Design and synthesis of β -pyrrole functionalized ferrocenyl BODIPYs

M.Sc. Thesis

by

Abhishek Kumar

DEPARTMENT OF CHEMISTRY INDIAN INSTITUTE OF TECHNOLOGY INDORE

May 2025

Design and synthesis of β -pyrrole functionalized ferrocenyl BODIPYs

A THESIS

Submitted in partial fulfilment of the

Requirements for the award of the degree

Of

Master of science

by

Abhishek Kumar

DEPARTMENT OF CHEMISTRY INDIAN INSTITUTE OF TECHNOLOGY INDORE

May 2025

INDIAN INSTITUTE OF TECHNOLOGY INDORE

CANDIDATE'S DECLARATION

I hereby declare that the work which is being presented in the thesis entitled **Design and synthesis of** β -pyrrole functionalized ferrocenyl **BODIPYs** in the partial fulfilment of the requirements for the award of the degree of **Master of science** and submitted to the **DEPARTMENT OF CHEMISTRY, Indian Institute of Technology Indore,** is an authentic record of my own work carried out during the time period from July 2024 of joining the M.Sc. to May 2025 of M.Sc. Thesis submission under the super vision of Prof. Rajneesh Misra, Professor, IIT Indore.

The matter presented in this thesis has not been submitted by me for the award of any other degree of this or any other institute.

	1	Abhi	shek K	umar
			- अमिदीक ह	BAIL _
This is to certify that the above statemed is correct to the best of my knowledge.	ent mad	e by	the cano	didate
	Prof	. Raj	jneesh N	Misra
Abhishek Kumar has successfully Examination held on May 16/2025.	given	his	M.Sc.	Oral

i

Signature of Supervisor of M.Sc. thesis

Date: 19/5/25

ACKNOWLEDGEMENTS

With a great pleasure, I would like to express gratitude to my supervisor Prof. Rajneesh Misra, for giving me an opportunity to pursue research and believing in my research abilities. His guidance, motivation and support have been immensely helpful to complete this M.Sc. project. His enthusiasm and dedication have always inspired me.

I am grateful to Prof. Tushar K. Mukherjee (Head, Department of chemistry, IIT Indore). I am also grateful to Prof. Suman Mukhopadhyay, Prof. Sanjay Kumar Singh, Prof. Apurba Kumar Das, Prof. Sampak Samantha, Dr. Anjan Chakraborty, Dr. Tridib Kumar Sharma, Tushar K. Mukherjee, Dr. Chelvam venkatesh, Dr. Shaikh M. Mobin, Dr. Satya S. Bulusu, Dr. Amrendra Kumar Singh, Dr. Abhinav Raghuvanshi, Dr. Deepak Kumar Roy for their help during various academic activities. I want to extend my sincere thanks to my mentor Amiy Krishna for his supportive, kind and friendly nature. I extend my deep thanks to my group members Mohd. Wazid, Nikhilji Tiwari, Ramakant Gavale, Nitin Rajesh, Kusum, Vivak Kandpal, Shivangi Tiwari, Akanksha Dwivedi, and Kushagra P. Rana for their selfless cooperation and help to make my work successful. I would also like to thank the technical staff from Sophisticated Instrument Centre (SIC), IIT Indore, Mr. Kinny Pandey, and Mr. Ghanshyam Bhavsar for their patience and timely technical support without which it was impossible to continue with my work. I personally want to extend my thanks to my batch mates who were always there and never let me down during these M.Sc. days.

Here, it is to be specially mentioned that, none of this would have been possible without the support of my parents and I express my love and gratitude to my family.

Abhishek Kumar M.Sc. student

DEDICATED TO MY FAMILY AND FRIENDS......

ABSTRACT

Ethynyl bridged ferrocenyl functionalized BODIPY 1 was synthesized *via* Sonogashira cross-coupling reaction. Tetracyanobutadiene (TCBD) and cyclohexa-2,5-diene-1,4-diylidene-expanded TCBD (DCNQ) incorporated ferrocenyl BODIPYs 2 and 3 were synthesized using [2 + 2] cycloaddition -retroelectrocyclization (CA-RE) reaction, in good yields. BODIPYs 2 and 3 were obtained by reacting BODIPY 1 with strong electron acceptors tetracyanoethylene (TCNE) and tetracyanoquinodimethane (TCNQ) respectively. The electronic absorption spectra and theoretical calculations have been performed using the UV-visible spectrophotometer and density functional theory at B3LYP/6-31+G** level of theory.

