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ABSTRACT

The aim of this project is to study gravity and black holes in string theory.
We investigate the low energy limit of string theory by considering the mass-
less string states and analyze the beta functions which automatically gives us
general relativity. Next we analyze tachyon and massless string states in the
formalism and compute the beta functions and hence obtain the equation of

motion of tachyon and massless field following renormalization group approach.
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Chapter 1

INTRODUCTION

Humans have always tried to understand the universe, we are always curious
about the things happening around us and this curiosity has brought us a long
way in our civilization. There are some truths of the universe that we try to
explain via numbers and mathematics. One such truth is the concept of grav-
ity. The fundamental question is why everything that goes up comes down.
Some people tried to explain these observations but the most interesting an-
swers came from Sir Issac Newton in his book Principia Mathematica, Newton
said that objects having mass attract each other and the force of attraction is
proportional to the masses and inversely proportional to the distance square
between them. This picture continued for centuries and led the foundation
for classical mechanics, however, it did not explain why there must be a force
that brings masses together and the biggest problem with Newton’s gravity was
that it didn’t go hand in hand with special relativity which was one of the most

prominent theories of the 19" century.

Einstein in the early 19" century formulated a general picture of gravity
called General Relativity, Einstein said that gravity is not just a force but is fun-
damentally the curvature of space-time due to mass and energy, this explained
everything explained by Newtonian gravity and also en-cooperated special rela-
tivity in it. Einstein’s picture is a more general picture of gravity that we follow
to date. On the other hand, the early 19" century laid the framework for a
new and mysterious branch of physics known as quantum mechanics, which re-
vealed that the universe doesn’t operate by the straightforward laws of classical
mechanics and there is more fundamental theory that describes reality, known
as Quantum Mechanics. In the second half of the 19" century, people tried
to describe all known physics in a way that was consistent with quantum me-
chanics, but unfortunately, the theory of gravity didn’t go hand in hand with

quantum mechanics.



Here comes string theory which promises to unify gravity with string theory
and to unify all the physics in the same framework. String theory is a framework
that promotes fundamental particles from being point-like (0-Dimensional) to
string-like (1-Dimensional), however, the length of fundamental strings is of the
order of I, =~ 1073*m which corresponds to the energy scale of 10°Gev which
is way beyond physics of fundamental particles are, therefore to recreate the
physics of fundamental particles as we understand them today, we focus on

massless string states and examine the low-energy effective theory.

This report attempts to regenerate the physics of gravity, given by Einstein,
using the quantum version of strings. Initially, we start with a classical string
action (Polyakov action) and look at the properties and invariances of the cor-
responding action, we see that string theory in its classical domain has a very
interesting symmetry and that is conformal symmetry. This symmetry governs
the physics of string worldsheet to a large extent. Now the next step is to quan-
tize the string, there are various procedures used to derive a quantum theory of
string from the classical theory but the most useful one from the point of view
of string theory is path integral quantization, and we will employ the same. Un-
fortunately while looking at the properties of quantum effective action (before
actually doing the actual quantization procedure) we find that the quantum
theory of strings does not respect one of the most holy classical invariances
which is the conformal invariance, this is called the conformal anomaly. The
anomaly manifests itself as the expectation value of the stress-energy tensor.
To solve this problem we shift our stress energy tensor in such a way that the

anomaly vanishes.

Next, we want to study string theory in a nontrivial background, the back-
ground we consider is string states, since we are concerned low energy limit of
string theory therefore we will only consider massless string states as back-
ground. Three massless string states arise from a closed string (Graviton,
Kalb—Ramond field, dilaton). We will look at string physics choosing these
three fields as a background. Eventually, we will analyze how solving the con-
formal anomalies that arose from the quantum version of string theory beauti-

fully led us to general relativity equation.

Our next step step would be the study of black holes, black holes are one of
the most mysterious objects in the universe, there are a lot of mysteries of black
holes that are yet unsolved, one of such mysteries is the informal loss paradox,
the information that goes inside the black hole seems to be lost. To solve this

paradox, string theory has a lot to offer, we will analyze how string theory can
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help in solving the mysteries of the universe, again to do this systematically we
would require a good understanding of the massive string states, therefore our
attempt would be to study the beta function of the massive string states and
hence the equation of motion of massive states. To do that we will develop a
formalism in which the beta function of any general tensor field could be studied,
be it massive or massless, and we will verify the formalism by calculating the

beta function of tachyon field and massless field.



Chapter 2

String Actions and invariance

This chapter is focused on introducing classical string action and analyzing the
invariances that it possesses, we will see how these invariances gives rise to

beautiful properties of stress energy tensor.

2.1 Polyakov Action

The simplest action one can write for a string propagating in D dimensional

spacetime is proportional to the area of the world-sheet swept by the propagat-

SNOC/dA

The corresponding Action will therefore be (A.1)

ing string.

1
2o/

S:

/ Py (X.X)(X.X7) — (X.X0)2 2.1)

The action is famously called Nambu-Goto Action

The factor of 2ﬂla, is a constant to make the action dimensionless, also in general

if we consider D dimensions then our ? becomes X* where = 0,1,2,...... D

and if we consider D dimensional curved spacetime then 6 in 3D spacetime

would be promoted into g"” so in general

. 0X 0X . :
X=— X'=— d XX =g,XrX"

or g0 0 In
The coordinates X* have the dimension of length, so o/ must have the dimension
of (length)?.Usually the length scale depends upon the physics of the theory
itself, but since we are dealing with quantum theory of gravity we usually
work with plank scale which is of the order of 1073*m. The Nambu Goto

action described is hard to deal with because the equation of motion would

4



involve square root and it is difficult to quantize the action involving square

root.Therefore we define an equivalent action called the Polyakov Action.

Sp

/ 2o\ 00 X" 05 XY Gy (2.2)

Here the 7,4 are the auxiliary fields introduced in our theory. It may seem that

Y

the auxiliary fields are the new degree of freedom in our theory, but actually it
turns out that they are not. Of course the string action that we have written
must not depend upon the parameters that we have chosen, so for that to hap-
pen the auxiliary field v, must transform like a second rank tensor. Consider
the reparametrization of

o — (o)

Our theory is reparametrization invariant if [8]
" " " , do¢ 0ot
XF—s XM = X Yab = Vab = 5z o Ved (2.3)
2.2 Field equation of v,, and equivalence of ac-

tions

To see the field equation of v,, we need to vary action with respect to 7, itself,
to do that we first note that the variation of determinant of any second rank

tensor is given by
07 = —77a07™ (2.4)

Now if we vary our action we obtain (see(A.2))

0S =

1
y— / o\ /767" 9, <8aX“8bX” — 5%ba‘vfﬂacx') (2.5)

Now we can extract Ty, from the definition

0S =

4ol

/ Ao\ /YT 67" (2.6)

1
Tob = Gy <8aX“0bX” - gvabécX“acX”) (2.7)

But considering least action principle the variation of the action must be zero
for the particle who is following the equation of motion.This puts a constrain
on T, which is Ty, = 0. Eq. (2.7) puts a constrains on the field X* meaning the
field cannot take any form but is constrained by the above equation. Also this
equation fixes the auxiliary field v,, and if we put the field in the action then

Polyakov Action becomes Nambu-Goto action. There are problems with

5



both the actions, Nambu-Goto Action has only the variable that we want X*’s
but it is difficult to quantize the action on the other hand Polyakov Action can
be quantized easily but for that we need to deal with extra degrees of freedom
which can be resolved if the particle follows the equation of motion or to put

it other way the energy momentum tensor must vanish.

2.3 Theory Invariances

We know that the constraint equation is given by T}, = 0 meaning there must
be four independent equations related to it (as interpreted from Eq (2.7)). But
since Ty, is symmetric so there must be only 3 independent constrain equation.
Again in classical theory the trace of Energy Momentum tensor vanishes, but
it is not necessarily true in quantum theory [1]. Consider a two dimensional
theory with action A(X,~), there are certain invariances that an action must
follow, one of such invariance is reparametrization invariance. Consider an

infinitesimal reparametrization of worldsheet coordinates as,
o* =o%+v*(0)

We know that, for reparametrization invaiance Eq (2.3) must hold true, one
can easily verify that under this transformation our theory is reparametrization

invariant. Applying the infinitesimal transformation we get
GXH = vV XM (2.8)
Similarly for the variation of metric is given by (A.3)
Vab = — (Vo + Viyu,) (2.9)

Therefore if our theory is reparametrization invariant then X* and ~,, must
satisfy the above equation under infinitesimal transformation. The total change

in the action under such infinitesimal transformation is given by

0S 0S
= 2 _ H
oS /d o (6%175%1) + 5X#6X )

When the equation of motion of the fields X* is assumed the variation of action
will be zero meaning both the terms will be individually become zero. Let us
for now focus on the first term. Using Eq (2.9) and Eq (2.6) and integrating
by parts we get

0S = !

2o

/ oV Ty,
6



For the reparametrization invariance of Polyakov action §S vanishes and

hence,
Ve, =0

We can see how reparametrization invariance led us to the fact that VT, =
0 , therefore it is the reparametrization invariance that imposes divergence-free
condition in our classical theory. Our theory is also invariant in another class
of transformation and this is something that we do not demand it pops out
automatically,the transformation is called Weyl Transformation. Weyl trans-
formation is the transformation of the metric, basically it is the local rescaling

of the metric conserving angles.

5'.)/ab = (5¢(O’)’yab
To obtain this kind of transformation consider the transformation of metric as,

o(o) ¢

7;b =€ Yab det(%/zb) = ’Y/ =¢’

Therefore,
\/?/y/ab — ﬁ,}/ab

which makes our polyakov action invariant with respect to weyl transformation.

If our action has this invariance then,

1

1
_ 2 ab __
05 = drad /d o/ TadV" =

Y

/d2aﬁTab7ab5¢(a)
For theory invariance .5 = 0 and for that
Ty =T =0

Hence the immediate consequence of weyl invariance is that the trace of the
Energy Momentum tensor is zero. But unfortunately we cannot maintain this

invariance in quantum theory of strings.

2.4 Conformal Gauge

Let us now coordinate transform to a gauge which is suitable for us. From
reparametrization invariance of polyakov action we can choose two parameters
(0, 7) by our convenience keeping the action invariant, therefore we can use
that to transform ourselves into a coordinate system in which the metric 7,

has only one independent parameter, a convenient choice would be conformal



gauge metric.

Yab = e¢(a)5ab

If we choose to work with complex variables z in place of real variables (z =
o+ir z = o —i7). The metric, connection coefficients and the curvature

scalar is given by,

0 2 i}
ab z z — -9
= I'* =0,0 T2 =0; R=—4e7%0,0;
! (2e¢ 0 ) == 00 15 ‘ ¢

(2.10)
We will be using conformal gauge for our calculations from now on, for more
detailed calculations see (A.4)



Chapter 3
Quantum Theory of Strings

In this chapter we will look at the quantum version of string theory. We will
quantize the classical action and we will look at the properties of the quantum
effective action starting from a general action A(X,~y) after analyzing some

properties we will do it for specific actions.|1]

3.1 The problem with Quantum Theory

Now we move on to Quantum mechanical path integral and discuss the effect
of the conformal transformation on it. The field integral over the field X’s gives

the partition function of the system represented as,
Z[J] = / D[X]e  AENHIX = =W (3.1)

Here we only integrate over the X’s and take the worldsheet metric to be fixed(
but arbitrary). The effective action W, depends upon ~ only as we have in-
tegrated out X’s. Since we want our physical quantities to be invariant under
reparametrization therefore we demand that Z[J] and hence W{[y| to be in-
variant under reparametrization, for that we want D[X] and A(X,~) to be
invariant under reparametrization. We now need an inner product that we can
use to measure distances and hence volumes in the function space of X’s so
that we can carry out our path integral, but we must do it in reparametrization
invariant way, to do it in reparametrization invariant way from the point of
view of the worldsheet, we would inevitably need the two dimensional metric
v to define the inner product metric. When we work with polyakov action a

natural choice of inner product would be

15X = / Po/7 (05X 5X" g (3.2)



We are writing 4 to distinguish with the determinant of the conformal gauge
metric which we will be denoting by ~ for notational consistency. This is
because [ dzam is invariant with a change in parameter o. For now let us
discuss some general properties of Quantum effective action. Since the effective

action W depends upon two dimensional metric therefore
oW
o 2 lab
W= [ o

Reparametrization invariance of W demands us that the variation of quantum

effective action with respect to the metric to be zero % = 0, therefore us-

ing Eq (2.9) for the variation of metric under reparametrization in the above

/ d’o (;:Wb (V') =0

Performing integration by parts in conformal gauge we get,

(S () () () o

This equation is the classical analogue of the conservation of the stress

equation we get,

energy tensor the only difference is that now the action is the new effective
action W. Also, the variation of the effective action W with the two-dimensional
action plays the role of the stress energy / energy momentum tensor. We can
argue that the right-hand side of the above equation is the z-th derivative of
the quantum expectation value of the zz component of the energy momentum
tensor. The partition function Eq (3.1) depends on v in two ways through
the path integral measure X’s and trough the classical action A(X,~v). The
variation of the classical action reduces the factor of the energy momentum
tensor to the path integral,which, when divided by Z, gives us the expectation

value.

Am oW
ﬁéfyab

But the question is that if any unwanted term arise from the variation of

= (Tw) (3.4)

the path integral measure. From equation Eq (3.2) we can say that the path
integral measure only depends upon the determinant of the two dimensional

metric. Variation of the determinant of a matric is given by,

57 = _,Y’Yabé'yab
= — (V722077 4+ 1722077 + 77207 + ¥72:077)
But since 7., and vz5 are zero in the conformal gauge, the first-order variation

10



of the determinant with respect to v., and ~s; is zero. Therefore, the path
integral measure is invariant under variation and hence no extra term arises

due to the variation of the path integral measure hence we can write,

v: (%gw) -V (T (3.5)

Now let us analyze the significance of the right-hand side of equation (3.3),

the right hand side can be explicitly written as,

_L(a78Z 98z oW
2\ Z ov2  Z 6y ) 6o

Hence with the similar argument as before that the variation of the parti-
tion function brings down the energy momentum tensor and the division with
the partition function gives us the expectation value, but now the metric v* in
front gives us the trace of the energy momentum tensor. As we have seen be-
fore that the trace of the Energy-Momentum tensor vanishes during conformal
transformation, but Eq (3.3) suggests that the variation of the effective action
with respect to ¢ is not in general zero telling us that the conformal transfor-
mations are in general anomalous in 2-D field theories.Also using Eq (3.3) we
can get the form of the anomalous form of the effective action itself. Similarly
the left hand side of the Eq (3.3) can be interpreted as V. of something we
assume that it is local in the worldsheet. Since it is local in the worldsheet
therefore we need to construct something that is made up of ¥?*. The right
hand side is a tensor of ¢, even under conformal reparametrization and is of
scaling dimension one. The only local function of v,, that has these conformal
properties is the zth derivative of scalar curvature R. The assumption of local-
ity and with dimensional analysis we can therefore tell that the left hand side
of the Eq (3.3) must be of the form, [4]

1 oW A

We cannot determine the constant of proportionality A by general arguments
as it is the characteristics of the theory. Integrating both sides with respect to

z we get

ow A

5o~ ap VTR

p? is the constant of integration. During a conformal transformation v, =

e®yq and in conformal gauge the 7, is chosen to be flat metric. We can see

11



that the equation is satisfied by the form of W given below (See (B.2))

_i 2 ~ 1~ab 2 ¢
W= o [ PovA (57000 + i (3.7)

The assumption that the anomaly is local has enabled us to characterize
the conformally non invariant part of the quantum effective action by one di-
mensionless parameter A\ and a dimensional parameter . The term in W that

depends upon ¢ is called Liouville action.

