analysis of signals for dataset 2

Healthy Healthy Faulty Faulty
Frequency Method Signal Signal Signal Signal
SNR (dB) MSE SNR (dB) MSE
30 Hz CWT 20.5 0.016 21 0.017
30 Hz SSWT 22.3 0.012 22.6 0.012
30 Hz ISSWT 25.1 0.007 25.4 0.007
35Hz CWT 21 0.014 21.6 0.014
35 Hz SSWT 23.1 0.01 234 0.01
35Hz ISSWT 26 0.006 26.2 0.006
40 Hz CWT 21.9 0.012 22.5 0.012
40 Hz SSWT 23.9 0.009 243 0.009
40 Hz ISSWT 26.8 0.005 27.1 0.005
45 Hz CWT 22.5 0.01 23 0.01
45 Hz SSWT 24.6 0.008 25 0.008
45 Hz ISSWT 27.5 0.005 27.8 0.005
50 Hz CWT 23.1 0.009 23.6 0.009
50 Hz SSWT 25.2 0.007 25.6 0.007
50 Hz ISSWT 28 0.004 28.3 0.004

The superiority of the proposed ISSWT method over SSWT has been quantitatively
validated using SNR and MSE, as shown in Table 4.1 (a) and Table 4.1 (b). ISSWT
consistently achieves higher SNR and lower MSE, confirming its improved de-noising
performance. Additionally, a comparative analysis with standard CWT is performed,
which showed lower SNR and higher MSE than ISSWT, due to poorer time-frequency

resolution.

4.2.2. Feature Extraction

Features such as improved wavelet energy entropy, norm entropy, SE, and
threshold entropy are extracted throughout this method. Every feature provides distinct
insights into the signal's underlying dynamics, such as frequency distribution, complexity,

and randomness.

4.2.3. Norm Entropy

From a signal-processed px norm entropy [176] is extracted by calculating the
probability range of the signal and measuring the degree of Uncertainty or randomness in

the distribution as measured by a statistical metric developed in Equation (4.6).
f e ent Dx; ( .
where y denotes the threshold that is calculated using u[y], where u — mean, and
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D=, is the coefficient of the processed signal px. The pre-processed signal px can be used

to detect faults by extracting norm entropy, which provides essential details about its

underlying properties. As a result, feNent is the extracted norm entropy.

4.2.4 Improved Spectral Entropy

SE is a statistic that is used to measure how complicated or unpredictable a signal's
frequency content is. Demonstrating how consistent energy is distributed throughout
multiple frequency bins sheds light on the spatial distribution of frequency elements
inside the signal. It is computed mathematically using Equation (4.7), and R; represents

the relative energy in the zt" frequency bin.
1
Sent = 2R, 10g () (4.7)

The conventional SE extraction method has limitations that can affect fault detection
accuracy and reliability of entropy estimation. These limitations include susceptibility to
aliasing artifacts, spectral leakage, reduced spectral resolution due to noisy or irregular
entropy estimates without frequency-domain smoothing, and improper windowing and
zero-padding techniques. For fault identification, the method of extracting enhanced SE
from the processed signal px is essential. It uses a methodical approach to improve
entropy estimation's precision and dependability. The following steps are part of this

process.
Steps in the Process of Extracting Improved Spectral Entropy:

Windowing: This entails giving the pre-processed signal px a window function.
This stage minimizes artifacts caused by the abrupt termination of the signal by decreasing
the signal closer to zero at its edges, hence reducing spectral leakage. Windowing lowers
sidelobe values in the resultant spectrum and improves frequency resolution. Equation
(4.8) formulates the window function W (t) as an application to the already processed
signal p,(t).
pyY (t) = pe () * W (L) (4.8)

Zero-padding: By adding zeros to a window, a technique known as zero-padding
raises the spectrum's frequency resolution without introducing new data. Particularly for

short-duration signals, it aids in the interpolation of the frequency plane representation,
producing a smoother spectrum. The mathematical expression for the windowed signal's

zero-padding phase is given by Equation (4.9).
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pW(t);0<t<k (4.9)
pJZcP(t) = {Oick < t < ktotal
Here, k denoted the signal windowed length and ktotar > k represents the after

zero-padding length.

Computation of DFT: By converting the signal from the time domain into the
frequency domain, the Cooley-Tukey Radix-2 FFT method (C-TR2FFT) effectively
calculates the DFT, reducing complex computation and facilitating faster dataset
processing. Prior to reaching the base case, the C-TR2FFT method repeatedly splits the
input sequence of length Qinto smaller subsequences. The technique works with complex-
valued sequence input, where the k" frequency-domain sample of the input sequence is

denoted by p,(k). The primary equations controlling the computation of p,(k)and
Dy (k + %) for a Radix-2 FFT, which divides the series input into smaller problems of

size 2, are as follows at each level of recursion:
1. Butterfly Operation:
The Radix-2 FFT technique uses butterfly operations, which include intricate
multiplications and adds, to calculate FFT values for each stage after splitting the inputs
into odd and even-indexed sub-sequences.
2. Twiddle Factor: .

Tj

Each butterfly operation uses the twiddle factor e @ o give the odd and even indexed

subsequences' components a weight. Where £ is the current FFT output sample's index,
andQ is the input sequence's length. The C-TR2FFT algorithm's p, (k) and p, (k + %)

computation equations are written as follows in light of these factors:

21j

p.(k) = Ev, +e @ .0d, (4.10)
Q .
Dy (k+2) =Ev —e” 2 .04, @.11)

In Equation (4.10) and Equation (4.11), the terms Ev;, and Od, show the FFT results

for the zero-padded pZF(t) signal's even and odd-indexed subsequences, respectively.

2mj

e @ indicates that the index k twiddle factor is an integer that spans from k =

01,....2-1.
2
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2mj

o, o,
Ev =32 pF (2q)e ¢ (4.12)

21j

2, _2mj
0dy = X2 ,p¥(2q+1e 2" (4.13)

These formulas show how the findings from the preceding step and the proper
twiddle factors are utilized to determine the FFT ranges for neighboring frequency bins.
This procedure is repeated until each frequency bin's FFT values are determined.

Magnitude Spectrum: The DFT's complex Fourier coefficients are used to compute
the magnitude spectrum, which gives details on the energy or amplitude of the different
elements of the frequency of the signal and permits additional examination of its

frequency content.

p" (k) = |p2™ ()] (4.14)

Frequency Smoothing: To increase the SE estimate's accuracy, frequency smoothing
reduces the effect of artifacts or high-frequency noise by lowering amplitude spectrum

noise and fluctuations.

L

k+
) =15 2 pM (k) (4.15)

The frequency smoothing applied to the resulting magnitude spectrum is shown in
the equation above, in which L is the window smoothing.

Normalization: It is intended to guarantee that the spectrum magnitude scale is
constant, usually falling between 0 and 1. This stage makes it easier to compare signals
and guarantees that the SE computation remains constant despite variations in the signal's

total energy level.

N _ pxs(k)
Py (k) = S50 (4.16)

Computation of Improved SE: Finally, using the normalized magnitude spectrum,
improved SE IS,,,;is calculated. In this step, the spectral information entropy of the signal
is measured, which quantifies the frequency content's complexity or randomness. For

fault detection, the calculated enhanced SE is a useful characteristic.

felsent — ISeTlt = — Zg;; pr(k) logZ pr (k) (417)

Improved SE extraction enhancements significantly improve the feature's quality and
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ISent

resilience, which enhances the extract SE fe is defined as the performance of the

suggested fault recognition model.

4.2.5 Threshold Entropy

In order to get insight into signal fluctuations and anomalies, entropy [176]
assesses the signal value distribution that surpasses a particular threshold level. Equation
(4.18) formulates the threshold entropy expression, where y is the threshold, which is

calculated using pu[y], where u — mean, and px, is the covariance of the previously

processed signal px.

feThent = Thent = {1’ lflpxil >Y (418)
0; elsewhere

As a result, the extracted threshold entropy is given as fe ent,

4.2.6 Wavelet Energy Entropy

For fault identification, wavelet energy entropy [177] must be extracted from the
preprocessed signal. This process involves decomposing the signal into multiple frequency
components using wavelet transform and computing the energy distribution across each
frequency band. The resulting energy distribution provides valuable insights into the
signal’s energy variations across different frequency ranges. This distribution is used to
compute wavelet energy entropy, which quantifies the complexity or randomness of the
signal. The pre-processed signal's wavelet energy entropy estimation px is displayed in the

equation below.

feWEent = WE,,, = — Y27 R,log (4.19)
where, R, represent the average wavelet energy, which is calculated using R, = % The

total of the wavelet component energies Eis determined as E = ), E, wherein the wavelet
coefficient's energy is associated with zt" decomposition level, E, = d2. The d,
represent the coefficient of wavelet related to z‘" the level of breakdown. The wavelet
energy entropy that was extracted is given as fe"WEent. The MLiDNet-based fault
identification model can diagnose faults in EM systems more reliably and efficiently

thanks to effective feature extraction.
4.3 Feature Selection using Chi-Square Test

The CS test [178] is used in this study to identify features for the MLiDNet fault

identification model. By assessing each feature's statistical importance with respect to the
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fault situation, the CS statistics are calculated to determine whether the distribution of

each feature is unaffected by the desired variable or if there is a meaningful correlation.

