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Abstract 

The Hepatitis C virus is a leading contributor to various liver related 

diseases such as cirrhosis and liver cancer. It creates considerable 

challenges for treatment due to its extensive genetic variability. As a 

result, the virus is able to mutate rapidly and evade the immune system 

of the host's body, complicating the formulation of effective vaccines. 

The E1-E2 heterodimer complex is a potential target for therapeutic 

development as they contain several critical regions that are essential for 

the viral infection process. However, the dynamic behaviour of the 

glycoprotein complex is not yet completely understood. In the present 

study titled as the “Structural Insights into HCV Glycoprotein E1-E2 

Interactions: A Biomolecular Modelling Approach”, the main 

objective is to better understand how the hepatitis C virus (HCV) 

envelope glycoproteins E1 and E2 interact with each other at the 

molecular level using advanced biomolecular modeling techniques. In 

our research, we explored the dynamic behaviour of these two 

glycoproteins along with their critical regions. Here, we investigated the 

structural dynamics of E1 and E2 through molecular simulations of two 

distinct systems: an apo form consisting solely of the proteins, and a 

complex form containing the proteins along with two N-linked glycans 

positioned at their interface. These specific glycans were included based 

on their known roles in promoting glycoprotein binding, enhancing 

structural stability, and supporting proper folding. Gaussian accelerated 

molecular dynamics (GaMD) was employed for 1 microsecond in 

triplicate to observe the conformational variation in both apo and 

complex structures. By comparing the simulation outcomes of both 

systems, we aim to uncover the structural and dynamic changes induced 

by the presence of these glycans, providing deeper insight into their role 

in stabilizing the E1-E2 interaction.  
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CHAPTER 1 

1. Hepatitis C Virus 

1.1 Introduction and background 

Hepatitis is the inflammatory condition of liver, can be caused due to a 

number of factors that includes viruses, genetic disorders, alcohol, drug 

and chemicals [1]. Hepatitis is primarily caused by viral infections, with 

several distinct viruses and most common etiological agents including 

hepatitis A, B, C, D, and E. In this study, we will focus on hepatitis C, 

which is a major viral causes of liver inflammation. Hepatitis C is 

mainly caused by the hepatitis C virus (HCV), and our goal is to explore 

the glycoprotein E1-E2 heterodimer complex that is present on the 

surface envelope of the virus. HCV exhibits substantial genetic 

variability, currently classified into eight major genotypes and 86 

distinct subtypes. 

1.1.1 Prevalence of HCV in India and the Global 

Context 

Globally, Hepatitis C virus remains a significant public health concern. 

The World Health Organization (WHO), gives an estimation of around 

50 million people worldwide with chronic HCV infection. The global 

prevalence is around 2.5% of the population [2]. The Eastern 

Mediterranean Region has the highest burden of chronic Hepatitis C, 

with 12 million cases. Hepatitis C leads to around 399,000 deaths 

annually, primarily due to complications such as cirrhosis and liver 

cancer (hepatocellular carcinoma) [3]. The other regions like South-

East Asia and Europe both have 9 million each, Africa has 8 million, 

and America has 5 million cases. Egypt is commended by WHO for 

becoming the first country to achieve "gold tier" status in eliminating 

hepatitis C and meeting the criteria to lower new infections and deaths, 

that can eradicate the epidemic [4]. 
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In India, the prevalence of hepatitis C has been estimated around 3.23% 

[5]. However, the prevalence of this dreadful disease varies across India. 

The higher rates are observed in the north-eastern region, Punjab, and 

tribal populations, and lower rates are found in eastern and western parts 

of the country. Following China, India has the second-highest number 

of hepatitis B and C cases according to the WHO's 2024 Global Hepatitis 

Report [6]. In India, genotype 3 is the most prevalent, accounting for 

approximately 63.85% of cases, with genotype 1 being the second most 

common at 25.72% [7]. 

1.2 Comprehensive Overview of HCV 

Hepatitis C virus (HCV) is a small positive single stranded RNA virus 

that specifically affects the liver, and cause liver damage that can 

progress to cirrhosis and potentially lead to the development of 

hepatocellular carcinoma. 

Figure 1.1 shows HCV is a spherical enveloped virus (55-65 nm in 

size), a member of Hepacivirus genus classified within the Flaviviridae 

family, with a lipid bilayer derived from the host cell membrane [8]. 

 It contains E1 and E2 glycoproteins that are crucial for attachment and 

fusion with the host cell membrane. Beneath the envelope, the virus has 

a nucleocapsid composed of the core protein, which forms a protective 

shell around the viral RNA genome, possessing a 9.6 kb single-stranded 

positive sense RNA genome.  

 

Figure 1.1: Morphological structure of Hepatitis C virus [9]. 
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This genome in Figure 1.2 contains two most conserved regions - 5' 

UTR and 3' UTR (Untranslated Region). The 5′ UTR is of 

approximately 341 nucleotides and the 3′ UTR ranges from about 200 

to 235 nucleotides in length. The 5' UTR contains an IRES (Internal 

Ribosome Entry Site) that allows the virus to translate its RNA without 

a 5' cap. It is useful for genotype identification. The 3' UTR is involved 

in packaging the viral genome into new infectious particles, a process 

known as encapsidation. Additionally, the 3′ UTR influences the 

stability of viral RNA and modulates its translation efficiency. The 

genome also has a single long open reading frame encodes a polyprotein 

of 3,010 amino acids which is cleaved, either during or after translation, 

into structural proteins (core, E1, and E2) and non-structural proteins 

(p7, NS2, NS3, NS4A, NS4B, NS5A, and NS5B). The core forms the 

capsid protein of the virus. E1 facilitates membrane fusion and E2 is a 

major receptor binding protein which interacts with host cell receptor 

during entry into cell. p7 is an ion channel protein and plays a vital role 

in the assembly, envelopment and secretion of viral particles.NS2 is 

important for assembly of virion. NS3 contains protease and helicase. 

NS4A is a cofactor for NS3 protease activity. NS4B induces the 

formation of membranous web which is a site for viral replication. 

NS5A is a phosphoprotein. NS5B is an RNA dependent RNA 

polymerase which replicates the  RNA [10]. 

      

 

 Figure 1.2: Single strand RNA (+) genome (9.6 kb) of HCV [11].  

https://www.sciencedirect.com/topics/immunology-and-microbiology/open-reading-frame
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Table 1.1: Constituent proteins of HCV with molecular weight and 

amino acid residues. 

Protein 

 

No. of Amino acids Molecular weight 

(kDa) 

Core 177 21 

E1 192 35 

E2 363 70 

p7 63 7 

NS2 217 21 

NS3 631 70 

NS4A 54 4 

NS4B 261 27 

NS5A 448 56 

NS5B 591 66 

  

1.3 Life Cycle of Hepatitis C Virus (HCV) 

The Hepatitis C Virus (HCV) life cycle is composed of several 

interconnected processes that are essential for viral infection, 

replication, and propagation within the host, as shown below in Figure 

1.3. These processes include: 

Attachment and Entry 

HCV initiates infection by binding to the basolateral surface of 

hepatocytes. The virus interacts with several host cell receptors, 

including CD81, Claudin-1 (CLDN1), Occludin (OCLN), and scavenger 

receptor class B type I (SR-BI). This multistep attachment process 

facilitates the virus's internalization via clathrin-mediated endocytosis. 

Upon acidification within the endosome, fusion between the viral 

envelope and the endosomal membrane occurs, leading to the release of 

the viral genome into the cytoplasm.[12] 
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Uncoating and Translation 

The released positive-sense single-stranded RNA genome serves as a 

template for translation. The viral RNA contains an internal ribosome 

entry site (IRES), enabling cap-independent translation of the viral 

polyprotein [13]. This polyprotein undergoes cleavage by both host and 

viral proteases, resulting in the formation of 10 structural and non-

structural proteins essential for viral replication and assembly. 

Replication 

Non-structural proteins (NSP) orchestrate the replication of the viral 

genome. These proteins recruit host cell membranes from the 

endoplasmic reticulum, forming a specialized structure known as the 

membranous web. Within this environment, NS5B (RNA-dependent 

RNA polymerase) synthesizes negative-strand RNA templates from the 

positive-strand genome, which subsequently serve as templates for the 

production of new positive-strand genomic RNA. 

Assembly and Release 

Newly synthesized viral RNA genomes are encapsidated into 

nucleocapsids near lipid droplets. These nucleocapsids associate with 

the endoplasmic reticulum, where they acquire their envelope through 

the secretory pathway and released from the hepatocyte, glycoproteins, 

E1 and E2. The mature virions are then transported completing the viral 

life cycle. 
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Figure 1.3: Infection Process and Replication Mechanism of HCV [14]. 

1.4 HCV infection 

Acute infection occurs within six months of exposure, typically 2 to 24 

weeks after infection. They have symptoms like jaundice, nausea, and 

abdominal pain in some patients. In most cases, many remain 

asymptomatic whereas people having symptoms usually recover in 2 to 

12 weeks. Acute infection frequently develops into chronic infection. 

Chronic infection is a long-term infection that follows the acute phase, 

with symptoms such as jaundice, easy bruising and bleeding, and dark-

colored urine. Over time, chronic HCV can result in liver damage, 

cirrhosis, liver failure, and may even progress to liver cancer [15]. 

The progression from a healthy liver to cirrhosis and ultimately to 

hepatocellular carcinoma (HCC) given in Figure 1.4. 
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Figure 1.4: Course of illness with Hepatitis C [16]. 

1.4.1 HCV Transmission and Diagnosis 

HCV is primarily transmitted through contact with infectious blood and 

body fluids. The most common routes include sharing needles, unsafe 

medical practices, needle stick injury, through improper sterilization 

techniques like tattooing dyes, piercing and transfusions with 

contaminated blood and organ transplantation. It can also be transmitted 

from mother to child during childbirth and through sexual contact which 

is less frequent. HCV diagnosis includes the antibody test to detect 

earlier encounter, the HCV RNA test to measure the amount of viral 

genetic material in acute infection, and HCV genotype test to identify 

the specific strain of the virus. A liver biopsy may be used to assess liver 

damage from chronic infection [17]. 

In many cases, the hepatitis C virus is naturally eliminated by the body's 

immune system, particularly through robust innate and adaptive immune 

responses. However, in individuals with compromised immune systems, 

https://www.sciencedirect.com/topics/pharmacology-toxicology-and-pharmaceutical-science/needlestick-injury
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the production of antibodies against HCV may be insufficient or 

delayed. This can result in negative outcomes on both anti-HCV 

antibody tests and HCV RNA tests conducted via polymerase chain 

reaction (PCR), potentially leading to undetected infections . 

The main treatment for Hepatitis C is direct-acting antivirals (DAAs), 

which are administered orally for 8-12 weeks, give a cure rate of more 

than 95% and have few side effects regardless of HCV genotype [18]. 

These are medications that directly inhibit the replication of the hepatitis 

C virus (HCV) by targeting specific proteins essential for its life cycle. 

DAAs of generic versions have made treatment more affordable. 

Commonly used DAA combinations include: 

 Sofosbuvir/Velpatasvir (Epclusa) 

 Sofosbuvir/Ledipasvir (Harvoni) 

 Glecaprevir/Pibrentasvir (Mavyret) 

 Elbasvir/Grazoprevir (Zepatier) 

 Sofosbuvir/velpatasvir/voxilaprevir (Vosevi) 

 Although no vaccine is available yet, many are in the development 

process. The main challenges in creating a vaccine for hepatitis include 

HCV's genetic diversity, the tendency to mutate its envelope protein, 

and its ability to avoid the immune system.             

1.5 E1 and E2 Glycoprotein 

The envelope glycoproteins E1 and E2 of HCV are cleaved from the 

viral polyprotein precursor by cellular peptidases of both host and virus 

within the endoplasmic reticulum. These proteins are extensively N-

glycosylated and are type I transmembrane proteins. They form a stable 

and noncovalent heterodimeric complex with their C-terminal 

transmembrane domains, which is important for viral entry, virulence, 

and evasion from the host immune response. E1 helps the virus to attach 

to the cell membrane whereas E2 interacts with cellular receptors [19]. 
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The E1 has two key structural components: the stem region and the core 

domain. The stem region helps anchor the E1 protein in the viral 

envelope and supports the structural integrity of the heterodimer 

complex. The core domain has multiple functions in viral entry, 

assembly of virus and fusion of its membrane with the host cell. The core 

protein of E1 contains several key regions: the N-terminal domain 

(NTD), the C-terminal loop Region (CTR), and the PCR [putative fusion 

peptide (pFP) containing region]. The NTD region is involved in proper 

folding of E1 and its interaction with E2. The PCR plays an important 

role in the fusion of the viral envelope and membrane of the endosome 

during virus entry into the host cell. The CTR connects the PCR with the 

stem region. 

The E2 consists of three major subdomains: the head, the stem, and the 

transmembrane domain (TMD). The stem and the TMD regions are 

involved in anchoring the virus to the host membrane. The fusion process 

is thus facilitated, which makes the E2 region important for viral 

infectivity. The stem region connects the base with the TMD region and 

plays a critical role in membrane fusion and viral entry into host cell. 

The E2 head domain contains a central β-sandwich core which forms 

the backbone of the head domain, CD81 binding site required for 

binding to the CD81 receptor on the host cell membrane and initiates the 

infection process, hypervariable regions (HVR1) help virus to evade the 

immune system of host, Front and back layers contribute to the overall 

stability and structure of head region, Variable Regions –VR2 and VR3 

whose variability allow the virus to escape recognition by the host's 

immune system, and base region which is an extended loop interrupted 

by an antiparallel β-sheet in the E2 head. Figure 1.5 presents the key 

intradomain regions of the HCV glycoproteins E1 and E2, as visualized 

using ChimeraX [20]. 
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Figure 1.5: Intra-domain regions of E1 and E2 in HCV. 

