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ABSTRACT 

Gearboxes, being essential elements in sectors such as manufacturing, transportation, and 

power generation, are highly susceptible to failures, including gear cracks, misalignment, 

and wear. Such faults can cause catastrophic system breakdowns, prolonged production 

downtimes, and costly repairs. Early detection of these faults is crucial for preventing 

system failures and ensuring smooth operation. Similarly, electromechanical (EM) 

systems are widely used in industries for various applications. EM systems mostly have 

an electric motor as a prime mover and a mechanical load, such as a rotor, gearbox, 

pumps, etc., coupled. EM systems may have combined faults, i.e., faults in motors and 

faults in loads. Diagnosing combined faults is challenging due to overlapping symptoms 

and their compounded effects. Hence, advanced fault detection and classification methods 

are necessary to improve the reliability of gearboxes and EM systems, optimize 

maintenance scheduling, reduce downtime, and enhance productivity while cutting costs. 

 

This thesis contributes to the field with three significant research developments. The first 

work introduces an entropy-based feature extraction method for gearbox fault detection. 

This approach leverages statistical characteristics, higher-order statistical features, and 

modified entropy measures, including Renyi entropy, modified log-energy entropy, and 

Shannon entropy, to detect gearbox faults. A hybrid classifier (HC) model combining 

bidirectional long short-term memory (Bi-LSTM) and recurrent neural network (RNN), 

optimized using the Opposition-based Artificial Hummingbird Crow Search Algorithm 

(OAHCSA), is pro- posed. The outputs of the two classifiers are averaged to improve 

accuracy, allowing effective fault detection at various frequency levels. The results 

demonstrate exceptional performance and computational efficiency of the proposed 

OAHCSA-HC model for gearbox fault diagnosis. This model significantly reduced 

computational time, processing data at 3.30 seconds at 15 Hz, which is approximately 56% 

faster than the previous CSA-HC model. It also displayed outstanding classification 

accuracy, with an overall accuracy rate of 99.61% at 15 Hz, which was improved to 

99.62% when statistical features were incorporated. The model also showed a high 

specificity of 99.88%, precision of 99.79%, and sensitivity of 99.54% at 15 Hz, indicating 

its ability to minimize false positives while accurately detecting faults. These findings 

state the OAHCSA-HC model is an efficient, precise, and computationally advantageous 

solution for gearbox fault diagnosis. 
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The second contribution focuses on an enhanced entropy-based feature extraction 

method, combining time-frequency domain, frequency-domain, and time-domain charac- 

teristics with altered entropy measurements. A pre-processing approach called enhanced 

complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN) is 

used to minimize the noise in the obtained raw vibration signal. Data augmentation is 

used to improve the feature set. Additionally, the combined classification model is applied 

to the enhanced feature set in order to categorize the various gear crack levels. This hybrid 

model combines enhanced deep belief network (IDBN) classifiers with Bi-LSTM. The 

findings demonstrate that integrating Bi-LSTM with IDBN achieved an impressive 

99.82% accuracy while maintaining a low computational time of 0.74 seconds. These 

results demonstrate how well the proposed approach performs as a highly accurate and 

efficient way to detect gear faults. 

 

The third contribution presents the design of a modified LinkNet and DenseNet-based 

fault classification model, MLiDNet, to diagnose combined faults in EM systems. The 

signal preprocessing employs improved synchro-squeezing wavelet transform (ISSWT) 

and entropy-based feature extraction, including norm, spectral, threshold, and wavelet 

energy entropy. The extracted features are fed into the MLiDNet hybrid deep learning 

classifier for accurate and early fault detection. The findings demonstrated that, when 

trained on 90% of the data at a frequency of 30 Hz, MLiDNet produced exceptional 

results. The results showed an accuracy of 99.79%, a precision of 99.68%, and an F-

measure of 99.37%. MLiDNet maintains efficiency at 2.57 seconds with 90% data and 

achieves a low computational time of 1.54 seconds with 60% training data, in contrast to 

other models with more pronounced increases in computational time as the training data 

increases. In this way, the thesis offers data-driven and experimental methods for 

classifying bevel gear and electromechanical system faults. 

 

Keywords: Gearbox fault diagnosis, Combined Fault, combined classification model, 

recur- rent neural network (RNN), deep belief network (DBN), bidirectional long short-

term memory (Bi-LSTM), data augmentation, deep learning. 
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Chapter 1 

Introduction and literature review 
 
 

1.1 Introduction 

Gears and electric motors are essential components in various industrial and automotive 

systems, playing critical roles in transmitting power and motion. The seamless interaction 

between these elements is crucial for the efficient operation of machinery, where any 

faults can significantly impact performance and reliability. Gearboxes are key elements 

in torque transmission and are susceptible to faults such as wear, pitting, and cracking, 

which often manifest through changes in vibration and noise signals. Similarly, an 

electromechanical (EM) system comprises mechanical and electrical parts, including belt 

pulley drives, gearboxes, couplings, rotor-bearing systems, electric motors, and 

generators. Electric motors are prone to electrical and mechanical faults such as bearing 

wear, rotor imbalances, and winding failures, disrupting the system's operation. 

Accurate fault detection and classification in these systems are vital to minimizing 

downtime and maintenance costs while ensuring operational safety. This research focuses 

on leveraging advanced signal processing techniques and deep learning (DL) machine 

learning (ML) algorithms to diagnose gear faults and combined faults in EM systems, 

offering a robust framework for improving the dependability of vital mechanical systems 

and performing predictive maintenance [138][181]. 

1.2 Gear and Its Modes of Failure 

A gear is a critical part of rotating machinery, and it has teeth that connect with other 

toothed parts and transfer the torque. When two or more gears work together, they form 

a gearbox. There are various types of gears used in mechanical systems, including spur 

gears, helical gears, bevel gears, worm gears, rack and pinion gears, planetary gears, and 

hypoid gears, each with unique characteristics and strengths suited for specific 

applications. This research focuses on bevel gears, which are widely used in mechanical 

systems such as differential drives, helicopter and aircraft power transmissions, floodgate 

lift mechanisms, industrial plants, and marine propulsion systems. However, gears are 

prone to wear, damage, and failure over time due to factors like high stress 

concentration, material fatigue, misalignment, lubrication deficiencies, and overload 
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conditions. These issues can lead to costly downtime, equipment malfunctions, and 

potential safety hazards. The gear's operation produces the phenomena of modulation of 

amplitude, frequency, or mixed modulation because the meshing frequency and its double 

frequency signal of the vibration signal are modulated by the shaft frequency. Vibrations 

are a type of dynamic non-stationary signal. The dynamic signal analysis method must be 

applied in order to address the gear vibration signal. Nevertheless, precise matching with 

sophisticated pattern recognition techniques is still required to be effective because of the 

intricacy of the extracted signal's frequency and amplitude [1]. 

Despite their widespread use, gears are susceptible to wear, damage, and eventual 

failure due to factors such as high-stress concentration, material fatigue, misalignment, 

lubrication issues, and overload conditions. Such issues can lead to expensive downtime, 

machinery malfunctions, and safety risks. As illustrated in Figure 1.2, gear faults can 

manifest in various forms, including wear and cracks. Wear is a persistent issue observed 

across numerous engineering fields and can result in significant financial and operational 

losses. Studies suggest that the cost of abrasive wear alone can account for up to 1-4% of 

a nation's gross national product. Additionally, wear is responsible for 55% of the loss of 

material utility in industrial applications. Emphasizing the need for thorough wear fault 

analysis in gear systems. 

 

 

 Figure 1. 1: Various types of gear faults [2] 

Figure 1.1 shows the various types of gear faults. Previous research has focused on 

diagnosing common gear faults such as missing teeth, chipped teeth, cracks at the root, 

and face wear, particularly in spur gears [1-4]. However, limited research has focused on 
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micron-level wear and the varying severity of crack faults in bevel gear fault analysis, 

leaving this area largely unexplored. This research aims to address that gap by diagnosing 

micron level wear and varying crack faults in bevel gears, offering insights into the early 

detection and management of these issues to improve gear reliability and performance. 

1.3 Machine Condition Monitoring 

Machine CM is essential for maintaining industrial facilities' reliable and cost-effective 

operation. It involves continuously tracking the performance of machines to detect faults 

in their early stages, enabling corrective actions to be taken before any breakdowns or 

catastrophic failures occur. Implementing continuous CM allows facilities to schedule 

planned maintenance and repairs, improving operational efficiency and reducing environ- 

mental impact. Various technologies have been integrated into these monitoring processes 

to enhance CM systems' effectiveness, accuracy, and dependability [5]. Real-time data 

acquisition and processing have become widely accepted in CM for their ability to detect 

issues promptly. Choosing the right CM system is crucial for boosting machine 

availability, optimizing performance, extending equipment lifespan, minimizing spare 

parts inventory, and avoiding costly breakdown repairs. 

In industrial settings, maintenance typically represents 15-40% of manufacturing 

costs [6]. As a result, adopting an effective maintenance strategy is essential to reduce 

these expenses. One practical approach is CBM, which is based on structural health 

monitoring. CBM has become increasingly popular because it can prevent unnecessary 

breakdowns by recommending maintenance actions only when required. By 

implementing CBM, companies can significantly save time and cost, leading to more 

efficient operations and reduced downtime. 

Industrial machine monitoring uses a variety of methods to evaluate the state of the 

machinery. These methods include visual and aural inspections, temperature monitoring, 

wear debris analysis, vibration analysis, acoustic emission (AE) analysis, and noise 

monitoring. Visual and aural inspections rely on skilled personnel who use their senses to 

assess a machine's condition. However, these methods have limitations in detecting faults 

at early stages, making them less effective for proactive monitoring [7]. 

Temperature monitoring, which uses sensors including thermometers, 

thermocouples, and thermal cameras, is essential for detecting excessive heat generation, 

which is a major sign of possible problems [8]. This method is critical for detecting 
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abnormal temperature fluctuations that may signal challenges within the machine. Wear 

debris analysis is another traditional method used in CM. It focuses on examining the size 

and level of contamination of wear particles in the lubricant, providing insight into the 

condition of machine components and helping identify potential issues [9][10]. 

AE [11][12] monitoring detects stress waves generated by material deformation, 

such as crack initiation or movement of dislocation. These stress waves typically fall 

within the ultrasonic frequency range of 20 kHz to 1 MHz and can provide early 

indications of structural issues within the machine. 

Vibration monitoring is among the most popular methods for CM across various 

industrial machines. It effectively detects faults such as gear and bearing faults, 

misalignment, eccentric shafts, and improper clearances. Vibration analysis is utilized in 

approximately 82% of fault diagnosis methods, making it a key approach for identifying 

mechanical issues and ensuring operational reliability [13,14]. 

1.4 Vibration Analysis for Gearbox Fault Diagnosis 

Gearbox failures can occur in various ways during operation, often marked by increased 

noise and vibration as early warning signs before complete failure occurs. A gearbox's 

complex and non-stationary vibration signal is made up of harmonics, fault transients, 

noise, teeth meshing frequency, shaft frequency, and other elements under real-time 

operating conditions [15,16]. The behavior of the gearbox vibration signal is influenced 

by factors such as operating speed, load, gear tooth meshing, tooth surface condition, and 

friction [17-20]. Furthermore, other components within the gearbox, such as bearings, 

also impact the vibration signal. As a result, acquiring vibration signals and applying 

appropriate signal processing techniques are critical for detecting gear faults. 

Shipley [21] highlighted that one of the primary causes of gearbox failures is 

localized or widespread faults in the gear teeth. Vibration analysis and signal processing 

methods have proven effective in identifying gearbox faults under constant speed 

conditions [22-26]. Vibration signals are typically captured using accelerometers 

mounted on the gearbox bearing casing. Operating variables, such as speed fluctuations 

and gear tooth meshing, contribute to modulations in the gearbox vibration signals, 

which may mask 
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fault-related modulations [27-29]. Therefore, signal processing techniques are essential 

for analyzing gearbox vibration signals and detecting faults. 

1.5 Signal Processing Techniques for Gear Fault Detection: An 

Overview 

Techniques for signal processing are crucial for identifying gear faults by analyzing 

vibration signals generated during gearbox operation. Gearboxes produce non-stationary 

vibration signals due to various dynamic factors in real-life conditions [30]. The three 

main reasons why gears fail are (i) design errors, (ii) application errors, and (iii) 

manufacturing errors. Improper gear geometry, incorrect material selection, poor quality, 

lubrication, and other criteria can all lead to design problems. Problems with vibration, 

mounting and installation, cooling, and maintenance are examples of application faults, 

whereas manufacturing errors can be caused by mishandled machinery or issues with heat 

treatment. Vibration measurement is highly effective, non-intrusive, and cost-efficient for 

monitoring machine health during startups, shutdowns, and normal operations. These 

signals typically contain a mixture of deterministic and random elements, with random 

signals being either stationary or non-stationary and deterministic signals classified as 

periodic or non-periodic. Using various signal processing techniques, such as wavelet 

trans- form and frequency and time domain analysis, important information is extracted 

from vibration signals to enable early fault diagnosis. While these methods are valuable 

for identifying gear faults, each has its limitations, and selecting the appropriate technique 

depends on the specific fault characteristics and operational conditions. 

Local faults are the most harmful because, once initiated, they tend to evolve 

quickly and generally have essential impacts on energy transmission. If not identified 

soon, the most significant local faults can have drastic implications with teeth breakage, 

pitting, and scoring. Vibration signals and acoustic emissions are status surveillance's 

most prevalent waveform information. The waveform also includes information on 

engine presence, partial release, and ultrasonic sounds. In literature, time and frequency 

domain evaluation are the two main approaches used to evaluate stationary waveform 

information. 

1.5.1 Time Domain Analysis 

In order to extract statistical features that offer important insights into the gear system's 

state, time-domain analysis entails tracking the vibration signal throughout time. The 
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metrics mean, standard deviation, skewness, kurtosis, energy ratio, and time synchronous 

averaging (TSA) are examples of these statistical characteristics, which are referred to as 

time-domain indicators. These indicators can provide details on the vibration signal's 

amplitude and distribution, which may point to gear faults such as tooth wear or cracks. 

However, this method's inability to record frequency-related data is a drawback. By 

utilizing statistical features to detect gear cracks under various speed conditions, the im- 

proved TSA approach enhances the signal-to-noise ratio (SNR) [31]. Furthermore, wind 

turbine gearbox CM has employed RMS and peak vibration signal values, showing that 

these indicators may accurately evaluate a gearbox's condition when applied 

appropriately [32]. The impulsive nature of gear tooth spall faults has also been 

successfully detected using a fault detection technique based on maximal kurtosis [33]. 

1.5.2 Frequency Domain Analysis 

Frequency domain analysis is another key signal processing technique for detecting gear 

faults, focusing on examining the frequency content of vibration signals to identify fault- 

specific frequencies and their characteristics [34]. One of the most commonly used 

methods in frequency domain analysis is the FFT, which converts a time-domain 

vibration signal into the frequency domain. In a frequency domain plot, the y-axis 

represents dis- placement, velocity, or acceleration amplitude, while the x-axis represents 

the frequency. This graphic illustrates how the signal's amplitude varies with frequency. 

In gear fault identification, the FFT is particularly useful for identifying 

frequencies associated with gear faults, such as the gear meshing frequency and its 

harmonics. The sidebands around the gear meshing frequency can also be analyzed using 

it, as these could reveal the existence of wear, pitting, or cracks in the gear teeth [35]. 

1.5.3 Time-Frequency Domain Analysis 

A method for analyzing signals with time-varying frequency content is time-frequency 

domain analysis. It offers insights into how a signal's frequency content changes over time 

by combining the best features of frequency domain and time domain studies. A time-

frequency plot provides a detailed representation of the signal, showcasing its com- 

ponents within a specific frequency range and their sequences, causality, and frequency 

variations over time in a single plot. This method is useful for examining non-stationary 

signals, including those produced by gear failures. However, extracting meaningful in- 

formation from these complex signals using traditional methods can be challenging. 
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Advanced signal processing methods have been developed to address these challenges 

and improve the accuracy of gear fault detection [35]. 

The wavelet transform is a common method for analyzing non-stationary data in terms of 

time and frequency. It divides the signal into different frequency bands and provides in- 

formation on the phase and amplitude of each component. Wavelet-based techniques have 

been successfully applied to detect gear faults [36]. Advanced signal processing methods, 

such as empirical mode decomposition (EMD), ensemble empirical mode decomposition 

(EEMD), HHT, complete ensemble empirical mode decomposition with adaptive noise 

(CEEMDAN), and adaptive filtering algorithms, are designed to enhance signal quality, 

reduce noise, and improve the detection of fault-related features in the time-frequency 

domain. However, these methods often rely on expert judgment to assess gearbox health. 

Modern industrial applications increasingly adopt automated fault detection methods to 

address this limitation. Integrating advanced signal processing techniques with ML 

algorithms and DL models has significantly improved gear fault diagnosis in vibration 

signals. These approaches enable automatic analysis and classification of gear faults, 

yielding promising results. 

1.6 Electromechanical Systems and Their Common Failures 

Induction motors (IM) play a vital role in electromechanical (EM) systems, serving as 

key components in industrial applications for converting electrical energy into 

mechanical power. The electrical and mechanical components of an EM system are 

depicted in Figure 1.2 [37,38]. A catastrophic breakdown of the entire system results from 

the failure of any one of these parts, which shuts down manufacturing or industrial 

operations [39-41]. In EM systems, early fault identification and monitoring are therefore 

essential. Preventive and condition-based maintenance (CBM) can be scheduled during 

planned outages thanks to this proactive approach, which reduces the possibility of 

prolonged outages brought on by broad system failures [42–45]. Consequently, this 

approach reduces maintenance expenses while increasing overall performance and 

availability [46–48]. The two main types of faults in EM systems are mechanical and 

electrical. Electrical faults in IM include insulation failures, rotor bar breakage, and stator 

winding issues [49–51]. Conversely, mechanical faults include misalignments, rotor 

imbalances, bearing failures, and faults with the gearboxes or belt and pulley systems. 

This research focuses on the mechanical faults in IMs and coupled loads, where the IM 

serves as the prime mover and connects to other mechanical components such as shafts, 
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bearing rotor systems, belt and pulley drives, and gearboxes. This section investigates 

faults such as unbalanced loads in motors, bearing faults in motors, and unbalanced rotors 

in mechanical loads. These specific faults are critical because they can significantly 

impact on the longevity and functionality of the EM system. 

 

 

Figure 1. 2: Schematic representation of Electromechanical system 

1.6.1 Condition Monitoring of Combined Fault in EM System 

This section provides a literature survey highlighting various techniques and 

advancements in EM systems' condition monitoring (CM) and fault diagnosis. 

Catastrophic failures in EMs can result from the malfunction of components such as the 

stator, rotor, gearbox, or bearings. CM techniques have been developed to detect these 

faults, including vibration signal monitoring, current signal monitoring, and noise signal 

monitoring. 

Mechanical faults such as misalignment, bowing, imbalanced rotors, and bearing 

faults can be efficiently identified by vibration monitoring [52]. It can also be used to 

detect electrically related issues, such as broken rotor bars, phase imbalances, and stator 

winding faults [53][54]. Tri-axial accelerometers can be placed on machines in specific 

locations to capture vibration signals for monitoring purposes. The fundamental principle 

of vibration-based monitoring relies on mechanical components generating vibrations 

during operation [55]. When faults occur, they alter system dynamics, leading to 

noticeable deviations in vibration patterns. By applying suitable data analysis algorithms, 

these variations can be detected, enabling an accurate assessment of the condition of EMs. 

Machine current signature analysis (MCSA), another name for current monitoring, is 



32  

frequently used to find electrically combined faults, including broken rotor bars and faults 

with the stator windings [56]. MCSA can detect mechanically related faults in addition to 

electrical ones [57][58]. Sensors such as current probes attached to the motor's supply 

connections are used in MCSA to record current signals. The substantial changes in 

current signals brought on by malfunctioning EM components provide the basis of the 

current-based monitoring concept. As with vibration monitoring, these current variations 

can be analyzed using appropriate data analysis methods to diagnose faults effectively. 

The process of measuring and evaluating the noise spectrum is known as acoustic noise 

monitoring [59]. The machine's iron surfaces are subject to Maxwell's stresses, which is 

what makes the noise. Microphones and specialized devices like sound level meters are 

often used as sensors for noise measurement. This method works especially well for 

identifying faults in the stator structure and air-gap eccentricity. 

EM faults have been found using a variety of CM approaches. Nevertheless, a lot 

of these techniques are intrusive, intricate, expensive, and have a limited capacity to offer 

thorough details regarding the working circumstances of EMs. Additionally, most 

techniques are designed to detect specific faults, making them unsuitable for identifying 

multiple types of faults using the same approach. Vibration and current signal-based CM 

are the most widely used methods in the industry [60]. Kral et al. (2003) [61] highlighted 

that vibration-based CBM is reliable for detecting bearing and other mechanical faults. Hu 

et al. (2016) [62] studied the use of vibration signatures to detect multiple types of faults, 

including misalignment and rotor eccentricities, in industrial-grade motors. Their findings 

demonstrated the ability of vibration analysis to identify both mechanical and electrical 

faults effectively, making it suitable for complex systems. Sharma et al. (2024) [63] 

analyzed combined mechanical and electrical faults in EMs using vibration signatures. 

The study validated that vibration analysis could capture fault interactions and provide a 

comprehensive overview of system health, which traditional techniques often miss. 

Allmark (2016) [64] investigated fault combinations in EMs, including rotor imbalances 

and stator faults. Their research confirmed that vibration monitoring could effectively 

isolate and identify simultaneous fault conditions, reducing downtime and maintenance 

costs. 

Based on these studies, vibration-based CM emerges as the most reliable and 

versatile method for identifying combined faults in EM systems. It provides insights into 

mechanical and electrical fault interactions and supports proactive maintenance 

strategies, making it the best choice for CM in industrial applications. 
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Vibration-based monitoring is preferred for EM fault diagnosis because it is non- 

intrusive, reliable, and cost-effective. It offers high accuracy in signal analysis, effectively 

represents machine conditions, excels at detecting and distinguishing mechanical faults, 

and supports online monitoring for real-time fault detection. 

1.6.2 Vibration Analysis for EM System Fault Diagnosis 

Vibration is one of the most often observed characteristics in the CM of rotating 

machinery. It is extensively used in industrial applications due to its sensitivity to machine 

faults and ease of measurement. Vibration analysis plays a vital role in industries such as 

material handling, aerospace, and power generation [65]. Faulty machine components, 

such as damaged bearings or gears, generate specific vibration signals that can be 

analyzed to identify the nature and severity of the fault. These signals vary depending on 

the size, location, and type of damage present [66][67]. 

Vibration-based diagnostic methods are advantageous due to their cost-effective- 

ness, straightforward implementation, and ability to provide detailed insights into damage 

location and severity. For instance, rolling element bearings generate characteristic 

vibration patterns when faults such as inner or outer race faults, ball faults, or cage issues 

are present. These patterns can be effectively captured using accelerometers and 

processed using advanced signal-processing techniques [68][69]. 

Even in the absence of significant faults, vibration is an inherent characteristic of 

machine operation. Manufacturing imperfections, material properties, and operational 

conditions contribute to baseline vibration levels. Some common sources of vibration 

include localized faults such as indentations, pits, or scratches, as well as larger-scale issues 

like raceway damage [70]. Advanced techniques in signal processing, such as denoising 

and spectral analysis, can now identify important fault signatures even when there is back- 

ground noise, enabling more accurate and reliable fault detection [71][72]. 



34  

1.6.3 Signal Processing Methods for EM System Combined Fault 

Advanced signal processing methods are essential for detecting faults in EM 

systems early, enabling effective monitoring and diagnosis before significant failures 

occur [73]. These techniques, classified into invasive and non-invasive approaches, are 

critical for accurately identifying faults in complex systems. Commonly used tools such 

as discrete wavelet transform (DWT), Fast Fourier transform (FFT), Hilbert-Huang 

transform (HHT), continuous wavelet transform (CWT), and wavelet packet transform 

(WPT) pro- vide valuable insights by analyzing signals in time and frequency domains 

[74]. 

Although these techniques are crucial for fault detection, they have drawbacks, such 

as high computing requirements and vulnerability to non-stationary signals. These 

challenges are addressed by the Synchro-squeezing wavelet transform (SSWT) signal 

processing technique, which emphasizes instantaneous frequencies and improves time-

frequency representation. However, SSWT still encounters limitations in noisy 

environments and computational complexity [62]. Despite these challenges, advanced 

signal processing remains crucial in enhancing the precision and dependability of fault 

detection in a variety of applications by deriving valuable information from intricate 

vibration signals [75].  

1.7. Artificial Intelligence in Combined Fault of 

Electromechanical system 

In recent years, sophisticated artificial intelligence (AI)-based methods have replaced 

conventional methods for the CM and fault detection of rotating machinery. With the 

progressive enhancement in automation, the expanding scale, and the growing complexity 

of EM systems, these advancements bring significant operational benefits and introduce 

numerous safety and reliability challenges. Addressing the complexity of modern EM 

systems requires robust safety assurance, reliability assessment, and diagnostic strategies. 

DL-based fault diagnosis algorithms have emerged as effective solutions by 

leveraging advanced mathematical frameworks to process complex, high-dimensional 

datasets. These algorithms enable hierarchical feature extraction, uncover latent patterns, 

and enhance fault diagnosis performance, showcasing unique advantages in feature 

engineering and pattern recognition. The development of deep neural networks (DNNs) 

[76] facilitates the extraction of hidden data features and the mining of abstract 

information. However, the "black box" nature of DNNs makes it challenging to interpret 
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the extracted features, requiring domain expertise to map these features to specific fault 

patterns. In the domain of data-driven fault diagnosis, Wan [77] proposed a diagnostic 

model integrating nonlinear fluid learning and support vector machines (SVM), utilizing 

time and frequency domain parameters using EM systems to build a feature space with 

great dimensions. This model demonstrated fault diagnosis accuracy exceeding 95%. 

Similarly, Li [78] introduced a combined approach combining short-time Fourier 

transforms (STFT) and convolutional neural networks (CNNs) for fault pattern 

recognition, enabling end-to-end intelligent diagnostics with improved performance as 

fault types and datasets expand. Zhang et al. [79] developed a probabilistic generative 

model, which utilized a deep confidence net- work constructed from stacked restricted 

Boltzmann machines and achieved enhanced diagnostic accuracy. 

CNNs are particularly prevalent among DL architectures due to their local 

connectivity, weight-sharing mechanisms, and pooling operations, which collectively 

reduce network complexity while improving robustness and generalization. The 

integration of DL techniques has driven significant advancements in data-driven fault 

diagnosis, offering innovative frameworks for diagnosing faults in complex EM systems 

and enabling new paradigms in intelligent maintenance and predictive analytics. An ML 

model is used by Han et al. [80] to offer a unique method for recognizing and categorizing 

instant messaging errors. Additionally, the technique involves intentionally creating three 

different kinds of problems and detecting them using an auto-tunable SVM technique 

dependent on the rotation speed and motor stator current spectrum properties. The method 

showed excellent sensitivity, resilience, and diagnostic accuracy, which qualified it for 

use in industrial settings. Manarikkal et al. [81] use CWT and AI to identify and diagnose 

stator winding faults in permanent magnet synchronous motors. They analyze CWTs 

using a generalized Morse wavelet, focusing on inter-turn short circuit symptoms. They 

also test automated classification using ML techniques, including multilayer perceptron, 

SVM, and K-nearest neighbors (KNN). A probabilistic neural network (PNN), wavelet 

trans- form (WT), and finite element analysis are used in a method by Liu et al. [82] to 

detect broken rotor bar faults in IMs. To determine the rotor state, they look at the 

amplitudes of the stator current signals. Numerical simulations are used to demonstrate the 

effectiveness of this strategy. 

Additionally, Shao et al. [83] suggested a CNN-based DL-based multi-fault 

diagnostic method for sensor data analysis. The results demonstrate that the 

recommended strategy outperforms the traditional method by a significant margin. 
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Choudhary et al. [84] developed a vibroacoustic fusion technique for fault diagnosis in 

rotating machine com- ponents by combining vibration and metric inputs with a multi-

input CNN. Additionally, the results demonstrate that it can accurately diagnose issues 

with instant messaging systems and other rotating machinery. To diagnose IM faults, Sun 

et al. [85] suggest a back-propagation neural network and a convolutional discriminative 

feature learning technique. Their strategy, which uses an SVM classifier and a feed-

forward convolutional pooling architecture, significantly outperforms current techniques 

in terms of performance. Using stator phase current data, El-Dalahmeh et al. [86] created 

a method for continuous fault identification in permanent magnet synchronous motors. 

Their method effectively detects faults in a variety of operating conditions by combining 

CNN for fault classification, HHT for feature extraction, and variational mode 

decomposition (VMD) for signal decomposition. The diagnostic method developed by 

Song et al. [87] used a multi-scale feature fusion convolutional neural network 

(MSFFCNN) to account for the multi-scale character of fault signals and the dependability 

of fault detection for EMAs in complex operating environments. It is possible to efficiently 

gather and learn fault-related information by using attention mechanism-based feature 

fusion and the learning structure of multiple scales. This enhances the network's diagnostic 

performance and identification capabilities. He et al. [88] have suggested that PV systems 

with multi-fault coupling use a composite fault diagnosis schema based on multi-label 

categorization. Additional useful features to properly distinguish between faults are 

extracted from the pre-processed Current-Voltage (I-V) curves. Then, two different 

diagnostic models are developed to diagnose compound faults: a basic residual network 

multi-label learning (ML-SResNet) and K-NN multi-label learning (ML-KNN) combined 

with random forest multi-label learning (ML-RFKNN). 

1.7.1 Overview of Machine Learning and Deep Learning 

Techniques for Gearbox and EM system Fault Analysis 

The health status of spinning machinery has been diagnosed using machine learning 

techniques. As a mechanical extension of pattern recognition theory, fault diagnosis 

technologies aim to solve the problem of state classification in engineering systems and 

operational equipment. Fault diagnosis systems need to be able to do three things: fault 

identification, fault detection, and fault isolation (Xu et al., 2020a) [89]. Unlike traditional 

diagnostic methods that heavily rely on human expertise for feature engineering, ML 

techniques leverage algorithms to learn and generalize patterns from the data, 
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significantly reducing dependency on manual intervention. However, ML models often 

require well-structured and domain-specific features as inputs, which can limit their 

performance in cases of noisy or complex datasets. 

ML approaches have demonstrated remarkable potential in the area of diagnosing 

and identifying faults, offering improved accuracy and efficiency over traditional 

techniques. The most widely used algorithms include SVMs, decision tree (DT), RF, and 

K-NN. These models are adept at identifying fault patterns by analyzing extracted features 

from various signal domains, such as time, frequency, and time-frequency. Researchers 

have successfully applied ML models to diagnose specific and combined faults in gearbox 

fault detection. For example, Yang et al. [90] utilized an SVM-based approach to detect 

gear tooth wear and misalignment, showcasing the algorithm's effectiveness in classifying 

subtle fault signatures. Similarly, Wan et al. [91] employed RF classifiers to diagnose 

gear and bearing faults, achieving high classification accuracy with minimal pre-

processing of vibration signals. 

Despite their advantages, traditional ML models often struggle with high-

dimensional data and non-stationary signals, which are common in real-world fault 

detection scenarios. Consequently, combined models have been suggested to combine 

advanced signal processing techniques or domain expertise with machine learning 

techniques. For example, Li et al. [92] showed how signal processing and machine 

learning techniques can work together by combining wavelet transform with SVMs to 

enhance the identification of transient gear faults. 

Furthermore, three steps are involved in the intelligent fault detection approach 

based on traditional machine learning: pattern recognition, artificial feature extraction, 

and data collecting. Nevertheless, the upper limit of algorithm performance is low because 

traditional ML techniques typically lack a deep architecture and are somewhat close. In 

contrast to conventional machine learning techniques, the DL-based fault detection model 

is a common end-to-end model capable of extracting data features during optimization 

and has enhanced nonlinear mapping fitting capabilities. In traditional machine learning 

methods, it makes up for the shortcomings of the extraction of features manually and 

reduces the need for mechanism research and subjective assessment. 



38  

Combined models are required in fault detection because they combine the 

strengths of different methodologies to address the limitations of standalone approaches. 

Traditional signal processing techniques are effective for feature extraction but struggle 

with complex, non-linear relationships in fault data. ML methods can classify faults based 

on extracted features but rely heavily on the quality and relevance of these features. DL 

models, while powerful in automatic feature extraction and handling large datasets, can 

be computationally intensive and may be overfitted with limited labeled data. Combined 

models integrate these approaches, such as combining DL for feature extraction with ML 

for classification, to leverage their complementary strengths. This integration improves 

fault detection accuracy, especially in noisy environments or when handling combined 

faults, overlapping signal characteristics, and imbalanced datasets. By uniting diverse 

techniques, combined models provide a more robust, flexible, and scalable solution for 

diagnosing faults in complex systems like gearboxes and EM systems. 

