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Abstract

This study investigates gravitational waves as linear perturbations in curved space-
times. Starting from the linearized Einstein equations, we derive gravitational wave
equations in both spatially flat and closed FLRW universes, analyzing their evo-
lution in expanding and contracting scenarios. The study further extends to a
five-dimensional anisotropic cosmological model, where gravitational wave behavior
is examined using separation of variables and gauge conditions. The results illus-
trate how spacetime geometry influences wave propagation, offering insights into
gravitational dynamics beyond flat backgrounds.





Conventions

In this work, certain mathematical conventions are used and the analysis relies on
standard results from Einstein’s framework of gravitation.

• Metric signature is mostly positive, i.e., (−,+,+,+).

• Throughout this work, natural units are used by setting the gravitational con-
stant and the speed of light equal to one (G = c = 1).

• Indices corresponding to spatial directions are represented by Latin symbols,
e.g., x., whereas spacetime 4-vectors (e.g., t, x) are denoted by Greek indices
(e.g., µ, ν). Unless otherwise stated, the Einstein summation convention is
assumed.
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Chapter 1

Introduction

Albert Einstein first predicted gravitational waves in 1916 as a natural outcome of
his general theory of relativity, represent a profound aspect of modern astrophysics
and theoretical physics. Gravitational waves are ripples in the fabric of spacetime
generated by the movement or acceleration of massive bodies, such as binary systems
of neutron stars or black holes. As these cosmic events unfold, they emit ripples that
travel at the speed of light, transmitting crucial information about their sources and
the underlying properties of gravity.

Gravitational waves were purely theoretical for almost 100 years until they were
directly observed by the Laser Interferometer Gravitational Wave Observatory (LIGO)
in September 2015. This landmark achievement confirmed Einstein’s predictions
and opened a new observational window into the universe, ushering in the field of
gravitational wave astronomy. Since then, multiple events have been detected, pro-
viding insights into phenomena such as black hole mergers, neutron star collisions,
and potentially offering a glimpse into the early universe.

The study of gravitational waves poses both theoretical and experimental chal-
lenges. Understanding their propagation requires a deep comprehension of general
relativity, while the detection relies on highly sensitive instruments capable of mea-
suring minuscule changes in distance caused by passing waves. The implications
of gravitational wave observations extend beyond astrophysics; they touch upon
fundamental questions regarding the nature of spacetime, the validity of general
relativity in extreme conditions, and the possibility of new physics beyond our cur-
rent understanding.

This report aims to explore the theoretical foundations of gravitational waves,
detailing their generation, propagation, and detection.

1.1 What Makes Gravitational Waves Important?

The detection of gravitational waves is crucial for two primary reasons. First, it
promises to revolutionize observational astronomy by providing a new perspective
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on the universe. Gravitational waves carry information distinct from that of elec-
tromagnetic waves, enhancing our understanding of cosmic phenomena. This new
avenue will allow scientists to study the intricate structure of spacetime around
black holes, directly observe the formation and mergers of black holes and neu-
tron stars, search for rapidly spinning neutron stars, explore the early moments of
the universe, and investigate the supermassive black holes residing at the centers
of galaxies. These potential discoveries represent just a glimpse of the significant
advancements expected in the early 21st century. Second, the confirmation of gravi-
tational waves will validate a key prediction of general relativity made 85 years ago,
deepening our understanding of fundamental physics. Additionally, by comparing
the arrival times of light and gravitational waves from events such as supernovae,
we can test Einstein’s assertion that both travel at the same speed and confirm their
predicted polarization as described by general relativity.

1.2 Methods for Detecting Gravitational Waves

Gravitational waves are observed through the use of extremely precise and sensitive
instruments called interferometers, with the most prominent examples being Laser
Interferometer Gravitational Wave Observatory (LIGO) along with the Virgo de-
tector. The core technology behind gravitational wave detection is interferometry.
Interferometers use the principle of interference of light beams to measure minute
changes in distance.
LIGO and Virgo consist of two long arms arranged in an L-shape, each several
kilometers long.A powerful laser beam is split into two beams that travel down the
two arms of the interferometer. Each beam reflects off mirrors located at the ends
of the arms and returns to a central point where they recombine.When a gravita-
tional wave passes through the detector, it distorts spacetime, causing one arm of
the interferometer to stretch while the other contracts. This change in length is
incredibly small—on the order of one-thousandth the diameter of a proton. The
interference pattern of the combined laser beams is sensitive to these changes, any
variation indicates that a gravitational wave has passed through.The detected sig-
nal is processed using advanced algorithms to distinguish genuine gravitational wave
events from background noise. Researchers study the wave’s frequency and strength
to gain insights into their origins, including events like black hole or neutron star
mergers.
LIGO operates with two detectors located in different geographic locations (one in
Louisiana and the other in Washington) to improve the accuracy of the signals and
help triangulate the source of the gravitational waves. Virgo, located in Italy, col-
laborates with LIGO to enhance detection capabilities.Improvements in technology,
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such as increased laser power, better mirror quality, and active vibration isolation
systems, have enhanced sensitivity. Future detectors, like the planned Einstein Tele-
scope and LISA (Laser Interferometer Space Antenna), aim to detect a wider range
of gravitational wave frequencies and sources.

Figure 1.1: A simplified schematic of the LIGO detector.

1.3 Properties of gravitational waves

Gravitational waves are transverse in nature, with their oscillations occurring at
right angles to the direction in which the wave travels. As they pass through space,
they stretch and compress distances in the fabric of spacetime.These waves travel at
the speed of light c. This property is in agreement with the expectations set forth
by Einstein’s general relativity. Gravitational waves exhibit two polarization states,
often referred to as “plus" (+) and “cross" (×) polarizations. These polarization’s
describe how the waves affect distances in different orientations as they propagate.
The amplitude of a Gravitational wave indicates the strength of the wave and is
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related to the energy of the event that generated it. The frequency of the waves
can vary widely, with different sources producing different frequency ranges. For
example, merging black holes typically emit higher-frequency waves compared to
the lower frequencies associated with supernovae.
Gravitational waves carry energy away from their sources, providing a unique means
of understanding extreme astrophysical phenomena. The information encoded in
these waves can reveal details about their origins, such as the masses, spins, and
distances of the objects involved. Due to their minimal interaction with matter,
gravitational waves can pass through celestial bodies like stars and planets almost
unaffected. This property enables them to provide information about distant cosmic
events that would otherwise be obscured by intervening matter. The characteristics
of gravitational waves depend on their sources. For instance, binary systems of black
holes and neutron stars produce distinct waveform during their inspiral, merger, and
ringdown phases, allowing astrophysicists to identify the type of event and extract
relevant physical parameters.
These properties make gravitational waves a powerful tool for exploring the universe,
offering new insights into astrophysics, cosmology, and fundamental physics.

1.4 Why Gravitational waves are bit Complicated to describe Mathe-
matically ?

Gravitational waves are bit complicated to describe mathematically and this is for
two main reasons. The first reason is that the Einstein’s equations are non-Linear,
as a result we can’t write the exact solution in most cases. We have to work with
solutions that are only approximate. The another consequence of the non-linearity
is that the waves can’t be superimposed.

The second main reason why gravitational wave theory is complicated is because
general relativity contains a large number of gauge degrees freedom, meaning that
there are multiple equivalent mathematical descriptions of the same physical situa-
tion. This flexibility can lead to ambiguity in the mathematical formulation, making
it challenging to identify the most useful or intuitive representation of gravitational
waves.
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Chapter 2

Theory of Gravitational Waves

Equations used :

• Einstein’s Field Equations ;
At the heart of Einstein’s general relativity lie the Einstein field equations. The
equations express how the distribution of matter and energy alters spacetime’s
geometry, determining the paths objects follow.

Gµν = Rµν −
1

2
gµνR (2.1)

Where, Gµν = 8πTµν and Tµν is the stress energy-momentum tensor.
Gµν is The Einstein Tensor and we used Natural Units that is we take c=1,
G=1 and ℏ = 1.

• Conservation Laws for the Stress-Energy Tensor ;
The conservation of stress-energy-momentum is a fundamental principle that
describes how energy, momentum, and stress are conserved inside a curved
fabric of spacetime. This principle is encapsulated in the equation:

∇µT
µν = 0

• Christoffel symbols ;
The Christoffel symbols are mathematical objects used in general relativity to
describe how coordinates change in curved spacetime. They are essential for
defining the connection and curvature of a manifold.They are given as :

Γµ
αβ =

1

2
gµν (∂αgβν + ∂βgαν − ∂νgαβ) (2.2)

• When the gravitational field is weak, the spacetime metric can be written as a
Minkowski metric plus a slight disturbance ;

gµν = ηµν + hµν (2.3)
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Where the perturbation is small as |hµν| << 1. Starting with the definition of
the inverse metric, we determine that to first order in h;

gµν = nµν − hµν (2.4)

• Riemann tensor;
General relativity relies heavily on the Riemann curvature tensor as a funda-
mental quantity that measures the intrinsic curvature of a manifold, providing
insight into how spacetime is shaped by mass and energy. The Riemann tensor
is given as :

Rα
µβν = ∂βΓ

α
µν − ∂νΓ

α
µβ + Γσ

µνΓ
α
σβ − Γσ

µβΓ
α
σν (2.5)

2.1 Linearized Einstein Equation ;

The linearized Einstein equations are a simplified form of Einstein equations used in
general relativity, applicable when the gravitational field is weak. In the presence of
a weak gravitational field, the metric tensor gµν is represented as a minor disturbance
hµν superimposed on the flat metric ηµν expressed as ;

gµν = ηµν + hµν

In order to calculate the linearized Einstein equation let us start from Einstein
tensor;

Gµν = Rµν −
1

2
gµνR

We first need to calculate the Riemann Tensor for calculating Einstein Tensor.
For Riemann Tensor let us first calculate Christoffel symbol given by equation (2.2):

Γµ
αβ =

1

2
gµν (∂αgβν + ∂βgαν − ∂νgαβ)

From equation (2.4) we use the value of gµν we get ;

Γµ
αβ =

1

2
(nµν − hµν) (∂αgβν + ∂βgαν − ∂νgαβ)

or
Γµ
αβ =

1

2
(nµν − hµν) (∂αhβν + ∂βhαν − ∂νhαβ)

So in order to keep our equation linear in h we drop hµν term, our equation becomes;

Γµ
αβ =

1

2
(nµν) (∂αhβν + ∂βhαν − ∂νhαβ) (2.6)
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Now Riemann Tensor from equation (2.5) is given as ;

Rα
µβν = ∂βΓ

α
µν − ∂νΓ

α
µβ + Γσ

µνΓ
α
σβ − Γσ

µβΓ
α
σν

Since Christoffel symbols are linear in the perturbation h, The ΓΓ terms are quadratic
in h,to linear order in small perturbation we ignore these terms. we write as ;

Rα
µβν = ∂βΓ

α
µν − ∂νΓ

α
µβ (2.7)

Now Ricci tensor Rµν is calculated by contracting the Riemann Tensor as ;

Rα
µαν = Rµν = ∂αΓ

α
µν − ∂νΓ

α
µα (2.8)

Now calculating the value of Γα
µν and Γα

µα from equation 2.6 we get ;

Γα
µν =

1

2
(nαβ) (∂µhνβ + ∂νhµβ − ∂βhµν)

and
Γα
µα =

1

2
(nαβ) (∂µhαβ + ∂αhµβ − ∂βhµα)

Using these two expressions in equation (2.8) we get ;

Rµν =∂α[
1

2
(nαβ) (∂µhνβ + ∂νhµβ − ∂βhµν)]

−∂ν[
1

2
(nαβ) (∂µhαβ + ∂αhµβ − ∂βhµα)]

Calculating the above equation we get ;

Rµν =
1

2
[∂α∂µh

α
ν − ∂α∂

αhµν − ∂ν∂µh
α
α − ∂ν∂

αhµα] (2.9)

The Ricci Tensor is symmetric tensor that is Rµν = Rνµ.
Now let us calculate the Ricci scalar R by raising one index and setting it equal to
the other index;

