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Abstract

COT kinase is a target for drug discovery against cancer and autoimmune
disorders. They are located downstream to the IKK2, unaffecting the NF —
kappa B pathway. There is no such FDA approved drug against this protein and
no extensive in-silico studies are being done till date. The structure is very
unique as the P-loop is very flexible and a frameshift mutation exists in the aC
helix. This study revolves around the structural dynamics study of COT Kinase
in two forms- the apo and complex, both in unphosphorylated form and
phosphorylated form. The phosphorylation is done on Threonine 290 residue.
GaMD or Gaussian Accelerated Molecular Dynamics Simulation is done in
triplicates for both the system. Further, the structural stability was studied for
Phosphate binding loop(P-loop), Activation loop(A-loop), Catalytic loop(C-
loop) and aC helix. Root Mean Square Fluctuation values and Root Mean
Square Deviation values provided strong insights to the extensible flexibility
of P-loop exclusively for phosphorylated and complex systems respectively.
Virtual Screening is done to find out a potent inhibitor than the control
molecule followed by ADMET analysis and simulation studies to check the
protein stability when inhibitor binds to it. Also, the effect on structure when
Mg is bound to it and Mn is bound to it, has been elucidated. It has been found
that Manganese stabilizes the flexible P-loop.
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CHAPTER 1

INTRODUCTION

1.1 Kinases:

Kinases are widely distributed protein molecules across prokaryotes
and eukaryotes. This thesis deals with a human kinase, so the
discussion is restricted only to human kinases. In humans, there are
about 280 kinase proteins that have been reported and whose
structures have been elucidated in detail. About 500 kinase genes
are present, which make up about 2% of the human genome. It is a
protein molecule, specifically an enzyme that helps in
phosphorylation of a particular amino acid residue of another
protein'. It uses ATP as a cofactor and snatches the gamma
phosphate to add it to another protein, so that the other protein gets
phosphorylated. This leads to various intercellular processes and
metabolic functions.

Protein Phosphorylated Protein

Protein Kinase

o

8 8
| © ©
© @ €. @
QIO o ®©
(s B (¢ B J
P @ P
©C @
©
ATP ADP

Figure 1.1: Protein phosphorylation catalyzed by a kinase enzyme.

Kinases may be protein kinases or lipid kinases, depending upon the
type of biomolecule they phosphorylate. They are known as
“molecular switches” as the phosphorylation induces various
structural changes leading to different functional activities. In

kinases, phosphorylation functions as a key regulatory modification
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that activates the enzyme by inducing conformational changes
essential for its catalytic activity. Kinases can be broadly grouped
into serine/threonine kinases or tyrosine kinases, depending on the
target substrate that they phosphorylate. Tyr kinases phosphorylate
on Tyrosine residue(s) present on the protein, and Ser-Thr kinase
adds a phosphate group to either Serine amino acid or Threonine
amino acid or both. Well-characterized examples include tyrosine
kinases like JAK and SYK, and serine/threonine kinases such as
MAPK, PI3K, and Akt, each playing critical roles in signal
transduction pathways. In addition to serine/threonine and tyrosine
kinases, other types such as histidine kinases, dual-specificity
kinases, and aspartate (Asp) kinases have also been reported,
highlighting the diversity of phosphorylation-based signaling
mechanisms?.
1.2 Role of kinase in humans:
Kinases are central to various physiological processes in humans,
including cell signaling, metabolism, and immune function. Their
activities are often interdependent, with many kinases influencing
one another and operating collectively within complex signaling
pathways. They also play a major role in disease progression and
Apoptosis®.
1.2.1 Kinases in Cell division and Cell death:

In cell growth and division, CDKs play a wide role. Their
phosphorylation leads to activation of downstream molecules,
thereby activating the cell cycle. CDK4, CDK6, and CDKI1 are
involved in cell cycle and division. The phosphorylation of
CDK4/6 activates it and thereby aids in phosphorylation of Rb,
which in turn detaches from E2F, a transcription factor. E2F then
induces the transcription of cyclin E so that the cell can progress
to S-phase. ATM and ATR kinases come into play during DNA
damage. They activate the Chkl/2 molecule, which
phosphorylates the p53 protein that, in turn, activates p21 so as

to arrest the cell cycle and undergo Programmed Cell Death®.



1.2.2 Kinases in metabolism and hormonal signaling:

Glycogen metabolism through Epinephrine signaling is well
controlled by kinase molecules. Epinephrine, an amine hormone,
is released by the Adrenal medulla during stressful conditions.
The body requires energy for fight or flight action; thus, glucose
is needed for the same. Epinephrine or Nor-epinephrine binds to
the GPCR, and the Ga is activated as it is bound to GTP. The Ga.
molecule binds to Adenylate Cyclase and activates it. The
Adenylate Cyclase converts ATP to cAMP, which in turn
activates the PKA (Protein Kinase A). This PKA gets
phosphorylated and activates the Phosphorylase kinase molecule
that, in turn, activates glycogen phosphorylase, which converts
glycogen to glucose. This glucose is broken down by glycolysis

to release energy".

1.3 COT Kinase and its structure:

The COT kinase, or the Cancer Osaka Thyroid Kinase, is encoded
by the cot proto-oncogene located on the 10th chromosome. Its
molecular weight is ~53 kDa and belongs to the MAP3KS8 family.
It is also known as Tpl2 (Tumor Progression Locus 2). It takes part
in cell signaling and activates the ERK pathway, which stimulates
cell growth and also plays a key role in inflammatory reactions by
stimulating the macrophages to produce cytokines like TNF-a and
IL-1. It is a serine/threonine protein kinase that uses Manganese or
Magnesium as a cofactor. Depending on the ion used, the affinity
towards ATP differs for COT kinase. Studies suggest that Mn?>"
lowers the Km value, thereby increasing the affinity of the enzyme
towards ATPS.

The structure of COT kinase is very unique, and it bears a few
differences from other kinases. The broad structure of the kinase
domain reveals a well-defined architecture consisting of an N-
terminal lobe and a C-terminal lobe, along with key conserved
elements such as the aC-helix, catalytic loop, activation loop, and

the phosphate-binding loop (P-loop)/glycine-rich loop. The P-loop



is very flexible as compared to other kinases. It has a 15 amino acid
msert before its GxGxxG motif, and thus it is about 20 amino acids
long. The ATP binding site is located near the glycine-rich loop.
Normally, the Lysine residue to B3 strand forms a salt bridge with
the Glutamate of aC-helix, and in turn, the N-atom of the lysine
residue forms Hydrogen bonding with the O-atoms of a and B
phosphates of ATP. COT kinase bears an exception that instead of
the Glu of the aC helix, Asp residue forms the salt bridge, and this
anomaly is due to the frameshift mutation present in the aC helix.
The protein contains two conserved water molecules that form an
H-bond with the DFG motif. DFG is essential for the active or
inactive kinase conformation. While the HRD motif is typically a
conserved component of the catalytic loop in kinases, this particular
molecule features an HHD motif instead. Substrate binds to the
Activation loop, and the Threonine 290 residue is the site for
phosphorylation. Interestingly, as compared to other kinases, this
molecule has a conserved SPE motif instead of an APE motif in the
activation loop. The Methionine 207 residue is the gatekeeper
residue of this kinase, and the P-loop has a conserved Proline
residue instead of glycine. Gatekeeper residue is present in the ATP
binding region that aids in accessing the hydrophobic domain. It is
an important residue for inhibitor binding, and mutation in this may
lead to drug resistance as it would hinder inhibitor entry to the ATP

binding pocket’.



Figure 1.2: Structure of the catalytic domain of COT kinase,
highlighting distinct functional regions. The visualization was created
using Visual Molecular Dynamics (VMD) with structural data from
PDB ID: 4Y85 (Resolution: 2.33 A).

Table 1: Various key structural segments of the COT kinase are listed,
along with their corresponding residue numbers.

