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Abstract

This thesis presents a theoretical study of electron transport in small electronic

devices, especially Single-Electron Transistors (SETs) and quantum dots (QDs).

At very small sizes, traditional electrical behavior changes, and new effects like

tunneling, charge quantization, and Coulomb blockade become important. These

effects help explain how electrons move one at a time in controlled ways, which

is useful for building energy-efficient and highly sensitive devices.

The work starts by examining SETs with metallic islands, where electron flow

is blocked or allowed based on the charging energy and the applied gate voltage.

Then, it focuses on quantum dots, which are even smaller regions where electrons

are confined, leading to discrete energy levels. The study shows how gate voltage

can tune the energy levels and control the flow of electrons through the device.

The resulting patterns, called Coulomb diamonds, are explained using simple

energy models.

Later sections explore more complex processes such as co-tunneling and the

Kondo effect. These occur when electrons interact strongly or when regular

tunneling is blocked. These processes change how current flows through the

device, especially at very low temperatures.

The thesis also discusses thermal transport in Single-Electron Devices, where

not only charge but also heat is carried by electrons. It explains how heat trans-

fer is influenced by factors like charging energy, gate voltage, and temperature.

The study shows that under certain conditions, classical laws such as the Wiede-

mann–Franz law do not hold. These findings are important for understanding

energy flow in nanoscale systems and can help in designing low-power and ther-

mally efficient devices.

The models and concepts discussed in this work are supported with mathe-

matical analysis and diagrams to improve understanding. Although the study

is theoretical, it connects closely with experimental observations. Overall, this

thesis provides a strong foundation for understanding electron and thermal trans-

port in nanoscale systems and supports future research in nanoelectronics and

device design.

3



Contents

1 Quantum charge transport through Single Electron transistor(SET) 6

1.1 SET with metallic island: . . . . . . . . . . . . . . . . . . . . . . 6

1.2 Charge Transport . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3 Coulomb diamond . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 SET with Quantum Dot 10

2.1 Charge Transport . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1.1 Influence of gate voltage on charge transport in QD . . . . 11

2.2 Coulomb diamond analysis . . . . . . . . . . . . . . . . . . . . . . 12

2.2.1 Linear equations corresponding to Coulomb diamond . . . 13

2.3 Charging Energy and Diamond Extents . . . . . . . . . . . . . . . 15

3 Higher-Order Tunneling 16

3.1 Regimes in the Co-tunneling process . . . . . . . . . . . . . . . . 16

3.2 Stability diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4 Kondo effect 20

4.1 Fundamental Description of the Kondo Effect in Metals . . . . . . 20

4.2 The Kondo Effect in Quantum Dots . . . . . . . . . . . . . . . . . 21

5 Thermal transport in single Electron Device 24

5.0.1 High Temperature Regime(kBT = EC/2) . . . . . . . . . . 25

5.0.2 Intermediate Temperature Regime (kB = EC/10) . . . . . 25

5.0.3 Low-Temperature Regime (kBT = EC/40) . . . . . . . . . 26

5.1 Temperature Dependence of the Lorentz Ratio . . . . . . . . . . . 26

5.2 Experiments on Thermal transport through SETs . . . . . . . . . 27

5.2.1 Thermoelectric Conductance Characteristics of a SET . . . 29

A Derivation of Energy cost for tunneling 33

A.0.1 Total charging energy: . . . . . . . . . . . . . . . . . . . . 33

B Derivation of the chemical potential of Quantum Dot(QD) : 36

1



C Derivation of the expression of the slope of coulumb diamond: 38

2



List of Figures

1.1 The charge stability diagram for an SET(Metallic island)(Adapted

from [7]) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1 Energy level schematic of a quantum dot: (a) illustrating the

Coulomb blockade regime, and (b) depicting single-electron tun-

neling events. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 A Coulomb diamond plot depicts electron transport through a

quantum dot as a function of the bias voltage Vb and the dimen-

sionless gate voltage ng. The diamond-shaped shaded areas repre-

sent regions of Coulomb blockade, where electron flow is inhibited.

Outside these regions, sequential tunneling is allowed due to fa-

vorable energy conditions.The insets illustrate the alignment of

energy levels between the electrochemical energies of the source

(µs) and drain (µd) terminals and the electrochemical potentials

µ(N), µ(N + 1), etc., of the confined region (quantum dot), em-

phasizing resonant tunneling conditions and transitions between

charge states at the diamond boundaries. . . . . . . . . . . . . . . 14

3.1 Conductance diagram of the quantum dot (QD) showing the influ-

ence of higher-order tunneling processes across multiple electron

occupancy regimes(Adapted from[3]). . . . . . . . . . . . . . . . . 17

3.2 Stability diagram plotted in the plane of the source-drain voltage

Vsd and gate voltage Vg.(Adapted from [3]). . . . . . . . . . . . . 18

4.1 Schematic depiction of an impurity’s unpaired spin embedded in

a metal, interacting with the mobile spins of the conduction elec-

trons. When the temperature is above the characteristic Kondo

temperature TK , only a small number of conduction electron spins

are involved. However, below TK , the impurity spin becomes com-

pletely screened by the surrounding delocalized spins, resulting in

the formation of a spin-compensating region known as the Kondo

cloud. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3



4.2 Energy diagram of the quantum dot (QD) under Kondo correla-

tions at a temperature T < TK . . . . . . . . . . . . . . . . . . . . 22

5.1 Gate voltage dependence of Lorentz ratio(Adapted from [14]) . . . 25

5.2 Temperature dependence of Lorentz ratio (Adapted from [14]) . . 26

5.3 False-colored SEM image of the Asymmetric design[6] [pp.86-87]

device.One of the blue colored component is the thermometer (ex-

treme right side) and the other (extreme left side) is the cooler/heater.In

the magnified image (left) red color indicates source ,yellow is the

metallic island and green is the drain. (Adapted from [5]) . . . . 28

5.4 The left plot illustrates the variation of the electronic temperature

Te of sample B (RN = 52Ω) as a function of the cooler bias voltage

Vcool. The right plot shows the dependence of Te on the gate

voltage: the top graph corresponds to the heating regime, while

the bottom graph represents the cooling regime. (Adapted from [5] 29

5.5 The thermal conductance (represented by blue dots) and charge

conductance (depicted by green dots) of the SET are shown at a

bath temperature of 132 mK (left, sample A) and 152 mK (right,

sample B), measured relative to the conductances observed in the

gate-open configuration. (Adapted from[5] ) . . . . . . . . . . . . 30

4



Introduction

In recent years, the miniaturization of electronic components has led to grow-

ing interest in how quantum effects influence charge and heat transport at the

nanoscale. Devices such as Single-Electron Transistors (SETs) and quantum

dots (QDs) have become important in this field because they allow control over

individual electrons.

This project explores how effects like tunneling and Coulomb blockade affect

electron transport in SETs. At very small scales, classical models no longer apply,

and quantum behavior becomes dominant. In metallic islands, energy levels

are nearly continuous, and transport is mainly governed by charging energy.

In contrast, quantum dots exhibit discrete energy levels due to confinement,

resulting in more complex and tunable transport behavior.

The thesis also discusses higher-order effects such as co-tunneling and the

Kondo effect. These become relevant when simple sequential tunneling is blocked,

especially at low temperatures. In such cases, electrons can still pass through

the device using virtual intermediate states or through spin interactions, altering

the overall conductance.

In addition to charge transport, this study also looks at thermal transport in

Single-Electron Devices, where electrons carry heat as well as charge. Heat flow

in these systems depends on factors like gate voltage, temperature, and charging

energy. At the nanoscale, the usual rules that relate heat and charge trans-

port—such as the Wiedemann–Franz law—may no longer apply due to strong

electron interactions. Understanding this behavior is important for designing

energy-efficient and low-power devices.

