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ABSTRACT

Recently, researchers are focusing on to fabricate optoelectronic devices
using cost effective and environment friendly materials. Cu(l)
complexes are promising candidate and used as emitters in
optoelectronic devices (OLEDs, LEECs etc), photocatalyst for organic
transformations, sensing of gases and organic volatiles. Chiral emissive
complexes are important due to their potential in various fields,
including nonlinear optics, anti-counterfeiting, and 3D displays. This
project aims to synthesize and characterize oxazoline-derived chiral

ligands and their Cu(l) complexes.

The present study includes the synthesis of chiral (R and S) oxazoline-
based ligands (L1-L4) and characterization. L1 and L2 were prepared
from 2-cyanopyridine, L3 and L4 ligands were prepared from 4-
cyanopyridine. Furthermore, various complexes were formed using
these ligands. These complexes were successfully characterized by
NMR and SCXRD. Additionally, the photophysical and chiroptical
properties of some complexes were studied using UV-Vis,

photoluminescence, and circular dichroism.
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Chapter 1: INTRODUCTION

1.1 Copper(l) complexes

Copper(l) complexes have become a central focus in current science and
technology due to their remarkable adaptability and potential for
innovation. One particularly fascinating characteristic that certain
molecules exhibit is luminescence via fluorescence, phosphorescence,
and thermally activated delayed fluorescence (TADF). These properties
enable the emission of visible light, making them highly valuable in
diverse fields, particularly in bio- imaging and the development of
optoelectronic materials.! Specifically, Cu(l), with its preferred d°
configuration over Cu(ll), reduces non-radioactive decay and does not
show metal-centered d-d transitions; therefore, it exhibits a high
photoluminescence quantum efficiency of up to 100%.? These
complexes are especially significant in the context of innovations such
as dye-sensitized solar cells, catalysts for organic transformations, CO>
reduction, organic light-emitting diodes (OLEDs), light-emitting
electrochemical cells (LEECs), electrochromic devices, and various
sensor technologies.® The remarkable properties of these complexes can
be finely tuned by slight alterations in external stimuli, leading to
changes in the electronic structure, such as the band gap (HOMO-
LUMO), which directly impacts the molecular properties and behavior.
Recently, our laboratory reported on the Cu(l) complex [Xantphos- Cu-
dicng] PFs, which exhibits notable electrochromic activity.* This
discovery led to the development of a device (ITO/P3HT/Cu
complex/ITO), allowing for a thorough investigation into its
electrochromic properties. Cu(l) complexes display fascinating redox
and optical characteristics that can be easily manipulated by varying the
ligands used in their coordination. This tunability opens up exciting
possibilities for designing electrochromic materials with a wide range of
colors and response times, offering great potential for advanced

applications in optoelectronics. Additionally, this particular heteroleptic



Cu(l) complex has been shown to exhibit exceptional vapochromic
behavior when exposed to n- 7 stacking solvents, resulting in a distinct
blue shift in emission. Such dynamic responsiveness to environmental
changes makes Cu(l) complexes highly promising for applications

requiring rapid and reversible changes in optical properties.®

Figure 1: Properties and applications of Cu(I) complexes

1.2 Chiral Copper Complexes

Recently, a different class of Cu(l) complexes—specifically, chiral
Cu(l) complexes emerged as promising candidates for circularly
polarized luminescence (CPL) applications. These exhibits emissions
via either thermally activated delayed fluorescence (TADF) or
phosphorescence, both of which are desirable for achieving efficient
light emission from triplet excited states. In addition to their favorable
photophysical behavior, chiral Cu(l) complexes offer several intrinsic
advantages, including structural tunability of emission properties,

straightforward  synthetic routes, cost-effectiveness, and the



environmentally benign nature of copper compared to noble metal
alternatives Moreover, chiral copper(l) complexes have emerged as an
important class of catalysts with wide-ranging applications, particularly
in asymmetric synthesis and other catalytic processes.® As a result, they
present a highly attractive alternative for use in various chemical
transformations, including those that require fine control over
stereochemistry. However, despite these promising benefits, challenges
remain in terms of improving the stability and selectivity of these
catalysts. Addressing these challenges is essential to fully exploit the
potential of chiral copper(l) complexes in diverse catalytic processes
and further advance their applications in green chemistry and other
sustainable practices.’
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Figure 2: Strategy to design chiral Cu(I) complexes

1.3 Chiral NN donor or Phosphine ligands

These are a class of ligands commonly used in coordination chemistry.
These ligands have two nitrogen atoms that coordinate to a metal center
(Figure 2). Nitrogen atoms are strong donor sites because of their lone

pairs, making them ideal for binding with metal ions.

Oxazoline compounds are five-membered oxygen and nitrogen
containing heterocycles that are of great interest to organic chemistry.

Present in some biologically active natural products, optically active



oxazolines have been proven to be useful as effective auxiliaries and
ligands for selected asymmetric syntheses.® To elucidate the
coordination chemistry of copper supported by pyridine-oxazoline
(Pyox) ligands. Pyox ligands have been successfully employed as chiral

supporting ligands for a range of catalytically active complexes.

Chiral phosphorus atom or phosphine ligand provides chirality to central
metal atom (Figure 1). In these systems, the phosphorus atom functions
as a Lewis base, donating its lone pair of electrons to the vacant orbitals
of the metal center. The resulting metal-ligand complex may exhibit
chirality originating from the ligand, the coordination geometry, or a
combination of both, thereby enabling applications in stereoselective
processes and asymmetric catalysis.® One class includes backbone
chirality ligands that possess their stereogenic centers on the linking
carbon chain. Most of the hitherto reported chiral phosphine ligands
belong to this class, and some of them are used as benchmark ligands
not only for the synthesis of various chiral compounds but also for the

development of new catalytic asymmetric reactions.°

oy . L Qﬁ? %Q -
99 é@ X=Cl Byt ©,©

Figure 2: Chiral Cu(I) complexes using P donor ligand

1.4 Chiral terminologies

Chiral complexes, another fascinating subset of these materials, have a
broad array of applications across various scientific and industrial fields,
largely due to their ability to induce or interact with chirality. Certain

systems have been observed to selectively absorb one specific



handedness of circularly polarized light, a phenomenon known as
circular dichroism (CD).!* When these chiral luminescent systems are
capable of emitting light with a preference for left or right-handed
circular polarization, often at varying intensities, this process is referred
to as circularly polarized luminescence (CPL). CPL can be further
categorized into two subtypes: circularly polarized photoluminescence
(CPPL) and circularly polarized electroluminescence (CPEL),
depending on the method of excitation. CPL is a particularly intriguing
chiroptical phenomenon, characterized by the emission of light that
shows a distinct preference for one circular polarization over the other.?
This property is often observed in chiral luminescent systems and is a
key indicator of chirality-induced luminescence. The term
"polarization™ itself refers to the asymmetry observed in the vibration
direction of the light wave relative to its propagation direction. While
natural white light contains a mixture of wavelengths and does not
exhibit polarization, polarized light can be classified into several types,
including linear, elliptical, circular, and partially polarized light.*® In
particular, circularly polarized light is defined by the circular trajectory
of the electric field vector as the light wave propagates. For circularly
polarized light, the magnitude of the electric field remains constant, but
its direction continuously changes over time, providing a unique and

identifiable property for certain materials.'*



Chapter 2: EXPERIMENTAL SECTION

2.1 Material and Instrumentation

Unless otherwise specified, chemicals were used exactly as received.
TLC was used to monitor reaction progress using a Merck 60 F254 pre-
coated silica gel plate (0.25 mm thickness), and the products were
judged in a UV chamber. All *H{*H} and *C{*H} and *'P{*H} NMR
spectra were collected using a Bruker 400/500 spectrometer in CDCls
and DMSO-ds at 400/500 MHz for 'H and BC{*H} NMR. Data for
proton NMR chemical shifts are shown in ppm downfield from
tetramethyl silane and are mentioned in delta () units. CDCls is used as
an internal standard, which shows a peak at 7.26 ppm. The 'H NMR
splitting patterns are singlet (s), doublet (d), triplet (t), and multiplet (m),
and the NMR data was processed by Mestre Nova.

