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                            Abstract 
 

COT kinase is a target for drug discovery against cancer and autoimmune 

disorders. They are located downstream to the IKK2, unaffecting the NF –

kappa B pathway. There is no such FDA approved drug against this protein and 

no extensive in-silico studies are being done till date. The structure is very 

unique as the P-loop is very flexible and a frameshift mutation exists in the αC 

helix. This study revolves around the structural dynamics study of COT Kinase 

in two forms- the apo and complex, both in unphosphorylated form and 

phosphorylated form. The phosphorylation is done on Threonine 290 residue. 

GaMD or Gaussian Accelerated Molecular Dynamics Simulation is done in 

triplicates for both the system. Further, the structural stability was studied for 

Phosphate binding loop(P-loop), Activation loop(A-loop), Catalytic loop(C-

loop) and αC helix. Root Mean Square Fluctuation values and Root Mean 

Square Deviation values provided strong insights to the extensible flexibility 

of P-loop exclusively for phosphorylated and complex systems respectively. 

Virtual Screening is done to find out a potent inhibitor than the control 

molecule followed by ADMET analysis and simulation studies to check the 

protein stability when inhibitor binds to it. Also, the effect on structure when 

Mg is bound to it and Mn is bound to it, has been elucidated. It has been found 

that Manganese stabilizes the flexible P-loop.  
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                           CHAPTER 1 

                   INTRODUCTION 

1.1 Kinases: 

Kinases are widely distributed protein molecules across prokaryotes 

and eukaryotes. This thesis deals with a human kinase, so the 

discussion is restricted only to human kinases. In humans, there are 

about 280 kinase proteins that have been reported and whose 

structures have been elucidated in detail. About 500 kinase genes 

are present, which make up about 2% of the human genome. It is a 

protein molecule, specifically an enzyme that helps in 

phosphorylation of a particular amino acid residue of another 

protein1. It uses ATP as a cofactor and snatches the gamma 

phosphate to add it to another protein, so that the other protein gets 

phosphorylated. This leads to various intercellular processes and 

metabolic functions. 

 

Figure 1.1: Protein phosphorylation catalyzed by a kinase enzyme. 

 

Kinases may be protein kinases or lipid kinases, depending upon the 

type of biomolecule they phosphorylate. They are known as 

“molecular switches” as the phosphorylation induces various 

structural changes leading to different functional activities. In 

kinases, phosphorylation functions as a key regulatory modification 
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that activates the enzyme by inducing conformational changes 

essential for its catalytic activity. Kinases can be broadly grouped 

into serine/threonine kinases or tyrosine kinases, depending on the 

target substrate that they phosphorylate. Tyr kinases phosphorylate 

on Tyrosine residue(s) present on the protein, and Ser-Thr kinase 

adds a phosphate group to either Serine amino acid or Threonine 

amino acid or both. Well-characterized examples include tyrosine 

kinases like JAK and SYK, and serine/threonine kinases such as 

MAPK, PI3K, and Akt, each playing critical roles in signal 

transduction pathways. In addition to serine/threonine and tyrosine 

kinases, other types such as histidine kinases, dual-specificity 

kinases, and aspartate (Asp) kinases have also been reported, 

highlighting the diversity of phosphorylation-based signaling 

mechanisms2.  

1.2 Role of kinase in humans: 

Kinases are central to various physiological processes in humans, 

including cell signaling, metabolism, and immune function. Their 

activities are often interdependent, with many kinases influencing 

one another and operating collectively within complex signaling 

pathways. They also play a major role in disease progression and 

Apoptosis3.  

1.2.1 Kinases in Cell division and Cell death: 

In cell growth and division, CDKs play a wide role. Their 

phosphorylation leads to activation of downstream molecules, 

thereby activating the cell cycle. CDK4, CDK6, and CDK1 are 

involved in cell cycle and division. The phosphorylation of 

CDK4/6 activates it and thereby aids in phosphorylation of Rb, 

which in turn detaches from E2F, a transcription factor. E2F then 

induces the transcription of cyclin E so that the cell can progress 

to S-phase. ATM and ATR kinases come into play during DNA 

damage. They activate the Chk1/2 molecule, which 

phosphorylates the p53 protein that, in turn, activates p21 so as 

to arrest the cell cycle and undergo Programmed Cell Death4.  
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1.2.2 Kinases in metabolism and hormonal signaling: 

Glycogen metabolism through Epinephrine signaling is well 

controlled by kinase molecules. Epinephrine, an amine hormone, 

is released by the Adrenal medulla during stressful conditions. 

The body requires energy for fight or flight action; thus, glucose 

is needed for the same. Epinephrine or Nor-epinephrine binds to 

the GPCR, and the Gα is activated as it is bound to GTP. The Gα 

molecule binds to Adenylate Cyclase and activates it. The 

Adenylate Cyclase converts ATP to cAMP, which in turn 

activates the PKA (Protein Kinase A). This PKA gets 

phosphorylated and activates the Phosphorylase kinase molecule 

that, in turn, activates glycogen phosphorylase, which converts 

glycogen to glucose. This glucose is broken down by glycolysis 

to release energy5. 

1.3 COT Kinase and its structure: 

The COT kinase, or the Cancer Osaka Thyroid Kinase, is encoded 

by the cot proto-oncogene located on the 10th chromosome. Its 

molecular weight is ~53 kDa and belongs to the MAP3K8 family. 

It is also known as Tpl2 (Tumor Progression Locus 2).  It takes part 

in cell signaling and activates the ERK pathway, which stimulates 

cell growth and also plays a key role in inflammatory reactions by 

stimulating the macrophages to produce cytokines like TNF-α and 

IL-1β. It is a serine/threonine protein kinase that uses Manganese or 

Magnesium as a cofactor. Depending on the ion used, the affinity 

towards ATP differs for COT kinase. Studies suggest that Mn2+ 

lowers the Km value, thereby increasing the affinity of the enzyme 

towards ATP6. 

The structure of COT kinase is very unique, and it bears a few 

differences from other kinases. The broad structure of the kinase 

domain reveals a well-defined architecture consisting of an N-

terminal lobe and a C-terminal lobe, along with key conserved 

elements such as the αC-helix, catalytic loop, activation loop, and 

the phosphate-binding loop (P-loop)/glycine-rich loop. The P-loop 
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is very flexible as compared to other kinases. It has a 15 amino acid 

insert before its GxGxxG motif, and thus it is about 20 amino acids 

long. The ATP binding site is located near the glycine-rich loop. 

Normally, the Lysine residue to β3 strand forms a salt bridge with 

the Glutamate of αC-helix, and in turn, the N-atom of the lysine 

residue forms Hydrogen bonding with the O-atoms of α and β 

phosphates of ATP. COT kinase bears an exception that instead of 

the Glu of the αC helix, Asp residue forms the salt bridge, and this 

anomaly is due to the frameshift mutation present in the αC helix. 

The protein contains two conserved water molecules that form an 

H-bond with the DFG motif. DFG is essential for the active or 

inactive kinase conformation. While the HRD motif is typically a 

conserved component of the catalytic loop in kinases, this particular 

molecule features an HHD motif instead. Substrate binds to the 

Activation loop, and the Threonine 290 residue is the site for 

phosphorylation. Interestingly, as compared to other kinases, this 

molecule has a conserved SPE motif instead of an APE motif in the 

activation loop. The Methionine 207 residue is the gatekeeper 

residue of this kinase, and the P-loop has a conserved Proline 

residue instead of glycine. Gatekeeper residue is present in the ATP 

binding region that aids in accessing the hydrophobic domain. It is 

an important residue for inhibitor binding, and mutation in this may 

lead to drug resistance as it would hinder inhibitor entry to the ATP 

binding pocket7. 
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Figure 1.2: Structure of the catalytic domain of COT kinase, 

highlighting distinct functional regions. The visualization was created 

using Visual Molecular Dynamics (VMD) with structural data from 

PDB ID: 4Y85 (Resolution: 2.33 Å). 

 

Table 1: Various key structural segments of the COT kinase are listed, 

along with their corresponding residue numbers. 