Overall, this work provides a theoretical understanding of both charge and

heat transport in nanoscale systems. It connects fundamental physics with po-

tential applications in nanoelectronics, and may help guide the design of future

advanced devices.
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Chapter 1

Quantum charge transport

through Single Electron

transistor(SET)

A single-electron transistor (SET) is a tiny electronic device that controls the

flow of one electron at a time. It works like a regular transistor, which can turn

electrical signals on or off, but at a much smaller scale. The SET uses a special

effect called ”quantum tunneling ” where electrons can pass through barriers

even if they seem unable to.

Why do we need SET over regular transistors? We need Single-Electron

Transistors (SETs) over regular transistors because they offer precise control of

individual electrons, making them ideal for highly sensitive and low-power ap-

plications, especially at the nanoscale. Unlike regular transistors, which struggle

with leakage and heat as they shrink, SET usages quantum effects like tun-

neling and energy quantization to operate efficiently at extremely small sizes.

This makes them crucial for future technologies such as quantum computing and

ultra-sensitive sensors, where traditional transistors face limitations in perfor-

mance and scalability. Single electron transistors (SETs) can be implemented

using either metallic islands or quantum dots, each offering unique ways to con-

trol electron flow at the nanoscale.

1.1 SET with metallic island:

Metallic islands are small conducting regions separated by insulating barriers,

known as tunnel junctions, from the source and drain electrodes. Due to quantum

tunneling, metallic islands allow electrons to pass through only one at a time,

making them crucial for applications requiring precise control of electron flow.
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At room temperature, thermal fluctuations provide electrons with sufficient

energy to surpass the Coulomb blockade barrier (the regime of zero conduction),

leading to continuous rather than discrete tunneling events. To overcome this,

the thermal energy kBT must remain much smaller than the charging energy

Ec =
e2

2C
, where e is the electron charge and C is the capacitance of the island.

The charging energy represents the energy needed for an electron to overcome

Coulombic repulsion from the other electrons in the island. Metallic islands,

generally tens to hundreds of nanometers in size, exhibit a quasi-continuous

energy spectrum due to their relatively large dimensions. In contrast, quantum

dots(we’ll see in the next chapter2), which are much smaller-often only a few

nanometers exhibit strong quantum confinement, resulting in discrete and well-

separated energy levels. We can think of the Quantum dot as a particle in a

box, which restricts electron movement and forces them into specific quantized

states.

1.2 Charge Transport

In a SET, electron transport across the metallic island is mainly governed by the

Coulomb blockade and precise control over individual tunneling processes.The

metallic island, positioned between the source and drain lead and isolated by

thin insulating barriers, acts as a confined region where individual electrons can

tunnel in and out under specific conditions. The transport of electrons through

the metallic island is influenced primarily by two factors: charging energy and

thermal energy. Due to the small size , the energy required to add an additional

electron, known as the charging energy Ec =
e2

2C
creates an electrostatic barrier

that prevents electrons from freely entering the island unless a certain energy

threshold is met. When the thermal energy kBT (where kB is Boltzmann’s

constant and T is temperature) is lower than the charging energy, the island is

in a regime of Coulomb blockade, effectively preventing electron transport at low

gate voltages(Dark blue region in Fig.1.1). To overcome this blockade, we use the

gate voltage (Vg) that influences the electrostatic potential of the metallic island.

By adjusting the gate voltage, the Coulomb blockade can be lifted periodically,

allowing an electron to tunnel onto the island from the source lead, and then

from the island to the drain lead. This tunneling occurs in a controlled discrete

manner, with electrons moving one by one, as the gate voltage cycles through

the conditions that align with the charging energy requirements. This results in

Coulomb oscillations in the current, with each peak (Conductance)representing

a single-electron tunneling event.
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Since the size of the metallic island is in the range of nanoscale, which is

small enough to show quantum effect like the tunneling, which leads to the flow

of charge, but not small enough like a Quantum dot for its energy level to be

discretized. So the island’s energy depends only on the charge it holds, its ca-

pacitance(C), the surrounding electrostatic environment, and any gate voltages.

Thus the electrostatic energy of the island is given by[?]

Eel =
(Ne)2

2C
−Neϕg (1.1)

where: (Ne)2

2C
is the coulomb charging energy for N electron, which is the energy

required to add N electron into the QD. Neϕg = Eg is the potential energy of

the charge(Ne)of the QD due to the gate voltage(Vg).

So, in the above equation, we can see that because of the non-discreteness of

the energy level the energy due to the discrete level is not included, which will be

included in the case of a Quantum dot. In a metallic island, the energy levels are

not typically discrete. They usually have a high density of states, meaning that

the energy levels are effectively continuous due to the large number of available

electron states. This is because the island contains a large number of atoms,

leading to closely spaced energy levels, which can be treated as a continuum. So,

no strict energy quantization for individual electron levels occurs. As a result, an

electron in the source can tunnel into the metallic island without being required

to match a specific discrete energy level E(N + 1) (the energy state associated

with an extra electron within the quantum dot).

So, thus the energy cost (required) for tunneling into (+) or out (−) of the

island, ∆E±
i,n, is determined by the surplus electron count and the applied voltage

across the island and is given by[6]:(Detail derivation in AppendixA).

∆E±
i,n = ±2Ec

�
n− ng ±

1

2

�
± eVb,i (1.2)

Where: Ec =
e2

2C
is the charging energy, which is significant in small islands.

ng = CgVg

e
is the gate-induced charge, where Cg is the gate capacitance, and Vg

is the gate voltage. n is the number of electrons in the island. C = C1+C2+Cg

is the total capacitance, summing the capacitances between the island and the

source electrode, drain electrode, and gate terminal, respectively. Vb,i = kiVb

is the portion of the externally applied potential difference dropped across each

tunnel junction i, with ki =
C̃
Ci
, where C̃ = C1C2

C1+C2
is the equivalent capacitance.
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Figure 1.1: The charge stability diagram for an SET(Metallic island)(Adapted

from [7])

1.3 Coulomb diamond

In a SET device, the transfer of electrons between the leads and the central island

occurs under specific energy conditions controlled by the system’s electrostatic

configuration.; tunneling occurs only when the energy cost is low enough such

that the chemical potential of Dot(µd) aligns with or lies between the source and

drain lead’s Fermi level.When this tunneling take place we get current which

can be seen as a light blue and red region in Fig.1.1 . When the energy of

the electron is not enough for tunneling then this creates Coulomb blockade

regions where charge transport is blocked, forming Coulomb diamonds(Dark blue

region in Fig.1.1) in a plot of gate voltage Vg versus bias voltage Vb. In the plot

ng =
CgVg

e
. So, ng ∝ Vg. Where, ng is the average occupancy number of electrons

in the island.Within each Coulomb diamond, the metallic island maintains a

fixed and stable number of electrons. However, at the charge degeneracy points

the intersections between adjacent diamonds—the island becomes energetically

favorable to fluctuate between two neighboring charge states. The dimensions of

the Coulomb diamonds are governed by the charging energy Ec. Along the ng

(or gate voltage Vg) axis, the diamonds span a range of 2Ec

e
, while along the bias

voltage Vb axis, their extent is
Ec

e
.
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Chapter 2

SET with Quantum Dot

In a SET based on a quantum dot(QD),charge transport occurs through the

quantum tunneling of individual electrons same as that of metallic island. A

quantum dot is in the nanoscale region much smaller than that of the metallic

island, so it confines electrons, acting like an artificial atom with discrete energy

levels. The quantum dot is located between two metallic leads (source and drain)

and is connected to a third terminal, the gate, which controls the potential of

the dot. As a result, it controls the position of the energy level of the Dot,

which the tunneling electron can occupy. It is separated from the leads by

tunneling barriers, which are thin insulating layers that electrons can quantum

mechanically tunnel through.