1.6 Glycans 

Glycans are chains of sugar molecules that are covalently attached to 

biomolecules such as proteins (forming glycoproteins) or lipids 

(forming glycolipids). The Golgi apparatus is the main site within the 

cell where glycoproteins and glycolipids are synthesized. 

Glycoproteins are proteins with sugar chains, called glycans, covalently 

attached to their amino acids through a process known as glycosylation. 

There are two main types: N-linked (where glycans attach to asparagine 

through the nitrogen atom) and O-linked (where they attach to serine or 

threonine via the oxygen atom). These glycans can be linked to a single 

site or multiple sites on the protein. These glycoproteins play vital roles 

in many cellular functions, such as maintaining cell structure, 

facilitating communication between cells, triggering immune responses, 

and regulating hormones. In viruses, glycoproteins are crucial for the 

virus to attach to and enter host cells, making them important targets in 

understanding infection mechanisms. Glycoproteins are more 

hydrophilic than regular proteins because of the sugar -OH groups, so 

they are more drawn towards water [21]. 

E1 Stem 

E2 Base 

E2 Stem 

E1 Core 

E2 Head 
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Glycolipids are lipids with attached sugar chains, mostly found on the 

outer surface of cell membranes. They help with cell recognition, 

signaling, membrane stability, and immune responses. Glycolipids 

consist of polar oligosaccharide chains covalently linked to hydrophobic 

lipid components via glycosidic bonds, rendering them amphiphilic in 

nature.[22] 

 

Figure 1.6: Diverse glycan structures [23]. 

1.6.1 Physiological functions of glycans 

Glycans play a wide array of critical roles in the human body, 

encompassing structural support, metabolic activity, and molecular 

recognition. These complex carbohydrate structures are essential to 

various physiological processes, including tissue organization, immune 

defense, and cellular communication. Their functions can be broadly 

categorized into three main areas: (1) Structural support- they contribute 

to the formation of cell walls and extracellular matrices, and assist in 

protein folding and stability, affecting protein function and interactions. 

(2) Energy metabolism- involved in energy storage and supply, fueling 

various metabolic processes, and (3) Information Carriers- function as 

molecular signals, conveying information through their interactions with 

glycan-binding proteins (GBPs). The GBPs can be subdivided into two 

groups: (i) Intrinsic GBPs, which recognize glycans within the same 

organism, mediating processes such as cell–cell communication, 

trafficking, and immune signaling, (ii) Extrinsic GBPs- bind to glycans 
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from different organisms, playing roles in host-pathogen interactions, 

including microbial adhesion, invasion, and immune evasion. 

Pathogens often exploit glycan recognition mechanisms for host 

attachment and invasion. Some engage in molecular mimicry by 

displaying host-like glycan structures to evade immune detection, while 

others actively modulate host immunity using glycan-based strategies. 

 

 

Figure 1.7: Glycan-Driven Biological Interactions [24].  

 

Cell surface and secreted proteins are synthesized within the lumen of 

the ER, where they enter the secretory pathway. During this process, 

many proteins undergo co-translational or post-translational 

glycosylation, which begins in the ER. From there, the partially 

glycosylated proteins move to the Golgi apparatus, where their sugar 

structures are further modified and extended The coordinated activity of 

glycosidases and glycosyltransferases help to generate diverse and 

complex glycan patterns. Once fully glycosylated, the proteins are 

sorted and directed to their appropriate cellular compartments or 
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secreted to the extracellular environment, where they perform a wide 

range of structural and signaling functions, can be seen in Figure 1.8. 

Glycans and glycoproteins at the cell surface play crucial roles in a wide 

range of cellular activities. They act as receptors for signals such as 

epidermal growth factor EGF and TGF-β, initiating key signaling 

pathways that regulate cellular responses. Glycans also mediate 

communication between cells and their surrounding environment, 

facilitating signal exchange and coordination. Through their influence 

on integrin function, glycosylation affects cell attachment and motility, 

which are vital for migration and tissue remodeling. Also, glycoproteins 

contribute to cell-cell adhesion, allowing cells to recognize and adhere 

to one another for tissue integrity and immune response coordination. 

Some enzymes are glycosylated as well, and this modification can 

impact their stability, activity, and localization. Glycan structures 

further contribute to cell immunogenicity by modulating how immune 

cells recognize self and non-self, either triggering or evading immune 

responses. Moreover, external agents such as viruses, bacteria, and 

toxins often exploit host glycan structures to enter into cells or interfere 

with cellular functions, using these sugars as specific recognition 

targets.                  

 

Figure 1.8: Roles of glycans in cellular mechanisms [25]. 
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1.6.2 Glycan-Protein interaction 

Protein–glycan interactions are essential for various biological 

processes such as cellular recognition, immune response, and pathogen 

adhesion. These interactions are mediated by glycan-binding proteins 

such as lectins and antibodies, which engage specific carbohydrate 

structures through non-covalent forces like hydrogen bonds, vander 

Waals interactions, CH–π stacking, and water-mediated contacts. 

Due to the inherently weak affinity of individual glycan–protein 

interactions (dissociation constants in the μM–mM range), multivalency 

is often employed to enhance binding strength and specificity. Glycans 

exhibit high structural flexibility; however, upon binding, this flexibility 

is reduced, resulting in an unfavourable entropy change. Additionally, 

the hydrophilic nature of carbohydrates results in an enthalpic cost due 

to desolvation. As a result, glycan–protein binding is generally 

characterized by enthalpy–entropy compensation [26]. 

In N-glycosylated proteins, glycan–protein interactions often act 

synergistically with protein–protein interactions, further increasing 

binding affinity and biological specificity. 

1.6.3 E1-E2 Glycoprotein Complex with glycans  

Glycans were attached to the E1–E2 glycoprotein complex at residue 

positions 196 and 305 of the E1 subunit using the GLYCAM web 

server, which allows for the automated modelling of carbohydrate 

structures and their integration into protein systems in Figure 1.9. These 

specific glycosylation sites were chosen based on their proximity to the 

E1–E2 interface and their potential functional relevance in modulating 

inter-subunit interactions. Glycosylation at N196 and N305 has been 

shown to be essential for the formation of the E1–E2 heterodimer and 

for the infectivity of the hepatitis C virus (HCV). Specifically, 

glycosylation at N196 is critical for E1 folding and its incorporation into 

HCV particles, while glycosylation at N305 influences the formation of 
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disulfide bonds and modulates the immunogenicity of the E1 protein.  

The modified structure is illustrated in the figure below, where the 

glycans are attached at the heterodimer interface. To investigate the 

conformational dynamics and evaluate the influence of glycosylation on 

intermolecular interactions, we performed GaMD simulations for 1 

microsecond in three independent replicates. This enhanced sampling 

technique was selected for its ability to capture rare conformational 

transitions and to provide a more comprehensive view of the protein's 

dynamic landscape compared to classical MD. The simulations aimed 

to explore how glycosylation influences the conformational flexibility, 

stability, and interaction patterns of the E1–E2 complex, particularly at 

the glycan-modified interface. The resulting trajectories were subjected 

to extensive structural and energetic analyses to assess the role of 

glycosylation in modulating protein–protein interactions and potential 

implications for viral fusion or immune evasion. 

     

 

Figure 1.9: E1-E2 heterodimer complex following glycosylation 

 

The glycan attached at the interface of the complex is shown below. This 

glycan is Man9GlcNAc2 which comprises of 9 mannose (Man)  sugar 

units attached to the core of 2 molecules of N-acetyl glucosamine 

(GlcNAc) residues and a terminal hydroxyl group (OH) forming a 

E1 E2 

Glycans 
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highly branched oligosaccharide. High-mannose glycans such as 

Man₉GlcNAc₂ are critical for proper protein folding, ER-associated 

degradation, and quality control through interactions with lectin 

chaperones. The mannose-rich branches serve as recognition sites for 

enzymes and lectins, aiding in protein trafficking and immune signaling. 

One of the glycans is integrated within the E1E2 heterodimer, 

potentially contributing to the stability or conformation of the complex. 

In contrast, another glycan is positioned away from the interface of the 

heterodimer. 

           

 

Figure 1.10: Structure of a high-mannose N-glycan (Man₉GlcNAc₂).  

 

Figure 1.10 is a representative structure of a highly branched mannose 

rich N-linked glycan synthesized in the endoplasmic reticulum, playing 

a crucial role in protein folding, quality control, and trafficking during 

glycoprotein maturation.  
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CHAPTER 2 

2. Theoretical Framework 

2.1 MD Simulations 

Molecular Dynamics (MD) is a powerful computer simulation 

technique based on Newton's laws of motion and interatomic potentials, 

widely used to study biological molecules such as proteins and nucleic 

acids. It allows us to observe how atoms and molecules move and 

interact over time, offering a dynamic view of molecular systems. By 

simulating the physical movements of these atoms, MD helps us 

understand how the structure of biomolecules changes, providing 

atomic-level insights into their behaviour. They enable the investigation 

of processes such as protein folding and unfolding, conformational 

transitions, stability assessments, molecular interactions, and 

recognition mechanisms. 

In MD simulations, the behaviour of a system of particles (such as atoms 

or molecules) is modelled over time by numerically solving Newton's 

equations of motion. This approach allows for the simulation of atomic 

and molecular interactions over time, providing insights into the 

system's dynamic behaviour. 
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Figure 2.1: Schematic representation of the molecular dynamics 

simulation workflow. The process is illustrated in three main stages: (i) 

system setup involving protein-ligand complex construction, (ii) 

execution of molecular dynamics simulations, and (iii) post-simulation 

trajectory analysis 

The fundamental equation used is Newton's second law: 

  mi  
  

𝑑2𝑟

𝑑𝑡2 = Fi =  - ∇ri U ( r1 , r2 ,…….. rN )                  (2.1) 

Here, mi is the mass of particle i, ri is its position vector, Fi  is the force 

acting on it, and U is the potential energy function dependent on the 

positions of all N particles in the system. 

In recent years, progress in biological and medical sciences has 

increasingly depended on modeling and simulation, enabled by 

advancements in computing technology. This integration allows for 

accurate, tractable representations of complex biological systems across 

multiple scales, enhancing our understanding of their functions. While 

simulations cannot replace experiments, they provide valuable insights 

that aid in interpreting results and optimizing experimental design. 
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2.2 Force Fields 

In molecular dynamics simulations, a force field is a collection of 

mathematical functions and parameters that define the potential energy 

of a molecular system based on atomic positions. These functions model 

both bonded interactions (such as bond stretching, angle bending, and 

torsional rotations) and non-bonded interactions (including van der 

Waals forces and electrostatic interactions). Force fields are essential for 

simulating the behaviour of molecules, particularly in complex 

biological systems. 

Molecular modeling force fields are typically characterized by four main 

components representing both inter- and intramolecular forces. In 

molecular mechanics, specific functional forms are employed to model 

energy variations due to bond rotations and interactions between non-

bonded atoms. The total potential energy of a macromolecular system, 

denoted as V(r) Total, is generally partitioned into internal interactions 

(e.g., bonded terms) and external interactions (e.g., non-bonded terms), 

shown in Figure 12. 

     

Figure 2.2: Components Breakdown of potential energy in force field-

based simulations [27].  
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In molecular mechanics, the potential energy function models the total 

energy of a molecular system by using a a bonded term ( Vbonded ) for 

covalent interactions such as bond stretching, angle bending, and 

torsional rotations, and a non-bonded term (Vnon−bonded) for long ranged 

electrostatic and short ranged VanderWaals forces. 

Vtotal = Vbonded + Vnon−bonded                                             (2.2)                                                                 

Vbonded = Vbond + Vangle + Vdihedral                                                   (2.3) 

Vnon−bonded = Velectrostatic + Vvan der Waals                                          (2.4) 

Due to variations in the bonding patterns and primary structures of 

proteins and carbohydrates, different force fields are utilized for 

accurate molecular dynamics simulations. These specialized force fields 

are incorporated into simulation packages such as AMBER (Assisted 

Model Building and Energy Refinement) [28], CHARMM (Chemistry 

at HARvard Macromolecular Mechanics) [29], OPLS (Optimized 

Potentials for Liquid Simulations) [30], and GROMOS (GROningen 

MOlecular Simulation) [31].  

2.2.1 Protein force field 

The most widely used families of protein force fields include AMBER, 

CHARMM, and OPLS. The AMBER (Assisted Model Building with 

Energy Refinement) software package includes a variety of force fields 

for biomolecular modelling, particularly for proteins. Force fields such 

as ff14SB [32], ff19SB [33], and CHARMM36m [34] are commonly 

used for modelling protein systems. Among all biological 

macromolecules, proteins are the most extensively studied, and 

AMBER's force fields are widely used in protein simulations. However, 

a key limitation of AMBER force fields is the use of fixed atomic 

charges, which can reduce accuracy compared to polarizable force fields 

that better account for electronic redistribution. The ff19SB force field 

is the most recent development in AMBER’s protein force field and is 

optimized for use with the high-accuracy OPC water model, enhancing 
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the reliability of protein simulations. Of these, ff14SB is one of the most 

widely applied due to its reliability and efficiency. In our work, we 

employed the ff14SB force field for protein modelling and updated 

generalized Amber force field (GAFF2) [35] for small molecules or 

inhibitors. The ff14SB force field was designed to be used in 

combination with the TIP3P water model. Its backbone parameters were 

derived primarily from simulations of alanine and glycine residues.  

