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ABSTRACT

In this project, we develop a numerical approach to solve Euler’s
equation for many-body atomic systems within the framework of density
functional theory (DFT) to calculate the electron density that minimizes
the total energy functional. The energy functional includes contributions
from kinetic energy, external potential, Hartree potential and exchange-
correlation energy. The Pauli potential is incorporated to account for the
quantum mechanical effects of fermionic antisymmetry, improving the rep-
resentation of kinetic energy. Using a self-consistent field (SCF) method,
the electron density is iteratively updated, starting from an initial guess,
with the Hartree, exchange-correlation, and Pauli potentials computed at
each step. The density is normalized to maintain the total number of elec-
trons, and convergence is achieved when the error in density or energy falls
below a defined threshold. This implementation employs Numerov meth-
ods for radial grid discretizations and numerical integration to evaluate
potentials and energies. The results demonstrate the successful compu-
tation of electron density for multi-electron atomic systems, providing a
robust framework for extending the method to more complex systems or

incorporating advanced functionals.
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Chapter 1

Introduction

1.1 Overview

Density Functional Theory (DFT) has emerged as a crucial instrument in
computational chemistry and materials research throughout the last half-
century. In 1927, Thomas and Fermi originally introduced the idea of calcu-
lating electronic structure using electron density instead of the more com-
plicated electronic wavefunction. The theoretical underpinnings of DFT
were developed over thirty years later by Hohenberg and Kohn [1], who
showed that the electron density of a many-electron system under an ex-
ternal potential is the only characteristic that can uniquely identify its
ground state. The ability to represent the overall ground-state energy of a
many-electron system as a functional of the electron density is a significant
implication of this discovery. Furthermore, the Euler-Lagrange equation
results from the ground-state density’s adherence to the stationary energy

principle:

_ oE[n)
H= on(r)

(1.1)

where n(r) denotes the electron density and p represents the chemical
potential, ensuring the conservation of the total number of electrons. The

ground-state energy functional E[n| is generally decomposed as:

E[n] = T[n] + Eex[n] + Eeouln] + Exc[n] (1.2)

where T'[n|, Eex[n|, Ecou[n], and Exc[n| represent the non-interacting

kinetic energy (KE), the interaction energy of the electron density with



the external potential, the classical Coulomb repulsion energy between the

electrons, and the so-called exchange—correlation (XC) energy, respectively.

Unfortunately, only Fey[n| and FE.u[n| have accurate functional
forms. To do practical DFT-based calculations, one must rely on approxi-
mation forms for T'[n] [2] and Exc[n]. Since the formal formulation of DFT,
great work has been put into constructing XC functionals with increasing

accuracy.

The Kohn-Sham formalism of DFT (KS-DFT) solves the difficulty of
the KE functional by expressing it exactly in terms of a collection of non-
interacting occupied orbitals. As a result of the availability of precise XC
functionals throughout time, the Kohn-Sham formalism of DF'T has become
an essential tool for all modern first-principles-based electronic structure

computing methods.



1.2 Motivation

The motivation behind solving Euler’s equation in the context of Orbital-
Free Density Functional Theory (OF-DFT) is to overcome the limitations of
traditional quantum mechanical methods, such as Hartree-Fock and Kohn-
Sham DFT, which require explicit computation of orbitals. These methods
become computationally expensive and complex for large systems. Ear-
lier implementations of OF-DFT also relied on approximate kinetic energy
functionals, leading to inefficiencies and inaccuracies. By solving Euler’s
equation, derived from the variational principle of OF-DFT, we can directly
minimize the total energy functional with respect to electron density, elim-
inating the need for orbitals. This approach offers a more computationally
efficient and accurate method for calculating the radial electron density,
particularly for spherically symmetric systems like atoms, reducing both
mathematical and computational complexity while retaining the essential

physical characteristics of the system.

1.3 Objective

e To solve Euler’s equation for atoms using an exact form of the kinetic
energy functional in an orbital-free density functional theory (OF-
DFT) framework.

e To compute the radial electron density distribution for many-electron
atomic systems.

e To implement a Numerov Method for the derived equations, ensuring
proper boundary conditions and normalization constraints.

e To compare the obtained electron density distributions with the ref-

erence obtained from Gaussian for results validation.



1.4 Organization of the Thesis

The work done in the present thesis is organized in four chapters. The
present chapter gives brief overview about the Density funtional Theory
and Euler-Lagranze equation. Further it discusses the motivation towards

solving Euler’s equation for atoms.

e Chapter 2, presents the theory and methods behind the work.
e Chapter 3, sumarises the work done in thesis.

e Chapter 4, presents the conclusion of whole work and describe the

future scope.



Chapter 2

Literature Review

2.1 Theory and Method

2.1.1 Euler’ss equation for Non-Interacting Model

systems

The Density Functional Theory (DFT) offers a strong framework for char-
acterizing systems of non-interacting fermions in addition to the numerical
solution of the Schrodinger equation. DFT minimizes the system’s total
energy [3] in relation to the particle density. The particle density distri-
bution can be ascertained by combining the external potential with the
kinetic energy functional of non-interacting particles to create an energy

minimization problem.

In this study, we concentrate on a system of N non-interacting
fermions (where N = 2, 3) that are exposed to a Gaussian potential, which

is provided by:
3
v(z) = — Zak exp (_@—_W) , (2.1)

where a random sample of the parameters oy, B, and 7, are taken
from predetermined boundaries. It is contained within a one-dimensional
box with x between -3.0 and 3.0. The eigenvalues E; and eigenfunctions
¢;(x) are obtained by numerically solving the Schrédinger equation, and

these orbitals are filled in accordance with the Pauli exclusion principle.