R = Rµ
µ = gµνRµν

Or
R =

1

2
[∂α∂µg

µνhα
ν − ∂α∂

αgµνhµν − ∂ν∂µg
µνhα

α + ∂ν∂
αgµνhµα]

Or
R = ∂α∂µh

αµ − ∂α∂
αhµ

µ (2.10)

Now from Equation (2.1) Einstein’s tensor is given as

Gµν = Rµν −
1

2
gµνR
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Or

Gµν =
1

2
[∂α∂µh

α
ν − ∂α∂

αhµν − ∂µ∂νh
α
α

−∂α∂νh
α
ν − nµν∂α∂βh

αβ + nµν∂α∂
αhβ

β]

Or

Gµν =
1

2
[∂α∂νh

α
ν + ∂α∂νh

α
µ − ∂α∂

αhµν

−∂µ∂νh
α
α − nµν∂α∂βh

αβ + nµν∂α∂
αhβ

β] (2.11)

Since Ricci scalar is linear in h and our calculations are restricted to linear order of
h, so we used gµν = nµν .
Now let us define Trace-Reversed-Perturbation as ;

h̄µν = hµν −
1

2
nµνh

α
α

Its called Trace reversed perturbation because h̄α
α = −hα

α.
We can also write ;

hµν = h̄µν −
1

2
nµνh̄

α
α (2.12)

Using equation (2.12) in equation (2.11), We get;

Gµν =
1

2
[∂µ∂αh̄

α
ν + ∂ν∂αh̄

α
µ − ∂α∂

αh̄µν − nµν∂α∂βh̄
αβ]

This is the linear approximation of Einstein’s tensor, expanded to the first
order in the perturbation h.
It can also be denoted as ;

G(l)
µν =

1

2
[∂µ∂αh̄

α
ν + ∂ν∂αh̄

α
µ − ∂α∂

αh̄µν − nµν∂α∂βh̄
αβ] (2.13)

Where (L) denotes that the Einstein tensor is written in linear order of h.
What we actually did is we broke the Einstein tensor as;

Gµν(g) = Gµν(n+ h) = Gµν(n) +G(l)
µν(n, h) +G(Q)

µν (n, h) +O(h)

Gµν = 0 for flat metric, G(Q)
µν (n, h) is Einstein tensor which is quadratic in h and

O(h) denotes higher order terms of h, G(l)
µν(η, h) Is linearized Einstein gravity.

Likewise, we expand the stress-energy tensor Tµν in terms of the perturbation h;

Tµν(g) = Tµν(n+ h) = Tµν(n) + T (l)
µν (n, h) + T (Q)

µν (n, h) +O(h)

We assume that the energy, momentum and stresses produced by matter fields are
small, that is Tµν is small ( same order small as h ). Also we say that the linear
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order term of the above expansion is same order as the h2 and so on.
The Einstein equations written in order h are written as ;

G(l)
µν(η, h) = 8πTµν(η)

or
1

2
[∂µ∂αh̄

α
ν + ∂ν∂αh̄

α
µ − ∂α∂

αh̄µν − nµν∂α∂βh̄
αβ] = 8πTµν(η, h)

These are called the linearized Einstein equation. These equations describe
how weak gravitational fields propagate and lead to the prediction of gravitational
waves.
We know conservation of stress-energy momentum is written as ;

∇µT
µν = 0

Expanding this in order of h, we have ∂µT µν(η) = 0 to order one in small quantities.
Therefore from linearized Einstein equation we can write ;

∂µG
(l)µν(η, h) = 0

2.2 Gauge freedom of Linearized Gravity

In linearized gravity, the concept of gauge freedom refers to the ability to make
coordinate transformations that do not affect the physical predictions of the theory.
Specifically,this freedom allows for the adjustment of the perturbation hµν without
changing the underlying physics.
Consider two metric gµν and g′µν both are perturbation on flat metric ηµν given as;

gµν = ηµν + hµν

and
g′µν = ηµν + h′

µν

One can write the general coordinate transformation as;

xµ = xµ(x′)

let’s write the coordinate transformation that is close to identity ;

xµ = xµ
′
+ ξµ(x′)

ξµ is small, same order as h or h′. Now we can write as;

g′µν(x
′) =

∂xα

∂x′µ
∂xβ

∂x′ν
gαβ[x(x

′)]
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where xα and xβ are functions of x which inturn are functions of x′. Now g′µν in
terms of flat metric and perturbation is given as;

ηµν + h′
µν = [δαµ + ∂µξ

α(x′)][δβν + ∂νξ
β(x′)][ηαβ + hαβ(x

′)]

neglecting the higher order terms we get;

ηµν + h′
µν =δαµδ

β
ν ηαβ + δαµδ

β
νhαβ(x

′)

+∂µξ
α(x′)δβν ηαβ + δαµ∂νξ

β(x′)ηαβ

Or
ηµν + h′

µν(x
′) = ηµν + ∂µξν(x

′) + ∂νξµ(x
′) + hµν(x

′)

Or
h′
µν(x

′) = hµν(x
′) + ∂µξν(x

′) + ∂νξµ(x
′)

recall that x and x′ are related as ;

xµ(x) = xµ
′
+ ξµ(x′)

so to leading order;
xµ ≈ x′µ

Therefore ;
h′
µν(x) = ∂µξν(x) + ∂νξµ(x) + hµν(x) (2.14)

This expression represents the gauge transformation for linearized gravity.
Hence we can say hµν and h′

µν describe the same spacetime geometry as they are
not physically distinct.

2.3 Gauge transformation in terms of Trace reverse perturbation

We write gauge transformations in terms of trace reversed perturbation because it
helps in identifying physical degrees of freedom, making it easier to analyze gravita-
tional waves and their propagation. From gauge transformation equation we write;

h′
µν(x) = ∂µξν(x) + ∂νξµ(x) + hµν(x)

Also from equation (2.12) the trace reversed perturbation is given as ;

hµν = h̄µν −
1

2
nµνh̄

α
α

Using hµν in gauge transformation, we get trace reversed gauge transformation as ;

h̄′
µν = h̄µν + ∂µξν + ∂νξµ − ηµν∂αξ

α
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raising indices and operating ∂µ on both sides of the equation, we get ;

∂µh̄
µν ′ = ∂µh̄

µν + ∂µ∂
µξν + ∂µ∂

νξµ − ∂ν∂αξ
α

Or
∂µh̄

µν ′ = ∂µh̄
µν + ∂µ∂

µξν

Or
∂µ∂

µξν = ∂µh̄
µν ′ − ∂µh̄

µν (2.15)

where ∂µ∂
µ is called the flat-space wave operator.

Equation (2.15) can also be written as ;

□ξν = ∂µh̄
µν ′ − ∂µh̄

µν

Thus we can say each component of ξν satisfies the wave equation, hence solutions
exist.

2.4 Linearized Einstein equation in Lorentz Gauge

Gauge transformations in the linearized Einstein equations provide a mechanism to
simplify the analysis of weak gravitational fields, ensuring that physical predictions
are preserved while allowing for flexibility in mathematical treatment.
By choosing the gauge parameter ξµ satisfying

∂µ∂
µξµ = −∂µh̄

µν

and from equation (2.15) we can write;

∂µh̄
µν = 0 (2.16)

This constraint is called the Lorentz gauge.
Now linearized Einstein equation is written as ;

G(l)
µν(η, h) = 8πTµν(η)

1

2
[∂µ∂αh̄

α
ν + ∂ν∂αh̄

α
µ − ∂α∂

αh̄µν − nµν∂α∂βh̄
αβ] = 8πTµν(η, h)

Using gauge condition we get ;
1

2
∂α∂

αh̄µν = −8πTµν

Or
∂α∂

αh̄µν = −16πTµν (2.17)

Therefore;
□h̄µν = −16πTµν
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This is Einstein equation in lorentz gauge.The Einstein equation in lorentz
gauge is therefore simply a wave equation for each component of trace reverse
metric perturbation. Under the lorentz gauge condition, the equations can be in-
terpreted as wave equations, indicating that the gravitational field propagates as
waves at the speed of light.
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Chapter 3

Gravitational Waves in Vacuum regions of
Spacetime

Gravitational waves in vacuum regions of spacetime are ripples in the curvature of
spacetime caused by accelerating masses, propagating through a vacuum without
the influence of matter. In vacuum regions of space time we take;

Tµν = 0

We are not assuming Tµν=0 everywhere in the universe, but there might be matter
fields outside this region.We will consider radiative or Wave like solutions to the lin-
earized Einstein equation. There can be non-radiative solutions as well for example
if we have a black hole outside our region, but we don’t consider them for now.

3.1 Radiative (Wave-like) solution

The radiative solution of gravitational waves in vacuum regions of spacetime de-
scribes how these waves propagate and behave in areas devoid of matter. This
solution is derived from the linearized form of Einstein’s equations. From equations
(2.16) and (2.17) we get know;

∂µh̄
µν = 0

∂α∂
αh̄µν = −16πTµν

Using the value of Tµν=0, we have ;

∂α∂
αh̄µν = 0

Or
□h̄µν = 0

where □ is d’Alembert operator. Solution to this equation can be considered as
monochromatic plane wave, as ;

h̄µν = Re(Aµνeik·x)

16



where Aµν is the amplitude expressed as a complex quantity, k is wave vector and
x represents spacetime coordinate.
k · x is a four vector dot product written as ;

k · x = −ωt+ k⃗ · x⃗

Therefore ;
h̄µν = Re(Aµνeι(k⃗·x⃗−ωt)) (3.1)

Now impose lorentz gauge condition given by equation (2.16), we get;
For ν=0 ; i=1,2,3

Re[(−ιωA00 + ιkiAi0)]eι(k⃗·x⃗−ωt) = 0

For ν=j ; j=1,2,3
Re[(−ιωA0j + ιkiAij)]eι(k⃗·x⃗−ωt) = 0

These equations tell us that components of the amplitude Aµν are not arbitary, they
must follow ;

A00 =
ki

ω
Ai0 and A0j =

ki

ω
Aij

combining the two equation we get;

A00 =
ki

ω

kj

ω
Aij

but we know ω= |⃗k| and k̂ = ki

ω , represents unit vector in the direction of the
propagation. Thus the amplitudes can be written as ;

A00 = k̂ik̂jAij and A0j = k̂jAij

Now using above results of amplitude in equation (3.1) we get ;

h̄00 = Re(k̂ik̂jAijeι(k⃗·x⃗−ωt))

h̄0i = Re(k̂jAijeι(k⃗·x⃗−ωt))

h̄ij = Re(Aijeι(k⃗·x⃗−ωt))

These three equations represent the general solution for a monochromatic plane
gravitational wave under the lorentz gauge. Now we can superimpose these plane
wave equations to obtain arbitrary radiative solution in the vacuum region,which is
written as ;

h̄00 = Re

Z
d3k k̂ik̂jAijeι(k⃗·x⃗−ωt) (3.2)

h̄0i = Re

Z
d3k k̂jAijeι(k⃗·x⃗−ωt) (3.3)

17



h̄ij = Re

Z
d3k Aijeι(k⃗·x⃗−ωt) (3.4)

The above three equations of h̄00, h̄0i and h̄ij represent our arbitrary radiative
solution in vacuum regions.

