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SYNOPSIS

Applied mathematics plays a crucial role in investigating Rayleigh waves, a funda-

mental class of surface waves, by enabling analysis and modelling of their propagation in

complex media. This necessitates the application of sophisticated mathematical frame-

works, which mainly involves the rigorous study of wave propagation theory, the formu-

lation of the problem using partial di!erential equations, and the application of diverse

mathematical tools to derive the solution. Specifically, this research focuses on the math-

ematical modelling of Rayleigh wave generation, propagation and control, emphasizing

the development and application of analytical, asymptotic and numerical techniques to

solve complex mathematical problems arising from these geophysical phenomena. This

approach allows for a purely mathematical investigation of wave behavior, together with

a mechanical interpretation to some extent, and contributes to the advancement of math-

ematical methodologies applicable to a range of wave-based problems.

The thesis, entitled ‘MATHEMATICAL MODELLING OF RAYLEIGH WAVE

FIELDS INCORPORATING MICROSTRUCTURAL AND RESONATOR

EFFECTS’, investigates the mathematical modelling, analysis, and control of Rayleigh

wave fields within the frameworks of classical and small-scale elasticity theories. Address-

ing initial and boundary value problems, this research explores Rayleigh wave propagation

in various complex media, including small-scale elastic behaviors in nonlocal micropolar

continuum and nonlinear metasurfaces. Key aspects of the study include (a) the develop-

ment and modification of existing classical elasticity conditions to derive refined bound-

ary and interface conditions for nonlocal micropolar structures (b) the incorporation of

viscoelastic e!ects (c) the investigation of wave propagation in microstructured layered

media, and (d) the analysis of Rayleigh wave scattering and control along metasurfaces.

This investigation aims to bridge theoretical gaps in nonlocal and micropolar elasticity

theories while highlighting potential applications in seismic wave mitigation and advanced

material design.

A fundamental branch of continuum mechanics is the classical theory of elasticity,

which plays a crucial role in studying the mechanical behavior of these waves in various

structures. This o!ers a foundational framework for describing the behavior of deformable

solids, assuming small and reversible deformations. However, it has significant limitations,



including neglecting microstructural e!ects (e.g., cracks, inclusions) and predicting infi-

nite stress at crack tips, which is physically unrealistic. To overcome these limitations,

generalized continuum frameworks like Eringen’s nonlocal elasticity [59] and micropolar

elasticity [51] theories have been developed that incorporate intrinsic length scales and

microstructural e!ects. These advanced theories enhance seismic exploration by improv-

ing subsurface characterization, refining resolution, and providing reliable predictions for

applications like hydrocarbon exploration and earthquake hazard assessment.

While recent Rayleigh wave studies utilize nonlocal models, inconsistencies in bound-

ary conditions have been observed, limiting their applicability. Specifically, discrepancies

between di!erential and integral formulations, as demonstrated by Kaplunov et al. [204],

highlight the inadequacy of traditional nonlocal boundary conditions. To address this,

modified models and refined boundary conditions, derived using asymptotic techniques

to account for boundary layer e!ects, are necessary. However, relying solely on non-

local elasticity may not fully capture the behavior of materials with complex, intricate

microstructures, necessitating further investigation.

Furthermore, recent technological advancements have driven the development of nano-

and micro-materials. Accurately capturing size-dependent e!ects and dispersion phenom-

ena within these materials necessitates the consideration of microstructural e!ects. This

in turn, requires modelling wave propagation within the framework of nonlocal micropolar

solids. A significant gap in the current literature pertains to the formulation of suitable

boundary conditions for nonlocal micropolar solids. Furthermore, the derivation of appro-

priate boundary conditions for ‘layered’ structures under the framework of nonlocal and

micropolar elasticity remains an open challenge. This thesis addresses these critical

issues by developing a refined model that incorporates the e!ects of bound-

ary layers in a nonlocal micropolar medium. This involves deriving refined

boundary and interface conditions for obtaining corrected dispersion relations

that e!ectively capture the influence of boundary layer e!ects.

While understanding Rayleigh wave propagation in various elastic environments o!ers

valuable insight into their natural behavior, controlling these waves broadens the scope for

practical applications, facilitating the design of safer, more e”cient, and innovative sys-

tems. Metasurfaces, a class of artificially engineered surfaces comprising subwavelength-

scale structures, o!er a promising technique for achieving such control. These structures
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can manipulate wavefronts in diverse ways, providing precise control over Rayleigh wave

propagation. By carefully tailoring the geometry and properties of these metasurfaces,

researchers can achieve phenomena like wave focusing, steering, and cloaking, unlocking

new possibilities in seismic hazard mitigation, enhanced sensing, and advanced wave-based

technologies.

Despite the growing interest in structural protection against seismic events, the com-

bined influence of multiple physical phenomena on Rayleigh wave propagation along

metasurfaces remains largely unexplored. This thesis investigates novel strategies for

controlling and manipulating Rayleigh waves within the framework of small-scale elastic-

ity, considering some crucial phenomena to enhance structural protection. Furthermore,

while most geomechanics problems are traditionally formulated as boundary value prob-

lems, this thesis introduces a novel approach by initially defining an initial value problem

for Rayleigh wave propagation. This framework subsequently evolves into a boundary

value problem, o!ering new insights into the dynamics of wave propagation in complex

geological media.

The primary research objectives of this thesis are:

• Developing refined boundary conditions within the framework of nonlocal microp-

olar mechanics for accurate wave propagation modelling and further analyzing the

characteristics of multiple Rayleigh wave modes in nonlocal micropolar viscoelastic

media, as an application.

• Extending the derivation of refined boundary and interface conditions for nonlocal

micropolar elasticity problems to model wave propagation in layered media.

• Investigating Rayleigh wave control and scattering mechanisms using nonlinear

metasurfaces and advanced resonance phenomena.

• modelling the generation and propagation of Rayleigh waves due to interior sources

and surface loading within an elastic media.

The methodology employed in this thesis involves a combination of analytical and

numerical techniques to address the various challenges associated with Rayleigh wave

propagation in nonlocal micropolar continua and metasurfaces. Initially, the classical

theories of elasticity are extended using nonlocal and micropolar elasticity frameworks

to account for size-dependent e!ects and microstructural influences. Asymptotic analysis

is utilized to derive refined boundary conditions that e!ectively capture the impact of
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nonlocal boundary layer e!ects on wave propagation. For wave control and scattering in

metasurfaces, the properties of subwavelength-scale structures are studied and multiple

scattering theory is employed to obtain the displacement solutions. Numerical simulations

using MATLAB and/or Mathematica are conducted to visualize the dispersion curves for

Rayleigh waves, which provide insights into phase velocities and wave interactions with

complex media. Additionally, the Laplace transformation technique is applied to solve

initial value problem, which subsequently evolve into boundary value problems, providing

a novel perspective on wave propagation dynamics in elastic environments. A visualization

to the research framework and methodology employed in the thesis is provided below:

This thesis is organized into six chapters, each dedicated to a specific set of research

objectives, outlining the motivations behind the study, highlighting novel contributions,

and detailing the mathematical methodologies employed in the analysis. The summary

of each chapter is presented below.

Chapter 1 provides a comprehensive introduction, a thorough literature review, and

the preliminaries essential for establishing the context of the research problems presented

in this thesis. It begins with an introduction to Rayleigh waves, followed by an overview

of metasurfaces and relevant mathematical techniques. Furthermore, a brief overview

of classical elasticity theory, its limitations, and the evolution of generalized continuum
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theories, such as nonlocal elasticity and micropolar elasticity, is provided, along with a

review of the current state-of-the-art research in these areas.

Chapter 2 investigates Rayleigh wave propagation in nonlocal micropolar media, con-

sidering the combined e!ects of nonlocality and micro-rotation. This chapter focuses on

refining the boundary value problem to ensure equivalence between the di!erential and

integral formulations of nonlocal micropolar elasticity. This chapter is further divided

into two subchapters as follows:

– Subchapter 2.1 derives refined boundary conditions for Rayleigh wave propagation

in a nonlocal micropolar semi-infinite medium using asymptotic analysis while also

demonstrating the failure of traditional boundary conditions.

– Subchapter 2.2 utilizes the derived refined boundary conditions to analyze wave

propagation in nonlocal micropolar viscoelastic media. The analysis includes ex-

amining particle paths, identifying di!erent wave modes (nonlocal, micropolar, vis-

coelastic), and investigating their dependence on material parameters. Graphical

representations are provided to visualize these behaviors.

Chapter 3 extends the derivation of refined boundary and interface conditions to ad-

dress wave propagation in layered structures. Recognizing the need for refined interfacial

conditions, which have been largely unexplored in both nonlocal elasticity and nonlocal

micropolar elasticity, this chapter investigates the following:

– Subchapter 3.1 focuses on deriving refined boundary and interface conditions for

Rayleigh wave propagation in layered media within the framework of nonlocal

elasticity. Asymptotic techniques are employed to account for nonlocal boundary

and interfacial layers, leading to the derivation of first-order corrected dispersion

relations for Rayleigh waves.

– Subchapter 3.2 extends the analysis to nonlocal micropolar elasticity. Refined

boundary and interface conditions, incorporating modifications to couple stress

and force stress conditions, are derived to account for boundary and interfacial

layer e!ects. The propagation of Rayleigh waves in a nonlocal micropolar layered

structure is then investigated as an application of these refined conditions.

Chapter 4 focuses on controlling Rayleigh wave vibrations using artificially engineered

metasurfaces. The chapter explores the influence of nonlinearity and small-scale e!ects
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within the metasurface, investigating the formation of bandgaps that prohibit the prop-

agation of Rayleigh waves at specific frequencies.

– Subchapter 4.1 introduces a novel metasurface design comprising an array of dual

spring-mass resonators situated on a nonlocal host substrate. This subchapter

combines nonlocal elasticity, nonlinearity, and double resonance concepts to analyze

Rayleigh wave dispersion relations.

– Subchapter 4.2 investigates the control of Rayleigh waves generated by an interior

source using a nonlinear metasurface. Multiple scattering theory is employed to

account for wave scattering by the resonators. Subsequently, dispersion analysis is

conducted by extracting the Rayleigh wave contribution from the total wave fields.

Chapter 5 investigates the generation of Rayleigh waves by considering both initial

and boundary value problems. Transformation techniques are employed to model both

the interior and the surface source e!ectively.

– Subchapter 5.1 models the generation of Rayleigh waves due to an interior source

using an initial value problem. Laplace transforms are employed to model the

interior source, and an asymptotic hyperbolic-elliptic model is utilized to obtain

the asymptotic solution. The results from the asymptotic and exact solutions for

both surface and bulk wave fields are compared and analyzed.

– Subchapter 5.2 focuses on the generation of Rayleigh waves in a micropolar medium

subjected to seismic surface loading. Hankel transforms are applied to obtain the

solution, and a matrix approach is employed to extend the analysis to layered

media.

Chapter 6 presents a discussion of the essential results obtained in the thesis, along with

potential avenues for future research and development.

The key findings of the thesis include:

• The derivation of refined boundary and interface conditions within the frameworks

of nonlocal elasticity and nonlocal micropolar elasticity, addressing the critical issue

of the equivalence between di!erential and integral formulations.

• The derivation of corrected dispersion relations clearly demonstrates the depen-

dence of the propagation of di!erent wave modes on material parameters and high-

lights the influence of small-scale e!ects.
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• The demonstration of Rayleigh wave vibration control through the design of novel

nonlinear metasurfaces, resulting in the formation of bandgaps that restrict wave

propagation at specific frequencies.

• The accurate prediction of Rayleigh wave propagation induced by interior initial

conditions using an asymptotic hyperbolic-elliptic model while also highlighting

the limitations of this model in predicting bulk wave fields.

In brief, this thesis significantly advances the mathematical and theoretical understand-

ing of Rayleigh wave propagation in various media, encompassing nonlocal micropolar

continuum and engineered metasurfaces. By addressing critical gaps in boundary con-

ditions and exploring novel wave control strategies, this research bridges classical and

small-scale elasticity frameworks. The findings o!er valuable insights into wave dynamics

with implications for seismic hazard mitigation and advanced technologies, laying a strong

foundation for future research in wave propagation and control.
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CHAPTER 1

Introduction and Preliminaries





1.1 Introduction

Wave propagation in solids [1, 2], which forms the foundation of elastodynamics, is

governed by the transfer of sharply exerted, localized disturbances from one part of the

body to other parts. Although this field is deeply mathematical, it has strong practical

relevance and has inspired the formulation of numerous abstract problems. Mathematical

frameworks not only o!er profound insights into wave phenomena but also complement

experimental studies, which provide invaluable information about the properties of var-

ious solids, such as the earth, pure metallic crystals, and other materials. For instance,

waves are deliberately introduced into the earth to detect oil and gas reservoirs [3–6] and

to study its internal structure [7, 9]. Similarly, material properties are examined by ana-

lyzing transmitted waves, and elastic waves propagating through the human body serve

as powerful tools for medical diagnosis and therapy [10–13].

One fascinating phenomenon in elastodynamics is the emergence of Rayleigh wave→a

surface wave that propagates along the free surface of an elastic continuum with mini-

mal disturbance to the underlying bulk material. Discovered by Lord Rayleigh [14], these

waves exhibit a combination of longitudinal (horizontal) and transverse (vertical) motions.

While the horizontal displacement components align with the direction of wave propaga-

tion, the vertical components penetrate into the medium. Rayleigh waves play a crucial

role in various fields, including the study of wave dispersion, vibration, and bending in

solid structures. They have found widespread applications in diverse areas such as mate-

rial characterization [15–18], geophysical exploration [19–21], acoustic microscopy [22–25],

and nondestructive evaluation [26–29].

Furthermore, nanomaterials, renowned for their exceptional thermal, mechanical, and

electrical properties, are finding increasing applications in structures like nanobeams

[30–33], nanoplates [34–38], and nanoshells [39–42]. While molecular dynamics (MD)

simulations [43] can investigate the mechanical behavior of these materials, they are com-

putationally expensive for large systems. Continuum models, which treat nanostructures

as elastic solids, provide a more computationally e”cient alternative. However, accurately

capturing the scale-dependent behavior of nanomaterials necessitates modifications to the

classical elasticity theory.
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Classical elasticity theory [44, 45] is a well-established macroscale model that e!ec-

tively describes the behavior of conventional materials. It assumes that stress at a material

point depends solely on the local strain, with deformation described by a displacement

vector and symmetric stress tensors. This approach aligns well with experimental observa-

tions for materials like steel and concrete under moderate stresses. However, this localized

approach fails to account for the small-scale e!ects crucial at micro- and nanoscales. At

these scales, intermolecular and interatomic forces, like van der Waals forces, become

significant, requiring the incorporation of size e!ects into theoretical models. Moreover,

classical elasticity theory faces limitations in addressing problems involving asymmetric

stresses, significant stress gradients, or dynamic phenomena like high-frequency vibra-

tions and short wavelengths, where the microstructure of the material strongly influences

deformation.

To address these limitations, various modified continuum theories have been proposed,

including couple-stress theories [46–48], micromorphic elasticity theory [49], micropolar

elasticity theory [51, 52], nonlocal elasticity theories [53, 54], higher-order strain-gradient

theories [55–57], and atomistic-continuum theories [58]. Nonlocal elasticity theory, pio-

neered by Eringen and Edelen [59], addresses this limitation by acknowledging the non-

locality of stresses. This theory assumes that stress at a given point is influenced by

the strain field throughout the entire domain. For homogeneous, isotropic materials, this

leads to a set of integro-partial di!erential equations governing the displacement field.

While solving these equations can be challenging, specific kernel choices can reduce them

to singular partial di!erential equations. Notably, these kernels have shown excellent

agreement with experimental observations across various length scales, from the micro-

to the macroscale. Furthermore, nonlocal elasticity theory exhibits desirable limiting

behaviors: it converges to classical elasticity theory in the long-wave limit and asymp-

totically approaches atomic lattice dynamics theory in the short-wave limit (as cited in

Eringen [60]). This nonlocal approach introduces an internal characteristic length scale

into the constitutive equations, enabling a more accurate description of the mechanical

behavior of nanomaterials. Consequently, nonlocal elasticity provides a robust theoretical

framework for studying wave propagation and other mechanical responses in micro- and

nanoscale materials.
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Micropolar elasticity [51], on the other hand, extends classical elasticity by incorporat-

ing an independent rotation vector in addition to a displacement vector, thereby allowing

material particles to undergo microrotation without macrodisplacement. Surface elements

exhibit both force and couple stresses, leading to nonsymmetric stress and couple-stress

tensors. These tensors are linked to nonsymmetric strain and curvature tensors, cap-

turing size e!ects critical at the microstructural scale. This theory explains phenomena

like higher strength in materials with smaller grain sizes, the strengthening e!ect of finer

dispersed particles in metals, and the increased bending and torsional strength of thin

structures. It also addresses the emergence of new wave types in granular materials, poly-

crystalline structures, and reinforced media, providing a robust framework to model the

microstructural e!ects that classical elasticity cannot capture.

The combination of micropolar and nonlocal e!ects within a single framework, termed

nonlocal micropolar elasticity, provides a powerful tool for analyzing the behavior of com-

plex materials across various length scales, from micro- to nanoscale. Initially developed

by Eringen [61], this theory has undergone significant advancements and now finds sig-

nificant applications in the design and analysis of advanced materials and structures,

including those encountered in micro- and nano-electromechanical systems, biomechan-

ics, and geomechanics.

A major challenge in nonlocal elastic models is the dependence of the integration do-

mains in constitutive relations on the distance from the boundary. This leads to boundary

layers with localized non-homogeneous stress and strain fields [62]. Despite widespread

belief in the equivalence of integral and di!erential non-local formulations, the validity

of di!erential equations derived from the original integral form remains unverified, par-

ticularly for bounded domains. The integral form, considered “strongly nonlocal” due

to its reliance on all neighboring points, is challenging to solve. However, the reduction

to di!erential form can be inaccurate, especially when dealing with bounded domains.

In such cases, the di!erential model becomes ill-posed and inaccurate without additional

constitutive boundary conditions. This highlights the critical need for refined boundary

conditions in non-local models to ensure accurate and consistent predictions. We address

this research gap in the context of various elasticity theories in the current thesis.

Elasticity theories provide a foundation for understanding wave propagation in con-

tinuous media. However, to manipulate and control seismic wave phenomena beyond
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the limitations of natural materials, the concept of seismic metasurfaces has emerged.

These artificially engineered interfaces, characterized by subwavelength features, o!er

unprecedented control over wave transmission, reflection, and refraction, enabling novel

wave-guiding [63] and energy harvesting applications [64–66]. This development aligns

with the growing need for innovative seismic mitigation strategies, driven by the desire to

reduce structural damage and ensure safety. Metamaterials [67], first introduced in 1999,

are synthetic composites with engineered structures that exhibit properties not found

in naturally occurring materials. Originally developed for optics [68] and electromag-

netism [69], these concepts have been extended to acoustic and elastic media, enabling

the creation of materials with unconventional properties. While initially focused on bulk

materials, the development of metasurfaces has allowed for precise control over surface

wave propagation, including seismic waves.

More recently, seismic metamaterials have gained attention for their potential to mit-

igate Rayleigh waves, which carry significant elastic energy along the Earth’s surface.

By introducing sub-wavelength resonators or inclusions into the ground, researchers have

created structured media that can alter local wave propagation characteristics. When

arranged along the soil surface as “metabarriers” [70,71] or “seismic metasurfaces,” these

resonators can impede surface wave propagation by inducing band gaps around their nat-

ural frequencies, e!ectively reducing wave amplitudes. Engineered periodic structures like

these o!er unique wave filtering and guiding capabilities, enabling e!ects such as negative

refraction [72, 73] and acoustic invisibility [74, 75]. These properties have been applied

across various scales, from microscale optics to geophysical seismic wave mitigation, of-

fering new pathways for controlling wave behavior.

In addition to exploring the propagation and control of elastic waves within the

framework of various elasticity theories, including the manipulation of Rayleigh waves

using metasurfaces, researchers have recognized the critical need to investigate the mech-

anisms that initiate these surface waves. Rayleigh waves can arise from a variety of

sources [76–78]. Their generation can be modeled using two primary approaches: (a) as

an initial value problem, where initial interior conditions, such as initial displacements

or velocities, trigger the propagation of elastic waves that evolve into surface Rayleigh

waves; and (b) as a boundary value problem, where surface disturbances, such as earth-

quakes [79], explosions [80–82], and human activities like pile driving [83, 84], generate
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seismic energy that propagates through the subsurface and excites Rayleigh waves. Un-

derstanding the generation mechanisms of these waves is also crucial for accurate modeling

and e!ective mitigation strategies.

Structure of the thesis

The structure of this thesis is detailed in the following schematic diagram:

Figure 1.1.1: Structure of the thesis

Motivation for the thesis

The study of Rayleigh wave propagation has profound implications in both theoretical

and applied geophysics, particularly in seismic wave analysis and material characteriza-

tion. Understanding these waves is critical for assessing the mechanical behavior of geo-

logical structures and engineered materials. However, classical elasticity theory, which has

traditionally been used to model Rayleigh waves, has inherent limitations when applied to

materials with microstructural complexities and nonlocal interactions. These limitations

necessitate the development of more refined mathematical frameworks that incorporate
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microstructural e!ects, nonlocality, and size-dependent phenomena. This thesis is mo-

tivated by the need to address these theoretical gaps and to provide more accurate and

applicable models for Rayleigh wave propagation in complex media.

One of the primary motivations for this study is the inadequacy of classical elasticity

in capturing nonlocal e!ects and microstructural interactions in wave propagation. The

introduction of nonlocal elasticity and micropolar elasticity theories has opened new av-

enues for accurately modeling these e!ects. However, inconsistencies in the formulation

of boundary conditions, particularly in nonlocal micropolar elasticity, have hindered their

practical applicability. Addressing these inconsistencies by deriving refined boundary

conditions is a central goal of this thesis.

The work of Kaplunov et al. [204] demonstrated that traditional nonlocal bound-

ary conditions fail to correctly account for boundary layer e!ects in semi-infinite media,

leading to discrepancies between di!erential and integral formulations of nonlocal elas-

ticity. This underscores the necessity of employing asymptotic techniques to capture

these e!ects systematically. Furthermore, when microstructural rotations are considered,

as in micropolar elasticity, an additional condition arises in formulating the appropriate

boundary conditions. This thesis extends existing nonlocal elasticity frameworks by in-

corporating micropolar e!ects and refining boundary and interface conditions for accurate

wave propagation modeling in both semi-infinite and layered structures.

Another motivation stems from the rapid advancements in metasurfaces and their po-

tential for controlling Rayleigh wave propagation. Metasurfaces, composed of subwavelength-

scale engineered resonating structures, enable unprecedented control over wave phenom-

ena such as wave steering, cloaking, and dispersion modulation. However, current studies

predominantly focus on classical elasticity-based metasurfaces, neglecting the influence

of nonlocal elasticity e!ects. This thesis aims to bridge this gap by integrating nonlocal

elasticity with metasurface design to achieve enhanced wave control mechanisms, which

could have significant applications in seismic hazard mitigation and wave-based engineer-

ing technologies.

Additionally, the traditional approach to geomechanical problems has largely been

confined to boundary value formulations, neglecting the potential insights gained from

initial value problems. This thesis introduces a novel approach by modeling Rayleigh wave

generation as an initial value problem, which subsequently evolves into a boundary value
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formulation. This shift in perspective provides new insights into wave excitation mecha-

nisms, particularly for initial interior/boundary surface sources within elastic/micropolar

media, and allows for a more comprehensive understanding of seismic wave propagation

dynamics.

In summary, this thesis is motivated by the need to refine mathematical models of

Rayleigh wave propagation to incorporate nonlocal and micropolar e!ects, develop re-

fined boundary and interface conditions, explore advanced wave control strategies using

metasurfaces, and introduce novel initial value problem formulations for wave generation.

These contributions aim to bridge critical theoretical gaps and provide practical advance-

ments for seismic wave analysis, material characterization, and wave-based engineering

applications.
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1.2 Literature review

Rayleigh waves exhibit a dual nature near the surface, prompting the development of

an asymptotic model to capture this behavior. Kaplunov et al. [85] pioneered this e!ort

with deriving the first hyperbolic-elliptic model. Subsequent research, including multiscale

perturbation schemes by Kaplunov et al. [86], extended this approach to describe various

types of waves, such as Rayleigh, interfacial, and edge waves [87]. Asymptotic models

have been derived for surface waves in diverse media, including incompressible [88] and

compressible [89] elastic half-spaces. Recent advancements include models for anisotropic

media [90], planes with cubic symmetry [91], and refined models with second-order correc-

tions [92]. These models have been applied to various problems, including mixed boundary

value problems (see, Erbas et al. [93]). Additionally, transient motions and dynamic re-

sponses of half-planes subjected to moving loads have been studied by Kaplunov [94] and

revisited using asymptotic models (see, Kaplunov et al. [95]).

Classical elasticity theory predicts that Rayleigh waves propagating in an elastic half-

space are nondispersive. Several researchers have investigated this topic extensively [96–

98] However, observations of phonon dispersion experiments, as detailed in the work

of Brockhouse et al. [99], Harrison [100], and Wallis [101], have demonstrated a strong

dependence of phase velocity on wavelength, particularly in the short-wavelength regime.

This discrepancy, along with other phenomena such as surface tension, surface energy, and

the presence of optical branches in the dispersion curve, cannot be adequately explained

within the framework of classical elasticity.

The limitations of classical elasticity theories have necessitated the development of

generalized models of continuum mechanics. These advancements, dating back to Voigt’s

work in 1887 [102], involve modeling the material as a collection of independently mov-

ing and/or deforming particles. Voigt [102] incorporated the e!ects of moment-based

stresses, known as couple stresses, in addition to the classical force stresses, generalizing

the symmetric classical theory of elasticity. Building upon Voigt’s work, the Cosserat

brothers extended the concept by introducing the notion of microrotations - indepen-

dent rotations within the material. This led to the development of the Cosserat theory

(Cosserat and Cosserat, [103]), which assumes that a material is composed of rigid par-

ticles with independent rotational degrees of freedom. A defining characteristic of this
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theory is the presence of surface and body couples acting independently of surface and

body forces. The highly general nonlinear Cosserat theory was later refined and devel-

oped in more restricted settings by other researchers [48–50,104–106]. In othe words, this

theory recieved a considerable attention from the researchers and as a result higher-order

continuum theories have been developed.

Theories addressing size-dependent behavior can be broadly classified into three cate-

gories: strain gradient theories, microcontinuum theories, and nonlocal elasticity theories.

The strain gradient theories encompasses several models, including the couple stress the-

ory [46,107–111], the first and second strain gradient theories [47,112], the modified couple

stress theory [113], and the modified strain gradient theory [114]. A defining feature of

strain gradient theories is the inclusion of both strain and strain gradients in the strain

energy density, which introduces material length scale parameters to account for size

e!ects.

Microcontinuum theories [115, 116] encompass a family of models, including microp-

olar, micromorphic, and microstretch theories. Among these, micropolar theory repre-

sents the simplest framework, characterized by a three additional degrees of freedom.

Eringen [51] is recognized for extending the Cosserat theory to incorporate body mi-

croinertia e!ects and renaming it as the micropolar theory of elasticity. In his works

(Eringen [51], [117], [118]), he further developed both the micropolar and microstretch

theories for linear and nonlinear elasticity. Today, the linear theory is commonly referred

to as the linear theory of micropolar, Cosserat, or asymmetric elasticity. References on

linear micropolar elasticity theory can be found in [119–123]. Nowacki and Olszak [124]

presented a general report on the development of micropolar elasticity elasticity. Readers

are also encouraged to refer to the survey paper by Hassanpour and Heppler [125] for a

comprehensive overview of micropolar moduli and a detailed comparison of the notations

used in various formulations of micropolar theory. Notably, the couple-stress theory is also

known as the Cosserat theory with constrained rotations or, more briefly, the constrained

Cosserat theory. Further, Eringen introduced micromorphic theory [126, 127] to account

for the influence of microstructure within a macroscopic framework. A key distinction

lies in the fact that micromorphic elasticity allows for more complex micro-deformations,

encompassing both rotation and internal strains, whereas micropolar elasticity is limited

to considering only micro-rotations. The micromorphic theory is a generalized continuum
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model that can be simplified to the micropolar and microstretch theory [128]. In recent

years, several simplified versions of the general micromorphic theory have been devel-

oped (refer, Shaat [129]; Barbagallo et al. [130]; Romano et al. [131]; Ne! et al. [132]).

They enable the exploration of material dispersion characteristics (refer, Kunin [133–135]

Trovalusci and Pau, [136]; Shaat [137]), facilitate multiscale modeling (see, Shaat [129];

Trovalusci [138]), and describe the physical microstructures of materials (see, Capriz [139];

Gurtin and Podio-Guidugli [140]).

Nonlocal field theories can be considered a general class of material models. While all

microcontinuum theories implicitly exhibit nonlocal behavior [134, 141–143], with nonlo-

cal e!ects often represented by gradients of microdeformations or kinetic coupling con-

stants between di!erent degrees of freedom, explicit nonlocal models have been developed

to explicitly visualize these e!ects. These models utilize convolution-type constitutive

equations, incorporating a nonlocal parameter that is dependent on material properties,

molecular structure, and internal characteristic length [144]. It is important to note that

the modeling of nonlocal e!ects, whether through implicit or explicit methods, requires

careful consideration of various factors.

The foundation of nonlocal elasticity was laid by Kroner [145], who introduced a model

to incorporate the long-range e!ects of cohesive forces between particles. This theory was

later further developed by Edelen [146,147], Eringen [148, 149] and improved by Eringen

and Edelen [59], Eringen et al. [150,151]. The strong form of nonlocal elasticity, involving

integrals over the entire domain, has received comparatively less attention due to the

inherent complexity of obtaining the solutions. Hence, only limited researchers [152–157]

have attempted to explore the solutions to these integral equations. To address the

challenges associated with the integral form of nonlocal elasticity, Eringen proposed a

di!erential formulation [60] for a specific choice of the nonlocal moduli. This di!erential

form, often referred to as the weak form of nonlocal elasticity, has garnered significant

attention due to its relative ease of implementation. Consequently, it has been widely

adopted by researchers for analyzing various structures, including elastic media [158–166],

beams [167–172], plates [173–178], and shells [40,179–183]. Several comprehensive reviews

and books have also been published on the theoretical foundations and applications of

nonlocal mechanics in nanostructures, see Arash and Wang [184], Rafii-Tabar et al. [185],

Askari et al. [186], Srinivasa and Reddy [187], Behera and Chakraverty [188], Shaat et
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al. [189] Gopalakrishnan and Narendar [190]. Further, unified approaches have been

developed to combine nonlocal elasticity with other theories, such as nonlocal micropolar

elasticity [61], nonlocal thermoelasticity [191], nonlocal piezoelectricity [192], and nonlocal

electromagnetic solids [193] etc. It is worth mentioning that the highly cited work in

Eringen [60] and subsequent studies on nonlocal elasticity have not explicitly verified

whether the solutions of the di!erential equations satisfy the original integral formulations.

Recent research e!orts have addressed this gap by developing refined nonlocal theories.

Nonlocal elasticity models often exhibit a reduction in e!ective sti!ness, leading to

lower natural frequencies and increased deflections [194]. However, observed behavior can

vary, with instances of sti!ening [195–197] or negligible di!erences compared to classical

models [198], highlighting discrepancies between integral and di!erential models. These

inconsistencies arise primarily from the limitations of di!erential formulations, which of-

ten neglect the critical role of boundary conditions. To address these inconsistencies,

several approaches have been proposed (see, Tuna and Kirca [199], Shaat et al. [200],

Koutsoumaris et al. [201]). A significant advancement in addressing these inconsisten-

cies is the development of refined boundary conditions. These conditions, often derived

through asymptotic methods, incorporate additional terms or derivatives of field variables

to ensure compatibility with nonlocal constitutive equations. For instance, Chebakov et

al. [202] reduced the nonlocal problem in a half-space to an equivalent classical formu-

lation with a localized near-surface inhomogeneity, capturing the e!ect through e!ective

boundary conditions. Moreover, this refined theory has been extended for two-dimensional

nonlocal elastic plates [203], incorporating first-order corrections to account for boundary

layer e!ects. This approach has been extended to various wave propagation scenarios,

including Rayleigh waves [204], anti-plane waves [205] and other wave types [206, 207],

through asymptotic formulations.

In recent decades, controlling wave propagation using metamaterials and metasurfaces

has garnered significant attention across applied physics, mechanics, and civil engineer-

ing. Prior to the emergence of metasurfaces, wave control relied heavily on phononic crys-

tals [208,209], which utilize Bragg scattering to create frequency bandgaps [210,211]. How-

ever, the e!ectiveness of phononic crystals diminishes at low frequencies due to the require-

ment of impractically large structures [212] to accommodate long wavelengths. A ground-

breaking work by Liu et al. [213] introduced the concept of locally resonant (LR) units,
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enabling the creation of bandgaps in structures much smaller than the wavelength. This

innovation, termed ‘metamaterials’, o!ers significant advantages over phononic crystals,

particularly in controlling low-frequency vibrations due to their compact and lightweight

nature. Inspired by this pioneering work, a diverse range of metamaterials have been

explored, including those incorporating spring-mass systems [214, 215], rods [216, 217],

beams [218–221], and plates [222–224].

Controlling elastic surface waves using resonant arrays, often termed “seismic meta-

surfaces”, has emerged as a significant area of research. The seismic metamaterials have

been identified into four major catagories as described in Brûlé et al. [225] (a) Seis-

mic soil-metamaterials consisting of artificially structured soils made up of rigid inclu-

sions (Achaoui et al. [226]) or cyllindrical boreholes (Brûlé et al. [227])(b) Buried mass-

resonators [228–230] consisting of damped resonators buried inside the soil (c) Above-

surface resonators (see, Columbi et al. [231,232], Palermo et al. [233], Colquitt et al. [234]),

typically forest of trees, consisting of sub-wavelength structures arranged on the top of

elastic half-space (d) Auxetic materials [235], buried inside the soil and characterized

by materials with negative Poisson’s ratio (e) Other dissipative structures, such as gy-

robeams [236], incorporated into the structure to be protected. Through careful design,

these metasurfaces can manipulate the dispersive nature of surface waves, enabling func-

tionalities such as wave trapping, waveguiding, and the creation of spectral bandgaps [237].

Recent decades have witnessed a surge in research on metasurface designs, encompassing

various methodologies such as incorporating nonlinearity in spring-mass systems (see, Lou

et al. [238–240], Palermo et al. [241], Carneiro et al. [242]), exploring multi-physics phe-

nomena in Pu et al. [243], utilizing tunable inertial amplifiers [244–247], and investigating

wave propagation along metasurfaces in stratified media (in Zeng et al. [248]).
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1.3 Preliminaries

In this section, a concise overview of the constitutive relations and governing equa-

tions are presented for classical, nonlocal, micropolar, and nonlocal micropolar elasticity

theories. Subsequently, an investigation into the propagation of Rayleigh waves is con-

ducted within the context of classical and nonlocal elasticity theories. This also includes

a brief explanation on the refined boundary conditions developed for wave propagation

within a nonlocal elastic semi-infinite medium.

1.3.1 Classical elasticity theory

This theory focuses on a specific class of continua called linear elastic solids possessing

the unique characteristics of recovering its original shape and size once the forces causing

deformation are removed. The fundamental relationship governing the behavior of these

linear solids undergoing infinitesimal deformations is described by Hooke’s Law. The

generalized form of Hooke’s Law, proposed by Cauchy expresses the linear relationship

between stress and strain components for a more complex material as follows:

↽mn = Cmnpqωpq, m, n, p, q = 1, 2, 3, (1.3.1)

where ↽mn and ωmn are the components of second-order stress tensor and Cauchy’s strain

tensor, respectively. And Cmnpq are the components of a fourth-order tensor namely

elasticity tensor.

The strain components ωmn are related to the components um of the displacement vector

u along the respective xm→direction by,

1mn =
1

2

(
2um

2xn

+
2un

2xm

)
. (1.3.2)

It has been shown in [249] that for a homogeneous linear isotropic elastic solid, the

generalized Hooke’s law takes the form,

↽mn = $εmnωkk + 2µωmn. (1.3.3)

Here $ and µ are called Lamé moduli and εmn is the well-known Kronecker delta.

Furthermore, it is important to note that within the classical elasticity framework, the

strain tensor is symmetric (1mn = 1nm). This symmetry directly implies the symmetricity

of the stress tensor (↽mn = ↽nm). Alternatively, the symmetry of the stress tensor can
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be readily derived by using the principle of conservation of angular momentum, see Hein-

bockel [250].

From the principle of conservation of linear momentum, the equations governing the mo-

tion of an elastic body are given by,

↽mn,m + Fn = ⇀un,tt, m, n = 1, 2, 3, (1.3.4)

where Einstein summation convention [250] is used. Here Fn denotes the body force per

unit volume, ⇀ denotes the mass volume density and un,tt denotes the accelaration of

the body. Also, the comma in the subscript denotes the derivative with respect to the

corresponding variable.

1.3.1.1 Classical Rayleigh wave secular equation

Here, we derive the classical secular equation for the propagation of a time harmonic

Rayleigh wave in a homogeneous, linear isotropic elastic semi-infinite medium with a

stress-free boundary.

Figure 1.3.1: Rayleigh waves in an elastic semi-infinite medium

Consider a linearly isotropic medium occupying the region,

R = {(x, y, z) || →↓ < x, y < ↓, 0 ↔ z < ↓} ,

having stress-free boundary and Rayleigh wave propagating in x→direction along xz→plane

with the z→axis pointing vertically downwards as in Figure 1.3.1. The displacement field
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is represented by u = (u1, 0, u3).

Substituting the constitutive equations in Eq. (1.3.3) in the governing equations of motion

in Eq. (1.3.4) gives

µumm + ($+ µ) um,mn → ⇀un,tt = 0, m, n = 1, 3. (1.3.5)

Decomposing the displacement vector u according to the Helmholtz theorem, we can

express it as the sum of the gradient of a scalar potential φ and curl of a vector potential

ω = (↼1,↼,↼3) as,

u = ↗φ+↗↘ω, (1.3.6)

with the constraint ↗ ·ω = 0.

This decouples the system of equations in Eq. (1.3.5) into,

↗
2φ→

1

c2
L

φ,tt = 0, ↗
2↼ →

1

c2
T

↼,tt = 0, (1.3.7)

where cL =
√

!+2µ
ϑ

and cT =
√

µ

ϑ
are the longitudinal and transverse wave velocities,

respectively.

In terms of potentials, the components of the stress tensor in z→direction are given by,

↽31 = µ
(

ϖ
2
ϱ

ϖx ϖz
+ ϖ

2
ς

ϖx2 →
ϖ
2
ς

ϖz2

)
,

↽32 = 0,

↽33 = $ϖ
2
ϱ

ϖx2 + ($+ 2µ) ϖ
2
ϱ

ϖz2
+ 2µ ϖ

2
ς

ϖx ϖz
.






(1.3.8)

To investigate Rayleigh wave propagation, we seek displacement potential solutions in the

form of travelling harmonic waves,

(φ,↼) =
(
Ae↑kr1z, B e↑kr2z

)
ei(kx↑εt), (1.3.9)

where k = ε

c
is the wavenumber, ϖ is the angular frequency, c is the wave velocity, and

r1, r2 are attenuation factors to be determined. We require that the real parts of r1 and

r2 are positive (i.e., Re(r1) > 0, Re(r2) > 0) to ensure the decay of the Rayleigh wave

field as z ≃ ↓.

Substituting these potential solutions given in Eq. (1.3.9) into the governing wave equa-

tions in Eq. (1.3.7) yields expressions for the attenuation factors as,

r1 =

√

1→
c2

c2
L

, r2 =

√

1→
c2

c2
T

.
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Since the problem is investigated within a stress-free boundary conditions, we must have

at the boundary z = 0,

↽31 = 0 and ↽33 = 0 (1.3.10)

As a result, the stresses associated with the displacement potentials in Eq. (1.3.9) can be

easily calculated using Eq. (1.3.8). This gives a system of equation in A and B as,

→2iµr1 A→ µ (1 + r22) B = 0,

[→$+ ($+ 2µ) r21]A→ 2iµr2 B = 0.




 (1.3.11)

In order to ensure a non-zero displacement field (u), the coe”cients A and B cannot both

be zero. This necessitates the system of equations in Eqs. (1.3.11) to possess a non-trivial

solution. A necessary and su”cient condition for the existence of a non-trivial solution is

that the determinant of the coe”cient matrix vanishes. Thus, a simplified version yields

∣∣∣∣∣∣

2ir1
(
2→ c

2

c
2
T

)

(
2→ c

2

c
2
T

)
→2ir2

∣∣∣∣∣∣
= 0. (1.3.12)

In other words, we have

(
2→

c2

c2
T

)2

→ 4

√

1→
c2

c2
L

√

1→
c2

c2
T

= 0. (1.3.13)

This represents the well-known classical Rayleigh wave secular equation [14], which is

clearly non-dispersive.

Let us represent the Rayleigh wave equation as,

R(y) = (2→ y)2 → 4

√
1→

y

#↑2

√
1→ y = 0, (1.3.14)

where y = c
2

c
2
T
, and # = cT

cL
< 1. We now proceed to investigate the uniqueness of the

solution to the equation in Eq. (1.3.14).

Observe that, R(0) = 0, R(1) = 1, R↓(0) < 0 and also,

R↓↓(y) =
(#↑2

→ 1)2
√

1→ y

”→2

(1→ y)3/2(y → #↑2)2
+ 2 > 0, for 0 < y < 1,

indicating that the function R(y) is concave upwards in the interval 0 < y < 1. These

conditions ensures the existence and uniqueness of the solution, say c = cR with cR < c2
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(as y < 1) to the Rayleigh wave secular equation in Eq. (1.3.14).

Now, on squaring Eq. (1.3.14), a cubic equation in y can be obtained as

y3 → 8y2 +

(
24→

16

#↑2

)
y → 16

(
1→

1

#↑2

)
= 0. (1.3.15)

As a limiting case when $ = µ, we get # = 1→
3
. This reduces Eq. (1.3.15) as

y3 → 8y2 +
56

3
y →

32

3
= 0. (1.3.16)

This equation has roots at y = 4, 2
3(3±

⇐
3). The only admissible root, being less than 1

is y = 2
3(3→

⇐
3) = 0.8453. This suggests that Rayleigh wave propagates with the velocity

cR = 0.8453 c2 when # = 1→
3
for the medium. A variation of R(y) with y is plotted in

Figure 1.3.2 to visualize the Rayleigh wave root for a fixed # = 1→
3
.
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Figure 1.3.2: Variation of R(y) with y for # = 1→
3

The pioneering work on the existence and uniqueness of the solution was conducted

by Sobolev [251], with subsequent contributions from Babich and Kiselev [252]. Notably,

research by Barnett and Lothe [253] and Kamotskii and Kiselev [254] has extended these

findings to anisotropic materials.
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1.3.2 Asymptotic hyperbolic-elliptic model for Rayleigh waves

This section provides an overview of the derivation of the asymptotic hyperbolic-

elliptic model for near-surface wavefields generated by surface stresses. For a more in-

depth analysis, readers are referred to the works of Kaplunov and Kossovich [85], Kaplunov

et al. [86], and Kaplunov and Prikazchikov [87].

The derivation is based on a perturbation analysis of the self-similar solutions for the

homogeneous surface wave in the slow-time domain. This approach ultimately reveals

a dual nature of Rayleigh waves, characterized by hyperbolic equations governing their

behavior on the surface and elliptic equations describing their behavior in the interior of

the medium.

Consider a plane strain problem given in Eq. (1.3.7) involving the propagation of surface

Rayleigh waves in a homogeneous, linear, isotropic elastic medium that occupies the region

R. The problem is subjected to the boundary conditions along the surface z = 0 as

↽31 = →P1(x, t) and ↽33 = →P2(x, t). (1.3.17)

Now, we perturb the problem defined in Eq. (1.3.7) by introducing a slow-time variable,

◁ = ωt, where ω << 1 is a perturbation parameter denoting the small deviation of phase

velocity from the Rayleigh waves. This approach, inspired by the work of Friedlander [255]

and Chadwick [256] on self-similar solutions for stress-free boundary value problems in

the variable 3 = x → cRt, allows us to investigate the influence of surface loading on the

propagation of Rayleigh waves.

In terms of new variables, the governing equations given in Eq. (1.3.7) transforms into,

ϖ
2
ϱ

ϖz2
+
(
1→

c
2
R

c
2
1

)
ϖ
2
ϱ

ϖφ2
+ 2↼ cR

c
2
1

ϖ
2
ϱ

ϖ↽ ϖφ
→

↼
2

c
2
1

ϖ
2
ϱ

ϖ↽2
= 0,

ϖ
2
ς

ϖz2
+
(
1→

c
2
R

c
2
1

)
ϖ
2
ς

ϖφ2
+ 2↼ cR

c
2
2

ϖ
2
ϱ

ϖ↽ ϖφ
→

↼
2

c
2
2

ϖ
2
ϱ

ϖ↽2
= 0,





(1.3.18)

and the corresponding boundary conditions are rewritten as,

(
ϖ
2
ϱ

ϖφ ϖz
+ ϖ

2
ς

ϖφ2
→

ϖ
2
ς

ϖz2

)
= →

P1
µ
,

(#↑2
→ 2) ϖ

2
ϱ

ϖx2 + #↑2 ϖ2
ϱ

ϖz2
+ 2 ϖ

2
ς

ϖx ϖz
= →

P2
µ
,




 (1.3.19)
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where # = cT
cL
.

Expanding the potentials in asymptotic series of the form,

φ(3, z, ◁) = 1
↼


φ(0)(3, z, ◁) + ωφ(1)(3, z, ◁) + · · ·


,

↼(3, z, ◁) = 1
↼


↼(0)(3, z, ◁) + ω↼(1)(3, z, ◁) + · · ·


.




 (1.3.20)

By substituting Eq. (1.3.20) into Eq. (1.3.18) and retaining only the leading-order terms,

we obtain a set of elliptic equations of the following form,

ϖ
2
ϱ
(0)

ϖz2
+ α2

L

ϖ
2
ϱ
(0)

ϖφ2
= 0,

ϖ
2
ς
(0)

ϖz2
+ α2

T

ϖ
2
ς
(0)

ϖφ2
= 0,




 (1.3.21)

where αL =
√

1→
c
2
R

c
2
L
and αT =

√
1→

c
2
R

c
2
T
.

Based on the works of Friedlander [255] and Chadwick [256], the plane harmonic wave

functions that satisfies wave equations in Eq. (1.3.21) can be expressed as

φ(0) = φ(0)(3,αLz, ◁), ↼(0) = ↼(0)(3,αT z, ◁). (1.3.22)

Computing the first-order terms in Eq. (1.3.18) yields a set of heterogeneous equations,

ϖ
2
ϱ
(1)

ϖz2
+ α2

L

ϖ
2
ϱ
(1)

ϖφ2
= →2


1↑⇀

2
L

cR


ϖ
2
ϱ
(0)

ϖφ ϖ↽
,

ϖ
2
ς
(1)

ϖz2
+ α2

T

ϖ
2
ς
(1)

ϖφ2
= →2


1↑⇀

2
T

cR


ϖ
2
ς
(0)

ϖφ ϖ↽
.





(1.3.23)

It can be readily observed that the set of equations presented in Eq. (1.3.23) admits

solutions of the form,

φ(1) = φ(1,0) + zφ(1,1), ↼(1) = ↼(1,0) + z↼(1,1), (1.3.24)

where φ(1,0) and φ(1,1) are the harmonic functions of (3,αLz, ◁), while ↼(1,0) and ↼(1,1) are

the harmonic functions of (3,αT z, ◁).

