Solving Euler's equation for Non-Interacting Model Systems and Atoms

M.Sc. THESIS

By **ASHUTOSH PATEL**(2303131006)

DEPARTMENT OF CHEMISTRY INDIAN INSTITUTE OF TECHNOLOGY INDORE May 2025

Solving Euler's equation for Non-Interacting Model Systems and Atoms

A THESIS

Submitted in partial fulfillment of the requirements for the award of the degree $$\operatorname{of}$$ MASTER OF SCIENCE

$\begin{array}{c} \text{By} \\ \textbf{ASHUTOSH PATEL} \end{array}$

INDIAN INSTITUTE OF TECHNOLOGY INDORE CANDIDATE'S DECLARATION

I hereby certify that the work which is presented in the thesis entitled SOLVING EULER'S EQUATION FOR NON-INTERACTING MODEL SYSTEMS AND ATOMS in the partial fulfilment of the requirements for the award of the degree of MASTER OF SCIENCE and submitted in the DEPARTMENT OF CHEMISTRY, Indian Institute of Technology Indore, is an authentic record of my own work carried out during the time period from July, 2023 to May, 2025 under the supervision of Prof. SATYA S. BULUSU, Professor, Department of CHEMISTRY, Indian Institute of Technology Indore.

The matter presented in this thesis has not been submitted for the award of any other degree of this or any other institute.

Signature of student with date

ASHUTOSH PATEL

This is to certify that the above statement made by the candidate is correct to the best of my/our knowledge.

Signature of Thesis Supervisor with date

Prof. SATYA S. BULUSU

ASHUTOSH PATEL, has successfully given his M.Sc. Oral Examination held on 15 May 2025.

16.05.2025

Signature of Supervisor of

the M.Sc. thesis

Prof. Satya S. Bulusu

Acknowledgements

I would like to thank my supervisor **Prof. Satya S. Bulsu**(Professor, Department of Chemistry, IIT Indore) for his continuous support, conviction, encouragement and invaluable advice during my lab work. I have been fortunate to have a supervisor who is deeply invested my work, consistently addressing my questions and concerns promptly.

I would like to acknowledge this assistance given to me by lab senior Ms. Aparna Gangwar. She helped me a lot by giving me guidance and encouragement whenever I was stuck in any problem. Their contribution was precious to me in this project. I feel lucky to work under her guidance. I also thank my other lab members for their valuable suggestions and help.

I would like to thank all my classmates and friends. Finally, I would like to thank my parents who have always been a constant source of support for me throughout my life.

(ASHUTOSH PATEL)



ABSTRACT

In this project, we develop a numerical approach to solve Euler's equation for many-body atomic systems within the framework of density functional theory (DFT) to calculate the electron density that minimizes the total energy functional. The energy functional includes contributions from kinetic energy, external potential, Hartree potential and exchangecorrelation energy. The Pauli potential is incorporated to account for the quantum mechanical effects of fermionic antisymmetry, improving the representation of kinetic energy. Using a self-consistent field (SCF) method, the electron density is iteratively updated, starting from an initial guess, with the Hartree, exchange-correlation, and Pauli potentials computed at each step. The density is normalized to maintain the total number of electrons, and convergence is achieved when the error in density or energy falls below a defined threshold. This implementation employs Numerov methods for radial grid discretizations and numerical integration to evaluate potentials and energies. The results demonstrate the successful computation of electron density for multi-electron atomic systems, providing a robust framework for extending the method to more complex systems or incorporating advanced functionals.



Contents

\mathbf{A}	BST	RACT		vii
1	Inti	roduct	ion	1
	1.1	Overv	view	. 1
	1.2	Motiv	vation	. 3
	1.3	Objec	etive	. 3
	1.4	Organ	nization of the Thesis	. 4
2	Lite	erature	e Review	5
	2.1	Theor	ry and Method	. 5
		2.1.1	Euler'ss equation for Non-Interacting Model systems	5
		2.1.2	Gradient Descent Minimization and Energy Calcula-	
			tion	. 6
		2.1.3	Euler's equation for Interacting Atomic Systems	. 7
3	Res	sults ai	nd Discussion	11
	3.1	Euler'	's Equation code:	. 11
	3.2	Euler'	's Equation code:	. 16
		3.2.1	Helium Atom	. 16
		3.2.2	Lithium, Beryllium and Neon Atom	. 21
	3.3	Result	ts and Outputs	. 26
		3.3.1	Non-Interacting Model Systems	. 26
		3.3.2	Interacting Atomic System	. 27
			3.3.2.1 Helium Atom	. 27
			3.3.2.2 Lithium Atom	. 28

		3.3.2.3	Beryllium Atom	29
		3.3.2.4	Neon Atom	30
4	Conclusion	n and Sc	cope	31
\mathbf{A}	Appendix	Section		33
	A.0.1	Magnesi	um Atom	33
	A.0.2	Nitrogen	Atom	34
	A 0 3	Argon A	.tom	35

List of Figures

3.1	Initial density for 2S	26
3.2	Optimized density for 2S	26
3.3	Initial density for 3S	26
3.4	Optimized density for 3S	26
3.5	Initial density for 4S	26
3.6	Optimized density for 4S	26
3.7	Radial density for Helium atom	27
3.8	Radial density for Lithium atom	28
3.9	Radial density for Beryllium atom	29
3.10	Radial density for Neon atom	30
A.1	Radial Density for Magnesium Atom	33
	Radial density for Nitrogen atom	
A 3	Radial density for Argon atom	35

List of Tables

3.1	Comparison of Reference and Calculated Energy and chemical potential (μ)	27
3.2	Comparison of Reference and Calculated Energy and chemical potential (μ)	28
3.3	Comparison of Reference and Calculated Energy and chemical potential (μ)	29
3.4	Comparison of Reference and Calculated Energy and chemical potential (μ)	30
A.1	Comparison of Reference and Calculated Energy and chemical potential (μ)	33
A.2	Comparison of Reference and Calculated Energy and chemical potential (μ)	34
A.3	Comparison of Reference and Calculated Energy and chemical potential (μ)	35

.

.

Chapter 1

Introduction

1.1 Overview

Density Functional Theory (DFT) has emerged as a crucial instrument in computational chemistry and materials research throughout the last half-century. In 1927, Thomas and Fermi originally introduced the idea of calculating electronic structure using electron density instead of the more complicated electronic wavefunction. The theoretical underpinnings of DFT were developed over thirty years later by Hohenberg and Kohn [1], who showed that the electron density of a many-electron system under an external potential is the only characteristic that can uniquely identify its ground state. The ability to represent the overall ground-state energy of a many-electron system as a functional of the electron density is a significant implication of this discovery. Furthermore, the Euler-Lagrange equation results from the ground-state density's adherence to the stationary energy principle:

$$\mu = \frac{\delta E[n]}{\delta n(r)} \tag{1.1}$$

where n(r) denotes the electron density and μ represents the chemical potential, ensuring the conservation of the total number of electrons. The ground-state energy functional E[n] is generally decomposed as:

$$E[n] = T[n] + E_{\text{ext}}[n] + E_{\text{coul}}[n] + E_{\text{XC}}[n]$$
 (1.2)

where T[n], $E_{\text{ext}}[n]$, $E_{\text{coul}}[n]$, and $E_{\text{XC}}[n]$ represent the non-interacting kinetic energy (KE), the interaction energy of the electron density with

the external potential, the classical Coulomb repulsion energy between the electrons, and the so-called exchange—correlation (XC) energy, respectively.

Unfortunately, only $E_{\rm ext}[n]$ and $E_{\rm coul}[n]$ have accurate functional forms. To do practical DFT-based calculations, one must rely on approximation forms for T[n] [2] and $E_{\rm XC}[n]$. Since the formal formulation of DFT, great work has been put into constructing XC functionals with increasing accuracy.

The Kohn-Sham formalism of DFT (KS-DFT) solves the difficulty of the KE functional by expressing it exactly in terms of a collection of non-interacting occupied orbitals. As a result of the availability of precise XC functionals throughout time, the Kohn-Sham formalism of DFT has become an essential tool for all modern first-principles-based electronic structure computing methods.

