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ABSTRACT

The aim of this project is to study gravity and black holes in string theory.

We investigate the low energy limit of string theory by considering the mass-

less string states and analyze the beta functions which automatically gives us

general relativity. Next we analyze tachyon and massless string states in the

formalism and compute the beta functions and hence obtain the equation of

motion of tachyon and massless field following renormalization group approach.
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Chapter 1

INTRODUCTION

Humans have always tried to understand the universe, we are always curious

about the things happening around us and this curiosity has brought us a long

way in our civilization. There are some truths of the universe that we try to

explain via numbers and mathematics. One such truth is the concept of grav-

ity. The fundamental question is why everything that goes up comes down.

Some people tried to explain these observations but the most interesting an-

swers came from Sir Issac Newton in his book Principia Mathematica, Newton

said that objects having mass attract each other and the force of attraction is

proportional to the masses and inversely proportional to the distance square

between them. This picture continued for centuries and led the foundation

for classical mechanics, however, it did not explain why there must be a force

that brings masses together and the biggest problem with Newton’s gravity was

that it didn’t go hand in hand with special relativity which was one of the most

prominent theories of the 19th century.

Einstein in the early 19th century formulated a general picture of gravity

called General Relativity, Einstein said that gravity is not just a force but is fun-

damentally the curvature of space-time due to mass and energy, this explained

everything explained by Newtonian gravity and also en-cooperated special rela-

tivity in it. Einstein’s picture is a more general picture of gravity that we follow

to date. On the other hand, the early 19th century laid the framework for a

new and mysterious branch of physics known as quantum mechanics, which re-

vealed that the universe doesn’t operate by the straightforward laws of classical

mechanics and there is more fundamental theory that describes reality, known

as Quantum Mechanics. In the second half of the 19th century, people tried

to describe all known physics in a way that was consistent with quantum me-

chanics, but unfortunately, the theory of gravity didn’t go hand in hand with

quantum mechanics.
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Here comes string theory which promises to unify gravity with string theory

and to unify all the physics in the same framework. String theory is a framework

that promotes fundamental particles from being point-like (0-Dimensional) to

string-like (1-Dimensional), however, the length of fundamental strings is of the

order of ls ⇡ 1034m which corresponds to the energy scale of 1019Gev which

is way beyond physics of fundamental particles are, therefore to recreate the

physics of fundamental particles as we understand them today, we focus on

massless string states and examine the low-energy e↵ective theory.

This report attempts to regenerate the physics of gravity, given by Einstein,

using the quantum version of strings. Initially, we start with a classical string

action (Polyakov action) and look at the properties and invariances of the cor-

responding action, we see that string theory in its classical domain has a very

interesting symmetry and that is conformal symmetry. This symmetry governs

the physics of string worldsheet to a large extent. Now the next step is to quan-

tize the string, there are various procedures used to derive a quantum theory of

string from the classical theory but the most useful one from the point of view

of string theory is path integral quantization, and we will employ the same. Un-

fortunately while looking at the properties of quantum e↵ective action (before

actually doing the actual quantization procedure) we find that the quantum

theory of strings does not respect one of the most holy classical invariances

which is the conformal invariance, this is called the conformal anomaly. The

anomaly manifests itself as the expectation value of the stress-energy tensor.

To solve this problem we shift our stress energy tensor in such a way that the

anomaly vanishes.

Next, we want to study string theory in a nontrivial background, the back-

ground we consider is string states, since we are concerned low energy limit of

string theory therefore we will only consider massless string states as back-

ground. Three massless string states arise from a closed string (Graviton,

Kalb–Ramond field, dilaton). We will look at string physics choosing these

three fields as a background. Eventually, we will analyze how solving the con-

formal anomalies that arose from the quantum version of string theory beauti-

fully led us to general relativity equation.

Our next step step would be the study of black holes, black holes are one of

the most mysterious objects in the universe, there are a lot of mysteries of black

holes that are yet unsolved, one of such mysteries is the informal loss paradox,

the information that goes inside the black hole seems to be lost. To solve this

paradox, string theory has a lot to o↵er, we will analyze how string theory can

2



help in solving the mysteries of the universe, again to do this systematically we

would require a good understanding of the massive string states, therefore our

attempt would be to study the beta function of the massive string states and

hence the equation of motion of massive states. To do that we will develop a

formalism in which the beta function of any general tensor field could be studied,

be it massive or massless, and we will verify the formalism by calculating the

beta function of tachyon field and massless field.
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Chapter 2

String Actions and invariance

This chapter is focused on introducing classical string action and analyzing the

invariances that it possesses, we will see how these invariances gives rise to

beautiful properties of stress energy tensor.

2.1 Polyakov Action

The simplest action one can write for a string propagating in D dimensional

spacetime is proportional to the area of the world-sheet swept by the propagat-

ing string.

SN /
Z

dA

The corresponding Action will therefore be (A.1)

S =
1

2⇡↵0

Z

d2

q

(Ẋ.Ẋ)(X 0.X 0) (Ẋ.X 0)2 (2.1)

The action is famously called Nambu-Goto Action

The factor of 1
2⇡↵0

is a constant to make the action dimensionless, also in general

if we consider D dimensions then our
!
X becomes Xµ where µ = 0, 1, 2, ......D

and if we consider D dimensional curved spacetime then µ⌫ in 3D spacetime

would be promoted into gµ⌫ so in general

Ẋ =
@X

@⌧
X 0 =

@X

@
and Ẋ.X 0 = gµ⌫ẊµX 0⌫

The coordinatesXµ have the dimension of length, so ↵0 must have the dimension

of (length)2.Usually the length scale depends upon the physics of the theory

itself, but since we are dealing with quantum theory of gravity we usually

work with plank scale which is of the order of 1034m. The Nambu Goto

action described is hard to deal with because the equation of motion would
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involve square root and it is difficult to quantize the action involving square

root.Therefore we define an equivalent action called the Polyakov Action.

SP =
1

4⇡↵0

Z

d2
p
↵@↵X

µ@X
⌫gµ⌫ (2.2)

Here the ↵ are the auxiliary fields introduced in our theory. It may seem that

the auxiliary fields are the new degree of freedom in our theory, but actually it

turns out that they are not. Of course the string action that we have written

must not depend upon the parameters that we have chosen, so for that to hap-

pen the auxiliary field ↵ must transform like a second rank tensor. Consider

the reparametrization of

↵
! 0↵()

Our theory is reparametrization invariant if [8]

Xµ
! X 0µ = Xµ ab ! 0

ab =
@c

@0a

@d

@0b
cd (2.3)

2.2 Field equation of ab and equivalence of ac-

tions

To see the field equation of ab we need to vary action with respect to ab itself,

to do that we first note that the variation of determinant of any second rank

tensor is given by

 = ab
ab (2.4)

Now if we vary our action we obtain (see(A.2))

S =
1

4⇡↵0

Z

d2
p
abgµ⌫

✓

@aX
µ@bX

⌫


1

2
ab@

cXµ@cX
⌫

◆

(2.5)

Now we can extract Tab from the definition

S =
1

4⇡↵0

Z

d2
p
Tab

ab (2.6)

Tab = gµ⌫

✓

@aX
µ@bX

⌫


1

2
ab@

cXµ@cX
⌫

◆

(2.7)

But considering least action principle the variation of the action must be zero

for the particle who is following the equation of motion.This puts a constrain

on Tab which is Tab = 0. Eq. (2.7) puts a constrains on the field Xµ meaning the

field cannot take any form but is constrained by the above equation. Also this

equation fixes the auxiliary field ab and if we put the field in the action then

Polyakov Action becomes Nambu-Goto action. There are problems with

5



both the actions, Nambu-Goto Action has only the variable that we want Xµ’s

but it is difficult to quantize the action on the other hand Polyakov Action can

be quantized easily but for that we need to deal with extra degrees of freedom

which can be resolved if the particle follows the equation of motion or to put

it other way the energy momentum tensor must vanish.

2.3 Theory Invariances

We know that the constraint equation is given by Tab = 0 meaning there must

be four independent equations related to it (as interpreted from Eq (2.7)). But

since Tab is symmetric so there must be only 3 independent constrain equation.

Again in classical theory the trace of Energy Momentum tensor vanishes, but

it is not necessarily true in quantum theory [1]. Consider a two dimensional

theory with action A(X, ), there are certain invariances that an action must

follow, one of such invariance is reparametrization invariance. Consider an

infinitesimal reparametrization of worldsheet coordinates as,

0↵ = ↵ + v↵()

We know that, for reparametrization invaiance Eq (2.3) must hold true, one

can easily verify that under this transformation our theory is reparametrization

invariant. Applying the infinitesimal transformation we get

Xµ = v↵r↵X
µ (2.8)

Similarly for the variation of metric is given by (A.3)

ab = (ravb +rbva) (2.9)

Therefore if our theory is reparametrization invariant then Xµ and ab must

satisfy the above equation under infinitesimal transformation. The total change

in the action under such infinitesimal transformation is given by

S =

Z

d2

✓

S

ab
ab +

S

Xµ
Xµ

◆

When the equation of motion of the fields Xµ is assumed the variation of action

will be zero meaning both the terms will be individually become zero. Let us

for now focus on the first term. Using Eq (2.9) and Eq (2.6) and integrating

by parts we get

S =
1

2⇡↵0

Z

d2
p
vbraTab

6



For the reparametrization invariance of Polyakov action S vanishes and

hence,

raTab = 0

We can see how reparametrization invariance led us to the fact thatraTab =

0 , therefore it is the reparametrization invariance that imposes divergence-free

condition in our classical theory. Our theory is also invariant in another class

of transformation and this is something that we do not demand it pops out

automatically,the transformation is called Weyl Transformation. Weyl trans-

formation is the transformation of the metric, basically it is the local rescaling

of the metric conserving angles.

ab = ()ab

To obtain this kind of transformation consider the transformation of metric as,

0
ab = e()ab det(0

ab) = 0 = e2

Therefore,
p

00ab =
p
ab

which makes our polyakov action invariant with respect to weyl transformation.

If our action has this invariance then,

S =
1

4⇡↵0

Z

d2
p
Tab

ab =
1

4⇡↵0

Z

d2
p
Tab

ab()

For theory invariance S = 0 and for that

Tab
ab = T a

a = 0

Hence the immediate consequence of weyl invariance is that the trace of the

Energy Momentum tensor is zero. But unfortunately we cannot maintain this

invariance in quantum theory of strings.

2.4 Conformal Gauge

Let us now coordinate transform to a gauge which is suitable for us. From

reparametrization invariance of polyakov action we can choose two parameters

(, ⌧) by our convenience keeping the action invariant, therefore we can use

that to transform ourselves into a coordinate system in which the metric ab

has only one independent parameter, a convenient choice would be conformal

7



gauge metric.

ab = e()ab

If we choose to work with complex variables z in place of real variables (z =

 + i⌧ z̄ =   i⌧). The metric, connection coefficients and the curvature

scalar is given by,

ab =

 

0 2e

2e 0

!


z
zz = @z

z̄
z̄z̄ = @z̄ R = 4e@z@z̄

(2.10)

We will be using conformal gauge for our calculations from now on, for more

detailed calculations see (A.4)

8



Chapter 3

Quantum Theory of Strings

In this chapter we will look at the quantum version of string theory. We will

quantize the classical action and we will look at the properties of the quantum

e↵ective action starting from a general action A(X, ) after analyzing some

properties we will do it for specific actions.[1]

3.1 The problem with Quantum Theory

Now we move on to Quantum mechanical path integral and discuss the e↵ect

of the conformal transformation on it. The field integral over the field X’s gives

the partition function of the system represented as,

Z[J ] =

Z

D[X]eA(X,)+J.X = eW [J ] (3.1)

Here we only integrate over the X’s and take the worldsheet metric to be fixed(

but arbitrary). The e↵ective action W, depends upon  only as we have in-

tegrated out X’s. Since we want our physical quantities to be invariant under

reparametrization therefore we demand that Z[J ] and hence W [] to be in-

variant under reparametrization, for that we want D[X] and A(X, ) to be

invariant under reparametrization. We now need an inner product that we can

use to measure distances and hence volumes in the function space of X’s so

that we can carry out our path integral, but we must do it in reparametrization

invariant way, to do it in reparametrization invariant way from the point of

view of the worldsheet, we would inevitably need the two dimensional metric

 to define the inner product metric. When we work with polyakov action a

natural choice of inner product would be

|X| =

Z

d2
p

0()XµX⌫gµ⌫ (3.2)

9



We are writing 0 to distinguish with the determinant of the conformal gauge

metric which we will be denoting by  for notational consistency. This is

because
R

d2
p

0() is invariant with a change in parameter . For now let us

discuss some general properties of Quantum e↵ective action. Since the e↵ective

action W depends upon two dimensional metric therefore

W =

Z

d2
W

0ab
0ab

Reparametrization invariance of W demands us that the variation of quantum

e↵ective action with respect to the metric to be zero W
0ab = 0, therefore us-

ing Eq (2.9) for the variation of metric under reparametrization in the above

equation we get,
Z

d2
W

0ab



ravb


= 0

Performing integration by parts in conformal gauge we get,

rz

✓

1p


W



◆

= rz

✓

1p


W

zz

◆

rz̄

✓

1p


W



◆

= rz̄

✓

1p


W

 z̄z̄

◆

(3.3)

This equation is the classical analogue of the conservation of the stress

energy tensor the only di↵erence is that now the action is the new e↵ective

actionW . Also, the variation of the e↵ective actionW with the two-dimensional

action plays the role of the stress energy / energy momentum tensor. We can

argue that the right-hand side of the above equation is the z-th derivative of

the quantum expectation value of the zz component of the energy momentum

tensor. The partition function Eq (3.1) depends on  in two ways through

the path integral measure X 0s and trough the classical action A(X, ). The

variation of the classical action reduces the factor of the energy momentum

tensor to the path integral,which, when divided by Z, gives us the expectation

value.

4⇡p


W

ab
= hTabi (3.4)

But the question is that if any unwanted term arise from the variation of

the path integral measure. From equation Eq (3.2) we can say that the path

integral measure only depends upon the determinant of the two dimensional

metric. Variation of the determinant of a matric is given by,

 = ab
ab

= (zz
zz + zz̄

zz̄ + z̄z
z̄z + z̄z̄

z̄z̄)

But since zz and z̄z̄ are zero in the conformal gauge, the first-order variation

10



of the determinant with respect to zz and z̄z̄ is zero. Therefore, the path

integral measure is invariant under variation and hence no extra term arises

due to the variation of the path integral measure hence we can write,

rz

✓

4⇡p


W

zz

◆

= rz hTzzi (3.5)

Now let us analyze the significance of the right-hand side of equation (3.3),

the right hand side can be explicitly written as,


1

2

✓

 z̄z

Z

Z

 z̄z
+

 z̄z

Z

Z

 z̄z

◆

=
W



Hence with the similar argument as before that the variation of the parti-

tion function brings down the energy momentum tensor and the division with

the partition function gives us the expectation value, but now the metric ab in

front gives us the trace of the energy momentum tensor. As we have seen be-

fore that the trace of the Energy-Momentum tensor vanishes during conformal

transformation, but Eq (3.3) suggests that the variation of the e↵ective action

with respect to  is not in general zero telling us that the conformal transfor-

mations are in general anomalous in 2-D field theories.Also using Eq (3.3) we

can get the form of the anomalous form of the e↵ective action itself. Similarly

the left hand side of the Eq (3.3) can be interpreted as rz of something we

assume that it is local in the worldsheet. Since it is local in the worldsheet

therefore we need to construct something that is made up of ab. The right

hand side is a tensor of tz even under conformal reparametrization and is of

scaling dimension one. The only local function of ab that has these conformal

properties is the zth derivative of scalar curvature R. The assumption of local-

ity and with dimensional analysis we can therefore tell that the left hand side

of the Eq (3.3) must be of the form, [4]

rz

✓

1p


W



◆

=


48⇡
rzR (3.6)

We cannot determine the constant of proportionality  by general arguments

as it is the characteristics of the theory. Integrating both sides with respect to

z we get
W


=



48⇡

p



R + µ2


µ2 is the constant of integration. During a conformal transformation ab =

eab and in conformal gauge the ab is chosen to be flat metric. We can see

11



that the equation is satisfied by the form of W given below (See (B.2))

W =


48⇡

Z

d2
p



✓

1

2
ab@a@b+ µ2e

◆

(3.7)

The assumption that the anomaly is local has enabled us to characterize

the conformally non invariant part of the quantum e↵ective action by one di-

mensionless parameter  and a dimensional parameter µ. The term in W that

depends upon  is called Liouville action.