Through the observed frequency for each feature category denoted as ob, and the

frequency expected for each feature category under a condition of independence with the

target variable denoted as ex,, Equation (4.20) formulates the CS computation of

statistical value. High CS and low p-value features are used to identify fault models

because they are thought to be more discriminative.

2 Z(obq—exq)2

X = BEa— (4.20)

Consequently, the characteristics chosen for each signal by the CS test are

represented by ‘fs,.’.

4.4 Fault Detection via Modified LinkNet and DenseNet
Network Model

Figure 4.6 shows the MLiDNet model that was suggested in this investigation. This
hybrid model incorporates DL architecture to improve categorization, particularly D-Net
and Modified LinkNet (ML-Net). Specifically, the MLiDNet framework relies heavily
on the modified L-Net model.

MLinkNet
Selected
features

Figure 4. 6: Model fusion between ML-Net and D-Net.
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An advancement over the traditional L-Net, ML-Net adds the CBNSKR layer.
The hybridization of the proposed system provides a number of benefits. ML-Net
enhances feature extraction's generalization and robustness by managing data skewness
and kurtosis. D-Net provides Additional data analysis, which simultaneously uses
densely connected layers to record complex feature representations. This collaboration
makes use of both models' advantages, with D-Net extracting fine-grained features and
ML-Net handling issues with data distribution. The hybrid technique improves efficiency
and precision in fault detection of EM systems by offering a thorough knowledge of the
data. Furthermore, the proposed model's capacity to recognize fault circumstances is
further im- proved by using CS test results for feature selection, guaranteeing precise and
trustworthy fault detection. In industrial contexts, this combination strategy improves

maintenance procedures and operating efficiency.

4.4.1 Structure of Modified Link-Net Model

Each pixel in an image is classified into predetermined classes using the CNN model for
semantic segmentation known as L-Net [179,180]. It has a skip-connected encoder-
decoder structure that maintains spatial details when up-sampling. As a component of the
MLiDNet-based fault identification model, this work presents a modified version, ML-
Net. A CBNSKR layer, which is not present in traditional L-Net, is incorporated into ML-
Net to manage kurtosis and skewness in the asymmetry and non-uniformity
measurements of statistical input data. These distributional characteristics must be
addressed for performance, particularly in complicated datasets. In the MLiDNet structure,
the outcome of the CS feature selection process is sent into the ML-Net model for EM
system failure detection. This input is essential for differentiating between faulty and
healthy circum- stances since it contains selected features (fsx). The CBNSKR layer
efficiently manages kurtosis and skewness, while ML-Net enables it to extract intricate
patterns and delicate traits from the input. This all-encompassing method improves the
model's accuracy and resilience in detecting faults, which increases industry maintenance

and operational efficacy.

To effectively manage input data and extract significant features, the proposed
model’s architecture is organized with a number of layers placed in a particular order

(Figure 4.7). An outline of the layers and their features is provided below:

. Initial Block: Using initial processing techniques like inversion and
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functions activated to extract fundamental features, this block acts as a

starting point for the input or selected characters (f'sx).

. Encoder Blocks (1 to 4): The ML-Net model uses convolutional layers to
extract information from each encoder block. After training has been
stabilized by Batch Normalization (BN), the model is given non-linearity
using Rectified Linear Unit (ReLU) function activation, which enables it
to discover complex correlations in the data. By reducing the size of
feature maps, max pooling preserves crucial information while lowering

spatial dimensions.

. CBNSKR Layer: This unique feature ensures stable and efficient model
training by mitigating the impacts of skewness and kurtosis in the
distribution of input using tailored BN approaches. Equation (4.21)
provides a mathematical expression for the process that is carried out in the
CBNSKR layer, while Equations (4.22) and (4.23), respectively, display

the expressions of the traditional BN.

CBNSKR = ¢ * [%] +x (4.21)

In Equation (4.21), @p(fs,) represent skewness reduction, and it is represented as

fsxl iffsx =0
_(_fsx)P' iffsx <0

where P > 1. K(fs,) represent the kurtosis

or(fs)

2g=1[f5xa _ffs\x]dt

" The reduction of
o*.U

reduction, and it is denoted as K(fs,) =

median

skewness factor p represented as p = 3. [f < ] The input data (selected

o
attributes) mean is fs,, U represents the number of input-selected features, o
represent the standard deviation, ¢represent the rescaling factor, and yrepresent the
recentering factor.

BN =¢ * fs, +x (4.22)

BN = ¢ [foT‘“] +y (4.23)

. Decoder Blocks (4 to 1): Convolutional layers precede BN and ReLU
activation processes in each decoder block, which operate identically to
the encoder blocks. To create segmentation maps, these elements

cooperate

to enhance the feature maps and recreate the features. Additionally, the
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feature patterns are further enhanced by the usage of max pooling.

= Layer CBNSKR (following Decoder Blocks): This layer improves the
normalization of feature activation, like the CBNSKR layer that comes before the

decoder blocks, which leads to improved data generalization and more efficient

learning.

. Final Block: The final result of fault detection is produced after further

processing and refinement in this block.

The ML-Net model's CBNSKR layers improve BN to manage kurtosis and skew-
ness in the input data, which stands for imbalances and erroneous model training due to
deviations from the normal distribution. Through the reduction of these anomalies, the
tailored BN approaches enhance the model's stability, resilience, and rate of convergence,
resulting in improved fault detection performance and accuracy. By combining feature
selection outcomes with ML-Net's sophisticated capabilities, the MLiDNet framework
makes it possible to accurately and consistently detect faults in EM systems. In industrial
contexts, this greatly improves maintenance procedures and operating efficiency. The
ML-Net model's output for identifying EM system faults is defined as dMLinkNet  The
RELU activation function is employed in ML-Net along with the 'rmsprop' optimizer, 80

epochs, a learning rate of 0.001, and categorical cross-entropy.
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Figure 4. 7: A structural perspective of the ML-Net model.
4.4.2 Structure of Dense-Net Model

One DL architecture that is well-known for its efficient feature propagation and cost-
effective parameter usage is D-Net. D-Net is incorporated into the Milden architecture in
this study to detect faults in EM systems. The D-Net model uses dense connections and
feature reuse to improve fault detection. During the feature selection phase, the D-Net
model uses the most valuable features to identify problems based on the CS test results
(f'sx). Figure 4.8 depicts the structural structure of the D-Net architecture, which is made

up of several basic layers, as described below.

. Convolutional Layers: Convolution operations are used on the input data
to extract features. A dense connection within the network is made possible

by the output of each layer being transmitted to later layers.

. Dense Blocks: In order to promote feed-forward connections between
layers and improve feature reuse and gradient flow, D-Net introduces

dense connections within convolutional layers.

. Transition Layers: Transition layers, which usually include BN,
traditional layers, and pooling algorithms like max pooling or average, are
used to down-sample feature maps from dense blocks in an effort to lower the

computational complexity and spatial dimension.

. Global Average Pooling Layer: This layer at the network's end calculates
an average score for each feature map to aggregate spatial information. As
a result, the entire input image is summarized in a fixed-length feature

vector.

. Layer Fully Connected: In order to map the characters extracted to the
required number of output classes for classification tasks, an entirely
interconnected layer may be included in the network. Class probabilities

are usually generated using SoftMax activation.

The D-Net component of the MLiDNet-based IM fault identification model uses
its dense connection and effective feature propagation to process specific characteristics
in order to identify faults inside IMs, resulting in reliable and accurate fault identification.

With the output designated as dPenseNet| this improves maintenance and operating
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efficiency in industrial environments. By combining ML-Net with D-Net, the MLiDNet
model makes use of D-Net's in-depth feature extraction and ML-Net's ability to handle
distributional problems, leading to a more reliable and efficient fault identification
solution for EM systems. The categorical crossover entropy is 0.001, and the activation

function is taken into account. RELU with the "Adam" optimizer is used in D-Net.
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Figure 4. 8: D-Net method structure.
In the MLiDNet approach, the average of the outputs from the D-Net and ML-Net
is defined as dx, and the final product can be categorized into six types of labels:
0 Healthy motor coupled with healthy rotor (HL-1)
1 Healthy motor coupled with unbalanced rotor (FL-2)

2 Unbalanced fault in motor coupled with healthy rotor (FL-3)
3 Unbalanced fault in motor coupled with unbalanced rotor (FL-4)
4 Bearing fault in motor coupled with healthy rotor (FL-5)
5 Bearing fault in motor coupled with unbalanced rotor (FL-6)
The numbers 0, 1, 2, 3, 4, and 5 represent the equivalent outputs for these labels,
respectively.

4.5 Data Acquisition and Experimental Specifics for Datasets 1
and 2

Datasets 1 and 2 are the two datasets taken into consideration in this research.