1.2 Motivation

The motivation behind solving Euler's equation in the context of Orbital-Free Density Functional Theory (OF-DFT) is to overcome the limitations of traditional quantum mechanical methods, such as Hartree-Fock and Kohn-Sham DFT, which require explicit computation of orbitals. These methods become computationally expensive and complex for large systems. Earlier implementations of OF-DFT also relied on approximate kinetic energy functionals, leading to inefficiencies and inaccuracies. By solving Euler's equation, derived from the variational principle of OF-DFT, we can directly minimize the total energy functional with respect to electron density, eliminating the need for orbitals. This approach offers a more computationally efficient and accurate method for calculating the radial electron density, particularly for spherically symmetric systems like atoms, reducing both mathematical and computational complexity while retaining the essential physical characteristics of the system.

1.3 Objective

- To solve Euler's equation for atoms using an exact form of the kinetic energy functional in an orbital-free density functional theory (OF-DFT) framework.
- To compute the radial electron density distribution for many-electron atomic systems.
- To implement a Numerov Method for the derived equations, ensuring proper boundary conditions and normalization constraints.
- To compare the obtained electron density distributions with the reference obtained from Gaussian for results validation.

1.4 Organization of the Thesis

The work done in the present thesis is organized in four chapters. The present chapter gives brief overview about the Density funtional Theory and Euler-Lagranze equation. Further it discusses the motivation towards solving Euler's equation for atoms.

- Chapter 2, presents the theory and methods behind the work.
- Chapter 3, sumarises the work done in thesis.
- Chapter 4, presents the conclusion of whole work and describe the future scope.

Chapter 2

Literature Review

2.1 Theory and Method

2.1.1 Euler'ss equation for Non-Interacting Model systems

The Density Functional Theory (DFT) offers a strong framework for characterizing systems of non-interacting fermions in addition to the numerical solution of the Schrödinger equation. DFT minimizes the system's total energy [3] in relation to the particle density. The particle density distribution can be ascertained by combining the external potential with the kinetic energy functional of non-interacting particles to create an energy minimization problem.

In this study, we concentrate on a system of N non-interacting fermions (where N=2,3) that are exposed to a Gaussian potential, which is provided by:

$$v(x) = -\sum_{k=1}^{3} \alpha_k \exp\left(-\frac{(x-\beta_k)^2}{2\gamma_k^2}\right), \qquad (2.1)$$

where a random sample of the parameters α_k , β_k , and γ_k are taken from predetermined boundaries. It is contained within a one-dimensional box with x between -3.0 and 3.0. The eigenvalues E_i and eigenfunctions $\phi_i(x)$ are obtained by numerically solving the Schrödinger equation, and these orbitals are filled in accordance with the Pauli exclusion principle.

For N = 2, 3, we explore two configurations: one with two fermions having opposite spins in the lowest energy state (2S), and another where

the lowest two energy levels are singly occupied by spinless fermions (3S), and for N=3) lowest three energy levels are singly occupied by spinless fermions (4S).

The electron density is given by:

$$n(x) = \sum_{i=1}^{N} f_i |\phi_i(x)|^2,$$
(2.2)

where f_i denotes the occupation number. The kinetic energy functional T[n] is computed using the density n(x), with the KE density $\tau(x)$ given by:

$$\tau(x) = \frac{1}{2} \sum_{i=1}^{N} |\nabla \phi_i(x)|^2$$
 (2.3)

The exact kinetic energy is computed as:

$$T_{\text{Exact}} = \int_{-\infty}^{\infty} \tau(x) dx$$
 (2.4)

The functional derivative of the kinetic energy is:

$$\frac{\delta T_{\text{Exact}}[n]}{\delta n} = -v(x) + \mu \tag{2.5}$$

where μ is the chemical potential. The minimization [4] of the energy functional is carried out using an iterative gradient descent method, where the density is updated at each step:

$$n_{\text{new}}(x) = n_{\text{old}}(x) - \eta \frac{\delta L[n]}{\delta n}$$
 (2.6)

Here, η is a constant step size, and the energy functional is minimized until the difference between the new and target densities is below a specified threshold.

2.1.2 Gradient Descent Minimization and Energy Calculation

In the iterative gradient descent method used to minimize the energy functional, the functional derivative of the Lagrangian with respect to the density is given by:

$$\frac{\delta L[n]}{\delta n} = \frac{\delta T_{\text{Exact}}[n]}{\delta n} + V(x) - \mu. \tag{2.7}$$

The iteration starts with a random initial density in order to determine the minimal energy density. Until the difference between the total energy of the new density and the target density is less than 10^{-3} , the gradient descent process is repeated. With a step size of $\eta=0.005$, the overall number of iterations is restricted to 100. The result discussion section displays the plots of the total energy minimum curves that were achieved during minimization for (2S , 3S and 4S) using the gradient descent method.

2.1.3 Euler's equation for Interacting Atomic Systems

The Hohenberg-Kohn theorem in density functional theory (DFT) says that the exact ground-state energy of a system of N electrons in an external potential may be formally stated as a functional $E[\rho]$ [5] solely in terms of the electron density $\rho(r)$. An essential consequence of this finding is that the total ground-state energy of a many-electron system may be represented as a function of electron density, and the ground-state density satisfies the energy stationary principle, yielding the Euler-Lagrange equation. This theorem uses the Euler equation to minimize $E[\rho]$ with the constraint condition $\int \rho(r)dr = N$. Euler's equation is given as follows:

$$\mu = \frac{\delta E[n]}{\delta n(r)} \tag{2.8}$$

The Kohn-Sham (KS) formalism of DFT introduces a partitioning of the total energy functional into different energy components:

$$E[\rho] = T_s[\rho] + E_{ee}[\rho] + E_{en}[\rho] + T_c[\rho]$$
 (2.9)

where $T_s[\rho]$ [6] represents the non-interacting kinetic energy (KE) functional, $E_{ee}[\rho]$ represents the electron–electron interaction energy functional, and $E_{en}[\rho]$ denotes the energy functional corresponding to the interaction of the electrons with the external potential arising due to the electron–nucleus attractive interaction. The functional form for the electron–nuclear energy is given by:

$$E_{\rm en}[\rho] = \int v_{\rm ext}(r)\rho(r)dr \qquad (2.10)$$

The final term in the equation, $T_c[\rho]$, represents the correlation kinetic energy, which accounts for the difference between the true kinetic energy and the non-interacting kinetic energy $T_s[\rho]$. This term, along with the exchange-correlation functional, plays a crucial role in determining the accuracy of density functional approximations. This approach allows for efficient computations of ground-state properties without the need for solving

the many-body Schrödinger equation directly. The Kohn-Sham (KS) formalism of DFT introduces a partitioning of the total energy functional into different energy components:

$$E[\rho] = T_s[\rho] + E_{ee}[\rho] + E_{en}[\rho] + T_c[\rho]$$
 (2.11)

where $T_s[\rho]$ represents the non-interacting kinetic energy (KE) functional, $E_{ee}[\rho]$ is the electron-electron interaction energy functional, and $E_{en}[\rho]$ [7]denotes the energy functional corresponding to the interaction of electrons with the external potential. The energy associated with the electron-nuclear interaction is given by:

$$E_{en}[\rho] = \int \rho(\mathbf{r})\nu_{en}(\mathbf{r})d\mathbf{r}, \qquad (2.12)$$

where $\nu_{cn}(\mathbf{r})$ is the nuclear potential, which for an atom with nuclear charge Z is given by:

$$\nu_{en}(\mathbf{r}) = -\frac{Z}{|\mathbf{r}|}. (2.13)$$

The kinetic energy functional $T_c[\rho]$ accounts for electron-electron correlation and is conventionally rewritten as:

$$E_{ee}[\rho] + T_c[\rho] = E_H[\rho] + E_{xc}[\rho],$$
 (2.14)