3.2 Operator Product Expansion And Virasoro

algebra
From (3.3) , (3.6) and (3.5) we can write,
A
—V.R = ? T,
487Tv VAT=)

Since the partial derivative of (T,) with respect to z is non zero (due to weyl
anomaly) so the vacuum expectation value of T, is not analytic. But it is
possible to make the stress energy tensor analytic, by improving stress energy
tensor. In conformal gauge the derivative of curvature tensor becomes (See
(B.3))

V.R = V*(=20.0.6 + 0.60.0) (3.8)

Therefore,

A
V(=2 — VA (T,
1V (-20.0.0+ 0.00.0) = V* (IL.)

If we redefine the zz component of stress energy tensor as,

T =Tt 13- (2026 — (00)?) (39
T

Here TP, is called the improved stress energy tensor. We first note that the
above equation is valid for a specific metric, the equation holds for any kind of
metric, and we can do variation with respect to metric The second variation
of the W with respect to v gives us the expectation value of two stress energy
tensors. Also we would have the variation of the covariant derivative and the
Ricci scalar which would give us other terms. Say that the variation with
respect to 7., is being done at a point w which is different from which the

original T, (z) was evaluated, then the two point function (7270, ) turns out

ZZTww

12



to be [7]

’Ll)’UJ>
1 5+ + regular terms..  (3.10)

<TT >: (z —w)

ZzZT ww

A 1 O O (T2
) (T8

(z —w) (z —w)

The above expression looks similar to the OPE of the Energy-Momentum
tensor in conformal field theory,therefore it can be used to generate virasoro

algebra, to do that we can Laurent expand T°(z).Appendix (B.4)

+o0 1

T(z) = Zz_”_2Ln L, = 37 dzz"T,.(2) (3.11)
A
[Lin, L] = (m —n) Ly + E(m — M)0pm,—n (3.12)

Therefore it turns out that the operators L, satisfies the Virasoro Alge-
bra.Similarly the another independent component of stress energy tensor 7%
(which can be defined using another set of equations involving the variation
of w with 7z;) can be defined with another set of operators I~/n also satisfies
virasoro algebra among themselves but commute with L,. Due to conformal
anomalies the trace in general of the stress energy tensor fails to become zero,
in spite of that if the anomaly has a local form which can be characterized
by a number A the expectation value of the independent component of energy
momentum tensor behaves like analytic objects. The trace in general which
was non vanishing as given by Eq (3.3) and its interpretations but if we shift
our stress energy tensor to the form given by Eq (3.9) then the V* (T2 ) van-
ishes which means vanishing of the trace of the stress energy tensor as given by
Eq (3.3) and its interpretation of trace and expectation value of stress energy
tensor. The remaining components of the energy momentum tensor 7., and
T%; vanishing (Coming from reparametrization invariance which is still holy in
quantum theory) gives us other remaining constraint equation, but if it is so
L, and L,, must be zero as interpreted from Eq (3.11) quantum mechanically
it means that the expectation value of the operators must be zero, it therefore
means that L, and L, acting on any state must annihilates the state. But the

algebra does not allows us to do so

(0] Lo alli) = (m = m) (8] L 1) + 2 (0 = 1) —a{15]5)

A 2
= S = 1)),

The left hand side of the equation is zero for any value of m and n but the

0

right hand side cannot be satisfied for any value of morn therefore we have to

13



demand the condition that,
f/m‘@b> =0= im\@ only for m >1

Therefore we say that the physical states are those states which are annihilated
by L, and L,, with m > 0, therefore the expectation value of all Virasoro
generators (except Ly and f}o) for all the physical states are zero, therefore the
expectation value of the analytic and the anti analytic component of the energy
momentum tensor is zero. Hence even if there are anomalies they do not prove
to be complete disaster and there are other things to compensate its effect and
in all the cases we come up with will keep the physics of 2-D conformal field

theory intact.

3.3 Renormalizable sigma model

In this section we will be looking how the string couples with other strings
and will typically looking at the interaction they possesses, also we will be
looking at how string couples with the background, since most of the string
states are massive and the masses of these states are of the order of 10* Gev

0~34m therefore in the low energy limit only

corresponding to plank length [, = 1
massless string states would be present, if we consider closed strings there are
three massless string states Graviton (described by spacetime field g, ), Kalb-
Ramond field (described by an antisymmetric tensor B, ), Dilaton (described
by dilaton field ®). Therefore studying low energy limit of string theory would
be equivalent to studying the behavior of string in these background. The
polyakov action is power counting renormalizable since the constant o’ has the

2 and therefore é which acts as a coupling constant would

dimension of [L]
be of dimension [M]?, also the action is weyl invariant and reparametrization
invariant, therefore the terms that we add in our action must have all these

properties.

3.3.1 Antisymmetric Action

We can add a term in the polyakov action which has the properties as de-
scribed above, one of such terms is given by Eq (3.13), B, is antisymmetric in

spacetime indices.
1 a v
Sig = Too /d20'6 0. X 0, X B, (3.13)

b is a tensor den-

Where €® is two dimensional Levi-Ci-vita tensor. Since €®
sity which will work in the same way as the factor /7 for making the theory
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reparametrization invariant, the €? is used in place of \/ﬁvab because of the an-
tisymmeteric nature of B,,. We can think B, as analogous to gauge potential
A, in electromagnetism,and the action Ssg tells us how string is electrically
charged under the influence of the background field B,,, See (B.5). Similarly
to the one form A, the two form B, the action is invariant under the trans-

formation,
B, — B, + (0,A, — 0,A\,) (3.14)

Similar to F,, in electromagnetism we can construct H,,, by anti symmetrizing

it and using the antisymmetric property of B,

H,,, = 0By = 0.8y, + 0,B,, + 0,B,, (3.15)

3.3.2 Dilaton Action

There is another reparametrization invariant terms that we can add in our

theory,
1
Sp = o / d*o\/yRP(X) (3.16)

This action vanishes in flat worldsheet metric (since R = 0 in flat worldsheet
metric), second the action that we have written is not weyl invariant. Since we
want our classical theory to be weyl invariant, therefore we want Sp to have
non trivial contributions only in higher orders of the perturbation theory as
compared to the other terms. We want the tree level weyl variation caused by
this term to cancel out the one loop weyl anomalies which arises from other
terms and so on. Since, ®(X) is dimensionless in worldsheet point of view
therefore we do not need o’ to make action dimensionless. Since o/ is loop
counting parameter of our theory and higher order of o/ means higher loop
diagrams. Therefore this suggests that Sp first contributes on the one loop level
as compared to classical level. There are no other reparametrization invariant
terms of dimension two that we can add to our action. In bosonic string theory
vy Buw, ®(X) corresponds to vacuum expectation value
of modes of string of graviton, antisymmetric tensor and dilaton.

the coupling function GG

3.4 Background expansion And Riemann Nor-

mal Coordinates

We consider two dimensional field theory with classical actions which included

three actions described before,

A[X,y]=Sp+ Sas+ Sp
15



This approach facilitates the study of string theory in non-trivial background
fields. Since the quantities, G, (X), B, (X) and ®(X) transforms covariantly
under general spacetime coordinate transformation, also as we have seen before
Sas is invariant to gauge transformation of the B, . Therefore it is important
that the pertubative calculations are performed in a way that explicitly repre-
sents the symmetries of the spacetime. We can achieve this using a trick called
covariant background field expansion. In this technique we separate the fields

into Classical Background part and Quantum Part.

X*(0) = Xg (o) + 7" (0)

And we shift the path integral to be over the quantum fields 7* only,
the background field lives in the 2-Dimensional worldsheet and not in the
D-dimensional spacetime, doing so we define the background field generating

functional as,

—A[Xo+7|—A[Xo]— [ d20—2A _7h(o
01X, ) = [ Dlgge” AN

The next step is to expand the classical action in terms of the quantum field
7+, and derive the Feynman rules for the diagrams. Q[Xy, v] can be viewed as a
generating functional for "loop diagrams” with all external legs amputated. To
obtain the explicit form of the Q[Xy, 7] we can expand A[Xy+7,~] around 7 the
background field expansion will eventually led us to a well defined perturbation
theory, and would give us correct results but since the quantum field 7# is
defined as a coordinate difference in spacetime coordinate and therefore does not
transform as a vector in general (Transformation properties of 7 is restricted by
that of X* and X['). Therefore we need to do a little work before we proceed
further. We need to replace 7* with an integration variable that transforms
like a vector under general spacetime coordinate transformation. The plan is
to expand 7#(c) as a power series of n* which transforms covariantly under
reparametrization of the worldsheet coordinates. The tangent vector to the
geodesic M(t) that connects X} and X} + 7 would contain all the information

of the coordinate difference and also transforms like a vector, so tangent vector
would do the job perfectly.(See (B.6) )

3.5 Covariant Expansion of Effective Action

Knowing Eq (B.14) we can expand various terms to do the pertubative calcu-
lations. Let us start by expanding the spacetime metric g, the antisymmetric

tensor B,,, and the dilaton field ®, then we will expand the corresponding
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actions.Expanding the polyakov action ( See (B.8),(B.7))

1
Sp(X§ +7") = Sp(Xo) + e /dzaﬁ’Yabgw(XO)aanvbny
* / /™ (9w V' Vil + Ruapy (X0)0a X6 X5 11°0°)
R / d*0 /77" Ry (X0)0u X Vi 01
1270/ /dggﬁ’yabRuaﬁV(XO)VQT/MVan’r]a'I]B. (317)

Similarly, we want to expand the antisymmetric action Sag in terms of
n"(B.9),

SAs(Xg +7TM) = SAs(Xg) + /dzdﬁab

1
ool {BwﬁaX{ben” + §VaBuuaaab77a:|

1
+ /d206ab4ﬂa/ |:B/“,Va7/]'MVb77'u + QVQByyaanvbnuna}

+ aBu

1
5 |:VQVBBHV + BNPRZﬁV + sz/Rp :| aaXéL&ngnanIB
(3.18)

Now let us also expand the dilaton action given by Eq (3.16), since the dilaton
coupling function ®(X) is scalar in spacetime, keeping this in mind we expand
Eq (B.11) for a scalar,

1
®(Xo +n) = P(Xo) + Vi, ®(Xo)n"" + 5V, Vi, B(Xo)n" '™ (3.19)

The dilation action Eq (3.16) can now be expanded using Eq (3.19),

1 1
Sp(Xy +7) = E/dZUﬁRq)(XO)%—E/dzaﬁRVa(I)(Xo)na

1
A / d*o\/YRV 4V 3®(X0)n*n” (3.20)

The term which involves two covariant derivative of quantum field n* in Eq (3.17)
is the kinetic term of the theory, and the propagator which is derived from the
kinetic term will be non standard as it involves the spacetime metric g,,,, which
is one of the coupling function of our theory. To solve this issue we define an
n-bein (also called vielbein) ez which is like a matrix which relates the vectors
in curved space n* to the local flat Lorentz frames therefore dealing with the
curved space becomes equivalent to dealing with the local flatness, which makes
the kinetic term diagonal in 7’ coordinate system. Thus the n‘and the covariant

derivative of 1’ is defined as,
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N =en" Van' = 0un' + w0 X{1

Therefore,
G V"V = 6,V 'V = Vo' Vyn' (3.21)

Our theory remains invariant under local Lorentz transformations which is
SO(D — 1,1) symmetry, this symmetry is an internal symmetry as it doesn’t
directly act on spacetime X[ itself but acts on the internal degrees of freedom
(n'). The field AY = w(X()0,X( transforms like a Yang-Mill gauge poten-
tial under local Lorentz transformation. However we need to break the gauge
symmetry in order to define a propagator because without breaking (or fixing)
a gauge there are redundant degrees of freedom of the fields ° which makes
the propagators for the field ill defined. Although we break the gauge symme-
try to ensure a well defined propagator we maintain enough gauge covariance
to ensure that the theory behaves consistently under gauge transformations of
background fields, it makes our calculations simpler because if we demand that
the background fields are gauge covariant then the diagrams involving gauge
potential must combine is such a way that the resulting expression is gauge
covariant the combination that doesn’t respect this will give vanishing result,
this is because the background field is gauge covariant and the fluctuations
combining with it must also be gauge covariant. Therefore it is a good idea
to work with 7’ local Lorentz frames as it simplifies the propagator and also
makes our calculations simpler. To do so we need to change variables in the
integral and integrate over 7’, since the path integral measure is defined in
reparametrization invariant way therefore the change in variables would not
effect the path integral measure therefore when we change 7 — 1 doesn’t
effect it. Before proceeding further we modify the form of Eq (3.18) and write
its quadratic term in terms of the antisymmetric tensor field strength H,,, as
defined in Eq (3.15), we want to do so because the gauge invariance Eq (3.14)
the physics of antisymmetric field only depends on its field strength, therefore

any term except H,,,’s would vanish.

1 1
47‘_&, /dZO'Gab |:HN043 (Xo)aaXélVbnan + évaHyVﬁ(XO)aanangnanﬁ
(3.22)

3.6 Omne Loop Calculation of Weyl Anomaly

We will calculate one loop weyl anomaly of the sigma model using the formalism
that we have developed earlier called the covariant background field expansion,

after all to calculate weyl anomaly we already say that we need to calculate the
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variation of metric with the scaling factor ¢ of the theory. Using Eq (3.3) and

Combining this with Eq (3.4) the conservation equation takes beautiful form
Vi T:)+Vi(T..) =0 (3.23)

If we assume that (77,,) is finite and well defined and somehow if we could find
it then Eq (3.23) could be used to find (T%,) which precisely gives us the weyl
anomaly of the sigma model. We begin to do our one loop calculations, for
simplicity we consider flat worldsheet metric and the curvature of worldsheet
will be taken care later. It is convenient to work with light cone coordinates
and momentum space for our calculations. In momentum space Eq (3.24) takes

the form,
4+ (T-4) +q-(T41) =0 (3.24)

3.7 Contribution from Sp

R Rt (X0)0u X 0, X8 o

[+q
Figure 3.1: Feynman diagram representing the contribution to 7'

First we want to compute the contribution to (7, ,) that comes from Sp.
The 0,.n'0,n' comes from an insertion of 7., of course we would expect
other terms also since stress energy tensor is the variation of the action with
respect to the metric therefore it would have remaining terms coming from
9w Vo' Vyn” = Van'Vyn' and the terms coming from the Riemann tensor see
Eq (3.17), however the remaining terms from V,7'V,n' the SO(D—1, 1) invari-
ant gauge potential does not contribute to insertion because the because it does
not give us gauge covariant terms and the second term in the insertion would
be thrown away because two scalar curvature one from the insertion and the
other from the T’ ; in the left and other from Sp on the right can be neglected
for small quantum fluctuations. We insert 7', , on the left with a momentum
g and the momentum is carried away by the background fields represented by
double lines in the right, propagated by the propagator of n*. The only interac-
tion between X, and 7' is given by the term Ry, (X0)0, X, 0, X§v*nn*. The
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contribution of the diagram would be given by

1 2 l+(l++Q+) waa yvv
37 | g RuwdeXs0 X5 ) (3.25)

Solving it and putting it in Eq (3.24)

(T-4) = = (T = TR (X0 XE0X; (3.26)
This implies that the trace of the stress energy tensor is non zero in quantum
theory even though we start with a conformally invariant action classically and
the anomaly depends upon the curvature of spacetime, our goal now is to
remove the conformal anomaly by adjusting the spacetime metric g,,(Xo) in
such a way that the Ricci tensor R, (X,) vanishes therefore making the trace
of stress energy tensor zero. But before doing that we need to find the full form
of anomaly because this anomaly is only because of the polyakov action. The
anomaly has the power of o in the front of it, this is because the insertion
of Energy-Momentum tensor and the interaction term gives a factor of é in
the front and the propagator gives a factor of o/ there are two propagators
therefore we have a factor of o in the front. This suggests o’ to be a loop
counting parameter as in tree level T}, has a factor of < in the front.

a/

3.8 Contributions from Syg

We will have contributions from S,g also in the conformal anomaly, Sag will

contribute two diagrams.
O4n'dsn' 167, H s Oa X B O X Y01

Figure 3.2: First contribution of S4g in one loop anomaly.