TABLE OF CONTENTS

	LIST OF FIGURES AND	8
	SCHEMES	
	ACRONYMS	9
Chapter 1.	INTRODUCTION	10–11
Chapter 2.	LITERATURE REVIEW	12–14
Chapter 3.	EXPERIMENTAL SECTION	15–16
3.1	General methods	15
3.2	Experimental procedure	15–16
Chapter 4.	RESULTS AND DISCUSSION	17–21
4.1	Synthesis	17
4.2	Photophysical properties	18
4.3	Density Functional Theory	20
Chapter 5.	CONCLUSION	22
Chapter 6.	SUPPORTING INFORMATION	23
	REFERENCES	35

LIST OF FIGURES, SCHEMES AND TABLE

- **Figure 1.** General structures of s-indacene, dipyrromethene and BODIPY.
- **Figure 2.** Chemical structures of compounds synthesized.
- Figure 3 Normalized absorption spectra of BODIPYs 1–3
- Figure 4 The FMOs of BODIPY dyes 1–3.
- Figure 5. Energy level diagram of BODIPYs 1–3.
- Figure 6. ¹H NMR spectrum of BODIPY 1.
- Figure 7. ¹³C NMR spectrum of BODIPY 1.
- Figure 8. 11B NMR spectrum of BODIPY 1.
- Figure 9. HRMS of BODIPY 1.
- Figure 10. ¹H NMR spectrum of BODIPY 2.
- Figure 11. ¹³C NMR spectrum of BODIPY 2.
- Figure 12. ¹¹B NMR spectrum of BODIPY 2.
- Figure 13. HRMS spectrum of BODIPY 2.
- Figure 14. ¹H NMR spectrum of BODIPY 3.
- Figure 15. ¹¹B NMR spectrum of BODIPY 3.
- Figure 16. HRMS of BODIPY 3.
- **Scheme 1.** Lindsey method for the synthesis of BODIPY.
- **Scheme 2.** Synthesis of α -halogenated BODIPYs.
- **Scheme 3.** Synthesis of β -halogenated BODIPYs.
- **Scheme 4.** Synthesis of 8-chloro BODIPY.
- **Scheme 5.** Synthesis route of BODIPYs **2** and **3**.
- **Table 1** The photophysical properties of BODIPY 1–3.

ACRONYMS

HOMO Highest Occupied Molecular OrbitalsLUMO Lowest Unoccupied Molecular orbitals

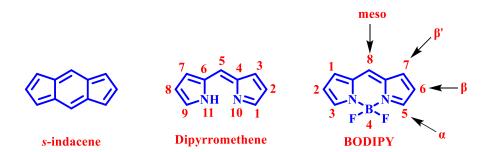
OFETs Organic Field-Effect Transistors

OLEDs Organic Light Emitting Diodes

TCNE Tetracyanoethylene

TCNQ Tetracyanoquinodimethane

TCBD Tetracyanobutadiene


DCNQ Dicyanoquinodi-methane

Chapter 1

INTRODUCTION

π-Conjugated push–pull molecular frameworks have garnered significant attention in recent years due to their tunable optoelectronic features and diverse applications, including inorganic field-effect transistors, nonlinear optical systems, photovoltaic devices, bioimaging, sensors, and organic light-emitting diodes (OLEDs).^[1–5] The electronic characteristics and HOMO-LUMO energy gap of these π -conjugated chromophores can be tailored by altering the electron donor (D), acceptor (A), or the π -bridge connecting them. 4,4-Difluoro-4-bora-3a,4a-diaza-s-indacene, commonly known as BODIPY, has emerged as a prominent chromophore due to its outstanding chemical and photophysical properties. These include intense absorption, high fluorescence quantum yields, large molar extinction coefficients, extended fluorescence lifetimes, and excellent photostability. [6-9] The optoelectronic behaviour of BODIPY derivatives can be finely modulated by extending π -conjugation or by introducing suitable donor or acceptor groups at the pyrrolic (alpha, beta) and meso sites. Consequently, BODIPY-based π -systems have found widespread use in the development of fluorescent probes, molecular switches, chemosensors, laser dyes, OLEDs, photosensitizers, and advanced optoelectronic materials.[10, 11]

Figure 1. General structure of s-indacene, dipyrromethene and BODIPY dye.

TCNE and TCNQ are strong electron acceptors that play a crucial role in the [2 + 2] CA-RE reaction, a catalyst-free process known for its high yields. In this reaction, electron-rich alkynes react with TCNE or TCNQ, resulting in the formation of nonplanar push-pull molecules with low HOMO–LUMO gaps.^[12] These push-pull systems, particularly those based on TCBD and DCNQ, exhibit pronounced intramolecular charge transfer (ICT), revealing new optical bands at longer wavelengths. The nonplanar nature of these molecules is a key feature, contributing to their unique electronic and optical properties. As a result, TCBD and DCNQ-based push–pull systems have emerged as promising candidates for applications in optoelectronics.^[13–15]

Diederich, Michinobu, Shoji, Trolez, and Butenschön et al. have studied the synthesis, photophysical properties, and redox characteristics of TCBD and DCNQ functionalized push-pull chromophores, establishing them as redox-active ICT systems suitable for optoelectronic applications. Recently, our research group has also reported on TCBD and DCNQ functionalized push-pull systems and explored their photophysical and redox properties for potential optoelectronic applications.^[16–20]

Figure 2. Chemical structure of compounds synthesized.

In this work, we report β -functionalized ferrocenyl BODIPYs **2** and **3**, that are synthesized by the [2 + 2] CA–RE reactions in good yields. ^[21-22] These molecules were characterized using various spectroscopic techniques, including ¹H NMR, ¹³C NMR, ¹¹B NMR and HRMS spectrometry. Additionally, the effect of TCBD and DCNQ incorporation on the photophysical and computational properties of the ferrocenyl BODIPYs has been investigated. These BODIPY derivatives,

with low HOMO-LUMO gap, hold significant potential for application in the field of optoelectronics.