Name of the region Residue numbers

P-loop (Phosphate binding 131-150

loop / Glycine-rich loop)

Activation loop (A-loop) 270-297
Catalytic loop (C-loop) 251-258
aC-helix 171-185
DFG motif 270-272
HHD motif 251-253
Gatekeeper residue Met 207




1.4 Signaling pathway of COT Kinase:

The COTK/Tpl2 signalling begins when a ligand binds to the
receptor and induces conformational changes to activate
downstream molecules like IKK2. When Epidermal growth factor
binds to EGFR or Interleukins bind to Interleukin receptor, the
IKK?2 molecule is activated, which in turn activates COTK that in
turn activates MEK (MAP Kinase Kinase) by phosphorylating it on
Ser/Thr residue. The MEK then phosphorylates ERK (MAP
Kinase), activating gene transcription to induce cell growth and
development. The IKK2 molecule mediates the NF-kappa B
pathway, and since COT Kinase or Tpl2 is downstream of it, the
NF-kappa B pathway is not disturbed. Tpl2 forms a complex with
ABIN2 and p105. The p105 degrades to p50, and it then induces
gene transcription to aid in inflammation and cell growth by
inducing the JNK pathway. The signalling results in the production
of IL-1P and TNF, which promote inflammatory reactions and also
induce cell growth and proliferation due to EGFR signalling. There
are two key regions of interaction between Tpl-2 and p105. The
kinase domain of Cot/Tpl-2 binds to the NF-kappa B-1/p105 DD
(Death Domain), and the C terminus of Cot/Tpl-2 binds to the N-
terminal region residues of the pl05 ankyrin repeats. The
interaction prevents Cot/Tpl-2 from accessing its substrate MEK,
greatly inhibiting the phosphorylation/activation of MEK. The
inhibitory effect of the p105 DD is amplified by the concurrent
interaction of the C terminus of Cot/Tpl-2 with p105%%.



Cell
Membi
SResEaR 7\ pre-TNF =

o ik Nt :.‘
p105 | Tpl2 ﬁmﬁn) y XXX&XXXXXX I
q:”ib P Q /
@ fmt D am !

. @ ) Y )
¥ \Q — "

p105 @ % > @Tﬂ'z T L’A‘/Nucleus

Figure 1.3: Schematic Representation of the COT Kinase
Signalling Pathway.

1.5 Diseases associated with COT Kinase:
Overexpression of the protein enhances the signalling cascade and
does not allow it to stop when cell signalling is not required. The
excessive kinase stimulates the synthesis of huge amounts of growth
factors, pro-inflammatory cytokines, and other molecules that lead
to uncontrolled cell division and proliferation, thereby creating a
favourable environment for cancer development. The cytokines aid
in tumour progression, EMT?, and mediate inflammatory diseases
like Diabetes Mellitus and Rheumatoid Arthritis. Papillary thyroid

kinase, breast cancer, and ovarian cancers have been reported'’.
1.6 Inhibitors of COT Kinase:

Targeting the catalytic kinase domain with small-molecule
inhibitors has proven to be an effective therapeutic strategy against
numerous disease conditions. These kinase-domain inhibitors'! are
generally classified into Type I, Type II, and Type III. Type I and
Type II inhibitors differ in their selectivity based on the orientation
of the conserved DFG (Asp-Phe-Gly) motif within the kinase

domain. In the active or DFG- “in” conformation, the aspartate



residue of the DFG motif points inward toward the ATP-binding
site, a positioning essential for catalytic activity. Type I inhibitors
bind to this active conformation. In contrast, Type II inhibitors
preferentially bind to the DFG-“ouf”” conformation, where the DFG-
Asp flips outward and the adjacent phenylalanine residue flips
inward, a rearrangement known as the DFG-flip. This conformation
represents an inactive state of the kinase, to which Type II inhibitors
bind. MAP3KS8 mutation is responsible for melanomas, as per
studies, and it can be somehow controlled by Trametinib'2. It is not
inhibited by Staurosporine. Literature tells that
Imidazonaphthyridine could be a good drug candidate for the COT
Kinase. As per Therapeutic Target Database, two proposed drugs
are available for the same, namely: Tilpisertib and fosmecarbilo for
Inflammatory Bowel Disease, and Tpl2 kinase inhibitor, which is

under clinical trial'3.

1.7 Motivation for the study of this molecule:
The main reason for studying COT Kinase lies in the fact that to
date, no prominent studies have been done on structural dynamics,
and no potent inhibitor has been found yet. Also, the unique
structure intrigues the study to dig out any unexplained truth. An
inhibitor would target this molecule and treat several disorders

without even affecting the NF-xB pathway.



CHAPTER 2

THEORETICAL ASPECTS

“Atoms” are the tiny particles present in a substance that cannot exist
independently. They cannot be divided further and are capable of
forming molecules and compounds. Atomic motion occurs on extremely
fast timescales, typically in the order of femtoseconds. Macromolecules
such as proteins and carbohydrates, which are composed of numerous
atoms, exhibit dynamic behavior that is far too rapid to be detected by
conventional observation or many experimental techniques. Metabolic
processes in the body, governed by macromolecules, often involve
structural changes arising from atomic-level fluctuations. These changes
can be explored through computational simulations, commonly referred
to as in silico studies'*. Techniques such as molecular dynamics (MD)
simulations allow us to observe atomistic motions by generating
snapshots of structural changes at femtosecond-scale time-steps. MD
simulations, along with advanced variants such as NaMD, aMD, GaMD,
and Lig-GaMD, are among the widely used techniques for studying

biomolecular dynamics.
2.1 MOLECULAR DYNAMIC SIMULATION:

MD simulation is a computational tool that helps in analyzing the
movement of atoms and molecules over a period of time. It uses classical
and molecular mechanics to study the same. Generally, the time step
kept is 1-2 fs. The movement of atoms is too fast, and hence we require
a small timestep to capture it. The time step of 1-2 fs allows a proper
snapshot of atomic movements. It is generally chosen keeping in mind
the accuracy and computational cost. There are various algorithms to
calculate the velocity and position of the atoms during a course of
simulation. Commonly used integration algorithms are the Verlet
algorithm, the Velocity-Verlet algorithm, and the Leapfrog algorithm.

They extensively use integration methods for the calculation'.



2.1 Basics:

The MD Simulation follows Newton’s second law of motion to calculate
the potential energy and position of atoms in a system. According to the

second law of Newton, the force on a body is equal to the mass times

acceleration'®.
F =ma [2.1]
=47 [2.2]
F=mil [2.3]
F=-% [2.4]

2.1.1 Verlet Algorithm:

It 1s used to calculate the position of atoms. If we integrate v(t + At)

based on the Taylor series, the result is'”:

r(t +At) = () + At v(t) + 5 At%a(t) + - A3b (L) + O(At*) [2.5]
r(t — At) = r(t) — At v(t) + At%a(t) — ZAb(L) + O(At*) [2.6]

Here, r is the position, t is the current time, and At is the change in time.
v(t) represents an acceleration of the atoms that is obtained by the first-
order differentiation of position (v). a(t) is the second-order
differentiation value of v, and b(t) is the third-order, and O (At*) is the

local error.
If r(t + At) and r(t — At) are added,

r(t + At) + r(t — At) = 2r(t) + a(t)At? + 0(At*)  [2.7]
Therefore, velocity is:

v(t) = i [r(t + At) — (¢t — AD)] [2.8]
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2.1.2 Velocity-Verlet Algorithm:

The algorithm helps in calculating the position, velocity and acceleration

of the atoms at the same time'”.

r(t + At) = r(t) + Atv(t) + %Atza(t) [2.9]

v(t + At) = v(t) + At[a(t) + a(t + At)] [2.10]

2.1.3 Leapfrog Algorithm:

It 1s a modified form of the Verlet algorithm where the velocities are
calculated for the time step ¢t + %At and then positions are calculated at

the ¢ + At.

r(t+ At) = r(t) + v(t + 5 At)At [2.11]
v (t + %At) =v (t - %At) + a(t)At [2.12]

2.2 FORCE FIELDS:

A force field is a functional form for calculating a system’s potential
energy for a set of atoms as a function of their specific coordinates. Both
the bonded terms and non-bonded terms are used in calculating the
potential energy. The bonded terms represent covalent interactions
between atoms, whereas the non-covalent interactions are represented

by non-bonded terms'®.