2.1 Charge Transport

Charge conduction across a nanoscale quantum system involves the process of

electrons moving between the quantum device and leads, typically governed by

quantum tunneling, energy quantization, and electrostatic phenomena such as

Coulomb repulsion.Unlike a continuous band of energy levels found in larger

materials like the metallic island, a quantum dot has discrete, quantized energy

levels due to its small size and quantum confinement effects. Because of which

the total electrostatic energy of the Quantum Dot (QD) depends not only on

the charge in it and the gate voltage (Vg) but also on the Sum of the energy of

the discrete level in the QD where the electron are occupied.

So, the expression of the total energy of the QD is given by[6]:

Etotal(N) =
X

p

εp + Eel(N) (2.1)

where:
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Figure 2.1: Energy level schematic of a quantum dot: (a) illustrating the

Coulomb blockade regime, and (b) depicting single-electron tunneling events.

• Eel(N) = (Ne)2

2C
− Neϕext is the electrostatic energy of the QD due to its

charge in it and the gate voltage.(ϕext =
P

Ci

C
Vext,i is the potential due to

the external reservoirs or gates.)

• The expression
P

p εp represents the total energy accumulated from all

occupied discrete energy levels.

The term
P

p εp accounts for the total quantum mechanical energy contributed

by electrons occupying the discrete energy levels within the quantum dot.

The energy difference between the quantum dot and the Fermi level of the leads

defines the energy required for adding an extra electron into the quantum system,

which can be expressed as[11]:

µ(N) = Etotal(N + 1)− Etotal(N) (2.2)

Substituting from earlier expressions(3.1), we get(Detail derivation in Ap-

pendix B):

µ(N) = εN+1 − eϕext +
(N + 1/2)e2

C
(2.3)

Here, εN+1 denotes the energy of the (N + 1)th discrete electron level, while
(N+ 1

2
)e2

C
represents the Coulomb energy required to add the (N + 1)th electron.

Together, these terms define the total energy cost associated with the tunneling

of an additional electron into the quantum dot.

2.1.1 Influence of gate voltage on charge transport in QD

Charge flow through a nanoscale quantum system (QD) is regulated through the

applied gate voltage (Vg), which adjusts the discrete energy levels within the QD

via modulation of its chemical potential (µd). . This adjustment influences the

electron tunneling criteria relative to the connected source and drain terminals.

The charge induced on the QD by the gate voltage is given by:

Qext = CgVg = nge (2.4)
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where: Cg is the capacitance between the QD and the gate, Vg is the gate voltage,

nge is the charge induced on the QD.

The tunneling condition depends on the chemical potential of the QD µ(N).

When µ(N) = 0(i.e. when the fermi levels of the leads and the DOT are aligned),

the tunneling energy cost is zero. So,the equation(2.3) becomes :

eϕext = ϵN+1 +
(N + 1)e2

2C
(2.5)

Substituting ϕext in terms of gate voltage yields:

ϕext =
Qext

C
=

CgVg

C
= αVg (2.6)

where α = Cg

C
is the gate coupling factor.

The tunneling condition becomes:

eαVg = ϵN+1 +
(N + 1)e2

2C
(2.7)

Thus, the conductance of the QD oscillates with Vg, reaching a maximum

when the condition is satisfied. Each conductance peak corresponds to the ad-

dition of one electron to the QD.

Periodicity of Conductance Oscillations

The periodicity of conductance peaks is determined by the energy required to

add an electron (Eaddor∆µ )Fig.2.1, given by:

Eadd = eα∆Vg = δE + 2Ec (2.8)

where δE denotes the energy spacing between adjacent single-particle energy

levels, 2Ecis the Coulomb charging energy, α is thegate coupling factor and ∆Vg

is the gate voltage spacing between conductance peaks.

This equation explains the periodic nature of the conductance oscillations in

QDs, with each period corresponding to the addition of one electron.

2.2 Coulomb diamond analysis

In Fig.2.2, the distinct diamond-like patterns indicate regions of charge stabil-

ity and are typically identified by the term Coulomb blockade diamonds[8, 13].

Within these regions, charge transport is suppressed due to the Coulomb block-

ade.The junction of two neighboring diamonds marks the degeneracy point in

the charge state, a condition under which the energy required for additional

12



electron occupancy becomes negligible. Features beyond the Coulomb blockade

area reflect the quantized energy states within the quantum dot.

In the figure(2.2),the green lines running parallel to the edges of the coulomb

diamond are the excited state corresponding to a certain ground state to which

it intersects.

The energy level spacing δE can be determined from the bias voltage difference

δVb.

If red lines appears then it means that at certain biasing voltage Vb the ground

and the excited state comes under the bias window.

2.2.1 Linear equations corresponding to Coulomb dia-

mond

The current-voltage (I-V ) characteristics of the quantum dot display sharp steps

whenever the dot’s chemical potential µd matches the energy level of the leads.

The Coulomb diamonds arise from the alignment conditions of the dot’s chem-

ical potential with the leads, i.e. the degenerate state. These are described by

the linear equations (Detailed derivation in Appendix Csection 1):

Vb = βVg + k, (2.9)

Vb = −β′Vg + k, (2.10)

where, Vb is the bias voltage, and Vg is the gate voltage.β is the slope of the

positive edge of the coulomb diamond which corresponds to the boundary con-

dition i.e when the chemical potential(µs) of source(lead 1) align with chemical

potential (µdot) of QD. And on the other hand β′ is the slope of the negative edge

of the coulomb diamond which corresponds to the another boundary condition

i.e when the chemical potential(µd) of drain(lead 2) align with chemical potential

(µdot) of QD.

The slopes β and β′ are given by:

β =
Cg

Cd + Cg

, β′ =
Cg

Cs

, (2.11)

Here, Cg denotes the capacitance linking the quantum dot and the gate,

Cs serves as the capacitance linking the quantum dot and the source, and Cd

corresponds to the capacitance linking the quantum dot and the drain. The total

capacitance of the system is given by:

C = Cs + Cd + Cg.
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Figure 2.2: A Coulomb diamond plot depicts electron transport through a quan-

tum dot as a function of the bias voltage Vb and the dimensionless gate voltage

ng. The diamond-shaped shaded areas represent regions of Coulomb blockade,

where electron flow is inhibited. Outside these regions, sequential tunneling is

allowed due to favorable energy conditions.The insets illustrate the alignment of

energy levels between the electrochemical energies of the source (µs) and drain

(µd) terminals and the electrochemical potentials µ(N), µ(N + 1), etc., of the

confined region (quantum dot), emphasizing resonant tunneling conditions and

transitions between charge states at the diamond boundaries.

Capacitive Coupling: The capacitive coupling between the dot and the

source/drain can be extracted from the slopes of the Coulomb diamond edges.

This asymmetry is described by the ratio Cd/Cs (Detail derivation in Appendix

C section 2):

Cd

Cs

= β′
�
1

β
− 1

�
. (2.12)

If the ratio Cd

Cs
= 1, the coupling is symmetric, meaning the quantum dot is

equally coupled to both the source and the drain. If Cd

Cs
> 1, the quantum dot is

more strongly coupled to the drain. If Cd

Cs
< 1, the quantum dot is more strongly

coupled to the source.