For N = 2,3, we explore two configurations: one with two fermions

having opposite spins in the lowest energy state (2S), and another where



the lowest two energy levels are singly occupied by spinless fermions (3S),
and for N = 3) lowest three energy levels are singly occupied by spinless

fermions (45).

The electron density is given by:
N
n(x) = Z filoi(x) P, (2.2)
i=1

where f; denotes the occupation number. The kinetic energy func-
tional T'[n] is computed using the density n(z), with the KE density 7(x)

given by:
L N

7(z) =5 > Vo) (2.3)

i=1
The exact kinetic energy is computed as:

Texact = /_OO 7(z)dz (2.4)

o0

The functional derivative of the kinetic energy is:

5TExact [n]
on

where p is the chemical potential. The minimization [4] of the energy

=—v(x)+p (2.5)

functional is carried out using an iterative gradient descent method, where

the density is updated at each step:

dL[n|
on

Here, 7 is a constant step size, and the energy functional is minimized until

Npew(T) = Noa(z) — 7 (2.6)

the difference between the new and target densities is below a specified
threshold.

2.1.2 Gradient Descent Minimization and Energy

Calculation

In the iterative gradient descent method used to minimize the energy func-
tional, the functional derivative of the Lagrangian with respect to the den-

sity is given by:
OLIn]  6Tgxact[n]

on on

The iteration starts with a random initial density in order to deter-

+V(z) - p. (2.7)

mine the minimal energy density. Until the difference between the total

6



energy of the new density and the target density is less than 1073, the
gradient descent process is repeated. With a step size of n = 0.005, the
overall number of iterations is restricted to 100. The result discussion
section displays the plots of the total energy minimum curves that were
achieved during minimization for (2S , 3S and 4S ) using the gradient de-

scent method.

2.1.3 Euler’s equation for Interacting Atomic Sys-

tems

The Hohenberg-Kohn theorem in density functional theory (DFT) says
that the exact ground-state energy of a system of N electrons in an ex-
ternal potential may be formally stated as a functional E[p] [5] solely in
terms of the electron density p(r). An essential consequence of this finding
is that the total ground-state energy of a many-electron system may be
represented as a function of electron density, and the ground-state den-
sity satisfies the energy stationary principle, yielding the Euler-Lagrange
equation. This theorem uses the Euler equation to minimize E[p] with the
constraint condition | p(r)dr = N. Euler’s equation is given as follows:
dE[n]
n= on(r)
The Kohn-Sham (KS) formalism of DFT introduces a partitioning of the

(2.8)

total energy functional into different energy components:
Elp] = Ti[p] + Eeelp] + Eenlp] + Telp] (2.9)

where Ti[p| [6] represents the non-interacting kinetic energy (KE) func-
tional, E..[p] represents the electron—electron interaction energy functional,
and F.,[p| denotes the energy functional corresponding to the interaction of
the electrons with the external potential arising due to the electron-—nucleus
attractive interaction. The functional form for the electron—nuclear energy

is given by:
Eolp] = /vext(r)p(r)dr (2.10)

The final term in the equation, T.[p], represents the correlation kinetic
energy, which accounts for the difference between the true kinetic energy
and the non-interacting kinetic energy Ts[p]. This term, along with the
exchange-correlation functional, plays a crucial role in determining the ac-
curacy of density functional approximations.This approach allows for effi-

cient computations of ground-state properties without the need for solving

7



the many-body Schrédinger equation directly. The Kohn-Sham (KS) for-
malism of DFT introduces a partitioning of the total energy functional into

different energy components:

Elp] = Ts[p] + Eee[p] + Eenlp] + T[] (2.11)

where T[p] represents the non-interacting kinetic energy (KE) functional,
E..lp] is the electron-electron interaction energy functional, and E.,[p]
[7]denotes the energy functional corresponding to the interaction of elec-
trons with the external potential. The energy associated with the electron-

nuclear interaction is given by:

Eulp) = [ pe)vm(w)i, (2.12)

where v, (r) is the nuclear potential, which for an atom with nuclear charge
Z is given by:
Z
Ven(r) = ——. (2.13)
[r]
The kinetic energy functional T.[p] accounts for electron-electron correla-

tion and is conventionally rewritten as:
Eee[p] + Tc[p] = EH[p] + Exc[p]a (214)

where the Hartree energy Ep|[p| represents the classical Coulomb interac-

tion of the electron density:
L ([ p)pe() .,
E == —_ 2.1

and E,.[p] represents the exchange-correlation energy, which includes ex-
change, Coulombic correlation, and kinetic correlation contributions. In
the KS formalism, the exact form of the kinetic energy functional [8] T%|p]
is not known in terms of density. Instead, it is computed using the KS

orbitals ¢;(r) of N non-interacting electrons:

N
T.p] = / £y (r)dr = Z / %w@(r)\?dr, (2.16)
where the electron density is obtained from the orbitals as:
pr) = |oi(x)]” (2.17)

In contrast, orbital-free DFT (OF-DFT) seeks to bypass explicit orbital
dependence by employing density-based approximations for the kinetic en-
ergy functional Ti[p]. In this approach, the kinetic energy functional is

decomposed as:

8



where the first term, T,w[p], is the von Weizsicker kinetic energy func-

tional, given by:

Towlp] = / Lo (r)dr = % / Vo) . (2.19)

p(r)

This term is exact for single orbital systems and bosonic systems. The
second term, Ty[p|, represents the Pauli kinetic energy functional, which
accounts for the many-body fermionic effects. Unlike the von Weizsacker
term, the exact form of Ty[p] is unknown, and various approximate models
have been proposed in the literature to represent it. Applying the varia-
tional principle under the constraint [ p(r)dr = N, a single KS-like equation
is obtained for \/p(r):