Viotar = Vbondea + Vnon-bonded [2.13]

Vbonded = Vbond—length + Vbond—angle +Vdihedrals + Vimproper
[2.14]

Vion-bondea = Voaw + Vetec [2.15]

Here, V, 4, represent the van der Waals interactions (LJ potential) and
Vaec tells the electrostatic interactions that arise due to oppositely

charged ions.

1
Vbond—length =X EK(r - rO)Z [2.16]
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Vbond—angle = Z%K(Q - 90)2 [217]
Vainedrais = ) K[1+ cos(n@ — §)] [2.18]

Commonly used force fields are: AMBER'”, CHARMM,
GROMACS, and OPLS.

Commonly used force fields in molecular simulations include
AMBER"”, CHARMM, GROMACS, and OPLS. Selecting an
appropriate force field is a critical step that significantly influences the
simulation results. For proteins, widely used AMBER force fields
include ff19SB?°, ff14SB, and ff99SB. Carbohydrate simulations
typically employ GLYCAM_06j, while ligands are often parameterized
using GAFF2. For nucleic acids, OL21 or OL15 is used for DNA, and
OL3 is commonly applied for RNA. In this study, AMBER18'¢ is used
and ff119SB for protein, GAFF2 for ligand.

2.3 PERIODIC BOUNDARY CONDITIONS:

It is an MD simulation condition that mimics an infinite simulation box
within a finite system. PBC allow us to estimate bulk properties more
accurately. In a real physiological condition, solvent molecules are also
involved along with solutes. in the systems. High computational cost
and negligence of the surface effect of solvent molecules, the number of
atoms in the simulation system is limited. PBC?! is used to face these
issues, which creates an illusion of a bulk environment in a simulation.
The solute and solvent molecules are enclosed in a box replicated in all
three Cartesian dimensions to give a periodic array completely filling

the space.
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Figure 2.1: Periodic boundary conditions
2.4 LONG-RANGE INTERACTIONS:

Electrostatic interactions, van der Waals interactions, Coulomb forces,
and Gravitational forces fall under long-range interactions. They imply
that the atoms are at a significant distance from each other, that is beyond
the cut-off distance. The main idea here is to neglect certain interaction
pairs to increase the simulation efficiency and maintain the authenticity
of the produced results. Both Lennard-Jones (LJ) and Coulombic
interactions can be ignored beyond a certain distance, as their effect is
negligible compared to the error of the simulations. For that reason, a
cut-off scheme is used to ignore all long-range interactions beyond a
certain distance. The intermolecular electrostatic interaction persists
over a longer range than the LJ interaction, which hinders the above
method’s usage?!. For that, the Particle Mesh Ewald*? (PME) scheme is
most widely used for calculating the long-range electrostatics in the
periodic system during MD simulation. Real time space and Reciprocal
space formulas are used to calculate the long-range interactions. The
O(N?) formula is obsolete and has been replaced by the Fourier

Transformation method, O (N log N).
2.5 THERMOSTAT AND BAROSTAT:

To maintain the appropriate conditions of temperature and pressure
throughout the course of the simulation, Thermostats and Barostats are
used. Fixed temperature and pressure are required to maintain the

system’s kinetic energy and prevent it from blowing up. One of the
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widely used Thermostat is the Langevin thermostat®, while the
Bendersen Barostat is commonly employed for pressure regulation in
MD simulations. In this thesis, the Langevin thermostat has been used,

which uses the formula;:

F= Finteraction + Ffriction + Frandom [2'19]

Here, Fipteraction 1S the standard interactions calculated during the
simulation, Fryiction 18 used to tune the “viscosity” of the implicit bath
and Fygnaom gives how much the solvent collides randomly with each

other.

The popular Berendsen barostat** couples the pressure with a pressure

bath, which is shown below;
5t
A=1- kT—P (P = Ppatn) [2.20]

r, = AY3r, [2.21]

Here, ; is the rescaled coordinates, TP is the time constant, and k is the
isothermal compressibility that mainly governs the coupling strength to

the pressure bath.
2.6 SOLVATION MODELS:

It is used to solvate the biomolecules in the system. There are two types
of water models: implicit or continuum and explicit. In the implicit water
models, the effects of the solvent molecules are given to the system as a
whole. While in the case of the explicit water models, the solvent is
attached to each residue of the biomolecule so that all the contributions
are considered. An explicit solvation system is more computationally
expensive and more accurate than implicit water models, which are less
computationally expensive. The most used water models are the 3-site
model, where each site is for the nuclei of the water molecule. We have
used the OPC?® water model to study the protein structural dynamics,
as it is much more accurate than TIP3P?’ and is compatible with a
protein force field. 4-site models include TIP4P?’ and 5-site include
TIPSP. They are expensive computationally and are not used routinely.
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2.7 GAUSSIAN ACCELERATED MOLECULAR
DYNAMICS:

Gaussian Accelerated Molecular Dynamics (GaMD) refers to the
technique that adds a harmonic boost potential to the initial system
potential in order to lower or smooth the potential energy surface. Both
the dihedral potential energy boost and the total potential energy boost
can be implemented on the systems. It is a powerful augmented
sampling technique that aids in lowering energy barriers, which speeds
up conformational space exploration and prevents the structure from
getting stuck at a point, making it able to reach its local minima easily.
Unlike the Accelerated Molecular Dynamics (aMD) method, GaMD
eradicates the statistical noise in large biomolecular systems during
reweighting procedures. GaMD is much faster and more accurate than
Conventional MD. It can sample much more of the conformational
space than the conventional one. In this study, GaMD was done, and

dual boost potential was given to both the apo and complex systems?®,

If a system's potential (V) is less than that of the energy threshold (E).
In these situations, the modified potential (V *) is obtained by adding a
harmonic boost potential (AV):

AV = ~k(E = V)%, ifV <E [2.22]
V=V +-k(E—-V)2ifV>E [2.23]

The boost potential (AV) is brought to zero if the system potential (V)
exceeds the threshold energy (E):

AV = 0,ifV = E

V=V,ifV <E
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CHAPTER 3

MATERIALS AND METHODS

3.1 PDB Selection

The PDB structure for COT Kinase was downloaded from the RCSB
PDB?. For the study, PDB ID: 4Y85 was chosen, which had a resolution
of 2.33 A. This structure is an X-ray crystallography-derived one and
has a ligand with it, named as ‘Imidazonaphthyridine.” The PDB has 332
amino acids, starting from G-Q, and has some missing residues too. The
corresponding residues for different regions of the kinase domain of

COT Kinase® are represented in Figure 1.1 and listed in Table 1.
3.2 System Preparation

The protein structure was visualized in the UCSF Chimera® software.
The non-standard residues were removed, and the crystallographic water
molecules were also deleted except those within less than 5 A distance,
as this kinase has two conserved molecules of water within it. The
missing residues were modelled using the Modeller plugin of UCSF
Chimera®’. Six systems were prepared: apo unphosphorylated, apo
phosphorylated, complex phosphorylated, complex unphosphorylated,
Mn-ATP-protein complex, and Mg-ATP-Protein complex. The apo
system has only protein, and the complex has both protein and ligand in
it. Phosphorylation is manually performed at Thr290 residue for both the
apo and complex. GaMD simulations and the AMBER 18 Leap module
were used for the investigation. We have run a simulation of 2000 ns (2
us) in triplicate runs for both the Apo and Apo-Phosphorylated systems.
The same GaMD?® simulations are run in triplicate for 2000 ns for the
complex systems: COT Kinase bound to ligand Imidazonapthyridine’.
The complex is studied to decipher a sharp contrast between the
dynamics of a complex unphosphorylated system and a complex system

phosphorylated at T290. Further, a comparative study is done for both
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the apo and complex systems. Imidazonapthyridine is taken as the

control molecule in this study.