Name of the region  Residue numbers 

P-loop (Phosphate binding 

loop / Glycine-rich loop) 

131-150 

Activation loop (A-loop) 270-297 

Catalytic loop (C-loop) 251-258 

αC-helix 171-185 

DFG motif 270-272 

HHD motif 251-253 

Gatekeeper residue Met 207 
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1.4 Signaling pathway of COT Kinase: 

The COTK/Tpl2 signalling begins when a ligand binds to the 

receptor and induces conformational changes to activate 

downstream molecules like IKK2. When Epidermal growth factor 

binds to EGFR or Interleukins bind to Interleukin receptor, the 

IKK2 molecule is activated, which in turn activates COTK that in 

turn activates MEK (MAP Kinase Kinase) by phosphorylating it on 

Ser/Thr residue. The MEK then phosphorylates ERK (MAP 

Kinase), activating gene transcription to induce cell growth and 

development. The IKK2 molecule mediates the NF-kappa B 

pathway, and since COT Kinase or Tpl2 is downstream of it, the 

NF-kappa B pathway is not disturbed. Tpl2 forms a complex with 

ABIN2 and p105. The p105 degrades to p50, and it then induces 

gene transcription to aid in inflammation and cell growth by 

inducing the JNK pathway. The signalling results in the production 

of IL-1β and TNF, which promote inflammatory reactions and also 

induce cell growth and proliferation due to EGFR signalling. There 

are two key regions of interaction between Tpl-2 and p105. The 

kinase domain of Cot/Tpl-2 binds to the NF-kappa B-1/p105 DD 

(Death Domain), and the C terminus of Cot/Tpl-2 binds to the N-

terminal region residues of the p105 ankyrin repeats. The 

interaction prevents Cot/Tpl-2 from accessing its substrate MEK, 

greatly inhibiting the phosphorylation/activation of MEK. The 

inhibitory effect of the p105 DD is amplified by the concurrent 

interaction of the C terminus of Cot/Tpl-2 with p1056,8. 
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Figure 1.3: Schematic Representation of the COT Kinase 

Signalling Pathway. 

 

1.5 Diseases associated with COT Kinase: 

Overexpression of the protein enhances the signalling cascade and 

does not allow it to stop when cell signalling is not required. The 

excessive kinase stimulates the synthesis of huge amounts of growth 

factors, pro-inflammatory cytokines, and other molecules that lead 

to uncontrolled cell division and proliferation, thereby creating a 

favourable environment for cancer development. The cytokines aid 

in tumour progression, EMT9, and mediate inflammatory diseases 

like Diabetes Mellitus and Rheumatoid Arthritis. Papillary thyroid 

kinase, breast cancer, and ovarian cancers have been reported10. 

1.6 Inhibitors of COT Kinase: 

Targeting the catalytic kinase domain with small-molecule 

inhibitors has proven to be an effective therapeutic strategy against 

numerous disease conditions. These kinase-domain inhibitors11 are 

generally classified into Type I, Type II, and Type III. Type I and 

Type II inhibitors differ in their selectivity based on the orientation 

of the conserved DFG (Asp-Phe-Gly) motif within the kinase 

domain. In the active or DFG- “in” conformation, the aspartate 
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residue of the DFG motif points inward toward the ATP-binding 

site, a positioning essential for catalytic activity. Type I inhibitors 

bind to this active conformation. In contrast, Type II inhibitors 

preferentially bind to the DFG-“out” conformation, where the DFG-

Asp flips outward and the adjacent phenylalanine residue flips 

inward, a rearrangement known as the DFG-flip. This conformation 

represents an inactive state of the kinase, to which Type II inhibitors 

bind. MAP3K8 mutation is responsible for melanomas, as per 

studies, and it can be somehow controlled by Trametinib12. It is not 

inhibited by Staurosporine. Literature tells that 

Imidazonaphthyridine could be a good drug candidate for the COT 

Kinase. As per Therapeutic Target Database, two proposed drugs 

are available for the same, namely: Tilpisertib and fosmecarbilo for 

Inflammatory Bowel Disease, and Tpl2 kinase inhibitor, which is 

under clinical trial13. 

1.7 Motivation for the study of this molecule: 

The main reason for studying COT Kinase lies in the fact that to 

date, no prominent studies have been done on structural dynamics, 

and no potent inhibitor has been found yet. Also, the unique 

structure intrigues the study to dig out any unexplained truth. An 

inhibitor would target this molecule and treat several disorders 

without even affecting the NF-κB pathway. 
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                                CHAPTER 2 

                THEORETICAL ASPECTS 

“Atoms” are the tiny particles present in a substance that cannot exist 

independently. They cannot be divided further and are capable of 

forming molecules and compounds. Atomic motion occurs on extremely 

fast timescales, typically in the order of femtoseconds. Macromolecules 

such as proteins and carbohydrates, which are composed of numerous 

atoms, exhibit dynamic behavior that is far too rapid to be detected by 

conventional observation or many experimental techniques. Metabolic 

processes in the body, governed by macromolecules, often involve 

structural changes arising from atomic-level fluctuations. These changes 

can be explored through computational simulations, commonly referred 

to as in silico studies14. Techniques such as molecular dynamics (MD) 

simulations allow us to observe atomistic motions by generating 

snapshots of structural changes at femtosecond-scale time-steps. MD 

simulations, along with advanced variants such as NaMD, aMD, GaMD, 

and Lig-GaMD, are among the widely used techniques for studying 

biomolecular dynamics. 

2.1 MOLECULAR DYNAMIC SIMULATION: 

MD simulation is a computational tool that helps in analyzing the 

movement of atoms and molecules over a period of time. It uses classical 

and molecular mechanics to study the same. Generally, the time step 

kept is 1-2 fs. The movement of atoms is too fast, and hence we require 

a small timestep to capture it. The time step of 1-2 fs allows a proper 

snapshot of atomic movements. It is generally chosen keeping in mind 

the accuracy and computational cost. There are various algorithms to 

calculate the velocity and position of the atoms during a course of 

simulation. Commonly used integration algorithms are the Verlet 

algorithm, the Velocity-Verlet algorithm, and the Leapfrog algorithm. 

They extensively use integration methods for the calculation15. 
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2.1 Basics: 

The MD Simulation follows Newton’s second law of motion to calculate 

the potential energy and position of atoms in a system. According to the 

second law of Newton, the force on a body is equal to the mass times 

acceleration16. 

                                                    𝐹 = 𝑚𝑎                                        [2.1] 

                                                    𝑎 =
𝑑2𝑟

𝑑𝑡2                                          [2.2] 

                                                  𝐹 = 𝑚
𝑑2𝑟

𝑑𝑡2                                      [2.3] 

𝐹 = −
𝑑𝑉

𝑑𝑟
                                        [2.4] 

2.1.1 Verlet Algorithm: 

It is used to calculate the position of atoms. If we integrate v(t + Δt) 

based on the Taylor series, the result is17: 

𝑟(𝑡 + ∆𝑡) = 𝑟(𝑡) + ∆𝑡 𝑣(𝑡) +
1

2
∆𝑡2𝑎(𝑡) +

1

3!
∆𝑡3𝑏(𝑡) + 𝑂(∆𝑡4)   [2.5] 

𝑟(𝑡 − ∆𝑡) = 𝑟(𝑡) − ∆𝑡 𝑣(𝑡) +
1

2
∆𝑡2𝑎(𝑡) −

1

3!
∆𝑡3𝑏(𝑡) + 𝑂(∆𝑡4)   [2.6] 

Here, r is the position, t is the current time, and ∆𝑡 is the change in time. 

𝑣(𝑡) represents an acceleration of the atoms that is obtained by the first-

order differentiation of position (𝑣). 𝑎(𝑡) is the second-order 

differentiation value of 𝑣, and 𝑏(𝑡) is the third-order, and 𝑂(∆𝑡4) is the 

local error. 

If 𝑟(𝑡 + ∆𝑡) and 𝑟(𝑡 − ∆𝑡) are added, 

𝑟(𝑡 + ∆𝑡) + 𝑟(𝑡 − ∆𝑡) = 2𝑟(𝑡) + 𝑎(𝑡)∆𝑡2 + 𝑂(∆𝑡4)     [2.7] 

Therefore, velocity is: 

𝑣(𝑡) =
1

2∆𝑡
[𝑟(𝑡 + ∆𝑡) − 𝑟(𝑡 − ∆𝑡)]                    [2.8] 
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2.1.2 Velocity-Verlet Algorithm: 

The algorithm helps in calculating the position, velocity and acceleration 

of the atoms at the same time17. 

𝑟(𝑡 + ∆𝑡) = 𝑟(𝑡) + ∆𝑡𝑣(𝑡) +
1

2
∆𝑡2𝑎(𝑡)                       [2.9] 

𝑣(𝑡 + ∆𝑡) = 𝑣(𝑡) +
1

2
∆𝑡[𝑎(𝑡) + 𝑎(𝑡 + ∆𝑡)]                 [2.10] 

2.1.3 Leapfrog Algorithm: 

It is a modified form of the Verlet algorithm where the velocities are 

calculated for the time step 𝑡 +
1

2
∆𝑡 and then positions are calculated at 

the 𝑡 + ∆𝑡. 

𝑟(𝑡 + ∆𝑡) = 𝑟(𝑡) + 𝑣(𝑡 +
1

2
∆𝑡)∆𝑡                       [2.11] 

𝑣 (𝑡 +
1

2
∆𝑡) = 𝑣 (𝑡 −

1

2
∆𝑡) + 𝑎(𝑡)∆𝑡                    [2.12] 

2.2 FORCE FIELDS: 

A force field is a functional form for calculating a system’s potential 

energy for a set of atoms as a function of their specific coordinates. Both 

the bonded terms and non-bonded terms are used in calculating the 

potential energy. The bonded terms represent covalent interactions 

between atoms, whereas the non-covalent interactions are represented 

by non-bonded terms18. 