Dataset 2 makes use of the benchmark dataset, while Dataset 1 is experimentally captured.
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4.6 Description of Dataset 1

An MFS was used to conduct an experiment, depicted in Figure 4.9. An external rotor is
connected to a 0.5 horsepower, 50 Hz, three-phase IM via a flexible coupling to form the
MEFS. A centrally located disc in the rotor is intended to produce imbalance. The mass of
the disc positioned in the middle is 0.68 kg. Two external bearings support the ends

of this rotor. On the other end, a belt drive links the rotor to a pulley, which is then
attached to a gearbox. A magnetic brake clutch is also included with this gearbox. As
seen in Figure 4.10, a clutch for magnetic brakes is fastened to the gearbox in order to
provide the IM with an external load. A speed controller or VFD is also connected to the
IM to change the speed. A tri-axial accelerometer is employed to collect vibration signals
in three orthogonal directions. Figure 4.11 displays the accelerometers utilized in this
study. The tachometer, which measures the motor speed, was powered by a constant DC
supply. In order to assess these compounded faults, vibration signals are recorded in this
inquiry. A direct adhesive mounting method attaches a tri-axial accelerometer to the top
of the gearbox to record vibration data. The gear vibration signals are recorded by an
OROS-OR34 DAQ coupled with this accelerometer. Next, a laptop running the signal
analysis software NV Gate is connected to the DAQ. The motor's top and the rotor's left
bearing are two separate locations from which vibration data is captured in the triaxial
directions. The time-domain unprocessed data was obtained using a sampling rate of 6.4
kHz. Ten seconds of a vibration signal were captured. As well as four loads of 0, 1, 2,
and 3 Nm cover a range of motor speeds from 10 Hz to 30 Hz. The combined six categories
of faults are taken into account. To create the rotor's unbalance intentionally, a screw is
driven into a hole in the disc at a certain angle and radial distance. The rotor disc has 24
slots or holes where an irregular mass can be inserted to cause unbalance. The rotor is
shown in a balanced and healthy state in Figures 4.12 and 4.13. An unbalanced rotor fault
is 1llustrated in Figure 4.14, where the motor becomes unbalanced due to the attachment
of a weight. An internal view of a motor with an internal bearing fault is depicted in Figure
4.15, where an outer race fault creates an inherent bearing fault in one bearing and an

interior race fault in the other.
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Tri-axial accelerometer Rotor Shaft
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Figure 4. 11: Installed tri-axial accelerometer on IM.

Figure 4. 13: Unbalanced Rotor.
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Inner race fault

Figure 4. 15: Bearing fault in the motor.

4.7 Description of Dataset 2

This dataset is representative of all commercial gearbox data for dataset 2 [181]. Helical
gears undergo testing. Two accelerometer signals acquired by sensors matching and one
signal channel make up the dataset. Here, only the second channel is used to test the
suggested model. Shaft speeds fall into the following range: 30, 35, 40, 45, and 50 Hz. It
1s made up of six helical labels (0-5). The good is indicated by the helical label 0, while
the chipped gear is shown by the helical label 1. The helical label 2 indicates that the inner
fault is bent, the bearing combination is broken, and the gear is broken. The helical label
4 indicates a bearing inner fault, the helical label 5 indicates a bent shaft, and the gear is

faulty.
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4.8 Results and Discussion

4.8.1 The Simulation Process

Python 3.7 was used to implement the proposed fault identification paradigm for EM
systems. The simulation system had an Intel Core (TM) i7-10,700 processor running at
2.90 GHz and with 16.0 GB of installed RAM. Details of the testing and training data
for Datasets 1 and 2 are shown in Tables 4.2 and 4.3.

Table 4. 2: Specifics of training and testing are essential for 10 Hz, 20 Hz, and 30 Hz for
dataset 1

10 Hz
Pre augmentation 457 Post augmentation 3157
60% 70% 80% 90%
Train 1893 2208 2524 2840
Test 1262 947 631 315
20 Hz
Pre augmentation 460 Post augmentation 3160
60% 70% 80% 90%
Train 1895 2211 2527 2843
Test 1263 947 631 315
30 Hz
Pre augmentation 460 Post augmentation 3160
60% 70% 80% 90%
Train 1895 2211 2527 2843
Test 1263 947 631 315
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Table 4. 3: Specifics of training and testing are essential for 30 Hz, 35 Hz, 40 Hz, 45 Hz,

and 50 Hz for dataset 2
30 Hz
Pre augmentation 24 Post 3324
augmentation
60% 70% 80% 90%
Train 1993 2325 2658 2990
Test 1331 997 664 332
35Hz
Pre augmentation 24 Post 3324
augmentation
60% 70% 80% 90%
Train 1993 2325 2658 2990 Train 1993 2325
Test 1331 997 664 332 Test 1331 997
40 Hz
Pre augmentation 24 Post 3324
augmentation
60% 70% 80% 90%
Train 1993 2325 2658 2990
Train 1331 997 664 332
45 Hz
Pre augmentation Post
24 3324
augmentation
60% 70% 80% 90%
Train 1993 2325 2658 2990 Train 1993 2325
Train 1331 997 664 332 Train 1331 997
50 Hz
Pre augmentation 24 Post 3324
augmentation
60% 70% 80% 90%
Train 1993 2325 2658 2990 Train 1993 2325
Train 1331 997 664 332 Train 1331 997
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4.8.2 Evaluation of Performance

A thorough investigation was conducted in order to compare MLiDNet's effectiveness
with conventional techniques for fault detection. The evaluation of numerous crucial
metrics, such as accuracy, F-measure, and reliability, is part of this thorough inquiry. The
assessment also included methods including computational time analysis, matrix of con-
fusion analysis, and ablation investigations. An in-depth analysis of the MLiDNet
method's relative performance was also provided by comparing its effectiveness against
both conventional classifiers.

4.8.3 Confusion Matrix Evaluation on Proposed Method for Dataset 1

The suggested method's three distinct matrices of confusion are displayed in Figure 4.16
for the 10 Hz, 20 Hz, and 30 Hz operating frequency ranges. The total number of tests
for each course is shown in each matrix cell. The classification is divided into six classes.

TN, FN, TP, and FP are examined.

Confusion Matrix Confusion Matrix

Predictions Predictions

(a) (b)

Confusion Matrix

Predictions

(©
Figure 4. 16: Matrix of Confusion proposed model a) 10, b) 20, and c) 30 Hz for dataset
1.
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In particular, Figure 16(a) displays the proposed MLiDNet model confusion
matrix that was obtained for fault identification at 10 Hz. In this matrix, each row
represents the fault classes, and the fault classes predicted by the proposed model are
shown in each column. The values inside the cells indicate the number of entries for the
actual and expected classes. At 10 Hz, for example, the first row and first column cell
display the number of events correctly recognized as HL-1. The second row and third
column cell also show the number of cases that were misclassified as FL-3 at 10 Hz while
the actual class was FL-2.

4.8.4 Confusion Matrix Analysis on Proposed Method for Dataset 2
Figure 4.17 shows the MLiDNet method's three confusion matrices for the 30, 35, 40, 45,

and 50 Hz operating frequency bands. The matrix's cells each indicate how many tests
are required for a given class. The categorization has the following six classes. FN, FP,

TP, and TN are the four situations explored.
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Figure 4. 17: Matrix of Confusion proposed model (a) 30 Hz, (b) 35 Hz, (c) 40 Hz, (d) 45
Hz, and (e) 50 Hz for dataset 2.

In particular, Figure 4.17 (a) displays the confusion matrix that results from using
the suggested proposed model for identifying faults at 30 Hz. Each row of this confusion
matrix displays the actual fault classes, and each column displays the anticipated classes
derived from the suggested model. The number of instances in the cells shows how many

instances of each combination of current and anticipated classes are assigned to that com-
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bination. For instance, the cell in row 1, column 1 displays the number of cases that were
accurately recognized as HL-1 at 10 Hz. Similarly, the cell in row 2, column 3 displays
the number of cases incorrectly classified as FL-3 at 30 Hz while the true class was FL-

2.
4.8.5 Analysis by Comparison for Dataset 1

In this comparison, the efficacy of the proposed method in fault detection is assessed
against six well-known models: CNN [182], DT [183], S-Net, SVM, MSFFCNN, E-Net,
Hybrid Wavelet-CNN, and L-Net. Each model's fault identification accuracy is assessed
using key performance indicators, such as accuracy, precision, and F-measure, which also
minimize FN and FP. The effect of several frequency ranges on model performance was
also investigated. The MLiDNet method's comparison with traditional methods offers
essential information about each strategy's relative advantages and disadvantages. A
detailed comparison of the MLiDNet approach against existing over a range of training
data scenarios is provided by the study's results, which are illustrated in Figures 4.18,

4.19, and 4.20.

Furthermore, maximizing accuracy, F-measure, and precision [184] ratings are essential
for EM systems to detect faults effectively. At a frequency of 10 Hz, Figure 4.18
illustrates the effectiveness of the suggested and current fault detection techniques. CNN
outperforms the conventional models with a precision of 93.45%, an accuracy of 80.44%,
and an F-measure of 80.38%. However, with 97.84% precision, 93.59% accuracy, and
93.51% F-measure, MLiDNet surpasses these measures, proving its efficacy in fault
diagnosis. The proposed method consistently outperforms existing models, demonstrating

their scalability and stability.
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Figure 4. 18: Evaluation of suggested and traditional methods in comparison at 10
Hz for dataset 1.

The comparative evaluation is extended to proposed and existing methods at 20
Hz in Figure 4.19. Compared to traditional models, MLiDNet performs considerably
better on training data, with a 60% improvement. At 97.82% precision, 93.72% accuracy,
and 93.66% F-measure, MLiDNet significantly outperforms other methods. Even with
70%, MLiDNet performs exceptionally well, achieving 98.32% precision, 95.26%
accuracy, and 95.46% F-measure. The suggested approach maintains its clear advantage
in terms of accuracy and precision, even while older models produce competitive results.