The conventional Molecular Dynamics simulations were performed
using AMBER'® 18’s pmemd.cuda module. The Amber Leap Module
was used, and the ff19SB force field was used for protein. The water
model used is OPC, and the force field phosaal0 was used for the
phosphorylated system. The GAFF2 force field is used for the
parameterization of the ligand. Each system was solvated in an
octahedral box, with a 10 A buffer distance from the protein’s surface in
all directions, using the OPC water model. To neutralize the system’s
charge, 50 Na" ions and 45 CI ions are added for the apo systems. The
complex systems were solvated, and 34 Na" ions and 31 CI ions were
added to neutralize them. The SHAKE algorithm was used to satisfy
bond geometrical constraints during a simulation, freeze H atoms, and
cause vibrational motion of other atoms. A timestep of 2 fs was kept

constant during the simulation.

Table 2: The prepared systems along with their run time and number of

independent replica simulation runs performed for each.

Systems for simulation Production Number of

run time independent
replica runs

Apo unphosphorylated 2 us 3

Apo phosphorylated (pT2%) 2 ps 3

Complex unphosphorylated | 2 ps 3

(Protein + ligand)

Complex phosphorylated (pT2%) |2 ps 3

Protein + ATP + Mn?*ion 2 us 3

Protein+ ATP + Mg?* ion 2 us 3

The Mn-ATP-Protein complex and Mg-ATP-Protein complex were
prepared using AdmetLab3.0 software. The PDBs are downloaded, and
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they are used for simulations. For both cases, the force fields used are:
GAFF2 for ligand, OPC for water, and ff19SB for protein. Solvation is
done using the OPC water model, keeping the box size of 10 A. The
Antechamber package of AMBERIS is used to reduce the ligand,
prepare all the topology files for the ligand, and prepare it for binding to

the protein so that the protein-ligand complex simulation can be run.
3.3 Simulation Protocol

GaMD is used, and simulations are run in triplicate for 2000 ns.
3.3.1 Minimization

The systems are minimized to remove bond strains and unfavourable
interactions. Minimization is performed in two steps. First, the solvent
molecules are minimized while restraining the solute, using 5000 cycles
of the steepest descent algorithm followed by 5000 cycles of the
conjugate gradient algorithm. Next, solute and solvent are minimized
together without restraints, employing 100 cycles of steepest descent
followed by 900 cycles of conjugate gradient. Hence, it prevents the
distortions of the conformation due to the high energetic interaction
between the solvent and the solute. The step is done so that the system

finds a local minimum and prevents it from “blowing up.”
3.3.2 Heating

Initially, the system was at 0 K, where it had no motion, and during the
heating step, it was gradually heated to 300 K using the NVT approach.
The heating is done gradually so that kinetic energy increases slowly
and prevents the system from becoming unstable. The system was kept
under controlled temperature and pressure conditions using the

Langevin thermostat and Berendsen’s barostat.
3.3.3 Equilibration

As the production run is conducted under the NPT ensemble, a buffer
time is required between the heating and production run to switch the

ensemble. The equilibration stage aims to evolve the system from its
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initial configuration to the equilibrium state. Here, specific
thermodynamic properties, such as energy, temperature, pressure, etc.,
are monitored. Therefore, the equilibration is performed in the NVT?!
ensemble, allowing for the kinetic and potential energies to be
equilibrated. Each system went through 20 ns of equilibration, a 3.2 ns
Conventional MD simulation was run, and finally, GaMD Equilibration

was done for 54.4 ns in each run.
3.3.4 Production run

After the equilibration process, the “production” phase starts, where data
is collected for further analysis. The collected data is retained in this run,
but it is not true for equilibration. However, parameters are the same in
both the equilibration and production stages. The production simulation

was performed for 2 ps in each run.
3.4 Post-simulation trajectory analyses

3.4.1 Root-Mean-Square Deviation (RMSD)

RMSD (Root-Mean-Square Deviation) quantifies the structural
difference between two molecular conformations by calculating the
square root of the average squared distances between corresponding
atoms. It measures how much the atomic positions have changed during
a simulation. Higher RMSD values suggest a greater deviation in
nuclear positions, and lower RMSD values indicate lower deviations,

implying a stable conformation.
3.4.2 Root Mean Square Fluctuation (RMSF)

It tells about the residual fluctuations of a protein or biomolecule. Higher
RMSF values indicate extreme movement of the residues during the
simulation. Lower RMSF values depict restricted movement of the

residues, leading to a stable conformation.
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3.4.3 Solvent-Accessible Surface Area (SASA)

It is the area of the biomolecule that is being exposed to water. Higher
SASA says that specific amino acid residues of protein are more exposed

towards water than those with less SASA.
3.4.4 Radius of Gyration (RoG)

In simple terms, the Radius of Gyration is the distribution of atoms
around their centre of mass. In proteins, the RoG represents the
compactness. If a protein has a high RoG value, it is less compact; the
atoms are less tightly packed, possibly assuming an extended
conformation. Lower RoG value implies that the protein is highly
compact and has a tightly folded conformation. We study the
compactness to check the changes that occurred after the simulation of

the biomolecule.

3.5 Essential dynamic studies

3.5.1 Principal Component Analysis (PCA)

It is a technique used to reduce the dimensionality of data by
transforming it into a new set of variables called principal components.
These components are ordered by the amount of variance they capture
from the original dimensions, with PC1 representing the highest
variance, followed by PC2, PC3, and so on. It is calculated by
diagonalizing the covariance matrix averaged over all the trajectories,
eradicating the rotations and translations. The eigenvalue represents the

magnitude of the component, and the eigenvector depicts the direction®2.
3.5.2 Dynamic Cross Correlation Matrix (DCCM)

It is the study of correlations of atoms in a system, and the output is
given in the form of a matrix. The DCC produces an N x N heatmap,
where N is the number of alpha carbon atoms in the system, and each
matrix element corresponds to the dynamic cross-correlation between
the i1 and j atoms. Correlation values range from —1 to +1, where +1
indicates perfect correlation, —1 indicates perfect anti-correlation, and 0
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signifies no correlation. The diagonal elements of a correlation matrix
typically show a value of +1, reflecting an ideal correlation of each atom
with itself. A positive correlation suggests that atoms move in the same
direction and phase over time, whereas a negative (anti) correlation

indicates that atoms move in opposite directions or phase*’.
3.5.3 Dihedral Principal Component Analysis (APCA)

It is used to study the structural rearrangement of loop regions. The
dihedral angles are considered for the calculation. Hence, much of the
overall motions can be eradicated from internal ones. The main
advantage of using the backbone dihedral angle is that it will naturally
undergo more changes than internal coordinates like bond length and
bond angle for a molecule. Therefore, dihedral angle principal
component analysis (dPCA), which is based on internal coordinates —
the dihedral angle (¢n, Wn) of the protein backbone, may help to separate

the internal motions from overall dynamics>*.
3.5.4 Protein Structure Network Analysis (PSN)

An alternative way to analyze protein structures beyond secondary
structure and fold arrangements is to represent the interactions between
residues as a network. The network can be built based on Ca, Cp, atom
pairs, centroid networks, or interaction-strength networks. Here, the
node is created based on the Co atom of an amino acid residue, and an
unweighted edge is constructed if the paired residue Co-Ca distance lies
within the threshold distance (RC) of ~7 A. Overall network view
supports various analyses for identifying functional residue, predicting
coevolving residues, understanding the mechanism of protein-protein
interaction or domain-domain interaction, for understanding the

communications between them®.
3.6 Free energy calculation by MMPB(GB)SA

The binding free energy of a ligand can be calculated by the
MM/PB(GB)SA method. The method MM/PBSA?¢ uses the Poisson-
Boltzmann Equation to calculate the binding enthalpy, and MM/GBSA
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uses the Generalized Born Equation®®. The former method is more
accurate and time-consuming as it considers all the electrostatic
interactions. The GB method approximates the PB Equation and is less

precise. It is also not suitable for molecules having high electrostatic

interactions.
AG = AH —TAS [2.24]
AH = AEimiornar + AGsony [2.25]
AEinternal = Ecovatent + Enon-covalent [2.26]
AGsor, = AGporar + AGron—potar [2.27]
AGnon-polar = aSASA+ B [2.28]

Here, a is the surface tension coefficient, and S is the offset constant.
AH represents a change in enthalpy, AG is the Gibbs free energy change,
and AS is the entropy change.

