
Explainable Deep Learning Methodologies for
Comprehensive White Blood Cell Analysis

M.Tech Thesis

by

Adit Srivastava

DEPARTMENT OF COMPUTER SCIENCE AND

ENGINEERING

INDIAN INSTITUTE OF TECHNOLOGY INDORE

May 2025





Explainable Deep Learning Methodologies for
Comprehensive White Blood Cell Analysis

A THESIS

Submitted in partial fulfillment of the

requirements for the award of the degree

of

Master of Technology

by

Adit Srivastava

2302101002

DEPARTMENT OF COMPUTER SCIENCE AND

ENGINEERING

INDIAN INSTITUTE OF TECHNOLOGY INDORE

May 2025





INDIAN INSTITUTE OF TECHNOLOGY INDORE

CANDIDATE’S DECLARATION

I hereby certify that the work which is being presented in the thesis entitled Explainable Deep

Learning Methodologies for Comprehensive White Blood Cell Analysis in the partial fulfillment

of the requirements for the award of the degree of Master of Technology and submitted in the

Department of Computer Science and Engineering, Indian Institute of Technology Indore, is

an authentic record of my own work carried out during the period from July 2023 to July 2025 under

the supervision of Dr. Puneet Gupta, Indian Institute of Technology Indore, India.

The matter presented in this thesis has not been submitted by me for the award of any other

degree of this or any other institute.

Signature of the Student with Date

(Adit Srivastava)

This is to certify that the above statement made by the candidate is correct to the best of my knowledge.

Signature of Thesis Supervisor with Date

(Dr. Puneet Gupta)

Adit Srivastava has successfully given his M.Tech. Oral Examination held on 30th April, 2025.

Signature(s) of Supervisor(s) of M.Tech. thesis

Date:

Signature of Chairman, PG Oral Board Signature of HoD

Date: Date:

3

16/05/2025

16/05/2025

18-May-2025

subhra
Typewriter
18.05.2025





ACKNOWLEDGEMENT

I want to take this moment to sincerely thank everyone who has supported me along this

journey, making it both joyful and rewarding. Their cooperation has been invaluable to my

scientific progress and personal development, and I am deeply grateful for their assistance.

Above all, I extend my heartfelt gratitude to my supervisor, Dr. Puneet Gupta, whose

persistent support, wise counsel, and steadfast guidance have been crucial throughout this

endeavor. His mentorship has provided me with the direction and confidence needed to

navigate the challenges of my research. This work would not have been possible without

his expertise and dedication, for which I am immensely appreciative. I am equally thankful

to my lab mates, whose collaboration, feedback, and camaraderie have greatly enriched the

quality of my research. Their helpful suggestions and considerate assistance have made

this experience both memorable and intellectually rewarding. I am also deeply grateful to

Dr. Ranveer Singh, Head of the Department of Computer Science and Engineering, for his

invaluable guidance and supervision, which have significantly contributed to the success of

this project. Special recognition goes to the Director of the Indian Institute of Technology

Indore, Prof. Suhas Joshi, for fostering an excellent learning environment and providing

me with the opportunity to develop my research skills. My experience has been greatly

enhanced by the resources and support offered by this institution.

Last but not least, I want to express my sincere gratitude to my parents for their constant

love, support, and encouragement. Throughout my life, their confidence in my skills has

continuously given me strength and inspired me. Their steadfast presence has enabled me to

pursue my aspirations, and I will always remain grateful for their sacrifices and dedication.

To everyone who has contributed to this work in any capacity, from their guidance and

advice to their encouragement and patience, thank you. Each individual has played a crucial

role in making this journey a success. I am truly grateful for your support during this

significant chapter of my academic life.

Adit Srivastava





Dedicated to My Family





List of Publications

Publications from Thesis

International Conferences

C1. Adit Srivastava, Aravind Ramagiri, Puneet Gupta, and Vivek Gupta. “SANGAM:

Synergizing Local and Global Analysis for Simultaneous WBC Classification and

Segmentation”. In: International Conference on Pattern Recognition. Springer. 2025,

pp. 154–169.





ABSTRACT

The analysis of white blood cells (WBCs) is a critical aspect of health monitoring and

diagnosis, providing valuable information on a patient’s immune health. Pathologists typi-

cally follow a systematic approach to this task, involving three sequential steps: localizing

WBCs, analyzing their morphological attributes, and classifying them based on these fea-

tures. Despite the interdependence of these processes, existing literature often fails to ad-

dress their synergy comprehensively. Most current systems focus on individual tasks, such

as segmentation or classification, without integrating these steps in a way that enhances

their mutual strengths. Additionally, these systems rarely provide transparent explanations

for their decisions, which are crucial for practical applications where interpretability and

trust in automated systems are paramount. Deep learning models, in particular, are fre-

quently criticized for their opacity, offering minimal insights into the rationale behind their

predictions. Another significant limitation of existing methods is their lack of versatility.

There is a growing demand for adaptable systems that can be fine-tuned on datasets with

limited ground truth annotations or even none for specific tasks, while maintaining consis-

tent effectiveness across various tasks.

The proposed system, introduced in this thesis, addresses these challenges comprehen-

sively. Results from experiments on benchmark datasets show that the system performs bet-

ter than current WBC segmentation, classification, and morphological attribute prediction

methods. It employs a novel hybrid architecture that combines transformers for modeling

long-range dependencies with convolutional neural networks for capturing intricate local

details. This integration enables precise segmentation, providing structural cues for reli-

able morphological attribute prediction, which subsequently guides WBC classification. By

seamlessly linking these tasks, the system emulates the decision-making process of pathol-

ogists, enhancing both performance and interpretability. Addressing the limitations of tra-

ditional deep learning approaches, the system is both effective and adaptable, making it

well-suited for real-world healthcare applications where transparency is essential.
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Chapter 1

Introduction

White blood cells (WBCs) are crucial immune system components found in blood [2].

They are classified into five categories, each of which plays a crucial role: lymphocytes,

eosinophils, monocytes, neutrophils, and basophils. [3]. Neutrophils are the primary de-

fense against infections caused by pathogens and bacteria [4]. When monocytes develop

into macrophages, they play a crucial role in eliminating cellular debris. Eosinophils are

essential in the fight against parasite infections and allergic reactions, whereas lymphocytes

are in charge of locating and destroying malignant and virus-infected cells [5]. By releasing

histamine, basophils help control allergic reactions [6]. Given their crucial role in diagnos-

ing a variety of conditions, including leukemia, lymphoma, and infections, analyzing WBCs

is of great clinical significance. This underscores the urgent need for systems that combine

segmentation, classification, and morphological interpretation of WBCs to enable accurate

and efficient diagnostics.

In the past, analyzing blood smears involved pathologists manually examining cells un-

der a microscope. Although this approach was precise, it was laborious and prone to mis-

takes [7]. To address these issues, early computer-aided systems were developed, relying

on handcrafted features and traditional machine learning approaches [8, 9]. These systems
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CHAPTER 1. INTRODUCTION 2

typically broke down the process into steps like pre-processing, feature extraction, segmen-

tation, and classification [10, 11]. However, they had significant limitations, such as heavy

dependence on manually designed features and the risk of errors compounding at each stage,

which often affected the accuracy of the final results.

Recent years have seen a revolution in WBC analysis with deep learning (DL)

[12, 13, 14, 15], greatly minimizing the need for manual feature extraction. Systems like

ResNet, MobileNet [16], and DenseNet [17] have excelled in segmentation and classifica-

tion tasks by capturing detailed local features [18]. However, these convolutional neural

networks (CNNs) based systems often face limitations in understanding broader contextual

information, which is vital for interpreting the overall structure of cells [19]. To address this

gap, Transformer-based architectures such as Swin Transformer (Swin T) [2], Vision Trans-

former (ViT) [20], and Detection Transformer (DETR) [21] have emerged. These systems

leverage their ability to capture long-range relationships [22] for a more holistic feature

representation. Nevertheless, even these advanced systems may struggle with capturing

subtle details in intricate regions like the nucleus and cytoplasm [20]. To overcome these

challenges, hybrid systems that integrate the localized precision of CNNs with the global

contextual understanding of Transformers have gained attention [5]. Many such systems

use decoders that stack multi-level features [5], incorporating convolutions to retain local

context. By integrating attention mechanisms during feature merging, these systems can

highlight relevant features, improving the alignment of morphological details with broader

contextual information [23], and optimizing the synergy between CNNs and Transformers.

Some DL systems [24] also perform Morphological Attribute Prediction (MAttrP) along-

side segmentation or classification tasks. However, these attributes are rarely leveraged to

guide or improve the core tasks, leaving the systems less transparent and less reliable for

clinical use [1, 25]. Typically, segmentation, classification, and MAttrP are treated as sepa-

2



CHAPTER 1. INTRODUCTION 3

rate tasks or are only weakly integrated, failing to utilize interpretable attributes to enhance

system performance in a clinically meaningful way. This lack of explainability is a signifi-

cant drawback, as DL systems often operate as opaque systems, providing limited insights

into the reasoning behind their predictions [26]. In clinical settings, this opacity undermines

trust, especially when the system’s outputs do not align with the diagnostic logic used by ex-

perts [1, 25]. Although some systems offer visual tools like heatmaps, they rarely capture the

detailed reasoning that pathologists apply [27]. Pathologists, for instance, examine WBCs

in blood smear slides by analyzing their morphology, considering attributes like shape, size,

color, and texture, alongside nuclear features [1] to make accurate classifications [4].