Further, substituting the solutions of the form in Eq. (1.3.24) into Eqs. (1.3.23), we

obtain,

2φ(1,1)

2z
+


1→ α2

L

cR


22φ(0)

23 2◁
= 0,

2↼(1,1)

2z
+


1→ α2

L

cR


22↼(0)

23 2◁
= 0. (1.3.25)

These equations on further reduction using Cauchy-Riemann inequalities gives the values,

φ(1,1) = →


1→ α2

L

cR αL


2φ(0)

c

2◁
, ↼(1,1) = →


1→ α2

T

cR αT


2↼(0)

c

2◁
, (1.3.26)
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where the subscript ‘c’ in the potentials denote their corresponding conjugates.

As a result, the two-term expansion of the wave potentials as written in Eq. (1.3.20)

becomes,

φ = 1
↼


φ(0) + ω


φ(1,0)

→ z
(

1↑⇀
2
L

cR ⇀L

)
ϖϱ

(0)
c

ϖ↽


+ · · ·


,

↼ = 1
↼


↼(0) + ω


↼(1,0)

→ z
(

1↑⇀
2
T

cR ⇀T

)
ϖϱ

(0)
c

ϖ↽


+ · · ·


.




 (1.3.27)

Case 1: In case of a normal load, i.e., when P1 = 0, P2 ⇒= 0, the substitution of Eq.

(1.3.7) into Eq. (1.3.19) gives at the leading order expressions,


→2αL

ϖ
2
ϱ
(0)
c

ϖφ2
+ (1 + α2

T
) ϖ

2
ς
(0)

ϖφ2

 ∣∣∣∣
z=0

= 0,


→ (1 + α2

T
) ϖ

2
ϱ
(0)

ϖφ2
→ 2αT

ϖ
2
ς
(0)
c

ϖφ2

 ∣∣∣∣
z=0

= 0.





(1.3.28)

By taking the conjugate of Eq. (1.3.28), it becomes evident that the leading-order system

possesses a non-trivial solution if and only if,

(
1 + α2

T

)2
→ 4αL αT = 0. (1.3.29)

This condition is precisely the well-known Rayleigh wave secular equation, as previously

encountered in Eq. (1.3.14).

Also, from Eq. (1.3.28)(a), we can write

2↼(0)

23

∣∣∣∣
z=0

= →
2

1 + α2
T

2φ(0)

2z
or ↼(0)

∣∣∣∣
z=0

=
2αL

1 + α2
T

φ(0)
c

∣∣∣∣
z=0

. (1.3.30)

Either of the above equations denote the boundary conditions for the potential ↼(0).

Further, at the next-order, we have the expressions,

2ϖ

2
ϱ
(1,0)

ϖφ ϖz
+ (1 + α2

T
) ϖ

2
ς
(1,0)

ϖφ2
→ 2

1↑⇀
2
L

⇀L cR

ϖ
2
ϱ
(0)
c

ϖφ ϖ↽
+ 2

1↑⇀
2
T

⇀T cR

ϖ
2
ς
(0)
c

ϖφ ϖ↽

 ∣∣∣∣
z=0

= 0,


(1 + α2

T
) ϖ

2
ϱ
(1,0)

ϖφ2
→ 2ϖ

2
ς
(1,0)

ϖφ ϖz
+ 2

1↑⇀
2
T

⇀L cR

ϖ
2
ϱ
(0)
c

ϖz ϖ↽
+ 2

1↑⇀
2
T

⇀T cR

ϖ
2
ς
(0)
c

ϖz ϖ↽

 ∣∣∣∣
z=0

= P2
µ
.





(1.3.31)

Further Eq. (1.3.31)(a) can be rearranged and reduced using Eq. (1.3.30) to obtain the

expression for the derivative of ↼(1,0) as,

2↼(1,0)

23

∣∣∣∣
z=0

=
2

1 + α2
T


1

cR

(
1→ α2

L

αL

→ 2αL

1→ α2
T

1 + α2
T

)
2φ(0)

c

2◁
+ αL

2φ(1,0)
c

23

 ∣∣∣∣
z=0

. (1.3.32)

After rigorous calculation, Eq. (1.3.31)(b) can be simplified by using Eqs. (1.3.32) and

(1.3.29) to obtain,

→
4B

cR (1 + α2
T
)

22φ(0)

23 2◁

∣∣∣∣
z=0

=
P2

µ
, (1.3.33)
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where

B =
αL

αT

(
1→ α2

T

)
+

αT

αL

(
1→ α2

L

)
→ 1 + α4

T
.

On expressing the approximate solution, φ = 1
↼
φ(0), Eq. (1.3.33) can be rewritten as,


2ω

cR

22φ

23 2◁

 ∣∣∣∣
z=0

= →
1 + α2

T

2µB
P2. (1.3.34)

Changing into original variables, Eq. (1.3.34) transforms into,

22

2x2
→

1

c2
R

22

2t2


φ(x, 0, t) = →

1 + α2
T

2µB
P2. (1.3.35)

And the relation between potentials given in Eq. (1.3.30) in terms of original variables

can be written as,

2↼

2x

∣∣∣∣
z=0

= →
2

1 + α2
T

2φ

2z
or ↼

∣∣
z=0

=
2αL

1 + α2
T

φc

∣∣
z=0

. (1.3.36)

Here φc is mathematically equivalent to the Hilbert transform of φ (cf. Kaplunov et

al. [86]).

Furthermore, within the interior of the semi-infinite medium, the elliptic equations derived

in Eq. (1.3.21) can be reformulated in terms of the original variables as follows,

22φ

2z2
+ α2

L

22φ

2x2
= 0,

22↼

2z2
+ α2

T

22↼

2x2
= 0. (1.3.37)

The hyperbolic equation for φ in Eq. (1.3.35) can be transformed into an equation for

the horizontal displacement u1, which is given by
(

22

2x2
→

1

c2
R

22

2t2

)
u1(x, 0, t) = →

1→ α4
T

4µB

2P2

2x
. (1.3.38)

Case 2: In case of the tangential load, i.e., when P1 ⇒= 0, P2 = 0, similar analysis can

be carried out which eventually leads to the following hyperbolic equation at the surface,

22

2x2
→

1

c2
R

22

2t2


↼(x, 0, t) =

1 + α2
T

2µB
P1, (1.3.39)

with the relation between the potentials as,

2φ

2x

∣∣∣∣
z=0

=
2

1 + α2
T

2↼

2z
or φ

∣∣
z=0

= →
2αT

1 + α2
T

↼c

∣∣
z=0

, (1.3.40)

where ↼c is the Hilbert transform of the function ↼.

Moreover, the elliptic equations governing the propagation of Rayleigh wave in the interior

are same as that of Eq. (1.3.37).
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Analogous to Eq. (1.3.38), the hyperbolic equations presented in Eq. (1.3.39) can be

reformulated in terms of the vertical displacement, u3, as follows:
(

22

2x2
→

1

c2
R

22

2t2

)
u3(x, 0, t) =

1→ α4
T

4µB

2P1

2x
. (1.3.41)

Case 3: In case of non-zero stress components, P1 ⇒= 0, P3 ⇒= 0, we get the hyperbolic

equation at the surface as,

22

2x2
→

1

v2
22

2t2


φ(x, 0, t) =

1 + β2

2µB


P2 + ϑ↑1 (P1)c


, (1.3.42)

where (P1)c is the Hilbert transform of the function P1 and ϑ assuming the value,

ϑ =
2αL

1 + α2
T

.

The relation between the potentials is same as that given in Eq. (1.3.36).

Thus, an explicit asymptotic hyperbolic-elliptic model is derived for the propagation of

Rayleigh waves. This model demonstrates the dual nature of these waves, characterized

by hyperbolic equations in Eq. (1.3.35) or (1.3.39) at the surface and elliptic equations

provided in Eq. (1.3.37) within the interior of the medium.

1.3.2.1 Viscoelasticity

Viscoelasticity is a material property characterized by a combination of viscous and

elastic behavior during deformation. In viscoelastic materials, the relationship between

stress and strain is time-dependent, exhibiting three prominent characteristics:

– Stress relaxation: The gradual decay of stress over time under a constant strain.

– Creep: The gradual increase of strain over time under a constant stress.

– Hysteresis: A phase lag observed between stress and strain during cyclic loading.

A typical dynamic test is carried out to study the behavior of viscoelastic materials by

measuring the stress resulted from the small strain. Consider a sample subjected to a

complex strain,

ω(t) = ω eiεt,

where ϖ is the angular frequency and ω is the small amplitude.

For a purely elastic material, the stress is directly proportional to strain, i.e.,

↽(t) = Cω(t). In other words, stress components are in-phase with the strain components.

For a purely viscous material, the stress is proportional to the strain rate, i.e.,

↽(t) = 4 d↼
dt . It can be deduced that the stress and strain are 90 degrees out of phase.
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In a one-dimensional linear viscoelastic material, a steady state will be eventually

reached in which stress behavior is similar to strain with the same angular frequency ϖ,

but with a phase shift of 5. In other words,

↽(t) = ↽ ei(εt+⇁).

This equation can be further re-written as,

↽(t) = G ω(t),

where G = G↓ + iG↓↓ is the complex dynamic modulus with the coe”cients,

G↓ =
↽

ω
cos 5 and G↓↓ =

↽

ω
sin 5.

The coe”cient G↓ is the storage modulus, representing the energy stored and recovered

per cycle, and corresponds to the in-phase response. G↓↓ is the loss modulus, characterizing

energy dissipation within the material, and corresponds to the out-of-phase response.

The development of constitutive equations for linear viscoelastic materials has tradi-

tionally relied on two fundamental approaches (a) the utilization of mechanical analogs,

which employ idealized mechanical elements to represent material behavior (b) the ap-

plication of the Boltzmann superposition principle, which accounts for the material’s re-

sponse to past loading history. The more generalized approach widely used to model the

linear viscoelastic materials is Boltzmann superpositon model. According to this, the

constitutive relation relating stress with strain is given by,

↽(t) =


t

0

G(t→ t↓)
dω

dt↓
dt↓,

where G(t) denotes the relaxation modulus function. However, choosing an appropriate

relaxation function in Boltzmann model, one can easily obtain the mechanical analog

models, like Maxwell model, Kelvin-Voigt model, and standard linear model. For more

details on this theory of viscoelasticity, interested readers can refer [257,258]. An advance

discussion on the fault propagation in such a medium can be found in [260,261]

1.3.3 Nonlocal elasticity theory

Nonlocal elasticity theory incorporates the influence of long-range interatomic forces,

leading to a dependence of stress at a given point on the strain field throughout the entire

body, rather than solely on the strain at that specific point. Building upon the pioneering
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works of Rogula [259, 262], Kröner [145], Krumhansl [263], and Kunin [133], Eringen

formulated an integral model [60] for nonlocal elasticity, demonstrating its e!ectiveness

in solving problems such as Rayleigh wave propagation and screw dislocation .

According to this integral nonlocal model [151], the governing equations in the absence

of body forces for a homogeneous elastic solid is given as,

◁mn,m = ⇀un,tt, m, n = 1, 2, 3, (1.3.43)

where un, n = 1, 2, 3 denotes the displacement components, ⇀ is the density and

◁mn(x) =



#

β (|x→ x| , 6) ↽mn(x) d’(x), 6 = e0
↑

l
. (1.3.44)

Here β represents a nonlocality kernel that depends on the material properties of the

medium and characteristic length ratio 6; ↑ denotes the internal characteristic length

(eg. granular distance, lattice parameter); l denotes the external characteristic length

(eg. wavelength, crack-length) and e0 is the material constant.

Further, ’ denotes the volume of the region over which the deformation has occurred;

◁mn, ↽mn are the nonlocal and local stress tensors, respectively, at a time t and x is the

reference position.

The nonlocal elastic moduli β (|x→ x| , 6) which constiute the kernal of the integral re-

lation in Eq. (1.3.44) contains the parameters that corresponds to nonlocal character-

istics. These kernels must possess certain physically applicable properties, detailed as

below [264]:

(i) β (|x→ x| , 6) is a delta-sequence, tending to Dirac-delta function as ↑ ≃ 0. In other

words,

lim
↔↗0

β (|x→ x| , 6) = ε (|x→ x|) , (1.3.45)

i.e., the nonlocal theory transforms to the local theory in this limit.

(ii) β (|x→ x| , 6) is a continuous and bounded function of |x→ x|, atleast for the case

when 6 ⇒= 0.

(iii) In the limit of vanishing internal characteristic lengths 6 ≃ 1, the nonlocal theory

should approach atomic lattice dynamics.

(iv) β (|x→ x| , 6) attains a maximum at x = x and decreases rapidly to zero as |x→ x|

increases.

(v) The integral value

# β (|x→ x| , 6) d’(x) = 1.

26



(vi) The kernel β (|x→ x| , 6) is Green’s function for a linear di!erential operator L, i.e.,

L [β (|x→ x| , 6)] = ε (|x→ x|) .

In case such an operator exists, then on applying L to Eq. (1.3.44), we have

L [◁mn] = ↽mn. (1.3.46)

Below are the several kernel functions, proposed by Eringen [60] that satisfy properties

(i) - (vi) and have practical physical applications:

I. One-dimensional kernel

β (|x|, 6) =






1
ζl

(
1→ |x|

ζl

)
, if |x| ↔ 6l

0, otherwise

(1.3.47)

β (|x|, 6) =
1

l
⇐
▷6

exp

(
→

x2

6l2

)
(1.3.48)

β (|x|, 6) =
1

2 6l
exp

(
→
|x|

6l

)
(1.3.49)

II. Two-dimensional kernel

β (|x|, 6) =
1

▷6l2
exp

(
→
x · x

6l2

)
(1.3.50)

β (|x|, 6) =
1

2▷62l2
K0

(⇐
x · x

6l

)
(1.3.51)

where K0(·) is the modified Bessel function of zero order.

III. Three-dimensional kernel

β (|x|, 6) =
1

4▷62l2
⇐
x · x

exp

(⇐
x · x

6l

)
(1.3.52)

β (|x|, 6) =
1

(▷6l2)
3
2

exp

(
→
x · x

6l2

)
(1.3.53)

In his works [60,151], Eringen demonstrated that by employing a two-dimensional kernel

of the form given in Eq. (1.3.51), the integral operator L, can be approximated as

L =
(
1→ 62l2 ↗2

)
, (1.3.54)

where ↗
2 is the two-dimensional Laplacian operator.
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1.3.3.1 Eringen’s theory for nonlocal surface Rayleigh waves

Consider Rayleigh wave propagation in a homogeneous, isotropic, nonlocal elastic

semi-infinite medium with displacement vector u = (u1, 0, u3). Employing a two-dimensional

Bessel function kernel as defined in Eq. (1.3.52) within the integral formulation (1.3.44),

and applying the operator L to the governing equations in Eq. (1.3.4) (with Fn = 0)

under plane strain conditions, while utilizing the relationships in Eqs. (1.3.2), (1.3.3),

and (1.3.46), yields,

µumm + ($+ µ) um,mn → ⇀
(
1→ ↑

2
↗

2
)
un,tt = 0, m, n = 1, 3. (1.3.55)

As discussed in previous sections, for plain strain,

u1 =
2φ

2x
→

2↼

2z
, u3 =

2u3

2z
+

2↼

2x
, (1.3.56)

decouples the equations of motion into,

c2
L
↗

2φ =
(
1→ ↑

2
↗

2
)
φ,tt, c2

T
↗

2↼ =
(
1→ ↑

2
↗

2
)
↼,tt, (1.3.57)

with the body wave velocities cL =
√

!+2µ
ϑ

and cT =
√

µ

ϑ
.

We seek the solutions of Eq. (1.3.57) to be in the form of surface waves given by,

φ = P e↑m1z ei(kx↑εt), ↼ = Qe↑m2z ei(kx↑εt). (1.3.58)

The above equations satisfies Eq. (1.3.57) only when m1,m2 takes the values,

m1 =

√

1→
c2

c2
L
→ ↑2ϖ2

, m2 =

√

1→
c2

c2
T
→ ↑2ϖ2

. (1.3.59)

By substituting Eq. (1.3.58) into Eq. (1.3.56), we arrive at the expressions for the

displacement field. Subsequently, we can obtain at the corresponding stress field as,

◁11 =

c
2
L

c
2
T
(m2

1 → 1)→ 2m2
1


I1P → 2im2I2Q,

◁31 = →2im1I1P + (1 +m2
2) I2Q,

◁33 =

2 +

c
2
L

c
2
T
(m2

1 → 1)

I1P + 2im2I2Q,






(1.3.60)

where

Ij =


↘

0


↘

↑↘

K0





√
(x→ x)2 + z2

↑



 e↑kmjz exp [i(kx→ ωt)] dx dz, j = 1, 2 (1.3.61)
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The nonlocal stress-free boundary conditions at z = 0 suggests ◁31 = ◁33 = 0. Since

I1, I2 ⇒= 0, a non-trivial solution exists if


2 + #↑2

(
m2

1 → 1
) (

1 +m2
2

)
→ 4m1m2 = 0, (1.3.62)

where # = cT
cL
. The Eq. (1.3.62) is referred as the Rayleigh wave dispersion relation in a

nonlocal elastic semi-infinite medium (as per Eringen’s theory [60]). On rearranging the

terms of Eq. (1.3.62) while using Eq. (1.3.59) simplifies the dispersion relation as,

(
(
α1(

3 + α2(
2 + α3(+ α4

)
= 0, (1.3.63)

in which

α1 =
1

16
+ ω2

(
1 + β

4

)
+ ω4

(
1 + 4β → 3β2

4

)
+ ω6 β (1→ β) ,

α2 = →
1

2
+ ω2

(
2β2

→ β → 3

2

)
→ ω4

(
1 + β → 2β2

)
,

α3 =
3

2
→ β + ω2

(
2→ β → β2

)
,

α4 = 1→ β,

( =
c2

c2
T

, ω = ↑k, β =
1→ p

2 (1→ p)
,

where p is the Poisson’s ratio.

By simplifying Eq. (1.3.62) and performing a Taylor series expansion about ω = 0, we can

also arrive at a corrected dispersion relation characterized by an expansion that includes

only even powers of the nonlocal parameter ω.

(
2→(2

)2
→ 4

⇐
1→(2

√

1→
(2

ϱ



+ω2




2(4 (→ϱ2 + ϱ(2 +(2

→ 1)
√

1→ $2

γ

ϱ
⇐
1→(2 ((2 → ϱ)

+
ϱ(6

→ 2ϱ(4 +(6
→ 2(4

ϱ



+O
(
ω4
)
.

(1.3.64)

Further we note that, the leading order term in the dispersion relation given in Eq.

(1.3.64) coincides with the well known secular equation of Rayleigh waves derived in Eq.

(1.3.14). However, the absence of first-order correction terms in this expansion may limit

the accuracy of the corrected dispersion relation.

As pointed out by Eringen [151], the nonlocal moduli, β (|x→ x| , 6) are strictly applicable
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to homogeneous and isotropic solids. Near the surface, material inhomogeneities emerge

within a boundary layer of a few atomic distances. This necessitates the development of

refined theory that accounts for boundary layer e!ects within the framework of nonlocal

elasticity to address this limitation and thereby improve upon Eringen’s original theory.

1.3.3.2 Refined theory for nonlocal surface Rayleigh waves

The use of di!erential operator L often neglects the boundary layer near the sur-

face, leading to discrepancies between solutions obtained from integral and di!erential

formulations. This section briefly demonstrates that the solution of the conventional

di!erential model presented in [60] fails to satisfy the equation of motion for nonlocal

stresses derived from the integral theory, necessitating the derivation of refined boundary

conditions. The readers are advised to refer Kaplunov et al. [204] for detailed calculations.

Now, define the dimensionless quantities

3 =
x

0
, 4 =

z

0
, ω =

↑

0
.

where 0 is the wavelength of the propagating wave. Assuming slow variations of local

stresses ↽mn along x→direction, a two-term Taylor series expansion of ↽mn in terms of 3

about the point 3 = 3 can be constructed, resulting in,

εmn (ϑ, ϖ) =
1

2ϱς2


↘

0


↘

↑↘

K0





√(
ϑ → ϑ

)2
+ ϖ2

↑





1 +

(
ϑ → ϑ

)2

2

φ2

φϑ2
+ · · ·


↼mn (ϑ, ϖ) dϑ dϖ.

(1.3.65)

Utilizing the integral identity, see Gradshteyn and Ryzhik [265],
 ↘

0

z2m K0

(
a
⇐
x2 + z2

)
dz =

▷

2a2m+1
(1 + amx) exp (→ax) , for m = 1, 2, (1.3.66)

Eq. (1.3.65) can be reduced and further by neglecting higher-order terms O (ω4), we get

◁mn (3, 4) =
1

2ω


↘

0


1 +

ω2

2

(
1 +

|4 → 4|

ω

)
22

232
+ · · ·


↽mn (3, 4) exp

(
→
|4 → 4|

ω

)
d4.

(1.3.67)

As a result, the double integral Ij, j = 1, 2 defined in Eq. (1.3.61) can be approximated

using Eq. (1.3.67). This gives,

Ij = ei(kx↑εt)


1→ ς2

(
1→m2

j0

)
exp (→kmjz)→

1

2


1 + ςmj0 → ς2

(
1→m2

k0 +
z

2↑

)
exp

(
→
z

↑

)
.

(1.3.68)
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Here mj0 are the leading order terms in the expansion of mj in Eq. (1.3.59), i.e.,

m1 =

√

1→
c2

c2
L

, m2 =

√

1→
c2

c2
T

. (1.3.69)

The coe”cients of exp
(
→

z

↔

)
in Eq. (1.3.68) are associated with the nonlocal boundary

layer.

Applying the stress-free boundary condition ◁31 = 0, yields a relationship between the

constants P and Q. Substituting this relation into the expressions for nonlocal stresses

and considering the leading-order terms, we obtain

Q
(
1→ 2m2

20 +m4
20

) (
1 +m2

20

)
exp

(
→
z

ω

)
⇒= 0. (1.3.70)

Thus, we can conclude that the solutions obtained in Eq. (1.3.58) for Eringen’s theory

do not satisfy the equations of motion in Eq. (1.3.55), indicating an inconsistency within

the integral model.

In order to have an equivalence between the di!erential and the integral formulations of

nonlocal elasticity, substitute the di!erential formulation,

↽mn =
(
1→ ω2↗2

)
◁mn,

in the integral formulation given in Eq. (1.3.67).

This will yield on rigorous calculations, the additional conditions for which the equivalence

holds good. These are given by,

1→ ↑

2

2z
→

↑
3

2

23

2x2 2z


◁mn

∣∣∣∣
z=0

= 0, m, n = 1, 3. (1.3.71)

Due to pre-imposed restrictions on ◁31 and ◁33 in case of a stress-free surface (i.e., ◁31 =

◁33 = 0), it may not be possible to satisfy all conditions simultaneously. This could

potentially lead to an ill-posed problem. As a result, the additional condition is applied

only to the specific stress component, ◁11. This implies that

1→ ↑

2

2z
→

↑
3

2

23

2x2 2z


◁11

∣∣∣∣
z=0

= 0. (1.3.72)

Asymptotic analysis is then carried out to capture the e!ects of the boundary layer arising

from the application of nonlocal elasticity.

Boundary layer theory and asymptotic analysis [269] are considered the most valuable

tools in geomechanics for investigating the impact of boundary layers on the overall com-

plex non-local behavior of geological materials.
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To elucidate the behavior along the z→coordinate within the semi-infinite medium and in

the vicinity of the boundary layer, respectively, we define fast (4f ) and slow (4s) variables,

4f =
z

↑
, 4s =

z

0
.

The following dimensionless quantities are adopted through out this section,

3 =
x

0
, ω =

↑

0
, t = cT

0
t,

uj =
uj

0
, ↽mn =

↽mn

µ
, ◁mn =

◁mn

µ
.

The nonlocal stresses are decomposed into fast components, qmn and slow components

pmn as,

◁11 = p11 + q11,

◁31 = p31 + ω q31,

◁33 = p33 + ω2 q33.





(1.3.73)

As a result, the governing equations are reformulated into equations involving the slow-

varying and fast-varying components. This gives,

2p1n
23

+
2p3n
24s

=
22un

2 t̃2
,

2q1m
23

+
2q3m
24f

= 0, (1.3.74)

and ω2
(
2pmn

232
+

22pmn

242
s

)
→ pmn = →↽mn, ω2

22qmn

232
+

22qmn

242
f

→ qmn = 0, (1.3.75)

with

↽11 = #→2 φu1

φϑ +
(
#→2

→ 2
)

φu3

φϖs
,

↽31 = φu1

φϖs
+ φu3

φϑ ,

↽33 = #→2 φu3

φϖs
+
(
#→2

→ 2
)

φu1

φϑ ,






(1.3.76)
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where # =
√

µ

!+2µ and subjected to the boundary conditions,

p31
∣∣∣
▷s=0

+ ω q31
∣∣∣
▷f=0

= 0,

p33
∣∣∣
▷s=0

+ ω2 q33
∣∣∣
▷f=0

= 0,

r32
∣∣∣
▷s=0

+ ω s32
∣∣∣
▷f=0

= 0,

p11
∣∣∣
▷s=0

+ q11
∣∣∣
▷f=0

→ ω ϖp11

ϖ▷s

∣∣∣
▷s=0

→
ϖq11

ϖ▷f

∣∣∣
▷f=0

→
↼
2

2
ϖ
3
q11

ϖφ2 ϖ▷f

∣∣∣
▷f=0

= 0.






(1.3.77)

Also, on expanding certain quantities in asymptotic series as,

Fmn = F(0)
mn

+ ωF(1)
mn

+ ω2F(2)
mn

+ · · · (1.3.78)

where Fmn = {un, ↽mn, pmn, qmn}.

As a result, we can rewrite the Eqs. (1.3.74)→(1.3.77) for various asymptotic orders

i = 0, 1, 2, . . . as,

2p(i)1n

23
+

2p(i)3n

24s
=

22u(i)
n

2 t̃2
,

2q(i)1m

23
+

2q(i)3m

24f
= 0, (1.3.79)

and

22p(i↑2)
mn

232
+

22p(i↑2)
mn

242
s

→ p(i)
mn

= →↽(i)
mn

,
22q(i↑2)

mn

232
+

22q(i)mn

242
f

→ q(i)
mn

= 0, (1.3.80)

with

↽(i)
11

= #→2 φu(i)
1

φϑ +
(
#→2

→ 2
) φu(i)

3

φϖs
,

↽(i)
31

= φu(i)
1

φϖs
+ φu(i)

3

φϑ ,

↽(i)
33

= #→2 φu(i)
3

φϖs
+
(
#→2

→ 2
) φu(i)

1

φϑ ,






(1.3.81)

and the boundary conditions at the surface 4s = 4f = 0 as,

p(i)31

∣∣∣
▷s=0

+ q(i↑1)
31

∣∣∣
▷f=0

= 0,

p(i)33

∣∣∣
▷s=0

+ q(i↑2)
33

∣∣∣
▷f=0

= 0,

p(i)11

∣∣∣
▷s=0

+ q(i)11

∣∣∣
▷f=0

→
ϖp

(i→1)
11
ϖ▷s

∣∣∣
▷s=0

→
ϖq

(i)
11

ϖ▷f

∣∣∣
▷f=0

→
1
2

ϖ
3
q
(i→2)
11

ϖφ2 ϖ▷f

∣∣∣
▷f=0

= 0.






(1.3.82)
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By comparing the leading-order terms in Eqs. (1.3.80), we obtain the di!erential equation

for the zeroth order. Solving this equation yields a decaying solution of the form,

q(0)
mn

= Q(0)
mn

(
3, t̃

)
e↑▷f . (1.3.83)

The values for the coe”cients Q(0)
mn can be easily obtained using Eqs. (1.3.77)(iv) and

(1.3.79) as,

Q(0)
11 = →

1

2
↽(0)
11

∣∣∣
▷s=0

, Q(0)
31 = →

1

2

2↽(0)
11

23

∣∣∣∣∣
▷s=0

, Q(0)
33 = →

1

2

22↽(0)
11

232

∣∣∣∣∣
▷s=0

(1.3.84)

As a result, the boundary conditions at the leading order becomes,

↽(0)
31 = 0, ↽(0)

33 = 0, (1.3.85)

which coincides the traditional boundary conditions in a local elastic semi-infinite medium.

At the first order, the solution to the di!erential equation in q(1)mn takes the form,

q(1)
mn

= Q(1)
mn

(
3, t̃

)
e↑▷f , (1.3.86)

where

Q(1)
11 = →

1
2

(
↽(1)
11

∣∣∣
▷s=0

→
ϖ◁̃

(0)
11

ϖ▷s

∣∣∣
▷s=0

)
,

Q(1)
31 = →

1
2

(
ϖ◁̃

(1)
11

ϖφ

∣∣∣
▷s=0

→
ϖ
2
◁̃
(0)
11

ϖ▷s ϖφ

∣∣∣
▷s=0

)
,

Q(1)
33 = →

1
2

(
ϖ
2
◁̃
(1)
11

ϖφ2

∣∣∣
▷s=0

→
ϖ
3
◁̃
(0)
11

ϖ▷s ϖφ
2

∣∣∣
▷s=0

)
.






(1.3.87)

Subsequently, the boundary conditions at the first order results in,

↽(1)
31 →

1

2

2↽(0)
11

23
= 0, ↽(1)

33 = 0. (1.3.88)

Notably, the first-order boundary conditions for a nonlocal semi-infinite medium include

an additional term that depends on ↽11.

Subsequently, at second order, the equation of motion presented in Eq. (1.3.79) can be

rewritten as,

2↽(2)
1n

23
+

2↽(2)
3n

24s
=

22u(2)
n

2 t̃2
→

22

2 t̃2

(
22u(0)

n

232
+

22u(0)
n

242
s

)
. (1.3.89)
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As a result, the boundary conditions at the second order becomes,

↽(2)

31
+ φ2↼(0)

31

φϑ2 + φ2↼(0)
31

φϖ2s
→

1

2

(
φ↼(1)

11

φϑ →
φ2↼(0)

11

φϖs φϑ

)
= 0,

↽(2)

33
+ φ2↼(0)

33

φϑ2 + φ2↼(0)
33

φϖ2s
→

1

2

φ2↼(0)
11

φϑ2 = 0.





(1.3.90)

Using the fact that, ↽(1)
mn ⇑

1
↼
↽mn, ↽(2)

mn ⇑
1
↼2
↽mn, the boundary value problem can now

be given as,

2↽1n

23
+

2↽3n

24s
=

22un

2 t̃2
→ ω2

22

2 t̃2

(
22un

232
+

22un

242
s

)
, (1.3.91)

subjected to,

↽31 → ς
2

φ↼11

φϑ + ω2
(
φ2↼31

φϑ2 + φ2↼31

φϖ2s
+ 1

2

φ2↼11

φϖs φϑ

)
= 0,

↽33 + ω2
(
φ2↼33

φϑ2 + φ2↼33

φϖ2s
→

1

2

φ2↼11

φϑ2

)
= 0.





(1.3.92)

Upon recasting the refined boundary conditions in terms of the original variables em-

ployed in the analysis, the governing equations that describe the propagation of Rayleigh

waves on the surface of a nonlocal elastic semi-infinite medium can be expressed as

φ↼11

φx + φ↼31

φz = ⇀
(
1→ ↑

2
↗

2
)

φ2u1

φt2 ,

φ↼13

φx + φ↼33

φz = ⇀
(
1→ ↑

2
↗

2
)

φ2u3

φt2 ,





(1.3.93)

with the refined boundary conditions prescribed at the surface z = 0 as,

↽31 →
↑

2

φ↼11

φx + ↑
2

(
φ2↼31

φx2 + φ2↼31

φz2 + 1

2

φ2↼11

φx φz

)
= 0,

↽33 + ↑
2

(
φ2↼33

φx2 + φ2↼33

φz2 →
1

2

φ2↼11

φx2

)
= 0.





(1.3.94)

Employing these boundary conditions, the dispersion relation can be derived within an

error of O (ω2) for Rayleigh waves propagating in a nonlocal elastic semi-infinite medium

as,
(
1 +m2

20

)2
→ 4m10 m20 → 2ωm20

(
1→ #↑2

) (
1→m2

10

)
= 0. (1.3.95)
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The leading-order analysis recovers the classical dispersion relation. This analysis gives

a first-order corrected dispersion relation, o!ering a more refined correction to the e!ects

of nonlocality compared to the correction established by Eringen’s theory [60].

1.3.4 Micropolar elasticity theory

Classical elasticity theory faces limitations in accurately modeling materials with com-

plex microstructures or scenarios involving significant stress gradients. For instance, it

struggles to predict the behavior of materials like composites, polymers, soil, and bone,

where internal structures play a crucial role [266]. Additionally, it cannot adequately ad-

dress situations where the stress-strain relationship is asymmetric, such as those encoun-

tered in an elastic continuum subjected to a volume moment distribution. To overcome

these limitations, Eringen [51] followed by Nowacki [52] extended the theory by incor-

porating body microinertia e!ects, leading to the development of micropolar elasticity

theory. In essence, micropolar elasticity models a material as a continuum embedded

with uniformly distributed rigid particles of infinitesimal size, allowing for a more intri-

cate description of material behavior.

In this section, we will present the fundamental relations, including the constitutive stress-

strain relations and governing equations, within the context of a general linear micropolar

elasticity theory for a homogeneous, isotropic solid.

In a linear micropolar elastic solid, the displacement field vector u is complemented by a

microrotation field vector &, which is independent of the displacement field. A micropolar

deformation is fully characterized by the asymmetric strain tensor 1ij and the curvature

tensor #ij , defined as,

1mn = un,m → ωmnp&p,

#mn = &m,n,




 m,n = 1, 2, 3. (1.3.96)

where ωmnp stands for the permutation symbol.

Using these definitions in Eq. (1.3.96), the relation for the microrotation vector can be

given as,

&m =
1

2
ωmnp (up,n → 1np) , m, n, p = 1, 2, 3.
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The strain tensor written in Eq. (1.3.96) is clearly an asymmetric vector, as a result it

can be decomposed into symmetric 1†
mn

and asymmetric components 1‡
mn

as,

1mn = 1†
mn

+ 1‡
mn

.

where

1†
mn

=
1

2
(un,m + um,n) , 1‡

mn
=

1

2
(un,m → um,n)→ ωmnp&p.

Now, for a linear isotropic micropolar medium, the theory proposes two sets of constitutive

relations as,

↽mn = $ 1pp εmn + (µ+ ⇁) 1mn + µ 1nm,

%mn = α#pp εmn + β #mn + ϱ #nm,




 m,n = 1, 2, 3. (1.3.97)

where $ and µ are the well-know Lamé’s constants; ⇁,α, β, ϱ are the micropolar constants;

εmn denotes the Kronecker’s delta tensor.

In a micropolar continuum subjected to a body force, Fn, and a body moment, Mn,

the internal loads between adjacent elements are characterized by a classical force stress

tensor, ↽mn, and a micropolar couple stress tensor, %mn. These stress tensors must satisfy

the balance of linear and angular momenta, resulting in governing equations expressed as,

↽mn,m + ⇀Fn = ⇀un,tt,

%mn,m + ωnmp↽mp + ⇀Mn = j ⇀&n,tt,





(1.3.98)

in which ⇀ is the material mass density and j is the microinertia.

Substituting the constitutive relations in Eq. (1.3.97) into the governing equation in Eq.

(1.3.98), we can obtain the system of governing equations for a micropolar elastic solids

as,

($+ 2µ) um,mn + (µ+ ⇁) un,mm + ⇁ ωnpm&m,p + ⇀Fn = ⇀un,tt,

(α + β)&m,mn + ϱ un,mm → 2⇁&n + ⇀Mn = j ⇀&n,tt.





(1.3.99)

The strain energy density E for a linear isotropic micropolar continuum is given as [52],

E =
1

2
(↽mn1mn + %mn#mn) .
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A positive definite quadratic form for the strain energy density E imposes the following

restrictions on the material constants,

µ > 0, ⇁ > 0, 3$+ 2µ+ ⇁ > 0,

ϱ > 0, β > 0, 3α + β + ϱ > 0.

1.3.5 Nonlocal micropolar elasticity theory

Classical continuum mechanics treats material as a collection of point particles, each

capable of only translational motion and interacting solely with its immediate neighbors.

This limits its applicability, failing to capture the discrete nature of materials and micro-

scopic phenomena such as micro-deformations and micro-dislocations. Recognizing this

limitation, a more generalized perspective emerged, acknowledging the material particle

as a finite volume element capable of both deformation and rotation. Furthermore, the

behavior of any given particle cannot be fully understood in isolation, as it is influenced by

interactions with other particles throughout the material. These considerations have led

to the development of nonlocal microcontinuum theories, which provide a more compre-

hensive framework for understanding material behavior beyond the limitations of classical

continuum mechanics.

Here, we will write the constitutive stress-strain relations and equations of motion in a

non-local micropolar elastic medium.

A nonlocal micropolar elastic solid exhibits both translational and rotational motions,

which give rise to nonlocal force stresses and nonlocal couple stresses within the medium.

The integral formulation that relates nonlocal force and couple stresses with local force

and couple stresses, respectively are given similar to Eq. (1.3.44) as,

◁mn(x) =


#
β (|x→ x| ,↑) ↽mn(x) d’(x)

▷mn(x) =


#
β (|x→ x| ,↑)%mn(x) d’(x),





m,n = 1, 2, 3. (1.3.100)

where β (|x→ x|) represents the nonlocal kernel, which can assume any of the forms

defined in Eqs. (1.3.47) - (1.3.53).

The constitutive relations that relate these local stresses with the strain tensor (ω) and
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curvature tensor (#) are given as [61],

↽mn = $ 1pp εmn + (µ+ ⇁) 1mn + µ 1nm,

%mn = α#pp εmn + β #mn + ϱ #nm,




 m,n = 1, 2, 3. (1.3.101)

Here ⇁,α, β and ϱ are the micropolar constants; $, µ are the elastic constants; εmn denotes

the well-known Kronecker delta symbol. Moreover, the relation between the curvature

tensor and strain tensor with the displacement components and rotational components

are given as,

1mn = un,m → ωmnp&p,

#mn = &m,n,




 m,n = 1, 2, 3, (1.3.102)

where un and &n are the displacement components and microrotation vector components

of the surface wave, respectively.

Further, the governing equations in a non-local micropolar elastic solid (without any body

forces or moments) are given by,

◁mn,m → ⇀un,tt = 0,

▷12,x + ▷32,z + ωnmp↽mp → ⇀ j &2,tt = 0,




 m,n = 1, 3. (1.3.103)

!"

Having established these fundamental concepts and mathematical tools in this section,

we now proceed to delve into the core research problems addressed in this thesis.
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CHAPTER 2

Rayleigh Wave Propagation in Nonlocal Micropolar

Semi-infinite Medium





This chapter investigates wave propagation in a semi-infinite medium characterized

by nonlocal and micropolar elastic properties. We begin the study by considering the con-

stitutive equations and governing equation of motion under nonlocal micropolar elasticity,

as outlined in Eqs. (1.3.100)→(1.3.103). Utilizing asymptotic analysis, we derive refined

boundary conditions for the propagation of Rayleigh waves. As a practical application,

we then examine and analyze the boundary value problem of the propagation of Rayleigh

waves within a viscoelastic semi-infinite medium.

2.1 Derivation of refined boundary conditions on the surface of

a nonlocal micropolar semi-infinite medium⇓

2.1.1 Mathematical formulation

Consider the two-dimensional singular non-local kernel as provided in Eringen’s theory

[60],

β (|x↓
→ x|,↑) =

1

2▷↑2
K0

(√
(x↓ → x) . (x↓ → x)

↑

)
(2.1.1)

where ↑ is the non-locality parameter associated with the micropolar medium.

Consequently, the relationship between conventional local stresses and non-local stresses

can be established through the integral formulation (1.3.100) as follows:

◁mn = 1
20↔2


↘

0


↘

↑↘
K0

(⇐
(x↑x↑)2+(z↑z↑)2

↔

)
↽mn (x↓, z↓) dx↓ dz↓

▷mn = 1
20↔2


↘

0


↘

↑↘
K0

(⇐
(x↑x↑)2+(z↑z↑)2

↔

)
%mn (x↓, z↓) dx↓ dz↓






(2.1.2)

Additionally, utilizing the same two-dimensional kernel as specified in Eq. (2.1.1), the

di!erential model proposed by Eringen [60] relates the local and non-local stresses as,

(1→ ↑
2
↗

2) ◁mn = ↽mn

(1→ ↑
2
↗

2) ▷mn = %mn




 (2.1.3)

Introduce the dimensionless variables,

ς =
x

0
, 4 =

z

0
, and ω =

↑

0
<< 1

∗
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is the small dimensionless parameter associated with non-locality in the micropolar medium.

Utilizing the approximation provided in Eqs. (1.3.67), that takes into account the assump-

tion of slow variation of local stresses ↽mn along x→direction, we approximate Eqs. (2.1.2)

as,

◁mn ⇑
1

2ω

 ↘

0


1 +

ω2

2

(
1 +

|4↓ → 4|

ω

)
22

2ς2


↽mn(ς, 4

↓) exp

(
→
|4↓ → 4|

ω

)
d4↓ (2.1.4)

▷mn ⇑
1

2ω

 ↘

0


1 +

ω2

2

(
1 +

|4↓ → 4|

ω

)
22

2ς2


%mn(ς, 4

↓) exp

(
→
|4↓ → 4|

ω

)
d4↓ (2.1.5)

Using the di!erential formulation of non-local stresses as in Eq. (2.1.3), the equation of

motion for the propagation of Rayleigh waves with the displacement components in the

form of local stresses can be written with the help of Eq. (1.3.103) as,

↽1n,x + ↽3n,z → ⇀ (1→ ↑
2
↗

2) un,tt = 0,

%12,x + %32,z + ↽31 → ↽13 → ⇀ j (1→ ↑
2
↗

2) &2,tt = 0




 n = 1, 3 (2.1.6)

To decouple the system in Eq. (2.1.6), we shall apply the method of potentials in which

the displacement components are decomposed into the sum of a scalar function φ and a

vector potential ) = (↼1,↼,↼3) as,

u1(x, z, t) = φ,x → ↼,z, u3(x, z, t) = φ,z + ↼,x (2.1.7)

This reduces the governing coupled equations of motion given in Eq. (2.1.6) as,

($+ 2µ+ ⇁)↗2φ→ ⇀ (1→ ↑
2
↗

2) φ,tt = 0,

(µ+ ⇁)↗2↼ + ⇁&2 → ⇀ (1→ ↑
2
↗

2) ↼,tt = 0,

ϱ↗2&2 → ⇁↗2↼ → 2⇁&2 → ⇀j (1→ ↑
2
↗

2)&2,tt = 0.





(2.1.8)

Let us define certain velocity parameters for the micropolar elastic media as

c1 =

√
$+ 2µ+ ⇁

⇀
, c2 =

√
µ+ ⇁

⇀
, c3 =

√
⇁

⇀
, c4 =

√
ϱ

⇀j
.

and assume that the solutions to the system of equations to be propagating in a time-

harmonic form as,

{φ,↼,&2} = {P, Y, Z} e↑krzei(kx↑εt), (2.1.9)
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Substituting Eq. (2.1.9) in decoupled system of equations of Eq. (2.1.8), we get,

φ(x, z, t) = P e↑kr1zei(kx↑εt),

↼(x, z, t) =

Qe↑kr2z +Re↑kr3z


ei(kx↑εt),

&2(x, z, t) = s k2 Re↑kr3z ei(kx↑εt),





(2.1.10)

where

r21 = 1→
v2

c21 → ω2v2
, r22 = 1→

v2

c22 → ω2v2
,

r23 = 1→
v2

c24 → ω2v2

(
1→

2c23
jϖ2

)
, s =

v2

c23


1→

c22 → ω2v2

c24 → ω2v2

(
1→

2 c23
jϖ2

)
,

are such that Re(ri) > 0 for i = 1, 2, 3 to ensure the exponential decay of the waves from

the surface.

The traction-free boundary conditions at the surface z = 0 indicate the vanishing of

force-stresses and couple-stresses at the surface, i.e., at z = 0,

◁31 = 0, ◁33 = 0, ▷32 = 0. (2.1.11)

2.1.2 Failure of equivalence

This section aims to verify the equivalence between the integral and di!erential formu-

lations of Eringen’s non-local elasticity theory. We will utilize the di!erential form of the

non-local model in the equation of motion, while employing the integral formulation for

the boundary conditions, and subsequently assess their equivalence. For our convenience,

we will omit the time-harmonic terms for further studies.

Now, the non-local stresses can be explicitly written from Eqs. (2.1.4) and (2.1.5) using

Eq. (1.3.97) as,

ω11 = k
2

→
(
!+ 2µ+ ε→ ! r

2
1

)
P I1 + i r2 (2µ+ ε)QI2 + i r3 (2µ+ ε)RI3



ω13 = k
2

→i r1 (2µ+ ε)P I1 →

(
µ+ ε+ µ r

2
2

)
QI2 +

(
sε→ (µ+ ε)→ µ r

2
3

)
RI3



ω31 = k
2

→i r1 (2µ+ ε)P I1 →

(
µ+ (µ+ ε) r22

)
QI2 →

(
sε+ µ+ (µ+ ε) r23

)
RI3



ω33 = k
2
(

(!+ 2µ+ ε) r21 → !
)
P I1 → i r2 (2µ+ ε)QI2 → i r3 (2µ+ ε)RI3



ϑ12 = i s k
3
ϖRI3

ϑ32 = →s k
3
ϖ r3 RI3
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where

Ii =
1
2↑

∫ ↓

0

[
1 +

↑2

2

(
1 +

|x↑ → x|
↑

)
ϱ
2

ϱx2

]
exp (ikx→ kriz) exp

(
→ |z↑ → z|

↑

)
dz↑, i = 1, 2, 3 (2.1.12)

On splitting Ii in Eq. (2.1.12) over the interval from 0 to z and from z to z↓ following the

approach of Kaplunov et al. [204], and subsequently simplifying, we obtain,

Ii =

1 + ω2

(
r2
i0 → 1

)
exp (→kriz)→

1

2


1 + ω ri0 + ω2

(
r2
i0 → 1→

kz

2ω

)
exp

(
→
kz

ω

)

(2.1.13)

The coe”cients of exp
(↑kz

↼

)
in Eq. (2.1.13) are linked with the boundary layer formed

as a result of the non-local elasticity e!ects in the medium.

Substituting in Eq. (2.1.11), a system of equations in P,Q,R is obtained. This system

is then solved for the non-trivial solution to obtain the dispersion relations for Rayleigh

waves within an error of O (ω2) as,

(1 + d)2 r10 r20 →
(
r220 + d

)2
= 0 (2.1.14)

r30 = 0 (2.1.15)

with d = µ

µ+ω
. Also, r10, r20 and r30 are the leading order Taylor series approximations of

r1, r2 and r3, respectively within an error of O (ω2) and are given by,

r210 = 1→
v2

c21
, r220 = 1→

v2

c22
, r230 = 1→

v2

c24

(
1→

2c23
jϖ2

)

Eqs. (2.1.14) and (2.1.15) represent the dispersion relations consisting of two modes of

Rayleigh waves, one of which is entirely due to the micropolarity in the medium. Also,

these two modes do not coexist at the same period. In other words, the relations in Eqs.

(2.1.14) and (2.1.15) cannot be zero simultaneously.