3.7 Entropy calculation

It is calculated by Normal Mode Analysis®’. Entropy refers to the degree
of randomness of a system. Higher entropy implies greater randomness,

and lower entropy resembles a stable system.
3.8 K-means clustering

It is an unsupervised ML*® approach that allows grouping of datasets
into different clusters based on similarity. The data points are divided
into K number of clusters, which maybe done manually or by K-means>’
++ methods. Then a centroid value is chosen from the data points, that
corresponds to its mean. The distance is calculated between each data
point and the centroid and this process is iterated by updating the
centroid values, until there is no difference between the distances
between centroid and data point. WCSS* is a method that calculates the

square of the distance between data point and centroid. A lower WCSS

signifies a well-defined cluster, where centroid is close to the point.
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3.9 Computer-Aided Drug Design

A drug is a molecule that binds to a specific receptor present in our body
and inhibits or activates some metabolic or cellular processes to treat
certain diseases. The advent of the in-silico world has led to drug design
methods using computational tools, reducing the pressure on wet lab
experiments. AI/ML at present has outspread and extended its helping

hand to drug discovery.
The Drug discovery pipeline includes:

1. Protein/target identification.
Target preparation.

Choosing a library of ligands.
Virtual screening.
Pre-clinical trials.

Clinical trials.

FDA approval of drugs.

e A e T

Post-marketing safety analysis.

Drug development typically takes 7—10 years before a compound
reaches the market. In-silico tools such as ProTox*', ADMET-AI*?,
and SwissADME®* have significantly streamlined this process by
enabling early assessment of drug toxicity and allergenicity.
Additionally, computational tools are available for pharmacokinetic
studies, and Computer-Aided Drug Design** (CADD) offers the
potential to develop personalized medicine strategies tailored to

individual patient profiles.
3.10 Virtual Screening

Virtual Screening® is an in-silico process that checks the binding energy
or docking score when many ligands are docked with a protein. This
high-throughput process requires computational tools so that the
docking results are generated within less time, and many compounds can
be screened simultaneously. It is an essential step in Drug Discovery.

Tools like Schrodinger, AutoDock*, and MolSoft*’ are used for this
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process. We can screen a large number of compounds in a short amount
of time, relieving the pressure on wet-lab experiments. The hit
compounds identified are then converted to leads and optimized further.
This thesis uses MolSoft software for VS and DelaDrug3.0*® software
for Lead optimization. The VS technique involves: Structure Based

Drug Design*’ and Ligand Based Drug Design.
3.11 ADMET Analysis

The word stands for Absorption, Distribution, Metabolism, Excretion,
and Toxicity related to drugs. It tells how toxic the drug is for human use
and the extent of its absorption and metabolism. It is used to screen a
drug to check whether it is fit for consumption or not. A drug should
follow Lipinski’s rule and toxic parameters, that is, it should not be
genotoxic or cytotoxic and should not cause harm to the organs. The
drug is easily absorbed into the blood and evenly distributed. It should
be properly excreted as well, or else the degraded products of the drug,
when accumulated in the body, may pose serious threats.

ADMETLab3.0°° is used in this thesis.

3.12 Rules for Drug Likeness

There are several rules to choose whether the drug is consumable or not.
Various parameters like molecular weight, H-bond formation,
absorption ability, excretion, and hydrophilicity must be characterized

before choosing it as a lead compound against the target.

Lipinski’s rule’! of 5 states that the molecular weight of a Drug should
be less than or equal to 500 g/mol, the log P>? value should be less than
5, the H-bond acceptor less than 10, and the H-bond donor less than 5.

MDDR-like rule’® was developed by Opera and focuses on parameters
like the number of rings, rigid bonds, and rotatable bonds. As per this
rule, there should be fewer than 10 rotatable bonds, as if there are a very
high number of them, then the ligand becomes too flexible and might

move out of the binding pocket.
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Veber rule®* focuses on polar surface area (PSA) related to oral
bioavailability. It states that PSA should be less than 140 A? to absorb
and cross the cell barrier easily. PSA is the surface of the drug exposed
to solvent; in simple words, it means the sum of the surface area of polar
atoms in the drug. The Ghose filter®® is much more stringent than the
Veber rule, stating that PSA should be less than 120 A% PSA of less than
90 A? is a promising drug molecule that can easily absorb and cross the
BBB (Blood Brain Barrier). Log P> more than 5 implies the drug is
highly lipophilic, and less than zero means it is highly hydrophilic. So,
it should have a value that has a good balance between lipophilicity and
hydrophilicity. The highly hydrophilic molecule is unwanted as it is
highly water soluble and is easily excreted, while a highly lipophilic

molecule attracts fat more and is less soluble in water.
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CHAPTER 4
OBJECTIVES

Objective 1

To study the structural dynamics of the protein COT kinase in both apo
and complex form. Also to check the dynamics of the systems in

phosphorylated form and unphosphorylated form.

Objective 2

To find a potent inhibitor against the COT Kinase using Computer Aided

Drug Discovery techniques.

Objective 3

Study the differential effect of Mg?* and Mn?" on the dynamics of COT

kinase.
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CHAPTER S

RESLUTS AND DISCUSSION

Objectivel: Study of the Structural Dynamics of apo and
complex systems in both wunphosphorylated and

phosphorylated forms.

Structural analysis- Overall stability, stability of conserved regions

and ligand binding dynamics.

To check the simulation convergence, stability of the systems, we have
calculated the backbone RMSD of the systems that included all the N,
C, Cqatoms. The Figures 5.1 (A-D) shows that all the systems have
attained convergence at the end of all the runs, imparting stability to the

systems.
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Figure 5.1: The Figures portray the time evolution for all the three runs
in all the systems (apo and complex). The backbone RMSD values range
from 4-6 A for all the systems. A- Apo unphosphorylated system, B-
Apo phosphorylated system, C- Complex unphosphorylated system and
D- Complex phosphorylated system.
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Apo unphosphorylated system shows highest fluctuation in P-loop as the
RMSD ranges from 8-9 A in Figure 5.2. Phosphorylation of apo system
lowered the deviation to some extent. Complexation strongly stabilized

the P-loop as the RMSD ranges from 4-5 A.
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Figure 5.2: The Figures portray the time evolution plot of P-loop RMSD
for all the three runs in all the systems (apo and complex). A- Apo
unphosphorylated system, B- Apo phosphorylated system, C- Complex
unphosphorylated system and D- Complex phosphorylated system.

From Figure 5.3, it can be stated that aC-helix for the systems is stable
throughout the simulation, indicating no evident structural deviation.

The RMSD ranges around 1A.
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Figure 5.3: The Figures portray the time evolution plot of aC-helix
RMSD for all the three runs in all the systems (apo and complex). A-
Apo unphosphorylated system, B- Apo phosphorylated system, C-
Complex unphosphorylated system and D- Complex phosphorylated

system.

Activation loop is more or less stable for the four systems as seen in
Figure 5.4. Slight deviations are observed in complex systems and it is
due to the fact that on ligand binding, the Activation loop have adopted
a new conformation for allowing or disallowing the substrate binding.

For apo, the RMSD is around 2 A and for complex it increases to 4 A.
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Figure 5.4: The Figures portray the time evolution plot of A-loop
RMSD for all the three runs in all the systems (apo and complex). A-
Apo unphosphorylated system, B- Apo phosphorylated system, C-
Complex unphosphorylated system and D- Complex phosphorylated

system.

The Catalytic loop is rigid for the systems. Their RMSD ranges within
the range of 1-1.25 A. Runs are converged at the end of the simulations

in Figure 5.5.

