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ABSTRACT

This project was aimed to understand the Black Holes information loss para-
dox. Classical general relativity demands that nothing can escape from the black
hole. However, quantum mechanics shows that particles can emit from the black
hole with a thermal spectrum. In this project, several developments were carried
out to understand this paradox.
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Chapter 1
INTRODUCTION

One of the most profound puzzles in contemporary theoretical physics is the in-
formation loss paradox associated with black holes. While quantum mechanics
explains the strong, weak, and electromagnetic forces, except for gravity, with no
experimentally verified quantum theory yet. However, a semi-classical approach
lets us combine quantum mechanics with Einstein’s general relativity, leading to
fascinating insights like Hawking radiation— the idea that black holes aren’t
completely black but emit thermal spectrum of particles.

The information loss paradox arises from Hawking radiation which mainly
focuses on fundamental principles of quantum mechanics. As per Quantum the-
ory, information about a system’s state cannot be destroyed (a principle called
unitarity). However, Hawking radiation appears to carry no information about
the matter that fell into the black hole. If the black hole eventually evaporates
completely, it raises the important question: What happens to the information
about the particles and objects that fell into the black hole? This leads to the
paradox because quantum mechanics insists that information must be preserved,
but classical general relativity (through black hole evaporation) gives different
results. Thus, violating the laws of quantum theory.

The aim of the project is to study the recent developments in resolving the
black hole information loss paradox and comparing different approaches in flat
and AdS(Anti-de Sitter) spacetimes. The project report is organized as follows:
Chapter 2 provides a brief historical overview of black holes. Chapter 3 presents
a detailed study of spherically symmetric black holes. Chapter 4 focuses on in-
vestigations into black hole perturbations. Chapter 5 examines quantum particle
creation by black holes, with an emphasis on modes and bases that are essential
steps toward deriving Hawking radiation. Chapter 6 gives introduces Black Hole
Thermodynamics. Chapter 7 of this report explores Bekenstein’s intuitive argu-
ment for black hole entropy. Meanwhile, Chapter 8 and 9 focus on Hawking’s
groundbreaking discovery of quantum radiation emitted by black holes and how
the potential barrier outside the black hole alters Hawking radiation. The last
chapter 10 is devoted to Rindler space and the Unruh effect, which provide a
simplified framework for understanding some essential aspects of quantum black
holes.



Chapter 2

Brief History of Blackhole

2.0.1 What is a Blackhole?

e A black hole is defined as a region of spacetime in which the gravitational
field becomes so intense that the escape velocity exceeds the speed of light,
thereby preventing any form of matter or electromagnetic radiation from
escaping beyond its event horizon.

e A black hole is created when an object of mass M undergoes gravitational
collapse to a size smaller than its Schwarzschild radius, the critical radius
beyond which escape is no longer possible

2GM

2

g
e 1, is the Gravitational Radius/Schwarzschild Radius.

e In 1916, Schwarzschild presented the first exact solution to Einstein’s vac-
uum field equations assuming spherical symmetry. This solution contains
a singularity at the center (r = 0) and another apparent singularity at the
gravitational radius r = r, , known as the Schwarzschild radius.

2.0.2 “A Black Hole radiates like a heated Black Body”
explain?

e In 1975, Hawking obtained a new unexpected result that changed our un-
derstanding on the behavior of the Black Holes, he discovered :
Vacuum fluctuations in a black hole’s strong gravitational field lead to the
emission of quantum radiation, commonly referred to as Hawking radiation.

e One of the most notable features of this radiation is its thermal spectrum.
In simpler terms, when the influence of external gravitational scattering is
ignored, a black hole emits radiation similar to that of a hot black body.



Chapter 3

Spherically Symmetric Black
Holes

3.1 Schwarzschild Metric

In the presence of a spherically symmetric vacuum spacetime, the solution to
Einstein’s equations takes the form —

2GM 1
ds* =~ (1 -2 ) cdt’ + <1W> dr* +r*(d9? + sin* 0d¢?)  (3.1)

c3r

c2r

1
ds? = — (1 — %) Adt? + (1 — &> dr® + r*(d6? + sin® 0d¢?) (3.2)

Equation (3.2) is called Schwarzschild Metric

R, = 2%M : Schwarzschild Radius

In this equation, G stands for the universal gravitational constant, and M is
the mass responsible for the gravitational field. An important property of the
Schwarzschild metric is its invariance under time translations in the coordinate
t. This metric is fully characterized by one parameter, M, which indicates the
entire mass of the object generating the gravitational field.

3.2 Spacetime Within the Schwarzschild Sphere

3.2.1 R- and T-regions
R - region (Radial Region)

The R-region represents the part of spacetime where the radial coordinate r
behaves like a spatial coordinate. outside the event horizon of a black hole where
r > r4 the radial coordinate r measures the distance from the black hole center.
In this region, r increases as you move away from the black hole and ¢ (time)
behaves normally; allowing us to move forward in time.

3



T - region (Temporal Region)

The T-region represents the part of spacetime where the radial coordinate r
behaves more like a time coordinate rather than a spatial one. Inside the event
horizon, the role of time and space switch in a way. the radial coordinate r
starts to act like a time coordinate because all paths (regardless of direction)
lead inevitably to smaller r values, ultimately ending at the singularity. In
this region, no matter how you move, you are compelled to more towards the
singularity at r = 0. the time coordinate ¢ behaves like a spatial coordinate in a
certain sense, but with significant difference due to curvature of time.

Key Points :

e Outside the Event Horizon (R-region) Time behaves normally and
space behaves as expected.

e Inside the Event Horizon (T-region) The concept of moving through
space changes dramatically, with all paths leading towards the singularity
and r acting more like a time coordinate.

3.2.2 Advanced null coordinates (Eddington—Finkelstein
form)

We examine an alternative coordinate system introduced by Eddington and
Finkelstein, which remains regular at the Schwarzschild radius r,. This frame is
adapted to the motion of photons traveling radially. In region r > 7, the photons
moving towards the center are characterized by r decreasing with . equation for
such photons can be rewritten in the form -

ct=v—ry, Te=1+714ln

r v
——1 — 3.3
T'g ’+C (3:3)

In this context, r, is referred to as the tortoise coordinate, and v represents
a constant specifying the radial position of a photon at a particular time t. The
definition of 7, includes a logarithmic term with the absolute value of r/ rg—1,
ensuring that r, remains well-defined for both r > r, and r <y .
Consider a collection of photons at a fixed coordinate time ¢, where each photon
is labeled by a constant value v that remains invariant along its trajectory. This
quantity v, known as advanced time, can be introduced as a new coordinate. It is
a null coordinate, meaning it is neither spatial nor temporal in the conventional
sense. As the second coordinate, we retain the standard radial coordinate r. By
differentiating equation (3.3) and replacing dt with the resulting expression in
the metric applicable to regions far from intense gravitational fields, we obtain -

ds? = — (1 — T—g> dv? + 2dvdr + r*(d6? + sin® 0d¢?) (3.4)
T

At r = ry, Equation (3.4) remains regular. At this stage, the coefficient associ-
ated with dv? reaches zero. The existence of the cross term 2dvdr prevents the
metric—and therefore the coordinate system—from becoming degenerate.

4
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Figure 3.1: The worldlines defined by R = const represent the trajectories of particles
that establish the reference frame described by Equation (3.37) in Lemaitre coordinates

A non-degenerate metric ensures that our space has a constant and
meaningful way of measuring distances and angles. if a metric be-
come degenerate, we’ll lose the ability to make these measurements
correctly, leading to breakdown in our understanding of the geometry
of the space.

We now adopt an alternative form of Eddington-Finkelstein coordinates (u, r, 0, ¢),
where v = ¢t — r, denotes the retarded time. In these coordinates, the
Schwarzschild metric becomes:

ds? = — <1 — E) du® — 2dudr + r*(d6* + sin® 0d¢?) (3.5)

r

3.2.3 Kruskal coordinates

Kruskal coordinates provide a complete description of the spacetime encompass-
ing both eternal black holes and white holes. Within this framework, the metric
is represented in the form -

43 L
ds® = 9 o~ (r/ra=1) (—dT2 + dR2) +72(d6? + sin® do?) (3.6)

r

Where r is a function of 7' and R -

(1 _ 1> o/t _ 2 _ 2 (37)

The regions R’ and R" are defined in these coordinates by R~> \TJ and
(=R > |T]), , respectively. Similarly, the regions 7_ and T’ satisfy T > |R| and

>



(=T > |R|), respectively. The curvature singularity at r = 0 is represented by
the curve 7% — R? = 71

In regions R’ and T_, the coordinates (T, R) are related to (r,t) through the
following equations:

R=(r/r,— 1)Y2e0=9)/2%s cogh (ct/2r ,

In R'(forr>mry) 9 . (/g )1 ) (ct/2r) (3.8)
T=(r/ry—1) /2 e(r=ra)/27s ginh (ct/2ry),
R=(1—1r/r)"?e=9/2 s ginh (ct/2r ,

InT_(forr<mrg) :% . ( / g)l ) (ct/2ry) (3.9)
T = (1—r/ry)"? a2 cogh (ct/2r,),

_ Similar expressions for the R and T'; regions can be obtained by substituting
R— —-Rand T — —T.

“R=(r/r, — 1)Y?e="9)/2" cosh (ct /2 ,

In R"(forr >r,) : N (/s )1/2 (et/27s) (3.10)
—T = (r/ry — 1)"/? elr="9)/2s ginh (ct /2r,),
—R=(1—r/r)"Y?elrr9)/2s sinh (ct /2r ,

InT (forr<r,) : . ( / g)1/2 (ct/2ry) (3.11)
—T = (1 —1/ry)""? ="/ cosh (ct/2r,),
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Figure 3.2: Representation of Spherical Vacuum Spacetime Using Kruskal Coordinates.

The advantage of using Kruskal coordinates is that radial null geodesics ap-
pear as straight lines angled at 45° relative to the coordinate axes. It is common
to use null coordinates U =T — R and U = T + R in place of (R,T) . In terms
of these coordinates, the Kruskal metric is expressed as:

4 3
ds? = —9 =0/ Qv qU 4 12(d6? + sin® 0dg?) (3.12)

r

UV = <:—g - 1> exp <Z—g - 1) (3.13)

Within Kruskal coordinates, the condition r = r, aligns with either U = 0
or V. = 0. The boundary U = 0, defines the event horizon, separating the
exterior region R’ from the black hole region 7. Similarly, V' = 0 marks the
past horizon, dividing the exterior from the white hole region.



Chapter 4

Black hole Perturbations

4.1 Perturbative Behavior in Schwarzschild Back-
ground

4.1.1 Dynamics of scalar fields around a spherically sym-
metric black hole.

A massless scalar field ® evolves according to the Klein-Gordon equation :

00 = (—g) %09, [(—9)"/* ¢" 0,®)] =0 (4.1)
where g is the determinant of the metric tensor g,,. The Schwarzschild metric
is given by :

oM 1
ds® = — (1 - —> at* + (1 2M> dr +r(d0” +sin® 0d¢%) - (4.2)

r
IS

As the metric exhibits spherical symmetry, we can apply the following mode
decomposition:

2 = 0Dy, 0,0) (4.3

Here, @ represents the Radial term and Y}, (6, ¢] represents the Angular term.

Substituting (4.3) in (4.1) yields :

0? 02
[87“*2 o

The equation above makes use of the tortoise coordinate r,, previously defined
in the last chapter, which corresponds with the usual Schwarzschild radius r

through the equation:
d 2M\ d
=(1-—|— 4.5
dr, ( r )dr (45)

re =1+ 2Mlog (ﬁ — 1> + constant. (4.6)

- W(T):| ug(r,t) =0 (4.4)

or

8



With the additional assumption of harmonic time dependence, where wu,(r,t) =

tig(r,w) e~ we arrive at the following ODE;:
82 82 ~ —iw

If we further simplify (4.7) we’ll get the following equation (see Appendix A)

{a?; + w? — w(r)] tg(r,w) = 0 (4.8)

Equation (4.8) is known as the Regge-Wheeler equation, and its associated
effective potential is expressed as follows:

(4.9)

r r2 r3

Vi) = (1 - QM) [au D, 2M]

Here, M denotes Black hole’s mass. The study of perturbed black holes often
draws upon principles commonly encountered in quantum mechanical potential
scattering. Waves with very short wavelengths, where A < 2M, can pass through
the barrier with little resistance. Waves with wavelengths on the order of A ~ 2M
undergo partial transmission and partial reflection. In contrast, waves of much
longer wavelengths, A > 2M, are expected to be argely reflected due to the black
hole’s potential barrier.

Since, the potential approaches zero both at infinity and at the horizon, the
two independent solutions of equation (4.8) asymptotically behave as follows:

tg(r, w) ~ eFrs (4.10)

As r — 400 and r — 2M. The tortoise coordinate deviates from a standard
radial coordinate due to the presence of a logarithmic term. Consequently, 7,
tends to +oo at spatial infinity (r — 4o00) , While it approaches —oo near the
event horizon (r — 2M).