where the Hartree energy $E_H[\rho]$ represents the classical Coulomb interaction of the electron density:

$$E_H[\rho] = \frac{1}{2} \iint \frac{\rho(\mathbf{r})\rho(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|} d\mathbf{r}' d\mathbf{r}, \qquad (2.15)$$

and $E_{xc}[\rho]$ represents the exchange-correlation energy, which includes exchange, Coulombic correlation, and kinetic correlation contributions. In the KS formalism, the exact form of the kinetic energy functional [8] $T_s[\rho]$ is not known in terms of density. Instead, it is computed using the KS orbitals $\phi_i(\mathbf{r})$ of N non-interacting electrons:

$$T_s[\rho] = \int t_s(\mathbf{r}) d\mathbf{r} = \sum_{i}^{N} \int \frac{1}{2} |\nabla \phi_i(\mathbf{r})|^2 d\mathbf{r}, \qquad (2.16)$$

where the electron density is obtained from the orbitals as:

$$\rho(\mathbf{r}) = \sum_{i} |\phi_i(\mathbf{r})|^2. \tag{2.17}$$

In contrast, orbital-free DFT (OF-DFT) seeks to bypass explicit orbital dependence by employing density-based approximations for the kinetic energy functional $T_s[\rho]$. In this approach, the kinetic energy functional is decomposed as:

$$T_s[\rho] = T_{\nu W}[\rho] + T_{\theta}[\rho], \qquad (2.18)$$

where the first term, $T_{\nu W}[\rho]$, is the von Weizsäcker kinetic energy functional, given by:

$$T_{\nu W}[\rho] = \int t_{\nu W}(\mathbf{r}) d\mathbf{r} = \frac{1}{8} \int \frac{|\nabla \rho(\mathbf{r})|^2}{\rho(\mathbf{r})} d\mathbf{r}.$$
 (2.19)

This term is exact for single orbital systems and bosonic systems. The second term, $T_{\theta}[\rho]$, represents the Pauli kinetic energy functional, which accounts for the many-body fermionic effects. Unlike the von Weizsäcker term, the exact form of $T_{\theta}[\rho]$ is unknown, and various approximate models have been proposed in the literature to represent it. Applying the variational principle under the constraint $\int \rho(\mathbf{r})d\mathbf{r} = N$, a single KS-like equation is obtained for $\sqrt{\rho(\mathbf{r})}$:

$$\left(-\frac{1}{2}\nabla^2 + \nu_s([\rho]; \mathbf{r}) + \nu_{\theta}([\rho]; \mathbf{r})\right) \sqrt{\rho(\mathbf{r})} = \mu \sqrt{\rho(\mathbf{r})}, \qquad (2.20)$$

where μ is the chemical potential. Here, $\nu_s([\rho]; \mathbf{r})$ is the KS potential, given by:

$$\nu_s([\rho]; \mathbf{r}) = \nu_H([\rho]; \mathbf{r}) + \nu_{XC}([\rho]; \mathbf{r}) + \nu_{cn}([\rho]; \mathbf{r}), \tag{2.21}$$

where $\nu_H([\rho]; \mathbf{r})$, $\nu_{XC}([\rho]; \mathbf{r})$, and $\nu_{cn}([\rho]; \mathbf{r})$ are the Hartree, exchange-correlation, and electron-nuclear potentials, respectively. The second term, $\nu_{\theta}([\rho]; \mathbf{r})$, is the Pauli potential derived from $T_{\theta}[\rho]$:

$$\nu_{\theta}([\rho]; \mathbf{r}) = \frac{\delta T_{\theta}[\rho]}{\delta \rho(\mathbf{r})}.$$
 (2.22)

Since the exact form of $\nu_{\theta}([\rho]; \mathbf{r})$ in terms of density is unknown, various approximations are used in practical implementations of OF-DFT. Future work aims to develop improved kinetic energy functionals that accurately capture the effects of electronic correlations and shell structure in many-electron systems. The exact form of the Pauli potential $\nu_{\theta}([\rho]; \mathbf{r})$ in terms of density $\rho(\mathbf{r})$ is unknown, but it can be expressed using KS orbitals and orbital energies as:

$$\nu_{\theta}([\rho]; \mathbf{r}) = t_{\theta}(\mathbf{r}) + \sum_{i=1}^{N} (\varepsilon_{N} - \varepsilon_{i}) \frac{|\phi_{i}(\mathbf{r})|^{2}}{\rho(\mathbf{r})},$$
 (2.23)

where the Pauli kinetic energy (KE) density is given by:

$$t_{\theta}(\mathbf{r}) = t_{s}(\mathbf{r}) - t_{\nu W}(\mathbf{r}). \tag{2.24}$$

The total Pauli KE functional is:

$$T_{\theta}[\rho] = \int t_{\theta}(\mathbf{r})\rho(\mathbf{r})d\mathbf{r}.$$
 (2.25)

An important constraint in orbital-free DFT [9]is the non-negativity of $T_{\theta}[\rho]$ and $\nu_{\theta}([\rho]; \mathbf{r})$. The Pauli KE functional can also be computed from the density-potential relationship:

$$T_{\theta}[\rho] = -\frac{1}{2} \int \rho(\mathbf{r}) \mathbf{r} \cdot \nabla \nu_{\theta}([\rho]; \mathbf{r}) d\mathbf{r}.$$
 (2.26)

Since this formulation makes the KE functional non-unique and does not guarantee translational and rotational invariance, we focus on directly modeling $\nu_{\theta}([\rho]; \mathbf{r})$ instead of $T_{\theta}[\rho]$.

Chapter 3

Results and Discussion

Here, we have numerically solved the 1-dimensional Schrödinger equation using Numerov and Finite- difference method. We calculated potentials, eigenvalue and eigenfunction for various potential systems and we solved solved Euler's equation for Non-Interacting system to generate automatic densities.