2.2 Synthesis of oxazoline ring- based ligands (L1-
L4)

2.2.1 Synthesis of (R)-4-phenyl-2-(pyridin-2-yl)-4,5-
dihydrooxazole (L1)

In a two-neck r.b. 2-cyanopyridine (100 mg, 0.96 mmol) and R-
phenylglycinol (197.5 mg, 1.44 mmol) was added and dissolved in dry
MeOH under N2 atmosphere. After this, Na,COsz (102 mg, 0.96 mmol)
was added under reflux conditions at 80 "C. The reaction was monitored
using TLC. The mixture was extracted by DCM. The combined organic
phase was washed with brine, dried over Na SQOs, and filtered. The
filtrate was concentrated under vacuum the product was purified by
column chromatography using 20% EtOAc-Hexane and the product
(L1) was obtained of a yellow liquid with 70% yield.’®> LCMS (ESI)
m/z calculated for C14H13N2O[M+H]*: 225.0973, found: 225.1022. 'H
NMR (500 MHz, CDCls3) 6 8.73 (d,J=5.2 Hz, 1H), 8.16 (d, ] = 7.9 Hz,



1H), 7.79 (td, J = 7.8, 2.0 Hz,1H), 7.42 (dd, J = 7.6, 4.8 Hz, 2H), 7.38 —
7.27 (m, 5H), 5.46 (t, J = 9.4 Hz, 1H), 4.93 — 4.85 (m, 1H), 4.38 (t, J =
8.5 Hz, 1H). BC{'H} (126 MHz, CDCls) 164.09, 149.85, 148.24,
141.87, 137.51, 128.91, 127.87, 126.90, 126.46, 122.48, 66.82, 56.35.

NH N32CO3
@ . ' on _DryMeOH | O/Q
ZNCN 80 "C 15h

Scheme 1: Synthesis of L1

2.2.2 Synthesis of (S)-4-phenyl-2-(pyridin-2-yl)-4,5-
dihydrooxazole (L2)

In a two-neck r.b. 2-cyanopyridine (100 mg, 0.96 mmol) and S-
phenylglycinol (197.5 mg, 1.44 mmol) was added and dissolved in dry
MeOH under N2 atmosphere. After this, Na,COsz (102 mg, 0.96 mmol)
was added under reflux conditions at 80 "C. The reaction was monitored
using TLC. The mixture was extracted by DCM. The combined organic
phase was washed with brine, dried over Na>,SO4, and filtered. The
filtrate was concentrated under vacuum the product was purified by
column chromatography using 20% EtOAc-Hexane, the product (L2)
was obtained of a yellow liquid with 86% yield. LCMS (ESI) m/z
calculated for C14H13N2O[M+H]+ 225.1023, found: 225.1022. 'H NMR
(500 MHz, CDCls) 6 8.68 (s, 1H), 8.13 (s, 1H), 7.74 (s, 1H), 7.35 (s,
1H), 7.33-7.28 (m, 3H), 7.25-7.21 (m, 1H), 5.38 (s, 1H), 4.82 (s, 1H),
4.33 (s, 1H). BC{*H} (126 MHz, CDCIls) & 149.87, 146.76, 141.89,
136.82, 128.91, 126.92, 124.37, 70.44.

N N32CO3 _>
@\ . “_-OH_Dry McOH | 0/4
Z>CN ©/\/ 80 °C, 15h

Scheme 2: Synthesis of L2



2.2.3 Synthesis of (R)-4-phenyl-2-(pyridine-4-yl)-4,5-
dihydrooxazole (L3)

In a two-neck r.b. 4-cyanopyridine (2000 mg, 0.019 mmol) and R-
phenylglycinol (3980 mg, 0.029 mmol) was added and dissolved in dry
MeOH under N2 atmosphere. After this, Na,COs (2014 mg, 0.019
mmol) was added under reflux conditions at 80 "C. The reaction was
monitored using TLC. The mixture was extracted by DCM. The
combined organic phase was washed with brine, dried over Na,SO4, and
filtered. The filtrate was concentrated under vacuum the product was
purified by column chromatography using 20% EtOAc-Hexane and the
product (L3) was obtained of a yellow liquid with 41% vyield. *H NMR
(500 MHz, CDCls) 6 8.74 (d, J = 5.2 Hz, 2H), 7.86 (d, J = 6.0 Hz, 2H),
7.41-7.27 (m, 5H), 5.48 - 5.38 (m, 1H), 4.87 —4.79 (m, 1H), 4.31 (t, J
= 8.5 Hz, 1H). 13C{*H} (126 MHz, CDCls3) § 163.12, 150.44, 141.68,
135.02, 128.98, 127.99, 126.80, 122.26, 75.24, 70.39.

. NH, Na,CO; _ (3
Scheme 3: Synthesis of L3

2.2.4 Synthesis of (S)-4-phenyl-2-(pyridine-4-yl)-4,5-
dihydrooxazole (L4)

In a two-neck r.b. 4-cyanopyridine (2000 mg, 0.019 mmol) and S-
phenylglycinol (3980 mg, 0.029 mmol) was added and dissolved in dry
MeOH under N2 atmosphere. After this, Na,COs (2014 mg, 0.019
mmol) was added under reflux conditions at 80 "C. The reaction was
monitored using TLC. The mixture was extracted by DCM. The
combined organic phase was washed with brine, dried over Na,SOs, and
filtered. The filtrate was concentrated under vacuum the product was
purified by column chromatography using 20% EtOAc-Hexane and the
product (L4) was obtained of a yellow liquid with 47% yield. *H NMR
(500 MHz, CDCls) 6 8.73 (s, 2H), 7.85 (d, J = 5.5 Hz, 2H), 7.49 — 7.26
(m, 5H), 5.40 (t, J = 9.4 Hz, 1H), 4.81 (t, J = 9.4 Hz, 1H), 4.29 (t, J =