4.1.2 A fundamental set of solutions serving as a basis for
further analytical development

To simplify the analysis of wave equations in black hole spacetimes, one can use
an eternal black hole with the same parameters as the late-time spacetime. This
allows well-defined solutions to be constructed by setting boundary conditions at
past infinity and the past event horizon. Based on the asymptotic form given in
equation (4.10), it becomes straightforward to identify solutions to equation (4.8)
that meet these boundary requirements. A particularly natural choice involves
enforcing the physical condition that no waves originate from the black
hole. we call this solution as IN-mode Solution, which is defined by :



— W«
e

1., 0) | PR
u Ty, W) ~ . . .
14 Aout(w) et + AZn(W) e—zoﬂ’*7 Ty — —I—OO,

The complex conjugate of IN-mode Solution is the OUT-mode Solution and
it is defined as :

T s

~ out € )
U™ (T, w) ~

Agut (W) e + Ain(w) eiw*a T — 100,

T — —00,
(4.12)

Now, Since the Wronskian of any pair of linearly independent solutions to equa-
tion (4.8) is constant, it is appropriate to consider i, along with its complex
conjugate 1,°* and evaluating Wronskian at r, = 400, one can show that:

o Atr, = —00:
ﬁgin ~ e—iwr* : uA[OUt ~ eiwr*
W ", 4™ = 2iw (4.13)
o At r, = +o0:

Ujém ~ Aout (CU) eiwr* + Am (w) e—iwr*
/LZZOUt ~ Aout(w> e—iwr* + Am(W) e—i—iwr*

W [d,™, 4,7 = 26w (JAwl> — |Aowl?) (4.14)
Since, Wronskian must be constant therefore,
2iw = 2iw(|Aml? — |Aow?)

1+ ’Aout‘z = ’Aout|2 (415)
We now define the reflection (R) and transmission (T) amplitudes :

1 _ Aout

T = R = 4.16
This corresponds to the standard form of a scattering relation.
T +|RI>=1 (4.17)

Consequently, the portion of the incident wave that is not absorbed by the
black hole is reflected back toward spatial infinity. The magnitudes |T'| and |R)|
are referred to as the transmission and reflection coefficients (or probabilities),
respectively.

10



out-mode down-mode

Figure 4.1: IN-, UP-, OUT- and DOWN-modes.

Another fundamental pair of solutions, known as the UP- and DOWN-modes,
can be constructed analogously. The UP-mode is characterized by purely
outgoing waves at spatial infinity and is defined as follows :

Bout(w) €™ 4+ By (w) e ™™, 1, — —o0,

U (1, w) ~ { i (4.18)

e, Ty — +00,

The DOWN-mode is the complex conjugate of (4.18) and is defined as :

Bout(w) 7™ 4+ B (w) €™, 1, — —o0,

~ down
U Th, W) ~ , 4.19
0 ( ) {e—zwr*7 r. + ’ ( )

The coefficients appearing in equation (4.18) are related to those that character-
ize the IN-mode and are therefore not independent. By employing the constancy
of the Wronskian, we obtain the following relation:

Bout(w) - Ain(w)y (420)
Bin(@) = —Apu(w) = —Agu(—w). (4.21)

The complex conjugate is indicated by an overbar. Any two modes from the set
defined above—IN, UP, OUT, and DOWN-—may be selected as a basis for solving
a given problem. The IN-UP mode combination, together with the Wronskian,
will generally be used in the following discussions.

~up ~in
~in dUg ~ up dUg

IN,UP) = -
W(IN,UP) e dr, e dr,

= 2iwA;y(w) = 2iwBy(w)  (4.22)

11



Let us now consider the physical interpretation of these solutions. By com-
bining the radial solutions with the time-dependent factor e=** we obtain full
waveforms that describe the propagation of waves in the black hole spacetime.
These solutions have clear physical meanings. The DOWN-mode is character-
ized by the boundary condition that no radiation escapes to spatial infinity. This
requires that a precisely tuned amount of radiation, with an exact phase, must
emerge from the past event horizon (H~) to cancel any potential outgoing ra-
diation that would otherwise result from an incoming wave originating at past
null infinity (J ). Consequently, the DOWN-mode includes three components:
radiation arriving from past infinity, radiation emitted from H~ to interfere with
it, and radiation absorbed by the black hole through the future horizon (H").
The amplitudes of these components are such that the DOWN-mode satisfies
the radial wave equation (4.7) in a physically consistent manner. Analogously,
the UP-mode is defined by imposing the boundary condition that no radiation
arrives from spatial infinity. Similarly, the IN-mode excludes any outgoing radia-
tion from H~, while the OUT-mode is defined by the absence of radiation falling
into the black hole through H*. These scenarios are visually illustrated in Figure
4.1, where the shaded regions represent the exterior spacetime of an eternal black
hole. The diagonal lines inclined a 45° indicate null trajectories. The boundaries
labeled J+ and J~ represent future and past null infinity, respectively, while
H+ and H— correspond to the event horizon and the past horizon.

12



Chapter 5

Quantum Behavior in Black Hole
Spacetimes

5.1 Particles from the Void: Black Holes as
Quantum Sources

5.1.1 Modes and bases
Model

We initiate our analysis by considering a massless, neutral scalar field ¢ in the
spacetime geometry of an uncharged, non-rotating black hole. We begin by
examining a simplified model in which the collapsing object is idealized as a
massive, infinitesimally thin shell moving at the speed of light. The spacetime
geometry corresponding to this scenario can be expressed through the following
metric:

r

2M
ds? = — (1 - A) dv? + 2dvdr + 1*dw? (5.1)

Here, dw? denotes the metric on the unit sphere, and the mass function is
given by M(v) = Md¥(v — v,). The spacetime is flat for v < v,, corresponding
to the region inside the collapsing shell. For v > v,, the geometry transitions to
that of the Schwarzschild solution, where M represents the mass of the resulting
black hole (refer to Figure 5.1). We now analyze a null ray moving radially that
reaches future null infinity, 77, at retarded time u (identified as ray 1 in Fig-
ure 5.1). By extending this ray backward in time, we define the advanced time
coordinate v = U(u), indicating the point at which the ray originated from past
null infinity, J~. To fix the origin of the v coordinate, we adopt the convention
that the null ray emitted from J~ at v = 0 arrives at the central point » = 0
precisely at the formation of the event horizon. With this choice of coordinates,
it follows directly that the horizon formation occurs at v, = 4 M.

Outside the collapsing shell, within the Schwarzschild region, the propagation
of an outgoing null ray is governed by the following equation:

u=7v—2r, = const, (5.2)

13



Figure 5.1: Penrose—Carter conformal diagram representing the spacetime of a spher-
ically symmetric, uncharged, and non-rotating black hole formed through the collapse
of a spherically symmetric massive null shell.

Here, 7, denotes the tortoise coordinate. The null ray intersects the collapsing
shell at v = 4M and at a radial position » = R, where R satisfies the following
equation:

w=8M — 2R — 4M In[(R — 2M)/2M] (5.3)

Null rays that arrive at J* at very late times (u — oo) pass through the
collapsing shell at a radius approximately equal to 2M , implying that for these
late-time rays, we have -

u~r —4MIn[(R —2M)/2M] (5.4)

Consider an incoming radial null ray emitted from J~ at a time v < 0. This
ray travels through flat spacetime until it intersects the collapsing shell from the
inside. For this ray, the coordinate v is constant, given by v = t+r, so it reaches
r = 0 at the time t = v. After passing through the origin (r = 0), it continues
as an outgoing ray, following the trajectory described by u =t — r = v = const,
until it encounters the shell again. The radius R at which the ray intersects the
shell is determined by the following relation -

v=—2(R—2M) (5.5)

Upon examining equations (5.4) and (5.5), the resulting expression can be
written as:

u~ —k ' n(—kv) (5.6)

14



This relation connects the advanced time v at which a late-time ray departs
from J~ with the retarded time u at which it arrives at J+. In this context, x
= (4M)~! represents the surface gravity of the black hole.

15



Modes

The dynamics of the massless scalar field ¢ are governed by the wave equation:
e =0 (5.7)

In spherically symmetric spacetime, the solutions can be represented through a
mode decomposition
Uuj (Tu t)

Prm = Vi (6.9 53)

Our objective now is to establish appropriate sets of mode solutions that will
enable the definition of convenient in- and out-bases for the quantum field ¢.
One specific type of solution, called outgoing modes ¢9“ (z), is defined with the
with the condition that they vanish on the black hole’s event horizon (H™) and
exhibit the following asymptotic form near J .

1 efiwu

drw T

out Nl out __
Pemew r fmw

We refer to ®9“ = as the projection of the field ©9“¢ onto J~

Imw Imw
(W) =i [ ot (§10,6° — 50,2 (5.10)

Here, do* represents the future-directed surface element vector on . This ex-
pression for the inner product is conserved and remains invariant under different
choices of the Cauchy surface . The conservation allows us to evaluate the
integral on surfaces like The event horizon (H') and Future null infinity (7).

(', %) = (", &)+ + (0", %) g+ (5.11)

If ' and ®** represent the projections of ¢! and ¢? onto J, then

(o', ) g+ = z/ (©'9,9* — 9°0,P") dud (5.12)
J+
Where d? = sin#dfd¢. from equation (5.9), (5.11) and (5.12), the following
normalization conditions are valid for ¢
(07" 03"y = = (85", 65") = dsr . ($5",65") =0 (5.13)
From this point onward, we adopt the notation J = ¢,m,w and J' = ¢',m’, ./,

5JJ/ = (5(&) - w’) (Sgg/ 5mm’ (514)

At this point, it is more practical to utilize wavepacket-type solutions, built from
Ywtm, as the basis functions rather than ¢, themselves. These solutions are
more localized in time and frequency, making them particularly useful for analyz-
ing phenomena like Hawking radiation, where focusing on temporal localization
near the event horizon of the black hole is essential. To proceed, we choose a
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small positive real number § (with 0 < § < 1) and set € = k. (K represent-
ing the surface gravity of the black hole), is introduced along with the following
notation:

(j+1)e '
(pjnlm = 61/2/ €2mnw/e Pwtm dw (515)
je

In this context, j is a non-negative integer and n is any integer. From
this point onward, we use the single symbol a to represent the collective in-
dex j,n, £, m. We also introduce another family of solutions, ¢*.J, characterized
by their initial data (or images) on J~. The image ®~.J of the solution on J~
is defined analogously to the image on J ™, with the obvious substitution of the
coordinate u by v.

—iwv

e
vVAarw

We use the notation ™« to refer to the wavepackets formed from ¢*"j as defined
in equation (5.15).

Let us now concentrate on late-time wavepackets ¢, specifically those for which
n > N with N > 1, which represent certain high-frequency modes propagating
in the spacetime outside a Schwarzschild black hole. This type of wavepacket
originates from J~ at advanced times v > 0 and evolves entirely within the static
Schwarzschild geometry. As it propagates, it reaches the peak of the effective
potential barrier located near r ~ 3M. A portion of the wavepacket, denoted R,
is reflected and escapes to future null infinity 7", while the remaining part, T,
transmits through the barrier and crosses into the event horizon. The reflected
component appears on J + as R,®°“'"«. The transmitted portion, upon reaching
the horizon H*, takes the form Tap®™“"a|H*, where p%“"a are wavepackets
constructed from the so-called DOWN-modes ¢%%".J. These modes are defined
by the condition that they vanish on J+ and take a specific form on the event
horizon H™ :

O (v,0,0) = Yim (0, 9) (5.16)

1 e—iwv
—Y, 1
\/m . Im (97 ¢) (5 7)

The late-time IN-, OUT-, and DOWN-modes, as defined above, are intercon-
nected through the following relationship :

P57 (0,0, 0) =

@ = Rapt + Tl (5.18)

«

out.

%" The OUT-mode, corresponding to radiation that escapes to infinity (7).
@down . The DOWN-mode, corresponding to radiation absorbed into the black
hole (H*). R, and T, are the reflection amplitude and transmission (ab-
sorption) amplitude, respectively. They quantify how much of the incoming
wave is reflected or transmitted.

This closely corresponds to the relationships :

¢ = Rypg" + Trp5" (5.19)

This relation applies generally to eternal black holes. The J-subscript indicates
a generic labeling of modes. It shows the same physical decomposition as in
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Eq (5.18), meaning this is a universal property of wave propagation in such
spacetimes. we also have
|Ral® + |Tal* = (5.20)

This equation ensures energy conservation for the wavepacket. he total energy
of the wavepacket is distributed between the reflected component (escaping to
J*) and the absorbed component (falling into H™).

We emphasize that, on a global scale, the geometry of an eternal black hole
is distinct from that of a black hole formed through gravitational collapse. Con-
sequently, the global behavior of the mode functions ¢; differs between these
spacetimes. However, for wavepackets observed at late times, equation (5.18)
holds in both cases. We now introduce a new family of modes, i, defined by
the condition that they are orthogonal to the ¢ modes, i.e. (P o) = 0

These modes admit a decomposition of the form % = t,p% + ropdwn  and
are normalized such that (0%, @) = dpar-
These conditions imply that the following relations hold:
ral> + [tal* =1, toRa+7,Ta=0 (5.21)
As the consequence of the relations (5.20) and (5.21), we have
[Ral® = Iral?,  |Tul? = [taf? (5.22)

The wavepacket ¢, when traced backward in time, passes through a massive
null shell before reaching past null infinity, 7. This process helps us trace the
origins of the wavepacket from an earlier time. At J~ , the wavepacket experi-
ences blueshifting due to the black hole’s gravitational field. The relation u ~
exp(ku) shows this blueshift, with x denotes the black hole’s surface gravity and
u and v are null coordinates.