3.2 Operator Product Expansion And Virasoro

algebra

From (3.3) , (3.6) and (3.5) we can write,



48⇡
rzR = rz hTzzi

Since the partial derivative of hTzzi with respect to z̄ is non zero (due to weyl

anomaly) so the vacuum expectation value of Tzz is not analytic. But it is

possible to make the stress energy tensor analytic, by improving stress energy

tensor. In conformal gauge the derivative of curvature tensor becomes (See

(B.3))

rzR = rz(2@z@z+ @z@z) (3.8)

Therefore,


48⇡
rz(2@z@z+ @z@z) = rz hTzzi

If we redefine the zz component of stress energy tensor as,

T 0
zz = Tzz +



48⇡



2@2z (@)2


(3.9)

Here T 0
zz is called the improved stress energy tensor. We first note that the

above equation is valid for a specific metric, the equation holds for any kind of

metric, and we can do variation with respect to metric The second variation

of the W with respect to  gives us the expectation value of two stress energy

tensors. Also we would have the variation of the covariant derivative and the

Ricci scalar which would give us other terms. Say that the variation with

respect to zz is being done at a point w which is di↵erent from which the

original Tzz(z) was evaluated, then the two point function hT 0
zzT

0
wwi turns out
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to be [7]

⌦

T 0
zzT

0
ww

↵

=


2

1

(z  w)4
+
hT 0

wwi
(z  w)2

+
@w hT 0

wwi
(z  w)

+ regular terms.. (3.10)

The above expression looks similar to the OPE of the Energy-Momentum

tensor in conformal field theory,therefore it can be used to generate virasoro

algebra, to do that we can Laurent expand T 0(z).Appendix (B.4)

T (z) =
+1
X

1

zn2Ln Ln =
1

2⇡i

I

dzzn+1Tzz(z) (3.11)

[Lm, Ln] = (m n)Lm+n +


12
(m3

m)m,n (3.12)

Therefore it turns out that the operators Ln satisfies the Virasoro Alge-

bra.Similarly the another independent component of stress energy tensor Tz̄z̄

(which can be defined using another set of equations involving the variation

of w with z̄z̄) can be defined with another set of operators L̃n also satisfies

virasoro algebra among themselves but commute with Ln. Due to conformal

anomalies the trace in general of the stress energy tensor fails to become zero,

in spite of that if the anomaly has a local form which can be characterized

by a number  the expectation value of the independent component of energy

momentum tensor behaves like analytic objects. The trace in general which

was non vanishing as given by Eq (3.3) and its interpretations but if we shift

our stress energy tensor to the form given by Eq (3.9) then the rz hT 0
zzi van-

ishes which means vanishing of the trace of the stress energy tensor as given by

Eq (3.3) and its interpretation of trace and expectation value of stress energy

tensor. The remaining components of the energy momentum tensor Tzz and

Tz̄z̄ vanishing (Coming from reparametrization invariance which is still holy in

quantum theory) gives us other remaining constraint equation, but if it is so

Ln and L̃n must be zero as interpreted from Eq (3.11) quantum mechanically

it means that the expectation value of the operators must be zero, it therefore

means that Ln and L̃n acting on any state must annihilates the state. But the

algebra does not allows us to do so

⌦

 


[Lm, Ln]


 
↵

= (m n)
⌦

 


Lm+n



 
↵

+


12
(n(n2

 1))m,n

⌦

 


 
↵

0 =


12
(n(n2

 1))m,n

The left hand side of the equation is zero for any value of m and n but the

right hand side cannot be satisfied for any value of morn therefore we have to

13



demand the condition that,

L̂m



 
↵

= 0 = ˆ̃Lm



 
↵

only for m  1

Therefore we say that the physical states are those states which are annihilated

by Lm and L̃m with m > 0, therefore the expectation value of all Virasoro

generators (except L0 and L̃0) for all the physical states are zero, therefore the

expectation value of the analytic and the anti analytic component of the energy

momentum tensor is zero. Hence even if there are anomalies they do not prove

to be complete disaster and there are other things to compensate its e↵ect and

in all the cases we come up with will keep the physics of 2-D conformal field

theory intact.

3.3 Renormalizable sigma model

In this section we will be looking how the string couples with other strings

and will typically looking at the interaction they possesses, also we will be

looking at how string couples with the background, since most of the string

states are massive and the masses of these states are of the order of 1019 Gev

corresponding to plank length lp ⇡ 1034m therefore in the low energy limit only

massless string states would be present, if we consider closed strings there are

three massless string states Graviton (described by spacetime field gµ⌫), Kalb-

Ramond field (described by an antisymmetric tensor Bµ⌫), Dilaton (described

by dilaton field ). Therefore studying low energy limit of string theory would

be equivalent to studying the behavior of string in these background. The

polyakov action is power counting renormalizable since the constant ↵0 has the

dimension of [L]2 and therefore 1
↵0

which acts as a coupling constant would

be of dimension [M ]2, also the action is weyl invariant and reparametrization

invariant, therefore the terms that we add in our action must have all these

properties.

3.3.1 Antisymmetric Action

We can add a term in the polyakov action which has the properties as de-

scribed above, one of such terms is given by Eq (3.13), Bµ⌫ is antisymmetric in

spacetime indices.

SAS =
1

4⇡↵0

Z

d2✏ab@aX
µ@bX

⌫Bµ⌫ (3.13)

Where ✏ab is two dimensional Levi-Ci-vita tensor. Since ✏ab is a tensor den-

sity which will work in the same way as the factor
p
 for making the theory
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reparametrization invariant, the ✏ab is used in place of
p
ab because of the an-

tisymmeteric nature of Bµ⌫ . We can think Bµ⌫ as analogous to gauge potential

Aµ in electromagnetism,and the action SAS tells us how string is electrically

charged under the influence of the background field Bµ⌫ , See (B.5). Similarly

to the one form Aµ the two form Bµ⌫ the action is invariant under the trans-

formation,

Bµ⌫ ! Bµ⌫ + (@µ⇤⌫  @⌫⇤µ) (3.14)

Similar to Fµ⌫ in electromagnetism we can construct Hµ⌫⇢ by anti symmetrizing

it and using the antisymmetric property of Bµ⌫

Hµ⌫⇢ = @[µB⌫⇢] = @µB⌫⇢ + @⌫B⇢µ + @⇢Bµ⌫ (3.15)

3.3.2 Dilaton Action

There is another reparametrization invariant terms that we can add in our

theory,

SD =
1

4⇡

Z

d2
p
R(X) (3.16)

This action vanishes in flat worldsheet metric (since R = 0 in flat worldsheet

metric), second the action that we have written is not weyl invariant. Since we

want our classical theory to be weyl invariant, therefore we want SD to have

non trivial contributions only in higher orders of the perturbation theory as

compared to the other terms. We want the tree level weyl variation caused by

this term to cancel out the one loop weyl anomalies which arises from other

terms and so on. Since, (X) is dimensionless in worldsheet point of view

therefore we do not need ↵0 to make action dimensionless. Since ↵0 is loop

counting parameter of our theory and higher order of ↵0 means higher loop

diagrams. Therefore this suggests that SD first contributes on the one loop level

as compared to classical level. There are no other reparametrization invariant

terms of dimension two that we can add to our action. In bosonic string theory

the coupling function Gµ⌫ , Bµ⌫ ,(X) corresponds to vacuum expectation value

of modes of string of graviton, antisymmetric tensor and dilaton.

3.4 Background expansion And Riemann Nor-

mal Coordinates

We consider two dimensional field theory with classical actions which included

three actions described before,

A[X, ] = SP + SAS + SD
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This approach facilitates the study of string theory in non-trivial background

fields. Since the quantities, Gµ⌫(X), Bµ⌫(X) and (X) transforms covariantly

under general spacetime coordinate transformation, also as we have seen before

SAS is invariant to gauge transformation of the Bµ⌫ . Therefore it is important

that the pertubative calculations are performed in a way that explicitly repre-

sents the symmetries of the spacetime. We can achieve this using a trick called

covariant background field expansion. In this technique we separate the fields

into Classical Background part and Quantum Part.

Xµ() = Xµ
0 () + ⇡µ()

And we shift the path integral to be over the quantum fields ⇡µ only,

the background field lives in the 2-Dimensional worldsheet and not in the

D-dimensional spacetime, doing so we define the background field generating

functional as,

⌦[X0, ] =

Z

D[⇡]e
A[X0+⇡]A[X0]

R
d2 A

X
µ
0 ()

⇡µ()

The next step is to expand the classical action in terms of the quantum field

⇡µ, and derive the Feynman rules for the diagrams. ⌦[X0, ] can be viewed as a

generating functional for ”loop diagrams” with all external legs amputated. To

obtain the explicit form of the ⌦[X0, ] we can expand A[X0+⇡, ] around ⇡ the

background field expansion will eventually led us to a well defined perturbation

theory, and would give us correct results but since the quantum field ⇡µ is

defined as a coordinate di↵erence in spacetime coordinate and therefore does not

transform as a vector in general (Transformation properties of ⇡µ is restricted by

that of Xµ and Xµ
0 ). Therefore we need to do a little work before we proceed

further. We need to replace ⇡µ with an integration variable that transforms

like a vector under general spacetime coordinate transformation. The plan is

to expand ⇡µ() as a power series of ⌘µ which transforms covariantly under

reparametrization of the worldsheet coordinates. The tangent vector to the

geodesic µ(t) that connects Xµ
0 and Xµ

0 +⇡µ would contain all the information

of the coordinate di↵erence and also transforms like a vector, so tangent vector

would do the job perfectly.(See (B.6) )

3.5 Covariant Expansion of E↵ective Action

Knowing Eq (B.14) we can expand various terms to do the pertubative calcu-

lations. Let us start by expanding the spacetime metric gµ⌫ , the antisymmetric

tensor Bµ⌫ , and the dilaton field , then we will expand the corresponding
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actions.Expanding the polyakov action ( See (B.8),(B.7))

SP (X
µ
0 + ⇡µ) = SP (X0) +

1

2⇡↵0

Z

d2
p
abgµ⌫(X0)@aX

µ
0rb⌘

⌫

+
1

4⇡↵0

Z

d2
p
ab



gµ⌫ra⌘
µrb⌘

⌫ +Rµ↵⌫(X0)@aX
µ
0 @bX

⌫
0 ⌘

↵⌘


+
1

3⇡↵0

Z

d2
p
abRµ↵⌫(X0)@aX

µ
0rb⌘

⌫⌘↵⌘

+
1

12⇡↵0

Z

d2
p
abRµ↵⌫(X0)ra⌘

µrb⌘
⌫⌘↵⌘. (3.17)

Similarly, we want to expand the antisymmetric action SAS in terms of

⌘µ(B.9),

SAS(X
µ
0 + ⇡µ) = SAS(X0) +

Z

d2✏ab
1

2⇡↵0



Bµ⌫@aX
µ
0rb⌘

⌫ +
1

2
r↵Bµ⌫@a@b⌘

↵



+

Z

d2✏ab
1

4⇡↵0



Bµ⌫ra⌘
µrb⌘

µ + 2r↵Bµ⌫@aX
µ
0rb⌘

⌫⌘↵


+
1

2



r↵rBµ⌫ + Bµ⇢R
⇢
↵⌫ + B⇢⌫R

⇢
↵µ



@aX
µ
0 @bX

⌫
0 ⌘

↵⌘

(3.18)

Now let us also expand the dilaton action given by Eq (3.16), since the dilaton

coupling function (X) is scalar in spacetime, keeping this in mind we expand

Eq (B.11) for a scalar,

(X0 + ⌘) = (X0) +rµ1(X0)⌘
µ1 +

1

2
rµ1rµ2(X0)⌘

µ1⌘µ2 (3.19)

The dilation action Eq (3.16) can now be expanded using Eq (3.19),

SD(X
µ
0 + ⇡µ) =

1

4⇡

Z

d2
p
R(X0) +

1

4⇡

Z

d2
p
Rr↵(X0)⌘

↵

+
1

4⇡

Z

d2
p
Rr↵r(X0)⌘

↵⌘ (3.20)

The term which involves two covariant derivative of quantum field ⌘µ in Eq (3.17)

is the kinetic term of the theory, and the propagator which is derived from the

kinetic term will be non standard as it involves the spacetime metric gµ⌫ , which

is one of the coupling function of our theory. To solve this issue we define an

n-bein (also called vielbein) eiµ which is like a matrix which relates the vectors

in curved space ⌘µ to the local flat Lorentz frames therefore dealing with the

curved space becomes equivalent to dealing with the local flatness, which makes

the kinetic term diagonal in ⌘i coordinate system. Thus the ⌘iand the covariant

derivative of ⌘i is defined as,
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⌘i = eiµ⌘
µ ra⌘

i = @a⌘
i + !ij

µ @aX
µ
0 ⌘

j

Therefore,

gµ⌫ra⌘
µrb⌘

⌫ = ijra⌘
irb⌘

j = ra⌘
irb⌘

i (3.21)

Our theory remains invariant under local Lorentz transformations which is

SO(D  1, 1) symmetry, this symmetry is an internal symmetry as it doesn’t

directly act on spacetime Xµ
0 itself but acts on the internal degrees of freedom

(⌘i). The field Aij
µ = !ij

µ (X0)@aX
µ
0 transforms like a Yang-Mill gauge poten-

tial under local Lorentz transformation. However we need to break the gauge

symmetry in order to define a propagator because without breaking (or fixing)

a gauge there are redundant degrees of freedom of the fields ⌘i which makes

the propagators for the field ill defined. Although we break the gauge symme-

try to ensure a well defined propagator we maintain enough gauge covariance

to ensure that the theory behaves consistently under gauge transformations of

background fields, it makes our calculations simpler because if we demand that

the background fields are gauge covariant then the diagrams involving gauge

potential must combine is such a way that the resulting expression is gauge

covariant the combination that doesn’t respect this will give vanishing result,

this is because the background field is gauge covariant and the fluctuations

combining with it must also be gauge covariant. Therefore it is a good idea

to work with ⌘i local Lorentz frames as it simplifies the propagator and also

makes our calculations simpler. To do so we need to change variables in the

integral and integrate over ⌘i, since the path integral measure is defined in

reparametrization invariant way therefore the change in variables would not

e↵ect the path integral measure therefore when we change ⇡µ ! ⌘i doesn’t

e↵ect it. Before proceeding further we modify the form of Eq (3.18) and write

its quadratic term in terms of the antisymmetric tensor field strength Hµ⌫↵ as

defined in Eq (3.15), we want to do so because the gauge invariance Eq (3.14)

the physics of antisymmetric field only depends on its field strength, therefore

any term except Hµ⌫↵’s would vanish.

1

4⇡↵0

Z

d2✏ab


Hµ↵(X0)@aX
µ
0rb⌘

↵⌘ +
1

2
r↵Hµ⌫(X0)@aX

µ
0 @bX

⌫
0 ⌘

↵⌘


(3.22)

3.6 One Loop Calculation of Weyl Anomaly

We will calculate one loop weyl anomaly of the sigma model using the formalism

that we have developed earlier called the covariant background field expansion,

after all to calculate weyl anomaly we already say that we need to calculate the
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variation of metric with the scaling factor  of the theory. Using Eq (3.3) and

Combining this with Eq (3.4) the conservation equation takes beautiful form

rz̄ hTz̄zi+rz hTzzi = 0 (3.23)

If we assume that hTzzi is finite and well defined and somehow if we could find

it then Eq (3.23) could be used to find hTz̄zi which precisely gives us the weyl

anomaly of the sigma model. We begin to do our one loop calculations, for

simplicity we consider flat worldsheet metric and the curvature of worldsheet

will be taken care later. It is convenient to work with light cone coordinates

and momentum space for our calculations. In momentum space Eq (3.24) takes

the form,

q+ hT+i+ q

hT++i = 0 (3.24)

3.7 Contribution from SP

@+⌘
i@+⌘

i
Rµjk⌫(X0)@aX

µ
0 @bX

⌫
0

ab⌘j⌘k

l

l + q

Figure 3.1: Feynman diagram representing the contribution to T++

First we want to compute the contribution to hT++i that comes from SP .

The @+⌘
i@+⌘

i comes from an insertion of T++, of course we would expect

other terms also since stress energy tensor is the variation of the action with

respect to the metric therefore it would have remaining terms coming from

gµ⌫ra⌘
µrb⌘

⌫ = ra⌘
irb⌘

i and the terms coming from the Riemann tensor see

Eq (3.17), however the remaining terms from ra⌘
irb⌘

i the SO(D1, 1) invari-

ant gauge potential does not contribute to insertion because the because it does

not give us gauge covariant terms and the second term in the insertion would

be thrown away because two scalar curvature one from the insertion and the

other from the T++ in the left and other from SP on the right can be neglected

for small quantum fluctuations. We insert T++ on the left with a momentum

q and the momentum is carried away by the background fields represented by

double lines in the right, propagated by the propagator of ⌘i. The only interac-

tion between X0 and ⌘i is given by the term Rµjk⌫(X0)@aX
µ
0 @bX

⌫
0

ab⌘j⌘k. The
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contribution of the diagram would be given by

1

2⇡

Z

d2l
l+(l+ + q+)

l2(l + q)2
[Rµ⌫@aX

µ
0 @

aX⌫
0 ](q) (3.25)

Solving it and putting it in Eq (3.24)

hT
+i =

q


q+
hT++i =

1

4
Rµ⌫(X0)@aX

µ
0 @

aX⌫
0 (3.26)

This implies that the trace of the stress energy tensor is non zero in quantum

theory even though we start with a conformally invariant action classically and

the anomaly depends upon the curvature of spacetime, our goal now is to

remove the conformal anomaly by adjusting the spacetime metric gµ⌫(X0) in

such a way that the Ricci tensor Rµ⌫(X0) vanishes therefore making the trace

of stress energy tensor zero. But before doing that we need to find the full form

of anomaly because this anomaly is only because of the polyakov action. The

anomaly has the power of ↵0 in the front of it, this is because the insertion

of Energy-Momentum tensor and the interaction term gives a factor of 1
↵0

in

the front and the propagator gives a factor of ↵0 there are two propagators

therefore we have a factor of ↵0 in the front. This suggests ↵0 to be a loop

counting parameter as in tree level Tab has a factor of 1
↵0

in the front.

3.8 Contributions from SAS

We will have contributions from SAS also in the conformal anomaly, SAS will

contribute two diagrams.

@+⌘
i@+⌘

i 1
2
✏abriHµ⌫j@aX

µ
0 @bX

⌫
0 ⌘

i⌘j

Figure 3.2: First contribution of SAS in one loop anomaly.

@+⌘
i@+⌘

i

✏abHµij@aX
µ
0 @b⌘

i⌘j

✏abHµij@aX
µ
0 @b⌘

i⌘j

Figure 3.3: Second contribution of SAS in one loop anomaly.
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The contribution of the first diagram Fig:(3.2) is similar to Eq (3.25) and

the calculations are same therefore we can directly write the result as [1],

hT
+i =

1

8
rHµ⌫(X0)@aX

µ
0 @bX

⌫
0 ✏

ab (3.27)

Similarly the contribution from second diagram Fig:(3.3) is given by[1],

hT
+i =

1

16
Hµ(X0)H


⌫ (X0)@aX

µ
0 @

aX⌫
0 (3.28)

3.9 Contribution from Dilaton Coupling

We have included the contribution from SP and SAS, now its the turn of SD.

