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Abstract

In this project, we study spin pumping using ferromagnetic irradiation in a junc-

tion of ferromagnetic insulator and a 2D hole gas of a p-AlGaAs/GaAs semicon-

ductor heterostructure. We use microwave radiation to precess the spin in the

ferromagnetic insulator layer. In a 2-dimensional hole gas, the Rashba SOC and

Dresselhaus SOC interactions coexist and play crucial roles in our spin pumping

system by delivering two spin species electrons, spin-up and spin-down, which in

turn interact with the spins from the ferromagnetic layer. We then calculate the

interfacial exchange coupling by using second-order perturbation theory, which

helps us deduce an increment in the spectral width of the Gilbert damping fac-

tor. We show the increment in Gilbert damping to the spin orientations in the

ferromagnetic insulator, induced through their interactions with the spin species

from the 2D Hole Gas.



Abbreviations

2DEG Two Dimensional Electron Gas

2DHG Two Dimensional Hole Gas

FI Ferromagnetic Insulator

RSOC Rashba Spin Orbit Coupling

SOC Spin-Orbit Coupling

FMR Ferromagnetic Resonance

SIA Structural Inversion Symmetry

STT Spin Transfer Torque

GD Gilbert Damping
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Chapter 1

Introduction

In Spintronics, spin pumping is widely studied as a resourceful method for spin

current generation using magnetisation dynamics. This process typically in-

volves using ferromagnetic materials in which precession of magnetisation in-

duces a spin current into an adjacent normal metal. This is achieved by exciting

the magnetisation in the FI layer, often through FMR, which transfers the an-

gular momentum to the electrons in the adjacent layer. The angular momentum

transfer in spin pumping occurs through the dynamic exchange interaction at

the interface between the ferromagnetic and other materials. This interaction

effectively “pumps” spin angular momentum from the ferromagnetic Insula-

tor into the adjacent non-magnetic layer. The transferred angular momentum

shows clearly as a spin current. Exchange interaction refers to an effect respon-

sible for the alignment of spins in ferromagnetic materials. It is a fundamental

interaction between the spins of neighbouring electrons. Electrons tend to ar-

range themselves to minimise the total energy of the system. In FI, it often

leads to the parallel alignment of neighbouring electron spins because such an

arrangement minimises the repulsive coulomb energy when the spatial part of

the function overlaps.
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Figure 1.1: A schematic of the junction between the FI and the 2D electron gas
in a semiconductor heterostructure.[1]

In SOC, the spin of the electron, which is its intrinsic angular momentum, be-

comes linked to its orbital angular momentum. It means that the spin orien-

tation of electrons can affect the electrons’ orbital motion and vice versa. The

strength of this interaction depends on the atomic number of the atom( heav-

ier atoms have stronger SOC). Rashba is a special type of SOC that occurs in

systems with SIA, such as at the Interface, coupling because intrinsic and or-

bital angular momentum are interlinked. Initially, most studies focused on spin

current injection into a 2DEG. However, in recent years, the focus has shifted to-

ward 2DHG. 2DHG occurring in p-type AlGaAs/GaAs heterostructures, where

the SIA-induced SOC exhibits a cubic dependence on momentum due to the p-

orbital nature of holes, unlike 2DEG, where the dependency is linear. This leads

to cubic Rashba SOC, resulting in stronger spin–orbit interaction. The larger

effective mass of heavy holes and their higher density of states at the Fermi level

enhance their interaction with the magnetic system, which makes our 2DHG a

promising system for more efficient spin absorption.

This thesis is further organised as follows:

In Chapter 2, we establish the theoretical framework by introducing the Hamil-

tonians for the 2DEG, FI, and their interfacial interaction. We used Green’s

function method and second-order perturbation theory to calculate self-energy

corrections and Gilbert damping. These formulations are later applied to the
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Figure 1.2: Band diagram of 2DHG formed at junction of AlGaAs and GaAs.

2DHG system.

In chapter 3, we focus on the same spin pumping framework in a 2DHG. The

SOC in 2DHG is cubic in momentum due to the p-orbital nature of holes, mak-

ing the spin dynamics more intricate. Our focus is on understanding how inter-

band transitions and enhanced SOC in 2DHG influence Gilbert damping more

strongly.

We conclude this M.Sc. thesis in Chapter 4 by summarising the key results

obtained from both 2DEG and 2DHG systems.
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Chapter 2

Formulation

2.1 Two-Dimensional Electron Gas

The Hamiltonian of the 2DEG in n-doped AlGaAs/GaAs heterojunction is writ-

ten as

Hkin =
X

k

�
c†

k↑ c†
k↓

�
ĥk




ck↑

ck↓


 . (2.1)

where ĥk is the Hamiltonian matrix, expressed as[1]:

ĥk =
 
ℏ2(k2

x + k2
y)

2m∗ − µ

!
I + α(kyσx − kxσy) + β(kxσx − kyσy).