It enhances the diagnosis's precision and intelligence to a certain degree. The 

automatic and large-scale diagnosis of mechanical equipment faults is increasingly 

feasible with its help. These days, the most often utilized deep learning techniques in 

trouble- shooting include CNN, generative adversarial networks (GANs), recurrent neural 

networks (RNNs), stack auto-encoders (SAEs), and deep belief networks (DBNs). In the 

area of fault diagnostics, DL models are also being used. In order to detect rolling bearing 

faults, Gao et al. [93] used DBNs to extract the bearings' signal. According to 

experiments, the rolling bearing faults detection model, which Niu et al. [94] presented and 

was based on DBNs, had good fault detection capabilities and could correctly identify all 

types of faults. 

Zhao et al. [95] have suggested SAEs are an efficient DL technique. This technique 

solved the gearbox fault detection fault by removing the need for human characteristics 

by extracting essential features from the frequency domain data. Chen et al. [96] interacts 

with a sparse auto-encoder and a denoising auto-encoder, proposed the stacked sparse 

denoising auto-encoder diagnosis model, and applied the model to rolling bearing fault 

detection. Liu et al. [97] combined RNN and autoencoders to realize the intelligent fault 

detection of rolling bearings. Jiang al. [98] used RNN to realize the intelligent fault 

detection of bearings under time-varying working conditions [99] [35]. 

Lin and Shih-Lin [100] investigated DenseNet and VMD for bearing fault 

diagnosis. A motor fault diagnosis model is constructed using DenseNet; it has a 
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straightforward structure and quick computation times. With a 92% VMD-DenseNet 

prediction accuracy rate, the experimental findings demonstrate that the approach can 

correctly identify four frequent motor faults. An enhanced NL-LinkNet network, called 

NL-LinkNet-SSR, was presented by Jing Wang et al. [101] and specifically created for 

fault detection activities. To increase the accuracy of the model and resilience in fault 

identification, the suggested NL-LinkNet-SSR combines a SimAM attention module with 

a Sobel edge detection module. 

Overall, ML and DL have become a cornerstone of modern fault diagnosis, offering 

scalable and intelligent solutions for gearboxes. With continued advancements in 

algorithm design, data pre-processing, and feature engineering, ML and DL models are 

poised to deliver even greater accuracy and robustness in diagnosing both gearbox faults 

and combined faults in mechanical systems [4]. 

      1.8 Conclusions 

The reviewed literature shows that fault detection in gearboxes and EM systems has 

gained significant importance due to their critical roles in power transmission and 

industrial applications. Gearboxes and EM systems are subjected to various operational 

stresses, making them prone to faults such as gear tooth wear, cracks, misalignment, pit- 

ting, motor winding faults, rotor imbalances, and insulation degradation. Combined 

faults, where multiple faults occur simultaneously, pose additional challenges due to the 

complex interaction between fault mechanisms and overlapping signal characteristics 

across interconnected components. 

Vibration signal analysis has emerged as a reliable technique for early detection and 

diagnosis of gearbox and EM system faults. The three main techniques for fault detection 

are DL, ML, and signal processing based. Time-domain, frequency-domain, and time-

frequency-domain studies are employed in signal processing methods to detect essential 

signals that point to gearbox and electromechanical system faults. These methods are 

particularly effective in fault detection and classification, including those caused by motor 

imbalances or gearbox wear. 

ML techniques have shown significant potential in diagnosing gearbox and 

combined faults in EM systems with minimal human intervention. These techniques use 

algorithms such as SVMs, DT, and NN to enable precise fault classification based on 

extracted features. It is crucial to customize solutions to particular fault scenarios and 
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adjust them to the interconnected nature of gearboxes and EM systems because the 

effectiveness of machine learning approaches depends on elements like feature relevance, 

algorithm selection, and training data quality. 

The DL technique facilitates automatic feature extraction and classification, which 

advances fault detection. These models, such as RNN, LSTM, DBN, and CNN, can handle 

complex datasets and identify patterns associated with combined faults in gearboxes and 

EM systems. For instance, DL models can effectively detect overlapping characteristics 

in vibration signals, enabling comprehensive fault diagnosis across EM systems. This 

capability is particularly advantageous in scenarios where faults coexist in multiple 

components, such as motors, gearboxes, and bearings. 

In conclusion, integrating advanced signal processing techniques with ML and DL 

approaches has paved the way for more accurate and robust fault detection systems, 

particularly in gearboxes and EM systems. These advancements address challenges such 

as combined faults, noisy environments, and data imbalance. Future developments in 

sensor technology, data fusion, and combined diagnostic frameworks are expected to 

further enhance the reliability and efficiency of fault detection across entire EM systems, 

ensuring improved performance and reduced downtime in industrial applications. 

      1.9 Outcomes of the Literature Review 

The literature on gearbox faults and combined fault detection in EM systems, including 

their applications and failure modes, has been thoroughly examined. A comprehensive 

review of various CM methods, explicitly focusing on AI techniques, has also been 

conducted. The significance of such techniques in detecting various faults in gears is 

presented in detail. Here are the key findings derived from the literature review. These 

findings underscore the promising future of AI models in achieving more accurate, 

efficient, and reliable detection of gearbox faults and combined faults in EM systems for 

industrial applications. 

• Despite the numerous techniques employed in fault detection for gearboxes, 

challenges such as noise interference, data imbalance, and the complexity 

of handling multiple fault types persist. 

• EM systems often experience combined faults, where faults in both electric 

(motor, power supply) and mechanical (bearings, gears) components occur 

simultaneously. These combined faults pose significant challenges in 
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detection due to overlapping symptoms and interdependent fault behaviors, 

making it difficult to pinpoint the exact fault source. 

• Traditional signal processing techniques such as FFT and wavelet 

transforms are widely used. However, they struggle with noisy environments 

and non-stationary signals. These methods can be ineffective when faulty 

signatures are weak or buried in noise. 

• Signal processing methods include wavelet transform, Fourier transform, 

and spectral analysis. At the same time, widely used, they often struggle 

with accurately extracting features in highly noisy environments or when 

the data exhibits non-stationary behavior. 

• For optimal performance, ML classifiers such as SVM, DT, and RF depend 

heavily on accurately labeled and structured data. Their efficiency 

significantly declines in noisy signals, data imbalance, or incomplete 

datasets. 

• Although more adept at feature extraction and handling noise, DL 

techniques, such as RNNs, LSTMs, DBN, and CNNs, require substantial 

computational resources and extensive labeled datasets for training, which 

can limit their practicality in real-time applications with constrained 

environments. 

• Combined models that combine DL architecture offer a more robust 

approach to detecting combined faults in EM systems. However, they face 

challenges related to model complexity, increased risk of overfitting, and 

the need for longer training times, especially when dealing with high-

dimensional data. 

• A combined architecture that combines the LinkNet and DenseNet models 

offers a more robust approach to fault detection by leveraging the strengths 

of both networks. However, integrating these two architectures may 

introduce challenges such as increased computational complexity, longer 

training times, and the need for careful balancing to prevent overfitting, 

especially when working with large, high-dimensional datasets. 

Based on the outcomes of the literature, the aims and objectives of the thesis work can be 

derived and presented in the subsequent section. 
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1.10 Objectives 

This part presents the objectives and scope of the present work, with the objectives of 

developing an advanced fault detection methodology for gearboxes and combined faults 

using signal processing and ML techniques. The scope of the study may include the 

identification and classification of different faults occurring in various types of gearboxes 

under different operational conditions toward enhanced reliability and reduced down-

times. 

Objectives of the works are as follows. 

 

i. To create a reliable wear fault detection technique for bevel gearboxes by 

utilizing an optimized combined classifier and updated entropy-based feature 

extraction. 

ii. To create a deep learning combined model for automatic gear crack 

identification based on an improved CEEMDAN model. 

iii. To design a modified combined architecture of LinkNet and DenseNet for 

detecting combined faults in electromechanical systems. 

1.11 Organization of the thesis 

The thesis is organized into the following chapters: 

 

Chapter 1: Introduces the research background and reviews existing literature on fault 

detection using signal processing, ML, and combined DL methods. It identifies gaps in 

cur- rent approaches and defines the objectives and scope of the thesis. The chapter 

concludes with the organization of the thesis. 

Chapter 2: Proposes a novel entropy-based feature extraction technique combined with 

a hybrid classifier for detecting gearbox faults. Experimental validation and results 

demonstrate the model's efficacy and robustness. Key findings are discussed to establish 

their contribution to fault detection research. 

Chapter 3: Focuses on CEEMDAN-based combined DL model for automated detection 

of gear cracks. The methodology, experimental setup, and performance analysis are 

detailed. The chapter highlights the model's superiority in handling complex fault 

detection scenarios. 
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Chapter 4: Focuses on developing a combined architecture that integrates LinkNet and 

DenseNet to address combined faults in EM systems. Experimental results illustrate the 

model's capability in multi-fault detection scenarios. The comparative analysis 

emphasizes its performance improvements. 

Chapter 5: Conclusions are made by summarizing the research contributions and 

significant findings in fault detection. Limitations of the current work are acknowledged, 

and future research directions are proposed to advance the field. Potential applications of 

the proposed techniques are also discussed. 
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Chapter 2 

Gearbox Fault Detection Using Entropy-Based Feature 

Extraction and Hybrid Classifier 
 

 

This chapter suggests a novel combined DL-based method for classifying and detecting 

gearbox faults, leveraging the strengths of advanced statistical and ML techniques. The 

technique combines Shannon features, modified log-energy entropy, modified Renyi 

entropy, statistical characteristics, and higher-order statistical features to extract diverse 

and significant information from gearbox data. A strong DL architecture that combines 

RNN and Bi-LSTM networks is used to detect and classify faults. This makes it possible 

for the system to learn forward and backward temporal connections. An optimization 

mechanism is introduced to improve the performance of the model further, where the 

opposition- based artificial Hummingbird crow search algorithm (OAHCSA) is employed 

to optimize the RNN weights. This combined approach ensures efficient parameter tuning 

and improves the learning capability of the model, leading to more precise fault diagnosis. 

By incorporating these advancements, the proposed methodology aims to provide a 

comprehensive solution to gearbox fault diagnosis, addressing challenges associated with 

feature extraction, classification accuracy, and computational efficiency. 

2.1 Introduction 

Gearbox fault diagnosis is a crucial process, as the gearbox plays a vital role in ensuring 

vehicle performance, efficiency, and safety. It is responsible for transmitting power from 

the engine to the wheels and controlling the vehicle's speed [102-103]. However, due to 

the mechanical complexity and harsh operational conditions, gearboxes are prone to faults 

such as gear wear, misalignment, bearing damage, and lubrication issues. Early and 

accurate fault detection is essential to prevent severe damage, reduce downtime, and 

minimize maintenance costs [104-108]. Traditional gearbox fault diagnosis methods often 

involve time and frequency-domain signal analysis and vibration-based techniques. 

Time- domain methods analyze raw data collected from sensors, whereas frequency-

domain methods use signal processing techniques like FFT to identify fault characteristics 

based on spectral information [109]. While these methods can be effective for more 

straight forward fault scenarios, they struggle to capture the intricate and non-linear 

relationships in 
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more complex fault patterns, particularly in modern gearboxes with advanced designs and 

a wider range of potential failures. As such, there is a growing demand for more 

sophisticated, intelligent systems capable of providing a higher level of fault diagnosis, 

accuracy, and efficiency. 

 

Significant progress has been made in the use of ML and DL approaches for 

gearbox fault diagnostics in recent years. Existing approaches have included models such 

as SVM, DT, random forest (RF), and CNN, which rely on data-driven learning from 

large datasets of operational and fault-related signals [110-113]. In fault classification, 

these techniques have demonstrated encouraging outcomes and tackle the issue of non-

linearity in fault patterns [114]. Because they can successfully address the drawbacks of 

conventional techniques, like difficulty in handling non-linear patterns, reliance on 

manual feature engineering, limited scalability, and sensitivity to noise, SAE has drawn 

more interest since the emergence of unsupervised DL techniques [107]. In fault 

detection, DL approaches such as CNN, stacking sparse autoencoder (SSAE), artificial 

neural networks (ANN), and DBN outperform supervised learning (SL) [115]. However, 

a large dataset is required for these strategies to be successful. Furthermore, the natural 

evolution theory (the genetic algorithm) and the bionics theory (the ant colony algorithm) 

are employed for fault identification in rotating machines. Kumar et al. (2019) [116] 

investigated the effectiveness of wavelet-based parameters for fault identification using 

PSVM and SVM. According to this study, PSVM is superior to SVM. 

 

Recent studies have proposed combined techniques to address these challenges 

more effectively. For instance, by capturing spatial and temporal connections, ML models 

combined with DL architecture such as CNN and LSTM networks have demonstrated 

considerable potential in increasing fault detection accuracy. Additionally, methods such 

as extreme learning machines (ELM) and deep autoencoders have been used for fault 

detection, where the autoencoders learn to reconstruct sensor data, and any deviation from 

the expected reconstruction is interpreted as a fault. In order to improve model 

performance and convergence, optimization methods like particle swarm optimization 

(PSO) and genetic algorithms (GA) have occasionally been used to fine-tune model 

parameters. These solutions, while effective, still face challenges in achieving optimal 

performance under real-time conditions. Incorporating more advanced optimization 

techniques, such as the OAHCSA, has been proposed to further enhance model 

performance by efficiently optimizing the weight parameters of DL models, thereby 
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addressing accuracy and computational efficiency concerns. 

2.2 Proposed Methodology 

This study provides a novel approach for classifying and detecting gearbox faults utilizing 

a combined DL technique specifically designed to have minimal computational time. The 

process involves several steps, such as pre-processing, feature extraction, and 

classification with optimized training. First, the pre-processing is done by median filtering 

(MF), in which the input is a signal. Subsequently, key features are extracted from the 

processed data, including statistical measures, higher-order statistical (HOS) features, 

modified Renyi entropy, and adjusted log-energy entropy [116]. These extracted features 

are then fed into a hybrid classifier (HC) model, which combines the strengths of two 

classifiers: the RNN and the Bi-LSTM. Optimizing the RNN's weight using the OAHCSA 

algorithm enhances the hybrid model's performance. The final step involves utilizing the 

model's predictions for effective fault detection. Figure 2.1 illustrates the architectural flow 

of this proposed detection framework. 

 

Figure 2. 1: Architectural diagram of proposed fault detection model. 
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2.2.1 Pre-processing by Median Filtering 

Data pre-processing is an essential initial step in data analysis that involves transforming 

raw data into usable format for further exploration, modeling, and interpretation. Its 

purpose is to prepare data for analysis by cleaning, transforming, and organizing it. The 

proposed method makes use of MF as the technique for pre-processing. This approach 

preserves the signal's most essential characteristics and remains noise-robust, which is 

vital for classification tasks. In fault detection, keeping the edges of data and removing 

impulsive noise is crucial; MF filtering is excellent [117-118]. Unlike Gaussian or mean 

filtering, MF does not distort the signal as much, making it more appropriate for 

preserving the integrity of features indicative of faults. By using the MF technique, the 

input signal's quality has improved. This non-linear signal or image processing technique 

is where every data point gets replaced by the median value of its neighbors. So, the noise 

is diminished, and fine details and edges are retained. MF is very effective in reducing 

noise without blurring the edges. Hence, MF is less sensitive to outliers. Application of 

this technique ensures that input data accurately depicts fault conditions and consequently 

makes the classifications more reliable. This filter reduces noise while keeping important 

features, enhancing the accuracy of the fault detection model in capturing temporal 

patterns and anomalies characterizing faults. This work denoises the input signal, 

smoothed, and processed using the MF, as demonstrated in Equation (2.1). Using a 3 × 3 

pixel mask, the method achieves a balance between noise reduction and detail preservation 

by assigning each pixel the median value of its 3 × 3 neighboring grids. The usage of this 

filter size accomplishes effective noise suppression with the maintenance of critical 

details. Equation (2.1) shows how effective this filtering process is, 

𝜎𝑚𝑒𝑑
2 =

1

4ℎ𝐹2(ℎ)
≈

𝜎𝑐
2

ℎ+
𝜋

2
−1
.
𝜋

2
              (2.1) 

In Equation (2.1), σcdenotes the variance of the input noise power, ℎrepresents the size 

of the MF mask, and 𝐹(ℎ) is the noise density function. To ensure that the MF is applied 

uniformly to the entire dataset, including edges, edge handling techniques such as edge 

padding are used during the filtering process. These parameters guarantee efficient noise 

reduction while maintaining the signal's essential characteristics. The filter's mask size 

and noise density function enable it to vary according to changing noise density without 

losing necessary signal features. Edge handling ensures smooth processing of areas close 

to the boundary as artifacts frequently occur there, leading to a uniform reduction of noise 

from the signal. Thus, raw vibration signals can be analyzed using the MF approach.  
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The representation of healthy and faulty signals in the time domain, frequency domain 

(FFT), and time-frequency (TF) domain are represented in Figure 2.2 and Figure 2.3. 

These representations provide a baseline understanding of the signal characteristics before 

applying the suggested feature extraction and classification techniques.  

 

Frequency = 15 Hz 

 

Frequency = 20 Hz 
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Frequency = 25 Hz 

          

Frequency = 30 Hz 

Figure 2. 2: Time, frequency, and time–frequency domain representations of the healthy 

signal
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Frequency = 15 Hz 

 

Frequency = 20 Hz 

 

Frequency = 25 Hz 
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Frequency = 30 Hz 

Figure 2. 3: Time, frequency, and time–frequency domain representations of the faulty 

signal 

Figure 2.4 depicts the performance of median filtering in preprocessing against 

the traditional approach for healthy signals. Figure 2.5 shows the same analysis for faulty 

signals. The result depicts that median filtering works more effectively than the 

conventional approach, which is done in the form of Gaussian filtering, low-pass 

Butterworth filtering, and Wiener filtering for gearbox fault detection. A non-linear 

filtering approach, median filtering is specifically better suited to eliminating impulse 

noise without making severe compromises in the signal features [94-95]. Traditional 

methods typically lack robust signal integrity: low-pass Butterworth filtering can 

eliminate high-frequency details critical to fault information; Gaussian filtering tends to 

blur significant high-frequency information; and even with its adaptability to noise 

characteristics, Wiener filtering brings potential phase shift-induced damage to the signal 

structure. 

MF clearly shows superiority in terms of giving cleaner signal representations for 

healthy and faulty conditions at all the frequencies considered for evaluation, namely 15 

Hz, 20 Hz, 25 Hz, and 30 Hz [98]. This robustness improves the reliability of feature 

extraction as important information is preserved for further analysis. Ultimately, median 

filtering ends up being the best of all the pre-processing techniques incorporated, which 

significantly improves the accuracy of combined DL models in fault classification. This 

approach provides a sturdier basis for detecting gearbox failure, thus further enhancing 

the overall dependability of the system. 
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Frequency = 15 Hz 
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(a) (b) (c) (d) 

Figure 2. 4: Pre-processing analysis of median filtering over conventional methods for 

healthy signals (a) Gaussian filtering (b) Low-pass Butterworth filtering (c) Wiener 

filtering (d) Median filtering. 

Table 2. 1: Quantitative analysis for healthy signal 

 

Filter SNR (dB) MSE 

Gaussian 15.2 0.025 

Butterworth 18.5 0.018 

Wiener 20.1 0.014 

Median 23.4 0.010 
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Frequency = 15 Hz 
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Frequency = 30 Hz 
 

 

 

 

 

 

 

 

(a) (b) (c) (d) 

Figure 2. 5: Pre-processing analysis of median filtering over conventional methods for 

faulty signals (a) Gaussian filtering (b) Low-pass Butterworth filtering (c) Wiener 

filtering (d) Median filtering. 

Table 2. 2: Quantitative analysis for faulty signal 

Filter SNR (dB) MSE 

Gaussian 16.7 0.021 

Butterworth 19.4 0.016 

Wiener 21.2 0.012 

Median 24.8 0.008 
 

The evaluation metrics, such as Signal-to-Noise Ratio (SNR) and Mean Squared Error 
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(MSE) for the healthy and faulty signals are tabulated in Tables 2.1 and 2.2, respectively. 

From the tables, the median filtering demonstrated the highest SNR of 23.4 dB for healthy 

and 24.8 dB for faulty signals, and the lowest MSE of 0.010 for healthy and 0.008 for 

faulty signals among all filters. These values quantitatively confirm the enhanced noise 

suppression and better preservation of signal features of the proposed approach, which 

are crucial for accurate fault detection. 

2.3 Extraction of Features 

Feature extraction is one of the essential processes, as it identifies features that are most 

representative of the data while disregarding insignificant ones; therefore, it ensures 

appropriate identification of the characteristic aspects of the data, which helps in analyzing 

and classifying more effectively. Added to all this is the benefit of providing entropy-

based features that take cognizance of the measurement of complexity and the dynamics 

of change within a nonlinear time series. Entropy is one of the most powerful tools to 

understand non-linear behaviors. It has been extensively studied in the field of mechanical 

fault diagnosis, especially for gearbox fault monitoring applications. A variety of entropy- 

based methods, including sample entropy and permutation entropy, can be applied to non- 

linear vibration signals to extract valuable information. However, conventional entropy 

approaches suffer from instability and loss of critical feature information. Thus, to counter 

such limitations, this work incorporates advanced feature extraction techniques such as a 

combination of: 

Shannon entropy: determines how much uncertainty and information are in a signal. 

Improved log energy entropy: Provides higher signal sensitivity, promoting higher fault-

related features. 

Improved Renyi entropy: It provides a more generalized framework to capture the 

complexity of nonlinear signals. 

Statistical features include mean, variance, skewness, and kurtosis measures, these 

describe signal properties. 

HOS Features: This leads to more profound insight into nonlinear and non-Gaussian 

properties of signals. 

The proposed method effectively eliminates the shortcomings of traditional entropy- 

based approaches through advanced feature extraction techniques. Thus, the developing 

features could increase the robustness and precision of fault detection for the effective 

mechanical fault diagnosis platform. 



55  

2.3.1 Shannon Entropy Features 
A statistical indicator of information's unpredictability or uncertainty is Shannon's 

entropy. It has its roots in information theory and is useful when addressing the complexity 

and variability of a system or signal since it can be applied to the distribution of data 

among input, output, and intermediate variables. Strategies such as edge padding in signal 

processing allow for the application of a filter, say, an MF, homogeneously to the entire 

dataset and the boundary regions. Such strategies are helpful in retaining the integrity of 

the signal by keeping the desired features with efficient noise suppression. Shannon's 

entropy plays a key role in data analysis regarding randomness and distribution 

characteristics [119][120]. It is mathematically given as in Equation (2.2), where 𝑃(𝑦𝑖) 

refers to the probability of a single event. 

 𝐺(𝑦) symbolizes the relationship or transformation applied to the probabilities to 

calculate entropy, 𝑛 represents the total number of distinct events, 𝑙𝑜𝑔𝑏 denotes logarithm 

to the base, which can be 2 (for bits). 

𝑓𝑒𝑆𝐸 = 𝐺(𝑦) = ∑ [𝑃(𝑦𝑖) ∗ 𝑙𝑜𝑔𝑏(1 𝑃(𝑦𝑖))]⁄𝑛
𝑖=1           (2.2) 

 

The extracted Shannon’s entropy features are specified as 𝑓𝑒𝑆𝐸 . 

 

2.3.2 Improved Log Energy Entropy 

Entropy quantifies a system's degree of randomness or information content, while log 

energy entropy explicitly measures signal complexity, focusing on energy distribution 

[121]. The traditional formula for calculating log energy entropy 𝑓𝑒𝑆𝐸  is shown in 

Equation (2.3). This metric evaluates the logarithmic distribution of signal energy and is 

often applied to analyze signals with complex patterns. The log energy entropy 

calculation in the proposed method is refined by incorporating a weighting mechanism. 

Attributes with lower entropy values are assigned to higher weights, emphasizing their 

significance and reducing the risk of losing critical information during aggregation. These 

weighting factors are empirically derived from the data using the SoftMax function, 

ensuring adaptability and relevance to the dataset. The enhanced log energy entropy is 

represented in Equation (2.5). 

𝑓𝑒𝑙𝑒(𝑦) = −∑ (𝑙𝑜𝑔2(𝑃𝑖(𝑦)))
2𝑛−1

𝑖=0              (2.3) 

𝑓𝑒𝑖𝑙𝑒(𝑦) = −∑ (𝑙𝑜𝑔2(𝑃𝑖(𝑦)))
2𝑛−1

𝑖=0 ∗ 𝑤𝑒            (2.4) 

𝑤𝑒 =
𝑒−𝐸(𝑦𝑖)

∑ 𝑒−𝐸(𝑦𝑖)𝑛
𝑖=1

               (2.5) 
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     The extracted log energy entropy features are revealed by 𝑓𝑒𝑖𝑙𝑒. 

 

2.3.3 Improved Renyi Entropy 

The Renyi entropy is used to measure diversity in ecology and statistics and plays an 

essential role in quantum information, specifically in quantifying entanglement. It can be 

explicitly calculated in the Heisenberg XY spinning chain model due to its relationship 

with a subset of the modular group. In theoretical computer science, randomness 

extractors are studied using min-entropy [121–132]. In mathematics, the Renyi entropy for 

rank 𝛼 is commonly represented by equations (2.6). However, due to its non-linear 

dependence on the density matrix, a new augmented Renyi entropy model based on weight 

is built, as shown in equation (2.7). Here, 𝛼represents the rank parameter of the Renyi 

entropy 𝐺𝛼(𝑦) represents the mathematical formulation of Renyi entropy, 𝑃𝑖 indicates the 

probability of the 𝑖𝑡ℎ event, ‖𝑃‖𝐵 represents the 𝐵 norm of the probability vector 𝑃. This 

sensitivity is increased in the enhanced version, allowing for the detection of minute 

changes in the signal that other entropy measures could overlook. It is helpful in locating 

early faults that show slight entropy variances in the signal. 

𝑓𝑒𝑅𝑒 = 𝐺𝛼(𝑦) =
1

1−𝛼
𝑙𝑜𝑔∑ 𝑃𝑖

𝛼𝑛
𝑖=1               (2.6) 

𝑓𝑒𝐼𝑅𝑒 = 𝐺𝛼(𝑦) =
𝛼

1−𝛼
𝑙𝑜𝑔(∥ 𝑃 ∥𝐵) ∗ 𝑤𝑒𝑖             (2.7) 

‖𝑃‖𝐵 = (∑ 𝑃𝑖
𝐵𝑛

𝑖=1 )
1

𝐵                (2.8) 

The extracted improved Renyi entropy features are indicated by 𝑓𝑒𝐼𝑅𝑒. 
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2.3.4 Higher-Order Statistics and Statistical Features 

Statistical features and other higher-order attributes, such as kurtosis and moment, were 

computed to analyze the data for gearbox fault detection. Such features are used to detect 

the signal characteristics that may signify faults [122]. 

Kurtosis measures the "tailedness" of a probability distribution and measures the 

amount of departure of the dataset from the normal distribution. High kurtosis values 

usually indicate that the data contains extreme values or outliers and are generally 

associated with sudden changes or impulsive events in the signal [123-125]. This property 

is specifically helpful for detecting gearbox faults, as high kurtosis values in vibration 

signals might indicate crack, wear, or misalignment faults. Lower kurtosis values indicate 

lighter-tailed distributions with fewer outliers, often representing smoother or less erratic 

signals. This metric is beneficial for fault detection since sudden energy spikes or 

anomalies in the vibration data are strong indicators of irregularities in the gearbox system 

[35]. Importance in gearbox diagnostics: Kurtosis [124] is helpful in identifying non-

normal distributions in vibration signals, thus aiding in identifying healthy and faulty 

operation conditions. This feature makes the analysis sensitive to irregularities associated 

with mechanical faults. 

𝐾𝑢𝑟 =  
∑ (𝑍𝑖−𝑍)

4𝑀
𝑖=1 𝑀⁄

𝐾4
              (2.9) 

According to Esmael et al. (2013) [125], in probability and statistics, this is the point 

at which the random variable experiences probability dispersion. The mean value of the 

specified integer power separates the mean from the random variable. Moments are 

numerical measurements associated with the graph form of a function. Higher-order 

moments can provide details about the variability and distribution shape, but the first 

moment, the mean, represents the central tendency. Moments can be used to discover 

deviations from normal operation in the behavior of the signal, which is helpful in fault 

identification. Very often, such deviations represent anomalies caused by faults such as 

misalignment, imbalance, or wear in the gear. Moments enable the system to detect signal 

pattern changes that are not performing as they should, thereby allowing the early 

classification of faults. Thus, variation in vibration signal works is a crucial characteristic 

explaining moments in mechanical fault diagnosis. 

The extracted higher and statistical-order features are denoted by 𝑓𝑒ℎ𝑡 and 𝑓𝑒𝑠𝑡,   

in that order. The extracted features 𝑓𝑒are indicated by Equation (2.10). 

 

𝑓𝑒𝑆𝐸 + 𝑓𝑒𝑖𝑙𝑒 + 𝑓𝑒𝐼𝑅𝑒 + 𝑓𝑒𝑠𝑡 + 𝑓𝑒ℎ𝑡 = 𝑓𝑒         (2.10) 
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The model can use the extracted features to distinguish fault conditions from 

normal operating states. A combined classifier uses a combination of several algorithms 

using the retrieved characteristics as an input to increase accuracy and robustness in 

detecting faults. The integration further improves the system’s capability to identify and 

classify gearbox faults, hence ensuring the reliable maintenance and operation of the 

machinery. Combining the signal’s informational content with variabilities through 

Shannon entropy, enhanced logarithmic energy entropy, better Renyi entropy, as well as 

statistical measurements yields a comprehensive analysis that surpasses others with even 

stronger and more trustworthy fault detection, hence assuring no easy swaying by such 

mechanical mistakes or any kinds of deviation for the said system. 

2.4 Hybrid Classifiers with Opposition-based Artificial 

Hummingbird Crow Search Algorithm-Based Tuning 

The RNN DL model is designed to retain sequential data and be used for prolonged periods 

in a prediction, making it very useful and appropriate for time series predictiveness in 

many applications. The size does not change with the magnification of the input signal. 

However, Bi-LSTM networks capture more content by processing the data back and forth, 

thus increasing the richness of information available for the algorithm. The method com- 

bines an RNN with a Bi-LSTM to identify fault conditions in a gearbox. However, even 

though prolonged training durations tend to work, overfitting circumstances often exist 

where, eventually, the model commences understanding noise and spurious conditions 

within the train data, over-generalizing worthwhile trends [74]. Eventually, the model 

may degrade as far as performance is concerned with datasets not yet seen and miss faults 

outside its training sets. It deals with all these by improving the RNN’s training process, 

which the researcher conducts using this novel OAHCSA algorithm. Such an 

improvement shall help decrease overfitting by not letting the model focus solely on 

recognizing redundant patterns that do not lead to actual data relationships; this can 

enhance its capabilities in better fault detection and classification. 

2.4.1 Hybrid Classifiers 

The RNN and Bi-LSTM are used to detect faults, and outcomes are achieved by averaging 

the RNN and Bi-LSTM outputs. Bi-LSTM and RNN are combined to create the combined 

classifier because of their complementing abilities to handle sequential input and capture 

intricate temporal relationships. RNNs are suited for time-series analysis because they are 

skilled at processing sequences and keeping hidden states that reflect information from 
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previous time steps. However, due to shrinking gradients, RNNs might have trouble 

handling long-term dependencies by themselves. In order to overcome this, Bi-LSTM 

networks are constructed. These networks use bidirectional processing and gating 

methods to efficiently manage long-term relationships and collect background 

information from previous and upcoming time steps. The combined technique enhances 

fault detection accuracy by leveraging the combined strengths of the RNN’s ability to 

handle sequential data and the Bi-LSTM’s superior understanding of temporal 

connections, resulting in a more comprehensive data analysis. 

RNN: Neural network (NN) components make up an RNN [124] designed to analyze a 

series of data 𝐷𝑠𝑖𝑚, with a time step index of 𝑡. The three steps of the RNN are input, 

hidden state, and output. Here, 𝐷1,2,….𝑀
𝑠𝑖𝑚 (𝑡) refers to the input sequence, whereas 𝑀 refers 

to the input vector’s count at the time 𝑡, and the previous values of 𝑈(𝑡) are represented 

by the output vector, 𝐷1,2,…𝑀
𝑠𝑖𝑚 (𝑡). The concealed state 𝑈(𝑡) is modeled in equation (2.11); 

The ReLU and tanh get symbolized by fun, while the weight matrices are implied by 

𝐻,𝑊, 𝑉. 

𝑈(𝑡) = 𝑓𝑢𝑛. (𝐻. 𝐷𝑠𝑖𝑚(𝑡) +𝑊.𝑈(𝑡 − 1)          (2.11) 

The steps in RNN include: 

Step 1:𝐻,𝑊, 𝑉, and bias functions𝑏, 𝑐are initialized with 0’s. 

