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SYNOPSIS

Applied mathematics plays a crucial role in investigating Rayleigh waves, a funda-
mental class of surface waves, by enabling analysis and modelling of their propagation in
complex media. This necessitates the application of sophisticated mathematical frame-
works, which mainly involves the rigorous study of wave propagation theory, the formu-
lation of the problem using partial differential equations, and the application of diverse
mathematical tools to derive the solution. Specifically, this research focuses on the math-
ematical modelling of Rayleigh wave generation, propagation and control, emphasizing
the development and application of analytical, asymptotic and numerical techniques to
solve complex mathematical problems arising from these geophysical phenomena. This
approach allows for a purely mathematical investigation of wave behavior, together with
a mechanical interpretation to some extent, and contributes to the advancement of math-
ematical methodologies applicable to a range of wave-based problems.

The thesis, entitled MATHEMATICAL MODELLING OF RAYLEIGH WAVE
FIELDS INCORPORATING MICROSTRUCTURAL AND RESONATOR
EFFECTS’, investigates the mathematical modelling, analysis, and control of Rayleigh
wave fields within the frameworks of classical and small-scale elasticity theories. Address-
ing initial and boundary value problems, this research explores Rayleigh wave propagation
in various complex media, including small-scale elastic behaviors in nonlocal micropolar
continuum and nonlinear metasurfaces. Key aspects of the study include (a) the develop-
ment and modification of existing classical elasticity conditions to derive refined bound-
ary and interface conditions for nonlocal micropolar structures (b) the incorporation of
viscoelastic effects (c¢) the investigation of wave propagation in microstructured layered
media, and (d) the analysis of Rayleigh wave scattering and control along metasurfaces.
This investigation aims to bridge theoretical gaps in nonlocal and micropolar elasticity
theories while highlighting potential applications in seismic wave mitigation and advanced
material design.

A fundamental branch of continuum mechanics is the classical theory of elasticity,
which plays a crucial role in studying the mechanical behavior of these waves in various
structures. This offers a foundational framework for describing the behavior of deformable

solids, assuming small and reversible deformations. However, it has significant limitations,



including neglecting microstructural effects (e.g., cracks, inclusions) and predicting infi-
nite stress at crack tips, which is physically unrealistic. To overcome these limitations,
generalized continuum frameworks like Eringen’s nonlocal elasticity [59] and micropolar
elasticity [51] theories have been developed that incorporate intrinsic length scales and
microstructural effects. These advanced theories enhance seismic exploration by improv-
ing subsurface characterization, refining resolution, and providing reliable predictions for
applications like hydrocarbon exploration and earthquake hazard assessment.

While recent Rayleigh wave studies utilize nonlocal models, inconsistencies in bound-
ary conditions have been observed, limiting their applicability. Specifically, discrepancies
between differential and integral formulations, as demonstrated by Kaplunov et al. [204],
highlight the inadequacy of traditional nonlocal boundary conditions. To address this,
modified models and refined boundary conditions, derived using asymptotic techniques
to account for boundary layer effects, are necessary. However, relying solely on non-
local elasticity may not fully capture the behavior of materials with complex, intricate
microstructures, necessitating further investigation.

Furthermore, recent technological advancements have driven the development of nano-
and micro-materials. Accurately capturing size-dependent effects and dispersion phenom-
ena within these materials necessitates the consideration of microstructural effects. This
in turn, requires modelling wave propagation within the framework of nonlocal micropolar
solids. A significant gap in the current literature pertains to the formulation of suitable
boundary conditions for nonlocal micropolar solids. Furthermore, the derivation of appro-
priate boundary conditions for ‘layered’ structures under the framework of nonlocal and
micropolar elasticity remains an open challenge. This thesis addresses these critical
issues by developing a refined model that incorporates the effects of bound-
ary layers in a nonlocal micropolar medium. This involves deriving refined
boundary and interface conditions for obtaining corrected dispersion relations
that effectively capture the influence of boundary layer effects.

While understanding Rayleigh wave propagation in various elastic environments offers
valuable insight into their natural behavior, controlling these waves broadens the scope for
practical applications, facilitating the design of safer, more efficient, and innovative sys-
tems. Metasurfaces, a class of artificially engineered surfaces comprising subwavelength-

scale structures, offer a promising technique for achieving such control. These structures
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can manipulate wavefronts in diverse ways, providing precise control over Rayleigh wave
propagation. By carefully tailoring the geometry and properties of these metasurfaces,
researchers can achieve phenomena like wave focusing, steering, and cloaking, unlocking
new possibilities in seismic hazard mitigation, enhanced sensing, and advanced wave-based
technologies.

Despite the growing interest in structural protection against seismic events, the com-
bined influence of multiple physical phenomena on Rayleigh wave propagation along
metasurfaces remains largely unexplored. This thesis investigates novel strategies for
controlling and manipulating Rayleigh waves within the framework of small-scale elastic-
ity, considering some crucial phenomena to enhance structural protection. Furthermore,
while most geomechanics problems are traditionally formulated as boundary value prob-
lems, this thesis introduces a novel approach by initially defining an initial value problem
for Rayleigh wave propagation. This framework subsequently evolves into a boundary
value problem, offering new insights into the dynamics of wave propagation in complex
geological media.

The primary research objectives of this thesis are:

e Developing refined boundary conditions within the framework of nonlocal microp-
olar mechanics for accurate wave propagation modelling and further analyzing the
characteristics of multiple Rayleigh wave modes in nonlocal micropolar viscoelastic
media, as an application.

e Extending the derivation of refined boundary and interface conditions for nonlocal
micropolar elasticity problems to model wave propagation in layered media.

e Investigating Rayleigh wave control and scattering mechanisms using nonlinear
metasurfaces and advanced resonance phenomena.

e modelling the generation and propagation of Rayleigh waves due to interior sources

and surface loading within an elastic media.

The methodology employed in this thesis involves a combination of analytical and
numerical techniques to address the various challenges associated with Rayleigh wave
propagation in nonlocal micropolar continua and metasurfaces. Initially, the classical
theories of elasticity are extended using nonlocal and micropolar elasticity frameworks
to account for size-dependent effects and microstructural influences. Asymptotic analysis

is utilized to derive refined boundary conditions that effectively capture the impact of
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nonlocal boundary layer effects on wave propagation. For wave control and scattering in
metasurfaces, the properties of subwavelength-scale structures are studied and multiple
scattering theory is employed to obtain the displacement solutions. Numerical simulations
using MATLAB and/or Mathematica are conducted to visualize the dispersion curves for
Rayleigh waves, which provide insights into phase velocities and wave interactions with
complex media. Additionally, the Laplace transformation technique is applied to solve
initial value problem, which subsequently evolve into boundary value problems, providing
a novel perspective on wave propagation dynamics in elastic environments. A visualization

to the research framework and methodology employed in the thesis is provided below:
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Mathematica) due to metasurfaces

This thesis is organized into six chapters, each dedicated to a specific set of research
objectives, outlining the motivations behind the study, highlighting novel contributions,
and detailing the mathematical methodologies employed in the analysis. The summary
of each chapter is presented below.

Chapter 1 provides a comprehensive introduction, a thorough literature review, and
the preliminaries essential for establishing the context of the research problems presented
in this thesis. It begins with an introduction to Rayleigh waves, followed by an overview
of metasurfaces and relevant mathematical techniques. Furthermore, a brief overview

of classical elasticity theory, its limitations, and the evolution of generalized continuum
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theories, such as nonlocal elasticity and micropolar elasticity, is provided, along with a
review of the current state-of-the-art research in these areas.

Chapter 2 investigates Rayleigh wave propagation in nonlocal micropolar media, con-
sidering the combined effects of nonlocality and micro-rotation. This chapter focuses on
refining the boundary value problem to ensure equivalence between the differential and
integral formulations of nonlocal micropolar elasticity. This chapter is further divided

into two subchapters as follows:

— Subchapter 2.1 derives refined boundary conditions for Rayleigh wave propagation
in a nonlocal micropolar semi-infinite medium using asymptotic analysis while also
demonstrating the failure of traditional boundary conditions.

— Subchapter 2.2 utilizes the derived refined boundary conditions to analyze wave
propagation in nonlocal micropolar viscoelastic media. The analysis includes ex-
amining particle paths, identifying different wave modes (nonlocal, micropolar, vis-
coelastic), and investigating their dependence on material parameters. Graphical

representations are provided to visualize these behaviors.

Chapter 3 extends the derivation of refined boundary and interface conditions to ad-
dress wave propagation in layered structures. Recognizing the need for refined interfacial
conditions, which have been largely unexplored in both nonlocal elasticity and nonlocal

micropolar elasticity, this chapter investigates the following:

— Subchapter 3.1 focuses on deriving refined boundary and interface conditions for
Rayleigh wave propagation in layered media within the framework of nonlocal
elasticity. Asymptotic techniques are employed to account for nonlocal boundary
and interfacial layers, leading to the derivation of first-order corrected dispersion
relations for Rayleigh waves.

— Subchapter 3.2 extends the analysis to nonlocal micropolar elasticity. Refined
boundary and interface conditions, incorporating modifications to couple stress
and force stress conditions, are derived to account for boundary and interfacial
layer effects. The propagation of Rayleigh waves in a nonlocal micropolar layered

structure is then investigated as an application of these refined conditions.

Chapter 4 focuses on controlling Rayleigh wave vibrations using artificially engineered

metasurfaces. The chapter explores the influence of nonlinearity and small-scale effects
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within the metasurface, investigating the formation of bandgaps that prohibit the prop-

agation of Rayleigh waves at specific frequencies.

— Subchapter 4.1 introduces a novel metasurface design comprising an array of dual
spring-mass resonators situated on a nonlocal host substrate. This subchapter
combines nonlocal elasticity, nonlinearity, and double resonance concepts to analyze
Rayleigh wave dispersion relations.

— Subchapter 4.2 investigates the control of Rayleigh waves generated by an interior
source using a nonlinear metasurface. Multiple scattering theory is employed to
account for wave scattering by the resonators. Subsequently, dispersion analysis is

conducted by extracting the Rayleigh wave contribution from the total wave fields.

Chapter 5 investigates the generation of Rayleigh waves by considering both initial
and boundary value problems. Transformation techniques are employed to model both

the interior and the surface source effectively.

— Subchapter 5.1 models the generation of Rayleigh waves due to an interior source
using an initial value problem. Laplace transforms are employed to model the
interior source, and an asymptotic hyperbolic-elliptic model is utilized to obtain
the asymptotic solution. The results from the asymptotic and exact solutions for
both surface and bulk wave fields are compared and analyzed.

— Subchapter 5.2 focuses on the generation of Rayleigh waves in a micropolar medium
subjected to seismic surface loading. Hankel transforms are applied to obtain the
solution, and a matrix approach is employed to extend the analysis to layered

media.

Chapter 6 presents a discussion of the essential results obtained in the thesis, along with
potential avenues for future research and development.

The key findings of the thesis include:

e The derivation of refined boundary and interface conditions within the frameworks
of nonlocal elasticity and nonlocal micropolar elasticity, addressing the critical issue
of the equivalence between differential and integral formulations.

e The derivation of corrected dispersion relations clearly demonstrates the depen-
dence of the propagation of different wave modes on material parameters and high-

lights the influence of small-scale effects.
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e The demonstration of Rayleigh wave vibration control through the design of novel
nonlinear metasurfaces, resulting in the formation of bandgaps that restrict wave
propagation at specific frequencies.

e The accurate prediction of Rayleigh wave propagation induced by interior initial
conditions using an asymptotic hyperbolic-elliptic model while also highlighting

the limitations of this model in predicting bulk wave fields.

In brief, this thesis significantly advances the mathematical and theoretical understand-
ing of Rayleigh wave propagation in various media, encompassing nonlocal micropolar
continuum and engineered metasurfaces. By addressing critical gaps in boundary con-
ditions and exploring novel wave control strategies, this research bridges classical and
small-scale elasticity frameworks. The findings offer valuable insights into wave dynamics
with implications for seismic hazard mitigation and advanced technologies, laying a strong

foundation for future research in wave propagation and control.
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1.1 Introduction

Wave propagation in solids [1, 2], which forms the foundation of elastodynamics, is
governed by the transfer of sharply exerted, localized disturbances from one part of the
body to other parts. Although this field is deeply mathematical, it has strong practical
relevance and has inspired the formulation of numerous abstract problems. Mathematical
frameworks not only offer profound insights into wave phenomena but also complement
experimental studies, which provide invaluable information about the properties of var-
ious solids, such as the earth, pure metallic crystals, and other materials. For instance,
waves are deliberately introduced into the earth to detect oil and gas reservoirs [3-6] and
to study its internal structure [7,9]. Similarly, material properties are examined by ana-
lyzing transmitted waves, and elastic waves propagating through the human body serve
as powerful tools for medical diagnosis and therapy [10-13].

One fascinating phenomenon in elastodynamics is the emergence of Rayleigh wave—a
surface wave that propagates along the free surface of an elastic continuum with mini-
mal disturbance to the underlying bulk material. Discovered by Lord Rayleigh [14], these
waves exhibit a combination of longitudinal (horizontal) and transverse (vertical) motions.
While the horizontal displacement components align with the direction of wave propaga-
tion, the vertical components penetrate into the medium. Rayleigh waves play a crucial
role in various fields, including the study of wave dispersion, vibration, and bending in
solid structures. They have found widespread applications in diverse areas such as mate-
rial characterization [15-18], geophysical exploration [19-21], acoustic microscopy [22-25],
and nondestructive evaluation [26-29].

Furthermore, nanomaterials, renowned for their exceptional thermal, mechanical, and
electrical properties, are finding increasing applications in structures like nanobeams
[30-33], nanoplates [34-38], and nanoshells [39-42]. While molecular dynamics (MD)
simulations [43] can investigate the mechanical behavior of these materials, they are com-
putationally expensive for large systems. Continuum models, which treat nanostructures
as elastic solids, provide a more computationally efficient alternative. However, accurately
capturing the scale-dependent behavior of nanomaterials necessitates modifications to the

classical elasticity theory.



Classical elasticity theory [44,45] is a well-established macroscale model that effec-
tively describes the behavior of conventional materials. It assumes that stress at a material
point depends solely on the local strain, with deformation described by a displacement
vector and symmetric stress tensors. This approach aligns well with experimental observa-
tions for materials like steel and concrete under moderate stresses. However, this localized
approach fails to account for the small-scale effects crucial at micro- and nanoscales. At
these scales, intermolecular and interatomic forces, like van der Waals forces, become
significant, requiring the incorporation of size effects into theoretical models. Moreover,
classical elasticity theory faces limitations in addressing problems involving asymmetric
stresses, significant stress gradients, or dynamic phenomena like high-frequency vibra-
tions and short wavelengths, where the microstructure of the material strongly influences
deformation.

To address these limitations, various modified continuum theories have been proposed,
including couple-stress theories [46-48], micromorphic elasticity theory [49], micropolar
elasticity theory [51,52], nonlocal elasticity theories [53,54], higher-order strain-gradient
theories [55-57], and atomistic-continuum theories [58]. Nonlocal elasticity theory, pio-
neered by Eringen and Edelen [59], addresses this limitation by acknowledging the non-
locality of stresses. This theory assumes that stress at a given point is influenced by
the strain field throughout the entire domain. For homogeneous, isotropic materials, this
leads to a set of integro-partial differential equations governing the displacement field.
While solving these equations can be challenging, specific kernel choices can reduce them
to singular partial differential equations. Notably, these kernels have shown excellent
agreement with experimental observations across various length scales, from the micro-
to the macroscale. Furthermore, nonlocal elasticity theory exhibits desirable limiting
behaviors: it converges to classical elasticity theory in the long-wave limit and asymp-
totically approaches atomic lattice dynamics theory in the short-wave limit (as cited in
Eringen [60]). This nonlocal approach introduces an internal characteristic length scale
into the constitutive equations, enabling a more accurate description of the mechanical
behavior of nanomaterials. Consequently, nonlocal elasticity provides a robust theoretical
framework for studying wave propagation and other mechanical responses in micro- and

nanoscale materials.



Micropolar elasticity [51], on the other hand, extends classical elasticity by incorporat-
ing an independent rotation vector in addition to a displacement vector, thereby allowing
material particles to undergo microrotation without macrodisplacement. Surface elements
exhibit both force and couple stresses, leading to nonsymmetric stress and couple-stress
tensors. These tensors are linked to nonsymmetric strain and curvature tensors, cap-
turing size effects critical at the microstructural scale. This theory explains phenomena
like higher strength in materials with smaller grain sizes, the strengthening effect of finer
dispersed particles in metals, and the increased bending and torsional strength of thin
structures. It also addresses the emergence of new wave types in granular materials, poly-
crystalline structures, and reinforced media, providing a robust framework to model the
microstructural effects that classical elasticity cannot capture.

The combination of micropolar and nonlocal effects within a single framework, termed
nonlocal micropolar elasticity, provides a powerful tool for analyzing the behavior of com-
plex materials across various length scales, from micro- to nanoscale. Initially developed
by Eringen [61], this theory has undergone significant advancements and now finds sig-
nificant applications in the design and analysis of advanced materials and structures,
including those encountered in micro- and nano-electromechanical systems, biomechan-
ics, and geomechanics.

A major challenge in nonlocal elastic models is the dependence of the integration do-
mains in constitutive relations on the distance from the boundary. This leads to boundary
layers with localized non-homogeneous stress and strain fields [62]. Despite widespread
belief in the equivalence of integral and differential non-local formulations, the validity
of differential equations derived from the original integral form remains unverified, par-
ticularly for bounded domains. The integral form, considered “strongly nonlocal” due
to its reliance on all neighboring points, is challenging to solve. However, the reduction
to differential form can be inaccurate, especially when dealing with bounded domains.
In such cases, the differential model becomes ill-posed and inaccurate without additional
constitutive boundary conditions. This highlights the critical need for refined boundary
conditions in non-local models to ensure accurate and consistent predictions. We address
this research gap in the context of various elasticity theories in the current thesis.

Elasticity theories provide a foundation for understanding wave propagation in con-

tinuous media. However, to manipulate and control seismic wave phenomena beyond
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the limitations of natural materials, the concept of seismic metasurfaces has emerged.
These artificially engineered interfaces, characterized by subwavelength features, offer
unprecedented control over wave transmission, reflection, and refraction, enabling novel
wave-guiding [63] and energy harvesting applications [64-66]. This development aligns
with the growing need for innovative seismic mitigation strategies, driven by the desire to
reduce structural damage and ensure safety. Metamaterials [67], first introduced in 1999,
are synthetic composites with engineered structures that exhibit properties not found
in naturally occurring materials. Originally developed for optics [68] and electromag-
netism [69], these concepts have been extended to acoustic and elastic media, enabling
the creation of materials with unconventional properties. While initially focused on bulk
materials, the development of metasurfaces has allowed for precise control over surface
wave propagation, including seismic waves.

More recently, seismic metamaterials have gained attention for their potential to mit-
igate Rayleigh waves, which carry significant elastic energy along the Earth’s surface.
By introducing sub-wavelength resonators or inclusions into the ground, researchers have
created structured media that can alter local wave propagation characteristics. When
arranged along the soil surface as “metabarriers” [70,71] or “seismic metasurfaces,” these
resonators can impede surface wave propagation by inducing band gaps around their nat-
ural frequencies, effectively reducing wave amplitudes. Engineered periodic structures like
these offer unique wave filtering and guiding capabilities, enabling effects such as negative
refraction [72, 73] and acoustic invisibility [74,75]. These properties have been applied
across various scales, from microscale optics to geophysical seismic wave mitigation, of-
fering new pathways for controlling wave behavior.

In addition to exploring the propagation and control of elastic waves within the
framework of various elasticity theories, including the manipulation of Rayleigh waves
using metasurfaces, researchers have recognized the critical need to investigate the mech-
anisms that initiate these surface waves. Rayleigh waves can arise from a variety of
sources [76-78]. Their generation can be modeled using two primary approaches: (a) as
an initial value problem, where initial interior conditions, such as initial displacements
or velocities, trigger the propagation of elastic waves that evolve into surface Rayleigh
waves; and (b) as a boundary value problem, where surface disturbances, such as earth-

quakes [79], explosions [80-82], and human activities like pile driving [83, 84], generate
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seismic energy that propagates through the subsurface and excites Rayleigh waves. Un-
derstanding the generation mechanisms of these waves is also crucial for accurate modeling

and effective mitigation strategies.

Structure of the thesis

The structure of this thesis is detailed in the following schematic diagram:
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Figure 1.1.1: Structure of the thesis

Mbotivation for the thesis

The study of Rayleigh wave propagation has profound implications in both theoretical
and applied geophysics, particularly in seismic wave analysis and material characteriza-
tion. Understanding these waves is critical for assessing the mechanical behavior of geo-
logical structures and engineered materials. However, classical elasticity theory, which has
traditionally been used to model Rayleigh waves, has inherent limitations when applied to
materials with microstructural complexities and nonlocal interactions. These limitations

necessitate the development of more refined mathematical frameworks that incorporate
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microstructural effects, nonlocality, and size-dependent phenomena. This thesis is mo-
tivated by the need to address these theoretical gaps and to provide more accurate and
applicable models for Rayleigh wave propagation in complex media.

One of the primary motivations for this study is the inadequacy of classical elasticity
in capturing nonlocal effects and microstructural interactions in wave propagation. The
introduction of nonlocal elasticity and micropolar elasticity theories has opened new av-
enues for accurately modeling these effects. However, inconsistencies in the formulation
of boundary conditions, particularly in nonlocal micropolar elasticity, have hindered their
practical applicability. Addressing these inconsistencies by deriving refined boundary
conditions is a central goal of this thesis.

The work of Kaplunov et al. [204] demonstrated that traditional nonlocal bound-
ary conditions fail to correctly account for boundary layer effects in semi-infinite media,
leading to discrepancies between differential and integral formulations of nonlocal elas-
ticity. This underscores the necessity of employing asymptotic techniques to capture
these effects systematically. Furthermore, when microstructural rotations are considered,
as in micropolar elasticity, an additional condition arises in formulating the appropriate
boundary conditions. This thesis extends existing nonlocal elasticity frameworks by in-
corporating micropolar effects and refining boundary and interface conditions for accurate
wave propagation modeling in both semi-infinite and layered structures.

Another motivation stems from the rapid advancements in metasurfaces and their po-
tential for controlling Rayleigh wave propagation. Metasurfaces, composed of subwavelength-
scale engineered resonating structures, enable unprecedented control over wave phenom-
ena such as wave steering, cloaking, and dispersion modulation. However, current studies
predominantly focus on classical elasticity-based metasurfaces, neglecting the influence
of nonlocal elasticity effects. This thesis aims to bridge this gap by integrating nonlocal
elasticity with metasurface design to achieve enhanced wave control mechanisms, which
could have significant applications in seismic hazard mitigation and wave-based engineer-
ing technologies.

Additionally, the traditional approach to geomechanical problems has largely been
confined to boundary value formulations, neglecting the potential insights gained from
initial value problems. This thesis introduces a novel approach by modeling Rayleigh wave

generation as an initial value problem, which subsequently evolves into a boundary value
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formulation. This shift in perspective provides new insights into wave excitation mecha-
nisms, particularly for initial interior /boundary surface sources within elastic/micropolar
media, and allows for a more comprehensive understanding of seismic wave propagation
dynamics.

In summary, this thesis is motivated by the need to refine mathematical models of
Rayleigh wave propagation to incorporate nonlocal and micropolar effects, develop re-
fined boundary and interface conditions, explore advanced wave control strategies using
metasurfaces, and introduce novel initial value problem formulations for wave generation.
These contributions aim to bridge critical theoretical gaps and provide practical advance-
ments for seismic wave analysis, material characterization, and wave-based engineering

applications.



1.2 Literature review

Rayleigh waves exhibit a dual nature near the surface, prompting the development of
an asymptotic model to capture this behavior. Kaplunov et al. [85] pioneered this effort
with deriving the first hyperbolic-elliptic model. Subsequent research, including multiscale
perturbation schemes by Kaplunov et al. [86], extended this approach to describe various
types of waves, such as Rayleigh, interfacial, and edge waves [87]. Asymptotic models
have been derived for surface waves in diverse media, including incompressible [88] and
compressible [89] elastic half-spaces. Recent advancements include models for anisotropic
media [90], planes with cubic symmetry [91], and refined models with second-order correc-
tions [92]. These models have been applied to various problems,; including mixed boundary
value problems (see, Erbas et al. [93]). Additionally, transient motions and dynamic re-
sponses of half-planes subjected to moving loads have been studied by Kaplunov [94] and
revisited using asymptotic models (see, Kaplunov et al. [95]).

(Classical elasticity theory predicts that Rayleigh waves propagating in an elastic half-
space are nondispersive. Several researchers have investigated this topic extensively [96—
98] However, observations of phonon dispersion experiments, as detailed in the work
of Brockhouse et al. [99], Harrison [100], and Wallis [101], have demonstrated a strong
dependence of phase velocity on wavelength, particularly in the short-wavelength regime.
This discrepancy, along with other phenomena such as surface tension, surface energy, and
the presence of optical branches in the dispersion curve, cannot be adequately explained
within the framework of classical elasticity.

The limitations of classical elasticity theories have necessitated the development of
generalized models of continuum mechanics. These advancements, dating back to Voigt’s
work in 1887 [102], involve modeling the material as a collection of independently mov-
ing and/or deforming particles. Voigt [102] incorporated the effects of moment-based
stresses, known as couple stresses, in addition to the classical force stresses, generalizing
the symmetric classical theory of elasticity. Building upon Voigt’s work, the Cosserat
brothers extended the concept by introducing the notion of microrotations - indepen-
dent rotations within the material. This led to the development of the Cosserat theory
(Cosserat and Cosserat, [103]), which assumes that a material is composed of rigid par-

ticles with independent rotational degrees of freedom. A defining characteristic of this

10



theory is the presence of surface and body couples acting independently of surface and
body forces. The highly general nonlinear Cosserat theory was later refined and devel-
oped in more restricted settings by other researchers [48-50,104-106]. In othe words, this
theory recieved a considerable attention from the researchers and as a result higher-order
continuum theories have been developed.

Theories addressing size-dependent behavior can be broadly classified into three cate-
gories: strain gradient theories, microcontinuum theories, and nonlocal elasticity theories.
The strain gradient theories encompasses several models, including the couple stress the-
ory [46,107-111], the first and second strain gradient theories [47,112], the modified couple
stress theory [113], and the modified strain gradient theory [114]. A defining feature of
strain gradient theories is the inclusion of both strain and strain gradients in the strain
energy density, which introduces material length scale parameters to account for size
effects.

Microcontinuum theories [115,116] encompass a family of models, including microp-
olar, micromorphic, and microstretch theories. Among these, micropolar theory repre-
sents the simplest framework, characterized by a three additional degrees of freedom.
Eringen [51] is recognized for extending the Cosserat theory to incorporate body mi-
croinertia effects and renaming it as the micropolar theory of elasticity. In his works
(Eringen [51], [117], [118]), he further developed both the micropolar and microstretch
theories for linear and nonlinear elasticity. Today, the linear theory is commonly referred
to as the linear theory of micropolar, Cosserat, or asymmetric elasticity. References on
linear micropolar elasticity theory can be found in [119-123]. Nowacki and Olszak [124]
presented a general report on the development of micropolar elasticity elasticity. Readers
are also encouraged to refer to the survey paper by Hassanpour and Heppler [125] for a
comprehensive overview of micropolar moduli and a detailed comparison of the notations
used in various formulations of micropolar theory. Notably, the couple-stress theory is also
known as the Cosserat theory with constrained rotations or, more briefly, the constrained
Cosserat theory. Further, Eringen introduced micromorphic theory [126,127] to account
for the influence of microstructure within a macroscopic framework. A key distinction
lies in the fact that micromorphic elasticity allows for more complex micro-deformations,
encompassing both rotation and internal strains, whereas micropolar elasticity is limited

to considering only micro-rotations. The micromorphic theory is a generalized continuum
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model that can be simplified to the micropolar and microstretch theory [128]. In recent
years, several simplified versions of the general micromorphic theory have been devel-
oped (refer, Shaat [129]; Barbagallo et al. [130]; Romano et al. [131]; Neff et al. [132]).
They enable the exploration of material dispersion characteristics (refer, Kunin [133-135]
Trovalusci and Pau, [136]; Shaat [137]), facilitate multiscale modeling (see, Shaat [129];
Trovalusci [138]), and describe the physical microstructures of materials (see, Capriz [139];
Gurtin and Podio-Guidugli [140]).

Nonlocal field theories can be considered a general class of material models. While all
microcontinuum theories implicitly exhibit nonlocal behavior [134,141-143], with nonlo-
cal effects often represented by gradients of microdeformations or kinetic coupling con-
stants between different degrees of freedom, explicit nonlocal models have been developed
to explicitly visualize these effects. These models utilize convolution-type constitutive
equations, incorporating a nonlocal parameter that is dependent on material properties,
molecular structure, and internal characteristic length [144]. It is important to note that
the modeling of nonlocal effects, whether through implicit or explicit methods, requires
careful consideration of various factors.

The foundation of nonlocal elasticity was laid by Kroner [145], who introduced a model
to incorporate the long-range effects of cohesive forces between particles. This theory was
later further developed by Edelen [146,147], Eringen [148,149] and improved by Eringen
and Edelen [59], Eringen et al. [150,151]. The strong form of nonlocal elasticity, involving
integrals over the entire domain, has received comparatively less attention due to the
inherent complexity of obtaining the solutions. Hence, only limited researchers [152-157]
have attempted to explore the solutions to these integral equations. To address the
challenges associated with the integral form of nonlocal elasticity, Eringen proposed a
differential formulation [60] for a specific choice of the nonlocal moduli. This differential
form, often referred to as the weak form of nonlocal elasticity, has garnered significant
attention due to its relative ease of implementation. Consequently, it has been widely
adopted by researchers for analyzing various structures, including elastic media [158-166],
beams [167-172], plates [173-178], and shells [40,179-183]. Several comprehensive reviews
and books have also been published on the theoretical foundations and applications of
nonlocal mechanics in nanostructures, see Arash and Wang [184], Rafii-Tabar et al. [185],

Askari et al. [186], Srinivasa and Reddy [187], Behera and Chakraverty [188], Shaat et
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al. [189] Gopalakrishnan and Narendar [190]. Further, unified approaches have been
developed to combine nonlocal elasticity with other theories, such as nonlocal micropolar
elasticity [61], nonlocal thermoelasticity [191], nonlocal piezoelectricity [192], and nonlocal
electromagnetic solids [193] etc. It is worth mentioning that the highly cited work in
Eringen [60] and subsequent studies on nonlocal elasticity have not explicitly verified
whether the solutions of the differential equations satisfy the original integral formulations.
Recent research efforts have addressed this gap by developing refined nonlocal theories.

Nonlocal elasticity models often exhibit a reduction in effective stiffness, leading to
lower natural frequencies and increased deflections [194]. However, observed behavior can
vary, with instances of stiffening [195-197] or negligible differences compared to classical
models [198], highlighting discrepancies between integral and differential models. These
inconsistencies arise primarily from the limitations of differential formulations, which of-
ten neglect the critical role of boundary conditions. To address these inconsistencies,
several approaches have been proposed (see, Tuna and Kirca [199], Shaat et al. [200],
Koutsoumaris et al. [201]). A significant advancement in addressing these inconsisten-
cies is the development of refined boundary conditions. These conditions, often derived
through asymptotic methods, incorporate additional terms or derivatives of field variables
to ensure compatibility with nonlocal constitutive equations. For instance, Chebakov et
al. [202] reduced the nonlocal problem in a half-space to an equivalent classical formu-
lation with a localized near-surface inhomogeneity, capturing the effect through effective
boundary conditions. Moreover, this refined theory has been extended for two-dimensional
nonlocal elastic plates [203], incorporating first-order corrections to account for boundary
layer effects. This approach has been extended to various wave propagation scenarios,
including Rayleigh waves [204], anti-plane waves [205] and other wave types [206, 207],
through asymptotic formulations.

In recent decades, controlling wave propagation using metamaterials and metasurfaces
has garnered significant attention across applied physics, mechanics, and civil engineer-
ing. Prior to the emergence of metasurfaces, wave control relied heavily on phononic crys-
tals [208,209], which utilize Bragg scattering to create frequency bandgaps [210,211]. How-
ever, the effectiveness of phononic crystals diminishes at low frequencies due to the require-
ment of impractically large structures [212] to accommodate long wavelengths. A ground-

breaking work by Liu et al. [213] introduced the concept of locally resonant (LR) units,
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enabling the creation of bandgaps in structures much smaller than the wavelength. This
innovation, termed ‘metamaterials’, offers significant advantages over phononic crystals,
particularly in controlling low-frequency vibrations due to their compact and lightweight
nature. Inspired by this pioneering work, a diverse range of metamaterials have been
explored, including those incorporating spring-mass systems [214,215], rods [216, 217],
beams [218-221], and plates [222-224].

Controlling elastic surface waves using resonant arrays, often termed “seismic meta-
surfaces”, has emerged as a significant area of research. The seismic metamaterials have
been identified into four major catagories as described in Brulé et al. [225] (a) Seis-
mic soil-metamaterials consisting of artificially structured soils made up of rigid inclu-
sions (Achaoui et al. [226]) or cyllindrical boreholes (Brulé et al. [227])(b) Buried mass-
resonators [228-230] consisting of damped resonators buried inside the soil (¢) Above-
surface resonators (see, Columbi et al. [231,232], Palermo et al. [233], Colquitt et al. [234]),
typically forest of trees, consisting of sub-wavelength structures arranged on the top of
elastic half-space (d) Auxetic materials [235], buried inside the soil and characterized
by materials with negative Poisson’s ratio (e) Other dissipative structures, such as gy-
robeams [236], incorporated into the structure to be protected. Through careful design,
these metasurfaces can manipulate the dispersive nature of surface waves, enabling func-
tionalities such as wave trapping, waveguiding, and the creation of spectral bandgaps [237].
Recent decades have witnessed a surge in research on metasurface designs, encompassing
various methodologies such as incorporating nonlinearity in spring-mass systems (see, Lou
et al. [238-240], Palermo et al. [241], Carneiro et al. [242]), exploring multi-physics phe-
nomena in Pu et al. [243], utilizing tunable inertial amplifiers [244-247], and investigating

wave propagation along metasurfaces in stratified media (in Zeng et al. [248]).
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1.3 Preliminaries

In this section, a concise overview of the constitutive relations and governing equa-
tions are presented for classical, nonlocal, micropolar, and nonlocal micropolar elasticity
theories. Subsequently, an investigation into the propagation of Rayleigh waves is con-
ducted within the context of classical and nonlocal elasticity theories. This also includes
a brief explanation on the refined boundary conditions developed for wave propagation

within a nonlocal elastic semi-infinite medium.
1.3.1 Classical elasticity theory

This theory focuses on a specific class of continua called linear elastic solids possessing
the unique characteristics of recovering its original shape and size once the forces causing
deformation are removed. The fundamental relationship governing the behavior of these
linear solids undergoing infinitesimal deformations is described by Hooke’s Law. The
generalized form of Hooke’s Law, proposed by Cauchy expresses the linear relationship

between stress and strain components for a more complex material as follows:
Omn = Counpg€pgs MM, D, q = 1,2, 3, (1.3.1)

where 0,,, and €,,, are the components of second-order stress tensor and Cauchy’s strain
tensor, respectively. And C,,,,, are the components of a fourth-order tensor namely
elasticity tensor.

The strain components ¢,,, are related to the components u,, of the displacement vector

u along the respective z,,—direction by,

1 /ou,, Ou,

0T,
It has been shown in [249] that for a homogeneous linear isotropic elastic solid, the

generalized Hooke’s law takes the form,
O = NOmn€rr + 2€mn.- (1.3.3)

Here A and p are called Lamé moduli and 9,,,, is the well-known Kronecker delta.
Furthermore, it is important to note that within the classical elasticity framework, the
strain tensor is symmetric (€,,, = €pn). This symmetry directly implies the symmetricity

of the stress tensor (0,,, = Opnm). Alternatively, the symmetry of the stress tensor can
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be readily derived by using the principle of conservation of angular momentum, see Hein-
bockel [250].
From the principle of conservation of linear momentum, the equations governing the mo-

tion of an elastic body are given by,
Omnm + Fn = pny, m,n=1,2,3, (1.3.4)

where Einstein summation convention [250] is used. Here F,, denotes the body force per
unit volume, p denotes the mass volume density and w,, denotes the accelaration of
the body. Also, the comma in the subscript denotes the derivative with respect to the

corresponding variable.

1.3.1.1 Classical Rayleigh wave secular equation

Here, we derive the classical secular equation for the propagation of a time harmonic
Rayleigh wave in a homogeneous, linear isotropic elastic semi-infinite medium with a

stress-free boundary.

Rayleigh waves

JANEVAN
R AANGH *

Elastic semi-infinite
medium

Figure 1.3.1: Rayleigh waves in an elastic semi-infinite medium

Consider a linearly isotropic medium occupying the region,
R={(r,y,2) || —o0<z,y<o0, 0<z<o0},

having stress-free boundary and Rayleigh wave propagating in z—direction along xz—plane

with the z—axis pointing vertically downwards as in Figure 1.3.1. The displacement field
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is represented by u = (uq, 0, us).
Substituting the constitutive equations in Eq. (1.3.3) in the governing equations of motion

in Eq. (1.3.4) gives
U U, + (A 4 1) Uiy — P U = 0, myn =1,3. (1.3.5)

Decomposing the displacement vector u according to the Helmholtz theorem, we can

express it as the sum of the gradient of a scalar potential ¢ and curl of a vector potential

Y = (1,1,13) as,
u=Vop+V x, (1.3.6)

with the constraint V -1 = 0.

This decouples the system of equations in Eq. (1.3.5) into,
2 1 2 1

Vg — C—2¢,tt =0, Vi — C—2¢,tt =0, (1.3.7)
L T

where ¢y = ﬂ/% and cr = \/% are the longitudinal and transverse wave velocities,

respectively.

In terms of potentials, the components of the stress tensor in z—direction are given by,

O30 = 0, (1.3.8)
o33 = ATS + (A+2p) 92 + 2u 2.
To investigate Rayleigh wave propagation, we seek displacement potential solutions in the

form of travelling harmonic waves,

(cb, ¢> — (A e—kmz’ Be—kmz) ei(lm—wt)’ (139)

where k£ = % is the wavenumber, w is the angular frequency, c is the wave velocity, and

r1, T9 are attenuation factors to be determined. We require that the real parts of r; and
ro are positive (i.e., Re(r;) > 0, Re(rz) > 0) to ensure the decay of the Rayleigh wave
field as z — oo.

Substituting these potential solutions given in Eq. (1.3.9) into the governing wave equa-

tions in Eq. (1.3.7) yields expressions for the attenuation factors as,

c? c?
" = 1——2,7’2— 1—_2-

C C

L T
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Since the problem is investigated within a stress-free boundary conditions, we must have

at the boundary z = 0,

031 = 0 and 033 = 0 (1310)

As a result, the stresses associated with the displacement potentials in Eq. (1.3.9) can be
easily calculated using Eq. (1.3.8). This gives a system of equation in A and B as,
—2iury A —p(1+172) B=0,
HT1 o ( 2) (1.3.11)
[—A+ (A +2u)r?] A — 2iury B = 0.
In order to ensure a non-zero displacement field (u), the coefficients A and B cannot both
be zero. This necessitates the system of equations in Eqs. (1.3.11) to possess a non-trivial
solution. A necessary and sufficient condition for the existence of a non-trivial solution is

that the determinant of the coefficient matrix vanishes. Thus, a simplified version yields

2 (2-%)
/| =0, (1.3.12)
(2 - 7> 4y

In other words, we have

2\ 2 2 2
(2—0—2> —4\/1—6—2\/1—0—2:0. (1.3.13)
Cr ‘L cr

This represents the well-known classical Rayleigh wave secular equation [14], which is
clearly non-dispersive.

Let us represent the Rayleigh wave equation as,

R(y)=(2—y)> —4 1—%\/1—y:0, (1.3.14)

where y = 0%27 and I' = Z—f < 1. We now proceed to investigate the uniqueness of the
T

solution to the equation in Eq. (1.3.14).

Observe that, R(0) =0, R(1) =1, R'(0) < 0 and also,

(Ir2-12/1-:%L

(1 —y)?2(y —T2)

indicating that the function R(y) is concave upwards in the interval 0 < y < 1. These

R'(y) = +2>0, for 0 <y<1,

conditions ensures the existence and uniqueness of the solution, say ¢ = cg with cg < ¢
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(as y < 1) to the Rayleigh wave secular equation in Eq. (1.3.14).

Now, on squaring Eq. (1.3.14), a cubic equation in y can be obtained as

16 1
y® — 8y® + <24 — ﬁ) y— 16 (1 — ﬁ> =0. (1.3.15)

As a limiting case when A = u, we get I' = \/ig This reduces Eq. (1.3.15) as

56 32
v =8y + —y— = =0. (1.3.16)

3 3
This equation has roots at y = 4, %(3 +1/3). The only admissible root, being less than 1
isy = %(3 —/3) = 0.8453. This suggests that Rayleigh wave propagates with the velocity
cr = 0.8453 ¢y when I' = \% for the medium. A variation of R(y) with y is plotted in

Figure 1.3.2 to visualize the Rayleigh wave root for a fixed I' = \/ig

0.8+
0.6 4
04r b
=
= 02 8

(0.8453, 0)

Figure 1.3.2: Variation of R(y) with y for I' = L

&

The pioneering work on the existence and uniqueness of the solution was conducted
by Sobolev [251], with subsequent contributions from Babich and Kiselev [252]. Notably,
research by Barnett and Lothe [253] and Kamotskii and Kiselev [254] has extended these

findings to anisotropic materials.
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1.3.2 Asymptotic hyperbolic-elliptic model for Rayleigh waves

This section provides an overview of the derivation of the asymptotic hyperbolic-
elliptic model for near-surface wavefields generated by surface stresses. For a more in-
depth analysis, readers are referred to the works of Kaplunov and Kossovich [85], Kaplunov
et al. [86], and Kaplunov and Prikazchikov [87].

