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Abstract

The thesis describes the cluster synchronization in undelayed and delayed 1-d

lattice, random networks, scale-free, small-world, Cayley tree and complete bipar-

tite networks. Synchronization is an emergent phenomenon where the coupled units

adjust their trajectories in some similar manner. Our thoughts, action, motion, per-

ceptions all are controlled by the synchronization of neurons in the brain. Addi-

tionally synchronization plays very important role in electric power systems, digital

audio, video, inscription in telecommunication, metabolic systems etc and has mo-

tivated an intense research in these systems. Synchronization can be global as well

as local. The local synchronization leads to the cluster formation which is desired

in some cases such as in the neural networks and undesired in some cases such as

power grid networks, and thus has drawn tremendous attention the last decade. Fur-

thermore, the finite speed of information transmission leads to time delay, which

plays a vital role in synchronization. Additionally, in real world networks, due to

signal travelling different distances, rate of information transmission can be differ-

ent for different units, which leads to the heterogeneity in delay values. A delay

may give rise to many new phenomena in dynamical systems such as stabilizing

periodic orbits, enhancement or suppression of synchronization, chimera state, etc.

The heterogeneous delays being more realistic have shown to maximize the stabil-

ity of the uniform flow, which is good for traffic dynamics, and show higher-order

chaos which can be used to have a more secured communication in chaos based en-

cryption systems. In case of the food web it has been shown that the homogeneous

delays lead to destabilization of the system, which may lead to the extinction of a

particular species, while the distributed delays are known to yield larger stability

regimes, closely resembling to the undelayed systems. The earlier works on the

coupled maps have shown two main mechanisms of cluster formation, (1) Driven
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(D) and (2) Self-organization (SO). SO synchronization refers to the state when

clusters are formed due to intra-cluster couplings, and D synchronization refers to

the state when clusters are formed due to inter-cluster couplings. However, none of

the studies so far have focused on the impact of delay on cluster synchronization

and mechanism behind the cluster synchronization. For the formulation of the facts

to achieve the above goal following aims are clarified in this thesis:

Objectives
(a) To study the impact of the network architecture on the mechanism of cluster

formation.

(b) To study the role of delay in the mechanism of cluster formation.

(c) To study the impact of heterogeneous delays on the cluster synchronization and

mechanism behind the formation of the synchronized clusters.

(d) To study the impact of multiplexing on the cluster synchronizability of a net-

work.

Summary of the Work Done

(1) Cluster synchronization in networks without delay:

The first chapter of this thesis presents the impact of network architecture on the

mechanism of cluster formation for undelayed coupled maps. In order to explore

the relations between dynamical clusters and network clusters, we study coupled

maps on various networks generated with a simple rewiring strategy. Starting with

a network having two complete sub-graphs, nodes are rewired at each step such

that after few rewiring steps, we get a complete bi-partite network. The rewiring

strategy is adopted such that the average degree of the networks at each rewiring

step remains of the order of N . Coupled dynamical evolution at each rewiring

step leads to the different cluster patterns. The smaller coupling strength region

shows D clusters independent of the network rewiring strategies, whereas larger

coupling strength region depicts a transition from the SO cluster to the D clusters

as network connections are rewired to the bi-partite type. The Lyapunov function

analysis is performed to understand the dynamical origin of cluster formation. The
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results provide insights into the relationship between the topological clusters which

are based on the direct connections between the nodes and the dynamical clusters

which are based on the functional behavior of these nodes.

(2) Impact of delay on mechanism of cluster formation:

The second chapter explores an impact of the delayed communication on the cluster

synchronization of the coupled maps. This chapter reveals that delay may affect

the cluster formation and the mechanism behind the cluster formation in different

ways. At the weak couplings, parity of delay value has prominent impact on the

mechanism behind the cluster formation, the same parity of delays are associated

with the same mechanism of the cluster formation, as well as manifest similar type

of the dynamical evolution. As coupling is increased, introducing a delay may

destroy self-organized clusters leaving driven synchronization of nodes intact as

found for the complete bipartite network or may enhance driven synchronization

as is elucidated for other networks. We provide analytical understanding of this

behavior using the Lyapunov function analysis. To the end, we relate the results

with conflicts and cooperations observed in the family business.

(3) More heterogeneity, more coherence:

The third chapter investigates cluster synchronization in the coupled map networks

in presence of heterogeneity in delay the values. We find that while the parity of het-

erogeneous delays plays a crucial role in determining the mechanism of the cluster

formation, the cluster synchronizability of the network gets affected by the amount

of the heterogeneity. In addition, the heterogeneity in delays induces a rich cluster

pattern as compared to the homogeneous delays. The complete bipartite network

stands as an extreme example of this richness, where robust ideal driven clusters

observed for the undelayed and homogeneously delayed cases dismantle, yielding

versatile cluster patterns as heterogeneity in the delay values is introduced. We pro-

vide arguments behind this behavior using the Lyapunov function analysis. Further,

the interplay between the number of connections in the network and the amount of

heterogeneity plays an important role in deciding the mechanism of cluster forma-

tion.
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Furthermore, heterogeneity in delays leads to the lag synchronization among

the siblings lying on the boundary of coupled maps on the Cayley tree network,

by destroying the exact synchronization among them. The value of the time lag is

equal to the difference in the delay values. To the end we discuss the relevance of

these results with respect to their applications in the family business as well as in

understanding the occurrence of genetic diseases.

(4) Cluster synchronization in multiplex networks:

In this chapter, the impact of interaction of nodes in a layer of the multiplex network

on the dynamical behavior and cluster synchronizability of other layers has been ex-

plored. We find that interactions in one layer affects the cluster synchronizability

of another layer in many different ways. While multiplexing with a sparse network

enhances the synchronizability, multiplexing with a dense network suppresses the

cluster synchronizability with the network architecture deciding the impact of the

enhancement and suppression. Additionally, at weak couplings, the enhancement

in the cluster synchronizability, due to the multiplexing, remains of the driven type

while for strong couplings, the multiplexing may lead to a transition to the self-

organized mechanism.

Keywords : Synchronization, Delay, Networks, Spatio-temporal chaos, Coupled

maps.
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Chapter 1

Introduction

Synchronization is one of the most important phenomenon shown by many real-

world systems. The word synchronization is composed of the Greek words ‘syn’,

meaning together and ‘khronos’ which means time. In synchronization, the cou-

pled units adjust their trajectories in a similar manner [1]. This phenomenon was

first observed by Christian Huygens in 1665, when he found that two pendulum

clocks, suspended by the side of each other, swung in anti-phase with exactly the

same frequency [2]. This anti-phase synchronous state caused by the tiny coupling

from the imperceptible movements of a common frame, was robust against external

perturbations. Here are some examples of the real world system where synchroniza-

tion is the not only observed but is prime factor for proper functioning of underlying

systems.

Different metabolic processes in our body are performed by the synchronization

of the cells [3, 4]. In the brain, synchronization of neural assemblies is responsible

for our motion, vision, thoughts and perception [5, 6]. Furthermore, in the social

systems the synchronization of two individuals can be caused by the synchroniza-

tion of two individuals brain activities by external stimuli such as viewing a movie
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or listening to a song [7, 8]. Another system in which synchronization plays a vital

role is power grid networks [9]. These networks consist of thousand of power sub-

stations and generators which are linked across thousand of kilometres [10, 11]. The

synchronization of power generators keeps all connected generators in pace which,

is necessary for the stability in the power grid systems. The desynchronization of

the generators caused by the disturbances can lead to instability [12, 13].

Synchronization of pedestrian foot steps is another example of synchronization

phenomenon in day-today life. Seemingly a very simple phenomenon, it surprised

everyone on 10th of June 2000 in London on the day of opening ceremony of the

London Millennium Bridge. The bridge started oscillating due to the synchroniza-

tion of pedestrian foot steps [14, 15].

Other examples include blinking behaviour of fireflies. On riverbanks in South-

East Asia, the synchronization of the flashes emitted by male fireflies emerges from

a seemingly chaotic situation [16]. Furthermore, the coupled lasers can synchronize

to lock their optical phases which is desired in communication systems [17–19].

Synchronization has been observed in almost all the fields of science and en-

gineering such as physics, chemistry, biology, ecology, sociology and technology

[1, 14, 20–23].

1.0.1 Networks

Starting from a living cell, which is a complex network of chemicals connected by

chemical reactions, networks exist everywhere in the universe. The networks can

be physical objects in the Euclidean space such as electric power grids, transport

networks, neural networks etc, or can be defined in metaphysical space such as the

networks of actors [24], collaborations between individuals, networks of citations

[25] etc.

Definition: Mathematical properties of networks are described by graphs. A

graph is a pair of sets (V, E), where V is a set of vertices (nodes), and E is a set

of edges (links) between the vertices [26]. A graph is represented by an adjacency

matrix, Aij , which is a matrix in which:

2



CHAPTER 1.

Aij =







1 if i ∼ j

0 if i � j,
Following are few basic characterization tools of the networks:

1. Degree and Degree distribution: The number of edges a node has in a net-

work is defined as the degree of that node. The probability of a node having

degree k is referred as the degree distribution P (k).

2. Diameter: The largest of these shortest paths between all the pairs of the

nodes is defined as the diameter of the network.

3. Clustering coefficient: If node i has degree ki, then number of neighbors of

node i will be ki and the maximum number of possible cliques of the order

of three will be ki(1 − ki)/2. If Ei is actual number of triangles among the

neighbors of node i, the clustering coefficient of nodes i can be given as [27]:

Ci =
2Ei

ki(1− ki)
. (1.1)

In the last two decades an advancement in the direction of the study of real

world systems in the complex network framework has been done. The network

theory has been very useful to study the origin of various diseases [28], functionally

important proteins [29], disease spread in social system [30], virus spread in the

Internet networks [31], stability of the ecosystem [26] and pattern formation in the

neural networks [5]. Following are some of the major network models:

1.0.1.1 Random network

The algorithm for the random network was given by Hungarian mathematicians

Paul Erdős and Alfred Rényi. According to this model, all the pair of the nodes in a

network are connected with a probability p. Thus, the total number of connections

in the network is approximately pN(N − 1)/2 [27]. The realization that complex

networks such as cell and the Internet are not completely random, has led to other

network models.
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1.0.1.2 Small-world network

The real world systems possess smaller diameter as small as of the random networks

and clustering coefficient as large as found for the regular networks. The social

psychologist Stanley Milgram, through his experiment demonstrated that most of

the people in the United States of America have six degrees of separation between

them [32]. Taking this into consideration, Watts and Strogatz (WS) proposed a

model of the small-world network [33]. Following is the procedure to generate the

small-world network using WS model: (1) Begin with a 1-d lattice of degree k (each

node is connected to its 2k nearest neighbors, k neighbors each side). (2) Each link

is then removed with a probability p and is rewired to a randomly selected node

in the network such that there are no self and multiple connections. The value of

p being zero corresponds to a regular graph and p = 1 corresponds to the random

graph. This random rewiring leads to a network which has diameter as small as that

of the random networks and clustering coefficient as large as found that of the 1-d

lattice.

1.0.1.3 Scale-free network

Many of the real-world networks such as the citation networks [25], the phone call

networks [34], the cellular networks, the Internet networks, and the world wide web

[35] show the power law degree distribution (P (k) ∼ k−λ). In order to understand

the evolution of the power law degree distribution in these networks, several models

have been presented. We consider the model proposed by Barabási and Albert in

1999 [36], which is as follows:

(1) Take a small number of nodes (N0), add a new node having �k� edges (where

�k� is average degree of the network) at each time step.

(2) The newly added node makes connections with the already existing nodes

with a probability πi, which depends on the degree of the node i as:

πi =
ki
Nc

, (1.2)

where Nc is the total number of connections in the network at time t.

The scale-free structure is known to provide robustness to the system against
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random attacks, while makes it fragile to the targeted attack for example virus

spreading in the Internet network, becomes more harmful when the hub nodes get

infected [27].

1.0.1.4 Bi-partite network

The bipartite graph consists of two kinds of nodes and edges connect only nodes

of different kinds [24]. The complete bipartite networks consists of two sets where

each node of one set is connected with all the nodes of other set. Few real world

networks such as actor network and collaboration networks can be described by the

bipartite graphs. The actor network can be classified into two types of nodes: actors

and movies, while in the collaboration networks can be classified into scientists

and papers. The metabolic process where two type of nodes can be substrates and

reactions, also forms a bi-partite network [27].

1.0.1.5 Cayley tree

The Cayley tree is an infinite dimensional regular graph with an idealized hierar-

chical structure. These networks have demonstrated their usefulness in the exact

analysis of stability of synchronized states [37], modeling of immune network with

antibody dynamics, disease spread [38–41] and in the investigation of Bose-Einstein

condensation [42]. Tree structures are found everywhere from the real world net-

works such as the river networks to the technical networks such as power grid net-

works. The tree structure has also been found in the network of sub-fields of physics

[43]. Unlike other networks for Cayley trees branch ratio (denoted by K) and height

(denoted by h) are the major network parameters.

The Cayley tree can be divided into two parts inner nodes and the boundary

nodes [44]. The boundary nodes (also called leaf) do not have children, but consti-

tute more than 50% of the total nodes ((Kh+1 − 1)/(K − 1)) in the network. There

are total (Kh − 1)/(K − 1) inner nodes in a tree network. Its idealized hierarchical

structure stands as an ideal model network to understand different cluster patterns

observed for the coupled maps on delayed networks.
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1.0.2 Cluster synchronization:

The synchronization can be global as well as local. In the global synchronization,

all the elements of a system exhibit similar behavior in time, while the local syn-

chronization leads to the cluster formation. In the cluster synchronization, the whole

system gets divided into groups of synchronized nodes in such a way that any two

nodes belonging to the same group are synchronized with each other, whereas, two

elements belonging to different groups are not synchronized. If a network of N

nodes divides into k clusters, with kn elements in the nth cluster, the synchronized

state can be written as follows :

xi(t) = xj(t); ∀ t > t0, if i, j ∈ kn

xi(t) �= xj(t); ∀ t > t0, if i ∈ kp, j ∈ kq (1.3)

The above definition corresponds to the case of exact synchronization, when the

dynamical variables for two subsystems of a system have identical values [45, 46].

Following are other types of the synchronization which have been studied in the

context of the cluster synchronization.

1. Lag synchronization (LS): when the state of two maps are nearly identical,

but one system lags in time from the other. The state of node may remain

almost identical but with a time lag � [47]:

xi(t+�) ≈ xi(t); ∀t > t0, i, j ∈ N. (1.4)

where xi(t) is the value of dynamical variable of node i at time t.

2. Phase synchronization (PS): when only phases of the two subsystems are

locked and amplitude remain highly uncorrelated [48].

|nφi(t)−mφj(t)| < const; ∀ t > t0 , i, j ∈ N (1.5)

3. Generalized synchronization (GS): When a complicated functional relation-

ship, e.g. xi = h(xj) is established between two coupled subsystems xi =

f1(xi) and xj = f2(xj) [49].

Examples of the cluster synchronization can be easily seen in nature such as,

flocks of birds [50–52], division of the individuals into several groups based on
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same opinion shared by the members of a group in the social systems [53], splitting

of a multi-agent system into several clusters so that the agents synchronize with each

other in a same cluster, but differences exist among different clusters [54, 55], and

in the neural networks where specific set of neurons response to a specific stimulus.

Cluster synchronization is desired in some cases such as in the neural networks

[5–7] and undesired in some cases such as power grid networks [9–11] and thus

in last decade, coupled dynamics research got shifted to the investigation of the

synchronized clusters [47, 48, 56–58] instead of the global synchronized state.

The cluster synchronization has been proposed a mechanism behind the global

synchronization of coupled oscillators [59]. The uncoupled oscillators evolve inde-

pendently and there is no correlation between the motion of the oscillators. Upon

introducing an overall coupling, formation of the phase synchronized clusters was

observed as coupling exceeds a critical value [47, 48]. Using mean-field analysis, it

has been shown that there exists a transition to the global synchronized state through

cluster formation [59]. Further, the critical coupling strength has been shown to de-

pend on the network topology [59, 60].

1.0.2.1 Mechanisms of cluster formation

The earlier works on undelayed coupled network have mainly focused on investi-

gation of partial synchronized state, and did not pay much attention to the coupling

configurations. However, networks modelling of real world have some structures

and it is important to understand the relation between the connection architecture

and the dynamical clusters. The question arises that, “do connections in the dynam-

ical clusters have some specific features ?” Manrubia and Mikhalov in [61] reported

that the connections in dynamical clusters do follow a particular configuration, i.e.

elements from a cluster generally have more connections inside the cluster than

with the elements from other dynamical clusters. This was a very significant obser-

vation and more importantly presented the concept of relation between dynamical

cluster, and the underlying network, their observation was based on the dynamical

units coupled with some particular coupling strength and having random coupling
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architecture.