Initially we calculated the contributions due spacetime background fields on

a flat worldsheet, but the dilaton action involves R which is Ricci Scalar on

2-D worldsheet , we can still calculate the contribution of SD to weyl anomaly

without going in the curved worldsheet, even though dilaton coupling itself

vanishes in the flat worldsheet limit, but the variation of it with respect to

metric will not, meaning that even though we have added dilaton coupling in

curved worldsheet still the stress energy tensor on a flat metric would change

due to dilaton coupling. We can find that the shift in the stress energy tensor

is of the form (B.11),

T d
ab = (@a@b  ab2)(X) (3.29)

The o↵ diagonal component of stress energy tensor,

T d
+ = 2(X) (3.30)

We want the tree level non vanishing part of the trace of the stress energy

tensor will cancel one loop level weyl anomalies arising from Polyakov action

and antisymmetric action. We simply need to calculate the classical trace

corresponding to Eq (3.30) which cancels the weyl anomaly arising from one

loop contribution of Polyakov action and antisymmetric action.

2(X0) = 2Xµ
0 @µ(X0) + @aX

µ
0 @

aX⌫
0 @µ@⌫(X0). (3.31)

The terms are not covariant from the point of view of the spacetime. Now

we rewrite this expression using the classical equation of motion of Xµ
0 , the

classical equation of motion is therefore,

2
0Xµ

0 =
µ
↵@aX

↵
0 @

aX
0

1

2
Hµ

↵@aX
↵
0 @

aX
0 ✏

ab (3.32)

Here 2
0 denotes d’Alembertian operator in spacetime indices. Plugging
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Eq (3.32) into Eq (3.31) we get spacetime covariant results.

2 = r0
µr0

⌫(X0)@aX
µ
0 @

aX⌫
0

1

2
r0

(X0)Hµ⌫(X0)@aX
µ
0 @bX

⌫
0 ✏

ab (3.33)

Therefore the trace of the full energy momentum tensor is the sum of all the

three contributions,

hT
+i =

1

4
G
µ⌫@aX

µ
0 @bX

⌫
0

p
ab +

1

4
H
µ⌫@aX

µ
0 @bX

⌫
0 ✏

ab (3.34)

where

G
µ⌫ = Rµ⌫

1

4
H2

µ⌫ + 2rµr⌫ (3.35)

H
µ⌫ =

1

2
rHµ⌫ r

Hµ⌫ (3.36)

The only way hT
+i can vanish is when G

µ⌫ and H
µ⌫ individually vanish.

This will ensure that there is no trace anomaly in the quantum theory. Hence,

we set G
µ⌫ = 0 = H

µ⌫ . The first condition can be written as

Rµ⌫
1

2
gµ⌫R =

1

4



H2
µ⌫

1

6
gµ⌫H

2



 2rµr⌫+ 2gµ⌫r2
 (3.37)

Which is the standard Einstein’s equation of General Relativity. The right hand

side of the above equation is sourced by the dilaton and Kalb Ramond fields. If

we just consider the background of gravitons, the above equation would reduce

to the Einstein’s equation in the vacuum. The above derivation shows that

string can only propagate in those spacetime which satisfy Einstein’s equation.

3.10 The complete story

Now we need to generalize the above concept to calculate the trace of stress

energy tensor in the curved metric, as we have evaluated it earlier in the flat

worldsheet metric. It turns out that we can get a missing piece of the T
+ which

comes by considering any general curved worldsheet by simply calculating the

two point function of the stress energy tensor in the flat worldsheet. Since we

have used the reparametrization invariance property of the theory to fix the

metric to the form

ab = eab
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@+⌘
i@+⌘

i @+⌘
j@+⌘

j

l

l + q

Figure 3.4: Feynman diagram for dilaton coupling

The trace of the stress energy tensor must vanish regardless of the scaling factor

. Expanding hT
+()i we get

hT
+()i = hT+(0)i+

hT
+i










=0

+
1

2!

2hT
+i

2









=0

2 + · · ·

The minimum requirement so that the overall trace of the stress energy tensor

is zero in any arbitrary metric is that the first variation of the stress energy

tensor must be zero therefore,



()
hT

+(0)ieab








=0

= 0 (3.38)

Evaluating the above equation on the flat worldsheet we obtain,



()
hT

+(0)ieab








=0

=
1

4⇡
hT

+()T+(0)i








ab

(3.39)

The two point function in Eq (3.39) must vanish at the classical level if the

theory never had weyl anomaly but since our theory has weyl anomaly therefore

it will contribute at classical level to cancel the one loop anomaly generated from

other action contribution. At the classical level the only non vanishing two point

function of the stress energy tensor is hT++T++i and hT
T

i. Therefore only

evaluating one diagram is enough, which is given in Fig (3.10) The contributions

of the diagram is given by,

hT++(q)T++(q)i = 2D

Z

d2l
l2+(l+ + q+)

2

l2(l + q)2
(3.40)

The integral could be solved and is given by

hT++(q)T++(q)i =
⇡D

6

q3+
q


(3.41)
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Now we can use the conservation equation to obtain,

hT
+(q)T+(q)i =

⇡D

6
q+q (3.42)

Since the two point function given by Eq (3.42) is non zero therefore anomaly

is present in our theory. If we transform back to the coordinate space we will

find that the product q+q is the D’Alembertian operator. Therefore if we take

the Fourier transform of the Eq (3.42) then we would obtain

hT
+()T+(0)i =

⇡D

12
22() (3.43)

hT
+i









eab

=
D

48
2 (3.44)

Therefore,

hT
+ieab =

D

24

p

(2)R (3.45)

This contribution to the trace anomaly is a little bit di↵erent from that

of the Polyakov and the antisymmetric contribution. It is proportional to the

2-Dimensional scalar curvature of the worldsheet which looks similar to the

dilaton coupling. We write this in terms of

hT
+ieab =

✓

1

4

p

(2)R

◆

Where  = D
6
only depends upon the spacetime dimension. So far we have

obtained the one loop diagram considering the curvature of worldsheet which

is of the order of ↵00. If we calculate the two loop diagram we would obtain

 up to the order of ↵0. At the two loop level the coupling function like Hµ⌫⇢

gµ⌫ and  comes into picture. If we go to the two loop the interaction vertices

would now be given by SP and SAS. The calculations are much more involved

therefore we avoid to do this at this stage, however the momentum structure of

the diagrams would turn out to be the same i.e. q3+/q, but now the coefficients

depends upon the spacetime coupling functions. We will find terms involving

R and H2 after doing the loop integral and making the use of the conservation

of stress energy tensor given by Eq (3.23). Also at the order of ↵0 the dilaton

action would also have some contribution because while considering the two

point function of the stress energy tensor we considered it to be classically

weyl invariant, but there is an explicit contribution of the dilaton term given

by Eq (3.30). Since the Dilaton action has an extra power of ↵0 in the front

therefore the stress energy tensor derived from the dilaton action would also

have an extra power of ↵0 in the front therefore the dilaton contribution in first
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order in ↵0 can be written in two ways

1. Tree level two point function of T d
+ with itself

2. One loop diagram with one insertion of T
+ and other T d

+

@+⌘
j@+⌘

j rirj @+⌘
j@+⌘

j

Figure 3.5: One-loop diagram giving dilaton contribution to .

The only one loop diagram that is relevant for  is Fig: (3.5). The left

hand side is obviously the insertion of the T++ coming from the SP and SAS

and the right hand side is the dilation’s contribution of the stress energy tensor

arising from the expansion of the dilaton action given by Eq (3.20). Following

the similar calculations to obtain Eq (3.42) the contribution of this diagram is

given by,

hT++(q)T++(q)i = ↵0r2

⇡q3+
2q



Therefore,
⌦

T
+()T

d
+(0)

↵

= ⇡↵0r2
22() (3.46)

rµ2X
µ
0 r⌫2X

⌫
0

Figure 3.6: Tree diagram contribution for

The other diagram contributing to  is the one loop diagram which is given

by Fig: (3.6). The propagator cancels one of the D’Alembertian and contributes

a factor of ↵0. We convert the D’Alembertian as the momenta in the momentum

space, also the rµ is the derivative with respect to spacetime fields therefore

the tree level contribution is given by,

r⌫rµ (q+q)(q+q)(2⇡↵0)
gµ⌫

q2

= ⇡↵0(r)2q+q

Re converting into the position space we finally obtain

⌦

T d
+()T

d
+(0)

↵

= ⇡↵0(r)222() (3.47)
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Combining all the pieces together we would finally obtain the  till the

order of ↵0

 =
D

6
+

↵0

2



R +
H2

12
+ 4(r)2  4r2





(3.48)

we have obtained  to the order of ↵0 but G and H are evaluated up

to order ↵0, we can however add them because the coefficients which are the

coupling functions of the theory have been calculated till same order. In 2-D

sigma models there are only three independent structures of dimension two are

present and  , G and H are the objects that multiply these structure.

3.11 Consistency of Weyl Anomaly Conditions

Since we want weyl anomaly to vanish therefore we want G
µ⌫ , H

µ⌫ and  to

vanish. The first term in the Eq (3.48) is non zero even in flat spacetime be-

cause it only depends upon the spacetime dimensions D and since string theory

is defined in 26 Dimensional flat spacetime therefore we want the fist term of

 to vanish somehow. It is canceled if we take into account conformal ghost

fields, which comes into picture when we fix the 2D metric. They contribute

a constant term to  which is given by
26
6
which exactly removes the constant

term in the Eq (3.48) if we choose our spacetime dimensions to be 26. Now we

removed the constant term from the weyl anomaly coefficients, and we want

to remove the other terms also, we want a specific configuration of spacetime

field gµ⌫ , the antisymmetric field Hµ⌫ and dilaton field  so that all the terms

vanishes.

Now if we rearrange the weyl anomaly coefficients given by Eq (3.36) Eq (3.35)

and Eq (3.48) after setting them to zero (for weyl anomaly to vanish in 2-D

curved worldsheet) we get

Rµ⌫
1

2
gµ⌫R =

1

4
[H2

µ⌫
1

6
gµ⌫H

2] + 2gµ⌫(r)2 (3.49)

rHµ⌫ = 2r
Hµ⌫ (3.50)

r2
 2(r)2 =

1

12
H2 (3.51)

Eq (3.49) is a familiar equation which is the Einstein’s equation of gravity,

implying that if we want the weyl anomaly to vanish then gµ⌫ must have cer-

tain restrictions meaning only those values of gµ⌫ are allowed which satisfies

Einstein’s General relativity equation. The other two equation are similarly

restrictions of Bµ⌫ and  field or putting other way these are the equations of

motion of Bµ⌫ and  fields. The spacetime stress-energy tensor is given by the
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right hand side of Eq (3.49)

⇥µ⌫ =
1

4
[H2

µ⌫
1

6
gµ⌫H

2] + 2gµ⌫(r)2 (3.52)

Of course it is a symmetric tensor and since the L.H.S of Eq (3.49) is conserved

therefore the right hand side must also be conserved. For general Hµ⌫ and

, ⇥µ⌫ given by Eq (3.52) has no reason to be conserved but since the L.H.S of

the Eq (3.49) is conserved rµ(Rµ⌫
1
2
gµ⌫R) = 0 therefore rµ⇥µ⌫ = 0. We can

define a D-Dimensional covariant action whose variation gives us the equation

of motion given by Eq (3.49) Eq (3.50) and Eq (3.51)

SD =

Z

dDX
p
ge2



R + 4(r)2  1

12
H2



(3.53)

We can do a weyl transformation on the spacetime metric and write Eq (3.53)

in a more standard form to obtain (See Appendix (B.13))

SD =

Z

dDX
p

g̃



R̃
4

D  2
( ˜r)2  1

12
e

8
D2 H̃2



(3.54)

Looking at the Eq (3.54), the first term reminds of the Einstein-Hilbert action

followed by the second term which looks like the kinetic term for the Dilaton

field, and finally the third term is similar to the maxwell like kinetic term for

antisymmetric B field with the coupling constant that depends to the dilaton

field.

We finally derived an action whose variation with respect to the fields

gµ⌫ , Bµ⌫ and  gives rise to the weyl anomaly condition. Of course all the work

done here is up to the order of ↵0, but the question is are the weyl anomaly

condition true for all order in ↵0, we exactly don’t know the complete answer

but it has been consistent till three loops, and based on that it is generally be-

lieved that there exists a master action which can give rise to the weyl anomaly

coefficients in the power series of ↵0. Of course the action depends upon these

spacetime function and their higher derivatives and the higher order terms

gives rise to the short distance corrections to the Einstein’s equation and the

equations of motion of the dilaton and the antisymmetric fields.
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Chapter 4

Black Holes and String Theory

4.1 Black Hole information Loss Paradox

Analyzing quantum mechanics of gravitational fields can be excellently done

using black holes. While quantizing the standard G.R action one runs into a

problem, the problem is that the theory is non-renormalizable, beyond the one

loop level, to consider the matter fields in general we need to include the one-

loop corrections. Another complication with the theory is that non rotating and

uncharged black holes with mass M emit radiation beyond the temperature

T =
1

8⇡GM

This e↵ect is called Hawking e↵ect. Any quantum mechanical object or a quan-

tum state that goes inside the black hole cannot escape it. The information

about the object is inaccessible inside the event horizon, therefore we can say

that for an observer point of view who is outside the event horizon of the black

hole a pure quantum mechanical state evolves into a mixed state. This itself is

not a paradox because the observer is outside the black hole and he/she do not

choose to obtain all the information about the original quantum state but in

principle observer can go inside the black hole to obtain all the information that

is required to reconstruct the original quantum state. However if an observer

chooses to do so it eventually reaches a spacetime singularity which is guaran-

teed inside the event horizon of the black hole by the virtue of the singularity

theorems, which is satisfied if

Rabl
alb  0

Where la are null or time-like vectors and

Rab = 8⇡

✓

Tab
1

2
Tgab

◆
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These conditions are satisfied in general relativity provided String energy condi-

tion is satisfied meaning that condition that the matter must gravitate towards

matter and the cosmological constant is either zero or negative.

As the black hole radiates the black hole will loose its mass and as a result

the temperature of black hole also increases, which leads to black hole loosing

more mass because the energy of radiation E / T 4 this process continues till

the black hole completely evaporates or due to some phenomenon the radiation

turns o↵. If the black hole evaporates the information inside the black hole is

lost, therefore the incoming pure state has actually been converted into a mixed

state, meaning that the remaining information that went inside the black hole

in order to reconstruct the initial state cannot be obtained (not even in prin-

ciple). But according to quantum mechanics a pure state cannot evolve into a

mixed state, this is because evolution of a state is described by a unitary opera-

tor (Time evolution operator must be unitary for probability to be conserved).

Unitary evolution is deterministic and reversible Tr(⇢2) = 1, meaning that we

must be able to reconstruct the original quantum state from the evolved one.

Therefore the evolution of a pure state into mixed state is not possible due to

loss of information as mixed represents the lack of the complete information

Tr(⇢2) < 1. This leads to something called Black hole information loss para-

dox, which arises because of information loss as purely thermal radiation does

not contain any information.

A possible scenario could be that the black hole stops radiating the radiation

after certain time, for that the relation between the mass of the black hole and

the Hawking temperature must be modified. One of such situations could arise

when the temperatures reaches its maximum and eventually decreases to zero

as the mass decreases stopping the evaporation. The remanent object still may

have an event horizon and the necessary information in order to reconstruct

the original state could be hidden inside the event horizon.

Another possibility could be that the radiation coming out of black hole

is not thermal radiation, but such a radiation that could potentially carry the

initial state of the system and it appears to be thermal in the certain limits

in which we study these radiations. The key di↵erence between black hole

and any other ordinary physical system emitting thermal radiation for example

sun is that the quantum state of the system (sun) is accessible and is not

destroyed meaning even though the radiation coming out of the system (sun)

is purely thermal but the information about the sun can be further retraced

by observation of the system (sun) therefore leading to no paradoxes, but in
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contrast black holes gets eventually evaporated and this leads to the loss of

information contained inside black holes. Small black holes makes the paradox

even worse, the entropy of a black hole is related to the surface area of black

hole’s event horizon by Bekenstein-Hawking formula

S =
kbA

4l2p

Where A is the area of event horizon of black holes and lp is plank length. This

formula implies that the bigger black holes have more entropy and since the

entropy is related to the no of micro states therefore the size of black holes is

proportion to the no of its internal states. The problem with the smaller black

holes is that due to its small size at the later part of evaporation it may have

very less or negligible internal states to take into account, therefore it is very

hard to believe that such black holes have sufficient internal states to match

with the emitted radiation.

4.1.1 How String Theory can Help

String theory has a remarkable feature of having a maximum temperature called

the Hagedorn temperature, which can potentially solve the issue of information

loss paradox. The mass of an open string in bosonic string theory is given by,

↵0M2 =

 

1
X

n=1

nai†n a
i
n  1

!

The degeneracy of the nth level can be calculated as,

⇢(n) ⇡
1p
2
n27/4e4⇡

p
n

Therefore the partition function is defined in the units of } = c = kB = 1

Z =
1
X

n=1

⇢(n)eM/T

=
1
X

n=0

1p
2
n27/4e4⇡

p
nM

T

As the temperature increases M
T

decreases and eventually we will reach a tem-

perature Tmax at which the factor 4⇡
p
n

E
T

becomes positive, meaning that

the factor E
T
fails to bound ⇢(n)

Tmax =
M

4⇡
p
n
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Therefore,

Tmax =
1

4⇡
p
↵0

This suggests that in string theory we expect black holes (which can be char-

acterized by massive string states) to have a maximum temperature.