The derivation is based on a perturbation analysis of the self-similar solutions for the
homogeneous surface wave in the slow-time domain. This approach ultimately reveals
a dual nature of Rayleigh waves, characterized by hyperbolic equations governing their
behavior on the surface and elliptic equations describing their behavior in the interior of
the medium.

Consider a plane strain problem given in Eq. (1.3.7) involving the propagation of surface
Rayleigh waves in a homogeneous, linear, isotropic elastic medium that occupies the region

R. The problem is subjected to the boundary conditions along the surface z = 0 as

031 = —Pi(z,t) and 033 = —Py(z,1). (1.3.17)

Now, we perturb the problem defined in Eq. (1.3.7) by introducing a slow-time variable,
T = et, where € << 1 is a perturbation parameter denoting the small deviation of phase
velocity from the Rayleigh waves. This approach, inspired by the work of Friedlander [255]
and Chadwick [256] on self-similar solutions for stress-free boundary value problems in
the variable & = x — cgt, allows us to investigate the influence of surface loading on the
propagation of Rayleigh waves.

In terms of new variables, the governing equations given in Eq. (1.3.7) transforms into,

8245 < C?.z B2d> 2ecp 9% e 0% _
=+ (11— —2> 2 T T2 3o 2o = 0,
0z ct o€ c; O0TO¢ o2 (1318)
921 k) 0% | 2eccp 9%¢ 8%¢ _
922 T <1 o f) e T ch orot E_ga_ =0,
and the corresponding boundary conditions are rewritten as,
( 2 0% _ 82_w> Y
2 2 -
ooz & 8z2 # (1.3.19)
—2 23 d) "y _ _ P
(F _2) +P +28x8z __72’
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where [' = &£,
cr

Expanding the potentials in asymptotic series of the form,

6(&,2,7) = ll [0(& 2 7) +edD(E 2 7) + -] (1.3.20)

[1/1(0)(5,2,7') +epW(& z,7)+ -]

By substituting Eq. (1.3.20) into Eq. (1.3.18) and retaining only the leading-order terms,

we obtain a set of elliptic equations of the following form,

920 2 9240
a‘i’Q + a7 8(22 =0,

8245(0) 2 §24(0)
aﬁz +aT 87?2 :Oa

C2 C2
where a;, = /1 — % and ar = — £
L cp

Based on the works of Friedlander [255] and Chadwick [256], the plane harmonic wave

(1.3.21)

functions that satisfies wave equations in Eq. (1.3.21) can be expressed as

60 =60 arz,7), O = 9O arz,7). (1.3.22)

Computing the first-order terms in Eq. (1.3.18) yields a set of heterogeneous equations,

5241 o2 826 _9 1-a2 | 5240

022 L 9¢2 — CR O£ 0T (1 3 23>
9241 o2 p® 1-aZ | 924

022 T 9¢2 CR £ 0T *

It can be readily observed that the set of equations presented in Eq. (1.3.23) admits

solutions of the form,
¢(1) — ¢(1,0) + Z¢(171)’ w(l) — w(LO) + le(l,l)7 (1.3.24)

where ¢(19) and ¢V are the harmonic functions of (£, azz, 7), while 1% and ¥ are
the harmonic functions of (&, arz, 7).

Further, substituting the solutions of the form in Eq. (1.3.24) into Eqgs. (1.3.23), we

obtain,

96D 1—a21 926 PWIERY 1—a21 92O
AR ap | 9797 0, v | 0T, (1.3.25)

0z CR 0& Ot 0z CR 0& Ot
These equations on further reduction using Cauchy-Riemann inequalities gives the values,

2 (0) 2 (0)
g — _ |1z 0% pn = _ |L=ar| 0% (1.3.26)
Cr (O], or ’ Cr O or ’
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where the subscript ‘¢’ in the potentials denote their corresponding conjugates.

As a result, the two-term expansion of the wave potentials as written in Eq. (1.3.20)

becomes,
a2 )
qs:%[¢(0)+6[¢(1,0)_z<;72>%]+...]7 e
¥ =219 4|t _ 1oz 20" ] 4 . -
T« CR QT or :

Case 1: In case of a normal load, i.e., when P, = 0, P, # 0, the substitution of Eq.
(1.3.7) into Eq. (1.3.19) gives at the leading order expressions,

2,4(0) 24(0)
[—20@ 8(‘;;23 + (1 + Oé%«) aaqéQ :| ‘ = 0,
o P (1.3.28)
0 0%1pe —
[_(1+a%) ;ﬁ— OéTaLsg} (0 0.

By taking the conjugate of Eq. (1.3.28), it becomes evident that the leading-order system

possesses a non-trivial solution if and only if,
(1+a2)” - dapar =0. (1.3.29)

This condition is precisely the well-known Rayleigh wave secular equation, as previously
encountered in Eq. (1.3.14).
Also, from Eq. (1.3.28)(a), we can write

o -~ 2 99
O |._o 1+a} 0z

. QOJL
Lo l+oj

or ¢(0)

PV (1.3.30)

z z=0
Either of the above equations denote the boundary conditions for the potential 1),

Further, at the next-order, we have the expressions,

92¢(1,0) 2\ 92¢(1,0) _ 1,0[% 62¢>£0) 1704% 32¢£0) .
|:2 O 0z + <1 + aT) 02 arp cr 960t + arcr OEOT - 07
=0 (1.3.31)
(14 a2) ZoL0 _ 9000 | gloah 0% | ol-of o2yl _D
T 0€2 0€ 0z ar cr 0z0T arcr 0z0T 1
z=0

Further Eq. (1.3.31)(a) can be rearranged and reduced using Eq. (1.3.30) to obtain the
expression for the derivative of (19 as,

(1) 1 (1—(@ , 1—a2T> 00" a¢£1’°’]

23

2
o l+ak

(1.3.32)

- — 2y ay,
2
e CRr aj, 1+ Qp or (95 2=0

After rigorous calculation, Eq. (1.3.31)(b) can be simplified by using Eqgs. (1.3.32) and
(1.3.29) to obtain,
4B 9%
“cn(1402) 0cor
22

=2 (1.3.33)
z=0 H




where
ay,

a
B:a—T(l—a%)jLa—z(l—a%)—l—l—a%.

On expressing the approximate solution, ¢ = %qb(o), Eq. (1.3.33) can be rewritten as,

2¢ D*¢ 1+ a?.
cr 0EOT ~ 2uB

Ps. (1.3.34)

Changing into original variables, Eq. (1.3.34) transforms into,

0? 1 0? 1+af
[@ - %@} ¢(z,0,t) = Mz

P.. (1.3.35)

And the relation between potentials given in Eq. (1.3.30) in terms of original variables

can be written as,

o9
a‘%‘ZO

2 %
1+ a2 0z

QO[L

or Y| _, = Trol el (1.3.36)

Here ¢. is mathematically equivalent to the Hilbert transform of ¢ (cf. Kaplunov et
al. [86]).
Furthermore, within the interior of the semi-infinite medium, the elliptic equations derived
in Eq. (1.3.21) can be reformulated in terms of the original variables as follows,
82¢ 82¢ 82w 82w
=0 = 0. 1.3.37
92 TOga =0 gatorg (1.3.37)
The hyperbolic equation for ¢ in Eq. (1.3.35) can be transformed into an equation for
the horizontal displacement u;, which is given by
0? 1 02 1—al 0P,
— - = = 0,t) = — ==
<8:1:2 % 8752) (@, 0.1) 4uB  Ox

(1.3.38)

Case 2: In case of the tangential load, i.e., when P, # 0, P, = 0, similar analysis can

be carried out which eventually leads to the following hyperbolic equation at the surface,

0? 1 0 1+a?
912 & or = P 1.3.
{fh? 2, @ﬁ} ¥(x,0,1) 2B (1.3.39)
with the relation between the potentials as,
a¢ 2 aw QOéT
% -0 - 1+ Oz%& or ¢|z:0 = 2 wcL 0’ (1340)

where 1. is the Hilbert transform of the function .
Moreover, the elliptic equations governing the propagation of Rayleigh wave in the interior

are same as that of Eq. (1.3.37).
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Analogous to Eq. (1.3.38), the hyperbolic equations presented in Eq. (1.3.39) can be
reformulated in terms of the vertical displacement, us, as follows:
82 1 82 1— Oé4 8P1
AR 0,4) = r21

(8$2 % 8t2) us(@,0,1) 4uB Oz

Case 3: In case of non-zero stress components, P; # 0, P; # 0, we get the hyperbolic

(1.3.41)

equation at the surface as,

0? 1 0 1+ 32
Z - Z 0.1) = P -(p 1.3.42
|:8$2 02 at2:| ¢(I7 ) ) QIUB |: 2 -V ( 1>Ci| ) ( )
where (), is the Hilbert transform of the function P, and v assuming the value,
2aL
V= s
1+ af

The relation between the potentials is same as that given in Eq. (1.3.36).

Thus, an explicit asymptotic hyperbolic-elliptic model is derived for the propagation of
Rayleigh waves. This model demonstrates the dual nature of these waves, characterized
by hyperbolic equations in Eq. (1.3.35) or (1.3.39) at the surface and elliptic equations
provided in Eq. (1.3.37) within the interior of the medium.

1.3.2.1 Viscoelasticity

Viscoelasticity is a material property characterized by a combination of viscous and
elastic behavior during deformation. In viscoelastic materials, the relationship between

stress and strain is time-dependent, exhibiting three prominent characteristics:

— Stress relaxation: The gradual decay of stress over time under a constant strain.
— Creep: The gradual increase of strain over time under a constant stress.

— Hysteresis: A phase lag observed between stress and strain during cyclic loading.

A typical dynamic test is carried out to study the behavior of viscoelastic materials by
measuring the stress resulted from the small strain. Consider a sample subjected to a
complex strain,

e(t) = ee™,

where w is the angular frequency and € is the small amplitude.
For a purely elastic material, the stress is directly proportional to strain, i.e.,
o(t) = Ce(t). In other words, stress components are in-phase with the strain components.
For a purely viscous material, the stress is proportional to the strain rate, i.e.,

o(t)=n %. It can be deduced that the stress and strain are 90 degrees out of phase.
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In a one-dimensional linear viscoelastic material, a steady state will be eventually
reached in which stress behavior is similar to strain with the same angular frequency w,

but with a phase shift of . In other words,
o(t) =7 e'to),
This equation can be further re-written as,
o(t) = Ge(t),

where G = G' + 1G" is the complex dynamic modulus with the coefficients,

G'==cosf and G"=

sin 6.

ol | Qf
ol | Ql

The coefficient G’ is the storage modulus, representing the energy stored and recovered
per cycle, and corresponds to the in-phase response. G” is the loss modulus, characterizing
energy dissipation within the material, and corresponds to the out-of-phase response.

The development of constitutive equations for linear viscoelastic materials has tradi-
tionally relied on two fundamental approaches (a) the utilization of mechanical analogs,
which employ idealized mechanical elements to represent material behavior (b) the ap-
plication of the Boltzmann superposition principle, which accounts for the material’s re-
sponse to past loading history. The more generalized approach widely used to model the
linear viscoelastic materials is Boltzmann superpositon model. According to this, the
constitutive relation relating stress with strain is given by,

¢ de
o(t) :/O G(t—t’)@ dt’,

where G(t) denotes the relaxation modulus function. However, choosing an appropriate
relaxation function in Boltzmann model, one can easily obtain the mechanical analog
models, like Maxwell model, Kelvin-Voigt model, and standard linear model. For more
details on this theory of viscoelasticity, interested readers can refer [257,258]. An advance

discussion on the fault propagation in such a medium can be found in [260, 261]
1.3.3 Nonlocal elasticity theory

Nonlocal elasticity theory incorporates the influence of long-range interatomic forces,
leading to a dependence of stress at a given point on the strain field throughout the entire

body, rather than solely on the strain at that specific point. Building upon the pioneering
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works of Rogula [259, 262], Kréner [145], Krumhansl [263], and Kunin [133], Eringen
formulated an integral model [60] for nonlocal elasticity, demonstrating its effectiveness
in solving problems such as Rayleigh wave propagation and screw dislocation .

According to this integral nonlocal model [151], the governing equations in the absence

of body forces for a homogeneous elastic solid is given as,
Tmnm = PUngt, T, T = 1, 27 3, (1343)

where u,, n = 1,2,3 denotes the displacement components, p is the density and

N

T (X) = /Qﬁ(|x —X|, Q) opn(X) dU(X), ¢ = €7 (1.3.44)

Here B represents a nonlocality kernel that depends on the material properties of the
medium and characteristic length ratio (; N denotes the internal characteristic length
(eg. granular distance, lattice parameter); [ denotes the external characteristic length
(eg. wavelength, crack-length) and eq is the material constant.

Further, 2 denotes the volume of the region over which the deformation has occurred;
Tmns Omn are the nonlocal and local stress tensors, respectively, at a time ¢ and x is the
reference position.

The nonlocal elastic moduli § (|x — X|, () which constiute the kernal of the integral re-
lation in Eq. (1.3.44) contains the parameters that corresponds to nonlocal character-
istics. These kernels must possess certain physically applicable properties, detailed as

below [264]:

(i) B(]x —X]|,() is a delta-sequence, tending to Dirac-delta function as X — 0. In other

words,
lim 5 (|x = X[, () = 0 (|x =x]), (1.3.45)

i.e., the nonlocal theory transforms to the local theory in this limit.

(i) B (Jx — X, () is a continuous and bounded function of |x — X|, atleast for the case
when ¢ # 0.

(iii) In the limit of vanishing internal characteristic lengths ¢ — 1, the nonlocal theory
should approach atomic lattice dynamics.

(iv) B (]x — X[, () attains a maximum at X = x and decreases rapidly to zero as |x — X|
increases.

(v) The integral value [, 8 (|x —X/|,¢) dQ(X) = 1.
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(vi) The kernel f (|x — X/, {) is Green’s function for a linear differential operator L, i.e.,
LB (x=x[, Q] =d(x=x]).
In case such an operator exists, then on applying £ to Eq. (1.3.44), we have
L [Tin] = O (1.3.46)

Below are the several kernel functions, proposed by Eringen [60] that satisfy properties

(i) - (vi) and have practical physical applications:

1. One-dimensional kernel

é( —'Z”—l'>7 i || < ¢l

B(x,¢) = (1.3.47)
0, otherwise
1 z?
B(x[,¢) = [/c P (—@) (1.3.48)
_ |z
B(x,¢) = 30 P (_5> (1.3.49)
II. Two-dimensional kernel
1 .
B(x[,¢) = ez P (—’2;) (1.3.50)
1 /XX
B(xl.¢) = mf(b( ?l X) (1.3.51)

where Ky(+) is the modified Bessel function of zero order.

III. Three-dimensional kernel

800 = s o () (13.52)
1 X X
ﬁ(|X|,C) - (WCZ2)% exp (_ Clz ) (1353>

In his works [60,151], Eringen demonstrated that by employing a two-dimensional kernel

of the form given in Eq. (1.3.51), the integral operator £, can be approximated as
L= (1-¢rv?, (1.3.54)

where V2 is the two-dimensional Laplacian operator.
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1.3.3.1 FEringen’s theory for nonlocal surface Rayleigh waves

Consider Rayleigh wave propagation in a homogeneous, isotropic, nonlocal elastic
semi-infinite medium with displacement vector u = (u4, 0, u3). Employing a two-dimensional
Bessel function kernel as defined in Eq. (1.3.52) within the integral formulation (1.3.44),
and applying the operator £ to the governing equations in Eq. (1.3.4) (with F,, = 0)
under plane strain conditions, while utilizing the relationships in Egs. (1.3.2), (1.3.3),
and (1.3.46), yields,

1 U+ (A + 1) Wi — p (1= X2V wypy = 0, m,n =1,3. (1.3.55)

As discussed in previous sections, for plain strain,

dp O Ous oY
v _“v =247 1.3.56
YT T 82 U= g, + ox’ ( )
decouples the equations of motion into,
2 V2= (1—-N2V?) ¢, A V4p = (1 —N2V?) 1y, (1.3.57)
with the body wave velocities ¢, = Ain’i and cp = \/g :

We seek the solutions of Eq. (1.3.57) to be in the form of surface waves given by,
¢ — Pe ™7 ei(kx—wt)’ ,¢ _ Q T 6i(kac—wt)‘ (1358)

The above equations satisfies Eq. (1.3.57) only when my, my takes the values,

—02 —62 1.3.59
=4/1— =4/1— . 3.
m 2 — W22’ e 2 — N2w? ( )

By substituting Eq. (1.3.58) into Eq. (1.3.56), we arrive at the expressions for the

displacement field. Subsequently, we can obtain at the corresponding stress field as,

T = [ET% (m% — 1) — Zm%] LP—2 mQIQQ7

T
31 = —2im 1 P+ (1 +m3) LL,Q, (1.3.60)
T33 = [2 + % (m% - 1)] LP+2 m2]2Q7

(z — )

2, 32
+z _
I; = Ky |: R ] e Fmi% exp [i(kT — wt)]dZ dz, j=1,2 (1.3.61)
0 —00
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The nonlocal stress-free boundary conditions at z = 0 suggests 731 = 733 = 0. Since

11, Is # 0, a non-trivial solution exists if
[2+T72 (m] —1)] (1+m3) — 4mimy =0, (1.3.62)

where I' = Z_f The Eq. (1.3.62) is referred as the Rayleigh wave dispersion relation in a
nonlocal elastic semi-infinite medium (as per Eringen’s theory [60]). On rearranging the

terms of Eq. (1.3.62) while using Eq. (1.3.59) simplifies the dispersion relation as,

O (061@3 + Oég@2 + 063@ + Oé4) = O, (1363)
in which
1 o (148 4 1+ 48 — 352 6
a1—16+e < 1 )+e ( 1 +ep(1-0),
2 _ 93 _
agz—§+e2(25—f3>—e4(1+/3—252),
3
ag=S—f+é(2-5-5),
054:1_B7
c? 1-p
O=—, =Nk, = ——7—,
Y=o

where p is the Poisson’s ratio.
By simplifying Eq. (1.3.62) and performing a Taylor series expansion about ¢ = 0, we can
also arrive at a corrected dispersion relation characterized by an expansion that includes

only even powers of the nonlocal parameter e.

2)2 ©2
(26" —avT=en1- =

©2
, (207 (=" +902+ 02— 1) /1 - & L 19°—2y0" 4+ 6° — 20!

7—1_@2«92_7) N +O(e).

+€

(1.3.64)

Further we note that, the leading order term in the dispersion relation given in Eq.
(1.3.64) coincides with the well known secular equation of Rayleigh waves derived in Eq.
(1.3.14). However, the absence of first-order correction terms in this expansion may limit
the accuracy of the corrected dispersion relation.

As pointed out by Eringen [151], the nonlocal moduli, 8 (|x — X|, {) are strictly applicable
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to homogeneous and isotropic solids. Near the surface, material inhomogeneities emerge
within a boundary layer of a few atomic distances. This necessitates the development of
refined theory that accounts for boundary layer effects within the framework of nonlocal

elasticity to address this limitation and thereby improve upon Eringen’s original theory.

1.8.3.2  Refined theory for nonlocal surface Rayleigh waves

The use of differential operator £ often neglects the boundary layer near the sur-
face, leading to discrepancies between solutions obtained from integral and differential
formulations. This section briefly demonstrates that the solution of the conventional
differential model presented in [60] fails to satisfy the equation of motion for nonlocal
stresses derived from the integral theory, necessitating the derivation of refined boundary

conditions. The readers are advised to refer Kaplunov et al. [204] for detailed calculations.

Now, define the dimensionless quantities

=L o=z =X
TN Ty

where A is the wavelength of the propagating wave. Assuming slow variations of local
stresses o,,, along r—direction, a two-term Taylor series expansion of o,,, in terms of £

about the point € = & can be constructed, resulting in,
(€m) = — B A
Tmn S, 1) = Q€2 0 R
0 —00

Utilizing the integral identity, see Gradshteyn and Ryzhik [265],

/00 22 K, (a@) dz =
0

I )
€-9° 2 |, (m)dEdn

L+ oe2

(1.3.65)

2a2m+1 (1 + ama:) €xp (—(J/I) ) for m = 1, 2, (1366)

Eq. (1.3.65) can be reduced and further by neglecting higher-order terms O (e?), we get

[e.9]

o (61) = o- {1+f <1+ |ﬁ—n|> 8_2+...] T (€,77) exp (-LZM) 7.
0

2¢ 2 € 0¢?
(1.3.67)
As a result, the double integral I;, j = 1,2 defined in Eq. (1.3.61) can be approximated
using Eq. (1.3.67). This gives,

28 R
(1.3.68)

I; = eilko—wt) {[1 — € (1- mJQ-O)] exp (—km;jz) — % {1 +emjo — €2 (1 —mig + i)} exp <—Z>}
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Here mjo are the leading order terms in the expansion of m; in Eq. (1.3.59), i.e.,

2

— =4/1—- —. 1.3.69
C%’ ma2 2 ( )

my = 1—

The coefficients of exp (—2) in Eq. (1.3.68) are associated with the nonlocal boundary
layer.

Applying the stress-free boundary condition 73; = 0, yields a relationship between the
constants P and (). Substituting this relation into the expressions for nonlocal stresses

and considering the leading-order terms, we obtain

Q (1 —2m + miy) (1+m2) exp (-E) £0. (1.3.70)

Thus, we can conclude that the solutions obtained in Eq. (1.3.58) for Eringen’s theory
do not satisfy the equations of motion in Eq. (1.3.55), indicating an inconsistency within
the integral model.

In order to have an equivalence between the differential and the integral formulations of

nonlocal elasticity, substitute the differential formulation,
Gmn = (1= €V?) Tonn,

in the integral formulation given in Eq. (1.3.67).
This will yield on rigorous calculations, the additional conditions for which the equivalence

holds good. These are given by,
o N ]
Tmn

= 0z 2 0x20z

=0, m,n=1,3. (1.3.71)
z=0

Due to pre-imposed restrictions on 73; and 733 in case of a stress-free surface (i.e., 731 =
733 = 0), it may not be possible to satisfy all conditions simultaneously. This could
potentially lead to an ill-posed problem. As a result, the additional condition is applied

only to the specific stress component, 7. This implies that

o N 9 1
T11

z=0

Asymptotic analysis is then carried out to capture the effects of the boundary layer arising
from the application of nonlocal elasticity.

Boundary layer theory and asymptotic analysis [269] are considered the most valuable
tools in geomechanics for investigating the impact of boundary layers on the overall com-

plex non-local behavior of geological materials.
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To elucidate the behavior along the z—coordinate within the semi-infinite medium and in

the vicinity of the boundary layer, respectively, we define fast (1) and slow (7)) variables,
z z
nr = % Ns = Y

The following dimensionless quantities are adopted through out this section,

The nonlocal stresses are decomposed into fast components, ¢,,, and slow components

Pmn 88,

11 = pu + ¢i1,
T31 = P31 + €q31, (1.3.73)

~ 2
T33 = P33 + €7 q33.

As a result, the governing equations are reformulated into equations involving the slow-

varying and fast-varying components. This gives,

d < (agg * a;i?) — Pmn = ~Omn, 28;?" - a;fg" — G =0, (1.3.75)
with
.
o =172 aa_ag + (T2 -2) g—gj,
s = G+ BB, > (1.3.76)
033 = F_Qg—gj +(I2-2) %—Z}, J
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where I' =

K

and subjected to the boundary conditions,

A2p
)

D31 + €q31 =0,

7]3=0 T]f=0
p33| + € gs3 =0,

75=0 ny=0 (1.3.77)
32 + € 532 =0,

7s=0 nf:()

Op11 9q11 €2 336]11 —
+ —€e53+ — S — < = 0.
P11 _— 411 np=0 s 1s=0 any ny=0 2 9€%0n; nF=0 )
Also, on expanding certain quantities in asymptotic series as,

where gmn - {un> Omny Pmn, an}

As a result, we can rewrite the Eqs. (1.3.74)—(1.3.77) for various asymptotic orders

1=20,1,2,... as,

o' gpl) (‘92~§f) ‘¥ Y
Pin | PPon _ 21 Gim y Zom _ (1.3.79)
os ' on, O o5 Ony
and
2, (1—2) 2, (1—2) 2 (i—2) 2,(1)
0 DPmn 0 Pmn _p(i) _ _5(1) 7 0 dmn 0 dmn o q(z) _ 07 (1380)
with
(i) (4) (2) )
~(i —9 duy' —2 o) Ouy
o =T o + (F 2) o
=) _ ow" | ouy 1.3.81
O31 = ons + o0& > ( )
50 _ p2 o (r2-2) oy’
33 ons o€ )
and the boundary conditions at the surface n; = ny = 0 as,
)
() (i-1)
+ =0,
P31 - 431 np=0
A I (1.3.82)
1s=0 anO
(i) (i) opiy 9ay 1 Py ? _
+ — — i — 5 = 0.
P 1s=0 i =0 M gm0 O =0 2075 J
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By comparing the leading-order terms in Eqs. (1.3.80), we obtain the differential equation

for the zeroth order. Solving this equation yields a decaying solution of the form,

gon = QW) (&,1) e (1.3.83)

The values for the coefficients Q'Y) can be easily obtained using Eqgs. (1.3.77)(iv) and

~(0 ~(0
o_ _Lz0 o _ 10 o _ 1% (1.3.84)
1ns=0 1ns=0
As a result, the boundary conditions at the leading order becomes,
50 =0, s =0, (1.3.85)

which coincides the traditional boundary conditions in a local elastic semi-infinite medium.

At the first order, the solution to the differential equation in qﬁ% takes the form,

g = QL) (&,1) €71, (1.3.86)
where
)\
n_ 1 (= 859
Q1 - T2 (Uu nszo__a,;: 7e=0 )
(1 _ 1 (o5 _ Y 1.3.87
Q31 - 2 ( B 19=0 8%3&" 7e=0 3 ( )
(1) o 1 82~<1) 8359;)
QBS ) D€2 =0 - ns 02 ne=0 . )

Subsequently, the boundary conditions at the first order results in,

~(0
S0 _ 1 05
31 2 85

=0, W =o0. (1.3.88)

Notably, the first-order boundary conditions for a nonlocal semi-infinite medium include
an additional term that depends on oy;.
Subsequently, at second order, the equation of motion presented in Eq. (1.3.79) can be

rewritten as,

(1.3.89)

og | ooy _owd o (ow) | 0w
s oam,  orr  oe\ oz o |
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As a result, the boundary conditions at the second order becomes,

A
( ) 925 (0) 32~(0) 1 a~(1) aZ'V(O) o
Tor + Tt T 3 (o~ mee) =0
> (1.3.90)
S . Y
Gy + 5o+ S 12 — 0,

/

Using the fact that, 7~ %(?mn, 2~ }2 Omn, the boundary value problem can now

be given as,

001, Oos, 0O, , 0% (0*u, 0*u,
= — — € — —_— 1.3.91
oc T on,  or  “om\oe T op (1.3.91)
subjected to,
\
O31 — %agél + €2 (32? 4 2o 031 + % gnaéz) =0,
b (1.3.92)

~ 2 [ 0%533 0?33 1 0%011\ _

Vs
Upon recasting the refined boundary conditions in terms of the original variables em-

ployed in the analysis, the governing equations that describe the propagation of Rayleigh

waves on the surface of a nonlocal elastic semi-infinite medium can be expressed as

\

3011 T 3031 — (1 _ NQVQ) 6815%1
> (1.3.93)

2
80‘13 + 60'33 _ (1 . NQVQ) 88;3, )

with the refined boundary conditions prescribed at the surface z = 0 as,

)

o — S N (G G 3 h) = 0,
, (1.3.94)

7 2 [ 0033 02033 1 &% 0
33 R ( 0x? 022 2 6x211) ’
y,

Employing these boundary conditions, the dispersion relation can be derived within an
error of O (€?) for Rayleigh waves propagating in a nonlocal elastic semi-infinite medium
as,

(14 m2)* = 4migmag — 2emap (1 = T72) (1 —m2) = 0. (1.3.95)
35



The leading-order analysis recovers the classical dispersion relation. This analysis gives
a first-order corrected dispersion relation, offering a more refined correction to the effects

of nonlocality compared to the correction established by Eringen’s theory [60].

1.3.4 Micropolar elasticity theory

(Classical elasticity theory faces limitations in accurately modeling materials with com-
plex microstructures or scenarios involving significant stress gradients. For instance, it
struggles to predict the behavior of materials like composites, polymers, soil, and bone,
where internal structures play a crucial role [266]. Additionally, it cannot adequately ad-
dress situations where the stress-strain relationship is asymmetric, such as those encoun-
tered in an elastic continuum subjected to a volume moment distribution. To overcome
these limitations, Eringen [51] followed by Nowacki [52] extended the theory by incor-
porating body microinertia effects, leading to the development of micropolar elasticity
theory. In essence, micropolar elasticity models a material as a continuum embedded
with uniformly distributed rigid particles of infinitesimal size, allowing for a more intri-
cate description of material behavior.

In this section, we will present the fundamental relations, including the constitutive stress-
strain relations and governing equations, within the context of a general linear micropolar
elasticity theory for a homogeneous, isotropic solid.

In a linear micropolar elastic solid, the displacement field vector u is complemented by a
microrotation field vector ®, which is independent of the displacement field. A micropolar
deformation is fully characterized by the asymmetric strain tensor ;; and the curvature

tensor I';; , defined as,

Emn = Upm — 6mnpq)pa

an = (I)m,na

m,n =1,2,3. (1.3.96)

where €,,,,, stands for the permutation symbol.
Using these definitions in Eq. (1.3.96), the relation for the microrotation vector can be

given as,

1
D, = §emnp (Upn — Enp), Mmyn,p=1,2,3.
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The strain tensor written in Eq. (1.3.96) is clearly an asymmetric vector, as a result it

can be decomposed into symmetric !, and asymmetric components &*,  as,
Emm = €1, + &b

where

1 1

girm = 5 (un,m + um,n) 5 5717171 = 5 (un,m - um,n) - 6mnp(I)p-

Now, for a linear isotropic micropolar medium, the theory proposes two sets of constitutive
relations as,

Omn = Ae 6mn + + K)Emn + 1 Enm,
w (htr) s m,n=1,2,3. (1.3.97)

I, = al'py 0mn + Bl + 7 Lo,
where A and p are the well-know Lamé’s constants; k, «, 3,y are the micropolar constants;
Omn denotes the Kronecker’s delta tensor.
In a micropolar continuum subjected to a body force, F,, and a body moment, M,,
the internal loads between adjacent elements are characterized by a classical force stress
tensor, o,,,, and a micropolar couple stress tensor, I1,,,. These stress tensors must satisfy

the balance of linear and angular momenta, resulting in governing equations expressed as,

Umn,m+pFn = PUnt, (1 398)

Hmn,m + EnmpOmp + pMn = ] P (I)n,tb

in which p is the material mass density and j is the microinertia.
Substituting the constitutive relations in Eq. (1.3.97) into the governing equation in Eq.
(1.3.98), we can obtain the system of governing equations for a micropolar elastic solids

as,

(A + 2,“) Um,mn + (N + /i) Un,mm + K anmq)m,p + P Fn = P Un,t,
(1.3.99)

(O{ + ﬁ) (I)m,mn + Y Un,mm — 2K (I)n + pMn = ] pcbn,tt-

The strain energy density € for a linear isotropic micropolar continuum is given as [52],

1
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A positive definite quadratic form for the strain energy density £ imposes the following

restrictions on the material constants,

>0, k>0, 3AN+2u+r>0,

v>0, (>0, 3a+p+~v>0.

1.3.5 Nonlocal micropolar elasticity theory

(Classical continuum mechanics treats material as a collection of point particles, each
capable of only translational motion and interacting solely with its immediate neighbors.
This limits its applicability, failing to capture the discrete nature of materials and micro-
scopic phenomena such as micro-deformations and micro-dislocations. Recognizing this
limitation, a more generalized perspective emerged, acknowledging the material particle
as a finite volume element capable of both deformation and rotation. Furthermore, the
behavior of any given particle cannot be fully understood in isolation, as it is influenced by
interactions with other particles throughout the material. These considerations have led
to the development of nonlocal microcontinuum theories, which provide a more compre-
hensive framework for understanding material behavior beyond the limitations of classical
continuum mechanics.

Here, we will write the constitutive stress-strain relations and equations of motion in a
non-local micropolar elastic medium.

A nonlocal micropolar elastic solid exhibits both translational and rotational motions,
which give rise to nonlocal force stresses and nonlocal couple stresses within the medium.
The integral formulation that relates nonlocal force and couple stresses with local force

and couple stresses, respectively are given similar to Eq. (1.3.44) as,

) = [ B (b~ %2 0,0, 403

m,n=1,2,3. (1.3.100)
) =0 = X1 T () 42(%)

where [ (|x —X|) represents the nonlocal kernel, which can assume any of the forms

defined in Egs. (1.3.47) - (1.3.53).

The constitutive relations that relate these local stresses with the strain tensor (¢) and
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curvature tensor (I') are given as [61],

Umn:A€ 5mn+ ,U/_{"i 5mn+ﬂ£nm;
o ( ) m,n=1,2,3. (1.3.101)
Hmn = arpp 5mn + ﬁ an + ’anma
Here k, a, f and ~ are the micropolar constants; A, u are the elastic constants; 9,,, denotes
the well-known Kronecker delta symbol. Moreover, the relation between the curvature

tensor and strain tensor with the displacement components and rotational components

are given as,

Emn = Upm — 6mTLp(I)pu

an = (I)m,nu

m,n=1,2,3, (1.3.102)

where u,, and ®,, are the displacement components and microrotation vector components
of the surface wave, respectively.
Further, the governing equations in a non-local micropolar elastic solid (without any body

forces or moments) are given by,

Tmn,m — PUnit = O,

m,n =1,3. (1.3.103)
12,2 + 32,2 + EnmpOmp — ,0] CD2,tt = 07

R\

Having established these fundamental concepts and mathematical tools in this section,

we now proceed to delve into the core research problems addressed in this thesis.
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CHAPTER 2

Rayleigh Wave Propagation in Nonlocal Micropolar

Semi-infinite Medium






This chapter investigates wave propagation in a semi-infinite medium characterized
by nonlocal and micropolar elastic properties. We begin the study by considering the con-
stitutive equations and governing equation of motion under nonlocal micropolar elasticity,
as outlined in Egs. (1.3.100)—(1.3.103). Utilizing asymptotic analysis, we derive refined
boundary conditions for the propagation of Rayleigh waves. As a practical application,
we then examine and analyze the boundary value problem of the propagation of Rayleigh

waves within a viscoelastic semi-infinite medium.

2.1 Derivation of refined boundary conditions on the surface of
a nonlocal micropolar semi-infinite medium*
2.1.1 Mathematical formulation

Consider the two-dimensional singular non-local kernel as provided in Eringen’s theory

[60]7

5% = x|, X) = 5o Ko (WX’ ) ‘X>) (2.1

where N is the non-locality parameter associated with the micropolar medium.
Consequently, the relationship between conventional local stresses and non-local stresses

can be established through the integral formulation (1.3.100) as follows:

& & r—x’ z—z'
= e [ [ (T gy a0
0 —00

2mN2
(2.1.2)
& & r—x’ z—2z!
S A = T
0 —00

Additionally, utilizing the same two-dimensional kernel as specified in Eq. (2.1.1), the
differential model proposed by Eringen [60] relates the local and non-local stresses as,

(1 =NV 7 = O

(1 =NV 7 = [

(2.1.3)

Introduce the dimensionless variables,

N
X=§,n=§, ande:x<<1

*Published in Zeitschrift fiir angewandte Mathematik und Physik (Springer), (2024), DOI:
10.1007/s00033-024-02407-4
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is the small dimensionless parameter associated with non-locality in the micropolar medium.
Utilizing the approximation provided in Eqs. (1.3.67), that takes into account the assump-
tion of slow variation of local stresses 0, along x—direction, we approximate Eqs. (2.1.2)
as,

/

n

I e -]\ 07 7' — 1|
o, N 1+ —=(1 — | o, 1 -1 D) dy 214
T 2 [+2(+ - )axza (x,n') exp - n (214)

L= € ' —nl\ 9 ' —n
o A — 1+—(1 | T (s 1 ) 4y (215
T 26/0 { +2( + Iy (x,n') exp - n (2.1.5)

Using the differential formulation of non-local stresses as in Eq. (2.1.3), the equation of

motion for the propagation of Rayleigh waves with the displacement components in the

form of local stresses can be written with the help of Eq. (1.3.103) as,

Oing + O3 — p (1 = N2V?) w4 = 0,
s+ Tanz =P ( ) st n=13 (2.1.6)

iop + s + 031 —013—pj (1 — N?V?) Qo =0

To decouple the system in Eq. (2.1.6), we shall apply the method of potentials in which
the displacement components are decomposed into the sum of a scalar function ¢ and a

vector potential W = (91,1, 93) as,

Ul(.T,Z,t) :¢,x—¢,27 Ug(ﬂf,z,t) :¢,z+¢,x (217>
This reduces the governing coupled equations of motion given in Eq. (2.1.6) as,

(A+2p+r) V2 —p(1 =NV?) ¢, =0,
(4 + k) V2 + k By — p(l— N2V2) Yy =0, (2.1.8)
YV2Dy — KV — 25y — pj (1 — N2V2) Dy yy = 0.

Let us define certain velocity parameters for the micropolar elastic media as

A+2u+k W+ K \/E ~y
L= \|———, o = , 3= ]—, 4= ]—.
p V. » p V pj

and assume that the solutions to the system of equations to be propagating in a time-

harmonic form as,

{.0, 02} = {PY, Z} e P2t (2.1.9)
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Substituting Eq. (2.1.9) in decoupled system of equations of Eq. (2.1.8), we get,

Qs(l’, z, t) — Pefkrlzei(lmfwt)7
U(x,z,t) = [Qe 727 4 Rekraz] gilke—wh) (2.1.10)

®y(z, 2, t) = s k% R ehraz gilke—wi),

where

) v? 2c2 v? 2 — 20? 2c3
rs=l-g s \l-—= ) s=3|1- 2= (1% /|
2 — e Jw 3 2 — e Jw

are such that Re(r;) > 0 for i = 1,2, 3 to ensure the exponential decay of the waves from
the surface.
The traction-free boundary conditions at the surface z = 0 indicate the vanishing of

force-stresses and couple-stresses at the surface, i.e., at z = 0,
T31 = O, T33 — 0, T3 = 0. (2111)

2.1.2 Failure of equivalence

This section aims to verify the equivalence between the integral and differential formu-
lations of Eringen’s non-local elasticity theory. We will utilize the differential form of the
non-local model in the equation of motion, while employing the integral formulation for
the boundary conditions, and subsequently assess their equivalence. For our convenience,
we will omit the time-harmonic terms for further studies.

Now, the non-local stresses can be explicitly written from Eqs. (2.1.4) and (2.1.5) using
Eq. (1.3.97) as

T = kQ{ (A+2,u+mfA'r1) PIi+irg 2#+/€)Q[2+ZT‘3(2,LL+I€)R13:|

s = k2 [ iry2u+x)PI; — (/L+/$+,ur2) QIQ‘F(SI{*(/L‘FK)*/LT%) ng}
o= K [ L (2u+R)PI — (/ur [+ K) 7"2) Q127<sn+u+(u+/i)r§) ng}
a3 = [(A+2,u+/$ rZ A) Pl —ir( 2#+I€)Q[271T3(2,LL+I€)R13}

T2 = iskyRI3

T3 = 78163’)/7'3RI3
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where

1 [ N2 lz" — x|\ &° ) |2" — 2| ;o
I, = 7R ; [1 + - (1 + R 922 | &P (ikx — kr;z) exp i dz', i1=1,2,3 (2.1.12)

On splitting I; in Eq. (2.1.12) over the interval from 0 to z and from z to 2’ following the
approach of Kaplunov et al. [204], and subsequently simplifying, we obtain,

L= [1+¢€ (rjy—1)] exp(—kriz) — % [1 +erip + € (r?o -1- %ﬂ exp (—k—:)
(2.1.13)
The coefficients of exp (’T’“Z) in Eq. (2.1.13) are linked with the boundary layer formed
as a result of the non-local elasticity effects in the medium.
Substituting in Eq. (2.1.11), a system of equations in P, Q, R is obtained. This system
is then solved for the non-trivial solution to obtain the dispersion relations for Rayleigh

waves within an error of O (¢?) as,

(1+d>27’107”20— (7’§0+d)2 = 0 (2114)

Tsp — 0 (2115)

with d = ﬁ Also, 119,720 and r3g are the leading order Taylor series approximations of
1,72 and r3, respectively within an error of O (¢?) and are given by,

2 2 2 2
Eqgs. (2.1.14) and (2.1.15) represent the dispersion relations consisting of two modes of
Rayleigh waves, one of which is entirely due to the micropolarity in the medium. Also,
these two modes do not coexist at the same period. In other words, the relations in Egs.
(2.1.14) and (2.1.15) cannot be zero simultaneously.
For the mode corresponding to Eq. (2.1.14) and from the boundary conditions at z = 0,

the arbitrary constants P, ) and R are related by,

i (r3 +d) (14 (r10 — 720) (€ — €2 730))
P= (1+d)r

Q, R=0

Substituting these values of P, @, R into the equation of motion given in Eq. (2.1.6) for
n = 1 and analyzing the leading order term that is associated with the boundary layer
near the vicinity of the surface, we observe that,

L3

2(1 I d)2 1o [(1 + d)2 7“%0 — 27"50 (d-i— 7’%0 — 1) — (1 + d2)] exp (—k?z) #0 (2.1.16)
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Similarly, for the micropolar mode corresponding to Eq. (2.1.15), the relation between

the arbitrary constants is given as,

i(1+d)ry
P = 2 +d [L+ (ri0 = 120) (€ = € 120)] Q
13y +d)° — (1+d)>ripr
R — (rzo + d) 2( JATEEY [1—|—(7’30—7"20)(6_62T20)} o
T30 + d

Substituting the same into the equation of motion in Eq. (2.1.6) at n = 1, we have at the

leading order,

3

(L4 d)*riorao — (rp + d)Q} exp (_fz) #0 (2.1.17)

r3, +d

which is true as this mode does not coexist with the mode corresponding to Eq. (2.1.14).
Egs. (2.1.16) and (2.1.17) indicate that the solution for the Rayleigh wave obtained from a
differential non-local model does not comply with the original governing equations derived
under the framework of the integral non-local elastic model. This suggests the failure of
the equivalence between the differential and integral formulations of the non-local model

in case of a non-local micropolar semi-infinite medium.