Later on, the study of coupled dynamics on various networks, done by Jalan and

Amritkar [56] revealed that depending upon the relation between the synchronized

clusters and the coupling between the nodes represented by the adjacency matrix,

there could be following different phenomena for the cluster formation:

1. Self-organized (SO) clusters : The SO synchronization is referred to the case

when, nodes of a cluster synchronize due to intra-cluster couplings and the

corresponding synchronized clusters are called SO clusters (Fig.4.1(b)). In

the ideal SO synchronization, the clusters do not have any connection outside

the cluster, except one, which is necessary for a connected network. The state

when most of the connections lie inside the cluster except very few outside is

referred as the dominant SO synchronization.

2. Driven (D) clusters : The D synchronization corresponds to the state when

the nodes of a cluster synchronize because of inter-cluster couplings and the

corresponding clusters as D clusters (Fig.4.1(a)). Here the nodes of one clus-

ter are driven by the nodes outside the cluster. We refer to this as the driven

(D) synchronization . The state when most of the connections lie outside the

cluster except very few inside, corresponds to the dominant D synchroniza-

tion.

3. Mixed clusters : The clusters can be formed due to almost equal contribution

of the inter- and intra-cluster connections, such clusters are referred as the

mixed clusters (Fig.4.1(c)).

The SO and D synchronization has also been investigated in the relevance of

brain cortical networks [62].

To have a clear picture of self-organized and driven behavior, fintra and finter

are proposed as measures for intra-cluster and inter-cluster couplings, defined as

follows [57] :

fintra =
Nintra

Nc

, finter =
Ninter

Nc

(1.6)
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Figure 1.1: Schematic diagram depicting the ideal D (a), ideal SO (b) and mixed (c)
clusters. The nodes (closed small circles) in circular region represents that they are
synchronized.

where Nintra and Ninter are the numbers of intra- and inter- cluster couplings, re-

spectively. In Ninter, coupling between two isolated nodes are not included.

The criteria for the distinction of different cluster states depending on the value

of finter and fintra is as follows :

1. The state, corresponding to fintra = 0 and finter > 0, is defined as the ideal D

clusters state as mechanism behind the synchronization is inter-cluster cou-

plings.

2. The state corresponding to fintra > 0 and finter ∼ Ncl�k�/Nc, (Ncl is the

number of clusters) is defined as the ideal SO clusters state as mechanism

behind the synchronization between pairs of nodes is due to intra-cluster cou-

plings.

3. If |fintra − finter| < th, clusters are of mixed type. The phase diagram is

presented for th = 0.2. For the higher values of th, as long as fintra > finter

(fintra < finter), clusters are considered here to be of dominant SO (dominant

D) type.

The dynamical evolution of the coupled maps may lead to cluster patterns, defined

as follows:

Cluster patterns: A cluster pattern refers to a particular phase synchronized

state, which contains information of all the pairs of phase synchronized nodes dis-

9



CHAPTER 1.

tributed in different clusters. There can be static or dynamical cluster pattern de-

pending upon the behaviour of nodes. The static pattern has all the nodes, except

few floating nodes, fixed in a cluster with respect to the change in the time, de-

lay value or initial condition. The dynamical pattern refers to change in number

of nodes with time evolution, or with initial condition or with change in the delay

value. Furthermore, a pattern can be of D, SO type or mixed type.

Depending upon the asymptotic dynamical behavior of the nodes, a node can be

referred with the following three ways [57].

1. Cluster node: A node which synchronizes with other nodes and forms a

synchronized cluster. After entering in to a synchronized cluster it remains in

that cluster throughout.

2. Isolated node: A node which does not synchronize with any other node and

remains isolated all the time.

3. Floating node: A node that keeps on switching intermittently between an

independent evolution and a synchronized evolution attached to a cluster or a

set of clusters.

——————————————————-

1.0.3 Delay:

In the spatially extended systems, delays are unavoidable due to finite speed of

information transmission [63], thus modelling of the real world systems without

considering delay is a rather idealistic way. To study a more realistic situation,

incorporation of delay is must. The delay in communication primarily depends on

the following points [64]:

1. The length signal has to cover

2. Rate of information transmission from one unit to other units

Examples of few real world systems where delay has an important role are given

below:
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In the neural networks delay arises due to the finite speed of signal conduction

such as; speed of signal conduction through unmyelinated axon fibers is of the order

of 1m/s resulting in time delays up to 80 ms [65, 66]. In the football stadium, the

sound of the clapping of fans in one side of stadium reaches to the fans sitting on the

other side of stadium after some time due to the finite speed of sound, for example

for the distance of 3m a time delay of 10ms induces [64].

In the Internet networks, the time delay arises due to the delay in processing,

queueing, transmission and propagation of data [67]. The delay in the power grid

system arises due to the time delay in sending the data through router plus the time

delay due to the time taken in the transmission of data over a particular communi-

cation medium [68, 69].

In Ecological systems, such as in population dynamics, delay arises due to the

retarded reproduction owing to the finite hatching periods, maturation period [70].

Delay in dispersion of a species in a landscape, is known to influence the stability

of the ecosystem [70, 71]. In coupled lasers system, delay arises due to finite time

taken by the signal in feedback as well as in propagation. Though, the speed of laser

beam is very high, the lasers exhibit very fast dynamics and the propagation of few

meter distances introduces non-negligible delay time in the coupling [72, 73]. The

presence of delay has been shown to enhance the synchronizability of coupled laser

system [74]

The delay can be discrete or continuous. For coupled maps model, we consider

discrete delays. Discrete delays can be homogeneous or heterogeneous, which are

elaborated in the following:

1.0.3.1 Homogeneous delay

For the homogeneous case, delay between all the pair of nodes is same. The homo-

geneous delay is known to give rise to many new phenomena in dynamical systems

such as stabilizing periodic orbits, enhancement or suppression of synchronization,

chimera state, etc [75–93].
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1.0.3.2 Heterogeneous delay

In this case, the delay between a pair of nodes may be different from the rest of

the pairs of nodes in the network. In real world networks, the delay in transmission

from all the units may not be the same [94]. Hence, model systems incorporat-

ing heterogeneity in delays may provide a better understanding of the behavior of

underlying systems. Previous studies considering the heterogeneous delays have

shown that they are capable to show all the emerging behaviors as observed for ho-

mogeneous delays [95–101]. Heterogeneity in delay may maximize the stability of

the uniform flow, which is good for traffic dynamics [102], may lead to a change in

cluster patterns and suppression of synchronization [103]. Furthermore, heteroge-

neous delays show higher-order chaos thus bear a more secured communication in

chaos based encryption systems [104].

In case of the food webs, it has been shown that the homogeneous delays leads

to destabilization of the system, leading to the extinction of a species [105–107],

while the distributed delays yield larger stability regimes, closely resembling to the

undelayed systems [70]. The heterogeneous delays also support to the amplitude

death, where whole system stabilizes to fixed point [108, 109].

We have considered following discrete heterogeneous delays:

1. Bi-modal heterogeneous delay: For generating the bi-modal heterogeneous

delays by randomly making a fraction of connections fτ1 conducting with τ1,

and another fraction fτ2 conducting with delay τ2. These two parameters are

defined as fτ1 = Nτ1/Nc and fτ2 = Nτ2/Nc, where Nτ1 and Nτ2 stand as

the number of connections conducting with delay τ1 and τ2, respectively. The

maximum heterogeneity is exhibited when half of the connections bears τ1

delay and the other half bears a τ2 delay. We remark that these definitions do

not incorporate the exact values of delay and only take care of the number of

connections conducting with different delay values. We consider h = 1− |
fτ1 − fτ2 | as a measure of the amount of heterogeneity in the network. The

value of h being zero corresponds to the homogeneous delays, whereas h = 1
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corresponds to fτ1 = fτ2 , denoting the maximum heterogeneity.

2. Uniformally distributed: The heterogeneous delays with the uniform distri-

bution is generated by generating uniform random numbers between range τ1

and τ2.

3. Gaussian distributed: Gaussian distributed delays are generated as [110],

τij = τ̄ + Near(cη), where η is Gaussian distributed numbers with mean

zero and standard deviation one. The delays are homogeneous (τij = τ ) for c

= 0 and are Gaussian distributed around τ̄ for c �= 0. The negative values of

delays have to be truncated.

4. Exponentially distributed τij = τ̄ + Int(cη), where η is exponentially dis-

tributed with positive, unit mean. The delays are homogeneous (τij = τ ) for

c =0 and are exponentially distributed with τ̄ for c �= 0 [110].

1.0.4 Model:

In real world systems, the short range connections among the neighbours (Aij =

1) and lead to the long range correlations, such as while cooling the water short

range interactions among the water molecules lead to the formation of ice crystals.

Similarly in the case of the social networks, the local interactions among the people

may lead to a revolution. In order to understand the origin of emergence of these

long range correlations, many models such as; coupled-oscillator models, coupled

map model, cellular automata, transport models and reaction-diffusion systems have

been proposed.

1.0.4.1 Coupled map model

The coupled map model was initially proposed by K. Kaneko and others [111–

119] as “coupled map lattice (CML)”. This model represents a dynamical system

with discrete time and was originally proposed for studying spatiotemporal chaos.

Further, many researchers worked on this model due to it simplicity and wide appli-

cability. It has found its applicability in the studies of; crystal growth [120], popula-

13



CHAPTER 1.

tion dynamics [121], fluid dynamics [122] and stock market [123]. The generalized

model for coupled maps on networks is given as :

xi(t+ 1) = f(xi(t)) +
ε

ki

�

Aij [g(xj(t))− g(xi(t))] (1.7)

where xi(t) is the dynamical variable of the ith node at the tth time step, and A

is the adjacency matrix with elements taking values one and zero depending upon

whether i and j are connected or not, ε ∈ [0, 1]. Matrix A is a symmetric matrix

representing undirected network, and ki =
�

j Aij is the degree of node i. Func-

tion f(x) defines the local nonlinear map and function g(x) defines the nature of

coupling between nodes.

The coupled map model has shown a rich variety of the phenomena such as;

pattern formation [124, 125], synchronized chaos [126, 127], spatiotemporal inter-

mittancy [128, 129] etc. Thus, the coupled map model has become a celebrated

model to test physical intuitions and concepts for spatiotemporal chaotic systems.

We consider chaotic maps for studying the cluster synchronization. In the follow-

ing, these maps are discussed in detail :

1.0.4.2 Logistic map

Logistic map was introduced by Robert May in 1976 to study the population growth

[130, 131]. The population of year (t+1) depends on the population of the previous

year (i.e. t) and the rate of population (say µ). Thus population of year (t + 1) is

linearly proportional to the population of year t (i.e. zt+1 = µzt). This gives that for

µ > 1, population increases exponentially. However, for too large population there

can not be enough food supply, consequently the members of the species would

start dying. If z̄ is the maximum number of population, the number of the members

dying will be proportional to µ(1 − zt/z̄). The final equation for the population

dynamics can be written as [131]:

x(t+ 1) = µx(t)(1− x(t)). (1.8)

Where x(t) = z(t)/z̄. This map depicts an extraordinary transition from an

order to the chaos, as the value of parameter µ changes from 0 to 4. As shown by the

14
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Figure 1.2: Bifurcation diagram of the logistic map, for the logistic map parameter
lying in the range 2.9 � µ � 4. 100 successive iterates of the logistic map are
plotted after an initial transient.

Fig.1.2, for 1 < µ � 3 periodic orbit of period-1 is obtained and attractor consists

of a single stable fixed point x = 1 − 1/µ. With a further increase in the value of

µ there is a sudden change in the behavior as the trajectory does not settle down to

a single attractor, instead oscillate back and forth between two values. In terms of

the population dynamics, the population fraction is high one year, low next year and

so on. This is called the period-2 behavior. At µ = 3, period-doubling bifurcation

take place. At µ = 3.44948.. another period-doubling bifurcation take place, and

for µ > 3.44948.. the system consists of four attractors. A further increase in the

value of µ leads to an orbit of period-8, period-16, and so on. For µ = 1 +
√
8

periodic orbit of period-3 occurs, after this a period doubling cascade generating

the period orbit of period 3(2)m, occurs. This continues until chaos appears in three

bands. This band is called as period three window, which ends up with a situation

where the periodic orbit of all the orbits coexist but none of them are stable. In order

to quantitatively measure the chaos, the term Lyapunov exponent has been defined

[131].

The Lyapunov exponent is the measure of mean rate of exponential separation

of neighbouring trajectories [130]. If two nearby trajectories start with two different
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Figure 1.3: Figure depicting average Lyapunov exponent of logistic map, as a func-
tion of logistic map parameter µ.

initial conditions, say x0 and x0 +�x0, the Lyapunov exponent would be:

λ = lim
t→+∞
�x0�→0

1

t
ln

� δx(t) �
� x0 �

. (1.9)

The positive value of the Lyapunov exponent indicates that two nearby trajec-

tories diverge, i.e the system is chaotic, a negative value of the Lyapunov exponent

shows convergence of the two nearby trajectories and zero value indicates of quasi-

periodic orbit (motion on a m-torus).

The Fig.1.3 plots the Lyapunov exponent with the increase in the value of µ.

The logistic map has been studied extensively due to its computational simplicity

and rich dynamical behavior.

For the N coupled maps, there will be N number of Lyapunov exponents.

λ1 ≥ λ2 ≥ . . . ≥ λn. (1.10)

In this case, the positive value of the largest Lyapunov exponent is signature of the

chaos.
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1.0.4.3 Circle maps

The equation of motion of a periodically forced dynamical system can be given by

the following map, called circle map [1]:

φ(t+ 1) = x(t) + ω + (p/2π)sin(2πx(t)) (mod1). (1.11)

Here, p is forcing amplitude and parameter ω = ω0T = 2πT/T0 is proportional to

the ratio of the period of force and period of self-sustained oscillations. For p = 0

the motion is linear rotation on the circle. For p > 0, in case of T/T0 being rational

number, dynamical evolution is on the circle with the period T0, while for this ratio

being irrational, dynamical evolution is quasi-periodic on the circle.

1.0.4.4 Delayed coupled map model:

As discussed earlier, in real-world systems the delay naturally exist due to the finite

speed of information transmission. A modified evolution equation incorporating

delay needs to be constructed.

For the delayed system the (t+1)th time step behaviour of the ith node depends

on the (t− τij)
th time step behaviour of its neighbours, where τij is time taken for

the information to reach from the jth node to ith node. For the symmetric delays

τji = τij and in the case of homogeneous delays τji = τ . The modified coupled

map model for the delayed system can be given as:

xi(t+ 1) = f(xi(t)) +
ε

ki

�

Aij [g(xj(t− τji))− g(xi(t))], (1.12)

This is to be noted that in the above equation, while considering the delay, only

the delay in the transmission from one node other nodes has been considered. The

delayed coupled map model given by Eq.1.12 is known to exhibit all the behaviors

displayed by undelayed model [78, 78, 80, 99], along with the suppression of chaos

[110].

1.0.5 Phase synchronization in maps

The uncoupled (i.e. ε = 0) chaotic maps, by definition can not exhibit synchronous

behavior. For ε > 0 the interaction of the chaotic maps can lead to the perfect

locking of their phases, whereas their amplitudes remain uncorrelated. Further, in
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Figure 1.4: Figure shows time series of three nodes.

a phase synchronized state the dynamical variables for different nodes have some

definite relation between their phases. In the case of the sparse networks, where the

number of connections in the network is small (Nc ≈ N ), the coupled chaotic maps

exhibit a very small number of nodes getting exactly synchronized. However, by

considering the phase synchronization, synchronized clusters with a larger number

of nodes can be obtained. Hence, we have studied the phase synchronization to

investigate different cluster patterns in the delayed coupled maps. Phase synchro-

nization considered in this thesis is defined as follows:

Let νi and νj denote the number of times the dynamical variables xi(t) and

xj(t), for the nodes i and j, show local minima (maxima) during the time interval

T starting from some time t0. Here, the local minima (maxima) of xi(t) at time t is

defined by the conditions: xi(t) < xi(t− 1) and xi(t) < xi(t + 1). Let νij denotes

the number of times these local minima (maxima) coincide with each other. The

phase distance, dij , between the nodes i and j is given by the following relation

[56, 132] :

dij =
(1− νij)

max(νi, νj)
, (1.13)

where, dij = dji and dij has been shown to follow the metric properties [57]. When

all the minima (maxima) of the variable xi and xj match with each other, dij = 0,

whereas when none of the minima (maxima) match, dij = 1. Thus, the phase

synchronization between two nodes i and j exists if phase distance dij between

them vanishes. Fig.1.4 shows the time evolution of three nodes in a network. For
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the two nodes ( represented with closed circle and triangle) d12 = 0 (as they have

minima (maxima) occurring at the same time), while for the third node (represented

with closed square) d13 �= 0 and d23 �= 0. Nodes 1 and 2 are phase synchronized

and consequently fall in the same cluster.
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Chapter 2

Cluster synchronization in networks
without delay

The interactions in the real world networks are not random. They form various

types of modules or community structure. A module represents a group of nodes

for which the connections within the group are denser, but between the groups are

sparser [133–138]. Depending upon the functional behaviour, a system can be par-

titioned into a collection of modules and each module is a discrete entity of several

components performing an identifiable task, separable from the functions of other

modules [138]. This indicates possible relations between dynamical clusters and

the network architecture [56, 61], and the question arises that do dynamical clusters

reveal organization or module structure of the underlying network as well as what

functional clusters are preferred for a given network architecture ? Earlier investiga-

tions in this direction [139–141] showed that the collective dynamics of the network

follow the network architecture, the nodes of a module getting synchronizing, while

no synchronization between the nodes from different modules [142]. Further, the

synchronization has been studied to detect the hierarchical organization in coupled

networks [143, 144].
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In this chapter, we study that dependance of the mechanism of cluster formation

on the underlying network architecture. By considering a network of N nodes and

Nc connections, we assign each node of the network a dynamical variable xi, i =

1, 2, . . . N . Evolution of the dynamical variable is written as [111]

xi(t+ 1) = f(xi(t)) +
ε

ki

N
�

j=1

Aij [g(xj(t))− g(xi(t))] (2.1)

where xi(t) is the dynamical variable of the ith node at the t th time step and A

is the adjacency matrix with elements taking values one and zero depending upon

whether i and j are connected or not, ε ∈ [0, 1] is overall coupling strength. Matrix

A is a symmetric matrix representing undirected network, and ki =
�N

j=1
Aij is the

degree of node i. Function f(x) defines the local nonlinear map and function g(x)

defines the nature of the coupling between nodes. In this chapter, we present results

for the local dynamics given by the logistic map f(x) = µx(1−x) and g(x) = f(x).