3.1 Euler's Equation code:

```
1. Code for Non-Interacting Systems
```

```
import numpy as np
2
   import matplotlib.pyplot as plt
   from itertools import islice
  from scipy import integrate
   import re
6
   import sys
   file0 = open("density_initial.dat", "w")
   file1 = open("initial_vext.dat", "w")
11
   file2 = open("check.dat", "w")
12
   with open('para_initial', 'r') as f:
13
14
       while True:
15
           next_n_lines = list(islice(f, 4))
16
           if not next_n_lines:
17
               print("here")
18
               break
           first_line = next_n_lines[0]
19
20
           number_line = first_line.rstrip('\n')
21
           del next_n_lines[0]
22
           lines_array = np.array(next_n_lines)
23
           a = []
24
           b = []
```

```
25
            c = []
26
27
            for line in lines_array:
28
                line = line.rstrip('\n')
29
                values = line.split()
30
                a.append(float(values[0]))
31
                b.append(float(values[1]))
32
                c.append(float(values[2]))
33
34
            a = np.asarray(a)
35
            b = np.asarray(b)
36
            c = np.asarray(c)
37
            a1, b1, c1 = a[0], b[0], c[0]
38
            a2, b2, c2 = a[1], b[1], c[1]
            a3, b3, c3 = a[2], b[2], c[2]
39
40
41
            def gaussian_potential(x, h, w, s):
42
                return h * np.exp(-0.5 * (((x - w) / s)
                   ) ** 2)
43
44
            def double_well_potential(x):
45
                return -(gaussian_potential(x, a1, b1,
                   c1) + gaussian_potential(x, a2, b2,
                   c2) + gaussian_potential(x, a3, b3,
                   c3))
46
47
            # Parameters
48
            x_min = -3.0
49
            x_max = 3.0
50
           h = 0.005 # Step size
51
            x = np.arange(x_min, x_max + h, h)
52
           n_{points} = len(x)
53
54
           # Construct Hamiltonian matrix
55
           V = double_well_potential(x)
56
           H = np.diag(1 / h**2 + V)
57
           H += np.diag(-0.5 / h**2 * np.ones(n_points)
                -1), k=1)
            H += np.diag(-0.5 / h**2 * np.ones(n_points)
58
                -1), k=-1)
59
60
            # Diagonalize Hamiltonian matrix
61
            eigenvalues, eigenvectors = np.linalg.eigh(
               H)
62
63
            # Find the ground state wavefunction
64
            ground_state_index = np.argmin(eigenvalues)
65
            ground_state_energy = eigenvalues[
               ground_state_index]
66
            ground_state_psi = eigenvectors[:,
               ground_state_index]
67
68
            # Find the first excited state wavefunction
69
            excited_state_index = np.argsort(
               eigenvalues)[1] # Sort eigenvalues and
```

```
choose the second smallest
70
             excited_state_energy = eigenvalues[
                excited_state_index]
71
             excited_state_psi = eigenvectors[:,
                excited_state_index]
72
73
             # Ensure correct phase of the wavefunctions
74
             reference_point = 0  # Choose a reference
                point
75
             if ground_state_psi[np.abs(x -
                reference_point).argmin()] < 0:</pre>
76
                 ground_state_psi *= -1
             if excited_state_psi[np.abs(x -
77
                reference_point).argmin()] < 0:</pre>
                 excited_state_psi *= -1
78
79
80
             # Normalize the wavefunctions
             ground_state_psi /= np.sqrt(integrate.
81
                trapezoid(ground_state_psi**2, x))
82
             excited_state_psi /= np.sqrt(integrate.
                trapezoid(excited_state_psi**2, x))
83
84
             ground_state_density = ground_state_psi**2
85
             excited_state_density = excited_state_psi
                **2
86
87
             integral1 = integrate.trapezoid(
                ground_state_density, x)
88
             print(integral1)
89
90
             integral2 = integrate.trapezoid(
                excited_state_density, x)
91
             print(integral2)
92
93
             totdens = ground_state_density +
                excited_state_density
94
             integral = integrate.trapezoid(totdens, x)
95
             print(integral)
96
97
             with np.printoptions(threshold=sys.maxsize,
                 precision=4):
98
                 print(re.sub(r'_{\sqcup}*\n_{\sqcup}*', '\n', np.
                    array_str(np.c_[x, totdens,
                    ground_state_psi,
                    double_well_potential(x)]).replace('
                    [', '').replace(']', '').strip()),
                    file=file0)
99
                 print(file=file0)
100
101
             with np.printoptions(threshold=sys.maxsize)
102
                 print(re.sub(r'_{\sqcup}*\n_{\sqcup}*', '\n', np.
                    array_str(np.c_[x,
                    double_well_potential(x)]).replace('
                    [', '').replace(']', '').strip()),
```

```
file=file1)
103
                print(file=file1)
104
105
            # Calculate kinetic energy functional
106
            gradient_ground = np.gradient(
               ground_state_psi, x)
107
            gradient_excited = np.gradient(
               excited_state_psi, x)
108
109
            # Square of the gradients
110
            gradient_ground_squared = gradient_ground
111
            gradient_excited_squared = gradient_excited
               **2
112
113
            # Sum the squared gradients for all states
114
            kinetic_energy_integrand = 0.5*(
               gradient_ground_squared +
               gradient_excited_squared)
115
116
            #T_exact = integrate.trapezoid(
               kinetic_energy_integrand, x)
117
            #print("Exact Kinetic Energy (T_Exact):",
               T_{exact}
118
119
            # Calculate chemical potential (average
               energy per electron)
120
            total_energy = ground_state_energy +
               excited_state_energy
121
            N = 2 \# Example number of electrons
122
            mu = excited_state_energy
                                           #total_energy
               / N
123
124
            print("Chemical_Potential_(mu):", mu)
125
126
            # Gradient descent parameters
127
            eta = 0.005 # Step size
128
            max_iterations = 500 # Maximum number of
               iterations
129
            convergence_threshold = 1e-3 # Convergence
                criterion for density change
130
131
            # Initialize the density (old density)
132
            n_old = totdens # This is the initial
               total density you already have
133
            # Iterate until convergence
134
135
            for iteration in range(max_iterations):
136
                gradient_ground = np.gradient(
                   ground_state_psi, x)
                gradient_excited = np.gradient(
137
                    excited_state_psi, x)
138
139
                gradient_ground_squared =
                   gradient_ground **2
```

```
140
                 gradient_excited_squared =
                     gradient_excited **2
141
142
                 kinetic_energy_integrand =0.5* (
                    gradient_ground_squared +
                    gradient_excited_squared)
143
                 T_exact = integrate.trapezoid(
                    kinetic_energy_integrand, x)
144
145
                 potential_integral = integrate.
                     trapezoid(n_old *
                     double_well_potential(x), x)
146
147
                 E_exact = T_exact + potential_integral
148
149
                 L = E_exact - mu * (integrate.trapezoid
                     (n_old, x) - N)
150
151
                 gradient_T_exact = np.gradient(
                    kinetic_energy_integrand, x)
                    Numerical second derivative of
                     density
152
                 grad = double_well_potential(x) - mu
153
154
                 grad_L = gradient_T_exact +
                     double_well_potential(x) - mu
155
156
                 n_new = n_old - eta * grad_L
157
158
                 Energy_change = np.linalg.norm(E_exact
                     - total_energy)
159
                 if Energy_change <</pre>
                     convergence_threshold:
160
                      print(f"Converged_after_{\( \) \} iteration_{\( \) \
                         +_{\sqcup}1\}_{\sqcup}iterations.")
161
                      break
162
163
                 # Update the old density for the next
                     iteration
164
                 n_old = n_new
165
166
             # Final density after gradient descent
167
             #print("Final density:", n_new)
168
             with np.printoptions(threshold=sys.maxsize)
169
                  print (re.sub(r'_{\sqcup}*\n_{\sqcup}*', '\n', np.
                      array_str(np.c_[x, n_new,
                      gradient_T_exact, grad]).replace('[
                      ', '').replace(']', '').strip()),
                      file=file2)
170
                  print(file=file2)
171
             print(E_exact)
172
173
             print(total_energy)
174
```

```
175
176
            # Optionally, plot the final density
177
178
            plt.plot(x, n_new, label="Final_Density")
179
            plt.plot(x, totdens, label="initial_Density
            plt.xlabel('x')
180
181
            plt.ylabel('Density')
182
            plt.title('Final_Density_after_Gradient_
                Descent')
183
            plt.legend()
184
            plt.grid(True)
185
            plt.show()
186
187
            print ("Ground state energy:",
                ground_state_energy)
188
            print("First_excited_state_energy:",
                excited_state_energy)
```