We have the Hamiltonian of a 2DEG, which we will use in getting the informa-

tion out of the 2DEG while injecting the spins from a ferromagnetic insulator.

The increase in the Rashba coefficient increases the effective magnetic field act-

ing on the spins, alters the spin pumping effect, and increases the energy dissi-

pation in the ferromagnetic insulator. This causes a high damping value. Given

the Hamiltonian, we can reduce it to

ĥk = ξI − ĥeff · σ
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which can be used frequently. This is just the reduced form of the above Hamil-

tonian. heff(φ) ≡ |heff(φ)| ≃ kF

q
α2 + β2 + 2αβ sin(2φ). The above is the effec-

tive magnetic field due to atoms.

ĝ(k, iωn) = (iℏωn − ξk)I − heff · σ

(iℏωn − E+
k )(iℏωn − E−

k )

. This is the calculated Green’s function for the Hamiltonian, We also look for

impurity effects in it, which is then given by

ĝ(k, iωn) =
[iℏωn − ξk + iΓ

2 sgn(ωn)]Î − ĥeff · σ
Q

ν=±
h
iℏωn − Ekν + iΓ

2 sgn(ωn − Ekν + iΓ
2 sgn(ωn)

i

The impurities are mainly due to scattering. Now we will come to our next part

of the material, which is the ferromagnetic insulator.

2.2 Ferromagnetic Insulator

In this ferromagnetic insulator, we will work on the rotated coordinate system,

Now, assuming that the net magnetic moment of the ferromagnetic insulator is

in the x-y plane, which is parallel to the 2DEG. The Hamiltonian of a ferromag-

netic insulator is given by [1]

HF I =
X

⟨i,j⟩
Jij

�
Sx′

i Sx′
j + Sy′

i Sy′
j + Sz′

i Sz′
j

�
− ℏγhdc

X

i

Sx′
i

where Jij is the exchange interaction of ferromagnetic material, γ (< 0) is the

gyromagnetic ratio, ⟨i, j⟩ shows a pair of directly adjacent sites. The reduced

form for this Hamiltonian can be given by HF I = P
k ℏωkb†

kbk

ℏωk = Dk2 + ℏγhdc

where bk is the magnon’s lowering operator and D is the stiffness of spin.
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Figure 2.1: A schematic picture of the fixed frame of reference and rotated coor-
dinate frame of reference.

2.3 Interfacial exchange interaction

For this, the Hamiltonian is given by Hint = P
k

�
TkS+

x′S−
x′ + T ∗

k Sx′−
k Sx′+

k

�
;

here Sx′±
k = Sy′

k ± iSz′
k are raising and lowering operators of the localised spins in

FI. Tk is an exchange interaction at the interface.

2.4 Second-order perturbation

We assume some second-order perturbation due to the interplay between the

ferromagnetic layer and 2DEG, causing some change and introducing self-energy

terms created due to this interaction. We can write the spin correlation function

as[1]

G(k, iωn) = 1
(G0(k, iωn))−1 − Σ(k, iωn) ,
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where the self-energy Σ(k, iωn) is written as [1]

Σ(k, iωn) = |Tk|2
4β

X

k′,iωm

Tr
h
σ̂x′− ĝ(k′, iωm) × σ̂x′+ ĝ(k′ + k, iωm + iωn)

i

This sigma part shows the self-energy term, while the G0(k, iωn) represents the

unperturbed part. Our work will mainly emphasise the increment in the fre-

quency line width due to the coupling between FI and 2DEG. By analytic calcu-

lations, the correction for Gilbert damping is given by

αG,0
X

ν,ν′=±1

Z 2π

0

dϕ

2π
F [ℏΩ + (ν − ν ′)heff] × 1 − νĥeff(ϕ) · m̂

2
1 + ν ′ĥeff · m̂

2

F (x) = Γ
π∆0

· 1
�

x
∆0

�2
+

�
Γ

∆0

�2

Now we can get this equation reduced down to three important Gilbert Damp-

ing components that are

δαG = δαG1 + δαG2 + δαG3

δαG1 = αG0

Z 2π

0

dϕ

2π
F (ℏΩ)1 − (ĥeff · m̂)2

2

δαG2 = αG0

Z 2π

0

dϕ

2π
F (ℏΩ − 2heff)(1 + ĥeff · m̂)

δαG3 = αG0

Z 2π

0

dϕ

2π
F (ℏΩ + 2heff) (1 − ĥeff · m̂)

We used these equations for plotting the curves of Gilbert damping with the

frequency(Ω) in MATLAB.