Gate Coupling Factor (Lever Arm):The parameter α, often termed the

lever-arm, plays a crucial role in linking variations in the quantum dot’s chemical

potential ∆µ with corresponding changes in the gate voltage ∆Vg.This factor can

be directly obtained from the slopes β and β′ as (Detail derivation in Appendix

C section 30):

α =
Cg

C
=

1�
1
β
+ 1

β′

� (2.13)
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2.3 Charging Energy and Diamond Extents

One can estimate Ec by examining the extent of the diamond-shaped stability

regions plotted against both gate and bias voltages in transport measurements of

a quantum-confined structure.The period of conductance oscillations corresponds

to the energy required to add an electron,and this is defined as:

Eadd = 2Ec + δE (2.14)

where,δE denotes the separation among the quantized energy levels within the

confined QD.

Horizontal extent :The horizontal extent of the Coulomb diamond (along

the Vg-axis in Fig.2.2) is related to the addition energy by

∆Vg =
EaddCg

αe
(2.15)

This equation tells us that the horizontal width ∆Vg of the coulomb diamond

provides information about the addition energy Eadd in relation to the gate ca-

pacitance Cg and the lever arm α. In other words, by measuring the span of the

Coulomb blockade region along the Vg-axis, we can estimate the electron addition

energy of the quantum dot.A larger ∆Vg means a larger addition energy which

indicates either a high Coulomb charging energy Eadd,which indicates either a

high Coulomb charging energy Ec, large quantum confinement (leading to large

δE)or both.

Vertical extent: Similarly,the height of the diamond-shaped region in the

Vb direction, as shown in Fig.2.2, offers an alternative way to determine the

addition energy.:

∆Vb =
Eadd

e
. (2.16)

This equation shows that the vertical height ∆Vb of the Coulomb diamond is

proportional to the addition energy Eadd. In other words, by measuring the

height of the Coulomb diamond along the Vb axis, we can directly estimate the

addition energy. A larger ∆Vb indicates a larger addition energy. This means

that a larger bias voltage is needed to overcome the Coulomb blockade and allow

electron transport.
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Chapter 3

Higher-Order Tunneling

In contrast to sequential tunneling discussed in the previous Chapter2, where sin-

gle electrons tunnel one by one through the quantum dot (QD) or metallic island,

co-tunneling represents a higher-order process that dominates in the Coulomb

blockade regime[10].. When sequential tunneling is blocked, second-order co-

tunneling allows charge transport through the simultaneous tunneling of multi-

ple electrons across the system. This process involves the quantum dot briefly

occupying virtual intermediate states, which are not directly observable but en-

able the system to bypass the Coulomb blockade. The nature of co-tunneling

depends strongly on the coupling strength between the leads and the quantum

dot or metallic island. Co-tunneling is classified into elastic and inelastic pro-

cesses. In elastic co-tunneling, an electron tunnels in and out of the quantum dot

or metallic island, leaving it in its ground state. This process dominates at low

bias voltages, where the applied energy does not excite the system. In contrast,

inelastic co-tunneling occurs when the quantum dot is left in an excited state af-

ter the tunneling event. This requires the external bias |eVb| to exceed the energy

gap δE between the ground and excited states of the dot. Consequently, inelas-

tic co-tunneling sets in at higher bias voltages, contributing additional transport

channels.

3.1 Regimes in the Co-tunneling process

There are two regimes : one consists of elastic processes only, and the other

includes elastic and inelastic contributions.

Elastic-only regime: Only elastic co-tunneling occurs. This typically hap-

pens at low-bias voltages because the energy the bias provides is insufficient to

excite the quantum dot.

Elastic and inelastic regimes: As the bias voltage increases and surpasses
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Figure 3.1: Conductance diagram of the quantum dot (QD) showing the in-

fluence of higher-order tunneling processes across multiple electron occupancy

regimes(Adapted from[3]).

a certain threshold (the excitation energy of the dot), both elastic and inelastic

co-tunneling can occur. Inelastic co-tunneling becomes possible because the bias

now supplies sufficient energy to elevate the quantum dot to an excited state

with an elevated energy level.

These two regime can be seen in the coulomb diamond diagram fig1.In the

region where the N(average occupancy no.)= odd, the 1st regime can be seen,

and in N=even, the 2nd regime can be seen. Both these co-tunneling processes

are virtual processes, which means that the electron that tunnels through the dot

does not actually occupy an energy level in the quantum dot for a measurable

amount of time. It tunnels through a virtual intermediate state.

Transition between the Regimes: The transition between these Regimes

an be sharper than the characteristic lifetime broadening of the dot’s energy

levels[2].It means that this transition is governed by a specific threshold in the

applied bias voltage, marking the onset of inelastic co-tunneling. In this regime

(typically observed in the Coulomb diamond region where the electron number N

is even, which is control by the gate voltage), the quantum dot make transitions

from only elastic processes to allowing both elastic and inelastic co-tunneling.The

bias voltage threshold corresponds to the first excitation energy of the confined

quantum system, defined as the separation in energy (δE) from the ground state

to its first excited configuration.
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Figure 3.2: Stability diagram plotted in the plane of the source-drain voltage Vsd

and gate voltage Vg.(Adapted from [3]).

3.2 Stability diagram

The stability diagram (Fig. C) of a generic quantum dot can be obtained by

plotting the differential conductance dI
dVsd

as a function of the bias voltage Vsd

and the gate voltage Vg.

The stability plot depicts electron transport behavior in a quantum dot,

mapped against variations in both source–drain voltage Vsd and applied gate

voltage Vg, emphasizing Coulomb blockade effects and transitions among various

tunneling regimes.

(a) Stability Diagram Overview:

The Coulomb diamonds (grey regions) represent the Coulomb blockade, where

no current flows due to insufficient required energy to introduce a further electron

onto the confined quantum system.Within each diamond, the QD maintains a

fixed electron number(N,N + 1, N − 1). The slanted edges of the diamonds

correspond to the alignment of QD energy levels with the Fermi levels of the

leads, allowing sequential tunneling (first-order transport). Vertical dotted lines

inside the diamonds indicate the onset of inelastic co-tunneling, where the bias

voltage (eVsd) provides enough energy to excite the QD.

Transport Mechanisms:

1. Sequential Tunneling Through Ground and Excited States (Fig-

ures3.2 b, e):
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(b) and (e) represent sequential tunneling via the first excited energy level

of the quantum dot. When the QD energy levels align with the Fermi

levels of the leads, electrons tunnel through the dot one by one, either via

the ground state or the excited state. These processes occur outside the

Coulomb blockade region, along the edges of the diamonds.

2. Elastic Co-Tunneling (Figure3.2 c):

Inside the Coulomb blockade (light grey regions in Fig.3.2), transport oc-

curs via second-order processes. One electron virtually tunnels into the QD

while another simultaneously exits, so that the quantum dot remains in its

ground energy state. This mechanism provides finite conductance within

the diamonds without exciting the QD, contributing to charge transport

in the blockade region.

3. Inelastic Co-Tunneling (Figure3.2 d):

At higher bias (eVsd ≥ ∆(N)), the QD gains energy and transitions to

an excited state. In this process, one electron tunnels out of the QD’s

ground state while another tunnels into an excited state, resulting in an

energy difference∆(N), corresponding to the first excited energy level of

the quantum dot. This mechanism leaves the quantum dot occupying an

excited energy level and is marked by vertical dotted lines in the diagram,

as the process depends mainly on Vsd.