4.2 String Theory and Black Holes

While studying the low energy limit of string theory using sigma model ap-

proach we have neglected the massive string modes and worked only with the

massless modes of strings. The leading order equations of motion of dilaton

and graviton are

Rab + 2rarb+ RacdeR
cde
b = 0 (4.1)

2 (r)2 + 1

4
R +

1

8
RabcdR

abcd = 0 (4.2)

Where  = 1
2
↵0, 0 for bosonic and supersymmeteric string theory. The action

that can generate these equations of motion is given by,

1

16⇡G

Z

dDX
p
ge2

✓

R + 4(r)2 + 1

2
RabcdR

abcd

◆

(4.3)

Here G is the newton’s constant in D dimensions. Our main goal would be

to examine the black hole solutions of Eq (4.3). When the curvature of the

spacetime is small as compared to the string scale 1
↵0

solutions of string theory

will approximate the Einstein’s equations, but when the curvature of spacetime

is larger then the we cannot only consider the leading order approximation in

sigma models and therefore the higher order terms in ↵0 will also contribute

making string solutions deviating much from Einstein’s equation. Since Eq (4.3)

is written based upon the beta functions which is derived up to the order of ↵0

therefore it is not the full action but just the leading order approximation of

the full action which can be fully written as an infinite series in ↵0, therefore

it cannot fully promise to give a detailed information that how string theory

could resolve the singularities that arises in string theory, however since Eq (4.3)

yields to a field equation, which does not necessarily satisfy time like conver-

gence condition (potentially due to higher order term like RabcdR
abcd), therefore

singularities are not guaranteed in these theories. In case of Black holes the

regions of finite curvature must be considered to study the event horizon and

singularities (with infinite curvature) are avoided for the analysis if we consider

sufficiently large black holes for which the gravitational length scale Gm is
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much larger than the string scale ↵0(↵0 is of the order of l2p) (Gm)2 >> ↵0 then

the curvature of the event horizon would be small this is because the curvature

near the event horizon is related to the length scale by R / 1
(Gm)2

, therefore

the terms like RabcdR
abcd could be considered as small perturbations of the Ein-

stein’s equation.

We will begin with a constant dilaton field and Black hole solution of Ein-

stein’s equation as a background fields and then solve Eq (4.1), by the pertu-

bative expansion of metric in , but Eq (4.2) tells us that the curvature of the

black hole acts like the source of the dilaton field, therefore we must expand the

dilaton field also perturbatively. Also we would set Bµ⌫ to consider spherically

symmetric nature of black hole and torsion free condition. We consider a 4-D

static Black hole, since the dimension of spacetime in string theory is 26, but

we observe universe as a 4 D spacetime therefore the remaining dimensions

are compactified so that from our length scale only 4 dimensions are visible

(Consider for an example of a hair it looks like 1D when observed via human

eyes but if we observe it using a microscope it becomes a 3D object). There-

fore we consider the metric in string theory to be a direct product of 4  D

black hole metric and the metric corresponding to compact internal spacetime.

gAB(x, y) =

 

gab(x) 0

0 g̃ãb̃(y)

!

Similarly we can do it for dilaton

(x, y) = (x) + (y)

Where x and y represents internal and external coordinates. Now if we use

these equations in Eq (4.1) we obtain

 

Rab(x) 0

0 R̃ab(y)

!

+ 2

 

gab(x)riri


(x) + (y)


0

0 g̃ab(y)rjrj


(x) + (y)


!

+

 

RacdeR
cde
a (x) 0

0 R̃acdeR̃
cde
a

!

= 0

Where i runs to external coordinates and j to internal coordinates, therefore

 

Rab(x) 0

0 R̃ab(y)

!

+ 2

 

rarb 0

0 r̃ar̃b

!

+

 

RacdeR
cde
a (x) 0

0 R̃acdeR̃
cde
a

!

= 0
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Therefore,

Rab + 2rarb+ RacdeR
cde
b = 0 =

g
ab(g,) (4.4)

R̃ab + 2r̃ar̃b+ R̃acdeR̃
cde
b = 0 = g̃ãb̃(g̃,) (4.5)

Similarly the Eq (4.2) could be written as,

2 (r)2 + 1

4
R +

1

8
RabcdR

abcd +2 (r)2 + 1

4
R̃ +

1

8
R̃abcdR̃

abcd = 0

(g,) = (g̃,) = 0 (4.6)

We will assume that the internal metric and the dilaton field satisfy their

own equations of motion independently, therefore we are free to study the black

hole space. This decoupling can be done in any order in ↵0 and the higher order

contribution will not interfere the 4-D solutions.

We begin with a static spherically symmetric metric in four dimensions.

ds2 = f 2dt2 + g2dr2 + r2(d✓2 + sin2✓d2) (4.7)

Therefore the metric is given by,

0

B

B

B

@

f 2 0 0 0

0 g2 0 0

0 0 r2 0

0 0 0 r2sin2✓

1

C

C

C

A

(4.8)

Since it is static which implies two conditions one that the metric components

are independent of time and other there are no time space cross terms which is

guaranteed by time reversal invariance of dt2 but not of the cross terms, there-

fore static black hole implies that the coefficients f and g are not dependent on

t also it is spherically symmetric they also wouldn’t have angular and azimuthal

dependence. Therefore first order expansion of f, g and  must look like

f = f0(1 + µ(r))

g = g0(1 + ✏(r))

 = 0 + '(r) (4.9)

Where  is not azimuthal angle but is the component of dilaton field depend-

ing on the 4-D coordinates. Now we can use Einstein’s Equation to evaluate

the zeroth order components of the metric, the procedure is to evaluate the

Christopher’s symbol and therefore calculate the Riemann and Ricci tensor

and therefore set the Ricci tensor to zero. The calculations are exactly similar

33



to the Schwarzwald metric and the coefficients f0 and g0 if given by

f 2
0 = g2

0 = 1
2Gm

r
(4.10)

Since we want the spacetime to be flat at larger distances from the black

hole therefore we choose the boundary conditions

µ, ✏,'(r) ! 0 when r !1

The perturbed solutions must be such that the event horizon (r = 2Gm) remain

non-singular in the unperturbed space-time, of course it seems that the metric

described by Eq (4.7) with Eq (4.9) is singular for the unperturbed spacetime

but it is not the case as the metric is coordinate dependent and therefore we can

transform in a coordinate in which r = 2Gm does not led to singularities(in

our coordinate system we choose the event horizon to be at r = 2Gm), one

way to test it is by using scalars (which are coordinate independent) like R =

gµ⌫Rµ⌫ , Rµ⌫⇢R
µ⌫⇢, Rµ⌫R

µ⌫ , if these scalars blows up at certain points it is

definitely a singular point. Explicit calculations shows that none of these scalars

blows up ar r = 2Gm but there is definitely a singularity at r = 0 as

Rµ⌫⇢R
µ⌫⇢ / 1

r6

Using the metric of the form Eq (4.8) we can calculate all the necessary

things like the Riemann tensor, Ricci tensor and finally when we plug it in

Eq (4.1) we get few non trivial components of Eq (4.1) as,

(tt) :
r  2Gm

r
µ00 +

2r Gm

r2
µ0


Gm

r2
✏0

2Gm

r2
'0


12(Gm)2

r6
= 0

(rr) :
r  2Gm

r
(µ00

 2'00) +
3Gm

r2
µ0


2r  3Gm

r2
✏0

2Gm

r2
'0


12(Gm)2

r6
= 0

(✓✓) = () :
r  2Gm

r2
(2'0 + ✏0  µ0) +

2

r2
✏+

12(Gm)2

r6
= 0

(4.11)

Now if we take the trace of Eq (4.1) and plug it in Eq (4.2) we would obtain,

gabRab + 2gabrarb+ gabRacdeR
cde
b = 0

R = 22 RabcdR
abcd (4.12)

Plugging R in Eq (4.2) we obtain

2 (r)2  1

4
(22+ RabcdR

abcd) +
1

8
RabcdR

abcd = 0
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2 2(r)2  1

4
RabcdR

abcd = 0 (4.13)

Solving this to the order of  we would obtain

r  2Gm

r
'00 +

2r  2Gm

r2
'

12(Gm)2

r6
(4.14)

Solving this equation we obtain

' =
2Gm

3 r3


1

2 r2


1

2Gmr
+C1+

(1 2GmC2) log(r)

4Gm2
+
(1 + 2GmC2) log(2Gm+ r)

4Gm2

But since ' ! 0 as r !1 and at r = 2Gm ' is finite therefore C1 = 0

and C2 must be such that 1 2GmC2 = 0, therefore

'(r) =
2Gm

3 r3


1

2 r2


1

2Gmr
(4.15)

Therefore the first and the second derivative of ' with respect to r is given by

'0 =
2Gm

r4
+

1

r3
+

1

2Gmr2
(4.16)

'00 =
8Gm

r5


3

r4


1

Gmr3
(4.17)

Subtracting first two equations of Eq (4.11) we obtain

2
r  2Gm

r
'00 +

✓

2r Gm

r2


3Gm

r2

◆

µ0


✓

Gm

r2


2r  3Gm

r2

◆

✏0 = 0

2
r  2Gm

r
'00 + 2

r  2Gm

r2
µ0

 2
r  2Gm

r2
✏0 = 0

One of the solutions of the above equation is,

r'00 + µ0
 ✏0 = 0

r'00 = ✏0  µ0

Integrating the above equation we obtain

µ = ✏ r'+ ' (4.18)

Now if we plug it in Third equation of Eq (4.11) we obtain,

✏0 +
1

r  2Gm
✏ = '0


1

2
r'00


6(Gm)2

r4(r  2Gm)
(4.19)
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Plugging in the expression for ' from Eq (4.15) we obtain

✏0 +
1

r  2Gm
✏ =

8 (Gm)2 + 12G2 m2  2Gmr  r2

4Gmr4  2 r5

Solving this di↵erential equation with respect to the boundary condition as

mentioned above would give us

✏ =
5Gm

3r3


7

12r2


1

24Gmr
(4.20)

Plugging the value of Eq (4.20) and Eq (4.15) in Eq (4.18) we obtain

24Gm+ r2

Gm
+ 2r



11 12r
Gm



24r3

µ(r) =
Gm

r3


23

24Gmr


11

24r2
(4.21)

Consider the tt component of the metric given by Eq (4.8)

gtt = f 2 =

✓

2Gm

r
 1

◆

(1 + µ(r))

2

For r !1 µ ! 0, therefore for the regions far away from the black hole we

can write,

gtt =

✓

2Gm

r
 1

◆

(1 + 2µ(r)) =
2Gm

r
 2µ(r) 1

Plugging the value of µ(r) from Eq (4.21) we obtain

gtt = 1 +
2GMG

r
(4.22)

Where

MG = m

✓

1 +
23

6



(2Gm)2

◆

(4.23)

The mass of a black holes in our pertubative expansion has a  correction and

the mass MG is called the gravitational mass that would be felt by a point

like test particle which is following the geodesic in space. Similarly the rr

component of the metric is given by

grr =

✓

1
2Gm

r

◆

1

(1 + ✏(r))2

Similarly considering the regions far away from the black hole

=

✓

1 +
2Gm

r

◆

(1 + 2✏(r))
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grr ⇡ 1 +
2Gm

r
+ 2✏ = 1 +

2GMI

r

Where

MI = m+
r✏

G

Plugging in the value of ✏(r) and retaining only till 1
r
we obtain,

MI = m

✓

1
1

6



(2Gm)2

◆

(4.24)

The quantity MI is called the Inertial mass. One point to be noted before

proceeding further is that the gravitational mass is greater than the mass of

black hole MG  m and the inertial mass is lesser than the mass of the black

hole MI  m

4.3 Temperature of Black Holes

We now rotate out time component to imaginary time to define something

called euclidean time t ! i⌧ .

After rotation to euclidean time the manifold we would obtain would be

smooth near the horizon, if the imaginary time is periodic ⌧ = ⌧ + . The

periodicity of the imaginary time will then help us find the temperature of

the black hole. To study the system in thermal equilibrium with a bath of

temperature T we generally draw correspondence between statistical physics

and quantum field theory, one of such correspondence is given by

it = ⌧ ! 1

T

Therefore the periodicity in imaginary time . The periodicity in our case

would be

 =
2⇡



Where  is the surface gravity of the horizon and for our case  is given by,

 = 8⇡Gm

✓

1 + (✏ µ)




r=2Gm

◆

Therefore the temperature is given by

T =
1


=

1

8⇡Gm

✓

1

(1 + (✏ µ)

◆

=
1

8⇡Gm

✓

1 (✏ µ)

◆

Plugging in the value of ✏ and µ as given by Eq (4.20) and Eq (4.21) we

would obtain
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T =
1

8⇡Gm



1
11

6



(2Gm)2



(4.25)

We can express T in terms of gravitational and inertial masses, by rearrang-

ing Eq (4.23) and Eq (4.24)

m =
MG

⇣

1 + 23
6


(2Gm)2

⌘

Plugging it in Eq (4.25) we obtain,

T =
1

8⇡GMG



1 +
23

6



(2Gm)2



1
11

6



(2Gm)2



T ⇡
1

8⇡GMG



1 + 2


(2GMG)2



(4.26)

By similar procedure we can calculate T in terms of inertial mass

T ⇡
1

8⇡MI



1 2


(2GMI)2



(4.27)

This means that the temperature of black hole is lower in string theory as

compared temperature arising from Einstein’s equation with the same inertial

mass, but with the gravitational mass the temperature arising from string the-

ory is higher.

More systematic study of black holes requires the study of massive string

states, therefore we first analyze the massive string states and calculate their

beta functions and hence their equation of motions, which will help us get a

deep understanding about the black hole dynamics. In the next chapter we

will study how we can calculate the beta functions of any string state be ti

massive or massless, we will verify it for tachyons and massless fields and then

eventually continue studying black holes after analyzing the massive state beta

functions.
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Chapter 5

Including Tachyon and Massive

Fields

5.1 Why The Picture Is Not Complete

The propagation of strings in the background can be described in various ways,

one of the standard approach is the non-linear sigma model in which we de-

scribe the string propagation in the presence of some background fields which

are nothing but modes of string vibrations, for the non linear sigma model ap-

proach to be consistent the theory must have been weyl invariant. Classically

the theory was weyl invariant, however as soon as we tried to quantize the

theory weyl anomaly started appearing on the theory, therefore we computed

the beta functions of the string background namely dilaton, graviton and anti-

symmetric field (Kalb-Ramond field) and demanded that these beta functions

must be set to zero for the weyl anomaly to vanish which gave us the equation

of motion of the background fields. Till now we did not bother much about the

renormalization of the theory because the theory was renormalizable up-to any

finite order in loop expansion but new ultraviolet divergences comes into the

picture if we try to sum up the contributions of all the loop order. To remove

these divergences we would require the counter-terms involving infinite number

of tensor fields, which can be thought of the vacuum expectation value of all the

modes of string vibration, however this means that our analysis of low energy

e↵ective field theory is incomplete without in-cooperating the infinite tensor

fields.

In this section we try to get a systematic way in order to get the beta

function when we include arbitrary background fields (which may include the

infinite tensor fields), the beta functions we would obtain would be calculated

non perturbatively using the weak field expansion around a flat background.
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5.2  functions

Consider a closed string propagating in the flat spacetime background, the

worldsheet is also taken to be flat with the choice of coordinate system to be

the light cone coordinate system, a typical string action would look like in the

above setup

S0 =
1

2⇡↵0

Z

d2 @+X
µ@


Xµ (5.1)

Now we add an interaction action which governs the interaction of the string

and involves the tensor fields.

S = S0 + Sint

Sint =
1

2⇡↵0

Z

d2



↵0

✏2
(X) + @+X

µ@

X⌫Aµ⌫(X) + . . .



(5.2)

The (X) here denotes the tachyon field Aµ⌫ denotes massless two index

tensor field and . . . denotes other tensor fields. The factor of 1
↵0

in the first term

is present because we want to regularize the divergences using point splitting

regularization procedure in which we consider fields to be not on the same

point in the spacetime rather ✏ distance apart, for example a typical 2(X)

term would look like (X)(X + ✏) where ✏ ! 0. The dimension of ↵0 from

the worldsheet point of view is [L]2 similarly the dimension of d2 is also [L]2

also the partial derivatives @+ is [L]1 therefore the dimension of Xµ is [L]1 to

make the action dimensionless, from this analysis in the interaction action the

dimension of (X) turns out to be [L]0 because the ✏ would have a dimension

of [L]1, similarly the dimension of Aµ⌫ turns out to be [L]0. We expand the

background into two parts, classical part X0 and the quantum fluctuations ⇠,

Xµ = Xµ
0 + ⇠µ

We define the generating functional for the background field which gives us the

beta function hence the equation of motion of these fields is given by,

⌦(X0) =

Z

D[⇠]eS0(⇠)Sint(X0+⇠) =
⌦

eSint(X0+⇠)
↵

(5.3)

The definition of the beta functions are given by the

µ
d

dµ
f(g, µ) =

✓

µ
d

dµ
+
X

i

gi
@

@µ

◆

f
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Therefore the beta functions can be given by the expression given below

✏
d

d✏
log⌦[X0] =

1

2⇡↵0

Z

d2



↵0

✏2
(X0) + @+X

µ
0 @X

⌫
0µ⌫(X0) + . . .



(5.4)

5.3  function for Tachyon field

We will now perform a weak field expansion around the background X0 con-

sidering (X) as a weak field and in order to calculate the beta functions of

tachyon field we will set the massless tensor field Aµ⌫ to zero. In order to cal-

culate the beta functions from Eq (5.4) we take the Fourier transform of the

tachyon field.

(X) =

Z

dDk

(2⇡)D
(k) eikx (5.5)

Therefore ⌦[X0] becomes

⌦[X0] =
⌦

eSint[X0]
↵

=
⌦

e
1
2⇡

R
d2 1

✏2
(X)

↵

Using the standard taylor expansion of the exponential functions given by,

⌦

e
1
2⇡

R
d2 1

✏2
(X)

↵

=
1
X

N=0

1

N !

✓

1

2⇡

◆N Z

d21.....d
2N

1

✏2N

⌧

(X(1)).....(X(N)



Using Eq (5.5) in the above equation we would obtain

⌦

e
1
2⇡

R
d2 1

✏2
(X)

↵

=
1
X

N=0

1

N !