Chapter 2

LITERATURE REVIEW

In 1968, the highly fluorescent BODIPY framework was first reported by Treibs and Kreuzer as a serendipitous discovery while attempting to acylate 2,4-dimethylpyrrole using acetic anhydride and BF₃.OEt₂. Various methods are reported for synthesizing BODIPYs, among which the Lindsey method involves an acid-catalyzed condensation of pyrrole with benzaldehyde. Further oxidation using DDQ as the oxidant and then complexation using BF₃.OEt₂, resulted in the final product in a 22% yield. [23]

Scheme 1. Lindsey method for the synthesis of BODIPY.

For the bromination of BODIPY at the α -pyrrolic position, dipyrromethene (DIPY) was treated with 1 and 2 equivalents of N-bromosuccinimide (NBS), resulting in mono- and di-brominated BODIPYs in 40% and 25% yields respectively.^[24-25]

Scheme 2. Synthesis of α -halogenated BODIPYs (X=H, 40% and X=Br, 25% yield).

BODIPYs undergo electrophilic substitution reactions at the β -pyrrolic positions, facilitating halogenation at these sites. Using halogenating agents such as Br₂, β -brominated BODIPYs were synthesized with yields of 80% and 93%, respectively.^[26-27]

Scheme 3. Synthesis of β -halogenated BODIPYs.

Dehaen *et al.* reported the multistep synthesis of 8-chloro BODIPY. The precursor dipyrrolyl ketone was synthesized by treating pyrrole with thiophosgene, followed by oxidation of the intermediate dipyrrolyl thione with H₂O₂. The dipyrrolyl ketone was treated with POCl₃, then triethylamine (TEA), followed by complexation with BF₃·OEt₂, resulting in 8-chloro BODIPY in 59% yield. ^[28]

$$CI \xrightarrow{S} + \bigvee_{\substack{N \\ H}} \frac{DCE}{0 \, ^{\circ}C, 2 \, h} \longrightarrow \bigvee_{\substack{NH \ HN}} \frac{S}{52\%}$$

Scheme 4. Synthesis of 8-chloro BODIPY.

Chapter 3

EXPERIMENTAL SECTION

3.1 General Methods

All reagents and solvents were used as received unless otherwise specified. Moisture-sensitive reactions were carried out under an argon atmosphere using standard Schlenk techniques. Nuclear magnetic resonance (NMR) spectra, including ¹H NMR (400 MHz), ¹³C NMR (100 MHz), and ¹¹B NMR (160 MHz), were recorded in CDCl₃ as the solvent. Chemical shifts for ¹H NMR are reported in parts per million (ppm) relative to the residual solvent peak (CDCl₃, $\delta = 7.26$ ppm). Signal multiplicities are designated as singlet (s), doublet (d), or multiplet (m), and coupling constants (*J*) are reported in hertz (Hz). ¹³C NMR chemical shifts are also expressed in ppm with reference to the CDCl₃ solvent peak ($\delta = 77.0$ ppm). High-resolution mass spectrometry (HRMS) analyses were performed using electrospray ionization time of flight (ESI-TOF) instrumentation. UV-visible absorption spectra of the BODIPY compounds were recorded in dichloromethane (DCM) using an UV-Visible spectrophotometer (1×10⁻⁴ M). Theoretical calculations have been done using the density functional theory (DFT).

3.2 Experimental Procedures

3.2.1 Synthesis and characterization of BODIPY 1

eta-bromo BODIPY (0.050 g, 0.144 mmol), and ethynyl ferrocene (0.036 g, 0.1734 mmol) were dissolved in THF:DIPEA (diisopropyl ethylamine) (4:1, v/v, 10 mL). The reaction mixture was purged with argon, and Pd(PPh₃)₄ (0.008 g, 0.0072 mmol) and CuI (0.0027 g 0.014 mmol) was added, followed by stirring at 60 °C for 12 h. After complete conversion of aryl halide, the reaction mixture was evaporated

to dryness, and the crude product was dissolved in CH_2Cl_2 and purified by column chromatography using 100-200 silica bed, hexane/dichloromethane (3/1, v/v) used as eluent to get BODIPY 1 Yield: 81%.

¹H NMR (CDCl₃, 400 MHz, ppm) δ 8.01 (d, 2H, J = 16 Hz), 7.60-7.55 (m, 5H), 6.99 (s, 2H), 6.59 (s, 1H), 4.46 (s, 2H), 4.23 (s, 7H). ¹³C NMR (CDCl₃, 100 MHz, ppm) δ 147.03, 145.9, 145.06, 135.5, 135.1, 134.2, 133.5, 132.1, 131.4, 130.9, 130.4, 128.5, 127.8, 119.0, 115.2, 91.2, 78.2, 71.3, 69.9, 68.9, 64.8. ¹¹B NMR (160 MHz, CDCl₃, δ in ppm):d = 0.05, 0.13, 32. HRMS (ESI-TOF) m/z = calculated for $C_{27}H_{19}BF_2N_2Fe = 476.0958$ [M]⁺, founded 476.0958 [M]⁺.