It is crucial to realise that MAttrP, segmentation, and classification are all interrelated

processes. Similar to how pathologists find cells on a blood smear slide, segmentation iden-

tifies the regions of interest and provides MAttrP with essential structural information. Fine

features like vacuoles, which resemble blobs, and larger ones like cell and nucleus size,

which call for a more comprehensive contextual understanding, are examples of these inter-

pretable qualities. This emphasises how systems that combine CNNs and Transformers are

required in order to take advantage of both localised and global properties. Adding charac-

teristics that pathologists frequently employ, like cell size, cytoplasmic makeup, and nucleus

shape, can greatly increase classification accuracy [1]. Additionally, insights gained from

classification can further refine segmentation, especially in complex cases like basophils,

where the cytoplasm and nucleus overlap [1]. Despite the obvious synergy between these

tasks, using interpretable features to improve classification and hence segmentation is still

underexplored. A combined approach that integrates all these elements holds great potential

for achieving more accurate and clinically reliable WBC analysis. Moreover, a significant

limitation in many datasets [7, 28] is that they often provide segmentation ground truth,

classification labels, or both, but typically lack ground truth for WBC morphological at-

3



CHAPTER 1. INTRODUCTION 4

tributes (MAtts) [1]. This highlights the need for versatile systems that can be fine-tuned

using classification labels, segmentation labels, or a combination of both, while performing

well across all aspects of WBC analysis. Furthermore, incorporating MAttrP improves the

system’s interpretability, offering valuable insights into the reasoning behind classification

decisions. This transparency helps build trust with clinical pathologists, strengthening their

confidence in the system’s results.

This study introduces a novel, explainable framework inspired by the diagnostic strate-

gies of pathologists. The framework integrates segmentation, MAttrP, and classification into

a unified pipeline for WBC analysis. The following summarizes this thesis’s main contribu-

tions.

• Comprehensive Framework: A unified approach for WBC analysis is developed,

combining segmentation, MoAP, and classification in a manner that mirrors the ana-

lytical process of experienced pathologists.

• Innovative Decoder Architecture: A novel decoder design is presented that blends

the global context modeling capabilities of transformers with the intricate feature

learning strengths of CNNs. This approach enables the seamless fusion of precise

low-level details with abstract high-level representations.

• Synergistic Workflow: The framework establishes an interconnected workflow

where segmentation outputs provide structural information for MAttrP. These pre-

dicted attributes subsequently guide the classification process, and the classification

results, in turn, contribute to refining the segmentation masks.

• Versatile and Adaptable System: The proposed system is designed for universal

adaptability, allowing fine-tuning across diverse WBC datasets. It demonstrates supe-

rior performance in segmentation, classification, and attribute prediction, even when

4



CHAPTER 1. INTRODUCTION 5

datasets are annotated for only one of these tasks. By delivering interpretable insights,

the framework enhances clinical reliability and facilitates its application in real-world

diagnostic scenarios.

The remainder of this thesis is structured as follows: Chapter 2 covers the review of

the literature, Chapter 3 details the proposed systems, Chapter 4 presents the experimental

findings, and Chapter 5 concludes the research.

5





Chapter 2

Literature Survey

WBC analysis involves three key tasks: segmentation, classification, and MAttrP.

Among these, segmentation and classification have been extensively studied, whereas MAt-

trP has received relatively limited attention.

2.0.1 WBC Segmentation

2-class and 3-class segmentation are the two main categories of WBC segmentation

(refer to Fig. 2.1). Everything else is considered the background in 2-class segmentation,

which only identifies the nucleus. On the other hand, 3-class segmentation divides the

backdrop, cytoplasm, and nucleus into different groups.

Traditional techniques, including thresholding, morphological operations, non-local fil-

tering, and clustering [18, 19, 29, 30], have demonstrated notable success in 2-class seg-

mentation. However, these systems often perform poorly under diverse imaging conditions

[10], necessitating a shift towards DL based approaches. DL systems, particularly CNNs

and Transformers, have shown significant promise. For instance, [31] integrates CNNs with

attention mechanisms, while [3] combines traditional systems with U-Net architectures.

Although there is limited focus on 3-class segmentation, notable contributions include [32]

7



CHAPTER 2. LITERATURE SURVEY 8

and [5]. [32] employs CNNs and U-Net, while [5] introduces an integrated segmentation-

classification framework that stacks high-level features and low-level and in the decoder.

It is crucial to recognize that the performance of existing WBC segmentation systems

remains limited due to their inability to fully harness the synergy between CNNs and Trans-

formers. For instance, [5] identifies weaknesses in decoder design, where features are

merely stacked without leveraging intelligent merging techniques. Incorporating attention

mechanisms to selectively emphasize relevant features holds significant potential for im-

proving the efficacy of these hybrid systems [23]. Furthermore, the use of classification

insights to enhance segmentation accuracy is still underdeveloped, highlighting an impor-

tant area for future research.

Figure 2.1: WBC Segmentation: 2-class (nucleus vs. background) and 3-class (nucleus,
cytoplasm, background), alongside the categorization of different WBC types based on dis-
tinct features such as nucleus size, cytoplasm texture, and staining patterns.

8
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2.0.2 WBC Classification

DL has revolutionized the classification of WBC (refer to Fig. 2.1 for a visual depic-

tion of the distinct appearances of various WBC classes) by replacing traditional techniques

with more efficient and accurate models. CNN-based approaches [33, 34, 17, 35] have

significantly improved classification accuracy by processing entire cell images. However,

CNNs’ inherent limitation in capturing global contextual information has driven the adop-

tion of Transformer-based architectures, such as the ViT [20], which excels at modeling

long-range dependencies. The integration of segmentation into classification pipelines has

further enhanced results. For example, [36] combines DeepLabv3+ for segmentation with

AlexNet for classification, while [3] integrates U-Net with ResNet. However, resizing seg-

mented regions in these systems often blurs boundaries, obscuring critical morphological

details essential for clinical analysis. Addressing this issue, [5] proposes an approach that

preserves key features during segmentation, ensuring granularity is retained.

Despite these advancements, existing systems fail to replicate the diagnostic approach

of pathologists [1]. Pathologists typically localize WBCs within an image, examine their

MAtts, and then proceed to classification [37, 23, 1]. This process enhances interpretabil-

ity and decision-making, fostering trust in the analysis. While some systems incorporate

segmentation to aid classification [5, 36, 3], they primarily use segmentation for WBC lo-

calization and structural cues rather than explicitly predicting MAtts. MAtts [1] range from

fine details like vacuoles, which require local feature learning, to broader features such as

cell shape and nucleus size, necessitating global context. Current hybrid systems [5] capable

of both local and global learning should optimize segmentation to guide MAttrP before per-

forming classification. By simulating the diagnostic behavior of pathologists, these systems

could significantly improve clinical applicability and reliability.

9
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2.0.3 WBC Morphological Attribute Prediction

The prediction of MAtts, such as nucleus size, nucleus-cytoplasm ratio, cytoplasmic

texture, etc. [1] (refer to Fig 2.2 & 2.3) has received less attention than segmentation and

classification.

Figure 2.2: Explanatory characteristics of WBCs [1], including their dimensions, structural
form, nucleus-to-cytoplasm ratio, nuclear contour, and chromatin density.

These attributes are crucial for clinical diagnostics; however, traditional methods relying

on manual measurements or semi-automated systems are often time-consuming and subjec-

tive. Recent advancements in DL have enabled automated systems for predicting MAtts,

but a major limitation of these systems is their lack of interpretability, which undermines

clinical reliability. Techniques like Grad-CAM and LIME aim to improve interpretability

but fall short of replicating the explicit analytical reasoning used by pathologists, who rely

on MAtts such as nuclear shape, cytoplasmic granularity, cell size, etc [1, 25]. For instance,

[1] utilized various image encoders, including CNNs (e.g., ResNet, ShuffleNet, DenseNet)

and Transformers (e.g., Swin T, ViT), to predict attributes. However, their approach did not

10
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integrate segmentation or classification tasks. Similarly, [24] focused on enhancing inter-

pretability by combining segmentation, classification, and MAttrP within a single frame-

work. Their system, based on a DETR model, employed three separate heads for each task:

segmentation, classification, and attribute prediction. Despite these innovations, their design

lacked effective synergy between segmentation, classification, and MAttrP, falling short of

replicating the reasoning pathologists use in clinical diagnostics.

Figure 2.3: Explanatory Attributes of WBCs [1] such as the texture and color of the cy-
toplasm, presence of vacuoles, characteristics of granules, including their color, type, and
overall granularity.

Future advancements in MAttrP should prioritize better task integration and inter-

pretability. Systems must align predictions with clear, observable characteristics to simulate

the analytical processes of pathologists [1, 23]. This approach could significantly improve

clinical reliability and foster greater trust in automated diagnostic tools.

11



CHAPTER 2. LITERATURE SURVEY 12

2.0.4 Synergy between WBC Segmentation, Classification, and Mor-

phological Attribute Prediction

Limited research has delved into establishing a cohesive integration of segmentation,

classification, and MAttrP within a unified framework. While some systems utilize seg-

mentation to aid classification [3, 36] or employ classification to refine segmentation [5],

the explicit inclusion of MAttrP as a guiding factor remains unexplored.

To emulate the holistic reasoning process of pathologists [1], future systems need to cre-

ate stronger task interconnections. This involves leveraging segmentation to inform MAt-

trP, using MAttrP to improve classification, and applying classification insights to enhance

segmentation. By fostering seamless integration among these tasks, automated systems

can simulate the synergistic diagnostic approach of pathologists, paving the way for inter-

pretable and more reliable clinical tools.