✓

1

2⇡

◆N Z
dDk1
(2⇡)D

...
dDkn
(2⇡)D

Z

d21 . . . d
2N(k1) . . .(kN)

⇥
1

✏2N

⌦

eik1X(1) . . . eiknX(1)
↵

(5.6)

Therefore in order to obtain the beta function of Tachyon field up to any

order we just need to obtain the factor

1

✏2N

⌦

eik1X(1) . . . eiknX(1)
↵

(5.7)

This factor is called the Koba-Nielsen factor

5.3.1 Koba-Nielsen factor for N=1

For N = 1 the factor given in the above equation becomes

1

✏2

⌦

eikX()
↵
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To evaluate this we use the standard result from the conformal field theory [12]

⌦

⇠()⇠( + ✏)
↵

=
↵0

2
µ⌫ log ✏2 (5.8)

⌦

eik.X()
↵

could be evaluated as done in Appendix (C.1)

1

✏2

⌦

eik.X
↵

= ✏
↵0

2
k22 eikX0 (5.9)

5.4 Koba-Nielsen factor for N=2

Moving on to N = 2 in Eq (5.7), we need to evaluate

1

✏4

⌦

eik1.X(1) eik2.X(2)
↵

1

✏4
eik1.X0(1) eik2.X0(2)

⌦

eik1.⇠(1) eik2.⇠(2)
↵

The above calculation can be calculated as done in Appendix (C.2)

1

✏4

⌦

eik1.X(1) eik2.X(2)
↵

= eik1X0(1)eik2X0(2)✏
↵0

2
(k21+k22)4 |1  2|

↵0k1.k2 (5.10)

5.4.1 Singularities for N=2

Now in order to extract the U.V divergences from |12| we use the following

identity

Z

✏<|12|

d2eip.


|1  2|
2


a
⇠

X

n=0

⇡

4n(n!)2
✏2(a+n+1)

(a+ n+ 1)
(p2)n (5.11)

Where  is the distance between 1 and 2. Taking the inverse Fourier

transform of the above equation

(|1  2|
2)a

⇠
X

n=0

⇡

4n(n!)2
✏2(a+n+1)

(a+ n+ 1)
(@2)n(1  2) (5.12)

Now if we plug in a =
1
2
↵0k1.k2 we would obtain

(|1  2|
↵0k1.k2 ⇠

X

n=0

2⇡

4n(n!)2
✏(↵

0k1.k2+2n+2)

(↵0k1.k2 + 2n+ 2)
(@2)n(1  2) (5.13)

also the @2 is with respect to  = |1  2| therefore, Now using Eq (5.13) in

Eq (5.10) we get,
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1

✏4

⌦

eik1.X(1) eik2.X(2)
↵

= eik1X0(1)eik2X0(2)✏
↵0

2
(k21+k22)4

⇥
X

n=0

2⇡

4n(n!)2
✏(↵

0k1.k2+2n+2)

(↵0k1.k2 + 2n+ 2)
(@2)n(12)

(5.14)

For n = 0 the equation take the form

= eik1.X0(1)eik2.X0(2) ✏
↵0

2



k21+k22+2k1.k2



2 2⇡

↵0k1.k2 + 2
(1  2)

Therefore,

Z

d21d
22

1

✏4

⌦

eik1.X(1)eik2.X(2)
↵

=
⇡

✏4
✏2


↵0

4
(k1+k2)2+1



↵0

2
k1k2 + 1

Z

d2 ei(k1+k2)X0()

(5.15)

5.5 Tachyon Beta Functions

After getting the Koba-nelson factors we can now easily obtain the beta func-

tions for tachyons with the general definition of -function, we will do it order

by order, but before doing that we make our calculations easier by obtaining

the general expression for log⌦(X0). To calculate the beta functions we need

to calculate the factor log⌦, this is because the quantum e↵ective action and

the partition functions are related as ⌦ = eW , therefore for regularizing the

quantum e↵ective action we need to regularize the quantity log⌦, which can

be calculated as,

⌦(X0) =
⌦

eSint[X0+⇠]
↵

=

Z

d2⇠ eS0[⇠]eSint[X0+⇠]

⌦(X0) =
⌦

1
X

N=0

1

N !
(Sint)

N
↵

=

✓

1 +
⌦

 Sint

↵

+
1

2

⌦

(Sint)
2
↵

+ . . .

◆

Therefore,

log⌦(X0) = log


1 +
⌦

 Sint

↵

+
1

2

⌦

(Sint)
2
↵

+ . . .


Expanding the logarithmic series we obtain,

log⌦(X0) =

✓

⌦

Sint

↵

+
1

2

⌦

(Sint)
2
↵

+. . .

◆


1

2

✓

⌦

Sint

↵

+
1

2

⌦

(Sint)
2
↵

+. . .

◆2
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+
1

3

✓

⌦

 Sint

↵

+
1

2

⌦

(Sint)
2
↵

+ . . .

◆3

+ . . .

Now if we recollect the terms, first we do it for the order of (X)

O() =
⌦

 Sint

↵

O(2) =
⌦

 Sint

↵

+
1

2

⌦

(Sint)
2
↵


1

2

⌦

(Sint)
↵2

Therefore regularizing, log⌦ which is the quantum e↵ective action is equivalent

to regularizing
⌦

Sint

↵

at first order in fields and
⌦

S2
int

↵

at second order in fields.

5.5.1 -function for N=1

For N = 1 we can write,

log⌦ =
⌦

 Sint

↵

Using the expression for Sint for tachyon part from Eq (5.2) we get


⌦ 1

2⇡↵0

Z

d2
↵0

✏2
(X)

↵

Taking the Fourier transform of tachyon field as in Eq (5.5) we obtain


⌦ 1

2⇡↵0

Z

d2

Z

dDk

(2⇡)D
↵0

✏2
(X)eik.X()

↵

Now using Eq (5.9)

=
1

2⇡

Z

d2

Z

dDk

(2⇡)D

✓

(k)✏
↵0

2
k22 eikX0

◆

Redefining field (k) by absorbing infinities such that

R(k) = ✏k
2 ↵0

2
2
(k)

Di↵erentiating the above equation with respect to ✏ and multiplying ✏ and using

the definition of beta function as gi = ✏ d
d✏
gi

✏
dR

d✏
= ✏

d

d✏

✓

✏
↵0

2
k22



◆

The renormalized field does not vary with the energy scale therefore the L.H.S

of the above equation becomes zero. Therefore,



=

1

2

✓

 ↵0k2 + 4

◆
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In position space it reads

 =

Z

dDk

(2⇡)D
eik.X



T

=

1

2



↵0@µ@µ + 4) (5.16)

5.5.2 -function for N=2

Now we will do the similar calculations for N = 2 and to do we need to look for

O(2) term in the e↵ective action which is log⌦, as calculated earlier the O(2)

includes terms like
⌦

Sint

↵

,
⌦

S2
int

↵

and
⌦

Sint

↵⌦

Sint

↵

, but since
⌦

Sint

↵

is already

regularized therefore we only need to regularize
⌦

S2
int

↵

in order to regularize the

e↵ective action till O(2)

⌦

S2
int

↵

=
1

(2⇡↵0)2
✏
d

d✏

⌦

Z

d21d
22

↵02

✏4
(X(1))(X(2))

↵

Again taking the Fourier transform of the (X) field as in Eq (5.5) we get,

⌦

S2
int

↵

=
1

(2⇡↵0)2
✏
d

d✏

Z

d21d
22

dDk1
(2⇡)D

dDk2
(2⇡)D

↵02

✏4
(k1)(k2)

⌦

eik1.X(1) eik2.X(2)
↵

Now Using Eq (5.15) we get

=
1

4⇡

✓ Z

d2
dDk1
(2⇡)D

dDk2
(2⇡)D

✏2


↵0

4
(k1+k2)21



↵0

2
k1k2 + 1

ei(k1+k2)X0()

◆

(k1)(k2)

Writing k = k1 + k2 and k2 = k  k1 and introducing a delta function on the

k1 integral we obtain,

⌦

S2
int

↵

=
1

4⇡

✓ Z

d2
dDk

(2⇡)D
✏
↵0

2
k22eik.X0()

Z

dDk1
(2⇡)D

dDk2
(2⇡)D

(k  k1  k2)
↵0

2
k1k2 + 1

◆

(k1)(k2)

Now we redefine our fields such that the term
⌦

S2
int

↵

gets regularized


(2)
R = ✏

↵0

2
k22

(k)
1

4⇡

Z

dDk1
(2⇡)D

dDk2
(2⇡)D

(k  k1  k2)
↵0

2
k1k2 + 1

(k1)(k2)✏
↵0

2
k22

The beta function could be obtained as (C.3)

 =
1

2



↵0@µ@µ + 4)+
2 (5.17)
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5.6 Tachyon and Massless fields

Now we consider the Tachyon field along with the massless background field Aµ⌫

which was initially set to zero in order to derive the beta functions for Tachyons

only, doing so we would obtain the beta functions of both the fields Aµ⌫ and

. The massless tensor field Aµ⌫ includes all the massless field excluding the

dilaton field therefore Aµ⌫ is traceless. In order to do so we need to evaluate,

⌦

eSint(X0+⇠)
↵

=

Z

D⇠ eS0(⇠)Sint(X0+⇠)

Keeping terms up-to Aµ⌫ in the expression Eq (5.2) and expanding as before

we get

⌦

exp
⇥

 Sint

⇤↵

=

⌧ 1
X

n=0

(1)N

N !



1

2⇡↵0

Z

d2
↵0

✏2
(X)+

Z

d2 @+X
µ@


X⌫Aµ⌫

N

Taking the Fourier Transform of the (X) as in Eq (5.5) and also Fourier

transforming the massless tensor field as,

Aµ⌫(X) =

Z

dDk

(2⇡)D
Ãµ⌫ eik.X() (5.18)

⌦

exp
⇥

 Sint

⇤↵

=
1
X

N=0

Z

d21 . . . d
2N

dDk1
(2⇡)D

. . .
dDkN
(2⇡)D

✓

1

2⇡↵0

◆N

⇥
1

N !

⌧

↵0

✏2
eik.X()

(k)+@+X
µ@


X⌫Ãµ⌫ eik.X()

N

Binomial Expanding the above expression,

=
1
X

N=0

Z

d21 . . . d
2N

dDk1
(2⇡)D

. . .
dDkN
(2⇡)D

✓

1

2⇡↵0

◆N
1

N !

⇥

N
X

r=0

NCr

⌧✓

↵0

✏2
(k)eik.X()

◆r✓

@+X
µ@


X⌫Aµ⌫e

ik.X()

◆Nr

For the first order in fields N = 1 we just need to evaluate the terms like

1

✏2

⌦

eik.X()
↵

,
⌦

@+X
µ()@


X⌫( + ✏)eik.X()

↵

Let us now focus on the second term, to do that we use the following

⌦

@
µ
+⇠()@

⌫
+⇠( + ✏)

↵

=
⌦

@
µ

⇠()@⌫



⇠( + ✏)
↵

=
⌦

@
µ
+⇠()@

⌫


⇠( + ✏)
↵

= 0 (5.19)
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Using Eq (5.19) we can write

⌦

@+(X
µ
0 + ⇠µ)@


(X⌫

0 + ⇠⌫)eik.X()
↵

= @+X
µ
0 @X

⌫
0

⌦

eik.X
↵

Therefore,

⌦

@+X
µ()@


X⌫( + ✏)eik.X()

↵

= @+X
µ
0 @X

⌫
0 e

ik.X0✏
↵0

2
k2 (5.20)

Plugging it in the above expression for
⌦

eSint
↵

we obtain

⌦

eSint
↵

= ⌦ =

Z

d2
dDk

(2⇡)D
1

2⇡↵0

✓

↵0

✏2

⌦

eik.X
↵

(X) +
⌦

@+X
µ@


X⌫eik.X

↵

Ãµ⌫

◆

Using the expression Eq (5.9) and Eq (5.20) we obtain,

⌦ =

Z

d2
dDk

(2⇡)D

✓

1

2⇡
✏
↵0

2
k22eik.X0(X) +

1

2⇡↵0
@+X

µ
0 @X

⌫
0 e

ik.X0✏
↵0

2
k2Ãµ⌫

◆

the e↵ective action is given by log⌦ which is equal to
⌦

 Sint

↵

as we have

calculated before, which is precisely the first term in the expansion of
⌦

eSint
↵

which we have written above, therefore in order to regularize the e↵ective action

we need to regularize the
⌦

Sint

↵

which can de done by hiding the singularities

in the fields (X) and Ãµ⌫

R = ✏↵
0/2 k22

 Ã0
µ⌫ = ✏

↵0

2
k2Ãµ⌫ (5.21)

Di↵erentiating the above fields with respect to ✏ and multiplying ✏ will give us

the standard definition of beta functions, which is given by ✏ d
d✏
gi

✏
dR

d✏
= ✏

d

d✏

✓

✏
↵0

2
k22



◆

The renormalized field is the actual field therefore, the L.H.S of the above

equation becomes zero, therefore

 =
1

2

✓

@µ@µ + 4

◆

(X0)

Similarly doing it for the field Aµ⌫

µ⌫ =
1

2
@⇢@⇢Aµ⌫
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Chapter 6

Results and Future Outlook

6.0.1 Einstein’s Equation from String Theory

In the first part of thesis we have successfully developed and applied the co-

variant background field expansion method in order to derive the general rel-

ativity equation from string theory. First we looked in the classical version fo

string theory, there we found an interesting property of classical strings i.e. the

worldsheet stress energy tensor was traceless, but when we tried to quantize the

classical version of string action we found out that the stress-energy tensor is

not traceless, which was a matter of concern, the non vanishing trace was called

trace anomaly or the weyl anomaly. We then used methods to solve the trace

anomaly, at tree level the trace of stress-energy tensor was vanishing therefore

we solve it first at one loop level and solving the issue of trace anomaly we

found out that if we want the worldsheet theory to be conformally invariant

then the spacetime fields must be restricted by some equation of motion, which

is obtained when we set the beta functions to zero, the equation of motion

of the metric gµ⌫ , precisely turns out to be the Einstein’s equation of general

relativity.

6.0.2 String theory and black hole information loss

We also saw how string theory helps in solving the mystery of information loss

paradox in black holes, and we also saw how string theory could help explain

the Hawking e↵ect, because of remarkable feature of temperature cuto↵ that

string theory has, we then see how the equation of motion of background fields

that we derived in the earlier section could help us analyze black hole dynamics,

finally we calculated the temperature of black holes in terms of the mass of the

black hole which came out to be slightly lower in string theory as compared to

the one from Einstein’s equation.
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6.0.3 Including Tachyon and massive string states

After looking how string theory could help us analyzing the dynamics of black

and potentially solve the issue of information loss paradox we now need a more

systematic way to analyze the massive string states which helps us analyze the

black holes in more systematic way, for that we need the equation of motion

of massive string states, which is given by the beta function of these states.

To calculate the beta functions and hence the equation of motion of massive

states we develop a general formalism that helps us get the beta functions of

any general tensor field, be it massive or massless, we then verified the beta

function and hence the equation of motion of the tachyon field and the massless

field from the new formalism developed, also using this procedure we can get

beta functions of any kind of fields when all the tensor fields ( which could

be thought of as condensates of string states) are present, which helps us in

re-normalization of the theory.
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Appendix A

Details of Chapter 1

A.1 Worldsheet Area and Action

We want to calculate the area of world-sheet and the corresponding action of

string, to do so consider a function f(x, y), a small change in f would be given

by the relation

dfx(x, y) =
f(x+ dx, y) f(x, y)

dx
dx =

@f

@x
dx

dfy(x, y) =
f(x, y) f(x, y + dy)

dy
dy =

@f

@y
dy

The total change is therefore

df =
@f

@x
dx+

@f

@y
dy

This is called the total derivative of the function f

Now consider
!
X (⌧, ) describe any point in the string worldsheet.(Here (⌧, )

are used to parameterize the string worldsheet).

Consider an infinitesimal parallelogram formed on the string worldsheet

with the vertices (, ⌧), ( + d), ( + d, ⌧ + d⌧), (, d⌧)
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(, ⌧) ( + d, ⌧)

( + d, ⌧ + d⌧)(, ⌧ + d⌧)

The two vertices of the parallelogram formed would be given by

!
A =

@
!
X

@
d

!
B =

@
!
X

@⌧
d⌧

Area of a parallelogram is given by Ar = |
!
A ||

!
B |sin✓

Ar =
p

A2B2(1 cos2✓)

Ar =
p

A2B2  (A.B)2

Hence we can write our infinitesimal area as

dA =

v

u

u

t

 

@
!
X

@
d

!2 

@
!
X

@⌧
d⌧

!2



  

@
!
X

@
d

!

.