        𝑉𝑡𝑜𝑡𝑎𝑙 = 𝑉𝑏𝑜𝑛𝑑𝑒𝑑 + 𝑉𝑛𝑜𝑛−𝑏𝑜𝑛𝑑𝑒𝑑                      [2.13] 

        𝑉𝑏𝑜𝑛𝑑𝑒𝑑 = 𝑉𝑏𝑜𝑛𝑑−𝑙𝑒𝑛𝑔𝑡ℎ + 𝑉𝑏𝑜𝑛𝑑−𝑎𝑛𝑔𝑙𝑒 +𝑉𝑑𝑖ℎ𝑒𝑑𝑟𝑎𝑙𝑠 + 𝑉𝑖𝑚𝑝𝑟𝑜𝑝𝑒𝑟                      

[2.14] 

𝑉𝑛𝑜𝑛−𝑏𝑜𝑛𝑑𝑒𝑑 = 𝑉𝑣𝑑𝑊 + 𝑉𝑒𝑙𝑒𝑐                      [2.15] 

Here, 𝑉𝑣𝑑𝑊  represent the van der Waals interactions (LJ potential) and 

𝑉𝑒𝑙𝑒𝑐  tells the electrostatic interactions that arise due to oppositely 

charged ions.  

𝑉𝑏𝑜𝑛𝑑−𝑙𝑒𝑛𝑔𝑡ℎ = ∑
1

2
𝐾(𝑟 − 𝑟0)2                     [2.16] 
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𝑉𝑏𝑜𝑛𝑑−𝑎𝑛𝑔𝑙𝑒 = ∑
1

2
𝐾(𝜃 − 𝜃0)2                      [2.17] 

𝑉𝑑𝑖ℎ𝑒𝑑𝑟𝑎𝑙𝑠 = ∑ 𝐾[1 + cos (𝑛∅ − 𝛿)]                 [2.18] 

Commonly used force fields are: AMBER19, CHARMM, 

GROMACS, and OPLS. 

Commonly used force fields in molecular simulations include 

AMBER19, CHARMM, GROMACS, and OPLS. Selecting an 

appropriate force field is a critical step that significantly influences the 

simulation results. For proteins, widely used AMBER force fields 

include ff19SB20, ff14SB, and ff99SB. Carbohydrate simulations 

typically employ GLYCAM_06j, while ligands are often parameterized 

using GAFF2. For nucleic acids, OL21 or OL15 is used for DNA, and 

OL3 is commonly applied for RNA. In this study, AMBER1816 is used 

and ff119SB for protein, GAFF2 for ligand.  

2.3 PERIODIC BOUNDARY CONDITIONS: 

It is an MD simulation condition that mimics an infinite simulation box 

within a finite system. PBC allow us to estimate bulk properties more 

accurately. In a real physiological condition, solvent molecules are also 

involved along with solutes. in the systems. High computational cost 

and negligence of the surface effect of solvent molecules, the number of 

atoms in the simulation system is limited. PBC21 is used to face these 

issues, which creates an illusion of a bulk environment in a simulation. 

The solute and solvent molecules are enclosed in a box replicated in all 

three Cartesian dimensions to give a periodic array completely filling 

the space. 
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                       Figure 2.1: Periodic boundary conditions 

2.4 LONG-RANGE INTERACTIONS: 

Electrostatic interactions, van der Waals interactions, Coulomb forces, 

and Gravitational forces fall under long-range interactions. They imply 

that the atoms are at a significant distance from each other, that is beyond 

the cut-off distance. The main idea here is to neglect certain interaction 

pairs to increase the simulation efficiency and maintain the authenticity 

of the produced results. Both Lennard-Jones (LJ) and Coulombic 

interactions can be ignored beyond a certain distance, as their effect is 

negligible compared to the error of the simulations. For that reason, a 

cut-off scheme is used to ignore all long-range interactions beyond a 

certain distance. The intermolecular electrostatic interaction persists 

over a longer range than the LJ interaction, which hinders the above 

method’s usage21. For that, the Particle Mesh Ewald22 (PME) scheme is 

most widely used for calculating the long-range electrostatics in the 

periodic system during MD simulation. Real time space and Reciprocal 

space formulas are used to calculate the long-range interactions. The 

O(N2) formula is obsolete and has been replaced by the Fourier 

Transformation method, O (N log N). 

2.5 THERMOSTAT AND BAROSTAT: 

To maintain the appropriate conditions of temperature and pressure 

throughout the course of the simulation, Thermostats and Barostats are 

used. Fixed temperature and pressure are required to maintain the 

system’s kinetic energy and prevent it from blowing up. One of the 
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widely used Thermostat is the Langevin thermostat23, while the 

Bendersen Barostat is commonly employed for pressure regulation in 

MD simulations. In this thesis, the Langevin thermostat has been used, 

which uses the formula: 

𝐹 =  𝐹𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛 + 𝐹𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛 + 𝐹𝑟𝑎𝑛𝑑𝑜𝑚            [2.19]                                         

Here, 𝐹𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛  is the standard interactions calculated during the 

simulation, 𝐹𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛  is used to tune the “viscosity” of the implicit bath 

and 𝐹𝑟𝑎𝑛𝑑𝑜𝑚 gives how much the solvent collides randomly with each 

other.  

The popular Berendsen barostat24 couples the pressure with a pressure 

bath, which is shown below; 

𝜆 = 1 − 𝑘
𝛿𝑡

𝜏𝑃
(𝑃 − 𝑃𝑏𝑎𝑡ℎ)                       [2.20] 

𝑟𝑖 =  𝜆1/3𝑟𝑖                                  [2.21] 

Here, 𝑟𝑖 is the rescaled coordinates, 𝜏𝑃 is the time constant, and 𝑘 is the 

isothermal compressibility that mainly governs the coupling strength to 

the pressure bath. 

2.6 SOLVATION MODELS: 

It is used to solvate the biomolecules in the system. There are two types 

of water models: implicit or continuum and explicit. In the implicit water 

models, the effects of the solvent molecules are given to the system as a 

whole. While in the case of the explicit water models, the solvent is 

attached to each residue of the biomolecule so that all the contributions 

are considered. An explicit solvation system is more computationally 

expensive and more accurate than implicit water models, which are less 

computationally expensive. The most used water models are the 3-site 

model, where each site is for the nuclei of the water molecule. We have 

used the OPC25 water model to study the protein structural dynamics26, 

as it is much more accurate than TIP3P27 and is compatible with a 

protein force field. 4-site models include TIP4P27 and 5-site include 

TIP5P. They are expensive computationally and are not used routinely. 
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2.7 GAUSSIAN ACCELERATED MOLECULAR 

DYNAMICS: 

Gaussian Accelerated Molecular Dynamics (GaMD) refers to the 

technique that adds a harmonic boost potential to the initial system 

potential in order to lower or smooth the potential energy surface. Both 

the dihedral potential energy boost and the total potential energy boost 

can be implemented on the systems. It is a powerful augmented 

sampling technique that aids in lowering energy barriers, which speeds 

up conformational space exploration and prevents the structure from 

getting stuck at a point, making it able to reach its local minima easily. 

Unlike the Accelerated Molecular Dynamics (aMD) method, GaMD 

eradicates the statistical noise in large biomolecular systems during 

reweighting procedures. GaMD is much faster and more accurate than 

Conventional MD. It can sample much more of the conformational 

space than the conventional one. In this study, GaMD was done, and 

dual boost potential was given to both the apo and complex systems28. 

If a system's potential (𝑉) is less than that of the energy threshold (𝐸). 

In these situations, the modified potential (𝑉 ∗) is obtained by adding a 

harmonic boost potential (∆V): 

                    ∆𝑉 =
1

2
𝑘(𝐸 − 𝑉)2, 𝑖𝑓𝑉 < 𝐸                   [2.22] 

                    𝑉 ∗= 𝑉 +
1

2
𝑘(𝐸 − 𝑉)2, 𝑖𝑓𝑉 > 𝐸                [2.23] 

The boost potential (∆V) is brought to zero if the system potential (V) 

exceeds the threshold energy (E): 

                                      ∆𝑉 = 0, 𝑖𝑓𝑉 ≥ 𝐸  

                                      𝑉 ∗= 𝑉, 𝑖𝑓𝑉 ≤ 𝐸         
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                          CHAPTER 3 

        MATERIALS AND METHODS 

3.1 PDB Selection 

The PDB structure for COT Kinase was downloaded from the RCSB 

PDB2. For the study, PDB ID: 4Y85 was chosen, which had a resolution 

of 2.33 Å. This structure is an X-ray crystallography-derived one and 

has a ligand with it, named as ‘Imidazonaphthyridine.’ The PDB has 332 

amino acids, starting from G-Q, and has some missing residues too. The 

corresponding residues for different regions of the kinase domain of 

COT Kinase6 are represented in Figure 1.1 and listed in Table 1.  