Interpretation of the above expressions, the above expressions give us the taste

or physical interpretation of the increment in the Gilbert damping factor. The

first component δαG1 is from the elastic spin flip of conducting electrons that

occurs due to the transversal component of the Heff through the interfacial ex-

change interaction. In reality, δαG1 vanishes when Heff is parallel or antiparallel
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to the magnetic orientation of ferromagnetic insulator m̂. Given the elastic na-

ture of this process, the frequency-dependent component takes the form of a

Lorentz function F (ℏΩ), that has a maximum at ω = 0. The other contribution

δαG2 comes from the spin wave absorption. It is a non-static process, as demon-

strated by the displacement of the peak in the Lorentzian shape, the maximum

of F (ℏΩ − 2heff) changes to Ω = 2Heff(ϕ)
ℏ , at which the energy of magnon matches

the spin-split energy gap of conduction electrons. This second component takes

the highest value when the effective magnetic field is parallel to m̂. It is con-

gruent with the fact that the spin of a conduction electron transitions from a

low-energy state Heff to a higher state −Heff by absorbing a spin carried by a

magnon in the direction of −m̂. . It is worth noting that the second contribu-

tion disappears when Heff is antiparallel to m̂.

The last component, δαG3, arises from the spin wave emission process. This

process is of no use in ferromagnetic resonance experiments because we take

frequency Ω as positive.

2.5 Results of 2-Dimensional Electron Gas

We can write Gilbert damping as

δαG
(ω) = αG,0

X

ν,ν′=±1

Z 2π

0

dϕ

2π
F [ℏΩ + (ν − ν ′)heff] × 1 − νĥeff(ϕ) · m̂

2
1 + ν ′ĥeff · m̂

2

Here αG,0 is the dimensionless parameter and δL(x) = Γ/2
πx2+(Γ/2)2 represents

Lorentzian delta function. From αG,0, it is proof of the fact that the density of

states plays an important part in defining the efficacy of the increased strength

of the Gilbert damping. We investigate the influence of interfacial exchange on

the Gilbert damping factor with numerical evaluations. We got the conclusion

quantitatively on the impact of spin-flip scattering and SOC in increasing damp-
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ing in the 2DEG.

Figure 2.2: Diagram of the effective magnetic field heff(ϕ) acting on the carrier
electrons’ spin when both the coefficients have a ratio of 1 and 3.

Here, each spin orientation corresponds to its momentum. This type of orien-

tation is the essence of spintronics devices. If all the electrons had oriented in

one direction, then it would have behaved as a ferromagnetic. So, how does the

spin-orbit coupling affect Gilbert damping? We have a processing magnetisation

as shown in 1.1 irradiated by microwave radiation. This precessing magnetisa-

tion loses its angular momentum and falls back on its axis. This loss in angular

momentum is transferred in the form of spin current to the 2DEG, where it ab-

sorbs the spin current due to the SOC effect. This loss of angular momentum is

actually due to what we are calling Gilbert damping. The higher the damping

higher the loss of angular momentum, and the higher is spin current generation.

The loss of angular momentum is compensated by the ferromagnetic resonance.

Now plotting the δαG1, δαG2 and δαG3 on matlab. We got curves with Gilbert

damping and a given microwave frequency corresponding to the α
β

= 1 and
α
β

= 3. for Γ
∆0

= 0.5.
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Figure 2.3: The increment in Gilbert damping, δαG in 2DEG with FMR reso-
nance frequency for α

β
= 1.

Figure 2.4: The increment in Gilbert damping, δαG in 2DEG with FMR reso-
nance frequency for α

β
= 3 .
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Figure 2.5: The contour plot for frequency vs Gilbert Damping.

We can see that δαG relies on the resonance frequency, in comparison with the

intrinsic damping factor for the bulk FI, αG. In either of the cases, the incre-

ment explicitly relies on the alignment of spins in the FI. We got the peak at

Ω = 0 due to the part δαG1 and described by the second term in the Gilbert

damping. As we increase our FMR frequency Ω, we get the broad peak shown

by δαG2 due to the variation in the energy splitting as the magnon starts ab-

sorbing the energy. These magnons from the ferromagnetic insulator get ab-

sorbed by the 2DEG.