3.2.2 Synthesis and characterization of BODIPY 2

Tetracyanoethylene (TCNE) (26 mg, 0.21 mmol) was added to a solution of compound 1 (100 mg, 0.21 mmol) in DCM (50 mL). The mixture was stirred at RT for 6 h. The solvent was removed in a vacuum, and the product was purified by column chromatography with hexane/dichloromethane (1/1, v/v) as the eluent to yield 2 as a brown colored solid. Yield: 74%.

¹H NMR (CDCl₃, 400 MHz, ppm): δ 8.24 (s, 1H), 7.84 (s, 1H) 7.63-7.55 (m, 7H), 6.80 (d, 1H, J = 4 Hz), 5.38 (s, 1H), 5.02 (s, 1H), 4.87 (s, 1H), 4.59 (s, 1H), 4.47 (s, 5H). ¹³C

NMR (100 MHz, CDCl₃, ppm) δ 172.1, 157.6, 151.8, 148.7, 141.6, 137.8, 136.4, 135.3, 132.2, 130.5, 129.1, 126.8, 123.0, 122.5, 113.5, 112.8, 112.5, 112.1, 78.8, 78.4, 75.8, 75.4, 74.9, 72.5, 72.0, 71.8. ¹¹B NMR (160 MHz, CDCl₃, δ in ppm): 0.19, 0.02, 0.16. HRMS (ESI-TOF) m/z = calculated for $C_{33}H_{19}BF_2N_6Fe$ = 604.1083 [M]⁺, founded 604.1060 [M]⁺.

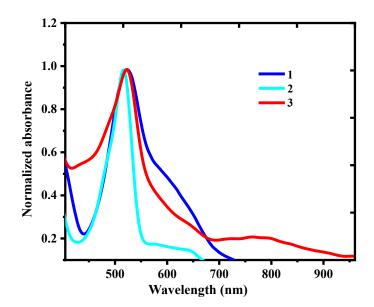
3.2.3 Synthesis and characterization of BODIPY 3

Tetracyanoquinodimethane (TCNQ) (42 mg, 0.21 mmol) was added to a solution of compound 1 (100 mg, 0.21 mmol) in DCE (dichloroethane) solvent (50 mL). The mixture was stirred at 80 °C for 8 h. The solvent was removed in a and the product was purified vacuum, by column chromatography with hexane/dichloromethane (1/4, v/v) as the eluent to yield 3 as a dark brown colored solid. Yield: 70%.

¹H NMR (CDCl₃, 400 MHz, ppm): δ 8.31 (d-d, 1H, J= 4 Hz), 8.21 (s, 1H), 7.77 (s, 1H), 7.71-7.67 (m, 1H) 7.63-7.55 (m, 5H), 7.49-7.46 (m, 1H), 7.24-7.16 (m, 2H), 6.77 (t, 2H, J=8 Hz), 4.99 (s, 1H), 4.85 (s, 1H), 4.45 (s, 1H), 4.38 (s, 4H). 11 B NMR (160 MHz, CDCl₃, δ in ppm): 0.21, 0.04, 0.13. HRMS (ESITOF) m/z = calculated for $C_{39}H_{23}BF_{2}FeN_{6}$ = 681.1475 [M + H]⁺, founded 681.1489 [M + H]⁺.

Chapter 4

RESULTS AND DISCUSSION


4.1 Synthesis

Scheme 5. Synthesis route of BODIPY dyes 1–3.

The BODIPY 1 was synthesized *via* the Pd(II)-catalyzed Sonogashira cross-coupling reaction in 81% yield. ^[29] The push–pull BODIPY 2 and 3 were synthesized by the [2 + 2] CA-RE reaction of BODIPY 1 with strong acceptor TCNE and TCNQ units. The push–pull BODIPY 2 was synthesized by the reaction of BODIPY 1 with TCNE at room temperature for 6 h in DCM in 74% yield. Similarly, BODIPY 3 was synthesized by the reaction of BODIPY 1 with TCNQ in DCE at 80 °C for 8 h which resulted in 70% yield (Scheme 5).

The push–pull BODIPYs **2** and **3** and control compound **1** were purified by silica-gel column chromatography (silica-gel size = 100-200 mesh) using hexanes /DCM as a solvent. The ¹H NMR, ¹³C NMR, ¹¹B NMR and HRMS techniques were used to characterize the molecular structures of the push–pull BODIPYs.

4.2 Photophysical properties

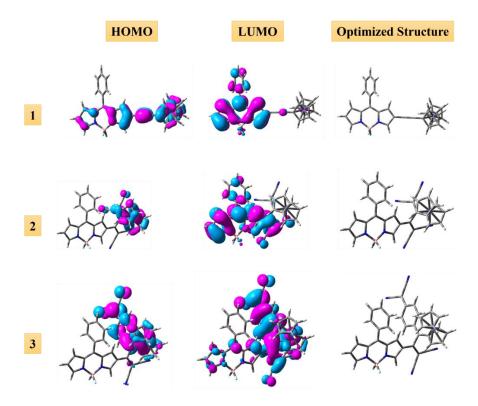
Figure 3. Normalized electronic absorption spectra of *β*-ferrocenyl substituted BODIPYs **1–3** in DCM (1×10^{-4} M).