We take the value of µ = 4, for which individual un-coupled unit shows chaotic

behaviour with the value of Lyapunov exponent being ln 2. As an effect of coupling,

the coupled dynamics Eq.2.1 shows various different kinds of coherent behaviour,

such as synchronization [111, 118], phase-synchronization [57, 58, 145] and other

large scale macroscopic coherence [146] depending upon the coupling architecture

and the coupling strength. In this chapter we consider exact synchronization (i.e.

xi(t) = xj(t) for i, j ∈ N ) and phase-synchronization.

The definition of modularity of a network (Q), given by Newman is based on

the ratio of intra and inter module connections (Q = 1/2Nc[
�

i eii −
�

ijk eijeki]),

where eij is the fraction of edges in the network connecting nodes in group i to

those in the groups j. The modularity of a network is maximum (i.e. one) if it can

be divided into sub-graphs such that all the connections lie in the sub-graphs, except

those, which are required in order to keep the network connected. These are referred

as structural clusters (or community) to distinguish them from the dynamical clus-

ters. The nodes in the same community get synchronized in SO synchronized state,

while for the D state, nodes of different sub-graphs synchronize.

In the SO synchronization, the nodes which are connected synchronize with

each another. This type of synchronization was studied in [142] in order to find out
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(a)

(b)

(c)

Figure 2.1: Pictorial representation of networks at different rewiring step. (a) Initial
network with two complete subgraphs G1 (left) and G2 (right) (b) rewired network
at n = 1, solid lines are the original connections and dotted lines are the new
connections which a node from the group G1 makes with the nodes of G2, (c) final
bipartite graph.

functional hierarchy in cat’s cortex network. However, as shown in the earlier works

([56–58]), dynamical clusters could be formed without having even a single connec-

tion within the cluster (ideal D state). These two types of clusters, self-organized

and driven, could be observed irrespective of the dynamical state of the Eq.2.1, i.e.

whole dynamics may lie on the chaotic, periodic, quasi-periodic attractor depend-

ing upon the coupling strength and the connection architecture. Various different

possible states of the coupled dynamics given by Eq. 2.1 are discussed in details in

[57]. This chapter describes the relation between different types of clusters and the

structure of the coupling matrix A, and subsequently tracks the nature of dynamical

clusters with the rewiring of network. In the following, we present results for the

coupled maps on networks, as described by the Eq. (1.7), evolved with random ini-

tial conditions. First, the rewiring procedure is explained and then various results

demonstrating the relation between the dynamical clusters and network structure

are presented.

2.1 Evolution of synchronized clusters with network
rewiring

We start with a network of size N having two complete sub-graphs, G1 and G2

with N1 and N2 nodes respectively. Complete sub-graph means, all the nodes in G1
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Figure 2.2: Fraction of inter (•) and intra (◦) connections as a function of the cou-
pling strength ε. After an initial transient (about 2000 iterates) phase synchro-
nized clusters are studied for τ = 100. The logistic map parameter is = 4, and
N1 = N2 = 50. (a) for the original network at rewiring step n = 0, (b) n = 5,
(c) n = 10, (d) n = 20, (e)n = 30, and (f)n = 50. All figures are plotted for the
average over 20 sets of random initial conditions for the coupled dynamics.

(G2) are connected with the all other nodes in G1 (G2) (Fig. 2.1(a)). There exists

one connection between G1 and G2, which is necessary to keep the whole graph

connected. Now at each rewiring step, we disconnect one node from the sub-graph

G1 (G2) and connect it to all the nodes in the sub-graph G2 (G1) (Fig. 2.1(b)). With

this rewiring scheme, average degree of the network remains of the same order (N ).

After rewiring step N1, all nodes in G1 are connected with all the nodes of G2, and

for the case N1 = N2, the graph is the complete bipartite (Fig. 2.1(c)). At each

step of the rewiring we evolve Eq. (1.7) with random initial conditions and study

the nature of the dynamical clusters after some initial transient. For small coupling

strengths region (ε < 0.5), number of nodes forming synchronized clusters is very

small and hence in this region we consider phase-synchronized clusters. For the

larger coupling strengths, in general, nodes form exact synchronized clusters. In

the following we consider dynamical clusters based on the phase-synchronization.

Fig. (2.2) shows behaviour of fintra and finter as a function of coupling strength ε

for the various steps of the network rewiring according to the above strategy.

Fig. (2.2) shows that after an initial turbulent regime, where none of the node

synchronizes, nodes form synchronized clusters. For the weak coupling (ε ∼ 0.2)

the coupled dynamics governed by Eq. 2.1 exhibits partial synchronized state corre-
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Figure 2.3: The fraction of number of clusters Mclus(◦) and the fraction of the
number of nodes forming clusters Nclus(•) as a function of the coupling strength ε.
The network structure are same as for the Fig. (2) and quantities are plotted for the
average over 20 realization of random sets of the initial conditions.

sponding to the many dynamical clusters with finter and fintra both being nonzero.

Sub-figure (a) is plotted for the initial network (Fig. 2.1(a)), sub-figure (b) is plot-

ted for the rewiring stage n = 5, which means that 5 nodes from each group are

rewired. These nodes break the connections with their communities and make new

connections with the nodes of the other communities.

Fig. (2.3) plots the fraction of number of clusters (Mclus) and the fraction of

number of nodes forming clusters Nclus. The first measure Mclus counts an isolated

node as a separate cluster, and the second measure Nclus counts only those nodes

which are the part of a cluster and are not isolated. It is clear from the sub-figures

that for each rewiring step almost all the nodes form cluster after some coupling

strength ε > 0.2 value. Note that for the lower coupling strength region, in general,

nodes form phase-synchronized cluster, as defined in the previous section, whereas

for the stronger coupling strength region ε > 0.5 they form exact synchronized clus-

ters. For our investigations it does not matter whether nodes are phase-synchronized

or exact synchronized, as long as large number of nodes form the clusters we get

relevant information regarding dynamical cluster and network structure. It is seen

from all the sub-figures of Fig. (2.2), that the nature of synchronized clusters is very

much similar in the weaker coupling strength regime (ε ∼ 0.2) for all rewiring steps,

with (a) and (f) being the extreme cases of the network structure. Hence, for our
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Figure 2.4: Node vs node diagrams illustrating the behaviour of nodes at different
step of rewiring. After an initial transient synchronized clusters are studied. The
solid circles (•) show that the two corresponding nodes are coupled and the open
circles (◦) show that the corresponding nodes are (phase) synchronized. In each
case the node numbers are reorganized so that nodes belonging to the same cluster
are numbered consecutively. All plots are for coupling strength ε = 1. (a) for the
network having two complete subgraphs with N1 = N2 = 50 (b) network at the
rewiring step n = 20 (c) for n = 30 and (d) for n = 50 which leads to the complete
bipartite network.

study the weaker coupling strength region is not very interesting as in this region

one does not seem to get relation between dynamical cluster and network structure.

In order to get insight about the relation between dynamical clusters and the net-

work structure we concentrate on the coupling strength region ε > 0.5. Coupled

dynamics Eq. (1.7) gives interesting dynamical clusters in this coupling strength re-

gion, where connections between the nodes of dynamical clusters differ as structure

of the network is varied. In the following, the behavior of coupled dynamics and

nature of synchronized clusters for the various coupling strengths in this region are

discussed.

Fig. (2.4) plots the synchronized clusters for different networks generated with

the above rewiring strategy. The figures are plotted for the coupling strength ε = 1.

For this coupling strength the nodes form exact synchronized cluster rather than

the phase-synchronized cluster which is the case for weaker coupling strengths.

Fig. (2.4)(a) is for the rewiring step n = 0, when nodes in the network form two

complete sub-graphs. The dynamical behaviour of these nodes show synchroniza-

tion with two clusters, and these clusters are of self-organized type; i.e. nodes
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Figure 2.5: Node vs node diagram illustrating the behaviour of nodes (same as
Fig. (4)), for the coupling strength ε = 0.9. Network structure remains same as of
the Fig. (4). Node numbers are reorganized so that nodes belonging to the same
dynamical cluster are numbered consecutively.

belonging to the structural clusters form dynamical clusters. Fig. (2.4)(b) is node-

node plot for the network at step n = 20, i.e. connections of 20 nodes from each

group are rewired such that the 20 nodes from the group G1 (G2) get connected

with the 30 nodes of the group G2 (G1). At this stage mixed dynamical clusters are

formed. Two small groups of nodes which are rewired to the different groups loose

the synchronization with the nodes in their respective group and are synchronized

independently forming two separate clusters. These two clusters, first and fourth

cluster from the bottom, are therefore of driven type. Rest of the nodes, which

remain fully connected inside their respective groups, remain self-organized type.

Fig. (2.5) shows dynamical clusters at the various stage of rewiring for the coupling

strength value ε = 0.9. Sub-figure (a) shows the two self-organized clusters for the

initial network (Fig. 2.1). Subfigures (b), (c) and (d) are plotted for the n = 20, 30

and 50 rewiring steps respectively. For n = 0 and n = 50, self-organized and driven

clusters respectively are the stable configurations, thus coupled dynamics lead to

these for both the coupling strengths. For intermediate rewiring states dynamical

clusters vary with the value of coupling strengths. Node numbers are reorganized

so that nodes belonging to the same cluster are numbered consecutively. Fig. (2.6)

plots largest Lyapunov exponent as a function of the rewiring step n, n = 0 cor-

responding to the original network (Fig. 2.1(a)). At each rewiring step one node
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Figure 2.6: The Largest Lyapunov exponent λ as a function of the rewiring step
n. Figures are plotted for two different coupling strengths ε = 0.9 and ε = 1.
Lyapunov exponents are calculated for the average over 20 realization of the random
set of initial conditions.

from each group is rewired. After n = N1 = N2 = 50, the network becomes like

Fig. (2.1)(c). After fixing the coupling strength, Lyapunov exponent λ is: calcu-

lated for the coupled dynamics (Eq. 1.7) at each step of the rewiring. Results for

ε = 0.9 and ε = 1 show that coupled dynamics may lie on the periodic (λ < 0),

quasi-periodic (λ ∼ 0) or on the chaotic (λ > 0) attractor, but the nature of the

coupled dynamics governed by the Eq. 1.7 remains as shown by the Fig. (2.4) and

2.5, depending upon n.

2.2 Lyapunov function analysis

The Lyapunov function for any pair of nodes i and j can be defined as [147, 148]

Vij(t) = (xi(t)− xj(t))
2 (2.2)

Clearly, Vij(t) ≥ 0 and the equality holds only when the nodes i and j are exactly

synchronized. For the asymptotic global stability of the synchronized state in a

region, Lyapunov function should satisfy the following condition in that region:
V (t+ 1)

V (t)
< 1

For the global synchronous state (xi(t) = xj(t), ∀i, j), we can write the condition

for two synchronized clusters in the self-organized state (i.e. xi1(t) = xi2(t); ∀i1, i2 ∈
G1 and xj1(t) = xj2(t); ∀j1, j2 ∈ G2), as;

Vi1i2(t+ 1) = [(1− ε)[f(xi1(t))− f(xi2(t))]

− ε

N1 − 1
[f(xi1(t))− f(xi2(t))]

�

(2.3)
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Figure 2.7: Dynamical clusters at a rewiring state nt. S1, S2, S3 and S4 are different
dynamical clusters as described in the text. G1 and G2 are the dynamical clusters
for the initial network n = 0.

Using Eq. 2.3 and the above equation for coupled dynamics (Eq. 1.7), we get the

coupling strength region for which the synchronized clusters state is stable;
N1− 1

N1
(1− 1

µ
) < ε ≤ 1 (2.4)

With the rewiring, say at rewiring step n = ν, we get ν nodes from each group

rewired such that now there are four different types of nodes. One can quickly

see by using Lyapunov function test that the following synchronized clusters state

would be stable ;

1) Cluster one(S1) with the nodes which remain unwired in the group G1, synchro-

nized dynamics of nodes in this cluster is xi(t) = X1(t).

2) cluster two(S2) with nodes from group G1 which get disconnected with the other

nodes in G1 and get connected with all the nodes in G2, xi = X2(t).

(3) cluster three(S3) with nodes which remain in group G2, xi = X3(t).

(4) cluster four(S4), rewired nodes in G2, xi(t) = X4(t).

Lyapunov function for the nodes in the cluster one (and for the cluster three) re-

mains same as Eq.2.3, because coupling of the nodes in this group to the groups

three and four(one and two) cancel out. Lyapunov function for the nodes in group

S2 (S4) can be written as;

Vij(t+ 1) = [(1− ε)(f(xi(t))− f(xj(t)))]
2

This equation is very simple because the coupling terms for the nodes i and j are

same and hence they cancel out. Condition for this state to be stable is given as;
Vij(t+ 1)

Vij(t)
= (1− �)2

�

f �(xi(t)) +
xi(t)− xj(t)

2
f ��(xj(t))

+O((xi(t)− xj(t))
2)
�2

< 1
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For f(x) = µx(1− x) and using 0 ≤ xi(t) + xj(t) ≤ 2 and condition for achieving

synchronized state, we get the range of coupling strength as ((µ−1)/µ ≤ ε ≤ 1) for

which the synchronized cluster S2 (as shown in the Fig. (2.7) is stable. Similarly we

can write the condition for the nodes in the group G2 which are rewired and make

synchronized cluster as S4, and nodes which make synchronized cluster as S3.

2.3 Conclusions and discussions

In order to explore relationships between the dynamical clusters and the network

clusters, we studied coupled maps on various networks generated with a simple

rewiring strategy. Starting with a network having two complete sub-graphs, nodes

are rewired at each step such that after some rewiring steps we get a complete bi-

partite network. The rewiring strategy is adopted such that average degree of the

networks at each rewiring step remains of the order of N . The smaller coupling

strength values show phase synchronized clusters of dominant driven type, whereas

larger coupling strength region show different mechanisms of synchronized clusters

formation depending upon underlying network architecture, and hence provide in-

sight into role of network architecture in the coherent behaviour of the associated

dynamical units. Coupled dynamics form self-organized clusters for the network

having two complete sub-graphs, and form driven clusters for the bipartite case. At

intermediate steps, the nodes receiving similar input form dynamical clusters, and

these clusters could be self-organized type, driven type or mixed type depending

upon which connection environment they belong to. Lyapunov function analysis

shows that for the driven synchronization if any two nodes have similar coupling

architecture, the difference of the dynamical variables for these two nodes cancel

out. Whereas for the self-organized synchronization, the coupling term correspond-

ing to the direct coupling between the nodes do not cancel out, and other couplings

which are common to both the nodes cancel out. The ref. [58] shows that there

are two mechanisms of cluster formation in networks, and using the global stability

analysis it provides arguments behind the mechanisms by taking globally coupled

and complete bipartite as the extreme cases. Here we show that there is a gradual
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transition from the self-organized to the driven behaviour, as the underlying network

is rewired from the two clusters to the bipartite network. The small coupling values

do not show any impact of the structural changes on the mechanism of the synchro-

nization, whereas large coupling values show significant signature of the underlying

structure on the synchronized clusters. The dense networks (Nc ∼ N2) considered

here yield all the nodes forming clusters at each rewiring stage, and clusters are of

different types depending upon the underlying network structure at that particular

rewiring step. Through extensive numerical simulations, we show that the nodes,

getting similar coupling environment, are synchronized irrespective of whether they

are connected or not. At the intermediate rewiring steps and for the higher coupling

values, few clusters are mixed type, and few clusters are of the ideal driven or of

the ideal self-organized type. All the nodes in each cluster receive similar coupling

environment. Using the Lyapunov function analysis, we get a clear picture of the

mechanism governing synchronization for each cluster individually. The stability

condition for the synchronization of the nodes in clusters S2 and S4 provides an

understanding to occurrence of the ideal D cluster. Additionally, the stability range

achieved through the Lyapunov function analysis for the dynamical clusters S1 and

S3 matches with that of the ideal SO cluster observed numerically because of the

very simple underlying network model used here, where terms outside these cluster

cancel out leading to the condition shown by the globally coupled network in the

synchronized state.