Using the geometrical optics approximation, the evolution of the wavepacket
is simplified. This approximation assumes that the wave behaves like light rays,
which is valid in regions far from strong spacetime curvature. The result of this
evolution is a wavepacket described by following equation

- 1 :

B = e Y (6,0) () (5.23)
The step function ensures that the wavepacket ®“P~ is non-zero only for v < 0
representing its confinement to specific spacetime regions. The wavepacket @M
generated at J— travels through the shell and moves through the potential barrier
from within. The decomposition @2 = t,%" 4 r,%°"" indicates that the wave
is partially scattered by the potential barrier: the component r,pd®™ falls into
the black hole through the horizon, while the transmitted part ¢,p2" It crosses
the barrier and continues propagating toward past null infinity, J~ (refer to

Figure 5.1).
The last set of modes we require is represented by %, Their projections
on J~, ®¥~ are constructed by means of the transformation (5.15) from the

following functions:

down

1
vVAarw
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Asymptotic IN and OUT Mode Bases at Late Times

To formulate the in- and out-mode bases for late times, we introduce ¢% and ¢?
which are formed as linear combinations of the modes ¢* and %",

Spi = Ca@in + Sa@gp ) QOZ = Ca(pgp + Sa@in (5‘25)

—-1/2

Sa = Wa(l —w?) , Co = (1—w?)? (5.26)

where w, = exp|—nw;/k]. These combinations are introduced because, in
the context of curved spacetimes, solutions behave differently depending on the
causal structure of spacetime (e.g., near null infinities 7~ or J ). The objective
is to represent the field using mode functions that are well-defined in the late-
time region J~, corresponding to the ’in’ and ’out’ solutions. The modes ¢%
and P are chosen to correspond to solutions with positive frequency relative
to the advanced time coordinate v , thereby ensuring a physically meaningful
interpretation in terms of particle states. These functions are derived by applying
the transformation (5.15) to solutions that exhibit a specific dependence on v at

J

Eoom(v) = O(v)e ™ 4 g(—p)e e tam(=rv) (5.27)

In this expression, the parameter ¢ is defined for D-modes as ¢ = w/k, while
for P-modes, it is ¢ = —w/k. The function F,(v) , defined for the full range
—00 < w < 0o, contains only positive frequency components with respect to
the advanced time coordinate v. Accordingly, we select the following positive-
frequency solutions as our in-mode basis:

Por
e (5.28)
e
with a = {j,n,¢,m} and n > N, and augment them to a complete orthonor-
malized basis with an arbitrary set of positive-frequency functions defined on
J~. Likewise,
we form the out-basis by augmenting the set of functions

out

o
Pt = [ plown (5.29)

forming a complete orthonormal system. Comparable sets of basis functions were
originally introduced by Wald (1975). In the following discussion, we will refer
to equations (5.28) and (5.29) as Wald’s bases.

The modes & correspond to positive-frequency solutions relative to ad-
vanced time v at past null infinity J~. In the associated ’in-vacuum’ state,
no particles are present incoming from J~ , effectively describing a scenario in
which the black hole initially exists in isolation, unaffected by external radiation.
Conversely, the modes 2" represent positive-frequency solutions with respect to
the retarded time v at future null infinity J*. The corresponding ’out-vacuum’
state then represents a configuration with no outgoing particles reaching J7.
This models the state in which the black hole emits no radiation in its final
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stages. The particle interpretation is well-defined at J~ (incoming particles)
and J* (outgoing particles) because the spacetime in these asymptotic regions
is weakly curved and resembles flat spacetime. This allows the use of standard
quantum field theory concepts like positive frequency and vacuum states. The
modes ¢V and " which vanish at J*, are not associated with a straight-

forward particle interpretation. They correspond to regions closer to the event
horizon or in highly curved spacetime.

In the general scenario, the Bogoliubov coefficient matrices that connect the
in- and out-bases are infinite-dimensional. However, for Wald’s bases, these
matrices factorize, effectively reducing the problem to a three-dimensional one.
While these modes lack a straightforward particle interpretation at J 7, their
specific choice has no bearing on the physical predictions made in the black
hole’s exterior region. This simplification is critical because it allows the focus
to remain on the regions of physical interest (e.g., near the black hole horizon
and at infinity).
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Chapter 6

Black Hole Thermodynamics

One of the most well-known facts about black holes is that crossing their event
horizon is a one-way journey— with nothing, not even light, can escape once it
has passed this boundary. In other words, entering a black hole is an irre-
versible process. This irreversibility is in obvious tension with basic physical
principles. For example, many fundamental physical laws (e.g., Newtonian me-
chanics, Maxwell’s equations, Schrodinger’s equation in quantum mechanics) are
symmetric with respect to time. i.e if a process is allowed in one direction then
this laws also permits the exact reverse process to occur. On the other hand,
irreversibility is very familiar to everyday life scenarios, such as breaking of glass
or heat flowing from hot to cold do not reverse themselves.

(Classical physicists saw some tension between such irreversibility and a presumed
invariance of the laws of nature under time-reversal. The tension was largely re-
solved with the development of thermodynamics and statistical mechanics. Irre-
versible processes are those in which the entropy increases. Processes in
which the entropy becomes smaller — for example, a scrambled egg spontaneously
reassembling - can happen in principle but require extreme fine-tuning of initial
conditions, so they are exponentially unlikely. The core concept of black hole
thermodynamics is that the irreversible nature of an object being absorbed by a
black hole mirrors the statistical irreversibility we observe in everyday physics.
When an object falls into a black hole, the system’s entropy increases, making
the process fundamentally one-directional. While it is theoretically possible for
the black hole to spontaneously emit the same object in a time-reversed sce-
nario, this would require extremely precise starting parameters, making it nearly
impossible—much like how a shattered egg never reassembles itself on its own.
Black hole thermodynamics has raised many challenging questions about the
fundamental nature of quantum mechanics and gravity.
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Chapter 7

Black Hole Entropy And The
Generalized Second Law

The second law of Thermodynamics says that, in any process that we can observe
in practice, the entropy is non-decreasing. Here, entropy is the usual thermo-
dynamic entropy. Processes in which the thermodynamic entropy decreases are
allowed by the laws of nature, but are prohibitively unlikely, in practice. How-
ever, Bekenstein was inspired by a question from his supervisor, John Wheeler,
which made him think about what happens to the entropy when matter falls into
the black hole. Thought experiment with tea and black hole : If a cup of
tea (representing a system with entropy) is thrown into a black hole, the entropy
of the tea seems to disappear. Traditionally, black holes were thought to have
zero entropy, so the total entropy of the universe would appear to decrease.
The second law of thermodynamics states that the total entropy of a closed sys-
tem should never decrease. However, the apparent disappearance of tea’s entropy
in this scenario would violate this fundamental law. To preserve the Second Law,
Bekenstein proposed assigning entropy to black holes themselves. He theorized
that this entropy should always increase when matter (and its entropy) falls in-
side the Black hole according to classical General Relativity, ensuring that the
Second Law holds true. Which property of a black hole can only grow? The
mass of a black hole does not always increase— For instance, a spinning black
hole can lose mass as its rotation slows down. However, there is a quantity that
continually grows. Hawking had just proven the “Area Theorem”, this prin-
ciple states In the framework of classical general relativity, black hole horizons
never contract. Bekenstein, therefore, postulated that a black hole’s entropy is
linked to the size of its horizon. The horizon is situated at the Schwarzschild
radius rs = 2G M and the horizon area is given by :

A = 471r? = 167G* M? (7.1)

Since, the entropy is dimensionless, So, if the black hole’s entropy is to be directly
proportional to its horizon area, the constant of proportionality will have units
of Inverse Area. Using the fundamental constants ¢ , G, and A one can derive
the Planck length I, = (AG/c*)"/? and the plank area I2 = hG/c®. In units with
¢ = 1, Bekenstein’s formula for entropy of black hole was :

A
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where the constant 1/4 was not clear in Bekenstein’s work and was determined
by Hawking a couple of years later. The formula with this factor of 1/4 included
is commonly called the Bekenstein-Hawking entropy of the black hole. Ac-
cording to equation (7.2), Black hole entropy can reach exceptionally high values
compared to everyday systems. for example, a black hole with the mass of the
sun has an entropy of roughly 1077, which is about 10'® times the entropy of the
actual sun. (we set h = 1 in later discussion). Bekenstein suggested that the
entropy of a black hole reflects the number of different configurations that could
have led to its formation. He introduced the concept of generalized entropy,
which combines the entropy of the black hole itself—given by (A/4G) with the
external entropy (Sout) , representing the entropy of matter and radiation located
outside the event horizon. The generalized entropy is given by :

Sgen = % + Sout (73>
The generalized entropy was proposed to obey a generalized second law, i.e. it
is non-decreasing in all the processes that we can observe in practice.

ngen

20 (7.4)
Bekenstein tested the validity of the generalized second law in scenarios involving
Schwarz-schild black holes. the main idea was to test whether the generalized
second law (7.4) is valid when the black hole absorbs matter. The law assumes
that the matter being absorbed by the black hole should obey the thermodynamic
principles, i.e. it is near local thermal equilibrium. A simple case to consider is
that the black hole absorbs a beam of black body radiation, say at temperature T.
In 341 dimensions, the relation between energy (E), temperature (T) and entropy
(S) in black body radiation is E = %T S. If a black hole of mass M absorbs energy
E << M from black body radiation, its entropy A/4G = 4nGM? increases by
87GM E, while the entropy of the radiation decreases by AS,y = 4E/3T. Thus,
change in generalized entropy is :

ASyen = <87rGM - ;‘T> E (7.5)

ASgen becomes negative if T is so small that the typical photon wavelength is
much larger than the Schwarzschild radius. From a thermodynamic perspective,
given that Bekenstein assumed a black hole does not emit radiation, it must be
assigned a temperature of zero. As per thermodynamics, in a state of equilibrium,
the variations in energy E and entropy S of a system are connected as : dE = T'dS
or dS =dE/T. A system at T' = 0 should exhibit dS = oo if dE # 0, according
to thermodynamics. However, Bekenstein aimed to assign a finite, rather than
infinite, entropy to the black hole.
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Chapter 8

Black Hole Evaporation

Penrose diagram are usually drawn for spherically symmetric spacetime. The
main purpose of this diagram is to exhibit causal relations in a useful way. The
diagram is drawn so that radially ingoing or outgoing null geodesics are at a /4
angle to the vertical. An important example is a Penrose diagram describing
spherically symmetric collapse of a star to a Schwarzschild black hole (Fig 8.1).
The left vertical boundary of the figure is the origin of Polar coordinates at
r = 0. shown in red is the worldvolume of a star. The star ends its life at the
singularity represented by the wiggly line at the top of the diagram, Future and
past null infinity are represented by diagonal lines on the right boundary. The
diagonal line within the figure represents the event horizon of the black hole.
Since, causal curves travel at an angle no greater than 7/4 from the horizon,
an observer outside the horizon can never see beyond (on the other side of) the
horizon. The Worldline of a massive observer who remains forever outside the
horizon (and does not accelerate indefinitely) will end at the point i*, known as
future infinity, where the horizon and future null infinity meet.

Hawking’s discovery of black hole evaporation was derived from analyzing
the behavior of a quantum field within a fixed classical background, specifically
a Schwarzschild black hole with mass M, which is a reasonable approach approx-
imation if M is much bigger than the Planck mass (hc/G)"/?, which is about 10~°
grams. Moreover, it is potentially a sensible approximation if the Schwarzschild
radius of the black hole is much bigger than the Planck length (AG /c)1/2 ~ 1073

Time
Future Null Infinity

Space

Past Null Infinity

Figure 8.1: A Penrose diagram describing the collapse of a star to form a black hole.
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Time

Future Null Infinity

orizon

Space

Past Null Infinity

Figure 8.2: Whatever the distant observer sees in the far future can be traced back to
initial conditions on a Cauchy hypersurface, such as the hypersurface S shown in violet.
This Cauchy hypersurface has been chosen to cross the horizon outside the worldvolume
of the collapsing star. From this Cauchy hypersurface, signals can propagate to the
distant observer at the speed of light. These signals can propagate along outgoing null
geodesics, some of which are indicated by the green lines in the figure, which are at
a /4 angle to the vertical. These outgoing null geodesics, if labeled by the time of a
distant observer, “bunch up” near the horizon, as shown, because the redshift diverges
there.

cm. For a realistic astrophysical black hole, Hawking approximation is expected
to be excellent.

Our aim is to analyze what an observer far from the collapsing star will see in the
far future, after the transients have died out. As an ideal case, we assume that
what are observed are massless fields such as the electromagnetic field, and these
are observed at future null infinity, more specifically near the upper boundary of
null infinity where it ends at the point ™. These conditions are comparable to
making observations either far from the black hole or at a much later time.