2.2.2 Carbohydrate force field 

Carbohydrate-specific force fields play a crucial role in accurately 

simulating the structure and motion of saccharides, which are now 

widely recognized for their involvement in processes such as cellular 

communication and pathogen recognition. However, building accurate 

carbohydrate force fields is particularly difficult due to the diverse and 

flexible nature of sugar structures and the limited experimental data 

available for validating or refining force field parameters. Currently, 

four major carbohydrate-specific force fields are commonly used: 

CHARMM36, GROMOS, GLYCAM family, and OPLS-AA [36]. In 

our study, we employed force fields from the GLYCAM family. The 

GLYCAM_06 [37] series represents one of the most widely utilized 

families of carbohydrate force fields. This series includes several 

versions, such as GLYCAM_06a, 06b, 06e, 06EP, and 06j, among 

others. Of these, GLYCAM_06j [38] is the most recent and commonly 

adopted variant, offering improved accuracy for modelling a wide range 

of glycan structures. In our study, we have used GLYCAM_06j-1 force 

field for the glycans. 

2.3 Integration Algorithms in MD  

These equations predict how atoms move over time by updating their 

positions and velocities, which are recorded in trajectory files. Since the 

atomic positions depend on potential energy, and this function lacks an 

exact solution for complex systems, numerical methods are used. 

Common integration algorithms include the Verlet [39], Velocity Verlet,  
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Leapfrog [40] and Beeman's algorithm. [41]. These methods apply 

Taylor series expansions to estimate atomic positions, velocities, and 

accelerations. Each has its own strengths and limitations and is selected 

based on the specific requirements of the simulation. 

2.3.1 Verlet algorithm 

The Verlet algorithm is a widely used numerical method for integrating 

Newton’s equations of motion in molecular dynamics simulations. It 

predicts the new positions of particles in a molecular system by utilizing 

their positions at the current and previous time steps, along with the 

accelerations computed from the forces acting at the current step. As a 

two-step integration method, the algorithm relies on positional data from 

two distinct time points, making it both computationally efficient and 

numerically stable for molecular dynamics simulations over long 

simulation times. 

It is simple, efficient and requires minimal memory (only current and 

previous positions). However, since it does not explicitly compute 

velocities and it is less accurate for systems requiring precise velocity-

dependent properties. 

   v(t)  =  
r(t + Δt) − r(t − Δt)

2Δt                                   (2.5) 

where, r is the position at time t + ∆t and t − ∆t  

2.3.2 Velocity Verlet algorithm 

The Velocity Verlet algorithm is an enhancement of the basic Verlet 

integration method, where the velocity is calculated as step n +
1

2
  and 

then the coordinates at step n + 1. This algorithm calculates the positions, 

velocities and the acceleration simultaneously at time (t + ∆t). 
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 r(t + Δt) = r(t) + ∆t v∆(t) + 
1

2
 ∆t2 a(t)                                          (2.6) 

 v(t + Δt) = v(t) + 
1

2
 ∆t[a(t) + a(t + ∆t)]                                        (2.7) 

2.3.3. Leapfrog algorithm 

The Leapfrog algorithm is a numerical integration method used to solve 

Newton's equations of motion, particularly in molecular dynamics 

simulations which is a modification of the Verlet algorithm where the 

velocities are calculated for the time t + 
1

2
 ∆t, then positions are estimated 

at the t + ∆t. This interleaving means that velocities "leap over" 

positions and vice versa, hence the name "Leapfrog". It provides explicit 

velocity information without the need for additional position data, 

making it advantageous over the basic Verlet method in many 

simulation scenarios. 

 r(t + Δt) = r(t) + v(t + 
1

2
Δt)Δt                                                      (2.8)   

 v (t + 
1

2
  Δt) = v (t − 

1

2
 Δt) + a(t)Δt                                             (2.9) 

2.4 Simulation time-step 

In molecular dynamics (MD) simulations, selecting an appropriate 

timestep (Δt) is crucial for ensuring both the accuracy and stability of 

the simulation. The timestep determines how frequently the simulation 

updates the positions and velocities of atoms, and it must be small 

enough to resolve the fastest motions within the system. In biological 

macromolecules, these rapid motions are typically associated with bond 

vibrations involving hydrogen atoms, which occur on the femtosecond 

timescale (~10⁻¹³ seconds). 
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To achieve stable integration of the equations of motion and accurate 

energy conservation, the timestep is generally chosen to be significantly 

shorter than the fastest motion in the system. However, using extremely 

small timesteps can substantially increase computational demands. To 

overcome this limitation, algorithms such as SHAKE [42] and LINCS 

[43] are employed to constrain the motion of bonds involving hydrogen 

atoms. By eliminating the need to explicitly simulate these high-

frequency vibrations, these algorithms permit the use of larger 

timesteps, typically in the range of 1–2 femtoseconds (fs), without 

compromising the accuracy or stability of the simulation which is widely 

accepted standard in all-atom simulations of biological macromolecules. 

2.5 Periodic boundary conditions 

Periodic boundary conditions (PBC) are widely used in molecular 

dynamics simulations for approximating the bulk behaviour of a system 

while minimizing edge effects that arise due to the finite size of the 

simulation box. In real biological systems, biomolecules are surrounded 

by a vast number of solvent molecules but simulating such an 

environment with infinite solvent molecules is computationally 

infeasible. PBC helps overcome this limitation by replicating the 

simulation box in all three Cartesian dimensions, effectively creating the 

illusion of an infinite system. 

With PBC, when a particle moves out of the primary simulation box, its 

image simultaneously re-enters from the opposite side, preserving the 

overall number of particles and maintaining equilibrium. This 

continuous exchange prevents the occurrence of surface effects and 

ensures that all particles, including those near the edges, experience 

forces similar to those in the system’s interior. 

To reduce computational load, a cutoff radius (rcut) is applied to limit 

the calculation of non-bonded interactions. This cutoff is usually set to 

a value less than or equal to half the length of the simulation box to avoid 
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interactions being counted multiple times across the periodic images. 

For long-range interactions, especially electrostatic forces that extend 

beyond the cutoff distance, specialized algorithms like the Particle Mesh 

Ewald (PME) [44] method are used to maintain accuracy. 

 

Figure 2.3: Two-dimensional representation of periodic boundary 

conditions (PBC). rcut, or the cutoff radius is applied when calculating 

the force between two atoms [45]. 

2.6 Long-range interactions 

In molecular dynamics simulations, interactions between atoms are 

categorized into bonded and non-bonded types. Bonded interactions, 

involving atoms connected through covalent bonds, encompass bond 

stretching, angle bending, and torsional rotations. These interactions are 

limited in number and remain constant during simulations, making their 

computation relatively straightforward and less resource-intensive. 

Non-bonded interactions, encompassing electrostatic forces, van der 

Waals interactions, hydrogen bonds, and salt bridges, occur between all 

pairs of atoms not directly bonded, leading to a computational cost that 

scales quadratically with the number of atoms and  are fundamental to 
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the structural stability and functional dynamics of proteins. These 

interactions, though individually weaker than covalent bonds, 

collectively contribute significantly to the maintenance of a protein's 

tertiary and quaternary structures. 

2.7 Thermostats 

Thermostats are algorithms designed to regulate the system's 

temperature by modifying the Newtonian equations of motion, which 

inherently conserve energy. While thermostats are essential for 

maintaining a desired temperature during the equilibration phase, they 

can interfere with the accurate calculation of dynamical properties, such 

as diffusion coefficients. Several thermostat algorithms are commonly 

employed in MD simulations: Gaussian [46], Berendsen [47], Bussi-

Donadio-Parrinello [48],Andersen [49], and Langevin . In our research, 

we have used Langevin thermostat [50].  

2.7.1 Langevin Thermostat 

The Langevin thermostat integrates the principles of microcanonical 

ensemble dynamics with aspects of Brownian motion to model the 

behavior of particles in a viscous medium. It uses a general equation of 

the form, 

 F = Finteraction + Ffriction + Frandom                                    (2.10) 

Where Finteraction is the standard interactions calculated during the 

simulation, Ffriction is acting on particles, effectively tuning the 

"viscosity" of the implicit solvent or heat bath, and Frandom effectively 

gives random collisions with the solvent molecules. The frictional and 

random forces are coupled through a user-defined friction damping 

parameter. 
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2.8 Barostats 

In molecular dynamics simulations, replicating laboratory conditions—

typically constant temperature and pressure is achieved using the 

isothermal-isobaric (NPT) ensemble. This ensemble maintains a 

constant number of particles (N), pressure (P), and temperature (T), 

allowing the simulation box to adjust its volume in response to pressure 

fluctuations. 

Barostats adjust the system's volume to maintain the desired pressure, 

and they are often used in conjunction with thermostats to achieve the 

NPT ensemble. Several barostat algorithms are commonly utilized in 

MD simulations: Berendsen [51], Andersen [49], Parrinello - 

Rahman [52], and Martyna-Tuckerman-Tobias-Klein [53]. In our 

study we have used the Berendsen barostat to control the pressure. 

2.8.1 Berendsen barostat 

The Berendsen barostat regulates pressure in molecular dynamics 

simulations by uniformly scaling the system's volume based on the 

difference between the current and target pressures. This method 

introduces a correction term to the equations of motion, facilitating rapid 

pressure equilibration. However, it does not accurately reproduce the 

pressure fluctuations characteristic of the NPT ensemble, making it 

unsuitable for production runs.  

 
𝑑𝑃

𝑑𝑡
=

 𝑃0 − 𝑃

ℐ𝑃
                                                                     (2.11) 

Where, 𝑃0  is the reference pressure, i.e. the pressure of the external 

pressure "bath", and  𝑃 is the instantaneous pressure and ℐ𝑃 is a time 

constant. 
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2.9 Molecular Dynamics Simulation Protocol 

The core workflow of molecular dynamics (MD) simulations includes a 

series of well-defined steps that includes: 

2.9.1 System Preparation 

System preparation is a vital first step in molecular dynamics (MD) 

simulations, as errors at this stage can impact the reliability of the 

results. It begins with selecting molecular components—such as 

proteins, ligands, or glycans—whose structures are sourced from 

experimental methods (e.g., X-ray crystallography [54], NMR [55], 

Cryo-EM [56]) or databases like the RCSB PDB. For glycans, tools like 

GLYCAM may be used to build structures. 

The initial model is then validated for completeness, proper protonation 

states, and charge neutrality. An appropriate force field is assigned to 

define atomic interactions, including bonded and non-bonded terms. To 

simulate a realistic environment, the system is solvated in a water box 

and neutralized with counter ions (such as Na⁺ or Cl⁻). The solvent box 

size is chosen to minimize boundary effects and ensure accurate long-

range interactions. 

2.9.2 Solvation 

Since biological reactions occur in aqueous environments, it is essential 

to solvate systems in MD simulations. This can be achieved using 

implicit models, which simulate water as a continuous field, or explicit 

models that place individual water molecules around the solute. While 

implicit models are faster and less resource-intensive, explicit models 

represent individual water molecules, offering greater accuracy at higher 

computational cost. 

Among explicit models, TIP3P [57] which is a 3-site model is the most 

commonly used due to its balance between efficiency and compatibility 

with most force fields. The other 3-site models are SPC, SPC/E and 
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TIPS. In our study, TIP3P was selected for solvating glycan and protein-

glycan systems. 

2.9.3 Minimization 

Energy minimization is a crucial initial step in molecular dynamics 

simulations, aimed at stabilizing the system's initial structure by 

reducing potential energy and resolving any steric clashes. This is 

critical to prevent simulation instability during subsequent heating 

phases. Minimization adjusts atomic coordinates to locate a local 

minimum on the potential energy surface, typically using algorithms 

such as steepest descent, conjugate gradient, or Newton-Raphson. 

Minimization is usually carried out in two stages: the first involves 

restraining the solute to allow the solvent to relax, while the second 

relaxes the entire system without restraints.  This step ensures structural 

integrity and helps avoid distortions like bad contacts that can arise from 

high-energy interactions between solute and solvent. By ensuring a 

stable starting point, energy minimization lays the foundation for 

reliable molecular simulations. 

2.9.4 Heating 

Following energy minimization, the heating step is performed to 

gradually introduce kinetic energy into the system, bringing it from 0 K 

to the target simulation temperature. To prepare it for simulation, we 

need to gradually heat it up to the desired temperature. This step 

increases the atoms' velocities over time, helping the system reach 

thermal equilibrium without becoming unstable. This is typically 

achieved using the NVT ensemble, which maintains constant volume 

and allows for the safe addition of energy via velocity rescaling or 

thermostats based on the Maxwell-Boltzmann distribution. 

Gradual heating over a defined timeframe ensures smooth thermal 

equilibration and reduces the risk of sudden atomic displacements. The 
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NVT ensemble is preferred over NVE and NPT during this stage, as 

NVE does not permit energy input, and NPT could lead to unwanted 

volume changes due to pressure coupling. Controlled heating prepares 

the system for stable dynamics and helps the system adjust gently, 

reducing the risk of it “blowing up” and ensuring it’s ready for the next 

stage of the simulation. 

2.9.5 Equilibration 

Equilibration is a critical phase following the heating step, allowing the 

system to reach a stable thermodynamic state before entering the 

production run. This step ensures that the temperature, pressure, and 

density stabilize under the desired simulation conditions. Initially, 

equilibration is typically performed under the NVT ensemble to allow 

the system’s kinetic and potential energies to balance. During this phase, 

the thermal energy introduced during heating is distributed evenly 

across all degrees of freedom. 

As the production run is usually carried out in the NPT ensemble, a 

buffer period is introduced to transition smoothly from NVT to NPT, 

during which the solvent density and other properties adjust accordingly. 

Throughout equilibration, key thermodynamic parameters like 

temperature, pressure, and potential energy are monitored until they 

plateau, indicating the system has achieved equilibrium. Once 

fluctuations in energy and other properties become minimal, the system 

is considered equilibrated and ready for production simulations. 

2.9.6 Production Run 

After the completion of the equilibration, the simulation enters the 

production phase. This is the stage where the system runs steadily for a 

longer period, allowing it to generate the trajectory data used in the 

analysis of structural, dynamic, and thermodynamic properties of the 

system. The production run typically maintains the same simulation 
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parameters as the equilibration phase, except that data is now actively 

collected. Ensembles such as NPT, NVT, or NVE may be employed 

depending on the objectives of the simulation. Atomic positions, 

velocities, and other relevant information are saved at defined time 

intervals to capture the system's behaviour over time.  