(—%V”+%GMJO+VMMLﬂ) o) = /o, (220)

where 1 is the chemical potential. Here, v4([p];r) is the KS potential, given
by:

vs(lplir) = va(lplsr) + vxe(lplir) + ven([p]; 1), (2.21)
where vy ([pl;r), vxo([p];r), and ve,([p];r) are the Hartree, exchange-

correlation, and electron-nuclear potentials, respectively. The second term,

ve([p];r), is the Pauli potential derived from Ty|p]:

_ 0T[p]
dp(r)

Since the exact form of vy([p];r) in terms of density is unknown, various

ve([p]; T) (2.22)

approximations are used in practical implementations of OF-DFT. Future
work aims to develop improved kinetic energy functionals that accurately
capture the effects of electronic correlations and shell structure in many-
electron systems. The exact form of the Pauli potential v([p];r) in terms
of density p(r) is unknown, but it can be expressed using KS orbitals and

orbital energies as:

- [Bu(r)[?
vo([plir) = to(r) + > (en — &) ;(r) , (2.23)
i=1
where the Pauli kinetic energy (KE) density is given by:
to(r) = ts(r) — t,w(r). (2.24)

The total Pauli KE functional is:
Tils) = [ tofw)pte)ar. (2.25)

9



An important constraint in orbital-free DFT [9]is the non-negativity of
Ty[p] and vy([p];r). The Pauli KE functional can also be computed from
the density-potential relationship:

1

Tylo] = — / o(x)r - Vvg((p]: T)dr. (2.26)

Since this formulation makes the KE functional non-unique and does not
guarantee translational and rotational invariance, we focus on directly mod-

eling vy([p]; r) instead of Ty[p].

10



Chapter 3
Results and Discussion

Here, we have numerically solved the 1-dimensional Schrédinger equa-
tion using Numerov and Finite- difference method . We calculated po-
tentials,eigenvalue and eigenfunction for various potential systems and we
solved solved Euler’s equation for Non-Interacting system to generate au-

tomatic densities.

3.1 Euler’s Equation code:

1. Code for Non-Interacting Systems

1 |import numpy as np

2 |import matplotlib.pyplot as plt

3 |from itertools import islice

4 |from scipy import integrate

5 |import re

6 |import sys

7

8|n = 4

9 |file0 = open("density_initial.dat", "w")
10 [filel = open("initial_vext.dat", "w"

11 |file2 = open("check.dat", "w")

12

13 |with open(’para_initial’, ’r’) as f:

14 while True:

15 next_n_lines = list(islice(f, 4))
16 if not next_n_lines:

17 print ("here")

18 break

19 first_line = next_n_lines [0]

20 number_line = first_line.rstrip(’\n’)
21 del next_n_lines [0]

22 lines_array = np.array(next_n_lines)
23 a = []

24 b = []

11



25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

43
44
45

46
47
48
49
50
o1
52
53
54
55
56
57

58

59
60
61

62
63
64
65

66
67

68
69

c = []

for line in lines_array:
line = line.rstrip(’\n’)
values = line.split ()
a.append (float (values [0]))
b.append (float (values [1]))
c.append (float (values [2]))

a = np.asarray(a)
b = np.asarray(b)
c = np.asarray(c)

al, bl, c1 = a[0], b[0], c[O]
a2, b2, c2 al1]l, b[1], c[1]
a3, b3, c3 al2], b[2], c[2]

def gaussian_potential(x, h, w, s):
return h * np.exp(-0.5 * (((x - w) / s)
) kx 2)

def double_well_potential (x):
return -(gaussian_potential(x, al, bl,
cl) + gaussian_potential(x, a2, b2,
c2) + gaussian_potential(x, a3, b3,
c3))

# Parameters

x_min = -3.0

x_max = 3.0

h = 0.005 # Step size

x = np.arange(x_min, x_max + h, h)
n_points = len(x)

# Construct Hamiltonian matrix

V = double_well_potential (x)

H = np.diag(l / h**x2 + V)

H += np.diag(-0.5 / h**2 * np.ones(n_points

- 1, k=1)
H += np.diag(-0.5 / h**2 x np.ones(n_points
- 1), k=-1)

# Diagonalize Hamiltonian matrix
eigenvalues, eigenvectors = np.linalg.eigh(
H)

# Find the ground state wavefunction

ground_state_index = np.argmin(eigenvalues)

ground_state_energy = eigenvalues|[
ground_state_index]

ground_state_psi = eigenvectorsl[:,
ground_state_index]

# Find the first excited state wavefunction

excited_state_index = np.argsort(
eigenvalues) [1] # Sort eigenvalues and

12




70

71

72
73
74

75

76
7

78
79
80
81

82

83
84
85

86
87

88
89
90

91
92
93

94
95
96
97

98

99
100
101

102

choose the second smallest
excited_state_energy = eigenvalues|[

excited_state_index]
excited_state_psi = eigenvectorsl([:,

excited_state_index]

# Ensure correct phase of the wavefunctions
reference_point = 0 # Choose a reference
point
if ground_state_psil[np.abs(x -
reference_point).argmin()] < O:
ground_state_psi *= -1
if excited_state_psil[np.abs(x -
reference_point).argmin()] < O:
excited_state_psi *= -1