MLiDNet further demonstrates its supremacy at 90%, achieving better results.
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Figure 4. 19Evaluation of suggested and traditional methods in comparison at 20 Hz for
dataset 1.

In the performance analysis shown in Figure 4.20, multiple fault detection models
were examined at 30 Hz. Using 60.1% training data, the proposed method showed its
superiority in accurately identifying combined errors with 97.73% precision, 93.28%
accuracy, and 93.20% F-measure. MLiDNet fared better than conventional methods.
MLiDNet demonstrated exceptional performance, reaching a peak of 99.79% accuracy
and 99.68% precision even with 80% and 90% training data, confirming its effectiveness
in fault identification. Based on these findings, the suggested approach outperforms

traditional approaches in terms of precision, accuracy, and dependability.
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Figure 4. 20: Evaluation of proposed and traditional methods in comparison at 30 Hz for
dataset 1.

4.9 Analysis of Comparisons for Dataset 2

The effectiveness of the suggested and traditional fault detection techniques at 30 Hz is
compared in the comparison analysis shown in Figure 4.21. With a precision of 82.34%,
an accuracy of 94.35%, and an F-measure of 82.28%, CNN distinguishes itself from the
traditional models. The proposed method surpasses these metrics with a precision of
97.74%, accuracy of 94.69%, and F-measure of 95.61%, proving the hybrid structure's
efficacy in fault identification. CNN and proposed still excel even when 70% of the

training data is used.
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Figure 4. 21: Evaluation of proposed and traditional methods in comparison at 30 Hz for
dataset 2.

Figure 4.22, which compares the proposed method to conventional techniques at
35 Hz, demonstrates how well the proposed performs using 60% of the training data. In
particular, the proposed outperforms other models with a precision of 95.13%, accuracy
of 97.32%, and F-measure of 94.65%. The proposed method consistently outperforms

traditional models, even when they yield competitive results.
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Figure 4. 22: Evaluation of proposed and traditional methods in comparison at 35 Hz for
dataset 2.

Figure 4.23 shows the performance evaluation of several fault detection systems
at varying learning percentages for 40 Hz. With 97.72% precision, 93.27% accuracy, and
93.30% F-measure, MLiDNet demonstrated its supremacy in accurately detecting
combined mistakes with 60%. With 70%, MLiDNet outperformed traditional techniques
with 97.72% precision, 95.36% accuracy, and 95.26% F-measure.
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Figure 4. 23: Evaluation of proposed and traditional methods in comparison at 40 Hz for
dataset 2.

Even at 80% and 90%, the impressive results of 98.79% precision and 98.78%
accuracy showcase the efficacy of the recommended fault identification technique (Figure

4.24). These results show that the proposed approach outperforms conventional methods

in terms of accuracy, precision, and reliability.
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Figure 4. 24: Evaluation of proposed and traditional methods in comparison at 45 Hz for

dataset 2.

The suggested approach remains dominant with a precision of 98.24%, an
accuracy of 94.83%, and an F-measure of 94.74% (Figure 4.25). MLiDNet continuously
beats other models when training data reaches 80% and 90%, proving its stability and

scalability. Fault detection effectiveness is demonstrated by MLiDNet's maximum

precision of 99.28%, accuracy of 99.45%, and F-measure of 92.74%.
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Figure 4. 25: Evaluation of proposed and traditional methods in comparison at 50 Hz for

dataset 2.

4.10 Evaluation of Computation Time for Dataset 1

According to Table 4.4, the suggested combined model performs better computationally

than existing techniques at a frequency of 10 Hz. With 60% of the training data, it takes

1.48 seconds to compute, and at 90%, it slightly increases to 2.08 seconds, which is the

shortest computing time. Conventional models, in contrast, operate much more slowly and

significantly as the amount of training data grows. CNN and DT models perform

substantially worse at more significant percentages of training data despite showing faster

processing speeds at lower percentages. With processing times of 11.24 seconds at 90%,

L-Net exhibits the worst performance, mainly when training with larger datasets.

MLiDNet is a very successful model for identifying faults.
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Table 4. 4: Analysis of MLiDNet's computational time in comparison to traditional
models at 10 Hz

Calculation time (seconds) at various percentages of training data (%)

Models 60% 70% 80% 90%
E-Net 6.64 7.41 8.98 9.12
Hybrid Wavelet-CNN 5.17 5.97 9.85 9.97
SVM 4.12 4.39 5.36 5.61
L-Net 1.56 6.04 9.06 11.24
CNN 2.11 222 432 4.56
MSFFCNN 4.20 4.48 5.47 5.72
S-Net 5.05 5.85 9.66 9.75
DT 2.28 2.56 4.29 6.43
MLiDNet 1.48 1.50 2.05 2.08

Table 4.4 compares the computing effort of the existing models at 20 Hz with the
suggested combined model. MLiDNet reaches its maximum speed of 1.54 seconds at 60%
training data and maintains its efficiency at 90% training data, needing 2.57 seconds. On
the other hand, when training data accumulates, a number of models exhibit considerable
increases in calculation time. For instance, SVM rises from 3.12 seconds at 60% to 8.66
seconds at 90%, while S-Net and E-Net achieve 6.55 and 9.12 seconds at 90%,
respectively. CNN and DT also experienced time increases, going from 1.78 to 5.37
seconds and 2.49 seconds to 7.59 seconds, respectively. L-Net peaks at 12.56 seconds at
90%. The efficiency of MLiDNet makes it ideal for fault detection.
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Table 4. 5: Analysis of MLiDNet's computational time in comparison to traditional
models at 20 Hz

Calculation time (seconds) at various percentages of training data (%)

Models 60% 70% 80% 90%
E-Net 6.54 7.59 8.45 9.12
Hybrid Wavelet-CNN 4.68 5.62 5.90 6.68
SVM 3.12 4.14 5.14 8.66
L-Net 7.46 7.73 11.74 12.56
CNN 1.78 3.33 4.12 5.36
MSFFCNN 3.18 4.22 5.24 8.83
S-Net 4.58 5.53 5.80 6.55
DT 2.49 3.17 6.01 7.59
MLiDNet 1.53 243 248 2.58

Table 4.6 compares the suggested and traditional models' computational times at
30 Hz for various percentages of training data. Even with more enormous datasets, the
proposed method can maintain low computational requirements, as demonstrated by
achieving a computational time of 1.40 seconds with 60% of training data, slightly
increasing to 1.85 seconds for 90% of training data. Other models' computation times,
however, are significantly longer. At larger data volumes, DT indicates decreased

efficiency.
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Table 4. 6: Analysis of MLiDNet's computational time in comparison to traditional
models at 30 Hz

Calculation time (seconds) at various percentages of training data (%)

Models 60% 70% 80% 90%
E-Net 5.28 6.01 6.52 6.87
Hybrid Wavelet-CNN 8.21 10.12 10.44 11.47
SVM 3.45 3.56 3.75 6.64
L-Net 3.82 5.33 6.76 7.18
CNN 2.03 2.51 2.65 3.21
MSFFCNN 3.523 3.64 3.83 6.77
S-Net 8.05 9.92 10.23 11.25
DT 1.46 3.41 3.79 4.68
MLiDNet 1.39 1.69 1.76 1.85

Nevertheless, L-Net shows a noticeable increase in computation time at 90% of training
data, reaching a peak of 7.18 seconds. With its exceptional accuracy and short calculation

time, the suggested approach is the best model for real-time fault identification.

4.11 Evaluation of Computation Time for Dataset 2

At 30 Hz, Table 4.7 shows that the proposed combined model outperforms current
methods computationally. It records the fastest computation time of 1.83 seconds with
60% of training data and significantly improves to 2.90 seconds at 90%. When it comes
to fault identification, the proposed method is very efficient, providing increased accuracy

while drastically cutting down on calculation time.
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Table 4. 7: Analysis of MLiDNet's computational time in comparison to traditional
models at 30 Hz

Calculation time (seconds) at various percentages of training data (%)

Models 60% 70% 80% 90%
E-Net 9.77 11.27 13.05 14.69
Hybrid Wavelet-CNN 9.67 11.28 12.67 14.25
SVM 9.80 11.45 12.86 14.77
L-Net 5.55 6.53 7.36 8.54
CNN 3.05 3.52 4.06 4.66
MSFFCNN 10.00 11.68 13.12 15.07
S-Net 9.48 11.06 12.42 13.97
DT 3.15 3.62 4.10 4.67
MLiDNet 1.83 2.15 2.49 2.90

The proposed method's computational time evaluation at a frequency of 35 Hz is
compared with conventional models in Table 4.8. At 6.37 seconds, MLiDNet performs
the fastest when 60% of the training data is used. With a computation time of 4.12
seconds, this efficiency is maintained when the training data approaches 90%. But for
other models, the increase in calculation time is more noticeable as training data sizes
increase. SVM, for example, shows a significant decrease in efficiency when its

computation time rises from 6.24 seconds at 60% to 9.66 seconds at 90%.
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Table 4. 8: Analysis of MLiDNet's computational time in comparison to traditional
models at 35 Hz

Calculation time (seconds) at various percentages of training data (%)

Models 60% 70% 80% 90%
E-Net 8.39 6.58 7.70 8.73
Hybrid Wavelet-CNN 6.66 7.31 8.38 9.67
SVM 6.24 7.54 8.73 10.12
L-Net 2.65 3.75 4.28 4.82
CNN 9.56 9.75 11.09 12.58
MSFFCNN 6.37 7.69 8.91 10.32
S-Net 5.74 7.17 8.21 9.47
DT 3.23 11.04 12.39 13.88
MLiDNet 6.36 3.09 3.57 4.11

Table 4.9 displays the suggested combined model's computational time evaluation
at afrequency of40 Hz in contrast to other training data models. The proposed computation
time is only 2.08 seconds when 60.01% of the training data is used, and it slightly
increases to 3.23 seconds when 90.01% of the training data is used. This outcome shows
that MLiDNet can sustain low processing needs despite increasing training data.
However, the computation times of other models are substantially longer.