3.2 Radiative solutions in the Transverse-Tracless TT Gauge.

Recall the expression for the trace reversed gauge transformation ;

h̄′µν = ∂µξν + ∂νξµ − ηµν∂αξ
α + h̄µν

We can transform any hµν into lorentz gauge, ∂µ∂α = 0 by above given equation
with ;

∂α∂
αξµ = −∂αh̄

αµ

we know ξµ is not unique, we can add to ξµ any set of functions ζµ that satisfy
source free wave equation as;

∂α∂
αζµ = 0

therefore the general radiative solution of this equation is written as;

ζµ = Re

Z
d3k Cµeι(k⃗·x⃗−ωt)

Now the gauge transformation for ζµ is written as ;

h̄′µν = h̄µν + ∂µζν + ∂νζµ − ηµν∂αζ
α

let’s consider the i, j components of this transformation and insert the wave solution
for h̄µν ′, h̄µν and ζµ we get;

Aij ′ = Aij + ι[kiCj + kjC i − δij(−ωC0 + k⃗ · C⃗)]

Where all A’s and C’s are functions of k⃗. We can always choose C0 and C i such
that

k̂jAij = 0 Transverse condition (3.5)

And
Aij = 0 Traceless Condition (3.6)

This is called Transverse Traceless Gauge.
Equation (3.5) indicates that the amplitudes are perpendicular to the wave’s prop-
agation direction, represented by k⃗. equation (3.6) tells us that the amplitudes Aij
are traceless.
Consequence of equation (3.2) is ;

k̂ik̂jAij = 0

18



Using transverse traceless gauge conditions on Equations (3.2), (3.3) and (3.4) re-
spectively, we get;

h̄00 = 0

h̄0i = 0

h̄ij = Re

Z
d3k Aijeι(k⃗·x⃗−ωt)

These represent general solution of linearized vacuum Einstein equation in transverse
traceless gauge.
Consider now a simple monochromatic plane gravitational wave in TT gauge;

hij = Re(Aij eι(k⃗·x⃗−ωt))

where hi0 = h00 = 0. in general symmetric 3x3 matrix Aij have six independent
components but using the transverse trace less condition leaves only two indepen-
dent components in Aij.
let’s now define a set of spatial basis vectors ei1 and ei2 such that;
These basis vectors are orthogonal to wave vector: ei1ki = ei2k

i = 0 and orthogonal
to each other as well: ei2ei2 = ei2e

i
2 = 1

Then we can write the transverse traceless amplitude in terms of independent com-
ponents as ;

Aij = A+(e
i
1e

j
1 − ei2e

j
2) + A×(e

i
1e

j
2 + ei2e

j
1) (3.7)

Here A+ and A× are two independent components of Aij, with the amplitude Aij

written this way hij is written as;

hij =Re(A+ eι(k⃗·x⃗−ωt))(ei1e
j
1 − ei2e

j
2) plus polarization

+Re(A× eι(k⃗·x⃗−ωt))(ei1e
j
2 + ei2e

j
1) cross polarization

This finding clearly demonstrates that gravitational waves possess two distinct po-
larization states one is the +Polarization and other is the ×polarization.

3.3 Stress-Energy-Momentum Description of Gravitational Waves

Gravitational waves are oscillations in the metric of spacetime. Mathematically,
spacetime is described by a metric tensor, which encodes the geometry of space and
time. In the presence of gravitational waves, this metric is perturbed, or "wiggled,"
in a way that stretches and compresses distances along the direction of the wave’s
propagation. Gravitational waves carry energy because they transport distortions
in spacetime. These distortions affect the curvature of spacetime itself, which cor-
responds to energy in the framework of general relativity.
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Gravitational wave causes the background to become curved. so in order to cal-
culate the energy for gravitational waves we must allow background metric to be
curved we generalize the metric perturbation as:

gµν = g̃µν + hµν

Where g̃µν represents the curved background metric.
Now expanding the Einstein tensor as :

Gµν(g) = Gµν(g̃ + h) = Gµν(g̃) +G(l)
µν(g̃, h) +G(Q)

µν (g̃, h) +O(h)

Now in this case where the background metric is curved the Eintein tensor Gµν(g̃)
is not necessarily zero that is Gµν(g̃) ̸= 0.
In the same way, the stress-energy tensor Tµν is expressed as a series expansion in
h;

Tµν(g) = Tµν(g̃ + h) = Tµν(g̃) + T (l)
µν (g̃, h) + T (Q)

µν (g̃, h) +O(h)

Now we know from Einstein equation:

Gµν = 8πTµν

Therefore, we can write :

Gµν(g̃) +G(l)
µν(g̃, h) +G(Q)

µν (g̃, h) +O(h) = 8πtµν(g)

Ignoring terms of higher order, we obtain ;

Gµν(g̃) +G(l)
µν(g̃, h) = 8π [tµν(g)]−

h
G(Q)

µν (g̃, h)
i

The metric g̃µν can be separated into low frequency(long wavelength) background
and high frequency(shorter wavelength) perturbation. This approach allows us to
separate slowly varying spacetime geometry from rapidly oscillating gravitational
wave components.

gµν = g̃µν(lowfrequency) + hµν(highfrequency)

Low-frequency component g̃µν :Represents the background metric, such as a
cosmological spacetime or the metric near massive objects like stars or black holes.
This background changes slowly over large distances.
High-frequency component hµν : Represents the gravitational wave exhibiting
much quicker oscillations, with a wavelength far shorter than the characteristic
length scale of the surrounding spacetime.
Now Einstein equation can be explained as :

Gµν(g̃) +G(l)
µν(g̃, h) = 8π[tµν(g)−

1

8π
G(Q)

µν (g̃, h)] (3.8)
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where, Gµν(g̃) is low frequency term, G(l)
µν(g̃, h) is high frequency term, Tµν(g) and

G
(Q)
µν (g̃, h) contains both low and high frequency terms. Thus Einstein equation (4.1)

can be split into two equations one is low frequency part and other is high frequency
part given below ;

Low frequency :
Gµν(g̃) = 8π[tµν(g)]low − [G(Q)

µν (g̃, h)]low

Curvature in the background spacetime arises from the low-frequency parts of G(Q)
µν

and Tµν .
High frequency ;

G(l)
µν(g̃, h) = 8π[tµν(g)]low − [G(Q)

µν (g̃, h)]high

The propagation of gravitational waves is affected by the high-frequency contribu-
tions of G(Q)

µν and Tµν .
Thus the low frequency part of − 1

8πG
(Q)
µν (g̃, h) in Einstein tensor acts as a source for

background curvature just as the stress-energy momentum tensor in matter fields.
Therefore stress-energy momentum tensor for gravitational waves Tµν is given as ;

Tµν = − 1

8π
[G(Q)

µν (g̃, h)]low (3.9)

Thus the low frequency part of Einstein tensor, corresponding to the background
g̃µν , can be expressed as :

Gµν(g̃) = 8π[(Tµν)low + tµν] (3.10)

Recall the Einstein tensor for any metric always satisfies the contracted Bianchi
identity that is given as :

∇̃µG
µν(g̃) = 0

where ∇̃µ is covariant derivative for background g̃. Putting the value of Gµν(g̃)
from equation (4.3), we get :

∇̃µ[(Tµν)low + tµν] = 0 (3.11)

This equation represents the principle of local energy-momentum conserva-
tion.
In this case the conserved quantity is not just the energy-momentum in matter fields
but it’s combination of the energy-momentum in the matter fields and gravitational
waves.
We know stress-energy momentum tensor for gravitational waves Tµν is given as ;

Tµν = − 1

8π
[G(Q)

µν (g̃, h)]low
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In order to extract the low frequency part of G(Q)
µν (g̃, h) We perform an averaging

over a spacetime region that is large relative to the high frequency components but
small compared to the low-frequency ones. Consequently, the stress-energy tensor
for gravitational waves is expressed as:

Tµν = − 1

8π
⟨G(Q)

µν (g̃, h)⟩

Expanding the G
(Q)
µν (g̃, h) and assuming background to be nearly flat g̃µν = ηµν , we

can write it’s average as :

⟨G(Q)
µν (g̃, h)⟩ = ⟨−1

4
∂µh̄

αβ∂νh̄αβ +
1

8
∂νh̄

α
α∂νh̄

β
β +

1

4
∂αh̄

α
β(∂µh̄

β
ν + ∂νh̄

β
µ)⟩

Where h̄αβ refers to the metric perturbation in its trace reversed form, which is
written as:

h̄αβ = hαβ − 1

2
ηαβhµ

µ

Therefore, the stress-energy momentum tensor for gravitational waves is written as:

Tµν = − 1

8π
⟨−1

4
∂µh̄

αβ∂νh̄αβ +
1

8
∂νh̄

α
α∂νh̄

β
β +

1

4
∂αh̄

α
β(∂µh̄

β
ν + ∂νh̄

β
µ)⟩

In lorentz gauge where ∂µh̄µν = 0, we can write the stress energy momentum tensor
as :

Tµν =
1

32π
⟨∂µh̄αβ∂νh̄αβ −

1

2
∂µh̄

α
α∂νh̄

β
β⟩ (3.12)

3.4 Stress-Energy momentum tensor for plane monochromatic gravita-
tional wave:

For radiative solution in vacuum region, impose the ransverse-traceless gauge condition,i =
1, 2, 3 :

h00 = 0 = h0i and ∂ih
ij = 0

The stress-energy momentum tensor takes the form :

Tµν =
1

32π
⟨∂µhij∂νhij⟩ (3.13)

Now we know for monochromatic plane wave in transverse-traceless gauge:

hij = Re(Aijeι(k⃗·x⃗−ωt)) and K ijAij = 0 = Aii

applying ∂µ on hij, we get:

∂µh
ij = kµRe(Aijeι(k⃗·x⃗−ωt)) where kµ = (k⃗,ω)
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Or
∂µh

ij = kµ[−(ReAij) sin(k⃗ · x⃗− ωt)− (ImgAij) cos(k⃗ · x⃗− ωt)]

Similarly we can calculate ∂νhij as :

∂νhij = kν[−(ReAij) sin(k⃗ · x⃗− ωt)− (ImgAij) cos(k⃗ · x⃗− ωt)]

Now

∂µh
ij∂νhij =kµkν[Re(Aij)Re(Aij) sin

2(k⃗ · x⃗− ωt)

+Img(Aij)Img(Aij) cos
2(k⃗ · x⃗− ωt)

+2Re(Aij)Img(Aij) sin(k⃗ · x⃗− ωt) cos(k⃗ · x⃗− ωt)]

Taking the average ⟨.......⟩ on both sides of the above equation:

⟨∂µhij∂νhij⟩ = ⟨kµkν[Re(Aij)Re(Aij) sin
2(k⃗ · x⃗− ωt)

+Img(Aij)Img(Aij) cos
2(k⃗ · x⃗− ωt)

+2Re(Aij)Img(Aij) sin(k⃗ · x⃗− ωt) cos(k⃗ · x⃗− ωt)]⟩
Using,

⟨sin2(k⃗ · x⃗− ωt)⟩ = ⟨cos2(k⃗ · x⃗− ωt)⟩ = 1

2
and

⟨sin(k⃗ · x⃗− ωt) cos(k⃗ · x⃗− ωt)]⟩ = 0

We get:

⟨∂µhij∂νhij⟩ =
1

2
kµkν[Re(Aij)Re(Aij) + Img(Aij)Img(Aij)] (3.14)

Now from equation (3.7) we have;

Aij = A+(e
i
1e

j
1 − ei2e

j
2) + A×(e

i
1e

j
2 + ei2e

j
1)

Let (ei1e
j
1 − ei2e

j
2)= eij+ and (ei1e

j
2 + ei2e

j
1)= eij× , we can write Aij as ;

Aij = A+e
ij
+ + A×e

ij
×

also we know eij+e
ij
× = 0 and eij+e

ij
+ = 2 = eij×e

ij
×

Therefore,

Re(Aij)Re(Aij) = [Re(A+e
ij
×) +Re(A×e

ij
×)][Re(A+e

ij
×) +Re(A×e

ij
×)]

or
Re(Aij)Re(Aij) = 2Re(A+)

2 + 2Re(A×)
2

Using these calculations in equation(3.14) we get;

⟨∂µhij∂νhij⟩ = kµkν(|A+|2 + |A×|2)
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Using in equation(3.13) we have :

Tµν =
1

32π
kµkν(|A+|2 + |A×|2) (3.15)

This gives the stress-energy momentum for a plane monochromatic grav-
itational wave.This effective stress-energy tensor represents the average energy
density, momentum density, and fluxes of gravitational waves. It serves as an effec-
tive source term in the Einstein equations, allowing gravitational waves to interact
with the background curvature by contributing to the overall energy and momen-
tum content of spacetime, despite not being directly tied to a conventional matter
source.
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Chapter 4

Gravitational wave sources:

Gravitational waves are produced by asymmetrical acceleration of masses. Ex-
amples of gravitational wave sources are binary black holes, binary neutron stars,
supernovae, neutron stars etc.
We know linearized Einstein equation is written as ;

G(l)
µν(η, h) = 8πTµν(η)

and under the lorentz gauge, the linearized Einstein equation is represented by ;

□h̄µν = −16πTµν

where h̄µν is trace-reverse metric perturbation.
Also we know radiative solution in the vacuum region, which is written as ;

h̄00 = Re

Z
d3k k̂ik̂jAijeι(k⃗·x⃗−ωt)

h̄0i = Re

Z
d3k k̂jAijeι(k⃗·x⃗−ωt)

h̄ij = Re

Z
d3k Aijeι(k⃗·x⃗−ωt)

In transverse-traceless gauge (TT) we write these equations as;

h̄00
TT = 0

h̄0i
TT = 0

h̄ij
TT = Re

Z
d3k Aij

TTe
ι(k⃗·x⃗−ωt)

The relation between amplitude in lorentz gauge and amplitude in TT gauge is
given as:

Aij
TT = P ikP jlAkl − 1

2
P ijP klAkl
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Where
P ij = δij − k̂ik̂j, P ij gives tranverse projection

As a result, the trace-reversed metric perturbation under the TT gauge is written
as ;

h̄ij
TT (x⃗, t) = Re

Z
d3k (P ikP jl − 1

2
P ijP kl)Akleι(k⃗·x⃗−ωt) (4.1)

Assume propagation in z direction then k̂i = δi3, projection operator P ij can be
written as;

P ij = δijδi3δ
j
3 = δi1δ

j
1 + δi2δ

j
2

P ij = δiaδ
j
a (a, b range 1, 2)

Therefore equation(4.1) can be written as;

h̄ij
TT (x⃗, t) = Re

Z
d3k (δiaδ

k
aδ

j
bδ

l
b −

1

2
δiaδ

j
aδ

k
b δ

l
b)A

kleι(k⃗·x⃗−ωt)

Each of the modes in sum over k propagate in z direction, hence all projection
operators in bracket are independent of k. Therefore we can write ;

h̄ij
TT = (δiaδ

k
aδ

j
bδ

l
b −

1

2
δiaδ

j
aδ

k
b δ

l
b) h̄ij

or
h̄ij
TT = δiaδ

j
b h̄

ab − 1

2
δiaδ

j
a h̄

bb

If one of the indices is 3 then right hand side of the above equation becomes zero
that is:

h̄13
TT = h̄23

TT = h̄33
TT = 0

Also when i = 1 and j = 1 we have;

h̄11
TT = h̄11 − 1

2
(h̄11 + h̄22) =

1

2
(h̄11 − h̄22) (4.2)

similarly when i = 2 and j = 2 we have;

h̄22
TT = h̄22 − 1

2
(h̄11 + h̄22) =

1

2
(h̄22 − h̄11) (4.3)

and,
h̄12
TT = h̄12

Also we know from trace-reverse metric perturbation and TT gauge ,

h̄00
TT = h̄01

TT = h̄02
TT = h̄03

TT = 0

From above results we can say trace-reversed metric perturbation in TT gauge is
trace free,

h̄ij
TT = trace free
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Therefore,
h̄ij
TT = hij

TT

Thus in our previous results we can drop the bar on h̄ij
TT .

Also from equation(4.2) and equation (4.3) we can say that in TT gauge, the trace-
reversed metric perturbation depends solely on the transverse components of the
trace-reversed perturbation from the lorentz gauge.
This is useful because;

• Linearized equations are easy to solve in lorentz gauge.

• Far from source solution is wave like and waves propagate in a single direction.

• Gravitational waves are expressed most simply in transverse-traceless gauge.

4.1 Types of sources:

1. Weak, slow moving sources with negligible internal gravity.
Examples ; Rotating rod of length L rotating with angular velocity ω

GM

c2
≪ L (ωL ≪ c)

we can also write;
GM

L2
≪ Mω2L

2. Weak and slow moving sources with non-negligible internal gravity, we can’t
ignore internal gravity.
Example; binary star system with separation L and angular velocity ω

Star 1 Star 2
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GM

c2
≪ L (ωL ≪ c)

3. Strong, slow moving sources.
Example; binary black hole, neutron star system

4. Sources with strong internal gravity and fast moving.
Example; final stages of binary black hole or binary neutron star mergers.

4.2 Weak and slow moving sources with negligible internal gravity:

The result of this analysis will be a formula for gravitational waves that is an
expression for spatial components of the metric perturbation in TT gauge (hij

TT ) in
terms of the source motion.
For sources traveling at speeds much less than the speed of light v ≪ c

If we have a compact source of size ∼ L, the only thing matter can do in this
compact region is oscillate back and forth or circulate around. Therefore we can
write;

v ∼ 2πL

period
= 2πLf

The variable f represents the frequency of the source’s motion, which sets the
frequency of the gravitational waves. Since these waves propagate at the speed of
light c, their frequency is given by f = c

λ

v =
2πLc

λ
=

Lc

λ̄
⇒ v

c
∼ L

λ̄

For v ≪ c we can say L ≪ λ̄ (reduced wavelength)

∴ Size of source ≪ gravitational wave wavelength

Because gravitational effects are weak, it is appropriate to use the linearized Einstein
equation under the lorentz gauge condition ;

□h̄µν = −16πTµν

from electromagnetism we write;

□Aµ = −4πJµ
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by analogous to the solution in electromagnetism we can write x
′ is source point ;

h̄ij(x⃗, t) = 4

Z
d3x

′
T ij(x

′
, t

′
= t− (x− x

′
)

|x⃗− x⃗′|
For field point far away from the source we can write ;

h̄ij(x⃗, t) =
4

r

Z
d3x

′
T ij(x

′
, t

′
)|t′=t−r

The above equation holds only for case first that is rotating rods.
If we instead use conservation of energy momentum ∂µT

µν = 0 we get;

h̄ij(x⃗, t) =
4

r

Z
d3x

′ 1

2
∂

′
0 ∂

′
0T

00 X i
′
Xj

′
|t′=t−r

Now putting the time derivative outside the integral and define second moment
mass distribution as:

I ij(t
′
) =

Z
d3x

′
T 00(x⃗′, t

′
) X i

′
Xj

′

Therefore;

h̄ij(x⃗, t) =
2

r

∂2

∂t2
I ij(t− r)

we know the metric perturbation in TT gauge in terms of lorentz gauge is given as;

hij
TT (x⃗, t) = (P ikP jl − 1

2
P ijP kl)h̄kl

also using ;

Ī ij = (P ikP jl − 1

2
P ijP kl)Ikl

Where Ī ij is called reduced quadrupole moment
Therefore;

hij
TT (x⃗, t) =

2

r

∂2

∂t2
Ī ijTT (t− r) (4.4)

This is the general result connecting the source motion to the gravitational waves
that they produce and this result is useful for weak and slow moving sources with
non-negligible internal gravity.
Now we know stress-energy momentum tensor is expressed as ;

Tµν =
1

32π
⟨∂µhij

TT∂νh
ij
TT ⟩

Energy density is given as;

T00 =
1

32π
⟨ḣij

TT ḣ
ij
TT ⟩
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Using equation(4.4) we get;

T00 =
1

8πr2
⟨
...
Ī

ij

TT

...
Ī

ij

TT ⟩|t−r evaluated at retarded time

Energy flux (momentum density) in radial direction;

T0kn
k =

1

32π
⟨ḣij

TT∂kh
ij
TT ⟩nk

Therefore Energy flux in radial direction is written as;

T0kn
k = − 1

8πr2
⟨
...
Ī

ij

TT

...
Ī

ij

TT ⟩|t−r evaluated at retarded time (4.5)

For gravitational waves T0kn
k = −T00.

From energy flux we can compute the rate at which the source losses energy through
gravitational radiation, gravitational wave luminosity ;

LGW =

Z

Sphere of large r

t0kn
kr2dω = − 1

8π

Z

Sphere of large r

dω⟨
...
Ī

ij

TT

...
Ī

ij

TT ⟩|t−r

4.3 Binary Star System :

com

mass 2 mass 1

Binary star system consist of stars M1 and M2 in circular orbits about one another.
L = r1+ r2 is the separation between the two stars , r1 and r2 is the radius of orbit
M1 and M2.
Reduced mass can be written as;

µ =
m1m2

m1 +m2

For star 1 and star 2 we can write ;

r1ω
2 =

m2

L2
r2ω

2 =
m1

L2

adding the two we get;

L3ω2 = m1 +m2 Therfore r1 =
µ

m1
L and r2 =

µ

m2
L
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We want to compute hij
TT (x⃗, t) =

2
r
¨̄I ijTT (t− r) Thus we need ;

I ij(t) =

Z
d3x T 00(x⃗, t) X i Xj

since our motion is slow and the stresses are very small, the energy density is dom-
inated by the rest mass density T 00 ≈ ρ0(rest mass density).
At time t and location x⃗ ,the rest mass density ρ0 is defined as ;

ρ0 =m1δ(x− r1 cosωt) δ(y − r1 sinωt) δ(z)

+m2δ(x+ r2 cosωt) δ(y + r2 sinωt) δ(z)

Calculating the second moment of mass distribution ;

I11 = m1(r1 cosωt)
2 +m2(r2 cosωt)

2

∴
I11 = µL2 cos2 ωt

similarly ;
I22 = µL2 sin2 ωt I12 = µL2 cosωt sinωt

I13 = I23 = I33 = 0

Therefore Trace is written as Ikk = I11 + I22 + I33 = µL2

Now reduced quadrupole moment Ī ij = I ij − 1
3 δ

ij Ikk

For binary star system ;

Ī11 = µL2(cos2 ωt− 1

3
)

Ī22 = µL2(sin2 ωt− 1

3
)

Ī12 = µL2 sinωt cosωt

Ī33 = −1

3
µL2 Ī13 = Ī23 = 0

Let’s now calculate the transverse traceless part Ī ij ;

Ī ijTT = (P ikP jl − 1

2
P ijP kl)Īkl but Īkl = Ikl

Calculating I11 components ;

Ī11TT =
µL2

64
[cos(2ωt− 2ϕ)[−5 + 4 cos 2θ + cos4θ + (19 + 12 cos 2θ + cos 4θ) cos 2ϕ ]

−16 sin(2ωt− 2ϕ)(1 + cos 2θ) sin 2ϕ ] + t independent terms
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t-independent terms won’t contribute because the metric perturbation depends on
time derivative.
Consider introducing a set of basis vectors, eiθ in direction of increasing θ, eiϕ in the
direction of increasing ϕ and ni is the normal vector at the point of observation.

ni =



sin θ cosϕ
sin θ sinϕ

cos θ


 eiθ =



cos θ cosϕ
cos θ sinϕ
− sin θ


 eiϕ =



− sinϕ
cosϕ
0




computing the ĪTT in these basis;

ĪθθTT = Ī ijTT eiθ e
j
θ

or,

ĪθθTT = eiθ e
j
θ(P

ikP jl − 1

2
P ijP kl) Īkl

but eiθn
i = 0 that tells us eiθP

ij = ejθ, we write ;

ĪθθTT = ekθe
l
θĪ

kl − 1

2
P klĪkl = (ekθe

l
θ +

1

2
nknl) Īkl

ĪθθTT = (ekθe
l
θ +

1

2
nknl) Īkl

similarly ;

ĪϕϕTT = (ekϕe
l
ϕ +

1

2
nknl) Īkl

ĪθϕTT = ekθ e
l
ϕ Īkl ĪnnTT = Ī ijTT ni nj = 0 ĪnθTT = ĪnϕTT = 0

Therefore;

ĪθθTT = −ĪϕϕTT =
µL2

4
[(1 + cos2 θ) cos(2ωt− 2ϕ)− sin2 θ ]

Īθϕ =
µL2

2
cos θ sin(2ωt− 2ϕ)

The metric perturbation is constructed from the second time derivative of TT pro-
jection of the reduced quadrupole moment hence ;

¨̄IθθTT = − ¨̄IϕϕTT = −µL2ω2(1 + cos2 θ) cos(2ωt− 2ϕ)

Therefore ;
¨̄IθθTT = − ¨̄IϕϕTT = −m1m2

L
(1 + cos2 θ) cos(2ωt− 2ϕ)

Similarly ;
¨̄IθϕTT = −2m1m2

L
cos θ sin(2ωt− 2ϕ)

32



Finally at this stage, the metric perturbation can be written in the TT gauge form
as ;

hij
TT (x⃗, t) =

2

r
¨̄I ijTT (t− r)

or

hθθ
TT (t, x⃗) = −hϕϕ

TT (t, x⃗) = −2m1m2

rL
cos[2ω(t− r)− 2ϕ](1 + cos2 θ) (4.6)

and ;

hθϕ
TT (x⃗, t) = −4m1m2

rL
cos θ sin(2ω(t− r)− 2ϕ) (4.7)

Hence equation (4.6) and equation (4.7) define Plus and Cross polarizations of
gravitational wave.

h+ = hθθ
TT and h× = hθϕ

TT

Thus Plus and Cross polarization of gravitational waves is given as;

h+ = −2m1m2

rL
cos[2ω(t− r)− 2ϕ](1 + cos2 θ)

h× = −4m1m2

rL
sin[2ω(t− r)− 2ϕ] cos θ

So a binary system consisting of masses m1 and m2 in circular orbit about one
another meets gravitational waves with both plus and cross polarization. The ob-
served strength of the two polarization modes varies with the angle of observation
θ. The waves are strongest along z-axis where θ = 0, these These directions lie or-
thogonal to the orbital plane and exhibit the least strength within the plane itself,
particularly when θ = π

2 , in fact the cross polarization vanishes in orbital plane.
Also the frequency of gravitational waves is two times the orbital frequency of two
stars.