2.1.3 Equivalence conditions

Upon substituting the differential form of the local stresses provided in Eq. (2.1.2)
into Eqgs. (2.1.3) and (2.1.4), which represents the integral formulation of the non-local

stresses at the boundary, we get,

1 e’} €2 77/ 82 5 82 82 , o ,
o = afy e (D) B [ ()] e ey 7

1 [ e n 5? 9 82 82 N -2y
el = g, [0 (00 e [ (B o) e 0o 7 0 a0

This is further simplified by ignoring the higher order terms of O(e?) to get,

Tmn

OTmn €3 P
- - =7, < 2.1.20
7 n=0 2 7 n=0 te on * 2 0x2%0n ( )
| =0 n=0
aﬂ'mn 63 agﬂ-mn
- — =, < 2.1.21
m n=0 2 | n=0 e on 2 0x20n ( )
| n=0 n=0
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Further rearrangement gives a set of conditions,

0 e 03
l—el 5 — 9.1.22
{ “on " 2 02 577} T 0 ( )

= 0 (2.1.23)

| o &

—€—— = 55| T
dn 2 0x?0n

n=0

for which the equivalence between the differential and integral non-local model is possible.

However, for the equations of motion described in Eq. (2.1.5), the boundary conditions

derived from Egs. (2.1.22) and (2.1.23), along with the already prescribed boundary

conditions in Eq. (2.1.11), result in an ill-posed problem. Thus, we conclude that not all

the conditions in Eqgs. (2.1.22) and (2.1.23) can be satisfied at the boundary.

2.1.4 Singularly perturbed differential model

Here, we redefine the proposed problem by considering the singularly perturbed dif-

ferential equations as

Tin,x + T3n,z — P Un,tt = O, n = 17 3

(2.1.24)
T2z + T2, +T31 — Tiz — pJ Poy = 0
N2 (Tmn,xx + Tmn,zz) — Tmn = —Omn,
and m=1,3 (2.1.25)
Nz <7Tm2,xx + 7Tm2,zz) — Tm2 = _Hm27
with the boundary conditions prescribed on the surface z = 0 as,
7'31‘220 = O, 7—33|z:0 B O, 7T32‘Z:0 =0 (2126)
o N 9 o N 9
1—-N= - — — =0, [1-N—— — ——— =0 2.1.27
0z 2 0x? 82] m » ’ [ dz 2 0a? 8,21 2 » ( )

This suggests that by employing the singularly perturbed differential model as defined
above, an equivalence between the differential and integral formulation can be obtained

for the non-local force stress 71 and couple stress mis.

Asymptotic analysis

We shall employ asymptotic analysis to study the behavior of the solutions of the
singularly perturbed differential problem presented in Eqs. (2.1.24)—(2.1.27).

To do this, we shall introduce the dimensionless parameter,

€:X,
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The presence of this small parameter ¢ leads to two distinct scales of behavior in the
differential equation. To interprete this behavior, we introduce the following slow and
fast dimensionless variables along the length scale as,
z

np = —.

TR
Here, s, represents the slow behavior of the system, governed by simpler dynamics, while
»5 captures the rapid changes occurring in the boundary layer of the system due to the
presence of €.

Further, define the following dimensionless parameters,

= 7=y
X_>\’ - A )
~ Tmn ~ Omn ~ Tmn 7 Hmn
Ton = —— 5 Omn = y Tmn = 7~ v mn — 7 Ny
pt K pn+ K (e +K)A (e +K)A
- N 2
J:%, by = by, um:T, m,n=1,2,3

Following the approach of Chebakov et al. [203] and Kaplunov et al. [204], we decompose
the non-local force stresses, and couple stresses into slow and fast components as,

\
T = P11 + qu1

T31 = P31+ €4
for non-local force stresses: . . (2.1.28)

Ti3 = P13 + €q31

~ 2
T33 = P33 + €7 ¢33 )

T2 = 12 + S12
for non-local couple stresses: (2.1.29)

T3p = T3p + €532
where Py, 'mn for m,n = 1,2,3 represents the slow-varying components of the force
stresses and couple stresses, respectively, while ¢nn, Smn for m,n = 1,2, 3 represents the
fast-varying components of force stresses and couple stresses, respectively. In the context
of a micropolar solid, it is significant to acknowledge that the force stresses lose their sym-
metry. Specifically, for slow-varying quantities, we assume that the quantitites p,., # Pam-
However, in contrast, the fast-varying stress components within the boundary layer retain
symmetry, i.€ ¢mn = Gum- This symmetry vanishes as we move away from the boundary

layer.
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As a result, the governing equations are reformulated into slow and fast-varying compo-

nents, yielding the following expressions,

8pln + Opsn __ 62611 8‘]ln’b + 9q3m __ — 0

O at2 Dy
(2.1.30)
67" Br 2% 85 0s3o0
Oria | Orsy +p31 — P13 = J t22’ Os13 4 8;43; 0
0! mn 82 mn =~ 8 mn 8 mn
€ (p + 81;){2)_pmn:_0-mm 62 z( + q _anzo
and - (2.1.31)
€ (a’f'm2 + 387;{772171) — T = _I_Lnn7 626 Smn _'_ o2 Smn — Sy, = O
3\
~ 2 ouy
o =ai 5+ (o —2+a3) G2
~ _ Ou 2\ 9 2 &
J13 = 8LX3+(1_CK2)8_2+@2(I)2
= _ Ouy 2\ Oug
) 0'31—8—%54-(1—052)@—052@2
with (2.1.32)
~ 2 Oug 8Ul
033 = 13%"‘( —2+a2) Ox
T 2788
ng = Q3 J 0_X2
T .2 78%
H32 = Q3 J 8_%3 J
subjected to the boundary conditions,
\
D31 + €31 =0,
#s=0 %f:O
2 ~0
D33 + € gs3 =0,
M= xp=
739 —|—6832 — 0 (2133)
#s=0 #y=0
P11 + q11 — ¢ Op11 _ Oqu _ & qu -0
. =
»#5=0 np= 95t »#5=0 9xy »p=0 2 Ox* Oy »2p=0
12 + s12 € 42 — Doz . =0
=0 55=0 0 -0 Oy 55 =0 2 Ox? 8%f —0 )

where a1 = &, ap = £, a3 = £ are the dimensionless quantities.
ca’ ) co

The quantities Pmn, Gmns Omns Tmns Smns mn, Un, @2 are now expanded in an asymptotic

series of the form,

g=g9 +eg® 4+ e2g® 4 (2.1.34)
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where g€ {pmnv Qmn> Omns "'mny Smn, Hmn; U, (1)2}

As a result of the asymptotic expansion sought in Eq. (2.1.34), we can rewrite the Eqs.

(2.1.30)—(2.1.33) for different asymptotic orders i = 0,1,2,..., as

Y

oply | o) _ o%ul) 8q(z) 4%
ax Oxs 02 ) Osey
(2.1.35)
orld arld ) () o2a%)  asl) | asly
12_|_8 +p31_p1 =J 6{22’ 12+8 =0
2pn? | 92pln? ;Z?,)?’L _ _57(7% 2qlin? BQan _ )n 0
X2 D32 - » T ox? ] -
and %, P T (2.1.36)
0 "m2 627"5:7.; ) _ T(Z) _H(Z) 8251(;(1;7, ) BQSmn (Z — O
2 D52 mn — mn; 2 %J% n —
A
~@) _ o 0u" 2_9 oay”
11 = @1 5y + (af — +a2) a%
~(1) ~(1) ~
~() _ ou 2\ Ou 2 F ()
013 = 3; + (1 —a3) 8;3 + a3 b,
S0 _ o oy o 2 50
. 31 3%8+( 2) ax 272
with (2.1.37)
, ~(i) ~(1)
~(3) 9 Ou 2 2\ Ou
033 = af 52 + (] — 2+ a3) B
0 — o2 g 2%
12 37 oy
~ = (i)
o®s
M) = a3 J 52
/
and the boundary conditions at the surface s, = 5y = 0 as
.
i) (i—1) _
P31 + g3 =0,
s5=0 2p=0
(1) (i—2) _
P33 + 433 =0,
#s=0 »x§=0
. -
7”:(;2) + ng ) -0 (2.1.38)
7s=0 »p=0
O IOl B 1" o 1%t
o, 22 B 72 D % 77 r0
NOIRENG _ oy Y _ 95y 10 —0
12 #s=0 12 rp= 02 #5=0 0%f | ,1,=0 2 Ox? 0y »p=0 )
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Comparing the leading order terms in Eqgs. (2.1.36), we have

PO — 500 0 _ {0

0) = (0) 04 (2.1.39)

02gin st

% —q©@ =0, % — 50 = (2.1.40)
f f

The differential equations in Eqgs. (2.1.40) are solved for the decaying solution to obtain,

O =QW (x,1) e, s©) =59 (x,t) e (2.1.41)

where the values for some of the coefficients Q%% can be easily obtained using Egs.
(2.1.38)(iv) and (2.1.35) as,

~(0 ~(0
o_ 10 o _ 1057 o _ 1051 (2.1.42)
11 g T, oy W 2 O v W33 2 0y? L
#s=0 #s=0
The values of Su evaluated from the leading order term analysis are,
0 1~0 0 1 o119
Siz) = ) Hg2) ) §2) = 9 —8; ., (2'1-43)
As a result, the boundary conditions at the leading order becomes,
sV =059 =0 1Y =0 (2.1.44)

which is the classical boundary conditions in a local micropolar elastic semi-infinite
medium.

Further analysing the first order terms at i = 1 for Eq. (2.1.36), we get

P 50 0 )

n mn? mn mn? (2'1'45>

&gy

% — V) =0 (2.1.46)
f

The solution to the differential equation in Eq. (2.1.46) takes the form,

Ghn = Qi (0, 1) €7,

(2.1.47)
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where

o =3 (] -5
2 #5s=0 95z 2#5=0
QW — _1 (o _ 5y (2.1.48)
31 2 X a=0 Oxs O e=0
oW - _1 9251 it
33 2 Ox? a=0 O OX 2a=0 )

as,

g _ 1 (gow|  _ o
12 — 2 12 =0 O o ( )
. T 2.1.49
s _ _a (eny| _ony
3 2 Ox o Ors OX 2e=0

Subsequently, the boundary conditions at the first order results in,

o 105y 4y o~y 100
g 2 o, 5 =0, TI{) - 5 a; =0 (2.1.50)

It is noteworthy that in the first-order boundary conditions of a non-local semi-infinite
medium, an additional term dependent on &1 appears.

Now, at the second order, the Eqgs. (2.1.36) can be expressed using Eq. (2.1.40) as

5@ 4 o2 | 9% (2)
Omn + 80—)(2 aa—%g = Pmn
(2.1.51)
~(2) 82ﬁ(0) aQﬁ(O) NC)
I35, + ax?f + a%? = T3
This rewrites the equation of motion presented in Eq. (2.1.35) as,
ooy, | ooy _ o) o2 (oray) | oul)
ax T o o o2 o 5 )
(2.1.52)

S o L o _ e e (a0
O 31 13 ot? ot? Ox2 032
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As a result, the boundary conditions at the second order can be written using Eq. (2.1.38)

as,

\

N R O T A

31 0x2 032 2 ox Oxs Ox ’
~(2) | 9%y | 9%y 1 9%)) _ 2.1.53
O33 + 5y + D32 2 02 =0, ( )
O, eI en (o end)

32 Ox? 02 2 Ox s OX ’ J

Using the fact that, f&) ~ 1f f®@ ~ L ffor f € {Gpn, Ly}, the boundary value

problem can now be given as,

91y | O0Gsn _ %y _ 202 (%W, 9%,
ox T om = a2 Cor\ad T aa )
(2.1.54)
812112 @ P _ = _ 82&3'2 _ 28_2 82432 82@2
Dx + Dz +o31 —oi3=J o2 J o2 \ ax2 + 92 )
subjected to,
\
~ o 58511 2 82331 62531 1 82511 _
031 2 Ox t+e ( ox? + 032 + 2 OxsOx )] 0
~ 2 ( 8%5s3 %533 _ 1 9%\ _ 2.1.55
0-33 + € < 8X2 + a%g 2 aXZ - O ( )
T _ gaﬁ_m 2 82ﬁ32 32ﬁ32 1 82ﬁ12 _
H32 2 Ox t+e ( Ox? + 032 + 2 OxsOx ) 0
Y,

Refined boundary value problem

After recasting the refined boundary conditions in terms of the original variables em-
ployed throughout the analysis, the governing equations describing Rayleigh wave prop-
agation on the surface of a non-local micropolar semi-infinite medium can be expressed

as:

Ox ot?
% + % — p(l _ N2V2) %, (2156)

Ol | Ollsy o 2772\ 82y
S 4 82 gy — o3 = pJ (1 —NV?) 2,
Vs
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with the refined boundary conditions prescribed at the surface z = 0 as,

\

N 9 2 [ 82 0?2 1 92 _
om — 328 N (S 4+ S 4 L 2o ) — 0

o33 + NQ <8;;§,3 + 8;2233 . % 8;;51> =0 (2157)

2 Oz Ox? 2 0x0z

I Oll19 2 [ 9%TI3 %1139 92115 0
32 S R < 022 1 )
Y,

Dispersion relations

Substitutition of the solutions obtained for the displacement potentials and microro-
tation components in Eq. (2.1.10) into the refined boundary conditions in Eq. (2.1.57)
gives the system of linear equations in P, () and R.

This system is solved for non-trivial solution by ignoring the terms of order greater than

or equal to O(€?) to obtain the dispersion relations as follows,

1
(2- ag)Q 0720 — (1473 — O‘%)Z te 520 (1=rfo) (2—0a3) (2— 207 —3) | =0,
(2.1.58)
1
T30 — 5 e=20. (2159)

This suggests the existence of two modes of Rayleigh waves that can propagate in a
non-local micropolar elastic semi-infinite medium, with one mode arising solely from the
micropolarity of the medium and disappearing in its absence.

If v is the velocity of Rayleigh waves propagating in a non-local micropolar elastic semi-
infinite medium, then the dispersion relations given in Eqs. (2.1.58) and (2.1.59) can be

rewritten as,

2 v2 v2 v2\? v2
2—a? 1——54/l———(2-a2— —(2-a3) (2—-2a3 — a2 —|=0
S e (2-et=g) +e [ b e-mi-a) gy o
(2.1.60)

2 22\ 1
\/1—1}2(1—F?é>—e:0. (2.1.61)
ci Jjw 2

As expected, the dispersion relations obtained at the leading order align exactly with
the previously established results for a local micropolar elastic semi-infinite medium (see,
Eringen et al. [60], Rayleigh [14]).

Now, let ¢ = - be the dimensionless phase velocity of Rayleigh waves propagating in
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a nonlocal micropolar elastic solid. Also, let d = ﬁ denote the dimensionless parameter
characterizing the micropolar constant within the semi-infinite medium domain. It follows
that o can be approximated by d with an error of O(d?).

As a result, the dispersion equation in Eq. (2.1.60) can be rewritten as,

2 1 2

(2 — d)? 1—%\/1—02—(2—d—02)2+6 5(2—61)(2—2og—d)%\/1—@ =0
1 1

(2.1.62)

2(1— : : : .
% relating with Poisson’s ratio, v.

, in which of =
To understand explicitly the nonlocal and micropolar effects on the phase velocity of the
Rayleigh waves, we shall expand ¢ in an asymptotic series of the form upto an error of

O(€?) and O(d?),

c=c —|—dc£2)+e(c$1) +dc$)) +..., (2.1.63)
where ¥ = ¢, is the dimensionless phase velocity of Rayleigh waves propagating in an

elastic semi-infinite medium in absence of both nonlocal and micropolar effects.
Expanding Eq. (2.1.62) in a Taylor series about the point ¢ = ¢, and using the asymptotic

series, we get the values of the corrections as,

— )
R ¢ (2=c) (2.1.64)

4 (2—0%)3—4<1+%(1—203)>_
L a1 _
/T —c2(2—32)? <$—1>
M= - ! - (2.1.65)
2 (2—c$)3—4<1+§(1—2c3))

G @-Dk/1-F -2l e -2 (5-1) 1- &
1 1 g 2
—d - -1 (1+ L1 -23)]
W= - 1 . (2.1.66)

(2 — 2y} —4(1+§%(1 —203))

Q

It can be easily verified that the micropolar mode of Rayleigh waves corresponding to Eq.

(2.1.61) propagates in a non-local micropolar semi-infinite medium with a velocity,

2 2 2
v= \/c?l (1—%) +j%. (2.1.67)

This equation clearly highlights the dispersive nature of the wave mode even in the absence

of nonlocal elasticity.
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2.1.5 Graphical discussions

Dispersion analysis

Dispersion plots are generated to analyze the wave behavior. Figure 2.1.1 represents
the phase velocity curves for the mode corresponding to Eq. (2.1.58) in a nonlocal mi-
cropolar semi-infinite medium. In a purely local model (without nonlocal elasticity), the
wave is non-dispersive (constant velocity). However, the presence of nonlocality intro-
duces dispersion, as shown by the first-order approximation in the dispersion relation,

and the corresponding variation in phase velocity with wave number is depicted in Figure

2.1.1.

0.94
— — —1. Leading order
0 0.935 h
oa ———2. First order approximation
0.98 - 4
0.925 J

Non-dispersive nature

0.92

0.915

Dispersive nature
0.91

Dimensionless phase velocity,

0.905 -

0.9 Il Il Il
0 0.01 0.02 0.038 0.04 0.05 0.06 0.07 0.08 0.09 0.1

Dimensionless wavenumber, ka —

Figure 2.1.1: Corrected phase velocity curves for one of the modes corre-

sponding to elastic counterpart

Furthermore, the micropolar mode of Rayleigh waves exhibits dispersion in both local
and nonlocal elasticity scenarios. Figure 2.1.2 illustrates this by plotting the phase velocity
variation versus wavenumber. Curve 1 represents the local elastic case, while curves 2, 3,

and 4 correspond to the nonlocal elastic case based on the first-order approximation in

the dispersion relation provided in Eq. (2.1.59).
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Figure 2.1.2: Corrected phase velocity curves for micropolar dispersive

mode for different values of [ = ’1]—2

Sensitivity analysis

A sensitivity analysis is then performed to understand how small perturbations in
micropolar or nonlocal effects affect the wave propagation. This helps us to assess the
robustness of our model.

The linear relationship observed in the Figure 2.1.3(a) indicates a direct and predictable
interaction between the micropolar parameter d and the sensitivity of the phase velocity
to changes in the non-local parameter €. The negative values of Z—E throughout suggests
that an increase in the nonlocal paramter e consistently leads to a decrease in the phase
velocity c¢. This finding is significant as it highlights the dampening effect of the nonlocal
properties on wave propagation velocity.

The sensitivity analysis graph of % versus Poisson’s ratio v as described in Figure 2.1.3(b)
for varying micropolar parameter values reveals important interactions in the non-local
micropolar model. The consistently negative % demonstrates a general reduction in phase
velocity with increasing e. The moderation effect observed with increasing v highlights
that the materials with higher Poisson’s ratios reduce the sensitivity to non-local effects.
Furthermore, the convergence of curves at higher v values signifies that the influence of

micropolarity diminishes in materials with high Poisson’s ratios.
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Figure 2.1.3: Variation of the sensitivity of phase velocity ¢ with respect to
nonlocal elastic parameter € as a function of (a) micropolarity parameter d

(or §) (b) Poisson’s ratio v

The positive values of % in Figure 2.1.4(a) indicates that micropolar effects in the
medium always contribute to an increase in the phase velocity of Rayleigh waves. How-
ever, the negative slope of the graph shows that the rate of this increase diminishes as
the nonlocal parameter € grows. In practical terms, this means that while micropolar
elasticity inherently increases wave speed, the presence of nonlocal effects can moderate
this increase. The negative slope further illustrates that the impact of nonlocal effects on
reducing phase velocity becomes more significant as the micropolar parameter d increases
in the medium.

The sensitivity analysis of % with respect to Poisson’s ratio v as depicted in Figure
2.1.4(b) for varying non-local parameter values reveals significant insights into the inter-
play between material properties, non-local effects, and micropolar characteristics. The
consistently positive % indicates that the phase velocity increases with the micropolar
parameter across all examined Poisson’s ratios. However, the decreasing % with higher
v suggests that the impact of micropolarity on phase velocity weakens as Poisson’s ratio
increases. Moreover, the convergence of curves at higher v values signifies that, in ma-

terials with high Poisson’s ratios, the effect of the non-local parameter on phase velocity

becomes minimal.
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Figure 2.1.4: Variation of the sensitivity of phase velocity ¢ with respect to
micropolar parameter d(or §) as a function of (a) nonlocal elastic parameter

e (b) Poisson’s ratio v

2.1.6 Conclusions

This study demonstrates that the equivalence between nonlocal integral and differen-
tial formulations breaks down for Rayleigh waves in a nonlocal micropolar semi-infinite
medium. The analysis reveals that this equivalence can only be restored with specific
additional boundary conditions, particularly for certain force and couple stress distribu-
tions. The presence of a heterogeneous boundary layer near the surface necessitates refined
boundary conditions, leading to second-order corrections to the traditional traction-free
and couple stress-free conditions. These corrections account for nonlocal effects and accu-
rately capture boundary layer influences. The refined conditions yield nonlocal-corrected
dispersion relations, revealing two distinct Rayleigh wave modes, one uniquely due to the
micropolar nature of the medium. The findings highlight the significant role of micropolar
effects, especially in materials with high Poisson’s ratios, while nonlocal effects are less

influential in such cases.
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2.2 Application in a nonlocal micropolar viscoelastic medium*

Building upon the refined nonlocal traction-free boundary conditions established in
the previous sub-chapter, this section investigates Rayleigh wave propagation in a vis-
coelastic medium within the framework of nonlocal and micropolar elasticity. We derive
leading-order nonlocal corrected dispersion relations, revealing distinct modes, includ-
ing micropolar-specific modes and nonlocal quasi-elastic modes. We analyze two specific
viscoelastic models and examine the influence of material and nonlocal parameters on
Rayleigh wave propagation, including particle trajectories. MATLAB simulations are
carried out to visualize phase velocity behavior and understand the interplay of various

parameters across all identified modes.

2.2.1 Formulation of the problem

// 033 N
- N
7/ \\
7Y - M35 AN
s ) \
Z \

y Direction of propagation of / M5 x \
. e I 3% 023 \

Rayleigh waves | |

\ LT 1% M3 i

021

N 022 s

Micropolarnonlocal B4 @S 0 T—_ —
viscoelastic medium

Figure 2.2.1: (a) Geometry of the model (b) A unit micropolar cell display-

ing force stresses and couple stresses

Consider the propagation of Rayleigh wave fields along x—direction having the dis-
placement vector u = (uy,0,u3) and the microrotation vector ® = (0, P,,0). Since the

* Published in ZAMM Journal of Applied Mathematics and Mechanics/Zeitschrift fiir Ange-
wandte Mathematik und Mechanik (Wiley), (2024), DOI: 10.1002/zamm.202400604
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motion of Rayleigh wave fields is confined to the xz—plane, we have 8% = 0 in this prob-
lem. The waves are propagating over the free surface z = 0 of the nonlocal micropolar
viscoelastic medium occupying the semi-infinite medium z < 0 as described in Figure
2.2.1.

Introducing the conventional scalar potential ¢ and a vector potential ¥ = (¢, 19, 13)
for the displacement vector through,

Y“or 0z P 0z oz

the field equations given in Eq. (1.3.103) may be reduced as,

(A+2p+ k) V26— p(1-RV?) ¢ =0,
(1 + K) Vg + 5 By — p (1 — REV2) ¢y = 0, (2.2.1)
AV2Dy — kV21hy — 2kDy — pj (1 — N2V2) B, = 0.
Assume a suitable complex notation for scalar, vector potentials, and microrotation vector

: _k
components with the real angular frequency w = 7 as

{0,102, @2} = {X, Y, (Y }etrtet), (2.2.2)

where X, ) are the complex amplitudes and s is the complex slowness vector component
along z—direction with fRe(s) > 0 and Jm(s) > 0 ensuring the decay of the amplitude
along positive x—direction; k is the wavenumber; ¢, are the complex variables to be
determined.

Substituting the field form given in Eq. (2.2.2) into the reduced field equations given in
Eq. (2.2.1), we get

(b(x? 2, t) — Xeiw(sac—f—qlz—t),
1/}2(33’ 2, t) — yl eiw(s:c-l—qzz—t) + y2 eiw(sx+q3z—t)’ (223)
(132(.1', <, t) = CyZ eiw(sx—&—qu—t)’

where

« \/A+2;L—|—/-c—pN2w2 5 a2 \/,u—!—fc—pNQwQ y

pjw? — 2% ) W (p— (p+ K — pR°w?) (g3 + %))
qs = 3 —5 o — $% (= .
w? (v — piR2w?) K
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As a result, the final expressions for the displacement and microrotation vector fields
for Rayleigh wave fields propagating in a nonlocal micropolar viscoelastic medium are as

follows:

Uy (I, 2, t) = (SX eiwaz _ qul eiquz _ q3y2 eiwqu) 6iw(s:p7t)’
U3(ZE, 2, t) = jw (C]1X elwqrz + s, a2z + 8), eiwqu) eiw(sxft)’ (224)

CDQ(x, z, t) =(Vs eiwasz piw(sz—t)

2.2.2 Dispersion relations

In a mechanical stress-free surface, the nonlocal force stress components and couple
stress components at the boundary of the viscoelastic semi-infinite medium z = 0 vanishes.

This means,

T31 — 0, T33 — O, T3y = 0, at z =0. (225)

Refined boundary conditions

To account for the nonlocal boundary layer localized near the surface, a modified
differential model was developed by Kaplunov et al. [204, 205] for an isotropic elastic
semi-infinite medium. This theory could further be extended for a nonlocal micropolar
semi-infinite medium, and as a result, the refined boundary conditions for such a medium

can be determined as follows:

= 0, at 2 =0, (2.2.6)

N 00'11 i N2 <820'31 020'31 1 820'11)

731~ 2 Ox 0x? 022 2 020z

10% foale) foale)
o33 — N (5 S o azjg) = Oatz=0, (2.2.7)

N 8H12 + N2 (621_[32 821—-[32 4 1 821—[12)

= = 0Oat z2=0. 2.2.8
0x? 022 2 0x 0z az ( )
On inserting the expressions of stresses using Eqs. (2.2.4) into Egs. (2.2.6)-(2.2.8), a
homogeneous linear system of equations with the coefficient matrix denoted by A is ob-
tained for X, )V, and ), (see Appendix A). Assuming a long-wave regime in which the
small parameter becomes ¢ = Nk, this system of linear homogeneous equations can be

solved for a non-trivial solution, and a dispersion relation can be obtained within an error
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of O(€?).

82 q10 920 (ﬂ — 2)2 + (qgo + 52 (ﬁ — 1)) (Oé qfo + 52(Oé -+ 5 - 2))
— € (%(2 — B) (2a -+ 5 — 2) (qfo + 82) q20> = O, (229)
se+2igp = 0, (2.2.10)

where,

_ P o _ P _ pjw2—2f<;72 :A+2u+f<c __K
q10 ’/7/\4-2#4-% 82, q20 ‘/u+:{ s, gso Ty e e , B P

Egs. (2.2.9) and (2.2.10) are the dispersion relations obtained for the Rayleigh wave

fields propagating in a nonlocal micropolar viscoelastic medium. It is essential to empha-
size that Rayleigh waves propagating in a nonlocal micropolar medium yield two modes:
one, as described in Eq. (2.2.9), mimics the elastic mode of the classical elastic medium,
while the mode corresponding to Eq. (2.2.10) solely arise due to micropolarity in the

medium. This mode ceases to exist when micropolarity is absent.

Analysis of dispersion modes

On introducing some dimensionless quantities,

p - 2+ kK Oé_2u+/<o
S2@u+r) T A+2u+r° ptr’

the dispersion relation for the first mode described in Eq. (2.2.9) becomes,

l
Q10 qa0 + 8% (c — 1)* — € (53 cqa(2 — 041)) =0, (2.2.11)

As expected, the leading order (for e = 0) yields the dispersion equation for Rayleigh
waves in a micropolar viscoelastic solid.

By selecting the positive real x—axis as the branch cut, we guarantee that the complex
slowness vector s has the desired positive real and imaginary components. Subsequently,
employing a Taylor series expansion of ¢o9 around ¢ = 0, truncated to the first-order term,
and squaring the resulting expression to eliminate the square roots, we arrive at a cubic

equation in ¢ as

A [=2 + € (apag — 2as)] + ¢ [8 + € (—2a90 — 20 + 4oy + 4)]
+c2a1a0 — 12+ € (g + dag — 20 — 8)] + 8 — 2y — 2a + € (4 — 2a1) = 0. (2.2.12)
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It is very important to note that not all the roots of Eq. (2.2.12) satisfy the dispersion
equation given in Eq. (2.2.11). Some non-admissible (spurious) roots are introduced due
to the squaring of the dispersion equation given in Eq. (2.2.11). Thus, we can conclude

that a root ¢ of Eq. (2.2.12) is admissible if for such a c,

e the dispersion equation (2.2.11) is satisfied,

e Re(s) > 0 and IJm(s) > 0 (as amplitude does not increase with the wave propaga-
tion along z—direction),

e Jm(qip) < 0, Im(gz0) < 0 (as Rayleigh surface wave decay along the depth from

the surface).
Additionally, we will simplify the expression in Eq. (2.2.10) to examine the micropolar
mode. This yields the complex slowness component s as:

pjw? — 2K

W L el
’ (4 —e*)w?y

(2.2.13)

The reciprocal of the expression in Eq. (2.2.13) represents the velocity of the micropolar
mode of the Rayleigh waves propagating in a nonlocal micropolar viscoelastic medium.
Now, for a purely micropolar elastic medium in the absence of nonlocal elasticity (e = 0),

the velocity v, which is the reciprocal of the slowness component s in any medium, can

v 2K y 2K
Y (T P 2.2.14
Vs wik? g pgk? ( )

as the second term inside the square root is indeed a very smaller quantity. Here vy = \/% :

be given as,

This velocity clearly matches exactly with the results of Suhubi and Eringen [106].
Further, it is intriguing to observe that these two distinct modes of Rayleigh wave fields,
one of which is solely due to micropolarity in the viscoelastic medium, do not coexist in
the same space for an extended period within a longer wavelength regime. This fact could
be simply proven by the method of contradiction.

If the determinant of the coefficient matrix, |A| = 0, implying a;jase — a12a2; = 0 and
azz = 0, then ), that explicitly determines the amplitude of the micro-rotation vector
component ®y can never be zero (for if Vo = 0, then &y = 0 suggesting that the micro-
rotation vanishes which is absurd). For ), = t3(# 0), the system has infinitely many
solutions due to the vanishing determinant of the coefficient matrix. Now, by setting

V1 = ta2(# 0) and determining X’ from the system, we arrive at t3 = 0, a contradiction.
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Thus, we conclude that both Rayleigh modes do not coexist in the same space. Physically,
this means that one of the modes might propagate faster or slower than the other, leading
to a spatial separation between them. This dispersion mismatch prevents the coexistence
of both modes. In the following sections, we will analyze the velocities of these modes in

detail. =
2.2.3 Particle motion and dynamics
In this section, we will explore both the trajectory and the behavior exhibited by

oscillating particles of a nonlocal micropolar viscoelastic solid during the propagation of

Rayleigh wave fields.

Particle trajectories

For the present problem considered in xz—plane, the displacement components are
obtained as the resultant of the superposition of plane-polarized scalar and vector poten-
tials. Every point in the viscoelastic semi-infinite medium will trace a curve, and the locus
of this curve is determined by computing the real parts of the displacement components,

uy and ug. Now, from Eq. (2.2.4)
{Re(uy), Re(us)} = —w {|A1(2)] sin(8y), | As(2)| sin(fs)} e~ ™)@, (2.2.15)
where
Ai(z) =s eWNE X — gy €927 Y, As(2) = ¢ nE X 4 g7y, (2.2.16)

and 0; = arg(A4;(z)) + w (Re(s) —t) for i =1, 3.

At a given coordinate x and z, the conic traced by the particles of Rayleigh wave fields is

obtained by eliminating ¢ from Eq. (2.2.15)). This yields,
[Py Re(ur)]? + [Qo Re(us)]? — 2 cosn Py Qo Re(uy) Re(us) = sin’n, (2.2.17)

where Py = and n = arg[A;(z)] — arg [A3(2)].

—_ L Q=
w‘Al(Z)|€7jm(S) wzx I 0 — w|A3(z)|€73m(s) wx

Also, it is easy to verify that the discriminant of Eq. (2.2.17) is negative for all n # 0.

This implies that the particles of the Rayleigh wave field in any mode trace an elliptical

orbit for all n # 0.

When 7 = 0, the ellipse degenerates into a straight line, as can be seen from Eq. (2.2.16).

We further attempt to rewrite the equation of the ellipse given in Eq. (2.2.17) to a

standard form by deriving the tilted angle of the ellipse with respect to z—axis. By
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choosing an appropriate rotation of the coordinates, it is possible to determine the angle

of rotation, denoted by [ as

1, -1 Qi-F
ECOt (2 cosOnP(;)Qo> QO % PO’

Qo = Fo.

b=

ANE)

This angle of rotation, 3 (# 7) determines the tilt of the elliptical path of Rayleigh wave
field particles and depends on complex angular frequency w, nonlocal elastic parameter R\
and complex moduli of the viscoelastic medium. When g = 7, a circular path is traced
by the oscillating particles during Rayleigh wave field propagation. Using this angle of

rotation 3, the standard form of the ellipse traced by the particles can be given as,

(%)2 n (%)2 —1, (2.2.18)

where

P =sinn (P02 COSQﬁ—i—Q% sin? 8 — 2 Py Qg cos sin 3 COSB) ,

]
L

@ =sinn (P02 sin2@+Q(2) cos® B4+ 2 Py Q, cosn sin cosﬁ) )

ol
L

Prograde and retrograde dynamics

To determine the type of elliptical motion (prograde or retrograde) of the Rayleigh
wave field particles, we need to realize the nature of the time derivative of the polar angle.
Let us define this polar angle x as,

iRe(ul) _1 %e(ul)
X = arg [‘ﬁe(ug) or y = tan Re(us)
A time derivative of this polar angle x is evaluated by using Eq. (2.2.15) as,

o w A
dt  sin?6s; +sin®6; |Az(2)]

-sin 7.

Note that when sinn < 0(> 0), the polar angle x decreases (increases) with time, sug-
gesting that the Rayleigh wave field particles in an elliptical orbit will exhibit a prograde
(retrograde) motion.

Moreover, on simplifying the term sin 7, it can be further inferred that the elliptical orbit

describes a prograde (retrograde) motion if

Jm [Al(z) Ag(z)} — Re[A;(2)] Tm[As(2)] — Re[As(2)] Tm[A,(2)] < 0 (> 0).  (2.2.19)
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Further, the dispersive properties of Rayleigh waves that arise due to the elastic coun-
terpart of the medium for two specific viscoelastic solids in detail: (i) an incompressible
solid and (ii) a Poisson solid. Both of these solids are assumed to be meeting criteria akin

to that of a Hardtwig solid [267] as () fre(k) = Tm() /3m(K).
2.2.4 Incompressible solid semi-infinite medium

An incompressible solid preserves its volume when a body deforms; in other words,
there is no volumetric strain in such a medium. This suggests that the bulk modulus is

infinitely very large, or equivalently, A — oc.

Mode analysis

Define a new parameter d as, d = ;_’i—n On decomposing the components of d into its

corresponding real and imaginary parts, we have

Re(d) = Re(p) (Re(p) + Re(k)) + Im(p) (Im(p) + Im(k))
(Re(p) + 9%(/{))2 + (Om(p) + ’Jm(,i))2

Tm(d) = Jm(p) (Re(p) + Re(k)) — Re(p) (Tm(p) + Im(k))
(Re(p) + Re(x))” + (Im(u) + Im(x))’

Using the fact that Re() fre(k) = ImW) /im(k), we get IJm(d) = 0 and as a result,

d = Re(d) (Re(p)” + (Im(p))” +29‘ie(u)9“w(ﬁ) + jm(uzﬁm(ﬂ)
(Re(p) + Re(r))” + (Tm(p) + Im(k))
which is clearly less than 1.
Thus, we conclude that d is a real number (i.e., d € R) and falls within the range 0 < d < 1.
Hence, by allowing A — oo in Eq. (2.2.12), the dispersion relation for the Rayleigh waves

in an incompressible solid can be derived, resulting in:
23 -1 —e(1+d)]| +4c* 2+ €(2+d)] —2¢[6+ (d +5)e)] +6 — 2d + 4e = 0, (2.2.20)

with small ¢ > 0 and 0 < d < 1. A detailed analysis of this equation is conducted to
determine the exact roots of the dispersion relation.

Consider a complex polynomial with real coefficients in 2z given by,

h(z) =223 -1 —e(1+d)] +42*[2+e(2+d)] —22[6+ (d+5)€)] +6 — 2d + 4e = 0,
(2.2.21)
satisfying the dispersion relation given in Eq. (2.2.20) at z = c.
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Quasi-elastic mode: Now, according to Descartes’ rule of signs, it is evident that Eq.
(2.2.21) possesses at least one positive real root and no negative real roots. Furthermore,
it is worth recalling that a cubic equation possesses three distinct real roots only if the
polynomial discriminant is strictly positive [268]. Applying this principle, it is easy to
check that the polynomial discriminant for the cubic equation A(z) in Eq. (2.2.21) remains
less than or equal to zero for all possible values of € and d. Consequently, Eq. (2.2.21) has
to have only one positive real root, say ¢, and this real root is less than unity for every

possible value of € and d.

Now, it remains to check if this positive real root satisfies the exact dispersion relation
given in Eq. (2.2.11).
As A approaches infinity, we observe ¢ = +is. Given that Jm(g9) < 0, we can only
assume ;9 = —is, considering the fact that Pe(s) > 0. Using this value of ¢;9, we could

write the expression for gop from Eq. (2.2.11) as,

G20 = —is {243(:@;(11)—2@} . (2.2.22)

Observe that for ¢ (= ¢, < 1) € R and for all the possible values of ¢ and d, IJm(ga) < 0
as Me(s) > 0. In other words, the positive real root of the cubic equation (2.2.20) satisfies
the exact dispersion relation giving rise to a quasi-elastic mode of Rayleigh wave field

propagating in a nonlocal micropolar incompressible solid semi-infinite medium. O

Viscoelastic mode: This mode arises due to the complex roots in the dispersion re-
lation in Eq. (2.2.20). It is essential to determine which of the two complex roots of the
cubic equation h(z) in Eq. (2.2.21) satisfies the dispersion relation (2.2.11). It is essential

to verify conditions under which these complex roots will satisfy Jm(gz) < 0,TIm(qy) < 0.

Checking these conditions is algebraically complicated, thus we consider a numerical
example of an incompressible solid semi-infinite medium with small viscous terms and

thereby determine the conditions for which the viscoelastic mode arises.
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Numerical example

We shall now describe a particular viscoelastic incompressible solid semi-infinite medium

with small viscous terms in detail. We take
= po(l —ida), k= ro(l —1idb), (2.2.23)

where > 0 is small and 0 < Ja < 1. Also, since Re() fre(k) = IMK) [3m(K), we get a = b.
Let us consider a case where g = ko = 0.4 x 10" N m™2 p = 1740 kg m3 and
dimensionless nonlocal elastic parameter ¢ = 0.04. Then the roots of the dispersion

relation are,

¢ = 0.659793,
cp = 1.65124 +0.981019¢,

co = 1.65124 —0.981019:.

Quasi-elastic mode: For the root ¢,, the value of s for which e(s) > 0 can be calculated

as,

s = 0.0001482 + 0.00007412 da 1,

with the condition that da > 0. Further, we have

G0 = 0.00007412da — 0.0001482 4,

20 = 0.000008522 da — 0.0000170455 4.

As seen in the previous section, the only positive real root of the cubic equation (2.2.21)
satisfies the exact dispersion relation given in Eq. (2.2.11) for every value of d and € << 1.