Step 2: The SoftMax function is used to get the output’s normalized probability 𝑌̂. 

Step 3: Equations (2.12) to (2.15) are used to compute the forward pass.  Here, 𝑎(𝑡) is an 

intermediate activation calculation at time, 𝑏 represents a bias term added to the 

activation, 𝑄(𝑡) denotes the raw output at time, 𝑐 represents another bias term used in the 

output calculation, 𝑌̂(𝑡) signifies the predicted output at the time. 

    𝑎(𝑡)  =  𝑏 + 𝐻. 𝐼(𝑡) +𝑊𝑈(𝑡 − 1)             (2.12) 

    𝑈(𝑡) = 𝑡𝑎𝑛ℎ. (𝑎(𝑡))              (2.13) 

    𝑄(𝑡) = 𝑐 + 𝑈(𝑡). 𝑉               (2.14) 

    𝑌̂(𝑡) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑄(𝑡))              (2.15) 

 

 

Step 4: Equation (2.16) estimates the loss function. Here, 𝑦𝑜,𝑟 represents the actual label 

(class label) for the output corresponding to the 𝑟𝑡ℎ class, 𝑔𝑜,𝑟 represents the predicted 

probability of the output belonging to the 𝑟𝑡ℎclass.    
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 𝐿𝑜𝑠𝑠 = −∑ 𝑦𝑜,𝑟
𝐽
𝑐=1 . 𝑙𝑜𝑔( 𝑔𝑜,𝑟)            (2.16) 

Bi-LSTM: A number of recurrent LSTM cells [126] are covered by the Bi-LSTM [126] 

classifier. Each Bi-LSTM cell has input, output, and forget gates. Assuming that variables 

𝛧 and 𝐷 are concealed, the cell state, (𝑋𝑡, 𝐷𝑡−1, 𝛧𝑡−1) and (𝛧𝑡, 𝐷𝑡), designates refer to the 

output/input layer. At the time𝑡, forget output and input gates are signified as 𝐹𝑡 , 𝑂𝑡, 𝐼𝑡. 

Bi-LSTM initially utilizes 𝐹𝑡 to arrange data that is modeled as in equation (2.17). Here, 

𝑋𝑡 represents the input data at a time, 𝐷𝑡−1 denotes the previous output or hidden state 

from the previous time step, 𝑍𝑡−1 symbolizes the previous cell state and 𝐹𝑡 signifies the 

forget gate activation at a time. 

𝐹𝑡 = 𝜎(𝐽𝐼𝐹𝑋𝑡 + 𝐿𝐼𝐹 + 𝐽𝛧𝐹𝛧𝑡−1 + 𝐿𝛧𝐹)          (2.17) 

 

In equation (2.17), (𝐽𝛧𝐹 , 𝐿𝛧𝐹) and (𝐽𝐼𝐹 , 𝐿𝐼𝐹) refer to weight along with bias limitation for 

hidden state mapping as well as input to forget gate and refer to activation function σ. 

Bi-LSTM used the input gate by equations (2.18) to (2.20), where (𝐽𝛧𝐺 , 𝐿𝛧𝐺)and (𝐽𝐼𝐺 , 𝐿𝐼𝐺) 

Correspondingly, it refers to weight along with bias limitation for hidden state mapping 

and input to the cell gate. (𝐽𝛧𝐼 , 𝐿𝛧𝐼)and (𝐽𝐼𝐼 , 𝐿𝐼𝐼) entail weight along with bias for hidden 

state mapping and input layers toward𝐼𝑡. 𝐼𝑡 indicates the input gate activation at the time, 

σ denotes the sigmoid activation function used for the gates, 𝐺𝑡 represents the candidate 

cell state generated at time, 𝐽, 𝐿 are weight matrices and bias terms, respectively, 

associated with the various gates. 

𝐺𝑡 = 𝑡𝑎𝑛ℎ(𝐽𝐼𝐺𝑋𝑡 + 𝐿𝐼𝐺 + 𝐽𝛧𝐺𝛧𝑡−1 + 𝐿𝛧𝐺)         (2.18) 

𝐼𝑡 = 𝜎(𝐽𝐼𝐼𝑋𝑡 + 𝐿𝐼𝐼 + 𝐽𝛧𝐼𝛧𝑡−1 + 𝐿𝛧𝐼)          (2.19) 

𝐷𝑡 = 𝐹𝑡𝐷𝑡−1 + 𝐼𝑡𝐺𝑡             (2.20) 

𝑂𝑡 = 𝜎(𝐽𝐼𝑂𝑋𝑡 + 𝐿𝐼𝑂 + 𝐽𝛧𝑂𝛧𝑡−1 + 𝐿𝛧𝑂)            (2.21) 

𝛧𝑡 = 𝑂𝑡 𝑡𝑎𝑛ℎ(𝐷𝑡)               (2.22) 

Equation (2.21) indicates that the output gate provides the Bi-LSTM cell with a 

concealed state, which is shown in equation (2.22), in which (𝐽𝛧𝑂 , 𝐿𝛧𝑂) and (𝐽𝐼𝑂 , 𝐿𝐼𝑂) 

refer to weight as well as a bias for hidden state mapping and input layer to 𝑂𝑡 , 

respectively. 𝑂𝑡 represents the output gate activation at the time; the results of the RNN 

and Bi- LSTM are averaged to get the final output. The classifiers' parameter settings are 

detailed in Table 2.3. 
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Table 2. 3: Parameters of the classifiers 

Models Parameter values 

Bi-LSTM No of hidden units = 100 

Learning rate = 0.01 

Sequence Input Layer - 1 

Bi-LSTM Layer - 1 

Fully Connected Layer - 1 

Softmax Layer - 1 

Classification Layer - 1   

Activation function = SoftMax 

Optimizer = 'sgdm'-Stochastic gradient descent with 

momentum. 

S-Net Learning rate = 0.01 

Convolution - 1 

Fire module - 8 

Activation - Relu 

Max Pooling - 2 

Global Average Pooling - 1 

within Fire module: 

Convolution - 2 

Activation layer (Relu) – 2 

R-Net Learning rate = 0.01 

Convolution - 1 

Max Pooling - 1 

Activation – Relu 

RNN Learning rate = 0.01 

Input Layer 

LSTM Layer (100); 100 refers to the number of hidden 

units  

Fully Connected Layer (384); 384 refers to the number 

of neurons in the next FC hidden layer 

Softmax Layer 

Classification Layer 
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2.4.2 Opposition- Based Artificial Hummingbird Crow Search Algorithm  

for Tuning Optimal Weights 

Optimal fine-tuning of hyperparameters, including weights, batch size, and learning rate 

in deep learning, is not definitively achievable. In practice, these parameters play a crucial 

role in model performance, and improper tuning can lead to suboptimal results. A primary 

focus of this combined classification model, RNN-Bi-LSTM, is the optimization of its 

weights, using the algorithm known as OAHCSA to minimize those errors. The OAHCSA 

algorithm dynamically adjusts its internal parameters during training to yield fewer 

prediction errors and better detection performance. For gearbox fault detection, very fine-

tuning of complex parameters of DL models such as RNNs and Bi- LSTMs is required. 

The proposed OAHCSA algorithm combines several optimization strategies to enhance 

the combined model's functionality. OAHCSA combines various optimization 

methodologies in order to improve the quality of the solutions and the effectiveness of the 

search process. Integration of Opposition Learning and AHCSA pro- vides robust 

optimization capabilities. Opposition Learning expands the searching space and avoids 

getting trapped in the local minima by simultaneously searching for both existing and 

opposite solutions. In this case, the crow search algorithm (CSA) [127] is modeled after 

the social behavior of foraging by crows together with memory to find the best solutions 

through cooperation. In contrast, the artificial Hummingbird algorithm (AHA) 

[110] balances exploration with exploitation while replicating the adaptive foraging 

patterns of hummingbirds. An efficient and comprehensive search process improves 

accuracy and speed during model training for fault detection. It will ensure the creation 

of a robust and accurate system that can provide reliable diagnostics and ensure good 

operation of the system under consideration. 

Objective function: The objective 𝑂𝑏𝑗, of the research is to minimize the error𝑒𝑟, as given 

in equation (2.23). The weight 𝑊 of RNN is selected using the OAHCSA approach.  

𝑂𝑏𝑗 = 𝑚𝑖𝑛( 𝑒𝑟)             (2.23) 

The CSA is known for providing optimal solutions in various applications with 

limited control parameters. While offering fast convergence, the algorithm can become 

trapped in a local optimum. Although the algorithm efficiently finds a good solution, its 

greedy nature may prevent it from reaching the best solution. The OAHCSA approach 

combines the AHA concept proposed by Zhao et al. (2022) with CSA to address the 

limitations of conventional CSA. Meanwhile, the developed OAHCSA model attains 
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numerous advantages, such as faster convergence and intense global search with minimum 

time (i.e., the solution obtained is trustworthy). Specific search space issues are believed 

to be amenable to hybridized optimization strategies [132-136]. 

The original CSA is improved by the OAHCSA, which incorporates sophisticated 

ways to get over its drawbacks, like becoming caught in local optima. After initializing 

crow placements at random, OAHCSA uses opposition learning to investigate 

complementary solutions, expanding the search space. Then, it employs dynamic 

awareness probability (DAP) to balance exploration and exploitation. A high DAP value 

results in AHA-based updates that refine positions using dynamic parameters. In contrast, 

a low DAP value initiates exploration utilizing a formula that modifies crow positions 

based on the locations of other crows. Crows adjust their memory in accordance with 

fitness evaluations, which decide whether new postures are better than prior ones. This 

combined approach reduces the likelihood of local minima and improves global search 

and solution quality. It creates faster convergence and more reliable optimization by fusing 

the benefits of CSA with the adaptive techniques of AHA and opposition learning. 

The mathematical modeling of the OAHCSA model is described in a detailed way 

as given below: 

The CSA mimics the intelligent characteristics of a crow. The flock size is referred to 

as 𝑀, and the 𝑖𝑡ℎ crow location iteration, it, inside the search, region-depicted as 𝑍𝑖,𝑖𝑡𝑖 =

(1,2. . . 𝑀; 𝑖𝑡 = 1,2. . . 𝑖𝑡𝑚𝑎𝑥), in which 𝑍𝑖,𝑖𝑡 = [𝑍1
𝑖𝑡, 𝑍2

𝑖𝑡 , . . . 𝑍𝑑
𝑖𝑡]as well as 𝑖𝑡𝑚𝑎𝑥 refers to 

the maximal iteration count. At 𝑖𝑡, the crow 𝑖’s position and hidden crow location are 

depicted by𝑣𝑖,𝑖𝑡. The finest position that crow 𝑖 has so far managed to secure is thought 

to be this one. Furthermore, opposition-based learning (OBL) is used to generate opposite 

solutions in crow search. Considering that 𝑖𝑡; crows𝑗require arranging their hidden area, 

𝑣𝑗,𝑖𝑡; at 𝑖𝑡, crow 𝑖 finds the crow 𝑗 to shift to crow 𝑗 hidden location. Here, there are two 

steps. 

Step 1: The Crow 𝑗 is unaware of the crow 𝑖follows it. Here, the crow 𝑖 tries to find the 

crow𝑗 hidden place, and equation (2.25) describes how the crow usually reaches its fresh 

position. According to OAHCSA, DAP is calculated using equation (2.24), where 𝑁𝑃𝑖 

states the current size of the population. If DAP <random count 𝑟𝑖. Then, the update of 

CSA is performed based on AHA, as shown in equation (2.26); otherwise, a local search 

will be performed as shown in equation (2.25). 

𝐷𝐴𝑃 = 𝐴𝑃𝑚𝑖𝑛 + (𝐴𝑃𝑚𝑎𝑥 − 𝐴𝑃𝑚𝑖𝑛)
𝑁𝑃𝑖

𝑁𝑃
           (2.24) 
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𝑍𝑖𝑡+1 = 𝑍𝑖𝑡 + 𝑟𝑖 × 𝑓𝑙
𝑖𝑡 × (𝜈𝑗,𝑖𝑡 − 𝑍𝑖,𝑖𝑡)         (2.25) 

𝑍𝑖𝑡+1 = 𝑍𝑖,𝑡𝑎𝑟(𝑖𝑡) + 𝑎.𝐷. (𝑍𝑖(𝑖𝑡) − 𝑍𝑖,𝑡𝑎𝑟(𝑖𝑡))        (2.26) 

Conversely, whenever memory fitness (𝑣)is less than the current fitness(𝑍), then a 

random update will be done.  

Step 2: Crow 𝑗 finds that crow 𝑖is finding it. Crow 𝑗 thus deceives crow 𝑖 by moving to 

several locations to get their meal. As in equation (2.27), states 1 and 2 are mentioned 

jointly. 

𝑍𝑖,𝑖𝑡+1 = {
𝑍𝑖𝑡 + 𝑟𝑖 × 𝑓𝑙

𝑖𝑡 × (𝑣𝑗,𝑖𝑡 − 𝑍𝑖,𝑖𝑡) 𝑣 ≥ 𝑍𝑖𝑡

𝑎 𝑟𝑎𝑛𝑑𝑜𝑚 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
         (2.27) 

 

Phase 1: Provide the constraint modifications and the problem. 

Phase 2: The memories of crow and places should be assigned based on Eqns. (2.28) and 

(2.29), in which 𝑑refers to the decision constraints count. 

𝐶𝑟𝑜𝑤𝑠 =

[
 
 
 
𝑍1
1 𝑍2

1 . . . 𝑍𝑑
1

𝑍1
2 𝑍2

2 . . . 𝑍𝑑
2

⋮ ⋮ . . . ⋮
𝑍1
𝑀 𝑍2

𝑀 . . . 𝑍𝑑
𝑀]
 
 
 

            (2.28) 

 

𝑀𝑒𝑚𝑜𝑟𝑦 =

[
 
 
 
𝑣1
1 𝑣2

1 . . . 𝑣𝑑
1

𝑣1
2 𝑣2

2 . . . 𝑣𝑑
2

⋮ ⋮ . . . ⋮
𝑣1
𝑀 𝑣2

𝑀 . . . 𝑣𝑑
𝑀]
 
 
 

            (2.29) 

Phase 3: Evaluate fitness function. 

 

Phase 4: Construct a unique location. When a crow 𝑖 wants to find a new location, it will 

pick a single flock at random and follow it to find the food source that the crow 𝑣𝑗  has 

hidden. The unique position that crow 𝑖 has attained and maintained is shown by equation 

(2.29). 

Phase 5: Verify whether additional positions are possible. The crow will update its 

position if a new one can be found; otherwise, it will stay in the currently displayed zone. 

Phase 6: Every time there is a new update of crow's, evaluate the fitness function. 

 

Phase 7: Modify memory. In equation (2.30), the crow's memory update is depicted, 

where 𝑓(𝑣𝑖,𝑖𝑡) denotes the objective.  

𝑣𝑖,𝑖𝑡+1 = {
𝑍𝑖,𝑖𝑡+1 𝑓(𝑍𝑖,𝑖𝑡+1)𝑖𝑠𝑏𝑒𝑡𝑡𝑒𝑟𝑡ℎ𝑎𝑛𝑓(𝑣𝑖,𝑖𝑡)

𝑣𝑖,𝑖𝑡 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
       (2.30) 
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Phase 8: Check the termination requirements. The optimal location is seen to be the 

solution to the optimization issues, even though termination is gained. 

Table 2. 4: Describes how the optimization algorithm’s parameter settings are set 

Algorithm: Proposed OAHCSA model 

Decide on M crows' location at random. 

Generate OBL 

Computing crow position 

Assign every crow’s memory. 

while 𝑖𝑡 < 𝑖𝑡𝑚𝑎𝑥 

for 𝑖 = 1: 𝑀 

 Choose row arbitrarily 

 Define DAP 

 if DAP <𝑟𝑖, 

 Update formula as per AHA in equation (2.26) 

 
Else 

 Update formula 

as per CSA in equation (2.25) 

. End if 

end for 

Calculate potential outcomes for current positions. 

Get the crows' current location. 

Modifying crow memory 

end while 

 

 

Table 2. 5: Parameters of the optimization algorithms 

Algorithms Parameter values 

CSA 
AP = 0.1; % Awareness probability 

fl = 2; % Flight length (fl) 

LA 

Mature age = 3 

Max strength = 3 

max = 10 
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mutation rate = 0.15 

Max age = 3 

Proposed OAHCSA 
AP = 0 .1; % Awareness probability 

fl = 2; % Flight length 

 

2.5 Experimental Setup and Data Acquisition 

The experiment is conducted to capture vibration signals of a bevel gearbox using the 

machine fault simulator (MFS) from Spectra Quest, as shown in Figure. 2.6. The dataset 

used for experimentation is considered from the previous study [132]. The main parts of 

the experiment test rig are a single-stage bevel gearbox, a magnetic brake, a belt and 

pulley arrangement, a variable frequency drive (VFD), an AC motor, and a bearing 

housing plate. A three-phase AC motor is connected to a shaft in the experimental test rig 

that has a belt and pulley arrangement to a single-stage bevel gearbox through a flexible 

coupling. A magnetic brake applies the load to the gearbox to generate the required test 

torque, and the tri-axial accelerometer (PCB-Piezotronics 356A26 SN 225948, 

Sensitivity: 5.13 𝑚𝑉⁄𝑚/𝑠2 , 𝑦-𝑎𝑥𝑖𝑠 4.85 𝑚𝑉⁄𝑚/𝑠2, z-axis 4.87 𝑚𝑉⁄𝑚/𝑠2) is installed 

to record the vibration signals on the single-stage bevel gearbox, as seen in Figure 2.7. 

The accelerometer is connected to an OROS-OR34 data acquisition system (DAQ) to 

collect vibration readings from the gearbox. A laptop running NV Gate software is linked 

to the DAQ in order to evaluate the signals that have been recorded. This study selects 

four motor speeds: 15 Hz, 20 Hz, 25 Hz, and 30 Hz. These speeds are chosen to cover a 

range of operating conditions, with the maximum speed (30 Hz) based on the motor's 

maximum rotational capacity. The speeds are regulated using a VFD. A mechanically 

controllable magnetic brake is utilized to impart different loads on the gearbox's output 

shaft. The brake has a load range of 0 to 5 Nm, and for this study, loads between 0 and 4 

Nm are applied to capture signals under different speed and load conditions. In addition, 

different faults exhibit distinct characteristics at various speeds and load conditions. 

Therefore, a sufficient range of speeds that MFS can readily accomplish is considered to 

provide exhaustive data sets. The model can recognize faults based on their distinct 

fingerprints under various operating conditions because it was trained on a dataset with a 

range of variables. Under operating conditions, the gearbox's 10-second vibration 

signature is recorded with a sample frequency of 12.8 kHz, resolution of 1.5625 Hz, and 

overlap of 20%. 

The gearbox's technical specs are displayed in Table 2.6. Table 2.7 Abrasive wear 
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fault severity levels in gears Abrasive wear are simulated using a laser cutting machine. A 

fiber laser system doped with rare earth elements like erbium, ytterbium, and neodymium 

that was purchased from Scantech Laser Pvt. makes up the experimental setup. Its 50 W 

rated power output and Galvo scanner, which has a 0.2 mm spot diameter and a 287 mm 

focal length, allow for two-way beam manipulation. Table 2.7 depicts the process 

conditions and time duration to impose laser machine abrasive wear faults on the bevel 

gear. The cutting depth was measured using the DEW507 Optical Microscope from 

Dewinter Optical Inc., and the obtained values were used in the calculation of abrasive 

wear severity. Figure illustration of the bevel gear fault of the Abrasive wear is presented 

as follows in Figure 2.8.  

. 

 
 

Figure 2. 6: Experimental test setup. 
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Figure 2. 7: Magnetic break and tri-axial accelerometer. 

Table 2. 6: Technical specifications of the gearbox 

 

Backlash tolerance (gear and pinion) 0.0254-0.127 mm 

Pitch angle (pinion) 33°41' 

Pitch diameter (gear) 42.8625 mm 

Pressure angle (pinion and gear) 20° 

Module (pinion and gear) 2 mm 

Number of teeth (pinion) 18 

Pitch diameter (pinion) 28.575 mm 

Number of teeth (gear) 27 

Material (pinion and gear) Forged steel 

Pitch angle (gear) 56°19' 

Gear ratio 1.5:1 
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Table 2. 7: Different types of abrasive wear faults have different severity levels 

 
 

 

Gears 

(Bevel) 

Fault  

description 

Fault  

Dimension  
Image of fault 

0 Healthy  Nil 

 

1 Incipient 20 Micron 

 

2 Slight 30 Micron 

 

3 Moderate 40 Micron 

 

4 Severe 50 Micron 

 
 
 
 
 

 
 

 
 

Figure 2. 8: The severity of abrasive wear fault for (a) incipient, (b) slight, (c) moderate, 

(d) severe. 

 

Table 2. 8: Operating parameters of the laser machine 

S. No 

Level of  

abrasive wear 

fault 

Number of 

passes 

Operating 

power (w) 

Cutting 

depth  

(micron) 

(A) Incipient 10 30 20 

(B) Slight 15 40 30 

(C) Moderate 15 50 40 

(D) Severe 70 50 50 
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2.6 Results and Discussion 

2.6.1 Simulation Procedure 

All experiments and model implementations are conducted using MATLAB R2020b. DL 

models and the OAHCSA are developed from scratch within this environment. This 

strategy requires a processor with an 11th Gen Intel® Core™ i5-1135G7 @ 2.40 GHz 

and 16.0 GB of RAM (15.7 GB useable), among other computational resources. The x64- 

based processor and 64-bit operating system power the system, which is utilized for all 

model training and evaluation tasks in this study. The same setup is employed for all 

training and evaluation processes in the study. The dataset contains 25 samples of the 

healthy class, while each fault class, namely incipient, slight, moderate, and severe, 

includes 10 samples. These five fault classes, each with unique identification, will allow 

us to categorize and recognize gearbox fault conditions. Table 2.8 displays training and 

testing data distribution. which contains percentages for training and testing. The split for 

60% of data to be used for training leaves 40% for testing. That 70% were assigned to 

30% tests, while for the 80% training scheme, only 20% was allocated for testing. This 

variation will produce an exhaustive assessment of the models under different fault 

detection conditions and make it more robust in terms of performance. 

Table 2. 9: Training and testing data 

Training 

percentage 
Training data Testing data 

60 780  9 520  9 

70 910  9 390  9 

80 1040  9 260  9 

 

2.6.2 Performance Analysis 

The effectiveness of the proposed model is evaluated using positive, negative, and neutral 

criteria in relation to the prior model. False positive rates (FPR), false negative rates 

(FNR), and false discovery rates (FDR) are compared against positive measures like 

sensitivity, specificity, accuracy, and precision. Neutral metrics are also used, including 

the F1 score, Matthew's correlation coefficient (MCC), and negative predictive value 

(NPV). The values for false positive (FP), false negative (FN), true positive (TP), and true 

negative (TN) are evaluated for each method. The performance of the OAHCSA-HC 

method is compared with other approaches such as AHA-HC, CSA-HC, LA-HC, PRO-
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HC, deep LSTM, CNN-FFT, R-Net, and S-Net. Neural networks such as CNN-FFT [134] 

learn patterns without storing input data, whereas LSTMs address the vanishing gradient 

problem, and S-Net optimizes computing resources, as shown in Figures 2.10, 2.11, and 

2.12. The high accuracy achieved at 15 Hz is 99.62%, with a precision of 99.79%, a 

specificity of 99.87%, and a sensitivity of 99.54%. It has also got very low values for FNR 

(0.45%), FDR (0.20%), and FPR (0.12%), indicating low misclassifications. Neutral 

measures such as NPV of 99.87%, MCC of 99.56%, and F1-score of 99.66% further 

confirm its superiority in performance. Figure 2.10 b depicts that OAHCSA-HC has made 

significant headway with entropy-based feature extraction, which captures the feature 

information, rather than a combined classifier combining multiple algorithms to improve 

prediction accuracy. Convergence is improved, and local minimum is avoided with 

OAHCSA optimization. Performance metrics, such as the all-in-one set, ensure reliability 

in classification results while simultaneously reducing false positives and negatives. 

Overall, architecture proves effective in modeling complex patterns, and it gets better 

results than other algorithms for fault detection with respect to accuracy and reliability. 
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Figure 2. 9: Comparison of classifiers for (a) Precision, (b) Accuracy, (c) Specificity, and (d) 

Sensitivity at 15 Hz. 
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(a) (b) 
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Figure 2. 10: Comparison of classifiers for (a) FDR, (b) FNR, and (c) FPR at 15 Hz. 
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(a) (b) 
 

 

(c) 

Figure 2. 11: Comparison of classifiers for (a) MCC, (b) NPV, and (c) F1-score at 15 Hz. 

Three types of measurements, positive, negative, and neutral, were presented in 

Tables 2.7-2.9 for operating frequencies of 20, 25, and 30 Hz, respectively. The 

OAHCSA-HC method always produced better results than those from other methods, 

yielding an accuracy level of 99.62% at 15 Hz with 80% training data. It showed a lower 

FNR and FPR than R-Net, AHA-HC, CSA-HC, LA-HC, PRO-HC, deep LSTM, CNN- 

FFT, and S-Net across the 80% training data. Besides, the method comes with high 

specificity at 99.88% throughout the 20 Hz, 25 Hz, and 30 Hz frequencies. The improved 

performance is attributed to enhancements in the modified log-energy entropy and Renyi 

entropy features, which contribute to the superior effectiveness of the proposed 

OAHCSA-based HC method over other compared techniques. 
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Table 2. 10: Comparison of different classifiers at 20 Hz 

Metrics 
AHA- 

HC 

CSA- 

HC 

LA- 

HC 

PRO- 

HC 

Deep 

LSTM 

CNN- 

FFT 
R-Net S-Net 

OAHCSA- 

HC 

NPV 0.971 0.965 0.967 0.967 0.942 0.929 0.738 0.850 0.997 

Sensitivity 0.880 0.856 0.862 0.856 0.785 0.723 0.736 0.846 0.986 

MCC 0.840 0.808 0.822 0.813 0.703 0.630 0.936 0.962 0.984 

Precision 0.863 0.816 0.851 0.840 0.743 0.686 0.713 0.836 0.989 

F1-Score 0.867 0.843 0.855 0.844 0.758 0.698 0.064 0.038 0.987 

FPR 0.029 0.035 0.033 0.033 0.058 0.071 0.720 0.840 0.003 

FNR 0.120 0.144 0.138 0.144 0.215 0.277 0.657 0.802 0.014 

Specificity 0.971 0.965 0.967 0.967 0.942 0.929 0.264 0.154 0.997 

FDR 0.137 0.166 0.149 0.160 0.257 0.314 0.936 0.962 0.011 

Accuracy 0.885 0.858 0.869 0.865 0.769 0.715 0.287 0.164 0.988 

 

    Table 2. 11: Comparison of different classifiers at 25 Hz 

 

 

Metrics 

 

AHA 

-HC 

 

CSA- 

HC 

 

LA- 

HC 

 

PRO 

-HC 

Deep 

LST 

M 

CNN 

-FFT 

 

R- 

Net 

 

 

S-Net 

OAHC 

SA- 

HC 

NPV 
0.961 0.968 0.965 0.962 0.935 0.931 0.762 0.873 0.998 

Sensitivity 
0.827 0.859 0.846 0.835 0.741 0.716 0.753 0.857 0.990 

FPR 
0.039 0.032 0.035 0.038 0.065 0.069 0.942 0.967 0.002 

Precision 
0.823 0.860 0.831 0.832 0.714 0.689 0.736 0.868 0.990 

MCC 
0.786 0.828 0.802 0.795 0.661 0.632 0.058 0.033 0.988 

F1-Score 
0.824 0.859 0.838 0.832 0.724 0.699 0.739 0.861 0.990 

FNR 
0.173 0.141 0.154 0.165 0.259 0.284 0.683 0.829 0.010 

Specificity 
0.961 0.968 0.965 0.962 0.935 0.931 0.247 0.143 0.998 

FDR 
0.177 0.140 0.169 0.168 0.286 0.311 0.942 0.967 0.010 

Accuracy 
0.846 0.877 0.858 0.855 0.742 0.723 0.264 0.132 0.992 
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    Table 2. 12: Comparison of different classifiers at 30 Hz  

 

Metrics 
AHA- 

HC 

CSA- 

HC 

LA- 

HC 

PRO- 

HC 

Deep 

LSTM 

CNN- 

FFT 

 

R-Net 

 

S-Net 

OAHCSA- 

HC 

NPV 0.962 0.965 0.969 0.968 0.941 0.935 0.762 0.885 0.998 

Sensitivity 0.853 0.863 0.870 0.870 0.750 0.739 0.761 0.888 0.990 

MCC 0.802 0.808 0.826 0.824 0.679 0.657 0.942 0.971 0.988 

Precision 0.829 0.830 0.848 0.845 0.731 0.712 0.731 0.872 0.990 

FPR 0.038 0.035 0.031 0.032 0.059 0.065 0.058 0.029 0.002 

F1-Score 0.840 0.842 0.857 0.855 0.736 0.718 0.741 0.879 0.990 

FNR 0.147 0.137 0.130 0.130 0.250 0.261 0.685 0.849 0.010 

Specificity 0.962 0.965 0.969 0.968 0.941 0.935 0.239 0.112 0.998 

FDR 0.171 0.170 0.152 0.155 0.269 0.288 0.942 0.971 0.010 

Accuracy 0.850 0.854 0.873 0.869 0.762 0.735 0.269 0.128 0.992 

 

2.6.3 Ablation Study 

Ablation research is done to evaluate the efficacy of the suggested approach, comparing 

it with different features for various motor speeds. The results in Tables 2.10–2.13 show 

that the OAHCSA-HC method outperformed other components, including traditional log 

entropy, Renyi entropy, and the combined model without features. It also performed 

better than the proposed model without statistical features and HC without optimization. 

At a motor speed of 15 Hz, the OAHCSA-HC method achieved a high specificity rate of 

99.88%. Similarly, it achieved a remarkable NPV of 99.87% and an increased sensitivity 

of 99.54%, indicating its proficiency in accurately predicting negatives and capturing true 

positives. The model also showed a high positive value for all motor operating 

frequencies. 

Additionally, the modified Renyi entropy and modified log-energy entropy approaches 

produced helpful results for this investigation. The proposed method achieves superior rates 

when compared with the model without statistical features. The model without statistical 

features obtained a lower accuracy value of 88.84%, while the proposed OAHCSA-HC- 

based model acquired the most remarkable accuracy of 99.61% values at 15 Hz. This 

experimental result demonstrates the efficiency of statistical features in the proposed 

model. 
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Table 2. 13: Ablation study of OAHCSA-HC approach at 15 Hz 

 

 

 

Metrics 

 

OAHCSA- 

HC 

 

 

Without 

optimization 

Using 

conventional 

log entropy 

Using 

conventional 

Renyi 

HC 

without 

features 

Model 

without 

statistical 

features 

NPV 0.999 0.923 0.915 0.899 0.897 0.971 

Sensitivity 0.995 0.670 0.570 0.547 0.450 0.882 

MCC 0.996 0.556 0.471 0.620 0.457 0.855 

Precision 0.998 0.610 0.552 0.520 0.385 0.887 

F1-Score 0.997 0.621 0.551 0.502 0.485 0.883 

FPR 0.001 0.077 0.085 0.101 0.103 0.029 

FNR 0.005 0.330 0.430 0.453 0.550 0.118 

Specificity 0.999 0.923 0.915 0.899 0.897 0.971 

FDR 0.002 0.390 0.448 0.321 0.457 0.113 

Accuracy 0.996 0.692 0.654 0.615 0.577 0.888 

 

     Table 2. 14: Ablation study of OAHCSA-HC approach at 20 Hz 

 

 

 

Metrics 

 

OAHCSA- 

HC 

 

Without 

optimization 

Using 

conventional 

log entropy 

Using 

conventional 

Renyi 

HC 

without 

features 

Model 

without 

statistical 

features 

NPV 0.997 0.939 0.933 0.922 0.825 0.968 

Precision 0.989 0.838 0.551 0.669 0.311 0.864 

Sensitivity 0.986 0.743 0.533 0.689 0.440 0.877 

MCC 0.984 0.731 0.529 0.598 0.513 0.838 

FPR 0.003 0.061 0.067 0.078 0.175 0.032 

F1-Score 0.987 0.776 0.667 0.669 0.387 0.869 

FNR 0.014 0.257 0.467 0.311 0.560 0.123 

Specificity 0.997 0.939 0.933 0.922 0.825 0.968 

FDR 0.011 0.162 0.449 0.331 0.696 0.136 

Accuracy 0.988 0.788 0.731 0.692 0.308 0.873 
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      Table 2. 15: Ablation study of OAHCSA-HC approach at 25 Hz 

 

 

 

Metrics 

 

OAHCSA- 

HC 

 

Without 

optimization 

Using 

conventional 

log entropy 

Using 

conventional 

Renyi 

HC 

without 

features 

Model 

without 

statistical 

features 

NPV 0.998 0.929 0.926 0.953 0.861 0.963 

Sensitivity 0.990 0.592 0.614 0.750 0.408 0.855 

MCC 0.988 0.523 0.628 0.840 0.491 0.812 

Precision 0.990 0.610 0.613 0.707 0.324 0.846 

F1-Score 0.990 0.579 0.556 0.687 0.310 0.848 

FPR 0.002 0.071 0.074 0.047 0.139 0.037 

FNR 0.010 0.408 0.386 0.250 0.592 0.145 

Specificity 0.998 0.929 0.926 0.953 0.861 0.963 

FDR 0.010 0.390 0.330 0.207 0.629 0.155 

Accuracy 0.992 0.692 0.692 0.808 0.385 0.854 

 

     Table 2. 16: Ablation study of OAHCSA-HC approach at 30 Hz 

 

 

 

Metrics 

 

OAHCSA- 

HC 

 

Without 

optimization 

Using 

conventional 

log entropy 

Using 

conventional 

Renyi 

HC 

without 

features 

Model 

without 

statistical 

features 

MCC 0.988 0.481 0.493 0.539 0.507 0.827 

Sensitivity 0.990 0.563 0.510 0.583 0.583 0.866 

FPR 0.002 0.080 0.073 0.078 0.064 0.033 

Precision 0.990 0.577 0.475 0.667 0.461 0.855 

F1-Score 0.990 0.531 0.809 0.600 0.531 0.859 

Specificity 0.998 0.920 0.928 0.922 0.936 0.967 

FNR 0.010 0.437 0.490 0.417 0.417 0.134 

NPV 0.998 0.920 0.928 0.922 0.936 0.967 

FDR 0.010 0.423 0.525 0.333 0.570 0.145 

Accuracy 0.992 0.654 0.692 0.739 0.731 0.869 
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2.6.4 Convergence Analysis 

Convergence is a static point found in the sequence of solutions via iterations. It also 

shows how many iterations are required to achieve minimum error (cost), which is close 

to zero. Figure 2.12 illustrates the convergence of the OAHCSA-HC method over AHA- 

HC, CSA-HC, LA-HC, and PRO-HC over various iterations. Because we optimized and 

made advances in modified Renyi entropy and modified log energy entropy, OAHCSA- 

HC proved less expensive than the other evaluated methods. Furthermore, from the 4th to 

the 25th, the OAHCSA-HC cost function is significantly lower. In this case, PRO-HC 

showed the worst results at high costs. 