3.2 System Preparation 

The protein structure was visualized in the UCSF Chimera29 software. 

The non-standard residues were removed, and the crystallographic water 

molecules were also deleted except those within less than 5 Å distance, 

as this kinase has two conserved molecules of water within it. The 

missing residues were modelled using the Modeller plugin of UCSF 

Chimera30. Six systems were prepared: apo unphosphorylated, apo 

phosphorylated, complex phosphorylated, complex unphosphorylated, 

Mn-ATP-protein complex, and Mg-ATP-Protein complex. The apo 

system has only protein, and the complex has both protein and ligand in 

it. Phosphorylation is manually performed at Thr290 residue for both the 

apo and complex. GaMD simulations and the AMBER 18 Leap module 

were used for the investigation. We have run a simulation of 2000 ns (2 

µs) in triplicate runs for both the Apo and Apo-Phosphorylated systems. 

The same GaMD28 simulations are run in triplicate for 2000 ns for the 

complex systems: COT Kinase bound to ligand Imidazonapthyridine7. 

The complex is studied to decipher a sharp contrast between the 

dynamics of a complex unphosphorylated system and a complex system 

phosphorylated at T290. Further, a comparative study is done for both 
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the apo and complex systems.   Imidazonapthyridine is taken as the 

control molecule in this study. 

The conventional Molecular Dynamics simulations were performed 

using AMBER16 18’s pmemd.cuda module. The Amber Leap Module 

was used, and the ff19SB force field was used for protein. The water 

model used is OPC, and the force field phosaa10 was used for the 

phosphorylated system. The GAFF2 force field is used for the 

parameterization of the ligand. Each system was solvated in an 

octahedral box, with a 10 Å buffer distance from the protein’s surface in 

all directions, using the OPC water model. To neutralize the system’s 

charge, 50 Na+ ions and 45 Cl− ions are added for the apo systems. The 

complex systems were solvated, and 34 Na+ ions and 31 Cl- ions were 

added to neutralize them. The SHAKE algorithm was used to satisfy 

bond geometrical constraints during a simulation, freeze H atoms, and 

cause vibrational motion of other atoms. A timestep of 2 fs was kept 

constant during the simulation.  

Table 2: The prepared systems along with their run time and number of 

independent replica simulation runs performed for each. 

Systems for simulation Production 

run time  

Number of 

independent 

replica runs 

Apo unphosphorylated 2 μs 3 

Apo phosphorylated (pT290) 2 μs 3 

Complex unphosphorylated 

(Protein + ligand) 

2 μs 3 

Complex phosphorylated (pT290) 

 

2 μs 3 

Protein + ATP + Mn2+ ion 2 μs 3 

Protein+ ATP + Mg2+ ion 2 μs 3 

 

The Mn-ATP-Protein complex and Mg-ATP-Protein complex were 

prepared using AdmetLab3.0 software. The PDBs are downloaded, and 
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they are used for simulations. For both cases, the force fields used are: 

GAFF2 for ligand, OPC for water, and ff19SB for protein. Solvation is 

done using the OPC water model, keeping the box size of 10 Å. The 

Antechamber package of AMBER18 is used to reduce the ligand, 

prepare all the topology files for the ligand, and prepare it for binding to 

the protein so that the protein-ligand complex simulation can be run.  

3.3 Simulation Protocol 

GaMD is used, and simulations are run in triplicate for 2000 ns. 

3.3.1 Minimization 

The systems are minimized to remove bond strains and unfavourable 

interactions. Minimization is performed in two steps. First, the solvent 

molecules are minimized while restraining the solute, using 5000 cycles 

of the steepest descent algorithm followed by 5000 cycles of the 

conjugate gradient algorithm. Next, solute and solvent are minimized 

together without restraints, employing 100 cycles of steepest descent 

followed by 900 cycles of conjugate gradient. Hence, it prevents the 

distortions of the conformation due to the high energetic interaction 

between the solvent and the solute. The step is done so that the system 

finds a local minimum and prevents it from “blowing up.”  

3.3.2 Heating 

Initially, the system was at 0 K, where it had no motion, and during the 

heating step, it was gradually heated to 300 K using the NVT approach. 

The heating is done gradually so that kinetic energy increases slowly 

and prevents the system from becoming unstable. The system was kept 

under controlled temperature and pressure conditions using the 

Langevin thermostat and Berendsen’s barostat. 

3.3.3 Equilibration 

As the production run is conducted under the NPT ensemble, a buffer 

time is required between the heating and production run to switch the 

ensemble. The equilibration stage aims to evolve the system from its 
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initial configuration to the equilibrium state. Here, specific 

thermodynamic properties, such as energy, temperature, pressure, etc., 

are monitored. Therefore, the equilibration is performed in the NVT31 

ensemble, allowing for the kinetic and potential energies to be 

equilibrated. Each system went through 20 ns of equilibration, a 3.2 ns 

Conventional MD simulation was run, and finally, GaMD Equilibration 

was done for 54.4 ns in each run. 

3.3.4 Production run 

After the equilibration process, the “production” phase starts, where data 

is collected for further analysis. The collected data is retained in this run, 

but it is not true for equilibration. However, parameters are the same in 

both the equilibration and production stages. The production simulation 

was performed for 2 μs in each run.  

3.4 Post-simulation trajectory analyses 

3.4.1 Root-Mean-Square Deviation (RMSD) 

RMSD (Root-Mean-Square Deviation) quantifies the structural 

difference between two molecular conformations by calculating the 

square root of the average squared distances between corresponding 

atoms. It measures how much the atomic positions have changed during 

a simulation. Higher RMSD values suggest a greater deviation in 

nuclear positions, and lower RMSD values indicate lower deviations, 

implying a stable conformation. 

3.4.2 Root Mean Square Fluctuation (RMSF) 

It tells about the residual fluctuations of a protein or biomolecule. Higher 

RMSF values indicate extreme movement of the residues during the 

simulation. Lower RMSF values depict restricted movement of the 

residues, leading to a stable conformation.  
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3.4.3 Solvent-Accessible Surface Area (SASA) 

It is the area of the biomolecule that is being exposed to water. Higher 

SASA says that specific amino acid residues of protein are more exposed 

towards water than those with less SASA.  

3.4.4 Radius of Gyration (RoG) 

In simple terms, the Radius of Gyration is the distribution of atoms 

around their centre of mass. In proteins, the RoG represents the 

compactness. If a protein has a high RoG value, it is less compact; the 

atoms are less tightly packed, possibly assuming an extended 

conformation. Lower RoG value implies that the protein is highly 

compact and has a tightly folded conformation. We study the 

compactness to check the changes that occurred after the simulation of 

the biomolecule. 

3.5 Essential dynamic studies 

3.5.1 Principal Component Analysis (PCA) 

It is a technique used to reduce the dimensionality of data by 

transforming it into a new set of variables called principal components. 

These components are ordered by the amount of variance they capture 

from the original dimensions, with PC1 representing the highest 

variance, followed by PC2, PC3, and so on. It is calculated by 

diagonalizing the covariance matrix averaged over all the trajectories, 

eradicating the rotations and translations. The eigenvalue represents the 

magnitude of the component, and the eigenvector depicts the direction32.  

3.5.2 Dynamic Cross Correlation Matrix (DCCM) 

It is the study of correlations of atoms in a system, and the output is 

given in the form of a matrix. The DCC produces an N × N heatmap, 

where N is the number of alpha carbon atoms in the system, and each 

matrix element corresponds to the dynamic cross-correlation between 

the i and j atoms. Correlation values range from −1 to +1, where +1 

indicates perfect correlation, −1 indicates perfect anti-correlation, and 0 
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signifies no correlation. The diagonal elements of a correlation matrix 

typically show a value of +1, reflecting an ideal correlation of each atom 

with itself. A positive correlation suggests that atoms move in the same 

direction and phase over time, whereas a negative (anti) correlation 

indicates that atoms move in opposite directions or phase33. 

3.5.3 Dihedral Principal Component Analysis (dPCA) 

It is used to study the structural rearrangement of loop regions. The 

dihedral angles are considered for the calculation. Hence, much of the 

overall motions can be eradicated from internal ones. The main 

advantage of using the backbone dihedral angle is that it will naturally 

undergo more changes than internal coordinates like bond length and 

bond angle for a molecule. Therefore, dihedral angle principal 

component analysis (dPCA), which is based on internal coordinates − 

the dihedral angle (φn, ψn) of the protein backbone, may help to separate 

the internal motions from overall dynamics34. 

3.5.4 Protein Structure Network Analysis (PSN) 

An alternative way to analyze protein structures beyond secondary 

structure and fold arrangements is to represent the interactions between 

residues as a network. The network can be built based on Cα, Cβ, atom 

pairs, centroid networks, or interaction-strength networks. Here, the 

node is created based on the Cα atom of an amino acid residue, and an 

unweighted edge is constructed if the paired residue Cα-Cα distance lies 

within the threshold distance (RC) of ~7 Å. Overall network view 

supports various analyses for identifying functional residue, predicting 

coevolving residues, understanding the mechanism of protein-protein 

interaction or domain-domain interaction, for understanding the 

communications between them35. 