The variation of real phase velocity v = ) of quasi-elastic mode with the material

parameter ﬁ for different values of small € is presented in the Figure 2.2.2. The data in
Figure 2.2.2 demonstrates that the phase velocity of Rayleigh waves in the quasi-elastic
mode rises as the material parameter of the micropolar media increases up to a certain
threshold, beyond which it reaches a steady value. Moreover, when micropolarity is absent
in the medium, the y—intercepts offer insights into the phase velocity at which the wave
propagates. It can be further noted that as the nonlocal parameter of the media increases,

there is a corresponding rise in the phase velocity of the propagating waves.
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Figure 2.2.2: Variation of phase velocity (v) with the material parameter

(ﬁ) for different values of € in an incompressible solid semi-infinite medium
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Figure 2.2.3: Normalized (a) displacement components (U;) (b) stress com-
ponents (P;) versus dimensionless depth (%) for a quasi-elastic mode of
Rayleigh waves in an incompressible solid

Figure 2.2.3 illustrates the depth-dependent variation of normalized displacement
U, = 5—0, 1 = 1,3 and stress components P; = Z—fg, 1 = 1,3 for Rayleigh wave fields
2
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propagating in a quasi-elastic mode of an incompressible semi-infinite medium. The nor-
malization of the displacement and stress is based on the respective displacement com-
ponents at z = 0 (i.e., w1, ugp) and the stress component o1; at z = 0 (0y), respectively.
As depicted in Figures 2.2.3a and 2.2.3b, the displacement and stress profiles exhibit a
characteristic exponential decay with depth, confirming the localized nature of the wave

energy near the surface.

Viscoelastic mode: For the root c¢;, the possible value of s that satisfies 2Re(s) > 0
is
s = 0.00008379 + 0.00001151 da + (0.00004189 da — 0.00002301) 7.

This further gives,

q10 = 0.00004189 da — 0.00002301 + (—0.00001151 da — 0.00008379) 7,

¢20 = 0.0001176 — 0.000007153 da + (0.00005882 da + 0.00001431) .

It is easy to check that there exists no ¢ a for which the root ¢; satisfies the exact dispersion
relation given in Eq. (2.2.11). Thus, root ¢; does not account for any viscoelastic mode
of Rayleigh waves in the medium.

For the root ¢y, The value of s satisfying 2e(s) > 0 can be computed as:
s = 0.00008379 — 0.00001151 da + (0.00004189 da + 0.00002301) 3.
As a result, we have

¢0 = 0.00002301 + 0.00004189 da + (0.00001151 da — 0.00008379) i,

g0 = —0.000007153da — 0.0001176 + (0.0000143075 — 0.0000588204 da) i.

For ¢y to satisfy the dispersion relation in Eq. (2.2.11), we derive the condition on da
such that Re(s) > 0,TIm(qi0) < 0, and TJm(gy) < 0. This on reduction gives, 0.243241 <
da < 7.28203.

Therefore, we conclude that the viscoelastic mode of Rayleigh waves propagates only

under the condition that the material parameters specified in Eq. (2.2.23) satisfy

0.243241 < da < 1.
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In general, a specific critical value of da.(< 1) exists for every d, beyond which the vis-
coelastic mode of the Rayleigh wave can propagate.

Figure 2.2.4 is plotted to understand the variation of these critical values with the ma-
terial parameter d. The analysis indicates that the minimum critical value of da occurs
for a local non-micropolar solid. Moreover, there is a significant decrease in da. with the
increase in the nonlocal parameter of the medium up to a certain value of d, after which
a reverse behavior is observed. This further validates the existence of specific d and da,.
values for which every curve, corresponding to a different nonlocal parameter, intersects.

The phase velocity of Rayleigh wave fields propagating in a viscoelastic mode decreases

0.55
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o
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0.35

Critical value, da. —
o
w
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Figure 2.2.4: Variation of critical da. with material parameter d for different

€

with the increase in the material parameter. This behavior is clearly depicted in Figure
2.2.5, which is in contrast to the behavior observed in the case of Rayleigh waves prop-
agating in a quasi-elastic mode. Furthermore, as the nonlocal parameter of the medium
increases, the phase velocity decreases up to a specific value of d, after which the trend
reverses. In contrast to the quasi-elastic case, Rayleigh waves propagating through a
viscoelastic semi-infinite medium exhibit a more complex depth-dependent behavior as
presented in Figure 2.2.6. While the displacement and stress components still demon-

strate an oscillatory pattern as illustrated in Figure 2.2.6a and 2.2.6b, the amplitude of
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Figure 2.2.6: Normalized (a) displacement components (U;) (b) stress com-
ponents (P;) versus dimensionless depth (%) for a viscoelastic mode of

Rayleigh waves in an incompressible solid

these oscillations gradually diminishes with increasing depth. This attenuation of the

wave energy is a direct consequence of the viscoelastic properties of the medium, which
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introduce energy dissipation mechanisms not present in a purely elastic medium. Ulti-
mately, the oscillations decay to zero, confirming the localized nature of the wave field

near the surface.

Particle motion

We will further analyze the type of particle motion (prograde or retrograde) exhibited
by Rayleigh wave field particles propagating in the quasi-elastic and viscoelastic modes
at the surface.

At the surface of an incompressible solid semi-infinite medium, the quantities A;(z) and

As3(z) as defined in Eq. (2.2.16) becomes,
Al(O) = Al =sX — q2 yl, and A3<O) = Ag =q1 X+ Syl. (2224)

By approximating Eq. (2.2.24) within an error of O(€?) and incorporating the boundary
conditions in Egs. (2.2.6)—(2.2.9), a relationship between X and ), is derived. Subse-
quently, upon substituting this relation along with the corresponding values of ¢; and ¢

from Eq. (2.2.22) for an incompressible solid semi-infinite medium, we obtain,

1
Ay = ¢s, and Agzisc(1+€) : (2.2.25)

—C

Quasi-elastic mode: For real ¢, the quantity
Jm (A; A3) <0(>0), only when 1 —c < 0(> 0).

We have the value ¢ < 1 from previous results in a quasi-elastic mode. As a result, the
particles of the Rayleigh wave fields in a quasi-elastic mode maintain their elliptical mo-

tion and remain retrograde for all values of € and d.

Viscoelastic mode: For a complex root ¢ = Re(c) + ¢ Im(c), the quantity
Jm (A1 A3) < 0(>0), only when 1 —Re(c) < 0(> 0).

Thus, we conclude that the particles exhibit a prograde (retrograde) motion correspond-
ingly when PRe(c) > 1(< 1). For the numerical example described in section 2.2.4, the
Rayleigh wave field particles propagating in a viscoelastic mode exhibit a prograde ellip-

tical motion for all possible € and d.
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2.2.5 Poisson solid semi-infinite medium

In the context of classical elasticity theory, a Poisson solid refers to an isotropic solid
whose elastic constants (A and p) are equal. In other words, such as solid has a Poisson
ratio, v = 0.25. Further, extending this concept to micropolar elasticity theory (cf.

Eringen [51]), we have for a Poisson solid, A = u + £/2.

Mode analysis

Similar to the section 2.2.4, we reintroduce the parameter d = ﬁ lying between 0
and 1 for further analysis. Taking A = p + %, the dispersion relation in Eq. (2.2.12) now

becomes,

23 <3 = 2¢(1 + d)]+8* 3+ €(2+ d)] —4c[8 — d + e(5 + d)] + 14— 6d+ 8¢ = 0, (2.2.26)

for0<e<<land 0<d<1.

Let g(z) denotes a complex polynomial with the real coefficients given by,

g(2) =22° -3 —2e(1 +d)] +82*[3+€(2+d)] —42[8 —d+ e(5+d)] + 14 — 6d + 8,
(2.2.27)
and has roots at z = ¢. Now, we will examine the values of ¢ that give rise to quasi-elastic
and viscoelastic modes of Rayleigh wave fields during their propagation in a nonlocal
micropolar viscoelastic medium.
It can be easily verified from Descartes’ rule of signs that Eq. (2.2.27) has at least one
positive real root and no negative real roots for all the possible values of small € and d.
Moreover, evaluation of the polynomial discriminant yields the range of values for e and
d where Eq. (2.2.27) possesses either one or all positive real roots. The graph of the

polynomial discriminant for different values of € and d is plotted in Figure 2.2.7.
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Figure 2.2.7: Nature of roots ¢ for different values of ¢ and d

Figure 2.2.7 indicates a critical value of the material parameter d for each fixed €, be-
yond which the polynomial discriminant is consistently positive. This implies that there
exists a d corresponding to every e where the cubic equation in Eq. (2.2.27) possesses
exactly three positive real roots. To distinguish between the root nature, the graph is
divided into two regions: Region I and Region II. In Region I, the cubic equation has one
positive real root and two complex roots, while in Region II, it has all three positive real
roots.

Now, we shall investigate the conditions under which the real roots of Eq. (2.2.27) satisfy
the exact dispersion relation in Eq. (2.2.11).

Quasi-elastic mode: For real root ¢ < 3/2, the values of ¢9 and g9 are determined

using the fact that Re(s) > 0,Im(s) > 0. This gives,

2c 3(c—1)*

qo=—18\/1——, qoo=—is .
2064—3\/1—%

3
From Eq. (2.2.28), it is evident that Jm(qi0) < 0 and Jm(ga) < 0 for all €, d, indicating

(2.2.28)

that a real root ¢ < % of Eq. (2.2.27) satisfies the exact dispersion relation given in Eq.

(2.2.11), thus leading to the propagation of quasi-elastic mode of Rayleigh wave fields.
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Similarly, for ¢ > %, the values of ¢; and ¢y can be determined as,

2 3(c—1)?
Go = —51/ 25 =1, quo = —is Gl . (2.2.29)
3 2ce — 3iy /% — 1

Clearly, Jm(q19) < 0 given that Jm(s) < 0. And Jm(ge) < 0, provided that

Jm(s) _ 2ce

Thus, we infer that for ¢ > %, the quasi-elastic mode of Rayleigh wave fields propagate in

(2.2.30)

a medium when Eq. (2.2.30) is satisfied. Moreover, we shall discuss this briefly by taking

a numerical example in the next section.

Viscoelastic mode: The viscoelastic mode of Rayleigh wave fields propagate in a non-
local micropolar medium when the material parameter d and the nonlocal parameter e
lies in the Region I. These modes emerge when the complex roots of Eq. (2.2.27) satisfy
Eq. (2.2.11).

For a comprehensive analysis of the occurrence of these modes, we explore a numer-
ical example involving a Poisson solid semi-infinite medium with minor viscous terms to

identify the conditions under which both quasi-elastic and viscoelastic modes propagate.

Numerical example

Consider a viscoelastic Poisson solid semi-infinite medium with small viscous terms
as,

1= (1 —ida), k= ro(l—idb), A= po(l—ida)+ %(1 i 8b),

with 6 > 0 and da < 1. We also have a = b similar to section 2.2.4.
Suppose we consider a viscoelastic solid where g = 0.4 x 10! and ko = 0.1 x 10! N m~2,
p = 1740 kg m—3. We shall study the modes for four cases of € and d.

A table is constructed to examine the real roots across various intervals of ¢ and d,
thereby checking the conditions on da for which these roots satisfy exact dispersion rela-
tion given in Eq. (2.2.11).

Case 1 is studied for a viscoelastic solid in which € and d lie in Region I. Here the
cubic equation Eq. (2.2.21) has only one positive real root. Clearly, this root satisfies Eq.

(2.2.11) for every possible value of da > 0. Similarly, Case 2 is studied for a solid in which
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Table 2.2.1: Conditions for which the real roots satisfy the exact dispersion

relation
Quasi-elastic mode
Cases Real roots m(gio)
propagates for
Case 1: Jm(qi0) = —0.000157652
0.512235 all values of da < 1
(€,d) Jm(gq0) = —0.0000555558
(0.06,0.8)
Jm(q0) = —0.000158174
0.510007 all values of da < 1
Jm(ge) = —0.0000565933
Jm(qip) = —0.0000170344 6a
1.64845 Jm(ga) = —0.0000198394 da | da < 0.279468
Case 2:
+0.0000709899
(€,d) m(q10) = —0.0000232008 da
(0.04,0.8) 1.80083 da < 0.214464
m(ga0) = +0.000073348 Ja
—0.0000157305
Jm(qyp) = —0.000159257
0.505424 all values of da < 1
Jm(ge) = —0.0000587515
Case 3:
Jm(qip) = —0.0000147439 da
1.60852 no values of da > 0
(e,d) = (0,0.8) Jm(ge) = 0.0000754663 da
Jm(qi0) = —0.0000256819 da
1.88606 no values of da > 0
Jm(gq0) = 0.0000783412 da
Jm(q10) = 0.000030104 da
2 no values of da > 0
Jm(gq0) = —0.000090312 da
Case & (q10) 0.000192253
Jm(qi9) = —0.
% (3 - \/5) 0 all values of da < 1
(e,d) = (0,1) Jm(ge) = —0.0000892247
Im(qi9) = —0.0000133328 da
% (3 + \/3) (1) no values of da > 0
Jm(gz) = 0.0000861845 da

€ and d lie in Region II. The conditions for the propagation of the quasi-elastic mode of

Rayleigh wave fields are derived and are provided in Table 2.2.1.
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Case 3 and Case 4 are examined in the context of a micropolar viscoelastic solid and
a classical viscoelastic solid, primarily without considering the effects of nonlocal elastic
parameters. It can be inferred that nonlocal elasticity effects within the medium lead to
the emergence of nonlocal elastic modes. These modes vanish in the absence of nonlocal
elasticity. This distinction is important in materials science and mechanics because the
presence or absence of nonlocal effects significantly impacts mechanical behavior, partic-

ularly in situations where small-scale or long-range effects play a vital role.

Additionally, for further analysis of these quasi-elastic modes, we plot a variety of
graphs to visually depict the behavior, thus offering insights into the response of this
viscoelastic solid under diverse conditions.

Figure 2.2.8 illustrates the variation in phase velocity of Rayleigh wave fields propagat-
ing in the quasi-elastic mode (where ¢ < %) across varying material parameter values.
The velocity pattern resembles that of an incompressible solid, except for the fact that
Rayleigh wave fields in this mode propagate with a slightly lower phase velocity compared

to those in a Poisson solid. In Figure 2.2.9, a careful graphical analysis is carried out to
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T . i
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>
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Material parameter, % —

Figure 2.2.8: Variation of phase velocity of Rayleigh waves, v in a quasi-

elastic mode with material parameter ﬁ for different values of ¢

comprehend the characteristics of nonlocal elastic modes propagating when parameters
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e and d lie in Region II of Figure 2.2.7. The two branches obtained for a constant e
signify the variation in critical values of da for two nonlocal elastic modes, respectively
propagated over the course. It is noteworthy to mention that these two modes exhibit
contrasting behaviors and emerge only when the da for the medium falls below the critical
value. Moreover, an increase in the nonlocal elastic parameters of the medium leads to

an increase in the critical value da. Further, Figure 2.2.10 is plotted to understand the
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Figure 2.2.9: Variation of critical da. with material parameter d for different

€

variation of the phase velocity of Rayleigh wave field propagating in a nonlocal elastic
mode for different material parameters ﬁ A declining trend for the velocity behavior
is observed for both modes with the increase in the material parameter for da = 0.02.
Additionally, we observe that one of the nonlocal elastic modes travels faster than the
other modes in a particular solid. Figure 2.2.11 presents the Rayleigh waves propagating
through a Poisson solid in the quasi-elastic mode wherein the decay of displacement and
stress components with depth is noticeably more rapid compared to the incompressible
case. This accelerated attenuation results from the Poisson solid’s inherent compressibil-
ity, which allows for the dissipation of wave energy into volumetric deformations. While

the overall amplitude of the displacement and stress components is generally smaller than

in the incompressible case, the rapid decay ensures that the wave energy remains confined
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Figure 2.2.11: Normalized (a) displacement components (U;) (b) stress com-
ponents (P;) versus dimensionless depth (%) for a quasi-elastic mode of

Rayleigh waves in a Poisson solid

to a shallow region near the boundary.

Viscoelastic mode: The complex roots of ¢ obtained for the values of ¢ and d lying

in the Region I are then studied, and the conditions for which these complex roots will
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satisfy the dispersion relation is also determined. The overall idea is similar to that fol-
lowed for the case of incompressible solid semi-infinite medium.
Observe, when ¢ = 0.06 and d = 0.8, the complex roots of the dispersion relation given

in Eq. (2.2.27) are

c1 = 1.71403 — 0.0122788 7,

co = 1.71403 + 0.0122788 1.

Note that, the root ¢; and ¢, satisfy the exact dispersion relation given in Eq. (2.2.11),

respectively when

0 < da < 0.0501532, 0 < da < 0.356779. (2.2.31)

As a result, there is a possibility of the propagation of two viscoelastic modes of Rayleigh
waves when the condition in Eq. (2.2.31) is satisfied.
However, when € = 0.02 and d = 0.2, the complex roots of Eq. (2.2.27) are

c1 = 1.58115 — 0.232087 1,

co = 1.08115 — 0.232087 1.

Careful observation reveals that only one of the roots among c¢; and ¢, satisfies the exact
dispersion relation given in Eq. (2.2.11), provided that 0.0481324 < da < 1.21068.

Therefore, it can be inferred that a specific set of parameters determines the number of
possible viscoelastic modes of Rayleigh waves propagating in a nonlocal micropolar vis-

coelastic medium.

Further, we turn to graphical analysis to deepen our understanding of the problem at
hand. By plotting various graphs, we can provide valuable insights into the behavior and
trends within the system.

The plot of Figure 2.2.12 determines the range of values for ¢ and d for which the
viscoelastic modes of the Rayleigh wave fields can propagate. This propagation can take
place only when certain conditions on da are satisfied. The entire plot area is divided into
three regions: Region III and Region IV depicting the possible parameter combinations
of € and d where only one and two viscoelastic modes can propagate, respectively. Region

V offers insight into the parameter range where viscoelastic modes are absent and is
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equivalent to Region II in Figure 2.2.7. It can also be inferred that the possibility of

obtaining two viscoelastic modes increases for larger values of parameter combinations.

0.1
0.09 |-
0.08 |-

0.07 |-
Region IV

0.06 - Two viscoelastic modes

0.05 [

0.04 -
RegionV
0.03 1
No viscoelastic

0021 Regionlll modes

Nonlocal elastic parameter, € —

0.01 [  One viscoelastic mode

0 0.2 0.4 0.6 0.8 1

Material parameter, d = ﬁ —

Figure 2.2.12: Regions indicating the range of values of € and d for the

possible number of viscoelastic modes

While Region III in Figure 2.2.12 provides information on potential parameter com-
binations of € and d, it remains necessary to determine the conditions on da for which
the propagation of only one viscoelastic mode of Rayleigh wave fields can occur. Figure
2.2.13 elaborates on the propagation of this viscoelastic mode by plotting the values of
da against material parameter d for different values of . When € and d are fixed, there is
a certain minimum and maximum value for da, and the mode propagation occurs when
the value lies within that range. It is also interesting to observe that the range of da for
a constant € gradually diminishes with decreasing €, and it ceases to exist when the value
of d falls out of Region III of Figure 2.2.12.

Figure 2.2.14 is plotted to understand the variation of phase velocity with the material
parameter ﬁ within Region III, where only one viscoelastic mode of Rayleigh wave fields
can potentially propagate. By setting a common value of da = 0.4, it becomes apparent
that the phase velocity curve remains nearly consistent across all values of e. Although

the wave propagates at similar velocities for all € values, there exists a limit on the mate-

rial parameter beyond which propagation is feasible. Magnified images A, B, and C are
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provided to distinguish the differences between the curves for different e. An intriguing
outcome of these findings is that smaller values of the material parameter in the medium
can facilitate the propagation of viscoelastic modes with higher velocities, but possible
only for smaller values of €. In other words, the range of the material parameter for which

the propagation is possible decreases with the increase in the value of e.  Moreover,
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Figure 2.2.13: Variation of values of da. with the material parameter d in

the Region III (where one viscoelastic mode may propagate)

Figure 2.2.15 is plotted to determine the conditions on da under which the propagation
of the two viscoelastic modes of Rayleigh wave fields may occur. Two distinct intersect-
ing branches of viscoelastic modes are obtained, with one branch corresponding to lower
critical values of da and the other to higher values of da. Whenever the values of da fall
below this critical value, the viscoelastic mode associated with that specific complex root
may propagate. Furthermore, for a fixed d, the critical values of da corresponding to both
the lower and upper branch mode exhibit a significant increase with the increase in the
nonlocal parameter, e.

To illustrate the relationship between phase velocity and the material parameter ﬁ for
different values of nonlocal parameter, ¢ = 0.03,0.05,0.07,0.09. Figure 2.2.16 is plotted
while fixing da = 0.02. This graph offers insights into the propagation of two viscoelastic

modes when e and d lie within Region IV. Magnified image A describes the variation
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Figure 2.2.14: Variation of phase velocity, v with the material parameter ﬁ

in the Region III (where one viscoelastic mode may propagate)

of phase velocities for the two viscoelastic modes: Mode 1 and Mode 2. Rayleigh wave
fields propagating in Mode 2 exhibit slightly higher velocities than Mode 1. Additionally,
within each mode, a range of material parameter values g exists for every e within which
propagation occurs. Interestingly, contrary to the behavior observed in Figure 2.2.14, this
range of ﬁ values increases with an increase in values of the nonlocal parameter, €. This

trend is clearly depicted in magified images B and C'.
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Figure 2.2.17: Normalized (a) displacement components (U;) (b) stress
components (P;) versus dimensionless depth (%) for a viscoelastic mode

of Rayleigh waves in an incompressible solid

Figure 2.2.17 demonstrates that the viscoelastic mode of Rayleigh waves propagating
through a Poisson solid exhibit a distinct departure from the previous cases. Unlike the
exponential decay observed in the quasi-elastic mode for a Poisson solid, the displacement
(Figure 2.2.17a) and stress components (Figure 2.2.17b) in this scenario exhibit a more
oscillatory behavior. While the amplitude of these oscillations does diminish with depth,
the rate of decay is significantly slower compared to the viscoelastic mode for an incom-
pressible solid. This suggests that the compressibility of the Poisson solid and viscoelastic
properties combine to create a more persistent wave field, allowing the oscillations to

penetrate deeper into the material.

Particle motion

In this section, further analysis will be conducted on the type of particle motion
(prograde/retrograde) exhibited by quasi-elastic and viscoelastic modes of Rayleigh wave
field particles propagating in a Poisson solid.

The quantities A;(z) and A3(z) defined in Eq. (2.2.22) are approximated within an error

of O(€?) at the surface of a Poisson solid semi-infinite medium to obtain,

2
1
A(0) = A; = cs, and A(0) = Ay = ¢ — S(Cq—) (2.2.32)
2
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Substituting the values of ¢; and ¢ satisfying the exact dispersion relation given in Eq.

(2.2.11), we conclude that for Rayleigh waves propagating in a quasi-elastic mode,
Jm (A; A3) <0(>0), only when 1 —c < 0(> 0).

This indicates that the Rayleigh wave field particles propagating in a nonlocal micropolar
Poisson solid exhibit a prograde motion when ¢ > 1 and a retrograde motion when ¢ < 1.
Similar to that of an incompressible viscoelastic solid, Rayleigh wave field particles in a
nonlocal micropolar Poisson solid exhibit a prograde (retrograde) motion when fRe(c) >

1(< 1), respectively.
2.2.6 Conclusions

This study explores Rayleigh wave propagation in viscoelastic solids under micropolar
and nonlocal elastic conditions, revealing multiple wave modes, like, quasi-elastic, vis-
coelastic, and micropolar—unlike the single mode in classical elasticity. The micropolar
mode propagates at higher velocities and exists only due to micropolarity, while nonlo-
cal effects introduce quasi-elastic modes that may not appear otherwise. The study also
highlights distinct particle motion behaviors, with quasi-elastic modes exhibiting retro-
grade motion and viscoelastic modes showing prograde motion. Additionally, viscoelastic
modes may travel faster than body waves, whereas quasi-elastic modes propagate at lower
velocities. The findings also demonstrate that the number of propagating modes depends
on the interplay between nonlocal and material parameters, while surface particle motion
remains unaffected. The refined model improves accuracy by addressing boundary layer
effects, though its reliance on long-wavelength assumptions limits applicability at shorter

wavelengths.
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CHAPTER 3

Rayleigh Wave Propagation in Nonlocal Micropolar Layered
Medium






While nonlocal elasticity theory has enhanced the modeling of wave propagation in ho-
mogeneous semi-infinite mediums, extending these formulations to layered media presents
significant challenges. This chapter is dedicated to derive refined boundary and interface

conditions for Rayleigh waves in layered structures.

3.1 Derivation of refined boundary and interface conditions in

a nonlocal layered media with an application®

Here, the focus is on deriving refined boundary and interface conditions for Rayleigh
wave propagation in layered media within the framework of nonlocal elasticity and develop

effective formulations for nonlocal surface wave propagation.

3.1.1 Mathematical formulations

We analyze a two-layered system as described in Figure 3.1.1 within the framework of
nonlocal elasticity. The top layer, a homogeneous, linearly isotropic material of thickness
h, occupies the region —oo < x,y < 0o, 0 < z < h. Beneath this lies a linearly isotropic
semi-infinite medium occupying the region —oo < z,y < 00, —o0 < z < 0, as depicted in
Figure 3.1.1
The nonlocal parameters for the lower semi-infinite medium and the upper layer are

denoted by N; and N,, respectively, and are not necessarily the same. The constitutive

Layer

Nonlocal homogeneous isotropic half-space pIONTIORE N

~N o0

Semi-infinite
medium

Figure 3.1.1: Geometry of the problem
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equations (Graff, [2]) describing the elastic behavior of the isotropic, homogeneous layer

and semi-infinite medium are given as,

o) = AWM 20 =12, k=123 (3.1.1)

rr )

In the above expressions, superscripts (1) and (2) refer to the lower semi-infinite medium
and upper layer, respectively. The Lamé constants A, (™ characterize the elastic prop-

erties of the respective media, while d;;, denotes the Kronecker delta function. Further, the

(n)

strain tensor sjz is related to the displacement components u,(:) through the geometric

equation,
(n) (n)
o _ 1[0y Ou k=123 3.1.2
Ejk ) ( &ck + axj ) Js g Ly I ( oL )

To account for nonlocal effects in both the media, the present study adopts the framework
of nonlocal elasticity theory. Consequently, the expressions for nonlocal stresses must
be established. Following the well-known Eringen’s nonlocal elasticity theory [150], the
relationship between nonlocal stresses Tj(,?) and local stresses J§Z) is defined by the singular

kernel « as

8

W@ = [ @ all - havi), 513

where V' is the volume occupied by the deformed region and « is the nonlocal kernel
that characterizes the material properties and governs the spatial distribution of nonlo-
cal interactions. In this study, a 2D kernel assuming the form of the Bessels function
is employed within the framework of Eringen’s nonlocal elasticity theory. As a result,
the nonlocal stress distributions within both the semi-infinite medium and the layer are

expressed through the integral formulations,

1 0 oo Ve —a)2+ (2 —2)?
1 _ 1) /.0 / /
Tik = 2N? /_Oo /_OO Ky ( R, o, (2',2') da’ d2, (3.1.4)

h poo )2 12
2 _ 1 V-2 +(z-2)2\ o
Tix = 27TN%/0 /_OO Ky < X oy (2',2) da" 7. (3.1.5)

It is noteworthy to emphasize the distinct behavior of the lower and upper media despite

having identical material properties. This disparity arises from the different integration
limits corresponding to the regions occupied by each medium.

Assuming slowly varying local stresses, o, in the z— direction, Egs. (3.1.4) and (3.1.5)
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reduce to the approximate forms derived by Kaplunov et al. [204] as

wwaziﬁf LN ) 2o ) et gy, 306)
gk \ A 2 Ny Ox2 | "Ik o

o0

(2) 1 " N% L, 0 (2) ' — 2=z
Tjk<£L‘,Z):2—N2 i 1+? 1—|—N—2]z—z! pye o5 (x,2") pe ™ dz'. (3.1.7)

A differential formulation consistent with the adopted kernel relating nonlocal stresses

with local stresses, presented in [60], is as follows:
ol = (1-82V2) 7 n =12 (3.1.8)
jk n jk y e L

2 _ 9? % :
where V* = 25 + 7= is the Laplacian operator.
For a homogeneous, isotropic elastic medium, the governing equation of motion for non-

local elastic wave propagation in the absence of body forces is given by,
i — P =0, (3.1.9)

where p(™, n = 1,2 denotes the density of the lower semi-infinite medium and the upper

layer, respectively.

3.1.2 Equivalence conditions

This section focuses on deriving the additional boundary conditions required at the
interface and the stress-free surface to ensure the equivalence between the integral and
differential formulations of the nonlocal elasticity model. By rigorously establishing these
conditions, we aim to accurately capture the influence of nonlocal interactions on the

elastic behavior of the solid.

In the lower nonlocal elastic semi-infinite medium

The nonlocal stresses Tj(;) at the interface z = 0 can be given from Eq. (3.1.6) as,

r N2 ' 2 /
) { [1 t (1 N ;Tl) %} Uﬁ)(fc,Z’)} eMdy. (3.1.10)

By substituting the differential formulations from Eq. (3.1.8) into Eq. (3.1.10) and

(1)

z=0

subsequently expanding the resulting expressions, we obtain approximate equations under

the assumption of a long wavelength relative to the nonlocal elastic parameter of the lower
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semi-infinite medium. In other words, we obtain

1/ N2 2\ 02 o
L5 2w e

jk
z=0 00
1 0 2
= o { <1 — N2 %) T](,?(x, z)} eMdz
1J-00 z
I
10 N3 ot Ny 0* .
+ T { (71 (z — %) 9202 3 (z +Ry) @) TJ%)(LC, z)} eMdz.
E o

(3.1.11)

The expansion of the integrals I; and I, involves lengthy and intricate calculations, ulti-

mately yielding the expressions,

WY
2 0x20z ¥

[2:

1 a
I = {Nl - Nfgl 7

z=0 z2=0

As a result, Eq. (3.1.11) is simplified to obtain the additional conditions on the nonlocal

stresses at the interface z = 0 as,

=0 (3.1.12)
z=0

o N
148 — + - o
[ * "9z * 2 8952(%} Tik

In the upper nonlocal elastic layer

For the nonlocal elastic layer situated on the top of the nonlocal semi-infinite medium,
the equivalence conditions are to be satisfied at both the the free surface z = h and the

interface z = 0.

Now, at the free surface z = h, the nonlocal stresses 7'j(2) can be expressed as,

2

I N2 1 0? 2o
_ 121 (—n) 2B o %2 dy. 1.1
S {[ + 5 ( % (z )) 81‘2:| o, (x,2') pe ™ dz (3.1.13)

z=

Substituting the expressions of differential formulation as given in Eq. (3.1.8) and expand-

ing the integral under the assumption that the nonlocal elastic parameter of the upper
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layer is relatively smaller compared to the width of the layer, we obtain the expressions,

- (S - den) 0w )

2)
2

z=h

be
— [ 2w —h) =R d
ooy, ), 3 ET e e de
b
I VA ¢ ot 5 7\ @
+ 2_N2 . {(7(2—2‘22 h) 912 92 9 <Z+N2—h) ﬁ)T]k} N2 dz
Ty

(3.1.14)

On simplifying and approximating J;, Jo and J3, we obtain the values of these integrals

as,
Jo= Ny {1 - Nz; } i - Ny {1 - NQ%} 7P Z:Oe—m’
T = 2§ 8x82382 J(Z) 2=h - {%g (Nz + h) 8x82382 B Nihaawz} 7—(2) z=0 e_h/NQ‘

Substituting these expressions into Eq. (3.1.14) results in deriving additional boundary

} e~ "2 = 0.
z=0

(3.1.15)

conditions to ensure equivalence. These conditions are thus given by
Noh 52 I I
T {(1 + 28x2> [1 Rl TS G| Tk

Also, the nonlocal stresses in the upper layer at the interface z = 0 are given as,

1 h NQ Z 82 (2) /
= — ) —z /NQ /
™ {[1+ 5 <1+ ) 81’2} o (, z)}e dz. (3.1.16)

T+Ry—+ 2

a N3 9 (2)
0z 2 0220z

2

z=0
By applying the differential formulation and utilizing an analogous approximation as done

previously, additional constraints governing the nonlocal stresses within the upper layer

} e =
z=h

(3.1.17)

are derived as,

1—No—

2 Ox2 Oz 2 0x20z

N B e
0z 2 0220z Tik

2 3 3
+{<1+N2ha> {1+N23+N 0 ] D
=0
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3.1.3 Refined BVP for nonlocally elastic Rayleigh waves

This section focuses on deriving refined boundary and interface conditions for Rayleigh
wave propagation in a layered medium composed of an isotropic layer overlying an isotropic

elastic semi-infinite medium.

Boundary value problem

The governing equations for Rayleigh waves propagating along the z-direction in an
isotropic, homogeneous elastic semi-infinite medium and layer characterized with displace-

ment components (ugl), 0, ué”) and (uf), 0, uég) >, respectively are expressed as

n n n aQu(")
£ (i) + 8 () = o 22

o (3.1.18)
n n n) 0%uy"
a% (71(3)> + % (T§3)> = :0( ) FLEE
subjected to boundary and continuity conditions
. T?Sf) =0,
Stress—{ree conditions: at z=nh (3.1.19)
& =0
33 T %
(1) 2 (1) (2)
Tay = T31'» Tag = Ta3 s
Continuity conditions: > 217 % UFE TR 4tz =0  (3.1.20)

WD = P, o) = o2

It is important to note that not all additional conditions derived for the nonlocal stresses

in Egs. (3.1.12), (3.1.15) and (3.1.17) can be simultaneously satisfied within the prob-

lem. Given the pre-existing constraints on 7'3(?) and T?E; ), we assume that equivalence is
established solely for the nonlocal stress component 7’1(?). Consequently, the additional

conditions imposed on the problem are,

o w9
{1 o e az] P =o, (3.1.21)
z=0
o N3 9 (2) Noh 02 o N3 93 (2) h
14 Ngto 4 22 14 287 )R, L -2 —hfy
[ +N232 + 2 Ox? 82} i1 z—h+< + 2 8172) { Nz@z 2 8x28z} 1 zzoe 0
(3.1.22)
o N3 9 2 Noh 02 o N3 9 2
1- Nyt — 22 @) 14+ 202 ) 1Ry 4 22 @) e g,
[ 0z 2 a2 82} 1 =0+< T 8332) { * 20z Ty 9220z | 1 Zzhe 0
(3.1.23)
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Asymptotic analysis

The asymptotic behavior of the solution can be efficiently analyzed by introducing

small, naturally occurring parameters

Ny Ry
61—)\ s EQ—h ’

of same orders, where [ is the typical wavelength of the propagating wave and h is the
thickness of the upper layer.

Also, we define dimensionless variables,

(n) (n) (n) (n)
~(n Tik ~(n) Tk ~(n Uy ~(n U, .
T = = ﬁ ) = S ) = . i=13. (3.1.25)

() represents the fast variable capturing the rapid oscillations of wave behavior,

Here,
while s, denotes the slow variable, characterizing the gradual evolution of the wave during
propagation. The scales are introduced to capture the effects of the boundary layer on
wave behavior.

As a result, the boundary value problem governing the propagation of Rayleigh-like waves

in a layered media can be re-written as,

o (=n o (=n n 9 (~(n _py 22
ax (Tl(l)> + 9 <T§1)> +i 05 <T§1)> =707

o (3.1.26)
~(n ~(n 1—-n ~(n -n 826 "
& () - (B0) + 5t (38) = ot 550,
with
1-n
eyt (2 e ) T 2 2 _ @ =) _ 5
(1 e (n°) <6X2 + el + z a%;n)g + e 8%}@ Tk =05, (3.1.27)
subjected to boundary and interface conditions,
~ _ 1
3(? =0, 7-3(?2)) =0, at g =1, 20 = — (3.1.28)
€2
~(1) -1x(2) ~1) -1~(2)
T =M " T3, T =K " T33,
31 315 T33 33 at s, =0, s =0 (3.1.29)

651) _ 652), ﬂg) _ 6:(32),
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in which p = along with the additional conditions

€10 1.2 93 ~(1) _
|:1+8<1 +__+§€18X28%}1):| 7-11 _07

n Oxs

ns=x =0

9 ;1,22 & ~(2)
{1 + <2> Teg, TaMe 3X23%}2)] 11

1
ws=1, %f:5

2 3 ~(2 —tjea __
(e [ - ak - rd s s
f X f ns=xr=0
P YT 33(2)]~<2>
[ 9 ax20 -
€ : ~(2 —t/ea __
+<1+ 5 62> {1+ (2 + & 8% +3 77 23 28; (2)] 7'1(1) e~V = 0.

ws=1, %f:% )
(3.1.30)
Similar to the approach outlined in Chebakov et al. [203], the nonlocal stress components

are decomposed into fast and slow components as follows:

\

7o) =i + ¢,

7y =nply +endly, (3.1.31)
T =l ey |

Consequently, the boundary value problem given in Eqs. (3.1.26) and (3.1.27) can be

reformulated in terms of slow and fast-varying components, resulting in,

n n —n 8%u -n n
% <p§1)> + 825 (p§1)> =7 %-,-217 % <Q§1)> + 7' _a}?}n) (Q§1)> =0,

n n —n 8%%. -n n
= (p§3)> + 5= (p§3)> =yes, 2 (Q§3)> +n' —af}m (q§3)> =0,

n—1 [ 52 ) ~(n n—1 2 )= e n
[1 N Ei (172) (aaXZ + ,,%2 %§>:| pgl) = §1>7 |:1 - E% (772) <83x2 + y 5)2 ¢ ,)2>:| qil) =0,
i
2 () (Lt & 2] P = 15 o oyn—1 o2 ()" g2 (n)
|:1 — €n (77 ) (3)(2 + 2 a,{g)] = 5013 1-¢€, (77 ) Bx2 + 2 )2 13" = 0,
i

—1 2 2 n —(n —1 2 2)t-n 2 n
1 ) (o )] 0 = 1o ) (g 0 ) [y o
=5

3
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Further, the reformulated constraints in Eqs (3.1.28)—(3.1.30) imposed on the problem

are explicitly expressed as

2
np$ + e ql) =0, 1
at s =1, sy = — (3.1.34)
2) @) €2
77 P33 +€2 733 = 0.
3\
7717:(31) + e Q31 = U -1 <77p31 + € Q31 )
1 2 _ _
772 pg?)) + €1 Q33 =M -1 <772 pg:a) + € Q33)> at x5 = 5 =0 (3.1.35)
1 ~ 1) 2
O g =

3
+ |:1+ 93¢ (1) + 61 Ay 288 (l):| q§1)
2s=0

|:1 + €2 6% :| p§21)

2 2
+(1+%§—Xz)

) 23 2
+ |:1 + PYE) + ;77265 Ox2 07e (2)] Q§1)
=1 f
(2) ) 1 (2)
(1 €25, ) P + (1 el — 316 W) d11
225=0 f s =
(2) 1 a2 (2)
{1 — €2 EPA ] P11 |:1 - Doe (2) -3 772 %axg 8;4(2>:| q11

9 o (2)
+<1+8%§;>+§ﬂ236 o <2>> 01

x5=0

(1 +e a%) P(121)

62
+(1+2284)

=1

Y (3.1.36)
Expanding the following quantities in asymptotic series as,
Py P Py P
a0 g g g
NJ(Z) = U]('Z D +e, &§Z o I O'J(.Z D 4., forjk=1,3, (3.1.37)
a’ [ @ " "
) ) \a) o \a

and substituting in the reformulated equations of motion in Eqs. (3.1.32)—(3.1.36), we

get
\
opt? L ops” a0 000 1 00
ox Orxs v ot? ' Oy 9 T
j (3139
apgrlz,z) 6pé73b,z) o 32~(n %) aqgn ,1) 1-n aq(n ) o
Ox + e —’7 87’2 7 Oy + 1 %f)_O’)
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(n,i)

(n,i) 9 n—1 82p(7z,i72) 9 n—2 an(n,i72) B ~(n,z) (n 7’) a2q 9 n—1 82q(n,i72) .
pir” = (%) éliﬁ*( ) o =01 s a(ﬁi( ) —5z— =0,
; i
(n,i) 9\n—1 azp(gz,i_z) g\ n—2 621)(7,1’_2) _ 1~(nyi) (n,i) a2q(n 1) gyn—1 azq@,i_z) B
pis" — (%) #—(U) s = 3013 Qi3 _am%w?_( ) 5z =0,
i
(i) _ ()1l PR (ayn=2 9% g ) () %Y ((ayn=1 %Y
Py = (7)o — (%) T2 = 72033 5 33 a;’“>2_( ) Ee— =0,
(3.1.39)
with the local stresses relating to the displacement fields as,
\
=(ni) _ -2 ou{™" -2 _9 ouy
11 n "oy (" =2) T Oxs
- . a~(n,i) a~(n,i)
(nd) _ 100 70Uy (3.1.40)
13 N Oxs ox
~(n,g) _92 auim? _92 auim?
33 (Fn 2) alx Fn ﬁir ) J
(n) . o . .
where I, = WM and are subjected to the conditions in asymptotic orders as,
@) | (2i-1) o (24) | (2i-2) B 1
77p31 + 431 = 0, n p33 + 433 =0 at My = 1, ny = 6— (3141)
2
.
) (Li=1) _ 1 (2.1) (25i-1)
NP3 + a3 =p o\ NP3y a3 ;
(1,9) (1,6—2) (2,3) (2,i—2) — —
Pos Fat ) = (s e ), (A= =0 (3.1.42)
~(1,Z) _ ~(27’L) ~(171) _ ~(27Z)
Uy " =U -, Uz T =uUz 7, )
8q(l i) 1 8p(1,7:—1) 1 % (1 i—2) B
{p +ay" + 9D +o Tt 3 axzak(l) o =0,
! 11 L= =0
(2,0) 8q(2,i) ap(2,i—l) 1 263 q(2,7‘,—2)
7+ 2 2 e -

=1, »y

. —k - :—
Y (L i) )y @) _0at opth 4 0 0tatt Y o
k=i—1 2 0x2 11 E (2) O 2 a2 8%;2) . (2)70 )

(24) 24 _ 2ai7” _9pY 1 00%ai" Y
P q11 95 Dzs 2 5z a%@)

g

M=

. 2 2 g2 (2.k-1) 8 (2.k-2) L
1 n- 9 (2,k) (2,k) 9pi1 1,297 a7 Ty —
. L/ e st e 2=0
+D i ( o) 8)(2) {pu + a7 JF 8 (2) t =6 tan 2 053 e
=1, 3, =—
f €2
(3.1.43)
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Leading-order analysis: Comparing the leading order terms (i = 0) in governing

equations, it is easy to obtain

e

" (") = QY0 e, (3.1.44)
, , »2 —(2,0) )

i (xA47) = QR0 e + Q5" (e, (3.1.45)

where the expressions for Q%’O) , @ﬁ,o) are obtained from the conditions in Eq. (3.1.43)

as,
(1,00 _ 11,0 (1o _ 19 (1,0 (Lo _ 1 0 (-0
Qi = 511 %5207 Q13 2 8X( ) z5=07 Q33 = 2 0x2 (‘711 ) o
2,0 1 (2,0 -1 20 1 0 [(~20 —1 2,0 n” 8% [-20 —1
A = gat| e =g g (V)| el = ga ()|
—(2,0) 1 (2,0 —(2,0) n 0 [~(2,0 —(2,0) n? 9% /. 2,0
Qi " = —5‘751 ) . Qs =—35 BN (‘7%1 )) L Qs3 =—5 2 (f’§1 )) L
As a result, the boundary and interface conditions at the leading order become,
FE0 =0, 50 =0  ats =1, (3.1.46)
~(1»0) _ -1 ~(270) ~(170) _ —1 ~(270)
031 =K "031 °, O33 " = [ ~0O33
at s = 25 =0 (3.1.47)
~(1,0) _ ~(2,0) ~(1,0) _ ~(2,0
O a0, e

First-order analysis: Similarly, the first-order terms (i = 1) in the governing equations

of motion in Eqgs. (3.1.38) and (3.1.39) are compared by taking into account Eq. (3.1.43)

to obtain
po
i (o) = QP00 et (3.1.48)
I 3 %(2) _(2,1) 7%(2)
" () = QF 00 e + QR (e (3.1.49)

where Qﬁ’l) and @ﬁ’l) attains the value




)
x5=0

Q<21> 1 21 _ g (~(20))
) 11 2 11 8% 11

S

Qi) = -3 [+ 52 (58]
@@—ﬂguww&ixﬁmhﬂea@?4ﬁﬁ(“0aw%ﬁwm
5= [ (8) + g GRO)] | o7 @ =R (5 (B5) + 55 Wﬂ

Consequently, on neglecting the exponentially smaller terms, the boundary and interface

%5_1

xs=0

%5*1

conditions for the propagation of Rayleigh waves in a layered medium at the first-order

take the form,

oY 4 g % <5ﬁ’0)> =0, 53V =0at », = (3.1.50)
A g () = (58 - g (787)).
FA 50, at s, = 0 (3.1.51)
agl,l) qu 1)7 agl,l) _ agQ,l)‘

/

Second-order analysis: Note that at the second order (i = 2), the equations in Eq.