€ H,,;;0, X5 0pmn?
O ' oL’
€ H ;0. X5 Opminy
Figure 3.3: Second contribution of S4¢ in one loop anomaly.
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The contribution of the first diagram Fig:(3.2) is similar to Eq (3.25) and

the calculations are same therefore we can directly write the result as [1],

1
(T_}) = gvAHW(XO)aaxgabxgeab (3.27)
Similarly the contribution from second diagram Fig:(3.3) is given by|[1],

1

—EHW(XO)HQU(XO)aaxg‘aaxg (3.28)

(1) =

3.9 Contribution from Dilaton Coupling

We have included the contribution from Sp and Sag, now its the turn of Sp.
Initially we calculated the contributions due spacetime background fields on
a flat worldsheet, but the dilaton action involves R which is Ricci Scalar on
2-D worldsheet , we can still calculate the contribution of Sp to weyl anomaly
without going in the curved worldsheet, even though dilaton coupling itself
vanishes in the flat worldsheet limit, but the variation of it with respect to
metric will not, meaning that even though we have added dilaton coupling in
curved worldsheet still the stress energy tensor on a flat metric would change
due to dilaton coupling. We can find that the shift in the stress energy tensor
is of the form (B.11),

T4, = (0a0y — 000) B(X) (3.29)

The off diagonal component of stress energy tensor,
¢, =0d(X) (3.30)

We want the tree level non vanishing part of the trace of the stress energy
tensor will cancel one loop level weyl anomalies arising from Polyakov action
and antisymmetric action. We simply need to calculate the classical trace
corresponding to Eq (3.30) which cancels the weyl anomaly arising from one

loop contribution of Polyakov action and antisymmetric action.
0 (Xy) = OX{ 0,P(Xo) + 0, X 0° X[ 0,,0,P(X). (3.31)

The terms are not covariant from the point of view of the spacetime. Now
we rewrite this expression using the classical equation of motion of X', the

classical equation of motion is therefore,

1
O'XY =% ,0,X50° X)) — éﬂgﬂaaxgaaxge“b (3.32)
Here O’ denotes d’Alembertian operator in spacetime indices. Plugging
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Eq (3.32) into Eq (3.31) we get spacetime covariant results.
1
00 =V V,0(X0)d. X5 0" XY — 5V'Acb(XO)HW(XO)aa)(g‘abxgeab (3.33)

Therefore the trace of the full energy momentum tensor is the sum of all the
three contributions,

1 1
(T_,) = ZﬁfyﬁaXé‘@ngﬁW“b + Zﬁﬁaaxgabxgeab (3.34)
where .
v = R — S H3, +2V,9,@ (3.35)
1
i = 5V oy = VIOH,, (3.36)
The only way (T_,) can vanish is when 8$, and $/7, individually vanish.

This will ensure that there is no trace anomaly in the quantum theory. Hence,

we set ny =0= /f’; The first condition can be written as
1 Lie 1 2 2
R, — égm,R =1 Hp, — EgWH -2V, V,® + 29, V°® (3.37)

Which is the standard Einstein’s equation of General Relativity. The right hand
side of the above equation is sourced by the dilaton and Kalb Ramond fields. If
we just consider the background of gravitons, the above equation would reduce
to the Einstein’s equation in the vacuum. The above derivation shows that

string can only propagate in those spacetime which satisfy Einstein’s equation.

3.10 The complete story

Now we need to generalize the above concept to calculate the trace of stress
energy tensor in the curved metric, as we have evaluated it earlier in the flat
worldsheet metric. It turns out that we can get a missing piece of the T, which
comes by considering any general curved worldsheet by simply calculating the
two point function of the stress energy tensor in the flat worldsheet. Since we
have used the reparametrization invariance property of the theory to fix the
metric to the form

,yab = 6¢(5ab
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Ay Oy’ Ay Oy1p

l+q

Figure 3.4: Feynman diagram for dilaton coupling

The trace of the stress energy tensor must vanish regardless of the scaling factor
¢. Expanding (T, (¢)) we get

ST_)

oT) 1
2 542

09

¢2_|_...
$=0

(T_4(9)) = (T-1(0)) + ¢+

$=0

The minimum requirement so that the overall trace of the stress energy tensor
is zero in any arbitrary metric is that the first variation of the stress energy

tensor must be zero therefore,

J
06(0)

=0 (3.38)
¢»=0

(T4(0)) cos,,

Evaluating the above equation on the flat worldsheet we obtain,

J
3¢(o)

The two point function in Eq (3.39) must vanish at the classical level if the

(3.39)

<T*+(O)>e¢6ab =——(I"1(o)T_1(0))

$=0

theory never had weyl anomaly but since our theory has weyl anomaly therefore
it will contribute at classical level to cancel the one loop anomaly generated from
other action contribution. At the classical level the only non vanishing two point
function of the stress energy tensor is (7% 7 ;) and (I _T__). Therefore only
evaluating one diagram is enough, which is given in Fig (3.10) The contributions

of the diagram is given by,
0 +qp)?
Ty ()T _op [l e 3.40
(T (@) (- s (3.40)

The integral could be solved and is given by

(T ()T 4 (—q)) = ———— (3.41)
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Now we can use the conservation equation to obtain,

wD

(Tt (@) T4 (—0)) = =440~ (3.42)

Since the two point function given by Eq (3.42) is non zero therefore anomaly
is present in our theory. If we transform back to the coordinate space we will
find that the product ¢, ¢_ is the D’Alembertian operator. Therefore if we take
the Fourier transform of the Eq (3.42) then we would obtain

(T4 (0)T-4(0)) = 3552(0) (3.43)
D
T == 3.44
(T_+) . 30? (3.44)
Therefore,
D
(T—t)eos,, = 5 VIR (3.45)

This contribution to the trace anomaly is a little bit different from that
of the Polyakov and the antisymmetric contribution. It is proportional to the
2-Dimensional scalar curvature of the worldsheet which looks similar to the

dilaton coupling. We write this in terms of

<T*+>e¢5ab = —fs <i\/f_y(2)R>

Where fe = % only depends upon the spacetime dimension. So far we have
obtained the one loop diagram considering the curvature of worldsheet which

0. If we calculate the two loop diagram we would obtain

is of the order of o
Be up to the order of o/. At the two loop level the coupling function like H,,,
g and @ comes into picture. If we go to the two loop the interaction vertices
would now be given by Sp and Ssg. The calculations are much more involved
therefore we avoid to do this at this stage, however the momentum structure of
the diagrams would turn out to be the same i.e. qi /q_, but now the coefficients
depends upon the spacetime coupling functions. We will find terms involving
R and H? after doing the loop integral and making the use of the conservation
of stress energy tensor given by Eq (3.23). Also at the order of o’ the dilaton
action would also have some contribution because while considering the two
point function of the stress energy tensor we considered it to be classically
weyl invariant, but there is an explicit contribution of the dilaton term given
by Eq (3.30). Since the Dilaton action has an extra power of o/ in the front
therefore the stress energy tensor derived from the dilaton action would also

have an extra power of o’ in the front therefore the dilaton contribution in first
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order in ' can be written in two ways

1. Tree level two point function of 79 4 with itself

2. One loop diagram with one insertion of 7_ and other T¢ n

Ayl Oy ViV;® 017 0,1p

Figure 3.5: One-loop diagram giving dilaton contribution to 5%.

The only one loop diagram that is relevant for fe is Fig: (3.5). The left
hand side is obviously the insertion of the 7', coming from the Sp and Syugs
and the right hand side is the dilation’s contribution of the stress energy tensor
arising from the expansion of the dilaton action given by Eq (3.20). Following

the similar calculations to obtain Eq (3.42) the contribution of this diagram is

given by,
72 7Tq§r
(T4 ()T 4(=q)) = 'V q’g
Therefore,
(T_+(0)T?(0)) = —7ma/V*@05*(0) (3.46)
V,e0X{ V,0Xy

Figure 3.6: Tree diagram contribution for [g

The other diagram contributing to 84 is the one loop diagram which is given
by Fig: (3.6). The propagator cancels one of the D’ Alembertian and contributes
a factor of o/. We convert the D’Alembertian as the momenta in the momentum
space, also the V, is the derivative with respect to spacetime fields therefore
the tree level contribution is given by,

ng

V,oV,o (Q+q—)(Q+q_)(—27T0/)gq

2

= —md/(V®)’q.q-

Re converting into the position space we finally obtain

(T, (0)T?,(0)) = 7d/(V®)’06°(0) (3.47)
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Combining all the pieces together we would finally obtain the Ss till the
order of o b , =
fo =5+ % — R+ T3 +4(VO)? —4v?0 (3.48)

we have obtained s to the order of o/ but ¢ and B are evaluated up
to order o/, we can however add them because the coefficients which are the
coupling functions of the theory have been calculated till same order. In 2-D
sigma models there are only three independent structures of dimension two are

present and fg , 3¢ and B are the objects that multiply these structure.

3.11 Consistency of Weyl Anomaly Conditions

Since we want weyl anomaly to vanish therefore we want BEV , 5;‘; and [ to
vanish. The first term in the Eq (3.48) is non zero even in flat spacetime be-
cause it only depends upon the spacetime dimensions D and since string theory
is defined in 26 Dimensional flat spacetime therefore we want the fist term of
Be to vanish somehow. It is canceled if we take into account conformal ghost
fields, which comes into picture when we fix the 2 — D metric. They contribute
a constant term to S which is given by —%6 which exactly removes the constant
term in the Eq (3.48) if we choose our spacetime dimensions to be 26. Now we
removed the constant term from the weyl anomaly coefficients, and we want
to remove the other terms also, we want a specific configuration of spacetime
field g,,, the antisymmetric field H,, and dilaton field ® so that all the terms

vanishes.

Now if we rearrange the weyl anomaly coefficients given by Eq (3.36) Eq (3.35)
and Eq (3.48) after setting them to zero (for weyl anomaly to vanish in 2-D

curved worldsheet) we get

1 1 1
Ry = 59 R = Z[Hlfy — EgWHz] + 29, (V®)? (3.49)
V*Hy,, = 2V ®H,, (3.50)

1
V20 — 2(VO)? = —EHQ (3.51)

Eq (3.49) is a familiar equation which is the Einstein’s equation of gravity,
implying that if we want the weyl anomaly to vanish then g,, must have cer-
tain restrictions meaning only those values of g,, are allowed which satisfies
Einstein’s General relativity equation. The other two equation are similarly
restrictions of B, and @ field or putting other way these are the equations of

motion of B, and ® fields. The spacetime stress-energy tensor is given by the
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right hand side of Eq (3.49)

1
_[Hiu_

1
4 _guqu] + 2guu(vq>)2 (352)

O = 5

Of course it is a symmetric tensor and since the L.H.S of Eq (3.49) is conserved
therefore the right hand side must also be conserved. For general H,,, and ®
, ©,, given by Eq (3.52) has no reason to be conserved but since the L.H.S of
the Eq (3.49) is conserved V#(R,, — %gw,R) = 0 therefore V*©,, = 0. We can
define a D-Dimensional covariant action whose variation gives us the equation
of motion given by Eq (3.49) Eq (3.50) and Eq (3.51)

1
Sp = / dP X \/ge *® [R +4(VO)? - EHQ} (3.53)
We can do a weyl transformation on the spacetime metric and write Eq (3.53)
in a more standard form to obtain (See Appendix (B.13))

Sp = /dDX\/_[R - —2 V?I>)2 - 1—12(5—153’2?[2} (3.54)

Looking at the Eq (3.54), the first term reminds of the Einstein-Hilbert action
followed by the second term which looks like the kinetic term for the Dilaton
field, and finally the third term is similar to the maxwell like kinetic term for

antisymmetric B field with the coupling constant that depends to the dilaton
field.

We finally derived an action whose variation with respect to the fields
Guv, B and @ gives rise to the weyl anomaly condition. Of course all the work
done here is up to the order of o/, but the question is are the weyl anomaly
condition true for all order in o/, we exactly don’t know the complete answer
but it has been consistent till three loops, and based on that it is generally be-
lieved that there exists a master action which can give rise to the weyl anomaly
coefficients in the power series of /. Of course the action depends upon these
spacetime function and their higher derivatives and the higher order terms
gives rise to the short distance corrections to the Einstein’s equation and the

equations of motion of the dilaton and the antisymmetric fields.
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Chapter 4

Black Holes and String Theory

4.1 Black Hole information Loss Paradox

Analyzing quantum mechanics of gravitational fields can be excellently done
using black holes. While quantizing the standard G.R action one runs into a
problem, the problem is that the theory is non-renormalizable, beyond the one
loop level, to consider the matter fields in general we need to include the one-
loop corrections. Another complication with the theory is that non rotating and

uncharged black holes with mass M emit radiation beyond the temperature

1
T —
STGM

This effect is called Hawking effect. Any quantum mechanical object or a quan-
tum state that goes inside the black hole cannot escape it. The information
about the object is inaccessible inside the event horizon, therefore we can say
that for an observer point of view who is outside the event horizon of the black
hole a pure quantum mechanical state evolves into a mixed state. This itself is
not a paradox because the observer is outside the black hole and he/she do not
choose to obtain all the information about the original quantum state but in
principle observer can go inside the black hole to obtain all the information that
is required to reconstruct the original quantum state. However if an observer
chooses to do so it eventually reaches a spacetime singularity which is guaran-
teed inside the event horizon of the black hole by the virtue of the singularity

theorems, which is satisfied if
Ryl >0
Where [¢ are null or time-like vectors and

1
Rab = 8w (Tab - §Tgab>
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These conditions are satisfied in general relativity provided String energy condi-
tion is satisfied meaning that condition that the matter must gravitate towards

matter and the cosmological constant is either zero or negative.