Simulation lengths in the production phase can range from nanoseconds 

to microseconds, depending on the complexity of the molecular system 

and the desired resolution of the analysis. With advancements in high-

performance computing, especially the use of GPUs, longer simulations 

at microsecond scales have become increasingly accessible. [58] 

2.9.7 Analysis 

Trajectory analysis was carried out using the Cpptraj [59] module 

included in AmberTools19 [60]. To minimize the impact of initial 

fluctuations, the first 200 ns of each trajectory were discarded. The 

remaining segments from the three independent replicates were 

combined and analyzed to explore the dynamic behaviour of the 

systems. Initial assessments of structural stability and flexibility were 

performed by calculating the root mean square deviation (RMSD) 

(both proteins and glycans) and root mean square fluctuation (RMSF) 

relative to well-equilibrated reference conformations. The radius of 

gyration was calculated to assess the overall compactness of the protein 

complex throughout the simulations. In addition, hydrogen bond 

analysis was performed using a distance cutoff of ≤ 3.0 Å and an 

occupancy threshold of 20% to identify interactions.  LigPlot analysis 

was performed to visualize key intermolecular interactions, including 

hydrogen bonds and hydrophobic contacts, particularly at the E1E2 

interface. Dynamic cross-correlation matrix (DCCM) were generated 

to investigate coordinated movements between residue pairs. Principal 

component analysis (PCA) [61] was performed to capture the 

dominant motions and explore conformational transitions. Furthermore, 

protein structure network (PSN) analysis was performed to explore 



32 
 

residue-residue interaction networks, enabling identification of key 

communication hubs and pathways potentially relevant to allosteric 

regulation and complex stability. 
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CHAPTER 3 

    3. Objectives 

 To identify the structural and functional interaction 

interface between E1 and E2 using Molecular Dynamics 

simulations. 

 

This objective focuses on a comprehensive structural and 

dynamic analysis of our target protein. The hepatitis C virus 

(HCV) envelope glycoproteins E1 and E2 form a noncovalent 

heterodimer essential for viral entry. Understanding the specific 

regions and interactions that facilitate this heterodimerization is 

crucial. The process begins with retrieving the protein's three-

dimensional structure from the Protein Data Bank (PDB). Given 

that PDB entries often have missing residues due to limitations 

in experimental techniques, it's essential to identify and model 

these absent segments to ensure a complete and accurate 

structure using Modeller. Studies have shown that both the 

ectodomain and transmembrane domains of E1 and E2 

contribute to their interaction, with certain conserved motifs 

playing pivotal roles in maintaining the structural integrity of the 

complex. Elucidating these interfaces can provide insights into 

the mechanisms of viral assembly and entry. 

 

 To investigate the role of E1-E2 Interaction in the Viral Life 

Cycle, including implications for entry and fusion 

 

Upon surveying the literature, it is evident that the E1-E2 

heterodimer is not only structural but also functional in 

mediating HCV entry into host cells. While E2 is primarily 

responsible for receptor binding, E1 is believed to facilitate 

membrane fusion. Recent studies suggest that E1 contains a 
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putative fusion peptide and can form trimers, characteristics 

typical of fusion proteins. The coordinated action of E1 and E2 

is essential for the conformational changes required during the 

fusion process, highlighting the importance of their interaction 

in the viral life cycle. Analyzing the simulation trajectories will 

allow us to identify key conformational changes- interactions 

between E1 and E2, and potential fusion intermediates. This 

computational approach aims to provide detailed insights into 

the structural transitions and interactions that facilitate HCV 

membrane fusion. 

 

 To understand and explore the structural dynamics resulting 

from glycan interactions with the E1–E2 heterodimer. 

 

This objective aims to investigate how glycosylation affects the 

conformation and function of the hepatitis C virus (HCV) 

envelope glycoproteins E1 and E2. Both E1 and E2 are heavily 

glycosylated, with E1 possessing up to five N-linked 

glycosylation sites and E2 up to eleven, depending on the 

genotype. These glycans are crucial for proper protein folding, 

stability, and the formation of the E1–E2 heterodimer, which is 

essential for viral entry into host cells. Glycosylation also 

influences the immunogenicity of the virus, with certain glycan 

modifications enhancing the virus's ability to evade the host 

immune response. 

 

GaMD simulations can elucidate how specific glycan 

modifications, such as the removal or addition of particular N-

linked glycans, influence the structural integrity and functional 

properties of the E1–E2 complex. This approach helps to identify 

critical glycosylation sites that are essential for maintaining the 

heterodimer's stability and functionality, providing potential 

targets for therapeutic intervention.  
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CHAPTER 4 

4. Methodology 

4.1 Protein structure preparation 

In the current investigation, we utilized the crystal structure of the HCV 

glycoprotein E1-E2 heterodimer complex (PDB ID: 7T6X) [62]. To 

model all of the missing regions, the Modeller [63] web server in UCSF 

Chimera [64] was used. Specific regions or domains of interest within 

the E1 and E2 proteins were identified based on known functional motifs 

or regions critical to the protein’s activity. We prepared the Apo system 

in which both the E1 (Chain E) and E2 (Chain U) glycoproteins of HCV 

were included. The structure has a resolution of 3.83 Å.  

 Then, we developed a second system, referred to as the glycosylated 

complex, by incorporating specific N-linked glycans at positions N196 

and N305 of the E1 glycoprotein at the interface of E1–E2 heterodimer 

based on an extensive literature review. For our molecular dynamics 

simulations, we selected high-mannose-type glycans, such as 

Man₉GlcNAc₂, which is commonly associated with HCV envelope 

glycoproteins. The molecular formula of the glycan is C₆₁H₁₁₁NO₄₆ and 

molecular weight is 1940.7 g/mol. 

 

Figure 4.1: Apo Structure of HCV 

 

E1 

E2 
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Figure 4.2: Complex structure (with attached glycans) of HCV.  

4.2 Simulation Protocol 

First, we performed standard Molecular Dynamic simulations using 

pmemd.cuda module of AMBER 18. Then we generated Force field 

parameters in AMBER prior to simulations utilizing the LEap Module. 

The force field that is used for protein is ff14SB. We used the TIP3P 

water model to solvate each system in an octahedral box, maintaining a 

12 Å gap between the solute and the box boundary. We added 103 Na+ 

and 108 Cl− ions to neutralize the system. The SHAKE algorithm was 

used to restrict the lengths of all the hydrogen bonds and cause 

vibrational motion of other atoms. The method used to manage non-

bonded electrostatic interactions was Particle Mesh Ewald (PME) , with 

a threshold set at 12 Å. We kept a constant timestep of 2 fs during the 

simulation. A clear step by step processes of minimization, heating, and 

equilibration was carefully followed before starting the production 

simulation. For the solvated complexes, two stages of energy 

minimization were carried out. A weak harmonic constraint of 2 kcal 

mol−1 Å−2 was included in the first energy minimization stage. Then, 

the second minimization stage was carried out without any constraints. 

The steepest descent approach was used for 500 steps in each 

minimization stage, and then the conjugate gradient algorithm was used 

E1 E2 

Glycans 
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for another 500 steps. Following the minimization steps, the systems 

were heated to 300 K from 0 K in the systemic manner of the NVT 

ensemble. The Langevin thermostat and Berendsen  barostat, having a 

collision frequency of 2 ps−1, are used to maintain a constant 

temperature and pressure. Each system went through 1 ns of 

equilibration,8 ns of Conventional MD simulation was run for 2 ns 

timestep and later we did the GaMD Equilibration with total and 

dihedral boost potential for 64 ns in each run. Finally, the GaMD 

production run was calculated for 1 μs in each run for apo and complex 

systems.  

4.3 Gaussian Accelerated Molecular Dynamics 

(GaMD) Simulations 

Gaussian Accelerated Molecular Dynamics (GaMD) [65] is an advanced 

augmented sampling technique that introduces a non-negative harmonic 

boost potential to the system's initial potential energy surface. This 

approach, which utilizes a Gaussian distribution for the boost potential, 

effectively reduces energy barriers, thereby accelerating the exploration 

of conformational space. In contrast to the previously used Accelerated 

Molecular Dynamics (aMD) [66] method, GaMD solves the problem of 

statistical noise that commonly occurs in large biomolecular systems 

during reweighting. A distinct advantage of GaMD is that it does not 

need the definition of collective variables (CVs) or specific reaction 

coordinates, making it particularly well-suited to study the dynamic 

behavior of biological systems without requiring pre-defined CVs. 
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  Figure 4.3: Schematic representation of Gaussian accelerated 

molecular dynamics  [65]. 

A harmonic boost potential is applied to smooth the system's potential 

energy surface when the threshold energy is set to the maximum 

potential (E = Vmax), facilitating enhanced sampling by reducing 

energy barriers. The parameter k₀ (ranging from 0 to 1) controls the 

magnitude of the boost; higher values of k₀ correspond to greater 

smoothing and improved exploration of biomolecular conformations.     

4.3.1 Boost Potential Formulation 

If we consider a system with N atoms at positions ={𝑟1, 𝑟2⋯𝑟𝑁}, a 

boost potential is added when the system potential 𝑉(𝑟) is lower than a 

threshold energy E  : 

     𝜟V(𝑟) =  
1

2
 𝑘{𝐸 − 𝑉(𝑟)}2   ,       V (r) < E                  (4.1)                     

     Here, 𝑘   is the harmonic force constant.  
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The modified system potential, 𝑉*(𝑟) = (𝑟)+𝜟V(𝑟) is given by: 

 𝑉*(𝑟)= 𝑉(𝑟) +
1

2
 𝑘{𝐸 − 𝑉(𝑟)}2   ,     V (r) < E             (4.2)                     

Otherwise, when the system potential is above the threshold energy, i.e., 

V (r) ≥ E ,   the  boost potential is set to zero and 𝑉*(𝑟) = 𝑉(𝑟) .      

 

For any two arbitrary potential energy V1(r), V2(r) found on the 

original energy surface; where V1(r) < V2(r) and the ∆V potentials 

satisfy 𝑉1*(𝑟) > 𝑉2*(𝑟), then the equation can be expressed as follows: 

 E < 
1

2
 {V1(r) + V2(r)} + 

1

𝑘
                                            (4.3)                     

and if  V1(r) < V2(r)  and the difference in modified potential energy 

surface should be smaller than the original energy surface, that is 

𝑉2*(𝑟) - 𝑉1*(𝑟)  <  V2(r) -  V1(r) and the equation  can be modified 

as: 

 E > 
1

2
 {V1(r) + V2(r)}                                                  (4.4)                     

Combining both the equations (4.3) and (4.4) and using the relationship, 

Vmin ≤ V1(r) < V2(r) ≤ Vmax, the threshold energy E follows the range 

given below: 

 Vmax ≤ E ≤ Vmin+ 
1

𝑘
                                                        (4.5)                     

Here, Vmax and Vmin are the maximum and minimum potential energies. 

We employed the dual potential boost for GaMD modeling in our 

research. The dual boost parameter was determined utlizing the first 8 

ns of conventional MD simulations. This was followed by applying the 

boost potential during 56 ns of GaMD simulations. Then a 1 μs GaMD 

simulation was performed within the NVT ensemble, with coordinates 

recorded every 10 ps to generate 100,000 conformations in a single run. 
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In the conducted Gaussian accelerated molecular dynamics (GaMD) 

simulations, both the apo and complex systems underwent three 

independent runs each. Each run generated 100,000 conformations, 

resulting in a total of 300,000 conformations for the apo system and 

300,000 for the complex system. 

4.4 Trajectory analysis techniques 

Molecular dynamics simulations produce highly intricate datasets by 

capturing every atom’s Cartesian coordinate in the system, which may 

include thousands or even millions of atoms, at each time step along the 

trajectory. These simulations can cover thousands to millions of time 

steps. As a result, advanced analytical techniques are necessary to 

extract valuable information from the data. This section introduces 

various analytical approaches aimed at studying conformational changes 

in typical short- and long-term biomolecular simulations. 

4.4.1 Stability and flexibility analyses  

The structural stability of biomolecular simulation is mainly defined by 

its root mean square deviation (RMSD). RMSD is a statistical measure 

of finding similarities between two sets of values in superimposed 

structures using algorithms like the Kabsch algorithm. RMSD measures 

the target coordinate's deviation from the reference coordinates. It 

calculates the average distance between the reference structure and 

selected atoms. A lower Root Mean Square Deviation (RMSD) signifies 

that the structure is more closely aligned with the reference 

conformation, reflecting higher structural similarity, while a higher 

value indicates a greater structural difference between the compared 

conformations. This suggests that the structure under analysis deviates 

more significantly from the reference, reflecting lower structural 

similarity. Such divergence can result from conformational changes or 

flexibility. A plateau in the RMSD plot suggests that the system has 

reached equilibrium, while significant fluctuations may indicate 

conformational changes or instability RMSD calculations can be 
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performed on all atoms or specific subsets, such as backbone or Cα 

atoms. In molecular dynamics simulations, the Root Mean Square 

Deviation (RMSD) is plotted over time to assess the structural stability 

and conformational changes of biomolecules, such as proteins. It is 

defined as: 

 RMSD = √
∑ (𝒓𝒊(𝟏)−𝒓𝒊(𝟐))𝟐𝑵

𝒊=𝟏

𝑵
                                  (4.6)                     

Where, N is the number of atoms whose positions are being compared 

and  𝒓𝒊(𝟏), 𝒓𝒊(𝟐) are the position of atom i  in each molecule. 