The tables below provide a concise summary of the referenced works.

Systems Methodology Adopted

[18, 19, 29, 30] Primarily use image processing methods such as morphological operations,

non-local filtering, clustering, and gray-level thresholding, for 2-class seg-

mentation.

[31, 32] Combines CNN architectures with attention mechanisms to perform 2-class

segmentation.

[32] Uses CNN, U-Net, and SegNet for 3-class segmentation.

[24] Employs Transformer with sparse attention for segmentation, classification,

and explanation.

Table 2.1: Literature Review Summary: Part 1.

12



CHAPTER 2. LITERATURE SURVEY 13

Systems Methodology Adopted

[3] Uses U-Net for 2-class segmentation and ResNet for classification.

[10] Extracts shape and color features for classification using Support Vector Ma-

chine (SVM), but traditional systems struggle to adapt to different microscope

settings and image variations.

[33, 34, 17, 35] The whole image is input into various CNN models for classification however,

CNNs often underperform as they overlook global information essential for

accuracy.

[20] Uses Deep ViT for classification to address CNN limitations.

[36] Employs DeepLabv3+ for 2-class segmentation and then uses AlexNet for

classification.

[18] SqueezeNet is used for classification after 2-class segmentation using a non-

local average filter for thresholding.

[24] Uses DETR-based models for classification, attribute extraction, and segmen-

tation, but lacks explainability for guiding these tasks.

[1] Utilizes deep CNNs (e.g., VGG16, ResNet, DenseNet) for MAttrP but lacks

global context modeling and does not incorporate explainability to guide seg-

mentation or classification.

Table 2.2: Literature Review Summary: Part 2.
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Chapter 3

Methodology

This chapter presents the proposed methodology, which comprises two works, with the

second being an extension of the first. The initial work focuses on integrating segmenta-

tion and classification, aiming to design a system that effectively combines the strengths of

CNNs and Transformers. The second work builds upon this foundation by incorporating ex-

plainability and emulating pathologist-like reasoning, while further enhancing the decoder

design introduced in the first work. Together, these efforts maximize the potential of the

CNN-Transformer combination.

3.1 Proposed Work I: SWASTIC (Synergistic WBC Seg-

mentation and Classification Integrated Computa-

tional System)

This section introduces our proposed system, SWASTIC, which is structured into three key

stages. The initial stage integrates a Transformer encoder with a Feature Synergy Decoder

(FSD) to carry out WBC segmentation. The FSD is instrumental in harmonizing CNN

features within the Transformer-based architecture. In the second stage, the classification

15
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Figure 3.1: Flow graph of proposed system I: SWASTIC.

network, based on the Swin T, processes both the segmented regions and the original input

image to identify various WBC types. This segmentation information enables the classifi-

cation network to focus on essential WBC regions, such as nuclei and cytoplasm. Recog-

nizing that the initial segmentation may not always be accurate, the final stage adjusts and

improves the segmentation outcomes by leveraging insights from the WBC classification.

The detailed flow of SWASTIC is illustrated in Fig. 3.1.

3.1.1 SWASTIC: Segmentation Module

This section outlines our segmentation framework, which combines CNN and Transformer

capabilities to achieve precise WBC segmentation. Our approach performs 3-class seg-

mentation, enabling straightforward adaptation to 2-class segmentation. It features a Trans-

former encoder for feature extraction and an FSD that employs Spatial Texture Refinement

(STR) and Progressive Feature Aggregation (PFA) modules. The STR enhances local tex-

ture details using convolutional methods, while the PFA integrates multiple-level features.

Refer to Fig. 3.2 for a diagrammatic representation of the module. The following subsec-

tions provide details.

3.1.1.1 Transformer Encoder

The Transformer encoder is based on a pyramid architecture inspired by PVTv2 [38], using

convolutional operations in place of traditional positional encoding. For an input image I

16
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of dimensions H ×W × 3, the encoder produces hierarchical features {Fi | i = 1, . . . , 4}.

Each feature Fi has the resolution:

Resolution of Fi =

[
H

2k−1
,
W

2k−1
, Di

]
,

where k = {3, 4, 5, 6} corresponds to feature levels, enabling multiscale feature extraction.

3.1.1.2 Feature Synergy Decoder (FSD)

The FSD integrates local and global information through the STR and PFA modules, en-

hancing the segmentation by preserving fine details and capturing broader contextual infor-

mation.

3.1.1.2.1 Spatial Texture Refinement (STR) The STR module refines local details in

the feature maps using convolution operations. For an input feature Fi at level i with channel

dimension Di, the refinement process is described by:

F STR
i = ReLU (Conv2D (ReLU (Conv2D(Fi)))) ,

where Conv2D is a 2D convolution preserving spatial resolution while adjusting channel

dimensions. The STR module outputs enhanced features F STR
i for further processing.

3.1.1.2.2 Progressive Feature Aggregation (PFA) The PFA module combines refined

features across consecutive levels to merge local details and global context. Let F STR
i and

F STR
i−1 be the refined features from levels i and i − 1, respectively. These features are con-

catenated and processed as:

F PFA
i = Conv2D

(
Concat

(
F STR
i , F STR

i−1

))
,

17
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Figure 3.2: (A) Segmentation Module of SWASTIC. (B) Spatial Texture Refinement block.

where Concat denotes concatenation along the channel dimension. The resulting feature

F PFA
i maintains the channel size Di, ensuring consistency for subsequent operations.

By combining the outputs of STR and PFA, the FSD effectively unifies local and global

insights, leveraging CNNs for texture detail and Transformers for contextual understanding.

3.1.2 SWASTIC: Classification Module

Research has shown that focusing on important WBC areas, such as the cytoplasm and nu-

cleus, leads to more accurate classification [18]. Thus, we isolate and emphasise the crucial

WBC structures using the segmentation result from the previous step. This procedure, called

Target Area (TA) extraction, modifies the input image so that key WBC parts are highlighted

while other regions are suppressed. The processed image is then passed to the Swin T [39]

for classification into one of five WBC categories. The Swin T is well-suited for this task

18
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Figure 3.3: Classification Module of SWASTIC.

due to its hierarchical feature extraction and its ability to preserve global context. Fig. 3.3

illustrates the workflow of our classification framework. Detailed steps are outlined below.

3.1.2.1 Target Area (TA) Extraction

In this step, we isolate the nucleus and cytoplasm, which are the relevant WBC structures

for classification, while eliminating the background. A binary mask T (a, b) is created to

identify the WBC structures, with relevant regions assigned a value of 1, and non-relevant

regions set to 0. This binary mask is derived from the segmentation mask S(a, b) from

Section 3.1.1 and is defined as:

T (a, b) =

0, when S(a, b) = 0

1, when S(a, b) ∈ {128, 255}

Where S(a, b) = 128 and S(a, b) = 255 correspond to the cytoplasm and nucleus areas,

respectively, and S(a, b) = 0 corresponds to the background.

Using this binary mask T , the input image I(a, b) is modified to emphasize the relevant

WBC parts, while suppressing the background pixels. The transformed image, A(a, b), is

calculated as:

A(a, b) = I(a, b)⊙ T (a, b),
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where ⊙ denotes pixel-wise multiplication. This operation ensures that the classification

model focuses on the significant WBC structures.

3.1.2.2 Swin Transformer-Based Classification

The processed image A(a, b) is provided as input to the Swin T [39], which classifies it

into one of the five WBC types. Leveraging its hierarchical feature extraction and shifted

window mechanisms, the Swin T is very useful for examining complex WBC structures,

including the cytoplasm and nucleus, because it is excellent at capturing both global and

detailed contextual characteristics.

3.1.3 SWASTIC: Correction Module

A feedback-based correction strategy is employed to address inaccuracies in the initial seg-

mentation by utilizing classification outcomes. This method proves especially effective for

basophils, where dense, darkly stained cytoplasmic granules frequently obscure the lobed

nucleus, leading to misclassification [28, 1]. By incorporating the classifier’s reliable pre-

dictions (refer to Table 4.5), ambiguous regions are reassigned with greater accuracy, as

illustrated in Fig. 3.1.

3.1.4 Loss Functions Utilized in SWASTIC Training

The Proposed System I employs module-specific loss functions to optimize each task. For

segmentation (refer to Section 3.1.1), we use the Dice loss, defined as

LOverlap = 1−
2
∑M

j=1 ŷj yj∑M
j=1 ŷj +

∑M
j=1 yj + δ

, (3.1)

where M represents the total number of pixels, ŷj ∈ [0, 1] denotes the predicted probability

for the j-th pixel, yj ∈ {0, 1} indicates the corresponding ground-truth label, and δ is a small
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constant added to prevent division by zero. Minimizing LOverlap increases the alignment

between the ground truth and the predicted output, effectively reducing both false negative

and false positive rates. For the classification module (Section 3.1.2), we minimize the

multiclass cross-entropy loss (CEL):

LCEL = − 1

M

M∑
k=1

K∑
l=1

tk,l log(t̂k,l), (3.2)

where M represents the total number of samples, K is the number of categories, tk,l in-

dicates the one-hot encoded ground-truth label for the k-th sample and the l-th class, and

t̂k,l is the model’s predicted probability for the same. This loss penalizes discrepancies be-

tween predicted and actual class distributions, ensuring that the classifier learns to assign

high probability to the correct labels.