# Normalize the wavefunctions

ground_state_psi /= np.sqrt(integrate.
trapezoid (ground_state_psi**2, x))

excited_state_psi /= np.sqrt(integrate.
trapezoid (excited_state_psi**2, x))

ground_state_density = ground_state_psi**2

excited_state_density = excited_state_psi
* %2

integrall = integrate.trapezoid(

ground_state_density, x)
print (integrall)

integral2 = integrate.trapezoid(
excited_state_density, x)
print (integral2)

totdens = ground_state_density +
excited_state_density
integral = integrate.trapezoid(totdens, x)

print (integral)

with np.printoptions(threshold=sys.maxsize,

precision=4):

print(re.sub(r’ *\n, *x’, ’\n’, np.
array_str(np.c_[x, totdemns,
ground_state_psi,
double_well_potential(x)]) .replace(’
[, ’’).replace(’]’, ’’).strip()),
file=fileO)

print (file=£fileO)

with np.printoptions(threshold=sys.maxsize)
print (re.sub(xr’ *\n,*’, ’\n’, np.
array_str (np.c_[x,

double_well_potential (x)]) .replace(’
[, ?’’).replace(’]’, ’’).strip()),

13




103
104
105
106

107

108
109
110

111

112
113
114

115
116

117

118
119

120

121
122

123
124
125
126
127
128

129

130
131
132

133
134
135
136

137

138
139

file=filel)
print(file=filel)

# Calculate kinetic energy functional

gradient_ground = np.gradient(
ground_state_psi, x)
gradient_excited = np.gradient(

excited_state_psi, x)

# Square of the gradients

gradient_ground_squared = gradient_ground
*% D

gradient_excited_squared = gradient_excited
* %D

# Sum the squared gradients for all states

kinetic_energy_integrand = 0.5%(
gradient_ground_squared +
gradient_excited_squared)

#T_exact = integrate.trapezoid(
kinetic_energy_integrand, x)

#print ("Exact Kinetic Energy (T_Exact):",
T_exact)

# Calculate chemical potential (average
energy per electron)

total_energy = ground_state_energy +
excited_state_energy

N = 2 # Example number of electrons

mu = excited_state_energy #total_energy

/ N

print ("Chemical Potential,(mu):", mu)

# Gradient descent parameters
eta = 0.005 # Step size

max_iterations = 500 # Maximum number of
iterations
convergence_threshold = 1le-3 # Convergence

criterion for density change

# Initialize the density (old density)
n_old = totdens # This is the imnitial
total density you already have

# Iterate until convergence
for iteration in range(max_iterations):

gradient_ground = np.gradient(
ground_state_psi, x)
gradient_excited = np.gradient(

excited_state_psi, x)

gradient_ground_squared =
gradient_ground **2

14




140

141
142

143

144
145

146
147
148
149

150
151

152
153
154

155
156
157
158

159

160

161
162
163

164
165
166
167
168

169

170
171
172
173
174

gradient_excited_squared =
gradient_excited**2

kinetic_energy_integrand =0.5% (
gradient_ground_squared +
gradient_excited_squared)

T_exact = integrate.trapezoid(
kinetic_energy_integrand, x)

potential_integral = integrate.
trapezoid(n_old *
double_well_potential (x), x)

E_exact = T_exact + potential_integral

L = E_exact - mu * (integrate.trapezoid
(n_old, x) - N)

gradient_T_exact = np.gradient (
kinetic_energy_integrand, x) #
Numerical second derivative of
density

grad = double_well_potential(x) - mu

grad_L = gradient_T_exact +
double_well_potential (x) - mu

n_new = n_old - eta * grad_L

Energy_change = np.linalg.norm(E_exact
- total_energy)
if Energy_change <
convergence_threshold:
print (f"Convergedafter {iteration
+,1},iterations.")
break

# Update the old density for the next
iteration
n_old = n_new

# Final density after gradient descent
#print ("Final density:", n_new)
with np.printoptions(threshold=sys.maxsize)

print (re.sub(r’ *\ny*’, ’\n’, np.
array_str(np.c_[x, n_new,
gradient_T_exact, gradl]).replace(’[
>, ??).replace(’]’, ??).strip()),
file=file2)

print (file=file2)

print (E_exact)
print (total_energy)
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175

176

177 # Optionally, plot the final density

178 plt.plot(x, n_new, label="Final_Density")

179 plt.plot(x, totdens, label="initial Density
")

180 plt.xlabel (’x’)

181 plt.ylabel (’Density’)

182 plt.title(’Final Density after Gradient,,
Descent’)

183 plt.legend ()

184 plt.grid(True)

185 plt.show ()

186

187 print ("Ground,stateenergy:",
ground_state_energy)

188 print ("First excited state energy:",
excited_state_energy)

3.2 Euler’s Equation code:

2. Code for Interacting Atomic Systems:

3.2.1 Helium Atom

import numpy as np

import matplotlib.pyplot as pl

from scipy.integrate import simpson
from scipy.integrate import trapezoid
from scipy.integrate import quad

from scipy import optimize

import time

from scipy.special import factorial

© 00 O U Wi+~

10 |#def differentiate(f, x):

12 |#assuming r = x*x

13 |#R = uxphi, phi = x~(-3/2)

14 |#in the remaining x is expressed by r
15 |t1 = time.time ()

16 |#values of psi at nth and n-1th point
17 |psi_n = 0.0

18 |psi_nl = 1e-8

19 |#number of mesh points

20 |n = 2500

21 |lamb = 1.0 #0.2

22 1Z = 2 #18.0

23 |max_iter = 8000

24 |mixing = 0.05

25 |root = -500.0
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26
27
28
29
30
31
32
33

34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

52
53
o4
55
56
57
58

59
60
61
62
63
64
65
66
67

68
69
70
71
72
73
74

#the mesh

r.c = 11.999

r = np.linspace (.01, np.sqrt(r_c), n)
d r[1]-r[0]

#1limit of integration

#some constants

Ck = (3.0*np.power (3.0%3.14159%x3.14159, 2.0/3.0)
/10.0)