 Another important quantity is root-mean-squared-fluctuations (RMSF) 

to explore residual flexibility. RMSF indicates the positional differences 

for the entire structure over time. RMSF (Root Mean Square 

Fluctuation) is a measure of the average deviation of atomic positions 

relative to their mean positions throughout a molecular dynamic 

simulation used to quantify the flexibility of individual atoms or residues 

within a protein over time. It provides information about the flexibility 

and dynamic behavior of a protein structure. RMSF analysis is often 

applied to backbone or alpha-carbon atoms. Higher RMSF values 

indicate greater atomic mobility, often observed in flexible regions such 

as loops or terminal residues. Conversely, lower RMSF values suggest 

limited movement, typically associated with more rigid structural 

elements like α-helices and β-sheets. The RMSF for atom i is calculated 

using the formula: 

 𝝆𝒊 = √[(𝒙𝒊 − ⟨𝒙𝒊⟩
𝟐]                                                  (4.7) 

Here, 𝒙𝒊 represents the position of atom i at a given time, and ⟨𝒙𝒊⟩ 

denotes the average position of atom i over the simulation period. This 

calculation yields the standard deviation of the atom's position, 

reflecting its mobility. 
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The B-factor, also known as the Debye-Waller factor or temperature 

factor, is derived from X-ray crystallography experiments and reflects 

the atomic displacement or thermal motion within the crystal structure 

of a protein. These values are included in Protein Data Bank (PDB) files 

and offer experimental insight into the flexibility of different regions 

within the protein. Comparing RMSF values from MD simulations with 

B-factors from crystallographic data can validate the simulation results. 

A strong correlation between high RMSF regions and high B-factor 

regions suggests that the simulation accurately captures the flexible 

regions of the protein, such as loops or terminal residues. The B-factor 

is defined as: 

  B = 
8

3𝑁
𝜋2(RMSF)𝟐                                                    (4.8)                     

In protein crystallography, the B-factor (also known as the temperature 

factor or Debye–Waller factor) quantifies the mean square displacement 

of atoms from their average positions. Higher B-factor values indicate 

greater atomic mobility or flexibility, often corresponding to regions 

such as loops or terminal in proteins. 

We also measured the compactness of the simulated systems by the 

radius of gyration (Rg). The radius of gyration is a measure that reflects 

the distribution of a protein's atoms relative to its center of mass, 

providing an indication of the overall spatial spread of the protein's 

structure. Mathematically, it represents the root-mean-square distance 

of the protein's atoms from its center of mass, providing insight into how 

tightly the protein is folded. A lower Rg value indicates a more compact, 

well-folded protein conformation indicating stable structure, whereas a 

higher Rg suggests a more extended or unfolded structure. The radius of 

gyration Rg for a protein can be represented as a collection of N atoms 

and calculated using the following formula: 

 Rg = √
𝟏

𝑵
∑ 𝒓𝒊

𝟐𝑵
𝒊=𝟏                                                  (4.9)                     
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Here, Rg is the radius of gyration, N is the number of atoms in the 

protein and 𝑟𝑖  is the distance of each atom from the center of mass of 

the protein. 

Solvent Accessible surface area (SASA) was originally introduced by 

Lee and Richards in 1971 and is often referred to as the Lee-Richards 

molecular surface. Later, in 1973, Shrake and Rupley developed the 

widely used 'rolling ball' method to calculate ASA, where a sphere 

representing a solvent molecule rolls over the surface of the structure to 

map accessible regions. We also measured the Solvent Accessible 

Surface Area (SASA) to analyze the exposure of a biomolecule's surface 

to the solvent. It provides information about the structural changes and 

it helps to identify regions of a protein that are exposed to the 

surrounding solvent, providing critical insights into how the protein 

folds, maintains its stability, and interacts with other molecules. A 

higher SASA value means that a greater portion of the protein's surface 

is exposed to the solvent, often leading to increased flexibility and a 

higher potential for interactions with other molecules suggesting a more 

expanded or diffused protein structure, while a lower SASA value 

indicates a more compact and tightly folded structure. Here, the equation 

is: 

 ∇ . [ε(r)∇φ(r)] – k′ sinh[φ(r)] = -4πρ(r)                                  (4.10)                     

4.4.2 Dynamic cross-correlation matrix (DCCM) 

The degree of correlation within a system can be assessed by examining 

the cross-correlation coefficients between pairs of atoms. This 

information is typically presented graphically in a matrix format known 

as the dynamical cross-correlation matrix (DCCM). DCCM analysis is 

widely employed to measure the correlated motions among atoms. It is 

a widely used technique for studying the movement patterns in 

molecular dynamics (MD) simulation trajectories.  
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In this method, ri(t) represents the position of atom i over time t, and 

Δri(t) shows how much the atom’s position changes compared to its 

average position. The DCCM produces an N×N heatmap, where N is the 

number of atoms (usually alpha carbons), and each point shows how two 

atoms move in relation to each other. 

The correlation value ranges from -1 to +1. A value of +1 means the 

atoms move together (complete correlation), -1 means they move in 

opposite directions (complete anti-correlation), and 0 means no 

connection in their movements (no correlation). Movements that are 

fully correlated happen at the same time and in the same way, while anti-

correlated movements happen at the same time but in opposite ways. 

The high diagonal value occurs when i = j, i.e., DCC (i,j) = 1.00. 

A strong correlation appears along the diagonal of the matrix because 

each atom is perfectly correlated with itself. Positive values near the 

diagonal show that nearby residues move together, while off-diagonal 

values indicate movement between atoms that are farther apart in the 

structure. 

4.4.3 Principal component analysis (PCA) 

Principal Component Analysis (PCA) is a technique used for reducing 

the dimensionality of data. It calculates the principal components, which 

are eigenvectors associated with large eigenvalues, based on atomic 

coordinates from molecular dynamics (MD) trajectories. The 

eigenvectors indicate the direction of motion, while the eigenvalues 

represent the extent of these movements. PCA is used to analyze the 

trajectory data and focus on the main modes of motion in a system, 

reducing it to a few degrees of freedom. 

(4.11)                     
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To apply PCA to MD data, the first step is to remove the overall 

rotational and translational movements using a least-squares fitting 

procedure. Then, a covariance matrix is created based on the Cartesian 

coordinates of the atoms. This matrix shows how the movements of 

atoms are related to each other. The matrix is typically 3N×3N, where 

N is the number of atoms in the system. After diagonalizing the 

covariance matrix, a set of eigenvectors and their associated eigenvalues 

are obtained. The eigenvectors represent the directions of motion, while 

the eigenvalues indicate the extent of these movements. 

PCA helps to identify new axes along which the data is spread out the 

most: 

1. First Principal Component (PC1): This is the direction that 

captures the maximum variance in the data (the most spread). 

2. Second Principal Component (PC2): This is the next direction 

that captures the next largest variance, and is perpendicular to 

PC1, and so on. 

Consider a covariance matrix C and the elements Ci j of the matrix is 

defined as:   

 Ci j = ⟨(xi − ⟨xi⟩) (xj − ⟨xj⟩)⟩                                   (4.12)                                        

Where xi and xj  are coordinates of the ith 
or jth atom, ⟨xi⟩ and ⟨xj⟩ 

are the mean average coordinates of the ith 
or jth atom. For three 

dimensions, the covariance matrix for (x, y),   (x,z) and (y, z) coordinates 

are carried out, and a covariance matrix C generates the matrix of 3N × 

3N, where N denotes the number of atoms. 
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The covariance matrix is then diagonalized to get the eigenvalues: 

 𝐴𝑇  𝐶 𝐴 =  𝜆                                                                    (4.13) 

Where A is the eigenvectors and λ is the eigenvalues. 

The eigenvectors are ranked according to their eigenvalues in 

descending order. The first principal component corresponds to the 

eigenvector with the largest eigenvalue, which represents the dominant 

motion in the system. Additional principal components follow this 

order, describing less significant motions. 

PCA allows for the reduction of the system’s dimensionality by focusing 

on the first few principal components. These components capture the 

majority of the system's movement, and only a small number of them 

are typically needed to accurately represent the dynamics of the system. 

To put it simply, the purpose of PCA is to reduce the complexity of a 

dataset by decreasing the number of variables, while retaining as much 

information as possible. 

4.4.4 Hydrogen Bond analysis 

Hydrogen bonds are formed through electrostatic interactions between 

hydrogen donor and acceptor groups. These interactions are facilitated 

by the partial positive charge on hydrogen and the electronegative 

atoms, such as oxygen or nitrogen, on the receptor. The geometry and 

strength of these hydrogen bonds influence glycan-protein interactions, 

impacting both binding kinetics and thermodynamics. Intramolecular 

hydrogen bonds help stabilize protein structures, especially in α-helices 

and β-sheets. Intermolecular hydrogen bonds play a key role in 

facilitating specific interactions between proteins and ligands, proteins 

and DNA, as well as other biological macromolecules. 
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Hydrogen bonding is essential in glycan-protein interactions, 

particularly in determining binding specificity and affinity. Glycans, 

which are abundant in hydroxyl groups, readily form hydrogen bonds 

with protein side chains and water molecules, creating a complex 

network of interactions. These bonds are crucial for the recognition and 

binding of specific glycans, and the strength and nature of these 

interactions can influence protein binding and function. Protein residues 

like aspartate, glutamine, arginine, and histidine are often involved in 

glycan recognition because they can both donate and accept hydrogen 

bonds. Additionally, water molecules can serve as bridges, enhancing 

the hydrogen bonding network. The number, type, and location of these 

hydrogen bonds play a key role in determining the specificity and 

affinity of the glycan-protein interactions. 

Specificity and Selectivity: Hydrogen bonds play a crucial role in 

conferring specificity and selectivity to ligand-receptor interactions. 

They allow for precise geometric complementarity and recognition 

between binding partners. Structural analyses demonstrate how 

hydrogen bonds create a detailed network that governs molecular 

recognition with high precision. 

Affinity and Binding Kinetics: The establishment of hydrogen bonds 

contributes significantly to the overall binding affinity of glycan-protein 

complexes, affecting both the rates of association and dissociation. 

Molecular dynamics simulations and experimental kinetics provide 

insights into the dynamic nature of hydrogen bond-driven interactions 

and their influence on binding energetics. 

4.4.5 LigPlot analysis 

LigPlot analysis is a method that creates 2D diagrams showing how a 

ligand interacts with a protein, based on a PDB file. It automatically 

identifies and illustrates key interactions like hydrogen bonds and 

hydrophobic contacts, which are important for the stability and binding 
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of the ligand to the protein. It can be used to study a single complex or 

compare different complexes to better understand binding site 

specificity and selectivity. The process begins by using a PDB file as 

input, where LigPlot+ detects the hydrogen bonds and hydrophobic 

interactions between the protein and ligand. It then generates a clear 2D 

plot showing these connections, placing the ligand at the centre and 

surrounding it with the interacting protein residues. This analysis is 

widely used in drug discovery and structural biology to understand how 

molecules interact and to assist in the design of new therapeutics. 

In this study, we used LigPlot to analyze protein-protein interactions. 

LigPlot automatically generates 2D diagrams showing key interactions 

such as hydrogen bonds and hydrophobic contacts between two proteins. 

Although LigPlot is commonly used for protein-ligand studies, it can 

also effectively highlight important contact points in protein-protein 

complexes. By using PDB files as input, the software identifies 

interacting residues and represents them clearly in a 2D format, helping 

us visualize and understand how the two proteins are connected. This 

analysis provided valuable insights into the binding interfaces and the 

nature of interactions stabilizing the protein complex. 

4.4.6 Protein structure network (PSN) analysis 

For visualization of protein structures beyond just their secondary 

structure and fold, we can use network representations to highlight 

interactions between residues. These networks provide valuable insights 

into the structure-function relationship. In this study, we used the 

WebPSN server [67].  NAPS [68] tool also can be used to create protein 

networks, which allow interactive visualization of inter-residual 

interactions from both modeled proteins and MD simulation trajectories. 

In these networks, amino acids are represented as nodes, and the 

connections between them are shown as edges. An edge is created 

between two nodes if their Cα-Cα distance is within approximately 7 Å. 
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NAPS allows users to analyze nodes based on centrality, 

physiochemical properties, and clusters of connected residues, helping 

to identify functional or coevolving residues and predict protein-protein 

interactions. 

The degree of a node indicates the number of direct connections it has 

and hubs are key nodes with four or more connections, and they are 

considered dynamically stable if they appear as hubs in over 50% of MD 

simulation snapshots are considered dynamically stable and are often 

referred to as "hot spots" due to their significant role in preserving 

structural integrity and mediating allosteric communication. Changes in 

hub residue positions between glycan-bound and unbound states reflect 

structural alterations in glycoproteins.  

Some residues are intra-linked, meaning they are connected to each 

other in a way that indicates structural rigidity. Communities are groups 

of closely connected nodes linked by common interactions. They help 

spread structural rigidity throughout the protein network. By comparing 

individual nodes and their communities, small conformational changes 

that affect the protein’s rigidity and flexibility can be identified. 

Communities within the network consist of residues that interact closely, 

and these communities help communication within the protein. 

Overall, network analysis of protein structures provides valuable 

insights into the intricate interplay between residues, highlighting 

regions critical for structural stability and functional dynamics. 
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CHAPTER 5 

5. Results and Discussion 

5.1 Stability and convergence analysis of the 

protein systems 

In the investigation of the E1-E2 structural dynamics, extensive 

Gaussian Accelerated Molecular Dynamics (GaMD) simulations were 

performed for the E1-E2 heterodimer for the apo and glycosylated 

(complex) systems, covering a time span of 1 µs in triplicate. During the 

1 µs production simulations, the E1-E2 complex exhibited stability 

shown in the root-mean-squared deviations (RMSD) from the initial 

structure. The (Figure 17) shows the time evolution of the root mean 

square deviation (RMSD) for the backbone atoms in each system 

concerning the initial configurations.  

As shown in panel A of Figure 5.1, the apo form exhibits a gradual 

increase in RMSD, stabilizing around 4–5 Å after the first 0.4 μs, 

indicating moderate flexibility and convergence across all the three runs. 