                 

 

Figure 2. 12: Convergence Study of OAHCSA-HC over existing models. 

2.6.5 Analysis of Computational Time 

The analysis of computational time for frequencies such as 15 Hz, 20 Hz, 25 Hz, 

and 30 Hz is presented in Table 2.16. The results demonstrate that HC, in conjunction 

with the OAHCSA, regularly outperforms other models in terms of computing efficiency. 

OAHCSA consistently shows the lowest computational time across all tested frequencies, 

with times of 3.305 seconds at 15 Hz and below 4.15 seconds at higher frequencies. The 

OAHCSA model achieves a time reduction of approximately 56% compared to the highest 

time-consuming method, CSA-HC, which takes 10.52 seconds at 25 Hz. The outcomes 

highlight how well the OAHCSA-HC model balances high fault detection accuracy with 

minimal computational overhead. Because it strikes a compromise between 
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high accuracy and quick computation times, the OAHCSA-HC model is a reliable option 

for gearbox fault detection applications at various frequencies. 

     Table 2. 17: Computational time analysis 

 

Computation time (seconds) 

Models 
Frequency 

= 15 Hz 

Frequency 

= 20 Hz 

Frequency 

= 25 Hz 

Frequency 

= 30 Hz 

AHA-HC 3.84 6.27 4.05 7.59 

CSA-HC 5.74 4.39 10.52 4.37 

LA-HC 6.36 4.98 5.12 4.26 

PRO-HC 4.06 3.68 5.54 8.82 

R-Net 4.76 4.36 4.39 5.22 

S-Net 7.51 5.8 4.01 6.23 

Deep LSTM 4.28 8.43 4.97 10.45 

CNN-FFT 3.53 4.32 5.9 4.71 

OAHCSA-HC 3.3 3.52 3.66 4.15 

 

2.6.5 K-Fold Validation Analysis 

One statistical technique for assessing the proficiency of ML models is K-fold validation. 

It is frequently employed to evaluate how effectively a statistical analysis's findings 

would transfer to another set of data. As part of the process, the dataset is separated into 

'k' folds, or subsets. The goal of getting a more precise measurement of model prediction 

performance leads to the requirement for k-fold validation. K-fold validation ensures that 

every measurement from the original dataset has an equal chance of showing up in the 

training and test sets, hence mitigating overfitting. The k-fold validation analysis of the 

suggested OAHCSA-HC model over traditional techniques at different frequencies is 

displayed in Table 2.17. At 15 Hz, OAHCSA-HC attains the highest level of precision of 

99.2% with 4-fold validation, significantly surpassing the best conventional model, LA- 

HC, which has an accuracy of 87.3%. At 20 Hz, OAHCSA-HC maintains its lead with an 

accuracy of 98.8%, while LA-HC achieves 86.%. This trend continues at 25 Hz, where 

OAHCSA-HC again outperforms with an accuracy of 98.9%, compared to LA-HC’s 

85.9%. Lastly, at 30 Hz, OAHCSA-HC scores 98.9%, again surpassing LA-HC, which 

records 86.8%. Its ability to maintain excellent accuracy at higher frequencies indicates 
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the model's adaptability and promise for gearbox failure detection. The OAHCSA-HC 

model performs noticeably better than conventional techniques across all evaluated 

frequencies. Its strong k-fold validation accuracy scores indicate that it is a stable and 

dependable option for gearbox fault detection that needs accurate control and stability. 

Table 2. 18: Analysis of K-fold validation for suggested OAHCSA-HC model over 

conventional methods at various frequencies 
 

Frequency = 15 Hz 

Methods k-fold = 2 k-fold = 3 k-fold = 4 k-fold = 5 

AHA-HC 0.816 0.814 0.861 0.822 

CSA-HC 0.816 0.810 0.868 0.805 

LA-HC 0.818 0.810 0.873 0.815 

PRO-HC 0.809 0.814 0.870 0.826 

S-Net 0.827 0.816 0.868 0.813 

R-Net 0.812 0.814 0.865 0.809 

Deep LSTM 0.732 0.735 0.732 0.725 

CNN-FFT 0.720 0.732 0.724 0.736 

OAHCSA-HC 0.983 0.984 0.992 0.982 

Frequency = 20 Hz 

AHA-HC 0.820 0.818 0.855 0.826 

CSA-HC 0.808 0.815 0.860 0.815 

LA-HC 0.817 0.816 0.860 0.818 

PRO-HC 0.820 0.816 0.859 0.820 

S-Net 0.808 0.813 0.845 0.818 

R-Net 0.813 0.820 0.854 0.818 

Deep LSTM 0.727 0.730 0.729 0.735 

CNN-FFT 0.729 0.739 0.736 0.731 

OAHCSA-HC 0.982 0.983 0.988 0.985 

Frequency = 25 Hz 

AHA-HC 0.825 0.821 0.864 0.808 

CSA-HC 0.816 0.814 0.862 0.818 

LA-HC 0.816 0.821 0.859 0.825 

PRO-HC 0.818 0.821 0.858 0.815 

S-Net 0.820 0.821 0.856 0.804 
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R-Net 0.816 0.811 0.853 0.815 

Deep LSTM 0.736 0.735 0.728 0.728 

CNN-FFT 0.733 0.734 0.732 0.732 

OAHCSA-HC 0.984 0.983 0.989 0.984 

Frequency = 30 Hz 

AHA-HC 0.812 0.809 0.854 0.818 

CSA-HC 0.815 0.817 0.855 0.810 

LA-HC 0.824 0.822 0.860 0.815 

PRO-HC 0.816 0.813 0.862 0.821 

S-Net 0.809 0.809 0.857 0.815 

R-Net 0.808 0.812 0.852 0.813 

Deep LSTM 0.732 0.738 0.729 0.734 

CNN-FFT 0.736 0.730 0.727 0.734 

OAHCSA-HC 0.983 0.986 0.989 0.985 

 

2.7 Conclusion 

This chapter presents a three-stage technique for gearbox fault identification. First, the 

raw input signal is processed using median filters, after which pertinent features are 

extracted. Then, faults are detected through combined classifiers. The proposed 

OAHCSA algorithm is used to fine-tune the hyperparameters of the RNN to enhance 

accuracy. An excellent performance metric is achieved by averaging the outputs of the 

RNN and Bi- LSTM models. The classification accuracy reaches 99.62%, while 

specificity, sensitivity, and precision are 99.88%, 99.54%, and 99.79%, respectively. 

Additionally, the model attains an F1-score of 99.66%, demonstrating its robustness. 

Moreover, compared to existing techniques such as deep LSTM, CNN-FFT, R-Net, S-

Net, AHA-HC, CSA-HC, LA-HC, and PRO-HC, the proposed approach gives better false 

negatives and FPR. Furthermore, the OAHCSA-HC model's higher performance over 

conventional techniques across a range of frequencies is confirmed by the k-fold 

validation analysis. At 15 Hz, OAHCSA-HC achieves 99.2% accuracy with 4-fold 

validation, which is much higher than LA-HC's 87.3%, demonstrating the model's 

versatility and resilience in detecting gearbox faults. 
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Chapter 3 

Deep Hybrid Model for Automated Gear Crack 

Detection Using Enhanced CEEMDAN 

 
 

This chapter aims to develop an automated method for classifying and identifying gear 

crack faults of varying severity. The proposed approach utilizes a multi-step methodology 

that begins with pre-processing the acquired signal using an advanced complete ensemble 

empirical mode decomposition with adaptive noise (CEEMDAN) algorithm. Numerous 

features, including entropy-based and time and frequency-domain features, are extracted 

from the previously processed signal. Data augmentation is applied before subjecting the 

augmented features to a hybrid classifier model to improve the feature set further. This 

model combines the Bi-LSTM and IDBN classifier, and the results are then processed 

using a score-level fusion technique to produce a single output. The proposed system has 

demonstrated high accuracy and efficiency, making it a viable option for accurately 

detecting gear faults. 

3.1 Introduction 

Gearboxes are crucial parts of many sectors because they distribute torque and power 

among shafts in devices like hand drills, printing presses, and automobile machinery [134-

135]. Their primary function is to ensure efficient and smooth transmission of rotational 

energy [136]. However, gear faults, including cracks, misalignment, wear, and tooth 

damage, can emerge during operation, posing significant risks to the reliability and 

efficiency of mechanical systems [137-138]. Gear cracks are especially concerning as 

they tend to propagate, causing failures that lead to increased vibrations, reduced trans- 

mission efficiency, and, ultimately, gearbox breakdowns [139-140]. Timely fault 

detection is crucial for preventing catastrophic failures and minimizing downtime, making 

detecting and analyzing gear faults an essential aspect of machinery maintenance [141]. 

Automated systems for fault identification offer significant advantages by quickly 

analyzing data, thus enhancing the understanding of gearbox performance and enabling 

timely interventions [142]. 

Numerous cutting-edge methods for identifying faults in rotating machinery have 

been investigated in recent studies. With an 80.41% detection rate, Mohammed et al. 
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[137] suggested an NN-based method for identifying gear-tooth cracks. Brito et al. [143] 

presented a Depth-based Feature Importance technique using the Isolation Forest 

algorithm. Because it doesn't require labeled data, it can be used in industrial settings 

where there aren't many labeled datasets. Although this approach evaluates vibration 

characteristics in both the frequency and temporal domains, its performance varies based 

on the types of machinery and fault circumstances. In their study of tooth root crack faults 

in spiral bevel gear pairs, Han et al. [136] determined the maximum force on the tooth's 

roots and highlighted the importance of assembly faults. Although they did not address 

crack localization, Jorani et al. [142] demonstrated exceptional early and accurate crack 

identification by integrating Statistical Process Control Charts (SPCC) with vibration 

analysis to identify tooth crack faults. Other techniques, like those introduced by Yu and 

Liu [144] and Cheng et al. [139], have focused on unsupervised learning and analog 

tachometer signals for improving fault detection. Still, challenges such as noise and signal 

complexity persist. 

Vibration-based, non-intrusive fault detection has become a key method for 

monitoring gear systems. Fault detection employs various signal processing techniques, 

including time-domain averaging, wavelet transform, and cepstrum estimation. However, 

techniques such as EMD and VMD often struggle with mode mixing [145]. A more 

advanced technique, CEEMDAN, has been developed to address these limitations, 

offering enhanced noise reduction and signal decomposition [136]. Additionally, 

researchers have investigated combining CEEMDAN with other techniques, such as time-

synchronous averaging and cross-correntropy-based feature extraction, to enhance fault 

detection in noisy or non-Gaussian data [146-147]. Despite the success of DL models like 

DBN in diagnosing faults from compressed signals, current methods still face challenges 

in detecting subtle changes in vibration levels and accurately pinpointing fault locations. 

Hybrid classifier techniques, which combine multiple approaches, have been shown to 

improve prediction accuracy and reduce iteration requirements. However, significant re- 

search gaps remain, such as the need for better feature interpretability, the handling of 

residual noise, and improved classification accuracy for complex faults. The hybrid 

detection model proposed in this study combines the IDBN and Bi-LSTM architecture, 

trained using enhanced CEEMDAN signals, to address these challenges and improve 

gearbox fault detection. 
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3.2 Proposed Methodology 

The following stages comprise the proposed approach for identifying gear cracks: (a) Data 

acquisition, (b) Preprocessing, (c) Feature extraction and data augmentation, and (d) 

Classification. As shown in Figure 3.1, the procedure starts with data collection and then 

moves on to preprocessing, where the input vibration signal is broken down into IMFs 

using the CEEMDAN algorithm. From the decomposed signal, characteristics such as 

time-domain and frequency-domain attributes are subsequently retrieved. 

                

Figure 3. 1: Structure of the proposed methodology. 

This research selects the CEEMDAN signal processing technique for signal de- 

noising, as it offers distinct advantages over traditional filtering methods. The primary 

objective of using CEEMDAN is to preserve the gear mesh frequencies' intrinsic proper- 

ties, ensuring that these characteristics are maintained for better and more accurate gear 
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crack fault detection. The method used by CEEMDAN is data-driven and particularly 

effective for processing non-stationary signals. It effectively separates noise components 

while extracting important signal components using filter banks, making it well-suited for 

gear signal analysis. Previous studies have shown that CEEMDAN effectively detects 

gear fault in real-world applications by evaluating non-stationary gear signals and 

lowering gearbox noise without conventional processing filters. The role of pre-

processing in gear fault detection is crucial, as it significantly improves signal quality, 

hence improving the efficacy of fault detection techniques. By their very nature, gear 

signals are non-stationary, and CEEMDAN is particularly adept at handling these complex 

signals due to its superior decomposition capabilities. In this research, an improved 

CEEMDAN method is employed to process the input signal (𝐼𝑠), reducing its noise level 

and ensuring that the critical features of the gear frequencies are preserved. EEMD has 

traditionally been used due to its ability to reconstruct the original signal effectively while 

performing spectral decomposition with minimal computational cost. However, 

CEEMDAN offers improvements by decomposing intricate signals into their IMFs, 

addressing the issue of mode mixing, and providing more stable and reliable results. The 

residue rate, or the residual fraction of the signal, is computed following the extraction of 

the IMFs using decomposition. The rate of residue is assessed for the signal, and this 

process is described mathematically in Equation (3.1), which outlines how the residue rate 

is quantified in this context. 

    Through EEMD 𝐼𝑀𝐾𝑘 is acquired, and decomposition modes are denoted by 𝐼𝑀𝐾𝑘. 

 

𝑟1 = 𝐼𝑠 − 𝐼𝑀𝐹1         (3.1) 

The residual value obtained through the EEMD model often includes residual 

noise, particularly pulse noise, which can manifest across multiple signal modes. 

Moreover, EEMD filters according to the local extrema of the signal and interpolates 

between them to accomplish signal decomposition. The harmonic information of the 

signal is not specifically taken into account by this method, though, which may lead to a 

less accurate separation of the signal's constituent parts. To address the abovementioned 

limitations, the CEEMDAN method introduces a more robust solution that explicitly 

considers the signal's harmonic information, resulting in a more precise separation of 

signal components. It adds weight based on distance to the harmonic mean evaluation to 

enhance the denoising capabilities of the decomposition process. This improvement 

allows for more accurate separation of the signal components. The enhanced CEEMDAN 
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technique is capable of distinguishing between harmonic and oscillatory components 

within the signal by utilizing these distance-based weights, which improves the 

decomposition's precision and ensures that the harmonic information is effectively 

captured. 

The stages for the suggested improved CEEMDAN technique are as follows: 

Step 1: The weighted harmonic mean is computed and deducted from the original signal 

to determine the initial decomposition mode. Using Equation (3.2), the first 

decomposition mode is obtained. 

𝐼𝑀𝐾1 = 𝐼𝑠 − 𝐻𝑀
𝑤[𝐼𝑠]               (3.2) 

Where 𝐻𝑀𝑤 represents the weighted harmonic mean, which may be calculated using 

Equation (3.3). Here, Es  it denotes ensemble size and 𝑤𝑖 denotes distance from the mean 

weight. 

𝐻𝑀𝑤[𝐼𝑠] =
∑ 𝑤𝑖
𝐸𝑠
𝑖=1

∑
𝑤𝑖
𝐼𝑠

𝐸𝑠
𝑖=1

             (3.3) 

The distance between each element and the signal average is used to calculate the 

separation from the average weight. This suggests that the element closest to the mean 

will be given the most weight, whereas the element furthest from the mean will be given 

the least amount. Additionally, weight is determined by taking the average of the signals, 

and the absolute difference between each element is assessed. The calculation of distance 

from mean weight is expressed in equation (3.4). Here, μ denotes the mean of the signal 

𝐼𝑠.
−

=
s

i
I

w
1

,𝑤𝑖 > 0,∑𝑤𝑖 = 1                (3.4) 

Step 2: The first residue is assessed using Equation (3.5) at the first level (𝑁 = 1). 𝑁 here 

stands for modes. 

𝑟1 = 𝐼𝑠 − 𝐼𝑀𝐹1                (3.5) 

Step 3: The second mode can be expressed using Equation (3.7), and the second residue 

can be calculated as the mean of local means using the decomposition of realizations as 

in Equation (3.6). Here, 𝑀 represents the local mean. 

𝑟2 = 𝑟1 + 𝛽1𝐸2(𝑤𝑖)                         (3.6) 

𝐼𝑀𝐹 = 𝑟1 − 𝑟2 = 𝑟1 − [𝑀(𝑟1 + 𝛽1𝐸2(𝑤𝑖))]                                                       (3.7) 

Step 4: Using Equation (3.8), 𝐸𝑁 determine the 𝑁𝑡ℎ residue for each 𝑁 = 3, . . . 𝑛 here  
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stands for the 𝑁𝑡ℎ mode that EMD gained. 

𝑟𝑁 = [𝑀(𝑟𝑁−1 + 𝛽𝑁−1𝐸𝑁(𝑤𝑖))]                (3.8) 

  
Step 5: Evaluate 𝑁𝑡ℎ mode as in Equation (3.9). 

𝐼𝑀𝐹𝑘 = 𝑟𝑁−1 − 𝑟𝑁                             (3.9) 

Step 6: Go to step 4 for the further 𝑁. 
 

Where 𝛽𝑁 = 𝜀𝑁𝑠𝑡𝑑(𝑟𝑁) represents the variable needed to obtain a necessary SNR 

between the additional noise and the residue. The preprocessed signal can, therefore, be 

shown as 𝐼𝑠𝑝𝑟𝑒. 

 

 

Figure 3. 2:  Various degrees of Raw bevel-gear vibration signals for crack gear faults. 
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(a) (b) 
 

 

 

 

(c) (d) 

Figure 3. 3: Signals Preprocessed for Conventional CEEMDAN decomposition a) 

15 Hz, b) 20 Hz, c) 25 Hz, and d) 30 Hz. 
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(a) (b) 
 

 

 

 

(c) (d) 

Figure 3. 4: Preprocessed signals for improved CEEMDAN decomposition a) 15 Hz, b) 

20 Hz, c) 25 Hz, and d) 30 Hz. 

Furthermore, Figure 3.2, 3.3 and 3.4 shows the preprocessed and raw signals from 

the conventional and enhanced CEEMDAN breakdown. The vibration shape of the signal 

after it was extracted from the dataset is shown in Figure 3.2. Figure 3.3 shows the signal 

following preprocessing using the conventional CEEMDAN method. Figure 3.4 displays 

the preprocessed signal using the updated CEEMDAN technique signal. The original 

signal is clearly broken down into nine IMFs when looking at Figures 3.3 and 3.4. The 

signal's high-frequency components are captured by IMFs 1 through 3, with IMF1 having 

excellent frequency components and amplitude values ranging from -5 to 5. Components 

of intermediate frequency, represented by IMFs 4 and 5, with amplitudes ranging from -

2.5 to 2.5. IMF6's less-frequency ranges from -1.0 to 1.0, whereas IMFs 7 and 9's 

extremely low-frequency components range. Compared to the existing method, the 

proposed technique, which includes harmonic mean evaluation, generates comparable 

IMFs but may offer advantages to reduce noise and feature extraction. A quantitative 
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comparison between the raw and CEEMDAN-preprocessed signals highlights the 

effectiveness of the decomposition method. The signal-to-noise ratio (SNR) improved 

from approximately 9.8 dB in the raw signal to 13.6 dB after CEEMDAN processing, 

indicating better noise suppression. Additionally, the energy concentration in the first 

three intrinsic mode functions (IMF1–IMF3) increased from 48% to 72%, suggesting 

improved capture of fault-relevant features. This enhancement directly contributed to a 

rise in fault classification accuracy from 86.2% using raw features to 92.8% with 

CEEMDAN-based features, demonstrating the practical benefit of the preprocessing 

approach. This leads to a more effective separation of signal components, leading to 

better signal quality and fault detection capabilities. 

3.3 Feature Extraction: Overview of Time and Frequency 

Domain Features and Entropy-Based Features 

The critical and complex feature extraction process transforms the pre-processed 

signal into relevant characters in gear fault classification. These features capture the 

essential characteristics of the pre-processed signals, making them suitable for further 

analysis and fault detection algorithms. The most pertinent qualities, such as spectral 

proper- ties, are the only ones selected to guarantee the classification process's 

effectiveness. The extracted features are vital for distinguishing between different gear 

conditions and detecting faults accurately. The pre-processed signal can yield a large 

number of features, including both frequency and time-domain traits. These features are 

fed into machine learning and classification algorithms to ascertain the existence and 

seriousness of problems. The features taken from the pre-processed signal are described 

in the next section along with how they influence the gear fault detection procedure. 

3.3.1 Time Domain Features 

Table 3.1 lists statistical variables associated with signal processing as time domain 

features. These features give insight into the signal's temporal fluctuations. 

Table 3. 1:  Features of the time domain 

Measures Description Formulae 

Min 
It selects the variable with the 

minimum value. 
𝑀𝑖𝑛(𝑥𝑖) 

Max 

It uses the set of variables' 

maximum value. 

 

𝑀𝑎𝑥(𝑥𝑖) 
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Mean 
The mean of every variable set. 

 
𝑥 =

1

𝑛
∑𝑥𝑖

𝑛

𝑖=1

 

RMS 

It specifies a signal's power or 

intensity. 

 
𝑅𝑀𝑆 = √

1

𝑛
∑𝑥𝑖

2

𝑛

𝑖=1

 

Variance 

It calculates the variability or 

scatter of data points with 

respect to the mean. 

 

𝑉𝑎𝑟 =
∑ (𝑥𝑖 − 𝑥)

2𝑛
𝑖=1

𝑛 − 1
 

Pulse indicator 
It shows the actions to detect a 

signal's pulses or spikes. 
𝑃𝐼 =

𝑃𝑒𝑎𝑘

𝑥
 

Standard deviation 

It determines the mean deviation 

of each data point from the 

mean. 
𝑆𝑑 = √

∑ (𝑥𝑖 − 𝑥)2
𝑛
𝑖=1

𝑛 − 1
 

Kurtosis 

It gauges how often and how 

severe outliers are in the data. 

 
𝐾𝑢𝑟 =

1

𝑛
∑(

𝑥𝑖 − 𝑥

𝑠𝑑
)

𝑛

𝑖=1

4

 

Power 

It specifies how much energy is 

transformed in a certain amount 

of time. 

 

𝑃𝑜𝑤 =
1

𝑛
∑𝑥𝑖

2

𝑛

𝑖=1

 

Peak 

It determines the precise location 

and magnitudes of the spikes or 

pulses. 

𝑃𝑒𝑎𝑘 = 𝑀𝑎𝑥(|𝑥𝑖|) 

Crest factor 

By dividing the signal's peak 

amplitude, it is calculated by its 

RMS rate. 
𝐶𝐹 =

𝑃𝑒𝑎𝑘

𝑅𝑀𝑆
 

Skew 

It determines how much and in 

which direction a distribution 

deviates from symmetry. 

 

𝑆𝑘 =
𝑛∑(𝑥𝑖 − 𝑥)

3

(𝑛 − 1)(𝑛 − 2)𝜎3
 

Peak to Peak 

It describes the precise 

difference between a waveform's 

maximum and minimum values. 

𝑝𝑡𝑝 = 𝑀𝑎𝑥(𝑥𝑖) − 𝑀𝑖𝑛(𝑥𝑖) 

factor Form  

It provides information that is 

pertinent to a signal's relative 

energy distribution. 
𝐹𝐹 =

𝑅𝑀𝑆

𝑥
 

 

 

The time domain features that were extracted are shown as 𝑇𝑓. 

3.3.2 Frequency Domain Features 

The frequency domain describes how a signal’s energy is distributed across different 

frequency bands within a given range. The FFT of the signal is first computed to extract 

these features, followed by the analysis of the resulting power spectrum. This process 

allows for identifying the signal's frequency components and their corresponding power 
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levels. The signal's primary frequency domain characteristics that are retrieved are 

parameters that quantify the energy present at various frequencies, helping to identify 

distinct patterns that may indicate faults. These parameters shed light on the frequency 

characteristics of the signal, which are essential for diagnosing issues in mechanical 

systems such as gearboxes. Table 3.2 outlines the frequency domain features derived from 

the FFT and their respective roles in fault detection. 

Table 3. 2: Frequency domain features 

 

Measures Description Formulae 

Maximum band  

power spectrum 

It indicates the maximum amplitude 

or power level in a given  

frequency band. 

𝑆𝑀𝑎𝑥 = 𝑀𝑎𝑥(𝑆𝑖) 
  Where, 𝑆𝑖 represent the  

  spectrum frequency. 

Band power  

spectrum Mean 

It provides data pertinent to  

the main power rate trend within  

a chosen band. 

𝑆 =
1

𝑛
∑𝑆𝑖

𝑛

𝑖=1

 

Band power  

Variation 

It establishes how much power  

rates vary within a specific  

frequency band. 

𝑆𝑉𝑎𝑟 =
∑ (𝑆𝑖 − 𝑆)

2𝑛
𝑖=1

𝑛 − 1
 

The sum of the  

overall band power 

It calculates the total power  

of every frequency element 

 in a chosen band. 

𝑆𝑠𝑢𝑚 =∑𝑆𝑖

𝑛

𝑖=1

 

 

The frequency domain features that were extracted are shown as 𝐹𝑓. 

3.3.3 Entropy-Based Features 

The pre-processed signal's inherent uncertainty and unpredictability were measured by 

extracting entropy features. Entropy provides a crucial understanding of the complexity 

of the signal by quantifying the degree of disorder or information content in the data. 

Among the several types of entropy, enhanced cross-correntropy, fuzzy entropy, and 

Shannon entropy are frequently employed in gear fault detection. Shannon entropy, in 

particular, evaluates the signal's average information content and gives a gauge of its level 

of disorder or uncertainty. It is calculated using the formula provided in Equation (3.10) 

[148] and helps understand the signal's informational complexity, which is crucial for 

effective fault detection. 

Here, 𝑅𝑘 indicates the signal occurring probability. 

𝐻 = −∑[𝑅𝑘 ∗ 𝑙𝑜𝑔(𝑅𝑘)]                     (3.10) 
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Fuzzy entropy is described as taking into account data with uncertainty or fuzzy 

boundaries [149]. Additionally, it measures the degrees of each member of a fuzzy data 

collection. Every 𝑀 sample time sequence is described using Equation (3.11), and for the 

provided 𝑜, the series vector {𝑌𝑖
𝑜 , 𝑖 = 1. . . .𝑊 − 𝑜 + 1} is generated. 𝑌𝑖

𝑜 refers to 𝑜 

consecutive 𝑣 values that start at the 𝑖𝑡ℎ point and spread out by removing the baseline, 

as in Equation (3.12). 

𝑌𝑖
𝑜 = {𝑢(𝑖), 𝑢(𝑖 + 1), . . . 𝑢(𝑖 + 𝑜 − 1)} − 𝑢(𝑖)         (3.11) 

𝑢𝑜(𝑖) =
1

𝑜
∑ 𝑢(𝑖 + 𝑗)𝑜−1
𝑗=0             (3.12) 

The distance 𝑑𝑖𝑠𝑖,𝑗
𝑜  between  𝑌𝑗

𝑜 and 𝑌𝑖
𝑜 is then calculated; according to Equation 

(3.13), this is the most significant difference of the pertinent elements. 

     𝑑𝑖𝑠𝑖.𝑗
𝑜 = 𝑑𝑖𝑠[𝑌𝑖

𝑜 , 𝑌𝑗
𝑜] = 𝑀𝑎𝑥

𝑜∈0,𝑜−1
|𝑢(𝑖 + 𝑘) − 𝑢𝑜(𝑖) − (𝑢(𝑗 + 𝑘) − 𝑢𝑜(𝑗))|               (3.13) 

Using a fuzzy function 𝜆(𝑑𝑖𝑠𝑖.𝑗
𝑜 , 𝑤, 𝑔) for the provided 𝑤 and 𝑔, determine a similar 

degree distance 𝐷𝑖𝑠𝑖,𝑗
𝑜  between a given vector 𝑌𝑗

𝑜 and 𝑌𝑖
𝑜 in accordance with Equation 

(3.14). In this case, the fuzzy or exponential value is represented by 𝜆(𝑑𝑖𝑠𝑖.𝑗
𝑜 , 𝑤, 𝑔). 

𝐷𝑖𝑠𝑖,𝑗
𝑜 (𝑤, 𝑔) = 𝜆(𝑑𝑖𝑠𝑖,𝑗

𝑜 , 𝑤, 𝑔)           (3.14) 

To evaluate the exponential function, use Equation (3.15). 

 𝜆(𝑑𝑖𝑠𝑖.𝑗
𝑞 , 𝑚, 𝑔) = 𝑒𝑥𝑝( −

(𝑑𝑖𝑠𝑖,𝑗
𝑞
)𝑚

𝑔
)            (3.15) 

Moreover, the function 𝜙𝑞 is defined according to Equation (3.16). Similarly, generate 

{𝑋𝑗
𝑞+1} and obtain the function 𝜙𝑞+1 according to Equation (3.17). 

𝜙𝑞(𝑚, 𝑔) =
1

𝑀−𝑞
∑ (

1

𝑀−𝑞−1
∑ 𝐷𝑖𝑠𝑞𝑖,𝑗
𝑀−𝑞
𝑗=1,𝑗≠𝑖 )𝑀−𝑞

𝑖=1                                                   (3.16) 

𝜙𝑞+1(𝑚, 𝑔) =
1

𝑀−𝑞
∑ (

1

𝑀−𝑞−1
∑ 𝐷𝑖𝑠𝑖,𝑗

𝑞+1𝑀−𝑞
𝑗=1,𝑗≠𝑖 )𝑀−𝑞

𝑖=1                                  (3.17) 

Eventually, the fuzzy entropy parameter 𝐹𝑢𝑧𝑧𝑦𝐸𝑛𝑡(𝑞,𝑚, 𝑔) of the series expressed as 

the deviation of the series' negative natural logarithm 𝜙𝑞 from 𝜙𝑞+1 is defined as in 

Equation (3.18). 

𝐹𝑢𝑧𝑧𝑦𝐸𝑛𝑡(𝑞,𝑚, 𝑔) = 𝑙𝑖𝑚
𝑀→∞

[𝑙𝑛 𝜙𝑞 (𝑚, 𝑔) − 𝑙𝑛𝜙𝑞+1 (𝑚, 𝑔)]                                   (3.18)

 Additionally, the statistics can be used to calculate the fuzzy entropy parameter for 

finite datasets using Equation (3.19). 