8



8.5 Hz, 1H). B3C{!H} (126 MHz, CDCls) & 163.01, 150.38, 141.63,
134.95, 128.90, 127.91, 126.72, 122.17, 75.16, 70.32.

NHZ N32CO3 _>
/@ N ©/\/ H DryMeOH O/(
° h
NCTF —80°C,on > C,6

Scheme 4: Synthesis of L4

2.3 Synthesis of complexes

2.3.1 Synthesis of C1

In a clean and dry Schlenk tube, Cu(CH3CN)4PFg (100 mg, 0.27 mmol)
and DPEphos (145.2 mg, 0.27 mmol) were added. To this, 10 ml of
DCM was added. L1 (60.5 mg, 0.27 mmol) was added to the reaction
mixture, which was stirred for 15 hours at room temperature. On
filtration, the filtrate was concentrated and hexane was added. A yellow
solid product obtained in 88% vyield. LCMS (ESI) m/z calculated for
CsoH40CUN20,P3Fs[M-PFs] 825.1856, found: 825.160. 'H NMR (500
MHz, CDCls) § 8.23 — 8.13 (m, 2H), 7.99 (d, J = 5.0 Hz, 1H), 7.53 —
7.46 (m, 2H), 7.45 —7.38 (m, 4H), 7.36 — 7.27 (m, 4H), 7.19 (9, J = 7.2
Hz, 5H), 7.10 (d, J = 7.5 Hz, 3H), 7.02 (t, J = 7.7 Hz, 3H), 6.86 (dt, J =
15.3, 7.3 Hz, 6H), 6.78 — 6.65 (m, 3H), 6.61 — 6.51 (m, 3H), 6.45 - 6.32
(m, 3H), 5.07 (d, J = 3.5 Hz, 2H), 4.51 — 4.41 (m, 1H) BC{*H} NMR
(126 MHz, CDCls) 6 165.68, 149.98, 142.53, 139.59, 138.66, 135.87,
134.17,134.07,133.33, 133.24, 133.14, 132.94, 132.82, 132.40, 132.32,
131.79, 130.82, 129.30, 129.09, 129.00, 128.84, 128.38, 127.64, 126.46,
125.03, 123.89, 123.77, 117.03, 69.27 3'P{!H} NMR (202 MHz,
CDCl3) 6 -13.02, -144.32.
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Scheme 5: Synthesis of C1

2.3.2 Synthesis of C2

In a clean and dry Schlenk tube, Cu(CH3CN)4PFg (100 mg, 0.27 mmol)
and DPEphos (145.2 mg, 0.27 mmol) were added. To this, 10 ml of
DCM was added. L2 (60.5 mg, 0.27 mmol) was added to the reaction
mixture, which was stirred for 15 hours. On filtration, the filtrate was
concentrated and hexane was added. A yellow solid product obtained in
88% yield. LCMS (ESI) m/z calculated for CsoH40CuN202P3Fs[M-PFé]
825.1856, found: 825.1656. 'H NMR (500 MHz, CDClz3)  8.18 (s, 2H),
7.99 (s, 1H), 7.49 (s, 2H), 7.42 (s, 5H), 7.28 (s, 4H), 7.19 (s, 6H), 7.09
(s, 3H), 7.02 (s, 3H), 6.88 (s, 6H), 6.68 (s, 2H), 6.56 (s, 3H), 6.39 (s,
3H), 5.08 (s, 2H), 4.47 (s, 1H) 3C{!H} NMR (126 MHz, CDCls) &
149.98, 142.52, 139.57, 135.86, 134.14, 133.33, 132.40, 131.78, 130.82,
130.39, 130.20, 130.06, 129.30, 129.16, 129.00, 128.90, 128.83, 128.43,
127.63, 126.44, 125.02, 123.90, 123.76, 117.04, 77.41, 76.91, 69.27.
31P{*H} NMR (202 MHz, CDCls) § -12.99, -144.29.

Ph Ph / \TPFs
O D+ o 0 ycncmonarn, Q
P P X DCM rt., 15h
Ph" “Ph Ph”" “Ph j
Ph Ph@

Scheme 6: Synthesis of C2

2.3.3 Synthesis of C3

In a clean and dry Schlenk tube, Cu(CH3sCN)4PFs (100 mg, 0.27 mmol)
and Xantphos (156.2 mg, 0.27 mmol) were added. To this, 10 ml of
DCM was added. L1 (60.5 mg, 0.27 mmol) was added to the reaction

mixture, which was stirred for 15 hours. On filtration, the filtrate was
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concentrated and hexane was added. A yellow solid product obtained in
83% yield. LCMS (ESI) m/z calculated for CssHaaCuN202P3Fs[M-PFs]
865.2169, found: 865.2088. *H NMR (500 MHz, CDClz) 5 8.18 (s, 1H),
7.67 —7.31 (m, 3H), 7.28 — 6.72 (m, 10H), 6.72 — 6.21 (m, 4H), 5.36 —
4.39 (m, 2H), 2.05 - 0.59 (m, 14H) ¥C{*H} NMR (126 MHz, CDCls)
o 149.19, 139.66, 138.64, 133.17, 132.55, 131.99, 131.11, 130.06,
128.92, 127.27, 125.25, 68.72, 35.91, 31.47, 25.16, 22.53, 14.00,
11.31.3'P{*H} NMR (202 MHz, CDCls) § -12.35, -13.82, -144.28.

_|1>F6
Pth PPh, Pth
O/( \ ICu(CH3CN)4]PF6 c
O ll
‘ ‘ + NN DCM r.t., 15h PPth 7

Scheme 7: Synthesis of C3

2.3.4 Synthesis of C4

In a clean and dry Schlenk tube, Cu(CH3CN)4PFe (100 mg, 0.27 mmol)
and Xantphos (156.2 mg, 0.27 mmol) were added. To this, 10 ml of
DCM was added. L2 (60.5 mg, 0.27 mmol) was added to the reaction
mixture, which was stirred for 15 hours. On filtration, the filtrate was
concentrated and hexane was added. A yellow solid product obtained in
64% yield. LCMS (ESI) m/z calculated for CssH4sCuN202P3Fs[M-PFs]
865.2169, found: 865.1938.*H NMR (500 MHz, CDCls) 6 8.17 (s, 1H),
7.61 (s, 1H), 7.48 (d, J = 48.8 Hz, 2H), 7.36 (s, 1H), 7.13 (s, 3H), 7.00
(s, 4H), 6.89 (s, 1H), 6.63 (s, 3H), 6.30 (s, 2H), 5.06 (s, 1H), 4.53 (s,
1H), 1.61 (s, 6H) *C{*H} NMR (126 MHz, CDClIs) & 149.70, 140.18,
139.15, 133.18, 132.86, 132.50, 130.81, 129.37, 128.79, 127.58, 125.76,
125.47, 69.23, 31.98, 31.71, 25.19, 23.05, 14.52. 31P{*H} NMR (202
MHz, CDCls) 6 -12.43,-13.02, -144.29

—|PF6
Pth PPh, PthN\
O/L ‘) [Cu(CH3CN)4]PF6
0 C @ DCM, r.t., 15h

PPh2

Scheme 8: Synthesis of C4
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2.3.5 Synthesis of C5