(3.1.39) can be written as,
n, n,2 n—1 92 [~(n,0 n—2 §2 [(~(n,0
p§1 D= 0%1 )‘1” (772) aa_xz <U§1 )> + (772) aa_%g (‘7& )> )
n,2 n,2 n—1 92 [~(n,0 n—2 92 [~(n,0
Y =L 5%+ 7" 5 (BRY) + )" & (357)] (3.1.52)
~(n,2 n—1 92 [~(n,0 n—2 92 [~(n,0
[F57 + )" 2 (F57) + 0P 2 (%)

Substituting these expressions into the equations of motion in Eq. (3.1.38), we get the

n,2
pés )= ,%2

second-order refined equations of motion in terms of local stresses as,

~(n,2 ~(n,2 n aza(n,Z) n—2 22 nel 52 aga(n,ﬂ)
& (307) + 1 (357) = {@ () Loy )

n Oxs

} 34 53)

~(n,2 n,2 82~(” ,2) n—2 92 n—1 52 aga(n,O)
£ (707) + 3. (357) = 257 (072 gy v o™ ) 7).

Further, the second-order refined boundary conditions at the surface s, = 1 can be derived

as,
~(2,2 ~(2,1 2 ~(2,0 2 2,0 2 (~(2,0
Ui(’>1 ) 772 8X <0§1 )) 772 8%5 <g§1 )) 8%3 < ( )> 772 82 (Uél )) =0,

X
(2,2 2 (2,0 2 (2,0 2 52 [(~(2,0
U§3)+873<0§3 )>+77238_X2<0:(’>3 ))_%aa_xz<051 )):O,

at 2, =1

(3.1.54)
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and the refined continuity conditions at the interface s, = 0 can be given as,

a5 + % % (507) + ni? 8}; (oéi )+ e ( (10)) - 2117 6Xa;%8 (557)

0
=t [ - L () + g () e () + 2 5 (37) | 319)
é%&&cww;$<mwfx$v
=it [P g (A8 + g (A7) o 5 ()] (150
77(11,2) _ 5(12’2), ﬂ(l 2) _ ~(2 2) (3.1.57)

Refined boundary value problem

Using the fact that ¢ ~ £ g9 gD ~ é g™ for g € {Gjx, ux} for j, k = 1,3, the
boundary value problem for Rayleigh waves propagating in a nonlocal layered medium

given in Eqs. (3.1.53)—(3.1.57) can rewritten as,

° o (3.1.58)
~(n n—1 2 2 82uy"
% (013)> + % ais <U33)> =nY [1 — € (772)( : (% + n%gig)] Erat
subjected to the boundary conditions at s, =1 as
~(2 ~(2 2 (2 2 2 2
o 1 )]+ 1 00) 8 60) e )] <o |

o+ e [ (38) + o g () - % o (1)) =0

and assuming O (€2) ~ O (€3), the interface conditions at s, = 0,

[ )] e )+ )+ s )
— ! {ag? e {g % (Efﬁ)] +é {8‘9 (5) +n28i (E) + 7 8x682%s (55?)] } (3.1.60)
e [ 5 () + i () + 5 ()]

o o v [ g o)+ s 08 o g o8] 100

aV =3, @) =al?. (3.1.62)
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In terms of the original variables, we can re-write all the equations from Eq. (3.1.58)—(3.1.62)

as,
™Y L 0 (o™ _ (1 _ w2w2y Pu”
x011)+z<013>—9 (1 =N,V7) =,
? ? at( ) (3.1.63)
n n 0%uy"
Oz <U§3)) + oz <U§3)> = p( )(1 - N72’LV2> [%g )
subjected to the boundary conditions at z = h as
(2) o (.2 X392 (2)
(1+N3V?) o3 + z<011>+_2 z Z(Un) =0,
b 2 0w0 (3.1.64)
2
(1+39?) o) - 5 2 (o17) =0,
and at the interface z = 0 underlying conditions,
g2y (0 N 9 oy N9
(L4 RV oy + 2 0z0z (U ) + 2 0x0z (U“)
_ 2 2 0 ( (2 N3 92 2
) N2 92 1
L+ 892 o) = 5 o5 (ol
_ N2 92
=p {(1+N%V2) ol - 32@ (Uﬁ))}, (3.1.66)
ugl) = u?), ugl) = ugz), (3.1.67)

where V2 = aa_; + 83—;2 is the well-known Laplacian operator.

3.1.4 Application

In this section, we investigate a two-dimensional problem on the propagation of
Rayleigh waves in an isotropic, homogeneous layer of thickness h overlying a homoge-

neous isotropic semi-infinite medium.

Solution to the problem

As mentioned in section 4.1 ug and u3 ) for n = 1,2 be the horizontal and vertical

displacements of Rayleigh waves the semi-infinite medium (n = 1) and the layer (n = 2),
respectively.
A coupled system of differential equations are obtained on using the local stress-strain

relations in Eqgs. (3.1.1) into the refined equation of motion obtained in Eqs. (3.1.63).
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Introduce the potentials ¢ (z, z,t) and ¢ (z, z,t) to decompose the displacement com-

ponents as,

L) @¢(n) B a¢(n) L) a¢(n) N 3w(n).
! ox 9z '3 0z ox

to decouple the coupled differential equations.

As a result, we get

n) __ 1 82¢>(")
V2o = (1-N2V?) 0

() (3.1.68)

n 2,7,(n)
Vi) = (c<i>>2 (1-N2v2) 20

The solution to these systems in Eq. (3.1.68) are evidently,

¢(1) — Al ekarz ei(kac—wt)’
for the semi-infinite medium: (3.1.69)
w(l) =P ekbiz ei(ka;—wt)7

¢?) = [Ay sinh (kagz) + By cosh (kayz)] ekz=«t),
for the layer: (3.1.70)

¢(2) = [P, sinh (kfy2) + Q sinh (kfB52)] ei(k;x—wt)7

where,

2 2
ap= |1- ¢  Ba= |1-— : (3.1.71)

3
<c§”)) — W22

: )y 2™ &)
with c§”) = /22 and an) =/
P P

Dispersion relation

Define certain quanties,

= (200 = (30) + 1), T = (40) 1.
Now, on substituting the solution forms in Egs. (3.1.69) and (3.1.70) into the refined

boundary conditions derived in Egs. (3.1.64)—(3.1.67), the dispersion relation obtained
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in terms of nondimensionalized variables within an error of O(€?) is as follows:

0 0 Qiaéo) cosh(n aéo)) 2ia(20) sinh(n aéo)) n Bé0>€2 COSh(7] ,Béo)) n ﬁéo)m sinh ('r] ﬂéo))
—iy2mneEn sinh(n ago)) —iyamnen cosh(n a(20>) —To sinh(n Béo)) —To COSh('/] 6§0)>
0 0 T2 sinh (7] ago)) T3 cosh (77 aé0)> QiBéo) cosh <r] ﬁéo)> 2zﬂ§0) sinh (n Béo))
2i0l” —imea  ~Ti+ap” 2l —ivanea ! 1B ea ! T Y

T, 2i8% 0 ) —2ip{" 1 0

i - 0 —i 8 0
al® i —a? 0 0 —i

(3.1.72)

Note that Eq. (3.1.72) clearly establishes a relationship between the velocity ¢ of Rayleigh
waves and their wavenumber k (or wavelength 1), indicating the dispersive nature of
Rayleigh waves in a nonlocal layered medium.

Let us introduce the following abbreviations to simply our discussions on the dispersion

relation.

X=2u—"y W=2(u—-1),

. . _ Z—yY
Y — 2 ,UT17 U - ( éo)>271’ (3173)

(0)
Z = TQ - Mle V= —/61 ('ygVIng).
()

As a result, the dispersion relation in Eq. (3.1.72) reduces to,

(m&e —m&1) + pe [ 50) &3 < §0) m+m 772) -3 (5%0) §1+m 52”

(0)
+ ne [% (m2&a+mé&) —n3 (U +&6V)

2

—0, (3.1.74)

where the expressions for &1, &, &3, &4, &5, 1, 2 and n3 are given in the Appendix B.
The leading-order term in Eq. (3.1.74) yields

mé& —n261 =0, (3.1.75)

which corresponds to the dispersion relation of Rayleigh waves in a local, elastic, layered
isotropic medium. This result aligns precisely with the well-established formulations and

results of Love [270] and Fu [271].
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3.1.5 Graphical discussions

The dispersion characteristics of surface waves are fundamental to understanding wave
propagation in elastic media. In this section, we present and analyze the dispersion curves
obtained from the theoretical model, which provide insights into the relationship between
wave velocity and wavenumber (or wavelength).These curves serve as a crucial tool for
interpreting the effects nonlocal parameters on wave behavior.

Figure 3.1.2 shows the dispersion curve relating wavenumber to wave velocity for Rayleigh
waves in a nonlocal isotropic layer overlying a nonlocal isotropic semi-infinite medium. At
lower wavenumbers (long-wavelength regime), the Rayleigh waves perceive the medium as
effectively homogeneous, with phase velocity approaching that of the stiffer substrate, as
the wave motion extends deeper into it. When the wavelength is long relative to the layer
thickness, wave motion concentrates in the softer upper layer, reducing the overall phase
velocity. This dispersion, where wave velocity decreases with increasing wavenumber, is

further influenced by nonlocal elasticity, which further lowers the phase velocity.

For overlying softer layer

0.96
T ——1. ¢ =0.00, & = 0.00
SFe0985 1 9 ¢ 0,00, & = 0.05 l
I ——3. & =0.05, e = 0.00
G 095 d
- 4. ¢, =0.05, & =0.05
=t
O 0.945 7
% Local elastic half-space
>
q>3 0.94 Nonlocal elastic half-space |
g
. 0.935
n
=
g 09
i%
g
g 0.925
[

092 Il Il Il Il Il Il Il Il Il

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Dimensionless wavenumber, 1 = % —

Figure 3.1.2: Dispersion curves for nonlocal elastic Rayleigh waves in an

isotropic layered medium

Moreover, the analysis reveals that the nonlocal elasticity effects in the layer are more

dominant than those in the semi-infinite medium, a finding that aligns with previous
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studies. This dominance is likely due to the higher sensitivity of the thinner layer to
nonlocal interactions, compared to the more massive semi-infinite medium. The literature
corroborates that in layered media, the upper layer’s material properties and nonlocal
effects have a substantial influence on the overall wave behavior, often overshadowing the

contributions from the underlying substrate.

3.1.6 Conclusions

This study derived refined boundary and interface conditions for nonlocal Rayleigh
waves in layered media by employing asymptotic analysis and a modified singularly per-
turbed differential model. The results highlight that nonlocal corrections primarily affect
boundary and interface conditions rather than the equations of motion. Refinements in
the interface conditions are essential to account for the nonlocal boundary layer devel-
oped at the interface. First-order nonlocal corrected dispersion relations were obtained
and validated through numerical analysis, demonstrating significant and dominant nonlo-
cal effects in the layer. While the approach aligns well with existing literature, its validity
may be limited at scales comparable to the internal size of nonlocal boundary layers,

necessitating further advancements in future research.
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3.2 Extension to nonlocal micropolar elasticity with an applica-
tion”

This subsection extends the previous analysis in section 3.1 to analyze the surface wave
propagation under the framework of nonlocal micropolar elasticity. Refined boundary
and interface conditions, incorporating modifications to couple stress and force stress

conditions, are derived to account for boundary and interfacial layer effects.

3.2.1 Mathematical formulation

We examine a two-layer system (provided in Figure 3.2.1) consisting of an isotropic,
homogeneous nonlocal micropolar elastic layer of thickness h resting on an isotropic,
homogeneous nonlocal micropolar elastic semi-infinite medium. The values in the semi-
infinite medium is denoted by script ‘1’, while the values in the layer is denoted by ‘2’.
The z—axis is oriented vertically downwards, with the free surface at z = h and the

interface between the two media at z = 0.

Nonlocal micropolarisotropic’semi-infinite
medium

A0, @ @ N

Figure 3.2.1: Geometry of the problem

* Published in Mathematics and Mechanics of Solids (SAGE Publications), (2025).
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According to Eringen’s theory of nonlocal micropolar elasticity [61], the relationship
between nonlocal and local stresses can be expressed through integral equations. Employ-

ing kernel of the form given in Eq. (1.3.51), we have,

27TN?

) = 1 f K, (—V (zx);f(zz)Z)) o (7, 2) AT dz,
Y i=1,2. (3.2.1)

7Tmn =

( (==2) (z 2 )H&?n (z,2) dz dz,

Vs

The superscript ¢ = 1 and ¢ = 2 refers to the quantities for the semi-infinite medium and
the upper layer, respectively.

Further, the parameter X; denotes the nonlocality parameter for each medium. And
the volume where deformation occurs is denoted by V;, with ¢ = 1,2. Specifically, V;
corresponds to the region —oco < z < oo and —oo < z < 0, while V5 corresponds to
—o<r<ooand 0 <z <h.

For slowly varying local stresses o', and 1%, in the z—direction, Eqs. (3.2.1) reduce to
the approximate expressions as presented by Kaplunov et al. [204] for the small nonlocal

parameters. As a result, the approximations for the nonlocal force stresses are

0 i
T (T, 2) = o Ioo [1 + N; (1 +xlz- z|) 8‘9—;2] Ton(@, ) e dz,

. (3.2.2)
2 L zZ—z _
) =y [ [0+ (14 o) 2] ofe e s
and for nonlocal couple stresses are given as,
(1) PR, 21 ) 1]
Wmn(%’z) = ﬁ [1+71 <1+ ‘Z_Z’) W] Hmn(l’,f)e M dz,
Prin (3.2.3)

h 5 —Liz—2

Furthermore, adopting the same two-dimensional kernel as specified in Eq. (3.2.1), the
differential model proposed by Eringen [60] establishes the relation between local and

non-local stresses as,

(1 — N2V2) 0 = 07(7?71,
i=1,2. (3.2.4)

(1 N2V?) i = I,
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Now, the general constitutive equation relating the stress and strain components in a
linear micropolar elastic solid are given by,
(i) (i)

(4)
Omn = Cmn Epq
e m,n,p,q=1,2,3, (3.2.5)

Hsl)n = M%)npqrz(;c1)>

where C%)T,,pq,/\/l%)npq are the micropolar elastic stiffness tensors of the corresponding
medium.

Also, the strain tensor 5]()2 and the curvature tensor Fz(az) are related to the displacement

(@)

components u;’, j = 1,2,3 and the rotation vector ®;, j =1,2,3 as,

51(qu) = u((z% - equCI)S}),

. , p,q,r=1,2,3, (3.2.6)
i) = af),

where €4, is the permutation symbol.

In a homogeneous micropolar elastic medium, the governing equation of motion for a
nonlocal micropolar elastic wave propagation without body forces is expressed as

Tr(rizzm - p“)ug,)n =0,

W%)nm + enquzgfz) - j(i)P(i)(Dx,)lft =0,

(3.2.7)
in which p®, @ corresponds to the density and micro-inertia of the each media, respec-

tively.

3.2.2 [Equivalence conditions

In the next section, we shall derive the additional boundary conditions needed to
ensure equivalence between the integral and differential nonlocal micropolar elasticity
formulations as described in Eqgs. (3.2.2)-(3.2.4). By rigorously establishing these condi-
tions, we aim to accurately model the effects of micropolar and nonlocal elasticity in any

layered media.
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In the lower micropolar nonlocal elastic semi-infinite medium

At the interface of the layered media, z = 0, the expressions for the nonlocal force

and couple stresses,

(1) 0 N2 2\ 2] .
- [ 8 (- £) ] e
2=0 oo (3.2.8)

0 2 — _
=g J [0+ (1) ] i o) e az

Upon substituting the differential formulation given in Eq. (3.2.4), we approximate the
first expressions in Eqgs. (3.2.2) and (3.2.3) using a methodology similar to that provided
in section 3.1 under the assumption of a longer wavelength compared to the nonlocal

parameter of the medium, yielding

o N 9 )
[1 * Nl& * 2 a2 8z} X

— 0, (3.2.9)

z=0

for all XM € {Tﬁ%,wﬁi}

In the upper micropolar nonlocal elastic layer

It should be noted that for the upper layer of thickness h, the equivalence between
the differential and integral nonlocal models must be satisfied at both the surface z = h
and the interface z = 0.

Observe that, the nonlocal force and couple stresses at the surface z = h are given as,

1 " N3 1 (5 2] @ 25 a4
:m : |:]_+7(1—N—2(2—h)>a?i|0'mn($72)€&2 dZ,
z=h L (3.2.10)

N2 _ 2 2 \ Eho_
! | [1+72 (1 - N%(z—h)) a_] N2 (z,2) e ™ dz,

(2)

Tmn

ol 1
mn 2Ny 0z?

z=h

and at the interface z = 0 are expressed as,

h 2 — =
i f [ F (1) BB e
2=0 \ (3.2.11)
=1 1+% (14 2) 2| o) (z,2) e "= dz
o 2N b 2 No | Oz2 mnA- .

(2)

Tmn

After rigorous calculations, equivalence conditions are derived at both the surface z = h

and the interface z = 0. As a result, we obtain the conditions,

Noh 07 o N3 0 @)
h*(”T@) {1*‘*%*7%2& X
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e "2 =0, (3.2.12)

z=0

o N 9 @)
[1 + N2@ + 2 9120z

z=



e "2 =0, (3.2.13)

z=h

oh o N3 o @)
Fj(“”?iﬁp+wi+?mex

which holds good for all X ¢ {77(32“ ﬂﬁn%}

3.2.3 Refined BVP for nonlocally micropolar elastic Rayleigh waves

Consider the propagation of Rayleigh waves along the x—direction, characterized
by the displacement components <u§ ), 0 ué”) and the microrotation vector components
<0, <1>§”, 0), where ¢ = 1 refers to the semi-infinite medium and ¢ = 2 corresponds to the

layer.

Boundary value problem

The boundary value problem is then formulated as follows:

Tl(:L)z + T?E??,Z - p(l) ug,)tt - 07

(2)

" . o NP n=13 (3.2.14)
Tigg + T3g, + T3y — T3 — /)(Z) j(l) q)2,tt =0,

subjected to the traditional traction-free boundary and continuity conditions, respectively

(i) at the surface z = h, TS(f) =0, Tg(g) =0, W:gé) =

(ii) at the interface z = 0, T?Ei) 7'351), 73(31)) = 735?, Wé;) = wég),

WD — @ @ M _ @

It is noteworthy that not all the equivalence conditions derived in sections 3.2.2 can
be simultaneously satisfied, as doing so would render the boundary value problem ill-
posed. To ensure a well-posed formulation, we adopt the extra conditions provided in

Egs. (3.2.9), (3.2.12) and (3.2.13) on the nonconstrained stresses X ¢ {qu),ﬂg)} and
X0 € (s A2}

Asymptotic analysis

Introduce two small perturbation parameters of same order,

) _ R
)\7 62_h7

€ = (3.2.15)
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to address the formulated problem asymptotically. Here A denotes the wavelength of
propagating wave and h is the thickness of upper layer. This results in the different scale

of behaviors, which are described as follows:
np = (3.2.16)

These scales are introduced to incorporate the influence of the boundary layer on wave
dynamics. The variable s, captures the slower variation of the wave during propagation
while the rapid oscillations of the wave behavior is captured by the variable %J(f). Further,

we introduces some dimensionless quantities such as,

1)

r T A )
f=%t=FtC=%7=D

2

70 _ om0 owh =0 w0 1t (3.2.17)
mn = 0 @0 Omn T G @y imn T G e im0

. (4) . (4) ) (i i i
a(l)_% ﬁg):ug , J(z):J;_;’ q)é):q)g)’

j ) 1D s . .
where cg) = /£ pJ(:.)"” to facilitate the further discussions.

To account for the effects of the boundary layer, the stress components can be decomposed
into fast and slow variable components, as done in section 3.1, as follows:
)

7 = ), 7 =l + el

7_31 —Cp +62q13, 7‘13 —Qp —|—elqéll) (3.2.18)

7T§2) = rg + 3%) 32 = Crsz + € S:(J,2)v

where p% and 7, are the functions of €, 5, t, while q,(ﬁ)n and s, are the functions of
&, %f,f This approach allows for a more accurate representation of the stress field near
the boundary. It is important to observe that the symmetry of the stress components is
preserved for the rapidly varying components, while the symmetry breaks down for the
more slowly varying components within a micropolar solid. As a result, we have qg = q?(fl).

Furthermore, we expand the following quantities in an asymptotic series as follows:

§0 = §00 4 F0D 4 2502 4 (3.2.19)
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Where %’ E {pmna an7 Tmna amn7 rmna Smn7 7Tmn7 Hmna una ®2}

By decomposing the stress components as outlined in Eq.

(3.2.18) and employing the

asymptotic expansions from Eq. (3.2.19), the boundary value problem can be reformulated

in terms of asymptotic orders as below:

817(z ;) + opg” 1 o2l
Oxs 8?2 ’
( T) Cl i aan 0
EP (z I
87”?2” 8T§ZQT (4,7r) (z,r i 82&:&1’”
oe T + P31 p13 J EE
85(1 ) 1— Al
g =

together with

. _1 72 (4,7—2) 2 52 (i,7—2) 2-m4n _ ;,
i) — () Mé”—,{é ()" BT =) % G,
i 2 ’E:l; 1 52 (7,7‘ 2)
7(7?”:) - g ?’L T‘)2 (CQ)T 8 é‘ - O;
2,.(4,7r—2) _ 9 a2 (i,r—2) Qemtn ~ (s
rhi = (C3)' P — — () E— = () I
(%,r) H2 (i,r) o\7—1 82 (zr 2) .
Smn a%;imﬂgg (C ) T = 07

together with the boundary and interface conditions

(i) at the surface s, = 1, 25 = =

\
2 1
Cri” + g =0,
2 2 2
<2p§3r + §3r ' =0,
(2 r) (2 r—2)
T3 =0
¢ ]
(ii) at the interface s¢5 = s =0
Cp(lr_i_q?jr 1) = 1( (27" +q321r 1)>’
<2 1r)+ 311‘ 2) =x 1(< p:())237“)+ 327‘ 2))7
C7‘(1 r) (1 r—2) —x 1 ( (2 r) (2 r— 2))
ﬂgl,r) _ 652,7”)7 ﬂz())l,r) _ fu«z(f,r), (521,7‘) _ 5%2,7“)7
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n=1,3 (3.2.20)
‘ m,n=13 (3.2.21)
)
(3.2.22)
(3.2.23)




(EOIEY) " o
where p = £ and the additional conditions
M(Q) —|—;q,(2)

p (1,r) +q (1 r) 8q(1 ) 41 aptm—h L1 9%l -0
11 ) ‘(1) < Oy 2 6528%5}) Do ’

27) | (2r) | 2afy” ap‘“ D 20° (7Y
|:p 11 T3 De (2) + EPR +3 C 062 952" 2) 1 L@
f xs=1, By
T r—k 2,k (2,k—1 2,k—2
+ > (CZ 82) PO 4+ g - TR TR AL i e m =0
23 o¢2 11 11 93 }2) D, 2 ez 8%](,2) =P =0 ’
(2,r) @2r) 942" aprh 9% ¢{2m =2
[pu +4a1 aq @ p(lalns -3¢ 3523 9820, Lo,
o=y =
r 2.k 2,k—1 2,k—2
C2 0? 2,k) | (2.k) 56]11 : 5]9( ) Cj 53‘1§1 : - _
+ Z vl Pir ta T+ o T + ©) e 2=0
et 2 8§ 8%f a%S 2 852 8%f xs=1, %}2)— L
(3.2.24)
(1,r (1,7) as(“) 97"(1 =1 93s(Lm=2) o
|:7'12 + 812 8}1{31) + é 6;{g % 85;2){)((1) W _, - 07
Hg=ay =
2 2 aszm 87"(2 b 9% 52
el B el |
f =1, ;' =—
s »f n2
T r—k Jk Jk— k—
+ ) <§2 62) NCEI <2k>_35§22 )_37"522 RSV T =0
Rt 8&'2 8%}2) 6%8 2 852 a%;Q) %s:%f):o )
2,r) (2r) _0sy”  arlyrV g 583
{7‘12 +s12 D2 (2> b C 3523 062 9D e,
f re=ry =
r r—k 2,k 2,k—1 2,k—2
¢ PN o en 0557 0t ¢ oS %
+ 2 (57 +a e — 4 & e =0
— 'g 8%f Xs 662 8%]” xs=1, %;2):%
(3.2.25)

A comparative analysis of the leading order terms (r = 0), first-order terms (r = 1),
and second-order terms (r = 2) for the aforementioned system of equations enables a
refinement of the boundary and interface conditions. By ignoring exponentially smaller
terms, the refined boundary and interface conditions for different asymptotic orders are
summarized below:

Leading order analysis: Comparing the first-order terms, we obtain the conditions (i)

at the surface s, = 1,

a0 =0, 53" =0, IEY = 0.
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(ii) at the interface s, = 0,
-1~ 2,0 ~ 1,0 -1~ 2,0 ]___[ 1,0 — HN 2,0
tog? U( )_X 10’;3 )’ g2 ) X ! £(’>2 :

~(170)
031 " =X 031 ", O33
agm) _ agzo), agm) _ agz,o)) :1351,0) _ (“1“)22,0)'

First-order analysis: Comparing the first-order terms, we obtain the conditions

(i) at the surface s, = 1,

(ii) at the interface s, = 0,
~an 190 /o 10 n 0 (~@0
7+ g g (A7) =t (31 -5 5 (717)).

~(1 1) _1 ~( 2 ,1)
~ 1 3 Ui 5’ 2,0
H(l,l) __( (10 21 ———(H( ))
2 T35 2 ¢ !
SL1) _ =(2.) Us _ é , @21 1) _ (1)52,1).

Uy " =u 7,

Second-order analysis: We rewrite the equations of motion in Eq. (3.2.7)

_(i,2) o . _2-(i,0)
— [ (e e ) T

at2 932

_(4,2) —(4,0)
G G S

~(i,2 i
; (Uéla )) =¢y! [ ot2
i—1 02) aza(li’o)]

o€
¢ (3, ~(i ~(1, i 27(4:2) i—
a% (H§2’2)) +%% (H( 2)) + §12) 0(32) :71 |:8 3212 - ((CQ) 28(972_'_@2) % e
(3.2.26)
subjected to refined boundary and interface conditions
(i) at the surface », =1,
522 C O (~en\ , ¢ & (o), 9 (-0 0 20\ _
90 (47) +3 € D72, (a857) + 5522 (o5 )+< e ("31 )=o (3.2.27)
~2) 0" (@0 9% (o) _ ¢ 9 (~eo)_
52 +8%s( )+c o (a ) > oE (739) =0, (3.2.28)
(3.2.29)

4§ (07) i (1) + 25 057) o £ (1) .
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(ii) at the interface s, = 0,

o475 5 (P 1 g () + g (o8 °>) * 3¢ aea (1)

! [5532) -5 a% (#37) + aa; (327) + 5 a (F57)+5 85882%3 Y

Y g s (B 4 o (B + o (A7)

o i ) 5 057) ¢ s 05)]

82
3
ey _ < 9 (ﬁ%l)) L2 (H@ o>) e t (H<2 0)) L

= X_l
2 9¢ 9522 2 9€ O,
agl 2) 1~L§2 2)’ uél 2) ( 2) cI)(l 2) 22 ,2)
L < ) )
whnere x = LD R

Refined boundary value problem

Utilizing the approximation that

. 1 )
FOr) @3(2)

)35 (00 5 0°) s (o

(H(2 0 )}(,3 2.32)

’ )} ,(3.2.30)

(3.2.31)

(3.2.33)

forr=1,2and § € {&31, 511, 033, so, Ty, Uy, s, &)2}, the refined equations of motion for

the propagation of Rayleigh waves in a micropolar layered medium can be reformulated

in terms of original variables as,

(o) 2 ()
2 (o) + £ (o)

% i i i 2
2 () + 2 (1) + o) — ol = 0 jO (1 - 97 Bt

) 2,9
P (1= W22 T

. 2u(i)
p(z) (1 _ N?Vz) 86153 :

with the refined traction-free boundary conditions at the surface z = h as

(T % 8 (o) + e o) 0.

g () =0

N2 g
Ox?
2 2 N3 2)\ _
B RHORE ) =o.

Ny
2

(1+R3V2) ol —

7 ox 0z

(3.2.34)

(3.2.35)



and the continuity conditions at the interface z = 0 as,

Ny 820(1> n? 820(1) 2 No 80(2) 82 525
1+R]V?) of) + = oLl SL O P o 1+ 83V?) o) — =2l 3.2.36
( % )031 * 2 0x0z 2 0z 0z =X ( TN ) Is1 2 Oz 2 0x0z ( )

2 2
(1) N1 0 ‘711 -1 (2) _ NZ 0 ‘711

(1+X7V?) 0§ 5 92— X {(1+N2V) 033~ 5 a0 (3.2.37)

Ny 92t w2 g2y N, 0112 w2 921l
1+ RVA) I + = A2 4 L 12 o 1+ R3V2) ) — -2 =12 4 =2 =1 3.2.38
( N ) 2 F 2 Ox 0z 2 Oz 0z X ( TN ) 32 2 Oz 2 Oz 0z ( )
u =ul?) Wl =P, oV = o, (3.2.39)

where V? is the two-dimensional Laplacian operator, defined as V? = 88; s + 88:2

3.2.4 Application

In this section, we investigate the propagation and dispersion of Rayleigh waves in an
isotropic nonlocal micropolar layer of thickness h overlying an isotropic nonlocal microp-

olar semi-infinite medium.

Solution to the problem

The constitutive relations relating local stresses with the strain components for an

isotropic micropolar structure are given by:

ol = AC epg Sn + (1 + K@) el + @ i,

. A A m,n=1,2,3. (3.2.40)
T = o T8 8y + O T + 7O T,

Here, the strain tensor el and curvature tensor 'Y, are defined as previously described.
Additionally, A®) and u represent the Lamé elastic constants, while k@, a® and g%
denote the micropolar constants.

Substituting the constitutive relations from Eq. (3.2.40) into the equations of motion
presented in Eq. (3.2.7) yields a coupled system of equations involving ugi), ugi) and (IDg).
To decouple this system, we employ Helmholtz decomposition technique that expresses
the displacement components as a sum of scalar and vector potentials as follows:

u(i) _ aqg(i) B &p(i) u(i) _ a¢(i) N 81/;(i)'
1 ox 0z 3 0z ox

(3.2.41)

The resulting decoupled equations can be readily solved, yielding solutions to the dis-

placement, micro-rotation components of the semi-infinite medium and the layer in the
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following form (the detailed derivation is left to the reader),

(1) ;
(1) (ZC P t) =ik [Alek\/l 4 (B vy (1) k\/2 )2 + D (1)ekV31 z):| €Z<k17Wt),
ul(z,2,t) = k [Alvgl)ekngz e (Blekvgnz I Dlekvgnz)] gilha—wt) (3.2.42)

(1) ;
@él)(m,z, t) — 5(1) ]C2 Dy ek:\/3 z ez(szwt)’

11(12)(307 z,t) =k [z (.Ag sinh (kvf)z) + P2 cosh (k’VSQ)Z)) — VéQ) (Bz sinh (kvg)z) + Q2 cosh (kvéQ)z))
v (’D2 cosh (k\/(2> ) + Ro sinh (kvéQ)z>>} e"("“““’t)7
uff)(a:, z,t) =k [vﬁ” (./42 cosh (kvf)z) + P3 sinh (lcv?)z)) +1i (82 sinh (kvg)z) + Qs cosh (kvgmz))

+i (Dz sinh (kv§2)z) + Rz cosh (kvéz)z))} gilke—wt)

o (z, 2,t) = ks [Dg sinh (kv<2) ) + R cosh (k\/g?)z)] gilko—wt),

(3.2.43)

where k (: %), w are the wavelength and frequency of the propagating wave, respectively.

And,
0N
N2 N2 2 2(03 )
V) R R () | S S () | J 11— — ,
1 N2 2 N2 3 N2 D2
(cll ) — N2y2 (c; ) — N2yp2 (642 ) — N2y2 J

N 2 N 2
] 2 (cé”) — N2y? 2 (cg))
(@ _ Y
T T b ewe ||
7 [ e

It is necessary that Re(vm) > 0 for m = 1,2, 3 to guarantee the exponential decay of the

waves from the surface. Also,

ng') _ A + 2/{(’;) + K ng‘) _ @ + KO [T
p(z) p(z) p('L (4)

are the velocities associated with the micropolar media.

Dispersion relations

Now, substituting the expressions for the displacement and micro-rotation components
of both the semi-infinite medium and the layer, as given in Eqs. (3.2.42) and (3.2.43),
into the refined boundary conditions derived in Egs. (3.2.35)-(3.2.39), we obtain a 9 x 9
system of equations. Solving this system for a nontrivial solution yields the dispersion
relations. For computational efficiency, we evaluate the first-order corrected dispersion

relations. Two dispersion relations are obtained out of which one is entirely due to the
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micropolarity in the media and vanishes in its absence.

Define the quantities in their leading order expressions as,

2

(V%f:l—(z))y (Vg()))z:l— (?))2 (V§2)2=1— <fj)2 1—1%2? (3.2.44)
C1 Cy cy

As a result, the dispersion relation corresponding to the Rayleigh surface wave mode that

counterparts with the purely elastic solid can be given explicitly as,
Ag+ €611 + €Ay =0, (3.2.45)
where
Ay = (l—l |—|(2)> V10 (@& — @2&1),
Ay = 2G, (V%)Qzas - @352> + Gﬂ’%) (@g& - V%)@laz,) )
Ay =1 (V%) (@& + @1&5) — @3\/10 <£2U + Vgo 51 ))
is the first-order corrected dispersion relation for Rayleigh waves propagating in a nonlocal

micropolar layered medium. Further, the expressions for @;, 7 = 1,2,3 and §;, j =

1,2,...5 are as follows:

o1 =TIV (v@wsinh (V) + Zeosh (v2)) + [T (60 X sinh (v) + v ¥ cosh (¢+(2))),
o = [I (VEVEW comh (v2) + Zoinh (¢vZ)) + 1P (0 X cosh (v @) +v2Y sinn (v2))
m = [ s (o) + TG s ()

and

b = [ (A2vEW cosh (¢v2) + Zeinh (v2)) + [TV VD X conh (v + [TV Y sinh (cv2)

G = [PV (VB W sinh (¢v2) + Zcosh (¢v®)) + [ (w8 X sinh (v2) +v2Y conh (v2))

b = [ cosh (V) + [ cosh (42

b= (v (M (M2 T12) 2 [0 cost (@) + 12 (T + 12 vz w sint (42))
@ M (M2 + M2) ¥~ 100 cost (o) + 2 (12 + 1) v x s (42)).

b= VO (MY 212 (M1 + 112) W) cosh (v) +42 (48 (MW + 112 (M1 + 112) X) eosh (642
I (T -+ TT) w2 v o (2))) + 212 (M1 + 6 zsinn (6452,
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while the expressions for the rest of the unknown terms are provided in the Appendix C
for reference.
Also, the dispersion relation corresponding to the micropolar surface wave that vanishes

in the absence of the micropolarity in its first-order correction is given as,

Vo+ 61Vi 4+ eVy =0, (3246)
where,
@ [ (o020 @) @\2 1% @ . @)
Vo = 2¢vs (@3 > Vs, X cosh (CV30> + <@3 ) j(—l)v30 sinh (CV30> ,
2
Vi = — (@g”) Vé%))( cosh (C‘Vé?),
_ W\ () (2) @\27% 2 (2)

where @gi), t = 1,2 are defined in Appendix C.
3.2.5 Graphical discussions

To gain deeper insights into the influence of nonlocal elasticity and micropolarity on
Rayleigh wave propagation within a layered medium, a series of graphical representations
are presented. These figures elucidate the dispersive nature of Rayleigh waves and the
variations in phase velocities with respect to wavenumber and micropolar parameters.
To facilitate a comprehensive understanding of the graphical results, we introduce the
following non-dimensional parameters: Poisson’s ratio (v), micropolar ratio (d) and char-
acteristic length ratio (I). For the semi-infinite medium (¢ = 1) and the layer (i = 2),
these parameters are defined as:

(0 A w_ 5w Y

R G MG LG TOMON

Throughout the graphical analysis, we assume the following values for the non-
dimensional parameters: v = 0.1, v® = 0.4, dV = 0.2, d® = 0.8, unless otherwise
specified.

The graphical analysis presented in Figure 3.2.2 provides a comprehensive comparison of
Rayleigh wave propagation in four distinct scenarios: local elastic, nonlocal elastic, incor-
rect nonlocal results, local micropolar, nonlocal micropolar media and incorrect nonlocal
micropolar results. We deliberately include incorrect dispersion curves to demonstrate

the inaccuracies present in past literature compared to the refined boundary condition
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results presented in this study. The introduction of micropolarity, characterized by addi-
tional rotational degrees of freedom, results in an increase in phase velocity. Conversely,
nonlocality, which accounts for long-range interactions, leads to a decrease in phase ve-
locity. The interplay between these two effects shapes the overall dispersion behavior.
Micropolar media (both local and nonlocal case) exhibit a concave downward dispersion
curve, indicating a positive dispersion relation. This means that that lower frequency
components travel faster than higher frequency components, leading to a compression of
the wave packet. Purely elastic materials (both local and nonlocal case), on the other
hand, exhibit concave upwards dispersion curve indicating a negative dispersion, where
higher frequency components travel faster than lower frequency components. This leads
to a spreading of the wave packet over time. It is important to note that the limit hk — 0
corresponds to an infinitely long wavelength relative to the layer thickness. Our analysis
reveals that even for small hk, where the wavelength is significantly larger than h, non-
local effects persist, influencing wave propagation. This observation higlights the crucial

role of layer thickness in governing nonlocal behavior.