This diagram clearly shows how bias and gate voltages control the transport

through a QD. Sequential tunneling governs regions outside the Coulomb dia-

monds, including transport through the excited states (Figures 3.2b, e). Mean-

while, co-tunneling dominates within the Coulomb blockade region, transitioning

between elastic (ground state) and inelastic (excited state) regimes based on the

bias energy.
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Chapter 4

Kondo effect

4.1 Fundamental Description of the Kondo Ef-

fect in Metals

The Kondo effect originates from the interaction between a localized magnetic

impurity (such as a spin-1
2
atom) and the conduction electrons in a metal. This

interaction occurs via spin-exchange scattering, where the impurity spin couples

with the spins of conduction electrons.

At high temperatures, scattering of conduction electrons off the impurity

spin follows conventional magnetic scattering, causing the resistivity to decrease

as the temperature decreases, resembling typical metallic behavior. However,

as the temperature approaches the Kondo temperature TK , a correlated spin-

singlet state forms due to many-body interactions between the impurity spin and

conduction electrons, as illustrated in Fig.4.1. This leads to enhanced scattering

at low temperatures, resulting in an increase in resistivity.

This low-temperature regime is dominated by the Kondo resonance, char-

acterized by a sharp peak in the density of states near the Fermi level, which

increases scattering. The resistivity contribution due to the Kondo effect is ap-

proximately described as: [12]:

ρ(T ) = ρo − c ln

�
T

Tk

�
(4.1)

indicating a logarithmic divergence as T → 0, which is a key characteristic of

Kondo effect.Where,TK representing the characteristic energy scale at which the

Kondo effect becomes significant.The concept of Kondo screening, initially ex-

plored in bulk metals, has since been extended to nanoscale systems like quantum

dots, where it plays a reverse yet analogous role in enhancing conductance.
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Figure 4.1: Schematic depiction of an impurity’s unpaired spin embedded in a

metal, interacting with the mobile spins of the conduction electrons. When the

temperature is above the characteristic Kondo temperature TK , only a small

number of conduction electron spins are involved. However, below TK , the im-

purity spin becomes completely screened by the surrounding delocalized spins,

resulting in the formation of a spin-compensating region known as the Kondo

cloud.

4.2 The Kondo Effect in Quantum Dots

Quantum Dots function as systems in which electrons experience confinement

in all three spatial dimensions. Due to this confinement, the energy levels in a

QD are discrete, and electron transport occurs primarily through tunneling.The

Coulomb blockade regime dominates at low temperatures, where the addition

of an extra electron to the dot is energetically unfavorable due to the charging

energy . However, when the QD has an odd number of electrons, there is a

net unpaired spin, analogous to the magnetic impurity in metals. Quantum

dots (QDs) are artificial nanostructures in which electrons are confined in all

three spatial dimensions. Due to this confinement, the energy levels in a QD

become discrete, and electron transport primarily occurs via tunneling. At low

temperatures, the Coulomb blockade regime dominates, where the addition of an

extra electron to the dot is energetically unfavorable due to the charging energy.

However, when the QD contains an odd number of electrons, it hosts a net

unpaired spin, analogous to a magnetic impurity in a metal. While the Kondo

effect in metals leads to increased resistivity due to enhanced spin scattering,

in QDs it manifests as an increase in conductance. In a QD with an unpaired

spin-1
2
, the interaction between the localized spin on the dot and the spins of tun-

neling electrons from the leads gives rise to a Kondo resonance. This resonance

enhances the density of states near the Fermi level (see Fig.4.2), thereby opening

an additional channel for electron tunneling and increasing the conductance, as

described in Eq.4.2.
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Figure 4.2: Energy diagram of the quantum dot (QD) under Kondo correlations

at a temperature T < TK .

As the temperature decreases, the conductance G increases due to the emer-

gence of this resonance. The Kondo temperature TK defines the energy scale of

this effect, with the conductance reaching its maximum at T = 0.

An observed increase of conductance inQDs, arising from Kondo correlations,

can be described by[9]:

G =
2e2

h
· T ′2

K

T 2 + T 2
K

(4.2)

where e is the electron charge, h is Planck’s constant, and TK is the Kondo

temperature,T ′
k = Tk/

√
21/s − 1 and 2e2

h
= G0 is the maximum conductance at

T = 0.At T ∼ TK , the conductance reaches half of G0[1, 9], providing a clear

experimental signature of the Kondo effect.

Kondo Temperature in QDs:

The Kondo temperature, which defines the energy scale for the formation of the

Kondo resonance, can be expressed as:

TK =

r
ΓU

2
exp

�
πεn(εn + U)

ΓU

�
,

where: Γ = πρV 2 is the tunneling rate between the dot and the leads, U is the

charging energy, εn is the energy level of the dot, ρ is the DOS in the leads.

The Kondo temperature increases with stronger tunneling coupling (Γ) and

decreases with higher charging energy (U), illustrating the competition between

Kondo screening and Coulomb blockade.
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Co-Tunneling and Kondo Effect in Quantum Dots

In the Coulomb blockade regime, transport through the dot occurs via co-

tunneling, which involves the simultaneous tunneling of two electrons—one into

the dot and one out of it. Co-tunneling processes can be:

1.Elastic Co-Tunneling: The total energy of the system remains unchanged.

2.Inelastic Co-Tunneling: Energy is transferred, exciting the dot to a higher

energy state.

For odd charge states (N = 1, 3, . . . ), the quantum dot contains an unpaired

spin, and elastic co-tunneling dominates.Kondo resonance emerges when con-

duction electron spins in the leads couple with a localized spin, resulting in the

formation of a spin-singlet state.This interaction increases the density of states at

the Fermi level, enhancing conductance despite the elastic tunneling mechanism

since G ∝ DOS near Fermi level in Co-tunneling process.

For even charge states (N = 2, 4, . . . ), there is no unpaired spin on the dot,

and the Kondo effect is absent. Conductance occurs through purely elastic co-

tunneling for low biases (eVb < δE) and transitions to inelastic co-tunneling at

higher biases.
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Chapter 5

Thermal transport in single

Electron Device

Thermal transport in a Single-Electron Transistor (SET) is fundamentally gov-

erned by tunneling electrons between reservoirs through tunnel junctions and

the metallic island. This process leads to energy exchange, which results in heat

flow. In a normal metal, electrical and thermal conductance are related by the

Wiedemann-Franz law, which states that their ratio is a constant, known as the

Lorenz number L0. However, in a SET, strong Coulomb interactions and quan-

tum effects modify this relationship, leading to deviations of the Lorenz ratio

(L/L0) from the Wiedemann-Franz law, according to which L/L0 = 1. Under-

standing these deviations helps us explore energy transport at the nano-scale.

The transport of charge and heat in an SET occurs via sequential tunneling and

co-tunneling processes, which is also known as higher-order tunneling. The heat

current in the SET arises from the energy carried by tunneling electrons. When

an electron tunnels from a lead onto the island, it extracts energy from the lead,

while tunneling in the opposite direction injects energy into the lead. In the

sequential tunneling regime, where EC (charging energy)dominates over thermal

energy(EC > kBT ) , the Lorenz ratio is given by[14]:

L

L0

= 1 +
∆2

N

4πk2
BT

2
(5.1)

Where,

• ∆N represents the energy required to add an electron to the Nth charge

state, and is controllable through the gate voltage ng.

• L0 is the universal Lorenz number for normal metals.

Now, we discuss how the Lorenz ratio depends on gate-induced charge (ng) which

is controlled by gate voltage (Vg) and temperature (T ).
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Figure 5.1: Gate voltage dependence of Lorentz ratio(Adapted from [14])

Gate Voltage Dependence of the Lorentz Ratio

The Lorenz ratio in a SET is strongly influenced by the applied gate voltage

(Vg), which controls the charge occupation of the island. Since charge transport

in an SET is governed by Coulomb interactions, variations in the gate voltage

modulate the tunneling rates and energy exchange, leading to deviations from

the Wiedemann-Franz law.