In a clean and dry Schlenk tube, Cu(CH3CN)4PFg (100 mg, 0.27 mmol)
and Johnphos (77.58 mg, 0.27 mmol) were added. To this, 10 ml of
DCM was added. L1 (58.24 mg, 0.27 mmol) was added to the reaction
mixture, which was stirred for 15 hours. On filtration, the filtrate was
concentrated and hexane was added. A yellow-green solid product
obtained in 75% vyield. LCMS (ESI) m/z calculated for
C34H39CUN20P2Fs[M-PFs] 585.2091, found: 585.2011. 'H NMR (500
MHz, CDCls) 8 8.17 (s, 1H), 8.06 (d, J = 7.8 Hz, 1H), 7.85 (s, 2H), 7.46
(s, 3H), 7.32 (s, 4H), 7.17 (s, 1H), 6.89 (s, 1H), 6.54 (s, 1H), 5.30 (s,
1H), 1.63 (s, 2H), 1.47 (d, J = 17.5 Hz, 1H), 1.31 (d, J = 14.5 Hz, 9H),
0.81 (s, 4H)..3C{*H} NMR (126 MHz, CDCl36 150.45, 140.49, 133.83,
132.62, 130.82, 129.51, 127.90, 127.62, 126.92, 124.97, 34.96, 34.84,
31.21, 30.03,28.41. 3'P{*H} NMR (202 MHz, CDCls) § -32.02, -
144.23.

o e

WL w Q
OA [Cu(CH;CN), P

O )\ \-N _)\© DCM, r.t., 15h

Scheme 9: Synthesis of C5

2.3.6 Synthesis of C6

In a clean and dry Schlenk tube, Cu(CH3sCN)4PFe (100 mg, 0.27 mmol)
and Johnphos (77.58 mg, 0.27 mmol) were added. To this, 10 ml of
DCM was added. L2 (58.24 mg, 0.27 mmol) was added to the reaction
mixture, which was stirred for 15 hours. On filtration, the filtrate was
concentrated and hexane was added. A yellow-green solid product
obtained in 73% vyield. LCMS (ESI) m/z calculated for
C34H39CuUN20P2Fs[M-PFs] 585.2091, found: 585.2011. *H NMR (500
MHz, CDCls) 6 8.17 (s, 1H), 8.08 (d, J = 7.6 Hz, 1H), 7.85 (s, 2H), 7.56
—7.28 (m, 8H), 7.18 (s, 2H), 5.32 (s, 1H), 4.64 (s, 1H), 1.57 (s, 7H), 1.32
(d, J = 14.3 Hz, 11H).3P{'H} NMR (202 MHz, CDCls) & -33.02, -
144.29
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Scheme 10: Synthesis of C6

2.3.7 Synthesis of C7

In a clean and dry Schlenk tube, Cul (100 mg, 0.53 mmol) and PPhs
(138.86 mg, 0.53 mmol) were added. To this, 3 ml of Toluene was
added. L1 (118.72 mg, 0.53 mmol) was added to the reaction mixture,
which was stirred for 15 hours. On filtration, the filtrate was
concentrated and hexane was added. A red solid product obtained in
58% vyield. LCMS (ESI) m/z calculated for Cs2Ho7CuN2OPI[M-I]
549.1151, found: 549.1064.*H NMR (500 MHz, CDClz) 6 8.17 (s, 1H),
7.61 (s, 1H), 7.48 (d, J = 48.8 Hz, 2H), 7.36 (s, 1H), 7.13 (s, 3H), 7.00
(s, 4H), 6.89 (s, 1H), 6.63 (s, 3H), 6.30 (s, 2H), 5.06 (s, 1H), 4.53 (s,
1H), 1.61 (s, 6H) *C{*H} NMR (126 MHz, CDClz3) & 149.70, 140.18,
139.15, 133.18, 132.86, 132.50, 130.81, 129.37, 128.79, 127.58, 125.76,
125.47, 69.23, 31.98, 31.71, 25.19, 23.05, 14.52.

I
O Ph3P /
— N Toluene /CU~N
_—
cul + PPh; + 4 N 110 °C, 15h ,N\ ’0
=

Scheme 11: Synthesis of C7

2.3.8 Synthesis of C8

In a clean and dry Schlenk tube, Cul (100 mg, 0.53 mmol) and PPh3
(138.86 mg, 0.53 mmol) were added. To this, 3 ml of Toluene was
added. L2 (118.72 mg, 0.53 mmol) was added to the reaction mixture,
which was stirred for 15 hours. On filtration, the filtrate was
concentrated and hexane was added. A red solid product obtained in
88% vyield. LCMS (ESI) m/z calculated for Cs2Ho7CuN2OPI[M-I]
549.1151, found: 549.089..!H NMR (500 MHz, CDCls § 8.50 (s, 1H),
7.95 (s, 1H), 7.90 (s, 1H), 7.45 (s, 2H), 7.34 (s, 3H), 7.28 (s, 4H), 7.24
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(s, 5H), 7.16 (s, 1H), 7.09 (s, 2H), 5.60 (s, 1H), 5.08 (s, 1H), 4.52 (s,
1H). BC{!H} NMR (126 MHz, CDCl3) § 164.54, 150.34, 137.48,
133.92, 133.81, 129.52, 128.82, 128.50, 128.43, 128.11, 127.43, 127.23,
123.68, 68.17, 67.03.

—) Toluene Phs \C/ 3
u-N
CllI + PPh3 + O/( @ 110 OC 15h N/ [’>
D
4

Scheme 12: Synthesis of C8

2.3.9 Synthesis of C9

In a clean and dry Schlenk tube, Cu(CH3CN)4PFe (100 mg, 0.27 mmol)
and Xantphos (156.2 mg, 0.27 mmol) were added. To this, 10 ml of
DCM was added. L3 (60.5 mg, 0.27 mmol) was added to the reaction
mixture, which was stirred for 15 hours. On filtration, the filtrate was
concentrated and hexane was added. A yellow solid product obtained in
83% yield. 'H NMR (500 MHz, CDCls)  8.27 (s, 2H), 7.76 (d, ] = 6.3
Hz, 2H), 7.61 (d, J = 7.6 Hz, 2H), 7.32 (dt, J = 19.8, 7.6 Hz, 4H), 7.21
(dt, J = 16.2, 7.6 Hz, 8H), 7.13 (dd, J = 15.6, 7.9 Hz, 6H), 7.01 (h, J =
5.9 Hz, 8H), 6.63 — 6.55 (m, 2H), 5.37 — 5.24 (m, 1H), 4.94 (t, J = 9.7
Hz, 1H), 4.43 (t,J=9.2 Hz, 1H), 1.68 (s, 6H). 1*C{*H} NMR (126 MHz,
CDCls) 6 164.02, 154.27, 150.49, 133.48, 133.29, 133.23, 133.17,
132.99, 132.93, 132.87, 131.65, 130.68, 130.54, 129.15, 128.61, 127.72,
127.08, 125.43, 123.64, 119.17, 70.49, 35.96, 31.71, 28.64. 3'P{'H}