In contrast, the complex in panel B of Figure 5.1 form displays higher 

and more variable RMSD values ranging from 5 to 8 Å, with each run 

stabilizing at different levels indicates differing convergence behaviour. 

Higher RMSD values indicate larger structural fluctuations suggesting 

that the complex undergoes larger conformational rearrangements. 
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Time evolution of Root-mean-squared deviations (RMSD) 

Figure 5.1: (A) Time evolution of the root-mean-square deviation 

(RMSD) of the E1-E2 complex structure in Apo system. (B) Time 

evolution of the root-mean-square deviation (RMSD) of the E1-E2 

complex structure in Complex system.  

 

5.2 Structural Stability Analysis of E1-E2 complex 

To further investigate structural fluctuations, RMSD-based probability 

density plots were generated for both apo and complex systems as shown 

in Figure 5.2, Panel A. The apo form displays a broader distribution 

with three distinguishable peaks centered around ~4.5 Å, ~5.6 Å, and 

~6.8 Å, suggesting transitions between multiple conformational states. 

In contrast, the complex showed narrower, more sharply defined peaks 

at higher RMSD values (~5.7 Å and ~7.5 Å), indicating fewer but more 

distinct conformational states. Although the complex shows higher 

RMSD values, this does not necessarily mean it is more flexible. Instead, 

it appears to adopt fewer and well-defined conformational states, 

implying a more conformationally restricted but stable structure, likely 

maintained by stabilizing interactions formed during binding. In 

contrast, the apo state explores a wider range of conformations, 

indicating higher structural variability. 

 

 

(A) (B) 
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  Figure 5.2: (A) Probability density plot of backbone RMSD for Apo 

(green) and Complex (orange) systems over the simulation period. (B) 

Structural overlays of representative frames from the three RMSD peaks 

in the apo system, colored by peak: Peak 1 (green), Peak 2 (orange), and 

Peak 3 (pink). (C) Structural overlays of representative frames from the 

complex system. 

5.3 Conformational Dynamics of Glycans 

Figure 5.3 shown below illustrates the distinct conformational 

behaviors of two glycans attached to the protein and a free glycan. The 

panel A displays the RMSD probability density distributions, revealing 

that glycan 2 (orange) has a sharp and narrow RMSD peak, suggesting 

that it remains in a more stable and restricted conformation during the 

simulation, likely due to spatial constraints or stronger interactions at its 

attachment site (N305). In contrast, glycan 1 (attached at N196) and the 

free glycan exhibit broader distributions, indicating they undergo greater 

conformational fluctuations and are more flexible. 

The Panel B further supports these observations by showing the 

structural positioning of the glycans on the protein surface, where glycan 

2 appears more embedded within the protein interface, potentially 

contributing to its limited mobility. The glycan 2 experiences reduced 

conformational dynamics relative to glycan 1 and the free glycan. 
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Figure 5.3: (A) Probability density distribution of RMSD for glycan 1 

(green), glycan 2 (orange), and the free glycan (pink) throughout the 

simulation. (B) Structural representation of the glycoprotein complex 

highlighting the positions of glycan 1 (N196 site) and glycan 2 (N305 

site), with glycans shown in green sticks.  

5.4 Solvent accessibility and protein compactness 

 

Figure 5.4 illustrates comparative analyses of the radius of gyration 

(RoG) and solvent-accessible surface area (SASA) between the apo and 

complex systems.  

The panel A shows the RoG distributions, where the complex (brown 

line) exhibits a broader and more variable profile, suggesting a slightly 

more compact and structurally diverse arrangement compared to the apo 

system (blue line), which shows a sharp peak around 27 Å. 

The panel B displays SASA distributions, where the complex form has 

lower solvent exposure than the apo form, indicating reduced surface 

accessibility upon complex formation. The apo form (blue) shows a 

broader distribution (650–900 nm²), while the complex (brown) shows 

with a narrower range of 600–830 nm². This reduction in solvent 

exposure is typically attributed to the formation of intermolecular 

interactions upon glycan attachment, which results in burying 

previously exposed hydrophobic residues within the protein-protein 

interface. These results indicate that complex formation results in a 

structurally more compact configuration. 

(A) (B) 



 

54 
 

 

RoG: Radius of gyration; SASA: Solvent accessible surface area 

Figure 5.4: (A) Probability density distribution of the radius of gyration 

(RoG) for the Apo (blue) and Complex (brown) forms of the protein. 

(B) Probability density distribution of the solvent accessible surface area 

(SASA) for the Apo and Complex systems.  

5.5 Conformational Stability of E1 and E2 

Separate plots were generated for E1 and E2 for both apo and complex 

systems, displaying the RMSD probability distribution in Figure 5.5. 

For E1 (Panel A), the apo (green) system exhibits a broader distribution 

with multiple peaks across a wider RMSD range (~3–9 Å), suggesting 

higher conformational flexibility. In contrast, the complex form shows 

narrower and more defined peaks clustered around higher RMSDs (~6–

11 Å), indicating a reduction in structural variability upon complex 

formation, but those conformations are somewhat more deviated from a 

reference structure. 

For E2 in the apo form displays broader distribution with peaks starting 

at around 2.5 Å and extending up to ~5.8 Å, indicating higher flexibility 

and structural diversity, while the complex form has sharper and more 

compact peaks between ~2–4.5 Å, indicating greater stability and 

reduced conformational variability upon complexation. 

It can be interpreted that the E1 protein becomes more structurally stable 

(less flexible) but shows a greater conformational shift when part of the 

complex while, the E2 protein becomes more conformationally stable in 

the complex while maintaining a structure closer to its reference. 

Overall, both proteins exhibit greater structural stability in the 

(A) (B) 
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complexed state compared to their unbound forms. 

 

Figure 5.5: (A) Probability density plot of backbone RMSD of E1 for 

Apo (green) and Complex (orange) systems across the simulation 

timeframe. (B) Probability density plot of backbone RMSD of E2 for 

Apo and Complex systems across the simulation timeframe.  

5.6 Residual Flexibility Analysis of E1 and E2 

glycoproteins 

Figure 5.6 presents the Root Mean Square Fluctuation (RMSF) profiles 

for the E1 and E2 proteins in their apo (red) and complex (blue) forms, 

indicating the residue-wise flexibility across the sequences. 

For E1, the RMSF values are generally comparable between the apo and 

complex states across most of the sequence. However, increased 

fluctuations are observed in the complex form, particularly in the stem 

region (after residue 124), suggesting enhanced flexibility in this region 

upon complex formation. Within the PCR (Pfp-containing region), both 

forms show similar fluctuation patterns, indicating that this region 

remains relatively stable in both states. 

In the case of E2, there is a marked increase in flexibility in the complex 

form across several regions, especially between residues ~250 and 370. 

Notably, the CD81 binding region and the variable region (VR) show 

significantly higher RMSF values in the complex, indicating increased 

mobility. In contrast, the apo form maintains lower and more consistent 

flexibility. 

(A) (B) 
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This can be interpreted as the E2 protein becoming more dynamic upon 

complex formation, particularly in functionally important regions, while 

E1 shows only limited flexibility changes, suggesting differing roles or 

structural responses of the two proteins upon binding. 

 

RMSF: Root-mean-squared fluctuation 

Figure 5.6: RMSF profiles of E1 and E2 proteins in apo (red) and 

complex (blue) systems. (A) Residue-wise fluctuations of E1. (B) 

Residue-wise fluctuations of E2. 

5.7 Analysis of Intra Domain Regions of E1 

5.7.1 PCR Region 

 
The PCR region (residues 249 to 299) located in the core of E1 plays an 

important role in the fusion process of viral membrane with endosomal 

membrane to release the RNA genome into the host cell. Additionally, 

it may contribute to the assembly and structural organization of the viral 

particle. We have plotted the probability distribution of the PCR region 

in Figure 5.7 to get an insight into its structural stability. 

The panel A presents the RMSD distribution of the E1 putative contact 

region (PCR) in both apo (green) and complex (orange) systems, 

reflecting its structural deviation over time. The apo form displays a 

broader and bimodal RMSD distribution at around 3.8 and 8 Å, 

suggesting that the PCR is more conformationally flexible in the absence 

of binding. In contrast, the complex form exhibits a narrow and more 

defined distribution centered around higher RMSD values (~8–9 Å), 

indicating a more shifted but more stable and consistent conformation. 

This suggests that upon complex formation, the PCR becomes 

(A) (B) 
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structurally more restrained and adopts a specific conformation, which 

may be important for its interaction role within the E1-E2 assembly. 

 
 

Figure 5.7: (A) Probability distribution plot of RMSD for the PCR 

region in E1 in apo (green) and complex (orange) systems. (B)  

Schematic representation highlighting the PCR within the E1 domain 

organization, including the N-terminal domain (NTD), C-terminal loop 

region (CTR), and stem [62]. 

5.8 Analysis of Intra Domain Regions of E2 

5.8.1 CD81 binding site 

The CD81 binding site (amino acids 518 to 534) located in the head of 

E2 is essential for binding to the CD81 receptor on the host cell 

membrane to initiate the infection process. 

The RMSD (Root Mean Square Deviation) probability density plot for 

the E2-CD81 region in Figure 5.8 illustrates the structural flexibility of 

this domain in the apo system (green) compared to the glycan-bound 

complex system (orange). 

In the apo state, this region shows a sharp, high-intensity peak at low 

RMSD values (~0.8 Å), indicating high structural stability and minimal 

conformational deviation, with a tail extending upto ~5 Å and a smaller 

secondary peak at around 3.5 Å reflects a low-probability population of 

transient or rare conformations that deviate notably from the reference 

structure. These deviations likely arise due to the loop structure of this 

region. 

(A) 
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However, upon glycan binding, the RMSD distribution shifts, and two 

broader peaks emerge at higher RMSD values (~1.8 Å and ~4.5 Å), 

reflecting increased conformational variability. The shift in RMSD 

suggests that glycan interaction promotes dynamic structural 

rearrangement or flexibility in this region upon binding CD81.  

 

Figure 5.8: (A) RMSD probability density plot for the CD81 binding 

region of E2 in apo (green) and complex (orange) systems. (B) 

Schematic representation of the E2 subdomains highlighting the CD81 

binding site [62]. 

 

5.8.2 Variable Regions – VR2, VR3 

 

The Variable regions (VR2, residues 459 to 483; VR3, residues 569 to 

579) located in the head of E2 allows the virus to escape host's immune 

system recognition and aids in immune evasion.  

Figure 5.9 illustrates how glycan binding influences the conformational 

flexibility of the E2 glycoprotein's variable regions VR2 and VR3 in 

hepatitis C virus. Probability density plots of RMSD values are shown 

for each region in the apo (green) and glycan-bound (orange) states. 

The RMSD probability density plot for VR2 (panel A) indicates that the 

glycan-bound distribution shows two sharp peaks at lower RMSD 

values (~0.9 Å and ~1.7 Å), indicating stable conformations, whereas 

the apo state (green) exhibits a broader distribution with peaks at around 

(~1.9 Å and ~12.6 Å), suggesting greater structural flexibility.  

The RMSD probability density plot for VR3 (panel B) shows that glycan 

(A) (B) 
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binding reduces the flexibility of this region. In the apo state (green), 

VR3 displays a broader distribution with a peak around 1.8 Å, indicating 

higher structural variability. In contrast, the glycan-bound state (orange) 

shows a shift toward lower RMSD values, with a sharper peak near 1.4 

Å, suggesting that VR3 adopts more stable conformations when glycans 

are present. 

 

 
 

Figure 5.9: (A) Probability density plot of RMSD distribution of E2 

variable region VR2 in apo (green) and glycan-bound complex (orange). 

(B) Probability density plot of RMSD distribution of VR3 in apo and 

glycan-bound states. (C) Schematic representation of the E2 domain 

organization highlighting variable regions (VR) along with, CD81 

binding loop (CD81 bl), and structural domains including the front layer, 

β-sandwich, base, and stem [62]. 
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5.9 E1–E2 binding interaction 

Earlier structural studies, including cryo-EM, have captured E1–E2 in 

static conformations, but molecular simulations reveal their dynamic 

nature and offer a better understanding of how the complex behaves in 

different states. Figure 5.10 illustrates the structural impact of glycan 

binding on the E1–E2 interface.  

The panel A shows the probability density plot of the inter-residue 

distance between Glu236 (E2) and Leu307 (E1), revealing a rightward 

shift in the distance distribution upon glycan binding. Specifically, the 

average distance increases from approximately 7.2 Å in the apo state to 

8.1 Å in the glycan-bound complex can be seen in Panel C, indicating a 

weakening of the E1–E2 connection after glycan binding.  

The panel B presents the crystal structure (PDB ID: 7T6X), where 

Glu655 (E2) and Leu200 (E1) are in close proximity (4.3 Å), 

highlighting a native E1–E2 contact at the interface.  

Panel C further supports the simulation-based observation, showing that 

glycan interaction leads to increased spatial separation between E1 and 

E2 residues compared to the apo system.  

Collectively, these results suggest that glycan engagement induces a 

conformational rearrangement at the E1–E2 interface, which may 

modulate the structural integrity or dynamics of the heterodimer. 

 

       Glu236@CD-Leu307@CD2                   7T6X Crystal Structure               

  

                     

(A) (B) 

Glu236 

 

4.3 Å 

 

Leu307 
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Post-Simulation 

Figure 5.10: (A) Probability density plot showing the distribution of 

Glu236–Leu307 inter-residue distances in apo and glycan-bound 

(complex) systems. (B) Interaction observed between Glu655 and 

Leu200 in the E1–E2 crystal structure (PDB: 7T6X). (C) Post-

simulation structural comparison of E1–E2 distance highlighting 

changes in the distance of apo and complex systems. 

5.10 Hydrophobic Interactions between E1 and E2 

The RMSD distributions shown in panels A and B of Figure 5.11 

reveals distinct differences in the conformational dynamics of 

hydrophobic residues between the apo and complex states.  