3.6 Free energy calculation by MMPB(GB)SA  

The binding free energy of a ligand can be calculated by the 

MM/PB(GB)SA method. The method MM/PBSA36 uses the Poisson-

Boltzmann Equation to calculate the binding enthalpy, and MM/GBSA 
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uses the Generalized Born Equation36. The former method is more 

accurate and time-consuming as it considers all the electrostatic 

interactions. The GB method approximates the PB Equation and is less 

precise. It is also not suitable for molecules having high electrostatic 

interactions. 

  ∆𝐺 =  ∆𝐻 − 𝑇∆𝑆                                  [2.24] 

∆𝐻 = ∆𝐸𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙 +  ∆𝐺𝑠𝑜𝑙𝑣                          [2.25] 

∆𝐸𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙 = 𝐸𝑐𝑜𝑣𝑎𝑙𝑒𝑛𝑡 + 𝐸𝑛𝑜𝑛−𝑐𝑜𝑣𝑎𝑙𝑒𝑛𝑡               [2.26] 

∆𝐺𝑠𝑜𝑙𝑣 =  ∆𝐺𝑝𝑜𝑙𝑎𝑟 + ∆𝐺𝑛𝑜𝑛−𝑝𝑜𝑙𝑎𝑟                   [2.27] 

∆𝐺𝑛𝑜𝑛−𝑝𝑜𝑙𝑎𝑟 =  𝛼𝑆𝐴𝑆𝐴 +  𝛽                        [2.28] 

Here, 𝛼 is the surface tension coefficient, and 𝛽 is the offset constant. 

∆𝐻 represents a change in enthalpy, ∆𝐺 is the Gibbs free energy change, 

and ∆𝑆 is the entropy change.  

3.7 Entropy calculation 

It is calculated by Normal Mode Analysis37. Entropy refers to the degree 

of randomness of a system. Higher entropy implies greater randomness, 

and lower entropy resembles a stable system. 

3.8 K-means clustering 

It is an unsupervised ML38 approach that allows grouping of datasets 

into different clusters based on similarity. The data points are divided 

into K number of clusters, which maybe done manually or by K-means39 

++ methods. Then a centroid value is chosen from the data points, that 

corresponds to its mean. The distance is calculated between each data 

point and the centroid and this process is iterated by updating the 

centroid values, until there is no difference between the distances 

between centroid and data point. WCSS40 is a method that calculates the 

square of the distance between data point and centroid. A lower WCSS 

signifies a well-defined cluster, where centroid is close to the point. 
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3.9 Computer-Aided Drug Design 

A drug is a molecule that binds to a specific receptor present in our body 

and inhibits or activates some metabolic or cellular processes to treat 

certain diseases. The advent of the in-silico world has led to drug design 

methods using computational tools, reducing the pressure on wet lab 

experiments. AI/ML at present has outspread and extended its helping 

hand to drug discovery. 

The Drug discovery pipeline includes: 

1. Protein/target identification. 

2. Target preparation. 

3. Choosing a library of ligands. 

4. Virtual screening. 

5. Pre-clinical trials. 

6. Clinical trials. 

7. FDA approval of drugs. 

8. Post-marketing safety analysis. 

Drug development typically takes 7–10 years before a compound 

reaches the market. In-silico tools such as ProTox41, ADMET-AI42, 

and SwissADME43 have significantly streamlined this process by 

enabling early assessment of drug toxicity and allergenicity. 

Additionally, computational tools are available for pharmacokinetic 

studies, and Computer-Aided Drug Design44 (CADD) offers the 

potential to develop personalized medicine strategies tailored to 

individual patient profiles. 

3.10 Virtual Screening 

Virtual Screening45 is an in-silico process that checks the binding energy 

or docking score when many ligands are docked with a protein. This 

high-throughput process requires computational tools so that the 

docking results are generated within less time, and many compounds can 

be screened simultaneously. It is an essential step in Drug Discovery. 

Tools like Schrodinger, AutoDock46, and MolSoft47 are used for this 
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process. We can screen a large number of compounds in a short amount 

of time, relieving the pressure on wet-lab experiments. The hit 

compounds identified are then converted to leads and optimized further. 

This thesis uses MolSoft software for VS and DelaDrug3.048 software 

for Lead optimization. The VS technique involves: Structure Based 

Drug Design49 and Ligand Based Drug Design. 

3.11 ADMET Analysis 

The word stands for Absorption, Distribution, Metabolism, Excretion, 

and Toxicity related to drugs. It tells how toxic the drug is for human use 

and the extent of its absorption and metabolism. It is used to screen a 

drug to check whether it is fit for consumption or not. A drug should 

follow Lipinski’s rule and toxic parameters, that is, it should not be 

genotoxic or cytotoxic and should not cause harm to the organs. The 

drug is easily absorbed into the blood and evenly distributed. It should 

be properly excreted as well, or else the degraded products of the drug, 

when accumulated in the body, may pose serious threats. 

ADMETLab3.050 is used in this thesis. 

3.12 Rules for Drug Likeness 

There are several rules to choose whether the drug is consumable or not. 

Various parameters like molecular weight, H-bond formation, 

absorption ability, excretion, and hydrophilicity must be characterized 

before choosing it as a lead compound against the target. 

Lipinski’s rule51 of 5 states that the molecular weight of a Drug should 

be less than or equal to 500 g/mol, the log P52 value should be less than 

5, the H-bond acceptor less than 10, and the H-bond donor less than 5.  

MDDR-like rule53 was developed by Opera and focuses on parameters 

like the number of rings, rigid bonds, and rotatable bonds. As per this 

rule, there should be fewer than 10 rotatable bonds, as if there are a very 

high number of them, then the ligand becomes too flexible and might 

move out of the binding pocket. 
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Veber rule54 focuses on polar surface area (PSA) related to oral 

bioavailability. It states that PSA should be less than 140 Å2 to absorb 

and cross the cell barrier easily. PSA is the surface of the drug exposed 

to solvent; in simple words, it means the sum of the surface area of polar 

atoms in the drug. The Ghose filter55 is much more stringent than the 

Veber rule, stating that PSA should be less than 120 Å2. PSA of less than 

90 Å2 is a promising drug molecule that can easily absorb and cross the 

BBB (Blood Brain Barrier). Log P52 more than 5 implies the drug is 

highly lipophilic, and less than zero means it is highly hydrophilic. So, 

it should have a value that has a good balance between lipophilicity and 

hydrophilicity. The highly hydrophilic molecule is unwanted as it is 

highly water soluble and is easily excreted, while a highly lipophilic 

molecule attracts fat more and is less soluble in water.  
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                         CHAPTER 4 

                    OBJECTIVES  

Objective 1 

To study the structural dynamics of the protein COT kinase in both apo 

and complex form. Also to check the dynamics of the systems in 

phosphorylated form and unphosphorylated form. 

 

Objective 2 

To find a potent inhibitor against the COT Kinase using Computer Aided 

Drug Discovery techniques. 

 

Objective 3 

Study the differential effect of Mg2+ and Mn2+ on the dynamics of COT 

kinase. 
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                            CHAPTER 5 

         RESLUTS AND DISCUSSION  

Objective1: Study of the Structural Dynamics of apo and 

complex systems in both unphosphorylated and 

phosphorylated forms. 

Structural analysis- Overall stability, stability of conserved regions 

and ligand binding dynamics. 

To check the simulation convergence, stability of the systems, we have 

calculated the backbone RMSD of the systems that included all the N, 

C, Cα atoms. The Figures 5.1 (A-D) shows that all the systems have 

attained convergence at the end of all the runs, imparting stability to the 

systems. 

 

                      

Figure 5.1: The Figures portray the time evolution for all the three runs 

in all the systems (apo and complex). The backbone RMSD values range 

from 4-6 Å for all the systems. A- Apo unphosphorylated system, B- 

Apo phosphorylated system, C- Complex unphosphorylated system and 

D- Complex phosphorylated system. 
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Apo unphosphorylated system shows highest fluctuation in P-loop as the 

RMSD ranges from 8-9 Å in Figure 5.2. Phosphorylation of apo system 

lowered the deviation to some extent. Complexation strongly stabilized 

the P-loop as the RMSD ranges from 4-5 Å. 

 

Figure 5.2: The Figures portray the time evolution plot of P-loop RMSD 

for all the three runs in all the systems (apo and complex). A- Apo 

unphosphorylated system, B- Apo phosphorylated system, C- Complex 

unphosphorylated system and D- Complex phosphorylated system.  

 

From Figure 5.3, it can be stated that αC-helix for the systems is stable 

throughout the simulation, indicating no evident structural deviation. 