As the black hole radiates the black hole will loose its mass and as a result
the temperature of black hole also increases, which leads to black hole loosing
more mass because the energy of radiation £ oc T* this process continues till
the black hole completely evaporates or due to some phenomenon the radiation
turns off. If the black hole evaporates the information inside the black hole is
lost, therefore the incoming pure state has actually been converted into a mixed
state, meaning that the remaining information that went inside the black hole
in order to reconstruct the initial state cannot be obtained (not even in prin-
ciple). But according to quantum mechanics a pure state cannot evolve into a
mixed state, this is because evolution of a state is described by a unitary opera-
tor (Time evolution operator must be unitary for probability to be conserved).
Unitary evolution is deterministic and reversible Tr(p?) = 1, meaning that we
must be able to reconstruct the original quantum state from the evolved one.
Therefore the evolution of a pure state into mixed state is not possible due to
loss of information as mixed represents the lack of the complete information
Tr(p*) < 1. This leads to something called Black hole information loss para-
dox, which arises because of information loss as purely thermal radiation does

not contain any information.

A possible scenario could be that the black hole stops radiating the radiation
after certain time, for that the relation between the mass of the black hole and
the Hawking temperature must be modified. One of such situations could arise
when the temperatures reaches its maximum and eventually decreases to zero
as the mass decreases stopping the evaporation. The remanent object still may
have an event horizon and the necessary information in order to reconstruct

the original state could be hidden inside the event horizon.

Another possibility could be that the radiation coming out of black hole
is not thermal radiation, but such a radiation that could potentially carry the
initial state of the system and it appears to be thermal in the certain limits
in which we study these radiations. The key difference between black hole
and any other ordinary physical system emitting thermal radiation for example
sun is that the quantum state of the system (sun) is accessible and is not
destroyed meaning even though the radiation coming out of the system (sun)
is purely thermal but the information about the sun can be further retraced

by observation of the system (sun) therefore leading to no paradoxes, but in
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contrast black holes gets eventually evaporated and this leads to the loss of
information contained inside black holes. Small black holes makes the paradox
even worse, the entropy of a black hole is related to the surface area of black

hole’s event horizon by Bekenstein-Hawking formula

_ A
P

Where A is the area of event horizon of black holes and [, is plank length. This
formula implies that the bigger black holes have more entropy and since the
entropy is related to the no of micro states therefore the size of black holes is
proportion to the no of its internal states. The problem with the smaller black
holes is that due to its small size at the later part of evaporation it may have
very less or negligible internal states to take into account, therefore it is very
hard to believe that such black holes have sufficient internal states to match

with the emitted radiation.

4.1.1 How String Theory can Help

String theory has a remarkable feature of having a maximum temperature called
the Hagedorn temperature, which can potentially solve the issue of information

loss paradox. The mass of an open string in bosonic string theory is given by,

o M? = (Z na'lal — 1)
n=1

The degeneracy of the n'" level can be calculated as,

p<n) ~ in727/4€47r\/ﬁ

Therefore the partition function is defined in the units of h=c=kp =1

Z=7) pln)e T
n=1

= 1 —27/4 4m/n—M4
= —nN (& T

As the temperature increases % decreases and eventually we will reach a tem-
perature Ty, at which the factor 4m/n — % becomes positive, meaning that

the factor £ fails to bound p(n)




Therefore,
1

4%\/&

This suggests that in string theory we expect black holes (which can be char-

Tmax =

acterized by massive string states) to have a maximum temperature.

4.2 String Theory and Black Holes

While studying the low energy limit of string theory using sigma model ap-
proach we have neglected the massive string modes and worked only with the
massless modes of strings. The leading order equations of motion of dilaton

and graviton are

Rap + 2V, Vi ® 4+ AReae RE% = 0 (4.1)
11
O0d — (V)2 + TR+ gARabcdR“”cd =0 (4.2)

Where A = %a’ , 0 for bosonic and supersymmeteric string theory. The action

that can generate these equations of motion is given by,

1
167G

1
/ AP X\/=ge™** (R + 4(V®)* + §>\RabcdRade) (4.3)

Here G is the newton’s constant in D dimensions. Our main goal would be
to examine the black hole solutions of Eq (4.3). When the curvature of the
spacetime is small as compared to the string scale é solutions of string theory
will approximate the Einstein’s equations, but when the curvature of spacetime
is larger then the we cannot only consider the leading order approximation in
sigma models and therefore the higher order terms in o’ will also contribute
making string solutions deviating much from Einstein’s equation. Since Eq (4.3)
is written based upon the beta functions which is derived up to the order of o/
therefore it is not the full action but just the leading order approximation of
the full action which can be fully written as an infinite series in o, therefore
it cannot fully promise to give a detailed information that how string theory
could resolve the singularities that arises in string theory, however since Eq (4.3)
yields to a field equation, which does not necessarily satisfy time like conver-
gence condition (potentially due to higher order term like R,p.qR%%?), therefore
singularities are not guaranteed in these theories. In case of Black holes the
regions of finite curvature must be considered to study the event horizon and
singularities (with infinite curvature) are avoided for the analysis if we consider

sufficiently large black holes for which the gravitational length scale Gm is
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much larger than the string scale o/ (o is of the order of I2) (Gm)* >> o' then
the curvature of the event horizon would be small this is because the curvature
near the event horizon is related to the length scale by R o W’ therefore
the terms like Rgp.qR%°? could be considered as small perturbations of the Ein-

stein’s equation.

We will begin with a constant dilaton field and Black hole solution of Ein-
stein’s equation as a background fields and then solve Eq (4.1), by the pertu-
bative expansion of metric in A, but Eq (4.2) tells us that the curvature of the
black hole acts like the source of the dilaton field, therefore we must expand the
dilaton field also perturbatively. Also we would set B, to consider spherically
symmetric nature of black hole and torsion free condition. We consider a 4-D
static Black hole, since the dimension of spacetime in string theory is 26, but
we observe universe as a 4 — D spacetime therefore the remaining dimensions
are compactified so that from our length scale only 4 dimensions are visible
(Consider for an example of a hair it looks like 1 — D when observed via human
eyes but if we observe it using a microscope it becomes a 3 — D object). There-
fore we consider the metric in string theory to be a direct product of 4 — D

black hole metric and the metric corresponding to compact internal spacetime.
Gab () 0
9as(x,y) = -
0 Ga

Similarly we can do it for dilaton

O(z,y) = o(x) + d(y)

Where x and y represents internal and external coordinates. Now if we use

these equations in Eq (4.1) we obtain

<Rab(x) 0 ) L <gab(x)vivi(¢(a:) +o(y)) 0 )
y) 0 Jab(Y)V; V7 (0() + d(y)

)

AR eqe RS 0

0 AReqe RE%

Where ¢ runs to external coordinates and j to internal coordinates, therefore

Rab(l') 3 0 19 Vavb¢ 3 q s /\RacdeRgde(fL‘) 3 0 3
0 Rab(y) 0 vavb¢ 0 ARacdeRgde
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Therefore,

Rab + 2vavb¢ + )\RacdeRlﬁde =0= ﬁgb(gv ¢) (44)

Rab + 26(161)(;5 + /\Racdeégde - 0 = gal}(é: ¢) (45)

Similarly the Eq (4.2) could be written as,

lp, 1 e U (N
0¢ — (V¢)* + ZR + g)\RabcdRabcd +0¢ — (Vo) + ZR + g)\RabcdR“de =0

Big, d) = —B4(4,¢) = 0 (4.6)

We will assume that the internal metric and the dilaton field satisfy their
own equations of motion independently, therefore we are free to study the black
hole space. This decoupling can be done in any order in o’ and the higher order

contribution will not interfere the 4-D solutions.
We begin with a static spherically symmetric metric in four dimensions.
ds® = — f2dt* + g*dr® + r*(d0® + sin*0d¢?) (4.7)

Therefore the metric is given by,

20 0 0
0 ¢ 0 0
4.8
0 0 r? 0 ( )
0 0 0 r?sin?0

Since it is static which implies two conditions one that the metric components
are independent of time and other there are no time space cross terms which is
guaranteed by time reversal invariance of dt? but not of the cross terms, there-
fore static black hole implies that the coefficients f and g are not dependent on
t also it is spherically symmetric they also wouldn’t have angular and azimuthal

dependence. Therefore first order expansion of f, g and ¢ must look like

= fo(1+Au(r))
g = go(1+ Ae(r))
® = ¢o+ Ap(r) (4.9)

Where ¢ is not azimuthal angle but is the component of dilaton field depend-
ing on the 4-D coordinates. Now we can use Einstein’s Equation to evaluate
the zeroth order components of the metric, the procedure is to evaluate the
Christopher’s symbol and therefore calculate the Riemann and Ricci tensor

and therefore set the Ricci tensor to zero. The calculations are exactly similar
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to the Schwarzwald metric and the coefficients f; and gy if given by

2G'm
r

fE=git=1 (4.10)

Since we want the spacetime to be flat at larger distances from the black

hole therefore we choose the boundary conditions
i, €, 0(r) — 0 when r — oo

The perturbed solutions must be such that the event horizon (r = 2Gm) remain
non-singular in the unperturbed space-time, of course it seems that the metric
described by Eq (4.7) with Eq (4.9) is singular for the unperturbed spacetime
but it is not the case as the metric is coordinate dependent and therefore we can
transform in a coordinate in which » = 2Gm does not led to singularities(in
our coordinate system we choose the event horizon to be at r = 2Gm), one
way to test it is by using scalars (which are coordinate independent) like R =
9" Ry, Ruu,eRM?, R, RM, if these scalars blows up at certain points it is
definitely a singular point. Explicit calculations shows that none of these scalars

blows up ar » = 2G'm but there is definitely a singularity at » = 0 as

uvpo -
R R ox G

Using the metric of the form Eq (4.8) we can calculate all the necessary
things like the Riemann tensor, Ricci tensor and finally when we plug it in

Eq (4.1) we get few non trivial components of Eq (4.1) as,

r—2Gm , 2r—Gm , Gm , 2Gm , 12(Gm)?

(tt) - fu—i- 5 M Ty Y =0
r—2Gm, , o 3Gm , 2r—3Gm , 2Gm , 12(Gm)?
T e R e ™ e i
r—2Gm,_, , 2 12(Gm)?
00) =(¢0) + —5 @ +e—p)+ et — 53— =0

Now if we take the trace of Eq (4.1) and plug it in Eq (4.2) we would obtain,

9" Rap + 29"V oV ® + Ag™ Rycac R = 0
R = —20®% — ARgpq R (4.12)

Plugging R in Eq (4.2) we obtain

1 1
0¢ — (vq))Q - Z(ZDCI) + ARabcdRade) -+ g)‘RabcdRade -0
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1
0% —2(V®)? — ZARadeR“de =0 (4.13)

Solving this to the order of A we would obtain

r—2Gm , 2r —2Gm 12(Gm)?
@ +

— 4.14
r r? 7 r6 (4.14)
Solving this equation we obtain
2Gm 1 1 (1 —2GmCy)log(r) (=14 2GmCy)log(—2Gm + 1)
= — —— C
7 3rs 27?2 2GmrjL i 4 Gm? + 4 Gm?

But since ¢ — 0 as r — oo and at r = 2G'm ¢ is finite therefore C; =0
and Cy must be such that 1 — 2GmC5 = 0, therefore

2Gm 1 1
3r3 2r2 2Gmr
Therefore the first and the second derivative of ¢ with respect to r is given by

p(r) = (4.15)

2Gm 1 1
r_
L r3  2Gmr? (4.16)
—8Gm 3 1
n__ __--"_ - _ -
A rd rt Gmr3 (4.17)

Subtracting first two equations of Eq (4.11) we obtain

2

r—2Gm , (QT—Gm 3Gm), (Gm 27‘—3Gm>,
T - = ¢ =0

u —_—
r 72 72 72 72

—2G - 2G -2G
r mgo” r m’u,_zr m ,

2 + 2 2 5 e =0

r

One of the solutions of the above equation is,
7,.90//_1_//6/_6/:0

TQOHZEI_/,L/

Integrating the above equation we obtain

p=—€—Tp+¢ (4.18)

Now if we plug it in Third equation of Eq (4.11) we obtain,

1 1 6(Gm)?
IS SIS WP (<)

= 2Gm 2" T W —2Gm) (4.19)

35



Plugging in the expression for ¢ from Eq (4.15) we obtain

1 8(Gm)* +12G*m?* —2Gmr — r?
€ =
r —2Gm 4Gmrt — 2790

€ +

Solving this differential equation with respect to the boundary condition as

mentioned above would give us

5Gm 7 1
—oxm o L 4.2
‘ 33 12r2 24Gmr (420)
Plugging the value of Eq (4.20) and Eq (4.15) in Eq (4.18) we obtain
—24Gm + L+ 2r (—11 — £)
2473
Gm 23 11

ulr) = - (121)

B 24Gmr 242
Consider the ¢t component of the metric given by Eq (4.8)

2Gm

r

wu=—p = (2" 1) s w))r

For r — oo u — 0, therefore for the regions far away from the black hole we

can write,
2G'm 2G'm
o= (257 - 1)1 ) = 22 v -1

Plugging the value of u(r) from Eq (4.21) we obtain

2G M,
g =—1+— < (4.22)

Where 03 \
Mo=m[14+22 2 4.93
¢ m( % <2Gm>2) (4.23)

The mass of a black holes in our pertubative expansion has a A correction and
the mass Mg is called the gravitational mass that would be felt by a point
like test particle which is following the geodesic in space. Similarly the rr

component of the metric is given by

G = (1 _ QGm)_lm +Ae(r)?

r

Similarly considering the regions far away from the black hole

- (1 + me) (1+ 2Xe(r))
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2G 2GM
gr 1+ 2 L oNe =14 !
T

r

Where \
T A€
M]ZTI’L‘FF

Plugging in the value of €(r) and retaining only till % we obtain,
1A
My = l———n—— 4.24
r=m(1- 5gr) 20
The quantity M is called the Inertial mass. One point to be noted before
proceeding further is that the gravitational mass is greater than the mass of

black hole Mg > m and the inertial mass is lesser than the mass of the black
hole M; <m

4.3 Temperature of Black Holes

We now rotate out time component to imaginary time to define something

called euclidean time t — i7.

After rotation to euclidean time the manifold we would obtain would be
smooth near the horizon, if the imaginary time is periodic 7 = 7 + 3. The
periodicity of the imaginary time will then help us find the temperature of
the black hole. To study the system in thermal equilibrium with a bath of
temperature T" we generally draw correspondence between statistical physics

and quantum field theory, one of such correspondence is given by

1
=7 — —
] T T

Therefore the periodicity in imaginary time . The periodicity in our case
would be

21
p="
K

Where k is the surface gravity of the horizon and for our case 3 is given by,

B =8rGm (1 + A(e — ’u)|r:2Gm>

Therefore the temperature is given by

5 s (e ) e ()

Plugging in the value of € and p as given by Eq (4.20) and Eq (4.21) we

would obtain
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= SWém [1 - %m] (4.25)

We can express 1" in terms of gravitational and inertial masses, by rearrang-
ing Eq (4.23) and Eq (4.24)

Mg

23 )\
(1 + % (2Gm)2>

m =
Plugging it in Eq (4.25) we obtain,
1 23 A 11 A
T=—" [1+2 2 |h-—=_—2_
SWGMG[ MG (2Gm)2] [ 6 (2Gm)2]

1 A
'~ ——— |14+ 2-——— 4.2
87TGMG |: + (2GM0)2:| ( 6)

By similar procedure we can calculate T" in terms of inertial mass

1 A
T~ oy [1 — 2—(2GMI)2} (4.27)
This means that the temperature of black hole is lower in string theory as
compared temperature arising from Einstein’s equation with the same inertial
mass, but with the gravitational mass the temperature arising from string the-

ory is higher.