The range of 2heff is obtained from equation |heff(φ)| ≃ kF

q
α2 + β2 + 2αβ sin(2φ).

Minimum vlaue at θ =-π
4 and maximum value at θ =π

4 . For α
β

= 1, 0 ≤ 2heff ≤
4∆0 and for α

β
= 3, we got 4∆0 ≤ 2heff ≤ 8∆0. The physical reason behind

getting a peak at Ω = 0 in both cases is elastic spin-flip processes, which are

independent of the frequency and depend on the alignment of the 2DEG effec-

tive field and the magnetisation direction of the ferromagnetic insulator. So, in

the presence of magnetisation precession, the heff leads to energy dissipation.

The broader peak shifts towards the higher frequency due to the higher Rashba

coefficient, which causes higher spin splitting. So high frequency is required to

match the energy gap between the splitting.

14



Chapter 3

Spin pumping via a 2D Heavy Hole

Gas

We have considered the Gilbert damping for 2DEG and have seen the Rashba

effect (arising due to SIA) in the enhancement of Gilbert damping. Now we

considered a system of 2DHG and have checked the efficiency of these two. We

use the same methodology to check the increase in GD at the 2DHG and the FI

interface. 2DHG results from the same system, which changed the doping con-

centration in the AlGaAs and GaAs layers in semiconductor heterostructures. In

2DEG, we had a linear wave vector, while in the case of 2DHG, we have a wave

vector in cubic form, which contributes to cubic Rashba SOC. The high role to

damping increment comes from interband transitions, which show conductivity-

type characteristics as the temperature goes to 0. We have checked the damping

stays more in 2DHG because of the stronger effect of cubic Rashba SOC(A rel-

ativistic effect that combines the electron/holes motion to its spin)[3] . The

interaction between Rashba SOC and magnon absorption in a 2D gas widens

the optical response, with the shift in damping peak further at higher temper-

atures. Due to the strong Rashba effect, the spin wave interacting phase space

increases, and we get a broad damping spectrum. Spin imbalance is sustained

at the Fermi level, while a zero Fermi level suppresses it. The Rashba effect is

15



tunable and can be tuned with an external electric field.

In the next chapter, we will explore the same spin pumping framework in 2DHG.

3.1 2DHG’s Introduction

The correlation between spin-orbit interactions and magnetisation dynamics

at the junction of 2DHGs and FIs, with particular emphasis on SOC effects in

2DHGs emerging at p-type Al/GaAs interfaces. It plays an important role in

spin transport (Spin transport moves spins without necessarily moving charge

→ Creates spin currents) and magnetic effects arising from the p-orbital prop-

erties of charge carriers (Unlike s-orbital electrons, which have negligible SOC.

p-orbitals have intrinsic angular momentum that is l = 1, which leads to strong

SOC effects. It means spin and momentum are strongly coupled, which modifies

how spins are transported in the system. In 2DHGs, the stronger SOC relative

to 2DEGs gives rise to a specific magnetic phenomenon when interfaced with

a ferromagnetic insulator. At this interface, the exchange interaction between

spin-polarised electrons from the ferromagnetic material and Rashba spin-orbit-

coupled holes in the 2DHG gives rise to special magnetic behaviour, which plays

a key role in diverse spintronics applications. One significant outcome of this ex-

change interaction will be enhanced GD, which governs energy loss in magneti-

sation. Cubic Rashba SOC, which is strong in 2DHG/FI heterostructures, helps

effective spin dissipation, which enhances even more damping. At the junction,

strong spin-orbit coupling enhances spin transfer, which leads to effective angu-

lar momentum loss. The interplay between SOC-induced spin relaxation and

spin-pumping introduces an efficient mechanism for regulating magnetisation

processes, which makes these structures a strong entity for spintronic implemen-

tations that demand quick and energy-optimised magnetic switching. Continued

groundbreaking studies have investigated different faces of spin-pumping in

depth, which makes significant contributions to our work.
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Figure 3.1: Schematic of our system with a ferromagnetic layer irradiated with
microwave frequency, in junction with 2DHG in semiconductor heterostructure.