Electronic absorption spectra of the ferrocenyl BODIPYs 1–3 were recorded in DCM at 10^{-4} M concentration (Figure 3). BODIPYs show absorption bands around 500–530 nm with a broad shoulder at higher energy region. The β -ferrocenyl substituted BODIPYs 1–3 exhibit absorption maxima at 527 nm, 517 nm and 526 nm respectively corresponding to the $S_0 \rightarrow S_1$ ($\pi \rightarrow \pi^*$) transition of the BODIPY unit. [30-31] Compound 3 displays an additional broad absorption band ranging from 650 to 850 nm, due to the intramolecular charge transfer from donor to acceptor unit of the molecule. BODIPYs

1–3 displays molar extinction coefficient values of 18000, 24000 and 26000 M⁻¹.cm⁻¹ respectively.

Table 1. Photophysical properties of β -ferrocenyl substituted BODIPYs 1–3.

BODIPY	λ_{abs}	ε	$\mathbf{E_g}^{\mathbf{b}}$
	(nm) ^a	$(M^{-1}.cm^{-1})^a$	
1	527	18000	2.34
2	517	24000	2.52
3	526	26000	2.21


^aAbsorbance measured in dichloromethane at 1 \times 10⁻⁴ M concentration, ε : extinction coefficient; ^bHOMO-LUMO band gap obtained from DFT calculation.

Expanded TCBD incorporated BODIPY **3** shows absorption at longer wavelength compared to **1** and **2**. This could be due to strong electron deficient characteristics of DCNQ unit.

4.3 Density functional theory

The density functional theory (DFT) calculation was carried out to understand the geometry and electronic structure of the ferrocenyl substituted BODIPYs 1–3 using the Gaussian O9W program. The DFT calculation was performed at the B3LYP/6-31+G** for C, H, O, N, B, F and Lanl2DZ for Fe level of

theory and geometry optimization was carried out in the gas phase. The frontier molecular orbitals are displayed in Figure 4.^[32] The optimized structures of the push–pull BODIPYs 1–3 exhibit twisted geometry due to the incorporation of ferrocene and strong acceptor TCBD and DCNQ.

Figure. **4** The frontier molecular orbitals of the β-ferrocenyl BODIPYs 1–3.

The LUMOs of the β -ferrocenyl substituted BODIPY 1 are concentrated on BODIPY unit, whereas the HOMOs are distributed over the ferrocenyl and BODIPY units. The HOMOs of the TCBD substituted BODIPY 2 is localized on ferrocenyl unit whereas the LUMO orbital is distributed over BODIPY and TCBD units. In case of DCNQ incorporated BODIPY 3 HOMO is concentrated on ferrocenyl unit, whereas the LUMO is distributed over DCNQ and BODIPY units.

The DFT-predicted energy level diagram is shown in figure 5. BODIPY 1 shows band gap of 2.34 eV, BODIPY 2 shows band gap of 2.52 eV whereas, BODIPY 3 exhibits the lowest band gap of 2.34 eV among all the ferrocenyl BODIPYs. The push–pull BODIPY 3 exhibits the lowest HOMO–LUMO gap and signifies that the DCNQ unit acts as a strong acceptor compared to the TCBD unit. The theoretically predicted HOMO energy levels of the push–pull BODIPYs 1–3 are – 5.32, –5.93 and –5.74 eV, and the associated LUMO levels are –2.98, –3.41, and –3.53 eV, respectively. The trend in the LUMO energy level of BODIPYs 1–3 follows the order 1 > 2 > 3. The computationally calculated HOMO–LUMO gap values of push–pull BODIPYs 1–3 is 2.34, 2.52, and 2.21 eV, respectively.

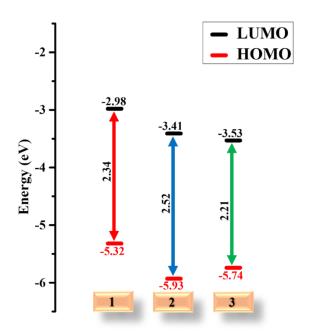


Figure 5. Energy level diagram of BODIPY dyes 1–3.

Chapter 5

Conclusion

In conclusion we have synthesized β -ferrocenyl substituted BODIPY 1 via Sonogashira cross-coupling reaction and its TCBD and DCNQ functionalized derivatives 2 and 3 via [2+2] CARE reaction. The effect of the TCBD and DCNQ acceptor units on the photophysical and computational properties of the ferrocenyl BODIPYs were investigated. BODIPY 3 exhibited the most red-shifted absorption in 650 to 850 nm region due to the intra molecular charge transfer from donor to acceptor part of the molecule. Computational studies reveal that BODIPY 3 exhibits lowest HOMO-LUMO band gap which could be due to the strong electron deficient characteristics of the DCNQ unit. The theoretically obtained results are in good agreement with the photophysical observations. Absorption in Vis-NIR region and low HOMO-LUMO energy gap makes these BODIPYs potential candidates for various optoelectronic applications.