More systematic study of black holes requires the study of massive string
states, therefore we first analyze the massive string states and calculate their
beta functions and hence their equation of motions, which will help us get a
deep understanding about the black hole dynamics. In the next chapter we
will study how we can calculate the beta functions of any string state be ti
massive or massless, we will verify it for tachyons and massless fields and then
eventually continue studying black holes after analyzing the massive state beta

functions.
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Chapter 5

Including Tachyon and Massive
Fields

5.1 Why The Picture Is Not Complete

The propagation of strings in the background can be described in various ways,
one of the standard approach is the non-linear sigma model in which we de-
scribe the string propagation in the presence of some background fields which
are nothing but modes of string vibrations, for the non linear sigma model ap-
proach to be consistent the theory must have been weyl invariant. Classically
the theory was weyl invariant, however as soon as we tried to quantize the
theory weyl anomaly started appearing on the theory, therefore we computed
the beta functions of the string background namely dilaton, graviton and anti-
symmetric field (Kalb-Ramond field) and demanded that these beta functions
must be set to zero for the weyl anomaly to vanish which gave us the equation
of motion of the background fields. Till now we did not bother much about the
renormalization of the theory because the theory was renormalizable up-to any
finite order in loop expansion but new ultraviolet divergences comes into the
picture if we try to sum up the contributions of all the loop order. To remove
these divergences we would require the counter-terms involving infinite number
of tensor fields, which can be thought of the vacuum expectation value of all the
modes of string vibration, however this means that our analysis of low energy

effective field theory is incomplete without in-cooperating the infinite tensor

fields.

In this section we try to get a systematic way in order to get the beta
function when we include arbitrary background fields (which may include the
infinite tensor fields), the beta functions we would obtain would be calculated

non perturbatively using the weak field expansion around a flat background.
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5.2 [ functions

Consider a closed string propagating in the flat spacetime background, the
worldsheet is also taken to be flat with the choice of coordinate system to be
the light cone coordinate system, a typical string action would look like in the

above setup

S =
0 2ma/

/ d*o 0. X"0_X,, (5.1)

Now we add an interaction action which governs the interaction of the string

and involves the tensor fields.

S - S() + Sint
1 o ,
Sint = 53— / o L—ZCD(X) + 0L X O X" A (X) + ... (5.2)

The ®(X) here denotes the tachyon field A,, denotes massless two index
tensor field and . .. denotes other tensor fields. The factor of é in the first term
is present because we want to regularize the divergences using point splitting
regularization procedure in which we consider fields to be not on the same
point in the spacetime rather e distance apart, for example a typical ¢?(X)
term would look like ¢(X)¢p(X + €) where € — 0. The dimension of o' from
the worldsheet point of view is [L]? similarly the dimension of d?c is also [L]?
also the partial derivatives 9, is [L]™! therefore the dimension of X* is [L]' to
make the action dimensionless, from this analysis in the interaction action the
dimension of ®(X) turns out to be [L]° because the ¢ would have a dimension
of [L]*, similarly the dimension of A,, turns out to be [L]°. We expand the

background into two parts, classical part Xy and the quantum fluctuations &,
Xt =Xg + ¢

We define the generating functional for the background field which gives us the

beta function hence the equation of motion of these fields is given by,
Q(Xo) = /D[g]e—so(ﬁ)—sint(Xo-&-E) — <€—5mt(Xo+§)> (5.3)

The definition of the beta functions are given by the

d d 0
u@f(g, ) = (u@ + Z gi@) f
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Therefore the beta functions can be given by the expression given below

d
—e log Q[Xo] =

o ,
ool /d20' |:E—25¢(X0) + 8+X58_X0 ﬁHV(XO) + ... (54)

5.3 [ function for Tachyon field

We will now perform a weak field expansion around the background X, con-
sidering ®(X) as a weak field and in order to calculate the beta functions of
tachyon field we will set the massless tensor field A,, to zero. In order to cal-
culate the beta functions from Eq (5.4) we take the Fourier transform of the
tachyon field.

d(X) = / (;lﬁ)kD d(k) ehe (5.5)

Therefore Q[X,] becomes
QXo] = (e~ Sl _ (=35 [ FrEa00)

Using the standard taylor expansion of the exponential functions given by,

[e.9]

L4 gt 1 /—1\" 1
e 27 fd €2<I>(X)> = Zﬁ(%) /d20'1 ..... d20'N62—N<(I)<X(0'1)> ..... @(X(O'N)>

N=0

Using Eq (5.5) in the above equation we would obtain

IR =1 =1\ [ dPk, dPk, N 5
e 27de E2‘1’(){)> — Zﬁ(g) /(27T>;)<27T)D/d201dZUNq)(kl)q)(kN)
1 ik1X (o1) o .eian(01)>

v ie
(5.6)
Therefore in order to obtain the beta function of Tachyon field up to any

order we just need to obtain the factor
ik o itkn X (o
62_N<€ 1X(01) ... € X( 1)> (57)

This factor is called the Koba-Nielsen factor

5.3.1 Koba-Nielsen factor for N=1

For N =1 the factor given in the above equation becomes
1 kX (o
6_2<6 ( )>
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To evaluate this we use the standard result from the conformal field theory [12]
O/
(£(@)(0 +€)) = =50 loge® (5.8)
(e**(?)) could be evaluated as done in Appendix (C.1)

1, . o .
_2<6’Lk.X> — 67]62—2 eZkXO (59)
€

5.4 Koba-Nielsen factor for N=2

Moving on to N = 2 in Eq (5.7), we need to evaluate

€l4<6ik1.X(0'1) eikz.X(Ug) >

leikl.Xo(al) eik‘Q.Xo(Uz) <6’ik‘1.§(0'1) 6ik‘2.§(0’2)>
64

The above calculation can be calculated as done in Appendix (C.2)

/
i4<eik1.X(01) 6ik2.X(02)> _ eiklxo(Ul)eik2X0(02)6%(k%+k§)—4 |O'1 — oy o'k ko (510)
€

5.4.1 Singularities for N=2

Now in order to extract the U.V divergences from |o; — 02| we use the following

identity
. —a T E2(—(1—&—71—&—1)
Foe? (o = oaf’) "~ - ()" (51)
/ﬁ<01—02| ( ) nzg n(n)2 (—a+n+1)

Where o is the distance between o; and o,. Taking the inverse Fourier

transform of the above equation

(los = oaf?) ™ ~ =3 = T 5y 5(or — o) (5.12)
c=4m(nl)* (—a+n+1)
Now if we plug in a = —%o/ ki.ky we would obtain
, 1T E(o/k:1.k2+2n+2)
— | Rk o 9%)S(oy — 5.13
(lor = nz; P (@hiks Fan ) 0 ) 0lor o) (5:13)

also the 9% is with respect to o = |0y — 03| therefore, Now using Eq (5.13) in
Eq (5.10) we get,
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l4<€ik1.X(0'1) 6ik2.X(02)> — _eik’1X0(0'1)eik2X0(o'2) %(k2+k2)

E(O/k‘l ko+2n+2)

X
2 4”(”')2 (Oélkl.kg + 2n + 2)

(0%)"8(01—07)
(5.14)

For n = 0 the equation take the form

of (12442 _
ki Xo(o1) ika. Xo(o2) € 2 (’“1”2*2’“1"“2) 2 2m 5
= —€ e — (o1 — 02)
[0 kl.kg + 2

Therefore,

2(%’(l€1+k2)2+1)

/d 0'1d2 1< ik1. X(al)ezkg X(02)> €

/d & il Hk)Xo(0)
64 %,k?lk?Q +1

(5.15)

5.5 Tachyon Beta Functions

After getting the Koba-nelson factors we can now easily obtain the beta func-
tions for tachyons with the general definition of S-function, we will do it order
by order, but before doing that we make our calculations easier by obtaining
the general expression for log (Xj). To calculate the beta functions we need
to calculate the factor log €2, this is because the quantum effective action and
the partition functions are related as Q = e=", therefore for regularizing the
quantum effective action we need to regularize the quantity log {2, which can

be calculated as,
Q(XO) — <e—5int[X0+ﬂ> — /d2§ e 90[é] p=Sint[Xo+¢]

0060) = {3 2(=8)") = (1= Su) + 3((=5m) + . )

N=0

Therefore,

log 2(Xo) = 10g (14 ( ~ Si) + 5 (~Siue)?) + )

Expanding the logarithmic series we obtain,

log Q(X,) = (( Smt>+ < Sint) >+...)—%<<—Smt>+%<(—5mt)2>+...)2
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1(<— St} + S Su)?) + .>3+...

Now if we recollect the terms, first we do it for the order of ®(X)

1

= (= Sim) + = < Sint)?) — §<(—Sint)>2

Therefore regularizing, log €2 which is the quantum effective action is equivalent

to regularizing <Smt> at first order in fields and <Smt> at second order in fields.

5.5.1 p[-function for N=1

For N =1 we can write,
lOgQ - < - Smt>

Using the expression for S, for tachyon part from Eq (5.2) we get

,/d% f—;cb(X)>

1
2o

Taking the Fourier transform of tachyon field as in Eq (5.5) we obtain

de ﬁ )ik.X(a)>
7)D 62

27ra

D ~ o ‘
/ / d”k ( )3 k2—2 eszO)

Redefining field ®(k) by absorbing infinities such that

Now using Eq (5.9)

br(k) = 5 20(k)

Differentiating the above equation with respect to € and multiplying € and using

the definition of beta function as 3y, = 6%91

The renormalized field does not vary with the energy scale therefore the L.H.S

of the above equation becomes zero. Therefore,

1 -
5@25(—04'/@%4)@
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In position space it reads

= —(/0"0, +4)® (5.16)

5.5.2 p-function for N=2

Now we will do the similar calculations for N = 2 and to do we need to look for
O(®?) term in the effective action which is log 2, as calculated earlier the O(®?)
includes terms like <Smt> < mt> and <S,;m><5mt>, but since <S7;m> is already
regularized therefore we only need to regularize <Sz-2m> in order to regularize the
effective action till O(®?)

(s2,) = < / d201d202—(I)(X(al))(D(X(az)»

Again taking the Fourier transform of the ®(X) field as in Eq (5.5) we get,

27T0z (2ra/)?

1 d dPky  dPky o'? - ~ . ,
It d2 d2 1 2 — P(kD(k tk1.X(01) ,ik2.X(02)
< mt> (2ma’)? Ede/ o UQ(QW)D (2m)P e (k1) @(2) <e ¢ >

Now Using Eq (5.15) we get

1 (/ o, Pk Ak (5 (brk2-1)

i(k14+k2)Xo (o) k k
Tin 0P @) Thlprl ) (k)2 (k)

Writing k = k1 + ko and ko = k — k; and introducing a delta function on the
ky integral we obtain,

1 "k oy dPky dPky 6(k — ki — ko) \ -
_ - d2 k2—2 ik.Xo(o / 1 2 1 2\ (kb (k
(i) 47r</ “emp f eGP D Thk, 11 ) PR

Now we redefine our fields such that the term (S2,,) gets regularized

3 iy 1 [ dPky dPks 6k — ki — ko) =, o~ o
¢>(2>:2k2—2<1>k——/ e 2Py ) D (k) e T 2
R € ( ) A (27T)D (27T)D %klkg +1 ( 1) ( 2)6

The beta function could be obtained as (C.3)

Bo = = (d/0"0, + 4)® + P° (5.17)

l\)l»—l
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5.6 Tachyon and Massless fields

Now we consider the Tachyon field along with the massless background field A,
which was initially set to zero in order to derive the beta functions for Tachyons
only, doing so we would obtain the beta functions of both the fields A,, and
®. The massless tensor field A,, includes all the massless field excluding the

dilaton field therefore A, is traceless. In order to do so we need to evaluate,
<6—5mt(Xo+£)> — /Dg e 50(8)=Sint(Xo+E)

Keeping terms up-to A,, in the expression Eq (5.2) and expanding as before

we get

(5= (5 0 [ [ oo enawasen]

Taking the Fourier Transform of the ®(X) as in Eq (5.5) and also Fourier

transforming the massless tensor field as,

A (X) = ﬂ[x eih-X(0) (5.18)
d (2m)D ™ ‘

> dPk dPky [ —1 \"
2 2 1 N
<exp mt E /d o1...d°oN @m0 " (2m)D (QWQ’)

N=0

1

o N
N‘ < |: ezk X(U)CI)(k)+8+X“8,X”AW ezk’.X(O'):| >

Binomial Expanding the above expression,

_Z / Por oy b Pk (S1NY L
B Y@2m)P T (2m)P \ 2ra/ ) NI

N / r N—r
x Z NC«T< (%i)(k>eik.X(a)) <8+XuaXuAWeik.X(a)) >
€
r=0

For the first order in fields N = 1 we just need to evaluate the terms like

612<€ik.X(a)>, <5+X“(0)8_X”(a + E)eik.X(a)>

Let us now focus on the second term, to do that we use the following

(011€(0)01&(0+€)) = (0"&(0)0"E(0 + €)) = (94E(0)0 (o +€)) =0 (5.19)
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Using Eq (5.19) we can write
<0+(X6’“ + EMO_ (XY + él/)eik.X(U)> = 8+X6‘8_X0V<€ik.X>
Therefore,

(0, X (0)0_X" (0 + €)™ X)) = 9, Xo_ Xy et-Xoc5H (5.20)

Sint

Plugging it in the above expression for <e > we obtain

D /
(eSn) = Q= — / 2o ik 1 (‘3—2<eik~x><i>(x) +<a+Xﬂa_X”e““'X>ﬁw)

(2m)P 21/

Using the expression Eq (5.9) and Eq (5.20) we obtain,

de 1 o . ~ 1 . o' ~

the effective action is given by log ) which is equal to < — S,-nt> as we have
calculated before, which is precisely the first term in the expansion of <e*5i”f>
which we have written above, therefore in order to regularize the effective action
we need to regularize the < — Smt> which can de done by hiding the singularities
in the fields ®(X) and 4,

~ ’

dp = 2K 2p A, =eTF A, (5.21)

Differentiating the above fields with respect to € and multiplying € will give us

the standard definition of beta functions, which is given by e% Ji

The renormalized field is the actual field therefore, the L.H.S of the above

equation becomes zero, therefore

1
Be = 5 <0"8N + 4) d(Xy)
Similarly doing it for the field A,

1
Buw = 58”8,,14“,,
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Chapter 6

Results and Future Outlook

6.0.1 Einstein’s Equation from String Theory

In the first part of thesis we have successfully developed and applied the co-
variant background field expansion method in order to derive the general rel-
ativity equation from string theory. First we looked in the classical version fo
string theory, there we found an interesting property of classical strings i.e. the
worldsheet stress energy tensor was traceless, but when we tried to quantize the
classical version of string action we found out that the stress-energy tensor is
not traceless, which was a matter of concern, the non vanishing trace was called
trace anomaly or the weyl anomaly. We then used methods to solve the trace
anomaly, at tree level the trace of stress-energy tensor was vanishing therefore
we solve it first at one loop level and solving the issue of trace anomaly we
found out that if we want the worldsheet theory to be conformally invariant
then the spacetime fields must be restricted by some equation of motion, which
is obtained when we set the beta functions to zero, the equation of motion
of the metric g,,, precisely turns out to be the Einstein’s equation of general

relativity.