We tried to show that this increase in Gilbert damping is mainly influenced

by transitions between the interband energy levels that exhibit resemblance

to conductivity in lower temperature conditions. At higher temperatures, spin

wave behaves dominantly, causing an expansion of the spectrum and a thermal-

based alteration in the peak of the damping spectrum, which eventually leads

to angular momentum flow by the spin injection mechanism. Additionally, I

tried to find the optical spectrum that is suitable for microwave irradiation,

optimising spin injection process efficiency and precise damping control. These

things emphasise the important role of the Fermi level energy in maintaining

spin non-uniformity and facilitating spin current injection. Noting that, putting

Ef = 0 in a 2DHG suppresses the phenomenon, which is just the opposite of the

2DEG. We also find that strong Rashba spin-orbit coupling increases spin-wave

interactions and expands the frequency-dependent behaviour by shortening spin-

wave relaxation time due to enhanced dispersion, as a result of which the energy

dissipation enhances across an extended frequency spectrum. Remarkably, the

quality of changing tuning of RSOC strength in 2DHGs through the applied

17



electric field helps instantaneous regulation of spin current loss. The insights put

2DHG based heterostructures as an important platform for electrically tunable

spintronics, paving the way for new aspects of high-efficiency spin dynamics for

advanced applications.

3.2 Composite system Hamiltonian

The total Hamiltonian Htot of the composite system comprises three parts,

Htot = H2DHG + HFI + Hex.

Each of these illustrates a unique aspect of the system’s physical interactions.

3.3 Two-Dimensional Heavy Hole Gas

We can write Hamiltonian general representation, H2DHG, for a 2DHG with k

cubic SOC, in the framework of creation and annihilation operator representa-

tion for spin pointing up (c†
k,↑, ck,↑) and spin pointing down (c†

k,↓, ck,↓) holes in

k space. We write the energy operator for the system, which has cubic Rashba

and Dresselhaus SOC, as [7]

H2DHG =
X

k

�
c†

k,↑ c†
k,↓

�
H2DHG(k)




ck,↑

ck,↓


 (3.1)

Here, H2DHG gives the effective Hamiltonian for SOC 2DHG of wave vector k,

and it has both the Rashba and Dresselhaus SOC given below[7]

H2DHG(k) = [ζ(k)−Ef ]σ0+iα
1
2(k3

−σ−−k3
+σ+)− β

2 (k−k+k−σ++k+k−k+σ−), (3.2)

Here, k± = kx ± iky are the complex wave vector components, and σ+
σ−

are the

spin-creation/annihilation operators. The initial term is the hole’s kinetic en-

18



ergy, with ζ(k) = 2k2

2m
is the free motion of mass m energy and the Fermi state

’Ef ’. The other two terms describe the Dresselhaus SOC and Rashba SOC, re-

spectively, where α and β are the coupling constants that direct the intensity

of interplay. The cubic wave vector is due to the p orbitals. The interplay plays

an important role in directing spin dissipation processes, magnetisation dynam-

ics and spin-momentum locking in 2DHG systems, which directly affects the

spin pumping efficacy from a ferromagnetic insulator into the 2DHG. This is a

central point of our thesis. We can write the strength of SOC in 2DHG as-

|hSOC(k)| = k3∆(ϕ), (3.3)

where ∆(ϕ)

∆(ϕ) =
q

α2 + β2 − 2αβ sin(2ϕ), (3.4)

ϕ is the azimuthal angle in phase space. This shows that the strength of SOC

also depends on the azimuthal angle ϕ.

hSOC(k) =




hx

hy

0




=




k3(−α sin 3ϕ + β cos ϕ)

k3(α sin 3ϕ + β cos ϕ)

0




. (3.5)

The SOC field components are projected onto the xy plane in k space, and

their relationship with ϕ shows an intricate, angle-based spin configuration. The

terms sin(3ϕ) and cos(3ϕ) relates Dresselhaus SOC and the Rashba SOC in-

terplay, and both have different uniformity in the k space. Now, the system’s

energy can be written as Es(k)

Es(k) = ζ(k) + s|hSOC(k)|, (3.6)

Here ’s’ denotes the spin configuration, and the other term, s|hSOC(k)|, with s =

±. describes the shift in energy to the entire system due to the SOC. We now
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Figure 3.2: Energy dispersion Es(k) due to SOC, in which the pink part repre-
sents the s = +1 and the other colour represents to s = −1. Arrows represent
the spin configuration along the Fermi contours, which shows the opposing chi-
rality of the two parts. The parameters are chosen such that the ratio of spin-
orbit coupling strengths is α/β = 2.

consider the retarded Green’s function for a 2DHG-

[E − H2DHG(r)]G0(r, r′) = δ(r − r′), (3.7)

where G0(r, r′) shows the Green’s function of the clean system under considera-

tion. This Green’s function is invariant under symmetry and satisfies G0(r; r′) =

G0(r′; r). The energy operator of the setup is changed, including scattering due

to impurities, expressed as H ′
2DHG = H2DHG + Vimp . The impurity potential Vimp

is modeled as-

Vimp = u
X

i∈imp

X

σ

Ψ†(Ri)Ψ(Ri), (3.8)