The RMSD ranges around 1Å. 
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Figure 5.3: The Figures portray the time evolution plot of αC-helix 

RMSD for all the three runs in all the systems (apo and complex). A- 

Apo unphosphorylated system, B- Apo phosphorylated system, C- 

Complex unphosphorylated system and D- Complex phosphorylated 

system. 

Activation loop is more or less stable for the four systems as seen in 

Figure 5.4. Slight deviations are observed in complex systems and it is 

due to the fact that on ligand binding, the Activation loop have adopted 

a new conformation for allowing or disallowing the substrate binding. 

For apo, the RMSD is around 2 Å and for complex it increases to 4 Å. 
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Figure 5.4: The Figures portray the time evolution plot of A-loop 

RMSD for all the three runs in all the systems (apo and complex). A- 

Apo unphosphorylated system, B- Apo phosphorylated system, C- 

Complex unphosphorylated system and D- Complex phosphorylated 

system.  

 

The Catalytic loop is rigid for the systems. Their RMSD ranges within 

the range of 1-1.25 Å. Runs are converged at the end of the simulations 

in Figure 5.5.  

 

Figure 5.5: The Figures portray the time evolution plot of C-loop 

RMSD for all the three runs in all the systems (apo and complex). A- 

Apo unphosphorylated system, B- Apo phosphorylated system, C- 

Complex unphosphorylated system and D- Complex phosphorylated 

system.  

 

Residual fluctuation analysis: 

The protein residues may be flexible or rigid. High RMSF values 

indicate higher flexibility, like P-loop of the molecule shows very high 



33 
 

residual flexibility especially for the apo unphosphorylated system. The 

αC-helix and C-loop are not showing fluctuations, rather they are rigid 

for the systems. Phosphorylation and complex formation is stabilizing 

the P-loop and restricting its extensive movements. Complex 

unphosphorylated system shows high fluctuation of the Activation loop, 

but the phosphorylation is making the loop stable. C-terminal end of the 

protein has evident flexibility may be due to structural changes on ligand 

binding and phosphorylation as in case of Figure 5.6. 

                           

 

Figure 5.6: The Figure reveals residual fluctuations for all the four 

systems. 

KDE plot is a graphical representation of the probability distribution of 

non-parametric or undistributed data sets. The Figure 5.7 shows the 

probability density of backbone RMSD for all the four systems. It 

showcases which RMSD value of the system has the highest probability. 

The Figure illustrates that both the complex phosphorylated system and 

the apo phosphorylated system undergo similar structural changes 

during simulation, hence their peaks are almost identical and in the same 

RMSD range, ~3.5 Å. An unphosphorylated system has slightly more 

structural deviation than the phosphorylated one, and its RMSD is 

around 4 Å. The unphosphorylated system initially shows a similar 

structural conformation to the phosphorylated one, but it adopts a new 

conformation whose RMSD is around 5.5 Å. 
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Figure 5.7: Probability distribution curve of backbone RMSD for 

apo and complex systems respectively. 

  

The Figure 5.8 shows the probability density of A-loop RMSD for 

all four systems. Initially, all the systems have undergone similar 

structural changes during simulation, hence their peaks are almost 

identical and in the same RMSD range, ~1-1.25 Å. Apo 

phosphorylated system shows a single sharp peak and suggests a 

rigid activation loop. Two peaks are observed for the complex 

phosphorylated system and the apo unphosphorylated system, one 

at around 1 Å and the other at 1.75 Å. The complex 

unphosphorylated system shows bimodal distribution, and it has 

adopted a new structure with an RMSD of around 3.25 Å. 

 

Figure 5.8: Probability distribution curve of A-loop RMSD for apo 

and complex systems respectively.  
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The probability distribution curve suggests that overall, the 

Catalytic loop is rigid for all the systems. Figure 5.9 shows the 

probability density of C-loop RMSD for all four systems. All the 

peaks show unimodal distribution and a sharp peak. The complex 

phosphorylated system shows a sharp peak at around 0.3 Å. The C-

loop is rigid for the same system. Apo phosphorylated system and 

Complex unphosphorylated system underwent similar 

conformational changes. 

 

Figure 5.9: Probability distribution curve of C-loop RMSD for apo 

and complex systems respectively.  

The Figure 5.10 shows the probability distribution plot of P-loop 

RMSD for all four systems. Apo unphosphorylated system shows 

highest structural deviation. Complex formation stabilizes the P-

loop. So, it can be inferred that the ligand, when bound to the 

pocket, imparts rigidity to the P-loop, restricting its movement. An 

extra peak is observed in the case of a complex phosphorylated 

system, but the RMSD ranged from 2-3 Å. A wide range of 

distribution is observed in the case of the apo phosphorylated 

system. 



36 
 

 

Figure 5.10: Probability distribution curve of P-loop RMSD for apo 

and complex systems respectively. 

The Figure 5.11 shows the probability distribution plot of αC-helix 

RMSD for all four systems. Not extreme structural deviations are 

observed and two peaks are formed in apo phosphorylated system. 

Broad peaks are present for both the complex phosphorylated 

system and complex unphosphorylated systems, indicating the 

presence of many conformations within the range of that RMSD. 

 

Figure 5.11: Probability distribution curve of αC-helix RMSD for 

apo and complex systems respectively. 
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Protein compactness study: 

Overall, the compactness of protein remained similar for the systems. 

Based on Figure 5.12,we can’t strongly comment on the fact that 

phosphorylation or complexation had any effect on the tight or loose 

binding of protein (compactness). The RoG values ranged from 21-21.5 

Å. 

                               

 

Figure 5.12: The Figure represents the Probability distribution curve of 

Radius of Gyration for all the systems (apo and complex). 

Study of Solvent Accessibility: 

The Figure 5.13 portrays that the solvent accessibility is similar for the 

systems, there is no significant changes in them. The similar residues are 

equally exposed to the solvent and there is no signification change in the 

residues that got exposed due to complexation or phosphorylation. Thus, 

it had no effect on solvent accessibility. 

    

Figure 5.13: Probability distribution curve of Solvent Accessible 

Surface Area for the systems. 
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Table 3: The backbone RMSD, RoG and SASA are calculated for the 

systems by Block Average method. The standard deviations are given in 

parentheses. 

Systems Backbone 

RMSD (in Å) 

Radius of 

Gyration (in Å) 

SASA (in 

nm2) 

Apo_unphos 3.97 ± (0.68) 21.17 ± (0.32) 168.49 ± 

(3.6) 

Apo_phos 3.45 ± (0.55) 21.14 ± (0.18) 169.3 ± 

(2.47) 

Complex_unphos 4.10 ± (0.99) 21.28 ± (0.25) 168.5 ± 

(2.82) 

Complex_phos 3.29 ± (0.41) 21.18 ± (0.16) 167.72 ± 

(3.15) 

 

Ligand and Pocket stability: 

The Figure 5.14 A implies that phosphorylation stabilizes the ligand. 

The ligand is slightly more flexible in case of unphosphorylated system. 

Figure 5.14 B tells that complexation stabilizes the binding pocket. The 

pocket fluctuates too much when it is free, that is during the absence of 

a ligand (apo form), the RMSD reaches upto 5 Å. 

        

Figure 5.14: Probability distribution curve of ligand RMSD and 

Binding pocket RMSD. 

 

. 

A B 
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Stability of motifs: 

Overall, the HHD motif is stable. Complex unphosphorylated 

system shows more flexibility of the motif as it has a higher RMSD 

as compared to other systems. DFG motif is also stable and on 

complex formation, it showed similar structural variations as 

highlighted in Figure 5.15. 

           

Figure 5.15: Probability distribution curve of DFG motif RMSD 

and HHD motif RMSD. 

 

Salt bridge analysis: 

Normally, salt bridge is formed between the Lys of β3 helix and Glu of 

αC-helix. But, in this kinase there is a frameshift mutation that leads to 

salt bridge formation between Lys of β3 helix and Asp of αC-helix. This 

is essential for proper kinase functioning and placement of ATP in the 

binding pocket to ensure proper catalysis. Generally, salt bridge is 

formed within 4 Å from one residue to other. The Figure 5.16 shows 

salt bridge formation in various systems. A sharp peak is observed in 

case of complex phosphorylated system, indicating formation of strong 

salt bridge.   

A B 



40 
 

 

Figure 5.16: The Figure shows salt bridge formation between K104 

and D115 in all the systems. 

 

Hydrogen bond analysis: 

H bond analysis is a very important study used to analyse ligand b 

binding strength to the protein. According to Lipinski rule, the H 

bond donor should be less than or equal to 6 and H bond acceptor 

less than 10. It is a very crucial parameter to design a drug and 

choose a potential drug candidate. It also portrays which residues of 

protein and ligand are participating in the bonding, thus modifying 

it would make a better drug. 