Table 4. 9: Analysis of MLiDNet's computational time in comparison to traditional
models at 40 Hz

Calculation time (seconds) at various percentages of training data (%)

Models 60% 70% 80% 90%
E-Net 4.44 4.98 5.69 6.41
Hybrid Wavelet-CNN 7.61 8.98 10.49 11.86
SVM 2.26 2.65 3.05 3.51
L-Net 6.04 6.82 7.96 9.38
CNN 9.05 10.48 12.20 14.07
MSFFCNN 2.30 2.71 3.11 3.58
S-Net 7.47 8.80 10.28 11.63
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10.82
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From 9.81 seconds at 60% of the training data to 15.13 seconds at 90%, the S-Net model,

for example, has the longest computation time (Table 4.10). The E-Net model's

computation time rises from 5.07 to 7.74 seconds within the same range. Specifically,

CNN's time rises from 2.47 seconds at 60.01% to 3.83 seconds at 90.01%, whilst DT's

time decreases from 7.08 seconds to 11.12 seconds, indicating a decrease in efficiency.

Table 4. 10: Analysis of MLiDNet's computational time in comparison to traditional

models at 45 Hz

Calculation time (seconds) at various percentages of training data (%)

Models 60% 70% 80% 90%
E-Net 9.95 11.20 13.17 15.42
Hybrid Wavelet-CNN 5.86 6.72 7.73 9.03
SVM 5.76 6.61 7.58 8.88
L-Net 9.72 10.97 12.90 15.12
CNN 5.06 5.78 6.62 7.741
MSFFCNN 2.48 291 3.27 3.84
S-Net 7.07 8.21 9.48 11.13
DT 5.06 5.81 6.86 7.98
MLiDNet 1.59 1.85 2.12 2.36

In Table 4.11, the computational time of L-Net, however, also increases dramatically,

peaking at 10.49 seconds at 90% of training data. The suggested approach is ideal for

fault identification because of its high accuracy and low processing load.
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Table 4. 11: Analysis of MLiDNet's computational time in comparison to traditional
models at 45 Hz

Calculation time (seconds) at various percentages of training data (%)

Models 60% 70% 80% 90%
E-Net 9.04 10.17 11.57 12.97
Hybrid Wavelet-CNN 4.82 5.65 6.62 7.77
SVM 5.00 5.72 6.55 7.35
L-Net 6.91 7.76 9.10 10.49
CNN 2.69 3.04 3.52 4.11
MSFFCNN 5.10 5.83 6.68 7.49
S-Net 4.74 5.56 6.47 7.60
DT 4.56 5.13 5.96 6.76
MLiDNet 2.16 2.50 2.85 3.22

In Table 4.11, CNN and DT models have comparatively low initial computation times;
nevertheless, when the proportion of training data increases, there is a noticeable increase
in calculation time. CNN's time increases from 2.69 seconds at 60% to 4.10 seconds at
90%, whereas DT's time decreases from 4.57 seconds to 6.76 seconds, indicating lower

efficiency with higher data volumes.

4.12 Ablation Evaluation for Dataset 1

Ablation analysis is the deliberate process of disabling or removing specific system com-
ponents to see how their absence affects functionality or performance. Comparing the
performance of the proposed method to the conventional approaches at 10 Hz, 20 Hz, and
30 Hz was the aim of the ablation investigation. The results show that the suggested
method consistently shows higher accuracy and was studied, offering crucial information

about its effectiveness.
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Table 4. 12: Ablation analysis of proposed method compared to existing models at 10 Hz

for dataset 1

Prop-
Prop- Prop-
Prop- without ML- Pro-
Measures L-Net Conv D-Net Conv
Conv SE feature  Net posed
SSWT L-Net
selection
Specificity 0.9901  0.9797 0.9771 0.9918 0.9916 0.9576 0.9903 0.9981
NPV 0.9897  0.9797 0.9771 0.9918 0.9904 0.9576 0.9891 0.9967
Precision  0.9555  0.8987 0.8862 0.8993 0.9587 0.8683 0.9524 0.9904
MCC 0.9432  0.8784 0.8631 0.8762 0.9468 0.8460 0.9393 0.9847
FPR 0.0087  0.0202 0.0056 0.0058 0.0081 0.0056 0.0096 0.0018
Accuracy 0.9840  0.9662 0.9620 0.9764 0.9851 0.9427 0.9830 0.9956
F-measure 0.9527  0.8985 0.8860 0.8993 0.9557 0.8683 0.9494 0.9872
FNR 0.0502  0.1012 0.0439 0.0445 0.0472 0.0430 0.0533 0.0156
Sensitivity 0.9497  0.8987 0.8860 0.8993 0.9527 0.8683 0.9466 0.9841

At 10 Hz, Table 4.12 demonstrates that the suggested method performs noticeably

better than traditional models in every metric. Using a 99.57% accuracy rate, MLiDNet

outperforms the existing models. These outcomes show how much better MLiDNet is at

fault detection. Additionally, in terms of specificity (99.80%) and sensitivity (98.42%)),

MLiDNet performs better than the other modeling. It has an excellent precision of 99.35%

and an F-measure of 98.83%. The high effectiveness of the proposed method in

differentiating between fault and non-fault circumstances is demonstrated by its MCC,

which stands at 98.48%. The model's excellent dependability in forecasting non-fault

cases is shown by its NPV of 99.68%, while the lowest FPR and FNR among the models

under comparison are 0.0019 and 0.0157, respectively.
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Table 4. 13: Ablation evaluation of dataset 1 using the suggested approach in comparison
to current models at 20 Hz

P Prop- P P
rop- rop- rop-
P without ML- P P Pro-
Measures Conv L-Net Conv D-Net Conv
feature Net posed
SE SSWT L-Net
selection
Specificity 0.9911 L-Net 0.9765 0.9912 0.9898 09571 0.9898 0.9986
NPV 0.9897 0.9810 0.9766 0.9912 0.9885 0.9570 0.9887 0.9973
Precision 0.9556 09811 0.8829 0.8961 0.9493 0.8652 0.9493 0.9935
MCC 0.9432 0.9050 0.8593 0.8723 0.9357 0.8423 0.9357 0.9887
FPR 0.0088 0.8860 0.0234 0.0236 0.0101 0.0228 0.0101 0.0013
Accuracy  0.9840 0.0188 0.9608 0.9753 0.9821 09417 0.9821 0.9967
FDR 0.0443 0.9683 0.0425 0.0431 0.0506 0.0417 0.0507 0.0063
F-measure 0.9526 0.0949 0.8829 0.8962 0.9463 0.8653 0.9463 0.9904
FNR 0.0503 0.9051 0.0466 0.0473 0.0565 0.0456 0.0567 0.0126

Sensitivity 0.9497 0.0948 0.8828 0.8961 0.9433 0.8652 0.9433 0.9872

With an accuracy of 99.68%, MLiDNet continues to perform well at 20 Hz, as
shown in Table 4.13. It outperforms the existing methods. Among the models tested, the
proposed model also has the best sensitivity (98.74%) and specificity (99.87%).
Additionally, the F-measure shows its accuracy at 99.36% and efficacy at 99.05%. Its
durability in fault detection is demonstrated by its NPV of 99.84% and MCC of 98.86%.
The suggested model has the fewest mistakes in identifying healthy faults, with the lowest
FPR at 0.0013 and FNR at 0.0126.
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Table 4. 14: Ablation analysis of dataset 1 using the suggested approach in comparison
to conventional techniques at 30 Hz

Prop-
Prop- Prop- Prop-
without ML-
Metrics  Proposed Conv Conv  Conv L-Net D-Net
feature Net
SSWT SE L-Net
selection

Accuracy 0.9978  0.9820  0.9894 0.9883 0.9673 0.9683 0.9479 0.9818
Sensitivity 0.9905  0.9433  0.9654 0.9622 0.9018 0.9050 0.8838 0.9154
Specificity 0.9993  0.9898  0.9942 0.9936 0.9803 0.9810 0.9607 0.9950
Precision 0.9968  0.9493  0.9715 0.9683 0.9018 0.9050 0.8838 0.9154
F-measure 0.9936  0.9463 0.9684 0.9653 0.9018 0.9050 0.8838 0.9154
MCC 0.9924 09356 0.9621 0.9583 0.8822 0.8860 0.8646 0.8955

NPV 0.9981  0.9886  0.9930 0.9924 0.98038 0.9810 0.9607 0.9950
FPR 0.0006  0.0101  0.0057 0.0063 0.01962 0.0189 0.0192 0.0199
FNR 0.0094  0.0566  0.0345 0.0377 0.0681 0.0949 0.0667 0.0691
FDR 0.0031  0.0506 0.0284 0.0316 0.0481 0.0949 0.0471 0.0488