3.2 Proposed Work II: LEUCOSIGHT (WBC Insights)

This work builds upon the previous SWASTIC framework, with a primary focus on incorpo-

rating interpretability to guide decision-making, simulate clinician reasoning, and enhance

trustworthiness for real-world deployment. A significant limitation of the prior work was

the lack of explainability and insufficient attention to how WBC-related attributes could

be integrated with segmentation and classification tasks. This work seeks to address these

shortcomings.

The architectural design of the system is inspired by the behavior of pathologists when di-

agnosing histopathology slides. Typically, they first localize the WBCs, then examine their

morphological features, and based on this, classify the WBCs. Following a similar reason-

ing, our segmentation module first localizes the WBCs and provides structural cues to the

MAttrP module. The design of the segmentation module advances the CNN and transformer
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combination used in prior work. It incorporates attention mechanisms to integrate features

across different hierarchies while utilizing convolution operations to capture local learning,

as attention is typically focused on global learning.

Conv3×3 →
AvgPool →

Flatten 

AEU𝐴

AEU2

AEU1 p1

𝑝2

pM
f

High
Low

v

Correction 

Module 

Logit 

integration  Monocyte
Lymphocyte

Neutrophil
Eosinophil
Basophil

u

(C). Classification Module

ithAttribute Estimation Unit AEU
for nucleus cytoplasmic ratio.

Symbol Meaning:
𝑝 → q : Operation q is performed after operation p.

(B). Morphological Attribute Prediction Module

Cross scale decoder

Special Texture 

Refinement (STR)

(A). Segmentation Module

Figure 3.4: Proposed Work II: LEUCOSIGHT. (A) Segmentation Module, (B) Morpholog-
ical Attribute Prediction Module, (C) Classification Module.

This approach enhances efficacy. Moreover, the MAttrP module learns relevant WBC at-

tributes, and its output is used for WBC classification, simulating clinical behavior. Finally,

the classification output is leveraged to correct segmentation errors. In this way, a proper

synergy between all WBC analysis tasks is established. Fig. 3.4 illustrates the workflow of

the LEUCOSIGHT system. The following subsections will delve deeper into the system’s

design.
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3.2.1 LEUCOSIGHT: WBC Segmentation Module

This segmentation approach integrates CNNs and transformers to achieve the desired 3-class

segmentation of WBCs, which can be effortlessly adapted to derive a 2-class segmentation.

The ViT encoder, influenced by PVTv2 [38], extracts features at multiple resolutions. These

features are decoded using a cross-scale decoder (CSD), which consists of two main stages:

STR and progressive contextual integration (PCI).

3.2.1.1 Transformer Encoder

Given an input image I of size H ×W × 3, the transformer encoder generates feature maps

at different scales:

Fl ∈ R
H

2l
×W

2l
×Cl , l ∈ {2, 3, 4, 5}.

Here, l indicates the feature level, with higher levels capturing more abstract spatial patterns

and contextual information. Convolutional layers replace positional encoding to retain local

details effectively.

3.2.1.2 Cross-Scale Decoder

By utilising the advantages of transformers and CNNs, the CSD efficiently integrates con-

textual and intricate learning strategies while processing the feature maps in two phases,

STR and PCI.

3.2.1.2.1 Spatial Texture Refinement: Each feature map Fl undergoes refinement

through a series of convolution operations, enabling each pixel to interact with its neighbor-

ing pixels. This process preserves fine details within the feature map. The refined features

are then upsampled to match the highest resolution:
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F ′
l = Upsample

(
Conv1×1(Conv1×1(Fl))

)
, F ′

l ∈ R
H
4
×W

4
×C5 . (3.3)

The refined feature maps F ′
2, F

′
3, F

′
4, F

′
5 are subsequently passed to the PCI stage.

3.2.1.2.2 Progressive Contextual Integration: The PCI module incrementally inte-

grates features from various levels, beginning with lower resolutions and progressing to-

wards higher resolutions. It ensures that high-level features are guided by low-level features

through attention, thereby capturing contextual information. Convolutional layers are then

applied on top, helping retain fine details. By combining cross-attention (CA) [40] with

convolutional operations, the module preserves local features while simultaneously incor-

porating global context. The following outlines the detailed steps.

1. Integration of F ′
5 and F ′

4:

• Compute the cross-attention map:

A54 = CA(F ′
5, F

′
4, F

′
4), (3.4)

where the key and value are both represented by F ′
4 and the query is F ′

5.

• Update F ′
5:

F54 = γ54 · A54 + F ′
5, (3.5)

where γ54 is a trainable weight.

• Apply convolution operations:

F ′
54 = Conv5×5(Conv3×3(F54)). (3.6)

2. Integration of F ′
54 and F ′

3:
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• Compute the cross-attention map:

A543 = CA(F ′
54, F

′
3, F

′
3). (3.7)

• Update F ′
54:

F543 = γ543 · A543 + F ′
54, (3.8)

where γ543 is a trainable weight.

• Apply convolution operations:

F ′
543 = Conv5×5(Conv3×3(F543)). (3.9)

3. Integration of F ′
543 and F ′

2:

• Compute the cross-attention map:

A5432 = CA(F ′
543, F

′
2, F

′
2). (3.10)

• Update F ′
543:

F5432 = γ5432 · A5432 + F ′
543, (3.11)

where γ5432 is a trainable weight.

• Apply convolution operations:

F ′
5432 = Conv5×5(Conv3×3(F5432)). (3.12)

3.2.1.2.3 Final Output: The final feature map F ′
5432 is transformed through a 1 × 1

convolution layer to adjust its channel dimensions:

Fout = Conv1×1(F
′
5432), Fout ∈ R

H
4
×W

4
×Cout (3.13)
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After that, this output undergoes scaling to match the resolution of the original input:

Soutput = Upsample(Fout). (3.14)

The resulting segmentation map is ready for further analysis and classification.

3.2.2 LEUCOSIGHT: Morphological Attributes Prediction Module

The module for morphological attribute prediction leverages the segmentation results Soutput,

produced by the CSD (refer to Section 3.2.1.2), to estimate M distinct attributes. The

following steps outline the process:

3.2.2.1 Transformation of Segmentation Features

The segmentation map Sfinal with dimensions H × W × Cs undergoes transformation to

prepare for attribute estimation:

G = Conv3×3(Sfinal), G ∈ R
H
2
×W

2
×Ct . (3.15)

3.2.2.2 Extraction of Global Descriptors

To summarize spatial information into global features, adaptive average pooling is applied:

R = AdaptiveAvgPool(G), R ∈ R1×1×Ct . (3.16)

This operation creates a compact representation of the segmentation features. Flattening

this pooled tensor yields a feature vector:

f = Flatten(R), f ∈ RCt . (3.17)
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3.2.2.3 Attribute Estimation Unit

The feature vector f is processed by a series of independent units, each designed for pre-

dicting a specific attribute. Each unit comprises:

• Intermediate Layer: A dense layer with Nℓ neurons, followed by a ReLU activation:

hi = ReLU(Wℓ,if + bℓ,i), hi ∈ RNℓ . (3.18)

Here, Wℓ,i is a weight matrix of size Nℓ × Ct, and bℓ,i is a bias vector of length Nℓ.

• Output Layer: A dense layer with Ni output neurons, where Ni is the number of

classes for the i-th attribute. A softmax activation is used to generate probabilities:

pi = Softmax(Wo,ihi + bo,i), pi ∈ RNi . (3.19)

Here, Wo,i is a weight matrix of dimensions Ni × Nℓ, and bo,i is a bias vector of

length Ni.

3.2.2.4 Consolidation of Predictions

The predictions from all M attributes are aggregated into a set:

P = {p1,p2, . . . ,pM}. (3.20)

3.2.3 LEUCOSIGHT: WBC Classification Module

The WBC classification component integrates the attribute logits predicted by the attribute

estimation units (Section 3.2.2) to predict the WBC type. This approach ensures that the

morphological characteristics of WBCs serve as the basis of classification judgements.
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3.2.3.1 Logit Integration

Logits generated by each attribute estimation unit are concatenated into a single feature

vector:

u = Concat(p1,p2, . . . ,pM), u ∈ R
∑M

i=1 Ni , (3.21)

where pi ∈ RNi is the output logits for the i-th attribute, and Ni is the number of classes

associated with it.

3.2.3.2 Classification Block

The fully connected WBC classification block receives the concatenated feature vector u

and includes the following:

• Hidden Layer: A dense layer with Nh neurons, activated using ReLU:

hcls = ReLU(Whu+ bh), hcls ∈ RNh . (3.22)

Here, Wh is a weight matrix of size Nh× (
∑M

i=1Ni), and bh is a bias vector of length

Nh.

• Output Layer: A dense layer with C neurons to estimate probabilities for C WBC

classes:

ywbc = Softmax(Wchcls + bc), ywbc ∈ RC . (3.23)

Here, Wc is a weight matrix of size C ×Nh, and bc is a bias vector of length C.

3.2.3.3 Final Decision

The predicted WBC type is obtained by selecting the class with the highest probability:

ŷcls = argmax(ywbc), (3.24)
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where ŷcls represents the final classification output.

3.2.4 LEUCOSIGHT: WBC Correction Module

The initial segmentation process described in Section 3.2.1 may result in inaccuracies, par-

ticularly for basophils. These errors are addressed through a correction module. Distinct nu-

clei and cytoplasm characterize basophils, but their dense, dark-staining cytoplasmic gran-

ules often obscure the lobed nucleus, creating a blended appearance [28, 1]. To mitigate

this challenge, segmentation inaccuracies are refined by incorporating insights from WBC

classification outcomes. As demonstrated in Table 4.6, the classification model effectively

distinguishes basophils due to their distinctive morphological features [1]. The system uses

morphology-based classification to accurately identify basophils, reassigning any misclas-

sified regions based on the classification results. This approach ensures a more precise

depiction of cellular structures. Fig. 3.4 shows an example of this refinement procedure.