Measurements that the observer will make at, or near, future null infinity can
be traced back to initial conditions on a Cauchy hypersurface. For this purpose
we can choose any Cauchy hypersurface we want. It is convenient to choose
one that crosses the horizon outside the collapsing star such as the hypersurface
S of (Fig 8.2). From any point on S, a massless particle might be emitted and
propagate to future null infinity at the speed of light. The diagonal green lines in
the diagram represents the trajectories of such particles. Let u be any coordinate
function used to describe a location near the black hole in terms of its distance
from the event horizon. u vanishes on the event horizon (u = 0) and is positive
outside the event horizon (u > 0) (where signals can still escape). The normal
derivative of u (a measure of how u changes along the horizon’s surface) is
assumed to be non-zero and finite; i.e. u changes predictably near the horizon
and is a useful coordinate for analysis. A signal (E.g light or radiation) emitted
near the Black hole’s vicinity can originate at any location defined by u. A signal
emitted close to the event horizon will have a small u, while a signal released
farther away from the black hole will have a larger u. Let ¢ be the time at which
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the distant observer receives the signal. The relation between ¢ and u is :

t = 4G M log <i> +C + O(u) (8.1)
Where C' is a constant that depends on how far the observer is and is the
precise definition of the function u. Equation (8.1) tells us that as u — 01, the
time ¢ at which the signal is received by a distant observer diverges, but only
logarithmically. Indeed, this divergence is related to the fact that a signal that
originated from behind the horizon say at u < 0, will never reach the outside
observer. Solving (8.1) to express u in terms of ¢ for asymptotically large ¢ we

get :
u = ¥ e t/AGM (8.2)

At late times, i.e. if ¢ is large, u is exponentially small. this means that the ob-
servations are effectively probing regions closer and closer to black hole’s event
horizon. or in other words, at late time measurements by the distant observer
probe the quantum state at distances exponentially close to the horizon. Quan-
tum Field Theory predicts that, at extremely short distances, any state appears
similar to the vacuum. As a result, what a distant observer sees at late times
essentially reflects vacuum behavior at exponentially tiny distances. The dis-
tant observer does not need to wait terribly long before making observations
that probe vacuums state at short distances. The term e */*“M ghows that
u decreases exponentially as t increases. The parameter 4G M determines the
timescale of this decay. For example, a Solar mass black hole (M =~ 2 x 103 Kg),
4G M corresponds to a time about 2 x 10~® Seconds.

This decay factor e */*“M hecomes incredibly small even for relatively small
values of ¢t. For example, after waiting just 1 second, the factor becomes ¢=500%0
or e=5¥10" which reduces u by extremely small amount. Hence, the observer need
not to wait very long (in human timescale) to reach by the late time regime. The
distant observer probes the radiation emerging from the black hole by measuring
a quantum field ¥. We assume that the distant observer measure ¥ as a function
of time (¢) and angular coordinate ) at a fixed spatial distance from the black
hole. A typical observable quantity for the observer is a two-point function given
as :

(W(Q, ) W(, 1) (8.3)

This two point function provides information about the structure and dynamics
of the quantum field over time and angular positions. In a spherically symmetric
Schwarzschild background the field ¥ can be expanded into Partial Waves. The
coefficient of each partial wave is a 1+ 1 dimensional quantum field (one spatial
dimension and one time). In real world scenario, the field ¥ could represent
a component of the Electromagnetic field, the expansion would involve vector
spherical harmonics. We can understand the essence of Hawking’s discovery by
assuming that a specific partial wave 1 of the field ¥ behave like a chiral free
fermion in 1 + 1 dimensional spacetime.

The fermion is described as chiral in the above statement because it represents
only the outward propagating modes (from event horizon to infinity). These
modes are crucial for modeling the Hawking radiation that escapes the black
hole, while the inward modes are irrelevant since they do not contribute to the
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observable radiation. Thus, this choice of focusing on chiral fermions simplifies
the analysis while still capturing the essence of the physical process. A chiral
free fermion in 1 4+ 1 dimensions has scaling dimension 1/2, and its two-point
function in the vacuum is :

(dudu')/?

/
() = S (34)
In the analysis of black hole emission in the late-time regime, u and u' are
both exponentially small and therefore exponentially close to each other. Since
we know that any state looks like the vacuum state at sufficiently short dis-
tances, so in discussing what an observer will see at late times, we can replace
(¥(u)y(u)) by its vacuum expectation value (8.4). Substituting (8.2) in (8.4),
we can turn equation (8.4) into a formula for the two-point function by the dis-

tant observer at late times :

1 (dtdt')'/?
/ —
(W()y(t)) = ACM o=V /8GM _ o—(t—t)/3GM

(8.5)

Equation (8.5) describes a two point function (¢(¢)1(t')), in context of a black
hole’s thermal behavior. This two point function is antiperiodic in imaginary
time, i.e. the function exhibits a repeating behavior under a shift ¢ — ¢ +
8nG M i; where 8w(GM represents a specific periodicity linked to the black hole’s
thermodynamic properties. Anti-periodicity with that period corresponds to a
thermal correlation function at a temperature Ty = 1/87G M, referred to as
“Hawking Temperature” of a Black Hole. It is the temperature at which a
Black Hole emits thermal radiation due to quantum effects near the event horizon.
The right hand side of equation (8.5) is interpreted as two-point correlation
function of a quantum field (a chiral free fermion) at the Hawking temperature
Ty. A two-point function is a mathematical tool to understand correlations
between values of field ¥(t) at different times ¢ and ¢'. The correlation function
arises in the thermodynamic limit, which is expressed as :

1 —Bu /
L e e ()

Where, 7 is a Partition function, representing the statistical properties of the
system. H is a Hamiltonian, governing system’s energy. By — 1/Ty is inverse
of temperature. The thermal two-point function is unique and determined by
the facts : It is Antiperiodic with period 8m#G' M and it’s only singularity occurs
when ¢ = t/, at which point the function has a simple pole with residue 1. A
Black hole’s observations as perceived by a faraway observer at late times align
with what would be expected if the black hole were a thermal system. specif-
ically, the Black hole emits radiation similar to a Black body at temperature
Ty = 1/81GM, this thermal reaction is known as Hawking Radiation.

When a Black hole forms, transient effects initially dominate the radiation
over time, these transients fade and the reaction becomes predominantly ther-
mal characterized by Hawking Temperature Tp. This explains why Bekenstein
struggled with understanding how black holes interact with photons of energy
much smaller than 1/87GM (very low energy photons). These low-energy pho-
tons are significant because the black hole strongly emits them due to its thermal
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nature and each mode of the radiation has a large average occupation number (a
measurement of the quantity of photons within that state), making the emission
prominent. When examining a Black hole’s radiation emission, the increase in
the radiation’s entropy must be accounted for the generalized second law. Low-
energy photons contribute significantly to the increase in entropy because of their
high occupation number. We can also now confirm Bekenstein’s formula for the
Black hole’s entropy, and explain how Hawking determined the overall constant
in this formula. We use the first law of thermodynamics :

dE = TdS (8.6)

Where the energy is the black hole mass M, and for Schwarzschild black hole
T =1/8rGM. Hence, dS = 8nGMdM (assuming that S vanishes if there is no
black hole, i.e. at M = 0), so S = 4rGM?. The Schwarzschild black hole’s area
is A = 167G?M?, so the entropy is :

A

5=

(8.7)
This is how Hawking confirmed Bekenstein’s ansatz and determined the overall
normalization. One way to justify equation (8.1) and (8.2) is to introduce the
Kruskal-Szekeres coordinates. A standard definition is :

r 1/2
U—_ < _ 1) r/AGM _—t/AGM
2GM o c

1/2
V= <2£M - 1) oT/AGM t/4GM (8.8)

In terms of these coordinates the Schwarzschild metric is :

32G3 M3
r

ds® =

eTPEM AUV + r2d0? (8.9)

Where r is defined implicitly as :

— r r/2GM
UV = <2GM —1>e (8.10)
The most important application of Kruskal-Szekeres coordinates is to describe
the extension of the Schwarzschild geometry beyond the horizon at r = 2GM.
These coordinates make the metric regular across the event horizon (r = 2GM)
and remove the singularity that appears in Schwarzschild coordinates at this
radius. The form of the metric in equation (8.9) shows that a radially outgoing
or incoming null geodesic (ds? = 0) must satisfy dU = 0 or (dV = 0), so in other
words U or V is constant along such geodesic. In the outgoing direction, U does
not change or is constant because it encodes the behavior of light escaping from
the black hole. Whereas, in the incoming direction, V' does not change or is
constant because it encodes the behavior of light falling towards the black hole.
Equation (8.8) shows that U vanishes at r = 2GM and is negative for r > 2GM,
so for a function that vanishes on the horizon and is positive outside, we take

u = —U. From equation (8.8) then gives the claimed result u = Ce "M (i.e.
(3.2)), where C' = (3877 — 1) 12 er[MGM g g constant that depends on the position
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of the observer and not on the time at which the observation is made. Now, it
is natural to introduce the retarded time ¢,.; = t — r and write the formula for u
in the form :

1/2
= (2£M —1) eeticn (8.11)

For a black hole with solar mass, 4GM ~ 2 x 10~°Sec the exponential depen-
dence of u on t,. ensures that u becomes negligible for large t,.;, consistent
with the behavior expected in black hole spacetimes. An important detail in this
derivation os that it is not necessary to begin the discussion at distances so small,
or energies so high that they probe the unknown physics (quantum gravity at
plank scale). Instead, the approach assumes that at late times, the observable
effects seen by the distant observer can be explained by considering the short
distance behavior of the quantum field, but only in context of known physics.
The term short distances here does not refer to plank scale or other extremely
small scales beyond our current understanding.

The hypersurface S is chosen so that the signal originates from a region close to
the black hole (small compared to the Schwarzschild radius) but still far enough
that the fine details of the black hole’s geometry does not affect the core correla-
tion function (¢(u)y(u’)), which coincides with the expectation value in vacuum.
So, for example, For an Astrophysical Black hole, with Schwarzschild radius of
a few kilometers or more, the short distance scale could be a millimeter; sig-
nificantly smaller than the size of the black hole, but not nearly small enough
to probe the limits of our knowledge of physics. The Hawking Temperature
Ty =1/87GM can be expressed in terms of the Schwarzschild radius ry = 2GM

as :
1

Ty =
a 4rr,

(8.12)

Thus, the Hawking Temperature is of order 1/r; and a typical massless particle
(Eg : Photons) emitted by the black hole has a wavelength measured at infinity
of order ry and an energy of order 1/r,. Energy loss by a radiating astrophysical
black hole is extremely small. the total luminosity of a radiating body of surface
area A and temperature T is of order AT*, which in the case of a black hoke
is a multiple of 1/G®M?. Thus, in order of magnitude the energy loss rate of a
radiating Astrophysical Black hole is :

dM 1

dT T GPM?
With the real world assumptions about the particles emitted by the black hole
mainly photons and gravitons the constant of proportionality in equation (8.13)
was computed by page. (This calculations require understanding of gray body
factors, which we will introduce in the next chapter). Following Hawking, en-
ergy loss by a radiating Black Hole is known as “Black Hole Evaporation”.
Equation (8.13) indicates that a Black Hole with a standard astrophysical mass
evaporates extremely slowly. The duration for the Solar-Mass Black Hole in
vacuum to evaporate away a significant part of its mass is of order 107 years.
Of course, in the real world, an astrophysical black hole is not in vacuum and is
more likely to accrete mass than to evaporate. Hawking’s calculations shows that
black hole emit radiation with Thermal spectrum, implying that outgoing radi-
ation carries no information about the matter that originally formed the black

(8.13)
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hole. This presents a puzzle because if the black hole initially formed from a
pure quantum state, quantum mechanics dictates that the final state after evap-
oration should also be pure.

The radiation has a large entropy, roughly proportional to the number of pho-
tons emitted during evaporation. For example, for a solar mass black hole, this
entropy is about 107, However, according to Unitary evolution in quantum me-
chanics, information should be preserved, leading to the paradox. The thermal
appearance of Hawking radiation arises because a distant observer only has ac-
cess to the quantum fields outside the event horizon. Even if the whole universe
remains in a pure state, the portion of spacetime observed outside the black hole
appears as a mixed state. This suggests that the missing information could be
encoded in the correlations between the emitted radiation and the hidden regions
inside the black hole, which remain inaccessible to an external observer. This is
the essence of the Hawking effect.
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Chapter 9

Gray Body Factors

In the previous section, we saw that a signal emitted from the horizon propagates
freely to distant observer. However, this assumption is oversimplified, since in
general there is a sort of angular momentum barrier around the black hole. As we
will see an outgoing signal might be reflected back towards the horizon. Now, it
is possible in 341 dimensions to have a semi-realistic model. For this we consider
a magnetic charged black hole and a massless electrically charged fermion field W
interacting with the black hole. The Partial wave of ¥ of lowest possible angular
momentum is as massless fermion in 1 + 1 dimensional sense, and its outgoing
(chiral) component has precisely the properties assumed in the previous section
for a study of such models. Also there is a potential barrier outside the black
holes. (even for angular momentum zero).

9.1 The Potential Barrier

For simplicity, we will consider a massless scalar field ¢ in the presence of the
black hole. In the real world, it would be more realistic to consider the EM field
or gravitational field. We assume that ¢ interacts with gravity only, with minimal
coupling via the action —% [ d*z/g9" 8,$0,¢. In a Schwarzschild background,
the action for a mode of angular momentum [ is :

B r21 dp\* 12 2GM\ (dp\* 1(1+1)
f—/dtdr<5@<%) -5 (-E) (7)) -

(9.1)

Where, the first term corresponds to Kinetic energy in time. The second term
represents spatial Kinetic energy in radial direction. The third term acts as an
angular potential term due to the angular momentum /. It is useful to define
the “Tortoise coordinate” r, = r 4+ 2GM log(r — 2G M), which satisfies dr =
dr, ( — QGTM), and ranges over the whole line —oco < r, < oo for 2GM < r < c.
The Tortoise coordinate allows for a better analysis of wave propagation in the
black hole background. The action (9.1) is rewritten in terms of r, as :

= fue (5 ()5 () - (-25) 500) o
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Setting ¢ = o/r and integrating by parts, we get :

1 (do\*> 1 [do\> 2GM\ (1(I+1) GM
I=|dtdri | =|— ) — = — 11— 2
/ " (2 (dt> 2 <dr*) < r > < 2r2 + r3 )U
(9.3)
In other words, o is effectively a massless scalar propagating in effective two-

dimensional Minkowski space with line element — dt? + dr? and interacting with
the effective potential :

e (1 - QGM) (z(z+ D, QGM) 0.4

r 272 73

The effective potential is positive definite, vanishing near the horizon and at
infinity, with a barrier in between. Even if [ = 0, there is a non-trivial effective
potential namely :
2GM  4(GM)?

r3 r4

Ve = (9.5)

The maximum value of this potential is at ry. = %GM , and it’s corresponding

value is Viax (I = 0) = W . For [ > 0, the maximum of potential is greater.