3.2 Euler's Equation code:

2. Code for Interacting Atomic Systems:

3.2.1 Helium Atom

```
import numpy as np
   import matplotlib.pyplot as pl
   from scipy.integrate import simpson
4 from scipy.integrate import trapezoid
5 from scipy.integrate import quad
   from scipy import optimize
6
7
   import time
   from scipy.special import factorial
9
10
   #def differentiate(f, x):
11
12 | #assuming r = x*x
13 \mid \#R = u*phi, phi = x^(-3/2)
   #in the remaining x is expressed by r
15
   t1 = time.time()
16 | #values of psi at nth and n-1th point
17
   psi_n = 0.0
18
   psi_n1 = 1e-8
19 #number of mesh points
20 \mid n = 2500
21 lamb = 1.0 #0.2
22 \mid Z = 2 \# 18.0
23 max_iter = 8000
24 \mid \text{mixing} = 0.05
25 \mid \text{root} = -500.0
```

```
26 | #the mesh
27 | r_c = 11.999
   r = np.linspace(.01, np.sqrt(r_c), n)
   d = r[1] - r[0]
   #limit of integration
31
32
   #some constants
   Ck = (3.0*np.power(3.0*3.14159*3.14159, 2.0/3.0)
33
      /10.0)
34
   Cx = (3.0*np.power(3.0/3.14159, 1.0/3.0)/4.0)
35
36
   #load data file for v_q
37 | file_str = "He.dat"
   dat = np.loadtxt(file_str)
   ##create v_q by interpolation
40
   \#v_q = np.interp(r*r, dat[:,0], dat[:,3])
41
42
   #func for numerove step
43
   def numerove(E, r, n, d, v_r):
44
       u = np.zeros(n)
45
       u[n-1] = psi_n
       u[n-2] = psi_n1
46
       f_r = -(E-v_r)*(8.0*r*r)/lamb
47
       #print("right integration")
48
49
       for i in range(2,n): #right integration
50
           1 = n-i
51
           u[1-1] = (u[1+1]*(12.0-d*d*f_r[1+1]) -
               2.0*u[1]*(12.0 + 5.0*d*d*f_r[1]))/(d*d*
              f_r[1-1]-12.0)
52
       #normalize
53
       N = simpson(u*u*r*r, r)
       #print(N)
54
55
       u = u/np.sqrt(8*3.14159*N/Z)
56
       return u[0]
57
58
   #func for evaluating ground stae wavefunction with
      optimized energy
59
   def wavefunction(E, r, n, d, v_r):
60
       u = np.zeros(n)
61
       u[n-1] = psi_n
62
       u[n-2] = psi_n1
63
       f_r = -(E-v_r)*(8.0*r*r)/lamb
64
       #print("right integration")
65
       for i in range(2,n): #right integration
66
           1 = n-i
67
           u[1-1] = (u[1+1]*(12.0-d*d*f_r[1+1]) -
               2.0*u[1]*(12.0 + 5.0*d*d*f_r[1]))/(d*d*
              f_r[1-1]-12.0)
68
       #normalize
69
       N = simpson(u*u*r*r, r)
70
       u = u/np.sqrt(8*3.14159*N/Z)
71
       return u #only returns the u part of R
72
   #actual self-consistent code execution stars here
73
74
```

```
75 #initial guess density
76 | rho = np.zeros(n)
77
   n_i = np.array([1,1,2,2])
78 | a_i = np.array([1,2,1,2])
79
80 \mid N_i = (1.0/np.sqrt(4.0*3.14159*factorial(2*n_i))) *
        np.power(2.0*a_i, n_i+0.5)
   X_i = np.zeros((n, 4))
81
82
83
   for i in range(0,4):
84
        X_i[:,i] = N_i[i] * np.power(r*r, n_i[i] - 1.0)
            * np.exp(-a_i[i] * r*r)
   phi_1s = X_i[:,0] + X_i[:,1]
85
    phi_2s = X_i[:,2] + X_i[:,3]
86
87
   phi_2p = phi_2s
88
89 | rho = 2*np.power(phi_1s, 2.0) #+ 1*np.power(phi_2s,
        2.0) #+ 3*np.power(phi_2p, 2.0)
90
91 | #rho = 4*r*r*np.exp(-r*r*r*r)
92 | #pl.plot(r*r, 4*3.14*r*r*r*r*nho)
93 | #pl.show()
94
95 \mid M = 8*3.14159*simpson(rho*np.power(r,5), r)
   print(M)
96
97
    rho = rho/(M/Z)
98
99
   v_h = np.zeros(n)
100 \mid E_T = 0.0
101
102
   for i in range(max_iter):
103
        #calculate potentials
        #calculate Vh
104
        for j in range(0,n):
105
106
            v_h[j] = 8.0*3.14159*(simpson(rho[j:n]*np.
               power(r[j:n], 3.0), r[j:n])
            - simpson(rho[j:n]*np.power(r[j:n], 5.0), r
107
                [j:n])/(r[j]*r[j])) + Z/(r[j]*r[j])
108
109
        v_x = -Cx*(4.0/3.0)*np.power(rho, 1.0/3.0)
110
        v_{ext} = -Z/np.power(r, 2.0)
111
112
        v_KS = v_x + v_ext + v_h# + v_c
113
        #v_KS = v_ext + v_h# + v_c
        v_r = v_KS + 3.0*lamb/(32.0*r*r*r*r)
114
115
116
        #shooting method for rough guess; E_i should be
            sufficciently low, E_f sufficeintly high,
           N_E sufficiently large.
117
        E_i = root - 1.5
118
        E_f = 1.0
119
        N_E = 1000
        E = np.linspace(E_i, E_f, N_E)
120
121
        u0 = numerove(E_i, r, n, d, v_r)
122
        flag = 0
```

```
123
         for e in E[1:]:
124
              temp = numerove(e, r, n, d, v_r)
125
              if(temp*u0 < 0.0):
126
                  E_f = e
127
                  flag = 1
128
                  break
129
              else:
130
                  u0 = temp
131
                  E_i = e
132
133
         #brent method for refining energy
134
         if flag==1 :
135
              root = optimize.brentq(numerove, E_i,E_f,
                 args=(r, n, d, v_r))
136
              u_new = wavefunction(root, r, n, d, v_r)
137
              rho_new = u_new*u_new*np.power(r, -3.0) #
138
                 rho_new = R*R = x^-3 * u*u
139
              M = 8*3.14159*simpson(rho_new*np.power(r,5))
140
141
              rho_new = rho_new/(M/Z)
142
              err = np.sum(np.power(rho_new - rho, 2.0))
143
              rho = (1-mixing)*rho + mixing*rho_new
144
145
              #calculate the potential energy
146
147
              \#E_T_{new} = 8.0*3.14159*simpson(rho*(v_ext +
                  0.5*v_h + v_x*3.0/4.0+v_q*3.0/5.0)*np.
                 power(r,5.0), r)
148
              #calculate the kinetic energy
149
              #grad = np.gradient(np.sqrt(rho), r,
                 edge_order=2)
150
              #grad2 = np.gradient(grad, d)
151
              #ke = lamb*3.14159*simpson(np.power(grad
                 ,2.0)*np.power(r,3.0), r)
152
              #print(ke)
153
              \#E_T_{new} += ke
154
              \#E_T_{new} = E_T_{new} - 3.14159*simpson(r*r*r
                 *(3.0*grad/r+grad2), r)
              \#E_T_{new} = E_T_{new} + 3.14159*simpson(r*r*r
155
                 *(grad*grad), r)
156
              E_T_{new} = root
157
              deltaE = (E_T_new - E_T)
158
              E_T = E_T_{new}
159
              print("Iteration_{\square}=_{\square}\{:d\},_{\square}energy_{\square}=_{\square}\{:f\},_{\square}u
                 (0)_{\sqcup} = \{ : e \}, _{\sqcup} error_{\sqcup} = \{ : e \}, _{\sqcup} root_{\sqcup} = \{ : f \} ".
                     format(i, E_T, u_new[0], err, root))#
160
                        deltaE, root))
161
162
              if(err < 8.0e-0 or np.abs(deltaE) < 1e-6):</pre>
163
                  break
164
         else:
165
              print("Given_initial_range_and_mesh_of_
                 energy_is_poor.uTry_lowering_E_i_or_
```

```
increasing N_E or Ef.")
166
167
    pl.plot(r*r, 4*3.14*r*r*r*r*nho)
168
    pl.plot(dat[:,0], dat[:,2])
169 pl.xlabel("r")
170 pl.ylabel("density")
    #pl.savefig(file_str.split(".")[0]+".png")
171
172 pl.show()
173
   print("time=",time.time()-t1, "us")
174
175
    dens = np.interp(r * r, dat[:, 0], dat[:, 2])
176
177 | output_data = np.column_stack((r * r, dens, 4 *
       3.14 * r * r * r * r * r ho ))
178
    output_file = "He_density.txt"
179
    np.savetxt(output_file, output_data, comments='')
180
    #output_data = np.column_stack((r * r, v_h, v_x,
181
       v_ext,v_r))
182
    #output_file = "He_Veff.txt"
183
    #np.savetxt(output_file, output_data, comments='')
184
185
186 \mid for j in range(0,n):
187
            v_h[j] = 8.0*3.14159*(simpson(rho[j:n]*np.
               power(r[j:n], 3.0), r[j:n])
188
            - simpson(rho[j:n]*np.power(r[j:n], 5.0), r
                [j:n])/(r[j]*r[j])) + Z/(r[j]*r[j])
    #v_x = -Cx*(4.0/3.0)*np.power(rho, 1.0/3.0)
189
    v_{ext} = -Z/np.power(r, 2.0)
190
191 | E_ext = simpson(8.0*3.14159*rho*v_ext*np.power(r
       ,5.0), r)
192
    print(E_ext)
    E_H = simpson(4.0*3.14159*rho*(v_h)*np.power(r,5.0)
       , r)
194
    print(E_H)
195
    E_X = simpson(8.0*3.14159*rho*v_x*np.power(r,5.0)
       *3.0/4.0, r)
196
    print(E_X)
197
198
    E_T1 = (E_ext + E_H + E_X)/2.0
    print(E_T1)
199
200 \mid \text{\#print}("M = ", 8*3.14159*simpson(rho*np.power(r,5),
       r))
201
    \#data = np.zeros((n,3))
    #data[:,0] = r*r
202
203
    #data[:,1] = rho
    #data[:,2] = np.sqrt(rho)
204
205
    #np.savetxt(file_str.split(".")[0]+".csv", data,
       delimiter=",")
206
207
    exit()
```