For the mode corresponding to Eq. (2.1.14) and from the boundary conditions at z = 0,

the arbitrary constants P , Q and R are related by,

P =
i (r220 + d) (1 + (r10 → r20) (ω→ ω2 r20))

(1 + d) r10
Q, R = 0

Substituting these values of P,Q,R into the equation of motion given in Eq. (2.1.6) for

n = 1 and analyzing the leading order term that is associated with the boundary layer

near the vicinity of the surface, we observe that,

k3

2(1 + d)2 r10


(1 + d)2 r210 → 2 r220

(
d+ r220 → 1

)
→ (1 + d2)


exp

(
→
kz

ω

)
⇒= 0 (2.1.16)
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Similarly, for the micropolar mode corresponding to Eq. (2.1.15), the relation between

the arbitrary constants is given as,

P =
i (1 + d) r20
r220 + d


1 + (r10 → r20)

(
ω→ ω2 r20

)
Q

R =
(r220 + d)2 → (1 + d)2 r10 r20

r220 + d


1 + (r30 → r20)

(
ω→ ω2 r20

)
Q,

Substituting the same into the equation of motion in Eq. (2.1.6) at n = 1, we have at the

leading order,

k3

r220 + d


(1 + d)2 r10 r20 →

(
r220 + d

)2
exp

(
→kz

ω

)
⇒= 0 (2.1.17)

which is true as this mode does not coexist with the mode corresponding to Eq. (2.1.14).

Eqs. (2.1.16) and (2.1.17) indicate that the solution for the Rayleigh wave obtained from a

di!erential non-local model does not comply with the original governing equations derived

under the framework of the integral non-local elastic model. This suggests the failure of

the equivalence between the di!erential and integral formulations of the non-local model

in case of a non-local micropolar semi-infinite medium.

2.1.3 Equivalence conditions

Upon substituting the di!erential form of the local stresses provided in Eq. (2.1.2)

into Eqs. (2.1.3) and (2.1.4), which represents the integral formulation of the non-local

stresses at the boundary, we get,

ωmn

∣∣∣
ω=0

=
1
2ς

 →

0


1 +

ς
2

2

(
1 +

φ
↑

ς

)
ϱ
2

ϱ↼2

 
1→ ς

2
(

ϱ
2

ϱ↼2 +
ϱ
2

ϱφ↑2

)
ωmn

(
↼, φ

↑)
e
↓ ω→

ε dφ↑ (2.1.18)

ϑmn

∣∣∣
ω=0

=
1
2ς

 →

0


1 +

ς
2

2

(
1 +

φ
↑

ς

)
ϱ
2

ϱ↼2

 
1→ ς

2
(

ϱ
2

ϱ↼2 +
ϱ
2

ϱφ↑2

)
ϑmn

(
↼, φ

↑)
e
↓ ω→

ε dφ↑ (2.1.19)

This is further simplified by ignoring the higher order terms of O(ω4) to get,

◁mn

∣∣∣
▷=0

=
1

2



◁mn

∣∣∣
▷=0

+ ω
2◁mn

24

∣∣∣∣∣
▷=0

+
ω3

2

23◁mn

2ς2 24

∣∣∣∣∣
▷=0



 (2.1.20)

▷mn

∣∣∣
▷=0

=
1

2



▷mn

∣∣∣
▷=0

+ ω
2▷mn

24

∣∣∣∣∣
▷=0

+
ω3

2

23▷mn

2ς2 24

∣∣∣∣∣
▷=0



 (2.1.21)
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Further rearrangement gives a set of conditions,

1→ ω

2

24
→

ω3

2

23

2ς2 24


◁mn

∣∣∣∣∣
▷=0

= 0 (2.1.22)


1→ ω

2

24
→

ω3

2

23

2ς2 24


▷mn

∣∣∣∣∣
▷=0

= 0 (2.1.23)

for which the equivalence between the di!erential and integral non-local model is possible.

However, for the equations of motion described in Eq. (2.1.5), the boundary conditions

derived from Eqs. (2.1.22) and (2.1.23), along with the already prescribed boundary

conditions in Eq. (2.1.11), result in an ill-posed problem. Thus, we conclude that not all

the conditions in Eqs. (2.1.22) and (2.1.23) can be satisfied at the boundary.

2.1.4 Singularly perturbed di!erential model

Here, we redefine the proposed problem by considering the singularly perturbed dif-

ferential equations as

◁1n,x + ◁3n,z → ⇀un,tt = 0, n = 1, 3

▷12,x + ▷32,z + ◁31 → ◁13 → ⇀ j &2,tt = 0




 (2.1.24)

and
↑
2 (◁mn,xx + ◁mn,zz)→ ◁mn = →↽mn,

↑
2 (▷m2,xx + ▷m2,zz)→ ▷m2 = →%m2,




 m = 1, 3 (2.1.25)

with the boundary conditions prescribed on the surface z = 0 as,

◁31
∣∣
z=0

= 0, ◁33
∣∣
z=0

= 0, ▷32

∣∣
z=0

= 0 (2.1.26)


1→ ↑

2

2z
→

↑
3

2

23

2x2 2z


◁11

∣∣∣∣∣
z=0

= 0,


1→ ↑

2

2z
→

↑
3

2

23

2x2 2z


▷12

∣∣∣∣∣
z=0

= 0 (2.1.27)

This suggests that by employing the singularly perturbed di!erential model as defined

above, an equivalence between the di!erential and integral formulation can be obtained

for the non-local force stress ◁11 and couple stress ▷12.

Asymptotic analysis

We shall employ asymptotic analysis to study the behavior of the solutions of the

singularly perturbed di!erential problem presented in Eqs. (2.1.24)→(2.1.27).

To do this, we shall introduce the dimensionless parameter,

ω =
↑

0
,
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The presence of this small parameter ω leads to two distinct scales of behavior in the

di!erential equation. To interprete this behavior, we introduce the following slow and

fast dimensionless variables along the length scale as,

⊋s =
z

0
, ⊋f =

z

↑
.

Here, ⊋s represents the slow behavior of the system, governed by simpler dynamics, while

⊋f captures the rapid changes occurring in the boundary layer of the system due to the

presence of ω.

Further, define the following dimensionless parameters,

ς =
x

0
, t = c2

0
t,

◁mn =
◁mn

µ+ ⇁
, ↽mn =

↽mn

µ+ ⇁
, ▷mn =

▷mn

(µ+ ⇁)0
, %mn =

%mn

(µ+ ⇁)0

J =
j

02
, &2 = &2, um =

um

0
, m, n = 1, 2, 3

Following the approach of Chebakov et al. [203] and Kaplunov et al. [204], we decompose

the non-local force stresses, and couple stresses into slow and fast components as,

for non-local force stresses:

◁11 = p11 + q11

◁31 = p31 + ω q31

◁13 = p13 + ω q31

◁33 = p33 + ω2 q33






(2.1.28)

for non-local couple stresses:
▷12 = r12 + s12

▷32 = r32 + ω s32




 (2.1.29)

where pmn, rmn for m,n = 1, 2, 3 represents the slow-varying components of the force

stresses and couple stresses, respectively, while qmn, smn for m,n = 1, 2, 3 represents the

fast-varying components of force stresses and couple stresses, respectively. In the context

of a micropolar solid, it is significant to acknowledge that the force stresses lose their sym-

metry. Specifically, for slow-varying quantities, we assume that the quantitites pmn ⇒= pnm.

However, in contrast, the fast-varying stress components within the boundary layer retain

symmetry, i.e qmn = qnm. This symmetry vanishes as we move away from the boundary

layer.
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As a result, the governing equations are reformulated into slow and fast-varying compo-

nents, yielding the following expressions,

ϖp1n

ϖ1
+ ϖp3n

ϖ⊋s
= ϖ

2
ũn

ϖ t̃2
, ϖq1m

ϖ1
+ ϖq3m

ϖ⊋f
= 0

ϖr12
ϖ1

+ ϖr32
ϖ⊋s

+ p31 → p13 = J ϖ
2%̃2

ϖ t̃2
, ϖs12

ϖ1
+ ϖs32

ϖ⊋f
= 0





(2.1.30)

and
ω2
(

ϖpmn

ϖ12 + ϖ
2
pmn

ϖ⊋2
s

)
→ pmn = →↽mn, ω2 ϖ

2
qmn

ϖ12 + ϖ
2
qmn

ϖ⊋2
f

→ qmn = 0

ω2
(

ϖrm2
ϖ12 + ϖ

2
rmn

ϖ⊋2
s

)
→ rmn = →%mn, ω2 ϖ

2
smn
ϖ12 + ϖ

2
smn

ϖ⊋2
f

→ smn = 0





(2.1.31)

with

↽11 = α2
1

ϖũ1
ϖ1

+ (α2
1 → 2 + α2

2)
ϖũ3
ϖ⊋s

↽13 =
ϖũ3
ϖ1

+ (1→ α2
2)

ϖũ1
ϖ⊋s

+ α2
2
&2

↽31 =
ϖũ1
ϖ⊋s

+ (1→ α2
2)

ϖũ3
ϖ1

→ α2
2
&2

↽33 = α2
1

ϖũ3
ϖ⊋s

+ (α2
1 → 2 + α2

2)
ϖũ1
ϖ1

%12 = α2
3 J

ϖ%̃2
ϖ1

%32 = α2
3 J

ϖ%̃2
ϖ⊋s






(2.1.32)

subjected to the boundary conditions,

p31
∣∣∣
⊋s=0

+ ω q31
∣∣∣
⊋f=0

= 0,

p33
∣∣∣
⊋s=0

+ ω2 q33
∣∣∣
⊋f=0

= 0,

r32
∣∣∣
⊋s=0

+ ω s32
∣∣∣
⊋f=0

= 0

p11
∣∣∣
⊋s=0

+ q11
∣∣∣
⊋f=0

→ ω ϖp11

ϖ⊋s

∣∣∣
⊋s=0

→
ϖq11

ϖ⊋f

∣∣∣
⊋f=0

→
↼
2

2
ϖ
3
q11

ϖ12 ϖ⊋f

∣∣∣
⊋f=0

= 0

r12
∣∣∣
⊋s=0

+ s12
∣∣∣
⊋f=0

→ ω ϖr12
ϖ⊋s

∣∣∣
⊋s=0

→
ϖs12
ϖ⊋f

∣∣∣
⊋f=0

→
↼
2

2
ϖ
3
s12

ϖ12 ϖ⊋f

∣∣∣
⊋f=0

= 0






(2.1.33)

where α1 =
c1
c2
, α2 =

c3
c2
, α3 =

c4
c2

are the dimensionless quantities.

The quantities pmn, qmn, ↽mn, rmn, smn, %mn, un, &2 are now expanded in an asymptotic

series of the form,

g = g(0) + ω g(1) + ω2 g(2) + . . . (2.1.34)
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where g ⇔ {pmn, qmn, ↽mn, rmn, smn, %mn, un, &2}.

As a result of the asymptotic expansion sought in Eq. (2.1.34), we can rewrite the Eqs.

(2.1.30)→(2.1.33) for di!erent asymptotic orders i = 0, 1, 2, . . . , as,

ϖp
(i)
1n

ϖ1
+ ϖp

(i)
3n

ϖ⊋s
= ϖ

2
ũ
(i)
n

ϖ t̃2
, ϖq

(i)
1m

ϖ1
+ ϖq

(i)
3m

ϖ⊋f
= 0

ϖr
(i)
12

ϖ1
+ ϖr

(i)
32

ϖ⊋s
+ p(i)31 → p(i)13 = J ϖ

2%̃
(i)
2

ϖ t̃2
, ϖs

(i)
12

ϖ1
+ ϖs

(i)
32

ϖ⊋f
= 0





(2.1.35)

and

ϖ
2
p
(i→2)
mn

ϖ12 + ϖ
2
p
(i→2)
mn

ϖ⊋2
s

→ p(i)mn = →↽(i)
mn,

ϖ
2
q
(i→2)
mn

ϖ12 + ϖ
2
q
(i)
mn

ϖ⊋2
f

→ q(i)mn = 0

ϖ
2
r
(i→2)
m2

ϖ12 + ϖ
2
r
(i→2)
mn

ϖ⊋2
s

→ r(i)mn = →%(i)
mn, ϖ

2
s
(i→2)
mn

ϖ12 + ϖ
2
s
(i)
mn

ϖ⊋2
f

→ s(i)mn = 0





(2.1.36)

with

↽(i)
11 = α2

1
ϖũ

(i)
1

ϖ1
+ (α2

1 → 2 + α2
2)

ϖũ
(i)
3

ϖ⊋s

↽(i)
13 = ϖũ

(i)
3

ϖ1
+ (1→ α2

2)
ϖũ

(i)
1

ϖ⊋s
+ α2

2
&(i)
2

↽(i)
31 = ϖũ

(i)
1

ϖ⊋s
+ (1→ α2

2)
ϖũ

(i)
3

ϖ1
→ α2

2
&(i)
2

↽(i)
33 = α2

1
ϖũ

(i)
3

ϖ⊋s
+ (α2

1 → 2 + α2
2)

ϖũ
(i)
1

ϖ1

%(i)
12 = α2

3 J
ϖ%̃

(i)
2

ϖ1

%(i)
32 = α2

3 J
ϖ%̃

(i)
2

ϖ⊋s






(2.1.37)

and the boundary conditions at the surface ⊋s = ⊋f = 0 as,

p(i)31

∣∣∣
⊋s=0

+ q(i↑1)
31

∣∣∣
⊋f=0

= 0,

p(i)33

∣∣∣
⊋s=0

+ q(i↑2)
33

∣∣∣
⊋f=0

= 0,

r(i)32

∣∣∣
⊋s=0

+ s(i↑1)
32

∣∣∣
⊋f=0

= 0

p(i)11

∣∣∣
⊋s=0

+ q(i)11

∣∣∣
⊋f=0

→
ϖp

(i→1)
11
ϖ⊋s

∣∣∣
⊋s=0

→
ϖq

(i)
11

ϖ⊋f

∣∣∣
⊋f=0

→
1
2

ϖ
3
q
(i→2)
11

ϖ12 ϖ⊋f

∣∣∣
⊋f=0

= 0

r(i)12

∣∣∣
⊋s=0

+ s(i)12

∣∣∣
⊋f=0

→
ϖr

(i→1)
12
ϖ⊋s

∣∣∣
⊋s=0

→
ϖs

(i)
12

ϖ⊋f

∣∣∣
⊋f=0

→
1
2

ϖ
3
s
(i→2)
12

ϖ12 ϖ⊋f

∣∣∣
⊋f=0

= 0






(2.1.38)
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Comparing the leading order terms in Eqs. (2.1.36), we have

p(0)
mn

= ↽(0)
mn

, r(0)
mn

= %(0)
mn

(2.1.39)

22q(0)mn

2⊋2
f

→ q(0)
mn

= 0,
22s(0)mn

2⊋2
f

→ s(0)
mn

= 0 (2.1.40)

The di!erential equations in Eqs. (2.1.40) are solved for the decaying solution to obtain,

q(0)
mn

= Q(0)
mn

(
ς, t̃

)
e↑⊋f , s(0)

mn
= S(0)

mn

(
ς, t̃

)
e↑⊋f (2.1.41)

where the values for some of the coe”cients Q(0)
mn can be easily obtained using Eqs.

(2.1.38)(iv) and (2.1.35) as,

Q(0)
11 = →

1

2
↽(0)
11

∣∣∣
⊋s=0

, Q(0)
31 = →

1

2

2↽(0)
11

2ς

∣∣∣∣∣
⊋s=0

, Q(0)
33 = →

1

2

22↽(0)
11

2ς2

∣∣∣∣∣
⊋s=0

(2.1.42)

The values of S(0)
mn evaluated from the leading order term analysis are,

S(0)
12 = →

1

2
%(0)
12

∣∣∣
⊋s=0

, S(0)
32 = →

1

2

2%(0)
12

2ς

∣∣∣∣∣
⊋s=0

(2.1.43)

As a result, the boundary conditions at the leading order becomes,

↽(0)
31 = 0, ↽(0)

33 = 0, %(0)
32 = 0 (2.1.44)

which is the classical boundary conditions in a local micropolar elastic semi-infinite

medium.

Further analysing the first order terms at i = 1 for Eq. (2.1.36), we get

p(1)
mn

= ↽(1)
mn

, r(1)
mn

= %(1)
mn

, (2.1.45)

22q(1)mn

2⊋2
f

→ q(1)
mn

= 0. (2.1.46)

The solution to the di!erential equation in Eq. (2.1.46) takes the form,

q(1)
mn

= Q(1)
mn

(
ς, t̃

)
e↑⊋f , (2.1.47)

52



where

Q(1)
11 = →

1
2

(
↽(1)
11

∣∣∣
⊋s=0

→
ϖ◁̃

(0)
11

ϖ⊋s

∣∣∣
⊋s=0

)

Q(1)
31 = →

1
2

(
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(2.1.48)

Moreover, using the boundary conditions in Eq. (2.1.38), the values of S(1)
mn is obtained

as,

S(1)
12 = →

1
2

(
%(1)
12

∣∣∣
⊋s=0

→
ϖ◁̃
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
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(2.1.49)

Subsequently, the boundary conditions at the first order results in,

↽(1)
31 →

1

2

2↽(0)
11

2ς
= 0, ↽(1)

33 = 0, %(1)
32 →

1

2

2%(0)
12

2ς
= 0 (2.1.50)

It is noteworthy that in the first-order boundary conditions of a non-local semi-infinite

medium, an additional term dependent on ↽11 appears.

Now, at the second order, the Eqs. (2.1.36) can be expressed using Eq. (2.1.40) as

↽(2)
mn + ϖ

2
◁̃
(0)
mn

ϖ12 + ϖ
2
◁̃
(0)
mn

ϖ⊋2
s
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%(2)
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ϖ12 + ϖ
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(0)
32

ϖ⊋2
s

= r(2)32





(2.1.51)

This rewrites the equation of motion presented in Eq. (2.1.35) as,

ϖ◁̃
(2)
1n

ϖ1
+ ϖ◁̃

(2)
3n
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ũ
(0)
n

ϖ12 + ϖ
2
ũ
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)
.
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(2.1.52)
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As a result, the boundary conditions at the second order can be written using Eq. (2.1.38)

as,

↽(2)
31 + ϖ

2
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31
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ϖ⊋2
s

→
1
2

(
ϖ◁̃

(1)
11

ϖ1
→

ϖ
2
◁̃
(0)
11

ϖ⊋s ϖ1

)
= 0,

↽(2)
33 + ϖ

2
◁̃
(0)
33

ϖ12 + ϖ
2
◁̃
(0)
33

ϖ⊋2
s

→
1
2

ϖ
2
◁̃
(0)
11

ϖ12 = 0,

%(2)
32 + ϖ

2&̃
(0)
32

ϖ12 + ϖ
2&̃

(0)
32

ϖ⊋2
s

→
1
2

(
ϖ&̃

(1)
12

ϖ1
→

ϖ
2&̃

(0)
12

ϖ⊋s ϖ1

)
= 0.






(2.1.53)

Using the fact that, f (1)
⇑

1
↼
f, f (2)

⇑
1
↼2
f for f ⇔ {↽mn, %mn}, the boundary value

problem can now be given as,

ϖ◁̃1n
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(2.1.54)

subjected to,
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(2.1.55)

Refined boundary value problem

After recasting the refined boundary conditions in terms of the original variables em-

ployed throughout the analysis, the governing equations describing Rayleigh wave prop-

agation on the surface of a non-local micropolar semi-infinite medium can be expressed

as:

ϖ◁11
ϖx

+ ϖ◁31
ϖz

= ⇀ (1→ ↑
2
↗

2) ϖ
2
u1

ϖt2
,

ϖ◁13
ϖx

+ ϖ◁33
ϖz

= ⇀ (1→ ↑
2
↗

2) ϖ
2
u3

ϖt2
,

ϖ&12
ϖx

+ ϖ&32
ϖz

+ ↽31 → ↽13 = ⇀ j (1→ ↑
2
↗

2) ϖ
2%̃2
ϖt2

,


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(2.1.56)
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with the refined boundary conditions prescribed at the surface z = 0 as,
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(2.1.57)

Dispersion relations

Substitutition of the solutions obtained for the displacement potentials and microro-

tation components in Eq. (2.1.10) into the refined boundary conditions in Eq. (2.1.57)

gives the system of linear equations in P,Q and R.

This system is solved for non-trivial solution by ignoring the terms of order greater than

or equal to O(ω2) to obtain the dispersion relations as follows,

(
2→ α2

2

)2
r10 r20 →

(
1 + r220 → α2

2

)2
+ ω


1

2
r20

(
1→ r210

) (
2→ α2

2

) (
2→ 2α2

1 → α2
2

)
= 0,

(2.1.58)

r30 →
1

2
ω = 0. (2.1.59)

This suggests the existence of two modes of Rayleigh waves that can propagate in a

non-local micropolar elastic semi-infinite medium, with one mode arising solely from the

micropolarity of the medium and disappearing in its absence.

If v is the velocity of Rayleigh waves propagating in a non-local micropolar elastic semi-

infinite medium, then the dispersion relations given in Eqs. (2.1.58) and (2.1.59) can be

rewritten as,

(
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√
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√
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= 0,

(2.1.60)

√

1→
v2

c24

(
1→

2c23
jω2

)
→

1

2
ς = 0. (2.1.61)

As expected, the dispersion relations obtained at the leading order align exactly with

the previously established results for a local micropolar elastic semi-infinite medium (see,

Eringen et al. [60], Rayleigh [14]).

Now, let c = v

c2
be the dimensionless phase velocity of Rayleigh waves propagating in
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a nonlocal micropolar elastic solid. Also, let d = ω

µ
denote the dimensionless parameter

characterizing the micropolar constant within the semi-infinite medium domain. It follows

that α2
2 can be approximated by d with an error of O(d2).

As a result, the dispersion equation in Eq. (2.1.60) can be rewritten as,

(2→ d)2
√
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c2
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1

⇐
1→ c2 →

(
2→ d→ c2

)2
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
1

2
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(
2→ 2α2

1 → d
) c2

α2
1

⇐
1→ c2


= 0

(2.1.62)

, in which α2
1 =

2 (1↑2)
1↑2 2 relating with Poisson’s ratio, ϑ.

To understand explicitly the nonlocal and micropolar e!ects on the phase velocity of the

Rayleigh waves, we shall expand c in an asymptotic series of the form upto an error of

O(ω2) and O(d2),

c = c(0)
r

+ d c(0)
m

+ ω
(
c(1)
r

+ d c(1)
m

)
+ . . . , (2.1.63)

where c(0)r = cr is the dimensionless phase velocity of Rayleigh waves propagating in an

elastic semi-infinite medium in absence of both nonlocal and micropolar e!ects.

Expanding Eq. (2.1.62) in a Taylor series about the point c = cr and using the asymptotic

series, we get the values of the corrections as,
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It can be easily verified that the micropolar mode of Rayleigh waves corresponding to Eq.

(2.1.61) propagates in a non-local micropolar semi-infinite medium with a velocity,

v =

√

c24

(
1→

ω2

4

)
+

2 c23
jk2

. (2.1.67)

This equation clearly highlights the dispersive nature of the wave mode even in the absence

of nonlocal elasticity.
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2.1.5 Graphical discussions

Dispersion analysis

Dispersion plots are generated to analyze the wave behavior. Figure 2.1.1 represents

the phase velocity curves for the mode corresponding to Eq. (2.1.58) in a nonlocal mi-

cropolar semi-infinite medium. In a purely local model (without nonlocal elasticity), the

wave is non-dispersive (constant velocity). However, the presence of nonlocality intro-

duces dispersion, as shown by the first-order approximation in the dispersion relation,

and the corresponding variation in phase velocity with wave number is depicted in Figure

2.1.1.
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Figure 2.1.1: Corrected phase velocity curves for one of the modes corre-

sponding to elastic counterpart

Furthermore, the micropolar mode of Rayleigh waves exhibits dispersion in both local

and nonlocal elasticity scenarios. Figure 2.1.2 illustrates this by plotting the phase velocity

variation versus wavenumber. Curve 1 represents the local elastic case, while curves 2, 3,

and 4 correspond to the nonlocal elastic case based on the first-order approximation in

the dispersion relation provided in Eq. (2.1.59).
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Figure 2.1.2: Corrected phase velocity curves for micropolar dispersive

mode for di!erent values of l = a
2

j

Sensitivity analysis

A sensitivity analysis is then performed to understand how small perturbations in

micropolar or nonlocal e!ects a!ect the wave propagation. This helps us to assess the

robustness of our model.

The linear relationship observed in the Figure 2.1.3(a) indicates a direct and predictable

interaction between the micropolar parameter d and the sensitivity of the phase velocity

to changes in the non-local parameter ω. The negative values of dc

d↼
throughout suggests

that an increase in the nonlocal paramter ω consistently leads to a decrease in the phase

velocity c. This finding is significant as it highlights the dampening e!ect of the nonlocal

properties on wave propagation velocity.

The sensitivity analysis graph of dc

d↼
versus Poisson’s ratio ϑ as described in Figure 2.1.3(b)

for varying micropolar parameter values reveals important interactions in the non-local

micropolar model. The consistently negative dc

d↼
demonstrates a general reduction in phase

velocity with increasing ω. The moderation e!ect observed with increasing ϑ highlights

that the materials with higher Poisson’s ratios reduce the sensitivity to non-local e!ects.

Furthermore, the convergence of curves at higher ϑ values signifies that the influence of

micropolarity diminishes in materials with high Poisson’s ratios.
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Figure 2.1.3: Variation of the sensitivity of phase velocity c with respect to

nonlocal elastic parameter ω as a function of (a) micropolarity parameter d

(or ε) (b) Poisson’s ratio ϑ

The positive values of dc

dd
in Figure 2.1.4(a) indicates that micropolar e!ects in the

medium always contribute to an increase in the phase velocity of Rayleigh waves. How-

ever, the negative slope of the graph shows that the rate of this increase diminishes as

the nonlocal parameter ω grows. In practical terms, this means that while micropolar

elasticity inherently increases wave speed, the presence of nonlocal e!ects can moderate

this increase. The negative slope further illustrates that the impact of nonlocal e!ects on

reducing phase velocity becomes more significant as the micropolar parameter d increases

in the medium.

The sensitivity analysis of dc

dd
with respect to Poisson’s ratio ϑ as depicted in Figure

2.1.4(b) for varying non-local parameter values reveals significant insights into the inter-

play between material properties, non-local e!ects, and micropolar characteristics. The

consistently positive dc

dd
indicates that the phase velocity increases with the micropolar

parameter across all examined Poisson’s ratios. However, the decreasing dc

dd
with higher

ϑ suggests that the impact of micropolarity on phase velocity weakens as Poisson’s ratio

increases. Moreover, the convergence of curves at higher ϑ values signifies that, in ma-

terials with high Poisson’s ratios, the e!ect of the non-local parameter on phase velocity

becomes minimal.
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Figure 2.1.4: Variation of the sensitivity of phase velocity c with respect to

micropolar parameter d(or ε) as a function of (a) nonlocal elastic parameter

ω (b) Poisson’s ratio ϑ

2.1.6 Conclusions

This study demonstrates that the equivalence between nonlocal integral and di!eren-

tial formulations breaks down for Rayleigh waves in a nonlocal micropolar semi-infinite

medium. The analysis reveals that this equivalence can only be restored with specific

additional boundary conditions, particularly for certain force and couple stress distribu-

tions. The presence of a heterogeneous boundary layer near the surface necessitates refined

boundary conditions, leading to second-order corrections to the traditional traction-free

and couple stress-free conditions. These corrections account for nonlocal e!ects and accu-

rately capture boundary layer influences. The refined conditions yield nonlocal-corrected

dispersion relations, revealing two distinct Rayleigh wave modes, one uniquely due to the

micropolar nature of the medium. The findings highlight the significant role of micropolar

e!ects, especially in materials with high Poisson’s ratios, while nonlocal e!ects are less

influential in such cases.
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2.2 Application in a nonlocal micropolar viscoelastic medium⇓

Building upon the refined nonlocal traction-free boundary conditions established in

the previous sub-chapter, this section investigates Rayleigh wave propagation in a vis-

coelastic medium within the framework of nonlocal and micropolar elasticity. We derive

leading-order nonlocal corrected dispersion relations, revealing distinct modes, includ-

ing micropolar-specific modes and nonlocal quasi-elastic modes. We analyze two specific

viscoelastic models and examine the influence of material and nonlocal parameters on

Rayleigh wave propagation, including particle trajectories. MATLAB simulations are

carried out to visualize phase velocity behavior and understand the interplay of various

parameters across all identified modes.

2.2.1 Formulation of the problem

Figure 2.2.1: (a) Geometry of the model (b) A unit micropolar cell display-

ing force stresses and couple stresses

Consider the propagation of Rayleigh wave fields along x→direction having the dis-

placement vector u = (u1, 0, u3) and the microrotation vector ” = (0,&2, 0). Since the

∗
Published in ZAMM Journal of Applied Mathematics and Mechanics/Zeitschrift für Ange-

wandte Mathematik und Mechanik (Wiley), (2024), DOI: 10.1002/zamm.202400604
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motion of Rayleigh wave fields is confined to the xz→plane, we have ϖ

ϖy
↖ 0 in this prob-

lem. The waves are propagating over the free surface z = 0 of the nonlocal micropolar

viscoelastic medium occupying the semi-infinite medium z ↔ 0 as described in Figure

2.2.1.

Introducing the conventional scalar potential φ and a vector potential ω = (↼1,↼2,↼3)

for the displacement vector through,

u1 =
2φ

2x
→

2↼2

2z
, u3 =

2φ

2z
+

2↼2

2x
,

the field equations given in Eq. (1.3.103) may be reduced as,

($+ 2µ+ ⇁)↗2φ→ ⇀ (1→ ↑
2
↗

2) φ̈ = 0,

(µ+ ⇁)↗2↼2 + ⇁&2 → ⇀ (1→ ↑
2
↗

2) ↼̈2 = 0,

ϱ↗2&2 → ⇁↗2↼2 → 2⇁&2 → ⇀j (1→ ↑
2
↗

2) &̈2 = 0.





(2.2.1)

Assume a suitable complex notation for scalar, vector potentials, and microrotation vector

components with the real angular frequency ϖ = k

s
as

{φ,↼2,&2} = {X ,Y , 6 Y}eiε(sx+qz↑t), (2.2.2)

where X ,Y are the complex amplitudes and s is the complex slowness vector component

along x→direction with Re(s) > 0 and Im(s) ↙ 0 ensuring the decay of the amplitude

along positive x→direction; k is the wavenumber; q, 6 are the complex variables to be

determined.

Substituting the field form given in Eq. (2.2.2) into the reduced field equations given in

Eq. (2.2.1), we get

φ(x, z, t) = X eiε(sx+q1z↑t),

↼2(x, z, t) = Y1 eiε(sx+q2z↑t) + Y2 eiε(sx+q3z↑t),

&2(x, z, t) = 6 Y2 eiε(sx+q3z↑t),





(2.2.3)

where

q1 =

√
↽

!+ 2µ+ ε→ ↽↑2⇀2 → s2, q2 =

√
↽

µ+ ε→ ↽↑2⇀2 → s2

q3 =

√
↽j⇀2 → 2ε

⇀2 (ϖ → ↽j↑2⇀2)
→ s2, ⇁ =

⇀
2(↽→ (µ+ ε→ ↽↑2

⇀
2)(q23 + s

2))
ε

.
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As a result, the final expressions for the displacement and microrotation vector fields

for Rayleigh wave fields propagating in a nonlocal micropolar viscoelastic medium are as

follows:

u1(x, z, t) = iϖ (sX eiεq1z → q2Y1 eiεq2z → q3Y2 eiεq3z) eiε(sx↑t),

u3(x, z, t) = iϖ (q1X eiεq1z + sY1 eiεq2z + sY2 eiεq3z) eiε(sx↑t),

&2(x, z, t) = 6 Y2 eiεq3z eiε(sx↑t).





(2.2.4)

2.2.2 Dispersion relations

In a mechanical stress-free surface, the nonlocal force stress components and couple

stress components at the boundary of the viscoelastic semi-infinite medium z = 0 vanishes.

This means,

◁31 = 0, ◁33 = 0, ▷32 = 0, at z = 0. (2.2.5)

Refined boundary conditions

To account for the nonlocal boundary layer localized near the surface, a modified

di!erential model was developed by Kaplunov et al. [204, 205] for an isotropic elastic

semi-infinite medium. This theory could further be extended for a nonlocal micropolar

semi-infinite medium, and as a result, the refined boundary conditions for such a medium

can be determined as follows:

↽31 →
↑

2

2↽11

2x
+ ↑

2

(
22↽31

2x2
+

22↽31

2z2
+

1

2

22↽11

2x2z

)
= 0, at z = 0, (2.2.6)

↽33 → ↑
2

(
1

2

22↽11

2x2
→

22↽33

2x2
→

22↽33

2z2

)
= 0 at z = 0, (2.2.7)

%32 →
↑

2

2%12

2x
+ ↑

2

(
22%32

2x2
+

22%32

2z2
+

1

2

22%12

2x 2z

)
= 0 at z = 0. (2.2.8)

On inserting the expressions of stresses using Eqs. (2.2.4) into Eqs. (2.2.6)-(2.2.8), a

homogeneous linear system of equations with the coe”cient matrix denoted by A is ob-

tained for X , Y1 and Y2 (see Appendix A). Assuming a long-wave regime in which the

small parameter becomes ω = ↑ k, this system of linear homogeneous equations can be

solved for a non-trivial solution, and a dispersion relation can be obtained within an error
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of O(ω2).

s2 q10 q20 (β → 2)2 +
(
q220 + s2 (β → 1)

) (
α q210 + s2(α + β → 2)

)

→ ω

(
i s

2
(2→ β) (2α + β → 2)

(
q210 + s2

)
q20

)
= 0, (2.2.9)

s ω+ 2 i q30 = 0, (2.2.10)

where,

q10 =

√
↽

!+ 2µ+ ε
→ s2, q20 =

√
↽

µ+ ε
→ s2, q30 =

√
↽j⇀2 → 2ε

⇀2ϖ
→ s2, α =

!+ 2µ+ ε

µ+ ε
, β =

ε

µ+ ε
.

Eqs. (2.2.9) and (2.2.10) are the dispersion relations obtained for the Rayleigh wave

fields propagating in a nonlocal micropolar viscoelastic medium. It is essential to empha-

size that Rayleigh waves propagating in a nonlocal micropolar medium yield two modes:

one, as described in Eq. (2.2.9), mimics the elastic mode of the classical elastic medium,

while the mode corresponding to Eq. (2.2.10) solely arise due to micropolarity in the

medium. This mode ceases to exist when micropolarity is absent.

Analysis of dispersion modes

On introducing some dimensionless quantities,

c =
⇀

s2 (2µ+ ⇁)
, α1 =

2µ+ ⇁

$+ 2µ+ ⇁
, α2 =

2µ+ ⇁

µ+ ⇁
,

the dispersion relation for the first mode described in Eq. (2.2.9) becomes,

q10 q20 + s2(c→ 1)2 → ω

(
i

2
s c q20(2→ α1)

)
= 0, (2.2.11)

As expected, the leading order (for ω = 0) yields the dispersion equation for Rayleigh

waves in a micropolar viscoelastic solid.

By selecting the positive real x→axis as the branch cut, we guarantee that the complex

slowness vector s has the desired positive real and imaginary components. Subsequently,

employing a Taylor series expansion of q20 around c = 0, truncated to the first-order term,

and squaring the resulting expression to eliminate the square roots, we arrive at a cubic

equation in c as

c3 [→2 + ω (α1α2 → 2α2)] + c2 [8 + ω (→2α2α1 → 2α1 + 4α2 + 4)]

+c [2α1α2 → 12 + ω (α2α1 + 4α1 → 2α2 → 8)] + 8→ 2α1 → 2α2 + ω (4→ 2α1) = 0. (2.2.12)
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It is very important to note that not all the roots of Eq. (2.2.12) satisfy the dispersion

equation given in Eq. (2.2.11). Some non-admissible (spurious) roots are introduced due

to the squaring of the dispersion equation given in Eq. (2.2.11). Thus, we can conclude

that a root c of Eq. (2.2.12) is admissible if for such a c,

• the dispersion equation (2.2.11) is satisfied,

• Re(s) > 0 and Im(s) ↙ 0 (as amplitude does not increase with the wave propaga-

tion along x→direction),

• Im(q10) < 0, Im(q20) < 0 (as Rayleigh surface wave decay along the depth from

the surface).

Additionally, we will simplify the expression in Eq. (2.2.10) to examine the micropolar

mode. This yields the complex slowness component s as:

s = 2

√
⇀jϖ2 → 2⇁

(4→ ω2)ϖ2 ϱ
. (2.2.13)

The reciprocal of the expression in Eq. (2.2.13) represents the velocity of the micropolar

mode of the Rayleigh waves propagating in a nonlocal micropolar viscoelastic medium.

Now, for a purely micropolar elastic medium in the absence of nonlocal elasticity (ω = 0),

the velocity v, which is the reciprocal of the slowness component s in any medium, can

be given as,

v

v2
=

√
2⇁

µjk2
+

ϱ

µj
⇑

√
2⇁

µjk2
(2.2.14)

as the second term inside the square root is indeed a very smaller quantity. Here v2 =
√

µ

ϑ
.

This velocity clearly matches exactly with the results of Suhubi and Eringen [106].

Further, it is intriguing to observe that these two distinct modes of Rayleigh wave fields,

one of which is solely due to micropolarity in the viscoelastic medium, do not coexist in

the same space for an extended period within a longer wavelength regime. This fact could

be simply proven by the method of contradiction.

If the determinant of the coe”cient matrix, |A| = 0, implying a11a22→a12a21 = 0 and

a33 = 0, then Y2 that explicitly determines the amplitude of the micro-rotation vector

component &2 can never be zero (for if Y2 = 0, then &2 = 0 suggesting that the micro-

rotation vanishes which is absurd). For Y2 = t3( ⇒= 0), the system has infinitely many

solutions due to the vanishing determinant of the coe”cient matrix. Now, by setting

Y1 = t2( ⇒= 0) and determining X from the system, we arrive at t3 = 0, a contradiction.
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Thus, we conclude that both Rayleigh modes do not coexist in the same space. Physically,

this means that one of the modes might propagate faster or slower than the other, leading

to a spatial separation between them. This dispersion mismatch prevents the coexistence

of both modes. In the following sections, we will analyze the velocities of these modes in

detail.

2.2.3 Particle motion and dynamics

In this section, we will explore both the trajectory and the behavior exhibited by

oscillating particles of a nonlocal micropolar viscoelastic solid during the propagation of

Rayleigh wave fields.

Particle trajectories

For the present problem considered in xz→plane, the displacement components are

obtained as the resultant of the superposition of plane-polarized scalar and vector poten-

tials. Every point in the viscoelastic semi-infinite medium will trace a curve, and the locus

of this curve is determined by computing the real parts of the displacement components,

u1 and u3. Now, from Eq. (2.2.4)

{Re(u1),Re(u3)} = →ϖ {|A1(z)| sin(51), |A3(z)| sin(53)} e
↑Im(s)εx, (2.2.15)

where

A1(z) = s eiεq1z X → q2 e
iεq2z Y1, A3(z) = q1 e

iεq1z X + s eiεq2z Y1, (2.2.16)

and 5i = arg(Ai(z)) + ϖ (Re(s)→ t) for i = 1, 3.

At a given coordinate x and z, the conic traced by the particles of Rayleigh wave fields is

obtained by eliminating t from Eq. (2.2.15)). This yields,

[P0 Re(u1)]
2 + [Q0 Re(u3)]

2
→ 2 cos 4 P0 Q0 Re(u1)Re(u3) = sin2 4, (2.2.17)

where P0 = →
1

ε|A1(z)|e→Im(s)ωx , Q0 = →
1

ε|A3(z)|e→Im(s)ωx and 4 = arg [A1(z)]→ arg [A3(z)].

Also, it is easy to verify that the discriminant of Eq. (2.2.17) is negative for all 4 ⇒= 0.

This implies that the particles of the Rayleigh wave field in any mode trace an elliptical

orbit for all 4 ⇒= 0.

When 4 = 0, the ellipse degenerates into a straight line, as can be seen from Eq. (2.2.16).

We further attempt to rewrite the equation of the ellipse given in Eq. (2.2.17) to a

standard form by deriving the tilted angle of the ellipse with respect to z→axis. By
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choosing an appropriate rotation of the coordinates, it is possible to determine the angle

of rotation, denoted by β as

β =






1
2 cot

↑1
(

Q
2
0↑P

2
0

2 cos ▷ P0 Q0

)
Q0 ⇒= P0,

0

4 Q0 = P0.

This angle of rotation, β ( ⇒= 0

4 ) determines the tilt of the elliptical path of Rayleigh wave

field particles and depends on complex angular frequency ϖ, nonlocal elastic parameter ↑

and complex moduli of the viscoelastic medium. When β = 0

4 , a circular path is traced

by the oscillating particles during Rayleigh wave field propagation. Using this angle of

rotation β, the standard form of the ellipse traced by the particles can be given as,

(
Re(u1)

P

)2

+

(
Re(u3)

Q

)2

= 1, (2.2.18)

where

P = sin 4
(
P 2
0 cos2 β +Q2

0 sin2 β → 2P0 Q0 cos 4 sin β cos β
)→1

2 ,

Q = sin 4
(
P 2
0 sin2 β +Q2

0 cos2 β + 2P0 Q0 cos 4 sin β cos β
)→1

2 .

Prograde and retrograde dynamics

To determine the type of elliptical motion (prograde or retrograde) of the Rayleigh

wave field particles, we need to realize the nature of the time derivative of the polar angle.

Let us define this polar angle ς as,

ς = arg


Re(u1)

Re(u3)


or ς = tan↑1


Re(u1)

Re(u3)


.

A time derivative of this polar angle ς is evaluated by using Eq. (2.2.15) as,

dς

dt
=

ϖ

sin2 53 + sin2 51
·
|A1(z)|

|A3(z)|
· sin 4.

Note that when sin 4 < 0 (> 0), the polar angle ς decreases (increases) with time, sug-

gesting that the Rayleigh wave field particles in an elliptical orbit will exhibit a prograde

(retrograde) motion.

Moreover, on simplifying the term sin 4, it can be further inferred that the elliptical orbit

describes a prograde (retrograde) motion if

Im

A1(z)A3(z)


= Re[A1(z)] Im[A3(z)]→Re[A3(z)] Im[A1(z)] < 0 (> 0). (2.2.19)
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Further, the dispersive properties of Rayleigh waves that arise due to the elastic coun-

terpart of the medium for two specific viscoelastic solids in detail: (i) an incompressible

solid and (ii) a Poisson solid. Both of these solids are assumed to be meeting criteria akin

to that of a Hardtwig solid [267] as Re(µ)/Re(K) = Im(µ)/Im(K).

2.2.4 Incompressible solid semi-infinite medium

An incompressible solid preserves its volume when a body deforms; in other words,

there is no volumetric strain in such a medium. This suggests that the bulk modulus is

infinitely very large, or equivalently, $ ≃ ↓.

Mode analysis

Define a new parameter d as, d = µ

µ+ω
. On decomposing the components of d into its

corresponding real and imaginary parts, we have

Re(d) =
Re(µ) (Re(µ) +Re(⇁)) + Im(µ) (Im(µ) + Im(⇁))

(Re(µ) +Re(⇁))2 + (Im(µ) + Im(⇁))2

Im(d) =
Im(µ) (Re(µ) +Re(⇁))→Re(µ) (Im(µ) + Im(⇁))

(Re(µ) +Re(⇁))2 + (Im(µ) + Im(⇁))2

Using the fact that Re(µ)/Re(K) = Im(µ)/Im(K), we get Im(d) = 0 and as a result,

d = Re(d) =
(Re(µ))2 + (Im(µ))2 +Re(µ)Re(⇁) + Im(µ)Im(⇁)

(Re(µ) +Re(⇁))2 + (Im(µ) + Im(⇁))2

which is clearly less than 1.

Thus, we conclude that d is a real number (i.e., d ⇔ R) and falls within the range 0 < d ↔ 1.

Hence, by allowing $ ≃ ↓ in Eq. (2.2.12), the dispersion relation for the Rayleigh waves

in an incompressible solid can be derived, resulting in:

2c3 [→1→ ω (1 + d)] + 4c2 [2 + ω (2 + d)]→ 2c [6 + (d+ 5)ω)] + 6→ 2d+ 4ω = 0, (2.2.20)

with small ω ↙ 0 and 0 < d ↔ 1. A detailed analysis of this equation is conducted to

determine the exact roots of the dispersion relation.

Consider a complex polynomial with real coe”cients in z given by,

h(z) = 2z3 [→1→ ω (1 + d)] + 4z2 [2 + ω (2 + d)]→ 2z [6 + (d+ 5)ω)] + 6→ 2d+ 4ω = 0,

(2.2.21)

satisfying the dispersion relation given in Eq. (2.2.20) at z = c.
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Quasi-elastic mode: Now, according to Descartes’ rule of signs, it is evident that Eq.

(2.2.21) possesses at least one positive real root and no negative real roots. Furthermore,

it is worth recalling that a cubic equation possesses three distinct real roots only if the

polynomial discriminant is strictly positive [268]. Applying this principle, it is easy to

check that the polynomial discriminant for the cubic equation h(z) in Eq. (2.2.21) remains

less than or equal to zero for all possible values of ω and d. Consequently, Eq. (2.2.21) has

to have only one positive real root, say cr and this real root is less than unity for every

possible value of ω and d.

Now, it remains to check if this positive real root satisfies the exact dispersion relation

given in Eq. (2.2.11).

As $ approaches infinity, we observe q1 = ±is. Given that Im(q10) < 0, we can only

assume q10 = →is, considering the fact that Re(s) > 0. Using this value of q10, we could

write the expression for q20 from Eq. (2.2.11) as,

q20 = →is


2(c→ 1)2

2 + ωc (1→ d)


. (2.2.22)

Observe that for c (= cr < 1) ⇔ R and for all the possible values of ω and d, Im(q20) < 0

as Re(s) > 0. In other words, the positive real root of the cubic equation (2.2.20) satisfies

the exact dispersion relation giving rise to a quasi-elastic mode of Rayleigh wave field

propagating in a nonlocal micropolar incompressible solid semi-infinite medium.

Viscoelastic mode: This mode arises due to the complex roots in the dispersion re-

lation in Eq. (2.2.20). It is essential to determine which of the two complex roots of the

cubic equation h(z) in Eq. (2.2.21) satisfies the dispersion relation (2.2.11). It is essential

to verify conditions under which these complex roots will satisfy Im(q2) < 0, Im(q1) < 0.

Checking these conditions is algebraically complicated, thus we consider a numerical

example of an incompressible solid semi-infinite medium with small viscous terms and

thereby determine the conditions for which the viscoelastic mode arises.
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Numerical example

We shall now describe a particular viscoelastic incompressible solid semi-infinite medium

with small viscous terms in detail. We take

µ = µ0(1→ i εa), ⇁ = ⇁0(1→ i εb), (2.2.23)

where ε > 0 is small and 0 < εa < 1. Also, since Re(µ)/Re(K) = Im(µ)/Im(K), we get a = b.

Let us consider a case where µ0 = ⇁0 = 0.4 ↘ 1011 N m↑2, ⇀ = 1740 kg m↑3 and

dimensionless nonlocal elastic parameter ω = 0.04. Then the roots of the dispersion

relation are,

cr = 0.659793,

c1 = 1.65124 + 0.981019 i,

c2 = 1.65124→ 0.981019 i.

Quasi-elastic mode: For the root cr, the value of s for whichRe(s) > 0 can be calculated

as,

s = 0.0001482 + 0.00007412 εa i,

with the condition that εa > 0. Further, we have

q10 = 0.00007412 εa→ 0.0001482 i,

q20 = 0.000008522 εa→ 0.0000170455 i.

As seen in the previous section, the only positive real root of the cubic equation (2.2.21)

satisfies the exact dispersion relation given in Eq. (2.2.11) for every value of d and ω << 1.