0.98

4"%

<
NQ
€

I
©
>

o

©

=
|

o

©

N
T
—

. Local elastic layered media
———2. Nonlocal elastic layered media

— 3. Incorrect nonlocal results (in absence of micropolarity)

Dimensionless wave velocity, 2

o
©
T
|

——4. Local micropolar elastic layered media

5. Nonlocal micropolar elastic layered media

0.88 - 6. Incorrect nonlocal results (in presence of miropolarity) B

1 1 1 1 | | | ) ‘
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Dimensionless wavenumber, n = ,XI —

Figure 3.2.2: Comparision of Rayleigh wave dispersion curves under the

influence of micropolarity and nonlocality in a layered medium
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The provided dispersion curve in Figure 3.2.3 illustrates the influence of the micropolar
ratio ds in the layer on the phase velocity of Rayleigh waves. As the micropolar ratio
ds of the layer increases, the phase velocity curves increases with the increase in the
wavenumber. This indicates that a higher micropolar ratio leads to a faster propagation
of Rayleigh waves at the higher wavenumbers. However, beyond a certain value of ds, the
dispersion curve shows a concave upward trend in the phase velocity with the increasing
wavenumber. This complex behavior is attributed to the interplay between the micropolar

effects and the geometric properties of the layer.
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F e 3.2.3: Dispersion curves of nonlocal micropolar Rayleigh waves fo

different values of micropolar ratio d®

The graph plotted in Figure 3.2.4 illustrate the impact of Poisson’s ratio v* in the
semi-infinite medium on the phase velocity of Rayleigh waves. As v!) increases, the phase
velocity also increases for a given wavenumber, indicating a positive correlation between
material stiffness and wave propagation speed. Also at a higher value of (), the variation
in phase velocity with respect to wavenumber becomes less significant. A higher Poisson’s
ratio in the semi-infinite medium corresponds to a stiffer material. This increased stiff-
ness leads to faster propagation of Rayleigh waves, resulting in higher phase velocities.
However, as the material stiffness increases, the dispersive nature of the Rayleigh waves

becomes less pronounced.
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ratio of the semi-infinite medium

The dispersion curve in Figure 3.2.5 illustrates the behavior of micropolar surface
waves as a function of the micropolar parameter 2. As [® increases, the frequency of
the micropolar surface wave also increases, especially at higher wavenumbers. This indi-
cates that the micropolar effect enhances the wave propagation frequency for the newer
mode of Rayleigh waves, particularly for shorter wavelengths. Moreover, the dispersion
curve exhibits a rapid increase in frequency at lower wavenumbers, followed by a plateau
at higher wavenumbers. This suggests that the micropolar surface wave experiences sig-
nificant dispersion at shorter wavelengths, while the dispersion effect diminishes at longer
wavelengths.

Figure 3.2.6 provides a comparative analysis in a reduced model of Rayleigh wave
dispersion in a nonlocal micropolar half-space, highlighting the evolution of modeling
accuracy. The black dotted line, representing classical micropolar elasticity, shows a
non-dispersive wave behavior, serving as a baseline. When Eringen’s nonlocal boundary
conditions [60] are applied, the dispersion curves reveal a notable deviation, indicating the
introduction of dispersive characteristics. Pham and Vu’s approach (see, [275,276]) which
incorporates an additional condition on 777 further demonstrates this dispersion, showing

a substantial decrease in phase velocity with increasing nonlocal parameters. In contrast,
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the asymptotic approach presented in this research which accounts for boundary layer
effects, explicitly captures the dispersive nature of Rayleigh waves. The plotted first-order
corrected dispersion relation demonstrates a distinct representation of this phenomenon
compared to previous models. This comparison underscores the importance of considering
boundary layer effects and refined boundary conditions in accurately modeling Rayleigh

wave propagation in nonlocal micropolar media.
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Figure 3.2.5: Dispersion curves of a new micropolar surface wave for differ-

ent values of (@

3.2.6 Conclusions

Assuming that the wavelength of the propagating wave and the thickness of the layer
are significantly larger than the nonlocal parameter in both the lower semi-infinite medium
and the layer, respectively the original double integral formulations of the nonlocal stresses
are reduced to asymptotic expansions involving single integrals. Specifically, an infinite
integral is obtained for the nonlocal stresses in the lower semi-infinite medium, while a
finite integral is derived for the stresses within the layer.

To ensure equivalence between the differential and integral formulations of nonlo-

cal elasticity, additional conditions are introduced. These conditions impose constraints
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on the normal force stresses and shear couple stresses, leading to the development of a
modified singularly perturbed differential model.

Using this framework, an asymptotic solution is obtained, and refined boundary and
interface conditions are derived within the context of nonlocal and micropolar elasticity.
Applying these refined conditions yields first-order nonlocal corrected dispersion relations,
which clearly demonstrate the influence of the nonlocal parameters in both media.

The graphical results further reveal that micropolar media exhibit a concave down-
ward dispersion curve, signifying positive dispersion. In contrast, purely elastic materials
display a concave upward dispersion curve, indicating negative dispersion. Also, as the
material stiffness increases, the dispersive nature of Rayleigh waves becomes less pro-
nounced. Additionally, significant dispersion effects are observed in micropolar surface

waves at shorter wavelengths, while these effects diminish at longer wavelengths.
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CHAPTER 4

Rayleigh Wave Propagation and Control by Metasurfaces






The insights gained from the investigation of Rayleigh wave propagation in microstruc-
tural frameworks pave the way for exploring active surface wave control strategies. In this
chapter, we transition our studies from understanding the fundamental behavior of these
waves to manipulating their propagation using resonating structures, alternatively termed

as metasurfaces.

4.1 Nonlinear metasurface with dual spring-mass resonators”

A novel metasurface design comprising an array of dual spring-mass resonators sit-
uated on a nonlocal host substrate to manipulate the surface wave propagation. This
subchapter combines the concepts of nonlocal elasticity, nonlinearity, and double reso-

nance to analyze Rayleigh wave dispersion characteristics.

4.1.1 Description of the proposed model

The configuration for the proposed model is given in Figure 4.1.1. The nonlinear
metasurface is placed around the target structure to protect it from seismic damage. This
metasurface consists of an array of spring-mass systems and is mounted on the surface of
a nonlocal elastic substrate (cf. Figure 4.1.1(a)). Each resonant unit cell of the spring-
mass system is further described in Figure 4.1.1(b). The reference system is introduced

in Figure 4.1.1.

4.1.2 Mathematical formulation and solution

Description of the host nonlocal elastic substrate

The present investigation deals with a simplest material model composed of a lin-
ear isotropic material, say soil as a substrate exhibiting nonlocal elastic properties. This
homogeneous, isotropic nonlocal elastic substrate is characterized by its nonlocal elastic
parameter N, mass density ps and longitudinal and transverse shear wave velocities [3;
and [, respectively.

Practically soil could be described as a medium exhibiting both elastic-platic behavior.
On the other hand, it can act as a fully elastic material at much smaller deformations.
The intricate and complex nature of the soil justifies its nonlocal elastic behavior. The

* Published in European Journal of Mechanics-A /Solids (Elsevier), (2024).
DOLI: 10.1016/j.euromechsol.2023.105214
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Figure 4.1.1: Schematics of the proposed model (a) design of metasurface

(b) a resonant unit cell

existence of an array of spring-mass resonators on the surface could lead to smaller defor-
mation or redistribution of stress among neighboring soil particles. In certain instances,
stress distribution might not be uniform, resulting in strain localization in specific areas.
Consequently, to account for these long-range interactions, strain localization, and the
size-dependent behavior of the soil substrate, we have applied the principles of nonlocal
elasticity theory to the soil. Nonlocal models help in interpreting the experimental results
accurately. The nonlocal elastic effects are introduced into the model through Eringen’s

nonlocal elasticity theory, see section 1.3.3 for details.

Wave propagation in the nonlocal elastic substrate

The seismic waves are characterized by high frequencies, they act on the ground for
shorter durations, resulting in inducing smaller strains and smaller deformations. As a re-
sult, the soil typically exhibits predominantly elastic behavior due to the relatively shorter
duration of seismic ground motion. Also, the seismic events impose short-term loading
conditions that are insufficient to cause any significant plastic deformation. Consequently,
the soil response is primarily elastic, with particle displacement and strain values remain-
ing within the elastic range during such loading conditions. Although localized plastic
deformation and liquefaction can occur under specific circumstances, the overall seismic

response of the soil is often reasonably approximated as elastic. Thereby we consider
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elastic constitutive assumption for soil during seismic engineering analyses and structural
design.

Consider the propagation of Rayleigh waves in a nonlocal elastic substrate (soil), which
is a host to an array of nonlinear spring-mass systems. The kinematic equations relating

nonlocal elastic stress (7;;) in the host substrate with the strains (e;;) are given as:
(1 =NV 75 = Nbyjenn + 2 peij = 045, 4,5 = 1,2,3 (4.1.1)

in which V2 = % + % is the the usual Laplacian in 2D co-ordinates and d;; stands for
Kronecker delta operator; A and p are the Lame’s constants.
Also, the equation relating the strains (e;;) to the displacement components (u;) is as

follows:

1
€ij = 5 (wij +uga), 4,5 =1,2,3 (4.1.2)

Now, the governing equations of motion for Rayleigh waves in a nonlocal elastic substrate

and in the absence of body forces can be written as,
Tijg — PsWUitt = 0. (413)

Using Helmholtz decomposition theorem, we decompose the displacement vector @ (z, z,t) =
(u1,0,u3) into the sum of a scalar potential ® and a vector potential U = (U, Uy, U3).

ie.,

i=Vd+VxT (4.1.4)

As a result, the displacement components can be expressed as,

I PR L

U

On substituting the constitutive relations given in Eq. (4.1.2) into the equation of motion

provided in Eq. (4.1.3) and using Eq. (4.1.5), we obtain two decoupled equations in @

and ¥, as
V2o = 1—6_N;v2@tt’ V20, = 1_6—ijv2xptt, (4.1.6)
in which
b=y [t =y 2



Assume the time-harmonic Rayleigh waves propagating in x—direction with the wavenum-

w

ber k, angular frquency w and phase velocity ¢ = 7.

Let the potential functions be of the form,

D(x,z,t) = (Are "% 4 Aye™” ei(kx—wt)7
R ) | (4.1.7)
‘112(1’, Z,t) = (Age—rzz + A4€7‘22> ez(kz—wt)'

Here Ay, Ay, A3 and A, are the amplitides of the potential functions.
Simple algebraic substitutions of Egs. (4.1.7) into Eq. (4.1.6) gives the value of r; and

w? w2
e \/k2 - 7 — N22’ 2= \/kj2 a B3 — N22

An exponential decay in the amplitudes of Rayleigh waves along positive z—direction

roas,

suggests the value of constants Ay = A, = 0. This gives the displacement components as
u(z, 2,t) = (ip Are ™% + ry Aze™"?) eilka—wt), (4.1.8)
us(z, z,t) = (—r1 Aje™" +ip Aze™ ") gilka—wt) (4.1.9)

and the corresponding stress vector components acting on a plane normal to z—direction

as
(1 —=N2V2) 73 = p[—2ipr; Aje ™% — (12 + k?) Aze %] b=t = gy
(1 =R*V?) 735 = 0 = 030,
(1 —N2V2) 735 = [{(A 4 2u) 72 — AK%} Aje ™% — 2ipry u Aze™2%] ethr=wt) = gag.
(4.1.10)

Description of the nonlinear metasurface

The metasurface is placed on the free-surface of nonlocal elastic substrate is to control
the Rayleigh wave dispersion. To comprehend fully the physics of metasurface, consider
the typical configuration of metasurface made up of an array of nonlinear two-degrees-
of-freedom spring-mass systems of identical height, arranged with a lattice distance ‘a’
between each of them. They are spaced apart in order to avoid contact forces between any
two resonators. Since our interest lies in analysing the dispersive properties of Rayleigh
waves, we treat the metasurface as an effective continuum model via classical homoge-

nization theory.
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A simplified variant of classical homogenization theory, known as effective medium
theory [272], has been employed to characterize the dynamics of an array of spring-mass
resonators placed on a substrate. According to this theory, the resonators, which have
subwavelength dimensions, are assumed to be evenly distributed across the surface of
the medium, applying uniform normal stress to the elastic medium. Consequently, the
normal stresses exerted by the resonators on the surface can be estimated as the averaged
elastic force exerted by the resonators over an area that is much larger than the spacing
between them but considerably smaller than the wavelength. It is important to note
that, in this specific scenario of interest, the wavelengths of surface waves (denoted as
A) are significantly larger than the average distance ‘a’ between the resonators, and the
dimensions of the area ‘A’ defined by the regular spatial arrangement of the resonators
are larger than ‘a’ but smaller than A (for example, a quadratic lattice arrangement has
an area, A = a?). This circumstance allows for the practical use of an effective medium
approximation, which introduces modified homogenized boundary conditions that relate
stress and displacement at the surface.

Each resonant unit cell consists of two masses m; and msy coupled to each other by
means of a nonlinear elastic spring. The main mass m; is attached to the nonlocal elastic
substrate by an intertialess linear elastic spring of force constant k. We resort to the fact
that the surface Rayleigh wave could excite only the vertical motion of the two masses in
this two-degree-of-freedom system. The frequency of the torsional mode associated with
the rotational motion of the spring-mass system is lower than the frequency associated
with vertical oscillations of the spring-mass system excited by the Rayleigh waves. Fur-
ther, due to this fact, the mass rotation in the z—direction is ignored as the contribution
of the torsional mode of the resonators is not significant in the context of generating a

local resonance bandgap [70].

Dynamics of the nonlinear resonators

The free-body diagram representing the direction of displacements and the forces act-
ing on each masses of spring-mass system is as described in Figure 4.1.1(b).
We compute the equation of motion for each masses in the spring-mass system by bal-
ancing the forces as per Newton’s second law of motion. As we are dealing with a two-

degree-of-freedom system here, there are two equations in the form of a coupled differential
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equations (precisely one written for each mass). It is interesting to note that this system
is subjected to an external excitation by Rayleigh waves propagating on the free-surface of
the host substrate. Hence, this excitation is primarily due to the displacement component
usz(z,0,t) of the Rayleigh waves.

From Eq. (4.1.9), we can write

us(z,0,t) = B, e**=“D where B, = (—r; Ay +ipAs). (4.1.11)

Let z; and z5 be the displacement of masses m; and ms respectively. Without loss of
generality, let us assume zy > 2;. Let f be the force exerted by the linear spring on the
mass m; and fio be the force-displacement function describing the coupling due to the

nonlinear spring. i.e.,
f= koz, (4.1.12)
fiz = ¢(z1 — 22), (4.1.13)

in which ¢ denotes the restoring force function for the nonlinear spring.
The coupled differential equations for this 2-DOF spring-mass system can be written by

balancing the forces on the mass m; and msy. This gives the equations of motion as,

my d;tél + ko [21 — u3(2,0,t)] + f12 = 0,

(4.1.14)
2
Mo a&% + fa1 =0.
For our convenience, define the dimensionless variables
uy = %, Uy = sz;zl, T =wt, (4.1.15)

and specialize the nonlinear spring as the complex duffing oscillator whose force function

takes the form,
o(r) = kyr + kar |7’2‘ ,

where ki and k3 represent the linear and nonlinear stiffness of the spring, respectively. This

force function can further be modified by introducing the new dimensionless parameters

1, A and v. Hence on introducing py = 22, A\ = k§;1 as the coefficient of linear part of
2
force function ;% of the nonlinear spring and v = % as the coefficient of the nonlinear

part of the force function, we can write the force function as,

o(u;) = ko B, (ul Mo + v, |u1|2) )
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A hardening nonlinearity corresponds to positive values of v, while a softening nonlinearity
corresponds to negative values of v. As a result, the system of equations given in Eq.

(4.1.14) can be re-written as

d2 2 ; _
OR T +ur — A ug — vug fus|” — eilkz=7) = (),

(4.1.16)

2 2
ILLQ% (dd;gl —+ dd,lz?) —+ ,u/l)\%UQ + UV Uo ’U2|2 = O,

in which Qg = ﬁ and wp = 1/%.
On further inserting the parameters,

_ 1
A= and M =1+ —.
H1

and supposing a time-harmonic form to the dimensionless displacement components given
in Eq. (4.1.15) as,
wy = Uy ¢ ®=7) and uy = U, ei(kx_T), (4.1.17)

As a result, the system of differential equations given in Eqs. (4.1.16) can be re-written

as

02— DUy + N2 Uy +vUs |Us]* +1 =0,
(@n =1 2+ v la|t (4.1.18)

(% —MA?) U+ U, —v MUz |Us)* = 1 =0.

Simple algebraic manipulations of equations in Eq. (4.1.18) yields the value of U; in terms

of magnitude of U,. Thus, we obtain

1+ A2+ v U 1—-M
= — 5o, Where ¢ = 5
1— Q%+ (M +¢) (A2 + v |Uy%) O

Uy (4.1.19)

Since resonators facilitate the dispersion of Rayleigh waves, it is feasible to customize
their dynamic response to create the metamaterials with desired properties. Moreover,
the motion of the mass m; in the system can be controlled by tuning the magnitude |Us|
and B, to the required value as the displacement for the mass m; can be sought in the

form,

(L+A2C+v( |Us)?)
1— 0%+ (M +¢) (A2 + v |Us)?)
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4.1.3 Refined nonlocal boundary conditions

Following from Eqs.(1.3.94), the refined boundary conditions accounting nonlocal

boundary layer effects are given as,

1. at z =0,
Naall N2 820'11
1+ N2Vv? - — — = 4.1.21
(+ V)031 28x+23x8z 0 ( )
2. at z =0,
Nz 820'11 - kfozl

(14 X2V?) o35 — (4.1.22)

2 92 A
4.1.4 Dispersion relation

Substituting the expressions given in Eqs. (4.1.7)-(4.1.9) and (4.1.20) in the boundary
conditions given in Eqgs. (4.1.21) and (4.1.22) and further rearrangement gives the system
of equations with the coefficients A,, As , U; and B,.
The prerequisite for this system of equations to have a non-trivial solution is that the

determinant of the coefficient matrix must vanish. This solvability criterion yields a first-

order nonlocal corrected dispersion relation for hybrid Rayleigh waves as,

2
—4]{?27"107“20 + (T%O + k’z)Q - ( Uikt ) T10 (7"%0 - k2) Zl

ps A B3
2 2 2 .2 1o mwk 2 2 2 2 _
+N 2(”7 —].)]CTQO(]{Z —T10)+§]€ pAﬁQ (’}/ (—k)+(7 —2)7’10+27’107’20)Z1 =0
s 4109
(4.1.23)
where v = g—; is the material parameter determining mechanical property of the host

nonlocal elastic substrate. Also, rig, 99 are the leading order expressions for the quantities

/ 2 2
w w
— 2 — 2
T10 = k? — 3 9o = k? — R
1 2

Dispersion equation for the linear 2-DOF' spring-mass resonators

r1,79 and are given by,

To understand better the impact of nonlinearity on the dispersion curves, we shall
initially analyse the effect of linearity of metasurface on the dispersion relation of local
hybrid Rayleigh waves. The model is thereby investigated in the context of local elasticity
theory. A linear spring (instead of a nonlinear one) is deviced to couple the two masses

in every resonant unit cell of the spring-mass system constituting the metasurface. This
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reduces the magnitude of the normalized displacement of the spring-mass system given
in Eq. (4.1.19) to,

1+ A%¢ 1—M

Uy = __ where ¢ =
i T T

It is natural to obtain two resonant frequencies due to the presence of two-degree-of-
freedom spring-mass resonators. These resonant frequencies correspond to the horizontal
asymptotes in the dispersion curves whereas the threshold frequencies for each branch
can be determined by examining the local hybrid Rayleigh wave dispersion relation. In-
terestingly, these dispersion curves lie on the shear wave dispersion curve and as a result,
the threshold frequencies can be obtained by setting ¢ = 5 along with X =0 and v =0
in Eq. (4.1.23). This gives,

5 2 12\ .3 mlw??. 53 2 4 32
wy —wp (1 + MA*)w; — DAD 1 — —Swi +wrA™ (M —1)w
S 2

1

4 72 mlw??, B% _
+wp A (P5A52> ” — 5_12 (M —1)=0. (4.1.24)

As the coefficients in the Eq. (4.1.24) are all positive, we can deduce that this equation

has exactly two positive real roots by the Descartes’s rule of signs. And these positive
real roots corresponds to the cut-off frequencies or the terminating frequencies for the

dispersion branch.

Dispersion equation for the linear 1-DOF spring-mass resonators

In this section, we shall outline the dispersive features of the Rayleigh waves propa-
gating on a linear metasurface consisting of only one mass attached to the local elastic
substrate (X = 0) by the means of an elastic linear spring. If the second mass ms is absent
in the spring-mass system, then p; = 0 and consequently M = 1 and ¢ = 0. Thus, the
expression U given in Eq. (4.1.19) can be re-written as,

1

U = —————.
T I-02 + A2

As discussed in the last section, we can obtain the cut-off frequencies for the dispersion
branch curves by substituting ¢ = 3 along with X = 0 in the dispersion equation |[see,

Eq. (4.1.23)]. Therefore, the cut-off frequencies are the positive real solutions to the cubic
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equation,

4 2
W (14 A2y~ MR P 4.1.25
bmon (1HR) w000, B? (4:1:29)

Similar observations of this cubic equation suggests that there is exactly one positive real
solution. This indicates that there exists only one high-frequency dispersion branch whose

threshold (cut-off) frequency is the positive real root of the Eq. (4.1.25).

Dispersion equation in the absence of metasurface

To derive the dispersion equation for Rayleigh waves in the absence of the metasurface

on the host nonlocal elastic substrate, we substitute m; = 0 in Eq. (4.1.23). This provides,
—4k?riora0 + (130 + k2)2 +R[2 (7 = 1) K*ro (K* = rTy)] - (4.1.26)

which matches with the results in Eq. (1.3.95).

Under the local elastic conditions, a secular equation is obtained by inserting N = 0 in

Eq. (4.1.26):
2\ 2 2 2
(2—;—5) —4\/1—;—12\/1—;—320. (4.1.27)

In fact, the frequency relation obtained above is exactly the same as that of the well-known

secular Rayleigh wave equation [14]. This shows the validity of the proposed model.
4.1.5 Graphical discussions

The presence of harmonic spring-mass resonators over the host substrate induces
local resonance bandgaps and can be visualized by plotting the dispersion curves. In
this section, we describe numerically and graphically the dispersive behavior of Rayleigh
waves associated with the different spring nonlinearity, relative amplitude inputs, nonlocal
elastic parameters and the mechanical characteristics of the substrate.

The details of normalized parameters used while plotting the graphs in this section are
given in the table below (unless otherwise specified):

The dispersion curves shown in Figure 4.1.2 are plotted to describe the surface wave
propagation in three different configurations of resonators constituting the metasurface:
(a) linear spring-mass resonators (v = 0) (b) soft nonlinear spring-mass resonators (v =
—1) (c) hard nonlinear spring-mass resonators (v = +1). These harmonic resonators
prevent the occurrence of pure Rayleigh waves, but instead the waves attenuating at

certain regions are discovered. These waves differ from the typical Rayleigh waves and
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Table 4.1.1: Values of some normalized paramteres

Normalized parameters Values

Material parameter, v = % 1.5

Nonlocal elastic parameter, e = Xk | 0.1

Mass ratio, pi1 = 7 0.5
A 0.75
|Us| 0.8

_ _Mmwg
w=-"T5 0.7

exists because of the presence of an array of spring-mass resonators embedded on the
free-surface of host substrate; it is therefore termed as, ‘hybrid Rayleigh waves’. An
initial observation of dispersion curves indicates that the local resonances of the spring-
mass systems couple with the propagating Rayleigh wave, thereby yielding dispersion
branch curves near the resonant frequencies. A spectral bandgap separates these repelling
dispersion branch curves. More importantly, it is this frequency region where the mode-
conversion takes place and the Rayleigh waves diverge deeply into the earth as bulk shear
waves, thereby protecting the structures from seismic damage.

The parameters v, € = Nk, py, A, |Us| and w are fixed to the values given in the
table. The dispersion curves for hybrid Rayleigh waves, pure Rayleigh waves and bulk
shear waves are denoted by the solid black lines, dotted black lines and dotted red lines,
respectively. The dispersion curves creates two resonance bandgaps in Figures 4.1.2(a)
and 4.1.2(c), where as Figure 4.1.2(b) representing the configuration of soft nonlinear
spring-mass systems creates only one spectral bandgap. Amazingly, despite the fact that
there are varying numbers of bandgaps in each of the three configurations, the sum of the
bandwidths still remains the same. The hybrid Rayleigh waves propagate with a velocity
of e¢yr < ¢pp in the dispersion branch I of Figures 4.1.2(a), 4.1.2(b) and 4.1.2(c), where
the curve asymptotically reaches the resonant frequencies. In addition, the dispersion
branch II of Figure 4.1.2(a) and 4.1.2(c) also approach the second resonant frequency
asymptotically. In this branch, the phase velocity of hybrid Rayleigh waves increases
with the decrease in the wavenumber and finally becomes equivalent to ¢,z at a partic-

ular wavenumber. When ¢,r > c,g below this wavenumber, the branch terminates at
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Figure 4.1.2: Dispersion curves for three different configurations in spring-
mass systems. (a) Linear resonators (v = 0) (b) Soft nonlinear resonators

(v = —1) (c¢) Hard nonlinear resonators (v = +1)

a frequency where ¢,g = ¢s. This is because of the fact that the surface waves cannot
exist for cygr > ¢,. As a consequence, the dispersion relation cannot have any surface
solutions, leading to an effective bandgap. In addition to this, the dispersion branches 111
of Figures 4.1.2(a), 4.1.2(b) and 4.1.2(c) also terminates at a frequency where c;r = cs,
resulting in the mode-conversion of Rayleigh waves producing another bandgap. These
terminating frequencies, in other words are the cut-off frequencies described in section 3.
Waves can cross the metasurface at this frequency, but they are able to accomplish this
only by transforming themselves into shear waves.

One might also infer that the metasurface with hard springs can even attenuate more
high-frequency Rayleigh waves, making it more beneficial than the linear metasurface.

Besides, a metasurface with soft springs could also be preferred over the linear metasurface
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as this configuration provides a broader bandgap at a certain relative amplitude than the
rest. In brief, the nonlinearity in the spring-mass systems has a crucial positive impact

on the dispersive nature of the Rayleigh waves.

S )
— 1. [Us] =00
35 2 Uy =04
— 3. |y =08
Uy =12

|Us| —

Figure 4.1.3: Effect of relative amplitude input on dispersion curves in a
soft nonlinear spring. (a) Dispersion curves showing spectral bandgaps (b)

Variation of relative amplitude input with dimensionless frequency

Figure 4.1.3 depicts the effect of relative amplitude |Us| on the dispersive behavior
of hybrid Rayleigh waves propagating on a soft nonlinear metasurface. The design of
the nonlinear metasurface involves the setting up of this parameter as a prerequisite
for interpreting the characteristics of the dispersion curves. Figure 4.1.3(a) is plotted to
demonstrate the bandgaps produced as a result of varying |Us|. It can be clearly seen that
when |Us| = 0 and |Us| = 0.4, two spectral bandgaps are created, whereas for |Us| = 0.8
and |Us| = 1.2, the dispersion curves produces a single bandgap. This suggests that a
certain limiting point on the magnitude |Us| exists beyond which a single spectral bandgap
is achieved. To interpret clearly this limiting value, we plot a graph in Figure 4.1.3(b)
showing the variation of |Us| with the dimensionless frequency. A limiting value exists
around |Us| = 0.75, below which the soft spring-mass systems resonates with two natural
frequencies resulting in two bandgaps. Moreover, the frequency at which the Rayleigh
wave propagates for a particular wavenumber decreases with the increase in the values
of |Us| upto 0.75. Beyond this value, the propagating wave frequency increase with the

increase in |Us|. In brief, a significant effect in the spectral bandgaps is observed with
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the variation in relative amplitude input. A single bandgap observed in the case of soft

spring splits into two with the decrease in the input amplitude.
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Figure 4.1.4: Effect of relative amplitude input on dispersion curves in a
hard nonlinear spring. (a) Dispersion curves showing spectral bandgaps (b)

Variation of relative amplitude input with dimensionless frequency

Similarly, Figure 4.1.4 is plotted to demonstrate the effects of relative amplitude
ratio |Us| in a hard spring. The dispersion curves creates two bandgaps corresponding
to two resonant frequencies for all the values of |Us| (refer Figure 4.1.4(b)). A careful
observation of Figure 4.1.4(a) shows that the lower frequency bandgap remains the same
for all increasing values of |Us|; while the frequency bandgaps corresponding to second
resonant frequency occur at higher frequency region with the increase in the values of
|Us|. This indicates that the metasurface designed with hard springs and higher input
relative amplitude ratio can shield the structure from Rayleigh waves propagating even
at a higher frequency.

The red solid line in Figure 4.1.5 represents the Rayleigh waves propagating in the
absence of metasurface. The effect of k (or wg) on the dispersion curves are analysed
in Figure 4.1.5 for both the soft (Figure 4.1.5(a)) and hard (Figure 4.1.5(b)) springs.
The phase velocity and the cut-off frquency of the hybrid Rayleigh waves decrease and
increase, respectively with the increasing linear stiffness of the spring.

Figures 4.1.6 and 4.1.7 shows the variation of behavior of Rayleigh waves with the
various nonlocal elastic parameters and material properties of the host substrate, respec-

tively. The effect of increasing nonlocal elastic parameters on the dispersion curves for
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Figure 4.1.5: Dispersion curves showing the effect of linear stiffness (k/wg)
of the spring on the spectral bandgaps of (a) soft nonlinear spring-mass

systems (b) hard nonlinear spring-mass systems
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Figure 4.1.6: Dispersion curves showing the effect of nonlocal elastic pa-
rameter (€) of the substrate on the spectral bandgaps of (a) soft nonlinear

spring-mass systems (b) hard nonlinear spring-mass systems

soft and hard springs are presented in Figure 4.1.6(a) and 4.1.6(b), respectively. While the
bandgaps are unchanged by changes in the nonlocal elastic parameters of the substrate,
the nonlocal elasticity in the substrate has a substantial effect on the phase velocity of
the hybrid Rayleigh waves. Furthermore, the increase in the nonlocal elastic parameter

of the substrate reduces the phase velocity of the hybrid Rayleigh waves.
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Figure 4.1.7 shows the influence of the material parameter + on the dispersion curves.
An increase in this material parameter increases the phase velocity of hybrid Rayleigh
wave propagating in every dispersion branch curves. However, the resonant frequency
and the cut-off frequency have the same values for every material taken under the study.
The spectral bandgaps too occupy the same frequency region indicating that there is a

negligible influence of material property on the width of the bandgaps.
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Figure 4.1.7: Dispersion curves showing the effect of material parameter
() of the substrate property on the spectral bandgaps of (a) soft nonlinear

spring-mass systems (b) hard nonlinear spring-mass systems

4.1.6 Conclusions

This study demonstrates the existence of cut-off frequencies at which surface waves
transform into shear waves and are visualized through dispersion curves. Notably, dual
spring-mass metasurfaces exhibit two distinct frequency bandgaps. Nonlinearities sig-
nificantly influence bandgap characteristics with hard springs confining higher frequency
Rayleigh waves, while soft springs yielding broader bandgaps than linear designs. In-
put amplitude variations also induce substantial spectral bandgap changes, including the
splitting of single bandgaps in soft spring systems. Furthermore, increased linear spring
stiffness and nonlocal elastic parameters in the substrate reduce Rayleigh wave phase
velocity. While substrate material parameter increases also reduce phase velocity, their
impact on spectral bandgap width is negligible. In essence, this research reveals the crit-
ical role of resonator design, nonlinearity, input amplitude, and material properties in

controlling Rayleigh wave propagation and bandgap formation.
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4.2 A multiple scattering formulation in a nonlinear metasur-

face*

Developing further the previous chapter, this section incorporates inter-resonator cou-
pling effects, which are crucial for accurate metasurface modeling. Recognizing that each
resonator acts as a secondary wave source, leading to multiple scattering events, we em-
ploy a multiple scattering formulation to investigate Rayleigh wave control in nonlinear
metasurfaces. Specifically, we focus on manipulating Rayleigh wave disturbances gener-

ated by an interior source through detailed analysis.

4.2.1 Description of the proposed model

Consider a metasurface consisting of an array of nonlinear spring-mass systems of
mass m placed on the surface of a homogeneous, isotropic elastic medium occupying the
region z > 0 (see Figure 4.2.1). Let z— direction be positively downwards. An interior
source located along the line z = h produces disturbances, thereby inducing Rayleigh

waves at the surface.

Metasurface

Interior Source

Body waves

Figure 4.2.1: Description of the metasurface model

* Ready to submit
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4.2.2 Mathematical formulation and solution

The constitutive stress-strain relations for a homogeneous, isotropic elastic medium

are given by,
Oi5 = Aekkéij + 2/L€Z'j, (421)

where ¢;; denotes the stress tensor given by ¢€;; = % (wij +uj;) and A, p are the Lamé
elastic moduli, d;; denotes the Kronecker delta, u; represents the displacement compo-
nents.

Also, using Eq. (4.2.1), the equation of motion of a two-dimensional isotropic elastic

medium with the material density p and in the absence of body forces can be given as

(A+2p) T8+ (A+p) 2%+ 2% =p2,
(4.2.2)

2’LL 2u 2u 2U
<A+2M) %z23+(A+M) gxalz—'—uaamf :paat;’
On Helmholtz decomposition of the displacement vector u(zx, z,t) in terms of a scalar

potential ®(x, z,t) and a vector potential W(z, z,t) = (U, ¥, ¥3) asu=VP 4+ V x U,

or specifically,

od oV od oV
)= o — — £) = — 4 — 4.2.
Ul(CL’,Z, ) or 82’ U3(ZL’,Z, ) Oz + 8:1:’ ( 3)
decouples the coupled equations of motion given in Eq. (4.2.2) into,
1 0°® 1 0%V
VO = — —, VU = — —— 4.2.4
2 ot? cZ ot? ( )

where ¢; = ,/% and ¢y = \/% are the longitudinal and transverse wave velocities,
respectively.

The time-harmonic potentials assumed of the form,
O(z,2,t) = (v, 2) e, U(x,z,t) = (x, 2) e,
simplifies the wave equations in Eq. (4.2.4) as,
(V2 +k7) ¢ =0, (V> +k7) v =0, (4.2.5)

where w = % is the angular frequency; k is the wavenumber and c is the wave velocity;
ko= and kr = =
Applying the Fourier transformation in = to Eq. (4.2.5), the resulting equations can be
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solved to obtain expressions for the potentials that exhibit the appropriate behavior. This
gives,

D, 2,t) = ¢ e PL ™, U(E, 2,t) = cpe P72 e, (4.2.6)

where p, = /&2 — k% and pr = /&2 — k2.

Green’s functions for prescribed stresses at the surface

In this section, the fundamental steps involved in deriving Green’s functions for
Lamb’s problem [273] are expressed in terms of the displacement components, u; and
ug, for prescribed surface stresses. In essence, we aim to determine the displacement
components of wavefields generated by surface stresses P, and P,. To this end, the wave

equation in Eq. (4.2.4) is subjected to boundary conditions at the surface z = 0,
0'31‘220 :P1(:I:,t), O'33|z:0 :Pg(ﬁ,w (427)

The Fourier transformed normal stress and tangential stress components, expressed in

terms of the potentials, are given by

031 = [ [—%prE —(2¢? - k%)@ ; (128)

T3 = 1 [(26% — ki) ¥ — 2i pr @] .
Utilizing the Fourier transformed displacement potentials provided in Eq. (4.2.6), a sys-

tem of equations involving ¢; and ¢, can be formulated as,

—2i¢prer — (262 = k}) ¢ = L e,

(4.2.9)
(26* — ki) er — 2il prey = T2 e
Solving for ¢; and ¢, in Eqgs. (4.2.9) gives the values,
o = (26? — k%) Py —2i&pr Py et o — (262 — k7) Py +2i€ pr, P —
1 R(€) ’ e R(€) ’
where R(€) = (262 — k2)® — 4€2 p, pr is known as a Rayleigh function.
This yields the potentials,
\
= —2i& pr P1+ 252—k2)?2 _
et = [ uR((ﬁ) e
: ) > (4.2.10)
_ e Paien ]
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Consequently, utilizing Eq. (4.2.3), the displacement components of wavefields can be

determined as,

w2 t) = / Z {2527’”_“2 _ﬁi)— K1) pre™ B e

N i€ (262 — K2) eﬂpg(g—) 21 & pr pre PT* E({,t)] G g, (4.2.11)
ws(z, 2, 1) — / Z {%mLpTe_théfgg_k%) B

Lo (28— k) pZ 2&) + 262 pp e Pr* E(g,t)] ¢ e (4.2.12)

These Green’s functions are specifically tailored to model two distinct types of stress
distributions encountered in this work: (a) those originating from internal sources of

disturbance and (b) those generated by the vertical motion of surface resonators.

Internal source of disturbance

Consider the simplest source within this infinite elastic solid that generates symmet-
rical radial motion in two dimensions. This source, located along the line z = h, acts as

an internal disturbance and takes the form:

Do 2,0) = 5 M (bur) e, Wy, 2,0) =0, (4.2.13)

where Héz)(-) is the Hankel function of the zeroth order, and the second kind, r =
V2?2 + (z — h)? denotes the distance from the source. To account for the reflection, we

assume an imaginary equal source in the line z = —h. This takes the form,
i 2 -\ iw
O, (x,2,t) = @Hé )k F) e, U, (z,2,t) =0, (4.2.14)

where 7 = /22 + (2 + h)2.
Superposing the waveforms obtained in Eqgs. (4.2.13) and (4.2.14) yields

Oz, 2,1) = (H(S”(W) + H(()Q)(k;ﬁ)) et Wz, z,t) =0, (4.2.15)

i
2k2
It can be further noted that the value of ®(z, z,t) is equivalent to (see, Lapwood [277]),

1 o opr(z—h) 1 00 o—pr(zt+h) ‘
) t = iz d _ - iz d iwt
(z,2,1) {27rk2 /_Oo o € £+ o /_oo P f} e

1 > 2cosh (prz) . n e >
= “d e 4.2.16
[ e o 4210

152



As aresult, the stresses induced at the surface z = 0 by these internal source of disturbance

is,

00 252 - ]{Z2 ) .
P — —0, P = _ | K / =T pmpLhgite el et (4217
1 013 2=0 ) 2 0-33‘220 27Tk'2 . DI f ( )
The subscript ‘s’ is used to designate stress components originating from an internal
source of disturbance.

Equivalently, the Fourier transformation of the above stress components yields,

2 2
B M 28° — kg o—PLh giwt

-(s)

For the sake of brevity, we have omitted the time-harmonic term in further analysis. As
a result, the Green’s functions modelling the stress-distributions generated by an internal

source of disturbance can be given by,

1 [ [iE (262 — ) ers — 2 e |
Gl(s)(ZL‘,Z) = W/ |:7’€ ( 5 T) epL R(g) ZéprTe :| (252 . k’%) ezfzc dg,
(4.2.19)
1 & 262 |2 —PLZ _ Q€2 o—PT )
G (2,2) = —5 5 /_ [( - eR( 3 e ] (262 — k2) e d¢. (4.2.20)

At the surface z = 0, these Green’s functions modelling the interior source become,

1 Oolf 252_k2 252—]?2—22? D B itn

Gis(2,0) = W/oo ( T)IEL 74 0= 2PLP7) puh e ¢, (4.2.21)
1 k2 (262 — k2 .

G3(5)<I’,0) = W/_ %e“h ezgm d£ (4222)

Dynamics of surface resonators

We investigate the steady-state dynamics of a system comprising nonlinear mass-
spring-dashpot resonators with mass m that are situated on top of an elastic substrate.
Let O = {z1,29,...,25|N € N} denote the set of z—coordinates for these resonators.
These resonators are arranged with a uniform spacing of [ along x—direction, and each
resonator covers an area of A.

Furthermore, we consider the case where é << A, implying that the distance between the
resonators is much smaller than the wavelength A of the propagating wave.

Now, the equation of motion describing the displacement of each resonator is,

My + fr(yn) = —m(z,,0,t), (4.2.23)
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where

— u(x,,0,t) is the average vertical displacement of the base of the resonator and is

given by the expression,

l ! 2 2

nT2

_ 1| [omts l l
w(z,,0,t) = = [/ ’ u(z,0,t) dx] , where z € (xn — =, Ty + —) ) (4.2.24)

For the displacement solution of the form w(z,0,t) = U ekz=wt) “consider the case

when % << Aor % << 1. This evaluates the expression in Eq. (4.2.24) as,

wwt Tnt+i
u(z,,0,t) = el [/ 2Ue“mdaU]

L
L

, 2 kLN
— ikzy _ 3 7 iwt
= Ue (k:l) sin ( 5 ) e, (4.2.25)

Using the fact that sin (&) ~ & for & << 1, we obtain the approximate expression

of u(x,,0,t) in Eq. (4.2.25) as,
u(xy,,0,t) =~ u(x,,0,t). (4.2.26)

— y, stands for the relative displacement between the absolute vertical displacement
of the n'™ mass ug(z,,0,t) and the average base displacement of the resonator

u(zn,0,t), ie.,
Yn(Tn, 0,t) = ur(xn,0,t) — u(z,, 0,1). (4.2.27)

— The function fgr(-) represents the force exerted by the nonlinear spring. For a

damped Duffing oscillator, the nonlinear complex spring force is given by

Fal) =k )+ 05 4 ks IOP (4.2.28)

Here, k1, k3 denote the linear and nonlinear stiffness coefficients, respectively, while
b represents the damping parameter.

Consequently, for the specific problem under consideration, we have,

dys,

where ky,, k3, and b, represent the linear stiffness, nonlinear stiffness, and damping

parameter for the n'" resonator.
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Assuming a time-harmonic variation in the displacements of the spring of the form, say

(yTH uRn) = (y(-’ll'n, Oa t)) uR(xna 07 t)) = (Yna URn) eikrn eiwta
(4.2.30)

Up = U(y,0,t) = U etkon gt

where the amplitudes of the expressions Y,,, Ug,, depends on the resonator properties and
the amplitude U is independent of any resonator properties.

Substituting Eqgs. (4.2.30) in equations of motion given in Eq. (4.2.23) gives,
—mw? Yy, + iw by Yy + kin Yo + kgn Vo[V, |2 = mw?U. (4.2.31)

Further, we define some additional variables,

o kln o w o kSn o bn
WRn = y Tnm = y Un = L 9 Cn - .
m WRn in mWpern

Dropping all the n’s, the equation of motion in Eq. (4.2.31) can be further simplified to

obtain the relation,

7"2 ~

Y = U. 4.2.32
1—r242ir{+v|Y|? ( )

As a result, for a known amplitude U , the frequency amplitude response of the nonlinear
spring-mass system can be given by,

7“2

s = ,Wheres:':.

