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Abstract

The Hepatitis C virus is a leading contributor to various liver related
diseases such as cirrhosis and liver cancer. It creates considerable
challenges for treatment due to its extensive genetic variability. As a
result, the virus is able to mutate rapidly and evade the immune system
of the host's body, complicating the formulation of effective vaccines.
The E1-E2 heterodimer complex is a potential target for therapeutic
development as they contain several critical regions that are essential for
the viral infection process. However, the dynamic behaviour of the
glycoprotein complex is not yet completely understood. In the present
study titled as the “Structural Insights into HCV Glycoprotein E1-E2
Interactions: A Biomolecular Modelling Approach”, the main
objective is to better understand how the hepatitis C virus (HCV)
envelope glycoproteins E1 and E2 interact with each other at the
molecular level using advanced biomolecular modeling techniques. In
our research, we explored the dynamic behaviour of these two
glycoproteins along with their critical regions. Here, we investigated the
structural dynamics of E1 and E2 through molecular simulations of two
distinct systems: an apo form consisting solely of the proteins, and a
complex form containing the proteins along with two N-linked glycans
positioned at their interface. These specific glycans were included based
on their known roles in promoting glycoprotein binding, enhancing
structural stability, and supporting proper folding. Gaussian accelerated
molecular dynamics (GaMD) was employed for 1 microsecond in
triplicate to observe the conformational variation in both apo and
complex structures. By comparing the simulation outcomes of both
systems, we aim to uncover the structural and dynamic changes induced
by the presence of these glycans, providing deeper insight into their role

in stabilizing the E1-E2 interaction.
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CHAPTER 1

1. Hepatitis C Virus

1.1 Introduction and background

Hepatitis is the inflammatory condition of liver, can be caused due to a
number of factors that includes viruses, genetic disorders, alcohol, drug
and chemicals [1]. Hepatitis is primarily caused by viral infections, with
several distinct viruses and most common etiological agents including
hepatitis A, B, C, D, and E. In this study, we will focus on hepatitis C,
which is a major viral causes of liver inflammation. Hepatitis C is
mainly caused by the hepatitis C virus (HCV), and our goal is to explore
the glycoprotein E1-E2 heterodimer complex that is present on the
surface envelope of the virus. HCV exhibits substantial genetic
variability, currently classified into eight major genotypes and 86

distinct subtypes.

1.1.1 Prevalence of HCV in India and the Global

Context

Globally, Hepatitis C virus remains a significant public health concern.
The World Health Organization (WHO), gives an estimation of around
50 million people worldwide with chronic HCV infection. The global
prevalence is around 2.5% of the population [2]. The Eastern
Mediterranean Region has the highest burden of chronic Hepatitis C,
with 12 million cases. Hepatitis C leads to around 399,000 deaths
annually, primarily due to complications such as cirrhosis and liver
cancer (hepatocellular carcinoma) [3]. The other regions like South-
East Asia and Europe both have 9 million each, Africa has 8 million,
and America has 5 million cases. Egypt is commended by WHO for
becoming the first country to achieve "gold tier" status in eliminating
hepatitis C and meeting the criteria to lower new infections and deaths,

that can eradicate the epidemic [4].
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In India, the prevalence of hepatitis C has been estimated around 3.23%
[5]. However, the prevalence of this dreadful disease varies across India.
The higher rates are observed in the north-eastern region, Punjab, and
tribal populations, and lower rates are found in eastern and western parts
of the country. Following China, India has the second-highest number
of hepatitis B and C cases according to the WHO's 2024 Global Hepatitis
Report [6]. In India, genotype 3 is the most prevalent, accounting for
approximately 63.85% of cases, with genotype 1 being the second most
common at 25.72% [7].

1.2 Comprehensive Overview of HCV

Hepatitis C virus (HCV) is a small positive single stranded RNA virus
that specifically affects the liver, and cause liver damage that can
progress to cirrhosis and potentially lead to the development of

hepatocellular carcinoma.

Figure 1.1 shows HCV is a spherical enveloped virus (55-65 nm in
size), amember of Hepacivirus genus classified within the Flaviviridae

family, with a lipid bilayer derived from the host cell membrane [8].

It contains E1 and E2 glycoproteins that are crucial for attachment and
fusion with the host cell membrane. Beneath the envelope, the virus has
a nucleocapsid composed of the core protein, which forms a protective
shell around the viral RNA genome, possessing a 9.6 kb single-stranded

positive sense RNA genome.

Lipid Envelop
Capsid Protein

Nucleic Acid

Glycoprotein E2

Glycoprotein E1

Figure 1.1: Morphological structure of Hepatitis C virus [9].
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This genome in Figure 1.2 contains two most conserved regions - 5'
UTR and 3' UTR (Untranslated Region). The 5" UTR is of
approximately 341 nucleotides and the 3’ UTR ranges from about 200
to 235 nucleotides in length. The 5" UTR contains an IRES (Internal
Ribosome Entry Site) that allows the virus to translate its RNA without
a5' cap. Itis useful for genotype identification. The 3' UTR is involved
in packaging the viral genome into new infectious particles, a process
known as encapsidation. Additionally, the 3’ UTR influences the
stability of viral RNA and modulates its translation efficiency. The
genome also has a single long open reading frame encodes a polyprotein
of 3,010 amino acids which is cleaved, either during or after translation,
into structural proteins (core, E1, and E2) and non-structural proteins
(p7, NS2, NS3, NS4A, NS4B, NS5A, and NS5B). The core forms the
capsid protein of the virus. E1 facilitates membrane fusion and E2 is a
major receptor binding protein which interacts with host cell receptor
during entry into cell. p7 is an ion channel protein and plays a vital role
in the assembly, envelopment and secretion of viral particles.NS2 is
important for assembly of virion. NS3 contains protease and helicase.
NS4A is a cofactor for NS3 protease activity. NS4B induces the
formation of membranous web which is a site for viral replication.
NS5A is a phosphoprotein. NS5B is an RNA dependent RNA
polymerase which replicates the RNA [10].

IRES !% HCV genomic RNA

Cleaved by host or virus proteases 3000

—
Core|[ E1 | E2 || Ns2 | NS3 | NS% TNSsA| nssB |
s " T

Structural proteins Non-structural proteins

?9 /} 4. Nucleocapsid

4G

Lipid bilayer \c&«, N ¢ g —Core protein Viead €5 RNA Virus replication complex
—= x* ;'5\
Spike proteins { E! - ~" "HCV RNA ' ~
{E2/ o g A\ Viral (+) RNA v

HCV viral particle Viral (4) RNA N

Figure 1.2: Single strand RNA (+) genome (9.6 kb) of HCV [11].
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Table 1.1: Constituent proteins of HCV with molecular weight and

amino acid residues.

Protein No. of Amino acids Molecular weight
(kDa)

Core 177 21
El 192 35
E2 363 70
p7 63 7
NS2 217 21
NS3 631 70
NS4A 54 4
NS4B 261 27
NS5A 448 56
NS5B 591 66

1.3 Life Cycle of Hepatitis C Virus (HCV)

The Hepatitis C Virus (HCV) life cycle is composed of several
interconnected processes that are essential for viral infection,
replication, and propagation within the host, as shown below in Figure

1.3. These processes include:
Attachment and Entry

HCV initiates infection by binding to the basolateral surface of
hepatocytes. The virus interacts with several host cell receptors,
including CD81, Claudin-1 (CLDNZ1), Occludin (OCLN), and scavenger
receptor class B type | (SR-BI). This multistep attachment process
facilitates the virus's internalization via clathrin-mediated endocytosis.
Upon acidification within the endosome, fusion between the viral
envelope and the endosomal membrane occurs, leading to the release of

the viral genome into the cytoplasm.[12]
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Uncoating and Translation

The released positive-sense single-stranded RNA genome serves as a
template for translation. The viral RNA contains an internal ribosome
entry site (IRES), enabling cap-independent translation of the viral
polyprotein [13]. This polyprotein undergoes cleavage by both host and
viral proteases, resulting in the formation of 10 structural and non-

structural proteins essential for viral replication and assembly.

Replication

Non-structural proteins (NSP) orchestrate the replication of the viral
genome. These proteins recruit host cell membranes from the
endoplasmic reticulum, forming a specialized structure known as the
membranous web. Within this environment, NS5B (RNA-dependent
RNA polymerase) synthesizes negative-strand RNA templates from the
positive-strand genome, which subsequently serve as templates for the

production of new positive-strand genomic RNA.

Assembly and Release

Newly synthesized viral RNA genomes are encapsidated into
nucleocapsids near lipid droplets. These nucleocapsids associate with
the endoplasmic reticulum, where they acquire their envelope through
the secretory pathway and released from the hepatocyte, glycoproteins,
E1 and E2. The mature virions are then transported completing the viral

life cycle.
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Figure 1.3: Infection Process and Replication Mechanism of HCV [14].

1.4 HCV infection

Acute infection occurs within six months of exposure, typically 2 to 24
weeks after infection. They have symptoms like jaundice, nausea, and
abdominal pain in some patients. In most cases, many remain
asymptomatic whereas people having symptoms usually recover in 2 to

12 weeks. Acute infection frequently develops into chronic infection.

Chronic infection is a long-term infection that follows the acute phase,
with symptoms such as jaundice, easy bruising and bleeding, and dark-
colored urine. Over time, chronic HCV can result in liver damage,

cirrhosis, liver failure, and may even progress to liver cancer [15].

The progression from a healthy liver to cirrhosis and ultimately to

hepatocellular carcinoma (HCC) given in Figure 1.4.



HCC/ Liver
Failure

=
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Figure 1.4: Course of illness with Hepatitis C [16].
1.4.1 HCV Transmission and Diagnosis

HCV is primarily transmitted through contact with infectious blood and
body fluids. The most common routes include sharing needles, unsafe
medical practices, needle stick injury, through improper sterilization
techniques like tattooing dyes, piercing and transfusions with
contaminated blood and organ transplantation. It can also be transmitted
from mother to child during childbirth and through sexual contact which
is less frequent. HCV diagnosis includes the antibody test to detect
earlier encounter, the HCV RNA test to measure the amount of viral
genetic material in acute infection, and HCV genotype test to identify
the specific strain of the virus. A liver biopsy may be used to assess liver

damage from chronic infection [17].

In many cases, the hepatitis C virus is naturally eliminated by the body's
immune system, particularly through robust innate and adaptive immune

responses. However, in individuals with compromised immune systems,
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the production of antibodies against HCV may be insufficient or
delayed. This can result in negative outcomes on both anti-HCV
antibody tests and HCV RNA tests conducted via polymerase chain

reaction (PCR), potentially leading to undetected infections .

The main treatment for Hepatitis C is direct-acting antivirals (DAAS),
which are administered orally for 8-12 weeks, give a cure rate of more
than 95% and have few side effects regardless of HCV genotype [18].
These are medications that directly inhibit the replication of the hepatitis
C virus (HCV) by targeting specific proteins essential for its life cycle.
DAAs of generic versions have made treatment more affordable.

Commonly used DAA combinations include:

o Sofosbuvir/Velpatasvir (Epclusa)

e Sofosbuvir/Ledipasvir (Harvoni)

e Glecaprevir/Pibrentasvir (Mavyret)
o Elbasvir/Grazoprevir (Zepatier)

« Sofosbuvir/velpatasvir/voxilaprevir (\Vosevi)

Although no vaccine is available yet, many are in the development
process. The main challenges in creating a vaccine for hepatitis include
HCV's genetic diversity, the tendency to mutate its envelope protein,

and its ability to avoid the immune system.

1.5 E1 and E2 Glycoprotein

The envelope glycoproteins E1 and E2 of HCV are cleaved from the
viral polyprotein precursor by cellular peptidases of both host and virus
within the endoplasmic reticulum. These proteins are extensively N-
glycosylated and are type | transmembrane proteins. They form a stable
and noncovalent heterodimeric complex with their C-terminal
transmembrane domains, which is important for viral entry, virulence,
and evasion from the host immune response. E1 helps the virus to attach

to the cell membrane whereas E2 interacts with cellular receptors [19].



The E1 has two key structural components: the stem region and the core
domain. The stem region helps anchor the E1 protein in the viral
envelope and supports the structural integrity of the heterodimer
complex. The core domain has multiple functions in viral entry,
assembly of virus and fusion of its membrane with the host cell. The core
protein of E1 contains several key regions: the N-terminal domain
(NTD), the C-terminal loop Region (CTR), and the PCR [putative fusion
peptide (pFP) containing region]. The NTD region is involved in proper
folding of E1 and its interaction with E2. The PCR plays an important
role in the fusion of the viral envelope and membrane of the endosome
during virus entry into the host cell. The CTR connects the PCR with the

stem region.