4.3.1 Energy emitted by Binary star system:

We know energy flux is given by;

T0kn
k = − 1

8πr2
⟨
...
Ī

ij

TT

...
Ī

ij

TT ⟩|t−r

In the radial direction, the energy flux is described by the stress-energy tensor
formulated with upper indices, thus ;

T 0knk =
1

8πr2
⟨
...
Ī

ij

TT

...
Ī

ij

TT ⟩|t−r

Now carry out the contraction over these indices i and j using basis eθ,eϕ and n we
get ;

T 0knk =
1

8πr2
⟨ ( ¨̄IθθTT )2 + (¨̄IϕϕTT )

2 + 2( ¨̄IθϕTT )
2 ⟩
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but ĪθθTT = −ĪϕϕTT , we can write ;

T 0knk =
1

4πr2
⟨ ( ¨̄IθθTT )2 + (¨̄IθϕTT )

2 ⟩|t−r

Applying equations (4.6) and (4.7) we obtain ;

T 0knk =
1

2πr2
Mm2

1m
2
2

L5
[1 + 6 cos2 θ + cos4 θ]

Thus we can say energy flux depends on θ, maximum when θ = 0, π.

4.3.2 Luminosity:

Luminosity refers to the rate at which a binary system emits energy through gravi-
tational waves.

LGW =

Z

Sphere of large r

t0kn
kr2dω

or,

LGW =

Z
dθdϕ sin θ

1

2π

Mm2
1m

2
2

L5
(1 + 6 cos2 θ + cos4 θ)

Therefore energy emitted per unit time by the gravitational waves is given by;

LGW =
32

5

Mm2
1m

2
2

L5
(4.8)

Although we assumed the binary star system consists of stars in circular orbits, the
loss of energy through gravitational radiation will cause the orbits to decay and the
stars will spiral together. The decay is very slow for weak/slow moving sources ,
hence our approximation of circular orbits is reasonable.

4.3.3 Rate of orbital decay:

The system’s total energy is represented by;

E =
1

2
m1(r1ω)

2 +
1

2
m2(r2ω)

2 − m1m2

L

using Kepler’s third law ω2 = m1+m2

L3 ,r1 + r2 = L we have ,

E = −1

2

m1m2

L

The rate at which the system’s energy changes is equal to the rate of gravitational
wave emission ;

dE

dt
= −LGW
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Or,
d

dt
(−1

2

m1m2

L
) = −32

5
M

(m2
1m

2
2)

L5

or,

L̇ = −64

5
M

(m1m2)

L3

In terms of orbital period τ = 2π
ω = 2π(ML3 )

− 1
2 , rate of change of orbital period is

given as ;
τ̇

τ
= −96

5

Mm1m2

L4

Therefore, the shrinking of the orbit in a binary star system directly results from
energy carried away by gravitational waves. As the system radiates gravitational
waves, it loses orbital energy, causing the stars to move closer together over time.
The rate of orbital contraction is proportional to the mass product of the two stars,
the orbital frequency, and an inverse power of the orbital separation. Observations
of systems like the Hulse-Taylor binary pulsar confirm this decay, aligning precisely
with predictions from general relativity.
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Chapter 5

Friedmann Space-time

Evidence indicates that the universe, on large scale, is the same everywhere (ho-
mogeneous) and also same in all directions (isotropic). We aim to determine the
structure of the geometric framework in a reference system (t, xα) where these prop-
erties are apparent. Breaking down the differential element of separation dS2, we
obtain the following:

dS2 = g00dt
2 + 2g0αdt dx

α − σαβdx
αdxβ

Where, the term g00dt
2 controls the flow of time, 2g0αdt dxα represents how space

and time interact and −σαβdx
αdxβ captures the spatial geometry.

For the universe to be isotropic, the metric must look the same in all directions from
any point, therefore g0α (which mixes time and space) must vanish.
In a coordinate system defined by fundamental observers, we can utilize the proper
time measured by their clocks to define space-like surfaces. Choosing this proper
time as the time coordinate t ensures that g00 = −1, simplifying spacetime interval
to the form :

dS2 = −dt2 + σαβdx
αdxβ

=⇒ dS2 = −dt2 + dl2

The line element dl2 contains the three space components and since the universe is
assumed to be isotropic around every point, it must also be spherically symmetric.
This follows because if isotropy holds at every point, this eliminates any inherent
directional preference, requiring the spatial component of the metric to be expressed
in spherical coordinates as ;

dl2 = grr dr
2 + gθθ dθ

2 + gϕϕ dϕ
2

The angular part of the metric must take the form:

gθθ = r2, gϕϕ = r2 sin2 θ
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because this is the only form that preserves rotational invariance. However, the
radial part can have an arbitrary function λ2(r) :

grr = λ2(r).

Therefore, the line interval is written as ;

dl2 = λ2(r)a2(t) dr2 + r2a2(t)dθ2 + r2a2(t) sin2 θ dϕ2

Here a(t), depending only on time, is the scale factor that encodes cosmic expansion
and λ(r) is a function that determines the spatial curvature.
The Ricci scalar R for this 3D space is given by:

R =
3

2a2r3
d

dr

�
r2

�
1− 1

λ2

��

Homogeneity implies that all geometric properties are independent of r, meaning
R must remain uniform. Assigning it a fixed value and performing integration, we
arrive at:

λ2r2 − r2

λ2
= kr4 + B k,B = constants.

To ensure regularity at r = 0, the term B must vanish. As a result, we obtain ;

1− kr2 =
1

λ2

Therefore, space-time interval can be expressed as ;

dS2 = −dt2 + a2(t)

�
1

1− kr2
dr2 + r2dθ2 + (sin θ)2 r2dϕ2

�

In the above equation of metric, a(t) is called scale factor, which varies with cosmic
time t that specifies the size of the universe at any moment and permits the universe
to expand or contract with time. This metric, known as FLRW (Friedmann-
Lemaitre-Robertson-Walker) metric, represents a universe that maintains both
homogeneity and isotropy. Here k expresses the curvature of the space, where k = 0
means the universe is flat, k = +1 describes a closed, spherical geometry and k = −1
signifies an open, hyperbolic geometry.

5.1 Friedmann Equations :

The equations that describe the dynamics expansion of the universe are derived
from Einstein’s field equations in general relativity. These relations hold true in
a universe that exhibits both homogeneity and isotropy, governing the evolution
of scale factor a(t) based on the composition of the universe, including matter,
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radiation, and dark energy. When the cosmos is modeled as being composed of a
homogeneous fluid, the resulting equations take the form :

ä

a
= −4π

3
(ρ+ 3p)

Here, energy density is represented by ρ and p denotes pressure of the ideal fluid.
This equation provides double derrivative of time ( ∂2

∂t2 ) of scale factor or the expan-
sion acceleration. Also, we have the Hubble parameter equation (first derivative of
a(t)) given by ; �

ȧ

a

�2

=
3

8π
ρ− k

a2

This is the first time derivative of a(t), describing the cosmic expansion rate H(t) =
ȧ
a , which quantifies how the universe evolves over time. The equation illustrates how
this expansion rate is connected to the total energy content ρ of the cosmos and the
curvature parameter k, which characterizes the spatial geometry of the universe.

5.2 Gravitational wave equation in curved spacetime background :

The equation describing metric perturbations in a general curved or non-flat space-
time is;

gµν = ḡµν + hµν

The inverse or the reciprocal form of the metric is expressed as ;

gµν = ḡµν − hµν

Using the above equations of metric perturbation in the formulation of the Christof-
fel symbol, we get ;

Γρ
µν = Γ̄ρ

µν +
1

2
ḡρσ (∇νhµσ +∇µhσν −∇σhµν)

= Γρ(l)
µν + Γ̄ρ

µν

Thus in a curved background space-time, connection coefficient separate into two
different parts, the first part corresponds to the linear perturbations and is expressed
as Γ(l), while the second represents the background space-time and is denoted by Γ̄.
In a similar manner, the full curvature tensor is decomposed into its background
form and a linear perturbation form as :

Rρ
µνλ = R

(l)ρ
µνλ + R̄ρ

µνλ

Now the linearized form of Ricci tensor R(l)
αβ is expressed by the below equation :

R
(l)
αβ =

∇ρ∇αh
ρ
β

2
− 1

2
(□hαβ +∇β∇αh) +

∇ρ∇βh
ρ
α

2
(5.1)
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Where h = hµ
µ (µ = 0, 1, 2, 3) represents the trace components of metric perturba-

tion.
The Einstein tensor and by extension, the field equations can be decomposed into
an unperturbed part Ḡαβ and a linear perturbation G

(l)
αβ as ;

Gαβ = Ḡαβ +G
(l)
αβ = 8πTαβ

= 8πT
(l)
αβ + 8πT̄αβ

Here, T̄αβ corresponds to the energy-momentum distribution of the background
spacetime, while T

(l)
αβ accounts for the linear perturbative correction.

In the short wavelength approximation, the first order correction T
(l)
αβ to the energy

momentum content is considered negligible, i.e., T (l)
αβ = 0, which implies G

(l)
αβ = 0,

because when the wavelength becomes negligible compared to the curvature scale
of the background (λ << L) gravitational waves oscillate rapidly relative to the
characteristic scale of spacetime curvature. This rapid oscillation averages out the
effect of stress-energy perturbations over time, meaning T

(l)
αβ does not significantly

contribute to the dynamics of these waves. Essentially, the energy-momentum fluc-
tuations do not have time to respond to the rapidly oscillating metric perturbations.
In the long-wavelength limit T (l)

αβ becomes relevant because when the wavelength is
comparable to the curvature scale (λ ∼ L) matter can respond to gravitational
waves.
Taking the trace of Einstein equation, linearized Ricci scalar is written as ;

R(l) = −8πT (l) = 0 =⇒ R
(l)
αβ = 0.