Cx = (3.0xnp.power(3.0/3.14159, 1.0/3.0)/4.0)

#load data file for v_q

file_str = "He.dat"

dat = np.loadtxt(file_str)

##create v_q by interpolation

#v_q = np.interp(r*r, datl[:,0], dat[:,3])

#func for numerove step
def numerove(E, r, n, d, v_r):
u = np.zeros(n)
uln-1] = psi_n
ul[n-2] = psi_ni
f_r = -(E-v_r)*(8.0*r*r)/lamb
#print ("right integration")
for i in range(2,n): #right integration
1 = n-1
ull-1] = (ul[l1+1]1*(12.0- d*xdxf_r[1+1]) -
2.0%ul[l]*(12.0 + 5.0*%d*d*f_r[1]))/(d*xdx*
f_r[1-1]1-12.0)
#normalize
N = simpson (u*u*r*r, r)
#print (N)
u = u/np.sqrt (8*x3.14159%N/Z)
return ul[0]

#func for evaluating ground stae wavefunction with
optimized energy
def wavefunction(E, r, n, d, v_r):
u = np.zeros(n)
ul[n-1] = psi_n
ul[n-2] = psi_nil
f_r = -(E-v_r)*(8.0*r*r)/lamb
#print ("right integration")
for i in range(2,n): #right integration
1 = n-1
ull-1] = (u[1+1]1*(12.0- d*d*xf_r[1+1]) -
2.0%u[l]*(12.0 + 5.0*%d*d*f_r[1]))/(d*xdx*
f_r[1-1]1-12.0)
#normalize
N = simpson (u*u*r*r, r)
u = u/np.sqrt(8+x3.14159%N/Z)
return u #only returns the u part of R

#actual self-consistent code execution stars here
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75
76
7
78
79
80

81
82
83
84

85
86
87
88
89

90
91
92
93
94
95
96
97
98
99
100
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104
105
106

107

108
109
110
111
112
113
114
115
116

117
118
119
120
121
122

#initial guess density
rho = np.zeros(n)

n_i = np.array([1,1,2,2])
a_i = np.array([1,2,1,2])

N_i

(1.0/np.sqrt (4.0%3.14159*xfactorial (2*xn_i))) *
np.power (2.0*xa_i, n_i+0.5)
X_i = np.zeros((n, 4))

for i in range(0,4):
X_il[:,i] = N_i[i] * np.power(r*r, n_i[i] - 1.0)
* np.exp(-a_i[i] * r*r)
phi_1s = X_i[:,0] + X_il[:,1]
phi_2s X_i[:,2] + X_il[:,3]
phi_2p phi_2s

rho = 2xnp.power (phi_1s, 2.0) #+ 1xnp.power (phi_2s,
2.0) #+ 3*np.power (phi_2p, 2.0)

#rho =4*r*r*np.exp (-r*r*r*r)
#pl.plot (r*r, 4x3.14*r*r*xr*xr*rho)
#pl.show ()

M = 8%3.14159*simpson(rho*np.power(r,5), r)
print (M)
rho = rho/(M/Z)

v_h = np.zeros(n)
E_T= 0.0

for i in range(max_iter):
#calculate potentials
#calculate Vh
for j in range(O,n):
v_h[j] = 8.0%3.14159*(simpson(rho[j:n]*np.
power (r[j:n]l, 3.0), r[j:nl)
- simpson(rho[j:n]l*np.power(r[j:n]l, 5.0), r

[j:nl)/(x[jl*xr[j1)) + Z/(r[jl*r(j]1)

v_x = -Cx*(4.0/3.0)*np.power(rho, 1.0/3.0)
v_ext = -Z/np.power(r, 2.0)

v_KS = v_x + v_ext + v_h# + v_c

#v_KS = v_ext + v_h# + v_c

v_r = v_KS +3.0%xlamb/(32.0%r*r*r*r)

#shooting method for rough guess; E_i should be
suffieciently low, E_f sufficeintly high,
N_E sufficiently large.

E_i = root-1.5

E_f =1.0

N_E = 1000

E = np.linspace(E_i, E_f, N_E)
u0 = numerove(E_i, r, n, d, v_r)
flag = O
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123
124
125
126
127
128
129
130
131
132
133
134
135

136
137
138

139

140
141
142
143
144
145
146
147

148
149

150
151

152
153
154

155

156
157
158
159

160

161
162
163
164
165

for e in E[1:]:

temp = numerove(e, r, n, d, v_r)
if (temp*u0 < 0.0):

E_f = e

flag = 1

break
else:

u0 = temp

E_i = e

#brent method for refining energy

if flag==

root = optimize.brentq(numerove, E_i,E_f,
args=(r, n, d, v_r))

u_new = wavefunction(root, r, n, d, v_r)

rho_new = u_new*u_new*np.power (r, -3.0) #
rho_new = R*R = x7-3 * u*xu

M = 8%3.14159*simpson(rho_new*np.power (r,5)
, T)

rho_new = rho_new/(M/Z)

err = np.sum(np.power (rho_new - rho, 2.0))

rho = (1-mixing)*rho + mixing*rho_new

#calculate the potential energy

#E_T_new = 8.0%3.14159*xsimpson(rho*(v_ext +
0.5%¥v_h + v_x*3.0/4.0+v_q*3.0/5.0) *np.
power (r,5.0), r)

#tcalculate the kinetic energy

#grad = np.gradient(np.sqrt(rho), r,
edge_order=2)

#grad2 = np.gradient(grad, d)

#ke = lamb*3.14159*simpson (np.power (grad
,2.0) *np.power (r,3.0), r)

#print (ke)