The E2 consists of three major subdomains: the head, the stem, and the
transmembrane domain (TMD). The stem and the TMD regions are
involved in anchoring the virus to the host membrane. The fusion process
is thus facilitated, which makes the E2 region important for viral
infectivity. The stem region connects the base with the TMD region and
plays a critical role in membrane fusion and viral entry into host cell.
The E2 head domain contains a central f-sandwich core which forms
the backbone of the head domain, CD81 binding site required for
binding to the CD81 receptor on the host cell membrane and initiates the
infection process, hypervariable regions (HVR1) help virus to evade the
immune system of host, Front and back layers contribute to the overall
stability and structure of head region, Variable Regions -VR2 and VR3
whose variability allow the virus to escape recognition by the host's
immune system, and base region which is an extended loop interrupted
by an antiparallel B-sheet in the E2 head. Figure 1.5 presents the key
intradomain regions of the HCV glycoproteins E1 and E2, as visualized
using ChimeraX [20].



E2 Stem

Figure 1.5: Intra-domain regions of E1 and E2 in HCV.

1.6 Glycans

Glycans are chains of sugar molecules that are covalently attached to
biomolecules such as proteins (forming glycoproteins) or lipids
(forming glycolipids). The Golgi apparatus is the main site within the

cell where glycoproteins and glycolipids are synthesized.

Glycoproteins are proteins with sugar chains, called glycans, covalently
attached to their amino acids through a process known as glycosylation.
There are two main types: N-linked (where glycans attach to asparagine
through the nitrogen atom) and O-linked (where they attach to serine or
threonine via the oxygen atom). These glycans can be linked to a single
site or multiple sites on the protein. These glycoproteins play vital roles
in many cellular functions, such as maintaining cell structure,
facilitating communication between cells, triggering immune responses,
and regulating hormones. In viruses, glycoproteins are crucial for the
virus to attach to and enter host cells, making them important targets in
understanding infection mechanisms. Glycoproteins are more
hydrophilic than regular proteins because of the sugar -OH groups, so

they are more drawn towards water [21].
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Glycolipids are lipids with attached sugar chains, mostly found on the
outer surface of cell membranes. They help with cell recognition,
signaling, membrane stability, and immune responses. Glycolipids
consist of polar oligosaccharide chains covalently linked to hydrophobic
lipid components via glycosidic bonds, rendering them amphiphilic in
nature.[22]
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Figure 1.6: Diverse glycan structures [23].

1.6.1 Physiological functions of glycans

Glycans play a wide array of critical roles in the human body,
encompassing structural support, metabolic activity, and molecular
recognition. These complex carbohydrate structures are essential to
various physiological processes, including tissue organization, immune
defense, and cellular communication. Their functions can be broadly
categorized into three main areas: (1) Structural support- they contribute
to the formation of cell walls and extracellular matrices, and assist in
protein folding and stability, affecting protein function and interactions.
(2) Energy metabolism- involved in energy storage and supply, fueling
various metabolic processes, and (3) Information Carriers- function as
molecular signals, conveying information through their interactions with
glycan-binding proteins (GBPs). The GBPs can be subdivided into two
groups: (i) Intrinsic GBPs, which recognize glycans within the same
organism, mediating processes such as cell-cell communication,

trafficking, and immune signaling, (ii) Extrinsic GBPs- bind to glycans
11



from different organisms, playing roles in host-pathogen interactions,
including microbial adhesion, invasion, and immune evasion.

Pathogens often exploit glycan recognition mechanisms for host
attachment and invasion. Some engage in molecular mimicry by
displaying host-like glycan structures to evade immune detection, while

others actively modulate host immunity using glycan-based strategies.

Biological Roles of Glycans

Structural/modulatory
roles

Intrinsic Extrinsic
recognition \ recognition

Malecular
mimicry

Glycan-binding Glycan  Microorganism or
protein touxin

Figure 1.7: Glycan-Driven Biological Interactions [24].

Cell surface and secreted proteins are synthesized within the lumen of
the ER, where they enter the secretory pathway. During this process,
many proteins undergo co-translational or post-translational
glycosylation, which begins in the ER. From there, the partially
glycosylated proteins move to the Golgi apparatus, where their sugar
structures are further modified and extended The coordinated activity of
glycosidases and glycosyltransferases help to generate diverse and
complex glycan patterns. Once fully glycosylated, the proteins are

sorted and directed to their appropriate cellular compartments or
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secreted to the extracellular environment, where they perform a wide
range of structural and signaling functions, can be seen in Figure 1.8.

Glycans and glycoproteins at the cell surface play crucial roles in a wide
range of cellular activities. They act as receptors for signals such as
epidermal growth factor EGF and TGF-p, initiating key signaling
pathways that regulate cellular responses. Glycans also mediate
communication between cells and their surrounding environment,
facilitating signal exchange and coordination. Through their influence
on integrin function, glycosylation affects cell attachment and motility,
which are vital for migration and tissue remodeling. Also, glycoproteins
contribute to cell-cell adhesion, allowing cells to recognize and adhere
to one another for tissue integrity and immune response coordination.
Some enzymes are glycosylated as well, and this modification can
impact their stability, activity, and localization. Glycan structures
further contribute to cell immunogenicity by modulating how immune
cells recognize self and non-self, either triggering or evading immune
responses. Moreover, external agents such as viruses, bacteria, and
toxins often exploit host glycan structures to enter into cells or interfere
with cellular functions, using these sugars as specific recognition

targets.
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Figure 1.8: Roles of glycans in cellular mechanisms [25].



1.6.2 Glycan-Protein interaction

Protein—glycan interactions are essential for various biological
processes such as cellular recognition, immune response, and pathogen
adhesion. These interactions are mediated by glycan-binding proteins
such as lectins and antibodies, which engage specific carbohydrate
structures through non-covalent forces like hydrogen bonds, vander

Waals interactions, CH—x stacking, and water-mediated contacts.

Due to the inherently weak affinity of individual glycan—protein
interactions (dissociation constants in the uM—mM range), multivalency
is often employed to enhance binding strength and specificity. Glycans
exhibit high structural flexibility; however, upon binding, this flexibility
is reduced, resulting in an unfavourable entropy change. Additionally,
the hydrophilic nature of carbohydrates results in an enthalpic cost due
to desolvation. As a result, glycan—protein binding is generally

characterized by enthalpy—entropy compensation [26].

In N-glycosylated proteins, glycan—protein interactions often act
synergistically with protein—protein interactions, further increasing
binding affinity and biological specificity.

1.6.3 E1-E2 Glycoprotein Complex with glycans

Glycans were attached to the E1-E2 glycoprotein complex at residue
positions 196 and 305 of the E1 subunit using the GLYCAM web
server, which allows for the automated modelling of carbohydrate
structures and their integration into protein systems in Figure 1.9. These
specific glycosylation sites were chosen based on their proximity to the
E1-E2 interface and their potential functional relevance in modulating
inter-subunit interactions. Glycosylation at N196 and N305 has been
shown to be essential for the formation of the E1-E2 heterodimer and
for the infectivity of the hepatitis C virus (HCV). Specifically,
glycosylation at N196 is critical for E1 folding and its incorporation into
HCV particles, while glycosylation at N305 influences the formation of
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disulfide bonds and modulates the immunogenicity of the E1 protein.
The modified structure is illustrated in the figure below, where the
glycans are attached at the heterodimer interface. To investigate the
conformational dynamics and evaluate the influence of glycosylation on
intermolecular interactions, we performed GaMD simulations for 1
microsecond in three independent replicates. This enhanced sampling
technique was selected for its ability to capture rare conformational
transitions and to provide a more comprehensive view of the protein's
dynamic landscape compared to classical MD. The simulations aimed
to explore how glycosylation influences the conformational flexibility,
stability, and interaction patterns of the E1-E2 complex, particularly at
the glycan-modified interface. The resulting trajectories were subjected
to extensive structural and energetic analyses to assess the role of
glycosylation in modulating protein—protein interactions and potential

implications for viral fusion or immune evasion.

Glycans

Figure 1.9: E1-E2 heterodimer complex following glycosylation

The glycan attached at the interface of the complex is shown below. This
glycan is MangGIcNAc2 which comprises of 9 mannose (Man) sugar
units attached to the core of 2 molecules of N-acetyl glucosamine

(GIcNAC) residues and a terminal hydroxyl group (OH) forming a
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highly branched oligosaccharide. High-mannose glycans such as
MansGlcNAc: are critical for proper protein folding, ER-associated
degradation, and quality control through interactions with lectin
chaperones. The mannose-rich branches serve as recognition sites for
enzymes and lectins, aiding in protein trafficking and immune signaling.
One of the glycans is integrated within the E1E2 heterodimer,
potentially contributing to the stability or conformation of the complex.
In contrast, another glycan is positioned away from the interface of the

heterodimer.
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Sequence:
DManpal-2DManpal-6[DManpal-2DManpal-3]DManpal-6[DManpal-2DManpal-2DManpal-
3]DManpb1-4DGlcpNAcb1-4DGlcpNAcb1-OH

Figure 1.10: Structure of a high-mannose N-glycan (MansGlcNAc:).
Figure 1.10 is a representative structure of a highly branched mannose
rich N-linked glycan synthesized in the endoplasmic reticulum, playing

a crucial role in protein folding, quality control, and trafficking during

glycoprotein maturation.
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CHAPTER 2

2. Theoretical Framework

2.1 MD Simulations

Molecular Dynamics (MD) is a powerful computer simulation
technique based on Newton's laws of motion and interatomic potentials,
widely used to study biological molecules such as proteins and nucleic
acids. It allows us to observe how atoms and molecules move and
interact over time, offering a dynamic view of molecular systems. By
simulating the physical movements of these atoms, MD helps us
understand how the structure of biomolecules changes, providing
atomic-level insights into their behaviour. They enable the investigation
of processes such as protein folding and unfolding, conformational
transitions, stability assessments, molecular interactions, and

recognition mechanisms.

In MD simulations, the behaviour of a system of particles (such as atoms
or molecules) is modelled over time by numerically solving Newton's
equations of motion. This approach allows for the simulation of atomic
and molecular interactions over time, providing insights into the

system's dynamic behaviour.
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Structure Preparation Preparation of Trajectory Analysis
Simulation System

Figure 2.1: Schematic representation of the molecular dynamics
simulation workflow. The process is illustrated in three main stages: (i)
system setup involving protein-ligand complex construction, (ii)
execution of molecular dynamics simulations, and (iii) post-simulation

trajectory analysis

The fundamental equation used is Newton's second law:

d?r

Ui

Fi= -ViU(r, Ma,....... rv) (2.1)

Here, m; is the mass of particle i, I is its position vector, F; is the force
acting on it, and U is the potential energy function dependent on the

positions of all N particles in the system.

In recent years, progress in biological and medical sciences has
increasingly depended on modeling and simulation, enabled by
advancements in computing technology. This integration allows for
accurate, tractable representations of complex biological systems across
multiple scales, enhancing our understanding of their functions. While
simulations cannot replace experiments, they provide valuable insights

that aid in interpreting results and optimizing experimental design.
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2.2 Force Fields

In molecular dynamics simulations, a force field is a collection of
mathematical functions and parameters that define the potential energy
of a molecular system based on atomic positions. These functions model
both bonded interactions (such as bond stretching, angle bending, and
torsional rotations) and non-bonded interactions (including van der
Waals forces and electrostatic interactions). Force fields are essential for
simulating the behaviour of molecules, particularly in complex

biological systems.

Molecular modeling force fields are typically characterized by four main
components representing both inter- and intramolecular forces. In
molecular mechanics, specific functional forms are employed to model
energy variations due to bond rotations and interactions between non-
bonded atoms. The total potential energy of a macromolecular system,
denoted as V(r) Total, is generally partitioned into internal interactions
(e.g., bonded terms) and external interactions (e.g., non-bonded terms),

shown in Figure 12.
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Figure 2.2: Components Breakdown of potential energy in force field-

based simulations [27].
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In molecular mechanics, the potential energy function models the total
energy of a molecular system by using a a bonded term ( Vponged ) for
covalent interactions such as bond stretching, angle bending, and
torsional rotations, and a non-bonded term (V pon-bonded) for long ranged

electrostatic and short ranged VanderWaals forces.

Vtotal = Vbonded + Vnon—bonded (22)
Vbonded = Vbond + Vangle + Vdihedral (2.3)
Vnon—bonded = Velectrostatic + Vvan der Waals (2-4)

Due to variations in the bonding patterns and primary structures of
proteins and carbohydrates, different force fields are utilized for
accurate molecular dynamics simulations. These specialized force fields
are incorporated into simulation packages such as AMBER (Assisted
Model Building and Energy Refinement) [28], CHARMM (Chemistry
at HARvard Macromolecular Mechanics) [29], OPLS (Optimized
Potentials for Liquid Simulations) [30], and GROMOS (GROningen
MOlecular Simulation) [31].