For large [, the maximum is approximately at r = 3G M, and the maximum value

of the potential is V(1) = % To get from horizon to infinity, a wave
will have to propagate over the potential barrier. Only a wave whose energy is
much greater than /Viax (1) will propagate almost freely from the horizon at
r, = —oo through the barrier to r, = co. Our previous calculations are good for
[ = 0 mode if the black hole’s Hawking radiation is being observed at frequencies
much above the Hawking Temperature Ty = g7 ~ v/ Vinax(I = 0). For 1 > 0,
the previous calculations is good at frequencies much above [ T},.y.

An outgoing mode from the horizon at r, = —oo might be scattered back into
the black hole by the potential and reabsorbed, or it might be transmitted across
the barrier to r, = oo. Our calculations in the previous section should be mod-
ified accordingly; The probability to observe an outgoing particle near r, = oo
should be reduced by the transmission probability across the barrier. If a black
hole has a temperature T}, it can theoretically reach equilibrium with a thermal
gas at that temperature. In this state, the black hole absorbs thermal radia-
tion from the gas and emits its own thermal radiation at the same temperature,
maintaining a balance. In the simplest case, where there is no effective poten-
tial barrier (A situation that only happens for an electrically charged massless
fermions interacting with a magnetic charged Black Hole), A Black Hole absorbs
all the incident radiation in a particular partial wave. With no barrier present,
the Black hole freely emits radiation while remaining in equilibrium. In a more
realistic situation, an effective potential barrier (Vog # 0) exists. This barrier
reduces the probability of the black hole absorbing radiation. The absorption
probability is reduced by a factor equal to the transmission probability from right
to left (i.e. from r, = 0o to 1. = —00). To maintain equilibrium, the emission
probability of radiation from the black hole must also be reduced by the same
factor. Thus, the transmission probability through the barrier is same in both
directions (left to right and right to left). Therefore, equilibrium is possible if
the black hole’s emission is adjusted by this transmission probability factor.
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The statement that the transmission probability of a wave through a potential
barrier is same whether the wave is incident from left or right can be proved as
follows. A solution of Klein-Gordon equation for ¢ with frequency w has the
form o (r,,t) = X (r,) e with :

<_ j_; i veﬁ(r*)) A(r.) = WA(r) (9.6)

A solution A, that describes the scattering of a wave incident from the left has
the asymptotic behavior :
e 4 R(w) e W=, r— —00
T(w) e, r — 400.

Where, T'(w) and R(w) are the transmission and reflection amplitudes for a
wave incident from the left. A solution A\, that describe the scattering of a wave
incident from the right has the asymptotic behavior :

~ {T(w) e*iwr*’ r— —00 (98)

Aw(Ts) ~ . - ,
( ) e—zw’r* +R(W) ezwr*’ r_)_'_oo.

Where, T'(w) and R(w) are the transmission and reflection amplitudes for a wave
incident from the right. Since, both A\, and A, satisfy the same equation (9.6),

their Wronskian A, % is independent of r,. Comparing the values ar r, — o0,
we get the claimed result T'(w) = T'(w).

9.2 More Detailed Argument

Now, we will aim for more technical/mathematical justification of the claim that
the thermal radiation rate found in previous section must be multiplied by a
factor |T'(w)|?. In simple terms, the observer is trying to measure radiation from
the black hole. To describe what the observer detects, we need a mathematical
operator that represents the measured quantity. The goal is to define a operator
in a way that make sense physically and allows us to calculate what is observed.
In QFT, physical quantities (like energy, momentum or radiation flux) are repre-
sented by “operators” acting on quantum field. Here, the operator W is defined
as :

W= 5 Pz Vh (a(z) o(x) + b(z) 6(z)) (9.9)

Where, S’ is a Cauchy hypersurface; which is just a fancy term for a 3D slice
of spacetime where we specify initial data for quantum field. h is the induced
metric on S’ which describes the geometry of this spacetime. o(x) is quantum
field at point x. &(z) is the time derivative of o(x); describing how the fields
evolve in time. Finally, a(z) and b(z) are functions that weight the contributions
of o(x) and () to the operator W. W is an operator that combines the field
o and its time derivative & on the hypersurface S’. If we measure WT W, we
obtain the number of particles at a given energy. The observer detects particle
corresponding to this operator. It is useful to select the hypersurface S’ to pass
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Figure 9.1: This picture illustrates a more detailed derivation of the Hawking process.
S’ is a late time Cauchy hypersurface on which a measurement will be made. The
operator that will be measured is WTW, where W is a linear function of a quantum field
o and its time derivative don the surface S’. By solving the wave equation backwards
in time, starting with “final data” on S’, one can obtain an expression for W in terms
of o and ¢ on an earlier hypersurface S. This leads to a corrected prediction for black
hole radiation that incorporates the interaction between the outgoing radiation and
the gravitational field of the black hole.

through the detector at the time of measurement. Since, the measurement is
taken far away from the black hole, where the observer is located. We want
to describe the field in terms of what the detector will measure, not just in
terms of initial conditions. The function a(x) and b(z) should be localized near
the detector, i.e. they are non-zero only in the region where the measurement
occur. If we choose S’ correctly, The operator W will describe the field in a way
that matches what the detector measures. This ensures we correctly count the
number of Hawking radiation particles detected. Because the observer’s detector
is positioned far from the black hole, it is necessary to describe the field in that
distant region. By choosing S’ to be well into the future, we ensure we capture
the outgoing radiation. The measurement at S’ will be related to earlier field
values at S through the wave equation.

The function W needs to be constructed carefully to represent physical par-
ticle detector. The function a(z) and b(x) should behave like plane wave (e™*)
to match the frequency modes the detectors measures if chosen correctly, W be-
haves as an “Annihilation operator” for a given frequency w; while its conjugate
Wt is a “Creation operator”. The quantity WTW tells us how many particles
exists at a given energy w. Thus, Measuring WTW directly gives the flux
of Hawking radiation detected. The Klein-Gordon equation describes how
a scalar field evolves in spacetime: Zi:o D,Dtf=0.

The function a(z) and b(x) can be interpreted as initial conditions for this equa-
tion :

fls =b(z) , fls = —a(z) (9.10)

We can alternatively write,

<~
W= [ do"fd,o (9.11)
S/
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Where, d¥* is the surface element associated to S’. f is the a function that
represents the quantum field mode (or test function). o is the quantum field.
<~

Ad
0, is the antisymmetric derivative defined as : f 0,0 = f (9,0) — (0,f)o. The

And A4
quantity f 0,0 is a conserved current D, ( f (‘)Ma> = (. Since, this quantity is
conserved, it allows us to define the same operator W on different hypersurface.
Because the quantity is conserved, we can define W on different hypersurface S :

W= / ds" £ 9,0 (9.12)
S

This means that instead of evaluating w on S’ we can compute it on S. Physi-
cally, it means instead of looking at f on S’ (where the observer is located), we
solve the field equation backwards in time to find f on S. Since, f was outside
the horizon on S’ it must also be outside the horizon on S. To determine what
f looks on S, we must solve the wave equation backwards in time. On S’, f is an
incoming wave of frequency w. If we follow f backwards in time, it propagates
towards the black hole and encounters a potential barrier. Some of the wave is
reflected back to infinity, while some is transmitted into the near horizon region.
This is crucial because it tells us that f on S contains both transmitted and re-
flected components.

Now we introduce the transmission and reflection coefficient in the time reversed
scattering problem. T’ : Transmission amplitudes for a wave propagating through
the potential barrier. R’ : Reflection amplitudes for a wave bounding back to
infinity. Then equation (9.12) exhibits W as the sum of T’ times a near horizon
operator and R’ times an operator in the Minkowski vacuum near r = co. When
the observer measures (W1W), the terms involving R’ do not contribute because
operators associated with the Minkowski vacuum have zero expectation value
in the vacuum. This means, terms like |R/|* vanish in the expectation value.
Thus, the dominant contribution comes from T’, which describe waves trans-
mitted through the barrier. So, the relevant part of WTW is just |T7|* times
the same near horizon operator that we would have if there were no reflection
from the barrier. Time-reversed symmetry means means that T’ is the complex
conjugate of the earlier transmission coefficient T. So, WTW is just |T'|? times
what it would be if there were no potential barrier, as assumed in previous sec-
tion. Therefore, as claimed, the emission rate from the black hole in a given
potential wave at frequency w is |T'(w)|? times the thermal emission rate in the
given mode at the Hawking Temperature. In the far future, quantum fields out-
side a black hole settle into a special state called the Unruh state. The Unruh
state is Universal, meaning it does not depend on how the black hole was formed.

“Hawking radiation is not purely thermal”. A naive derivation of
Hawking radiation would suggest that every mode (partial wave) contributes
equally, which would lead to infinite luminosity - this is clearly nonphysical. Gray
body factors modify the spectrum of Hawking radiation. Instead of all modes
escaping to infinity, some are partially absorbed through the Black hole. The
Transmission coefficient |T'|? describe the possibility that a given mode escapes
to infinity. The key result is that |T|? decreases rapidly for angular momentum
modes (large /), meaning only the first few partial waves contribute significantly.
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If the Gray body factors did not exist, every possible mode would radiate equally,
leading to an infinite amount of Hawking radiation. Instead, only the very few
low energy modes escapes efficiently, giving a finite well defined luminosity. This
matches the expected black hole radiation formula given earlier in the equation
(8.13).

9.3 Thermodynamic Instability

This section discusses thermodynamic instability in black holes, particularly in
an asymptotically flat spacetime where gravitational back reaction is ignored.
There are two primary reasons for this instability :

I. Instability due to Negative Specific Heat

Imagine a black hole of mass M in equilibrium with a thermal gas at the appro-
priate Hawking Temperature 7' = 1/87GM. In this equilibrium state, the Black
Hole should ideally both absorb and emit radiation at equal rates, maintaining
steady mass and temperature. Now, consider a thermal fluctuation in which
the black hole emits a few more particles than it absorbs. As a result, Black
Hole’s Mass decreases. Since, Hawking Temperature is inversely proportional
to the mass (T o< 1/M), the black hole becomes hotter as its mass decreases.
Since, the black hole is now hotter than its its surrounding, it will now with very
high probability emit more than it absorbs, and continue to lose mass. Thus,
a runaway process occurs, eventually causing the Black Hole to fully evaporate.
Conversely, if the black hole absorbs more than it emits, its mass increases.
Since, the Hawking temperature decreases with increase in mass, the black hole
cools down. A cooler black hole emits less radiation, allowing it to absorbs even
more matter from the surroundings. This leads to uncontrolled growth of the
black hole, meaning it will keep increasing in mass, without limit. Thus, any
small deviation from equilibrium leads to unstable outcome, where the black
hole either completely evaporates or grows without limit. This instability can
formally understood by analyzing the specific heat of the black hole defined as :
C = dE/dT. For a black hole, the energy is given by ' = M, and temperature
is T =1/87GM. Using these relationship, we get,

C=-8tGM?* <0 (9.13)

Since, this value is negative, the black hole has a negative specific heat. A ther-
modynamic stability requires that the specific heat to be non-negative (C' > 0).
A negative specific heat means the system does not tend to return to equilibrium
after a small fluctuations, confirming the instability.

II. Instability due to Gravitational Collapse of Thermal Gas

Another form instability arises from the Gravitational effects of a thermal gas.
Image a region of radius R filled with a thermal gas at temperature T. The
energy density of the gas is of order 7% (due to Stefan-Boltzmann law) and its
total energy inside a volume R? is of the order T* R?. The Schwarzschild radius
of a body of that mass is of the order G T* R3.

36



If the size of the gas cloud R is too small, the thermal energy is concentrated
enough that it will collapse into a black hole. This will happen if R < GT*R3.
Simplifying, we find that the maximum allowed size of a stable thermal gas region

1S :
1

R ~Y
vVGT?

(9.14)

This means that if the gas cloud is larger than this critical size, it will inevitably
collapse into a black hole. Thus, in an asymptotically flat spacetime it is not
possible to have a stable thermal gas of arbitrary size. if a thermal gas cloud is
too large or dense; its gravitational energy dominates, leading to its collapse into
a black hole, thereby preventing the sustained presence of a thermal environment
in such spacetimes. Now, the main question raised here is “Given the instability
of a black hole in an asymptotically flat spacetime, does it even make sense to
discuss equilibrium between a black hole and a thermal gas? ” The answer is Yes,
but only under certain conditions. The Hawking radiation is derived from QFT
in a fixed spacetime background. This means that the entire discussion so far
is valid only in the limit where gravitational effects are present. However, if we
take the limit G — 0 (which removes gravitational interactions), the instability
disappear. This is actual visible in equation (9.14).