3.2.5 Loss Functions Utilized in LEUCOSIGHT Training

The proposed system II uses specialized loss functions tailored to each module to achieve

optimal performance. The segmentation module (Section 3.2.1) leverages Dice Loss to re-

duce overlap inaccuracies and ensure accurate segmentation results. For the MAttrP module

(Section 3.2.2), CEL addresses prediction errors, while Supervised Contrastive Loss (Sup-

ConLoss) [41] improves feature learning by enhancing intra-class consistency and inter-

class differentiation in the attribute estimation units (Section 3.2.2.3). SupConLoss is de-

fined as:

LSupCon =
∑
x∈S

−1

|Q(x)|
∑

q∈Q(x)

log
exp

(
fx·fq
θ

)
∑

r∈R(x) exp
(
fx·fr
θ

) , (3.25)

Where: S is the set of all samples, Q(x) is the set of positive samples for anchor x, R(x) is

the set of all samples except x, fx represents the feature representation of the anchor sample
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x, fq represents the feature representation of the positive sample q and θ is the temperature

parameter. This loss increases inter-class differentiation by pushing away features from dif-

ferent classes, while improving intra-class consistency by bringing together characteristics

of the same class in the embedding space. This dual emphasis on feature alignment and sep-

aration makes it well-suited for attribute prediction tasks. The WBC classification module

(Section 3.2.3) also relies on CEL to refine classification accuracy. Modules can be trained

individually or in combination, depending on the availability of ground truth datasets, as

detailed in Section 4.3.
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Results

4.1 Experimental Settings

Our proposed work I, SWASTIC, carries out both WBC segmentation and classification,

whereas our proposed work II, LEUCOSIGHT, expands its capabilities to incorporate MAt-

trP in addition to WBC segmentation and classification. Consequently, our experiments

leverage datasets that provide detailed ground-truth labels for these tasks. The study uti-

lized three publicly accessible WBC benchmark datasets: Raabin, LISC, and WBCAtt (see

Table 4.1). Two distinct segmentation tasks were performed. In the 3-class segmentation

task, the ground-truth annotations were adjusted to categorize the background, nuclei, and

cytoplasm, corresponding to black, gray, and white regions, respectively. Conversely, the

2-class segmentation task simplified the ground-truth annotations by combining the back-

ground with the cytoplasm as black and representing nuclei as white. The performance of

WBC segmentation was assessed using metrics such as the mean Dice Similarity Coeffi-

cient (DSC), mean Intersection over Union (IoU), and accuracy (Acc). The evaluation of

WBC classification and MAttrP employed several metrics, including precision (Pre), speci-

ficity (Spec), accuracy, recall (Rec), and the F-measure (F-m). These abbreviations are

consistently referenced across Sections 4.4, 4.5, 4.6, and 4.7. Furthermore, it is crucial to
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highlight that our system’s performance was benchmarked against state-of-the-art (SOTA)

methods, ensuring identical training and testing conditions for a fair comparison.

Table 4.1: Datasets utilized in the study.

Dataset Description

WBCAtt

• 10,298 images (1024 x 716 px)

• Cells: Monocytes (1,420), Lymphocytes (1,214), Basophils (1,218), Eosinophils
(3,117), Neutrophils (3,392)

• Annotated with 10 attributes: Granule type/color, Cytoplasm vacuole/color/texture,
Chromatin density, NC ratio, Nucleus shape, Cell shape/size

Raabin

• 1,145 images (575x575 px)

• Cells: Neutrophils (242), Eosinophils (201), Basophils (218), Lymphocytes (242),
Monocytes (242)

• Masks: Background (black), Cytoplasm (white), Nucleus (grey)

• Classification (Train/Test split): Monocytes (561/234), Eosinophils (744/322),
Neutrophils (6,231/2,660) Lymphocytes (2,427/1,034), Basophils (212/89)

LISC

• 242 images (720x576 px)

• Cells: Monocytes (48), Eosinophils (39), Neutrophils (50), Lymphocytes (52), Ba-
sophils (53)

• Masks: Background (black), Cytoplasm (grey), Nucleus (light grey)

4.2 Implementation Settings

The experimental setup leveraged PyTorch and was executed on a system equipped with an

NVIDIA GeForce RTX 3080 GPU, an Intel Core i7-10700K processor, and 32 GB of RAM.

Both proposed approaches were optimized using the AdamW optimizer [42] with an initial
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learning rate of 0.0001. The training process spanned 200 epochs with a batch size of 32.

Additional information on training and evaluation protocols can be found in Section 4.3.

4.3 Training and Testing Settings

Proposed System I

All images were standardized by resizing them to a resolution of 224× 224 pixels as part of

the preprocessing step. For the experiments detailed in Sections 4.4 and 4.5, the following

workflow was employed: on the Raabin dataset, the segmentation module was trained using

912 images with Dice loss and tested on 233 images. Subsequently, with the segmentation

weights frozen, the classification module was trained on 10,175 images using CEL and

evaluated on 4,339 held-out samples. The same approach was applied to the LISC dataset,

where the data was randomly divided into 20% for testing and 80% for training. Freezing

the segmentation network ensured that classification learning relied exclusively on features

extracted from accurately segmented regions.

Proposed System II

The images were initially scaled to a dimension of 224 × 224 pixels. For the experiments

described in Sections 4.4, 4.5, and 4.6, we proceeded as follows: On the Raabin dataset,

the segmentation network was trained on 912 images using the Dice loss and evaluated on

233 test images. With the segmentation weights then frozen, the MAttrP and classification

networks were jointly trained on 10,175 images using CEL for the WBC class labels, and

their performance was measured on 4,339 held-out samples. For the LISC dataset, we ran-

domly split the data into 20% for testing and 80% for training. Before being frozen, the

segmentation network was trained using dice loss; subsequently, the MAttrP and classifica-

tion networks were trained together, again using CEL for the WBC labels, and evaluated on
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the reserved test set. In the WBCAtt dataset, we followed its predefined train–test partitions.

The segmentation and MAttrP networks were trained simultaneously using a combination

of SupConLoss and CEL for the attribute labels, then frozen. Finally, the classification

network was trained and assessed on the designated test set using CEL for the WBC class

labels.

In Section 4.7, we further investigated cross-dataset generalization by training on the WB-

CAtt dataset and fine-tuning on Raabin, as well as training on WBCAtt and LISC inter-

changeably. The same training and evaluation protocols mentioned above were consistently

applied throughout these experiments.

4.4 Performance Evaluation on WBC Segmentation

This subsection compares the efficacy of our suggested WBC segmentation modules in-

corporated into LEUCOSIGHT and SWASTIC with SOTA methods. Table 4.2 provides a

comprehensive quantitative analysis, showcasing the enhancements achieved. Additionally,

the qualitative performance of the proposed approaches is illustrated in Fig. 4.2 and 4.1.

As evidenced in Table 4.2, our proposed system consistently outperforms current SOTA ap-

proaches across both 2-class and 3-class segmentation tasks. The remarkable performance

in 2-class segmentation arises from the synergistic strengths of Transformers and CNNs.

While CNNs excel in capturing intricate local structural details, Transformers are adept at

modeling broader contextual dependencies. Conversely, traditional image processing tech-

niques, as discussed in [19, 29, 30], often struggle to generalize effectively across a variety

of microscopic conditions and image variations [10], resulting in limited utility. Similarly,

CNN-based systems such as Mask R-CNN, SqueezeNet, and U-Net++ [43, 44, 18, 3, 31],

although proficient in extracting localized features, cannot account for long-range depen-

dencies, which compromises their segmentation accuracy.
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Table 4.2: Comparative Analysis of WBC Segmentation Performance: Proposed
Works vs. SOTA methods.

2-class segmentation

System
Raabin Dataset

System
LISC Dataset

DSC IOU Acc DSC IOU Acc

[43] 0.9725 0.9462 - - - - -

[31] 0.9620 0.9283 - - - - -

[44] 0.9203 0.8512 - - - -

[29] 0.9535 0.9114 - [19] 0.8982 0.8760 0.9590

[10] 0.9668 0.9372 - [30] 0.9029 0.8980 0.9793

[3] 0.9472 0.9218 0.9893 [18] 0.8920 0.8973 0.9684

PWI 0.9819 0.9657 0.9960 PWI 0.9342 0.9083 0.9887

PWII 0.9897 0.9761 0.9985 PWII 0.9510 0.9243 0.9937

3-class segmentation

System
Raabin Dataset

System
LISC Dataset

DSC IOU Acc DSC IOU Acc

SNet [32] 0.8290 0.8271 0.9425 SNet [32] 0.7689 0.7513 0.9408

UNet [32] 0.8443 0.8400 0.9679 UNet [32] 0.7875 0.7692 0.9588

CNN [32] 0.7818 0.7737 0.9092 CNN [32] 0.7183 0.7110 0.9190

PWIWCM 0.8932 0.8561 0.9812 PWIWCM 0.8120 0.7474 0.9972

PWI 0.9385 0.9211 0.9915 PWI 0.8590 0.8005 0.9981

PWIIWCM 0.9315 0.9265 0.9912 PWIIWCM 0.8547 0.8094 0.9930

PWII 0.9510 0.9348 0.9967 PWII 0.8813 0.8265 0.9994

‘SNet: SegNet’, ‘PWI: Proposed Work I (SWASTIC)’, ‘PWII: Proposed Work
II (LEUCOSIGHT)’, ‘PWIWCM: Proposed Work I without correction
module’, ‘PWIIWCM: Proposed Work II without correction module’,
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Hybrid approaches, including our earlier system SWASTIC, achieve notable improvements

by combining CNNs for extracting localized features with Transformers for capturing global

context. However, SWASTIC’s reliance on conventional feature-merging techniques, where

multi-level features are aggregated and processed through convolution, limits its ability to

harmonize morphological details with higher-level context. In contrast, LEUCOSIGHT

adopts an attention-based feature-merging mechanism, which prioritizes relevant features

while seamlessly aligning intricate details with global patterns. This design enhances the

interaction between CNNs and Transformers, yielding superior segmentation results. In

the domain of 3-class segmentation, which remains less explored in existing literature, our

system demonstrates a clear edge over other methods. Architectures such as U-Net, Seg-

Net, and similar CNN-based systems [32] face challenges in addressing long-range de-

pendencies. While SWASTIC partially mitigates these limitations, its traditional feature-

merging strategy restricts its ability to fully harness the CNN-Transformer combination.