#E_T_new += ke

#E_T_new =E_T_new - 3.14159*simpson (r*r*r
*(3.0*xgrad/r+grad2), r)

#E_T_new = E_T_new + 3.14159*simpson(r*r*r
*(grad*grad), r)

E_T_new = root

deltaE = (E_T_new - E_T)
E_T = E_T_new
print ("Iterationy=_{:d}, energy =u{:f}, u
(0)u=u{:e},uerror =,{:e}, root = {:f}".
format(i, E_T, u_new[0], err, root))#
deltaE, root))

if (err < 8.0e-0 or np.abs(deltaE) < 1le-6):
break

else:

print ("Given,initial range and_ mesh of
energyyisypoor. Tryylowering E_i or

19




166
167
168
169
170
171
172
173
174
175
176
177

178
179
180
181

182
183
184
185
186
187

188

189
190
191

192
193

194
195

196
197
198
199
200

201
202
203
204
205

206
207

increasing N_E or E_f.")

pl.plot(r*r, 4x3.14*r*xr*r*r*rho)
pl.plot(dat[:,0], dat[:,2])

pl.xlabel ("r"

pl.ylabel("density")
#pl.savefig(file_str.split(".") [0]+".png")
pl.show ()

print ("time=",time.time()-tl, " ,s")

dens = np.interp(r * r, dat[:, 0], dat[:, 21)

np.column_stack((r * r, dens, 4 *
3.14 * r r * r * r *x rho ))

output_file "He_density.txt"

np.savetxt (output_file, output_data, comments=’’)

output_data

%

#output_data = np.column_stack((r * r, v_h, v_x,
v_ext,v_r))

#output_file = "He_Veff.txt"

#np.savetxt (output_file, output_data, comments=’’)

for j in range(0,n):
v_h[j] = 8.0%3.14159*(simpson(rho[j:n]*np.
power(r[j:n]l, 3.0), r[j:nl)
- simpson(rho[j:n]l*np.power(r[j:n]l, 5.0), r

(3:nd)/(cl3]*r[31)) + Z/(x[j1*r[j])

#v_x = -Cx*(4.0/3.0)*np.power (rho, 1.0/3.0)

v_ext = -Z/np.power(r, 2.0)

E_ext = simpson(8.0%3.14159*%rho*v_ext*np.power (r
,5.0), 1)

print (E_ext)

E_H = simpson(4.0%3.14159*rho*(v_h)*np.power (r,5.0)
, T)

print (E_H)

E_X = simpson(8.0%3.14159*rho*v_x*np.power (r,5.0)
x*3.0/4.0, r)

print (E_X)

E_T1 = (E_ext + E_H +E_X)/2.0

print (E_T1)

#print ("M =", 8%3.14159*simpson (rho*np.power (r,5),
r))

#data = np.zeros((n,3))

#datal[:,0] = r*r

#datal[:,1] = rho

#datal:,2] = np.sqrt(rho)

#np.savetxt (file_str.split(".") [0]+".csv", data,
delimiter=",")

exit ()
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3.2.2 Lithium, Beryllium and Neon Atom

import numpy as np

import matplotlib.pyplot as pl

from scipy.integrate import simpson
from scipy.integrate import trapezoid
from scipy.integrate import quad

from scipy import optimize

import time

from scipy.special import factorial

00 O Uik WK

10 |#def differentiate(f, x):

12 |#assuming r = x*x

13 |#R = u*phi, phi = x~(-3/2)

14 |#in the remaining x is expressed by r
15 |t1 = time.time ()

16 |#values of psi at nth and n-1th point
17 |psi_n = 0.0

18 |psi_nl1 = 1e-8

19 |#number of mesh points

20 |n = 2000

21 |lamb = 1.0 #0.2

22 |Z = 3 #4 #10

23 |max_iter = 8000

24 |mixing = 0.05

25 |root = -500.0

26 |#the mesh

27 |r_c = 11.999

28 |r = np.linspace(.01, np.sqrt(r_c), n)

29 |d = r[1]-r[0]
30 |#1imit of integration
31

32 |#some constants

33 |Ck = (3.0%np.power (3.0%3.14159%3.14159, 2.0/3.0)
/10.0)

34 |Cx = (3.0*np.power (3.0/3.14159, 1.0/3.0)/4.0)

35
36 |[#load data file for v_q

37 |file_str = "Li.dat"#"Ne.dat"#"Be.dat"

38 |dat = np.loadtxt(file_str)

39 |#create v_q by interpolation

40 |v_q = np.interp(r*r, dat[:,0], dat[:,3])
41
42 |#func for numerove step

43 |def numerove(E, r, n, d, v_r):

44 u = np.zeros(n)

45 ul[n-1] = psi_n

46 ul[n-2] = psi_nil

47 f_r = -(E-v_r)*(8.0*r*r)/lamb

48 #print ("right integration")

49 for i in range(2,n): #right integration

50 1 = n-i

51 ull-1] = (ul[l1+1]1*(12.0- d*xd*xf_r[1+1]) -

2.0%xull]*(12.0 + 5.0*%dxd*xf_r[1]))/(d*xdx*
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53
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f_r[1-11-12.0)
#normalize
N = simpson (u*u*r*r, r)
#print (N)
u = u/np.sqrt (8*x3.14159%N/Z)
return ul[0]