2.2.1 Protein force field

The most widely used families of protein force fields include AMBER,
CHARMM, and OPLS. The AMBER (Assisted Model Building with
Energy Refinement) software package includes a variety of force fields
for biomolecular modelling, particularly for proteins. Force fields such
as ff14SB [32], ff19SB [33], and CHARMM36m [34] are commonly
used for modelling protein systems. Among all biological
macromolecules, proteins are the most extensively studied, and
AMBER's force fields are widely used in protein simulations. However,
a key limitation of AMBER force fields is the use of fixed atomic
charges, which can reduce accuracy compared to polarizable force fields
that better account for electronic redistribution. The ff19SB force field
is the most recent development in AMBER’s protein force field and is

optimized for use with the high-accuracy OPC water model, enhancing
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the reliability of protein simulations. Of these, ff14SB is one of the most
widely applied due to its reliability and efficiency. In our work, we
employed the ff14SB force field for protein modelling and updated
generalized Amber force field (GAFF2) [35] for small molecules or
inhibitors. The ff14SB force field was designed to be used in
combination with the TIP3P water model. Its backbone parameters were

derived primarily from simulations of alanine and glycine residues.
2.2.2 Carbohydrate force field

Carbohydrate-specific force fields play a crucial role in accurately
simulating the structure and motion of saccharides, which are now
widely recognized for their involvement in processes such as cellular
communication and pathogen recognition. However, building accurate
carbohydrate force fields is particularly difficult due to the diverse and
flexible nature of sugar structures and the limited experimental data
available for validating or refining force field parameters. Currently,
four major carbohydrate-specific force fields are commonly used:
CHARMM36, GROMOS, GLYCAM family, and OPLS-AA [36]. In
our study, we employed force fields from the GLYCAM family. The
GLYCAM_06 [37] series represents one of the most widely utilized
families of carbohydrate force fields. This series includes several
versions, such as GLYCAM_06a, 06b, 06e, 06EP, and 06j, among
others. Of these, GLYCAM_06j [38] is the most recent and commonly
adopted variant, offering improved accuracy for modelling a wide range
of glycan structures. In our study, we have used GLYCAM_06j-1 force
field for the glycans.

2.3 Integration Algorithms in MD

These equations predict how atoms move over time by updating their

positions and velocities, which are recorded in trajectory files. Since the

atomic positions depend on potential energy, and this function lacks an

exact solution for complex systems, numerical methods are used.

Common integration algorithms include the Verlet [39], Velocity Verlet,
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Leapfrog [40] and Beeman's algorithm. [41]. These methods apply
Taylor series expansions to estimate atomic positions, velocities, and
accelerations. Each has its own strengths and limitations and is selected

based on the specific requirements of the simulation.
2.3.1 Verlet algorithm

The Verlet algorithm is a widely used numerical method for integrating
Newton’s equations of motion in molecular dynamics simulations. It
predicts the new positions of particles in a molecular system by utilizing
their positions at the current and previous time steps, along with the
accelerations computed from the forces acting at the current step. As a
two-step integration method, the algorithm relies on positional data from
two distinct time points, making it both computationally efficient and
numerically stable for molecular dynamics simulations over long

simulation times.

It is simple, efficient and requires minimal memory (only current and
previous positions). However, since it does not explicitly compute
velocities and it is less accurate for systems requiring precise velocity-

dependent properties.

v(t) = r(t+ At)zztr(t — At)

(2.5)

where, 1 is the position at time t + At and t — At
2.3.2 Velocity Verlet algorithm

The Velocity Verlet algorithm is an enhancement of the basic Verlet
1
integration method, where the velocity is calculated as step n +E and

then the coordinates at step n + 1. This algorithm calculates the positions,

velocities and the acceleration simultaneously at time (t + At).
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1t + At) = 1(t) + At VA(t) + % At? a(t) (2.6)

v(t+ At) = v(t) + % At[a(t) + a(t + At)] (2.7)

2.3.3. Leapfrog algorithm

The Leapfrog algorithm is a numerical integration method used to solve
Newton's equations of motion, particularly in molecular dynamics

simulations which is a modification of the Verlet algorithm where the

. . 1 . .
velocities are calculated for the time t + EAt’ then positions are estimated

at the t + At. This interleaving means that velocities "leap over"

positions and vice versa, hence the name "Leapfrog". It provides explicit
velocity information without the need for additional position data,
making it advantageous over the basic Verlet method in many

simulation scenarios.

r(t + At) = r(t) + v(t + %At)At (2.8)

v(t+% At)=V(t—%At)+a(t)At (2.9)

2.4 Simulation time-step

In molecular dynamics (MD) simulations, selecting an appropriate
timestep (At) is crucial for ensuring both the accuracy and stability of
the simulation. The timestep determines how frequently the simulation
updates the positions and velocities of atoms, and it must be small
enough to resolve the fastest motions within the system. In biological
macromolecules, these rapid motions are typically associated with bond
vibrations involving hydrogen atoms, which occur on the femtosecond

timescale (~107'* seconds).

23



To achieve stable integration of the equations of motion and accurate
energy conservation, the timestep is generally chosen to be significantly
shorter than the fastest motion in the system. However, using extremely
small timesteps can substantially increase computational demands. To
overcome this limitation, algorithms such as SHAKE [42] and LINCS
[43] are employed to constrain the motion of bonds involving hydrogen
atoms. By eliminating the need to explicitly simulate these high-
frequency vibrations, these algorithms permit the use of larger
timesteps, typically in the range of 1-2 femtoseconds (fs), without
compromising the accuracy or stability of the simulation which is widely

accepted standard in all-atom simulations of biological macromolecules.
2.5 Periodic boundary conditions

Periodic boundary conditions (PBC) are widely used in molecular
dynamics simulations for approximating the bulk behaviour of a system
while minimizing edge effects that arise due to the finite size of the
simulation box. In real biological systems, biomolecules are surrounded
by a vast number of solvent molecules but simulating such an
environment with infinite solvent molecules is computationally
infeasible. PBC helps overcome this limitation by replicating the
simulation box in all three Cartesian dimensions, effectively creating the

illusion of an infinite system.

With PBC, when a particle moves out of the primary simulation box, its
image simultaneously re-enters from the opposite side, preserving the
overall number of particles and maintaining equilibrium. This
continuous exchange prevents the occurrence of surface effects and
ensures that all particles, including those near the edges, experience

forces similar to those in the system’s interior.

To reduce computational load, a cutoff radius (rcut) is applied to limit
the calculation of non-bonded interactions. This cutoff is usually set to

a value less than or equal to half the length of the simulation box to avoid

24



interactions being counted multiple times across the periodic images.
For long-range interactions, especially electrostatic forces that extend
beyond the cutoff distance, specialized algorithms like the Particle Mesh

Ewald (PME) [44] method are used to maintain accuracy.
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Figure 2.3: Two-dimensional representation of periodic boundary
conditions (PBC). Fcut, or the cutoff radius is applied when calculating

the force between two atoms [45].
2.6 Long-range interactions

In molecular dynamics simulations, interactions between atoms are
categorized into bonded and non-bonded types. Bonded interactions,
involving atoms connected through covalent bonds, encompass bond
stretching, angle bending, and torsional rotations. These interactions are
limited in number and remain constant during simulations, making their

computation relatively straightforward and less resource-intensive.

Non-bonded interactions, encompassing electrostatic forces, van der
Waals interactions, hydrogen bonds, and salt bridges, occur between all
pairs of atoms not directly bonded, leading to a computational cost that

scales quadratically with the number of atoms and are fundamental to
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the structural stability and functional dynamics of proteins. These
interactions, though individually weaker than covalent bonds,
collectively contribute significantly to the maintenance of a protein's
tertiary and quaternary structures.

2.7 Thermostats

Thermostats are algorithms designed to regulate the system's
temperature by modifying the Newtonian equations of motion, which
inherently conserve energy. While thermostats are essential for
maintaining a desired temperature during the equilibration phase, they
can interfere with the accurate calculation of dynamical properties, such
as diffusion coefficients. Several thermostat algorithms are commonly
employed in MD simulations: Gaussian [46], Berendsen [47], Bussi-
Donadio-Parrinello [48],Andersen [49], and Langevin . In our research,

we have used Langevin thermostat [50].
2.7.1 Langevin Thermostat

The Langevin thermostat integrates the principles of microcanonical
ensemble dynamics with aspects of Brownian motion to model the
behavior of particles in a viscous medium. It uses a general equation of

the form,

F = Finteraction + Friction + Frandom (2.10)

Where Finteraction is the standard interactions calculated during the
simulation, Friction is acting on particles, effectively tuning the

"viscosity" of the implicit solvent or heat bath, and Frandom effectively

gives random collisions with the solvent molecules. The frictional and
random forces are coupled through a user-defined friction damping

parameter.
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2.8 Barostats

In molecular dynamics simulations, replicating laboratory conditions—
typically constant temperature and pressure is achieved using the
isothermal-isobaric (NPT) ensemble. This ensemble maintains a
constant number of particles (N), pressure (P), and temperature (T),
allowing the simulation box to adjust its volume in response to pressure

fluctuations.

Barostats adjust the system's volume to maintain the desired pressure,
and they are often used in conjunction with thermostats to achieve the
NPT ensemble. Several barostat algorithms are commonly utilized in
MD simulations: Berendsen [51], Andersen [49], Parrinello -
Rahman [52], and Martyna-Tuckerman-Tobias-Klein [53]. In our

study we have used the Berendsen barostat to control the pressure.
2.8.1 Berendsen barostat

The Berendsen barostat regulates pressure in molecular dynamics
simulations by uniformly scaling the system's volume based on the
difference between the current and target pressures. This method
introduces a correction term to the equations of motion, facilitating rapid
pressure equilibration. However, it does not accurately reproduce the
pressure fluctuations characteristic of the NPT ensemble, making it

unsuitable for production runs.

dP  P,—P

& 2.11
dt 7, (211)

Where, P, is the reference pressure, i.e. the pressure of the external

pressure "bath”, and P is the instantaneous pressure and Jp is a time

constant.
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2.9 Molecular Dynamics Simulation Protocol

The core workflow of molecular dynamics (MD) simulations includes a

series of well-defined steps that includes:
2.9.1 System Preparation

System preparation is a vital first step in molecular dynamics (MD)
simulations, as errors at this stage can impact the reliability of the
results. It begins with selecting molecular components—such as
proteins, ligands, or glycans—whose structures are sourced from
experimental methods (e.g., X-ray crystallography [54], NMR [55],
Cryo-EM [56]) or databases like the RCSB PDB. For glycans, tools like
GLYCAM may be used to build structures.

The initial model is then validated for completeness, proper protonation
states, and charge neutrality. An appropriate force field is assigned to
define atomic interactions, including bonded and non-bonded terms. To
simulate a realistic environment, the system is solvated in a water box
and neutralized with counter ions (such as Na* or CI"). The solvent box
size is chosen to minimize boundary effects and ensure accurate long-

range interactions.

2.9.2 Solvation

Since biological reactions occur in aqueous environments, it is essential
to solvate systems in MD simulations. This can be achieved using
implicit models, which simulate water as a continuous field, or explicit
models that place individual water molecules around the solute. While
implicit models are faster and less resource-intensive, explicit models
represent individual water molecules, offering greater accuracy at higher
computational cost.

Among explicit models, TIP3P [57] which is a 3-site model is the most
commonly used due to its balance between efficiency and compatibility
with most force fields. The other 3-site models are SPC, SPC/E and
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TIPS. In our study, TIP3P was selected for solvating glycan and protein-

glycan systems.

2.9.3 Minimization

Energy minimization is a crucial initial step in molecular dynamics
simulations, aimed at stabilizing the system's initial structure by
reducing potential energy and resolving any steric clashes. This is
critical to prevent simulation instability during subsequent heating
phases. Minimization adjusts atomic coordinates to locate a local
minimum on the potential energy surface, typically using algorithms

such as steepest descent, conjugate gradient, or Newton-Raphson.

Minimization is usually carried out in two stages: the first involves
restraining the solute to allow the solvent to relax, while the second
relaxes the entire system without restraints. This step ensures structural
integrity and helps avoid distortions like bad contacts that can arise from
high-energy interactions between solute and solvent. By ensuring a
stable starting point, energy minimization lays the foundation for

reliable molecular simulations.
2.9.4 Heating

Following energy minimization, the heating step is performed to
gradually introduce Kinetic energy into the system, bringing it from 0 K
to the target simulation temperature. To prepare it for simulation, we
need to gradually heat it up to the desired temperature. This step
increases the atoms' velocities over time, helping the system reach
thermal equilibrium without becoming unstable. This is typically
achieved using the NVT ensemble, which maintains constant volume
and allows for the safe addition of energy via velocity rescaling or

thermostats based on the Maxwell-Boltzmann distribution.