We can write the Green’s function from the time domain to the frequency do-

main as

G(k, iωn) = ℏβ
Z β

0
dτ eiωnτ G(k, τ). (3.9)
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The Green’s function of the pure system in Matsubara frequencies is

G0(k, iωm) = (iℏωm − ζ(k))σ0 − hSOC · σ

(iℏωm − E+(k))(iℏωm − E−(k)) . (3.10)

The Green’s function after impurity broadening is given by

G(k, iωm) = [(iℏωm − ζ(k) + iΓ/2 sgn(ωm))σ0 − hSOC · σ]
Q

s=±[(iℏωm − Es(k) + iΓ/2 sgn(ωm))] . (3.11)

where iωm is the Matsubara frequency of fermions and Γ represents the broaden-

ing of the peak due to the possible impurities.

3.4 Ferromagnetic Insulator

Ferromagnetic insulators have a strong exchange interaction, which creates a net

magnetisation in them. In FI, quantised spin waves (magnons) serve as the spin

magnetic moment carrier, enabling spin transport independent of charge trans-

port. Localised spins of ions or atoms are usually responsible for the magnetic

moments, which is different from the case of metals. In FI, we can represent

the spin vector by Sl at each lattice site l. Writing the mean value of this spin

vector in spherical coordinates.

⟨Sl⟩ = (⟨Sx⟩l, ⟨Sy⟩l, ⟨Sz⟩l)′ = S0m, (3.12)

Where S0 is the magnitude of the spin, m = (cos θ, sin θ, 0) and θ is the angle

made with reference axis. For relating new coordinates to the old coordinates.




Sx′

Sy′

Sz′




= R(θ, ϕ)




Sx

Sy

Sz




. (3.13)
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The components of spin in terms of bosonic raising (b†
l ) and lowering (bl) opera-

tor are-

S+
l = Sl

y′ + iSl
z′ =

q
2S0

 
1 − b†

l bl

2S

! 1
2

bl, (3.14)

S−
l = b†

l

q
2S0

 
1 − b†

l bl

2S

! 1
2

, (3.15)

Sl
x′ = S0 − b†

l bl. (3.16)

here S+
l and S−

l are spin raising and spin lowering operator. Sx′
l is the longi-

tudinal component of the spin. So, now Hamiltonian can be written as [7]

HFI = −J
X

⟨l,m⟩
Sl · Sm − gµBhdc

X

l

Sl
x′ . (3.17)

The first term of the Hamiltonian represents the spin-spin exchange between the

neighbouring spins, while the other term is due to Zeeman splitting caused by

the applied DC magnetic field (hdc). Its Hamiltonian can be rewritten using the

Fourier transform, which is given by

HFI =
X

q

ℏωqb
†
qbq, (3.18)

Here,

ℏωq = D|q|2 + gµBhdc. (3.19)

We write the Green’s function at q = 0 in the frequency domain

G(q = 0, ω) ≈ 2S0/ℏ
ω − ωq=0 + i[αG + δαG(ω, T )]ω . (3.20)

This will be used while dealing with the combination of FI and 2DHG at the

interface.
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3.5 Interfacial Exchange Interaction

In this section, we studied the interaction that takes place between the ferromag-

netic insulator and the 2DHG. This is mediated by exchange interaction. This is

the desired interaction and helps us study the system’s net magnetic character-

istics. We describe the Hamiltonian of interfacial exchange interaction through

the interaction between 2DHG spins and ferromagnetic insulator spins.


sx′

sy′

sz′




= R(θ, ϕ)




sx

sy

sz




. The operator sa
k ( where a = x,y,z), to be written in the

creation and annihilation operator (c†
q, σ) and (ck+q, σ) as

sa
k =

X

σσ′

X

q

c†
q,σ(σa)σσ′ck+q,σ′ . (3.21)

Here, the Pauli matrix (σa) is the mediator between the two. We can now define

the flip of spin state operators in the rotated coordinate system as

sx′
k,+ = sy′

k + isz′
k , (3.22)

sx′
k,− = (sx′

k,+)†. (3.23)

In the next section, we tried to calculate the Gibert damping.