The variation of real phase velocity v = ϑ

s2 (µ+ω) of quasi-elastic mode with the material

parameter ω

µ
for di!erent values of small ω is presented in the Figure 2.2.2. The data in

Figure 2.2.2 demonstrates that the phase velocity of Rayleigh waves in the quasi-elastic

mode rises as the material parameter of the micropolar media increases up to a certain

threshold, beyond which it reaches a steady value. Moreover, when micropolarity is absent

in the medium, the y→intercepts o!er insights into the phase velocity at which the wave

propagates. It can be further noted that as the nonlocal parameter of the media increases,

there is a corresponding rise in the phase velocity of the propagating waves.
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Figure 2.2.2: Variation of phase velocity (v) with the material parameter(
ω

µ

)
for di!erent values of ω in an incompressible solid semi-infinite medium
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Figure 2.2.3: Normalized (a) displacement components (Ui) (b) stress com-

ponents (Pi) versus dimensionless depth
(
z

!

)
for a quasi-elastic mode of

Rayleigh waves in an incompressible solid

Figure 2.2.3 illustrates the depth-dependent variation of normalized displacement

Ui = ui
ui0

, i = 1, 3 and stress components Pi = ◁3i
◁0
, i = 1, 3 for Rayleigh wave fields
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propagating in a quasi-elastic mode of an incompressible semi-infinite medium. The nor-

malization of the displacement and stress is based on the respective displacement com-

ponents at z = 0 (i.e., u10, u30) and the stress component ↽11 at z = 0 (↽0), respectively.

As depicted in Figures 2.2.3a and 2.2.3b, the displacement and stress profiles exhibit a

characteristic exponential decay with depth, confirming the localized nature of the wave

energy near the surface.

Viscoelastic mode: For the root c1, the possible value of s that satisfies Re(s) > 0

is

s = 0.00008379 + 0.00001151 εa+ (0.00004189 εa→ 0.00002301) i.

This further gives,

q10 = 0.00004189 εa→ 0.00002301 + (→0.00001151 εa→ 0.00008379) i,

q20 = 0.0001176→ 0.000007153 εa+ (0.00005882 εa+ 0.00001431) i.

It is easy to check that there exists no ε a for which the root c1 satisfies the exact dispersion

relation given in Eq. (2.2.11). Thus, root c1 does not account for any viscoelastic mode

of Rayleigh waves in the medium.

For the root c2, The value of s satisfying Re(s) > 0 can be computed as:

s = 0.00008379→ 0.00001151 εa+ (0.00004189 εa+ 0.00002301) i.

As a result, we have

q10 = 0.00002301 + 0.00004189 εa+ (0.00001151 εa→ 0.00008379) i,

q20 = →0.000007153 εa→ 0.0001176 + (0.0000143075 → 0.0000588204 εa) i.

For c2 to satisfy the dispersion relation in Eq. (2.2.11), we derive the condition on εa

such that Re(s) > 0, Im(q10) < 0, and Im(q20) < 0. This on reduction gives, 0.243241 <

εa < 7.28203.

Therefore, we conclude that the viscoelastic mode of Rayleigh waves propagates only

under the condition that the material parameters specified in Eq. (2.2.23) satisfy

0.243241 < εa < 1.
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In general, a specific critical value of εac(< 1) exists for every d, beyond which the vis-

coelastic mode of the Rayleigh wave can propagate.

Figure 2.2.4 is plotted to understand the variation of these critical values with the ma-

terial parameter d. The analysis indicates that the minimum critical value of εa occurs

for a local non-micropolar solid. Moreover, there is a significant decrease in εac with the

increase in the nonlocal parameter of the medium up to a certain value of d, after which

a reverse behavior is observed. This further validates the existence of specific d and εac

values for which every curve, corresponding to a di!erent nonlocal parameter, intersects.

The phase velocity of Rayleigh wave fields propagating in a viscoelastic mode decreases
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Figure 2.2.4: Variation of critical εac with material parameter d for di!erent

ω

with the increase in the material parameter. This behavior is clearly depicted in Figure

2.2.5, which is in contrast to the behavior observed in the case of Rayleigh waves prop-

agating in a quasi-elastic mode. Furthermore, as the nonlocal parameter of the medium

increases, the phase velocity decreases up to a specific value of d, after which the trend

reverses. In contrast to the quasi-elastic case, Rayleigh waves propagating through a

viscoelastic semi-infinite medium exhibit a more complex depth-dependent behavior as

presented in Figure 2.2.6. While the displacement and stress components still demon-

strate an oscillatory pattern as illustrated in Figure 2.2.6a and 2.2.6b, the amplitude of
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Figure 2.2.6: Normalized (a) displacement components (Ui) (b) stress com-

ponents (Pi) versus dimensionless depth
(
z

!

)
for a viscoelastic mode of

Rayleigh waves in an incompressible solid

these oscillations gradually diminishes with increasing depth. This attenuation of the

wave energy is a direct consequence of the viscoelastic properties of the medium, which
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introduce energy dissipation mechanisms not present in a purely elastic medium. Ulti-

mately, the oscillations decay to zero, confirming the localized nature of the wave field

near the surface.

Particle motion

We will further analyze the type of particle motion (prograde or retrograde) exhibited

by Rayleigh wave field particles propagating in the quasi-elastic and viscoelastic modes

at the surface.

At the surface of an incompressible solid semi-infinite medium, the quantities A1(z) and

A3(z) as defined in Eq. (2.2.16) becomes,

A1(0) = A1 = sX → q2 Y1, and A3(0) = A3 = q1 X + sY1. (2.2.24)

By approximating Eq. (2.2.24) within an error of O(ω2) and incorporating the boundary

conditions in Eqs. (2.2.6)→(2.2.9), a relationship between X and Y1 is derived. Subse-

quently, upon substituting this relation along with the corresponding values of q1 and q2

from Eq. (2.2.22) for an incompressible solid semi-infinite medium, we obtain,

A1 = cs, and A3 = i s c

(
1 + ω

1→ c

)
. (2.2.25)

Quasi-elastic mode: For real c, the quantity

Im
(
A1 A3

)
< 0 (> 0), only when 1→ c < 0 (> 0).

We have the value c < 1 from previous results in a quasi-elastic mode. As a result, the

particles of the Rayleigh wave fields in a quasi-elastic mode maintain their elliptical mo-

tion and remain retrograde for all values of ω and d.

Viscoelastic mode: For a complex root c = Re(c) + i Im(c), the quantity

Im
(
A1 A3

)
< 0 (> 0), only when 1→Re(c) < 0 (> 0).

Thus, we conclude that the particles exhibit a prograde (retrograde) motion correspond-

ingly when Re(c) > 1 (< 1). For the numerical example described in section 2.2.4, the

Rayleigh wave field particles propagating in a viscoelastic mode exhibit a prograde ellip-

tical motion for all possible ω and d.
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2.2.5 Poisson solid semi-infinite medium

In the context of classical elasticity theory, a Poisson solid refers to an isotropic solid

whose elastic constants ($ and µ) are equal. In other words, such as solid has a Poisson

ratio, ϑ = 0.25. Further, extending this concept to micropolar elasticity theory (cf.

Eringen [51]), we have for a Poisson solid, $ = µ+ K/2.

Mode analysis

Similar to the section 2.2.4, we reintroduce the parameter d = µ

µ+ω
lying between 0

and 1 for further analysis. Taking $ = µ+ ω

2 , the dispersion relation in Eq. (2.2.12) now

becomes,

2c3 [→3→ 2ω(1 + d)]+8c2 [3 + ω(2 + d)]→4c [8→ d+ ω(5 + d)]+14→6d+8ω = 0, (2.2.26)

for 0 < ω << 1 and 0 < d < 1.

Let g(z) denotes a complex polynomial with the real coe”cients given by,

g(z) = 2z3 [→3→ 2ω(1 + d)] + 8z2 [3 + ω(2 + d)]→ 4z [8→ d+ ω(5 + d)] + 14→ 6d+ 8ω,

(2.2.27)

and has roots at z = c. Now, we will examine the values of c that give rise to quasi-elastic

and viscoelastic modes of Rayleigh wave fields during their propagation in a nonlocal

micropolar viscoelastic medium.

It can be easily verified from Descartes’ rule of signs that Eq. (2.2.27) has at least one

positive real root and no negative real roots for all the possible values of small ω and d.

Moreover, evaluation of the polynomial discriminant yields the range of values for ω and

d where Eq. (2.2.27) possesses either one or all positive real roots. The graph of the

polynomial discriminant for di!erent values of ω and d is plotted in Figure 2.2.7.
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Figure 2.2.7: Nature of roots c for di!erent values of ω and d

Figure 2.2.7 indicates a critical value of the material parameter d for each fixed ω, be-

yond which the polynomial discriminant is consistently positive. This implies that there

exists a d corresponding to every ω where the cubic equation in Eq. (2.2.27) possesses

exactly three positive real roots. To distinguish between the root nature, the graph is

divided into two regions: Region I and Region II. In Region I, the cubic equation has one

positive real root and two complex roots, while in Region II, it has all three positive real

roots.

Now, we shall investigate the conditions under which the real roots of Eq. (2.2.27) satisfy

the exact dispersion relation in Eq. (2.2.11).

Quasi-elastic mode: For real root c < 3/2, the values of q10 and q20 are determined

using the fact that Re(s) > 0, Im(s) > 0. This gives,

q10 = →i s

√
1→

2c

3
, q20 = →i s



 3(c→ 1)2

2cω+ 3
√
1→ 2c

3



 . (2.2.28)

From Eq. (2.2.28), it is evident that Im(q10) < 0 and Im(q20) < 0 for all ω, d, indicating

that a real root c < 3
2 of Eq. (2.2.27) satisfies the exact dispersion relation given in Eq.

(2.2.11), thus leading to the propagation of quasi-elastic mode of Rayleigh wave fields.
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Similarly, for c > 3
2 , the values of q1 and q2 can be determined as,

q10 = →s

√
2c

3
→ 1, q20 = →is



 3(c→ 1)2

2cω→ 3i
√

2c
3 → 1



 . (2.2.29)

Clearly, Im(q10) < 0 given that Im(s) < 0. And Im(q20) < 0, provided that

Im(s)

Re(s)
<



 2cω

3
√

2c
3 → 1



 . (2.2.30)

Thus, we infer that for c > 3
2 , the quasi-elastic mode of Rayleigh wave fields propagate in

a medium when Eq. (2.2.30) is satisfied. Moreover, we shall discuss this briefly by taking

a numerical example in the next section.

Viscoelastic mode: The viscoelastic mode of Rayleigh wave fields propagate in a non-

local micropolar medium when the material parameter d and the nonlocal parameter ω

lies in the Region I. These modes emerge when the complex roots of Eq. (2.2.27) satisfy

Eq. (2.2.11).

For a comprehensive analysis of the occurrence of these modes, we explore a numer-

ical example involving a Poisson solid semi-infinite medium with minor viscous terms to

identify the conditions under which both quasi-elastic and viscoelastic modes propagate.

Numerical example

Consider a viscoelastic Poisson solid semi-infinite medium with small viscous terms

as,

µ = µ0(1→ i εa), ⇁ = ⇁0(1→ i εb), $ = µ0(1→ i εa) +
⇁0

2
(1→ i εb),

with ε > 0 and εa < 1. We also have a = b similar to section 2.2.4.

Suppose we consider a viscoelastic solid where µ0 = 0.4↘1011 and ⇁0 = 0.1↘1011 N m↑2,

⇀ = 1740 kg m↑3. We shall study the modes for four cases of ω and d.

A table is constructed to examine the real roots across various intervals of ω and d,

thereby checking the conditions on εa for which these roots satisfy exact dispersion rela-

tion given in Eq. (2.2.11).

Case 1 is studied for a viscoelastic solid in which ω and d lie in Region I. Here the

cubic equation Eq. (2.2.21) has only one positive real root. Clearly, this root satisfies Eq.

(2.2.11) for every possible value of εa > 0. Similarly, Case 2 is studied for a solid in which
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Table 2.2.1: Conditions for which the real roots satisfy the exact dispersion

relation

Cases Real roots Im(qi0)
Quasi-elastic mode

propagates for

Case 1:
0.512235

Im(q10) = →0.000157652
all values of εa < 1

(ω, d) =

(0.06, 0.8)

Im(q20) = →0.0000555558

Case 2:

0.510007
Im(q10) = →0.000158174

all values of εa < 1
Im(q20) = →0.0000565933

1.64845

Im(q10) = →0.0000170344 εa

εa < 0.279468Im(q20) = →0.0000198394 εa

+0.0000709899

(ω, d) =

(0.04, 0.8) 1.80083

Im(q10) = →0.0000232008 εa

εa < 0.214464

Im(q20) = +0.000073348 εa

→ 0.0000157305

Case 3:

0.505424
Im(q10) = →0.000159257

all values of εa < 1
Im(q20) = →0.0000587515

1.60852
Im(q10) = →0.0000147439 εa

no values of εa > 0
(ω, d) = (0, 0.8) Im(q20) = 0.0000754663 εa

1.88606
Im(q10) = →0.0000256819 εa

no values of εa > 0
Im(q20) = 0.0000783412 εa

Case 4:

2
Im(q10) = 0.000030104 εa

no values of εa > 0
Im(q20) = →0.000090312 εa

1
3

(
3→

⇐
3
) Im(q10) = →0.000192253

all values of εa < 1
(ω, d) = (0, 1) Im(q20) = →0.0000892247

1
3

(
3 +

⇐
3
) Im(q10) = →0.0000133328 εa

no values of εa > 0
Im(q20) = 0.0000861845 εa

ω and d lie in Region II. The conditions for the propagation of the quasi-elastic mode of

Rayleigh wave fields are derived and are provided in Table 2.2.1.
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Case 3 and Case 4 are examined in the context of a micropolar viscoelastic solid and

a classical viscoelastic solid, primarily without considering the e!ects of nonlocal elastic

parameters. It can be inferred that nonlocal elasticity e!ects within the medium lead to

the emergence of nonlocal elastic modes. These modes vanish in the absence of nonlocal

elasticity. This distinction is important in materials science and mechanics because the

presence or absence of nonlocal e!ects significantly impacts mechanical behavior, partic-

ularly in situations where small-scale or long-range e!ects play a vital role.

Additionally, for further analysis of these quasi-elastic modes, we plot a variety of

graphs to visually depict the behavior, thus o!ering insights into the response of this

viscoelastic solid under diverse conditions.

Figure 2.2.8 illustrates the variation in phase velocity of Rayleigh wave fields propagat-

ing in the quasi-elastic mode (where c < 3
2) across varying material parameter values.

The velocity pattern resembles that of an incompressible solid, except for the fact that

Rayleigh wave fields in this mode propagate with a slightly lower phase velocity compared

to those in a Poisson solid. In Figure 2.2.9, a careful graphical analysis is carried out to
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Figure 2.2.8: Variation of phase velocity of Rayleigh waves, v in a quasi-

elastic mode with material parameter ω

µ
for di!erent values of ω

comprehend the characteristics of nonlocal elastic modes propagating when parameters
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ω and d lie in Region II of Figure 2.2.7. The two branches obtained for a constant ω

signify the variation in critical values of εa for two nonlocal elastic modes, respectively

propagated over the course. It is noteworthy to mention that these two modes exhibit

contrasting behaviors and emerge only when the εa for the medium falls below the critical

value. Moreover, an increase in the nonlocal elastic parameters of the medium leads to

an increase in the critical value εa. Further, Figure 2.2.10 is plotted to understand the
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Mode 2
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Figure 2.2.9: Variation of critical εac with material parameter d for di!erent

ω

variation of the phase velocity of Rayleigh wave field propagating in a nonlocal elastic

mode for di!erent material parameters ω

µ
. A declining trend for the velocity behavior

is observed for both modes with the increase in the material parameter for εa = 0.02.

Additionally, we observe that one of the nonlocal elastic modes travels faster than the

other modes in a particular solid. Figure 2.2.11 presents the Rayleigh waves propagating

through a Poisson solid in the quasi-elastic mode wherein the decay of displacement and

stress components with depth is noticeably more rapid compared to the incompressible

case. This accelerated attenuation results from the Poisson solid’s inherent compressibil-

ity, which allows for the dissipation of wave energy into volumetric deformations. While

the overall amplitude of the displacement and stress components is generally smaller than

in the incompressible case, the rapid decay ensures that the wave energy remains confined
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(b) Stress variation

Figure 2.2.11: Normalized (a) displacement components (Ui) (b) stress com-

ponents (Pi) versus dimensionless depth
(
z

!

)
for a quasi-elastic mode of

Rayleigh waves in a Poisson solid

to a shallow region near the boundary.

Viscoelastic mode: The complex roots of c obtained for the values of ω and d lying

in the Region I are then studied, and the conditions for which these complex roots will
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satisfy the dispersion relation is also determined. The overall idea is similar to that fol-

lowed for the case of incompressible solid semi-infinite medium.

Observe, when ω = 0.06 and d = 0.8, the complex roots of the dispersion relation given

in Eq. (2.2.27) are

c1 = 1.71403→ 0.0122788 i,

c2 = 1.71403 + 0.0122788 i.

Note that, the root c1 and c2 satisfy the exact dispersion relation given in Eq. (2.2.11),

respectively when

0 < εa < 0.0501532, 0 < εa < 0.356779. (2.2.31)

As a result, there is a possibility of the propagation of two viscoelastic modes of Rayleigh

waves when the condition in Eq. (2.2.31) is satisfied.

However, when ω = 0.02 and d = 0.2, the complex roots of Eq. (2.2.27) are

c1 = 1.58115→ 0.232087 i,

c2 = 1.58115→ 0.232087 i.

Careful observation reveals that only one of the roots among c1 and c2 satisfies the exact

dispersion relation given in Eq. (2.2.11), provided that 0.0481324 < εa < 1.21068.

Therefore, it can be inferred that a specific set of parameters determines the number of

possible viscoelastic modes of Rayleigh waves propagating in a nonlocal micropolar vis-

coelastic medium.

Further, we turn to graphical analysis to deepen our understanding of the problem at

hand. By plotting various graphs, we can provide valuable insights into the behavior and

trends within the system.

The plot of Figure 2.2.12 determines the range of values for ω and d for which the

viscoelastic modes of the Rayleigh wave fields can propagate. This propagation can take

place only when certain conditions on εa are satisfied. The entire plot area is divided into

three regions: Region III and Region IV depicting the possible parameter combinations

of ω and d where only one and two viscoelastic modes can propagate, respectively. Region

V o!ers insight into the parameter range where viscoelastic modes are absent and is
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equivalent to Region II in Figure 2.2.7. It can also be inferred that the possibility of

obtaining two viscoelastic modes increases for larger values of parameter combinations.

Figure 2.2.12: Regions indicating the range of values of ω and d for the

possible number of viscoelastic modes

While Region III in Figure 2.2.12 provides information on potential parameter com-

binations of ω and d, it remains necessary to determine the conditions on εa for which

the propagation of only one viscoelastic mode of Rayleigh wave fields can occur. Figure

2.2.13 elaborates on the propagation of this viscoelastic mode by plotting the values of

εa against material parameter d for di!erent values of ω. When ω and d are fixed, there is

a certain minimum and maximum value for εa, and the mode propagation occurs when

the value lies within that range. It is also interesting to observe that the range of εa for

a constant ω gradually diminishes with decreasing ω, and it ceases to exist when the value

of d falls out of Region III of Figure 2.2.12.

Figure 2.2.14 is plotted to understand the variation of phase velocity with the material

parameter ω

µ
within Region III, where only one viscoelastic mode of Rayleigh wave fields

can potentially propagate. By setting a common value of εa = 0.4, it becomes apparent

that the phase velocity curve remains nearly consistent across all values of ω. Although

the wave propagates at similar velocities for all ω values, there exists a limit on the mate-

rial parameter beyond which propagation is feasible. Magnified images A, B, and C are
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provided to distinguish the di!erences between the curves for di!erent ω. An intriguing

outcome of these findings is that smaller values of the material parameter in the medium

can facilitate the propagation of viscoelastic modes with higher velocities, but possible

only for smaller values of ω. In other words, the range of the material parameter for which

the propagation is possible decreases with the increase in the value of ω. Moreover,
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Figure 2.2.13: Variation of values of εac with the material parameter d in

the Region III (where one viscoelastic mode may propagate)

Figure 2.2.15 is plotted to determine the conditions on εa under which the propagation

of the two viscoelastic modes of Rayleigh wave fields may occur. Two distinct intersect-

ing branches of viscoelastic modes are obtained, with one branch corresponding to lower

critical values of εa and the other to higher values of εa. Whenever the values of εa fall

below this critical value, the viscoelastic mode associated with that specific complex root

may propagate. Furthermore, for a fixed d, the critical values of εa corresponding to both

the lower and upper branch mode exhibit a significant increase with the increase in the

nonlocal parameter, ω.

To illustrate the relationship between phase velocity and the material parameter ω

µ
for

di!erent values of nonlocal parameter, ω = 0.03, 0.05, 0.07, 0.09. Figure 2.2.16 is plotted

while fixing εa = 0.02. This graph o!ers insights into the propagation of two viscoelastic

modes when ω and d lie within Region IV. Magnified image A describes the variation
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Figure 2.2.14: Variation of phase velocity, v with the material parameter ω

µ

in the Region III (where one viscoelastic mode may propagate)

of phase velocities for the two viscoelastic modes: Mode 1 and Mode 2. Rayleigh wave

fields propagating in Mode 2 exhibit slightly higher velocities than Mode 1. Additionally,

within each mode, a range of material parameter values ω

µ
exists for every ω within which

propagation occurs. Interestingly, contrary to the behavior observed in Figure 2.2.14, this

range of ω

µ
values increases with an increase in values of the nonlocal parameter, ω. This

trend is clearly depicted in magified images B and C.
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(b) Normalized stress variation

Figure 2.2.17: Normalized (a) displacement components (Ui) (b) stress

components (Pi) versus dimensionless depth
(
z

!

)
for a viscoelastic mode

of Rayleigh waves in an incompressible solid

Figure 2.2.17 demonstrates that the viscoelastic mode of Rayleigh waves propagating

through a Poisson solid exhibit a distinct departure from the previous cases. Unlike the

exponential decay observed in the quasi-elastic mode for a Poisson solid, the displacement

(Figure 2.2.17a) and stress components (Figure 2.2.17b) in this scenario exhibit a more

oscillatory behavior. While the amplitude of these oscillations does diminish with depth,

the rate of decay is significantly slower compared to the viscoelastic mode for an incom-

pressible solid. This suggests that the compressibility of the Poisson solid and viscoelastic

properties combine to create a more persistent wave field, allowing the oscillations to

penetrate deeper into the material.

Particle motion

In this section, further analysis will be conducted on the type of particle motion

(prograde/retrograde) exhibited by quasi-elastic and viscoelastic modes of Rayleigh wave

field particles propagating in a Poisson solid.

The quantities A1(z) and A3(z) defined in Eq. (2.2.22) are approximated within an error

of O(ω2) at the surface of a Poisson solid semi-infinite medium to obtain,

A1(0) = A1 = cs, and A3(0) = A3 = q1 →
s2(c→ 1)

q2
. (2.2.32)
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Substituting the values of q1 and q2 satisfying the exact dispersion relation given in Eq.

(2.2.11), we conclude that for Rayleigh waves propagating in a quasi-elastic mode,

Im
(
A1 A3

)
< 0 (> 0), only when 1→ c < 0 (> 0).

This indicates that the Rayleigh wave field particles propagating in a nonlocal micropolar

Poisson solid exhibit a prograde motion when c > 1 and a retrograde motion when c < 1.

Similar to that of an incompressible viscoelastic solid, Rayleigh wave field particles in a

nonlocal micropolar Poisson solid exhibit a prograde (retrograde) motion when Re(c) >

1(< 1), respectively.

2.2.6 Conclusions

This study explores Rayleigh wave propagation in viscoelastic solids under micropolar

and nonlocal elastic conditions, revealing multiple wave modes, like, quasi-elastic, vis-

coelastic, and micropolar→unlike the single mode in classical elasticity. The micropolar

mode propagates at higher velocities and exists only due to micropolarity, while nonlo-

cal e!ects introduce quasi-elastic modes that may not appear otherwise. The study also

highlights distinct particle motion behaviors, with quasi-elastic modes exhibiting retro-

grade motion and viscoelastic modes showing prograde motion. Additionally, viscoelastic

modes may travel faster than body waves, whereas quasi-elastic modes propagate at lower

velocities. The findings also demonstrate that the number of propagating modes depends

on the interplay between nonlocal and material parameters, while surface particle motion

remains una!ected. The refined model improves accuracy by addressing boundary layer

e!ects, though its reliance on long-wavelength assumptions limits applicability at shorter

wavelengths.
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CHAPTER 3

Rayleigh Wave Propagation in Nonlocal Micropolar Layered

Medium





While nonlocal elasticity theory has enhanced the modeling of wave propagation in ho-

mogeneous semi-infinite mediums, extending these formulations to layered media presents

significant challenges. This chapter is dedicated to derive refined boundary and interface

conditions for Rayleigh waves in layered structures.

3.1 Derivation of refined boundary and interface conditions in

a nonlocal layered media with an application⇓

Here, the focus is on deriving refined boundary and interface conditions for Rayleigh

wave propagation in layered media within the framework of nonlocal elasticity and develop

e!ective formulations for nonlocal surface wave propagation.

3.1.1 Mathematical formulations

We analyze a two-layered system as described in Figure 3.1.1 within the framework of

nonlocal elasticity. The top layer, a homogeneous, linearly isotropic material of thickness

h, occupies the region →↓ < x, y < ↓, 0 < z ↔ h. Beneath this lies a linearly isotropic

semi-infinite medium occupying the region →↓ < x, y < ↓, →↓ < z ↔ 0, as depicted in

Figure 3.1.1

The nonlocal parameters for the lower semi-infinite medium and the upper layer are

denoted by ↑1 and ↑2, respectively, and are not necessarily the same. The constitutive

Figure 3.1.1: Geometry of the problem

∗
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equations (Gra!, [2]) describing the elastic behavior of the isotropic, homogeneous layer

and semi-infinite medium are given as,

↽(n)
jk

= $(n)1(n)
rr

εjk + 2µ(n)1(n)
jk

, n = 1, 2, j, k, r = 1, 2, 3. (3.1.1)

In the above expressions, superscripts (1) and (2) refer to the lower semi-infinite medium

and upper layer, respectively. The Lamé constants $(n), µ(n) characterize the elastic prop-

erties of the respective media, while εjk denotes the Kronecker delta function. Further, the

strain tensor 1(n)
jk

is related to the displacement components u(n)
k

through the geometric

equation,

1(n)
jk

=
1

2

(
2u(n)

j

2xk

+
2u(n)

k

2xj

)
, j, k = 1, 2, 3. (3.1.2)

To account for nonlocal e!ects in both the media, the present study adopts the framework

of nonlocal elasticity theory. Consequently, the expressions for nonlocal stresses must

be established. Following the well-known Eringen’s nonlocal elasticity theory [150], the

relationship between nonlocal stresses ◁ (n)
jk

and local stresses ↽(n)
jk

is defined by the singular

kernel α as

◁ (n)
jk

(7x) =



V

↽(n)
jk

(7x↓)α(|7x→ 7x↓
|) dV (7x↓), (3.1.3)

where V is the volume occupied by the deformed region and α is the nonlocal kernel

that characterizes the material properties and governs the spatial distribution of nonlo-

cal interactions. In this study, a 2D kernel assuming the form of the Bessels function

is employed within the framework of Eringen’s nonlocal elasticity theory. As a result,

the nonlocal stress distributions within both the semi-infinite medium and the layer are

expressed through the integral formulations,

◁ (1)
jk

=
1

2▷↑2
1

 0

↑↘

 ↘

↑↘
K0

(√
(x→ x↓)2 + (z → z↓)2

↑1

)
↽(1)
jk

(x↓, z↓) dx↓ dz↓, (3.1.4)

◁ (2)
jk

=
1

2▷↑2
2


h

0

 ↘

↑↘
K0

(√
(x→ x↓)2 + (z → z↓)2

↑2

)
↽(2)
jk

(x↓, z↓) dx↓ dz↓. (3.1.5)

It is noteworthy to emphasize the distinct behavior of the lower and upper media despite

having identical material properties. This disparity arises from the di!erent integration

limits corresponding to the regions occupied by each medium.

Assuming slowly varying local stresses, ↽jk, in the x→ direction, Eqs. (3.1.4) and (3.1.5)
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reduce to the approximate forms derived by Kaplunov et al. [204] as

◁ (1)
jk

(x, z) =
1

2↑1

 0

↑↘


1 +

↑
2
1

2

(
1 +

1

↑1
|z↓ → z|

)
22

2x2


↽(1)
jk
(x, z↓)


e↑

1
↔1

|z↑↑z| dz↓, (3.1.6)

◁ (2)
jk

(x, z) =
1

2↑2


h

0


1 +

↑
2
2

2

(
1 +

1

↑2
|z↓ → z|

)
22

2x2


↽(2)
jk
(x, z↓)


e↑

1
↔2

|z↑↑z| dz↓. (3.1.7)

A di!erential formulation consistent with the adopted kernel relating nonlocal stresses

with local stresses, presented in [60], is as follows:

↽(n)
jk

=
(
1→ ↑

2
n
↗

2
)
◁ (n)
jk

, n = 1, 2. (3.1.8)

where ↗
2 = ϖ

2

ϖx2 +
ϖ
2

ϖz2
is the Laplacian operator.

For a homogeneous, isotropic elastic medium, the governing equation of motion for non-

local elastic wave propagation in the absence of body forces is given by,

◁ (n)
jk,j

→ ⇀(n)u(n)
k,tt

= 0, (3.1.9)

where ⇀(n), n = 1, 2 denotes the density of the lower semi-infinite medium and the upper

layer, respectively.

3.1.2 Equivalence conditions

This section focuses on deriving the additional boundary conditions required at the

interface and the stress-free surface to ensure the equivalence between the integral and

di!erential formulations of the nonlocal elasticity model. By rigorously establishing these

conditions, we aim to accurately capture the influence of nonlocal interactions on the

elastic behavior of the solid.

In the lower nonlocal elastic semi-infinite medium

The nonlocal stresses ◁ (1)
jk

at the interface z = 0 can be given from Eq. (3.1.6) as,

◁ (1)
jk

∣∣∣∣
z=0

=
1

2↑1

 0

↑↘


1 +

↑
2
1

2

(
1→

z↓

↑1

)
22

2x2


↽(1)
jk
(x, z↓)


ez→/↔1 dz↓. (3.1.10)

By substituting the di!erential formulations from Eq. (3.1.8) into Eq. (3.1.10) and

subsequently expanding the resulting expressions, we obtain approximate equations under

the assumption of a long wavelength relative to the nonlocal elastic parameter of the lower
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semi-infinite medium. In other words, we obtain

◁ (1)
jk

∣∣∣∣
z=0

=
1

2↑1

 0

↑↘

(
1 +

↑
2
1

2

(
1→

z↓

↑1

)
22

2x2

)(
1→ ↑

2
1↗

2
)
◁ (1)
jk

(x, z↓)


ez→/↔1 dz↓

=
1

2↑1

 0

↑↘

(
1→ ↑

2
1

22

2z2

)
◁ (1)
jk

(x, z)


e
z/↔1 dz

︸ ︷︷ ︸
I1

+
1

2↑1

 0

↑↘

(
↑
3
1

2
(z → ↑1)

24

2x2 2z2
→

↑1

2
(z + ↑1)

22

2x2

)
◁ (1)
jk

(x, z)


e
z/↔1 dz

︸ ︷︷ ︸
I2

.

(3.1.11)

The expansion of the integrals I1 and I2 involves lengthy and intricate calculations, ulti-

mately yielding the expressions,

I1 =


↑1 → ↑

2
1

2

2z


◁ (1)
jk

∣∣∣∣
z=0

, I2 = →
↑
4
1

2

23

2x2 2z
◁ (1)
jk

∣∣∣∣
z=0

.

As a result, Eq. (3.1.11) is simplified to obtain the additional conditions on the nonlocal

stresses at the interface z = 0 as,


1 + ↑1

2

2z
+

↑
3
1

2

23

2x2 2z


◁ (1)
jk

∣∣∣∣
z=0

= 0 (3.1.12)

In the upper nonlocal elastic layer

For the nonlocal elastic layer situated on the top of the nonlocal semi-infinite medium,

the equivalence conditions are to be satisfied at both the the free surface z = h and the

interface z = 0.

Now, at the free surface z = h, the nonlocal stresses ◁ (2)
jk

can be expressed as,

◁ (2)
jk

∣∣∣∣
z=h

=
1

2↑2


h

0


1 +

↑
2
2

2

(
1→

1

↑2
(z↓ → h)

)
22

2x2


↽(2)
jk
(x, z↓)


e

z↑→h
↔2 dz↓. (3.1.13)

Substituting the expressions of di!erential formulation as given in Eq. (3.1.8) and expand-

ing the integral under the assumption that the nonlocal elastic parameter of the upper
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layer is relatively smaller compared to the width of the layer, we obtain the expressions,

◁ (2)
jk

∣∣∣∣
z=h

=
1

2↑2


h

0


1 +

↑
2
2

2

(
1→

1

↑2
(z↓ → h)

)
22

2x2

 (
1→ ↑

2
1↗

2
)
◁ (2)
jk

(x, z↓)


e

z↑→h
↔2 dz↓

=
1

2↑2


h

0

(
1→ ↑

2
2

22

2z2

)
◁ (2)
jk


e

z→h
↔2 dz

︸ ︷︷ ︸
J1

+
1

2↑2


h

0

↑
3
2

2
(z → ↑2 → h)

24◁ (2)
jk

2x4
e

z→h
↔2 dz

︸ ︷︷ ︸
J2

+
1

2↑2


h

0

(
↑
3
2

2
(z → ↑2 → h)

24

2x2 2z2
→

↑2

2
(z + ↑2 → h)

22

2x2

)
◁ (2)
jk


e

z→h
↔2 dz

︸ ︷︷ ︸
J3

.

(3.1.14)

On simplifying and approximating J1, J2 and J3, we obtain the values of these integrals

as,

J1 = ↑2


1→ ↑2

2

2z


◁ (2)
jk

∣∣∣∣
z=h

→ ↑2


1→ ↑2

2

2z


◁ (2)
jk

∣∣∣∣
z=0

e↑
h/↔2 ,

J2 =
↑
5
2 h

4

25

2x4 2z
◁ (2)
jk

∣∣∣∣
z=0

e↑
h/↔2 ,

J3 = →
↑
4
2

2

23

2x2 2z
◁ (2)
jk

∣∣∣∣
z=h

+


↑
3
2

2
(↑2 + h)

23

2x2 2z
→

↑
2
2 h

2

22

2x2


◁ (2)
jk

∣∣∣∣
z=0

e↑
h/↔2 .

Substituting these expressions into Eq. (3.1.14) results in deriving additional boundary

conditions to ensure equivalence. These conditions are thus given by


1 + ↑2

φ

φz
+

↑
3
2

2

φ3

φx2 φz


ε (2)jk

∣∣∣∣
z=h

+

(
1 +

↑2h

2

φ2

φx2

)
1→ ↑2

φ

φz
→

↑
3
2

2

φ3

φx2 φz


ε (2)jk

∣∣∣∣
z=0


e↓

h/↑2 = 0.

(3.1.15)

Also, the nonlocal stresses in the upper layer at the interface z = 0 are given as,

◁ (2)
jk

∣∣∣∣
z=0

=
1

2↑2


h

0


1 +

↑
2
2

2

(
1 +

z↓

↑2

)
22

2x2


↽(2)
jk
(x, z↓)


e↑z→/↔2 dz↓. (3.1.16)

By applying the di!erential formulation and utilizing an analogous approximation as done

previously, additional constraints governing the nonlocal stresses within the upper layer

are derived as,


1→ ↑2

φ

φz
→

↑
3
2

2

φ3

φx2 φz


ε (2)jk

∣∣∣∣
z=0

+

(
1 +

↑2h

2

φ2

φx2

)
1 + ↑2

φ

φz
+

↑
3
2

2

φ3

φx2 φz


ε (2)jk

∣∣∣∣
z=h


e↓

h/↑2 = 0.

(3.1.17)
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3.1.3 Refined BVP for nonlocally elastic Rayleigh waves

This section focuses on deriving refined boundary and interface conditions for Rayleigh

wave propagation in a layered medium composed of an isotropic layer overlying an isotropic

elastic semi-infinite medium.

Boundary value problem

The governing equations for Rayleigh waves propagating along the x-direction in an

isotropic, homogeneous elastic semi-infinite medium and layer characterized with displace-

ment components
(
u(1)
1 , 0, u(1)

3

)
and

(
u(2)
1 , 0, u(2)

3

)
, respectively are expressed as

ϖ

ϖx

(
◁ (n)11

)
+ ϖ

ϖz

(
◁ (n)31

)
= ⇀(n) ϖ

2
u
(n)
1

ϖt2
,

ϖ

ϖx

(
◁ (n)13

)
+ ϖ

ϖz

(
◁ (n)33

)
= ⇀(n) ϖ

2
u
(n)
3

ϖt2
,





(3.1.18)

subjected to boundary and continuity conditions

Stress→free conditions:
◁ (2)31 = 0,

◁ (2)33 = 0,




 at z = h (3.1.19)

Continuity conditions:
◁ (1)31 = ◁ (2)31 , ◁ (1)33 = ◁ (2)33 ,

u(1)
1 = u(2)

1 , u(1)
3 = u(2)

3




 at z = 0 (3.1.20)

It is important to note that not all additional conditions derived for the nonlocal stresses

in Eqs. (3.1.12), (3.1.15) and (3.1.17) can be simultaneously satisfied within the prob-

lem. Given the pre-existing constraints on ◁ (n)31 and ◁ (n)33 , we assume that equivalence is

established solely for the nonlocal stress component ◁ (n)11 . Consequently, the additional

conditions imposed on the problem are,


1 + ↑1

φ

φz
+

↑
3
1

2

φ3

φx2 φz


ε (1)11

∣∣∣∣
z=0

= 0, (3.1.21)


1 + ↑2

φ

φz
+

↑
3
2

2

φ3

φx2 φz


ε (2)11

∣∣∣∣
z=h

+

(
1 +

↑2h

2

φ2

φx2

)
1→ ↑2

φ

φz
→

↑
3
2

2

φ3

φx2 φz


ε (2)11

∣∣∣∣
z=0

e↓
h/↑2 = 0,

(3.1.22)


1→ ↑2

φ

φz
→

↑
3
2

2

φ3

φx2 φz


ε (2)11

∣∣∣∣
z=0

+

(
1 +

↑2h

2

φ2

φx2

)
1 + ↑2

φ

φz
+

↑
3
2

2

φ3

φx2 φz


ε (2)11

∣∣∣∣
z=h

e↓
h/↑2 = 0.

(3.1.23)
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Asymptotic analysis

The asymptotic behavior of the solution can be e”ciently analyzed by introducing

small, naturally occurring parameters

ω1 =
↑1

0
∝ 1, ω2 =

↑2

h
∝ 1,

of same orders, where l is the typical wavelength of the propagating wave and h is the

thickness of the upper layer.

Also, we define dimensionless variables,

ς =
x

0
, ⊋s =

z

h
, ⊋(n)

f
=

z

↑n

, ◁ =
c(1)2

0
t, 4 =

h

0
, ϱ =

(
c(2)2

c(1)2

)2

(3.1.24)

and dimensionless quantities

◁ (n)
jk

=
◁ (n)
jk

µ(n)
, ↽(n)

jk
=

↽(n)
jk

µ(n)
, u(n)

1 =
u(n)
1

0
, u(n)

i
=

u(n)
i

h
, i = 1, 3. (3.1.25)

Here, ⊋(n)
f

represents the fast variable capturing the rapid oscillations of wave behavior,

while ⊋s denotes the slow variable, characterizing the gradual evolution of the wave during

propagation. The scales are introduced to capture the e!ects of the boundary layer on

wave behavior.

As a result, the boundary value problem governing the propagation of Rayleigh-like waves

in a layered media can be re-written as,

ϖ

ϖ1

(
◁ (n)11

)
+ 1

▷

ϖ

ϖ⊋s

(
◁ (n)31

)
+ ▷

1→n

↼n

ϖ

ϖ⊋(n)
f

(
◁ (n)31

)
= ϱ(1↑n) ϖ

2
ũ
(n)
1

ϖ↽̃2
,

ϖ

ϖ1

(
◁ (n)13

)
+ 1

▷

ϖ

ϖ⊋s

(
◁ (n)33

)
+ ▷

1→n

↼n

ϖ

ϖ⊋(n)
f

(
◁ (n)33

)
= 4 ϱ(1↑n) ϖ

2
ũ
(n)
3

ϖ↽̃2
,





(3.1.26)

with
(
1→ ς2n

(
ϖ2
)n↓1

(
φ2

φ⇀2
+

1

ϖ2
φ2

φ⊋2
s

+

(
ϖ2
)1↓n

ς2n

φ2

φ⊋(n)2

f

+
2

ϖ2↓n ςn

φ2

φ⊋s φ⊋(n)
f

))
ε (n)jk = ↼(n)

jk , (3.1.27)

subjected to boundary and interface conditions,

◁ (2)31 = 0, ◁ (2)33 = 0, at ⊋s = 1, ⊋f =
1

ω2
(3.1.28)

◁ (1)31 = µ↑1 ◁ (2)31 , ◁ (1)33 = µ↑1 ◁ (2)33 ,

u(1)
1 = u(2)

1 , u(1)
3 = u(2)

3 ,




 at ⊋s = 0, ⊋f = 0 (3.1.29)
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in which µ = µ
(1)

µ(2) along with the additional conditions


1 + ϖ

ϖ⊋(1)
f

+ ↼1
▷

ϖ

ϖ⊋s
+ 1

2 ω
2
1

ϖ
3

ϖ12 ϖ⊋(1)
f


◁ (1)11

∣∣∣∣
⊋s=⊋f=0

= 0,


1 + ϖ

ϖ⊋(2)
f

+ ω2
ϖ

ϖ⊋s
+ 1

2 4
2ω22

ϖ
3

ϖ12 ϖ⊋(2)
f


◁ (2)11

∣∣∣∣
⊋s=1, ⊋f=

1
ε2

+
(
1 + ↼2 ▷

2

2
ϖ
2

ϖ12

)
1→ ϖ

ϖ⊋(2)
f

→ ω2
ϖ

ϖ⊋s
→

1
2 4

2ω22
ϖ
3

ϖ12 ϖ⊋(2)
f


◁ (2)11

∣∣∣∣
⊋s=⊋f=0

e↑1/ε2 = 0,


1→ ϖ

ϖ⊋(2)
f

→ ω2
ϖ

ϖ⊋s
→

1
2 4

2ω22
ϖ
3

ϖ12 ϖ⊋(2)
f


◁ (2)11

∣∣∣∣
⊋s=⊋f=0

+
(
1 + ↼2 ▷

2

2
ϖ
2

ϖ12

)
1 + ϖ

ϖ⊋(2)
f

+ ω2
ϖ

ϖ⊋s
+ 1

2 4
2ω22

ϖ
3

ϖ12 ϖ⊋(2)
f


◁ (2)11

∣∣∣∣
⊋s=1, ⊋f=

1
ε2

e↑1/ε2 = 0.






(3.1.30)

Similar to the approach outlined in Chebakov et al. [203], the nonlocal stress components

are decomposed into fast and slow components as follows:

◁ (n)11 = p(n)11 + q(n)11 ,

◁ (n)13 = 4 p(n)13 + ωn q
(n)
13 ,

◁ (n)33 = 42 p(n)33 + ω2
n
q(n)33 .






(3.1.31)

Consequently, the boundary value problem given in Eqs. (3.1.26) and (3.1.27) can be

reformulated in terms of slow and fast-varying components, resulting in,

ϖ

ϖ1

(
p(n)11

)
+ ϖ

ϖ⊋s

(
p(n)31

)
= ϱ1↑n ϖ

2
ũ1

ϖ↽̃2
, ϖ

ϖ1

(
q(n)11

)
+ 41↑n ϖ

ϖ⊋(n)
f

(
q(n)31

)
= 0,

ϖ

ϖ1

(
p(n)13

)
+ ϖ

ϖ⊋s

(
p(n)33

)
= ϱ1↑n ϖ

2
ũ3

ϖ↽̃2
, ϖ

ϖ1

(
q(n)13

)
+ 41↑n ϖ

ϖ⊋(n)
f

(
q(n)33

)
= 0,





(3.1.32)

together with

[
1→ ς

2
n

(
φ
2
)n→1

(
ϑ2

ϑϖ2 + 1
ϱ2

ϑ2

ϑ⊋2
s

)]
p
(n)
11 = ▷̃

(n)
11 ,

[
1→ ς

2
n

(
φ
2
)n→1


ϑ2

ϑϖ2 +
(ϱ2)1↓n

ε2n

ϑ2

ϑ⊋(n)2

f


q
(n)
11 = 0,

[
1→ ς

2
n

(
φ
2
)n→1

(
ϑ2

ϑϖ2 + 1
ϱ2

ϑ2

ϑ⊋2
s

)]
p
(n)
13 = 1

ϱ ▷̃
(n)
13 ,

[
1→ ς

2
n

(
φ
2
)n→1


ϑ2

ϑϖ2 +
(ϱ2)1↓n

ε2n

ϑ2

ϑ⊋(n)2

f


q
(n)
13 = 0,

[
1→ ς

2
n

(
φ
2
)n→1

(
ϑ2

ϑϖ2 + 1
ϱ2

ϑ2

ϑ⊋2
s

)]
p
(n)
33 = 1

ϱ2 ▷̃
(n)
33 ,

[
1→ ς

2
n

(
φ
2
)n→1


ϑ2

ϑϖ2 +
(ϱ2)1↓n

ε2n

ϑ2

ϑ⊋(n)2

f


q
(n)
33 = 0.






(3.1.33)
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Further, the reformulated constraints in Eqs (3.1.28)→(3.1.30) imposed on the problem

are explicitly expressed as

4 p(2)31 + ω2 q
(2)
31 = 0,

42 p(2)33 + ω22 q
(2)
33 = 0.





at ⊋s = 1, ⊋f =

1

ω2
(3.1.34)

4 p(1)31 + ω1 q
(1)
31 = µ↑1

(
4 p(2)31 + ω2 q

(2)
31

)

42 p(1)33 + ω21 q
(1)
33 = µ↑1

(
42 p(2)33 + ω22 q

(2)
33

)

u(1)
1 = u(2)

1 , u(1)
3 = u(2)

3






at ⊋s = ⊋f = 0 (3.1.35)


1 +

ε1
ω

ϑ
ϑ⊋s


p(1)11

∣∣∣∣
⊋s=0

+


1 +

ϑ

ϑ⊋(1)
f

+
1
2 ς

2
1

ϑ3

ϑϖ2 ϑ⊋(1)
f


q(1)11

∣∣∣∣
⊋(1)

f =0

= 0,


1 + ς2

ϑ
ϑ⊋s


p(2)11

∣∣∣∣
⊋s=1

+


1 +

ϑ

ϑ⊋(2)
f

+
1
2 ϖ

2ς22
ϑ3

ϑϖ2 ϑ⊋(2)
f


q(2)11

∣∣∣∣
⊋(2)

f = 1
ε2

+

(
1 +

ε2 ω2

2
ϑ2

ϑϖ2

)(
1→ ς2

ϑ
ϑ⊋s

)
p(2)11

∣∣∣∣
⊋s=0

+

(
1→

ϑ

ϑ⊋(2)
f

→
1
2 ϖ

2ς22
ϑ3

ϑϖ2 ϑ⊋(2)
f

)
q(2)11

∣∣∣∣
⊋(2)

f =0


e↓1/ε2 = 0,


1→ ς2

ϑ
ϑ⊋s


p(2)11

∣∣∣∣
⊋s=0

+


1→

ϑ

ϑ⊋(2)
f

→
1
2 ϖ

2ς22
ϑ3

ϑϖ2 ϑ⊋(2)
f


q(2)11

∣∣∣∣
⊋(2)

f =0

+

(
1 +

ε2 ω2

2
ϑ2

ϑϖ2

)(
1 + ς2

ϑ
ϑ⊋s

)
p(2)11

∣∣∣∣
⊋s=1

+

(
1 +

ϑ

ϑ⊋(2)
f

+
1
2 ϖ

2ς22
ϑ3

ϑϖ2 ϑ⊋(2)
f

)
q(2)11

∣∣∣∣
⊋(2)

f = 1
ε2


e↓1/ε2 = 0.