NMR (101 MHz, CDCI3) 6 -14.61, -144.28.
N _|PFf,

_|PF(,
PPh PPh
1 ? [Cu (CH3CN)4]PF6 C“—N
O O + VQ/( DCM r.t., 15h 5 Pth Pth

Scheme 13: Synthesis of C9

2.3.10 Synthesis of C10

In a clean and dry Schlenk tube, Cu(CH3sCN)4PFs (100 mg, 0.27 mmol)
and Xantphos (156.2 mg, 0.27 mmol) were added. To this, 10 ml of
DCM was added. L4 (60.5 mg, 0.27 mmol) was added to the reaction
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mixture, which was stirred for 15 hours. On filtration, the filtrate was
concentrated and hexane was added. A yellow solid product obtained in
83% yield. 'H NMR (500 MHz, CDCIls) 5 8.27 (s, 2H), 7.76 (d, ] = 6.3
Hz, 2H), 7.61 (d, J = 7.6 Hz, 2H), 7.32 (dt, J = 19.8, 7.6 Hz, 4H), 7.21
(dt, J=16.2, 7.6 Hz, 8H), 7.13 (dd, J = 15.6, 7.9 Hz, 6H), 7.01 (h, J =
5.9 Hz, 8H), 6.63 — 6.55 (m, 2H), 5.37 — 5.24 (m, 1H), 4.94 (t, J = 9.7
Hz, 1H), 4.43 (t, J=9.2 Hz, 1H), 1.68 (s, 6H). BC{*H} NMR (126 MHz,
CDCls) 6 164.02, 154.27, 150.49, 133.48, 133.29, 133.23, 133.17,
132.99, 132.93, 132.87, 131.65, 130.68, 130.54, 129.15, 128.61, 127.72,
127.08, 125.43, 123.64, 119.17, 70.49, 35.96, 31.71, 28.64..3'P{*H}

NMR (101 MHz, CDCls) 6 -14.61, -144.28
l\l \_|PF6

Ph, \—

TP,

Ph,
P P
PPh, PPh, o O N _N7Q O N —N@—(U
o )., AJCuCHCN,IPE 0 TN o o (TN ]
+ N/ N DCM, r.t, 15h & O Pth© N O PPh, @

Scheme 14: Synthesis of C10

2.3.11 Synthesis of C11

In a clean and dry Schlenk tube, Cu(CH3sCN)4PFe (100 mg, 0.27 mmol)
and Johnphos (77.58 mg, 0.27 mmol) were added. To this, 10 ml of
DCM was added. L3 (58.24 mg, 0.27 mmol) was added to the reaction
mixture, which was stirred for 15 hours. On filtration, the filtrate was
concentrated and hexane was added. A yellow solid product obtained in
76% yield. *H NMR (500 MHz, CDClz) & 8.47 — 8.36 (m, 2H), 7.93 (d,
J=6.0Hz, 2H), 7.81 (t, J = 7.6 Hz, 1H), 7.56 (t, J = 7.6 Hz, 1H), 7.49
(p,J=6.4,5.8 Hz, 2H), 7.36 (t, = 7.5 Hz, 1H), 7.30 (h, J = 7.0, 6.3 Hz,
5H), 7.24 (s, 2H), 7.23 — 7.20 (m, 1H), 7.11 (t, J = 7.6 Hz, 1H), 5.35 (t,
J=9.4 Hz, 1H), 4.95 (t, J = 9.6 Hz, 1H), 4.37 (t, J = 8.6 Hz, 1H), 1.24
(d,J=15.1Hz, 9H), 1.14 (d, J = 15.1 Hz, 9H)..3C{*H} NMR (126 MHz,
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CDCl3) § 150.44, 133.45, 132.07, 131.17, 131.02, 129.34, 128.65,
127.99, 127.55, 127.21, 123.92, 70.40, 35.19, 35.05, 30.71, 30.64,
30.51, 30.45. 3'P{'H} NMR (101 MHz, CDCls) & -33.09, -144.23.

—|PF6 —|PF6
O L [Cu(CH,CN)PF P\ LE
+ N@AN DOM, rt, 15h N/ 0 C"\O/(}\Q

Scheme 15: Synthesis of C11

2.3.12 Synthesis of C12

In a clean and dry Schlenk tube, Cu(CH3CN)4PFg (100 mg, 0.27 mmol)
and Johnphos (77.58 mg, 0.27 mmol) were added. To this, 10 ml of
DCM was added. L3 (29.12 mg, 0.13 mmol) was added to the reaction
mixture, which was stirred for 15 hours. On filtration, the filtrate was
concentrated and hexane was added. A yellow solid product obtained in
70% yield. *H NMR (500 MHz, CDCls3) 6 8.43 (d, J = 6.6 Hz, 2H), 7.99
(d, J = 6.6 Hz, 2H), 7.87 — 7.81 (m, 2H), 7.63 (t, J = 7.6 Hz, 2H), 7.52
(9,J=8.7,7.2 Hz, 4H), 7.47 (t,J = 7.8 Hz, 2H), 7.37 (d, J = 8.2 Hz, 1H),
7.35(d, J =4.1 Hz, 2H), 7.32 (s, 4H), 7.31 — 7.28 (m, 4H), 7.28 — 7.27
(m, 1H), 7.26 — 7.23 (m, 1H), 5.32 (t, J = 9.3 Hz, 1H), 5.12 (t, J = 9.8
Hz, 1H), 4.52 (t, J = 8.7 Hz, 1H), 1.27 (d, J = 15.0 Hz, 18H), 1.15 (d, J
= 15.0 Hz, 18H).23C{H} NMR (126 MHz, CDCls) & 150.76, 149.38,
149.22,142.37,138.74, 135.43, 133.43, 132.10, 132.04, 131.22, 131.14,
131.08,129.78, 129.45, 128.11, 127.88, 127.84, 127.72, 127.56, 127.47,
127.33,124.71, 117.54, 70.36, 35.16, 31.72, 30.68, 30.38, 25.41, 22.79,
14.25. 31P{H} NMR (101 MHz, CDCls) & -32.33, -144.29

+ U/E‘)\Q [Cu(CH;CN),|PF @\[
R NS N "DCM, rt,, 150
%’ )V N CP
;
Scheme 16: Synthesis of C12
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2.3.13 Synthesis of C13

In a clean and dry Schlenk tube, Cu(CH3CN)4PFe (100 mg, 0.27 mmol)
and Johnphos (77.58 mg, 0.27 mmol) were added. To this, 10 ml of
DCM was added. L3 (116.48 mg, 0.52 mmol) was added to the reaction
mixture, which was stirred for 15 hours. On filtration, the filtrate was
concentrated and hexane was added. A yellow solid product obtained in
68% yield. *H NMR (500 MHz, CDCl3) 5 8.53 — 8.38 (m, 2H), 7.92 (d,
J=5.0 Hz, 2H), 7.82 (td, J = 6.3, 2.2 Hz, 1H), 7.55 (t, J = 7.6 Hz, 1H),
7.49 (t, J = 6.3 Hz, 2H), 7.34 (td, J = 13.2, 11.7, 5.9 Hz, 5H), 7.28 (d, J
= 4.3 Hz, 1H), 7.27 — 7.23 (m, 3H), 7.08 (t, J = 7.6 Hz, 1H), 5.37 (t, J =
9.4 Hz, 1H), 4.91 (t, J = 9.5 Hz, 1H), 4.35 (t, J = 8.5 Hz, 1H), 1.26 (d, J
= 15.1 Hz, 9H), 1.17 (d, J = 15.1 Hz, 9H)..3C{*H} NMR (126 MHz,
CDCls) 6 150.40, 149.36, 149.20, 142.44, 140.72, 133.47, 132.08,
132.03,131.19, 131.03, 129.24, 128.47, 127.99, 127.94, 127.91, 127.54,
127.09, 123.64, 70.42, 35.21, 35.01, 31.70, 30.73, 30.66, 30.49,
25.40.3'P{*H} NMR (101 MHz, CDCls) §-33.02, -144.19.
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Scheme 17: Synthesis of C13