12 2 U
\/(1—7“2—1—1/ ‘U‘ 32) + 4r2 2

Alternatively, Eq. (4.2.33) can further be simplified to obtain a polynomial equation of

(4.2.33)

the form,

N
rt— (45°C%) r? = & (1 —r?+v|U 32) = 0. (4.2.34)

Notably, by employing Eq. (4.2.27), we can derive a linear relationship from Eq. (4.2.32)

that connects the amplitudes Ug, and ﬁn as,

2
T ~

Upn = |1+ U,. (4.2.35)

2
1—r24v,s2 Uy +2ir,¢,

In addition, a motion transmissibility ratio, 7,, can be determined for the surface res-

onators. It is defined as the ratio of the absolute value of the resonator’s amplitude, |Ug,|,
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to that of the absolute value of the base displacement amplitude, U,.
~ \2
¢<L+%syUMﬁ (200 Go)?
~ \2 ’
(1=72+ w2 10aP) + (2raGa)?

This ratio provides a measure of how effectively vibrations are transmitted to the res-

7;%71:

(4.2.36)

onator.
Consequently, omitting the time-harmonic terms, the normal force exerted by the nonlin-

ear resonator on the substrate can be expressed as,
F, = —miig(x,,0,t) = @, u(z,,0), for z, € O, (4.2.37)
where the parameter w,, is given as,

2
™

wp =mw? |1+ (4.2.38)

2
1—r24uv,s2|Uy| +2ir, ¢,

As a result, we can now evaluate the uniform stress exerted by each resonator over the
contact area A,

o\ (2,0) =0,

)
for z € <xn — =, T, + —) , x, € 0. (4.2.39)

!
2 2

o5 (2,0) = — o = — = 3i(z,, 0)
The presence of these harmonic stresses gives rise to additional wavefields within the half-
space. These newly generated wavefields subsequently interact with the free-field wave
motions originating from the interior source.

Analogously, let L represent the magnitude of the amplitude of the stress distributed

at the surface due to the resonator vibrations. We can model this scenario by assuming

a uniform normal stress distribution. This distribution can be written in the form,

Pl(r) = 0-13(‘%7 O) = Oor 0’§731)((II7 0) =0 <4240>
Lg,;"), if |x—mz,| < é

P = g33(2,0) = or o) (z,0) = L™ (4.2.41)
0, otherwise

Taking the Fourier transform to Eqs. (4.2.40) and (4.2.41), we get

—(r —-—r 2 L:(L‘n) l 3
Pg) =0, Pé) - sin (%) e i, (4.2.42)
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Consequently, using Eq. (4.2.42), the Green’s functions that model the uniform normal

unitary stress distributions generated by resonator vibrations can be expressed as,

oo [ 2 2 —pLz ; —pr=Z
1 / () (25 _kT> e Pr _2ZprTe pr 1 sin <g> ei{(xfxn) d€7

(n) _ -
Gl(r)(xa Z) — | R(é) 2

(4.2.43)

1 [ [(2€2 — k3) e Prs — 22 Pr l
Gg?z)(x,z) = — (2¢ 1) € Sl } sin (5

- 2 gilE=en) qe (4.2.44
)| ER(E) )6 S (424)

2
At the surface z = 0, these Green’s functions modelling the scattered wavefields are given

as,

1 g (262 — k2 — 20 {
iy = L [ g (e

5) eS@=en) de (4.2.45)

LT R(¢)
n 1 [~ k2 _ AN
G0 = = | g ™ (%) . (4:2.46)

Coupling of surface resonators to the half-space

As previously described, the system comprises /N resonators coupled to the half-space.
The total wavefield in the system arises from the wavefield induced by the interior source
and the additional wavefields generated by the base excitation of the coupled resonators.
To determine these wavefields, we employ a multiple scattering approach. This involves
utilizing Green’s functions for both the generated and scattered wavefields, which allows
us to solve the resulting problem and determine the unknown amplitudes of the scattered
wavefields.

A multiple scattering formulation provides a quantitative framework for modeling the
destructive and constructive interference effects arising from the interior source acting at
the surface and those induced by the vertical motion of the NV resonators.

This gives the complete displacement of the wavefield as,

n=N

Ui (2, 2) = uies (@, 2) + L;")GY(LZ)(:B,z), (4.2.47)
n=1
n=N

Uz (r,2) = uge)(z, 2) + L;H)Gé?z)<l‘,z), (4.2.48)

n=1

where the expressions for u;(s)(, z) and ug) (@, 2) are the Green’s functions obtained in

Egs. (4.2.19) and (4.2.20).
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Now, on comparing Eqgs. (4.2.39) and (4.2.41), we get

= —Qunu(rm,,0) or u(x,,0) = —Q;ZI L,gm), (4.2.49)

where (), = % is defined as the impedance factor.

Further on imposing the continuity conditions, u(z,0,t) = us()(z,0,t) between the res-
onators and the half-space, we have

_ 1 xm+§
U(zm,0) = 7/ us(e) (2, 0) d

l

m

1 [Tmts n=N e
- 7/35 , <G3(3>(x,0)+ZlL;,)Gg(j)(x,O)) de.  (4.2.50)

Assuming the conditions for interchanging the order of integration are satisfied, Eq.

(4.2.50) can be simplified to yield,

n=N
U, 0) = ljg(s T, 0) + Y L J57) xm,O)], (4.2.51)
n=1
where
LB eE-K) . (€
m0) = — € qe (42,52
Jg(s)(x O) 2 . §R(§) (& sin 5 5 ( 5 )
1 [ 2k2prL ey
I (2,0) = —/ T2 sin? (—) ei@m=an) ¢ 4.2.53
om0 = o e ™\ (4:259)
Substituting the value of Eq. (4.2.49) in Eq. (4.2.53), we get
n=N
T30y (T, 0) = =1 Q1 L™ — LM J:,EZ?) (Tm, 0), for z,, € O (4.2.54)
n=1

Expanding Eq. (4.2.54) for different values of m yields,

Js(s)(21,0) = (—lQ1 —J?f%j)(xl,o)) L&Y = I8 (21,0) L8 — J8) (21, 0) L) — -+ = T3 D (21, 0) LY,

Tso)(@2,0) = =I5 (2,0) L+ (—1Q5™ = IS (w2,0)) L = ) (22, 0) L = -+ = I (2, 0) LIV,
(o) (w3,0) = —Jy) (ws,0) LYY — Jé?))(wg,O)Lf)—i—(—lQ’ Jg(j)(xg,o)) LY — o = I (5,00 LY,
Jao(@n,0) = —Jig (@n,0) L = IE) (en,0) L) — I (ax,0) L) — -+ (—IQN = I (en,0)) LY.

This can be further written in the matrix form as,

AX = B, (4.2.55)
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where

—1Q7 " — i), (1,0) J3(7,)(a:1,0) — ), (w1, 0) —J300) (@1, 0)
2
J?E(Z)(mm 0) _ZQQ 3(T (3527 0) Jg(,(z) ($27 0) T J;)E(T;( 0)
1
A=|  —J{) (3.0) J§(2)<z3,0> —IQ3 "t — I (w3,0) - =T (ws,0)
T4 (@, 0) — 37 (N, 0) —J (@n,0) e QR - Jé(r)(xmo)_
(4.2.56)
LY J3(s)(71,0)
L(wQ) JB(S)(‘erO)
X =L, B=|Js(x3,0) (4.2.57)
(n)
| Lo | | J3(s) (7N, 0) |

By solving Eq. (4.2.55) for X, we obtain the solution for the amplitude of the scattered

wavefield, which is given by the expression,

X=A"B o LM=(A"B) (4.2.58)

T

Hence, the complete displacement of the wavefield can be expressed using Eqs. (4.2.47)
and (4.2.48) as

n=N

uye(z,2) = we(r,z)+» (A7'B) Gg(z)(x 2) (4.2.59)
n=1
n=N

uz(e)(7,2) = use(T,2) + (A_IB)n Gg?r),)(x,z) (4.2.60)

Il
—

n

And at the surface z = 0, the complete wavefield becomes,

n=N

i (2,0) = we(,0)+ Y (A7'B), G\ (x,0), (4.2.61)
n=1
n=N

U (2,0) = uge(z,0)+ Y (A'B), G (2,0). (4.2.62)
n=1

It is worth mentioning that the contribution of Rayleigh wavefields can be readily deter-
mined by evaluating the pole contributions within the infinite integrands in Eqs. (4.2.61)

and (4.2.62).
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4.2.3 Dispersion relation

We now consider an infinite array of equally spaced (at a distance [) identical nonlinear
resonators arranged on the top of an elastic substrate. Let us assume that the steady state
is obtained, say at x,, = 0. It is also important to note that at this position x,, = 0, the

effect of the incident wavefield is nil. As a result, we can write from Eq. (4.2.54) that,

1Q " Ly =— > LI J(z), (4.2.63)

n=—oo

where L") = L(z,) and J.(z,) is equivalent form of J:,EZ?)(O, 0). In other words,

1 [ 2k , AN
Jo(xy,) = o) e E(ZL) sin? <§> e % g, (4.2.64)

An effective medium approach is employed, which is based on the assumption that the
lattice spacing [ is much smaller than the wavelength A of the propagating wave. Further,

the discretization is modelled rather continuously by taking the average values that give,

lQ—lezz_}.Ei?(/%n+2l&x)JAx)dx. (4.2.65)

Note that, due to the identical resonator properties, we can write L(z) = L,e**. Using
this fact and the assumption of an effective medium approach, Eq. (4.2.65) can be reduced

to,

k% pr

Qfl 4 T
pR(E)

Utilizing the expression of the Rayleigh function R(£) and replacing £ by k, we obtain the

= 0. (4.2.66)

dispersion relation for Rayleigh waves in the presence of an infinite array of resonators as

,  w? 2 ) w? w? w?w w?
2% — ) —ak (R -5 ) (-5 )+ k- 5 =0, (4.2.67)
2 7 s pAct ci

where

2
2 r

D)
1—r24vs2|U|l +2ir¢

Clearly note that, in the absence of resonators, the dispersion relation for Rayleigh waves

, W\’ 9 w? w?
cr T, Cr

which matches exactly with the Rayleigh wave secular equation [14].

reduces to,
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4.2.4 Graphical results and discussions

This section presents a comprehensive analysis of Rayleigh wave phenomena in nonlin-
ear resonating structures, utilizing the theoretical framework established in the preceding
sections. We delve into three distinct scenarios: (1) the dynamics of the single nonlinear
resonator excited by the Rayleigh waves induced by the interior source (2) the coupled
dynamics of a pair of nonlinear spring-mass resonators, showcasing the results of our ana-
lytical formulation in capturing their mutual interplay (3) the dispersion curve of Rayleigh
waves interacting with an infinite length metasurface consisting of an array of identical
nonlinear damped spring-mass system.

To facilitate this analysis, we first introduce several key parameters that will organize our

calculations and discussions.

— Normalized source depth (H): This is defined as the ratio of the source depth
(h) to the characteristic wavelength () of the propagating wave and expressed as,
H="1

— Normalized mass parameter ()/): This dimensionless quantity characterizes
the inertial influence of the resonator relative to the surrounding medium. It is
given by, M = :%, where,

e p is the density of the half-space
® Wp = \/% represents the natural frequency of the first resonator of mass
m, with ky; being the corresponding linear stiffness coefficient.

— Nonlinearity parameter (v,): This parameter characterizes the nature of the

nonlinearity in the system with
e v, > 0 implying hardening nonlinearity.

e v, = 0 implying linear behavior.

e v, < 0 implying softening nonlinearity.

A limiting case is discussed in the following cases for which A = p. Table 4.2.1 below

provides the parameter values adopted in the three cases under investigation.
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Table 4.2.1: Values of the mechanical parameters used in the study

Parameter | Expression Definition Values used*
H % or kh Normalized source depth 3.5
|U| - Base input amplitude 0.2
M MX 1 Normalized mass parameter 0.6
pAacr
Up ’lzf” Nonlinearity parameter +1
L % Normalized distance between the resonators 0.02
Cn #’LR% Dimensionless damping parameter 0.17

*

whenever needed and unless specified

To further characterize the influence of the surface resonators on wave propagation,

we introduce the parameter transmittance or transmission ratio, |Ag| defined as,

U3(C)(:C, 0)

U3(S) (:L“, O)

|Ar| =

, where ug5)(2,0) = Gs(5)(z,0), (4.2.69)

and |Ag| < 1 indicates the efficacy of the resonators in attenuating Rayleigh wave vibra-

tions.

Single resonator scenario:

We investigate the scenario depicted in Figure 4.2.2a, where a single nonlinear res-
onator interacts with Rayleigh waves generated by an interior source. The receiver is
positioned at x = 3\, and the resonator is located at 1 = A\. We generate four plots to
analyze the impact of various parameters on the transmittance (|Ag|) vs frequency (@)
curve. Recall that a lower |Ag| value corresponds to a greater reduction in the transmit-
ted wave amplitude, indicating enhanced attenuation of ground-borne vibrations. The
values of the parameters used in the analysis are provided in Table 4.2.1 unless otherwise

specified.
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Figure 4.2.2: Transmittance |Ag| versus dimensionless frequency in a single

resonator scenario
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Figure 4.2.2b illustrates the influence of source depth on the transmittance (|Ag|) vs
dimensionless frequency (@) curve. As the normalized source depth H increases, the peak
| AR| value decreases. This indicates that a deeper source leads to greater attenuation of
ground-borne vibrations by the resonators. Conversely, a shallower source results in less
effective Rayleigh wave attenuation. This behavior can likely be attributed to the decay of
waves as they propagate through the medium. A deeper source means the waves have to
travel a larger distance to reach the resonator, leading to greater attenuation before they
even interact with the resonator. These findings underscore the importance of considering
source location relative to the resonator when designing systems for mitigating ground-
borne vibrations.

The plot in Figure 4.2.2¢ reveals that the effectiveness of the resonators in reducing

wave transmission increases with the base input amplitude, but only up to a certain
point. Beyond this threshold, further increase in amplitude actually lead to less effective
attenuation. This suggests an optimal range of excitation amplitudes where the resonators
perform best at mitigating vibrations.
The influence of nonlinearity on the transmittance characteristics is illustrated in Figure
4.2.2d, where the response curves for hardening, softening, and linear cases are presented.
Hardening nonlinearity (v = +1) results in a shift of the transmittance peak towards
higher frequencies w > wgr, accompanied by a reduction in the peak transmittance value.
Conversely, softening nonlinearity (v = —1) shifts the peak to lower frequencies (w < wg1)
with a slight increase in peak transmittance. The linear case (v = 0) exhibits a peak at
the resonant frequency (wg1) of the spring-mass system, as expected. This behavior can
be attributed to the frequency-dependent nature of the nonlinearity, where hardening
effects stiffen the system and shift the resonance to higher frequencies while softening
effects lead to a decrease in stiffness and a corresponding shift to lower frequencies. In
other words, the hardening nonlinearity in the resonators can be beneficial for achieving
enhanced vibration mitigation at higher frequencies.

The plot in Figure 4.2.2e shows that increasing the dimensionless mass parameter
M leads to lower transmittance, meaning better vibration reduction. This is because a
heavier resonator creates a larger impedance mismatch with the ground, causing more
wave reflection and less transmission. Essentially, a heavier resonator acts as a better

barrier for ground-borne vibrations.
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A pair of resonators scenario:
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This section examines the interaction of Rayleigh waves, generated by an interior
source, with two nonlinear resonators spaced a distance [ apart, as depicted in Figure
4.2.3a.

Figure 4.2.3b shows that the frequencies of the two resonators significantly affect wave
transmission. When the second resonator has a higher frequency, stronger attenuation
occurs at higher frequencies. Conversely, a lower-frequency second resonator leads to
weaker attenuation at lower frequencies. This is due to the interaction between the
resonators, creating either constructive or destructive interference depending on their
frequencies.

In Figure 4.2.3c, the decreasing transmittance with larger resonator separation arises
from reduced near-field coupling effects and increased independent scattering. Most likely,
as the resonators move apart, they act more like individual scatterers, disrupting any
interference that might have aided wave transmission when they were closer. This leads
to more effective wave attenuation and, thus, lower transmittance.

Figure 4.2.3d shows the effect of Poisson’s ratio (v) of the half-space, where three
different values (0.25, 0.50, and 0.75) produce distinct transmission characteristics, with
all curves exhibiting multiple resonance dips at specific frequencies though the depth and
sharpness of these dips vary significantly with Poisson’s ratio. Figure 4.2.3e illustrates
how the base input amplitude |(~] | affects transmission, with three amplitude levels (0.1,
0.2, and 0.3) showing that higher input amplitudes generally lead to deeper transmission
minima and more pronounced nonlinear effects, particularly visible in the shifting and
broadening of the resonance dips. Both graphs reveal that the system exhibits strong
frequency-dependent behavior with multiple resonance frequencies where transmission is
significantly reduced, and these resonant characteristics are sensitive to both the material
properties of the substrate and the amplitude of the base excitation.

Figure 4.2.4 illustrates the relationship between the number of surface resonators
and the effective attenuation of Rayleigh waves. The plot reveals that as the number
of resonators increases, the frequency range over which significant attenuation occurs
also expands. This trend can be attributed to the broader range of resonant frequen-
cies introduced by the addition of more resonators. Each resonator contributes its own
resonant frequency, and the collective response of multiple resonators effectively widens

the frequency band over which attenuation is achieved. Essentially, a larger number of
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resonators provides a more comprehensive barrier to Rayleigh wave propagation, leading

to enhanced attenuation over a wider range of frequencies.
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Infinite resonators scenario:

This section investigates the dispersion characteristics of Rayleigh waves propagating
along a surface covered with an infinite array of resonators, effectively forming a metasur-
face. The analysis reveals the emergence of frequency bandgaps, where wave propagation
is significantly attenuated. Notably, the nonlinearity of the resonators plays a crucial
role in determining the location of these bandgaps as depicted in Figure 4.2.5. Hard-
ening nonlinearity shifts the bandgaps to higher frequencies while softening nonlinearity
results in bandgaps at lower frequencies. This behavior is consistent with the expected
stiffening and softening effects of the respective nonlinearities. Importantly, within these
bandgaps, there is a possibility of mode conversion from surface Rayleigh waves to body
waves, which propagate into the bulk medium. This mode conversion offers a potential
mechanism for protecting structures from incoming surface waves by diverting the wave

energy away from the surface.
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In Figure 4.2.6a, the effect of base input amplitude is shown through three curves with

different U values (0, 0.1, and 0.2), where increasing the base input amplitude causes

Rayleigh waves to deviate more significantly from their linear dispersion relationship,

particularly in the frequency range between 1.0 and 1.5.
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Figure 4.2.6b demonstrates the effect of the normalized mass parameter M (0.4,

0.6, and 0.8), where higher mass values create more pronounced nonlinear behavior and
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stronger coupling between the wave modes, leading to a larger frequency band-gaps. Both
graphs show that nonlinear effects become more prominent at intermediate frequencies,
with the shaded regions likely indicating zones of wave interaction or mode conversion,
and the vertical dashed lines marking critical frequency values where significant changes

in wave behavior occur.

4.2.5 Conclusions

The multiple scattering formulation, by accurately capturing inter-resonator interac-
tions and near-field effects, emerges as a crucial tool for analyzing seismic metasurfaces.
Its flexibility in handling diverse resonator configurations and types allows for effective
design optimization. This study reveals that deeper source locations significantly en-
hance ground-borne vibration attenuation, highlighting the importance of source depth.
Furthermore, the proposed metasurface design demonstrates tunability; hardening non-
linearity in resonators effectively mitigates higher-frequency vibrations, while increasing
normalized mass increases overall attenuation efficiency. Importantly, incorporating a
larger number of resonators broadens frequency bandgaps and promotes the mode con-
version of surface waves into bulk waves, significantly improving vibration mitigation ca-
pabilities. This comprehensive approach provides valuable insights for designing effective

seismic metasurfaces.
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CHAPTER 5

Rayleigh Waves Generation and Propagation due to External

Sources






Beyond the propagation and control of Rayleigh waves, this chapter addresses their
generation, which can be modeled as either an initial value problem or a boundary value
problem. Subchapter 5.1 employs Laplace transforms and an asymptotic model for interior
source generation, while Subchapter 5.2 uses Hankel transforms and a matrix approach

for seismic surface loading in micropolar media.

5.1 Interior initial value problem in a semi-infinite medium*

5.1.1 Mathematical formulation

We investigate the Rayleigh wave field over a linearly isotropic, elastic half-plane
occupying the region —oo < z < oo and 0 < z < oco. It is assumed that the wave motion

is due to initial conditions prescribed along the line z = h, see Figure. 5.1.1.

z=0
> X
@(x,2z,0) =0 Y(x,2,0)=0
My Mo M M Mz z=h |
2, e 2t 2t 2,
d(x,z,0) ¥(x,z,0) =
1 —k|z—h — 1 —k|z—h|g;
= 5580z — h)e lz=hlcos(k x) 7€ sin(k x)
 Z

Figure 5.1.1: Geometry of the problem

The plane-strain equations of motion in absence of external forces can be written as
Oij5 = P UWitt- (511)

Here u;(z, z,t) are the components of displacement vector « of the elastic wave; p is the
volume density; and o;; (4,5 = 1,2) are components of the Cauchy stress tensor.
* Ready to submit
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Also, for a homogeneous, isotropic solid, the stress-strain relations are defined by
Oij = )\Ekk(sij + 2p€;;, (5.1.2)

where A and p are the Lamé elastic moduli, d;; denotes the Kronecker delta, and ¢;; de-
notes the strain tensor.

The kinematic relation to express the components of strain tensor ¢;; in terms of displace-

= 2 833j (9561 '

As a result, the governing equation of motion for Rayleigh waves propagating along

ment components u; is given as

x—direction with the displacement components u = (uq(z, z,t), uz(x, z,t),0) can be given

as,
pV*u+ (A +p) VV - u = pit. (5.1.3)

Employing Helmholtz decomposition, the displacement field u can be represented as the

sum of a scalar potential ®(z, z,t) and a vector potential \I_}(x, z,t) = (0,0,V) as,

o> 9v o OU
U1<£L',Z,t):——— u3($7zat>:5+%

14
or 0z’ (5-1.4)

Upon substitution of expressions given in Eq. (5.1.4) into equations of motion, the system

in Eq. (5.1.3) decouples into,

1 9% ,o 1 0%

;B = (5.1.5)

where 3 = 4 /H—;“ and [y = \/% are the body wave velocities.

The above equations are subjected to initial interior conditions, which are given below:
uy(z, 2,0) = uz(x, 2,0) =0,
ou ou, .
G l—o =0, G2|,_, = (2 — h) sin(kz)

In terms of potentials, these conditions can be rewritten as,

O(x,2,0) = V(x,2,0) =0,

%_(ﬂt:o = %Sgn<z - h) exp (—k’Z — hD COS(]{ZJJ), (516)
o|,_,=—1% exp(—k|z — h) sin(kz)
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Further, an asymptotic hyperbolic-elliptic model developed by Kaplunov and Prikazchikov
[87] accounts for the contributions of Rayleigh wave fields. According to this model, the
decay of Rayleigh waves from the surface towards the interior is governed by the following

quasi-static elliptic equations for the potentials,

9*P 282@ 0*W 2(‘92\11
_ Z - =90 5.1.7
022 ta 0x2 T 022 +5 2 ’ ( )
in which
2 2
CY2 =1~ _};7 BQ = - _}57
1 2

with cr denoting the velocity of Rayleigh waves.

In contrast to the interior behavior, the wave propagation along the surface z = 0 is
governed by a hyperbolic wave equation for one potential, coupled with a differential
relation between two potentials, see section 1.3.2 for details. For the case of horizontal

loading P; and vertical loading P, the equations at the surface z = 0 become

PQQD 1 82®} ’ 1+
dx*  v? 08 ||, _, 2uB

(P +v'Py), (5.1.8)

where the superscript x on P, denotes, in the sense, its Hilbert transform and the constant

B, v assumes the value

« 6] 2a
B( 5)+a( a) +B’ v 1+52’
and the relation between the potentials is given as,
2c
v = d° 5.1.9
1+ 52 ) ( )

where the superscript ‘¢’ denotes the harmonic conjugate of the corresponding function.
We employ this asymptotic model to assess the Rayleigh wave contributions arising from
initial interior conditions. The solution for these initial interior sources is derived in the
following section and is then integrated into the asymptotic model to approximate the

resulting Rayleigh wave field.
5.1.2 Solution for the interior source problem

Let the solutions to Eq. (5.1.5) takes the form

®(x,2,1) = ¢(z,t) cos(kz), (5.1.10)

U(z,z,t) = (z,t) sin(kz),
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This will reduce the equations of motion given in Eq. (5.1.5) as

9?2 2 1 092
as — K20 = 358,

0z
(5.1.11)
dz2 k2w %6_?/)
Defining the non-dimensional parameters,
z ? 52 51
=— X=-, T=— = kh, and v =
5 h’ X h? T h al ,y /82
the governing equations of motion in Eq. (5.1.11) can be re-written as
8%¢ 2, _ 19%
5z KO = 557,
* ! (5.1.12)
32_¢ — k%) =
subjected to the non-dimensional interior initial conditions,
\
¢(x;0) =0, 1(x,0) =0
% o = 3sen(x — 1) exp(—rlx — 1), (5.1.13)
9| = 1 exp(—rlx — 1]) )

A Laplace integral transformation is employed on the variable ‘77 according to the defini-

tion, see Debnath and Bhatta [274],

L o * T —ST T
<z,s>—/0 f(z ) e dr,

where s is the complex transform variable with Re(s) > 0.
Further, the inverse Laplace transformation is defined as,

1 C+ico
—/ fE(z,5) e ds,

2mi C—ioco

f(sz) =

where C' > 0 is larger than all the real parts of singularities of f£(z,s).

As a result, application of Laplace transformation to Eq. (5.1.12) gives the following

decoupled system of ordinary differential equations,

d?et L
) —7”%¢ _

—5zsgn(x — 1) exp(—k[x — 1),

2

* (5.1.14)
2, L
o —r3 gt = § exp(—rlx — 1)),
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2
where 11 = /K2 + %, ro = VK2 + s2.
Since the modelling of the interior source is carried in an unbounded medium, we also

employ Fourier transforms. Specifically, we apply the Fourier transform, defined as,

o= [ fene
and its inverse,

Fout) = / () e de,

to both sides of Eq. (5.1.13). This transformation leads to the following Laplace-Fourier

transformed potential components as,

\

LF __ =1 |__ipexp(ip)
6 (.5) = 3 | Gt |

(5.1.15)
LF _ —k exp(ip)
VP s) = (P2 +73) (P +r%)” )
Taking inverse Fourier transformation in Eqgs. (5.1.15) yields,
¢* (X, 8) = g lexp(—rlx — 1]) — exp(—ri[x — 1])] sgn(x — 1),
(5.1.16)

UH(x ) = — b [exp(—rlx = 1]) = & exp(=ralx — 1)] .

As a result, the associated stress components g9; and 99 at y = 0 can be calculated using
Eq. (5.1.2).
As a consequence of the superposition principle, we can now formulate the initial value

problem for the elastic half-space with

Pl(l’,t) = —Ugl‘y:m PQ(I’,t) = _0-22‘7;:0' (5117)

Py (z,7) ﬁ2 _ Pg(z,‘r)‘

Define the dimensionless loading terms P = - m

Thus, applying the Laplace transformation to both sides of Eq. (5.1.17) and utilizing Eqs.
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(5.1.16), we obtain,

> Kk |e (2% + s .
PE(E,s) = —a} v=0 = T9ga (7”2 ) —2rie” 1} sin (k¢)
K -67\/52+52 (21{ + S _ /,{2+ 2 < g
= —353 K2+ — | sin(k
252 VEZ F §2
(5.1.18)
> 1
Pf(&,s) = —G5, =0 = T92 [e7™ (25 + %) — 2K%e "] cos (KE)

1 —y/K? 2 Y/
S P (267 + %) — 2K% ”2“2] cos (k). (5.1.19)

Observe that EL and ﬁQL are the stress disturbances produced at the surface of the half-

plane due to the interior initial conditions.

5.1.3 Asymptotic solution

On defining ¢ = #- and non-dimensionalizing Eq. (5.1.7), we obtain
82 1 0?°® 1+ B2 ~
—_— == = P _1P*> . 1.2
[89 c2aﬂ]xﬂ) 2B ( 2ty A (5.1.20)

Assuming a cossinusoidal form as given in Eq. (5.1.10) followed by the application of
Laplace transformation and utilizing the stress components obtained in Egs. (5.1.18) and

(5.1.19), we get
¢ (1457

g =— H 1.21
where
1 e T 2 —ra -1 K e (2’%2 + 52) —r1
H(s):—2—82[ (26* + 5°) — 26" "] + v {2—52[ - —2re .
This gives,
c® (1442 I(r)
= 1.22
6(0.7) — (5122
where
1 C+ico 1
I(1)=—— ———— H(s) exp (s7) ds, (5.1.23)

270 Jo_ino 8%+ KECP
is the Bromwich integral to be evaluated to obtain the inverse Laplace of ¢*. Note that
C € R is considered larger than any real part of the poles in the integrand.
The complex integral given in Eq. (5.1.23) contains integrand with singularities in the
form of poles and branch cuts. There are two poles s = +ikc, generally known as Rayleigh

poles, and two branch points at s = 4ix. The residue theorem can be employed to evaluate
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the contribution of the Rayleigh poles to the integral, thereby determining the Rayleigh
wave contribution. Additionally, the model also predicts bulk wave contributions, which
can be understood by analyzing the local behavior of the integral around the branch
points.

As a result, we can write
I(1) = Ip(T) + Ip(T), (5.1.24)

where I5(7) and Ip(7) are the contributions from the branch cuts for larger 7 and Rayleigh
poles, respectively.

We shall now chose the contour paths and branch cuts for the integral in Eq. (5.1.23) as
indicated in the Figure 5.1.2.

/_\\ C +iR

) l\ +i.kc ?0 « Re(s)

\/C—m

Figure 5.1.2: Choice of contour paths and branch cuts for the integral

encountered in asymptotic model of Rayleigh waves
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By expanding Eq. (5.1.23) locally around each branch point s = =ik, the total

contribution of the branch cuts to the integral can be evaluated as,

1 (22—~ —2071 | v (% —-2)
Ig(t) ~ sin(kyT) — cos | kYT — /Y2 — 1
(7) [ ) (ky7) AT ) (7 Vv )]

1 1 1 —k,J1-L .
ey |2 (i) Y st

-1

_\/ﬁ(l s (m - %) . (5.1.25)

It is worth mentioning that the asymptotic behavior of the integrand at larger time scales,
evaluated using the saddle point method, aligns perfectly with the solution obtained.

As a result, we conclude that the asymptotic hyperbolic-elliptic model predicts the exis-
tence of a transient bulk wave solution associated with branch cuts. For large values of

T, we have,

sin(kyT)

65 (0,7) ~ 02(1+52){ 1 [(2_72)_2]/1

2B K2mT 72 (2 — ?)

v (2 -2) | oS </<’yT—/€ /72_1>]

VA L2

1 L\ - /1% .
) [—2—1— (1+2V_1 1- —) e V! 72} sin(kT)

R2r (1 — 2 ~2

_ \/ﬁ_ﬂ o (m - %) } . (5.1.26)

Hence, the scalar potential can be given as,

02(1+52){ 1 [(2_72)_%1

2B KT T 72 (2 — ¢?) sin(7)

(I)B(g,O,T) ~

VA L2

—1—; 24 (1+2v71/1— 1 eI sin(kT)
rR2r (1 — ?) ~2

V_l

R - Cos <I{T - %) } cos (KE) . (5.1.27)

v (v —2) | cos </ﬂ¢ B ff\/ﬁ)]
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Additionally, the residue theorem is employed to evaluate the pole contribution, zielding

O Gl Sl) P (_” 1_C_2>

2k c? ~?2

(2vV1—c—vt(*-2)
2Kk 1 — ¢

This gives the expression for scalar potential of Rayleigh waves propagating on the surface

+

exp <—m/1——02) } sin(ker).  (5.1.28)

X = 0 as,

14 82 20 /1- % + (2 -2) 2
sr(0.7) = LA ( T )exp 1= 5

2V1—¢c— vl (¢ - 2))
2Kk 31 — 2

This gives, the scalar potential,

(148 (—21/_1 —fy—z (02—2)) 2
®p(§,0,7) = 55 P exp | —k 1—¥

V1= —v!(*-2)
2k 31 — ¢

Further, solving for the quasi-elliptic equation of the form given in Eq. (5.1.7),

X

exp (—m/ﬁ) } sin(ker).  (5.1.29)

_|_

exp (—Fa\/l—icQ) } sin(ker) cos (k&) (5.1.30)

d*® o d?®
—-— — =0 5.1.31
subjected to the boundary condition given in Eq. (5.1.30) yields,

(& ax,7) = {Pp(£,0,7)+Pp(£,0,7)} exp (—ray) cos (KE) . (5.1.32)

Also, the transverse potential U can be easily restored by using Eq. (5.1.9) as,

2

—&52 {Pp(,0,7) + Pp(£,0,7)} exp (—kPx) sin (KE) . (5.1.33)

W, Bx,T) = T

Thus, the total wave field displacement components can be expressed in terms of the

potential v as,
00(§, ax,7) | 1+ B20%(E, Bx,7)

w (& x, 1) = o€ 5 o€ , (5.1.34)
0P 0P
us(§,x,7) = (§é§X7T> + 1+262 (%ix’ﬂ. (5.1.35)
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5.1.4 Exact solution

Now, we shall produce the exact expressions for the displacements at the free surface
due to the prescribed surface stresses EL and ﬁZL
If  and ¥ = (0,¥,0) are the dimensionless scalar and vector potentials of the wave

generated due to the surface stresses, then the equations of motion could be re-written

as,
e 9*® 1 0%°® 0?v 92U 9%
== t55 =575 + = . (5.1.36)
o0& Ox? A% 0r? 02 0x?  0r?
The relevant stress-strain relations are written in terms of potentials as,
2?d 9PV 9%
= 2 — 5.1.37
= (2t 58~ o) 130
Pd 9o Po 9?0V
= AN =—=+— 2l =— — —— ). 5.1.38
" (352 " 3x2) i (3X2 0€3><) ( )
Assuming the potentials of the form,
©€7X77- :¢X7t COs ,{/57
(6. 7) = $(x,1) cos(xe) 5

(&, x, 7) = (X, t) sin(kg),
and subsequently applying the Laplace transform, we obtain the following system of

ordinary differential equations as,

d2¢L deL
iZ ri ¢t =0, e 3ot =0, (5.1.40)

where r; and ry are defined previously. Solutions to Eq. (5.1.36) that show appropriate

behavior for larger values of x are,

(&, x,7) = Aexp (—r1 x) cos(kE), (g, x,7) = Bexp (—ry x) sin(k€). (5.1.41)
Defining 75, = % and Ty = TZ—?, the boundary conditions at Y = 0 can be transformed
as,

Toilo =Pl Tal =P (5.1.42)

Substituting the expressions for ®% and ¥ and using Eqs. (5.1.42), the following equa-

tions for A and B are obtained:

261 A — (2K% + 52 B:]SL,
1A= ) ! (5.1.43)
(s +2K%) A—2Kry B= Pr.
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This system is solved to obtain the values of A and B. As a result, the expression for the

transformed potentials are given as,

oL X, 5) = {—4/1 7“17“22:;;%2(2) <) exp(—71)

2k (2%2 + 52)

~ $2R(s) eXp(—W)} exp (=11 x) cos(kE), (5.1.44)
e = { 2GS o)

K <4/<:27’17“2 + (2K% + 32)2>
B 21952 R(s)

exp(—ra) p exp (—rg x) sin(kE), (5.1.45)

where R(s) = (2k2 + s%)° — 4K2ry7.

On taking the inverse Laplace transform for the displacement potentials, we get

CHioco 2 2 212
D& x,T) = —Cozgzé) /C {_45 7“17”22;](%2(/:) ) exp(—71)
29,2 | 2
. 3(22;3—(;; > eXP(—Tz)} exp(—r1x) exp(s7)ds, (5.1.46)
; C+ico 92 942 2
K <4m2r17‘2 + (2k2 + 52)2)
N 2952 R(s) exp(—ry) p exp(—r2x) exp(s7)ds. (5.1.47)

The integrands in Eqgs. (5.1.46) and (5.1.47) contain both poles and branch points as
singularities.

The poles are located at the zeroes of the Rayleigh-wave dispersion equation R(s) = 0.
Additionally, branch points exist at s = +ik and s = +ik~.

To evaluate the integral explicitly, the contour paths and branch cuts are chosen as de-

picted in Figure 5.1.3.
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Figure 5.1.3: Choice of contour paths and branch cuts for the integral

encountered in exact solution for Rayleigh waves
Now, let s = +irc be the roots of the Rayleigh-wave equation.
Rewriting R(s) as a function G ( 25 ) as,

G(‘)‘(\/—Tl 1= (245 )

and approximating the expression about its roots using Taylor series expansion as,

G (ZZ) G'(—c?) (Z—Z +02) ,

allows us to determine the Rayleigh wave displacement potentials as,

2

—K 1 1-<
K3 <c4+4\/1—02 -2 4 +4) Oty 1=52
23 G/(—CQ)

2(2—¢?) R3€_H(X@+M)

_ AG (=) sin(ker) cos(kE), (5.1.48)

(I)P(Sv X 7_) =
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K3 <C4 +4V/T =21 - S — 4 + 4) o—VI—Er(x+1)

C
v

203MG’(—02)

+ sin(ker) sin(k§).

(5.1.49)

For larger timescales 7, the contribution from the branch cuts can be approximated by
focusing on the dominant contribution near the branch points. This involves expanding

the integral locally around each branch point. As a result,

Pp(&,x, ) ~ ! {L sin(kyT) + ;_2) cos (/‘WT - 5@)

k2T | 272 2 (2
ROV
+ - —2¢” ™" | sin(kT) p cos(kE), (5.1.50)

1
Ve x,7) ~ < — cos(m T—k(x+1)V 2—1)
B(éX ) { 27T/€2")/2\/ﬁ Y (X ) Y

21

2.2 — le 1
_ Y - € Sin(/‘ﬁ']—) — 2\/——3 COS <l€7‘ — %) sin(/-if).
R= Ty TROT
(5.1.51)

Thus, the total wavefield can be easily determined by combining the contributions from

both the branch points and the poles.

5.1.5 Graphical discussions

To elucidate the characteristics of the exact and asymptotic solutions and facilitate
a comparative analysis, a series of graphical representations is presented. These figures
depict the larger time-dependent behavior of total wavefield induced by interior sources.
By visualizing the discrepancies between the two solution approaches, we aim to assess
the efficiency of the asymptotic model in capturing the essential wave phenomenon.

Figure 5.1.4 presents a comparative analysis of the total wave contributions at the
surface of the half-space (y = 0) and at a depth of (y = 10), as computed using both
the exact and asymptotic approaches. As expected, the wave potential amplitudes at

X = 10 are significantly lower compared to those at the surface. The results highlight
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(a) Total wavefield at x =0
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Figure 5.1.4: Comparison of total wave behavior at a larger time for both

asymptotic and exact methods at dimensionless depth (a) x =0 (b) x = 10

a noticeable discrepancy between the asymptotic and exact models, particularly at early
times and deep below the surface. This discrepancy is attributed to the limitations of the
asymptotic model in accurately capturing bulk wave phenomena. It is further important
to point out that while the asymptotic and exact approaches agree well in capturing

Rayleigh wave contributions, they exhibit significant discrepancies in predicting bulk wave
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contributions. However, at the surface, as time progresses, the results from the two models

converge, with the asymptotic predictions aligning closely with the exact solution.

5.1.6 Conclusions

This study investigated the generation of wave fields within an elastic half-space due
to prescribed initial displacement potential and velocity patterns. These initial conditions
were employed to simulate a wave source. By applying Laplace transformation in time
and utilizing an eigenvalue approach, the solution to the interior initial value problem was
obtained. An image-source technique was incorporated to account for reflected wave fields
from the surface. The superposition of the generated and reflected wave fields allowed
for the calculation of surface stresses. These surface stresses, in turn, act as the loading
mechanism for the generation of Rayleigh waves within the half-space.

The solution was analyzed from both asymptotic and exact perspectives. The ex-
plicit asymptotic hyperbolic-elliptic model was employed to elucidate the contribution
from Rayleigh waves (represented by the residues arising from the Rayleigh poles). Addi-
tionallz, the local dominant contributions from the branch points were utilized to capture
the bulk wave contribution within the asymptotic model. The resulting displacement
potential was then compared with the exact solution. The exact solution was obtained
by Laplace transforming the equations of motion, followed by a Taylor series expansion
centered at the Rayleigh pole to isolate the Rayleigh wave contribution. Similar to the
asymptotic approach, the local dominant contributions from the branch-cut were used to
account for the bulk-wave contributions in the exact solution.

Graphical analysis revealed that a significant discrepancy was observed between the
asymptotically derived and exact solutions for the behavior of displacement potentials of
total wavefield. This disparity suggests that the asymptotic hyperbolic-elliptic model is
highly effective in capturing the behavior of Rayleigh waves but exhibits limitations in

representing the behavior of bulk waves.
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5.2 Surface boundary value problem in a multi-layered microp-
olar media*

This chapter investigates the generation and propagation of Rayleigh waves due to
surface seismic impacts, formulated as a boundary value problem. We model two surface
pulse scenarios, a point load and a vertical line load, through boundary conditions within
the frameowrk of micropolar elasticity. The analysis is further extended to multilayered
micropolar structures to examine dispersion characteristics. Various mathematical tools,
like method of displacement potentials, Hankel transformation and a matrix approach is

employed to analyze the problem efficiently.