The above plot (fig.5.1) shows the theoretical analysis of Lorenz ratio changes

with gate-induced charge ng for different temperatures. The three different curve

correspond to different temperatures. we can divide the curves in the above plot

into three regimes in terms of their operational temperature, which are High,

Intermediate and low temperature regimes.

5.0.1 High Temperature Regime(kBT = EC/2)

At high temperatures, the Coulomb blockade is suppressed, meaning electrons

can tunnel into the island regardless of the gate voltage since the thermal energy

kBT is much larger than the charging energy EC(which is the energy required

by electron to tunnel into the island). Gate voltage dependence is weak, and

the Lorenz ratio is slightly greater than 1. Oscillations in the Lorenz ratio are

suppressed because thermal excitations dominate over the charging effects. Even

if thermal energy dominates over charging energy, the Lorentz ratio is still not

one since charging energy is still present.

5.0.2 Intermediate Temperature Regime (kB = EC/10)

At intermediate temperature, Oscillations of L/L0 appear, with maxima at in-

teger values and minima at half-integer values. It follows a quadratic increase

away from the charge degeneracy points(∆N = 0).At half-integer ng, the Lorentz

25



Figure 5.2: Temperature dependence of Lorentz ratio (Adapted from [14])

ratio becomes one (Wiedemann-Franz law holds ). But at integer ng,the charging

energy gap ∆N is quite high, only the electrons with enough energy can tunnel

through. These electrons carry more thermal energy per electron, increasing

the heat-to-charge transport ratio. As a result, L/L0 increases significantly away

from degeneracy points.

5.0.3 Low-Temperature Regime (kBT = EC/40)

The oscillations become more pronounced, with sharp peaks at the integer (ng)

and valleys at the half-integer (ng) .The maximum value of L/L0 increases signifi-

cantly and saturates at 9/5(1.8 )at off-degeneracy points. Sequential transport is

exponentially suppressed. Higher-order co-tunneling processes dominate, where

electrons tunnel via virtual intermediate states rather than direct transport.

5.1 Temperature Dependence of the Lorentz Ra-

tio

Temperature plays a crucial role in determining the dominant transport mech-

anism in an SET. At low temperatures, quantum effects such as co-tunneling

significantly alter the energy transfer processes, while at higher temperatures,

sequential tunneling becomes more prominent. Studying the Lorenz ratio as a

function of temperature helps us understand how these mechanisms evolve with

increasing thermal energy.

The above plot (fig.5.2) shows the theoretical study of how L/L0 temperature

evolves as temperature increases for different values of ng. At high temperatures

(kB >> EC) the Lorenz ratio remains close to 1 for all ng values, as thermal

fluctuations dominate, and the SET behaves like a normal metal following the
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Wiedemann-Franz law. As temperature decreases(kBT < EC) , deviations ap-

pear due to Coulomb blockade. The behavior depends on the gate position.

• At ng = 0.5 (solid black line): The system is at a charge degeneracy

point, allowing easy tunneling. The Lorenz ratio stays near 1 across all

temperatures.

• At ng = 0.48(dotted) and ng = 0.4(dashed):The Lorenz ratio peaks be-

fore decreasing as sequential tunneling is suppressed and higher-order co-

tunneling dominates.

• At ng = 0(gray solid line) ): The system is in Coulomb blockade, restricting

electron flow. The Lorenz ratio rises significantly at low temperatures and

settles at L/L0 = 9/5 when co-tunneling becomes dominant.

In all the respective values of ng, the L/L0 rises at a specific temperature and

reaches a maximum peak because at this temperature the charging energy gap

(∆N) is quite high so, only the electron with high energy an tunnel through

the island.These electrons carry more thermal energy per electron, increasing

the heat-to-charge transport ratio. As a result, L/L0 increases significantly away

from degeneracy points.

In the lowest temperature regime, scattering becomes weakly energy-dependent,

leading to a constant Lorenz ratio of 9/5. This confirms that quantum effects

and electron interactions govern nano-scale thermal transport in SETs.

5.2 Experiments on Thermal transport through

SETs

The theoretical understanding of thermal transport in Single-Electron Transis-

tors (SETs), as discussed earlier, highlights the role of Coulomb interactions and

quantum effects in modifying the Lorenz ratio. Following the theoretical dis-

cussion, experimental studies have been carried out to measure heat and charge

transport in Single-Electron Transistors (SETs). These experiments test the

Wiedemann-Franz law and explore deviations due to electron interaction. Dur-

ing thermal measurements, the SET is kept in a no-current state to measure

only thermal conductance. Heat flow is analyzed as the source and island tem-

peratures change. This is compared to electrical conductance. Electrons in the

source reach thermal equilibrium due to fast interactions.

A Normal metal–Insulator–Superconductor (N–I–S) junction functions as a

thermometer, with the voltage drop across the N–I–S junction reflecting the
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Figure 5.3: False-colored SEM image of the Asymmetric design[6] [pp.86-87]

device.One of the blue colored component is the thermometer (extreme right side)

and the other (extreme left side) is the cooler/heater.In the magnified image (left)

red color indicates source ,yellow is the metallic island and green is the drain.

(Adapted from [5])

temperature of the normal metal. The biasing current is kept sufficiently small

to ensure that no significant cooling occurs during the temperature measurement.

For cooling the source, we use the same process but with higher biasing

current( but the voltage drop should be below ∆ )so that significant number

electron could tunnel into the superconductor with E > ∆.

If the Biasing current is too high so that the energy due to the voltage drop

across the N-I-S junction is greater than the superconductor energy gap(∆), then

the cooling mechanism is overwhelmed by heating, so the electron temperature

Te becomes greater than the phonon temperature Tb due to Joule heating.

Here, in the above fig.5.4(left) we can see that with the increase in cooling

Voltage (Vcool), which is applied to the superconductor lead (Al) (blue colored

component in the extreme left in fig.5.3 ) below the energy gap (∆) (within which

cooper-pair exist) the temperature of the source also decreases under both the

state of the gate (Off ng = 0 as well as On(ng = 0.5)). But this continuous till

Vcool ≈ 190µV which is the Voltage whose corresponding energy is equal to the

energy gap(∆). When Vcool ≈ 190µV, Te reaches a minimum (≈ 100mK), which

is ≈ 50mK below the bath temperature Tb.

When Vcool > 190µV , Te increases above Tb,means the system is now heating

instead of cooling. This happens because at higher bias, Joule heating starts to

dominate, leading to electron overheating.

Effect of gate induced charge ng on cooling

The cooling is more effective when ng = 0 (black dot) than when ng = 0.5

(black circle). When ng = 0, transport through the Single-Electron Transistor

(SET) is blocked, reducing heat leakage, so more cooling is observed. When

ng = 0.5, the SET conducts more heat, reducing the cooling efficiency.

The two panels on the right of Fig. 2 demonstrate how the electronic tem-

perature in the source can be modulated by controlling the charge state ng and
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Figure 5.4: The left plot illustrates the variation of the electronic temperature Te

of sample B (RN = 52Ω) as a function of the cooler bias voltage Vcool. The right

plot shows the dependence of Te on the gate voltage: the top graph corresponds

to the heating regime, while the bottom graph represents the cooling regime.

(Adapted from [5]

).

adjusting Vcool.