𝐹𝑢𝑧𝑧𝑦𝐸𝑛𝑡(𝑞,𝑚, 𝑔,𝑀) = 𝑙𝑛𝜙𝑞 (𝑚, 𝑔) − 𝑙𝑛𝜙𝑞+1 (𝑚, 𝑔)
                     (3.19)

 

Cross-correntropy is a measure of similarity between two arbitrary variables, which 

can be used to assess their correlation more broadly. The standard cross-correntropy [150] 

is computed by evaluating the joint distribution between two signals, capturing both linear 
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and nonlinear dependencies. Equation (3.15) represents the conventional cross-

correntropy in its mathematical form, which quantifies the similarity between the two 

signals, making it a valuable feature for detecting faults by identifying patterns of interest 

in the signal. The improved cross-correntropy enhances this method by refining the 

measure for better accuracy in fault detection. Here, 𝐿 and 𝐷 represent variables in 

arbitrary and 𝑛to the collection of samples that were discussed via (𝐿𝑖, 𝐷𝑖)𝑖=1
𝑁 . 

𝐶𝑜𝑟𝑟(𝐿, 𝐷) =
1

𝑛
∑ 𝐺𝜎
𝑛
𝑖=1 (𝐿𝑖 − 𝐷𝑖)           (3.20) 

𝐺𝜎(𝐿𝑖 − 𝐷𝑖) is a Gaussian kernel and is expressed in Equation (3.21). Here, 𝜎is 

used to preserve the breadth of the kernel parameters. 

𝐺𝜎(𝐿𝑖 − 𝐷𝑖) = 𝑒𝑥𝑝( −
‖𝐿𝑖−𝐷𝑖‖

2

2𝜎2
)                      (3.21) 

The Gaussian kernel in conventional cross-correntropy is typically employed to 

capture similarities at a global level. However, this approach tends to diminish the 

significance of local patterns by smoothing out smaller, localized information in the data. 

Exponential kernels are used in the improved cross-correntropy method to overcome this 

limitation. Exponential kernels are highly sensitive to local similarities, enabling them to 

highlight the relationships between samples that are in close proximity, thereby preserving 

local patterns. Additionally, to improve separability, class-dependent feature weights 

[151] are included between different classes to improve interpretability and reduce noise. 

Each feature is given one of these features weights according to how crucial it is to the 

classification procedure, ensuring that more relevant features receive higher emphasis, 

ultimately improving the overall accuracy of fault detection. The steps below describe 

how to extract features from the enhanced cross-correntropy approach. 

Step 1: Calculate feature weights that vary by class. The following approach is 

utilized to calculate the feature weight, which depends on the class. 

Algorithm: Class-dependent feature weights approach 

Given the decomposed signal 𝐼𝑠
𝑝𝑟𝑒 ⊂ ℜ𝑛 𝑥 𝑚and the labels 𝑍 ∈ {1,2, . . . 𝐿} 

where 𝐿 are the classes. 

Compute 𝛽 for all 𝐿: 𝛽 =
𝑈𝑛𝑖𝑞𝑢𝑒𝑐𝑙𝑎𝑠𝑠

∑𝑈𝑛𝑖𝑞𝑢𝑒𝑐𝑙𝑎𝑠𝑠
 

 For𝑙 = 1: 𝐿do 

  Class samples 𝐿𝑠 ← {𝑌|𝑋 = 𝑙}// Select samples belonging to 

the current class c . 

  Class weight 𝐿𝑤 ←
1

𝑛
∑ 𝐿𝑠𝑖
𝑛
𝑖=1  // Compute the weight of each 
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sample for the current class. 

 End for 

Computing feature weight: 𝛼 = ∑ 𝛽 ∗ 𝐿𝑤𝑙
𝑖=1  

Return 𝛼 

 

Step 2: Use the class-dependent feature weight and exponential kernel to estimate 

cross-correntropy, as shown in equation (3.22). 𝐾𝛼 represent exponential kernel, 𝐿𝑖 

represent samples, and 𝐷𝑖 represent labels, and 𝑛represents samples mentioned via 

(𝐿𝑖, 𝐷𝑖)𝑖=1
𝑁 . 

𝐶𝑜𝑟𝑟(𝐿, 𝐷) =
1

𝑛
∑ 𝐾𝛼
𝑛
𝑖=1 (𝐿 − 𝐷𝑖)                     (3.22) 

Equation (3.23) is used to calculate the exponential kernel. Here, αrepresent feature 

weight. 

𝐾𝛼(𝐿𝑖 −𝐷𝑖) = 𝑒𝑥𝑝( − 𝛼|𝐿𝑖 − 𝐷𝑖|)                     (3.23) 

Next, the entire entropy-based characteristics can be shown as 𝐸𝐹𝑒𝑎𝑡 =

[𝐻, 𝐹𝑢𝑧𝑧𝑦𝐸𝑛𝑡(𝑜, 𝑤, 𝑔,𝑊), 𝐶𝑜𝑟𝑟(𝐿, 𝐷)]. Consequently, the features that were taken from 

the frequency and time domain and enhanced entropy features are shown as 𝐹𝐸𝑥𝑡 =

[𝑇𝑓, 𝐹𝑓, 𝐸𝐹𝑒𝑎𝑡]. 

3.3.4 Hybrid Model for Identifying Gear Crack Faults 

The enhanced feature set is then fed into the combined approach to precisely determine 

the gear crack levels following feature augmentation. As shown in Figure 3.3, the model 

aims to reduce computational time by combining Bi-LSTM and IDBN. After initializing 

the weights of the Bi-LSTM, the IDBN model uses the Swish and Mish activation 

functions for better classification performance. Unlike traditional activation functions 

such as sigmoid and ReLU, which suffer from vanishing gradients, the Swi-Mish function 

combines Swish and Mish to help maintain smoother gradient flow and mitigate the 

vanishing gradient issue. The Swish function ensures smooth curve transitions, while the 

Mish function is approximately zero-centered, facilitating effective weight updates. These 

features make Swi-Mish more suitable for backpropagation, improving network 

efficiency. The predictions produced by combining the scores from the two classifiers 

using a score-level fusion method increase the accuracy and robustness of categorization. 

The final output categorizes the gear crack into five levels. 
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Figure 3. 5: An illustration of the crack-level categorization model. 

3.4 BI-LSTM 

This research uses the Bi-LSTM [152] to categorize various gear crack levels 

efficiently. The following Equations (3.24–3.28) are used to implement the LSTM. Here, 

𝑓𝑟 and 𝑐𝑟 represent forget and cell state gate, 𝑖𝑟 and 𝑜𝑟 denote input and output gate, 𝑠𝑖𝑔 

represents the function of the sigmoid. 

𝑓𝑟 = 𝑠𝑖𝑔(𝑤𝑓𝐹𝐴𝑢𝑔 + 𝑤𝑓ℎ𝑟−1 + 𝛾𝑓)            (3.24) 

𝑖𝑟 = 𝑠𝑖𝑔(𝑤𝑖𝐹𝐴𝑢𝑔 + 𝑤𝑖ℎ𝑟−1 + 𝛾𝑖)                       (3.25) 

𝑜𝑟 = 𝑠𝑖𝑔(𝑤𝑜𝐹𝐴𝑢𝑔 + 𝑤𝑜ℎ𝑟−1 + 𝛾𝑜)                       (3.26) 

𝑐𝑟 = 𝑓𝑟𝑐𝑟−1 + 𝐹𝐴𝑢𝑔𝑠𝑖𝑔(𝑤𝑐𝐹𝐴𝑢𝑔 + 𝑤𝑐ℎ𝑟−1 + 𝛾𝑐)                                (3.27) 

ℎ𝑟 = 𝑜𝑟 𝑡𝑎𝑛ℎ( 𝑐𝑟)                                    (3.28) 

where ℎ𝑟 and𝑤represent a hidden state and weight factor, 𝛾 represents bias term, 

ℎ𝑟−1 shows a hidden layer (HL) in the previous statistic, 𝑡𝑎𝑛ℎdenoted tangent hyperbolic, 
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and 𝑐𝑟−1 represent the prior state cell. 

The LSTM model only processes the past input values, ignoring future information. 

This restriction is addressed by using the Bi-LSTM method, as displayed in Figure 3.5, 

which consists of two separate hidden layers: the secret layers that are forward and 

backward. In ascending order, the forward hidden layer processes the data (from the past 

to the present). In contrast, in descending order, the reverse hidden layer processes the 

input (from the future to the past), as Equations describes. (3.29) and (3.30). Using a 

bidirectional strategy, Bi-LSTM can record past and future contextual information, 

improving the model's predictive accuracy. 

ℎ𝑟
𝑓𝑤𝑑

= 𝑡𝑎𝑛ℎ(𝑤𝐹𝐴𝑢𝑔
𝑓𝑤𝑑

𝐹𝐴𝑢𝑔𝑟 + 𝑤ℎℎ
𝑓𝑤𝑑

ℎ𝑟−1
𝑓𝑤𝑑

+ 𝛾ℎ
𝑓𝑤𝑑

)         (3.29) 

ℎ𝑟
𝑏𝑤𝑑 = 𝑡𝑎𝑛ℎ(𝑤𝐹

𝐴𝑢𝑔ℎ

𝑏𝑤𝑑 𝐹𝐴𝑢𝑔𝑟 + 𝑤ℎℎ
𝑏𝑤𝑑ℎ𝑟−1

𝑏𝑤𝑑 + 𝛾ℎ
𝑏𝑤𝑑)                    (3.30) 

The result is finally obtained by merging the forward and backward hidden layers, as 

shown in Equation (3.31). 

𝑦𝑟 = 𝑤ℎ𝑦
𝑓𝑤𝑑

ℎ𝑟
𝑓𝑤𝑑

+ 𝑤ℎ𝑦
𝑏𝑤𝑑ℎ𝑟

𝑏𝑤𝑑 + 𝛾𝑦          (3.31) 

Consequently, the intermediate scores are produced by the Bi-LSTM model output 

shown as 𝐵𝑂𝑢𝑡. 

 
 

Figure 3. 6: The flow of the proposed model. 

3.5 Improved DBN 

DBN, consisting of a restricted Boltzmann machine (RBM) with two layers hid- 
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den and visible, typically requires extensive labeled data for weight initialization, leading 

to high computational costs and long training times. To address the issue, DBN weights 

are initialized using the features learned from the Bi-LSTM, which capture essential 

details about the dispersion of the data, enhancing DBN’s capacity to extrapolate to 

unknown data and accelerate convergence. The three buried layers of the enhanced DBN 

each contain 100, 50, and 25 neurons and are initialized with Bi-LSTM weights, enabling 

faster learning and enhanced noise resilience. This approach leads to more efficient and 

robust signal classification. 

𝐸𝑔𝑦(𝑢, ℎ) = −∑ 𝑢𝑖
𝑤
𝑖=1 𝑏𝑖 − ∑ ℎ𝑗

𝑛
𝑗=1 𝑑𝑗 − ∑ ∑ ℎ𝑗

𝑛
𝑗=1

𝑤
𝑖=1 𝑢𝑖𝑚𝑖,𝑗      (3.32) 

The upgraded DBN seeks to identify a stable state with the fewest energy errors. The 

probability distribution that separates the hidden and visible layers is explained by 

Equation (3.33).  

𝑟(𝑢, ℎ) =
1

𝐸𝑠𝑢𝑚𝑒−𝐸𝑔𝑦(𝑢,ℎ)
            (3.33) 

Where 𝐸𝑠𝑢𝑚refers to the whole energy of every layer, apparent and hidden; By 

guaranteeing effective learning and reducing training errors, this energy function is 

essential to model optimization. 

An overview of energy for each visible and concealed layer is assessed as a 

proportional function to guarantee a normalized distribution. Then, Equations (3.34) and 

(3.35) determine the probability distribution of the visible and hidden parameters. These 

equations allow for modeling the relationships between the hidden and visible layers, 

facilitating efficient learning by optimizing the weights and biases based on the energy 

function. 

𝑟(𝑢𝑖 = 1|ℎ) =
1

1+𝑒𝑥𝑝(−𝑏𝑖∑ ℎ𝑗
𝑛
𝑗=1 𝑚𝑖.𝑗)

           (3.34) 

𝑟(ℎ𝑗 = 1|𝑢) =
1

1+𝑒𝑥𝑝(−𝑑𝑗−∑ 𝑢𝑖
𝑛
𝑖=1 𝑚𝑖,𝑗)

           (3.35) 

In order for the network to capture intricate correlations between input and output, 

in output, using an activation function, non-linearity is introduced into DBN. Despite their 

widespread use, classic activation functions like sigmoid and ReLU suffer from the 

vanishing gradient issue. When gradients propagate across the layers during training, they 

get progressively smaller, which hinders convergence and makes weight updates more 

difficult. Many call this problem the "non-zero-centered problem," which is addressed by 

utilizing the hybrid Swi-Mish activation function (S-MAF), blending the Mish and Swish 

functions. While the Mish function is roughly zero-centered and helps to enhance weight 

updates by limiting gradients that are too large in one direction, the smooth curve offers 
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a Swish function that permits flow during backpropagation. Consequently, the S-MAF 

improves network efficiency, provides smoother transitions, and mitigates the vanishing 

gradient issue. Equation (3.36) provides a mathematical expression for the S-MAF. 

𝑆𝑤𝑖 − 𝑀𝑖𝑠ℎ(𝑦) = 𝑀𝑎𝑥[𝑆𝑤𝑖𝑠ℎ(𝑦),𝑀𝑖𝑠ℎ(𝑦)]          (3.36) 

    Where S𝑤𝑖𝑠ℎ(𝑦) = 𝑦. 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 (𝑦) = 𝑦.
1

1+𝑒−𝑦
  and 𝑀𝑖𝑠ℎ(𝑦) = 𝑦. 𝑡𝑎𝑛ℎ[ 𝑙𝑛( 1 + 𝑒2)].  

    The Swi-Mish activation function derivative is then expressed using Equation (3.37).   

𝑆𝑤𝑖 − 𝑀𝑖𝑠ℎ′(𝑦) = 𝑀𝑎𝑥[𝑆𝑤𝑖𝑠ℎ′(𝑦),𝑀𝑖𝑠ℎ′(𝑦)]                    (3.37) 

𝑆𝑤𝑖𝑠ℎ′(𝑦) = 𝑆𝑤𝑖𝑠ℎ(𝑦) + 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑦)[1 − 𝑆𝑤𝑖𝑠ℎ(𝑦)]𝑀𝑖𝑠ℎ′(𝑦)

= 𝑡𝑎𝑛ℎ[ 𝑆𝑜𝑓𝑡𝑝𝑙𝑢𝑠(𝑦) + 𝑦 ∗ 𝑠𝑒𝑐 ℎ2 [𝑆𝑜𝑓𝑡𝑝𝑙𝑢𝑠(𝑦) ∗ 𝑆𝑜𝑓𝑡𝑝𝑙𝑢𝑠′(𝑦)]] 

 𝑆𝑜𝑓𝑡𝑝𝑙𝑢𝑠′(𝑦) = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑦) 𝑆𝑜𝑓𝑡𝑝𝑙𝑢𝑠(𝑦) = 𝑙𝑛[ 1 + 𝑒𝑥]         (3.38) 

As a result, the intermediate scores are produced by the IDBN model and can be shown 

as 𝐷𝑂𝑢𝑡. The Swi-Mish activation function with IDBN is shown in Figure 3.7. 

 

 

Figure 3. 7: Swi-Mish activation function with IDBN. 

 

 

3.5.1 Score Level Fusion 
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In this study, score level fusion [153] is used to combine the outputs from IDBN and Bi- 

LSTM. After separately training the models with the training dataset to determine 

individual class scores, they are assessed using the same data, denoted as 𝐵𝑂𝑢𝑡 and 𝐷𝑂𝑢𝑡 

for Bi-LSTM and IDBN, respectively. These scores, representing the estimated 

probabilities for each class, are normalized using Min-Max normalization to mitigate the 

impact of score magnitude, as shown in Equation (3.36). After that, a sum rule method is 

utilized to fuse the normalized scores, where the scores from both models are summed for 

each data point, as represented in Equation (3.39). 

𝑆𝑁𝑜𝑟𝑚 =
𝑠𝑖−𝑚𝑖𝑛(𝑆𝑖)

𝑚𝑎𝑥(𝑆𝑖)−𝑚𝑖𝑛(𝑆𝑖)
             (3.39) 

Additionally, the sum rule-based fusion strategy is used to normalize scores in 

accordance with Equation (3.40). 

𝑆𝐹𝑢𝑠𝑒 = ∑ 𝑆𝑁𝑜𝑟𝑚𝑚
𝑖=1               (3.40) 

 

As a result, the score-fused method provides five labels for the different levels of gear 

crack detection output. 

3.6 Data Acquisition and Experimental Analysis 

This study conducted multiple experiments using a Spectra Quest MFS to collect 

vibration signals, as shown in Figure 3.8 and Figure 3.9. The dataset used for 

experimentation is considered from the previous study [154]. The experiments were 

performed under var- ying rotational speeds and torque. The key components of the test rig 

included a magnetic brake, an A-bearing housing plate, a belt and pulley system, and an 

AC induction motor. Additionally, the magnetic brake provided the necessary test torque, 

while a variable frequency drive (VFD) regulated the motor speed. The system includes 

a 1-horsepower, 2850 rpm AC motor, flexible coupling, a gearbox, ball bearings, and a 

magnetic brake. Motion is transmitted through a 19 mm shaft, with a belt pulley driving 

the gearbox. A tri-axial accelerometer (PCB-Piezotronics 356A26, S/N: 355339) is 

mounted on the gear- box to capture vibration data, connected to an OROS-OR34 DAQ 

system, and analyzed via NV Gate software. Vibration signals were recorded at torques 

from 0 to 4 Nm and speeds such as 15 Hz, 20 Hz, 25 Hz, and 30 Hz, with both healthy 

and faulty gears acceleration readings recorded at 12.8 kHz sampling over three axes. 

In this research, the bevel gearbox is given in Table 3.3. A total of five pinion gears were 

examined, comprising four faulty gears: incipient crack, moderate crack, small crack, 

severe crack, and one healthy gear. Figure 3.10 shows the several gear conditions that were 
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looked at. A CNC and wire EDM were used to introduce the crack faults. A Dewinter 

Optical Inc. optical microscope (model DEW507) was used to measure the crack length. 

 

 
 

Figure 3. 8: Experimental Setup. 

 

 
 

Figure 3. 9: Electromechanical elements analytical test rig.
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Figure 3. 10: Gear health:(a) Healthy (b) A 0.25 mm crack-length gear; (c) a 0.50 mm 

crack-length gear; (d) a 0.75 mm crack-length gear; and (e) a 1.00 mm crack-length gear. 

Table 3. 3: Gearbox Description 

 

Specification of Gearbox Pinion Gear 

Pitch diameter 28.576 mm 42.8626 mm 

Module 2 mm 2 mm 

angle Pressure 20° 20° 

Material Forged steel Forged steel 

Number of teeth 18 27 

Pitch angle 33°42' 56°18' 

 
 

 



104  

3.7 Results and Discussion 

3.7.1 Simulation Procedure 

The proposed methodology in this research was simulated using Python 3.7, with an Intel 

Core i7 CPU@ 2.90 GHz and 16 GB of RAM (15.7 GB usable). 

3.7.2 Performance Evaluation 

Its accuracy and computation time are investigated to evaluate the proposed method's 

effectiveness. The trade-off between calculation time and accuracy is balanced to have 

the best learning rate. Below is a thorough explanation of the computation time and 

accuracy. 

3.7.3 Evaluation of Learning Rate Vs Accuracy 

Table 3.4 shows how accuracy and learning rate are correlated. A hyperparameter known 

as the learning rate regulates the model parameters during training. The suggested model 

is evaluated with 0.1, 0.05, 0.01, and 0.001 rates. The model's accuracy at a frequency of 

30 Hz is roughly 99.8% when learning at a rate of 0.001, 93.6% at a rate of 0.1, 93.8% at 

a rate of 0.01, and 93.8% at a rate of 0.05. A learning rate of 0.001 yields the maximum 

accuracy. While lesser learning rates employ smaller steps, greater learning rates produce 

larger steps. Instability during training could result from the approach to overshooting the 

loss function's minimum due to unreasonably high learning rates. 

Table 3. 4: Learning Rate vs. Accuracy Analysis 

 

Different 

operating 

speed (Hz) 

 Learning Rate  

0.1 0.01 0.05 0.001 

Accuracy of performance with varying learning rates 

15 0.9368 0.9410 0.9418 0.9965 

20 0.9372 0.9393 0.9405 0.9982 

25 0.9380 0.9389 0.9393 0.9948 

30 0.9368 0.9380 0.9386 0.9982 
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3.7.4 Evaluation of Rate of Learning Vs Computational Time 

The correlation between calculation time and learning rate is depicted in Figure 3.11. 

Conversion speed and accuracy must be matched to find the optimal learning rate. The 

model successfully converges at the ideal learning rate, preventing issues like 

overshooting or less-than-perfect solutions. The model is evaluated at learning rates of 

0.1, 0.05, 0.01, and 0.001. Longer calculation times correlate with higher learning 

rates. Using 0.001 as the learning rate, the computational time at a frequency of 15 Hz is 

roughly 1 second, 3.5 seconds for 0.1, 3.48 seconds for 0.01, and 2.25 seconds for 0.05. 

The best option for better performance is a learning rate of 0.001, which takes the least 

amount of computational time. 

                              
 

Figure 3. 11: Evaluation of Learning Rate Vs. Computational Time. 

3.7.5 Confusion Matrix Evaluation on Proposed Method 

The Bi-LSTM-IDBN model's confusion matrices for the various frequency ranges are 

shown in Figure 3.12. The confusion matrix compares the actual and predicted targets, 

with values inside each rectangle representing the prediction outcomes. The classification 

includes five distinct classes: healthy, SLC (crack small), IC (incipient crack), MC 

(moderate crack), and SRC (severe crack). The four key classification conditions, TP, FP, 

TN, and FN are displayed. Diagonal values represent correct predictions, while off-

diagonal areas reflect incorrect predictions. 
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(a) (b) 
 

 

 

 

(c) (d) 

Figure 3. 12: Confusion matrix for proposed approach a)15 Hz, b) 20 Hz, c) 25 Hz, and 

d) 30 Hz. 

3.7.6 Comparative Analysis 

To successfully determine the various gear crack levels, the suggested strategy was 

contrasted with current approaches in terms of accuracy, precision, and F-measure. It was 

also evaluated against the latest technologies, such as OWPD and feed-forward neural 

networks (FFNN). Other classifiers, including deep convolutional neural networks 

(DCNN), SVM, Bi-GRU, RNN, Bi-LSTM-IDBN, and RF, were also contrasted with the 

Bi-LSTM-IDBN model. 

3.7.7 Analysis of Precision, Accuracy, and F-Measure 

In order to assess the suggested technique's efficacy, we change the percentage of 

training data between 60%, 70%, 80%, and 90% while maintaining a constant learning 

rate of 0.001. The improved CEEMDAN methodology contrasts the performance with 

traditional methods for identifying gear crack faults using accuracy, precision, and F-

measure. Furthermore, a comparison is made between the proposed model and existing 



107  

classifiers. The analysis's findings, which are displayed in Figures 3.13(a) through 

3.13(d), demonstrate that the recommended approach performs better than the others in 

precisely detecting gear crack faults at different levels. 

The model must have strong F-measure scores to accurately identify the various 

gear crack levels. By exhibiting better precision values, the proposed method 

outperformed traditional techniques. In particular, the proposed reached a high f-measure 

of 100% at 30 Hz and a training percentage of 90%. In contrast, other models such as D-

Net at 96.13%, M-Net at 95.70%, RF at 97.42%, SVM at 96.99%, RNN at 98.28%, Bi-

GRU at 96.13%, Bi-LSTM at 96.13%, and DCNN at 95.27% recorded lower precision 

scores. These results show how adaptable and versatile the suggested model is, effectively 

detecting various gear crack levels through the use of a mixed classification technique. 

 
 

 

 

 

(a) (b) 
 

 

(c) 

 

Figure 3. 13(a): Evaluation of proposed methods in comparison to traditional techniques for 15 

Hz, a) Accuracy, b) F-measure, and c) Precision.
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(a) (b) 
 

 

(c) 

Figure 3. 13(b): Evaluation of proposed method in comparison to traditional 

techniques for 20 Hz: a) Accuracy, b) F-measure, and c) Precision. 

 
 

 

 

 

(a) (b) 
 

 

(c)  

Figure 3. 13(c): Evaluation of proposed method in comparison to traditional 

techniques for 25 Hz: a) Accuracy, b) F-measure, and c) Precision. 
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(a) (b) 

 

 

 

 

 

 

 

 

 

 

 

(c) 

Figure 3.13(d): Evaluation of proposed method in comparison to traditional techniques 

for 30 Hz: a) Accuracy, b) F-measure, and c) Precision.  

3.7.8 Computation Time Analysis 

As illustrated in Figure 3.14, the computational time analysis of the suggested technique 

was contrasted with those of other methods for identifying various levels of gear cracks 

based on the existing methods. The model should reduce computation time to determine 

gear crack levels precisely. Compared to conventional approaches, the Bi-LSTM-IDBN 

approach showed noticeably faster computation times. This model reduced the 

computation time to 0.993 seconds at 20 Hz, which was quicker than other models, 

which took 6.52 seconds for D-Net, 5.63 seconds for M-Net, 1.378 seconds for RF, 7.813 

seconds for Bi-GRU, 3.623 seconds for Bi-LSTM, 5.688 seconds for SVM, 1.593 seconds 

for RNN, and 2.121 seconds for DCNN. Furthermore, the proposed outperformed all 

other techniques, recording a low computational time of 1.155 seconds at 25 Hz. As a 

result, in every frequency range, the proposed (Bi-LSTM-IDBN) technique continuously 

outperforms in terms of computing efficiency. According to experimental data, this 

approach allows for more accurate gear crack detection than other approaches and saves 

computational time. 
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(a) (b) 
 

 

 

 
(c) (d) 

Figure 3. 14: Computational time comparison between traditional and proposed 

approaches for (a) 15 Hz, (b) 20 Hz, (c) 25 Hz, and (d) 30 Hz. 

3.7.9 Ablation Analysis of Proposed Method 

Comprehensive ablation research was carried out to evaluate the impact of specific 

characteristics on the Bi-LSTM-IDBN model's performance for gear crack diagnosis. The 

comparison of models using traditional CEEMDAN, cross-correntropy, and DBN with 

Bi-LSTM-IDBN is summarized in Table 3.5. At 15Hz, the suggested method achieves an 

accuracy of 99.65%, outperforming the conventional CEEMDAN with 98.28%, cross-

correntropy with 98.45%, and DBN with 98.62%. Additionally, the precision of Bi- 

LSTM-IDBN is 99.57%, significantly higher than the precision of the other models: 

CEEMDAN with 96.13%, cross-correntropy with 96.56%, and DBN with 96.99%. These 

results show the effectiveness of the Bi-LSTM-IDBN technique powered by the 

CEEMDAN algorithm for increased feature extraction, combined classification, and 

signal decomposition. 
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Table 3. 5: Evaluation of ablation at 15 Hz, 20 Hz, 25 Hz, and 30 Hz using the proposed 

method with existing techniques 

 

 

 

Metrics 

Proposed Model 

Combining traditional 

CEEMDAN 

with the pro- 

posed method 

Traditional 

cross-

correntropy in 

Bi-LSTM- 

IDBN 

 

Bi-LSTM- 

IDBN with 

existing DBN 

                           Frequency = 15 Hz 

Specificity 0.9988 0.9902 0.9912 0.9923 

Sensitivity 0.9871 0.9530 0.9573 0.9616 

Accuracy 0.9964 0.9827 0.9846 0.9861 

F-measure 0.9913 0.9571 0.9614 0.9657 

Precision 0.9956 0.9612 0.9655 0.9698 

FDR 0.0041 0.0385 0.0342 0.0301 

FNR 0.0128 0.0466 0.0423 0.0384 

MCC 0.9892 0.9464 0.9517 0.9571 

FPR 0.0011 0.0097 0.0084 0.0074 

NPV 0.9966 0.9880 0.9888 0.9902 

                           Frequency = 20 Hz 

FDR 0 0.0385 0.0427 0.0326 

Specificity 1 0.9902 0.9891 0.9903 

Sensitivity 0.9913 0.9530 0.9488 0.9526 

FNR 0.0084 0.0467 0.0512 0.0446 

F-measure 0.9956 0.9571 0.9528 0.9456 

Precision 1 0.9611 0.9578 0.9613 

Accuracy 0.9981 0.9827 0.9810 0.9722 

FPR 0 0.0095 0.0108 0.0097 

NPV 0.9977 0.9880 0.9872 0.9788 

MCC 0.9945 0.9464 0.9410 0.9588 

                          Frequency = 25 Hz 
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Precision 0.9913 0.9655 0.9572 0.9614 

Sensitivity 0.9828 0.9573 0.9488 0.9530 

NPV 0.9956 0.9892 0.9870 0.9880 

F-measure 0.9870 0.9616 0.9528 0.9573 

Specificity 0.9979 0.9913 0.9891 0.9902 

Accuracy 0.9947 0.9846 0.9810 0.9829 

FPR 0.0022 0.0087 0.0108 0.0097 

MCC 0.9838 0.9518 0.9410 0.9466 

FDR 0.0086 0.0344 0.0428 0.0387 

FNR 0.0171 0.0426 0.0511 0.0469 

                          Frequency = 30 Hz 

Specificity 1 0.9904 0.9588 0.9882 

NPV 0.9977 0.9880 0.9653 0.9861 

Sensitivity 0.9913 0.9530 0.9357 0.9445 

FPR 0 0.0097 0.0097 0.0116 

F-measure 0.9956 0.9571 0.9657 0.9488 

FDR 0 0.0385 0.036854 0.0471 

Accuracy 0.9981 0.9829 0.9557 0.9792 

MCC 0.9945 0.9466 0.9255 0.9359 

Precision 1 0.9612 0.9689 0.9528 

FNR 0.0086 0.0469 0.0487 0.0552 

3.7.10 Comparison of Existing Methods 

Table 3.6 provides an explanation of the backpropagation FFNN and compares the up- 

graded CEEMDAN study with OWPD. Furthermore, the model must generate more 

accurate accuracy ratings in order to identify gear cracks at various levels. The accuracy 

of the upgraded CEEMDAN approach is 99.82% in this case, while the accuracy of the 

backpropagation FFNN and OWPD is lower at 80.65% and 98.33%, respectively. 
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Table 3.6: Evaluation of improved CEEMDAN compared to OWPD and backpropagation 

FFNN. 
 

 Backpropagation 

FFNN for gear fault 

detection 

 

OWPD 
Proposed 

work 

Signal Vibration Vibration Vibration 

Optimizer or 

learning strategy 

Gradient Decent Cat Boost 

Algorithm 

Gradient Decent 

Test instance 

and sample rate 

200 (50 X 4), 12,500 

sample/s 

3200 X 1500 

samples 

75 X 2000 samples 

Defect  

conditions 

Crack defects 1 mm, 

2 mm, and 3 mm 

Different crack 

lengths (0, 5 mm, 

10 mm and 15 

mm) 

Crack defects 0.25 

mm, 0.5 mm, 0.75 

mm, and 1 mm 

Operation  

conditions 

600, 700, 800, 900, 

100 rpm 0%, 25%, 

50%, 75%, 100% loads 

600, 

900,1200,1500 

rpm 

15,20, 25, 30 Hz 

0,1,2,3,4 Nm loads 

Accuracy 80.65% 98.33% 99.82% 

 

3.8 Conclusion 

This chapter presented a new approach for detecting gearbox faults. The first step in the 

procedure was gathering data, which was then preprocessed by breaking down the input 

signal using an improved CEEMDAN algorithm. Features based on time, frequency, and 

entropy were recovered from the decomposed signal. Data augmentation was used to 

create random samples based on the feature's minimum and maximum values to enhance 

the feature set even more. Bi-LSTM and IDBN classifiers were combined to create a 

hybrid crack-level classification model fed these improved features. A Bi-LSTM weight 

was assigned to the first three layers of DBN to enhance classification performance. The 

classifier scores were then fused at the score level to divide crack levels into five groups. 