Gradual heating over a defined timeframe ensures smooth thermal

equilibration and reduces the risk of sudden atomic displacements. The
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NVT ensemble is preferred over NVE and NPT during this stage, as
NVE does not permit energy input, and NPT could lead to unwanted
volume changes due to pressure coupling. Controlled heating prepares
the system for stable dynamics and helps the system adjust gently,
reducing the risk of it “blowing up” and ensuring it’s ready for the next

stage of the simulation.
2.9.5 Equilibration

Equilibration is a critical phase following the heating step, allowing the
system to reach a stable thermodynamic state before entering the
production run. This step ensures that the temperature, pressure, and
density stabilize under the desired simulation conditions. Initially,
equilibration is typically performed under the NVT ensemble to allow
the system’s kinetic and potential energies to balance. During this phase,
the thermal energy introduced during heating is distributed evenly

across all degrees of freedom.

As the production run is usually carried out in the NPT ensemble, a
buffer period is introduced to transition smoothly from NVT to NPT,
during which the solvent density and other properties adjust accordingly.
Throughout equilibration, key thermodynamic parameters like
temperature, pressure, and potential energy are monitored until they
plateau, indicating the system has achieved equilibrium. Once
fluctuations in energy and other properties become minimal, the system

is considered equilibrated and ready for production simulations.
2.9.6 Production Run

After the completion of the equilibration, the simulation enters the
production phase. This is the stage where the system runs steadily for a
longer period, allowing it to generate the trajectory data used in the
analysis of structural, dynamic, and thermodynamic properties of the

system. The production run typically maintains the same simulation
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parameters as the equilibration phase, except that data is now actively
collected. Ensembles such as NPT, NVT, or NVE may be employed
depending on the objectives of the simulation. Atomic positions,
velocities, and other relevant information are saved at defined time

intervals to capture the system's behaviour over time.

Simulation lengths in the production phase can range from nanoseconds
to microseconds, depending on the complexity of the molecular system
and the desired resolution of the analysis. With advancements in high-
performance computing, especially the use of GPUs, longer simulations

at microsecond scales have become increasingly accessible. [58]
2.9.7 Analysis

Trajectory analysis was carried out using the Cpptraj [59] module
included in AmberTools19 [60]. To minimize the impact of initial
fluctuations, the first 200 ns of each trajectory were discarded. The
remaining segments from the three independent replicates were
combined and analyzed to explore the dynamic behaviour of the
systems. Initial assessments of structural stability and flexibility were
performed by calculating the root mean square deviation (RMSD)
(both proteins and glycans) and root mean square fluctuation (RMSF)
relative to well-equilibrated reference conformations. The radius of
gyration was calculated to assess the overall compactness of the protein
complex throughout the simulations. In addition, hydrogen bond
analysis was performed using a distance cutoff of < 3.0 A and an
occupancy threshold of 20% to identify interactions. LigPlot analysis
was performed to visualize key intermolecular interactions, including
hydrogen bonds and hydrophobic contacts, particularly at the E1E2
interface. Dynamic cross-correlation matrix (DCCM) were generated
to investigate coordinated movements between residue pairs. Principal
component analysis (PCA) [61] was performed to capture the
dominant motions and explore conformational transitions. Furthermore,

protein structure network (PSN) analysis was performed to explore
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residue-residue interaction networks, enabling identification of key
communication hubs and pathways potentially relevant to allosteric

regulation and complex stability.
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CHAPTER 3

3. Objectives

To identify the structural and functional interaction
interface between E1 and E2 using Molecular Dynamics

simulations.

This objective focuses on a comprehensive structural and
dynamic analysis of our target protein. The hepatitis C virus
(HCV) envelope glycoproteins E1 and E2 form a noncovalent
heterodimer essential for viral entry. Understanding the specific
regions and interactions that facilitate this heterodimerization is
crucial. The process begins with retrieving the protein's three-
dimensional structure from the Protein Data Bank (PDB). Given
that PDB entries often have missing residues due to limitations
in experimental techniques, it's essential to identify and model
these absent segments to ensure a complete and accurate
structure using Modeller. Studies have shown that both the
ectodomain and transmembrane domains of E1 and E2
contribute to their interaction, with certain conserved motifs
playing pivotal roles in maintaining the structural integrity of the
complex. Elucidating these interfaces can provide insights into

the mechanisms of viral assembly and entry.

To investigate the role of E1-E2 Interaction in the Viral Life

Cycle, including implications for entry and fusion

Upon surveying the literature, it is evident that the E1-E2
heterodimer is not only structural but also functional in
mediating HCV entry into host cells. While E2 is primarily
responsible for receptor binding, E1 is believed to facilitate

membrane fusion. Recent studies suggest that E1 contains a
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putative fusion peptide and can form trimers, characteristics
typical of fusion proteins. The coordinated action of E1 and E2
is essential for the conformational changes required during the
fusion process, highlighting the importance of their interaction
in the viral life cycle. Analyzing the simulation trajectories will
allow us to identify key conformational changes- interactions
between E1 and E2, and potential fusion intermediates. This
computational approach aims to provide detailed insights into
the structural transitions and interactions that facilitate HCV

membrane fusion.

To understand and explore the structural dynamics resulting

from glycan interactions with the E1-E2 heterodimer.

This objective aims to investigate how glycosylation affects the
conformation and function of the hepatitis C virus (HCV)
envelope glycoproteins E1 and E2. Both E1 and E2 are heavily
glycosylated, with E1 possessing up to five N-linked
glycosylation sites and E2 up to eleven, depending on the
genotype. These glycans are crucial for proper protein folding,
stability, and the formation of the E1-E2 heterodimer, which is
essential for viral entry into host cells. Glycosylation also
influences the immunogenicity of the virus, with certain glycan
modifications enhancing the virus's ability to evade the host

immune response.

GaMD simulations can elucidate how specific glycan
modifications, such as the removal or addition of particular N-
linked glycans, influence the structural integrity and functional
properties of the E1-E2 complex. This approach helps to identify
critical glycosylation sites that are essential for maintaining the
heterodimer's stability and functionality, providing potential

targets for therapeutic intervention.
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CHAPTER 4

4. Methodology

4.1 Protein structure preparation

In the current investigation, we utilized the crystal structure of the HCV
glycoprotein E1-E2 heterodimer complex (PDB ID: 7T6X) [62]. To
model all of the missing regions, the Modeller [63] web server in UCSF
Chimera [64] was used. Specific regions or domains of interest within
the E1 and E2 proteins were identified based on known functional motifs
or regions critical to the protein’s activity. We prepared the Apo system
in which both the E1 (Chain E) and E2 (Chain U) glycoproteins of HCV

were included. The structure has a resolution of 3.83 A.

Then, we developed a second system, referred to as the glycosylated
complex, by incorporating specific N-linked glycans at positions N196
and N305 of the E1 glycoprotein at the interface of E1-E2 heterodimer
based on an extensive literature review. For our molecular dynamics
simulations, we selected high-mannose-type glycans, such as
MansGlcNAc:, which is commonly associated with HCV envelope
glycoproteins. The molecular formula of the glycan is CsiHi11NOas and

molecular weight is 1940.7 g/mol.

Figure 4.1: Apo Structure of HCV
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Figure 4.2: Complex structure (with attached glycans) of HCV.

4.2 Simulation Protocol

First, we performed standard Molecular Dynamic simulations using
pmemd.cuda module of AMBER 18. Then we generated Force field
parameters in AMBER prior to simulations utilizing the LEap Module.
The force field that is used for protein is ff14SB. We used the TIP3P
water model to solvate each system in an octahedral box, maintaining a
12 A gap between the solute and the box boundary. We added 103 Na*

and 108 CI~ ions to neutralize the system. The SHAKE algorithm was
used to restrict the lengths of all the hydrogen bonds and cause
vibrational motion of other atoms. The method used to manage non-
bonded electrostatic interactions was Particle Mesh Ewald (PME) , with
a threshold set at 12 A. We kept a constant timestep of 2 fs during the
simulation. A clear step by step processes of minimization, heating, and
equilibration was carefully followed before starting the production
simulation. For the solvated complexes, two stages of energy
minimization were carried out. A weak harmonic constraint of 2 kcal
mol—1 A=2 was included in the first energy minimization stage. Then,
the second minimization stage was carried out without any constraints.
The steepest descent approach was used for 500 steps in each

minimization stage, and then the conjugate gradient algorithm was used
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for another 500 steps. Following the minimization steps, the systems
were heated to 300 K from 0 K in the systemic manner of the NVT

ensemble. The Langevin thermostat and Berendsen barostat, having a

collision frequency of 2 ps—1, are used to maintain a constant
temperature and pressure. Each system went through 1 ns of
equilibration,8 ns of Conventional MD simulation was run for 2 ns
timestep and later we did the GaMD Equilibration with total and
dihedral boost potential for 64 ns in each run. Finally, the GaMD
production run was calculated for 1 ps in each run for apo and complex

systems.

4.3 Gaussian Accelerated Molecular Dynamics
(GaMD) Simulations

Gaussian Accelerated Molecular Dynamics (GaMD) [65] is an advanced
augmented sampling technique that introduces a non-negative harmonic
boost potential to the system's initial potential energy surface. This
approach, which utilizes a Gaussian distribution for the boost potential,
effectively reduces energy barriers, thereby accelerating the exploration
of conformational space. In contrast to the previously used Accelerated
Molecular Dynamics (aMD) [66] method, GaMD solves the problem of
statistical noise that commonly occurs in large biomolecular systems
during reweighting. A distinct advantage of GaMD is that it does not
need the definition of collective variables (CVs) or specific reaction
coordinates, making it particularly well-suited to study the dynamic

behavior of biological systems without requiring pre-defined CVs.
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Figure 4.3: Schematic representation of Gaussian accelerated

molecular dynamics [65].

A harmonic boost potential is applied to smooth the system's potential
energy surface when the threshold energy is set to the maximum
potential (E = Vmax), facilitating enhanced sampling by reducing
energy barriers. The parameter k (ranging from 0 to 1) controls the
magnitude of the boost; higher values of ko correspond to greater

smoothing and improved exploration of biomolecular conformations.

4.3.1 Boost Potential Formulation

If we consider a system with N atoms at positions ={r1, r2---rN}, a

boost potential is added when the system potential V(r) is lower than a

threshold energy E :
AV(r) = % KE-V(M)}? , V@<E (4.1)

Here, k is the harmonic force constant.
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The modified system potential, V*(r) = (r)+A4V(r) is given by:
VA=V +5 KE -V, V()<E (4.2)

Otherwise, when the system potential is above the threshold energy, i.e.,

V (r) > E, the boost potential is set to zero and V*(r) = V(r) .

For any two arbitrary potential energy Vi(r), V2(r) found on the
original energy surface; where V1(r) < V(r) and the AV potentials

satisfy V1*(r) > V2*(r), then the equation can be expressed as follows:
1 1
E< E {Vl(r) + Vz(l’)} + E (43)

and if V1(r) < Vy(r) and the difference in modified potential energy
surface should be smaller than the original energy surface, that is
V2*(r) - Vi*(r) < Va(r) - Va(r) and the equation can be modified

as:
E > > {Va(r) + Va()} (4.4)

Combining both the equations (4.3) and (4.4) and using the relationship,
Vmin < V1(r) < Va(r) £ Vmax, the threshold energy E follows the range

given below:
1
Vmax SE < Vmint X (4.5)

Here, Vmax and Vmin are the maximum and minimum potential energies.

We employed the dual potential boost for GaMD modeling in our
research. The dual boost parameter was determined utlizing the first 8
ns of conventional MD simulations. This was followed by applying the
boost potential during 56 ns of GaMD simulations. Then a 1 us GaMD
simulation was performed within the NVT ensemble, with coordinates

recorded every 10 ps to generate 100,000 conformations in a single run.
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In the conducted Gaussian accelerated molecular dynamics (GaMD)
simulations, both the apo and complex systems underwent three
independent runs each. Each run generated 100,000 conformations,
resulting in a total of 300,000 conformations for the apo system and

300,000 for the complex system.
4.4 Trajectory analysis techniques

Molecular dynamics simulations produce highly intricate datasets by
capturing every atom’s Cartesian coordinate in the system, which may
include thousands or even millions of atoms, at each time step along the
trajectory. These simulations can cover thousands to millions of time
steps. As a result, advanced analytical techniques are necessary to
extract valuable information from the data. This section introduces
various analytical approaches aimed at studying conformational changes

in typical short- and long-term biomolecular simulations.