(3.1.36)

Expanding the following quantities in asymptotic series as,





p(n)
jk

q(n)
jk

↽(n)
jk

u(n)
1

u(n)
3





=





p(n,0)
jk

q(n,0)
jk

↽(n,0)
jk

u(n,0)
1

u(n,0)
3





+ ωn





p(n,1)
jk

q(n,1)
jk

↽(n,1)
jk

u(n,1)
1

u(n,1)
3





+ ω2
n





p(n,2)
jk

q(n,2)
jk

↽(n,2)
jk

u(n,2)
1

u(n,2)
3





+ . . . , for j, k = 1, 3, (3.1.37)

and substituting in the reformulated equations of motion in Eqs. (3.1.32)→(3.1.36), we

get

φp(n,i)11

φ⇀ + φp(n,i)13

φ⊋s
= ϱ1→n φ2u(n,i)

1

φε2 , φq(n,i)11

φ⇀ + 41→n φq(n,i)13

φ⊋(n)
f

= 0,

φp(n,i)31

φ⇀ + φp(n,i)33

φ⊋s
= ϱ1→n φ2u(n,i)

1

φε2 , φq(n,i)31

φ⇀ + 41→n φq(n,i)33

φ⊋(n)
f

= 0,





(3.1.38)
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p(n,i)11 →
(
ϖ2
)n↓1 ϑ2p(n,i↓2)

11
ϑϖ2 →

(
ϖ2
)n↓2 ϑ2p(n,i↓2)

11
ϑ⊋2

s
= ↼(n,i)

11 , q(n,i)11 →
ϑ2q(n,i)

11

ϑ⊋(n,i)2

f

→
(
ϖ2
)n↓1 ϑ2q(n,i↓2)

11
ϑϖ2 = 0,

p(n,i)13 →
(
ϖ2
)n↓1 ϑ2p(n,i↓2)

13
ϑϖ2 →

(
ϖ2
)n↓2 ϑ2p(n,i↓2)

13
ϑ⊋2

s
=

1
ω ↼

(n,i)
13 , q(n,i)13 →

ϑ2q(n,i)
13

ϑ⊋(n,i)2

f

→
(
ϖ2
)n↓1 ϑ2q(n,i↓2)

13
ϑϖ2 = 0,

p(n,i)33 →
(
ϖ2
)n↓1 ϑ2p(n,i↓2)

33
ϑϖ2 →

(
ϖ2
)n↓2 ϑ2p(n,i↓1)

33
ϑ⊋2

s
=

1
ω2 ↼(n,i)

33 , q(n,i)33 →
ϑ2q(n,i)

33

ϑ⊋(n,i)2

f

→
(
ϖ2
)n↓1 ϑ2q(n,i↓2)

33
ϑϖ2 = 0,






(3.1.39)

with the local stresses relating to the displacement fields as,

↽(n,i)
11 = #↑2

n

ϖũ
(n,i)
1
ϖ1

+ (#↑2
n

→ 2) ϖũ
(n,i)
3

ϖ⊋s
,

↽(n,i)
13 = 1

▷

ϖũ
(n,i)
1

ϖ⊋s
+ 4 ϖũ

(n,i)
3
ϖ1

,

↽(n,i)
33 = (#↑2

n
→ 2) ϖũ

(n,i)
1
ϖ1

+ #↑2
n

ϖũ
(n,i)
3

ϖ⊋s
,






(3.1.40)

where #n =
√

µ(n)

!(n)+2µ(n) and are subjected to the conditions in asymptotic orders as,

4 p(2,i)31 + q(2,i↑1)
31 = 0, 42 p(2,i)33 + q(2,i↑2)

33 = 0 at ⊋s = 1, ⊋f =
1

ω2
(3.1.41)

4 p(1,i)31 + q(1,i↑1)
31 = µ↑1

(
4 p(2,i)31 + q(2,i↑1)

31

)
,

42 p(1,i)33 + q(1,i↑2)
33 = µ↑1

(
42 p(2,i)33 + q(2,i↑2)

33

)
,

u(1,i)
1 = u(2,i)

1 , u(1,i)
3 = u(2,i)

3 ,






at ⊋s = ⊋f = 0 (3.1.42)


p(1,i)11 + q(1,i)11 +

ϑq(1,i)11

ϑ⊋(1)
f

+
1
ω

ϑp(1,i↓1)
11
ϑ⊋s

+
1
2

ϑ3q(1,i↓2)
11

ϑϖ2 ϑ⊋(1)
f

 ∣∣∣∣
⊋s=⊋(1)

f =0

= 0,


p(2,i)11 + q(2,i)11 +

ϑ q(2,i)11

ϑ⊋(2)
f

+
ϑ p(2,i↓1)

11
ϑ⊋s

+
1
2 ϖ

2 ϑ3 q(2,i↓2)
11

ϑϖ2 ϑ⊋(2)
f

 ∣∣∣∣
⊋s=1, ⊋(2)

f = 1
ε2

+
∑i

k=i↓1

(
ω2

2
ϑ2

ϑϖ2

)i↓k

p(2,k)11 + q(2,k)11 →

ϑ q(2,k)
11

ϑ⊋(2)
f

→
ϑ p(2,k↓1)

11
ϑ⊋s

→
1
2 ϖ

2 ϑ3 q(2,k↓2)
11

ϑϖ2 ϑ⊋(2)
f

 ∣∣∣∣
⊋s=⊋(2)

f =0

e↓
1
ε2 = 0,


p(2,i)11 + q(2,i)11 →

ϑ q(2,i)11

ϑ⊋(2)
f

→
ϑ p(2,i↓1)

11
ϑ⊋s

→
1
2 ϖ

2 ϑ3 q(2,i↓2)
11

ϑϖ2 ϑ⊋(2)
f

 ∣∣∣∣
⊋s=⊋(2)

f =0

+
∑i

k=i↓1

(
ω2

2
ϑ2

ϑϖ2

)i↓k

p(2,k)11 + q(2,k)11 +

ϑ q(2,k)
11

ϑ⊋(2)
f

+
ϑ p(2,k↓1)

11
ϑ⊋s

+
1
2 ϖ

2 ϑ3 q(2,k↓2)
11

ϑϖ2 ϑ⊋(2)
f

 ∣∣∣∣
⊋s=1, ⊋(2)

f = 1
ε2

e↓
1
ε2 = 0.






(3.1.43)

102



Leading-order analysis: Comparing the leading order terms (i = 0) in governing

equations, it is easy to obtain

q(1,0)
jk

(
ς,⊋(1)

f

)
= Q(1,0)

jk
(ς) e⊋

(1)
f , (3.1.44)

q(2,0)
jk

(
ς,⊋(2)

f

)
= Q(2,0)

jk
(ς) e⊋

(2)
f +Q

(2,0)
jk

(ς) e↑⊋(2)
f , (3.1.45)

where the expressions for Q(n,0)
jk

, Q
(2,0)
jk

are obtained from the conditions in Eq. (3.1.43)

as,

Q
(1,0)
11 = →1

2
▷(1,0)
11

∣∣∣∣
⊋s=0

, Q
(1,0)
13 =

1
2

ϱ

ϱ↼

(
▷(1,0)
11

) ∣∣∣∣
⊋s=0

, Q
(1,0)
33 = →1

2
ϱ
2

ϱ↼2

(
▷(1,0)
11

) ∣∣∣∣
⊋s=0

Q
(2,0)
11 = →1

2
▷(2,0)
11

∣∣∣∣
⊋s=1

e
↓ 1

ε2 , Q
(2,0)
13 =

φ

2
ϱ

ϱ↼

(
▷(2,0)
11

) ∣∣∣∣
⊋s=1

e
↓ 1

ε2 , Q
(2,0)
33 = →φ

2

2
ϱ
2

ϱ↼2

(
▷(2,0)
11

) ∣∣∣∣
⊋s=1

e
↓ 1

ε2

Q
(2,0)
11 = →1

2
▷(2,0)
11

∣∣∣∣
⊋s=0

, Q
(2,0)
13 = →φ

2
ϱ

ϱ↼

(
▷(2,0)
11

) ∣∣∣∣
⊋s=0

, Q
(2,0)
33 = →φ

2

2
ϱ
2

ϱ↼2

(
▷(2,0)
11

) ∣∣∣∣
⊋s=0

As a result, the boundary and interface conditions at the leading order become,

↽(2,0)
31 = 0, ↽(2,0)

33 = 0 at ⊋s = 1, (3.1.46)

↽(1,0)
31 = µ↑1 ↽(2,0)

31 , ↽(1,0)
33 = µ↑1 ↽(2,0)

33

u(1,0)
1 = u(2,0)

1 , u(1,0)
3 = u(2,0)

3





at ⊋s = ⊋f = 0 (3.1.47)

First-order analysis: Similarly, the first-order terms (i = 1) in the governing equations

of motion in Eqs. (3.1.38) and (3.1.39) are compared by taking into account Eq. (3.1.43)

to obtain

q(1,1)
jk

(
ς,⊋(1)

f

)
= Q(1,1)

jk
(ς) e⊋

(1)
f , (3.1.48)

q(2,1)
jk

(
ς,⊋(2)

f

)
= Q(2,1)

jk
(ς) e⊋

(2)
f +Q

(2,1)
jk

(ς) , e↑⊋(2)
f (3.1.49)

where Q(n,1)
jk

and Q
(2,1)
jk

attains the value

Q(1,1)
11 = →

1

2


↽(1,1)
11 +

1

4

2

2⊋s

(
↽(1,0)
11

) ∣∣∣∣
⊋s=0

,

Q(1,1)
13 =

1

2


2

2ς

(
↽(1,1)
11

)
+

1

4

22

2ς 2⊋s

(
↽(1,0)
11

) ∣∣∣∣
⊋s=0

,

Q(1,1)
33 = →

1

2


22

2ς2

(
↽(1,1)
11

)
+

1

4

23

2ς2 2⊋s

(
↽(1,0)
11

) ∣∣∣∣
⊋s=0

,
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Q
(2,1)
11 = →1

2

[
▷̃
(2,1)
11 +

ϱ

ϱ⊋s

(
▷̃
(2,0)
11

)] 
⊋s=1

e
→ 1

ε2 , Q
(2,1)
11 = →1

2

[
▷̃
(2,1)
11 → ϱ

ϱ⊋s

(
▷̃
(2,0)
11

)] 
⊋s=0

,

Q
(2,1)
13 =

φ

2

[
ϱ

ϱ↼

(
▷̃
(2,1)
11

)
+

ϱ
2

ϱ↼ ϱ⊋s

(
▷̃
(2,0)
11

)] 
⊋s=1

e
→ 1

ε2 , Q
(2,1)
13 =

→φ

2

[
ϱ

ϱ↼

(
▷̃
(2,1)
11

)
→ ϱ

2

ϱ↼ ϱ⊋s

(
▷̃
(2,0)
11

)] 
⊋s=0

,

Q
(2,1)
33 = →φ

2

2

[
ϱ
2

ϱ↼2

(
▷̃
(2,1)
11

)
+

ϱ
3

ϱ↼2 ϱ⊋s

(
▷̃
(2,0)
11

)] 
⊋s=1

e
→ 1

ε2 , Q
(2,1)
33 = →φ

2

2

[
ϱ
2

ϱ↼2

(
▷̃
(2,1)
11

)
+

ϱ
3

ϱ↼2 ϱ⊋s

(
▷̃
(2,0)
11

)] 
⊋s=0

.

Consequently, on neglecting the exponentially smaller terms, the boundary and interface

conditions for the propagation of Rayleigh waves in a layered medium at the first-order

take the form,

↽(2,1)
31 +

4

2

2

2ς

(
↽(2,0)
11

)
= 0, ↽(2,1)

33 = 0 at ⊋s = 1 (3.1.50)

↽(1,1)
31 + 1

2
ϖ

ϖ1

(
↽(1,0)
11

)
= µ↑1

(
↽(2,1)
31 →

▷

2
ϖ

ϖ1

(
↽(2,0)
11

))
,

↽(1,1)
33 = µ↑1 ↽(2,1)

33 ,

u(1,1)
1 = u(2,1)

1 , u(1,1)
3 = u(2,1)

3 .






at ⊋s = 0 (3.1.51)

Second-order analysis: Note that at the second order (i = 2), the equations in Eq.

(3.1.39) can be written as,

p(n,2)11 = ↽(n,2)
11 + (42)n↑1 ϖ

2

ϖ12

(
↽(n,0)
11

)
+ (42)n↑2 ϖ

2

ϖ⊋2
s

(
↽(n,0)
11

)
,

p(n,2)13 = 1
▷


↽(n,2)
13 + (42)n↑1 ϖ

2

ϖ12

(
↽(n,0)
13

)
+ (42)n↑2 ϖ

2

ϖ⊋2
s

(
↽(n,0)
13

)
,

p(n,2)33 = 1
▷2


↽(n,2)
33 + (42)n↑1 ϖ

2

ϖ12

(
↽(n,0)
33

)
+ (42)n↑2 ϖ

2

ϖ⊋2
s

(
↽(n,0)
33

)
.






(3.1.52)

Substituting these expressions into the equations of motion in Eq. (3.1.38), we get the

second-order refined equations of motion in terms of local stresses as,

ϖ

ϖ1

(
↽(n,2)
11

)
+ 1

▷

ϖ

ϖ⊋s

(
↽(n,2)
13

)
= ϱ1↑n


ϖ
2
ũ
(n,2)
1

ϖ↽̃2
→

(
(42)n↑2 ϖ

2

ϖ⊋2
s
+ (42)n↑1 ϖ

2

ϖ12

)
ϖ
2
ũ
(n,0)
1

ϖ↽̃2


,

ϖ

ϖ1

(
↽(n,2)
13

)
+ 1

▷

ϖ

ϖ⊋s

(
↽(n,2)
33

)
= 4 ϱ1↑n


ϖ
2
ũ
(n,2)
3

ϖ↽̃2
→

(
(42)n↑2 ϖ

2

ϖ⊋2
s
+ (42)n↑1 ϖ

2

ϖ12

)
ϖ
2
ũ
(n,0)
3

ϖ↽̃2


.





(3.1.53)

Further, the second-order refined boundary conditions at the surface ⊋s = 1 can be derived

as,

↽(2,2)
31 + ▷

2
ϖ

ϖ1

(
↽(2,1)
11

)
+ ▷

2
ϖ
2

ϖ1 ϖ⊋s

(
↽(2,0)
11

)
+ ϖ

2

ϖ⊋2
s

(
↽(2,0)
31

)
+ 42 ϖ

2

ϖ12

(
↽(2,0)
31

)
= 0,

↽(2,2)
33 + ϖ

2

ϖ⊋2
s

(
↽(2,0)
33

)
+ 42 ϖ

2

ϖ12

(
↽(2,0)
33

)
→

▷
2

2
ϖ
2

ϖ12

(
↽(2,0)
11

)
= 0,





at ⊋s = 1

(3.1.54)
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and the refined continuity conditions at the interface ⊋s = 0 can be given as,

↼(1,2)
31 +

1

2

φ

φ⇀

(
↼(1,1)
11

)
+

1

ϖ2
φ2

φ⊋2
s

(
↼(1,0)
31

)
+

φ

φ⇀2

(
↼(1,0)
31

)
+

1

2ϖ

φ2

φ⇀ φ⊋s

(
↼(1,0)
11

)

= µ↓1


↼(2,2)
31 →

ϖ

2

φ

φ⇀

(
↼(2,1)
11

)
+

φ2

φ⊋2
s

(
↼(2,0)
31

)
+ ϖ2

φ

φ⇀2

(
↼(2,0)
31

)
+

ϖ

2

φ2

φ⇀ φ⊋s

(
↼(2,0)
11

)
,(3.1.55)

↼(1,2)
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, (3.1.56)

u(1,2)
1 = u(2,2)

1 , u(1,2)
3 = u(2,2)

3 . (3.1.57)

Refined boundary value problem

Using the fact that g(n,2) ⇑ 1
↼2n
g(n,0), g(n,1) ⇑ 1

↼n
g(n) for g ⇔ {↽jk, uk} for j, k = 1, 3, the

boundary value problem for Rayleigh waves propagating in a nonlocal layered medium

given in Eqs. (3.1.53)→(3.1.57) can rewritten as,
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,





(3.1.58)

subjected to the boundary conditions at ⊋s = 1 as
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(3.1.59)

and assuming O (ω21) ′ O (ω22), the interface conditions at ⊋s = 0,
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, (3.1.60)
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, (3.1.61)

ũ
(1)
1 = ũ

(2)
1 , ũ

(1)
3 = ũ

(2)
3 . (3.1.62)
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In terms of the original variables, we can re-write all the equations from Eq. (3.1.58)→(3.1.62)

as,

ϖ

ϖx

(
↽(n)
11

)
+ ϖ
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13
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2
u
(n)
3
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,





(3.1.63)

subjected to the boundary conditions at z = h as
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)
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(3.1.64)

and at the interface z = 0 underlying conditions,
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, (3.1.65)

(
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, (3.1.66)

u(1)1 = u(2)1 , u(1)3 = u(2)3 , (3.1.67)

where ↗
2 = ϖ

2

ϖx2 +
ϖ
2

ϖz2
is the well-known Laplacian operator.

3.1.4 Application

In this section, we investigate a two-dimensional problem on the propagation of

Rayleigh waves in an isotropic, homogeneous layer of thickness h overlying a homoge-

neous isotropic semi-infinite medium.

Solution to the problem

As mentioned in section 4.1 u(n)
1 and u(n)

3 for n = 1, 2 be the horizontal and vertical

displacements of Rayleigh waves the semi-infinite medium (n = 1) and the layer (n = 2),

respectively.

A coupled system of di!erential equations are obtained on using the local stress-strain

relations in Eqs. (3.1.1) into the refined equation of motion obtained in Eqs. (3.1.63).
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Introduce the potentials φ(n)(x, z, t) and ↼(n)(x, z, t) to decompose the displacement com-

ponents as,

u(n)
1 =

2φ(n)

2x
→

2↼(n)

2z
, u(n)

3 =
2φ(n)

2z
+

2↼(n)

2x
.

to decouple the coupled di!erential equations.

As a result, we get

↗
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c
(n)
1

)2 (1→ ↑
2
n
↗

2) ϖ
2
ϱ
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ϖt2
,

↗
2 ↼(n) = 1(

c
(n)
2

)2 (1→ ↑
2
n
↗

2) ϖ
2
ς
(n)

ϖt2
.





(3.1.68)

The solution to these systems in Eq. (3.1.68) are evidently,

for the semi-infinite medium:
φ(1) = A1 ek⇀1z ei(kx↑εt),

↼(1) = P1 ek31z ei(kx↑εt),





(3.1.69)

for the layer:
φ(2) = [A2 sinh (kα2z) + B2 cosh (kα2z)] ei(kx↑εt),

↼(2) = [P2 sinh (kβ2z) +Q2 sinh (kβ2z)] ei(kx↑εt),





(3.1.70)

where,

αn =

√√√√1→
c2

(
c(n)1

)2
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n
ϖ2

, βn =

√√√√1→
c2

(
c(n)2

)2

→ ↑2
n
ϖ2

(3.1.71)

with c(n)1 =
√

!(n)+2µ(n)

ϑ(n) and c(n)2 =
√

µ(n)

ϑ(n) .

Dispersion relation

Define certain quanties,

α(0)
n

=

√√√√1→
c2

(
c(n)1

)2 , β(0)
n

=

√√√√1→
c2

(
c(n)2

)2 ,

ϱn =
1

2

(
2
(
α(0)
n

)2
→

(
β(0)
n

)2
+ 1

)
, *n =

(
β(0)
n

)2
+ 1.

Now, on substituting the solution forms in Eqs. (3.1.69) and (3.1.70) into the refined

boundary conditions derived in Eqs. (3.1.64)→(3.1.67), the dispersion relation obtained
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in terms of nondimensionalized variables within an error of O(ω2
n
) is as follows:
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(3.1.72)

Note that Eq. (3.1.72) clearly establishes a relationship between the velocity c of Rayleigh

waves and their wavenumber k (or wavelength l), indicating the dispersive nature of

Rayleigh waves in a nonlocal layered medium.

Let us introduce the following abbreviations to simply our discussions on the dispersion

relation.

X = 2µ→*2, W = 2 (µ→ 1) ,

Y = 2→ µ*1, U = Z↑γ2Y(
3
(0)
2

)2
↑1

,

Z = *2 → µ*1, V = 3
(0)
1 (γ2W↑X)
(
3
(0)
2

)2
↑1

.

(3.1.73)

As a result, the dispersion relation in Eq. (3.1.72) reduces to,

(4132 → 4231) + µ ω1

β(0)
2 33

(
β(0)
1 41 + ϱ1 42

)
→ 43

(
β(0)
1 31 + ϱ1 32

)

+ 4 ω2


β(0)
2

α(0)
2

(42 34 + 41 35)→ 43 (32 U + 31 V )


= 0, (3.1.74)

where the expressions for 31, 32, 33, 34, 35, 41, 42 and 43 are given in the Appendix B.

The leading-order term in Eq. (3.1.74) yields

4132 → 4231 = 0, (3.1.75)

which corresponds to the dispersion relation of Rayleigh waves in a local, elastic, layered

isotropic medium. This result aligns precisely with the well-established formulations and

results of Love [270] and Fu [271].
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3.1.5 Graphical discussions

The dispersion characteristics of surface waves are fundamental to understanding wave

propagation in elastic media. In this section, we present and analyze the dispersion curves

obtained from the theoretical model, which provide insights into the relationship between

wave velocity and wavenumber (or wavelength).These curves serve as a crucial tool for

interpreting the e!ects nonlocal parameters on wave behavior.

Figure 3.1.2 shows the dispersion curve relating wavenumber to wave velocity for Rayleigh

waves in a nonlocal isotropic layer overlying a nonlocal isotropic semi-infinite medium. At

lower wavenumbers (long-wavelength regime), the Rayleigh waves perceive the medium as

e!ectively homogeneous, with phase velocity approaching that of the sti!er substrate, as

the wave motion extends deeper into it. When the wavelength is long relative to the layer

thickness, wave motion concentrates in the softer upper layer, reducing the overall phase

velocity. This dispersion, where wave velocity decreases with increasing wavenumber, is

further influenced by nonlocal elasticity, which further lowers the phase velocity.
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Figure 3.1.2: Dispersion curves for nonlocal elastic Rayleigh waves in an

isotropic layered medium

Moreover, the analysis reveals that the nonlocal elasticity e!ects in the layer are more

dominant than those in the semi-infinite medium, a finding that aligns with previous
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studies. This dominance is likely due to the higher sensitivity of the thinner layer to

nonlocal interactions, compared to the more massive semi-infinite medium. The literature

corroborates that in layered media, the upper layer’s material properties and nonlocal

e!ects have a substantial influence on the overall wave behavior, often overshadowing the

contributions from the underlying substrate.

3.1.6 Conclusions

This study derived refined boundary and interface conditions for nonlocal Rayleigh

waves in layered media by employing asymptotic analysis and a modified singularly per-

turbed di!erential model. The results highlight that nonlocal corrections primarily a!ect

boundary and interface conditions rather than the equations of motion. Refinements in

the interface conditions are essential to account for the nonlocal boundary layer devel-

oped at the interface. First-order nonlocal corrected dispersion relations were obtained

and validated through numerical analysis, demonstrating significant and dominant nonlo-

cal e!ects in the layer. While the approach aligns well with existing literature, its validity

may be limited at scales comparable to the internal size of nonlocal boundary layers,

necessitating further advancements in future research.
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3.2 Extension to nonlocal micropolar elasticity with an applica-

tion⇓

This subsection extends the previous analysis in section 3.1 to analyze the surface wave

propagation under the framework of nonlocal micropolar elasticity. Refined boundary

and interface conditions, incorporating modifications to couple stress and force stress

conditions, are derived to account for boundary and interfacial layer e!ects.

3.2.1 Mathematical formulation

We examine a two-layer system (provided in Figure 3.2.1) consisting of an isotropic,

homogeneous nonlocal micropolar elastic layer of thickness h resting on an isotropic,

homogeneous nonlocal micropolar elastic semi-infinite medium. The values in the semi-

infinite medium is denoted by script ‘1’, while the values in the layer is denoted by ‘2’.

The z→axis is oriented vertically downwards, with the free surface at z = h and the

interface between the two media at z = 0.

Figure 3.2.1: Geometry of the problem

∗
Published in Mathematics and Mechanics of Solids (SAGE Publications), (2025).
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According to Eringen’s theory of nonlocal micropolar elasticity [61], the relationship

between nonlocal and local stresses can be expressed through integral equations. Employ-

ing kernel of the form given in Eq. (1.3.51), we have,

◁ (i)mn = 1
20↔2

i


Vi

K0

(⇐
(x↑x̄)2+(z↑z̄)2

↔i

)
↽(i)
mn (x̄, z̄) dx̄ dz̄,

▷(i)
mn = 1

20↔2
i


Vi

K0

(⇐
(x↑x̄)2+(z↑z̄)2

↔i

)
%(i)

mn (x̄, z̄) dx̄ dz̄,






i = 1, 2. (3.2.1)

The superscript i = 1 and i = 2 refers to the quantities for the semi-infinite medium and

the upper layer, respectively.

Further, the parameter ↑i denotes the nonlocality parameter for each medium. And

the volume where deformation occurs is denoted by Vi, with i = 1, 2. Specifically, V1

corresponds to the region →↓ < x < ↓ and →↓ < z ↔ 0, while V2 corresponds to

→↓ < x < ↓ and 0 ↔ z ↔ h.

For slowly varying local stresses ↽(i)
mn and %(i)

mn in the x→direction, Eqs. (3.2.1) reduce to

the approximate expressions as presented by Kaplunov et al. [204] for the small nonlocal

parameters. As a result, the approximations for the nonlocal force stresses are
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
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(3.2.2)

and for nonlocal couple stresses are given as,

▷(1)
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▷(2)
mn(x, z) = 1
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
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(
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
(3.2.3)

Furthermore, adopting the same two-dimensional kernel as specified in Eq. (3.2.1), the

di!erential model proposed by Eringen [60] establishes the relation between local and

non-local stresses as,

(1→ ↑
2
i
↗

2) ◁ (i)mn = ↽(i)
mn,

(1→ ↑
2
i
↗

2) ▷(i)
mn = %(i)

mn,





i = 1, 2. (3.2.4)
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Now, the general constitutive equation relating the stress and strain components in a

linear micropolar elastic solid are given by,

↽(i)
mn = C

(i)
mnpq 1

(i)
pq ,

%(i)
mn = M

(i)
mnpq#

(i)
pq ,





m,n, p, q = 1, 2, 3, (3.2.5)

where C
(i)
mnpq,M

(i)
mnpq are the micropolar elastic sti!ness tensors of the corresponding

medium.

Also, the strain tensor 1(i)pq and the curvature tensor #(i)
pq are related to the displacement

components u(i)
j
, j = 1, 2, 3 and the rotation vector &j, j = 1, 2, 3 as,

1(i)pq = u(i)
q,p → ωqpr&

(i)
r ,

#(i)
pq = &(i)

p,q,





p, q, r = 1, 2, 3, (3.2.6)

where ωqpr is the permutation symbol.

In a homogeneous micropolar elastic medium, the governing equation of motion for a

nonlocal micropolar elastic wave propagation without body forces is expressed as

◁ (i)mn,m → ⇀(i)u(i)
n,tt = 0,

▷(i)
mn,m + ωnpq◁

(i)
pq → j(i)⇀(i)&(i)

n,tt = 0,





(3.2.7)

in which ⇀(i), j(i) corresponds to the density and micro-inertia of the each media, respec-

tively.

3.2.2 Equivalence conditions

In the next section, we shall derive the additional boundary conditions needed to

ensure equivalence between the integral and di!erential nonlocal micropolar elasticity

formulations as described in Eqs. (3.2.2)-(3.2.4). By rigorously establishing these condi-

tions, we aim to accurately model the e!ects of micropolar and nonlocal elasticity in any

layered media.
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In the lower micropolar nonlocal elastic semi-infinite medium

At the interface of the layered media, z = 0, the expressions for the nonlocal force

and couple stresses,
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Upon substituting the di!erential formulation given in Eq. (3.2.4), we approximate the

first expressions in Eqs. (3.2.2) and (3.2.3) using a methodology similar to that provided

in section 3.1 under the assumption of a longer wavelength compared to the nonlocal

parameter of the medium, yielding
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for all X(1)
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}
.

In the upper micropolar nonlocal elastic layer

It should be noted that for the upper layer of thickness h, the equivalence between

the di!erential and integral nonlocal models must be satisfied at both the surface z = h

and the interface z = 0.

Observe that, the nonlocal force and couple stresses at the surface z = h are given as,
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and at the interface z = 0 are expressed as,
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After rigorous calculations, equivalence conditions are derived at both the surface z = h

and the interface z = 0. As a result, we obtain the conditions,
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which holds good for all X(2)
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3.2.3 Refined BVP for nonlocally micropolar elastic Rayleigh waves

Consider the propagation of Rayleigh waves along the x→direction, characterized

by the displacement components
(
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3

)
and the microrotation vector components

(
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2 , 0
)
, where i = 1 refers to the semi-infinite medium and i = 2 corresponds to the

layer.

Boundary value problem

The boundary value problem is then formulated as follows:
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subjected to the traditional traction-free boundary and continuity conditions, respectively

(i) at the surface z = h, ◁ (2)31 = 0, ◁ (2)33 = 0, ▷(2)
32 = 0,

(ii) at the interface z = 0, ◁ (1)31 = ◁ (2)31 , ◁ (1)33 = ◁ (2)33 , ▷(1)
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2 .

It is noteworthy that not all the equivalence conditions derived in sections 3.2.2 can

be simultaneously satisfied, as doing so would render the boundary value problem ill-

posed. To ensure a well-posed formulation, we adopt the extra conditions provided in

Eqs. (3.2.9), (3.2.12) and (3.2.13) on the nonconstrained stresses X(1)
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Asymptotic analysis

Introduce two small perturbation parameters of same order,

ω1 =
↑1

0
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h
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to address the formulated problem asymptotically. Here 0 denotes the wavelength of

propagating wave and h is the thickness of upper layer. This results in the di!erent scale

of behaviors, which are described as follows:
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f
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. (3.2.16)

These scales are introduced to incorporate the influence of the boundary layer on wave

dynamics. The variable ⊋s captures the slower variation of the wave during propagation

while the rapid oscillations of the wave behavior is captured by the variable ⊋(i)
f
. Further,

we introduces some dimensionless quantities such as,
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where c(i)2 =
√

µ(i)+ω(i)

ϑ(i)
to facilitate the further discussions.

To account for the e!ects of the boundary layer, the stress components can be decomposed

into fast and slow variable components, as done in section 3.1, as follows:
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where p(i)mn and r(i)mn are the functions of 3,⊋s,t, while q(i)mn and s(i)mn are the functions of

3,⊋f ,t. This approach allows for a more accurate representation of the stress field near

the boundary. It is important to observe that the symmetry of the stress components is

preserved for the rapidly varying components, while the symmetry breaks down for the

more slowly varying components within a micropolar solid. As a result, we have q(i)13 = q(i)31 .

Furthermore, we expand the following quantities in an asymptotic series as follows:

F(i) = F(i,0) + ωi F
(i,1) + ω2

i
F(i,2) + . . . (3.2.19)
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where F ⇔

{
pmn, qmn, ◁mn, ↽mn, rmn, smn, ▷mn, %mn, un, &2

}
.

By decomposing the stress components as outlined in Eq. (3.2.18) and employing the

asymptotic expansions from Eq. (3.2.19), the boundary value problem can be reformulated

in terms of asymptotic orders as below:
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together with the boundary and interface conditions
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where µ = µ
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(3.2.25)

A comparative analysis of the leading order terms (r = 0), first-order terms (r = 1),

and second-order terms (r = 2) for the aforementioned system of equations enables a

refinement of the boundary and interface conditions. By ignoring exponentially smaller

terms, the refined boundary and interface conditions for di!erent asymptotic orders are

summarized below:

Leading order analysis: Comparing the first-order terms, we obtain the conditions (i)

at the surface ⊋s = 1,

↽(2,0)
31 = 0, ↽(2,0)

33 = 0, %(2,0)
32 = 0.
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(ii) at the interface ⊋s = 0,
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2 .
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Second-order analysis: We rewrite the equations of motion in Eq. (3.2.7) as,

ϑ
ϑ↽

(
▷̃
(i,2)
11

)
+ 1

⇀
ϑ

ϑ⊋s

(
▷̃
(i,2)
13

)
= ϖ

1→i

[
ϑ2ũ
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(i,0)
3

ϑt̃2

]
.

ϑ
ϑ↽

(
”̃(i,2)
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)
+ 1

⇀
ϑ

ϑ⊋s

(
”̃(i,2)

32

)
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ϑ2ũ
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1
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⇁
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s
+

(
⇁
2
)i→1 ϑ2

ϑ↽2

)
ϑ2ũ

(i,0)
1

ϑt̃2

]
,






(3.2.26)

subjected to refined boundary and interface conditions,

(i) at the surface ⊋s = 1,

▷̃
(2,2)
31 +

⇁

2
ϱ

ϱ◁

(
▷̃
(2,1)
11

)
+

⇁

2
ϱ
2

ϱ◁ ϱ⊋s

(
▷̃
(2,0)
11

)
+

ϱ
2

ϱ⊋2
s

(
▷̃
(2,0)
31

)
+ ⇁

2 ϱ
2

ϱ◁2

(
▷̃
(2,0)
31

)
= 0, (3.2.27)

▷̃
(2,2)
33 +

ϱ
2

ϱ⊋2
s

(
▷̃
(2,0)
33

)
+ ⇁

2 ϱ
2

ϱ◁2

(
▷̃
(2,0)
33

)
→ ⇁

2

2
ϱ
2

ϱ◁2

(
▷̃
(2,0)
11

)
= 0, (3.2.28)

”̃(2,2)
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⇁

2
ϱ

ϱ◁

(
”̃(2,1)

12

)
+

⇁

2
ϱ
2

ϱ◁ ϱ⊋s

(
”̃(2,0)

12

)
+

ϱ
2

ϱ⊋2
s

(
”̃(2,0)

32

)
+ ⇁

2 ϱ
2

ϱ◁2

(
”̃(2,0)

32

)
= 0, (3.2.29)
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(ii) at the interface ⊋s = 0,

↼(1,2)
31 +

1

2

φ

φϑ

(
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11

)
+

1

⇁2
φ2
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φ
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1

2⇁

φ2

φϑ φ⊋s

(
↼(1,0)
11

)
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
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⇁

2

φ

φϑ

(
↼(2,1)
11

)
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(
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)
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φ
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↼(2,0)
31

)
+

⇁

2

φ2

φϑ φ⊋s

(
↼(2,0)
11

)
, (3.2.30)

↼(1,2)
33 →

1

2

φ2

φϑ2
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↼(1,0)
11

)
+

1

⇁2
φ2

φ⊋2
s

(
↼(1,0)
33

)
+

φ2

φϑ2

(
↼(1,0)
33

)

= ⇀↓1


↼(2,2)
33 →

⇁2

2

φ2

φϑ2

(
↼(2,0)
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)
+

φ2

φ⊋2
s

(
↼(2,0)
33

)
+ ⇁2

φ2

φϑ2

(
↼(2,0)
33

)
, (3.2.31)

”(1,2)
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)
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φ⊋2
s
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32

)
+

φ

φϑ2
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)
+

1

2⇁

φ2

φϑ φ⊋s
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”(1,0)
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)

= ⇀↓1
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”(2,2)
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⇁

2

φ

φϑ

(
”(2,1)
12

)
+

φ2

φ⊋2
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(
”(2,0)
32

)
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φ

φϑ2

(
”(2,0)
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)
+

⇁

2

φ2

φϑ φ⊋s

(
”(2,0)
12

)
,(3.2.32)

u(1,2)
1 = u(2,2)

1 , u(1,2)
3 = u(2,2)

3 , !(1,2)
2 = !(2,2)

2 , (3.2.33)

where ς = µ
(1)+ω

(1)

µ(2)+ω(2) .

Refined boundary value problem

Utilizing the approximation that

F(i,r)
⇑

1

↑r

i

F(i)

for r = 1, 2 and F ⇔

{
↽31, ↽11, ↽33, %32, %12, u1, u3, &2

}
, the refined equations of motion for

the propagation of Rayleigh waves in a micropolar layered medium can be reformulated

in terms of original variables as,

ϖ

ϖx

(
↽(i)
11

)
+ ϖ

ϖz

(
↽(i)
13

)
= ⇀(i) (1→ ↑

2
i
↗

2) ϖ
2
u
(i)
1

ϖt2
,

ϖ

ϖx

(
↽(i)
13

)
+ ϖ

ϖz

(
↽(i)
33

)
= ⇀(i) (1→ ↑

2
i
↗

2) ϖ
2
u
(i)
3

ϖt2
,

ϖ

ϖx

(
%(i)

12

)
+ ϖ

ϖz

(
%(i)

32

)
+ ↽(i)

31 → ↽(i)
13 = ⇀(i) j(i) (1→ ↑

2
i
↗

2) ϖ
2%2
ϖt2

,






(3.2.34)

with the refined traction-free boundary conditions at the surface z = h as

(1 + ↑
2
2↗

2) ↽(2)
31 + ↔2

2
ϖ

ϖx

(
↽(2)
11

)
+ ↔2

2
2

ϖ
2

ϖx ϖz

(
↽(2)
11

)
= 0,

(1 + ↑
2
2↗

2) ↽(2)
33 →

↔2
2
2

ϖ
2

ϖx2

(
↽(2)
11

)
= 0,

(1 + ↑
2
2↗

2)%(2)
32 + ↔2

2
ϖ

ϖx

(
%(2)

12

)
+ ↔2

2
2

ϖ
2

ϖx ϖz

(
%(2)

12

)
= 0,






(3.2.35)
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and the continuity conditions at the interface z = 0 as,

(
1 + ↑2

1↓2)
▷
(1)
31 +

↑1

2

ϱ
2
▷
(1)
11

ϱx ϱz
+

↑2
1

2

ϱ
2
▷
(1)
11

ϱx ϱz
= ↼

→1


(
1 + ↑2

2↓2)
▷
(2)
31 → ↑2

2

ϱ ▷
(2)
11

ϱx
+

↑2
2

2

ϱ
2
▷
(2)
11

ϱx ϱz


, (3.2.36)

(
1 + ↑2

1↓2)
▷
(1)
33 → ↑2

1

2

ϱ
2
▷
(1)
11

ϱx2
= ↼

→1


(
1 + ↑2

2↓2)
▷
(2)
33 → ↑2

2

2

ϱ
2
▷
(2)
11

ϱx2


, (3.2.37)

(
1 + ↑2

1↓2)”(1)
32 +

↑1

2

ϱ
2”(1)

12

ϱx ϱz
+

↑2
1

2

ϱ
2”(1)

12

ϱx ϱz
= ↼

→1


(
1 + ↑2

2↓2)”(2)
32 → ↑2

2

ϱ”(2)
12

ϱx
+

↑2
2

2

ϱ
2 ”(2)

12

ϱx ϱz


, (3.2.38)

u
(1)
1 = u

(2)
1 , u

(1)
3 = u

(2)
3 , #(1)

2 = #(2)
2 , (3.2.39)

where ↗
2 is the two-dimensional Laplacian operator, defined as ↗2 = ϖ

2

ϖx2 +
ϖ
2

ϖz2
.

3.2.4 Application

In this section, we investigate the propagation and dispersion of Rayleigh waves in an

isotropic nonlocal micropolar layer of thickness h overlying an isotropic nonlocal microp-

olar semi-infinite medium.

Solution to the problem

The constitutive relations relating local stresses with the strain components for an

isotropic micropolar structure are given by:

↽(i)
mn = $(i) 1(i)pp εmn +

(
µ(i) + ⇁(i)

)
1(i)mn + µ(i) 1(i)nm,

%(i)
mn = α(i) #(i)

pp εmn + β(i) #(i)
mn + ϱ(i) #(i)

nm,




 m,n = 1, 2, 3. (3.2.40)

Here, the strain tensor 1(i)mn and curvature tensor #(i)
mn are defined as previously described.

Additionally, $(i) and µ(i) represent the Lamé elastic constants, while ⇁(i),α(i) and β(i)

denote the micropolar constants.

Substituting the constitutive relations from Eq. (3.2.40) into the equations of motion

presented in Eq. (3.2.7) yields a coupled system of equations involving u(i)
1 , u(i)

3 and &(i)
2 .

To decouple this system, we employ Helmholtz decomposition technique that expresses

the displacement components as a sum of scalar and vector potentials as follows:

u(i)
1 =

2φ(i)

2x
→

2↼(i)

2z
, u(i)

3 =
2φ(i)

2z
+

2↼(i)

2x
. (3.2.41)

The resulting decoupled equations can be readily solved, yielding solutions to the dis-

placement, micro-rotation components of the semi-infinite medium and the layer in the

121



following form (the detailed derivation is left to the reader),

u
(1)
1 (x, z, t) = ik

[
A1e

kω
(1)
1 z + i

(
B1ω

(1)
2 e

kω
(1)
2 z +D1ω

(1)
3 e

kω
(1)
3 z

)]
e
i(kx→ωt)

,

u
(1)
3 (x, z, t) = k
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1 e
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B1e

kω
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2 z +D1e

kω
(1)
3 z

)]
e
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#(1)
2 (x, z, t) = s(1) k2 D1 e

kω
(1)
3 z

e
i(kx→ωt)

,






(3.2.42)
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(
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(
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)
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(
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))
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(
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(
kω(2)

3 z

)
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(
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e
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,
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(
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,






(3.2.43)

where k
(
= 1

4

)
, ϖ are the wavelength and frequency of the propagating wave, respectively.

And,

(
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1

)2
= 1→ v

2

(
c
(i)
1

)2
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i v
2
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(
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2

)2
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i v
2
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3
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2

(
c
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i v
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
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(
c
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3

)2

j(i)⇀2


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s(i) =
v
2

(
c
(i)
3

)2



1→

(
c
(i)
2

)2
→ ↑2

i v
2

(
c
(i)
4

)2
→ ↑2

i v
2



1→
2
(
c
(i)
3

)2

j(i)⇀2







 .

It is necessary that Re(ω(i)
m ) > 0 for m = 1, 2, 3 to guarantee the exponential decay of the

waves from the surface. Also,

c(i)1 =

√
$(i) + 2µ(i) + ⇁(i)

⇀(i)
, c(i)2 =

√
µ(i) + ⇁(i)

⇀(i)
, c(i)3 =

√
⇁(i)

⇀(i)
, c(i)4 =

√
ϱ

⇀(i)j(i)
,

are the velocities associated with the micropolar media.

Dispersion relations

Now, substituting the expressions for the displacement and micro-rotation components

of both the semi-infinite medium and the layer, as given in Eqs. (3.2.42) and (3.2.43),

into the refined boundary conditions derived in Eqs. (3.2.35)-(3.2.39), we obtain a 9↘ 9

system of equations. Solving this system for a nontrivial solution yields the dispersion

relations. For computational e”ciency, we evaluate the first-order corrected dispersion

relations. Two dispersion relations are obtained out of which one is entirely due to the
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micropolarity in the media and vanishes in its absence.

Define the quantities in their leading order expressions as,

(
ω
(i)
10

)2
= 1→

v2
(
c(i)1

)2 ,
(
ω
(i)
20

)2
= 1→

v2
(
c(i)2

)2 ,
(
ω
(i)
30

)2
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v2
(
c(i)4

)2



1→

2

(
c(i)3

)2

j(i)ω2



(3.2.44)

As a result, the dispersion relation corresponding to the Rayleigh surface wave mode that

counterparts with the purely elastic solid can be given explicitly as,

+0 + ω1+1 + ω2+2 = 0, (3.2.45)

where

+0 = 2
(!

(2)
1 +

!
(2)
3

)
ω(2)
10 (ε1ϑ2 →ε2ϑ1) ,

+1 = 2G2

(
ω(2)
20 ε2ϑ3 →ε3ϑ2
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+G1ω
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20
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20 ε1ϑ3
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,

+2 = 4
(
ω(2)
20 (ε2ϑ4 +ε1ϑ5)→ε3ω

(2)
10

(
ϑ2U + ω(1)

20 ϑ1V
))

is the first-order corrected dispersion relation for Rayleigh waves propagating in a nonlocal

micropolar layered medium. Further, the expressions for εj, j = 1, 2, 3 and ϑj, j =

1, 2, . . . 5 are as follows:

ε1 =
!
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1 ω

(2)
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while the expressions for the rest of the unknown terms are provided in the Appendix C

for reference.

Also, the dispersion relation corresponding to the micropolar surface wave that vanishes

in the absence of the micropolarity in its first-order correction is given as,

↗0 + ω1↗1 + ω2↗2 = 0, (3.2.46)

where,

↗0 = 26ω(2)
3

(
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,
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,

where ((i)
3 , i = 1, 2 are defined in Appendix C.

3.2.5 Graphical discussions

To gain deeper insights into the influence of nonlocal elasticity and micropolarity on

Rayleigh wave propagation within a layered medium, a series of graphical representations

are presented. These figures elucidate the dispersive nature of Rayleigh waves and the

variations in phase velocities with respect to wavenumber and micropolar parameters.

To facilitate a comprehensive understanding of the graphical results, we introduce the

following non-dimensional parameters: Poisson’s ratio (ϑ), micropolar ratio (d) and char-

acteristic length ratio (l). For the semi-infinite medium (i = 1) and the layer (i = 2),

these parameters are defined as:

ϑ(i) =
0(i)

20(i) + 2µ(i) + ⇁(i)
, d(i) =

⇁(i)

µ(i)
, l(i) =

ϱ(i)

j(i)µ(i)
.

Throughout the graphical analysis, we assume the following values for the non-

dimensional parameters: ϑ(1) = 0.1, ϑ(2) = 0.4, d(1) = 0.2, d(2) = 0.8, unless otherwise

specified.

The graphical analysis presented in Figure 3.2.2 provides a comprehensive comparison of

Rayleigh wave propagation in four distinct scenarios: local elastic, nonlocal elastic, incor-

rect nonlocal results, local micropolar, nonlocal micropolar media and incorrect nonlocal

micropolar results. We deliberately include incorrect dispersion curves to demonstrate

the inaccuracies present in past literature compared to the refined boundary condition

124



results presented in this study. The introduction of micropolarity, characterized by addi-

tional rotational degrees of freedom, results in an increase in phase velocity. Conversely,

nonlocality, which accounts for long-range interactions, leads to a decrease in phase ve-

locity. The interplay between these two e!ects shapes the overall dispersion behavior.