LEUCOSIGHT, with its attention-driven feature-merging approach, effectively bridges this

gap by aligning morphological details with comprehensive contextual representations, lead-

ing to enhanced segmentation accuracy.

A standout feature of our work is the integration of WBC classification, which signif-

icantly bolsters segmentation performance. To evaluate this impact, we compared our

methods against baseline systems, PWIWCM and PWIIWCM, which perform segmenta-

tion independently of classification insights. As shown in Table 4.2, both SWASTIC and

LEUCOSIGHT consistently outperform these baselines, underscoring the pivotal role of

classification-driven refinement in improving segmentation outcomes. This enhancement

is visually evident in Fig. 4.2, where LEUCOSIGHT effectively corrects segmentation er-

rors in the basophil class during 3-class segmentation, demonstrating the effectiveness of

classification-based adjustments.
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Figure 4.1: Qualitative outcomes of SWASTIC for 3-class segmentation.

Neutrophil

Eosinophil

Basophil

Monocyte

Lymphocyte

Original image Ground 
Truth

3- class segmentation

Predicted mask 
(PWIIWCM)

Predicted mask 
(LEUCOSIGHT)

2- class segmentation

Predicted 
mask

Ground 
Truth

Figure 4.2: Qualitative outcomes of LEUCOSIGHT for both 2-class and 3-class segmenta-
tion.
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4.5 Performance Evaluation on WBC Classification

We assess the effectiveness of our proposed modules for WBC classification, integrated into

SWASTIC and LEUCOSIGHT, by comparing them with existing SOTA methods, as sum-

marized in Table.4.3 and 4.4. The results highlight the substantial improvements achieved

by our systems over prior approaches.

Existing methods, such as those outlined in [10], combine image features with SVM. How-

ever, these approaches often fail to generalize effectively across varied datasets and condi-

tions. Similarly, CNN-based systems [33, 34, 17], including architectures like DenseNet,

ShuffleNet, ResNet-50, ConvNeXt, GoogLeNet, and MobileNet, focus on WBC image clas-

sification but cannot capture the global contextual information essential for precise pre-

dictions. Transformer-based models address this limitation by introducing mechanisms to

analyze broader contexts. Models like ViT and its derivatives [20, 24] combine attention

mechanisms with convolutional layers to enhance classification accuracy. The Swin-T fur-

ther advances this approach by employing hierarchical feature extraction, effectively cap-

turing both local and global contexts [39]. Additionally, integrated systems such as those

proposed in [18, 15] highlight the critical role of segmentation as a supporting task in im-

proving classification outcomes. Hybrid systems like SWASTIC, an earlier contribution,

combine CNNs and Transformers to generate detailed segmentation masks that inform clas-

sification. However, SWASTIC relies on traditional feature stacking techniques, which limit

its ability to preserve nuanced local contextual information. In contrast, our extended sys-

tem, LEUCOSIGHT, adopts a hierarchical feature-merging strategy using cross-attention

mechanisms, complemented by convolutional layers to retain local details. This approach

eliminates the limitations of simple feature stacking, ensuring an optimal integration of

global and local information.
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Table 4.3: Comparative Analysis of WBC Classification Performance: Proposed Works vs.
SOTA methods.

System
Raabin Dataset

System
LISC Dataset

Acc Pre Rec F-m Acc Pre Rec F-m

VGG16 0.8901 0.8503 0.8602 0.8554 VGG16 0.8652 0.8401 0.8453 0.8426

Tavakoli
Algo. [10]

0.9473 - - - Tavakoli
Algo. [10]

0.9224 - - -

DenseNet 0.9105 0.8754 0.8806 0.8778 DenseNet 0.8853 0.8605 0.8653 0.8627

ResNet50 0.9357 0.9152 0.9203 0.9178 ResNet50 0.9106 0.8953 0.9002 0.8977

[33] 0.9525 0.9043 0.9342 0.9189 [33] 0.9324 0.9295 0.9272 0.9284

ShuffleNet 0.9258 0.9004 0.9053 0.9027 ShuffleNet 0.9005 0.8806 0.8852 0.8826

[34] 0.9283 - - - [34] 0.8754 - - -

Swin T. 0.9703 0.9704 0.9705 0.9706 Swin T. 0.9407 0.9305 0.9353 0.9327

ViT 0.9405 0.9304 0.9352 0.9328 ViT 0.9206 0.9102 0.9154 0.9127

[20] 0.9556 0.9403 0.9452 0.9428 [17] 0.9745 0.9712 0.9645 0.9678

ConvNeXT 0.9707 0.9603 0.9654 0.9628 ConvNeXT 0.9609 0.9504 0.9553 0.9527

MobileNet 0.9026 0.9089 0.9101 0.9094 MobileNet 0.8862 0.8889 0.8901 0.8894

[18] 0.9665 0.9604 0.9553 0.9578 [18] 0.9686 0.9425 0.9493 0.9458

PWI 0.9854 0.9705 0.9834 0.9768 PWI 0.9836 0.9835 0.9804 0.9818

PWIIWAPM 0.9821 0.9669 0.9721 0.9694 PWIIWAPM 0.9794 0.9737 0.9728 0.9727

PWII 0.9913 0.9756 0.9852 0.9803 PWII 0.9894 0.9847 0.9828 0.9837

‘PWI: Proposed Work I (SWASTIC)’, ‘PWII: Proposed Work II
(LEUCOSIGHT)’, ‘PWIIWAPM: Proposed Work II without Attribute

Prediction module’

Beyond merely segmenting regions of interest, the segmentation outputs in LEUCOSIGHT

provide structural cues that aid in learning MAtts, effectively emulating the diagnostic rea-

soning of pathologists. It is also evident that segmentation alone does not significantly en-

hance classification, as shown by the suboptimal performance of the baseline PWIIWAPM

system in Table 4.3. Instead, utilizing segmentation outputs to predict key MAtts crucial to
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WBC classification leads to markedly improved results.

Table 4.4: Comparative Analysis of WBC Segmentation Performance: Proposed Works vs.
SOTA methods.

System
WBCAtt Dataset

Acc Pre Rec F-m

VGG16 0.8804 0.8703 0.8752 0.8728

Tavakoli Algo.
[10]

0.8806 0.8853 0.8814 0.8832

DenseNet 0.9007 0.8904 0.8925 0.8916

ResNet50 0.9409 0.9206 0.9253 0.9227

Faster-RCNN 0.9337 0.9375 0.9332 0.9354

ShuffleNet 0.9109 0.9003 0.9025 0.9014

GoogLeNet 0.8932 0.8853 0.8894 0.8876

Swin T. 0.9609 0.9406 0.9502 0.9448

ViT 0.9308 0.9205 0.9284 0.9246

CUSS-Net
[15]

0.9637 0.9623 0.9626 0.9628

ConvNeXT 0.9653 0.9557 0.9604 0.9578

MobileNet 0.8991 0.9015 0.9039 0.9036

HemaX [24] 0.9624 0.9545 0.9573 0.9558

PWII 0.9896 0.9839 0.9864 0.9851

‘PWII: Proposed Work II (LEUCOSIGHT)’

For the Raabin and LISC datasets, where ground truth labels for MAtts are unavailable,

our system still demonstrates superior performance. During training, the MAttrP module,

which operates jointly with the classification module while keeping the segmentation mod-

ule frozen, learns latent morphological features by leveraging structural information from

segmentation outputs and minimizing classification loss. Despite the absence of explicit

morphology labels, the MAttrP module effectively captures meaningful representations as
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Table 4.5: The experimental results for individual WBC classification classes
provide a detailed view of SWASTIC overall classification performance after
3-class segmentation as summarized in Table 4.3.

Class

Raabin LISC

Acc Pre Rec F-m Acc Pre Rec F-m

M 0.990 0.906 0.914 0.910 0.983 0.917 1.000 0.957

L 0.989 0.977 0.979 0.978 1.000 1.000 1.000 1.000

B 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

E 0.996 0.966 0.984 0.975 0.983 1.000 0.857 0.923

N 0.994 0.997 0.993 0.995 1.000 1.000 1.000 1.000

Overall 0.985 0.970 0.983 0.972 0.983 0.983 0.980 0.979

M: Monocyte, L: Lymphocyte, B: Basophil, E: Eosinophil, N: Neutrophil

part of the end-to-end framework. On the WBCAtt dataset, the segmentation module in-

directly gains valuable feature representations through weak supervision provided by the

MAttrP head, which relies on spatial patterns. In both scenarios, proxy supervision de-

rived from gradients of upstream or downstream tasks compensates for the lack of direct

supervision, allowing robust feature learning and consistently strong performance.