3.2.2 Lithium, Beryllium and Neon Atom

```
import numpy as np
   import matplotlib.pyplot as pl
   from scipy.integrate import simpson
   from scipy.integrate import trapezoid
5 from scipy.integrate import quad
6 from scipy import optimize
   import time
7
   from scipy.special import factorial
10 | #def differentiate(f, x):
11
12 | #assuming r = x*x
13 \mid \#R = u*phi, phi = x^{(-3/2)}
14 | #in the remaining x is expressed by r
   t1 = time.time()
16 | #values of psi at nth and n-1th point
   psi_n = 0.0
17
18
   psi_n1 = 1e-8
   #number of mesh points
19
20 \mid n = 2000
21 \mid lamb = 1.0 \#0.2
22 \mid Z = 3 \# 4 \# 10
23 \mid max_iter = 8000
24 \mid \text{mixing} = 0.05
25 \mid \text{root} = -500.0
26 | #the mesh
27
   r_c = 11.999
28 \mid r = np.linspace(.01, np.sqrt(r_c), n)
29 \mid d = r[1] - r[0]
30 | #limit of integration
31
32
   #some constants
33
   Ck = (3.0*np.power(3.0*3.14159*3.14159, 2.0/3.0)
      /10.0)
   Cx = (3.0*np.power(3.0/3.14159, 1.0/3.0)/4.0)
34
35
   #load data file for v_q
   file_str = "Li.dat"#"Ne.dat"#"Be.dat"
   dat = np.loadtxt(file_str)
   #create v_q by interpolation
40
   v_q = np.interp(r*r, dat[:,0], dat[:,3])
41
42
   #func for numerove step
43
   def numerove(E, r, n, d, v_r):
44
       u = np.zeros(n)
45
       u[n-1] = psi_n
46
       u[n-2] = psi_n1
47
       f_r = -(E-v_r)*(8.0*r*r)/lamb
       #print("right integration")
48
49
       for i in range(2,n): #right integration
50
            1 = n-i
51
            u[1-1] = (u[1+1]*(12.0-d*d*f_r[1+1]) -
               2.0*u[1]*(12.0 + 5.0*d*d*f_r[1]))/(d*d*
```

```
f_r[1-1]-12.0
52
       #normalize
53
       N = simpson(u*u*r*r, r)
54
       #print(N)
55
       u = u/np.sqrt(8*3.14159*N/Z)
56
       return u[0]
57
58
   #func for evaluating ground stae wavefunction with
      optimized energy
   def wavefunction(E, r, n, d, v_r):
59
60
       u = np.zeros(n)
       u[n-1] = psi_n
61
       u[n-2] = psi_n1
62
63
       f_r = -(E-v_r)*(8.0*r*r)/lamb
64
       #print("right integration")
65
       for i in range(2,n): #right integration
66
            1 = n-i
67
            u[1-1] = (u[1+1]*(12.0-d*d*f_r[1+1]) -
               2.0*u[1]*(12.0 + 5.0*d*d*f_r[1]))/(d*d*
               f_r[1-1]-12.0)
68
       #normalize
69
       N = simpson(u*u*r*r, r)
70
       u = u/np.sqrt(8*3.14159*N/Z)
71
       return u #only returns the u part of R
72
   rho = np.zeros(n)
73
74 \mid n_i = np.array([1,1,2,2])
75 \mid a_i = np.array([1,2,1,2])
76
77
   N_i = (1.0/np.sqrt(4.0*3.14159*factorial(2*n_i))) *
       np.power(2.0*a_i, n_i+0.5)
78
   X_i = np.zeros((n, 4))
79
80
   for i in range(0,4):
81
       X_{i}[:,i] = N_{i}[i] * np.power(r*r, n_{i}[i] - 1.0)
           * np.exp(-a_i[i] * r*r)
82
   phi_1s = X_i[:,0] + X_i[:,1]
83
   phi_2s = X_i[:,2] + X_i[:,3]
84
   phi_2p = phi_2s
85
86
   \#rho = 2*np.power(phi_1s, 2.0) + <math>1*np.power(phi_2s,
       2.0) #+ 3*np.power(phi_2p, 2.0)
87
88 \mid \text{#rho} = r*r*np.exp(-0.5*r*r)
89
   #rho = r*r*np.exp(-r*r)
90
   #rho = r*np.exp(-r*r)
91 | rho = 2*r*np.exp(-r**4)
92
93
   #rho = r*np.exp(-r*r)
94 | #pl.plot(r*r, 4*3.14*r*r*r*r*nho)
95 | #pl.show()
96
97 \mid M = 8*3.14159*simpson(rho*np.power(r,5), r)
98 print(M)
99 | rho = rho/(M/Z)
```

```
100
101
    v_h = np.zeros(n)
102
    E_T = 0.0
103
104
    for i in range(max_iter):
105
        #calculate potentials
106
        #calculate Vh
107
        for j in range(0,n):
108
            v_h[j] = 8.0*3.14159*(simpson(rho[j:n]*np.
                power(r[j:n], 3.0), r[j:n])
109
            - simpson(rho[j:n]*np.power(r[j:n], 5.0), r
                [j:n])/(r[j]*r[j])) + Z/(r[j]*r[j])
110
            \#v_h[j] = 8*3.14159*(simpson(rho[j:]*np.
                power(r[j:], 3.0), r[j:])
111
            #+ simpson(rho[0:j+1]*np.power(r[0:j+1],
                5.0), r[0:j+1])/(r[j]*r[j])
112
113
114
        #v_q = Ck*(5.0/3.0)*np.power(rho, 2.0/3.0)
115
        v_x = -Cx*(4.0/3.0)*np.power(rho, 1.0/3.0)
116
        v_{ext} = -Z/np.power(r, 2.0)
117
        \#rs_r = np.power(3.0/(4.0*3.14159*rho),
           1.0/3.0)
        #v_c = -0.0666*np.log(1+11.4/rs_r)
118
119
        #a = 9.81
120
        #b = 21.437
121
        \#c = 28.582667
122
        \#v_c = -(a+c*np.power(rho, -1.0/3.0))/np.power
           (a+b*np.power(rho, -1.0/3.0), 2.0)
        v_KS = v_x + v_{ext} + v_h# + v_c
123
        v_r = v_q + v_KS + 3.0*lamb/(32.0*r*r*r*r)
124
125
126
        #shooting method for rough guess; E_i should be
            sufficciently low, E_f sufficeintly high,
           N_E sufficiently large.
127
        E_i = root - 1.5
128
        E_f = 1.0
129
        N_E = 1000
130
        E = np.linspace(E_i, E_f, N_E)
131
        u0 = numerove(E_i, r, n, d, v_r)
132
        flag = 0
133
        for e in E[1:]:
134
            temp = numerove(e, r, n, d, v_r)
135
            if(temp*u0 < 0.0):
136
                 E_f = e
137
                 flag = 1
138
                 break
139
            else:
140
                 u0 = temp
141
                 E_i = e
142
143
        #brent method for refining energy
144
        if flag==1 :
145
            root = optimize.brentq(numerove, E_i,E_f,
                args=(r, n, d, v_r))
```

```
146
             u_new = wavefunction(root, r, n, d, v_r)
147
148
             rho_new = u_new*u_new*np.power(r, -3.0) #
                 rho_new = R*R = x^-3 * u*u
149
             M = 8*3.14159*simpson(rho_new*np.power(r,5)
                 , r)
150
151
             rho_new = rho_new/(M/Z)
152
             err = np.sum(np.power(rho_new - rho, 2.0))
153
             rho = (1-mixing)*rho + mixing*rho_new
154
155
             #calculate the potential energy
156
157
             \#E_T_{new} = 8.0*3.14159*simpson(rho*(v_ext +
                  0.5*v_h + v_x*3.0/4.0+v_q*3.0/5.0)*np.
                 power(r,5.0), r)
158
             #calculate the kinetic energy
159
             #grad = np.gradient(np.sqrt(rho), r,
                 edge_order=2)
160
             #grad2 = np.gradient(grad, d)
161
             #ke = lamb*3.14159*simpson(np.power(grad
                 (2.0)*np.power(r,3.0), r
162
             #print(ke)
163
             \#E_T_{new} += ke
164
             \#E_T_{new} = E_T_{new} - 3.14159*simpson(r*r*r
                 *(3.0*grad/r+grad2), r)
165
             \#E_T_{new} = E_T_{new} + 3.14159*simpson(r*r*r
                 *(grad*grad), r)
166
             E_T_{new} = root
             deltaE = (E_T_new - E_T)
167
168
             E_T = E_T_{new}
169
             print("Iteration_{\square}=_{\square}\{:d\},_{\square}energy_{\square}=_{\square}\{:f\},_{\square}u
                 (0)_{\square} = \{ : e \}, _{\square} = [ : e \}, _{\square} = [ : e \}, _{\square} = [ : f \}] 
170
                     format(i, E_T, u_new[0], err, root))#
                        deltaE, root))
171
172
             if(err < 8.0e-0 or np.abs(deltaE) < 1e-6):</pre>
173
                  break
174
         else:
175
             print("Givenuinitialurangeuandumeshuofu
                 energy_is_poor.uTry_lowering_E_i_or_
                 increasing \square N_E \square or \square E_f.")
176 | pl.plot(r*r, 4*3.14*r*r*r*r*nho)
177 | pl.plot(dat[:,0], dat[:,2])
178 | pl.xlabel("r")
179 pl.ylabel("density")
180 | pl.savefig(file_str.split(".")[0]+".png")
181
    pl.show()
182
    print("time=",time.time()-t1, "us")
183
184 | dens_inter = np.interp(r * r, dat[:, 0], dat[:, 2])
185
186
   output_data = np.column_stack((r * r, dens_inter, 4
        * 3.14 * r * r * r * r * rho ))
```

```
187
    output_file = file_str.split(".")[0] + "_density.
       txt"
188
    np.savetxt(output_file, output_data, comments='')
189
    output_data = np.column_stack((r * r, v_h, v_x,
190
       v_ext, v_q, v_r))
    output_file = file_str.split(".")[0] + "_Veff.txt"
191
192
    np.savetxt(output_file, output_data, comments='')
193
194
195
    for j in range(0,n):
196
            v_h[j] = 8.0*3.14159*(simpson(rho[j:n]*np.
                power(r[j:n], 3.0), r[j:n])
             - simpson(rho[j:n]*np.power(r[j:n], 5.0), r
197
                [j:n])/(r[j]*r[j])) + Z/(r[j]*r[j])
198
    v_x = -Cx*(4.0/3.0)*np.power(rho, 1.0/3.0)
    v_{ext} = -Z/np.power(r, 2.0)
199
200
    E_{\text{ext}} = \text{simpson}(8.0*3.14159*\text{rho*v_ext*np.power}(r)
       ,5.0), r)
201
    print(E_ext)
202
    E_H = simpson(4.0*3.14159*rho*(v_h)*np.power(r,5.0)
       , r)
203
    print(E_H)
    E_X = simpson(8.0*3.14159*rho*v_x*np.power(r,5.0)
204
       *3.0/4.0, r)
205
    print(E_X)
206
    E_T1 = (E_ext + E_H + E_X)/2.0
207
    print(E_T1)
208
    #print("M =", 8*3.14159*simpson(rho*np.power(r,5),
       r))
    data = np.zeros((n,3))
209
    data[:,0] = r*r
210
211
    data[:,1] = rho
212
    data[:,2] = np.sqrt(rho)
213
    np.savetxt(file_str.split(".")[0]+".csv", data,
       delimiter=",")
214
215
216
    exit()
```