Heating Regime (Top Panel, Red Dots) fig.5.4: At a specific high-bias

setting of Vcool (marked by the red arrow in the left plot), the source experiences

heating.This occurs as a result of high-energy electrons being injected from the

superconducting cooler junction into the source.The energy added to the elec-

tronic bath increases temperature of electronsTe and the effect is modulated by

gate induced chargeng.The periodic oscillations in Te arise from Coulomb block-

ade effects, which influence the tunneling rates.

Cooling Regime (Bottom Panel, Blue Dots)fig.5.4: At a different bias

condition (blue arrow in the left plot),Vcoolis set such that high-energy electrons

are selectively removed from the source. This leads to a net cooling effect, re-

ducing Te.Similar to the heating case, the effect is modulated by ng and periodic

oscillations in temperature are observed.

5.2.1 Thermoelectric Conductance Characteristics of a

SET

In figure 5.5 ,we can see the measured thermal conductance (k) and charge

conductance (σ) of a Single Electron Transistor (SET) as a function of the in-

duced gate charge (ng). The measurements were taken at low temperatures for

two different samples. Sample A(left panel)- Tunnel resistance: (164kΩ) and

Sample B(right panel)-Tunnel resistance:(52kΩ). The goal of this measurement

is to study how heat and charge transport behave in a SET and whether the
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Figure 5.5: The thermal conductance (represented by blue dots) and charge con-

ductance (depicted by green dots) of the SET are shown at a bath temperature

of 132 mK (left, sample A) and 152 mK (right, sample B), measured relative to

the conductances observed in the gate-open configuration. (Adapted from[5] )

Wiedemann-Franz law holds.

The top plots show how the thermal conductance k (blue dots) and charge

conductance σ (green dots) vary with the gate charge ng.The charge conductance

σ exhibits periodic oscillations as a function of ng, which is a characteristic feature

of Coulomb charging phenomena in a nanoscale single-electron device (SET).

The thermal conductance k follows a similar oscillatory behavior but does not

decrease as sharply as the charge conductance within the Coulomb blockade

regime.

When (ng) = 0.5 or any half-integral value(gate-open state or degenerate

state), both conductance reaches their maximum as well as the same values,

which means that at these values, the SET obeys Weidemann-Franz law. But

when ng = 0 or any integral value (Coulomb blockade region), charge conduc-

tance is strongly suppressed, and thermal conductance also decreases but remains

non-zero. This means that in the Coulomb blockade regime, charge transport is

significantly reduced, but heat transport is still present due to energy exchange

processes.

Sample A (left) shows a stronger Coulomb blockade effect than Sample B

(right). This is because Sample A has a higher tunnel resistance, which restricts

electron flow more strongly.

The bottom plots of fig.5.5 display the Lorenz ratio (L/L0), which helps in

determining whether the Wiedemann-Franz law holds in the SET. The red line

represents the theoretical prediction from Ref. [14]. The purple dots show the

experimental data.

When ng = 0.5 (gate-open state), the Lorenz ratio is close to 1, indicating that
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the Wiedemann–Franz law is satisfied. This implies that electrons carry both

heat and charge as expected.On the other hand, in the regime characterized by

Coulomb blockade (ng = 0), the Lorenz number deviates significantly from 1,

indicating a breakdown of the standard relationship between heat and charge

transport, likely due to additional interactions affecting energy flow.

Sample A exhibits stronger deviations from the Wiedemann–Franz law com-

pared to Sample B. This is attributed to its higher tunnel resistance, which

enhances the effects of electron–electron interactions. These observations con-

firm that the Wiedemann–Franz law holds in the gate-open state but breaks

down in the Coulomb blockade regime due to strong electronic correlations.
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Conclusion

In this thesis, I have studied the theoretical aspects of electron transport in

nanoscale systems, with a focus on Single-Electron Transistors (SETs) and quan-

tum dots (QDs). At small dimensions, electrons do not behave the same way as

they do in larger devices. Quantum effects such as tunneling, Coulomb block-

ade, and discrete energy levels become very important and strongly influence

how current flows.

The study began with SETs based on metallic islands, where the transport of

electrons is governed by charging energy. Electrons can only move through the

device if energy conditions are met, which can be controlled using gate voltage. I

then studied SETs that use quantum dots, where electrons are even more tightly

confined, and the energy levels become discrete. This leads to distinct features

in transport behavior, such as Coulomb diamonds and regular conductance os-

cillations.

I also examined more advanced transport processes such as co-tunneling and

the Kondo effect. These effects become important when simple tunneling is not

allowed, especially at low temperatures. They help explain how electrons can

still move through the device even when direct paths are blocked.

In addition to charge transport, this thesis also explored thermal transport in

Single-Electron Devices. At this scale, electrons also carry heat, and their behav-

ior can change depending on gate voltage, temperature, and energy level align-

ment. The study showed that common classical laws, like the Wiedemann–Franz

law, may not always apply under these conditions. This is important when de-

signing small devices that need to be both energy-efficient and thermally stable.

Overall, this work gave me a better understanding of how electrons move and

interact in small systems. It also showed how theoretical models, combined with

results from experiments, can help explain the unique behavior of electrons in

nanoscale electronics. These insights are useful for the future development of

low-power and high-performance electronic devices.
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Appendix A

Derivation of Energy cost for

tunneling

A.0.1 Total charging energy:

The overall electrostatic energy associated with a small metallic island in a Single-

Electron Transistor (SET), where the island has N excess electrons, is given by:

Etotal =
N2e2

2C
(A.1)

Where:

• e denotes the fundamental unit of electric charge.

• C = C1 + C2 + Cg represents the combined capacitance associated with

the island, comprising connections to the source (C1), drain (C2), and gate

(Cg).

Gate-Induced Charge : The gate induces a charge Qg = CgVg, and this

can be expressed in terms of a dimensionless gate charge ng as:

ng =
CgVg

e
(A.2)

Thus, the gate-induced charge nge modifies the total energy of the system.

Total Electrostatic Energy with Gate-Induced Charge: The total

electrostatic energy of the system, accounting for the gate-induced charge, is:

Echarging =
N2e2

2C
−Neϕg

Echarging =
N2e2

2C
− Nnge

2

C
(A.3)

where: The term N2e2

2C
represents the charging energy of the island with n

excess electrons. The term Nnge2

C
represents the energy of the Dot due to the

gate-induced charge ng. ϕg = Vg =
nge2

C

33



Energy Change Due to Tunneling

Now, we calculate the energy cost for tunneling an electron onto the island

(∆E+
i,N) or off the island (∆E−

i,N).

1. Energy Cost for Tunneling an Electron Onto the Island: When

an electron is added to the island, the count of surplus electrons increases from

N to N+1.The required energy for adding an electron (∆Ei,N+) is the difference

in electrostatic energy between the (N + 1) electron state and the N electron

state :

∆E+
i,N = E(N + 1)− E(N)

Substituting the expression for E(N + 1) and E(N):

E(N + 1) =
(N + 1)2e2

2C
− (N + 1)nge

2

C

E(N) =
N2e2

2C
− Nnge

2

C

Now, calculating the energy difference:

∆E+
i,N =

�
(N + 1)2e2

2C
− (N + 1)nge

2

C

�
−
�
N2e2

2C
− Nnge

2

C

�

∆E+
i,N =

�
(N2 + 2N + 1)e2

2C
− (Nnge

2 + nge
2)

C

�
−
�
N2e2

2C
− Nnge

2

C

�

Now, after simplifying, we get:

∆E+
i,N =

e2

C

�
N − ng +

1

2

�
(A.4)

2. Energy Cost for Tunneling an Electron Off the Island: When an

electron is removed from the island, the number of excess electrons changes from

N to (N−1). The energy cost for removing an electron (∆E−
i,N) is the difference

in electrostatic energy between the N−1-electron state and the N electron state:

∆E−
i,N = E(N − 1)− E(N)

Substituting the expression for E(N − 1) and E(N):

E(N − 1) =
(N − 1)2e2

2C
− (N − 1)nge

2

C

E(n) =
N2e2

2C
− Nnge

2

C

Now, calculating the energy difference:

34



∆E−
i,N =

�
(N − 1)2e2

2C
− (N − 1)nge

2

C

�
−

�
N2e2

2C
− Nnge

2

C

�

∆E−
i,N =

�
(N2 − 2N + 1)e2

2C
− (Nnge

2 − nge
2)

C

�
−

�
N2e2

2C
− Nnge

2

C

�

Now, after simplifying further, we get:

∆E−
i,N = −e2

C

�
N − ng −

1

2

�
(A.5)

3. Incorporating Bias Voltage: In addition to the charging energy, we

must account for the bias voltage Vb applied across the tunnel junctions. A

portion of the total bias voltage, denoted as Vb,i = kiVb, falls across junction i,

where ki is the fraction determined by the capacitance.