Therefore from equation(5.1) we can write ;

∇ρ∇αh
ρ
β +∇ρ∇βh

ρ
α −∇β∇αh−□hαβ = 0 (5.2)

We define the trace-reversed metric perturbation h̃µν so that the metric perturbation
hµν takes the form :

hµν = h̃µν −
1

2
ḡµνh̃

where h̃ = h̃µ
µ and h = hµ

µ, replacing the metric perturbation with the trace-reversed
metric perturbation, equation (5.2) simplifies to ;

∇ρ∇βh̃
ρ
α +

1

2
ḡαβ□h̃+∇ρ∇αh̃

ρ
β −□h̃αβ = 0. (5.3)

Using lorentz gauge, ∇νh̃
µν = 0, equation (5.3) modifies to ;

R̄δαh̃
δ
β + R̄δβh̃

δ
α − 2R̄βδαρh̃

δρ −□h̃αβ +
1

2
ḡαβ□h̃ = 0.
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Imposing the traceless condition h̃ = h̃α
α = 0,(hµν = h̃µν), we get ;

□h̃βα − R̄δαh̃
δ
β − 2R̄δβαρh̃

δρ − R̄δβh̃
δ
α = 0 (5.4)

This describes the differential equation that controls ripples in spacetime geometry
within a non-flat cosmological setting.
In the above equation(5.4) the term □h̃βα represents the wave propagation, −2R̄δβαρh̃

δρ

indicates the interaction with the background curvature through the Riemann ten-
sor. −R̄δαh̃

δ
β − R̄δβh̃

δ
α indicates the interaction with the background curvature

through the Ricci tensor.

5.3 Gravitational waves in FLRW universe :

The FLRW (Friedmann-Lemaitre-Robertson-Walker) spacetime is described by the
following metric: ;

dS2 = −dt2 + a2(t)

�
1

1− kr2
dr2 + r2dθ2 + (sin θ)2 r2 dϕ2

�
(5.5)

We are considering the signiture of the metric to be (-1,+1,+1,+1).

=⇒ ḡµν =




−1 0 0 0

0 a2(t)
1−kr2 0 0

0 0 a2(t)r2 0
0 0 0 a2(t)r2 sin2 θ




We therefore can write gµν as ;

ḡµν =




−1 0 0 0

0 1−kr2

a2(t) 0 0

0 0 1
a2(t)r2 0

0 0 0 1
a2(t)r2 sin2 θ




Calculating non-zero Christoffel symbols for this metric, we get ;

Γ0
11 = a

ȧ

1− kr2
, Γ0

22 = ar2ȧ, Γ0
33 = ar2ȧ sin2 θ, Γ1

11 = k
r

1− kr2

Γ1
01 =

ȧ

a
, Γ1

10 =
ȧ

a
, Γ2

02 =
ȧ

a
, Γ2

20 =
ȧ

a
, Γ3

03 =
ȧ

a
, Γ3

30 =
ȧ

a

Γ1
22 = −(1− kr2)r, Γ1

33 = −r(sin θ)2(1− kr2)

Γ2
12 =

1

r
, Γ3

13 =
1

r
, Γ2

21 =
1

r
, Γ3

31 =
1

r
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Γ3
32 = cot θ = Γ3

23, Γ2
33 = −sin 2θ

2
= − cos θ sin θ, (0, 1, 2, 3 means t, r, θ,ϕ)

Using the above equations let’s now calculate the Ricci tensor for background metric,
Ricci tensor components are just the Riemann tensor components where we sum the
upper index with lower middle index ;

Rµ
σµν = ∂µΓ

µ
νσ − ∂νΓ

µ
µσ + Γα

νσΓ
µ
µα − Γβ

µσΓ
µ
νβ

R̄00 = R̄µ
0µ0 = ∂µΓ

µ
00 − ∂0Γ

µ
00 + Γα

00Γ
µ
µα − Γβ

µ0Γ
µ
0β = −∂0Γ

µ
00 − Γβ

µ0Γ
µ
0β

R̄00 = −3
ä

a

R̄11 = ∂0Γ
0
11 + Γ0

11Γ
1
10 + 2Γ1

11Γ
2
21 =

aä+ 2ȧ2 + 2k

1− kr2

R̄22 = ∂0Γ
0
22 + ∂1Γ

1
22 + Γ0

22Γ
1
10 + Γ1

22Γ
1
11 + 1 = (aä+ 2ȧ2 + 2k)r2

Similarly ;

R̄33 = ∂0Γ
0
33 + ∂1Γ

1
33 + Γ0

33Γ
1
10 + Γ1

33Γ
1
11 + sin2 θ = (aä+ 2ȧ2 + 2k)r2 sin2 θ

Therefore Ricci scalar for background metric can be written as ;

R̄ = R00ḡ
00 +R11ḡ

11 +R22ḡ
22 +R33ḡ

33 =
6(aä+ ȧ2 + k)

a2

The non-zero elements of the Riemann curvature associated with the background
geometry are as follows :

R̄i0j0 = aäδij, (i, j takes the value 1, 2, 3)

R̄1212 = R̄1313 =
ka2 − ȧ2

(1− kr2)2
, R̄2323 = a2r4(k − ȧ2

a2
)

From equation(5.4), in curved space-time background the wave equation for gravi-
tational wave is ;

□h̃βα − R̄δαh̃
δ
β − R̄δβh̃

δ
α − 2R̄δβαρh̃

δρ = 0

Where,

□hβα =
1√−g

∂µ
√−g gµν∂νhβα

�

For α = 0, β = 0 and writing hαβ instead of h̃αβ and putting all the above values
of Riemann tensor and Ricci tensor in gravitational wave equation(5.4) we get ;

□h00 − 6
ä

a
h00 − 2

ä(1− kr2)

a3
h11 − 2

ä

a3r2
h22 − 2

ä

a3r2 sin2 θ
h33 = 0 (5.6)
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Similarly for α = 1, β = 1, we have ;

□h11 − 4
ȧ2

a2
h11 − 2

ä

a
h11 +

2ȧ2 + 2k

r2a2(1− kr2)
h22 − 4

k

a2
h11

−2
k + ȧ2(sin θ)−2

(kr2 − 1)a2r2
h33 + 2

aä

kr2 − 1
h00 = 0 (5.7)

Similarly for α = 2, β = 2, we get ;

□h22 −
4

a2

�
ȧ2 + k +

aä

2

�
h22 +

r2(2ȧ2 + 2k)(1− kr2)

a2
h11

+2
(ȧ2 + k)

a2 sin2 θ
h33 − 2r2aäh00 = 0 (5.8)

For α = 3, β = 3 we have ;

□h33 − 2

�
2
ȧ2

a2
+ 2

k

a2
+

ä

a

�
h33 + 2 sin2 θr2

(1− kr2)r2(ȧ2 + k)

a2
h11

+2 sin2 θ
(ȧ2 + k)

a2
h22 − 2 sin2 θr2aäh00 = 0 (5.9)

Now using β = 0,α = i, where i=1,2,3, we have ;

□h0i −
1

a2
�
6äa+ 2ȧ2 + 2k

�
h0i = 0 (5.10)

For β = m,α = n, where m and n take values from the spatial coordinates and are
distinct m ̸= n, we have ;

□hmn −
�
2
ä

a
+ 6

ȧ2

a2
+ 6

k

a2

�
hmn = 0 (5.11)

In all the above equations i, j = 1, 2, 3 corresponds to r, θ,ϕ components.

5.3.1 Spatially flat FLRW Universe (k = 0) :

A flat Friedmann-Lemaitre-Robertson-Walker universe corresponds to the FLRW
metric with spatial curvature k = 0. This means that, at any fixed time slice,
the universe is described by Euclidean geometry rather than spherical (k > 0) or
hyperbolic (k < 0) geometry, hence we use cartesian coordinate system. Apply-
ing tranverse traceless synchronous gauge h0µ = h1µ = 0 and h22 = h33 on the
above equations (1.6,1.7,1.8,1.9,1.10,1.11), we get the non zero and independent
wave equations as ;

□h22 −
�
2
ä

a
+ 6

ȧ2

a2

�
h22 = 0 (5.12)
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□h23 −
�
2
ä

a
+ 6

ȧ2

a2

�
h23 = 0 (5.13)

Where the term −
h
2 ä
a + 6 ȧ2

a2

i
h22 and −

h
2 ä
a + 6 ȧ2

a2

i
h23 originate from the universe’s

expansion, ä
a gives acceleration of universe and ( ȧa) is the Hubble parameter. These

terms introduce damping to the gravitational waves due to the stretching of space.
When the universe is flat and dominated by pressureless (P = 0) matter, the
expansion rate is described by the scale factor growing in time as shown below ;

a = ait
2/3

ai is a constant. Next, we assume that the perturbation components depend on
both time t and and spatial coordinate x only, that is h22 = ψ(x, t), we can write
the equation(5.12) and equation(5.13) as ;

∂2Ψ

∂t2
+ 3

ȧ

a

∂Ψ

∂t
− 1

a2
∂2Ψ

∂x2
−

�
2
ä

a
+ 6

ȧ2

a2

�
ψ = 0

Using the value of a = ait
2/3 in above equation and solving we get ;

∂2Ψ

∂t2
+

2

t
Ψ− 1

a2i t
4/3

∂2Ψ

∂x2
− 20

9t2
ψ = 0

By applying the method of separating variables, we write Ψ(x, t) = X1(x)T1(t), we
can write the above equation in the form ;

a2i t
4/3

�
1

T1

∂2T1

∂t2
+

2

t

1

T1

dT1

dt
− 20

9t2
T1

�
=

1

X1

d2T1

dx2
= −Ω2 (5.14)

Where Ω2 is the separation constant.
The equation governing the time variable can be written as ;

d2T1

dt2
+

�
Ω2

a2i t
4/3

T1 −
20

9t2
T1

�
+

2

t

dT1

dt
= 0

The equation yields the following solution ;

T1(t) =
2
q

2
3 a

3/2
i

h
C2Γ

�√
89
2 + 1

�
J√

89
2

�
3 3
√
tΩ

ai

�
+ C1Γ

�
1−

√
89
2

�
J−

√
89
2

�
3 3
√
tΩ

ai

�i

3
√
tΩ3/2

In this expression, C1 and C2 represent integration constants, while Jn(z) and Γ(z)
denote the Bessel function of the first kind with order n and the Gamma function,
respectively. Figure(5.1) below illustrates the time evolution of the gravitational
wave.
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Figure 5.1: Gravitational wave amplitude versus time for a spatially flat, dust-dominated cosmos.

With ai set to unity, the graph reveals that both the amplitude and the oscil-
lation frequency of the wave diminish as time progresses. This attenuation can be
attributed to cosmic expansion; in an expanding background, a comoving observer
perceives gravitational wave signals that gradually redshift and weaken.

In a radiation dominated universe, characterized by the equation of state P =
1
3 ,the scale factor evolves over time according to :

a = ait
1
2

Using the same varaiable separable method as above and putting Ψ(t, x) = X2(x) T2(t),
The time dependent behavior of the gravitational wave is described by the following
equation :

d2T2

dt2
+

�
Ω2

a2i t
T2 −

1

t2
T2

�
+

3

2t

dT2

dt
= 0

and whose solution is of the form ;

T2(t) =

√
ai

h
C4Γ

�√
17
2 + 1

�
J√

17
2

�
2
√
tΩ

ai

�
+ C3Γ

�
1−

√
17
2

�
J−

√
17
2

�
2
√
tΩ

ai

�i

4
√
t
√
Ω

Here C3 and C4 are integration constants.

The graph depicting the time evolution of the gravitational wave is shown in
Figure(5.2) below ;
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Figure 5.2: Time evolution of gravitational wave amplitude in a flat universe dominated by radiation.

As observed in the dust-dominated scenario, the gravitational wave’s amplitude
and frequency also diminish over time in the radiation-dominated case. However, as
evident from Figure(5.2), the wave experiences less damping here than in the dust-
dominated model. This outcome aligns with expectations, since the rate of cosmic
expansion is slower in a radiation-dominated universe than in one dominated by
dust.

5.3.2 Spatially Closed FLWR Universe (k = +1) :

A spatially closed FLRW universe refers to a Friedmann-Lemaitre-Robertson-Walker
metric (FLRW) metric with positive spatial curvature (k = +1).This means that at
any fixed time slice, the spatial geometry is spherical rather than flat or hyperbolic.
We take into consideration a wave moving outward along the radial coordinate.
Using spherical polar coordinates and the transverse traceless synchronous gauge
condition, we obtain the expressions governing the distinct non-zero perturbation
components, given as ;

□h23 −
2

a2
�
aä+ 3ȧ2 + 3

�
h23 = 0 (5.15)

□h22 −
2

a2
�
aä+ 3ȧ2 + 3

�
h22 = 0 (5.16)

Where the extra term 6
a2 arises due to closed geometry.