Why do Instability Disappear in the limit G — 0 7

If we set the temperature of the gas at the Hawking temperature of a Black
hole with mass M : Ty = 1/87G M, then the maximum region that the gas can
occupy has a radius of order : R ~ G%?2M?. This means the thermal gas can
occupy a region much larger than the Schwarzschild radius Ry, = 2GM. For a
solar mass black hole, this factor is enormous (~ 10*®), meaning the black hole
is not just embedded in a local thermal gas but in a gas that fills almost all
of asymptotically flat spacetime. The fluctuations instability also turns off as
G — 0 to understand this, we need to decide what remains fixed as G — 0.
The Schwarzschild radius is related to mass by ry = 2G M. Since, mass and G
are linked, we cannot keep both fixed as G — 0. The more natural choice is to
keep r, fixed instead of mass. Expressing the Hawking Temperature in terms of
Schwarzschild radius :
1

4

Ty =

In this limit (G — 0), the Hawking temperature remains fixed. The black hole
mass diverges as :
Ts

2G

If the black hole undergoes a small statistical fluctuations, its mass changes by
an amount of order G. The temperature change is also of order G. This means
the runaway instability described earlier (where the black hole either evaporates
or grows uncontrollably) occurs only at a rate proportional to G. The timescale
for significant variation in the mass of the Black Hole if of an order 1/G?. Since,
this timescale diverges in the limit G — 0, the instability effectively disappears.

M = — 00
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How can we we achieve true Equilibrium?

Even though asymptotically flat spacetime cannot support the equilibrium state
between a Black hole and a thermal gas, there is a possible way to restore stabil-
ity. If we modify spacetime to include a negative cosmological constant, we
transition from an asymptotically flat spacetime to an asymptotically Anti-de
Sitter (AdS) Spacetime. This modification helps regularize the thermal gas i.e.
the gas is prevented from dispersing to infinity. It becomes possible to have a
stable thermal gas that fills all space. In an asymptotically Anti-di Sitter (AdS)
spacetime, a sufficient large black hole has a positive Specific Heat. This pre-
vents runaway instability, allowing for stable equilibrium between the black hole
and surrounding radiation. In an Ads spacetime, equilibrium is possible because

The Black Hole’s mass does not decrease uncontrollably. The surrounding
radiation does not disperse into infinite space. The specific heat is positive for
large black holes. However, there is an important distinction in this equilibrium :
Most of the entropy is in the black hole, rather than in the radiation. The black
hole is large but does not emit much radiation. This differs from a scenario in
which a Black Hole along with its Radiation are in perfect thermal equilibrium
with equal exchange. Instead, in AdS spacetime, the black hole is simply stable
and does not evaporate.
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Chapter 10

Thermodynamics of Rindler
Space

10.1 Making The Cut

The Hawking effect illustrates that while the entire Universe may be in a Pure
quantum state the portion of the Universe accessible to an outside observer
(outside the event horizon) appears to be in a Mixed state with thermal proper-
ties. This occurs due to the loss of information hidden beyond the event horizon,
leading to thermal, entropy-generating system. The thermal behavior observed in
Hawking radiation also arises in a simpler setting : the Unruh effect in Minkowski
space. This effect describes how an observer undergoing constant acceleration
perceives the Minkowski vacuum as a thermal bath of particles. The reason for
this is that such an observer only has access to part of the spacetime - specifically,
a Rindler Wedge which leads to a situation analogous to the black hole event
horizon.

What is a Rindler Wedge ?

If we consider a uniformly accelerating observer, their motion prevents them from
accessing the entire Minkowski space. Instead, they are confined to a Rindler
Wedge, defined by :

x>t or x<—lt

These inequalities define two regions : The right Rindler Wedge (z > |¢|) contains
all the events that can be reached by an observer undergoing constant accelerat-
ing in the positive x - direction. The left Rindler Wedge (z < —|t|) contains all
events accessible to an observer accelerating in the opposite direction. The future
and past regions (|t| > |z|) are causally disconnected from both wedges. Key
Idea : A Rindler observer (someone moving with constant acceleration) cannot
access the full Minkowski space. Instead, they perceive a horizon at x = |¢|,
analogous to black hole event horizon.

e Right Rindler Wedge (Red) : The region = > [t|, representing uni-
formly accelerated observers.

e Left Rindler Wedge (Blue) : The region x < |[t|, another causally
disconnected wedge.
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Rindler Wedges and Causal Regions
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Figure 10.1: A Schematic representation of the Rindler Wedges and causal regions

e Future Region (Green) : The region [t| > |z|, which is causally discon-
nected from both Rindler Wedges.

e Past Region (Orange) : The lower triangular region, also causally dis-
connected from the wedges.

e Dashed Black lines : Representing the line cone boundaries © = +t¢.

We will begin the analysis with a Hamiltonian description on a spatial slice. A
quantum state can be defined on any Cauchy hypersurface S. A simple choice
is t = 0, the standard choice in Minkowski space. For a real scalar field ¢, the
quantum state is represented as a wave functional W(¢(Z)). The spatial coor-
dinates Z are split into = (one spatial coordinates) and ¢ (remaining combined
coordinates). The vacuum state 2 is computed using a path integral over a
half-space in Euclidean time. The time coordinate is Wick-rotated : ¢t = —itg
to switch from Minkowski time (real time) to Euclidean time (imaginary time).
The integration is performed over the field ¢(tg, Z) restricted to the half-plane
tg < 0, keeping the boundary condition fixed at tg = 0 by ¢(Z). This integral,
as a function of ¢(Z), determines the vacuum wavefunction Q(¢(%)) (Fig 10.2
(a)). The Euclidean approach ensures that the lowest energy state (vacuum) is
selected. Thus, by restricting to the half-space ty < 0, the path integral con-
structs the ground state (vacuum) by filtering out excited states. The result is
well-defined wave functional Q(¢(%)), evaluated at tg = 0.

In quantum field theory (QFT), the vacuum state (2 is the lowest energy state
of the system. The projection operator onto this state is given by : p = Q.
This operator can also be interpreted as the density matrix associated with
the pure state 2. The key idea here is that both €2 and ) can be represented
using the path integral in Euclidean space. Let’s explore this is more detail. We
know from the earlier discussion that to construct the vacuum state, we use a
Euclidean path integral over a half-space in imaginary time ¢z, obtained via Wick
rotation t = —itg. The ket () is constructed using a Euclidean path integral
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Figure 10.2: (a) A Euclidean path integral on the half-space tg < 0 that prepares the
vacuum state €. (b) To prepare the pure state density matrix Q  associated to the
vacuum, we prepare the ket €2 as just described by a path integral on the half-plane
tp < 0, and we use a similar path integral on the half-space tg > 0 to prepare the
bra 2. Two copies of the x axis, appearing respectively as the boundary of the lower
and upper half-planes, have been separated for visibility. (¢) To construct the reduced
density matrix p of the half-line x > 0, we “trace out” the quantum fields in the region
x < 0. In path integrals, this is accomplished by gluing together the two copies of
the negative x axis. The result is a path integral on Euclidean space with a cut along
tp =0, z > 0. The density matrix (p) is determined by the field values just above and
below the cut.

over the lower half-space, where tp < 0. The bra () is constructed using a
similar Euclidean path integral over the upper half-space, where tz > 0 (fig
10.2 (b)). Each of these integral is performed while keeping the boundary values
of the field at ty = 0. The result is that : p = Q€2 can be obtained by performing
the FEuclidean path integral over the entire Euclidean space, gluing together the
upper and lower half-spaces. We can thus view the pure state density matrix p
as a function of pairs of boundary values:

p(¢; &) = UP)Ue) (10.1)

Here, ¢ is the boundary value of ¢(tg, ) on the upper boundary of the lower
half plane, and ¢’ is the boundary value of ¢(tg,Z) on the lower boundary of
the upper half plane. To introduce a subsystem, we divide the ¢ = 0 surface
S into the partial Cauchy surfaces S, with z > 0 (Right region) and S, with
x < 0 (Left region). Corresponding to this, we decompose the field ¢(Z) as a
pair (¢, @) where ¢, is the restriction of ¢ to the right region S,. We view
the ground state wavefunction as a function Q(¢y, ¢,.). We introduce a Hilbert
space H,. of functions of ¢, and a Hilbert space H, of functions ¢,. The formally
H =H; ® H, and in particular Q2 € H, R H,.

We would like to construct the reduced density matrix of the vacuum state

Q) for an observer who can measure ¢, only and not ¢,. for this, we first write
equation (10.1) in more detail, with ¢ = (¢, ¢,) and ¢’ = (¢, ¢).) :

p(Pe, &5 G, 0) = e, )y, 67) (10.2)

An observer in the right region S, has access only to measurements of ¢, and not
¢¢. To obtain the reduced density matrix p, for such an observer, we must trace
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out (integrate over) the unobserved variables ¢,. This means setting ¢, = ¢, and
integrating over all possible values of ¢,. This gives the density matrix p,(¢,; @)
appropriate for measurements of ¢, :

;m@ww=/Dmm@¢mm%¢> (10.3)

Here, D¢, plays the role of summing over all hidden possibilities of the left re-
gion. This integral sums over all field configurations in the left region, effectively
forgetting the unobserved degrees of freedom.

How do we represent p,. by a path integral?

Initially, we start with a pure density matrix p = Q€2 which can be expressed as a
path integral over the Euclidean space R*, but with a cut on the hypersurface S
defined by Euclidean time ¢tz = 0, and thus with separate boundary values ¢, ¢’
below and above the cut. Now, to obtain the reduced density matrix p, (10.3) for
a subregion §,, we must trace out the degrees of freedom in the complementary
region Sy. Instead of treating the field values separately above and below the
cut in Sy, we impose the condition that they are equal. This means we glue
the upper and lower half-spaces together along Sy, effectively removing the cut
in that region. After identifying the field values in Sy, we integrate over these
values. This procedure corresponds to performing the trace over Sy, effectively
removing those degrees of freedom from the description. We end up with a path
integral now that (fig 10.2 (c)) covers all of R* except for a remaining cut in
S,. The boundary values below and above the cut are ¢, and ¢, and a path
integral on R* with this cut and with fixed boundary values above and below
the cut computes the matrix elements p,(¢¢; @}) of the density matrix p, of S,.
Similarly, a density matrix appropriate for measurements of ¢, only is obtained
by setting ¢, = ¢/ in p and integrating over ¢, :

mmm@=/D@mwwmm%¢> (10.4)

It can be represented by a path integral on R* with a cut along tz = 0, x < 0.

The relations to all this Rindler space is as follows : In Lorentzian spacetime,
the domain of dependence of a partial Cauchy surface S, Rindler Wedge (R,).
Mathematically, the right Rindler Wedge is defined by the condition : z > ||
(Fig (10.3)). This means that any event in R, is completely determined by initial
data on &, as causal influences cannot come from outside this region. Regardless
of the specific quantum field theory being considered, the equations of motion
for fields in R, are fully determined by their initial conditions on S,. This fol-
lows from the hyperbolic nature of field equations (such as the wave equations),
which propagate information causally. Any measurements in R, corresponds to
measuring the field ¢, in that region. The density matrix p, provides a covari-
ant description of these measurements in R,.. The opposite wedge, called the
left-Rindler Wedge (R/) is defined by : & < —|t|. Measurements in this region
corresponds to another field ¢, and the appropriate density matrix for this re-
gion py. This means that an observer in R, would describe their system using
pe, independent of what happens in R,.
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Figure 10.3: In Minkowski space, the left and right Rindler wedges Ry and Ry are
defined as the domains of dependence of the partial Cauchy hypersurfaces Sy and Sy.
The diagonal lines mark the boundaries of R, and Ry; they are the past and future
horizons of an observer who remains forever in Ry or Ry and limit the portion of
spacetime that the observer can see or influence. All past and future horizons meet at
the bifurcation surface X, which also marks the common boundary of Sy and Sy. The
arrows indicate the action of the Lorentz boost generator K, which is future-directed
timelike in Ry, past-directed timelike in Ry, and spacelike elsewhere.

Following are few important facts about the geometry of Rindler space.
Firstly, in order to remains forever in the right Rindler wedge (R,), an observer
must accelerate indefinitely, in the future and also in the past. This means that
an observer in R, never crosses the Rindler horizon and always remains within
their casually connected region, as in equation (10.10) below, (that suggests that
it will later be linked to the Unruh effect)(The phenomenon where an accelerat-
ing observer perceives a thermal bath of particles). The visible region for an
observer in R, is bounded by the past and future Rindler horizons, repre-
sented by a diagonal line in Fig (10.3). Similarly, an observer in the left left
Rindler Wedge (R;) experiences their own past and future horizons. The
horizons of both Wedges intersect at a co-dimension two surface called bi-
furcation surface ) . This surface is also referred to as the entangling surface,
marking the boundary between the partial Cauchy surface S, and S,. Study-
ing Rindler Space helps us understand black hole Thermodynamics and horizon
physics. The right and left Rindler Wedges (R,) and (R;) are invariant under
Lorentz boosts in the z — ¢ plane. This means that the physics in these Wedges
remains unchanged under boosts transformation. This symmetry has played no
role up to this point, but now that will change.

10.2 Boosts and The Unruh Effects

The density matrix p, can be understood in another way by emphasizing the
rotational symmetry of the x — tg plane. Actually, it is convenient to first relate
a rotation in Euclidean signature to a boosts in Lorentz signature.