The network architecture and rewiring strategies considered here are very sim-

ple, whereas real world networks have complicated random structure or have com-

plicated rewiring or connection evolution strategies [149], the results presented here

indicates a direct impact of the network connection architecture on the evolution of

dynamical units. The main aim of the analysis here is to emphasize that the dynam-

ical clusters do have information about the structure. The dynamical clusters do

not always comprise the nodes which are directly connected, rather the formation

of driven clusters reveals that the nodes which have similar coupling environment

show coherent behaviour and form a dynamical cluster.
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Chapter 3

Impact of delay onmechanism of clus-
ter formation

The communication delay exists in extended systems due to the finite speed of the

information transmission. The presence of delay may lead to qualitative changes

in the dynamical evolution [64]. So far, studies on the delayed coupled dynamical

systems have concentrated on a global synchronized state, except few recent stud-

ies which have focused on pattern formation or clustered states [89, 150–154]. Few

recent papers have shown qualitative changes in clustered state on introduction of

delay in communication. One of the recent paper [155] has reported that delay plays

an important role in formation of two and three clusters states for excitable neurons,

while none of the works have explored the mechanisms behind cluster formation in

presence of the coupling delays, or the role of delays on the cluster formation.

In this chapter, we present the results pertaining to the impact of delay on

the mechanism of formation of phase synchronized clusters in the coupled maps.

Through extensive numerical simulations, we investigate the formation of phase

synchronized clusters in coupled maps on various networks namely, 1-d lattice,

small-world networks, random networks, scale-free networks and bipartite networks.
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The results are substantiated by the Lyapunov function analysis, carried out for com-

plete bipartite networks, which explains the impact of delay on the synchronized

clusters.

Consider a network of N nodes and Nc connections between the nodes. Let

each node of the network be assigned a dynamical variable xi, i = 1, 2, . . . , N . The

dynamical evolution is defined by the homogeneous delay coupled maps :

xi(t+ 1) = (1− ε)f(xi(t)) +
ε

ki

N
�

j=1

Aijg(xj(t− τ)) (3.1)

The delay τ is the time it takes for the information to reach from a unit to its

neighbors and the other terms are same as discussed in the chapter 1. In this chapter

we consider a homogeneous delay and study the phase synchronized clusters [48].

In the present investigation we consider a homogeneous delay, i. e. τij = τ .

In the following, we present results for the local dynamics governed by the

logistic map f(x) = µx(1−x) at µ = 4, for which it exhibits chaotic behavior, and

for coupling g(x) = f(x).

3.1 Numerical results

Starting with the random initial condition, after an initial transient we study the

phase synchronized clusters, and calculate values of finter and fintra as described in

the introduction. In the following, we describe phase diagrams depicting the change

in the values of finter and fintra, with ε and τ for 1-d lattice, small-world, scale-free,

complete bipartite and Cayley tree networks in detail:

3.1.1 Delayed coupled 1-d lattice

The undelayed 1-d lattice yields dominant D clusters in the range ( 0.16 � ε �

0.25). For higher coupling values, there is no phase synchronization, except towards

the end of the coupling (ε � 0.74), for which coupled dynamics exhibits mixed

clusters with very small values of finter and fintra.

A delay is introduced for τ = 1 in the evolution Eq.(1.7). For a very small

increase in coupling values, for which there is no phase synchronization (black color

for the Figs.3.1(a) and (b)), we get self organized phase synchronized clusters in the
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Figure 3.1: Phase diagram demonstrating different values of (a) finter and (b) fintra
in two parameter space of ε and τ for 1-d lattice with N = 50, < k >= 4. Local
dynamics is governed by logistic map f(x) = 4x(1 − x) and coupling function
g(x) = f(x). The figure is obtained by averaging over 20 random initial conditions.
The gray-scale encoding represents values of finter and fintra. The regions, which
are black in both graphs (a) and (b), correspond to states of no cluster formation.
The regions, where both subfigures have gray shades, correspond to states where
clusters with both inter- and intra-couplings are formed. The regions in (a), which
are lighter as compared to the corresponding ε and τ values in (b), refer to dominant
D phase synchronized clusters states, and the reverse refer to dominant SO phase
synchronized clusters state. White regions in (a) and (b) refer to ideal D or ideal SO
cluster states respectively. The regions, which are dark gray in (a) and black in (b)
or vice-versa, correspond to states where a much less clusters are formed.

region 0.13 � ε � 0.2 exhibited by the white region in the Fig.3.1 (b). For most

of the coupling values in this region, coupled dynamics exhibits periodic evolution

with the period depending upon the value of delay. The undelayed dynamics in this

region leads to dominant D clusters of chaotic type. For a further increase in the

coupling, there is no cluster formation for the undelayed case, whereas the delayed

evolution leads to the formation of dominant D clusters in the coupling range from

0.4 � ε � 0.7, leading to the light grey shade (almost white) corresponding to very

large values of finter in the gray scale of Fig.3.1(a). The dynamical evolution of the

nodes in this phase are quasi-periodic, with the largest Lyapunov exponent being

close to zero, manifested by the light gray region in the Fig.3.2(a). Towards the

end of the coupling 0.81 � ε � 1.0, the delayed case exhibits a very small (almost

negligible) cluster formation compared to the undelayed case.

For τ = 2, the lower coupling range for which τ = 1 shows dominant SO

clusters, we get dominant D clusters as observed for the undelayed case. With
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Figure 3.2: Phase diagram showing largest Lyapunov exponent, λ, for two parame-
ter regions � and τ for different networks. (a) 1-d lattice, (b) scale-free network and,
(c) complete bi-partite networks. All networks have N = 50 and < k >= 4, and are
plotted for average over 20 realizations of the networks. White and the light gray
region correspond to the periodic and the quasi-periodic state respectively. Dark
gray and black regions correspond to the chaotic state, with black denoting λ value
being higher than the dark gray.
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Figure 3.3: Fraction of inter- (closed symbols) and intra- (corresponding open sym-
bols) couplings as a function of τ . (a) 1-d lattice with N = 50 and < k >= 4 at
ε = 0.17, (b) random networks with N = 50 at ε = 0.16, and for < k >= 4 (rect-
angle), k = 8 (triangle), and k = 12 (square). All plots are obtained by averaging
over 20 realizations of initial conditions.

increase in the coupling, mixed clusters are observed for the middle range and there

is no cluster formation at higher coupling values. Some of the coupling values in

the middle range give rise to dominant SO clusters as depicted by the almost white

color in Fig.3.1(b). For τ = 3, the lower coupling values leads to a similar behavior

as exhibited for τ = 1 case. With a further increase in the delay, at τ = 4, the lower

range of coupling exhibits a similar behavior as shown for τ = 0 and τ = 2. In the

middle range of coupling, appearance of the gray region in the Fig.3.1(a) depicts

the formation of dominant D clusters, similar to the other previous values of τ .
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Based on the impact of delay on the formation of phase synchronized clus-

ters, we can divide the coupling range into three parts, a lower coupling region

(0.13 � ε � 0.3), a middle, and a higher one. In the lower coupling region, the zero

and even delays lead to dominant or ideal D phase synchronized clusters, whereas

the odd delays lead to dominant or ideal SO phase synchronized clusters. Ideal SO

synchronization refers to a state when clusters do not have any connection outside

the cluster, except one. The ideal D synchronization refers to the state when clusters

do not have any connections within them, and all connections are outside. The mid-

dle coupling region exhibits the dominant D clusters for most of the delay values.

The larger values of coupling exhibits no cluster formation.

In order to elucidate the drastic effect of the delay on mechanism of synchroniza-

tion, we plot the fraction of inter-cluster and intra-cluster connections as a function

of the delay in the Fig.3.3(a). We start from τ = 0, and calculate finter and fintra

after an initial transient. Once the dynamics gets settled into the stable D clusters

state, we change the value of the delay keeping all other parameters same, and calcu-

late these two quantities after the dynamics settles down to a stable state. Fig.3.3(a)

manifests that the change in the delay leads to a change in the mechanism of the

cluster formation as described earlier. Moreover, the appearance and disappearance

of the white window with a change in delay in Fig.3.2(a) reflects that the dynamical

evolution changes from a chaotic to a periodic state.

3.1.2 Delayed coupled small-world networks

The delayed coupled maps on small-world networks generated using Watts-Strogatz

algorithm [27] do not manifest any distinguishable change compared to the corre-

sponding 1-d lattice results described above.

3.1.3 Delayed coupled scale-free and random networks

Next, we turn our attention to scale-free networks which have completely differ-

ent structural properties than 1-d lattice and the small-world networks. Scale-free

networks are generated using the BA algorithm [27]. The undelayed coupled maps

on the scale-free network favor synchronization yielding better cluster formation
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Figure 3.4: Phase diagram presenting (a) finter and (b) fintra in two parameter space
ε and τ for scale-free network. The gray-scale encoding represents values of finter
and fintra as described in the caption of Fig.1.

than the corresponding regular and small-world networks [56]. Fig.3.4 is plotted

for N = 50 and < k >= 4. Again, based on the impact of delay on the nature of

phase synchronized clusters, the coupling range can roughly be divided into three

different regions similar to the 1-d lattice case as stated above. The lower coupling

values exhibit exactly the same behavior as shown by 1-d lattice and small-world

networks for all delay values.

Fig.3.5 plots the snapshot of clusters for various delay values at � = 0.17. The

undelayed case leads to the formation of dominant D clusters. The introduction of

a delay, with τ = 1, leads to formation of SO clusters. Even delay values generate

dominant D clusters, whereas odd delays lead to the dominant SO clusters. More-

over, clusters are reorganized in each subfigure, leading to cluster patterns of the

different types. The D and the SO patterns respectively, refer to a particular D or

SO phase synchronized state, containing information of all the pairs of the phase

synchronized nodes distributed in the various clusters. A change in the pattern

refers to the state when nodes, being the members of a phase synchronized cluster,

get changed with the effect of an external parameter.

The middle range of coupling, for τ = 1, leads to dominant D clusters as seen

from the light gray region (with gray code value being close to 0.6) in Fig.3.4(a),

and the dark gray region in Fig.3.4(b). The higher coupling values lead to less

cluster formation, and for very high values of coupling, there is almost no cluster

formation as depicted by the appearance of a dark region in both Figs.3.4(a) and
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Figure 3.5: Node vs node diagrams illustrating the effect on delay on mechanism
of phase synchronization. The examples are for scale-free network with N = 50, <
k >= 2 and ε = 0.17. The closed circles imply that the two corresponding nodes
are coupled (i.e. Cij = 1), and the open circles imply that the corresponding nodes
are phase synchronized. In each case the node numbers are reorganized so that the
nodes belonging to the same cluster are numbered consecutively. The D chaotic
clusters for τ = 0, 2 and 4. The SO periodic clusters for τ = 1, 3 and 5.

(b).

With a further increase in τ , for the middle range of coupling, the coupled equa-

tion exhibits very less or no cluster formation for even values of delay, as depicted

by the dark gray, or black regions in the Fig.3.4(b). Whereas odd delay values,

Eq.(1.7) leads to dominant D clusters, as seen from the gray region in the Fig.3.4(a).

The range of coupling, for which there was no cluster formation for τ = 1, keeps

on increasing with the increase in the delay. This behavior is similar to the behavior

observed for 1-d lattice and small-world network of the same average degree.

The evolution of the coupled maps on Erdös-Renýi model random network [27]

does not exhibit much distinguishable behavior than the corresponding scale-free

networks.

3.1.4 Delayed coupled complete bipartite networks

For the lower coupling region, the bipartite network exhibits the same mechanism

of cluster formation as for the other networks, marked with the white windows in
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Figure 3.6: Phase diagram presenting (a) finter and (b) fintra in two parameter space
ε and τ for the bipartite network with N = 50. Gray-scale coding is similar to as
described in the caption of Fig.1.
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Figure 3.7: Phase diagram demonstrating different values of (a) finter and (b) fintra
for coupled maps on Cayley tree network in two parameter space of ε and τ ((a)
and (b) ) with N = 127, < k >= 2. Local dynamics is governed by logistic map
f(x) = 4x(1 − x) and coupling function g(x) = f(x). The figure is obtained by
averaging over 20 random initial conditions.

Fig.3.6(a) and Fig.3.6(b). The dynamical evolution is periodic for all delay values.

For the middle range of coupling, undelayed evolution on other networks in-

vestigated here yield one of the following behavior; no cluster formation, mixed

or dominant D clusters formation, whereas bipartite networks exhibit global phase

synchronization spanning all the nodes leading to SO clusters as implied with the

white region in the Fig.3.6(b) for 0.5 � ε � 0.85. A delayed evolution on this net-

work exhibits ideal D clusters for almost all coupling values and for all delay values

we have investigated, which is evident from the white region in Fig.3.6(a) and the

corresponding black region in Fig.3.6(b).
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Figure 3.8: A typical behavior of coupled dynamics illustrating D patterns observed
with the change in the value of τ . The example presents scale-free network with
N = 50 and ε = 0.6. For τ = 0, very few nodes are forming cluster. For τ = 1, 3
and 5, nodes form dominant D clusters. For τ = 2 and 4, very few nodes form
clusters which is of ideal D type.

3.1.5 Delayed coupled Cayley tree

As, observed for the networks discussed above the undelayed Cayley tree exhibits

similar behaviour for the undelayed and delayed evolution at the weak couplings

(0.12 � ε � 0.19) (Fig. 3.7(a) and (b)). At the intermediate coupling range

(0.36 � ε � 0.42), where undelayed system exhibits no or very less cluster forma-

tion, delayed evolution manifests dominant D clusters as depicted by yellow regions

in Fig. 3.7(a). The strong couplings lead to the ideal D clusters, which are robust

against change in the delay values, as observed for the complete bipartite networks.

3.2 Delay induced D patterns

In the previous sections, we illustrate that in middle range of coupling, the delayed

evolution leads to ideal D clusters for bipartite networks, and dominant D clusters

for other networks. In bipartite networks, division of nodes into the ideal D clusters

is unique, whereas for the other network structures, there can be various possible

ways in which one can distribute nodes to form ideal D (for average degree two) or

dominant D (for larger average degree) clusters.

The delayed coupled evolution may lead to various possible patterns, picking

up various possible divisions of the underlying network, by only changing the value
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Figure 3.9: Schematic diagrams illustrating delay-induced driven patterns. The
examples are for N = 40, < k >= 3 and ε = 0.37. The closed circles of same
number (same color) imply that the corresponding nodes are phase synchronized
(i.e. Aij = 1), and the open circles imply that the corresponding nodes are not
phase synchronized.The D chaotic clusters for τ = 1, 2

of delay. Fig.3.8 plots snapshots of clusters for different delay values. Note that

all the other parameters, i.e., the underlying network structure and the coupling

remain the same in all the sub-figures, and only the value of delay is changed.

The coupling value is taken from the middle range, for which dominant D clusters

have been observed. Fig.3.8 explains that with a change in the delay, the nodes

forming clusters and the size of the clusters are changed. The dynamical evolution

in this coupling region, may be periodic, quasi-periodic or chaotic. For a particular

delay value, the clusters are almost stable with the time evolution, with few nodes

of the floating type [56]. But a change of τ has drastic effects on the stability of

the cluster, and there could be entirely different sets of nodes forming clusters as

the delay is changed, leading to different patterns. The D patterns obtained in this

range are dynamic with respect to the change in the value of delay. However the

mechanism behind the pattern formation does not change, and the D mechanism is

mainly responsible for the cluster formation. Higher average degrees would lead to

more intra-cluster connections, and it becomes difficult to have a clear visualization

of the phenomena in the middle range where we get dominant D clusters for the

delayed case.