With an accuracy of 99.78% at 30 Hz, the proposed methods perform better than
the model without feature selection, as indicated in Table 4.14. The model's performance
1s outstanding, with a 99.05% sensitivity and a 99.93% specificity. A 99.67% accuracy
rate and a 99.36% F-measure further illustrate its remarkable fault detection capabilities.
The suggested method's effectiveness is further demonstrated by a 99.81% NPV and a
99.24% MCC. The model's low FPR of 0.0006 and FNR of 0.0094 demonstrate its ability

to differentiate faults from non-faults reliably.
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Table 4. 15: Cross-speed generalization performance trained on 10 Hz and 20 Hz, tested
on 30 Hz for Dataset 1

Prop- Prop- Prop- Prop-
Measure Conv- L-Net w/o ML- Conv- D-Net Conv- Proposed
SE FS Net SSWT L-Net
Specificity 0.9020 0.8955 0.8891 0.9062 0.9115 0.8820 0.9188  0.9408
NPV 0.9010 0.8923 0.8880 0.9040 0.9091 0.8805 09167 0.9391
Precision  0.8550 0.8487 0.8402 0.8623 0.8705 0.8308 0.8742  0.9103
MCC 0.8205 0.8102 0.8007 0.8345 0.8450 0.7931 0.8508  0.8924
FPR 0.0980 0.1045 0.1109 0.0938 0.0885 0.1180 0.0812  0.0592

Accuracy 0.9190 0.9123 0.9068 0.9251 0.9300 0.8980 0.9337  0.9432
F-measure 0.8510 0.8455 0.8370 0.8600 0.8691 0.8280 0.8720  0.9077
FNR 0.0855 0.0908 0.0920 0.0830 0.0785 0.0951 0.0745 0.0523
Sensitivity 0.9145 0.9092 0.9080 0.9170 0.9215 0.9049 0.9255 0.9477

Table 4.15 evaluated the model by training on 10 Hz and 20 Hz data and testing on 30
Hz, for Dataset 1. It is found that the performance of the proposed model under this
condition is moderately lower compared to same-speed training-testing scenarios,

particularly in terms of accuracy.

4.13 Ablation Study of Proposed Fault Diagnosis for Dataset 2

Ablation analysis systematically shuts down or ignores specific system
components to observe effects in absence based on operation or performance. The
proposed ablation result was to compare its performance to that of conventional methods
at 30 Hz, 35 Hz, 40, 45 Hz, and 50 Hz. The results provide essential information about
the usefulness of the suggested strategy, demonstrating that it consistently exhibits

enhanced accuracy across all frequencies investigated.
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Table 4. 16: Ablation evaluation of proposed method compared to existing models at 30

Hz for dataset 2
Prop-
Prop- Prop- Prop-
without Pro-
Measures Conv L-Net ML-Net Conv D-Net Conv
feature posed
SE SSWT L-Net
selection
Specificity 0.9942  0.9810 0.9950 0.9950 0.9898 0.9607 0.9936 0.9993
NPV 0.9930 0.9810 0.9950 0.9698 0.9886 0.9607 0.9924 0.9981
Precision 0.9715 0.9050 09154 0.7955 0.9493 0.8838 0.9683 0.9968
MCC 0.9621 0.8860 0.8955 0.7486 0.9356 0.8646 0.9583 0.9924
FPR 0.0057 0.0189 0.0199 0.0439 0.0101 0.0192 0.0063 0.0006
Accuracy 0.9894 0.9683 0.9818 0.9408 0.9820 0.9479 0.9883 0.9978
FDR 0.0284 0.0949 0.0488 0.7931 0.0506 0.0471 0.0316 0.0031
F-measure 0.9684 0.9050 09154 0.2194 0.9463 0.8838 0.9653 0.9936
FNR 0.0346 0.0948 0.0691 0.2243 0.0567 0.0666 0.0378 0.0093
Sensitivity  0.9654  0.9050 0.9154 0.7907 0.9433 0.8838 0.9622 0.9905

At 30 Hz, MLiDNet performs better than conventional models on all statistical

measures, as shown in Table 4.16. MLiDNet's better fault detection capabilities are

demonstrated by its 99.39% accuracy, which outperforms models utilizing conventional

methods. With a sensitivity of 97.91% and a specificity of 99.69%, MLiDNet also

performs exceptionally well. It also records an accuracy rate of 98.49% and an excellent

F-measure of 98.20%. The high MCC of 97.84% further demonstrates the proposed

method's ability to discriminate between faulty and non-faulty circumstances. The

model's NPV of 99.56% indicates that it is highly reliable in forecasting non-fault cases.
It is noteworthy for having the lowest FNR of 0.0208 and the lowest FPR of 0.0030.
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Table 4. 17: Ablation examination of dataset 2 using the suggested approach in
comparison to current approaches at 35 Hz

Prop-
Prop- Prop-
Prop- without Pro-
Measures L-Net ML-Net Conv D-Net Conv
Conv SE feature posed
SSWT L-Net
selection
Specificity 0.9536  0.9735 0.9602 09746 0.9573 0.9411 0.9615 0.9891
NPV 0.9526  0.9721 0.9591 0.9735 0.9561 0.9399 0.9602 0.9878
Precision 0.7687  0.8678 0.8017  0.8139 0.7866 0.7856 0.8078 0.9458
MCC 0.7196  0.8382 0.7591 0.7705 0.7411 0.7438 0.7662 0.9317
FPR 0.0366  0.0187 0.0431 0.0439 0.0426 0.0424 0.0432 0.0030
Accuracy  0.9218  0.9549 0.9329  0.9468 0.9278 0.9141 0.9349 0.9808
FDR 0.2312  0.1321 0.1981 0.2011 0.2132 0.1942 0.1921 0.0540
F-measure 0.7664  0.8652 0.7993  0.8113 0.7844 0.7834 0.8054 0.9431
FNR 0.2357  0.1374 0.2029  0.2061 0.2178 0.1987 0.1971 0.0596
Sensitivity  0.7641 0.8626 0.7970  0.808  0.7820 0.7810 0.8028 0.9402

Table 4.17 shows an accuracy of 98.09%, demonstrating MLiDNet's continued

outstanding performance at 35 Hz. The accuracy and efficacy of the F-measure are

94.59% and 94.31%, respectively. MCC of 93.17% demonstrates its resilience in fault

identification. The proposed method achieves better results with a low FPR of 0.011 and

an FNR of 0.053.
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Table 4. 18: Ablation evaluation of the proposed method compared to existing approaches

at 40 Hz

Prop-

without Prop- Prop-
Measures Frop- L-Net feature Conv D-Net Conv Fro-

ConvSE selection T SSWT LNt PO

Specificity 0.9531 0.9783  0.9567 0.9710 0.9579 0.9375 0.9518 0.9945
NPV 0.9519 09771 0.9556  0.9698 0.9566 0.9364 0.9508 0.9933
Precision  0.7656 0.8918 0.7837 0.7955 0.7897 0.7681 0.7597 0.9728
MCC 0.7160 0.8668 0.7376  0.7486 0.7446 0.7228 0.7089 0.9640
FPR 0.0468 0.0216  0.0432  0.0439 0.0420 0.0424 0.0481 0.0054
Accuracy  0.9209 0.9629  0.9268 0.9408 0.9288 0.9083 0.9188 0.9898
FDR 0.7633 0.8891 0.7814  0.7931 0.7874 0.7658 0.7574 0.9700
F-measure 0.2388 0.1134  0.2209 0.2242 0.2148 0.2164 0.2446 0.0327
FNR 0.2342 0.1081 0.2162 0.2194 0.2102 0.2118 0.2402 0.0271
Sensitivity 0.7611 0.8865 0.7791  0.7907 0.7850 0.7635 0.7552 0.9671

The proposed approach performs better at 98.99% at 40 Hz than the conventional

SSWT, as shown in Table 4.18. The model exhibits remarkable performance with the

highest significant sensitivity of 96.72% and specificity of 99.46%. Its accuracy of

99.69% and F-measure of 97.39% illustrate its exceptional fault detection performance.

The proposed method's effectiveness is further supported by 96.45% MCC and 99.33%

NPV. Its capacity to distinguish between real and false faults is demonstrated by its lowest
FPR of 0.0054 and FNR of 0.032. The analysis results show that, across all frequencies

studied, the suggested approach performs better than conventional approaches.

165



Table 4. 19: Ablation analysis of the suggested approach compared to existing models at

45 Hz

Prop Prop- Prop Prop
Measures Conv  L-Net without - ML- Conv D-Net Conv Pro-

SE feature Net SSWT L-Net posed

selection

Specificity 0.9579 0.9789  0.9627  0.9771 0.9536 0.9434 0.9542 0.9921
NPV 0.9567 09777  0.9615  0.9759 0.9525 0.9423  0.9531 0.9909
Precision  0.7897 0.8948  0.8138  0.8260 0.7687 0.7975  0.7717 0.9609
MCC 0.7447 0.8705  0.7735  0.7851 0.7195 0.7580  0.7231 0.9496
FPR 0.0420 0.0210  0.0372  0.0378 0.0463 0.0365 0.0457 0.0078
Accuracy 0.9289 0.9639  0.9369  0.9509 0.9219 09181 0.9229 0.9859
FDR 0.7874 0.8922  0.8113  0.8235 0.7664 0.7951 0.7694 0.9580
F-measure 0.2149 0.1104 0.1910  0.1939 0.2358 0.1872  0.2328 0.0448
FNR 0.2102 0.1051  0.1861 0.1889 0.2312 0.1824  0.2282 0.0391
Sensitivity 0.7611 0.8865  0.7791 0.7907 0.7850 0.7635 0.7552 0.9670

Furthermore, out of all the models analyzed in Table 4.19, the proposed method
has the best sensitivity (98.58%) and specificity (99.22%). Its 96.08% accuracy and

95.81% F-measure further support its effectiveness. Its predictive accuracy of 99.09%

and MCC of 94.96% show how resilient it is at identifying faults. The suggested method
has a low FPR (0.007) and FNR (0.044) and makes the fewest errors when detecting faults

and healthy states.