2.3.14 Synthesis of C14

In a clean and dry Schlenk tube, Cu(CH3CN)4PFg (100 mg, 0.27 mmol)
and Johnphos (77.58 mg, 0.27 mmol) were added. To this, 10 ml of
DCM was added. L4 (58.24 mg, 0.27 mmol) was added to the reaction
mixture, which was stirred for 15 hours. On filtration, the filtrate was
concentrated and hexane was added. A yellow solid product obtained in
77% yield. 'H NMR (500 MHz, CDCls) 6 8.37 (s, 2H), 7.90 (s, 2H),
7.80 (s, 1H), 7.46 (d, J = 31.0 Hz, 4H), 7.29 (d, J = 20.4 Hz, 4H), 7.21
(d, J = 7.6 Hz, 3H), 7.15 (s, 1H), 7.09 (s, 1H), 5.31 (t, J = 9.5 Hz, 1H),
4.90 (t, J = 9.7 Hz, 1H), 4.30 (t, J = 8.8 Hz, 1H), 1.19 (d, J = 15.0 Hz,
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9H), 1.10 (d, J = 15.0 Hz, 9H). 3C{'H} NMR (126 MHz, CDCls) &
150.32, 149.19, 149.03, 142.51, 140.31, 136.13, 133.48, 131.91, 131.01,
130.76, 129.21, 128.47, 127.86, 127.78, 127.30, 127.09, 70.27, 35.07,
31.59, 30.53, 25.30, 22.66, 14.16. 3P{'H} NMR (101 MHz, CDCls) &
-32.15, -144.19.

_|PF6 PR
. , L [CUCHLCN)PF, Y\E
%)PV * N@/{“_) DM, e, 15h C“\N@/((Q',Q

Scheme 18: Synthesis of C14

Chapter 3: RESULT AND DISCUSSION

3.1 Characterization

3.1.1 Characterization of ligands
3.1.1.1 Characterization of L1

L1 was synthesised according to scheme 1. In the reaction, dry MeOH
used as a solvent. The final product was pale yellow liquid compound
with an 70 % vyield. The obtained product was characterised by Mass
spectrometry (Figure 4) and 'H and *C{*H} NMR spectroscopy
(Figures 5 and 6). Peaks of most deshielded hydrogen were observed
near nine ppm, thereby confirming that ligand is formed.
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Figure 4: Mass spectrogram of L1
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Figure 5: *H NMR spectra of L1
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Figure 6: *C{*H} NMR spectra of L1

3.1.1.2 Characterization of L2

L2 was synthesised according to scheme 2. In the reaction, dry MeOH
used as a solvent. The final product was pale yellow liquid compound
with an 86 % yield. The obtained product was characterised by Mass
spectrometry (Figure 7) and 'H and *C{*H} NMR spectroscopy
(Figures 8 and 9). Peaks of most deshielded hydrogen were observed

near nine ppm, thereby confirming that ligand is formed.
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Figure 8: '"H NMR spectra of L2
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Figure 9: ®*C{*H} NMR spectra of L2
3.1.1.3 Characterization of L3

L3 was synthesised according to scheme 3. In the reaction, dry MeOH
used as a solvent. The final product was pale white solid compound with
an 41 % vyield. The obtained product was characterised by *H and
BC{'H} NMR spectroscopy (Figures 10 and 11). Peaks of most
deshielded hydrogen were observed near nine ppm, thereby confirming

that ligand is formed.
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Figure 11: *C{*H} NMR spectra of L3

3.1.1.4 Characterization of L4

L4 was synthesised according to scheme 4. In the reaction, dry MeOH
used as a solvent. The final product was pale white solid compound with

a 47 % yield. The obtained product was characterised by *H and *C{*H}
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NMR spectroscopy (Figures 12 and 13). Peaks of most deshielded

hydrogen were observed near nine ppm, thereby confirming that ligand

is formed.
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Figure 13: 3C{'H} NMR spectra of L4

3.1.2 Characterization of complexes

3.1.2.1 Characterization of C1
The complex formation of C1 was confirmed by LCMS (Figure. 14).

The complex was yellow in colour when synthesised in the solid state
with an yield of 88%. C1 had good solubility in most of the solvents. It
was further characterized by different nuclei NMR 'H (Figure 15),
BC{H} (Figure 16), 3'P{*H} (Figure 17).
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Figure 14: Mass spectrogram of C1
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Figure 18: SCXRD of C1

3.1.2.2 Characterization of C2
The complex formation of C2 was confirmed by LCMS (Figure. 19).

The complex was yellow in colour when synthesised in the solid state
with an yield of 83%. C2 had good solubility in most of the solvents. It
was further characterized by different nuclei NMR *H (Figure 20),
BC{H} (Figure 21), **P{*H} (Figure 22).
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Figure 19: Mass spectrogram of C2
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Figure 22: 3'P{'"H} NMR spectra of C2
3.1.2.3 Characterization of C3
The complex formation of C3 was confirmed by LCMS (Figure. 23).
The complex was yellow in colour when synthesised in the solid state
with an yield of 83%. C3 had good solubility in most of the solvents. It
was further characterized by different nuclei NMR H (Figure 24),
BC{H} (Figure 25), *'P{*H} (Figure 26). The molecular structure of
the complex C3 is confirmed using the single-crystal X-ray diffraction
technique (Figure. 27). The crystal structure has a distorted tetrahedral
geometry with a P2 space group around the copper center with
coordination to two P atoms of Xantphos ligand and two N atoms of
chiral ligand occupying the total four coordinate sites of Cu center. The

structure has a monoclinic crystal system.
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Figure 27: Single crystal diffracted structure of complex C3. Selected
bond lengths (A) and angles (°): Cul-P1; 2.276(2), Cul-P2; 2.279(2),
Cul-N1; 2.130(8), Cul-N2; 2.066(7), P1-Cul-P2; 114.65(9), N1-Cul-
P1; 116.4(2), N1-Cul-P2; 105.14(19), N2-Cul-P1; 118.05(19), N2-
Cul-P2; 117.01(19), N2-Cul-N1; 80.0(3).