Micropolar media (both local and nonlocal case) exhibit a concave downward dispersion

curve, indicating a positive dispersion relation. This means that that lower frequency

components travel faster than higher frequency components, leading to a compression of

the wave packet. Purely elastic materials (both local and nonlocal case), on the other

hand, exhibit concave upwards dispersion curve indicating a negative dispersion, where

higher frequency components travel faster than lower frequency components. This leads

to a spreading of the wave packet over time. It is important to note that the limit hk ≃ 0

corresponds to an infinitely long wavelength relative to the layer thickness. Our analysis

reveals that even for small hk, where the wavelength is significantly larger than h, non-

local e!ects persist, influencing wave propagation. This observation higlights the crucial

role of layer thickness in governing nonlocal behavior.
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Figure 3.2.2: Comparision of Rayleigh wave dispersion curves under the

influence of micropolarity and nonlocality in a layered medium
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The provided dispersion curve in Figure 3.2.3 illustrates the influence of the micropolar

ratio d2 in the layer on the phase velocity of Rayleigh waves. As the micropolar ratio

d2 of the layer increases, the phase velocity curves increases with the increase in the

wavenumber. This indicates that a higher micropolar ratio leads to a faster propagation

of Rayleigh waves at the higher wavenumbers. However, beyond a certain value of d2, the

dispersion curve shows a concave upward trend in the phase velocity with the increasing

wavenumber. This complex behavior is attributed to the interplay between the micropolar

e!ects and the geometric properties of the layer.
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Figure 3.2.3: Dispersion curves of nonlocal micropolar Rayleigh waves for

di!erent values of micropolar ratio d(2)

The graph plotted in Figure 3.2.4 illustrate the impact of Poisson’s ratio ϑ(1) in the

semi-infinite medium on the phase velocity of Rayleigh waves. As ϑ(1) increases, the phase

velocity also increases for a given wavenumber, indicating a positive correlation between

material sti!ness and wave propagation speed. Also at a higher value of ϑ(1), the variation

in phase velocity with respect to wavenumber becomes less significant. A higher Poisson’s

ratio in the semi-infinite medium corresponds to a sti!er material. This increased sti!-

ness leads to faster propagation of Rayleigh waves, resulting in higher phase velocities.

However, as the material sti!ness increases, the dispersive nature of the Rayleigh waves

becomes less pronounced.
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Figure 3.2.4: Variation of dimensionless phase velocity against Poisson’s

ratio of the semi-infinite medium ϑ(1)

The dispersion curve in Figure 3.2.5 illustrates the behavior of micropolar surface

waves as a function of the micropolar parameter l(2). As l(2) increases, the frequency of

the micropolar surface wave also increases, especially at higher wavenumbers. This indi-

cates that the micropolar e!ect enhances the wave propagation frequency for the newer

mode of Rayleigh waves, particularly for shorter wavelengths. Moreover, the dispersion

curve exhibits a rapid increase in frequency at lower wavenumbers, followed by a plateau

at higher wavenumbers. This suggests that the micropolar surface wave experiences sig-

nificant dispersion at shorter wavelengths, while the dispersion e!ect diminishes at longer

wavelengths.

Figure 3.2.6 provides a comparative analysis in a reduced model of Rayleigh wave

dispersion in a nonlocal micropolar half-space, highlighting the evolution of modeling

accuracy. The black dotted line, representing classical micropolar elasticity, shows a

non-dispersive wave behavior, serving as a baseline. When Eringen’s nonlocal boundary

conditions [60] are applied, the dispersion curves reveal a notable deviation, indicating the

introduction of dispersive characteristics. Pham and Vu’s approach (see, [275,276]) which

incorporates an additional condition on ◁11 further demonstrates this dispersion, showing

a substantial decrease in phase velocity with increasing nonlocal parameters. In contrast,
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the asymptotic approach presented in this research which accounts for boundary layer

e!ects, explicitly captures the dispersive nature of Rayleigh waves. The plotted first-order

corrected dispersion relation demonstrates a distinct representation of this phenomenon

compared to previous models. This comparison underscores the importance of considering

boundary layer e!ects and refined boundary conditions in accurately modeling Rayleigh

wave propagation in nonlocal micropolar media.
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Figure 3.2.5: Dispersion curves of a new micropolar surface wave for di!er-

ent values of l(2)

3.2.6 Conclusions

Assuming that the wavelength of the propagating wave and the thickness of the layer

are significantly larger than the nonlocal parameter in both the lower semi-infinite medium

and the layer, respectively the original double integral formulations of the nonlocal stresses

are reduced to asymptotic expansions involving single integrals. Specifically, an infinite

integral is obtained for the nonlocal stresses in the lower semi-infinite medium, while a

finite integral is derived for the stresses within the layer.

To ensure equivalence between the di!erential and integral formulations of nonlo-

cal elasticity, additional conditions are introduced. These conditions impose constraints
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Figure 3.2.6: Comparision of nonlocal dispersion curves of Rayleigh waves

in a micropolar half-space via di!erent approaches

on the normal force stresses and shear couple stresses, leading to the development of a

modified singularly perturbed di!erential model.

Using this framework, an asymptotic solution is obtained, and refined boundary and

interface conditions are derived within the context of nonlocal and micropolar elasticity.

Applying these refined conditions yields first-order nonlocal corrected dispersion relations,

which clearly demonstrate the influence of the nonlocal parameters in both media.

The graphical results further reveal that micropolar media exhibit a concave down-

ward dispersion curve, signifying positive dispersion. In contrast, purely elastic materials

display a concave upward dispersion curve, indicating negative dispersion. Also, as the

material sti!ness increases, the dispersive nature of Rayleigh waves becomes less pro-

nounced. Additionally, significant dispersion e!ects are observed in micropolar surface

waves at shorter wavelengths, while these e!ects diminish at longer wavelengths.
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CHAPTER 4

Rayleigh Wave Propagation and Control by Metasurfaces





The insights gained from the investigation of Rayleigh wave propagation in microstruc-

tural frameworks pave the way for exploring active surface wave control strategies. In this

chapter, we transition our studies from understanding the fundamental behavior of these

waves to manipulating their propagation using resonating structures, alternatively termed

as metasurfaces.

4.1 Nonlinear metasurface with dual spring-mass resonators⇓

A novel metasurface design comprising an array of dual spring-mass resonators sit-

uated on a nonlocal host substrate to manipulate the surface wave propagation. This

subchapter combines the concepts of nonlocal elasticity, nonlinearity, and double reso-

nance to analyze Rayleigh wave dispersion characteristics.

4.1.1 Description of the proposed model

The configuration for the proposed model is given in Figure 4.1.1. The nonlinear

metasurface is placed around the target structure to protect it from seismic damage. This

metasurface consists of an array of spring-mass systems and is mounted on the surface of

a nonlocal elastic substrate (cf. Figure 4.1.1(a)). Each resonant unit cell of the spring-

mass system is further described in Figure 4.1.1(b). The reference system is introduced

in Figure 4.1.1.

4.1.2 Mathematical formulation and solution

Description of the host nonlocal elastic substrate

The present investigation deals with a simplest material model composed of a lin-

ear isotropic material, say soil as a substrate exhibiting nonlocal elastic properties. This

homogeneous, isotropic nonlocal elastic substrate is characterized by its nonlocal elastic

parameter ↑, mass density ⇀s and longitudinal and transverse shear wave velocities β1

and β2, respectively.

Practically soil could be described as a medium exhibiting both elastic-platic behavior.

On the other hand, it can act as a fully elastic material at much smaller deformations.

The intricate and complex nature of the soil justifies its nonlocal elastic behavior. The

∗
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Figure 4.1.1: Schematics of the proposed model (a) design of metasurface

(b) a resonant unit cell

existence of an array of spring-mass resonators on the surface could lead to smaller defor-

mation or redistribution of stress among neighboring soil particles. In certain instances,

stress distribution might not be uniform, resulting in strain localization in specific areas.

Consequently, to account for these long-range interactions, strain localization, and the

size-dependent behavior of the soil substrate, we have applied the principles of nonlocal

elasticity theory to the soil. Nonlocal models help in interpreting the experimental results

accurately. The nonlocal elastic e!ects are introduced into the model through Eringen’s

nonlocal elasticity theory, see section 1.3.3 for details.

Wave propagation in the nonlocal elastic substrate

The seismic waves are characterized by high frequencies, they act on the ground for

shorter durations, resulting in inducing smaller strains and smaller deformations. As a re-

sult, the soil typically exhibits predominantly elastic behavior due to the relatively shorter

duration of seismic ground motion. Also, the seismic events impose short-term loading

conditions that are insu”cient to cause any significant plastic deformation. Consequently,

the soil response is primarily elastic, with particle displacement and strain values remain-

ing within the elastic range during such loading conditions. Although localized plastic

deformation and liquefaction can occur under specific circumstances, the overall seismic

response of the soil is often reasonably approximated as elastic. Thereby we consider
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elastic constitutive assumption for soil during seismic engineering analyses and structural

design.

Consider the propagation of Rayleigh waves in a nonlocal elastic substrate (soil), which

is a host to an array of nonlinear spring-mass systems. The kinematic equations relating

nonlocal elastic stress (◁ij) in the host substrate with the strains (1ij) are given as:

(1→ ↑
2
↗

2) ◁ij = $ εij 1kk + 2µ 1ij = ↽ij, i, j = 1, 2, 3 (4.1.1)

in which ↗
2 = ϖ

2

ϖx2 +
ϖ

ϖz2
is the the usual Laplacian in 2D co-ordinates and εij stands for

Kronecker delta operator; 0 and µ are the Lame’s constants.

Also, the equation relating the strains (1ij) to the displacement components (ui) is as

follows:

1ij =
1

2
(ui,j + uj,i) , i, j = 1, 2, 3 (4.1.2)

Now, the governing equations of motion for Rayleigh waves in a nonlocal elastic substrate

and in the absence of body forces can be written as,

◁ij,j → ⇀sui,tt = 0. (4.1.3)

Using Helmholtz decomposition theorem, we decompose the displacement vector 7u (x, z, t) =

(u1, 0, u3) into the sum of a scalar potential & and a vector potential 7) = ()1,)2,)3).

i.e.,

7u = ↗&+↗↘ 7) (4.1.4)

As a result, the displacement components can be expressed as,

u1 =
2&

2x
→

2)2

2z
, u3 =

2&

2z
+

2)2

2x
. (4.1.5)

On substituting the constitutive relations given in Eq. (4.1.2) into the equation of motion

provided in Eq. (4.1.3) and using Eq. (4.1.5), we obtain two decoupled equations in &

and )2 as

↗
2& =

1→ ↑
2
↗

2

β2
1

&tt, ↗
2)2 =

1→ ↑
2
↗

2

β2
2

)tt, (4.1.6)

in which

β1 =

√
$+ 2µ

⇀s
, β2 =

√
µ

⇀s
.
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Assume the time-harmonic Rayleigh waves propagating in x→direction with the wavenum-

ber k, angular frquency ϖ and phase velocity c = ε

k
.

Let the potential functions be of the form,

&(x, z, t) = (A1e↑r1z + A2er1z) ei(kx↑εt),

)2(x, z, t) = (A3e↑r2z + A4er2z) ei(kx↑εt).




 (4.1.7)

Here A1, A2, A3 and A4 are the amplitides of the potential functions.

Simple algebraic substitutions of Eqs. (4.1.7) into Eq. (4.1.6) gives the value of r1 and

r2as,

r1 =

√

k2 →
ϖ2

β2
1 → ↑2ϖ2

, r2 =

√

k2 →
ϖ2

β2
2 → ↑2ϖ2

.

An exponential decay in the amplitudes of Rayleigh waves along positive z→direction

suggests the value of constants A2 = A4 = 0. This gives the displacement components as

u1(x, z, t) =
(
i pA1e

↑r1z + r2 A3e
↑r2z

)
ei(kx↑εt), (4.1.8)

u3(x, z, t) =
(
→r1 A1e

↑r1z + i pA3e
↑r2z

)
ei(kx↑εt), (4.1.9)

and the corresponding stress vector components acting on a plane normal to z→direction

as

(1→ ↑
2
↗

2) ◁31 = µ [→2 i p r1 A1e↑r1z → (r22 + k2) A3e↑r2z] ei(kx↑εt) = ↽31,

(1→ ↑
2
↗

2) ◁32 = 0 = ↽32,

(1→ ↑
2
↗

2) ◁33 = [{($+ 2µ) r21 → $ k2
} A1e↑r1z → 2 i p r2 µA3e↑r2z] ei(kx↑εt) = ↽33.






(4.1.10)

Description of the nonlinear metasurface

The metasurface is placed on the free-surface of nonlocal elastic substrate is to control

the Rayleigh wave dispersion. To comprehend fully the physics of metasurface, consider

the typical configuration of metasurface made up of an array of nonlinear two-degrees-

of-freedom spring-mass systems of identical height, arranged with a lattice distance ‘a’

between each of them. They are spaced apart in order to avoid contact forces between any

two resonators. Since our interest lies in analysing the dispersive properties of Rayleigh

waves, we treat the metasurface as an e!ective continuum model via classical homoge-

nization theory.
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A simplified variant of classical homogenization theory, known as e!ective medium

theory [272], has been employed to characterize the dynamics of an array of spring-mass

resonators placed on a substrate. According to this theory, the resonators, which have

subwavelength dimensions, are assumed to be evenly distributed across the surface of

the medium, applying uniform normal stress to the elastic medium. Consequently, the

normal stresses exerted by the resonators on the surface can be estimated as the averaged

elastic force exerted by the resonators over an area that is much larger than the spacing

between them but considerably smaller than the wavelength. It is important to note

that, in this specific scenario of interest, the wavelengths of surface waves (denoted as

0) are significantly larger than the average distance ‘a’ between the resonators, and the

dimensions of the area ‘A’ defined by the regular spatial arrangement of the resonators

are larger than ‘a’ but smaller than 0 (for example, a quadratic lattice arrangement has

an area, A = a2). This circumstance allows for the practical use of an e!ective medium

approximation, which introduces modified homogenized boundary conditions that relate

stress and displacement at the surface.

Each resonant unit cell consists of two masses m1 and m2 coupled to each other by

means of a nonlinear elastic spring. The main mass m1 is attached to the nonlocal elastic

substrate by an intertialess linear elastic spring of force constant k. We resort to the fact

that the surface Rayleigh wave could excite only the vertical motion of the two masses in

this two-degree-of-freedom system. The frequency of the torsional mode associated with

the rotational motion of the spring-mass system is lower than the frequency associated

with vertical oscillations of the spring-mass system excited by the Rayleigh waves. Fur-

ther, due to this fact, the mass rotation in the z→direction is ignored as the contribution

of the torsional mode of the resonators is not significant in the context of generating a

local resonance bandgap [70].

Dynamics of the nonlinear resonators

The free-body diagram representing the direction of displacements and the forces act-

ing on each masses of spring-mass system is as described in Figure 4.1.1(b).

We compute the equation of motion for each masses in the spring-mass system by bal-

ancing the forces as per Newton’s second law of motion. As we are dealing with a two-

degree-of-freedom system here, there are two equations in the form of a coupled di!erential
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equations (precisely one written for each mass). It is interesting to note that this system

is subjected to an external excitation by Rayleigh waves propagating on the free-surface of

the host substrate. Hence, this excitation is primarily due to the displacement component

u3(x, 0, t) of the Rayleigh waves.

From Eq. (4.1.9), we can write

u3(x, 0, t) = Br e
i(kx↑εt) where Br = (→r1 A1 + i pA3) . (4.1.11)

Let z1 and z2 be the displacement of masses m1 and m2 respectively. Without loss of

generality, let us assume z2 > z1. Let f be the force exerted by the linear spring on the

mass m1 and f12 be the force-displacement function describing the coupling due to the

nonlinear spring. i.e.,

f = k0z1, (4.1.12)

f12 = φ(z1 → z2), (4.1.13)

in which φ denotes the restoring force function for the nonlinear spring.

The coupled di!erential equations for this 2-DOF spring-mass system can be written by

balancing the forces on the mass m1 and m2. This gives the equations of motion as,

m1
d
2
z1

dt2
+ k0 [z1 → u3(x, 0, t)] + f12 = 0,

m2
d
2
z2

dt2
+ f21 = 0.





(4.1.14)

For our convenience, define the dimensionless variables

u1 =
z1
Br

, u2 =
z2 → z1
Br

, ◁ = ϖt, (4.1.15)

and specialize the nonlinear spring as the complex du”ng oscillator whose force function

takes the form,

φ(r) = k1r + k3r
∣∣r2

∣∣ ,

where k1 and k3 represent the linear and nonlinear sti!ness of the spring, respectively. This

force function can further be modified by introducing the new dimensionless parameters

µ1, 01 and ϑ. Hence on introducing µ1 =
m2
m1

, 02
1 =

k1
k0µ1

as the coe”cient of linear part of

force function ϱ

µ1
of the nonlinear spring and ϑ = k3|Br|2

k0
as the coe”cient of the nonlinear

part of the force function, we can write the force function as,

φ(ui) = k0 Br

(
µ1 0

2
1 ui + ϑ ui |ui|

2) .
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A hardening nonlinearity corresponds to positive values of ϑ, while a softening nonlinearity

corresponds to negative values of ϑ. As a result, the system of equations given in Eq.

(4.1.14) can be re-written as

’2
R

d
2
u1

d↽2
+ u1 → µ102

1 u2 → ϑ u2 |u2|
2
→ ei(kx↑↽) = 0,

µ’2
R

(
d
2
u1

d↽2
+ d

2
u2

d↽2

)
+ µ102

1u2 + ϑ u2 |u2|
2 = 0,





(4.1.16)

in which ’R = ε

εR
and ϖR =

√
k

m1
.

On further inserting the parameters,

$̄2 = µ1 0
2
1 and M = 1 +

1

µ1
.

and supposing a time-harmonic form to the dimensionless displacement components given

in Eq. (4.1.15) as,

u1 = U1 e
i(kx↑↽) and u2 = U2 e

i(kx↑↽), (4.1.17)

As a result, the system of di!erential equations given in Eqs. (4.1.16) can be re-written

as

(’2
R
→ 1) U1 + $̄2 U2 + ϑ U2 |U2|

2 + 1 = 0,
(
’2

R
→M $̄2

)
U2 + U1 → ϑM U2 |U2|

2
→ 1 = 0.





(4.1.18)

Simple algebraic manipulations of equations in Eq. (4.1.18) yields the value of U1 in terms

of magnitude of U2. Thus, we obtain

U1 =
1 + $̄2 6 + ϑ 6 |U2|

2

1→ ’2
R
+ (M + 6)

(
$̄2 + ϑ |U2|

2) , where 6 =
1→M

’2
R

. (4.1.19)

Since resonators facilitate the dispersion of Rayleigh waves, it is feasible to customize

their dynamic response to create the metamaterials with desired properties. Moreover,

the motion of the mass m1 in the system can be controlled by tuning the magnitude |U2|

and Br to the required value as the displacement for the mass m1 can be sought in the

form,

z1 = Z1 e
i(kx↑εt) in which Z1 =

(
1 + $̄2 6 + ϑ 6 |U2|

2)

1→ ’2
R
+ (M + 6)

(
$̄2 + ϑ |U2|

2) Br. (4.1.20)

139



4.1.3 Refined nonlocal boundary conditions

Following from Eqs.(1.3.94), the refined boundary conditions accounting nonlocal

boundary layer e!ects are given as,

1. at z = 0,
(
1 + ↑

2
↗

2
)
↽31 →

↑

2

2↽11

2x
+

↑
2

2

22↽11

2x2z
= 0 (4.1.21)

2. at z = 0,
(
1 + ↑

2
↗

2
)
↽33 →

↑
2

2

22↽11

2x2
= →

k0 z1
A

. (4.1.22)

4.1.4 Dispersion relation

Substituting the expressions given in Eqs. (4.1.7)-(4.1.9) and (4.1.20) in the boundary

conditions given in Eqs. (4.1.21) and (4.1.22) and further rearrangement gives the system

of equations with the coe”cients A1, A3 , U1 and Br.

The prerequisite for this system of equations to have a non-trivial solution is that the

determinant of the coe”cient matrix must vanish. This solvability criterion yields a first-

order nonlocal corrected dispersion relation for hybrid Rayleigh waves as,

→4k2r10r20 +
(
r220 + k2

)2
→

(
m1ϖ2

R

⇀s A β2
2

)
r10

(
r220 → k2

)
Z1

+↑


2
(
ϱ2

→ 1
)
k2r20

(
k2

→ r210
)
+

1

2
k2

(
m1ϖ2

R

⇀s A β2
2

)(
ϱ2

(
→k2

)
+
(
ϱ2

→ 2
)
r210 + 2r10r20

)
Z1


= 0

(4.1.23)

where ϱ = 31

32
is the material parameter determining mechanical property of the host

nonlocal elastic substrate. Also, r10, r20 are the leading order expressions for the quantities

r1, r2 and are given by,

r10 =

√

k2 →
ϖ2

β2
1

, r20 =

√

k2 →
ϖ2

β2
2

.

Dispersion equation for the linear 2-DOF spring-mass resonators

To understand better the impact of nonlinearity on the dispersion curves, we shall

initially analyse the e!ect of linearity of metasurface on the dispersion relation of local

hybrid Rayleigh waves. The model is thereby investigated in the context of local elasticity

theory. A linear spring (instead of a nonlinear one) is deviced to couple the two masses

in every resonant unit cell of the spring-mass system constituting the metasurface. This
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reduces the magnitude of the normalized displacement of the spring-mass system given

in Eq. (4.1.19) to,

U1 =
1 + $̄2 6

1→ ’2
R
+ (M + 6) $̄2

, where 6 =
1→M

’2
R

.

It is natural to obtain two resonant frequencies due to the presence of two-degree-of-

freedom spring-mass resonators. These resonant frequencies correspond to the horizontal

asymptotes in the dispersion curves whereas the threshold frequencies for each branch

can be determined by examining the local hybrid Rayleigh wave dispersion relation. In-

terestingly, these dispersion curves lie on the shear wave dispersion curve and as a result,

the threshold frequencies can be obtained by setting c = β2 along with ↑ = 0 and ϑ = 0

in Eq. (4.1.23). This gives,

ϖ5
t
→ ϖ2

R
(1 +M $̄2)ϖ3

t
→

(
m1 ϖ4

R

⇀s A β2

)√

1→
β2
2

β2
1

ϖ2
t
+ ϖ4

R
$̄2 (M → 1)ϖt

+ϖ4
R
$̄2

(
m1 ϖ2

R

⇀s A β2

)√

1→
β2
2

β2
1

(M → 1) = 0. (4.1.24)

As the coe”cients in the Eq. (4.1.24) are all positive, we can deduce that this equation

has exactly two positive real roots by the Descartes’s rule of signs. And these positive

real roots corresponds to the cut-o! frequencies or the terminating frequencies for the

dispersion branch.

Dispersion equation for the linear 1-DOF spring-mass resonators

In this section, we shall outline the dispersive features of the Rayleigh waves propa-

gating on a linear metasurface consisting of only one mass attached to the local elastic

substrate (↑ = 0) by the means of an elastic linear spring. If the second mass m2 is absent

in the spring-mass system, then µ1 = 0 and consequently M = 1 and 6 = 0. Thus, the

expression U1 given in Eq. (4.1.19) can be re-written as,

U1 =
1

1→ ’2
R
+ $̄2

.

As discussed in the last section, we can obtain the cut-o! frequencies for the dispersion

branch curves by substituting c = β2 along with ↑ = 0 in the dispersion equation [see,

Eq. (4.1.23)]. Therefore, the cut-o! frequencies are the positive real solutions to the cubic
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equation,

ϖ3
t
→ ϖ2

R

(
1 + $̄2

)
ϖt →

m1ϖ4
R

⇀s A β2

√

1→
β2
2

β2
1

= 0. (4.1.25)

Similar observations of this cubic equation suggests that there is exactly one positive real

solution. This indicates that there exists only one high-frequency dispersion branch whose

threshold (cut-o!) frequency is the positive real root of the Eq. (4.1.25).

Dispersion equation in the absence of metasurface

To derive the dispersion equation for Rayleigh waves in the absence of the metasurface

on the host nonlocal elastic substrate, we substitutem1 = 0 in Eq. (4.1.23). This provides,

→4k2r10r20 +
(
r220 + k2

)2
+ ↑


2
(
ϱ2

→ 1
)
k2r20

(
k2

→ r210
)

. (4.1.26)

which matches with the results in Eq. (1.3.95).

Under the local elastic conditions, a secular equation is obtained by inserting ↑ = 0 in

Eq. (4.1.26):
(
2→

c2

β2
2

)2

→ 4

√

1→
c2

β2
1

√

1→
c2

β2
2

= 0. (4.1.27)

In fact, the frequency relation obtained above is exactly the same as that of the well-known

secular Rayleigh wave equation [14]. This shows the validity of the proposed model.

4.1.5 Graphical discussions

The presence of harmonic spring-mass resonators over the host substrate induces

local resonance bandgaps and can be visualized by plotting the dispersion curves. In

this section, we describe numerically and graphically the dispersive behavior of Rayleigh

waves associated with the di!erent spring nonlinearity, relative amplitude inputs, nonlocal

elastic parameters and the mechanical characteristics of the substrate.

The details of normalized parameters used while plotting the graphs in this section are

given in the table below (unless otherwise specified):

The dispersion curves shown in Figure 4.1.2 are plotted to describe the surface wave

propagation in three di!erent configurations of resonators constituting the metasurface:

(a) linear spring-mass resonators (ϑ = 0) (b) soft nonlinear spring-mass resonators (ϑ =

→1) (c) hard nonlinear spring-mass resonators (ϑ = +1). These harmonic resonators

prevent the occurrence of pure Rayleigh waves, but instead the waves attenuating at

certain regions are discovered. These waves di!er from the typical Rayleigh waves and

142



Table 4.1.1: Values of some normalized paramteres

Normalized parameters Values

Material parameter, ϱ = 31

32
1.5

Nonlocal elastic parameter, ω = ↑k 0.1

Mass ratio, µ1 =
m1
m2

0.5

$̄ 0.75

|U2| 0.8

w = mωR

ρs Aβ2
0.7

exists because of the presence of an array of spring-mass resonators embedded on the

free-surface of host substrate; it is therefore termed as, ‘hybrid Rayleigh waves’. An

initial observation of dispersion curves indicates that the local resonances of the spring-

mass systems couple with the propagating Rayleigh wave, thereby yielding dispersion

branch curves near the resonant frequencies. A spectral bandgap separates these repelling

dispersion branch curves. More importantly, it is this frequency region where the mode-

conversion takes place and the Rayleigh waves diverge deeply into the earth as bulk shear

waves, thereby protecting the structures from seismic damage.

The parameters ϱ, ω = ↑k, µ1, $̄, |U2| and w are fixed to the values given in the

table. The dispersion curves for hybrid Rayleigh waves, pure Rayleigh waves and bulk

shear waves are denoted by the solid black lines, dotted black lines and dotted red lines,

respectively. The dispersion curves creates two resonance bandgaps in Figures 4.1.2(a)

and 4.1.2(c), where as Figure 4.1.2(b) representing the configuration of soft nonlinear

spring-mass systems creates only one spectral bandgap. Amazingly, despite the fact that

there are varying numbers of bandgaps in each of the three configurations, the sum of the

bandwidths still remains the same. The hybrid Rayleigh waves propagate with a velocity

of chR < cpR in the dispersion branch I of Figures 4.1.2(a), 4.1.2(b) and 4.1.2(c), where

the curve asymptotically reaches the resonant frequencies. In addition, the dispersion

branch II of Figure 4.1.2(a) and 4.1.2(c) also approach the second resonant frequency

asymptotically. In this branch, the phase velocity of hybrid Rayleigh waves increases

with the decrease in the wavenumber and finally becomes equivalent to cpR at a partic-

ular wavenumber. When chR > cpR below this wavenumber, the branch terminates at
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Figure 4.1.2: Dispersion curves for three di!erent configurations in spring-

mass systems. (a) Linear resonators (ϑ = 0) (b) Soft nonlinear resonators

(ϑ = →1) (c) Hard nonlinear resonators (ϑ = +1)

a frequency where chR = cs. This is because of the fact that the surface waves cannot

exist for chR > cs. As a consequence, the dispersion relation cannot have any surface

solutions, leading to an e!ective bandgap. In addition to this, the dispersion branches III

of Figures 4.1.2(a), 4.1.2(b) and 4.1.2(c) also terminates at a frequency where chR = cs,

resulting in the mode-conversion of Rayleigh waves producing another bandgap. These

terminating frequencies, in other words are the cut-o! frequencies described in section 3.

Waves can cross the metasurface at this frequency, but they are able to accomplish this

only by transforming themselves into shear waves.

One might also infer that the metasurface with hard springs can even attenuate more

high-frequency Rayleigh waves, making it more beneficial than the linear metasurface.

Besides, a metasurface with soft springs could also be preferred over the linear metasurface
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as this configuration provides a broader bandgap at a certain relative amplitude than the

rest. In brief, the nonlinearity in the spring-mass systems has a crucial positive impact

on the dispersive nature of the Rayleigh waves.
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Figure 4.1.3: E!ect of relative amplitude input on dispersion curves in a

soft nonlinear spring. (a) Dispersion curves showing spectral bandgaps (b)

Variation of relative amplitude input with dimensionless frequency

Figure 4.1.3 depicts the e!ect of relative amplitude |U2| on the dispersive behavior

of hybrid Rayleigh waves propagating on a soft nonlinear metasurface. The design of

the nonlinear metasurface involves the setting up of this parameter as a prerequisite

for interpreting the characteristics of the dispersion curves. Figure 4.1.3(a) is plotted to

demonstrate the bandgaps produced as a result of varying |U2|. It can be clearly seen that

when |U2| = 0 and |U2| = 0.4, two spectral bandgaps are created, whereas for |U2| = 0.8

and |U2| = 1.2, the dispersion curves produces a single bandgap. This suggests that a

certain limiting point on the magnitude |U2| exists beyond which a single spectral bandgap

is achieved. To interpret clearly this limiting value, we plot a graph in Figure 4.1.3(b)

showing the variation of |U2| with the dimensionless frequency. A limiting value exists

around |U2| = 0.75, below which the soft spring-mass systems resonates with two natural

frequencies resulting in two bandgaps. Moreover, the frequency at which the Rayleigh

wave propagates for a particular wavenumber decreases with the increase in the values

of |U2| upto 0.75. Beyond this value, the propagating wave frequency increase with the

increase in |U2|. In brief, a significant e!ect in the spectral bandgaps is observed with
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the variation in relative amplitude input. A single bandgap observed in the case of soft

spring splits into two with the decrease in the input amplitude.

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6

0.5

1

1.5

2

2.5

3

3.5

2

1

3

4

1 2 3 4

0 1 2 3 4 5 6

0

0.2

0.4

0.6

0.8

1

1.2

4
3

2
1 2 41 3

(a) (b)

Figure 4.1.4: E!ect of relative amplitude input on dispersion curves in a

hard nonlinear spring. (a) Dispersion curves showing spectral bandgaps (b)

Variation of relative amplitude input with dimensionless frequency

Similarly, Figure 4.1.4 is plotted to demonstrate the e!ects of relative amplitude

ratio |U2| in a hard spring. The dispersion curves creates two bandgaps corresponding

to two resonant frequencies for all the values of |U2| (refer Figure 4.1.4(b)). A careful

observation of Figure 4.1.4(a) shows that the lower frequency bandgap remains the same

for all increasing values of |U2|; while the frequency bandgaps corresponding to second

resonant frequency occur at higher frequency region with the increase in the values of

|U2|. This indicates that the metasurface designed with hard springs and higher input

relative amplitude ratio can shield the structure from Rayleigh waves propagating even

at a higher frequency.

The red solid line in Figure 4.1.5 represents the Rayleigh waves propagating in the

absence of metasurface. The e!ect of k (or ϖR) on the dispersion curves are analysed

in Figure 4.1.5 for both the soft (Figure 4.1.5(a)) and hard (Figure 4.1.5(b)) springs.

The phase velocity and the cut-o! frquency of the hybrid Rayleigh waves decrease and

increase, respectively with the increasing linear sti!ness of the spring.

Figures 4.1.6 and 4.1.7 shows the variation of behavior of Rayleigh waves with the

various nonlocal elastic parameters and material properties of the host substrate, respec-

tively. The e!ect of increasing nonlocal elastic parameters on the dispersion curves for
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Figure 4.1.5: Dispersion curves showing the e!ect of linear sti!ness (k/ϖR)

of the spring on the spectral bandgaps of (a) soft nonlinear spring-mass

systems (b) hard nonlinear spring-mass systems
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Figure 4.1.6: Dispersion curves showing the e!ect of nonlocal elastic pa-

rameter (ω) of the substrate on the spectral bandgaps of (a) soft nonlinear

spring-mass systems (b) hard nonlinear spring-mass systems

soft and hard springs are presented in Figure 4.1.6(a) and 4.1.6(b), respectively. While the

bandgaps are unchanged by changes in the nonlocal elastic parameters of the substrate,

the nonlocal elasticity in the substrate has a substantial e!ect on the phase velocity of

the hybrid Rayleigh waves. Furthermore, the increase in the nonlocal elastic parameter

of the substrate reduces the phase velocity of the hybrid Rayleigh waves.
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Figure 4.1.7 shows the influence of the material parameter ϱ on the dispersion curves.

An increase in this material parameter increases the phase velocity of hybrid Rayleigh

wave propagating in every dispersion branch curves. However, the resonant frequency

and the cut-o! frequency have the same values for every material taken under the study.

The spectral bandgaps too occupy the same frequency region indicating that there is a

negligible influence of material property on the width of the bandgaps.
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Figure 4.1.7: Dispersion curves showing the e!ect of material parameter

(ϱ) of the substrate property on the spectral bandgaps of (a) soft nonlinear

spring-mass systems (b) hard nonlinear spring-mass systems

4.1.6 Conclusions

This study demonstrates the existence of cut-o! frequencies at which surface waves

transform into shear waves and are visualized through dispersion curves. Notably, dual

spring-mass metasurfaces exhibit two distinct frequency bandgaps. Nonlinearities sig-

nificantly influence bandgap characteristics with hard springs confining higher frequency

Rayleigh waves, while soft springs yielding broader bandgaps than linear designs. In-

put amplitude variations also induce substantial spectral bandgap changes, including the

splitting of single bandgaps in soft spring systems. Furthermore, increased linear spring

sti!ness and nonlocal elastic parameters in the substrate reduce Rayleigh wave phase

velocity. While substrate material parameter increases also reduce phase velocity, their

impact on spectral bandgap width is negligible. In essence, this research reveals the crit-

ical role of resonator design, nonlinearity, input amplitude, and material properties in

controlling Rayleigh wave propagation and bandgap formation.
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4.2 A multiple scattering formulation in a nonlinear metasur-

face⇓

Developing further the previous chapter, this section incorporates inter-resonator cou-

pling e!ects, which are crucial for accurate metasurface modeling. Recognizing that each

resonator acts as a secondary wave source, leading to multiple scattering events, we em-

ploy a multiple scattering formulation to investigate Rayleigh wave control in nonlinear

metasurfaces. Specifically, we focus on manipulating Rayleigh wave disturbances gener-

ated by an interior source through detailed analysis.

4.2.1 Description of the proposed model

Consider a metasurface consisting of an array of nonlinear spring-mass systems of

mass m placed on the surface of a homogeneous, isotropic elastic medium occupying the

region z ↙ 0 (see Figure 4.2.1). Let z→ direction be positively downwards. An interior

source located along the line z = h produces disturbances, thereby inducing Rayleigh

waves at the surface.

Figure 4.2.1: Description of the metasurface model

∗
Ready to submit

149



4.2.2 Mathematical formulation and solution

The constitutive stress-strain relations for a homogeneous, isotropic elastic medium

are given by,

↽ij = $ωkkεij + 2µωij, (4.2.1)

where ωij denotes the stress tensor given by ωij = 1
2 (ui,j + uj,i) and $, µ are the Lamé

elastic moduli, εij denotes the Kronecker delta, ui represents the displacement compo-

nents.

Also, using Eq. (4.2.1), the equation of motion of a two-dimensional isotropic elastic

medium with the material density ⇀ and in the absence of body forces can be given as

($+ 2µ) ϖ
2
u1

ϖx2 + ($+ µ) ϖ
2
u3

ϖx ϖz
+ µ ϖ

2
u1

ϖz2
= ⇀ ϖ

2
u1

ϖt2
,

($+ 2µ) ϖ
2
u3

ϖz2
+ ($+ µ) ϖ

2
u1

ϖx ϖz
+ µ ϖ

2
u3

ϖx2 = ⇀ ϖ
2
u3

ϖt2
,





(4.2.2)

On Helmholtz decomposition of the displacement vector u(x, z, t) in terms of a scalar

potential &(x, z, t) and a vector potential #(x, z, t) = ()1,),)3) as u = ↗& +↗ ↘#,

or specifically,

u1(x, z, t) =
2&

2x
→

2)

2z
, u3(x, z, t) =

2&

2z
+

2)

2x
, (4.2.3)

decouples the coupled equations of motion given in Eq. (4.2.2) into,

↗
2& =

1

c2
L

22&

2t2
, ↗

2) =
1

c2
T

22)

2t2
, (4.2.4)

where cL =
√

!+2µ
ϑ

and cT =
√

µ

ϑ
are the longitudinal and transverse wave velocities,

respectively.

The time-harmonic potentials assumed of the form,

&(x, z, t) = φ(x, z) eiεt, )(x, z, t) = ↼(x, z) eiεt,

simplifies the wave equations in Eq. (4.2.4) as,

(
↗

2 + k2
L

)
φ = 0,

(
↗

2 + k2
T

)
↼ = 0, (4.2.5)

where ϖ = k

c
is the angular frequency; k is the wavenumber and c is the wave velocity;

kL = ε

cL
and kT = ε

cT
.

Applying the Fourier transformation in x to Eq. (4.2.5), the resulting equations can be
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solved to obtain expressions for the potentials that exhibit the appropriate behavior. This

gives,

&(3, z, t) = c1 e
↑pLz eiεt, )(3, z, t) = c2 e

↑pT z eiεt, (4.2.6)

where pL =
√

32 → k2
L
and pT =

√
32 → k2

T
.

Green’s functions for prescribed stresses at the surface

In this section, the fundamental steps involved in deriving Green’s functions for

Lamb’s problem [273] are expressed in terms of the displacement components, u1 and

u3, for prescribed surface stresses. In essence, we aim to determine the displacement

components of wavefields generated by surface stresses P1 and P2. To this end, the wave

equation in Eq. (4.2.4) is subjected to boundary conditions at the surface z = 0,

↽31|z=0 = P1(x, t), ↽33|z=0 = P2(x, t). (4.2.7)

The Fourier transformed normal stress and tangential stress components, expressed in

terms of the potentials, are given by

↽31 = µ

→2i3pL&→ (232 → k2

L
))


,

↽33 = µ

(232 → k2

L
))→ 2i3 pT &


.





(4.2.8)

Utilizing the Fourier transformed displacement potentials provided in Eq. (4.2.6), a sys-

tem of equations involving c1 and c2 can be formulated as,

→2i3 pL c1 → (232 → k2
L
) c2 =

P 1
µ
e↑iεt,

(232 → k2
L
) c1 → 2i3 pT c2 =

P 2
µ
e↑iεt.





(4.2.9)

Solving for c1 and c2 in Eqs. (4.2.9) gives the values,

c1 =
(232 → k2

T
) P 2 → 2i 3 pT P 1

µR(3)
e↑iεt, c2 =

(232 → k2
T
)P 1 + 2 i3 pL P 2

µR(3)
e↑iεt,

where R(3) = (232 → k2
T
)2 → 432 pL pT is known as a Rayleigh function.

This yields the potentials,

&(3, z, t) =


→2iϑ pT P 1+(2ϑ2→k2T)P 2

µR(ϑ)


e→pLz,

)(3, z, t) = →


(2ϑ2→k2T)P 1+2 iϑ pL P 2

µR(ϑ)


e→pT z.





(4.2.10)
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Consequently, utilizing Eq. (4.2.3), the displacement components of wavefields can be

determined as,

u1(x, z, t) =

 ↘

↑↘


232 pT e↑pLz → (232 → k2

T
) pT e↑pT z

µR(3)
P 1(3, t)

+
i 3 (232 → k2

T
) e↑pLz → 2i 3 pL pT e↑pT z

µR(3)
P 2(3, t)


eiφx d3, (4.2.11)

u3(x, z, t) =

 ↘

↑↘


2i 3 pL pT e↑pLz → i3 (232 → k2

T
) e↑pT z

µR(3)
P 1(3, t)

+
→ (232 → k2

T
) pL e↑pLz + 232 pL e↑pT z

µR(3)
P 2(3, t)


eiφx d3 (4.2.12)

These Green’s functions are specifically tailored to model two distinct types of stress

distributions encountered in this work: (a) those originating from internal sources of

disturbance and (b) those generated by the vertical motion of surface resonators.

Internal source of disturbance

Consider the simplest source within this infinite elastic solid that generates symmet-

rical radial motion in two dimensions. This source, located along the line z = h, acts as

an internal disturbance and takes the form:

&s(x, z, t) =
i

2k2
H(2)

0 (kLr) e
iεt, )s(x, z, t) = 0, (4.2.13)

where H(2)
0 (·) is the Hankel function of the zeroth order, and the second kind, r =

√
x2 + (z → h)2 denotes the distance from the source. To account for the reflection, we

assume an imaginary equal source in the line z = →h. This takes the form,

&r(x, z, t) =
i

2k2
H(2)

0 (kLr) e
iεt, )r(x, z, t) = 0, (4.2.14)

where r =
√

x2 + (z + h)2.

Superposing the waveforms obtained in Eqs. (4.2.13) and (4.2.14) yields

&(x, z, t) =
i

2k2

(
H(2)

0 (kLr) +H(2)
0 (kLr)

)
eiεt, )(x, z, t) = 0. (4.2.15)

It can be further noted that the value of &(x, z, t) is equivalent to (see, Lapwood [277]),

&(x, z, t) =


1

2▷k2

 ↘

↑↘

epL(z↑h)

pL
eiφx d3 +

1

2▷

 ↘

↑↘

e↑pL(z+h)

pL
eiφx d3


eiεt

=


1

2▷k2

 ↘

↑↘

2 cosh (pLz)

pL
e↑pLh eiφx d3


eiεt. (4.2.16)
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As a result, the stresses induced at the surface z = 0 by these internal source of disturbance

is,

P (s)
1 = ↽13

∣∣
z=0

= 0, P (s)
2 = ↽33

∣∣
z=0

=


µ

2▷k2

 ↘

↑↘

232 → k2
T

pL
e↑pLh eiφx d3


eiεt. (4.2.17)

The subscript ‘s’ is used to designate stress components originating from an internal

source of disturbance.

Equivalently, the Fourier transformation of the above stress components yields,

P
(s)
1 = 0, P

(s)
2 =

µ

k2

232 → k2
T

pL
e↑pLh eiεt. (4.2.18)

For the sake of brevity, we have omitted the time-harmonic term in further analysis. As

a result, the Green’s functions modelling the stress-distributions generated by an internal

source of disturbance can be given by,

G1(s)(x, z) =
1

2▷k2

 ↘

↑↘


i 3 (232 → k2

T
) e↑pLz → 2i 3 pL pT e↑pT z

pL R(3)

 (
232 → k2

T

)
eiφx d3,

(4.2.19)

G3(s)(x, z) = →
1

2▷k2

 ↘

↑↘


(232 → k2

T
) e↑pLz → 232 e↑pT z

R(3)

 (
232 → k2

T

)
eiφx d3. (4.2.20)

At the surface z = 0, these Green’s functions modelling the interior source become,

G1(s)(x, 0) =
1

2▷k2

 ↘

↑↘

i3 (232 → k2
T
) (232 → k2

T
→ 2pL pT )

pL R(3)
e↑pLh eiφx d3, (4.2.21)

G3(s)(x, 0) =
1

2▷k2

 ↘

↑↘

k2
T
(232 → k2

T
)

R(3)
e↑pLh eiφx d3. (4.2.22)

Dynamics of surface resonators

We investigate the steady-state dynamics of a system comprising nonlinear mass-

spring-dashpot resonators with mass m that are situated on top of an elastic substrate.

Let O = {x1, x2, . . . , xN |N ⇔ N} denote the set of x→coordinates for these resonators.

These resonators are arranged with a uniform spacing of l along x→direction, and each

resonator covers an area of A.

Furthermore, we consider the case where l

2 << 0, implying that the distance between the

resonators is much smaller than the wavelength 0 of the propagating wave.

Now, the equation of motion describing the displacement of each resonator is,

m ÿn + fR(yn) = →m ̈u(xn, 0, t), (4.2.23)
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where

– u(xn, 0, t) is the average vertical displacement of the base of the resonator and is

given by the expression,

u(xn, 0, t) =
1

l


xn+

l
2

xn↑ l
2

u(x, 0, t) dx


, where x ⇔

(
xn →

l

2
, xn +

l

2

)
. (4.2.24)

For the displacement solution of the form u(x, 0, t) = U ei(kx↑εt), consider the case

when l

2 << 0 or k l

2 << 1. This evaluates the expression in Eq. (4.2.24) as,

u(xn, 0, t) =
eiεt

l


xn+

l
2

xn↑ l
2

U eikx dx



= U eikxn

(
2

kl

)
sin

(
kl

2

)
eiεt. (4.2.25)

Using the fact that sin
(
kl

2

)
⇑

kl

2 for kl

2 << 1, we obtain the approximate expression

of u(xn, 0, t) in Eq. (4.2.25) as,

u(xn, 0, t) ⇑ u(xn, 0, t). (4.2.26)

– yn stands for the relative displacement between the absolute vertical displacement

of the nth mass uR(xn, 0, t) and the average base displacement of the resonator

u(xn, 0, t), i.e.,

yn(xn, 0, t) = uR(xn, 0, t)→ u(xn, 0, t). (4.2.27)

– The function fR(·) represents the force exerted by the nonlinear spring. For a

damped Du”ng oscillator, the nonlinear complex spring force is given by

fR(·) = k1 (·) + b
d(·)

dt
+ k3 (·)|(·)|

2. (4.2.28)

Here, k1, k3 denote the linear and nonlinear sti!ness coe”cients, respectively, while

b represents the damping parameter.

Consequently, for the specific problem under consideration, we have,

fR(yn) = k1n yn + bn
dyn
dt

+ k3n yn|yn|
2, (4.2.29)

where k1n, k3n and bn represent the linear sti!ness, nonlinear sti!ness, and damping

parameter for the nth resonator.
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Assuming a time-harmonic variation in the displacements of the spring of the form, say

(yn, uRn) ↖ (y(xn, 0, t), uR(xn, 0, t)) = (Yn, URn) eikxn eiεt,

un ↖ u(xn, 0, t) = U eikxn eiεt,





(4.2.30)

where the amplitudes of the expressions Yn, URn depends on the resonator properties and

the amplitude U is independent of any resonator properties.

Substituting Eqs. (4.2.30) in equations of motion given in Eq. (4.2.23) gives,

→mϖ2 Yn + iϖ bn Yn + k1n Yn + k3n Yn|Yn|
2 = mϖ2 U. (4.2.31)

Further, we define some additional variables,

ϖRn =

√
k1n
m

, rn =
ϖ

ϖRn

, ϑn =
k3n
k1n

, 6n =
bn

mϖRn

.

Dropping all the n’s, the equation of motion in Eq. (4.2.31) can be further simplified to

obtain the relation,

Y =
r2

1→ r2 + 2i r 6 + ϑ |Y |2
U. (4.2.32)

As a result, for a known amplitude U , the frequency amplitude response of the nonlinear

spring-mass system can be given by,

s =
r2√(

1→ r2 + ϑ
∣∣∣ U

∣∣∣
2

s2
)2

+ 4r2 62

, where s =

∣∣∣∣
Y
U

∣∣∣∣ . (4.2.33)

Alternatively, Eq. (4.2.33) can further be simplified to obtain a polynomial equation of

the form,

r4 →
(
4s262

)
r2 → s2

(
1→ r2 + ϑ

∣∣∣ U
∣∣∣
2

s2
)2

= 0. (4.2.34)

Notably, by employing Eq. (4.2.27), we can derive a linear relationship from Eq. (4.2.32)

that connects the amplitudes URn and Un as,

URn =



1 +
r2
n

1→ r2
n
+ ϑn s2n

∣∣∣ Un

∣∣∣
2

+ 2i rn 6n



 Un. (4.2.35)

In addition, a motion transmissibility ratio, Tn, can be determined for the surface res-

onators. It is defined as the ratio of the absolute value of the resonator’s amplitude, |URn|,
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to that of the absolute value of the base displacement amplitude, Un.