 

@
!
X

@⌧
d⌧

!!2

= dd⌧

q

(Ẋ.Ẋ)(X 0.X 0) (Ẋ.X 0)2

Where,

Ẋ =
@X

@⌧
X 0 =

@X

@
and Ẋ.X 0 = gµ⌫ẊµX 0⌫
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A.2 Variation of Action

The variation of polyakov action with respect to the metric could be calculated

as below,

S =

✓

1

4⇡↵0

Z

d2
p
ab@aX

µ@bX
⌫gµ⌫

◆

=
1

4⇡↵0

Z

d2



p
ab +

p
ab



@aX
µ@bX

⌫gµ⌫

=
1

4⇡↵0

Z

d2

✓

1

2
p

ab +

p
ab

◆

@aX
µ@bX

⌫gµ⌫

=
1

4⇡↵0

Z

d2

✓

1

2
p

(ab

ab)ab +
p
ab

◆

@aX
µ@bX

⌫gµ⌫

=
1

4⇡↵0

Z

d2

✓

1

2
p

(cd

cd)ab +
p
ab

◆

@aX
µ@bX

⌫gµ⌫

=
1

4⇡↵0

Z

d2

✓


1

2

p
cd

cdab +
p
ab

◆

@aX
µ@bX

⌫gµ⌫

=
1

4⇡↵0

Z

d2

✓


1

2

p
cd

cdab@aX
µ@bX

⌫gµ⌫ +
p
ab@aX

µ@bX
⌫gµ⌫

◆

S =
1

4⇡↵0

Z

d2
p
abgµ⌫

✓

@aX
µ@bX

⌫


1

2
ab@

cXµ@cX
⌫

◆

(A.1)

A.3 Variation of metric

In order to vary the metric we remember,

0
ab( + v) =

@c

@0a

@d

@0b
cd()

0
ab() + vc

@0
ab

@0c
=
@(0c  vc)

@0a

@(0d  vd)

@0b
cd()

=

✓

ca
@vc

@0a

◆✓

db
@vd

@0b

◆

cd()

0
ab() + vc@0cab = (ca  @0av

c)(db  @0bv
d)cd()

0
ab() + vc@0cab = (ca

d
b  @0av

cdb  @0bv
dca +O(v2))cd()

0
ab() + vc@0cab = ab  @0av

ccb  @0bv
dad

ab = (vc@0cab + @0av
ccb + @0bv

dad)
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Since this is a tensor equation so it will hold in any coordinate system so we

can remove primes from the R.H.S

ab = (vc@cab + @av
ccb + @bv

dad)

It is convenient to write this equation in the form of covariant derivatives as,

ravb = @avb 

abv

We know that

@av
ccb + vc@acb = @a(v

ccb) = @avb

@av
ccb = @avb  vc@acb

Similarly we can write,

@bv
dad = @bva  vd@bad

Therefore,

ab = @avb  @bva  vc@cab + vc@acb + vd@bad

ab = @avb  @bva  2v
⇥1

2
gc(@acb + @bac  @cab)

⇤

= @avb  @bva + 2v(

ab)

= (@avb 

abv) (@bva 


bav)

ab = (ravb +rbva) (A.2)

A.4 Conformal Gauge

We calculate some important quantities in conformal gauge. First we will cal-

culate the metric in conformal gauge and then move on with the rest of the

things, we know the fields ab satisfies the following transformation equation

0ab =
@0a

@c

@0b

@d
cd

@z

@
= 1

@z

@⌧
= i

@z̄

@
= 1

@z̄

@⌧
= i

0zz =
@z

@

@z

@
e11 +

@z

@⌧

@z

@⌧
e22
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= 0

Similarly,

0zz̄ =
@z

@

@z̄

@
e11 +

@z

@⌧

@z̄

@⌧
e22

= 2e

0z̄z =
@z̄

@

@z

@
e11 +

@z̄

@⌧

@z

@⌧
e22

= 2e

With similar calculations one can show that

zz̄ = 2e =  z̄z zz = 0 =  z̄z̄

Hence the metric would look like,

ab =

 

0 2e

2e 0

!

Similarly,

ab =

 

0 1
2
e

1
2
e 0

!

Now we can calculate the Christopher’s connection coefficients using the

formula,


c
ab =

1

2
cd

✓

@ad

@zb
+
@bd

@za

@ab

@zd

◆

Here z1 = z z2 = z̄, the non zero Christopher’s coefficient are therefore,


1
11 =

1

2
12

⇣12

@z
+

12

@z


11

@z̄

⌘

= @z


2
22 =

1

2
21

⇣21

@z̄
+

21

@z̄


22

@z

⌘

= @z̄


1
11 = @z

2
22 = @z̄

We can also calculate Riemann tensor and Ricci scalar once we know the

connection coefficients
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Ra
bcd = @c

a
bd  @d

a
bc +

a
ec

e
bd 

a
ed

e
bc

In 2D Riemann tensor will have only one independent component.

R1
212 = @1

1
22  @2

1
21 +

1
11

1
22 

1
e2

e
21

R1
212 = 0

Similarly,

R2
121 = @2

2
11  @1

2
12 +

2
22

2
11 

2
e1

e
12 = 0

Similarly the other components are given by

R2
212 = @1

2
22  @2

2
21 +

2
e1

e
22 

2
22

2
21

= @z (@z̄)

Now the lower indices are given by,

R1212 = 1R

212

R1212 = 11R
1
212 + 12R

2
212

=
1

2
e@z (@z̄)

Also we know that

Rµ⌫ = g↵R↵µ⌫

So,

R11 = abRa1b1

= 12R1121 + 21R2111

= 0

R22 = abRa2b2

= 12R1222 + 21R2212

= 0

R12 = abRa1b2
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= 12R1122 + 21R2112

Also we know from the Riemann tensor is antisymmetric under the exchange

of the first index with the second R2112 = R1212 so,

R12 = 21R1212

= 2e

✓

1

2
e
◆

@z (@z̄)

R12 = @z(@z̄)

Also because Ricci tensor is symmetric with the exchange of the two indices so

we can write

R21 = R12

R21 = @z(@z̄)

Now we know the Scalar curvature is given by

R = gµ⌫Rµ⌫

= abRab

= 12R12 + 21R21

= 2(2e)@z (@z̄)

R = 4e@z@z̄ (A.3)

Once we are at conformal gauge, a general coordinate transformation could

take us out of the conformal gauge, but there are certain type of coordinate

transformations called conformal reparametrization which does not break us

out of conformal gauge. A conformal reparametrization is a coordinate trans-

formation characterized by vz(z) which is a function of z alone, and similarly

vz̄(z̄) (In general vz may be a function of both z and z̄ ). When vz only becomes

a function of z then rz̄v
z = 0 and rzv

z̄ = 0,

zz = (rz(zcv
c)+rz(zdv

d)) = 0 z̄z̄ = (rz̄(z̄cv
c)+rz̄(z̄dv

d)) = 0

Also we can clearly see that z̄z is not zero, which means that this trans-

formation does not change the form of the metric but leds to a change in scale

factor

z̄z =
1

2
e (rz̄v

z̄ +rzv
z)) (A.4)
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On comparing Eq (A.4) with Eq (2.4) we can clearly see that

 = rz̄v
z̄ +rzv

z

In the conformal reparametrization from Eq (2.8)

Xµ = vzrzX
µ + vz̄rz̄X

µ

The conformal reparametrization is a coordinate change which changes both

the metric and the fields, in fact it changes the scaling factor of the metric not

the actual form of the metric. But in the other hand if we define a conformal

transformation given by,

Xµ = vz@zX
µ + vz̄@z̄X

µ ab = 0

A conformal transformation is a transformation that only applies to the

fields and does not change the metric whereas conformal reparametrization

changes both. If one has a conformal reparametrization which acts on X 0s and

ab accompanied by appropriate Weyl transformation which acts only on ab

the two taken together makes conformal transformation. It involves change

of coordinates by an analytic function and local rescaling of the 2-D metric.

Also since our theory is invariant under reparametrization, so it must be invari-

ant under conformal reparametrization also our theory is invariant under weyl

transformation, and conformal transformation is made up of Weyl transforma-

tion and conformal reparametrization so it means that our theory is invariant

under conformal transformation.
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Appendix B

Details of Chapter 2

B.1 Quantum Conservation Equations

In order to derive the quantum conservation equation we consider the below

equation and perform integration by parts in conformal gauge.

0 =

Z

d2
p

0
1p
0

W

0ab



ravb


=

Z

d2z
p


1p


W

ab



ravb


The term
p
 represents the determinant of the 2-dimensional metric in the

conformal gauge. Now integrating by parts we get

Z

d2z
p
ra

✓

1p


W

ab

◆

vb = 0

Z

d2z
p




rz

✓

1p


W

zz

◆

vz+rz

✓

1p


W

zz̄

◆

vz̄+rz̄

✓

1p


W

 z̄z

◆

vz+rz̄

✓

1p


W

 z̄z̄

◆

vz̄


= 0

Using,

zz̄ = (2e) = 2e

Therefore,

W

zz̄
=

W


zz̄

Plugging it we get,

0 =

Z

d2z
p


✓

rz

✓

1p


W



◆

rz

✓

1p


W

zz

◆◆

vz +

✓

rz̄

✓

1p


W



◆

rz̄

✓

1p


W

 z̄z̄

◆◆

Since the functions vz and vz̄ are arbitrary, their respective coefficients must

be equal to zero, Hence
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rz

✓

1p


W



◆

= rz

✓

1p


W

zz

◆

(B.1)

rz̄

✓

1p


W



◆

= rz̄

✓

1p


W

 z̄z̄

◆

(B.2)

B.2 Luiovile’s action

We want to check that the variation of the e↵ective actionW gets us to Eq (3.6)

to do so consider a small variation in  as

 =) 0 = +

Under this variation W changes as,

W 0 =


48⇡

Z

d2
p



✓

1

2
ab@a(+ )@b(+ ) + µ2e(+)

◆

Considering  is small we can neglect the higher order terms.

W 0 =


48⇡

Z

d2
p



✓

1

2
ab

⇥

@a()@b() + @a@b+ @a@b+O(2)
⇤

+ µ2e(1 + )

◆

W 0 = W +


48⇡

Z

d2
p



✓

1

2
ab [@a@b+ @a@b] + µ2e

◆

W =


48⇡

Z

d2
p




ab(@a@b) + µ2e


Now returning back in the conformal gauge and evaluating our integral there

we would get,

W =


48⇡

Z

d2z
p



zz̄(@z@z̄) +  z̄z(@z̄@z) + µ2e


Now integrating by parts

W =


48⇡

"

Z

dz
p
zz̄(@z)









(boundary)



Z

d2z
p
(zz̄@z̄@z) +

Z

dz̄ z̄z@z̄









boundary



Z

d2z
p
( z̄z@z@z̄) +

Z

d2z
p
µ2e
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Considering that  vanishes at the boundary,

W =


48⇡





Z

d2z
p
(zz̄@z̄@z)

Z

d2z
p
( z̄z@z@z̄)+

Z

d2z
p
µ2e



Also we know that zz̄ =  z̄z using this property we can write the above ex-

pression as,

W =


48⇡

Z

d2z
p




 2(zz̄@z̄@z) + µ2e




Also we know that
p
 = 1

2
e and zz̄ = 2e

W =


48⇡

Z

d2z
p




R + µ2e




B.3 Derivative of curvature scalar

We want to write curvature scalar in the upper z derivative so that we can

improve the stress energy tensor, to do so we translate to conformal gauge and

in conformal gauge,

rzR = rz(4e@z@z̄)

For scalars the Christopher’s connection vanishes therefore,

rzR = @z(4e@z@z̄)

= 4


@z(e
)@z@z̄+ @z(@z@z̄)e




= 4


e@z@z@z̄+ (@2z@z̄)e




= 4e


@z@z@z̄+ @2z@z̄


= 4e

✓


1

2
@z̄(@z@z) + @z̄@

2
z

◆

= 2zz̄@z̄

✓


1

2
@z@z+ @2z

◆

= @z


@z@z 2@2z


rzR = rz(2@z@z+ @z@z) (B.3)
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B.4 Virasoro Algebra

The Laurent series of f(z) around z0 is given by:

f(z) =
1
X

n=1

an(z  z0)
n

where the coefficients an are calculated as:

an =
1

2⇡i

I

C

f(z)

(z  z0)n+1
dz

Therefore the Laurent expansion of Tzz(z) is given by

T (z) =
+1
X

1

zn2Ln Ln =
1

2⇡i

I

dzzn+1Tzz(z)

Here we have expanded about z = 0.The Ln are called Virasoro operators.

[Lm, Ln] =

I

dz

2⇡i

I

dw

2⇡i
zm+1wn+1[T (z), T (w)]

We can choose specific contours one which includes z = 0 and one which which

involves z = w in those contours as we saw before the commutator becomes the

radial ordered product.Therefore,

=

I

c(0)

dw

2⇡i
wn+1

I

c(w)

dz

2⇡i
zm+1R(T (z)T (w))

Recalling equation (3.6) we can say that,

=

I

c(0)

dw

2⇡i
wn+1

I

c(w)

dz

2⇡i
zm+1

✓



2

1

(z  w)4
+

T 0
ww

(z  w)2
+

@wT
0
ww

(z  w)

◆

Also we know that,

fn(z0) =
n!

2⇡i

Z

c

f(z)

(z  z0)n+1

For the first function f(z) =
2
zm+1 and f3(z)

3!









z=w

= (m+1)m(m1)wm2/2.3!

ans similarly evaluating rest of the terms we get,

[Lm, Ln] =

I

c(0)

dw

2⇡i
wn+1

✓

(m+ 1)m(m 1)wm2

2.3!
+ 2(m+ 1)wmT (w) + wm+1@wT (w)

◆

=

I

dw

2⇡i

✓



12
(m3

m)wm+n1 + 2(m+ 1)wm+n+1T (w) + wm+n+2@wT (w)

◆
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The first term in the integral would exist if and only if m = n else there

would be no singularities if w has positive powers, and for negative powers of w

(say x) other than 1 would give us the fx(w) = 0 therefore this integral returns

value
12
(m3 m) for m = n and 0 elsewhere.

=


12
(m3

m)m,n + 2(m+ 1)Lm+n +

I

dw

2⇡i
wm+n+2@wT (w)

Integrating by parts the last term we would get,

I

dw

2⇡i
wm+n+2@wT (w) = wm+n+2Tw





w=0


I

dw

2⇡i
(m+ n+ 2)wm+n+1T (w)

= (m+ n+ 2)Lm+n

Therefore,

[Lm, Ln] = (2m+ 2m n 2)Lm+n +


12
(m3

m)m,n

[Lm, Ln] = (m n)Lm+n +


12
(m3

m)m,n (B.4)

B.5 Correspondence of Bµ⌫ and Aµ

We know that for a point particle the action is given by,

S =

Z

d⌧

q

ẊµẊµ

Interaction with electromagnetic field is given by,

S 0 = q

Z

d⌧ẊµAµ

Which is the Lagrangian that gives rise to Coulomb and Lorentz force laws for

a charged particle.

This works for a point particle because the particle is 0-Dimensional and the

world line is 1-D,and the action is such that the one form AµdX
µ is evaluated

along a path, since the worldsheet of the string is 2-D the analogous coupling

must be of two indices in spacetime therefore it must be a 2-Form which is an

antisymmetric tensor Bµ⌫

(A di↵erential p-form is a (0,p) tensor that is completely antisymmetric in

its indices. Locally, a 1-form can be expressed as a linear combination of the

di↵erentials of the coordinates. For instance, if (x1, x2, . . . , xn) are coordinates
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on a manifold, a 1-form ! can be written as:

! = f1 dx
1 + f2 dx

2 + · · ·+ fn dx
n,

where fi are smooth functions and dxi are the di↵erentials of the coordinates.)

Evaluating Bµ⌫dX
µdX⌫ along a path onto the worldsheet gives us the action.

S 0
AS =

Z

d2Bµ⌫@aX
µ@bX

⌫✏ab

which is precisely the action SAS, therefore we can say that the antisymmetric

field Bµ⌫ is analogous to gauge potential Aµ in electromagnetism

For a charged point particle we know that action is invariant under gauge

transformation given by,

B.6 Riemann Normal Coordinates

The affine parameter t takes values t = 0 to t = 1 such that µ(0) =

Xµ
0 and µ(1) = Xµ

0 + ⇡µ. Let ⌘µ be tangent to µ(t) at Xµ
0 , therefore we

can write ⌘µ = d
dt





t=0
. We define the magnitude of the tangent vector is equal

to the square of the arc length s between two points Xµ
0 to Xµ

0 + ⇡µ which is

given as,

gµ⌫⌘
µ⌘⌫ = s2

Where s is given by, [?]

ds =
p

gµ⌫dµd⌫

ds = dt

r

gµ⌫
dµ

dt

d⌫

dt

s =

Z 1

0

dt

q

gµ⌫µ⌫

. Also the geodesic equation for µ(t) is given by,

µ(t) +
µ
⌫

⌫(t)(t) = 0

Now we can expand µ(t) around t = 0 assuming, Xµ
0 and Xµ

0 + ⇡µ are close

enough, we can use Taylor expansion to expand µ around t = 0

µ(t) = µ(0) + µ(0)t+
1

2
µ(0)t2 +

1

6

...


µ
(0)t3 + · · ·

We know that µ(0) = Xµ
0 similarly, µ(0) = ⌘µ also, from geodesic equation
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we can write,

(t) =
µ
⌫

⌫

Similarly for the third order derivatives,

...
 =

d

dt

⇣


µ
⌫

⌫
⌘

=
µ
⌫

✓

⌫ + ⌫

◆


µ
⌫

⌫

=
µ
⌫

⇣


⌫
ab

ab + ⌫


ab

ab
⌘


µ
⌫

⌫

=
µ
⌫

⌫
ab

ab +
µ
⌫


ab

⌫ab


dµ
⌫

dc
c⌫

Exchanging ⌫ and  in the second term and manipulating last term such that

all the indies of  are the same we get

=
µ
⌫

ab +
µ
⌫

⌫
ab

ab
 @a

µ
b

ab

=

✓


⌫
ab

µ
⌫ +

⌫
ab

µ
⌫  @a

µ
b

◆

ab

This is the definition of covariant derivative with respect to lower indices only,

...
µ =

µ
123

⌘1⌘2⌘3

where, we have used the notation

r12...n

µ
⌫⇢ =

µ
12..n⌫⇢

Now we can write the full expression to be,

µ(t) = Xµ
0 + ⌘µt

1

2

µ
12

⌘1⌘2t2
1

3!

µ
123

⌘1⌘2⌘3t3 + ... (B.5)

At t=1

µ(1) = Xµ
0 + ⌘µ

1

2

µ
12

⌘1⌘2
1

3!

µ
123

⌘1⌘2⌘3 + ...

Xµ
0 + ⇡µ = Xµ

0 + ⌘µ
1

2

µ
12

⌘1⌘2
1

3!

µ
123

⌘1⌘2⌘3 + ...

Therefore at t=1 we can regard Eq (B.5) as a coordinate transformation from

Xµ
0 + ⇡µ near X0 and to new coordinates ⌘.

⇡µ = ⌘µ
1

2

µ
12

⌘1⌘2
1

3!