4.6 Performance Evaluation on WBC Morphological At-

tributes

We evaluate the performance of our system, LEUCOSIGHT, by benchmarking it against

SOTA methods. The attribute prediction framework, illustrated in Fig. 4.3, incorporates a

variety of encoders, including CNN-based models (ResNet, DenseNet, MobileNet, Shuf-
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Table 4.6: The experimental results for individual WBC classification classes
provide a detailed view of LEUCOSIGHT overall classification performance
as summarized in Table 4.3.

Class

Raabin LISC

Acc Pre Rec F-m Acc Pre Rec F-m

M 0.982 0.945 0.960 0.952 0.988 0.915 0.970 0.942

L 0.989 0.975 0.975 0.975 0.991 0.980 0.980 0.980

B 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

E 0.993 0.961 0.980 0.970 0.987 0.930 0.950 0.940

N 0.992 0.996 0.990 0.993 0.998 0.998 0.998 0.998

Overall 0.991 0.976 0.985 0.980 0.989 0.985 0.983 0.984

M: Monocyte, L: Lymphocyte, B: Basophil, E: Eosinophil, N: Neutrophil

Figure 4.3: Attribute Prediction System [1].

fleNet, ConvNeXt, and VGG) and Transformer-based models (ViT and Swin-T). The fea-

ture vectors extracted by these encoders are processed through attribute prediction blocks

for classification. Tables 4.8 and 4.9 offer performance comparisons across classification

metrics, whereas Table 4.7 presents aggregated results averaged across attribute classes.

LEUCOSIGHT combines the advantages of Transformers and CNNs to overcome the draw-

backs of conventional techniques. While CNNs such as ResNet, DenseNet, and ConvNeXt
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effectively capture local features, they struggle with global context modeling. Conversely,

Transformer models, such as ViT and Swin-T, excel at capturing global dependencies but

often lack detailed local feature preservation. By integrating these complementary capabil-

ities, LEUCOSIGHT enables both global and local feature extraction, enhancing segmen-

tation and facilitating accurate attribute prediction. This integration empowers the MAttrP

module to achieve superior performance, establishing LEUCOSIGHT as a robust and reli-

able solution.

Table 4.7: Summary of the average of each classification metric computed across all at-
tributes for each System, as presented in Table 4.8 and Table 4.9 on the WBCAtt Dataset.

System Avg Pre. Avg Rec. Avg F-m. Avg Acc. Avg Spec.

VGG16 [45] 89.462 89.305 89.306 90.137 90.964

ResNet50 [46] 90.651 90.256 90.435 90.923 91.766

DenseNet [47] 91.316 90.997 91.143 91.558 92.239

ShuffleNet [48] 91.249 90.965 91.088 91.533 92.277

ViT-Base [49] 90.517 90.581 90.483 90.980 91.716

ConvNeXt [50] 91.192 90.677 90.924 91.251 91.976

Swin T [39] 91.580 91.206 91.385 91.736 92.403

HemaX [24] 92.831 92.067 92.447 92.922 93.587

LEUCOSIGHT 97.479 97.642 97.564 98.081 98.252

4.7 Cross-Dataset Generalization

This section presents the cross-dataset generalization results from Table 4.10, showcasing

significant performance enhancements on the Raabin and WBCAtt datasets compared to

the discussion in Section 4.5. These improvements stem from the system’s initial training

on datasets containing at least two label types, often including classification labels, while

43



CHAPTER 4. RESULTS 44

Table 4.8: Classification metrics for the first set of attributes from the WBCAtt Dataset,
evaluated using various encoders in the Attribute Prediction System.

Attribute Metric
System

VGG16 ResNet50 DenseNet ShuffleNet ViT ConvNeXt Swin T LEUCOSIGHT

Cell Size

Pre. 83.452 84.217 84.839 85.093 85.612 85.903 86.214 97.642

Rec. 83.448 83.691 84.718 84.931 85.411 85.865 86.123 97.582

F-m. 83.450 83.953 84.779 84.961 85.509 85.884 86.168 97.611

Acc. 85.031 85.512 86.003 86.217 86.512 86.793 87.145 98.025

Spec. 86.503 87.017 87.305 87.508 87.824 87.993 88.337 98.232

Cell Shape

Pre. 89.085 90.736 91.019 91.215 91.534 91.801 92.007 98.218

Rec. 90.132 90.648 91.217 91.406 91.718 91.905 92.213 98.116

F-m. 89.609 90.684 91.123 91.309 91.611 91.853 92.105 98.153

Acc. 91.015 91.507 91.902 92.014 92.305 92.487 92.718 98.508

Spec. 92.018 92.512 92.704 92.915 93.109 93.284 93.508 98.713

Nuclear Cytoplasmic Ratio

Pre. 96.781 97.472 97.158 97.268 96.879 96.807 97.009 98.901

Rec. 95.122 95.305 96.505 96.705 95.915 95.655 96.205 98.752

F-m. 95.932 96.384 96.824 96.976 96.382 96.223 96.593 98.822

Acc. 96.504 96.885 97.256 97.405 96.753 96.604 97.102 99.001

Spec. 97.803 98.102 98.356 98.405 97.903 97.855 98.205 99.501

Chromatin Density

Pre. 83.973 84.553 86.103 86.203 84.733 85.563 85.803 95.502

Rec. 86.713 88.523 86.753 86.903 84.613 85.873 86.303 96.753

F-m. 85.323 86.373 86.423 86.553 84.653 85.703 86.053 96.102

Acc. 85.803 86.403 86.703 86.903 85.003 85.903 86.403 97.002

Spec. 86.503 87.003 87.503 87.603 86.203 86.703 87.103 97.503

Cytoplasm Vacuole

Pre. 91.243 92.713 93.503 93.753 90.623 92.843 93.103 96.653

Rec. 85.963 87.083 89.153 89.303 90.683 88.043 88.903 96.503

F-m. 88.363 89.573 91.203 91.403 90.633 90.263 90.963 96.583

Acc. 89.003 90.503 91.403 91.603 91.003 90.303 91.203 97.003

Spec. 90.503 91.703 92.203 92.403 91.803 91.403 92.003 98.003
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Table 4.9: Classification metrics for the second set of attributes from the WBCAtt Dataset,
evaluated using various encoders in the Attribute Prediction System.

Attribute Metric
System

VGG16 ResNet50 DenseNet ShuffleNet ViT-Base ConvNeXt Swin LEUCOSIGHT

Cytoplasm Texture

Pre. 92.291 93.226 93.805 92.953 92.867 93.935 94.507 96.503

Rec. 95.215 95.957 95.406 94.805 95.180 95.008 95.604 97.203

F-m. 93.612 94.492 94.606 93.871 93.946 94.445 95.048 96.847

Acc. 94.801 95.209 95.202 94.603 94.905 95.101 95.502 97.004

Spec. 95.601 96.007 96.108 95.904 95.802 96.202 96.503 97.504

Nucleus Shape

Pre. 74.883 77.083 79.803 80.003 77.213 78.513 79.303 96.673

Rec. 74.183 75.703 78.903 79.103 75.883 77.683 78.503 96.853

F-m. 74.533 76.373 79.353 79.553 76.053 78.083 78.893 96.763

Acc. 75.503 77.003 79.403 79.703 76.503 78.003 79.003 97.003

Spec. 76.003 77.503 79.903 80.203 77.103 78.503 79.503 97.503

Cytoplasm Color

Pre. 84.194 88.248 88.607 87.804 87.624 88.058 89.401 96.003

Rec. 83.937 88.063 88.804 88.106 88.041 88.287 89.603 95.802

F-m. 84.067 88.151 88.706 87.958 87.832 88.166 89.503 95.902

Acc. 85.002 88.503 89.006 88.307 88.205 88.408 89.704 96.205

Spec. 86.002 88.903 89.507 89.108 88.609 88.809 90.005 96.408

Granule Type

Pre. 99.281 99.364 99.484 99.402 99.323 99.496 99.523 99.801

Rec. 99.426 99.529 99.565 99.502 99.456 99.641 99.604 99.854

F-m. 99.354 99.446 99.524 99.456 99.392 99.562 99.563 99.826

Acc. 99.503 99.607 99.623 99.581 99.557 99.704 99.665 99.902

Spec. 99.602 99.705 99.683 99.621 99.653 99.754 99.703 99.953

Granule Color

Pre. 98.724 98.888 98.842 98.805 98.786 99.004 98.926 98.903

Rec. 98.914 98.963 98.946 98.889 98.874 99.123 99.005 99.002

F-m. 98.819 98.925 98.892 98.843 98.824 99.063 98.967 98.954

Acc. 99.006 99.107 99.081 99.002 99.058 99.205 99.105 99.152

Spec. 99.107 99.207 99.127 99.102 99.154 99.256 99.168 99.206
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Table 4.10: Cross-Dataset Generalization Classification Results.

Trained on WBCAtt, Fine-Tuned on Raabin (Results on Raabin)

Acc Pre Rec F-m Spec

PWII 0.9953 0.9796 0.9892 0.9846 0.9930

Trained on Raabin, Fine-Tuned on WBCAtt (Results on WBCAtt)

Acc Pre Rec F-m Spec

PWII 0.9936 0.9845 0.9894 0.9867 0.9925

Trained on WBCAtt, Fine-Tuned on LISC (Results on LISC)

Acc Pre Rec F-m Spec

PWII 0.9563 0.9495 0.9549 0.9521 0.9602

‘PWII: Proposed Work II (LEUCOSIGHT)’

leveraging weak supervision to address missing annotations like segmentation and MAtts

during joint training. Subsequent training phases, which introduced previously unavailable

labels, further refined the system’s performance.