In a spatially closed universe dominated by radiation (where the equation of state is
P/ρ = 1/3), the scale factor changes over time according to the following behavior:

a(t) = ζ

r
1− (1− t

ζ
)2
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Where ζ =
q

2qo
2qo−1 is a constant and qo is the deceleration parameter of universe

and a suffix o indicates its present value.
Solving the equation(5.15) and equation(5.16) by using varaible separable method
the equations turn into this ;

d2T3

dt2
+ 3

ȧ

a

dT3

dt
+

�
2
ä

a
+ 6

ȧ2

a2
+

6− Ω2

a2

�
T3 = 0

Putting the value of a(t) and solving further we get ;
d2T3(t)

dt2
+3

ζ − t

2ζt− t2
dT3(t)

dt
−2

ζ2

2ζt− t2
T3(t)+6

(ζ − t)2

(2ζt− t2)2
T3(t)+

6− Ω2

2ζt− t2
T3(t) = 0

The solution of the equation is ;

T3(t) =
C1P

i
√
15
2

1
2(2

√
1−Ω2−1)

�
t
ζ − 1

�

4
√
t 4
√
t− 2ζ

+
C2Q

i
√
15
2

1
2(2

√
1−Ω2−1)

�
t
ζ − 1

�

4
√
t 4
√
t− 2ζ

(5.17)

C1 and C2 denote constants of integration, while P and Q represent the associated
Legendre functions of the first and second kind, respectively.
To visualize how the gravitational wave evolves over time, we set the present day
deceleration parameter q0 equal to one and generate the corresponding plot shown
below :
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Figure 5.3: Time progression of gravitational waves in a spatially closed universe dominated by radiation.

It is observed that as the universe expands, the gravitational wave’s amplitude and
frequency gradually diminish, while they rise again during the universe’s contraction
phase. Furthermore, a significant point is that the amplitude increases dramatically
near the end of this cycle, coinciding with the collapse of the universe into a singular
state.
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Chapter 6

Anisotropic 5D universe

To explore gravitational wave behavior in more general cosmological settings, we
go beyond the standard 4D framework and consider a five-dimensional anisotropic
and warped spacetime. We study a specific 5D vacuum solution presented in
[arXiv:2402.13665v3, Eq.(20)], which describes a time-dependent anisotropic uni-
verse with exponential warping along an extra spatial dimension. The metric in-
cludes direction-dependent expansion rates and a warp factor e−2ω, which modifies
the geometry across the fifth dimension. The 5D anisotropic warped metric is given
by:

ds2 =
µ

sinh2/3(t)

"
− dt2

9 sinh2 t
+

3X

i=1

ekit−2ω(dX i)2 + dω2

#
(6.1)

Where ki is given as ;

κi =
2
q

2
3p

p2 + pq + q2
(p, q, −(p+ q))

In particular, we focus on the case k1 = k, k2 = −k, k3 = 0, where k = 2
q

2
3

leading to one expanding, one contracting and one static spatial direction. This
setup allows us to examine how anisotropy and warping affect the evolution of grav-
itational waves.

The equation that describes the behavior of gravitational waves within a curved
spacetime framework is expressed as follows:

□h̃βα − R̄δαh̃
δ
β − 2R̄δβαρh̃

δρ − R̄δβh̃
δ
α = 0

For α = 0, β = 0 and writing hαβ instead of h̃αβ and putting all the values of
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Riemann tensor and Ricci tensor in gravitational wave equation we get ;

□h00 −
16− 3k2 + 4k coth (t)

6
h0
0 +

2µ ekt−2ω

3 sinh
2
3 t

h11 +
2µ

3 sinh
2
3 t
h44 +

2µ e−2ω

3 sinh
2
3 t
h33

−2µ ekt−2ω(−4 + 3k2 − 4k coth (t))

12 sinh
2
3 t

h22 + k h4
0 = 0

For α = 1, β = 1 we get ;

□h11 +
2µ ekt−2ω

3 sinh
2
3 t

h00 − 3 ekt−2ωk sinh (2t)

2
h1
1 + 2 ekt−4ωµ sinh

4
3 (t) h33

+2 ekt−2ωµ sinh
4
3 (t) h44 + e−4ωµ sinh

1
3 (t)(3k cosh (t) + 2 sinh t) h22 = 0

For α = 2, β = 2 we get ;

□h22+µ sinh
1
3 t (3k cosh (t) + 2 sinh t)

�
e−kt−4ωh33 + e−4ωh11 + e−kt−2ωh44

�

−3k e−kt−2ω sinh t (2 cosh t+ 3k sinh t)

2
h2
2 −

µ k e−kt−2ω

sinh
2
3 t

[h04 + h40]

−e−kt−2ωµ[−4k cosh t+ (−4 + 3k2) sinh t]

6 sinh
5
3 t

h00 = 0

For α = 3, β = 3 we get ;

□h33 +
2 µ e−2ω

3 sinh
2
3 t

h00 − 2 µ e−kt−4ω sinh
4
3 (t) h11 + 2 µ e−2ω sinh

4
3 (t) h44

+µ e−kt−4ω sinh
1
3 (t)[3k cosh t+ 2 sinh t] h22 − 3 k e−2ω sinh 2t

2
h3
3 = 0

For α = 4, β = 4 we get ;

□h44 +
2 µ

3 sinh
2
3 t
h00 + 2 µ ekt−2ω sinh

4
3 (t) h11 + 2 µ e−2ω sinh

4
3 (t) h33

+µ e−kt−2ω sinh
1
3 (t)[3k cosh t+ 2 sinh t] h22 + k h0

4 −
3k sinh 2t

2
h4
4 = 0

For α = 1, β = 0 we get ;

□h01 −
2 µ ekt−2ω

3 sinh
2
3 t

h10 +
k

2
h4
1 −

16− 3k2 + 4k cosh t

12
h0
1 −

3k ekt−2ω sinh 2t

4
h1
0 = 0

For α = 2, β = 0 we get ;

□h02 +
k µ e−kt−2ω

sinh
2
3 t

h24 − e−kt−2ωµ[4k cosh t+ (4− 3k2) sinh t]

6 sinh
5
3 t

h20 + k h4
2

−16− 3k2 + 4k cosh t

12
h0
2 −

3 k e−kt−2ω sinh (t) [2 cosh t+ 3k sinh t]

4
h2
0 = 0

For α = 3, β = 0 we get ;

□h03 −
2 µ e−2ω

3 sinh
2
3 t

h30 +
k

2
h4
3 −

16− 3k2 + 4k cosh t

12
h0
3 −

3 k e−2ω sinh 2t

4
h3
0 = 0
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For α = 4, β = 0 we get ;

□h04 −
2 µ

3 sinh
2
3 t
h40 − k µ e−kt−2ω

sinh
2
3 t

h22 +
k

2
[h4

4 + h0
0]−

16− 3k2 + 4k cosh t

12
h0
4

−3k sinh 2t

4
h4
0 = 0

For α = 2, β = 1 we get ;

□h12 − µ e−4ω sinh
1
3 (t)[3k cosh t+ 2 sinh t] h21 − 3 k ekt−2ω sinh 2t

4
h1
2

−3 k e−kt−2ω sinh t[2 cosh t+ 3k sinh t]

4
h2
1 = 0

For α = 3, β = 1 we get ;

□h13 − 2 µ ekt−4ω sinh
4
3 (t) h31 − 3 k ekt−2ω sinh 2t

4
h1
3 −

3 k e−2ω sinh 2t

4
h3
1 = 0

For α = 4, β = 1 we get ;

□h14 − 2 µ ekt−2ω sinh
4
3 (t) h41 − 3k ekt−2ω sinh 2t

4
h1
4 +

k

2
h0
1 −

3k sinh 2t

4
h4
1 = 0

For α = 3, β = 2 we get ;

□h23 − µ e−kt−4ω sinh
1
3 (t)[3k cosh t+ 2 sinh t] h32 − 3 k e−2ω sinh 2t

4
h3
2

−3 k e−kt−2ω sinh t [2 cosh t+ 3k sinh t]

4
h2
3 = 0

For α = 2, β = 3 we get ;

□h34 − 2 µ e−2ω sinh
4
3 (t) h4

3 −
3k e−2ω sinh 2t

4
h3
4 +

k

2
h0
4 −

3k sinh 2t

4
h4
3 = 0

We will now focus on solving the two axial components h13 and h23 of the pertur-
bation equations, we write ;

□h13 − 2 µ ekt−4ω sinh
4
3 (t) h31 − 3 k ekt−2ω sinh 2t

4
h1
3 −

3 k e−2ω sinh 2t

4
h3
1 = 0

Or

□h13 −
�
2 ekt−2ω sinh2 t+

3k ekt−2ω sinh 2t

2

�
h1
3 = 0 (6.2)

Where,

□hβα =
1√−g

∂µ
√−g gµν∂νhβα

�

In all the above equation 0, 1, 2, 3, 4 corresponds to t, x1, x2, x3,ω respectively.
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Now solving □h13 as follows ;

□h13 =
1√−g

∂t
√−g gtt∂th13

�
+

1√−g
∂ω

√−g gωω∂ωh13

�

or
□h13 =

1√−g
∂t
�√−g gtt∂t(g11h

1
3)
�
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1√−g
∂ω

�√−g gωω∂ω(g11h
1
3)
�
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□h13 =− 9 sinh2 t ekt−2ω

�
(
10

9
coth2 t− 4k coth t+
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3
+ k2)

�
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3
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�
(2k − 4

3
coth t)∂th

1
3 + ∂2

t h
1
3

�
+ ekt−2ω

�
∂2
ωh

1
3 − 7∂ωh

1
3 + 10h1

3

�

Using the value of □h13 in equation(6.2), we get ;

− 9 sinh2 t ekt−2ω

�
(
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9
coth2 t− 4k coth t+

2

3
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�
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3

+ekt−2ω
�
∂2
ωh

1
3 − 7∂ωh

1
3 + 10h1

3

�
− 9 sinh2 t ekt−2ω

�
(2k − 4

3
coth t)∂th

1
3 + ∂2

t h
1
3

�

−
�
2 ekt−2ω sinh2 t+

3k ekt−2ω sinh 2t

2

�
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3 = 0

∴ − 9 sinh2 t

�
(
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9
coth2 t− 4k coth t+

2

3
+ k2)

�
h1
3 −

�
2 sinh2 t+

3k sinh 2t

2

�
h1
3

+
�
∂2
ωh

1
3 − 7∂ωh

1
3 + 10h1

3

�
− 9 sinh2 t

�
(2k − 4

3
coth t)∂th

1
3 + ∂2

t h
1
3

�
= 0 (6.3)

6.1 Solution for h1
3(t) = T (t)

Let’s first consider h1
3 = T (t) only and using k = 2

q
2
3 , equation (6.3) reduces to ;

∂2
t T (t) +

12

9
(
√
6− coth t )∂tT (t)+

10

9
coth2 (t) T (t) +

32

9
T (t)

−22
√
6

9
coth (t)T (t)− 10

9 sinh2 t
T (t) = 0 (6.4)

For finding the stable solution let’s further substitute T (t) = P (t)eαt, where α is a
negative constant α = −12(

√
6−1)−27
18 , we get ;

P̈ + Ṗ

�
−2α +

12

9
(
√
6− coth t)

�
+P

�
α2 − 12α

9
(
√
6− 1) +

24α

9(e2t − 1)

�

+P

"
42

9
− 22

√
6

9
− 44

√
6

9(e2t − 1)

#
= 0 (6.5)
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Below is the graph illustrating the solution to equation (6.5).
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Figure 6.1: Time evolution of the gravitational wave component h1
3 = T (t)

The decaying behavior of T (t), representing the gravitational wave component
h1
3, reflects the damping of the wave amplitude over time in a five-dimensional

anisotropic cosmological background.