6.0.2 String theory and black hole information loss

We also saw how string theory helps in solving the mystery of information loss
paradox in black holes, and we also saw how string theory could help explain
the Hawking effect, because of remarkable feature of temperature cutoff that
string theory has, we then see how the equation of motion of background fields
that we derived in the earlier section could help us analyze black hole dynamics,
finally we calculated the temperature of black holes in terms of the mass of the
black hole which came out to be slightly lower in string theory as compared to

the one from Einstein’s equation.
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6.0.3 Including Tachyon and massive string states

After looking how string theory could help us analyzing the dynamics of black
and potentially solve the issue of information loss paradox we now need a more
systematic way to analyze the massive string states which helps us analyze the
black holes in more systematic way, for that we need the equation of motion
of massive string states, which is given by the beta function of these states.
To calculate the beta functions and hence the equation of motion of massive
states we develop a general formalism that helps us get the beta functions of
any general tensor field, be it massive or massless, we then verified the beta
function and hence the equation of motion of the tachyon field and the massless
field from the new formalism developed, also using this procedure we can get
beta functions of any kind of fields when all the tensor fields ( which could
be thought of as condensates of string states) are present, which helps us in

re-normalization of the theory.
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Appendix A

Details of Chapter 1

A.1 Worldsheet Area and Action

We want to calculate the area of world-sheet and the corresponding action of
string, to do so consider a function f(z,y), a small change in f would be given

by the relation

dfa(r,9) = dx C Ox
— d 0
af, (2, y) = f(z,y) Zl“;:v,y+ Y, :a_]ycdy

The total change is therefore

0 0
df = a—idx + a—gdy

This is called the total derivative of the function f

Now consider ?(7’, o) describe any point in the string worldsheet.(Here (7, o)

are used to parameterize the string worldsheet).

Consider an infinitesimal parallelogram formed on the string worldsheet
with the vertices (o, 7), (0 + do), (0 + do, 7 + d7), (0,dT)
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(0,74 dr) (0 +do, 7 +dr)

(o,7) (o0 +do,T)

The two vertices of the parallelogram formed would be given by

oxX
X:a—ada

oX
B: o dr

Area of a parallelogram is given by Ar = |XH§|S’LH9

Ar = \/A2B2(1 — cos?0)

Ar = \/A2B? — (A.B)?

Hence we can write our infinitesimal area as

- (e) (o) () ()

— dodr /(X X)(X".X7) — (X X7)2

Where,
X X ) .
_9 X’—a— and X.X' =g, XrX"

X = -
or oo
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A.2 Variation of Action

The variation of polyakov action with respect to the metric could be calculated

as below,

58 = 6 < 41 , / d2aﬁv“b0aX“8bX”gW>
m
1

(0%
= o [ R GV ) 0.X00X
1 9 1 ab ab v

= /d o (ﬁ&w + /767 )3aX“3bX Juv

= 47;, / d’o (%(—wabfwab)’y“b + ﬁM“”) 0u X" 0pX" gy

= 47;, / d’o (%(_77%157“1)7&1) + \/%v“b) O X" 0p X" gy

- 4730/ /d% (—%ﬁ%dévcdv“b + ﬁ57ab) 0a X" Op X" gy

- 47;, / d’o (—%ﬁ%ﬁvc‘iv“b@a?{ 0, XY G + /7070 X0, X ”guu>
5S = 4;@/ / 2o\ /767 gy (aaX“abX v %%bGCX“aCX”) (A.1)

A.3 Variation of metric

In order to vary the metric we remember,

, Do Dot
Yop(0 +v) = ﬁw%d@)

/ ey _ 0(0" —v°) 0(0" —v?)
Vab(a-) +v ao_/c - ao_/a ao_/b ’YCd(O->

. O v
= (5a - 80"1) (55 - W) Ve ()

Yan(0) + 00 7ap = (0 — 4v°) (8 — Opv")vealo)

Vip(0) + vy = (650 — OLv°; — B8 + O(v®))ed(0)

V() + V°0Yab = Yab — 00 Vep — Oy Vaa

5’7(112 = _(,Uc (/;’Yab + 8(/11)6’701) + allyvd’}/ad)
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Since this is a tensor equation so it will hold in any coordinate system so we

can remove primes from the R.H.S
5Yab = —(V°OcYab + D Yeb + Opv ™ Va)
It is convenient to write this equation in the form of covariant derivatives as,

Vavb = aa’l)b — F/\b’l))\

a

We know that
804/007017 _'_ /Ucaafycb - aa(vcfycb) — a{lvb

aavc’ch = aavb —v° aYcb
Similarly we can write,

O™ Yad = Oyva — V0 Vaa
Therefore,

5Yap = —0aVh — Oy — VOcYap + V°0aYeb + 00y Yad

1
5%1; = _aavb - 81)?}@ - QUA [59/\6(811%13 + 867(10 - ac’yab)]
= —8an — (91)1)(1 + 2’1})\(F2b)
= —(9avy — Tpvr) = (Bpva — T,0n)

(S’Yab = —(Vavb + vaa) (AQ)

A.4 Conformal Gauge

We calculate some important quantities in conformal gauge. First we will cal-
culate the metric in conformal gauge and then move on with the rest of the

things, we know the fields v, satisfies the following transformation equation

la b
lab __ 80 80 cd

= 90¢ 9ol |
0: | 0:_,
do or
0: | 0z
do ~ Or
0z 0z 0z 0z
lzz _ 2~ 77 —¢sll e =522
80006 0 +87‘876 0
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Similarly,
. 0z0Z

12Z

Y 0z 0%

—(1)522
" 9o 80 ot or

=2 ¢

1Zz

0z 0z o051 | 0z 0z 0522
00 80 or or

=2 ¢
With similar calculations one can show that

zz

VF=2e" =77 ¥ =0=1

Hence the metric would look like,

Similarly,

(0 5

Now we can calculate the Christopher’s connection coefficients using the

formula,

Fab - 27

e _ L ca(PVad | O Oab
ozb 0z 074

Here 2! = z 2?2 = z, the non zero Christopher’s coefficient are therefore,

1 Y2 Y12 711
Lo 212 (_ T2 _>
H 27 0z + 0z 0z
- z¢

1 Y21 V21 V22
b (R B)
2 QV 0z + 0z 0z

:2¢

1 2 _
[y =0.0 Iy =20:0
We can also calculate Riemann tensor and Ricci scalar once we know the

connection coeflicients
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Rgcd = aCFZd - 8d gc + Fgc zd - gd Zc
In 2D Riemann tensor will have only one independent component.
Réu = 81I‘§2 - aQF%l + FhP;Q - FéQFSI

Rém =0

Similarly,
R%m = 82F%1 - 81F%2 + F%QF%l - lefﬁ =0

Similarly the other components are given by
Rgm = angQ - 821—% + F31F§2 - F32F§1

= az (82¢)

Now the lower indices are given by,
_ A
Rig12 = a5y

Rig12 = 7113%12 + ’leRglg
1
= §6¢az (ai(b)

Also we know that
Rw/ = gaBRauﬁu

So,
Ry = 'VabRalbl

= 712R1121 + 72132111

=0

Ros = Y Rooo
= 712R1222 + 721R2212

=0

Rip = ’YabRau;z
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= 712R1122 + 72132112

Also we know from the Riemann tensor is antisymmetric under the exchange

of the first index with the second Rs119 = —R1212 SO,

Rip = —V21R1212

= 2% (%e¢) 0, (0:9)
Riy = —0.(0:9)

Also because Ricci tensor is symmetric with the exchange of the two indices so
we can write

R21 = R12

RZI - _az <82¢)

Now we know the Scalar curvature is given by

R = ¢"R,
= "Ry
= YR+ Ry
= —2(2¢7%)0. (9:0)

R = —4¢%0,0:¢ (A.3)

Once we are at conformal gauge, a general coordinate transformation could
take us out of the conformal gauge, but there are certain type of coordinate
transformations called conformal reparametrization which does not break us
out of conformal gauge. A conformal reparametrization is a coordinate trans-
formation characterized by v*(z) which is a function of z alone, and similarly
v*(Z) (In general v* may be a function of both z and z ). When v* only becomes

a function of z then Vzv* = 0 and V,v* = 0,

0722 = —(Va(12e0%) + V. (1200%)) = 0 07vzz = —(Vz(12e0%) + Vz(1z00%)) = 0

Also we can clearly see that v;, is not zero, which means that this trans-
formation does not change the form of the metric but leds to a change in scale
factor ¢

1 _
0z, = _§e*¢ (V207 + V., 0%)) (A.4)
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On comparing Eq (A.4) with Eq (2.4) we can clearly see that
d0¢ = Vv° + V,0°
In the conformal reparametrization from Eq (2.8)

SXH ="V, XF +0*V, XH

The conformal reparametrization is a coordinate change which changes both
the metric and the fields, in fact it changes the scaling factor of the metric not
the actual form of the metric. But in the other hand if we define a conformal

transformation given by,
SXH =020, X" + 070, X" Yap =0

A conformal transformation is a transformation that only applies to the
fields and does not change the metric whereas conformal reparametrization
changes both. If one has a conformal reparametrization which acts on X’s and
Yap accompanied by appropriate Weyl transformation which acts only on -,
the two taken together makes conformal transformation. It involves change
of coordinates by an analytic function and local rescaling of the 2-D metric.
Also since our theory is invariant under reparametrization, so it must be invari-
ant under conformal reparametrization also our theory is invariant under weyl
transformation, and conformal transformation is made up of Weyl transforma-
tion and conformal reparametrization so it means that our theory is invariant

under conformal transformation.
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Appendix B

Details of Chapter 2

B.1 Quantum Conservation Equations

In order to derive the quantum conservation equation we consider the below

equation and perform integration by parts in conformal gauge.

I ow . 1 oW
:/d2 7,\/757/111) (V vb)—/d2z\/_\/_5 ab( U)

The term /7 represents the determinant of the 2-dimensional metric in the

conformal gauge. Now integrating by parts we get

(1 W
/d?zﬁv <ﬁ57ab) Ub:O

o S L OWN 1AW 1 W 1 oW .
/dz ﬁ[v (ﬂ57zz v*+V N v*+V N v +V? \/_5722 =0

Using,
57*% = 6(2e7%) = —2e7%0¢
Therefore,
oW oW
5% o ) =z

Plugging it we get,

- Jel(v(5) 7 (Gae)) e (7 () - (e))

Since the functions v* and v* are arbitrary, their respective coefficients must

be equal to zero, Hence
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S(E)w ()
(L) (hE)

B.2 Luiovile’s action

We want to check that the variation of the effective action W gets us to Eq (3.6)

to do so consider a small variation in ¢ as
o= ¢ =¢+0¢

Under this variation W changes as,

W= 487r d%\/_( Y 0u(¢ + 0¢) 0y (¢ + 0¢)) +,ﬂe(¢+a¢)>

Considering d¢ is small we can neglect the higher order terms.

W = 487T d*o\/7 ( " [0(8)00(8) + DudDr06 + 06006 + O(66%)] + p2e?(1 + 6¢>)

W =W + —/dQO'\/_ < 0,090,009 + O 6¢8b¢] +u 6¢5¢)
A
SW = T / d*o\/5 (7 (0a00509) + 112e®5¢)

Now returning back in the conformal gauge and evaluating our integral there

we would get,

A 3 _
W = 2 [ e /5 (75 0.00:00) + 47 (0:00.00) + )

Now integrating by parts

—/d%ﬁ(vzfagangéqb) —|—/d275*" -0

W = 42 [ / Ao /777 (0.0)00

(boundary) boundary

—/dQ,zﬁ(vzzazaggM@ —i—/d%ﬁ;ﬁed’égb}
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Considering that §¢ vanishes at the boundary,

A

W = yr l—/d%ﬁ(f’zagﬁzqﬁégb)—/d%ﬁ(vzzﬁzagqb(;gzﬁ)—l—/ d%ﬁpﬁe%qﬁ}

Also we know that y** = +** using this property we can write the above ex-

pression as,

oW = % /dgzﬁ{ — 2(y*%0;0,0) + uze‘z’} 0
m

Also we know that /7 = 3e? and ** = 2¢™?

_ A 2 2 o
6W—48ﬂ/dzﬁ[R+ue]5¢

B.3 Derivative of curvature scalar

We want to write curvature scalar in the upper z derivative so that we can
improve the stress energy tensor, to do so we translate to conformal gauge and

in conformal gauge,
V.R = V.(—4e7%0,0:0)

For scalars the Christopher’s connection vanishes therefore,
V.R = 0.(—4e ?0.0:¢)
=4 (8Z(e’¢)8285¢ + 82(8282¢)e’¢)
= —4 (¢ 7%0.00.0:¢ + (920:9)e™*)
= —4e? (—0.00.0:¢ + 020:0)
1
= _46_¢ <_§az(az¢8z¢) + 8zag¢)
_ 1 9
= —27v*0; —§GZ¢0Z¢ +0Z¢

= 07 (0.¢0.¢ — 2029)

V.R = V*(~20,0,¢ + 0,00.0) (B.3)
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B.4 Virasoro Algebra

The Laurent series of f(z) around zq is given by:
= Z an(z — 20)"

where the coefficients a,, are calculated as:

1 f(z)
an—%ﬁmdz

Therefore the Laurent expansion of 7,,(z) is given by
+oo
T(z) = Z z "L, L, =— ¢ dzz""T,.(2)

271

— 00

Here we have expanded about z = 0.The L,, are called Virasoro operators.

Lo Ll = § 55 § 5mem um (), T(w)

We can choose specific contours one which includes z = 0 and one which which
involves z = w in those contours as we saw before the commutator becomes the

radial ordered product.Therefore,

:f dw e f B2 ot R T ()
¢(0) c(w)

271 271

Recalling equation (3.6) we can say that,

dw ., dz . (A 1 7o, 0, T2,
= T—w -7 = Yo 5 T+
o(0) 270 o(w) 271 2(z—w) (z —w) (z —w)

Also we know that,
|

1
2mi J, (z — zo)™t

For the first function f(z) = 32™*! and % = (m+1)m(m—1)w™ 2/2.3!

zZ=w

ans similarly evaluating rest of the terms we get,

(Lo, L] = 7{( | dw e <A(m = Dmlm = DU 4 1) T (w) + wm“awT(w))

o) 270 2.3!

d A
= f 2_11; (E(mS o m)wm+n—1 + 2(m + 1)wm+n+1T(w) + wm+n+28wT(w))
s
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The first term in the integral would exist if and only if m = —n else there
would be no singularities if w has positive powers, and for negative powers of w

(say x) other than 1 would give us the f*(w) = 0 therefore this integral returns

value 2 (m® — m) for m = —n and 0 elsewhere.

d—wwm+"+28wT(w)

A
= —(m* —m)bpn+2(m + 1)Ly + 7{ .
211

12

Integrating by parts the last term we would get,

dw fng2 dw
m-+n T — m+n+2T _ e 9 m+n+1T
7{ 5 0T (w) = w w’w:o 7{ 57 (m+n+2)w (w)

=(m+n+2)Lyn

Therefore,
[Liny L] = (2m+2—=m—n —2)Lpypn + %(mg’ — M), —n
As
[Lim, L) = (m —n) Ly yn + E(m — M), —n (B.4)

B.5 Correspondence of B, and A,

We know that for a point particle the action is given by,

S— / dry/Xn X,
Interaction with electromagnetic field is given by,
S = —q/dTX“AH

Which is the Lagrangian that gives rise to Coulomb and Lorentz force laws for

a charged particle.