Chapter 6

SUPPORTING INFORMATION

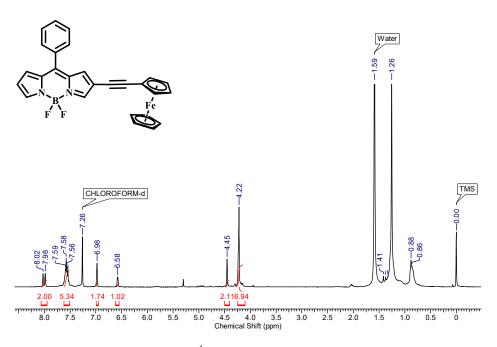


Figure 6. ¹H NMR of BODIPY 1.

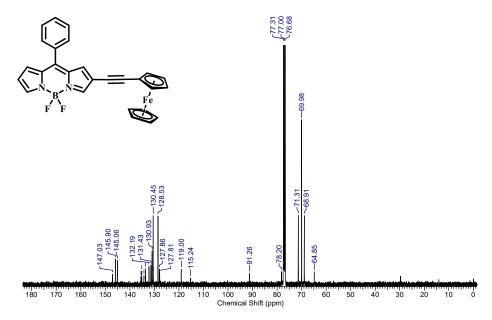
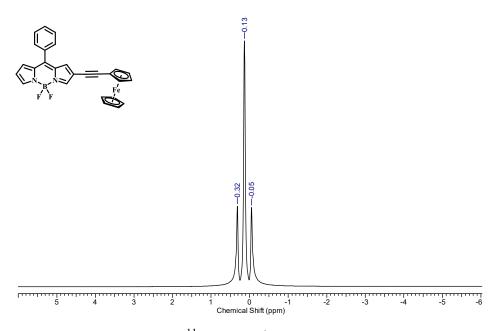



Figure 7. ¹³C NMR of BODIPY 1.

Figure 8. ¹¹B NMR of BODIPY **1.**

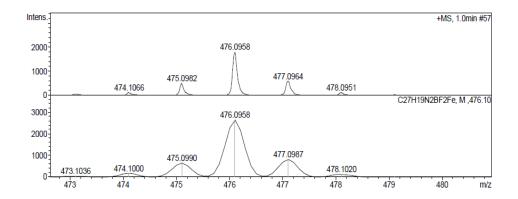


Figure 9. HRMS of BODIPY 1.

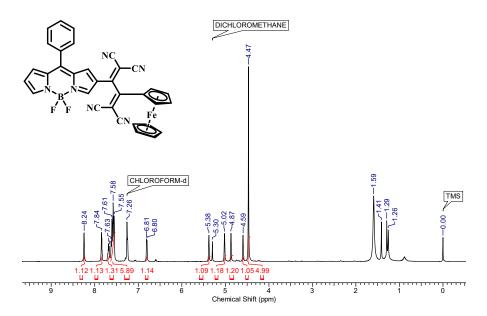


Figure 10. ¹H NMR of BODIPY 2.

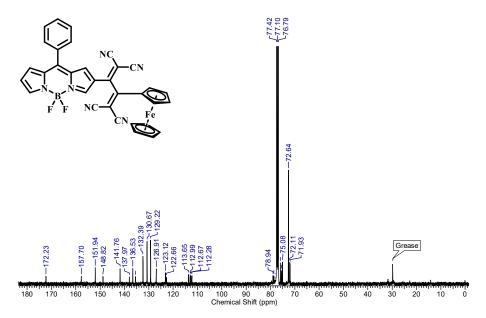


Figure 11. ¹³C NMR of BODIPY 2.

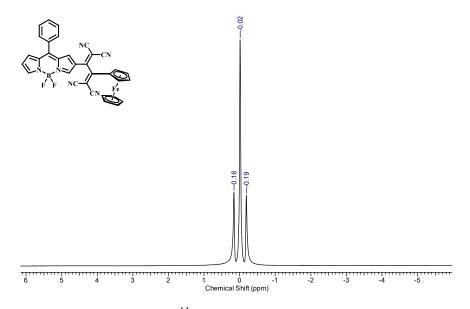


Figure 12. ¹¹B NMR of BODIPY 2.

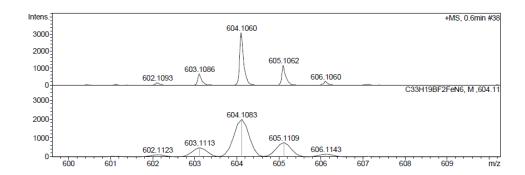


Figure 13. HRMS of BODIPY 2.

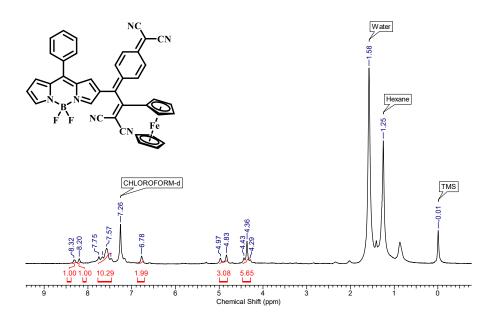


Figure 14. ¹H NMR of BODIPY 3.