Similarly, the coupled Cayley tree shows formation of the D clusters upon the
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Figure 3.10: Schematic diagrams illustrating the effect on delay on phase synchro-
nized patterns. The examples are for N = 30, < k >= 3 and ε = 0.7. The closed
circles of same number (same color) imply that the corresponding nodes are phase
synchronized (i.e. Aij = 1), and the open circles imply that the corresponding
nodes are not phase synchronized.

introduction of delay. In order to explain the different dynamical cluster patterns

clearly we make schematic representation of dynamical clusters in Fig. 3.9. For

undelayed evolution, there is no cluster synchronization as depicted by all empty

circles in Fig. 3.9(a). Introduction of delay induces co-ordination between nodes in

the same sub-family of the last generation as depicted by different clusters in Fig.

3.9(b).

At the strong couplings regime, delay destroys the co-ordination between the

nodes which are connected, giving rise to ideal D patterns with the last generation

nodes being synchronized in several clusters. These patterns are too stable with

respect to initial condition as well as with respect to the change in the delay value.

Fig. 3.10(b) elucidates that nodes belonging to the same sub-family of the last gen-

eration are synchronized.

3.3 Change in the mechanism of cluster formation:

Above discussions indicate that at the lower coupling values, change in the delay

values are related with the change in mechanism behind the cluster formation. Odd

delay values lead to ideal or dominant SO clusters, whereas even delay values are

associated with ideal or dominant D clusters. Figs. 3.11(a), (c) and (e) illustrate
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Figure 3.11: Node vs node diagrams illustrating the effect on delay on mechanism
of phase synchronization. The examples are for N = 31, < k >= 2 and ε =
0.16. The closed circles of same color imply that the corresponding nodes are phase
synchronized (i.e. Cij = 1), and the open circles imply that the corresponding
nodes are not phase synchronized.The D chaotic clusters for τ = 0, 2 and 4. The
SO periodic clusters for τ = 1, 3 and 5.
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that for τ = 0, τ = 2 and τ = 4, coupled Cayley trees exhibit that the nodes

of alternate generations are synchronized with each other, except few cases where

nodes in two consecutive generations (parents and children) exhibit synchroniza-

tion. Figs. 3.11(b), (d) and (f) depict that for τ = 1, τ = 3 and τ = 5, either one

cluster is formed spanning all nodes, or several clusters are formed with a cluster

consisting of nodes in consecutive generations of same family or different families.

The origin of this behavior can be understood by considering the complete bi-

partite networks. For the undelayed case, the whole network here gets divided into

two parts yielding two D synchronized clusters. Nodes in one cluster take the value

p1 and the nodes in the second one take the value p2. These two values alternate in

time. Upon introduction of delay in the evolution equation for a node, the coupling

term having delay part would look like

f(x(t− τ)) =







f(p1) if τ = 0 and even

f(p2) if τ is odd,
implying that discrete time delay considered here introduces a difference on evolu-

tion of nodes (Eq.(1.7)) depending upon the parity of delay, and thus leading to a

particular behavior for zero and even delays and a different behavior for odd delays.

3.4 Lyapunov funtion analysis

As discussed in the section 3, D patterns are robust against the change in the de-

lay value. Here we provide understanding to the origin of this behavior using the

Lyapunov function analysis. For the complete bipartite networks, the Lyapunov

function analysis can easily be carried out for the delayed case in a very similar

manner as for the undelayed case described in the previous chapter. The Lyapunov

function for a pair of synchronized nodes can be written as:

Vij(t+ 1) = [(1− �)(f(xi(t))− f(xj(t))) +

2ε

N

N
�

j=N/2+1

g(xj(t− τ))− 2ε

N

N/2
�

i=1

g(xi(t− τ))]2

For the ideal D synchronized state, the synchronization between two uncoupled

nodes is independent of the delay terms as the coupling terms cancel out, and only
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Figure 3.12: Three nodes schematic diagram illustrating impact of delay. Arrows
depict direction of information flow as governed by Eq.(1.7). For τ = 0, evolution
of all nodes (•) receive information from the second node (left panel), whereas in
presence of delay, evolution of connected nodes at a particular time do not involve
any common term (right panel). For both panels, first and third nodes are connected
with the second node leading to the construction of the smallest possible bipartite
network.

depends on the ε value. Hence, delay does not affect synchronization between un-

coupled nodes because of the same coupling environment experienced by them, and

only renders its presence realized for those which are connected. As a consequence,

depending upon ε and τ , it may either enhance or destroy the synchrony between

them. For instance, in the lower ε range odd delays lead to an enhancement of

coordination between connected nodes yielding a transition to SO clusters. In the

middle ε range, delay destroys synchronization between connected nodes yielding

D clusters state.

Aforementioned behaviors can be explained further using the example of bipar-

tite networks. For τ = 0, the common term in the evolution equation for all the

nodes might be reason for global synchronization. Whereas, for τ > 0, the network

gets divided into two parts, one set of nodes have completely different terms in their

evolution equations than those of the second set (Fig.3.12). Delayed bipartite net-

works have already been shown to have pairwise synchronization in the presence of

common delayed coupling [150]. The important point in results presented in this

chapter is that in the presence of delay, the dynamical evolution identifies the under-

lying network structure and gives rise to ideal D clusters for almost all the couplings
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Figure 3.13: Phase synchronized patterns for coupled circle maps on scale-free
networks with N = 50, < k >= 2, g(x) = x and ε = 0.24.

in the range of ε � 0.4.

3.5 Coupled cirle maps

In order to demonstrate the robustness of the results for the models, here we demon-

strate the impact of delay on coupled circle maps as well.

Let, in Eq.(1.7), local dynamics be defined by circle map, f(x) = x + ω +

(p/2π)sin(2πx), with parameter values taken in chaotic regime. Fig. 3.13 plots

the examples demonstrating transition from one mechnaism to other and pattern

formation phenomena in coupled circle maps on scale-free network. The figure

depicts that different delay values not only correspond to different types of phase

synchronized clusters, but are also associated with change in the pattern of cluster

as demonstrated for coupled logistic maps.

3.6 Discussion

We have studied the effect of delay on the mechanism of phase synchronized clus-

ter formation in diffusively coupled logistic map networks. Numerical simulations

demonstrate that delay plays a crucial role on the phase synchronization and the

mechanism responsible for the formation of clusters.

For lower coupling values, the zero and even delays imply dominant D clusters,

whereas odd delays imply ideal or dominant SO clusters. Moreover, odd delays

lead to SO clusters with periodic evolution, whereas zero and even delays lead to D
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cluster with periodic, quasi-periodic or the chaotic evolution. For the case of bipar-

tite networks, a very simple analysis for periodic synchronized state in this lower

coupling region provides a basic understanding of the different results exhibited by

odd and even delays. Discrete time delay considered here introduces some differ-

ence on the evolution of Eq.(1.7) depending upon the parity of delay, thus leading

to a particular behavior for zero and even delays and different behavior for odd de-

lays. Differences between the impact of odd and even delays on evolution have

been discussed earlier as well, where odd delays have been shown to stabilize un-

stable periodic orbits [78, 79]. The Ref.[156] presents that change in delay values

has a great impact on the stability of a particular state. The results presented in the

this chapter imply that change in the value of delay not only affects the stability of

a synchronized cluster state, but also changes the phenomena behind these cluster

formation.

In the middle range of coupling, for the undelayed case, the cluster formation

is dependent on the underlying network structure, whereas the delayed cases lead

to either ideal or dominant D clusters for all the networks that we have studied.

Phase synchronization is maximum for τ = 1, and decreases with the increase in

τ . Earlier investigations have also illustrated that the delay plays a decisive role for

the synchronization phenomenon observed in the middle range of coupling [82].

Our studies demonstrate a richer phenomena of cluster formation and D patterns,

as we take networks with a less average degree (NC ∼ N ), leading to the phase

synchronized clusters instead of a complete synchronized state which usually spans

all the nodes.

At very high coupling values, undelayed evolution for all networks except bipar-

tite, exhibits mixed or dominant D clusters. An introduction of delay here destroys

D phase synchronization. Delayed coupled FitzHugh Nagumo oscillators have also

been reported to exhibit suppression or enhancement of synchrony [81]. The model

and phase synchronization considered here allow us to capture a richer cluster pat-

tern and to investigate the role of delay on the phenomenon of cluster formation.

The undelayed bipartite network yields ideal SO behavior in the middle range of
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coupling, and ideal D behavior for most of the strong couplings. In this coupling

range, delay destroys coordination of directly connected nodes as there is no com-

mon term in their evolution equations, whereas uncoupled nodes still have common

coupling environment, hence leading to a transition from ideal SO behavior to ideal

D behavior. This behavior persists for higher values of the coupling till ε = 1.

Moreover, the change in the value of delay leads to a change in the patterns of

D and SO clusters. For lower coupling values, any change in the delay value has

drastic effect on the pattern. Different values of the delay are not only associated

with different mechanisms of cluster formation, but for a given network may lead

to an entirely new pattern of the cluster. In the middle coupling range, different

delay values lead to different patterns of dominant D type. The SO and D patterns

described above are almost stable with time evolution, and hence change in a pattern

is only associated with a change in delay value. A recent paper also explains the

key role of delay in shaping patterns in nearest neighbor coupled phase oscillators

[157].

The results for the Cayley tree networks, which can be correlated withe the fam-

ily tree provide some interesting insight into the different behaviors shown by the

social systems. Coupling strengths can be taken as closeness or bonding among

family members, typically lower couplings strength can be considered as members

living in nuclear family and do not share much details apart from that they belong

to a same big family, where as larger coupling strength can be treated as members

living in a joint family [158]. Our work demonstrates that lower coupling strength

in general favors synchronization in various members in the family, as indicated by

larger cluster size and almost all nodes participating in clusters, while the strong

couplings comprise of only last generation siblings. The origin of these stable D

clusters for last generation nodes can be very well understood as coupling environ-

ment of the last generation nodes belonging to one sub-family is same, and hence

gives rise to a stable driven cluster, whereas nodes originated from the same parent

in any previous generation can not have same coupling environment unless their

children are also synchronized.
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While the effect of delay on synchronization is already well investigated in cou-

pled maps models, the role of delay on the formation of phase synchronized clus-

ters and the mechanisms of synchronization were unknown. Delay may enhance

the coordination among the connected nodes leading to an enhancement of syn-

chronization identifying the connection topology, which had been the main theme

of few recent studies, but observation of D mechanism behind the enhancement of

synchronization is a new insight provided by the results presented here. We demon-

strate that the delay-induced synchronization may lead to a completely different

relation between functional clusters and topology, than the relation observed for the

undelayed evolution.

This study may provide a better understanding about the synchronized cluster

formation in real world networks such as neural networks, where clusters are formed

due to the delayed interaction between the neurons [5] and may be of driven type

as reported in the Ref.[159], which shows that two groups of neurons are synchro-

nized via delayed coupling with a third group. Analysis presented here provides an

understanding of the possible effect of delay on coupled evolution in such system.

Moreover, change in patterns of neural activities are found to be related with brain

disorders such as Alzheimers disease [160]. Study of delay induced patterns may

help in understanding origin and treatment of these diseases.

Furthermore, the results presented in this chapter provide a possible explanation

for conflicts in brothers running family business successfully [161], which on very

simple terms can be attributed to the conflict between their children, whereas lower

coupling strength keeps a warmer relation or cooperation between distant relatives

in the same family [162].
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Chapter 4

More heterogeneity, more coherence

In many real world systems such as ecological, nervous, social, coupled semicon-

ductor lasers, and electrical power systems [52, 94, 149–151, 153], the rate of infor-

mation transmission from all the units may not be the same. Hence, incorporation

of the heterogeneity in delay values may provide a better understanding. How-

ever, most of the work pertaining to delays has considered a homogeneous delay

[78, 78, 80, 87–89, 91–93], except a few previous studies.

The heterogeneous delays have been shown to lead many emerging behaviors

as observed for homogeneous delays [99, 110]. A recent work demonstrates that

an optimal level of delay heterogeneity may maximize the stability of uniform flow,

which has implications in traffic dynamics [102]. Another recent work involving

electronic circuits with the heterogeneous delays demonstrates the change in cluster

patterns and suppression of synchronization [103]. Furthermore, heterogeneous

delays have been shown to lead to a more secured communication in chaos based

encryption systems [104].

In this chapter we investigate the impact of heterogeneous delays on the mech-

anism of cluster synchronization. So far, very few studies have focused on the im-
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Figure 4.1: Schematic diagram depicting the ideal D (a), ideal SO (b) and dominant
SO (c) clusters. The nodes (closed small circles) in circular region represents that
they are synchronized.

pact of heterogeneity in delay values on phase synchronized clusters [103, 151, 153,

163]. In addition, further attempts are required to find out the mechanism behind

the cluster synchronization in the presence of heterogeneity in the delay values.

We present results for coupled chaotic maps on various networks namely, one-

dimensional (1-D) lattice, small-world (SW), Erdös-Rényi (ER) random, scale-free

(SF), and the complete bipartite [27].

4.1 Model: Coupled maps with heterogeneous delays

We consider a network of N nodes and Nc connections between the nodes. Let

each node of the network be assigned a dynamical variable xi, i = 1, 2, . . . , N . The

dynamical evolution is defined by the well known coupled maps [64, 111] :

xi(t+ 1) = (1− ε)f(xi(t)) +
ε

�N
j=1

Aij

N
�

j=1

Aijg(xj(t− τji)). (4.1)

The τij = τji is the time it takes for the information to reach from a unit i to its

neighbor j, the other terms are similar as discussed in the previous chapters.

In the present investigation we consider networks with two types of delay ar-

rangements: (i) Bimodal heterogeneous delay and (ii) a Gaussian distributed delay.

The first arrangement is achieved by randomly making a fraction of connections fτ1

conducting with τ1, and another fraction fτ2 conducting with delay τ2. These two

parameters are defined as fτ1 = Nτ1/Nc and fτ2 = Nτ2/Nc, where Nτ1 and Nτ2

stands for the number of connections with delay τ1 and τ2, respectively. Maximum

heterogeneity is exhibited when half of the connections bear a τ1 delay and the other

half bear a τ2 delay. We remark that these definitions do not incorporate the exact
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values of delay and only take care of the number of connections conducting with

different delay values. We consider h = 1− | fτ1 − fτ2 | as a measure of the amount

of heterogeneity in the network. The value of h being zero corresponds to the ho-

mogeneous delays, whereas h = 1 corresponds to fτ1 = fτ2 , denoting maximum

heterogeneity.

Also, we define the cluster synchronizability of a network in terms of the num-

ber of nodes participating in the clusters. Based on this, we can say cluster synchro-

nizability enhances if the number of nodes participating in the clusters formation

increases in the network. Note that some of the earlier works have defined global

synchronizability of network in terms of the ratio of the maximum and the first

non-zero eigenvalues of the Laplacian of a graph [164, 165]. In the this chapter our

definition of the synchronizability is based on cluster synchronization.

We first investigate the arrangement of two delay values in detail and then con-

sider a Gaussian distributed delay arrangement. Depending on the parity of the

delay, we classify three types of heterogeneity: (a) odd-odd heterogeneity, (b) odd-

even heterogeneity, and (c) even-even heterogeneity. We find that these three types

have a distinct impact on the coupled dynamics, and hence may give rise to dif-

ferent patterns of clusters as well as mechanisms behind their origin. We present

detailed results for the logistic map as this simple map has been used widely and

has exhibited a wide range of emergent behaviors observed so far in the nonlinear

dynamics [64]. We also present results for the circle maps in order to demonstrate

the robustness of the observed phenomena.

4.2 Coupled maps with bimodal heterogeneous delay

Starting with random initial conditions Eq. (4.1) is evolved and the phase synchro-

nized clusters for T time steps after an initial transient are studied. We considers

diffusive coupling (g(xi, xj) = g(xj)− g(xi)) because of its relevance in real world

systems [64, 95]. Note that, the other forms of the couplings, such as linear, may

yield different results for the same coupling value, but key phenomena observed

for diffusive couplings such as different mechanisms of cluster formation would
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Figure 4.2: Phase diagrams (a) and (b), show different regions in the parameter
space of τ1, τ2 (τ , for homogeneous delays) and � for f(x) = 4x(1 − x). The
grey (color) denotes different regions: turbulent (T)(stands for no cluster forma-
tion), ideal driven (D), dominant driven (DD), ideal self-organized (SO), dominant
self-organized (DSO) and mixed (M). In these phase diagrams, the boundaries of the
ideal D and ideal SO clusters do not depend on the threshold value, while the bound-
aries of the dominant D, SO and mixed clusters depend on the threshold chosen. (c)
and (d) show variation in the fraction of nodes forming clusters (Fclus = Nclus/N ,
where Nclus = total number of nodes forming clusters) in the parameter space of
τ1, τ2 (τ , for homogeneous delays) and ε for f(x) = 4x(1 − x). The values on the
y axis represent the delay values. Network parameters are N = 500 and �k� = 4.
The grey (color) coding represents the variation in the fraction of nodes forming
clusters. (a), (c) corresponds to the 1-d lattice and (b), (d) corresponds to the SF
networks.

remain same [56, 57]. In the following first we present results for the maximum

heterogeneity fτ1 = fτ2 , followed by the discussions on the impact of amount of

heterogeneity on cluster formation.