#func for evaluating ground stae wavefunction with
optimized energy
def wavefunction(E, r, n, d, v_r):
u = np.zeros(n)
ul[n-1] = psi_n
ul[n-2] = psi_ni
f_r = -(E-v_r)*(8.0*xr*r)/lamb
#print ("right integration")
for i in range(2,n): #right integration
1 = n-1
ull-1] = (ull+1]1%(12.0- d*d*xf_r[1+1]) -
2.0%u[l]*(12.0 + 5.0*%d*d*f_r[1]))/(d*xdx*
f_r[1-1]1-12.0)
#normalize
N = simpson(u*u*r*r, r)
u = u/np.sqrt (8x3.14159%N/Z)
return u #only returns the u part of R

rho = np.zeros(n)
n_i = np.array([1,1,2,2])
a_i = np.array([1,2,1,2])

N_i = (1.0/np.sqrt(4.0*%3.14159*xfactorial (2*n_i))) *
np.power (2.0%a_i, n_i+0.5)
X_i = np.zeros((n, 4))

for i in range(0,4):
X_il[:,1] = N_i[i] * np.power(r*r, n_il[i]l - 1.0)
* np.exp(-a_i[i] * r*r)

phi_1s = X_i[:,0] + X_if[:,1]
phi_2s = X_i[:,2] + X_i[:,3]
phi_2p = phi_2s

#rho = 2*np.power (phi_1s, 2.0) + 1*np.power (phi_2s,
2.0) #+ 3xnp.power (phi_2p, 2.0)

#rho = r*r*np.exp(-0.5%r*r)

#rho = rxrxnp.exp(-r*r)

#rho = r*np.exp(-r*r)

rho = 2xrx*xnp.exp (-r**x4)

#rho = r*np.exp(-r*r)

#pl.plot (r*r, 4*3.14*r*r*r*xr*rho)
#pl.show ()

M = 8%3.14159*simpson (rho*np.power(r,5), r)
print (M)
rho = rho/(M/Z)
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h = np.zeros(n)
T

for i in range(max_iter):
#calculate potentials
#calculate Vh
for j in range(O,n):
v_h([j]l] = 8.0%3.14159*(simpson(rho[j:n]l*np.
power (r[j:n], 3.0), r[j:n])
- simpson(rho[j:n]l*np.power(r[j:n]l, 5.0), r
(3:nD)/(r[j1*r[j1)) + Z2/(x[jI*r[jl)
#v_h[j] = 8%3.14159*(simpson(rho[j:]*np.
power (r[j:]1, 3.0), r[j:1)
#+ simpson(rho[0:j+1]*np.power (r[0:j+1],
5.0), r[0:j+11)/(r[jl*r[jl1))

#v_q = Ck*(5.0/3.0)*np.power (rho, 2.0/3.0)
v_x = -Cx*(4.0/3.0) *np.power (rho, 1.0/3.0)
v_ext -Z/np.power(r, 2.0)

#rs_r = np.power (3.0/(4.0%3.14159%rho),

1.0/3.0)

#v_c = -0.0666*np.log(1+11.4/rs_r)

#a = 9.81

#b = 21.437

#c = 28.582667

#v_c = - (a+cxnp.power (rho, -1.0/3.0))/np.power
(a+b*np.power (rho, -1.0/3.0), 2.0)

v_KS = v_x + v_ext + v_h# + v_c

Vv_r = v_q + v_KS +3.0*1lamb/(32.0*r*r*r*r)

#shooting method for rough guess; E_i should be
suffieciently low, E_f sufficeintly high,
N_E sufficiently large.
i root-1.5
= 1.0
1000
np.linspace(E_i, E_f, N_E)
u0 = numerove(E_i, r, n, d, v_r)
flag = O
for e in E[1:]:
temp = numerove(e, r, n, d, v_r)
if (temp*u0 < 0.0):
E_f = e
flag = 1
break
else:
u0 = temp
E_i = e

M=mim
11 I O

#brent method for refining energy
if flag==
root = optimize.brentq(numerove, E_i,E_f,
args=(r, n, d, v_r))
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u_new = wavefunction(root, r, n, d, v_r)

rho_new = u_new*u_new*np.power (r, -3.0) #
rho_new = R*R = x7-3 * ux*u

M = 8%3.14159*simpson(rho_new*np.power (r,5)
, T)

rho_new = rho_new/(M/Z)

err = np.sum(np.power (rho_new - rho, 2.0))

rho = (1-mixing)*rho + mixing*rho_new

#calculate the potential energy

#E_T_new = 8.0%3.14159*simpson(rho*(v_ext +
0.5%¥v_h + v_x*3.0/4.0+v_q*3.0/5.0) *np.
power (r,5.0), r)

#tcalculate the kinetic energy

#grad = np.gradient(np.sqrt(rho), r,
edge_order=2)

#grad2 = np.gradient(grad, d)

#ke = lamb*3.14159*simpson (np.power (grad
,2.0)*np.power (r,3.0), r)

#print (ke)

#E_T_new += ke

#E_T_new =E_T_new - 3.14159*simpson (r*r*r
*(3.0*grad/r+grad2), r)

#E_T_new = E_T_new + 3.14159*simpson (r*r*r
*(grad*grad), r)
E_T_new = root

deltaE = (E_T_new - E_T)
E_T = E_T_new
print ("Iteration=_{:d}, energy =u{:f}, u
©) usuls el uerreru=ul el , uTeetu=ul s BT,
format(i, E_T, u_new[0], err, root))#
deltaE, root))

if (err < 8.0e-0 or np.abs(deltaE) < 1le-6):
break
else:
print ("Given,initial range and_ mesh of
energyisypoor. Tryylowering E_i or
increasing N_E or E_f.")

pl.plot (r*r, 4*3.14*r*r*r*xr*rho)
pl.plot(dat[:,0], dat[:,2])

pl.xlabel ("r")

pl.ylabel("density")
pl.savefig(file_str.split(".") [0J+".png")
pl.show ()

print ("time=",time.time()-tl, " ,s")

dens_inter = np.interp(r * r, dat[:, 0], dat[:, 21)

output_data = np.column_stack((r * r, dens_inter, 4

* 3.14 * r * r *x r * r * rho ))
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output_file = file_str.split(".")[0] + " _density.