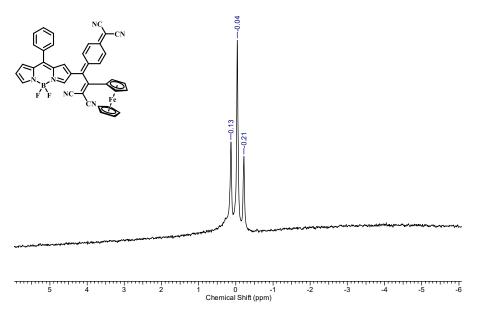


Figure 15 ¹¹B NMR of BODIPY 3.

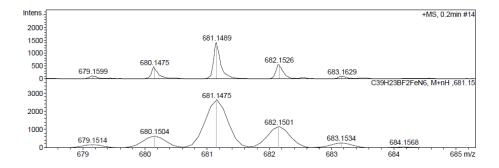


Figure 16. HRMS of BODIPY 3.

REFERENCES

- [1] Bent, H. A. (1968). Structural chemistry of donor-acceptor interactions. *Chemical Reviews*, 68(5), 587-648.
- [2] Wan, X., Li, C., Zhang, M., & Chen, Y. (2020). Acceptor–donor–acceptor type molecules for high performance organic photovoltaics–chemistry and mechanism. *Chemical Society Reviews*, 49(9), 2828-2842.
- [3] Sathiyan, G., Chatterjee, S., Sen, P., Garg, A., Gupta, R. K., & Singh, A. (2019). Thiazolothiazole-Based Fluorescence Probe towards Detection of Copper and Iron Ions through Formation of Radical Cations. *ChemistrySelect*, 4(40), 11718-11725.
- [4] Han, L., Chen, Y., Zhao, J. G., Cui, Y., & Jiang, S. (2020). Phenothiazine dyes containing a 4-phenyl-2-(thiophen-2-yl) thiazole bridge for dye-sensitized solar cells. *Tetrahedron*, 76(15), 131102.
- [5] Seintis, K., Şahin, C., Sigmundova, I., Stathatos, E., Hrobarik, P., & Fakis, M. (2018). Solvent-acidity-driven change in photophysics and significant efficiency improvement in dyesensitized solar cells of a benzothiazole-derived organic

- sensitizer. The Journal of Physical Chemistry C, 122(35), 20122-20134.
- [6] Misra, R., Jadhav, T., Dhokale, B., Gautam, P., Sharma, R., Maragani, R., & Mobin, S. M. (2014). Carbazole-BODIPY conjugates: design, synthesis, structure and properties. *Dalton Transactions*, 43(34), 13076-13086.
- [7] Nguyen, V. N., Ha, J., Koh, C. W., Ryu, B., Kim, G., Park, J. H., ... & Yoon, J. (2021). Access to the triplet excited states of heavy-atom-free boron-dipyrromethene photosensitizers via radical pair intersystem crossing for image-guided tumor-targeted photodynamic therapy. *Chemistry of Materials*, 33(19), 7889-7896.
- [8] Carlotti, B., Poddar, M., Elisei, F., Spalletti, A., & Misra, R. (2019). Energy-Transfer and Charge-Transfer Dynamics in Highly Fluorescent Naphthalimide–BODIPY Dyads: Effect of BODIPY Orientation. *The Journal of Physical Chemistry C*, 123(40), 24362-24374.
- [9] Niu, S., Ulrich, G., Retailleau, P., & Ziessel, R. (2011). Regioselective synthesis of 5-monostyryl and 2-tetracyanobutadiene BODIPY dyes. *Organic Letters*, *13*(19), 4996-4999.
- [10] Misra, R., Jadhav, T., Nevonen, D., Monzo, E. M., Mobin, S. M., & Nemykin, V. N. (2017). Synthesis, structures, and redox properties of tetracyano-bridged Diferrocene donor–acceptor–donor systems. *Organometallics*, *36*(22), 4490-4498.
- [11] Yadav, I. S., & Misra, R. (2023). Design, synthesis and functionalization of BODIPY dyes: applications in dyesensitized solar cells (DSSCs) and photodynamic therapy (PDT). *Journal of Materials Chemistry C*, 11(26), 8688-8723.
- [12] Wazid, M., Rout, Y., Alsaleh, A. Z., Kaswan, R. R., Misra, R., & D'Souza, F. (2025). Perylenediimide promoted charge transfer in tetracyano butadiene–triphenylamine (TCBD– TPA) and expanded-tetracyano butadiene–triphenylamine