4.2.1 1-d lattice and SW networks

1-D lattices used in the simulation have circular boundary conditions with each

node having �k� nearest neighbors. Fig. 4.2(a) plots phase diagram depicting dif-

ferent cluster states based on the values of finter and fintra, and Fig. 4.2(c) displays

the fraction of nodes forming cluster (Fclus) for the 1-d lattice. In the absence of

any coupling, all the nodes evolve independently in chaotic manner which solely

depends upon the value of initial condition. As coupling is introduced (ε > 0), the
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coupled dynamics displays emerging behavior depending upon the delayed interac-

tions and the strength of the coupling. The even-odd parity (say τ1 = 1 and τ2 = 2),

for very weak coupling values (ε < 0.16) the local chaotic dynamics dominates

over the interaction terms and all the nodes keep evolving in the isolated manner.

As coupling is further increased, the coupling range (0.16 � ε � 0.25) leads to the

mixed clusters state. As ε increases further, there is an emergence of dominant D

clusters (Fig. 4.2(a)) leading to the mixed clusters for strong couplings. For odd-

odd parity, the ideal SO or the dominant SO clusters are formed. The snap-shots in

the Fig.4.3(a) demonstrate the ideal SO clusters for the 1-d lattice. Note that, here

the value of Fclus is one as all the nodes participate in the cluster formation, but

they distribute in different clusters instead of forming a globally synchronized state.

Hence, Fclus being one does not provide a criteria for the globally synchronized

state.

Further, for the intermediate and strong coupling exhibit a manifestation of the

dominant D clusters. Comparison with the homogeneous delays evolution leads to

the conclusion that heterogeneous delays cause an enhancement in the synchroniza-

tion for strong couplings while keeping the D mechanism responsible for the cluster

formation. For the even-even parity, the coupled dynamics at weak ε range mani-

fests the formation of the ideal D clusters, as observed for the even homogeneous

delays (Fig. 4.2(a)). We remark that the definition of phase synchronization and the

phase distance used here assign anti-phase synchronization (minima of one node

matching with maxima of the other) into two different clusters as phase distance for

this case remains one. However, this particular situation of nodes being anti-phase

synchronized [1] is not so often observed for chaotic situation (for example Fig. 4.5

for t < t0). With increase in the coupling strength, at intermediate and strong cou-

plings the mixed clusters are formed (Fig.4.2(a)). At the strong couplings where

the undelayed and the homogeneous delays do not lead to the cluster synchroniza-

tion, for the even-even heterogeneous delays 50% of the nodes participate in cluster

formation (Fig.4.2(c)).

The delayed coupled maps on the SW networks, generated using Watts-Strogatz
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Figure 4.3: The ideal SO clusters for the 1-d lattice (a), SW (b) and random net-
works (c). Squares represent clusters, diagonal dots represent isolated nodes while
off-diagonal dots imply that the two corresponding nodes are coupled (i.e. Aij = 1).
In each case the node numbers are reorganized so that the nodes belonging to the
same cluster are numbered consecutively. The example correspond to the networks
with N = 50, �k� = 4 and ε = 0.17. All the graphs correspond to fτ1 = fτ2 , τ1 = 1
and τ2 = 3.

algorithm by rewiring probability pr [27], do not display any distinguishable changes

as compared to the corresponding 1-d lattice described above. Thus for 1-d lattice

and SW networks the mechanism behind the cluster formation depends on the parity

of delay values. At weak coupling, even heterogeneous delays are associated with

the D mechanism, odd heterogeneous delays are associated with the SO mechanism,

while mixed heterogeneous delays are associated with the mixed mechanism. Thus,

a change in the parity of heterogeneous delay values may give rise to a transition

from one phenomenon to the other phenomenon.

4.2.2 SF networks

We further turn our attention to the SF network, which has a completely different

structural properties [27] than the 1-d lattice and the SW networks. SF networks

are constructed by starting with �k� nodes and then adding one node with �k� con-

nections at each step [27]. The weak coupling range displays a similar result as for

the regular networks described in the previous section for all types of heterogeneity,

whereas intermediate couplings do not display the transition from one mechanism

to other as observed for the regular networks, which exhibit the transition from the

dominant SO clusters state to the dominant D clusters state and instead yield the
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D or mixed clusters for all the parities (Fig. 4.2(b)). Comparing the three hetero-

geneity leads to the conclusion that even-even heterogeneity in delays causes less

enhancement in fraction of nodes forming clusters, as compared to the odd-odd and

odd-even heterogeneity (Fig. 4.2(d)). The phenomenon of suppression in fraction

of nodes forming clusters, for a particular heterogeneity becomes more prominent

with the increase in the delay values. At strong couplings, odd-odd heterogeneity

in delays manifests better cluster synchronizability of SF networks as compared to

the corresponding 1-d lattice and SW networks (Fig. 4.2(c) and (d)).

The random networks display a better synchronization than the corresponding

regular networks even for undelayed and homogeneous delays [56, 80]. The inter-

esting finding in the presence of heterogeneous delays is that the enhancement in

the cluster synchronizability of the network may be accompanied with the nodes

directly connected, as evident from the mixed clusters in Fig. 4.2. We remark that

D clusters were already observed for homogeneous delays in intermediate ε range

for the SF networks indicating synchronization between nodes which are not di-

rectly connected, therefore occurrence of synchronization between these nodes for

high coupling range does not impart much surprise. We can fairly conclude that

SO mechanism has a major role to play in the enhancement of synchronization in

the presence of heterogeneous delays, which further becomes clearly visible for the

complete bipartite network.
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4.2.3 Complete bipartite networks

The complete bipartite networks consist of two sets where all the nodes of one set

(say A) are connected with those of the second (say B). Results are presented for

both the sets having equal number of nodes. The simple structure of these networks

on one hand makes analytical studies easier to carry, on other hand capability of

the network to yield rich cluster patterns such as ideal D, SO and mixed clusters

brings it in the same platform of the other random networks. Fig. 4.4 plots phase

diagram depicting different cluster states based on the values of finter and fintra

for the complete bipartite networks. Note that for the homogeneous delays itself

the coupled dynamics exhibit participation of all the nodes in the cluster formation,

and the introduction of heterogeneity in delay does not change this number. The

phase diagram Fig.4.4 shows that at the weak couplings, as discussed for the other

networks, the complete bipartite networks also exhibit the ideal D clusters for the

even delays, while for the odd delays instead of the ideal SO clusters state as ex-

hibited by the other networks discussed above, the complete bipartite networks lead

to the globally synchronized sate. We remark that the complete bipartite networks

do not show the ideal SO clusters, as due to its topology it is not possible to divide

the whole network in the ideal SO clusters, however mixed or dominant SO and

D states are possible for instance at the intermediate couplings and the strong cou-

plings where homogeneous delays lead to the robust D clusters, the heterogeneity

in delays generates the D, mixed or dominant SO clusters depending upon parity of

the heterogeneous delays and coupling strength (Fig. 4.4(a)).

4.3 Analytical insight

In the following, we perform the Lyapunov function analysis in order to have an

understanding of destruction of the robust D clusters observed for homogeneous

delays and construction of different clusters for the heterogeneous delays. Further-

more, we present some arguments for the transition from the ideal D clusters to SO

cluster state upon introduction of heterogeneity in delays at the intermediate and

strong couplings.
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Figure 4.5: Time evolution of few nodes in the complete bipartite network of
N = 500 (coupling strength is chosen as 0.68 for which network is shown to form
two ideal D clusters for homogeneous delay (τ = 2) for t < t0.). At t = t0 the
heterogeneity in delay is introduced by randomly making 50% of the connections
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First, we analyze the case of the transition from D clusters to different clusters

state. The Lyapunov function for a pair of nodes can be written as [56, 147, 148]

Vij(t) = [xi(t)− xj(t)]
2. (4.2)

Vij(t) � 0 and the equality holds good when nodes i and j are exact synchronized.

The Lyapunov function for a pair of nodes on a complete bipartite network in the

presence of heterogeneous delays, using Eq.4.1 and Eq.4.2 can be written as:

Vij(t+ 1) = [(1− �)(f(xi(t))− f(xj(t))) +
2ε

N

N
�

j=N/2+1

g(xj(t− τji))−

2ε

N

N/2
�

i=1

g(xi(t− τij))]
2. (4.3)

Let us consider a pair of nodes of the same set having the homogeneous delays,

which leads to the situation where coupling terms having delay values in the Eq.4.3

get cancelled, thereby commencing the D clusters, robust against the change in

the delay values [166]. Whereas in the presence of heterogeneity in delay values,

the coupling term having delay values does not vanish in Eq.4.3, and thus may

or may not emulate the synchronization between these nodes depending upon the

delay arrangements of these two nodes, and may be leading to the nodes from the

same set organizing into different clusters. Note that for parameter mismatch [167–

169], the coupling term bearing the delay values does not vanish and the nodes

from the same set may get distributed into different clusters even for undelayed and

homogeneously delayed case. The Lyapunov function analysis performed here for

the complete bipartite network works for the clusters having exactly synchronized
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nodes.

Furthermore note that for the undelayed and homogeneously delayed cases, the

nodes receiving the same input can be considered as forming a set (say A in Fig.

4.6), similar to the complete bipartite networks, and the nodes which are giving

same inputs to these can be considered to form another set (say B in Fig. 4.6). The

synchronization criteria for nodes in set A depends whether these nodes are directly

connected or not. For the first case, when nodes in set A are not directly connected

Figure 4.6: Schematic diagram representing two set of nodes, when a pair of nodes
in set A receiving same inputs are not directly connected (I) and when they are
directly connected (II).

(Fig.4.6 I), for undelayed and homogeneously delayed cases the Lyapunov function

between a pair of nodes becomes:

V12(t+ 1) = [(1− �)(f(x1(t))− f(x2(t)))]
2.

Thus synchronization between the nodes 1 and 2 depends only on the local dy-

namics of both the nodes and the coupling strength. Whereas, if nodes in set A

are directly connected (Fig.4.6 II), in the Lyapunov function all the coupling terms

except the one involving the interaction between 1 and 2, cancel out;

V12(t+ 1) = [(1− �)(f(x1(t))− f(x2(t))) +

�

4
g(x2(t− τ))− g(x1(t− τ))]2.

thus yielding different criteria for synchronization of these nodes [58].

Next, using the complete bipartite network, we attempt to understand the parity

dependence of the mechanism of cluster formation at weak couplings as observed
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for all the network architectures. A simple analysis for the periodic synchronized

state on the complete bipartite networks provides a basic understanding of different

behaviors observed for the lower coupling values. For example, at weak ε range,

the homogeneous delays for τ1 = 1 manifests the globally synchronized state span-

ning all the nodes for 0.16 � ε � 0.2. The dynamical evolution in this range is

periodic with periodicity two, say p1 and p2. As heterogeneity in the delay values

is introduced such that fτ1 = fτ2 = 0.5, say at the (t+ 1)th time step, it leads to the

coupling term having delay part in the evolution equation for the difference variable

of ith and jth nodes as,

f(xj(t− τ2))− f(xi(t− τ1)) =







0 if �τ = 2, 4....,

δ if �τ = 1, 3.....

where δ = f(p1) − f(p2) and �τ = τ2 − τ1. �τ is even for the odd-odd

and the even-even heterogeneity, and odd for the odd-even heterogeneity. Thus the

even-even heterogeneity will retain the behavior followed by the even homogeneous

delay values, and the odd-odd heterogeneity will retain the behavior followed by the

odd homogeneous delay values. Whereas, the odd-even heterogeneity may disturb

the behavior manifested by the even homogeneous or odd homogeneous delays and

lead to the mixed cluster state. Note that for diffusive coupling, the odd delays leads

to mismatch in the parity of delay value of the coupling terms, causing a change in

the sign of coupling term. This may cause a significant impact on the dynamics of

the coupled system leading to the different phenomena for the odd and even delays

[78, 80, 170, 171].

Further, we turn to analyze the origin of mixed and dominant SO clusters for

the bipartite networks at the intermediate and strong couplings. A closer look into

the time evolution of the coupled nodes in the bipartite networks for the interme-

diate ε values reveals that the heterogeneity suppresses the exact synchronization

between the nodes which are not directly connected while retaining the phase syn-

chronization between them (Fig. 4.5). Whereas all the pairs of nodes which are

directly connected experience an occurrence of the phase synchronization produc-

ing the globally phase synchronized state. In order to further explain the synchro-
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nization between the nodes from two different sets at strong couplings we perform

the following analysis. We consider ε = 1, for which all the coupling terms in the

difference variable (xi(t + 1) − xk(t + 1)) for a pair of nodes in the same set (i.e.

nodes are not directly connected) will get cancelled out for the undelayed and the

homogeneous delayed case, causing to the synchronization of all the pairs of nodes

in the set. Let xA(t) being the synchronized dynamics of nodes in the first set and

xB(t) being the synchronized dynamics of the nodes in the second set. For homo-

geneous delay (τij = τ ), the difference variable for the nodes from the different sets

will be:

xi(t+ 1)− xj(t+ 1) = g(xB(t− τ))− g(xA(t− τ)); (4.4)

This difference variable will not die for the coupling function g(x) lying in the

chaotic regime, if the initial conditions for the nodes in two sets are different. Hence

the nodes from different sets does not synchronize ruling out the SO synchroniza-

tion for the undelayed and homogeneously delayed case for ε = 1. Whereas the

heterogeneous delays do not lead to such a simple situation, and the difference vari-

able for the nodes in the different sets takes form

xi(t+ 1)− xk(t+ 1) =
2

N
[

N
�

i=1

Aikg(xk(t− τki))

−
N
�

k=1

Akig(xi(t− τik))]. (4.5)

For the heterogeneous delays, the synchronization between a pair of node from the

same set for g(x) = 4x(1 − x) at ε = 1, depends on the coupling from other

nodes. Thus depending on the heterogeneous delay values, these node may or may

not synchronize. Thus, the presence of heterogeneity in delay breaks the restriction

(4.8) and gives rise to a possibility of the synchronization of between the nodes in

the different sets. Though analysis carried out here is done for the extreme coupling

value (ε = 1) and can not be directly applied to other ε values for which another

term consisting local dynamics of nodes also appears into the difference variable

given by Eq. 4.8 and Eq. 4.5, but at the strong coupling this additional term will have

less impact on the dynamical evolution as compared to the coupling term leading to

similar effect being responsible.
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Figure 4.7: Variation of finter (closed circles) and fintra (open circles) as a function
of amount of heterogeneity. (a) SF network with N = 500 and τ1 = 1, τ2 = 3, (b)
the complete bipartite networks with N = 200 and τ1 = 2, τ2 = 4. Both the graphs
are for f(x) = 4x(1− x).

4.4 Effect of the change in amount of heterogeneity

So far we have concentrated on the case h = 1 corresponding to the maximum het-

erogeneity. We find that while the amount of heterogeneity plays a crucial role in

determining the cluster synchronizability of networks, for some cases even demon-

strating a transition from no cluster state to all nodes forming clusters (Fig.4.7(a)),

while the mechanism is still governed by the parity except for the complete bipar-

tite networks which show a transition from robust D clusters state to the dominant

SO clusters and a single SO cluster state (Fig.4.7(b)). To the end of this section

we provide understanding of this behavior. Fig. 4.7(a) demonstrates clear examples

of the enhancement in the cluster formation while retaining the mechanism in the

presence of the heterogeneous delays with odd-odd parity. For homogeneous delay

(say τ = 1), a very less number of nodes form clusters (Fig.4.7). As some connec-

tions start conducting with a different delay value τ2, there is no significant change

in the cluster formation as depicted in the Fig.4.7. With a further increase in fτ2 ,

there is an increment in the number of nodes forming clusters reaching to the all

nodes forming cluster for h � 0.4.

As we have illustrated that the introduction of heterogeneity in delays enhances
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synchronization and the complete bipartite network already displays 100% nodes

participating in formation of the robust D clusters for the homogeneous delay, the

only possible way to achieve an enhancement of the synchrony could be via syn-

chronization between nodes of two driven clusters giving rise to the SO clusters.

The arguments delivered earlier using difference variable (Eq. 4.8) directs that more

heterogeneity in delays will lead to the occurrence of more number of pair of nodes

from the same set for which the difference variable does not die, thus destroying

synchronization between more pair of nodes belonging to same set, and could be a

possible reason behind more heterogeneity inducing more SO synchronization.