The Figure 5.17 shows time evolution of number of H bonds 

formed by complex in both phosphorylated and unphosphorylated 

form. Both the system's H bond range from 1-2, thus the 

phosphorylation of protein showed no significant difference in the 

number of H bonds formed on ligand binding. 
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System Run Hydrogen bond Occu-

pancy 

Ave-

rage 

dist

ance 

Average 

angle 

  Acceptor Donor    

 

 

 

 

 

Complex 

unnphos 

1 UNK_333

@N4  

GLY_147@

N  

32.58

% 

2.91 

Å 

159.2º 

 GLU_145

@O 

UNK_333

@N3 

73% 2.85 

Å 

158.7º 

 ASP_207

@OD1 

UNK_333

@N   

20.55

% 

2.83 

Å 

164º 

 ASP_207

@OD2 

UNK_333

@N  

13.55

% 

2.83

4 Å 

163.25º 

2 UNK_333

@N4 

GLY_147@

N   

28.98

% 

2.91 

Å 

153.6º 

 GLU_145

@O   

UNK_333

@N3 

72.14

% 

2.84 

Å 

162º  

 ASP_207

@OD1  

UNK_333

@N  

11.57

% 

2.83

6 Å 

163º 

 ASP_207

@OD2  

UNK_333

@N  

13.13

% 

2.83 

Å 

163º 

3 UNK_333

@N4   

GLY_147@

N 

25.6% 2.92 

Å 

153.6º 

 GLU_145

@O  

UNK_333

@N3  

72.85

% 

2.84 

Å 

162.18º 

 ASP_207

@OD2  

UNK_333

@N 

19.69

% 

2.83 

Å 

163.6º  

 1 UNK_333

@N4  

GLY_147@

N  

34.83

% 

2.91 

Å 

153.48º  

Complex 

phos 

GLU_145

@O 

UNK_333

@N3  

77.69

% 

2.84 

Å 

162.5º 

Table 4: Hydrogen bond analysis for the complex systems. 



42 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.17: Time series plot for Number of Hydrogen bonds formed 

by the ligand with the protein in unphosphorylated and phosphorylated 

forms respectively. 

GLU_154

@OE2  

UNK_333

@N5 

26.05

% 

2.82 

Å 

156.84º 

GLU_154

@OE1   

UNK_333

@N5 

22.28

% 

2.82 

Å 

155.39º 

2 UNK_333

@N4  

GLY_147@

N  

23.87

% 

2.92 

Å 

160.2º 

GLU_145

@O  

UNK_333

@N3  

73.10

% 

2.84 

Å 

161.5º 

ASP_207

@OD2  

UNK_333

@N 

 

12.33

% 

2.83 

Å 

163.59º 

ASP_207

@OD1 

UNK_333

@N  

14.88

% 

2.83 

Å 

163.63º 

3 UNK_333

@N4   

GLY_147@

N 

 

26.36

% 

2.92 

Å 

152.67º  

GLU_145

@O  

UNK_333

@N3   

76.62

% 

2.84 

Å 

161.38º 

ASP_207

@OD2 

UNK_333

@N 

12.75

% 

2.83 

Å 

162.36º 

ASP_207

@OD1  

UNK_333

@N 

12.17

% 

2.83 

Å 

163.3º 
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Principal Component Analysis: 

The Figure 5.18 suggests that apo unphosphorylated system has three 

global minima, separated by low energy barriers. Thus, the three 

conformations are easily interconvertible and the conformations are 

displayed in the same figure. Apo phosphorylated system has three 

conformations. Complex unphosphorylated is most stable as it has only 

one minimum. 

                 

Figure 5.18: Free Energy Landscape and extracted structures from the 

minima. A- Apo unphosphorylated system, B- Apo phosphorylated 

system, C- Complex unphosphorylated system and D- Complex 

phosphorylated system. 

 

C1 

C2 

C3 C1 

C2 

C3 

C1 
C1 

C2 
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Dynamic Cross-Correlation Matrix: 

The highlighted region R1 in Figure 5.19 shows more anti-correlation 

in apo unphosphorylated system, which is significantly reduced in the 

other three systems. However, slightly more anti-correlation is also 

observed in complex phosphorylated system. The region shows 

correlation or anti-correlation between the C-terminus of the protein and 

the αC-helix. 

        

                                

Figure 5.19: DCCM of the four systems.  

 

Dihedral Principal Component Analysis: 

The Figure 5.20 shows that apo unphosphorylated system, apo 

phosphorylated system and complex unphosphorylated system have two 

global minima; rendering a stable A-loop. Complex phosphorylated 

system has five global minima, thus it is not that stable.              
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Figure 5.20: dPCA of the A-loop to check their structural 

rearrangements. A- apo unphosphorylated system, B- apo 

phosphorylated system, C- complex unphosphorylated system and D- 

complex phosphorylated system. The P-loop structures are provided 

along with the FES. 

K-means clustering: 

The data points of the systems are divided into clusters based on WCCS 

method. Here, the elbow plot depicts that all the systems’ data points can 

be divided into 3 clusters, K=3. Then, the clusters are depicted in the 

graphs for individual systems, along the percentage occupancy. The 

precentage tells how much prominent the conformational state is  

C1 C2 

C3 C4 

C1 

C2 

C1 
C2 

C3 

C1 C2 C3 

C4 

C5 
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Figure 5.21: K-means clustering. E- Elbow plot, A- Apo 

unphosphorylated system, B- Apo phosphorylated system, C- Complex 

unphosphorylated system and D- Complex phosphorylated system. 

Binding free energy calculation by MMPBSA: 

The binding free energies of complex unphosphorylated system and 

complex phosphorylated system were checked. van der Waals 

interaction and Electrostatic interaction favours binding in both the 

system. The phosphorylated system had greater binding enthalpy than 

unphosphorylated one as evident from the table. Polar solvation 

enthalpy discourages binding due to positive enthalpy. 

 

Figure 5.22: Graphical representation of different energy values 

calculated by MMPB(GB)SA method for all the four systems. 
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Per-residue enthalpy:  

Trp 132, Pro 145 and Val 269 shows negative binding enthalpy for both 

the systems and thus these residues favour binding as observed in Figure 

5.23.        

 

Figure 5.23: Per-residue binding energy of complexes. 

Protein Structure Network analysis: 

In PSN, the nodes represent the amino acid residues of a protein, 

secondary structure or atoms present. The edges depict the interactions 

present between the atoms or residues. Hubs are the entities or the 

residues that are connected to four residues and interacts with each other. 

Communities are group of proteins that are densly connected to one 

another than that of others. 
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Table 5: The Protein Structure Network analysis for various systems. 

Network 

Properties 

Apo 

unphos 

Apo phos Complex 

unphos 

Complex 

Phos 

Imin 2.62 2.91 1.71 2.85 

Number of 

Linked Nodes 

301 298 302 310 

Number of 

Links 

379 351 371 348 

Number of 

Hubs 

68 49 60 43 

Number of 

Links 

mediated by 

Hubs 

230 170 213 163 

Number of 

Communities 

9 11 12 11 

Number of 

Nodes 

involved in 

Communities 

83 60 73 48 

Number of 

Links involved 

in 

Communities 

143 96 115 76 

 

The Table 5 reflects that apo unphosphorylated system has highest 

number of links and hubs, followed by complex unphosphorylated 

system. Complex unphosphorylated system shows highest number of 

communities, portraying a stable structure. Hence, it is densely 

interconnected as compared to other nodes. 
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Figure 5.24: Network analysis of A- apo unphosphorylated, B- apo 

phosphorylated, C- complex unphosphorylated and D- complex 

phosphorylated. The red represents highest number of communities 

followed by green, blue, yellow, cyan and pink. 

Per-residue RMSD of P-loop: 

The structure of P-loop is very intriguing and hence we have studied the 

per residue RMSD of the heavy atoms present in the P-loop to check 

which residues are contributing to structural deviations. The Figure 5.25 

shows that the loop is too much flexible in case of apo unphosphorylated 

system and on complexation the higher RMSD values (marked in 

orange-yellow) significantly reduces. Asparagine 75, Aspartate 79, 

Isoleucine 76 are significantly contributing to high RMSD. Ser 78 shows 

fluctuations in all the system except complex phosphorylated one.  
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Figure 5.25: Per-residue analysis of P-loop of A- apo unphosphorylated, 

B- apo phosphorylated, C- complex unphosphorylated and D- complex 

phosphorylated. Energy bar is provided along with. 

Per-residue RMSD of A-loop: 

The Activation loop is generally stable, except in the case of the complex 

unphosphorylated system. Specifically, the residues from 217-222 in 

this system contribute to significant structural deviations, which are 

mitigated by phosphorylation at the Thr290 residue. In contrast, no 

notable changes are seen in the A-loop of apo systems (from Figure 

5.26). Therefore, the process of complexation facilitates structural 

movements and conformational alterations in the A-loop, resulting in 

increased flexibility.  