- (DCNQ-TPA) push-pull conjugates. *Chemical Communications*, 61(37), 6803-6806.
- [13] Xie, B., Chen, Z., Ying, L., Huang, F., & Cao, Y. (2020). Near-infrared organic photoelectric materials for light-harvesting systems: organic photovoltaics and organic photodiodes. *InfoMat*, 2(1), 57-91.
- [14] Karagöllü, B., Şengöz, T. O., Kayaş, H., Erden, K., Şahin, E., Esenturk, O., & Dengiz, C. (2025). Design and synthesis of heterocycle-based push-pull NLOphores: A comprehensive study of their linear and non-linear optical properties. *Dyes and Pigments*, 232, 112469.
- [15] Jaswal, S., & Kumar, J. (2020). Review on fluorescent donor–acceptor conjugated system as molecular probes. *Materials Today: Proceedings*, 26, 566-580.
- [16] Michinobu, T., & Diederich, F. (2018). The [2+2] Cycloaddition-Retroelectrocyclization (CA-RE) Click Reaction: Facile Access to Molecular and Polymeric Push-Pull Chromophores. *Angewandte Chemie International Edition*, 57(14), 3552-3577.
- [17] Michinobu, T. (2008). Click-type reaction of aromatic polyamines for improvement of thermal and optoelectronic properties. *Journal of the American Chemical Society*, *130*(43), 14074-14075.
- [18] Shoji, T., Ito, S., Toyota, K., Yasunami, M., & Morita, N. (2008). Synthesis, Properties, and Redox Behavior of Mono, Bis-, and Tris [1, 1, 4, 4,-tetracyano-2-(1-azulenyl)-3-butadienyl] Chromophores Binding with Benzene and Thiophene Cores. *Chemistry–A European Journal*, *14*(27), 8398-8408.
- [19] Kivala, M., Boudon, C., Gisselbrecht, J. P., Seiler, P., Gross, M., & Diederich, F. (2007). Charge-Transfer-Chromophore durch Cycloaddition-Retro-Elektrocyclisierung: multivalente Systeme und Kaskadenreaktionen. *Angewandte Chemie*, 119(33), 6473-6477.

- [20] Shoji, T., Ito, S., Toyota, K., Iwamoto, T., Yasunami, M., & Morita, N. (2009). Reactions between 1-Ethynylazulenes and 7, 7, 8, 8-Tetracyanoquinodimethane (TCNQ): Preparation, Properties, and Redox Behavior of Novel Azulene-Substituted Redox-Active Chromophores.
- [21] Li, Y., Tsuboi, K., & Michinobu, T. (2010). Double click synthesis and second-order nonlinearities of polystyrenes bearing donor—acceptor chromophores. *Macromolecules*, 43(12), 5277-5286.
- [22] Fujita, H., Tsuboi, K., & Michinobu, T. (2011). High-Yielding Alkyne-Tetracyanoethylene Addition Reactions: A Powerful Tool for Analyzing Alkyne-Linked Conjugated Polymer Structures. *Macromolecular Chemistry and Physics*, 212(16), 1758-1766. [23] Esnal, I., Urías-Benavides, A., Gómez-Durán, C. A., Osorio-Martínez, C. A., García-Moreno, I., Costela, A., ... & Peña-Cabrera, E. (2013). Reaction of amines with 8-MethylthioBODIPY: Dramatic optical and laser response to amine substitution. *Chemistry—An Asian Journal*, 8(11), 2691-2700.
- [23] Rohand, T., Baruah, M., Qin, W., Boens, N., & Dehaen, W. (2006). Functionalisation of fluorescent BODIPY dyes by nucleophilic substitution. *Chemical Communications*, (3), 266-268.
- [24] Boens, N., Verbelen, B., Ortiz, M. J., Jiao, L., & Dehaen, W. (2019). Synthesis of BODIPY dyes through postfunctionalization of the boron dipyrromethene core. *Coordination Chemistry Reviews*, 399, 213024.
- [25] Meng, G., Velayudham, S., Smith, A., Luck, R., & Liu, H. (2009). Color tuning of polyfluorene emission with BODIPY monomers. *Macromolecules*, 42(6), 1995-2001.
- [26] Lu, H., Wang, Q., Gai, L., Li, Z., Deng, Y., Xiao, X., ... & Shen, Z. (2012). Tuning the Solid-State Luminescence of BODIPY Derivatives with Bulky Arylsilyl Groups: Synthesis

- and Spectroscopic Properties. *Chemistry–A European Journal*, 18(25), 7852-7861.
- [27] Gautam, P., Dhokale, B., Mobin, S. M., & Misra, R. (2012). Ferrocenyl BODIPYs: synthesis, structure and properties. *RSC advances*, *2*(32), 12105-12107.
- [28] Dhokale, B., Gautam, P., Mobin, S. M., & Misra, R. (2013). Donor–acceptor, ferrocenyl substituted BODIPYs with marvelous supramolecular interactions. *Dalton Transactions*, 42(5), 1512-1518.
- [29] Gupta, P. K., Khan, F., & Misra, R. (2023). NIR-Absorbing 1, 1, 4, 4-Tetracyanobuta-1, 3-diene-and Dicyanoquinodimethane-Functionalized Donor–Acceptor Phenothiazine Derivatives: Synthesis and Characterization. *The Journal of Organic Chemistry*, 88(20), 14308-14322.
- [30] Tiwari, N. J., & Misra, R. (2025). Design, synthesis, and redox properties of ferrocene-functionalized phenothiazine and phenothiazine sulfone isomers. *Dalton Transactions*, *54*(10), 4366-4379.
- [31] Frisch, M., & Clemente, F. (2009). MJ Frisch, GW Trucks, HB Schlegel, GE Scuseria, MA Robb, JR Cheeseman, G. Scalmani, V. Barone, B. Mennucci, GA Petersson, H. Nakatsuji, M. Caricato, X. Li, HP Hratchian, AF Izmaylov, J. Bloino and G. Zhe, Gaussian, 9.