Table 4. 20: Comparison of proposed ablation analysis at 50 Hz with traditional SSWT,

SE, and L-Net models

Prop-
Prop- Prop-
Prop- without ML- Pro-
Measures L-Net Conv D-Net Conv
Conv SE feature Net posed
SSWT L-Net
selection
Specificity 0.9537 09771 09518 0.9661 0.9523  0.9328 0.9493 0.9926
NPV 0.9526 09759 0.9507 0.9650 0.9512 0.9317 0.9482 0.9916
Precision  0.7688  0.8858 0.7597  0.7711 0.7628  0.7445 0.7476 0.9638
MCC 0.7196  0.8598 0.7088  0.7194 0.7123  0.6946 0.6943 0.9531
FPR 0.0464  0.0228 0.0481 0.0488 0.0476  0.0471 0.0506 0.0073
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Accuracy 09218 09609 09189 0.9327 09198 0.9005 0.9148 0.9868

FDR 0.7663  0.8832 0.7574 0.7688 0.7603  0.7423 0.7456 0.9611
F-measure 0.2357 0.1194 0.2447 0.2484 0.2416 0.2398 0.2568 0.0418
FNR 0.2310 0.114 0.2403  0.2437 0.2371  0.2353 0.2520 0.0360

Sensitivity 0.7640  0.8805  0.7552  0.7665 0.7583  0.7401 0.7431 0.9583

Comparing the proposed model to the conventional approach in Table 4.20, the
proposed accuracy at 50 Hz is 98.69%. The results of the ablation analysis demonstrate
that, for every tested frequency, The recommended method routinely performs better than
feature extraction and convolutional signal analysis methods.

Table 4. 21: Cross-speed generalization performance trained on 10 Hz and 20 Hz, tested
on 30 Hz for Dataset 2

Prop- Prop- ML Prop- Prop-
Measure Conv- L-Net w/o Conv- D-Net Conv- Proposed
SE FS Net SSWT L-Net
Specificity  0.9020 0.8955 0.8891 0.9062 09115 0.8820 0.9188  0.9408
NPV 0.9010 0.8923 0.8880 0.9040 0.9091 0.8805 0.9167 0.9391
Precision 0.8550 0.8487 0.8402 0.8623 0.8705 0.8308 0.8742  0.9103
MCC 0.8205 0.8102 0.8007 0.8345 0.8450 0.7931 0.8508 0.8924
FPR 0.0980 0.1045 0.1109 0.0938 0.0885 0.1180 0.0812  0.0592

Accuracy 0.9190 0.9123 0.9068 0.9251 0.9300 0.8980 0.9337  0.9432
F-measure  0.8510 0.8455 0.8370 0.8600 0.8691 0.8280 0.8720  0.9077
FNR 0.0855 0.0908 0.0920 0.0830 0.0785 0.0951 0.0745  0.0523
Sensitivity ~ 0.9145 0.9092 0.9080 0.9170 0.9215 0.9049 0.9255 0.9477

Table 4.21 evaluated the model by training on 10 Hz and 20 Hz data and testing on 30
Hz, for Dataset 2. The performance of the proposed model under this condition is found
to be moderately lower, especially in terms of accuracy, when compared to training and
testing at the same speed. This is primarily due to the variability in signal patterns at
different speeds, which affects the learned representations. However, the results still show
that the proposed model performs comparatively better than most baseline methods in the
same cross-speed setup, indicating some level of generalization.

4. 14 Analysis of the Dataset 1 Receiver Operating Characteristic Curve
The Receiver Operating Characteristic Curve (ROC) displays the relationship between
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the TPR and the FPR for different categorization criteria. ROC curves are essential for
comparing and assessing how well categorization models perform. The ROC curve study
in Figure 4.26 compares the performance of the suggested method and convolutional
approaches for detecting EM system failures at 10 Hz, 20 Hz, and 30 Hz frequencies with
60% of the training data. As the ROC curves show, the suggested approach outperforms

conventional models at all frequencies.
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Figure 4. 26: ROC Curve analysis using 60% for dataset 1 at a) 10 Hz, b) 20 Hz, and c)
30 Hz comparing suggested and conventional models.

0.8 1.0

The efficiency of the proposed model is seen in Figure 4.26 (b), where 60% of the
training data is used to obtain an area under curve (AUC) of 0.97 at a frequency of 20 Hz.
The results show that the suggested model maintains a low FPR while producing a high
TPR across a variety of criteria. When it comes to distinguishing between fault and
healthy states at this frequency, the proposed strategy outperforms the existing methods
investigated in the study, with an AUC of 0.97. The proposed demonstrates its capacity
to precisely identify faults while maintaining low FPR and high TPR without appreciably

misclassifying typical situations.

168



1.0 1.0
% 0.8
% 0.8 %
o p o
P o 2
_g 0.6 MSFFCNN(area = 0,93) > 0.6 —— MSFFCNN(area = 0.91)
‘B Hybrid Wavelet-CNN(area = 0,91) ‘u*; Hybrid Wavelet-CNN(area = 0,91)
2 SVM(area = 0,93) g —— SVM(area = 0,93)
© 0.4 S-Net(area = 0.94) © 0.4 —— S-Net(area = 0.92)
E E-Net(area = 0,93) E ~—— E-Net(area = 0.91)
= i CNN(area = 0.91) = ,~—— CNN(area = 0.93)
0.2 P DT(area = 0.92) 0.2 s DT(area = 0.93)
~ L-Net(area = 0.91) > —— L-Net(area = 0.93)
MLIDNet(area = 0.98) ,," MLIDNet(area = 0.98)
0.0 &= 0.0 &=
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate False Positive Rate
(a) (b)
R operating
1.0 I
— _’__’__—”',’— /'
o 0.8
B
©
m -
P s
> 06 MSFFCNN(area = 0.91)
°—0; Hybrid Wavelet-CNN(area = 0.91)
8 —— SVM(area = 0,94)
© 0.4 ~ S-Net(area = 0.95)
a ~—— E-Net(area = 0.91)
- —— CNN(area = 0.94)

0.2 DT(area = 0.91)
& L-Net(area = 0.91)
MLiDNet(area = 0.98)

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

(©
Figure 4. 27: ROC Curve analysis using 70% for dataset 1 at a) 10 Hz, b) 20 Hz, and c)
30 Hz comparing suggested and conventional models.

The examination in Figure 4.27, which makes use of 70% of the training data,
highlights the suggested consistency and dependability even with a smaller dataset. The
ROC curve study displays the effectiveness of the recommended and traditional fault
detection techniques at different frequencies. In comparison to more conventional
approaches, the proposed obtains an AUC of 0.98 at 10 Hz. With AUC values of 0.98 at
20 Hz and 30 Hz, MLiDNet maintains its excellent performance, demonstrating its

dominance in fault detection.
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30 Hz comparing suggested and conventional models.

The ROC analysis in Figure 4.28 provides crucial details regarding the effectiveness of
the suggested model across a range of frequencies for training data, 80% when compared
to conventional fault recognition techniques. With an AUC of 0.98 at a frequency of 10
Hz (Figure 4.28(a)), MLiDNet performs quite well, outperforming the AUC values of

conventional techniques. The outcomes show how effectively MLiDNet can distinguish

between faults and healthy circumstances at this frequency.
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Figure 4. 29: Comparison of the suggested and existing models' ROC curves at a) 10 Hz,
b) 20 Hz, and c) 30 Hz using 90% for dataset 1.

With a remarkable AUC of 0.99 at 10 Hz, the proposed exhibits exceptional
sensitivity and specificity in differentiating between fault and non-fault circumstances in
Figure 4.29 (a), (b), and (c). With AUC values between 0.97 and 0.98, conventional
techniques demonstrate superior performance. Even though these techniques work well,
MLiDNet performs somewhat better than them, which is indicative of its improved fault
detection ability. MLiDNet's steep rise in the ROC curve indicates high TPR and minimal
false positives. While conventional techniques display AUC values between 0.96 and
0.98, MLiDNet consistently maintains an AUC of 0.99 at 20 Hz and 30 Hz, proving its

dependability and efficacy across frequencies.

4.15 Receiver Operating Characteristic Curve Analysis for
Dataset 2

The TPR versus the FPR for different classification criteria is shown using a ROC curve.