—— Runl Run3
Run2

o 1.25 i l |
£0.75- ‘

;? °’5"r‘$w”” J ,“fhihﬂbl"“yww* 1

apo_unphos T 1.751 apo_phos

C-loop RMSD (4)

0.25
"0 02040608 1 1.2 1.4 1.6 1.8 2. 0 —— 1
0 0204060? 4 1.2 1.4 1.6 120120 02040608 1 1214 1.6 1.8 2.0
Time (ps) .
Time (pus)
C D
2 1.25

Runl ~—— Run3

& complex_unphos
1.75 plex_unp Run2

-

= T
[=]
a ¥ 0.75
2 s
= 4
g_ §- 0.5
8 2
\.J © 0.25

0 T T T T T T T T T 1
0 0.2 040608 1 1.2 1.4 1.6 1.8 2.0
Time (us)

"0 02 0.4 0.6 oﬁmei(u:f)z 1.4 1.6 1.8 2.0
Figure 5.5: The Figures portray the time evolution plot of C-loop
RMSD for all the three runs in all the systems (apo and complex). A-
Apo unphosphorylated system, B- Apo phosphorylated system, C-
Complex unphosphorylated system and D- Complex phosphorylated

system.

Residual fluctuation analysis:

The protein residues may be flexible or rigid. High RMSF values
indicate higher flexibility, like P-loop of the molecule shows very high
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residual flexibility especially for the apo unphosphorylated system. The
aC-helix and C-loop are not showing fluctuations, rather they are rigid
for the systems. Phosphorylation and complex formation is stabilizing
the P-loop and restricting its extensive movements. Complex
unphosphorylated system shows high fluctuation of the Activation loop,
but the phosphorylation is making the loop stable. C-terminal end of the
protein has evident flexibility may be due to structural changes on ligand

binding and phosphorylation as in case of Figure 5.6.
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Figure 5.6: The Figure reveals residual fluctuations for all the four

systems.

KDE plot is a graphical representation of the probability distribution of
non-parametric or undistributed data sets. The Figure 5.7 shows the
probability density of backbone RMSD for all the four systems. It
showcases which RMSD value of the system has the highest probability.
The Figure illustrates that both the complex phosphorylated system and
the apo phosphorylated system undergo similar structural changes
during simulation, hence their peaks are almost identical and in the same
RMSD range, ~3.5 A. An unphosphorylated system has slightly more
structural deviation than the phosphorylated one, and its RMSD is
around 4 A. The unphosphorylated system initially shows a similar
structural conformation to the phosphorylated one, but it adopts a new

conformation whose RMSD is around 5.5 A.
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Figure 5.7: Probability distribution curve of backbone RMSD for

apo and complex systems respectively.

The Figure 5.8 shows the probability density of A-loop RMSD for
all four systems. Initially, all the systems have undergone similar
structural changes during simulation, hence their peaks are almost
identical and in the same RMSD range, ~1-1.25 A. Apo
phosphorylated system shows a single sharp peak and suggests a
rigid activation loop. Two peaks are observed for the complex
phosphorylated system and the apo unphosphorylated system, one
at around 1 A and the other at 1.75 A. The complex
unphosphorylated system shows bimodal distribution, and it has

adopted a new structure with an RMSD of around 3.25 A.
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Figure 5.8: Probability distribution curve of A-loop RMSD for apo

and complex systems respectively.
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The probability distribution curve suggests that overall, the
Catalytic loop is rigid for all the systems. Figure 5.9 shows the
probability density of C-loop RMSD for all four systems. All the
peaks show unimodal distribution and a sharp peak. The complex
phosphorylated system shows a sharp peak at around 0.3 A. The C-
loop is rigid for the same system. Apo phosphorylated system and
Complex  unphosphorylated  system  underwent  similar

conformational changes.
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Figure 5.9: Probability distribution curve of C-loop RMSD for apo

and complex systems respectively.

The Figure 5.10 shows the probability distribution plot of P-loop
RMSD for all four systems. Apo unphosphorylated system shows
highest structural deviation. Complex formation stabilizes the P-
loop. So, it can be inferred that the ligand, when bound to the
pocket, imparts rigidity to the P-loop, restricting its movement. An
extra peak is observed in the case of a complex phosphorylated
system, but the RMSD ranged from 2-3 A. A wide range of
distribution is observed in the case of the apo phosphorylated

system.
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The Figure 5.11 shows the probability distribution plot of aC-helix
RMSD for all four systems. Not extreme structural deviations are
observed and two peaks are formed in apo phosphorylated system.
Broad peaks are present for both the complex phosphorylated
system and complex unphosphorylated systems, indicating the

presence of many conformations within the range of that RMSD.
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Figure 5.11: Probability distribution curve of aC-helix RMSD for

apo and complex systems respectively.
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Protein compactness study:

Overall, the compactness of protein remained similar for the systems.
Based on Figure 5.12,we can’t strongly comment on the fact that
phosphorylation or complexation had any effect on the tight or loose

binding of protein (compactness). The RoG values ranged from 21-21.5
A.
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Figure 5.12: The Figure represents the Probability distribution curve of

Radius of Gyration for all the systems (apo and complex).

Study of Solvent Accessibility:

The Figure 5.13 portrays that the solvent accessibility is similar for the
systems, there is no significant changes in them. The similar residues are
equally exposed to the solvent and there is no signification change in the
residues that got exposed due to complexation or phosphorylation. Thus,

it had no effect on solvent accessibility.
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Figure 5.13: Probability distribution curve of Solvent Accessible

Surface Area for the systems.
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Table 3: The backbone RMSD, RoG and SASA are calculated for the

systems by Block Average method. The standard deviations are given in

Ligand and Pocket stability:

parentheses.
Systems Backbone Radius of SASA (in
RMSD (in A) Gyration (in A) nm?)
Apo_unphos 3.97 £(0.68) 21.17£(0.32) 168.49 +
(3.6)
Apo_phos 3.45£(0.55) 21.14+(0.18) 169.3 +
(2.47)
Complex unphos @ 4.10 £(0.99) 21.28 £(0.25) 168.5 +
(2.82)
Complex_phos 3.29+£(0.41) 21.18+(0.16) 167.72 +
(3.15)

The Figure 5.14 A implies that phosphorylation stabilizes the ligand.

The ligand is slightly more flexible in case of unphosphorylated system.

Figure 5.14 B tells that complexation stabilizes the binding pocket. The

pocket fluctuates too much when it is free, that is during the absence of

a ligand (apo form), the RMSD reaches upto 5 A.
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Figure 5.14: Probability distribution curve of ligand RMSD and
Binding pocket RMSD.
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Stability of motifs:

Overall, the HHD motif is stable. Complex unphosphorylated
system shows more flexibility of the motif as it has a higher RMSD
as compared to other systems. DFG motif is also stable and on
complex formation, it showed similar structural variations as

highlighted in Figure 5.15.
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Figure 5.15: Probability distribution curve of DFG motif RMSD
and HHD motif RMSD.

Salt bridge analysis:

Normally, salt bridge is formed between the Lys of B3 helix and Glu of
oC-helix. But, in this kinase there is a frameshift mutation that leads to
salt bridge formation between Lys of 33 helix and Asp of aC-helix. This
is essential for proper kinase functioning and placement of ATP in the
binding pocket to ensure proper catalysis. Generally, salt bridge is
formed within 4 A from one residue to other. The Figure 5.16 shows
salt bridge formation in various systems. A sharp peak is observed in

case of complex phosphorylated system, indicating formation of strong

salt bridge.

39



—— apo_unphos
—— apo_phos

0.75- -~ complex_unphos
—— complex_phos

0.25+

Probability Density
(=]
)}

0

0 ¢ ° v v & 6 2 & 9 ¥
Salt brige distance K_D (A)

Figure 5.16: The Figure shows salt bridge formation between K104
and D115 in all the systems.

Hydrogen bond analysis:

H bond analysis is a very important study used to analyse ligand b

binding strength to the protein. According to Lipinski rule, the H

bond donor should be less than or equal to 6 and H bond acceptor

less than 10. It is a very crucial parameter to design a drug and

choose a potential drug candidate. It also portrays which residues of

protein and ligand are participating in the bonding, thus modifying

it would make a better drug.

The Figure 5.17 shows time evolution of number of H bonds

formed by complex in both phosphorylated and unphosphorylated

form. Both the system's H bond range from 1-2, thus the

phosphorylation of protein showed no significant difference in the

number of H bonds formed on ligand binding.
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Table 4: Hydrogen bond analysis for the complex systems.