3.6 Gilbert Damping Calculation

We applied the Green’s function framework to explore spin pumping, It gives

us a strong method for showing spin kinematics and the eventual increment in

the Gilbert damping factor. Here, we will evaluate the refinement of the Gilbert

damping term because of exchange interactions at the interface in 2DHG in

junction with FI. The exchange interaction at the interface changes the elec-

tronic structure by adding an impurity potential, due to which correction in
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self-energy are done. [7]

Σ(k, iωn) = |T1|2
4β

X

k′,iωm

Tr
h
σ−

x′G(k′, iωm)σ+
x′G(k′ + k, iωm + iωn)

i
(3.24)

These corrections account for scattering and spin flipping. Due to SOC in the

2DHG, scattering depending on spin is further increased, spin-dependent, and it

greatly influences magnetisation dynamics. To study these outcomes, we are us-

ing the Green’s function within the framework of the second-order perturbation

domain as given below.[7]

G(k, iωm) = 1
[G0(k, iωm)]−1 − Σ(k, iωm)

(3.25)

Here, G0(k, iωm) is the Green function and Σ(k, iωm) is the self energy term.

The imaginary part self-energy describes the widening of energy states be-

cause of fluctuations in the spin, which explicitly affect the loss of magneti-

sation dynamics[6]. This change leads to an increase in the Gilbert damping

constant(δαG(ω, T )). This self-energy includes spin interactions, and spin rever-

sal scattering is given by [7]

Σ(k, iωn) = |T1|2
4β

X

k′,iωm

Tr
h
σ−

x′G(k′, iωm)σ+
x′G(k′ + k, iωm + iωn)

i
(3.26)

The Green’s function in k-space of the Matsubara frequency iωm is of the form,

G(k, iωm) = A(k, iωm) σ0 − hSOC · σ

B(k, iωm) (3.27)

hSOC and σ is the dot product of the spin-orbit field and Pauli matrices. Here

A(k, iωm) = iℏωm − ζ(k) + i
Γ
2 sgn(ωm) (3.28)
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and

B(k, iωm) =
Y

s=±

 
iℏωm − Es(k) + i

Γ
2 sgn(ωm)

!
(3.29)

The self-energy term can be given as

Σ (q = 0, iωm) = |T1|2
β

X

k,iωm

A (k, iωm) − ĥSOC · m
B (k, iωm)

A (k + k′, i (ωm + ωn)) + ĥSOC · m
B (k + k′, i (ωm + ωn))

3.7 Result of 2D Heavy Hole Gas

The final equation we arrived at is

δαG(ω, T )
αG,0

= −
X

s,s′=±1

Z ∞

0
dξ
Z 2π

0

dϕ

2π
δL [ℏω + (s − s′)|hSOC(k)|]

×

1 − sĥSOC(k) · m

2 · 1 + s′ĥSOC(k)
2


 (3.30)

A. Switching from states s = −1 and s′ = 1

At larger frequencies, the transitions in distinct energy levels (interband) be-

come largely dominating as the optical energy is sufficient to stimulate the

spin to the energy level. The useful shifts adding to the optical feedback are

between states s = −1 and s′ = 1, as these belong to the different spin flips

while interacting with the EM field. These shifts are directed through the en-

ergy differences ℏω + (s − s′) |hSOC|. This electron excitation term verifies that

the dynamics of spin-switching are appropriately incorporated in the model,

significantly influencing the frequency-dependent optical response.

B. Inter-band versus Intra-band Transitions: The transitions within and

between bands’ behaviour is determined by the SOC and the dispersion of en-

ergy. The term ĥSOC(k) · m changes the intensity of these shifts. At lower fre-

quency, the transitions within the bands are strong since the energy needed

for intraband transitions is low. This is shown by the lower energy scale ℏω

involved in the shift.
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C. Optical Transitions: In our study, photon-driven transition happens in the

frequency spectrum of microwave ℏω2 ≤ ℏω ≤ ℏω1 while k−
f (ϕ) and k+

f (ϕ) are

Fermi momentum vectors for different spin sub-levels. We have analysed that

within this range a dominating increment in Gilbert damping factor happens

because of the presence of van-hove singularities. These singularity clearly shows

the conductance-like optical transition, especially while the widening parameter

Γ → 0, results in a peak directly at one of the key transition frequencies.

D.Effect of Gilbert Damping with temperature- In the curve, as temperature

Figure 3.3: variation in the δ with frequencies k.

increases, the damping width also increases, indicating enhanced angular mo-

mentum absorption from the ferromagnetic insulator. This behaviour arises due

to increased thermal occupation of states near the Fermi level, which opens up

more ways for spin-flip transitions and interband scattering. Additionally, higher

temperature broadens the magnon energy distribution, increasing the overlap

with hole states, which in turn strengthens the spin pumping efficiency. The

particular transition frequency where the singularities arise is given by these
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conditions-

ℏω =





ℏω1, if ϕ = π
4 , 5π

4

ℏω2, if ϕ = 3π
4 , 7π

4

Figure 3.4: Schematic of contour plot at range of frequecies frequencies δ
vs ω.