In a random classifier that matches the perfect classifier, the curves graphically represent

the trade-off between specificity and sensitivity, while the diagonal line surrounds the

upper left corner. ROC curves are essential for evaluating and comparing categorization
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models' effectiveness. The ROC curve study in Figures 4.30, 4.31, 4.32, and 4.33 for EM
system failure identification across frequency for training data of 60% shows how well
the proposed approach performs compared to existing methods. The suggested method

outperforms the conventional methods, according to the ROC curves.
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Figure 4. 30: Comparison of the proposed and existing models' ROC curves at a) 30 Hz,
b) 35 Hz, ¢) 40 Hz, d) 45 Hz, and e) 50 Hz using 60% for dataset 2.

Figure 4.30 (a) shows the performance of the MLiDNet model at a frequency of
30 Hz with 60% training data, where its AUC of 0.97 indicates that it maintains a low
FPR and a high TPR across a range of criteria. As demonstrated by the AUC value of
0.95, the method performs better than any other conventional model evaluated in the study
for differentiating between fault and healthy situations at this frequency. The curve's sharp
upward slope and low FPR show that the proposed model can accurately identify errors
while lowering the proportion of incorrectly classified normal conditions. The findings

demonstrate the MLiDNet model's dependability and efficacy in fault identification.
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Figure 4. 31: Comparison of the suggested and existing models' ROC curves at a) 30 Hz,
b) 35 Hz, ¢) 40 Hz, d) 45Hzand e) 50 Hz using 70% for dataset 2.

MLiDNet is reliable and consistent even when just a small portion of the dataset
is used for training, as shown by the analysis in Figure 4.31, which used 70% of the training
data. Thorough ROC curve comparisons could provide essential insights into how well
the proposed model and traditional fault detection methods perform at various
frequencies. The proposed model performs admirably at 30 Hz, with an amazing AUC

0f 0.96 Figure 4.31(c), (d), illustrating how MLiDNet is better than previous techniques.
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Figure 4. 32: With 80% for dataset 2, the ROC Curve performance compares the
suggested and conventional models at a) 30 Hz, b) 35 Hz, c) 40 Hz, d) 45 Hz, and e) 50
Hz.

The ROC curve analysis offers valuable insights when comparing the proposed
model to conventional fault detection techniques at different frequencies. It is shown in
Figures 4.32 and 4.33 with training data of 80% and 90%, respectively. At a frequency of
45 Hz, MLiDNet performs better than more conventional techniques, obtaining an AUC
of 0.97 (Figure 4.32(a)), demonstrating the suggested model's improved capacity to dis-

criminate between problems and favorable conditions at this frequency.
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Figure 4. 33: With 90% for dataset 2, ROC curve performance comparing suggested and
existing models at a) 30 Hz, b) 35 Hz, ¢) 40 Hz, d) 45 Hz, and e) 50 Hz.

Once more, the suggested method exhibits outstanding performance with an AUC
0f 0.99 at 50 Hz, proving its dependability and efficiency in fault detection jobs across a
spectrum of operating frequencies. Traditional methods do reasonably well, with AUC
values between 0.96 and 0.98. Even at higher frequencies, the proposed consistently high
AUC value shows how reliable and resilient it is at accurately identifying faults in EM

systems.

4.16 Conclusion

This chapter proposes a novel MLiDNet-based method for electromechanical fault
detection that attempts to solve issues caused by electrical and mechanical imbalances.
The suggested combined model outperforms conventional methods by combining
modified L- Net and D-Net designs. When dataset 1 is thoroughly compared at several
operating frequencies (10, 20, and 30 Hz), it is evident that MLiDNet continuously
performs better than traditional techniques, obtaining more significant performance
measures. After training on 90% of the data, the model produces remarkable results with
an F-measure of 99.37%, accuracy of 99.68%, and precision of 99.79% at a frequency of
30 Hz. With 90% of the data, MLiDNet requires just 2.57 seconds, and with 60% of the
data, it takes 1.54 seconds. On the other hand, the computational time of other models

rises noticeably with
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the volume of training data. For dataset 2, MLiDNet continuously outperforms
conventional techniques in a thorough evaluation across a range of operating frequencies.
MLiD- Net outperforms other models with a 97.42% accuracy rate, 95.23% precision
rate, and 94.75% F-measure. With remarkable AUC values, ROC curve analysis validates
the MLiDNet suggested model's robustness and dependability.
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Chapter 5

Conclusion and Future Scope

This chapter presents the results of this study, presenting the essential advancements made
in using combined DL and sophisticated signal processing techniques for gearbox and
EM system fault diagnosis and detection. Furthermore, it discusses the potential expansion
of this research to incorporate more advanced methods and techniques for further

enhancing fault detection accuracy and system efficiency in future applications.

5.1 Conclusion

In conclusion, this research substantially adds to the EM systems and gearboxes field. It
is essential for preserving the effectiveness and dependability of automotive and industrial
machines. By deploying novel combined DL methodologies, it is possible to diagnose
faults in the gearbox and EM system and effectively handle the vibration signals
generated by different gears. The first combines Bi-LSTM with RNN models while
enhancing them with the OAHCSA technique in weight optimization and achieves
exceptional ac- curacies at various frequencies. It signifies the effectiveness and
adaptability of the new method in accurately identifying and categorizing the detected
faults in the gearbox. The research is conducted focusing on assessing potential damage
to a gear with varying levels of crack severity. The initial multi-step process involved two
distinct methods: CEEMDAN for pre-processing and the Bi-LSTM and IDBN classifiers.
The research ex- tends the study in the diagnosis of multiple failures in EM systems using
the introduction of the so-called MLiDNet, which combines different signal processing
technologies like enhanced ISSWT and entropy-based feature extraction. This approach
demonstrates the ability of the model-dual use of advanced signal processing and well-
known deep-learning classifiers to accurately diagnose the most complex fault scenarios,
including combined faults in the EM system. The methods demonstrate outstanding
potential for practical application in industry since they allow for robust and accurate fault

detection and classification within gearboxes and EM systems.
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Major Findings

The significant findings of the works are as follows.

The proposed OAHCSA-HC model approach attains exceptional performance
metrics, with a maximum classification accuracy, specificity, sensitivity,
precision, and Fl-score of 99.62%, 99.88%, 99.54%, 99.79%, and 99.66%,
respectively.

The model without statistical features reaches an accuracy of 86.9%,
highlighting the benefit of feature selection and optimization. The proposed
OAHCSA- HC model achieves the highest accuracy of 99.2%, indicating
excellent performance. Also, in terms of computational complexity, the
proposed OAHCSA- HC consistently shows the lowest computational time
across all tested frequencies (15 Hz, 20 Hz, 25 Hz, and 30 Hz), with times of
3.305 seconds at 15 Hz,

3.529 seconds at 20 Hz, 3.663 seconds at 25 Hz, and 4.153 seconds at 30 Hz.
The outcomes highlight how well the OAHCSA-HC model balances high fault
detection accuracy with minimal computational overhead.

When the training percentage is 90%, the suggested Bi-LSTM-IDBN strategy
attains the highest accuracy, achieving 99.65%. The accuracy rates of traditional
approaches, on the other hand, are lower: D-Net scored 98.28%, M-Net scored
97.76%, RF scored 98.11%, SVM scored 97.76%, RNN scored 97.93%, Bi-
GRU scored 97.93%, and Bi-LSTM scored 98.45%, and DCNN scored 97.93%.
In the ablation study, the Bi-LSTM-IDBN model achieved an accuracy of
99.65% at 15 Hz, outperforming models utilizing traditional CEEMDAN,
conventional cross-correntropy, and standard DBN, which attained accuracies
01 98.28%, 98.45%, and 98.62%, respectively. Notably, at 20 Hz, the Bi-LSTM-
IDBN model demonstrated a significantly reduced computation time of 0.9937
seconds. In contrast, traditional approaches exhibited substantially higher
computational costs, with D-Net requiring 6.53 seconds, M-Net 5.64 seconds,
RF

1.388 seconds, SVM 5.668 seconds, RNN 1.583 seconds, Bi-GRU 7.823
seconds, Bi-LSTM 3.633 seconds, and DCNN 2.101 seconds.

The suggested MLiDNet continuously beats traditional methods, achieving
97.42% accuracy, 95.23% precision, and 94.75% F-measure. In the Ablation
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investigation, the accuracy of the proposed model is 98.69% at 50 Hz, compared

to 91.99% for the traditional SSWT.

° The accuracy without feature selection is 91.89%, 96.09% for the L-Net,
90.05% for the D-Net, and 93.27% for the ML-Net. MLiDNet's computation
time is only 2.08 seconds when 60% of the training data is used, and it slightly
increases to 3.23 seconds when 90% of the training data is used. This outcome
shows that MLiDNet can sustain low processing requirements even as the
volume of training data grows. However, the computation times of other models

are substantially longer.

5.2 Future Scope

This thesis focuses on essential challenge-based CM approaches for fault detection in
bevel gears and EM systems. However, several areas still require further investigation.

To further this research, the following study directions are suggested for future work.

. The proposed approach can also be used to diagnose combined local faults at the
micron level that may occur in a gearbox.

. Additionally, the methodology can be extended to analyze various gear types for
fault diagnosis, including spur gears, helical gears, planetary gears, and others.

J Incorporating advanced signal processing into the model can enhance its ability
to manage noisy or low-quality data, improving real-time data processing and
enabling on-the-fly adjustments in dynamic environments.

o This approach can potentially be used in the aerospace and automotive diagnostics
industries. Still, more effort is needed to integrate advanced optimization
techniques to improve efficiency and reduce time consumption for industrial

applications.
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