4.4.1 Stability and flexibility analyses

The structural stability of biomolecular simulation is mainly defined by
its root mean square deviation (RMSD). RMSD is a statistical measure
of finding similarities between two sets of values in superimposed
structures using algorithms like the Kabsch algorithm. RMSD measures
the target coordinate's deviation from the reference coordinates. It
calculates the average distance between the reference structure and
selected atoms. A lower Root Mean Square Deviation (RMSD) signifies
that the structure is more closely aligned with the reference
conformation, reflecting higher structural similarity, while a higher
value indicates a greater structural difference between the compared
conformations. This suggests that the structure under analysis deviates
more significantly from the reference, reflecting lower structural
similarity. Such divergence can result from conformational changes or
flexibility. A plateau in the RMSD plot suggests that the system has
reached equilibrium, while significant fluctuations may indicate

conformational changes or instability RMSD calculations can be
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performed on all atoms or specific subsets, such as backbone or Ca
atoms. In molecular dynamics simulations, the Root Mean Square
Deviation (RMSD) is plotted over time to assess the structural stability
and conformational changes of biomolecules, such as proteins. It is

defined as:

N i e 2
AMSD \/zlﬂ(r,(? ri(2)) (4.6)

Where, N is the number of atoms whose positions are being compared

and r;(1),r;(2) are the position of atom i in each molecule.

Another important quantity is root-mean-squared-fluctuations (RMSF)
to explore residual flexibility. RMSF indicates the positional differences
for the entire structure over time. RMSF (Root Mean Square
Fluctuation) is a measure of the average deviation of atomic positions
relative to their mean positions throughout a molecular dynamic
simulation used to quantify the flexibility of individual atoms or residues
within a protein over time. It provides information about the flexibility
and dynamic behavior of a protein structure. RMSF analysis is often
applied to backbone or alpha-carbon atoms. Higher RMSF values
indicate greater atomic mobility, often observed in flexible regions such
as loops or terminal residues. Conversely, lower RMSF values suggest
limited movement, typically associated with more rigid structural
elements like a-helices and -sheets. The RMSF for atom i is calculated

using the formula:

Pi = \/[(xi — (x;)?] (4.7)

Here, x; represents the position of atom i at a given time, and (x;)
denotes the average position of atom i over the simulation period. This
calculation vyields the standard deviation of the atom's position,

reflecting its mobility.
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The B-factor, also known as the Debye-Waller factor or temperature
factor, is derived from X-ray crystallography experiments and reflects
the atomic displacement or thermal motion within the crystal structure
of a protein. These values are included in Protein Data Bank (PDB) files
and offer experimental insight into the flexibility of different regions
within the protein. Comparing RMSF values from MD simulations with
B-factors from crystallographic data can validate the simulation results.
A strong correlation between high RMSF regions and high B-factor
regions suggests that the simulation accurately captures the flexible
regions of the protein, such as loops or terminal residues. The B-factor

is defined as:
_8 2 2
B= N “(RMSF) (4.8)

In protein crystallography, the B-factor (also known as the temperature
factor or Debye—Waller factor) quantifies the mean square displacement
of atoms from their average positions. Higher B-factor values indicate
greater atomic mobility or flexibility, often corresponding to regions

such as loops or terminal in proteins.

We also measured the compactness of the simulated systems by the
radius of gyration (Rg). The radius of gyration is a measure that reflects
the distribution of a protein's atoms relative to its center of mass,
providing an indication of the overall spatial spread of the protein's
structure. Mathematically, it represents the root-mean-square distance
of the protein's atoms from its center of mass, providing insight into how
tightly the protein is folded. A lower Rg value indicates a more compact,
well-folded protein conformation indicating stable structure, whereas a
higher Rg suggests a more extended or unfolded structure. The radius of
gyration Rg for a protein can be represented as a collection of N atoms

and calculated using the following formula:

Rg= |- 1} (4.9)
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Here, Rg is the radius of gyration, N is the number of atoms in the
protein and 7; is the distance of each atom from the center of mass of

the protein.

Solvent Accessible surface area (SASA) was originally introduced by
Lee and Richards in 1971 and is often referred to as the Lee-Richards
molecular surface. Later, in 1973, Shrake and Rupley developed the
widely used 'rolling ball' method to calculate ASA, where a sphere
representing a solvent molecule rolls over the surface of the structure to
map accessible regions. We also measured the Solvent Accessible
Surface Area (SASA) to analyze the exposure of a biomolecule's surface
to the solvent. It provides information about the structural changes and
it helps to identify regions of a protein that are exposed to the
surrounding solvent, providing critical insights into how the protein
folds, maintains its stability, and interacts with other molecules. A
higher SASA value means that a greater portion of the protein's surface
is exposed to the solvent, often leading to increased flexibility and a
higher potential for interactions with other molecules suggesting a more
expanded or diffused protein structure, while a lower SASA value
indicates a more compact and tightly folded structure. Here, the equation

is:
V. [e(r)Vo(r)] — k' sinh[p(r)] = -47tp(r) (4.10)
4.4.2 Dynamic cross-correlation matrix (DCCM)

The degree of correlation within a system can be assessed by examining
the cross-correlation coefficients between pairs of atoms. This
information is typically presented graphically in a matrix format known
as the dynamical cross-correlation matrix (DCCM). DCCM analysis is
widely employed to measure the correlated motions among atoms. It is
a widely used technique for studying the movement patterns in

molecular dynamics (MD) simulation trajectories.
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(Ar(1)-Ari(1)),

DC*C(!J) — 7 - ; —
V CIAR(@D[>y/ (HAr,(t)“'){ (4.11)

In this method, ri(t) represents the position of atom i over time t, and

ATi(t) shows how much the atom’s position changes compared to its

average position. The DCCM produces an NxN heatmap, where N is the
number of atoms (usually alpha carbons), and each point shows how two

atoms move in relation to each other.

The correlation value ranges from -1 to +1. A value of +1 means the
atoms move together (complete correlation), -1 means they move in
opposite directions (complete anti-correlation), and 0 means no
connection in their movements (no correlation). Movements that are
fully correlated happen at the same time and in the same way, while anti-
correlated movements happen at the same time but in opposite ways.

The high diagonal value occurs when i =j, i.e., DCC (i,j) = 1.00.

A strong correlation appears along the diagonal of the matrix because
each atom is perfectly correlated with itself. Positive values near the
diagonal show that nearby residues move together, while off-diagonal
values indicate movement between atoms that are farther apart in the

structure.
4.4.3 Principal component analysis (PCA)

Principal Component Analysis (PCA) is a technique used for reducing
the dimensionality of data. It calculates the principal components, which
are eigenvectors associated with large eigenvalues, based on atomic
coordinates from molecular dynamics (MD) trajectories. The
eigenvectors indicate the direction of motion, while the eigenvalues
represent the extent of these movements. PCA is used to analyze the
trajectory data and focus on the main modes of motion in a system,

reducing it to a few degrees of freedom.
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To apply PCA to MD data, the first step is to remove the overall
rotational and translational movements using a least-squares fitting
procedure. Then, a covariance matrix is created based on the Cartesian
coordinates of the atoms. This matrix shows how the movements of
atoms are related to each other. The matrix is typically 3Nx3N, where
N is the number of atoms in the system. After diagonalizing the
covariance matrix, a set of eigenvectors and their associated eigenvalues
are obtained. The eigenvectors represent the directions of motion, while

the eigenvalues indicate the extent of these movements.

PCA helps to identify new axes along which the data is spread out the

most:

1. First Principal Component (PC1): This is the direction that
captures the maximum variance in the data (the most spread).

2. Second Principal Component (PC2): This is the next direction
that captures the next largest variance, and is perpendicular to

PC1, and so on.

Consider a covariance matrix C and the elements C; j of the matrix is

defined as:
Cij=((xi— (X)) (xj = (x}))) (4.12)

Where X; and X; are coordinates of the i or j™ atom, (Xi) and (X;)

are the mean average coordinates of the i™" or j™ atom. For three
dimensions, the covariance matrix for (X, y), (x,z)and (y, z) coordinates
are carried out, and a covariance matrix C generates the matrix of 3N x

3N, where N denotes the number of atoms.
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The covariance matrix is then diagonalized to get the eigenvalues:
ATCA= 2 (4.13)
Where A is the eigenvectors and A is the eigenvalues.

The eigenvectors are ranked according to their eigenvalues in
descending order. The first principal component corresponds to the
eigenvector with the largest eigenvalue, which represents the dominant
motion in the system. Additional principal components follow this

order, describing less significant motions.

PCA allows for the reduction of the system’s dimensionality by focusing
on the first few principal components. These components capture the
majority of the system's movement, and only a small number of them

are typically needed to accurately represent the dynamics of the system.

To put it simply, the purpose of PCA is to reduce the complexity of a
dataset by decreasing the number of variables, while retaining as much

information as possible.
4.4.4 Hydrogen Bond analysis

Hydrogen bonds are formed through electrostatic interactions between
hydrogen donor and acceptor groups. These interactions are facilitated
by the partial positive charge on hydrogen and the electronegative
atoms, such as oxygen or nitrogen, on the receptor. The geometry and
strength of these hydrogen bonds influence glycan-protein interactions,
impacting both binding kinetics and thermodynamics. Intramolecular
hydrogen bonds help stabilize protein structures, especially in a-helices
and pB-sheets. Intermolecular hydrogen bonds play a key role in
facilitating specific interactions between proteins and ligands, proteins

and DNA, as well as other biological macromolecules.
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Hydrogen bonding is essential in glycan-protein interactions,
particularly in determining binding specificity and affinity. Glycans,
which are abundant in hydroxyl groups, readily form hydrogen bonds
with protein side chains and water molecules, creating a complex
network of interactions. These bonds are crucial for the recognition and
binding of specific glycans, and the strength and nature of these
interactions can influence protein binding and function. Protein residues
like aspartate, glutamine, arginine, and histidine are often involved in
glycan recognition because they can both donate and accept hydrogen
bonds. Additionally, water molecules can serve as bridges, enhancing
the hydrogen bonding network. The number, type, and location of these
hydrogen bonds play a key role in determining the specificity and

affinity of the glycan-protein interactions.

Specificity and Selectivity: Hydrogen bonds play a crucial role in
conferring specificity and selectivity to ligand-receptor interactions.
They allow for precise geometric complementarity and recognition
between binding partners. Structural analyses demonstrate how
hydrogen bonds create a detailed network that governs molecular

recognition with high precision.

Affinity and Binding Kinetics: The establishment of hydrogen bonds
contributes significantly to the overall binding affinity of glycan-protein
complexes, affecting both the rates of association and dissociation.
Molecular dynamics simulations and experimental kinetics provide
insights into the dynamic nature of hydrogen bond-driven interactions

and their influence on binding energetics.
4.4.5 LigPlot analysis

LigPlot analysis is a method that creates 2D diagrams showing how a
ligand interacts with a protein, based on a PDB file. It automatically
identifies and illustrates key interactions like hydrogen bonds and

hydrophobic contacts, which are important for the stability and binding
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of the ligand to the protein. It can be used to study a single complex or
compare different complexes to better understand binding site
specificity and selectivity. The process begins by using a PDB file as
input, where LigPlot+ detects the hydrogen bonds and hydrophobic
interactions between the protein and ligand. It then generates a clear 2D
plot showing these connections, placing the ligand at the centre and
surrounding it with the interacting protein residues. This analysis is
widely used in drug discovery and structural biology to understand how

molecules interact and to assist in the design of new therapeutics.

In this study, we used LigPlot to analyze protein-protein interactions.
LigPlot automatically generates 2D diagrams showing key interactions
such as hydrogen bonds and hydrophobic contacts between two proteins.
Although LigPlot is commonly used for protein-ligand studies, it can
also effectively highlight important contact points in protein-protein
complexes. By using PDB files as input, the software identifies
interacting residues and represents them clearly in a 2D format, helping
us visualize and understand how the two proteins are connected. This
analysis provided valuable insights into the binding interfaces and the

nature of interactions stabilizing the protein complex.

4.4.6 Protein structure network (PSN) analysis

For visualization of protein structures beyond just their secondary
structure and fold, we can use network representations to highlight
interactions between residues. These networks provide valuable insights
into the structure-function relationship. In this study, we used the
WebPSN server [67]. NAPS [68] tool also can be used to create protein
networks, which allow interactive visualization of inter-residual

interactions from both modeled proteins and MD simulation trajectories.

In these networks, amino acids are represented as nodes, and the
connections between them are shown as edges. An edge is created

between two nodes if their Ca-Ca distance is within approximately 7 A.
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NAPS allows wusers to analyze nodes based on centrality,
physiochemical properties, and clusters of connected residues, helping
to identify functional or coevolving residues and predict protein-protein

interactions.

The degree of a node indicates the number of direct connections it has
and hubs are key nodes with four or more connections, and they are
considered dynamically stable if they appear as hubs in over 50% of MD
simulation snapshots are considered dynamically stable and are often
referred to as "hot spots” due to their significant role in preserving
structural integrity and mediating allosteric communication. Changes in
hub residue positions between glycan-bound and unbound states reflect

structural alterations in glycoproteins.