This works for a point particle because the particle is 0-Dimensional and the
world line is 1-D,and the action is such that the one form A,dX* is evaluated
along a path, since the worldsheet of the string is 2-D the analogous coupling
must be of two indices in spacetime therefore it must be a 2-Form which is an

antisymmetric tensor B,,,

(A differential p-form is a (0,p) tensor that is completely antisymmetric in
its indices. Locally, a 1-form can be expressed as a linear combination of the

differentials of the coordinates. For instance, if (z!, 2%, ...,2") are coordinates
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on a manifold, a 1-form w can be written as:
w= fide' + fodz® + -+ f, da",

where f; are smooth functions and da® are the differentials of the coordinates.)

Evaluating B, dX"dX" along a path onto the worldsheet gives us the action.
She = / d*0 B, 0, X 0y X" e

which is precisely the action Sag, therefore we can say that the antisymmetric

field B, is analogous to gauge potential A, in electromagnetism

For a charged point particle we know that action is invariant under gauge

transformation given by,

B.6 Riemann Normal Coordinates

The affine parameter ¢ takes values ¢t = 0 to ¢ = 1 such that \(0) =
Xy and M(1) = X§ + m*. Let n* be tangent to A\(t) at X}/, therefore we

can write nt = We define the magnitude of the tangent vector is equal

d\
ﬁ’tzo'
to the square of the arc length s between two points X' to X' + 7* which is

given as,
v 2
Gun'n” = s

Where s is given by, [?]

ds = \/ gudA\Fd\”

A\ d\Y
ds = W\ 93 ~ar
1
5= dt\/ g JARAY
| s,

. Also the geodesic equation for M(t) is given by,

M)+ TEA (N (1) = 0

Now we can expand M(t) around ¢ = 0 assuming, X} and X} + 7 are close

enough, we can use Taylor expansion to expand A around ¢t = 0

M) = X(0) + M(0)t + %X“(o)t2 + é N0 + -

We know that \*(0) = X/ similarly, A*(0) = n* also, from geodesic equation
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we can write,

A(t) = T Ao
Similarly for the third order derivatives,

& (o

— (w + w) VRO

= 1 (T AR AT, AR — P

A, oL dr#. . ..
= T TGA VAT 4 DU TR AT — AT

Exchanging v and ¢ in the second term and manipulating last term such that

all the indies of A are the same we get

= THNCAN £ T8 T NOACAY — 9,0 AN

= (FZbF56 + T — 8(11“2‘6) ATAN?
This is the definition of covariant derivative with respect to lower indices only,

NE=T0, 1070

010203

where, we have used the notation

\Y re =1

0102...0n, vp 0102..0pVp

Now we can write the full expression to be,

1 1
A#(t) = XSL + n#t - Erﬁ102n01n02t2 - §Fg10203n01n02n03t3 + (B5)
At t=1

1 (o g 1 g g (o3
M(1) = Xg + 7" — gFﬁ.‘mn 7 — §F§1020377 707 + .

1 g (o} 1 ag (o} ag
Xo + 7= Xg 40" = 506,170 = 0 oo™ 1707 A
Therefore at t=1 we can regard Eq (B.5) as a coordinate transformation from

X{ + 7" near X and to new coordinates 7.

1 ag (o 1 (o (o g
T =t — §Fg10277 7 — 51“?010203)77 In72n% 4 ... (B.6)
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Here we have symmetrized the expression for Christopher’s symbol of three
indices and above as 771977 is symmetric and any antisymmetric combination

would give us null result.

For any two points X} + 7/ and X}’ +7'* on a common geodesic through ¢’
will have normal coordinates n* and n’* and they will be related as % = S;/ (Since
magnitude of the tangent vector is equal to s). This means that the geodesic in
the normal coordinate is expressed as straight lines( because the curve joining
tangent vectors is straight line it means that geodesic must also be a straight
line), which means that in the expansion of 7 only n* would survive, implying
that the Christopher’s symbol must vanish. The higher order Christopher’s
symbol must also vanish therefore this set of coordinates are called Riemann

Normal Coordinates if we symmetrize w.r.t the lower indices.

Therefore in normal coordinates we can write,

e, =0

I\ =0 (B.7)

(o10203,...)

Also we can show by induction that

Oor Oy - - Dy, TF =0

t Y On-2 O'n—lo'n)

For n=3 it becomes

o I 0

01+ 0203) =

1 iy iy iy _ _ _
5(8 L. + 00Dty + 00,0t + 00,00 o 4+ 00, T ) + 00,10 ) =0

01~ 0203 01~ 0302 02~ 0301 02~ 0103 03~ 0102 03~ 0901

Since Christopher’s symbol are symmetric w.r.t its lower indices therefore we
can write

0T 4 Ol 40y =0 (B.8)

01~ 09203 g2~ o 03~ 0102

Eq (B.5) holds in any coordinate system but (B.7) may not be true in any
general coordinate system, therefore the bar have been used to indicate that
we will work with Riemann normal coordinates. The curvature tensor which is
given by,

Ry, = 0T — O + T, — T

simplifies to,

Similarly we can write
R?kj = akfé'z - ajffk
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Adding R;-kl and R}'kj we get,
R;‘kl + R;kj = 2816_;'1 - (alfé'k +9;T)

Ré'kl + Rfkj = 38kfj-l - (8lfé‘k + ;T + akfé‘l)
Therefore,

_ . 1,-. _.

J
The Taylor expansion of a general (0,n) tensor is given by,

o0

1
Toiososoa(Xo+1) = > % s+ O T oo (X0) ) 1012 L
m=0

(B.11)
We want to write the Taylor expansion in terms of covariant derivative in
normal coordinates, for that we express all the normal derivative term with the
covariant derivatives, before that we note that

8u1 TO’10‘20’3...O'n = V;u Talazag.,.an

This is because the Christopher’s symbol vanishes in normal coordinates. Sim-

ilarly for a two index tensor we can write

Vm Vuz Tm o2 — am (Vm T0'10'2) 102 (Vuz Tmp)

(V T0'1‘72> (VUQTPU2) F

uwz u1o1

All the terms involving free Christoffel symbols (by free we mean without

derivative term) would be zero. The remaining terms are,

Vﬂl VM2TU102 - amauzTUle - a (Fp )Tﬁcfz - aﬂl(Fzgoz)Tmp (B‘12)

[201

We use the fact that,

aMIFZmTl = 3 <R52,U410'1 + Rglulm) 8N1Flp1202 = 3 (RZ2M102 + Rg2M1M2)
Putting these in Eq (B.12) we get,
VMIVMTUNQ - aﬂlaMQTUN? 3 (RZQMMH R01N1M2) T 3 (Rlpmulfm Rg%“llw) T

Therefore we can write

_ 1, - _
Vi Vs Toroa" 0" = 04,0, Ty 1" 77“2—5(3,’12“10177 2+ RO 1) Thoy
1

= 3 (Bl 0™ + Ry 10°) Ty
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The term R/ . n"'n"* becomes zero because of the antisymmetric nature of

the Riemann Tensor with the exchange of last two indices,

Rpwmznmnw _7 R&Tluwzn /i

Now if we exchange the indices p; <— us we get,

op Hiph2 — A0 H2 11 ép p K12
Y Réor e M = Y Ry iy M0 = =" Rooypnie’' 1)

276pR501 12 ,'7“1 77”2 =0

Therefore
Rp1u1u277/“77u2 =0

With the same logic R, n"'n"? = 0, therefore,

Oy Oy Ty = VMVMTMW“W“%L R

3 Mzmmn nM2T002+ RM2M10277 nuzTﬁlp

3

(B.13)

Again using the antisymmetric nature of Riemann tensor with exchange of
last two indices and substituting Eq (B.13) in Eq (B.11) we get,

_ _ _ 1 _
Ty10,(Xo +1) = 15,0, (Xo) + VinToio, (Xo)n" + _V,UIVM2T0102 (Xo)nHn®

—gRﬁwwz T oy (Xo) _nglozuz Ty (Xo) i + ..
(B.14)

Since this expression involves covariant derivative and this is a tensor equa-
tion, therefore it will hold in any coordinate system even though we derived it
from normal coordinates. Therefore we can remove bars from the notation and

write it for any general T, ,,(X).

B.7 Expansion of Partial derivative in Normal

coordinates

To express the expansion of partial derivatives we differentiate with respect to
a Eq (B.5) at t=1

aa(X(éL + ﬂ”u) a Xﬂ + 0 77 - _a ( 010277017702) +.

aa(Xg+7TM) =0, XM—{—aa?] Y (a F’u1a2n 7702+Fg1028a770 7702_{_1—‘”10277 an@) s
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Since Christopher’s connection is symmetric w.r.t lower two indices therefore,

aa(XéL + 7.(.#) a X'u + aan - = (a F'ulo.277 72 + 2Fg1028a77017]02) + ...

1 0 (977"1
WX 74 = QX 00— 5 T 100G Ty, 700,
(Xo +7) = " X 7 1035y
a Fglo-Q = 3 (RgIJJQ + RZQJUI)
o .
0u(XE ) = QXY+ 0urt'— ¢ (R o0 + Rl 1707) 0uX3-Th o X

Exchanging o1 and o5 in the fourth term nd using the fact that n?1n?2 = n22n”
, also we use the asymmetric property of Riemann tensor while exchanging last

two indices doing so we get,

Ou( XN +71) = 0, X8 + Ot + = R

3 ala2j770177028 X]

Returning back to Riemann normal coordinates we know that the connec-

tion coefficients vanishes therefore we can write,

1
Ou( X+ 71) = 0, X5 + Van + =R

R0 0uXE (B.15)

B.8 Polyakov Action Expansion

Before expanding polyakov action we need to expand the expression for the

metric using Eq (B.14).

1 e
~Rpape 1°0° + ... (B.16)

guu(XO + 7T) = G + 3

To expand Polyakov action we use Eq (B.16) and Eq (B.15)

Sp(X§ + ) = Aoy 0, (XE + )0y (XY + ) gy (Xo + )

Ve

1 ) ) 1 ,
= a XU+ Vo + =R, 000, X0 + ...
47TOé d U\/_7 (a (IT] 3 af ]77 77 aa 0 )

1
(abXV + Vbﬁ + 3Ra,6’j77 nﬂabX +. > <gm/ + nguBTlaﬂﬁ + .. >
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Y

1
- /dQU\ﬁVQb {%X{)L@nggW(Xo) + 0. X4 Vin"” g (Xo)
+ VanuabX[l)/g,u,y(XO) + Vaﬁ#vbnyg,ul/(XO)

1 v a j 1 a j
+ gRaﬁﬂl UﬁabXéaanguv + gRigﬂl UﬁaaXéangguv
1

+ 5 (Bosn™n 0 X5V + Rl 0 0 XV an) g
1 14 (0% 14 (o7

+ g (8aXSLabX0 R,uozﬂl/n n+ 3aX5LVb77 R,uaﬁzzn 77,8)
1

+ S Vol 06X Ruapurt®n” + %Van“vbn”Rwﬂyn"‘nﬁ +.
Due to the symmetric nature of g,, and 7% we can write,

V0 X6V g (Xo) = 7" Va0, X gy (Xo)
Similarly

a 1 a j v a 1 v a j a 1 v a
9 bgRZBjn UﬂaaXéva Guv =7 bgR 53'77 nﬂabXévanug,m/ =7 bgaanvb’ﬂ Ruaﬂun 775

«

a 1 14 «
=7 bgvar]‘“aon Ruaﬂun 775

Therefore we can write,

Sp(XE + 1) = Sp(Xo) + /dQJ\/f_yfy“bgW(Xo)ﬁaXé‘Vbn”

2ma!
T / o\ /7" (9w V' Vil + Riuapy (X0)0a X6 0 X5 11°1°)
R / &>\ /77" Ry (X0)0a X4Vt 00’
127/ / d*o /A" Rysap (Xo)Va Vi nn’. (B.17)

B.9 Antisymmetric Action Expansion

The expansion of antisymmetric action is similar to Sp, first we expand B, (X{+
) using Eq (B.14)

Moy a 1 1 P 1 P B

B (X +7") = B (Xo)+VaBu (Xo)n +§ [vavﬁBuV(XO)_gRauﬁBpV_gRauﬁBup]77 n

(B.18)
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Now we move on to derive the expansion for Syg

Sas =

Aral / d* 7?0y (X + )0y (Xg + ) By (Xo + )

1
4ol

1 .
X <(‘9ng + V" + gRZﬁjn“nﬁabXé + .. )

1 ‘
/d2ae“b (8aX6‘ + Vot + §Rgﬂjnanﬁaa)(é + .. )

1 1 1
X <B,u,y(X0) + VQBW,(X())UQ + 5 [VQVQBMV(X()) — gRZuﬁpr - gRZVBBMP:| nanﬁ + .. )

8anangBuy + 6aX5VanBuy + Van“angBw, + vanMVbT]VB’uV

1 2 _ _ab
B 4mad /d o

1 . 4
+3 (0. X5 0 XTRY 500" + 0, X§ 0. X Rl s 1®1°) Buy + 0. X5 0, X5V o By

aBj

1
+ Van“ObX{fVaBm,n“ + Vbn”aaX(’)‘Van,no‘ + §8aX(’f@ngVavﬂBWnanﬁ_

1 14 (07 1 174 (0%
gaanaon R, 5B 775 - gaanaon RZuﬂBupn 77/8

auB

Here we omitted all the higher order terms in n* as we only need second order

terms in one loop calculations.
Since € = —€" and B, = —B,,, therefore we can exchange a — b and

i — v in the left hand side of the equation below to get
0, X\ yn" By, = €0, XV B,
Similarly we can show that,
€"Vo BV 0 XEn™ = €V o B, Vin” 0. X{n"

Now similarly exchanging the indices j <— v and suing antisymmetric property
of the Riemann tensor we obtain
€0, X X R 5, Bun®n” = €0, X XY R, Bpui™n”

afj apf

Using all these properties we finally obtain and arrange the equation in increas-

70



ing order of n®

1 1
SAs(X(/f + 7T‘u) = SAs(X(]) + /dQO'EabQﬂ_a/ [BW&IXS‘VW” + §VaBﬂyaaab77a:|
+ /dQUeab47Ta/ {Bwvan"vbn” + QVQBuVaanvbnyna}
1
+ 5 |:vavﬁBuu + BupRZ&, + BPVRZﬁu:| aanangnanﬁ

(B.19)

B.10 Calculation of anomaly from Sp

We split the integral of Eq (3.25)

li(ly 4+ q4) 41 liq
= [ @221 /d%é /d%L
/ 12( + )2 14128 1 2¢2 T 14128 1 22

The denominator can be written as D = (I + ¢.1)? which gives us the form of T

14l liq
I= | 21—+ ¢ /dﬁi
/ (I+q.l)? (I +q.0)?