txt"
np.savetxt (output_file, output_data, comments=’’)
output_data = np.column_stack((r * r, v_h, v_x,

v_ext, v_q, v_r))
output_file = file_str.split(".")[0] + "_Veff.txt"
np.savetxt (output_file, output_data, comments=’’)

for j in range(0,n):
v_h([j]l] = 8.0%3.14159*(simpson(rho[j:n]l*np.
power (r[j:nl, 3.0), r[j:nl)
- simpson(rho[j:n]l*np.power(r[j:n]l, 5.0), r
i:n])/(cljlxr[j1)) + Z/(x[jl*xr[j1)

v_x = -Cx*(4.0/3.0)*np.power (rho, 1.0/3.0)

v_ext -Z/np.power (r, 2.0)

E_ext = simpson(8.0%3.14159*%rho*v_ext*np.power (r
,5.0), 1)

print (E_ext)

E_H = simpson(4.0%3.14159*xrho*(v_h)*np.power (r,5.0)
, T)

print (E_H)

E_X = simpson(8.0%3.14159*xrho*v_x*np.power (r,5.0)
x3.0/4.0, r)

print (E_X)

E_T1 = (E_ext + E_H + E_X)/2.0

print (E_T1)

#print ("M =", 8%3.14159*simpson (rho*np.power (r,5),
r))

data = np.zeros((n,3))

datal[:,0] = r*r

datal[:,1] = rho

datal[:,2] = np.sqrt(rho)

np.savetxt(file_str.split(".") [0]+".csv", data,
delimiter=",")

exit ()
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3.3 Results and Outputs

3.3.1 Non-Interacting Model Systems
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Figure 3.2: Optimized density for
Figure 3.1: Initial density for 2S 2S
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3.3.2 Interacting Atomic System

3.3.2.1 Helium Atom
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Figure 3.7: Radial density for Helium atom

Property | Predicted (6-31G) | Calculated

Energy (E,) -2.714 -2.681

p (au.) -0.517 -0.526

Table 3.1: Comparison of Reference and Calculated Energy and chemical

potential (p)
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3.3.2.2 Lithium Atom
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Figure 3.8: Radial density for Lithium atom

Property | Predicted (6-31G) | Calculated

Energy (E,) -7.16 -7.18

p (au.) -0.374 -0.432

Table 3.2: Comparison of Reference and Calculated Energy and chemical

potential (u)
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3.3.2.3 Beryllium Atom
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Figure 3.9: Radial density for Beryllium atom

Property | Predicted (6-31G) | Calculated

Energy (E,) -0.168 -0.170

p(a) -14.182 -14.214

Table 3.3: Comparison of Reference and Calculated Energy and chemical

potential (p)
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3.3.2.4 Neon Atom
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Figure 3.10: Radial density for Neon atom

Property | Predicted (6-31G) | Calculated

Energy (E,,) -127.394 -126.206

p (aau) -0.444 -0.437

Table 3.4: Comparison of Reference and Calculated Energy and chemical

potential (1)
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Chapter 4
Conclusion and Scope

In this project, we used a method to calculate the radial electron density of
atoms by solving the Euler—Lagrange equation derived from the variational
principle within framework of density functional theory (DFT). By using
the exact Pauli potential extracted from Kohn-Sham DFT calculations,
we accurately included the kinetic energy contribution without explicitly
solving for orbitals. The Euler equation, reformulated in terms of the square
root of the density, was solved numerically using the Numerov method,

ensuring stability and precision.

The resulting radial densities closely matched those obtained from full
Kohn—Sham solutions gaussian software which validating the approach.
This demonstrates that incorporating the exact Pauli potential into orbital-
free frameworks can reproduce high-quality densities with significantly re-
duced computational effort. The success of this method highlights its po-
tential for extending orbital-free DF'T techniques to larger systems, where

traditional Kohn—-Sham methods become computationally expensive.

Future scope will focus on further enhancing orbital-free density functional
theory (OF-DFT) by refining the approximate forms of the Pauli poten-
tial vg([p];r), which demonstrated improved accuracy and numerical sta-
bility in this work. These refinements will be coupled with machine learn-
ing techniques and line-integration methods to construct functionals that
are invariant under translations and rotations, ensuring better adaptability
across various atomic and molecular systems. By improving these approx-
imations, the proposed approach will continue to offer a computationally
efficient alternative to traditional Kohn-Sham DFT, making it suitable for
large-scale electronic structure calculations in materials science and quan-

tum chemistry.
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Appendix A

Appendix Section

A.0.1 Magnesium Atom
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— Calculated

0 5
Radius(r)

Figure A.1: Radial Density for Magnesium Atom

Predicted (6-31G) | Calculated

Property
Energy (E,) -195.601 -194.501
p (a.au) -0.140 -0.1

Table A.1: Comparison of Reference and Calculated Energy and chemical

potential (p)
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A.0.2 Nitrogen Atom
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Figure A.2: Radial density for Nitrogen atom

Property | Predicted (6-31G) | Calculated

Energy (E,) -0.221 -0.226

p (aau.) -53.680 -53.391

Table A.2: Comparison of Reference and Calculated Energy and chemical

potential (p)
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A.0.3 Argon Atom
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Figure A.3: Radial density for Argon atom

Property | Predicted (6-31G) | Calculated

Energy (E,) -524.452 -512.73

p (a.au) -0.334 -0.333

Table A.3: Comparison of Reference and Calculated Energy and chemical
potential (u)
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