In Lorentz Signature, the generators of a boost of the x — ¢ plane is :

K:/dxdg]xTog(x,y_’) (10.5)
S
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Where Tjy represents the energy density. The boost generator can be expressed
as :

K=K, — K, (10.6)
With,

K, = | dxdyxTy(z,9)
Sy

(10.7)
m_/mwmm@m
Se
Where K, generates a Lorentz boost of ¢, and K, generates a Lorentz boost of ¢,.
K, generates a Lorentz boost of the right Rindler Wedge R, and commutes with
operators in the spacelike separated Wedge R, and commutes with operators
in R,. A minus sign was included in equation (10.6) so that K, and K, each
boost the corresponding Rindler Wedge forward in time. There is an additive
ambiguity in the definition of Ty, and we assume this has been fixed so that
the Vacuum energy density vanishes, otherwise the integrals defining K, and K,
diverges. The operator e~ r with real n, acts on ¢, by a Lorentz boost with
boost parameter n. If we set n = —if, the Lorentz boost turns into a rotation
and we get the operator exp(—0K,) that in Euclidean signature rotates the z—tg
plane by an angle . In terms of path integrals, this means that to compute a
matrix element of exp(—0K,) acting on 6,., we need to perform a path integral on
a wedge of opening angle 6. If we simply set § = 27, the wedge opening angle
becomes the cut plane of Fig 10.(c). Therefore, we get a formula for the density
matrix p, :

pr = exp(—2nK,) (10.8)

Similarly,
pe = exp(—27K)) (10.9)

The trace condition Trp = 1 is verified using a path integral over the entire
plane. Since the energy-momentum tensor is renormalized to have a vanishing
vacuum expectation value, the path integral is properly normalized. The inter-
pretation of K, as a Hamiltonian of the right Rindler wedge R, implies that
the density matrix p, is thermal at an Inverse temperature 2. This leads to
the Unruh Effect - An observer undergoing constant acceleration in Minkowski
space perceives thermal radiation.
An illustration of a trajectory under uniform acceleration is:

t:Lsinh%,x:Lcosh%,gj:O (10.10)

Where 7 is the proper time of the observer, and 1/L is the magnitude of the
acceleration. Any uniformly accelerated orbit in Minkowski space has this form
for some choice of Rindler Wedge and some L. The Lorentz boost generator
K, acts on this orbit as L%, So the observer could interpret K, as L times
the natural Hamiltonian. Of course the definition (10.7) for K, shows that for
observations near x = L, K, can be approximate as LH where H = f S, dx dyj Too
is the Hamiltonian acting on the Right Rindler Wedge.

A quick way to become convinced that the observations of such an observer
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will be thermal is to continue the orbit to Euclidean signature. In Euclidean
signature, with ¢t = itg, 7 = 17g, the orbit becomes :

tE:LSinhT—E, :E:LcoshT—E, y=0 (10.11)
L L

This orbit is periodic in 75 with period 27 L, suggesting that the observer will see
thermal correlations at temperature 1/27 L. The periodicity measured along the
Lorentz signature orbit (5.10) implies the presence of thermal effects, interpreted
using the Kubo-Martin-Schwinger (KMS) condition, which characterizes
thermal equilibrium in QFT. The temperature associated with this observer’s
point of view, K, is interpreted as noted earlier as LH, with H the relevant
Hamiltonian, So the formula (10.8) becomes p, = exp(—27 LH), leading natu-
rally to thermal correlations at temperature 1/2wL. Thus, a uniformly accel-
erated observer or one restricted to a Rindler Wedge perceives the Minkowski
Vacuum as a thermal state. The temperature is linked to the acceleration and is
inversely proportional to the distance from the edge of the Rindler Wedge at the
bifurcation surface > : x =t = 0, so this temperature diverges near bifurcation
surface (X) and vanishes at infinity. The conclusion is validated by the KMS
condition, which is a criterion for thermal equilibrium in QFT.

After developing The Euclidean framework for understanding black hole ther-
modynamics in section 11; we will be able to give a precisely parallel derivation
of the thermal nature of the black hole spacetime. The main difference is that,
for black holes, the temperature does not vanish at infinity but is instead
equal to the Hawking Temperature. This is crucial result, as it shows that
black hole spacetime have an inherent thermal nature. A noteworthy fact about
the derivation for Rindler space, and the upcoming black hole derivation is that
it does not depend on the specific Quantum field Theory under consideration.
It implies even if there are arbitrary non-gravitational forces. The assumption
of a single scalar field ¢ is made only for convenience and does not restrict the
generality of the result.

The earlier discussion on black hole evaporation (in Chapter 8) ignored non-
gravitational forces. However, the thermal nature of the Rindler and black hole
horizons is derived with such assumptions making it more robust.

10.3 The Thermofield Double

For some Hilbert space ‘H, let p : H — H be a density matrix. In general a density
matrix is simply a positive (or non-negative) matrix with trace 1. Purification
is a technique used in quantum mechanics to represent a mixed state as part of a
larger pure state in an extended Hilbert space. Given a mixed state p in Hilbert
space H, We introduce an auxiliary Hilbert space H’ and construct a pure state
U in the combined system (Double space) H ® H’', such that :

= Tryp VW 10.12
p

Where UV is the pure density matrix. Equation (10.12) implies that the original
matrix state p is obtained by taking the partial trace over H’.
Every density matrix has a canonical purification, i.e ut can be represented
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as a part of pure state in an enlarged Hilbert space. For a vector space K, if
YV : K — K is a linear transformation, it can be expressed in a basis as :

V=" vyij (10.13)
]
Given this, we can associate to )V a vector ¥y, in a doubled Hilbert Space K ® K’

Uy=> 0;i®] (10.14)
2%
Where K’ is the complex Hilbert Space of K, meaning that to each bra j of
IC there is canonically associated a ket j* € K'. Tracing out K’ from the pure
density matrix U, Wy, we get :

YV = Tre Uy 0y, (10.15)

Thus, if Tr VYT = 1, so that VVT is a density matrix, then Wy, is a purification
of this density matrix . This enables us to define the canonical purification of a
density matrix. If p is any density, then it is the square of p'/2. So ¥ o2 € HOH'
is a purification of p, is called the Canonical Purification.

For an important example, consider the thermal density matrix of a system with
Hilbert space H and Hamiltonian H at inverse temperature S :

1
— —BE;;;
p=- E e PP (10.16)

Where ¢ are the energy Eigenstates of the Hamiltonian H with corresponding
energy E;. Z = Y, e PP is the partition function which ensures that p has
trace 1. § = 1/T is the inverse temperature. The density matrix describes a
thermal ensemble, meaning that the system has a probability distribution over
energy Eigenstates. This a mixed state since it represents a statistical mixture of
energy Eigenstates rather than a pure quantum state. The Canonical purification
of a thermal density matrix is then the state in H ® H' associated to p'/? :

1 L
Urpp = — Ze—ﬂ% ®1' (10.17)

This state is also called the Thermofield Double. The Thermofield Double
(TFD) state is a pure entangled state in the double Hilbert space H ® H'. The
state i’ belong to an auxiliary space H’, which is often taken as the complex
conjugate Hilbert space of H. The TFD state is very important in holography,
black hole physics, and quantum information. It describe an entangled state of
two identical copies of the system at the same temperature 3. In Holography,
it is often used to model two-sided black holes in Ads—CFT. H' is typically con-
sidered as a complex conjugate of H. However, if the system has an anti-linear
time reversal symmetry whose square is 1, the distinction between H and H' is
not important.

Every Quantum Field Theory (QFT), has a CRT symmetry which a combina-
tion of Charge Conjugation (C) which exchange particles with anti-particles,
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spatial Reflection (R) which reflects space and Time Reversal (T) that re-
verses the direction of time. This symmetry exchange left and right Rindler
Wedges (regions in Minkowski space separated by event horizons) and swaps the
Hilbert Space H, with H/. (Because CRT is anti-linear, it exchanges H, with H,,
not H,). So instead of H, ® H}, the vacuum vector §2 can be viewed as a vector
in H, ® H.., the expected home of the Thermofield double state.

We will workout the Thermofield double state for a bosonic or fermionic
harmonic oscillator. First we will consider an ordinary bosonic harmonic oscil-
lator with creation and annihilation operators a' and a satisfying [a, a'] = 1 and
Hamiltonian H = wa'a. The thermal density matrix at inverse temperature /3
is :

o0

1
p=> nzzo e "nn (10.18)
Where n is the n'™ excited state of the harmonic oscillator. The Thermofield
double state for this system is :

1 o0
Urpp = Vi ; el @ n! (10.19)

Here, n' is the n'® excited state of an identical second harmonic oscillator with
creation and annihilation operators @'’ , @’ . Note: The Thermofield double
state is a purification of the thermal density matrix, meaning that if we trace
out one system, we recover the original mixed thermal state. Now using a'n =

vn+1n+1, etc,. we find :
(GT — 6’6w/2 a') \IJTFD = (CL — 6’8w/2 CZIT) \IJTFD =0 (1020)

These equations uniquely define the Thermofield double state (¥rgp) up to a
scalar multiple. For Fermionic Oscillators, these formulas contains an extra mi-
nus sign-associated to fermi statistics. We consider fermionic creation and anni-
hilation operators ¢, ¢ obey anti-commutation relation {c,c'} = 1, acting on a
two-dimensional Hilbert space 0 and another state 1 = c¢f0. Assuming a Hamil-
tonian H = wc'c, the thermal density matrix is :

p= % (OO + 6_5“’11). To construct the Thermofield double state, we introduce
a second identical fermionic oscillator with creation and annihilation operators
¢, & that anti commute with c,cf. These operators can be represented in a
four-dimensional Hilbert space with a state 0,0 annihilated by both ¢ and ¢ and
additional states 1,0 = ¢0,0, 0,1 = ¢'0,0, 1,1 = ¢/¢'0,0. The Thermofield
double state is then :

1 —pPpw
Uorpp = 77 (0,0 + e /21, 1) (10.21)

and satisfies,
(c— e P2 &) Wppp = 0

10.22
(C]L + 6ﬂw/2 (Nj) \I/TFD = 0. ( )
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10.4 Another View of The Thermofield
Double

The Vacuum state () of Minkowski space can be interpreted as a Ther-
mofield Double state of two Rindler Wedges. This idea is limited to Free
Field Theory but still provides an insightful way of understanding the Ther-
mofield double state. Instead of working in full Minkowski space, we will only
consider the case of a chiral free fermion in two dimensional space time. The idea
is to show that the Vacuum state obeys conditions to equations (10.22). Con-
sider two-dimensional Minkowski space with metric ds? = —dt? + d2? = —dudv
, where v = %(t +x), and u = \/Li(t — x) are null coordinates. The operator P
generates translations in v and is positive definite, meaning it annihilates only
the Vacuum. Mathematically this means P satisfies :

d
POl=—-i—0 10.23
P,0) =i (10.23)
For any operator O. This equation tells us how the vacuum state behaves under
translations in v.
Next, we introduce a chiral free fermion field A\(v) that satisfies the anti-commutation

relation :
{AW),A\(v)} = (v =) (10.24)
We define the Fourier modes of the field A, = ffooo dve™™?\(v), this represents

a mode decomposition of the fermion field into different frequency components
w. These modes satisfy the anti-commutation relation :

{Au, A} = 270(w + W) (10.25)

This equation tells us that different frequency modes interact in a specific way,
governed by the Dirac Delta function. Next, we look at the action of the mo-
mentum operator P on these Fourier modes :

[Pa Aw] =w, (10.26)

So operators A, are creation operators for w > 0 and annihilation operators for
w < 0. To be more precise, these operator are creation operators (add quanta
/ particle to the vacuum state) to the Minkowski vacuum or equivalently they
are raising and lowering operators with respect to P. The annihilation operators
annihilate the vacuum :

Ay2=0,w<0 (10.27)

More generally, any operator :
’f:/ dv f(v)A(v) (10.28)

will annihilate the vacuum if the function f(v) has certain mathematical proper-
ties. specifically it must be Holomorphic (complex differentiable) and bounded
in the upper half of the complex plane. Indeed, a square-integrable function f(v)
is holomorphic and bounded in the upper plane if and only if :

fv) = /_ dwe™ ™" g(w) (10.29)

o0
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Where g(w) is some integrable function. The restriction w < 0 is crucial. It
means that the function f(v) does not contain positive frequency components
(w > 0). The reason for this is that terms like e™** with w > 0 grow exponen-
tially in the upper half v - plane, which would violet the Holomorphic condition.
Since, f(v) only contains negative-frequency components, the corresponding op-
erator A’f is a linear combination of annihilation operators and thus annihilates
the vacuum. Now lets discuss the perspective of an operator in the right Rindler
wedge Ry, defined by the conditions : x > [t| or v > 0, u < 0. This region cor-
responds the part of the Minkowski space accessible to an uniformly accelerated
observer. Instead of using global Minkowski coordinates, such an observer nat-
urally describe physics in terms of Rindler coordinates, where time evolution is
generated by a different Killing vector field in the u—v planeis: || = v 9, — u0,,.
This vector generates Lorentz boosts, which acts as translations in Rindler time.
It is future-directed and timelike inside the Wedge Rv, meaning it behaves like a
Hamiltonian generating time evolution for an observer in Ry. Thus, the observer
perceive vacuum as evolving under this generator, leading to thermal state in the
Rindler frame. A Hermitian conserved charge K is associated with the killing
vector k, and plays the role of Hamiltonian in the Rindler Wedge. (K Rindler
Hamiltonian).