For interaction study we took residues Phe167, Pro171, Phe260, Thr262, 

Leu270 of hydrophobic cavity of base in E2 interacts with residues 

Tyr299, Val310, Tyr308, Val301 of E1. In panel A, the complex state 

(orange) exhibits a sharp peak around 1 Å, indicating a more rigid and 

structurally conserved conformation compared to the apo state (green), 

which shows a broader distribution with a peak closer to 1.8 Å. This 

suggests that complex formation significantly stabilizes the structure of 

the hydrophobic region under investigation. 

We then took residues Leu235, Tyr282, Tyr284 of E2 stem interacting 

with residues Ile415, Tyr416, Pro417, His419, and Met425 of E1. The 

panel B shows a wider RMSD range overall, with both apo and complex 

states displaying multiple peaks. The apo state has broader distrbution 

(C) 

Apo 

7.2 Å 

8.1 Å 

Complex 



 

62 
 

with peaks at around 3 Å, 3.8 Å and 5.5 Å, while the complex state 

shows narrower peaks at ~3 Å and ~5 Å accompanying a small peak at 

around ~2.5 Å. Although some flexibility remains, the more defined 

peaks in the complex state indicate partial structural stabilization. This 

implies partial stabilization upon complex formation, but with retained 

flexibility in certain regions.  

Together, these data highlight that complex formation generally leads to 

a reduction in conformational variability of key hydrophobic residues, 

likely contributing to the structural integrity and functional relevance of 

the protein interface. 

 

 

 

 

Figure 5.11: Probability density plots showing RMSD distributions of 

hydrophobic interface residues in E1 and E2 for apo (green) and 

complex (orange) systems obtained for two specific set of residues 

identified in earlier structural studies. Right: Visualization of two 

specific set of key hydrophobic residues at the E1 and E2 interface 

contributing to inter-subunit stabilization are highlighted and labelled. 
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5.11 E1-E2 interaction profile in apo structure 

In the apo system of the E1-E2 heterodimer complex as shown below in 

Figure 5.12, critical interactions, such as electrostatic and hydrophobic 

interactions, play a key role in binding and stabilizing the two proteins 

together. This figure illustrates the interaction landscape between the E1 

and E2 glycoproteins in the apo state, generated using LigPlot. The 

analysis reveals a complex network of non-covalent interactions that 

stabilize the E1–E2 interface, including hydrogen bonds, hydrophobic 

contacts, and electrostatic interactions. Each residue involved is 

annotated, and the types of interactions are depicted using standardized 

LigPlot symbols, allowing for a residue-level understanding of the 

interface architecture. Several residues from both E1 and E2 engage in 

stabilizing contacts, such as salt bridges and polar interactions, which 

are critical for maintaining the native structural integrity of the complex. 

The presence of recurring polar residues and charged side chains at the 

interface indicates a prominent role for electrostatic complementarity in 

mediating E1–E2 association. For example, side chains such as Arg, 

Glu, Asp, and Lys engage in salt bridges and hydrogen bonding that span 

across the interface, contributing significantly to structural integrity. 

Additionally, hydrophobic patches involving residues such as Val, Leu, 

Ile, and Phe may contribute to van der Waals interactions that further 

stabilize the complex. 
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Figure 5.12: 2D Interaction map depicting residue-level contacts 

between E1 and E2 at the interface in the apo conformation, highlighting 

electrostatic interactions (hydrogen bonds), and hydrophobic 

interactions. In the figure, red regions represent hydrophobic 

interactions, while green dotted lines highlight electrostatic interactions. 

5.12 E1-E2 interaction profile in complex structure 

 Figure 5.13 presents a detailed interaction profile between the E1 and 

E2 glycoproteins in the complex state, generated using LigPlot. It 

captures the array of inter-residue contacts formed upon complex 

formation, providing a two-dimensional visualization of the molecular 

interface. Compared to the apo structure, a marked shift in interaction 

character is evident that hydrophobic contacts are notably more 

abundant and widespread across the interface. Residues such as Leu, 

Val, Ala, and Phe are observed clustering together, forming a 

hydrophobic core that likely enhances the stability of the E1–E2 

association in the complex state. Additionally, hydrogen bonds continue 

to contribute to the interface, but the prominence of van der Waals and 

hydrophobic interactions suggests a restructuring of molecular forces 

upon complex formation. This rearrangement may reflect a 

conformational stabilization that takes place when E1 and E2 associate 

under the influence of external elements, such as glycan interactions. 

The Lig-Plot visualization offers an effective representation of these 

changes, illustrating how the molecular contacts between E1 and E2 are 

highly dependent on the surrounding environment. Such insights are 

E2 

E2 

E1 

E1 
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crucial for understanding the dynamic nature of viral envelope assembly 

and could have implications for therapeutic strategies aimed at 

disrupting E1–E2 interactions. 

 

Figure 5.13: 2D Interaction map depicting residue-level contacts 

between E1 and E2 at the interface in the complex conformation, 

highlighting electrostatic interactions (hydrogen bonds), and 

hydrophobic interactions. In the figure, red regions represent 

hydrophobic interactions, while green dotted lines highlight electrostatic 

interactions. 

5.13 Hydrogen bonds in protein-glycan interaction 

Figure 5.14 illustrates the variation in the number of hydrogen bonds 

formed by Glycan1 (orange) and Glycan2 (green) throughout three 

separate molecular dynamics simulation runs (Run1, Run2, and Run3). 

And the background colors (pink, blue, and purple) separate the three 

simulation runs. The horizontal axis denotes the simulation time in 

microseconds (µs), while the vertical axis shows the corresponding 

number of hydrogen bonds formed during the simulations.  

The data clearly show that Glycan 2 consistently forms a significantly 

higher number of hydrogen bonds compared to Glycan1 throughout all 

simulation runs, indicating greater interaction with the E1 and E2 

heterodimer complex. Glycan 2 maintains a stable range of 15–20 

hydrogen bonds, suggesting persistent and strong interactions with its 

environment. In contrast, Glycan 1 forms fewer hydrogen bonds, 

ranging mostly between 2–10, and exhibits greater fluctuation, 

E2 

E2 

E1 

E1 
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indicating weaker or less consistent interactions. This consistent trend 

across all three runs supports the conclusion that Glycan 2 plays a more 

prominent role in stabilizing the protein structure through hydrogen 

bonding. These observations suggest that Glycan2 may contribute more 

significantly to the conformational stability and functional dynamics of 

the glycoprotein complex.  

The reason behind this might be the positional difference between the 

two glycans. Glycan2 (linked at N305) is situated closer to the interfacial 

region between the two protein domains, placing it in a more confined 

and interaction-rich environment. This positioning enables Glycan2 to 

establish a greater number of hydrogen bonds with nearby residues, 

contributing to its enhanced stability, as reflected in the hydrogen bond 

analysis. In contrast, Glycan1 (linked at N196) is located further away 

from the interface, in a more exposed and flexible region of the protein. 

This spatial orientation limits its ability to form stable interactions with 

surrounding residues, resulting in fewer hydrogen bonds. 

Figure 5.14: Hydrogen bond analysis of Glycan1 and Glycan2 across 

three simulation runs (Run1–Run3), showing the number of hydrogen 

bonds formed over time (µs). 

The Table 2 below presents the hydrogen bond interactions between a 

protein and two glycans—Glycan 1 and Glycan 2, based on molecular 

dynamics simulation data. Each interaction is characterized by the donor 

and acceptor atoms involved, the occupancy percentage (indicating how 

frequently the hydrogen bond exists during the simulation during the 

simulation), and the average bond distance in angstroms (>3.0 Å). 
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Glycan 1 has only 2 hydrogen bonds with relatively lower occupancies 

(49.69% and 30.66%), whereas Glycan 2 has 10 hydrogen bond 

interactions, including the highest occupancy of 88.22% between 

THR_405@O and 0MA_177@O2, indicating a strong, stable 

interaction. 

Table 5.1: Occupancy of hydrogen bonds between the glycan and 

protein over the course of the MD simulation. 

Binding couple Molecular Dynamics 

Acceptor Donor Occupancy 

(%) 

Distance 

(Å) 

Glycan 1 

4YB_156@O2N ASN_5@ND2 49.69 2.84 

GLN_225@OE1 4YB_156@O6 30.66 2.70 

Glycan 2 

THR_405@O 0MA_177@O2 88.22 2.75 

LEU_450@O 4YB_168@O3 57.90 2.71 

ILE_454@O VMB_169@O4 39.35 2.75 

4YB_168@O3 ARG_415@NH2 38.59 2.85 

4YB_167@O2N ASN_114@ND2 36.22 2.84 

0MA_177@O5 GLU_408@N 33.47 2.84 

4YB_168@O2N ARG_415@NE 27.77 2.83 

VMA_170@O5 VAL_455@N 26.51 2.90 

2MA_175@O6 ARG_409@N 24.95 2.86 

4YB_168@O6 ARG_415@NH2 22.53 2.85 
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5.14 Dynamic Cross-Correlation Matrix (DCCM) 

analysis 

The dynamic cross-correlation analysis in Figure 5.15 highlights 

distinct differences in the motion of protein regions between the apo and 

complex systems. The PCR region (R1), associated with the N-terminal 

domain of E1, exhibits strong anti-correlated motion in the apo form, 

whereas it transitions to positively correlated motion upon complex 

formation. This shift suggests a stabilization and coordination of 

movement within the PCR region in the presence of the glycan or 

binding partner. Similarly, the CD81 binding region (R2) shows a clear 

contrast: in the apo system, this region demonstrates positive 

correlation, indicating synchronized movement with surrounding 

residues, but it shifts to negative correlation in the complex, implying a 

reversal in the direction of motion likely due to altered interaction 

dynamics. Interestingly, the VR region (R3) maintains a similar residual 

correlation pattern in both apo and complex forms, suggesting its 

dynamics remain relatively unaffected by complexation. Collectively, 

these observations point to glycan-induced modulation of the internal 

dynamics of specific protein regions, which may be critical for 

functional conformational transitions. 

 

Figure 5.15: Dynamic Cross-Correlation Matrix (DCCM) analysis of 

protein residues in apo and complex forms. 
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5.15 Principal Component Analysis of E1-E2 

Complex 

In the free energy landscape (FEL) analysis based on principal 

component analysis (PCA), Figure 5.16 illustrates the dominant 

motions of the protein in both apo and complex states using PC1 and 

PC2 axes. The color gradient reflects the free energy distribution, with 

dark red denoting the most stable (lowest energy) regions and blue 

indicating higher-energy, less stable conformations. In the apo state 

(Panel A), three distinct low-energy basins were observed, suggesting 

that the unbound form explores a wider range of conformational states, 

indicative of greater flexibility. In contrast, the complex state (Panel B) 

exhibited only two main energy basins, with a narrower and more 

confined energy surface, implying restricted dynamics and increased 

structural stability upon binding. The lower panels present 

representative structures from each energy minimum, where the apo 

conformations show greater divergence, while those from the complex 

state appear more compact and similar. These findings suggest that 

binding limits structural variability, stabilizing the protein in fewer, 

energetically favorable states. 

 

 

Figure 5.16: Principal Component Analysis (PCA) and Free Energy 

Surface (FES) of the protein in apo and complex systems. 
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5.16 Protein Structure Network Analysis 

 Figure 5.17 presents a comparative analysis of Residue Connectivity 

via Protein Structure Network (PSN) between the Apo and Complex 

states of the protein. Each color represents a distinct community of 

residues, with the most to least populous communities labeled from red 

to light orange, respectively. In the Apo form, residues surrounding the 

E2 region are grouped into several smaller, relatively localized 

communities (e.g., red, green, and orange), with limited inter-

community communication, suggesting less coordinated structural 

behavior. However, upon complex formation, a noticeable shift in 

network organization is observed. In the Complex, the red community 

(the most populous) near the E2 region becomes more densely 

connected, indicating stronger communication among residues in this 

region. Also, in the Complex, the residue network undergoes significant 

reorganization, with the glycan-associated region integrating into the 

2nd most populous community (green), indicating its role in enhancing 

structural stability through strengthened interactions. Additional residue 

groups also reorganize or emerge, particularly around regions E1 and 

E2, implying a dynamic restructuring of the interaction network. These 

changes signify increased inter-residue connectivity, likely driven by 

glycan interactions, which in turn could enhance the overall structural 

stability and promote functional coordination within the protein.  
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Figure 5.17: Residue Connectivity via Protein Structure Network for 

apo and complex systems depicting hubs, links and communities. 

 

Table 5.2: Comparison of network properties between Apo and 

Complex systems. 

Network Properties Apo Complex 

Imin 3.69 4.16 

Number of Linked 

Nodes 

420 447 

Number of Links 484 509 

Number of Hubs 67 75 

Number of Links 

mediated by Hubs 

251 289 

Number of 

Communities 

18 17 

Number of Nodes 

involved in 

Communities 

92 91 

Number of Links 

involved in 

Communities 

118 124 
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CHAPTER 6 

6. Conclusions and scope for future work 

6.1 Conclusions 

Our findings demonstrate that glycosylation induces significant 

conformational stabilization in the protein complex, with a notable 

difference in stability between the two domains. Specifically, the E2 

domain exhibits better structural stability than E1, as reflected by more 

defined residue communities and reduced flexibility. Despite this, key 

intra-domain regions within both E1 and E2 maintain dynamic behavior, 

suggesting localized flexibility important for function. Our RMSD 

analysis showed that hydrophobic interactions become more structurally 

stable upon complex formation, indicating reduced flexibility and 

tighter packing, particularly in the complex state, thus playing a crucial 

role in mediating the E1–E2 complex formation, supporting their 

contribution to interface stability. In particular, E2 displays more tightly 

interconnected residue communities in both apo and complex forms, 

further emphasizing its stabilizing role. Moreover, the embedded glycan 

at the domain interface enhances connectivity, likely contributing to the 

overall structural integrity of the complex. The principal component 

analysis reveals that the complex form exhibits reduced conformational 

flexibility compared to the apo form, indicating a more stable and 

compact structure upon binding. The dynamic cross-correlation analysis 

further supports this, exhibiting a shift in motion patterns where the PCR 

region displays reduced anti-correlation and the CD81 region transitions 

from positive correlation in the apo to negative correlation in the 

complex. Additionally, protein structure network analysis shows tighter 

and more interconnected residue communities in the complex, 

particularly around the glycan-associated region and E2, reinforcing the 

role of glycan interactions in enhancing structural stability and 

modulating functional dynamics. 
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6.2 Future Work 

In this study, we investigated the structural dynamics and interaction 

landscape of a glycosylated E1–E2 protein complex, where two glycans 

were binded to the E1 (at residues N196 and N305) at the interface of 

the heterodimer complex.  