Some residues are intra-linked, meaning they are connected to each
other in a way that indicates structural rigidity. Communities are groups
of closely connected nodes linked by common interactions. They help
spread structural rigidity throughout the protein network. By comparing
individual nodes and their communities, small conformational changes
that affect the protein’s rigidity and flexibility can be identified.
Communities within the network consist of residues that interact closely,

and these communities help communication within the protein.

Overall, network analysis of protein structures provides valuable
insights into the intricate interplay between residues, highlighting

regions critical for structural stability and functional dynamics.
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CHAPTER 5

5. Results and Discussion

5.1 Stability and convergence analysis of the

protein systems

In the investigation of the E1-E2 structural dynamics, extensive
Gaussian Accelerated Molecular Dynamics (GaMD) simulations were
performed for the E1-E2 heterodimer for the apo and glycosylated
(complex) systems, covering a time span of 1 s in triplicate. During the
1 ps production simulations, the E1-E2 complex exhibited stability
shown in the root-mean-squared deviations (RMSD) from the initial
structure. The (Figure 17) shows the time evolution of the root mean
square deviation (RMSD) for the backbone atoms in each system

concerning the initial configurations.

As shown in panel A of Figure 5.1, the apo form exhibits a gradual
increase in RMSD, stabilizing around 4-5 A after the first 0.4 s,
indicating moderate flexibility and convergence across all the three runs.
In contrast, the complex in panel B of Figure 5.1 form displays higher
and more variable RMSD values ranging from 5 to 8 A, with each run
stabilizing at different levels indicates differing convergence behaviour.
Higher RMSD values indicate larger structural fluctuations suggesting

that the complex undergoes larger conformational rearrangements.
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Figure 51: (A) Time evolution of the root-mean-square deviation
(RMSD) of the E1-E2 complex structure in Apo system. (B) Time
evolution of the root-mean-square deviation (RMSD) of the E1-E2

complex structure in Complex system.

5.2 Structural Stability Analysis of E1-E2 complex

To further investigate structural fluctuations, RMSD-based probability
density plots were generated for both apo and complex systems as shown
in Figure 5.2, Panel A. The apo form displays a broader distribution
with three distinguishable peaks centered around ~4.5 A, ~5.6 A, and
~6.8 A, suggesting transitions between multiple conformational states.
In contrast, the complex showed narrower, more sharply defined peaks
at higher RMSD values (~5.7 A and ~7.5 A), indicating fewer but more
distinct conformational states. Although the complex shows higher
RMSD values, this does not necessarily mean it is more flexible. Instead,
it appears to adopt fewer and well-defined conformational states,
implying a more conformationally restricted but stable structure, likely
maintained by stabilizing interactions formed during binding. In
contrast, the apo state explores a wider range of conformations,

indicating higher structural variability.
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Figure 5.2: (A) Probability density plot of backbone RMSD for Apo
(green) and Complex (orange) systems over the simulation period. (B)
Structural overlays of representative frames from the three RMSD peaks
in the apo system, colored by peak: Peak 1 (green), Peak 2 (orange), and
Peak 3 (pink). (C) Structural overlays of representative frames from the

complex system.
5.3 Conformational Dynamics of Glycans

Figure 5.3 shown below illustrates the distinct conformational
behaviors of two glycans attached to the protein and a free glycan. The
panel A displays the RMSD probability density distributions, revealing
that glycan 2 (orange) has a sharp and narrow RMSD peak, suggesting
that it remains in a more stable and restricted conformation during the
simulation, likely due to spatial constraints or stronger interactions at its
attachment site (N305). In contrast, glycan 1 (attached at N196) and the
free glycan exhibit broader distributions, indicating they undergo greater

conformational fluctuations and are more flexible.

The Panel B further supports these observations by showing the
structural positioning of the glycans on the protein surface, where glycan
2 appears more embedded within the protein interface, potentially
contributing to its limited mobility. The glycan 2 experiences reduced

conformational dynamics relative to glycan 1 and the free glycan.
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Figure 5.3: (A) Probability density distribution of RMSD for glycan 1
(green), glycan 2 (orange), and the free glycan (pink) throughout the
simulation. (B) Structural representation of the glycoprotein complex
highlighting the positions of glycan 1 (N196 site) and glycan 2 (N305

site), with glycans shown in green sticks.

5.4 Solvent accessibility and protein compactness

Figure 5.4 illustrates comparative analyses of the radius of gyration
(RoG) and solvent-accessible surface area (SASA) between the apo and

complex systems.

The panel A shows the RoG distributions, where the complex (brown
line) exhibits a broader and more variable profile, suggesting a slightly
more compact and structurally diverse arrangement compared to the apo

system (blue line), which shows a sharp peak around 27 A.

The panel B displays SASA distributions, where the complex form has
lower solvent exposure than the apo form, indicating reduced surface
accessibility upon complex formation. The apo form (blue) shows a
broader distribution (650-900 nm?), while the complex (brown) shows
with a narrower range of 600-830nm?2 This reduction in solvent
exposure is typically attributed to the formation of intermolecular
interactions upon glycan attachment, which results in burying
previously exposed hydrophobic residues within the protein-protein
interface. These results indicate that complex formation results in a

structurally more compact configuration.
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Figure 5.4: (A) Probability density distribution of the radius of gyration
(RoG) for the Apo (blue) and Complex (brown) forms of the protein.
(B) Probability density distribution of the solvent accessible surface area

(SASA) for the Apo and Complex systems.
5.5 Conformational Stability of E1 and E2

Separate plots were generated for E1 and E2 for both apo and complex

systems, displaying the RMSD probability distribution in Figure 5.5.

For E1 (Panel A), the apo (green) system exhibits a broader distribution
with multiple peaks across a wider RMSD range (~3-9 A), suggesting
higher conformational flexibility. In contrast, the complex form shows
narrower and more defined peaks clustered around higher RMSDs (~6—
11 A), indicating a reduction in structural variability upon complex
formation, but those conformations are somewhat more deviated from a

reference structure.

For E2 in the apo form displays broader distribution with peaks starting
ataround 2.5 A and extending up to ~5.8 A, indicating higher flexibility
and structural diversity, while the complex form has sharper and more
compact peaks between ~2-4.5 A, indicating greater stability and

reduced conformational variability upon complexation.

It can be interpreted that the E1 protein becomes more structurally stable
(less flexible) but shows a greater conformational shift when part of the
complex while, the E2 protein becomes more conformationally stable in
the complex while maintaining a structure closer to its reference.

Overall, both proteins exhibit greater structural stability in the
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complexed state compared to their unbound forms.
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Figure 5.5: (A) Probability density plot of backbone RMSD of E1 for
Apo (green) and Complex (orange) systems across the simulation
timeframe. (B) Probability density plot of backbone RMSD of E2 for

Apo and Complex systems across the simulation timeframe.
5.6 Residual Flexibility Analysis of E1 and E2

glycoproteins

Figure 5.6 presents the Root Mean Square Fluctuation (RMSF) profiles
for the E1 and E2 proteins in their apo (red) and complex (blue) forms,

indicating the residue-wise flexibility across the sequences.

For E1, the RMSF values are generally comparable between the apo and
complex states across most of the sequence. However, increased
fluctuations are observed in the complex form, particularly in the stem
region (after residue 124), suggesting enhanced flexibility in this region
upon complex formation. Within the PCR (Pfp-containing region), both
forms show similar fluctuation patterns, indicating that this region

remains relatively stable in both states.

In the case of E2, there is a marked increase in flexibility in the complex
form across several regions, especially between residues ~250 and 370.
Notably, the CD81 binding region and the variable region (VR) show
significantly higher RMSF values in the complex, indicating increased
mobility. In contrast, the apo form maintains lower and more consistent

flexibility.
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This can be interpreted as the E2 protein becoming more dynamic upon
complex formation, particularly in functionally important regions, while
E1 shows only limited flexibility changes, suggesting differing roles or

structural responses of the two proteins upon binding.
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Figure 5.6: RMSF profiles of E1 and E2 proteins in apo (red) and
complex (blue) systems. (A) Residue-wise fluctuations of E1. (B)

Residue-wise fluctuations of E2.

5.7 Analysis of Intra Domain Regions of E1
5.7.1 PCR Region

The PCR region (residues 249 to 299) located in the core of E1 plays an
important role in the fusion process of viral membrane with endosomal
membrane to release the RNA genome into the host cell. Additionally,
it may contribute to the assembly and structural organization of the viral
particle. We have plotted the probability distribution of the PCR region

in Figure 5.7 to get an insight into its structural stability.

The panel A presents the RMSD distribution of the E1 putative contact
region (PCR) in both apo (green) and complex (orange) systems,
reflecting its structural deviation over time. The apo form displays a
broader and bimodal RMSD distribution at around 3.8 and 8 A,
suggesting that the PCR is more conformationally flexible in the absence
of binding. In contrast, the complex form exhibits a narrow and more
defined distribution centered around higher RMSD values (~8-9 A),
indicating a more shifted but more stable and consistent conformation.

This suggests that upon complex formation, the PCR becomes
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structurally more restrained and adopts a specific conformation, which

may be important for its interaction role within the E1-E2 assembly.
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Figure 5.7: (A) Probability distribution plot of RMSD for the PCR
region in E1 in apo (green) and complex (orange) systems. (B)
Schematic representation highlighting the PCR within the E1 domain
organization, including the N-terminal domain (NTD), C-terminal loop
region (CTR), and stem [62].

5.8 Analysis of Intra Domain Regions of E2

5.8.1 CD81 binding site

The CD81 binding site (amino acids 518 to 534) located in the head of
E2 is essential for binding to the CD81 receptor on the host cell

membrane to initiate the infection process.

The RMSD (Root Mean Square Deviation) probability density plot for
the E2-CD81 region in Figure 5.8 illustrates the structural flexibility of
this domain in the apo system (green) compared to the glycan-bound

complex system (orange).

In the apo state, this region shows a sharp, high-intensity peak at low
RMSD values (~0.8 A), indicating high structural stability and minimal
conformational deviation, with a tail extending upto ~5 A and a smaller
secondary peak at around 3.5 A reflects a low-probability population of
transient or rare conformations that deviate notably from the reference
structure. These deviations likely arise due to the loop structure of this

region.

57



(A)

However, upon glycan binding, the RMSD distribution shifts, and two
broader peaks emerge at higher RMSD values (~1.8 A and ~4.5 A),
reflecting increased conformational variability. The shift in RMSD
suggests that glycan interaction promotes dynamic structural

rearrangement or flexibility in this region upon binding CD81.
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Figure 5.8: (A) RMSD probability density plot for the CD81 binding
region of E2 in apo (green) and complex (orange) systems. (B)
Schematic representation of the E2 subdomains highlighting the CD81
binding site [62].

5.8.2 Variable Regions — VR2, VR3

The Variable regions (VR2, residues 459 to 483; VRS, residues 569 to
579) located in the head of E2 allows the virus to escape host's immune

system recognition and aids in immune evasion.

Figure 5.9 illustrates how glycan binding influences the conformational
flexibility of the E2 glycoprotein's variable regions VR2 and VR3 in
hepatitis C virus. Probability density plots of RMSD values are shown
for each region in the apo (green) and glycan-bound (orange) states.

The RMSD probability density plot for VR2 (panel A) indicates that the
glycan-bound distribution shows two sharp peaks at lower RMSD
values (~0.9 A and ~1.7 A), indicating stable conformations, whereas
the apo state (green) exhibits a broader distribution with peaks at around

(~1.9 A and ~12.6 A), suggesting greater structural flexibility.
The RMSD probability density plot for VR3 (panel B) shows that glycan
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binding reduces the flexibility of this region. In the apo state (green),
VR3 displays a broader distribution with a peak around 1.8 A, indicating
higher structural variability. In contrast, the glycan-bound state (orange)
shows a shift toward lower RMSD values, with a sharper peak near 1.4
A, suggesting that VR3 adopts more stable conformations when glycans

are present.
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Figure 5.9: (A) Probability density plot of RMSD distribution of E2
variable region VR2 in apo (green) and glycan-bound complex (orange).
(B) Probability density plot of RMSD distribution of VR3 in apo and
glycan-bound states. (C) Schematic representation of the E2 domain
organization highlighting variable regions (VR) along with, CD81
binding loop (CD81 bl), and structural domains including the front layer,

B-sandwich, base, and stem [62].
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5.9 E1-E2 binding interaction

Earlier structural studies, including cryo-EM, have captured E1-E2 in
static conformations, but molecular simulations reveal their dynamic
nature and offer a better understanding of how the complex behaves in
different states. Figure 5.10 illustrates the structural impact of glycan

binding on the E1-E2 interface.

The panel A shows the probability density plot of the inter-residue
distance between Glu236 (E2) and Leu307 (E1), revealing a rightward
shift in the distance distribution upon glycan binding. Specifically, the
average distance increases from approximately 7.2 A in the apo state to
8.1 A in the glycan-bound complex can be seen in Panel C, indicating a

weakening of the E1-E2 connection after glycan binding.