TRn =

√(
1 + ϑn s2n |Un|

2
)2

+ (2rn 6n)2

√(
1→ r2

n
+ ϑn s2n |Un|

2
)2

+ (2rn 6n)2
. (4.2.36)

This ratio provides a measure of how e!ectively vibrations are transmitted to the res-

onator.

Consequently, omitting the time-harmonic terms, the normal force exerted by the nonlin-

ear resonator on the substrate can be expressed as,

Fn = →müR(xn, 0, t) = 8n u(xn, 0), for xn ⇔ O, (4.2.37)

where the parameter 8n is given as,

8n = mϖ2



1 +
r2
n

1→ r2
n
+ ϑn s2n

∣∣∣ Un

∣∣∣
2

+ 2i rn 6n



 . (4.2.38)

As a result, we can now evaluate the uniform stress exerted by each resonator over the

contact area A,

↽(n)
13 (x, 0) = 0,

↽(n)
33 (x, 0) = →

Fn
A

= →
5n
A

u(xn, 0)





for x ⇔

(
xn →

l

2
, xn +

l

2

)
, xn ⇔ O. (4.2.39)

The presence of these harmonic stresses gives rise to additional wavefields within the half-

space. These newly generated wavefields subsequently interact with the free-field wave

motions originating from the interior source.

Analogously, let L(n)
x represent the magnitude of the amplitude of the stress distributed

at the surface due to the resonator vibrations. We can model this scenario by assuming

a uniform normal stress distribution. This distribution can be written in the form,

P (r)
1 = ↽13(x, 0) = 0 or ↽(n)

13 (x, 0) = 0 (4.2.40)

P (r)
2 = ↽33(x, 0) =






L(n)
x , if |x→ xn| ↔

l

2

0, otherwise

or ↽(n)
33 (x, 0) = L(n)

x
(4.2.41)

Taking the Fourier transform to Eqs. (4.2.40) and (4.2.41), we get

P
(r)
1 = 0, P

(r)
2 =

2L(n)
x

3
sin

(
3l

2

)
e↑iφxn . (4.2.42)
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Consequently, using Eq. (4.2.42), the Green’s functions that model the uniform normal

unitary stress distributions generated by resonator vibrations can be expressed as,

G(n)
1(r)(x, z) =

1

▷µ

 ↘

↑↘


i (232 → k2

T
) e↑pLz → 2i pL pT e↑pT z

R(3)


sin

(
3l

2

)
eiφ(x↑xn) d3,

(4.2.43)

G(n)
3(r)(x, z) = →

1

▷µ

 ↘

↑↘


(232 → k2

T
) e↑pLz → 232 e↑pT z

3R(3)


sin

(
3l

2

)
eiφ(x↑xn) d3. (4.2.44)

At the surface z = 0, these Green’s functions modelling the scattered wavefields are given

as,

G(n)
1(r)(x, 0) =

1

▷µ

 ↘

↑↘

i (232 → k2
T
→ 2i pL pT )

R(3)
sin

(
3l

2

)
eiφ(x↑xn) d3, (4.2.45)

G(n)
3(r)(x, 0) =

1

▷µ

 ↘

↑↘

k2
T
pL

3R(3)
sin

(
3l

2

)
eiφ(x↑xn) d3. (4.2.46)

Coupling of surface resonators to the half-space

As previously described, the system comprises N resonators coupled to the half-space.

The total wavefield in the system arises from the wavefield induced by the interior source

and the additional wavefields generated by the base excitation of the coupled resonators.

To determine these wavefields, we employ a multiple scattering approach. This involves

utilizing Green’s functions for both the generated and scattered wavefields, which allows

us to solve the resulting problem and determine the unknown amplitudes of the scattered

wavefields.

A multiple scattering formulation provides a quantitative framework for modeling the

destructive and constructive interference e!ects arising from the interior source acting at

the surface and those induced by the vertical motion of the N resonators.

This gives the complete displacement of the wavefield as,

u1(c)(x, z) = u1(s)(x, z) +
n=N∑

n=1

L(n)
x

G(n)
1(r)(x, z), (4.2.47)

u3(c)(x, z) = u3(s)(x, z) +
n=N∑

n=1

L(n)
x

G(n)
3(r)(x, z), (4.2.48)

where the expressions for u1(s)(x, z) and u3(s)(x, z) are the Green’s functions obtained in

Eqs. (4.2.19) and (4.2.20).

157



Now, on comparing Eqs. (4.2.39) and (4.2.41), we get

L(m)
x

= →Qm u(xm, 0) or u(xm, 0) = →Q↑1
m

L(m)
x

, (4.2.49)

where Qm = 5m
A

is defined as the impedance factor.

Further on imposing the continuity conditions, u(x, 0, t) = u3(c)(x, 0, t) between the res-

onators and the half-space, we have

u(xm, 0) =
1

l


xm+ l

2

xm↑ l
2

u3(c)(x, 0) dx

=
1

l


xm+ l

2

xm↑ l
2

(
G3(s)(x, 0) +

n=N∑

n=1

L(n)
x

G(n)
3(r)(x, 0)

)
dx. (4.2.50)

Assuming the conditions for interchanging the order of integration are satisfied, Eq.

(4.2.50) can be simplified to yield,

u(xm, 0) =
1

l


J3(s)(xm, 0) +

n=N∑

n=1

L(n)
x

J (n)
3(r)(xm, 0)


, (4.2.51)

where

J3(s)(xm, 0) =
1

▷k2

 ↘

↑↘

k2
T
(232 → k2

T
)

3R(3)
e↑pLh sin

(
3l

2

)
eiφxm d3, (4.2.52)

J (n)
3(r)(xm, 0) =

1

▷µ

 ↘

↑↘

2 k2
T
pL

32 R(3)
sin2

(
3l

2

)
eiφ(xm↑xn) d3. (4.2.53)

Substituting the value of Eq. (4.2.49) in Eq. (4.2.53), we get

J3(s)(xm, 0) = →l Q↑1
m

L(m)
x

→

n=N∑

n=1

L(n)
x

J (n)
3(r)(xm, 0), for xm ⇔ O (4.2.54)

Expanding Eq. (4.2.54) for di!erent values of m yields,

J3(s)(x1, 0) =
(
→lQ

→1
1 → J

(1)
3(r)(x1, 0)

)
L

(1)
x → J

(2)
3(r)(x1, 0)L

(2)
x → J

(3)
3(r)(x1, 0)L

(3)
x → · · ·→ J

(N)
3(r)(x1, 0)L

(N)
x ,

J3(s)(x2, 0) = →J
(1)
3(r)(x2, 0)L

(1)
x +

(
→lQ

→1
2 → J

(2)
3(r)(x2, 0)

)
L

(2)
x → J

(3)
3(r)(x2, 0)L

(3)
x → · · ·→ J

(N)
3(r)(x2, 0)L

(N)
x ,

J3(s)(x3, 0) = →J
(1)
3(r)(x3, 0)L

(1)
x → J

(2)
3(r)(x3, 0)L

(2)
x +

(
→lQ

→1
3 → J

(3)
3(r)(x3, 0)

)
L

(3)
x → · · ·→ J

(N)
3(r)(x3, 0)L

(N)
x ,

...

J3(s)(xN , 0) = →J
(1)
3(r)(xN , 0)L(1)

x → J
(2)
3(r)(xN , 0)L(2)

x → J
(3)
3(r)(xN , 0)L(3)

x → · · ·+
(
→lQ

→1
N → J

(N)
3(r)(xN , 0)

)
L

(N)
x .

This can be further written in the matrix form as,

AX = B, (4.2.55)
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where

A =





→lQ↓1
1 → J (1)

3(r)(x1, 0) →J (2)
3(r)(x1, 0) →J (3)

3(r)(x1, 0) · · · →J (N)
3(r)(x1, 0)

→J (2)
3(r)(x2, 0) →lQ↓1

2 → J (2)
3(r)(x2, 0) →J (3)

3(r)(x2, 0) · · · →J (N)
3(r)(x2, 0)

→J (1)
3(r)(x3, 0) →J (2)

3(r)(x3, 0) →lQ↓1
3 → J (3)

3(r)(x3, 0) · · · →J (N)
3(r)(x3, 0)

.

.

.
.
.
.

.

.

.
. . .

.

.

.

→J (1)
3(r)(xN , 0) →J (2)

3(r)(xN , 0) →J (3)
3(r)(xN , 0) · · · →lQ↓1

N → J (N)
3(r)(xN , 0)





(4.2.56)

X =





L(1)
x

L(2)
x

L(3)
x

.

.

.

L(n)
x





, B =





J3(s)(x1, 0)

J3(s)(x2, 0)

J3(s)(x3, 0)
.
.
.

J3(s)(xN , 0)





(4.2.57)

By solving Eq. (4.2.55) for X, we obtain the solution for the amplitude of the scattered

wavefield, which is given by the expression,

X = A↑1B or L(m)
x

=
(
A↑1B

)
m

(4.2.58)

Hence, the complete displacement of the wavefield can be expressed using Eqs. (4.2.47)

and (4.2.48) as,

u1(c)(x, z) = u1(s)(x, z) +
n=N∑

n=1

(
A↑1B

)
n
G(n)

1(r)(x, z) (4.2.59)

u3(c)(x, z) = u3(s)(x, z) +
n=N∑

n=1

(
A↑1B

)
n
G(n)

3(r)(x, z) (4.2.60)

And at the surface z = 0, the complete wavefield becomes,

u1(c)(x, 0) = u1(s)(x, 0) +
n=N∑

n=1

(
A↑1B

)
n
G(n)

1(r)(x, 0), (4.2.61)

u3(c)(x, 0) = u3(s)(x, 0) +
n=N∑

n=1

(
A↑1B

)
n
G(n)

3(r)(x, 0). (4.2.62)

It is worth mentioning that the contribution of Rayleigh wavefields can be readily deter-

mined by evaluating the pole contributions within the infinite integrands in Eqs. (4.2.61)

and (4.2.62).
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4.2.3 Dispersion relation

We now consider an infinite array of equally spaced (at a distance l) identical nonlinear

resonators arranged on the top of an elastic substrate. Let us assume that the steady state

is obtained, say at xm = 0. It is also important to note that at this position xm = 0, the

e!ect of the incident wavefield is nil. As a result, we can write from Eq. (4.2.54) that,

l Q↑1 Lx = →

n=↘∑

n=↑↘
L(n)
x

Jr(xn), (4.2.63)

where L(n)
x ↖ L(xn) and Jr(xn) is equivalent form of J (n)

3(r)(0, 0). In other words,

Jr(xn) =
1

▷µ

 ↘

↑↘

2 k2
T
pL

32 R(3)
sin2

(
3l

2

)
e↑iφxn d3. (4.2.64)

An e!ective medium approach is employed, which is based on the assumption that the

lattice spacing l is much smaller than the wavelength 0 of the propagating wave. Further,

the discretization is modelled rather continuously by taking the average values that give,

lQ↑1 Lx = →
1

l

n=↘∑

n=↑↘


xn+

l
2

xn↑ l
2

L(x) Jr(x) dx. (4.2.65)

Note that, due to the identical resonator properties, we can write L(x) = Lxeiφx. Using

this fact and the assumption of an e!ective medium approach, Eq. (4.2.65) can be reduced

to,

Q↑1 +
k2
T
pL

µR(3)
= 0. (4.2.66)

Utilizing the expression of the Rayleigh function R(3) and replacing 3 by k, we obtain the

dispersion relation for Rayleigh waves in the presence of an infinite array of resonators as

(
2k2

→
ϖ2

c2
T

)2

→ 4k2

√(
k2 →

ϖ2

c2
L

)(
k2 →

ϖ2

c2
T

)
+

ϖ28

⇀Ac4
T

√

k2 →
ϖ2

c2
L

= 0, (4.2.67)

where

8 = mϖ2



1 +
r2

1→ r2 + ϑ s2
∣∣∣ U

∣∣∣
2

+ 2i r 6



 .

Clearly note that, in the absence of resonators, the dispersion relation for Rayleigh waves

reduces to,
(
2k2

→
ϖ2

c2
T

)2

→ 4k2

√(
k2 →

ϖ2

c2
L

)(
k2 →

ϖ2

c2
T

)
= 0 (4.2.68)

which matches exactly with the Rayleigh wave secular equation [14].

160



4.2.4 Graphical results and discussions

This section presents a comprehensive analysis of Rayleigh wave phenomena in nonlin-

ear resonating structures, utilizing the theoretical framework established in the preceding

sections. We delve into three distinct scenarios: (1) the dynamics of the single nonlinear

resonator excited by the Rayleigh waves induced by the interior source (2) the coupled

dynamics of a pair of nonlinear spring-mass resonators, showcasing the results of our ana-

lytical formulation in capturing their mutual interplay (3) the dispersion curve of Rayleigh

waves interacting with an infinite length metasurface consisting of an array of identical

nonlinear damped spring-mass system.

To facilitate this analysis, we first introduce several key parameters that will organize our

calculations and discussions.

– Normalized source depth (H): This is defined as the ratio of the source depth

(h) to the characteristic wavelength (0) of the propagating wave and expressed as,

H = h

4
.

– Normalized mass parameter (M): This dimensionless quantity characterizes

the inertial influence of the resonator relative to the surrounding medium. It is

given by, M = mεR1
ϑAcT

, where,

• ⇀ is the density of the half-space

• ϖR1 =
√

k11
m

represents the natural frequency of the first resonator of mass

m, with k11 being the corresponding linear sti!ness coe”cient.

– Nonlinearity parameter (ϑn): This parameter characterizes the nature of the

nonlinearity in the system with

• ϑn > 0 implying hardening nonlinearity.

• ϑn = 0 implying linear behavior.

• ϑn < 0 implying softening nonlinearity.

A limiting case is discussed in the following cases for which $ = µ. Table 4.2.1 below

provides the parameter values adopted in the three cases under investigation.
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Table 4.2.1: Values of the mechanical parameters used in the study

Parameter Expression Definition Values used≃

H h

4
or kh Normalized source depth 3.5

|U | → Base input amplitude 0.2

M mεR1
ϑAcT

Normalized mass parameter 0.6

ϑn
k3n
k1n

Nonlinearity parameter +1

L l

h
Normalized distance between the resonators 0.02

6n
bn

mεRn
Dimensionless damping parameter 0.17

↔
whenever needed and unless specified

To further characterize the influence of the surface resonators on wave propagation,

we introduce the parameter transmittance or transmission ratio, |AR| defined as,

|AR| =

∣∣∣∣
u3(c)(x, 0)

u3(s)(x, 0)

∣∣∣∣ , where u3(s)(x, 0) ↖ G3(s)(x, 0), (4.2.69)

and |AR| < 1 indicates the e”cacy of the resonators in attenuating Rayleigh wave vibra-

tions.

Single resonator scenario:

We investigate the scenario depicted in Figure 4.2.2a, where a single nonlinear res-

onator interacts with Rayleigh waves generated by an interior source. The receiver is

positioned at x = 30, and the resonator is located at x1 = 0. We generate four plots to

analyze the impact of various parameters on the transmittance (|AR|) vs frequency (ϖ̄)

curve. Recall that a lower |AR| value corresponds to a greater reduction in the transmit-

ted wave amplitude, indicating enhanced attenuation of ground-borne vibrations. The

values of the parameters used in the analysis are provided in Table 4.2.1 unless otherwise

specified.
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(a) Schematics of single res-

onator scenario
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(b) E!ect of the normalized source depth
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(c) E!ect of the base input ampitude
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(d) E!ect of the nonlinearity of resonators
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(e) E!ect of the normalized mass of the

system

Figure 4.2.2: Transmittance |AR| versus dimensionless frequency in a single

resonator scenario
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Figure 4.2.2b illustrates the influence of source depth on the transmittance (|AR|) vs

dimensionless frequency (ϖ̄) curve. As the normalized source depth H increases, the peak

|AR| value decreases. This indicates that a deeper source leads to greater attenuation of

ground-borne vibrations by the resonators. Conversely, a shallower source results in less

e!ective Rayleigh wave attenuation. This behavior can likely be attributed to the decay of

waves as they propagate through the medium. A deeper source means the waves have to

travel a larger distance to reach the resonator, leading to greater attenuation before they

even interact with the resonator. These findings underscore the importance of considering

source location relative to the resonator when designing systems for mitigating ground-

borne vibrations.

The plot in Figure 4.2.2c reveals that the e!ectiveness of the resonators in reducing

wave transmission increases with the base input amplitude, but only up to a certain

point. Beyond this threshold, further increase in amplitude actually lead to less e!ective

attenuation. This suggests an optimal range of excitation amplitudes where the resonators

perform best at mitigating vibrations.

The influence of nonlinearity on the transmittance characteristics is illustrated in Figure

4.2.2d, where the response curves for hardening, softening, and linear cases are presented.

Hardening nonlinearity (ϑ = +1) results in a shift of the transmittance peak towards

higher frequencies ϖ > ϖR1, accompanied by a reduction in the peak transmittance value.

Conversely, softening nonlinearity (ϑ = →1) shifts the peak to lower frequencies (ϖ < ϖR1)

with a slight increase in peak transmittance. The linear case (ϑ = 0) exhibits a peak at

the resonant frequency (ϖR1) of the spring-mass system, as expected. This behavior can

be attributed to the frequency-dependent nature of the nonlinearity, where hardening

e!ects sti!en the system and shift the resonance to higher frequencies while softening

e!ects lead to a decrease in sti!ness and a corresponding shift to lower frequencies. In

other words, the hardening nonlinearity in the resonators can be beneficial for achieving

enhanced vibration mitigation at higher frequencies.

The plot in Figure 4.2.2e shows that increasing the dimensionless mass parameter

M leads to lower transmittance, meaning better vibration reduction. This is because a

heavier resonator creates a larger impedance mismatch with the ground, causing more

wave reflection and less transmission. Essentially, a heavier resonator acts as a better

barrier for ground-borne vibrations.
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A pair of resonators scenario:

(a) Schematics of the a pair of resonators

scenario
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(b) E!ect of the linear sti!ness of the res-

onator
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(c) E!ect of the normalized distance be-

tween the resonators
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(d) E!ect of the poisson ratio of the half-

space
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(e) E!ect of the base input amplitude

Figure 4.2.3: Transmittance |AR| versus dimensionless frequency ε

εR1
in a

pair of resonators scenario
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This section examines the interaction of Rayleigh waves, generated by an interior

source, with two nonlinear resonators spaced a distance l apart, as depicted in Figure

4.2.3a.

Figure 4.2.3b shows that the frequencies of the two resonators significantly a!ect wave

transmission. When the second resonator has a higher frequency, stronger attenuation

occurs at higher frequencies. Conversely, a lower-frequency second resonator leads to

weaker attenuation at lower frequencies. This is due to the interaction between the

resonators, creating either constructive or destructive interference depending on their

frequencies.

In Figure 4.2.3c, the decreasing transmittance with larger resonator separation arises

from reduced near-field coupling e!ects and increased independent scattering. Most likely,

as the resonators move apart, they act more like individual scatterers, disrupting any

interference that might have aided wave transmission when they were closer. This leads

to more e!ective wave attenuation and, thus, lower transmittance.

Figure 4.2.3d shows the e!ect of Poisson’s ratio (ϑ) of the half-space, where three

di!erent values (0.25, 0.50, and 0.75) produce distinct transmission characteristics, with

all curves exhibiting multiple resonance dips at specific frequencies though the depth and

sharpness of these dips vary significantly with Poisson’s ratio. Figure 4.2.3e illustrates

how the base input amplitude |U | a!ects transmission, with three amplitude levels (0.1,

0.2, and 0.3) showing that higher input amplitudes generally lead to deeper transmission

minima and more pronounced nonlinear e!ects, particularly visible in the shifting and

broadening of the resonance dips. Both graphs reveal that the system exhibits strong

frequency-dependent behavior with multiple resonance frequencies where transmission is

significantly reduced, and these resonant characteristics are sensitive to both the material

properties of the substrate and the amplitude of the base excitation.

Figure 4.2.4 illustrates the relationship between the number of surface resonators

and the e!ective attenuation of Rayleigh waves. The plot reveals that as the number

of resonators increases, the frequency range over which significant attenuation occurs

also expands. This trend can be attributed to the broader range of resonant frequen-

cies introduced by the addition of more resonators. Each resonator contributes its own

resonant frequency, and the collective response of multiple resonators e!ectively widens

the frequency band over which attenuation is achieved. Essentially, a larger number of
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resonators provides a more comprehensive barrier to Rayleigh wave propagation, leading

to enhanced attenuation over a wider range of frequencies.
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Figure 4.2.4: E!ect of number of resonators on the transmittance |AR|

versus dimensionless frequency ε

εR1
curve

Infinite resonators scenario:

This section investigates the dispersion characteristics of Rayleigh waves propagating

along a surface covered with an infinite array of resonators, e!ectively forming a metasur-

face. The analysis reveals the emergence of frequency bandgaps, where wave propagation

is significantly attenuated. Notably, the nonlinearity of the resonators plays a crucial

role in determining the location of these bandgaps as depicted in Figure 4.2.5. Hard-

ening nonlinearity shifts the bandgaps to higher frequencies while softening nonlinearity

results in bandgaps at lower frequencies. This behavior is consistent with the expected

sti!ening and softening e!ects of the respective nonlinearities. Importantly, within these

bandgaps, there is a possibility of mode conversion from surface Rayleigh waves to body

waves, which propagate into the bulk medium. This mode conversion o!ers a potential

mechanism for protecting structures from incoming surface waves by diverting the wave

energy away from the surface.
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In Figure 4.2.6a, the e!ect of base input amplitude is shown through three curves with

di!erent U values (0, 0.1, and 0.2), where increasing the base input amplitude causes

Rayleigh waves to deviate more significantly from their linear dispersion relationship,

particularly in the frequency range between 1.0 and 1.5.
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Figure 4.2.5: E!ect of nonlinearity on frequency bandgaps in the dispersion

curve
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(a) E!ect of the base input amplitude
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(b) E!ect of normalized mass parameter

Figure 4.2.6: Dispersion curves showing the variation of dimensionless

wavenumber k̄ with dimensionless frequency ϖ̄

Figure 4.2.6b demonstrates the e!ect of the normalized mass parameter M (0.4,

0.6, and 0.8), where higher mass values create more pronounced nonlinear behavior and
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stronger coupling between the wave modes, leading to a larger frequency band-gaps. Both

graphs show that nonlinear e!ects become more prominent at intermediate frequencies,

with the shaded regions likely indicating zones of wave interaction or mode conversion,

and the vertical dashed lines marking critical frequency values where significant changes

in wave behavior occur.

4.2.5 Conclusions

The multiple scattering formulation, by accurately capturing inter-resonator interac-

tions and near-field e!ects, emerges as a crucial tool for analyzing seismic metasurfaces.

Its flexibility in handling diverse resonator configurations and types allows for e!ective

design optimization. This study reveals that deeper source locations significantly en-

hance ground-borne vibration attenuation, highlighting the importance of source depth.

Furthermore, the proposed metasurface design demonstrates tunability; hardening non-

linearity in resonators e!ectively mitigates higher-frequency vibrations, while increasing

normalized mass increases overall attenuation e”ciency. Importantly, incorporating a

larger number of resonators broadens frequency bandgaps and promotes the mode con-

version of surface waves into bulk waves, significantly improving vibration mitigation ca-

pabilities. This comprehensive approach provides valuable insights for designing e!ective

seismic metasurfaces.
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CHAPTER 5

Rayleigh Waves Generation and Propagation due to External

Sources





Beyond the propagation and control of Rayleigh waves, this chapter addresses their

generation, which can be modeled as either an initial value problem or a boundary value

problem. Subchapter 5.1 employs Laplace transforms and an asymptotic model for interior

source generation, while Subchapter 5.2 uses Hankel transforms and a matrix approach

for seismic surface loading in micropolar media.

5.1 Interior initial value problem in a semi-infinite medium⇓

5.1.1 Mathematical formulation

We investigate the Rayleigh wave field over a linearly isotropic, elastic half-plane

occupying the region →↓ < x < ↓ and 0 < z < ↓. It is assumed that the wave motion

is due to initial conditions prescribed along the line z = h, see Figure. 5.1.1.

Figure 5.1.1: Geometry of the problem

The plane-strain equations of motion in absence of external forces can be written as

↽ij,j = ⇀ui,tt. (5.1.1)

Here ui(x, z, t) are the components of displacement vector 7u of the elastic wave; ⇀ is the

volume density; and ↽ij (i, j = 1, 2) are components of the Cauchy stress tensor.

∗
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Also, for a homogeneous, isotropic solid, the stress-strain relations are defined by

↽ij = 0ωkkεij + 2µωij, (5.1.2)

where 0 and µ are the Lamé elastic moduli, εij denotes the Kronecker delta, and ωij de-

notes the strain tensor.

The kinematic relation to express the components of strain tensor ωij in terms of displace-

ment components ui is given as

ωij =
1

2

(
2ui

2xj

+
2uj

2xi

)
.

As a result, the governing equation of motion for Rayleigh waves propagating along

x→direction with the displacement components u = (u1(x, z, t), u3(x, z, t), 0) can be given

as,

µ↗2u+ (0+ µ)↗↗ · u = ⇀ü. (5.1.3)

Employing Helmholtz decomposition, the displacement field u can be represented as the

sum of a scalar potential &(x, z, t) and a vector potential 7)(x, z, t) = (0, 0,)) as,

u1(x, z, t) =
2&

2x
→

2)

2z
, u3(x, z, t) =

2&

2z
+

2)

2x
. (5.1.4)

Upon substitution of expressions given in Eq. (5.1.4) into equations of motion, the system

in Eq. (5.1.3) decouples into,

↗
2& =

1

β2
1

22&

2t2
, ↗

2) =
1

β2
2

22)

2t2
, (5.1.5)

where β1 =
√

4+2µ
ϑ

and β2 =
√

µ

ϑ
are the body wave velocities.

The above equations are subjected to initial interior conditions, which are given below:

u1(x, z, 0) = u3(x, z, 0) ↖ 0,

ϖu1
ϖt

∣∣
t=0

= 0, ϖu3
ϖt

∣∣
t=0

= ε(z → h) sin(kx)






In terms of potentials, these conditions can be rewritten as,

&(x, z, 0) = )(x, z, 0) ↖ 0,

ϖ%
ϖt

∣∣
t=0

= 1
2 sgn(z → h) exp (→k|z → h|) cos(kx),

ϖ(
ϖt

∣∣
t=0

= →
1
2 exp (→k|z → h|) sin(kx)






(5.1.6)
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Further, an asymptotic hyperbolic-elliptic model developed by Kaplunov and Prikazchikov

[87] accounts for the contributions of Rayleigh wave fields. According to this model, the

decay of Rayleigh waves from the surface towards the interior is governed by the following

quasi-static elliptic equations for the potentials,

22&

2z2
+ α22

2&

2x2
= 0,

22)

2z2
+ β22

2)

2x2
= 0, (5.1.7)

in which

α2 = 1→
c2
R

β2
1

, β2 = 1→
c2
R

β2
2

,

with cR denoting the velocity of Rayleigh waves.

In contrast to the interior behavior, the wave propagation along the surface z = 0 is

governed by a hyperbolic wave equation for one potential, coupled with a di!erential

relation between two potentials, see section 1.3.2 for details. For the case of horizontal

loading P1 and vertical loading P2, the equations at the surface z = 0 become

22&

2x2
→

1

v2
22&

2t2

∣∣∣∣
y=0

=
1 + β2

2µB

(
P2 + ϑ↑1P ≃

1

)
, (5.1.8)

where the superscript ⇓ on P2 denotes, in the sense, its Hilbert transform and the constant

B, ϑ assumes the value

B =
α

β

(
1→ β2

)
+

β

α

(
1→ α2

)
→ 1 + β4, ϑ =

2α

1 + β2
,

and the relation between the potentials is given as,

) =
2α

1 + β2
&c, (5.1.9)

where the superscript ‘c’ denotes the harmonic conjugate of the corresponding function.

We employ this asymptotic model to assess the Rayleigh wave contributions arising from

initial interior conditions. The solution for these initial interior sources is derived in the

following section and is then integrated into the asymptotic model to approximate the

resulting Rayleigh wave field.

5.1.2 Solution for the interior source problem

Let the solutions to Eq. (5.1.5) takes the form

&(x, z, t) = φ(z, t) cos(kx),

)(x, z, t) = ↼(z, t) sin(kx),





(5.1.10)
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This will reduce the equations of motion given in Eq. (5.1.5) as,

ϖ
2
ϱ

ϖz2
→ k2φ = 1

3
2
1

ϖ
2
ϱ

ϖt2
,

ϖ
2
ς

ϖz2
→ k2↼ = 1

3
2
2

ϖ
2
ς

ϖt2
.





(5.1.11)

Defining the non-dimensional parameters,

3 =
x

h
, ς =

z

h
, ◁ =

β2

h
t, ⇁ = kh, and ϱ =

β1

β2
,

the governing equations of motion in Eq. (5.1.11) can be re-written as

ϖ
2
ϱ

ϖ12 → ⇁2φ = 1
γ2

ϖ
2
ϱ

ϖ↽2
,

ϖ
2
ς

ϖ12 → ⇁2↼ = ϖ
2
ς

ϖ↽2
,





(5.1.12)

subjected to the non-dimensional interior initial conditions,

φ(ς, 0) = 0, ↼(ς, 0) = 0

ϖϱ

ϖ↽

∣∣
↽=0

= 1
2 sgn(ς→ 1) exp(→⇁|ς→ 1|),

ϖς

ϖ↽

∣∣
↽=0

= →
1
2 exp(→⇁|ς→ 1|).






(5.1.13)

A Laplace integral transformation is employed on the variable ‘◁ ’ according to the defini-

tion, see Debnath and Bhatta [274],

fL(z, s) =

 ↘

0

f(z, ◁) e↑s↽ d◁,

where s is the complex transform variable with Re(s) > 0.

Further, the inverse Laplace transformation is defined as,

f(z, ◁) =
1

2▷i


C+i↘

C↑i↘
fL(z, s) es↽ ds,

where C > 0 is larger than all the real parts of singularities of fL(z, s).

As a result, application of Laplace transformation to Eq. (5.1.12) gives the following

decoupled system of ordinary di!erential equations,

d
2
ϱ
L

d12 → r21 φ
L = →

1
2γ2 sgn(ς→ 1) exp(→⇁|ς→ 1|),

d
2
ς
L

d12 → r22 ↼
L = 1

2 exp(→⇁|ς→ 1|),





(5.1.14)
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where r1 =
√

⇁2 + s2

γ2 , r2 =
⇐
⇁2 + s2.

Since the modelling of the interior source is carried in an unbounded medium, we also

employ Fourier transforms. Specifically, we apply the Fourier transform, defined as,

fF (p, t) =

 ↘

↑↘
f(ς, t) e↑ip1 dς,

and its inverse,

f(ς, t) =

 ↘

↑↘
fF (p, t) eip1 d3,

to both sides of Eq. (5.1.13). This transformation leads to the following Laplace-Fourier

transformed potential components as,

φLF (p, s) = →1

▷2


ip exp(ip)

(p2+r21)(p
2+◁2)


,

↼LF (p, s) = →◁ exp(ip)
(p2+r22)(p

2+◁2)
.





(5.1.15)

Taking inverse Fourier transformation in Eqs. (5.1.15) yields,

φL(ς, s) = 1
2s2 [exp(→⇁|ς→ 1|)→ exp(→r1|ς→ 1|)] sgn(ς→ 1),

↼L(ς, s) = →
1

2s2


exp(→⇁|ς→ 1|)→ ω

r2
exp(→r2|ς→ 1|)


.





(5.1.16)

As a result, the associated stress components ↽21 and ↽22 at ς = 0 can be calculated using

Eq. (5.1.2).

As a consequence of the superposition principle, we can now formulate the initial value

problem for the elastic half-space with

P1(x, t) = →↽21

∣∣
y=0

, P2(x, t) = →↽22

∣∣
y=0

. (5.1.17)

Define the dimensionless loading terms P1 =
P1(x,↽)

µ
, P2 =

P2(x,↽)
µ

.

Thus, applying the Laplace transformation to both sides of Eq. (5.1.17) and utilizing Eqs.
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(5.1.16), we obtain,

PL

1 (3, s) = →↽L

21

∣∣
1=0

= →
⇁

2s2


e↑r2 (2⇁2 + s2)

r2
→ 2r1 e

↑r1


sin (⇁3)

= →
⇁

2s2


e↑

→
ω2+s2 (2⇁2 + s2)
⇐
⇁2 + s2

→ 2e
↑
√

ω2+ s2

φ2

√

⇁2 +
s2

ϱ2


sin (⇁3)

(5.1.18)

PL

2 (3, s) = →↽L

22

∣∣
1=0

= →
1

2s2

e↑r1

(
2⇁2 + s2

)
→ 2⇁2e↑r2


cos (⇁3)

= →
1

2s2


e
↑
√

ω2+ s2

φ2
(
2⇁2 + s2

)
→ 2⇁2e↑

→
ω2+s2


cos (⇁3) . (5.1.19)

Observe that PL

1 and PL

2 are the stress disturbances produced at the surface of the half-

plane due to the interior initial conditions.

5.1.3 Asymptotic solution

On defining c = v

32
and non-dimensionalizing Eq. (5.1.7), we obtain


22&

232
→

1

c2
22&

2◁ 2

∣∣∣∣
1=0

=
1 + β2

2B

(
P2 + ϑ↑1 P ≃

1

)
. (5.1.20)

Assuming a cossinusoidal form as given in Eq. (5.1.10) followed by the application of

Laplace transformation and utilizing the stress components obtained in Eqs. (5.1.18) and

(5.1.19), we get

φL (0, s) = →
c2 (1 + β2)

2B (s2 + ⇁2c2)
H(s), (5.1.21)

where

H(s) = →
1

2s2

e↑r1

(
2⇁2 + s2

)
→ 2⇁2e↑r2


+ ϑ↑1


⇁

2s2


e↑r2 (2⇁2 + s2)

r2
→ 2r1 e

↑r1


.

This gives,

φ (0, ◁) =
c2 (1 + β2) I(◁)

2B
(5.1.22)

where

I(◁) = →
1

2▷i


C+i↘

C↑i↘

1

s2 + ⇁2c2
H(s) exp (s◁) ds, (5.1.23)

is the Bromwich integral to be evaluated to obtain the inverse Laplace of φL. Note that

C ⇔ R is considered larger than any real part of the poles in the integrand.

The complex integral given in Eq. (5.1.23) contains integrand with singularities in the

form of poles and branch cuts. There are two poles s = ±i⇁c, generally known as Rayleigh

poles, and two branch points at s = ±i⇁. The residue theorem can be employed to evaluate
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the contribution of the Rayleigh poles to the integral, thereby determining the Rayleigh

wave contribution. Additionally, the model also predicts bulk wave contributions, which

can be understood by analyzing the local behavior of the integral around the branch

points.

As a result, we can write

I(◁) = IB(◁) + IP (◁), (5.1.24)

where IB(◁) and IP (◁) are the contributions from the branch cuts for larger ◁ and Rayleigh

poles, respectively.

We shall now chose the contour paths and branch cuts for the integral in Eq. (5.1.23) as

indicated in the Figure 5.1.2.

Figure 5.1.2: Choice of contour paths and branch cuts for the integral

encountered in asymptotic model of Rayleigh waves

179



By expanding Eq. (5.1.23) locally around each branch point s = ±ik, the total

contribution of the branch cuts to the integral can be evaluated as,

IB(◁) ′
1

⇁2▷ ◁


(2→ ϱ2)→ 2ϑ↑1

ϱ2 (ϱ2 → c2)
sin(⇁ϱ◁)→

ϑ↑1 (ϱ2
→ 2)

ϱ2
√
ϱ2 → 1 (ϱ2 → c2)

cos
(
⇁ϱ◁ → ⇁

√
ϱ2 → 1

)

+
1

⇁2▷◁ (1→ c2)


→2 +

(
1 + 2 ϑ↑1

√
1→

1

ϱ2

)
e
↑ω

√
1↑ 1

φ2


sin(⇁◁)

→
ϑ↑1

⇐
2▷⇁3◁ (1→ c2)

cos
(
⇁◁ →

▷

4

)
. (5.1.25)

It is worth mentioning that the asymptotic behavior of the integrand at larger time scales,

evaluated using the saddle point method, aligns perfectly with the solution obtained.

As a result, we conclude that the asymptotic hyperbolic-elliptic model predicts the exis-

tence of a transient bulk wave solution associated with branch cuts. For large values of

◁ , we have,

φB (0, ◁) ′
c2 (1 + β2)

2B


1

⇁2▷ ◁


(2→ ϱ2)→ 2ϑ↑1

ϱ2 (ϱ2 → c2)
sin(⇁ϱ◁)

→
ϑ↑1 (ϱ2

→ 2)

ϱ2
√

ϱ2 → 1 (ϱ2 → c2)
cos

(
⇁ϱ◁ → ⇁

√
ϱ2 → 1

)

+
1

⇁2▷◁ (1→ c2)


→2 +

(
1 + 2 ϑ↑1

√
1→

1

ϱ2

)
e
↑ω

√
1↑ 1

φ2


sin(⇁◁)

→
ϑ↑1

⇐
2▷⇁3◁ (1→ c2)

cos
(
⇁◁ →

▷

4

)}
. (5.1.26)

Hence, the scalar potential can be given as,

&B (3, 0, ◁) ′
c2 (1 + β2)

2B


1

⇁2▷ ◁


(2→ ϱ2)→ 2ϑ↑1

ϱ2 (ϱ2 → c2)
sin(⇁ϱ◁)

→
ϑ↑1 (ϱ2

→ 2)

ϱ2
√

ϱ2 → 1 (ϱ2 → c2)
cos

(
⇁ϱ◁ → ⇁

√
ϱ2 → 1

)

+
1

⇁2▷◁ (1→ c2)


→2 +

(
1 + 2 ϑ↑1

√
1→

1

ϱ2

)
e
↑ω

√
1↑ 1

φ2


sin(⇁◁)

→
ϑ↑1

⇐
2▷⇁3◁ (1→ c2)

cos
(
⇁◁ →

▷

4

)}
cos (⇁3) . (5.1.27)
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Additionally, the residue theorem is employed to evaluate the pole contribution, zielding

IP (◁) =






(
→2 ϑ↑1

√
1→ c2

γ2 + (c2 → 2)
)

2⇁ c3
exp

(
→⇁

√

1→
c2

ϱ2

)

+

(
2
⇐
1→ c2 → ϑ↑1 (c2 → 2)

)

2⇁ c3
⇐
1→ c2

exp
(
→⇁

⇐
1→ c2

)}
sin(⇁c◁). (5.1.28)

This gives the expression for scalar potential of Rayleigh waves propagating on the surface

ς = 0 as,

φP (0, ◁) =
c (1 + β2)

2B






(
→2 ϑ↑1

√
1→ c2

γ2 + (c2 → 2)
)

2⇁ c3
exp

(
→⇁

√

1→
c2

ϱ2

)

+

(
2
⇐
1→ c2 → ϑ↑1 (c2 → 2)

)

2⇁ c3
⇐
1→ c2

exp
(
→⇁

⇐
1→ c2

)}
sin(⇁c◁). (5.1.29)

This gives, the scalar potential,

&P (3, 0, ◁) =
c (1 + β2)

2B






(
→2 ϑ↑1

√
1→ c2

γ2 + (c2 → 2)
)

2⇁ c3
exp

(
→⇁

√

1→
c2

ϱ2

)

+

(
2
⇐
1→ c2 → ϑ↑1 (c2 → 2)

)

2⇁ c3
⇐
1→ c2

exp
(
→⇁

⇐
1→ c2

)}
sin(⇁c◁) cos (⇁3) .(5.1.30)

Further, solving for the quasi-elliptic equation of the form given in Eq. (5.1.7),

d2&

dς2
+ α2d

2&

d32
= 0, (5.1.31)

subjected to the boundary condition given in Eq. (5.1.30) yields,

&(3,ας, ◁) = {&B(3, 0, ◁) + &P (3, 0, ◁)} exp (→⇁ας) cos (⇁3) . (5.1.32)

Also, the transverse potential ) can be easily restored by using Eq. (5.1.9) as,

)(3, βς, ◁) =
2α

1 + β2
{&B(3, 0, ◁) + &P (3, 0, ◁)} exp (→⇁βς) sin (⇁3) . (5.1.33)

Thus, the total wave field displacement components can be expressed in terms of the

potential ↼ as,

u1(3,ς, ◁) =
2&(3,ας, ◁)

23
+

1 + β2

2

2&(3, βς, ◁)

23
, (5.1.34)

u3(3,ς, ◁) =
2&(3,ας, ◁)

2ς
+

2

1 + β2

2&(3, βς, ◁)

2ς
. (5.1.35)
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5.1.4 Exact solution

Now, we shall produce the exact expressions for the displacements at the free surface

due to the prescribed surface stresses PL

1 and PL

2 .

If & and 7) = (0,), 0) are the dimensionless scalar and vector potentials of the wave

generated due to the surface stresses, then the equations of motion could be re-written

as,
22&

232
+

22&

2ς2
=

1

ϱ2

22&

2◁ 2
,

22)

232
+

22)

2ς2
=

22)

2◁ 2
. (5.1.36)

The relevant stress-strain relations are written in terms of potentials as,

◁21 = µ

(
2
22&

232ς
+

22)

232
→

22)

2ς2

)
, (5.1.37)

◁22 = 0

(
22&

232
+

22&

2ς2

)
+ 2µ

(
22&

2ς2
→

22)

232ς

)
. (5.1.38)

Assuming the potentials of the form,

&(3,ς, ◁) = φ(ς, t) cos(⇁3),

)(3,ς, ◁) = ↼(ς, t) sin(⇁3),





(5.1.39)

and subsequently applying the Laplace transform, we obtain the following system of

ordinary di!erential equations as,

d2φL

dς2
→ r21 φ

L = 0,
d2↼L

dς2
→ r22 ↼

L = 0, (5.1.40)

where r1 and r2 are defined previously. Solutions to Eq. (5.1.36) that show appropriate

behavior for larger values of ς are,

&L(3,ς, ◁) = A exp (→r1 ς) cos(⇁3), )L(3,ς, ◁) = B exp (→r2 ς) sin(⇁3). (5.1.41)

Defining ◁21 = ↽21
µ

and ◁22 = ↽22
µ
, the boundary conditions at ς = 0 can be transformed

as,

◁L21
∣∣
1=0

= PL

1 , ◁L22
∣∣
1=0

= PL

2 . (5.1.42)

Substituting the expressions for &L and )L and using Eqs. (5.1.42), the following equa-

tions for A and B are obtained:

2⇁ r1 A→ (2⇁2 + s2) B = PL

1 ,

(s2 + 2⇁2) A→ 2⇁ r2 B = PL

2 .




 (5.1.43)
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This system is solved to obtain the values of A and B. As a result, the expression for the

transformed potentials are given as,

&L(3,ς, s) =

{
→
4⇁2r1r2 + (2⇁2 + s2)2

2s2R(s)
exp(→r1)

+
2⇁2 (2⇁2 + s2)

s2R(s)
exp(→r2)


exp (→r1 ς) cos(⇁3), (5.1.44)

)L(3,ς, s) =


2⇁r1 (2⇁2 + s2)

s2 R(s)
exp(→r1)

→

⇁
(
4⇁2r1r2 + (2⇁2 + s2)2

)

2r2s2 R(s)
exp(→r2)




 exp (→r2 ς) sin(⇁3), (5.1.45)

where R(s) = (2⇁2 + s2)2 → 4⇁2r1r2.

On taking the inverse Laplace transform for the displacement potentials, we get

&(3,ς, ◁) =
cos(⇁3)

2▷i


C+i↘

C↑i↘

{
→
4⇁2r1r2 + (2⇁2 + s2)2

2s2R(s)
exp(→r1)

+
2⇁2 (2⇁2 + s2)

s2R(s)
exp(→r2)


exp(→r1ς) exp(s◁)ds, (5.1.46)

)(3,ς, ◁) =
sin(⇁3)

2▷i


C+i↘

C↑i↘


2⇁r1 (2⇁2 + s2)

s2 R(s)
exp(→r1)

→

⇁
(
4⇁2r1r2 + (2⇁2 + s2)2

)

2r2s2 R(s)
exp(→r2)




 exp(→r2ς) exp(s◁) ds. (5.1.47)

The integrands in Eqs. (5.1.46) and (5.1.47) contain both poles and branch points as

singularities.

The poles are located at the zeroes of the Rayleigh-wave dispersion equation R(s) = 0.

Additionally, branch points exist at s = ±ik and s = ±ikϱ.

To evaluate the integral explicitly, the contour paths and branch cuts are chosen as de-

picted in Figure 5.1.3.
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Figure 5.1.3: Choice of contour paths and branch cuts for the integral

encountered in exact solution for Rayleigh waves

Now, let s = ±i⇁c be the roots of the Rayleigh-wave equation.

Rewriting R(s) as a function G
(

s
2

ω2

)
as,

G

(
s2

⇁2

)
= ⇁4

(
4

√
s2

⇁2
+ 1

√
s2

⇁2ϱ2
+ 1→

(
2 +

s2

⇁2

)2
)
,

and approximating the expression about its roots using Taylor series expansion as,

G

(
s2

⇁2

)
⇑ G↓(→c2)

(
s2

⇁2
+ c2

)
,

allows us to determine the Rayleigh wave displacement potentials as,

&P (3,ς, ◁) =





→

⇁3
(
c4 + 4

⇐
1→ c2

√
1→ c2

γ2 → 4c2 + 4
)
e
↑ω(1+1)

√
1↑ c2

φ2

2 c3 G↓(→c2)

→
2 (2→ c2)⇁3e

↑ω

(
1

√
1↑ c2

φ2
+
→
1↑c2

)

c3G↓(→c2)





sin(⇁c◁) cos(⇁3), (5.1.48)
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↼P (3,ς, ◁) =





→

2 (2→ c2)⇁3
√

1→ c2

γ2 e
↑k

(√
1↑ c2

φ2
+
→
1↑c2z

)

c3 G↓(→c2)

+
⇁3

(
c4 + 4

⇐
1→ c2

√
1→ c2

γ2 → 4c2 + 4
)
e↑

→
1↑c2ω(1+1)

2c3
⇐
1→ c2 G↓(→c2)




 sin(⇁c◁) sin(⇁3).

(5.1.49)

For larger timescales ◁ , the contribution from the branch cuts can be approximated by

focusing on the dominant contribution near the branch points. This involves expanding

the integral locally around each branch point. As a result,

&B(3,ς, ◁) ′
1

⇁2▷◁


1

2ϱ2
sin(⇁ϱ◁) +

1

ϱ2 (ϱ2 → 2)
cos

(
⇁ϱ◁ → ⇁

√
ϱ2 → 1

)

+



e↑ω(1+1)
→

φ2→1
φ

2
→ 2e↑ω1

→
φ2→1
φ



 sin(⇁◁)




 cos(⇁3), (5.1.50)

)B(3,ς, ◁) ′

{
→

1

2▷⇁2ϱ2
√
ϱ2 → 1

cos
(
⇁ϱ◁ → ⇁ (ς+ 1)

√
ϱ2 → 1

)

→
2
√

ϱ2 → 1e↑
⇁
→

φ2→1
φ

⇁2 ▷ϱ
sin(⇁◁)→

1

2
⇐
▷⇁3◁

cos
(
⇁◁ →

▷

4

)



 sin(⇁3).

(5.1.51)

Thus, the total wavefield can be easily determined by combining the contributions from

both the branch points and the poles.

5.1.5 Graphical discussions

To elucidate the characteristics of the exact and asymptotic solutions and facilitate

a comparative analysis, a series of graphical representations is presented. These figures

depict the larger time-dependent behavior of total wavefield induced by interior sources.

By visualizing the discrepancies between the two solution approaches, we aim to assess

the e”ciency of the asymptotic model in capturing the essential wave phenomenon.