For future studies, it is essential to examine all glycosylation sites in E1 

(5) and E2 (11) to better understand their influence on complex 

dynamics. Additionally, introducing site-specific glycan mutations 

could help elucidate the role of individual glycans in modulating E1–E2 

conformational behavior and stability. Molecular dynamics simulations 

will be extended to longer timescales to capture slow conformational 

changes and provide a more comprehensive understanding of glycan 

flexibility and its influence on the dynamic behavior of the E1-E2 

complex. Glycan-mediated shielding effects will be systematically 

investigated to determine how specific glycosylation patterns obscure 

antigenic epitopes and contribute to immune evasion by the virus. The 

effect of glycan modifications on the receptor-binding affinity of the E1-

E2 complex will be thoroughly investigated to elucidate how specific 

glycosylation patterns influence viral attachment and entry into host 

cells. Then, advanced trajectory analysis tools will be employed to 

monitor local and global structural rearrangements induced by glycan 

dynamics.  

This will allow a deeper understanding of how glycosylation influences 

protein behaviour at both the structural and functional levels, potentially 

informing strategies for therapeutic targeting or vaccine design. 
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	1.5 E1 and E2 Glycoprotein
	The envelope glycoproteins E1 and E2 of HCV are cleaved from the viral polyprotein precursor by cellular peptidases of both host and virus within the endoplasmic reticulum. These proteins are extensively N-glycosylated and are type I transmembrane pro...
	The E1 has two key structural components: the stem region and the core domain. The stem region helps anchor the E1 protein in the viral envelope and supports the structural integrity of the heterodimer complex. The core domain has multiple functions i...
	The E2 consists of three major subdomains: the head, the stem, and the transmembrane domain (TMD). The stem and the TMD regions are involved in anchoring the virus to the host membrane. The fusion process is thus facilitated, which makes the E2 region...
	Otherwise, when the system potential is above the threshold energy, i.e., V (r) ≥ E ,   the  boost potential is set to zero and 𝑉*(𝑟) = 𝑉(𝑟) .
	4.4.1 Stability and flexibility analyses
	The structural stability of biomolecular simulation is mainly defined by its root mean square deviation (RMSD). RMSD is a statistical measure of finding similarities between two sets of values in superimposed structures using algorithms like the Kabsc...
	RMSD = ,,,𝒊=𝟏-𝑵-(,𝒓-𝒊.(𝟏)−,𝒓-𝒊.(𝟐),)-𝟐..-𝑵..                                  (4.6)
	Where, N is the number of atoms whose positions are being compared and  ,𝒓-𝒊.,𝟏.,,𝒓-𝒊.(𝟐) are the position of atom i  in each molecule.
	Another important quantity is root-mean-squared-fluctuations (RMSF) to explore residual flexibility. RMSF indicates the positional differences for the entire structure over time. RMSF (Root Mean Square Fluctuation) is a measure of the average deviati...
	, 𝝆-𝒊.=,[(,𝒙-𝒊.− ⟨,𝒙-𝒊.​,​⟩-𝟐.].                                                  (4.7)
	Here, ,𝒙-𝒊.​ represents the position of atom i at a given time, and ⟨,𝒙-𝒊.​⟩ denotes the average position of atom i over the simulation period. This calculation yields the standard deviation of the atom's position, reflecting its mobility.
	The B-factor, also known as the Debye-Waller factor or temperature factor, is derived from X-ray crystallography experiments and reflects the atomic displacement or thermal motion within the crystal structure of a protein. These values are included in...
	B = ,8-3𝑁.,𝜋-2.(RMSF,)-𝟐.                                                    (4.8)
	In protein crystallography, the B-factor (also known as the temperature factor or Debye–Waller factor) quantifies the mean square displacement of atoms from their average positions. Higher B-factor values indicate greater atomic mobility or flexibilit...
	We also measured the compactness of the simulated systems by the radius of gyration (Rg). The radius of gyration is a measure that reflects the distribution of a protein's atoms relative to its center of mass, providing an indication of the overall sp...
	Rg = ,,𝟏-𝑵..,𝒊=𝟏-𝑵-,𝒓-𝒊-𝟐..                                                 (4.9)
	Solvent Accessible surface area (SASA) was originally introduced by Lee and Richards in 1971 and is often referred to as the Lee-Richards molecular surface. Later, in 1973, Shrake and Rupley developed the widely used 'rolling ball' method to calculate...
	∇ . [ε(r)∇φ(r)] – k′ sinh[φ(r)] = -4πρ(r)                                  (4.10)
	4.4.2 Dynamic cross-correlation matrix (DCCM)
	The degree of correlation within a system can be assessed by examining the cross-correlation coefficients between pairs of atoms. This information is typically presented graphically in a matrix format known as the dynamical cross-correlation matrix (D...
	In this method, ri(t) represents the position of atom i over time t, and Δri(t) shows how much the atom’s position changes compared to its average position. The DCCM produces an N×N heatmap, where N is the number of atoms (usually alpha carbons), and ...
	4.4.3 Principal component analysis (PCA)
	4.4.4 Hydrogen Bond analysis
	4.4.6 Protein structure network (PSN) analysis
	For visualization of protein structures beyond just their secondary structure and fold, we can use network representations to highlight interactions between residues. These networks provide valuable insights into the structure-function relationship. I...
	5.4 Solvent accessibility and protein compactness
	Figure 5.4 illustrates comparative analyses of the radius of gyration (RoG) and solvent-accessible surface area (SASA) between the apo and complex systems.
	The panel A shows the RoG distributions, where the complex (brown line) exhibits a broader and more variable profile, suggesting a slightly more compact and structurally diverse arrangement compared to the apo system (blue line), which shows a sharp p...
	The panel B displays SASA distributions, where the complex form has lower solvent exposure than the apo form, indicating reduced surface accessibility upon complex formation. The apo form (blue) shows a broader distribution (650–900 nm²), while the co...
	RoG: Radius of gyration; SASA: Solvent accessible surface area
	Figure 5.4: (A) Probability density distribution of the radius of gyration (RoG) for the Apo (blue) and Complex (brown) forms of the protein. (B) Probability density distribution of the solvent accessible surface area (SASA) for the Apo and Complex sy...
	5.5 Conformational Stability of E1 and E2
	Separate plots were generated for E1 and E2 for both apo and complex systems, displaying the RMSD probability distribution in Figure 5.5.
	For E1 (Panel A), the apo (green) system exhibits a broader distribution with multiple peaks across a wider RMSD range (~3–9 Å), suggesting higher conformational flexibility. In contrast, the complex form shows narrower and more defined peaks clustere...
	For E2 in the apo form displays broader distribution with peaks starting at around 2.5 Å and extending up to ~5.8 Å, indicating higher flexibility and structural diversity, while the complex form has sharper and more compact peaks between ~2–4.5 Å, in...
	It can be interpreted that the E1 protein becomes more structurally stable (less flexible) but shows a greater conformational shift when part of the complex while, the E2 protein becomes more conformationally stable in the complex while maintaining a ...
	Figure 5.5: (A) Probability density plot of backbone RMSD of E1 for Apo (green) and Complex (orange) systems across the simulation timeframe. (B) Probability density plot of backbone RMSD of E2 for Apo and Complex systems across the simulation timefra...
	5.6 Residual Flexibility Analysis of E1 and E2 glycoproteins
	RMSF: Root-mean-squared fluctuation
	Figure 5.6: RMSF profiles of E1 and E2 proteins in apo (red) and complex (blue) systems. (A) Residue-wise fluctuations of E1. (B) Residue-wise fluctuations of E2.
	5.7 Analysis of Intra Domain Regions of E1
	5.7.1 PCR Region
	The PCR region (residues 249 to 299) located in the core of E1 plays an important role in the fusion process of viral membrane with endosomal membrane to release the RNA genome into the host cell. Additionally, it may contribute to the assembly and st...
	Figure 5.7: (A) Probability distribution plot of RMSD for the PCR region in E1 in apo (green) and complex (orange) systems. (B)  Schematic representation highlighting the PCR within the E1 domain organization, including the N-terminal domain (NTD), C-...
	5.8 Analysis of Intra Domain Regions of E2
	5.8.1 CD81 binding site
	The CD81 binding site (amino acids 518 to 534) located in the head of E2 is essential for binding to the CD81 receptor on the host cell membrane to initiate the infection process.
	The RMSD (Root Mean Square Deviation) probability density plot for the E2-CD81 region in Figure 5.8 illustrates the structural flexibility of this domain in the apo system (green) compared to the glycan-bound complex system (orange).
	In the apo state, this region shows a sharp, high-intensity peak at low RMSD values (~0.8 Å), indicating high structural stability and minimal conformational deviation, with a tail extending upto ~5 Å and a smaller secondary peak at around 3.5 Å refle...
	However, upon glycan binding, the RMSD distribution shifts, and two broader peaks emerge at higher RMSD values (~1.8 Å and ~4.5 Å), reflecting increased conformational variability. The shift in RMSD suggests that glycan interaction promotes dynamic st...
	Figure 5.8: (A) RMSD probability density plot for the CD81 binding region of E2 in apo (green) and complex (orange) systems. (B) Schematic representation of the E2 subdomains highlighting the CD81 binding site [62].
	5.8.2 Variable Regions – VR2, VR3
	The Variable regions (VR2, residues 459 to 483; VR3, residues 569 to 579) located in the head of E2 allows the virus to escape host's immune system recognition and aids in immune evasion.
	Figure 5.9 illustrates how glycan binding influences the conformational flexibility of the E2 glycoprotein's variable regions VR2 and VR3 in hepatitis C virus. Probability density plots of RMSD values are shown for each region in the apo (green) and g...
	The RMSD probability density plot for VR2 (panel A) indicates that the glycan-bound distribution shows two sharp peaks at lower RMSD values (~0.9 Å and ~1.7 Å), indicating stable conformations, whereas the apo state (green) exhibits a broader distribu...
	The RMSD probability density plot for VR3 (panel B) shows that glycan binding reduces the flexibility of this region. In the apo state (green), VR3 displays a broader distribution with a peak around 1.8 Å, indicating higher structural variability. In ...
	Figure 5.9: (A) Probability density plot of RMSD distribution of E2 variable region VR2 in apo (green) and glycan-bound complex (orange). (B) Probability density plot of RMSD distribution of VR3 in apo and glycan-bound states. (C) Schematic representa...
	5.9 E1–E2 binding interaction
	Earlier structural studies, including cryo-EM, have captured E1–E2 in static conformations, but molecular simulations reveal their dynamic nature and offer a better understanding of how the complex behaves in different states. Figure 5.10 illustrates ...
	The panel A shows the probability density plot of the inter-residue distance between Glu236 (E2) and Leu307 (E1), revealing a rightward shift in the distance distribution upon glycan binding. Specifically, the average distance increases from approxima...
	The panel B presents the crystal structure (PDB ID: 7T6X), where Glu655 (E2) and Leu200 (E1) are in close proximity (4.3 Å), highlighting a native E1–E2 contact at the interface.
	Panel C further supports the simulation-based observation, showing that glycan interaction leads to increased spatial separation between E1 and E2 residues compared to the apo system.
	Collectively, these results suggest that glycan engagement induces a conformational rearrangement at the E1–E2 interface, which may modulate the structural integrity or dynamics of the heterodimer.
	Post-Simulation
	Figure 5.10: (A) Probability density plot showing the distribution of Glu236–Leu307 inter-residue distances in apo and glycan-bound (complex) systems. (B) Interaction observed between Glu655 and Leu200 in the E1–E2 crystal structure (PDB: 7T6X). (C) P...
	5.10 Hydrophobic Interactions between E1 and E2
	The RMSD distributions shown in panels A and B of Figure 5.11 reveals distinct differences in the conformational dynamics of hydrophobic residues between the apo and complex states.
	For interaction study we took residues Phe167, Pro171, Phe260, Thr262, Leu270 of hydrophobic cavity of base in E2 interacts with residues Tyr299, Val310, Tyr308, Val301 of E1. In panel A, the complex state (orange) exhibits a sharp peak around 1 Å, in...
	We then took residues Leu235, Tyr282, Tyr284 of E2 stem interacting with residues Ile415, Tyr416, Pro417, His419, and Met425 of E1. The panel B shows a wider RMSD range overall, with both apo and complex states displaying multiple peaks. The apo state...
	Together, these data highlight that complex formation generally leads to a reduction in conformational variability of key hydrophobic residues, likely contributing to the structural integrity and functional relevance of the protein interface.
	In the apo system of the E1-E2 heterodimer complex as shown below in Figure 5.12, critical interactions, such as electrostatic and hydrophobic interactions, play a key role in binding and stabilizing the two proteins together. This figure illustrates ...
	Figure 5.12: 2D Interaction map depicting residue-level contacts between E1 and E2 at the interface in the apo conformation, highlighting electrostatic interactions (hydrogen bonds), and hydrophobic interactions. In the figure, red regions represent h...
	5.12 E1-E2 interaction profile in complex structure
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