System | Run | Hydrogen bond Occu- | Ave- | Average
pancy | rage | angle
dist
ance
Acceptor | Donor
UNK_ 333 | GLY_147@ | 32.58 |2.91 | 159.2°
@N4 N % A
GLU 145 | UNK 333 |[73% |2.85 |158.7°
@O0 @N3 A
ASP 207 | UNK 333 |[2055 |2.83 |164°
Complex @OD1 @N % A
unnphos ASP 207 | UNK 333 |[1355 |2.83 |163.25°
@OD2 @N % 4 A
UNK 333 | GLY_147@ | 28.98 |2.91 | 153.6°
@N4 N % A
GLU 145 | UNK 333 |72.14 |2.84 | 162°
@O @N3 % A
ASP 207 | UNK 333 |[1157 |2.83 |163°
@OD1 @N % 6 A
ASP 207 | UNK 333 |[13.13 |2.83 |163°
@OD2 @N % A
UNK 333 | GLY_147@ | 25.6% | 2.92 | 153.6°
@N4 N A
GLU 145 | UNK 333 |72.85 |2.84 |162.18°
@O @N3 % A
ASP 207 | UNK 333 |[19.69 |2.83 |163.6°
@OD2 @N % A
UNK 333 | GLY_147@ | 34.83 |2.91 | 153.48°
@N4 N % A
Complex GLU 145 | UNK_ 333 |[77.69 |2.84 |162.5°
phos @O @N3 % A
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GLU 154 | UNK 333 [26.05 |2.82 | 156.84°
@OE2 @N5 % A
GLU 154 | UNK 333 [22.28 |2.82 | 155.39°
@OE1 @N5 % A
2| UNK 333 | GLY_147@ | 23.87 [2.92 | 160.2°
@N4 N % A
GLU 145 [ UNK 333 [73.10 |2.84 | 161.5°
@O @N3 % A
ASP 207 | UNK 333 |12.33 |2.83 |163.59°
@OD2 @N % A
ASP 207 | UNK 333 |14.88 |2.83 |163.63°
@OD1 @N % A
3| UNK 333 | GLY 147@ | 26.36 |2.92 | 152.67°
@N4 N % A
GLU 145 | UNK 333 |[76.62 |2.84 | 161.38°
@O @N3 % A
ASP 207 | UNK 333 |[12.75 |2.83 | 162.36°
@OD2 @N % A
ASP 207 | UNK 333 |[12.17 |2.83 |163.3°
@OD1 @N % A
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Figure 5.17: Time series plot for Number of Hydrogen bonds formed

by the ligand with the protein in unphosphorylated and phosphorylated

forms respectively.
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Principal Component Analysis:

The Figure 5.18 suggests that apo unphosphorylated system has three
global minima, separated by low energy barriers. Thus, the three
conformations are easily interconvertible and the conformations are
displayed in the same figure. Apo phosphorylated system has three
conformations. Complex unphosphorylated is most stable as it has only

one minimum.

-80 -60 -40 -20 O 20 40 60 80 _8950 60 -40 -20 O 20 40 60 80
PC1
C 80 D 80
60 60

80 -60 -40 20 0 20 40 60 80 SN S S VU SR N ——
PC1 80 -60 -40 20 g 20 40 60 80
PC1

Figure 5.18: Free Energy Landscape and extracted structures from the
minima. A- Apo unphosphorylated system, B- Apo phosphorylated
system, C- Complex unphosphorylated system and D- Complex
phosphorylated system.
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Dynamic Cross-Correlation Matrix:

The highlighted region R1 in Figure 5.19 shows more anti-correlation
in apo unphosphorylated system, which is significantly reduced in the
other three systems. However, slightly more anti-correlation is also
observed in complex phosphorylated system. The region shows
correlation or anti-correlation between the C-terminus of the protein and

the aC-helix.
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Figure 5.19: DCCM of the four systems.

Dihedral Principal Component Analysis:

The Figure 5.20 shows that apo unphosphorylated system, apo
phosphorylated system and complex unphosphorylated system have two
global minima; rendering a stable A-loop. Complex phosphorylated

system has five global minima, thus it is not that stable.
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Figure 5.20: dPCA of the A-loop to check their structural
rearrangements. A- apo unphosphorylated system, B- apo
phosphorylated system, C- complex unphosphorylated system and D-
complex phosphorylated system. The P-loop structures are provided

along with the FES.
K-means clustering:

The data points of the systems are divided into clusters based on WCCS
method. Here, the elbow plot depicts that all the systems’ data points can
be divided into 3 clusters, K=3. Then, the clusters are depicted in the
graphs for individual systems, along the percentage occupancy. The

precentage tells how much prominent the conformational state is
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Figure 5.21: K-means clustering. E- Elbow plot, A- Apo
unphosphorylated system, B- Apo phosphorylated system, C- Complex
unphosphorylated system and D- Complex phosphorylated system.

Binding free energy calculation by MMPBSA:

The binding free energies of complex unphosphorylated system and
complex phosphorylated system were checked. van der Waals
interaction and Electrostatic interaction favours binding in both the
system. The phosphorylated system had greater binding enthalpy than
unphosphorylated one as evident from the table. Polar solvation

enthalpy discourages binding due to positive enthalpy.
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Figure 5.22: Graphical representation of different energy values

calculated by MMPB(GB)S A method for all the four systems.
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Per-residue enthalpy:

Trp 132, Pro 145 and Val 269 shows negative binding enthalpy for both
the systems and thus these residues favour binding as observed in Figure
5.23.
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Figure 5.23: Per-residue binding energy of complexes.
Protein Structure Network analysis:

In PSN, the nodes represent the amino acid residues of a protein,
secondary structure or atoms present. The edges depict the interactions
present between the atoms or residues. Hubs are the entities or the
residues that are connected to four residues and interacts with each other.

Communities are group of proteins that are densly connected to one

another than that of others.
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Table 5: The Protein Structure Network analysis for various systems.

Links involved
in

Communities

Network Apo Apo phos | Complex | Complex
Properties unphos unphos Phos
I min 2.62 2.91 1.71 2.85
Number of | 301 298 302 310
Linked Nodes

Number of | 379 351 371 348
Links

Number of | 68 49 60 43
Hubs

Number of | 230 170 213 163
Links

mediated by

Hubs

Number of | 9 11 12 11
Communities

Number of | 83 60 73 48
Nodes

involved in

Communities

Number of | 143 96 115 76

The Table 5 reflects that apo unphosphorylated system has highest
number of links and hubs, followed by complex unphosphorylated
system. Complex unphosphorylated system shows highest number of
communities, portraying a stable structure. Hence, it is densely

interconnected as compared to other nodes.
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Figure 5.24: Network analysis of A- apo unphosphorylated, B- apo
phosphorylated, C- complex unphosphorylated and D- complex
phosphorylated. The red represents highest number of communities

followed by green, blue, yellow, cyan and pink.
Per-residue RMSD of P-loop:

The structure of P-loop is very intriguing and hence we have studied the
per residue RMSD of the heavy atoms present in the P-loop to check
which residues are contributing to structural deviations. The Figure 5.25
shows that the loop is too much flexible in case of apo unphosphorylated
system and on complexation the higher RMSD values (marked in
orange-yellow) significantly reduces. Asparagine 75, Aspartate 79,
Isoleucine 76 are significantly contributing to high RMSD. Ser 78 shows

fluctuations in all the system except complex phosphorylated one.
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Figure 5.25: Per-residue analysis of P-loop of A- apo unphosphorylated,
B- apo phosphorylated, C- complex unphosphorylated and D- complex
phosphorylated. Energy bar is provided along with.

Per-residue RMSD of A-loop:

The Activation loop is generally stable, except in the case of the complex
unphosphorylated system. Specifically, the residues from 217-222 in
this system contribute to significant structural deviations, which are
mitigated by phosphorylation at the Thr290 residue. In contrast, no
notable changes are seen in the A-loop of apo systems (from Figure
5.26). Therefore, the process of complexation facilitates structural
movements and conformational alterations in the A-loop, resulting in

increased flexibility.
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Objective 2: Identification of Novel Inhibitor(s) targeting
the COT Kinase by Virtual Screening.

Table 6: Virtual screening and ADMET analysis of lead molecules.