3.8 Enhancement of Gilbert Damping

Practically, it says that at these particular microwave frequencies and azimuthal

angular configurations, the states that are available for transition are maximised,

which leads to an increase in the Gilbert factor parameter. Concerning spin

pumping, it explicitly affects the spin current production by changing the ab-

sorption behaviour that depends on the Rashba SOC amplitude α [4]. These

irregularities show a crucial thing in the density of states where the transition

probability is significant. The lifetime of spin wave τ explains the time period

during which a spin wave stays coherent before decaying because of interaction.

A short spin wave lifetime leads to enhanced spectral widening. In this case,

the widening is affected by the cubic Spin-Orbit Coupling and the exchange

coupling at the interface, which affects the increment in the Gilbert factor.

1. Role of the Fermi level-
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Figure 3.5: The curve showing enhancement of Gilbert damping vs frequency at
different values of Rashba coefficient α.

In addition to this, the position of the Fermi energy state Ef directs the spin im-

balances by making an unequal spin population in the up and down spin levels.

A non-zero Fermi value confirms a definite spin current, as putting Ef = 0 re-

moves the spin imbalance, thereby damping the spin flow. If the Fermi energy =

0, it expresses the absence of spin polarisation in up and down spin holes, which

results in no net spin accumulation and no spin current absorbed by the other

layer material. Non-magnetic material eliminates the spin differences. When

there is no spin accumulation, the main force for spin transport from the ferro-

magnetic insulator quashes, which leads to a decrease in the Gilbert damping.

This effect differentiates the 2DHG system from a usual 2DEG, where spin dif-

ferences and related spin currents occur distinctly. In this system, the complex

dependence on spin accumulation shows its clear dynamics.

2. Effect of Rashba SOC on spectrum widening and Gilbert damping

Increment-

We can see that a strong Rashba SOC affects the spectrum widening of the
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Gilbert factor. This happens due to the RSOC changes the scattering of the

spin waves by widening the phase space for spin wave interaction and by de-

creasing the spin wave relaxation time. As the Rashba SOC increases, the

widening of the spectral function also enhances, which allows the Gilbert fac-

tor to spread over a wide range of frequencies. As a result, the spin angular

moment loss becomes more significant over a large band of frequencies.
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Chapter 4

Summary

We studied the spin pumping in a system aided by 2DEG and 2DHG, which

occurs in n-doped and p-doped AlGaAs/GaAs heterostructures, respectively.

The increment in the Gilbert damping, which happens due to the back action

of angular momentum injected into the 2DEG/2DHG. Higher Rashba effect

causes higher spin current to get absorbed by the 2DEG. which in turn causes

a high rate of change of magnetisation in the FI. The angular momentum lost

in the form of spin current again gets excited by the FMR frequency. The high

value of Rashba effects requires a high Resonant frequency to show the broad

peak. We used the Hamiltonian of the 2DEG and FI, used the Green function

and then studied their combined effect at interface using the second-order per-

turbation. In the 2DHG system, we studied this phenomenon which is cubic in

momentum. In summary, our study marks the important role of cubic Rashba

SOC in increasing the Gilbert damping factor where the 2DHG acts as the spin

absorbing layer for spin pumping action in the FI. The presence of cubic Rashba

SOC eases smooth spin-orbit scattering, enhancing spin-pumping efficiency in

comparison to our earlier 2DEG system and increasing angular momentum

abosorption[2]. Our findings show that the interplay between Rashba SOC and

magnon absorption takes to spectral widening, changing dynamics of spin re-

laxation and altering the characteristic frequency associated with the damping
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peak[5]. The main contribution to the Gilbert factor comes from interband ex-

citations, expected to show conductance-like properties in the limit of gamma

tends to zero. We showed that RSOC strength can be changed through an exter-

nal electric field. This straightforwardly influences the amplitude of the Gilbert

damping factor. Higher field increases Rashba SOC, promoting enhanced spin

loss and more effective transfer of spin angular momentum, while a lower field

decreases SOC, reducing damping. This tunability offers a promising route for

designing energy-efficient spintronic systems. Additionally, our study emphasises

the importance of a finite Fermi energy level in keeping spin imbalance, which

is crucial for spin transport and dissipation. Keeping the Fermi energy level to

zero eliminates spin differences and weakens damping and emphasises the basic

link between spin pumping and the Fermi state. These observations show the

possibility for tunable spin dynamics through electric potential in heterostruc-

tures.
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