µ
(123)

⌘1⌘2⌘3 + ... (B.6)
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Here we have symmetrized the expression for Christopher’s symbol of three

indices and above as ⌘1 ⌘

2 ⌘


3 is symmetric and any antisymmetric combination

would give us null result.

For any two points Xµ
0 +⇡µ and Xµ

0 +⇡0µ on a common geodesic through i

will have normal coordinates ⌘µ and ⌘0µ and they will be related as ⌘

⌘0
= s0

s
(Since

magnitude of the tangent vector is equal to s). This means that the geodesic in

the normal coordinate is expressed as straight lines( because the curve joining

tangent vectors is straight line it means that geodesic must also be a straight

line), which means that in the expansion of ⇡µ only ⌘µ would survive, implying

that the Christopher’s symbol must vanish. The higher order Christopher’s

symbol must also vanish therefore this set of coordinates are called Riemann

Normal Coordinates if we symmetrize w.r.t the lower indices.

Therefore in normal coordinates we can write,


µ
12

= 0


µ
(123,...)

= 0 (B.7)

Also we can show by induction that

@(1@2 . . . @n2
µ
n1n)

= 0

For n=3 it becomes

@(1
i
23)

= 0

1

3!



@1
i
23

+ @1
i
32

+ @2
i
31

+ @2
i
13

+ @3
i
12

+ @3
i
21



= 0

Since Christopher’s symbol are symmetric w.r.t its lower indices therefore we

can write

@1
i
23

+ @2
i
31

+ @3
i
12

= 0 (B.8)

Eq (B.5) holds in any coordinate system but (B.7) may not be true in any

general coordinate system, therefore the bar have been used to indicate that

we will work with Riemann normal coordinates. The curvature tensor which is

given by,

Ri
jkl = @k

i
jl  @l

i
jk +

m
jl

i
km 

m
jk

i
lm

simplifies to,

R̄i
jkl = @k

i
jl  @l

i
jk (B.9)

Similarly we can write

R̄i
lkj = @k

i
jl  @j

i
lk
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Adding R̄i
jkl and R̄i

lkj we get,

R̄i
jkl + R̄i

lkj = 2@k
i
jl



@l
i
jk + @j

i
lk



R̄i
jkl + R̄i

lkj = 3@k
i
jl



@l
i
jk + @j

i
lk + @k

i
jl



Therefore,

@k
i
jl =

1

3



R̄i
jkl + R̄i

lkj



(B.10)

The Taylor expansion of a general (0, n) tensor is given by,

T̄123...n
(X0 + ⌘) =

1
X

m=0

1

m!



@µ1@µ2 . . . @µn
T̄123...n

(X0)


⌘µ1⌘µ2 . . . ⌘µ3

(B.11)

We want to write the Taylor expansion in terms of covariant derivative in

normal coordinates, for that we express all the normal derivative term with the

covariant derivatives, before that we note that

@µ1T̄123...n
= rµ1T̄123...n

This is because the Christopher’s symbol vanishes in normal coordinates. Sim-

ilarly for a two index tensor we can write

rµ1rµ2T̄12 = @µ1(rµ2T̄12)
⇢
µ1µ2

(r⇢T̄12)
⇢
µ11

(rµ2T̄⇢2)
⇢
µ12

(rµ2T̄1⇢)

All the terms involving free Christo↵el symbols (by free we mean without

derivative term) would be zero. The remaining terms are,

rµ1rµ2T̄12 = @µ1@µ2T̄12  @µ1(
⇢
µ21

)T̄⇢2  @µ1(
⇢
µ22

)T̄1⇢ (B.12)

We use the fact that,

@µ1
⇢
µ21

=
1

3



R̄⇢
µ2µ11

+ R̄⇢
1µ1µ2



@µ1
⇢
µ22

=
1

3



R̄⇢
µ2µ12

+ R̄⇢
2µ1µ2



Putting these in Eq (B.12) we get,

rµ1rµ2T̄12 = @µ1@µ2T̄12
1

3



R̄⇢
µ2µ11

+ R̄⇢
1µ1µ2



T̄⇢2
1

3



R̄⇢
µ2µ12

+ R̄⇢
2µ1µ2



T̄1⇢

Therefore we can write

rµ1rµ2T̄12⌘
µ1⌘µ2 = @µ1@µ2T̄12⌘

µ1⌘µ2
1

3



R̄⇢
µ2µ11

⌘µ1⌘µ2 + R̄⇢
1µ1µ2

⌘µ1⌘µ2


T̄⇢2


1

3



R̄⇢
µ2µ12

⌘µ1⌘µ2 + R̄⇢
2µ1µ2

⌘µ1⌘µ2


T̄1⇢
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The term R̄⇢
1µ1µ2

⌘µ1⌘µ2 becomes zero because of the antisymmetric nature of

the Riemann Tensor with the exchange of last two indices,

R̄⇢
1µ1µ2

⌘µ1⌘µ2 = ⇢R̄1µ1µ2⌘
µ1⌘µ2

Now if we exchange the indices µ1  ! µ2 we get,

⇢R̄1µ1µ2⌘
µ1⌘µ2 = ⇢R̄1µ2µ1⌘

µ2⌘µ1 = ⇢R̄1µ1µ2⌘
µ1⌘µ2

2⇢R̄1µ1µ2⌘
µ1⌘µ2 = 0

Therefore

R̄⇢
1µ1µ2

⌘µ1⌘µ2 = 0

With the same logic R̄⇢
1µ1µ2

⌘µ1⌘µ2 = 0, therefore,

@µ1@µ2T̄12⌘
µ1⌘µ2 = rµ1rµ2T̄12⌘

µ1⌘µ2+
1

3
R̄⇢

µ2µ11
⌘µ1⌘µ2T̄⇢2+

1

3
R̄⇢

µ2µ12
⌘µ1⌘µ2T̄1⇢

(B.13)

Again using the antisymmetric nature of Riemann tensor with exchange of

last two indices and substituting Eq (B.13) in Eq (B.11) we get,

T̄12(X0 + ⌘) = T̄12(X0) +rµ1T̄12(X0)⌘
µ1 +

1

2
rµ1rµ2T̄12(X0)⌘

µ1⌘µ2


1

6
R̄⇢

µ11µ2
T̄⇢2(X0)⌘

µ1⌘µ2
1

6
R̄⇢

µ12µ2
T̄⇢1(X0)⌘

µ1⌘µ2 + . . .

(B.14)

Since this expression involves covariant derivative and this is a tensor equa-

tion, therefore it will hold in any coordinate system even though we derived it

from normal coordinates. Therefore we can remove bars from the notation and

write it for any general T12(X0).

B.7 Expansion of Partial derivative in Normal

coordinates

To express the expansion of partial derivatives we di↵erentiate with respect to

a Eq (B.5) at t=1

@a(X
µ
0 + ⇡µ) = @aX

µ
0 + @a⌘

µ


1

2
@a(

µ
12

⌘1⌘2) + . . .

@a(X
µ
0+⇡µ) = @aX

µ
0+@a⌘

µ

1

2

✓

@a
µ
12

⌘1⌘2+
µ
12

@a⌘
1⌘2+

µ
12

⌘1@a⌘
2

◆

. . .
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Since Christopher’s connection is symmetric w.r.t lower two indices therefore,

@a(X
µ
0 + ⇡µ) = @aX

µ
0 + @a⌘

µ


1

2

✓

@a
µ
12

⌘1⌘2 + 2µ
12

@a⌘
1⌘2

◆

+ . . .

@a(X
µ
0 +⇡µ) = @aX

µ
0 +@a⌘

µ


1

2

@

@Xj
0


µ
12

⌘1⌘2@aX
j
0

µ
12

@⌘1

@Xj
0

⌘2@aX
j
0 + . . .

@j
µ
12

=
1

3



Rµ
1j2

+Rµ
2j1



@a(X
µ
0+⇡µ) = @aX

µ
0+@a⌘

µ

1

6



Rµ
1j2

⌘1⌘2 +Rµ
2j1

⌘1⌘2


@aX
j
0

µ
12

@⌘1

@Xj
0

⌘2@aX
j
0+. . .

Exchanging 1 and 2 in the fourth term nd using the fact that ⌘1⌘2 = ⌘2⌘1

, also we use the asymmetric property of Riemann tensor while exchanging last

two indices doing so we get,

@a(X
µ
0 + ⇡µ) = @aX

µ
0 + @a⌘

µ +
1

3
Rµ

12j
⌘1⌘2@aX

j
0 

µ
12

@⌘1

@Xj
0

⌘2@aX
j
0 + . . .

Returning back to Riemann normal coordinates we know that the connec-

tion coefficients vanishes therefore we can write,

@a(X
µ
0 + ⇡µ) = @aX

µ
0 +ra⌘

µ +
1

3
Rµ

12j
⌘1⌘2@aX

j
0 + . . . (B.15)

B.8 Polyakov Action Expansion

Before expanding polyakov action we need to expand the expression for the

metric using Eq (B.14).

gµ⌫(X0 + ⇡) = gµ⌫ +
1

3
Rµ↵⌫ ⌘

↵⌘ + . . . (B.16)

To expand Polyakov action we use Eq (B.16) and Eq (B.15)

SP (X
µ
0 + ⇡µ) =

1

4⇡↵0

Z

d2
p
ab@a(X

µ
0 + ⇡µ)@b(X

⌫
0 + ⇡⌫)gµ⌫(X0 + ⇡)

=
1

4⇡↵0

Z

d2
p
ab

✓

@aX
µ
0 +ra⌘

µ +
1

3
Rµ

↵j⌘
↵⌘@aX

j
0 + . . .

◆

⇥

✓

@bX
⌫
0 +rb⌘

⌫ +
1

3
R⌫

↵j⌘
↵⌘@bX

j
0 + . . .

◆✓

gµ⌫ +
1

3
Rµ↵⌫⌘

↵⌘ + . . .

◆
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=
1

4⇡↵0

Z

d2
p
ab



@aX
µ
0 @bX

⌫
0 gµ⌫(X0) + @aX

µ
0rb⌘

⌫gµ⌫(X0)

+ra⌘
µ@bX

⌫
0 gµ⌫(X0) +ra⌘

µrb⌘
⌫gµ⌫(X0)

+
1

3
R⌫

↵j⌘
↵⌘@bX

j
0@aX

µ
0 gµ⌫ +

1

3
Rµ

↵j⌘
↵⌘@aX

j
0@bX

µ
0 gµ⌫

+
1

3



Rµ
↵j⌘

↵⌘@aX
j
0rb⌘

⌫ +R⌫
↵j⌘

↵⌘@bX
j
0ra⌘

µ


gµ⌫

+
1

3



@aX
µ
0 @bX

⌫
0Rµ↵⌫⌘

↵⌘ + @aX
µ
0rb⌘

⌫Rµ↵⌫⌘
↵⌘



+
1

3
ra⌘

µ@bX
⌫
0Rµ↵⌫⌘

↵⌘ +
1

3
ra⌘

µrb⌘
⌫Rµ↵⌫⌘

↵⌘ + . . .



Due to the symmetric nature of gµ⌫ and ab we can write,

ab@aX
µ
0rb⌘

⌫gµ⌫(X0) = abra⌘
µ@bX

⌫
0 gµ⌫(X0)

Similarly

ab1

3
Rµ

↵j⌘
↵⌘@aX

j
0rb⌘

⌫gµ⌫ = ab1

3
R⌫

↵j⌘
↵⌘@bX

j
0ra⌘

µgµ⌫ = ab1

3
@aX

µ
0rb⌘

⌫Rµ↵⌫⌘
↵⌘

= ab1

3
ra⌘

µ@bX
⌫
0Rµ↵⌫⌘

↵⌘

Therefore we can write,

SP (X
µ
0 + ⇡µ) = SP (X0) +

1

2⇡↵0

Z

d2
p
abgµ⌫(X0)@aX

µ
0rb⌘

⌫

+
1

4⇡↵0

Z

d2
p
ab



gµ⌫ra⌘
µrb⌘

⌫ +Rµ↵⌫(X0)@aX
µ
0 @bX

⌫
0 ⌘

↵⌘


+
1

3⇡↵0

Z

d2
p
abRµ↵⌫(X0)@aX

µ
0rb⌘

⌫⌘↵⌘

+
1

12⇡↵0

Z

d2
p
abRµ↵⌫(X0)ra⌘

µrb⌘
⌫⌘↵⌘. (B.17)

B.9 Antisymmetric Action Expansion

The expansion of antisymmetric action is similar to SP , first we expandBµ⌫(X
µ
0+

⇡µ) using Eq (B.14)

Bµ⌫(X
µ
0+⇡µ) = Bµ⌫(X0)+r↵Bµ⌫(X0)⌘

↵+
1

2

⇥

r↵rBµ⌫(X0)
1

3
R⇢

↵µB⇢⌫
1

3
R⇢

↵⌫Bµ⇢

⇤

⌘↵⌘

(B.18)
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Now we move on to derive the expansion for SAS

SAS =
1

4⇡↵0

Z

d2✏ab@a(X
µ
0 + ⇡µ)@b(X

⌫
0 + ⇡⌫)Bµ⌫(X0 + ⇡)

=
1

4⇡↵0

Z

d2✏ab
✓

@aX
µ
0 +ra⌘

µ +
1

3
Rµ

↵j⌘
↵⌘@aX

j
0 + . . .

◆

⇥

✓

@bX
⌫
0 +rb⌘

⌫ +
1

3
R⌫

↵j⌘
↵⌘@bX

j
0 + . . .

◆

⇥

✓

Bµ⌫(X0) +r↵Bµ⌫(X0)⌘
↵ +

1

2



r↵rBµ⌫(X0)
1

3
R⇢

↵µB⇢⌫
1

3
R⇢

↵⌫Bµ⇢



⌘↵⌘ + . . .

◆

=
1

4⇡↵0

Z

d2✏ab

"

@aX
µ
0 @bX

µ
0Bµ⌫ + @aX

µ
0rb⌘

⌫Bµ⌫ +ra⌘
µ@bX

⌫
0Bµ⌫ +ra⌘

µrb⌘
⌫Bµ⌫

+
1

3



@aX
µ
0 @bX

j
0R

⌫
↵j⌘

↵⌘ + @bX
⌫
0 @aX

j
0R

µ
↵j⌘

↵⌘


Bµ⌫ + @aX
µ
0 @bX

⌫
0r↵Bµ⌫⌘

↵

+ra⌘
µ@bX

µ
0r↵Bµ⌫⌘

↵ +rb⌘
⌫@aX

µ
0r↵Bµ⌫⌘

↵ +
1

2
@aX

µ
0 @bX

⌫
0r↵rBµ⌫⌘

↵⌘

1

6
@aX

µ
0 @bX

⌫
0R

⇢
↵µB⇢⌫⌘

↵⌘
1

6
@aX

µ
0 @bX

⌫
0R

⇢
↵⌫Bµ⇢⌘

↵⌘

#

Here we omitted all the higher order terms in ⌘µ as we only need second order

terms in one loop calculations.

Since ✏ab = ✏ba and Bµ⌫ = B⌫µ therefore we can exchange a ! b and

µ ! ⌫ in the left hand side of the equation below to get

✏ab@aX
µ
0rb⌘

⌫Bµ⌫ = ✏ab@bX
⌫
0rb⌘

⌫Bµ⌫

Similarly we can show that,

✏abr↵Bµ⌫ra⌘
⌫@bX

µ
0 ⌘

↵ = ✏abr↵Bµ⌫rb⌘
⌫@aX

µ
0 ⌘

↵

Now similarly exchanging the indices j  ! ⌫ and suing antisymmetric property

of the Riemann tensor we obtain

✏ab@aX
µ
0 @bX

j
0R

⌫
↵jBµ⌫⌘

↵⌘ = ✏ab@aX
µ
0 @bX

⌫
0R

⇢
↵µB⇢⌫⌘

↵⌘

Using all these properties we finally obtain and arrange the equation in increas-
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ing order of ⌘↵

SAS(X
µ
0 + ⇡µ) = SAS(X0) +

Z

d2✏ab
1

2⇡↵0



Bµ⌫@aX
µ
0rb⌘

⌫ +
1

2
r↵Bµ⌫@a@b⌘

↵



+

Z

d2✏ab
1

4⇡↵0



Bµ⌫ra⌘
µrb⌘

µ + 2r↵Bµ⌫@aX
µ
0rb⌘

⌫⌘↵


+
1

2



r↵rBµ⌫ + Bµ⇢R
⇢
↵⌫ + B⇢⌫R

⇢
↵µ



@aX
µ
0 @bX

⌫
0 ⌘

↵⌘

(B.19)

B.10 Calculation of anomaly from SP

We split the integral of Eq (3.25)

I =

Z

d2l
l+(l+ + q+)

l2(l + q)2
=

Z

d2l
l+l+

l4 + 2l3 + l2q2
+

Z

d2l
l+q+

l4 + 2l3 + l2q2

The denominator can be written as D = (l+ q.l)2 which gives us the form of I

as

I =

Z

d2l
l+l+

(l + q.l)2
+

Z

d2l
l+q+

(l + q.l)2

To solve this integral we use the following formula

Z

dN l
lµ

(l2 + 2p · l)A
=

⇡N/2

(A)

(AN/2)

p2AN
pµ (B.20)

Z

dN l
lµl⌫

(l2 + 2p · l)A
=

⇡N/2

(A)p2AN



(AN/2)pµp⌫
1

2
p2µ⌫(A 1

N

2
)



(B.21)

Putting N = 2, A = 2, p = q/2 we get

q+

Z

d2l
l+

(l + q.l)2
=

⇡

(q/2)2
q+q+
2

Similarly,
Z

d2l
l+l

(l + q.l)2
=

⇡

(q/2)2



q+
2

q+
2


1

8
q2++



Of course the Gamma function (A 1 N
2
) diverges for A = 2, N = 2 as (0)

is not defined, therefore the theory needs to be properly renormalized, which

can be done using dimensional regularization. We will not be doing the proper

renormalization and will ignore the term and move on with our calculation.
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Adding the above two equations we get,

I = ⇡
q+q+
q2

= 2⇡
q+q+
q+q

Hence,
1

2⇡

Z

d2l
l+(l+ + q+)

l2(l + q)2
=

q+
q


(B.22)

Now we can use the conservation equation Eq (3.24) to calculate hT
+i which

gives us the weyl anomaly.

hT
+i =

q


q+
hT++i =

1

4
Rµ⌫(X0)@aX

µ
0 @

aX⌫
0 (B.23)

B.11 Stress Energy tensor contribution from

dilaton action

The stress energy tensor is the response to the metric so varying the dilaton

action we get the definition of the stress energy tensor

SD =
1

8⇡

Z

d2
p
R(X)

SD =
1

8⇡

Z

d2

✓

(
p
)R+

p
(R)

◆

We know that

R = abRab R = abRab + abRab


p
 =



2
p

=

ab
ab

2
p


We can explicitly show that, [6]

abRab = r

⇥

abrab
rbg

b
⇤

Therefore combining all these we obtain the variation of the Dilaton action to

be,

S =
1

8⇡

Z

d2



1

2
p

ababR+

p
Rab

ab
+(abrrab

rarb
ab)



In the flat worldsheet metric R = 0 and Rµ⌫ = 0 and ab = ab similarly the

covariant derivatives could also be written as the ordinary derivatives. Making

all these changes in the flat metric the stress energy tensor corresponding to
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the flat worldsheet metric coming from the dilaton action is,

T d
ab = (@a@b  ab2)(X) (B.24)

B.12 Vielbein and Spin connections

The spin connection in di↵erential geometry describes how spinor field such as

fermionic field behave under local Lorentz transformation in curved spacetime.