The panel B presents the crystal structure (PDB ID: 7T6X), where
Glue55 (E2) and Leu200 (E1) are in close proximity (4.3 A),
highlighting a native E1-E2 contact at the interface.

Panel C further supports the simulation-based observation, showing that
glycan interaction leads to increased spatial separation between E1 and

E2 residues compared to the apo system.

Collectively, these results suggest that glycan engagement induces a
conformational rearrangement at the E1-E2 interface, which may

modulate the structural integrity or dynamics of the heterodimer.
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Figure 5.10: (A) Probability density plot showing the distribution of
Glu236-Leu307 inter-residue distances in apo and glycan-bound
(complex) systems. (B) Interaction observed between Glu655 and
Leu200 in the E1-E2 crystal structure (PDB: 7T6X). (C) Post-
simulation structural comparison of E1-E2 distance highlighting

changes in the distance of apo and complex systems.
5.10 Hydrophobic Interactions between E1 and E2

The RMSD distributions shown in panels A and B of Figure 5.11
reveals distinct differences in the conformational dynamics of

hydrophobic residues between the apo and complex states.

For interaction study we took residues Phel167, Pro171, Phe260, Thr262,
Leu270 of hydrophobic cavity of base in E2 interacts with residues
Tyr299, Val310, Tyr308, Val301 of E1. In panel A, the complex state
(orange) exhibits a sharp peak around 1 A, indicating a more rigid and
structurally conserved conformation compared to the apo state (green),
which shows a broader distribution with a peak closer to 1.8 A. This
suggests that complex formation significantly stabilizes the structure of

the hydrophobic region under investigation.

We then took residues Leu235, Tyr282, Tyr284 of E2 stem interacting
with residues 1le415, Tyr416, Pro417, His419, and Met425 of E1. The
panel B shows a wider RMSD range overall, with both apo and complex

states displaying multiple peaks. The apo state has broader distrbution
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with peaks at around 3 A, 3.8 A and 5.5 A, while the complex state
shows narrower peaks at ~3 A and ~5 A accompanying a small peak at
around ~2.5 A. Although some flexibility remains, the more defined
peaks in the complex state indicate partial structural stabilization. This
implies partial stabilization upon complex formation, but with retained

flexibility in certain regions.

Together, these data highlight that complex formation generally leads to
a reduction in conformational variability of key hydrophobic residues,
likely contributing to the structural integrity and functional relevance of

the protein interface.
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Figure 5.11: Probability density plots showing RMSD distributions of
hydrophobic interface residues in E1 and E2 for apo (green) and
complex (orange) systems obtained for two specific set of residues
identified in earlier structural studies. Right: Visualization of two
specific set of key hydrophobic residues at the E1 and E2 interface

contributing to inter-subunit stabilization are highlighted and labelled.
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5.11 E1-E2 interaction profile in apo structure

In the apo system of the E1-E2 heterodimer complex as shown below in
Figure 5.12, critical interactions, such as electrostatic and hydrophobic
interactions, play a key role in binding and stabilizing the two proteins
together. This figure illustrates the interaction landscape between the E1
and E2 glycoproteins in the apo state, generated using LigPlot. The
analysis reveals a complex network of non-covalent interactions that
stabilize the E1-E2 interface, including hydrogen bonds, hydrophobic
contacts, and electrostatic interactions. Each residue involved is
annotated, and the types of interactions are depicted using standardized
LigPlot symbols, allowing for a residue-level understanding of the
interface architecture. Several residues from both E1 and E2 engage in
stabilizing contacts, such as salt bridges and polar interactions, which
are critical for maintaining the native structural integrity of the complex.
The presence of recurring polar residues and charged side chains at the
interface indicates a prominent role for electrostatic complementarity in
mediating E1-E2 association. For example, side chains such as Arg,
Glu, Asp, and Lys engage in salt bridges and hydrogen bonding that span
across the interface, contributing significantly to structural integrity.
Additionally, hydrophobic patches involving residues such as Val, Leu,
Ile, and Phe may contribute to van der Waals interactions that further

stabilize the complex.
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Figure 5.12: 2D Interaction map depicting residue-level contacts
between E1 and E2 at the interface in the apo conformation, highlighting
electrostatic interactions (hydrogen bonds), and hydrophobic
interactions. In the figure, red regions represent hydrophobic

interactions, while green dotted lines highlight electrostatic interactions.

5.12 E1-E2 interaction profile in complex structure

Figure 5.13 presents a detailed interaction profile between the E1 and
E2 glycoproteins in the complex state, generated using LigPlot. It
captures the array of inter-residue contacts formed upon complex
formation, providing a two-dimensional visualization of the molecular
interface. Compared to the apo structure, a marked shift in interaction
character is evident that hydrophobic contacts are notably more
abundant and widespread across the interface. Residues such as Leu,
Val, Ala, and Phe are observed clustering together, forming a
hydrophobic core that likely enhances the stability of the E1-E2
association in the complex state. Additionally, hydrogen bonds continue
to contribute to the interface, but the prominence of van der Waals and
hydrophobic interactions suggests a restructuring of molecular forces
upon complex formation. This rearrangement may reflect a
conformational stabilization that takes place when E1 and E2 associate
under the influence of external elements, such as glycan interactions.
The Lig-Plot visualization offers an effective representation of these
changes, illustrating how the molecular contacts between E1 and E2 are

highly dependent on the surrounding environment. Such insights are
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crucial for understanding the dynamic nature of viral envelope assembly
and could have implications for therapeutic strategies aimed at

disrupting E1-E2 interactions.
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Figure 5.13: 2D Interaction map depicting residue-level contacts
between E1 and E2 at the interface in the complex conformation,
highlighting electrostatic interactions (hydrogen bonds), and
hydrophobic interactions. In the figure, red regions represent
hydrophobic interactions, while green dotted lines highlight electrostatic

interactions.

5.13 Hydrogen bonds in protein-glycan interaction

Figure 5.14 illustrates the variation in the number of hydrogen bonds
formed by Glycanl (orange) and Glycan2 (green) throughout three
separate molecular dynamics simulation runs (Runl, Run2, and Run3).
And the background colors (pink, blue, and purple) separate the three
simulation runs. The horizontal axis denotes the simulation time in
microseconds (us), while the vertical axis shows the corresponding

number of hydrogen bonds formed during the simulations.

The data clearly show that Glycan 2 consistently forms a significantly
higher number of hydrogen bonds compared to Glycanl throughout all
simulation runs, indicating greater interaction with the E1 and E2
heterodimer complex. Glycan 2 maintains a stable range of 15-20
hydrogen bonds, suggesting persistent and strong interactions with its
environment. In contrast, Glycan 1 forms fewer hydrogen bonds,

ranging mostly between 2-10, and exhibits greater fluctuation,
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indicating weaker or less consistent interactions. This consistent trend
across all three runs supports the conclusion that Glycan 2 plays a more
prominent role in stabilizing the protein structure through hydrogen
bonding. These observations suggest that Glycan2 may contribute more
significantly to the conformational stability and functional dynamics of

the glycoprotein complex.

The reason behind this might be the positional difference between the
two glycans. Glycan2 (linked at N305) is situated closer to the interfacial
region between the two protein domains, placing it in a more confined
and interaction-rich environment. This positioning enables Glycan2 to
establish a greater number of hydrogen bonds with nearby residues,
contributing to its enhanced stability, as reflected in the hydrogen bond
analysis. In contrast, Glycanl (linked at N196) is located further away
from the interface, in a more exposed and flexible region of the protein.
This spatial orientation limits its ability to form stable interactions with

surrounding residues, resulting in fewer hydrogen bonds.
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Figure 5.14: Hydrogen bond analysis of Glycanl and Glycan2 across
three simulation runs (Run1-Run3), showing the number of hydrogen

bonds formed over time (us).

The Table 2 below presents the hydrogen bond interactions between a
protein and two glycans—Glycan 1 and Glycan 2, based on molecular
dynamics simulation data. Each interaction is characterized by the donor
and acceptor atoms involved, the occupancy percentage (indicating how
frequently the hydrogen bond exists during the simulation during the

simulation), and the average bond distance in angstroms (>3.0 A).

66



Glycan 1 has only 2 hydrogen bonds with relatively lower occupancies
(49.69% and 30.66%), whereas Glycan 2 has 10 hydrogen bond

interactions, including the highest occupancy of 88.22% between

THR_405@0 and OMA_177@02,

interaction.

indicating a strong,

stable

Table 5.1: Occupancy of hydrogen bonds between the glycan and

protein over the course of the MD simulation.

Binding couple

Molecular Dynamics

Acceptor Donor Occupancy Distance
(%) (A)
Glycan 1
4YB_156@02N | ASN_5@ND2 49.69 2.84
GLN_225@OE1 | 4YB_156@06 30.66 2.70
Glycan 2
THR_405@0 OMA _177@02 88.22 2.75
LEU 450@0 4YB_168@03 57.90 2.71
ILE_454@0 VMB_169@04 39.35 2.75
4YB_168@03 | ARG_415@NH2 38.59 2.85
4YB_167@O0O2N | ASN_114@ND2 36.22 2.84
OMA_177@05 GLU_408@N 33.47 2.84
4YB_168@02N | ARG_415@NE 27.77 2.83
VMA _170@05 | VAL_455@N 26.51 2.90
2MA_175@06 ARG_409@N 24.95 2.86
4YB_168@06 | ARG_415@NH2 22.53 2.85
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5.14 Dynamic Cross-Correlation Matrix (DCCM)
analysis

The dynamic cross-correlation analysis in Figure 5.15 highlights
distinct differences in the motion of protein regions between the apo and
complex systems. The PCR region (R1), associated with the N-terminal
domain of E1, exhibits strong anti-correlated motion in the apo form,
whereas it transitions to positively correlated motion upon complex
formation. This shift suggests a stabilization and coordination of
movement within the PCR region in the presence of the glycan or
binding partner. Similarly, the CD81 binding region (R2) shows a clear
contrast: in the apo system, this region demonstrates positive
correlation, indicating synchronized movement with surrounding
residues, but it shifts to negative correlation in the complex, implying a
reversal in the direction of motion likely due to altered interaction
dynamics. Interestingly, the VR region (R3) maintains a similar residual
correlation pattern in both apo and complex forms, suggesting its
dynamics remain relatively unaffected by complexation. Collectively,
these observations point to glycan-induced modulation of the internal
dynamics of specific protein regions, which may be critical for

functional conformational transitions.

complex

Residue Number

Residue Number Residue Number

Figure 5.15: Dynamic Cross-Correlation Matrix (DCCM) analysis of

protein residues in apo and complex forms.
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5.15 Principal Component Analysis of E1-E2
Complex

In the free energy landscape (FEL) analysis based on principal
component analysis (PCA), Figure 5.16 illustrates the dominant
motions of the protein in both apo and complex states using PC1 and
PC2 axes. The color gradient reflects the free energy distribution, with
dark red denoting the most stable (lowest energy) regions and blue
indicating higher-energy, less stable conformations. In the apo state
(Panel A), three distinct low-energy basins were observed, suggesting
that the unbound form explores a wider range of conformational states,
indicative of greater flexibility. In contrast, the complex state (Panel B)
exhibited only two main energy basins, with a narrower and more
confined energy surface, implying restricted dynamics and increased
structural stability upon binding. The lower panels present
representative structures from each energy minimum, where the apo
conformations show greater divergence, while those from the complex
state appear more compact and similar. These findings suggest that
binding limits structural variability, stabilizing the protein in fewer,

energetically favorable states.
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Figure 5.16: Principal Component Analysis (PCA) and Free Energy

Surface (FES) of the protein in apo and complex systems.
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5.16 Protein Structure Network Analysis

Figure 5.17 presents a comparative analysis of Residue Connectivity
via Protein Structure Network (PSN) between the Apo and Complex
states of the protein. Each color represents a distinct community of
residues, with the most to least populous communities labeled from red
to light orange, respectively. In the Apo form, residues surrounding the
E2 region are grouped into several smaller, relatively localized
communities (e.g., red, green, and orange), with limited inter-
community communication, suggesting less coordinated structural
behavior. However, upon complex formation, a noticeable shift in
network organization is observed. In the Complex, the red community
(the most populous) near the E2 region becomes more densely
connected, indicating stronger communication among residues in this
region. Also, in the Complex, the residue network undergoes significant
reorganization, with the glycan-associated region integrating into the
2nd most populous community (green), indicating its role in enhancing
structural stability through strengthened interactions. Additional residue
groups also reorganize or emerge, particularly around regions E1 and
E2, implying a dynamic restructuring of the interaction network. These
changes signify increased inter-residue connectivity, likely driven by
glycan interactions, which in turn could enhance the overall structural

stability and promote functional coordination within the protein.
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Figure 5.17: Residue Connectivity via Protein Structure Network for

apo and complex systems depicting hubs, links and communities.