Drug Molsoft | Mol.wt HBA HBD | Log | Toxicity

score P

Control | -53.6 316.11 | 7 4 2.9 | Eye irritant
and
hepatotoxic

Inhibitor -56.02 347.11 8 3 -0.2 | Non
corrosive
and non-
cytotoxic.

Inhibitor SMILE:

[HICI=C=C(c2e([H]e([Hne([H)e2[HNN(HDC(C2C1=C([HDC([H
DHDN(C=2[HDC( H])([H])ele([H]ne(ne ITHYN([H)[H])=O

H

H-N
g N
& o |
N _—N

Sy N

H
control
H,h
f’ f

Proposed inhibitor
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The inhibitor was docked with COT Kinase protein and simulation was

run for 400 ns to check the overall stability.
Structural stability of ‘Control’ vs ‘Inhibitor’:

The time evolution plot in Figure 5.27 shows that the inhibitor is
stabilizing the kinase in a way much better than that of the control. The
P-loop is showing high fluctuations in case of control, but it is highly
stable when inhibitor is bound and RMSD is strictly 1.5 A. For control,
the Activation loop fluctuates from 150 ns, but the overall RMSD is

maintained at 1 A in case of inhibitor.
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Figure 5.27: Time evolution graphs showing RMSD values of various

regions of the molecule when control is bound to it vs inhibitor bound

to it.
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Objective 3: Differential study of the effect of Mn?" vs
Mg?* on the Structural Dynamics of COT Kinase.

Literature studies suggest that when Mn is bound to protein, it lowers
the K value of the molecule and hence it has higher affinity for ATP as

compared to when Mg is bound.

We have studied the effect of both the cofactors on the structural stability

of the complex.

The Figure 5.28 shows that on Mn-ATP complexation, two RMSD are
possible indicating the presence of two different conformations. Mg-

ATP complex shows a broader peak in the range of 4 A.
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Figure 5.28: Probability distribution curve of backbone RMSD for both

the complexes.

Table 7: The values of backbone RMSD, SASA and Radius of Gyration
calculated for the complexes using Block Average method. SD is given

in parentheses.

System Backbone RoG (in A) SASA (in nm?)
RMSD (in A)

Mn-ATP 397+ (0.68) 21.17+(0.32) 168.49 + (3.6)

Mg-ATP 345+ (0.55) 2114+ (0.18) 169.3 + (2.47)
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No such significant changes are observed in case of protein compactness

and solvent accessibility.

The Figure 5.29 shows that P-loop is too much flexible in case of Mg-
ATP system, but it becomes much stabler when Mn is bound. The
Catalytic loop and A-loop are not too flexible for the systems. C-

terminus region shows flexibility in Mn-ATP system.
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Figure 5.29: Residual fluctuation for the systems.

Too many wide peaks are observed especially in P-loop. Mn-ATP
stabilizes it. It is due to conformational changes. Three peaks are seen
for A-loop in both the systems, indicating the presence of three different

structures that might have formed during simulation.
Phosphate binding loop stability:

The P-loop is extremely flexible for the Mg-ATP system and on Mn-
ATP complex formation, the loop’s flexibility lessens. Multiple peaks
are observed for Mg-ATP system, indicating the possibility of too many

conformations as evident from Figure 5.30.

The time evolution plot unveils that Mg-ATP shows high deviations,

especially in the run2 and all the runs are converged for the other system.
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Figure 5.30: Time evolution plot and KDE plot of P-loop RMSD of both

the systems.

Activation loop stability:

A-loop or the Activation loop is stabilized at around 4 A for both the

systems. Three sharp peaks are observed in case of Mg-ATP system,

indicating the presence of three different conformations having varying

RMSD values.

The Figure 5.31 exhibits two sharp peaks in case of Mn-ATP system,

pointing to the fact that there are two possible structures and they are

less deviating than Mg-ATP system.
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Figure 5.31: Time evolution plot and KDE plot of A-loop RMSD of

both the systems.

Hydrogen bond analysis:

H bond analysis is a very important study used to analyse ligand binding

strength to the protein. The Figure 5.32 shows time series plot for

number of hydrogen bonds formed by Mn-ATP complex and Mg-ATP

complex. The Mg-ATP complex forms around 2 H-bonds and Mn-ATP

forms about 4 H-bonds.
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Figure 5.32: Time series plot for Number of Hydrogen bonds formed

by the complexes.
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Table 8: Hydrogen bond analysis for two complexes.

Binding couple Molecular dynamics
Acceptor Donor Occupancy | Average
(%) Distance (A)
Mg-ATP complex
ASN_195@0D1 | ATP_333@03° | 14.41% 2.70 A
GLU_154@OE1 | ATP_333@N6 10.28% 2.76 A

Mn-ATP complex

ATP333@02A | SER_194@0G | 44.72% 2.69 A
ATP333@01A |SER_194@0G | 29.43% 2.69 A
SER_194@0 ATP _333@03° | 25.84% 2.67 A
SER_194@0 ATP _333@02° | 13.70% 2.77 A

The table shows that for Mn-ATP system, Ser 194 contributes maximum
to the bonding and for Mg-ATP system, contribution of Asn 195 is

maximum.

Per-residue RMSD of P-loop:

The per-residue RMSD for the P-loop of both Mn and Mg systems
are calculated. It can be observed that Mn-ATP shows lower
structural deviations as compared to that of Mg-ATP system. The
Figure 5.33 shows that the residues like Asp 79, Asn 75, Arg 74
contributes to maximum deviation in both the systems. Various
residues like Pro 82, Arg 83, Ser 78, Leu 71, Pro 68 of Mg-ATP
system contributed to maximum flexibilty and it is being diminshed

on complexation with Mn-ATP.
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Figure 5.33: Per-residue RMSD of P-loop for Mg-ATP system and
Mn-ATP system.

Per-residue RMSD of A-loop:

The Activation loop of Mg-ATP system is slightly more flexible
than that of Mn-ATP. The Gly 226, Val 218 shows highly RMSD
values in case of Mg-ATP, that is diminished in case of Mn-ATP

system as shown in Figure 5.34.
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Figure 5.34: Per-residue RMSD of A-loop for Mg-ATP system and
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CONCLUSION & FUTURE PROSPECTS

The thesis dealt with the structural dynamics of a unique kinase, the
COT Kinase. It unravels the effect of phosphorylation and
complexation. Another aspect is studied: the use of cofactors, Mg
vs Mn. On complexation, the P-loop is becoming stable and when
Mn is used as a cofactor, the same phenomenon is observed.
Catalytic loop is remaining stable overall. The parameters like
SASA, RoG remained similar for the apo and complex systems
respectively . Very high fluctuations are observed for the P-loop and
similar pattern is seen for the C-terminal region of the kinase. Few
amino acid residues are contributing to high RMSD values for the
systems and it is evident from the graphs. The principal component
analysis revealed the presence of global minima for the systems,
from which the structures can be extracted. The conformations are
interconvertible due to low energy barrier between them. Complex

formation reduced the anti-correlated motions for the systems.

Further, the study revolved around finding a potential drug
candidate against the Kinase. The control molecule against the
protein is “Imidazonapthyridine” and through Virtal Screening, an
inhibitor is found and studied further. The inhibitor is stabilizing the
molecule and extensive studies are required to prove its efficacy.
The simulation results portrayed that the inhibitor is highly capable
of preventing P-loop fluctuations and also it stablized the overall

movements of the loop regions.

No change in protein compactness is found when protein has Mg
cofactor versus Mn cofactor. It also reflected no alteration in the
solvent accessibility. However, Mn stabilized the flexible P-loop
and on per-residue RMSD analysis, similar trend is observed.

However, more studies are required on the same.

The study has opened many future paths like the mutational aspect,
discovery of drugs that would selectively bind to COT Kinase and

not others, role of phytochemicals and natural products to treat
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diseases caused due to overexpression of this molecule. Further, the
torsion angle analysis, binding free calculation of the inhibitor,
essential dynamic studies need to done to support the claim that
inhibitor is better than our control. Moreover, genomics can be
included to give another dimension to the study and find out how
the drugs would influence a person’s health based on his genetic

profile.
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