For a chiral fermion field A(v), the action of k reduces to : kA(v) = v 9, A(v).
Since K is the generator of the translations in Rindler time, its commutator
with A(v) follows the equation : [K, A(v)] = —i(vd, +3) A(v) (Where the +1/2)
reflects the fact that A has a spin 1/2). The observer in Ry only measures A(v)
for v > 0. To analyze these modes, we define a new set of operators :

Uw:/ dvv™ 73 A(v) (10.30)
0

These operators satisfy the commutator relation :
(K,U,] =wU, (10.31)

Hence, with respect to K, U, is a raising operators, or a creation operator, if
w > 0 and a lowering operator or an annihilation operator, if w < 0. Moreover,

Ul =u_, (10.32)

This means that the creation and annihilation operators are related in a sim-
ple way : the Hermitian conjugate of a creation operator at frequency w is an
annihilation operator at frequency —w. While U, was shown to be a raising
or lowering operator with respect to the Rindler Hamiltonian K, it does not
annihilate the Minkowski space vacuum state ). The reason is related to the
holomorphic structure of the function :

v 3 ifu >0
- 10.33
J(w) {o if v <0 (10-33)

This function is not holomorphic in the upper half-plane of v, meaning it does not
smoothly extend over the entire complex plane. To get an annihilation operator
for the Minkowski vacuum that is equivalent to U, w < 0 for observations in the
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right Rindler Wedge, we need to modify f(v) to be non-zero for v < 0 in such
a way that f(v) becomes holomorphic and bounded in the upper half plane. A
function that coincides with f(v) for v > 0 and is bounded in the upper half
v - plane is (v + ie)_w_% where € is an infinitesimal positive quantity (¢ — 07,
ensuring smoothness in the upper half plane. The boundedness in the upper half
plane holds for either sign of w. Hence, for all w,

oo

V, = / dv (v +i€) 772 Mw) (10.34)
—0o0

This operator V,, properly annihilates the Minkowski vacuum {2 and serves as the

correct annihilation operator. We now evaluate the limit : lim, o+ (v 4 i€) 772,

This function behaves differently for positive and negative values of v :

Lo
1 v ifv>0
lim (v 4ie)™"™ 72 = A 10.35
e—>0+( ) {—iem(ﬁ)_“"_é if v <0, ( )
Where v = —v. Equation (10.35) introduces an important exponential factor

e™ for negative v, which will play a crucial role in understanding the thermality
of the vacuum state. To systematically describe the contributions from both
positive and negative of v, we define a new operator:

0. — z'f(? im%a )\I(U) ?f w <0 (10.36)
—i [, dvr 2 (D) if w >0
Here, v = — v represents the negative values of v, which naturally corresponds to

the left Rindler Wedge R,. Since, the left Rindler Wedge is a mirror reflection of
the right Rindler Wedge, the sign reversal ensures that U, behaves like a creation
operator for w > 0 and annihilation operator for w < 0 in R,. This leads to
fundamental identity U, = U_,, in parallel with equation (10.32). Relative to
(10.34), We have reversal the sign of w in the exponent. The reason is that
v increases towards the future in R, but v increases towards the past in R,.
Hence, the sign reversal is needed if we want ﬁw to look in R, like a creation
operator if w > 0 and an annihilation operator if w < 0. Using these definitions,
We express V,, as :

U, —e~U_, = U, — e™U! 0
v, = { ¢ ¢ e WS (10.37)

U, + e”“’fj_w =U,+ e”“ﬁj) w > 0.

This expression demonstrates that the Minkowski vacuum is a superposition
of Right Rindler vacuum states, with entanglement between the left and right
Wedges. Thus, the key takeaway from this analysis is that Minkowski vacuum
state (2 is a Thermofield Double state with respect to the Right Rindler
Wedge R,, meaning : The vacuum state contains entanglement between the left
and right Rindler Wedges. The Right Rindler observer perceives the Minkowski
vacuum as a Thermal State with an inverse temperature § = 27w. The ex-
ponential factor ¢ appearing in the mode decomposition is a Signature of
Thermal Radiation, leading to the Unruh Effect, Where an accelerating ob-
server experiences a thermal bath of particles at temperature : 7' = 1/27. The
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statement that V,, {2 = 0 for w < 0 matches with the first condition n equation
(10.22), and the statement that V,Q = 0 for w > 0 matches the second one.
The key result is that the Vacuum state 2 can be rewritten as a Thermofield
double state of two entangled subsystem (the two Rindler Wedges). In context
of Black holes this tells us that The Hawking Radiation is entangled with
the Black hole interior in a structure that resembles a Thermofield
Double State.

51



Chapter 11

Conclusions and Scope for
Future Work

This project has covered the key developments in black hole theory, starting with
their historical development and radiative properties. The analysis explores the
Schwarzschild metric along with multiple coordinate systems crucial for inter-
preting spherically symmetric black holes. It delves into black hole perturba-
tions using weak-field approximations and examines solutions involving scalar
fields. Additionally, it addresses quantum particle generation in the vicinity of
black holes, highlighting the importance of mode decomposition and basis se-
lection as foundational steps in deriving Hawking radiation. These discussions
provide a foundation for further exploration of black hole thermodynamics and
quantum field theory in curved spacetime. It also discusses key developments in
black hole thermodynamics, Starting from the notion of black hole entropy and
its linkage to the generalized 2nd law of thermodynamics, the analysis proceeds
to explore black hole evaporation using a range of Penrose diagram representa-
tions and introduces relationships describing the position of a distant observer
detecting Hawking radiation, as well as the rate at which this radiation is ob-
served. Additionally, we establish how the Hawking temperature relates to the
Schwarzschild radius and derive an expression for Black hole evaporation. More-
over, It’s explores Gray body factors, deriving several equations for the potential
barrier around the Black hole. This barrier dictates the proportion of Hawking
radiation that escapes to infinity—where a distant observer can detect it—while
the remaining radiation is reflected back into the black hole. Lastly, the final
chapter focuses on a detailed study of the thermodynamics of Rindler space and
how it helps us to understand black hole thermodynamics by focusing on the key
quantum effects, without needing full gravity..
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Appendix A

Regge-Wheeler equation

0? 0? . »
[87“*2 o VE(T)] tielr,w) €7 =0
O*uy(r,w) et Oaip(r,w) et . i
[ arz T ar  Vdnddrwe t} -

_ (_w2 €_iwtﬁg(7“,w)) . ‘/g(?”)lig(?“, w) e—iwt:| -0

2,7 —iwt
|:8 Uf(garwg e + (w2 e_i“tdg(r,w)) _ W(T)ﬁg(?“, w) e—iwt} =0
82
[87‘ >+ w? — Vi(r)| dg(r,w) =0 (A.1)

Equation (A.1) is referred as Regge-Wheeler equation.
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Appendix B

Deriving equation (3.1)

The Schwarzschild metric is given by -

2GM 2GM\
d32:—<1— Ci >dt2+(1— Ci ) dr?® 4 r*dQ? (B.1)

Where d2? = df*+sin? 0d¢? (Angular part of metric). Now, for radially outgoing
null geodesic, angular components (df, d¢) vanishes, i.e. (dQ? = 0). Therefore,
the Schwarzschild metric for radial geodesic (df = d¢ = 0) is :

-1
ds? = — (1 kM ) dt? + (1 _26M ) dr’ (B.2)

T T

For null geodesic (ds* = 0)

-1
0:—(1—2GM>dt2+(1—2GM) dr?

r

-1
(1 B QGM) g — (1 B 2GM) 5
r r

let’s define Tortoise coordinate r, as :

r. =r+2GMIn <2GTM—1) (B.4)

Differentiating both sides,

1 1
dr*:dr—{—(QGM)( . 1) <2GM)dr

2GM

dr
(sa3 — 1)

95

dr, = dr +



1
dr*:(ur_)mﬂ
(2GM_1)
T —1+1
dr, = (—QGMT - )dr
sonr
dmz( fG_M )dr
2GM_1
T —1
.'.drz(m#) dr,

2GM

dT:(l— i )dr*

(B.5)
2GM
Substituting (A.5) in (A.3) we get,
<1— 1 )dr*: <1—2GM>dt
2GM r
codre =dt
t=r.+C (B.6)
Let’s define a small quantity u :
-
u= g -1 (B.7)
Sor=2GM(1+ u) (B.8)
From (A.4) we have :
ro~2GM +In (3o — 1)
2GM(1+u) —1
n~2GM+1n( SC M >

ST & 2GM In(u) (B.9)
Substituting (A.9) in (A.6) we get,

t=2GMIn(u) +C
Now, from the logarithm identity we have :

1
In(u) = —In( =
n(u) n (u)
Thus,

t:4GM1n(1

u)+c+ow)
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Appendix C

Deriving equation (3.2)

From equation (3.1) we have,

t =4GM log (l) +C
u
1
t —C =4GM log (—)
u

Now, from the property of Logarithm,

1
log (—) = —logu
u

Substituting this property in the above equation we get :

t —C =4GM (—log (u))

t—C
=1
—ion = los(v)
Taking exponent on both sides,
Jt=C/—aGm) _

-y = (t/AGM)  (~C/-4GM)

(t/—4AGM) .C

u—==e e

(6(—0/—4GM) _ 60)

Thus,

’u _ C e(t/f4GM)‘

o7



Appendix D

Deriving equation (3.5)

From equation (3.2) we have,

u = CetHGM 1 O ot/AGM
du = e© b e AGM gy du' = e b e t/AGM gyt
4G M ’ 4G M
Substituting the above relations on equation (3.4) we get,
(dudu’)'/?
((t)p(t')) = T u

[<€c (—ﬁ) e—t/4GMdt) % (60 (—ﬁ) e—t’/4G’Mdt/)}1/2

eC e—t/AGM _  (C o—1//AGM

e (saar) [e/Mdt) x et/cnmay)] 2

eC(e—t/AGM _ —V//AGM)

1\ [et/AeM geqy)
- (4GM> o—t/AGM _ o—1//AGM

( 1 )(e—t—t’/4GM)1/2(dtdt/>1/2

AGM e—t/AGM _ o—'/AGM

1 ) e—t—t'/8GM (dtdt/)l/Q (D 1)

W(tW(t/)) - <4GM 67t/4GM _ eft’/4GM

Simplifying the denominator,
o—t/AGM _ —t'/4GM

We can write,

o—t/AGM  _ —t/38GM —t/8GM

X e

o8



Similarly,

4l 4 4l
o~V/AGM  _ —t'/8GM o t'/8GM

X

_ 4!
. t/AGM _ —t//AGM _

_ _ 4! 4!
(e YSGM o t/8GM) _ (e V/SGM o t/BGM)

o~VAGM _ —t/AGM  _ (e—t/SGM % 6—t’/8GM> (e(t—t’)/SGM _ e—(t—t/)/é;GM)

(D.2)

Substituting (C.2) in (C.1) we get,

) 1 e—t—t’/SGM (dtdt/>1/2
(W()y(t)) = (4GM) (e=t—t'/8GM) (g(t=t)/SGM _ o—(t—t))/8GM)

Thus,

/ 1 dtdt')"?
(V(t)y(t) = <4GM) (e(t_t/)/sc(M . 2—(t—t/>/8GM)
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Appendix E

To show equation (3.5) is
Antiperiodic in imaginary time:

From equation (3.5) we have,

/ 1 dtdt')'/?
<¢(t)w(t )) = <4GM) (e(t—t’)/SCgM _ e)—(t—t’)/sGM)

Substituting t — t + 8wG M in the above equation :

1 ) (dtdt')"/*

AGM ) (e@HsnGMi—t)[8GM _ o—(i+87GMi~t')/SGM

(Wt + 87 GMi) (1)) = (

Simplifying the denominator,

(t+8TGMi—t))/SGM _ (t—t')/8GM ix

(& €

_ gt o .
e (t+8nGMi—t')/8GM —e (¢ t)/SGMe iT

Now, from Euler’s formula we have,

e’ =cos + isinf , e ¥ =cosh — isind
. €™ =cos(m) + isin(n) = cos(m) = —1
& e '™ =cos(—7) + isin(—7) = cos(—7) = —1

- (HSTGMi=t')[8GM _ (—1) o(t=t)/8GM

Similarly, - ,
o~ (HSTGMi=t)[SGM _ (_1y ~(t=)/3GM

Thus, the denominator becomes,
(_1> 6(t—iﬁ/)/SGM . (_1) e—(t—t/)/8GM
_ —t)/BGM (1) /8GM

_ <e(t7t’)/8GM _ ef(tft’)/SGM>
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Thus, the equation becomes,

o 1 dtdt')/?
(W(t+ 8 GMi)y(t')) = — (4GM) (e(t—t’)/8C§M _ e)—(t—t’)/8GM)

(V(t + 8nGMi) (1)) = — (P (1) (t))

Thus, this property means the function is Antiperiodic with a period of 87G M1
in Imaginary time.
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Appendix F

Wronskian of )\, and S\w

B eiwr* + R(W) e—iwr* T(UJ) 6—iwr*
iw e —w R(w)e ™™ —ijwT(w)e

T(CL)) eiwr* e—iwr* + E(W) eiwr*

From (E.1) and (E.2),
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iwT(w) e ™™ —iwe ™™ 4 jw R(w) e~

(F.2)
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