On the Raabin dataset, classification accuracy improved, and predictions of attributes for

100 sampled images aligned with expected WBC class characteristics, despite the absence

of ground truth annotations. Similarly, training on WBCAtt not only enhanced classifica-

tion accuracy but also produced visually correct segmentation masks for 100 sampled WBC

images, with precise localization of WBC regions, even without segmentation annotations.

This demonstrates the system’s adaptability and robustness. The similarity in feature distri-

butions between Raabin and WBCAtt facilitated effective fine-tuning, enabling the system

to generate segmentation masks for WBCAtt and predict MAtts for Raabin, despite the lack

of corresponding annotations. However, the results highlight a limitation: when datasets

with highly divergent feature distributions are used, fine-tuning may yield less substantial
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improvements, as observed in the case of training on WBCAtt and fine-tuning on LISC.

Addressing this limitation is suggested for future research.

4.8 Ablation Analysis

4.8.1 Impact of choosing 3-class segmentation over 2-class segmenta-

tion

Our first proposed system, SWASTIC, begins with a 3-class segmentation as its first stage,

followed by the classification of WBCs. To examine the importance of this 3-class seg-

mentation, we designed an alternative system named SW2CS, derived from SWASTIC. The

main difference between SWASTIC and SW2CS is that SW2CS uses a 2-class segmenta-

tion approach instead of a 3-class segmentation. Table 4.11 displays the outcomes of the

WBC classification comparison between SWASTIC and SW2CS. The findings reveal that

SWASTIC achieves significantly better performance than SW2CS. This improvement arises

because SW2CS relies solely on nuclear information for classification, which increases the

likelihood of misclassification. For instance, similarities in nuclear shapes between certain

WBC types, such as eosinophils and neutrophils or monocytes and lymphocytes, can be

confusing. In contrast, SWASTIC uses 3-class segmentation, integrating additional cyto-

plasmic features, improving the ability to accurately classify WBCs.

Likewise, in our second proposed system, LEUCOSIGHT, which also employs 3-class

segmentation followed by MAttrP and WBC classification, we observed a similar trend.

To further validate the role of 3-class segmentation, we developed a counterpart system,

LW2CS, based on LEUCOSIGHT. The WBC classification outcomes for LW2CS and

LEUCOSIGHT are presented in Table 4.12. The results confirm that LEUCOSIGHT out-

performs LW2CS. The limitation of LW2CS lies in its reliance solely on nuclear regions to
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Table 4.11: Performance comparison between SWASTIC and SW2CS on the Raabin dataset.

Class

SW2CS SWASTIC

Acc Pre Rec F1S Spe Acc Pre Rec F1S Spe

M 0.987 0.894 0.893 0.888 0.994 0.990 0.906 0.914 0.910 0.994

L 0.985 0.965 0.972 0.968 0.989 0.989 0.977 0.979 0.978 0.992

B 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

E 0.973 0.784 0.879 0.829 0.981 0.996 0.966 0.984 0.975 0.997

N 0.968 0.984 0.964 0.974 0.974 0.994 0.997 0.993 0.995 0.995

Overall 0.956 0.925 0.936 0.931 0.986 0.985 0.971 0.983 0.971 0.996

M: Monocyte, L: Lymphocyte, B: Basophil, E: Eosinophil, N: Neutrophil
‘SW2CS: SWASTIC performing 2-class segmentation instead of 3-class’

guide MAttrP, capturing features specific to the nucleus alone. On the other hand, LEU-

COSIGHT’s 3-class segmentation approach includes the cytoplasm as a distinct class, en-

abling the extraction of essential cytoplasmic attributes such as vacuoles, cytoplasmic tex-

ture, nucleus-to-cytoplasm ratio, etc. These attributes are critical for accurately distinguish-

ing between WBC types, leading to LEUCOSIGHT’s superior performance.

4.8.2 Impact of different components in the segmentation module of

LEUCOSIGHT

This section delves into the design of the segmentation module within LEUCOSIGHT, fo-

cusing on its implementation across the Raabin and LISC datasets, particularly emphasizing

the CSD. As shown in Table 4.13, the segmentation module based solely on the STR block

(SMSTR) exhibits the lowest performance. This is attributed to its bottom-up concatenation
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Table 4.12: Performance comparison between LEUCOSIGHT and LW2CS on the Raabin
dataset.

Class

LW2CS LEUCOSIGHT

Acc Pre Rec F1S Spe Acc Pre Rec F1S Spe

M 0.977 0.964 0.973 0.968 0.979 0.982 0.945 0.960 0.952 0.994

L 0.958 0.959 0.952 0.955 0.969 0.989 0.975 0.979 0.980 0.996

B 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

E 0.939 0.941 0.928 0.934 0.931 0.993 0.961 0.980 0.970 0.997

N 0.944 0.939 0.954 0.946 0.947 0.992 0.996 0.990 0.993 0.996

Overall 0.963 0.961 0.961 0.960 0.965 0.991 0.976 0.985 0.980 0.997

M: Monocyte, L: Lymphocyte, B: Basophil, E: Eosinophil, N: Neutrophil
‘LW2CS: LEUCOSIGHT performing 2-class segmentation instead of 3-class’

strategy, which hinders the effective integration of hierarchical features. Introducing cross-

attention significantly improves performance by leveraging features with the most global

context as queries, while the encoder’s high-level outputs serve as keys and values. This

mechanism aligns global and semantic information effectively but falls short in capturing

finer local details, as it prioritizes enhancing the global context. The impact of this limitation

is reflected in the performance of SMSTR-CA.

To overcome this drawback, convolution operations are applied to the feature grid after the

attention mechanism. These operations enhance the module’s ability to capture local details

by enabling pixel-level interactions with neighboring regions, thus improving local feature

representation. Combining attention mechanisms with convolution operations results in

markedly better performance, as demonstrated by SMSTR-CAWC. The fusion of convolu-

tional techniques, characteristic of CNNs, with the attention mechanisms from transformers
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Table 4.13: Study of different components in Segmentation Module of LEUCOSIGHT.

System
Raabin Dataset LISC Dataset

DSC IoU Acc DSC IoU Acc

2-Class Segmentation

SMSTR 0.9617 0.9343 0.9812 0.8923 0.8835 0.9721

SMSTR-
CA

0.9753 0.9514 0.9916 0.9317 0.9145 0.9865

SMSTR-
CAWC

0.9902 0.9755 0.9989 0.9503 0.9247 0.9941

3-Class Segmentation

SMSTR 0.8819 0.8625 0.9537 0.8317 0.8241 0.9453

SMSTR-
CA

0.9123 0.8931 0.9724 0.8512 0.8437 0.9643

SMSTR-
CAWC

0.9325 0.9270 0.9907 0.8550 0.8102 0.9927

‘SMSTR: Segmentation Module with Spatial Texture Refinement’, ‘SMSTR-CA: SMSTR
with Cross Attention’, ‘SMSTR-CAWC: SMFR-CA with Convolution operation’

creates a robust synergy, significantly boosting the effectiveness of the segmentation mod-

ule.
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Conclusion

This study presents an innovative system for WBC analysis, drawing inspiration from diag-

nostic methods traditionally employed by pathologists. Unlike earlier systems, which either

used segmentation exclusively to aid classification or implemented segmentation, MAttrP,

and classification simultaneously through multi-head outputs without fully leveraging the

synergy between these tasks, our approach capitalizes on their interdependence. In clini-

cal practice, pathologists typically identify WBCs on histopathology slides, examine their

morphological attributes in detail, and then classify them based on these features. Mimick-

ing this systematic workflow, our proposed system, LEUCOSIGHT, begins by segmenting

WBCs from microscopic images, accurately localizing them, and extracting critical struc-

tural information. These structural cues are subsequently utilized to predict MAttrs, which

serve as a foundation for precise classification.

A significant innovation of this work lies in its emphasis on explainability, an area where

conventional DL systems often fall short due to their opaque decision-making nature. In

contrast, LEUCOSIGHT provides classification decisions accompanied by morphology-

based explanations, reflecting the logical, interpretable decision-making process patholo-

gists employ when analyzing WBCs. The system employs a hybrid architecture that syn-
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ergistically combines CNNs and transformers. CNNs excel at capturing fine-grained, lo-

calized structural features, while transformers are adept at modeling global contextual re-

lationships and dependencies. By integrating these strengths, the system achieves superior

segmentation accuracy through precise identification and delineation of structural bound-

aries. This approach represents a significant improvement over previous methods, such as

our earlier work, SWASTIC, which relied on simpler hierarchical feature concatenation.

The advanced fusion strategy used in LEUCOSIGHT ensures a more effective combination

of features, leading to enhanced overall performance. Furthermore, the system demonstrates

remarkable adaptability, capable of being fine-tuned for diverse WBC datasets. Even when

initially trained on datasets lacking certain ground truths, it excels across various tasks and

conditions. This flexibility makes it particularly well-suited for use in resource-limited en-

vironments or with datasets featuring sparse annotations.

Future enhancements will focus on improving the system’s robustness to effectively gen-

eralize across multiple datasets. Addressing variability in data distributions will ensure

consistent performance across diverse scenarios, paving the way for broader applications in

WBC diagnostics and analysis.
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