To solve this integral we use the following formula

as

N
/d l (2 + ;p 1A - _F(A) p2A-N Py (B.20)
Ll aN/2 . N
N nly . B 1, N
/d ! (24+2p-D)A  T(A)p2A-N {F(A N/2)pupy 5P duwl'(A—1 5 )]
(B.21)

Putting N =2, A =2, p=q/2 we get

q /dzl Iy __ T 4+9+
" U+qD?  (q/2)? 2

Similarly,

lol_ s qrqe 1
Pl—— = S )
/ [+ )2 <q/2>2[2 2 8! 1

Of course the Gamma function I'(A — 1 — %) diverges for A =2, N = 2 as I'(0)
is not defined, therefore the theory needs to be properly renormalized, which
can be done using dimensional regularization. We will not be doing the proper

renormalization and will ignore the term and move on with our calculation.
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Adding the above two equations we get,

q+4+ 9 q+q+
= 27

I=—m—
q q+9-

Hence,

1 /dQZM = I (B.22)

2 2(1+q?* ¢
Now we can use the conservation equation Eq (3.24) to calculate (7. ) which

gives us the weyl anomaly.

_ 1
(T4} = =2 (Thy) = TR X0) X4 0" X (B.23)

q+

B.11 Stress Energy tensor contribution from

dilaton action

The stress energy tensor is the response to the metric so varying the dilaton

action we get the definition of the stress energy tensor

Sp = 8i / d*o\/yRP(X)
™

55 — 8i / o (5(@3@ + ﬁé(R)(I))

(e

We know that
R =Ry, SR = 6v® Ry + 70 Ry

B o e
S/~ — - _
Vi=a 5 2./7

We can explicitly show that, [6]

/7ab5Rab — vg [,yabvcr(sfyab o vbgob}

Therefore combining all these we obtain the variation of the Dilaton action to
be,

1 1
65 = —— | d°0 | ==V RO+ T Rap07 O+ (Yo Vo VI 67 =V V67
- U{2ﬁ77b7b VTR0 P+ (Yab gl v07")
In the flat worldsheet metric R = 0 and R,, = 0 and 74 = d4 similarly the
covariant derivatives could also be written as the ordinary derivatives. Making

all these changes in the flat metric the stress energy tensor corresponding to
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the flat worldsheet metric coming from the dilaton action is,

ij = (aaab - 5abD> (I)(X) (B24)

B.12 Vielbein and Spin connections

The spin connection in differential geometry describes how spinor field such as
fermionic field behave under local Lorentz transformation in curved spacetime.
Spin connection can be considered as a gauge field associated with local Lorentz,
spin connection tells us how vielbein changes as we move along the spacetime.

The vielbein’s spacetime indices could be raised and lowered via metric
tensor

i v i j
e =g, e, = 0;€]

n® transforms as,

ni N 77/2' — Aijnj

A general tensor that involves both coordinate indices and non coordinate in-
dices transforms as,
T A 8$“A.b0$5
Jv aal.a J oxr?

Earlier we used to define covariant derivatives as ordinary derivatives plus the

Christopher’s connections that canceled the non tonsorial part that was coming
from the ordinary derivative, similarly in non coordinate basis we would do
the same and the connection coefficients would be called spin connections wy.,

therefore the derivatives are defined in non coordinate basis as,
O, Xy = Ou Xy +wi Xy —wip X

For a mixed indices involving coordinate and non coordinate indices the deriva-

tives would involve both Christopher’s connection and spin connections,

If we demand that the the parallel transport and projection between ¢ and
u indices to commute, (meaning that if we parallel transport a vector in curved
spacetime and then project it to local flat Lorentz frame using vielbein is equiv-
alent to projecting the vector in the local Lorentz frame and then parallel trans-
porting it) then the covariant derivative of the vielbein must be zero VMGL =0,
which gives us the definition of the covariant derivatives as,

i L TP ot o —
Ve, = oue, — I e, —w, el =0
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B.13 Weyl Transformation in Effective Action

4
P
Guv = gm,eD 2

The determinant under the scaling transforms as,

2D®

\/g = /geD-2
Similarly the scalar curvature under the transformation g,, = w?g,, is given as

R=w?2R—2(D—1)g*w3(VaVw) — (D = 1)(D — 4)g*Pw(Vow)(V 5w).
(B.25)

Integrating by parts the second term of the above equation and plugging w =
e D2 2(I>
29

Ty = ~(D = gV (e V(e i)
24(D—-1) s 9
“D-am-9° VP

Similarly the third term would be given by

29

Ty = —(D — 1)(D — 4)g™ e 72V, (eD2) V g(eP2)
D—-1)(D—-4) w0
-2(Vo
D=2n-2° V¥
Therefore the overall transformation would be given by

R=ep> (R - 4(%)—__21))(w>)2>

—4

Similarly, the (V®)? transforms as

(VD)2 = ¢g"'V, 0V, & —s ¢ 72 (VD)2
And similarly the H? transforms as

H? = H,,,H"" = g"*"¢" ¢ Hypo H,py —> €~ D75 [

Therefore if we combine everything together,

Sp = / dP X \/GeD-3e 2% {eD (R - %(V@)Q) —eD-3(VP)2—e -2 [[2]

i 1 8 ~
Sp = /dDX\/—[R - —2 V<1>)2 - Ee_D—?Hz} (B.26)
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Appendix C

Details of Chapter 3

C.1 Koba-Nielson factor for N=1

kX (o)

We can expand the term e in the following manner,

(eFX@)) = <eikX0 (1 + ik + %(ik.gﬁ +.. ) > (C.1)

— ¢ih-Xo (1 +i(k.£) — % (k-£)%) + .. )

All the odd point functions would vanish as a result of Wick theorem as the
odd number of quantum fields would have no pair to contract therefore only
the even terms like (k.£)? would survive. Therefore evaluating such terms we

would get.

((k6)*) = —kakn(£°€")

Using Eq (5.8) in the above equation we obtain,

1 o 1o ab s o 9 )
§<(k‘~§) )= _igkakb(s log e = Zk log e

Similarly the next even term in the expansion of Eq (C.1) could be evaluated

as,

((k&)") = —kakpkcka(§€"€°€7)

The number of possible ways to wick contract n (even n) operators is given
by

n!
(n/2)! 2n/2

This is because the first pair could be chosen in n(n — 1) ways the second one

(n —1)(n — 2) ways and so on, but the order of pair does not matter that is

why we divide with (n/2)!, also each pair can be swapped within themselves
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without changing anything so a factor of 22 is needed.

1 14l S | 2
Z«kf) > 127 2|< k% loge > o1 ( n k% loge )

Any general term in the expression would therefore be

1 2n)! ! "
= ——( n) (ﬁk2 log62>

(2n)! 27 x n!'\ 2

1 n
T=— ( k* loge )
n!

Therefore all the terms combined could be written as,

i o i 1o 2
<€kX()>:ekXo( 4k2 10g€+2|(4k2 log €) +)

The above infinite series could be written as

e o 1 " ’
_ eszo Z —~ ( k2 IOgG ) _ eszo(U) exp (%kQ lOg 62)

n=0

: 2
— eszo(

)

exp ( loge2k
. o 12
_ ik Xo Gk

Therefore,
1, . o .
_2<67,k.X> — 67162—2 eszo (CQ)
€

C.2 Koba Nelson factor for N=2

To calculate <e““1'5("1) eik2'5(02)> we could be Taylor expanded it as,

(1 &(on) gik2&(ory — <(1+ik1.§(01)+%(z’klf(al))2—|—. . .)(1—1—@'/{:2.5(02)4—%(il{:g.f(ag))2+

Considering

(1 +ikq.£(02) + %(ikg.g(@)f +..)=T

<6ik1£(cr1) iko . &( U2> <‘7'> + <Zk1 £ o1 T> —+ < Zk’l £ 0'1 T> +. <C3)

The (7 ) can be interpreted from Eq (5.9) as

TO = <T> = 6(12 kz
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Similarly the term (ik;.£(01)7 ) could be written as

Similar to the above discussion the odd point functions will eventually become

zero, also we keep in mind the identity

/

(§(o1)E(02)) = 5 log(lor — oaf?)

Therefore the second term in the Eq (C.4) would be

/

«
Tll = 51{71.]{32 10g<|0'1 — O'2|2)

Similarly the fourth term would be

1

€00 n0)") = 5 (553 1ou(e) (S Ton(lon — o))

There are three ways of wick contracting the fourth term in the expression

therefore it comes with the factor of 3 therefore the above expression becomes,
3[a o
= 5 (Ek’% 10g(€2)) <5k1k2 10g(’01 — 02‘2))

(2) o 2 of 2
7 = Zkz log(€”) Elﬁ-ké log(|o1 — 02[7)

Similarly any general term of Eq (C.4)would be given by

(2n +2)! 1
(n+1)! 204D (21 + 1)!

) (2n+1-1)/2

(n) o 2 o', 2
" = 5]{?1.]{32 log(|o1—02]?) Ekz log e

This is because the no of ways fo contracting 2n+1 odd operators and 1 operator

is given by [AAAAA...B]

(2n +2)!
(n+ 1)! 241

Also the power of (%/kg log€? | is (2n+1—1)/2 because 2n+1—1 & operators

contract among themselves and 2 (§; and &) contract with each other.

(o 2 1 oy 2\
= <5k1k2 log(]al —0'2‘ >>(n)—'2n (5]{2 10g€
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Therefore summing up all the terms would give us the result

o0

7= (i 1 2 Ll )
L= | 5hhe 0g(lor — 02" Z al\ g 2 108¢€

n=0

o 2 oy 2
Tl = Ek'l.kg 10g(|0'1 —0'2| ) exp ZkZ lOgG

Oé/ ’ 2
T, = (5k1k2 10g(|0'1 — 0'2’2))6a /2 k3

Now looking at the third term in the expression of Eq (C.3)

1 2
Ty = —5«]{?1-5(01)) T)

= —% (kjlf(dl))Q(l + Z'kg.é'(O'Q) + %(lk25(02)2 + ... )>

Of course the odd point functions vanishes, also the above contractions could
be done in two ways, one by self contracting £(o1)¢(01) and then contracting
&(09)&(02) . .. the other way is to mix contract the operators £(op) and (o),
doing the self contraction we would obtain

~ &, ’ 9
T, = Zk‘f log €% e 7"

For the mix terms we can use the same logic as before,

1
/_
E‘mxm

((y £(00))? (k- E(02))2 + ... )

/ 2 /
1
- (%M log(Jo — 02|2>> 5(1 + TS loge? +. )
1

/ 2,
(%k’l.kg lOgOUl —0'2’2)) E%k%

The second term in the expression of Eq (C.3) is the combination of 73 and

15

1 ! 2 al 12 ! al 12
T2 = — 2/{?1.]{72 10g(|0'1 — O'2|2) €7k2 + gk% log 62 67k2
21\ 2 4
Similarly the fourth term in Eq (C.3) must be

g? (ikh.§(01))3(]%—ik@.f(o&)-+-§i(ik2.§(ag))2 +...))

Similar to the above expression we can do the contractions in 2 different ways
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one by self contracting the (o) and £(02) and the remaining term is contracted
by &(03) and the other way in which we contract £(o7) and £(o2) together, the

former would give us

%< <(k1.§(01))3k2.§(02)) (1 + %(kl-f(@))Q +o )>

- 3 [d o o
Ty = 3 (gkf log(62)) 5]{71.]{52 log(|oy — 0'2|2)67k%

The factor of 3 is used because the above contraction could be done in 3 possible

ways
n a’ 2\ (& 2y ) 2 k2
Ty = Zkl log e 31@.]{2 log(|oy — o9|”) Jez™

Similarly complete mixed contraction would give us

1/d 5 2
Té = g (3]{51]{?2 10g(|0'1 — 0'2|2)) €7k2

The overall term is the combination of these two terms

o o o2 1 [d P e
T3 = (Zkf log62> (Ekg.k'g log(|01—02|2))e2k2—|—§ (Ek’l.k'g log(|01—02|2)) ez k2

Combining all the terms,
<€ik1'£(al) 6ik2'§(02> = T() + T1 + TQ + T3 + ...

C!/ ! C!/ 1 ! 2 (Xl
= 67k§ + (%klkg 10g(|0'1 — O'2|2>>€2k§ + 5 (%kle 10g(|01 — 0'2|2)> 671%

¢ OL/ ! ! CX/ 1 ! 3 [
+gk:f log €2 € T% + (%l{:f log 62) (%k‘g.k’g log(|01—02|2)) €Tk — (gk‘l.k’g 10g(|01—02|2)> €

4 3\ 2
of 2 o 9 1 (o >0\
=e2"2|1+ Ekl.k’g 10g(|01 —0'2| ) +§ 51{51.]{32 10g(|01 —0'2| ) + ...
iz (@ 2 o 2 Loy fd ), AN
+e2"™2 Zkl 10g€ 1+§k1k2 10g(|0’1—0'2| )+ .. +§€ 272 Zkl 10g€ 1—}-?]{31]{32 -+

g ’ 1 / 2 /
€Tk [1 + (%kf log 62> + 5(%/@ log 62) } [1 + (%k‘l'kz log([o1 — 02|2))
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1 2
2'<2]€1 ]{ZQ lOg(|O'1—O'2| )) :|
a k2

/ /
€2 "2 exp [4 k2 log 62:| exp |:%k1.k2 log(|oy — 02|2)]

akZ akZ

’
€2 ) €2 _0,2|Ozk‘1.k2

|01

Therefore for N=2

6_14<eik:1.X(01) eikQ.X(02)> — ¢ih1Xo(o1) gik2 Xo(02) ¢ o (k2+k2)—4 o1 — 0o "k .k (C.5)

C.3 Tachyon beta function for N=2

Now in order to obtain the g function we use the standard definition of beta

function,

d‘bg) o TR ~ ol 12 1 dPky dPky 6(k — k1 — ko) oo
(L k22) T 2d () + B (k) S 2——/ ER
(GE-D T R+0W" =0 | G any ket

o ~ ~ - ~ ~
| (G R -2) (bbb 450D 1 (01) k)| =0
(C.6)
The general renormalization group equations for a coupling g; could be

written as,

dg; i i g i g
o = N0+ g g (C.7)

B =

Where the first term is not summed and ¢ = log ¢, therefore the integral version
of beta function could be written as,

Bolk) = aR)b() + [ (C; ’j éﬂ’)@ bk, iy, k) B(k)B(ky) + O(3)  (C.8)

Substituting Eq (C.8) in Eq (C.6) and using a(k) = (2 — %kQ) we obtain

D D D D _ _ /
/ dPky dPk, 2 )0 ks k) / dPky dPk, 5(kl ky — k) g(kQ_k%_kg)M
(2m)P (2m)P 2/ @m)P(@2m)P Skik,+1 [2

Since k = ky + ko and k* — k? + k3 = 2k, ks therefore,
b(k, ki, ko) = 0(k — k1 — ko)

Using b(k, k1, ka) = 6(k, k1, k2) in Eq (C.8) we get the tachyon beta function
80



till order O(®?) as

. % dPk, dPk,
)= —(—k*>—2 — =
k) = =5 =2) +/ (2m)D (27)P
Which when Fourier transformed gives us

Bo =

DO | —
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S(k — ki — ko) ® (k)P (ky) + O(D3)

(o/0"0, + 4)® + @ (C.9)
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