With an accuracy of 99.21% and 100%, the Bi-LSTM-IDBN strategy continuously beat 
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traditional techniques, according to the data. With a 90% training percentage and 

outstanding performance, especially at higher frequencies, this method proved to be an 

excellent solution for accurately and efficiently detecting gear cracks. 
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Chapter 4 

Hybrid Architecture Based on Modified LinkNet and 

DenseNet for Integrated Fault Detection in 

Electromechanical Systems 
 

 

In EM systems, commonly utilized across various industrial applications, an electric motor 

serves as the prime mover, typically coupled with a mechanical load such as a gearbox, 

rotor, or pump. Effective condition monitoring (CM) is essential for these systems, and 

vibration monitoring has proven to be a reliable method for fault identification. However, 

EM systems can experience combined faults involving simultaneous motor and load 

issues. Diagnosing these combined faults presents a significant challenge due to the 

fault's compounding consequences and overlapping symptoms. This issue is resolved by 

suggesting a modified LinkNet and DenseNet (MLiDNet) categorization of the fault 

model. This model incorporates combined DL classifiers, entropy-based feature 

extraction, and sophisticated signal processing techniques. Signal pre-processing is done 

with the ISSWT, and feature extraction focuses on entropy-based properties such as norm, 

enhanced spectral, threshold, and wavelet energy entropy. Efficient fault classification is 

the goal of the combined DL classifier, MLiDNet. With a precision of 99.68%, an F-

measure of 99.37%, and an incredible accuracy of 99.78%, the suggested approach 

requires less computing time than current methods. These results show that the Modified 

LinkNet and DenseNet (MLiDNet) model holds strong potential as an effective solution 

for accurately detecting combined faults in EM systems. 

4.1 Introduction 

Belt pulley drives, gearboxes, couplings, rotor-bearing systems, electric motors or 

generators, and other mechanical and electrical components form an EM system 

[155,156]. Industrial or manufacturing processes may be stopped by catastrophic 

breakdowns caused by the failure of any of these components [157–158]. Consequently, 

early fault detection and continuous monitoring in EM systems are critical to prevent 

widespread system failures. This proactive approach allows for scheduling preventive and 

CBM during downtime, significantly reducing the risk of extended operational 

disruptions [160-163]. Such strategies enhance system performance and availability 
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while minimizing maintenance costs [164, 165]. Vibration measurements, in particular, 

play a vital role in diagnosing issues within gear systems, ensuring their reliability and 

safety. Usually, eddy current measurements, vibration, and acoustic emissions are used to 

diagnose gear faults. DL-based fault detection methods have recently gained popularity 

and successfully diagnosed faults in rotating machinery [166, 167]. 

Faults in EM systems can generally be classified into electrical and mechanical 

categories. Electrical issues in IM include insulation failures, rotor bar breakage, and stator 

winding issues [168–170]. Conversely, mechanical faults include rotor imbalances, 

misalignments, gearbox or belt-pulley faults, and bearing failures. Since the IM is the 

primary driver related to mechanical parts, including shafts, bearings, rotor systems, and 

gearboxes, this study specifically focuses on mechanical failures in IMs and their coupled 

loads. However, these methods frequently need rather big and well-balanced training 

datasets, which are challenging to acquire in real-world applications, in order to provide 

significant results [171]. This study focuses on faults such as imbalanced rotors in 

mechanical loads, bearing faults, and unbalanced loads in motors. These faults are crucial 

because they can significantly affect the longevity and performance of EM systems. 

Methods including noise monitoring, current signal analysis, and vibration monitoring are 

employed to find these issues; vibration monitoring is particularly valued due to its ability 

to identify mechanical faults. 

Advanced signal processing techniques are crucial for identifying possible faults 

in electromechanical systems, and they play a major role in early fault detection [172, 173]. 

These methods, which can be non-invasive or invasive, are essential for finding errors 

before they cause system breakdowns. Common tools include FFT, CWT, DWT, HHT, 

and WPT [174]. These methods have drawbacks despite their significance, including high 

computing cost and vulnerability to non-stationary signals. By concentrating on the 

instantaneous frequencies of signals, the SSWT enhances time-frequency representation; 

nonetheless, it still faces challenges in noisy environments and with high computing 

complexity [175]. To address these challenges, the improved SSWT was developed. By 

improving noise reduction and offering superior time-frequency decomposition for more 

precise fault identification, ISSWT emerges as a more reliable and effective substitute for 

conventional SSWT techniques, which are computationally demanding and susceptible 

to noise. 
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4.2 Proposed Methodology 

 
This research presents a reliable proposed fault detection model for detecting 

coupled failures in EM systems, especially those involving IM and rotor systems. Five 

essential procedures make up the method for effectively classifying and detecting faults 

in these kinds of systems. The suggested structure is shown in Figure 4.1. The data-

collecting portion of the model begins with experiments using an MFS to capture 

vibration data. Following data collection, the signal is decomposed using the ISSWT 

method during pre-processing. This sophisticated pre-processing method enhances its 

quality and makes fault identification easier by dissecting the input signal into its 

constituent parts.  

 

 
 

Figure 4. 1: The suggested MLiDNet model for fault detection. 
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Following pre-processing, the signal's essential properties are captured using 

feature extraction. Features are extracted, including wavelet energy entropy, threshold 

entropy, enhanced SE, and norm entropy. The Chi-Square (CS) test is then used for feature 

selection to identify the most relevant aspects and significantly impact fault identification. 

Finally, a combined technique incorporating dense net (D-Net) and MLink Net, the 

MLiDNet approach, is used to carry out fault detection. The benefits of both DL 

architectures are used in this combined model to categorize EM faults accurately. 

4.2.1. Pre-processing: Improved Synchro-Squeezing Wavelet 

Transform Technique 

In signal processing, pre-processing is crucial because the quality and data's 

applicability are enhanced prior to additional evaluation. The input signal 𝑥 is 

appropriately prepared in the proposed fault detection system for EM systems thanks to 

pre-processing. The input signal is divided into frequency components using signal 

decomposition, usually using ISSWT. By adding a de-noising phase prior to applying the 

CWT, ISSWT improves on the traditional SSWT [175]. In contrast to SSWT, which 

applies CWT directly, ISSWT enhances the level of time-frequency decomposition 

quality by removing noise via threshold-based de-noising. The current SSWT is sensitive 

to noise, which affects the precision of fault identification by distorting the time-frequency 

representation of the signal. ISSWT solves this challenge by enhancing fault detection 

accuracy and decomposition reliability by offering a more precise representation. 

In order to eliminate unwanted noise, the input signal (𝑥) data is subjected to 

threshold-based de-noising during the pre-processing stage. The signal is subsequently 

denoised and split into time-frequency components using CWT. This is followed by 

realigning the wavelet coefficients' energy using the synchro-squeezing transformation. 

In the SSWT, synchro-squeezing improves the signal's time-frequency localization by 

moving data from the frequency-scale level to the time plane, as shown in equation (4.1). 

The map provides a definition of this function. (𝐵, 𝑐) → (𝐵,𝜔(𝑐, 𝐵)), where 𝐵 stands for 

time, 𝑐 for scale, and 𝜔 for frequency. A better understanding of the signal's properties is 

made possible by the improved time-frequency representation made possible by ISSWT, 

which helps the MLiDNet model detect faults better. 

𝑇𝑆𝑆(𝜔𝛼, 𝐵) = (𝛥𝜔)−1∑ 𝑤𝑆𝑆(𝑐𝑘, 𝐵)𝑐𝑘

−3

2 (𝛥𝑐)𝑘𝑐𝑘:|𝜔(𝑐𝑘,𝐵)−𝜔𝛼|≤𝛥𝜔/2         (4.1) 

A denoised signal's CWT can be shown as 𝑤𝑆𝑆(𝑐𝑘, 𝐵) in Equation (4.1), which 
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discretized the variable frequency 𝜔 and the variable scale 𝑐𝑘. In particular, the frequency 

bins were represented by discrete values 𝜔𝛼, at which the synchro-squeezed transform 

𝑇𝑆𝑆(𝜔, 𝐵) was evaluated. With 𝛥𝜔 signifying the bin size, these bins were specified by 

the intervals 𝜔𝛼−1/2 − 𝛥𝜔/2𝑡𝑜𝜔𝛼+1/2 + 𝛥𝜔/2. Likewise, the scale values 𝛥𝑐 were 

calculated using 𝑐𝑘 − 𝑐𝑘−1 = (𝛥𝑐)𝛼. The contributions from these discrete bins were then 

added up to calculate the synchro-squeezed transform 𝑇𝑆𝑆(𝜔, 𝐵). 

Equation (4.2) provides a mathematical illustration of how to apply the denoising 

threshold in ISSWT to eliminate undesired element noise in the signal input 𝑥. 

Denoised signal, 𝑥𝑑
∗ =

{
 
 

 
 𝑢 ∗ 𝑥𝑑 + 𝜆 −

𝜆

2𝛽+1
; 𝑥𝑑 < −𝜆

𝑠𝑖𝑔𝑛(𝑥𝑑).
𝛼

(2𝛽+1).𝜆2𝛽
∗ |𝑥𝑑|

2𝛽+1; |𝑥𝑑| ≤ 𝜆

𝑢 ∗ 𝑥𝑑 − 𝜆 +
𝜆

2𝛽+1
; 𝑥𝑑 > 𝜆

                            (4.2) 

In Equation (4.2), 𝛼 and βare the variable elements where 𝛼 = {
1; 𝛽 > 0
0; 𝛽 = 0

  and 𝛽 ∈

(0,4). 𝑢 represent the control element, which is formulated by𝑢 = 1 − 𝑒
−[
𝑥(𝑡)−𝜆2

𝜆
]
 and 𝜆 

represent the threshold, which is determined using Equation (4.3), where 𝜎 =

𝑚𝑒𝑑𝑖𝑎𝑛(𝑥(𝑡))

0.6745
.  

𝜆 = 𝜎√2 𝑙𝑛(𝑁)                        (4.3) 

Once the input signal has been de-noised 𝑥, the signal denoised 𝑥𝑑
∗  subsequently 

travels through the CWT process, as illustrated in Equations (4.4) and (4.5). 

𝑤𝑆𝑆(𝑐𝑘, 𝐵) = ∫𝑥𝑑
∗(𝑡). 𝑐−1/2𝜓(

𝑡−𝐵

𝑐
) 𝑑𝑡            (4.4) 

𝑝𝑥 = 𝑤𝑆𝑆(𝑐𝑘, 𝐵) =
𝐴

4𝜋
. 𝑐−1/2𝜓̂(𝑐𝜌). 𝑒𝑖𝐵𝜌            (4.5) 

 

The outputs of the signal decomposition from the existing SSWT and the proposed 

ISSWT at 10 Hz, 20 Hz, and 30 Hz are compared for dataset 1 in Figure 4.2. These signals 

are used as input for processing by both ISSWT and SSWT. The results of applying the 

traditional SSWT to the signals sample at 10 Hz, 20 Hz, and 30 Hz are shown in Figure 

4.2 (a). These images depict the signal's time-frequency obtained via SSWT. The presence 

of noise and less distinct frequency components is observed, indicating the limitations of 

SSWT in handling noise effectively. At 10 Hz, 20 Hz, and 30 Hz, the output of the 

proposed method employed on the same sample signals is displayed in Figure 4.2(b). The 
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proposed output displays a more precise frequency and signal temporal representation 

than the current output. By effectively removing noise, the ISSWT produces a signal with 

greater accuracy and more identifiable frequency components. The ISSWT applies to the 

CWT after a threshold-based reduction of the noise phase. 

 

 

  

Sample image for 10 Hz Sample image for 20 Hz Sample image for 30 Hz 

(a) Healthy vibration signal 
 

 

 

 

 

 

SSWT output for 10 Hz SSWT output for 20 Hz SSWT output for 30 Hz 

 (b) SSWT output  
 

 

 

 

 

 

Proposed ISSWT 

output for 10 Hz 

Proposed ISSWT 

output for 20 Hz 

Proposed ISSWT 

output for 30 Hz 

 (c) Proposed ISSWT output 

Figure 4. 2: Signal analysis of the following: (a) healthy vibration signal, (b) SSWT 

output, and (c) recommended ISSWT output for dataset 1.  

ISSWT produces an improved output compared to the existing method, which 

uses CWT straight to signal noise because the de-noising step eliminates unnecessary 

noise from the input signal. Figure 4.3 shows more distinct element frequencies due to 

the improved clarity of time-frequency representation. Because of this, ISSWT improves 

fault identification accuracy and simplifies the understanding of signal properties. 

Essential features are retained when noise is eliminated from the denoised signal, 

resulting in more accurate time-frequency decomposition. The quality of the analysis of 

time and frequencies was raised by effectively eliminating noise; pre-processing with the 
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suggested method significantly improves fault identification reliability and accuracy in 

the suggested electromechanical system diagnosis model. The signal pre-processed is 

generated from the input signal 𝑥 by the proposed method is shown as 𝑝𝑥. 
 

 

 

 

 

 

Sample image for 10 Hz Sample image for 20 Hz Sample image for 30 Hz 

 (a) Faulty vibration signal  
 

 

 

 

 

 

SSWT output for 10 Hz SSWT output for 20 Hz SSWT output for 30 Hz 

 (b) SSWT output  
 

 

 

 

 

 

Proposed ISSWT 

output for 10 Hz 

Proposed ISSWT 

output for 20 Hz 

Proposed ISSWT 

output for 30 Hz 

 (c) Proposed ISSWT output  

 

Figure 4. 3: Analysis of the following signals: (a) faulty vibrational signal, (b) SSWT 

output, and (c) suggested output for dataset 1. 

Figure 4.4 compares the outputs of the proposed and the conventional methods for 

dataset 2 for breakdown signal at 30 Hz, 35 Hz, 40 Hz, 45 Hz, and 50 Hz. Both the 

proposed and current processes use these signals as input. Figure 4.4 (a) displays the 

result of the conventional method utilized for the signal sample at 30 Hz, 35 Hz, 40 Hz, 

45 Hz, and 50 Hz. SSWT's challenges in effectively handling noise are highlighted by 

the reported presence of noise and less discernible frequency components. The output of 

the suggested approach employed on the same signal test at 10 Hz, 20 Hz, and 30 Hz is 

shown in Figure 4.4 (b). Compared to the current method, the output of the suggested 
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methodology more clearly displays the time-frequency of the signals. The ISSWT 

generates more frequency elements and enhances signal quality by efficiently 

eliminating noise. The proposed approach incorporates a threshold-based noise reduction 

stage prior to applying the CWT. 
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Sample image 

for 35 Hz 

Sample image 

for 40 Hz 

Sample image 

for 45 Hz 

Sample image 

for 50 Hz 

Faulty Vibration Signal 
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SSWT output 

for 35 Hz 

SSWT output 

for 40 Hz 

SSWT output 

for 45 Hz 

SSWT output 
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SSWT output 
 

 

 

 

 

 

 

 

 

 

Proposed ISSWT 

output for 30 Hz 

Proposed ISSWT 

output for 35 Hz 

Proposed 

ISSWT output 

for 40 Hz 

Proposed ISSWT 

output for 45 Hz 

Proposed 

ISSWT output 

for 50 Hz 

 (c) Proposed ISSWT output 

 

 

Figure 4. 4: Analysis of (a) the healthy vibrating signal, (b) the output of the SSWT, and 

(c) the output of the proposed technique for dataset 2. 

As a result, ISSWT improves fault diagnosis reliability and facilitates 

understanding of the signal properties in Figure 4.5. When noise is eliminated from the 

denoised signal, key properties are retained, improving the time-frequency 

decomposition's accuracy. The proposed fault detection model's accuracy and 

dependability are generally significantly increased by pre-processing with ISSWT, which 

successfully eliminates noise and raises the bar for time-frequency analysis. 
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Sample image for 
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45 Hz 
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for 50 Hz 
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Proposed ISSWT 

output for 40 Hz 

Proposed ISSWT 

output for 45 Hz 

Proposed 

ISSWT output 

for 50 Hz 

 (c) Proposed ISSWT output  

 

Figure 4. 5: Analysis of the following signals: (a) faulty vibrating signal, (b) SSWT result, 

and (c) output from the proposed technique for dataset 2. 

Table 4. 1 (a): Quantitative Analysis of signals for dataset 1 

Frequency Method 

Healthy 

Signal 

SNR (dB) 

Healthy 

Signal 

MSE 

Faulty 

Signal 

SNR 

(dB) 

Faulty 

Signal 

MSE 

10 Hz CWT 18.9 0.018 18.5 0.019 

10 Hz SSWT 20.2 0.015 19.9 0.016 

10 Hz ISSWT 23.1 0.009 22.8 0.01 

20 Hz CWT 19.7 0.016 19.2 0.017 

20 Hz SSWT 21.5 0.013 21.1 0.014 

20 Hz ISSWT 24.2 0.008 23.9 0.009 

30 Hz CWT 20.4 0.014 20 0.015 

30 Hz SSWT 22.5 0.011 22.2 0.012 

30 Hz ISSWT 25.3 0.007 25 0.007 
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Table 4. 1 (b): Quantitative Analysis of signals for dataset 2 

Frequency Method 

Healthy 

Signal 

SNR (dB) 

Healthy 

Signal 

MSE 

Faulty 

Signal 

SNR (dB) 

Faulty 

Signal 

MSE 

30 Hz CWT 20.5 0.016 21 0.017 

30 Hz SSWT 22.3 0.012 22.6 0.012 

30 Hz ISSWT 25.1 0.007 25.4 0.007 

35 Hz CWT 21 0.014 21.6 0.014 

35 Hz SSWT 23.1 0.01 23.4 0.01 

35 Hz ISSWT 26 0.006 26.2 0.006 

40 Hz CWT 21.9 0.012 22.5 0.012 

40 Hz SSWT 23.9 0.009 24.3 0.009 

40 Hz ISSWT 26.8 0.005 27.1 0.005 

45 Hz CWT 22.5 0.01 23 0.01 

45 Hz SSWT 24.6 0.008 25 0.008 

45 Hz ISSWT 27.5 0.005 27.8 0.005 

50 Hz CWT 23.1 0.009 23.6 0.009 

50 Hz SSWT 25.2 0.007 25.6 0.007 

50 Hz ISSWT 28 0.004 28.3 0.004 
 

The superiority of the proposed ISSWT method over SSWT has been quantitatively 

validated using SNR and MSE, as shown in Table 4.1 (a) and Table 4.1 (b). ISSWT 

consistently achieves higher SNR and lower MSE, confirming its improved de-noising 

performance. Additionally, a comparative analysis with standard CWT is performed, 

which showed lower SNR and higher MSE than ISSWT, due to poorer time-frequency 

resolution. 

4.2.2. Feature Extraction 

Features such as improved wavelet energy entropy, norm entropy, SE, and 

threshold entropy are extracted throughout this method. Every feature provides distinct 

insights into the signal's underlying dynamics, such as frequency distribution, complexity, 

and randomness. 

4.2.3. Norm Entropy 

From a signal-processed 𝑝𝑥 norm entropy [176] is extracted by calculating the 

probability range of the signal and measuring the degree of Uncertainty or randomness in 

the distribution as measured by a statistical metric developed in Equation (4.6). 

 

𝑓𝑒𝑁𝑒𝑛𝑡 = 𝑁𝑒𝑛𝑡 = |𝑝𝑥𝑖|
𝛾
                        (4.6) 

 

where γ denotes the threshold that is calculated using 𝜇[𝑦], where 𝜇 − 𝑚𝑒𝑎𝑛,  and  
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𝑝𝑥
𝑖 

is the coefficient of the processed signal 𝑝𝑥. The pre-processed signal 𝑝𝑥 can be used 

to detect faults by extracting norm entropy, which provides essential details about its 

underlying properties. As a result, 𝑓𝑒𝑁𝑒𝑛𝑡 is the extracted norm entropy. 

4.2.4 Improved Spectral Entropy 

SE is a statistic that is used to measure how complicated or unpredictable a signal's 

frequency content is. Demonstrating how consistent energy is distributed throughout 

multiple frequency bins sheds light on the spatial distribution of frequency elements 

inside the signal. It is computed mathematically using Equation (4.7), and 𝑅𝑧 represents 

the relative energy in the 𝑧𝑡ℎ frequency bin. 

𝑆𝑒𝑛𝑡 = ∑ 𝑅𝑧 𝑙𝑜𝑔 (
1

𝑅𝑧
)𝑧                            (4.7) 

The conventional SE extraction method has limitations that can affect fault detection 

accuracy and reliability of entropy estimation. These limitations include susceptibility to 

aliasing artifacts, spectral leakage, reduced spectral resolution due to noisy or irregular 

entropy estimates without frequency-domain smoothing, and improper windowing and 

zero-padding techniques. For fault identification, the method of extracting enhanced SE 

from the processed signal 𝑝𝑥 is essential. It uses a methodical approach to improve 

entropy estimation's precision and dependability. The following steps are part of this 

process. 

Steps in the Process of Extracting Improved Spectral Entropy: 

 

Windowing: This entails giving the pre-processed signal 𝑝𝑥 a window function. 

This stage minimizes artifacts caused by the abrupt termination of the signal by decreasing 

the signal closer to zero at its edges, hence reducing spectral leakage. Windowing lowers 

sidelobe values in the resultant spectrum and improves frequency resolution. Equation 

(4.8) formulates the window function 𝑊(𝑡) as an application to the already processed 

signal 𝑝𝑥(𝑡). 

𝑝𝑥
𝑊(𝑡) = 𝑝𝑥(𝑡) ∗ 𝑊(𝑡)             (4.8)  

 
Zero-padding: By adding zeros to a window, a technique known as zero-padding 

raises the spectrum's frequency resolution without introducing new data. Particularly for 

short-duration signals, it aids in the interpolation of the frequency plane representation, 

producing a smoother spectrum. The mathematical expression for the windowed signal's 

zero-padding phase is given by Equation (4.9). 
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𝑥 
𝑥 𝑝𝑍𝑃(𝑡) = { 
𝑝𝑊(𝑡); 0 ≤ 𝑡 ≤ 𝑘 
0; 𝑘 ≤ 𝑡 < 𝑘𝑡𝑜𝑡𝑎𝑙 

(4.9) 

Here, 𝑘 denoted the signal windowed length and 𝑘𝑡𝑜𝑡𝑎𝑙 > 𝑘 represents the after 

zero-padding length. 

Computation of DFT: By converting the signal from the time domain into the 

frequency domain, the Cooley-Tukey Radix-2 FFT method (C-TR2FFT) effectively 

calculates the DFT, reducing complex computation and facilitating faster dataset 

processing. Prior to reaching the base case, the C-TR2FFT method repeatedly splits the 

input sequence of length 𝑄into smaller subsequences. The technique works with complex-

valued sequence input, where the 𝑘𝑡ℎ frequency-domain sample of the input sequence is 

denoted by 𝑝𝑥(𝑘).  The primary equations controlling the computation of 𝑝𝑥(𝑘)and 

𝑝𝑥 (𝑘 +
𝑄

2
) for a Radix-2 FFT, which divides the series input into smaller problems of 

size 2, are as follows at each level of recursion: 

1. Butterfly Operation: 

The Radix-2 FFT technique uses butterfly operations, which include intricate 

multiplications and adds, to calculate FFT values for each stage after splitting the inputs 

into odd and even-indexed sub-sequences. 

2. Twiddle Factor:  

Each butterfly operation uses the twiddle factor 𝑒
−
2𝜋𝑗

𝑄
.𝑘

 to give the odd and even indexed 

subsequences' components a weight. Where k is the current FFT output sample's index, 

and𝑄 is the input sequence's length.  The C-TR2FFT algorithm's 𝑝𝑥(𝑘) and 𝑝𝑥 (𝑘 +
𝑄

2
) 

computation equations are written as follows in light of these factors: 

𝑝𝑥(𝑘) = 𝐸𝑣𝑘 + 𝑒
−
2𝜋𝑗

𝑄
.𝑘
. 𝑂𝑑𝑘          (4.10) 

𝑝𝑥 (𝑘 +
𝑄

2
) = 𝐸𝑣𝑘 − 𝑒

−
2𝜋𝑗

𝑄
.𝑘
. 𝑂𝑑𝑘                               (4.11) 

In Equation (4.10) and Equation (4.11), the terms 𝐸𝑣𝑘 and 𝑂𝑑𝑘 show the FFT results 

for the zero-padded 𝑝𝑥
𝑍𝑃(𝑡) signal's even and odd-indexed subsequences, respectively. 

𝑒
−
2𝜋𝑗

𝑄
.𝑘

 indicates that the index 𝑘 twiddle factor is an integer that spans from 𝑘 =

0,1, . . . ,
𝑄

2
− 1. 
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𝐸𝑣𝑘 = ∑ 𝑝𝑥
𝑍𝑃(2𝑞)

𝑄

2
−1

𝑞=0 𝑒
−
2𝜋𝑗

𝑄
.𝑘

           (4.12) 

𝑂𝑑𝑘 = ∑ 𝑝𝑥
𝑍𝑃(2𝑞 + 1)

𝑄

2
−1

𝑞=0 𝑒
−
2𝜋𝑗

𝑄
.𝑘

                                 (4.13)  

These formulas show how the findings from the preceding step and the proper 

twiddle factors are utilized to determine the FFT ranges for neighboring frequency bins. 

This procedure is repeated until each frequency bin's FFT values are determined. 

Magnitude Spectrum: The DFT's complex Fourier coefficients are used to compute 

the magnitude spectrum, which gives details on the energy or amplitude of the different 

elements of the frequency of the signal and permits additional examination of its 

frequency content. 

𝑝𝑥
𝑀(𝑘) = |𝑝𝑥

𝐷𝐹𝑇(𝑘)|              (4.14) 

Frequency Smoothing: To increase the SE estimate's accuracy, frequency smoothing 

reduces the effect of artifacts or high-frequency noise by lowering amplitude spectrum 

noise and fluctuations. 

𝑝𝑥
𝑆(𝑘) =

1

𝐿
∑ 𝑝𝑥𝑖

𝑀(𝑘)
𝑘+

𝐿

2

𝑟=𝑘−
𝐿

2

            (4.15) 

The frequency smoothing applied to the resulting magnitude spectrum is shown in 

the equation above, in which 𝐿 is the window smoothing.  

Normalization: It is intended to guarantee that the spectrum magnitude scale is 

constant, usually falling between 0 and 1. This stage makes it easier to compare signals 

and guarantees that the SE computation remains constant despite variations in the signal's 

total energy level.  

𝑝𝑥
𝑁(𝑘) =

𝑝𝑥
𝑆(𝑘)

∑ 𝑝𝑥𝑆(𝑘)
𝑄−1
𝑘=0

            (4.16) 

Computation of Improved SE: Finally, using the normalized magnitude spectrum, 

improved SE 𝐼𝑆𝑒𝑛𝑡is calculated.  In this step, the spectral information entropy of the signal 

is measured, which quantifies the frequency content's complexity or randomness.  For 

fault detection, the calculated enhanced SE is a useful characteristic. 

𝑓𝑒𝐼𝑆𝑒𝑛𝑡 = 𝐼𝑆𝑒𝑛𝑡 = −∑ 𝑝𝑥
𝑁(𝑘) 𝑙𝑜𝑔2 𝑝𝑥

𝑁 (𝑘)𝑄−1
𝑘=0           (4.17) 

Improved SE extraction enhancements significantly improve the feature's quality and 
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resilience, which enhances the extract SE 𝑓𝑒𝐼𝑆𝑒𝑛𝑡  is defined as the performance of the 

suggested fault recognition model.  

4.2.5 Threshold Entropy 

In order to get insight into signal fluctuations and anomalies, entropy [176] 

assesses the signal value distribution that surpasses a particular threshold level. Equation 

(4.18) formulates the threshold entropy expression, where 𝛾 is the threshold, which is 

calculated using 𝜇[𝑦], where 𝜇 − 𝑚𝑒𝑎𝑛, and 𝑝𝑥
𝑖 

is the covariance of the previously 

processed signal 𝑝𝑥. 

𝑓𝑒𝑇ℎ𝑒𝑛𝑡 = 𝑇ℎ𝑒𝑛𝑡 = {
1; 𝑖𝑓|𝑝𝑥𝑖| > 𝛾

0; 𝑒𝑙𝑠𝑒𝑤ℎ𝑒𝑟𝑒
                      (4.18) 

As a result, the extracted threshold entropy is given as 𝑓𝑒𝑇ℎ𝑒𝑛𝑡 . 
 

4.2.6  Wavelet Energy Entropy 

For fault identification, wavelet energy entropy [177] must be extracted from the 

preprocessed signal. This process involves decomposing the signal into multiple frequency 

components using wavelet transform and computing the energy distribution across each 

frequency band. The resulting energy distribution provides valuable insights into the 

signal’s energy variations across different frequency ranges. This distribution is used to 

compute wavelet energy entropy, which quantifies the complexity or randomness of the 

signal. The pre-processed signal's wavelet energy entropy estimation 𝑝𝑥 is displayed in the 

equation below. 

     𝑓𝑒𝑊𝐸𝑒𝑛𝑡 = 𝑊𝐸𝑒𝑛𝑡 = −∑ 𝑅𝑧𝑙𝑜𝑔
∑𝑧
𝑧                          (4.19) 

where, 𝑅𝑧 represent the average wavelet energy, which is calculated using 𝑅𝑧 =
𝐸𝑧

𝐸
.  The 

total of the wavelet component energies 𝐸is determined as 𝐸 = ∑ 𝐸𝑧𝑧  wherein the wavelet 

coefficient's energy is associated with 𝑧𝑡ℎ decomposition level, 𝐸𝑧 = 𝑑𝑧
2.  The 𝑑𝑧 

represent the coefficient of wavelet related to 𝑧𝑡ℎ the level of breakdown.  The wavelet 

energy entropy that was extracted is given as 𝑓𝑒𝑊𝐸𝑒𝑛𝑡 . The MLiDNet-based fault 

identification model can diagnose faults in EM systems more reliably and efficiently 

thanks to effective feature extraction.  

4.3 Feature Selection using Chi-Square Test 

The CS test [178] is used in this study to identify features for the MLiDNet fault 

identification model. By assessing each feature's statistical importance with respect to the 
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fault situation, the CS statistics are calculated to determine whether the distribution of 

each feature is unaffected by the desired variable or if there is a meaningful correlation. 

Through the observed frequency for each feature category denoted as 𝑜𝑏𝑞 and the 

frequency expected for each feature category under a condition of independence with the 

target variable denoted as 𝑒𝑥𝑞 , Equation (4.20) formulates the CS computation of 

statistical value.  High CS and low p-value features are used to identify fault models 

because they are thought to be more discriminative. 

𝜒2 =
∑(𝑜𝑏𝑞−𝑒𝑥𝑞)

2

𝑒𝑥𝑞
                    (4.20) 

Consequently, the characteristics chosen for each signal by the CS test are 

represented by ‘𝑓𝑠𝑥’.  

4.4 Fault Detection via Modified LinkNet and DenseNet 

Network Model 

Figure 4.6 shows the MLiDNet model that was suggested in this investigation. This 

hybrid model incorporates DL architecture to improve categorization, particularly D-Net 

and Modified LinkNet (ML-Net). Specifically, the MLiDNet framework relies heavily 

on the modified L-Net model. 

     

 Figure 4. 6: Model fusion between ML-Net and D-Net. 
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An advancement over the traditional L-Net, ML-Net adds the CBNSKR layer. 

The hybridization of the proposed system provides a number of benefits. ML-Net 

enhances feature extraction's generalization and robustness by managing data skewness 

and kurtosis. D-Net provides Additional data analysis, which simultaneously uses 

densely connected layers to record complex feature representations. This collaboration 

makes use of both models' advantages, with D-Net extracting fine-grained features and 

ML-Net handling issues with data distribution. The hybrid technique improves efficiency 

and precision in fault detection of EM systems by offering a thorough knowledge of the 

data. Furthermore, the proposed model's capacity to recognize fault circumstances is 

further im- proved by using CS test results for feature selection, guaranteeing precise and 

trustworthy fault detection. In industrial contexts, this combination strategy improves 

maintenance procedures and operating efficiency. 

4.4.1 Structure of Modified Link-Net Model 

Each pixel in an image is classified into predetermined classes using the CNN model for 

semantic segmentation known as L-Net [179,180]. It has a skip-connected encoder-

decoder structure that maintains spatial details when up-sampling. As a component of the 

MLiDNet-based fault identification model, this work presents a modified version, ML-

Net. A CBNSKR layer, which is not present in traditional L-Net, is incorporated into ML-

Net to manage kurtosis and skewness in the asymmetry and non-uniformity 

measurements of statistical input data. These distributional characteristics must be 

addressed for performance, particularly in complicated datasets. In the MLiDNet structure, 

the outcome of the CS feature selection process is sent into the ML-Net model for EM 

system failure detection. This input is essential for differentiating between faulty and 

healthy circum- stances since it contains selected features (𝑓𝑠𝑥). The CBNSKR layer 

efficiently manages kurtosis and skewness, while ML-Net enables it to extract intricate 

patterns and delicate traits from the input. This all-encompassing method improves the 

model's accuracy and resilience in detecting faults, which increases industry maintenance 

and operational efficacy. 

To effectively manage input data and extract significant features, the proposed 

model’s architecture is organized with a number of layers placed in a particular order 

(Figure 4.7). An outline of the layers and their features is provided below: 

▪ Initial Block: Using initial processing techniques like inversion and 
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functions activated to extract fundamental features, this block acts as a 

starting point for the input or selected characters (𝑓𝑠𝑥). 