Figure 5.1.4 presents a comparative analysis of the total wave contributions at the

surface of the half-space (ς = 0) and at a depth of (ς = 10), as computed using both

the exact and asymptotic approaches. As expected, the wave potential amplitudes at

ς = 10 are significantly lower compared to those at the surface. The results highlight
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Figure 5.1.4: Comparison of total wave behavior at a larger time for both

asymptotic and exact methods at dimensionless depth (a) ς = 0 (b) ς = 10

a noticeable discrepancy between the asymptotic and exact models, particularly at early

times and deep below the surface. This discrepancy is attributed to the limitations of the

asymptotic model in accurately capturing bulk wave phenomena. It is further important

to point out that while the asymptotic and exact approaches agree well in capturing

Rayleigh wave contributions, they exhibit significant discrepancies in predicting bulk wave
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contributions. However, at the surface, as time progresses, the results from the two models

converge, with the asymptotic predictions aligning closely with the exact solution.

5.1.6 Conclusions

This study investigated the generation of wave fields within an elastic half-space due

to prescribed initial displacement potential and velocity patterns. These initial conditions

were employed to simulate a wave source. By applying Laplace transformation in time

and utilizing an eigenvalue approach, the solution to the interior initial value problem was

obtained. An image-source technique was incorporated to account for reflected wave fields

from the surface. The superposition of the generated and reflected wave fields allowed

for the calculation of surface stresses. These surface stresses, in turn, act as the loading

mechanism for the generation of Rayleigh waves within the half-space.

The solution was analyzed from both asymptotic and exact perspectives. The ex-

plicit asymptotic hyperbolic-elliptic model was employed to elucidate the contribution

from Rayleigh waves (represented by the residues arising from the Rayleigh poles). Addi-

tionallz, the local dominant contributions from the branch points were utilized to capture

the bulk wave contribution within the asymptotic model. The resulting displacement

potential was then compared with the exact solution. The exact solution was obtained

by Laplace transforming the equations of motion, followed by a Taylor series expansion

centered at the Rayleigh pole to isolate the Rayleigh wave contribution. Similar to the

asymptotic approach, the local dominant contributions from the branch-cut were used to

account for the bulk-wave contributions in the exact solution.

Graphical analysis revealed that a significant discrepancy was observed between the

asymptotically derived and exact solutions for the behavior of displacement potentials of

total wavefield. This disparity suggests that the asymptotic hyperbolic-elliptic model is

highly e!ective in capturing the behavior of Rayleigh waves but exhibits limitations in

representing the behavior of bulk waves.
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5.2 Surface boundary value problem in a multi-layered microp-

olar media⇓

This chapter investigates the generation and propagation of Rayleigh waves due to

surface seismic impacts, formulated as a boundary value problem. We model two surface

pulse scenarios, a point load and a vertical line load, through boundary conditions within

the frameowrk of micropolar elasticity. The analysis is further extended to multilayered

micropolar structures to examine dispersion characteristics. Various mathematical tools,

like method of displacement potentials, Hankel transformation and a matrix approach is

employed to analyze the problem e”ciently.

5.2.1 Description of the model

Figure 5.2.1: Geometry of the problem

Consider the propagation of Rayleigh waves in a homogeneous isotropic micropolar

half-space occupying a region z ↙ 0 as depicted in Figure 5.2.1. A cylindrical co-ordinate

system (r, 5, z) is used to obtain the solution for the displacement components of Rayleigh

waves produced by a source situated on the surface z = 0 of the micropolar half-space.

To maintain the consistency with the usual notations, z→axis is now considered to be

∗
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pointing vertically downwards. Also, this problem of seismic surface pulse can also be

viewed as the surface loading problem wherein the surface of the half-space is loaded by a

concentrated time-harmonic force in the axial direction. Let (êr, ê⇁, êz) be the basis vectors

for the cylindrical system of co-ordinates. Also, let (ur, u⇁, uz) and (9r,9⇁,9z) be the

displacement components and microrotation vector components along (r, 5, z) directions,

respectively.

5.2.2 Mathematical formulation and solution

Constitutive relations and balance laws

In any linear micropolar elastic continuum possessing a centre of symmetry, the de-

formation in the body is described by the displacement vector 7u and the microrotation

vector 79. As a result, the force stresses (i.e., ◁ij) and the couple (moment) stresses (mij)

are developed in the body. These stress tensors are defined in terms of the antisymmertric

deformation (strain) tensor ωij and torsional flexural (curvature) tensor ϱij as,

ωij = uj,i → 1ijk9k,

ϱij = 9i,j.




 (5.2.1)

Following Eringen [117] and Nowacki [122], the stresses in a homogeneous, isotropic,

micropolar elastic half-space can be expressed linearly by using strain and curvature

tensors as,

◁ij = $ωkkεij + (µ+ ⇁)ωij + µωij,

mij = αϱkkεij + βϱij + ϑϱji,




 (5.2.2)

where $ and µ are Lame’s constants, and ⇁, α, β and ϑ are micropolar constants; εij is

the Kronecker delta and 1ijk is the permutation tensor. Throughout the paper, a comma

in the subscript represents the partial derivative.

To describe any physical phenomenon associated with the dynamic problems of microp-

olar elasticity theory, it is essential to compute the displacement components and micro-

rotation vector components satisfying the constitutive relations, equations of motion and

boundary and initial conditions. Eringen [51] derived the equation of motion for the wave

propagating in a micropolar elastic half-space and in absence of body forces, this equation
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of motion can be written as,

($+ 2µ+ ⇁)↗(↗ · 7u)→ (µ+ ⇁)↗↘ (↗↘ 7u) + ⇁↗↘ 79 = ⇀ϖ
2
6̈u

ϖt2
,

ϑ↗279+ ⇁↗↘ 7u→ 2⇁79 = j⇀ϖ
2
6̈7

ϖt2
,





(5.2.3)

where ⇀ is the density, j is the micro-inertia co-e”ceint and ↗ is the usual del operator.

The above form of the equation of motion has a larger advantage because this result is

valid in any curvilinear coordinate system.

Formulation of the problem

Owing to the propagation of Rayleigh waves in this problem, the displacement com-

ponenent u⇁ = 0 and the microrotation vector components 9r = 9z = 0. Thus, we

write

ur = ur(r, z, t), u⇁ = 0, uz = uz(r, z, t),

9r = 0, 9⇁ = 9⇁(r, z, t), 9z = 0.

so that

7u(r, z, t) = ur(r, z, t)êr + uz(r, z, t)êz. (5.2.4)

The given problem assumes an antiplane strain state in the 5→direction, which means

that all field variables are independent of 5→direction, i.e., ϖ

ϖ⇁
= 0.

Method of displacement potentials

The method of displacement potentials is one of the powerful technique in obtaining

the solution to an axisymmetrical wave equation. Consider the Helmholtz resolution of

the displacement vector field in cylindrical co-ordinates. According to the Helmholtz’s

theorem [2], a rapidly decaying displacement vector field 7u can be resolved into sum of a

scalar potential φ and a vector potential 7H, which provides

7u = ↗&+↗↘ 7H, (5.2.5)

where the components of displacement vector 7u and vector potential 7H are given by

7u = ur(r, z, t) 7̂er + uz(r, z, t) 7̂ez,

7H = H⇁(r, z, t)ê⇁.




 (5.2.6)
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Appropriate substitutions of 7u given in Eq. (5.2.5) in equation of motion given in Eq.

(5.2.4) gives

($+ 2µ+ ⇁)↗2& = ⇀ϖ
2%
ϖt2

,

(µ+ ⇁)
(
↗

2
→

1
r2

)
H⇁ + ⇁9⇁ = ⇀ϖ

2
Hθ

ϖt2
,

ϑ
(
↗

2
→

1
r2

)
9⇁ → ⇁

(
↗

2
→

1
r2

)
H⇁ → 2⇁9⇁ = ⇀j ϖ

2
7θ

ϖt2
.





(5.2.7)

Here ↗
2 = 1

r

ϖ

ϖr

(
r ϖ

ϖr

)
+ ϖ

2

ϖz2
denotes the Laplacian operator in cylindrical coordinates.

In order to reduce further the second and third equations of Eq. (5.2.7) to scalar wave

equation, define the function ) and φ as,

H⇁ = →
2)

2r
,

9⇁ = →
2φ

2r
.

Then Eq. (5.2.7) can be re-written as,

($+ 2µ+ ⇁)↗2& = ⇀ϖ
2%
ϖt2

,

(µ+ ⇁)↗2)+ ⇁φ = ⇀ϖ
2(
ϖt2

,

ϑ↗2φ→ ⇁↗2)→ 2⇁φ = ⇀j ϖ
2
ϱ

ϖt2
.





(5.2.8)

Assuming the time harmonic fields with the time factor eiεt, where ϖ = kc is the angular

velocity of the Rayleigh wave propgating with wave velocity c and wave number k, the

displacement potentials and the quantity φ(r, z, t) may be expressed in the form,

&(r, z, t) = &(r, z)eiεt,

)(r, z, t) = )(r, z)eiεt,

φ(r, z, t) = φ(r, z)eiεt.





(5.2.9)

Inserting Eqs. (5.2.9) in Eqs. (5.2.8), we get

(
↗

2 + k
2
c
2

c
2
1+c

2
2

)
& = 0,

(
↗

2 + k
2
c
2

c
2
2+c

2
4

)
)+ c

2
2

c
2
2+c

2
4
φ = 0,

(
↗

2 + ↑2c22+jk
2
c
2

jc
2
3

)
φ→

c
2
2

jc
2
3
↗

2) = 0,






(5.2.10)

where the quantities c1, c2, c3 and c4 are defined as,

c1 =

√
$+ 2µ

⇀
, c2 =

√
⇁

⇀
, c3 =

√
ϑ

j⇀
, c4 =

√
µ

⇀
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It is understood that the system of equations obtained in Eq. (5.2.10) involves a coupled

di!erential equations of second order. To further uncouple these equations, we begin with

defining the parameters,

r21 =
k2 c2

c21 + c22
, p21 =

k2 c2

c22 + c24
, p22 =

→2c22 + jk2 c2

jc23
, p23 =

c42
j c23 (c

2
2 + c24)

,

and by regrouping the terms, Eqs. (5.2.10) can be reduced to

(
↗

2 + r21
)
& = 0, (5.2.11)

↗
4)+

(
p21 + p22 + p23

)
↗

2)+ p21 p
2
2 ) = 0. (5.2.12)

The Eq. (5.2.12) can be further simplified to give

(
↗

2 + r22
) (

↗
2 + r23

)
) = 0,

where r2 and r3 are the roots having values,

r22,3 =
→ (p21 + p22 + p23)±

√
(p21 + p22 + p23)

2
→ 4 p21 p

2
2

2
. (5.2.13)

To solve explicity the equations given in Eqs. (5.2.11) and (5.2.12),the Hankel transfor-

mation technique [274] is employed naturally in view of the geometry of the model. Define

the zeroth order Hankel transformation of & as

&̄(3, z) =

 ↘

0

r J0(3r)&(r, z) dr,

whose inverse transformation is

&(r, z) =

 ↘

0

3 J0(3r) &̄(3, z) d3,

Here 3 is the transformed parameter. We note that the similar definitions are adopted for

the quantities )̄.

Now, application of the zeroth order Hankel transformation to Eqs. (5.2.10) and (5.2.11)

reduces the set of partial di!erential equations to a set of ordinary di!erential equations.

Thus

d
2%̄
dz2

→ (32 → r21)& = 0,

d
4(̄
dz4

→ (232 → r22 → r23)
d
2(̄
dz2

+ (32 → r22) (3
2
→ r23) )̄ = 0.




 (5.2.14)
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The solutions to these equations takes the form,

&̄(3, z) = A1e↑⇀z + A2e⇀z,

)̄(3, z) = B1e↑3z +B2e↑ζz +B3e3z +B4eζz,




 (5.2.15)

where A1, A2, B1, B2, B3 and B4 are all functions of 3 and are determined from the

boundary conditions applied on the problem. Here,

α2 = 32 → r21, β2 = 32 → r22, 62 = 32 → r23.

Note that )(r, z) and φ(r, z) are the solutions to the coupled di!erential equations given

in Eq. (5.2.10). As a result, assume the solution to φ̄(3, z) to be of the form,

φ̄(3, z) = s1 B1e
↑3z + s2 B2e

↑ζz + s3 B3e
3z + s4 B4e

ζz, (5.2.16)

where s1, s2, s3 and s4 are the unknowns to be determined.

Substituting the explicit solutions of )̄(3, z) and φ̄(3, z) in Eq. (5.2.9), we get

s1 =
c22 + c24

c22

(
r22 → p21

)
, s2 =

c22 + c24
c22

(
r23 → p21

)
, s3 = s1 and s4 = s2. (5.2.17)

In brief, the transformed displacement vector potentials and microrotation vector takes

the form,

&̄(3, z) = A1e↑⇀z + A2e⇀z,

)̄(3, z) = B1e↑3z +B2e↑ζz +B3e3z +B4eζz,

φ̄(3, z) = s1 B1e↑3z + s2 B2e↑ζz + s3 B3e3z + s4 B4eζz,





(5.2.18)

where the value of s1, s2, s3 and s4 are given in Eq. (5.2.17).

5.2.3 Analytical solution for the elastic micropolar half-space

In order for the solution to be compatible with the half-space considered, the solution

to Eq. (5.2.18) must be bounded as z approaches infinity. Due to this radiation condition,

we must have A2 = 0 and B3 = B4 = 0 in Eq. (5.2.18). Thus,

&̄(3, z) = A1e↑⇀z,

)̄(3, z) = B1e↑3z +B2e↑ζz,

φ̄(3, z) = s1 B1e↑3z + s2 B2e↑ζz.





(5.2.19)
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Boundary conditions

To determine the unknown parameters A1, B1 and B2 in Eq. (5.2.19), suitable bound-

ary conditions are imposed on the above equations.

• The force stress component in the axial direction on the free surface assumes the

value,

◁zz = F (r)eiεt at z = 0, (5.2.20)

where F (r) is taken to be an arbitrary function. We note that as a result of surface

seismic pulsations, a time-harmonic force function F (r)eiεt is assumed in the axial

direction.

• The mechanically stress free condition on the free surface in radial direction for the

half-plane indicates,

◁zr = 0, at z = 0. (5.2.21)

• Also, the couple stress in 5→direction is una!ected due to the surface loading. This

implies,

mz⇁ = 0 at z = 0. (5.2.22)

By using the stress-strain relation given in Eq. (5.2.2), the force stress component ◁zr and

◁zz can be expressed as,

◁zz = ($+ 2µ+ ⇁)ϖuz
ϖz

+ $
(
ϖur
ϖr

+ ur
r

)
,

◁zr = (µ+ ⇁)ϖur
ϖz

+ µϖuz
ϖr

→ ⇁9⇁.




 (5.2.23)

On further substituting the introduced Helmholtz representation of displacement vector

using scalar and vector potential given in Eq. (5.2.5), we get

◁zz = $↗2&+ (2µ+ ⇁) ϖ

ϖz

(
ϖ%
ϖz

+ ϖ
2(
ϖz2

+ c
2
2

c
2
2+c

2
4
φ+ p21)

)
,

◁zr = ϖ

ϖr


(2µ+ ⇁)

(
ϖ%
ϖz

+ ϖ
2(
ϖz2

)
+
(

µ c
2
2

c
2
2+c

2
4
+ ⇁

)
φ+ µ p21 )


.




 (5.2.24)

The above representation of the force stress components is a consequence of using the

Eq. (5.2.9) and appropriate identitities related to the del (↗) operator in cylindrical co-

ordinates.
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Now, we may apply the Hankel transformation on these stress components according to

◁̄zz =

 ↘

0

r ◁zzJ0(3r) dr,

◁̄zr =

 ↘

0

r ◁zrJ1(3r) dr,

which gives

◁̄zz = →$r21&̄+ (2µ+ ⇁)
d

dz

(
d&̄

dz
+

d2)̄

dz2
+

c22
c22 + c24

φ̄+ p21)̄

)
,

◁̄zr = →3


(2µ+ ⇁)

(
d&̄

dz
+

d2)̄

dz2

)
+

(
µ c22

c22 + c24
+ ⇁

)
φ̄+ µ p21 )̄


.

Under these circumstances, the boundary conditions in Eqs. (5.2.20) and (5.2.21) reduces

to

→$r21&̄+ (2µ+ ⇁) d

dz

(
d%̄
dz

+ d
2(̄
dz2

+ c
2
2

c
2
2+c

2
4
φ̄+ p21)̄

)
= F̄ (3) at z = 0,

→3

(2µ+ ⇁)

(
d%̄
dz

+ d
2(̄
dz2

)
+
(

µ c
2
2

c
2
2+c

2
4
+ ⇁

)
φ̄+ µ p21 )̄


= 0 at z = 0,




 (5.2.25)

where F̄ (3) is the zeroth order Hankel tranformation of the force function F (r), i.e.,

F̄ (3) =

 ↘

0

r J0(3r) dr.

Now, substitution of Eq. (5.2.19) in the transformed boundary conditions given in Eq.

(5.2.25) gives

[
↓! r21 + (2µ + φ)↼2

]
A1 ↓ ↽ (2µ + φ)

(
↽2 + p2

1 +
c22 s1

c22 + c24

)
B1 ↓ ϱ (2µ + φ)

(
ϱ2 + p2

1 +
c22 s2

c22 + c24

)
B2 = F̄ (ς), (5.2.26)

↼ ς (2µ + K)A1 ↓ ς

[
(2µ + φ) ↽2 +

(
µ c22

c22 + c24
+ φ

)
s1 + µ p2

1

]
B1 ↓ ς

[
(2µ + φ) ϱ2 +

(
µ c22

c22 + c24
+ φ

)
s2 + µ p2

1

]
B2 = 0. (5.2.27)

The third boundary conditon in Eq. (5.2.22) is transformed according to

m̄z⇁ =

 ↘

0

rmz⇁J1(3r) dr,

where

mz⇁ = →ϑ
22φ

2r 2z
.

Then the transformed couple stress component m̄z⇁ takes the form

m̄z⇁ = ϑ 3
dφ̄

dz
.

Therefore, the resulting third boundary condition may be written immediately as

β s1 B1 + 6 s2 B2 = 0. (5.2.28)
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Defining 4 = 2µ+ω

µ+ω
, the boundary conditions in Eqs. (5.2.26), (5.2.27) and (5.2.28) may

be re-written using the matrix notations as,




b11 b12 b13

b21 b22 b23

0 b32 b33









A1

B1

B2




=





F̄ (φ)
µ+ω

0

0




(5.2.29)

where, b11 = 4 32 → p21, b12 = →4β 32, b13 = →46 32, b21 = →4α, b22 = 4 32 → p21, b23 =

4 32 → p21, b32 = β s1, b33 = 6 s2.

The system of equations obtained above in Eq. (5.2.29) is solved to determine the un-

known quantities, A1, B1 and B2. Unique solutions to these unknown quantities are

obtained for the non-zero determinant of the co-e”cient matrix.

Let ( be the determinant of the co-e”cient matrix, i.e.,

( =

∣∣∣∣∣∣∣∣∣

4 32 → p21 →4β 32 →46 32

→4α 4 32 → p21 4 32 → p21

0 β s1 6 s2

∣∣∣∣∣∣∣∣∣

= (432 → p21)
2 (6s2 → βs1)→ 42 αβ 6 32 (s2 → s1). (5.2.30)

Tranforming the parameter 3 as the wave number k in Eq. (5.2.30), we get the dispersion

relation for Rayleigh waves propagating in a micropolar media as,

(4k2
→ p21)

2 (6s2 → βs1)→ 42 αβ 6 k2 (s2 → s1) = 0. (5.2.31)

Then by Cramers rule,

A1 = F̄ (φ)
µ+ω

(▷ φ2↑p
2
1)(ζ s2↑3 s1)

$ ,

B1 = F̄ (φ)
µ+ω

▷ ⇀ ζ s2

$ ,

B2 = →
F̄ (φ)
µ+ω

▷ ⇀3 s1

$ .






(5.2.32)

The transformed displacement components of Rayleigh waves are determined by applying

the Hankel transformation according to,

ūr(3, z) =

 ↘

0

r ur(r, z) J1(3r) dr,

ūz(3, z) =

 ↘

0

r uz(r, z) J0(3r) dr,
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which gives

ūr(3, z) = →3

(
&̄+

d)̄

dz

)
,

ūz(3, z) =
d&̄

dz
+

d2)̄

dz2
+

c22 φ̄

c22 + c24
+ p21)̄.

Using the expressions for the potentials in the elastic half-space, the displacement com-

ponents are obtained for two di!erent cases (depending on the load on the free surface)

by taking the inverse of transformed displacement components.

Case 1:

When F (r) is a point load, i.e., we write, F (r) = 8(r)
20r Z, where Z is the magnitude of the

applied force, then we have, F̄ (3) = Z

20 . Substituting this value of F̄ (3) in Eqs. (5.2.32),

the displacement components are expressed as,

ur(r, z) =
→Z

2▷ (µ+ ⇁)

 ↘

0

X 32 J1(3r)

(
d3, (5.2.33)

where, X =
(
4 32 → p21

)
(6 s2 → β s1) e

↑⇀z
→ 4 α β 6

(
s2 e

↑3z + s1e
↑ζz

)
,

uz(r, z) =
Z

2▷ (µ+ ⇁)

 ↘

0

Y 3 J0(3r)

(
d3 (5.2.34)

where, Y = →α
(
4 32 → p21

)
(6 s2 → β s1) e

↑⇀z + 4 α 32
(
6 s2e

↑3z + β s1 e
↑ζz

)
.

Case 2:

When a uniformly distributed vertical load, F (r) is applied along z→direction, i.e.,

F (r) =






Z

20a2 , when 0 < r < a

0, when r ↙ a
,

where Z is the magnitude of the load applied and a is the radius of the circular region on

which the uniform distribution of the load takes place, then F̄ (3, z) = Z J1(φa)
20 a φ

. This gives

the expressions for displacement components as,

ur(r, z) =
→Z

2▷a (µ+ ⇁)

 ↘

0

X3J1(3a) J1(3r)

(
d3, (5.2.35)

uz(r, z) =
Z

2▷a (µ+ ⇁)

 ↘

0

Y J1(3a) J0(3r)

(
d3, (5.2.36)

where X and Y have same values as that given in case 1.
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5.2.4 Analytical solution to a multi-layered elastic micropolar layers

Utilizing the expressions for potentials given in Eqs. (5.2.18), the force stress and

couple stress can be given by,

ūr(3, z) = →3
(
A1e↑⇀z + A2e⇀z → βB1e↑3z

→ B2e↑ζz + βB3e3z +B4eζz
)
,

ūz(3, z) = →αA1e↑⇀z + αA2e⇀z + 32
(
B1e↑3z +B2e↑ζz +B3e3z +B4eζz

)
,

9̄⇁(3, z) = 3
(
s1 B1e↑3z + s2 B2e↑ζz + s1 B3e3z + s2 B4eζz

)
,

◁̄zz(3, z) = (µ+ ⇁)
(
b11(A1e↑⇀z + A2e⇀z) + b12(B1e↑3z

→ B2e3z) + b13(B3e↑ζz
→ B4eζz)

)
,

◁̄zr(3, z) = (µ+ ⇁)
(
b21A1(e↑⇀z

→ A2e⇀z) + b22(B1e↑3z +B2e3z +B3e↑ζz +B4eζz)
)
,

m̄z⇁(3, z) = ϑ3
(
b32(B1e↑3z

→ B2e↑3z) + b33(B3e↑ζz
→ B4e↑ζz)

)
.

Define the generalised displacement vector and stress vector as,

Ū (3, z) =

ūr(3, z) ūz(3, z) 9̄⇁(3, z)


and T̄ (3, z) =


↽̄zz(φ,z)
µ+ω

↽̄zr(φ,z)
µ+ω

m̄zθ(φ,z)
2



. Then the matrix equations can be written as,


Ū (3, 0)

Ū (3, z)



 = P ·


A1 A2 B1 B2 B3 B4

T
(5.2.37)



→T̄ (3, 0)

T̄ (3, z)



 = Q ·


A1 A2 B1 B2 B3 B4

T
(5.2.38)

where P = [pij] and Q = [qij] are 6↘ 6 matrix whose elements are provided in Appendix

D. Thus, the expression relating the displacement vectors and stress vectors for a single

layer element can be given of the form,


→T̄ (3, 0)

T̄ (3, z)



 = (QP→1)



Ū (3, 0)

Ū (3, z)



 = M



Ū (3, 0)

Ū (3, z)



 (5.2.39)

Let us consider N isotropic micropolar elastic layers situated one above the other. Let

these layers be numbered in such a way that the layer at the top is given the number 1

and the layer at the bottom is numbered as N . Also, the ith layer is bounded by the ith

interface at the bottom and (i→ 1)th interface at the top. Let di defines the thickness of

each layer and di = hi → hi↑1, where hi and hi↑1 denotes the distance from the surface

to the bottom and the top of the ith layer, respectively. Let z = zi be the position of

the interface between (i+ 1)th and ith layer. Also, z = z0 and z = zN represents the free

surface and the bottom of the N th layer respectively.
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Based on the calculations made for the single layer element, the expression relating the

displacement vector and stress vectors for multi-layers can be extended by considering

the interfacial continuity conditions on displacements and stresses. Thus, for any layer


→T̄ (3, zi↑1)

T̄ (3, zi)



 =



M
(i)
1 M (i)

2

M (i)
3 M (i)

4







Ū (3, zi↑1)

Ū (3, zi)



 = M (i)



Ū (3, zi↑1)

Ū (3, zi)



 (5.2.40)

The stress and displacement continuity conditions at the interface of the closely con-

tacted layers without any external force are mathematically expressed as,

T̄ (3, zi) = T̄ (3, zi+1), (5.2.41)

Ū (3, zi) = Ū (3, zi+1). (5.2.42)

Using Eqs. (5.2.41) and (5.2.42), the sti!ness matrix associated with N→layered microp-

olar system is,




↓T̄ (ς, 0)

0

0

...

...

0

T̄ (ς, zN )





=





M(1)
1 M(1)

2 0

M(1)
3 M(1)

4 + M(2)
1 M(2)

2

M(2)
3 M(2)

4 + M(3)
1

...
...

M(N↓1)
4 + M(N)

1 M(N)
2

0 M(N)
3 M(N)

4









Ū(ς, 0)

Ū(ς, z1)

Ū(ς, z2)

...

...

Ū(ς, zN↓1)

Ū(ς, zN )





(5.2.43)

where →T̄ (3, 0) represents the surface loading at the free surface and M (i)
j
, for i =

1, 2, ..., N and j = 1, 2, 3, 4 dentotes the block matrix of size 3 ↘ 3. Assuming the ex-

ternal surface loading at the free surface and the fixed bottom of the N th layer, the

additional boundary conditions to the above multi-layered problem are,

◁̄zz(3, 0)

µ+ ⇁
= F̄ (3),

◁̄zr(3, 0)

µ+ ⇁
= 0,

m̄z⇁(3, 0)

ϑ
= 0,

ūr(3, zN) = 0, ūz(3, zN) = 0, 9̄⇁(3, zN) = 0.

Case 1:

When a point load, F (r) = 8(r)
20r Z is applied on the free surface, where Z is the magnitude

of the applied force, then

T̄ (3, 0) =


Z

20 0 0

. (5.2.44)
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The real solutions for

Ū (3, 0) Ū (3, z1) Ū (3, z2) . . . . . . Ū (3, zN↑1) Ū (3, zN)


are

obtained using Eq. (5.2.44) and by taking the inverse Hankel transformation of the un-

known variables given in Eq. (5.2.43).

Case 2:

If a vertical load, F (r) =






Z

20a2 , when 0 < r < a

0, when r ↙ a
, is uniformly distributed on the free

surface, where Z is the magnitude of the applied force, then

T̄ (3, 0) =


Z

20
J1(φa)
a φ

0 0

. (5.2.45)

The real solutions for

Ū (3, 0) Ū (3, z1) Ū (3, z2) . . . . . . Ū (3, zN↑1) Ū (3, zN)


are

obtained similarly by taking the inverse Hankel transformation of the unknown variables.

5.2.5 Validation of the model

Case 1:

A set of approximate roots can be obtained for r2 and r3 in Eq. (5.2.13) by assuming the

quantity c
4
2

c
4
4
≃ 0. This gives the approximation, r2 = p1 and r3 = p2. As a result, the

elastic counterpart of the dispersion equation given in Eq. (5.2.31) reduces to,

(
4 →

c2

c22 + c24

)2

= 42

√

1→
c2

c21 + c22

√

1→
c2

c22 + c24
. (5.2.46)

On further simplification, the dispersion relation in Eq. (5.2.46) reduces to,

(
2 +

c22 → c2

c24

)2

=

(
2 +

c22
c24

)2
√

1→
c2

c21 + c22

√

1→
c2

c22 + c24
. (5.2.47)

This Eq. (5.2.47) coincides with the particular results obtained from Mondal and Acharya

[278] where the di!erent notations are being used.

Case 2:

In the absence of the micropolarity, ⇁ = j = 0, the dispersion relation in Eq. (5.2.31) for

Rayleigh waves propagating in elastic media becomes,

(
2→

c2

c24

)2

= 4

√

1→
c2

c21

√

1→
c2

c24
. (5.2.48)
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This is the exact secular equation for Rayleigh waves as derived by Rayleigh [14] in 1885.

These two di!erent cases provides the validity of the proposed model.

5.2.6 Graphical discussions

The integrals obtained in Eqs. (5.2.30)→(5.2.33) are complicated to solve analytically

because of the presence of exponential, radical and Bessel functions. As a result, we try

to plot the graphs describing the relation between the displacement components with

the r→ and z→direction numerically using MATLAB. It can be observed that due to the

presence of Bessel functions, the convergence rate of the oscillatory integral is very slow.

The following values of physical constants are considered for the plotting purposes: The

Table 5.2.1: Values of parameters used in the study

Parameters Values

$ 7.59↘ 1011 dyne/cm2

µ 1.89↘ 1011 dyne/cm2

⇀ 2.19 gm/cm3

⇁ 0.0149↘ 1011 dyne/cm2

ϑ 0.268↘ 1011 dyne

j 0.0196 cm2

ϑc
2

!+2µ 0.4

Z

µ+ω
2

jk2 0.2

ka 0.9

integrand in the Eqs. (5.2.30)→(5.2.33) has poles and branch points as its singularity.

In the absence of micropolarity, these singular points include a point that is related to

Rayleigh wave number. Because of the presence of micropolarity in the medium, the roots

of the denominator are all in conjugate pairs, i.e., the poles and the branch points have a

non-zero imaginary part. Since, the inverse Hankel transformation involves only the real

axis (i.e., 3 ⇔ [0,↓)) as the path of integration, the numerical integration is carried out

easily using MATLAB along the real path.
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Figure 5.2.2 depicts the normalized displacement of Rayleigh wave fields at the surface

(z = 0) along the r→direction produced due to the delta variation in surface loading (case

1). As observed from the figure, the amplitudes of propagating Rayleigh waves decreases

with the increase in r, and finally reaches zero, thus coinciding with the well-known

decay behaviour of Rayleigh waves. It is interesting to note a larger change in amplitude

occuring near the surface at the origin. This is mainly because of the presence of a sudden

(delta) impact at the surface that induces wave fields and thus causing a great deal of

change in the amplitude behavior of Rayleigh waves. Also, due to the presence of delta

function in r→ direction, the displacement component (ur) undergoes a larger change in

amplitude while compared to that of displacement component (uz).
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Figure 5.2.2: Variation of normalised displacement components (U) of

Rayleigh wave fields produced due to case 1 with r→direction for z = 0

Figure 5.2.3 shows the variation of displacement components (ur and uz) with z→direction

at r = 0 for case 1. Since the displacement component ur depends on the Bessel function

of order 1, J1(3r) and since J1(0) = 0, we obtain ur(0, z) = 0. This means that displace-

ment component of Rayleigh waves produced during the sudden surface loading at r = 0

vanishes along r→direction. However, a steep change in the amplitude is observed for the

displacement along z→direction due to the impact of a seismic load applied in the form
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of delta function, ε(r). These Rayleigh waves produced due to sudden seismic loading

decays with the depth, thus verifying the nature of decay of Rayleigh waves with depth.
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Figure 5.2.3: Variation of normalised displacement components (U) of

Rayleigh wave fields produced due to case 1 with z→direction for r = 0
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Figure 5.2.4: Variation of normalised displacement components (U) of

Rayleigh wave fields produced due to case 2 with r→direction for z = 0
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Similarly, Figures 5.2.4 and 5.2.5 are plotted for the describing the nature of nor-

malised displacement components along r→direction for z = 0 and z→direction for r = 0

respectively when a uniformly distributed vertical load is applied on the surface of the

half-space along a circular region having radius a. The amplitudes decreases with the

increase in the r

a
and z

a
, indicating the decay of Rayleigh waves in both z→ and r→ direc-

tion. The observation of a single larger amplitude sinusoidal-type curve in Figure 5.2.5

represents the e!ect of uniformly distributed load impact on the surface of the micropolar

half-space.
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Figure 5.2.5: Variation of normalised displacement components (U) of

Rayleigh wave fields produced due to case 2 with z→direction for r = 0

Some surface plots have been plotted for case 1 in Figures 5.2.6 and 5.2.7 describing

the motion of Rayleigh waves along r→ and z→ direction for ur(r, z) and uz(r, z) in an

elastic micropolar half-space respectively. Simlar surface plots have been described for

case 2 in Figures 5.2.8 and 5.2.9.
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Figure 5.2.6: Surface plot showing the variation of normalized displacement

components of Rayleigh wave fields with dimensionless r→ and z→direction

for case 1

Figure 5.2.7: Surface plot showing the variation of normalized displacement

components of Rayleigh wave fields with dimensionless r→ and z→direction

for case 1
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Figure 5.2.8: Surface plot showing the variation of normalized displacement

components of Rayleigh wave fields with dimensionless r→ and z→direction

for case 2

Figure 5.2.9: Surface plot showing the variation of normalized displacement

components of Rayleigh wave fields with dimensionless r→ and z→direction

for case 2
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5.2.7 Conclusions

By employing the method of potentials, the coupled di!erential equations obtained as

a consequence of the substitutions in equations of motions in a micropolar elastic media

decouples, and as a result the wave equations becomes more simpler to solve. On further

application of appropriate Hankel integral transformation techniques, the displacement

solutions of Rayleigh wave fields produced in a micropolar elastic half-space due to the

surface seismic loading in two di!erent cases are studied. The first case involves the gen-

eration of Rayleigh wave fields due to a sudden impact and the other due to uniformly

distributed vertical load occupying a circular region of radius r. The displacement so-

lutions are obtained in the form of infinite integrals for both cases. These integrals are

numerically evaluated for the singularities, and are computed using MATLAB to observe

their variation along di!erent directions. Based on the solution obtained for a single layer

element, the methodology is extended to compute the displacement solutions to finite N

layers. A global sti!ness matrix is also derived, which helps in computing the real so-

lutions to the displacement components of Rayleigh waves in a multi-layered micropolar

media. The numerical calculations suggests a larger change in amplitudes at the begin-

ing, suggesting the origin of Rayleigh wave fields due to surface seismic loading. These

amplitudes tends to decrease and finally reaches zero, thus verifying the well-known decay

behaviour of Rayleigh wave fields.
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CHAPTER 6

Concluding Remarks and Future Directions





6.1 Summary and concluding remarks

This thesis significantly advanced the mathematical modeling of Rayleigh wave fields

across three critical stages. Specfically, it focused on (a) incorporation of microstruc-

tural e!ects for refining boundary and/or interface conditions in traditional well-known

nonlocal micropolar models, (b) incorporation of resonating structures, like spring-mass

systems for controlling vibrations and frequency bandgap formation, and (c) modelling of

external seismic pulse through initial and boundary conditions for generation of Rayleigh

wave fields. These findings provide a strong framework for future studies and applications

involving Rayleigh wave propagation and control.

The accurate representation of Rayleigh wave behavior in real materials demands the con-

sideration of microstructures, as traditional models often overlook their significant impact

on wave propagation. At micro- and nano-scales, the influence of long-range intermolecu-

lar forces and microstructures becomes increasingly important, requiring the consideration

of nonlocal, micropolar, or nonlocal micropolar elasticity theories to adequately describe

these small-scale interactions.

Asymptotic analysis of nonlocal boundary value problems higlights the critical role of

near-surface behavior. Previous research has shown that boundary layer e!ects in a non-

local semi-infinite medium can be incorporated by refining classical elasticity boundary

conditions, yielding e!ective corrections. However, existing literature lacks a compara-

ble analysis for nonlocal micropolar media, both in semi-infinite structure and in layered

structures. This thesis addresses this gap by deriving nonlocal micropolar corrected dis-

persion relations, incorporating refinements in both boundary and interface conditions

obtained through asymptotic analysis, thus extending the understanding of boundary

layer e!ects in nonlocal micropolar systems.

By integrating resonant structures, specifically nonlinear spring-mass systems, onto a sur-

face of the medium, the research in this thesis demonstrated the ability to manipulate

Rayleigh waves, e!ectively creating metasurfaces. Novel designs are developed to con-

trol wave behavior and achieve mode conversion, with a detailed study of hardening and

softening e!ects. Through the analysis of dual spring-mass metasurfaces, we identified

cut-o! frequencies and tunable frequency bandgaps, highlighting the critical role of non-

linearity, input amplitude, and substrate characteristics. Notably, the multiple scattering
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formulation proved essential for accurately capturing inter-resonator interactions, reveal-

ing that deeper source locations significantly enhance ground-borne vibration attenuation.

Furthermore, the demonstrated tunability of metasurfaces through hardening nonlineari-

ties and mass adjustments o!ers a powerful approach for optimizing vibration mitigation

and mode conversion. These findings collectively establish a comprehensive framework

for designing e!ective seismic metasurfaces, with potential applications in diverse fields

requiring precise control of Rayleigh wave propagation. The optimization of frequency

bandgaps and wave control achieved through the parametric tuning of these innovative

metasurface designs are demonstrated in this thesis, which has proven to have potential

applications in geophysics for seismic protection or vibration control.

This thesis introduced a novel approach to modeling Rayleigh wave generation through

initial conditions or boundary conditions. A novel problem is tackled that involved tran-

sitioning from an initial value problem to a boundary value formulation, providing new

insights into wave excitation mechanisms in elastic media. The study investigated wave

field generation due to prescribed initial displacements and velocities, employing trans-

formation techniques to derive solutions. While asymptotic methods e!ectively captured

Rayleigh wave behavior, they exhibited limitations in representing bulk waves, as evi-

denced by discrepancies with exact solutions. Further, the research extended to micropo-

lar elastic media, utilizing potential methods and Hankel transforms to analyze Rayleigh

wave generation from surface seismic loading introduced through boundary conditions.

The research demonstrated the e!ectiveness of the developed methodologies in capturing

complex wave propagation dynamics.

In summary, this thesis has made significant contributions in advancing the theoretical

understanding of Rayleigh wave propagation across diverse media, including nonlocal mi-

cropolar continuum and engineered metasurfaces. By e!ectively bridging classical and

modern elasticity frameworks, this research addressed crucial gaps in boundary condi-

tions and explored novel wave control strategies. These findings o!er valuable insights

into complex wave dynamics, with direct implications for seismic hazard mitigation and

the development of advanced technologies, thus establishing a robust foundation for future

explorations in wave propagation and control.

The following are the chapterwise conclusions of the thesis:
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• Chapter 2.1: The equivalence between nonlocal integral and di!erential for-

mulations for Rayleigh waves breaks down in a nonlocal micropolar semi-infinite

medium, necessitating refined boundary conditions to account for boundary layer

e!ects and reveal distinct Rayleigh wave modes, particularly highlighting the sig-

nificance of micropolar e!ects in materials with high Poisson’s ratios.

• Chapter 2.2: In viscoelastic micropolar nonlocal solids, Rayleigh wave propa-

gation exhibits multiple modes with distinct particle motions, where the number

of propagating modes depends on the interplay between nonlocal and material

parameters, and refined models are needed to accurately capture boundary layer

e!ects.

• Chapter 3.1: Refined boundary and interface conditions for nonlocal Rayleigh

waves in layered media, derived through asymptotic analysis, are essential for ac-

curately capturing nonlocal e!ects, particularly within the interface.

• Chapter 3.2: Through asymptotic analysis, the reduction of double integral for-

mulations of nonlocal stresses to single integrals, combined with refined boundary

and interface conditions, reveals the distinct dispersive behaviors of Rayleigh waves

in micropolar and purely elastic materials, emphasizing the influence of nonlocal

parameters and material sti!ness.

• Chapter 4.1: The control of Rayleigh wave propagation and bandgap formation

in metasurfaces is significantly influenced by resonator design, nonlinearities, input

amplitude, and substrate material properties, demonstrating the existence of cut-

o! frequencies and the tunability of bandgap characteristics.

• Chapter 4.2: The multiple scattering formulation proves crucial for analyzing seis-

mic metasurfaces, e!ectively capturing inter-resonator interactions and near-field

e!ects, and demonstrating that design parameters like source depth, resonator non-

linearity, and the number of resonators significantly impact ground-borne vibration

attenuation.

• Chapter 5.1: While the asymptotic hyperbolic-elliptic model e!ectively captures

Rayleigh wave behavior generated from initial conditions in an elastic half-space,

it exhibits limitations in representing bulk wave contributions, leading to discrep-

ancies compared to exact solutions.
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• Chapter 5.2: The application of the method of potentials and Hankel integral

transformations to analyze Rayleigh wave fields generated by surface seismic load-

ing in a micropolar elastic half-space reveals the decay behavior of these waves and

provides a methodology extensible to multi-layered media.

6.2 Future directions

The asymptotic formulations used in this thesis can provide a foundation for further

exploration using alternative kernels beyond the Bessel kernel. A comparative study

of di!erent kernel choices would assess their impact on the accuracy and e”ciency of

the solutions. Furthermore, the refinement techniques introduced can be extended to

coupled theories, such as nonlocal thermoelasticity and piezoelectricity, to analyze wave

propagation in more complex material systems.

This thesis further lays the groundwork for the investigation into the vibration con-

trol capabilities of metasurfaces, exploring diverse resonator structures, including elastic

beams, plates, and shells. The tunability of these resonators, achieved through variations

in arrangement, spatial organization, and material properties, can be analyzed to optimize

frequency bandgap formation. Additionally, optimization strategies can be developed, and

simulation capabilities enhanced, based on the theoretical foundations established herein.

The influence of small-scale e!ects on the performance of nonlocal devices remains

a critical area for future investigation. Analysis of how factors such as size-dependent

material properties and surface e!ects impact device behavior is warranted. This work

opens the possibility of developing a continuum representation for small-scale metasur-

faces, moving beyond discrete systems and enabling the application of homogenization

techniques.

Finally, the initial value problem approach introduced in this thesis can be applied to

model real-world explosions and blasts. This will enable the prediction of Rayleigh wave

fields and their propagation characteristics, providing valuable insights for seismic hazard

assessment and mitigation. This research suggests the possibility of designing adaptive

metasurfaces, tailored to the intensity of blasts modelled via initial conditions, for e!ective

vibration control. Additionally, space-time modulated metasurfaces could be designed,

providing advanced modeling capabilities in these scenarios. Further development of

complex initial conditions modelling, to better simulate real world events, is encouraged.
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APPENDICES

Appendix A

The refined boundary conditions are applied on the stresses to give a linear homoge-

neous system of equations in X ,Y1 and Y2. The co-e”cient matrix takes the form,

A = [aij]3⇐3,

where,

a11 =
1
2
a
2
s⇀

2 (
q
3
10⇀

2(α→ β + 2) + q10s
2
⇀

2(α→ 2β + 4)
)
+

1
2
as⇀

2 (
iq

2
10⇀(α+ β → 2) + iαs

2
⇀
)
+ (β → 2)q10s⇀

2
,

a12 = →1
2
a
2
⇀

2 ((β + 2)q220s
2
⇀

2 + 2q420⇀
2 + 2(β → 1)s4⇀2)+ 1

2
ia(β → 2)q20s

2
⇀

3 + ⇀
2 (

q
2
20 + (β → 1)s2

)
,

a13 =
1
2
a
2 (

q
2
30⇀

2 (2β⇁ + (β + 2)s2
)
→ 2q430 + 2s2⇀2 (

β⇁ → (β → 1)s2⇀2))→ 1
2
a(β → 2)q30s

2
⇀

2

→
(
2q230 +

(
β⇁ → (β → 1)s2⇀2))

,

a21 =
1
2
a
2
⇀

2 (2αq410⇀2 + q
2
10s

2
⇀

2(3α+ β → 2) + s
4
⇀

2(α+ 2β → 4)
)
→ ⇀

2 (2αq210 + 2s2(α+ β → 2)
)
,

a22 = (β → 2)q20s⇀
2 → 1

2
a
2(β → 2)q20s⇀

2 (2q220⇀2 + 3s2⇀2)
,

a23 = i(β → 2)q30s⇀ → 1
2
ia

2(β → 2)q30s⇀
(
3s2⇀2 → 2q230

)
,

a31 = 0,

a32 = 0,

a33 =
1
2
⇁φJ⇀

(
→a

2 (3iq30s2⇀2 + 2iq330⇀
2)+ as

2
⇀ + 2iq30

)
.
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Appendix B

The expressions of Tij (i, j = 1, 2, 3) in Eq. (3.1.46) are defined as
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Appendix C

The expressions for the terms defined in the dispersion relations are given as follows:
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Appendix D

The elements of the matrix P are given by,

p11 = →◁; p12 = →◁; p13 = β◁; p14 = ⇁◁; p15 = →β◁; p16 = →⇁◁;

p21 = →α; p22 = α; p23 = ◁
2; p24 = ◁

2; p25 = ◁
2; p26 = ◁

2

p31 = 0; p32 = 0; p33 = ◁s1; p34 = ◁s2; p35 = ◁s1; p36 = ◁s2;

p41 = →◁e
→ςz; p42 = →◁e

ςz; p43 = β◁e
→↼z; p44 = ⇁◁e

↼z; p45 = →β◁e
→⇀z; p46 = →⇁◁e

⇀z;

p51 = →αe
→ςz; p52 = αe

ςz; p53 = ◁
2
e
→↼z; p54 = ◁

2
e
↼z; p55 = ◁

2
e
→⇀z; p56 = ◁

2
e
⇀z;

p61 = 0; p62 = 0; p63 = ◁s1e
→↼z; p64 = ◁s2e

↼z; p65 = ◁s1e
→⇀z; p66 = ◁s2e

⇀z
.

The elements of the matrix Q are given by,

q11 = →b11; q12 = →b11; q13 = →b12; q14 = →b13; q15 = b12; q16 = b13;

q21 = →b21; q22 = b21; q23 = →b22; q24 = →b22; q25 = →b22; q26 = →b22;

q31 = 0; q32 = 0; q33 = ◁b32; q34 = ◁b33; q35 = →◁b32; q36 = →◁b33;

q41 = b11e
→ςz; q42 = b11e

ςz; q43 = b12e
→↼z; q44 = b13e

↼z; q45 = →b12e
→⇀z; q46 = →b13e

⇀z;

q51 = b21e
→ςz; q52 = →b21e

ςz; q53 = b22e
→↼z; q54 = b22e

↼z; q55 = b22e
→⇀z; q56 = b22e

⇀z;

q61 = 0; q53 = 0; q62 = ◁b32e
→↼z; q63 = ◁b33e

↼z; q64 = →◁b65e
→⇀z; q66 = →◁b33e

⇀z
.
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[226] Achaoui, Y., Antonakakis, T., Brûlé, S., Craster, R. V., Enoch, S., & Guenneau, S. (2017). Clamped seismic

metamaterials: ultra-low frequency stop bands. New Journal of Physics, 19(6), 063022.

230
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