Table 5.2: Comparison of network properties between Apo and
Complex systems.

Network Properties Apo Complex
|min 3.69 4.16
Number of Linked 420 447
Nodes
Number of Links 484 509
Number of Hubs 67 75
Number of Links 251 289
mediated by Hubs
Number of 18 17
Communities
Number of Nodes 92 91
involved in
Communities
Number of Links 118 124
involved in
Communities
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CHAPTER 6

6. Conclusions and scope for future work

6.1 Conclusions

Our findings demonstrate that glycosylation induces significant
conformational stabilization in the protein complex, with a notable
difference in stability between the two domains. Specifically, the E2
domain exhibits better structural stability than E1, as reflected by more
defined residue communities and reduced flexibility. Despite this, key
intra-domain regions within both E1 and E2 maintain dynamic behavior,
suggesting localized flexibility important for function. Our RMSD
analysis showed that hydrophobic interactions become more structurally
stable upon complex formation, indicating reduced flexibility and
tighter packing, particularly in the complex state, thus playing a crucial
role in mediating the E1-E2 complex formation, supporting their
contribution to interface stability. In particular, E2 displays more tightly
interconnected residue communities in both apo and complex forms,
further emphasizing its stabilizing role. Moreover, the embedded glycan
at the domain interface enhances connectivity, likely contributing to the
overall structural integrity of the complex. The principal component
analysis reveals that the complex form exhibits reduced conformational
flexibility compared to the apo form, indicating a more stable and
compact structure upon binding. The dynamic cross-correlation analysis
further supports this, exhibiting a shift in motion patterns where the PCR
region displays reduced anti-correlation and the CD81 region transitions
from positive correlation in the apo to negative correlation in the
complex. Additionally, protein structure network analysis shows tighter
and more interconnected residue communities in the complex,
particularly around the glycan-associated region and E2, reinforcing the
role of glycan interactions in enhancing structural stability and

modulating functional dynamics.
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6.2 Future Work

In this study, we investigated the structural dynamics and interaction
landscape of a glycosylated E1-E2 protein complex, where two glycans
were binded to the E1 (at residues N196 and N305) at the interface of

the heterodimer complex.

For future studies, it is essential to examine all glycosylation sites in E1
(5) and E2 (11) to better understand their influence on complex
dynamics. Additionally, introducing site-specific glycan mutations
could help elucidate the role of individual glycans in modulating E1-E2
conformational behavior and stability. Molecular dynamics simulations
will be extended to longer timescales to capture slow conformational
changes and provide a more comprehensive understanding of glycan
flexibility and its influence on the dynamic behavior of the E1-E2
complex. Glycan-mediated shielding effects will be systematically
investigated to determine how specific glycosylation patterns obscure
antigenic epitopes and contribute to immune evasion by the virus. The
effect of glycan modifications on the receptor-binding affinity of the E1-
E2 complex will be thoroughly investigated to elucidate how specific
glycosylation patterns influence viral attachment and entry into host
cells. Then, advanced trajectory analysis tools will be employed to
monitor local and global structural rearrangements induced by glycan

dynamics.

This will allow a deeper understanding of how glycosylation influences
protein behaviour at both the structural and functional levels, potentially

informing strategies for therapeutic targeting or vaccine design.
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	1.5 E1 and E2 Glycoprotein
	The envelope glycoproteins E1 and E2 of HCV are cleaved from the viral polyprotein precursor by cellular peptidases of both host and virus within the endoplasmic reticulum. These proteins are extensively N-glycosylated and are type I transmembrane pro...
	The E1 has two key structural components: the stem region and the core domain. The stem region helps anchor the E1 protein in the viral envelope and supports the structural integrity of the heterodimer complex. The core domain has multiple functions i...
	The E2 consists of three major subdomains: the head, the stem, and the transmembrane domain (TMD). The stem and the TMD regions are involved in anchoring the virus to the host membrane. The fusion process is thus facilitated, which makes the E2 region...
	Otherwise, when the system potential is above the threshold energy, i.e., V (r) ≥ E ,   the  boost potential is set to zero and 𝑉*(𝑟) = 𝑉(𝑟) .
	4.4.1 Stability and flexibility analyses
	The structural stability of biomolecular simulation is mainly defined by its root mean square deviation (RMSD). RMSD is a statistical measure of finding similarities between two sets of values in superimposed structures using algorithms like the Kabsc...
	RMSD = ,,,𝒊=𝟏-𝑵-(,𝒓-𝒊.(𝟏)−,𝒓-𝒊.(𝟐),)-𝟐..-𝑵..                                  (4.6)
	Where, N is the number of atoms whose positions are being compared and  ,𝒓-𝒊.,𝟏.,,𝒓-𝒊.(𝟐) are the position of atom i  in each molecule.
	Another important quantity is root-mean-squared-fluctuations (RMSF) to explore residual flexibility. RMSF indicates the positional differences for the entire structure over time. RMSF (Root Mean Square Fluctuation) is a measure of the average deviati...
	, 𝝆-𝒊.=,[(,𝒙-𝒊.− ⟨,𝒙-𝒊.​,​⟩-𝟐.].                                                  (4.7)
	Here, ,𝒙-𝒊.​ represents the position of atom i at a given time, and ⟨,𝒙-𝒊.​⟩ denotes the average position of atom i over the simulation period. This calculation yields the standard deviation of the atom's position, reflecting its mobility.
	The B-factor, also known as the Debye-Waller factor or temperature factor, is derived from X-ray crystallography experiments and reflects the atomic displacement or thermal motion within the crystal structure of a protein. These values are included in...
	B = ,8-3𝑁.,𝜋-2.(RMSF,)-𝟐.                                                    (4.8)
	In protein crystallography, the B-factor (also known as the temperature factor or Debye–Waller factor) quantifies the mean square displacement of atoms from their average positions. Higher B-factor values indicate greater atomic mobility or flexibilit...
	We also measured the compactness of the simulated systems by the radius of gyration (Rg). The radius of gyration is a measure that reflects the distribution of a protein's atoms relative to its center of mass, providing an indication of the overall sp...
	Rg = ,,𝟏-𝑵..,𝒊=𝟏-𝑵-,𝒓-𝒊-𝟐..                                                 (4.9)
	Solvent Accessible surface area (SASA) was originally introduced by Lee and Richards in 1971 and is often referred to as the Lee-Richards molecular surface. Later, in 1973, Shrake and Rupley developed the widely used 'rolling ball' method to calculate...
	∇ . [ε(r)∇φ(r)] – k′ sinh[φ(r)] = -4πρ(r)                                  (4.10)
	4.4.2 Dynamic cross-correlation matrix (DCCM)
	The degree of correlation within a system can be assessed by examining the cross-correlation coefficients between pairs of atoms. This information is typically presented graphically in a matrix format known as the dynamical cross-correlation matrix (D...
	In this method, ri(t) represents the position of atom i over time t, and Δri(t) shows how much the atom’s position changes compared to its average position. The DCCM produces an N×N heatmap, where N is the number of atoms (usually alpha carbons), and ...
	4.4.3 Principal component analysis (PCA)
	4.4.4 Hydrogen Bond analysis
	4.4.6 Protein structure network (PSN) analysis
	For visualization of protein structures beyond just their secondary structure and fold, we can use network representations to highlight interactions between residues. These networks provide valuable insights into the structure-function relationship. I...
	5.4 Solvent accessibility and protein compactness
	Figure 5.4 illustrates comparative analyses of the radius of gyration (RoG) and solvent-accessible surface area (SASA) between the apo and complex systems.
	The panel A shows the RoG distributions, where the complex (brown line) exhibits a broader and more variable profile, suggesting a slightly more compact and structurally diverse arrangement compared to the apo system (blue line), which shows a sharp p...
	The panel B displays SASA distributions, where the complex form has lower solvent exposure than the apo form, indicating reduced surface accessibility upon complex formation. The apo form (blue) shows a broader distribution (650–900 nm²), while the co...
	RoG: Radius of gyration; SASA: Solvent accessible surface area
	Figure 5.4: (A) Probability density distribution of the radius of gyration (RoG) for the Apo (blue) and Complex (brown) forms of the protein. (B) Probability density distribution of the solvent accessible surface area (SASA) for the Apo and Complex sy...
	5.5 Conformational Stability of E1 and E2
	Separate plots were generated for E1 and E2 for both apo and complex systems, displaying the RMSD probability distribution in Figure 5.5.
	For E1 (Panel A), the apo (green) system exhibits a broader distribution with multiple peaks across a wider RMSD range (~3–9 Å), suggesting higher conformational flexibility. In contrast, the complex form shows narrower and more defined peaks clustere...
	For E2 in the apo form displays broader distribution with peaks starting at around 2.5 Å and extending up to ~5.8 Å, indicating higher flexibility and structural diversity, while the complex form has sharper and more compact peaks between ~2–4.5 Å, in...
	It can be interpreted that the E1 protein becomes more structurally stable (less flexible) but shows a greater conformational shift when part of the complex while, the E2 protein becomes more conformationally stable in the complex while maintaining a ...
	Figure 5.5: (A) Probability density plot of backbone RMSD of E1 for Apo (green) and Complex (orange) systems across the simulation timeframe. (B) Probability density plot of backbone RMSD of E2 for Apo and Complex systems across the simulation timefra...
	5.6 Residual Flexibility Analysis of E1 and E2 glycoproteins
	RMSF: Root-mean-squared fluctuation
	Figure 5.6: RMSF profiles of E1 and E2 proteins in apo (red) and complex (blue) systems. (A) Residue-wise fluctuations of E1. (B) Residue-wise fluctuations of E2.
	5.7 Analysis of Intra Domain Regions of E1
	5.7.1 PCR Region
	The PCR region (residues 249 to 299) located in the core of E1 plays an important role in the fusion process of viral membrane with endosomal membrane to release the RNA genome into the host cell. Additionally, it may contribute to the assembly and st...
	Figure 5.7: (A) Probability distribution plot of RMSD for the PCR region in E1 in apo (green) and complex (orange) systems. (B)  Schematic representation highlighting the PCR within the E1 domain organization, including the N-terminal domain (NTD), C-...
	5.8 Analysis of Intra Domain Regions of E2
	5.8.1 CD81 binding site
	The CD81 binding site (amino acids 518 to 534) located in the head of E2 is essential for binding to the CD81 receptor on the host cell membrane to initiate the infection process.
	The RMSD (Root Mean Square Deviation) probability density plot for the E2-CD81 region in Figure 5.8 illustrates the structural flexibility of this domain in the apo system (green) compared to the glycan-bound complex system (orange).
	In the apo state, this region shows a sharp, high-intensity peak at low RMSD values (~0.8 Å), indicating high structural stability and minimal conformational deviation, with a tail extending upto ~5 Å and a smaller secondary peak at around 3.5 Å refle...
	However, upon glycan binding, the RMSD distribution shifts, and two broader peaks emerge at higher RMSD values (~1.8 Å and ~4.5 Å), reflecting increased conformational variability. The shift in RMSD suggests that glycan interaction promotes dynamic st...
	Figure 5.8: (A) RMSD probability density plot for the CD81 binding region of E2 in apo (green) and complex (orange) systems. (B) Schematic representation of the E2 subdomains highlighting the CD81 binding site [62].
	5.8.2 Variable Regions – VR2, VR3
	The Variable regions (VR2, residues 459 to 483; VR3, residues 569 to 579) located in the head of E2 allows the virus to escape host's immune system recognition and aids in immune evasion.
	Figure 5.9 illustrates how glycan binding influences the conformational flexibility of the E2 glycoprotein's variable regions VR2 and VR3 in hepatitis C virus. Probability density plots of RMSD values are shown for each region in the apo (green) and g...
	The RMSD probability density plot for VR2 (panel A) indicates that the glycan-bound distribution shows two sharp peaks at lower RMSD values (~0.9 Å and ~1.7 Å), indicating stable conformations, whereas the apo state (green) exhibits a broader distribu...
	The RMSD probability density plot for VR3 (panel B) shows that glycan binding reduces the flexibility of this region. In the apo state (green), VR3 displays a broader distribution with a peak around 1.8 Å, indicating higher structural variability. In ...
	Figure 5.9: (A) Probability density plot of RMSD distribution of E2 variable region VR2 in apo (green) and glycan-bound complex (orange). (B) Probability density plot of RMSD distribution of VR3 in apo and glycan-bound states. (C) Schematic representa...
	5.9 E1–E2 binding interaction
	Earlier structural studies, including cryo-EM, have captured E1–E2 in static conformations, but molecular simulations reveal their dynamic nature and offer a better understanding of how the complex behaves in different states. Figure 5.10 illustrates ...
	The panel A shows the probability density plot of the inter-residue distance between Glu236 (E2) and Leu307 (E1), revealing a rightward shift in the distance distribution upon glycan binding. Specifically, the average distance increases from approxima...
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