▪ Encoder Blocks (1 to 4): The ML-Net model uses convolutional layers to 

extract information from each encoder block. After training has been 

stabilized by Batch Normalization (BN), the model is given non-linearity 

using Rectified Linear Unit (ReLU) function activation, which enables it 

to discover complex correlations in the data. By reducing the size of 

feature maps, max pooling preserves crucial information while lowering 

spatial dimensions. 

▪ CBNSKR Layer: This unique feature ensures stable and efficient model 

training by mitigating the impacts of skewness and kurtosis in the 

distribution of input using tailored BN approaches. Equation (4.21) 

provides a mathematical expression for the process that is carried out in the 

CBNSKR layer, while Equations (4.22) and (4.23), respectively, display 

the expressions of the traditional BN. 

           𝐶𝐵𝑁𝑆𝐾𝑅 = 𝜙 ∗ [
𝜑𝑃(𝑓𝑠𝑥)−𝜇

𝜌∗𝜎∗𝐾(𝑓𝑠𝑥)
] + 𝜒           (4.21) 

In Equation (4.21), 𝜑𝑃(𝑓𝑠𝑥) represent skewness reduction, and it is represented as 

𝜑𝑃(𝑓𝑠𝑥) {
𝑓𝑠𝑥

𝑃, 𝑖𝑓𝑓𝑠𝑥 ≥ 0

−(−𝑓𝑠𝑥)
𝑃, 𝑖𝑓𝑓𝑠𝑥 < 0

 where 𝑃 > 1. 𝐾(𝑓𝑠𝑥) represent the kurtosis 

reduction, and it is denoted as 𝐾(𝑓𝑠𝑥) =
∑ [𝑓𝑠𝑥𝑎−𝑓𝑠𝑥̂]

4𝑈
𝑎=1

𝜎4.𝑈
.  The reduction of 

skewness factor 𝜌 represented as 𝜌 = 3. [
𝑓𝑠𝑥̂−𝑚𝑒𝑑𝑖𝑎𝑛

𝜎
].  The input data (selected 

attributes) mean is  𝑓𝑠𝑥̂, 𝑈 represents the number of input-selected features, 𝜎 

represent the standard deviation, 𝜙represent the rescaling factor, and 𝜒represent the 

recentering factor. 

𝐵𝑁 = 𝜙 ∗ 𝑓𝑠𝑥̂ + 𝜒             (4.22) 

𝐵𝑁 = 𝜙 ∗ [
𝑓𝑠𝑥−𝜇

𝜎
] + 𝜒                       (4.23)  

▪ Decoder Blocks (4 to 1): Convolutional layers precede BN and ReLU 

activation processes in each decoder block, which operate identically to 

the encoder blocks. To create segmentation maps, these elements 

cooperate 

to enhance the feature maps and recreate the features. Additionally, the 
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feature patterns are further enhanced by the usage of max pooling. 

▪ Layer CBNSKR (following Decoder Blocks): This layer improves the 

normalization of feature activation, like the CBNSKR layer that comes before the 

decoder blocks, which leads to improved data generalization and more efficient 

learning. 

▪ Final Block: The final result of fault detection is produced after further 

processing and refinement in this block. 

The ML-Net model's CBNSKR layers improve BN to manage kurtosis and skew- 

ness in the input data, which stands for imbalances and erroneous model training due to 

deviations from the normal distribution. Through the reduction of these anomalies, the 

tailored BN approaches enhance the model's stability, resilience, and rate of convergence, 

resulting in improved fault detection performance and accuracy. By combining feature 

selection outcomes with ML-Net's sophisticated capabilities, the MLiDNet framework 

makes it possible to accurately and consistently detect faults in EM systems. In industrial 

contexts, this greatly improves maintenance procedures and operating efficiency. The 

ML-Net model's output for identifying EM system faults is defined as 𝑑𝑀𝐿𝑖𝑛𝑘𝑁𝑒𝑡. The 

RELU activation function is employed in ML-Net along with the 'rmsprop' optimizer, 80 

epochs, a learning rate of 0.001, and categorical cross-entropy. 
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Figure 4. 7: A structural perspective of the ML-Net model. 

4.4.2 Structure of Dense-Net Model 

One DL architecture that is well-known for its efficient feature propagation and cost- 

effective parameter usage is D-Net. D-Net is incorporated into the Milden architecture in 

this study to detect faults in EM systems. The D-Net model uses dense connections and 

feature reuse to improve fault detection. During the feature selection phase, the D-Net 

model uses the most valuable features to identify problems based on the CS test results 

(𝑓𝑠𝑥). Figure 4.8 depicts the structural structure of the D-Net architecture, which is made 

up of several basic layers, as described below. 

▪ Convolutional Layers: Convolution operations are used on the input data 

to extract features. A dense connection within the network is made possible 

by the output of each layer being transmitted to later layers. 

▪ Dense Blocks: In order to promote feed-forward connections between 

layers and improve feature reuse and gradient flow, D-Net introduces 

dense connections within convolutional layers. 

▪ Transition Layers: Transition layers, which usually include BN, 

traditional layers, and pooling algorithms like max pooling or average, are 

used to down-sample feature maps from dense blocks in an effort to lower the 

computational complexity and spatial dimension. 

▪ Global Average Pooling Layer: This layer at the network's end calculates 

an average score for each feature map to aggregate spatial information. As 

a result, the entire input image is summarized in a fixed-length feature 

vector. 

▪ Layer Fully Connected: In order to map the characters extracted to the 

required number of output classes for classification tasks, an entirely 

interconnected layer may be included in the network. Class probabilities 

are usually generated using SoftMax activation. 

The D-Net component of the MLiDNet-based IM fault identification model uses 

its dense connection and effective feature propagation to process specific characteristics 

in order to identify faults inside IMs, resulting in reliable and accurate fault identification. 

With the output designated as 𝑑𝐷𝑒𝑛𝑠𝑒𝑁𝑒𝑡, this improves maintenance and operating 
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efficiency in industrial environments. By combining ML-Net with D-Net, the MLiDNet 

model makes use of D-Net's in-depth feature extraction and ML-Net's ability to handle 

distributional problems, leading to a more reliable and efficient fault identification 

solution for EM systems. The categorical crossover entropy is 0.001, and the activation 

function is taken into account. RELU with the "Adam" optimizer is used in D-Net. 

                               

 

Figure 4. 8: D-Net method structure. 

In the MLiDNet approach, the average of the outputs from the D-Net and ML-Net 

is defined as 𝑑𝑥, and the final product can be categorized into six types of labels: 

0 Healthy motor coupled with healthy rotor (HL-1) 

1 Healthy motor coupled with unbalanced rotor (FL-2) 

2 Unbalanced fault in motor coupled with healthy rotor (FL-3) 

3 Unbalanced fault in motor coupled with unbalanced rotor (FL-4) 

4 Bearing fault in motor coupled with healthy rotor (FL-5) 

5 Bearing fault in motor coupled with unbalanced rotor (FL-6) 

The numbers 0, 1, 2, 3, 4, and 5 represent the equivalent outputs for these labels, 

respectively. 

4.5  Data Acquisition and Experimental Specifics for Datasets 1 

and 2 

Datasets 1 and 2 are the two datasets taken into consideration in this research. 

Dataset 2 makes use of the benchmark dataset, while Dataset 1 is experimentally captured. 
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4.6  Description of Dataset 1 

An MFS was used to conduct an experiment, depicted in Figure 4.9. An external rotor is 

connected to a 0.5 horsepower, 50 Hz, three-phase IM via a flexible coupling to form the 

MFS. A centrally located disc in the rotor is intended to produce imbalance. The mass of 

the disc positioned in the middle is 0.68 kg. Two external bearings support the ends 

of this rotor. On the other end, a belt drive links the rotor to a pulley, which is then 

attached to a gearbox. A magnetic brake clutch is also included with this gearbox. As 

seen in Figure 4.10, a clutch for magnetic brakes is fastened to the gearbox in order to 

provide the IM with an external load. A speed controller or VFD is also connected to the 

IM to change the speed. A tri-axial accelerometer is employed to collect vibration signals 

in three orthogonal directions. Figure 4.11 displays the accelerometers utilized in this 

study. The tachometer, which measures the motor speed, was powered by a constant DC 

supply. In order to assess these compounded faults, vibration signals are recorded in this 

inquiry. A direct adhesive mounting method attaches a tri-axial accelerometer to the top 

of the gearbox to record vibration data. The gear vibration signals are recorded by an 

OROS-OR34 DAQ coupled with this accelerometer. Next, a laptop running the signal 

analysis software NV Gate is connected to the DAQ. The motor's top and the rotor's left 

bearing are two separate locations from which vibration data is captured in the triaxial 

directions. The time-domain unprocessed data was obtained using a sampling rate of 6.4 

kHz. Ten seconds of a vibration signal were captured. As well as four loads of 0, 1, 2, 

and 3 Nm cover a range of motor speeds from 10 Hz to 30 Hz. The combined six categories 

of faults are taken into account. To create the rotor's unbalance intentionally, a screw is 

driven into a hole in the disc at a certain angle and radial distance. The rotor disc has 24 

slots or holes where an irregular mass can be inserted to cause unbalance. The rotor is 

shown in a balanced and healthy state in Figures 4.12 and 4.13. An unbalanced rotor fault 

is illustrated in Figure 4.14, where the motor becomes unbalanced due to the attachment 

of a weight. An internal view of a motor with an internal bearing fault is depicted in Figure 

4.15, where an outer race fault creates an inherent bearing fault in one bearing and an 

interior race fault in the other. 
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Figure 4. 9: Experimental test rig setup used for rotating machinery fault diagnosis. 

 

 

Figure 4. 10: Magnetic Brake with a gearbox and magnetic.  
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Figure 4. 11: Installed tri-axial accelerometer on IM.  

 

Figure 4. 12: Healthy Rotor. 

 

Figure 4. 13: Unbalanced Rotor. 



138  

 

Figure 4. 14: Unbalanced rotor fault in the motor. 

 

 
 

Figure 4. 15: Bearing fault in the motor. 

4.7  Description of Dataset 2 

This dataset is representative of all commercial gearbox data for dataset 2 [181]. Helical 

gears undergo testing. Two accelerometer signals acquired by sensors matching and one 

signal channel make up the dataset. Here, only the second channel is used to test the 

suggested model. Shaft speeds fall into the following range: 30, 35, 40, 45, and 50 Hz. It 

is made up of six helical labels (0–5). The good is indicated by the helical label 0, while 

the chipped gear is shown by the helical label 1. The helical label 2 indicates that the inner 

fault is bent, the bearing combination is broken, and the gear is broken. The helical label 

4 indicates a bearing inner fault, the helical label 5 indicates a bent shaft, and the gear is 

faulty. 
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4.8  Results and Discussion 
 

4.8.1 The Simulation Process 

Python 3.7 was used to implement the proposed fault identification paradigm for EM 

systems. The simulation system had an Intel Core (TM) i7-10,700 processor running at 

2.90 GHz and with 16.0 GB of installed RAM. Details of the testing and training data 

for Datasets 1 and 2 are shown in Tables 4.2 and 4.3. 

Table 4. 2: Specifics of training and testing are essential for 10 Hz, 20 Hz, and 30 Hz for 

dataset 1 

 

   10 Hz  

Pre augmentation 457 Post augmentation 3157 

 60% 70% 80% 90% 

Train 1893 2208 2524 2840 

Test 1262 947 631 315 

   20 Hz  

Pre augmentation 460 Post augmentation 3160 

 60% 70% 80% 90% 

Train 1895 2211 2527 2843 

Test 1263 947 631 315 

   30 Hz  

Pre augmentation 460 Post augmentation 3160 

 60% 70% 80% 90% 

Train 1895 2211 2527 2843 

Test 1263 947 631 315 
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Table 4. 3: Specifics of training and testing are essential for 30 Hz, 35 Hz, 40 Hz, 45 Hz, 

and 50 Hz for dataset 2 

30 Hz 

Pre augmentation 24 Post 

augmentation 

3324 

 60%  70%  80%  90%  

Train 1993 2325 2658 2990 

Test  1331 997 664 332 

35 Hz 

Pre augmentation 24 Post 

augmentation 

3324 

 60%  70%  80%  90%  

Train 1993 2325 2658 2990 Train 1993 2325 

Test  1331 997 664 332 Test  1331 997 

40 Hz 

Pre augmentation 
24 

Post 

augmentation 
3324 

 60%  70%  80%  90%  

Train 1993 2325 2658 2990 

Train 1331 997 664 332 

45 Hz 

Pre augmentation 
24 

Post 

augmentation 
3324 

 60%  70%  80%  90%  

Train 1993 2325 2658 2990 Train 1993 2325 

Train 1331 997 664 332 Train 1331 997 

50 Hz 

Pre augmentation 
24 

Post 

augmentation 
3324 

 60%  70%  80%  90%  

Train 1993 2325 2658 2990 Train 1993 2325 

Train 1331 997 664 332 Train 1331 997 
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4.8.2 Evaluation of Performance 

A thorough investigation was conducted in order to compare MLiDNet's effectiveness 

with conventional techniques for fault detection. The evaluation of numerous crucial 

metrics, such as accuracy, F-measure, and reliability, is part of this thorough inquiry. The 

assessment also included methods including computational time analysis, matrix of con- 

fusion analysis, and ablation investigations. An in-depth analysis of the MLiDNet 

method's relative performance was also provided by comparing its effectiveness against 

both conventional classifiers. 

4.8.3 Confusion Matrix Evaluation on Proposed Method for Dataset 1 

The suggested method's three distinct matrices of confusion are displayed in Figure 4.16 

for the 10 Hz, 20 Hz, and 30 Hz operating frequency ranges. The total number of tests 

for each course is shown in each matrix cell. The classification is divided into six classes. 

TN, FN, TP, and FP are examined. 
 

 

 

 

(a) (b) 
 

 

(c) 

Figure 4. 16: Matrix of Confusion proposed model a) 10, b) 20, and c) 30 Hz for dataset 

1. 
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In particular, Figure 16(a) displays the proposed MLiDNet model confusion 

matrix that was obtained for fault identification at 10 Hz. In this matrix, each row 

represents the fault classes, and the fault classes predicted by the proposed model are 

shown in each column. The values inside the cells indicate the number of entries for the 

actual and expected classes. At 10 Hz, for example, the first row and first column cell 

display the number of events correctly recognized as HL-1. The second row and third 

column cell also show the number of cases that were misclassified as FL-3 at 10 Hz while 

the actual class was FL-2. 

4.8.4 Confusion Matrix Analysis on Proposed Method for Dataset 2 

Figure 4.17 shows the MLiDNet method's three confusion matrices for the 30, 35, 40, 45, 

and 50 Hz operating frequency bands. The matrix's cells each indicate how many tests 

are required for a given class. The categorization has the following six classes. FN, FP, 

TP, and TN are the four situations explored. 

 

 

  

(a) (b)  (c) 
 

 

 

 

(d)   (e) 

Figure 4. 17: Matrix of Confusion proposed model (a) 30 Hz, (b) 35 Hz, (c) 40 Hz, (d) 45 

Hz, and (e) 50 Hz for dataset 2. 

In particular, Figure 4.17 (a) displays the confusion matrix that results from using 

the suggested proposed model for identifying faults at 30 Hz. Each row of this confusion 

matrix displays the actual fault classes, and each column displays the anticipated classes 

derived from the suggested model. The number of instances in the cells shows how many 

instances of each combination of current and anticipated classes are assigned to that com- 
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bination. For instance, the cell in row 1, column 1 displays the number of cases that were 

accurately recognized as HL-1 at 10 Hz. Similarly, the cell in row 2, column 3 displays 

the number of cases incorrectly classified as FL-3 at 30 Hz while the true class was FL-

2. 

4.8.5 Analysis by Comparison for Dataset 1 

In this comparison, the efficacy of the proposed method in fault detection is assessed 

against six well-known models: CNN [182], DT [183], S-Net, SVM, MSFFCNN, E-Net, 

Hybrid Wavelet-CNN, and L-Net. Each model's fault identification accuracy is assessed 

using key performance indicators, such as accuracy, precision, and F-measure, which also 

minimize FN and FP. The effect of several frequency ranges on model performance was 

also investigated. The MLiDNet method's comparison with traditional methods offers 

essential information about each strategy's relative advantages and disadvantages. A 

detailed comparison of the MLiDNet approach against existing over a range of training 

data scenarios is provided by the study's results, which are illustrated in Figures 4.18, 

4.19, and 4.20. 

Furthermore, maximizing accuracy, F-measure, and precision [184] ratings are essential 

for EM systems to detect faults effectively. At a frequency of 10 Hz, Figure 4.18 

illustrates the effectiveness of the suggested and current fault detection techniques. CNN 

outperforms the conventional models with a precision of 93.45%, an accuracy of 80.44%, 

and an F-measure of 80.38%. However, with 97.84% precision, 93.59% accuracy, and 

93.51% F-measure, MLiDNet surpasses these measures, proving its efficacy in fault 

diagnosis. The proposed method consistently outperforms existing models, demonstrating 

their scalability and stability. 
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(a) (b) 
 

 

(c) 

 

Figure 4. 18: Evaluation of suggested and traditional methods in comparison at 10 

Hz for dataset 1. 

The comparative evaluation is extended to proposed and existing methods at 20 

Hz in Figure 4.19. Compared to traditional models, MLiDNet performs considerably 

better on training data, with a 60% improvement. At 97.82% precision, 93.72% accuracy, 

and 93.66% F-measure, MLiDNet significantly outperforms other methods. Even with 

70%, MLiDNet performs exceptionally well, achieving 98.32% precision, 95.26% 

accuracy, and 95.46% F-measure. The suggested approach maintains its clear advantage 

in terms of accuracy and precision, even while older models produce competitive results. 

MLiDNet further demonstrates its supremacy at 90%, achieving better results. 
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(a) (b) 
 

 

(c) 

Figure 4. 19Evaluation of suggested and traditional methods in comparison at 20 Hz for 

dataset 1. 

In the performance analysis shown in Figure 4.20, multiple fault detection models 

were examined at 30 Hz. Using 60.1% training data, the proposed method showed its 

superiority in accurately identifying combined errors with 97.73% precision, 93.28% 

accuracy, and 93.20% F-measure. MLiDNet fared better than conventional methods. 

MLiDNet demonstrated exceptional performance, reaching a peak of 99.79% accuracy 

and 99.68% precision even with 80% and 90% training data, confirming its effectiveness 

in fault identification. Based on these findings, the suggested approach outperforms 

traditional approaches in terms of precision, accuracy, and dependability. 
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(a)  (b) 

 

(c) 

Figure 4. 20: Evaluation of proposed and traditional methods in comparison at 30 Hz for 

dataset 1. 

4.9 Analysis of Comparisons for Dataset 2 

The effectiveness of the suggested and traditional fault detection techniques at 30 Hz is 

compared in the comparison analysis shown in Figure 4.21. With a precision of 82.34%, 

an accuracy of 94.35%, and an F-measure of 82.28%, CNN distinguishes itself from the 

traditional models. The proposed method surpasses these metrics with a precision of 

97.74%, accuracy of 94.69%, and F-measure of 95.61%, proving the hybrid structure's 

efficacy in fault identification. CNN and proposed still excel even when 70% of the 

training data is used. 
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(a) (b) 
 

 

(c) 

Figure 4. 21: Evaluation of proposed and traditional methods in comparison at 30 Hz for 

dataset 2. 

Figure 4.22, which compares the proposed method to conventional techniques at 

35 Hz, demonstrates how well the proposed performs using 60% of the training data. In 

particular, the proposed outperforms other models with a precision of 95.13%, accuracy 

of 97.32%, and F-measure of 94.65%. The proposed method consistently outperforms 

traditional models, even when they yield competitive results. 
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(a) (b) 
 

 

(c) 

Figure 4. 22: Evaluation of proposed and traditional methods in comparison at 35 Hz for 

dataset 2. 

Figure 4.23 shows the performance evaluation of several fault detection systems 

at varying learning percentages for 40 Hz. With 97.72% precision, 93.27% accuracy, and 

93.30% F-measure, MLiDNet demonstrated its supremacy in accurately detecting 

combined mistakes with 60%. With 70%, MLiDNet outperformed traditional techniques 

with 97.72% precision, 95.36% accuracy, and 95.26% F-measure. 
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(a) (b) 
 

 

(c)  

Figure 4. 23: Evaluation of proposed and traditional methods in comparison at 40 Hz for 

dataset 2. 

Even at 80% and 90%, the impressive results of 98.79% precision and 98.78% 

accuracy showcase the efficacy of the recommended fault identification technique (Figure 

4.24). These results show that the proposed approach outperforms conventional methods 

in terms of accuracy, precision, and reliability. 
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(a) (b) 

 

(c) 

Figure 4. 24: Evaluation of proposed and traditional methods in comparison at 45 Hz for 

dataset 2. 

The suggested approach remains dominant with a precision of 98.24%, an 

accuracy of 94.83%, and an F-measure of 94.74% (Figure 4.25). MLiDNet continuously 

beats other models when training data reaches 80% and 90%, proving its stability and 

scalability. Fault detection effectiveness is demonstrated by MLiDNet's maximum 

precision of 99.28%, accuracy of 99.45%, and F-measure of 92.74%. 
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(a)  (b) 

 

(c) 

Figure 4. 25: Evaluation of proposed and traditional methods in comparison at 50 Hz for 

dataset 2. 

4.10 Evaluation of Computation Time for Dataset 1 

According to Table 4.4, the suggested combined model performs better computationally 

than existing techniques at a frequency of 10 Hz. With 60% of the training data, it takes 

1.48 seconds to compute, and at 90%, it slightly increases to 2.08 seconds, which is the 

shortest computing time. Conventional models, in contrast, operate much more slowly and 

significantly as the amount of training data grows. CNN and DT models perform 

substantially worse at more significant percentages of training data despite showing faster 

processing speeds at lower percentages. With processing times of 11.24 seconds at 90%, 

L-Net exhibits the worst performance, mainly when training with larger datasets. 

MLiDNet is a very successful model for identifying faults. 
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Table 4. 4: Analysis of MLiDNet's computational time in comparison to traditional 

models at 10 Hz 

 

Calculation time (seconds) at various percentages of training data (%) 

Models 60% 70% 80% 90% 

E-Net 6.64 7.41 8.98 9.12 

Hybrid Wavelet-CNN 5.17 5.97 9.85 9.97 

SVM 4.12 4.39 5.36 5.61 

L-Net 1.56 6.04 9.06 11.24 

CNN 2.11 2.22 4.32 4.56 

MSFFCNN 4.20 4.48 5.47 5.72 

S-Net 5.05 5.85 9.66 9.75 

DT 2.28 2.56 4.29 6.43 

MLiDNet 1.48 1.50 2.05 2.08 

 

Table 4.4 compares the computing effort of the existing models at 20 Hz with the 

suggested combined model. MLiDNet reaches its maximum speed of 1.54 seconds at 60% 

training data and maintains its efficiency at 90% training data, needing 2.57 seconds. On 

the other hand, when training data accumulates, a number of models exhibit considerable 

increases in calculation time. For instance, SVM rises from 3.12 seconds at 60% to 8.66 

seconds at 90%, while S-Net and E-Net achieve 6.55 and 9.12 seconds at 90%, 

respectively. CNN and DT also experienced time increases, going from 1.78 to 5.37 

seconds and 2.49 seconds to 7.59 seconds, respectively. L-Net peaks at 12.56 seconds at 

90%. The efficiency of MLiDNet makes it ideal for fault detection. 
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Table 4. 5: Analysis of MLiDNet's computational time in comparison to traditional 

models at 20 Hz 

 

Calculation time (seconds) at various percentages of training data (%) 

Models 60% 70% 80% 90% 

E-Net 6.54 7.59 8.45 9.12 

Hybrid Wavelet-CNN 4.68 5.62 5.90 6.68 

SVM 3.12 4.14 5.14 8.66 

L-Net 7.46 7.73 11.74 12.56 

CNN 1.78 3.33 4.12 5.36 

MSFFCNN 3.18 4.22 5.24 8.83 

S-Net 4.58 5.53 5.80 6.55 

DT 2.49 3.17 6.01 7.59 

MLiDNet 1.53 2.43 2.48 2.58 

 

Table 4.6 compares the suggested and traditional models' computational times at 

30 Hz for various percentages of training data. Even with more enormous datasets, the 

proposed method can maintain low computational requirements, as demonstrated by 

achieving a computational time of 1.40 seconds with 60% of training data, slightly 

increasing to 1.85 seconds for 90% of training data. Other models' computation times, 

however, are significantly longer. At larger data volumes, DT indicates decreased 

efficiency. 
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Table 4. 6: Analysis of MLiDNet's computational time in comparison to traditional 

models at 30 Hz 

Calculation time (seconds) at various percentages of training data (%) 

Models 60% 70% 80% 90% 

E-Net 5.28 6.01 6.52 6.87 

Hybrid Wavelet-CNN 8.21 10.12 10.44 11.47 

SVM 3.45 3.56 3.75 6.64 

L-Net 3.82 5.33 6.76 7.18 

CNN 2.03 2.51 2.65 3.21 

MSFFCNN 3.523 3.64 3.83 6.77 

S-Net 8.05 9.92 10.23 11.25 

DT 1.46 3.41 3.79 4.68 

MLiDNet 1.39 1.69 1.76 1.85 

 

Nevertheless, L-Net shows a noticeable increase in computation time at 90% of training 

data, reaching a peak of 7.18 seconds. With its exceptional accuracy and short calculation 

time, the suggested approach is the best model for real-time fault identification. 

4.11 Evaluation of Computation Time for Dataset 2 

At 30 Hz, Table 4.7 shows that the proposed combined model outperforms current 

methods computationally. It records the fastest computation time of 1.83 seconds with 

60% of training data and significantly improves to 2.90 seconds at 90%. When it comes 

to fault identification, the proposed method is very efficient, providing increased accuracy 

while drastically cutting down on calculation time. 
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Table 4. 7: Analysis of MLiDNet's computational time in comparison to traditional 

models at 30 Hz 

 

Calculation time (seconds) at various percentages of training data (%) 

Models 60% 70% 80% 90% 

E-Net 9.77 11.27 13.05 14.69 

Hybrid Wavelet-CNN 9.67 11.28 12.67 14.25 

SVM 9.80 11.45 12.86 14.77 

L-Net 5.55 6.53 7.36 8.54 

CNN 3.05 3.52 4.06 4.66 

MSFFCNN 10.00 11.68 13.12 15.07 

S-Net 9.48 11.06 12.42 13.97 

DT 3.15 3.62 4.10 4.67 

MLiDNet 1.83 2.15 2.49 2.90 

 

The proposed method's computational time evaluation at a frequency of 35 Hz is 

compared with conventional models in Table 4.8. At 6.37 seconds, MLiDNet performs 

the fastest when 60% of the training data is used. With a computation time of 4.12 

seconds, this efficiency is maintained when the training data approaches 90%. But for 

other models, the increase in calculation time is more noticeable as training data sizes 

increase. SVM, for example, shows a significant decrease in efficiency when its 

computation time rises from 6.24 seconds at 60% to 9.66 seconds at 90%. 
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Table 4. 8: Analysis of MLiDNet's computational time in comparison to traditional 

models at 35 Hz 

 

Calculation time (seconds) at various percentages of training data (%) 

Models 60% 70% 80% 90% 

E-Net 8.39 6.58 7.70 8.73 

Hybrid Wavelet-CNN 6.66 7.31 8.38 9.67 

SVM 6.24 7.54 8.73 10.12 

L-Net 2.65 3.75 4.28 4.82 

CNN 9.56 9.75 11.09 12.58 

MSFFCNN 6.37 7.69 8.91 10.32 

S-Net 5.74 7.17 8.21 9.47 

DT 3.23 11.04 12.39 13.88 

MLiDNet 6.36 3.09 3.57 4.11 

 

Table 4.9 displays the suggested combined model's computational time evaluation 

at a frequency of 40 Hz in contrast to other training data models. The proposed computation 

time is only 2.08 seconds when 60.01% of the training data is used, and it slightly 

increases to 3.23 seconds when 90.01% of the training data is used. This outcome shows 

that MLiDNet can sustain low processing needs despite increasing training data. 

However, the computation times of other models are substantially longer. 

Table 4. 9: Analysis of MLiDNet's computational time in comparison to traditional 

models at 40 Hz 

Calculation time (seconds) at various percentages of training data (%) 

Models 60% 70% 80% 90% 

E-Net 4.44 4.98 5.69 6.41 

Hybrid Wavelet-CNN 7.61 8.98 10.49 11.86 

SVM 2.26 2.65 3.05 3.51 

L-Net 6.04 6.82 7.96 9.38 

CNN 9.05 10.48 12.20 14.07 

MSFFCNN 2.30 2.71 3.11 3.58 

S-Net 7.47 8.80 10.28 11.63 
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DT 9.37 10.82 12.12 13.64 

MLiDNet 2.08 2.42 2.77 3.23 

 

From 9.81 seconds at 60% of the training data to 15.13 seconds at 90%, the S-Net model, 

for example, has the longest computation time (Table 4.10). The E-Net model's 

computation time rises from 5.07 to 7.74 seconds within the same range. Specifically, 

CNN's time rises from 2.47 seconds at 60.01% to 3.83 seconds at 90.01%, whilst DT's 

time decreases from 7.08 seconds to 11.12 seconds, indicating a decrease in efficiency. 

Table 4. 10: Analysis of MLiDNet's computational time in comparison to traditional 

models at 45 Hz 

 

Calculation time (seconds) at various percentages of training data (%) 

Models 60% 70% 80% 90% 

E-Net 9.95 11.20 13.17 15.42 

Hybrid Wavelet-CNN 5.86 6.72 7.73 9.03 

SVM 5.76 6.61 7.58 8.88 

L-Net 9.72 10.97 12.90 15.12 

CNN 5.06 5.78 6.62 7.741 

MSFFCNN 2.48 2.91 3.27 3.84 

S-Net 7.07 8.21 9.48 11.13 

DT 5.06 5.81 6.86 7.98 

MLiDNet 1.59 1.85 2.12 2.36 

 

In Table 4.11, the computational time of L-Net, however, also increases dramatically, 

peaking at 10.49 seconds at 90% of training data. The suggested approach is ideal for 

fault identification because of its high accuracy and low processing load. 
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Table 4. 11: Analysis of MLiDNet's computational time in comparison to traditional 

models at 45 Hz 

 

Calculation time (seconds) at various percentages of training data (%) 

Models 60% 70% 80% 90% 

E-Net 9.04 10.17 11.57 12.97 

Hybrid Wavelet-CNN 4.82 5.65 6.62 7.77 

SVM 5.00 5.72 6.55 7.35 

L-Net 6.91 7.76 9.10 10.49 

CNN 2.69 3.04 3.52 4.11 

MSFFCNN 5.10 5.83 6.68 7.49 

S-Net 4.74 5.56 6.47 7.60 

DT 4.56 5.13 5.96 6.76 

MLiDNet 2.16 2.50 2.85 3.22 

 

In Table 4.11, CNN and DT models have comparatively low initial computation times; 

nevertheless, when the proportion of training data increases, there is a noticeable increase 

in calculation time. CNN's time increases from 2.69 seconds at 60% to 4.10 seconds at 

90%, whereas DT's time decreases from 4.57 seconds to 6.76 seconds, indicating lower 

efficiency with higher data volumes. 