4.5 Coupled maps on Cayley tree

Many of the real world networks such as river networks, family networks, computer

networks and biological networks reflect the tree structure. Cayley tree provides a

very simple model and thus has been widely studied for instance to model some

of the real world networks such as immune network [40, 41]. As discussed for the

other networks, at the weak couplings the heterogeneous delay leads to the D, SO

or mixed clusters depending upon the parity of the heterogeneous delays. In the

following we discuss few interesting behaviors shown by the heterogeneous delays,

which was not observed for the homogeneous delays.

4.5.1 Synchronization of parent nodes

The earlier work on the Cayley tree unveils that for homogeneous delays the parents

are synchronized only when their children are synchronized [172]. We find that the

heterogeneous delays lead to the synchronization of the parent nodes, even for situ-

ations where their children nodes are not synchronized, a phenomena not observed

for the homogeneous delay values. Fig. 4.8 plots a demonstration of synchrony in

the parent nodes accompanied with no synchrony among their children nodes. In or-

der to understand the origin of this behavior for heterogeneous delays we study the

difference variable for two parent nodes, for example nodes b and c in Fig. (4.10),
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given as follows:

xb(t+ 1)− xc(t+ 1) = (1− ε)(f(xb(t))− f(xc(t))) +

ε

K + 1
[
�

p∈Sb

f(xp(t− τbp))−
�

q∈Sc

f(xq(t− τcq)) +

(f(xa(t− τab))− f(xa(t− τac)))]. (4.6)

where Sb and Sc denote the set of children nodes of b and c respectively. The cou-

pling terms having the delay in the right hand side depend on the behavior of chil-

dren nodes as well as of immediate ancestor node of b and c, respectively. Since the

immediate ancestor of nodes b and c is common (a), for the homogeneous delay the

third term in the right hand side cancels out, making the synchronization between b

and c depend on the synchronization between the children nodes only. Thus for the

homogeneous delay, if the children nodes are synchronized then irrespective of the

delay value, depending on the coupling strength the parent nodes will also get syn-

chronized. However, for the heterogeneous delay, the third term in the right hand

side of Eq. 4.6 does not vanish, making the synchronization of b and c depend on

their parent node a as well. Thus for the heterogeneous delay the synchronization

between the parent nodes does not solely depend on the synchronization among

their children.

Furthermore, the D clusters induced by the heterogeneity in delays at inter-

mediate couplings are seen to comprise of nodes from the different generations.

Note that for these couplings the D clusters observed for the homogeneous delay

constitute nodes from the last generation only. The heterogeneity in delays brings

nodes from different families together while preserving the underlying mechanism.

Fig. 4.8(b) demonstrates the synchronization of different generations for hetero-

geneous delays. Fig. 4.9 presents the time evolution of the state of few nodes of

Fig. 4.8(b). This fugure manifests that for the heterogeneous delay, even when the

child nodes are not phase synchronized (Fig. 4.9(b)) their parent nodes are phase

synchronized(Fig. 4.9(a)). In order to find the reason behind the synchronization of

inner nodes for heterogeneous delay, we study the difference variable for the last

generation nodes originated from the different parents, for example nodes d and f
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in Fig. (4.10) at ε = 1;

xd(t+ 1)− xf (t+ 1) = (f(xb(t− τbd))− f(xc(t− τcf ))). (4.7)

which in case of homogeneous delays for the chaotic evolution of individual nodes

never die for the random initial condition, and therefore the synchronization be-

tween the last generation nodes from different parent nodes is not possible. As we

have already noted that for homogeneous delay synchronization of the parent nodes

depends on the synchronization between their children [166], thus the parent nodes

of the last generation nodes (for example b and c) can not get synchronized for

the homogeneous delay, similarly we can explain that other ancestors also can not

get synchronized. Thus for homogeneous delay at ε = 1 the inner nodes can not

get synchronized, while for the heterogeneous delays as we explained above that

the behavior of the parent nodes is not completely governed by the behavior of the

children giving rise to a possibility for the synchronization of the inner nodes.

To conclude, heterogeneity in delay values makes the synchronization of the

parent nodes independent of synchronization among their children nodes and at

strong coupling where, homogeneous delay does not lead to the synchronization

between the inner nodes, heterogeneity in delay paves a way to a more coherent

behavior. Although we observe synchronization of the inner nodes in the coupling

range 0.55 � ε � 0.9, and the analysis carried out here is done for extreme coupling

value (ε = 1) which can not be directly applied to other ε values for which terms

consisting of local dynamics of nodes also appear into the difference variable given

by Eq. 4.7, but it would have lesser impact on the dynamical evolution as compared

to the coupled terms for the strong coupling range, and hence analysis carried out

here may stand valid for this range.

4.5.2 Occurrence of lag synchronization

As discussed in the introduction section, in a tree network more than the 50% of the

total nodes lie on the boundary, thus in this section we explain the interesting be-

havior displayed by these nodes. The study of synchronized patterns in presence of

heterogeneity in delays reveals many different emerging behaviors of these nodes,
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Figure 4.8: (a) synchronization of the last generation siblings for the homogeneous
delay (τ = 1), (b) synchronization of the parent nodes for heterogeneous delays
(τ1 = 1, τ2 = 3), even though there is no synchronization between their children
for Cayley tree networks of N = 31, K = 2 at ε = 0.7 . Shades (colors) denote
that corresponding nodes belong to same cluster. Open circles represent that the
corresponding nodes are not synchronized.

which are as follows.

In this section we discuss lag synchronization of the last generation nodes orig-

inated from the same parent in the presence of heterogeneity in delay values. In

order to investigate the lag synchronization we define the variance:

σga
2 =

��N
j=a Aaj(xj(τja)− x̄)2�t

K
;

where i, j are the last generation nodes which have originated from a, ��t denotes

average over time and:

x̄ =

�N
j=a Aajxj(τja)

K
.

Thus σga
2 = 0 for xi(t+�τ) = xj(t), where �τ = τ1−τ2. For a network of height

h and branch ratio K, there will be Kh−1 set of last generation siblings (represented

by g), thus Kh−1 number of variance should be calculated, however the behavior of

one set of siblings should be same as the other set of siblings. Fig. 4.11 manifests

variation of σga
2 vs ε for the dynamics governed by Eq. 4.1. It presents the lag

synchronization among the last generation siblings in both lower (0.18 � ε � 0.38)

and higher (ε � 0.38) coupling range.

In order to understand the destruction of exact synchronization and origin of lag

synchronization with heterogeneous delay values, we study the difference variable

between a pair of last generation nodes originating from the same parent (let i and
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Figure 4.9: (a) time evolution of the two parent nodes( closed circle and closed
triangle) (b) time evolution of the child node of parent nodes plotted in (a). The
open circle in (b) correspond to the child node of parent node represented by the
closed circle in (a), similarly the open triangle in (b) correspond to the child node of
parent node represented by the closed triangle in (a). All the parameters are same
as taken in Fig. 4.8

Figure 4.10: Schematic diagram for the tree network for K = 2.

j) for the simplest case of ε = 1:

xi(t+ 1)− xj(t+ 1) = g(xa(t− τia))− g(xa(t− τja)); (4.8)

So one can see that for homogeneous delay, the above equation will reduce to :

xi(t+ 1)− xj(t+ 1) = 0;

Thus, for the homogeneous delay the last generation nodes originating from the

same parent will always get synchronized, while for the heterogeneous delay at

ε = 1 a simple calculation gives that the dynamical evolution of the ith and jth last

generation nodes will be:

xj(t+�τ)− xi(t) = 0; (4.9)

where �τ = τia − τja.

Thus, the introduction of heterogeneity in delay destroys the exact synchro-

nization between a pair of last generation nodes and leads to the lag synchroniza-

tion with time lag being equal to the difference of delay values for the two nodes.
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Figure 4.11: σga
2 as a function of ε for the last generation nodes for N = 21,

K = 4 and for 20 random initial conditions. The different symbols correspond
to the different set of last generation siblings. The local dynamics of the nodes is
governed by the logistic map(xi(t+ 1) = 4xi(t)(1− xi(t))).

Fig 4.12 represents the time evolution of the last generation nodes from the same

parent.

4.6 Coupled circle maps

In order to demonstrate the robustness of the results, in this section we present

results for the coupled circle maps. The local dynamics is given by:

f(x) = x+ ω + (p/2π)sin(2πx) (mod1). (4.10)

Here we discuss results with the parameters of circle map in the chaotic region

(ω = 0.44 and p = 6). As discussed for the logistic map, the coupled circle maps

also lead to: (i) dependance of mechanism behind cluster formation on the parity of

delays, (ii) the enhancement in the synchronization by introduction of heterogeneity

in delay, (iii) change in the cluster patterns with the change in the heterogeneous

delays and (iv) occurrence of lag synchronization among last generation siblings in

Calyley tree network. Fig. 4.13 demonstrates the change in the mechanism behind

the cluster formation with change in the parity of heterogeneous delay values as well

as exhibit the change in the cluster patterns. These snapshots depict the formation

of the SO clusters for the odd heterogeneous delays, mixed clusters for the mixed

parity of the heterogeneous delays and D clusters for the even heterogeneous delays.
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Figure 4.12: Time evolution of the boundary nodes originated from the same parent
for a Cayley tree network with N = 21, K = 4 and ε = 1. The diagram exhibits
that there is time lag synchronization between the two nodes i (open circle) and j
(closed circle) with time lag being 1, 2 and 9 for (a), (b) and (c) respectively. The
local dynamics is governed by the logistic map (xi(t+ 1) = 4xi(t)(1− xi(t))).

Figs. 4.15(a) and (b) plot examples demonstrating the transition from the ideal D to

the globally synchronized state for the coupled circle maps on the complete bipartite

networks.

4.7 Gaussian distributed delays

In order to see robustness of the phenomena, such as enhancement in cluster syn-

chronization and change in the mechanism for the two delays case, we consider the

Gaussian distributed delays as [110], τij = τ̄ +Near(cη), where η is Gaussian dis-

tributed with mean zero and standard deviation one. The delays are homogeneous

(τij = τ ) for c =0 and are Gaussian distributed around τ̄ for c �= 0. We choose

example of SF networks in order to capture a better overview of the mechanism

behind cluster synchronization as they are known to exhibit good synchronizabil-

ity for undelayed and delayed evolution. We find that the distributed delays breaks

dominance of any of the two mechanisms, clearly visible for homogeneous and two

delays case, leading to the mixed clusters state for ε � 0.15 (Fig. 4.16(a)). The

other networks, except the complete bipartite networks, we have considered, mani-

fest the similar results as for the SF networks. The complete bipartite networks for
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Figure 4.13: A typical behavior of coupled dynamics illustrating different cluster
patterns for change in parity of heterogeneous delays. Figure description remains
same as in Fig.4.3. The example presents a scale-free network with N = 50, �k� =
4 and ε = 0.02. All the graphs correspond to fτ1 = fτ2 .
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Figure 4.14: σga
2 as a function of coupling strength for the last generation nodes

for circle map. The figure is plotted for N = 21, K = 4 and for 40 random initial
conditions. The different symbols correspond to the different set of last generation
siblings. The local dynamics of the nodes is governed by Eq. 4.10.

the Gaussian distributed delays are capable of displaying all the mechanism of clus-

ter synchronization as observed for the two delays case (Fig. 4.16(b)), leading to

the rich cluster patterns depending on the coupling strength. Comparison with the

Fig. 4.2(a) and (b) indicate that the Gaussian distributed delays reveals no further

phenomena than already observed for the two delays heterogeneity.

4.8 Effect of average degree

Previous studies demonstrate that undelayed and the homogeneously delayed evolu-

tion of all the networks with high average degree leads to the globally synchronized

state after a critical ε value, whereas the introduction of the odd-even heterogene-

ity leads to the multi-cluster state. Note that for this multi-cluster state there is no

significant suppression in the overall synchronization in the network, as still almost
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Figure 4.15: Node versus node diagram demonstrating various clusters state for (a)
and (b) for coupled circle maps on the complete bipartite networks of N = 50 at
ε = 0.85, (c) and (d) for coupled logistic maps on globally connected network of
N = 200 at ε = 1.0. (a) and (c) τ = 0/ τ = 1 indicate that exactly same patterns are
obtained for the undelayed (τ = 0 ) and the homogeneous delayed (τ = 1) cases.
Circles and dotes remain same as in Fig.4.3. All the graphs correspond to fτ1 = fτ2 .

all (95%) the nodes participate in the cluster formation. The only difference is that

the heterogeneity in delays breaks the globally synchronized cluster, distributing

its nodes into the different clusters (Fig.4.15). The Gaussian distributed delays at

strong couplings also generates the multi-cluster state as observed for the two delays

odd-even heterogeneity.

For the coupled dynamics, there exists a trade off between the local dynamics

and the coupling term resulting in various emerging behaviors. At strong coupling

values, the coupling term dominates over the local dynamics. Again as explained

earlier, for ε = 1, the Lyapunov function for a pair of nodes (Eq. 4.2) in the globally

connected networks would depend only on the term (g(xj(t − τ)) − g(xi(t − τ)))

while other terms cancel out. Whereas for the heterogeneous delays, the Lyapunov

function would contain all the coupling terms (4.3), thereby making the stability

of the synchronized state dependent on the neighbors thereby disturbing the syn-

chronization between the nodes for the homogeneous delay case. Therefore, for

the heterogeneous delays, a pair of nodes i and j may or may not get synchronized

depending on the delays connecting to all the neighbors, thereby leading to differ-

ent cluster patterns such as multi-cluster state for globally coupled network against
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Figure 4.16: Variation of finter (closed) and fintra (open) circles as a function of ε
for SF (left) and complete bipartite (right) networks with N = 500 and for Gaussian
distributed delays with mean τ̄ = 10 and variance c = 9.

global synchronized state for the homogeneous delays.

4.9 Discussion and conclusion

We study the impact of heterogeneity in delay values on cluster synchronization and

present the results for two different delay arrangements; (i) the heterogeneity with

two different delay values, and (ii) the heterogeneity with the Gaussian distributed

delays. For the first case, the cluster synchronization exhibits a dependence on the

amount of heterogeneity in delays. Our results suggest that the heterogeneous de-

lays accomplish an enhancement in the cluster synchronization for which we pro-

vide arguments using simple network structures. The enhancement in the cluster

synchronization with enhancement in the heterogeneity in delays at the strong cou-

plings indicates that heterogeneity in delay may simplify the coupled dynamics.

Next, we find that at weak couplings the different parities impose different con-
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straints on the coupled dynamics, thereby inducing the different mechanism of clus-

ter formation for which we provide an explanation by considering a simple case of

periodic evolution. For intermediate and strong couplings, we find that more amount

of heterogeneity in delays is associated with enhanced cluster synchronizability of

the network. Thus, the amount of heterogeneity can be used as a tool to improve

or reduce the cluster synchronizability of the model networks [151, 152] and can

be used to understand versatile cluster patterns observed in the real world network

[103]. The Gaussian distributed delays exhibit similar results as observed for the

odd-even delays displaying the mixed clusters at the weak, intermediate and strong

couplings. All the numerical results indicate that the heterogeneity in delays fa-

vor SO mechanism of synchronization for achieving a better synchrony in network

as connections in the network increase. This is more evident in case of odd-odd

heterogeneity, which advances the ideal D clusters for network having less num-

ber of connections and manifests a transition to the SO cluster as connections are

increased. Note that for these high average degrees all the networks (except the

complete bipartite networks) with homogeneous or zero delay display the globally

synchronized state at strong enough coupling strength, while the networks with het-

erogeneous delays yield the multi-clusters state keeping SO mechanism responsible

for the synchronization intact.

Using the Lyapunov function analysis, we furnish the argument that the het-

erogeneity in delays wreaks a different couplings environment for nodes directly

connected, which for strong coupling regime, where coupling term dominates over

the local evolution, is responsible for disrupting the global cluster. We further sub-

stantiate that for the complete bipartite networks, at the strong couplings, in the

presence of heterogeneity in delays, the combined effect of the two postulates: (i)

destruction of the ideal D cluster state and (ii) possibility of the SO synchroniza-

tion, leads to the formation of different cluster patterns such as mixed, dominant D,

dominant SO and ideal SO.

To conclude, using extensive numerical simulations for various model networks

accompanied with the analytical understanding using the Lyapunov function for the
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completely bipartite networks we demonstrate that in the presence of heterogeneity

in delays, the mechanism for cluster synchronization can be completely different

from the homogeneous delayed evolution. In brain, the time of information trans-

mission lie in a range exhibiting a heterogeneity in time delay [94], the results pre-

sented in this Letter can be used to gain insight into the synchronized activities of

such systems. Furthermore, the heterogeneous delays have been shown to display

the regular chaotic patterns in the brain networks [173–175]. Our results may be

further extended to study the mechanism behind the origin of these patterns. Fur-

thermore, since our definition of phase synchronization is based on the study of

matching local maxima (minima) in the time evolution of the coupled nodes and

recently local maxima (minima) has been found useful in understanding dynamical

behavior of stock market [176, 177], our work may be further extended to investi-

gate the cluster patterns in the stock market.
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Chapter 5

Cluster synchronization in multiplex
networks

A complex system may consist of a superposition of various interacting networks

[178–180], such as a social system which may be composed of different sub-networks

consisting family, friends, colleagues, work collaborators and hence forming a mul-

tiplex network. The multiplex network presents a more realistic representation of

real world interactions [178] leading to a spurt in the activities of modelling real

world complex systems under this framework.