6.2 Solution for h1
3 = h1

3(t,ω)

Now let’s consider the most general case h1
3(t,ω), we get ;

−9 sinh2 t

�
(
10

9
coth2 t− 4k coth t+

2

3
+ k2)

�
h1
3 −

�
2 sinh2 t+

3k sinh 2t

2

�
h1
3

+
�
∂2
ωh

1
3 − 7∂ωh

1
3 + 10h1

3

�
− 9 sinh2 t

�
(2k − 4

3
coth t)∂th

1
3 + ∂2

t h
1
3

�
= 0

By applying the method of separation of variables, we express h2
3(t,ω) as the product

of a time-dependent function T (t) and a spatial function W (ω). The resulting
spatial equation is:

∂2
ωW (ω)− 7∂ωW (ω) + Ω2W (ω) = 0
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The equation governing the time dependent component is:

∂2
t T (t) +

4

3
(
√
6− coth t )∂tT (t)+

2

3
coth (t) T (t) +

14

3
T (t)

+
8
√
6

3
coth (t)T (t) +

Ω2

9 sinh2 t
T (t) = 0 (6.6)

Here, Ω2 represents the separation constant. The graph illustrating the solution to
equation (6.6) is shown in the figure below :
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Figure 6.2: Time evolution of the gravitational wave component h1
3(t,ω) for different values of the Ω.

As time t increases, the amplitude of T (t) decreases for all values of Ω, indicating
a damping of the gravitational wave signal. This decay in amplitude reflects the
effect of an expanding anisotropic universe, where the stretching of spacetime causes
gravitational waves to redshift and lose energy over time. Higher values of Ω show
more rapid oscillations, but all modes exhibit a similar decaying trend, consistent
with the dissipation of wave energy in both the observable and extra dimensions.

6.3 Solution for h2
3 = h2

3(t,ω)

Now let’s solve another axial component that is h23, given as ;

□h23 − µ e−kt−4ω sinh
1
3 (t)[3k cosh t+ 2 sinh t] h32 − 3 k e−2ω sinh 2t

4
h3
2

−3 k e−kt−2ω sinh t [2 cosh t+ 3k sinh t]

4
h2
3 = 0
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or
□h23 − e−kt−2ω(3k sinh 2t+ 8 sinh2 t) h2

3 = 0 (6.7)

Now solving □h23 as follows ;

□h23 =
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∂t
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9
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2
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�

Using the value of □h2
3 in equation(6.7), we get ;
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9
coth2 t+ 4k coth t− 2
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+e−kt−2ω
�
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ωh

2
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2
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−e−kt−2ω(3k sinh 2t+ 8 sinh2 t) h2
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or

∴ 9 sinh2 t

�
(
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9
coth2 t+ 4k coth t− 2

3
+ k2)

�
h2
3 + (3k sinh 2t+ 8 sinh2 t) h2
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−
�
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ωh
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3 − 7∂ωh
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3 + 10h2

3

�
+ 9 sinh2 t

�
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3
coth t)∂th

2
3 + ∂2

t h
2
3

�
= 0 (6.8)

Using the separation of variables technique, we write h2
3(t,ω) as the product of a

time-dependent function T (t) and a spatial function W (ω). The time-dependent
portion then satisfies the following equation :

∂2
t T (t)−

4

3
(
√
6− coth t )∂tT (t) +

12

3
T (t)

+
28
√
6

9
coth (t)T (t) +

Ω2

9 sinh2 t
T (t) = 0 (6.9)

Ω2 denotes the constant arising from the separation of variables.
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The figure below illustrates the graphical solution of equation (6.9).
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Figure 6.3: Time evolution of the gravitational wave component h2
3(t,ω) for different values of the Ω.

Similar to the h1
3 case, the amplitude of T (t)decreases as time progresses, signaling

the damping of gravitational waves in an expanding five-dimensional anisotropic
universe. The oscillatory nature remains evident across different Ωvalues, but the
envelope of the wave decays with time. This behavior reflects the combined effects
of cosmological expansion and energy dissipation into the extra spatial dimension,
demonstrating how higher-dimensional geometry can influence the evolution and
observability of gravitational waves.
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Conclusion

We here presented a self contained description of gravitational waves and their
properties. We also presented the explicit calculation of gravitational waves in the
background of the FLRW universe. In the spatially open case, they behave as
Bessel functions, and for the closed case, they are described by associated Legendre
functions. We also analyzed gravitational waves in the case of an anisotropic 5D
universe, where one of the spatial dimensions shrinks with time, effectively resulting
in a 4D universe at late times. We obtained explicit, though numerical, solutions
for the axial modes and plotted their time evolution. We find that their properties
are significantly influenced by the anisotropy and warping of the background. In
particular, the modes exhibit oscillatory behavior with frequencies that increase
with the KK mass parameter Ω2 and the amplitude shows direction dependent
modulation due to the anisotropic expansion.
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Scope for futute work

We can further extend this work by analyzing the longitudinal modes in the 5D
anisotropic universe and studying their evolution in the same background. Addi-
tionally, calculating the quadrupole moment and luminosity of these gravitational
waves will provide insights into their energy content and potential observational
signatures. This would help in understanding how such modes might appear in
gravitational wave detectors if the underlying geometry of our universe includes
higher-dimensional anisotropic effects.
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APPENDIX A

Bianchi Type-I universe

In this appendix, we study gravitational waves in the Bianchi type-I universe, which
is the simplest anisotropic but homogeneous cosmological model. Unlike the FLRW
metric, it allows for different scale factors along each spatial direction, making it
suitable for analyzing anisotropic effects on gravitational wave propagation. We
begin by writing down the Bianchi Type-I metric and then derive the correspond-
ing gravitational wave equations using linear perturbation theory. The Bianchi
type-I cosmological model represents the most straightforward homogeneous yet
anisotropic model of cosmos, characterized by the following metric :

dS2 = −dt2 + a2dx2 + b2dy2 + c2dz2 (6.10)

The functions a(t), b(t), c(t) depend on cosmic time t and serve as scale factors along
the spatial coordinates x, y, z respectively.

6.4 Equations Governing Gravitational Waves :

We know the general gravitational wave equation is given is given by equation (1.4)
written as ;

□h̃βα − R̄δαh̃
δ
β − R̄δβh̃

δ
α − 2R̄δβαρh̃

δρ = 0 (6.11)

The non-zero components of Christoffel symbol are given as ;

Γ1
10 =

ȧ

a
, Γ2

20 =
ḃ

b
, Γ3

30 =
ċ

c

Γ0
11 = aȧ, Γ0

22 = bḃ, Γ0
33 = cċ

Now, by evaluating the Ricci tensor, we obtain its non-zero components as follows :

R̄0
0 = − 1

abc

�
bcä+ b̈ac+ c̈ab

�
, R̄1

1 = − 1

abc

h
bcä+ cȧḃ+ bȧc̈

i
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R̄2
2 = −

"
b̈

b
+

ḃ

b

�
ċ

c
+

ä

a

�#
, R̄3

3 = −
"
c̈

c
+

ċ

c

 
ȧ

a
+

b̈

b

!#

From the above equations of Ricci tensor, Ricci scalar is written as ;

R̄ =
2

abc

�
ȧḃc+ bċȧ+ aḃċ+ äbc+ b̈ca+ c̈ab

�

Now, by evaluating the Riemann tensor, we obtain its non-zero components as
follows :

R̄01
01 =

ä

a
, R̄02

02 =
b̈

b
, R̄03

03 =
c̈

c

R̄12
12 = − ȧ

a

ḃ

b
, R̄23

23 = − ḃ

b

ċ

c
, R̄31

31 = − ċ

c

ȧ

a
By employing the Bianchi type-I metric (6.10), we have determined all the relevant
Christoffel symbols, Ricci tensor, and Riemann tensor elements that are not equal
to zero, as required in equation (6.20). Therefore the wave equation describing the
evolution of each component of the metric perturbation can be expressed as :

□h11 −
2

abc

�
äbc+ ȧḃc+ ȧċb

�
h11 + 2aȧ

 
ḃ

b3
h22 +

ċ

c3
h33

!
− 2 (aä)h00 = 0

□h00−
1

abc

�
2äbc+ 2b̈ac+ 2c̈ba

�
h00−

2

a3b3c3

�
äb3c3h11 + b̈a3c3h22 + c̈a3b3h33

�
= 0

□h22 −
2

abc

�
b̈ca+ ȧḃc+ ḃċa

�
h22 +

2ḃ

b3c3

bȧc3h11 + bċb3h33

�
− 2b̈bh00 = 0

□h33 −
2

abc

�
abc̈+ ȧċb+ ḃċa

�
h33 +

2cċ

b3

�
ȧh11 + ḃh22

�
− 2cc̈h00 = 0

□h01 −
1

abc

�
äbc+ b̈ca+ c̈ab

�
h01 −

2ä

a
h10 −

1

abc

�
äbc+ ȧḃc+ ȧċb

�
h10 = 0

□h02 −
1

abc

�
äbc+ b̈ca+ c̈ab

�
h02 −

2b̈

b
h20 −

1

abc

�
ab̈c+ ȧḃc+ ḃċa

�
h20 = 0

□h03 −
1

abc

�
äbc+ b̈ca+ c̈ab

�
h03 −

2c̈

c
h30 −

1

abc

�
abc̈+ ċȧb+ ċḃa

�
h30 = 0

□h12 −
1

cba

�
acb̈+ ȧḃc+ ḃċa+ 2ȧḃc

�
h21 −

1

abc

h
ȧ
�
cḃ+ bċ

�
+ äbc

i
h12 = 0

□h13 −
1

abc

�
bȧċ+ ḃċa+ 2ȧċb+ c̈ba

�
h31 −

1

abc

�
äbc+ ȧḃc+ ȧċb

�
h13 = 0

□h23 −
1

abc

�
abc̈+ ȧċb+ ḃċa+ 2aḃċ

�
h32 −

1

abc

�
acb̈+ ȧḃc+ ḃċa

�
h23 = 0.
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In all the above equations index 1, 2, 3 correspond to x, y, z respectively.
Assuming the wave is moving in the x direction, further applying the transverse
traceless gauge conditions (h0α = 0, h1α = 0, h22 = −h33, h23 = h32), We are
left with only two independent components of the metric perturbations, and their
corresponding wave equations are given by :

□h22 −
2

abc

�
b̈ca+ ȧḃc+ ḃċa

�
h22 +

2ḃ

b3c3

bȧc3h11 + bċb3h33

�
− 2b̈bh00 = 0 (6.12)

□h23 −
1

abc

�
abc̈+ ȧċb+ ḃċa+ 2aḃċ

�
h32 −

1

abc

�
acb̈+ ȧḃc+ ḃċa

�
h23 = 0 (6.13)

On further simplifying the above two equations on the basis of given condition, we
get ; "

□− 2
ḃḃc

c3
− 2

b

 
b̈

b
+

ȧḃ

a
+

ḃċ

c

!#
h22 = 0 (6.14)

"
□− 2

ḃċ

bc
− 1

abc

�
acb̈+ ȧḃc+ ḃċa

�
− 1

abc

�
abc̈+ ȧċb+ ḃċa

�#
h32 = 0 (6.15)

Where the d’Alembertian of h22 and h33 is given by ;

□h22 = −ḧ22 −
1

abc

�
ȧbc+ ḃca+ ċab

�
ḣ22 +

1

a2
h

′′
22

□h33 = −ḧ33 −
1

abc

�
ȧbc+ ḃca+ ċab

�
ḣ33 +

1

a2
h

′′
33

Where the double dot represents ∂2

∂t2 and the double prime ′′ represents ∂2

∂x2 .
In conclusion, the Bianchi Type-I model allows us to explore the behavior of gravita-
tional waves in an anisotropic but homogeneous universe. By applying the linearized
Einstein equations to this background, we derived the complete set of wave equa-
tions for metric perturbations. Under the transverse-traceless gauge and assuming
wave propagation along one direction, the analysis simplifies to two independent
components, capturing the physical degrees of freedom. This study highlights how
anisotropic expansion influences the dynamics of gravitational waves and serves as
a useful generalization beyond the standard isotropic cosmologies.
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