3.1.2.4 Characterization of C4
The complex formation of C4 was confirmed by LCMS (Figure. 28).

The complex was yellow in colour when synthesised in the solid state
with an yield of 64%. C4 had good solubility in most of the solvents. It
was further characterized by different nuclei NMR *H (Figure 29),
BC{*H} (Figure 30), *'P{*H} (Figure 31). The molecular structure of
the complex C3 is confirmed using the single-crystal X-ray diffraction
technique (Figure. 32). The crystal structure has a distorted tetrahedral
geometry with a P2 space group around the copper center with
coordination to two P atoms of Xantphos ligand and two N atoms of
chiral ligand occupying the total four coordinate sites of Cu center. The

structure has a monoclinic crystal system.
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Figure 31: 3'P{'H} NMR spectra of C4
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Figure 32: Single crystal diffracted structure of complex C4. Selected
bond lengths (A) and angles (°): Cul-P1; 2.273(19), Cul-P2;
2.278(17), Cul-N1; 2.161(6), Cul-N2; 2.067(5), P1-Cul-P2;

115.20(7), N1-Cul-P1; 106.03(16), N1-Cul-P2; 115.74(16), N2-Cul-
P1; 116.18(16), N2-Cul-P2; 118.64(16), N2-Cul-N1; 78.9(2)

3.1.2.5 Characterization of C5
The complex formation of C5 was confirmed by LCMS (Figure. 33).

The complex was green yellow in colour when synthesised in the solid
state with an yield of 75%. C5 had good solubility in most of the
solvents. It was further characterized by different nuclei NMR H
(Figure 34), *C{*H} (Figure 35), 3*P{*H} (Figure 36).
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Figure 33: Mass spectrogram of C5
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Figure 36: 3'P{'"H} NMR spectra of C5
3.1.2.6 Characterization of C6
The complex formation of C6 was confirmed by LCMS (Figure. 37).
The complex was green yellow in colour when synthesised in the solid
state with an yield of 73%. C6 had good solubility in most of the
solvents. It was further characterized by different nuclei NMR H
(Figure 38), 3P{*H} (Figure 39).
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Figure 37: Mass spectrogram of C6
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Figure 39: 3'P{'H} NMR spectra of C6
3.1.2.7 Characterization of C7
The complex formation of C7 was confirmed by LCMS (Figure. 40).
The complex was red in colour when synthesised in the solid state with
an yield of 58%. C7 had good solubility in most of the solvents. It was
further characterized by different nuclei NMR H (Figure 41), *C{*H}
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(Figure 42). The molecular structure of the complex C7 is confirmed
using the single-crystal X-ray diffraction technique (Figure. 43). The
crystal structure has a distorted tetrahedral geometry with P21212; space
group around the copper center with coordination to two N atoms of
chiral ligand, one P atom of triphenylphosphine ligand and I- occupying
the forth coordinate site of Cu center. The structure has an orthorhombic

crystal system.
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Figure 40: Mass spectrogram of C7
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Figure 41: "H NMR spectra of C7
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Figure 42: °C{'"H} NMR spectra of C7

Figure 43: Single crystal diffracted structure of complex C7. Selected
bond lengths (A) and angles (°): 11-Cul; 2.5921(9), Cul-P1;
2.2190(16), Cul-N1; 2.057(5), Cul-N2; 2.297(6), P1-Cul-Il;

118.83(5), P1-Cul-N2; 107.12(15), N1-Cul-I1; 108.40(15), N1-Cul-
P1; 124.36(15), N1-Cul-N2; 76.7(2), N2-Cul-I1; 113.52(15).
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3.1.2.8 Characterization of C8
The complex formation of C8 was confirmed by LCMS (Figure. 44).

The complex was red in colour when synthesised in the solid state with
an yield of 88% .C8 had good solubility in most of the solvents. It was
further characterized by different nuclei NMR *H (Figure 45), *C{*H}
(Figure 46).
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Figure 44: Mass spectrogram of C8
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Figure 45: 'H NMR spectra of C8
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Figure 46: °C {'"H} NMR spectra of C8
3.1.2.9 Characterization of C9

The complex formation of C9 was confirmed by different nuclei NMR
'H (Figure 47), 3C{*H} (Figure 48), 3'P{*H} (Figure 49). The complex
was yellow in colour when synthesised in the solid state with an yield of

83%. C9 had good solubility in most of the solvents.
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Figure 47: '"H NMR spectra of C9
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Figure 48: °"C{'H} NMR spectra of C9
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Figure 49: *'P{'H} NMR spectra of C9
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3.1.2.10 Characterization of C10
The complex formation of C10 was confirmed by different nuclei NMR

H (Figure 50), 3C{H} (Figure 51), 3'P{*H} (Figure 52). The complex
was yellow in colour when synthesised in the solid state with an yield of

89%. C10 had good solubility in most of the solvents.
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Figure 50: 'H NMR spectra of C10
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Figure 51: *C{'H} NMR spectra of C10
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Figure 52: *'P{'H} NMR spectra of C10
3.1.2.11 Characterization of C11
The complex formation of C11 was confirmed by different nuclei
NMR *H (Figure 53), *C{*H} (Figure 54),3'P{*H} (Figure 55). The
complex was yellow in colour when synthesised in the solid state with
an yield of 76%. C11 had good solubility in most of the solvents.
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Figure 55: *'P{'H} NMR spectra of C11

Figure 56: SCXRD of C11

3.1.2.12 Characterization of C12
The complex formation of C12 was confirmed by different nuclei

NMR *H (Figure 57), *C{*H} (Figure 58), 3'P{*H} (Figure 59). The
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complex was yellow in colour when synthesised in the solid state with

an yield of 70%. C12 had good solubility in most of the solvents.
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Figure 59: 3'P{'H} NMR spectra of C12

3.1.2.13 Characterization of C13
The complex formation of C13 was confirmed by different nuclei

T
-150

NMR *H (Figure 60), **C{*H} (Figure 61), 3'P{*H} (Figure 62). The

complex was yellow in colour when synthesised in the solid state with

an yield of 68%. C13 had good solubility in most of the solvents.
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Figure 62: 3'P{'H} NMR spectra of C13
3.1.2.14 Characterization of C14
The complex formation of C14 was confirmed by different nuclei
NMR *H (Figure 63), **C{*H} (Figure 64), 3'P{*H} (Figure 65). The
complex was yellow in colour when synthesised in the solid state with
an yield of 77%. C14 had good solubility in most of the solvents.
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Figure 63: 'H NMR spectra of C14
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Figure 64: °C{'"H} NMR spectra of C14
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Figure 65: *'P{'H} NMR spectra of C14
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3.2 Photoluminescent Studies

3.2.1 Photoluminescence properties of Cu(l) Complexes

3.2.1.1 UV-Vis and PL spectra of C1
UV-Vis and excitation-emission spectra have been recorded to study the

photophysical properties of complex C1 (Figure. 66). The PL spectra
were recorded in both solid as well as solution state for better
understanding of the complex. In UV-Vis spectra two peaks observed
(1) 280 nm due to n—=* transition (ii) 400 nm due to MLCT transition.
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Figure 66: (a) UV-Vis spectra of C1, PL spectra of C1 (b) solid state
(c) solution state

3.2.1.2 UV-Vis and PL spectra of C2
UV-Vis and excitation-emission spectra have been recorded to study the

photophysical properties of complex C2 (Figure. 67). The PL spectra
were recorded in both solid as well as solution state for better
understanding of the complex. In UV-Vis spectra two peaks observed
(1) 280 nm due to t—m* transition (ii) 390 nm due to MLCT transition.
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Figure 67: (a) UV-Vis spectra of C2, PL spectra of C2 (b) solid state