Spin connection can be considered as a gauge field associated with local Lorentz,

spin connection tells us how vielbein changes as we move along the spacetime.

The vielbein’s spacetime indices could be raised and lowered via metric

tensor

eµi = gµ⌫ei⌫ e⌫i = ije
j
⌫

⌘i transforms as,

⌘i ! ⌘0i = ⇤
i
j⌘

j

A general tensor that involves both coordinate indices and non coordinate in-

dices transforms as,

T 0 iµ
j⌫ = ⇤

i
a

@xµ

@x↵
⇤

b
j

@x

@x⌫

Earlier we used to define covariant derivatives as ordinary derivatives plus the

Christopher’s connections that canceled the non tonsorial part that was coming

from the ordinary derivative, similarly in non coordinate basis we would do

the same and the connection coefficients would be called spin connections !a
bc,

therefore the derivatives are defined in non coordinate basis as,

@µX
a
b = @µX

a
b + !a

µcX
c
b  !c

µbX
a
c

For a mixed indices involving coordinate and non coordinate indices the deriva-

tives would involve both Christopher’s connection and spin connections,

If we demand that the the parallel transport and projection between i and

µ indices to commute, (meaning that if we parallel transport a vector in curved

spacetime and then project it to local flat Lorentz frame using vielbein is equiv-

alent to projecting the vector in the local Lorentz frame and then parallel trans-

porting it) then the covariant derivative of the vielbein must be zero rµe
i
µ = 0,

which gives us the definition of the covariant derivatives as,

rµe
i
⌫ = @µe

i
⌫ 

⇢
µ⌫e

i
⇢  !i

µje
j
⌫ = 0

73



B.13 Weyl Transformation in E↵ective Action

gµ⌫ = g̃µ⌫e
4

D2


The determinant under the scaling transforms as,

p
g =

p

g̃e
2D

D2

Similarly the scalar curvature under the transformation gµ⌫ = !2g̃µ⌫ is given as

R = !2R̃ 2(D  1)g↵!3(r↵r!) (D  1)(D  4)g↵!4(r↵!)(r!).

(B.25)

Integrating by parts the second term of the above equation and plugging ! =

e
2

D2


T2 = (D  1)g↵r↵(e
6
D2 )r(e

2
D2 )

=
24(D  1)

D  2)(D  2)
e

4
(D2) (r)2

Similarly the third term would be given by

T3 = (D  1)(D  4)g↵e
8

D2r↵(e
2

D2 )r(e
2

D2 )

= 4
(D  1)(D  4)

(D  2)(D  2)
e

4
D2 (r)2

Therefore the overall transformation would be given by

R = e
4
D2

✓

R̃
4(D  1)

(D  2)
(r)2

◆

Similarly, the (r)2 transforms as

(r)2 = gµ⌫rµr⌫ ! e
4

D2 ˜(r)2

And similarly the H2 transforms as

H2 = Hµ⌫⇢H
µ⌫⇢ = gaµgb⌫gc⇢HabcHµ⌫⇢ ! e

12
D2 H̃2

Therefore if we combine everything together,

SD =

Z

dDX
p

g̃e
2D

D2 e2



e
4
D2

✓

R̃
4(D  2)

(D  2)
(r)2

◆

e
4
D2 (r)2e

12
D2 H̃2]

SD =

Z

dDX
p

g̃



R̃
4

D  2
( ˜r)2  1

12
e

8
D2 H̃2



(B.26)
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Appendix C

Details of Chapter 3

C.1 Koba-Nielson factor for N=1

We can expand the term eikX() in the following manner,

⌦

eikX()
↵

=

⌧

eikX0

✓

1 + ik.⇠ +
1

2!
(ik.⇠)2 + . . .

◆

(C.1)

= eik.X0

✓

1 + i
⌦

k.⇠
↵


1

2!

⌦

(k.⇠)2
↵

+ . . .

◆

All the odd point functions would vanish as a result of Wick theorem as the

odd number of quantum fields would have no pair to contract therefore only

the even terms like (k.⇠)2 would survive. Therefore evaluating such terms we

would get.

⌦

(k.⇠)2
↵

= kakb
⌦

⇠a⇠b
↵

Using Eq (5.8) in the above equation we obtain,

1

2!

⌦

(k.⇠)2
↵

=
1

2!

↵0

2
kakb

ab log ✏2 =
↵0

4
k2 log ✏2

Similarly the next even term in the expansion of Eq (C.1) could be evaluated

as,
⌦

(k.⇠)4
↵

= kakbkckd
⌦

⇠a⇠b⇠c⇠d
↵

The number of possible ways to wick contract n (even n) operators is given

by

W =
n!

(n/2)! 2n/2

This is because the first pair could be chosen in n(n 1) ways the second one

(n  1)(n  2) ways and so on, but the order of pair does not matter that is

why we divide with (n/2)!, also each pair can be swapped within themselves
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without changing anything so a factor of 2n/2 is needed.

1

4!

⌦

(k.⇠)4
↵

=
1

4!

4!

22 ⇥ 2!

✓

↵0

2
k2 log ✏2

◆2

=
1

2!

✓

↵0

4
k2 log ✏2

◆2

Any general term in the expression would therefore be

T =
1

(2n)!

(2n)!

2n ⇥ n!

✓

↵0

2
k2 log ✏2

◆n

T =
1

n!

✓

↵0

4
k2 log ✏2

◆n

Therefore all the terms combined could be written as,

⌦

eikX()
↵

= eikX0

✓

1 +
↵0

4
k2 log ✏+

1

2!

↵0

4
k2 log ✏2

2
+ . . .

◆

The above infinite series could be written as

= eikX0

1
X

n=0

1

n!

✓

↵0

4
k2 log ✏2

◆n

= eikX0() exp

✓

↵0

4
k2 log ✏2

◆

= eikX0() exp ( log ✏
↵0

2
k2)

= eik.X0✏
↵0

2
k2

Therefore,
1

✏2

⌦

eik.X
↵

= ✏
↵0

2
k22 eikX0 (C.2)

C.2 Koba Nelson factor for N=2

To calculate
⌦

eik1.⇠(1) eik2.⇠(2)
↵

we could be Taylor expanded it as,

⌦

eik1.⇠(1) eik2.⇠(2
↵

=

⌧

(1+ik1.⇠(1)+
1

2!
(ik1.⇠(1))

2+. . .)(1+ik2.⇠(2)+
1

2!
(ik2.⇠(2))

2+. . .)



Considering

(1 + ik2.⇠(2) +
1

2!
(ik2.⇠(2))

2 + . . .) = T

⌦

eik1.⇠(1) eik2.⇠(2
↵

=
⌦

T
↵

+
⌦

ik1.⇠(1)T
↵

+
⌦ 1

2!
(ik1.⇠(1))

2T
↵

+ . . . (C.3)

The
⌦

T
↵

can be interpreted from Eq (5.9) as,

T0 =
⌦

T
↵

= ✏
↵0

2
k22
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Similarly the term
⌦

ik1.⇠(1)T
↵

could be written as

⌦

ik1.⇠(1)


1 + ik2.⇠2(2) +
1

2!
(ik2.⇠(2))

2 + . . .
↵

(C.4)

Similar to the above discussion the odd point functions will eventually become

zero, also we keep in mind the identity

⌦

⇠(1)⇠(2)
↵

=
↵0

2
log(|1  2|

2)

Therefore the second term in the Eq (C.4) would be

T 1
1 =

↵0

2
k1.k2 log(|1  2|

2)

Similarly the fourth term would be

1

3!

⌦

k1.⇠(1)(k2.⇠(2))
3
↵

=
1

3!

✓

↵0

2
k2
2 log(✏2)

◆✓

↵0

2
k1.k2 log(|1  2|

2)

◆

There are three ways of wick contracting the fourth term in the expression

therefore it comes with the factor of 3 therefore the above expression becomes,

=
3

3!

✓

↵0

2
k2
2 log(✏2)

◆✓

↵0

2
k1.k2 log(|1  2|

2)

◆

T
(2)
1 =

✓

↵0

4
k2
2 log(✏2)

◆✓

↵0

2
k1.k2 log(|1  2|

2)

◆

Similarly any general term of Eq (C.4)would be given by

T
(n)
1 =

✓

↵0

2
k1.k2 log(|12|

2)

◆

(2n+ 2)!

(n+ 1)! 2(n+1)

1

(2n+ 1)!

✓

↵0

2
k2
2 log ✏2

◆(2n+11)/2

This is because the no of ways fo contracting 2n+1 odd operators and 1 operator

is given by [AAAAA...B]

(2n+ 2)!

(n+ 1)! 2(n+1)

Also the power of

✓

↵0

2
k2
2 log ✏2

◆

is (2n+11)/2 because 2n+11 ⇠2 operators

contract among themselves and 2 (⇠1 and ⇠2) contract with each other.

=

✓

↵0

2
k1.k2 log(|1  2|

2)

◆

1

(n)! 2n

✓

↵0

2
k2
2 log ✏2

◆n
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Therefore summing up all the terms would give us the result

T1 =

✓

↵0

2
k1.k2 log(|1  2|

2)

◆ 1
X

n=0

1

n!

✓

↵0

4
k2
2 log ✏2

◆n

T1 =

✓

↵0

2
k1.k2 log(|1  2|

2)

◆

exp

✓

↵0

4
k2
2 log ✏2

◆

T1 =

✓

↵0

2
k1.k2 log(|1  2|

2)

◆

✏↵
0/2 k22

Now looking at the third term in the expression of Eq (C.3)

T2 =
1

2!

⌦

(k1.⇠(1))
2T

↵

=
1

2!

⌦

(k1.⇠(1))
2


1 + ik2.⇠(2) +
1

2!
(ik2.⇠(2)

2 + . . .
↵

Of course the odd point functions vanishes, also the above contractions could

be done in two ways, one by self contracting ⇠(1)⇠(1) and then contracting

⇠(2)⇠(2) . . . the other way is to mix contract the operators ⇠(1) and ⇠(2),

doing the self contraction we would obtain

T̃2 =
↵0

4
k2
1 log ✏2 ✏

↵0

2
k22

For the mix terms we can use the same logic as before,

T 0
2 =

1

2!⇥ 2!

⌦

(k1.⇠(1))
2(k2.⇠(2))

2 + . . .
↵

=

✓

↵0

2
k1.k2 log(|1  2|

2)

◆2
1

2!

✓

1 +
↵0

4
k2
2 log ✏2 + . . .

◆

T 0
2 =

1

2!

✓

↵0

2
k1.k2 log(|1  2|

2)

◆2

✏
↵0

2
k22

The second term in the expression of Eq (C.3) is the combination of T 0
2 and

T̃2

T2 =
1

2!

✓

↵0

2
k1.k2 log(|1  2|

2)

◆2

✏
↵0

2
k22 +

↵0

4
k2
1 log ✏2 ✏

↵0

2
k22

Similarly the fourth term in Eq (C.3) must be

1

3!

⌦

(ik1.⇠(1))
3


1 + ik2.⇠(2) +
1

2!
(ik2.⇠(2))

2 + . . .
↵

Similar to the above expression we can do the contractions in 2 di↵erent ways
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one by self contracting the ⇠(1) and ⇠(2) and the remaining term is contracted

by ⇠(2) and the other way in which we contract ⇠(1) and ⇠(2) together, the

former would give us

1

3!

⌦

✓

(k1.⇠(1))
3k2.⇠(2)

◆✓

1 +
1

3!
(k1.⇠(2))

2 + . . .

◆

↵

T̃3 =
3

3!

✓

↵0

2
k2
1 log(✏2)

◆

↵0

2
k1.k2 log(|1  2|

2)✏
↵0

2
k22

The factor of 3 is used because the above contraction could be done in 3 possible

ways

T̃3 =

✓

↵0

4
k2
1 log ✏2

◆✓

↵0

2
k2.k2 log(|1  2|

2)

◆

✏
↵0

2
k22

Similarly complete mixed contraction would give us

T 0
3 =

1

3!

✓

↵0

2
k1.k2 log(|1  2|

2)

◆3

✏
↵0

2
k22

The overall term is the combination of these two terms

T3 =

✓

↵0

4
k2
1 log ✏2

◆✓

↵0

2
k2.k2 log(|12|

2)

◆

✏
↵0

2
k22+

1

3!

✓

↵0

2
k1.k2 log(|12|

2)

◆3

✏
↵0

2
k22

Combining all the terms,

⌦

eik1.⇠(1) eik2.⇠(2
↵

= T0 + T1 + T2 + T3 + . . .

= ✏
↵0

2
k22 +

✓

↵0

2
k1.k2 log(|1  2|

2)

◆

✏
↵0

2
k22 +

1

2!

✓

↵0

2
k1.k2 log(|1  2|

2)

◆2

✏
↵0

2
k22

+
↵0

4
k2
1 log ✏

2 ✏
↵0

2
k22+

✓

↵0

4
k2
1 log ✏

2

◆✓

↵0

2
k2.k2 log(|12|

2)

◆

✏
↵0

2
k22+

1

3!

✓

↵0

2
k1.k2 log(|12|

2)

◆3

✏
↵
2

= ✏
↵0

2
k22



1 +

✓

↵0

2
k1.k2 log(|1  2|

2)

◆

+
1

2!

✓

↵0

2
k1.k2 log(|1  2|

2)

◆2

+ . . .



+✏
↵0

2
k22

✓

↵0

4
k2
1 log ✏2

◆

1+
↵0

2
k1.k2 log(|12|

2)+. . .



+
1

2!
✏
↵0

2
k22

✓

↵0

4
k2
1 log ✏2

◆2

1+
↵0

2
k1.k2..



+

✏
↵0

2
k22



1 +

✓

↵0

4
k2
1 log ✏2

◆

+
1

2!

✓

↵0

4
k2
1 log ✏2

◆2

1 +

✓

↵0

2
k1.k2 log(|1  2|

2)

◆
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1

2!

✓

↵0

2
k1.k2 log(|1  2|

2)

◆2

+ . . .



✏
↵0

2
k22 exp



↵0

4
k2
1 log ✏2



exp



↵0

2
k1.k2 log(|1  2|

2)



✏
↵0

2
k22 ✏

↵0

2
k21 |1  2|

↵0k1.k2

Therefore for N=2

1

✏4

⌦

eik1.X(1) eik2.X(2)
↵

= eik1X0(1)eik2X0(2)✏
↵0

2
(k21+k22)4 |1  2|

↵0k1.k2 (C.5)

C.3 Tachyon beta function for N=2

Now in order to obtain the  function we use the standard definition of beta

function,

✏
d

(2)
R

d✏
=

↵0

2
k2
2



✏
↵0

2
k22

(k)+(k)✏
↵0

2
k22


1

4⇡

Z

dDk1
(2⇡)D

dDk2
(2⇡)D

(k  k1  k2)
↵0

2
k1k2 + 1

✏
↵0

2
k22

⇥



↵0

2
k2
2



(k1)(k2)+(k1)(k2)+(k1)(k2)



= 0

(C.6)

The general renormalization group equations for a coupling gi could be

written as,

i =
dgi
dt

= igi + ↵i
jkg

jgk + i
jklg

igjgk + . . . (C.7)

Where the first term is not summed and t = log ✏, therefore the integral version

of beta function could be written as,

(k) = a(k)(k) +

Z

dDk1
(2⇡)D

dDk2
(2⇡)D

b(k, k1, k2)(k1)(k2) +O(3) (C.8)

Substituting Eq (C.8) in Eq (C.6) and using a(k) = (2 ↵0

2
k2) we obtain

Z

dDk1
(2⇡)D

dDk2
(2⇡)D

b(k, k1, k2) =
1

2

Z

dDk1
(2⇡)D

dDk2
(2⇡)D

(k  k1  k2)
↵0

2
k1k2 + 1



↵0

2



k2
k2

1k2
2



+2



Since k = k1 + k2 and k2  k2
1 + k2

2 = 2k1k2 therefore,

b(k, k1, k2) = (k  k1  k2)

Using b(k, k1, k2) = (k, k1, k2) in Eq (C.8) we get the tachyon beta function
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till order O(2) as

(k) =
↵0

2
k2

 2


+

Z

dDk1
(2⇡)D

dDk2
(2⇡)D

(k  k1  k2)(k1)(k2) +O(3)

Which when Fourier transformed gives us

 =
1

2



↵0@µ@µ + 4)+
2 (C.9)
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