For a symmetric SET, k1 = k2 =
1
2
.

Thus, we add a term eVb,i to account for the energy cost associated with the

bias voltage.

The energy cost for adding an electron:

∆E+
i,n + eVb,i

The energy cost for removing an electron:

∆E−
i,n − eVb,i

4. Final Energy Expression:

For tunneling an electron onto the island:

∆E+
i,n =

e2

C

�
n− ng +

1

2

�
+ eVb,i (A.6)

For tunneling an electron off the island:

∆E−
i,n =

e2

C

�
−n+ ng +

1

2

�
− eVb,i (A.7)

Now, combining the energy cost for tunneling onto or off the island, i.e. eqn

(A.6) & (A.7) , we get:

∆E±
i,n = ±2Ec

�
n− ng ±

1

2

�
± eVb,i

This is the energy cost for tunneling electrons onto and off the island.
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Appendix B

Derivation of the chemical

potential of Quantum Dot(QD) :

Derivation of the expression

We know

Etotal (N) =
NX

P=1

εP + Eel(N)

=
NX

P=1

εP +
(Ne)

2

2C
−Ne ϕext

This is the electrostatic potential energy of the QD due to N particles.

putting (N + 1) in place of N in the above equation we get,

Etotal (N + 1) =
N+1X

p=1

εp +
(N + 1)2e2

2c
− (N + 1)eϕext

This is the electrostatic potential energy of the QD due to (N+1) particles.

Now, The chemical potential necessary for the addition of an electron to the

(N+1)th energy level, which is a vacant level with energy, ε(N+1) is given by:

µ(N) = Etotal(N + 1)− Etotal(N) (B.1)

Now, putting the value of Etotal (N) and Etotal (N + 1) from the above two

expressions, we get:

µ(N) =
N+1X

p=1

εp +
(N + 1)2e2

2C
+ (N + 1)eϕext −

NX

p=1

εp −
N2e2

2c
+Neϕext

µ(N) =εN+1 +
N2e2

2c
+

e2

2c
+

2Ne2

2c
−Neϕext − eϕeext −

N2e2

2c
+Neϕext

µ(N) =εN+1 − eϕext + (N +
1

2
)
e2

c
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This is the total energy required for the tunneling of an electron onto the

QD.
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Appendix C

Derivation of the expression of

the slope of coulumb diamond:

1.Derivation of Vb = βVg +K and Vb = −βVg +K

The linear equation of +ve and -ve edges of the Coulamb diamond can be find

out in the following way

The expression for the chemical potential of the source ( µs ) is

µs = µ0 + evb

where: µ0 is the intrinsic electrochemical potential at given temperature with-

out biasing and vg. eVb is the potential energy due to the biasing.

Let us consider the drain to be grounded.

Now, the chemical potential of the dot, µd = µ0 + eVdot

where:

Vdot or ϕext,i =
P

i
Ci

C
Vext,i and Vdot =

CsVb

c
+ CgVg

c
+ CdVd

c

since, Vd = 0

so, Vdot =
CsVb

c
+

CgCg

c

∴ µdot = µ0 + e

�
CsVb + CgVg

C

�

C = Cs + Cd + Cg

Now for the +ve edges condition we use the balancing equation since at this

condition the µdot& µs align with each other. So, thus the balancing condition

is given by:
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µdot = µs( Boundary condition )

⇒ µo + eVb = µ0 +

�
CgVb + CgVg

C

�

⇒ CVb = CsVb + CgVg

⇒ (C − Cs)Vb = CgVg

⇒ (Cs + Cd + Cg − Cs)Vb = CgVg

⇒ Vb =

�
Cg

Cd + Cg

�
Vg +K

∴ Vb = βVg +K (C.1)

Where β = Cg

Cd+Cg
→ slope of +ve edge.

K is a constant.

Now for the -ve slope we use similar balancing condition since now µdot& µd

align with each other. So, the balancing condition is given by:

µd = µ0( since, Vd = 0)

so, µd = µdot

⇒ µ0 = µ0 + eVdot

⇒ Vdot = 0 ⇒ CsVb

C
+

CgVg

C
= 0

⇒ CsVb = −CgVg

⇒ Vb = −Cg

Vs

Vg +K

∴ Vb = −β′Vg +K (C.2)

where : β′ = Cg

Cs
and K is a constant.

here, µ0 is the intrinsic chemical potential which is same for source(s),drain(d)an

dot because they are made of same metal. (Without biasing and Vg and at same

temperature they are at equilibrium. There is no potential difference.)

Thus, B = Cg

Cd+Cy
, B′ = C9

CS

The constant K denotes the intrinsic potential of the quantum dot when no

external voltage is applied.

The characteristic slopes of the Coulomb diamond uniquely reflect the prop-

erties of the quantum dot.

2. Derivation of the ratio Cd
CS

:

The slopes provide us the information about the asymmetry in the capacitive

coupling of the dot to source & drain. Which is given by
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we know

β =
Cg

Cd + Cg

(C.3)

β′ =
Cg

Cg

(C.4)

From equation (C.3),

⇒ β =
Cg

Cd + Cg

⇒ β (Cd + Cg) = Cg

⇒ βCd = Cg(1− β)

⇒ Cd = Cg
(1− β)

β

we have in equation (C.4)

β′ =
Cg

Cs

⇒ Cs =
Cg

β′

Cd

Cs

=

Cg(1−β)

Cg

Cg

β′

= β′
�
1

β
− 1

�

∴ Cd

Cs

= β′
�
1

β
− 1

�

• If Cd

Cs
= 1, the coupling is symmetry meaning the quantum dot is equally

coupled to both the source and the drain. Cd

Cs
> 1, then the quantum dot

becomes preferentially connected to the drain electrode.

• If Cd

Cs
< 1, then the quantum dot is more effectively linked to the source

electrode.

3.Derivation of α =
Cg

C :

The lever arm α, or gate coupling factor, represents the rate at which the dot’s

chemical potential changes with gate voltage, expressed as α = ∆µ
∆Vg

. It can be

determined directly from the slopes of the Coulomb diamond edges as,

we have,

β =
Cg

(Cd + Cg)
andβ′ = Cg

Cs

.(Cd + Cg)

Now taking the reciprocal of both terms, side by side we get:

⇒ 1

β
=

Cd + Cg

Cg

and
1

β′ =
Cs

Cg
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Now summing both the reciprocal terms we get:

1

β
+

1

β′ =
Cs + Cd + Cg

Cg

=
C

Cg

=
1

α

Thus,

α =
Cg

C
=

1
1
β
+ 1

β′

This is the required expression of α.[4]
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