(c) solution state
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3.2.1.3 UV-Vis and PL spectra of C3
UV-Vis and excitation-emission spectra have been recorded to study the

photophysical properties of complex C3 (Figure. 68). The PL spectra
were recorded in both solid as well as solution state for better
understanding of the complex. In UV-Vis spectra two peaks observed
(1) 280 nm due to m—x* transition (ii) 385 nm due to MLCT transition.
The lifetime of the complex has been observed 6.71 ps and quantum

yield around 09%.
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Figure 68: (a) UV-Vis spectra of C3, PL spectra of C3 (b) solid state

(c) solution state

3.2.1.4 UV-Vis and PL spectra of C4
UV-Vis and excitation-emission spectra have been recorded to study the

photophysical properties of complex C4 (Figure. 69). The PL spectra
were recorded in both solid as well as solution state for better
understanding of the complex. In UV-Vis spectra two peaks observed
(i) 280 nm due to T—7* transition (ii) 400 nm due to MLCT transition.
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Figure 69: (a) UV-Vis spectra of C4, PL spectra of C4 (b) solid state

(c) solution state

3.2.1.5 UV-Vis and PL spectra of C5
UV-Vis and excitation-emission spectra have been recorded to study the

photophysical properties of complex C5 (Figure. 70). The PL spectra
were recorded in both solid as well as solution state for better
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understanding of the complex. In UV-Vis spectra two peaks observed
(i) 300 nm due to n—n* transition (ii) 400 nm due to MLCT transition.
The lifetime of the complex has been observed 5.07 us and quantum

yield around 13%.
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Figure 70: (a) UV-Vis spectra of C5, PL spectra of C5 (b) solid state
(c) solution state

3.2.1.6 UV-Vis and PL spectra of C6
UV-Vis and excitation-emission spectra have been recorded to study the

photophysical properties of complex C6 (Figure. 71). The PL spectra
were recorded in both solid as well as solution state for better
understanding of the complex. In UV-Vis spectra two peaks observed
(1) 300 nm due to m—m* transition (ii) 405 nm due to MLCT transition.
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Figure 71: (a) UV-Vis spectra of C6, PL spectra of C6 (b) solid state

(c) solution state

3.2.1.7 UV-Vis and PL spectra of C7
UV-Vis and excitation-emission spectra have been recorded to study the

photophysical properties of complex C7 (Figure. 72). The PL spectra
were recorded in both solid as well as solution state for better
understanding of the complex. In UV-Vis spectra two peaks observed
(1) 280 nm due to n—=* transition (ii) 400 nm due to MLCT transition.
The lifetime of the complex has been observed 2.69 ps and quantum

yield around 38%.
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Figure 72: (a) UV-Vis spectra of C7, PL spectra of C7 (b) solid state

(c) solution state

3.2.1.8 UV-Vis and PL spectra of C8
UV-Vis and excitation-emission spectra have been recorded to study the

photophysical properties of complex C8 (Figure. 73). The PL spectra
were recorded in both solid as well as solution state for better
understanding of the complex. In UV-Vis spectra two peaks observed
(1) 280 nm due to m—m* transition (ii) 390 nm due to MLCT transition.
The lifetime of the complex has been observed 3.03 ps and quantum
yield around 36%.
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Figure 73: (a) UV-Vis spectra of C8, PL spectra of C8 (b) solid state

(c) solution state

3.2.1.9 UV-Vis and PL spectra of C9
UV-Vis and excitation-emission spectra have been recorded to study the

photophysical properties of complex C9 (Figure. 74). The PL spectra
were recorded in both solid as well as solution state for better
understanding of the complex. In UV-Vis spectra two peaks observed
(1) 305 nm due to m—=* transition (ii) 385 nm due to MLCT transition.
The emission lifetime of the complex has been observed 4.34 us and
quantum yield around 08% at room temperature.

56



(a) (b) ()

Abs] Lo A _:‘ 10 b
#,‘ \ —Em i
-~ 08 f \ - 03
3 3
2 ! \A £
E o J \ £
: \ E
3 o4 \ T 04
\ E
H s
: 0z 5 02
; z
w0 0o
! 500 00 Y o
" Wavelength(am) av

Wavelongthinm)

Figure 74: (a) UV-Vis spectra of C9, PL spectra of C9 (b) solid state

(c) solution state

3.2.1.10 UV-Vis and PL spectra of C10
UV-Vis and excitation-emission spectra have been recorded to study the

photophysical properties of complex C10 (Figure. 75). The PL spectra
were recorded in both solid as well as solution state for better
understanding of the complex. In UV-Vis spectra two peaks observed
(1) 290 nm due to t—m* transition (ii) 395 nm due to MLCT transition.
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Figure 75: (a) UV-Vis spectra of C10, PL spectra of C10 (b) solid

state (c) solution state

3.2.1.11 UV-Vis and PL spectra of C13
UV-Vis and excitation-emission spectra have been recorded to study the

photophysical properties of complex C13 (Figure. 76). The PL spectra
were recorded in both solid as well as solution state for better
understanding of the complex. In UV-Vis spectra two peaks observed
(i) 300 nm due to t—m* transition (ii) 385 nm due to MLCT transition.
The lifetime of the complex has been observed 2.82 us and quantum
yield around 06%.
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Figure 76: (a) UV-Vis spectra of C13, PL spectra of C13 (b) solid

state (c) solution state

3.2.1.12 UV-Vis and PL spectra of C14
UV-Vis and excitation-emission spectra have been recorded to study the

photophysical properties of complex C14 (Figure. 77). The PL spectra
were recorded in both solid as well as solution state for better
understanding of the complex. In UV-Vis spectra two peaks observed

(i) 310 nm due to n—n* transition (ii) 400 nm due to MLCT transition.
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Figure 77: (a) UV-Vis spectra of C14, PL spectra of C14 (b) solid

state (c) solution state

3.3 Chiroptical Studies

3.3.1 Chiroptical properties of Cu(l) Complexes

3.3.1.1 CD spectra of C1-C2
Circular Dichroism spectra has been recorded of complex C1 and C2

in DCM solvent. The (Figure. 78) shows a mirror image relationship

between two enantiomer complexes at different absorption regions.
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Figure 78: CD spectra of C1 and C2

3.3.1.2 CD spectra of C3-C4
Circular Dichroism spectra has been recorded of complex C3 and C4

in DCM solvent. The (Figure. 79) shows a mirror image relationship

between two enantiomer complexes at different absorption regions.
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Figure 79: CD spectra of C3 and C4

3.3.1.3 CD spectra of C7-C8
Circular Dichroism spectra has been recorded of complex C7 and C8

in DCM solvent. The (Figure. 80) shows a mirror image relationship

between two enantiomer complexes at different absorption regions.
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Figure 80: CD spectra of C7 and C8

Chapter 4: CONCLUSION

4.1 CONCLUSION

Herein, we have successfully synthesized and characterized four chiral
(R and S) oxazoline based ligands (L1-L4). Furthermore, we have
further synthesized fourteen (C1-C14) Cu(l) chiral complexes. Most of
the complexes were characterized by LCMS and multi-nuclear (*H,
BC{H}, *P{*H}) NMR spectroscopy. The molecular structures of
some complexes were also authenticated by SCXRD analysis. Further
photophysical and chiroptical properties of these complexes were
studied. Preliminary analysis suggests that the use of bulky phosphine
in the synthesis of three-coordinate complexes and complexes with
copper iodide gives better quantum yield and could be suitable for

further applications.
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