3.3 Results and Outputs

3.3.1 Non-Interacting Model Systems

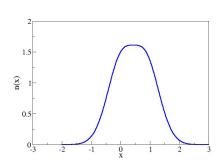


Figure 3.1: Initial density for 2S

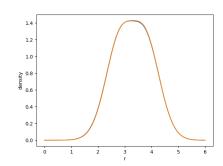


Figure 3.2: Optimized density for 2S

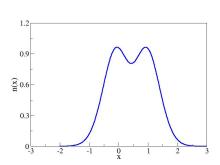


Figure 3.3: Initial density for 3S

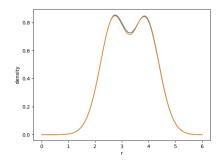


Figure 3.4: Optimized density for 3S

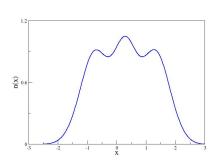


Figure 3.5: Initial density for 4S

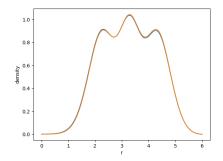


Figure 3.6: Optimized density for 4S

3.3.2 Interacting Atomic System

3.3.2.1 Helium Atom

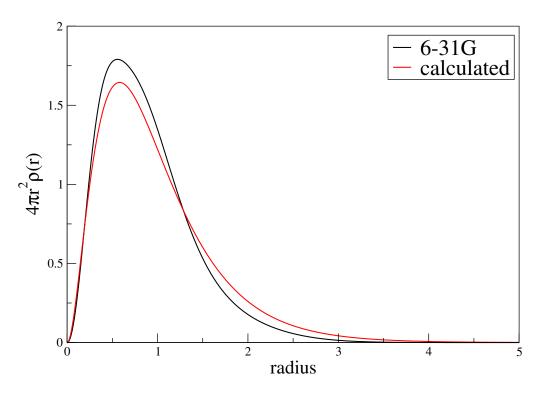


Figure 3.7: Radial density for Helium atom

Property	Predicted (6-31G)	Calculated
Energy (E_n)	-2.714	-2.681
μ (a.u.)	-0.517	-0.526

Table 3.1: Comparison of Reference and Calculated Energy and chemical potential (μ)

3.3.2.2 Lithium Atom

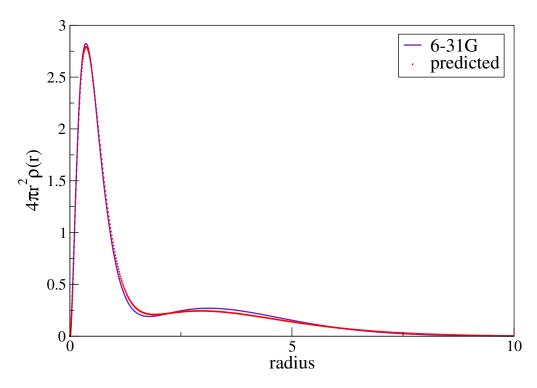


Figure 3.8: Radial density for Lithium atom

Property	Predicted (6-31G)	Calculated
Energy (E_n)	-7.16	-7.18
μ (a.u.)	-0.374	-0.432

Table 3.2: Comparison of Reference and Calculated Energy and chemical potential (μ)