Most of the studies on multiplex networks have concentrated on the investiga-

tion of various structural properties or emergence of spectral properties [181–183].

A recent work, considering dynamical properties of the multiplex networks reports

that the synchronizability of a multiplex network is maximum for the small-world

- random regular topology [184] as well multiplexing reduces the rate of the global

synchronization [184].

In this chapter, we present the dynamical behavior of nodes in a layer upon

multiplexing with other layers. Particularly, we investigate the impact of nodes

interactions in one layer on the cluster synchronizability of the same nodes in the
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other layer. In a realistic situation, the connection density as well as degree of

distribution of two layers can be different, for instance in a social system a family

network can be denser than a counter friendship network. Similarly, the friendship

network can be denser than a corresponding business network.

Figure 5.1: Schematic diagram depicting a multiplex network with two layers. The
dashed lines indicate the inter-layer connections. The density of connections in the
different layers can be different and is defined as �k1� for the first layer and �k2� for
the second layer.

We consider the well known coupled maps model [111] to investigate the phase

synchronized clusters in the multiplex networks. We consider the phase synchro-

nization instead of complete synchronization as for sparse networks number of

nodes exhibiting the complete synchronization is very less and with an increase

in the connection density there is a transition to the globally synchronized state

[178], whereas the prime motive of the current work is to study cluster synchro-

nization. The phase synchronization reveals interesting cluster patterns as well as

dependence of mechanism of cluster formation in one layer on the network struc-

ture of other layer. Let each node of the network be assigned a dynamical variable

xi, i = 1, 2, . . . , N . The dynamical evolution is defined by,

xi(t+ 1) = (1− ε)f(xi(t)) +
ε

ki

n
�

j=1

NAijg(xj(t)) (5.1)

Here, A is the adjacency matrix with elements Aij taking values 1 and 0 depending

upon whether there is a connection between i and j or not and n is the number of

layers in the multiplex network. We consider simplest case of two layer multiplex
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network. The matrix A for a two layer multiplex network can be given as:

A =





A1 I

I A2



 ,

where, A1 and A2 are the adjacency matrix corresponding to the layer 1 and layer 2.

ki = (
�N

j=1
Aij) is the degree of the i-th node and N is total number of nodes in a

layer. The average degree of the different layers may be different and are indicated

as �k1� and �k2�. We consider the local nonlinear map (f(x)) as well as the coupling

function (g(x)) governed by the logistic map for µ = 4.
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Figure 5.2: Phase diagram depicting the variation of fclus with respect to the ε and
the average degree (�k2�) of 1-d lattice multiplexed with the (a) random network,
(b) SF network and (c) 1-d lattice. The average degree of the first layer (�k1� = 4)
remains same for all three cases. The label ‘iso’ on the y axis represents that the
corresponding row represents the values of fclus for the isolated network. For all
the layers N = 100 and phase diagrams are plotted for average over 20 random
realizations of the networks and initial conditions.

5.1 Numerical Results

Starting from a set of random initial conditions we evolve Eq. 5.1 and study the

phase synchronized clusters after an initial transient. We present detailed results

of cluster synchronization for simplest multiplex network consisting of two layers.

First layer can be represented by a regular or a random network, similarly the second

layer can also be modelled by a regular or random network. Here, we present results

for all the possible combinations, such as random-random, random-regular, regular-

regular and regular-random.
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Figure 5.3: (Color online) The largest Lyapunov exponent for a multiplex network
consisting of two layers, one represented with the ER random (�k1� = 4) network
and another with 1-d lattice for various average degree �k2�. Number of nodes in
each layer is N = 100.

5.1.1 Cluster synchronizability of regular networks upon multi-
plexing

First, we discuss the cluster synchronizability of a regular network represented by

1-d lattice upon multiplexing with a ER random network [27].

We find that the isolated sparse 1-d lattice at weak couplings leads to the phase

synchronized clusters with all the nodes participating in the clusters, whereas strong

couplings lead to a very few nodes forming clusters (Fig. 5.2(a)). Multiplexing

with a sparse ER network enhances the cluster synchronizability of the 1-d lattice

at all the couplings . Multiplexing with a denser ER network while enhances the

cluster synchronizability as weak couplings, leaves the cluster synchronizability

unchanged with few nodes keep forming synchronized clusters at the intermediate

and strong couplings. Fig. 4.2(a) demonstrates that cluster synchronizability of 1-d

lattice enhances at the weak couplings irrespective of the value of �k2�, whereas

at the intermediate coupling, for �k2� = 2, there is an enhancement in the clus-

ter synchronization, which for the higher values of �k2� gets vanished. At strong

couplings synchronization enhances for �k2� � 8. Additionally, the multiplex net-

work yields the chaotic dynamics for almost all the coupling values for the layers
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Figure 5.4: (Color online) Phase diagram depicting the variation of fclus with re-
spect to the ε and the average degree (�k2�) for SF network, multiplexed with (a)
random network, (b) SF network, and (c) 1-d lattice. The average degree of the first
layer (�k1�) remains same for all three cases. For all the layers N = 100 and phase
diagrams are plotted for average over 20 random realizations of the networks and
initial conditions.

being represented by sparse networks. Additionally, multiplex network yields the

chaotic dynamics for almost all the coupling values for the layers being represented

by sparse networks (Fig. 5.3). Note that the synchronizability of the second layer,

represented as the ER random network, always increases with an increase in the

average degree as observed for the isolated networks.

Next we discuss the cluster synchronizability of the 1-d lattice upon multiplex-

ing with various other network architectures. At the weak couplings, multiplexing

with the SF networks and 1-d lattice lead to an enhancement in the cluster syn-

chronizability as observed for the multiplexing with the ER random network. At

the strong couplings, there is an enhancement in the synchronization for sparse

networks as observed for the multiplexing with the random networks but the con-

nection density for which this enhancement occurs becomes lower. For example, a

1-d lattice with �k1� = 4, exhibits no enhancement in the cluster synchronization

upon multiplexing with the 1-d lattice and SF networks with �k2� � 4 and �k2� � 6

respectively (Fig. 5.2(c),(b))). Thus the enhancement in the cluster synchronizabil-

ity of the 1-d lattice is least favourable when it is multiplexed with the 1-d lattice

and favourable being multiplexed with the random networks.
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Figure 5.5: (Color online) Node versus node diagram (a) for the isolated SF network
with N = 100 and �k1� = 2, (b), (c), (d), (e) and (f) after multiplexing with a
layer represented by ER random network with �k2� = 4, 6, 8, 10, 16 respectively at
ε = 0.8. In each case nodes numbers are reorganized so that the nodes belonging to
the same cluster are numbered consecutively.

5.1.2 Cluster synchronizability of random networks upon mul-
tiplexing

Further, we study cluster synchronizability of SF networks upon multiplexing with

various network architecture. The isolated sparse SF networks are known to ex-

hibit a better cluster synchronizability as compared to the sparse regular or random

networks (Fig. 5.4).

At the weak couplings, the multiplexing with another network only changes the

cluster pattern and does not bring any enhancement in the cluster synchronization.

For example the isolated SF networks with �k1� = 4 and N = 100 lead to the

participation of about 50% nodes in the cluster formation. After multiplexing, the

same fraction of the nodes keep participating in the cluster formation as shown by

the reappearance of the grey shade in the Fig. 5.4(b). At the intermediate and strong

couplings, there is an enhancement in the synchronization for multiplexing with the

sparse networks whereas impact of multiplexing with the dense networks is largely

depend on the network architecture. For example, the cluster synchronizability of

SF networks with �k1� = 4 enhances upon the multiplexing with random and SF

networks up to a certain limit of �k2�. The multiplexing with the random and SF
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Figure 5.6: (Color online) Variation of finter and fintra with �k2� for isolated 1-d
lattice (closed and open triangles) with N = 100 and �k1� = 4 and after multiplex-
ing with a random network (closed and open circles) with various average degrees
(�k2�). Value of ε are chosen such that they exhibit an enhancement in the D syn-
chronization and enhancement in the SO synchronization followed by a suppression
at the strong couplings with an increase in �k2�. All the graphs are plotted for aver-
age over 20 different realizations of network and initial conditions.

networks enhances the cluster synchronizability for �k2� � 40 (Fig. 5.4(a) and (b)),

while in the case of multiplexing with the 1-d lattice the enhancement occurs for

�k2� � 10 (Fig. 5.4(c)). For the higher connection density there is a suppression

in the synchronization. This shows that the cluster synchronizability of the SF net-

work is more favorable when it is multiplexed with the random and SF networks.

The multiplexing also completely changes the cluster pattern. For example that

at ε = 0.8 the isolated network exhibits few less nodes forming the cluster with

the sizes of all the clusters being very small (Fig. 5.5(a)). The size of the largest

cluster is 20. Multiplexing with the random networks of �k2� = 4, 6, 8, 10, en-

hances the number of nodes forming the cluster as well as the size of the clusters

(Figs. 5.5(b), (c), (d) and (e)). For �k2� � 16 synchronization suppresses completely

(Figs. 5.5(f)). Furthermore, multiplexing of ER random networks with different net-

work architectures at the weak couplings exhibit the similar behavior as observed

for the 1-d lattice, whereas the strong couplings lead to the similar behavior as dis-

cussed for the SF networks. What follows that multiplexing of random (SF and ER)

networks with 1-d lattice favours more to the cluster synchronizability as compared

to multiplexing with the random networks.
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Figure 5.7: (Color online) Variation of finter and fintra with �k2� for isolated SF
network (closed and open triangles) with N = 100, �k1� = 4 and for SF network
after multiplexing (closed and open circles) with random networks at ε = 0.74
(a) and ε = 1.0 (b). All the graphs are plotted for an average over 20 different
realizations of network and initial conditions.

5.2 Analytical understanding

In the following, we explore the reasons behind the impact of change in the density

of connections in the second layer on the cluster synchronizability of first layer at

strong couplings by using a simple case. The difference variable, of two nodes in

the first layer at ε = 1, can be written as,

x1

i (t+ 1)− x1

j(t+ 1) =
1

k1
i + 1

(
N
�

j=1

(A1

ijf(x
1

i (t))))−

1

k1
j + 1

(A1

jif(x
1

j(t))) + (
1

k1
i + 1

f(x2

i (t)−

1

k1
j + 1

f(x2

j(t)))),

(5.2)

where superscripts 1 and 2 stand for the first and second layer respectively. If global

synchronization is achieved in the second layer, due to its denseness, in the above

variable the coupling term having contribution from the second layer will get can-

cel out provided these pair of nodes have same degree (ki = kj). Consequently

the synchronization between two nodes will depend only on the properties of iso-

lated network. For example, the sparse 1-d lattice upon multiplexing with dense

random networks exhibits no cluster synchronization at the strong couplings upon

multiplexing, as observed for the isolated network (Fig. 5.2(a)).
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Figure 5.8: (Color online) Variation of finter and fintra with �k2� for random net-
works with N = 500, �k1� = 4 (a) and 1-d lattice with N = 500, �k1� = 6 (b).
The closed and open triangles represent values of finter and fintra respectively for
the isolated random network (a) and for isolated 1-d lattice (b). The closed and
open circles represent values of finter and fintra respectively for the random net-
work after multiplexing with the SF network (a) and 1-d lattice after multiplexing
with the random network (b). All the graphs are plotted for average over 20 different
realizations of network and initial conditions.

5.3 Mechanism of cluster formation upon multiplex-
ing

Furthermore, we study the change in the mechanism behind the cluster formation

due to multiplexing. At weak couplings, the D synchronization remains the prime

mechanism behind the cluster formation after multiplexing (Fig. 5.6(a)) as observed

for the isolated networks [57, 58], while at the intermediate and strong couplings

the connection density of the second layer plays an important role. In this coupling

regime, multiplexing may lead to a change in the mechanism of cluster formation.

For example, for the isolated sparse networks mixed or dominant D is the main

mechanism behind the cluster formation [57], while upon multiplexing there is tran-

sition to the dominant SO mechanism for a certain limit of �k2�. The 1-d lattice of

�k1� = 4 exhibits a transition from the dominant D to dominant SO mechanism

upon multiplexing with random network for �k2� � 10 (Fig. 5.6(b)). SF networks

exhibit the transition from the mixed clusters state to dominant SO clusters state

upon multiplexing with the random network for �k2� � 8 at the intermediate cou-
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Figure 5.9: Schematic diagrams depicting a multiplex network with three nodes in
each layer. (a) formation of D cluster (nodes within the circle) when node 2 is syn-
chronized with its counter part (denoted with same color, (b) complete suppression
in synchronization due to synchronization between the all the nodes (denoted with
same color).

plings (Fig. 5.7(a)) and transition from the dominant D clusters state to dominant

SO clusters state for �k2� � 10 at the strong couplings (Fig. 5.7(b)). The multiplex-

ing with the dense networks leads to a suppression in cluster synchronization but

the mechanism behind cluster formation remains the same (Fig. 5.6(b)).

Using a simple multiplex network having three nodes in each layer, we pro-

vide an understanding to this impact of multiplexing on the mechanism behind the

cluster formation. Numerical simulation of three nodes multiplex network (Fig.5.9)

indicates that the synchronization among the nodes in the same layer is suppressed

due to an enhancement in the synchronization between the nodes of the different

layers. What follows that the suppression in the SO synchronization at the strong

couplings occurs due to the synchronization between nodes which are counter part

of each other in different layers, whereas the D synchronization between a pair of

node remains unaffected due to the same coupling environment they receive. As

in Fig. 5.9(a), occurrence of synchronization between node 2 in first layer with its

counter part in the second layer suppresses the synchronization between nodes 2, 3

and 2, 1 while the nodes 1 and 3 remain synchronized as these nodes still receive a
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common coupling from node 2.

Further, in order to demonstrate the impact of size and robustness of the phe-

nomena discussed above for large network size, we present results for N = 500.

At the weak coupling range, the cluster synchronization always enhances with the

dominant D being the mechanism behind the cluster formation (Fig.5.8(a)) and at

the strong coupling the multiplexing with the sparse networks enhances the cluster

synchronization with the dominant SO being the mechanism behind the cluster for-

mation (Fig.5.8(a)). The network parameters for which the multiplexing imposes a

change in the dynamical behavior may change with an increase in the network size

but the results remain same. For example, the limit of �k2�, for which there is an en-

hancement in the synchronization at the strong couplings, depends on the network

properties such as the average degree and the size of the network. For 1-d lattice

with N = 500 and �k1� = 6, there is an enhancement in the synchronization upto

�k2� < 8 (Fig. 5.8) upon multiplexing with the random network, while for the 1-d

lattice of N = 100 and �k1� = 4 the enhancement occurs for �k2� < 10 (Fig. 5.2)

upon multiplexing.

5.4 Conclusion

To conclude, we have studied the impact of multiplexing on the cluster synchro-

nizability and mechanism behind the synchronization of a layer in the simplest

multiplex network consisting of two layers. We find that at weak couplings, the

multiplexing enhances the cluster synchronizability, while at the strong couplings

this enhancement depends on the architecture as well as the connection density of

the another layer. The cluster synchronizability of a layer is enhanced when an-

other layer has a moderate connection density. Moreover, multiplexing favors to

the enhancement in the cluster synchronization when multiplexed with the random

network. The enhancement in the cluster synchronization is also associated with the

change in the mechanism of the cluster formation. The multiplexing primarily in-

fluences the synchronization between the nodes which are directly connected while

leaving the synchronization between other pairs of nodes unaffected.
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Our work demonstrates that in a multiplex network, the activity in a layer (sub-

network) is significantly influenced by the structural properties of another layer

(sub-network). If connection density in one layer increases above a certain limit,

it may spoil the synchronization in the another layer. The results presented here,

about dynamical behavior of multiplex networks, may provide a guidance for the

construction of a better model networks with multiplex architecture, such as the

airport networks composing different airline companies [185].
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(2013), Experimental observations of group synchrony in a system of chaotic
optoelectronic oscillators, Phys. Rev. Lett., 110, 064104 (DOI: 10.1103/Phys-
RevLett.110.064104).

[91] Kinzel W. , Englert A. , Kanter I. (2009), On chaos synchroniza-
tion and secure communication, Phil. Trans. R. Soc. A 368, 379 (DOI:
10.1098/rsta.2009.0230).

[92] Prasad A., Kurths J., Ramaswamy R. (2008), The effect of time-delay on
anomalous phase synchronization, Phys. Lett. A, 372, 6150-6154 (DOI:
10.1016/j.physleta.2008.08.043).
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