51 
 

 

Figure 5.26: Per-residue analysis of A-loop of A- apo 

unphosphorylated, B- apo phosphorylated, C- complex 

unphosphorylated and D- complex phosphorylated. Energy bar is 

provided along with. 
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Objective 2: Identification of Novel Inhibitor(s) targeting 

the COT Kinase by Virtual Screening. 

Table 6: Virtual screening and ADMET analysis of lead molecules. 

Drug Molsoft 

score 

Mol.wt HBA HBD Log 

P 

Toxicity 

Control -53.6 316.11 7 4 2.9 Eye irritant 

and 

hepatotoxic 

Inhibitor -56.02 347.11 8 3 -0.2 Non 

corrosive 

and non-

cytotoxic. 

 

 Inhibitor SMILE:  

[H]C1=C=C(c2c([H])c([H])nc([H])c2[H])N([H])C(C2C1=C([H])C([H

])([H])N(C=2[H])C( H])([H])c1c([H])nc(nc1[H])N([H])[H])=O 

    

 

 

control 

Proposed inhibitor 



53 
 

The inhibitor was docked with COT Kinase protein and simulation was 

run for 400 ns to check the overall stability. 

Structural stability of ‘Control’ vs ‘Inhibitor’: 

The time evolution plot in Figure 5.27 shows that the inhibitor is 

stabilizing the kinase in a way much better than that of the control. The 

P-loop is showing high fluctuations in case of control, but it is highly 

stable when inhibitor is bound and RMSD is strictly 1.5 Å. For control, 

the Activation loop fluctuates from 150 ns, but the overall RMSD is 

maintained at 1 Å in case of inhibitor. 

       

Figure 5.27: Time evolution graphs showing RMSD values of various 

regions of the molecule when control is bound to it vs inhibitor bound 

to it. 
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Objective 3: Differential study of the effect of Mn2+ vs 

Mg2+ on the Structural Dynamics of COT Kinase. 

Literature studies suggest that when Mn is bound to protein, it lowers 

the Km value of the molecule and hence it has higher affinity for ATP as 

compared to when Mg is bound. 

We have studied the effect of both the cofactors on the structural stability 

of the complex.  

The Figure 5.28 shows that on Mn-ATP complexation, two RMSD are 

possible indicating the presence of two different conformations. Mg-

ATP complex shows a broader peak in the range of 4 Å. 

 

Figure 5.28: Probability distribution curve of backbone RMSD for both 

the complexes. 

Table 7: The values of backbone RMSD, SASA and Radius of Gyration 

calculated for the complexes using Block Average method. SD is given 

in parentheses. 

System Backbone 

RMSD (in Å) 

RoG (in Å) SASA (in nm2) 

Mn-ATP 3.97 ± (0.68) 21.17 ± (0.32) 168.49 ± (3.6) 

Mg-ATP 3.45 ± (0.55) 21.14 ± (0.18) 169.3 ± (2.47) 
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No such significant changes are observed in case of protein compactness 

and solvent accessibility. 

The Figure 5.29 shows that P-loop is too much flexible in case of Mg-

ATP system, but it becomes much stabler when Mn is bound. The 

Catalytic loop and A-loop are not too flexible for the systems. C-

terminus region shows flexibility in Mn-ATP system. 

 

Figure 5.29: Residual fluctuation for the systems. 

Too many wide peaks are observed especially in P-loop. Mn-ATP 

stabilizes it. It is due to conformational changes. Three peaks are seen 

for A-loop in both the systems, indicating the presence of three different 

structures that might have formed during simulation. 

Phosphate binding loop stability: 

The P-loop is extremely flexible for the Mg-ATP system and on Mn-

ATP complex formation, the loop’s flexibility lessens. Multiple peaks 

are observed for Mg-ATP system, indicating the possibility of too many 

conformations as evident from Figure 5.30. 

The time evolution plot unveils that Mg-ATP shows high deviations, 

especially in the run2 and all the runs are converged for the other system. 
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Figure 5.30: Time evolution plot and KDE plot of P-loop RMSD of both 

the systems. 

 

Activation loop stability: 

A-loop or the Activation loop is stabilized at around 4 Å for both the 

systems. Three sharp peaks are observed in case of Mg-ATP system, 

indicating the presence of three different conformations having varying 

RMSD values.  

The Figure 5.31 exhibits two sharp peaks in case of Mn-ATP system, 

pointing to the fact that there are two possible structures and they are 

less deviating than Mg-ATP system. 
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Figure 5.31: Time evolution plot and KDE plot of A-loop RMSD of 

both the systems. 

Hydrogen bond analysis: 

H bond analysis is a very important study used to analyse ligand binding 

strength to the protein. The Figure 5.32 shows time series plot for 

number of hydrogen bonds formed by Mn-ATP complex and Mg-ATP 

complex. The Mg-ATP complex forms around 2 H-bonds and Mn-ATP 

forms about 4 H-bonds. 

 

Figure 5.32: Time series plot for Number of Hydrogen bonds formed 

by the complexes. 
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Table 8: Hydrogen bond analysis for two complexes. 

           Binding couple         Molecular dynamics 

     Acceptor        Donor Occupancy 

(%) 

Average 

Distance (Å) 

                                            Mg-ATP complex 

ASN_195@OD1 ATP_333@O3’ 14.41% 2.70 Å 

GLU_154@OE1 ATP_333@N6 10.28% 2.76 Å 

                                           Mn-ATP complex 

ATP333@O2A SER_194@OG 44.72% 2.69 Å 

ATP333@O1A SER_194@OG 29.43% 2.69 Å 

SER_194@O ATP_333@O3’ 25.84% 2.67 Å 

SER_194@O ATP_333@O2’ 13.70%  2.77 Å 

 

The table shows that for Mn-ATP system, Ser 194 contributes maximum 

to the bonding and for Mg-ATP system, contribution of Asn 195 is 

maximum. 

 

Per-residue RMSD of P-loop: 

The per-residue RMSD for the P-loop of both Mn and Mg systems 

are calculated. It can be observed that Mn-ATP shows lower 

structural deviations as compared to that of Mg-ATP system. The 

Figure 5.33 shows that the residues like Asp 79, Asn 75, Arg 74 

contributes to maximum deviation in both the systems. Various 

residues like Pro 82, Arg 83, Ser 78, Leu 71, Pro 68 of Mg-ATP 

system contributed to maximum flexibilty and it is being diminshed 

on complexation with Mn-ATP. 
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Figure 5.33: Per-residue RMSD of P-loop for Mg-ATP system and 

Mn-ATP system. 

 

Per-residue RMSD of A-loop: 

The Activation loop of Mg-ATP system is slightly more flexible 

than that of Mn-ATP. The Gly 226, Val 218 shows highly RMSD 

values in case of Mg-ATP, that is diminished in case of Mn-ATP 

system as shown in Figure 5.34. 



60 
 

 

Figure 5.34: Per-residue RMSD of A-loop for Mg-ATP system and 

Mn-ATP system. 
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         CONCLUSION & FUTURE PROSPECTS 

The thesis dealt with the structural dynamics of a unique kinase, the 

COT Kinase. It unravels the effect of phosphorylation and 

complexation. Another aspect is studied: the use of cofactors, Mg 

vs Mn. On complexation, the P-loop is becoming stable and when 

Mn is used as a cofactor, the same phenomenon is observed. 

Catalytic loop is remaining stable overall. The parameters like 

SASA, RoG remained similar for the apo and complex systems 

respectively . Very high fluctuations are observed for the P-loop and 

similar pattern is seen for the C-terminal region of the kinase. Few 

amino acid residues are contributing to high RMSD values for the 

systems and it is evident from the graphs. The principal component 

analysis revealed the presence of global minima for the systems, 

from which the structures can be extracted. The conformations are 

interconvertible due to low energy barrier between them. Complex 

formation reduced the anti-correlated motions for the systems.  

Further, the study revolved around finding a potential drug 

candidate against the Kinase. The control molecule against the 

protein is “Imidazonapthyridine” and through Virtal Screening, an 

inhibitor is found and studied further. The inhibitor is stabilizing the 

molecule and extensive studies are required to prove its efficacy. 

The simulation results portrayed that the inhibitor is highly capable 

of preventing P-loop fluctuations and also it stablized the overall 

movements of the loop regions. 

No change in protein compactness is found when protein has Mg 

cofactor versus Mn cofactor. It also reflected no alteration in the 

solvent accessibility. However, Mn stabilized the flexible P-loop 

and on per-residue RMSD analysis, similar trend is observed. 

However, more studies are required on the same. 

The study has opened many future paths like the mutational aspect, 

discovery of drugs that would selectively bind to COT Kinase and 

not others, role of phytochemicals and natural products to treat 
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diseases caused due to overexpression of this molecule. Further, the 

torsion angle analysis, binding free calculation of the inhibitor, 

essential dynamic studies need to done to support the claim that 

inhibitor is better than our control. Moreover, genomics can be 

included to give another dimension to the study and find out how 

the drugs would influence a person’s health based on his genetic 

profile.  
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