4.12 Ablation Evaluation for Dataset 1 

Ablation analysis is the deliberate process of disabling or removing specific system com- 

ponents to see how their absence affects functionality or performance. Comparing the 

performance of the proposed method to the conventional approaches at 10 Hz, 20 Hz, and 

30 Hz was the aim of the ablation investigation. The results show that the suggested 

method consistently shows higher accuracy and was studied, offering crucial information 

about its effectiveness. 
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Table 4. 12: Ablation analysis of proposed method compared to existing models at 10 Hz 

for dataset 1 

 

 

 

Measures 

 

Prop- 

Conv SE 

 

 

L-Net 

Prop- 

without 

feature 

selection 

 

ML- 

Net 

Prop- 

Conv 

SSWT 

 

 

D-Net 

Prop- 

Conv 

L-Net 

 

Pro- 

posed 

Specificity 0.9901 0.9797 0.9771 0.9918 0.9916 0.9576 0.9903 0.9981 

NPV 0.9897 0.9797 0.9771 0.9918 0.9904 0.9576 0.9891 0.9967 

Precision 0.9555 0.8987 0.8862 0.8993 0.9587 0.8683 0.9524 0.9904 

MCC 0.9432 0.8784 0.8631 0.8762 0.9468 0.8460 0.9393 0.9847 

FPR 0.0087 0.0202 0.0056 0.0058 0.0081 0.0056 0.0096 0.0018 

Accuracy 0.9840 0.9662 0.9620 0.9764 0.9851 0.9427 0.9830 0.9956 

F-measure 0.9527 0.8985 0.8860 0.8993 0.9557 0.8683 0.9494 0.9872 

FNR 0.0502 0.1012 0.0439 0.0445 0.0472 0.0430 0.0533 0.0156 

Sensitivity 0.9497 0.8987 0.8860 0.8993 0.9527 0.8683 0.9466 0.9841 

 

At 10 Hz, Table 4.12 demonstrates that the suggested method performs noticeably 

better than traditional models in every metric. Using a 99.57% accuracy rate, MLiDNet 

outperforms the existing models. These outcomes show how much better MLiDNet is at 

fault detection. Additionally, in terms of specificity (99.80%) and sensitivity (98.42%), 

MLiDNet performs better than the other modeling. It has an excellent precision of 99.35% 

and an F-measure of 98.83%. The high effectiveness of the proposed method in 

differentiating between fault and non-fault circumstances is demonstrated by its MCC, 

which stands at 98.48%. The model's excellent dependability in forecasting non-fault 

cases is shown by its NPV of 99.68%, while the lowest FPR and FNR among the models 

under comparison are 0.0019 and 0.0157, respectively. 
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Table 4. 13: Ablation evaluation of dataset 1 using the suggested approach in comparison 

to current models at 20 Hz 

 

 

 

Measures 

Prop- 

Conv 

SE 

 

 

L-Net 

Prop- 

without 

feature 

selection 

 

ML- 

Net 

Prop- 

Conv 

SSWT 

 

 

D-Net 

Prop- 

Conv 

L-Net 

 

Pro- 

posed 

Specificity 0.9911 L-Net 0.9765 0.9912 0.9898 0.9571 0.9898 0.9986 

NPV 0.9897 0.9810 0.9766 0.9912 0.9885 0.9570 0.9887 0.9973 

Precision 0.9556 0.9811 0.8829 0.8961 0.9493 0.8652 0.9493 0.9935 

MCC 0.9432 0.9050 0.8593 0.8723 0.9357 0.8423 0.9357 0.9887 

FPR 0.0088 0.8860 0.0234 0.0236 0.0101 0.0228 0.0101 0.0013 

Accuracy 0.9840 0.0188 0.9608 0.9753 0.9821 0.9417 0.9821 0.9967 

FDR 0.0443 0.9683 0.0425 0.0431 0.0506 0.0417 0.0507 0.0063 

F-measure 0.9526 0.0949 0.8829 0.8962 0.9463 0.8653 0.9463 0.9904 

FNR 0.0503 0.9051 0.0466 0.0473 0.0565 0.0456 0.0567 0.0126 

Sensitivity 0.9497 0.0948 0.8828 0.8961 0.9433 0.8652 0.9433 0.9872 

 

With an accuracy of 99.68%, MLiDNet continues to perform well at 20 Hz, as 

shown in Table 4.13. It outperforms the existing methods. Among the models tested, the 

proposed model also has the best sensitivity (98.74%) and specificity (99.87%). 

Additionally, the F-measure shows its accuracy at 99.36% and efficacy at 99.05%. Its 

durability in fault detection is demonstrated by its NPV of 99.84% and MCC of 98.86%. 

The suggested model has the fewest mistakes in identifying healthy faults, with the lowest 

FPR at 0.0013 and FNR at 0.0126. 
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Table 4. 14: Ablation analysis of dataset 1 using the suggested approach in comparison 

to conventional techniques at 30 Hz 

 

 

 

Metrics 

 

 

Proposed 

Prop- 

Conv 

SSWT 

Prop- 

Conv 

SE 

Prop- 

Conv 

L-Net 

Prop- 

without 

feature 

selection 

 

 

L-Net 

 

 

D-Net 

 

ML- 

Net 

Accuracy 0.9978 0.9820 0.9894 0.9883 0.9673 0.9683 0.9479 0.9818 

Sensitivity 0.9905 0.9433 0.9654 0.9622 0.9018 0.9050 0.8838 0.9154 

Specificity 0.9993 0.9898 0.9942 0.9936 0.9803 0.9810 0.9607 0.9950 

Precision 0.9968 0.9493 0.9715 0.9683 0.9018 0.9050 0.8838 0.9154 

F-measure 0.9936 0.9463 0.9684 0.9653 0.9018 0.9050 0.8838 0.9154 

MCC 0.9924 0.9356 0.9621 0.9583 0.8822 0.8860 0.8646 0.8955 

NPV 0.9981 0.9886 0.9930 0.9924 0.98038 0.9810 0.9607 0.9950 

FPR 0.0006 0.0101 0.0057 0.0063 0.01962 0.0189 0.0192 0.0199 

FNR 0.0094 0.0566 0.0345 0.0377 0.0681 0.0949 0.0667 0.0691 

FDR 0.0031 0.0506 0.0284 0.0316 0.0481 0.0949 0.0471 0.0488 

 

With an accuracy of 99.78% at 30 Hz, the proposed methods perform better than 

the model without feature selection, as indicated in Table 4.14. The model's performance 

is outstanding, with a 99.05% sensitivity and a 99.93% specificity. A 99.67% accuracy 

rate and a 99.36% F-measure further illustrate its remarkable fault detection capabilities. 

The suggested method's effectiveness is further demonstrated by a 99.81% NPV and a 

99.24% MCC. The model's low FPR of 0.0006 and FNR of 0.0094 demonstrate its ability 

to differentiate faults from non-faults reliably. 
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Table 4. 15: Cross-speed generalization performance trained on 10 Hz and 20 Hz, tested 

on 30 Hz for Dataset 1 

Measure 

Prop-

Conv-

SE 

L-Net 

Prop-

w/o 

FS 

ML-

Net 

Prop-

Conv-

SSWT 

D-Net 

Prop-

Conv-

L-Net 

Proposed 

Specificity 0.9020 0.8955 0.8891 0.9062 0.9115 0.8820 0.9188 0.9408 

NPV 0.9010 0.8923 0.8880 0.9040 0.9091 0.8805 0.9167 0.9391 

Precision 0.8550 0.8487 0.8402 0.8623 0.8705 0.8308 0.8742 0.9103 

MCC 0.8205 0.8102 0.8007 0.8345 0.8450 0.7931 0.8508 0.8924 

FPR 0.0980 0.1045 0.1109 0.0938 0.0885 0.1180 0.0812 0.0592 

Accuracy 0.9190 0.9123 0.9068 0.9251 0.9300 0.8980 0.9337 0.9432 

F-measure 0.8510 0.8455 0.8370 0.8600 0.8691 0.8280 0.8720 0.9077 

FNR 0.0855 0.0908 0.0920 0.0830 0.0785 0.0951 0.0745 0.0523 

Sensitivity 0.9145 0.9092 0.9080 0.9170 0.9215 0.9049 0.9255 0.9477 

 

Table 4.15 evaluated the model by training on 10 Hz and 20 Hz data and testing on 30 

Hz, for Dataset 1. It is found that the performance of the proposed model under this 

condition is moderately lower compared to same-speed training-testing scenarios, 

particularly in terms of accuracy. 

4.13 Ablation Study of Proposed Fault Diagnosis for Dataset 2 

Ablation analysis systematically shuts down or ignores specific system 

components to observe effects in absence based on operation or performance. The 

proposed ablation result was to compare its performance to that of conventional methods 

at 30 Hz, 35 Hz, 40, 45 Hz, and 50 Hz. The results provide essential information about 

the usefulness of the suggested strategy, demonstrating that it consistently exhibits 

enhanced accuracy across all frequencies investigated. 
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Table 4. 16: Ablation evaluation of proposed method compared to existing models at 30 

Hz for dataset 2 

 

 

 

Measures 

Prop- 

Conv 

SE 

 

 

L-Net 

Prop- 

without 

feature 

selection 

 

 

ML-Net 

Prop- 

Conv 

SSWT 

 

 

D-Net 

Prop- 

Conv 

L-Net 

 

Pro- 

posed 

Specificity 0.9942 0.9810 0.9950 0.9950 0.9898 0.9607 0.9936 0.9993 

NPV 0.9930 0.9810 0.9950 0.9698 0.9886 0.9607 0.9924 0.9981 

Precision 0.9715 0.9050 0.9154 0.7955 0.9493 0.8838 0.9683 0.9968 

MCC 0.9621 0.8860 0.8955 0.7486 0.9356 0.8646 0.9583 0.9924 

FPR 0.0057 0.0189 0.0199 0.0439 0.0101 0.0192 0.0063 0.0006 

Accuracy 0.9894 0.9683 0.9818 0.9408 0.9820 0.9479 0.9883 0.9978 

FDR 0.0284 0.0949 0.0488 0.7931 0.0506 0.0471 0.0316 0.0031 

F-measure 0.9684 0.9050 0.9154 0.2194 0.9463 0.8838 0.9653 0.9936 

FNR 0.0346 0.0948 0.0691 0.2243 0.0567 0.0666 0.0378 0.0093 

Sensitivity 0.9654 0.9050 0.9154 0.7907 0.9433 0.8838 0.9622 0.9905 

 

At 30 Hz, MLiDNet performs better than conventional models on all statistical 

measures, as shown in Table 4.16. MLiDNet's better fault detection capabilities are 

demonstrated by its 99.39% accuracy, which outperforms models utilizing conventional 

methods. With a sensitivity of 97.91% and a specificity of 99.69%, MLiDNet also 

performs exceptionally well. It also records an accuracy rate of 98.49% and an excellent 

F-measure of 98.20%. The high MCC of 97.84% further demonstrates the proposed 

method's ability to discriminate between faulty and non-faulty circumstances. The 

model's NPV of 99.56% indicates that it is highly reliable in forecasting non-fault cases. 

It is noteworthy for having the lowest FNR of 0.0208 and the lowest FPR of 0.0030. 
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Table 4. 17: Ablation examination of dataset 2 using the suggested approach in 

comparison to current approaches at 35 Hz 

 

 

 

Measures 

 

Prop- 

Conv SE 

 

 

L-Net 

Prop- 

without 

feature 

selection 

 

 

ML-Net 

Prop- 

Conv 

SSWT 

 

 

D-Net 

Prop- 

Conv 

L-Net 

 

Pro- 

posed 

Specificity 0.9536 0.9735 0.9602 0.9746 0.9573 0.9411 0.9615 0.9891 

NPV 0.9526 0.9721 0.9591 0.9735 0.9561 0.9399 0.9602 0.9878 

Precision 0.7687 0.8678 0.8017 0.8139 0.7866 0.7856 0.8078 0.9458 

MCC 0.7196 0.8382 0.7591 0.7705 0.7411 0.7438 0.7662 0.9317 

FPR 0.0366 0.0187 0.0431 0.0439 0.0426 0.0424 0.0432 0.0030 

Accuracy 0.9218 0.9549 0.9329 0.9468 0.9278 0.9141 0.9349 0.9808 

FDR 0.2312 0.1321 0.1981 0.2011 0.2132 0.1942 0.1921 0.0540 

F-measure 0.7664 0.8652 0.7993 0.8113 0.7844 0.7834 0.8054 0.9431 

FNR 0.2357 0.1374 0.2029 0.2061 0.2178 0.1987 0.1971 0.0596 

Sensitivity 0.7641 0.8626 0.7970 0.808 0.7820 0.7810 0.8028 0.9402 

 

Table 4.17 shows an accuracy of 98.09%, demonstrating MLiDNet's continued 

outstanding performance at 35 Hz. The accuracy and efficacy of the F-measure are 

94.59% and 94.31%, respectively. MCC of 93.17% demonstrates its resilience in fault 

identification. The proposed method achieves better results with a low FPR of 0.011 and 

an FNR of 0.053. 
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Table 4. 18: Ablation evaluation of the proposed method compared to existing approaches 

at 40 Hz 

 

 

 

Measures 

 

 

Prop- 

Conv SE 

 

 

L-Net 

Prop- 

without 

feature 

selection 

 

 

 

ML-Net 

 

Prop- 

Conv 

SSWT 

 

 

D-Net 

 

Prop- 

Conv 

L-Net 

 

 

Pro- 

posed 

Specificity 0.9531 0.9783 0.9567 0.9710 0.9579 0.9375 0.9518 0.9945 

NPV 0.9519 0.9771 0.9556 0.9698 0.9566 0.9364 0.9508 0.9933 

Precision 0.7656 0.8918 0.7837 0.7955 0.7897 0.7681 0.7597 0.9728 

MCC 0.7160 0.8668 0.7376 0.7486 0.7446 0.7228 0.7089 0.9640 

FPR 0.0468 0.0216 0.0432 0.0439 0.0420 0.0424 0.0481 0.0054 

Accuracy 0.9209 0.9629 0.9268 0.9408 0.9288 0.9083 0.9188 0.9898 

FDR 0.7633 0.8891 0.7814 0.7931 0.7874 0.7658 0.7574 0.9700 

F-measure 0.2388 0.1134 0.2209 0.2242 0.2148 0.2164 0.2446 0.0327 

FNR 0.2342 0.1081 0.2162 0.2194 0.2102 0.2118 0.2402 0.0271 

Sensitivity 0.7611 0.8865 0.7791 0.7907 0.7850 0.7635 0.7552 0.9671 

 

The proposed approach performs better at 98.99% at 40 Hz than the conventional 

SSWT, as shown in Table 4.18. The model exhibits remarkable performance with the 

highest significant sensitivity of 96.72% and specificity of 99.46%. Its accuracy of 

99.69% and F-measure of 97.39% illustrate its exceptional fault detection performance. 

The proposed method's effectiveness is further supported by 96.45% MCC and 99.33% 

NPV. Its capacity to distinguish between real and false faults is demonstrated by its lowest 

FPR of 0.0054 and FNR of 0.032. The analysis results show that, across all frequencies 

studied, the suggested approach performs better than conventional approaches. 
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Table 4. 19: Ablation analysis of the suggested approach compared to existing models at 

45 Hz 

 

 

Measures 

Prop- 

Conv 

SE 

 

 

L-Net 

Prop- 

without 

feature 

selection 

 

ML- 

Net 

Prop- 

Conv 

SSWT 

 

 

D-Net 

Prop- 

Conv 

L-Net 

 

Pro- 

posed 

Specificity 0.9579 0.9789 0.9627 0.9771 0.9536 0.9434 0.9542 0.9921 

NPV 0.9567 0.9777 0.9615 0.9759 0.9525 0.9423 0.9531 0.9909 

Precision 0.7897 0.8948 0.8138 0.8260 0.7687 0.7975 0.7717 0.9609 

MCC 0.7447 0.8705 0.7735 0.7851 0.7195 0.7580 0.7231 0.9496 

FPR 0.0420 0.0210 0.0372 0.0378 0.0463 0.0365 0.0457 0.0078 

Accuracy 0.9289 0.9639 0.9369 0.9509 0.9219 0.9181 0.9229 0.9859 

FDR 0.7874 0.8922 0.8113 0.8235 0.7664 0.7951 0.7694 0.9580 

F-measure 0.2149 0.1104 0.1910 0.1939 0.2358 0.1872 0.2328 0.0448 

FNR 0.2102 0.1051 0.1861 0.1889 0.2312 0.1824 0.2282 0.0391 

Sensitivity 0.7611 0.8865 0.7791 0.7907 0.7850 0.7635 0.7552 0.9670 

 

Furthermore, out of all the models analyzed in Table 4.19, the proposed method 

has the best sensitivity (98.58%) and specificity (99.22%). Its 96.08% accuracy and 

95.81% F-measure further support its effectiveness. Its predictive accuracy of 99.09% 

and MCC of 94.96% show how resilient it is at identifying faults. The suggested method 

has a low FPR (0.007) and FNR (0.044) and makes the fewest errors when detecting faults 

and healthy states. 

Table 4. 20: Comparison of proposed ablation analysis at 50 Hz with traditional SSWT, 

SE, and L-Net models 

. 

 

Measures 

 

Prop- 

Conv SE 

 

 

L-Net 

Prop- 

without 

feature 

selection 

 

ML- 

Net 

Prop- 

Conv 

SSWT 

 

 

D-Net 

Prop- 

Conv 

L-Net 

 

Pro- 

posed 

Specificity 0.9537 0.9771 0.9518 0.9661 0.9523 0.9328 0.9493 0.9926 

NPV 0.9526 0.9759 0.9507 0.9650 0.9512 0.9317 0.9482 0.9916 

Precision 0.7688 0.8858 0.7597 0.7711 0.7628 0.7445 0.7476 0.9638 

MCC 0.7196 0.8598 0.7088 0.7194 0.7123 0.6946 0.6943 0.9531 

FPR 0.0464 0.0228 0.0481 0.0488 0.0476 0.0471 0.0506 0.0073 
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Accuracy 0.9218 0.9609 0.9189 0.9327 0.9198 0.9005 0.9148 0.9868 

FDR 0.7663 0.8832 0.7574 0.7688 0.7603 0.7423 0.7456 0.9611 

F-measure 0.2357 0.1194 0.2447 0.2484 0.2416 0.2398 0.2568 0.0418 

FNR 0.2310 0.114 0.2403 0.2437 0.2371 0.2353 0.2520 0.0360 

Sensitivity 0.7640 0.8805 0.7552 0.7665 0.7583 0.7401 0.7431 0.9583 

 

Comparing the proposed model to the conventional approach in Table 4.20, the 

proposed accuracy at 50 Hz is 98.69%. The results of the ablation analysis demonstrate 

that, for every tested frequency, The recommended method routinely performs better than 

feature extraction and convolutional signal analysis methods. 

Table 4. 21: Cross-speed generalization performance trained on 10 Hz and 20 Hz, tested 

on 30 Hz for Dataset 2 

Measure 

Prop-

Conv-

SE 

L-Net 

Prop-

w/o 

FS 

ML-

Net 

Prop-

Conv-

SSWT 

D-Net 

Prop-

Conv-

L-Net 

Proposed 

Specificity 0.9020 0.8955 0.8891 0.9062 0.9115 0.8820 0.9188 0.9408 

NPV 0.9010 0.8923 0.8880 0.9040 0.9091 0.8805 0.9167 0.9391 

Precision 0.8550 0.8487 0.8402 0.8623 0.8705 0.8308 0.8742 0.9103 

MCC 0.8205 0.8102 0.8007 0.8345 0.8450 0.7931 0.8508 0.8924 

FPR 0.0980 0.1045 0.1109 0.0938 0.0885 0.1180 0.0812 0.0592 

Accuracy 0.9190 0.9123 0.9068 0.9251 0.9300 0.8980 0.9337 0.9432 

F-measure 0.8510 0.8455 0.8370 0.8600 0.8691 0.8280 0.8720 0.9077 

FNR 0.0855 0.0908 0.0920 0.0830 0.0785 0.0951 0.0745 0.0523 

Sensitivity 0.9145 0.9092 0.9080 0.9170 0.9215 0.9049 0.9255 0.9477 

 

Table 4.21 evaluated the model by training on 10 Hz and 20 Hz data and testing on 30 

Hz, for Dataset 2. The performance of the proposed model under this condition is found 

to be moderately lower, especially in terms of accuracy, when compared to training and 

testing at the same speed. This is primarily due to the variability in signal patterns at 

different speeds, which affects the learned representations. However, the results still show 

that the proposed model performs comparatively better than most baseline methods in the 

same cross-speed setup, indicating some level of generalization. 

4. 14 Analysis of the Dataset 1 Receiver Operating Characteristic Curve  

The Receiver Operating Characteristic Curve (ROC) displays the relationship between 
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the TPR and the FPR for different categorization criteria. ROC curves are essential for 

comparing and assessing how well categorization models perform. The ROC curve study 

in Figure 4.26 compares the performance of the suggested method and convolutional 

approaches for detecting EM system failures at 10 Hz, 20 Hz, and 30 Hz frequencies with 

60% of the training data. As the ROC curves show, the suggested approach outperforms 

conventional models at all frequencies. 
 

  

(a) (b) 
 

 

(c) 

Figure 4. 26: ROC Curve analysis using 60% for dataset 1 at a) 10 Hz, b) 20 Hz, and c) 

30 Hz comparing suggested and conventional models. 

The efficiency of the proposed model is seen in Figure 4.26 (b), where 60% of the 

training data is used to obtain an area under curve (AUC) of 0.97 at a frequency of 20 Hz. 

The results show that the suggested model maintains a low FPR while producing a high 

TPR across a variety of criteria. When it comes to distinguishing between fault and 

healthy states at this frequency, the proposed strategy outperforms the existing methods 

investigated in the study, with an AUC of 0.97. The proposed demonstrates its capacity 

to precisely identify faults while maintaining low FPR and high TPR without appreciably 

misclassifying typical situations. 
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(a) (b) 
 

 

(c) 

Figure 4. 27: ROC Curve analysis using 70% for dataset 1 at a) 10 Hz, b) 20 Hz, and c) 

30 Hz comparing suggested and conventional models. 

The examination in Figure 4.27, which makes use of 70% of the training data, 

highlights the suggested consistency and dependability even with a smaller dataset. The 

ROC curve study displays the effectiveness of the recommended and traditional fault 

detection techniques at different frequencies. In comparison to more conventional 

approaches, the proposed obtains an AUC of 0.98 at 10 Hz. With AUC values of 0.98 at 

20 Hz and 30 Hz, MLiDNet maintains its excellent performance, demonstrating its 

dominance in fault detection. 
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(a) (b) 
 

 

(c) 

Figure 4. 28: ROC Curve analysis using 80% for dataset 1 at a) 10 Hz, b) 20 Hz, and c) 

30 Hz comparing suggested and conventional models. 

The ROC analysis in Figure 4.28 provides crucial details regarding the effectiveness of 

the suggested model across a range of frequencies for training data, 80% when compared 

to conventional fault recognition techniques. With an AUC of 0.98 at a frequency of 10 

Hz (Figure 4.28(a)), MLiDNet performs quite well, outperforming the AUC values of 

conventional techniques. The outcomes show how effectively MLiDNet can distinguish 

between faults and healthy circumstances at this frequency. 
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(a) (b) 
 

 

(c) 

Figure 4. 29: Comparison of the suggested and existing models' ROC curves at a) 10 Hz, 

b) 20 Hz, and c) 30 Hz using 90% for dataset 1. 

With a remarkable AUC of 0.99 at 10 Hz, the proposed exhibits exceptional 

sensitivity and specificity in differentiating between fault and non-fault circumstances in 

Figure 4.29 (a), (b), and (c). With AUC values between 0.97 and 0.98, conventional 

techniques demonstrate superior performance. Even though these techniques work well, 

MLiDNet performs somewhat better than them, which is indicative of its improved fault 

detection ability. MLiDNet's steep rise in the ROC curve indicates high TPR and minimal 

false positives. While conventional techniques display AUC values between 0.96 and 

0.98, MLiDNet consistently maintains an AUC of 0.99 at 20 Hz and 30 Hz, proving its 

dependability and efficacy across frequencies. 

4.15 Receiver Operating Characteristic Curve Analysis for 

Dataset 2 

The TPR versus the FPR for different classification criteria is shown using a ROC curve. 

In a random classifier that matches the perfect classifier, the curves graphically represent 

the trade-off between specificity and sensitivity, while the diagonal line surrounds the 

upper left corner. ROC curves are essential for evaluating and comparing categorization 
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models' effectiveness. The ROC curve study in Figures 4.30, 4.31, 4.32, and 4.33 for EM 

system failure identification across frequency for training data of 60% shows how well 

the proposed approach performs compared to existing methods. The suggested method 

outperforms the conventional methods, according to the ROC curves. 

 

 

 

 

 

 

(a) (b)  (c) 

 

 

 

 

(d)   (e) 

Figure 4. 30: Comparison of the proposed and existing models' ROC curves at a) 30 Hz, 

b) 35 Hz, c) 40 Hz, d) 45 Hz, and e) 50 Hz using 60% for dataset 2. 

Figure 4.30 (a) shows the performance of the MLiDNet model at a frequency of 

30 Hz with 60% training data, where its AUC of 0.97 indicates that it maintains a low 

FPR and a high TPR across a range of criteria. As demonstrated by the AUC value of 

0.95, the method performs better than any other conventional model evaluated in the study 

for differentiating between fault and healthy situations at this frequency. The curve's sharp 

upward slope and low FPR show that the proposed model can accurately identify errors 

while lowering the proportion of incorrectly classified normal conditions. The findings 

demonstrate the MLiDNet model's dependability and efficacy in fault identification. 
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(a) (b)  (c) 

 

 

 

 

(d)   (e) 

Figure 4. 31: Comparison of the suggested and existing models' ROC curves at a) 30 Hz, 

b) 35 Hz, c) 40 Hz, d) 45Hzand e) 50 Hz using 70% for dataset 2. 

MLiDNet is reliable and consistent even when just a small portion of the dataset 

is used for training, as shown by the analysis in Figure 4.31, which used 70% of the training 

data. Thorough ROC curve comparisons could provide essential insights into how well 

the proposed model and traditional fault detection methods perform at various 

frequencies. The proposed model performs admirably at 30 Hz, with an amazing AUC 

of 0.96 Figure 4.31(c), (d), illustrating how MLiDNet is better than previous techniques. 
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(a) (b) 
 

(c) 

 

 

 

 

(d)   (e) 

Figure 4. 32: With 80% for dataset 2, the ROC Curve performance compares the 

suggested and conventional models at a) 30 Hz, b) 35 Hz, c) 40 Hz, d) 45 Hz, and e) 50 

Hz. 

The ROC curve analysis offers valuable insights when comparing the proposed 

model to conventional fault detection techniques at different frequencies. It is shown in 

Figures 4.32 and 4.33 with training data of 80% and 90%, respectively. At a frequency of 

45 Hz, MLiDNet performs better than more conventional techniques, obtaining an AUC 

of 0.97 (Figure 4.32(a)), demonstrating the suggested model's improved capacity to dis- 

criminate between problems and favorable conditions at this frequency. 
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(a) (b)  (c) 

 

 

 

 

(d)   (e) 

Figure 4. 33: With 90% for dataset 2, ROC curve performance comparing suggested and 

existing models at a) 30 Hz, b) 35 Hz, c) 40 Hz, d) 45 Hz, and e) 50 Hz. 

Once more, the suggested method exhibits outstanding performance with an AUC 

of 0.99 at 50 Hz, proving its dependability and efficiency in fault detection jobs across a 

spectrum of operating frequencies. Traditional methods do reasonably well, with AUC 

values between 0.96 and 0.98. Even at higher frequencies, the proposed consistently high 

AUC value shows how reliable and resilient it is at accurately identifying faults in EM 

systems. 

4.16 Conclusion 

This chapter proposes a novel MLiDNet-based method for electromechanical fault 

detection that attempts to solve issues caused by electrical and mechanical imbalances. 

The suggested combined model outperforms conventional methods by combining 

modified L- Net and D-Net designs. When dataset 1 is thoroughly compared at several 

operating frequencies (10, 20, and 30 Hz), it is evident that MLiDNet continuously 

performs better than traditional techniques, obtaining more significant performance 

measures. After training on 90% of the data, the model produces remarkable results with 

an F-measure of 99.37%, accuracy of 99.68%, and precision of 99.79% at a frequency of 

30 Hz. With 90% of the data, MLiDNet requires just 2.57 seconds, and with 60% of the 

data, it takes 1.54 seconds. On the other hand, the computational time of other models 

rises noticeably with 
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the volume of training data. For dataset 2, MLiDNet continuously outperforms 

conventional techniques in a thorough evaluation across a range of operating frequencies. 

MLiD- Net outperforms other models with a 97.42% accuracy rate, 95.23% precision 

rate, and 94.75% F-measure. With remarkable AUC values, ROC curve analysis validates 

the MLiDNet suggested model's robustness and dependability. 
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Chapter 5 

Conclusion and Future Scope 
 
 

This chapter presents the results of this study, presenting the essential advancements made 

in using combined DL and sophisticated signal processing techniques for gearbox and 

EM system fault diagnosis and detection. Furthermore, it discusses the potential expansion 

of this research to incorporate more advanced methods and techniques for further 

enhancing fault detection accuracy and system efficiency in future applications. 

5.1 Conclusion 

In conclusion, this research substantially adds to the EM systems and gearboxes field. It 

is essential for preserving the effectiveness and dependability of automotive and industrial 

machines. By deploying novel combined DL methodologies, it is possible to diagnose 

faults in the gearbox and EM system and effectively handle the vibration signals 

generated by different gears. The first combines Bi-LSTM with RNN models while 

enhancing them with the OAHCSA technique in weight optimization and achieves 

exceptional ac- curacies at various frequencies. It signifies the effectiveness and 

adaptability of the new method in accurately identifying and categorizing the detected 

faults in the gearbox. The research is conducted focusing on assessing potential damage 

to a gear with varying levels of crack severity. The initial multi-step process involved two 

distinct methods: CEEMDAN for pre-processing and the Bi-LSTM and IDBN classifiers. 

The research ex- tends the study in the diagnosis of multiple failures in EM systems using 

the introduction of the so-called MLiDNet, which combines different signal processing 

technologies like enhanced ISSWT and entropy-based feature extraction. This approach 

demonstrates the ability of the model-dual use of advanced signal processing and well-

known deep-learning classifiers to accurately diagnose the most complex fault scenarios, 

including combined faults in the EM system. The methods demonstrate outstanding 

potential for practical application in industry since they allow for robust and accurate fault 

detection and classification within gearboxes and EM systems. 
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Major Findings 

 
The significant findings of the works are as follows. 

• The proposed OAHCSA-HC model approach attains exceptional performance 

metrics, with a maximum classification accuracy, specificity, sensitivity, 

precision, and F1-score of 99.62%, 99.88%, 99.54%, 99.79%, and 99.66%, 

respectively. 

• The model without statistical features reaches an accuracy of 86.9%, 

highlighting the benefit of feature selection and optimization. The proposed 

OAHCSA- HC model achieves the highest accuracy of 99.2%, indicating 

excellent performance. Also, in terms of computational complexity, the 

proposed OAHCSA- HC consistently shows the lowest computational time 

across all tested frequencies (15 Hz, 20 Hz, 25 Hz, and 30 Hz), with times of 

3.305 seconds at 15 Hz, 

3.529 seconds at 20 Hz, 3.663 seconds at 25 Hz, and 4.153 seconds at 30 Hz. 

The outcomes highlight how well the OAHCSA-HC model balances high fault 

detection accuracy with minimal computational overhead. 

• When the training percentage is 90%, the suggested Bi-LSTM-IDBN strategy 

attains the highest accuracy, achieving 99.65%. The accuracy rates of traditional 

approaches, on the other hand, are lower: D-Net scored 98.28%, M-Net scored 

97.76%, RF scored 98.11%, SVM scored 97.76%, RNN scored 97.93%, Bi- 

GRU scored 97.93%, and Bi-LSTM scored 98.45%, and DCNN scored 97.93%. 

• In the ablation study, the Bi-LSTM-IDBN model achieved an accuracy of 

99.65% at 15 Hz, outperforming models utilizing traditional CEEMDAN, 

conventional cross-correntropy, and standard DBN, which attained accuracies 

of 98.28%, 98.45%, and 98.62%, respectively. Notably, at 20 Hz, the Bi-LSTM- 

IDBN model demonstrated a significantly reduced computation time of 0.9937 

seconds. In contrast, traditional approaches exhibited substantially higher 

computational costs, with D-Net requiring 6.53 seconds, M-Net 5.64 seconds, 

RF 

1.388 seconds, SVM 5.668 seconds, RNN 1.583 seconds, Bi-GRU 7.823 

seconds, Bi-LSTM 3.633 seconds, and DCNN 2.101 seconds. 

• The suggested MLiDNet continuously beats traditional methods, achieving 

97.42% accuracy, 95.23% precision, and 94.75% F-measure. In the Ablation 
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investigation, the accuracy of the proposed model is 98.69% at 50 Hz, compared 

to 91.99% for the traditional SSWT. 

• The accuracy without feature selection is 91.89%, 96.09% for the L-Net, 

90.05% for the D-Net, and 93.27% for the ML-Net. MLiDNet's computation 

time is only 2.08 seconds when 60% of the training data is used, and it slightly 

increases to 3.23 seconds when 90% of the training data is used. This outcome 

shows that MLiDNet can sustain low processing requirements even as the 

volume of training data grows. However, the computation times of other models 

are substantially longer. 

5.2 Future Scope 

This thesis focuses on essential challenge-based CM approaches for fault detection in 

bevel gears and EM systems. However, several areas still require further investigation. 

To further this research, the following study directions are suggested for future work. 

 

• The proposed approach can also be used to diagnose combined local faults at the 

micron level that may occur in a gearbox. 

• Additionally, the methodology can be extended to analyze various gear types for 

fault diagnosis, including spur gears, helical gears, planetary gears, and others. 

• Incorporating advanced signal processing into the model can enhance its ability 

to manage noisy or low-quality data, improving real-time data processing and 

enabling on-the-fly adjustments in dynamic environments. 

• This approach can potentially be used in the aerospace and automotive diagnostics 

industries. Still, more effort is needed to integrate advanced optimization 

techniques to improve efficiency and reduce time consumption for industrial 

applications. 
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