5.2.1 Description of the model

Surface loading, F(r)

Micropolar elastic
half-space

Figure 5.2.1: Geometry of the problem

Consider the propagation of Rayleigh waves in a homogeneous isotropic micropolar
half-space occupying a region z > 0 as depicted in Figure 5.2.1. A cylindrical co-ordinate
system (r, 6, z) is used to obtain the solution for the displacement components of Rayleigh
waves produced by a source situated on the surface z = 0 of the micropolar half-space.
To maintain the consistency with the usual notations, z—axis is now considered to be
“* Published in International Journal of Geomechanics (ASCE), (2024).

DOLI: 10.1061/IJGNAL.GMENG-8725
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pointing vertically downwards. Also, this problem of seismic surface pulse can also be
viewed as the surface loading problem wherein the surface of the half-space is loaded by a
concentrated time-harmonic force in the axial direction. Let (€, €y, €,) be the basis vectors
for the cylindrical system of co-ordinates. Also, let (u,,up,u.) and (¢, @s, ¢.) be the
displacement components and microrotation vector components along (r, 6, z) directions,

respectively.

5.2.2 Mathematical formulation and solution

Constitutive relations and balance laws

In any linear micropolar elastic continuum possessing a centre of symmetry, the de-
formation in the body is described by the displacement vector 4 and the microrotation
vector . As a result, the force stresses (i.e., 7;;) and the couple (moment) stresses (m;;)
are developed in the body. These stress tensors are defined in terms of the antisymmertric
deformation (strain) tensor €;; and torsional flexural (curvature) tensor ;; as,

€ij = Uji — CijkPhk;
T T (5.2.1)

Yij = Pig-
Following Eringen [117] and Nowacki [122], the stresses in a homogeneous, isotropic,
micropolar elastic half-space can be expressed linearly by using strain and curvature
tensors as,

Tij = Aekk@-j + (/L + li)EZ'j + HEij, (5 5 2)

mi; = Yki; + BV + Vi,

where A and p are Lame’s constants, and s, «, $ and v are micropolar constants; d;; is
the Kronecker delta and €;5; is the permutation tensor. Throughout the paper, a comma
in the subscript represents the partial derivative.

To describe any physical phenomenon associated with the dynamic problems of microp-
olar elasticity theory, it is essential to compute the displacement components and micro-
rotation vector components satisfying the constitutive relations, equations of motion and
boundary and initial conditions. Eringen [51] derived the equation of motion for the wave

propagating in a micropolar elastic half-space and in absence of body forces, this equation
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of motion can be written as,

(A+2u+K)V(V-0) = (u+ K)V X (VX D)+ 5V X G = plh, 523)
VG + kY X i — 26F = jpLE,

where p is the density, j is the micro-inertia co-efficeint and V is the usual del operator.
The above form of the equation of motion has a larger advantage because this result is

valid in any curvilinear coordinate system.

Formulation of the problem

Owing to the propagation of Rayleigh waves in this problem, the displacement com-
ponenent uy = 0 and the microrotation vector components ¢, = ¢, = 0. Thus, we
write

ur = up(r, 2,t), upg =0, u, = u,(r, 2,t),
Pr = 0, Yo = 909(T>Z7t)7 Pz = 0.
so that
u(r, z,t) = up(r, 2, t)é, + u,(r, z,t)€,. (5.2.4)
The given problem assumes an antiplane strain state in the #—direction, which means

9 —.

that all field variables are independent of §—direction, i.e., 3

Method of displacement potentials

The method of displacement potentials is one of the powerful technique in obtaining
the solution to an axisymmetrical wave equation. Consider the Helmholtz resolution of
the displacement vector field in cylindrical co-ordinates. According to the Helmholtz’s
theorem [2], a rapidly decaying displacement vector field @ can be resolved into sum of a

scalar potential ¢ and a vector potential H , which provides
i=Vd+V xH, (5.2.5)

where the components of displacement vector # and vector potential H are given by

—

U = Uy r,z,te:;—kuz r,z,tez,
. ( ) ( ) (5.2.6)
H = H@(T,Z,t)ég.
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Appropriate substitutions of @ given in Eq. (5.2.5) in equation of motion given in Eq.

(5.2.4) gives
(A+2u+ )V =pZt,
(n+r) (V2= %) Ho+ rpy = p%i, (5.27)
v (V2= %) g0k (V2= %) Ho— 2605 = pj5et.

Here V? = p 87" ( %) + g—; denotes the Laplacian operator in cylindrical coordinates.
In order to reduce further the second and third equations of Eq. (5.2.7) to scalar wave

equation, define the function ¥ and ¢ as,

ov
o=
o

ve = or’

Then Eq. (5.2.7) can be re-written as,

(A+2u+rK)V2D = pTt
(4 KV + ko = poy, (5.2.8)
vV2p — KV — 2k¢ = ,ojw.
Assuming the time harmonic fields with the time factor e, where w = kc is the angular

velocity of the Rayleigh wave propgating with wave velocity ¢ and wave number k, the

displacement potentials and the quantity ¢(r, z,t) may be expressed in the form,
O(r,z,t) = O(r, 2)e™t
U(r, z,t) = U(r, 2)e™t (5.2.9)
o(r, z,t) = ¢(r, z)e™".

Inserting Eqs. (5.2.9) in Eqs. (5.2.8), we get

<v2+ ];;2622>¢ :O,

c1+cs
(v §2)w+ e o, | 5210

2 | —2c3+jk* e B o2 _
(v +=4) o jcav‘l’ =0

where the quantities ¢, ¢, c3 and ¢4 are defined as,

A+2u \/E [v \/ﬁ
= , Co = —, C3 = - G4 = -
P P Jp p
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It is understood that the system of equations obtained in Eq. (5.2.10) involves a coupled
differential equations of second order. To further uncouple these equations, we begin with

defining the parameters,

k2 c? k2 2 —2c2 + jk%
P2 — P2 = P2 = 2
1= » D1 = » P2 = :
ct+ 3 3+ jc3

4
Co

=
GG+

and by regrouping the terms, Egs. (5.2.10) can be reduced to

(V> +7r7) @ =0, (5.2.11)

VI + (p] + p3 + p5) VAU + pipy ¥ = 0. (5.2.12)
The Eq. (5.2.12) can be further simplified to give
(V2 +13) (VP +13) ¥ =0,

where r9 and r3 are the roots having values,

2 2 2 2 2 212 2,2
2, - —(pi +py+p3) £ \/(51 +p3 + p3) —4p1pz. (5.2.13)

To solve explicity the equations given in Egs. (5.2.11) and (5.2.12),the Hankel transfor-
mation technique [274] is employed naturally in view of the geometry of the model. Define

the zeroth order Hankel transformation of ® as

(&, 2) = /OOOTJO(&“) O(r, z) dr,

whose inverse transformation is

¢Wﬂ%=lw€%@ﬂ¢ﬁﬂﬁ%

Here € is the transformed parameter. We note that the similar definitions are adopted for
the quantities V.
Now, application of the zeroth order Hankel transformation to Eqgs. (5.2.10) and (5.2.11)
reduces the set of partial differential equations to a set of ordinary differential equations.
Thus

(@ - e =0,

. "o i (5.2.14)
28— ) (€ ) (€ -1 T =0.

dz4 dz
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The solutions to these equations takes the form,

O(E,2) = Are™ " + Aye™, (5.2.15)

U(¢,2) = Bie ™ 4 Bye ™% + Bye* + Byet?,
where Ay, Ay, By, By, B3 and By are all functions of £ and are determined from the

boundary conditions applied on the problem. Here,
=&} =1} =6 -1l

Note that ¥(r, z) and ¢(r, z) are the solutions to the coupled differential equations given

in Eq. (5.2.10). As a result, assume the solution to ¢(&, z) to be of the form,

o, 2) = s Bie7P% + 59 Boe %% + 53 B3eP* + s4 Bye®?, (5.2.16)

where s1, s9, s3 and s, are the unknowns to be determined.

Substituting the explicit solutions of (¢, z) and ¢(&, 2) in Eq. (5.2.9), we get

2 2
Gt 2 _
§1 = P} o —=D1), S22 = P

2 2
cy + ¢ ( 2

r
&) &)

3 —pf) , 83 = 51 and s4 = S9. (5.2.17)

In brief, the transformed displacement vector potentials and microrotation vector takes

the form,

KA

(f, Z) = Ale_az + Age"‘z,
(f, Z) = Ble_ﬁz + Bge_cz + Bg@ﬁz + B4€Cz, (5218)

K

P(&,2) = s1 Bre ™ + 53 Boe % + s3 Bse® + 54 Byet,

where the value of s, s9, s3 and s4 are given in Eq. (5.2.17).

5.2.3 Analytical solution for the elastic micropolar half-space

In order for the solution to be compatible with the half-space considered, the solution
to Eq. (5.2.18) must be bounded as z approaches infinity. Due to this radiation condition,
we must have Ay =0 and B3 = By =0 in Eq. (5.2.18). Thus,

KA

(57 Z) - Aleiaza

(3
Q_ﬁ(ga Z) =51 Ble_ﬁz + S BQE_CZ.

=l
N

) = Bleffgz + B2@7§Z7 (5219)
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Boundary conditions

To determine the unknown parameters A;, By and Bs in Eq. (5.2.19), suitable bound-

ary conditions are imposed on the above equations.

e The force stress component in the axial direction on the free surface assumes the

value,

T, = F(r)e™" at z = 0, (5.2.20)

where F'(r) is taken to be an arbitrary function. We note that as a result of surface

wt i assumed in the axial

seismic pulsations, a time-harmonic force function F(r)e
direction.
e The mechanically stress free condition on the free surface in radial direction for the

half-plane indicates,
Ty =0, at 2 =0. (5.2.21)
e Also, the couple stress in §—direction is unaffected due to the surface loading. This
implies,
m.p =0 at z=0. (5.2.22)

By using the stress-strain relation given in Eq. (5.2.2), the force stress component 7, and

T,. can be expressed as,

T = (At 2p+R)GE+ A (G +5), (5.2.23)

Tor = (/L + K’) Do + 1“831? — Kpg.

On further substituting the introduced Helmholtz representation of displacement vector

using scalar and vector potential given in Eq. (5.2.5), we get

Tez = AVQ(D + (21u + 'Ii)% ( + %z\g + 02+62¢ +p%\1j)

\ (5.2.24)
ro =2 |Cur) (2 +28) + (£E +r) o+t

The above representation of the force stress components is a consequence of using the
Eq. (5.2.9) and appropriate identitities related to the del (V) operator in cylindrical co-

ordinates.

195



Now, we may apply the Hankel transformation on these stress components according to

T, = / T 7o Jo(Er) dr,
0

Typ = / rTJi(Er) dr,
0

which gives

= d [dd d*U 2 - -
o= —A2D 4 (2 R (L : 2
E & +(”+K)dz(dz+dz2 c§+ci¢+p1 )’
dd d*V e _ ) =
o= —£|(2 @ L T
7 5{(,u+/f)<dz+d22>+<cg+ci+m)gb+upl

Under these circumstances, the boundary conditions in Egs. (5.2.20) and (5.2.21) reduces

to

ArE 4 (2t )k (4L 4 a0+ ) = F() at 2 =0,

G : k i (5.2.25)
¢ [(2u+m) (‘ji—q’ + fjl;) + (éfig +/<;> qb—i—,up%lll} —0atz=0,

where F'(€) is the zeroth order Hankel tranformation of the force function F(r), i.e.,

Fle) = /0 o doler) dr.

Now, substitution of Eq. (5.2.19) in the transformed boundary conditions given in Eq.

(5.2.25) gives

2
Cy S2

2 2
(:2+(:4

2
Cy S1

2 2
c2+c4

[—A T3+ (20 + k) a2] Ay —B(2p+ k) </32 +p7+ ) Bi — ¢ (2u + K) <<2 +p2 4 ) By = F(£), (5.2.26)

2
)
2 2

c; +cg

2
HCy
2 2

c; + ¢y

a5(2M+K)A1—g[(2,L+H)52+<

Bl—f{<2u+~)<2+<

+ H) s1 + up? + Fi) so + up? By = 0. (5.2.27)

The third boundary conditon in Eq. (5.2.22) is transformed according to

ngz/ rm,eJi(Er) dr,
0

where
0%¢
M= Y 0z
Then the transformed couple stress component m.y takes the form
_ d¢
Myg = UV 5 %

Therefore, the resulting third boundary condition may be written immediately as

681 B1 + CSQ B2 =0. (5228)
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Defining n = 2}1‘%, the boundary conditions in Eqgs. (5.2.26), (5.2.27) and (5.2.28) may

be re-written using the matrix notations as,

b b bl A [
b21 b22 523 Bl = 0 (5.2.29)
0 b32 b33 B2 O

where, by = 16> — i, by = —nBE, bis = —nCE%, by = —na, by = n&® —pi, by =
né&? —p%, b3y = B 51, b3z = ( Sa.

The system of equations obtained above in Eq. (5.2.29) is solved to determine the un-
known quantities, A;, B; and B;. Unique solutions to these unknown quantities are
obtained for the non-zero determinant of the co-efficient matrix.

Let © be the determinant of the co-efficient matrix, i.e.,

n& —pt —-nB& -

© =| —na n&-pi 1&-pi
0 B 51 C S2
= (n&® —p1)* ((s2 — Bs1) —* a BCE (52— 51). (5.2.30)

Tranforming the parameter £ as the wave number & in Eq. (5.2.30), we get the dispersion

relation for Rayleigh waves propagating in a micropolar media as,
(nk* —p2)? (Csy — Bs1) —n* a BCk? (sy —s1) = 0. (5.2.31)

Then by Cramers rule,

\

A, = F(¢) (n§2_p%>(<52_,831)
1 - /"+N @ )
B, = % naglss (5.2.32)
_ _F©) naps
B2 = —m nTl )

The transformed displacement components of Rayleigh waves are determined by applying

the Hankel transformation according to,
w62 = [z herdr
0

u,(&,2) = /Ooo'ruz(r, z) Jo(&r) dr,
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which gives

_ A
u-(§,2) = —=¢ (@—I—E)

dd  d*V c% )

ﬂz(&az) = E+ 2 + +Cz21

+ plw.

Using the expressions for the potentials in the elastic half-space, the displacement com-
ponents are obtained for two different cases (depending on the load on the free surface)
by taking the inverse of transformed displacement components.

Case 1:

When F(r) is a point load, i.e., we write, F(r) = % 7, where Z is the magnitude of the
applied force, then we have, F/(§) = Z. Substituting this value of F(¢) in Eqs. (5.2.32),

the displacement components are expressed as,

X 2J
up(r,z) = o ( M_Hi / SRS de, (5.2.33)
where, X = (775 - P1) (Cs2 — 581) e —nap( (82 e P+ 816_<Z) 5
A *YET
uy(r,z) = TR /0 3 (;(&7’) d¢ (5.2.34)
where, Y = —a (77 £ — p%) (Csy—Bs1) e +nak? (C s9e P 4+ B 5 e’cz) )
Case 2:

When a uniformly distributed vertical load, F'(r) is applied along z—direction, i.e.,

2%, when 0 <r <a
F _ Ta
(T) - )
0, when r > a

where Z is the magnitude of the load applied and «a is the radius of the circular region on
z J1 ({a)

which the uniform distribution of the load takes place, then F(£,z) = . This gives
the expressions for displacement components as,
> XA (§a) Ji(€r)
(7, = g, 5.2.35
(7, 2) 2ma (p + K) e ¢ ( )
Z YJl(ﬁa) Jo(gr)
z\I = d s 5.2.36
u(r,2) 27ra(u—|—/<)/ © ¢ ( )

where X and Y have same values as that given in case 1.
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5.2.4 Analytical solution to a multi-layered elastic micropolar layers

Utilizing the expressions for potentials given in Eqs. (5.2.18), the force stress and

couple stress can be given by,

U (§,2) = =€ (A1e7% 4 Ase™ — BBie™#* — Boe %% + 3BseP” + Byet?) ,

(& 2) = —aAe™% + ahge®® + &2 (Ble_ﬂ"‘ + Bye %% + BgeP* + B4e<"’) ,

Qo(&,2) =& (51 Bie % 4 55 Boe %% + s1 B3eP* + s9 B4e<z) ,

(& 2) = (p+ k) (b (A1e7%% + Aze™®) + bio(Bre™P* — ByeP?) + byz(Bse ¢ — Byet?)) ,
(&, 2)=(n+kK) (bmAl(e_o‘z — Ape®) + byy(Bre ™ + Bye®* + Bse %% + B46CZ)) ,
mae(€,2) = V€ (bgg(Ble*ﬁZ — Bye ™ P%) 4 by3(Bze %% — B4e*<Z)) )

IS

TZZ

TZ T

Define the generalised displacement vector and stress vector as,

ptk ptk v

U(€2) = [a,(6.2) @(€.2) @ol€z)| and T(E,2) = |72l Palen) muolto)]

. Then the matrix equations can be written as,

veo| _ P«[Al A, B, B, B B4]T (5.2.37)
Ue.-)|

.

) &0 _ Q-[A1 Ay, B, By, Bs B4]T (5.2.38)
T |

where P = [p;;] and Q = [¢;;] are 6 x 6 matrix whose elements are provided in Appendix
D. Thus, the expression relating the displacement vectors and stress vectors for a single

layer element can be given of the form,

__TT£70> -1 i7
) —(QP™Y) - M (5.2.39)
T 2) U(¢, 2) U(s, 2)

Let us consider N isotropic micropolar elastic layers situated one above the other. Let
these layers be numbered in such a way that the layer at the top is given the number 1
and the layer at the bottom is numbered as N. Also, the i*" layer is bounded by the 7"
interface at the bottom and (i — 1) interface at the top. Let d; defines the thickness of
each layer and d; = h; — h;_1, where h; and h;_; denotes the distance from the surface
to the bottom and the top of the i** layer, respectively. Let z = z; be the position of
the interface between (i + 1) and i'* layer. Also, 2 = zy and z = zy represents the free

surface and the bottom of the N layer respectively.
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Based on the calculations made for the single layer element, the expression relating the
displacement vector and stress vectors for multi-layers can be extended by considering

the interfacial continuity conditions on displacements and stresses. Thus, for any layer

—ii_"(ﬁ,zi_ﬁ _ Mgz) Mé’) U_(i»zz‘—l) Y0 0_(572%—1) (5.2.40)
T(¢,2) MY MY | U, ) U(¢, )

The stress and displacement continuity conditions at the interface of the closely con-

tacted layers without any external force are mathematically expressed as,

T(&, 2) = T(& 2i), (5.2.41)

U(& 2) =U(& zip1)- (5.2.42)

Using Egs. (5.2.41) and (5.2.42), the stiffness matrix associated with N —layered microp-

olar system is,

~T(0)| MY My 0 U(&,0)
0 M M M M U(¢, 1)
0 M@ MP + MP U(g, )
= : (5.2.43)
0 MY MmN MY O, avoa)
T(€, 2n) 0 LZE MM || O =)
_ ) i ,
where —T'(&,0) represents the surface loading at the free surface and M;), for 1 =

1,2,...,N and j = 1,2,3,4 dentotes the block matrix of size 3 x 3. Assuming the ex-
ternal surface loading at the free surface and the fixed bottom of the N layer, the

additional boundary conditions to the above multi-layered problem are,

7_-zz<£70) _ F‘(g), 7_—27‘(5’0) :0, ng(f,()) :0’
J u+ kK v

ar(gva) =0, ﬂz{gva) =0, @9(& ZN) = 0.

Case 1:
When a point load, F(r) = % Z is applied on the free surface, where Z is the magnitude
of the applied force, then

T(£,0) = [% 0 o} . (5.2.44)
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The real solutions for [U(£,0) U(6.21) U(6.z) ... ... U€zy-1) U zy)| are
obtained using Eq. (5.2.44) and by taking the inverse Hankel transformation of the un-
known variables given in Eq. (5.2.43).

Case 2:
when 0 <r <a

_Z_
If a vertical load, F(r) = 2’ , is uniformly distributed on the free
0, when r > a

surface, where Z is the magnitude of the applied force, then

T(£,0) = %L? 0 0f. (5.2.45)
The real solutions for |T/(£,0) U(,21) U(E,z) .. ... U zxa) U(€zy)] are

obtained similarly by taking the inverse Hankel transformation of the unknown variables.

5.2.5 Validation of the model

Case 1:

A set of approximate roots can be obtained for ry and r3 in Eq. (5.2.13) by assuming the

quantity Z—é — 0. This gives the approximation, ro = p; and r3 = py. As a result, the
4

elastic counterpart of the dispersion equation given in Eq. (5.2.31) reduces to,

A\, 2 c?
SR = 1— 11— —. 5.2.46
(” c%+ci) TW-ara\ " ara (5:2.46)

On further simplification, the dispersion relation in Eq. (5.2.46) reduces to,

2 2\ 2 2\ 2 2 2
242- ) (242 [ (5.2.47)

This Eq. (5.2.47) coincides with the particular results obtained from Mondal and Acharya

[278] where the different notations are being used.

Case 2:
In the absence of the micropolarity, kK = j = 0, the dispersion relation in Eq. (5.2.31) for

Rayleigh waves propagating in elastic media becomes,

2\ 2 2 2
(2—0—2) :4\/1—6—2\/1—6—2. (5.2.48)
€y a Cy




This is the exact secular equation for Rayleigh waves as derived by Rayleigh [14] in 1885.
These two different cases provides the validity of the proposed model.

5.2.6 Graphical discussions

The integrals obtained in Eqgs. (5.2.30)—(5.2.33) are complicated to solve analytically
because of the presence of exponential, radical and Bessel functions. As a result, we try
to plot the graphs describing the relation between the displacement components with
the r— and z—direction numerically using MATLAB. It can be observed that due to the
presence of Bessel functions, the convergence rate of the oscillatory integral is very slow.

The following values of physical constants are considered for the plotting purposes: The

Table 5.2.1: Values of parameters used in the study

Parameters Values
A 7.59 x 10" dyne/cm®
4| 189 % 10" dyne/em’ |
s | 219 gm/em® |
k| 0.0149 x 10" dyne/cm” |
T 0.268 x 10" dyne |
T 00196 cm?® |
,,,,Apzf;,u,,,,,,,,,,f)fl ,,,,,,,,
= 2 ]
jk? 0.2
ke | 09

integrand in the Eqgs. (5.2.30)—(5.2.33) has poles and branch points as its singularity.
In the absence of micropolarity, these singular points include a point that is related to
Rayleigh wave number. Because of the presence of micropolarity in the medium, the roots
of the denominator are all in conjugate pairs, i.e., the poles and the branch points have a
non-zero imaginary part. Since, the inverse Hankel transformation involves only the real
axis (i.e., £ € [0,00)) as the path of integration, the numerical integration is carried out

easily using MATLAB along the real path.
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Figure 5.2.2 depicts the normalized displacement of Rayleigh wave fields at the surface
(z = 0) along the r—direction produced due to the delta variation in surface loading (case
1). As observed from the figure, the amplitudes of propagating Rayleigh waves decreases
with the increase in r, and finally reaches zero, thus coinciding with the well-known
decay behaviour of Rayleigh waves. It is interesting to note a larger change in amplitude
occuring near the surface at the origin. This is mainly because of the presence of a sudden
(delta) impact at the surface that induces wave fields and thus causing a great deal of
change in the amplitude behavior of Rayleigh waves. Also, due to the presence of delta
function in r— direction, the displacement component (u,) undergoes a larger change in

amplitude while compared to that of displacement component (u.).

0.4 T T
——1. U : ku,(r,0)
——2. U : ku,(r,0)
_0.2 Il Il Il Il Il Il Il
0 5 10 15 20 25 30 35

kr —

Figure 5.2.2: Variation of normalised displacement components (U) of

Rayleigh wave fields produced due to case 1 with r—direction for z = 0

Figure 5.2.3 shows the variation of displacement components (u, and u,) with z—direction

at r = 0 for case 1. Since the displacement component wu, depends on the Bessel function
of order 1, J;(&r) and since J;(0) = 0, we obtain u,(0, z) = 0. This means that displace-
ment component of Rayleigh waves produced during the sudden surface loading at r =0
vanishes along r—direction. However, a steep change in the amplitude is observed for the

displacement along z—direction due to the impact of a seismic load applied in the form
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of delta function, §(r). These Rayleigh waves produced due to sudden seismic loading

decays with the depth, thus verifying the nature of decay of Rayleigh waves with depth.

0.5 \ T \ T
—1. U : ku,(0,2)
/2 1 ——2. U : ku,(0,2)
0 >
T |
= -0.5
1.5 Il Il Il Il Il Il Il Il Il
1 2 3 4 5 6 7 8 9 10

Figure 5.2.3: Variation of normalised displacement components (U) of

Rayleigh wave fields produced due to case 1 with z—direction for r =0

0.15 T \
—1. U : ku,(r,0)
——2. U : ku,(r,0)
0.1 ;!
0.05 4
T
s
0
-0.05 4
_01 Il Il Il Il Il Il Il
0 5 10 15 20 25 30 35 40

rla —

Figure 5.2.4: Variation of normalised displacement components (U) of

Rayleigh wave fields produced due to case 2 with r—direction for z = 0
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Similarly, Figures 5.2.4 and 5.2.5 are plotted for the describing the nature of nor-
malised displacement components along r—direction for z = 0 and z—direction for r = 0
respectively when a uniformly distributed vertical load is applied on the surface of the
half-space along a circular region having radius a. The amplitudes decreases with the
increase in the - and £, indicating the decay of Rayleigh waves in both z— and r— direc-
tion. The observation of a single larger amplitude sinusoidal-type curve in Figure 5.2.5
represents the effect of uniformly distributed load impact on the surface of the micropolar

half-space.

0.2

—1. U : ku,(0,z2)
—2. U : ku,(0,2)
0.15 7

0.1 F 1

U—

0.05 1 .

-0.05 J

-0.1 1 1 1 1 1
0 5 10 15 20 25 30

z/la —

Figure 5.2.5: Variation of normalised displacement components (U) of

Rayleigh wave fields produced due to case 2 with z—direction for r = 0

Some surface plots have been plotted for case 1 in Figures 5.2.6 and 5.2.7 describing
the motion of Rayleigh waves along r— and z— direction for u,(r, z) and u,(r, z) in an
elastic micropolar half-space respectively. Simlar surface plots have been described for

case 2 in Figures 5.2.8 and 5.2.9.
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Figure 5.2.6: Surface plot showing the variation of normalized displacement

components of Rayleigh wave fields with dimensionless r— and z—direction

for case 1
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Figure 5.2.7: Surface plot showing the variation of normalized displacement

components of Rayleigh wave fields with dimensionless r— and z—direction

for case 1
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Figure 5.2.8: Surface plot showing the variation of normalized displacement

components of Rayleigh wave fields with dimensionless r— and z—direction

for case 2
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Figure 5.2.9: Surface plot showing the variation of normalized displacement

components of Rayleigh wave fields with dimensionless r— and z—direction

for case 2
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5.2.7 Conclusions

By employing the method of potentials, the coupled differential equations obtained as
a consequence of the substitutions in equations of motions in a micropolar elastic media
decouples, and as a result the wave equations becomes more simpler to solve. On further
application of appropriate Hankel integral transformation techniques, the displacement
solutions of Rayleigh wave fields produced in a micropolar elastic half-space due to the
surface seismic loading in two different cases are studied. The first case involves the gen-
eration of Rayleigh wave fields due to a sudden impact and the other due to uniformly
distributed vertical load occupying a circular region of radius r. The displacement so-
lutions are obtained in the form of infinite integrals for both cases. These integrals are
numerically evaluated for the singularities, and are computed using MATLAB to observe
their variation along different directions. Based on the solution obtained for a single layer
element, the methodology is extended to compute the displacement solutions to finite NV
layers. A global stiffness matrix is also derived, which helps in computing the real so-
lutions to the displacement components of Rayleigh waves in a multi-layered micropolar
media. The numerical calculations suggests a larger change in amplitudes at the begin-
ing, suggesting the origin of Rayleigh wave fields due to surface seismic loading. These
amplitudes tends to decrease and finally reaches zero, thus verifying the well-known decay

behaviour of Rayleigh wave fields.
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CHAPTER 6

Concluding Remarks and Future Directions






6.1 Summary and concluding remarks

This thesis significantly advanced the mathematical modeling of Rayleigh wave fields
across three critical stages. Specfically, it focused on (a) incorporation of microstruc-
tural effects for refining boundary and/or interface conditions in traditional well-known
nonlocal micropolar models, (b) incorporation of resonating structures, like spring-mass
systems for controlling vibrations and frequency bandgap formation, and (¢) modelling of
external seismic pulse through initial and boundary conditions for generation of Rayleigh
wave fields. These findings provide a strong framework for future studies and applications
involving Rayleigh wave propagation and control.

The accurate representation of Rayleigh wave behavior in real materials demands the con-
sideration of microstructures, as traditional models often overlook their significant impact
on wave propagation. At micro- and nano-scales, the influence of long-range intermolecu-
lar forces and microstructures becomes increasingly important, requiring the consideration
of nonlocal, micropolar, or nonlocal micropolar elasticity theories to adequately describe
these small-scale interactions.

Asymptotic analysis of nonlocal boundary value problems higlights the critical role of
near-surface behavior. Previous research has shown that boundary layer effects in a non-
local semi-infinite medium can be incorporated by refining classical elasticity boundary
conditions, yielding effective corrections. However, existing literature lacks a compara-
ble analysis for nonlocal micropolar media, both in semi-infinite structure and in layered
structures. This thesis addresses this gap by deriving nonlocal micropolar corrected dis-
persion relations, incorporating refinements in both boundary and interface conditions
obtained through asymptotic analysis, thus extending the understanding of boundary
layer effects in nonlocal micropolar systems.

By integrating resonant structures, specifically nonlinear spring-mass systems, onto a sur-
face of the medium, the research in this thesis demonstrated the ability to manipulate
Rayleigh waves, effectively creating metasurfaces. Novel designs are developed to con-
trol wave behavior and achieve mode conversion, with a detailed study of hardening and
softening effects. Through the analysis of dual spring-mass metasurfaces, we identified
cut-off frequencies and tunable frequency bandgaps, highlighting the critical role of non-

linearity, input amplitude, and substrate characteristics. Notably, the multiple scattering
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formulation proved essential for accurately capturing inter-resonator interactions, reveal-
ing that deeper source locations significantly enhance ground-borne vibration attenuation.
Furthermore, the demonstrated tunability of metasurfaces through hardening nonlineari-
ties and mass adjustments offers a powerful approach for optimizing vibration mitigation
and mode conversion. These findings collectively establish a comprehensive framework
for designing effective seismic metasurfaces, with potential applications in diverse fields
requiring precise control of Rayleigh wave propagation. The optimization of frequency
bandgaps and wave control achieved through the parametric tuning of these innovative
metasurface designs are demonstrated in this thesis, which has proven to have potential
applications in geophysics for seismic protection or vibration control.

This thesis introduced a novel approach to modeling Rayleigh wave generation through
initial conditions or boundary conditions. A novel problem is tackled that involved tran-
sitioning from an initial value problem to a boundary value formulation, providing new
insights into wave excitation mechanisms in elastic media. The study investigated wave
field generation due to prescribed initial displacements and velocities, employing trans-
formation techniques to derive solutions. While asymptotic methods effectively captured
Rayleigh wave behavior, they exhibited limitations in representing bulk waves, as evi-
denced by discrepancies with exact solutions. Further, the research extended to micropo-
lar elastic media, utilizing potential methods and Hankel transforms to analyze Rayleigh
wave generation from surface seismic loading introduced through boundary conditions.
The research demonstrated the effectiveness of the developed methodologies in capturing
complex wave propagation dynamics.

In summary, this thesis has made significant contributions in advancing the theoretical
understanding of Rayleigh wave propagation across diverse media, including nonlocal mi-
cropolar continuum and engineered metasurfaces. By effectively bridging classical and
modern elasticity frameworks, this research addressed crucial gaps in boundary condi-
tions and explored novel wave control strategies. These findings offer valuable insights
into complex wave dynamics, with direct implications for seismic hazard mitigation and
the development of advanced technologies, thus establishing a robust foundation for future
explorations in wave propagation and control.

The following are the chapterwise conclusions of the thesis:
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Chapter 2.1: The equivalence between nonlocal integral and differential for-
mulations for Rayleigh waves breaks down in a nonlocal micropolar semi-infinite
medium, necessitating refined boundary conditions to account for boundary layer
effects and reveal distinct Rayleigh wave modes, particularly highlighting the sig-
nificance of micropolar effects in materials with high Poisson’s ratios.

Chapter 2.2: In viscoelastic micropolar nonlocal solids, Rayleigh wave propa-
gation exhibits multiple modes with distinct particle motions, where the number
of propagating modes depends on the interplay between nonlocal and material
parameters, and refined models are needed to accurately capture boundary layer
effects.

Chapter 3.1: Refined boundary and interface conditions for nonlocal Rayleigh
waves in layered media, derived through asymptotic analysis, are essential for ac-
curately capturing nonlocal effects, particularly within the interface.

Chapter 3.2: Through asymptotic analysis, the reduction of double integral for-
mulations of nonlocal stresses to single integrals, combined with refined boundary
and interface conditions, reveals the distinct dispersive behaviors of Rayleigh waves
in micropolar and purely elastic materials, emphasizing the influence of nonlocal
parameters and material stiffness.

Chapter 4.1: The control of Rayleigh wave propagation and bandgap formation
in metasurfaces is significantly influenced by resonator design, nonlinearities, input
amplitude, and substrate material properties, demonstrating the existence of cut-
off frequencies and the tunability of bandgap characteristics.

Chapter 4.2: The multiple scattering formulation proves crucial for analyzing seis-
mic metasurfaces, effectively capturing inter-resonator interactions and near-field
effects, and demonstrating that design parameters like source depth, resonator non-
linearity, and the number of resonators significantly impact ground-borne vibration
attenuation.

Chapter 5.1: While the asymptotic hyperbolic-elliptic model effectively captures
Rayleigh wave behavior generated from initial conditions in an elastic half-space,
it exhibits limitations in representing bulk wave contributions, leading to discrep-

ancies compared to exact solutions.
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e Chapter 5.2: The application of the method of potentials and Hankel integral
transformations to analyze Rayleigh wave fields generated by surface seismic load-
ing in a micropolar elastic half-space reveals the decay behavior of these waves and

provides a methodology extensible to multi-layered media.

6.2 Future directions

The asymptotic formulations used in this thesis can provide a foundation for further
exploration using alternative kernels beyond the Bessel kernel. A comparative study
of different kernel choices would assess their impact on the accuracy and efficiency of
the solutions. Furthermore, the refinement techniques introduced can be extended to
coupled theories, such as nonlocal thermoelasticity and piezoelectricity, to analyze wave
propagation in more complex material systems.

This thesis further lays the groundwork for the investigation into the vibration con-
trol capabilities of metasurfaces, exploring diverse resonator structures, including elastic
beams, plates, and shells. The tunability of these resonators, achieved through variations
in arrangement, spatial organization, and material properties, can be analyzed to optimize
frequency bandgap formation. Additionally, optimization strategies can be developed, and
simulation capabilities enhanced, based on the theoretical foundations established herein.

The influence of small-scale effects on the performance of nonlocal devices remains
a critical area for future investigation. Analysis of how factors such as size-dependent
material properties and surface effects impact device behavior is warranted. This work
opens the possibility of developing a continuum representation for small-scale metasur-
faces, moving beyond discrete systems and enabling the application of homogenization
techniques.

Finally, the initial value problem approach introduced in this thesis can be applied to
model real-world explosions and blasts. This will enable the prediction of Rayleigh wave
fields and their propagation characteristics, providing valuable insights for seismic hazard
assessment and mitigation. This research suggests the possibility of designing adaptive
metasurfaces, tailored to the intensity of blasts modelled via initial conditions, for effective
vibration control. Additionally, space-time modulated metasurfaces could be designed,
providing advanced modeling capabilities in these scenarios. Further development of

complex initial conditions modelling, to better simulate real world events, is encouraged.
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APPENDICES

Appendix A

The refined boundary conditions are applied on the stresses to give a linear homoge-

neous system of equations in X', ), and ),. The co-efficient matrix takes the form,

A= [aij]3><37

where,
ann = %QQSWQ (giow® (@ = B+ 2) + quos’w? (@ — 28+ 4)) + %ast (igiow(a + B — 2) +ias’w) + (B — 2)qiosw’,
a2 = —%a2w2 ((B+ 2)g305°w? + 2gz0w” + 2(8 — 1)54"-’2) + %ia(ﬁ — 2)g20s°w” + w” (qgo +(B— 1)52) )
ms = a® (o (26C+ (8 +2)5%) — 2+ 25 (BC — (8- 1)5"?)) — La(8 — 2)guos’?
— (263 + (B¢ — (B— 1)5%?))
= %‘ﬁwz (2agiow® + gios’w’ (Ba + B — 2) + s"w’ (e + 28 — 1)) — w” (204l + 25" (a + 8 — 2)) ,
azz = (B-— 2)(120&02 - %02 (8- 2)q205w2 (2q§ow2 + 352w2) ,
azgs = i(f —2)gsosw — %z’aQ (B — 2)gsosw (3s°w” — 2g39)
a1 = 0,
azz = 0,
ass = %Can (fa2 (3iq3032w2 + 2iq§0w2) + as’w + 2iq30) .
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Appendix B
The expressions of T, (i,j = 1,2,3) in Eq. (3.1.46) are defined as
&1 =2 (" BW cosh (5 8”) + Zsinh (n 8 ) ) = 2688” (af” X cosh () + afv sinh (a” ) )
€2 =5 (31 X sinh (n 5;”) + Y cosh ( 55‘”)) — 24 (ag» BOW sinh (n agm) + Z cosh (n ag°>))

€5 = Ty cosh (n 550)) — 2cosh (n ol ))

€1 = oY cosh (n a§°>) (—2) Y — 2U) + ai? cosh (77 5§°>) (Y2U + Z)
+al (ag0> BOW sinh (n ggm) — 45X sinh (n a§°>))
& = —af” cosh (0l ) (2V = B9 +af cosh (n ") (15 - A7 X)

of BV sinh (1 85 ) + 727 sinh (naf”)
m =z (f” X sinh (naf”) +af”¥ cosh (708" )) —208” (a{” 80" W sinh (1 8”)) + Z cosh (n 5 )
2 = Tz () BOW cosh (0l ) + Zsinh (nal?) ) — 208" (517X cosh (n 8 ) + 7y sinh (5 ) )

n3 = Yo sinh (77 049) N 2a§0)550) sinh (77 5§O)>

~(2,0) (2,0

The coefficients QS1'”, Q{w® and Q5,", Qys ~ are given by,
o _ 1 _ao o _ 1 9 ( (1 o>)
21 = 21 y Wag " = )
2 x5=0 2 6X xs=0
2,0 1 (20 -1 2,0 n 0 2,0 -L
é1> *5051)%‘:16 2, gg)zia(a( )) ks:le 2,
020 _ 1 o =20 _ n 0 ( 2, o>)
21 - 21 ’ 23 -
2 xs=0 2 8 xs=0
The coefficients Q(n 2 ég’l) nd Q<221 1), Q% D are given by,
an_ _1[ an 10 ( (1,o>)}
=—-|o + - o s
21 5 [ 21 7 93, 711 o
2
ay _ 1 ﬂ( (1,1)) 1 9 ( (1,0))
23 B {aX 021 + 1 Ox 07 021 %g:07

—(2,1) 1 2,1 0 2,0
s y Qo = =73 |:U§1 )~ N (U§1 ))}

= R ) - 5 ()

2,1 2,1 0 2,0
o0 = L o+ 2 (o)

59 = 22 () + i (o57)]

xs=0

ns=1 25=0
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Appendix C

The expressions for the terms defined in the dispersion relations are given as follows:

e = (o) -2

= [ e) () )+ (i) ((0) " -2)
P o= = ](e8) - ()" -]

Gio= [ (M2 -+ x

G = [ (|—|<2>+|—|<2>)
x = - ().
v oo ()
z = —(M"x-T1)
vo= —(2[Pv+[1P2),

v o= o[ |Pw+[]Px
1 2
w o (M-
. (i) ) (4)
_ e 0 — ) _ e ERco e
where @5’) = cii)? ’ ( ¥ él ?)7 X = #(2)1,{(2)
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Appendix D

The elements of the matrix P are given by,

pu=—§ pi2=-& pi3s=P pra=C5 pis=—BE pie = —(&;
po1=—a; po=a; pi=&; pu=E5 pn=E£; pp=E
p3s1 =0; p32=0; ps3=Es1; psa =Es2; p3s =Es1;  Ppae = §82;
_ ez, _ _gpaz, _ —Bz, _ Bz, _ —(z, _ Cz,
par = —§e 775 paz = —€e™7; paz = BEe 77 pas = (€75 pas = —BEe 7 pas = —(6e”;

—az

2 — 2 2 — 2
psi=—ae % ps2 = e pss =67 pra =27 pas =767 pas =2
po1 =0; pe2=0; pes=Esie 77 poa = Es2e”7;  pes = Es1e” 7 pes = Esze.

The elements of the matrix @ are given by,

g1 = —bi1; q2=-bi1; q3=—biz; qua=—bis; qi5s =b12; e = bis;
@21 = —ba1;  q22 = b21; a3 = —ba2; @oa = —b22; @25 = —b22; qas = —baa;
@31 =0; g32=0; gq33 ==~&Db32; @q3a =Eb3z; q3s = —E&b32; @36 = —&bas;
_ —az, _ az, _ —Bz, _ Bz, _ —Cz, _ ¢z,
a1 = brie” "% qa2 =bu1e”™"; quz =bi2e 77 qua = b13e”7;  qus = —biee” °7;  que = —bize”";

gs1 = boa1e” %, g2 = —b21e™*;  gs3 = base P Q54 = baoe; Q55 = base % Q56 = boge®?;

g1 =0; ¢s3=0; qoa=Ebsae 7 qez = Ebsse”;  qea = —Ebsse 7 qos = —Ebaze’”.
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