3.3.2.3 Beryllium Atom

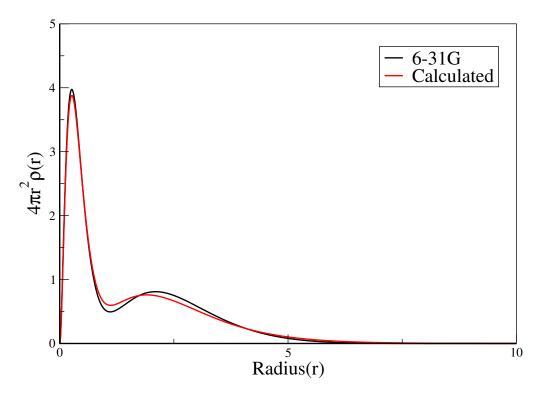


Figure 3.9: Radial density for Beryllium atom

Property	Predicted (6-31G)	Calculated
Energy (E_n)	-0.168	-0.170
μ (a.u.)	-14.182	-14.214

Table 3.3: Comparison of Reference and Calculated Energy and chemical potential (μ)

3.3.2.4 Neon Atom

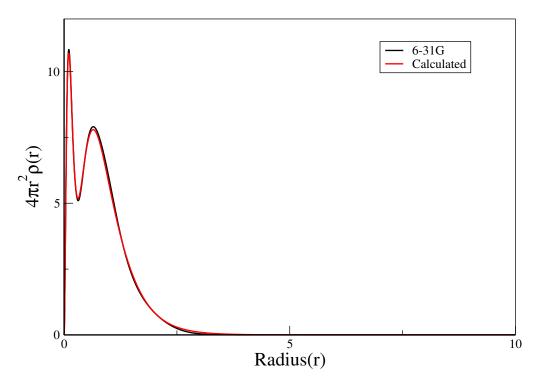


Figure 3.10: Radial density for Neon atom

Property	Predicted (6-31G)	Calculated
Energy (E_n)	-127.394	-126.206
μ (a.u.)	-0.444	-0.437

Table 3.4: Comparison of Reference and Calculated Energy and chemical potential (μ)

Chapter 4

Conclusion and Scope

In this project, we used a method to calculate the radial electron density of atoms by solving the Euler–Lagrange equation derived from the variational principle within framework of density functional theory (DFT). By using the exact Pauli potential extracted from Kohn–Sham DFT calculations, we accurately included the kinetic energy contribution without explicitly solving for orbitals. The Euler equation, reformulated in terms of the square root of the density, was solved numerically using the Numerov method, ensuring stability and precision.

The resulting radial densities closely matched those obtained from full Kohn–Sham solutions gaussian software which validating the approach. This demonstrates that incorporating the exact Pauli potential into orbital-free frameworks can reproduce high-quality densities with significantly reduced computational effort. The success of this method highlights its potential for extending orbital-free DFT techniques to larger systems, where traditional Kohn–Sham methods become computationally expensive.

Future scope will focus on further enhancing orbital-free density functional theory (OF-DFT) by refining the approximate forms of the Pauli potential $\nu_{\theta}([\rho]; \mathbf{r})$, which demonstrated improved accuracy and numerical stability in this work. These refinements will be coupled with machine learning techniques and line-integration methods to construct functionals that are invariant under translations and rotations, ensuring better adaptability across various atomic and molecular systems. By improving these approximations, the proposed approach will continue to offer a computationally efficient alternative to traditional Kohn–Sham DFT, making it suitable for large-scale electronic structure calculations in materials science and quantum chemistry.

.

Appendix A

Appendix Section

A.0.1 Magnesium Atom

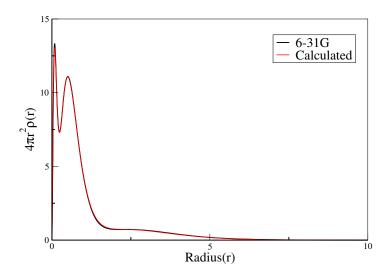


Figure A.1: Radial Density for Magnesium Atom

Property	Predicted (6-31G)	Calculated
Energy (E_n)	-195.601	-194.501
μ (a.u.)	-0.140	-0.1

Table A.1: Comparison of Reference and Calculated Energy and chemical potential (μ)

A.0.2 Nitrogen Atom

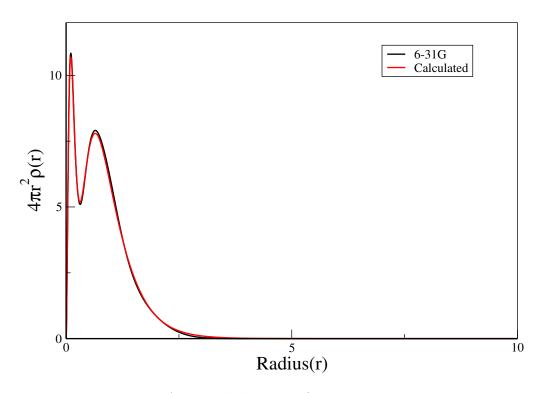


Figure A.2: Radial density for Nitrogen atom

Property	Predicted (6-31G)	Calculated
Energy (E_n)	-0.221	-0.226
μ (a.u.)	-53.680	-53.391

Table A.2: Comparison of Reference and Calculated Energy and chemical potential (μ)

A.0.3 Argon Atom

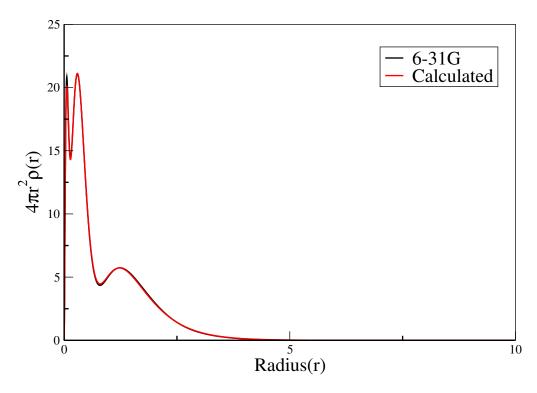


Figure A.3: Radial density for Argon atom

Property	Predicted (6-31G)	Calculated
Energy (E_n)	-524.452	-512.73
μ (a.u.)	-0.334	-0.333

Table A.3: Comparison of Reference and Calculated Energy and chemical potential (μ)



Bibliography

- [1] Aparna Gangwar, Satya S Bulusu, and Arup Banerjee. Feed-forward neural networks for fitting of kinetic energy and its functional derivative. *Chemical Physics Letters*, 801:139718, 2022.
- [2] Aparna Gangwar, Satya S Bulusu, and Arup Banerjee. Neural network learned pauli potential for the advancement of orbital-free density functional theory. *The Journal of Chemical Physics*, 159(12), 2023.
- [3] P Hohenberg and WJPR Kohn. Density functional theory (dft). *Phys. Rev*, 136(1964):B864, 1964.
- [4] BM Deb and SK Ghosh. New method for the direct calculation of electron density in many-electron systems. i. application to closed-shell atoms. *International Journal of Quantum Chemistry*, 23(1):1–26, 1983.
- [5] Aparna Gangwar, Satya S Bulusu, Amit Kumar Das, and Arup Banerjee. Self-consistent electron density with shell structure using neural network-based pauli potential. *The Journal of Chemical Physics*, 162(3), 2025.
- [6] Timo Graen and Helmut Grubmüller. Nusol—numerical solver for the 3d stationary nuclear schrödinger equation. Computer Physics Communications, 198:169–178, 2016.
- [7] Robert J Hinde. Quantum chemistry, (by ira n. levine). *Journal of Chemical Education*, 77(12):1564, 2000.
- [8] SDG Martinz and RV Ramos. Numerical solution of the 1d-schr\" odinger equation with pseudo-delta barrier using numerov method. arXiv preprint arXiv:1507.03708, 2015.
- [9] Libero J Bartolotti and Ken Flurchick. An introduction to density functional theory. *Reviews in computational chemistry*, pages 187–216, 1996.